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Abstract 

For decades, structural engineers have been using various conventional design approaches for 

assessing the strength and stability of framed structures for various loads. Today, engineers are still 

designing without some critical information to insure that their stability assessment yields a safe 

design for the life of the structure with consideration for extreme loads. Presented in this thesis is new 

critical information provided from the study of stability analysis and design of steel framed structures 

accounting for extreme loads associated to load patterns that may be experienced during their 

lifetime. It is conducted in five main parts. A literature survey is first carried out reviewing the 

previous research of analyzing frame stability including the consideration of initial geometric 

imperfections, and also evaluating research of the analysis and design of the increased usage of cold-

formed steel (CFS) storage racks. Secondly, the elastic buckling loads for single-storey unbraced steel 

frames subjected to variable loading is extended to multi-storey unbraced steel frames. The 

formulations and procedures are developed for the multi-storey unbraced steel frames subjected to 

variable loading using the storey-based buckling method. Numerical examples are presented as 

comparisons to the conventional proportional loading approach and to demonstrate the effect of 

connection rigidity on the maximum and minimum frame-buckling loads. Thirdly, the lateral stiffness 

of axially loaded columns in unbraced frames accounting for initial geometric imperfections is 

derived based on the storey-based buckling. A practical method of evaluating column effective length 

factor with explicit accounting for the initial geometric imperfections is developed and examined 

using numerical examples.  The fourth part is an investigation of the stability for multi-storey 

unbraced steel frames under variable loading with accounting for initial geometric imperfections. 

Finally, the stability of CFS storage racks is studied. The effective length factor of CFS storage racks 

with accounting for the semi-rigid nature of the beam-to-column connections of such structures are 

evaluated based on experimental data. A parametric study on maximum and minimum frame-

buckling loads with or without accounting for initial geometric imperfections is conducted.  

 

The proposed stability analysis of multi-storey unbraced frames subjected to variable loading takes 

into consideration the volatility of live loads during the life span of structures and frame buckling 

characteristics of the frames under any possible load pattern. From the proposed method,  the 

maximum and minimum frame-buckling loads together with their associated load patterns provides 

critical information to clearly define  the stability capacities of frames under extreme loads.  This 
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critical information in concern for the stability of structures is generally not available through a 

conventional proportional loading analysis. This study of work ends with an appropriate set of 

conclusions. 
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Chapter I 

 

Introduction 

1.1 Background 

 Stability is the fundamental safety criterion for steel structures during their construction period and 

lifetime of operation. Although the research on the stability of structures can be traced back to 264 

years ago when Euler published his famous Euler equation on the elastic stability of steel bars in 

1744, adequate solutions are still not available for many types of structures. The stability of structures 

has been exercising the minds of many eminent engineers and applied mathematicians for several 

decades. Even today in 2008, structural engineers are still facing the challenges of determining the 

stability of a structure under different types of loads.  One of these more difficult challenges is in 

determining the critical load under which a structure collapses due to the loss of stability in the 

structural design because of the complexity of this phenomenon and because of the many material 

property influences due to imperfections and inelasticity. In addition to the complex challenges, the 

improvement of the industrial processes in both hot-rolled and cold formed steel (CFS) members and 

the use of high strength steel provides a competitive design solution to structural weight reduction, 

resulting from the increase of member slenderness, structural flexibility and therefore being more 

vulnerable to instability. 

 

The approaches for considering column stability in the design of steel frames vary between 

different design standards and specifications throughout the world. Within the context of using elastic 

analysis, in general, there are three types of methods available for stability analysis of framed 

structures subjected to proportional loading, i.e. 1) theoretical method which is so-called the system 

buckling method, 2) the effective-length based method and 3) storey-based buckling method 

(Galambos, 1988; Julian and Lawrence, 1959; Majid, 1972; Chen and Lui, 1987). Among these 

methods, the system buckling method is considered to be impractical as it involves solving for the 

minimum positive eigenvalue from either a highly nonlinear or a transcendental equation (Galambos, 

1988). With the effective-length based method, the alignment chart method (Julian and Lawrence, 
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1959) is the most widely used method in practice for designing a frame, while this method uses 

certain simplifications which may result in the inaccuracy of the estimated column strengths in certain 

cases. The storey-based buckling method, which is an alternative to the effective length method that 

does not use the simplifications corresponding to the alignment chart method is considered to be 

practical and provides accurate results (Yura, 1971; LeMessurier, 1977; Xu and Liu, 2002; Liu and 

Xu, 2005; Xu and Wang, 2007, 2008). This method is based on the idea that lateral sway instability of 

an unbraced frame is a storey phenomenon involving the interaction of lateral sway resistance of each 

column in the same storey and the total gravity load in the columns of that storey. A storey-based 

buckling method developed by Xu and Liu (2002) will be adopted and extended in this research to 

facilitate the stability analysis of multi-storey steel frames subjected to variable loading.  

 

    Considering current design practice and research activities involving the stability analysis and 

design of framed structures are almost exclusively based on the assumption of proportional loading, 

where the obtained stability capacity of the structure corresponds to a specified load pattern that may 

not apply to any other load pattern. Therefore, structural engineers have to anticipate the possible load 

patterns caused by various types of loads that may be encountered during the life span of the building, 

and this is usually accomplished by specifying different load combinations in accordance with 

existing design standards, if available. However, the worst case load patterns are not always 

guaranteed in the load combinations specified in the standards or by the engineers due to the 

unpredictable nature to varying types of loads. The variability of loads in both magnitudes and 

locations need to be accounted for in assessing the stability of structures, otherwise, public safety may 

be jeopardized. 

 

    The study of stability of multi-storey unbraced steel frames subjected to variable loading will be 

considered in this research because this is of primary importance as variable loading accounts for the 

variability of applied loads, which will represent realistic conditions during the life span of the 

structures.  This research includes obtaining the maximum and minimum frame-buckling loads and 

the associated load patterns from a frame stability analysis under any possible load combinations. The 

associated load patterns clearly define the stability capacities of frames under extreme load cases. 

Since this research proposes an innovative variable loading approach, it enables the prediction of the 

characteristics of stability of unbraced multi-storey frames under variable loadings. The variable 

loading approach captures the load patterns that cause instability failure of frames at the maximum 
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load levels (the most favorable load pattern) and minimum (the worst load pattern). The approach 

clearly identifies the stability capacities of frames under the extreme load cases; such critical 

information is generally not available through the current proportional loading stability analysis. 

 

    All structural frames in reality are geometrically imperfect, hence, deflection commences as soon 

as the loads are applied. In the practical stability design and analysis of framed structures, geometric 

imperfections to be accounted for are out-of-straightness, which is a lateral deflection of the column 

relative to a straight line between its end points, and frame out-of-plumbness, which is lateral 

displacement of one end of the column relative to the other. In the absence of more accurate 

information, evaluation of imperfection effects should be based on the permissible fabrication and 

erection tolerances specified in the appropriate building code. As an example, in the U.S.A, the initial 

geometric imperfections are assumed to be equal to the maximum fabrication and erection tolerances 

permitted by the AISC Code of Standard Practice for Steel Building and Bridge (AISC, 1992) and 

AISC (2005). For columns and frames, this implies a member out-of-straightness equal to L/1000, 

where L is the member length brace or framing points, and a frame out-of-plumbness equal to H/500, 

where H is the storey height, and these two initial geometric imperfections values will be adopted in 

this current research. 

 

    In this research, an analytical investigation on the effective length based procedure such that the 

effects of the out-of-straightness of column and out-of-plumbness of frame on column strength can be 

evaluated explicitly and independently. Within the concept of the storey-based buckling method 

introduced by Yura (1971), a practical method to evaluate the effective length factor for columns in 

an unbraced frame with initial geometric imperfections is developed in this study.  

 

    The method investigated to evaluate the stability capacities for a multi-storey unbraced frame under 

extreme load cases is an innovative approach, which is currently not available through the current 

proportional loading stability analysis. For an extreme loading case accounting for the initial 

geometric imperfections, this innovative variable loading approach will help improve upon existing 

methods used in applications for the engineering practice from this research.  

 

    The structural application of CFS has increased rapidly in recent times due to significant 

improvements of manufacturing technologies producing thin, high-strength steels and research 
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achievements on the design and construction of CFS framing. Cold formed steel members have a 

unique structural stability issues primarily due to the large width-to-thickness comparison element 

ratios, which is not commonly the use with in sections of hot-rolled steel. One of the largest 

applications of CFS structures is found in the storage rack industry, ranging from relatively small 

shelving systems to extremely large and sophisticated pallet storage rack systems. In current design 

practice, the nature of randomly applied loads, both in applied locations and magnitudes, are often 

found as one of the primary contributing factors causing structural failures. This not considered in the 

design of the storage racks and as a result the appropriate analysis method is not available at the 

present time. Considering that CFS storage racks are extensively used in large and crowded 

warehouse type shopping facilities in Canada and the U.S.A, public safety may be a concern due to 

the factors involved with structural stability. For the purposes of safety and performance, research on 

assessing the integrity of the CFS storage racks subjected to variable loading is imperative and 

considered far overdue. It is an essential part of this research to apply for the proposed method in the 

application of CFS storage racks to help improve upon existing methods.  

 

1.2 Objectives of this Research 

The overall objective of this research involves the stability issues that the design professional is 

facing in the structural design of both conventional steel structures and CFS storage racks to ensure 

the stability of structural frame and its individual members while considering the uncertainty and 

variability of the applied loads. The specific objectives of this thesis are: 

 

� Develop an analytical approach for the stability analysis of multi-storey unbraced frames       

subjected to variable loading with regad to frame stability. 

� Develop a practical approach of calculating storey-based column effective length factors with       

explicitly accounting for initial geometric imperfections and the effects of initial geometric 

imperfections on the column strength. 

� Investigate the effect of initial geometric imperfections on the stability of multi-storey 

unbraced frames subjected to variable loading. 

� Apply the proposed method for evaluating the effective length factor method of CFS storage 

rack frame structures with consideration for semi-rigid connections.  
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� Conduct an analytical investigation on the stability of CFS storage rack frame structures 

subjected to variable loading with or without accounting for initial geometric imperfections. 

 

1.3 Outline of Research 

This thesis is organized in the following manner:  

 

In Chapter 2, a literature survey is presented which includes the reviews of selected previous works 

on frame stability analysis including the consideration of the stability analysis of frames, the effects 

of initial geometric imperfections in the design of frame structures, research work about CFS 

including the application of CFS used for storage rack frame structures.    

 

    Presented in Chapter 3 is the study to extend the method for elastic stability of multi-storey 

unbraced frames subjected to variable loading from the method developed by Xu (2002) for single-

storey frames. This study will establish the problem of determining the maximum and minimum 

frame-buckling loads of multi-storey unbraced semi-rigid frames under variable loading based on the 

concept of storey-based buckling. The established problem is formulated as a pair of maximization 

and minimization problems with stability constraints that can be solved by a linear programming 

method. A 2-bay by 2-storey semi-rigid unbraced frame subjected to variable loading is presented to 

demonstrate the proposed approach. This proposed approach clearly identifies the stability capacities 

of frames under extreme load cases. The maximum and minimum frame-buckling loads together with 

their associated load patterns obtained from this proposed approach, are generally not available 

through a conventional proportional loading stability analysis.  

 

    Given in Chapter 4 is the study of the storey-based stability analysis for multi-storey unbraced 

frames accounting for initial geometric imperfections. By following the derivation of the lateral 

stiffness of an axially loaded column in an unbraced frame and accounting for the initial geometric 

imperfections, the formulation and the procedure of evaluating the column effective length factor 

with explicitly accounting for the initial geometric imperfections are developed. The comparison 

among the results of the 1
st
-order, 2

nd
-order Tayler series approximations and the storey-based method 

is examined by using numerical examples.  Parametric studies are presented to illustrate the effects of 

the initial geometric imperfections on the column effective length factor and column strengths. In this 



 

6 

chapter a method is developed to enable practitioners to better evaluate column strengths by explicitly 

using any given value of initial geometric imperfections, which is not available in the current design 

practice.  

 

Based on the studies presented in Chapters 3 and 4, the study presented in Chapter 5 is focused on 

the effects of the initial geometric imperfections for maximum and minimum frame-buckling loads of 

the multi-storey unbraced semi-rigid frames under variable loading. The maximization and 

minimization problems presented in Chapter 3 are reformulated by replacing the column lateral 

stiffness, which accounts for the initial geometric imperfections. The numerical example in Chapter 3 

is examined with consideration for the imperfections. A parametric study is also carried out to 

investigate the influences of the imperfections on the maximum and minimum frame-buckling loads.  

 

   Presented in Chapter 6 is the application of CFS storage racks using the methods developed in the 

previous Chapters 3 to 5. The effects of the perforations to the member design code for CFS storage 

racks are also examined and the semi-rigid connection is evaluated with the experimental data for 

such structures in this chapter. The numerical examples of CFS storage racks with different beam-to-

column connections are given to predict the column effective length factor accounting for the initial 

geometric imperfections. Also the parametric study to provide the results for unbraced CFS storage 

racks subjected to variable loading is presented in this chapter.  

 

    Conclusions of the current research and recommendations on the future research are presented in 

Chapter 7.  
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Chapter II 

 

Literature Survey 

 

2.1 Introduction 

The structural use of steel in the construction industry is continually growing rapidly across the 

world. New challenges in the structural use of steel are arising all the time, and research has been 

called upon to provide appropriate solutions. The use of steel as a construction material has, of 

course, its advantages, such as strength, lightness, ductility, etc., but it also possesses, as is well-

known, considerable challenges with regard to slenderness, stability, fire resistance, geometric 

imperfections and other structural requirements. Thus, with the understanding accruing from the 

numerous studies of the mechanics of steel structures at both member and system levels, it becomes 

necessary to develop appropriate analysis procedures to quantify the relevant effects in the structures, 

and to develop appropriate design procedures for the actual construction of these structures. 

 

2.2 Stability of Steel Frames 

Since the mid-18th century, the phenomenon of elastic stability, or buckling, has given rise to 

extensive theoretical and experimental investigations. The first study about the stability analysis for 

rigidly jointed plane frameworks can be found in Zimmermann (1909), Müller-Breslau (1908) and 

Bleich (1919). Later, Pager (1936) developed a method using the stability condition of a column with 

elastic end restraints. Chwalla (1938) presented a study on lateral stability of a rigidly jointed one-

storey symmetric portal frame subjected to symmetrical concentrated transverse loads. In his study, 

the elastic buckling strength of a frame was defined as being equivalent to the elastic critical load of 

the frame and the strengths of the frame and columns were interrelated and the relationship between 

the two was identified to be complicated. Since the 18th century, there have been tremendous 

research efforts made in frame stability with goals to provide more accurate and practical solutions 

for the engineering practice and since then there are three types of methods available for stability 
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analysis of framed structures, i.e. theoretical method, the effective-length based method and storey-

based buckling method. 

 

    The theoretical method of stability analysis of frames, which is also called the system buckling 

method, often involves solving the critical loads from either a highly nonlinear equation or a 

transcendental equation (Majid, 1972; Livesley, 1975; Bhatt, 1981), which accounts for the stiffness 

interactions of all members in the frame. Although the system buckling method provides accurate 

results, this method is generally considered impractical because of the cumbersomeness and difficulty 

in solving for the critical load multiplier of the structural system as the least non-negative eigenvalue 

from either a highly nonlinear or a transcendental equation (Galambos, 1988). In design practice, the 

effective length based methods still are the general methods of evaluating the column compressive 

strength and have been recommended in almost all of the current design specifications (AISC, 2005). 

 

2.2.1 Effective Length Factor Method 

In current design practice, the effective-length based method has become the most common method to 

evaluate the column compressive strength. Based on the effective length concept, the compressive 

strength of a member with length L in a frame is equated to the length of an equivalent pin-ended 

member with length KL, in which K is called the effective length factor, or K factor. This concept is 

considered an essential part of many analysis procedures and has been recommended by almost all 

current design specifications (AISC, 1989, 1994, 2001, 2005) and Canadian Standard CAN/CSA 

S16.1-2000 (CSA, 2000). There are several methods to calculate the K factors within the concept of 

effective length. Among these methods, the alignment chart method that was investigated by Julian 

and Lawrence (1959) is the most widely used method for frame design. This method assumes that all 

individual columns in a storey buckle simultaneously under their individual proportionate share of the 

total gravity load (Duan and Chen, 1989) and it also takes into account the rotational restraints 

provided by upper and lower beam column assemblages to provide a direct means to evaluate the K 

factors. However, since this method relies on several assumptions, the evaluated K factors may be 

inaccurate when the assumptions are violated. Bridge and Fraster (1977) presented a modified G-

factor method to improve the effectiveness of the alignment chart method. Duan and Chen (1988, 

1989) proposed a procedure to evaluate the K factors of compressive members in both braced and 
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unbraced frames, in which the far ends of the columns above and below are not necessarily 

continuous but can either be hinged or fixed.  

 

    The alignment chart method takes into account the rotational restraints by upper and lower 

assemblages but it neglects the interaction of lateral stiffness among the columns in the same storey 

resisting lateral sway buckling of unbraced frames. In contrast to the alignment chart method, the 

concept of storey-based buckling introduced by Yura (1971) acknowledged that sidesway buckling of 

unbraced frames is a total storey phenomenon, and a single individual column cannot fail by sidesway 

without all the columns in the same storey also buckling in the same sway mode.  LeMessurier (1977) 

presented a method of evaluating the K factor based on the concept of the storey-based buckling, 

which accounts for the lateral restraining effect among columns in the same storey, i.e., the stronger 

columns brace the weaker columns until sidesway buckling of the storey occurs. LeMessurier’s 

method requires using the alignment charts and involves an iterative procedure. Compared with the 

alignment charts method, LeMessurier’s method provided a more accurate estimation of effective 

length factor. Lui (1992) proposed a simplified method that accounts for both the member stability 

(P-�) and the frame stability (P-�) in the calculation of the effective length factor. The method 

involves a first-order frame analysis without the need for special charts or iterative procedures 

required. The concept of storey-based buckling was adopted by the LRFD specification (AISC, 2005) 

because the destabilizing effects of lean-on column in a frame were not considered in the alignment 

charts method.  

 

    In the determination of the effective length factor for columns in semi-rigid frames, Chen and Lui 

(1991) modified the values of the moment of inertia of the restraining beams while using the 

alignment chart method in order to incorporate connection flexibility. The modification factors were 

derived for both the braced and unbraced frames based on the assumption that the beam-to-column 

connection stiffness at both ends are identical. These modification factors were developed to consider 

the different values of connection stiffness at the ends of the beam (Bjorhovde, 1984; Chen et al., 

1996; Christopher and Bjorhoved, 1999). However, the modification factors were based on the 

rotational conditions at the ends of the beam. Based on the adoption of the concept end-fixity factor, 

Xu (1994) derived a comprehensive expression for the modification factors regardless of the 

rotational conditions at each end of a beam for braced and unbraced frames. Kishi et al., (1997) 

presented a study of evaluating the effective length factor for columns in semi-rigid unbraced frames 
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using a sub assemblage model with two columns and then comparing the results with those of the 

alignment chart method. Also investigated in this study was the nonlinear behaviour of the semi-rigid 

connection on the effective length factor. Shanmugan and Chen (1995) presented an assessment of K 

factors of columns within frames of different geometry based on four methods, including the 

alignment charts, LeMessurier’s formula, Lui’s formula and the system buckling method. The study 

concluded that Lui’s method is the most appropriate for general use in design practice. 

 

    Roddis et al. (1998) presented a parametric study based on variations of bay-width, moment of 

inertia of columns, loading, and column height for a 2-bay by 3-storey frame. This study 

demonstrated that the approach of evaluating effective length factors based on the concept of storey-

based buckling yielded more accurate results and, therefore, is recommended for general use. The 

foregoing storey-based buckling method often requires using either a first order elastic analysis or the 

alignment chart while evaluating the storey-based effective length factor; as a result, an efficient 

storey-based buckling method was proposed by Xu (2001) and Xu and Liu (2002). This improved 

method was based on the single-storey frame mode that required neither a conducing frame analysis 

nor using the alignment chart. 

 

2.2.2 Initial Geometric Imperfections 

In stability design and analysis of framed structures, one must allow for a frame’s initial 

imperfections and it is imperative to account for the effects of out-of-plumbness of framing and out-

of-straightness of columns. In steel structure analysis and design, member out-of-straightness has 

been closely examined and its effects included in column strength curves. The inclusion of geometric 

imperfections in the design procedure for frames is much more complex. Eurocode 3 (1996) 

recommends that frame imperfections be included in the elastic global analysis of the frame. 

Although the influence of the number of columns in a plane and the number of stories is considered, 

only limited guidance is given with respect to the shape and distribution of imperfections.  

 

    AS4100-1900 (SA, 1990) and the CAN/CSA-S16.1-2000 (CSA, 2000) include the effect of frame 

imperfections through the use of an equivalent notional lateral load, a procedure also allowed in 

Eurocode 3 (CEN, 1992). In the study of Clarke et al. (1992), an advanced analysis based on the finite 

element method accounted for the effects of geometrical imperfection and this study found that for 
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the simple sway portal frame, the out-of-plumbness imperfections reduced frame strength to a greater 

extent than the member out-of-strightness imperfections. A comprehensive review of geometric 

imperfections included in design specifications around the world can be found in the SSRC World 

View document (SSRC, 1996). In this book, the geometric imperfections are defined as the 

combination of member out-of-straightness and frame out-of-plumbness. These initial geometric 

imperfections are the basic limits specified by AISC as member out-of-straightness equal to L/1000, 

where L is the member length brace or framing points, and a frame out-of-plumbness equal to H/500, 

where H is the storey height (AISC, 2005). It is indicated from this book, with the absence of a 

reliable database of measured frame imperfections, the maximum erection tolerances be used as the 

basis of frame stability checks in design, while the individual storey instabilities should be checked 

using the maximum out-of-plumbness tolerance.  

 

2.2.3 Notional Load Approach 

For decades, structural engineers have been exploring various approaches for assessing column and 

frame stability in the design of steel building structures for decades. The approaches for considering 

column stability in the design of steel frames vary widely between different codes and specifications 

throughout the world. Current AISI (2004), AISC (2005) and RMI (2000) Specifications use the 

effective length approach for assessing frame stability. An alternative approach, which is called the 

notional load approach is to use the actual column length (i.e., K=1) in conjunction with “notional” 

lateral loads acting at each storey level and a second-order elastic analysis is then conducted on the 

geometrically perfect structures. The notional load approach, also termed the equivalent imperfection 

approach takes into account the storey out-of-plumbness imperfection under gravity loads and it is 

widely used in the British Standard BS5950: Part 1 (BSI, 1990), the Australian Standard AS4100-

1990 (SA, 1990), the Canadian Standard CAN/CSA-S.16.1-2000 (CSA, 2000) and the Eurocode 3 

(CEN, 1992).  

 

    A comprehensive discussion of the notional load approach and design procedure can be found in 

the 1995 Research Report from the University of Sydney (Clarke and Bridge, 1995). In this report, a 

detailed study of the calibration and verification of the notional load approach for the assessment of 

frame stability is presented. Compared to the traditional effective length approach, the notional load 



 

12 

approach is an engineering procedure intended to be applied in conjunction with second-order elastic 

analysis of the geometrically perfect structure.  

 

    It is noted that the Direct Analysis Method accounting for geometric imperfections and residual 

stresses is presented in Appendix 7 of the AISC (2005), in which the specified 0.002 notional load 

coefficient to account for geometric imperfections is based on an assumed initial storey out-of-

plumbness ration of 1/500. A different notional load can be used if the known or anticipated out-of-

plumbness is different, and the imperfections can be modeled explicitly instead of applying notional 

loads. Therefore, it will be desirable to develop an applicable method of accounting for the effects of 

the out-of-straightness of column and out-of-plumbness of frame explicitly and independently in the 

stability analysis for steel buildings and it is one of the objectives of this current research.  

 

2.3 CFS Structure Applications 

 

2.3.1 Analysis and Design of CFS Structures 

CFS structures are structural products that are made by forming flat sheets of steel at an ambient 

temperature into various shapes that can be used to satisfy both structural and functional 

requirements.  The most common structural shapes are cross-section types of CFS members (U, C, Z, 

L and Hat) shown in Figure 2-1.  

 

Figure 2-1: Typical cross-section types of CFS members 

 

    CFS members used in structural applications for lightweight constructions have many advantages 

due to its high strength-to-self weight ratio, where they can carry tension, compression, bending 

forces, and other structural performance benefits. Since 1990, there has been a growing trend to use 



 

13 

CFS sections as the primary structural members in building construction, such as low-to-mid rise 

residential buildings shown in Figures 2-2 and 2-3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Cold-formed steel framing—Example 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Cold-formed steel framing—Example 2 
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   Consequently, much research has been done to understand the structural behaviour and to develop 

design procedure. Hancock and his co-workers (Hancock et al., 1985, 2003) conducted extensive 

research work on the analysis and design of CFS structures (Lau and Hancock, 1987, 1990; Kwon 

and Hancock, 1992). In his very comprehensive review article of CFS structures, Hancock et al. 

(2003) reviewed and summarized the significant developments that continue to take place in the 

design of CFS structural members and connections. He indicated this is to be expected since the 

growth in the use of CFS has significantly outstripped that for hot-rolled steel structural members, 

particularly with the increased use in residential construction throughout the world.  

 

    Other researchers, like Sivakumaran (1998) proposed a study of a finite element analysis model for 

the behavior of CFS members subjected to axial compression and concluded the finite element 

analysis gives accurate and consistent results compared with the test results. The study by Davies 

(2000) includes developments in CFS section technology, developments in applications, 

developments in design procedures for cold-formed sections, the application of generalized beam 

theory (GBT) to buckling problems, current design models and their deficiencies, and design using 

whole section models.  

 

    To assist practicing engineers in CFS design, there are a number of codes of practice (AISI, 1996, 

2004; AS/NZ 4600, 1996; CEN, 1996; BS5950, 1998) available in published literature together with 

complementary design guides and working examples (Rhodes, 1991; Hancock, 1998; Yu, 2000; 

Schuster, 1975, 2004). Current design standards for CFS members in North America use the North 

American Specification for the Design of Cold-Formed Steel Structural Members published by the 

American Iron and Steel Institute (AISI, 2004) and the Canadian Standards Association, CAN/CSA-

S136S1-04, (CSA, 2004). One distinguished monograph on CFS design is that of the Direct Strength 

Method (DSM) written by Schafer (2006). The DSM is an entirely new design method adopted in 

2004 as shown in Appendix 1 of the North American Specification for the Design of Cold-Formed 

Steel Structural Members; this guide provides practical and detailed advice on the use of these new 

and powerful design methods. 
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2.3.2 Design of CFS Storage Racks 

CFS has many structural applications, and one of them is used for storage systems, such as drive-in 

and drive-through rack systems, usually called racks, which are widely used throughout the world for 

storing materials in many distribution facilities. Figures 2-4 and 2-5 are two examples of CFS storage 

rack systems. 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 2-4: Cold-formed steel members used in storage rack systems - Example 1 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: Cold-formed steel members used in storage rack systems - Example 2 
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   CFS rack systems provide high density storage, allowing for the storage for a large amount of 

products in a small area. In addition, such systems also allow greater accessibility to the stored 

products and materials. CFS storage racks are composed of CFS structural members that are used as 

columns, beams and braces. The CFS racks present some peculiar features in their structural analysis 

and design because of the presence of manufactured perforations into the columns to facilitate 

assemblage of the rack system, and semi-rigid beam-to-column connections. Much research has been 

aimed to develop more accurate and efficient analysis and design for CFS storage racks. The research 

of Peköz and Winter (1973) provided background information on the development of the storage rack 

design standards proposed by the manufacturers associations, the Rack Manufacturers Institute 

(RMI). The design standards used in the United States is carried out according to the 1997 edition of 

the Specification published by RMI. 

 

    Lewis (1991) studied the stability of storage racks including the effects of the semi-rigid nature of 

beam-to-column connections and initial imperfections. His study showed how the maximum load of 

pallet rack system frameworks can be affected by the beam end connector characteristics, and the 

initial imperfection of the structure. In a study by Olsson et al. (1999), the influence on the load 

carrying capacity of storage rack columns was investigated. This study showed that even very minor 

defects in the thin-walled columns could significantly reduce the axial load-carrying capacity and the 

results showed a correlation with actual damages found in industrial racks and shelving systems.  

Freitas et al. (2005) presented a study about analysis of steel storage rack columns using commercial 

finite element software, ANSYS and their study showed that the comparison between code 

prescriptions (RMI) and finite element results indicated conservative values. Peköz and Rao (2001) 

summarized a study of design of industrial storage racks that carried out a critical review of the 

current RMI Specification in his study and the RMI Specification was found to be conservative with 

regard to strength estimates. Sarawit and Peköz (2006) presented the study of effective length 

approach and notional load approach for CFS storage racks design. This study recommended that the 

notional load approach be considered as an alternative means for industrial steel storage racks design.  

 

    In the design of CFS storage racks, the specification (RMI, 2000) of the RMI was applied in both 

the USA and Canada along with the AISI Specification (AISI, 2004). In 2005, the Canadian 

Standards Association published the first edition of CSA/A344.1-05/A344.2-05, User guide for steel 

storage racks/Standard for the design and construction of steel storage racks (CSA, 2005). The 
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Federation Europeene De La Manutention (FEM) is the European manufactures association of 

material handling, lifting and storage equipment. The FEM and the European Federation of 

Maintenance, in cooperation with RMI, has conducted research standards and development activities 

for the European Union (EU). FEM published their design code specifications for storage racks with 

working examples (FEM 10.2.02, 2001), code specification (FEM 10.2.03, 2003) and user code 

specification (FEM 10.2.04, 2001). These specifications represent the interests of manufacturers of 

racking, shelving and other storage products through the FEM National Committees of Germany, 

France, Italy, Great Britain, Sweden, Belgium, Spain and Holland. 

 

    In the present, the design of industrial steel storage racks in the United States is based on the 

effective length method according to the RMI Specification (RMI, 2000). Notional loads are 

introduced to account for the effect of out-of-plumbness on the stability of a framed structure and the 

out-of-plumbness effects are assumed to be those that result from an erection tolerance of 0.5 in 10 ft 

(1:240) stated in Clause 6.2.2 of CSA A344.1 for industrial steel storage racks (CSA, 2005). This 

corresponds to the maximum fabrication and erection tolerance permitted by the RMI Specification 

and is roughly twice the value of 1/500 recommended by the AISC Specification used for structural 

steel buildings (RMI, 2000; AISC, 2005).  
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Chapter III 

 

Storey Stability of Multi-Storey Unbraced Frames Subjected to 

Variable Loading 

 

3.1 Introduction 

Current design practice concerning stability analysis and design of framed structures is almost 

exclusively based on the assumption of proportional loading, where the obtained stability capacity of 

the structure corresponds to a specified load pattern that may not apply to any other load pattern. 

Therefore, structural engineers have to anticipate the possible load patterns caused by various types of 

loads that may be encountered during the life span of the building, and this is usually accomplished 

by invetigating different load combinations in accordance with existing design standards, if available. 

However, the worst load patterns are not always guaranteed by the load combinations specified in the 

standards or by the engineers due to the unpredictable nature of varying types of loads.  The 

variability of loads in both magnitudes and locations need to be accounted for when assessing the 

stability of structures; otherwise, structural damage and public safety may be jeopardized.  

 

    In the case of variable loading, the conventional assumption of proportional loading is abandoned 

where different load patterns may cause the frame to buckle at different levels of critical loads. In 

contrast to current frame stability analysis involving only proportional loads, the proposed approach 

in this study permits individual applied loads on the frame to vary independently and it captures the 

load patterns that cause instability failure of frames at the maximum load levels (the most favorable 

load pattern) and minimum (the worst load pattern). The proposed approach clearly identifies the 

stability capacities of frames under the extreme load cases; such critical information is generally not 

available through current proportional loading stability analysis. 

 

    In light of the use of the storey-based buckling concept to characterize the lateral sway buckling of 

unbraced framed structures, presented in this chapter is an extension of the previous study by Xu 
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(2002) on the stability of single-storey unbraced frames subjected to variable loading to the multi-

storey unbraced frames.  

 

3.2 Lateral Stiffness of an Axially Loaded Semi-Rigid Column 

The lateral stiffness of an axially loaded semi-rigid column is schematically illustrated in Figure 3-1. 

Let EIc,ij /Lc,ij be the flexural stiffness of the column axial load, and ijlR ,  and ijuR ,  be the rotational 

restraining stiffness provided by the connected beams at the  lower and upper joints, respectively.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-1: Axially loaded column of an unbraced frame with deformations and forces 

(Xu and Liu, 2002) 

 

    The effect of beam-to-column end rotational restraints can be characterized by the end-fixity 

factors as follows (Monforton and Wu, 1963): 

ijcijlijc

ijl
LREI

r
,,,

,
/31

1

+
= ;     

ijcijuijc

iju
LREI

r
,,,

,
/31

1

+
=                        (3.1a;b) 

where ijlr ,  and ijur ,  are the end-fixity factors for the upper and lower end of the column, respectively.  
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   The end-fixity factors in Eq. (3.1) define the stiffness of each end connection relative to the 

attachment member. For flexible, i.e., pinned connections, the rotational stiffness of the connection is 

idealized as zero; thus, the value of the corresponding end-fixity factor is zero. For fully restrained or 

so-called rigid connections, the end-fixity factor is unity, because the connection rotational stiffness is 

taken to be infinite. A semi-rigid connection has an end-fixity factor between zero and unity.  

 

    Based on Eq. (3.1), the relationship between the end-fixity factor and the connection stiffness is 

nonlinear, as shown in Figure 3-2.  

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Relationship between the end-fixity factor and connection stiffness 

 (Xu and Liu, 2002) 

 

    It can be observed from Figure 3-2 that the relationship between the connection stiffness and the 

end-fixity factor is almost linear when the connection is relatively flexible with a value of the end-

fixity factor between 0.0 and 0.5; then it becomes nonlinear with an end-fixity factor between 0.5 and 

1.0. Upon the introduction of the end-fixity factor, different member-end restraint conditions can be 

readily modeled, such as rigid-pinned, rigid to semi-rigid and pinned to semi-rigid, simply by 

evaluating the end-fixity factors at the two ends of the member according to Eq. (3.1) with 

appropriate values of rotational stiffness of end connections.  

 

    After the introduction of the end-fixity factors, the lateral stiffness of an axially loaded column of 

an unbraced frame can be expressed as (Xu and Liu, 2002) 
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where subscripts i and j are the indices of storey and column, respectively; E is Young’s modulus and 

Ic,ij and Lc,ij  are the moment of inertia and the length of column, respectively. φij is the applied load 

ratio and defined as  
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in which Pij is the column axial load and Pe,ij is the Euler buckling load for the column with pinned 

connections.  

 

    �ij(�ij,rl,ij,ru,ij) in Eq. (3.2) is the modification factor of the lateral stiffness that takes into account the 

effects of both axial force and column end rotational restraints. A zero value of �ij(�ij,rl,ij,ru,ij) indicates 

the column has completely lost its lateral stiffness and lateral buckling of the column is about to 

occur. A column with a negative value of �ij(�ij,rl,ij,ru,ij) signifies that the column relies upon the 

lateral restraint provided by other columns in the same storey in order to maintain the axial load. A 

column with a positive value of �ij(�ij,rl,ij,ru,ij) indicates that the column can provide lateral support to 

other columns to sustain the stability of the storey.  

 

    The modification factor �ij(�ij,rl,ij,ru,ij) in terms of the end-fixity factors can be expressed as (Xu, 

2003) 
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    In the case that the axial force 0→ijP , which leads to 0→ijφ , the modification factor of the 

lateral stiffness is reduced to the result of the first-order analysis in which only the end rotational 

effect has been taken into account as 
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3.3 Storey-Based Stability Equation 

The lateral stability of single-storey unbraced frames subjected to variable loading was first 

investigated by (Xu et al., 2001; Xu, 2002). Based on the concept of storey-based buckling, the 

problem of determining the elastic buckling loads of the frames under non-proportional loading is 

expressed as a pair of maximization and minimization problems with stability constraints. The study 

revealed that in the case of variable loading, the difference between the maximum and minimum 

elastic buckling loads associated lateral instability of the single-storey unbraced frames can be as high 

as 20% in some cases. When the beam-to-column connections are considered either as purely pinned 

or fully rigid in the study, further investigation was carried out on the single-storey unbraced semi-

rigid frames (Xu, 2002). It was discovered that the difference between the maximum and minimum 

buckling loads is insignificant for frames whose connection rigidities are approximately the same and 

evenly distributed among the columns and beams. However, the difference can still be substantial in 

some cases with lean-on columns, but it is not as significant as in the case where connections are 

simplified as ideally pinned or fully rigid. 

 

    Considering elastic buckling of multi-storey unbraced frames, the concept of storey-based buckling 

indicates that lateral sway instability of an unbraced frame is a storey phenomenon involving the 

interaction of lateral stiffness among columns in the same storey. This means that the columns with a 

larger stiffness are able to provide lateral support for the weaker columns in the same storey to resist 

the lateral sway instability while the columns with a smaller stiffness depend on such lateral support 

to maintain the lateral stability. Therefore, the condition for multi-column storey-based buckling in a 

lateral sway mode is the sum of the lateral stiffness of the storey reduced to zero.  
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    Based on Eq. (3.2), the stability equation of a single-storey semi-rigid frame buckling in a lateral 

sway mode is given by (Xu and Liu, 2002; Liu and Xu, 2005) 
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where i is the ith storey and m is the number of the columns in ith storey.  

    For the multi-storey frame shown in Figure 3-3, once the lateral stiffness of any one storey 

vanishes, the frame becomes laterally unstable.  

 

 

 

 

 

 

 

 

Figure 3-3: (m-1)-bay by n-storey unbraced frame 

 

    Therefore, the lateral instability of a multi-storey frame can be defined as a case with at least one 

storey of the frame, say storey k having its lateral stiffness vanished, that is Sk becomes zero. Based 

on Eq. (3.7), the lateral stability equation for unbraced multi-storey frames is given by  
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    This equation implies that if any one of the stories fails to maintain its lateral stability, storey-based 

buckling of an unbraced multi-storey frame will occur. It is impractical to evaluate a column buckling 

load in multi-column frames directly from Eq. (3.4) due to the transcendental relationship of 

�ij(�ij,rl,ij,ru,ij) and �ij. Applying the 2
nd

-order Taylor series expansion, Eq. (3.4) for a column j in the 

ith floor of a multi-storey frame is simplified as follows (Xu and Liu, 2002) 
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    From previous research investigated by Xu and Liu (2002), the 1
st
-order Taylor approximation 

yields satisfactory results and it is recommended for use in practice due to the simplicity of the 

method. Therefore, substituting Eqs. (3.10a) and (3.10b) into Eq. (3.7), the lateral stiffness of column 

ij becomes                                              
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where Lc,ij and Pij are the length and applied axial load of column j in the ith storey, respectively.  
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3.4 Decomposition of Multi-Storey Frames 

Equation (3.8) defines the stability condition for multi-storey unbraced frames based on the concept 

of storey-based buckling. However, even with the simplification of column lateral stiffness as shown 

in Eq. (3.12), it is difficult for practitioners to facilitate a stability analysis using Eq. (3.8) due to the 

high-order of nonlinearity. To overcome this difficulty, Liu and Xu (2005) proposed a strategy of 

decomposing a multi-storey frame into a series of single storey frames. 

 

    In the case of a single storey frame, the beam-to-column rotational restraints are directly applied to 

the upper ends of the connected columns. For a multi-storey frame, floor beams provide rotational 

restraints for both the lower and upper columns at a joint. Therefore, the appropriate distribution of 

the beam-to-column rotational-restraining stiffness between the lower and upper columns with 

consideration of the effects of axial load on column end rotational stiffness is the key issue to be 

resolved in the decomposition process. 

 

    Figure 3-4 illustrates a deformed profile of the single storey model decomposed from a typical 

storey of the multi-storey frame shown in Figure 3-3.  

 

 

 

 

Figure 3-4: Decomposed single storey model 

      

    In determining the distribution factor of the beam-to-column rotational-restraint stiffness, three 

approaches are proposed by Liu and Xu (2005). The first approach referred to as the geometrical 

stiffness distribution (GSD) is a method of accounting for the effect of the column axial force on 

column end rotational stiffness.  The second approach, named frame-based stiffness distribution 

(FSD), is basically the same as the GSD except the effects of axial loads are neglected. The third 

approach is defined as column-based stiffness distribution (CSD), which is similar to that of the FSD 

approach except that the rotational stiffnesses of the beams at the far end of the column in adjacent 

stories is taken as infinite.  
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    It is noted that in these three approaches, the GSD or FSD approach requires the end-fixity factor at 

the far end of the column rl,ij to be known, in which the decomposition process can be conveniently 

evaluated from the first storey since the end-fixity factors associated with the column bases are 

known and continued toward to the upper stories. In the case of using the CSD approach, the 

decomposition process can be initiated from any storey. Between the approaches of GSD and FSD to 

account for the effects of axial force or not, it is found that in a frame buckling analysis, the critical 

axial force of each column at the buckling state is unknown in advance, and as the axial force and 

column end rotational stiffness are interrelated, the numerical iterations are required to obtain the 

results. As we already know, the iterative process can be quite cumbersome for the engineering 

practice. From the study of Liu and Xu (2005), it is recommended to initiate the process of evaluating 

the stiffness distribution factors with either the FSD or CSD approach. In this current study, the 

column base is known; therefore, the FSD approach is chosen to carry out the following studies. The 

detailed procedure of applying the FSD approach is presented in Appendix A.  

 

3.5 Stability Analysis for Multi-Storey Unbraced Frames Subjected to Variable   

Loading 

To investigate the stability of unbraced frames under variable loading can be formulated as two 

problems of seeking the maximum and minimum bounds of buckling loads of the frames. The 

simplified form of Eqs. (3.4) and (3.9) are adopted for the column stiffness modification factor and 

consequently, the problem of seeking the maximum frame-buckling loads can be stated as follows:  
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where n is the number of the stories in the frame and m is the number of columns in one storey. Pij is 

the applied load associated with column ij and is the variable of the maximum problem.  Z is the 

objective function corresponding with either the maximum or the minimum elastic buckling loads of 

the frame and it is the sum of variable loading Pij . 

 

    Equation (3.13b) represents the storey-based stability condition for the kth storey of the frame, in 

which the column stiffness modification factor �0,ij(rl,ij,ru,ij) and �1,ij(rl,ij,ru,ij)  are defined in Eq. (3.9).  

In the case that the lateral stiffness of storey, Sk is greater than zero, the storey is laterally stable; 

otherwise, the storey becomes laterally unstable if Sk=0. Equation (3.13c) is a side constraint for each 

applied column load, which is to be less than an associated upper bound load. The upper bound, 

2

,

2

,,

2 / ijcijbracedijc LKEIπ , is imposed to ensure that the magnitude of the applied load will not exceed 

the buckling load associated with non-sway buckling of the individual column. The factor Kbraced,ij  is 

the effective length factor of the column associated with non-sway-buckling that is related to the 

rotational restraints of the column ends. In this study, Kbraced,ij is evaluated as the following 

(Newmark, 1949), 
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where Rl,ij  and Ru,ij  are the rotational restraining stiffnesses provided by the beams connected at the 

lower and upper ends of the column, respectively, and EIc,ij/Lc,ij is the flexural stiffness of the column. 

Expressed in terms of the end-fixity factors defined in Eq. (3.1), Eq. (3.14) becomes  
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    The problem of seeking the minimum frame-buckling loads of a multi-storey unbraced frame 

subjected to variable loading can be stated as: (Xu and Wang, 2007) 
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where n is the number of stories in the frame and m is the number of columns in one storey. Zl (l = 1, 

2, 3…n) is obtained from the minimization problem as follows, 
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(k = 1, 2…n; k ≠ l; i = 1,2…n; j = 1, 2…m) 
 

    It is noticed that both the formulation and procedure of seeking the minimum frame-buckling load 

are different from those of the maximum frame-buckling loads. First, an equality constraint, Eq. 

(3.17b), is imposed in the minimization problem to ensure that the minimum value of the loads 

obtained from Eq.(3.17b) will result in lateral instability at least in one storey, say storey l in this 

case. Second, the minimization problem shown in Eq.(3.17a) needs to be solved by n times with l = 1, 

2, 3,…, n, and the minimum frame-buckling load obtained from Eq.(3.16) is the minimum of the 

minimum frame-buckling loads associated with the instability of each storey (Xu and Wang, 2007). 

 

    It should be noticed that Eqs. (3.13) and (3.17) are linear programming problems. Thus, the 

maximum or minimum frame-buckling loads under variable loading can be solved with the use of a 

linear programming algorithm such as the simplex method, which will be demonstrated in the next 

section with an numerical example.  

 

3.6 Numerical Example 

A numerical example is presented in this section to demonstrate the validity and efficiency of the 

foregoing proposed method for stability analysis of multi-storey unbraced steel frames subjected to 

variable loading. This example is a 2-bay by 2-storey steel frame which is a bench mark case for 

stability analysis and has been investigated by different researchers to validate different analytical 

methods (Lui, 1992; Liu and Xu, 2005). To investigate the effects of a semi-rigid connection 

behaviour on the frame stability, especially on the maximum or minimum frame-buckling loads under 
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variable loading, cases with different values of end-fixity factor for beam-to-column and column base 

connections in this example is being studied in this research.  

 

    The 2-bay by 2-storey frames with five different beam-to-column and column base connections as 

shown in Figures 3-5 to 3-8 are investigated to illustrate the influence of the different connections on 

the maximum and minimum buckling loads of frames and associated variable load patterns.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: 2-bay by 2-storey steel frame – Case 1 
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Figure 3-6: 2-bay by 2-storey steel frame – Case 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3-7: 2-bay by 2-storey steel frame – Cases 3 and 5 
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Figure 3-8: 2-bay by 2-storey steel frame – Case 4 

 

    Based on Eq.(3.13b), the maximum buckling loads for the 2-bay by 2-storey steel frame shown in 

Figures 3-5 to 3-9 can be expressed in the following forms: (Xu and Wang, 2007) 

Maximize:     232221131211 PPPPPPZ +++++=                                 (3.18) 
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                            (3.19b) 

11,21110 uPPP ≤+≤ ; 12,22120 uPPP ≤+≤ ; 13,23130 uPPP ≤+≤  

                        21,210 uPP ≤≤ ; 22,220 uPP ≤≤ ; 23,230 uPP ≤≤                                 (3.19c) 

    Similarly, based on Eqs. (3.16) and (3.17), the minimum buckling loads for the 2-bay by 2-storey 

steel frame ( n=2, m=3) can be obtained from following forms: 

3
.5

2
9
6

 m
 

C11 

10.51 I 

3
.1

3
 I

 

6.0168 m 

C12 C13 4
.6

0
 I

 

2
.3

6
 I

 

4.4928 m 

3
.0

4
8
0

 m
 

10.51 I 

B12 B11   

B22 B21 

8.41 I 8.41 I 

2
.3

5
 I

 

2
.3

5
 I

 

I 

C23 C22 

348.7kN 815.8kN 467.1kN 

1 2 3 

2 

1 

P22 

 

772.2kN 1873.1kN 1100.9kN 

P21 

P11 

P23 

P13 

C21 

P12 
 O 

 O 

 O 

 O 



 

32 

Minimum Z=min{ ��
= =

==
2

1

3

1

}3,2,1|
i j

ijl lPZ                                     (3.20) 

Minimize:       232221131211 PPPPPPZ +++++=                                 (3.21) 
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11,21110 uPPP ≤+≤ ; 12,22120 uPPP ≤+≤ ; 13,23130 uPPP ≤+≤  

                      21,210 uPP ≤≤ ; 22,220 uPP ≤≤ ; 23,230 uPP ≤≤                                 (3.22c) 

    For the 2-bay by 2-storey steel frames shown in Figures 3-5 to 3-8, the end fixity factors associated 

with column bases and beam-to-column connections are summarized in Table 3-1.  

Table 3-1: 2-bay by 2-storey steel frames with different connections 

 

Case  

Column base  

Co nnections 

Beam-to-column connections 

Interior column Exterior column 

1 rigid: r = 1 rigid: r = 1 rigid: r = 1 

2 rigid: r = 1 rigid: r = 1 semi-rigid: r = 0.8 

3 rigid: r = 1 semi-rigid: r = 0.8 semi-rigid: r = 0.8 

4 rigid: r = 1 pinned: r = 0 rigid: r = 1 

5 rigid: r = 1 semi-rigid: r = 0.2 semi-rigid: r = 0.2 

     

    The Young’s modulus of steel is E = 2×10
5
 MPa where the reference moment of inertia for beams 

and columns is I = 8.3246×10
7
mm

4
. The dimensions of frames and the moment of inertia of each 

member are shown in Figures 3-5 to 3-8. The detailed process of evaluating stiffness distribution 
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factors, beam-to-column rotational-stiffness, end-fixity factors and column stiffness modification 

factors for unbraced multi-storey frames are presented in Appendix A.  

 

    Following the procedures described in the previous section, the maximum and minimum frame-

buckling loads associated with the two-storey and two-bay unbraced steel frames subjected to 

variable loading can be obtained from solving the maximization and minimization problems stated in 

Eqs. (3.18) to (3.20). For the foregoing five cases in Table 3-1, the values of the coefficients 

including the end-fixity factors, the effective length factor and the buckling loads associated with 

non-sway buckling corresponding with the maximum and minimum frame-buckling loads, together 

with their relative differences, are presented in Tables 3-2 to 3-6.  Also presented in the Tables are the 

column elastic flexural stiffness 3

,0 /12 ijijij LEI β and the coefficients associated with column lateral 

stiffness modification factors �1,ij(rl,ij,ru,ij)  . New results for a frame subjected to proportional loading 

are also obtained in this study and the results are presented in Tables 3-2 to 3-6. The load patterns 

associated with the maximum and minimum frame-buckling loads are illurstrated in Figures 3-9 to 3-

13. 

 

    In case of proportional loading, the pattern of applied loads on the frame is given and the loads can 

be evaluated using the following equation  

                                                          ��
= =

=
n

i

m

j

ijPP
1 1

                                                                    (3.23) 

in which,                                                  ijacrij PP ,λ=                                                                     (3.24) 

where ijaP ,  is the applied load of an individual column which is shown in the Figures 3-4 to 3-8 and 

crλ  is the critical load multiplier associated with the multi-storey frame and is defined in the 

following equation  (Liu and Xu, 2005) 

}...,,min{ 321 ncrcrcrcrcr λλλλλ =           (i=1,2,3….n)                  (3.25) 

where                                                � �
= =

=
m

j

m

j ijc

ijija

ijc

ijijc

icr
L

P

L

EI

1 1 ,

,1,

3

,

,0,
/

ββ
λ                                           (3.26) 

The detailed studies for obtaining the critical load multiplier crλ can be referred in Chapter 4. 
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Table 3-2: Results of the unbraced steel frames shown in Figure 3-5 – Case 1 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.635 

0.834 

0.826 

14100.000 

11980.000 

8956.000 

0.094 

0.096 

0.096 

0.575 

0.534 

0.536 

183700.000 

144700.000 

108500.000 

32995.120 

0.000 

0.000 

0.000 

34205.970 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.614 

0.828 

0.822 

0.784 

0.895 

0.919 

8854.000 

12530.000 

5431.000 

0.089 

0.093 

0.093 

0.630 

0.558 

0.554 

106200.000 

133900.000 

57570.000 

76848.140 

0.000 

0.000 

0.000 

73278.69 

0.000 

0.000 

15394.100 

57570.000 

Critical frame buckling loads �Pij = 109843.260 
107484.660 

(S2=0.000) 

72964.100 

(S1=11311.300) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
2.2% 50.5% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 108200.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
0.7% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
48.3% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9: Load patterns associated with max. and min. frame-buckling loads – Case 1 
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Load pattern – min. frame-buckling load 
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Table 3-3: Results of the unbraced steel frames shown in Figure 3-6 – Case 2 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.568 

0.815 

0.781 

13010.00 

11740.000 

8534.000 

0.094 

0.096 

0.095 

0.588 

0.538 

0.545 

175300.000 

142700.000 

104900.000 

35951.570 

0.000 

0.000 

0.000 

37237.400 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.484 

0.771 

0.733 

0.731 

0.881 

0.895 

7136.000 

11650.000 

4821.000 

0.088 

0.092 

0.092 

0.672 

0.573 

0.578 

91970.000 

126400.000 

52860.000 

68405.800 

0.000 

0.000 

0.000 

65193.370 

0.000 

0.000 

65193.370 

0.000 

Critical frame buckling loads �Pij = 104357.370 
102430.770 

(S2=0.000) 

65193.370 

(S1=12102.200) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
1.9% 60.1% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 103200.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
1.1% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
58.3% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Load patterns associated with max. and min. frame-buckling loads – Case 2 
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Load pattern – min. frame-buckling load 
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Table 3-4: Results of the unbraced steel frames shown in Figure 3-7 – Case 3 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.540 

0.771 

0.760 

12570.000 

11200.000 

8343.000 

0.094 

0.095 

0.095 

0.594 

0.547 

0.549 

171900.000 

138100.000 

103300.000 

36634.980 

0.000 

0.000 

0.000 

37899.160 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.453 

0.718 

0.709 

0.707 

0.850 

0.884 

6669.000 

10660.000 

4640.000 

0.087 

0.091 

0.091 

0.685 

0.592 

0.586 

93930.000 

123300.000 

53460.000 

64023.320 

0.000 

0.000 

0.000 

61512.610 

0.000 

0.000 

9764.310 

51460.000 

Critical frame buckling loads �Pij = 100658.310 
99411.760 

(S2=0.000) 

61224.310 

(S1=12386.010) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
1.3% 64.4% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 99890.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
0.8% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
63.2% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11: Load patterns associated with max. and min. frame-buckling loads – Case 3 
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Load pattern – min. frame-buckling load 
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Table 3-5: Results of the unbraced steel frames shown in Figure 3-8 – Case 4 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.420 

0.000 

0.705 

10740.000 

3555.000 

7843.000 

0.094 

0.100 

0.095 

0.573 

0.707 

0.560 

158400.000 

82570.000 

97700.000 

51596.840 

0.000 

0.000 

0.000 

45588.770 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.377 

0.00 

0.644 

0.644 

0.000 

0.851 

5577.000 

0.000 

4176.000 

0.086 

0.083 

0.090 

0.719 

1.000 

0.608 

80370.000 

41570.000 

47880.000 

28685.290 

0.000 

0.000 

0.000 

29734.760 

0.000 

0.000 

0.000 

27473.240 

Critical frame buckling loads �Pij = 80282.130 
75323.530 

(S2=0.000) 

27473.240 

(S1=16818.560) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
6.5% 192.2% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 77650.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
3.1% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
182.6% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12: Load patterns associated with max. and min. frame-buckling loads – Case 4 
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Load pattern – min. frame-buckling load 
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Table 3-6: Results of the unbraced steel frames shown in Figure 3-7 – Case 5 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.184 

0.384 

0.359 

7489.000 

6955.000 

5060.000 

0.097 

0.095 

0.095 

0.668 

0.626 

0.631 

136000.000 

105300.000 

78070.000 

0.000 

39118.180 

0.000 

37376.260 

0.000 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.090 

0.269 

0.262 

0.287 

0.485 

0.559 

1681.000 

3794.000 

1772.000 

0.084 

0.085 

0.086 

0.889 

0.787 

0.769 

52560.000 

67090.000 

29890.000 

0.000 

0.075 

21440.250 

21894.260 

0.000 

0.000 

0.000 

0.000 

21440.830 

Critical frame buckling loads �Pij = 60559.010 
59270.520 

(S2=0.000) 

21440.830 

(S1=12596.100) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
2.2% 182.4% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 60200.000 

Difference of proportional loading & max. frame-

buckling loads (%) 
%

min

max pP−  
0.6% 

Difference of proportional loading & min. frame-

buckling loads (%) 
%

min

min− pP  
180.8% 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: Load patterns associated with max. and min. frame-buckling loads – Case 5 
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    For Case 1, in which both the column base and beam-to-column connections are rigidly connected, 

it is observed from Table 3-2 that the maximum frame-buckling load, 109843.3 kN is achieved when 

lateral instability takes place in both the first and the second stories of the frame. The minimum 

storey-buckling loads associated with lateral instability of the first and second stories are 107484.66 

kN and 72964.1 kN, respectively. Therefore, the relative difference between the maximum and 

minimum frame-buckling loads is 50.5%, which is significant. It is also observed from Table 3-2 that 

the load patterns associated with the minimum frame-buckling loads are different. The load pattern 

corresponding to the maximum frame-buckling loads tends to place the loads only on exterior 

columns 11 and 21. In contrast to that, the load pattern associated with the minimum frame-buckling 

load applies the loading both on the exterior and interior columns.   

 

The load patterns corresponding to the maximum and minimum frame-buckling loads of Case 1 

are verified using structural analysis software MASTAN2 (McGuire et al., 2000) and the results are 

presented in Table 3-7. From Table 3-7, it is found that when the load patterns associated with the 

maximum and minimum frame-buckling load is applied on the frame, the applied load ratio with 

respect to the elastic critical load is equal to one which verifies the current study results are correct. 

 

 

Table 3-7: Results verification of the unbraced steel frames shown in Figure 3-5 – Case 1 

 

Storey 

 

Columns 

Current study 

Max. 

(kN) 

Min. (kN) 

S1 = 0, S2 > 0 S2 = 0, S1 > 0 

  

1 

11 

12 

13 

32995.120 

0.000 

0.000 

0.000 

34205.970 

0.000 

0.000 

0.000 

0.000 

2 

21 

22 

23 

76848.140 

0.000 

0.000 

0.000 

73278.690 

0.000 

0.000 

15394.100 

57570.000 

MASTAN2 – Elastic critical load: 

applied load ratio 

 

1.000 

 

1.000 

 

1.040 
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    In Case 2, the column base and the interior beam-to-column connections are rigid. The exterior 

column is semi-rigidly connected with the corresponding end-fixity factor being 0.8. The presence of 

semi-rigid connections yields a flexible frame, which is evidenced by decreasing the magnitudes of 

the elastic flexural stiffness compared to that of Case 1. Consequently, the maximum frame-buckling 

load of Case 2 reduces to 104357.4 kN, and the corresponding minimum frame-buckling load 

decreases to 65193.4 kN, which yields the relative difference between the maximum and minimum 

frame-buckling loads to be 60.1%, which is significant too. It is also observed that the first and 

second stories are unstable simultaneously when they are subjected to a maximum frame-buckling 

load.  

 

    For Case 3, the beam-to-column connections for both the interior and exterior columns are semi-

rigidly connected with the corresponding end-fixity factor being 0.8. Compared to Cases 1 and 2, the 

frame of Case 3 is more flexible; thus, the magnitudes of the maximum and minimum frame-buckling 

loads are reduced to 100658.3 kN and 61224.3 kN, respectively, which leads to a difference of 64.4% 

between the extreme buckling loads. Like Cases 1 and 2, it is found that lateral instability occurs 

simultaneously for both first and second stories and the load patens are identical when they are 

subjected to the maximum frame-buckling load.  

 

    Table 3-5 presents the results of Case 4 and the detailed hand calculation of illustrating the process 

of evaluating the end-fixity factors and the lateral stiffness modification factors of Case 4 is also 

presented as an example in Appendix A. In Case 4, the column base uses rigid connections 

having 113,12,11, === lll rrr . The beam-to-column connections of the exterior columns are rigid and 

the interior columns are pinned, in which we can get other end-fixity factors associated with the upper 

and lower ends of the columns (see details in Appendix A) with the values 

of ,42.011, =ur ,0.012, =ur ,705.013, =ur ,377.021, =lr ,0.022, =lr ,644.023, =lr ,644.021, =ur

,0.022, =ur 851.023, =ur . Once we obtain the values of end-fixity factors for the columns, we can 

calculate the lateral stiffness modification factors of ),( ,,,0 ijuijlij rrβ  and ),( ,,,1 ijuijlij rrβ with the 

value ,68.011,0 =β ,25.012,0 =β ,731.013,0 =β ,336.021,0 =β ,0.022,0 =β ,592.023,0 =β

,094.011,1 =β ,1.012,1 =β ,094.013,1 =β ,086.021,1 =β ,083.022,1 =β 09.023,1 =β .  Therefore, the 
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maximization and minimization problems stated in Eqs. (3.18) to (3.22) can be evaluated and the 

details are presented in Appendix B.   

 

    The results demonstrate that the maximum and minimum frame-buckling loads are 80282.1 kN and 

27473.3 kN, respectively. The load patterns corresponding to the maximum frame-bucking loads 

applied to the exterior columns, which are characterized by the rigid beam-to-column connections. 

The difference between the maximum and minimum frame-buckling loads is 192.2%, which is 

considerably significant. It is observed that the load patterns associated with the maximum frame-

buckling load are applied only on exterior columns, which are the same with cases 1, 2 and 3. It is 

also found that load patterns associated with the minimum frame-buckling load are applied on interior 

or exterior columns.  To verify the constraint conditions shown in Eq. (B.5) in Appendix B, the 

loading of column C23, P23=27473.24 kN is substituted into the Eq. (B.5a), 

)(32.0)(34.0)(319.025610 2313221221111 PPPPPPS +−+−+−= , it yields S1=16818.56>0.  If 

substituting P23=27473.24kN into the Eq. (B.5b), 2322212 355.0328.034.09753 PPPS −−−= , it 

produces S2=0, which verifies the results presented in Table 3-5.  

 

    The verification results obtained from computer program MASTAN2 (McGuire et al., 2000) are 

given in Table 3-8 with respect to the maximum and minimum frame-buckling loads. It is noted that 

once the load patterns corresponding to the maximum and minimum frame-buckling loads are applied 

on the frame, the frame is just within its critical load condition which can be verified to be equal to 

one for the applied load ratio with respect to the elastic critical load. 
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Table 3-8: Results verification of the unbraced steel frames shown in Figure 3-8 – Case 4 

 

Storey 

 

Columns 

Current study 

Max. 

(kN) 

Min. (kN) 

S1 = 0, S2 > 0 S2 = 0, S1 > 0 

1 

11 

12 

13 

51596.840 

0.000 

0.000 

0.000 

45588.770 

0.000 

0.000 

0.000 

0.000 

2 

21 

22 

23 

28685.290 

0.000 

0.000 

0.000 

29734.760 

0.000 

0.000 

0.000 

27473.240 

MASTAN2 – Elastic critical load: 

applied load ratio 

 

1.000 

 

1.030 

 

0.980 

 

 

    In Case 5, the column base connection is rigid, while the beam-to-column connections for both the 

interior and exterior columns are quite flexible with the corresponding end-fixity factor being 0.2. 

Consequently, the elastic flexural stiffness decrease largely compared to the other cases. The 

maximum and minimum frame-buckling loads are 60559.0 kN and 21440.8 kN as shown in Table 3-

6, which yields a considerable difference of 182.4%. The load patterns corresponding to the 

maximum frame-buckling loads tend to apply the loads both on the interior and exterior columns and 

the load patterns corresponding to the minimum frame-buckling loads tend to apply only on exterior. 

                                                           

    The frame-buckling strengths associated with storey-based buckling subjected to proportional 

loading for the frames in the foregoing cases are also presented in Tables 3-2 to 3-6.  It is found that 

the differences between the maximum and proportional loadings are 0.7%, 1.1%, 0.8%, 3.1% and 

0.6% for Cases 1 to 5, respectively. For these five cases, the differences between the proportional and 

the minimum loadings are found to be 48.3%, 58.3%, 63.2%, 182.6% and 180.8%, respectively. A 

concern may be raised from such significant differences in this particular example and other studies 

(Xu et al., 2001; Xu, 2002; Deierlein, 1992) as to the appropriateness of using the conventional 

proportional loading approach to evaluate frame-buckling strength for unbraced steel frames such as 

the ones investigated in this example.  
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3.7 Conclusions 

The stability of single-storey unbraced frames subjected to variable loading proposed by Xu (2002) 

has been extended to the multi-storey unbraced frames in this study. The difference of solving an 

extreme loading problem between single-storey and multi-storey frames using the case of a multi-

storey frame, to obtain the minimum frame-buckling load, the minimization problem needs to be 

solved for each storey while the maximum frame-buckling load can be acquired by solving the 

maximization problem only once. 

 

    The maximum and minimum frame-buckling loads and their associated load patterns can be 

obtained by solving the maximization and minimization problems, respectively, with a linear 

programming method. These problems represent the maximum and minimum bounds of the frame 

buckling loads of the structures, which characterize the stability capacity of the frame under extreme 

loading conditions. It can also be observed from the presented 2-bay by 2-storey frame example that 

the corresponding maximum frame-buckling load is always associated with the lateral instability of 

both the first and second storey simultaneously, which indicated a further increase in any one of the 

applied loads is impossible as each storey has already reached the limit state of lateral instability.  

This study reveals that the differences between the maximum and minimum frame-buckling loads 

could be substantial for multi-storey unbraced steel frames. This study also found the maximum and 

minimum frame-buckling loads are influenced by the beam-to-column connection. For instance, 

when the end-fixity factor of beam-to-column connection reduces from 1, 0.8 and 0.2 for Cases 1, 3 

and 5, respectively, the frame becomes more flexible which can be evidenced by decreasing the 

maximum and minimum frame-buckling loads and their relative differences increase from 50.5%, 

64.4% and 182.4% for Cases 1, 3 and 5, respectively. Comparing the results obtained from the 

proportional and variable loading cases, one can conclude that the frame-buckling loads associated 

with proportional loading are always between the maximum and minimum loads subjected to variable 

loading. The comparison results also indicate that the proportional load was very close to the 

maximum frame-buckling load. However, to ensure that the minimum frame-buckling strength of the 

frame is being accounted for in the design, the stability analysis of the frames subjected to variable 

loading proposed herein is recommended for the frames in either of the following cases: 

 

1. There is a considerable variation in lateral stiffness among columns in the same storey of any 

storey of the frame;   
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2. There is a considerable variation in connection stiffness among beam-to-column connections 

in the same storey of any storey of the frame or column base connection; and 

3. There is an expected substantial volatility in applied loads.  
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Chapter IV 

 

Storey-Based Stability Analysis for Unbraced Frame with Initial 

Geometric Imperfections 

 

4.1 Introduction 

The steel framework is one of the most commonly used structural systems in modern construction 

and is often designed using planar unbraced moment frames for the lateral-load resisting systems 

along with a significant number of gravity columns throughout the structure. In the foregoing 

proposed research, the idealizations are made by assuming that the joints of the multi-storey frame are 

precisely aligned while the column is perfectly straight. It should also be understood that such 

idealizations are not practically achievable.  

 

    In the current design practice, the effect for the out-of-straightness of columns is taken into account 

inexplicitly in the development of the column strength curve by calibrating column strength to that 

associated with a specific value of out-of-straightness. Out-of-straightness is often to be the maximum 

allowable value of out-of-straightness specified in applicable design standards. The effect of out-of-

plumbness of the frame, on the other hand, can be accounted for by conducting a second-order 

analysis and applying so called notional loads of 0.002Yi at each storey level, where Yi is the design 

gravity load applied at level i, and 0.002Yi represents an initial out-of-plumbness in each storey of the 

structure of 1/500 times the storey height (AISC, 2005). 

 

    In this chapter, the stability of columns in multi-storey unbraced frames with the initial geometric 

imperfections has been investigated. The lateral stiffness of the axially loaded column in unbraced 

frame is derived with the incorporation of effects of the initial geometric imperfections. Based on the 

concept of storey-based buckling, a practical method of determining the effective length factor for 

columns in unbraced frames with explicit accounting for the out-of-straightness of member and the 

out-of-plumbness of frame has been developed and the numerical examples have been examined. 
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4.2 Lateral Stiffness of an Axially Loaded Column with Initial Geometric 

Imperfections 

For a perfect slender column under an axial load only, elastic buckling occurs suddenly when the 

critical load is attained. The column does not deflect laterally prior to the failure. In practice, columns 

are actually imperfect, subject to both material imperfections and geometrical imperfections. The 

influence of out-of-straightness of column is presented in Figure 4-1 from Trahair and Bradford 

(1991). For a straight member with initial out-of-straightness, the lateral deformations (curve A) 

occur immediately upon loading and then follow the elastic second-order bending curve until the first 

yield takes place at a load Pl .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Influence of imperfection on column behavior (Trahair and Bradford,1991) 
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The deformed shapes of an axially loaded column with initial imperfections associated with out-of-

plumbness of framing and out-of-straightness of column are shown in Figure 4-2.  

 

 

 

 

 

 

 

 

 

 

Figure 4-2: The deformed shapes of an axially loaded column with initial geometric 

imperfections  

 

    In engineering practice, these initial geometric imperfections shall not exceed the fabrication (out-

of-straightness) and erection (out-of-plumbness) tolerances stipulated in the applicable engineering 

standards. For instance, the AISC (2005) specifies a fabrication tolerance (out-of-straightness) for 

compression members of L/1000 between lateral supports, and an erection tolerance (out-of-

plumbness) of L/500 for individual columns. To account for out-of-straightness of column, a half-sine 

curve is typically adopted to simulate the member imperfection as shown in Figure 3a. Thus, the 

imperfection function associated with out-of-straightness of column is, 

L

x
y

π
δ sin01 =                                                             (4.1) 

where δ0 is the initial out-of-straightness at the middle of the column.  

 

    Let ∆0 be the initial out-of-plumbness at the upper joint of the column as shown in Figure 3b, and 

then the corresponding imperfection function of frame is, 
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L

x
y 0

2

∆
=                                                                   (4.2) 

    With a unit lateral deflection at the upper end as shown in Figure 3c, the internal moment of the 

column with both column out-of-straightness and frame out-of-plumbness can be expressed as 

( ) ( )xLSyPMM u −−−∆+−−= 01                                            (4.3) 

where M is the internal moment of the column; Mu is the end moment at the column upper end; P is 

the applied axial load; L is the column length; S, the lateral force associated with the unit lateral 

deflection at column upper end, is defined as the lateral stiffness of the column; and y is the lateral 

deflection of the column including the member imperfection function y1 and frame imperfection 

function y2. Therefore, the equilibrium condition of the column subjected to the axial load and end 

moment can be expressed as 

( ) ( )yPxLSM
dx

yd
EI u −∆++−+= 02

2

1                                        (4.4) 

    Similarly, the end moment at the lower end can be obtained from Eq. (4.3) 

 ( )
0

1 ∆+−−−= PSLMM
ul

                                              (4-5) 

    Let θl,ij and θu,ij be the end rotations of the column related to the lower and upper ends, respectively, 

the boundary conditions of the column are described in the following: 

0, uijuu RM θ= ;  0, lijll RM θ−=                                            (4.6a, b) 

0
0

=
=x

y ;   10 +∆=
=Lx

y                                               (4.7a, b) 

l

xdx

dy
θ=

=0

; u

Lxdx

dy
θ−=

=

                                               (4.8a, b) 

in which 

       LLll // 000 πδθθ −∆−=                                         (4.9a) 

LLuu // 000 πδθθ +∆−=                                                       (4.9b) 

where the column rotational-restraining stiffness Ru,ij and Rl,ij are contributed by beams connected to 

the upper and lower ends of the column, respectively.  
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    The detailed process to derive the lateral stiffness of an axially loaded column with accounting for 

the initial geometric imperfections is discussed in Appendix C.  Based on Eq. (C5) in Appendix C, 

the lateral stiffness of the column is given as 

33

2
12

L

EI

L

CEI
S β

φ
==                                                          (4.10) 

in which 
12

2φ
β

C
=  is the lateral stiffness modification factor that takes the effects of axial force and 

column end rotational restraints into account, and is given as follows.  

 

]
sin)(cos)(

sin)(cos)(
[

12
10

2

9

2

877

654

2

3

2

211

3

φφφφφ

φφφφφφ
β

fffff

fffffff

+++−

+++−+−+
=                       (4.11) 

where 

ul
rrf πδ

01

50

9
−=                                                       (4.11a) 

)2)(
100

1(3 0
2 ulul rrrrf −+

∆
+=                 (4.11b) 

)1)(
100

1( 0
3 ulul rrrrf +−−

∆
+=                      (4.11c) 

)3(
100

3
04 ulul rrrrf −−∆=                                 (4.11d) 

                                   )2(
100

3 0
5 ulul rrrrf −+

∆
=                               (4.11e) 

                                ul rrf 96 −=                                                                (4.11f) 

ul rrf 187 =                                 (4.11g) 

)2(38 ulul rrrrf −+=                             (4.11h) 

ulul rrrrf +−−= 19                 (4.11i) 

)5(310 ulul rrrrf −+=                              (4.11j)                                         
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    As stated previously in Chapter 3, the transcendental relationship between � and φ in Eqs. (4.11) 

based on Eq. (C9) of Appendix C are too complicated for solving the critical buckling load of the 

column. By applying 1
st
-order or 2

nd
-order Taylor series approximations, the lateral stiffness 

modification factor � with initial geometrical imperfections presented in Eq. (4.11) can be expressed 

as 

2

00,,,100,,,000,, ),,,(),,,(),,,,( ijijuijlijijuijlijijijuijlij rrrrrr φδβδβφδβ ∆−∆=∆                           (4.12a) 

4

00,,,2

2

00,,,100,,,000,, ),,,(),,,(),,,(),,,,( ijijuijlijijijuijlijijuijlijijijuijlij rrrrrrrr φδβφδβδβφδβ ∆−∆−∆=∆  

(4.12b) 

in which 

( )( ) ( )

ijuijl

ijlijuijuijlijuijl

ijuijlij
rr

rrrrrr

rr
,.

,,
0

,,,,0

,,,0
4

2
100

100/1

),(
−

+
∆

−++−
=

πδ
β                (4.13a) 

( )2

,,

,20,10,0

,1
460 ijuijl

ijijij

ij
rr−

∆++
=

ααπδα
β                                                (4.13b) 

where 

( )2

,

2

,

2

,,

2

,,

2

,,,

2

,,0 38348402 ijuijlijuijlijuijuijlijuijlijlij rrrrrrrrrr ++++−+=α                 (4.14a) 

                                                                                                 

( )2

,

2

,

2

,,

2

,,

2

,,,

2

,,1 21622816
100

1
ijuijlijuijlijuijuijlijuijlijlij

rrrrrrrrrr ++++−=α                (4.14b) 

                                    

( ) ( )[ ]ijuijuijlijuijuijlijuij rrrrrrr ,,,,,
2
,

2
,,2 3172381640

50

1
+−+++=α                 (4.14c) 

 

( )4

,,
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,2,100
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100

1
))(

100

1
1(

ijuijl

ijlijlijlijlijlijl

ij
rr

rrrrrr

−

+++∆+++++
=

ζζζζζζζζπδ
β  

(4.15) 

where 

3

,

2

,0 17922560 ijuiju rr −=ζ                                                  (4.16a) 
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3

,

2

,,1 70418444960 ijuijuiju rrr ++−=ζ                                        (4.16b) 

3

,

2

,,2 41149218442560 ijuijuiju rrr −−+=ζ                                     (4.16c) 

3

,

2

,,3 17417041792 ijuijuiju rrr −−+−=ζ                                      (4.16d) 

3

,

2

,4 35845120 ijuiju rr +−=ζ                                                 (4.16e) 

  
3

,

2

,,5 320020084960 ijuijuiju rrr −++=ζ               (4.16f) 

    
3

,

2

,,6 89814925696 ijuijuiju rrr ++−=ζ                                       (4.16g) 

                            
3

,

2

,,7 178161792 ijuijuiju rrr +−=ζ                                            (4.16h) 

                                          

    It is noted that in the consideration of initial geometric imperfections, �0,ij(rl,ij,ru,ij,�0,�0), 

�1,ij(rl,ij,ru,ij,�0,�0) and  �2,ij(rl,ij,ru,ij,�0,�0) are functions of the column end-fixity factors (rl,ij, ru,ij ) and 

the initial geometric imperfections of out-of-straightness (�0) and out-of-plumbness (�0). 

           

4.3 Evaluation of Column Effective Length Factor Accounting for Initial 

Geometric Imperfections 

Maintaining the adequacy of column strength and frame stability is of primary importance to the 

structural design of such a structural system. For nearly 40 years, stability design of columns under 

the American Institute of Steel Construction Specification for Structural Steel Building (AISC, 2005) 

has been traditionally based upon the concept of effective length. According to this concept, the 

elastic buckling strength of a column of length L is equated to an equivalent pin-ended member of 

length KL, subject to axial load only, by means of K factor 
cre PPK /= , where Pcr is the elastic 

buckling strength of the end-restrained column, and Pe is the Euler buckling strength of a pin-end 

column given by 22 / LEIPe π=  in which E is the Young’s modulus and I is the moment of inertia of 

the column section about the axis of buckling.  

 

    There are different methods of calculating the K factors within the concept of effective length and 

along with adopted idealizations of the structure. Among them, the most widely adopted procedure 
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for the frame design is the alignment chart method that was originally proposed by Julian and 

Lawrence (1959) based on the assumption that all individual columns in a storey buckle 

simultaneously under their individual proportionate share of the total gravity load. This method 

corresponds to the side-sway-inhibited and side-sway-permitted cases.  The procedure takes into 

account the rotational restraints provided by upper and lower beam-column assemblage and provides 

a direct means to obtain K factors. One significant drawback of the alignment chart method is that it 

does not account for the fact that a stronger column can provide effective bracing to a weaker column 

in resisting the lateral instability of a storey assemblage.  

 

    A more accurate approach to determine K is given by LeMessurier (1977). In this approach, the 

following assumptions have to be satisfied to evaluate the K factors: (1) the sum of the gravity load 

that causes lateral instability of a storey is equal to the sum of the individual buckling loads of 

columns that provide storey side-sway resistance; (2) the individual column buckling loads are 

determined based on the K factors obtained from the alignment chart.  Later, a practical approach to 

determine the effective length factor for unbraced frames was proposed by Lui (1992), which 

involved the first-order frame analysis but without any special charts or iterative procedures required.  

 

    In the study of the storey-based buckling analysis discussed in Chapter 3, a practical method to 

evaluate the effective length factor for unbraced frame with initial imperfections is investigated in this 

chapter. By substituting Eq. (4.12b) into Eq. (3.2), the lateral stiffness of column ij associated with 2
nd

 

–order Taylor series approximation can be written as 
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in which Lc,ij  and Pa,ij are the length and applied axial load of column j in the ith storey, respectively. 

�i is the proportional load multiplier associated with the ith storey of the frame. Substituting Eq. 

(4.17) into Eq. (3.7), the stability equation for storey i, buckling in a lateral sway mode can be 

expressed as 
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Let                                                           
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EI
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1
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β�
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=                                                             (4.19c)  

by substituting Eqs. (4.19) into Eq. (4.18), one can obtain the following equation 

02 =−+ iiiii cba λλ                                                            (4.20) 

 

    Thus, the critical load multiplier associated with the lateral instability of i-th storey can be solved 

from the smaller positive root of Eq. (4.20) as follows 

)/(2

1)/)(/(41
2

ii

iiii

orderndicr
ba

bcba −+
=−−λ                                                    (4.21) 

 

    Noted that if only 1
st
-order Taylor series approximation in Eq. (4.12a) adopted, in which only the 

first two terms of this equation is used, then the corresponding stability Eq. (4.20) is reduced to 

0=− iii cb λ                                                                (4.22) 

from which the critical load multiplier associated with lateral instability of i-th storey can be obtained 

from Eq. (4.22) as  

i

i

ordersticr
b

c
=−−1λ                                                                  (4.23) 

 

         It is noted that since the applied axial compressive load Pa,ij on the columns are defined as 

positive values in this study, then the values of ai and bi expressed in Eqs. (4.19a) and (4.19b) will be 

dependent on the lateral stiffness modification factors of �2,ij(rl,ij,ru,ij,�0,�0) and �1,ij(rl,ij,ru,ij,�0,�0). The 

coefficient ci in Eq. (4.19c) is the function of the lateral stiffness modification factors 

�0,ij(rl,ij,ru,ij,�0,�0). The lateral stiffness modification factors  of �0,ij(rl,ij,ru,ij,�0,�0), �1,ij(rl,ij,ru,ij,�0,�0) and 
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�2,ij(rl,ij,ru,ij,�0,�0) can be evaluated from Eqs. (4.13) and the values are given in Tables D-1 to D-12 in 

Appendix D with respect to combined effects of the out-of-straightness (�0) and out-of-plumbness 

(�0). The end-fixity factors rl,ij and ru,ij vary between 0 and 1. From Tables D-1 to D-12 in Appendix 

D, it is noted that the values of �0,ij(rl,ij,ru,ij,�0,�0), �1,ij(rl,ij,ru,ij,�0,�0) and �2,ij(rl,ij,ru,ij,�0,�0) are positive 

as well as the values of coefficients ai, bi and ci expressed in Eqs. (4.19). Based on the above 

statements, an inequality expression can be obtained with respect to Eqs. (4.21) and (4.23), which is 

given as: 

ordersticrorderndicr −−−− < 12 λλ                                                        (4.24a) 

substituting Eqs. (4.21) and (4.23) into this condition, which will yield the following expression: 

i

i

ii

iiii

c

b

ba

bcba
<

−+

)/(2

1)/)(/(41
                                                   (4.24b) 

reordering the left side of expression of (4.24a), we will have the following expression: 

i

i

i

iiii

b

c

a

bcab
<

−+

2

42

                                                         (4.24c) 

 

    As the coefficients of ai and bi are the positive values in current study, then both sides of 

expression (4.24c) multiply a positive coefficient of 2aibi, we can obtain the following expression: 

022 >ii ca                                                                      (4.24d) 

which is always true and the expression of (4.24a) can be proved as true with ai and bi having the 

positive values together.  

 

    The expression of (4.24a) is indicated the critical load multiplier associated with 1
st
-order Tayler 

series approximation is less conservative than the critical load multiplier associated with 2
nd

-order 

Tayler series approximation. In the following numerical examples, we will compare the results based 

on 1
st
-order and 2

nd
-order Tayler series approximations as well as the results directly from the Eq. 

(4.11). 
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    Once we obtained the critical load multiplier associated with lateral instability of i-th storey from 

Eq. (4.21) or (4.23), and the corresponding elastic buckling load of the column is 

ijaicrij PP ,λ=      (j = 1, 2, 3…m)                                                (4.25) 

 

    Finally, the storey-based effective length factor of the column can be evaluated as (Lui, 1992; Xu 

and Liu, 2005; Xu and Wang, 2008) 

ijaicr

ijc

ijc

ij
P

EI

L
k

,

,

, λ

π
=     (j =1, 2, 3…m)                                           (4.26)  

 

    Upon the previous study discussed in Chapter 3, the end-rotational stiffness of each beam and 

beam-to-column restraining stiffness of each joint can be evaluated using the decomposition process 

FSD approach given in Appendix A (Liu and Xu, 2005). Therefore, the distribution of the beam-to-

column rotational-restraining stiffness to the upper and lower columns can be calculated by the 

column end-rotational stiffness, as demonstrated in Appendix A. The summary of storey-based 

effective length factor for columns in a multi-storey unbraced frame with initial geometrical 

imperfections is carried out as follows: 

 

(1) Calculate the end-fixity factors rl,ij and ru,ij from Eq.(3.1) for all the columns.  

(2) Compute the lateral stiffness modification coefficients �0,ij(rl,ij,ru,ij,�0,�0), 

�1,ij(rl,ij,ru,ij,�0,�0) and �2,ij(rl,ij,ru,ij,�0,�0) in accordance with Eqs. (4.13a,b)  and  (4.15) 

based on the specified values of  initial geometric imperfections, �0 or �0.  

(3) Evaluate the critical load multiplier based on Eq.(4.21) or (4.23) for each storey and 

obtain the corresponding storey-based effective length factor Kij from Eq.(4.26) for all the 

columns of the storey. 

 

4.4 Numerical Examples 

The objectives of the numerical examples are to investigate the effects of the initial geometric 

imperfections �0 and �0 on the column elastic buckling strength. Also the results of the critical 

buckling multiplier � and the effective length factor K among the approaches of 1
st
-order and 2

nd
-
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order approximations, and the storey-based buckling analysis are evaluated and one method is 

recommended for the engineering practice. The maximum tolerance of out-of-straightness 

(�0=L/1000) for columns is used to simulate the member imperfection. The initial misalignment 

(�0=L/500) at the upper joint of the column is used to demonstrate the frame instability.  

 

Example 1 

The stability of a 2-bay by 1-storey unbraced steel frame shown in Figure 4-3 was investigated by 

LeMessurier (1977) and several other researchers (Lui, 1992; Shanmugam and Chen, 1995; Schmidt, 

1999). The frame dimensions, member sizes and the applied loads are also shown in this figure.   

 

 

 

     

 

 

 

Figure 4-3: 2-bay by 1-storey frame of Example 1 (Schimdt, 1999) 

 

The study to evaluate the column effective length factor among the approaches of the 1
st
-order and 

2
nd

-order approximations, and the storey-based buckling method without the consideration of the 

initial geometric imperfections is investigated first and the results are given in Table 4-1. The results 

associated with the 1
st
-order and 2

nd
-order approximations are obtained from Eqs. (4.23) and (4.21) 

with �0=0 and �0=0. The storey-based buckling results are computed using Eq. (4.11) based on the 

condition of the summation of the columns lateral stiffness of each storey becomes zero. Also 

presented in this table are the column effective length factor based on the alignment chart method and 

LeMessurier’s method.  
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Table 4-1: Example 1 - Comparison of K factors of 2-bay by 1-storey  

 

 

Col. 

K factors 

 

Alignment 

chart 

 

LeMessurier’s 

method 

Current study (�0=0, �0=0) 

1
st
-order 

approximation 

2
nd

-order 

approximation 

Storey-based 

buckling method 

C11 

C12 

C13 

2.020 

2.030 

2.070 

2.110 

1.770 

2.600 

2.100 

1.750 

2.580 

2.115 

1.770 

2.600 

2.128 

1.781 

2.616 

     

   There is generally good agreement among the results of LeMessurier’s method and the current 

study corresponding to the three approaches, except for those obtained with the alignment chart 

method. Based on the LeMessurier’s method and storey-based buckling method, the K factors are 

mostly within 0.6% for columns C12 and C13, but a maximum difference of 0.84% is noted for column 

C11.  

 

    In Table 4-1, it is found the maximum difference of the effective length factor K between 1
st
-order 

and 2
nd

-order approximations are only 0.66%, 0.68% and 0.65% for columns C11, C12 and C13, 

respectively. For column C11, the maximum differences of K factors between the storey-based 

buckling method and the two approximations are 1.26% and 0.61%, respectively.  1.3% and 0.62% 

are found for the maximum differences of K factors between the storey-based buckling method and 

the two approximations for column C12. And the maximum differences of K factors between the 

storey-based buckling method and the two approximations are 1.26% and 0.61% for column C13.  

 

The maximum difference of up to 1.3% is noted for K factors between the storey-based buckling 

method and the 1
st
-order approximation. This 1

st
-order approximation results are acceptable and can 

be recommended for use in the practice due to its simplified equations.  

 

   In the case of considering the initial geometric imperfections to evaluate the effective length factor 

K, the maximum of out-of-straightness (�0=L/1000) for columns is used to simulate the member 

imperfection. The initial misalignment �0=L/500 at the upper joint of the column is used to 

demonstrate the frame instability. The critical loading multipliers together with their effective length 
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factors are obtained from Eqs. (4.23) and (4.21), which are corresponding to the 1
st
-order and 2

nd
-

order approximations of � in the Taylor series approximation of Eq. (4.11) and the results are 

presented in Table 4-2. For comparison, the results based on the current study without the 

consideration of initial geometric imperfections are also given in Table 4-2.   

 

Table 4-2: Example 1 – comparison study of three approaches 

 

 

 

Col 

Effective length 

factors (K) 

(�0=0, �0=0) 

Critical loading 

multiplier  (�cr) 

(�0=L/1000, �0=L/500) 

Effective length 

factors (K) 

(�0=L/1000, �0=L/500) 

1
st
 –

order 

approxi. 

 

2
nd

 - 

order 

approxi. 

Storey- 

based 

buckling 

1
st
 – 

order 

Eq. 

(4.23) 

2
nd

 - 

order 

Eq. 

(4.21) 

Storey- 

based 

buckling 

1
st
 –

order 

approxi. 

 

2
nd

 - 

order 

approxi. 

Storey- 

based 

buckling 

C11 

C12 

C13 

2.100 

1.750 

2.580 

2.115 

1.770 

2.600 

2.128 

1.781 

2.616 

3.619 

3.619 

3.619 

3.584 

3.584 

3.584 

 3.540 

3.540 

3.540 

2.573 

2.153 

3.163 

2.582 

2.161 

3.175 

2.601 

2.177 

3.198 

 

 

    In Table 4-2, upon the storey-based buckling results, it is noticed that there is a considerable 

difference between the results of with and without considering the imperfections. For column C11, K 

value increases from 2.128 (no initial imperfections) to 2.601 (out-of-straightness: �o = L/1000 and 

out-of-plumbness: �o = L/500), which would result in 18% reduction of the axial strength of the 

column (AISC, 2005). For column C12, K value increases from 1.781 to 2.177 and the corresponding 

reduction on the factored axial strength is about 15%. K value increases from 2.616 to 3.198 for 

column C13, which results in a decrease of the factored axial strength by about 29%.  It should be 

pointed out that as the reductions of the factored axial strengths are based on the column factored 

axial strength evaluated in accordance with the specification of AISC (2005) in which the effects of 

the initial geometrical imperfections have been accounted for in the formulation of evaluating column 

axial strength in some degree. Therefore, the effects of the initial geometrical imperfections maybe 

somewhat doubly accounted for herein. However, the purpose of the foregoing discussion is to 

demonstrate the influence of the initial geometrical imperfections on the column strength, therefore 
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only the relevant percentages of the strength reductions and not the actual magnitudes of the strength 

are given for the reason of comparison. 

 

From Table 4-2, it is found that the critical loading multiplier �cr obtained from Eqs. (4.21) and 

(4.23) are 3.584, and 3.619, respectively which also satisfies the inequality expression (4.24a) and the 

difference of the �cr is 0.96%. Consequently, for column C11, the maximum difference of the 

corresponding K factor between 1
st
-order and 2

nd
-order approximations is only 0.46%, which is 

insignificant. The differences of the corresponding K factors are found to be 0.46% and 0.50% for 

columns C12 and C13, respectively. The maximum differences of K factors between the storey-based 

buckling results and the 1
st
-order approximation are 1.08%, 1.1% and 1.09% for columns C11, C12 and 

C13, respectively. Compared to the 2
nd

-order approximation for columns C11, C12 and C13, the 

maximum differences are found to be 0.62%, 0.64% and 0.59%, respectively. In Table 4-1, the K 

factors based on Eq. (4.23) (2
nd

-order approximation) are less than the results obtained from Eq. 

(4.21) (1
st
-order approximation), which proved the results based on 2

nd
-order approximation are more 

conservative than the results from 1
st
-order approximation. Figure 4-4 illustrates the K factors with 

the 1
st
-order and 2

nd
-order approximations, and the storey buckling method, corresponding to the end-

fixity factors of the columns base.  

                     

Figure 4-4: Example 1 - comparison results of K factors vs end-fixity factor r 
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     Figure 4-4 demonstrates good accordance for columns K factors within the 1
st
-order and 2

nd
-order 

approximations and the storey-based buckling results for all the columns in the frame. It is also noted 

the K factors decrease while the end-fixity factors of the column bases increase.  

    Illustrated in Figures 4-5 and 4-6 are the effects of initial geometric imperfections on the columns 

K factors obtained from 1
st
-order and 2

nd
-order approximations, and the storey-based buckling 

analysis.  Similarly to Figure 4-4, the three methods present almost matching results for the K factors 

with respect to the initial geometric imperfections of out-of-straightness (�0) or out-of-plumnbess 

(�0). These two figures also show the K factors increase when the imperfection coefficients of �0 or 

�0  increases.  

 

                          

 

 

 

 

   

 

 

 

 

Figure 4-5: Example 1 - K factors vs out-of-straightness (�o) 
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Figure 4-6: Example 1 - K factors vs out-of-plumbness (�0) 

    

    From the comparison study, it is found the difference between 1
st
-order approximation and the 

storey-based buckling method is less than 1.2%, which is acceptable in the engineering practice. 

Therefore, it is recommended that the simplified Eq. (4.23) can be used to calculate the critical 

loading multiplier �cr together with the K factors in Eq.(4.26) in practice due to the simplicity of this 

method.   

 

    In the following parametric studies, the effects of only considering the out-of-straightness on K 

factors are demonstrated in Table 4-3 while the effects with consideration of the out-of-plumbness 

alone on K factors is presented in Table 4-4. Compared to the effects of out-of-straightness and out-

of-plumbness on the K factors, it is found that the out-of-straightness has greater influence than that 

of the out-of-plumbness, which is observed by comparing the K factors associated with values of the 

imperfections to be L/500, L/400, L/300 in Tables 4-3 and 4-4. The combined effects of the out-of-

straightness and out-of-plumbness on column K factors are illustrated in Table 4-5.  Also presented in 

Tables 4-3 to 4-5 are the compared results between the 1
st
-order and 2

nd
-order approximations.        
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Table 4-3: Example 1 - effects of out-of-straightness on K factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4: Example 1- effects of out-of-plumbness on K factors 

 

 

 

 

 

 

 

 

     

 

Column 

K factors  (�0=0) 

�0= 

0 

�0= 

L/1000 

�0= 

L/800 

�0= 

L/600 

�0= 

L/500 

�0= 

L/400 

�0= 

L/300 

1
st
-order 

Approximation 

C11 

C12 

C13 

2.101 

1.758 

2.583 

2.255 

1.887 

2.772 

2.298 

1.923 

2.825 

2.374 

1.987 

2.919 

2.440 

2.042 

3.001 

2.549 

2.133 

3.134 

2.763 

2.312 

3.397 

2
nd

-order 

Approximation 

C11 

C12 

C13 

2.115 

1.770 

2.600 

2.268 

1.898 

2.789 

2.312 

1.934 

2.842 

2.388 

1.998 

2.936 

2.454 

2.054 

3.017 

2.563 

2.145 

3.151 

2.776 

2.323 

3.413 

 

Column 

K factors  (�0=0) 

�0=0 �0=L/500 �0=L/400 �0=L/300 �0=L/200 

1
st
-order 

Approximation 

C11 

C12 

C13 

2.101 

1.758 

2.583 

2.371 

1.984 

2.916 

2.448 

2.049 

3.010 

2.587 

2.165 

3.181 

2.916 

2.440 

3.585 

2
nd

-order 

Approximation 

C11 

C12 

C13 

2.115 

1.770 

2.600 

2.384 

1.995 

2.931 

2.461 

2.059 

3.025 

2.599 

1.175 

3.196 

2.927 

2.449 

3.598 
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        Table 4-5: Example 1 - effects of out-of-straightness and out-of-

plumbness on K factors 

 

 

 

 

 

 

              

 

 

 

 

    From Tables 4-3 to 4-5, it is noticed that the K factors increase when the value of either one of the 

initial imperfections increases. The combined effects of the initial geometric imperfections would 

have the most severe impact on the column K factors. For instance, the value of K factor for column 

C11 increases from 2.10 (without accounting for the initial geometric imperfections) to 2.26 (out-of-

straightness: �o = L/1000 alone) and 2.37 (out-of-plumbness: �o = L/500 alone). However, for 

combined effects (out-of-straightness: �o = L/1000 and out-of-plumbness: �o = L/500), the resulted K 

factor is 2.57.  Consequently, the factored axial strength reductions for column C11 are 6%, 10% and 

18%, respectively.  In Tables 4-3 to 4-5, the comparison results provide less than 0.6 percent between 

1
st
-order and 2

nd
-order approximations, which further indicated the 1

st
-order approximation can yield 

satisfied results in practice.  

 

Illustrated in Figures 4-7 to 4-14 are the effects of the initial geometric imperfections on the lateral 

stiffness modification factors of column �0,ij, �1,ij and �2,ij. As shown in Eq. (4.18), it is noted that �0,ij 

is associated with the elastic lateral stiffness of the column while �1,ij and �2,ij correspond to the effect 

of the applied axial load (second-order effect) on the column stiffness. It can be seen from the figures, 

as any of the initial geometric imperfections, �0 or �0 increases, the value of �0,ij will decrease and the 

value of �1,ij and �2,ij will increase, which indicates that the initial geometric imperfections will reduce 

the column stiffness and amplify the second-order effect. Consequently, the frame is more laterally 

 

Column 

K factors   

�0=0 

�0=0 

�0=L/1000 

�0=L/500 

�0=L/800 

�0=L/400 

�0=L/600 

�0=L/300 

�0=L/400 

�0=L/200 

1
st
-order 

Approximation 

C11 

C12 

C13 

2.101 

1.758 

2.583 

2.573 

2.153 

3.163 

2.728 

2.283 

3.354 

3.04 

2.54 

3.74 

4.044 

3.384 

4.973 

2
nd

-order 

Approximation 

C11 

C12 

C13 

2.115 

1.770 

2.600 

2.585 

2.163 

3.179 

2.740 

2.293 

3.369 

3.040 

2.544 

3.738 

4.054 

3.392 

4.984 
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flexible when the combined effects of �0 or �0 are taken into consideration. Demonstrated in Figures 

4-13 and 4-14 are the influences of the out-of-straightness (�0) and out-of-plumbness (�0) on the 

column buckling loads using 1
st
-order approximation.      

 

 

                                            

                     

 

 

 

 

 

 

 

 

 

Figure 4-7: Example 1 - lateral stiffness coefficients �0,ij vs. out-of-straightness (�0) 
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Figure 4-8: Example1 - lateral stiffness coefficients �1,ij vs. out-of-straightness (�0) 

 

Figure 4-9: Example1 - lateral stiffness coefficients �2,ij vs. out-of-straightness (�0) 
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   Figure 4-10: Example 1 - lateral stiffness coefficients of �0,ij vs. out-of-plumbness (�0) 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Example1 - lateral stiffness coefficients of �1,ij vs. out-of-plumbness(�0)  
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Figure 4-12: Example1 - lateral stiffness coefficients of �2,ij vs. out-of-plumbness (�0) 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: Example 1 - column buckling load vs out-of-straightness (�0) 
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Figure 4-14: Example 1 - column buckling load vs out-of-plumbness (�0  ) 

 
 

Example 2 

The second example shown in Figure 4-15 is a 1-bay by 3-storey frame that was investigated by 

Shanmugan et al. (1995), and Liu and Xu (2005). The frame dimension and the material properties 

are given in Figure 4-15. The applied axial loads are also presented in this figure. Table 4-6 presents 

the comparison results of the K factors with respect to the 1
st
-order and 2

nd
-order approximations of 

the Taylor series approximation, and the storey-based buckling analysis without accounting for the 

initial geometric imperfections.  Also presented in Table 4-6 are the K factors obtained from the 

alignment chart method, LeMessurier’s method and Lui’s method.  
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Figure 4-15: 1-bay by 3-storey frame of Example 2 (Shanmugan et al., 1995) 

 

 

Table 4-6: Example 2 - comparison of K factors 

 

 

Column 

K factors 

 

Alignment 

chart 

 

LeMessurier 

 

Lui 

Current study (�0=0, �0=0) 

1
st
-order 

approxi. 

2
nd

-order 

approxi. 

Storey-based 

buckling 

C11= C12 

C21= C22 

C31= C32 

1.110 

1.210 

1.230 

1.120 

1.210 

1.230 

1.140 

1.210 

1.230 

1.107 

1.207 

1.226 

1.112 

1.211 

1.229 

1.112 

1.212 

1.229 

 

    In Table 4-6, the column K factors agree very well when comparing three stories among the storey-

based buckling method and Alignment charts of LeMessurier and Lui methods, except for the 

maximum difference noted of 2.5% in storey 1 between the storey-based buckling method and Lui’ 

method. For the comparison K factors within the current study, it is found the maximum difference of 
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the effective length factor K between 1
st
-order and 2

nd
-order approximations are only 0.45%, 0.33% 

and 0.24% for the columns in stories 1 to 3, respectively. It is noted that the columns K factors of 

stories 1 and 3 are the same between the 2
nd

-order approximation and storey-based method, and only 

a difference of 0.08% is found for storey 2. Comparing the columns K factors between the 1
st
-order 

approximation and storey-based method, 0.45%, 0.41 and 0.24% are noted for stories 1, 2 and 3, 

respectively. Based on the good accordance among the comparisons in this example, it is concluded 

that the 1
st
-order approximation can be used to obtain the satisfied K factors in practice.  

 

    Similar to Example 1, considering the initial geometric imperfections to evaluate the effective 

length factor K for Example 2, the maximum allowable out-of-straightness �o = L/1000 and out-of-

plumbness �o = L/500 (AISC, 2005) represent the initial geometric imperfections in this study. The 

critical loading multipliers together with their effective length factors are obtained from Eqs. (4.23) 

and (4.21), which correspond to the 1
st
-order and 2

nd
-order approximations of � in the Taylor series 

approximation of Eq. (4.11) and the results are presented in Table 4-2. The results based on the 

current study without the consideration of initial geometric imperfections are also given in Table 4-2 

for comparison.   

 

Table 4-7:  Example 2 - comparison study of three approaches 

 

 

 

Col. 

Effective length 

factors (K) 

(�0=0, �0=0) 

Critical loading 

multiplier  (�cr) 

(�0=L/1000, �0=L/500) 

Effective length 

factors (K) 

(�0=L/1000, �0=L/500) 

1
st
 –

order 

appro. 

 

2
nd

 - 

order 

appro. 

Storey- 

based 

buckling 

1
st
 – 

order 

Eq. 

(4.23) 

2
nd

 - 

order 

Eq. 

(4.21) 

Storey- 

based 

buckling 

1
st
 –

order 

appro. 

 

2
nd

 - 

order 

appro. 

Storey- 

based 

buckling 

C11=C12 

C21=C22 

C31=C32 

1.107 

1.207 

1.226 

1.112 

1.211 

1.229 

1.112 

1.212 

1.229 

18.145 

14.952 

26.121 

18.022 

14.887 

25.998 

18.006 

14.854 

25.973 

1.287 

1.413 

1.429 

1.291 

1.416 

1.432 

1.292 

1.418 

1.432 
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    It is obvious the initial geometric imperfections would result in a decrease of the lateral stiffness of 

columns, which consequently increases the values of column K factors and reduces column strengths. 

For the three column sizes shown in Figure 4-15, based on the storey-based buckling method, the 

resulting factored axial strength reductions of the columns in the first, second and top stories 

associated with initial imperfections (�0=L/1000 and �0=L/500) are 5%, 6% and 10%, respectively. 

By examining the columns sizes, it appears to be that the initial geometric imperfections would have 

a greater impact on columns that are laterally more flexible. 

 

 

    It is observed in Table 4-7, the critical loading multiplier �cr obtained for the 1
st
-order and 2

nd
-order 

approximations for storey 1 are 18.145 and 18.022, which also verifies the inequality expression 

(4.24a) and the difference of the �cr is 0.68%. Therefore, for the columns in storey 1, the differences 

of the corresponding K factors are only 0.31%. The differences of the corresponding K factors are 

found only to be 0.21% and 0.21% for the columns in stories 2 and 3, respectively. It is noted that the 

columns K factors are the same for stories 1 and 3, and a difference of 0.14% is found for storey 2 

with respect to the 2
nd

-order approximation and storey-based buckling methods. Compared to the1
st
-

order approximation and storey-based buckling methods, the K factors differences are found to be 

0.39%, 0.35%and 0.21% with respect to stories 1 to 3, respectively. The good agreement between 

the1
st
-order approximation and storey-based buckling methods indicates the 1

st
-order approximation 

can provide satisfactory results and can be recommended for the engineering practice. Also, Figures 

4-16 and 4-17 illustrate the K factors from the 1
st
-order and 2

nd
-order approximations, and the storey-

based buckling results associated with out-of-straightness �o and out-of-plumbness �o for the columns 

in stories 1 to 3. 
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Figure 4-16: Example 2 - column K factors of stories 1 to 3 vs out-of-straightness �o  

 

 

 

 

 

 

 

 

 

 

   

    

  Figure 4-17: Example 2 - column K factors of stories 1 to 3 vs out-of-plumbness (�0 )  

0 L/793 
1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

out-of-plumbness(�0) 

c
o
lu

m
n
 K

 f
a
c
to

rs
 

1st-order approximation 

2nd-order approximation 

storey-based buckling method 

Storey 1  
Storey 2  

Storey 3  

L/396 L/264 L/198 L/159 L/132 L/113 

0 L/1981 L/991 
1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

out-of-straightness (�0) 

c
o
lu

m
n
 K

 f
a
c
to

rs
 

1st-order approximation 
2nd-order approximaion 
storey-based buckling method 

Storey 1 

Storey 2  

Storey 3  

L/660 L/495 L/362 L/330 L/283 



 

73 

    In Figures 4-16 and 4-17 present the effects of initial geometric imperfections to the columns K 

factors obtained from 1
st
-order and 2

nd
-order approximations, and the storey-based buckling analysis 

for columns in stories 1 to 3.  These two figures demonstrate the K factors increase when increasing 

the imperfection coefficients of �0 or �0. Comparing the results in Figures 4-16 and 4-17, the 

matching results among these three approaches demonstrate the 1
st
-order approximation can be 

recommended for use in practice.  

 

Presented in Tables 4-8 to 4-10 are parametric studies of the individual and combined effects of the 

initial imperfections on columns effective length factor including 1
st
-order and 2

nd
-order 

approximation results. Similar to the results obtained from the parametric studies of Example 1, it is 

noticed that the out-of-straightness (�0) has greater influence on the column K factors than that of the 

out-of-plumbness (�0), which is observed by comparing the K factors associated with the 

imperfections to be L/500, L/400, L/300 in Tables 4-8 and 4-9. The effects of out-of-straightness (�0) 

and out-of-plumbness (�0) on the factored axial strength of the columns using 1
st
-order approach are 

illustrated in Figures 4-18 and 4-19, respectively.      

 

 

Table 4-8: Example 2 - effects of out-of-straightness on K factors 

 

 

Column 

K factors  (�0=0) 

�0= 

0 

�0= 

L/1000 

�0= 

L/800 

�0= 

L/600 

�0= 

L/500 

�0= 

L/400 

�0= 

L/300 

1
st
-order 

Approxima

tion 

C11= C12 

C21= C22 

C31= C32 

1.107 

1.207 

1.226 

1.191 

1.296 

1.315 

1.215 

1.321 

1.341 

1.258 

1.366 

1.386 

1.296 

1.405 

1.426 

1.358 

1.470 

1.492 

1.482 

1.601 

1.624 

2
nd

-order 

Approxima

tion 

C11= C12 

C21= C22 

C31= C32 

1.112 

1.211 

1.229 

1.196 

1.299 

1.319 

1.220 

1.324 

1.344 

1.263 

1.369 

1.390 

1.301 

1.409 

1.430 

1.363 

1.474 

1.496 

1.487 

1.604 

1.628 
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Table 4-9: Example 2 - effects of out-of-plumbness on K factors 

 

 

 

 

 

 

 

 

 

 

 

Table 4-10: Example 2 - effects of out-of-straightness and out-of-plumbness 

on K factors 

 

 

 

 

 

 

 

 

Column 

K factors  (�0=0) 

�0=0 �0=L/500 �0=L/400 �0=L/300 �0=L/200 

1
st
-order 

Approximation 

C11= C12 

C21= C22 

C31= C32 

1.107 

1.207 

1.226 

1.190 

1.309 

1.324 

1.211 

1.336 

1.350 

1.249 

1.382 

1.395 

1.327 

1.481 

1.490 

2
nd

-order 

Approximation 

C11= C12 

C21= C22 

C31= C32 

1.112 

1.211 

1.229 

1.194 

1.312 

1.327 

1.215 

1.339 

1.353 

1.253 

1.385 

1.398 

1.331 

1.484 

1.493 

 

Column 

K factors   

�0=0 

�0=0 

�0=L/1000 

�0=L/500 

�0=L/800 

�0=L/400 

�0=L/600 

�0=L/300 

�0=L/400 

�0=L/200 

1
st
-order 

Approximation 

C11= C12 

C21= C22 

C31= C32 

1.107 

1.207 

1.226 

1.287 

1.413 

1.429 

1.341 

1.476 

1.491 

1.443 

1.595 

1.607 

1.710 

1.914 

1.915 

2
nd

-order 

Approximation 

C11= C12 

C21= C22 

C31= C32 

1.112 

1.211 

1.229 

1.291 

1.416 

1.432 

1.346 

1.479 

1.494 

1.447 

1.598 

1.610 

1.713 

1.916 

1.918 
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Figure 4-18: Example 2 - factored axial strength vs out-of-straightness (�0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19: Example 2 - the effect of factored axial strength vs out-of-plumbness (�0) 
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4.5 Conclusions 

The stability of columns in multi-storey unbraced frames with initial geometric imperfections has 

been investigated in this study. The lateral stiffness of the axially loaded column in unbraced frames 

was derived by incorporating of the effects of initial geometric imperfections. The Taylor series 

expansions including 1
st
-order and 2

nd
-order approximations were employed to simplify the stability 

equation used in the engineering practice.  The comparison among the methods of 1
st
-order and 2

nd
-

order approximations and the storey-based buckling analysis was studied using three numerical 

examples. The numerical examples demonstrate that the 1
st
-order approximation can provide 

sufficient results, thus it should be recommended for use in the design practice.  

  

    The results based on the proposed method for the unbraced frames without considering the 

geometrical imperfection show good agreements with results provided in the literature. In comparing 

the results with and without geometrical imperfection, it is clear that the K factors increase when 

considering the geometrical imperfection, and the K factors continue to increase when increasing the 

initial values of the geometrical imperfections. The results presented for unbraced frames with the 

initial geometrical imperfections indicate that the geometric imperfections play a key role in the 

structural analysis and they have to be considered in the design for stability of frames. The parametric 

studies associated with the effective length factor together with the effects of initial geometric 

imperfections demonstrated that both the initial geometric imperfections of out-of-straightness and 

out-of-plumbness influence the K factors. The results presented further indicate that the initial 

geometric imperfection of out-of-plumbness has a stronger influence for the frame stability than the 

initial geometric imperfections of out-of-straightness. The K factors have higher values when 

considering the effects of both out-of-straightness and out-of-plumbness together. In the parametric 

studies corresponding to the effects between geometric imperfections and lateral stiffness 

modification factors, the results demonstrated increasing values of geometric imperfections and 

decreasing values of lateral stiffness modification factors. These effects are major concerns in the 

practice of structural engineering since these results indicate that the geometric imperfections 

influence the structural behavior and result in the reductions in stiffness, which will affect the 

distribution of internal forces in the structural system.  

 

    With the literature on the stability design of unbraced frames, much has been studied about the 

stability analysis on the structures performance assuming perfectly straight and perfectly plumb 
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members. While the current work is important, typically much less attention has been devoted to 

explicitly account for the geometric imperfections including out-of-straightness and out-of-

plumbness. Furthermore, established design procedures for checking the effective length factor based 

on storey-based stability analysis in this study is very practical and can be of interest to researchers 

and design engineers.  
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Chapter V 

Multi-Storey Unbraced Frames with Initial Geometric Imperfections 

Subjected to Variable Loading 

 

5.1 Introduction  

In Chapter 3, the stability of multi-storey unbraced frames subjected to variable loading has been 

investigated without accounting for initial geometric imperfections. For the single-storey unbraced 

perfect frames subjected to variable loading, previous research (Xu, 2002) found that the difference 

between the maximum and minimum elastic buckling loads can be as high as 20% in some cases. In 

this chapter, the investigation will be focused on the maximum and minimum frame-buckling 

loadings with initial geometric imperfections including single-storey and multi-storey unbraced 

frames.  As discussed in Chapter 3, the maximization and minimization problems based on 1
st
-order 

approximation of the lateral stiffness of an axially loaded column can be solved by a linear 

programming method to obtain the maximum and minimum bounds of the frame buckling loads 

subjected to variable loading. In the case of considering the initial geometric imperfections, the study 

from Chapter 4 indicated that the 1
st
-order approximation of the column lateral stiffness can provide 

satisfactory results accounting for the initial geometric imperfections. Therefore, the 1
st
-order 

approximation of column lateral stiffness accounting for the initial geometric imperfections will be 

used to carry out the maximization and minimization problems in this chapter. Following the 

maximization and minimization problems described in Chapter 3 and stated on Eqs.(3.13),(3.16) and 

(3.17), the lateral stiffness modification factors of �0,ij(rl,ij,ru,ij) and �1,ij(rl,ij,ru,ij) with respect to these 

equations will be replaced by  �0,ij(rl,ij,ru,ij,�0,�0) and �1,ij(rl,ij,ru,ij,�0,�0) given in Eqs. (4.13) accounting 

for the initial geometric imperfections. Then the linear programming method can be adopted again to 

obtain the maximum and minimum bounds of the multi-storey unbraced frame buckling loads 

subjected to variable loading while accounting for the initial geometric imperfections. 
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5.2  Numerical Examples 

5.2.1 Single-Storey Unbraced Frame Example 

A 2-bay by 1-storey unbraced steel frame shown in Figure 5-1 is used in Example 1 (Xu, 2002). It is a 

similar example studied in Example 1 in Chapter 4.  

 

 

 

 

 

 

    

Figure 5-1: 2-bay by 1-storey frame of Example 1 (Xu, 2002) 

 

    Evaluated in this section will be what the imperfection effects have on the extreme loadings with 

different beam-to-column connections for single-storey frame and will be compared with the results 

without accounting for the initial geometric imperfections previously studied by Xu (2002). In 

engineering practice a connection can neither be ideally rigid with a member end-fixity factor r = 1 

nor purely pinned with r = 0. From previous research in connections of building design, Gerstle 

(1988), Craig (2000) and Xu (2002) recommended that three different values of r = 1.0, 0.9, and 0.8 

can be used for rigid connection and r = 0.0, 0.1, and 0.2 can be used for pinned connection.  

 

    The 15 different combinations of beam-to-column connection frames are illustrated in Figure 5-2.  

Three schemes of rigid and pinned connections, in which scheme 1(r = 1, r = 0), scheme 2 (r = 0.9, r 

= 0.1) and scheme 3 (r = 0.8, r = 0.2) are used for the comparison of the relative difference of the 

maximum and minimum buckling loads. In the case of not accounting for the initial geometric 

imperfections, the previous research (Xu, 2002) found that the difference between the maximum and 

minimum elastic buckling loads can be as high as 20% illustrated in Figure 5-3 for the 15 different 

combinations of beam-to-column connections frames shown Figure 5-2. 
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Figure 5-2: 15 frames with different beam-to-column connections used in study 
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    Knowing the initial geometric imperfections of out-of-straightness (�0=L/1000) and out-of-

plumbness (�0=L/500) (AISC, 2005), the results of the relative difference of the maximum and 

minimum frame-buckling loads for the 15 frame types (shown in Figure 5-2) together with the three 

schemes of rigid and pinned connections are presented in Tables 5-1 to 5-3 and Figure 5-3. The 

results without accounting for the out-of-straightness and out-of-plumbness are also presented in 

Tables 5-1 to 5-3.  
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Table 5-1: Comparison of the max. and min. buckling loads together with their 

relative difference with three different schemes (1) 

F
ra

m
e 

T
y

p
e 

 

 

Scheme 

out-of-straightness: �0=0 

out-of-plumbness: �0=0 

out-of-straightness: �0=L/1000 

out-of-plumbness: �0=L/500 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load (kN) 

 

.

..

Min

MinMax −

 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load kN) 

 

.

..

Min

MinMax −

 

 

1 

Scheme 1 

(r=1, r=0) 

7475.800 7475.800 0% 6126.200 6126.200 0% 

Scheme 2 

(r=0.9, r=0.1) 

16685.000 16534.000 0.91% 12852.000 12744.000 0.85% 

Scheme 3 

(r=0.8, r=0.2) 

19136.000 18795.000 1.81% 14538.000 14146.000 2.78% 

 

2 

Scheme 1 

(r=1, r=0) 

28894.000 28490.000 1.42% 21606.000 21222.000 1.81% 

Scheme 2 

(r=0.9, r=0.1) 

26683.000 26259.000 1.61% 19920.200 19516.000 2.07% 

Scheme 3 

(r=0.8, r=0.2) 

24298.000 23851.000 1.87% 18095.000 17667.000 2.42% 

 

3 

Scheme 1 

(r=1, r=0) 

24952.000 24200.000 3.11% 18873.000 18088.000 4.34% 

Scheme 2 

(r=0.9, r=0.1) 

23816.000 23360.000 1.95% 17792.000 17376.000 2.39% 

Scheme 3 

(r=0.8, r=0.2) 

21956.000 21742.000 0.99% 16310.000 16124.000 1.16% 

 

4 

 

Scheme 1 

(r=1, r=0) 

16257.000 14057.000 15.65% 12619.000 10520.000 19.96% 

Scheme 2 

(r=0.9, r=0.1) 

17302.000 15930.000 8.62% 12837.000 11747.000 9.28% 

Scheme 3 

(r=0.8, r=0.2) 

16974.000 16307.000 4.09% 12497.000 11947.000 4.61% 

 

5 

Scheme 1 

(r=1, r=0) 

7820.200 6618.900 18.15% 5725.700 4773.000 19.96% 

Scheme 2 

(r=0.9, r=0.1) 

10706.000 9843.600 8.76% 7712.700 7057.500 9.28% 

Scheme 3 

(r=0.8, r=0.2) 

12177.000 11653.000 4.50% 8783.300 8396.300 4.61%    
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Table 5-2: Comparison of the max. and min. buckling loads together with 

their relative difference with three different schemes (2) 

F
ra

m
e 

T
y

p
e 

 

 

Scheme 

out-of-straightness: �0=0 

out-of-plumbness: �0=0 

out-of-straightness: �0=L/1000 

out-of-plumbness: �0=L/500 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load (kN) 

 

.

..

Min

MinMax −

 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load kN) 

 

.

..

Min

MinMax −

 

 

6 

Scheme 1 

(r=1, r=0) 

4666.600 38889.000 20.00% 3681.200 3037.400 21.20% 

Scheme 2 

(r=0.9, r=0.1) 

10056.000 9124.200 10.21% 7470.100 6657.000 12.21% 

Scheme 3 

(r=0.8, r=0.2) 

14947.000 14323.000 4.36% 10935.000 10297.000 6.20% 

 

7 

Scheme 1 

(r=1, r=0) 

3436.000 2863.300 20.00% 2834.000 2346.400 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

9505.800 8961.400 6.08% 7108.200 6734.600 5.55% 

Scheme 3 

(r=0.8, r=0.2) 

12180.000 11931.000 2.09% 9043.900 8704.100 3.90% 

 

8 

Scheme 1 

(r=1, r=0) 

4329.000 3532.500 20.00% 3496.300 2894.800 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

11633.000 10823.000 7.48% 8787.100 8178.600 7.44% 

Scheme 3 

(r=0.8, r=0.2) 

14176.000 13483.000 5.14% 10559.000 9922.600 6.41% 

 

9 

 

Scheme 1 

(r=1, r=0) 

5535.000 4612.500 20.00% 4565.200 3779.800 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

13799.000 12803.000 7.78% 10495.000 9717.000 8.00% 

Scheme 3 

(r=0.8, r=0.2) 

16019.000 15217.000 5.28% 11998.000 11337.000 5.83% 

 

10 

Scheme 1 

(r=1, r=0) 

9165.900 7638.300 20.00% 7230.000 5986.200 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

15496.000 13740.000 12.77% 11753.000 10282.500 14.31% 

Scheme 3 

(r=0.8, r=0.2) 

16889.000 15574.000 8.44% 12626.000 11497.000 9.83%    
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Table 5-3: Comparison of the max. and min. buckling loads together with 

their relative difference with three different schemes (3) 

F
ra

m
e 

T
y

p
e 

 

 

Scheme 

out-of-straightness: �0=0 

out-of-plumbness: �0=0 

out-of-straightness: �0=L/1000 

out-of-plumbness: �0=L/500 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load (kN) 

 

.

..

Min

MinMax −

 

Max.  

frame 

buckling  

load (kN) 

Min.  

frame 

buckling 

 load kN) 

 

.

..

Min

MinMax −

 

 

11 

Scheme 1 

(r=1, r=0) 

1296.000 1080.000 20.00% 1068.900 885.000 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

8071.300 7270.500 11.01% 5943.100 5339.400 11.31% 

Scheme 3 

(r=0.8, r=0.2) 

10659.000 10097.000 5.57% 7791.200 7362.000 5.83% 

 

12 

Scheme 1 

(r=1, r=0) 

4189.200 3491.000 20.00% 3060.800 2534.300 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

9494.400 8870.700 7.03% 6853.200 6333.200 8.21% 

Scheme 3 

(r=0.8, r=0.2) 

11631.000 11300.000 2.93% 8404.900 8127.600 3.41% 

 

13 

Scheme 1 

(r=1, r=0) 

4731.900 3943.300 20.00% 3902.800 3231.400 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

11625.000 10959.000 6.08% 8871.700 8310.700 5.55% 

Scheme 3 

(r=0.8, r=0.2) 

13971.000 13645.000 2.39% 10444.000 10140.000 3.00% 

 

14 

 

Scheme 1 

(r=1, r=0) 

8362.900 6969.100 20.00% 6567.700 5437.800 20.78% 

Scheme 2 

(r=0.9, r=0.1) 

12852.000 11741.000 9.46% 9634.700 8749.900 10.11% 

Scheme 3 

(r=0.8, r=0.2) 

14598.000 13823.000 5.60% 10918.000 10214.000 6.89% 

 

15 

Scheme 1 

(r=1, r=0) 

11682.000 10140.000 15.20% 8885.600 7630.800 16.44% 

Scheme 2 

(r=0.9, r=0.1) 

14046.000 13136.000 6.93% 10381.000 9692.300 7.11% 

Scheme 3 

(r=0.8, r=0.2) 

14680.000 14336.000 2.40% 10767.000 10499.000 2.55%    
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Figure 5-3: Relative differences of the critical buckling loads((Pmax-Pmin)/Pmin) of three schemes 

without initial geometric imperfections 

 

 

Figure 5-4: Relative differences of the critical buckling loads((Pmax-Pmin)/Pmin) of three schemes 

with initial geometric imperfections 



 

86 

    It is noted in Figure 5-2 and Tables 5-1 to 5-3, that for each frame with three schemes, the presence 

of the initial geometric imperfections reduce the maximum and minimum frame-buckling loads and 

increase the relative difference between these two extreme frame-buckling loads. From Tables 5-1 to 

5-3, it is also found for these 15 frames with or without initial geometric imperfections, the 

magnitudes of the maximum and minimum frame-buckling loads increase when the beam-to-column 

connection rigidity reduce from Schemes 1 to 3, except types 2, 3 and 4 frames. In Tables 5-1 to 5-3, 

it is noted that the relative difference between the extreme frame-buckling loads of the same frame 

type with respect to initial geometric imperfections higher than those without accounting for initial 

geometric imperfection except for frame types 1, 7, 8 and 13.  

 

When accounting for the initial geometric imperfections, for frame type 1, in which all the column 

base connections are fully rigid and the beam-to-column connections are pinned, there is no 

difference between the maximum and minimum buckling loads of scheme 1. It is also observed that 

relative differences between the extreme buckling loads among the three schemes are negligible for 

frame types 1 and 2 since the relative differences are less than 3%. For frame type 3, the relative 

differences for schemes 1 and 2 can be also negligible. Table 4-16 and Figure 4-20 presented that in 

scheme 1 with (r = 1, r = 0), the relative difference for frame types 4 and 5 obtain their maximum of 

20%, frame 6 obtains the largest maximum of 21.2% and the other frames 7 to 14 reach their 

maximum of 20.78%. For frame 15, its relative difference is 16.44% for scheme 1. It is also seen that 

there is at least one lean-on column in frames 4 to 15. However in schemes 2 (r = 0.9, r = 0.1) and 3(r 

= 0.8, r = 0.2), the maximum relative differences between the buckling loads are much lower than 

that of scheme 1 for frames 4 to 15.  This study also finds that in the case of initial geometric 

imperfection,  the increase of the critical buckling loads is primarily due to the increase of the end-

fixity factor for pinned connections from r = 0, to r = 0.1and r = 0.2. 

 

5.2.2 Multi-Storey Unbraced Frame Example 

In this study, the multi-storey unbraced frame example used in Chapter 3 will be investigated again to 

evaluate the influences of the initial geometric imperfections to the multi-storey unbraced frames 

subjected to the variable loadings. The effects of semi-rigid connections are also considered in this 

study. For the 2-bay by 2-storey steel frames shown in Figures 3-5 to 3-8, the same procedures 

described in Chapter 3 with respect to the effects of initial geometric imperfections to the lateral 
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stiffness of column investigated in Chapter 4 will be adopted in this study.  Then the critical buckling 

loads of the 2-bay by 2-storey unbraced steel frames associated with the effects of initial geometric 

imperfections subjected to variable loading can be obtained from Eqs. (3.1) to (3.5).  The objectives 

of this example are to demonstrate the proposed method for evaluating the extreme loadings in a 

frame with accounting for initial geometric imperfections of out-of-straightness and out-of-plumbness 

and the different beam-to-column connections with these geometrically imperfect considerations. 

 

In the foregoing studies described in Table 3-1 of Chapter 3, the first case of the rigid frame 

(Figure 3-5) was considered in the parametric studies to demonstrate the influences of the geometric 

imperfections to frame buckling loadings. The values of the geometric imperfections including the 

out-of-straightness (δ0) effect, out-of-plumbness (∆0) effect and combined effects of out-of-

straightness (δ0) and out-of-plumbness (∆0) are given in Tables 5-4 to 5-10. Also presented in these 

tables are the values of the buckling loads corresponding to the maximum and minimum frame-

buckling loads, together with their relative differences.  
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Table 5-4: The effect of out-of-straightness (δδδδ0) to frame buckling loadings (1) 

 

 

Col. 

 

�0=L/1000, �0=0 �0=L/800, �0= 0 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

S2 = 0 

Min. 

(kN) 

S1 = 0, S2 > 0 S1 >0, S2 = 0 S1 = 0, S2 > 0 S1 > 0, S2 = 0 

11 

12 

13 

27341.140 

0.000 

0.000 

0.000 

28611.160 

0.000 

0.000 

0.000 

0.000 

25997.680 

0.000 

0.000 

0.000 

27260.700 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

69068.640 

0.000 

0.000 

0.000 

65611.470 

0.000 

57551.410 

0.000 

0.000 

67121.730 

0.000 

0.000 

0.000 

63697.710 

0.000 

0.000 

5801.400 

57570.000 

�Pij 96409.780 94222.630 65299.950 93119.410 90958.410 63371.400 

%
.min

.min.max −  

S2=0.000 S1=9590.620 

%
.min

.min.max −  

S2=0.000 S1=91867.910 

2.3% 

(storey-

buckling) 

47.6% 

(storey-buckling) 

2.4% 

(storey-buckling) 

46.9% 

(storey-buckling) 

%
.min

.min.max −  47.6% (frame-buckling) %
.min

.min.max −  46.9% (frame-buckling) 
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Table 5-5: The effects of out-of-straightness (δδδδ0) to frame buckling loadings (2) 

 

 

Col. 

 

�0=L/600, �0=0 �0=L/500, �0=0 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 >0 S1 >0, S2 = 0 S1 = 0, S2 >0 S1 >0, S2 = 0 

11 

12 

13 

23755.030 

0.000 

0.000 

0.000 

25021.340 

0.000 

0.000 

0.000 

0.000 

21995.460 

0.000 

0.000 

0.000 

23237.980 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

63933.030 

0.000 

0.000 

0.000 

60564.520 

0.000 

0.000 

2669.520 

57570.000 

61399.040 

0.000 

0.000 

0.000 

58092.180 

0.000 

51218.600 

182.800 

57570.000 

�Pij 87688.060 85585.860 60239.520 83394.500 81330.150 57752.800 

%
.min

.min.max −  

S2=0.000 S1=8486.860 

%
.min

.min.max −  

S2=0.000 S1=7940.030 

2.5% 

(storey-

buckling) 

45.6% 

(storey-buckling) 

2.5% 

(storey-buckling) 

44.4% 

(storey-buckling) 

%
.min

.min.max −  45.6% (frame-buckling) %
.min

.min.max −  44.4% (frame-buckling) 
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Table 5-6: The effects of out-of-straightness (δδδδ0) to frame buckling loadings (3) 

 

 

Col. 

 

�0=L/400, �0=0 �0=L/300, �0=0 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 >0 S1 >0, S2 = 0 S1 = 0, S2 > 0 S1 >0, S2 = 0 

11 

12 

13 

19377.880 

0.000 

0.000 

0.000 

20604.460 

0.000 

0.000 

0.000 

0.000 

15183.210 

0.000 

0.000 

0.000 

16398.280 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

57582.600 

0.000 

0.000 

0.000 

54373.330 

0.000 

0.000 

0.000 

54041.880 

51292.860 

0.000 

0.000 

0.000 

48267.650 

0.000 

0.000 

0.000 

47963.210 

�Pij 76960.490 74977.790 54041.880 66476.080 64666.280 47963.210 

%
.min

.min.max −  

S2=0.000 S1=7102.480 

%
.min

.min.max −  

S2=0.000 S1=5734.550 

2.6% 

(storey-buckling) 

42.4% 

(storey-buckling) 

2.8% 

(storey-buckling) 

38.6% 

(storey-buckling) 

%
.min

.min.max −  42.4% (frame-buckling) %
.min

.min.max −  38.5% (frame-buckling) 
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Table 5-7: The effects of out-of-plumbness (�0) to frame buckling loadings (4) 

 

 

Col. 

 

�0=0, �0=L/500 �0=0, �0=L/400 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 > 0 S1 >0, S2 = 0 S1 = 0, S2 >0 S1 > 0, S2 = 0 

11 

12 

13 

29081.520 

0.000 

0.000 

0.000 

29817.500 

0.000 

0.000 

0.000 

0.000 

28170.560 

0.000 

0.000 

0.000 

28785.640 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

67618.530 

0.000 

0.000 

0.000 

64574.220 

0.000 

0.000 

6678.380 

57570.000 

65472.400 

0.000 

0.000 

0.000 

62550.710 

0.000 

0.000 

4659.580 

57570.000 

�Pij 96700.060 94391.720 64248.380 93642.96 0 91336.350 62229.580 

%
.min

.min.max −  

S2=0.000 S1=10509.620 

%
.min

.min.max −  

S2=0.000 S1=10315.050 

2.5% 

(storey-buckling) 

50.5% 

(storey-buckling) 

2.5% 

(storey-

buckling) 

50.5% 

(storey-buckling) 

%
.min

.min.max −  50.5% (frame-buckling) %
.min

.min.max −  50.5% (frame-buckling) 
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Table 5-8: The effects of out-of-plumbness (�0) to frame buckling loadings (5) 

 

 

Col. 

 

�0=0, �0=L/300 �0=0, �0=L/200 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 >0 S1 >0, S2 = 0 S1 = 0, S2 >0 S1 >0, S2 = 0 

11 

12 

13 

26760.400 

0.000 

0.000 

0.000 

27206.040 

0.000 

0.000 

0.000 

0.000 

24036.810 

0.000 

0.000 

0.000 

24239.330 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

62046.630 

0.000 

0.000 

0.000 

59296.860 

0.000 

0.000 

1399.020 

57570.000 

55687.440 

0.000 

0.000 

0.000 

53263.950 

0.000 

0.000 

0.000 

53263.950 

�Pij 88807.030 86502.900 58969.020 79724.250 77503.290 53263.950 

%
.min

.min.max −  

S2=0.000 S1=10010.060 

%
.min

.min.max −  

S2=0.000 S1=9223.070 

2.7% 

(storey-buckling) 

50.6% 

(storey-buckling) 

2.9% 

(storey-buckling) 

49.7% 

(storey-buckling) 

%
.min

.min.max −  50.6% (frame-buckling) %
.min

.min.max −  49.7% (frame-buckling) 
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Table 5-9: The effects of combined out-of-straightness (δδδδ0) and out-of-

plumbness (�0) to frame buckling loadings (6) 

 

 

Col. 

 

�0=L/1000 and �0=L/500 �0=L/800 and �0=L/400 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 >0 S1 >0, S2 = 0 S1 = 0, S2 > 0 S1 > 0, S2 = 0 

11 

12 

13 

23876.000 

0.000 

0.000 

0.000 

24663.670 

0.000 

0.000 

0.000 

0.000 

21870.860 

0.000 

0.000 

0.000 

22531.770 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

60369.780 

0.000 

0.000 

0.000 

57430.540 

0.000 

0.000 

0.000 

57081.330 

56577.910 

0.000 

0.000 

0.000 

53797.940 

0.000 

0.000 

0.000 

53462.880 

�Pij 84245.780 82094.210 57081.330 78448.770 76329.710 53462.880 

%
.min

.min.max −  

S2=0.000 S1=8848.790 

%
.min

.min.max −  

S2=0.000 S1=8248.900 

2.6% 

(storey-

buckling) 

47.6% 

(storey-buckling) 

2.8% 

(storey-buckling) 

46.7% 

(storey-buckling) 

%
.min

.min.max −  47.6% (frame-buckling) %
.min

.min.max −  46.7% (frame-buckling) 
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Table 5-10: The effects of combined out-of-straightness (δδδδ0) and out-of-

plumbness (�0) to frame buckling loadings (7) 

 

 

Col. 

 

�0=L/600 and �0=L/300 �0=L/400 and �0=L/200 

Max. 

(kN) 

 

Min. 

(kN) 

Max. 

(kN) 

 

Min. 

(kN) 

S1 = 0, S2 > 0 S1 >0, S2 = 0 S1 = 0, S2 >0 S1 >0, S2 = 0 

11 

12 

13 

18605.780 

0.000 

0.000 

0.000 

19183.720 

0.000 

47681.300 

0.000 

0.000 

12763.800 

0.000 

0.000 

0.000 

13143.450 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

50526.590 

0.000 

0.000 

0.000 

47987.310 

0.000 

0.000 

0.000 

47673.290 

39316.240 

0.000 

0.000 

0.000 

37277.150 

0.000 

0.000 

0.000 

37011.490 

�Pij 69132.370 67121.030 47673.290 52080.040 50420.600 37011.490 

%
.min

.min.max −  

S2=0.000 S1=7249.490 

%
.min

.min.max −  

S2=0.000 S1=5290.000 

3.0% 

(storey-buckling) 

45% 

(storey-buckling) 

3.3% 

(storey-

buckling) 

40.7% 

(storey-buckling) 

%
.min

.min.max −  45% (frame-buckling) %
.min

.min.max −  40.7% (frame-buckling) 

 

 

    Presented in tables 5-4 to 5-6 are the results of the frame-buckling loads associated with the initial 

geometric imperfection of out-of-straightness �0 (only).  The first stability constraint described as S1 = 

0, S2 >0 represents the case of laterally unstable for first storey found in Tables 5-4 to 5-6. The 

minimum storey-buckling load is only applied onto the interior columns 12 and 22 and the second 

storey becomes lateral unstable simultaneously. The second stability constraint defined as S1 >0, S2 = 

0, shows the frames with respect to the case of laterally unstable for second storey and the load 

pattern corresponding to the minimum storey-buckling loads is applied onto both the interior and 

exterior columns 22 and 23 and the first storey is lateral stable.  Another observation can be seen that 

the load magnitudes and patterns are identical when the frames are subjected to maximum frame-

buckling loads and the load patterns applied on the exterior columns 11 and 21. Also it is noted the 

first second stories become lateral unstable simultaneously when the frame archived to its maximum 
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frame-buckling loads.  And It is seen that the extreme frame-buckling loads together with the load 

patterns decrease when the initial geometric imperfection of out-of-straightness (�0). Also from 

Tables 5-4 to 5-6, the relative difference between the maximum and minimum frame-buckling loads 

are found to be 47.6%, 46.9%, 45.6%, 44.4%, 42.4% and 38.6% with respect to the δ0 values of 

L/1000, L/800, L/600, L/500,  L/400 and L/300, respectively, which are significant.   

 

    In Tables 5-7 and 5-8, the results show that the maximum frame-buckling loads are decreased 

when increasing the values of the member out-of-plumbness �0 (only). It can also be ascertained that 

the maximized frame-buckling loads occur when the first and second stories become laterally 

unstable simultaneously. From Tables 5-7 and 5-8 we can see that the minimum frame-buckling loads 

with respect to lateral instability of the first and second stories decrease when increasing the initial 

geometric imperfection out-of-plumbness (�0). Also in Tables 5-7 and 5-8 we can see the relative 

difference between the maximum and minimum frame-buckling loads are all very close to 50.5% 

with respect to the ∆0 values of L/500, L/400, L/300 and L/200 respectively, which may suggest that 

the values of �0 appear to be not have much influence on the difference between the maximum and 

minimum frame-buckling loads.     

 

    Once the frames are subjected to combined initial geometric imperfections of an out-of-straightness 

member and an out-of-plumbness frame, the frames become more flexible and the magnitudes of the 

maximum and minimum frame-buckling loads decrease as shown in Tables 5-9 and 5-10.    

 

    In Tables 5-9 and 5-10, the values exhibit similar trends is the result of Tables 5-4 to 5-8. It is seen 

that the extreme buckling loads decrease when increasing the values of member out-of-straightness 

(δ0) and frame out-of-plumbness (∆0). It is also seen that the maximum frame-buckling loads are 

achieved when the lateral instability occurs in first and second stories simultaneously. Also from 

Tables 5-9 and 5-10, it is seen that the relative difference between the maximum and minimum frame-

buckling loads are 47.5%, 46.8%, 45% and 40.7% associated with the values of δ0 and ∆0 of L/1000, 

L/500; L/800, L/400; L/600, L/300; and L/400, L/200 respectively.  
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5.2.3 Effects of Semi-Rigid Connections 

The behaviour of the beam-to-column semi-rigid connections is another primary contributing factor 

to structural stability, hence, the connection rigidity will be considered in this section. The five cases 

with different beam-to-column and column base connection rigidities shown in Table 3-1 will be 

investigated with geometric imperfections of member out-of-straightness (δ0 = L/1000) and frame out-

of-plumbness (∆0 = L/500). The values of the coefficients including the end-fixity factors, the 

effective length factor and the buckling loads associated with non-sway buckling corresponding to the 

maximum and minimum frame-buckling loads, together with their relative differences, are presented 

in Tables 5-11 to 5-15.  The column elastic flexural stiffness 3

,0 /12 ijijij LEI β and the coefficients 

associated with column lateral stiffness modification factors ),( ,,,1 ijuijlij rrβ  are also provided in these 

tables. Also presented in Tables 5-11 to 5-15 are the results for a frame subjected to proportional 

loading obtained in this study.  The load patterns associated the maximum and minimum frame-

buckling loads are illurstrated in Figures 5-5 to 5-9. 
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Table 5-11: Results of the unbraced steel frames shown in Figure 3-5 – 

Case 1 (�0=L/1000 and �0=L/500) 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.635 

0.834 

0.826 

11700.000 

9860.000 

7373.000 

0.101 

0.104 

0.104 

0.575 

0.534 

0.536 

183700.000 

144800.000 

108500.000 

23876.000 

0.000 

0.000 

0.000 

24663.670 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.635 

0.834 

0.826 

0.784 

0.895 

0.919 

7418.000 

10500.000 

4565.000 

0.095 

0.100 

0.100 

0.630 

0.558 

0.554 

106200.000 

133900.000 

57570.000 

60369.780 

0.000 

0.000 

0.000 

57430.540 

0.000 

0.0000 

0.000 

57081.330 

Critical frame buckling loads �Pij = 84245.780 
82094.210 
(S2=0.000) 

57081.330 
(S1=8848.790) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
2.6% 47.6% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 82750.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
0.8% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
44.9% 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Load patterns associated with max. and min. frame-buckling loads – Case 1 
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Table 5-12: Results of the unbraced steel frames shown in Figure 3-6 – 

Case 2 (�0=L/1000 and �0=L/500) 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.568 

0.815 

0.781 

10830.000 

9697.000 

7037.000 

0.101 

0.100 

0.103 

0.588 

0.538 

0.545 

175300.000 

142700.000 

104900.000 

26191.210 

0.000 

0.000 

0.000 

27406.670 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.568 

0.815 

0.781 

0.731 

0.881 

0.895 

5947.000 

9782.000 

4043.000 

0.094 

0.098 

0.098 

0.672 

0.573 

0.578 

97460.000 

130600.000 

54780.000 

54194.080 

0.000 

0.000 

0.000 

51032.520 

0.000 

0.000 

0.000 

51032.520 

Critical frame buckling loads �Pij = 80385.290 
78439.190 
(S2=0.000) 

51032.520 
(S1=9622.480) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
2.5% 57.5% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 79100.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
0.8% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
55% 

  

 

 

 

 

 

 

 

 

 

 

Figure 5-6: Load patterns associated with max. and min. frame-buckling loads – Case 2 
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Table 5-13: Results of the unbraced steel frames shown in Figure 3-7 – 

Case 3 (�0=L/1000 and �0=L/500) 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.540 

0.771 

0.760 

10480.000 

9235.000 

6883.000 

0.101 

0.103 

0.102 

0.594 

0.547 

0.549 

171900.000 

138100.000 

103300.000 

27505.250 

0.000 

0.000 

0.000 

28216.980 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.540 

0.771 

0.760 

0.707 

0.850 

0.884 

5555.000 

8946.000 

4189.000 

0.093 

0.097 

0.098 

0.685 

0.592 

0.586 

93930.000 

123300.000 

53460.000 

50136.310 

0.000 

0.000 

0.000 

48153.970 

0.000 

0.000 

0.000 

47766.230 

Critical frame buckling loads �Pij = 77641.560 
76370.950 
(S2=0.000) 

47766.230 
(S1=10201.850) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
1.7% 62.5% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 76750.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
0.5% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
60.7% 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: Load patterns associated with max. and min. frame-buckling loads – Case 3 
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Load pattern – min. frame-buckling load 
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Table 5-14: Results of the unbraced steel frames shown in Figure 3-8  – 

Case 4 (�0=L/1000 and �0=L/500) 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.420 

0.00 

0.705 

9032.000 

3161.000 

6347.000 

0.101 

0.108 

0.102 

0.619 

0.707 

0.560 

158400.000 

82570.000 

99130.000 

31891.220 

0.000 

0.000 

0.000 

27649.710 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.377 

0.00 

0.644 

0.644 

0.00 

0.851 

3696.000 

0.0000 

1132.000 

0.092 

0.088 

0.097 

0.719 

1.00 

0.608 

80370.000 

41570.000 

47880.000 

22363.790 

0.000 

0.000 

0.000 

23346.740 

0.000 

0.000 

0.000 

21392.470 

Critical frame buckling loads �Pij = 54255.010 
50996.450 
(S2=0.000) 

21392.470 
(S1=11293.180) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
6.4% 153.6% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 52550.000 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
3% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
145.4% 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8: Load patterns associated with max. and min. frame-buckling loads – Case 4 
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Load pattern – min. frame-buckling load 
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Table 5-15: Results of the unbraced steel frames shown in Figure 3-7 – 

Case 5 (�0=L/1000 and �0=L/500) 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S2 = 0 

S1 > 0 

 11 

12 

13 

1.000 

1.000 

1.000 

0.184 

0.384 

0.359 

6448.000 

5863.000 

4275.000 

0.104 

0.102 

0.102 

0.668 

0.626 

0.631 

136000.000 

105300.000 

78070.000 

0.000 

31293.350 

0.000 

29881.420 

0.000 

0.000 

0.000 

0.000 

0.000 

21 

22 

23 

0.184 

0.384 

0.359 

0.287 

0.485 

0.559 

1367.000 

3139.000 

1654.000 

0.089 

0.091 

0.092 

0.889 

0.787 

0.769 

55730.000 

72300.000 

31840.000 

0.000 

16751.820 

0.000 

16956.520 

0.000 

0.000 

0.000 

0.000 

16552.010 

Critical frame buckling loads �Pij = 48045.180 
46837.940 
(S2=0.000) 

16552.010 
(S1=10861.350) 

Difference of max. & min. frame-buckling loads (%) %
min

minmax−  
2.6% 190.3% 

Proportional loading: Pp = �cr�Pa,ij (kN) Pp 47650 

Difference of proportional loading & max. frame-buckling 

loads (%) 
%

min

max pP−  
1.7% 

Difference of proportional loading & min. frame-buckling 

loads (%) 
%

min

min− pP  
183.0% 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: Load patterns associated with max. and min. frame-buckling loads – Case 5 
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     Tables 5-11 to 5-15 show the results of the extreme frame-buckling loads accounting for the initial 

geometric imperfections with different values of the beam-to-column semi-rigid connections. 

Compared to the results without accounting for the initial geometric imperfections given in Tables 3-

2 to 3-6, the presence of the out-of-straightness (δ0 = L/1000) and out-of-plumbness (∆0 = L/500) 

reduce the lateral stiffness strength for the same case shown in Tables 5-11 to 5-15. Consequently, for 

the same case, the extreme frame-buckling loads together with their relative difference all reduce.  

 

    Summarized in Table 5-11, are the results of Case 1, in which both the column base and beam-to-

column connections are rigidly connected. It can be seen from Table 5-11 that the maximum frame-

buckling load of 84245.78 kN, is achieved when first and second stories are simultaneously laterally 

unstable. The minimum storey-buckling loads associated with lateral instability of the first and 

second stories are 820694.215 kN and 57081.33 kN, respectively. The relative difference between the 

maximum and minimum frame-buckling loads is 47.6%, which is significant. It can also be seen from 

Table 5-11 that the load patterns associated with the maximum and minimum frame-buckling loads 

are different. The load pattern corresponding to the maximum frame-buckling loads are applied only 

on the exterior columns 11 and 21 for both first and second stories. In contrast, the associated with the 

minimum frame-buckling load applies the loads both on the exterior and interior columns. Also found 

in Case 1 are two different loading patterns associated with the minimum frame-buckling loads. 

 

    For Case 2, presented in Table 5-12, the exterior column is semi-rigidly connected with the 

corresponding end-fixity factor being 0.8 whereas the column base and the interior beam-to-column 

connections are rigid. The presence of semi-rigid connections used with a frame will become flexible 

and the magnitudes of lateral stiffness decrease compared to that of Case 1. As a result of the frame 

flexibility, the maximum frame-buckling load of Case 2 reduces to 80385.29 kN, and the 

corresponding minimum frame-buckling load decreases to 51032.52 kN, which yields the relative 

difference between the maximum and minimum frame-buckling loads to be 57.5%. The load patterns 

associated with the maximum frame-buckling load including load locations and magnitudes are 

identical for the first and second stories. There are two different load patterns associated with 

minimum frame-buckling load. It is also observed that the first and second storey become unstable 

simultaneously when they are subjected to maximum frame-buckling load.  
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    For Case 3 given in Table 5-13, the beam-to-column connections for both the interior and exterior 

columns are semi-rigidly connected with the corresponding end-fixity factor being 0.8. Compared 

with Cases 1 and 2, the Case 3 frame is more flexible, which can be evidenced by the further 

decreased value of lateral stiffness; thus, the magnitudes of the maximum and minimum frame-

buckling loads are reduced to 77641.56 kN and 47766.23 kN, respectively, which leads to a 

difference of 62.5% between the buckling loads. Like Case 2, it is found that lateral instability occurs 

simultaneously for both first and second stories when they are subjected to the maximum frame-

buckling load. It is also noticed that the load patterns are identical for both first and second stories 

when the frames are subjected to a maximum frame-buckling load.  

 

    Presented in Table 5-14 are the results of Case 4, in which the column base uses rigid connections. 

The beam-to-column connections for the exterior columns are rigid, and for the interior columns are 

pin connections. The maximum and minimum frame-buckling loads are 54255.01 kN and 21392.47 

kN, respectively. The load patterns corresponding to the maximum frame-buckling loads applied to 

the exterior columns, and the load patterns associated with the minimum frame-buckling loads 

applied to both the exterior columns and interior column. The difference between the maximum and 

minimum frame-buckling loads is 153.6%, which is very significant compared to cases 1 to 3. It is 

also found that lateral instability occurs simultaneously for both first and second stories when they are 

subjected to the maximum frame-buckling load.    

 

    In Table 5-15, for Case 5, the column base connection is rigid, while the beam-to-column 

connections for both the interior and exterior columns are quite flexible with the corresponding end-

fixity factor being 0.2. The maximum and minimum frame-buckling loads are 48045.18 kN and 

16552.01 kN, which yields a considerable difference of 190.3%. The load patterns associated with the 

maximum frame-buckling loads is applied on the interior columns C12 and C22 while the load patterns 

with respect to the minimum frame-buckling loads trend to apply on the exterior columns, which are 

the different than Cases 1 to 4. Also similar to Cases 1 to 4, the lateral instability occurs 

simultaneously for both first and second stories when they are subjected to the maximum frame-

buckling load.  

 

    The frame-buckling strengths associated with storey-based buckling subjected to proportional 

loading for the frames are also presented in Tables 4-24 to 4-28. It is observed that the differences 
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between the proportional and the minimum loading are 51.1%, 55%, 60.7%, 174.8% and 187.8%, 

respectively.  

 

5.3  Conclusions 

The problem of extreme frame-buckling loads and their associated load patterns for unbraced multi-

storey frame structures accounting for initial geometric imperfections has been solved using the linear 

programming method. Comparing the results discussed in Chapter 3, the geometric imperfection 

results obtained in this chapter show similar trends for the extreme frame-buckling loads and their 

associated load patterns. Found in this study is that the presence of the initial geometric imperfections 

reduces the column lateral stiffness and consequently the maximum and minimum frame-buckling 

loads were all reduced. The results of the parametric studies indicate that both the geometric 

imperfections of member out-of-straightnesses and frame out-of-plumbnesses affect the extreme 

frame-buckling loads and their associated load patterns. As well, the numerical examples indicate that 

the extreme frame-buckling loads and their associated load patterns decreased when increasing the 

values of member out-of-straightnesses and frame out-of-plumbnesses.  The results also demonstrate 

that the frame out-of-plumbness shows a stronger influence for the frame stability than the member 

out-of-straightness. Compared to the frame that includes only the out-of-straightness or out-of-

plumbness, the relative difference noted between the extreme frame-buckling loads  was  higher in 

the case of the  frame that includes only the out-of-plumbness.  The extreme frame-buckling loads 

and their associated load patterns showed lower values when considering the effects of combined 

member out-of-straightness and frame out-of-plumbness together. Comparing the relative differences 

between the extreme frame-buckling loads with respect to the out-of-straightness or out-of-

plumbness, the relative differences between the extreme frame-buckling loads are not affected by 

combining the initial geometric imperfections of out-of-straightness and out-of-plumbness. In the 

considerations of comparing the different beam-to-column and column base connections, the results 

based on geometric imperfections clearly indicate that the geometric imperfections play an important 

role in the stability analysis.  There is also a considerable variation in connection stiffness among 

beam-to-column connections in the same storey of any frame or column base connection. 
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Chapter VI 

 

Application of Storey-Based Stability Analysis to CFS Storage 

Racks 

6.1 Introduction 

Storage rack manufacturers for warehousing or distribution center applications using CFS members 

for optimal structural design presents several stability challenges for structural designers. Factors to 

be considered in the stability design for storage racks include semi-rigid behavior of beam-to-column 

and column base connections, perforated columns, local buckling and torsional-flexural buckling. In 

addition, the nature of randomly applied loads both in magnitude and location are often one of the 

primary factors contributing to structural failures. So far, there have not been any design guidelines 

and tools available to assess the structural integrity of the variable loading for CFS structures.  

 

    In practice, as there was no Canadian standard available prior to 2005, steel racks were designed in 

accordance with the Allowable Strength Design standard developed by RMI in the U.S. Although the 

first Canadian standard for design and construction of steel storage racks with Limit State Design was 

developed in 2005 (CSA, 2005), the standard is in the infancy stage where many complex issues, as 

listed in the foregoing, are either overly simplified or not addressed due to the lack of the research in 

this area. 

 

    As the use of storage racks increases around the world, they will be subjected to a more diverse use 

of loading conditions and as a result the engineering and building code communities are scrutinizing 

these structures in their stability. Therefore, the variable loading condition discussed in Chapters 3 

and 5 is also a key factor in the stability design of a CFS storage rack and it will be addressed in this 

chapter. Another key factor in causing such structures to have instability issues is through the 

influence of initial geometric imperfections studied in Chapter 4 and this influence will also be 

evaluated within this chapter. Also the studies of perforated columns and the behavior of the beam-to-

column connection on the CFS storage rack stability are demonstrated in this chapter. Figure 6-1 

shows the typical rack structure components. In general for the purposes of describing direction, the 
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rack industry refers to the longitudinal direction as the down-aisle direction and the transverse 

direction, as the cross-aisle direction. It can be seen that the lateral load resisting systems of storage 

racks in down-aisle and cross-aisle directions are unbraced frames and bracing frames, respectively. 

 

 
                      

Figure 6-1: Typical storage rack configuration and components (CSA, 2005) 

 

6.2  Members Design  

6.2.1 Introduction  

The current RMI design provision for CFS members is similar to the AISI specification, which can be 

described as follows: (RMI, 2000; AISI, 2004) 

(1) the overall stability of the member must be considered, which includes the elastic column 

buckling stress (flexural, torsional, or torsional-flexural) for the full unreduced section. 

(2) then the design equations are used to determine the nominal failure stress, whether the 

member will fail from elastic buckling, inelastic buckling, or yielding. 

(3) once the nominal failure stress is known, the corresponding effective section properties can 

then be computed and will be used to account for the local buckling of thin-walled sections. 
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(4) the nominal member strength is determined based on the governing nominal failure stress and   

      the effective section properties. 

(5) the nominal member strength is multiplied by a resistance factor in the case of LRFD and 

LSD or dividing it by a safety factor in the case of ASD obtaining the design member 

strength. 

  

     Based on the general design steps listed above, studies are carried out in this section to check the 

current design provisions for member design. 

 

6.2.2 Elastic Buckling Strength of Perforated Members  

The column sections in storage racks are perforated for the purpose of easy assembly of the beam end 

connection elements. It is well known that the presence of such perforation reduces the local buckling 

strength of the individual component element and the overall buckling strength of the section. The 

RMI Specification currently allows the use of unperforated section properties to predict the overall 

elastic buckling strength of perforated members, thus assuming the presence of such perforation does 

not have a significant influence on the reduction of the overall elastic buckling strength (RMI, 2000). 

The objective of this study is to check this assumption. The overall buckling equations as given in the 

CAN/CSA-S136S1-04(CSA, 2004) were used to carry out the perforation affect for the overall 

buckling strength.  

 

     The computer program CU-TWP developed at Cornell University (Sarawit and Pek�z, 2003) was 

designed to compute the perforated column cross section properties and will be used in this study to 

obtain the perforated column cross section properties. Three C-sections of C1, C2 and C3 properties are 

calculated using CU-TWP and their section properties are given in Tables 6-1 to 6-3.  In Table 6-1 is 

the section C1 property for the full unreduced gross section and perforated web or flanges. Table 6-2 

gives the section properties of C2 with and without section perforation. The cross section properties of 

C3 considering without perforation and with perforation are presented in Table 6-3. The cross section 

should be noted that the geometry of C1 and C2 are similar but their section thicknesses are different.  

In this study, the weighted section shown in Tables 6-1 to 6-3 presents the cross area that uses an 

average thickness in the perforated segment of the section to account for the absence of the material 

from the holes along the length of the section.  
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Table 6-1: Section C1 dimensions and properties (Sarawit and Pek�z, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full unperforated section dimensions Section Properties 

 

7
6

.2
m

m
 

38.1mm 

17.91mm 

 

 

A=442.670mm2 
t=2.311mm 
Ix=4.250x105mm4 

Ixy=0.000 mm4 
Iy=1.190x105mm4 
J=788.330mm4 

C.G.=(15.680mm, 0) 
S.C.=(-22.910mm,0) 
Cw=2.110x108mm8 
 

Net section dimensions Section Properties 

17.91mm 

38.1mm 

7
6

.2
m

m
 

17.85mm 

17.85mm 

 

 

A=400.280mm2 
t=2.311mm 
Ix=3.970x105mm4 

Ixy=0.000 mm4 
Iy=1.100x105mm4 
J=640.940mm4 

C.G.=(16.700mm, 0) 
S.C.=(-23.560mm,0) 
Cw=2.050x108mm8 
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Table 6-2: Section C2 dimensions and properties (Sarawit and Pek�z, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full unperforated section dimensions Section Properties 
1

7
6

.2
m

m
 

38.1mm 

17.91mm 

 

A=218.900mm2 

t=1.143mm 
Ix=2.100x105mm4 
Ixy=0.00 mm4 

Iy=0.587x105mm4 
J=95.330mm4 
C.G.=(15.680mm, 0) 
S.C.=(-22.910mm,0) 

Cw=1.040x108mm8 

Net section dimensions Section Properties 

17.91mm 

38.1mm 

7
6

.2
m

m
 

17.85mm 

17.85mm 

  

 

A=197.940mm2 

t=1.143mm 
Ix=1.960x105mm4 
Ixy=0.00 mm4 

Iy=0.546x105mm4 
J=77.510mm4 
C.G.=(16.700mm, 0) 

S.C.=(-23.560mm,0) 
Cw=1.010x108mm8 
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Table 6-3: Section C3 dimensions and properties (Sarawit and Pek�z, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The flexural buckling strength of the members will be calculated using a net section to represent 

the perforated section in this current study. All three sections are studied as both a concentrically 

loaded compression member and a flexural member subject to bending about the strong axis, which 

represents the x-axis. Boundary conditions at the ends of the member are pinned connections such 

that the effective length for flexural buckling of both the strong and weak axis as well as the torsion is 

equal to the length of the member.  

 

    The results of sections C1, C2 and C3 are illustrated in Figures 6-2 to 6-4.  The vertical axis in 

Figures 6-2 to 6-4 are the elastic axial buckling load Pe divided by the axial load causing yielding of 

the full unreduced gross section Py = AFy.  

Full unperforated section dimensions Section Properties 

17.91mm

76.2mm 

7
6
.2

m
m

 

 

A=593.260mm2 
t=2.311mm 

Ix=5.960x105mm4 
Ixy=0.000 mm4 
Iy=4.820x105mm4 

J=1056.510mm4 
C.G.=(31.600mm, 0) 
S.C.=(-40.860mm,0) 

Cw=7.820x108mm8 

Net section dimensions Section Properties 

 

17.91mm 

76.2mm 

7
6
.2

m
m

 

17.85mm 

17.85mm 

17.85mm 

 

 

A=550.870mm2 
t=2.311mm 
Ix=5.690x105mm4 

Ixy=0.000 mm4 
Iy=4.480x105mm4 
J=909.120mm4 

C.G.=(33.560mm, 0) 
S.C.=(-42.140mm,0) 
Cw=7.580x108mm8 
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Figure 6-2: Elastic buckling axial load for C1  

 

 

Figure 6-3: Elastic buckling axial load for C2  
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Figure 6-4: Elastic buckling axial load for C3  

      

    Comparison results between the unperforated and perforated members for the axial load of these 

three sections are demonstrated in Figures 6-2 to 6-4, respectively. From these figures, it can be 

observed that the buckling strength will reduce with the presence of perforations in the section. In 

Figures 6-2 to 6-4, it is noted that the maximum difference of the elastic buckling strength between 

the gross and reduced section is less than 3.3%, which indicates that such perfection does not have 

significant influence on the reduction of the overall elastic buckling strength. Therefore, the 

unperforated section to predict the buckling strength of perforated sections assumed in the current 

RMI Specification will be used in the following studies of this chapter.  

 

6.2.3 Effective Design of Cross-Sectional Area 

With the presence of perforations in rack columns, the effective design width equations of the AISI 

Specification (2004) is not applicable in the design of CFS storage racks (RMI, 2000). Stub-column 

tests are required in the RMI specifications and to account for the member local behavior (AISI, 

2004; CSA, 2004). 
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    By measuring the axial load and the corresponding axial shortening in the stub-column test, the 

relationship between the stress on the effective section Fn and the effective area Ae can be obtained. 

However, for tests where only the ultimate strength of the stub-column is measured, the effective 

design area equation is given as follows: (RMI, 2000; CSA, 2004) 

Q

y

n

net

e

F

F
Q

A

A

�
�

�

�

�
�

�

�
−−= )1(1

min

                                                   (6.1) 

in which Q  is the perforation factor and can be determined as 

nmy

ult

AF

P
Q

'
=                                                                 (6.2) 

Where 

Ae: effective area at stress Fn 

Fn : nominal buckling stress 

Anm: net minimum cross-sectional area obtained by passing a plane through the section normal to axis 

of the column. 

Pult: ultimate compressive strength of stub column by tests. 

'

yF : actual yield stress of the column material if no cold work of forming affects are to be considered. 

Fy: yield point used for design 

 

6.2.3.1 Concentrically Loaded Compression Members 

In accordance with Section C4 of CAN/CSA-S136S1-04 (CSA, 2004), the factored compressive 

resistance (Pr) can be calculated by the following equation: 

necr FAP φ=                                                                  (6.3) 

where 

cφ : resistance factor for concentrically loaded compression member 

Ae: effective area at stress Fn  and determined in Eq. (6.1) 
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Fn : nominal buckling stress and determined in Section C4 of CAN/CSA-S136S1-04. 

6.2.3.2 Laterally Supported Members in Bending 

According to procedure I in Section C3.1 of CAN/CSA-S136S1-04 (CSA, 2004), the factored 

moment resistance (Mr) can be obtained as follows: 

( )[ ]2/1+= QFSM yebr φ                                                     (6.4) 

where 

bφ : resistance factor for bending strength 

Se: elastic section modulus of effective section calculated relative to extreme compression or tension 

fibre at Fy 

Q: perforation factor determined in Eq. (6.2) 

    The calculations in procedure II of Section 3.1.1 of CAN/CSA-S136S1-04 that utilize inelastic 

reserve capacity are not used in rack design (CSA, 2004). 

 

6.2.3.3 Laterally Unsupported Members in Bending 

In accordance with Section C3.1.2.1 (lateral-torsional buckling resistance of open cross section 

members) of CAN/CSA-S136S1-04 (CSA, 2004), the factored moment resistance (Mr) can be 

calculated using the following equation: 

( )[ ]2/1+= QFSM ccbr φ                                                     (6.5) 

where  

bφ : resistance factor for bending strength 

Sc: elastic section modulus of effective section calculated relative to extreme compression or tension 

fibre at Fc 

Fc: critical buckling stress based on exσ , eyσ  and etσ , in accordance with Section C3.1.2.1 of 

CAN/CSA-S136S1-04 (CSA, 2004).   
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     So far, there are no available results from the stub-column test to compute the perforation factor Q 

at the University of Waterloo and such test will need to be carried out in future research.  

 

6.3 Beam to Column Connections 

6.3.1 Introduction  

In the storage rack industry, beam end connectors are used to make beam to column connections.  The 

semi-rigid nature of this connection is primarily due to the distortion of the column walls, tearing of 

the column perforation, and distortion of the beam end connector. Photographs of typical down-aisle 

moment frame connections, cross-aisle braced frame connections, and column base plate connections 

are presented in Figures 6-5 to 6-7. 

 

 

 

 
Figure 6-5: Typical rack moment connection (NEHRP, 2003) 
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Figure 6-6: Typical rack bracing members and connection (NEHRP, 2003) 

 

 

 
Figure 6-7: Typical column base plate connection (NEHRP, 2003) 

 

    The storage rack stability depends significantly on the behavior of all these connections. The 

detailed connections vary widely, thus it is impossible to establish general procedures for computing 

joint stiffness and strength. Therefore, it is necessary to determine these characteristics by tests. These 

beam to column connection tests are usually carried out to determine the relationship of the moment 

M at the joint and the change in angle � between the column and the connecting beam (RMI, 2000).  
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6.3.2 Beam to Column Connection Tests 

The RMI Specification recommends the use of a cantilever test or a portal test. Figures 6-8 and 6-9 

show the schematics of these test set-ups (RMI, 2000). The cantilever test provides a simple means of 

determining the connection moment capacity and rigidity. In this current study, the sections of 

column and beam and their connection stiffnesses for some numerical examples are obtained from the 

cantilever beam tests carried out in accordance with the RMI Specification and Commentary (RMI, 

2000) at the University of Waterloo (Schuster, 2004).    

 

         Figure 6-8: Cantilever test – beam to column connection test (RMI, 2000) 

 

Figure 6-9: Portal test – beam to column connection test (RMI, 2000) 
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6.3.3 Test Specimens and Set-up 

All the specimens were fabricated by the Econo-Rack Group Enrack manufacturing facility in 

Brantford, Ontario and were delivered to the structures Laboratory of the Department of Civil 

Engineering at the University of Waterloo prior to actual testing (Schuster, 2004). The rack column 

section 4”w ×3”d×13Ga and 3-1/4”w×2”d×13Ga was used with both the ‘Redirack’ style box beam 

and ledge beams shown in Figure 6-10 in this test.  

 

 

Figure 6-10: Typical box and ledge beam sections in tests (Schuster, 2004) 

 

    The schematic layout of a cantilever test set-up shown in Figure 6-8 was created in accordance 

with RMI Commentary, Section 9.4.1(RMI, 2000) and the actual test set-up at the University of 

Waterloo is shown in Figure 6-11(Schuster, 2004).  
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           Figure 6-11: Cantilever rack beam/column test (Schuster, 2004) 

 

 

6.3.4 Evaluation of Test Results  

In the cantilever test, the constant connection stiffness, R, relative to the moment and the rotation is 

expressed as follows: 

  
θ

M
R =                                                                     (6.6) 

    The relationship between the moment and the angular change at a joint is generally nonlinear. The 

following equation taken from RMI Commentary (RMI, 2000), can be determined a constant value of 

R which can be used in structural analysis.  

xb

b

netyc

c

b
EI

L

EI

L

LP

FR
R

316

..

,

2

85.0

85.0 −−

=

−

δ
                                             (6.7) 

where 

R.F.: reduction factor to provide safety considering scatter of test data and recommend being 1 in this 

study 

netycI −, : net moment of inertia of column section about y-axis 
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xbI : moment of inertia of beam section about x-axis 

85.0P : 0.85 times ultimate test load 

85.0δ : displacement of free end of cantilever beam at load 85.0P  

 

    Therefore, the R obtained from Eq. (6.7) with P equal to 0.85 times the ultimate load and � equal to 

the deflection at that load.  

 

    All data used to calculate beam-to-column connection stiffness R provided from the test is given in 

Appendix E (Schuster, 2004). The designation of the beam section is also given in this table. With 

bPLM =  and R known, � can be determined from Eq. (6.6) for each load step. Once the beam-to-

column connection stiffness R is obtained, the end-fixity factor, discussed in Chapter 3, can be 

obtained from Eqs. (3.1). In this study, the column base connections are assumed to be a rigid 

connection, in which the corresponding end-fixity factor will be taken a unity.  

 

6.4 Elastic Buckling Strength of Storage Racks  

6.4.1 Introduction 

Up to now, the effective length factor, K, method is still the most commonly used method for 

assessing frame stability in the engineering practice and by the storage rack industry. The design of 

industrial steel storage racks in the United States is based on the effective length method according to 

the RMI Specification (RMI, 2000). It should be noted that the cantilever test discussed in the 

previous section is used to design beams and connections. The beam-to-column connection stiffness, 

R, obtained from the tests is to account for the semi-rigid behavior of the connection in design with a 

beam. However, there is an inconsistency in the current practice because the semi-rigid behavior was 

not accounted for in the evaluation of K factors. In practice, K is simply assumed to be 1.7 as 

suggested by the RMI Specification and it is not based on the alignment chart or stability analysis. 

Therefore, it is important to investigate K factors with accounting for R based on the test results.  
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    As discussed in Chapter 2, the Notional loads are introduced to account for the effect of out-of-

plumbness on the stability of a framed structure and the out-of-plumbness effect is assumed to be this 

that results from an erection tolerance of 5mm over 120mm (1:240) stated in Clause 6.2.2 of 

CSA/A344.1-05/A344.2-05 (CSA, 2005) for industrial steel storage racks. This corresponds to the 

maximum fabrication and erection tolerance permitted by the RMI specification and is roughly twice 

the value of 1/500 recommended by the AISC specification used for structural steel buildings (RMI, 

2000; AISC, 2005).  

 

    The effective length factor based on the storey-based buckling method using the 2nd-order 

approximation presented in Chapter 4 will be used in this study to carry out the stability analysis for 

CFS storage rack’s compressive members with and without accounting for initial geometric 

imperfections. Also, the unperforated sections will be considered in the following studies. 

 

6.4.2 Column Effective Length Factor for Geometrically Perfect Storage Racks 

The objective of this study is to evaluate the effective length factor K for CFS storage racks from the 

method previously mentioned from the last section and compare the results with the Alignment chart 

method. Parameters that influence the value of K for column flexural buckling including the section 

properties and beam-to-column connections are also examined in this study. The box sections used as 

columns and beams together with their section designations, section properties and the beam-to-

column connection stiffness (R) can be obtained from Appendix E (Schuster, 2004).   

 

2-Bay by 2-Storey Storage Rack Example 

A 2-bay by 2-storey storage rack shown in Figure 6-12 is used to carry out this study. The dimension 

of this storage rack is also given in this figure. Some of the experimental data used in this study from 

Appendix E is summarized in Table 6-4.  The results of effective length factor K, based on different 

rack types are presented in Table 6-5.  
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Figure 6-12: 2-bay by 2-storey storage rack example  

 

 

  Table 6-4: Properties of column and beam (Schuster, 2004) 

 
Rack 
Type  

Designation Section 
properties 

Beam-to-column 
Connection 

Width 

(mm) 

Depth 

(mm) 

Ic, y-net 

(column) 
Ixb (beam) 

(mm4) 

R 

(N-mm/rad) 

I 
Column 

Beam 

 
82.550 

50.800 

 
50.800 

177.800 

 
4.7×105 

4.87×106 

 
3.537×107 

 

II 
Column 

Beam 

 
101.600 

50.800 

 
76.200 

177.800 

 
1.074×106 

4.87×106 

 
3.537×107 

 

III 

Column 
Beam 

 

82.550 
50.800 

 

50.800 
101.600 

 

4.7×105 
1.22×106 

 

2.09×107 

 

 

 

 

 

 

 

2438.4 mm 

 

2438.4 mm 

1.1.1.1.2 

2438.4 mm 

1
5
2
4

 m
m

 

 
1

5
2
4

 m
m

 

2438.4 mm 
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 Table 6-5: K factors for three types of column and beam in study  
  

  
 S

to
re

y
 

  
  
C

o
lu

m
n
 

K factors 

Rack Type I Rack Type II Rack Type III 

Alignment 
chart 

Current study 
(�0=0,  �0=0) 

Alignment 
chart 

Current study 
(�0=0,  �0=0) 

Alignment 
chart 

Current study 
(�0=0,  �0=0) 

1 C11 

C12 

C13 

2.080 
1.920 
2.080 

1.692 
1.692 
1.692 

2.206 
2.107 
2.206 

1.814 
1.814 
1.814 

2.172 
2.051 
2.171 

1.777 
1.777 
1.777 

2 C21 

C22 

C23 

3.570 
2.620 
3.570 

3.410 
3.410 
3.410 

5.262 
3.792 
5.262 

5.182 
5.182 
5.182 

4.602 
3.335 
4.602 

4.484 
4.484 
4.484 

 

 

    In Table 6-4, Rack Types I and II have the same value of beam-to-column connection stiffness (R) 

and the same size beam section using a box section of 50.8mm×177.8mm (2”×7”). The box sections 

of 82.55mm×50.8mm (3-1/4”×3”) and 101.6mm×76.2mm( 4”×3”) are used as column sections in 

Rack Types I and II, respectively. For Types I and III, only the column size is the same. Compared to 

Rack Types I and II, it is found that when the column size increases, the K factors will increase. It is 

also observed from Rack Types I and III when the beam size and the connection stiffness is increased, 

the value of K factors will decrease because of the additional restraint from the beam and connection 

stiffness will prevent the frame from sidesway buckling.  

 

    It is noted that the K factors values are close to 1.7 for the first storey and are greater than 2 for the 

second storey. In the RMI Specification, the K factor’s default value is equal to 1.7 to provide a 

reasonable amount of protection against sidesway buckling for most storage racks. However, the 

results from this study found the actual value of K factors for storey 2 is much higher than 1.7.  In the 

RMI Specification, it is also stated that the K factor values other than 1.7 may be used if they can be 

justified on the basis of using a rational analysis. Such rational analysis must properly consider the 

following: column stiffness, beam stiffness, semi-rigid connection behavior and base fixity properties.  
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6.4.3 Effective Length Factor for Initial Geometric Imperfect Storage Racks 

Considering the initial geometric imperfections to evaluate the effective length factor K, the standard 

practice of the AISC (2005) specifies a fabrication tolerance for compression members of L/1000 

between lateral supports will be used as the initial out-of-straightness in storage racks (Sarawit and 

Pek�z, 2006). The maximum erection tolerance of L/240 allowed by RMI (2000) and CSA/A344.1-

05/A344.2-05 (CSA, 2005) will be used as the out-of-plumbness value for individual columns in 

storages racks. The critical loading multipliers together with their effective length factor based on 

each storey are obtained from Eqs. (4.23) corresponding to the 2nd-order approximations of � in the 

Taylor series approximation of Eq. (4.11).  

 

2-Bay by 3-Storey Storage Rack Example 

A 2-bay by 3-storey storage rack shown in Figure 6-13 is investigated in this study. The dimensions 

for this storage rack are shown in this figure and the properties of Rack Type I given in Table 6-4 will 

be used for this study.  

   

Figure 6-13: 2-bay by 3-storey storage rack example 

 

    For comparison, the results based on this study without the consideration of initial geometric 

imperfections are presented first. As discussed previously in section 6.3, once the beam-to-column 
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connection stiffness, R, values were obtained from the tests (Schuster, 2004), the corresponding end-

fixity factor can be evaluated from Eq. (3.1). In this case, the end-fixity factor for the beam-to-column 

connection is 0.029 corresponding to the value of R of 3.537×107 N-mm/rad. Then following the steps 

given in Appendix A, the end-fixity factors for the lower and upper end of each individual column, 

rl,ij and ru,ij can be obtained for the purpose of evaluating the column lateral stiffness modification 

factors �0,ij and �1,ij.The K factors values based on each storey can be determined from the 2nd - order 

approximation together with rl,ij,  ru,ij, �0,ij and �1,ij, and these results are presented in Tables 6-6. Also 

presented in this table are the results obtained from the alignment chart method.    

 

Table 6-6: Comparison of K factors of two-bay by three-storey frame – Rack Type I 

 

 

 

 

 

 

 

 

 

  

    From Table 6-6, compared to the proposed method, it is found that the alignment chart results are 

not in the conservative side for this frame. Also found in Table 6-6, the second storey is structurally 

unstable since its slenderness ratio KL/r is greater than 200. From the commentary of AISI, the 

slenderness ratio, KL/r, of all compression members preferably should not exceed 200 (AISI, 2004).  

 

    Presented in Table 6-7 are the results of the K factors accounting for the initial geometric 

imperfections for the pallet rack shown in Figure 6-13. The values for column lateral stiffness 

modification factors �0,ij and �1,ij associated with the initial geometric imperfections are also given in 

the table.  

 
 

Storey 

 
 

Col

. 

Alignment 
chart 

Current study 
(�0=0,  �0=0) 

 

K factors 
 

 

rl,ij 

 

ru,ij 
ij

ij

ij

L

EI
,03

12
β

(kN/m) 

 

�1,ij 

(×10-2) 

 

K 
factors 

 

1 

C11 

C12 

C13 

2.080 

1.919 
2.080 

1.000 

1.000 
1.000 

0.122 

0.198 
0.122 

 102.146 

116.917 
102.146 

9.787 

9.671 
9.787 

1.692 

1.692 
1.692 

 
2 

C21 

C22 

C23 

4.277 
3.093 
4.277 

0.048 
0.116 
0.048 

0.048 
0.116 
0.048 

7.768 
19.533 
7.768 

8.334 
8.340 
8.334 

4.736 
4.736 
4.736 

 
3 

C31 

C32 

C33 

3.565 
2.623 
3.565 

0.122 
0.198 
0.122 

0.159 
0.274 
0.159 

23.965 
42.417 
23.965 

8.345 
8.372 
8.345 

2.954 
2.954 
2.954 
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Table 6-7: K factors of two-bay by three-storey frame – Rack Type I 

 

 

 

 

 

 

 

 

 

      

 

   From Tables 6-6 and 6-7, it is obvious that the column K factor values based on the initial 

geometric imperfections would increase while the column strength decreases. Similar to the case 

without consideration for the initial geometric imperfections, the slenderness ratio KL/r of second 

storey is greater than 200, consequently, the second storey becomes structurally unstable. 

  

    In the parametric studies, the following effects are demonstrated considering out-of-straightness, 

out-of-plumbness and these two effects combined on K factors in Tables 6-8 to 6-10.   

 

Table 6-8: Effects of out-of-straightness - 2-bay by 3-storey 

 

 

 
 

 
Storey 

 
 

 
Col

. 

 
Current study 

(�0=L/1000,  �0=L/240) 
 

ij

ij

ij

L

EI
,03

12
β

(kN/m) 

 

�1,ij 

(×10-2) 

 

K factors 

 
1 

C11 

C12 

C13 

 95.352 
108.165 

95.352 

10.380 
10.250 

10.380 

1.806 
1.806 

1.806 

 

2 

C21 

C22 

C23 

6.903 

17.358 
6.903 

8.864 

8.869 
8.864 

5.181 

5.181 
5.181 

 

3 

C31 

C32 

C33 

21.108 

37.303 
21.108 

8.876 

8.909 
8.876 

3.247 

3.247 
3.247 

 

Column 

K factors  (�0=0) 

�0= 

0 

�0= 

L/1000 

�0= 

L/800 

�0= 

L/600 

�0= 

L/500 

�0= 

L/400 

�0= 

L/300 

�0= 

L/240 

�0= 

L/200 

C11= C12= C13 
C21= C22= C23 

C31= C32= C33 

1.692 
4.736 

2.954 

1.740 
4.854 

3.027 

1.753 
4.884 

3.047 

1.774 
4.937 

3.079 

1.792 
4.980 

3.107 

1.819 
5.048 

3.149 

1.867 
5.166 

3.223 

1.919 
5.293 

3.302 

1.974 
5.430 

3.388 
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Table 6-9: Effects of out-of-plumbness - 2-bay by 3-storey 

 

 

 

 

 

 

Table 6-10: Effects of out-of-straightness and out-of-plumbness - 2-bay by 3-storey 

 

 

    Based on the results summarized in Tables 6-8 to 6-10, it is found that the K factors increase when 

the value of either one of the effects for initial imperfections increases. The combined effects of the 

initial geometric imperfections would have the most severe impact on the column K factors. For 

instance, the value of the K factor for the columns in storey 1 increased from 1.692 (perfect pallet 

rack) to 1.740 (out-of-straightness: �o = L/1000 alone) and from 1.692 (perfect pallet rack) to 1.756 

(out-of-plumbness: �o = L/240 alone). While the combined effects (out-of-straightness: �o = L/1000 

and out-of-plumbness: �o = L/240), the resulted K factor is increased to 1.806 from 1.692 (perfect 

pallet rack). It is also noted from Tables 6-8 and 6-9, the out-of-straightness has a greater influence 

than that of the out-of-plumbness, which is observed by comparing the K factors with respect to the 

imperfection values being L/500, L/400, L/300, L/240 and L/200.  

 

 
Column 

K factors  ( �0=0) 

�0=0 �0=L/500 �0=L/400 �0=L/300 �0=L/240 �0=L/200 

C11= C12= C13 

C21= C22= C23 
C31= C32= C33 

1.692 

4.736 
2.954 

1.723 

4.883 
3.052 

1.730 

4.920 
3.077 

1.743 

4.983 
3.119 

1.756 

5.047 
3.162 

1.769 

5.112 
3.206 

 

Column 

K factors 

�0=0 

�0=0 

�0=L/1000 

�0=L/240 

�0=L/1000 

�0=L/500 

�0=L/800 

�0=L/400 

�0=L/600 

�0=L/300 

�0=L/400 

�0=L/200 

C11= C12= C13 

C21= C22= C23 
C31= C32= C33 

1.692 

4.736 
2.954 

1.806 

5.181 
3.247 

1.772 

5.008 
3.131 

1.793 

5.081 
3.178 

1.829 

5.207 
3.261 

1.904 

5.479 
3.440 
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6.5 Stability Analysis of Storage Racks Subjected to Variable Loading  

6.5.1  Introduction       

The elastic buckling load for storage racks subjected to variable loading using the approach discussed 

in Chapters 3 and 5 is presented in this section. As discussed previously, variable loading abandons 

the conventional assumption of proportional loading to instead of considering different load patterns 

that may cause a rack to buckle at different critical loading levels (Xu, 2002; Xu and Wang, 2007). 

The most critical or so-called lower bound of the buckling loads corresponding to the worst load 

patterns is the one that corresponds to the minimum magnitude of the total applied load for the rack. 

The minimum frame-buckling load together with its corresponding load pattern present a clear 

characterization of the buckling capacity of unbraced CFS racks subjected to variable loading.  The 

proposed approach developed in Chapters 3 and 5 has realistically taken account for the volatility of 

magnitudes and patterns of loads applied to the storage racks as well as the initial geometric 

imperfections; therefore, it can be applied to the design of the storage racks.  

 

6.5.2 Numerical Studies 

Example of Geometric Perfect Storage Racks  

The first numerical example carried out is the stability of a CFS rack subjected to variable loading 

without consideration for the effects of the initial geometric imperfections. As discussed previously in 

Chapter 3, following the procedures of decomposing a multi-storey unbraced frame into a series of 

single-storey frames presented in Appendix A, the lateral stability of the multi-storey unbraced frame 

subjected to variable loading can be formulated as a pair of problems seeking the maximum and 

minimum frame-buckling loads of the racks as described in Eqs. (3.13), (3.16) and (3.17). 

 

    The 3-bay by 3-storey CFS storage rack structure shown in Figure 6-20 studied by (Sarawit and 

Peköz, 2006) is investigated by using Rack Type I of column and beam sections together with their 

beam-to-column connection stiffness shown in Table 6-4. The beam-to-column connection stiffness 

obtained from the test is R1= 313 k-in/rad (3.537×107 N-mm/rad, Connection 1) (Schuster, 2004) in 

Rack Type I, the two different beam-to-column connection stiffness obtained of R2 = 10×R1 

(3.537×108 N-mm/rad, Connection 2) and R3 = 50× R1 (17.685×108 N-mm/rad, Connection 3) are also 

considered in this study to demonstrate the influence of the semi-rigid connections to the variable 
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loading. Based on Eq. (3.1) in Chapter 3, the end-fixity factors associated with the foregoing three 

beam-to-column connection stiffness are evaluated and presented in Table 6-11. In this study, the 

column base connections are assumed to be rigid with a corresponding value of end-fixity factor of 

unity. Possible local buckling and distortional buckling of the members were not considered in this 

study. The effective length factor of the column associated with non-sway-buckling Kbraced related to 

the rotational restraints of the column ends is used in the variable loading cases. Kbraced is evaluated 

using Eq. (3.14).  

 

 

Figure 6-14: 3-bay by 3-storey storage rack example 

 

 

Table 6-11: There different end connections in study 

Connection Column base 
connection 

Beam-to-column 
connection 

1 r =1 r =0.029 

2 r =1 r = 0.228 

3 r =1 r = 0.596 

 

   Following the procedures described in Chapter 3, the frame-buckling loads with respect to the 3-bay 

by 3-storey storage rack being subjected to variable loading can be obtained from solving the 
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maximization and minimization problems stated in Eqs. (3.12), (3.15) and (3.16). For the foregoing 

three cases shown in Table 6-11, the maximum and minimum frame-buckling loads, together with 

their relative differences, are presented in Tables 6-12 to 6-14. For each case, the magnitudes of each 

variable load Pij (i=1, 2, 3; j = 1, 2, 3, 4) associated with the maximum and minimum frame-buckling 

loads are presented so that the loading patterns corresponding to the critical buckling loads can be 

obtained. Also presented in the tables are influential column attributes, such as the end-fixity factors, 

the initial lateral stiffness 3

,0 /12 ijijij LEI β  (i=1, 2, 3; j = 1, 2, 3, 4) of the columns, the column effective 

length factor (Kbraced) and the column buckling loads with respect to non-sway buckling. It can be 

observed from the tables that by increasing the column end-fixity factors would result in decreases of 

the column effective length factor, which consequently leads to increases of the magnitudes of 

column buckling loads in a non-sway mode. It is also observed that the column with the larger value 

of the end-fixity factor would yield to the larger value of 3

,0 /12 ijijij LEI β  that indicates the larger lateral 

stiffness against lateral instability.  
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Table 6-12: Results of the storage rack for Connection 1 (r = 0.029) –Figure 6-14 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0  

S3 > 0 

S2 = 0 

S1 > 0 

S3 > 0 

S3 = 0 

S1 > 0 

S2 > 0 

 11 

12 

13 

14 

1.000 

1.000 

1.000 

1.000 

0.123 

0.199 

0.199 

0.123 

102.343 

117.224 

117.224 

102.343 

0.098 

0.097 

0.097 

0.098 

0.681 

0.665 

0.665 

0.681 

861.400 

903.700 

903.700 

861.400 

- 

246.210 

246.210 

- 

401.010 

- 

- 

84.460 

- 

- 

- 

- 

N/A 

21 

22 

23 

24 

0.048 

0.117 

0.117 

0.048 

0.048 

0.117 

0.117 

0.048 

7.898 

19.813 

19.813 

7.898 

0.083 

0.083 

0.083 

0.083 

0.971 

0.931 

0.931 

0.971 

423.800 

461.300 

461.300 

423.800 

- 

- 

- 

- 

3.600 

- 

- 

3.600 

- 

65.700 

1.700 

- 

N/A 

31 

32 

33 

34 

0.123 

0.199 

0.199 

0.123 

0.160 

0.276 

0.276 

0.160 

24.203 

42.810 

42.810 

24.203 

0.084 

0.084 

0.084 

0.084 

0.917 

0.863 

0.863 

0.917 

475.400 

536.900 

536.900 

475.400 

- 

- 

84.400 

- 

3.600 

- 

- 

73.660 

- 

15.300 

1.700 

- 

N/A 

Critical frame buckling loads �Pij = 578.820 569.930 84.400 N/A 

�Si = 

S1=0.000 

S2=0.000 
S3=122.820 

S1=0.000 

S2=0.000 
S3=83.260 

S1=374.880 

S2=0.000 
S3=122.820 

N/A 

Difference max. & min. loads 1.6% 585.5% N/A 
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Table 6-13: Results of the storage rack for Connection 2 (r = 0.228) – Figure 6-14 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

 S3 > 0 

S2 = 0 

S1 > 0 

S3 > 0 

S3 = 0 

S1 > 0 

S2 > 0 

 11 

12 

13 

14 

1.000 

1.000 

1.000 

1.000 

0.476 

0.636 

0.636 

0.476 

176.561 

215.186 

215.186 

176.561 

0.097 

0.095 

0.095 

0.097 

0.665 

0.642 

0.642 

0.665 

902.100 

967.800 

967.800 

902.100 

- 

- 

389.750 

- 

371.860 

- 

- 

0.700 

- 

- 

- 

- 

N/A 

 21 

22 

23 

24 

0.431 

0.613 

0.613 

0.431 

0.431 

0.613 

0.613 

0.431 

87.544 

141.002 

141.002 

87.544 

0.083 

0.084 

0.084 

0.083 

0.932 

0.865 

0.865 

0.932 

459.600 

534.500 

534.500 

459.600 

- 

- 

0.050 

- 

- 

- 

- 

171.560 

- 

106.540 

26.720 

- 

N/A 

31 

32 

33 

34 

0.476 

0.636 

0.636 

0.476 

0.625 

0.769 

0.769 

0.625 

120.396 

171.926 

171.926 

120.396 

0.084 

0.084 

0.084 

0.084 

0.865 

0.793 

0.793 

0.865 

534.500 

634.900 

634.900 

534.500 

- 

- 

670.270 

- 

171.550 

- 

- 

171.560 

- 

26.720 

26.720 

- 

N/A 

Critical frame buckling loads �Pij = 1060.070 1058.780 670.320 N/A 

�Si = 

S1=0.000 
S2=0.000 

S3=117.980 

S1=0.000 
S2=0.000 

S3=351.980 

S1=288.060 
S2=0.000 

S3=584.640 

N/A 

Difference max. & min. loads 0.12% 58.1% N/A 
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Table 6-14: Results of the storage rack for Connection 3 (r = 0.596) – Figure 6-14 

Col. 

  ij 
rl,ij ru,ij 

ij

ij

ij

L

EI
,03

12
β  

(kN/m) 

β1,ij Kbraced 

Pu,ij 

(kN) 

Max. 

(kN) 

Min. (kN) 

S1 = 0 

S2 > 0 

S3 > 0 

S2 = 0 

S1 > 0 S3 > 

0 

S3 = 0 

S1 > 0 

S2 > 0 

 11 

12 

13 

14 

1.000 

1.000 

1.000 

1.000 

0.739 

0.848 

0. 848 

0. 739 

242.135 

272.585 

272.585 

242.135 

0.096 

0.095 

0.095 

0.096 

0.654 

0.627 

0.627 

0.654 

934.800 

1017.000 

1017.000 

934.800 

- 

- 

- 

195.320 

- 

217.580 

0.130 

- 

- 

- 

- 

- 

N/A 

21 

22 

23 

24 

0.727 

0.844 

0. 844 

0. 727 

0.727 

0.844 

0. 844 

0. 727 

182.148 

232.737 

232.737 

182.148 

0.084 

0.084 

0.084 

0.084 

0.899 

0.817 

0.817 

0.899 

494.800 

598.300 

598.300 

494.800 

- 

- 

- 

395.290 

- 

1.970 

578.070 

- 

- 

1058.760 

1.760 

- 

N/A 

31 

32 

33 

34 

0.739 

0.848 

0. 848 

0. 739 

0.846 

0.917 

0. 917 

0.846 

208.708 

251.372 

251.372 

208.708 

0.084 

0.085 

0.085 

0.084 

0.827 

0.749 

0.749 

0.827 

584.000 

711.800 

711.800 

584.000 

395.690 

- 

- 

395.690 

- 

562.53 

- 

- 

- 

80.340 

1.760 

- 

N/A 

Critical frame buckling loads �Pij = 1382.800 1360.330 1142.620 N/A 

�Si = 

S1=0.000 

S2=0.000 
S3=354.790 

S1=0.000 

S2=0.000 
S3=504.580 

S1=164.760 

S2=0.000 
S3=859.510 

N/A 

Difference max. & min. loads 1.7% 21% N/A 

 

 

    For Connection 1 the column base is rigidly connected and the beam-to-column connections are 

semi-rigidly connected with the end-fixity factor value of 0.029, which can be practically considered 

as a pinned connection. Consequently, the rack is flexible and it can be observed from Table 6-12 that 

the maximum frame-buckling loads is 576.82kN associated with both first and second stories 

becoming laterally unstable. The minimum frame-buckling loads associated with lateral instability of 

the first and second stories are 569.93 kN and 84.40 kN, respectively. Therefore, the relative 

difference between the maximum and minimum frame-buckling loads is 585.5%, which is rather 

significant and would cause some concern in the engineering practice. It is also observed from Table 
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6-12 that the load pattern corresponding to the maximum frame-buckling loads tends to place the 

loading only on the interior columns which are laterally stiffer than the exterior ones as characterized 

by the larger value of the column lateral stiffness 3

,0 /12 ijijij LEI β . Contrasting to the maximum loading, 

the load patterns associated with the minimum frame-buckling loadings are applied on the exterior 

columns when the first storey is laterally unstable and on the interior columns when the second storey 

is laterally unstable. With respect to the load patterns corresponding to the maximum and minimum 

frame-buckling loads obtained from the current study, verification results using MASTAN2 

(McGuire et al., 2000) is given in Table 6-15. The results show that the applied load ratio of the 

elastic critical load is equal to one, which indicates the rack is within its critical load conditions.  

 

Table 6-15: Results verification of rack shown in Figure 6-14 – Connection 1 

 

Storey 

 

 

Columns 

 

Current study 

Max. 
(kN) 

Min. (kN) 

S1 = 0 

S2 > 0  

S3 > 0 

S2 = 0 

S1 > 0 

S3 > 0 

S3 = 0 

S1 > 0 

S2 > 0 

 1 
 

11 
12 
13 

14 

- 
246.210 
246.210 

- 

401.010 
- 
- 

84.460 

- 
- 
- 

- 

N/A 

2 

21 
22 

23 
24 

- 
- 

- 
- 

3.600 
- 

- 
3.600 

- 
65.700 

1.700 
- 

N/A 

 3 

31 
32 
33 
34 

- 
- 

84.400 
- 

3.600 
- 
- 

73.660 

- 
15.300 
1.700 

- 

N/A 

MASTAN2 – Elastic critical load: 

applied load ratio 

1.0030 1.0310 0.987 N/A 

 

    In Connection 2, the beam-to-column connections stiffness (r = 0.228) value is increased to ten 

times compared to Connection 1(r = 0.029). The increase of the semi-rigid connection stiffness yields 

a stiffer frame, which is evidenced by increasing the columns lateral stiffness 3

,0 /12 ijijij LEI β compared 

to that of Connection 1. Consequently, the maximum frame-buckling load of Connection 2 increases 
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to 1060.07 kN, and the corresponding minimum frame-buckling load decreases to 670.32 kN, which 

yields the relative difference between the maximum and minimum frame-buckling loads to be 58.1%, 

which is still very significant. The load patterns associated with the maximum and minimum frame-

buckling loads are similar to that of Connection 1.  

 

    As the connection rigidity value of Connection 3 (r=0.596) is further increased to fifty times of 

Connection 1 (r=0.029), the storage rack becomes stiffer than Connection 2, and the magnitudes of 

the maximum and minimum frame-buckling loads are found to be increased to 1382.8 kN and 

1142.62 kN, respectively. The relative difference between the maximum and minimum in Connection 

3 is 21%.  It is found that the load patterns associated with the maximum are applied for exterior 

columns, which are different compared to Connections 1 and 2. When either the first or second stories 

are laterally unstable, the load patterns associated with minimum frame-buckling loads are found to 

apply to the loading on the interior columns. 

 

    It is noted that for the three connections, the linear programming procedure could not find the 

maximum and minimum frame-buckling loads that only involves the lateral storey buckling of the 

third storey of the storage rack (S3=0 and S1 > 0, S2 > 0), which indicates that for any given load 

pattern, the lateral storey instability will not occur in the third storey prior to such type of failure in 

the first and/or second storey. Therefore, the maximum and minimum frame-buckling loads with 

respect to the lateral instability of storey 3 are not considered in the following parametric study. 

 

Example of Initial Geometric Imperfect Storage Racks  

The second study is designed to investigate the effects of the initial geometric imperfections to the 

CFS storage racks stability subjected to variable loading. The numerical example of the 3-bay by 3-

storey CFS rack (shown in Figure 6-14) with the end-fixity factor of Connection 2 (shown in Table 6-

11) will be used and the effects of out-of-straightness (�0), out-of-plumbness (�0) and combined the 

out-of-straightness (�0) and out-of-plumbness (�0) are evaluated, respectively.  

 

(1) Effect of out-of-Straightness (�0) 

For stability of the 3-bay by 3-storey rack subjected to variable loading, the results of maximum and 

minimum frame-buckling loads influenced by out-of-straightness (�0) are presented in Tables 6-16 to 
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6-18. The relative difference between the maximum and minimum frame-buckling loads is given in 

Table 6-19.  

 

 

Table 6-16: Effects of out-of-straightness (�0) to Maximum frame-buckling loads  

Col. 

ij 

Maximum frame-buckling loads (kN) 

�0=0 �0=L/100

0 

�0=L/800 �0=L/600 �0=L/500 �0= L/400 �0= L/300 

11 

12 

13 

14 

- 

- 

389.750 

- 

- 

183.360 

183.350 

- 

- 

184.080 

177.160 

- 

- 

0.900 

350.920 

- 

- 

172.310 

172.110 

- 

- 

166.670 

166.670 

- 

- 

157.070 

158.210 

- 

21 

22 

23 

24 

- 

- 

0.050 

- 

- 

- 

2.170 

- 

- 

3.870 

6.350 

- 

- 

72.600 

180.810 

- 

- 

588.110 

5.300 

- 

- 

504.040 

27.820 

- 

- 

2.180 

184.480 

- 

 31 

32 

33 

34 

- 

- 

670.270 

- 

- 

406.390 

228.550 

- 

- 

102.380 

516.210 

- 

- 

180.810 

180.810 

- 

- 

5.300 

5.300 

- 

- 

27.820 

27.820 

- 

- 

186.660 

186.660 

- 

�Pij 1060.070 1003.820 990.060 966.840 948.420 920.850 875.250 

�Si 
S1=0.000 
S2=0.000 

S3=117.980 

S1=0.000 
S2=0.000 

S3=112.700 

S1=0.000 
S2=0.000 

S3=116.820 

S1=0.000 
S2=0.000 

S3=284.680 

S1=0.000 
S2=0.000 

S3=521.230 

S1=0.000 
S2=0.000 

S3=475.600 

S1=0.000 
S2=0.000 

S3=228.600 
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Table 6-17: Effects of out-of-straightness (�0) to minimum loading with 

lateral instability - storey 1: S1 = 0, S2 > 0, S3 > 0 

Col. 

ij 

Minimum frame-buckling load (kN)  (S1 = 0, S2 >0, S3 > 0) 

�0=0 �0=L/100

0 

�0=L/800 �0=L/600 �0=L/500 �0= L/400 �0= L/300 

11 

12 

13 

14 

371.860 

- 

- 

0.700 

349.490 

- 

- 

- 

6.40 

- 

- 

337.760 

- 

- 

- 

334.970 

594.860 

- 

- 

- 

523.850 

- 

- 

- 

293.000 

- 

- 

17.460 

21 

22 

23 

24 

- 

- 

- 

171.560 

81.620 

- 

- 

190.460 

173.850 

- 

- 

156.910 

- 

- 

- 

- 

230.420 

- 

- 

- 

181.130 

- 

- 

0.025 

132.140 

- 

- 

143.830 

 31 

32 

33 

34 

171.550 

- 

- 

171.560 

190.440 

- 

- 

190.460 

156.910 

- 

- 

156.910 

- 

- 

- 

630.700 

- 

- 

- 

121.870 

0.025 

- 

- 

212.600 

143.830 

- 

- 

143.830 

�Pij 1058.780 1002.460 988.730  965.680 947.120 919.620 874.090 

�Si 
S1=0.000 
S2=0.000 

S3=117.980 

S1=0.000 
S2=0.000 

S3=297.980 

S1=0.000 
S2=0.000 

S3=336.480 

S1=0.000 
S2=0.000 

S3=109.240 

S1=0.000 
S2=0.000 

S3=279.520 

S1=0.000 
S2=0.000 

S3=299.400 

S1=0.000 
S2=0.000 

S3=295.270 
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Table 6-18: Effects of out-of-straightness (�0) to minimum loading with 

lateral instability - storey 2: S2 = 0, S1 >0, S3 >0   

Col. 

ij 

Minimum frame-buckling loads (kN) (S2 = 0, S1 >0, S3 >0) 

�0=0 

Min.(kN) 

�0=L/1000 

Min.(kN) 

�0=L/800 

Min.(kN) 

�0=L/600 

Min.(kN) 

�0=L/500 

Min.(kN) 

�0= L/400 

Min.(kN) 

�0= L/300 

Min.(kN) 

11 

12 

13 

14 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

21 

22 

23 

24 

- 

106.540 

26.720 

- 

- 

471.380 

54.840 

- 

- 

628.820 

0.025 

- 

- 

614.980 

0.025 

- 

- 

508.160 

31.950 

- 

- 

- 

195.830 

- 

- 

553.780 

3.270 

- 

 31 

32 

33 

34 

- 

26.720 

26.720 

- 

- 

55.430 

55.440 

- 

- 

- 

0.025 

- 

- 

- 

0.025 

- 

- 

31.950 

- 

- 

- 

195.830 

195.830 

- 

- 

1.460 

1.460 

- 

�Pij 670.320 637.100 628.820 615.030 604.010 587.500 559.970 

�Si 
S1=288.060 
S2=0.000 

S3=584.640 

S1=272.460 
S2=0.000 

S3=479.130 

S1=268.060 
S2=0.000 

S3=584.640 

S1=262.350 
S2=0.000 

S3=537.970 

S1=257.280 
S2=0.000 
S3=483.86 

S1=249.680 
S2=0.000 

S3=239.670 

S1=237.190 
S2=0.000 

S3=489.280 
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Table 6-19: Difference between the maximum and minimum frame-buckling 

loads - out-of-straightness (�0) 

 

 

out-of-

straightness 

 

Max. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

S1 = 0, S2 > 0, S3 > 0 S2 = 0, S1 > 0, S3 >0 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

�0=0 1060.070 1058.780 0.12% 670.320 58.1% 

�0=L/1000 1003.810 1002.460 0.13% 637.100 57.6% 

�0=L/800 990.060 988.730 0.13% 628.820 57.4% 

�0=L/600 966.840 965.680 0.12% 615.030 57.2% 

�0=L/500 948.420 947.120 0.14% 604.010 57.0% 

�0=L/400 920.850 919.620 0.13% 587.500 56.7% 

�0=L/300 875.250 874.090 0.13% 559.970 56.3% 

 

 

    In Tables 6-16 to 6-18, the results demonstrate that the maximum frame-buckling loads of the rack 

and minimum frame buckling loads corresponding to the lateral instability of stories 1 and 2, which 

are S1 = 0, S2 > 0, S3 > 0 and S2 = 0, S1 > 0, S3 > 0, respectively. Comparing the results to the 

geometric perfect rack, it is found that the maximum and minimum frame-buckling loads decrease as 

the values of out-of-straightness (�0) increase. In Table 6-17, for each value for out-of-straightness 

(�0), the load pattern corresponding to the maximum frame-buckling loads tends to place the loading 

only on the interior columns and the first and second stories are laterally unstable simultaneously. The 

results of Table 6-17 demonstrate for each value for out-of-straightness (�0) with respect to the lateral 

instability of storey 1, the load pattern corresponding to the minimum frame-buckling loads will tend 

to place the loading only on the exterior columns and second stories are laterally unstable 

simultaneously. While for the minimum frame-buckling loads with respect to the lateral instability of 

storey 2 shown in Table 6-18, it is observed that for each value of the out-of-straightness (�0), the 
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minimum frame-buckling loads decrease significantly and the corresponding load tends to place the 

loading only on the interior columns.  

 

    The results of the relative difference between the maximum and minimum frame-buckling loads 

with respect to lateral instability of stories 1 and 2 are presented in Table 6-19.  For each value of out-

of-straightness (�0), only 0.13% is noted for the relative difference between the maximum and 

minimum frame-buckling loads associated with the lateral instability of storey 1.  A significant 

difference is found to be greater than 56% between the maximum and minimum frame-buckling loads 

with respect to lateral instability of storey 2.  

 

(2) Effect of out-of-Plumbness (�0) 

The results of the maximum and minimum frame-buckling loads accounting for the effect of out-of-

plumbness (�0) are demonstrated in Tables 6-20 to 6-22. The relative difference between the 

maximum and minimum frame-buckling loads is presented in Table 6-23.  
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Table 6-20: Effects of out-of-plumbness (�0) to maximum frame-buckling 

loads  

Col. 

ij 

Maximum frame-buckling loads (kN)  

�0=0 �0=L/500 �0=L/400 �0=L/300 �0=L/240 �0=L/200 

11 

12 

13 

14 

- 

- 

389.750 

- 

- 

328.400 

47.710 

- 

- 

186.390 

186.390 

- 

122.570 

- 

- 

230.630 

9.810 

- 

- 

338.720 

476.150 

- 

- 

0.390 

21 

22 

23 

24 

- 

- 

0.050 

- 

- 

626.260 

- 

- 

- 

463.540 

7.200 

- 

- 

- 

- 

206.180 

- 

- 

- 

- 

213.170 

- 

- 

0.340 

31 

32 

33 

34 

- 

- 

670.270 

- 

- 

4.480 

- 

- 

- 

150.440 

- 

- 

206.750 

- 

- 

206.580 

291.010 

- 

- 

313.250 

0.780 

- 

- 

242.110 

�Pij 1060.070 1006.850 993.960 973.100 952.800 932.930 

�Si 
S1=0.000 

S2=0.000 
S3=117.980 

S1=0.000 

S2=0.000 
S3=562.080 

S1=0.000 

S2=0.000 
S3=451.460 

S1=0.000 

S2=0.000 
S3=257.500 

S1=0.000 

S2=0.000 
S3=107.830 

S1=0.000 

S2=0.000 
S3=358.700 
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Table 6-21: Effects of out-of-plumbness (�0) to minimum loading with 

lateral instability - storey 1:  S1 = 0, S2> 0, S3> 0 

Col. 

ij 

Minimum frame buckling loads (kN) (S1 = 0, S2 > 0, S3 > 0) 

�0=0 

 

�0=L/500 

Min. (kN) 

�0=L/400 

Min. (kN) 

�0=L/300 

Min. (kN) 

�0=L/240 

Min. (kN) 

�0=L/200 

Min. (kN) 

11 

12 

13 

14 

371.860 

- 

- 

0.700 

- 

328.400 

47.710 

- 

- 

186.390 

186.390 

- 

122.570 

- 

- 

230.630 

9.810 

- 

- 

338.720 

476.150 

- 

- 

0.390 

21 

22 

23 

24 

- 

- 

- 

171.560 

- 

626.260 

- 

- 

- 

463.540 

7.200 

- 

- 

- 

- 

206.180 

- 

- 

- 

- 

213.170 

- 

- 

0.340 

31 

32 

33 

34 

171.550 

- 

- 

171.560 

- 

4.480 

- 

- 

- 

150.440 

- 

- 

206.750 

- 

- 

206.580 

291.010 

- 

- 

313.250 

0.780 

- 

- 

242.110 

�Pij 1058.780 1006.850 993.960 973.100 952.800 932.930 

�Si 
S1=0.000 

S2=0.000 
S3=117.980 

S1=0.000 

S2=0.000 
S3=562.080 

S1=0.000 

S2=0.000 
S3=451.460 

S1=0.000 

S2=0.000 
S3=257.500 

S1=0.000 

S2=0.000 
S3=107.830 

S1=0.000 

S2=0.000 
S3=358.700 
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Table 6-22: Effects of out-of-plumbness (�0) to minimum loading with 

lateral instability - storey 2:  S2 = 0, S1 >0, S3 >0 

Col. 

ij 

Minimum frame buckling loads (kN) (S2 = 0, S1 > 0, S3 >0) 

�0=0 �0=L/500 �0=L/400 �0=L/300 �0=L/240 �0=L/200 

11 

12 

13 

14 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

21 

22 

23 

24 

- 

106.540 

26.720 

- 

- 

475.050 

0.280 

- 

- 

463.540 

7.20 

- 

- 

590.930 

- 

- 

- 

590.030 

- 

- 

- 

0.050 

0.370 

- 

31 

32 

33 

34 

- 

26.720 

26.720 

- 

- 

154.750 

0.650 

- 

- 

150.440 

- 

- 

- 

14.610 

- 

- 

- 

- 

- 

- 

- 

- 

72.020 

- 

�Pij 670.320 630.740 621.190 605.540 590.030 575.440 

�Si 
S1=288.060 

S2=0.000 
S3=584.640 

S1=285.620 

S2=0.000 
S3=453.550 

S1=284.990 

S2=0.000 
S3=451.460 

S1=283.990 

S2=0.000 
S3=541.690 

S1=283.090 

S2=0.000 
S3=544.350 

S1=281.780 

S2=0.000 
S3=536.070 
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Table 6-23: Difference between the maximum and minimum frame-buckling 

loads - out-of-plumbness (�0) 

 

 

out-of-

plumbness 

 

Max. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

S1 = 0, S2 > 0, S3 > 0 S2 = 0, S1 > 0, S3 >0 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

�0=0 1060.070 1058.780 0.12% 670.320 58.1% 

�0=L/500 1006.810 1006.810 0.0% 630.740 59.6% 

�0=L/400 993.960 993.960 0.0% 621.190 60.0% 

�0=L/300 973.100 973.100 0.0% 605.540 60.7% 

�0=L/240 952.800 952.800 0.0% 590.030 61.5% 

�0=L/200 932.930 932.930 0.0% 575.440 62.1% 

 

 

    From Tables 6-20 to 6-22, it is found that the magnitudes of the maximum and minimum frame-

buckling loads are reduced with the presence of the initial out-of-plumbness. In Table 6-20, it is 

found when the rack is achieved to the maximum frame-buckling load, the first and second stories 

become laterally unstable simultaneously. It is also found from Tables 6-20 and 6-21, for each out-of-

plumbness (�0) value, there are no differences between the maximum and minimum frame-buckling 

loads including the load patterns with respect to the lateral instability of storey 1. It is also noted that 

the load patterns tend to place the loading only on the interior columns for out-of-plumbness with 

values of �0=L/500 and �0=L/400 and the load patterns tend to place the loading to the exterior 

columns for out-of-plumbness with values of �0=L/300, �0=L/240 and �0=L/200. In the case of the 

minimum frame-buckling loads with respect to the lateral instability of storey 2 shown in Table 6-22, 

it is seen that for each value of the out-of-plumbness (�0), the minimum frame-buckling loads 

decrease significantly and the corresponding load tends to place the loading only on the interior 

columns.  
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    The relative difference as noted is insignificant between the maximum and minimum frame-

buckling loads with respect to the lateral instability of storey.  The lateral instability with respect to 

the second storey, the relative difference between the maximum and minimum frame-buckling loads 

are found to be 59.6%, 60.0%, 60.7%, 61.5% and 62.1%, for each out-of-plumbness (�0) of 

�0=L/500, �0=L/400, �0=L/300, �0=L/240 and �0=L/200, respectively.   

 

(3)  Combined Effects of out-of-Straightness (�0) and out-of-Plumbness (�0) 

The combined effects of out-of-straightness (�0) and out-of-plumbness (�0) on the maximum and 

minimum frame-buckling loads together with their relative difference are discussed in this section.  

Comparing to only one of the effects for out-of-straightness or out-of-plumbness, the combined 

effects of out-of-straightness and out-of-plumbness have a greater impact on the maximum and 

minimum frame-buckling loads.  
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Table 6-24: Effects of both out-of-straightness (�0) and out-of-plumbness 

(�0) to maximum frame-buckling loading 

Col. 

ij 

Maximum frame-buckling load (kN)  

   �0=0 

  �0=0 

�0=L/1000 

�0=L/240 

�0=L/1000 

�0=L/500 

�0=L/800 

�0=L/400 

�0=L/600 

�0=L/300 

�0=L/400 

�0=L/200 

11 

12 

13 

14 

- 

- 

389.750 

- 

113.570 

- 

- 

213.540 

74.610 

95.520 

95.520 

88.350 

125.720 

73.240 

73.240 

73.210 

82.810 

82.810 

82.810 

82.810 

138.730 

- 

- 

153.280 

21 

22 

23 

24 

- 

- 

0.050 

- 

3.190 

- 

- 

187.830 

- 

577.340 

5.000 

- 

- 

573.030 

0.690 

- 

2.050 

544.730 

- 

2.070 

111.350 

- 

- 

133.520 

31 

32 

33 

34 

- 

- 

670.270 

- 

191.030 

- 

- 

191.010 

- 

11.140 

5.000 

- 

- 

6.830 

0.690 

- 

1.850 

0.530 

- 

2.070 

133.520 

- 

- 

133.520 

�Pij 1060.070 900.160 952.480 926.630 884.530 803.920 

�Si 
S1=0.000 

S2=0.000 
S3=117.980 

S1=0.000 

S2=0.000 
S3=239.990 

S1=0.000 

S2=0.000 
S3=525.670 

S1=0.000 

S2=0.000 
S3=520.020 

S1=0.000 

S2=0.000 
S3=502.570 

S1=0.000 

S2=0.000 
S3=270.370 
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Table 6-25: Effects of both out-of-straightness (�0) and out-of-plumbness 

(�0) to minimum loading with lateral instability - storey 1: S1 = 0, S2> 0, S3> 0 

Col. 

ij 

Minimum frame-buckling loads (kN) (S1 = 0, S2 > 0, S3 > 0) 

   �0=0 

  �0=0 

�0=L/100

0 

�0=L/240 

�0=L/100

0 

�0=L/500 

�0=L/800 

�0=L/400 

�0=L/600 

�0=L/300 

�0=L/400 

�0=L/200 

11 

12 

13 

14 

371.860 

- 

- 

0.700 

113.570 

- 

- 

213.540 

74.610 

95.520 

95.520 

88.350 

125.720 

73.240 

73.240 

73.210 

82.810 

82.810 

82.810 

82.810 

138.730 

- 

- 

153.280 

21 

22 

23 

24 

- 

- 

- 

171.560 

3.190 

- 

- 

187.830 

- 

577.340 

5.000 

- 

- 

573.030 

0.690 

- 

2.050 

544.730 

- 

2.070 

111.350 

- 

- 

133.520 

31 

32 

33 

34 

171.550 

- 

- 

171.560 

191.030 

- 

- 

191.010 

- 

11.140 

5.000 

- 

- 

6.830 

0.690 

- 

1.850 

0.530 

- 

2.070 

133.520 

- 

- 

133.520 

�Pij 1058.780 900.160 952.480 926.630 884.530 803.920 

�Si 
S1=0.000 
S2=0.000 

S3=351.980 

S1=0.000 
S2=0.000 

S3=564.540 

S1=0.000 
S2=0.000 

S3=451.460 

S1=0.000 
S2=0.000 

S3=257.500 

S1=0.000 
S2=0.000 

S3=107.830 

S1=0.000 
S2=95.120 
S3=358.700 
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Table 6-26: Effects of both out-of-straightness (�0) and out-of-plumbness 

(�0) to minimum loading with lateral instability - storey 2: S2 = 0, S1> 0, S3> 0 

Col. 

ij 

S2 = 0, S1 >0, S3 >0 

   �0=0 

  �0=0 

Min. (kN) 

�0=L/100

0 

�0=L/240 

Min. (kN) 

�0=L/1000 

�0=L/500 

Min. (kN) 

�0=L/800 

�0=L/400 

Min. (kN) 

�0=L/600 

�0=L/300 

Min. (kN) 

�0=L/400 

�0=L/200 

Min. (kN) 

11 

12 

13 

14 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

21 

22 

23 

24 

- 

106.540 

26.720 

- 

- 

552.950 

0.0270 

- 

- 

577.340 

5.000 

- 

- 

573.030 

0.680 

- 

- 

545.340 

- 

- 

- 

498.610 

0.0560 

- 

31 

32 

33 

34 

- 

26.720 

26.720 

- 

- 

6.170 

0.0270 

- 

- 

11.140 

5.000 

- 

- 

6.830 

0.680 

- 

- 

7.750 

- 

- 

- 

0.0560 

0.0570 

- 

�Pij 670.320 559.170 598.490 581.220 553.090 498.780 

�Si 
S1=288.060 

S2=0.000 
S3=584.640 

S1=267.510 

S2=0.000 
S3=511.750 

S1=270.270 

S2=0.000 
S3=525.670 

S1=266.800 

S2=0.000 
S3=520.020 

S1=258.370 

S2=0.000 
S3=500.050 

S1=243.570 

S2=0.000 
S3=466.230 
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Table 6-27: Difference between the maximum and minimum frame-buckling 

loads – out-of-straightness (�0) and out-of-plumbness (�0) 

 

out-of-

straightness 

and 

out-of-

plumbness 

 

Max. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

S1 = 0, S2 > 0, S3 > 0 S2 = 0, S1 > 0, S3 >0 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

Min. 

Frame 

buckling 

loads 

�Pij = 

(kN) 

Difference 

Max. & Min 

loads 

(kN) 

�0=0 

�0=0 
1060.070 1058.780 0.12% 670.320 58.1% 

�0=L/1000 

�0=L/240 
900.160 900.160 0.0% 559.170 61.0% 

�0=L/1000 

�0=L/500 
952.480 952.480 0.0% 598.490 59.1% 

�0=L/800 

�0=L/400 
926.630 926.630 0.0% 581.220 59.4% 

�0=L/600 

�0=L/300 
884.530 884.530 0.0% 553.090 59.9% 

�0=L/400 

�0=L/200 
803.920 803.920 0.0% 498.780 61.2% 

 

 

    As presented in Tables 6-24 to 6-27, it is found that the results for the maximum and minimum 

frame-buckling loads decrease when the values of the out-of-straightness (�0) and out-of-plumbness 

(�0) are both increased. From Table 6-24,  it is noted when the rack is subjected to the maximum 

frame-buckling loads the first and second stories become laterally unstable simultaneously and the 

corresponding load patterns tend to place the loading on the both interior and exterior columns. 

Similar to the effect of out-of-plumbness (�0), and the combined effects for out-of-straightness (�0) 

and out-of-plumbness (�0), the maximum and minimum frame-buckling loads including the load 

values and patterns with respect to the lateral instability of storey 1 are identical. It is also noted that 
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the minimum frame buckling loads decrease significantly when the frame is associated with the 

lateral instability of storey 2 and the load pattern corresponding to this minimum frame-buckling 

loads tends to place the loading only on the interior columns. In Table 6-27, for each combined value 

of out-of-straightness (�0) and out-of-plumbness (�0), the relative differences between the maximum 

and minimum frame-buckling loads is close to 60%, which is significant.  

 

6.6 Conclusions 

The section properties of perforated members together with their elastic buckling analyses using the 

computer program CU-TWP (Sarawit and Pek�z, 2003) and CAN/CSA-S136-04 (CSA, 2004) were 

studied first in this chapter. The results indicate that the presence of perforations in the section will 

reduce the buckling strength. The beam-to-column connection test results provided by Schuster 

(2004) were used to obtain the end-fixity factors, then the proposed method discussed in Chapters 3 

and 4 can be used to predict the stability for CFS storage rack structures. Similar to the studies 

presented in Chapters 3 and 4, the effective length factor in the design of CFS storage racks with and 

without the initial geometric imperfections was studied. In the case of geometric perfect frames, it is 

found that the value of K factors for storey 1 is close to 1.7, given as a default value in RIM 

specification (RMI, 2000). It is also found the K factors decrease as the values of beam-to-column 

connections increase. In the study of effective length factor accounting for initial geometric 

imperfections, it is observed that the K factors increase when the values of initial imperfections 

increase. The results also demonstrated the combined effects of out-of-straightness (�0=L/1000) and 

out-of-plumbness (�0=L/240) have more impact on the K factors than the influence of out-of-

straightness (�0) and out-of-plumbness (�0) individually.  In the study of CFS storage rack structures 

subjected to variable loading using the proposed method, the results demonstrated the similar trends 

discovered in Chapters 3 and 5. For instance, it is also demonstrated, in this study that the semi-rigid 

connections plays an important role in the frame stability and the relative difference between the 

extreme frame-buckling loads were decreased when increasing the beam-to-column connection 

stiffness. The presences of the initial geometric imperfections reduce the column lateral stiffness and 

consequently the maximum and minimum frame-buckling loads are all reduced.  
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Chapter VII 

 

Conclusions and Future Research 

 

Provided in this study is a contribution for the development in the methodology to carry out the 

storey-based stability analysis for the multi-storey unbraced frames. The proposed methodology 

includes the assessment of the integrity of the conventional steel structures and CFS storage racks 

subjected to variable loadings, a simplified equation to calculate the lateral stiffness modification 

factor βij, and a practical method to explicitly account for the initial geometric imperfections for the 

design of steel structures including storage racks.  

 

7.1 Conclusions 

7.1.1  Storey Stability of Multi-Storey Unbraced Frames Subjected to Variable Loading 

The proposed method to determine the stability of unbraced frames subjected to variable loading for 

single storey unbraced frames proposed by Xu (2002) was extended to a multi-storey process.   This 

extended method incorporates the development of a general stability equation for multi-storey 

unbraced frames subjected to variable loading.  This can be characterized by the column lateral 

stiffness modification factor βij which provides a quantitative measurement of the stiffness 

interactions among the columns in a storey to resist lateral interactions among the columns in a storey 

to minimize lateral instability. The concept of storey-based buckling is used to formulate the problem 

of determining the critical frame-buckling loads to be a pair of constrained maximization and 

minimization problems subjected to elastic stability constraints. The variables and objective functions 

of the maximization and minimization problems are the applied column loads and the summation of 

applied column load variables. The stability constraints are imposed to ensure that lateral instability 

occurs in at least one storey of the frame. For each variable, an upper limit is imposed to ensure that 

the magnitude of the applied load will not exceed this limit defined as the buckling load associated 

with the non-sway buckling of the individual column. The following conclusions were formulated 

from this study: 
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� The maximum and minimum frame-buckling loads and their associated load patterns can be   

obtained by solving the maximization and minimization problems, with a linear programming 

method, respectively. The maximum and minimum frame-buckling loads represent the upper 

and lower bounds of the frame buckling loads of the structures, which characterize the 

stability capacity of the frame under extreme loading conditions. 

 

� The minimization problem has to be solved for each storey and the maximization problem 

only needs to be solved once by using any one of the stories in the frame. The numerical 

examples showed that the maximum frame-buckling load always corresponds to the lateral 

instability of both  the first and second storey frame simultaneously, which indicates that a 

further increase in any one of the applied loads is impossible as each storey has already 

reached the limit state of lateral  instability.  

 

� There might be several different load patterns associated with the minimum frame-buckling 

loads and the relative difference between the maximum and minimum frame-buckling loads 

are found to be substantial. 

 

� The relative differences between the maximum and minimum frame-buckling loads are 

increased when decreasing the beam-to-column connection stiffness.  

 

� In the case of variable loading, frame-buckling loads associated with proportional loading are 

always between the maximum and minimum loads subjected to variable loading. In contrast 

to current the frame stability analysis involving only proportional loads, the proposed 

approach permits individual applied loads on the frame to vary independently. 

 

� The variable loading approach captures the load patterns that cause instability failure of 

frames at the minimum and maximum load levels. The approach clearly identifies the 

stability capacities of frames under the extreme load cases and such critical information is 

generally not available through the current proportional loading stability analysis. 
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7.1.2 Storey-Based Stability Analysis for Unbraced Frame with Initial Geometrical 

Imperfections 

The stability of columns in multi-storey unbraced frames with initial geometric imperfections was 

investigated within the context of storey-based buckling using the end-fixity factor to characterize the 

beam-to-column rotational restraints. The investigated effects of the imperfections on the stability of 

column were contemplated in the evaluation of effective length factor via the lateral stiffness 

modification factor of column. Formulations and procedures of calculating the storey-based column 

effective length factor with explicitly accounting for the initial geometric imperfections were derived. 

From the derived formulations, and to obtain the critical load multiplier �cr together with the effective 

length factor K, a Taylor series expansion was employed to simplify the stability equation as a 

quadratic equation (2nd-order approximation), which can be further reduced to a linear equation (1st-

order approximation). Numerical results were carried out to substantiate with the results from the 

storey-based buckling analysis. The following conclusions were obtained from the studies results as: 

 

� An inequality expression 
ordersticrorderndicr −−−− < 12 λλ  was obtained which indicated the 

effective length factors K was found to be on the conservative side based on the Taylor series 

expansion of 2nd-order approximation versus the 1st-order approximation. 

 

� The results obtained from the investigation of the proposed method for the unbraced frames 

without considering the initial geometric imperfections show good agreements with the 

results presented in the literature. 

 

� The numerical results from the 1st-order and 2nd-order approximations, and storey-based 

buckling analysis, the maximum differences of 1.3% and 0.68% are noted between the 1st and 

2nd order approximations and the storey-based buckling analysis, respectively. The maximum 

difference of 0.61% is found between 1st- order and 2nd-order approximations. 

 

� From the numerical examples using the 1st-order approximation, the results show the critical 

load   multiplier can provide a satisfied estimation for column effective length factor K and it 

should be recommended for use in engineering practice.  
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� In comparing the results with and without initial geometric imperfection, it is clear that initial 

geometric imperfections have detrimental effects on both lateral stiffness and buckling 

strength of the columns.  

 

� Parametric studies were carried out to investigate the individual and combined effects of the 

initial  out-of-straightness and out-of-plumbness on the column effective length factor, where 

it was found that the increase of the effective length factor linearly increase either one of the 

initial  geometrical imperfections.  

 

� The study also discovers that the out-of-straightness has a greater detrimental impact than that 

of the out-of-plumbness. It was found that given the same value of initial geometric 

imperfection, the influence of the out-of-straightness on the column effective length factor is 

almost doubled as that of the out-of-plumbness. This finding is consistent with the current 

practice in which the tolerance for the out-of-straightness and the out-of-plumbness are 

L/1000 and L/500, respectively. 

 

� The proposed method is able to help the design practitioner to investigate the impacts of the 

out-of-straightness and out-of-plumbness on column strength explicitly and independently for 

any given values. Therefore, the proposed method in this study is certainly in the interest of 

design engineers and should be recommended for engineering practice. 

 

7.1.3   Multi-storey Unbraced Frames with Initial Geometric Imperfections Subjected 

to Variable Loading   

 

Based on the maximization and minimization problems stated with Eqs. (3.13), (3.16) and (3.17) in 

Chapter 3, the lateral stiffness modification factors of �0,ij(rl,ij,ru,ij) and �1,ij(rl,ij,ru,ij) corresponding to 

these equations are replaced by  �0,ij(rl,ij,ru,ij,�0,�0) and �1,ij(rl,ij,ru,ij,�0,�0) given in Eqs. (4.13) 

accounting for the initial geometric imperfections. Therefore, the problem of multi-storey unbraced 

frames subjected to variable loading with respect to initial geometric imperfections can be solved and 

a set of conclusions obtained as follows: 
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� The presence of the initial geometric imperfections increased the maximum difference 

between the maximum and minimum buckling loads to 21.2% for single-storey unbraced 

frame with either pinned or rigid column ends.  

 

� In the case of multi-storey unbraced frames, the study found the column lateral stiffness 

decreasedwhen increasing the value of the initial geometric imperfections. As a result of the 

decreasing lateral stiffness, the extreme frame-buckling loads were reduced.  

 

� The numerical examples in the study further demonstrated the combined effects of member 

out-of- straightness and frame out-of-plumbness has a stronger impact than considering the 

effects of  member out-of-straightness and frame out-of-plumbness individually.   

 

� With respect to the same values of initial geometric imperfections, the extreme frame-

buckling loads decreased when the beam-to-column and column base connections decreased.  

 

7.1.4 Application of Storey-based Stability Analysis to CFS Storage Racks 

 
The methodology discussed in Chapters 3 to 5 applies to the CFS storage racks in this study. The 

effective length factor K of CFS storage racks is evaluated with consideration of the test results for 

semi-rigid connections. The analytical and comprehensive investigation on instability failures of CFS 

storage racks subjected to variable loading was also studied.  The following conclusions are made: 

 

� Upon the test results for the semi-rigid connections, the K factors presented in the numerical 

example are close to the value of 1.7 defined as a default value in RIM Specification (RMI, 

2000) for the first storey. And the numerical examples show that the K factors are greater 

than 4 for the second storey which indicated the second storey is in the most unstable 

condition.  

 

� The effective length factor K decreased with the increased beam size and beam-to-column 

connections. It was also noted that when the column size increases, the K factors will increase. 
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� The effective length factor K increase when the value of either one of the effects for initial 

imperfections increases. The combined effects of the initial geometric imperfections have the 

most severe impact on the column K factors. With respect to the imperfection values being 

L/500, L/400, L/300, L/240 and L/200, the out-of-straightness has a greater influence than that 

of the out- of-plumbness. 

 

� With respect to the variable loading for CFS storage racks, the maximum frame-buckling 

load also corresponds to the lateral instability of both the first and second storey 

simultaneously and the linear programming procedure did not find the maximum and 

minimum frame-buckling loads that only involves the lateral storey buckling of the third 

storey of the storage rack (S3=0 and S1 > 0,  S2 > 0). 

 

� The relative difference between the maximum and minimum frame-buckling loads of 585.5% 

is noted when the beam-to-column connection stiffness is 313 k-in/rad (3.537×107 N-

mm/rad) from the test.  With the beam-to-column connection stiffness increased to 3130 k-

in/rad (3.537×108 N- mm/rad), the relative difference between the maximum and minimum 

frame-buckling loads can be decreased to 58%. 

 

� In the case of accounting for the initial geometric imperfections, with respect to beam-to-

column   connection stiffness of 3130 k-in/rad (3.537×108 N- mm/rad), the relative difference 

as noted is insignificant between the maximum and minimum frame-buckling loads 

corresponding to the lateral instability of storey 1.   

 

7.2 Future Research 

This proposed research develops a civil engineering methodology and a practical approach for the 

stability analysis of multi-storey unbraced frames including CFS storage racks, which is not currently 

available in the design/engineering practice. However, there are still a number of aspects from this 

study that could be extended to possibly increase the robustness of the proposed methodology 

investigated.  
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� The current study only applies to the column axial force with respect to the stability analysis 

in multi-storey unbraced frames. Future research could be conducted for more complex types 

of loadings, such as distributed loading on the beams.  

 

� The proposed method in this study explicates the account for initial geometric imperfections 

of out-of-straightness and out-of-plumbness that is based on an elastic assumption. The 

inelastic behavior of multi-storey unbraced frames accounting for initial geometric 

imperfections can be considered in future research.   

 

� It is noted that much of the research on frame stability including the current study are based 

on the two-dimensional (2D) flexural buckling analysis. The methodology developed in this 

study could be conducted on the real application of three-dimensional (3D) frame structures 

in future research.  

 

� The linear programming method adopted for solving the optimization problems in the current 

research is based on the 1st-order approximation. Future research could be considered to 

include nonlinear programming with respect to a nonlinear constraint for such problems using 

the 2nd-order approximation. 

 

� The experimental data used in the current study of CFS storage racks was obtained from the   

cantilever test which is commonly used to design beams and connections. The beam-to-

column connection stiffness R obtained from the portal test for sidesway analysis could be 

conducted in future research to evaluate the frame stability. 
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Appendix A 

Procedures and Example of Frame Decomposition 

The procedure of decomposing a multi-storey unbraced frame to a series of single-storey frames can 

be described as following (Liu and Xu, 2005) 

 

Step 1:  Determination of the Rotational Stiffnesses of Beams 

Rbu,ij and Rbl,ij represent the beam-to-column rotational-restraining stiffnesses at the upper and lower 

joints of column ij and can be expressed as 
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and rk,1 and rk,2 are end-fixity factors associated with the near and far ends of beam k, and Rbu,ijk and 

Rbl,ijk are end rotational stiffnesses of the beams that are connected to the upper and lower ends of 

column ij, respectively.  

 

Based on the principle that the distribution of beam-to-column restraining stiffness shall be 

proportional to the column end rotational stiffness at each joint, the end rotational-restrain stiffnesses 

of the upper and lower ends of column ij can be given as follows: 

ijbuijuiju RR ,,, µ=                                                              (A.3a) 

ijblijlijl RR ,,, µ=                                                               (A.3b) 
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where Ru,ij and Rl,ij are the end restrain stiffnesses of the upper and lower ends of column ij; µu,ij and 

µ l,ij are the stiffness distribution factors and will be determined in the next step.  

 

Step 2:  Determination of the Stiffness Distribution Factors 

In the study of Liu and Xu (2005), the distribution factors corresponding with the so-called frame-

based stiffness distribution (FSD) approach for the upper end of column Cij can be obtained form the 

following form 

ijcijuijcijc

ijc

ijl

ijl

ijc

ijc

ijl

ijl

ijc

ijc

iju

LREIL

EI

r

r

L

EI

r

r

L

EI

,,,,

,

,

,

,

,

,

,

,

,

,

/1

1

21

3

21

3

+
+

+

+
=µ                                   (A.4a) 

 

in which Ru,(i+1)j=Rbu,(i+1)j is defined in Equation (A.1a) and rl,ij is defined in Equation (3.1a).  

 

    Also from the study of Liu and Xu (2005), the stiffness distribution factors for columns joined 

together satisfy the following equation: 

µ l,(i+1)j=1-µu,ij                                                                   (A.4b) 

 

Step 3: Determination of the End-Fixity Factors 

Once we can obtain the distribution factors µu,ij and µ l,ij from Step 2, then we can calculate the end-

fixity factors defined in Eqs. (3.1) associated with the upper and lower column ij individually.  

Equations (3.1) in Chapter 3 are presented again as follows: 
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Step 4: Determination of the Column Lateral Stiffness Modification   

             Coefficients  
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From Step 3, the end-fixity factors for each individual column can be obtained, therefore, the 

modification coefficients �0,ij(rl,ij,ru,ij) and �1,ij(rl,ij,ru,ij)  corresponding to the columns can be calculated 

from Eqs. (3.10) in Chapter 3. Equations (3.10) in Chapter 3 are shown again: 
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    The detailed hand calculation to demonstrate the procedure descried above for Case 4 of Chapter 3 

is given as follows: 

 

    In Case 4, the column bases are rigid connections. The beam-to-column connections of the exterior 

columns are rigid, and the interior columns are pinned connection. Due to the pinned condition 

between the interior beam-to-column connections, and the rigid condition of exterior beam-to-column 

connection, the rk,1 and rk,2, the end-fixity factors associated with the near and far ends of beam k  can 

be determined for each beam. The detailed hand calculations are studied as follows: 

 

1. Procedures to Calculate the End-Fixity Factors and Lateral Stiffness Modification Factors 

(1) Calculate the Rotational Stiffnesses of Beams for the Frame 

From Eqs. (A2) given in Appendix A, we can obtain the rotational stiffnesses associated with beams 

connected to the lower end of column ij. For instance, beam B11 is connected to columns C11 and C12, 

and then the rotational stiffnesses of beam B11 can be calculated as follows: 

10
85

112,

112,

212,112, 10725.8
8.6016

10749.81023
3 ×=

××××
===

bu

bu

blbu
L

EI
RR  N-mm/rad 

where the last subscript denotes whether the beam is in the left or right side of the column. For 

example, the last subscript 2 in Rbu,112 denotes that the beam is on the right side of column C11 as that 

shown in Figure 3-8.  
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    Similarly, it can be found the following rotational stiffnesses associated with beams connected to 

the upper end of column ij : 

Rbu,121 = Rbl,221 = 0 N-mm/rad;   Rbu,122 = Rbl,222 = 0 N-mm/rad;   Rbu,131 = Rbl,231 = 11.68×1010 N-mm/rad; 

Rbu,212 = 6.981×1010 N-mm/rad;   Rbu,221 = 0 N-mm/rad;    Rbu,221 = 0 N-mm/rad; 

Rbu,231  = 9.35×1010 N-mm/rad; 

 

(2) Evaluate the Beam-to-Column Restraining Stiffnesses 

Once the rotational stiffness of beams obtained, the corresponding beam-to-column restraining 

stiffnesses based on Eqs. (A1) calculated as follows: 

10

112,11, 10725.8 ×== bubu RR N-mm/rad;   0122,121,12, =+= bububu RRR N-mm/rad 

10

131,13, 1068.11 ×== bubu RR N-mm/rad;    
10

212,21, 10981.6 ×== bubu RR N-mm/rad 

0222,221,22, =+= bububu RRR N-mm/rad;     
10

231,23, 1035.9 ×== bubu RR N-mm/rad 

10

212,21, 10725.8 ×== blbl RR N-mm/rad;   0222,221,22, =+= blblbl RRR N-mm/rad 

10

231,23, 1068.11 ×== blbl RR N-mm/rad 

(3) Determine the Stiffness Distribution Factors: 

For rigid connection of column bases, the end-fixity factors are unity, thus 113,12,11, === lll rrr . The 

beam-to-column restraining stiffness at the upper end of column C21,  
10

21,21, 10981.6 ×== buu RR N-

mm/rad, the distribution factor for the upper end of column C11 can be obtained from Equation (A4a), 

in which 
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    Therefore, the stiffness distribution factor for the lower end of column C21 

is 333.01 11,21, =−= ul µµ . Similarly, the distribution factors associated with the other columns can 

be obtained as follows: 
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317.0,683.0,0,1 23,13,22,12, ==== lulu µµµµ
 

 

(4) Compute the Corresponding End-Fixity Factors    

The beam-to-column rotational-restraining stiffnesses contributed by beams B11 and B12 to columns 

C11, C12 and C13,  and beams B21and B22 to columns C21, C22, C23  are given as follows, 

10

11,11,11, 10712.4 ×== buuu RR µ N-mm/rad 

012,12,12, == buuu RR µ N-mm/rad 

10

13,13,13, 10983.7 ×== buuu RR µ N-mm/rad 

10

21,21,21, 10326.2 ×== bull RR µ N-mm/rad 

022,22,22, == bull RR µ N-mm/rad 

10

23,23,23, 10961.2 ×== bull RR µ N-mm/rad 

    The corresponding end-fixity factors based on Equations (3.1) are given as: 
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    Using the same equation, we can obtain the following values for end-fixity factors: 

705.0,0 13,12, == uu rr  

644.0,0,377.0 23,22,21, === lll rrr  

851.0,0,644.0 23,22,21, === uuu rrr  

 

(5) Evaluate the Column Lateral Stiffness Modification Coefficients  

Since the modification coefficients j1,0β  and j1,1β  are the function of the end-fixity factors, they can 

be obtained from Eqs. (3.10).  
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    Similarly, we can get the values of other later stiffness modification factors: 

731.0,25.0 13,012,0 == ββ ,  592.0,0,336.0 23,022,021,0 === βββ  

094.0,1.0,094.0 13,112,111,1 === βββ ,   09.0,083.0,086.0 23,122,121,1 === βββ  

 

 

 

 

 

 

 



 

164 

Appendix B 

Formulation and Verification of the Minimization Problem of 

Equations (3.20) to (3.22) of Case 4 in Chapter 3 

 

The process of evaluating and verifying the minimization problem of Eqs. (3.20) to (3.22) for Case 4 

study in Chapter 3 is demonstrated as follows (Xu and Wang, 2007) 

 

1.  Evaluate the Upper Bound Load of Individual Column 

The seeking of minimum frame-buckling needs a side constraint for each applied column load, which 

 is to be less than an corresponding upper bound load Pu,ij. The upper bound load Pu,ij is defined as: 
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in which Kbraced,ij is the non-sway-buckling effective length factor, and is defined in Eq. (3.15). 

The upper bound load is imposed to ensure that the magnitude of the applied load will not exceed the 

buckling load associated with non- sway-buckling of the individual column.  

 

    Upon the end fixity fact factor obtained form previously calculation, it can be obtained the non-

buckling effective length factor Kbraced,ij for each column. For column C11, it has the following 

equation: 
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with rl,11=1, ru,11=0.642, we can get Kbraced,11=0.573. Similarly, we can obtain the other non- sway-

buckling effective length factor. 

,707.012, =bracedK ,56.013, =bracedK ,719.021, =bracedK ,122, =bracedK 608.023, =bracedK  

    Therefore, the corresponding upper bound load Pu,11 can be calculated as follows: 
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    Similarly, we can get the upper bound load for other columns: 

8257012, =uP kN, 9913013, =uP kN,  8037021, =uP kN, 41570022, =uP kN, 4788023, =uP kN 

 

2. Formulate and Verify the Minimization Problem  

The minimization problem is stated in Eqs. (3.20) to (3.22) in Chapt 3, substituting the lateral 

stiffness modification factors of ij,0β and ij,1β  from previous calculation to Eqs. (3.22a) and (3.22b), 

also substituting the upper bound load for each column obtained from above calculation, we will have 

the minimization problem expressed as follows: 
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1846000 2111 ≤+≤ PP kN; 825700 2212 ≤+≤ PP kN; 991300 2313 ≤+≤ PP kN 

803700 21 ≤≤ P kN; 415700 22 ≤≤ P kN; 478800 23 ≤≤ P kN                                (3.22c) 
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In the case of seeking the minimum buckling load, the minimization problem will be solved two 

times.  

a.  S1=0, S2>0 

In this case, S1=0 represents the first storey becomes lateral unstable and the second storey 

keep lateral stable. In this condition, we obtain the following values: 

Z1=75323.53 kN, the corresponding individual column loading are: 

P12=45588.77 kN, P22=29734.76 kN, the other column loadings are all equal to zero.  

It is found in this case that the second storey becomes lateral unstable simultaneously, which 

means S2 reduces to zero (S2=0) at the same time.  

b. S2=0, S1>0 

In this case, we assume the first storey is lateral stable while the second storey becomes 

lateral unstable. The following results can be obtained for this condition: 

Z2=27473.24 kN, the corresponding individual column loading are: 

P23=27473.24 kN, the other column loadings are all equal to zero.  

The results found that in this case the first storey still is still in stable condition when second 

storey is lateral unstable. It is found S1=16818.56 kN>0.  

Therefore, from Equation (3.20), the minimum buckling loads will be chose as follows: 

Minimum Z=min{Z1, Z2}=27473.24 
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Appendix C 

Lateral Stiffness of an Axially Loaded Column with Initial 

Geometric Imperfections 

 
In section 5 on page 9, an axially loaded column in an unbraced frame shown in Figure 3 is discussed 

with geometric imperfection. The details to evaluate the lateral stiffness S given in Eq.(3.2) are 

discussed in this appendix. Based on Eq. (4.4), the general solution of this equation is given as 

PxLSPMLxcLxcy u /)(/)()/sin()/cos( 0121 −++∆+∆++= φφ              (C.1) 

where φ  is the stiffness parameter defined in Eq. (3.3), and 1c and 2c  are coefficients to be 

determined from the boundary conditions given in Eqs. (4.7) to (4.9). Substituting Eq. (4.5) and 

boundary conditions in Eqs. (16) to (18) into Eq. (C.1), the coefficients 1c and 2c  are determined as 
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=                               (C.3) 

and 1c and 2c  satisfy the following equation 

πδφφφφ 000121 )()1(cos)sin( +∆+∆+∆++=++− uuu CCCccC               (C.4) 
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where lr and ur  are the end-fixity factors for the upper and lower ends of the column defined in Eqs. 

(3.1). Therefore, the coefficient C can be obtained as 
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    Based on Eq. (C.5), the lateral stiffness of the column can be expressed as 

33
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 in which 
12

2φ
β

C
=  is the lateral stiffness modification factor accounting for initial geometric 

imperfections. The equations of the modification factor β  in terms of the end-fixity factors 

can be derived from Eqs. (C.5) to (C.8) as the following 
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ul rrf 96 −=                                                               (C.10f) 

ul rrf 187 =                                                  (C.10g) 

)2(38 ulul rrrrf −+=                                                           (C.10h) 

                                                      ulul rrrrf +−−= 19                                                      (C.10i) 

                                                    
)5(310 ulul rrrrf −+=                                                   (C.10j) 
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Appendix D 

Values of Lateral Stiffness Coefficients �0, �1 and �2 Accounting for 

Initial Geometric Imperfections in Chapter 4 

 

The coefficients of column lateral stiffness �0, �1 and �2 are calculated based on the Eqs. (4.13a), 

(4.13b) and (4.15) with respect to the variation of column end-fixity factors and the combined effects 

of out-of-straightness (�0) and out-of-plumbness (�0).  

 

Table D-1: �0 (×10
-1

) values corresponding to the column end-fixity factors 

(�0=L/1000 and �0=L/500) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.179 0.359 0.538 0.717 0.896 1.076 1.255 1.434 1.613 1.793 

0.05 0.109 0.299 0.489 0.680 0.871 1.062 1.254 1.477 1.640 1.833 2.027 

0.1 0.219 0.419 0.620 0.823 1.026 1.230 1.435 1.642 1.849 2.058 2.267 

0.15 0.328 0.540 0.752 0.967 1.183 1.400 1.619 1.840 2.063 2.288 2.514 

0.2 0.438 0.660 0.885 1.112 1.341 1.572 1.806 2.043 2.282 2.523 2.767 

0.25 0.547 0.781 1.018 1.258 1.501 1.747 1.996 2.249 2.505 2.764 3.027 

0.3 0.657 0.902 1.152 1.405 1.662 1.924 2.189 2.459 2.732 3.011 3.293 

0.35 0.766 1.024 1.286 1.554 1.826 2.103 2.439 2.672 2.965 3.263 3.568 

0.4 0.876 1.146 1.422 1.703 1.991 2.284 2.584 2.890 3.203 3.522 3.849 

0.45 0.985 1.268 1.558 1.845 2.157 2.468 2.786 3.112 3.446 3.788 4.139 

0.5 1.094 1.391 1.694 2.006 2.326 2.654 2.991 3.338 3.694 4.060 4.663 

0.55 1.204 1.513 1.832 2.159 2.496 2.843 3.200 3.569 3.948 4.340 4.743 

0.6 1.313 1.637 1.970 2.313 2.668 3.034 3.413 3.804 4.208 4.626 5.059 

0.65 1.423 1.760 2.109 2.469 2.842 3.228 3.628 4.043 4.473 4.920 5.384 

0.7 1.532 1.884 2.248 2.626 3.018 3.425 3.848 4.288 4.745 5.222 5.719 

0.75 1.642 2.008 2.388 2.784 3.195 3.624 4.071 4.537 5.024 5.532 6.064 

0.8 1.751 2.132 2.529 2.943 3.375 3.826 4.298 4.791 5.308 5.851 6.420 

0.85 1.860 2.257 2.671 3.104 3.557 4.031 4.529 5.051 5.600 6.178 6.787 

0.9 1.970 2.382 2.813 3.266 3.740 4.239 4.763 5.316 5.899 6.515 7.167 

0.95 2.079 2.507 2.957 3.429 3.926 4.450 5.002 5.587 6.205 6.861 7.558 

1 2.189 2.633 3.100 3.593 4.113 4.663 5.246 5.863 6.519 7.218 7.963 

rj 

ri 
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Table D-2: �0 (×10
-1

) values corresponding to the column end-fixity factors 

(�0=L/800 and �0=L/400) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.162 0.323 0.485 0.646 0.808 0.969 1.131 1.293 1.454 1.660 

0.05 0.106 0.277 0.448 0.621 0.793 0.966 1.139 1.313 1.488 1.662 1.837 

0.1 0.211 0.392 0.574 0.757 0.941 1.126 1.312 1.499 1.686 1.875 2.065 

0.15 0.317 0.508 0.701 0.895 1.091 1.288 1.487 1.688 1.889 2.093 2.298 

0.2 0.422 0.624 0.828 1.034 1.242 1.453 1.665 1.880 2.097 2.316 2.537 

0.25 0.528 0.741 0.956 1.174 1.395 1.619 1.846 2.076 2.308 2.544 2.783 

0.3 0.633 0.857 1.085 1.315 1.550 1.788 2.029 2.275 2.525 2.778 3.036 

0.35 0.738 0.974 1.214 1.457 1.706 1.958 2.216 2.478 2.745 3.018 3.295 

0.4 0.844 1.091 1.343 1.601 1.863 2.131 2.405 2.685 2.971 3.263 3.562 

0.45 0.950 1.209 1.474 1.745 2.023 2.307 2.598 2.896 3.201 3.515 3.836 

0.5 1.055 1.327 1.605 1.891 2.184 2.484 2.793 3.111 3.437 3.773 4.118 

0.55 1.161 1.445 1.737 2.037 2.346 2.664 2.992 3.330 3.678 4.037 4.408 

0.6 1.262 1.563 1.869 2.185 2.511 2.847 3.194 3.553 3.924 4.309 4.706 

0.65 1.372 1.682 2.003 2.334 2.667 3.032 3.400 3.781 4.177 4.587 5.014 

0.7 1.478 1.801 2.136 2.484 2.845 3.219 3.609 4.013 4.435 4.873 5.331 

0.75 1.583 1.921 2.271 2.635 3.015 3.409 3.821 4.250 4.699 5.167 5.657 

0.8 1.689 2.040 2.406 2.788 3.186 3.602 4.037 4.492 4.969 5.469 5.994 

0.85 1.794 2.160 2.542 2.942 3.360 3.798 4.257 4.739 5.246 5.779 6.341 

0.9 1.900 2.280 2.679 3.097 3.535 3.996 4.480 4.991 5.529 6.098 6.700 

0.95 2.005 2.401 2.816 3.253 3.712 4.197 4.708 5.248 5.820 6.426 7.071 

1 2.111 2.522 2.955 3.410 3.892 4.401 4.939 5.511 6.118 6.764 7.453 
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 Table D-3: �0 (×10
-1

) values corresponding to the column end-fixity factors 

(�0=L/600 and �0=L/300) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.132 0.264 0.396 0.528 0.661 0.793 0.925 1.057 1.189 1.321 

0.05 0.099 0.240 0.381 0.522 0.664 0.806 0.948 1.091 1.234 1.378 1.522 

0.1 0.198 0.348 0.498 0.649 0.801 0.953 1.106 1.260 1.415 1.571 1.727 

0.15 0.297 0.456 0.616 0.777 0.939 1.102 1.267 1.433 1.600 1.769 1.938 

0.2 0.396 0.564 0.734 0.905 1.078 1.253 1.430 1.608 1.789 1.971 2.155 

0.25 0.495 0.673 0.853 1.035 1.219 1.406 1.595 1.787 1.981 2.178 2.378 

0.3 0.594 0.782 0.972 1.165 1.362 1.561 1.764 1.969 2.178 2.390 2.606 

0.35 0.694 0.891 1.092 1.297 1.506 1.718 1.934 2.155 2.379 2.608 2.841 

0.4 0.793 1.001 1.213 1.430 1.651 1.877 2.108 2.344 2.584 2.831 3.082 

0.45 0.892 1.110 1.334 1.564 1.798 2.038 2.284 2.536 2.794 3.059 3.330 

0.5 0.991 1.221 1.456 1.698 1.947 2.201 2.463 2.732 3.009 3.293 3.585 

0.55 1.090 1.331 1.579 1.834 2.097 2.367 2.645 2.932 3.228 3.533 3.848 

0.6 1.189 1.442 1.702 1.971 2.248 2.535 2.830 3.136 3.452 3.779 4.118 

0.65 1.288 1.553 1.826 2.109 2.402 2.705 3.019 3.344 3.682 4.032 4.396 

0.7 1.387 1.664 1.951 2.248 2.557 2.877 3.210 3.556 3.917 4.292 4.683 

0.75 1.486 1.775 2.076 2.388 2.713 3.052 3.405 3.773 4.157 4.559 4.979 

0.8 1.585 1.887 2.201 2.529 2.872 3.229 3.602 3.993 4.403 4.833 5.284 

0.85 1.684 1.999 2.328 2.672 3.032 3.408 3.804 4.219 4.655 5.114 5.598 

0.9 1.783 2.111 2.455 2.815 3.193 3.591 4.008 4.449 4.913 5.404 5.923 

0.95 1.882 2.224 2.583 2.960 3.357 3.775 4.217 4.684 5.178 5.701 6.258 

1 1.981 2.337 2.711 3.106 3.522 3.963 4.429 4.923 5.449 6.008 6.604 
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Table D-4: �0 (×10
-1

) values corresponding to the column end-fixity factors 

(�0=L/400 and �0=L/200) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.0731 0.146 0.219 0.293 0.366 0.439 0.512 0.585 0.658 0.731 

0.05 0.086 0.166 0.245 0.325 0.405 0.486 0.566 0.647 0.728 0.809 0.890 

0.1 0.172 0.258 0.345 0.432 0.519 0.607 0.695 0.784 0.873 0.963 1.053 

0.15 0.258 0.351 0.445 0.539 0.634 0.730 0.826 0.923 1.021 1.120 1.219 

0.2 0.344 0.444 0.545 0.647 0.750 0.854 0.959 1.065 1.173 1.281 1.391 

0.25 0.431 0.538 0.646 0.756 0.867 0.980 1.094 1.210 1.327 1.446 1.556 

0.3 0.517 0.631 0.748 0.866 0.986 1.108 1.232 1.357 1.485 1.615 1.747 

0.35 0.603 0.725 0.850 0.977 1.106 1.237 1.371 1.508 1.647 1.788 1.933 

0.4 0.689 0.819 0.952 1.088 1.227 1.368 1.513 1.660 1.811 1.966 2.123 

0.45 0.775 0.914 1.055 1.200 1.349 1.501 1.657 1.816 1.980 2.147 2.319 

0.5 0.861 1.008 1.159 1.341 1.473 1.636 1.803 1.975 2.152 2.334 2.521 

0.55 0.947 1.103 1.263 1.428 1.597 1.772 1.952 2.137 2.328 2.525 2.728 

0.6 1.033 1.198 1.368 1.543 1.724 1.910 2.103 2.302 2.508 2.721 2.942 

0.65 1.119 1.293 1.473 1.659 1.851 2.050 2.257 2.470 2.692 2.923 3.162 

0.7 1.205 1.389 1.579 1.776 1.980 2.192 2.413 2.642 2.881 3.129 3.388 

0.75 1.291 1.484 1.685 1.893 2.110 2.336 2.572 2.817 3.074 3.342 3.622 

0.8 1.378 1.580 1.792 2.012 2.242 2.482 2.733 2.996 3.271 3.560 3.863 

0.85 1.464 1.677 1.899 2.132 2.357 2.630 2.898 3.178 3.473 3.784 4.111 

0.9 1.550 1.773 2.007 2.252 2.510 2.780 3.065 3.364 3.681 4.015 4.368 

0.95 1.636 1.870 2.116 2.374 2.646 2.932 3.235 3.555 3.893 4.252 4.633 

1 1.722 1.967 2.225 2.497 2.784 3.087 3.408 3.749 4.111 4.496 4.907 
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Table D-5: �1 (×10
-2

) values corresponding to the column end-fixity factors 

(�0=L/1000 and �0=L/500) 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 8.994 9.015 9.097 9.186 9.336 9.528 9.764 10.040 10.360 10.730 11.130 

0.05 8.998 9.002 9.050 9.140 9.275 9.453 9.676 9.944 10.260 10.620 11.020 

0.1 9.012 8.999 9.029 9.104 9.223 9.387 9.597 9.854 10.160 10.510 10.910 

0.15 9.036 9.006 9.019 9.077 9.180 9.330 9.527 9.772 10.070 10.410 10.810 

0.2 9.069 9.022 9.019 9.060 9.147 9.282 9.465 9.699 9.985 10.330 10.720 

0.25 9.111 9.048 9.028 9.053 9.124 9.244 9.414 9.636 9.912 10.240 10.630 

0.3 9.162 9.084 9.048 9.056 9.112 9.216 9.372 9.581 9.847 10.170 10.560 

0.35 9.223 9.129 9.077 9.070 9.110 9.199 9.341 9.538 9.793 10.110 10.490 

0.4 9.294 9.185 9.118 9.095 9.119 9.193 9.321 9.505 9.749 10.060 10.430 

0.45 9.373 9.251 9.169 9.131 9.140 9.199 9.312 9.483 9.717 10.020 10.390 

0.5 9.462 9.327 9.231 9.178 9.172 9.217 9.316 9.474 9.697 9.988 10.350 

0.55 9.561 9.413 9.303 9.237 9.217 9.247 9.332 9.478 9.690 9.973 10.330 

0.6 9.668 9.509 9.387 9.307 9.273 9.290 9.362 9.496 9.697 9.972 10.330 

0.65 9.786 9.616 9.483 9.390 9.343 9.347 9.406 9.528 9.719 9.986 10.340 

0.7 9.120 9.733 9.589 9.485 9.426 9.418 9.465 9.575 9.757 10.020 10.370 

0.75 10.050 9.861 9.707 9.593 9.523 9.503 9.539 9.639 9.812 10.070 10.410 

0.8 10.190 9.999 9.838 9.714 9.634 9.604 9.63 9.721 9.885 10.130 10.480 

0.85 10.350 10.150 9.980 9.848 9.760 9.720 9.737 9.820 9.979 10.220 10.570 

0.9 10.510 10.310 10.130 9.996 9.900 9.853 9.863 9.939 10.090 10.340 10.690 

0.95 10.690 10.480 10.300 10.160 10.060 10.000 10.010 10.080 10.230 10.470 10.830 

1 10.870 10.60 10.480 10.330 10.230 10.170 10.170 10.240 10.390 10.640 11.000 
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Table D-6: �1 (×10
-2

) values corresponding to the column end-fixity factors 

(�0=L/800 and �0=L/400)  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 9.159 9.181 9.249 9.362 9.520 9.723 9.971 10.030 10.60 10.990 11.420 

0.05 9.164 9.168 9.218 9.314 9.456 9.644 9.880 10.160 10.490 10.870 11.300 

0.1 9.178 9.165 9.197 9.275 9.401 9.575 9.797 10.070 10.390 10.760 11.190 

0.15 9.202 9.171 9.186 9.247 9.356 9.515 9.723 9.983 10.290 10.660 11.080 

0.2 9.236 9.187 9.185 9.229 9.322 9.464 9.659 9.906 10.210 10.570 10.980 

0.25 9.279 9.214 9.194 9.221 9.297 9.424 9.604 9.839 10.130 10.480 10.890 

0.3 9.332 9.250 9.214 9.224 9.284 9.395 9.560 9.781 10.060 10.410 10.810 

0.35 9.359 9.297 9.244 9.238 9.281 9.376 9.526 9.735 10.000 10.340 10.740 

0.4 9.476 9.354 9.285 9.263 9.290 9.369 9.505 9.700 9.958 10.280 10.680 

0.45 9.549 9.422 9.337 9.299 9.310 9.374 9.495 9.676 9.923 10.240 10.630 

0.5 9.640 9.499 9.401 9.347 9.343 9.391 9.497 9.666 9.901 10.210 10.600 

0.55 9.741 9.588 9.475 9.407 9.388 9.421 9.513 9.668 9.892 10.190 10.570 

0.6 9.852 9.687 9.561 9.479 9.445 9.465 9.543 9.685 9.898 10.190 10.570 

0.65 9.973 9.769 9.659 9.564 9.517 9.523 9.587 9.717 9.920 10.200 10.580 

0.7 10.100 9.917 9.768 9.661 9.602 9.595 9.647 9.765 9.958 10.230 10.600 

0.75 10.240 10.050 9.889 9.772 9.701 9.682 9.722 9.830 10.010 10.280 10.650 

0.8 10.390 10.190 10.020 9.896 9.814 9.785 9.815 9.913 10.090 10.350 10.720 

0.85 10.550 10.340 10.170 10.030 9.943 9.904 9.925 10.010 10.180 10.440 10.810 

0.9 10.720 10.510 10.330 10.190 10.090 10.040 10.050 10.140 10.30 10.560 10.930 

0.95 10.900 10.680 10.500 10.350 10.250 10.190 10.20 10.280 10.440 10.700 11.700 

1 11.080 10.870 10.680 10.530 10.420 10.370 10.370 10.440 10.610 10.870 11.250 
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Table D-7: �1 (×10
-2

) values corresponding to the column end-fixity factors 

(�0=L/600 and �0=L/300) 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 9.434 9.459 9.532 9.655 9.826 10.050 10.320 10.640 11.000 11.420 11.890 

0.05 9.439 9.444 9.499 9.603 9.758 9.963 10.220 10.530 10.890 11.30 11.760 

0.1 9.454 9.440 9.476 9.562 9.699 9.888 10.130 10.430 10.770 11.180 11.640 

0.15 9.479 9.447 9.463 9.531 9.651 9.823 10.050 10.330 10.670 11.070 11.530 

0.2 9.514 9.463 9.462 9.511 9.613 9.769 9.980 10.250 10.580 10.970 11.420 

0.25 9.560 9.491 9.471 9.502 9.586 9.725 9.921 10.180 10.490 10.880 11.320 

0.3 9.615 9.528 9.491 9.504 9.570 9.692 9.873 10.110 10.420 10.790 11.240 

0.35 9.681 9.577 9.522 9.517 9.566 9.671 9.836 10.060 10.360 10.720 11.160 

0.4 9.756 9.636 9.564 9.542 9.574 9.662 9.811 10.020 10.310 10.660 11.090 

0.45 9.842 9.707 9.618 9.579 9.594 9.665 9.799 9.998 10.270 10.610 11.040 

0.5 9.937 9.788 9.684 9.629 9.627 9.682 9.800 9.984 10.240 10.580 11.000 

0.55 10.040 9.880 9.761 9.690 9.673 9.712 9.815 9.985 10.230 10.560 10.970 

0.6 10.160 9.983 9.850 9.765 9.732 9.757 9.844 10.000 10.230 10.550 10.960 

0.65 10.280 10.100 9.952 9.853 9.806 9.816 9.889 10.030 10.260 10.560 10.970 

0.7 10.420 10.220 10.070 9.955 9.894 9.890 9.950 10.080 10.290 10.590 11.000 

0.75 10.570 10.360 10.190 10.070 9.997 9.980 10.030 10.150 10.350 10.640 11.040 

0.8 10.720 10.510 10.330 10.200 10.110 10.090 10.120 10.230 10.430 10.720 11.110 

0.85 10.890 10.670 10.480 10.340 10.250 10.210 10.240 10.340 10.520 10.810 11.210 

0.9 11.060 10.840 10.650 10.500 10.400 10.350 10.370 10.460 10.650 10.930 11.330 

0.95 11.250 11.020 10.830 10.670 10.570 10.510 10.530 10.610 10.790 11.070 11.480 

1 11.450 11.220 11.020 10.860 10.750 10.690 10.700 10.790 10.960 11.250 11.670 
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Table D-8: �1 (×10
-2

) values corresponding to the column end-fixity factors 

(�0=L/400 and �0=L/200)  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 9.984 10.010 10.100 10.240 10.440 10.700 11.010 11.380 11.810 12.290 12.830 

0.05 9.990 9.996 10.060 10.180 10.360 10.600 10.900 11.250 11.670 12.150 12.690 

0.1 10.010 9.991 10.030 10.130 10.290 10.510 10.800 11.140 11.540 12.010 12.550 

0.15 10.030 9.997 10.020 10.100 10.240 10.440 10.700 11.030 11.430 11.890 12.420 

0.2 10.070 10.010 10.020 10.070 10.190 10.380 10.620 10.940 11.320 11.770 12.300 

0.25 10.120 10.040 10.020 10.060 10.160 10.330 10.560 10.850 11.220 11.670 12.190 

0.3 10.180 10.080 10.040 10.060 10.140 10.290 10.500 10.780 11.140 11.570 12.090 

0.35 10.250 10.140 10.080 10.080 10.140 10.260 10.450 10.720 11.060 11.490 12.000 

0.4 10.330 10.200 10.120 10.100 10.140 10.250 10.420 10.670 11.000 11.420 11.920 

0.45 10.430 10.280 10.180 10.140 10.160 10.250 10.410 10.640 10.960 11.360 11.850 

0.5 10.530 10.360 10.250 10.190 10.190 10.260 10.400 10.620 10.920 11.320 11.800 

0.55 10.650 10.460 10.330 10.260 10.240 10.290 10.420 10.620 10.910 11.290 11.770 

0.6 10.770 10.580 10.430 10.340 10.310 10.340 10.450 10.630 10.910 11.280 11.760 

0.65 10.910 10.700 10.540 10.430 10.380 10.400 10.490 10.660 10.930 11.290 11.760 

0.7 11.060 10.840 10.660 10.540 10.480 10.480 10.560 10.710 10.960 11.320 11.780 

0.75 11.210 10.980 10.800 10.670 10.590 10.580 10.640 10.780 11.200 11.370 11.830 

0.8 11.380 11.150 10.950 10.800 10.720 10.690 10.740 10.870 11.100 11.440 11.910 

0.85 11.560 11.320 11.120 10.960 10.860 10.820 10.860 10.990 11.210 11.540 12.010 

0.9 11.750 11.500 11.290 11.130 11.200 10.980 11.010 11.120 11.340 11.670 12.140 

0.95 11.960 11.700 11.490 11.320 11.200 11.150 11.170 11.280 11.490 11.830 12.300 

1 12.170 11.920 11.700 11.530 11.400 11.350 11.360 11.470 11.680 12.010 12.500 
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 Table D-9: �2 (×10
-4

) values corresponding to the column end-fixity factors 

(�0=L/1000 and �0=L/500)  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.189 0.701 1.448 2.350 3.309 4.252 5.089 5.735 6.103 6.109 

0.05 0.043 0.058 0.410 1.019 1.800 2.678 3.561 4.366 5.004 5.389 5.430 

0.1 0.166 0.013 0.210 0.681 1.350 2.133 2.950 3.715 4.339 4.733 4.802 

0.15 0.359 0.047 0.094 0.429 0.980 1.669 2.416 3.136 3.740 4.135 4.225 

0.2 0.614 0.152 0.054 0.258 0.690 1.285 1.958 2.627 3.205 3.596 3.701 

0.25 0.920 0.319 0.085 0.160 0.480 0.977 1.573 2.188 2.734 3.116 3.231 

0.3 1.269 0.539 0.177 0.130 0.340 0.739 1.258 1.816 2.327 2.695 2.815 

0.35 1.651 0.805 0.324 0.162 0.260 0.569 1.010 1.510 1.982 2.332 2.452 

0.4 2.056 1.106 0.517 0.246 0.250 0.461 0.825 1.265 1.697 2.026 2.143 

0.45 2.476 1.435 0.747 0.378 0.280 0.409 0.698 1.079 1.470 1.775 1.886 

0.5 2.900 1.781 1.007 0.547 0.360 0.407 0.624 0.947 1.296 1.578 1.681 

0.55 3.321 2.137 1.287 0.747 0.480 0.449 0.599 0.866 1.174 1.431 1.524 

0.6 3.727 2.491 1.578 0.968 0.630 0.528 0.614 0.829 1.098 1.330 1.414 

0.65 4.110 2.835 1.871 1.201 0.800 0.635 0.664 0.830 1.063 1.272 1.345 

0.7 4.460 3.160 2.156 1.437 0.980 0.763 0.740 0.863 1.062 1.250 1.314 

0.75 4.769 3.454 2.423 1.665 1.170 0.901 0.834 0.918 1.088 1.257 1.314 

0.8 5.026 3.709 2.661 1.876 1.340 1.039 0.936 0.988 1.132 1.286 1.337 

0.85 5.223 3.914 2.860 2.058 1.500 1.167 1.034 1.060 1.184 1.326 1.373 

0.9 5.349 4.059 3.009 2.200 1.630 1.272 1.117 1.123 1.232 1.366 1.412 

0.95 5.396 4.133 3.097 2.289 1.710 1.341 1.172 1.163 1.263 1.392 1.437 

1 5.355 4.126 3.117 2.312 1.730 1.361 1.183 1.166 1.260 1.387 1.433 
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 Table D-10: �2 (×10
-4

) values corresponding to the column end-fixity factors 

(�0=L/800 and �0=L/400) 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.200 0.739 1.528 2.475 3.492 4.487 5.370 6.051 6.440 6.446 

0.05 0.044 0.061 0.435 1.079 1.907 2.831 3.763 4.612 5.286 5.691 5.734 

0.1 0.171 0.013 0.224 0.724 1.431 2.259 3.122 3.929 4.588 5.003 5.075 

0.15 0.369 0.046 0.101 0.459 1.043 1.773 2.562 3.322 3.959 4.376 4.470 

0.2 0.631 0.152 0.057 0.277 0.740 1.368 2.080 2.788 3.397 3.809 3.919 

0.25 0.946 0.322 0.085 0.171 0.515 1.042 1.674 2.325 2.902 3.304 3.425 

0.3 1.304 0.547 0.177 0.136 0.363 0.791 1.341 1.933 2.473 2.861 2.986 

0.35 1.696 0.819 0.325 0.164 0.280 0.608 1.078 1.608 2.108 2.477 2.603 

0.4 2.113 1.128 0.520 0.247 0.257 0.490 0.880 1.348 1.806 2.153 2.276 

0.45 2.544 1.465 0.756 0.379 0.289 0.431 0.742 1.149 1.564 1.887 2.004 

0.5 2.981 1.820 1.021 0.550 0.368 0.424 0.661 1.007 1.378 1.676 1.785 

0.55 3.412 2.185 1.307 0.753 0.486 0.463 0.629 0.917 1.246 1.518 1.617 

0.6 3.830 2.549 1.606 0.978 0.636 0.540 0.640 0.873 1.161 1.409 1.497 

0.65 4.224 2.903 1.906 1.217 0.809 0.647 0.688 0.870 1.120 1.343 1.422 

0.7 4.584 3.236 2.198 1.458 0.994 0.776 0.763 0.900 1.115 1.316 1.385 

0.75 4.901 3.539 2.472 1.692 1.182 0.916 0.856 0.953 1.138 1.320 1.381 

0.8 5.165 3.801 2.717 1.909 1.362 1.056 0.959 1.002 1.180 1.346 1.402 

0.85 5.367 4.012 2.922 2.096 1.523 1.187 1.058 1.094 1.231 1.385 1.436 

0.9 5.497 4.161 3.076 2.241 1.652 1.294 1.142 1.157 1.279 1.424 1.474 

0.95 5.546 4.238 3.166 2.333 1.736 1.365 1.198 1.198 1.309 1.449 1.499 

1 5.503 4.231 3.181 2.358 1.762 1.385 1.209 1.200 1.306 1.443 1.494 
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 Table D-11: �2 (×10
-4

) values corresponding to the column end-fixity factors 

(�0=L/600 and �0=L/300) 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.217 0.804 1.661 2.691 3.796 4.877 5.837 6.578 7.001 7.008 

0.05 0.046 0.069 0.477 1.179 2.080 3.086 4.100 5.022 5.755 6.195 6.241 

0.1 0.178 0.015 0.249 0.797 1.568 2.470 3.410 4.287 5.003 5.453 5.531 

0.15 0.386 0.045 0.113 0.509 1.149 1.945 2.805 3.632 4.324 4.776 4.877 

0.2 0.659 0.153 0.061 0.309 0.819 1.507 2.284 3.054 3.717 4.165 4.283 

0.25 0.988 0.328 0.084 0.190 0.572 1.152 1.843 2.553 3.181 3.618 3.747 

0.3 1.363 0.561 0.175 0.145 0.404 0.876 1.480 2.127 2.715 3.137 3.271 

0.35 1.773 0.843 0.326 0.167 0.306 0.674 1.191 1.772 2.318 2.719 2.855 

0.4 2.208 1.164 0.527 0.248 0.274 0.540 0.972 1.486 1.987 2.366 2.498 

0.45 2.659 1.515 0.769 0.381 0.300 0.468 0.817 1.265 1.720 2.073 2.200 

0.5 3.115 1.885 1.044 0.556 0.376 0.453 0.721 1.105 1.514 1.840 1.959 

0.55 3.566 2.265 1.341 0.764 0.495 0.486 0.679 1.001 1.365 1.664 1.772 

0.6 4.002 2.645 1.651 0.996 0.647 0.561 0.683 0.947 1.267 1.539 1.637 

0.65 4.413 3.014 1.964 1.243 0.823 0.668 0.726 0.936 1.215 1.462 1.549 

0.7 4.790 3.363 2.269 1.494 1.014 0.798 0.799 0.960 1.202 1.426 1.503 

0.75 5.121 3.679 2.555 1.737 1.209 0.940 0.893 1.011 1.221 1.424 1.493 

0.8 5.397 3.953 2.811 1.963 1.395 1.085 0.996 1.078 1.260 1.446 1.509 

0.85 5.608 4.174 3.025 2.158 1.563 1.220 1.098 1.150 1.310 1.483 1.542 

0.9 5.744 4.331 3.186 2.311 1.697 1.331 1.184 1.214 1.357 1.520 1.577 

0.95 5.795 4.411 3.281 2.407 1.786 1.405 1.241 1.255 1.386 1.544 1.601 

1 5.750 4.405 3.298 2.434 1.813 1.426 1.253 1.257 1.381 1.537 1.595 
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 Table D-12: �2 (×10
-4

) values corresponding to the column end-fixity factors 

(�0=L/400 and �0=L/200)  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.000 0.252 0.932 1.927 3.122 4.404 5.659 6.773 7.632 8.123 8.131 

0.05 0.050 0.082 0.561 1.379 2.428 3.596 4.773 5.843 6.692 7.203 7.255 

0.1 0.194 0.016 0.299 0.942 1.842 2.893 3.984 5.003 5.833 6.354 6.441 

0.15 0.386 0.043 0.137 0.609 1.360 2.290 3.291 4.252 5.055 5.578 5.693 

0.2 0.716 0.154 0.068 0.373 0.977 1.785 2.692 3.588 4.357 4.875 5.009 

0.25 1.073 0.339 0.083 0.227 0.687 1.372 2.182 3.009 3.739 4.245 4.392 

0.3 1.480 0.588 0.172 0.164 0.484 1.047 1.758 2.514 3.200 3.688 3.842 

0.35 1.925 0.890 0.328 0.174 0.360 0.804 1.418 2.100 2.737 3.204 3.359 

0.4 2.398 1.236 0.539 0.251 0.309 0.639 1.155 1.726 2.349 2.790 2.943 

0.45 2.887 1.614 0.796 0.385 0.323 0.543 0.966 1.498 2.033 2.446 2.593 

0.5 3.382 2.015 1.090 0.566 0.393 0.510 0.843 1.303 1.786 2.169 2.306 

0.55 3.872 2.426 1.409 0.785 0.512 0.533 0.780 1.170 1.603 1.955 2.082 

0.6 4.346 2.838 1.743 1.032 0.668 0.602 0.770 1.095 1.478 1.800 1.916 

0.65 4.792 3.238 2.080 1.296 0.853 0.708 0.804 1.068 1.406 1.700 1.804 

0.7 5.201 3.616 2.410 1.565 1.055 0.841 0.873 1.082 1.378 1.646 1.740 

0.75 5.561 3.960 2.720 1.828 1.262 0.990 0.966 1.127 1.386 1.631 1.716 

0.8 5.861 4.259 2.998 2.071 1.462 1.143 1.072 1.192 1.420 1.646 1.724 

0.85 6.090 4.499 3.231 2.283 1.642 1.286 1.178 1.264 1.466 1.678 1.752 

0.9 6.238 4.670 3.407 2.449 1.778 1.405 1.268 1.329 1.512 1.713 1.785 

0.95 6.292 4.759 3.512 2.555 1.884 1.484 1.328 1.370 1.540 1.735 1.807 

1 6.244 4.753 3.532 2.587 1.915 1.507 1.340 1.370 1.533 1.724 1.797 
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Designation d Pu Ic,y-net Lc Ixb Lb �0.85 P0.85 F 

  (in) (lb) (in
4
) (in) (in

4
) (in) (in) (lb) (k-in/rad)

BB1.5x2.0x16-1 2.04 246 2.58 30 0.395 24 2.15 209 58.3 

BB1.5x2.0x16-2 2.04 250 2.58 30 0.395 24 2.03 212 62.9 

BB1.5x2.0x16-3 2.04 244 2.58 30 0.395 24 1.93 208 64.9 

BB1.5x2.0x14-1 2.04 258 2.58 30 0.474 24 2.41 219 54.1 

BB1.5x2.0x14-2 2.04 247 2.58 30 0.474 24 2.08 210 60.2 

BB1.5x2.0x14-3 2.04 250 2.58 30 0.474 24 2.25 212 56.1 

ER1.5x2.0x14-1 2.04 206 1.13 30 0.474 24 0.84 175 130 

ER1.5x2.0x14-2 2.04 222 1.13 30 0.474 24 0.90 189 131 

ER1.5x2.0x14-3 2.04 215 1.13 30 0.474 24 1.11 183 101 

Average 79.8

ER1.5x3.0x14-1 3.22 505 1.13 30 1.42 24 2.11 429 121 

ER1.5x3.0x14-2 3.22 489 1.13 30 1.42 24 2.18 416 113 

ER1.5x3.0x14-3 3.22 509 1.13 30 1.42 24 2.17 432 118 

Average 117

BB1.5x4.0x14-1 4.01 601 2.58 30 2.40 24 1.62 511 186 

BB1.5x4.0x14-2 4.01 602 2.58 30 2.40 24 1.61 511 188 

BB1.5x4.0x14-3 4.01 572 2.58 30 2.40 24 1.57 486 183 

ER1.5x4.0x14-1 4.01 670 1.13 30 2.40 24 1.78 570 190 

ER1.5x4.0x14-2 4.01 650 1.13 30 2.40 24 1.87 553 175 

ER1.5x4.0x14-3 4.01 630 1.13 30 2.40 24 1.78 536 179 

BB2.0x4.0x14-1 4.01 578 2.58 30 2.94 24 1.50 491 193 

BB2.0x4.0x14-2 4.01 600 2.58 30 2.94 24 1.28 510 236 

BB2.0x4.0x14-3 4.01 584 2.58 30 2.94 24 1.44 497 203 

ER2.0x4.0x14-1 4.01 602 1.13 30 2.93 24 1.85 511 163 

ER2.0x4.0x14-2 4.01 617 1.13 30 2.93 24 1.79 525 173 

ER2.0x4.0x14-3 4.01 606 1.13 30 2.93 24 1.84 515 165 

ER2.0x4.0x14-4 4.01 611 1.13 30 2.93 24 1.77 520 174 

Average 185

ER2.0x5.0x14-1 5.19 789 1.13 30 5.40 24 1.35 671 295 

ER2.0x5.0x14-2 5.19 790 1.13 30 5.40 24 1.37 672 291 

ER2.0x5.0x14-3 5.19 765 1.13 30 5.40 24 1.27 650 304 

ER2.0x5.0x14-4 5.19 775 1.13 30 5.40 24 1.41 659 277 

Average 292

BB2.0x7.0x14-1 7.16 892 2.58 30 11.7 24 1.28 759 347 

BB2.0x7.0x14-2 7.16 861 2.58 30 11.7 24 1.5 732 285 

BB2.0x7.0x14-3 7.16 856 2.58 30 11.7 24 1.55 728 274 

ER2.0x7.0x14-1 7.16 949 1.13 30 11.7 24 1.23 807 390 

ER2.0x7.0x14-2 7.16 879 1.13 30 11.7 24 1.37 747 322 

ER2.0x7.0x14-3 7.16 896 1.13 30 11.7 24 1.72 762 260 

ER2.0x7.0x14-4 7.16 858 1.13 30 11.7 24 1.39 730 310 

Average 313

Note: The moment of inertia values Ic,y-net and Ixb were obtained from The Econo-Rack Group.

Joint Spring Constant, F (R) Results (Schuster, 2004)
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