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 ABSTRACT 

The endophytic bacterium Burkholderia phytofirmans PsJN has been previously 

shown to promote plant growth. This bacterium produces siderophores, indoleacetic acid 

(IAA) and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, all of 

which have previously been implicated in the promotion of plant growth by bacteria. 

Following isolation of the ACC deaminase gene (acdS), AcdS deficient mutants of PsJN 

were generated. One mutant contains a tetracycline resistance gene inserted into acdS, 

and the other mutant contains a deletion in the acdS gene. Both of the mutants showed no 

detectable ACC deaminase activity, produced a decreased level of siderophores and an 

increased amount of IAA compared to the wild-type, and lost the ability to promote 

canola root elongation. In addition, the GFP-labeled acdS deletion mutant colonized plant 

interior surfaces somewhat less efficiently than the GFP-labeled wild-type strain. 
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1 Introduction 

 

1.1 Ethylene 

Ethylene is one of the simplest organic molecules with biological activity. Its 

existence was first proposed in 1901 by Russian scientist Dimitri Neljubov, with etiolated 

pea seedlings (Abeles et al., 1992).  

In higher plants ethylene is formed from L-methionine via S-adenosyl-L-methionine 

(SAM) and the cyclic non-protein amino acid 1-aminocyclopropane-1-carboxylic acid 

(ACC) (Adams and Yang, 1979). The enzymes catalyzing the conversion of methionine 

to SAM, of SAM to ACC and of ACC to ethylene are SAM synthetase, ACC synthase 

and ACC oxidase, respectively (Giovanelli et al., 1980; Kende, 1989; John, 1991). 

Besides ACC, the other ACC synthase product is 5’-methylthioadenosine (MTA), which 

is recycled to L-methionine through the Yang cycle (Miyazaki and Yang, 1987). By 

preserving the methylthio group at the cost of one molecule of ATP per cycle, this 

pathway ensures that a high rate of ethylene biosynthesis leaves the level of the rest of the 

metabolites relatively unchanged, even when the methionine pool is small (Bleecker, 

2000). The genes for both ACC synthase and ACC oxidase are parts of multigene 

families and the transcription of different forms is induced by different environmental or 

physiological conditions (Theologis, 1992).  

Ethylene plays important roles not only in a plant’s normal development but also in 

its response to stress (Deikman, 1997). During normal development, ethylene is involved 

in seed germination, senescence, abscission and fruit ripening, as well as growth of 
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vegetative tissue including stems, roots, and petioles (Deikman, 1997). Under stress 

conditions, such as temperature extremes, water stress, salt, exposure to ultraviolet light, 

organic chemicals, metals, disease, insect damage and mechanical wounding, the level of 

ethylene increases. The term “stress ethylene” was coined by Abeles (1973), to describe 

the increased production of ethylene associated with environmental and biological 

stresses, including pathogen attack (Morgan and Drew, 1997). Many studies have shown 

that in stress conditions, such as pathogen infection for example, not only does the 

pathogen action cause damage to the plant, but also does the autocatalytic ethylene 

synthesis cause severe damage to the plant (Van Loon, 1984). The production of stress 

ethylene generally occurs in two stages. The first stage of increased plant ethylene level 

acts to initiate protective responses that can enhance the survival of plants under adverse 

conditions, while the second peak of increased ethylene is much higher than the first one, 

and can exacerbate some of the stress symptoms, such as senescence, chlorosis and 

abscission (Glick, 2005).  

 

1.2 Plant Growth Promoting Bacteria 

The interaction between bacteria and plants can be beneficial, harmful or neutral for 

the plant. There are two types of bacteria that are beneficial to plants, symbiotic and free-

living bacteria. The former generally form specialized structures or nodules on host 

plants roots, while the latter live near or inside the plant roots (Glick, 1995a). Free-living 

beneficial soil bacteria are generally considered to be plant growth-promoting bacteria 

(PGPB), and they are found associated with roots of many different plants (Glick et al., 
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1999). The most widely studied group of PGPB is plant growth-promoting rhizobacteria 

(PGPR) which colonize the plant rhizosphere.  

Generally PGPR can stimulate plant growth directly or indirectly (Glick, 1995a). 

Indirect promotion happens when bacteria prevent plants from being inhibited by some 

phytopathogenic organisms or decrease the deleterious effects of the pathogens (Glick 

and Bashan, 1997). Direct promotion of plant growth occurs when these bacteria provide 

the plants with compounds they synthesize, such as fixed nitrogen or phytohormones; 

facilitate the uptake of nutrients, such as iron and phosphorus, from the environment by 

the plant; or synthesize the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase which can lower the ethylene level in the plant (Glick et al., 1998). 

 

1.3 ACC deaminase 

ACC deaminase is a multimeric enzyme, and each of the monomeric subunits is 

about 35-42 kDa. It is a sulfhydryl enzyme with pyridoxal 5-phosphate as an essential co-

factor. ACC deaminase catalyzes the cleavage of ACC, forming α-ketobutyrate and 

ammonia (reviewed by Glick, 2005; Fig. 1-1 A). It is suggested that lowering the 

ethylene level of plants is one of the most important mechanisms used by PGPR to 

stimulate plant growth (Hall et al., 1996).  

A model was proposed to explain the role of ACC deaminase in plant growth 

promotion (Glick et al., 1998; Fig. 1-1 B). In this model, the plant growth-promoting 

bacteria bind to the surface of either the seed or root of a developing plant. Some of the 

indoleacetic acid (IAA) synthesized by the bacteria is taken up by the plant. However, 

besides stimulating plant cell proliferation, IAA can induce the transcription of ACC 
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synthase, the enzyme which converts SAM to ACC. Some of the ACC is exuded from 

seeds or roots, taken up by bacteria and hydrolysed by ACC deaminase to ammonia 

and α-ketobutyrate, both of which can be metabolized by most soil bacteria. This process 

efficiently decreases the ACC level in a plant, and may provide the bacterium with a 

unique source of nitrogen in the form of ACC which other soil bacteria can not use (Glick 

et al., 1998). Thus, ACC deaminase-containing plant growth-promoting bacteria act as a 

sink for ACC, thereby lowering plant ethylene levels. 

In most of the Proteobacteria that contain an ACC deaminase gene, acdS, there is 

also an acdR gene, which is a homolog to leucine-responsive regulator genes lrp, in the 

vicinity of acdS (Prigent-Combaret et al., 2008). The acdS acdR locus is sometimes 

located on mobile genetic elements, especially in Alphaproteobacteria, while they are 

located within the chromosomal DNA in most Gamma- and Betaproteobacteria (Prigent-

Combaret et al., 2008). The regulatory role of AcdR in acdS transcription has been 

elaborated in several studies (Grichko and Glick, 2000; Li and Glick, 2001; Ma et al., 

2003; Prigent-Combaret et al., 2008; Cheng et al., 2008). Evidence for the role of AcdR 

in regulating expression of acdS include the binding sites for Lrp-like regulator AcdR in 

acdS promoter region (Grichko and Glick, 2000; Li and Glick, 2001; Ma et al., 2003; 

Prigent-Combaret et al., 2008); AcdR inactivation abolished ACC deaminase activity in 

R. leguminosarum 128C35K (Ma et al., 2003), as well as the physical interaction 

between the AcdR protein and the acdS promoter in A. lipoferum 4B and the abolishment 

of ACC deaminase activity in an acdR mutant in A. lipoferum 4B (Prigent-Combaret et 

al., 2008). In addition, Cheng et al. (2008) recently showed that AcdR acts in concert 

with another protein, AcdB, to regulate acdS expression.  
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 To study the role of ACC deaminase in plant growth promotion, an ACC 

deaminase minus mutant (AcdS–) of Pseudomonas putida UW4 was constructed and 

characterized (Li et al., 2000). Compared to the wild-type P. putida UW4, both ACC 

deaminase activity of UW4 AcdS– and its ability to promote canola roots elongation 

under gnotobiotic conditions were greatly diminished (Li et al., 2000). Furthermore, it 

has been shown that the wild-type UW4, not the UW4 AcdS– strain, significantly 

improved plant growth under salt stress conditions (Cheng et al., 2007). 

 ACC deaminase-containing plant growth-promoting bacteria have been reported 

to be able to protect plants against various stresses by lowering the level of stress 

ethylene in the plants (reviewed by Glick, 2004). For example, tomato plants inoculated 

with the ACC deaminase-containing bacterium Pseudomonas putida UW4, Enterobacter 

cloacae CAL2 or Pseudomonas putida ATCC17399/pRKACC showed a substantial 

tolerance to flooding stress (Grichko and Glick, 2001). Two biocontrol bacterial strains 

were transformed with the ACC deaminase gene from Pseudomonas putida UW4, and 

were found to be more effective than non-transformed biocontrol strains in suppressing 

phytopathogen damage of cucumbers (Wang et al., 2000). Plant growth-promoting 

bacteria with ACC deaminase activity have also been reported to be able to accelerate 

plant growth in recalcitrant organic contaminated soils, diminishing the toxic effects to 

plants (Huang et al., 2004a and b). Moreover, Mayak et al. (2004a and b) reported that 

the ACC deaminase-containing bacterium Achromobacter piechaudii ARV8 significantly 

promoted tomato growth under both drought and salt stress conditions.  
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Figure 1-1 Proposed role of ACC deaminase in plant growth promotion.   

Panel A shows the biochemical mechanism of ACC cleavage.  
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1.4 Endophytic bacteria  

Endophytic bacteria can enter the root interior and establish endophytic populations. 

The term endophyte is derived from the Greek “endon” (within) and “phyte” (plant), and 

it had originally been applied exclusively to fungi (Carroll, 1988; Clay, 1988), including 

the mycorrhizal fungi (O’Dell and Trappe, 1992). In 1995, a new definition of endophyte 

was proposed, “fungi or bacteria, which for all or part of their life cycle invade the tissues 

of living plants and cause unapparent and asymptomatic infections entirely within plant 

tissues, but cause no symptoms of disease” (Wilson, 1995). In 1997, Hallmann defined 

endophytic bacteria from another perspective, “those bacteria that can be isolated from 

surface-disinfected plant tissue or extracted from within the plant, and that do not visibly 

harm the plant” (Hallmann et al., 1997). 

The rhizosphere is now considered the major source of endophytic bacteria (Sturz et 

al., 2000; Germaine et al., 2004; Compant et al., 2005) although they may also originate 

from other sources, such as the phyllosphere, the anthosphere, or the spermosphere 

(Hallmann et al., 1997). As early as 1973, Darbyshire and Greaves classified endophytic 

bacteria into the bacterial rhizosphere community. Old and Nicolson (1978) further 

defined the root cortex as a part of the soil-root microbial environment. Frommel (1991) 

found that in potatoes inoculated with an endophytic species, the endophytic population 

approached a higher optimal density in roots than stems, which suggested that 

endophytes enter plants from the rhizosphere. In addition, the similarity between bacterial 

species within plant organs and those found in the rhizosphere also supports the view that 

soil is a major source from which endophytic bacterial populations originate (reviewed by 

Sturz et al., 2000).  
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However, some evidence has shown that endophytic bacteria and rhizobacteria each 

have distinct features. For example, endophytic and rhizobacteria from the same genera 

were found to form discrete subpopulations, suitable for colonizing different locations, 

through an analysis of lypopolysaccharide and cell envelope protein patterns (van Peer et 

al., 1990). Based on this observation, the authors suggested that it is likely that some 

selection mechanism for the entry into plants might have taken place prior to host-

colonization. 

 

1.5 Colonization of endophytic bacteria  

Endophytic bacteria have been isolated from both monocotyledonous and 

dicotyledonous plants, ranging from woody tree species to herbaceous crop plants 

(reviewed by Lodewyckx et al., 2002). Many studies reported the presence of endophytic 

bacteria in the intercellular spaces inside plants, especially in xylem vessels, while 

intracellular endophytic colonization was also found in cytoplasm and vacuoles within 

some plants (reviewed by Sturz et al., 2000). A current view of colonization by 

endophytic bacteria is that they originate from the rhizosphere, penetrate and colonize 

root tissue, and some of them can find a route into the xylem, and then transport 

themselves throughout the plant (Hurek et al., 1994; Shishido et al., 1999; Gyaneshwar et 

al., 2001; Lodewyckx et al., 2002; James et al., 2002; Compant et al., 2005, 2008a).  

To initiate colonization, plants secrete root exudates which facilitate communication 

with the bacteria in rhizosphere and guide them to the root surfaces (Bais et al., 2004). 

The organic acids and amino acids in root exudates, such as ferulic acid, butanoic acid, 

trans-cinnamic acid, harmine, catechin etc. (reviewed by Bais et al., 2004), may initiate a 
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chemotactic response of bacteria which then attach to the root surface by active motility 

facilitated by flagella (De Weert et al., 2002; Steenhoudt and Vanderleyden, 2000; 

Turnbull et al., 2001). 

After the initial colonization step, certain bacteria are able to enter roots through 

cracks at root emergence sites or by passing through root tips (reviewed by Reinhold-

Hurek and Hurek, 1998) or through the middle lamella of the epidermal layer (Hurek et 

al., 1994). Once inside the plant tissue, endophytic bacteria either remain localized in a 

specific plant tissue, such as root cortex, or systematically colonize the entire plant 

(Lodewyckx et al., 2002). Intercellular spreading of bacteria may be mediated by pectic 

enzymes which can break down the middle lamella connecting plant cells, as is the case 

for Azospirillum, for example (reviewed by Reinhold-Hurek and Hurek, 1998). 

Intracellular colonization involves cellulolytic enzymes which are necessary to overcome 

the barrier of the primary or secondary cell wall. For example, the endophytic bacterium 

Burkholderia phytofirmans PsJN produces enzymes endoglucanase and 

endopolygalacturonase, which may help to permeate the central cylinder of Vitis vinifera 

L. Chardonnay plant by breaking the endodermis barrier (Compant et al., 2005). Once 

inside the plant, endophytic populations vary with different plants and different tissues, 

but usually achieve lower population densities than phytopathogen populations which can 

reach up to 1010 cells per gram of plant fresh weight (Grimault and Prior, 1994). 

Although the root zone offers the most obvious site of entry for many endophytic 

bacteria, the entry may also occur at sites on the surface of seeds, leaves and flowers 

(Lamb et al., 1996; Sharrock et al., 1991). In plants that propagate vegetatively, such as 
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potatoes, parent materials can also be a source of endophytic bacteria that subsequently 

colonize the developing roots and shoots via vascular tissues (Sturz et al., 2000).  

 

1.6 Burkholderia phytofirmans PsJN 

Burkholderia phytofirmans PsJN, which was originally designated Pseudomonas sp. 

strain PsJN (Frommel et al., 1991) is a highly effective plant-beneficial bacterium, first 

isolated as a contaminant from Glomus vesiculiferum-infected onion roots (Nowak et al., 

1998). B. phytofirmans PsJN has been found to establish rhizosphere and endophytic 

populations associated with potato, tomato, grapevine, cucumber, watermelon and 

chickpea (Frommel et al., 1991; Ait Barka et al., 2000; Liu et al., 1995; Pillay and 

Nowak, 1997; Sessitsch et al., 2005; Compant et al. 2005, 2008a, 2008b).  

B. phytofirmans PsJN has been shown to stimulate plantlet growth, induce 

developmental changes, lead to better water management and enhance resistance to low 

levels of pathogens upon transplantation and in vitro infection of grapevine with Botrytis 

cinerea (reviewed by Nowak and Shulaev, 2003). Recently, additional properties of this 

strain as a PGPR were reported. For example, B. phytofirmans PsJN showed a high level 

of ACC deaminase activity (Sessitsch et al., 2005), which can lower the ethylene level in 

plants and stimulate plant growth. Inoculation with PsJN promoted the growth of 

grapevines and improved their ability to withstand cold stress (Ait Barka et al., 2006). 

Moreover, B. phytofirmans PsJN has been visualized colonizing the root surface of 

grapevine, entering into root internal tissues, translocating via stem xylem vessels to leaf 

tissues (Compant et al., 2005), inflorescence stalks and immature berries (Compant et al., 

2008a).  
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1.7 Objective of this study 

 Endophytic bacterium Burkholderia phytofirmans PsJN has been previously 

shown to promote plant growth. ACC deaminase is known to be a very important 

mechanism used by PGPR to stimulate plant growth. To study how ACC deaminase 

affects the effectiveness of an endophyte, ACC deaminase minus mutants (AcdS–) of 

PsJN were constructed. To study the mechanisms used by PsJN to stimulate plant growth, 

both of the wild-type and mutant strains of PsJN were characterized for IAA secretion, 

siderophore production, ACC deaminase activity and the ability to promote plant growth 

under gnotobiotic conditions. To study colonization of canola by the PsJN strains, 

bacteria were labeled with a green fluorescent protein (GFP) gene marker and monitored 

in situ with a confocal microscope.  
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2 Materials and Methods 

2.1 Bacterial strains and plasmids 

The endophytic bacterium Burkholderia phytofirmans PsJN (Sessitsch et al., 2005) 

was generously provided by Dr. Jerzy Nowak, Virginia Polytechnic Institute and State 

University. This strain was grown on either solid or liquid tryptic soybean broth (TSB) 

medium (Difco Laboratories, Detroit, MI) with 20 µg/ml rifampicin at 30°C. It was also 

grown in DF salts minimal medium (Dworkin and Foster, 1958) supplemented with 

either 0.2% w/v (NH4)2SO4 or 3 mM ACC as a nitrogen source.  

Escherichia coli DH5α (Hanahan, 1983) was used as a recipient for recombinant 

plasmids. E. coli DH5α and its transformants with different plasmids were grown at 37°C 

in Luria Broth medium (Difco Laboratories, Detroit, MI).  

E. coli DH5α with p519ngfp (Matthysse et al., 1996) was obtained from the 

American Type Culture Collection (ATCC #87453). Plasmid p519ngfp is a broad host 

range mob+ plasmid containing gfp under the transcriptional control of an npt2 promoter. 

This plasmid was used to enable Burkholderia phytofirmans PsJN and its ACC 

deaminase deficient mutants to express Green Fluorescent Protein (GFP), so that they 

could be visualized under confocal microscopy. E. coli DH5α/p519ngfp was grown at 

37°C in Luria Broth medium (Difco Laboratories, Detroit, MI) with 20 µg/ml kanamycin.  

E. coli strains containing plasmid pK19mobsacB (Schäfer et al., 1994) were grown at 

37°C in Luria Broth medium (Difco Laboratories, Detroit, MI) supplemented with 20 

µg/ml kanamycin. pK19mobsacB is derived from the pK19 plasmid, and it contains the 

broad-host-range transfer machinery of plasmid RP4 and a modified sacB gene from 
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Bacillus subtilis. It is a very useful tool to enhance and subsequently to detect rare double 

cross-over events. 

Antibiotics were used at the following concentration for both E. coli and B. 

phytofirmans strains (µg/ml): ampicillin (Amp), 100; tetracycline (Tc), 15; kanamycin 

(Km), 20; rifampicin (Rif), 20.  

 

2.2 Isolation of genomic DNA from Burkholderia phytofirmans PsJN 

A single colony of B. phytofirmans PsJN was transferred into 5 ml TSB medium, and 

incubated at 30°C for 2 days until the cells reached stationary phase. One milliliter of the 

culture was transferred into a 1.5 ml microcentrifuge tube and centrifuged at 6000 ×g for 

5 minutes using an Eppendorf centrifuge 5417c (Hamburg, Germany). Genomic DNA 

was isolated from the cell pellets using a Promega (Mississauga, ON, Canada) Wizard 

genomic DNA purification system according to the manufacture suggested protocol.  

 

2.3 Isolation of the ACC deaminase gene from Burkholderia phytofirmans PsJN 

A draft genome sequence of Burkholderia phytofirmans PsJN(NZ_AAUH00000000) 

has been determined by the US DOE Joint Genome Institute and posted on the NCBI 

website (http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=118045147) 

on November 16th, 2006. The gene encoding the Burkholderia phytofirmans PsJN 1-

aminocyclopropane-1-carboxylate deaminase is 1017 bp. According to the nucleotide 

sequence of this strain, specific PCR primers were designed as followed: 5’-

TTGTTGCGTTCATAGGTTCC-3’ (sense) and 5’-TCCTGAGGGAGCATTTGAG-3’ 
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(antisense) and were synthesized by Sigma (Oakville, ON, Canada). The 25 µl PCR 

mixture contained 12.5 µl Go Taq® Green Master Mix from Promega (Madison, WI, 

USA), 2 µl of 20 pmol of each primer, 200 ng genomic DNA of Burkholderia 

phytofirmans PsJN as template DNA. PCR amplification was performed using a MJ 

Instrument PTC-100 thermocycler (Waltham, MA) with the following program: 4 

minutes initial denaturation at 94°C, 30 cycles of 30 seconds denaturation at 94°C, 30 

seconds primer annealing at 57°C, and 1 minute elongation at 72°C. A final elongation 

step was 10 minutes at 72°C.  

 

2.4 Construction of ACC deaminase deficient mutants of Burkholderia phytofirmans 

PsJN 

To construct an ACC deaminase deficient mutant of B. phytofirmans PsJN, a 

replacement vector which contained a disrupted ACC deaminase gene was first 

constructed. The replacement vector was then introduced by conjugation into wild-type 

B. phytofirmans PsJN. Subsequently, clones were selected in which a homologous 

double-crossover event had occurred between the endogenous acdS gene in the bacterial 

genome and the mutant acdS gene on the vector. Two ACC deaminase deficient mutants 

of Burkholderia phytofirmans PsJN were constructed using different methods. 

  

2.4.1 Construction of ACC deaminase deficient replacement vectors 

The construction of the first replacement vector for the construction of a PsJN ACC 

deaminase deficient mutant is outlined in Fig. 2-1. The PCR product of the PsJN acdS 
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gene was cloned into the pGEM-T Easy vector (Promega, Madison, WI, USA), to make 

pGEMACC. The linear pGEM-T Easy vector contains a 3’-T to both ends, which result 

in compatible overhangs for PCR products generated by Taq DNA polymerase. To 

interrupt the acdS gene on plasmid pGEMACC, the pBR322 EcoRI-AvaI fragment 

containing the tetracycline resistance gene (Tc) was inserted into the EcoRV site within 

the acdS coding region to make pGEMACC–. Since EcoRV is a blunt end restriction 

enzyme, the 5’ protruding ends of the EcoRI-AvaI fragment from pBR322 was filled in 

and made blunt ended by E. coli DNA Polymerase I Klenow Fragment (MBI Fermentas, 

Inc.) before insertion. Then, the plasmid pGEMACC– was digested by EcoRI and the 

fragment that contains acdS with the tetracycline resistance gene insertion was cloned 

into the EcoRI site of the mobilizable cloning vector pK19mobsacB (Schäfer et al., 1994) 

to make pK19Rep. The plasmid pK19mobsacB was derived from Escherichia coli 

plasmid pK19, and it contains the broad-host-range transfer machinery of RP4 and a 

modified sacB gene (Selbitschka et al., 1993) from Bacillus subtilis. The sacB gene, 

which codes for the enzyme levansucrase and confers sucrose sensitivity to Gram-

negative and some Gram-positive bacteria, was used here as a conditional lethal gene to 

discriminate between single and double cross-over events.  

The second replacement vector was constructed as outlined in Fig. 2-2. Instead of 

inserting an exogenous gene to interrupt the acdS gene, an EcoRV-ClaI fragment was 

removed from the coding region of acdS. The mutant acdS gene was cloned into 

pK19mobsacB to yield pK19RepV2. 

Among the molecular biological techniques used in the project, the isolation of 

plasmid DNA was performed using a Promega Wizard® Plus SV Minipreps DNA 
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Purification System (Madison, WI, USA), and DNA extraction from agarose gels were 

done using a QIAquick® Gel Extraction Kit from QIAGEN Sciences (Maryland, USA). 

The restriction enzymes EcoRV, EcoRI, AvaI and ClaI were all obtained from MBI 

Fermentas Incorporated, and the T4 DNA ligase was from Promega (Madison, WI, 

USA). 
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Figure 2-1 Schematic Representation of the Construction of the Replacement Vector 

pK19Rep.  

Am: ampicillin resistance gene. Tc: tetracycline resistance gene. Km: kanamycin 

resistance gene. acdS: the ACC deaminase gene of Burkholderia phytofirmans PsJN. 

sacB: the gene encodes for the Bacillus subtilis levansucrase, which confers sucrose-

sensitivity to bacteria. rep: the replicon responsible for the replication of plasmid (source 

- plasmid pMB1). rop: the gene codes for the Rop protein, which promotes conversion of 

the unstable RNA I - RNA II complex to a stable complex and serves to decrease copy 

number.  
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Figure 2-2 Schematic Representation of the Construction of the Replacement Vector 

pK19RepV2.  

Am: ampicillin resistance gene. Km: kanamycin resistance gene. acdS: the ACC 

deaminase gene of Burkholderia phytofirmans PsJN. sacB: the gene encodes for the 

Bacillus subtilis levansucrase, which confers sucrose-sensitivity to bacteria. 
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2.4.2 Conjugation and homologous recombination 

After constructing the replacement vectors, the replacement vectors were transferred 

to B. phytofirmans PsJN by conjugation to obtain the mutants. In the conjugation 

experiments, 1.5 ml of an overnight culture of E. coli DH5α containing the plasmid being 

transferred was centrifuged at 8,000 ×g for 3 minutes, suspended in 1 ml 0.85% NaCl, 

and centrifuged again to collect the cells. This washing procedure aimed to remove the 

antibiotics in the medium. Then, 1.5 ml of an overnight culture of B. phytofirmans PsJN 

was transferred to the centrifuge tube with the E. coli DH5α cell pellet. After 

centrifugation at 8,000 ×g for 3 minutes, the liquid was discarded, and the cells were 

again washed with 1 ml 0.85% NaCl. The mixed cells were then suspended in 75 µl 

0.85% NaCl, and 75-100 µl of the cell suspension was transferred to the center of a TSB 

agar plate. Following incubation at 30°C for 24 hours, the cells on the plate were 

suspended in 1 ml of 0.85% NaCl. The cell suspension was diluted 103 times, and a 100 

µl aliquot was then plated onto the selective medium plates.  

The medium used to select for the first ACC deaminase deficient mutant is TSB agar 

plus tetracycline, rifampicin and 7.5% sucrose. To select for the second mutant, the cell 

suspension was first plated on TSB agar with rifampicin and kanamycin to obtain the 

transconjugants which contain the replacement vector, and then the colonies were 

incubated in TSB medium with 7.5% sucrose to obtain the PsJN variants in which 

endogenous gene acdS has been replaced by the deficient acdS. 
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2.5 Southern hybridization 

2.5.1 Labeling the probe with digoxigenin 

Two microgram of the denatured PCR product of the tetracycline resistance gene 

was tagged with digoxigenin (DIG) using a DIG Oligonucleotide 3’- End Labeling Kit 

(2nd Generation) (Roche Diagnostics GmbH, Mannheim, Germany) according to the 

manufacturer’s protocol. First, 2 µg of the denatured PCR product was diluted to a total 

volume of 10 µl with double distilled water. Then, 4 µl of 5× Reaction buffer, 4 µl of 5 

mM CoCl2-solution, 1 µl of 0.05 mM DIG-ddUTP solution and 1 µl of terminal 

transferase (20 U) were mixed with the diluted DNA template on ice. This mixture was 

incubated at 37°C for an hour and the reaction was stopped by adding 2 µl of 0.2 M 

EDTA (pH 8.0). 

2.5.2 Preparation of the genomic DNA for Southern hybridization 

 Approximately 2 µg of the genomic DNA isolated from both the wild-type B. 

phytofirmans PsJN and its AcdS- mutant No.1 was completely digested with restriction 

enzyme EcoRV (MBI Fermentas, Inc.) at 37°C for 3 hours. The digested DNA was 

separated by electrophoresis in a 1% agarose gel using a 1 kb DNA ladder (MBI 

Fermentas, Inc.) as a sizing standard. The PCR product of the tetracycline resistance gene 

from pBR322 was used as a positive control. The gel was stained with 0.3 µg/ml (final 

concentration) ethidium bromide dissolved in the gel, and DNA bands were visualized 

under UV light.  

 The agarose gel was washed in 0.25 M HCl at room temperature for 10 minutes to 

nick the DNA and make it easier to transfer, and then washed in denaturation solution 
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(0.5 M NaCl, 150 mM NaOH) twice for 15 minutes, followed by two washes in 0.5 M 

Tris-Cl (pH 8.0), 0.5 M NaCl neutralization solution for 15 minutes to facilitate DNA 

transfer. Afterward, the DNA on the gel was transferred to a piece of nylon membrane by 

capillary action using 10× SSC (1.5 M NaCl; 0.15 M trisodium citrate; pH 7.0) as the 

transfer buffer (Sambrook and Russell, 2001). 

 The nylon membrane was retrieved from the apparatus after 16 hours. The DNA 

on the membrane was fixed by exposing it to 150 mJoules of UV light in a Gene Linker 

(Bio-Rad Laboratories, Hercules, CA). 

2.5.3 Southern hybridization 

 The membrane was sealed in plastic bag with 50 ml DIG Easy Hyb solution 

(Roche Diagnostics GmbH, Mannheim, Germany) and pre-hybridized for 3 hours at 60°C 

with gentle agitation. Then, the membrane was hybridized with the DIG labeled probe 

(100 pmol) in 50 ml preheated fresh DIG Easy Hyb solution at 60°C with gentle agitation 

for 16 hours. 

 After hybridization, the membrane was washed twice in 2× SSC and 0.1% SDS at 

room temperature for 5 minutes, followed by two additional washes in 0.5× SSC and 

0.1% SDS at 60°C for 15 minutes. The membrane was then ready for the detection of 

hybridized oligonucleotides. 

2.5.4 Visualization of DNA in Southern hybridization 

 After hybridization and stringency washes, the membrane was washed in 20 ml 

1× Washing buffer (10× concentration buffer contains Maleic acid buffer and 3% Tween 

20 v/v) for 5 minutes, incubated in 50 ml Blocking solution (Roche Diagnostics GmbH, 
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Mannheim, Germany) for 30 minutes and another 30 minutes in 20 ml Antibody solution 

(1 µl Anti-DIG-AP in 5 ml of 1× blocking solution), all with gentle agitation at room 

temperature. Then, the membrane was washed twice in 50 ml Washing buffer for 15 

minutes, and equilibrated for 5 minutes in 20 ml 1× Detection buffer (10× concentration 

buffer contains 1 M Tris-HCl, pH 9.5 and 1 M NaCl). The membrane was then put in a 

sealable bag with 20 drops (0.5 ml) of CDP-Star (Roche Diagnostics GmbH, Mannheim, 

Germany) solution and incubated for 5 minutes at room temperature. Finally, the excess 

liquid was removed, the bag was sealed and the blot was exposed to film for 

chemiluminescence detection. 

 

2.6 Culture conditions for the induction of bacterial ACC deaminase activity 

 The induction of ACC deaminase activity is needed both in studies of bacterial 

ACC deaminase activity and the ability of bacteria to enhance plant growth. The bacteria 

B. phytofirmans PsJN and its mutants were grown in 15 ml TSB medium with 

appropriate antibiotics at 30°C for 2 days until they reached stationary phase. To induce 

ACC deaminase activity, the cells were collected by centrifugation, washed twice with 5 

ml DF salts minimal medium (Dworkin and Foster, 1958), suspended in 7.5 ml DF salts 

minimal medium with 3.0 mM (final concentration) ACC as the sole nitrogen source, and 

incubated at 30°C with shaking for an additional 24 hours. After the incubation, the cells 

were harvested by centrifugation and washed twice by suspending the cell pellet in 5 ml 

of either 0.1 M Tris-HCl, pH 7.6 (if the cells were to be assayed for ACC deaminase 

activity), or 0.03 M MgSO4 (if they were to be used as a bacterial treatment in the growth 
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pouch assay). The cell pellet was stored at -20°C overnight for the ACC deaminase 

activity assay. 

 

2.7 ACC deaminase activity assays of B. phytofirmans PsJN and its mutants 

 ACC deaminase activity was assayed according to the method of Penrose and 

Glick (2003). In the assay, the production of α-ketobutyrate from the cleavage of ACC 

catalyzed by ACC deaminase was measured by comparing the absorbance at 540 nm of a 

sample to a standard curve of α-ketobutyrate ranging from 0.01 to 1.0 µmol. Specifically, 

the induced bacterial cells were resuspended in 400 µl of 0.1 M Tris-HCl (pH 8.0), 

labilized by adding 20 µl of toluene and then vortexed for 30 seconds. Fifty microliter of 

labilized cell suspension was incubated with 5 µl of 0.5 M ACC in a 1.5 ml Eppendorf 

tube at 30°C for 30 minutes, as well as the negative control of each sample (50 µl of 

labilized cell suspension without ACC) and the blank (50 µl of 0.1 M Tris-HCl, pH 8.0 

with 5 µl of 0.5 M ACC). Following the addition of 500 µl of 0.56 M HCl, the mixture 

was vortexed and centrifuged at 16 000 ×g for 5 minutes at room temperature. A 500 µl 

aliquot of the supernatant or standard α-ketobutyrate solution was transferred to a 13 × 

100 mm glass test tube, vortexed together with 400 µl of 0.56 N HCl and 150 µl of DNF 

solution (0.2% 2,4-dinitrophenylhydrazine in 2 N HCl), and incubated at 30°C for 30 

minutes. One milliliter of 2 N HCl was added to the samples and the standards before the 

absorbance at 540 nm was measured. All samples were assayed in duplicate and 

standards were measured in triplicate. 
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2.8 Protein concentrations determination 

 To determine the concentration of toluenized cells，the method of Bradford 

(1976) was used. A 26.5 µl aliquot of the toluene-labilized bacterial cell sample from the 

ACC deaminase assay was diluted with 173.5 µl of 0.1 M Tris-HCl (pH 8.0). Following 

the addition of 200 µl of 0.1 N NaOH, the cells were boiled for 10 minutes. After the 

sample was cooled to room temperature, 8 µl of the sample or a standard bovine serum 

albumin (BSA) solution was diluted by adding 792 µl H2O, and then 200 µl of the Bio-

Rad protein dye reagent (Bio-Rad Lab., USA) was added and mixed. The mixture was 

incubated at room temperature for 5 minutes and the absorbance at 595 nm was 

measured. The protein concentration was determined by comparing the absorbance to the 

BSA standard curve.  

    

2.9 Growth pouch assay 

 The growth pouch assay, or gnotobiotic root elongation assay, is used as a method 

to study the effect of bacterial strains on the growth of canola seedlings. This assay 

followed the protocol of Penrose and Glick (2003).  

 The bacteria used in the assay to treat canola seeds were prepared as described in 

section 2.6. On ice, the cell pellet was suspended in 0.5 ml sterile 0.03 M MgSO4 and 

diluted about 100 times in 0.03 M MgSO4 until the absorbance of the bacterial 

suspension at 600 nm was approximately 0.15.  

 Before placing the seeds in the seed-pack growth pouches (Northrup King Co., 

Minneapolis, MN, USA), 12 ml of distilled water was added to each pouch. The pouches 
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were wrapped with aluminium foil in groups of 10, placed in an upright position, and 

autoclaved at 121°C for 15 minutes.  

 Canola seeds (Brassica napus) used in this assay were kindly provided by Dr. 

Laila Yesmin of Brett-Young Seeds (Winnipeg, Manitoba, Canada). To disinfect the 

seeds (approximately 0.2 g per treatment) before use, the seeds were soaked in 70% 

ethanol for 1 minute and in 1% sodium hypochlorite for 10 minutes. They were then 

washed thoroughly with sterile distilled water, at least five times. The seeds were then 

treated with bacterial suspensions in sterile 0.3 M MgSO4, or with sterile 0.3 M MgSO4 

as a negative control in separate dishes for 1 hour at room temperature. Following the 

incubation, six seeds were placed in each growth pouch with sterilized forceps; 9 pouches 

were used for each treatment. The pouches for each treatment were placed in a rack 

(Northrup King Co.) with two empty pouches at the ends of each rack so that all seeds 

were under similar air and light conditions. Racks with different seed treatments were 

placed in different clean plastic bins containing sterile distilled water (about 500 ml), and 

covered loosely with plastic wrap to prevent dehydration. The pouches were incubated in 

a growth chamber (Conviron CMP 3244; Controlled Environments Ltd, Winnipeg, MB, 

Canada) at 20±1°C with a cycle of 12 hours of dark followed by 12 hours of light 

(18µmol m-2s-1). For the first two days, the bins were covered with aluminium foil. The 

primary root lengths were measured on the fifth day of growth and the data were 

analyzed using a one-way analysis of variance (ANOVA). The roots developed from the 

seeds that failed to germinate two days after they were sown were not measured.  
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2.10 Siderophore assay 

 Siderophore production was detected by the CAS (Chrome azurol S) agar 

(Alexander and Zuberer, 1991). This medium contains the Fe-CAS-HDTMA dye 

complex, which gives the medium its characteristic blue color. The siderophores 

produced by bacteria remove Fe from the Fe-CAS-HDTMA complex and develop orange 

halos around the bacterial colonies.   

 The bacterial strains were grown in King’s B medium (Proteose peptone No.3 

20g/L, MgSO4⋅7H2O 1.5g/L, Glycerol 15ml/L) overnight at 30°C. An aliquot of 20 µl of 

the overnight growth cell suspension was inoculated on CAS agar; each strain was 

assessed in triplicate. After 48 hours incubation at 30°C, the orange halos form when the 

bacteria produce siderophores. 

 

2.11 IAA production 

 To quantify the IAA production of B. phytofirmans PsJN and its mutants, a 

modified version of the procedure of Patten and Glick (2002) was used. The bacterial 

strains were propagated overnight in TSB medium at 30°C, and then 20-µl aliquots of 

each strain were transferred into two tubes each containing 5 ml of TBS medium with 

200 µg/ml and 500 µg/ml L-tryptophan (Sigma) respectively, as well as 5 ml of half TSB 

half water medium with 200 µg/ml and 500 µg/ml L-tryptophan. After 42 hours 

incubation, the optical density of each culture was measured at 600 nm, and the bacteria 

in the culture medium were removed by centrifugation (6000 ×g, 10 minutes). A 1 ml 

aliquot of the supernatant or standard IAA solution (0, 0.5, 1, 5, 10, 15, 20, 25, 40 µg/ml 

of 3-indoleacetic acid) was mixed vigorously with 4 ml of Salkowski’s reagent (150 ml 
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of concentrated H2SO4, 250 ml of distilled water, 7.5 ml of 0.5 M FeCl3⋅6H2O; Gordon 

and Weber, 1951). The mixture was incubated at room temperature for 20 minutes and 

the absorbance at 535 nm was measured. The concentration of IAA in each culture 

medium was determined by comparison with the standard curve. 

 

2.12 Labeling GFP 

 To label B. phytofirmans PsJN and its mutants with GFP, conjugation between B. 

phytofirmans and E.coli carrying p519ngfp were carried out as described in section 2.4.2. 

The transconjugants were selected for KmR, and then for green fluorescence using an 

epifluorescent microscope (Axiovert 40 CFL, Carl Zeiss Inc).  

 

2.13 Plant inoculation and growth conditions 

 The canola seeds were disinfected as described for the growth pouch assay, and 

the bacteria were also prepared as in the growth pouch assay except the bacterial 

suspension absorbance at 600 nm was 0.5, which corresponded to 1×108 cells/ml. Two 

disinfected canola seeds were sown in each 12.7 cm diameter green plastic pot containing 

wet unsterile Pro-MixTM BX (about 200 g dry mass) general-purpose growth medium 

(Premier Horticulture, Riviere-du-Loup, Quebec, Canada). A 2 ml aliquot of the bacterial 

suspension was added to the surface of each seed, and then the seeds were planted at a 

depth of approximately 1 cm. The pots were placed in small trays, and water was added 

to the trays to avoid washing the bacteria away from the growth medium. The plants were 

grown in a growth chamber at 20°C with a 16 h photoperiod and a light intensity of 200 
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µmol m-2s-1. After germination, one of the plantlets in each pot was removed, leaving 

only one plantlet per pot. Each treatment included 7 plants. The plants were harvested 

after two and three weeks’ incubation, and the roots, stems, and leaves of the plants were 

observed by confocal microscopy. 

 

2.14 Confocal microscopy of endophytic colonization by PsJN and its AcdS– mutant 

 Different parts (roots, stems, and leaves) of the plants were cut into small pieces, 

put into a drop of water on a clean microscope slide, and sealed the cover slip with clear 

nail polish (nitrocellulose dissolved in a solvent). A Zeiss LSM 510 confocal microscope 

was used to detect the green fluorescence emitted by the bacteria. The excitation 

wavelength was 488 nm, and the emission wavelength used was 505-530 nm. Image 

analysis was done by Zeiss Image Examiner (Carl Zeiss Inc.).  
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3 Results 

3.1 Isolation of the ACC deaminase gene from Burkholderia phytofirmans PsJN 

The acdS gene of Burkholderia phytofirmans PsJN (Accession number: 

NC_010676) is 1017bp in length. Based on DNA sequence analysis, 165 bp upstream of 

the acdS gene, there is an ACC deaminase regulatory gene acdR, which belongs to the 

AsnC (asparagine synthase C involved in the regulation of asparagine biosynthesis genes) 

family (Yokoyama and Suzuki, 2005). The AsnC is a homolog of the Leucine 

Responsive Regulatory Protein (Lrp). 

 The primers used to isolate the B. phytofirmans PsJN acdS gene are shown 

schematically in Fig. 3-1. The PCR product should be 1225 bp according to the published 

sequence of the bacterium. The agarose gel electrophoresis of the PCR product (Fig. 3-2) 

showed the presence of a band which was approximately 1.2 kb and was thought to 

contain the acdS gene.  

 

3.2 Construction and confirmation of the first AcdS– mutant of B. phytofirmans 

PsJN 

3.2.1 Construction of the first replacement vector pK19Rep  

 To construct the replacement vector pK19Rep, first the PCR product of the B. 

phytofirmans PsJN acdS gene was cloned to pGEM®-T Easy Vector (Promega, Madison, 

WI, USA). The recombinant plasmid pGEMACC was confirmed by EcoRI digestion 

which cleaved pGEMACC into two bands as visualized by agarose gel electrophoresis 

(Fig. 3-3). The larger band was approximately 3 kb which corresponds to linear pGEM-T 
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Easy Vector, and the smaller band was approximately 1.2 kb which corresponds to the 

inserted acdS gene.  

 To interrupt the acdS gene on plasmid pGEMACC, a tetracycline resistance gene 

(Tc) from pBR322 was inserted into the EcoRV site within the coding region of acdS 

gene to make pGEMACC–. Plasmid pBR322 was doubly digested by EcoRI and AvaI. 

The digested products were separated by agarose gel electrophoresis (Fig. 3-4). The 

smaller fragment (~1.5 kb) which contained the tetracycline resistance gene was 

extracted from the gel, the 5’ protruding ends were filled-in by E. coli DNA Polymerase I 

Klenow Fragment (MBI Fermentas, Inc.), and the blunt ended fragment was ligated to 

EcoRV-digested pGEMACC. The ligation mixture was transformed into E. coli DH5α; 

the transformants were selected following growth on LB agar medium containing 

tetracycline and ampicillin. All four of the colonies obtained were incubated in LB 

medium, separately, and then the plasmid DNAs were extracted from overnight cultures. 

The putative pGEMACC– plasmids were digested with SalI (Fig. 3-5) to confirm the 

orientation of the insert. The gel picture in Fig. 3-5 shows that plasmids extracted from 

transformant Nos. 1, 3 and 4 have an insert with the same orientation while plasmids 

from transformant No. 2 have an insert with an orientation different from the other three. 

The tetracycline resistance gene fragment is about 1429 bp, and the enzyme SalI cleaves 

this fragment into 653 bp and 774 bp fragments, while the EcoRV site in the acdS gene 

cleaves it into 295 bp and 930 bp fragments. Since the smaller bands in Fig. 3-5 are 

approximately 1600 bp (Nos .1, 3 and 4) and 1700 bp (No.2), respectively, these 

fragments must all contain the larger fragment (930bp) of the acdS gene. Thus, the acdS 

gene in the plasmid pGEMACC is oriented in counterclockwise direction; the Tc inserts 
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in plasmid pGEMACC– from transformants Nos. 1, 3 and 4 are oriented in a 

counterclockwise direction, and the insert in transformant No. 2 is oriented in a clockwise 

direction. In all subsequent experiments, pGEMACC– from transformant No. 1 was used. 

 To make an efficient and mobilizable carrier vector, pGEMACC– was digested 

with EcoRI, and the fragment containing the interrupted acdS gene was separated and 

inserted into EcoRI digested pK19mobsacB to make the replacement vector pK19Rep. 

This plasmid pK19Rep (Fig. 3-6 B) incorperated the acdS gene with a Tc insertion, a 

broad-host-range transfer machinery (containing oriT) from RP4, a modified sacB gene 

from Bacillus subtilis, and a kanamycin resistance gene. After transformation of the 

putative replacement vector into E. coli DH5α, eight colonies grew on tetracycline and 

kanamycin containing plates. Plasmids from three of the eight colonies were extracted 

and digested with SalI to confirm the orientation of the insertion. Plasmid pK19Rep was 

digested into two fragments by SalI (Fig. 3-6A), and the size of the smaller fragment 

revealed the orientation of the inserted DNA. In lane three, the smaller fragment is 

approximately 1600 bp, which corresponds to the larger part of the acdS gene and a 

portion of the tetracycline resistance gene, so plasmids from colony No.1 contain a acdS 

gene in clockwise orientation containing the Tc gene. While, plasmids from colony No. 2 

and 3 contain a counterclockwise interrupted acdS gene because the smaller fragment 

after digestion is approximately 1100 bp, which corresponds to the smaller part of acdS 

gene and the other portion of the tetracycline resistance gene. In the subsequent 

conjugation experiment, pK19Rep from colony No.2 was used. 
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Figure 3-1 Schematic representation of acdS and acdR gene on Burkholderia 

phytofirmans PsJN chromosome. 

The red arrows represent the primers used to PCR amplify the acdS gene and a portion of 

its up- and down-stream region.  
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Figure 3-2 Agarose gel electrophoresis showing PCR product amplified from 

Burkholderia phytofirmans PsJN. 

(-): negative control in which no DNA template was added. 1 and 2: putative acdS gene. 
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Figure 3-3 Agarose gel electrophoresis showing EcoRI digested products of the putative 

pGEMACC. M: 1kb DNA ladder. 

(-): undigested putative pGEMACC No.1. 1-5: EcoRI digested putative pGEMACC.  
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Figure 3-4 Agarose gel electrophoresis of EcoRI and AvaI double digest of pBR322.  

M: 1kb DNA ladder. (-): undigested pBR322. 1 and 2: EcoRI and AvaI doubly digested 

pBR322 
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Figure 3-5 Agarose gel electrophoresis of SalI-digested putative pGEMACC– and 

schematic picture of SalI sites in pGEMACC–.  

M: 1kb DNA ladder. (-): undigested putative pGEMACC– No.1. 1-4: SalI digested 

putative pGEMACC–. Am represents ampicillin resistence gene. Tc represents 

tetracycline resistance gene.  
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Figure 3-6 Agarose gel electrophoresis showing SalI-digested pK19Rep and a schematic 

representation of SalI sites in pK19Rep.  

M: 1kb DNA ladder. (-): undigested pK19Rep No. 1. 1-3: SalI-digested putative 

pK19Rep. Km represents kanamycin resistence gene. Tc represents tetracycline 

resistance gene. sacB gene encodes the Bacillus subtilis levansucrase.  
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3.2.2 Conjugation and PCR confirmation 

 After mating E. coli DH5α/pK19Rep with B. phytofirmans PsJN and plating on 

TSB agar medium plus tetracycline, rifampicin and sucrose, several hundred putative 

transcojugants were obtained. Several transconjugants were transferred into 5 ml of TBS 

medium, and genomic DNA was extracted from the overnight grown cell suspension. 

Using genomic DNA as the template, PCR was performed to amplify the mutant acdS 

gene from these putative PsJN AcdS– mutants (Fig. 3-7). The amplified fragment was 

approximately 2.7 kb in size and corresponds to the wild-type acdS gene plus the 

tetracycline resistance gene insertion (about 1.5 kb).  

 

3.2.3 Identification of the acdS mutation in PsJN by Southern hybridization 

 The presence of the insertion in the PsJN AcdS– strain was confirmed by Southern 

hybridization (Fig. 3-8). Genomic DNA from both of the wild-type and mutant B. 

phytofirmans PsJN were digested by EcoRI. After hybridization with the tetracycline 

resistance gene as a probe, one cross-hybridizing band was detected from the AcdS– 

mutant while no band from the wild-type PsJN was detected (Fig. 3-8 right).  

3.3 Construction and confirmation of the second AcdS– mutant of B. phytofirmans 

PsJN 

3.3.1 Construction of the second replacement vector pK19RepV2 

 To construct the replacement vector pK19RepV2, an EcoRV-ClaI fragment was 

removed from the coding region of acdS on pGEMACC to yield pGEMACD2. The 
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mutant acdS gene on pGEMACD2 was then cloned into the EcoRI site of pK19mobsacB 

to yield pK19RepV2 (Fig. 2-2). 

 First, pGEMACC was doubly digested by EcoRV and ClaI to yield two fragments; 

the larger fragment was approximately 4 kb, and the smaller one was 139 bp. The larger 

fragment was extracted from the agarose gel and made blunt ended by E. coli DNA 

Polymerase I Klenow Fragment (MBI Fermentas, Inc.). The blunt-end fragment was then 

self-ligated to make the plasmid pGEMACD2.  

 Plasmid pGEMACD2 was digested with EcoRI (Fig. 3-9) and the smaller 

digested fragment which contained the mutant acdS gene was inserted into the EcoRI site 

of pK19mobsacB to obtain the second replacement vector pK19RepV2.   

3.3.2 Conjugation and PCR confirmation 

 To construct the second AcdS– mutant of B. phytofirmans PsJN, pK19RepV2 was 

introduced into wild-type B. phytofirmans PsJN by conjugation. After 24 hours 

incubation, the cells were plated onto TSB agar plus 40 µg/ml rifampicin and 20 µg/ml 

kanamycin to select for the transconjugants containing the replacement vector. Three 

days later, seven colonies were obtained from the selective medium, and confirmed by 

colony PCR (Fig. 3-10).  The primers used here were the same ones used to isolate B. 

phytofirmans PsJN acdS gene. PCR amplification of the seven colonies gave rise to 

single bands, the same size as the mutant acdS gene (third lane in Fig. 3-10) in vector 

pK19RepV2, and about 100 bp smaller than the wild-type acdS gene (second lane in Fig. 

3-10) in B. phytofirmans PsJN genome. This result indicated the replacement of the wild-

type acdS by an acdS with a small deletion may have happened in those transconjugants. 

To make sure the seven putative AcdS– mutants of PsJN had lost the replacement vectors, 
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the seven colonies were transferred into liquid TSB medium with 7.5% sucrose. After 24 

hours incubation, three tubes were randomly picked, and the genomic DNA was extracted. 

PCR was performed using genomic DNA as a template and the deletion mutation in the 

acdS gene of B. phytofirmans PsJN AcdS– No.2 was confirmed (lane 5-7 in Fig. 3-11). In 

addition, the mutation in the acdS gene has been confirmed by DNA sequence analysis 

(Fig. 3-12).  
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Figure 3-7 Agarose gel electrophoresis of PCR products amplified from genomic DNA of 

B. phytofirmans PsJN and putative AcdS– Mutant No.1.  

M: 1kb DNA ladder. (-): negative control in which no DNA template was added. 1: wild-

type acdS gene of PsJN. 2: mutant acdS gene of PsJN. 
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Figure 3-8 EcoRI-digested genomic DNA (left) and autoradiogram (right) following 

Southern Hybridization.  

1: wild-type PsJN. 2: B. phytofirmans PsJN AcdS– Mutant No.1. The probe used in 

hybridization is the tetracycline resistance gene. 
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Figure 3-9 Agarose gel electrophoresis of EcoRI-digested pGEMACC and pGEMACD2. 

M: 1 kb DNA ladder. 1: EcoRI digested pGEMACC. 2 and 3: EcoRI digested 

pGEMACD2.  
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Figure 3-10 Agarose gel electrophoresis of colony PCR products amplified from wild-

type B. phytofirmans PsJN and putative PsJN AcdS– mutant No.2. 

M: 1 kb DNA ladder. 1: Wild-type PsJN genomic DNA as template. 2: Plasmid 

pK19RepV2 as DNA template. 3-10: Transconjugant colonies as DNA templates. 
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Figure 3-11 Agarose gel electrophoresis of PCR products amplified from genomic DNA 

of wild-type PsJN and PsJN AcdS– mutant No.2. 

M: 1 kb DNA ladder. wt: Wild-type B. phytofirmans PsJN. (+): Plasmid pK19RepV2 as 

DNA template. (-): Negative control in which no DNA template was added. 1-3: 

Genomic DNA of PsJN AcdS– mutant No.2 as template. 
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Figure 3-12 Sequence alignments of acdS gene of B. phytofirmans PsJN and PsJN AcdS– 

mutant No.2. 
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10 20 30 40 50 60
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS AT G A ACC T G C AAC G AT T CC C T CG T T AC CC GC T G AC C T T T GG GC CG AC GC CG A T CC AG CC G

Mutant_acdS AT G A ACC T G C AAC G AT T CC C T CG T T AC CC GC T G AC C T T T GG GC CG AC GC CG A T CC AG CC G

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

70 80 90 100 110 120
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS C T C A AGC GC C T G AGC G ACC AC C T CG GC GG C AA AG T GC A T C T G T A T GC G AAG CG CG A AG AC

Mutant_acdS C T C A AGC GC C T G AGC G ACC AC C T CG GC GG C AA AG T GC A T C T G T A T GC G AAG CG CG A AG AC

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

130 140 150 160 170 180
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS T GC A AC AGC GG C T T T GC G T T C GG CG GC A AC AAG AC GC GC A AGC T C G AA T A T C T G AT C CC C

Mutant_acdS T GC A AC AGC GG C T T T GC G T T C GG CG GC A AC AAG AC GC GC A AGC T C G AA T A T C T G AT C CC C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

190 200 210 220 230 240
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS G A AGC GC T C GC GC AG GG T T GC G AC ACG C T CG T G T C G AT C GG CG G AA T CC AG T C G AAC C AG

Mutant_acdS G A AGC GC T C GC GC AG GG T T GC G AC ACG C T CG T G T C G AT C GG CG G AA T CC AG T C G AAC C AG

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

250 260 270 280 290 300
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS AC ACG CC AG G T AG CG GC CG T G GC GG CG C AT C T G GG C AT G A AG T GC G T AC T G G T GC AG G AG

Mutant_acdS AC ACG CC AG G T AG CG GC CG T G GC GG CG C AT C T G GG C AT G A AG T GC G T AC T G G T GC AG G AG

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

310 320 330 340 350 360
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS AAC T G GG T G A AC T AC T C GG A T GC GG T C T ACG AC CG GG T C GG C AAC A T T C AG A T G T CG CG C

Mutant_acdS AAC T G GG T G A AC T AC T C GG A T GC GG T C T ACG AC CG GG T C GG C AAC A T T C AG A T G T CG CG C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

370 380 390 400 410 420
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS AT T C T CG GC GC CG AC G T GC GC C T CG T G GC CG A T GG T T T C G AC AT C GG C T T T CG C AAG AG C

Mutant_acdS AT T C T CG GC GC CG AC G T GC GC C T CG T G GC CG A T GG T T T C G AC AT C GG C T T T CG C AAG AG C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

430 440 450 460 470 480
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS T GG G AAG A T GC GC T G G AA AGC G T GC GG GC GG CC GG CG GC A AGC CG T AT G CG A T T C CG GC T

Mutant_acdS T GG G AAG A T GC GC T G G AA AGC G T GC GG GC GG CC GG CG GC A AGC CG T AT G CG A T T C CG GC T

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

490 500 510 520 530 540
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS G GC T G T T CC G ACC A T CC GC T C GG CG G AC T CG G T T T T G T C GG T T T C GC GG AG G AAG T T CG C

Mutant_acdS G GC T G T T CC G ACC A T CC GC T C GG CG G AC T CG G T T T T G T C GG T T T C GC GG AG G AAG T T CG C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

550 560 570 580 590 600
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS C AG C AGG A AGC GG A AT T GG GC T T C AAG T T CG AC T AC AT C G T CG T G T G T T CC G T G ACC GG C

Mutant_acdS C AG C AGG A AGC GG A AT T GG GC T T C AAG T T CG AC T AC AT C G T CG T G T G T T CC G T G ACC GG C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

610 620 630 640 650 660
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS AGC AC GC AG GC CG GC A T GG T G G T GG G T T T CG CC G AT G AC GG CC GC GC CG AG CG T G T G A T C

Mutant_acdS AGC AC GC AG GC CG GC A T GG T G G T GG G T T T CG CC G AT G AC GG CC GC GC CG AG CG T G T G A T C

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

670 680 690 700 710 720
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS G G T A T CG AC GC G T CG GC C AAG CC CG CG C AG ACG CG CG AG C AG AT C AC CC GC A T CG CG A AG  
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Mutant_acdS G G T A T CG AC GC G T CG GC C AAG CC CG CG C AG ACG CG CG AG C AG AT C AC CC GC A T CG CG A AG

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

730 740 750 760 770 780
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS C AG AC T G CG G AAC AG G T CG GC C T GG G ACG CG A T A T C ACC AG C AAG G ACG T G G T GC T C G AC

Mutant_acdS C AG AC T G CG G AAC AG G T CG GC C T GG G ACG CG A T - - - - - - - - - - - - - - - - - - - - - - - - - - -

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *                            

790 800 810 820 830 840
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS G AG CG C T T C GG T G GC CC GG A AT ACG G T T T GC CG A AT G AC GG C ACG C T CG A AGC G AT C CG C

Mutant_acdS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Clustal Consensus                                                             

850 860 870 880 890 900
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS T T G T G CG CG CG CC T G G AAG GC G T G T T G AC CG A T CC T G T C T ACG AG GG C AA AT C G AT G C AC

Mutant_acdS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C G AT G C AC

Clustal Consensus                                                     * * * * * * * *

910 920 930 940 950 960
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

PsJN_acdS G GC A T G AT C G AG AT G G T GC GC A ACG GC G AG T T T CC CG A AGG T T CG CG T G T G C T G T A T GC G

Mutant_acdS G GC A T G AT C G AG AT G G T GC GC A ACG GC G AG T T T CC CG A AGG T T CG CG T G T G C T G T A T GC G

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

970 980 990 1000 1010
. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

PsJN_acdS C AC C T CG GC GG CG T G CC CG CG C T G AAC GG C T AC AG C T T C A T T T T C CG C AAC GG C T A A

Mutant_acdS C AC C T CG GC GG CG T G CC CG CG C T G AAC GG C T AC AG C T T C A - - - - - - - - - - - - - - - - -

Clustal Consensus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *                  
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3.4 ACC deaminase activity of B. phytofirmans PsJN and its mutants 

 The ACC deaminase activity of B. phytofirmans PsJN, B. phytofirmans PsJN/gfp, 

B. phytofirmans PsJN AcdS– No.1, B. phytofirmans PsJN AcdS– No.2, and B. 

phytofirmans PsJN AcdS– No.2/gfp was assayed (Table 3-1). Both the wild-type B. 

phytofirmans PsJN and GFP labeled B. phytofirmans PsJN (B. phytofirmans PsJN/gfp) 

showed a high level of ACC deaminase activity, while the two AcdS– mutants of B. 

phytofirmans PsJN as well as the GFP labeled mutant showed no detectable activity in 

the assay. 

 

3.5 Effect of B. phytofirmans PsJN and its AcdS– mutants on root elongation of 

canola seedlings under gnotobiotic conditions 

 The ability of B. phytofirmans PsJN and its two AcdS– mutants to promote the 

elongation of canola roots were compared separately. In the first test, canola seeds were 

inoculated with wild-type B. phytofirmans PsJN and B. phytofirmans PsJN AcdS– No.1, 

as well as 0.3 M MgSO4 as a negative control. The root lengths were measured on the 

sixth day after inoculation (Table 3-2), and the results were analyzed by NCSS Statistical 

and Power Analysis Software (Kaysville, Utah, USA) using the methods Kruskal-Wallis 

One-Way ANOVA and Newman-Keuls Multiple-Comparison Test. The results showed 

that the roots of canola seeds treated with wild-type B. phytofirmans PsJN were 

significantly (Alpha=0.050) longer than the roots from the negative control and B. 

phytofirmans PsJN AcdS– No.1, while the latter two were not significantly different from 

each other. Fig. 3-13 shows representative canola roots with different treatment and a 

graphical representation of this growth pouch assay data.  



 64 

 In the second test, B. phytofirmans PsJN, B. phytofirmans PsJN/gfp, B. 

phytofirmans PsJN AcdS– No.2, and B. phytofirmans PsJN AcdS– No.2/gfp were used to 

inoculate canola seeds, with 0.3 M MgSO4 treated canola seeds as a negative control. The 

root lengths were measured on the fifth day after inoculation (Table 3-3). The results 

indicated that B. phytofirmans PsJN- and B. phytofirmans PsJN/gfp- treated canola 

seedlings were significantly (Alpha=0.050) longer than when seeds were treated with B. 

phytofirmans PsJN AcdS– No.2, B. phytofirmans PsJN AcdS– No.2/gfp, or MgSO4 (Fig. 

3-14). 

 

3.6 Siderophore production of B. phytofirmans PsJN and its AcdS– mutants  

 The production of siderophores by B. phytofirmans PsJN, B. phytofirmans 

PsJN/gfp, B. phytofirmans PsJN AcdS– No.1, B. phytofirmans PsJN AcdS– No.2, and B. 

phytofirmans PsJN AcdS– No.2/gfp was detected on CAS plates (Fig. 3-15). The results 

showed that both the wild-type B. phytofirmans PsJN and GFP labeled B. phytofirmans 

PsJN produced a high level of siderophores while both of the two AcdS– mutants, as well 

as the GFP labeled B. phytofirmans PsJN AcdS– No.2, produced a much lower amount of 

siderophores.  

 

3.7 IAA production of B. phytofirmans PsJN and its AcdS– mutants 

 The amount of IAA secreted into the growth medium by B. phytofirmans PsJN vs. 

the two B. phytofirmans PsJN AcdS– mutants was measured. In the first test (Table 3-4), 

IAA secreted into TSB medium by B. phytofirmans PsJN AcdS– No.1 was approximately 
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6.3-fold higher than the amount secreted by the wild-type B. phytofirmans PsJN; in half 

TSB medium, IAA produced by B. phytofirmans PsJN AcdS– No.1 was approximately 

8.7-fold higher than the wild-type B. phytofirmans PsJN. Similar results were obtained in 

the second test (Table 3-5). Wild-type B. phytofirmans PsJN and GFP labeled B. 

phytofirmans PsJN produced similar amount of IAA; B. phytofirmans PsJN AcdS– No.2 

and GFP labeled B. phytofirmans PsJN AcdS– No.2 produced similar amounts of IAA; B. 

phytofirmans PsJN AcdS– No.2 produced approximately 5.3-fold higher IAA than B. 

phytofirmans PsJN into TSB medium, and approximately 6.6-fold higher IAA than B. 

phytofirmans PsJN into half TSB medium.  
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Table 3-1 ACC deaminase activity of B. phytofirmans PsJN and its mutants. 

This set of assays was performed twice with the same result. The result of one set of 

assay is shown.  
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Strain 
ACC deaminase activity 

(nmol keto/mg prot/hr) 
B. phytofirmans PsJN 3150. 
B. phytofirmans PsJN/gfp 4030. 
B. phytofirmans PsJN AcdS– No.1 Not detectable 
B. phytofirmans PsJN AcdS– No.2 Not detectable 
B. phytofirmans PsJN AcdS– No.2/gfp Not detectable 
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Table 3-2 Effect of B. phytofirmans PsJN and PsJN AcdS– mutant No.1 on root 

elongation of canola seedlings.  

The number in parentheses is the number of seedlings measured in each instance. All 

values are ±SEM.  1 means the root length of canola treated with wild-type PsJN was 

significantly different from the other treatments. The root lengths were measured on the 

sixth day after inoculation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seads treated with Root length, cm (n) 
B. phytofirmans PsJN 6.02 ± 0.211 (47) 

B. phytofirmans PsJN AcdS– No.1 4.79 ± 0.19 (52) 

0.3 M MgSO4 4.94 ± 0.18 (48) 
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Table 3-3 Effect of B. phytofirmans PsJN and PsJN AcdS– mutant No.2 on root 

elongation of canola seedlings.  

The number in parentheses is the number of seedlings measured in each instance. All 

values are ±SEM. 1 means the root length of canola treated with wild-type PsJN and GFP 

labeled PsJN were significantly longer than the other treatments labeled with 2. The root 

lengths were measured on the fifth day after inoculation. 
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Seeds treated with  Root length, cm (n) 
B. phytofirmans PsJN 5.64± 0.161 (56) 

B. phytofirmans PsJN/gfp 5.34± 0.121 (57) 

B. phytofirmans PsJN AcdS– No.2 3.76± 0.112 (48) 

B. phytofirmans PsJN AcdS– No.2/gfp 3.72± 0.112 (39) 

0.3 M MgSO4 4.06± 0.152 (49) 
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Table 3-4 IAA secreted into the growth medium by B. phytofirmans PsJN and PsJN 

AcdS– No.1.  
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StrainStrain    IAA (µg/ml) secreted  IAA (µg/ml) secreted   

  
                                                  

TSBTSB  Half TSBHalf TSB  

 B. phytofirmans PsJN 4.444.44   3.293.29   

B. phytofirmans PsJN AcdS– No.1  27.9627.96   28.6428.64   
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Table 3-5 IAA secreted into the growth medium by B. phytofirmans PsJN and PsJN 

AcdS– No.2.  
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Strain IAA (µg/ml) secreted  

  TSB   Half TSB 
B. phytofirmans PsJN 4.88 4.11 

B. phytofirmans PsJN/gfp 5.15 3.46 

B. phytofirmans PsJN AcdS– No.2 25.77 27.09 

B. phytofirmans PsJN AcdS– No.2/gfp 25.73 27.49 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 76 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-13 Representative canola roots treated by B. phytofirmans PsJN and PsJN AcdS– 

mutant No.1. 

(A), and a graphical representation of root lengths with different treatments (B). 1 means 

the root length of canola treated with wild-type PsJN was significantly different from the 

other treatments. 
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Figure 3-14 Representative canola roots treated by B. phytofirmans PsJN and PsJN AcdS– 

mutant No.2.  

(A), and a graphical representation of root lengths with different treatments (B). 1 means 

the root length of canola treated with wild-type PsJN and GFP labeled PsJN were 

significantly longer than the other treatments labeled with 2. 
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Figure 3-15 Siderophore production of B. phytofirmans PsJN and its AcdS– mutants on a 

CAS plate. 

The orange colour indicates siderophore production.  
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3.8 Endophytic colonization by B. phytofirmans PsJN and B. phytofirmans PsJN 

AcdS– No.2 

 Plant colonization of B. phytofirmans PsJN and B. phytofirmans PsJN AcdS– No.2 

was monitored using a confocal microscope at various times after inoculation. To study 

the competition between wild-type and mutant PsJN, canola seeds were treated with 

several bacterial suspensions:  

1) B. phytofirmans PsJN/gfp;  

2) B. phytofirmans PsJN AcdS– No.2/gfp;  

3) 1/2 B. phytofirmans PsJN/gfp + 1/2 B. phytofirmans PsJN AcdS– No.2;  

4) 1/2 B. phytofirmans PsJN + 1/2 B. phytofirmans PsJN AcdS– No.2/gfp;  

5) 9/10 B. phytofirmans PsJN/gfp + 1/10 B. phytofirmans PsJN AcdS– No.2;  

6) 9/10 B. phytofirmans PsJN AcdS– No.2/gfp + 1/10 B. phytofirmans PsJN;  

7) 0.3 M MgSO4 as a negative control.  

 Two weeks after inoculation, both GFP labeled B. phytofirmans PsJN and B. 

phytofirmans PsJN AcdS– No.2 were detected as endophytes within canola roots, stems 

and leaves (Fig. 3-17). The xylem vessels in canola primary roots showed intense green 

fluorescence, which probably indicated the transport pathways of endophytes inside 

plant. All of these images are superimposed images (Fig. 3-16 C and F) of green 

fluorescence image (Fig. 3-16 A and D) and the DIC (differential interference contrast) 

image (Fig. 3-16 B and E).  

 Green fluorescence was detected at the root tip, primary root and basal leave edge 

of bacterial suspension sample 3 (1/2 B. phytofirmans PsJN/gfp + 1/2 B. phytofirmans 

PsJN AcdS– No.2) treated canola, but the fluorescence was very weak. While in canola 
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treated with bacterial suspension sample 4 (1/2 B. phytofirmans PsJN + 1/2 B. 

phytofirmans PsJN AcdS– No.2/gfp), green fluorescence was only detected at the root tip 

two weeks after soil inoculation.  

 Endophytic colonization of bacterial sample 5 (9/10 B. phytofirmans PsJN/gfp + 

1/10 B. phytofirmans PsJN AcdS– No.2) and 6 (9/10 B. phytofirmans PsJN AcdS– 

No.2/gfp + 1/10 B. phytofirmans PsJN) was detected within canola root tips (Fig. 3-18) 

and basal leaves with the confocal microscope after two weeks incubation. Besides, green 

fluorescence was also detected within the primary root of canola treated with bacterial 

sample 5 (9/10 B. phytofirmans PsJN/gfp + 1/10 B. phytofirmans PsJN AcdS– No.2). 

 Three weeks after inoculation, green fluorescence was detected at all observed 

parts of canola treated with all bacterial samples except the negative control. Endophytic 

colonization of B. phytofirmans PsJN and B. phytofirmans PsJN AcdS– No.2 was 

detected within root tips, lateral roots, primary roots, stems, basal leaves and stem leaves 

(leaves that grow on the upright stems, different in size and shape from basal leaves) 

(Fig. 3-19, 3-20, 3-21). No significant differences were observed between different 

treatments except the green fluorescence from root tips of sample 1 (B. phytofirmans 

PsJN/gfp) and sample 2 (B. phytofirmans PsJN AcdS– No.2/gfp) treated canola was more 

intense than canola treated with other bacterial combinations.  

Canola plants above ground parts showed no significantly visible difference in 

growth between different treatments, including the negative control (Fig. 3-22).  
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Figure 3-16 Images from a confocal microscope of canola roots treated with PsJN/gfp (A, 

B and C) and MgSO4 (D, E and F) as a negative control.  

A and D are green fluorescence images. B and C are DIC (differential interference 

contrast) images. C and F are superimposed images of A and B, D and E respectively.  
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Figure 3-17 Images from a confocal microscope of canola treated with B. phytofirmans 

PsJN/gfp (A, C, E, G and I) and B. phytofirmans PsJN AcdS– No.2/gfp (B, D, F, H and J) 

two weeks after inoculation. 

A and B: root tip. C and D: primary root. E and F: stem. G and H: basal leaf. I and J: stem 

leaf. 
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Figure 3-18 Images from a confocal microscope of canola root treated with 9/10 B. 

phytofirmans PsJN/gfp + 1/10 B. phytofirmans PsJN AcdS– No.2 (A) and 9/10 B. 

phytofirmans PsJN AcdS– No.2/gfp + 1/10 B. phytofirmans PsJN (B) two weeks after 

inoculation.  
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Figure 3-19 Images from a confocal microscope of canola treated with B. phytofirmans 

PsJN/gfp (A, C, E, G and I) and B. phytofirmans PsJN AcdS– No.2/gfp (B, D, F, H and J) 

three weeks after inoculation. 

A and B: root tip. C and D: primary root. E and F: stem. G and H: basal leaf. I and J: stem 

leaf. 
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Figure 3-20 Images from a confocal microscope of canola treated with 1/2 B. 

phytofirmans PsJN/gfp + 1/2 B. phytofirmans PsJN AcdS– No.2 (A, C, E, G and I) and 

1/2 B. phytofirmans PsJN + 1/2 B. phytofirmans PsJN AcdS– No.2/gfp (B, D, F, H and J) 

three weeks after inoculation. 

A and B: root tip. C and D: lateral root. E and F: stem. G and H: basal leaf. I and J: stem 

leaf. 
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Figure 3-21 Images from a confocal microscope of canola treated with 9/10 B. 

phytofirmans PsJN/gfp + 1/10 B. phytofirmans PsJN AcdS– No.2 (A, C, E, G, I and K) 

and 9/10 B. phytofirmans PsJN AcdS– No.2/gfp + 1/10 B. phytofirmans PsJN (B, D, F, H, 

J and L) three weeks after inoculation. 

A and B: root tip. C and D: primary root. E and F: lateral root. G and H: stem. I and J: 

basal leaf. K and L: stem leaf. 
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Figure 3-22 Canola plants in growth chamber three weeks after inoculation.  

(-): canola seeds were treated with 0.3 M MgSO4 as a negative control. 1: canola seeds 

were treated with B. phytofirmans PsJN/gfp. 2: canola seeds were treated with B. 

phytofirmans PsJN AcdS– No.2/gfp. 3: canola seeds were treated with 1/2 B. 

phytofirmans PsJN/gfp + 1/2 B. phytofirmans PsJN AcdS– No.2. 4: canola seeds were 

treated with 1/2 B. phytofirmans PsJN + 1/2 B. phytofirmans PsJN AcdS– No.2/gfp. 
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4 Discussion 

 

The beneficial effects of endophytic bacteria occur through similar mechanisms as 

PGPR (Kloepper et al., 1991; Höflich et al., 1994). However, the effects of endophytic 

bacteria on host plants are often more pronounced than rhizobacteria because of their 

intimate association with plants (Conn et al., 1997; Compant et al., 2005). Thus, 

endophytic bacteria may play a very important role in agriculture. Besides promoting 

plant growth, and acting as natural biocontrol agents, endophytic bacteria have been 

manipulated genetically to explore more fully their potential in agricultural and 

environmental applications, such as enhancing pest control and phytoremediation 

(Lodewyckx et al., 2002; Barac et al., 2004). Some of the apparent advantages enjoyed 

by bacterial endophytes is based on their ability to be transported through the xylem and 

subsequently systematically colonize throughout the plant.  

ACC deaminase-containing rhizospere bacteria can facilitate growth of a wide range 

of plants in the presence of various biotic and abiotic stresses, including infestation by 

pathogens, stresses of flooding, drought, salt and organic contaminants (Wang et al., 

2000; Grichko and Glick, 2001; Mayak et al., 2004a and b; Cheng et al., 2007; Reed and 

Glick, 2005). However, only very few studies have been reported that focus on the effects 

of ACC deaminase activity in endophytic bacteria (Idris et al., 2004; Sessitsch et al., 

2005; Ait Barka et al., 2006). In this thesis, the relationship between the ACC deaminase 

activity of the endophytic bacterium B. phytofirmans PsJN and its ability to colonize the 

plant interior and promote plant growth was studied.  



 99 

4.1 Characterization of B. phytofirmans PsJN AcdS– mutant No.1. 

 Traditionally, the generation and selection of mutant strains has been used to 

elaborate the role of particular proteins in the functioning of an organism. This is a 

particularly powerful approach in bacteria where the vast majority of genes are present in 

a single copy. Here, mutants of B. phytofirmans PsJN deficient in ACC deaminase 

activity were constructed and tested. The first AcdS– mutant of PsJN was constructed by 

inserting a tetracycline resistance gene into the coding region of the acdS gene within the 

PsJN genome. This mutant showed no detectable ACC deaminase activity (Table 3-1), 

and lost most of its ability to promote plant growth as observed in growth pouch assays 

with canola seeds (Table 3-2). Interestingly, this AcdS– mutant synthesized a decreased 

level of siderophores (Fig. 3-15A) and an increased amount of IAA (Table 3-4). The 

productions of siderophores and IAA are both very important mechanisms used by plant 

growth-promoting bacteria to promote plant growth (Glick, 1995a). Siderophore is an 

iron chelating compound secreted by microorganisms. Siderophores produced by plant 

growth-promoting bacteria can not only dissolve the insoluble ferric irons (Fe3+) that are 

present in the rhizosphere, producing soluble iron complex which plants can use, but they 

also can prevent pathogens from proliferating because of their high affinity for iron 

which they can deplete in the vicinity of pathogens (O’Sullivan and O’Gara, 1992). IAA 

is a phytohormone which is known to be involved in root initiation, cell division, and cell 

elongation (Salisbury, 1994) and is very commonly produced by plant growth-promoting 

bacteria (Patten and Glick, 1996; Barazani and Friedman, 1999). 

 The method used to construct this PsJN AcdS– mutant had been previously used 

by Li et al. (2000) to construct an ACC deaminase minus mutant of the rhizosphere 
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bacterium Pseudomonas putida UW4. As far as ACC deaminase activity and the ability 

to promote canola root elongation are concerned, similar results were found in the study 

of the P. putida UW4 and B. phytofirmans PsJN AcdS– mutants. However, for the UW4 

mutant, inserting a tetracycline resistance gene into the chromosomal gene encoding 

AcdS had no effect on IAA production compared to the wild-type UW4, while 

siderophore production in the UW4 wild-type and mutant strains was not tested (Li et al., 

2000). Since the only change in B. phytofirmans PsJN during the construction of the 

mutant was an insertion in the acdS gene, it was thought that the difference of 

siderophore production and IAA secretion between wild-type B. phytofirmans PsJN and 

B. phytofirmans PsJN AcdS– mutant might result from a metabolic load on the mutant 

strain caused by the expression of the introduced tetracycline resistance gene.  

 

4.2 Metabolic load  

 Metabolic load has been defined as “the portion of a host cell’s resources - either 

in the form of energy such as ATP or GTP, or raw materials such as amino acids - that is 

required to maintain and express foreign DNA, as either RNA or protein, in the cell” 

(Glick, 1995b). The extent of metabolic load caused by the addition of a foreign gene(s) 

depends on the location of the introduced gene(s) (on a vector or in the chromosomal 

DNA), the size and copy number of the vector, the metabolic state of the host cell, and 

the growth medium (Glick, 1995b). Metabolic load may change the physiology and 

functioning of the host cell greatly, with the decrease of growth rate as the most 

commonly observed effect (Glick, 1995b). In a study of the plant growth-promoting 

bacterium Pseudomonas putida GR12-2 (Hong et al., 1995), it was found that 
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introducing a plasmid carrying a tetracycline resistance gene into P. putida GR 12-2 

decreased the rate of siderophore synthesis of the host cell to approximately 75% of the 

value in the nontransformed host cells, although it did not alter the growth rate of the host 

bacterium nor its ability to promote plant growth. 

Since B. phytofirmans PsJN AcdS– mutant has a tetracycline resistance gene inserted 

into the chromosomal DNA, the metabolic load of the host cell should be lower than that 

caused by introducing a multi-copy plasmid carrying a tetracycline resistance gene. 

However, it is still possible that the relatively lower level of metabolic load changed the 

host cell’s physiology, including siderophore synthesis, IAA production, or even the 

ability to promote plant root elongation. If this is the case, the conclusion that endophytic 

strain B. phytofirmans PsJN AcdS– mutant No.1 lost a portion of the ability to promote 

plant growth because of the disruption of ACC deaminase would be questionable. To 

eliminate the possibility that a metabolic load caused by introducing the tetracycline 

resistance gene is responsible for the observed decrease in the ability of B. phytofirmans 

PsJN to promote canola root elongation, a second ACC deaminase deficient mutant of B. 

phytofirmans PsJN was constructed.  

 

4.3 Characterization of B. phytofirmans PsJN AcdS– mutant No.2  

 In an effort to avoid the complication of a too-highly expressed tetracycline 

resistance gene inserted in the acdS gene of B. phytofirmans PsJN, a deletion mutant of 

the acdS gene without a tetracycline resistance gene was constructed. This mutant strain 

also showed no detectable ACC deaminase activity (Table 3-1), produced a decreased 

amount of siderophores compared to the wild-type (Fig. 3-15B), secreted an 
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approximately 5- to 7-fold higher amount of IAA than the wild-type (Table 3-5), and lost 

the ability to promote canola root elongation (Fig. 3-14). All of these results are quite 

similar to what was observed with B. phytofirmans PsJN AcdS– mutant No.1, therefore, 

the changes in siderophore production and IAA secretion found in both of these mutants 

are unlikely to be the result of a metabolic load that was a consequence of foreign gene 

expression.  

 Another possible explanation for the observed results is that there is an increased 

level of RpoS, the stationary-phase sigma factor, in the AcdS– mutants of B. phytofirmans 

PsJN. RpoS directs transcription of many genes expressed in the beginning of stationary 

phase (Loewen and Hengge-Aronis, 1994) in response to starvation and stress conditions, 

such as phosphate, carbon and nitrogen starvation, heat shock, acid shock and osmotic 

stress (Loewen and Hengge-Aronis, 1994; O’Neal et al., 1994; Hengge-Aronis, 1996). In 

plant growth-promoting bacteria, IAA, siderophores, and ACC deaminase are primarily 

produced in the stationary phase of bacterial growth (Saleh and Glick, 2001).  

 The possible role of rpoS gene in regulating the transcription of some plant 

growth-promoting activities has previously been suggested (Saleh and Glick, 2001). The 

plant growth-promoting bacteria Enterobacter cloacae CAL2 and Pseudomonas putida 

UW4 were genetically transformed with either an rpoS or a gacS gene which encodes the 

global activator sensor kinase GacS from Pseudomonas fluorescens. The transformed 

strains were found to have a longer lag phase and were slower in reaching stationary 

phase. In addition, compared to the nontransformed strains, these transformed strains 

produced significantly more IAA and less siderophores in stationary phase compared to 

the non-transformed strains (Saleh and Glick, 2001). Since similar changes of 
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siderophore production and IAA secretion were found in AcdS– mutants of B. 

phytofirmans PsJN, it is possible that the level of RpoS in these mutants may be elevated 

compared to the wild-type PsJN, thereby altering the physiology of the AcdS– cells. 

However, this hypothesis remains to be tested. If this turns out to be the case, it suggests 

that in B. phytofirmans PsJN, unlike P. putida UW4, AcdS may play an important 

physiological role.  

 

4.4 Endophytic colonization of canola by B. phytofirmans PsJN and its AcdS– 

mutant  

 The bacterium B. phytofirmans PsJN has been shown to be able to endophytically 

colonize various plants. The most well studied colonization pattern of a plant by B. 

phytofirmans PsJN is of Vitis vinifera L. cv. Chardonnay plantlets (Compant et al. 2005, 

2008a). The bacterium was visualized colonizing grape root surfaces, rhizodermal cells, 

inter- and intracellular spaces of cortical cells, endodermis, and xylem vessels (Compant 

et al. 2005). B. phytofirmans PsJN travels through the xylem vessels and then colonizes 

stems, leaves and inflorescence stalks, pedicels, and immature berries of grape (Compant 

et al. 2005, 2008a). 

 In the present study, canola seeds were inoculated with GFP-labeled B. 

phytofirmans PsJN strains, and the colonization was monitored two weeks after 

inoculation, which is sufficient time to colonize the root interior, stems and leaves. There 

was no visibly difference in the intensity of the green fluorescence detected from canola 

treated with B. phytofirmans PsJN or PsJN AcdS– mutant No.2. For plants treated with 

either 1/2 PsJN/gfp + 1/2 PsJN AcdS– No.2 or 1/2 PsJN + 1/2 PsJN AcdS– No.2/gfp, 
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differences in the extent of colonization were detected two weeks after inoculation, but 

not in the third week. Colonization by the bacterial suspension containing half PsJN/gfp 

was detected at the root tip, primary root and basal leaf edge; while colonization by the 

bacterial suspension containing half PsJN AcdS– No.2/gfp was detected only at the root 

tip. The results suggest that the initial colonization step may be affected by deletion of the 

bacterial ACC deaminase. However, this effect is diminished over time after bacteria 

enter the interior of plant. This difference in root colonization between the wild-type and 

mutant strains may reflect the somewhat modified physiological state of the mutant cells 

as discussed earlier. Similar results to what was observed in this work were reported by 

Compant et al. (2005), who observed significantly higher numbers of PsJN cells in leaves 

than in stems. This may be explained by the fact that the leaves accumulate bacteria while 

the stem serves only in transporting bacteria (Compant et al. 2005).  

 The existence of the mutant strain with a deletion in the acdS gene may be used, 

in comparison to the wild-type strain, to facilitate an understanding of how endophytes 

such as B. phytofirmans PsJN promote plant growth. In particular, it is expected that the 

mutant strain will be less capable of protecting plants against a range of different 

environmental stresses. 
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