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Abstract

For decades, structural engineers have been using various conventional design approaches for
assessing the strength and stability of framed structures for various loads. Today, engineers are still
designing without some critical information to insure that their stability assessment yields a safe
design for the life of the structure with consideration for extreme loads. Presented in this thesis is new
critical information provided from the study of stability analysis and design of steel framed structures
accounting for extreme loads associated to load patterns that may be experienced during their
lifetime. It is conducted in five main parts. A literature survey is first carried out reviewing the
previous research of analyzing frame stability including the consideration of initial geometric
imperfections, and also evaluating research of the analysis and design of the increased usage of cold-
formed steel (CFS) storage racks. Secondly, the elastic buckling loads for single-storey unbraced steel
frames subjected to variable loading is extended to multi-storey unbraced steel frames. The
formulations and procedures are developed for the multi-storey unbraced steel frames subjected to
variable loading using the storey-based buckling method. Numerical examples are presented as
comparisons to the conventional proportional loading approach and to demonstrate the effect of
connection rigidity on the maximum and minimum frame-buckling loads. Thirdly, the lateral stiffness
of axially loaded columns in unbraced frames accounting for initial geometric imperfections is
derived based on the storey-based buckling. A practical method of evaluating column effective length
factor with explicit accounting for the initial geometric imperfections is developed and examined
using numerical examples. The fourth part is an investigation of the stability for multi-storey
unbraced steel frames under variable loading with accounting for initial geometric imperfections.
Finally, the stability of CFS storage racks is studied. The effective length factor of CFS storage racks
with accounting for the semi-rigid nature of the beam-to-column connections of such structures are
evaluated based on experimental data. A parametric study on maximum and minimum frame-

buckling loads with or without accounting for initial geometric imperfections is conducted.

The proposed stability analysis of multi-storey unbraced frames subjected to variable loading takes
into consideration the volatility of live loads during the life span of structures and frame buckling
characteristics of the frames under any possible load pattern. From the proposed method, the
maximum and minimum frame-buckling loads together with their associated load patterns provides

critical information to clearly define the stability capacities of frames under extreme loads. This
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critical information in concern for the stability of structures is generally not available through a
conventional proportional loading analysis. This study of work ends with an appropriate set of

conclusions.
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Chapter |

Introduction

1.1 Background

Stability is the fundamental safety criterion for steel structures during their construction period and
lifetime of operation. Although the research on the stability of structures can be traced back to 264
years ago when Euler published his famous Euler equation on the elastic stability of steel bars in
1744, adequate solutions are still not available for many types of structures. The stability of structures
has been exercising the minds of many eminent engineers and applied mathematicians for several
decades. Even today in 2008, structural engineers are still facing the challenges of determining the
stability of a structure under different types of loads. One of these more difficult challenges is in
determining the critical load under which a structure collapses due to the loss of stability in the
structural design because of the complexity of this phenomenon and because of the many material
property influences due to imperfections and inelasticity. In addition to the complex challenges, the
improvement of the industrial processes in both hot-rolled and cold formed steel (CFS) members and
the use of high strength steel provides a competitive design solution to structural weight reduction,
resulting from the increase of member slenderness, structural flexibility and therefore being more

vulnerable to instability.

The approaches for considering column stability in the design of steel frames vary between
different design standards and specifications throughout the world. Within the context of using elastic
analysis, in general, there are three types of methods available for stability analysis of framed
structures subjected to proportional loading, i.e. 1) theoretical method which is so-called the system
buckling method, 2) the effective-length based method and 3) storey-based buckling method
(Galambos, 1988; Julian and Lawrence, 1959; Majid, 1972; Chen and Lui, 1987). Among these
methods, the system buckling method is considered to be impractical as it involves solving for the
minimum positive eigenvalue from either a highly nonlinear or a transcendental equation (Galambos,

1988). With the effective-length based method, the alignment chart method (Julian and Lawrence,
1



1959) is the most widely used method in practice for designing a frame, while this method uses
certain simplifications which may result in the inaccuracy of the estimated column strengths in certain
cases. The storey-based buckling method, which is an alternative to the effective length method that
does not use the simplifications corresponding to the alignment chart method is considered to be
practical and provides accurate results (Yura, 1971; LeMessurier, 1977; Xu and Liu, 2002; Liu and
Xu, 2005; Xu and Wang, 2007, 2008). This method is based on the idea that lateral sway instability of
an unbraced frame is a storey phenomenon involving the interaction of lateral sway resistance of each
column in the same storey and the total gravity load in the columns of that storey. A storey-based
buckling method developed by Xu and Liu (2002) will be adopted and extended in this research to

facilitate the stability analysis of multi-storey steel frames subjected to variable loading.

Considering current design practice and research activities involving the stability analysis and
design of framed structures are almost exclusively based on the assumption of proportional loading,
where the obtained stability capacity of the structure corresponds to a specified load pattern that may
not apply to any other load pattern. Therefore, structural engineers have to anticipate the possible load
patterns caused by various types of loads that may be encountered during the life span of the building,
and this is usually accomplished by specifying different load combinations in accordance with
existing design standards, if available. However, the worst case load patterns are not always
guaranteed in the load combinations specified in the standards or by the engineers due to the
unpredictable nature to varying types of loads. The variability of loads in both magnitudes and
locations need to be accounted for in assessing the stability of structures, otherwise, public safety may

be jeopardized.

The study of stability of multi-storey unbraced steel frames subjected to variable loading will be
considered in this research because this is of primary importance as variable loading accounts for the
variability of applied loads, which will represent realistic conditions during the life span of the
structures. This research includes obtaining the maximum and minimum frame-buckling loads and
the associated load patterns from a frame stability analysis under any possible load combinations. The
associated load patterns clearly define the stability capacities of frames under extreme load cases.
Since this research proposes an innovative variable loading approach, it enables the prediction of the
characteristics of stability of unbraced multi-storey frames under variable loadings. The variable

loading approach captures the load patterns that cause instability failure of frames at the maximum
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load levels (the most favorable load pattern) and minimum (the worst load pattern). The approach
clearly identifies the stability capacities of frames under the extreme load cases; such critical

information is generally not available through the current proportional loading stability analysis.

All structural frames in reality are geometrically imperfect, hence, deflection commences as soon
as the loads are applied. In the practical stability design and analysis of framed structures, geometric
imperfections to be accounted for are out-of-straightness, which is a lateral deflection of the column
relative to a straight line between its end points, and frame out-of-plumbness, which is lateral
displacement of one end of the column relative to the other. In the absence of more accurate
information, evaluation of imperfection effects should be based on the permissible fabrication and
erection tolerances specified in the appropriate building code. As an example, in the U.S.A, the initial
geometric imperfections are assumed to be equal to the maximum fabrication and erection tolerances
permitted by the AISC Code of Standard Practice for Steel Building and Bridge (AISC, 1992) and
AISC (2005). For columns and frames, this implies a member out-of-straightness equal to L/1000,
where L is the member length brace or framing points, and a frame out-of-plumbness equal to H/500,
where H is the storey height, and these two initial geometric imperfections values will be adopted in

this current research.

In this research, an analytical investigation on the effective length based procedure such that the
effects of the out-of-straightness of column and out-of-plumbness of frame on column strength can be
evaluated explicitly and independently. Within the concept of the storey-based buckling method
introduced by Yura (1971), a practical method to evaluate the effective length factor for columns in

an unbraced frame with initial geometric imperfections is developed in this study.

The method investigated to evaluate the stability capacities for a multi-storey unbraced frame under
extreme load cases is an innovative approach, which is currently not available through the current
proportional loading stability analysis. For an extreme loading case accounting for the initial
geometric imperfections, this innovative variable loading approach will help improve upon existing

methods used in applications for the engineering practice from this research.

The structural application of CFS has increased rapidly in recent times due to significant

improvements of manufacturing technologies producing thin, high-strength steels and research
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achievements on the design and construction of CFS framing. Cold formed steel members have a
unique structural stability issues primarily due to the large width-to-thickness comparison element
ratios, which is not commonly the use with in sections of hot-rolled steel. One of the largest
applications of CFS structures is found in the storage rack industry, ranging from relatively small
shelving systems to extremely large and sophisticated pallet storage rack systems. In current design
practice, the nature of randomly applied loads, both in applied locations and magnitudes, are often
found as one of the primary contributing factors causing structural failures. This not considered in the
design of the storage racks and as a result the appropriate analysis method is not available at the
present time. Considering that CFS storage racks are extensively used in large and crowded
warehouse type shopping facilities in Canada and the U.S.A, public safety may be a concern due to
the factors involved with structural stability. For the purposes of safety and performance, research on
assessing the integrity of the CFS storage racks subjected to variable loading is imperative and
considered far overdue. It is an essential part of this research to apply for the proposed method in the

application of CFS storage racks to help improve upon existing methods.

1.2 Objectives of this Research

The overall objective of this research involves the stability issues that the design professional is
facing in the structural design of both conventional steel structures and CFS storage racks to ensure
the stability of structural frame and its individual members while considering the uncertainty and

variability of the applied loads. The specific objectives of this thesis are:

» Develop an analytical approach for the stability analysis of multi-storey unbraced frames
subjected to variable loading with regad to frame stability.

» Develop a practical approach of calculating storey-based column effective length factors with
explicitly accounting for initial geometric imperfections and the effects of initial geometric
imperfections on the column strength.

» Investigate the effect of initial geometric imperfections on the stability of multi-storey
unbraced frames subjected to variable loading.

» Apply the proposed method for evaluating the effective length factor method of CFS storage

rack frame structures with consideration for semi-rigid connections.



» Conduct an analytical investigation on the stability of CFS storage rack frame structures

subjected to variable loading with or without accounting for initial geometric imperfections.

1.3 Outline of Research

This thesis is organized in the following manner:

In Chapter 2, a literature survey is presented which includes the reviews of selected previous works
on frame stability analysis including the consideration of the stability analysis of frames, the effects
of initial geometric imperfections in the design of frame structures, research work about CFS

including the application of CFS used for storage rack frame structures.

Presented in Chapter 3 is the study to extend the method for elastic stability of multi-storey
unbraced frames subjected to variable loading from the method developed by Xu (2002) for single-
storey frames. This study will establish the problem of determining the maximum and minimum
frame-buckling loads of multi-storey unbraced semi-rigid frames under variable loading based on the
concept of storey-based buckling. The established problem is formulated as a pair of maximization
and minimization problems with stability constraints that can be solved by a linear programming
method. A 2-bay by 2-storey semi-rigid unbraced frame subjected to variable loading is presented to
demonstrate the proposed approach. This proposed approach clearly identifies the stability capacities
of frames under extreme load cases. The maximum and minimum frame-buckling loads together with
their associated load patterns obtained from this proposed approach, are generally not available

through a conventional proportional loading stability analysis.

Given in Chapter 4 is the study of the storey-based stability analysis for multi-storey unbraced
frames accounting for initial geometric imperfections. By following the derivation of the lateral
stiffness of an axially loaded column in an unbraced frame and accounting for the initial geometric
imperfections, the formulation and the procedure of evaluating the column effective length factor
with explicitly accounting for the initial geometric imperfections are developed. The comparison
among the results of the 1*-order, 2""-order Tayler series approximations and the storey-based method
is examined by using numerical examples. Parametric studies are presented to illustrate the effects of
the initial geometric imperfections on the column effective length factor and column strengths. In this
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chapter a method is developed to enable practitioners to better evaluate column strengths by explicitly
using any given value of initial geometric imperfections, which is not available in the current design

practice.

Based on the studies presented in Chapters 3 and 4, the study presented in Chapter 5 is focused on
the effects of the initial geometric imperfections for maximum and minimum frame-buckling loads of
the multi-storey unbraced semi-rigid frames under variable loading. The maximization and
minimization problems presented in Chapter 3 are reformulated by replacing the column lateral
stiffness, which accounts for the initial geometric imperfections. The numerical example in Chapter 3
is examined with consideration for the imperfections. A parametric study is also carried out to

investigate the influences of the imperfections on the maximum and minimum frame-buckling loads.

Presented in Chapter 6 is the application of CFS storage racks using the methods developed in the
previous Chapters 3 to 5. The effects of the perforations to the member design code for CFS storage
racks are also examined and the semi-rigid connection is evaluated with the experimental data for
such structures in this chapter. The numerical examples of CFS storage racks with different beam-to-
column connections are given to predict the column effective length factor accounting for the initial
geometric imperfections. Also the parametric study to provide the results for unbraced CFS storage

racks subjected to variable loading is presented in this chapter.

Conclusions of the current research and recommendations on the future research are presented in

Chapter 7.



Chapter Il

Literature Survey

2.1 Introduction

The structural use of steel in the construction industry is continually growing rapidly across the
world. New challenges in the structural use of steel are arising all the time, and research has been
called upon to provide appropriate solutions. The use of steel as a construction material has, of
course, its advantages, such as strength, lightness, ductility, etc., but it also possesses, as is well-
known, considerable challenges with regard to slenderness, stability, fire resistance, geometric
imperfections and other structural requirements. Thus, with the understanding accruing from the
numerous studies of the mechanics of steel structures at both member and system levels, it becomes
necessary to develop appropriate analysis procedures to quantify the relevant effects in the structures,

and to develop appropriate design procedures for the actual construction of these structures.

2.2 Stability of Steel Frames

Since the mid-18th century, the phenomenon of elastic stability, or buckling, has given rise to
extensive theoretical and experimental investigations. The first study about the stability analysis for
rigidly jointed plane frameworks can be found in Zimmermann (1909), Miiller-Breslau (1908) and
Bleich (1919). Later, Pager (1936) developed a method using the stability condition of a column with
elastic end restraints. Chwalla (1938) presented a study on lateral stability of a rigidly jointed one-
storey symmetric portal frame subjected to symmetrical concentrated transverse loads. In his study,
the elastic buckling strength of a frame was defined as being equivalent to the elastic critical load of
the frame and the strengths of the frame and columns were interrelated and the relationship between
the two was identified to be complicated. Since the 18th century, there have been tremendous
research efforts made in frame stability with goals to provide more accurate and practical solutions

for the engineering practice and since then there are three types of methods available for stability



analysis of framed structures, i.e. theoretical method, the effective-length based method and storey-

based buckling method.

The theoretical method of stability analysis of frames, which is also called the system buckling
method, often involves solving the critical loads from either a highly nonlinear equation or a
transcendental equation (Majid, 1972; Livesley, 1975; Bhatt, 1981), which accounts for the stiffness
interactions of all members in the frame. Although the system buckling method provides accurate
results, this method is generally considered impractical because of the cumbersomeness and difficulty
in solving for the critical load multiplier of the structural system as the least non-negative eigenvalue
from either a highly nonlinear or a transcendental equation (Galambos, 1988). In design practice, the
effective length based methods still are the general methods of evaluating the column compressive

strength and have been recommended in almost all of the current design specifications (AISC, 2005).

2.2.1 Effective Length Factor Method

In current design practice, the effective-length based method has become the most common method to
evaluate the column compressive strength. Based on the effective length concept, the compressive
strength of a member with length L in a frame is equated to the length of an equivalent pin-ended
member with length KL, in which K is called the effective length factor, or K factor. This concept is
considered an essential part of many analysis procedures and has been recommended by almost all
current design specifications (AISC, 1989, 1994, 2001, 2005) and Canadian Standard CAN/CSA
S16.1-2000 (CSA, 2000). There are several methods to calculate the K factors within the concept of
effective length. Among these methods, the alignment chart method that was investigated by Julian
and Lawrence (1959) is the most widely used method for frame design. This method assumes that all
individual columns in a storey buckle simultaneously under their individual proportionate share of the
total gravity load (Duan and Chen, 1989) and it also takes into account the rotational restraints
provided by upper and lower beam column assemblages to provide a direct means to evaluate the K
factors. However, since this method relies on several assumptions, the evaluated K factors may be
inaccurate when the assumptions are violated. Bridge and Fraster (1977) presented a modified G-
factor method to improve the effectiveness of the alignment chart method. Duan and Chen (1988,

1989) proposed a procedure to evaluate the K factors of compressive members in both braced and



unbraced frames, in which the far ends of the columns above and below are not necessarily

continuous but can either be hinged or fixed.

The alignment chart method takes into account the rotational restraints by upper and lower
assemblages but it neglects the interaction of lateral stiffness among the columns in the same storey
resisting lateral sway buckling of unbraced frames. In contrast to the alignment chart method, the
concept of storey-based buckling introduced by Yura (1971) acknowledged that sidesway buckling of
unbraced frames is a total storey phenomenon, and a single individual column cannot fail by sidesway
without all the columns in the same storey also buckling in the same sway mode. LeMessurier (1977)
presented a method of evaluating the K factor based on the concept of the storey-based buckling,
which accounts for the lateral restraining effect among columns in the same storey, i.e., the stronger
columns brace the weaker columns until sidesway buckling of the storey occurs. LeMessurier’s
method requires using the alignment charts and involves an iterative procedure. Compared with the
alignment charts method, LeMessurier’s method provided a more accurate estimation of effective
length factor. Lui (1992) proposed a simplified method that accounts for both the member stability
(P-8) and the frame stability (P-A) in the calculation of the effective length factor. The method
involves a first-order frame analysis without the need for special charts or iterative procedures
required. The concept of storey-based buckling was adopted by the LRFD specification (AISC, 2005)
because the destabilizing effects of lean-on column in a frame were not considered in the alignment

charts method.

In the determination of the effective length factor for columns in semi-rigid frames, Chen and Lui
(1991) modified the values of the moment of inertia of the restraining beams while using the
alignment chart method in order to incorporate connection flexibility. The modification factors were
derived for both the braced and unbraced frames based on the assumption that the beam-to-column
connection stiffness at both ends are identical. These modification factors were developed to consider
the different values of connection stiffness at the ends of the beam (Bjorhovde, 1984; Chen et al.,
1996; Christopher and Bjorhoved, 1999). However, the modification factors were based on the
rotational conditions at the ends of the beam. Based on the adoption of the concept end-fixity factor,
Xu (1994) derived a comprehensive expression for the modification factors regardless of the
rotational conditions at each end of a beam for braced and unbraced frames. Kishi et al., (1997)

presented a study of evaluating the effective length factor for columns in semi-rigid unbraced frames
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using a sub assemblage model with two columns and then comparing the results with those of the
alignment chart method. Also investigated in this study was the nonlinear behaviour of the semi-rigid
connection on the effective length factor. Shanmugan and Chen (1995) presented an assessment of K
factors of columns within frames of different geometry based on four methods, including the
alignment charts, LeMessurier’s formula, Lui’s formula and the system buckling method. The study

concluded that Lui’s method is the most appropriate for general use in design practice.

Roddis et al. (1998) presented a parametric study based on variations of bay-width, moment of
inertia of columns, loading, and column height for a 2-bay by 3-storey frame. This study
demonstrated that the approach of evaluating effective length factors based on the concept of storey-
based buckling yielded more accurate results and, therefore, is recommended for general use. The
foregoing storey-based buckling method often requires using either a first order elastic analysis or the
alignment chart while evaluating the storey-based effective length factor; as a result, an efficient
storey-based buckling method was proposed by Xu (2001) and Xu and Liu (2002). This improved
method was based on the single-storey frame mode that required neither a conducing frame analysis

nor using the alignment chart.

2.2.2 Initial Geometric Imperfections

In stability design and analysis of framed structures, one must allow for a frame’s initial
imperfections and it is imperative to account for the effects of out-of-plumbness of framing and out-
of-straightness of columns. In steel structure analysis and design, member out-of-straightness has
been closely examined and its effects included in column strength curves. The inclusion of geometric
imperfections in the design procedure for frames is much more complex. Eurocode 3 (1996)
recommends that frame imperfections be included in the elastic global analysis of the frame.
Although the influence of the number of columns in a plane and the number of stories is considered,

only limited guidance is given with respect to the shape and distribution of imperfections.

AS4100-1900 (SA, 1990) and the CAN/CSA-S16.1-2000 (CSA, 2000) include the effect of frame
imperfections through the use of an equivalent notional lateral load, a procedure also allowed in
Eurocode 3 (CEN, 1992). In the study of Clarke et al. (1992), an advanced analysis based on the finite
element method accounted for the effects of geometrical imperfection and this study found that for
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the simple sway portal frame, the out-of-plumbness imperfections reduced frame strength to a greater
extent than the member out-of-strightness imperfections. A comprehensive review of geometric
imperfections included in design specifications around the world can be found in the SSRC World
View document (SSRC, 1996). In this book, the geometric imperfections are defined as the
combination of member out-of-straightness and frame out-of-plumbness. These initial geometric
imperfections are the basic limits specified by AISC as member out-of-straightness equal to L/1000,
where L is the member length brace or framing points, and a frame out-of-plumbness equal to H/500,
where H is the storey height (AISC, 2005). It is indicated from this book, with the absence of a
reliable database of measured frame imperfections, the maximum erection tolerances be used as the
basis of frame stability checks in design, while the individual storey instabilities should be checked

using the maximum out-of-plumbness tolerance.

2.2.3 Notional Load Approach

For decades, structural engineers have been exploring various approaches for assessing column and
frame stability in the design of steel building structures for decades. The approaches for considering
column stability in the design of steel frames vary widely between different codes and specifications
throughout the world. Current AISI (2004), AISC (2005) and RMI (2000) Specifications use the
effective length approach for assessing frame stability. An alternative approach, which is called the
notional load approach is to use the actual column length (i.e., K=1) in conjunction with “notional”
lateral loads acting at each storey level and a second-order elastic analysis is then conducted on the
geometrically perfect structures. The notional load approach, also termed the equivalent imperfection
approach takes into account the storey out-of-plumbness imperfection under gravity loads and it is
widely used in the British Standard BS5950: Part 1 (BSI, 1990), the Australian Standard AS4100-
1990 (SA, 1990), the Canadian Standard CAN/CSA-S.16.1-2000 (CSA, 2000) and the Eurocode 3
(CEN, 1992).

A comprehensive discussion of the notional load approach and design procedure can be found in
the 1995 Research Report from the University of Sydney (Clarke and Bridge, 1995). In this report, a
detailed study of the calibration and verification of the notional load approach for the assessment of

frame stability is presented. Compared to the traditional effective length approach, the notional load
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approach is an engineering procedure intended to be applied in conjunction with second-order elastic

analysis of the geometrically perfect structure.

It is noted that the Direct Analysis Method accounting for geometric imperfections and residual
stresses is presented in Appendix 7 of the AISC (2005), in which the specified 0.002 notional load
coefficient to account for geometric imperfections is based on an assumed initial storey out-of-
plumbness ration of 1/500. A different notional load can be used if the known or anticipated out-of-
plumbness is different, and the imperfections can be modeled explicitly instead of applying notional
loads. Therefore, it will be desirable to develop an applicable method of accounting for the effects of
the out-of-straightness of column and out-of-plumbness of frame explicitly and independently in the

stability analysis for steel buildings and it is one of the objectives of this current research.

2.3 CFS Structure Applications

2.3.1 Analysis and Design of CFS Structures

CFS structures are structural products that are made by forming flat sheets of steel at an ambient
temperature into various shapes that can be used to satisfy both structural and functional
requirements. The most common structural shapes are cross-section types of CFS members (U, C, Z,

L and Hat) shown in Figure 2-1.

| z |z |z z z
| | | -
|
B R e “'-—J’ ¥ EF S mee —=¥
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Figure 2-1: Typical cross-section types of CFS members

CFS members used in structural applications for lightweight constructions have many advantages
due to its high strength-to-self weight ratio, where they can carry tension, compression, bending

forces, and other structural performance benefits. Since 1990, there has been a growing trend to use

12



CFS sections as the primary structural members in building construction, such as low-to-mid rise

residential buildings shown in Figures 2-2 and 2-3.

Figure 2-3: Cold-formed steel framing—Example 2
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Consequently, much research has been done to understand the structural behaviour and to develop
design procedure. Hancock and his co-workers (Hancock et al., 1985, 2003) conducted extensive
research work on the analysis and design of CFS structures (Lau and Hancock, 1987, 1990; Kwon
and Hancock, 1992). In his very comprehensive review article of CFS structures, Hancock et al.
(2003) reviewed and summarized the significant developments that continue to take place in the
design of CFS structural members and connections. He indicated this is to be expected since the
growth in the use of CFS has significantly outstripped that for hot-rolled steel structural members,

particularly with the increased use in residential construction throughout the world.

Other researchers, like Sivakumaran (1998) proposed a study of a finite element analysis model for
the behavior of CFS members subjected to axial compression and concluded the finite element
analysis gives accurate and consistent results compared with the test results. The study by Davies
(2000) includes developments in CFS section technology, developments in applications,
developments in design procedures for cold-formed sections, the application of generalized beam
theory (GBT) to buckling problems, current design models and their deficiencies, and design using

whole section models.

To assist practicing engineers in CFS design, there are a number of codes of practice (AISI, 1996,
2004; AS/NZ 4600, 1996; CEN, 1996; BS5950, 1998) available in published literature together with
complementary design guides and working examples (Rhodes, 1991; Hancock, 1998; Yu, 2000;
Schuster, 1975, 2004). Current design standards for CFS members in North America use the North
American Specification for the Design of Cold-Formed Steel Structural Members published by the
American Iron and Steel Institute (AISI, 2004) and the Canadian Standards Association, CAN/CSA-
S136S1-04, (CSA, 2004). One distinguished monograph on CFS design is that of the Direct Strength
Method (DSM) written by Schafer (2006). The DSM is an entirely new design method adopted in
2004 as shown in Appendix 1 of the North American Specification for the Design of Cold-Formed
Steel Structural Members; this guide provides practical and detailed advice on the use of these new

and powerful design methods.
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2.3.2 Design of CFS Storage Racks

CFS has many structural applications, and one of them is used for storage systems, such as drive-in
and drive-through rack systems, usually called racks, which are widely used throughout the world for
storing materials in many distribution facilities. Figures 2-4 and 2-5 are two examples of CFS storage

rack systems.

Figure 2-5: Cold-formed steel members used in storage rack systems - Example 2
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CFS rack systems provide high density storage, allowing for the storage for a large amount of
products in a small area. In addition, such systems also allow greater accessibility to the stored
products and materials. CFS storage racks are composed of CFS structural members that are used as
columns, beams and braces. The CFS racks present some peculiar features in their structural analysis
and design because of the presence of manufactured perforations into the columns to facilitate
assemblage of the rack system, and semi-rigid beam-to-column connections. Much research has been
aimed to develop more accurate and efficient analysis and design for CFS storage racks. The research
of Pekoz and Winter (1973) provided background information on the development of the storage rack
design standards proposed by the manufacturers associations, the Rack Manufacturers Institute
(RMI). The design standards used in the United States is carried out according to the 1997 edition of
the Specification published by RMIL

Lewis (1991) studied the stability of storage racks including the effects of the semi-rigid nature of
beam-to-column connections and initial imperfections. His study showed how the maximum load of
pallet rack system frameworks can be affected by the beam end connector characteristics, and the
initial imperfection of the structure. In a study by Olsson et al. (1999), the influence on the load
carrying capacity of storage rack columns was investigated. This study showed that even very minor
defects in the thin-walled columns could significantly reduce the axial load-carrying capacity and the
results showed a correlation with actual damages found in industrial racks and shelving systems.
Freitas et al. (2005) presented a study about analysis of steel storage rack columns using commercial
finite element software, ANSYS and their study showed that the comparison between code
prescriptions (RMI) and finite element results indicated conservative values. Pek6z and Rao (2001)
summarized a study of design of industrial storage racks that carried out a critical review of the
current RMI Specification in his study and the RMI Specification was found to be conservative with
regard to strength estimates. Sarawit and Pekdz (2006) presented the study of effective length
approach and notional load approach for CFS storage racks design. This study recommended that the

notional load approach be considered as an alternative means for industrial steel storage racks design.

In the design of CFS storage racks, the specification (RMI, 2000) of the RMI was applied in both
the USA and Canada along with the AISI Specification (AISI, 2004). In 2005, the Canadian
Standards Association published the first edition of CSA/A344.1-05/A344.2-05, User guide for steel

storage racks/Standard for the design and construction of steel storage racks (CSA, 2005). The
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Federation Europeene De La Manutention (FEM) is the European manufactures association of
material handling, lifting and storage equipment. The FEM and the European Federation of
Maintenance, in cooperation with RMI, has conducted research standards and development activities
for the European Union (EU). FEM published their design code specifications for storage racks with
working examples (FEM 10.2.02, 2001), code specification (FEM 10.2.03, 2003) and user code
specification (FEM 10.2.04, 2001). These specifications represent the interests of manufacturers of
racking, shelving and other storage products through the FEM National Committees of Germany,

France, Italy, Great Britain, Sweden, Belgium, Spain and Holland.

In the present, the design of industrial steel storage racks in the United States is based on the
effective length method according to the RMI Specification (RMI, 2000). Notional loads are
introduced to account for the effect of out-of-plumbness on the stability of a framed structure and the
out-of-plumbness effects are assumed to be those that result from an erection tolerance of 0.5 in 10 ft
(1:240) stated in Clause 6.2.2 of CSA A344.1 for industrial steel storage racks (CSA, 2005). This
corresponds to the maximum fabrication and erection tolerance permitted by the RMI Specification
and is roughly twice the value of 1/500 recommended by the AISC Specification used for structural

steel buildings (RMI, 2000; AISC, 2005).
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Chapter Il

Storey Stability of Multi-Storey Unbraced Frames Subjected to
Variable Loading

3.1 Introduction

Current design practice concerning stability analysis and design of framed structures is almost
exclusively based on the assumption of proportional loading, where the obtained stability capacity of
the structure corresponds to a specified load pattern that may not apply to any other load pattern.
Therefore, structural engineers have to anticipate the possible load patterns caused by various types of
loads that may be encountered during the life span of the building, and this is usually accomplished
by invetigating different load combinations in accordance with existing design standards, if available.
However, the worst load patterns are not always guaranteed by the load combinations specified in the
standards or by the engineers due to the unpredictable nature of varying types of loads. The
variability of loads in both magnitudes and locations need to be accounted for when assessing the

stability of structures; otherwise, structural damage and public safety may be jeopardized.

In the case of variable loading, the conventional assumption of proportional loading is abandoned
where different load patterns may cause the frame to buckle at different levels of critical loads. In
contrast to current frame stability analysis involving only proportional loads, the proposed approach
in this study permits individual applied loads on the frame to vary independently and it captures the
load patterns that cause instability failure of frames at the maximum load levels (the most favorable
load pattern) and minimum (the worst load pattern). The proposed approach clearly identifies the
stability capacities of frames under the extreme load cases; such critical information is generally not

available through current proportional loading stability analysis.

In light of the use of the storey-based buckling concept to characterize the lateral sway buckling of

unbraced framed structures, presented in this chapter is an extension of the previous study by Xu
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(2002) on the stability of single-storey unbraced frames subjected to variable loading to the multi-

storey unbraced frames.

3.2 Lateral Stiffness of an Axially Loaded Semi-Rigid Column

The lateral stiffness of an axially loaded semi-rigid column is schematically illustrated in Figure 3-1.

Let El.;i/L.; be the flexural stiffness of the column axial load, and Rl.zji and Ru’ij be the rotational

restraining stiffness provided by the connected beams at the lower and upper joints, respectively.
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(a) Partially restrained column (b) Deformation and forces

Figure 3-1: Axially loaded column of an unbraced frame with deformations and forces

(Xu and Liu, 2002)

The effect of beam-to-column end rotational restraints can be characterized by the end-fixity

factors as follows (Monforton and Wu, 1963):

1 1
Ny = ol =
143El /R, L 1+3El,, /R, L

Lij e ij w.ij eij

(3.1a;b)

wherer, ; and 7, ; are the end-fixity factors for the upper and lower end of the column, respectively.
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The end-fixity factors in Eq. (3.1) define the stiffness of each end connection relative to the
attachment member. For flexible, i.e., pinned connections, the rotational stiffness of the connection is
idealized as zero; thus, the value of the corresponding end-fixity factor is zero. For fully restrained or
so-called rigid connections, the end-fixity factor is unity, because the connection rotational stiffness is

taken to be infinite. A semi-rigid connection has an end-fixity factor between zero and unity.

Based on Eq. (3.1), the relationship between the end-fixity factor and the connection stiffness is

nonlinear, as shown in Figure 3-2.

30 7
20

10

0 T T T 1
0.0 0.3 0.5 0.8 1.0

Connection Stiffness Ratio (RL/EI)

End-Fixity Factor (7)

Figure 3-2: Relationship between the end-fixity factor and connection stiffness

(Xu and Liu, 2002)

It can be observed from Figure 3-2 that the relationship between the connection stiffness and the
end-fixity factor is almost linear when the connection is relatively flexible with a value of the end-
fixity factor between 0.0 and 0.5; then it becomes nonlinear with an end-fixity factor between 0.5 and
1.0. Upon the introduction of the end-fixity factor, different member-end restraint conditions can be
readily modeled, such as rigid-pinned, rigid to semi-rigid and pinned to semi-rigid, simply by
evaluating the end-fixity factors at the two ends of the member according to Eq. (3.1) with

appropriate values of rotational stiffness of end connections.

After the introduction of the end-fixity factors, the lateral stiffness of an axially loaded column of

an unbraced frame can be expressed as (Xu and Liu, 2002)
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12EI,,
L3

c.ij

S5 =B (@y15:.5) (3.2)

where subscripts i and j are the indices of storey and column, respectively; E is Young’s modulus and
I.;and L.; are the moment of inertia and the length of column, respectively. ¢; is the applied load
ratio and defined as

=z |P. /P

ij e,ij

(3.3)

in which Pj; is the column axial load and P, ;is the Euler buckling load for the column with pinned

connections.

Bi @i, 115 1wi) in Eq. (3.2) is the modification factor of the lateral stiffness that takes into account the
effects of both axial force and column end rotational restraints. A zero value of f;(¢;,7,,7.,;) indicates
the column has completely lost its lateral stiffness and lateral buckling of the column is about to
occur. A column with a negative value of f;(¢;,r,;,7.;) signifies that the column relies upon the
lateral restraint provided by other columns in the same storey in order to maintain the axial load. A
column with a positive value of f;(¢;,7,;,7.;) indicates that the column can provide lateral support to

other columns to sustain the stability of the storey.

The modification factor f;j(¢;, 7, r.;) in terms of the end-fixity factors can be expressed as (Xu,

2003)

B.rr )= (/i[ a@,cos@, +a,sing, | (3.4)
T 12718r,r,, —a, cos@, +a,@, sing,
where
a; =3n;(A=r, ;) +1,,;A=1;)] (3.5a)
a, :9’”1,ij’”u,ij _(l_rl,ij )(l—ru,l.j )¢;. (3.5b)
a, =18r,,r,,; +[31, (1, ) +3r, (1= 1,,)1¢] (3.5¢)
a, = —9rl’l.jru’ij + 3rl,l.j (1- Vi )+ 3ru’ij (1- N )+(1- Vi )(1- N )¢f (3.5d)
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In the case that the axial force PU. — 0, which leads to ¢U — 0, the modification factor of the

lateral stiffness is reduced to the result of the first-order analysis in which only the end rotational

effect has been taken into account as

) (rZA.+rA.+rZA.r )
Bo g t) =0im By (@11, ) = —————=
0

g~

3.6
4=ryh 0

usij

3.3 Storey-Based Stability Equation

The lateral stability of single-storey unbraced frames subjected to variable loading was first
investigated by (Xu et al., 2001; Xu, 2002). Based on the concept of storey-based buckling, the
problem of determining the elastic buckling loads of the frames under non-proportional loading is
expressed as a pair of maximization and minimization problems with stability constraints. The study
revealed that in the case of variable loading, the difference between the maximum and minimum
elastic buckling loads associated lateral instability of the single-storey unbraced frames can be as high
as 20% in some cases. When the beam-to-column connections are considered either as purely pinned
or fully rigid in the study, further investigation was carried out on the single-storey unbraced semi-
rigid frames (Xu, 2002). It was discovered that the difference between the maximum and minimum
buckling loads is insignificant for frames whose connection rigidities are approximately the same and
evenly distributed among the columns and beams. However, the difference can still be substantial in
some cases with lean-on columns, but it is not as significant as in the case where connections are

simplified as ideally pinned or fully rigid.

Considering elastic buckling of multi-storey unbraced frames, the concept of storey-based buckling
indicates that lateral sway instability of an unbraced frame is a storey phenomenon involving the
interaction of lateral stiffness among columns in the same storey. This means that the columns with a
larger stiffness are able to provide lateral support for the weaker columns in the same storey to resist
the lateral sway instability while the columns with a smaller stiffness depend on such lateral support
to maintain the lateral stability. Therefore, the condition for multi-column storey-based buckling in a

lateral sway mode is the sum of the lateral stiffness of the storey reduced to zero.
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Based on Eq. (3.2), the stability equation of a single-storey semi-rigid frame buckling in a lateral

sway mode is given by (Xu and Liu, 2002; Liu and Xu, 2005)

S$;=2.8;= Z,B,, (@115 7,5)

J=1 J=1

12EI,
o)

c,ij

3.7)

where i is the ith storey and m is the number of the columns in ith storey.

For the multi-storey frame shown in Figure 3-3, once the lateral stiffness of any one storey

vanishes, the frame becomes laterally unstable.
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Figure 3-3: (m-1)-bay by n-storey unbraced frame

Therefore, the lateral instability of a multi-storey frame can be defined as a case with at least one
storey of the frame, say storey k having its lateral stiffness vanished, that is Sy becomes zero. Based

on Eq. (3.7), the lateral stability equation for unbraced multi-storey frames is given by

n

" m 12EI
I ISi:| I(Zﬂj(%”?,z‘j”’u,y) I ’1]:0 (3.8)
i=1 Jj=1

i=l c,ij

This equation implies that if any one of the stories fails to maintain its lateral stability, storey-based
buckling of an unbraced multi-storey frame will occur. It is impractical to evaluate a column buckling
load in multi-column frames directly from Eq. (3.4) due to the transcendental relationship of
Bi(Bir57;) and @;. Applying the 2"-order Taylor series expansion, Eq. (3.4) for a column j in the

ith floor of a multi-storey frame is simplified as follows (Xu and Liu, 2002)
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8o = 25607, —1792r;

u l] u lj

g.; =—4960r, ; +1844r —1792r
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(3.9

(3.10a)

(3.10b)

(3.10c¢)

(3.11a)

(3.11b)

(3.11¢)

(3.11d)

From previous research investigated by Xu and Liu (2002), the 1*-order Taylor approximation

yields satisfactory results and it is recommended for use in practice due to the simplicity of the

method. Therefore, substituting Egs. (3.10a) and (3.10b) into Eq. (3.7), the lateral stiffness of column

ij becomes

Sijzlz[LCUﬁoU(l’]’ u,] lj ﬁll](llj’ MUJ

) C!’J

(3.12)

where L. ; and P;; are the length and applied axial load of column j in the ith storey, respectively.
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3.4 Decomposition of Multi-Storey Frames

Equation (3.8) defines the stability condition for multi-storey unbraced frames based on the concept
of storey-based buckling. However, even with the simplification of column lateral stiffness as shown
in Eq. (3.12), it is difficult for practitioners to facilitate a stability analysis using Eq. (3.8) due to the
high-order of nonlinearity. To overcome this difficulty, Liu and Xu (2005) proposed a strategy of

decomposing a multi-storey frame into a series of single storey frames.

In the case of a single storey frame, the beam-to-column rotational restraints are directly applied to
the upper ends of the connected columns. For a multi-storey frame, floor beams provide rotational
restraints for both the lower and upper columns at a joint. Therefore, the appropriate distribution of
the beam-to-column rotational-restraining stiffness between the lower and upper columns with
consideration of the effects of axial load on column end rotational stiffness is the key issue to be

resolved in the decomposition process.

Figure 3-4 illustrates a deformed profile of the single storey model decomposed from a typical

storey of the multi-storey frame shown in Figure 3-3.
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Figure 3-4: Decomposed single storey model

In determining the distribution factor of the beam-to-column rotational-restraint stiffness, three
approaches are proposed by Liu and Xu (2005). The first approach referred to as the geometrical
stiffness distribution (GSD) is a method of accounting for the effect of the column axial force on
column end rotational stiffness. The second approach, named frame-based stiffness distribution
(FSD), is basically the same as the GSD except the effects of axial loads are neglected. The third
approach is defined as column-based stiffness distribution (CSD), which is similar to that of the FSD
approach except that the rotational stiffnesses of the beams at the far end of the column in adjacent

stories is taken as infinite.
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It is noted that in these three approaches, the GSD or FSD approach requires the end-fixity factor at
the far end of the column r;; to be known, in which the decomposition process can be conveniently
evaluated from the first storey since the end-fixity factors associated with the column bases are
known and continued toward to the upper stories. In the case of using the CSD approach, the
decomposition process can be initiated from any storey. Between the approaches of GSD and FSD to
account for the effects of axial force or not, it is found that in a frame buckling analysis, the critical
axial force of each column at the buckling state is unknown in advance, and as the axial force and
column end rotational stiffness are interrelated, the numerical iterations are required to obtain the
results. As we already know, the iterative process can be quite cumbersome for the engineering
practice. From the study of Liu and Xu (2005), it is recommended to initiate the process of evaluating
the stiffness distribution factors with either the FSD or CSD approach. In this current study, the
column base is known; therefore, the FSD approach is chosen to carry out the following studies. The

detailed procedure of applying the FSD approach is presented in Appendix A.

3.5 Stability Analysis for Multi-Storey Unbraced Frames Subjected to Variable
Loading

To investigate the stability of unbraced frames under variable loading can be formulated as two
problems of seeking the maximum and minimum bounds of buckling loads of the frames. The
simplified form of Egs. (3.4) and (3.9) are adopted for the column stiffness modification factor and

consequently, the problem of seeking the maximum frame-buckling loads can be stated as follows:

Maximize: Z = ZZPIJ (3.13a)
i=1 j=1
Subjectto:  § =123 El, B (r .r )_M v P >0 (3.13b)
k = L3 0,j N Lij 7 " uiij L s ij

ki ki

n T’El,
ogZpij <P,=——"> (3.13¢)

i=i braced jj ~ij

(k=12...n; i=12...n; j=1,2...m)
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where n is the number of the stories in the frame and m is the number of columns in one storey. P;; is
the applied load associated with column ij and is the variable of the maximum problem. Z is the
objective function corresponding with either the maximum or the minimum elastic buckling loads of

the frame and it is the sum of variable loading P;;.

Equation (3.13b) represents the storey-based stability condition for the kth storey of the frame, in
which the column stiffness modification factor S ;(r; ;7. ;) and B ;(r;;r,;) are defined in Eq. (3.9).
In the case that the lateral stiffness of storey, Sy is greater than zero, the storey is laterally stable;
otherwise, the storey becomes laterally unstable if S;=0. Equation (3.13c) is a side constraint for each

applied column load, which is to be less than an associated upper bound load. The upper bound,

7’El i 'K Zraced,ijLi,ij , is imposed to ensure that the magnitude of the applied load will not exceed

the buckling load associated with non-sway buckling of the individual column. The factor Kj,qceqji 18
the effective length factor of the column associated with non-sway-buckling that is related to the
rotational restraints of the column ends. In this study, Kpeq; 1S €valuated as the following

(Newmark, 1949),
2 2
5 3 Q2+ RM,ULU/EIU)X(2+7Z' R,’ULU/EIi)

el (4+ 7R, L, | EL)X(4+ 7R, L, | EI)

u,y 7

(3.14)

where R;; and R,; are the rotational restraining stiffnesses provided by the beams connected at the
lower and upper ends of the column, respectively, and EI ;/L,; is the flexural stiffness of the column.

Expressed in terms of the end-fixity factors defined in Eq. (3.1), Eq. (3.14) becomes
(7 +(6-7)r,  X[x* +(6—77)r, ]

szracedij = 2 2 = 2 P Ly (315)
U+ Q2= ) X e+ (A2 -7, ]

u

The problem of seeking the minimum frame-buckling loads of a multi-storey unbraced frame

subjected to variable loading can be stated as: (Xu and Wang, 2007)

Minimum ~ Z=min{ Z, = » > P;11=123...n} (3.16)

i=l j=l

where n is the number of stories in the frame and m is the number of columns in one storey. Z, (/ = 1,

2, 3...n) is obtained from the minimization problem as follows,
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Minimize: Z, = Zz P, (3.17a)

i=1 j=1

L ’rul -
Subject to: S, =12 ”ﬁOU(,U, Fog)— Ay 1) P, |= (3.17b)
j= sz L, i=l
n (ElL (70T, ) &
S, =12)] —3’”,60@(4,,‘].,%)—%’# P, |>0 (3.17c)
Jj=1 ij ij i=k
2
0<Z < uu_LI’fz (3.17d)
braced,ij

k=1,2..m;k=l;i=12...n;j=1,2...m)

It is noticed that both the formulation and procedure of seeking the minimum frame-buckling load
are different from those of the maximum frame-buckling loads. First, an equality constraint, Eq.
(3.17b), is imposed in the minimization problem to ensure that the minimum value of the loads
obtained from Eq.(3.17b) will result in lateral instability at least in one storey, say storey [/ in this
case. Second, the minimization problem shown in Eq.(3.17a) needs to be solved by n times with [ =1,
2, 3,..., n, and the minimum frame-buckling load obtained from Eq.(3.16) is the minimum of the

minimum frame-buckling loads associated with the instability of each storey (Xu and Wang, 2007).

It should be noticed that Eqgs. (3.13) and (3.17) are linear programming problems. Thus, the
maximum or minimum frame-buckling loads under variable loading can be solved with the use of a
linear programming algorithm such as the simplex method, which will be demonstrated in the next

section with an numerical example.

3.6 Numerical Example

A numerical example is presented in this section to demonstrate the validity and efficiency of the
foregoing proposed method for stability analysis of multi-storey unbraced steel frames subjected to
variable loading. This example is a 2-bay by 2-storey steel frame which is a bench mark case for
stability analysis and has been investigated by different researchers to validate different analytical
methods (Lui, 1992; Liu and Xu, 2005). To investigate the effects of a semi-rigid connection

behaviour on the frame stability, especially on the maximum or minimum frame-buckling loads under
28



variable loading, cases with different values of end-fixity factor for beam-to-column and column base

connections in this example is being studied in this research.

The 2-bay by 2-storey frames with five different beam-to-column and column base connections as
shown in Figures 3-5 to 3-8 are investigated to illustrate the influence of the different connections on

the maximum and minimum buckling loads of frames and associated variable load patterns.
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Figure 3-5: 2-bay by 2-storey steel frame — Case 1
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Figure 3-7: 2-bay by 2-storey steel frame — Cases 3 and 5
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Figure 3-8: 2-bay by 2-storey steel frame — Case 4

Based on Eq.(3.13b), the maximum buckling loads for the 2-bay by 2-storey steel frame shown in

Figures 3-5 to 3-9 can be expressed in the following forms: (Xu and Wang, 2007)

Maximize: Z=B,+B,+B;+P,+P,+P; (3.18)
Subject to:
_12EI 12 12E1 12
Si=—% H 13011 — BB+ P+ —= 15012 131,12(})12 +Py)
L, 1 le L, (3.19)
| 12E1 12 '
IE . ,Bo 137 I :61,13(P13 +P;)>0
13 13
_12E1 12 12EI 12
S, = I — ,Bo = BiyPy + I — ,Bo n = :Bl,zzpzz
21 L, 2 L, (3.19)
12EI 12
Iz —= ,Bo 3~ 131,23P23 >0
23 Ly,
0<P,+P, <P, 0<Ph,+P, <P 0<P,+P, <P,
0<P,<P,:0<P,<P,;0<P;<P , (3.19¢)

Similarly, based on Egs. (3.16) and (3.17), the minimum buckling loads for the 2-bay by 2-storey

steel frame ( n=2, m=3) can be obtained from following forms:
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Minimize: Z=F,+F,+P;+P, +P,+P,
Subject to:
12EI 12 12E1 12
= Bony = BB+ P+ — — Por— 131,12(})12"'})22)
Ln 1 L12 12
12EI13 12
13013 181,13 (PR3 +Py3)=0
L13 Ly
_12E1 12 12EI 12
S, =—3 — — B~ Bkt 3 — — Pon = BinPr
L, L, Ly Ly
12EI 12
3 — — B PP >0
Ly L,

0<PAh

Minimum Z=min{ Z,

(+P, <P

OSP21—Pu21’

ull’

i=1 j=1

:ii@Uﬂgﬂ

OSP12+P22SPM,12; OSP13+P233PM,13

O<P22_Pu,22; 0<P23_Pu23

(3.20)

(3.21)

(3.22a)

(3.22b)

(3.22¢)

For the 2-bay by 2-storey steel frames shown in Figures 3-5 to 3-8, the end fixity factors associated

with column bases and beam-to-column connections are summarized in Table 3-1.

Table 3-1: 2-bay by 2-storey steel frames with different connections

Column base | Beam-to-column connections
Case | Co nnections | Interior column Exterior column
1 rigid: r=1 rigid: r=1 rigid: r=1
2 |rigid:r=1 rigid: r=1 semi-rigid: r = 0.8
3 rigid: r=1 semi-rigid: r =0.8 | semi-rigid: r = 0.8
4 |rigid:r=1 pinned: r=0 rigid: r=1
5 |rigidir=1 semi-rigid: r =0.2 | semi-rigid: r =0.2

The Young’s modulus of steel is E = 2x10° MPa where the reference moment of inertia for beams

and columns is 7 = 8.3246x10'mm*. The dimensions of frames and the moment of inertia of each

member are shown in Figures 3-5 to 3-8. The detailed process of evaluating stiffness distribution

32



factors, beam-to-column rotational-stiffness, end-fixity factors and column stiffness modification

factors for unbraced multi-storey frames are presented in Appendix A.

Following the procedures described in the previous section, the maximum and minimum frame-
buckling loads associated with the two-storey and two-bay unbraced steel frames subjected to
variable loading can be obtained from solving the maximization and minimization problems stated in
Egs. (3.18) to (3.20). For the foregoing five cases in Table 3-1, the values of the coefficients
including the end-fixity factors, the effective length factor and the buckling loads associated with
non-sway buckling corresponding with the maximum and minimum frame-buckling loads, together

with their relative differences, are presented in Tables 3-2 to 3-6. Also presented in the Tables are the

column elastic flexural stiffness 12E7, 5,/ ij and the coefficients associated with column lateral

stiffness modification factors S, ;i(r;;,r.;) . New results for a frame subjected to proportional loading
are also obtained in this study and the results are presented in Tables 3-2 to 3-6. The load patterns
associated with the maximum and minimum frame-buckling loads are illurstrated in Figures 3-9 to 3-

13.

In case of proportional loading, the pattern of applied loads on the frame is given and the loads can

be evaluated using the following equation

P=>>P, (3.23)
i=l j=1
in which, =1,P,; (3.24)

where P, .. is the applied load of an individual column which is shown in the Figures 3-4 to 3-8 and

a,ij

A is the critical load multiplier associated with the multi-storey frame and is defined in the

cr

following equation (Liu and Xu, 2005)

A =min{d, .4, A

ler®“2cer > 3cr**

A (i=1,2,3....n) (3.25)

where L= “’ﬁ‘”f /Z ‘”’ﬁ“f (3.26)

J=1 c Jij =1 C,lj
The detailed studies for obtaining the critical load multiplier 4., can be referred in Chapter 4.
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Table 3-2: Results of the unbraced steel frames shown in Figure 3-5 — Case 1

6.0168 m |
|

Load pattern — max. frame-buckling load

Figure 3-9: Load patterns associated with max.

34

Min. (kN
Col. 1251"1 » 5 P, Max. in. (k)
Lol T | T iy Li | Kbracea $1=0 $,=0
l race. kN kN
/ (kN/m) (K N 550
11 | 1.000| 0.635 | 14100.000 | 0.094 | 0.575 | 183700.000 | 32995.120 0.000 0.000
12 {1.000|0.834 | 11980.000 | 0.096 | 0.534 | 144700.000 0.000 34205.970 0.000
13 {1.000]0.826 | 8956.000 |0.096|0.536 |108500.000 0.000 0.000 0.000
21 [0.614]0.784 | 8854.000 [0.089]0.630|106200.000| 76848.140 0.000 0.000
22 10.828]0.895 | 12530.000 | 0.093 | 0.558 | 133900.000 0.000 73278.69 15394.100
23 10.82210.919| 5431.000 [0.093|0.554 | 57570.000 0.000 0.000 57570.000
.. . 107484.660, 72964.100
Critical frame buckling loads 2.P; = 109843.260 (5,=0.000) | (S,=11311.300)
Difference of max. & min. frame-buckling loads (%) 7max—.m1n b 2.2% 50.5%
min
Proportional loading: P, = A,2.P,; (kN) P, 108200.000
Difference of proportional loading & max. frame-buckling| max— p,
—% 0.7%
loads (%) min
Difference of proportional loading & min. frame-buckling| p, —min
—% 48.3%
loads (%) min
76848.14kN 15394.10kN 57570.00kN
Py Boj B , - Bay P2 B P23iL , -
~ [Ca1 84l1 cn|o Mooy g ~ [Cat Ball Coa| sl Ca3 g
@ | 32995.12kN « -~ 2 « “ ~ %
‘Pn Bij Bz 1 v By By 1 "j_
10.51 1 10.51 1 10511 10.51 1
~ ~ ~ E ~ ~ ~ \E
Lo'ﬁ Cr1 Ci2 E Ci3 f a E Ci1 Ci2 E Ci3 f §
- # _-— — — - == -
1 2 3 1 2 3
4.4928 m 6.0168 m I 4.4928 m I

Load pattern — min. frame-buckling load

and min. frame-buckling loads — Case 1



Table 3-3: Results of the unbraced steel frames shown in Figure 3-6 — Case 2

6.0168 m I

Load pattern — max. frame-buckling load

Min. (kN
Col. ==y} 5 P.; Max. in. (K
| T | T iy Li | Kbracea $1=0 $,=0
l race: kN kN
I (kN/m) (K N 5,50
11|1.000{0.568 | 13010.00 |{0.094 |0.588 |175300.000| 35951.570 0.000 0.000
12 11.000 |0.815|11740.000|0.096 | 0.538 | 142700.000 0.000 37237.400 0.000
13 11.000 |0.781 | 8534.000 |0.095|0.545 | 104900.000 0.000 0.000 0.000
2110.484|0.731| 7136.000 |0.088|0.672| 91970.000 | 68405.800 0.000 0.000
22 10.7710.881|11650.000|0.092 | 0.573 | 126400.000 0.000 65193.370| 65193.370
23 10.7330.895| 4821.000 |0.092|0.578 | 52860.000 0.000 0.000 0.000
iy . 102430.770] 65193.370
Critical frame buckling loads 2.P; = 104357.370 (5,=0.000) | (8,=12102.200)
Difference of max. & min. frame-buckling loads (%) m o 1.9% 60.1%
min
Proportional loading: P, = A,2.P,; (kN) P, 103200.000
Difference of proportional loading & max. frame-buckling| max— p, o L1%
— % A%
loads (%) min
Difference of proportional loading & min. frame-buckling| p, —min
—— % 58.3%
loads (%) min
68405.80kN 65193.37kN
Pay Bai B - B P2 B» -
—|Ca 411 Ca| - sall Ca3 oé ~ [C21 411 Ca| - sall Ca3 5
@ | 35951.57kN « ~ 2 “ “ ~ %
P Big B 1 "i_ Big B 1 ":_
10.51 1 10.51 1 10.51 1 10.51 1
~ ~ ~ E ~ ~ ~ \E
E Cii Ci2 E Ci3 f g‘; |Cn Ci2 |« Cis [ %
= = L == = =
1 2 3 1 2 3
4.4928 m I 6.0168 m I 4.4928 m I

Load pattern — min. frame-buckling load

Figure 3-10: Load patterns associated with max. and min. frame-buckling loads — Case 2
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Table 3-4: Results of the unbraced steel frames shown in Figure 3-7 — Case 3

6.0168 m |
|

Load pattern — max. frame-buckling load

Min. (kN
Col. ==V} 5 P.; Max. in. (K
| T | Tl i Vi | Kpraced $1=0 $2=0
l race kN kN
J (kN/m) (0 (0 550 5,50
11]1.000{0.540 | 12570.000 | 0.094 | 0.594 | 171900.000 | 36634.980 0.000 0.000
12 | 1.000 |0.771| 11200.000 | 0.095 | 0.547 | 138100.000 0.000 37899.160 0.000
13 | 1.000 |0.760| 8343.000 |0.0950.549|103300.000 0.000 0.000 0.000
21 10.45310.707 | 6669.000 |0.087|0.685| 93930.000 | 64023.320 0.000 0.000
22 10.718 |0.850| 10660.000 [ 0.091 | 0.592 | 123300.000 0.000 61512.610 9764.310
23 10.709 | 0.884 | 4640.000 [0.091|0.586| 53460.000 0.000 0.000 51460.000
.. . 99411.760| 61224.310
Critical frame buckling loads 2.P; = 100658.310 (5,=0.000) | ($,=12386.010)
Difference of max. & min. frame-buckling loads (%) m o 1.3% 64.4%
min
Proportional loading: P, = A,2.P,; (kN) P, 99890.000
Difference of proportional loading & max. frame-buckling| ax— Pp o 0.8%
— % .8%
loads (%) min
Difference of proportional loading & min. frame-buckling| p, —min
—% 63.2%
loads (%) min
64023.32kN 9764.30kN 51460.00kN
Py Boj B» - Boj P2 B P23iL , -
~|C2 841 Cn| - Ball Ca3 g Wl (&)1 411 Ca| - sall Ca3 g
@ | 36634.98kN f -~ % “ f ~ %
‘Pn Bii Biy 1 WV By Bio 1 "j_
10511 10511 10511 10511
~ ~ ~ E ~ ~ ~ \E
Lo'ﬁ Cip Ci2 E Ci3 f a E Ci Ci2 E Ci3 f §
1 2 3 1 2 3
44928 m 6.0168 m I 4.4928 m I

Load pattern — min. frame-buckling load

Figure 3-11: Load patterns associated with max. and min. frame-buckling loads — Case 3
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Table 3-5: Results of the unbraced steel frames shown in Figure 3-8 — Case 4

6.0168 m |
|

Load pattern — max. frame-buckling load

Col| | ==y} 5 P.; Max. _ Min. (kNS) _
1ij wij i i = =
i ] ] (kN/m) [P () () S; >0 ST >0
11 | 1.000|0.420 | 10740.000 | 0.094 | 0.573 | 158400.000 | 51596.840 0.000 0.000
12 {1.000|0.000 | 3555.000 |{0.100|0.707 | 82570.000 0.000 45588.770 0.000
13 {1.000|0.705| 7843.000 |0.095|0.560 | 97700.000 0.000 0.000 0.000
21 (0.377]0.644 | 5577.000 [0.086]0.719| 80370.000 | 28685.290 0.000 0.000
221 0.00 |{0.000| 0.000 [0.083|1.000| 41570.000 0.000 29734.760 0.000
23 10.64410.851 | 4176.000 |0.090|0.608 | 47880.000 0.000 0.000 27473.240
Critical frame buckling loads TP, = 80282.130 25212()3.65()3()(; (512=71467831'§.45060)
Difference of max. & min. frame-buckling loads (%) %i;nin o 6.5% 192.2%
Proportional loading: P, = A,2.P,; (kN) P, 77650.000
Difference of proportional loading & max. frame-buckling max— Pp . 31%
loads (%) min
Difference of proportional loading & min. frame-bucklin —mi
prop . (%)g £ %% 182.6%
28685.29kN 27473.24kN
Py Baj B - Boy B2 iL -
~ |C2 Ball S5 I O g ~|cz Ball %] P 5
@ | 5159684k & ~ g “ E - 3
b . e Y
- g _ E - X -
Lo'ﬁ Ci1 Ci2 E Ci3 f § E Cn Ci2 E Ci3 f é
L L L v 4 L L
1 2 3 1 2 3
4.4928 m 6.0168 m

4.4928 m |
|

Load pattern — min. frame-buckling load

Figure 3-12: Load patterns associated with max. and min. frame-buckling loads — Case 4
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Table 3-6: Results of the unbraced steel frames shown in Figure 3-7 — Case 5

6.0168 m I

Load pattern — max. frame-buckling load

Min. (kN
Col. 125’17 | 5 P Max. in- ()
| T | Twi i | PUi | Kyacea §1=0 $,=0
l race. kN kN
/ (kN/m) ) () $,>0 $,>0
11 | 1.000]0.184 | 7489.000 | 0.097 | 0.668 | 136000.000 0.000 37376.260 0.000
12 | 1.000 |0.384 | 6955.000 [0.095| 0.626 | 105300.000 | 39118.180 0.000 0.000
13 | 1.000 |0.359 | 5060.000 |0.095| 0.631 | 78070.000 0.000 0.000 0.000
21 10.0900.287|1681.000|0.084 | 0.889 | 52560.000 0.000 21894.260 0.000
22 10.269|0.485|3794.000|0.085|0.787 | 67090.000 0.075 0.000 0.000
23 10.26210.559|1772.000|0.086 | 0.769 | 29890.000 21440.250 0.000 21440.830
. . 59270.520 | 21440.830
Critical frame buckling loads 2.P; = 60559.010 (5,=0.000) |(S,=12596.100)
Difference of max. & min. frame-buckling loads (%) m ) 2.2% 182.4%
min
Proportional loading: P, = A;2.P,; (kN) P, 60200.000
Difference of proportional loading & max. frame- max— Pp
— % 0.6%
buckling loads (%) min
Difference of proportional loading & min. frame- —mi
prop s Pr=min g, 180.8%
buckling loads (%) min
21440.25kN 21440.83kN
Bai B2 P23JL - Boy B P23JL -
g ()] 84l Cxn| - Batl Co3 é Wl (&)1 8411 Ca| - sall C3 5
§ 39118.18kN E -~ g § E -~ %
Big P12 Bio | m_ Bij Bio | m_
10.51 1 10511 10511 10.51 1
~ - ~ E - - ~ 8
Lo'ﬁ C11 Ci2 E Ci3 f a § Cn Cp2 :—: Ci3 f §
= # = == == =
1 2 3 1 2 3
4.4928 m 6.0168 m 4.4928 m

Load pattern — min. frame-buckling load

Figure 3-13: Load patterns associated with max. and min. frame-buckling loads — Case 5
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For Case 1, in which both the column base and beam-to-column connections are rigidly connected,
it is observed from Table 3-2 that the maximum frame-buckling load, 109843.3 kN is achieved when
lateral instability takes place in both the first and the second stories of the frame. The minimum
storey-buckling loads associated with lateral instability of the first and second stories are 107484.66
kN and 72964.1 kN, respectively. Therefore, the relative difference between the maximum and
minimum frame-buckling loads is 50.5%, which is significant. It is also observed from Table 3-2 that
the load patterns associated with the minimum frame-buckling loads are different. The load pattern
corresponding to the maximum frame-buckling loads tends to place the loads only on exterior
columns 11 and 21. In contrast to that, the load pattern associated with the minimum frame-buckling

load applies the loading both on the exterior and interior columns.

The load patterns corresponding to the maximum and minimum frame-buckling loads of Case 1
are verified using structural analysis software MASTAN2 (McGuire et al., 2000) and the results are
presented in Table 3-7. From Table 3-7, it is found that when the load patterns associated with the
maximum and minimum frame-buckling load is applied on the frame, the applied load ratio with

respect to the elastic critical load is equal to one which verifies the current study results are correct.

Table 3-7: Results verification of the unbraced steel frames shown in Figure 3-5 — Case 1

Current study
Storey Columns Max. Min. (kN)

(kN) $1=0,5>0 $,=0,5,>0

11 32995.120 0.000 0.000

12 0.000 34205.970 0.000

: 13 0.000 0.000 0.000

21 76848.140 0.000 0.000
2 22 0.000 73278.690 15394.100
23 0.000 0.000 57570.000

MASTAN2 - Elastic critical load:
applied load ratio 1.000 1.000 1.040
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In Case 2, the column base and the interior beam-to-column connections are rigid. The exterior
column is semi-rigidly connected with the corresponding end-fixity factor being 0.8. The presence of
semi-rigid connections yields a flexible frame, which is evidenced by decreasing the magnitudes of
the elastic flexural stiffness compared to that of Case 1. Consequently, the maximum frame-buckling
load of Case 2 reduces to 104357.4 kN, and the corresponding minimum frame-buckling load
decreases to 65193.4 kN, which yields the relative difference between the maximum and minimum
frame-buckling loads to be 60.1%, which is significant too. It is also observed that the first and
second stories are unstable simultaneously when they are subjected to a maximum frame-buckling

load.

For Case 3, the beam-to-column connections for both the interior and exterior columns are semi-
rigidly connected with the corresponding end-fixity factor being 0.8. Compared to Cases 1 and 2, the
frame of Case 3 is more flexible; thus, the magnitudes of the maximum and minimum frame-buckling
loads are reduced to 100658.3 kN and 61224.3 kN, respectively, which leads to a difference of 64.4%
between the extreme buckling loads. Like Cases 1 and 2, it is found that lateral instability occurs
simultaneously for both first and second stories and the load patens are identical when they are

subjected to the maximum frame-buckling load.

Table 3-5 presents the results of Case 4 and the detailed hand calculation of illustrating the process
of evaluating the end-fixity factors and the lateral stiffness modification factors of Case 4 is also

presented as an example in Appendix A. In Case 4, the column base uses rigid connections

havingr,,, =r,,, =r,,;; =1. The beam-to-column connections of the exterior columns are rigid and

the interior columns are pinned, in which we can get other end-fixity factors associated with the upper

and lower ends of the columns (see details in Appendix A) with the values

=042, r,,,=00, r,,;=0.705 r, =0.377, r,,=0.0, r,,,=0.644, r,, =0.644,

of r,
r, =0.0,7,,,=0.851. Once we obtain the values of end-fixity factors for the columns, we can
calculate the lateral stiffness modification factors of ﬁo,ij (r,;-1,;) and ,Bl!lj(rlylj,rm) with the

value f3,,,=0.68, f,,,=025 f,,=0731, f,,,=0336, B,,,=00, [, =059,

B, =0.094, B, =0.1, B, =0.094, B, =0.086, 3, =0.083, B,,, =0.09. Therefore, the
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maximization and minimization problems stated in Eqs. (3.18) to (3.22) can be evaluated and the

details are presented in Appendix B.

The results demonstrate that the maximum and minimum frame-buckling loads are 80282.1 kN and
27473.3 kN, respectively. The load patterns corresponding to the maximum frame-bucking loads
applied to the exterior columns, which are characterized by the rigid beam-to-column connections.
The difference between the maximum and minimum frame-buckling loads is 192.2%, which is
considerably significant. It is observed that the load patterns associated with the maximum frame-
buckling load are applied only on exterior columns, which are the same with cases 1, 2 and 3. It is
also found that load patterns associated with the minimum frame-buckling load are applied on interior
or exterior columns. To verify the constraint conditions shown in Eq. (B.5) in Appendix B, the

loading of column C,;, Py=27473.24 kN is substituted into the Eq. (B.5a),
S, =25610-0.319(F, + P,,) —0.34(P, + P,,) —0.32(P; + P,;) , it yields $,=16818.56>0. If

substituting P»;=27473.24kN into the Eq. (B.5b), S, =9753-0.34P, —0.328P,, —0.355P,, , it

produces S,=0, which verifies the results presented in Table 3-5.

The verification results obtained from computer program MASTAN2 (McGuire et al., 2000) are
given in Table 3-8 with respect to the maximum and minimum frame-buckling loads. It is noted that
once the load patterns corresponding to the maximum and minimum frame-buckling loads are applied
on the frame, the frame is just within its critical load condition which can be verified to be equal to

one for the applied load ratio with respect to the elastic critical load.
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Table 3-8: Results verification of the unbraced steel frames shown in Figure 3-8 — Case 4

Current study
Storey Columns Max. Min. (kN)

(kN) $1=0,5>0 $,=0,5,>0

11 51596.840 0.000 0.000

1 12 0.000 45588.770 0.000

13 0.000 0.000 0.000

21 28685.290 0.000 0.000

2 22 0.000 29734.760 0.000
23 0.000 0.000 27473.240

MASTAN2 - Elastic critical load:
applied load ratio 1.000 1.030 0.980

In Case 5, the column base connection is rigid, while the beam-to-column connections for both the
interior and exterior columns are quite flexible with the corresponding end-fixity factor being 0.2.
Consequently, the elastic flexural stiffness decrease largely compared to the other cases. The
maximum and minimum frame-buckling loads are 60559.0 kN and 21440.8 kN as shown in Table 3-
6, which yields a considerable difference of 182.4%. The load patterns corresponding to the
maximum frame-buckling loads tend to apply the loads both on the interior and exterior columns and

the load patterns corresponding to the minimum frame-buckling loads tend to apply only on exterior.

The frame-buckling strengths associated with storey-based buckling subjected to proportional
loading for the frames in the foregoing cases are also presented in Tables 3-2 to 3-6. It is found that
the differences between the maximum and proportional loadings are 0.7%, 1.1%, 0.8%, 3.1% and
0.6% for Cases 1 to 5, respectively. For these five cases, the differences between the proportional and
the minimum loadings are found to be 48.3%, 58.3%, 63.2%, 182.6% and 180.8%, respectively. A
concern may be raised from such significant differences in this particular example and other studies
(Xu et al., 2001; Xu, 2002; Deierlein, 1992) as to the appropriateness of using the conventional
proportional loading approach to evaluate frame-buckling strength for unbraced steel frames such as

the ones investigated in this example.
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3.7 Conclusions

The stability of single-storey unbraced frames subjected to variable loading proposed by Xu (2002)
has been extended to the multi-storey unbraced frames in this study. The difference of solving an
extreme loading problem between single-storey and multi-storey frames using the case of a multi-
storey frame, to obtain the minimum frame-buckling load, the minimization problem needs to be
solved for each storey while the maximum frame-buckling load can be acquired by solving the

maximization problem only once.

The maximum and minimum frame-buckling loads and their associated load patterns can be
obtained by solving the maximization and minimization problems, respectively, with a linear
programming method. These problems represent the maximum and minimum bounds of the frame
buckling loads of the structures, which characterize the stability capacity of the frame under extreme
loading conditions. It can also be observed from the presented 2-bay by 2-storey frame example that
the corresponding maximum frame-buckling load is always associated with the lateral instability of
both the first and second storey simultaneously, which indicated a further increase in any one of the
applied loads is impossible as each storey has already reached the limit state of lateral instability.
This study reveals that the differences between the maximum and minimum frame-buckling loads
could be substantial for multi-storey unbraced steel frames. This study also found the maximum and
minimum frame-buckling loads are influenced by the beam-to-column connection. For instance,
when the end-fixity factor of beam-to-column connection reduces from 1, 0.8 and 0.2 for Cases 1, 3
and 5, respectively, the frame becomes more flexible which can be evidenced by decreasing the
maximum and minimum frame-buckling loads and their relative differences increase from 50.5%,
64.4% and 182.4% for Cases 1, 3 and 5, respectively. Comparing the results obtained from the
proportional and variable loading cases, one can conclude that the frame-buckling loads associated
with proportional loading are always between the maximum and minimum loads subjected to variable
loading. The comparison results also indicate that the proportional load was very close to the
maximum frame-buckling load. However, to ensure that the minimum frame-buckling strength of the
frame is being accounted for in the design, the stability analysis of the frames subjected to variable

loading proposed herein is recommended for the frames in either of the following cases:

1. There is a considerable variation in lateral stiffness among columns in the same storey of any

storey of the frame;
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2. There is a considerable variation in connection stiffness among beam-to-column connections
in the same storey of any storey of the frame or column base connection; and

3. There is an expected substantial volatility in applied loads.
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Chapter IV

Storey-Based Stability Analysis for Unbraced Frame with Initial

Geometric Imperfections

4.1 Introduction

The steel framework is one of the most commonly used structural systems in modern construction
and is often designed using planar unbraced moment frames for the lateral-load resisting systems
along with a significant number of gravity columns throughout the structure. In the foregoing
proposed research, the idealizations are made by assuming that the joints of the multi-storey frame are
precisely aligned while the column is perfectly straight. It should also be understood that such

idealizations are not practically achievable.

In the current design practice, the effect for the out-of-straightness of columns is taken into account
inexplicitly in the development of the column strength curve by calibrating column strength to that
associated with a specific value of out-of-straightness. Out-of-straightness is often to be the maximum
allowable value of out-of-straightness specified in applicable design standards. The effect of out-of-
plumbness of the frame, on the other hand, can be accounted for by conducting a second-order
analysis and applying so called notional loads of 0.002Y; at each storey level, where Y; is the design
gravity load applied at level i, and 0.002Y; represents an initial out-of-plumbness in each storey of the

structure of 1/500 times the storey height (AISC, 2005).

In this chapter, the stability of columns in multi-storey unbraced frames with the initial geometric
imperfections has been investigated. The lateral stiffness of the axially loaded column in unbraced
frame is derived with the incorporation of effects of the initial geometric imperfections. Based on the
concept of storey-based buckling, a practical method of determining the effective length factor for
columns in unbraced frames with explicit accounting for the out-of-straightness of member and the

out-of-plumbness of frame has been developed and the numerical examples have been examined.
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4.2 Lateral Stiffness of an Axially Loaded Column with Initial Geometric

Imperfections

For a perfect slender column under an axial load only, elastic buckling occurs suddenly when the
critical load is attained. The column does not deflect laterally prior to the failure. In practice, columns
are actually imperfect, subject to both material imperfections and geometrical imperfections. The
influence of out-of-straightness of column is presented in Figure 4-1 from Trahair and Bradford
(1991). For a straight member with initial out-of-straightness, the lateral deformations (curve A)
occur immediately upon loading and then follow the elastic second-order bending curve until the first

yield takes place at a load P;.

Elastic buckling

Curve A —

N
N / initial curvature
N

N
\
\

Elastic limit N

v

Figure 4-1: Influence of imperfection on column behavior (Trahair and Bradford,1991)
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The deformed shapes of an axially loaded column with initial imperfections associated with out-of-

plumbness of framing and out-of-straightness of column are shown in Figure 4-2.

y1=8psin(xn/L)

y
M/\_ »Z
(a) out-of- (b) out-of- P
straightness plumbness (c) rotationally restrained

sway column
Figure 4-2: The deformed shapes of an axially loaded column with initial geometric

imperfections

In engineering practice, these initial geometric imperfections shall not exceed the fabrication (out-
of-straightness) and erection (out-of-plumbness) tolerances stipulated in the applicable engineering
standards. For instance, the AISC (2005) specifies a fabrication tolerance (out-of-straightness) for
compression members of L/1000 between lateral supports, and an erection tolerance (out-of-
plumbness) of L/500 for individual columns. To account for out-of-straightness of column, a half-sine
curve is typically adopted to simulate the member imperfection as shown in Figure 3a. Thus, the

imperfection function associated with out-of-straightness of column is,
. TX
y, =90, sin—~ (4.1

where 9y is the initial out-of-straightness at the middle of the column.

Let Ay be the initial out-of-plumbness at the upper joint of the column as shown in Figure 3b, and

then the corresponding imperfection function of frame is,
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xA,
L

With a unit lateral deflection at the upper end as shown in Figure 3c, the internal moment of the

Y, = 4.2)

column with both column out-of-straightness and frame out-of-plumbness can be expressed as
M=-M,-P(l+A,-y)-S(L-x) 4.3)
where M is the internal moment of the column; M, is the end moment at the column upper end; P is
the applied axial load; L is the column length; S, the lateral force associated with the unit lateral
deflection at column upper end, is defined as the lateral stiffness of the column; and y is the lateral
deflection of the column including the member imperfection function y; and frame imperfection
function y,. Therefore, the equilibrium condition of the column subjected to the axial load and end

moment can be expressed as

2
EIZ Y =M, +S(L-x)+P1+A, - ) (4.4)
X

Similarly, the end moment at the lower end can be obtained from Eq. (4.3)
M,=-M,—SL—P(1+A,) (4-5)

Let 6,;and 0, ;be the end rotations of the column related to the lower and upper ends, respectively,

the boundary conditions of the column are described in the following:

M, = Ru,[jeu(); M, = _Rz,yezo (4.6a,b)
No,=0: ¥, =4,+1 (4.7a, b)
ﬂ =0, ﬂ = _eu (4.83, b)
dx x=0 dx x=L
in which
6,=6—-A,/L- 507[/L (4.9a)
6,=6,-A,/L+,x/L (4.9b)

where the column rotational-restraining stiffness R, ; and R;; are contributed by beams connected to

the upper and lower ends of the column, respectively.
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The detailed process to derive the lateral stiffness of an axially loaded column with accounting for
the initial geometric imperfections is discussed in Appendix C. Based on Eq. (C5) in Appendix C,

the lateral stiffness of the column is given as

o ¢’CEl _ ,12EI

I B e (4.10)

2
in which b= % is the lateral stiffness modification factor that takes the effects of axial force and
12

column end rotational restraints into account, and is given as follows.

pf (fiHCh+9)c0sd=(f9"+ [+ [+ [)gsing, 4.11)
12 f,—=(f, + f.9")cosg+(f,@" + f,)@sin ¢
where
Fe-2sarr (4.11a)
1 50 0 1 u

f —3(1+ﬁ)(r +r =2rr) (4.11b)

2 100 1 u 1"u .
f —(1+ﬂ)(1—r —r +rr) (4.11¢c)

3 100 1 u 1"u .

3

S =ﬁAo(n —r,=3nr,) (4.11d)
fs= ‘;)38 (r,+r,=2nr,) (4.11e)
f5 :—9rlru 4.111)
fr =18nr, (4.11g)
fe=3(n+r,—2nr,) (4.11h)
fo=1=n—r+nr, (4.111)
fio =3(r, +r, =5rr,) (4.11j)
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As stated previously in Chapter 3, the transcendental relationship between f and @in Egs. (4.11)

based on Eq. (C9) of Appendix C are too complicated for solving the critical buckling load of the
column. By applying 1%-order or 2"-order Taylor series approximations, the lateral stiffness
modification factor § with initial geometrical imperfections presented in Eq. (4.11) can be expressed

as

,Bij (rl,ij’ ru,ij’ 503A()a¢ij) = IBO,ij (rl,ija ru,ij’ 5()3A()) - ﬁl,ij (rl,ij’ ru,ij’ 50’A0)¢i12‘ (4123)

2 4
:Bij (rl,ij s Vaij» 6y, ’Qy) = :Bo,ij (’?,Iy sV ijs 0y, A) — :Bly (’?y s Fuijs 0,4, )QJ - ﬁ2y (’?y sV ijs 04, )¢y

(4.12b)
in which
(1_7[50/100)(72# utj+rltj ulj) 100 Mlj(2+r/lj)
ﬁo,ij(rz,ij’ru,ij) = (4.13a)
‘ 4- rl.ijru,ij
a,,; + 70,0, + A&
By =—" e (4.13b)
60(4 ’}Lj ut/)
where
oy = 2(40+81%, =345 i1+ rr 4852+ 1+ 3202 (4.14a)
1
o, :m(mrfij — 081 i 4 205 1607 20 R ) (4.14b)
Qi = i[40+ 16ruz,l~j + rfijru’lj (8 +3r, U) 2rl,l~jru’lj (17 +3r, ; i )] (4.14¢)
50
5 I+ 100 —T0, )(§0+§1r/q+§2’}q+§3r/q)+ A (§4+§5rltj+§6rly+§7rly
a 25200(4—r,,ijru,ij 5
4.15)
where
£, =2560r", —1792r” (4.16a)

u,ij u,ij
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¢ = —4960r, +1844ru%v + 704”;,17 (4.16b)
{, =2560+1844r,  —1492r]. —4lr] (4.16¢)
{3 =—1792+704r, ; —41r, —17r.; (4.16d)
{,=-5120r], +3584r,; (4.16e)

{5 =+4960r, ;. +2008r,, —3200r, (4.16f)
o =—5696r, ; +1492r". +898r, (4.162)
$,=1792r, ; -816r,, +17r], (4.16h)

It is noted that in the consideration of initial geometric imperfections, po (77, i»00,M0),
Bri(r1ijs7:90,00) and B, ii(ry,7,45,80,0) are functions of the column end-fixity factors (r;;, r,; ) and

the initial geometric imperfections of out-of-straightness (dy) and out-of-plumbness (A).

4.3 Evaluation of Column Effective Length Factor Accounting for Initial
Geometric Imperfections

Maintaining the adequacy of column strength and frame stability is of primary importance to the
structural design of such a structural system. For nearly 40 years, stability design of columns under
the American Institute of Steel Construction Specification for Structural Steel Building (AISC, 2005)
has been traditionally based upon the concept of effective length. According to this concept, the
elastic buckling strength of a column of length L is equated to an equivalent pin-ended member of

length KL, subject to axial load only, by means of K factor g =,/ P /P, , where P, is the elastic

buckling strength of the end-restrained column, and P, is the Euler buckling strength of a pin-end

column given by P, = z’EI /L’ in which E is the Young’s modulus and / is the moment of inertia of

the column section about the axis of buckling.

There are different methods of calculating the K factors within the concept of effective length and

along with adopted idealizations of the structure. Among them, the most widely adopted procedure
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for the frame design is the alignment chart method that was originally proposed by Julian and
Lawrence (1959) based on the assumption that all individual columns in a storey buckle
simultaneously under their individual proportionate share of the total gravity load. This method
corresponds to the side-sway-inhibited and side-sway-permitted cases. The procedure takes into
account the rotational restraints provided by upper and lower beam-column assemblage and provides
a direct means to obtain K factors. One significant drawback of the alignment chart method is that it
does not account for the fact that a stronger column can provide effective bracing to a weaker column

in resisting the lateral instability of a storey assemblage.

A more accurate approach to determine K is given by LeMessurier (1977). In this approach, the
following assumptions have to be satisfied to evaluate the K factors: (1) the sum of the gravity load
that causes lateral instability of a storey is equal to the sum of the individual buckling loads of
columns that provide storey side-sway resistance; (2) the individual column buckling loads are
determined based on the K factors obtained from the alignment chart. Later, a practical approach to
determine the effective length factor for unbraced frames was proposed by Lui (1992), which

involved the first-order frame analysis but without any special charts or iterative procedures required.

In the study of the storey-based buckling analysis discussed in Chapter 3, a practical method to
evaluate the effective length factor for unbraced frame with initial imperfections is investigated in this
chapter. By substituting Eq. (4.12b) into Eq. (3.2), the lateral stiffness of column i associated with 2™

—order Taylor series approximation can be written as

EI. . P . P> L.
Sy =12 =By~ Bk —— B .ﬂ?J (4.17)
y 3 0,ij Lij*% 2,ij 7%

( L, L EI,

in which L;; and P, are the length and applied axial load of column j in the ith storey, respectively.
A; is the proportional load multiplier associated with the ith storey of the frame. Substituting Eq.
(4.17) into Eq. (3.7), the stability equation for storey i, buckling in a lateral sway mode can be

expressed as

2

u EI . P . P L.
S, = 212 = By — = BiA— — 1621"/11'2} =0 (4.18)
= ( L3 i LL. i i EI . 7

y

c.ij
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2

Let g =3 Ll g (4.19)
© A EL
b= tuig (4.19b)
i = LH Jj

m FJ .

=3, (4.19¢)

J=1 i

by substituting Egs. (4.19) into Eq. (4.18), one can obtain the following equation
a,A+b A —c, =0 (4.20)

Thus, the critical load multiplier associated with the lateral instability of i-th storey can be solved
from the smaller positive root of Eq. (4.20) as follows

:\/l+4(a,~/l?,-)(C,-/bi)_1 @20
icr—2nd—order 2(ai /bl)

Noted that if only 1¥-order Taylor series approximation in Eq. (4.12a) adopted, in which only the

first two terms of this equation is used, then the corresponding stability Eq. (4.20) is reduced to

b4 —c, =0 (4.22)

from which the critical load multiplier associated with lateral instability of i-th storey can be obtained

from Eq. (4.22) as

C.
ﬂicr—lst—order = b_l (423)

1

It is noted that since the applied axial compressive load P,; on the columns are defined as
positive values in this study, then the values of a; and b;expressed in Eqgs. (4.19a) and (4.19b) will be
dependent on the lateral stiffness modification factors of B, ;i(r;;,74,j90,A0) and Sy ;(ry .74, i,00,A0). The
coefficient ¢; in Eq. (4.19c) is the function of the lateral stiffness modification factors

ﬂoylj(l"l,lj,ru’ij,So,Ao). The lateral stiffness modification factors Ofﬁoyii(rl’ij,ru‘ij,So,Ao), [)’Lij(rl,,:i,ru,ij,ﬁo,Ao) and
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Po,i(T1ijs7,5-00.A0) can be evaluated from Eqs. (4.13) and the values are given in Tables D-1 to D-12 in
Appendix D with respect to combined effects of the out-of-straightness (8y) and out-of-plumbness
(Ao). The end-fixity factors r;; and r,; vary between 0 and 1. From Tables D-1 to D-12 in Appendix
D, it is noted that the values of S ;(r;;,7.,i00,80), B1i{(T1i5F,i500,80) and B (¥ .7 5,00,0) are positive
as well as the values of coefficients a;, b; and c; expressed in Eqgs. (4.19). Based on the above
statements, an inequality expression can be obtained with respect to Egs. (4.21) and (4.23), which is

given as:

y) <A (4.24a)

icr—2nd—order icr—1st—order

substituting Eqgs. (4.21) and (4.23) into this condition, which will yield the following expression:

\/1+4(a,./b,.)(ci/bi)—l<z (4.24b)

2(a; I'b;) c;

i

reordering the left side of expression of (4.24a), we will have the following expression:

2
VQ+%£—Q<Q (4.24¢)

2a. b

i i

As the coefficients of a; and b; are the positive values in current study, then both sides of

expression (4.24c) multiply a positive coefficient of 2a;b;, we can obtain the following expression:

a’cl >0 (4.24d)

which is always true and the expression of (4.24a) can be proved as true with a; and b; having the

positive values together.

The expression of (4.24a) is indicated the critical load multiplier associated with 1¥-order Tayler
series approximation is less conservative than the critical load multiplier associated with 2"-order
Tayler series approximation. In the following numerical examples, we will compare the results based
on 1*-order and 2"-order Tayler series approximations as well as the results directly from the Eq.

(4.11).
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Once we obtained the critical load multiplier associated with lateral instability of i-th storey from

Eq. (4.21) or (4.23), and the corresponding elastic buckling load of the column is
P, =A_P (G=1,2,3...m) (4.25)

icr© a,ij

Finally, the storey-based effective length factor of the column can be evaluated as (Lui, 1992; Xu

and Liu, 2005; Xu and Wang, 2008)

(4.26)

Upon the previous study discussed in Chapter 3, the end-rotational stiffness of each beam and
beam-to-column restraining stiffness of each joint can be evaluated using the decomposition process
FSD approach given in Appendix A (Liu and Xu, 2005). Therefore, the distribution of the beam-to-
column rotational-restraining stiffness to the upper and lower columns can be calculated by the
column end-rotational stiffness, as demonstrated in Appendix A. The summary of storey-based
effective length factor for columns in a multi-storey unbraced frame with initial geometrical

imperfections is carried out as follows:

(1) Calculate the end-fixity factors r;; and r,,; from Eq.(3.1) for all the columns.

(2) Compute the lateral stiffness modification  coefficients B (7700, 00),
Bri(71ijsTui5:090,00) and B ;i(ryi.1,5,00,A0) in accordance with Egs. (4.13a,b) and (4.15)
based on the specified values of initial geometric imperfections, §, or A,.

(3) Evaluate the critical load multiplier based on Eq.(4.21) or (4.23) for each storey and
obtain the corresponding storey-based effective length factor Kj; from Eq.(4.26) for all the

columns of the storey.

4.4 Numerical Examples

The objectives of the numerical examples are to investigate the effects of the initial geometric
imperfections §, and A, on the column elastic buckling strength. Also the results of the critical

buckling multiplier A and the effective length factor K among the approaches of 1%-order and 2"-
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order approximations, and the storey-based buckling analysis are evaluated and one method is
recommended for the engineering practice. The maximum tolerance of out-of-straightness
(80=L/1000) for columns is used to simulate the member imperfection. The initial misalignment

(A¢=L/500) at the upper joint of the column is used to demonstrate the frame instability.

Example 1
The stability of a 2-bay by 1-storey unbraced steel frame shown in Figure 4-3 was investigated by
LeMessurier (1977) and several other researchers (Lui, 1992; Shanmugam and Chen, 1995; Schmidt,

1999). The frame dimensions, member sizes and the applied loads are also shown in this figure.

189kN 814kN 305kN
Y v .
W690x140 W690x140
7 Z g .
Cq1 g Cia B Ci3 B e
A A A
9.1m 12 m

Figure 4-3: 2-bay by 1-storey frame of Example 1 (Schimdt, 1999)

The study to evaluate the column effective length factor among the approaches of the 1*-order and
2"order approximations, and the storey-based buckling method without the consideration of the
initial geometric imperfections is investigated first and the results are given in Table 4-1. The results
associated with the 1*-order and 2™-order approximations are obtained from Eqgs. (4.23) and (4.21)
with 8,=0 and A¢=0. The storey-based buckling results are computed using Eq. (4.11) based on the
condition of the summation of the columns lateral stiffness of each storey becomes zero. Also
presented in this table are the column effective length factor based on the alignment chart method and

LeMessurier’s method.
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Table 4-1: Example 1 - Comparison of K factors of 2-bay by 1-storey

K factors
Current study (Ay=0, 3,=0)
Col. | Alignment | LeMessurier’s 1*-order 29 _order Storey-based
chart method approximation | approximation | buckling method
Cn 2.020 2.110 2.100 2.115 2.128
Cp 2.030 1.770 1.750 1.770 1.781
Ci 2.070 2.600 2.580 2.600 2.616

There is generally good agreement among the results of LeMessurier’s method and the current
study corresponding to the three approaches, except for those obtained with the alignment chart
method. Based on the LeMessurier’s method and storey-based buckling method, the K factors are
mostly within 0.6% for columns C;, and C;3, but a maximum difference of 0.84% is noted for column

Ci1.

In Table 4-1, it is found the maximum difference of the effective length factor K between 1*-order
and 2™-order approximations are only 0.66%, 0.68% and 0.65% for columns C;;, Cy; and Ci3,
respectively. For column C;;, the maximum differences of K factors between the storey-based
buckling method and the two approximations are 1.26% and 0.61%, respectively. 1.3% and 0.62%
are found for the maximum differences of K factors between the storey-based buckling method and
the two approximations for column C;,. And the maximum differences of K factors between the

storey-based buckling method and the two approximations are 1.26% and 0.61% for column C;j;.

The maximum difference of up to 1.3% is noted for K factors between the storey-based buckling
method and the 1*-order approximation. This 1*-order approximation results are acceptable and can

be recommended for use in the practice due to its simplified equations.

In the case of considering the initial geometric imperfections to evaluate the effective length factor
K, the maximum of out-of-straightness (6,=L/1000) for columns is used to simulate the member
imperfection. The initial misalignment A¢y=L/500 at the upper joint of the column is used to

demonstrate the frame instability. The critical loading multipliers together with their effective length
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factors are obtained from Eqs. (4.23) and (4.21), which are corresponding to the 1*-order and 2.
order approximations of A in the Taylor series approximation of Eq. (4.11) and the results are
presented in Table 4-2. For comparison, the results based on the current study without the

consideration of initial geometric imperfections are also given in Table 4-2.

Table 4-2: Example 1 — comparison study of three approaches

Effective length Critical loading Effective length
factors (K) multiplier (A) factors (K)
(86=0, Ap=0) (8¢=L/1000, Ap=L/500) (80=L/1000, Ap=L/500)
Col | 1"-— M Storey- 1% - 2"_ | Storey- 1" - 2 Storey-
order order based order order based order order based
approxi. | approxi. | buckling Eq. Eq. buckling | approxi. | approxi. | buckling

4.23) | 4.21)

Cy | 2.100 2.115 2.128 3.619 3.584 3.540 2.573 2.582 2.601
Cy | 1750 1.770 1.781 3.619 3.584 3.540 2.153 2.161 2.177
Cis | 2.580 2.600 2.616 3.619 3.584 3.540 3.163 3.175 3.198

In Table 4-2, upon the storey-based buckling results, it is noticed that there is a considerable
difference between the results of with and without considering the imperfections. For column C;; K
value increases from 2.128 (no initial imperfections) to 2.601 (out-of-straightness: o, = L/1000 and
out-of-plumbness: A, = L/500), which would result in 18% reduction of the axial strength of the
column (AISC, 2005). For column C, K value increases from 1.781 to 2.177 and the corresponding
reduction on the factored axial strength is about 15%. K value increases from 2.616 to 3.198 for
column C,;; which results in a decrease of the factored axial strength by about 29%. It should be
pointed out that as the reductions of the factored axial strengths are based on the column factored
axial strength evaluated in accordance with the specification of AISC (2005) in which the effects of
the initial geometrical imperfections have been accounted for in the formulation of evaluating column
axial strength in some degree. Therefore, the effects of the initial geometrical imperfections maybe
somewhat doubly accounted for herein. However, the purpose of the foregoing discussion is to

demonstrate the influence of the initial geometrical imperfections on the column strength, therefore
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only the relevant percentages of the strength reductions and not the actual magnitudes of the strength

are given for the reason of comparison.

From Table 4-2, it is found that the critical loading multiplier A, obtained from Eqs. (4.21) and
(4.23) are 3.584, and 3.619, respectively which also satisfies the inequality expression (4.24a) and the
difference of the A, is 0.96%. Consequently, for column C;;, the maximum difference of the
corresponding K factor between 1%-order and 2™-order approximations is only 0.46%, which is
insignificant. The differences of the corresponding K factors are found to be 0.46% and 0.50% for
columns C,, and Ci3, respectively. The maximum differences of K factors between the storey-based
buckling results and the 1*-order approximation are 1.08%, 1.1% and 1.09% for columns C,;, C;, and
Cs, respectively. Compared to the 2"_order approximation for columns C,;, Cj; and Cj;, the
maximum differences are found to be 0.62%, 0.64% and 0.59%, respectively. In Table 4-1, the K
factors based on Eq. (4.23) (2™-order approximation) are less than the results obtained from Eq.
(4.21) (1™-order approximation), which proved the results based on 2"-order approximation are more
conservative than the results from 1*-order approximation. Figure 4-4 illustrates the K factors with
the 1*-order and 2™"-order approximations, and the storey buckling method, corresponding to the end-

fixity factors of the columns base.

3.5

T T T

—— 1st-order approximation
—— 2nd-order approximation
- storey-based buckling method

S 25 [\, L i
5 Column 3

8

S @

g LA Column 1

S 201 N

o S

I I 1 I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

end-fixity factor r of column bases

Figure 4-4: Example 1 - comparison results of K factors vs end-fixity factor r
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Figure 4-4 demonstrates good accordance for columns K factors within the 1¥-order and 2"-order
approximations and the storey-based buckling results for all the columns in the frame. It is also noted
the K factors decrease while the end-fixity factors of the column bases increase.

Ilustrated in Figures 4-5 and 4-6 are the effects of initial geometric imperfections on the columns
K factors obtained from 1*-order and 2"-order approximations, and the storey-based buckling
analysis. Similarly to Figure 4-4, the three methods present almost matching results for the K factors
with respect to the initial geometric imperfections of out-of-straightness (dy) or out-of-plumnbess
(Ap). These two figures also show the K factors increase when the imperfection coefficients of §, or

Ay increases.

3.6

—— 1st-order approximation
—— 2nd-order approximation
£} storey-based buckling method

34

column K factors

Column 2 B

1
0 L/1850 L/925 L/617 L/463 L/370 L/308 L/264

out-of-straightness (3,)

Figure 4-5: Example 1 - K factors vs out-of-straightness (9,)
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Figure 4-6: Example 1 - K factors vs out-of-plumbness (a,)

From the comparison study, it is found the difference between 1*-order approximation and the
storey-based buckling method is less than 1.2%, which is acceptable in the engineering practice.
Therefore, it is recommended that the simplified Eq. (4.23) can be used to calculate the critical
loading multiplier A, together with the K factors in Eq.(4.26) in practice due to the simplicity of this
method.

In the following parametric studies, the effects of only considering the out-of-straightness on K
factors are demonstrated in Table 4-3 while the effects with consideration of the out-of-plumbness
alone on K factors is presented in Table 4-4. Compared to the effects of out-of-straightness and out-
of-plumbness on the K factors, it is found that the out-of-straightness has greater influence than that
of the out-of-plumbness, which is observed by comparing the K factors associated with values of the
imperfections to be L/500, L/400, L/300 in Tables 4-3 and 4-4. The combined effects of the out-of-
straightness and out-of-plumbness on column K factors are illustrated in Table 4-5. Also presented in

Tables 4-3 to 4-5 are the compared results between the 1"-order and 2"*-order approximations.
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Table 4-3: Example 1 - effects of out-of-straightness on K factors

K factors (Ag=0)

Column 502 50= 50= 80= 80= 50= 50=
0 L/1000 | L/800 | L/600 | L/500 | L/400 | L/300

1*-order Cy | 2.101 | 2.255 2298 | 2374 | 2.440 | 2.549 | 2.763
Approximation | Cj, | 1.758 | 1.887 1.923 | 1.987 | 2.042 | 2.133 | 2.312
Cy3 | 2583 | 2772 2.825 | 2919 | 3.001 | 3.134 | 3.397

2"order Cy | 2.115 | 2.268 2312 | 2.388 | 2.454 | 2.563 | 2.776
Approximation | Cj, | 1.770 | 1.898 1.934 | 1.998 | 2.054 | 2.145 | 2.323
Cy3 | 2.600 | 2.789 2.842 | 2936 | 3.017 | 3.151 | 3.413

Table 4-4: Example 1- effects of out-of-plumbness on K factors

K factors (0,=0)
Column Ao=0 | Ay=L/500 | Ag=L/400 | Ay=L/300 | Ay=L/200
1*-order Cy | 2.101 2.371 2.448 2.587 2916

Approximation | Cy, | 1.758 1.984 2.049 2.165 2.440
Cy3 | 2.583 2916 3.010 3.181 3.585

2"order [ Cy [2.115] 2384 2.461 2.599 2.927
Approximation | Cy, | 1.770 1.995 2.059 1.175 2.449
Cy3 | 2.600 2.931 3.025 3.196 3.598
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Table 4-5: Example 1 - effects of out-of-straightness and out-of-

plumbness on K factors

K factors

Column 80=0 | 8o=L/1000 | 8,=L/800 | 8o=L/600 | 6,=L/400

Ao=0 | A=L/500 | Ag=L/400 | Ay=L/300 | Ay=L/200
1*-order Cy | 2.101 2.573 2.728 3.04 4.044
Approximation | C, | 1.758 2.153 2.283 2.54 3.384
Cy; | 2.583 3.163 3.354 3.74 4.973
2" order Cy | 2.115 2.585 2.740 3.040 4.054
Approximation | C, | 1.770 2.163 2.293 2.544 3.392
Cy; | 2.600 3.179 3.369 3.738 4.984

From Tables 4-3 to 4-5, it is noticed that the K factors increase when the value of either one of the
initial imperfections increases. The combined effects of the initial geometric imperfections would
have the most severe impact on the column K factors. For instance, the value of K factor for column
C,; increases from 2.10 (without accounting for the initial geometric imperfections) to 2.26 (out-of-
straightness: o, = L/1000 alone) and 2.37 (out-of-plumbness: A, = L/500 alone). However, for
combined effects (out-of-straightness: 8, = L/1000 and out-of-plumbness: A, = L/500), the resulted K
factor is 2.57. Consequently, the factored axial strength reductions for column C,; are 6%, 10% and
18%, respectively. In Tables 4-3 to 4-5, the comparison results provide less than 0.6 percent between
1*-order and 2"-order approximations, which further indicated the 1%-order approximation can yield

satisfied results in practice.

Mlustrated in Figures 4-7 to 4-14 are the effects of the initial geometric imperfections on the lateral
stiffness modification factors of column fy;, 1 and f, ;. As shown in Eq. (4.18), it is noted that
is associated with the elastic lateral stiffness of the column while f; ; and f, ; correspond to the effect
of the applied axial load (second-order effect) on the column stiffness. It can be seen from the figures,
as any of the initial geometric imperfections, &, or Ayincreases, the value of f,; will decrease and the
value of S, ; and f, ; will increase, which indicates that the initial geometric imperfections will reduce

the column stiffness and amplify the second-order effect. Consequently, the frame is more laterally
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flexible when the combined effects of d, or Ay are taken into consideration. Demonstrated in Figures
4-13 and 4-14 are the influences of the out-of-straightness (dy) and out-of-plumbness (Ay) on the

column buckling loads using 1*-order approximation.
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Figure 4-7: Example 1 - lateral stiffness coefficients f,; vs. out-of-straightness (8,)
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Figure 4-8: Examplel - lateral stiffness coefficients f, ; vs. out-of-straightness (8)
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Figure 4-11: Examplel - lateral stiffness coefficients of £, ; vs. out-of-plumbness(A,)

66



8.5 | T

8.0

N
4]

N
=}

o
=)

lateral stiffness factor ( p,x10*)
[=)}
i

)
n

5.0

| | |
0 L/740  L/370 L7247 L/185 L/148  L/123 L/106 L/93

4.5 | 1 1 1

out-of-plumbness (A)
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Figure 4-14: Example 1 - column buckling load vs out-of-plumbness (A )

Example 2

The second example shown in Figure 4-15 is a 1-bay by 3-storey frame that was investigated by
Shanmugan et al. (1995), and Liu and Xu (2005). The frame dimension and the material properties
are given in Figure 4-15. The applied axial loads are also presented in this figure. Table 4-6 presents
the comparison results of the K factors with respect to the 1¥-order and 2"-order approximations of
the Taylor series approximation, and the storey-based buckling analysis without accounting for the
initial geometric imperfections. Also presented in Table 4-6 are the K factors obtained from the

alignment chart method, LeMessurier’s method and Lui’s method.
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Figure 4-15: 1-bay by 3-storey frame of Example 2 (Shanmugan et al., 1995)

Table 4-6: Example 2 - comparison of K factors

K factors
Current study (Ay=0, 6,=0)
Column | Alignment | LeMessurier | Lui 1"“order | 2™-order | Storey-based
chart approxi. | approxi. buckling
C=Cp, 1.110 1.120 1.140 1.107 1.112 1.112
Cy=Cyp 1.210 1.210 1.210 1.207 1.211 1.212
C3;=Cx, 1.230 1.230 1.230 1.226 1.229 1.229

In Table 4-6, the column K factors agree very well when comparing three stories among the storey-
based buckling method and Alignment charts of LeMessurier and Lui methods, except for the
maximum difference noted of 2.5% in storey 1 between the storey-based buckling method and Lui’

method. For the comparison K factors within the current study, it is found the maximum difference of
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the effective length factor K between 1%-order and 2"-order approximations are only 0.45%, 0.33%
and 0.24% for the columns in stories 1 to 3, respectively. It is noted that the columns K factors of
stories 1 and 3 are the same between the 2"-order approximation and storey-based method, and only
a difference of 0.08% is found for storey 2. Comparing the columns K factors between the 1*-order
approximation and storey-based method, 0.45%, 0.41 and 0.24% are noted for stories 1, 2 and 3,
respectively. Based on the good accordance among the comparisons in this example, it is concluded

that the 1*-order approximation can be used to obtain the satisfied K factors in practice.

Similar to Example 1, considering the initial geometric imperfections to evaluate the effective
length factor K for Example 2, the maximum allowable out-of-straightness 3, = L/1000 and out-of-
plumbness A, = L/500 (AISC, 2005) represent the initial geometric imperfections in this study. The
critical loading multipliers together with their effective length factors are obtained from Eqgs. (4.23)
and (4.21), which correspond to the 1%-order and 2"-order approximations of A in the Taylor series
approximation of Eq. (4.11) and the results are presented in Table 4-2. The results based on the
current study without the consideration of initial geometric imperfections are also given in Table 4-2

for comparison.

Table 4-7: Example 2 - comparison study of three approaches

Effective length Critical loading Effective length
factors (K) multiplier (A) factors (K)
(60=0, Ay=0) (8¢=L/1000, Ap=L/500) (8¢=L/1000, Ap=L/500)
Col. 1= | 2. | Storey- 1" - 2" | Storey- | 1"- | 2"- | Storey-
order | order based order order based order | order based
appro. | appro. | buckling Eq. Eq. buckling | appro. | appro. | buckling

(4.23) | (4.21)
C=Cyp | 1.107 | 1.112 1.112 18.145 | 18.022 | 18.006 | 1.287 | 1.291 1.292
Cy=Cyp | 1.207 | 1.211 1.212 14952 | 14.887 | 14.854 | 1.413 | 1.416 1.418
Cs=C;5, | 1.226 | 1.229 1.229 26.121 | 25.998 | 25973 1.429 | 1.432 1.432
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It is obvious the initial geometric imperfections would result in a decrease of the lateral stiffness of
columns, which consequently increases the values of column K factors and reduces column strengths.
For the three column sizes shown in Figure 4-15, based on the storey-based buckling method, the
resulting factored axial strength reductions of the columns in the first, second and top stories
associated with initial imperfections (8y=L/1000 and Ay=L/500) are 5%, 6% and 10%, respectively.
By examining the columns sizes, it appears to be that the initial geometric imperfections would have

a greater impact on columns that are laterally more flexible.

It is observed in Table 4-7, the critical loading multiplier A, obtained for the 1*-order and 2™-order
approximations for storey 1 are 18.145 and 18.022, which also verifies the inequality expression
(4.24a) and the difference of the A is 0.68%. Therefore, for the columns in storey 1, the differences
of the corresponding K factors are only 0.31%. The differences of the corresponding K factors are
found only to be 0.21% and 0.21% for the columns in stories 2 and 3, respectively. It is noted that the
columns K factors are the same for stories 1 and 3, and a difference of 0.14% is found for storey 2
with respect to the 2"-order approximation and storey-based buckling methods. Compared to thel®-
order approximation and storey-based buckling methods, the K factors differences are found to be
0.39%, 0.35%and 0.21% with respect to stories 1 to 3, respectively. The good agreement between
the1*-order approximation and storey-based buckling methods indicates the 1*-order approximation
can provide satisfactory results and can be recommended for the engineering practice. Also, Figures
4-16 and 4-17 illustrate the K factors from the 1¥-order and 2™-order approximations, and the storey-
based buckling results associated with out-of-straightness d, and out-of-plumbness A, for the columns

in stories 1 to 3.
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Figure 4-17: Example 2 - column K factors of stories 1 to 3 vs out-of-plumbness (A¢)

72



In Figures 4-16 and 4-17 present the effects of initial geometric imperfections to the columns K
factors obtained from 1*-order and 2™-order approximations, and the storey-based buckling analysis
for columns in stories 1 to 3. These two figures demonstrate the K factors increase when increasing
the imperfection coefficients of 8, or Ay. Comparing the results in Figures 4-16 and 4-17, the
matching results among these three approaches demonstrate the 1*-order approximation can be

recommended for use in practice.

Presented in Tables 4-8 to 4-10 are parametric studies of the individual and combined effects of the
initial imperfections on columns effective length factor including 1%-order and 2"-order
approximation results. Similar to the results obtained from the parametric studies of Example 1, it is
noticed that the out-of-straightness (dy) has greater influence on the column K factors than that of the
out-of-plumbness (Ay), which is observed by comparing the K factors associated with the
imperfections to be L/500, L/400, L/300 in Tables 4-8 and 4-9. The effects of out-of-straightness (5)
and out-of-plumbness (A,) on the factored axial strength of the columns using 1¥-order approach are

illustrated in Figures 4-18 and 4-19, respectively.

Table 4-8: Example 2 - effects of out-of-straightness on K factors

K factors (Ag=0)
Column 8= 8= do= 8= do= do= 8=
0 L/1000 | L/800 | L/600 | L/500 | L/400 | L/300
1*-order | C;;=Cy, | 1.107 | 1.191 1.215 | 1.258 | 1.296 | 1.358 | 1.482
Approxima | C;=Cy, | 1.207 | 1.296 1.321 | 1.366 | 1.405 | 1.470 | 1.601
tion Cy=Cs | 1.226 | 1.315 1.341 | 1.386 | 1.426 | 1.492 | 1.624
2"order | C,=Cp | 1.112 ] 1.196 1.220 | 1.263 | 1.301 | 1.363 | 1.487
Approxima | C;=Cy, | 1.211 | 1.299 1.324 | 1.369 | 1.409 | 1.474 | 1.604
tion Cy=Cs | 1.229 | 1.319 1.344 | 1.390 | 1.430 | 1.496 | 1.628
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Table 4-9: Example 2 - effects of out-of-plumbness on K factors

K factors (06,=0)

Column Ag=0 | Ag=L/500 | Ay=L/400 | Ay=L/300 | Ay=L/200
1*-order C=Cyp, | 1.107 1.190 1.211 1.249 1.327
Approximation | Cy;=Cy, | 1.207 1.309 1.336 1.382 1.481
Cy=Cs | 1.226 1.324 1.350 1.395 1.490
2" order C=Cyp | 1.112 1.194 1.215 1.253 1.331
Approximation | C;;=Cy, | 1.211 1.312 1.339 1.385 1.484
Cy=C; | 1.229 1.327 1.353 1.398 1.493

Table 4-10: Example 2 - effects of out-of-straightness and out-of-plumbness

on K factors
K factors

Column 8o=0 | 8p=L/1000 | 8p=L/800 | §o=L/600 | 6,=L/400

Ap=0 | A=L/500 | Ag=L/400 | Ay=L/300 | Ay=L/200
1*-order C=Cyp | 1.107 1.287 1.341 1.443 1.710
Approximation | Cp;=C,, | 1.207 1.413 1.476 1.595 1.914
C;=C; | 1.226 1.429 1.491 1.607 1.915
2" order C=Cp | 1.112 1.291 1.346 1.447 1.713
Approximation | C;=Cyp, | 1.211 1.416 1.479 1.598 1.916
Cy=Cs; | 1.229 1.432 1.494 1.610 1.918
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4.5 Conclusions

The stability of columns in multi-storey unbraced frames with initial geometric imperfections has
been investigated in this study. The lateral stiffness of the axially loaded column in unbraced frames
was derived by incorporating of the effects of initial geometric imperfections. The Taylor series
expansions including 1%-order and 2"-order approximations were employed to simplify the stability
equation used in the engineering practice. The comparison among the methods of 1*-order and 2"-
order approximations and the storey-based buckling analysis was studied using three numerical
examples. The numerical examples demonstrate that the 1*-order approximation can provide

sufficient results, thus it should be recommended for use in the design practice.

The results based on the proposed method for the unbraced frames without considering the
geometrical imperfection show good agreements with results provided in the literature. In comparing
the results with and without geometrical imperfection, it is clear that the K factors increase when
considering the geometrical imperfection, and the K factors continue to increase when increasing the
initial values of the geometrical imperfections. The results presented for unbraced frames with the
initial geometrical imperfections indicate that the geometric imperfections play a key role in the
structural analysis and they have to be considered in the design for stability of frames. The parametric
studies associated with the effective length factor together with the effects of initial geometric
imperfections demonstrated that both the initial geometric imperfections of out-of-straightness and
out-of-plumbness influence the K factors. The results presented further indicate that the initial
geometric imperfection of out-of-plumbness has a stronger influence for the frame stability than the
initial geometric imperfections of out-of-straightness. The K factors have higher values when
considering the effects of both out-of-straightness and out-of-plumbness together. In the parametric
studies corresponding to the effects between geometric imperfections and lateral stiffness
modification factors, the results demonstrated increasing values of geometric imperfections and
decreasing values of lateral stiffness modification factors. These effects are major concerns in the
practice of structural engineering since these results indicate that the geometric imperfections
influence the structural behavior and result in the reductions in stiffness, which will affect the

distribution of internal forces in the structural system.

With the literature on the stability design of unbraced frames, much has been studied about the

stability analysis on the structures performance assuming perfectly straight and perfectly plumb
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members. While the current work is important, typically much less attention has been devoted to
explicitly account for the geometric imperfections including out-of-straightness and out-of-
plumbness. Furthermore, established design procedures for checking the effective length factor based
on storey-based stability analysis in this study is very practical and can be of interest to researchers

and design engineers.
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Chapter V
Multi-Storey Unbraced Frames with Initial Geometric Imperfections
Subjected to Variable Loading

5.1 Introduction

In Chapter 3, the stability of multi-storey unbraced frames subjected to variable loading has been
investigated without accounting for initial geometric imperfections. For the single-storey unbraced
perfect frames subjected to variable loading, previous research (Xu, 2002) found that the difference
between the maximum and minimum elastic buckling loads can be as high as 20% in some cases. In
this chapter, the investigation will be focused on the maximum and minimum frame-buckling
loadings with initial geometric imperfections including single-storey and multi-storey unbraced
frames. As discussed in Chapter 3, the maximization and minimization problems based on 1*-order
approximation of the lateral stiffness of an axially loaded column can be solved by a linear
programming method to obtain the maximum and minimum bounds of the frame buckling loads
subjected to variable loading. In the case of considering the initial geometric imperfections, the study
from Chapter 4 indicated that the 1*-order approximation of the column lateral stiffness can provide
satisfactory results accounting for the initial geometric imperfections. Therefore, the 1%-order
approximation of column lateral stiffness accounting for the initial geometric imperfections will be
used to carry out the maximization and minimization problems in this chapter. Following the
maximization and minimization problems described in Chapter 3 and stated on Eqs.(3.13),(3.16) and
(3.17), the lateral stiffness modification factors of Sy (r,;.7.;) and fy(r,;r,;) with respect to these
equations will be replaced by (7, ;,74,,00,A0) and By ;1(r,4.7.,-00,A0) given in Egs. (4.13) accounting
for the initial geometric imperfections. Then the linear programming method can be adopted again to
obtain the maximum and minimum bounds of the multi-storey unbraced frame buckling loads

subjected to variable loading while accounting for the initial geometric imperfections.
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5.2 Numerical Examples

5.2.1 Single-Storey Unbraced Frame Example

A 2-bay by 1-storey unbraced steel frame shown in Figure 5-1 is used in Example 1 (Xu, 2002). It is a

similar example studied in Example 1 in Chapter 4.

135.226kN 580.938kN 217.693kN
] y
@=r@ @m R
W690x140 W690x140
7 2 T
: :
Cu g Ci2 g Clg o
_Q@_ @ _@
9.144 m 12.192 m

Figure 5-1: 2-bay by 1-storey frame of Example 1 (Xu, 2002)

Evaluated in this section will be what the imperfection effects have on the extreme loadings with
different beam-to-column connections for single-storey frame and will be compared with the results
without accounting for the initial geometric imperfections previously studied by Xu (2002). In
engineering practice a connection can neither be ideally rigid with a member end-fixity factor r = 1
nor purely pinned with r = 0. From previous research in connections of building design, Gerstle
(1988), Craig (2000) and Xu (2002) recommended that three different values of r = 1.0, 0.9, and 0.8

can be used for rigid connection and r = 0.0, 0.1, and 0.2 can be used for pinned connection.

The 15 different combinations of beam-to-column connection frames are illustrated in Figure 5-2.
Three schemes of rigid and pinned connections, in which scheme 1(r = 1, r = 0), scheme 2 (r = 0.9, r
= 0.1) and scheme 3 (r = 0.8, r = 0.2) are used for the comparison of the relative difference of the
maximum and minimum buckling loads. In the case of not accounting for the initial geometric
imperfections, the previous research (Xu, 2002) found that the difference between the maximum and
minimum elastic buckling loads can be as high as 20% illustrated in Figure 5-3 for the 15 different

combinations of beam-to-column connections frames shown Figure 5-2.
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Figure 5-2: 15 frames with different beam-to-column connections used in study
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Knowing the initial geometric imperfections of out-of-straightness (§,=L/1000) and out-of-
plumbness (A¢=L/500) (AISC, 2005), the results of the relative difference of the maximum and
minimum frame-buckling loads for the 15 frame types (shown in Figure 5-2) together with the three
schemes of rigid and pinned connections are presented in Tables 5-1 to 5-3 and Figure 5-3. The

results without accounting for the out-of-straightness and out-of-plumbness are also presented in

Tables 5-1 to 5-3.
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Table 5-1: Comparison of the max. and min. buckling loads together with their

relative difference with three different schemes (1)

out-of-straightness: 6,=0

out-of-straightness: 8,=L/1000

é out-of-plumbness: Ay=0 out-of-plumbness: Ay=L/500

% Scheme Max. Min. Max. Min.

g frame frame Max.—Min. | frame frame Max. — Min.

E buckling | buckling Min—| buckling | buckling Min

load (kN) load (kIN) load (kN) load kN)

Scheme 1 7475.800 | 7475.800 | 0% 6126.200 | 6126.200 | 0%
(r=1, r=0)

1 | Scheme 2 16685.000 | 16534.000 | 0.91% | 12852.000 | 12744.000 | 0.85%
(r=0.9, r=0.1)
Scheme 3 19136.000 | 18795.000 | 1.81% | 14538.000 | 14146.000 | 2.78%
(r=0.8, =0.2)
Scheme 1 28894.000 | 28490.000 | 1.42% | 21606.000 | 21222.000 | 1.81%
(r=1, r=0)

2 | Scheme 2 26683.000 | 26259.000 | 1.61% | 19920.200 | 19516.000 | 2.07%
(r=0.9, =0.1)
Scheme 3 24298.000 | 23851.000 | 1.87% | 18095.000 | 17667.000 | 2.42%
(r=0.8, r=0.2)
Scheme 1 24952.000 | 24200.000 | 3.11% | 18873.000 | 18088.000 | 4.34%
(r=1, r=0)

3 | Scheme 2 23816.000 | 23360.000 | 1.95% | 17792.000 | 17376.000 | 2.39%
(r=0.9, =0.1)
Scheme 3 21956.000 | 21742.000 | 0.99% | 16310.000 | 16124.000 | 1.16%
(r=0.8, r=0.2)
Scheme 1 16257.000 | 14057.000 | 15.65% | 12619.000 | 10520.000 | 19.96%
(r=1, r=0)

4 | Scheme 2 17302.000 | 15930.000 | 8.62% | 12837.000 | 11747.000 | 9.28%
(r=0.9, r=0.1)
Scheme 3 16974.000 | 16307.000 | 4.09% | 12497.000 | 11947.000 | 4.61%
(r=0.8, =0.2)
Scheme 1 7820.200 | 6618900 | 18.15% | 5725.700 | 4773.000 | 19.96%
(r=1, r=0)

5 | Scheme 2 10706.000 | 9843.600 | 8.76% | 7712.700 | 7057.500 | 9.28%
(r=0.9, r=0.1)
Scheme 3 12177.000 | 11653.000 | 4.50% | 8783.300 | 8396.300 | 4.61%
(r=0.8, =0.2)
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Table 5-2: Comparison of the max. and min. buckling loads together with

their relative difference with three different schemes (2)

out-of-straightness: 6,=0

out-of-straightness: 8,=L/1000

é out-of-plumbness: Ay=0 out-of-plumbness: Ay=L/500

% Scheme Max. Min. Max. Min.

g frame frame Max.— Min. | frame frame Max. — Min.

E buckling | buckling Min—| buckling | buckling Min

load (kN) load (kN) load (kN) load kN)

Scheme 1 4666.600 | 38889.000 | 20.00% | 3681.200 | 3037.400 |21.20%
(r=1, r=0)

6 | Scheme 2 10056.000 | 9124.200 | 10.21% | 7470.100 | 6657.000 | 12.21%
(r=0.9, =0.1)
Scheme 3 14947.000 | 14323.000 | 4.36% | 10935.000 | 10297.000 | 6.20%
(r=0.8, =0.2)
Scheme 1 3436.000 | 2863.300 | 20.00% | 2834.000 | 2346.400 | 20.78%
(r=1, r=0)

7 | Scheme 2 9505.800 | 8961.400 |6.08% | 7108.200 | 6734.600 | 5.55%
(r=0.9, r=0.1)
Scheme 3 12180.000 | 11931.000 | 2.09% | 9043.900 | 8704.100 | 3.90%
(r=0.8, r=0.2)
Scheme 1 4329.000 | 3532.500 | 20.00% | 3496.300 | 2894.800 | 20.78%
(r=1, r=0)

8 | Scheme 2 11633.000 | 10823.000 | 7.48% | 8787.100 | 8178.600 | 7.44%
(r=0.9, =0.1)
Scheme 3 14176.000 | 13483.000 | 5.14% | 10559.000 | 9922.600 | 6.41%
(r=0.8, r=0.2)
Scheme 1 5535.000 | 4612.500 | 20.00% | 4565.200 | 3779.800 | 20.78%
(r=1, r=0)

9 | Scheme 2 13799.000 | 12803.000 | 7.78% | 10495.000 | 9717.000 | 8.00%
(r=0.9, r=0.1)
Scheme 3 16019.000 | 15217.000 | 5.28% | 11998.000 | 11337.000 | 5.83%
(r=0.8, =0.2)
Scheme 1 9165.900 | 7638.300 | 20.00% | 7230.000 | 5986.200 | 20.78%
(r=1, r=0)

10 | Scheme 2 15496.000 | 13740.000 | 12.77% | 11753.000 | 10282.500 | 14.31%
(r=0.9, r=0.1)
Scheme 3 16889.000 | 15574.000 | 8.44% | 12626.000 | 11497.000 | 9.83%
(r=0.8, =0.2)
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Table 5-3: Comparison of the max. and min. buckling loads together with

their relative difference with three different schemes (3)

® out-of-straightness: 6,=0 out-of-straightness: 8,=L/1000
=~ out-of-plumbness: Ay=0 out-of-plumbness: Ay=L/500
% Scheme Max. Min. Max. Min.
g frame frame Max.—Min. | frame frame Max. — Min.
E buckling | buckling Min—| buckling | buckling Min
load (kN) load (kIN) load (kN) load kN)
Scheme 1 1296.000 | 1080.000 | 20.00% | 1068.900 | 885.000 20.78%
(r=1, r=0)
11 | Scheme 2 8071.300 | 7270.500 | 11.01% | 5943.100 | 5339400 | 11.31%
(r=0.9, r=0.1)
Scheme 3 10659.000 | 10097.000 | 5.57% | 7791.200 | 7362.000 | 5.83%
(r=0.8, r=0.2)
Scheme 1 4189.200 | 3491.000 | 20.00% | 3060.800 | 2534.300 | 20.78%
(r=1, r=0)
12 | Scheme 2 9494.400 | 8870.700 | 7.03% | 6853.200 | 6333.200 | 8.21%
(r=0.9, r=0.1)
Scheme 3 11631.000 | 11300.000 | 2.93% | 8404.900 | 8127.600 | 3.41%
(r=0.8, r=0.2)
Scheme 1 4731.900 | 3943.300 | 20.00% | 3902.800 | 3231.400 | 20.78%
(r=1, r=0)
13 | Scheme 2 11625.000 | 10959.000 | 6.08% | 8871.700 | 8310.700 | 5.55%
(r=0.9, r=0.1)
Scheme 3 13971.000 | 13645.000 | 2.39% | 10444.000 | 10140.000 | 3.00%
(r=0.8, r=0.2)
Scheme 1 8362.900 | 6969.100 | 20.00% | 6567.700 | 5437.800 | 20.78%
(r=1, r=0)
14 | Scheme 2 12852.000 | 11741.000 | 9.46% | 9634.700 | 8749.900 | 10.11%
(r=0.9, r=0.1)
Scheme 3 14598.000 | 13823.000 | 5.60% | 10918.000 | 10214.000 | 6.89%
(r=0.8, r=0.2)
Scheme 1 11682.000 | 10140.000 | 15.20% | 8885.600 | 7630.800 | 16.44%
(r=1, r=0)
15 | Scheme 2 14046.000 | 13136.000 | 6.93% | 10381.000 | 9692.300 | 7.11%
(r=0.9, r=0.1)
Scheme 3 14680.000 | 14336.000 | 2.40% | 10767.000 | 10499.000 | 2.55%
(r=0.8, r=0.2)
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Figure 5-3: Relative differences of the critical buckling loads((Pax-Pmin)/Pmin) of three schemes

without initial geometric imperfections
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Figure 5-4: Relative differences of the critical buckling loads((Pymax=Pmin)/Pmin) of three schemes

with initial geometric imperfections
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It is noted in Figure 5-2 and Tables 5-1 to 5-3, that for each frame with three schemes, the presence
of the initial geometric imperfections reduce the maximum and minimum frame-buckling loads and
increase the relative difference between these two extreme frame-buckling loads. From Tables 5-1 to
5-3, it is also found for these 15 frames with or without initial geometric imperfections, the
magnitudes of the maximum and minimum frame-buckling loads increase when the beam-to-column
connection rigidity reduce from Schemes 1 to 3, except types 2, 3 and 4 frames. In Tables 5-1 to 5-3,
it is noted that the relative difference between the extreme frame-buckling loads of the same frame
type with respect to initial geometric imperfections higher than those without accounting for initial

geometric imperfection except for frame types 1, 7, 8 and 13.

When accounting for the initial geometric imperfections, for frame type 1, in which all the column
base connections are fully rigid and the beam-to-column connections are pinned, there is no
difference between the maximum and minimum buckling loads of scheme 1. It is also observed that
relative differences between the extreme buckling loads among the three schemes are negligible for
frame types 1 and 2 since the relative differences are less than 3%. For frame type 3, the relative
differences for schemes 1 and 2 can be also negligible. Table 4-16 and Figure 4-20 presented that in
scheme 1 with (r = 1, r = 0), the relative difference for frame types 4 and 5 obtain their maximum of
20%, frame 6 obtains the largest maximum of 21.2% and the other frames 7 to 14 reach their
maximum of 20.78%. For frame 15, its relative difference is 16.44% for scheme 1. It is also seen that
there is at least one lean-on column in frames 4 to 15. However in schemes 2 (r = 0.9, r = 0.1) and 3(r
= 0.8, r = 0.2), the maximum relative differences between the buckling loads are much lower than
that of scheme 1 for frames 4 to 15. This study also finds that in the case of initial geometric
imperfection, the increase of the critical buckling loads is primarily due to the increase of the end-

fixity factor for pinned connections from r =0, to r = 0.1and r=0.2.

5.2.2 Multi-Storey Unbraced Frame Example

In this study, the multi-storey unbraced frame example used in Chapter 3 will be investigated again to
evaluate the influences of the initial geometric imperfections to the multi-storey unbraced frames
subjected to the variable loadings. The effects of semi-rigid connections are also considered in this
study. For the 2-bay by 2-storey steel frames shown in Figures 3-5 to 3-8, the same procedures

described in Chapter 3 with respect to the effects of initial geometric imperfections to the lateral

86



stiffness of column investigated in Chapter 4 will be adopted in this study. Then the critical buckling
loads of the 2-bay by 2-storey unbraced steel frames associated with the effects of initial geometric
imperfections subjected to variable loading can be obtained from Eqgs. (3.1) to (3.5). The objectives
of this example are to demonstrate the proposed method for evaluating the extreme loadings in a
frame with accounting for initial geometric imperfections of out-of-straightness and out-of-plumbness

and the different beam-to-column connections with these geometrically imperfect considerations.

In the foregoing studies described in Table 3-1 of Chapter 3, the first case of the rigid frame
(Figure 3-5) was considered in the parametric studies to demonstrate the influences of the geometric
imperfections to frame buckling loadings. The values of the geometric imperfections including the
out-of-straightness (9,) effect, out-of-plumbness (A,) effect and combined effects of out-of-
straightness (8p) and out-of-plumbness (Ao) are given in Tables 5-4 to 5-10. Also presented in these
tables are the values of the buckling loads corresponding to the maximum and minimum frame-

buckling loads, together with their relative differences.
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Table 5-4: The effect of out-of-straightness (&) to frame buckling loadings (1)

8o=L/1000, A;=0

8o=L/800, Ap=10

Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0,5,>0 $1>0, 5,=0 S,=0 $1=0,95,>0 $1>0,5,=0
11 | 27341.140 0.000 0.000 25997.680 0.000 0.000
12 0.000 28611.160 0.000 0.000 27260.700 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 69068.640 0.000 57551.410 67121.730 0.000 0.000
22 0.000 65611.470 0.000 0.000 63697.710 5801.400
23 0.000 0.000 0.000 0.000 0.000 57570.000
2P; | 96409.780 94222.630 65299.950 93119.410 90958.410 63371.400
$,=0.000 $1=9590.620 $,=0.000 $1=91867.910
S 23% 47.6% N 2.4% 46.9%
min. (storey- (storey-buckling) min. (storey-buckling) | (storey-buckling)
buckling)

max.—min.
— %

min.

47.6% (frame-buckling)

max —min
=%
min

46.9% (frame-buckling)
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Table 5-5: The effects of out-of-straightness (&) to frame buckling loadings (2)

30=L/600, Ay=0 8o=L/500, Ap=0
Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0, 5,>0 $:>0, 5,=0 $1=0, 5,>0 S$1>0, S,=0
11 | 23755.030 0.000 0.000 21995.460 0.000 0.000
12 0.000 25021.340 0.000 0.000 23237.980 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 63933.030 0.000 0.000 61399.040 0.000 51218.600
22 0.000 60564.520 2669.520 0.000 58092.180 182.800
23 0.000 0.000 57570.000 0.000 0.000 57570.000
2P; | 87688.060 85585.860 60239.520 83394.500 81330.150 57752.800
S,=0.000 S1=8486.860 S,=0.000 S1=7940.030
max.— min., 2.5% 45.6% max . — min. 2.5% 44.4%
BT (storey- (storey-buckling) BT (storey-buckling) | (storey-buckling)
buckling)

max.—min.
- %
min.

45.6% (frame-buckling)

max —min
%

min

44.4% (frame-buckling)
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Table 5-6: The effects of out-of-straightness (&) to frame buckling loadings (3)

8=L/400, Ap=0 d=L/300, Ap=0
Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0, S,>0 $:>0,5,=0 $1=0,5>0 $:>0,5,=0
11 | 19377.880 0.000 0.000 15183.210 0.000 0.000
12 0.000 20604.460 0.000 0.000 16398.280 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 57582.600 0.000 0.000 51292.860 0.000 0.000
22 0.000 54373.330 0.000 0.000 48267.650 0.000
23 0.000 0.000 54041.880 0.000 0.000 47963.210
>P; | 76960.490 74977.790 54041.880 66476.080 64666.280 47963.210
S,=0.000 $,=7102.480 $,=0.000 $,=5734.550
mIg, 2.6% 42.4% me i 2.8% 38.6%
(storey-buckling) | (storey-buckling) (storey-buckling) | (storey-buckling)

max —min
%

min

42.4% (frame-buckling)

max—min

"
min

38.5% (frame-buckling)
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Table 5-7: The effects of out-of-plumbness (A) to frame buckling loadings (4)

80=0, Ay=L/500

80=0, Ag=L/400

Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0,5>0 $1>0,5,=0 S1=0,5>0 $1>0,5=0
11 | 29081.520 0.000 0.000 28170.560 0.000 0.000
12 0.000 29817.500 0.000 0.000 28785.640 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 67618.530 0.000 0.000 65472.400 0.000 0.000
22 0.000 64574.220 6678.380 0.000 62550.710 4659.580
23 0.000 0.000 57570.000 0.000 0.000 57570.000
2P; | 96700.060 94391.720 64248.380 93642.96 0 91336.350 62229.580
$,=0.000 $,=10509.620 $,=0.000 $,=10315.050
_— 2.5% 50.5% N 2.5% 50.5%
mn (storey-buckling) | (storey-buckling) min (storey- (storey-buckling)
buckling)

max—min
— %
min

50.5% (frame-buckling)

max —min
=%
min

50.5% (frame-buckling)
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Table 5-8: The effects of out-of-plumbness (A) to frame buckling loadings (5)

80=0, Ay=L/300 80=0, Ag=L/200
Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0, 5,>0 $1>0, 5,=0 $1=0, 5,>0 $1>0, 5,=0
11 | 26760.400 0.000 0.000 24036.810 0.000 0.000
12 0.000 27206.040 0.000 0.000 24239.330 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 62046.630 0.000 0.000 55687.440 0.000 0.000
22 0.000 59296.860 1399.020 0.000 53263.950 0.000
23 0.000 0.000 57570.000 0.000 0.000 53263.950
2P; | 88807.030 86502.900 58969.020 79724.250 77503.290 53263.950
$,=0.000 $1=10010.060 $,=0.000 $,=9223.070
R 2.7% 50.6% R 2.9% 49.7%
(storey-buckling) | (storey-buckling) (storey-buckling) | (storey-buckling)

max—min
- %
min

50.6% (frame-buckling)

max—min
= "%
min

49.7% (frame-buckling)
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Table 5-9: The effects of combined out-of-straightness (3,) and out-of-

plumbness (A¢) to frame buckling loadings (6)

8o=L/1000 and Ay=L/500 8o=L/800 and A¢=L/400
Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0, 5,>0 $:>0, 5,=0 5:=0,5>0 $1>0,5=0
11 | 23876.000 0.000 0.000 21870.860 0.000 0.000
12 0.000 24663.670 0.000 0.000 22531.770 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 60369.780 0.000 0.000 56577910 0.000 0.000
22 0.000 57430.540 0.000 0.000 53797.940 0.000
23 0.000 0.000 57081.330 0.000 0.000 53462.880
2P; | 84245.780 82094.210 57081.330 78448.770 76329.710 53462.880
$,=0.000 $1=8848.790 $,=0.000 $1=8248.900
max—min,, 2.6% 47.6% max—min 2.8% 46.7%
S (storey- (storey-buckling) mn (storey-buckling) | (storey-buckling)
buckling)

max—min

"
min

47.6% (frame-buckling)

max —min
%

min

46.7% (frame-buckling)
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Table 5-10: The effects of combined out-of-straightness (8y) and out-of-

plumbness (A¢) to frame buckling loadings (7)

8o=L/600 and A¢=L/300 8o=L/400 and A¢=L/200
Max. Min. Max. Min.
Col. (kN) (kN) (kN) (kN)
$1=0,5>0 S$1>0, S,=0 $1=0, S,>0 S$1>0, S,=0
11 | 18605.780 0.000 47681.300 12763.800 0.000 0.000
12 0.000 19183.720 0.000 0.000 13143.450 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
21 | 50526.590 0.000 0.000 39316.240 0.000 0.000
22 0.000 47987.310 0.000 0.000 37277.150 0.000
23 0.000 0.000 47673.290 0.000 0.000 37011.490
2P; | 69132.370 67121.030 47673.290 52080.040 50420.600 37011.490
$,=0.000 $1=7249.490 $,=0.000 $1=5290.000
max —min 3.0% 45% max —min 3.3% 40.7%
S (storey-buckling) | (storey-buckling) S (storey- (storey-buckling)
buckling)
%—i;ﬂi“% 45% (frame-buckling) %—i;ﬂi“% 40.7% (frame-buckling)

Presented in tables 5-4 to 5-6 are the results of the frame-buckling loads associated with the initial
geometric imperfection of out-of-straightness &y (only). The first stability constraint described as S, =
0, S, >0 represents the case of laterally unstable for first storey found in Tables 5-4 to 5-6. The
minimum storey-buckling load is only applied onto the interior columns 12 and 22 and the second
storey becomes lateral unstable simultaneously. The second stability constraint defined as S, >0, S,=
0, shows the frames with respect to the case of laterally unstable for second storey and the load
pattern corresponding to the minimum storey-buckling loads is applied onto both the interior and
exterior columns 22 and 23 and the first storey is lateral stable. Another observation can be seen that
the load magnitudes and patterns are identical when the frames are subjected to maximum frame-
buckling loads and the load patterns applied on the exterior columns 11 and 21. Also it is noted the

first second stories become lateral unstable simultaneously when the frame archived to its maximum
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frame-buckling loads. And It is seen that the extreme frame-buckling loads together with the load
patterns decrease when the initial geometric imperfection of out-of-straightness (3p). Also from
Tables 5-4 to 5-6, the relative difference between the maximum and minimum frame-buckling loads
are found to be 47.6%, 46.9%, 45.6%, 44.4%, 42.4% and 38.6% with respect to the §, values of
L/1000, L/800, L/600, L/500, L/400 and L/300, respectively, which are significant.

In Tables 5-7 and 5-8, the results show that the maximum frame-buckling loads are decreased
when increasing the values of the member out-of-plumbness A, (only). It can also be ascertained that
the maximized frame-buckling loads occur when the first and second stories become laterally
unstable simultaneously. From Tables 5-7 and 5-8 we can see that the minimum frame-buckling loads
with respect to lateral instability of the first and second stories decrease when increasing the initial
geometric imperfection out-of-plumbness (A;). Also in Tables 5-7 and 5-8 we can see the relative
difference between the maximum and minimum frame-buckling loads are all very close to 50.5%
with respect to the A values of L/500, L/400, L/300 and L/200 respectively, which may suggest that
the values of A appear to be not have much influence on the difference between the maximum and

minimum frame-buckling loads.

Once the frames are subjected to combined initial geometric imperfections of an out-of-straightness
member and an out-of-plumbness frame, the frames become more flexible and the magnitudes of the

maximum and minimum frame-buckling loads decrease as shown in Tables 5-9 and 5-10.

In Tables 5-9 and 5-10, the values exhibit similar trends is the result of Tables 5-4 to 5-8. It is seen
that the extreme buckling loads decrease when increasing the values of member out-of-straightness
() and frame out-of-plumbness (Ao). It is also seen that the maximum frame-buckling loads are
achieved when the lateral instability occurs in first and second stories simultaneously. Also from
Tables 5-9 and 5-10, it is seen that the relative difference between the maximum and minimum frame-
buckling loads are 47.5%, 46.8%, 45% and 40.7% associated with the values of d;and Ayof L/1000,
L/500; L/800, L/400; L/600, L/300; and L/400, L/200 respectively.

95



5.2.3 Effects of Semi-Rigid Connections

The behaviour of the beam-to-column semi-rigid connections is another primary contributing factor
to structural stability, hence, the connection rigidity will be considered in this section. The five cases
with different beam-to-column and column base connection rigidities shown in Table 3-1 will be
investigated with geometric imperfections of member out-of-straightness (8, = L/1000) and frame out-
of-plumbness (Ay = L/500). The values of the coefficients including the end-fixity factors, the
effective length factor and the buckling loads associated with non-sway buckling corresponding to the
maximum and minimum frame-buckling loads, together with their relative differences, are presented

in Tables 5-11 to 5-15. The column elastic flexural stiffness 12E1, 4, ./ ij and the coefficients

associated with column lateral stiffness modification factors 3, . (1, ;,r, ;) are also provided in these

u,ij
tables. Also presented in Tables 5-11 to 5-15 are the results for a frame subjected to proportional
loading obtained in this study. The load patterns associated the maximum and minimum frame-

buckling loads are illurstrated in Figures 5-5 to 5-9.
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Table 5-11: Results of the unbraced steel frames shown in Figure 3-5 —

Case 1 (6o=L/1000 and Ay=L/500)

Load pattern — max. frame-buckling load

Figure 5-5: Load patterns associated with max. and min. frame-buckling loads — Case 1

Min. (kN
Col. 1251"1 By 4 P, Max. in. (k)
B i Fuij i Li | Kpyaced $=0 $,=0
l race. kN kN
J (kN/m) (k1) R 5,50
11]1.000|0.635|11700.000 |0.101|0.575|183700.000| 23876.000 0.000 0.000
12 | 1.000|0.834 | 9860.000 |0.104|0.534 | 144800.000 0.000 24663.670 0.000
13 | 1.000|0.826 | 7373.000 [0.104|0.536 | 108500.000 0.000 0.000 0.000
21 [0.635|0.784 | 7418.000 |0.095|0.630 | 106200.000| 60369.780 0.000 0.0000
22 10.83410.895 | 10500.000 | 0.100 | 0.558 | 133900.000 0.000 57430.540 0.000
23 10.8260.919 | 4565.000 |0.100|0.554 | 57570.000 0.000 0.000 57081.330
.. . 82094.210| 57081.330
Critical frame buckling loads >.P; = 84245.780 (5,=0.000) | (5,=8848.790)
Difference of max. & min. frame-buckling loads (%) m % 2.6% 47.6%
min
Proportional loading: P, = A,2.P,; (kN) P, 82750.000
Difference of proportional loading & max. frame-buckling| max— p,
—% 0.8%
loads (%) min
Difference of proportional loading & min. frame-buckling| p,— min
—% 44.9%
loads (%) min
60369.78kN 57081.33kN
Poy Boj B2 - Bog B2y P23JL _
~ [C21 8411 Ca| - satl C3 oé ~ [C21 B4ll Co| - satt Cy oé
@ | 23876.00kN & - g % E - g
‘Pu By Bip | v By By ! m_
10.51 1 10.511 10517 10.51 1
~ - ~ B - - ~ &
§ Cn Cr2 E Ci3 f & E Cu Ci2 E Ci3 f §
il L L v 1L L L v
1 2 3 1 2 3
6.0168 m I 4.4928 m 6.0168 m
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Table 5-12: Results of the unbraced steel frames shown in Figure 3-6 —

Case 2 (6o=L/1000 and Ay=L/500)

6.0168 m I

Load pattern — max. frame-buckling load

Min. (kN
Col. 12% b | 4 Py Max. ()
B i Fuij i Li | Kpyaced $=0 $,=0
l race. kN kN
d (kN/m) (K L 5,50
11]1.0000.568 | 10830.000 | 0.101 | 0.588 | 175300.000| 26191.210 0.000 0.000
12 11.0000.815| 9697.000 | 0.100{0.538 | 142700.000 0.000 27406.670 0.000
13 11.0000.781| 7037.000 | 0.103|0.545 | 104900.000 0.000 0.000 0.000
21 10.568 |0.731| 5947.000 |0.094|0.672| 97460.000 | 54194.080 0.000 0.000
22 10.815|0.881| 9782.000 |0.098|0.573 | 130600.000 0.000 51032.520 0.000
23 10.781|0.895| 4043.000 | 0.098|0.578 | 54780.000 0.000 0.000 51032.520
.. : 78439.190 | 51032.520
Critical frame buckling loads >.P; = 80385.290 (5,=0.000) | (5,29622.480)
Difference of max. & min. frame-buckling loads (%) m % 2.5% 57.5%
min
Proportional loading: P, = A,2.P,; (kN) P, 79100.000
Difference of proportional loading & max. frame-buckling| max— p,
—% 0.8%
loads (%) min
Difference of proportional loading & min. frame-buckling| p,— min
% 55%
loads (%) min
54194.08kN 51032.52kN
Py Boj Boo - Boj Boo P23iL S
~ [Cat sall Co| satt Ca3 oé ~ [Cat Ball % P C23 oé
@ | 26191.21kN « -~ % “ « ~ %
Pl Bl Bio 1 v By Bio | v
10.511 10.511 10511 10.511
~ - ~ E - - - E
E Cn Cr2 E Ci3 f & E Cn Ci2 E Ci3 f §
# —— — —— # —— —
1 2 3 1 2 3
4.4928 m I 6.0168 m I 4.4928 m I

Load pattern — min. frame-buckling load

Figure 5-6: Load patterns associated with max. and min. frame-buckling loads — Case 2
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Table 5-13: Results of the unbraced steel frames shown in Figure 3-7 —

Case 3 (6o=L/1000 and Ay=L/500)

Load pattern — max. frame-buckling load

Min. (kN
Col. 12% B | Py Max. in. (k)
B T | T i Li | Kpyaced $=0 $,=0
l race; kN kN
d (kN/m) (< R R
11 {1.000|0.540| 10480.000 | 0.101 | 0.594 | 171900.000 | 27505.250 0.000 0.000
12 | 1.0000.771 | 9235.000 |0.103|0.547 | 138100.000 0.000 28216.980 0.000
13 | 1.000|0.760 | 6883.000 |0.102|0.549 | 103300.000 0.000 0.000 0.000
21 10.540|0.707 | 5555.000 |0.093|0.685| 93930.000 | 50136.310 0.000 0.000
22 10.771)0.850 | 8946.000 |0.097 |0.592|123300.000 0.000 48153.970 0.000
23 10.760|0.884 | 4189.000 |0.098|0.586 | 53460.000 0.000 0.000 47766.230
. . 76370.950 | 47766.230
Critical frame buckling loads >.P; = 77641.560 (5,=0.000) | ($,=10201.850)
Difference of max. & min. frame-buckling loads (%) m % 1.7% 62.5%
min
Proportional loading: P, = A,2.P,; (kN) P, 76750.000
Difference of proportional loading & max. frame-buckling| max— p,
—% 0.5%
loads (%) min
Difference of proportional loading & min. frame-buckling| p,— min
% 60.7%
loads (%) min
50136.31kN 47766.23kN
Py B B» N Boy B» PZJ S
~ [C21 Ball enfo Y C23 g/ ~|Cz Ball oo M en (é
| 27505.25kN « -~ % “ « ~ %
Pi By Bz 1 Vv By By | m_
10.51 1 10.517 10517 10511
~ ~ ~ E ~ ~ ~ \E
Lo'ﬁ Cn Cr2 E Ci3 f § E Cu Ci2 E Ci3 f §
C ; _-— —-— = ; =
1 2 3 1 2 3
6.0168 m I 4.4928 m 6.0168 m

Il 4.4928 m I

Load pattern — min. frame-buckling load

Figure 5-7: Load patterns associated with max. and min. frame-buckling loads — Case 3
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Table 5-14: Results of the unbraced steel frames shown in Figure 3-8 -

Case 4 (6o=L/1000 and Ay=L/500)

Load pattern — max. frame-buckling load

Min. (kN
Col. 12% fu| 4 P Max. (k10
o T | T i | Pl | Kpracea $1=0 $,=0
l Drace kN kN
4 (kN/m) (0 R 5,50
11 {1.000|0.420|9032.000 |0.101 {0.619 | 158400.000 | 31891.220 0.000 0.000
12 {1.000| 0.00 | 3161.000 |0.108 | 0.707 | 82570.000 0.000 27649.710 0.000
13 {1.000|0.705| 6347.000 | 0.102 | 0.560| 99130.000 0.000 0.000 0.000
21 10.377]0.644 | 3696.000 | 0.092 | 0.719| 80370.000 | 22363.790 0.000 0.000
22 1 0.00 | 0.00 | 0.0000 [0.088| 1.00 | 41570.000 0.000 23346.740 0.000
23 10.64410.851|1132.000 | 0.097 | 0.608 | 47880.000 0.000 0.000 21392.470
.. . 50996.450 | 21392.470
Critical frame buckling loads >.P; = 54255.010 (5,=0.000) | (S,=11293.180)
Difference of max. & min. frame-buckling loads (%) m % 6.4% 153.6%
min
Proportional loading: P, = A,2.P,; (kN) P, 52550.000
Difference of proportional loading & max. frame-buckling| max— p, o 2
- /0 (%
loads (%) min
Difference of proportional loading & min. frame-bucklin —mi
prop s S| Pp—min, 145.4%
loads (%) min
22363.79kN 21392.47kN
P2y Baj B2 N Bog B2 P23JL -
.l (&)1 84l Cxn| - Ball Co3 g/ —|Ca 841 Co| - sall Co3 5
« | 31891.22kN « - 2 “ « -~ %
Py By Bip | v By By 1 v
10517 10517 10517 10511
~ ~ ~ E ~ ~ ~ E
Lo'ﬁ C11 Ci2 E Ci3 f § § Cn Cp2 :—: Ci3 f §
== ; = == == = -
1 2 3 1 2 3
6.0168 m I 44928 m 6.0168 m

I 4.4928 m

Load pattern — min. frame-buckling load

Figure 5-8: Load patterns associated with max. and min. frame-buckling loads — Case 4
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Table 5-15: Results of the unbraced steel frames shown in Figure 3-7 —

Case 5 (6o=L/1000 and Ay=L/500)

6.0168 m I

Load pattern — max. frame-buckling load

Load pattern — min. frame-buckling load

Figure 5-9: Load patterns associated with max. and min. frame-buckling loads — Case 5
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Col| | =g, p Py Max. _ Min, (kNS) 0
Lij u,ij ij 1,ij = =
y ] ] (kN/m) | (M) (N) S;> 0 S?>0
11]1.000|0.184 | 6448.000 | 0.104 | 0.668 | 136000.000 0.000 29881.420 0.000
12 11.000|0.384 | 5863.000 {0.102 | 0.626 | 105300.000 | 31293.350 0.000 0.000
13 | 1.000|0.359| 4275.000 {0.102 | 0.631 | 78070.000 0.000 0.000 0.000
21 10.18410.287| 1367.000 | 0.089 | 0.889 | 55730.000 0.000 16956.520 0.000
22 10.38410.485|3139.000 {0.091 | 0.787| 72300.000 | 16751.820 0.000 0.000
23 10.359]0.559| 1654.000 | 0.092 |0.769 | 31840.000 0.000 0.000 16552.010
Critical frame buckling loads >.P;; = 48045.180 ?Szi%70%%2 (S11=615()5826?,1:5%0)
Difference of max. & min. frame-buckling loads (%) maxm;i;nin % 2.6% 190.3%
Proportional loading: P, = A,2.P,; (kN) P, 47650
Difference of proportional loading & max. frame-buckling max—Pp . 7%
loads (%) min
Difference of proportional loading & min. frame-bucklin —mi
prop . (%)g s %% 183.0%
16751.82kN 16552.01kN
By P2 B» , - Boj B» P23JL -
~ |C2 Ball % IR O é ~|ca sall %] I 5
@ 3129335KkN [ & ~ 3 “ E -~ 8
T} i |
- - - E - - - E
Lo'ﬁ Cr1 Ci2 E C13 f § § C11 Ci2 :—: Ci3 f §
L L L7 1L L L7
1 2 3 1 2 3
4.4928 m 6.0168 m 4.4928 m



Tables 5-11 to 5-15 show the results of the extreme frame-buckling loads accounting for the initial
geometric imperfections with different values of the beam-to-column semi-rigid connections.
Compared to the results without accounting for the initial geometric imperfections given in Tables 3-
2 to 3-6, the presence of the out-of-straightness (8, = L/1000) and out-of-plumbness (A = L/500)
reduce the lateral stiffness strength for the same case shown in Tables 5-11 to 5-15. Consequently, for

the same case, the extreme frame-buckling loads together with their relative difference all reduce.

Summarized in Table 5-11, are the results of Case 1, in which both the column base and beam-to-
column connections are rigidly connected. It can be seen from Table 5-11 that the maximum frame-
buckling load of 84245.78 kN, is achieved when first and second stories are simultaneously laterally
unstable. The minimum storey-buckling loads associated with lateral instability of the first and
second stories are 820694.215 kN and 57081.33 kN, respectively. The relative difference between the
maximum and minimum frame-buckling loads is 47.6%, which is significant. It can also be seen from
Table 5-11 that the load patterns associated with the maximum and minimum frame-buckling loads
are different. The load pattern corresponding to the maximum frame-buckling loads are applied only
on the exterior columns 11 and 21 for both first and second stories. In contrast, the associated with the
minimum frame-buckling load applies the loads both on the exterior and interior columns. Also found

in Case 1 are two different loading patterns associated with the minimum frame-buckling loads.

For Case 2, presented in Table 5-12, the exterior column is semi-rigidly connected with the
corresponding end-fixity factor being 0.8 whereas the column base and the interior beam-to-column
connections are rigid. The presence of semi-rigid connections used with a frame will become flexible
and the magnitudes of lateral stiffness decrease compared to that of Case 1. As a result of the frame
flexibility, the maximum frame-buckling load of Case 2 reduces to 80385.29 kN, and the
corresponding minimum frame-buckling load decreases to 51032.52 kN, which yields the relative
difference between the maximum and minimum frame-buckling loads to be 57.5%. The load patterns
associated with the maximum frame-buckling load including load locations and magnitudes are
identical for the first and second stories. There are two different load patterns associated with
minimum frame-buckling load. It is also observed that the first and second storey become unstable

simultaneously when they are subjected to maximum frame-buckling load.
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For Case 3 given in Table 5-13, the beam-to-column connections for both the interior and exterior
columns are semi-rigidly connected with the corresponding end-fixity factor being 0.8. Compared
with Cases 1 and 2, the Case 3 frame is more flexible, which can be evidenced by the further
decreased value of lateral stiffness; thus, the magnitudes of the maximum and minimum frame-
buckling loads are reduced to 77641.56 kN and 47766.23 kN, respectively, which leads to a
difference of 62.5% between the buckling loads. Like Case 2, it is found that lateral instability occurs
simultaneously for both first and second stories when they are subjected to the maximum frame-
buckling load. It is also noticed that the load patterns are identical for both first and second stories

when the frames are subjected to a maximum frame-buckling load.

Presented in Table 5-14 are the results of Case 4, in which the column base uses rigid connections.
The beam-to-column connections for the exterior columns are rigid, and for the interior columns are
pin connections. The maximum and minimum frame-buckling loads are 54255.01 kN and 21392.47
kN, respectively. The load patterns corresponding to the maximum frame-buckling loads applied to
the exterior columns, and the load patterns associated with the minimum frame-buckling loads
applied to both the exterior columns and interior column. The difference between the maximum and
minimum frame-buckling loads is 153.6%, which is very significant compared to cases 1 to 3. It is
also found that lateral instability occurs simultaneously for both first and second stories when they are

subjected to the maximum frame-buckling load.

In Table 5-15, for Case 5, the column base connection is rigid, while the beam-to-column
connections for both the interior and exterior columns are quite flexible with the corresponding end-
fixity factor being 0.2. The maximum and minimum frame-buckling loads are 48045.18 kN and
16552.01 kN, which yields a considerable difference of 190.3%. The load patterns associated with the
maximum frame-buckling loads is applied on the interior columns C;, and C,, while the load patterns
with respect to the minimum frame-buckling loads trend to apply on the exterior columns, which are
the different than Cases 1 to 4. Also similar to Cases 1 to 4, the lateral instability occurs
simultaneously for both first and second stories when they are subjected to the maximum frame-

buckling load.

The frame-buckling strengths associated with storey-based buckling subjected to proportional

loading for the frames are also presented in Tables 4-24 to 4-28. It is observed that the differences
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between the proportional and the minimum loading are 51.1%, 55%, 60.7%, 174.8% and 187.8%,

respectively.

5.3 Conclusions

The problem of extreme frame-buckling loads and their associated load patterns for unbraced multi-
storey frame structures accounting for initial geometric imperfections has been solved using the linear
programming method. Comparing the results discussed in Chapter 3, the geometric imperfection
results obtained in this chapter show similar trends for the extreme frame-buckling loads and their
associated load patterns. Found in this study is that the presence of the initial geometric imperfections
reduces the column lateral stiffness and consequently the maximum and minimum frame-buckling
loads were all reduced. The results of the parametric studies indicate that both the geometric
imperfections of member out-of-straightnesses and frame out-of-plumbnesses affect the extreme
frame-buckling loads and their associated load patterns. As well, the numerical examples indicate that
the extreme frame-buckling loads and their associated load patterns decreased when increasing the
values of member out-of-straightnesses and frame out-of-plumbnesses. The results also demonstrate
that the frame out-of-plumbness shows a stronger influence for the frame stability than the member
out-of-straightness. Compared to the frame that includes only the out-of-straightness or out-of-
plumbness, the relative difference noted between the extreme frame-buckling loads was higher in
the case of the frame that includes only the out-of-plumbness. The extreme frame-buckling loads
and their associated load patterns showed lower values when considering the effects of combined
member out-of-straightness and frame out-of-plumbness together. Comparing the relative differences
between the extreme frame-buckling loads with respect to the out-of-straightness or out-of-
plumbness, the relative differences between the extreme frame-buckling loads are not affected by
combining the initial geometric imperfections of out-of-straightness and out-of-plumbness. In the
considerations of comparing the different beam-to-column and column base connections, the results
based on geometric imperfections clearly indicate that the geometric imperfections play an important
role in the stability analysis. There is also a considerable variation in connection stiffness among

beam-to-column connections in the same storey of any frame or column base connection.
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Chapter Vi

Application of Storey-Based Stability Analysis to CFS Storage
Racks

6.1 Introduction

Storage rack manufacturers for warehousing or distribution center applications using CFS members
for optimal structural design presents several stability challenges for structural designers. Factors to
be considered in the stability design for storage racks include semi-rigid behavior of beam-to-column
and column base connections, perforated columns, local buckling and torsional-flexural buckling. In
addition, the nature of randomly applied loads both in magnitude and location are often one of the
primary factors contributing to structural failures. So far, there have not been any design guidelines

and tools available to assess the structural integrity of the variable loading for CFS structures.

In practice, as there was no Canadian standard available prior to 2005, steel racks were designed in
accordance with the Allowable Strength Design standard developed by RMI in the U.S. Although the
first Canadian standard for design and construction of steel storage racks with Limit State Design was
developed in 2005 (CSA, 2005), the standard is in the infancy stage where many complex issues, as
listed in the foregoing, are either overly simplified or not addressed due to the lack of the research in

this area.

As the use of storage racks increases around the world, they will be subjected to a more diverse use
of loading conditions and as a result the engineering and building code communities are scrutinizing
these structures in their stability. Therefore, the variable loading condition discussed in Chapters 3
and 5 is also a key factor in the stability design of a CFS storage rack and it will be addressed in this
chapter. Another key factor in causing such structures to have instability issues is through the
influence of initial geometric imperfections studied in Chapter 4 and this influence will also be
evaluated within this chapter. Also the studies of perforated columns and the behavior of the beam-to-
column connection on the CFS storage rack stability are demonstrated in this chapter. Figure 6-1

shows the typical rack structure components. In general for the purposes of describing direction, the
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rack industry refers to the longitudinal direction as the down-aisle direction and the transverse
direction, as the cross-aisle direction. It can be seen that the lateral load resisting systems of storage

racks in down-aisle and cross-aisle directions are unbraced frames and bracing frames, respectively.

Diagonal
brace

Frame—/

(total
assembly)

Post guard

"

Row spacer— | h

Horizontal —/

brace

Row end
protector

Baseplate
/ Back-to-back

row of pallet rack

Figure 6-1: Typical storage rack configuration and components (CSA, 2005)

6.2 Members Design

6.2.1 Introduction

The current RMI design provision for CFS members is similar to the AISI specification, which can be
described as follows: (RMI, 2000; AISI, 2004)
(1) the overall stability of the member must be considered, which includes the elastic column
buckling stress (flexural, torsional, or torsional-flexural) for the full unreduced section.
(2) then the design equations are used to determine the nominal failure stress, whether the
member will fail from elastic buckling, inelastic buckling, or yielding.
(3) once the nominal failure stress is known, the corresponding effective section properties can

then be computed and will be used to account for the local buckling of thin-walled sections.
106



(4) the nominal member strength is determined based on the governing nominal failure stress and
the effective section properties.

(5) the nominal member strength is multiplied by a resistance factor in the case of LRFD and
LSD or dividing it by a safety factor in the case of ASD obtaining the design member

strength.

Based on the general design steps listed above, studies are carried out in this section to check the

current design provisions for member design.

6.2.2 Elastic Buckling Strength of Perforated Members

The column sections in storage racks are perforated for the purpose of easy assembly of the beam end
connection elements. It is well known that the presence of such perforation reduces the local buckling
strength of the individual component element and the overall buckling strength of the section. The
RMI Specification currently allows the use of unperforated section properties to predict the overall
elastic buckling strength of perforated members, thus assuming the presence of such perforation does
not have a significant influence on the reduction of the overall elastic buckling strength (RMI, 2000).
The objective of this study is to check this assumption. The overall buckling equations as given in the
CAN/CSA-S136S1-04(CSA, 2004) were used to carry out the perforation affect for the overall
buckling strength.

The computer program CU-TWP developed at Cornell University (Sarawit and Pekoz, 2003) was
designed to compute the perforated column cross section properties and will be used in this study to
obtain the perforated column cross section properties. Three C-sections of C;, C, and C; properties are
calculated using CU-TWP and their section properties are given in Tables 6-1 to 6-3. In Table 6-1 is
the section C; property for the full unreduced gross section and perforated web or flanges. Table 6-2
gives the section properties of C, with and without section perforation. The cross section properties of
C; considering without perforation and with perforation are presented in Table 6-3. The cross section
should be noted that the geometry of C; and C, are similar but their section thicknesses are different.
In this study, the weighted section shown in Tables 6-1 to 6-3 presents the cross area that uses an
average thickness in the perforated segment of the section to account for the absence of the material

from the holes along the length of the section.
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Table 6-1: Section C,; dimensions and properties (Sarawit and Pekoz, 2003)

Full unperforated section dimensions

Section Properties

A=442.670mm’
t=2.311mm
[,=4.250x10°’mm*
I,,=0.000 mm*
I,=1.190x10°’mm*
J=788.330mm"*
C.G.=(15.680mm, 0)
S.C.=(-22.910mm,0)
C,=2.110x10°mm®

Section Properties

€ 76.2mm —_—

17,85mn$

-5—-—

17.

&

|« 38. Imm ->]

A=400.280mm’
t=2.311mm
[,=3.970x10°’mm*
I,,=0.000 mm*
I,=1.100x10°’mm*
J=640.940mm*
C.G.=(16.700mm, 0)
S.C.=(-23.560mm,0)
C,=2.050x10*mm®
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Table 6-2: Section C, dimensions and properties (Sarawit and Pekoz, 2003)

Full unperforated section dimensions Section Properties

v A=218.900mm?
| hl791mm t=1.143mm
R

|

|

A 1,=2.100x10°’mm*
I,,=0.00 mm*

‘ 1,=0.587x10’mm’*

5 J=95.330mm*

| m C.G.=(15.680mm, 0)
| S.C.=(-22.910mm,0)
& 381mm > CW=1.040x108mm8

< 176L2mm o
®
|
T
i
€
|
|
i
>

Net section dimensions Section Properties

T | m ‘me A=197.940mm’
17'85mm—¢ | y_ t=1.143mm S A
! I,=1.960x10°mm
IO PO —x I,,=0.00 mm*
| 1,=0.546x10’mm’
: m J=77.510mm*
|

C.G.=(16.700mm, 0)
S.C.=(-23.560mm,0)
C,=1.010x10°*mm®

| 38 1mm 9'
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Table 6-3: Section C; dimensions and properties (Sarawit and Pekoz, 2003)

Full unperforated section dimensions Section Properties
v A=593.260mm’
’\17,9lm t=2.311mm
Y [,=5.960x10°’mm*

I,,=0.000 mm*
1,=4.820x10°’mm*
J=1056.510mm*

i C.G.=(31.600mm, 0)
| €<— 762mm —> S.C.=(-40.860mm,0)
C,=7.820x10*mm®

€ 76.2mm =]
|
:
|
|
i
b
T
|
i
|
s

Net section dimensions Section Properties
a - A=550.870mm”
T” SS—¢ | _i.91mm t=2.311mm
= 1,=5.690x10’mm’*

1,=4.480x10’mm*
J=909.120mm*

| bemmm X I,,=0.000 mm*
17. SSmLo :

& 76 éjmm

‘ C.G.=(33.560mm, 0)
l€>] 1755mm S.C.=(-42.140mm,0)
<—  76.20m — C,=7.580x10*mm®

The flexural buckling strength of the members will be calculated using a net section to represent
the perforated section in this current study. All three sections are studied as both a concentrically
loaded compression member and a flexural member subject to bending about the strong axis, which
represents the x-axis. Boundary conditions at the ends of the member are pinned connections such
that the effective length for flexural buckling of both the strong and weak axis as well as the torsion is

equal to the length of the member.

The results of sections C; C, and C; are illustrated in Figures 6-2 to 6-4. The vertical axis in
Figures 6-2 to 6-4 are the elastic axial buckling load P.divided by the axial load causing yielding of

the full unreduced gross section Py = AFj.

110



4.0 % T

3.5r

3.0

25¢

P/P,
nN
o

T

1.5+

T

—+— perforated section
unperforated section

Il 1 |

125 150 175

Figure 6-2: Elastic buckling axial load for C,
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Figure 6-3: Elastic buckling axial load for C,
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Figure 6-4: Elastic buckling axial load for C;

Comparison results between the unperforated and perforated members for the axial load of these
three sections are demonstrated in Figures 6-2 to 6-4, respectively. From these figures, it can be
observed that the buckling strength will reduce with the presence of perforations in the section. In
Figures 6-2 to 6-4, it is noted that the maximum difference of the elastic buckling strength between
the gross and reduced section is less than 3.3%, which indicates that such perfection does not have
significant influence on the reduction of the overall elastic buckling strength. Therefore, the
unperforated section to predict the buckling strength of perforated sections assumed in the current

RMI Specification will be used in the following studies of this chapter.

6.2.3 Effective Design of Cross-Sectional Area

With the presence of perforations in rack columns, the effective design width equations of the AISI
Specification (2004) is not applicable in the design of CFS storage racks (RMI, 2000). Stub-column
tests are required in the RMI specifications and to account for the member local behavior (AISI,

2004; CSA, 2004).

112



By measuring the axial load and the corresponding axial shortening in the stub-column test, the
relationship between the stress on the effective section F, and the effective area A, can be obtained.
However, for tests where only the ultimate strength of the stub-column is measured, the effective

design area equation is given as follows: (RMI, 2000; CSA, 2004)

0

A F
- =1—(1—Q)( ] (6.1)

net min Fy

in which Q is the perforation factor and can be determined as

P
Q=—"— (6.2)
F A,

Where
A,: effective area at stress F),
F,, : nominal buckling stress

A, net minimum cross-sectional area obtained by passing a plane through the section normal to axis

of the column.

P, ultimate compressive strength of stub column by tests.

F } : actual yield stress of the column material if no cold work of forming affects are to be considered.

F,: yield point used for design

6.2.3.1 Concentrically Loaded Compression Members

In accordance with Section C4 of CAN/CSA-S136S1-04 (CSA, 2004), the factored compressive

resistance (P,) can be calculated by the following equation:

Pr = ¢cAan (63)

where
@. : resistance factor for concentrically loaded compression member

A,: effective area at stress F, and determined in Eq. (6.1)
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F,: nominal buckling stress and determined in Section C4 of CAN/CSA-S136S1-04.

6.2.3.2 Laterally Supported Members in Bending
According to procedure I in Section C3.1 of CAN/CSA-S136S1-04 (CSA, 2004), the factored

moment resistance (M,) can be obtained as follows:

M, =¢,SFlQ+1)/2] (6.4)

where
@, : resistance factor for bending strength

S.: elastic section modulus of effective section calculated relative to extreme compression or tension

fibre at F,
Q: perforation factor determined in Eq. (6.2)

The calculations in procedure II of Section 3.1.1 of CAN/CSA-S136S1-04 that utilize inelastic

reserve capacity are not used in rack design (CSA, 2004).

6.2.3.3 Laterally Unsupported Members in Bending

In accordance with Section C3.1.2.1 (lateral-torsional buckling resistance of open cross section
members) of CAN/CSA-S136S1-04 (CSA, 2004), the factored moment resistance (M,) can be

calculated using the following equation:

M,=¢,S.F,[Q+1)/2] 6.5)
where

@, : resistance factor for bending strength

S.: elastic section modulus of effective section calculated relative to extreme compression or tension

fibre at F.

o and O , in accordance with Section C3.1.2.1 of

ex ? ey et ?

F.: critical buckling stress based on O

CAN/CSA-S1365S1-04 (CSA, 2004).
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So far, there are no available results from the stub-column test to compute the perforation factor Q

at the University of Waterloo and such test will need to be carried out in future research.

6.3 Beam to Column Connections

6.3.1 Introduction

In the storage rack industry, beam end connectors are used to make beam to column connections. The
semi-rigid nature of this connection is primarily due to the distortion of the column walls, tearing of
the column perforation, and distortion of the beam end connector. Photographs of typical down-aisle
moment frame connections, cross-aisle braced frame connections, and column base plate connections

are presented in Figures 6-5 to 6-7.

Figure 6-5: Typical rack moment connection (NEHRP, 2003)
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Figure 6-7: Typical column base plate connection (NEHRP, 2003)

The storage rack stability depends significantly on the behavior of all these connections. The
detailed connections vary widely, thus it is impossible to establish general procedures for computing
joint stiffness and strength. Therefore, it is necessary to determine these characteristics by tests. These
beam to column connection tests are usually carried out to determine the relationship of the moment

M at the joint and the change in angle 8 between the column and the connecting beam (RMI, 2000).
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6.3.2 Beam to Column Connection Tests

The RMI Specification recommends the use of a cantilever test or a portal test. Figures 6-8 and 6-9
show the schematics of these test set-ups (RMI, 2000). The cantilever test provides a simple means of
determining the connection moment capacity and rigidity. In this current study, the sections of
column and beam and their connection stiffnesses for some numerical examples are obtained from the
cantilever beam tests carried out in accordance with the RMI Specification and Commentary (RMI,

2000) at the University of Waterloo (Schuster, 2004).

Vertical Load
v
L =30in ° |
o I: Deflection
Measuring Device

L =241
| ; |
i |

v

Figure 6-8: Cantilever test — beam to column connection test (RMI, 2000)

Vertical Load Vertical Load

Deflection
Horizontal Load I I ] I I | Measuring Device

— ]

L ) of [
L J

h=24m.

P s

le L |

Figure 6-9: Portal test — beam to column connection test (RMI, 2000)
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6.3.3 Test Specimens and Set-up

All the specimens were fabricated by the Econo-Rack Group Enrack manufacturing facility in
Brantford, Ontario and were delivered to the structures Laboratory of the Department of Civil
Engineering at the University of Waterloo prior to actual testing (Schuster, 2004). The rack column
section 4”°w x37dx13Ga and 3-1/4”wx2”dx13Ga was used with both the ‘Redirack’ style box beam

and ledge beams shown in Figure 6-10 in this test.

Figure 6-10: Typical box and ledge beam sections in tests (Schuster, 2004)

The schematic layout of a cantilever test set-up shown in Figure 6-8 was created in accordance
with RMI Commentary, Section 9.4.1(RMI, 2000) and the actual test set-up at the University of
Waterloo is shown in Figure 6-11(Schuster, 2004).
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Figure 6-11: Cantilever rack beam/column test (Schuster, 2004)

6.3.4 Evaluation of Test Results

In the cantilever test, the constant connection stiffness, R, relative to the moment and the rotation is
expressed as follows:

R=— 6.6
P (6.6)

The relationship between the moment and the angular change at a joint is generally nonlinear. The
following equation taken from RMI Commentary (RMI, 2000), can be determined a constant value of

R which can be used in structural analysis.

R.F.
R= 6.7)
50.85 _ Lc _ Lb
Po.ssLi 16E1c,y—net 3E1xb

where
R.F.: reduction factor to provide safety considering scatter of test data and recommend being 1 in this

study

1 : net moment of inertia of column section about y-axis

c,y—net
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I «» - moment of inertia of beam section about x-axis

B, ¢5: 0.85 times ultimate test load

0,45 : displacement of free end of cantilever beam at load P, s

Therefore, the R obtained from Eq. (6.7) with P equal to 0.85 times the ultimate load and ¢ equal to
the deflection at that load.

All data used to calculate beam-to-column connection stiffness R provided from the test is given in

Appendix E (Schuster, 2004). The designation of the beam section is also given in this table. With
M = PL, and R known, 6 can be determined from Eq. (6.6) for each load step. Once the beam-to-

column connection stiffness R is obtained, the end-fixity factor, discussed in Chapter 3, can be
obtained from Eqgs. (3.1). In this study, the column base connections are assumed to be a rigid

connection, in which the corresponding end-fixity factor will be taken a unity.

6.4 Elastic Buckling Strength of Storage Racks

6.4.1 Introduction

Up to now, the effective length factor, K, method is still the most commonly used method for
assessing frame stability in the engineering practice and by the storage rack industry. The design of
industrial steel storage racks in the United States is based on the effective length method according to
the RMI Specification (RMI, 2000). It should be noted that the cantilever test discussed in the
previous section is used to design beams and connections. The beam-to-column connection stiffness,
R, obtained from the tests is to account for the semi-rigid behavior of the connection in design with a
beam. However, there is an inconsistency in the current practice because the semi-rigid behavior was
not accounted for in the evaluation of K factors. In practice, K is simply assumed to be 1.7 as
suggested by the RMI Specification and it is not based on the alignment chart or stability analysis.

Therefore, it is important to investigate K factors with accounting for R based on the test results.
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As discussed in Chapter 2, the Notional loads are introduced to account for the effect of out-of-
plumbness on the stability of a framed structure and the out-of-plumbness effect is assumed to be this
that results from an erection tolerance of Smm over 120mm (1:240) stated in Clause 6.2.2 of
CSA/A344.1-05/A344.2-05 (CSA, 2005) for industrial steel storage racks. This corresponds to the
maximum fabrication and erection tolerance permitted by the RMI specification and is roughly twice
the value of 1/500 recommended by the AISC specification used for structural steel buildings (RMI,
2000; AISC, 2005).

The effective length factor based on the storey-based buckling method using the 2"-order
approximation presented in Chapter 4 will be used in this study to carry out the stability analysis for
CES storage rack’s compressive members with and without accounting for initial geometric

imperfections. Also, the unperforated sections will be considered in the following studies.

6.4.2 Column Effective Length Factor for Geometrically Perfect Storage Racks

The objective of this study is to evaluate the effective length factor K for CFS storage racks from the
method previously mentioned from the last section and compare the results with the Alignment chart
method. Parameters that influence the value of K for column flexural buckling including the section
properties and beam-to-column connections are also examined in this study. The box sections used as
columns and beams together with their section designations, section properties and the beam-to-

column connection stiffness (R) can be obtained from Appendix E (Schuster, 2004).

2-Bay by 2-Storey Storage Rack Example

A 2-bay by 2-storey storage rack shown in Figure 6-12 is used to carry out this study. The dimension
of this storage rack is also given in this figure. Some of the experimental data used in this study from
Appendix E is summarized in Table 6-4. The results of effective length factor K, based on different

rack types are presented in Table 6-5.
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Figure 6-12: 2-bay by 2-storey storage rack example

Table 6-4: Properties of column and beam (Schuster, 2004)

Designation Section Beam-to-column
Rack properties Connection
Type Width Depth L, ynet R
(mm) (mm) (column) (N-mm/rad)
L, (beam)
(mm*)
I 2438.4 mm 2438.4 mm 5 7
Column .800 ‘ 3.537x10
Beam 50.800 | 177.800 4.87x10°
II
Column | 101.600 | 76.200 | 1.074x10° 3.537x10’
Beam 50.800 | 177.800 4.87x10°
111
Column | 82.550 | 50.800 4.7x10° 2.09%x10’
Beam 50.800 | 101.600 1.22x10°
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Table 6-5: K factors for three types of column and beam in study

K factors

? g Rack Type I Rack Type II Rack Type I

3| =

ZHNS Alignment | Current study | Alignment | Current study | Alignment | Current study

chart (8():0, A():O) chart (8():0, A():O) chart (5():0, A():O)

1 | Cy 2.080 1.692 2.206 1.814 2.172 1.777
Cp 1.920 1.692 2.107 1.814 2.051 1.777
Cis 2.080 1.692 2.206 1.814 2.171 1.777

2 | Cy 3.570 3.410 5.262 5.182 4.602 4.484
Cxn 2.620 3.410 3.792 5.182 3.335 4.484
Cys 3.570 3.410 5.262 5.182 4.602 4.484

In Table 6-4, Rack Types I and II have the same value of beam-to-column connection stiffness (R)
and the same size beam section using a box section of 50.8mmx177.8mm (2”x7”’). The box sections
of 82.55mmx50.8mm (3-1/4"x3”) and 101.6mmx76.2mm( 4”x3”") are used as column sections in
Rack Types I and II, respectively. For Types I and III, only the column size is the same. Compared to
Rack Types I and 1II, it is found that when the column size increases, the K factors will increase. It is
also observed from Rack Types I and III when the beam size and the connection stiffness is increased,
the value of K factors will decrease because of the additional restraint from the beam and connection

stiffness will prevent the frame from sidesway buckling.

It is noted that the K factors values are close to 1.7 for the first storey and are greater than 2 for the
second storey. In the RMI Specification, the K factor’s default value is equal to 1.7 to provide a
reasonable amount of protection against sidesway buckling for most storage racks. However, the
results from this study found the actual value of K factors for storey 2 is much higher than 1.7. In the
RMI Specification, it is also stated that the K factor values other than 1.7 may be used if they can be
justified on the basis of using a rational analysis. Such rational analysis must properly consider the

following: column stiffness, beam stiffness, semi-rigid connection behavior and base fixity properties.
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6.4.3 Effective Length Factor for Initial Geometric Imperfect Storage Racks

Considering the initial geometric imperfections to evaluate the effective length factor K, the standard
practice of the AISC (2005) specifies a fabrication tolerance for compression members of L/1000
between lateral supports will be used as the initial out-of-straightness in storage racks (Sarawit and
Pekoz, 2006). The maximum erection tolerance of L/240 allowed by RMI (2000) and CSA/A344.1-
05/A344.2-05 (CSA, 2005) will be used as the out-of-plumbness value for individual columns in
storages racks. The critical loading multipliers together with their effective length factor based on
each storey are obtained from Eqs. (4.23) corresponding to the 2"-order approximations of A in the

Taylor series approximation of Eq. (4.11).

2-Bay by 3-Storey Storage Rack Example

A 2-bay by 3-storey storage rack shown in Figure 6-13 is investigated in this study. The dimensions
for this storage rack are shown in this figure and the properties of Rack Type I given in Table 6-4 will

be used for this study.
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Figure 6-13: 2-bay by 3-storey storage rack example
For comparison, the results based on this study without the consideration of initial geometric

imperfections are presented first. As discussed previously in section 6.3, once the beam-to-column
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connection stiffness, R, values were obtained from the tests (Schuster, 2004), the corresponding end-
fixity factor can be evaluated from Eq. (3.1). In this case, the end-fixity factor for the beam-to-column
connection is 0.029 corresponding to the value of R of 3.537x10’ N-mm/rad. Then following the steps
given in Appendix A, the end-fixity factors for the lower and upper end of each individual column,
r,; and r,; can be obtained for the purpose of evaluating the column lateral stiffness modification
factors f; and B, ;. The K factors values based on each storey can be determined from the 2" _ order
approximation together with r;;, r,;, fo; and B, ; and these results are presented in Tables 6-6. Also

presented in this table are the results obtained from the alignment chart method.

Table 6-6: Comparison of K factors of two-bay by three-storey frame — Rack Type I

Alignment Current study
chart (00=0, Ag=0)
Storey | Col 12EI,
K factors | 1y Fuii L Y Bri K

(KN/m) (x10?) | factors

Cp 2.080 1.000 | 0.122 | 102.146 | 9.787 1.692
1 Cp 1.919 1.000 | 0.198 | 116917 | 9.671 1.692
Cys 2.080 1.000 | 0.122 | 102.146 | 9.787 1.692
Cy 4.277 0.048 | 0.048 | 7.768 8.334 4.736
2 Cxn 3.093 0.116 | 0.116 | 19.533 8.340 4.736
Cy 4.277 0.048 | 0.048 | 7.768 8.334 4.736
Cs 3.565 0.122 | 0.159 | 23.965 8.345 2.954
3 Cx 2.623 0.198 | 0.274 | 42.417 8.372 2.954
Css 3.565 0.122 | 0.159 | 23.965 8.345 2.954

From Table 6-6, compared to the proposed method, it is found that the alignment chart results are
not in the conservative side for this frame. Also found in Table 6-6, the second storey is structurally
unstable since its slenderness ratio KL/r is greater than 200. From the commentary of AISI, the

slenderness ratio, KL/r, of all compression members preferably should not exceed 200 (AISI, 2004).

Presented in Table 6-7 are the results of the K factors accounting for the initial geometric
imperfections for the pallet rack shown in Figure 6-13. The values for column lateral stiffness
modification factors f; and S, ; associated with the initial geometric imperfections are also given in

the table.
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From Tables 6-6 and 6-7, it is obvious that the column K factor values based on the initial
geometric imperfections would increase while the column strength decreases. Similar to the case

without consideration for the initial geometric imperfections, the slenderness ratio KL/r of second

Table 6-7: K factors of two-bay by three-storey frame — Rack Type I

Current study
(8p=L/1000, Ay=L/240)
Storey | Col
12EI,
C B B K factors
(klj\I/m) (XIO_Z)
Cy | 95.352 10.380 1.806
1 Cpp | 108.165 | 10.250 1.806
Ciz | 95.352 10.380 1.806
Cy | 6903 8.864 5.181
2 Cp | 17.358 8.869 5.181
Cy | 6.903 8.864 5.181
Cs | 21.108 8.876 3.247
3 Cs, | 37.303 8.909 3.247
Csy; | 21.108 8.876 3.247

storey is greater than 200, consequently, the second storey becomes structurally unstable.

In the parametric studies, the following effects are demonstrated considering out-of-straightness,

out-of-plumbness and these two effects combined on K factors in Tables 6-8 to 6-10.

Table 6-8: Effects of out-of-straightness - 2-bay by 3-storey

K factors (Aq=0)
COlumn 80: 50: 50: 80: 80: 50: 50: 80: 80:
0 L/1000 | L/800 | L/600 | L/500 | L/400 | L/300 | L/240 | L/200
Ci=Cp=Cy3 | 1.692 | 1.740 | 1.753 | 1.774 | 1.792 | 1.819 | 1.867 | 1.919 | 1.974
Cy=Cy=Cy | 4736 | 4.854 | 4.884 | 4937 | 4980 | 5.048 | 5.166 | 5.293 | 5.430
C31=C5=C53 | 2954 | 3.027 | 3.047 | 3.079 | 3.107 | 3.149 | 3.223 | 3.302 | 3.388
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Table 6-9: Effects of out-of-plumbness - 2-bay by 3-storey

K factors ( 0o=0)
Ag=0 | Ag=L/500 | Ag=L/400 | Ag=L/300 | Ag=L/240 | Ay=L/200

Cii=Cp=Cy5 | 1.692 1.723 1.730 1.743 1.756 1.769
Cy=Cp=Cy; | 4736 | 4.883 4.920 4.983 5.047 5.112
C=GC=GC55 | 2954 3.052 3.077 3.119 3.162 3.206

Column

Table 6-10: Effects of out-of-straightness and out-of-plumbness - 2-bay by 3-storey

K factors
Column 00=0 | 80=L/1000 | 8,=L/1000 | ¢o=L/800 | 8o=L/600 | 6,=L/400
Ag=0 | Ag=L240 | Ap=L/500 | Ay=L/400 | Ay=L/300 | Ag=L/200

Cii=Cp;=Cy5 | 1.692 1.806 1.772 1.793 1.829 1.904
Cy=Cpn=Cy | 4.736 5.181 5.008 5.081 5.207 5.479
C=GC=GCs55 | 2.954 3.247 3.131 3.178 3.261 3.440

Based on the results summarized in Tables 6-8 to 6-10, it is found that the K factors increase when
the value of either one of the effects for initial imperfections increases. The combined effects of the
initial geometric imperfections would have the most severe impact on the column K factors. For
instance, the value of the K factor for the columns in storey 1 increased from 1.692 (perfect pallet
rack) to 1.740 (out-of-straightness: 6, = 1/1000 alone) and from 1.692 (perfect pallet rack) to 1.756
(out-of-plumbness: A, = L/240 alone). While the combined effects (out-of-straightness: o, = L/1000
and out-of-plumbness: A, = L/240), the resulted K factor is increased to 1.806 from 1.692 (perfect
pallet rack). It is also noted from Tables 6-8 and 6-9, the out-of-straightness has a greater influence
than that of the out-of-plumbness, which is observed by comparing the K factors with respect to the

imperfection values being /500, 1/400, L/300, L/240 and L/200.
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6.5 Stability Analysis of Storage Racks Subjected to Variable Loading

6.5.1 Introduction

The elastic buckling load for storage racks subjected to variable loading using the approach discussed
in Chapters 3 and 5 is presented in this section. As discussed previously, variable loading abandons
the conventional assumption of proportional loading to instead of considering different load patterns
that may cause a rack to buckle at different critical loading levels (Xu, 2002; Xu and Wang, 2007).
The most critical or so-called lower bound of the buckling loads corresponding to the worst load
patterns is the one that corresponds to the minimum magnitude of the total applied load for the rack.
The minimum frame-buckling load together with its corresponding load pattern present a clear
characterization of the buckling capacity of unbraced CFS racks subjected to variable loading. The
proposed approach developed in Chapters 3 and 5 has realistically taken account for the volatility of
magnitudes and patterns of loads applied to the storage racks as well as the initial geometric

imperfections; therefore, it can be applied to the design of the storage racks.

6.5.2 Numerical Studies

Example of Geometric Perfect Storage Racks

The first numerical example carried out is the stability of a CFS rack subjected to variable loading
without consideration for the effects of the initial geometric imperfections. As discussed previously in
Chapter 3, following the procedures of decomposing a multi-storey unbraced frame into a series of
single-storey frames presented in Appendix A, the lateral stability of the multi-storey unbraced frame
subjected to variable loading can be formulated as a pair of problems seeking the maximum and

minimum frame-buckling loads of the racks as described in Egs. (3.13), (3.16) and (3.17).

The 3-bay by 3-storey CFS storage rack structure shown in Figure 6-20 studied by (Sarawit and
Pekoz, 2006) is investigated by using Rack Type I of column and beam sections together with their
beam-to-column connection stiffness shown in Table 6-4. The beam-to-column connection stiffness
obtained from the test is R;= 313 k-in/rad (3.537x10’ N-mm/rad, Connection 1) (Schuster, 2004) in
Rack Type I, the two different beam-to-column connection stiffness obtained of R, = 10xR,
(3.537x10® N-mm/rad, Connection 2) and R; = 50x R, (17.685x10® N-mm/rad, Connection 3) are also
considered in this study to demonstrate the influence of the semi-rigid connections to the variable
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loading. Based on Eq. (3.1) in Chapter 3, the end-fixity factors associated with the foregoing three
beam-to-column connection stiffness are evaluated and presented in Table 6-11. In this study, the
column base connections are assumed to be rigid with a corresponding value of end-fixity factor of
unity. Possible local buckling and distortional buckling of the members were not considered in this
study. The effective length factor of the column associated with non-sway-buckling Kj...q related to
the rotational restraints of the column ends is used in the variable loading cases. Kjacq 1S €valuated

using Eq. (3.14).
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Figure 6-14: 3-bay by 3-storey storage rack example

Table 6-11: There different end connections in study

Connection | Column base Beam-to-column
connection connection
1 r=1 r=0.029
2 r=1 r=0.228
3 r=1 r=0.596

Following the procedures described in Chapter 3, the frame-buckling loads with respect to the 3-bay

by 3-storey storage rack being subjected to variable loading can be obtained from solving the
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maximization and minimization problems stated in Egs. (3.12), (3.15) and (3.16). For the foregoing
three cases shown in Table 6-11, the maximum and minimum frame-buckling loads, together with
their relative differences, are presented in Tables 6-12 to 6-14. For each case, the magnitudes of each
variable load P; (i=1, 2, 3;j = 1, 2, 3, 4) associated with the maximum and minimum frame-buckling
loads are presented so that the loading patterns corresponding to the critical buckling loads can be
obtained. Also presented in the tables are influential column attributes, such as the end-fixity factors,
the initial lateral stiffness 12E11.jﬁo,l.j/ ij (i=1,2,3;j=1, 2, 3, 4) of the columns, the column effective
length factor (Kjpceq) and the column buckling loads with respect to non-sway buckling. It can be
observed from the tables that by increasing the column end-fixity factors would result in decreases of
the column effective length factor, which consequently leads to increases of the magnitudes of

column buckling loads in a non-sway mode. It is also observed that the column with the larger value

of the end-fixity factor would yield to the larger value of 12E7.4, ./ L?] that indicates the larger lateral

stiffness against lateral instability.
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Table 6-12: Results of the storage rack for Connection 1 (r = 0.029) —Figure 6-14

Min. (kN)

COl. 12€I’/ ﬁ(].ij Pu,ij Max. Sl =0 SZ =0 S3 =0
| e P | Kinea | gy | ) | 850 | S50 | 5150
/] (kN/m) 2 1 1

S3> 0 S3> 0 Sp> 0
11{1.000{0.123| 102.343 | 0.098 | 0.681 [861.400 - 401.010 -
12 [1.000{0.199| 117.224 | 0.097 | 0.665 [903.700| 246.210 - - N/A
13 [1.000{0.199| 117.224 | 0.097 | 0.665 [903.700| 246.210 - -
14 {1.000{0.123| 102.343 | 0.098 | 0.681 [861.400 - 84.460 -
21 10.048 10.048| 7.898 0.083 | 0.971 |423.800 - 3.600 -
22 (0.117(0.117| 19.813 | 0.083 | 0.931 [461.300 - - 65.700 N/A
23 10.117(0.117| 19.813 | 0.083 | 0.931 [461.300 - - 1.700
24 10.048 10.048| 7.898 0.083 | 0.971 |423.800 - 3.600 -
31 10.12310.160| 24.203 | 0.084 | 0.917 |475.400 - 3.600 -
32 10.199|10.276| 42.810 | 0.084 | 0.863 |536.900 - - 15.300 N/A
33 10.1990.276| 42.810 | 0.084 | 0.863 |536.900| 84.400 - 1.700
34 10.12310.160| 24.203 | 0.084 | 0.917 |475.400 - 73.660 -
Critical frame buckling loads >.P; = 578.820 | 569.930 84.400 N/A
$1=0.000 | $;=0.000 |5,=374.880
>SS = S$,=0.000 | S$,=0.000 | S,=0.000 | N/A
S$,=122.820(55=83.260(5,=122.820
Difference max. & min. loads 1.6% 585.5% N/A
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Table 6-13: Results of the storage rack for Connection 2 (r = 0.228) — Figure 6-14

Min. (kN)

Col. 12‘?‘?/‘ Bos Py Max. 51=0 $=0 | $5=0
RGN P K| 4y | i) $50 | $>0 | 550
] (KN/m)

S3> 0 S3> 0 S, > 0
11| 1.000 {0.476| 176.561 | 0.097 | 0.665 |902.100 - 371.860 -
12 | 1.000 | 0.636| 215.186 | 0.095 | 0.642 {967.800 - - - N/A
13 | 1.000 | 0.636| 215.186 | 0.095 | 0.642 [967.800| 389.750 - -
14 | 1.000 |0.476| 176.561 | 0.097 | 0.665 {902.100 - 0.700 -
21| 0.431 {0.431| 87.544 | 0.083 |0.932|459.600 - - -
22 1 0.613 |0.613| 141.002 | 0.084 | 0.865 {534.500 - - 106.540 N/A
231 0.613 |0.613| 141.002 | 0.084 | 0.865 [534.500| 0.050 - 26.720
24 |1 0.431 |0.431| 87.544 | 0.083 |0.932 |459.600 - 171.560 -
31| 0.476 {0.625| 120.396 | 0.084 | 0.865 |534.500 - 171.550 -
321 0.636 {0.769| 171.926 | 0.084 | 0.793 |634.900 - - 26.720 N/A
331 0.636 [0.769| 171.926 | 0.084 | 0.793 |634.900| 670.270 - 26.720
34 |1 0.476 [0.625| 120.396 | 0.084 | 0.865 |534.500 - 171.560 -
Critical frame buckling loads YP; = 1060.070 | 1058.780 | 670.320 | N/A
$:=0.000 | §;=0.000 |S,=288.060
2.8 = $,=0.000 | $,=0.000 | §,=0.000 | N/A
S$3=117.980(53=351.980(5,=584.640
Difference max. & min. loads 0.12% 58.1% N/A
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Table 6-14: Results of the storage rack for Connection 3 (r = 0.596) — Figure 6-14

Min. (kN)
12EI ..

COl. %ﬂ(xij Pu,ij MaX. Sl =0 S2 =0 S3 =0
gl e | b Pri | Keas (kN) (KN) $550 | $i>08> | $>0
L] (kN/m) 2 1 3 1

S3> 0 0 Sp> 0
11| 1.000 [0.739| 242.135 | 0.096 | 0.654 | 934.800 - - -
12 | 1.000 | 0.848 | 272.585 | 0.095 | 0.627 {1017.000 - 217.580 - N/A
13 | 1.000 |0. 848 | 272.585 | 0.095 | 0.627 {1017.000 - 0.130 -
14 | 1.000 |0.739| 242.135 | 0.096 | 0.654 [934.800| 195.320 - -
21 0.727 |0.727 | 182.148 | 0.084 | 0.899 |494.800 - - -
221 0.844 |0.844 | 232.737 | 0.084 | 0.817 |598.300 - 1.970 1058.760 N/A
23 (0. 844 |0. 844 | 232.737 | 0.084 | 0.817 |598.300 - 578.070 1.760
24 10.727(0.727| 182.148 | 0.084 | 0.899 |494.800| 395.290 - -
311 0.739 1 0.846 | 208.708 | 0.084 | 0.827 [584.000| 395.690 - -
321 0.848 10917 | 251.372 | 0.085 | 0.749 |711.800 - 562.53 80.340 N/A
33 10.84810.917| 251.372 | 0.085 | 0.749 |711.800 - - 1.760
34 10.739]0.846 | 208.708 | 0.084 | 0.827 [584.000| 395.690 - -
Critical frame buckling loads YP; = 1382.800 | 1360.330 | 1142.620 N/A
$,=0.000 | $,=0.000 |S,=164.760
>SS = $,=0.000 | $,=0.000 | S,=0.000 N/A
8§3=354.790|5;=504.580| $5=859.510
Difference max. & min. loads 1.7% 21% N/A

For Connection 1 the column base is rigidly connected and the beam-to-column connections are

semi-rigidly connected with the end-fixity factor value of 0.029, which can be practically considered

as a pinned connection. Consequently, the rack is flexible and it can be observed from Table 6-12 that

the maximum frame-buckling loads is 576.82kN associated with both first and second stories

becoming laterally unstable. The minimum frame-buckling loads associated with lateral instability of

the first and second stories are 569.93 kN and 84.40 kN, respectively. Therefore, the relative

difference between the maximum and minimum frame-buckling loads is 585.5%, which is rather

significant and would cause some concern in the engineering practice. It is also observed from Table
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6-12 that the load pattern corresponding to the maximum frame-buckling loads tends to place the

loading only on the interior columns which are laterally stiffer than the exterior ones as characterized

by the larger value of the column lateral stiffness12E7, 3,/ Lf] Contrasting to the maximum loading,

the load patterns associated with the minimum frame-buckling loadings are applied on the exterior
columns when the first storey is laterally unstable and on the interior columns when the second storey
is laterally unstable. With respect to the load patterns corresponding to the maximum and minimum
frame-buckling loads obtained from the current study, verification results using MASTAN2
(McGuire et al., 2000) is given in Table 6-15. The results show that the applied load ratio of the

elastic critical load is equal to one, which indicates the rack is within its critical load conditions.

Table 6-15: Results verification of rack shown in Figure 6-14 — Connection 1

Current study
Storey Columns Min. (kN)
Max. $1=0 $:=0 S3=0
(kN) S>>0 $1>0 $1>0
S§3>0 S3>0 S>>0
11 - 401.010 -
1 12 246.210 - -
13 246.210 - - N/A
14 - 84.460 -
21 - 3.600 -
22 - - 65.700
2 23 - - 1.700 N/A
24 - 3.600 -
31 - 3.600 -
32 - - 15.300
3 33 84.400 - 1.700 N/A
34 - 73.660 -
MASTAN? — Elastic critical load: | 1.0030 1.0310 0.987 N/A
applied load ratio

In Connection 2, the beam-to-column connections stiffness (» = 0.228) value is increased to ten
times compared to Connection 1(r = 0.029). The increase of the semi-rigid connection stiffness yields

a stiffer frame, which is evidenced by increasing the columns lateral stiffness 12E1,4, , / L, compared

to that of Connection 1. Consequently, the maximum frame-buckling load of Connection 2 increases
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to 1060.07 kN, and the corresponding minimum frame-buckling load decreases to 670.32 kN, which
yields the relative difference between the maximum and minimum frame-buckling loads to be 58.1%,
which is still very significant. The load patterns associated with the maximum and minimum frame-

buckling loads are similar to that of Connection 1.

As the connection rigidity value of Connection 3 (r=0.596) is further increased to fifty times of
Connection 1 (r=0.029), the storage rack becomes stiffer than Connection 2, and the magnitudes of
the maximum and minimum frame-buckling loads are found to be increased to 1382.8 kN and
1142.62 kN, respectively. The relative difference between the maximum and minimum in Connection
3 is 21%. It is found that the load patterns associated with the maximum are applied for exterior
columns, which are different compared to Connections 1 and 2. When either the first or second stories
are laterally unstable, the load patterns associated with minimum frame-buckling loads are found to

apply to the loading on the interior columns.

It is noted that for the three connections, the linear programming procedure could not find the
maximum and minimum frame-buckling loads that only involves the lateral storey buckling of the
third storey of the storage rack (S;=0 and S, > 0, S, > 0), which indicates that for any given load
pattern, the lateral storey instability will not occur in the third storey prior to such type of failure in
the first and/or second storey. Therefore, the maximum and minimum frame-buckling loads with

respect to the lateral instability of storey 3 are not considered in the following parametric study.

Example of Initial Geometric Imperfect Storage Racks

The second study is designed to investigate the effects of the initial geometric imperfections to the
CFS storage racks stability subjected to variable loading. The numerical example of the 3-bay by 3-
storey CFS rack (shown in Figure 6-14) with the end-fixity factor of Connection 2 (shown in Table 6-
11) will be used and the effects of out-of-straightness (Jy), out-of-plumbness (A;) and combined the

out-of-straightness (§,) and out-of-plumbness (A¢) are evaluated, respectively.

(1)Effect of out-of-Straightness (9,)

For stability of the 3-bay by 3-storey rack subjected to variable loading, the results of maximum and

minimum frame-buckling loads influenced by out-of-straightness (9,) are presented in Tables 6-16 to
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6-18. The relative difference between the maximum and minimum frame-buckling loads is given in

Table 6-19.

Table 6-16: Effects of out-of-straightness (6,) to Maximum frame-buckling loads

Maximum frame-buckling loads (kN)

C‘O.l' 8o=0 0o=L/100 | 06,=L/800 | &y=L/600 | 06,=L/500 | dp= L/400 | 8= L/300
ij 0
11 - - - - - - -
12 - 183.360 | 184.080 0.900 172.310 166.670 157.070
13 | 389.750 | 183.350 | 177.160 350.920 172.110 166.670 158.210
14 - - - - - - -
21 - - - - - - -
22 - - 3.870 72.600 588.110 | 504.040 2.180

23| 0.050 2.170 6.350 180.810 5.300 27.820 | 184.480
24 - - - - - - -
31 - - - - - - -
32 - 406390 | 102.380 | 180.810 5.300 27.820 | 186.660
33| 670270 | 228.550 | 516.210 | 180.810 5.300 27.820 | 186.660
34 - - - - - - -

2P;| 1060.070 | 1003.820 | 990.060 966.840 948.420 | 920.850 | 875.250
$,=0.000 | $,=0.000 | $;=0.000 | $,=0.000 | $,=0.000 | §;=0.000 | $,=0.000

2Si| §,=0.000 | $,=0.000 | $,=0.000 | $,=0.000 | S,=0.000 | $,=0.000 | S,=0.000

S$5=117.980|5,=112.700|53=116.820| S5=284.680 | $5=521.230 |55=475.600] $,=228.600
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Table 6-17: Effects of out-of-straightness (6,) to minimum loading with

lateral instability - storey 1: $; =0,5,>0,5;> 0

Minimum frame-buckling load (kN) (S;=0, $,>0, S3> 0)

C.O.l' 3¢=0 8o=L/100 | 8,=L/800 | 8,=L/600 | 8,=L/500 | 8¢=L/400 | &= L/300
Y 0
11| 371.860 | 349.490 6.40 - 594.860 523.850 293.000
12 - - - - - - -
13 - - - - - - -
14 0.700 - 337.760 | 334.970 - - 17.460
21 - 81.620 173.850 - 230.420 181.130 132.140
22 - - - - - - -
23 - - - - - - -
24 | 171.560 | 190.460 | 156.910 - - 0.025 143.830
31| 171.550 | 190.440 | 156.910 - - 0.025 143.830
32 - - - - - - -
33 - - - - - - -
34 | 171.560 | 190.460 | 156.910 | 630.700 121.870 212.600 143.830
2.P;| 1058.780 | 1002.460 | 988.730 | 965.680 947.120 919.620 874.090
$,=0.000 | §,=0.000 | §,=0.000 | §,=0.000 | §,=0.000 | S$,=0.000 | S,=0.000
2Si| $,=0.000 | $,=0.000 | $,=0.000 | $,=0.000 | S,=0.000 | $,=0.000 | S,=0.000
S5=117.980|55=297.980|55=336.480[55=109.240{ 55=279.520 | §3=299.400 | §3=295.270
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Table 6-18: Effects of out-of-straightness (6,) to minimum loading with

lateral instability - storey 2: S,= 0, S;>0, S3>0

Minimum frame-buckling loads (kN) (S,=0, S; >0, S3>0)

C_O,l' 50=0 80=L/1000 | 5,=L/800 | 8,=L/600 | 8,=L/500 | dy=L/400 | o= L/300
7 MinkN) | MinkN) | Min.(kN) | Min.(kN) | Min.(kN) | Min.(kN) | Min.(kN)
11 - - - - - - -

12 - - - - - - -
13 - - - - - - -
14 - - - - - - -

21 - - - - - - -
22| 106.540 | 471380 | 628.820 | 614.980 | 508.160 - 553.780
23| 26720 | 54.840 0.025 0.025 | 31.950 | 195.830 3.270
24 - - - - - - -

31 - - - - - - -

32| 26720 | 55.430 - - 31.950 | 195.830 1.460
33| 26720 | 55.440 0.025 0.025 - 195.830 1.460
34 - - - - - - -

>P,| 670320 | 637.100 | 628.820 | 615.030 | 604.010 | 587.500 | 559.970

5,=288.060| 5,=272.460 |S,=268.060|S,=262.3505,=257.280 $,=249.680 | 5,=237.190
2Si| §,=0.000 | $,=0.000 | $,=0.000 | S,=0.000 | S,=0.000 | S,=0.000 | S,=0.000
S5=584.640| S5=479.130 | S;=584.640|S:=537.970| $:=483.86 | $:=239.670 | 5;=489.280
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Table 6-19: Difference between the maximum and minimum frame-buckling

loads - out-of-straightness (6,)

$1=0,5>0,5>0 $,=0,5,>0,5>0
Max. Min. Min.
out-of- Frame Frame Difference Frame Difference
straightness | buckling | buckling | Max. & Min | buckling Max. & Min
loads loads loads loads loads
2P;= 2P;= (kN) 2P;= (kN)
(kN) (kN) (kN)
80=0 1060.070 | 1058.780 0.12% 670.320 58.1%
3=L/1000 | 1003.810 | 1002.460 0.13% 637.100 57.6%
8=L/800 | 990.060 | 988.730 0.13% 628.820 57.4%
8=L/600 | 966.840 | 965.680 0.12% 615.030 57.2%
8p=L/500 | 948.420 | 947.120 0.14% 604.010 57.0%
8=L/400 | 920.850 | 919.620 0.13% 587.500 56.7%
8=L/300 | 875.250 874.090 0.13% 559.970 56.3%

In Tables 6-16 to 6-18, the results demonstrate that the maximum frame-buckling loads of the rack
and minimum frame buckling loads corresponding to the lateral instability of stories 1 and 2, which
are 5, =0,5>0,5 >0and S, =0, S >0, S5 > 0, respectively. Comparing the results to the
geometric perfect rack, it is found that the maximum and minimum frame-buckling loads decrease as
the values of out-of-straightness (§,) increase. In Table 6-17, for each value for out-of-straightness
(8¢), the load pattern corresponding to the maximum frame-buckling loads tends to place the loading
only on the interior columns and the first and second stories are laterally unstable simultaneously. The
results of Table 6-17 demonstrate for each value for out-of-straightness (3,) with respect to the lateral
instability of storey 1, the load pattern corresponding to the minimum frame-buckling loads will tend
to place the loading only on the exterior columns and second stories are laterally unstable
simultaneously. While for the minimum frame-buckling loads with respect to the lateral instability of

storey 2 shown in Table 6-18, it is observed that for each value of the out-of-straightness (d), the
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minimum frame-buckling loads decrease significantly and the corresponding load tends to place the

loading only on the interior columns.

The results of the relative difference between the maximum and minimum frame-buckling loads
with respect to lateral instability of stories 1 and 2 are presented in Table 6-19. For each value of out-
of-straightness (), only 0.13% is noted for the relative difference between the maximum and
minimum frame-buckling loads associated with the lateral instability of storey 1. A significant
difference is found to be greater than 56% between the maximum and minimum frame-buckling loads

with respect to lateral instability of storey 2.

(2)Effect of out-of-Plumbness (A)

The results of the maximum and minimum frame-buckling loads accounting for the effect of out-of-
plumbness (A,) are demonstrated in Tables 6-20 to 6-22. The relative difference between the

maximum and minimum frame-buckling loads is presented in Table 6-23.
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Table 6-20: Effects of out-of-plumbness (A,) to maximum frame-buckling

loads
Col. Maximum frame-buckling loads (kN)
i Ap=0 Ap=L/500 | A=L/400 | A=L/300 | Ay=L/240 Ay=L/200
11 - - - 122.570 9.810 476.150
12 - 328.400 186.390 - - -
13 | 389.750 47.710 186.390 - - -
14 - - - 230.630 338.720 0.390
21 - - - - - 213.170
22 - 626.260 463.540 - - -
23 0.050 - 7.200 - - -
24 - - - 206.180 - 0.340
31 - - - 206.750 291.010 0.780
32 - 4.480 150.440 - - -
33 | 670.270 - - - - -
34 - - - 206.580 313.250 242.110
2P| 1060.070 | 1006.850 993.960 973.100 952.800 932.930
$,=0.000 | $,=0.000 | §,=0.000 | §,=0.000 | §,=0.000 $,=0.000
2Si| $,=0.000 | $,=0.000 | S,=0.000 | S$,=0.000 | S,=0.000 $,=0.000
S3=117.980| $5=562.080 | §5=451.460 | §5=257.500 | $5=107.830 | $5=358.700
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Table 6-21: Effects of out-of-plumbness (Ay) to minimum loading with

lateral instability - storey 1: S; =0, S,> 0, 55> 0

Minimum frame buckling loads (kN) (S$;=0, $,> 0, $3> 0)

C?l' A=0 | A=L/500 | A=L/400 | A=L/300 | A=L/240 | A=L/200

/ Min. (kN) | Min. (kN) | Min. (kN) | Min. (kN) | Min. (kN)

11 | 371.860 - - 122.570 9.310 476.150

12 - 328.400 | 186.390 - - -

13 - 47710 | 186.390 - - -

14| 0.700 - - 230.630 | 338.720 0.390

21 - - - - - 213.170

22 - 626.260 | 463.540 - - -

23 - - 7.200 - - -

24 | 171.560 - - 206.180 - 0.340

31| 171.550 - - 206.750 | 291.010 0.780

32 - 4.480 150.440 - - -

33 - - - - - -

34 | 171.560 - - 206.580 | 313250 | 242.110

2P| 1058.780 | 1006.850 | 993.960 | 973.100 | 952.800 | 932.930
$,=0.000 | $,=0.000 | S§,=0.000 | S$,=0.000 | $,=0.000 | S,=0.000

2Si| $,=0.000 | $,=0.000 | S,=0.000 | $,=0.000 | $,=0.000 | S,=0.000
S=117.980| 5;=562.080| $3=451.460 | §:=257.500 | $:=107.830| S;=358.700
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Table 6-22: Effects of out-of-plumbness (A,) to minimum loading with

lateral instability - storey 2: S, =0, S; >0, S3>0

Col. Minimum frame buckling loads (kN) (S,=0, S;> 0, $;>0)
i Ap=0 Ap=L/500 | Ag=L/400 | Ay=L/300 | Ap=L/240 | Ay=L/200
11 - - - - -
12 i ' i - - i
13 . ' . - - .
14 i ' i - - i
21 - - - - - -
22 | 106.540 | 475.050 463.540 590.930 590.030 0.050
23 | 26.720 0.280 7.20 - - 0.370
24 - - - - - -
31 - - - - - -
32| 26.720 154.750 150.440 14.610 - -
33| 26.720 0.650 - - - 72.020
34 - - - - - -
2P;| 670320 | 630.740 621.190 605.540 590.030 575.440
$,=288.060(S,=285.6201 §,=284.990 | §,=283.990 |$,=283.090 | §,=281.780
28 $,=0.000 | $,=0.000 | $,=0.000 | S$,=0.000 | S$,=0.000 $,=0.000
S53=584.640| §5=453.5501| S3=451.460 | $5=541.690 | $;=544.350 | $5=536.070
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Table 6-23: Difference between the maximum and minimum frame-buckling

loads - out-of-plumbness (A,)

$1=0,5>0,8>0 $,=0,5,>0,5>0
Max. Min. Min.
Frame Frame Difference Frame Difference
0utof | pickling | buckling | Max. & Min | buckling | Max. & Min
plumbness loads loads loads loads loads
2P;= 2P;= (kN) 2P;= (kN)
(kN) (kN) (kN)

A=0 1060.070 | 1058.780 0.12% 670.320 58.1%
Ay=L/500 | 1006.810 | 1006.810 0.0% 630.740 59.6%
Ag=L/400 | 993.960 993.960 0.0% 621.190 60.0%
A=L/300 | 973.100 973.100 0.0% 605.540 60.7%
Ag=L/240 | 952.800 952.800 0.0% 590.030 61.5%
Ag=L/200 | 932.930 932.930 0.0% 575.440 62.1%

From Tables 6-20 to 6-22, it is found that the magnitudes of the maximum and minimum frame-
buckling loads are reduced with the presence of the initial out-of-plumbness. In Table 6-20, it is
found when the rack is achieved to the maximum frame-buckling load, the first and second stories
become laterally unstable simultaneously. It is also found from Tables 6-20 and 6-21, for each out-of-
plumbness (A,) value, there are no differences between the maximum and minimum frame-buckling
loads including the load patterns with respect to the lateral instability of storey 1. It is also noted that
the load patterns tend to place the loading only on the interior columns for out-of-plumbness with
values of Ay=L/500 and Ay=L/400 and the load patterns tend to place the loading to the exterior
columns for out-of-plumbness with values of Ay=L/300, Aj=L/240 and Ay=L/200. In the case of the
minimum frame-buckling loads with respect to the lateral instability of storey 2 shown in Table 6-22,
it is seen that for each value of the out-of-plumbness (Ay), the minimum frame-buckling loads
decrease significantly and the corresponding load tends to place the loading only on the interior

columns.
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The relative difference as noted is insignificant between the maximum and minimum frame-
buckling loads with respect to the lateral instability of storey. The lateral instability with respect to
the second storey, the relative difference between the maximum and minimum frame-buckling loads
are found to be 59.6%, 60.0%, 60.7%, 61.5% and 62.1%, for each out-of-plumbness (A;) of
Ag=L/500, Ay=L/400, Ay=L/300, Ay=L/240 and Ay=L/200, respectively.

(3) Combined Effects of out-of-Straightness (6¢) and out-of-Plumbness (A)

The combined effects of out-of-straightness (dp) and out-of-plumbness (Aj) on the maximum and
minimum frame-buckling loads together with their relative difference are discussed in this section.
Comparing to only one of the effects for out-of-straightness or out-of-plumbness, the combined
effects of out-of-straightness and out-of-plumbness have a greater impact on the maximum and

minimum frame-buckling loads.
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Table 6-24: Effects of both out-of-straightness (6,) and out-of-plumbness

(Ay) to maximum frame-buckling loading

Maximum frame-buckling load (kN)

C_O.l. 8o=0 8o=L/1000 | 8p=L/1000 | 6y=L/800 | dp=L/600 | 8,=L/400
/ Ay=0 A=L/240 | Ap=L/500 | Ap=L/400 | Ae=L/300 | Ay=L/200
11 - 113.570 74.610 125.720 82.810 138.730
12 - - 95.520 73.240 82.810 -
13| 389.750 - 95.520 73.240 82.810 -

14 - 213.540 88.350 73.210 82.810 153.280

21 - 3.190 - - 2.050 111.350
22 - - 577.340 573.030 544.730 -

23 0.050 - 5.000 0.690 - -

24 - 187.830 - - 2.070 133.520
31 - 191.030 - - 1.850 133.520
32 - - 11.140 6.830 0.530 -

33 | 670.270 - 5.000 0.690 - -

34 - 191.010 - - 2.070 133.520

2P| 1060.070 | 900.160 952.480 926.630 884.530 803.920

$,=0.000 | $,=0.000 | §,=0.000 | $,=0.000 | $,=0.000 $,=0.000
2Si| $,=0.000 | S$,=0.000 | S,=0.000 | $,=0.000 | S,=0.000 S$,=0.000
S$5=117.980| 55=239.990 | §5=525.670| $5=520.020 | §3=502.570 | $5=270.370
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Table 6-25: Effects of both out-of-straightness (6,) and out-of-plumbness

(Ap) to minimum loading with lateral instability - storey 1: §; =0, S>> 0, S;> 0

Minimum frame-buckling loads (kN) (S;=0, $,> 0, S3> 0)

Col.| §,=0 8o=L/100 | 8,=L/100 | 8,=L/800 | 8p=L/600 | 8,=L/400
J | Ag=0 0 0 Ay=L/400 | Ap=L/300 | Ay=L/200
Ag=L/240 | Ay=L/500
11| 371.860 113.570 74.610 125.720 82.810 138.730
12 - - 95.520 73.240 82.810 -
13 - - 95.520 73.240 82.810 -
14 0.700 213.540 88.350 73.210 82.810 153.280
21 - 3.190 - - 2.050 111.350
22 - - 577.340 573.030 544.730 -
23 - - 5.000 0.690 - -
24 | 171.560 187.830 - - 2.070 133.520
31 | 171.550 191.030 - - 1.850 133.520
32 - - 11.140 6.830 0.530 -
33 - - 5.000 0.690 - -
34 | 171.560 191.010 - - 2.070 133.520
2Pj| 1058.780 | 900.160 | 952.480 926.630 884.530 803.920
$,=0.000 | §,=0.000 | §,=0.000 | §,=0.000 | §,=0.000 | S$,=0.000
28Si| $,=0.000 | $,=0.000 | S,=0.000 | $,=0.000 | $,=0.000 | $,=95.120
S$5=351.980 |S$5=564.540]55=451.460| $5=257.500 | $5=107.830 | §3=358.700
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Table 6-26: Effects of both out-of-straightness (6,) and out-of-plumbness

(Ay) to minimum loading with lateral instability - storey 2: S, =0, S> 0, S;> 0

S2: O, S >O, S3 >0

cotl 370 80=L/100 | 8,=L/1000 | 8,=L/800 | 6,=L/600 | 8,=L/400

| A=0 0 A=L/500 | A=L/400 | Ag=L/300 | Aj=L/200

7 Min. (kN) | A=L/240 | Min. (kN) | Min. (kN) | Min. (kN) | Min. (kN)

Min. (kN)

11 - - - - - -

12 - - - - . .

13 - - - - - -

14 - - - - . .

21 - - - - - -

22| 106.540 | 552.950 | 577.340 | 573.030 | 545340 | 498.610

23| 26720 | 0.0270 5.000 0.680 - 0.0560

24 - - - - - -

31 - - - - - -

32| 26720 6.170 11.140 6.830 7.750 0.0560

33| 26720 | 0.0270 5.000 0.680 - 0.0570

34 - - - - - -

2Py 670320 | 559.170 | 598.490 | 581.220 | 553.090 | 498.780
S,=288.060|5,=267.510| 5,=270.270 | 5,=266.800 | 5,=258.370 | 5,=243.570

2Si| $,=0.000 | $,=0.000 | $,=0.000 | S$,=0.000 | S,=0.000 | S$,=0.000
$,=584.640|S:=511.750/ 5,=525.670 | $:=520.020 | $:=500.050 | S;=466.230
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Table 6-27: Difference between the maximum and minimum frame-buckling

loads — out-of-straightness (8y) and out-of-plumbness (A,)

$1=0,5>0,8>0 $,=0,5,>0, 5;>0
out-of- Max. Min. Min.
straightness | Frame Frame Difference Frame Difference
and buckling | buckling | Max. & Min | buckling Max. & Min
out-of- loads loads loads loads loads
plumbness 2P;= >P;= (kKN) >P;= (kN)
(kN) (kN) (kN)
8020
1060.070 | 1058.780 0.12% 670.320 58.1%
A():O
So=L/1000
900.160 900.160 0.0% 559.170 61.0%
Ag=L/240
So=L/1000
952.480 952.480 0.0% 598.490 59.1%
Ag=L/500
do=L/800
926.630 926.630 0.0% 581.220 59.4%
Ag=L/400
do=L/600
884.530 884.530 0.0% 553.090 59.9%
Ag=L/300
8o=L/400
803.920 803.920 0.0% 498.780 61.2%
Ag=L/200

As presented in Tables 6-24 to 6-27, it is found that the results for the maximum and minimum
frame-buckling loads decrease when the values of the out-of-straightness (8y) and out-of-plumbness
(Ap) are both increased. From Table 6-24, it is noted when the rack is subjected to the maximum
frame-buckling loads the first and second stories become laterally unstable simultaneously and the
corresponding load patterns tend to place the loading on the both interior and exterior columns.
Similar to the effect of out-of-plumbness (Aj), and the combined effects for out-of-straightness (Jy)
and out-of-plumbness (Aj), the maximum and minimum frame-buckling loads including the load

values and patterns with respect to the lateral instability of storey 1 are identical. It is also noted that
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the minimum frame buckling loads decrease significantly when the frame is associated with the
lateral instability of storey 2 and the load pattern corresponding to this minimum frame-buckling
loads tends to place the loading only on the interior columns. In Table 6-27, for each combined value
of out-of-straightness (3y) and out-of-plumbness (A,), the relative differences between the maximum

and minimum frame-buckling loads is close to 60%, which is significant.

6.6 Conclusions

The section properties of perforated members together with their elastic buckling analyses using the
computer program CU-TWP (Sarawit and Pekdz, 2003) and CAN/CSA-S136-04 (CSA, 2004) were
studied first in this chapter. The results indicate that the presence of perforations in the section will
reduce the buckling strength. The beam-to-column connection test results provided by Schuster
(2004) were used to obtain the end-fixity factors, then the proposed method discussed in Chapters 3
and 4 can be used to predict the stability for CFS storage rack structures. Similar to the studies
presented in Chapters 3 and 4, the effective length factor in the design of CFS storage racks with and
without the initial geometric imperfections was studied. In the case of geometric perfect frames, it is
found that the value of K factors for storey 1 is close to 1.7, given as a default value in RIM
specification (RMI, 2000). It is also found the K factors decrease as the values of beam-to-column
connections increase. In the study of effective length factor accounting for initial geometric
imperfections, it is observed that the K factors increase when the values of initial imperfections
increase. The results also demonstrated the combined effects of out-of-straightness (8,=L/1000) and
out-of-plumbness (Ay=L/240) have more impact on the K factors than the influence of out-of-
straightness (8y) and out-of-plumbness (A) individually. In the study of CFS storage rack structures
subjected to variable loading using the proposed method, the results demonstrated the similar trends
discovered in Chapters 3 and 5. For instance, it is also demonstrated, in this study that the semi-rigid
connections plays an important role in the frame stability and the relative difference between the
extreme frame-buckling loads were decreased when increasing the beam-to-column connection
stiffness. The presences of the initial geometric imperfections reduce the column lateral stiffness and

consequently the maximum and minimum frame-buckling loads are all reduced.
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Chapter VII

Conclusions and Future Research

Provided in this study is a contribution for the development in the methodology to carry out the
storey-based stability analysis for the multi-storey unbraced frames. The proposed methodology
includes the assessment of the integrity of the conventional steel structures and CFS storage racks
subjected to variable loadings, a simplified equation to calculate the lateral stiffness modification
factor ;, and a practical method to explicitly account for the initial geometric imperfections for the

design of steel structures including storage racks.

7.1 Conclusions

7.1.1 Storey Stability of Multi-Storey Unbraced Frames Subjected to Variable Loading

The proposed method to determine the stability of unbraced frames subjected to variable loading for
single storey unbraced frames proposed by Xu (2002) was extended to a multi-storey process. This
extended method incorporates the development of a general stability equation for multi-storey
unbraced frames subjected to variable loading. This can be characterized by the column lateral
stiffness modification factor f; which provides a quantitative measurement of the stiffness
interactions among the columns in a storey to resist lateral interactions among the columns in a storey
to minimize lateral instability. The concept of storey-based buckling is used to formulate the problem
of determining the critical frame-buckling loads to be a pair of constrained maximization and
minimization problems subjected to elastic stability constraints. The variables and objective functions
of the maximization and minimization problems are the applied column loads and the summation of
applied column load variables. The stability constraints are imposed to ensure that lateral instability
occurs in at least one storey of the frame. For each variable, an upper limit is imposed to ensure that
the magnitude of the applied load will not exceed this limit defined as the buckling load associated
with the non-sway buckling of the individual column. The following conclusions were formulated

from this study:
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The maximum and minimum frame-buckling loads and their associated load patterns can be
obtained by solving the maximization and minimization problems, with a linear programming
method, respectively. The maximum and minimum frame-buckling loads represent the upper
and lower bounds of the frame buckling loads of the structures, which characterize the

stability capacity of the frame under extreme loading conditions.

The minimization problem has to be solved for each storey and the maximization problem
only needs to be solved once by using any one of the stories in the frame. The numerical
examples showed that the maximum frame-buckling load always corresponds to the lateral
instability of both the first and second storey frame simultaneously, which indicates that a
further increase in any one of the applied loads is impossible as each storey has already

reached the limit state of lateral instability.

There might be several different load patterns associated with the minimum frame-buckling
loads and the relative difference between the maximum and minimum frame-buckling loads

are found to be substantial.

The relative differences between the maximum and minimum frame-buckling loads are

increased when decreasing the beam-to-column connection stiffness.

In the case of variable loading, frame-buckling loads associated with proportional loading are
always between the maximum and minimum loads subjected to variable loading. In contrast
to current the frame stability analysis involving only proportional loads, the proposed

approach permits individual applied loads on the frame to vary independently.

The variable loading approach captures the load patterns that cause instability failure of
frames at the minimum and maximum load levels. The approach clearly identifies the
stability capacities of frames under the extreme load cases and such critical information is

generally not available through the current proportional loading stability analysis.
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7.1.2 Storey-Based Stability Analysis for Unbraced Frame with Initial Geometrical

Imperfections

The stability of columns in multi-storey unbraced frames with initial geometric imperfections was
investigated within the context of storey-based buckling using the end-fixity factor to characterize the
beam-to-column rotational restraints. The investigated effects of the imperfections on the stability of
column were contemplated in the evaluation of effective length factor via the lateral stiffness
modification factor of column. Formulations and procedures of calculating the storey-based column
effective length factor with explicitly accounting for the initial geometric imperfections were derived.
From the derived formulations, and to obtain the critical load multiplier A, together with the effective
length factor K, a Taylor series expansion was employed to simplify the stability equation as a
quadratic equation (2"-order approximation), which can be further reduced to a linear equation (1°-
order approximation). Numerical results were carried out to substantiate with the results from the

storey-based buckling analysis. The following conclusions were obtained from the studies results as:

<A was obtained which indicated the

icr—1st—order

» An inequality expression A

icr—2nd—order
effective length factors K was found to be on the conservative side based on the Taylor series

expansion of 2"-order approximation versus the 1%-order approximation.

» The results obtained from the investigation of the proposed method for the unbraced frames
without considering the initial geometric imperfections show good agreements with the

results presented in the literature.

> The numerical results from the 1"-order and 2"-order approximations, and storey-based
buckling analysis, the maximum differences of 1.3% and 0.68% are noted between the 1** and
2" order approximations and the storey-based buckling analysis, respectively. The maximum

difference of 0.61% is found between 1*- order and 2™-order approximations.

» From the numerical examples using the 1*-order approximation, the results show the critical
load multiplier can provide a satisfied estimation for column effective length factor K and it

should be recommended for use in engineering practice.
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» In comparing the results with and without initial geometric imperfection, it is clear that initial
geometric imperfections have detrimental effects on both lateral stiffness and buckling

strength of the columns.

» Parametric studies were carried out to investigate the individual and combined effects of the
initial out-of-straightness and out-of-plumbness on the column effective length factor, where
it was found that the increase of the effective length factor linearly increase either one of the

initial geometrical imperfections.

» The study also discovers that the out-of-straightness has a greater detrimental impact than that
of the out-of-plumbness. It was found that given the same value of initial geometric
imperfection, the influence of the out-of-straightness on the column effective length factor is
almost doubled as that of the out-of-plumbness. This finding is consistent with the current
practice in which the tolerance for the out-of-straightness and the out-of-plumbness are

L/1000 and L/500, respectively.

» The proposed method is able to help the design practitioner to investigate the impacts of the
out-of-straightness and out-of-plumbness on column strength explicitly and independently for
any given values. Therefore, the proposed method in this study is certainly in the interest of

design engineers and should be recommended for engineering practice.

7.1.3 Multi-storey Unbraced Frames with Initial Geometric Imperfections Subjected
to Variable Loading

Based on the maximization and minimization problems stated with Eqgs. (3.13), (3.16) and (3.17) in
Chapter 3, the lateral stiffness modification factors of S ;(r;;r.;) and By {(r;;.7.;) corresponding to
these equations are replaced by S i(7;.7>00,00) and By i(ry;,7-90,A0) given in Egs. (4.13)
accounting for the initial geometric imperfections. Therefore, the problem of multi-storey unbraced
frames subjected to variable loading with respect to initial geometric imperfections can be solved and

a set of conclusions obtained as follows:
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» The presence of the initial geometric imperfections increased the maximum difference
between the maximum and minimum buckling loads to 21.2% for single-storey unbraced

frame with either pinned or rigid column ends.

» In the case of multi-storey unbraced frames, the study found the column lateral stiffness
decreasedwhen increasing the value of the initial geometric imperfections. As a result of the

decreasing lateral stiffness, the extreme frame-buckling loads were reduced.

» The numerical examples in the study further demonstrated the combined effects of member
out-of- straightness and frame out-of-plumbness has a stronger impact than considering the

effects of member out-of-straightness and frame out-of-plumbness individually.

» With respect to the same values of initial geometric imperfections, the extreme frame-

buckling loads decreased when the beam-to-column and column base connections decreased.

7.1.4 Application of Storey-based Stability Analysis to CFS Storage Racks

The methodology discussed in Chapters 3 to 5 applies to the CFS storage racks in this study. The
effective length factor K of CFS storage racks is evaluated with consideration of the test results for
semi-rigid connections. The analytical and comprehensive investigation on instability failures of CFS

storage racks subjected to variable loading was also studied. The following conclusions are made:

» Upon the test results for the semi-rigid connections, the K factors presented in the numerical
example are close to the value of 1.7 defined as a default value in RIM Specification (RMI,
2000) for the first storey. And the numerical examples show that the K factors are greater
than 4 for the second storey which indicated the second storey is in the most unstable

condition.

» The effective length factor K decreased with the increased beam size and beam-to-column

connections. It was also noted that when the column size increases, the K factors will increase.
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The effective length factor K increase when the value of either one of the effects for initial
imperfections increases. The combined effects of the initial geometric imperfections have the
most severe impact on the column K factors. With respect to the imperfection values being
L/500, L/400, L/300, L/240 and L/200, the out-of-straightness has a greater influence than that

of the out- of-plumbness.

With respect to the variable loading for CFS storage racks, the maximum frame-buckling
load also corresponds to the lateral instability of both the first and second storey
simultaneously and the linear programming procedure did not find the maximum and
minimum frame-buckling loads that only involves the lateral storey buckling of the third

storey of the storage rack (S3=0 and §;> 0, S,> 0).

The relative difference between the maximum and minimum frame-buckling loads of 585.5%
is noted when the beam-to-column connection stiffness is 313 k-in/rad (3.537x10" N-
mm/rad) from the test. With the beam-to-column connection stiffness increased to 3130 k-
in/rad (3.537x10* N- mm/rad), the relative difference between the maximum and minimum

frame-buckling loads can be decreased to 58%.

In the case of accounting for the initial geometric imperfections, with respect to beam-to-
column connection stiffness of 3130 k-in/rad (3.537x10°® N- mm/rad), the relative difference
as noted is insignificant between the maximum and minimum frame-buckling loads

corresponding to the lateral instability of storey 1.

7.2 Future Research

This proposed research develops a civil engineering methodology and a practical approach for the

stability analysis of multi-storey unbraced frames including CFS storage racks, which is not currently

available in the design/engineering practice. However, there are still a number of aspects from this

study that could be extended to possibly increase the robustness of the proposed methodology

investigated.
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The current study only applies to the column axial force with respect to the stability analysis
in multi-storey unbraced frames. Future research could be conducted for more complex types

of loadings, such as distributed loading on the beams.

The proposed method in this study explicates the account for initial geometric imperfections
of out-of-straightness and out-of-plumbness that is based on an elastic assumption. The
inelastic behavior of multi-storey unbraced frames accounting for initial geometric

imperfections can be considered in future research.

It is noted that much of the research on frame stability including the current study are based
on the two-dimensional (2D) flexural buckling analysis. The methodology developed in this
study could be conducted on the real application of three-dimensional (3D) frame structures

in future research.

The linear programming method adopted for solving the optimization problems in the current
research is based on the 1*-order approximation. Future research could be considered to
include nonlinear programming with respect to a nonlinear constraint for such problems using

the 2""-order approximation.

The experimental data used in the current study of CFS storage racks was obtained from the
cantilever test which is commonly used to design beams and connections. The beam-to-
column connection stiffness R obtained from the portal test for sidesway analysis could be

conducted in future research to evaluate the frame stability.
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Appendix A

Procedures and Example of Frame Decomposition

The procedure of decomposing a multi-storey unbraced frame to a series of single-storey frames can

be described as following (Liu and Xu, 2005)

Step 1: Determination of the Rotational Stiffnesses of Beams

Ry, ;7 and Ry, ; represent the beam-to-column rotational-restraining stiffnesses at the upper and lower

joints of column ij and can be expressed as

2
Rbu,ij = Rbu,ljk
k=1
2
Ry, i thl ijk
k=1
in which
6r,, El,;
Rbutk: (2+rk2)
s 4_ L 5
Feaieo Lopuin
6r, El, .
_ k.1 bLijk
Rbl,zjk = 2+n.,)

4_rk,1rk,2 Ly

(A.1a)

(A.1b)

(A.2a)

(A.2b)

and r; and r,, are end-fixity factors associated with the near and far ends of beam k, and Ry, ;x and

Ry are end rotational stiffnesses of the beams that are connected to the upper and lower ends of

column ij, respectively.

Based on the principle that the distribution of beam-to-column restraining stiffness shall be

proportional to the column end rotational stiffness at each joint, the end rotational-restrain stiffnesses

of the upper and lower ends of column ij can be given as follows:

Ru,ij = /’tu,ij Rhu,ij

Rl,ij = lul,inbl,ij
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where R, ; and R, ; are the end restrain stiffnesses of the upper and lower ends of column ij; u,;; and

u,; are the stiffness distribution factors and will be determined in the next step.

Step 2: Determination of the Stiffness Distribution Factors

In the study of Liu and Xu (2005), the distribution factors corresponding with the so-called frame-
based stiffness distribution (FSD) approach for the upper end of column C;can be obtained form the

following form

EIC,U 3r,,u
L”j 1+2rIU A4
:uu,zji - EICU 3,,[[/ EI(,U 1 ( . a)
LC,U 1+2rw LC,U 1+EIC,U/RM’ULC,U

in which R, i.1=Rpu +1)y 1s defined in Equation (A.la) and r;; is defined in Equation (3.1a).

Also from the study of Liu and Xu (2005), the stiffness distribution factors for columns joined
together satisfy the following equation:

ey ST (A.4b)

Step 3: Determination of the End-Fixity Factors

Once we can obtain the distribution factors u,; and u;; from Step 2, then we can calculate the end-
fixity factors defined in Egs. (3.1) associated with the upper and lower column ij individually.
Equations (3.1) in Chapter 3 are presented again as follows:

1 1
r/lj = ; ru,ij =
1+3EI /R, L, 1+3EI, /R, L

Lijte.ij w,ij eij

(A.5a,b)

Step 4: Determination of the Column Lateral Stiffness Modification

Coefficients
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From Step 3, the end-fixity factors for each individual column can be obtained, therefore, the
modification coefficients By ;i(r;;,7.,) and B ;(r,;1,;) corresponding to the columns can be calculated

from Egs. (3.10) in Chapter 3. Equations (3.10) in Chapter 3 are shown again:

v,.+r ..+r.r .
By (157, ) =L —0d (A.6a)
4- ViV
2 2 2
By (riyrs) = 8O +7,) —BA—r )Ty + B+7,; +3r.)n5 (A.6b)

30(4— r,,,.jru,,.j)2

The detailed hand calculation to demonstrate the procedure descried above for Case 4 of Chapter 3

is given as follows:

In Case 4, the column bases are rigid connections. The beam-to-column connections of the exterior
columns are rigid, and the interior columns are pinned connection. Due to the pinned condition
between the interior beam-to-column connections, and the rigid condition of exterior beam-to-column
connection, the r;; and ry, the end-fixity factors associated with the near and far ends of beam k can

be determined for each beam. The detailed hand calculations are studied as follows:

1. Procedures to Calculate the End-Fixity Factors and Lateral Stiffness Modification Factors
(1) Calculate the Rotational Stiffnesses of Beams for the Frame

From Egs. (A2) given in Appendix A, we can obtain the rotational stiffnesses associated with beams
connected to the lower end of column ij. For instance, beam B,; is connected to columns C;; and C,,
and then the rotational stiffnesses of beam B;; can be calculated as follows:

El, ., 3%2x10°x8.749x10°
L1 6016.8

Ry n =Ry =3 =8.725x10" N-mm/rad

where the last subscript denotes whether the beam is in the left or right side of the column. For
example, the last subscript 2 in R, 11, denotes that the beam is on the right side of column C;; as that

shown in Figure 3-8.
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Similarly, it can be found the following rotational stiffnesses associated with beams connected to
the upper end of column ij :
Rpui21= Ry221 = 0 N-mm/rad; Ry, 120= Rpi200 = 0 N-mm/rad;  Rpu131 = Ryj231 = 11.68x10" N-mm/rad;
Rpio=6.981x10" N-mm/rad; Ry, =0 N-mm/rad; Ry, =0 N-mm/rad;
Ry = 9.35%x10" N-mm/rad;

(2) Evaluate the Beam-to-Column Restraining Stiffnesses

Once the rotational stiffness of beams obtained, the corresponding beam-to-column restraining

stiffnesses based on Egs. (A1) calculated as follows:

R, . =R, ., =8725x10""N-mm/rad; R,,,, =R, +R,, 1, =0N-mm/rad
R,, s =R, 5 =11.68x10" N-mm/rad; R, ,, =R,, ,;, =6.981x10'"’ N-mm/rad
R, » =R, + R, », =ON-mm/rad; R, ,, =R, ,; =9.35%10'""N-mm/rad
R, . =R, ,,=8725x10""N-mm/rad; R, ,, =R, +R, », =0N-mm/rad

R, 5 =R, 5, =11.68x10" N-mm/rad

(3) Determine the Stiffness Distribution Factors:
For rigid connection of column bases, the end-fixity factors are unity, thusr,,, =7, ,, =71, ; =1. The

beam-to-column restraining stiffness at the upper end of column Cy;, R, ,, =R, ,; =6.981X 10" N-

mm/rad, the distribution factor for the upper end of column C;; can be obtained from Equation (A4a),
in which
El ,, 3n,
L., 1+2n,
El ,, 3n, + El 1
Loy 142, L, 1+EIl /R, 5L,

c c

=0.667

Mo =

Therefore, the stiffness distribution factor for the lower end of column Cy

isg, ,, =1—p,,, =0.333. Similarly, the distribution factors associated with the other columns can

be obtained as follows:
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Moy =1 5, =0, 41,5 =0.683, 11, ,;=0.317

(4) Compute the Corresponding End-Fixity Factors

The beam-to-column rotational-restraining stiffnesses contributed by beams B;; and B, to columns

Ci1,Cy; and Cy3, and beams B;jand By, to columns Cy;, Cy,, Cy3 are given as follows,

R, =M, R, =4712x10" N-mm/rad
R,,, =i, ,R,,, =0N-mm/rad

R, 3= M, 3R, 13 =7.983x10" N-mm/rad

R, =t R, 5, =2.326x10"" N-mm/rad
R, , =1, R, ,, = ON-mm/rad

R, =l 5 R,, », =2.961x10'"" N-mm/rad

The corresponding end-fixity factors based on Equations (3.1) are given as:

1 1
r = = =
“ 1+3EIL,, /R, L., 1+3x2x10°x4.6x8.3246x10" /3529.6

Using the same equation, we can obtain the following values for end-fixity factors:

=0, r,,;=0.705

15, =0.377, 1,,, =0, 1,,, =0.644

ru,21 = 0'6447 ru’zz = 03 rl,t,23 = 0.851

(5) Evaluate the Column Lateral Stiffness Modification Coefficients

Since the modification coefficients £, and £, are the function of the end-fixity factors, they can

be obtained from Egs. (3.10).
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P N T
By (rir )= i Pl _ 1+0.42+1x0.42 0514
S ’ 4—r1h0 4-1x0.42

Similarly, we can get the values of other later stiffness modification factors:

By, =025, B,,,=0.731, B,, =0.336, B,, =0, f,,,=0.592

B, =0.094, 5 ,=0.1, 5,,=0.094, g, =0.086, 5 ,, =0.083, B ,,=0.09
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Appendix B

Formulation and Verification of the Minimization Problem of
Equations (3.20) to (3.22) of Case 4 in Chapter 3

The process of evaluating and verifying the minimization problem of Egs. (3.20) to (3.22) for Case 4

study in Chapter 3 is demonstrated as follows (Xu and Wang, 2007)

1. Evaluate the Upper Bound Load of Individual Column

The seeking of minimum frame-buckling needs a side constraint for each applied column load, which

is to be less than an corresponding upper bound load P, ;. The upper bound load P, ; is defined as:

2

T’El,
wij = g2 2

braced jj —ij

in which Kj,,4c.q; 1 the non-sway-buckling effective length factor, and is defined in Eq. (3.15).
The upper bound load is imposed to ensure that the magnitude of the applied load will not exceed the

buckling load associated with non- sway-buckling of the individual column.

Upon the end fixity fact factor obtained form previously calculation, it can be obtained the non-
buckling effective length factor Kpceq;; for each column. For column C,j, it has the following
equation:

) P+ O=7)r, X[+ (6 -7, ]
el g 1 (12— ), X[+ (12— 27)r ]

with r;;1=1, r,11=0.642, we can get Kjuceq11=0.573. Similarly, we can obtain the other non- sway-
buckling effective length factor.
Kbraz:ed,l2 = 0707’ Kbraz:ed,13 = 056’ Kbraz:ed,2l = 0719’ Kbraz:ed,22 = 1’ Kbraz:ed,23 = 0608

Therefore, the corresponding upper bound load P, ;; can be calculated as follows:
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p o TEL _mX2X10°X4.6x83246x10" _ o0 ooin

K2 0.573* x3529.6°

Similarly, we can get the upper bound load for other columns:

P,, =82570kN, P,,, =99130kN, P,, =80370kN, P,,, =415700kN, P, ,, = 47880kN

2. Formulate and Verify the Minimization Problem
The minimization problem is stated in Eqs. (3.20) to (3.22) in Chapt 3, substituting the lateral
stiffness modification factors of ﬁo,ij and IBI,ij from previous calculation to Egs. (3.22a) and (3.22b),

also substituting the upper bound load for each column obtained from above calculation, we will have

the minimization problem expressed as follows:

2 3
Minimum Z=min{ Z, = > > P, 11=1,2,3} (3.20)
Minimize: Z=PB,+P,+P;+P,+P,+P, (3.21)
Subject to:
_12E1 12EI 12
- ﬁOll ﬁl ll(Pll P21)+ 2 ﬁOlZ ﬁl,lZ(P12+P22)
Lll ll 12 L12
12EI
3 = 180,13 __181,13 (Ps+Py) (3.22a)
Ll3 L13

=25610-0.319(P, + P,,) —0.34(P,, + P,,) —0.32(P, + P,;) =0

12EI 12 12E1 12
IE — — Pon———Biaubut IE — — By Binby
21 L,, 2 L,
12EI 12
JE — :BO 23~ 161,231)23 (3.22b)
23

=9753—-0.34P,, —0.328P22 ~0.355P,, >0
0< P, +P, <184600kN; 0< P, + P, <82570kN; 0< P, + P,, <99130kN

0< P, <80370kN; 0< P,, <41570kN; 0< P,, <47880kN (3.22¢)
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In the case of seeking the minimum buckling load, the minimization problem will be solved two

times.

a.

$,=0, $,>0

In this case, S;=0 represents the first storey becomes lateral unstable and the second storey
keep lateral stable. In this condition, we obtain the following values:

Z,=75323.53 kN, the corresponding individual column loading are:

P1,=45588.77 kN, P»=29734.76 kN, the other column loadings are all equal to zero.

It is found in this case that the second storey becomes lateral unstable simultaneously, which
means S, reduces to zero (5,=0) at the same time.

$,=0, §;>0

In this case, we assume the first storey is lateral stable while the second storey becomes
lateral unstable. The following results can be obtained for this condition:

Z,=27473.24 kN, the corresponding individual column loading are:

P,;=27473.24 kN, the other column loadings are all equal to zero.

The results found that in this case the first storey still is still in stable condition when second
storey is lateral unstable. It is found S;=16818.56 kIN>0.

Therefore, from Equation (3.20), the minimum buckling loads will be chose as follows:

Minimum Z=min{Z,, Z,}=27473.24
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Appendix C

Lateral Stiffness of an Axially Loaded Column with Initial

Geometric Imperfections

In section 5 on page 9, an axially loaded column in an unbraced frame shown in Figure 3 is discussed

with geometric imperfection. The details to evaluate the lateral stiffness S given in Eq.(3.2) are

discussed in this appendix. Based on Eq. (4.4), the general solution of this equation is given as

y=c, cos(@x/L)+c,sin(@x/L)+ (A, +A,)+M,/P+S(L—x)/P

(C.1)

where ¢ is the stiffness parameter defined in Eq. (3.3), and ¢, and c, are coefficients to be

determined from the boundary conditions given in Egs. (4.7) to (4.9). Substituting Eq. (4.5) and

boundary conditions in Eqgs. (16) to (18) into Eq. (C.1), the coefficients ¢, and ¢, are determined as

. PA +A,+C)—(C+A,+J,7)sing
b ¢(cosp—1)—C, sing

_(C+A,+0,7)(cosg—1)=C, (A +A, +C)
- #(cosg—1)—C, sin p

¢

and ¢, and c, satisfy the following equation

—(C, +¢sing)c, + pcospc, =(1+C,)C+C, (A, +A) +A, + 8,7

in which
3
C= SH _ SL2
P Ely
1-r 1-r
C — 1 2; C — u 2
1 3’,‘1 ¢ u 3}" ¢

(C.2)

(C.3)

(C4)

(C.5)

(C.6a,b)

where r,and 7, are the end-fixity factors for the upper and lower ends of the column defined in Egs.

(3.1). Therefore, the coefficient C can be obtained as
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5,79/50—((1+ A, /100)(C, +C, )+ 8,7/ 50)psin g+ (A, (C, —C,)/100+(1+A, /100)(C,C, — 4> )+ 5,7/100(C, + C, ))sin ¢
—20+(2+C,+C,)pcosp—(C, +C, +C,C, —§*)sing

(C.7
Based on Eq. (C.5), the lateral stiffness of the column can be expressed as
CEI 12EI
O g1 )
in which g - is the lateral stiffness modification factor accounting for initial geometric
12
imperfections. The equations of the modification factor £ in terms of the end-fixity factors
can be derived from Egs. (C.5) to (C.8) as the following
e ¢ frt Cfy+ £,07)C0Sp= (8 + fo+ f + f)sin g o)
fr=(fy + fi@*)cos g+ (fo@* + fo)Psin @
where
fi= 2 —0, mr, (C.10a)
1 50 Iu :
f, =31+ A )r,+r, —=2rr) (C.10b)
2 100 1 u [Mu :
= 1+— l—r,—r, +nr C.10c
f ( 100)( 1 u 1 u) ( )
3
s :@A o =1, =3n1,) (C.10d)
3A,
=——(r,+r,=2nr, (C.10e)
T =100 )
fe =—9nr, (C.10f)
fr =18nr, (C.10g)
fe=3(r,+r,=2rr,) (C.10h)
fo=1=-1r—r +nr, (C.101)
fio =3(r, +1, =5r1,) (C.10j)
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Appendix D

Values of Lateral Stiffness Coefficients By, 81 and B> Accounting for
Initial Geometric Imperfections in Chapter 4

The coefficients of column lateral stiffness Sy, f; and f, are calculated based on the Egs. (4.13a),
(4.13b) and (4.15) with respect to the variation of column end-fixity factors and the combined effects

of out-of-straightness (dy) and out-of-plumbness (A).

Table D-1: fy (x 107" values corresponding to the column end-fixity factors
(69=L/1000 and A¢=L/500)

i

g 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0] 0.000 0.179 0.359 0.538 0.717 0.896 1.076 1.255 1.434 1.613 1.793
0.05| 0.109 0.299 0489 0.680 0.871 1.062 1.254 1.477 1.640 1.833 2.027
0.1 0219 0419 0.620 0.823 1.026 1.230 1435 1.642 1.849 2.058 2.267
0.15| 0.328 0.540 0.752 0.967 1.183 1400 1.619 1.840 2.063 2.288 2.514
0.2 0438 0.660 0.885 1.112 1.341 1.572 1.806 2.043 2.282 2523 2.767
0.25| 0.547 0.781 1.018 1.258 1.501 1.747 1.996 2.249 2.505 2.764 3.027
03| 0.657 0902 1.152 1405 1.662 1.924 2.189 2459 2.732 3.011 3.293
0.35| 0.766 1.024 1.286 1.554 1.826 2.103 2439 2.672 2965 3.263 3.568
04| 0876 1.146 1422 1.703 1.991 2.284 2584 2.890 3.203 3.522 3.849
045| 0985 1.268 1.558 1.845 2.157 2468 2.786 3.112 3.446 3.788 4.139
0.5 1.094 1.391 1.694 2.006 2.326 2.654 2991 3.338 3.694 4.060 4.663
0.55| 1.204 1.513 1.832 2.159 2496 2.843 3.200 3.569 3.948 4.340 4.743
0.6 1313 1.637 1970 2313 2.668 3.034 3.413 3.804 4.208 4.626 5.059
0.65| 1423 1.760 2.109 2.469 2.842 3228 3.628 4.043 4473 4920 5.384
0.7 1.532 1.884 2248 2.626 3.018 3.425 3.848 4.288 4.745 5222 5.719
0.75| 1.642 2.008 2.388 2.784 3.195 3.624 4.071 4.537 5.024 5.532 6.064
0.8 1.751 2.132 2529 2943 3375 3.826 4298 4.791 5308 5.851 6.420
0.85| 1.860 2.257 2.671 3.104 3.557 4.031 4.529 5.051 5.600 6.178 6.787
0.9 1.970 2382 2813 3.266 3.740 4239 4763 5.316 5.899 6.515 7.167
0.95| 2.079 2507 2957 3.429 3926 4450 5.002 5.587 6.205 6.861 7.558
1] 2189 2.633 3.100 3.593 4.113 4.663 5.246 5.863 6.519 7.218 7.963
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Table D-2: f, (x 107" values corresponding to the column end-fixity factors
(69=L/800 and A,=L/400)

¢

¥ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0| 0.000 0.162 0.323 0.485 0.646 0.808 0969 1.131 1.293 1.454 1.660
0.05| 0.106 0.277 0.448 0.621 0.793 0.966 1.139 1.313 1488 1.662 1.837
0.1 | 0211 0.392 0.574 0.757 0941 1.126 1.312 1499 1.686 1.875 2.065
0.15] 0.317 0.508 0.701 0.895 1.091 1.288 1.487 1.688 1.889 2.093 2.298
02| 0422 0.624 0.828 1.034 1.242 1.453 1.665 1.880 2.097 2.316 2.537
0.25] 0.528 0.741 0956 1.174 1.395 1.619 1.846 2.076 2308 2.544 2.783
03| 0.633 0.857 1.085 1.315 1.550 1.788 2.029 2275 2.525 2.778 3.036
0.35] 0.738 0974 1.214 1.457 1.706 1.958 2216 2478 2.745 3.018 3.295
04| 0.844 1.091 1.343 1.601 1.863 2.131 2405 2.685 2971 3.263 3.562
045] 0950 1209 1474 1.745 2.023 2.307 2.598 2.896 3.201 3.515 3.836
05| 1055 1.327 1.605 1.891 2.184 2.484 2793 3.111 3.437 3.773 4.118
0.55| 1.161 1.445 1.737 2.037 2346 2.664 2.992 3.330 3.678 4.037 4.408
0.6 | 1.262 1.563 1.869 2.185 2.511 2.847 3.194 3.553 3.924 4309 4.706
0.65| 1.372 1.682 2.003 2.334 2.667 3.032 3400 3.781 4.177 4.587 5.014
0.7 | 1478 1.801 2.136 2.484 2845 3.219 3.609 4.013 4.435 4.873 5.331
0.75| 1.583 1921 2271 2.635 3.015 3.409 3.821 4.250 4.699 5.167 5.657
0.8 | 1.689 2.040 2.406 2.788 3.186 3.602 4.037 4.492 4969 5.469 5.994
0.85| 1.794 2.160 2.542 2942 3360 3.798 4.257 4.739 5246 5779 6.341
09| 1.900 2280 2.679 3.097 3.535 3.996 4.480 4.991 5.529 6.098 6.700
0.95| 2.005 2401 2.816 3.253 3.712 4.197 4.708 5.248 5.820 6.426 7.071
1] 2111 2522 2955 3410 3.892 4.401 4939 5511 6.118 6.764 7.453
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Table D-3: f, (x10") values corresponding to the column end-fixity factors
(69=L/600 and A,=L/300)

T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

0.000
0.099
0.198
0.297
0.396
0.495
0.594
0.694
0.793
0.892
0.991
1.090
1.189
1.288
1.387
1.486
1.585
1.684
1.783
1.882
1.981

0.132
0.240
0.348
0.456
0.564
0.673
0.782
0.891
1.001
1.110
1.221
1.331
1.442
1.553
1.664
1.775
1.887
1.999
2.111
2.224
2.337

0.264
0.381
0.498
0.616
0.734
0.853
0.972
1.092
1.213
1.334
1.456
1.579
1.702
1.826
1.951
2.076
2.201
2.328
2.455
2.583
2.711

0.396
0.522
0.649
0.777
0.905
1.035
1.165
1.297
1.430
1.564
1.698
1.834
1.971
2.109
2.248
2.388
2.529
2.672
2.815
2.960
3.106

0.528
0.664
0.801
0.939
1.078
1.219
1.362
1.506
1.651
1.798
1.947
2.097
2.248
2.402
2.557
2.713
2.872
3.032
3.193
3.357
3.522

0.661
0.806
0.953
1.102
1.253
1.406
1.561
1.718
1.877
2.038
2.201
2.367
2.535
2.705
2.877
3.052
3.229
3.408
3.591
3.775
3.963

0.793
0.948
1.106
1.267
1.430
1.595
1.764
1.934
2.108
2.284
2.463
2.645
2.830
3.019
3.210
3.405
3.602
3.804
4.008
4.217
4.429

0.925
1.091
1.260
1.433
1.608
1.787
1.969
2.155
2.344
2.536
2.732
2.932
3.136
3.344
3.556
3.773
3.993
4.219
4.449
4.684
4.923

1.057
1.234
1.415
1.600
1.789
1.981
2.178
2.379
2.584
2.794
3.009
3.228
3.452
3.682
3.917
4.157
4.403
4.655
4.913
5.178
5.449

1.189
1.378
1.571
1.769
1.971
2.178
2.390
2.608
2.831
3.059
3.293
3.533
3.779
4.032
4.292
4.559
4.833
5.114
5.404
5.701
6.008

1.321
1.522
1.727
1.938
2.155
2.378
2.606
2.841
3.082
3.330
3.585
3.848
4.118
4.396
4.683
4.979
5.284
5.598
5.923
6.258
6.604
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Table D-4: fy (x 107" values corresponding to the column end-fixity factors
(69=L/400 and A,=L/200)

ri

7 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
0| 0.000 0.0731 0.146 0.219 0.293 0366 0.439 0.512 0585 0.658 0.731
0.05| 0.086 0.166 0.245 0325 0405 0486 0.566 0.647 0.728 0.809 0.890
0.1 0.172 0.258 0345 0432 0519 0.607 0.695 0.784 0.873 0.963 1.053
0.15] 0.258 0.351 0445 0539 0.634 0.730 0.826 0.923 1.021 1.120 1.219
02| 0344 0444 0545 0.647 0.750 0.854 0.959 1.065 1.173 1.281 1.391
0.25] 0431 0.538 0.646 0756 0.867 0980 1.094 1.210 1327 1.446 1.556
03| 0517 0.631 0.748 0.866 0986 1.108 1.232 1.357 1.485 1.615 1.747
035 0.603 0.725 0.850 0977 1.106 1237 1.371 1.508 1.647 1.788 1.933
04| 0689 0.819 00952 1.088 1.227 1368 1.513 1.660 1811 1966 2.123
045) 0775 0914 1.055 1200 1.349 1501 1.657 1.816 1980 2.147 2.319
05| 0861 1.008 1.159 1.341 1473 1.636 1.803 1975 2.152 2334 2521
0.55| 0947 1.103 1263 1.428 1.597 1.772 1952 2.137 2328 2.525 2.728
06| 1.033 1.198 1368 1.543 1.724 1910 2.103 2302 2508 2.721 2.942
0.65| 1.119 1.293 1473 1.659 1.851 2.050 2257 2470 2.692 2923 3.162
07| 1205 1389 1579 1.776 1980 2.192 2413 2.642 2.881 3.129 3.388
075 1.291 1484 1.685 1.893 2.110 2336 2572 2817 3.074 3.342 3.622
08| 1.378 1.580 1.792 2.012 2242 2482 2.733 2996 3.271 3.560 3.863
0.85| 1464 1.677 1.899 2132 2357 2.630 2.898 3.178 3.473 3.784 4.111
09| 1550 1.773 2007 2252 2510 2780 3.065 3.364 3.681 4.015 4.368
095| 1.636 1.870 2.116 2374 2.646 2932 3.235 3.555 3.893 4.252 4.633
1| 1722 1.967 2225 2497 2784 3.087 3.408 3.749 4.111 4.496 4.907
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Table D-5: f; (x 10%) values corresponding to the column end-fixity factors
(69=L/1000 and Ay=L/500)

ri~li 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
0| 8994 9.015 9.097 9.186 9336 9.528 9.764 10.040 10.360 10.730 11.130
0.05| 8998 9.002 9.050 9.140 9275 9453 9.676 9944 10.260 10.620 11.020
0.1 9.012 8999 9.029 9.104 9223 9387 9597 9.854 10.160 10.510 10.910
0.15]| 9.036 9.006 9.019 9.077 9.180 9.330 9.527 9.772 10.070 10.410 10.810
02| 9.0609 9.022 9.019 9.060 9.147 9.282 9.465 9.699 9.985 10.330 10.720
0.25| 9.111 9.048 9.028 9.053 9.124 9244 9414 9.636 9912 10.240 10.630
03| 9.162 9.084 9.048 9.056 9.112 9.216 9372 9.581 9.847 10.170 10.560
0.35| 9223 9.129 9.077 9.070 9.110 9.199 9341 9538 9.793 10.110 10.490
04| 9294 9185 9.118 9.095 9.119 9.193 9321 9.505 9.749 10.060 10.430
045| 9373 9251 9.169 9.131 9.140 9.199 9312 9483 9.717 10.020 10.390
05| 9462 9327 9231 9178 9.172 9.217 9316 9474 9.697 9.988 10.350
0.55| 9.561 9413 9303 9237 9217 9247 9332 9478 9.690 9.973 10.330
06| 9.668 9509 9387 9307 9273 9290 9362 9496 9.697 9.972 10.330
0.65| 9.786 9.616 9.483 9390 9343 9347 9406 9528 9.719 9.986 10.340
0.7 9.120 9.733 9589 9485 9426 9418 9465 9.575 9.757 10.020 10.370
0.75]10.050 9.861 9.707 9593 9.523 9503 9.539 9.639 9.812 10.070 10.410
0.8 [ 10.190 9999 9.838 9.714 9.634 9.604 9.63 9.721 9.885 10.130 10.480
0.85 ] 10.350 10.150 9.980 9.848 9.760 9.720 9.737 9.820 9.979 10.220 10.570
0.9 | 10.510 10.310 10.130 9.996 9900 9.853 9.863 9.939 10.090 10.340 10.690
0.95 | 10.690 10.480 10.300 10.160 10.060 10.000 10.010 10.080 10.230 10.470 10.830
1]10.870 10.60 10.480 10.330 10.230 10.170 10.170 10.240 10.390 10.640 11.000

173




Table D-6: f; (x 10%) values corresponding to the column end-fixity factors
(69=L/800 and A,=L/400)

Ui 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
0| 9.159 9.181 9249 9362 9520 9.723 9971 10.030 10.60 10.990 11.420
0.05| 9.164 9.168 9.218 9314 9456 9.644 9.880 10.160 10.490 10.870 11.300
0.1 9.178 9.165 9.197 9.275 9401 9.575 9.797 10.070 10.390 10.760 11.190
0.15]| 9202 9.171 9.186 9247 9356 9.515 9.723 9983 10.290 10.660 11.080
02| 9236 9.187 9.185 9.229 9322 9464 9.659 9.906 10.210 10.570 10.980
025] 9279 9214 9.194 9221 9297 9424 9.604 9.839 10.130 10.480 10.890
03| 9332 9250 9214 9.224 9284 9395 9560 9.781 10.060 10.410 10.810
0.35| 9.359 9297 9244 9238 9281 9.376 9.526 9.735 10.000 10.340 10.740
04| 9476 9354 9285 9263 9290 9369 9505 9.700 9.958 10.280 10.680
045| 9549 9422 9337 9299 9310 9374 9495 9.676 9.923 10.240 10.630
05| 9.640 9499 9401 9347 9343 9391 9497 9.666 9901 10.210 10.600
0.55| 9.741 9.588 9475 9407 9388 9421 9513 9.668 9.892 10.190 10.570
06| 9.852 9.687 9561 9479 9445 9465 9543 9.685 9.898 10.190 10.570
0.65| 9973 9.769 9.659 9564 9517 9.523 9.587 9717 9920 10.200 10.580
0.7 | 10.100 9917 9.768 9.661 9.602 9.595 9.647 9.765 9.958 10.230 10.600
0.75 ] 10.240 10.050 9.889 9.772 9.701 9.682 9.722 9.830 10.010 10.280 10.650
0.8 [ 10.390 10.190 10.020 9.896 9.814 9.785 9.815 9.913 10.090 10.350 10.720
0.85| 10.550 10.340 10.170 10.030 9943 9904 9.925 10.010 10.180 10.440 10.810
0.9 |10.720 10.510 10.330 10.190 10.090 10.040 10.050 10.140 10.30 10.560 10.930
0.95 | 10.900 10.680 10.500 10.350 10.250 10.190 10.20 10.280 10.440 10.700 11.700
1]11.080 10.870 10.680 10.530 10.420 10.370 10.370 10.440 10.610 10.870 11.250
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Table D-7: f; (x 10%) values corresponding to the column end-fixity factors
(69=L/600 and A,=L/300)

i 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
0| 9434 9459 9532 9.655 9.826 10.050 10.320 10.640 11.000 11.420 11.890
0.05| 9439 9444 9499 9.603 9.758 9.963 10.220 10.530 10.890 11.30 11.760
0.1 | 9454 9440 9476 9562 9.699 9.888 10.130 10.430 10.770 11.180 11.640
0.15| 9479 9447 9463 9531 9.651 9.823 10.050 10.330 10.670 11.070 11.530
02| 9514 9463 9462 9511 9613 9.769 9980 10.250 10.580 10.970 11.420
025] 9560 9491 9471 9502 9586 9.725 9921 10.180 10.490 10.880 11.320
03| 9.615 9528 9491 9504 9570 9.692 9.873 10.110 10.420 10.790 11.240
0.35| 9.681 9.577 9522 9517 9566 9.671 9.836 10.060 10.360 10.720 11.160
04| 9756 9.636 9.564 9542 9574 9.662 9.811 10.020 10.310 10.660 11.090
045| 9.842 9.707 9.618 9579 9594 9.665 9.799 9998 10.270 10.610 11.040
05| 9937 9.788 9.684 9.629 9.627 9.682 9.800 9.984 10.240 10.580 11.000
0.55]10.040 9.880 9.761 9.690 9.673 9.712 9.815 9985 10.230 10.560 10.970
0.6 | 10.160 9983 9.850 9.765 9.732 9.757 9.844 10.000 10.230 10.550 10.960
0.65| 10.280 10.100 9.952 9853 9.806 9.816 9.889 10.030 10.260 10.560 10.970
0.7 | 10420 10.220 10.070 9955 9.894 9.890 9.950 10.080 10.290 10.590 11.000
0.75 ] 10.570 10.360 10.190 10.070 9.997 9.980 10.030 10.150 10.350 10.640 11.040
0.8 | 10.720 10.510 10.330 10.200 10.110 10.090 10.120 10.230 10.430 10.720 11.110
0.85 | 10.890 10.670 10.480 10.340 10.250 10.210 10.240 10.340 10.520 10.810 11.210
0.9 | 11.060 10.840 10.650 10.500 10.400 10.350 10.370 10.460 10.650 10.930 11.330
0.95|11.250 11.020 10.830 10.670 10.570 10.510 10.530 10.610 10.790 11.070 11.480
111450 11.220 11.020 10.860 10.750 10.690 10.700 10.790 10.960 11.250 11.670
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Table D-8: f; (x 10%) values corresponding to the column end-fixity factors
(69=L/400 and A,=L/200)

0.1

0.2

0.3

04

0.5

0.6

0.7

0.8

0.9

9.984

9.990
10.010
10.030
10.070
10.120
10.180
10.250
10.330
10.430
10.530
10.650
10.770
10.910
11.060
11.210
11.380
11.560
11.750
11.960
12.170

10.010
9.996
9.991
9.997

10.010

10.040

10.080

10.140

10.200

10.280

10.360

10.460

10.580

10.700

10.840

10.980

11.150

11.320

11.500

11.700

11.920

10.100
10.060
10.030
10.020
10.020
10.020
10.040
10.080
10.120
10.180
10.250
10.330
10.430
10.540
10.660
10.800
10.950
11.120
11.290
11.490
11.700

10.240
10.180
10.130
10.100
10.070
10.060
10.060
10.080
10.100
10.140
10.190
10.260
10.340
10.430
10.540
10.670
10.800
10.960
11.130
11.320
11.530

10.440
10.360
10.290
10.240
10.190
10.160
10.140
10.140
10.140
10.160
10.190
10.240
10.310
10.380
10.480
10.590
10.720
10.860
11.200
11.200
11.400

10.700
10.600
10.510
10.440
10.380
10.330
10.290
10.260
10.250
10.250
10.260
10.290
10.340
10.400
10.480
10.580
10.690
10.820
10.980
11.150
11.350

11.010
10.900
10.800
10.700
10.620
10.560
10.500
10.450
10.420
10.410
10.400
10.420
10.450
10.490
10.560
10.640
10.740
10.860
11.010
11.170
11.360

11.380
11.250
11.140
11.030
10.940
10.850
10.780
10.720
10.670
10.640
10.620
10.620
10.630
10.660
10.710
10.780
10.870
10.990
11.120
11.280
11.470

11.810
11.670
11.540
11.430
11.320
11.220
11.140
11.060
11.000
10.960
10.920
10.910
10.910
10.930
10.960
11.200
11.100
11.210
11.340
11.490
11.680

12.290
12.150
12.010
11.890
11.770
11.670
11.570
11.490
11.420
11.360
11.320
11.290
11.280
11.290
11.320
11.370
11.440
11.540
11.670
11.830
12.010

12.830
12.690
12.550
12.420
12.300
12.190
12.090
12.000
11.920
11.850
11.800
11.770
11.760
11.760
11.780
11.830
11.910
12.010
12.140
12.300
12.500
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Table D-9: 3, (x10™) values corresponding to the column end-fixity factors
(69=L/1000 and Ay=L/500)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.000
0.043
0.166
0.359
0.614
0.920
1.269
1.651
2.056
2476
2.900
3.321
3.727
4.110
4.460
4.769
5.026
5.223
5.349
5.396
5.355

0.189
0.058
0.013
0.047
0.152
0.319
0.539
0.805
1.106
1.435
1.781
2.137
2.491
2.835
3.160
3.454
3.709
3914
4.059
4.133
4.126

0.701
0.410
0.210
0.094
0.054
0.085
0.177
0.324
0.517
0.747
1.007
1.287
1.578
1.871
2.156
2423
2.661
2.860
3.009
3.097
3.117

1.448
1.019
0.681
0.429
0.258
0.160
0.130
0.162
0.246
0.378
0.547
0.747
0.968
1.201
1.437
1.665
1.876
2.058
2.200
2.289
2.312

2.350
1.800
1.350
0.980
0.690
0.480
0.340
0.260
0.250
0.280
0.360
0.480
0.630
0.800
0.980
1.170
1.340
1.500
1.630
1.710
1.730

3.309
2.678
2.133
1.669
1.285
0.977
0.739
0.569
0.461
0.409
0.407
0.449
0.528
0.635
0.763
0.901
1.039
1.167
1.272
1.341
1.361

4.252
3.561
2.950
2416
1.958
1.573
1.258
1.010
0.825
0.698
0.624
0.599
0.614
0.664
0.740
0.834
0.936
1.034
1.117
1.172
1.183

5.089
4.366
3.715
3.136
2.627
2.188
1.816
1.510
1.265
1.079
0.947
0.866
0.829
0.830
0.863
0.918
0.988
1.060
1.123
1.163
1.166

5.735
5.004
4.339
3.740
3.205
2.734
2.327
1.982
1.697
1.470
1.296
1.174
1.098
1.063
1.062
1.088
1.132
1.184
1.232
1.263
1.260

6.103
5.389
4.733
4.135
3.596
3.116
2.695
2.332
2.026
1.775
1.578
1.431
1.330
1.272
1.250
1.257
1.286
1.326
1.366
1.392
1.387

6.109
5.430
4.802
4.225
3.701
3.231
2.815
2452
2.143
1.886
1.681
1.524
1.414
1.345
1.314
1.314
1.337
1.373
1.412
1.437
1.433
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Table D-10

: B> (x10) values corresponding to the column end-fixity factors
(00=L/800 and A,=L/400)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.000
0.044
0.171
0.369
0.631
0.946
1.304
1.696
2.113
2.544
2.981
3412
3.830
4.224
4.584
4.901
5.165
5.367
5.497
5.546
5.503

0.200
0.061
0.013
0.046
0.152
0.322
0.547
0.819
1.128
1.465
1.820
2.185
2.549
2.903
3.236
3.539
3.801
4.012
4.161
4.238
4.231

0.739
0.435
0.224
0.101
0.057
0.085
0.177
0.325
0.520
0.756
1.021
1.307
1.606
1.906
2.198
2472
2.717
2.922
3.076
3.166
3.181

1.528
1.079
0.724
0.459
0.277
0.171
0.136
0.164
0.247
0.379
0.550
0.753
0.978
1.217
1.458
1.692
1.909
2.096
2.241
2.333
2.358

2475
1.907
1.431
1.043
0.740
0.515
0.363
0.280
0.257
0.289
0.368
0.486
0.636
0.809
0.994
1.182
1.362
1.523
1.652
1.736
1.762

3.492
2.831
2.259
1.773
1.368
1.042
0.791
0.608
0.490
0.431
0.424
0.463
0.540
0.647
0.776
0.916
1.056
1.187
1.294
1.365
1.385

4.487
3.763
3.122
2.562
2.080
1.674
1.341
1.078
0.880
0.742
0.661
0.629
0.640
0.688
0.763
0.856
0.959
1.058
1.142
1.198
1.209

5.370
4.612
3.929
3.322
2.788
2.325
1.933
1.608
1.348
1.149
1.007
0.917
0.873
0.870
0.900
0.953
1.002
1.094
1.157
1.198
1.200

6.051
5.286
4.588
3.959
3.397
2.902
2473
2.108
1.806
1.564
1.378
1.246
1.161
1.120
1.115
1.138
1.180
1.231
1.279
1.309
1.306

6.440
5.691
5.003
4.376
3.809
3.304
2.861
2477
2.153
1.887
1.676
1.518
1.409
1.343
1.316
1.320
1.346
1.385
1.424
1.449
1.443

6.446
5.734
5.075
4.470
3.919
3.425
2.986
2.603
2.276
2.004
1.785
1.617
1.497
1.422
1.385
1.381
1.402
1.436
1.474
1.499
1.494
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Table D-11

: B (x10) values corresponding to the column end-fixity factors
(09=L/600 and A,=L/300)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

0.000
0.046
0.178
0.386
0.659
0.988
1.363
1.773
2.208
2.659
3.115
3.566
4.002
4413
4.790
5.121
5.397
5.608
5.744
5.795
5.750

0.217
0.069
0.015
0.045
0.153
0.328
0.561
0.843
1.164
1.515
1.885
2.265
2.645
3.014
3.363
3.679
3.953
4.174
4.331
4411
4.405

0.804
0.477
0.249
0.113
0.061
0.084
0.175
0.326
0.527
0.769
1.044
1.341
1.651
1.964
2.269
2.555
2.811
3.025
3.186
3.281
3.298

1.661
1.179
0.797
0.509
0.309
0.190
0.145
0.167
0.248
0.381
0.556
0.764
0.996
1.243
1.494
1.737
1.963
2.158
2.311
2.407
2434

2.691
2.080
1.568
1.149
0.819
0.572
0.404
0.306
0.274
0.300
0.376
0.495
0.647
0.823
1.014
1.209
1.395
1.563
1.697
1.786
1.813

3.796
3.086
2.470
1.945
1.507
1.152
0.876
0.674
0.540
0.468
0.453
0.486
0.561
0.668
0.798
0.940
1.085
1.220
1.331
1.405
1.426

4.877
4.100
3.410
2.805
2.284
1.843
1.480
1.191
0.972
0.817
0.721
0.679
0.683
0.726
0.799
0.893
0.996
1.098
1.184
1.241
1.253

5.837
5.022
4.287
3.632
3.054
2.553
2.127
1.772
1.486
1.265
1.105
1.001
0.947
0.936
0.960
1.011
1.078
1.150
1.214
1.255
1.257

6.578
5.755
5.003
4.324
3.717
3.181
2.715
2.318
1.987
1.720
1.514
1.365
1.267
1.215
1.202
1.221
1.260
1.310
1.357
1.386
1.381

7.001
6.195
5.453
4.776
4.165
3.618
3.137
2.719
2.366
2.073
1.840
1.664
1.539
1.462
1.426
1.424
1.446
1.483
1.520
1.544
1.537

7.008
6.241
5.531
4.877
4.283
3.747
3.271
2.855
2.498
2.200
1.959
1.772
1.637
1.549
1.503
1.493
1.509
1.542
1.577
1.601
1.595
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Table D-12

: B (x10) values corresponding to the column end-fixity factors
(09=L/400 and A,=L/200)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.000
0.050
0.194
0.386
0.716
1.073
1.480
1.925
2.398
2.887
3.382
3.872
4.346
4.792
5.201
5.561
5.861
6.090
6.238
6.292
6.244

0.252
0.082
0.016
0.043
0.154
0.339
0.588
0.890
1.236
1.614
2.015
2.426
2.838
3.238
3.616
3.960
4.259
4.499
4.670
4.759
4.753

0.932
0.561
0.299
0.137
0.068
0.083
0.172
0.328
0.539
0.796
1.090
1.409
1.743
2.080
2410
2.720
2.998
3.231
3.407
3.512
3.532

1.927
1.379
0.942
0.609
0.373
0.227
0.164
0.174
0.251
0.385
0.566
0.785
1.032
1.296
1.565
1.828
2.071
2.283
2.449
2.555
2.587

3.122
2.428
1.842
1.360
0.977
0.687
0.484
0.360
0.309
0.323
0.393
0.512
0.668
0.853
1.055
1.262
1.462
1.642
1.778
1.884
1.915

4.404
3.596
2.893
2.290
1.785
1.372
1.047
0.804
0.639
0.543
0.510
0.533
0.602
0.708
0.841
0.990
1.143
1.286
1.405
1.484
1.507

5.659
4.773
3.984
3.291
2.692
2.182
1.758
1.418
1.155
0.966
0.843
0.780
0.770
0.804
0.873
0.966
1.072
1.178
1.268
1.328
1.340

6.773
5.843
5.003
4.252
3.588
3.009
2.514
2.100
1.726
1.498
1.303
1.170
1.095
1.068
1.082
1.127
1.192
1.264
1.329
1.370
1.370

7.632
6.692
5.833
5.055
4.357
3.739
3.200
2.737
2.349
2.033
1.786
1.603
1.478
1.406
1.378
1.386
1.420
1.466
1.512
1.540
1.533

8.123
7.203
6.354
5.578
4.875
4.245
3.688
3.204
2.790
2.446
2.169
1.955
1.800
1.700
1.646
1.631
1.646
1.678
1.713
1.735
1.724

8.131
7.255
6.441
5.693
5.009
4.392
3.842
3.359
2.943
2.593
2.306
2.082
1.916
1.804
1.740
1.716
1.724
1.752
1.785
1.807
1.797
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Appendix E

Joint Spring Constant, F (R) Results (Schuster, 2004)

DeSignation d Pu Ic,y—net Lc be Lb 60_85 P0.85 F
(in) (Ib) (in* (in) | (in*) | (in) (in) (Ib) (k-in/rad)
BB1.5x2.0x16-1 2.04 246 2.58 30 | 0395 | 24 | 215 209 58.3
BB1.5x2.0x16-2 2.04 250 2.58 30 | 0395 | 24 | 2.03 212 62.9
BB1.5x2.0x16-3 2.04 244 2.58 30 | 0395 | 24 1.93 208 64.9
BB1.5x2.0x14-1 2.04 258 2.58 30 | 0474 | 24 | 241 219 541
BB1.5x2.0x14-2 2.04 247 2.58 30 | 0474 | 24 | 2.08 210 60.2
BB1.5x2.0x14-3 2.04 250 2.58 30 | 0474 | 24 | 225 212 56.1
ER1.5x2.0x14-1 2.04 206 1.13 30 | 0474 | 24 | 0.84 175 130
ER1.5x2.0x14-2 2.04 222 1.13 30 | 0474 | 24 | 0.90 189 131
ER1.5x2.0x14-3 2.04 215 1.13 30 | 0474 | 24 1.11 183 101
Average  79.8
ER1.5x3.0x14-1 3.22 505 1.13 30 142 |1 24 | 21 429 121
ER1.5x3.0x14-2 3.22 489 1.13 30 142 | 24 | 218 416 113
ER1.5x3.0x14-3 3.22 509 1.13 30 142 | 24 | 217 432 118
Average 117
BB1.5x4.0x14-1 4.01 601 2.58 30 240 | 24 1.62 511 186
BB1.5x4.0x14-2 4.01 602 2.58 30 240 | 24 1.61 511 188
BB1.5x4.0x14-3 4.01 572 2.58 30 240 | 24 1.57 486 183
ER1.5x4.0x14-1 4.01 670 1.13 30 240 | 24 1.78 570 190
ER1.5x4.0x14-2 4.01 650 1.13 30 240 | 24 1.87 553 175
ER1.5x4.0x14-3 4.01 630 1.13 30 240 | 24 1.78 536 179
BB2.0x4.0x14-1 4.01 578 2.58 30 294 | 24 1.50 491 193
BB2.0x4.0x14-2 4.01 600 2.58 30 294 | 24 1.28 510 236
BB2.0x4.0x14-3 4.01 584 2.58 30 294 | 24 1.44 497 203
ER2.0x4.0x14-1 4.01 602 1.13 30 293 | 24 1.85 511 163
ER2.0x4.0x14-2 4.01 617 1.13 30 293 | 24 1.79 525 173
ER2.0x4.0x14-3 4.01 606 1.13 30 293 | 24 1.84 515 165
ER2.0x4.0x14-4 4.01 611 1.13 30 293 | 24 1.77 520 174
Average 185
ER2.0x5.0x14-1 5.19 789 1.13 30 540 | 24 1.35 671 295
ER2.0x5.0x14-2 5.19 790 1.13 30 540 | 24 1.37 672 291
ER2.0x5.0x14-3 5.19 765 1.13 30 540 | 24 1.27 650 304
ER2.0x5.0x14-4 5.19 775 1.13 30 540 | 24 1.41 659 277
Average 292
BB2.0x7.0x14-1 7.16 892 2.58 30 1.7 | 24 1.28 759 347
BB2.0x7.0x14-2 7.16 861 2.58 30 1.7 | 24 1.5 732 285
BB2.0x7.0x14-3 7.16 856 2.58 30 117 | 24 1.55 728 274
ER2.0x7.0x14-1 7.16 949 1.13 30 1.7 | 24 1.23 807 390
ER2.0x7.0x14-2 7.16 879 1.13 30 1.7 | 24 1.37 747 322
ER2.0x7.0x14-3 7.16 896 1.13 30 117 | 24 1.72 762 260
ER2.0x7.0x14-4 7.16 858 1.13 30 117 | 24 1.39 730 310
Average, 313

Note: The moment of inertia values Iy and I, were obtained from The Econo-Rack Group.

181




Bibliography

AISC, Manual of Steel Construction: Allowable Stress Design, 9th Edition, American Institute of
Steel Construction, Chicago, III, 1989.

AISC, Code of Standard Practice for Steel Buildings and Bridges, American Institute of Steel
Construction, Chicago, 1992.

AISC, Manual of Steel Construction-load and Resistance Factor Design (LRFD), American Institute
of Steel Construction, Chicago, III, 1994.

AISC, Manual of Steel Construction: Load and Resistance Factor Design (LRFD), 3rd Edition,
American Institute of Steel Construction, Chicago, III, 2001.

AISC, Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago,
2005.

AISI Specification for the Design of Cold-Formed Steel Structural Members, Washington (DC):
American Iron and Steel Institute; 1996, 2004.

AS/NZ 4600, Cold-Formed Steel Structure Code AS/NZ 4600: 1996. Sydney: Standards
Australia/Standards New Zealand, 1996.

Bhatt, P., Problems in Structural Analysis by Matrix Method, Longman Inc., New York, 1981.

Bjorhovde, R., Effect of end restraint on column strength-practical applications, AISC, Engineering
Journal, 1st Qtr., (1984) 1-13

Bleich, F., Die knickfestigkeit elastischer stabverbindungen, Der Eisenbau, 10(1919) 27.

Bridge, R.Q., and Fraster D.J., Improved G-factor method for evaluating effective lengths of column,
Journal of Structure and Engineering, ASCE, 115(6), (1977) 1341-1356.

BS5950, Structural use of steelwork in buildings, Part 5: Code of practice for the design of cold-
formed sections, London: British Standards Institution, 1998.

CSA, Limit States Design of Steel Structures, Canadian Standard Association/National Standard of
Canada, 2000.

CSA, North American Specification for the Design of CFS Structural Members, Canadian Standards
Association, Mississauga, Ontario, Canada, 2004.

CSA, User guide for steel storage racks/Standard for the design and construction of steel storage

racks, Canadian Standards Association, Mississauga, Ontario, Canada, 2005.

182



CEN, ENV 1993-1-3 Eurode 3, Design of Steel Structures, Part 1.1-General Rules and Rules for
Buildings, European Committee for Standardization, Brussels, 1992.

CEN, Design of steel structures: Part 1.3: General rules—Supplementary rules for cold-formed thin
gauge members and sheeting, ENV 1993-1-3, Brussels, European Committee for Standardization,
1996.

Chen, W.F. and Lui, E.M., Structural Stability-Theory and Implementation, ELSEVIER, 1987.

Chen, W.F. and Lui, E.M., Stability Design of Steel Frames, Boca Raton, FL: CRC Press, 1991.

Chen, W.F., Guo, Y. and Liew, J.Y.R., Stability Design of Semi-Rigid Frames, John Wiley & Son,
Inc., 1996.

Christopher, J.E. and Bjorhovde, R., Semi-rigid frame design methods for practicing engineering,
AISC Engineering Journal, 36 (1), (1999), 12-28.

Clarke, M.J., Bridge, R.Q., Hancook, G.J., and Trahair, N.S., Advanced analysis of steel building
frames, Journal of Constructional Steel Research, 23, (1992), 1-19.

Clarke, M.J. and Bridge, R.Q., The Notional Load Approach for the Design of Frames, The
University of Sydney, School of Civil and Mining Engineering Research Report No. R718, 1995.

Craig, B., Examining the range of end-fixity factors for semi-rigid connections subjected to ultimate
and service load conditions, Research Report, Department of Civil Engineering, University of
Waterloo, Canada, 2000.

Davies, J.M., Recent research advances in cold-formed steel structures, Journal of Constructional
Steel, Research 55, (2000), 267-288.

Deierlein, G.G., An inelastic analysis and design system for steel frames partially restrained
connections, Proc. Of Connections in Steel Structures II, edited by Bjorhovde, R., Colson,
A.,Haaijer, G. and Stark, J., American Institute of Steel Construction, (1992), 408-415.

Duan, L. and Chen, W.F., Effective length factor for columns in braced frames, ASCE, Journal of
Structural Engineering, 114(10), (1988) 2357-2370.

Duan, L. and Chen, W.F., Effective length factor for columns in unbraced frames, ASCE, Journal of
Structural Engineering, 115(1), (1989) 149-165.

FEM 10.2.02, Design code for racking plus worked examples, Federation Europeene De La
Manutention (FEM) Section X, 2001

FEM 10.2.03, Specifiers code, Federation Europeene De La Manutention (FEM) Section X,
Guidelines for the Safe Provision of Static Steel Racking and Shelving, Specifier’s Guidelines,
2003.

183



FEM 10.2.04, Specifiers code, Federation Europeene De La Manutention (FEM) Section X,
Guidelines for the Safe Provision of Static Steel Racking and Shelving, User’s Code, 2001.

Freitas, A.M.S., Freitas, M.S.R. and. Souza, F.T, Analysis of steel storage rack columns, Journal of
Constructional Steel Research 61 (2005) 1135-1146.

Galambos, T.V., Guide to Stability Design Criteria for Metal Structures, 4th ed. John Wiley and Sons,
New York, 1988.

Gerstle, K.H., Effect of connection on frames, Journal of Construction Steel Research, 10 (1988),
241-67.

Hancock, G.J., Distortional buckling of steel storage rack columns, ASCE, Journal of Structural
Engineering, 111(12) (1985), 2770-83.

Hancock, G,J., Design of cold-formed steel structures, 3rd ed. Australian Institute of Steel
Construction; 1998.

Hancock, G.J., Cold-formed steel structures, Journal of Constructional Steel Research 59 (2003) 473-
487.

Julian, O.G. and Lawrence, L..S., Notes on J and L. Nomographs for Determination of Effective
Lengths, unpublished report, 1959.

Kishi, N., Chen, W.F., and Goto, Y., Effective length factor of columns in semi-rigid unbraced
frames, ASCE, Journal of Structural Engineering, 23(3), (1997), 313-320.

Kwon, Y.B. and Hancock, G.J., Tests of cold-formed channels with local and distortional buckling,
ASCE, Journal of Structural Engineering, 117(7) (1992), 1786-803.

Lau, S.C.W. and Hancock, G.J., Distortional buckling formulas for channel columns. ASCE, Journal
of Structural Engineering, 113(5), (1987), 1063-78.

Lau, S.C.W. and Hancock, G.J., Inelastic buckling of channel columns in the distortional mode, Thin-
Walled Structures, (1990) 59-84.

LeMessurier, W.J., A practical method of second order analysis, part 2-rigid frame, AISC,
Engineering Journal, 2nd Qtr., (1977) 49-67.

Lewis, G.M., Stability of Rack Structures, Thin-Walled Structures, 12(2), (1991), 163-174.

Liu, Y. and Xu, L., Storey-based stability analysis of multi-storey unbraced frames, (2005)

Livesley, R.K., Matrix Methods, of Structural Analysis, 2nd Ed., Pergamon Press Led., Headingto
Hill Hall, Oxford, 1975.

Lui, E.M., A novel approach for K factor determination, AISC, Engineering Journal, 4th Qtr., (1992)
150-159.

184



Majid, K.I., Non-Linear Structures, Butterworth & Co. Ltd., 1972.

McGuire, W., Gallagher, R.H. and Ziemian, R.D., MANSTAN2, Matrix Structural Analysis, 2nd
Edition, John Wiley & Sons, Inc., 2000.

Monforton, G.R. and Wu, T.S., Matrix analysis of semi-rigid connected frames, ASCE, Journal of
Structural Engineering, 89(ST6), (1963), 13-42.

Muller-Berslau, H., Die Graphische Statik der Bau-Konstrucktionen, Vol.Il. 2, A. Kroner, Berlin,
1908.

NEHRP, National Earthquake Hazards Reduction Program, Recommended Provisions for Seismic
Regulations for New Buildings and other Structures, California, USA, 2003.

Newmark, N.M., A simple approximate formula for effective fixity of columns, Journal of the
Aeronautical Sciences, 16(1949), 116.

Olsson, A.M.J., Sandberg, G.E. and Austrell, P.E., Load-carrying capacity of damaged steel columns
with channel sections, Journal of Structural Engineering, 125(3), (1999), 338-343.

Pekoz, T., and Winter G., Cold-Formed Steel Rack Structures, Proceedings of the 2nd Specialty
Conference of Cold-Formed Steel Structures, University of Missouri-Rolla, 1973.

Pekoz, T. and Rao, K., Design of industrial storage racks, Progress in structural engineering and
materials, 3 (2001), 28-35.

Prager, W., Elastic stability of plane frameworks, Journal of Aeronaut, Sci., Vol. 3, pp: 388, 1936.

Rhodes, J. Design of Cold-Formed Steel Members, Elsevier Applied Science, London, 1991.

RMI, Specification for the design testing and utilization of industrial steel storage rack, Rack
Manufactures Institute, 1997, 2000.

Roddis, W.M.K., Hamid, H.A., and Guo, C.Q., K factor for unbraced frames: alignment chart
accuracy for practical frame variations, AISC, Engineering Journal, 3rd Qtr., (1998) 81-93.

SA, AS4100-1990 Steel Structures, Standards Australia, Sydney, 1990

Sarawit, A.T. and Pekoz, T., Notional load method for industrial steel storage racks, Thin-Walled
Structures 44 (2006) 1280-1286.

Sarawit, A.T. and Pekoz, T., CUTWP program, Cold-Formed Steel Structures Research Group,
School of Civil and Environmental Engineering, Cornell University, USA, 2003.

Schafer, B., Direct Strength Method (DSM) Design Guide, Design Guide CF06-1, American Iron and
Steel Institute, 2006.

Schmidt, J.A., Design of steel columns in unbraced frames using notional loads, Practice Periodical

on Structural Design and Construction, 4 (1), 1999

185



Schuster, R.M., CFS Design Manual, Solid Mechanics Division, University of Waterloo, Waterloo,
Ontario, Canada, 1975.

Schuster, R.M., CFS Design, CIVE 703 Course Notes, Department of Civil Engineering, University
of Waterloo, Ontario, Canada, 2004.

Schuster, R.M., Industrial pallet rack storage structure frame column-beam connection spring
constant tests, Final Report, Canadian Cold Formed Steel Research Group, University of
Waterloo, Canada, 2004.

Shanmugan, N.E. and Chen, W.F., An assessment of K factor formulas, AISC, Engineering Journal,
Ist Qtr., (1995), 3-11.

Sivakumaran, K.S. and Abdel-Rahaman, N., A finite element analysis model for the behavior of cold-
formed steel member, Thin-walled Structures 31, (1998), 305-324.

SSRC, Structural Stability Research Council, 1996

Trahair, N.S. and Bradford, M.A., The Behaviour and Design of Steel Structures, 2nd Edition,
CHAPMAN AND HALL, 1988.

Xu, L., Second-order analysis for semi-rigid steel frame design, Canadian Journal of Civil
Engineering, 28 (2001) 59-76.

Xu, L., Liu, Y. and Chen, J., Stability of unbraced frames under non-proportional loading, Structural
Engineering and Mechanics - an International Journal 1(11), (2001), 1-16.

Xu, L., and Liu, Y., Storey-based effective length factors for unbraced PR frames, AISC, Engineering
Journal, 39(1), (2002) 13-29.

Xu, L. The buckling loads of unbraced PR frames under non-proportional loading, Journal of
Construction Steel Research 58 (2002) 443-465.

Xu, L. A NLP approach for evaluating storey-buckling strengths of steel frames under variable
loading, Struct Multidisc Optim 25, (2003), 141-150.

Xu, L. and Wang, X.H., Stability of multi-storey unbraced steel frames subjected to variable loading,
Journal of Constructional Steel Research, 63 (2007), 1506-1514.

Xu, L. and Wang, X.H., Storey-based column effective length factors with accounting for initial
geometric imperfections, Journal of Engineering Structures, (in pressed).

Yu, W.W., Cold-formed steel design, 3rd Edition, John Wiley and Sons Inc, 2000.

Yura, J.A., The effective length of columns in unbraced frames, AISC, Engineering Journal, 2nd Qtr.,

(1971), 37-42.

186



Zimmerman, H., Die Knickfestigkeit des Geraden Stabes mit Mehreren Feldern, Sitzungsberichte der

preussischen Akademie der Wissenschaften, (1909), 180.

187



