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Abstract

In this thesis, we develop partial differential equation (PDE) based numerical methods

to solve certain optimal stochastic control problems in finance.

The value of a stochastic control problem is normally identical to the viscosity solution

of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational inequality. The

HJB equation corresponds to the case when the controls are bounded while the HJB

variational inequality corresponds to the unbounded control case. As a result, the solution

to the stochastic control problem can be computed by solving the corresponding HJB

equation/variational inequality as long as the convergence to the viscosity solution is

guaranteed.

We develop a unified numerical scheme based on a semi-Lagrangian timestepping for

solving both the bounded and unbounded stochastic control problems as well as the

discrete cases where the controls are allowed only at discrete times. Our scheme has the

following useful properties: it is unconditionally stable; it can be shown rigorously to

converge to the viscosity solution; it can easily handle various stochastic models such as

jump diffusion and regime-switching models; it avoids Policy type iterations at each mesh

node at each timestep which is required by the standard implicit finite difference methods.

In this thesis, we demonstrate the properties of our scheme by valuing natural gas stor-

age facilities—a bounded stochastic control problem, and pricing variable annuities with

guaranteed minimum withdrawal benefits (GMWBs)—an unbounded stochastic control

problem. In particular, we use an impulse control formulation for the unbounded stochas-

tic control problem and show that the impulse control formulation is more general than

the singular control formulation previously used to price GMWB contracts.
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Chapter 1

Introduction

Many problems in finance are characterized as optimal stochastic control problems. Ex-

amples discussed in this thesis include the valuation of natural gas storage facilities and the

valuation of variable annuities with guaranteed minimum withdrawal benefits (GMWBs).

Some other examples of stochastic control in finance include portfolio selection problems

with liquidity risk and price impact [2, 83], with transaction costs [32, 70, 59], or with cap-

ital gains taxes [79]; optimal hedging with transaction costs [33, 62, 68]; financial hedging

of operational risk [66]; and valuation of power generation assets [81, 24]. Refer to [72]

for a survey of various stochastic control problems and the applications in finance.

A typical stochastic control problem in finance can be thought of as consisting of two

components: an underlying stochastic model (e.g., a mean-reverting process for natural

gas prices) and a model of an inventory variable (e.g., amount of gas in storage). The

two components are affected by different control strategies (e.g., withdrawing gas from

the storage reduces the gas inventory in storage). At each point in state space, an opti-

mal control needs to be determined to maximize some objective function (e.g., expected

revenues that the operators of the gas storage facility can obtain by optimally operating

the facility).

Numerical methods which have been developed to solve stochastic control problems

include Markov chain based methods (see, e.g., [61, 17]), simulation based methods (see,

e.g., [19, 12, 82]), lattice based approaches (see, e.g., [38]), and partial differential equation

1



(PDE) based approaches (see, e.g., [22, 23, 80, 46, 64, 31]).

Markov chain, simulation and lattice based approaches solve the stochastic control

problems using dynamic programming. Lattice based approaches are essentially explicit

finite difference methods, which thus suffer from timestep restrictions due to stability con-

ditions. Simulation based methods are well suited for solving multi-dimensional problems

(e.g., problems with five state variables) which the PDE based approaches cannot handle.

Nevertheless, it is known that such methods have difficulty achieving high accuracy. Fur-

thermore, if the optimal controls are not a finite set, then simulation based methods will

have to approximate the controls as piece-wise constant, which will substantially increase

the computational cost.

As shown in [72, 45], the value of a stochastic control problem is normally identical to

the viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation or an HJB variational

inequality. The HJB equation corresponds to the case when the controls are bounded while

the HJB variational inequality corresponds to the unbounded control case. As a result, the

solution to the stochastic control problem can be computed by solving the corresponding

HJB equation/variational inequality using PDE based approaches. In general, the solution

to the HJB equation/variational inequality may not be unique. As noted in [46, 6], it

is important to ensure that a numerical scheme converges to the viscosity solution of

the equation, which is normally the appropriate solution of the corresponding stochastic

control problem.

Provided a strong comparison result for the HJB equation/variational inequality ap-

plies, the authors of [11, 6] demonstrate that a numerical scheme will converge to the

viscosity solution of the equation if it is l∞-stable, consistent, and monotone. Schemes

failing to satisfy these conditions may converge to non-viscosity solutions. In fact, the

authors of [75] give an example where seemingly reasonable discretizations of nonlinear

option pricing PDEs that do not satisfy the sufficient convergence conditions for viscosity

solutions either never converge or converge to a non-viscosity solution.

Consequently, our research focuses on developing PDE-based numerical methods with

the following desired properties for solving optimal stochastic control problems:

2



1. No timestep restrictions should be imposed.

2. The methods should converge to the viscosity solution.

3. The methods should be independent of the underlying stochastic models so that

they can be easily applied for different stochastic models such as mean-reverting

models, geometric Brownian motion (GBM) models, regime-switching models and

jump diffusion models.

4. The methods should be at least as efficient as other existing methods.

1.1 Contributions

We first consider the stochastic control problem with bounded controls, which corresponds

to an HJB equation. The HJB equation is normally convection dominated, that is, the

equation has no diffusion in the inventory component direction. Hence it is well known

to be difficult to solve numerically.

As such, we develop a fully implicit scheme based on a semi-Lagrangian timestep-

ping to discretize the HJB equation. Initially introduced by [42, 74] for atmospheric

and weather numerical predictions, semi-Lagrangian schemes can effectually reduce the

numerical problems arising for convection dominated equations. The fully implicit semi-

Lagrangian scheme meets our goal in the sense that it satisfies each of the above properties.

We demonstrate the properties of our scheme by valuing gas storage cash flows in

Chapters 2- 6. Our work in this area makes the following contributions:

• We develop fully implicit and Crank-Nicolson finite difference schemes based on a

semi-Lagrangian method for solving the HJB equation for the gas storage problem,

assuming the gas spot price follows a one-factor mean-reverting model, and obtain

the optimal control strategies (see Chapter 2).
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• We show that the fully implicit, semi-Lagrangian discretization is algebraically iden-

tical to a discretization based on a scenario that the operations on the storage are

performed only at discrete times (see Chapter 2).

• We show that, compared to the standard implicit methods given in [46], semi-

Lagrangian timestepping methods avoid the need for Policy type iterations at each

node at each timestep. Instead, the methods require solution of a discrete local

optimization problem at each mesh point in order to determine the optimal control

value. The optimization problem can be solved efficiently so that the complexity

per timestep of the fully implicit semi-Lagrangian scheme is the same as that of an

explicit method or the complexity per iteration per timestep of a standard implicit

method (see Chapter 2).

• We give an intuitive introduction to the notation of (possibly discontinuous) vis-

cosity solutions that is able to handle various types of boundary conditions (see

Chapter 3).

• We prove that the fully implicit semi-Lagrangian scheme is unconditionally l∞-

stable, monotone and consistent. Therefore, provided a strong comparison property

holds, the fully implicit, semi-Lagrangian discretization converges to the unique and

continuous viscosity solution of the gas storage pricing equation using the results in

[11, 6] (see Chapter 3).

• Numerical experiments indicate that fully implicit timestepping can achieve first-

order convergence, while Crank-Nicolson timestepping does not appear to converge

at a higher than first-order rate. Thus fully implicit timestepping is probably a

better choice since it guarantees convergence to the viscosity solution and it is also

straightforward to implement (see Chapter 4).

• We propose a one-factor regime-switching model for the risk neutral natural gas

spot price. We calibrate model parameters to both market futures and options.

The calibration results suggest that the regime-switching model is capable of fitting
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the market data more accurately than the one-factor mean-reverting model (see

Chapter 5).

• Since the semi-Lagrangian timestepping completely separates the inventory compo-

nent from the underlying stochastic model, we can extend our scheme for gas storage

problem under a one-factor mean-reverting model to solve the problem under the

regime-switching model, using the model parameters obtained from the calibration.

Provided a unique continuous viscosity solution exists, we prove the convergence of

the scheme to the viscosity solution using the results in [71, 11, 6] (see Chapter 6).

We then consider the stochastic control problem with unbounded controls. We form

an impulse control formulation for the unbounded control problem, resulting in an HJB

variational inequality. We then solve the HJB variational inequality using an extension

of the semi-Lagrangian method for the bounded control problems.

We demonstrate the properties of the semi-Lagrangian timestepping for the unbounded

control case by pricing the value of GMWB variable annuities in Chapters 7- 9. Our main

contributions in this area are summarized as follows:

• We first study the GMWB variable annuity pricing problem under the scenario

that the controls (i.e., withdrawing funds) are allowed only at discrete times. We

formulate a pricing model for the problem. We then present a numerical scheme

for solving the pricing model and prove that the scheme converges to the unique

viscosity solution of the problem (see Chapter 7).

• We then consider the GMWB valuation problem assuming the operations are allowed

continuously. We propose an impulse control formulation for this problem, resulting

in an HJB variational inequality (see Chapter 8).

• We show that the impulse control formulation is a more general approach compared

to the singular control formulation previously used to price the GMWB contracts

(see Chapter 8).
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• We generalize the scheme for the discrete control case to handle the continuous

control case. We show that the scheme is also identical to an extension of the semi-

Lagrangian timestepping method for the bounded stochastic control problems (see

Chapter 8).

• Provided a strong comparison result holds, we prove that the scheme converges to

the unique viscosity solution of the HJB variational inequality corresponding to the

impulse control problem by verifying the l∞ stability, monotonicity and consistency

of the scheme and using the results in [11, 6] (see Chapter 8).

• Through numerical experiments, we demonstrate that the solution of our impulse

control formulation are the same (to within discretization errors) as that of the

singular control formulation. The numerical results also appear to show that the

optimal control strategy may not be unique. That is, there exists a region where

different control strategies can result in the same contract value (see Chapter 8).

• Using the semi-Lagrangian discretization, we carry out an extensive analysis of the

no-arbitrage fee for GMWB guarantees assuming various parameters and contract

details. In particular, we consider the effects of incorporating a separate mutual fund

management fee, assuming sub-optimal investor behaviours and various contract

parameters such as reset provisions, maturities, withdrawal intervals, and surrender

charges. Our numerical experiments show that the GMWB insurance fees currently

charged by the insurance companies are not enough to cover the costs of hedging

these contracts (see Chapter 9).

To summarize, our main result in this thesis is that we have a unified numerical scheme

based on a semi-Lagrangian approach that is able to solve both bounded and unbounded

stochastic control problems as well as the discrete control cases where the operations are

allowed only at discrete times. In addition, our numerical scheme is shown to converge to

the viscosity solution of these problems.
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1.2 Outline

The rest of this thesis is arranged as follows. In Chapter 2 we propose the semi-Lagrangian

schemes for valuing gas storage cash flows. Convergence analysis of the fully implicit,

semi-Lagrangian scheme is given in Chapter 3. We conduct numerical experiments for gas

storage problem in Chapter 4. Chapter 5 compares a one-factor regime-switching model

with a one-factor mean-reverting model through empirical calibration. In Chapter 6 we

solve the gas storage problem using the calibrated regime-switching model. Chapter 7

proposes a numerical scheme for pricing GMWB variable annuities assuming withdrawals

occur only at predetermined discrete times. In Chapter 8, we generalize the scheme

to solve the impulse control problem, corresponding to the GMWB valuation problem

under the continuous withdrawal scenario. In Chapter 9 we study the effects of various

parameters and contract details on the no-arbitrage fees of GMWB contracts. Finally,

conclusions are drawn in Chapter 10.
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Chapter 2

Valuation of Natural Gas Storage

Facilities and Optimal Operations

In this chapter we develop numerical schemes for pricing the value of natural gas storage

facilities, which is characterized as an optimal stochastic control problem with a bounded

control. We begin by defining the stochastic control problem, and then reformulate the

problem under the partial differential equation (PDE) framework. We then present the

numerical schemes based on the semi-Lagrangian method for the pricing PDE.

2.1 Introduction and Previous Work

Similar to other commodities such as fuel and electricity, natural gas prices exhibit season-

ality dynamics due to fluctuations in demand [73]. As such, natural gas storage facilities

are constructed to provide a cushion for such fluctuations by releasing natural gas in

storage in seasons with high demand.

Recently, several authors [1, 80, 84, 85, 64, 18, 12] have discussed the no-arbitrage

value of natural gas storage facilities (or, equivalently, the values of gas storage contracts

for leasing the storage facilities). The value of a gas storage facility can be regarded as

the maximum expected revenues under the risk neutral measure that the operator of the
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facility can obtain by optimally operating the facility, that is, “buying low” and “selling

high”. As a result, the valuation of gas storage facilities is characterized as a stochastic

control problem.

Assuming that the control is of bang-bang type (that is, the control takes values

only from a finite set), in [18, 12], simulation based methods are used to directly solve

the stochastic control problem for gas storage valuation. These methods are well suited

for solving multi-dimensional problems (e.g., problems with five state variables) which

the PDE-based approaches cannot handle. Nevertheless, it is known that such methods

have difficulty achieving high accuracy. Furthermore, if the control is not of bang-bang

type, such methods will have to approximate the control as piece-wise constant, which

will substantially increase the computational cost. See [24] for descriptions of control

problems which are not of the bang-bang type for valuation of electricity power plants.

In [80], an explicit finite difference scheme is used to solve the pricing PDE derived

from the stochastic control problem for gas storage valuation. As is well known, explicit

timestepping suffers from timestep restrictions due to stability considerations. Alterna-

tively, the authors of [46] present implicit finite difference schemes, which eliminate the

timestep restriction, for solving general controlled PDE. However, this scheme requires

solution of nonlinear discretized algebraic equations using a Policy type iteration at each

timestep. Reference [46] introduces another type of implicit scheme that approximates

the control as piece-wise constant to avoid the need for solving nonlinear equations at

the expense of solving a number of linear problems at each timestep. Similar to the

simulation based methods, if the control is not of bang-bang type, such schemes will be

computationally expensive. In [84], a finite element semi-Lagrangian scheme is developed

to solve a PDE for certain gas storage contracts. In [85, 64], a wavelet method coupled

with a semi-Lagrangian approach is used to solve the gas storage PDE. While the wavelet

method shows promise, it is difficult to obtain a rigorous proof of convergence to the

viscosity solution.
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2.2 The Mathematical Model

In this section we present the mathematical model for valuing natural gas storage facilities.

First, we formulate a stochastic control problem for the value of gas storage facilities. Then

we assume a one-factor model for natural gas spot prices and a model for the gas inventory.

Finally, we heuristically derive the Hamilton-Jacobi-Bellman (HJB) equation from the

stochastic control framework using dynamic programming (i.e., Bellman’s Principle) and

Itô’s Lemma.

2.2.1 Problem Notation

We use the following notation for the natural gas storage problem:

• P : the current spot price per unit of natural gas.

• I: current amount of working gas inventory. We assume that I can be any value

lying within the domain [0, Imax].

• V̂ (P, I, t): value of the natural gas storage facility (e.g., the leasing rate of the

facility) with respect to natural gas price P and inventory level I at time t.

• T : expiry time of the contract.

• c: control variable that represents the rate of producing gas from or injecting gas

into the gas storage (c > 0 represents production, c < 0 represents injection). If

c = 0 then no operation is performed on the storage.

• cmax(I): the maximum rate at which gas can be released from storage as a function

of inventory levels, cmax(I) > 0. We use the expression in [80]

cmax(I) = k1

√
I, (2.2.1)

where k1 is a positive constant. This implies cmax(0) = 0 with the physical meaning

that no gas can be produced if the gas storage is empty.
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• cmin(I): |cmin(I)| is the maximum rate at which gas can be injected into storage as

a function of inventory levels. Note that cmin(I) < 0, with our sign convention that

c > 0 represents production. We use the expression from [80]

cmin(I) = −k2

√
1

I + k3

− 1

k4

, (2.2.2)

where k2, k3 and k4 are positive constants, and k2, k3, k4 satisfy the constraint

cmin(Imax) = 0, which means that no gas injection is possible if the gas storage is

full. Equation (2.2.2) implies that

|cmin(I)| ≤
∣∣const.√Imax − I

∣∣ ; I < Imax , I → Imax . (2.2.3)

• a(c): the rate of gas loss incurred inside the storage given a gas production/injection

rate of c. In general, the change in gas inventory satisfies

dI

dt
= −(c+ a(c)), (2.2.4)

where usually a(c) ≥ 0. We use the model in [80]

a(c) =

 0 if c ≥ 0, (producing gas),

k5 if c < 0, (injecting gas),
(2.2.5)

where k5 > 0 is a constant.

• b(c): the rate of gas loss incurred outside of the storage (e.g., gas loss incurred

during the transportation process) given a gas production/injection rate of c.

In the rest of the thesis, we will follow [80] and assume a(c) = b(c). Consequently,

we will use a(c) to represent the rate of gas loss incurred both inside and outside of the

storage. Nevertheless, our theoretical results in this thesis still easily follow for the case

when a(c) 6= b(c).
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Note that if we are using a control c satisfying −k5 < c < 0, that is, injecting at a

rate smaller than the rate of gas loss, then equation (2.2.5) implies that c + a(c) > 0.

According to equation (2.2.4), this means that injecting natural gas into the gas storage

decreases the gas inventory, which is unreasonable. Consequently, we further require that

control c satisfies the constraint c ∈ [cmin(I),−k5] ∪ [0, cmax(I)] so that

c+ a(c) ≤ 0 if c < 0 (injecting gas). (2.2.6)

In other words, the operator of the gas storage facility is not allowed to inject and at the

same time decrease the gas inventory. We point out that the constraint on the control

also makes the boundary conditions well defined (this will be discussed in more detail in

a subsequent section). For future reference, given any I ∈ [0, Imax], we define the set C(I)

as

C(I) = [cmin(I),−k5] ∪ [0, cmax(I)], (2.2.7)

where we adopt the convention that [α, β] = ∅ if α > β.

2.2.2 Stochastic Control Formulation

Under the stochastic control framework, the value of a gas storage facility at a point

(P, I, t) is the maximum expected revenues under risk neutral measure during the period

that the storage facility can generate before the contract expires. Therefore, we can write

V̂ (P, I, t) as

V̂ (P, I, t)

= sup
c(s)∈C(I(s))

EQ
[∫ T

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds+ e−r(T−t)V̂

(
P (T ), I(T ), T

)]
,

(2.2.8)

where

• P (s) is a stochastic gas price path in the time direction with P (t) = P .
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• I(s) is a stochastic gas inventory path in the time direction with I(t) = I.

• c(s) is a control path in the time direction.

• C(I) is given in (2.2.7).

• EQ is the conditional expectation under risk neutral Q measure with initial values

P (t) = P and I(t) = I.

• r > 0 is the continuously compounded risk-free interest rate.

• [c(s)− a(c(s))] · P (s) represents the instantaneous rate of revenue obtained at time

s by producing natural gas from (c(s) > 0) or injecting gas into (c(s) < 0) the gas

storage facility, taking into account the possibility of gas loss outside of the storage

(recall that we have assumed b(c) = a(c)).

• the integral term represents the total amount of discounted cash flows received

during the period [t, T ].

• V̂
(
P (T ), I(T ), T

)
is the contract payoff.

Note that the expectation is taken under risk neutral Q measure since hedging a gas

storage facility is possible [84, 85].

2.2.3 Natural Gas Spot Price Model

In this subsection, we present a one-factor mean-reverting process for natural gas spot

price. This process is able to capture the mean-reverting and seasonality effects of natural

gas spot prices. However, there is a certain amount of controversy surrounding the precise

form of a reasonable natural gas spot price model [73]. In a later chapter, we will develop

a regime-switching model for natural gas spot prices which, as demonstrated by empirical

calibration, is better than the one-factor mean-reverting model. The numerical methods

that we derive in this chapter can easily generalize to more complex spot price models,

including the regime-switching model.
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Since the expectation in (2.2.8) is taken under risk neutral Q measure, we directly

assume a risk neutral price process for natural gas spot, given by the following stochastic

differential equation (SDE):

dP = α(K(t)− P )dt+ σ̂(P )PdZ (2.2.9)

K(t) = K0 + βSA sin(4π(t− tSA)), (2.2.10)

where

• α > 0 is the mean-reverting rate,

• K(t) ≥ 0 is the long-term equilibrium price that incorporates seasonality,

• σ̂(P ) is the volatility as a function of P . We will give more details of this function

in Section 2.2.5.

• dZ is an increment of the standard Gauss-Wiener process,

• K0 ≥ 0 is the equilibrium price without seasonality effect,

• βSA is the semiannual seasonality parameter,

• tSA is the seasonality centering parameters, representing the time of semiannual

peak of equilibrium price in summer and winter.

According to equation (2.2.10), the equilibrium price K(t) is a periodic function with

period 1/2. This models the seasonal evolution of the annual equilibrium price, e.g., K(t)

exhibits two peaks annually, respectively corresponding to high natural gas spot prices in

summer and winter.

2.2.4 Pricing Equation

After writing the stochastic control formulation (2.2.8), the next step is to convert the

formulation to a PDE using dynamic programming and Itô’s Lemma. Note that the

14



transform requires that the solution V̂ be smooth, which may not be true. However,

the value of the stochastic control problem normally coincides with the viscosity solution

of the corresponding PDE. For example, the authors of [72, 45, 70, 16, 83, 32, 34, 48]

have proved that, for many types of stochastic control problems including both bounded

and unbounded controls, the value function is the viscosity solution of the corresponding

nonlinear PDE. Proving such an equivalence is, nevertheless, beyond the scope of this

thesis. As a result, we will assume in this thesis that the solution of a stochastic control

problem is identical to the viscosity solution of the PDE resulting from applying the

dynamic programming and Ito’s Lemma; we will instead focus on developing numerical

schemes for solving the PDE which will converge to the viscosity solution.

A non-rigorous derivation for the PDE is given in Appendix A, which results in the

following HJB equation from the stochastic control equation (2.2.8)

V̂t+
1

2
(σ̂(P )P )2V̂PP +α(K(t)−P )V̂P + sup

c∈C(I)

[
(c−a(c))P−(c+a(c))V̂I

]
−rV̂ = 0. (2.2.11)

Note that it is also possible to directly derive (2.2.11) based on a hedging argument

[84, 85].

For a financial contract such as the natural gas storage contract, a terminal payoff is

given at the maturity t = T . In order to compute the value of the contract today, we

need to solve the pricing PDE backwards in time from t = T to t = 0. Let τ = T − t

denote the current time to maturity. For ease of exposition, we will write our PDE in

terms of τ so that we will solve the pricing PDE from τ = 0 to τ = T . Let V (P, I, τ)

denote the value of a natural gas storage facility as a function of (P, I, τ). In terms

of the facility value V̂ (P, I, t) at forward times with respect to t, we have the identity

V (P, I, τ) = V̂ (P, I, T − τ) = V̂ (P, I, t).

Rewriting equation (2.2.11) using the variable τ results in

Vτ =
1

2
(σ̂(P )P )2VPP +α(K(t)−P )VP + sup

c∈C(I)

[
(c−a(c))P − (c+a(c))VI

]
−rV , (2.2.12)

15



2.2.5 Boundary Conditions

In order to completely specify the gas storage problem, we need to provide boundary

conditions.

A number of terminal boundary conditions can be used. Note that since we will be

solving backwards in time, the terminal state occurs at τ = 0. Typical examples include

• A zero payoff, as suggested by [80]: V (P, I, 0) = 0.

• A non-negative payoff obtained by selling all the leftover gas in the storage at the

maximum rate, that is, V (P, I, 0) is the solution V̄ to the PDE obtained by fixing

control c = cmax(I) in PDE (2.2.12) and solving the resulting PDE backwards from

τ = 0 to τ =∞ with V̄ (P, I, 0) = 0. We then specify V (P, I, 0) = V̄ (P, I,∞).

• The penalty payoff introduced by [18]:

V (P, I, 0) = const. · P ·min (I − I0, 0) , (2.2.13)

where const. > 0 and I0 represents the inventory level at time t = 0. This has the

meaning that a penalty will be charged if the gas inventory in storage when the

facility is returned is less than the gas inventory at the inception of the contract.

The domain for the PDE (2.2.12) is P × I ∈ [0,∞] × [0, Imax]. For computational

purposes, we need to solve the PDE in a finite computational domain [0, Pmax]× [0, Imax].

As I → 0, from equations (2.2.1-2.2.7) we have that

c+ a(c) ≤ 0 ; ∀c ∈ C(I) , I → 0 . (2.2.14)

Hence the characteristics are outgoing (or zero) in the I direction at I = 0, and we simply

solve the PDE along the I = 0 boundary, no further information is needed. Condition

(2.2.14) has the interpretation that gas cannot be produced from a facility which is empty.
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Similarly, as I → Imax, equations (2.2.1-2.2.7) imply that

c+ a(c) ≥ 0 ; ∀c ∈ C(I) , I → Imax, (2.2.15)

which again means that the characteristics are outgoing (or zero) in the I direction at

I = Imax. Consequently, we simply solve the PDE along the I = Imax boundary, no

further information is needed. Condition (2.2.15) has the interpretation that gas cannot

be injected into the storage facility when it reaches full capacity.

Taking the limit of equation (2.2.12) as P → 0, we obtain

Vτ = αK(t)VP + sup
c∈C(I)

[
−(c+ a(c))VI

]
− rV ; P → 0 . (2.2.16)

Since αK(t) ≥ 0, we can solve (2.2.16) without requiring additional boundary conditions,

as we do not need information from outside the computational domain [0, Pmax].

In this chapter, we assume that σ̂(P ) is a continuous function that satisfies σ̂(P ) = σ

for P ∈ [0, Pmax − ε], where σ > 0 is a constant and ε > 0 is a constant close to zero.

For P ∈ [Pmax − ε, Pmax], σ̂(P ) approaches 0 continuously as P → Pmax. In other words,

the volatility is constant for most values of P and decreases to zero as P → Pmax. The

decreasing behaviour of σ̂(P ) at the far boundary P = Pmax generates a negligible error by

choosing Pmax sufficiently large (see Chapter 4 for numerical results for different choices

of Pmax).

Based on this form of σ̂(P ), taking the limit of equation (2.2.12) as P → Pmax, we

have

Vτ = α(K(t)− P )VP + sup
c∈C(I)

[
(c− a(c))P − (c+ a(c))VI

]
− rV ; P → Pmax. (2.2.17)

We will always choose Pmax � K(t), hence equation (2.2.17) can be solved at P = Pmax

without additional information.

The purpose of introducing the continuous function σ̂(P ) is so that the boundary

equation (2.2.17) is the limit of the PDE from the domain interior. This will reduce the
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technical manipulations required to prove convergence of our numerical scheme to the

viscosity solution of the modified gas storage problem (2.2.12–2.2.17) (see Chapter 3).

Since ε� 1, the numerical implementation assuming that σ̂(P ) has the above behaviour

is, for all practical purposes, the same as an implementation assuming that σ̂(P ) = σ for

P < Pmax and σ̂(P ) = 0 for P = Pmax. This has the intuitive interpretation of specifying

the commonly used boundary condition VPP = 0 , P →∞.

2.3 Numerical Methods Based on Semi-Lagrangian

Timestepping

A semi-Lagrangian approach is presented in [40] for pricing continuously observed Amer-

ican Asian options under jump diffusion. In this section, we extend the semi-Lagrangian

method in [40] to solve the HJB equation (2.2.12) and associated boundary conditions

(2.2.13-2.2.17) that involve optimal control. The main idea used to construct a semi-

Lagrangian discretization of the PDE (2.2.12) is to integrate the PDE along a semi-

Lagrangian trajectory (defined below). Various semi-Lagrangian discretizations can be

obtained by evaluating the resulting integrals using different numerical integration meth-

ods: for example, using the rectangular rule provides a fully implicit timestepping scheme,

while using the trapezoidal rule gives a Crank-Nicolson timestepping scheme.

This section is arranged as follows: we first present an intuitive idea for developing a

semi-Lagrangian discretization for equation (2.2.12). We then present both a fully implicit

and a Crank-Nicolson timestepping scheme based on this idea.

We will show that the fully implicit semi-Lagrangian scheme is identical to a scheme

derived based on a purely physical reasoning, described in Appendix C, under the sce-

nario that the operator of a gas storage facility can change the controls only at fixed

discrete times. This ensures that the fully implicit semi-Lagrangian scheme satisfies

discrete no-arbitrage jump conditions. The correspondence between the fully implicit

semi-Lagrangian discretization and the discrete control problem also holds for other ap-

plications.
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At the end of this section, we reformulate the discrete equations into a matrix form

and present an algorithm to compute the solution.

Prior to presenting the timestepping schemes, we introduce the following notation. We

use an unequally spaced grid in P direction for the PDE discretization, represented by

[P0, P1, . . . , Pimax ]. Similarly, we use an unequally spaced grid in the I direction denoted by

[I0, I1, . . . , Ijmax ]. We denote by 0 < ∆τ <, . . . , < N∆τ = T the discrete timesteps used to

discretize the PDE (2.2.12). Let τn = n∆τ denote the nth timestep. It will be convenient

to define ∆Pmax = maxi
(
Pi+1 − Pi

)
, ∆Pmin = mini

(
Pi+1 − Pi

)
, ∆Imax = maxj

(
Ij+1 − Ij

)
,

∆Imin = minj
(
Ij+1−Ij

)
. We assume that there are mesh size/timestep parameters h such

that

∆Pmax = C1h ; ∆Imax = C2h ; ∆τ = C3h ; ∆Pmin = C ′1h ; ∆Imin = C ′2h. (2.3.1)

where C1, C
′
1, C2, C

′
2, C3 are constants independent of h.

Let V (Pi, Ij, τ
n) denote the exact solution of equation (2.2.12) when the natural gas

spot price resides at node Pi, the gas inventory at node Ij and discrete time at τn. Let

V n
i,j denote an approximation of the exact solution V (Pi, Ij, τ

n). Let L be a differential

operator represented by

LV =
1

2
σ̂2(P )P 2VPP + α(K(t)− P )VP − rV. (2.3.2)

Using the differential operator (2.3.2), we can rewrite the natural gas storage pricing PDE

(2.2.12) as

inf
c∈C(I)

{Vτ + (c+ a(c))VI − (c− a(c))P − LV } = 0. (2.3.3)

We use standard finite difference methods to discretize the operator LV . Let (LhV )ni,j

denote the discrete value of the differential operator (2.3.2) at node (Pi, Ij, τ
n). The

operator (2.3.2) can be discretized using central, forward, or backward differencing in the

P direction to give

(LhV )ni,j = γni V
n
i−1,j + βni V

n
i+1,j − (γni + βni + r)V n

i,j, (2.3.4)

19



where γni and βni are determined using Algorithm B.1 given in Appendix B. The algorithm

guarantees γni and βni satisfy the following positive coefficient condition:

γni ≥ 0 ; βni ≥ 0 i = 0, . . . , imax ; j = 0, . . . , jmax ; n = 1, . . . , N. (2.3.5)

As we will demonstrate in Section 3.2, the positive coefficient property (2.3.5) is sufficient

to ensure convergence of a semi-Lagrangian fully implicit timestepping scheme to the

viscosity solution of the HJB equation (2.2.12). All our discretizations presented in this

thesis are assumed to satisfy the positive coefficient condition.

2.3.1 An Intuitive Derivation

Now we give the intuition for developing the semi-Lagrangian discretization schemes. Let

us consider a path (or a semi-Lagrangian trajectory) I(τ) that follows the ODE

dI
dτ

= c+ a(c). (2.3.6)

According to (2.3.6), we can write the term Vτ + (c + a(c))VI in (2.3.3) in the form of a

Lagrangian directional derivative

DV

Dτ
=
∂V

∂τ
+
∂V

∂I

dI
dτ
. (2.3.7)

Then equation (2.3.3) can be rewritten as

inf
c∈C(I)

{
DV

Dτ
− (c− a(c))P − LV

}
= 0. (2.3.8)

Let us analyze (2.3.6-2.3.8) from a discrete point of view, that is, consider discrete grid

points and discrete times. Let I
(
τ ;Pi, Ij, τ

n+1, ζi,j(τ)
)

denote a path satisfying (2.3.6),

which arrives at a discrete grid point (Pi, Ij) at τ = τn+1 for Pi being held constant and

control following a path ζi,j(τ) with respect to τ . Let I
(
τn;Pi, Ij, τ

n+1, ζi,j(τ
n)
)

be the
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departure point of this path at τ = τn, which can be computed by solving


dI
dτ

(
τ ;Pi, Ij, τ

n+1, ζi,j(τ)
)

= ζi,j(τ) + a
(
ζi,j(τ)

)
for τ < τn+1,

I
(
τ ;Pi, Ij, τ

n+1, ζi,j(τ)
)

= Ij for τ = τn+1,

(2.3.9)

from τ = τn+1 to τ = τn. We can write the solution of (2.3.9) in the integral form as

I
(
τ = τn;Pi, Ij, τ

n+1, ζi,j(τ = τn)
)

= Ij −
∫ τn+1

τn

[
ζi,j(τ) + a

(
ζi,j(τ)

)]
dτ. (2.3.10)

Note that from (2.3.10), the departure point I
(
τn;Pi, Ij, τ

n+1, ζi,j(τ
n)
)

will not necessarily

coincide with a grid point in the I direction. To simplify the notation, in the following we

will use I(τ) = I
(
τ ;Pi, Ij, τ

n+1, ζi,j(τ)
)

without causing ambiguity. An example of the

semi-Lagrangian trajectory I(τ) is illustrated in Figure 2.1.

(Pi, Ij)

P

IIj

(Pi, I(τn))

τn

Pi

τn+1

I(τ)

Figure 2.1: Illustration of a semi-Lagrangian trajectory I(τ) that arrives at a grid
node I(τn+1) = Ij at τ = τn+1 from the departure point I(τn) at τ = τn, where the
value of P remains at Pi. Note that I(τn) normally does not correspond to a discrete
grid node in the I direction.

Integrating both sides of equation (2.3.8) along the path I(τ) from τ = τn to τ = τn+1,
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with P fixed at Pi and control variable c following the path ζi,j(τ), gives

∫ τn+1

τn

inf
ζi,j(τ)∈C(I(τ))

{
DV

Dτ

(
Pi, I(τ), τ

)
− (ζi,j(τ)− a(ζi,j(τ)))Pi − LV

(
Pi, I(τ), τ

)}
dτ

= 0.

(2.3.11)

Interchanging the integral and the inf operator in (2.3.11), assuming that they are inter-

changeable, and using the identity

∫ τn+1

τn

DV

Dτ

(
Pi, I(τ), τ

)
dτ = V

(
Pi, Ij, τ

n+1
)
− V

(
Pi, I(τn), τn) (2.3.12)

we obtain

V
(
Pi, Ij, τ

n+1
)

= sup
ζi,j(τ)∈C(I(τ))

{
V
(
Pi, I(τn), τn

)
+

∫ τn+1

τn

(
ζi,j(τ)− a

(
ζi,j(τ)

))
Pidτ

+

∫ τn+1

τn

LV
(
Pi, I(τ), τ

)
dτ

}
,

(2.3.13)

where I(τ) = I
(
τ ;Pi, Ij, τ

n+1, ζi,j(τ)
)
.

Remark 2.1 (Interchanging the Order of Operations in (2.3.11)). The integral and the

inf operator may not be interchangeable. Moreover, the derivatives in equation (2.3.11)

may not exist since the value function V may not be smooth and needs to be considered

in the sense of the viscosity solution. Thus, our derivation is not rigorous. However,

our purpose here is to illustrate the main idea for developing the schemes. The rigorous

proof of the convergence of the semi-Lagrangian fully implicit discretization to the viscosity

solution of equation (2.2.12) will be given in Section 3.2.

By evaluating the integrals in equations (2.3.10) and (2.3.13) using various numerical

integration schemes, we are able to obtain semi-Lagrangian discretizations of different

orders in time. In this section, we will present the fully implicit and Crank-Nicolson

timestepping schemes which result from approximating the integrals using the rectangular
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rule and trapezoidal rule, respectively. We will use an approach similar to that suggested

in [43].

2.3.2 Fully Implicit Timestepping

In the case of fully implicit timestepping, we approximate the integral in equation (2.3.10)

using the rectangular rule at τ = τn+1. In other words, we evaluate (2.3.10) by assuming

that

ζi,j(τ) ' ζi,j(τ
n+1) for τ ∈ [τn, τn+1]. (2.3.14)

It is perhaps not immediately obvious why we evaluate ζi,j(τ) at τn+1 in approximation

(2.3.14). In Appendix C we show that this choice corresponds to a discretization based on

assuming that the operator of the facility can adjust the controls only at finite intervals,

and that no-arbitrage jump conditions are applied at the control choice times. As a con-

sequence, the fully implicit semi-Lagrangian discretization satisfies discrete no-arbitrage

jump conditions.

Let ζn+1
i,j = ζi,j(τ

n+1) and let In
ĵ

denote an approximation to I(τn) = I
(
τn;Pi, Ij, τ

n+1, ζi,j(τ
n)
)
,

the departure point of the semi-Lagrangian trajectory (2.3.9). The rectangular approxi-

mation of (2.3.10), assuming (2.3.14), gives

In
ĵ

= Ij −∆τ
(
ζn+1
i,j + a

(
ζn+1
i,j

))
, (2.3.15)

where ∆τ = τn+1 − τn.

The control ζn+1
i,j must satisfy the constraint ζn+1

i,j ∈ C(Ij), where C(Ij) = [cmin(Ij),−k5]∪

[0, cmax(Ij)], as defined in equation (2.2.7). Moreover, to prevent the value of In
ĵ

from go-

ing outside of the domain [0, Imax], we need to impose further constraints on ζn+1
i,j . Let

Cn+1
j ⊆ C(Ij) denote the set of values of ζn+1

i,j such that the resulting In
ĵ

calculated from

equation (2.3.15) is bounded within [0, Imax]. Note that Cn+1
j is independent of Pi. We

regard all elements in Cn+1
j as admissible controls.

Equation (2.3.15) provides In
ĵ

as an approximation to I(τn). Hence, V
(
Pi, I

n
ĵ
, τn
)

is

an approximation to V (Pi, I(τn), τn), which is the value function at τn when P is fixed

23



at Pi and I residing at the departure point of the path I(τ). As mentioned above, In
ĵ

usually does not coincide with a grid point in I direction. Thus, we have to choose

an interpolation scheme to approximate V
(
Pi, I

n
ĵ
, τn
)

using discrete grid values V n
i,j, i =

0, . . . , imax, j = 0, . . . , jmax. Let V n
i,ĵ

denote an approximation of V
(
Pi, I

n
ĵ
, τn
)

obtained

by interpolating a set of values V n
i,j with P fixed at Pi and I varied. Therefore, we have

V n
i,ĵ

= V
(
Pi, I

n
ĵ
, τn
)

+ Error

= V (Pi, I(τn), τn) + Error.
(2.3.16)

Evaluating the integrals in (2.3.13) at τ = τn+1 using the rectangular rule, assuming

that the control path ζi,j(τ) follows (2.3.14) and the semi-Lagrangian trajectory I(τ)

satisfies (2.3.15), gives

V n+1
i,j = sup

ζn+1
i,j ∈C

n+1
j

{
V n
i,ĵ

+ ∆τ
(
ζn+1
i,j − a

(
ζn+1
i,j

))
Pi

}
+ ∆τ(LhV )n+1

i,j , (2.3.17)

where V (Pi, I(τn), τn) in (2.3.13) is approximated by V n
i,ĵ

. The last term in (2.3.17)

follows from approximating the second integral in (2.3.13) assuming LV (Pi, I(τ), τ) =

LV (Pi, I(τn+1), τn+1) = LV (Pi, Ij, τ
n+1) for τ ∈ [τn, τn+1] and then replacing the differ-

ential operator LV with its discrete form LhV , given in (2.3.4). Equations (2.3.15-2.3.17)

specify a semi-Lagrangian fully implicit discretization. Assuming the solution value is

smooth, although this is not the case in general, we show in Lemma 3.19 that linear inter-

polation for computing V n
i,ĵ

is sufficient to achieve a first-order global discretization error.

We will also demonstrate the first-order convergence of the fully implicit timestepping

scheme using numerical experiments in Chapter 4.

Using an entirely different approach, in Appendix C, we derive a semi-discretization

based on a discrete optimal control approximation, and no-arbitrage jump conditions. If

we further discretize this method in the (P, I) directions, we obtain a discretization which

is algebraically identical to the fully implicit discretization (2.3.15-2.3.17).
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2.3.3 Crank-Nicolson Timestepping

In order to obtain a higher order discretization in time, we can evaluate the integrals in

(2.3.10) and (2.3.13) using a trapezoidal rule, which results in a Crank-Nicolson timestep-

ping scheme. We assume that the control path ζi,j(τ) is a continuous differentiable func-

tion of time. Let ζni,j = ζi,j(τ
n). Applying the trapezoidal rule to the integral in (2.3.10),

assuming the control is a smooth function of time, gives the following approximation for

In
ĵ

In
ĵ

= Ij −
∆τ

2

(
ζn+1
i,j + a

(
ζn+1
i,j

))
− ∆τ

2

(
ζni,j + a

(
ζni,j
))
. (2.3.18)

Similar to the definition of admissible controls in the previous subsection, we can define

Cn+1
j ⊆ C

(
In
ĵ

)
× C(Ij) be the set of all admissible controls ζni,j and ζn+1

i,j such that the

value In
ĵ

calculated from (2.3.18) resides inside the domain [0, Imax].

Approximating the integrals in (2.3.13) using the trapezoidal rule, assuming that the

control path ζi,j(τ) is a smooth function of time, and that the semi-Lagrangian trajectory

I(τ) follows (2.3.18), then we obtain

V n+1
i,j = sup

(ζn
i,j ,ζ

n+1
i,j )∈Cn+1

j

{
V n
i,ĵ

+
∆τ

2

(
ζn+1
i,j − a

(
ζn+1
i,j

))
Pi

+
∆τ

2

(
ζni,j − a

(
ζni,j
))
Pi +

∆τ

2
(LhV )n

i,ĵ

}
+

∆τ

2
(LhV )n+1

i,j ,

(2.3.19)

where (LhV )n
i,ĵ

is the evaluation of the discrete differential operator (2.3.4) at τ = τn and

(P, I) =
(
Pi, I

n
ĵ

)
with In

ĵ
given in equation (2.3.18). Equations (2.3.18-2.3.19) result in a

semi-Lagrangian Crank-Nicolson discretization.

As in the fully implicit timestepping case, we need to use interpolation to compute

quantities of the form (·)n
i,ĵ

in (2.3.19) since In
ĵ

usually does not reside on a grid point

in I direction. As suggested by [40, 14, 44] for the case when the control is a fixed

constant, second-order global truncation error can be achieved if the P derivatives in LV

are discretized using second-order accurate methods, e.g., central differencing method

(see Appendix B), and quadratic interpolation is used for (·)n
i,ĵ

. Of course, this truncation

error estimate is valid only for smooth solutions. Indeed, in the numerical experiments
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conducted in Chapter 4, we cannot observe second-order convergence for the Crank-

Nicolson timestepping scheme with high-order interpolants.

2.3.4 Solution Algorithm

In order to solve the discrete equations (2.3.15-2.3.17) and (2.3.18-2.3.19), we formulate

the equations into a linear system. We then develop an algorithm to compute the solution

by iterating through the timesteps and solving the corresponding linear system at each

timestep.

Before proceeding to setting up the matrix form for the discrete equations (2.3.15-

2.3.17) and (2.3.18-2.3.19), let us introduce the following notation. Let V n denote a

column vector that includes all values of V n
i,j with the index order arranged as

V n = [V n
0,0, . . . , V

n
imax,0, . . . , V

n
0,jmax

, . . . , V n
imax,jmax

]′. (2.3.20)

Here [ ]′ denotes transpose of a vector. For future reference, assuming M is a square

matrix, we denote [MV n]ij = (MV n)i,j, and set

[MV n]j =
[
(MV n)0,j, . . . , (MV n)imax,j

]′
, (2.3.21)

where the index of (MV n)i,j in MV n is the same as that of V n
i,j in V n.

Based on the discrete differential operator LhV in (2.3.4), we can define a matrix Ln

such that

[Ln · V n]ij = (LhV )ni,j

= [γni V
n
i−1,j + βni V

n
i+1,j − (γni + βni + r)V n

i,j],
(2.3.22)

where the coefficients γni and βni are given in Appendix B.

Let Φn+1 be a Lagrange interpolation operator such that

[
Φn+1 · V n

]
ij

= V n
i,ĵ

+ interpolation error, (2.3.23)
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where Φn+1 can represent any order (linear, quadratic) of Lagrangian interpolation. Let[
Φn+1V n

]
j

denote a column vector with entries

[[
Φn+1V n

]
j

]
i

=
[
Φn+1V n

]
i,j

. (2.3.24)

Let P denote a column vector satisfying [P ]i = Pi. Let ζnj and ζn+1
j be diagonal

matrices with diagonal entries
[
ζnj
]
ii

= ζni,j and
[
ζn+1
j

]
ii

= ζn+1
i,j . Similarly, let a

(
ζnj
)

and

a
(
ζn+1
j

)
denote diagonal matrices with diagonal entries

[
a
(
ζnj
)]
ii

= a
(
ζni,j
)
,
[
a
(
ζn+1
j

)]
ii

=

a
(
ζn+1
i,j

)
. Let I be an identity matrix. Given the above notations, the discrete equations

(2.3.15-2.3.17) and (2.3.18-2.3.19) together can be written in a θ-form as

[
[I− (1− θ)∆τLn+1]V n+1

]
j

=
[
Φn+1

[
I + θ∆τLn

]
V n
]
j
+

(1− θ)∆τ
(
ζn+1
j − a

(
ζn+1
j

))
P + θ∆τ

(
ζnj − a

(
ζnj
))
P

where
[
ζnj
]
ii
,
[
ζn+1
j

]
ii

= arg max
([ζn

j ]ii,[ζ
n+1
j ]ii)∈Cn+1

j

{[[
Φn+1[I + θ∆τLn]V n

]
j
+

(1− θ)∆τ
(
ζn+1
j − a

(
ζn+1
j

))
P + θ∆τ

(
ζnj − a

(
ζnj
))
P
]
i

}
(2.3.25)

for j = 0, . . . , jmax. Here θ = 0 corresponds to fully implicit timestepping, and θ = 1/2

is Crank-Nicolson timestepping. Note that we can use the operation arg max in (2.3.25)

because the supremums in (2.3.17) and (2.3.19) can be achieved by a control ζn+1
i,j and a

control pair (ζni,j, ζ
n+1
i,j ), respectively, according to the arguments in Section 2.4.

After setting the matrix form, the solution to HJB equation (2.2.12) and the associated

boundary conditions can be computed using Algorithm 2.1.

Remark 2.2. As described in [46], a standard implicit finite difference discretization for

equation (2.2.12) requires a Policy type iteration at each timestep to solve the nonlin-

ear discretized algebraic equations. An alternative approach uses an explicit timestepping

method, but an explicit method suffers from the usual parabolic stability condition. How-

ever, Algorithm 2.1, which uses a semi-Lagrangian discretization, avoids the need for

Policy iteration. Instead, Algorithm 2.1 replaces the non-linearity involving V n+1 with

local optimization problems involving V n, the known solution from the previous timestep.
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V 0 = Option Payoff

For n = 0, . . . , // Timestep loop

For j = 1, . . . , // Loop through nodes in I direction

For i = 1, . . . , // Loop through nodes in P direction[
ζnj
]
ii
,
[
ζn+1
j

]
ii

= argmax
([ζn

j ]ii,[ζ
n+1
j ]ii)∈Cn+1

j

{[[
Φn+1[I + θ∆τLn]V n

]
j
+

(1− θ)∆τ
(
ζn+1
j − a

(
ζn+1
j

))
P + θ∆τ

(
ζnj − a

(
ζnj
))
P
]
i

}
EndFor

Solve[
[I− (1− θ)∆τLn+1]V n+1

]
j

=
[
Φn+1

[
I + θ∆τLn

]
V n
]
j
+

(1− θ)∆τ
(
ζn+1
j − a

(
ζn+1
j

))
P + θ∆τ

(
ζnj − a

(
ζnj
))
P

EndFor

EndFor

Algorithm 2.1: Semi-Lagrangian timestepping

Remark 2.3. At each timestep in Algorithm 2.1 all discrete equations in the I direction

are decoupled and independent of each other. This property makes solution of the gas

storage contract straightforward to implement.

2.4 Solving the Local Optimization Problem

According to Algorithm 2.1, we need to solve a constrained optimization problem

sup
(ζn

i,j ,ζ
n+1
i,j )∈Cn+1

j

{
V n
i,ĵ

+ (1− θ)∆τ
(
ζn+1
i,j − a

(
ζn+1
i,j

))
Pi+ (2.4.1)

θ∆τ
(
ζni,j − a

(
ζni,j
))
Pi + θ∆τ(LhV )n

i,ĵ

}
,

with In
ĵ

= Ij − (1− θ)∆τ
(
ζn+1
i,j + a

(
ζn+1
i,j

))
− θ∆τ

(
ζni,j + a

(
ζni,j
))

(2.4.2)

at every mesh node (Pi, Ij) and at every discrete timestep τn.

According to [80], the exact solution of equation (2.2.12) has the property that the

controls are of the bang-bang type, i.e. the optimal controls can take on only the values
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in a finite set {0, cmax(I), cmin(I)}. Nevertheless, for a finite grid size, the solution of the

discrete optimization problem (2.4.1) may allow controls which are not optimal controls for

the exact solution of the HJB equation. Consequently, there are two possible approaches

for determining the optimal controls at each grid node. We can use our knowledge of the

exact controls to search only for optimal controls within the known finite set of possible

values. In other words, the set of admissible controls is finite in this case, hence this

approach is consistent with the control behaviour in the exact solution. We refer to

this approach as the bang-bang method. Alternatively, we can simply solve the discrete

optimization problem in (2.4.1), and allow any admissible control. We will refer to this

technique as the no bang-bang method.

In this section, we give an overview of the bang-bang and no bang-bang methods for

solving problem (2.4.1). The details are tedious and therefore are omitted in this thesis.

No bang-bang method

Problem (2.4.1) is nonlinear since the admissible set Cn+1
j for controls depends on the

value of In
ĵ

, which in turn is a function of controls. This makes it difficult to directly solve

problem (2.4.1), especially in the case of Crank-Nicolson timestepping.

We simplify the problem by changing unknowns from ζni,j, ζ
n+1
i,j to In

ĵ
. Specifically, we

can write equation (2.4.2) as

(1− θ)∆τζn+1
i,j + θ∆τζni,j =

(
Ij − Inĵ

)
− (1− θ)∆τa

(
ζn+1
i,j

)
− θ∆τa

(
ζni,j
)
. (2.4.3)

Substituting equation (2.4.3) into (2.4.1) leads to

sup
(ζn

i,j ,ζ
n+1
i,j )∈Cn+1

j

{
V n
i,ĵ
− In

ĵ
Pi + θ∆τ(LhV )n

i,ĵ

− 2(1− θ)∆τa
(
ζn+1
i,j

)
Pi − 2θ∆τa

(
ζni,j
)
Pi

}
+ IjPi .

(2.4.4)

In the following we consider Crank-Nicolson timestepping (θ = 1/2) in (2.4.4); the same

method can be applied to fully implicit timestepping, which is a much easier problem
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compared to Crank-Nicolson timestepping. Since the values of a(ζn+1
i,j ) and a(ζni,j) are

either 0 or k5 according to the signs of ζn+1
i,j and ζni,j (see (2.2.5)), we can drop the de-

pendence of the objective function in (2.4.4) on ζn+1
i,j , ζni,j by separately considering four

regions corresponding to the different combinations of signs of ζn+1
i,j and ζni,j. For example,

one region is (ζn+1
i,j , ζni,j) ∈ [0, cmax(Ij)] ×

[
0, cmax

(
In
ĵ

)]
; when ζn+1

i,j , ζni,j lie in this region

we have a(ζn+1
i,j ) = a(ζni,j) = 0. Meanwhile, for all controls ζn+1

i,j , ζni,j in any of the four

regions, it can be shown that the corresponding values of In
ĵ

consist of a closed interval

[Inmin, I
n
max] ⊆ [0, Imax], where the bounds Inmin and Inmax are independent of controls ζn+1

i,j

and ζni,j. Therefore, through changing of unknowns, instead of solving one two-dimensional

nonlinear optimization problem (2.4.1), identically, we can solve four one-dimensional op-

timization problems and pick the maximum value among the four; each of the optimization

problems has the form

max
In
ĵ
∈[In

min,I
n
max]

{
V n
i,ĵ
− In

ĵ
Pi + θ∆τ(LhV )n

i,ĵ

}
− 2(1− θ)∆τDn+1Pi − 2θ∆τDnPi + IjPi,

(2.4.5)

where Dn, Dn+1 are constants determined by the signs of ζni,j and ζn+1
i,j . Note that V n

i,ĵ
−

In
ĵ
Pi + θ∆τ(LhV )n

i,ĵ
is a function of In

ĵ
, representing a curve constructed by linear or

quadratic interpolation using discrete values V n
i,j and (LhV )ni,j, j = 0, . . . , jmax. The curve

generated by our interpolation method (see below) is continuous and bounded. As a

result, the supremum is achieved by a value of In
ĵ

since the interval [Inmin, I
n
max] is closed.

Therefore, we can use the max expression to replace the sup expression.

If linear interpolation is used, then the optimal value of In
ĵ

for problem (2.4.5) resides

either at boundaries Inmin, I
n
max or at discrete grid nodes lying between Inmin and Inmax. As

a result, we only need to check the boundaries and the discrete nodes and return the

maximum value as the solution to problem (2.4.5).

If quadratic interpolation is used, then we divide interval [Inmin, I
n
max] into several sub-

intervals; within each sub-interval, the same interpolation stencils are used to compute

quantities (·)n
i,ĵ

. For each sub-interval, we calculate the maximum value of the objective

function in (2.4.5) with In
ĵ

residing inside that sub-interval. Finally, we compare the values

30



calculated for all sub-intervals and select the maximum as the solution to problem (2.4.5).

The sub-intervals are chosen such that the interpolation curves are continuous within

[Inmin, I
n
max]. To reduce the effect of non-monotonicity caused by quadratic interpolation,

we limit the interpolation by requiring [93, 14] (assuming Is ≤ In
ĵ
≤ Is+1)

V n
i,ĵ
≤ max

{
V n
i,s , V

n
i,s+1

}
; V n

i,ĵ
≥ min

{
V n
i,s , V

n
i,s+1

}
. (2.4.6)

In the case of fully implicit timestepping, after obtaining the optimal In
ĵ

for problem

(2.4.1), we can compute the optimal control ζn+1
i,j from equation (2.4.3). In this case, the

variables In
ĵ

and ζn+1
i,j have physical meanings. Recall the discrete optimal control scenario

described in Appendix C. Under this scenario, Ij and In
ĵ

represent the gas inventory at the

forward times t = tk and t = tk+1, respectively, where tk = T − τn+1; ζn+1
i,j represent the

optimal operation that the operator imposes on the storage facility during the interval

[tk, tk+1). In the case of Crank-Nicolson timestepping, although we can solve problem

(2.4.1), given the optimal value of In
ĵ

, we cannot uniquely determine the values of the

control variables ζni,j and ζn+1
i,j from (2.4.3). Nor do these variables have simple physical

meanings.

Bang-bang method

As shown in [80], the optimization problem

sup
c∈C(I)

{(c− a(c))P − (c+ a(c))VI} (2.4.7)

in PDE (2.2.12) exhibits a bang-bang control feature. Specifically, the optimal value for

c in (2.4.7) is either cmax(I), cmin(I), or 0. Therefore, we can reformulate (2.4.7) into an

equivalent equation given as follows:

sup
c∈{cmax(I),cmin(I),0}

{(c− a(c))P − (c+ a(c))VI}. (2.4.8)
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The bang-bang method will solve the discrete optimization problem resulting from dis-

cretizing the following gas pricing PDE equivalent to (2.2.12):

Vτ =
1

2
(σ̂(P )P )2VPP +α(K(t)−P )VP + sup

c∈{cmax(I),cmin(I),0}
{(c−a(c))P − (c+a(c))VI}−rV.

(2.4.9)

Since (2.2.12) and (2.4.9) have the same viscosity solution, the maximums determined

with the bang-bang and no bang-bang methods will coincide as h→ 0.

To obtain the optimization problem corresponding to PDE (2.4.9), we can force the

controls in (2.4.1) to be of bang-bang type by only examining controls ζn+1
i,j , ζni,j that satisfy

ζn+1
i,j ∈

{
cmax(Ij), cmin(Ij), 0

}
; ζni,j ∈

{
cmax(In

ĵ
), cmin(In

ĵ
), 0
}
. (2.4.10)

Note that the controls from (2.4.10) may not be admissible1, that is, the resulting In
ĵ

calculated from (2.4.2) either lies outside of domain [0, Imax] or does not exist.

Taking the admissible control requirement into consideration, our bang-bang control

method is summarized as follows: for each pair (ζn+1
i,j , ζni,j) from (2.4.10), if it is admissible,

then we evaluate the objective function in (2.4.1) using the pair and save the evaluated

value as a candidate solution for problem (2.4.1).

Otherwise, assume that a pair (ζn+1
i,j , ζni,j) satisfying (2.4.10) is not admissible, we eval-

uate the objective function in (2.4.1) using admissible controls that reside in the same

region as the pair (ζn+1
i,j , ζni,j) and result in the maximum or minimum bounds of In

ĵ
. To

illustrate the idea, let us consider a specific case when (ζn+1
i,j , ζni,j) =

(
cmax(Ij), cmax

(
In
ĵ

))
and (ζn+1

i,j , ζni,j) is not admissible. In this case, the pair (ζn+1
i,j , ζni,j) resides in region

[0, cmax(Ij)] × [0, cmax

(
In
ĵ

)]
. As explained above in the no bang-bang method, for all

controls in this region, the corresponding values of In
ĵ

consist of an interval [Inmin, I
n
max].

Then we compute the value of the objective function in (2.4.1) by using two pairs of ad-

missible controls that result in In
ĵ

= Inmin and In
ĵ

= Inmax, respectively. A similar strategy

is applied if other pairs of controls satisfying (2.4.10) are not admissible.

After evaluating the objective function in (2.4.1) using different pairs of admissible

1 However, according to Lemma D.1, (ζn+1
i,j , ζn

i,j) are always admissible if ∆τ is sufficiently small.
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controls, as described above, we return the maximum value as the solution to problem

(2.4.1).

Remark 2.4. The maximum determined with the no bang-bang approach is consistent

with the exact maximum of (2.4.1) for any smooth test function, with numerical error

bounded by O(h2), where h is the mesh size/timestep parameter given in (2.3.1).

On the other hand, the maximum determined with the bang-bang approach is consis-

tent with the exact maximum of the local optimization problem corresponding to the HJB

equation (2.4.9).

Remark 2.5. When incorporating nonlinear revenue structures, the control for the re-

sulting equation is not of bang-bang type. The no bang-bang method (but not the bang-bang

method) can still be used to solve the optimization problem in the case of fully implicit

timestepping (θ = 0). Thus, the fully implicit semi-Lagrangian discretization is applicable

to a wide range of HJB equations including those that inherit the no bang-bang control

feature.

Remark 2.6 (Computational Complexity). Since the controls are bounded, it is easy

to see, from equations (2.3.6), (2.3.18) and (2.3.1), that the number of nodes that must

be examined to solve the local optimization problem at each node, using both bang-bang

and no bang-bang methods, is a constant independent of h. Since equation (2.3.6) is

independent of P , we can precompute and store interpolation indices and weights. In

addition, the linear system solve has been reduced to a set of decoupled one-dimensional

problems. Hence the complexity per timestep of the implicit semi-Lagrangian scheme

is linear in the total number of nodes. Thus the complexity per timestep of the fully

implicit semi-Lagrangian scheme is the same as an explicit method, but it has the obvious

advantage of being unconditionally stable.

2.5 Summary

Our contributions in this chapter are summarized as follows:
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• We formulate the valuation of gas storage facilities as a bounded stochastic control

problem and heuristically derive an HJB PDE corresponding to the problem.

• We develop a fully implicit and a Crank-Nicolson finite difference schemes based

on a semi-Lagrangian method for solving the HJB equation and obtain the optimal

control strategies.

• We show (in Appendix C) that the fully implicit, semi-Lagrangian discretization is

algebraically identical to a discretization based on assuming that the operations on

the storage are performed only at discrete times.

• We show that, compared to the standard implicit methods, semi-Lagrangian timestep-

ping methods avoid the need for Policy type iterations at each node at each timestep.

Instead, the methods require solution of a discrete local optimization problem at

each mesh point in order to determine the optimal control value. The optimization

problem can be solved efficiently so that the complexity per timestep of the fully

implicit semi-Lagrangian scheme is the same as that of an explicit method or the

complexity per iteration per timestep of a standard implicit method.
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Chapter 3

Convergence Analysis

In the previous chapter we have developed numerical schemes for pricing the natural gas

storage PDE, corresponding to a bounded stochastic control problem. Since there is no

guarantee that the classical solutions exist, the convergence analysis for the numerical

schemes will be conducted within the framework of viscosity solutions. Consequently, in

this chapter we give an introduction to the notation of viscosity solutions and prove the

convergence of the fully implicit, semi-Lagrangian scheme to the viscosity solution. We

will present some numerical results in the next chapter.

3.1 Viscosity Solution

The pricing PDE (2.2.12) is nonlinear. This implies that the PDE has in general no

classical solutions; in other words, the first and second order derivatives of solution V

may not exist. Consequently, it is impossible to analyze the solution using the classi-

cal approach. To solve this type of problems, the notion of ‘weak’ solutions—viscosity

solutions—was introduced in [30] for first-order Hamilton-Jacobi equations and in [65] for

the second-order HJB equations. The theory of viscosity solutions is powerful because it

does not require the existence of derivatives of the solution and even allows the solution to

be discontinuous (see Section 3.1.3). See [29] for a complete presentation of the viscosity

solutions. Furthermore, we prefer the viscosity solution because in general it is identical
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to the value function of the corresponding stochastic control problem, as discussed in

Section 2.2.4.

This section defines viscosity solutions for the gas storage pricing PDE (2.2.12) and

the associated boundary conditions. The definition can be easily generalized to other HJB

equations or HJB variational inequalities presented in the rest of the thesis.

3.1.1 Intuition

Similar to the explanation in [6, 89], we give an intuitive introduction to viscosity solutions

by studying its connection with the smooth classical solutions.

Let us define a vector x = (P, I, τ), and let DV (x) = (VP , VI , Vτ ) and D2V (x) = VPP .

We can write equation (2.2.12) as

F
(
D2V (x), DV (x), V (x),x

)
≡ Vτ − LV − sup

c∈C(I)

[
(c− a(c))P − (c+ a(c))VI

]
= 0,

(3.1.1)

where the operator LV is defined in (2.3.2)

LV =
1

2
σ̂(P )2P 2VPP + α(K(t)− P )VP − rV. (3.1.2)

Let Ω̄ = [0, Pmax]×[0, Imax]×[0, T ] denote the closed domain where our problem is defined.

Let Ω = [0, Pmax]× [0, Imax]× (0, T ] be the region obtained from excluding the τ = 0 plane

from Ω̄. Let Ω0 = Ω̄\Ω = [0, Pmax] × [0, Imax] × {0}. It can be verified that the function

F (M, p, g, y)(M = D2V, p = DV, g = V, y = x) satisfies the ellipticity condition

F (M, p, g, y) ≤ F (N, p, g, y) if M ≥ N, (3.1.3)

since in our case σ̂2(P )P 2 ≥ 0. It can also be verified that F (M, p, g, y) is continuous on

Ω. Suppose for the moment that a smooth solution to equation (3.1.1) exists so that DV

and D2V are well defined.
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Let us consider a set of smooth test functions φ(x). Assume there exists a single point

x0 ∈ Ω such that x0 is a global maximum of (V −φ) in Ω and satisfies V (x0) = φ(x0). In

other words, we have

V − φ ≤ 0, for any x ∈ Ω,

max(V − φ) = V (x0)− φ(x0) = 0, x0 ∈ Ω.
(3.1.4)

Consequently, at x0, we have

Dφ(x0) = DV (x0) and D2φ(x0) ≥ D2V (x0). (3.1.5)

Hence, from equations (3.1.3) and (3.1.5) we have

F
(
D2φ(x0), Dφ(x0), V (x0),x0

)
= F

(
D2φ(x0), DV (x0), V (x0),x0

)
≤ F

(
D2V (x0), DV (x0), V (x0),x0

)
= 0.

(3.1.6)

From the analysis above, we can observe that the equation

F
(
D2V (x), DV (x), V (x),x

)
= 0 (3.1.7)

implies the inequality

F
(
D2φ(x0), Dφ(x0), V (x0),x0

)
≤ 0 (3.1.8)

for any smooth test function φ satisfying

V − φ ≤ 0, for any x ∈ Ω,

max(V − φ) = V (x0)− φ(x0) = 0, x0 ∈ Ω.
(3.1.9)

Let us now consider another set of smooth test functions χ(x) such that

V − χ ≥ 0, for any x ∈ Ω,

min(V − χ) = V (x0)− χ(x0) = 0, x0 ∈ Ω.
(3.1.10)
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That is, there exists a single point x0 ∈ Ω such that x0 is a global minimum of (V − χ)

in Ω and satisfies V (x0) = χ(x0). Following a similar analysis, for such test functions χ,

we can obtain the inequality

F
(
D2χ(x0), Dχ(x0), V (x0),x0

)
≥ 0. (3.1.11)

Now that we have shown that equation (3.1.1) implies inequalities (3.1.8) and (3.1.11)

defined using smooth test functions, we can prove that the reverse is also true, i.e., we can

derive equation (3.1.1) from inequalities (3.1.8) and (3.1.11). To show this, we can take

φ = V and χ = V as the special test functions and using the arguments similar to the

above to show that F
(
D2V (x), DV (x), V (x),x

)
is both non-positive and non-negative at

any point x0 ∈ Ω since any x0 is both a global maximum and minimum point of V − V .

Therefore, assuming the existence of the classical solution for equation (3.1.1), we can

obtain an equivalent specification through the inequalities (3.1.8) and (3.1.11) based on

smooth test functions. However, in case the smooth solution does not exist for (3.1.1), we

can still use conditions (3.1.8-3.1.9) and (3.1.10-3.1.11) to define a solution to equation

(3.1.1) since all derivatives still apply to smooth test functions. This is the intuition of in-

troducing viscosity solutions. Informally, a viscosity solution V (assuming it is continuous

for the moment) to equation (2.2.12) is defined such that

• For any smooth test function φ with Dφ(x) and D2φ(x) well defined in Ω and

V − φ ≤ 0 for any x ∈ Ω, V (x0) = φ(x0), x0 ∈ Ω (3.1.12)

(φ touches V from above at the single point x0), then

F
(
D2φ(x0), Dφ(x0), V (x0),x0

)
≤ 0. (3.1.13)

• For any smooth test function χ with Dχ(x) and D2χ(x) well defined in Ω and

V − χ ≥ 0 for any x ∈ Ω, V (x0) = χ(x0), x0 ∈ Ω (3.1.14)
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(χ touches V from below at the single point x0), then

F
(
D2χ(x0), Dχ(x0), V (x0),x0

)
≥ 0. (3.1.15)

In Figure 3.1, we illustrate a synthetic non-smooth viscosity solution as well as an example

of test functions.

Viscosity
Solution

F ≤ 0

F ≥ 0

State Variable

Figure 3.1: Illustration of continuous viscosity solution definition. The upper dashed
curve represents a smooth test function φ that touches the viscosity solution from above
at a point x0, and F

(
D2φ(x0), Dφ(x0), V (x0),x0

)
≤ 0. The lower dashed curve repre-

sents a smooth test function χ that touches the viscosity solution from below at a point
x0, and F

(
D2χ(x0), Dχ(x0), V (x0),x0

)
≥ 0. Note that there may exist some points

where a smooth test function can touch the viscosity solution only from above or be-
low, or neither. The non-smooth kink point of the viscosity solution in the figure is an
example of such a point where the test function can touch only from above.

3.1.2 Incorporating Boundary Conditions

The pricing PDE (2.2.12) is coupled with boundary conditions (2.2.13-2.2.17). Conse-

quently, the notation of viscosity solutions must take into account the boundary behaviour.

However, as pointed out in [6, 72], if a boundary equation is degenerate in the sense that

the diffusion term is missing from the equation, then the solution may be discontinuous

on the boundary since there is no diffusion effect to smooth out the solution across the

boundary. In other words, the solution in the interior domain can be different from the

solution on the boundary. Therefore, the definition of viscosity solutions needs to handle
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the discontinuity of the solution on the boundary. In this section, we introduce continuous

viscosity solutions that incorporate the boundary conditions. In the next section we will

relax the continuity assumption and define the discontinuous viscosity solutions to handle

the most general case.

Using the notation in (3.1.1), we can rewrite the pricing PDE (2.2.12) and the associ-

ated boundary conditions (2.2.13-2.2.17) in the closed domain Ω̄ as

F
(
D2V (x), DV (x), V (x),x

)
= 0 if x ∈ Ω = [0, Pmax]× [0, Imax]× (0, T ], (3.1.16)

V (x)−B(x) = 0 if x ∈ Ω0 = [0, Pmax]× [0, Imax]× {0}, (3.1.17)

where B(x) is a function of (P, I) representing the payoff at τ = 0 and function F is

defined in (3.1.1). Note that as shown in Section 2.2.5, the equations on the bound-

aries I = {0, Imax} and P = {0, Pmax} are obtained from taking the limit of equation

F
(
D2V (x), DV (x), V (x),x

)
= 0 from the interior domain towards the boundaries. As a

result, we use a single equation in (3.1.16) to incorporate all these equations since they

are essentially the same.

Since the solution of problem (3.1.16-3.1.17) may be discontinuous on the boundary

τ = 0, we need to relax the condition at τ = 0 in the following manner:

F
(
D2V (x), DV (x), V (x),x

)
= 0 or V (x)−B(x) = 0 if x ∈ Ω0. (3.1.18)

This implies that the solution at τ = 0 will either satisfy the equation for the interior

domain or the payoff V −B = 0.

Using the above formulation can make it easy to present the problem. For example, at

the strike price, the value of a digital option is discontinuous when t→ T , where T is the

maturity time; while away from the strike price, the values are continuous when t → T .

As another example, a controlled PDE may have inward or outward characteristics for

different regions on the boundary depending on the values of optimal control at each

region. This will result in the solution being continuous at some regions on the boundary

and being discontinuous at the other regions on the boundary. Using the formulation
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(3.1.18), we do not need to enumerate all possible continuous/discontinuous regions and

hence have a simple statement of the problem.

Note that condition (3.1.18) needs to be satisfied in the viscosity sense, i.e., the vis-

cosity solution V (assuming it is continuous for the moment) at the boundary τ = 0 is

defined such that

• For any smooth test function φ with Dφ(x) and D2φ(x) well defined in Ω0 and

V − φ ≤ 0 for any x ∈ Ω0, V (x0) = φ(x0), x0 ∈ Ω0 (3.1.19)

(φ touches V from above at the single point x0), then

F
(
D2φ(x0), Dφ(x0), V (x0),x0

)
≤ 0 or V (x0)−B(x0) ≤ 0

⇐⇒ min
[
F
(
D2φ(x0), Dφ(x0), V (x0),x0

)
, V (x0)−B(x0)

]
≤ 0. (3.1.20)

• For any smooth test function χ with Dχ(x) and D2χ(x) well defined in Ω0 and

V − χ ≥ 0 for any x ∈ Ω0, V (x0) = χ(x0), x0 ∈ Ω0 (3.1.21)

(χ touches V from below at the single point x0), then

F
(
D2χ(x0), Dχ(x0), V (x0),x0

)
≥ 0 or V (x0)−B(x0) ≥ 0

⇐⇒ max
[
F
(
D2χ(x0), Dχ(x0), V (x0),x0

)
, V (x0)−B(x0)

]
≥ 0. (3.1.22)

Let us now introduce definition of the continuous viscosity solution in whole domain

Ω̄ = Ω ∪ Ω0. First we define functions F− and F+ in Ω̄ satisfying

F−
(
M, p, g, y

)
(M = D2V, p = DV, g = V, y = x)

=

 F
(
M, p, g, y

)
if y ∈ Ω,

min
[
F
(
M, p, g, y

)
, g −B(y)

]
if y ∈ Ω0.

(3.1.23)
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and

F+

(
M, p, g, y

)
(M = D2V, p = DV, g = V, y = x)

=

 F
(
M, p, g, y

)
if y ∈ Ω,

max
[
F
(
M, p, g, y

)
, g −B(y)

]
if y ∈ Ω0.

(3.1.24)

Using the notation of (3.1.23-3.1.24) and from the discussion above, we can define a

continuous viscosity solution V in Ω̄ as follows:

Definition 3.1 (Continuous Viscosity Solutions). A continuous function V (x) is a vis-

cosity solution of (3.1.16-3.1.17) in the closed domain Ω̄ = [0, Pmax] × [0, Imax] × [0, T ]

if

• For any smooth test function φ(x), x ∈ Ω̄, with Dφ(x) and D2φ(x) well defined in

Ω̄ and

V − φ ≤ 0 for any x ∈ Ω̄, V (x0) = φ(x0), x0 ∈ Ω̄ (3.1.25)

(φ touches V from above at the single point x0),

F−
(
D2φ(x0), Dφ(x0), V (x0),x0

)
≤ 0. (3.1.26)

• For any smooth test function χ(x), x ∈ Ω̄, with Dχ(x) and D2χ(x) well defined in

Ω̄ and

V − χ ≥ 0 for any x ∈ Ω̄, V (x0) = χ(x0), x0 ∈ Ω̄ (3.1.27)

(χ touches V from below at the single point x0),

F+

(
D2χ(x0), Dχ(x0), V (x0),x0

)
≥ 0. (3.1.28)

Remark 3.2. In Definition 3.1, there may exist points x0 where none of the test functions

φ(x), χ(x) exist.
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3.1.3 Discontinuous Viscosity Solutions

In Definition 3.1, the viscosity solution to the system is assumed to be continuous. In order

to define discontinuous viscosity solutions, we will need to use semi-continuous functions,

as introduced in Definition 3.3.

Definition 3.3 (Semi-Continuous Functions). Assume X is a subset of RN and f(x) :

X → R is a function of x defined in X. Then f is upper semi-continuous (usc) at x0 ∈ X

if

lim sup
x→x0
x∈X

f(x) ≤ f(x0). (3.1.29)

A function g(x) : X → R is lower semi-continuous (lsc) at x0 ∈ X if

lim inf
x→x0
x∈X

g(x) ≥ g(x0). (3.1.30)

Remark 3.4. If (3.1.29) holds with equality, then the function f(x) will either be con-

tinuous or be left or right continuous at x0. Figure 3.2a gives such an example. If, on

the other hand, (3.1.29) holds with strict inequality, then f(x) is neither left nor right

continuous at x0, and f(x0) will be strictly greater than the values of the neighbour points

of x0. An example is shown in Figure 3.2b.

Similarly, if (3.1.30) holds with equality, then the function g(x) will either be contin-

uous or be left or right continuous at x0. Figure 3.3a gives such an example. If (3.1.30)

holds with strict inequality, then g(x) is neither left nor right continuous at x0, and g(x0)

will be strictly smaller than the values of the neighbour points of x0. An example is shown

in Figure 3.3b.

Definition 3.5 (Viscosity Subsolutions). Let f(x) be a locally bounded function defined

in Ω̄. f is a viscosity subsolution of (3.1.16-3.1.17) if it is a usc function and if for any

smooth test function φ(x), x ∈ Ω̄, with Dφ(x) and D2φ(x) well defined in Ω̄ and

f − φ ≤ 0 for any x ∈ Ω̄, f(x0) = φ(x0), x0 ∈ Ω̄ (3.1.31)
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x0

(a) Continuous at one side

x0

(b) Discontinuous at both sides

Figure 3.2: Examples of usc functions. The value of the filled point indicates f(x0).

x0

(a) Continuous at one side

x0

(b) Discontinuous at both sides

Figure 3.3: Examples of lsc functions. The value of the filled point indicates g(x0).
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(φ touches f from above at the single point x0), we have

F−
(
D2φ(x0), Dφ(x0), f(x0),x0

)
≤ 0. (3.1.32)

Definition 3.6 (Viscosity Supersolutions). Let g(x) be a locally bounded function defined

in Ω̄. g is a viscosity supersolution of (3.1.16-3.1.17) if it is a lsc function and if for any

smooth test function χ(x), x ∈ Ω̄, with Dχ(x) and D2χ(x) well defined in Ω̄ and

g − χ ≥ 0 for any x ∈ Ω̄, g(x0) = χ(x0), x0 ∈ Ω̄ (3.1.33)

(χ touches g from below at the single point x0), we have

F+

(
D2χ(x0), Dχ(x0), g(x0),x0

)
≥ 0. (3.1.34)

We can now use viscosity subsolutions and supersolutions to define discontinuous

viscosity solutions. Prior to that, we need to further introduce the usc and lsc envelopes.

Definition 3.7. If C is a closed subset of RN and f(x) : C → R is a function of x

defined in C, then the upper semi-continuous (usc) envelope f ∗(x) : C → R and the lower

semi-continuous (lsc) envelope f∗(x) : C → R are defined by

f ∗(x) = lim sup
y→x
y∈C

f(y) and f∗(x) = lim inf
y→x
y∈C

f(y), (3.1.35)

respectively. Note that in contrast to the definition of limit where only neighbour points

of x excluding x itself are considered, in this definition, y in (3.1.35) includes both the

point x and its neighbour points. f ∗ is usc in C and f∗ is lsc in C.

Remark 3.8. According to (3.1.35), we have

f∗(x0) ≤ f ∗(x0), ∀x0 ∈ C (3.1.36)

and f is continuous at x0 if (3.1.36) holds with equality.
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Remark 3.9. If f is usc in some region C0 ⊆ C, then

f ∗(x) = f(x), ∀x ∈ C0. (3.1.37)

Similarly, if f is lsc in some region C1 ⊆ C, then

f∗(x) = f(x), ∀x ∈ C1. (3.1.38)

Remark 3.10. Using the usc and lsc envelopes, we can unify F− and F+ in (3.1.23-

3.1.24) through a single equation as follows. Let F̄ denote a function defined in Ω̄ given

by

F̄
(
M, p, g, y

)
(M = D2V, p = DV, g = V, y = x)

=

 F
(
M, p, g, y

)
if y ∈ Ω = [0, Pmax]× [0, Imax]× (0, T ],

g −B(y) if y ∈ Ω0 = [0, Pmax]× [0, Imax]× {0},

(3.1.39)

where function F is defined in (3.1.1) and g−B(y) is the boundary equation at the payoff

time τ = 0. Then it can be verified that

F− = F̄∗,

F+ = F̄ ∗
(3.1.40)

since functions F (M, p, g, y) and g − B(y) are continuous. Therefore, we can replace

(3.1.32) and (3.1.34) with

F̄∗
(
D2φ(x0), Dφ(x0), f(x0),x0

)
≤ 0. (3.1.41)

and

F̄ ∗
(
D2χ(x0), Dχ(x0), g(x0),x0

)
≥ 0. (3.1.42)

We will use conditions (3.1.41) and (3.1.42) in the rest of this thesis.

We can now introduce the discontinuous viscosity solutions.
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Definition 3.11 (Discontinuous Viscosity Solutions). A locally bounded (possible dis-

continuous) function V (x), x ∈ Ω̄ is a viscosity solution of system (3.1.16-3.1.17) if its

usc envelope V ∗ and its lsc envelope V∗ are the viscosity subsolution and supersolution of

(3.1.16-3.1.17), respectively.

Remark 3.12 (Non-uniqueness of the Solution). Figure 3.4 illustrates a synthetic dis-

continuous viscosity solution as well as the corresponding subsolution and supersolution.

From the figure, we can observe an important issue: the viscosity solutions are not unique

at discontinuous points. For example, in Figure 3.4a, we can reset the solution value V

at x0 as any value between limx→[x0]− V (x) and limx→[x0]+ V (x) (the values with respect to

the two unfilled balls). The resulting solution is still a valid viscosity solution since the

corresponding usc and lsc envelopes remain the same.

3.1.4 Strong Comparison Result

In Section 3.1.3, we give the notation for (possible) discontinuous viscosity solutions. We

also show in Remark 3.12 that the viscosity solution is not unique at the discontinuous

points. However, in many cases the viscosity solution is continuous and unique, especially

in the interior domain. Therefore, it would be desirable to further prove the continuity

of the solution (if this is true). The strong comparison result serves as a powerful tool to

prove the continuity and uniqueness of the viscosity solution.

The strong comparison result allows us to compare any pair of viscosity subsolution and

supersolution in a region inside the solution domain. The notation of strong comparison

result is given as follows:

Definition 3.13 (Strong Comparison Result). The strong comparison result for problem

(3.1.16-3.1.17) holds in a domain Ω′ ⊆ Ω̄ if and only if for any usc subsolution f and any

lsc supersolution g, we have

f ≤ g in Ω′. (3.1.43)

The strong comparison result immediately implies the following continuous and unique-

ness result:
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x0

(a) A Viscosity Solution

x0

F̄∗ ≤ 0

Viscosity Subsolution

(b) The Corresponding Viscosity Sub-
solution

x0

Viscosity Supersolution

F̄ ∗ ≥ 0

(c) The Corresponding Viscosity Su-
persolution

Figure 3.4: Illustration of the discontinuous viscosity solution definition. The curve
in 3.4a represents a viscosity solution V that is discontinuous at x0. The solid curve in
3.4b is the corresponding viscosity subsolution, which is the usc envelope V ∗ of the
solution in 3.4a. The dash curve in 3.4b represents a smooth test function φ that
touches the viscosity subsolution from above at the discontinuous point x0, and then
F̄∗
(
D2φ(x0), Dφ(x0), V ∗(x0), x0

)
≤ 0. The solid curve in 3.4c is the corresponding

viscosity supersolution, which is the lsc envelope V∗ of the solution in 3.4a. The dash
curve in 3.4c represents a smooth test function χ that touches the viscosity supersolution
from below at the discontinuous point x0, and then F̄ ∗

(
D2χ(x0), Dχ(x0), V∗(x0), x0

)
≥

0.
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Theorem 3.14 (Continuity and Uniqueness of the Viscosity Solution). If the strong

comparison result, as defined in Definition 3.13, for problem (3.1.16-3.1.17) holds in a

domain Ω′ ⊆ Ω̄, then there exists a continuous and unique viscosity solution of (3.1.16-

3.1.17) in Ω′.

Proof. The existence of a viscosity solution is implied by Theorem 3.24. We will prove

the continuity and uniqueness below.

Suppose V is a viscosity solution. We show V is continuous in Ω′. By definition, V ∗

and V∗ are the viscosity subsolution and supersolution, respectively. Therefore, the strong

comparison result given in Definition 3.13 implies that

V ∗ ≤ V∗ in Ω′. (3.1.44)

However, according to Remark 3.8, we obtain

V∗ ≤ V ∗. (3.1.45)

As a result, we obtain V ∗ = V∗ = V in Ω′, which means V is continuous in Ω′.

Now assume there is another viscosity solution U . Following the above argument we

can also obtain U∗ = U∗ = U in Ω′. The strong comparison result and the continuity of

solution implies that

U = U∗ ≥ V ∗ = V in Ω′ (3.1.46)

and

U = U∗ ≤ V∗ = V in Ω′. (3.1.47)

This implies U = V in Ω′. Therefore, the viscosity solution is also unique in Ω′.

Next we discuss the existence of the strong comparison result for the gas storage prob-

lem (3.1.16-3.1.17) (or PDE (2.2.12) together with boundary equations (2.2.13-2.2.17)).

There are various research papers deriving a strong comparison result for second-order
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HJB equations associated with several types of boundary conditions [8, 10, 21, 7, 15]. In

particular, [8, 10] prove that the viscosity solution of degenerate elliptic HJB equations

with Dirichlet boundary conditions satisfies the strong comparison result, provided that

several assumptions are satisfied. In [10], the author demonstrates that

S1 if the coefficient of the diffusion term (in our case (σ̂(P )P )2) vanishes at a region on a

boundary with an outgoing or zero characteristic, independent of the value for the

control variable, then the viscosity solution on this boundary region is the limit of

the viscosity solution from interior points;

S2 if the characteristic at a region on the boundary, associated with the first order term in

the PDE, is incoming to the domain independent of the choice of the control value,

then the viscosity solution at the region corresponds to the specified boundary data

in the classical sense.

We can regard the two-dimensional parabolic PDE (2.2.12) as a three-dimensional

degenerate elliptic PDE in the variable x = (P, I, τ) ∈ [0, Pmax] × [0, Imax] × [0, T ]. The

resulting elliptic PDE is degenerate in the sense that the equation does not contain the

second-order derivatives with respect to τ and I, or, equivalently, the effective volatility

(i.e. the diffusion term) is zero with respect to τ and I. We solve PDE (2.2.12) in the

boundary region x ∈ [0, Pmax]× {0, Imax} × (0, T ). Conditions (2.2.14-2.2.15) imply that

the statement S1 above is satisfied for this boundary region. In the boundary region

x ∈ {0, Pmax}× [0, Imax]× (0, T ) we solve equation (2.2.16-2.2.17). Since α(K(t)−P ) ≥ 0

as P → 0 and α(K(t) − P ) ≤ 0 as P → Pmax, then statement S1 above is also satisfied

for this region. Thus, the viscosity solution does not require boundary data in both P

and I directions, which confirms our intuition in setting the boundary conditions in these

directions. PDE (2.2.12) implies that statement S2 above is satisfied in the region when

x ∈ [0, Pmax] × [0, Imax] × {0}. This means that the viscosity solution uses the Dirichlet

boundary condition, which we provided as the payoff function in equation (2.2.13).

From the analysis above, the boundary conditions we apply for equation (2.2.12) are in

accordance with the behaviour of the viscosity solution at the boundary. Consequently,
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we can use the strong comparison result in [8, 10] if equations (2.2.12-2.2.17) satisfy

assumptions given in [8, 10]. However, a technical difficulty arises when we try to verify

an assumption among those outlined in [8, 10]: the boundary is assumed to be smooth

in [8, 10] so that the distance function from a point in the interior to the boundary is

well-defined. In our case, however, the boundary surface is a cuboid, which results in

non-smoothness of the distance function in the corners of the cuboid. In [21], the strong

comparison result is proved for a similar (but not identical) problem associated with a non-

smooth boundary. Consequently, we make the following assumption which is necessary

to ensure that a unique viscosity solution to equation (2.2.12) exists.

Assumption 3.15. The gas storage pricing problem (3.1.16-3.1.17) (or pricing equa-

tion (2.2.12) and the associated boundary conditions (2.2.13-2.2.17)) satisfy the strong

comparison result, as defined in Definition 3.13, in domain Ω̄ = [0, Pmax]× [0, Imax]× [0, T ].

3.2 Convergence to the Viscosity Solution

After presenting the definition of viscosity solutions in the previous section, we need to

discuss the convergence of our scheme to the viscosity solution of the pricing problem.

Provided a strong comparison result for the PDE applies, the authors of [11, 6] demon-

strate that a numerical scheme will converge to the viscosity solution of the equation if

it is l∞-stable, consistent, and monotone. Schemes failing to satisfy these conditions

may converge to non-viscosity solutions. In fact, [75] gives an example where seemingly

reasonable discretizations of nonlinear option pricing PDEs that do not satisfy the suffi-

cient convergence conditions for viscosity solutions either never converge or converge to a

non-viscosity solution. In this section, we review the notation of l∞-stability, consistency

and monotonicity from [11, 6] and verify that our fully implicit semi-Lagrangian scheme

satisfies these properties.

As explained in Section 2.3.3, higher than or equal to third-order (quadratic) inter-

polation is needed for the operation Φn+1 in (2.3.23) in order to achieve a second-order

global truncation error for Crank-Nicolson timestepping (for smooth solutions). This
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makes this scheme non-monotone in general, and hence we cannot guarantee convergence

of high-order Crank-Nicolson timestepping to the viscosity solution because monotonicity

can be obtained only for linear interpolation. We will, nevertheless, prove the consistency

of the Crank-Nicolson timestepping scheme and carry out numerical experiments with

Crank-Nicolson timestepping using quadratic interpolation.

We can write the discrete equations (2.3.25) at each node (Pi, Ij, τ
n+1), n+ 1 ≥ 1, in

a uniform format as

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
k,j

}
k 6=i,

{
V n
i,j

})
≡ inf

(ζn
i,j ,ζ

n+1
i,j )∈Cn+1

j

{
V n+1
i,j −

[
Φn+1V n

]
i,j

∆τ
− (1− θ)

[
Ln+1V n+1

]
i,j
− θ
[
Φn+1LnV n

]
i,j

− (1− θ)
[(
ζn+1
j − a

(
ζn+1
j

))
P
]
i
− θ
[(
ζnj − a

(
ζnj
))
P
]
i

}
= 0 if n+ 1 ≥ 1,

(3.2.1)

where
{
V n+1
k,j

}
k 6=i is the set of values V n+1

k,j , k 6= i, k = 0, . . . , imax and
{
V n
i,j

}
is the set of

values V n
i,j, i = 0, . . . , imax, j = 0, . . . , jmax. We also define Gn+1

i,j at payoff time τ = 0 as

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
k,j

}
k 6=i,

{
V n
i,j

})
≡ V n+1

i,j −B(Pi, Ij) = 0, if n+ 1 = 0, (3.2.2)

where B(Pi, Ij) is the value of payoff at a node (Pi, Ij). Consequently, Gn+1
i,j completely

specifies our semi-Lagrangian discretization.

3.2.1 l∞-Stability

Definition 3.16 (l∞-Stability). Discretization (3.2.1-3.2.2) is l∞-stable if

‖V n+1‖∞ ≤ C4 , (3.2.3)

for 0 ≤ n ≤ N−1 as ∆τ → 0, ∆Pmin → 0, ∆Imin → 0, where C4 is a constant independent

of ∆τ , ∆Pmin, ∆Imin. Here ‖V n+1‖∞ = maxi,j |V n+1
i,j |.
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The stability of the semi-Lagrangian fully implicit discretization (3.2.1-3.2.2) is a con-

sequence of the following Lemma.

Lemma 3.17 (l∞ Stability of the Fully Implicit Scheme). Assuming that discretization

(2.3.4) satisfies the positive coefficient condition (2.3.5) and linear interpolation is used

in operation Φn+1 in (2.3.23), then the scheme (3.2.1-3.2.2) satisfies

‖V n+1‖∞ ≤ ‖V 0‖∞ + C5 (3.2.4)

in the case of fully implicit timestepping (θ = 0), where

C5 = T · Pmax ·max
{∣∣cmax(Imax)

∣∣, ∣∣cmin(0)
∣∣}.

Proof. The proof directly follows from applying the maximum principle to the discrete

equation (2.3.25). We omit the details here. Readers can refer to [40, Theorem 5.5]

and [46] for complete stability proof of the semi-Lagrangian fully implicit scheme for

American Asian options and that of finite difference schemes for controlled HJB equations,

respectively.

3.2.2 Consistency

Following [11, 6], we give a definition for the consistency of a discretization.

Definition 3.18 (Consistency). The scheme Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
k,j

}
k 6=i,

{
V n
i,j

})
given in

equation (3.2.1-3.2.2) is consistent if, for all x̂ = (P̂ , Î, τ̂) ∈ Ω̄ = [0, Pmax]× [0, Imax]× [0, T ]

and any function φ(P, I, τ) having bounded derivatives of all orders in (P, I, τ) ∈ Ω̄ with

φn+1
i,j = φ(Pi, Ij, τ

n+1) and x = (Pi, Ij, τ
n+1), we have

lim sup
h→0
x→x̂
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
k,j + ξ

}
k 6=i,

{
φni,j + ξ

})
≤ F̄ ∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(3.2.5)
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and

lim inf
h→0
x→x̂
ξ→0

Gn+1
i,j

(
h, φn+1

i,j +ξ,
{
φn+1
k,j +ξ

}
k 6=i,

{
φni,j+ξ

})
≥ F̄∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
, (3.2.6)

where F̄ is defined in (3.1.39) and F̄ ∗ and F̄∗ are respectively the usc and lsc envelopes

of F̄ , as defined in Definition 3.7.

The consistency of scheme (3.2.1-3.2.2) is given in the following Lemma:

Lemma 3.19 (Consistency). Suppose the mesh size and timestep size satisfy equations

(2.3.1), and the control parameters satisfy condition (2.2.7). Then the discretization

(3.2.1-3.2.2) is consistent as defined in Definition 3.18, provided that cmax, cmin and a(c)

satisfy equations (2.2.1), (2.2.3) and (2.2.5), respectively. In particular, assuming the

solution is smooth and that linear interpolation is used in operation Φn+1 in (2.3.23), the

global discretization error of the scheme Gn+1
i,j is O(h).

Proof. See Appendix D.

Remark 3.20 (Consistency of the Bang-Bang and No Bang-Bang Methods). As intro-

duced in Section 2.4, we solve the local optimization problem in scheme (3.2.1) using the

bang-bang or no bang-bang approach. This introduces additional numerical errors.

According to Remark 2.4, we can still verify Definition 3.18 for the no bang-bang

method since it solves the optimization problem consistently.

On the other hand, the bang-bang method consistently solves the local optimization

problem corresponding to the equation (2.4.9). Consequently, we can also verify the con-

sistency definition for equation (2.4.9). Using the results in Theorem 3.25, we can prove

the bang-bang method with a fully implicit timestepping converges to the viscosity solution

of (2.4.9). Since equation (2.4.9) has the same viscosity solution as equation (2.2.12), the

bang-bang method also converges to the viscosity solution of PDE (2.2.12).
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3.2.3 Monotonicity

In this section, we discuss the monotonicity of the fully implicit scheme

Definition 3.21 (Monotonicity). The discretization Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
k,j

}
k 6=i,

{
V n
i,j

})
given

in equation (3.2.1-3.2.2) is monotone if

Gn+1
i,j

(
h, V n+1

i,j ,
{
Xn+1
k,j

}
k 6=i,

{
Xn
i,j

})
≤ Gn+1

i,j

(
h, V n+1

i,j ,
{
Y n+1
k,j

}
k 6=i,

{
Y n
i,j

})
; for all Xn

i,j ≥ Y n
i,j, ∀i, j, n.

(3.2.7)

This definition of monotonicity is equivalent to that introduced in [11, 6].

Lemma 3.22 (Monotonicity). If the discretization (2.3.4) satisfies the positive coefficient

condition (2.3.5) and linear interpolation is used in operation Φn+1 in (2.3.23), then in the

case of fully implicit timestepping (θ = 0), the discretization Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
k,j

}
k 6=i,

{
V n
i,j

})
,

as given in (3.2.1-3.2.2), is monotone according to Definition 3.21.

Proof. The proof directly follows that of monotonicity of finite difference schemes for

controlled HJB equations in [9, 46].

3.2.4 Arbitrage Inequalities

The authors of [25, 26] demonstrate that a financially meaningful discretization should

satisfy arbitrage inequalities, which means the inequality of contract payoffs is preserved

in the inequalities of contract values. Our scheme (3.2.1-3.2.2) in terms of fully implicit

timestepping (θ = 0) satisfies the following arbitrage inequalities.

Theorem 3.23 (Discrete Arbitrage Inequalities). If the discretization (2.3.4) satisfies the

positive coefficient condition (2.3.5) and linear interpolation is used in operation Φn+1 in

(2.3.23), then in the case of fully implicit timestepping (θ = 0), the discretization (3.2.1-

3.2.2) satisfies a discrete comparison principle. That is, if V n > W n and V n+1, W n+1

satisfy (3.2.1-3.2.2), then V n+1 > W n+1.

Proof. The proof directly follows from the approach in [40, Theorem 6.2].
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3.2.5 Convergence

Lemmas 3.17, 3.19 and 3.22 and the results in [11, 6] directly imply the following properties

of the solution:

Theorem 3.24. Assume that discretization (3.2.1-3.2.2) satisfies all the condition re-

quired for Lemmas 3.17, 3.19 and 3.22. Let

V (P, I, τ) = lim sup
h→0
Pi→P
Ij→I

τn+1→τ

V n+1
i,j V (P, I, τ) = lim inf

h→0
Pi→P
Ij→I

τn+1→τ

V n+1
i,j . (3.2.8)

Then V and V are respectively the viscosity subsolution and supersolution for the gas stor-

age problem (3.1.16-3.1.17) (or PDE (2.2.12) together with boundary equations (2.2.13-

2.2.17)) in the closed domain (P, I, τ) ∈ Ω̄ = [0, Pmax] × [0, Imax] × [0, T ] in the case of

fully implicit timestepping (θ = 0).

Theorem 3.24 reveals that in theory the viscosity solution of the problem can be

constructed from the numerical solution of our scheme. If the strong comparison result to

the problem holds, then our scheme will converge to the unique and continuous viscosity

solution, as stated by the following Theorem:

Theorem 3.25 (Convergence to the Viscosity Solution). If all conditions in Theorem 3.24

are satisfied, and, in addition, Assumption 3.15 holds, then scheme (3.2.1-3.2.2) converges

to the continuous and unique viscosity solution of the gas storage problem (3.1.16-3.1.17)

in domain Ω̄ = [0, Pmax]×[0, Imax]×[0, T ] in the case of fully implicit timestepping (θ = 0).

In other words, we have

V (P, I, τ) = V (P, I, τ) = V (P, I, τ), ∀(P, I, τ) ∈ Ω̄. (3.2.9)

Remark 3.26. If the strong comparison result does not hold at some point x = (P, I, τ) ∈

Ω̄, then we have V < V at x according to (3.2.8) and Definition 3.13. Hence our numerical

solution does not converge at x. However, this is expected because the viscosity solution

itself is discontinuous and non-unique at x. Consequently, Remark 3.12 shows that any
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value residing between V (x) and V (x) is a valid viscosity solution. Therefore, it is not

clear which value the scheme should converge to at the point x. In this case, the most

precise information of the solution is the bounds V (x) and V (x), which can still be obtained

(in theory) from our numerical solution.

In addition, the discontinuity of the viscosity solution normally occurs only on the

boundaries when the boundary equations are degenerate elliptic. As explained in [25], the

convergence of the numerical scheme at these points often has no practical importance.

3.3 Summary

Our work in this chapter is summarized as follows:

• We introduce the notation of (possibly discontinuous) viscosity solutions that is able

to handle various types of boundary conditions.

• We prove that the fully implicit, semi-Lagrangian scheme is unconditionally l∞-

stable, monotone and consistent. Therefore, provided a strong comparison property

holds, the fully implicit, semi-Lagrangian discretization converges to the unique and

continuous viscosity solution of the pricing equation using the results in [11, 6].
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Chapter 4

Numerical Results for the Gas

Storage Valuation Problem

Having presented several semi-Lagrangian discretization schemes in the previous chapter,

in this chapter we conduct numerical experiments based on these schemes.

We use “dollars per million British thermal unit” ($/mmBtu) and “million cubic feet”

(MMcf) as the default units for gas spot price P and gas inventory I, respectively. Since

1000 mmBtus are roughly equal to 1 MMcf, in order to unify the units, we need to multiply

gas spot price by 1000 when computing payoffs or revenues.

Throughout the numerical experiments, we use the following non-smooth payoff func-

tion from [18]

V (P, I, t = T ) = −2P max(1000− I, 0). (4.0.1)

Equation (4.0.1) indicates that severe penalties are charged if the gas inventory is less

than 1000 MMcf and no compensation is received when the inventory is above 1000

MMcf. Naturally, such a payoff structure will force the operator of a gas storage facility

to maintain the gas inventory as close to 1000 MMcf as possible at maturity to avoid

revenue loss.

This chapter is arranged as follows: we first give numerical results for the case without

incorporating the seasonality effect into the equilibrium natural gas spot price; we then
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incorporate the seasonality feature and illustrate its influence on both the solution value

and the optimal control strategy. At the end of this chapter, we further extend the

underlying risk neutral gas spot price process to include a compound Poisson process that

simulates random jumps of the gas prices, and then present numerical results incorporating

the jump diffusion process.

4.1 No Seasonality Effect

In this section, we assume that the equilibrium gas price is independent of time, that is,

we set K(t) = K0 in equation (2.2.10).

We first carry out a convergence analysis assuming that the risk neutral natural gas

spot price follows the mean-reverting process (2.2.9) with α = 2.38, K0 = 6, σ = 0.59. In

other words, the risk neutral gas spot price follows

dP = 2.38(6− P )dt+ 0.59PdZ. (4.1.1)

We are most interested in the solution when the gas spot price is near the long-term equi-

librium price, i.e., P = 6 $/mmBtu for (4.1.1). Note that when I = 1000 MMcf, the payoff

is non-smooth (see equation (4.0.1)). Consequently, to fully test our semi-Lagrangian dis-

cretization schemes, we focus on the convergence results at (P, I) = (6, 1000). We use an

unequally spaced grid in the P, I directions, where there are more nodes around the mesh

point (P, I) = (6, 1000), compared with other locations.

Table 4.1 lists other input parameters for pricing the value of a gas storage contract.

The convergence results obtained from refining the mesh spacing and timestep size are

shown in Table 4.2, where we use fully implicit and Crank-Nicolson timestepping schemes

associated with both the bang-bang and no bang-bang methods for solving the discrete

optimization problem in Algorithm 2.1. Linear interpolation and quadratic interpolation

are used for fully implicit and Crank-Nicolson timestepping, respectively. (Refer to Sec-

tion 2.3 for a discussion on interpolation schemes.) Following [75], in order to improve

the convergence for non-smooth payoff (4.0.1), we use a modification suggested by [76, 49]
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for Crank-Nicolson timestepping. Specifically, we apply fully implicit timestepping in the

first four timesteps, and use Crank-Nicolson timestepping in the rest of the timesteps.

Parameter Value Parameter Value
r 0.1 k2 730000
T 3 years k3 500
Imax 2000 MMcf k4 2500
k1 2040.41 k5 1.7 · 365

Table 4.1: Input parameters used to price the value of a gas storage contract, where
Imax is the maximum storage inventory; k1, k2, k3, k4, k5 are parameters in equations
(2.2.1-2.2.2) and (2.2.5). The values of Imax, k1, k2, k3, k4, k5 are taken from [80].

The results in Table 4.2 indicate that both timestepping schemes converge to the same

solution, although convergence to the viscosity solution can only be guaranteed for fully

implicit timestepping given Assumption 3.15. We define the convergence ratio as the ratio

of successive changes in the solution, as the timestep and mesh size are reduced by a factor

of two. A ratio of two indicates first-order convergence, while a ratio of four indicates

second order convergence. The convergence ratios are approximately two for fully implicit

timestepping with both the bang-bang and the no bang-bang methods. Note that the no

bang-bang method is a more general approach which can be used in cases where controls

are not of bang-bang type.

It is interesting to note that in a fixed refinement level, the bang-bang method results

in a smaller value than the no bang-bang method for both timestepping schemes. This

is because the no bang-bang method actually solves the discrete optimization problem

in Algorithm 2.1, instead of only testing a finite set of points, which results in a higher

solution value for PDE (2.2.12) (for a finite grid size) than the bang-bang method.

For the fully implicit tests in Table 4.2, the no bang-bang method requires about 10%

more CPU time compared to the bang-bang method. This is consistent with our earlier

estimates, since the the no bang-bang examines only a constant number of grid nodes per

node in order to solve the local optimization problem.

Table 4.2 also shows that Crank-Nicolson timestepping does not appear to converge

at a second-order rate. We have observed this same effect in many of our tests. Since
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P grid I grid No. of Bang-bang method No bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

Fully implicit timestepping
53 61 500 4477036 n.a. 4556380 n.a.
105 121 1000 4503705 n.a. 4542845 n.a.
209 241 2000 4514723 2.42 4534660 1.63
417 481 4000 4519809 2.17 4530331 1.89
833 961 8000 4522653 1.79 4528219 2.05

Crank-Nicolson timestepping
53 61 500 4483667 n.a. 4520475 n.a.
105 121 1000 4509076 n.a. 4525352 n.a.
209 241 2000 4517960 2.86 4526280 5.26
417 481 4000 4522632 1.90 4527225 0.98
833 961 8000 4524948 2.02 4527331 8.92

Table 4.2: The value of a natural gas storage facility at P = 6 $/mmBtu and I =
1000 MMcf. The risk neutral gas spot price follows the mean-reverting process (4.1.1).
Convergence ratios are presented for fully implicit and Crank-Nicolson timestepping
schemes with the bang-bang and the no bang-bang methods. Constant timesteps are
used. The payoff function is given in (4.0.1). Other input parameters are given in
Table 4.1. Crank-Nicolson incorporates the modification suggested in [76].

we do not seem to obtain any benefit from Crank-Nicolson timestepping, fully implicit

timestepping appears to be a better choice since we are guaranteed convergence to the

viscosity solution given Assumption 3.15, as shown in Section 3.2. In the rest of this

thesis, we will use fully implicit timestepping exclusively.

Figure 4.1 shows the optimal control surface at t = 0 as a function of P and I. This

surface is similar to that given in [80]. The interpretation given in [80] also applies to

Figure 4.1.

Our numerical computations truncate the domain P ∈ [0,∞] to [0, Pmax]. In order to

test the influence of the domain truncation on the solution, we compute the solution values

at P = 6 $/mmBtu, I = 1000 MMcf using two different values of Pmax: Pmax = 2000 and

20000 $/mmBtu. We found that for all four refinement levels, the first ten digits of the

two solution values are identical. This indicates that by setting Pmax = 2000 $/mmBtus,

there is a negligible solution error incurred by the domain truncation. As a result, all

subsequent results will be reported using Pmax = 2000 $/mmBtus.
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Figure 4.1: The optimal control strategy at current time t = 0 as a function of gas
spot price P and gas inventory I. The risk neutral gas spot price follows the mean-
reverting process (4.1.1). Payoff function is given in (4.0.1). Other input parameters
are given in Table 4.1. Fully implicit timestepping with the no bang-bang method and
with constant timesteps is used.

If an explicit semi-Lagrangian scheme is used, then the stability condition is

∆τn < min
i

{
1

γni + βni + r

}
, (4.1.2)

where ∆τn = τn+1−τn and parameters γni , β
n
i are given in Appendix B. Condition (4.1.2)

implies that ∆τ = O((∆Pmin)2), where ∆Pmin = mini(Pi+1 − Pi). In contrast, there is no

such timestep restriction for fully implicit timestepping.

In [80], a fully explicit method (standard timestepping) is used for the gas storage

problem. In this case, the stability condition would be ∆τ = O((∆Pmin)2 + ∆Imin), where

∆Imin = minj(Ij+1 − Ij).

Recall from Remark 2.6 that both the implicit method used here and an explicit

method have complexity linear in the number of space nodes per timestep. In general,

the constant in the complexity estimate will favour the explicit, standard timestepping

scheme [80], due to the the extra interpolation operations required by the implicit method.
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In terms of running time, we expect that the implicit method will be superior to the

explicit method if the spatial error dominates, since the explicit stability condition will

force smaller timesteps than is required for accuracy.

On the other hand, there will undoubtedly also be cases where the error is dominated

by the timestepping error, in which case an explicit method may require less running time.

We remark that the fully implicit method has the practical advantage that we are

completely free to place (P, I) nodes wherever is deemed necessary, since this has no

effect on the permitted timestep size.

4.2 Incorporating the Seasonality Effect

In this section, we present numerical results after incorporating the seasonality effect into

the equilibrium price of the mean-reverting process (4.1.1). We modified process (4.1.1)

to

dP = 2.38(6 + sin(4πt)− P )dt+ 0.59PdZ, (4.2.1)

where the additional term sin(4πt) makes the equilibrium price a periodic function to

represent summer and winter peaks in the equilibrium price. The convergence results

for this case are shown in Table 4.3. Comparing Table 4.3 with Table 4.2 indicates that

incorporating the seasonality component does not affect the convergence ratio, but does

increase the solution value for a fixed refinement level. This is reasonable, since the

seasonality effect gives the operator of a gas storage facility an opportunity for obtaining

greater profits by using an optimal strategy that takes advantage of the seasonality feature.

For example, a simple strategy of buying and storing gas in spring and then producing

and selling gas in summer can normally produce profits from the seasonality effect.

Figure 4.2 shows the optimal control strategy in the seasonality case that evolves over

time as a function of P when the inventory is fixed at I = 1000 MMcf. The figure

suggests that the optimal strategy is to inject gas at the maximum rate (corresponding

to the negative control region in the surface) when the gas price is low, to produce gas

at the maximum rate (corresponding to the positive control region) when the gas price
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P grid I grid No. of Bang-bang method No bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

53 61 500 4815891 n.a. 4889602 n.a.
105 121 1000 4839796 n.a. 4875449 n.a.
209 241 2000 4848843 2.64 4866953 1.67
417 481 4000 4853100 2.13 4862530 1.92
833 961 8000 4855485 1.78 4860397 2.07

Table 4.3: The value of a natural gas storage facility at P = 6 $/mmBtu and I = 1000
MMcf. The risk neutral gas spot price follows the mean-reverting process (4.2.1) that
incorporates the seasonality effect. Convergence ratios are presented for fully implicit
timestepping with the bang-bang and the no bang-bang methods. Constant timesteps are
used. The payoff function is given in (4.0.1). Other input parameters are given in
Table 4.1.

is high, and to do nothing (corresponding to the zero control region) when the gas price

is near the long-term equilibrium price. From the figure, we can clearly notice the effect

of the seasonality on the control strategy: the boundary curve between the zero control

region and the negative/positive control region, which represents the control switching

boundary between no operation and injecting/producing gas, is periodic when it is far

from maturity. We can also observe that when the contract is close to maturity, the zero

control region expands rapidly. This phenomenon is caused by the payoff function (4.0.1):

at I = 1000 MMcf, when close to maturity, the operator tends to stop producing gas to

avoid the severe penalty at maturity. In addition, the operator will stop injecting, since

any leftover gas is lost to the operator.

To illustrate the difference of the optimal control strategies before and after incorpo-

rating the seasonality effect, Figure 4.3 shows the control switching boundary curves at

I = 1000 MMcf as a function of time to maturity with respect to processes (4.1.1) and

(4.2.1), respectively.

4.3 Incorporating the Jump Effect

It is not uncommon to see spot gas price jumps, when gas is used to power electrical

generating plants in times of high electricity demand. Spot gas price can jump by as much
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Figure 4.2: The Optimal control strategy as a function of time to maturity τ = T − t
and gas spot price P when the gas inventory resides at I = 1000 MMcf. The risk
neutral gas spot price follows the mean-reverting process (4.2.1), with seasonality. The
payoff function is given in (4.0.1). Other input parameters are given in Table 4.1. Fully
implicit timestepping with the no bang-bang method and with constant timesteps is used.
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Figure 4.3: Control switching boundary curves as a function of time to maturity
τ = T − t with respect to processes (4.1.1) (without incorporating the seasonality effect)
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timestepping with the no bang-bang method and with constant timesteps is used.
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as 20% in a single day. To model this effect, in this section, we take the mean-reverting

process (2.2.9) and extend it to include a compound Poisson process representing the jump

effect, and present numerical results including a jump diffusion process. After adding a

jump component, process (2.2.9) becomes

dP = [α(K(t)− P )− λκP ]dt+ σPdZ + (η − 1)Pdq, (4.3.1)

where

• dq is the independent Poisson process =

 0 with probability 1− λdt,

1 with probability λdt,

• λ is the jump intensity representing the mean arrival time of the Poisson process,

• η is a random variable representing the jump size of gas price—when dq = 1, price

jumps from P to Pη. We assume that η follows a probability density function g(η),

• κ is E[η − 1], where E[ · ] is the expectation operator.

Assuming that the risk neutral gas spot price follows the jump diffusion process (4.3.1),

the pricing PDE (2.2.12) turns into the following controlled partial integro-differential

equation (PIDE)

Vτ =
1

2
σ2P 2VPP + [α(K(t)− P )− λκP ]VP + sup

c∈C(I)

{(c− a(c))P − (c+ a(c))VI}

− rV +
(
λ

∫ ∞
0

V (Pη)g(η)dη − λV
)
.

(4.3.2)

Since there is no control variable in the integral term of PIDE (4.3.2), we can use the

methods described in [40, 41, 39] to extend the semi-Lagrangian discretization schemes

introduced in Chapter 2 to solve the PIDE without difficulty. We note that it is straight-

forward to combine the methods in Chapter 3 with the approaches in [40] to show that

the resulting scheme is consistent, stable and monotone.
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During our numerical experiments, we assume that the probability density function

g(η) follows a log-normal distribution

g(η) =
1√

2πγη
exp
(
−(log(η)− ν)2

2γ2

)
(4.3.3)

with expectation E[η] = exp(ν + γ2/2). We will choose values of the parameters ν and γ

such that (η − 1), the relative change in the gas spot price, has mean zero and variance

0.04.

Table 4.4 lists values of the parameters for process (4.3.1) and for the log-normal

density function (4.3.3), where the parameters of the drift and diffusion components in

process (4.3.1) take the same values as those in process (4.2.1) for the case without

incorporating the jump effect. Note that we set the jump intensity λ = 12 so that random

jumps appear approximately once every month. Table 4.5 presents the convergence results

for the solution to PIDE (4.3.2). Table 4.5 shows that the jump effect greatly increases

the value of the storage facility.

Since the controls in equation (4.3.2) do not appear in the integral terms, it seems

reasonable to suppose that the converged controls for problem (4.3.2) will also be of the

bang-bang type, but we are not aware of a proof of this. We will solve (4.3.2) using

both bang-bang and no bang-bang methods, and our numerical results verify that both

techniques converge to the same solution.

For the finest grid in Table 4.2, the no bang-bang method with jumps takes about three

times more CPU time compared to the same problem with no jumps. This is simply

because we need several iterations per timestep to solve the fully implicit discretized

equations, including the jump term [40]. Each iteration requires one tridiagonal linear

system solve and two FFTs. Note that we can also evaluate the jump term explicitly to

avoid the iterations [40]. The resulting scheme is still unconditionally stable, monotone

and consistent, but it is first-order correct in time.

The results in Table 4.5 also indicate that the no bang-bang method achieves first-

order convergence, but not the bang-bang method. To further study this behaviour, in
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Figure 4.4, we show the control curves at P = 6 $/mmBtu, τ = τ 1 = .006 year as a

function of I, obtained using these two methods. We present the control curves produced

using one timestep (i.e., ∆τ = τ 1) with a coarse space grid, as well as a fine grid solution

with many timesteps. From the figure, we can observe that when using finer grids (and

more timesteps), both the bang-bang and the no bang-bang methods converge to the

same control strategy. In contrast, when a coarse grid and one timestep are used, the

control curves produced by both methods differ from the converged controls near I = 1000

MMcf (excluding I = 1000 MMcf), hence are not accurate. However, by actually solving

the discrete optimization problem in Algorithm 2.1, the no bang-bang method produces

a much smoother control curve on coarse grids, compared with the bang-bang method.

Consequently, this would appear to explain why the no bang-bang method is able to

generate a smoother solution for the value function as the grid size and timestep size is

reduced compared to the bang-bang method.

Parameter Value Parameter Value
α 2.38 ν −0.0196

K(t) 6 + sin(4πt) γ 0.198
σ 0.59 λ 12

Table 4.4: Input parameters for the jump diffusion process (4.3.1) and the log-normal
density function (4.3.3). The parameters of the jump size density function are selected
so that E[(η − 1)] = 0 and E[(η − 1)2] = .04.

P grid I grid No. of Bang-bang method No-bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

79 61 500 7995143 n.a. 8070698 n.a.
157 121 1000 7962386 n.a. 7999775 n.a.
313 241 2000 7951062 2.89 7971737 2.53
625 481 4000 7951032 377 7961554 2.75
1249 961 8000 7951976 -0.03 7957509 2.52

Table 4.5: The value of a natural gas storage facility at P = 6 $/mmBtu and I = 1000
MMcf. The risk neutral gas spot price follows the mean-reverting process (4.3.1) (in-
corporating the seasonality and the jump effects). Convergence ratios are presented for
fully implicit timestepping with the bang-bang and the no bang-bang methods. Constant
timesteps are used. The payoff function is given in (4.0.1). Input parameters are given
in Tables 4.4 and 4.1.
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Figure 4.4: Control curves as a function of gas inventory I obtained at τ1 = .006 year
with gas price P = 6 $/mmBtu. The top panel shows the bang-bang and the no bang-
bang methods with one timestep and a coarse space grid. The bottom panel shows the
results for both bang-bang and no bang-bang methods, using a fine space grid and many
timesteps. The risk neutral gas spot price follows the mean-reverting process (4.3.1).
The payoff function is given in (4.0.1). Input parameters are given in Tables 4.4 and 4.1.
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Figure 4.5 compares the control switching boundary curves obtained before and after

incorporating the jump effect when I = 1000 MMcf. The figure indicates that the zero

control region (the region contained between two boundary curves) resulting from the

jump diffusion process (4.3.1) is wider than that resulting from process (4.2.1). This

occurs because, under the jump scenario, the operator is willing to wait for a jump in

the gas price and then operate the facility after the jump to obtain more profit, which

makes the zero control region wider. In addition, Figure 4.5 shows that the jump effect

disappears when the contract is close to maturity because of the fear of revenue loss at

maturity due to the payoff structure (4.0.1).
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Figure 4.5: Control switching boundary curves as a function of time to maturity
τ = T − t with respect to processes (4.2.1) (without incorporating the jump effect) and
(4.3.1) (incorporating the jump effect) at I = 1000 MMcf, where parameter values for
process (4.3.1) are given in Table 4.4. Other input parameters are given in Table 4.1.
Fully implicit timestepping with the no bang-bang method and with constant timesteps
is used.

4.4 Summary

Our contributions in this chapter are summarized as follows:

• We conduct numerical experiments based on our semi-Lagrangian discretizations
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given in previous chapters. The numerical results indicate that fully implicit timestep-

ping can achieve first-order convergence, while Crank-Nicolson timestepping does

not appear to converge at a higher than first-order rate. Thus fully implicit timestep-

ping is probably a better choice since it guarantees convergence to the viscosity

solution and it is also straightforward to implement.

• We then extend the mean-reverting process (2.2.9) to include a compound Poisson

process to model the jumps in gas prices. This results in a partial integrodiffer-

ential equation (PIDE) for gas storage valuation problem. Since semi-Lagrangian

methods completely separate the inventory variable from the underlying stochastic

component, we can easily incorporate the discretizations for the jump component,

as described in [40, 41, 39], into the fully implicit semi-Lagrangian scheme to solve

the pricing PIDE. The resulting scheme is still consistent, l∞-stable and monotone.
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Chapter 5

A Regime-Switching Model for

Natural Gas Spot Prices

In Chapter 2 we value natural gas storage facilities assuming that natural gas spot prices

follow a one-factor mean-reverting model. In this chapter, we propose a one-factor regime-

switching model for natural gas spot and demonstrate by calibration that the regime-

switching model is able to fit the market data more accurately than a typical one-factor

mean-reverting model. In the next chapter we will solve the gas storage pricing problem

under the regime-switching model.

Our primary objective in this chapter is to obtain reasonable parameters which will

be used to carry out example computations for solving the gas storage HJB equation with

a regime-switching model.

5.1 Introduction

Previous work on the valuation of natural gas storage facilities has almost exclusively

assumed that natural gas spot prices follow one-factor mean-reverting processes. However,

as demonstrated in [78, 57] and again this chapter, one-factor mean-reverting models do

not seem to be able to capture the dynamics of typical gas forward curves. Consequently,
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we need to resort to other more complex stochastic models for natural gas prices in order

to more accurately price gas storage contracts.

A number of multi-factor models for the natural gas spot price are suggested in [91,

67, 57, 20]. More general multi-factor models for commodity spot prices are developed in

[78, 27]. Nevertheless, it is computationally expensive to apply the two-factor and three-

factor commodity spot price models in [78, 27] to price complex commodity derivatives

such as the gas storage contracts, although they seem able to fit the market futures prices.

Consequently, we will focus on one-factor regime-switching models for natural gas

spot prices. More precisely, we propose a model with a single Brownian motion process

and a jump process. Initially proposed in [51], a regime-switching model consists of

several regimes; within each regime the gas price follows a distinct stochastic process.

The price process can randomly shift between these regimes due to various reasons, such

as changes of weather conditions, alterations of demand and supply, and surprise events

such as political instability. Regime-switching models have been used in several areas.

For example, [52] develops a regime-switching model for equities. [50] and [5] use regime-

switching processes to model term structures of interest rates. Various regime-switching

models are calibrated to electricity spot prices in [37, 55, 36, 35, 77].

This chapter is arranged as follows: we first propose a one-factor mean-reverting model

and a regime-switching model for natural gas spot prices. Then we calibrate the models

to market futures data and examine the calibration performance. Finally, we obtain the

values of model volatility by calibrating to market futures options.

5.2 Natural Gas Spot Price Models

In this section, we specify two one-factor models that we use to examine the dynamics of

the natural gas spot price. Since we are interested in pricing derivatives on natural gas,

we will consider directly the risk neutral price processes with parameters given under the

Q measure.
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5.2.1 One-Factor Mean-Reverting Model (MR Model)

Let P denote the natural gas spot price. In the MR model, the gas spot price follows

a mean-reverting stochastic process with the seasonality effect represented in the drift

term. The risk neutral gas spot price is modeled by a stochastic differential equation

(SDE) given by

dP = α(K0 − P )dt+ σPdZ + S(t)Pdt , (5.2.1)

S(t) = βA sin(2π(t− t0 + CA(t0))) + βSA sin(4π(t− t0 + CSA(t0))) , (5.2.2)

where

• α > 0 is the mean-reversion rate,

• K0 > 0 is the long-term equilibrium price,

• σ > 0 is the volatility,

• dZ is an increment of the standard Gauss-Wiener process,

• S(t) is a time-dependent term so that S(t)Pdt is the price change at time t con-

tributed by the seasonality effect. Note that multiplying S(t) with P guarantees

the price of natural gas always stays positive. This is a useful property during our

calibration process,

• βA is the annual seasonality parameter,

• t0 is a reference time satisfying t0 < t.

• CA(t0) is the annual seasonality centering parameter for t0. We define

CA(t0) = A0 +D(t0), (5.2.3)

where A0 is a constant time adjustment parameter obtained through calibration;

D(t0) is the distance between the reference time t0 and the first date in January in
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the year of t0. Thus, by calibrating the value of A0, we are able to determine the

evolution of the annual seasonality effect over time.

• βSA is the semiannual seasonality parameter,

• CSA(t0) is the semiannual seasonality centering parameter for t0. Similar to the

definition of CA(t0), we define

CSA(t0) = SA0 +D(t0), (5.2.4)

where the constant time adjustment parameter SA0 is obtained from a calibration

process.

This simple model is considered by several authors [73, 91], although the seasonality

feature is handled in a slightly different manner.

Note that the SDE (5.2.1) is different from (4.2.1) in that the seasonality term in

(4.2.1) is incorporated into the equilibrium price while the seasonality term in (5.2.1) is

proportional to the spot price. Since the natural gas price shows a strong seasonality effect,

the seasonality term in (5.2.1) is able to capture the seasonality effect more accurately

and thus make a better fit to the market data.

Remark 5.1 (Effect of the Seasonality Term on Gas Price Dynamics). We can rewrite

equation (5.2.1) as

dP = αK0dt+ (S(t)− α)Pdt+ σPdZ. (5.2.5)

Since −(|βA|+ |βSA|) ≤ S(t) ≤ |βA|+ |βSA| according to equation (5.2.2), if

|βA|+ |βSA| > α, (5.2.6)

then there exists certain periods of time within which S(t) − α > 0. In this case, if P is

large and (S(t)− α)Pdt� αK0dt in equation (5.2.5), then the process (5.2.1) becomes a

GBM process with positive drift rate due to the strong seasonality effect. At other times,

the process is mean-reverting. Note that the deseasoned process (i.e., setting S(t) = 0
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in SDE (5.2.1)) is a mean-reverting process. As indicated in our calibration results in

Section 5.3.2, condition (5.2.6) is typically satisfied by the calibrated parameters.

5.2.2 Regime-Switching Model

In order to capture the gas price dynamics more accurately than a one-factor model, [78,

91] propose different two-factor models for the natural gas spot price. In this subsection,

we present a one-factor regime-switching model that is able to exhibit behaviour similar

to the models introduced in [78, 91] without introducing an additional stochastic factor.

Roughly speaking, our model consists of two regimes; each regime corresponds to a

distinct stochastic process (with the same stochastic factor). At any time, the natural

gas spot price follows one of these two processes. However, the price process can jump to

another regime with some finite probability.

The switch between two regimes can be modeled by a two-state continuous-time

Markov chain m(t), taking two values 0 or 1. The value of m(t) indicates the regime

in which the risk neutral gas spot price resides at time t. Let λ0→1dt denote the proba-

bility of shifting from regime 0 to regime 1 over a small time interval dt, and let λ1→0dt

be the probability of switching from regime 1 to regime 0 over dt. Then m(t) can be

represented by

dm(t) = (1−m(t−))dq0→1 −m(t−)dq1→0, (5.2.7)

where t− is the time infinitesimally before t, and q0→1 and q1→0 are the independent

Poisson processes with intensity λ0→1 and λ1→0, respectively.

In the regime-switching model, the risk neutral natural gas spot price is modeled by

an SDE given by

dP = αm(t−)
(
K
m(t−)
0 − P

)
dt+ σm(t−)PdZ + Sm(t−)(t)Pdt, (5.2.8)

Sm(t−)(t) = β
m(t−)
A sin(2π(t− t0 + CA(t0))) + β

m(t−)
SA sin(4π(t− t0 + CSA(t0))) . (5.2.9)

As indicated in equations (5.2.8-5.2.9), within a regime k ≡ m(t−) the gas spot price
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follows the process (5.2.1-5.2.2) with parameters αk, Kk
0 , S

k(t), σk (but the signs of αk

and Kk
0 are not constrained). Meanwhile, the stochastic factors for the two regimes

are perfectly correlated. Note that we assume that the centering parameters CA(t0) and

CSA(t0), as given in equations (5.2.3) and (5.2.4), respectively, are identical for two regimes

in order to reduce the number of calibrated parameters.

Remark 5.2 (Mean-Reverting or GBM-Like Process). From the model (5.2.8-5.2.9), the

deseasoned spot price in regime m(t−) can follow either a mean-reverting process or a

GBM-like process by setting parameter values.

If we choose αm(t−) > 0 and K
m(t−)
0 > 0, then the deseasoned gas price (obtained

from setting the seasonality term Sm(t−)(t) = 0 in SDE (5.2.8)) follows a mean-reverting

process

dP = αm(t−)(K
m(t−)
0 − P )dt+ σm(t−)PdZ (5.2.10)

with equilibrium level K
m(t−)
0 and mean-reversion rate αm(t−).

If we set K
m(t−)
0 = 0 in equation (5.2.8), then the deseasoned gas price SDE becomes

dP = −αm(t−)Pdt+ σm(t−)PdZ. (5.2.11)

This is a GBM-like process. Specifically, if the drift coefficient −αm(t−) > 0, then SDE

(5.2.11) is a standard GBM process, i.e., gas price P will drift up at a rate |αm(t−)| at

time t; if −αm(t−) < 0, then the gas price will drift down at a rate |αm(t−)|.

Variations of the Regime-Switching Model

As indicated in Remark 5.2, the deseasoned spot price in each regime can follow either

a mean-reverting process or a GBM-like process. Consequently, there exist many pos-

sible variations of the regime-switching model by choosing different combinations of the

stochastic processes in two regimes. We are interested in the following three variations:
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MRMR Variation

The processes in both regimes are mean-reverting with different equilibrium levels, i.e.,

Kk
0 > 0, αk > 0, k ∈ {0, 1} in SDE (5.2.8). In this variation, the equilibrium level of

the gas spot price switches between two constants, K0
0 , K

1
0 , which thus creates a sort

of mean-reverting effect on the equilibrium level. This simulates the behaviour of the

equilibrium price in the two-factor model proposed by [91], where the gas spot price P

follows a one-factor mean-reverting process and its equilibrium price evolves over time

according to the other one-factor mean-reverting process.

MRGBM Variation

The process in one regime is mean-reverting while the other regime is a GBM process with

a positive drift, i.e., K0
0 > 0, K1

0 = 0, α0 > 0, α1 < 0 in SDE (5.2.8). The mean-reverting

regime represents the normal price dynamics, and the GBM regime can be regarded as

the sudden drifting up of the gas price driven by exogenous events.

GBMGBM Variation

The processes in both regimes are GBM processes with a positive drift in one regime and

a negative drift in the other, i.e., K0
0 = K1

0 = 0, α0 < 0, α1 > 0 in SDE (5.2.8). This

simulates the behaviour of the two-factor model in [78], where the risk neutral commodity

spot price process is modeled by a GBM-like process given by

dP = (r − δ)Pdt+ σPdZ. (5.2.12)

Here r is the constant riskless interest rate; δ is the instantaneous convenience yield,

following an Ornstein-Uhlenbeck mean-reverting process. The drift coefficient r − δ can

switch between positive and negative values during a time interval since the value of δ

is stochastic and may change signs during the interval. Thus the gas price P will either

drift up or drift down at any time depending on the sign of r − δ. According to (5.2.11),

the GBMGBM variation can produce a behaviour similar to the SDE (5.2.12).
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Having presented spot price models, next we calibrate the models to the market gas

futures prices and options on futures.

5.3 Calibration to Futures

5.3.1 Data

The data used to test the models consist of monthly observed delivery prices of NYMEX

Henry Hub natural gas futures contracts. The data are publicly available on the website

http://www.econstats.com.

Our data set contains 51 observations in 51 months (one observation each month)

during the period from February 2003 to July 2007. Each observation contains delivery

prices for the first 14 contracts that correspond to the deliveries in the next 14 consecutive

months starting from the month of the observation day.

In order to carry out the calibration, we need to input the gas spot prices. Although

there exists a gas spot market in Henry Hub that trades the next day delivery contract, we

cannot use the delivery price of the contract as the spot price because the delivery periods

for the contracts in the spot market and futures market are different: the delivery lasts

for only 24 hours for the former and normally over a whole month for the latter. However,

we can regard the delivery price of the next month futures contract, each month on the

last trading day of the contract, as the proxy for the gas spot price, since it corresponds

to the delivery starting three days later and delivering over the next month1. The same

approach is used in [57]. Thus, our monthly observation is made on the last trading

day of the next month delivery contract2, where the delivery price for that contract is

used as the market spot price during calibration and the delivery prices for the rest of 13

contracts from the observation are used as the market futures prices during calibration

1 In NYMEX, the trading of the next month delivery contract each month terminates three business
days prior to the first calendar day of the next month.

2 Occasionally, the futures prices on that day are not available on the source website. If that is the
case, we use the available price data on the day closest (usually within five days) to the last trading day
in the month of the day.
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(this amounts to a total of 663 futures prices).

5.3.2 Calibration results

The calibration procedure is given in Appendix E.1. Through calibration to the gas

futures contracts, we can obtain all model parameters other than the volatilities. The

volatilities will be obtained through calibration to the futures options, as shown in a later

section.

As suggested in Section 5.2.2, we are interested in three variations of the regime-

switching model. We will determine the best model through calibration, i.e., the model

that optimally fits the market data. For this purpose, we set the initial parameter values

so that the calibration procedure starts from each of the three variations in Section 5.2.2.

Our calibration results are sensitive to the starting values used in the optimization

procedure. For example, if the initial estimates for the parameters has either the MRMR

or MRGBM form, the calibrated parameters retain the same form. As we shall see below,

good fits to the data can be obtained with either MRMR or MRGBM. However, if we use

initial parameters consistent with GBMGBM, then the optimization procedure converges

to the MRGBM parameters.

This appears to indicate that the MRMR or MRGBM models are consistent with the

market data, while the GBMGBM model does not appear to be consistent with market

data. However, we cannot make definite conclusions here, since it is possible that the

optimization algorithm may be stuck in a local minimum.

The behaviour of the volatility of the futures price as T − t becomes large depends in

general on the calibrated parameters. However, for both regimes in the MRMR model, the

volatility of the futures prices declines as the maturity increases. For the MRGBM model,

the volatility of the futures prices declines in the MR regime, but the behaviour in the

GBM regime is a complicated function of the calibrated parameters and the seasonality

terms. It is worthwhile mentioning that the seasonality effects are very large for gas

futures prices, and a much larger set of futures prices expiring at long dates would be

80



needed to determine the long term volatility of the futures prices.

Table 5.1 presents the calibrated risk neutral parameter values for the MR model

(5.2.1-5.2.2) and for the MRMR and MRGBM variations. In our calibration procedure,

we set a lower bound of βkSA = 0. As shown in Table 5.1, the semi-annual seasonal-

ity parameters βkSA for three models are zero, which appears to suggest that a single

trigonometric term can satisfyingly approximate the seasonality trend in the futures price

data. However we are not sure of this because the result βkSA = 0 can be an artifact of

the optimization routine (i.e., a local minimum). Meanwhile, the table reveals a strong

annual seasonality behaviour under the risk neutral world: condition (5.2.6) is satisfied

for the MR model and also for the processes in regime 0 of the MRMR and MRGBM

variations. Consequently, Remark 5.1 implies that the corresponding gas price dynamics

incorporating the seasonality effect are mean-revering within certain periods of time and

switch to (essentially) GBM with positive drift at other times. Regime 1 of the MRMR

variation, nevertheless, always shows a mean-reverting effect and that of the MRGBM

variation always follows a GBM with positive drift.

From Table 5.1, for the MRMR variation, the equilibrium level in regime 1 is con-

siderably higher than that in regime 0. As a result, regime 0 represents the relatively

low price regime and regime 1 represents the relatively high price regime. Similarly, for

the MRGBM variation, regime 0 can be regarded as the low price regime and regime 1

represents the regime where the gas price drifts up quickly (according to the value of α1).

Comparing the calibrated parameter values in regime 0 of the MRMR variation with

those in the MR model, we observe that these values are similar except for the equilibrium

price: the former has K0
0 ≈ 4.5 while the latter has K0 ≈ 8.7 > K0

0 . The situation is

reversed for regime 1 with K0 < K1
0 ≈ 11.7. The above observation also holds for the

MRGBM variation: K0
0 < K0 in regime 0 and the effective equilibrium price is greater

than K0 in regime 1 (we can imagine that the GBM regime is equivalent to a mean-

reverting regime with equilibrium level at +∞).

Note that the risk neutral parameters in Table 5.1 are not necessarily consistent with

their counterparts under the real world P measure. To further illustrate this point, in
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Table 5.2 we give, for the MRGBM variation of the regime-switching model, the regimes

k̂(t; θ) where the realized gas spot price resides at various times in our sample, calibrated

using the procedure in Section E.1.2. We can observe that the duration of time spent

in each regime, implied from Table 5.2, is inconsistent with the risk neutral regime shift

intensities λ0→1, λ1→0 under the Q measure in Table 5.1: the realized gas price stays in

regime 1 for over 45% of the time, while the risk neutral gas price resides at regime 1 for

only about 11% of the time. Regime 1 is a regime in which gas price drifts up quickly. The

risk neutral price stays in this regime (on average) a much shorter time than the realized

price. This observation is consistent with the common paradigm Q is more pessimistic

than P , i.e. investors in gas are risk averse and price gas contracts with a pessimistic

view of future gas prices.

Table 5.3 provides the dollar and the percentage mean absolute errors between the

model and market prices for futures contracts with different delivery months across all

observation days. The table illustrates that the MR model performs the worst in terms of

both the dollar and the percentage errors. On the other hand, the MRMR and MRGBM

variations result in similar errors (with the difference of the overall errors less than 7%),

while the MRMR variation outperforms the MRGBM variation for the contracts with

relatively long maturities.

Note that these fits were obtained with eleven parameters fitting 663 data points. This

fit may not be good enough for trading purposes. However, an exact fit can be obtained to

any set of futures prices at a given time by adding a time dependent fitting function to the

gas price process SDE. However, this fitting function would only have to account for the

approximately 7% error obtained from the global calibration, hence would be relatively

small. It seems that the overall forward curves for gas can be fit reasonably well with

either the MRMR or MRGBM models.

Figure 5.1 illustrates the model implied futures prices and the market prices for the

longest maturity contract, which corresponds to the largest calibration errors among all

the contracts, in the sample across all observation days starting from February 2003.

Figure 5.1a indicate that the MR model fits the market prices poorly in observation days
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MR MRMR MRGBM

Parameter Description Estimate Estimate Estimate

α (α0) Mean-reversion rate (for regime
0)

0.406 0.430 0.435

K0 (K0
0) Equilibrium price (for regime 0) 8.678 4.466 4.748

βA (β0
A) Annual seasonality parameter

(for regime 0)
0.527 0.600 0.550

βSA (β0
SA) Semiannual seasonality parame-

ter (for regime 0)
0 0 0

A0 Annual seasonality time adjust-
ment parameter

0.483 0.441 0.457

α1 Mean-reversion rate for regime 1 1.033 −0.650
K1

0 Equilibrium price for regime 1 11.709 0
β1
A Annual seasonality parameter

for regime 1
0.571 0.555

β1
SA Semiannual seasonality parame-

ter for regime 1
0 0

λ0→1 Intensity of the jump from
regime 0 to regime 1

0.304 0.283

λ1→0 Intensity of the jump from
regime 1 to regime 0

0.975 2.290

Table 5.1: Estimated parameter values for the three models using 663 monthly ob-
served futures price data from February 2003 to July 2007. The column MR represents
the MR model. The columns MRMR and MRGBM represent the MRMR and MRGBM
variation of the regime-switching model, respectively. Units are in terms of years.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 N/A 0 0 0 0 0 0 0 0 0 0 0
2004 0 0 0 0 0 0 0 1 1 0 0 1
2005 1 1 0 0 N/A 0 0 0 0 0 0 0
2006 1 1 1 1 1 N/A N/A 1 1 1 1 1
2007 1 1 1 1 1 1 1 N/A N/A N/A N/A N/A

Table 5.2: Regimes where the realized market gas spot price resides at various times,
where the spot price follows the MRGBM variation of the regime-switching model. The
Table shows that 29 months correspond to regime 0 and 22 months correspond to regime
1. The N/A in the table corresponds to missing data.
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Mean absolute error

Contract maturity MR MRMR MRGBM MR MRMR MRGBM
In Dollars In Percentage

Month+2 0.278 0.240 0.248 3.98 3.57 3.64
Month+3 0.499 0.386 0.388 6.99 5.70 5.56
Month+4 0.645 0.487 0.470 8.96 7.01 6.57
Month+5 0.684 0.504 0.471 9.44 7.08 6.45
Month+6 0.741 0.486 0.502 10.13 6.60 6.60
Month+7 0.827 0.493 0.528 11.14 6.59 6.75
Month+8 0.872 0.492 0.548 11.86 6.66 7.11
Month+9 0.949 0.505 0.563 12.97 6.92 7.37
Month+10 1.011 0.557 0.574 13.93 7.61 7.53
Month+11 1.037 0.603 0.622 14.62 8.20 8.20
Month+12 1.075 0.580 0.640 15.60 8.21 8.53
Month+13 1.118 0.580 0.677 16.65 8.53 9.21
Month+14 1.152 0.585 0.698 17.68 8.97 9.74

Overall 0.838 0.500 0.533 11.84 7.05 7.17

Table 5.3: Mean absolute errors between the model and the market prices for the
futures contracts with different delivery months, where the notation Month+k in the
first column represents the kth month delivery after the month of the observation day.
The errors are given both in dollars and in percentage. The column MR represents the
MR model. The columns MRMR and MRGBM represent the MRMR and MRGBM
variation of the regime-switching model, respectively.
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close to February 2003. On the contrary, Figures 5.1b and 5.1c show that the MRMR

and MRGBM variations of the regime-switching model can reasonably fit the data across

all the observation days. Therefore, we conclude that among these models, the regime-

switching models outperform the MR model in terms of fitting the market gas forward

curves.

5.4 Calibration to Options on Futures

As stated in Remark E.1, the spot price volatilities for the models in Section 5.2 need to be

estimated using derivatives other than the futures contracts. Consequently, we calibrate

the volatility using market European call options on natural gas futures. The calibration

procedure is provided in Appendix E.2.

5.4.1 Calibration Results

We choose as input the values of twelve European call options from NYMEX on t =

6/26/2007 with different strike prices. These options have the same underlying futures

contract, which expires in August 2007, denoted by T . The futures price is 7.002 $/mmBtu

at time t. The strike prices with respect to the twelve options range from 6.5 to 7.5

$/mmBtu, that is, we pick both slightly in the money and slightly out of the money

options3. We assume that the annual riskless interest rate is r = 5%.

Table 5.4 gives the calibration results and mean absolute errors for the MR model and

the MRMR and MRGBM variations of the regime-switching model.

3The data set we choose is relatively small. Nevertheless, as an illustration in our simple constant
parameter setting, it is sufficient to estimate the volatilities for two regimes. One can add more market
data into calibration, such as American options. One can also imagine assuming a volatility surface
σk = σk(P, t) in model (5.2.8-5.2.9) and calibrating the surface using futures options with different
maturities and different strike prices.
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Figure 5.1: Comparison between the model and the market futures prices for the
contract with the longest maturity (for the delivery after 14 months) in the sample
across all observation days starting from February 2003. The x-axis represents the
number of days between the observation day and the starting date. The model implied
prices are computed using the calibrated parameters in Table 5.1. MR represents the
MR model. MRMR and MRGBM represent the MRMR and MRGBM variation of the
regime-switching model, respectively.
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Volatility Mean absolute error
Model σ0 σ1 In Cents In Percentage
MR 0.428 1.75 4.27

MRMR 0.406 0.453 0.15 0.59
MRGBM 0.394 0.416 0.15 0.60

Table 5.4: Calibrated volatilities and mean absolute errors for the futures options.
The errors are given both in cents and in percentage. The row MR represents the MR
model. The rows MRMR and MRGBM represent the MRMR and MRGBM variation
of the regime-switching model, respectively.

5.5 Summary

Our work in this area makes the following contributions:

• We propose a one-factor regime-switching model for the risk neutral natural gas

spot price. By adjusting parameter values, the deseasoned process in each regime

follows either a mean-reverting process or a geometric Brownian motion (GBM) like

process with a positive/negative drift. This produces several variations of the basic

model.

• We calibrate model parameters to both market futures and options. We use a two

phase calibration process. Under these models, a subset of the parameters can be

obtained by calibration to the forward curves. The remaining parameters can be

determined by calibration to options. As a result, the computational requirements

of the calibration process are reduced compared to more general models. Note that

since we are interested in valuation and operation of gas storage, we calibrate to

futures and options prices, which gives us the Q measure parameters directly. This

is, of course, distinct from the econometric approach of examining spot price time

series, which would generate P measure parameters.

• Among the three gas price models that we examine, the calibration results show

that the MRMR and MRGBM variations of the regime-switching model are capable

of fitting the market gas forward curves more accurately than the MR model. The
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GBMGBM variation does not appear to be consistent with market data.
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Chapter 6

Pricing Natural Gas Storage

Contracts under the

Regime-Switching Model

In the previous chapter we have showed that the regime-switching model (5.2.8-5.2.9)

outperforms the one-factor mean-reverting model (5.2.1-5.2.2) in capturing the dynamics

of natural gas futures prices. In this chapter, we apply the calibrated model to price the

value of cash flows for a natural gas storage facility. Readers can refer to Chapter 2 for

detailed descriptions of the gas storage valuation problem.

This chapter is arranged as follows: we first give the pricing equations for gas storage

contracts and discuss the corresponding boundary conditions. We then introduce the

numerical scheme for solving the pricing equations and prove the convergence of the

scheme to the viscosity solution. Finally, we conduct numerical convergence tests and

investigate the optimal operational strategies on storage facilities implied from these gas

spot price models.
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6.1 Pricing Equation

We use V̂ k(P, I, t) = V̂ (P, I, t, k) to represent the value of a natural gas storage facility

in regime k when the gas price resides at P , the working gas inventory lies at I and the

current time is t. The stochastic control formulation with respect to equation (2.2.8) is

V̂ k(P, I, t)

= sup
c(s)∈C(I(s))

EQ
[∫ T

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds+ e−r(T−t)V̂ m(T )

(
P (T ), I(T ), T

)]
,

(6.1.1)

where m(T ) is the regime where the risk neutral gas spot price resides at time T and

other parameters are given in Chapter 2. The operator EQ is the risk neutral conditional

expectation with initial values P (t) = P , I(t) = I and m(t) = k. Assuming that the risk

neutral gas spot price follows the regime-switching model (5.2.8-5.2.9) and following the

steps in Appendix A, we can obtain the following coupled HJB equations from the above

control equation (6.1.1)

V k
τ =

1

2
(σk)2P 2V k

PP +
[
αk(Kk

0 − P ) + Sk(t)P
]
V k
P + sup

c∈C(I)

{
(c− a(c))P − (c+ a(c))V k

I

}
−
(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} ,

(6.1.2)

where we have changed the variable from V̂ k(P, I, t) to V k(P, I, τ) with τ = T − t and

V k(P, I, τ) = V̂ k(P, I, t)

6.2 Boundary Conditions

In order to completely specify the gas storage problem, we need to provide boundary

conditions. As for the terminal boundary conditions, we use the following penalty payoff
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function given in (2.2.13):

V k(P, I, τ = 0) = const. · P ·min (I(t = T )− I(t = 0), 0) , k ∈ {0, 1}. (6.2.1)

For computational purposes, we truncate the domain from P×I ∈ [0,∞]×[0, Imax]. to

a finite computational domain [0, Pmax]× [0, Imax]. As I → 0 or I → Imax, according to the

arguments in Section 2.2.5, no boundary conditions are needed since the characteristics

are outgoing or zero in the I direction.

Taking the limit of equations (6.1.2) as P → 0, we obtain

V k
τ = αkKk

0V
k
P + sup

c∈C(I)

{
−(c+ a(c))V k

I

}
−
(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} .

(6.2.2)

Since αkKk
0 ≥ 0 for all variations of the regime-switching model we consider (see Sec-

tion 5.2.2), the characteristics are outgoing in the P direction and we can solve equations

(6.2.2) without requiring additional boundary conditions.

As P → ∞, we make the common assumption that V k
PP → 0 (see [87]). We need to

deal with one major issue in that the resulting boundary equations require information

from outside the computational domain. To see the problem, assuming V k
PP → 0 as

P →∞, then the pricing equations (6.1.2) become

V k
τ =

[
αkKk

0 +
(
Sk(t)− αk

)
P
]
V k
P + sup

c∈C(I)

{
(c− a(c))P − (c+ a(c))V k

I

}
−
(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k , k ∈ {0, 1} .

(6.2.3)

Using the calibrated parameter values from Table 5.1, we find that S0(t) − α0 > 0 are

positive for certain ranges of t. In this case, the characteristics of equations (6.2.3) are

incoming in the P direction at P → ∞ and consequently, a monotone discretization of

the equation will require information from outside the computational domain.

This issue can be resolved using the following approximation. The assumption V k
PP →
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0 as P →∞ implies that

V k(P, I, τ) ≈ fk(I, τ)P + gk(I, τ), (6.2.4)

where functions fk and gk are independent of P . If we assume that fk(I, τ)P � gk(I, τ)

as P →∞, we can further write

V k ≈ fk(I, τ)P. (6.2.5)

Note that the approximation (6.2.4) is consistent with the payoff (6.2.1). Now the drift

term in the boundary equation (6.2.3) can be written as

[
αkKk

0 +
(
Sk(t)− αk

)
P
]
V k
P ≈

(
Sk(t)− αk

)
PV k

P

≈
(
Sk(t)− αk

)
V k,

(6.2.6)

where the first approximation follows since
(
Sk(t) − αk

)
P � αkKk

0 as P → ∞ and

the second approximation is due to equation (6.2.5). Substituting equation (6.2.6) into

equation (6.2.3) results in

V k
τ = sup

c∈C(I)

{
(c− a(c))P − (c+ a(c))V k

I

}
−
(
r + αk − Sk(t) + λk→(1−k)

)
V k

+ λk→(1−k)V 1−k , k ∈ {0, 1}.
(6.2.7)

Since the drift term in equations (6.2.7) is zero, we are able to provide a monotone dis-

cretization for the equation without requiring information from outside the computational

domain. (Refer to Section 6.4 for more details.)

6.3 Numerical Scheme

Based on the semi-Lagrangian discretizations in Section 2.3, we can easily derive schemes

for solving the gas storage equations (6.1.2) and boundary equations (6.2.1-6.2.2) and

(6.2.7) in the regime-switching framework. As demonstrated in Chapter 4, the first-order
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fully implicit timestepping scheme is a better choice than the Crank-Nicolson timestepping

scheme since the latter does not converge at a higher than first-order rate and cannot

guarantee convergence to the viscosity solution of the pricing HJB equation. As a result,

in this section we only consider the fully implicit timestepping scheme.

Prior to presenting the scheme, we introduce the notation below that follows a similar

manner as that in Chapter 2. We use unequally spaced grids in the P and I directions

for the PDE discretization, represented by [P0, P1, . . . , Pimax ] and [I0, I1, . . . , Ijmax ], respec-

tively. We use the discrete timesteps 0 < ∆τ <, . . . , < N∆τ = T to discretize the PDEs

with τn = n∆τ denoting the nth timestep. We assume that there are mesh size/timestep

parameters h satisfying condition (2.3.1).

Let V n
i,j,k denote an approximation of the exact solution V k(Pi, Ij, τ

n), where k ∈ {0, 1}.

Let V n denote a column vector that includes all values of V n
i,j,k with the index order

arranged as V n =
[
V n

0,0,0, . . . , V
n
imax,0,0, . . . , V

n
0,jmax,0, . . . , V

n
imax,jmax,1

]′
. For future reference,

assuming M is a square matrix, then we denote [MV n]ijk = (MV n)i,j,k, and denote

[MV n]jk as the vector
[
(MV n)0,j,k, . . . (MV n)imax,j,k

]′
.

Let L be a differential operator represented by

LV k =
1

2
(σk)2P 2V k

PP +
[
αk(Kk

0 − P ) + Sk(t)P
]
V k
P −

(
r + λk→(1−k)

)
V k + λk→(1−k)V 1−k

(6.3.1)

for P ∈ [0, Pmax). While P → Pmax, according to the boundary equations (6.2.7), we

define the operator L to be

LV k = −
(
r + αk − Sk(t) + λk→(1−k)

)
V k + λk→(1−k)V 1−k. (6.3.2)

The operator L can be discretized using standard finite difference methods. Let (LhV )ni,j,k

denote the discrete value of the operator L at node (Pi, Ij, τ
n, k). Using central, forward,
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or backward differencing in the P direction, we can write

(LhV )ni,j,k

=


γni,kV

n
i−1,j,k + βni,kV

n
i+1,j,k − (γni,k + βni,k + r + λk→(1−k))V n

i,j,k + λk→(1−k)V n
i,j,1−k i < imax,

−
(
r + αk − Sk(T − τn) + λk→(1−k)

)
V n
i,j,k + λk→(1−k)V n

i,j,1−k i = imax,

(6.3.3)

where constants γni,k, β
n
i,k can be determined using an algorithm similar to that given in

Appendix B. The algorithm guarantees that γni,k, β
n
i,k satisfy a positive coefficient condition:

γni,k ≥ 0 ; βni,k ≥ 0 i = 0, . . . , imax − 1 ; k = 0, 1 ; n = 1, . . . , N. (6.3.4)

Let Ln denote a matrix such that

[LnV n]ijk = (LhV )ni,j,k, (6.3.5)

where the discrete value (LhV )ni,j,k is given in equation (6.3.3). We denote by Φn+1 a

Lagrange linear interpolation matrix such that

[
Φn+1V n

]
ijk

= V n
i,ĵ,k

+ interpolation error, (6.3.6)

where V n
i,ĵ,k

is an approximation of V k(Pi, I
n
ĵ
, τn) with In

ĵ
given in (2.3.15). Let P denote a

column vector satisfying [P ]i = Pi. Let ζnjk be a diagonal matrix containing control values

that need to be determined. Let a
(
ζnjk
)

denote a diagonal matrix with diagonal entries[
a
(
ζnjk
)]
ii

= a
(
[ζnjk]ii

)
. Let I be an identity matrix. Given the above notation, following

the matrix form (2.3.25), we can provide the the fully implicit timestepping scheme for

the gas storage pricing equations (6.1.2), (6.2.1-6.2.2) and (6.2.7) as follows:

[
[I−∆τLn+1]V n+1

]
jk

=
[
Φn+1V n

]
jk

+ ∆τ
(
ζn+1
jk − a

(
ζn+1
jk

))
P,

where
[
ζn+1
jk

]
ii

= arg max
[ζn+1

jk ]ii∈Cn+1
jk

{[[
Φn+1V n

]
jk

+ ∆τ
(
ζn+1
jk − a

(
ζn+1
jk

))
P
]
i

} (6.3.7)
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for j = 0, . . . , jmax and k = 0, 1. Here [ζn+1
jk ]ii represents the optimal control in the

admissible set Cn+1
jk (defined in Chapter 2). Again, according to arguments in Chapter 2,

we can use max operator, instead of the sup operator, in (6.3.7) since the supremum can

be achieved by an admissible control. The discrete optimization problem in (6.3.7) can

be solved using the bang-bang and no bang-bang methods as described in Section 2.4.

6.4 Convergence Analysis

In this section we follow the lines in Chapter 3 to prove the convergence of our scheme

(6.3.7) to the viscosity solution of pricing equations (6.1.2), (6.2.1-6.2.2) and (6.2.7).

Note that the notation of viscosity solutions under the regime-switching setting needs to

be slightly modified according to [71]. Briefly, the test functions are defined only for each

fixed regime k, and the test functions are above/below the solution only for each fixed k,

ignoring the solution value Vj, j 6= k. However, as shown in [71], provided a unique and

continuous viscosity solution exists, it is sufficient to verify the l∞-stability, consistency

and monotonicity of the scheme in order to guarantee the convergence.

Let us define the matrix

Qn+1 = I−∆τLn+1. (6.4.1)

We can write the discrete equations (6.3.7) at each node (Pi, Ij, k) as

Gn+1
i,j,k

(
h, V n+1

i,j,k ,
{
V n+1
l,j,k

}
l 6=i, V

n+1
i,j,1−k,

{
V n
i,j,k

})
≡ min

[ζn
jk]ii∈Cn+1

jk

{[
Qn+1V n+1

]
ijk
−
[
Φn+1V n

]
ijk
−∆τn

[
(ζn+1
jk − a(ζn+1

jk ))P
]
i

}
= 0 if n+ 1 ≥ 1,

(6.4.2)

where
{
V n+1
l,j,k

}
l 6=i is the set of values V n+1

l,j,k , l 6= i, l = 0, . . . , imax, and
{
V n
i,j,k

}
is the set of

values V n
i,j,k, i = 0, . . . , imax, j = 0, . . . , jmax, k = 0, 1. We also define Gn+1

i,j,k at payoff time
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τ = 0 as

Gn+1
i,j,k

(
h, V n+1

i,j,k ,
{
V n+1
l,j,k

}
l 6=i, V

n+1
i,j,1−k,

{
V n
i,j,k

})
≡ V n+1

i,j,k −B(Pi, Ij, k) = 0, if n+ 1 = 0,

(6.4.3)

where B(Pi, Ij, k) is the value of the payoff function (6.2.1) a node (Pi, Ij, k). Conse-

quently, scheme (6.4.2-6.4.3) completely specifies our semi-Lagrangian discretization.

In order to show the convergence, we first prove the following Lemma

Lemma 6.1 (M -matrix property of Qn+1). Assuming that discretization (6.3.3) satisfies

the positive coefficient condition (6.3.4) and the timestep condition

∆τ <
1

S − α
(6.4.4)

where

S − α ≡ max

[
max

t∈[0,T ],k∈{0,1}
(Sk(t)− αk), 0

]
, (6.4.5)

then the matrix Qn+1 is an M matrix. If S − α = 0 in (6.4.5), then constraint (6.4.4)

vanishes since 1/(S − α) =∞.

Proof. From equations (6.3.3), using conditions (6.3.4) and (6.4.4), we can verify that

−Ln+1 has nonpositive offdiagonal elements and the sum of elements in each row in

matrix Qn+1 is nonnegative. Note that condition (6.4.4) is needed to show that the

above diagonal dominant property holds for the last row of the matrix. Hence Qn+1 is an

M -matrix.

Remark 6.2 (Explanation of the Timestep Condition (6.4.4)). Condition (6.4.4) is a

mild timestepping constraint since Sk(t) is bounded above by a relatively small constant.

For example, using the parameter values from Table 5.1, condition (6.4.4) is equivalent to

∆τ < 5.88 and ∆τ < 0.83 for the MRMR and MRGBM variation of the regime-switching

model, respectively. This indicates that a timestep of 0.8 year is sufficient to satisfy the

condition.

Based on Lemma 6.1, we obtain the following l∞-stability result:
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Lemma 6.3 (l∞-stability). Assuming that discretization (6.4.2-6.4.3) satisfies the condi-

tions required for Lemma 6.1, then as ∆τ → 0, scheme (6.4.2-6.4.3) satisfies

‖V n+1‖∞ ≤ D1‖V 0‖∞ +D2, (6.4.6)

where D1, D2 are bounded constants given by

D1 = exp ((S − α)T )

D2 =

 1
S−α(D1 − 1) · Pmax ·max {|Cmax(Imax)|, |Cmin(0)|} if S − α > 0,

T · Pmax ·max {|Cmax(Imax)|, |Cmin(0)|} if S − α = 0,

(6.4.7)

where (S−α) is defined in (6.4.5). Here ‖V n+1‖∞ = maxi,j,k |V n+1
i,j,k |. Therefore, according

to Definition 3.16, the scheme (6.4.2-6.4.3) is unconditionally l∞-stable.

Proof. The proof directly follows from using Lemma 6.1 and applying the maximum

principle to the discrete equation (6.4.2). We omit the details here. Readers can refer

to [40, Theorem 5.5] and [46] for complete stability proofs of the semi-Lagrangian fully

implicit scheme for American Asian options and the finite difference schemes for controlled

HJB equations, respectively.

Under the regime-switching setting, the consistency definition in Definition 3.18 needs

to be modified according to [71, 6]. Following the proof of Lemma 3.19, we can prove

that our scheme (6.4.2-6.4.3) is consistent to the pricing equations (6.1.2), (6.2.1-6.2.2)

and (6.2.7) under the regime-switching framework.

Using Lemma 6.1, we can easily verify that the scheme (6.4.2-6.4.3) is monotone, as

defined in [11, 6].

From Lemma 6.3 and the discussions above, using the results in [71, 11, 6], we can

obtain the following convergence result:

Theorem 6.4 (Convergence to the Viscosity Solution). Assuming that discretization

(6.4.2-6.4.3) satisfies all the conditions required for Lemmas 6.3, and assuming that a

unique, continuous viscosity solution exists for equations (6.1.2), (6.2.1-6.2.2) and (6.2.7),
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then scheme (6.4.2-6.4.3) converges to the viscosity solution of gas storage equations

(6.1.2), (6.2.1-6.2.2) and (6.2.7).

6.5 Numerical Results

Having introduced the fully implicit semi-Lagrangian discretization scheme in the previ-

ous section, this section conducts numerical experiments based on the proposed scheme.

Following Chapter 4, we use $/mmBtu and MMcf as the default units for gas spot price P

and gas inventory I, respectively. The numerical experiments use the following nonlinear

payoff function as used in Chapter 4:

V k(P, I, τ = 0) = −2P max(1000− I, 0) , k ∈ {0, 1}. (6.5.1)

We first carry out a convergence analysis, assuming that the risk neutral natural gas

spot price follows the MRMR variation of the regime-switching model (5.2.8-5.2.9) and

taking model parameter values from Tables 5.1 and 5.4. Other input parameters for

pricing the value of a gas storage contract are listed in Table 4.1 except that the annual

riskless interest rate is set to be r = 0.05.

The convergence results for two regimes at the node (P, I) = (6, 1000) obtained from

refining the mesh spacing and timestep size are shown in Table 6.1, where we use both the

bang-bang and no bang-bang methods for solving the discrete optimization problem in

scheme (6.3.7) (or (6.4.2)). The results indicate that the both methods achieve first-order

convergence. A similar observation is found for the MRGBM variation.

6.5.1 Optimal Operational Strategies for Different Price Models

Our next step is to investigate the optimal operational strategies implied from the gas

spot price models. Figure 6.1a plots the optimal control surface of the MR model (5.2.1-

5.2.2) as a function of forward time t and gas price P when I = 1000 MMcf. We can

verify from the figure that the optimal controls are of the bang-bang type: the controls
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P grid I grid No. of Bang-bang method No bang-bang method
nodes nodes timesteps Value Ratio Value Ratio

Regime 0
87 61 500 3902629 n.a. 4011939 n.a.
173 121 1000 3920017 n.a. 3978633 n.a.
345 241 2000 3932943 1.35 3962706 2.09
689 481 4000 3939135 2.09 3954988 2.06
1377 961 8000 3942166 2.04 3951148 2.01

Regime 1
87 61 500 4836234 n.a. 4962610 n.a.
173 121 1000 4864240 n.a. 4929533 n.a.
345 241 2000 4881661 1.61 4913620 2.08
689 481 4000 4889176 2.32 4905978 2.08
1377 961 8000 4892715 2.12 4902130 1.99

Table 6.1: The value of a natural gas storage facility in two regimes at P = 6
$/mmBtu and I = 1000 MMcf. Risk neutral gas spot price follows MRMR variation
of the regime-switching process (5.2.8-5.2.9) with model parameter values given in Ta-
bles 5.1 and 5.4. Convergence ratios are presented for the bang-bang and the no bang-
bang methods in two regimes. The convergence ratio is defined as the ratio of successive
changes in the solution, as the timestep and mesh size are reduced by a factor of two.
Constant timesteps are used. The payoff function is given in (6.5.1). Other input pa-
rameters are given in Table 4.1 and we use r = 0.05. We assume that today is January
1st of the year.
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are either producing at the maximum rate c = cmax > 0, or injecting at the maximum

rate c = cmin < 0, or doing nothing with c = 0.

Another observation from Figure 6.1a is that for a fixed time t, the control is price

dependent; at the same time, the controls evolving over time follow a repeated seasonal

pattern. Specifically, in winter months, it is optimal to produce when the price is suf-

ficiently high, to inject when the price is relatively low, and to do nothing when the

price lies in between. The higher the price, the longer the production period will be; the

lower the price, the longer the injection period will be. Furthermore, the equilibrium level

P = 8.678 $/mmBtu approximately resides in the center of the three bang-bang control

regions (i.e., the regions of injection, doing nothing and production). This is due to the

mean-reverting behaviour of the MR model during the winter period (see the discussions

in Remark 5.1 and Section 5.3.2). In summer months, however, the optimal control is to

inject or to do nothing, but never to withdraw. The gas price during this period essen-

tially follows a GBM with a positive drift. As such, it is never optimal to withdraw since

the price tends to drift up during this period due to the strong seasonality effect. From

the discussions above, we conclude that the optimal controls are consistent with the gas

price dynamics implied from the calibrated MR model.

We can also observe from Figure 6.1a that the controls converge to zero when t→ T

in order to avoid the revenue loss due to the payoff structure (6.5.1).

To see the seasonality effect on the control strategies more clearly, in Figure 6.1b we

present the optimal control curve obtained by taking a slice of the control surface in

Figure 6.1a at P = 6 $/mmBtu along the t direction. The figure shows that is optimal

to produce between February and March (i.e., in the cold season when the gas prices are

relatively high), inject between July and October (i.e., in the warm season when the gas

prices are relatively low) and do nothing in other seasons.

As a comparison, Figure 6.2 plots, for the MRMR variation of the regime-switching

model, the optimal control surface as a function of t and P with I = 1000 MMcf and

the corresponding control curve at P = 6 $/mmBtu. Comparing three control surfaces in

Figures 6.1a, 6.2a and 6.2c, we observe that they have similar seasonal patterns except that
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(b) Control curve at P = 6 $/mmBtu,
MR

Figure 6.1: Optimal control surface for the MR model as a function of forward time
t and gas spot price P as well as the corresponding control curve as a function of t when
P = 6 $/mmBtu, where the gas inventory resides at I = 1000 MMcf. Model parameter
values are given in Tables 5.1 and 5.4. Fully implicit timestepping with the no bang-
bang method and with constant timesteps is used. Other input parameters are given in
Table 4.1 and we use r = 0.05. We assume that the starting time t = 0 corresponds to
July 1st of the year.
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the three bang-bang control regions in each control surface align according to different gas

price P , or more precisely, according to the equilibrium prices of the stochastic processes

with respect to the three control surfaces. Consequently, the MRMR variation generates

different control strategies for two regimes that are consistent with the calibrated processes

in those regimes. Moreover, as a regime shift occurs due to an exogenous event, the

seasonal control pattern will change accordingly. For example, if the regime shifts from 0

to 1 in March, then the control will switch from producing gas to injecting gas when

P = 6 $/mmBtu. As a result, the MRMR variation of the regime-switching model is able

to generate controls that reflect the existence of multiple regimes (if we believe this is true)

in the market as well as the regime shifts. Therefore, we regard the MRMR variation as

a richer model, which has more complex optimal control strategies.

In Figure 6.3, we plot the optimal control surface and the corresponding control curve

for the MRGBM variation of the regime-switching model. The control strategies in

regime 0 of the MRMR and MRGBM variations are similar. However, in regime 1 of

the MRGBM variation, for all gas prices, it is never optimal to produce, even in the

winter period (for fixed I = 1000). Again, this is in accordance with the GBM behaviour

of the gas price process in this regime. Therefore, similar to the MRMR variation, the

MRGBM variation also produces regime specific control strategies that are consistent

with the gas price dynamics in each regime. Consequently, the MRGBM variation can

also produce very different optimal strategies compared to the MR model.

Finally, we note that from a calibration perspective, it is difficult to distinguish be-

tween the MRMR or MRGBM models. We would need other evidence to determine

whether the gas price dynamics in the high price regime is mean-reverting or GBM.

6.6 Summary

Our work in this chapter makes the following contributions:

• We extend our fully implicit, semi-Lagrangian timestepping scheme in Chapter 2

for gas storage pricing equation (2.2.12) under a one-factor mean-reverting model
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(d) Control curve at P = 6 $/mmBtu,
Regime 1, MRMR

Figure 6.2: Optimal control surface for the MRMR variation of the regime-switching
model as a function of forward time t and gas spot price P as well as the corresponding
control curve as a function of t when P = 6 $/mmBtu, where the gas inventory resides at
I = 1000 MMcf. Model parameter values are given in Tables 5.1 and 5.4. Fully implicit
timestepping with the no bang-bang method and with constant timesteps is used. Other
input parameters are given in Table 4.1 and we use r = 0.05. We assume that the
starting time t = 0 corresponds to July 1st of the year.
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(d) Control curve at P = 6 $/mmBtu,
Regime 1, MRGBM

Figure 6.3: The optimal control surface for the MRGBM variation of the regime-
switching model as a function of forward time t and gas spot price P as well as the
corresponding control curve as a function of t when P = 6 $/mmBtu, where the gas
inventory resides at I = 1000 MMcf. Model parameter values are given in Tables 5.1
and 5.4. Fully implicit timestepping with the no bang-bang method and with constant
timesteps is used. Other input parameters are given in Table 4.1 and we use r = 0.05.
We assume that the starting time t = 0 corresponds to July 1st of the year.
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to solve the pricing equations (6.1.2) under the regime-switching model, using the

model parameters obtained from the calibration. Provided a unique continuous

viscosity solution exists, we prove the convergence of the scheme to the viscosity

solution of the equations using the results in [71, 11, 6]. The numerical results

demonstrate that the scheme converges to the solution at a first-order rate.

• We study the implications of the regime-switching model and the tested one-factor

mean-reverting model on the optimal operational strategies for gas storage facilities.

Our observations indicate that the regime-switching model, in contrast to one-factor

mean-reverting models, is able to produce operational strategies that reflect the

existence of multiple regimes in the market as well as the regime shifts due to

various exogenous events. Therefore, the regime-switching model is a richer model

for pricing the gas storage contracts than the one-factor mean-reverting models.
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Chapter 7

Pricing Variable Annuities with a

Guaranteed Minimum Withdrawal

Benefit (GMWB) under the Discrete

Withdrawal Scenario

Variable annuities with GMWBs are extremely popular since these contracts provide

investors with the tax-deferred feature of variable annuities as well as the additional

benefit of a guaranteed minimum payment. In 2004, sixty-nine percent of all variable

annuity contracts sold in the US included a GMWB option [13].

A GMWB contract involves initial payment of a lump sum to an insurance company.

This lump sum is then invested in risky assets. The holder of this contract may withdraw

funds up to a specified amount each year for the life of the contract, regardless of the

performance of the risky assets. As a result, assuming that continuous withdrawals are

allowed, the valuation of the GMWB variable annuities is characterized as a stochastic

control problem with the withdrawal rate as the control variable.

Prior to pricing continuous withdrawal contracts, in this chapter we formulate a pricing

model for more realistic contracts where the withdrawals are allowed only at discrete times

[13, 31]. We then present a numerical scheme to solve the pricing model. Based on the
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numerical method for discrete withdrawal contracts, in the next chapter we will generalize

the approach to value the continuous withdrawal contract.

Using the numerical method in this chapter, in Chapter 9 we will conduct extensive

numerical experiments for discrete withdrawal contracts to determine the effect of various

parameters and contract specifications on the fair contract value.

7.1 Contract Description

There exist many variations of GMWB variable annuity contracts. In the following, we

briefly describe a typical contract that we consider in this thesis. The contract consists

of a so called personal sub-account and a virtual guarantee account. The funds in the

sub-account are managed by the insurance company investing in a diversified reference

portfolio of a specific class of assets. Consequently, the balance in the sub-account is linked

to the market performance. At the inception of the policy, the policyholder pays a lump-

sum premium to the insurer. This premium forms the initial balance of the sub-account

and that of the guarantee account. Prior to the contract maturity, the policyholder is

also committed to pay an annual insurance fee proportional to the sub-account balance.

A GMWB option allows the policyholder to withdraw funds from the sub-account at

prespecified times (e.g., on an annual or semi-annual basis). Each withdrawal reduces

the balance of the guarantee account by the corresponding amount. The policyholder

can keep withdrawing as long as the balance of the guarantee account is above zero, even

when the sub-account balance falls to zero prior to the policy maturity.

Following [69, 31], we assume the net amount received by the policyholder after a

withdrawal is subject to a withdrawal level specified in the contract. If the withdrawal

amount does not exceed the contract withdrawal level, then the policyholder receives the

complete withdrawal amount. Otherwise, if the withdrawal amount is above the contract

level, then the investor receives the remaining amount after a proportional penalty charge

is imposed. At the maturity of the policy, the policyholder can choose to receive either

the remaining balance of the sub-account if it is positive or the remaining balance of the
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guarantee account subject to a penalty charge.

As discussed in [13], for some variations of GMWB contracts, the balance of the

guarantee account can increase at certain points in time if no withdrawals have been

made so far. In [69, 31] another possibility is discussed whereby an excessive withdrawal

may result in a decrease greater than the withdrawal amount in the guarantee account.

We will examine some of these complex contract features in a later chapter.

7.2 Discrete Withdrawal Model

In this section we present the pricing model for the valuation of GMWB variable annuities

assuming that the investor can withdraw only at discrete times. First, we introduce

the notation for the problem. Then we present the pricing equation and the associated

boundary conditions.

7.2.1 Problem Notation

We use the following notation for the GMWB variable annuities pricing problem:

• w0: the premium paid upfront by the policyholder.

• W : the balance of the personal variable annuity sub-account. We have W = w0 at

the inception of the contract.

• A: the current balance of the guarantee account. The value of A resides within the

interval [0, w0]. We have A = w0 at the inception of the contract.

• V (W,A, τ): the no-arbitrage value of the variable annuity with GMWB at time

t = T − τ when the value of the sub-account is W and the balance of the guarantee

account is A. As usual, we use τ to represent the time to maturity of the contract.

• T : maturity of the policy.

• α: α ≥ 0, the proportional annual insurance fee paid by the policyholder.
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• S: the value of the reference portfolio of assets underlying the variable annuity

policy. Following [31], we assume that the risk neutral process of S is modeled by a

stochastic differential equation (SDE) given by

dS = rSdt+ σSdZ, (7.2.1)

where r ≥ 0 is the riskless interest rate, σ is the volatility, dZ is an increment of the

standard Gauss-Wiener process.

We denoted by tiO, i = 1, 2, . . . , K the discrete withdrawal times, where tKO = T , and

we denote by t0O = 0 the inception time of the policy.

Following [31], we assume there is no withdrawal allowed at t = 0 (the inception of

the contract). Let τ kO = T − tiO be the time to maturity at the ith withdrawal time with

τ 0
O = 0 and τKO = T , where k = K − i. In other words, τ kO, k = 0, . . . , K − 1 is the kth

withdrawal time going backwards in time. Let ∆τ k+1
O = τ k+1

O − τ kO.

We denote by γk the control variable representing the discrete withdrawal amount at

τ = τ kO; γk can take any value in [0, A]. As such, the dynamics of A are given by

A(t) = A(t−)− γk, if t = T − τ kO,

dA = 0, otherwise,
(7.2.2)

where t− is the time instantaneously before t.

From (7.2.1) the risk neutral dynamics of W follow an SDE given by

dW = (r − α)Wdt+ σWdZ + dA, if W > 0, (7.2.3)

dW = 0, if W = 0 (7.2.4)

where the dynamics of W are affected by the dynamics of S and A as well as the insurance

fee α. Note that the above equations indicate that W will stay at zero from the time it

reaches zero.
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Let Gk represent the contract withdrawal amount at τ kO. If γk ≤ Gk, there is no

penalty imposed; if γk > Gk, then there is a proportional penalty charge κ(γk−Gk), that

is, the net amounted received by the policyholder is γk − κ(γk − Gk) if γk > Gk, where

κ is a positive constant representing the deferred surrender charge. We assume that the

penalty (surrender) fees are available to fund the GMWB guarantee.

Consequently, the cash flow received by the policyholder at the discrete withdrawal

time τ = τ kO as a function of γk, denoted by f(γk), is given by

f(γk) =

 γk if 0 ≤ γk ≤ Gk,

γk − κ(γk −Gk) if γk > Gk.
(7.2.5)

7.2.2 Pricing Equation

As shown in [31], at the withdrawal time τ = τ kO, V satisfies the following no-arbitrage

condition

V (W,A, τ k+
O ) = sup

γk∈[0,A]

[
V
(
max(W − γk, 0), A− γk, τ kO

)
+ f(γk)

]
, k = 0, . . . , K − 1,

(7.2.6)

where τ k+
O denotes the time infinitesimally after τ kO.

Within each time interval [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1, the annuity value function

V (W,A, τ), assuming equations (7.2.1-7.2.4), solves the following linear PDE which has

A dependence only through equation (7.2.6):

Vτ − LV = 0, τ ∈ [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1. (7.2.7)

where the operator L is

LV =
1

2
σ2W 2VWW + (r − α)WVW − rV. (7.2.8)

In Appendix I, based on a no-arbitrage hedging argument, we derive the GMWB pricing

equation in the presence of a mutual fund management fee. The pricing equation (7.2.6-
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7.2.7) can be considered as a special case of the equation in Appendix I with the mutual

fund fee set to zero.

7.2.3 Boundary Conditions

We next determine the boundary conditions for equation (7.2.7). Following [31], the

terminal boundary condition for the annuity is

V (W,A, τ = 0) = max(W, (1− κ)A). (7.2.9)

This means the policyholder obtains the maximum of the remaining guarantee withdrawal

net after the penalty charge ((1− κ)A) or the remaining sub-account balance (W ).

The domain for equation (7.2.7) is (W,A) ∈ [0,∞] × [0, w0]. For computational pur-

poses, we need to solve the equation in a finite computational domain [0,Wmax]× [0, w0].

As A→ 0, the withdrawal amount γk approaches zero. Hence the no-arbitrage condi-

tion (7.2.6) reduces to

V
(
W,A, τ k+

O

)
= V

(
W,A, τ kO

)
, k = 0, . . . , K − 1, (7.2.10)

which means that at the boundary A = 0, we only solve the linear PDE (7.2.7) for all

τ ∈ [0, T ].

At A = w0, we simply solve the equations (7.2.6-7.2.7).

At W = 0, the no-arbitrage condition (7.2.6) becomes

V (0, A, τ k+
O ) = sup

γk∈[0,A]

[
V
(
0, A− γk, τ kO

)
+ f(γk)

]
, k = 0, . . . , K − 1. (7.2.11)

By taking the limit W → 0, equation (7.2.7) reduces to

Vτ − rV = 0. (7.2.12)

We solve equations (7.2.11-7.2.12) at the boundary W = 0.
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As W → ∞, according to [31], the value function satisfies V (W,A, τ) → e−ατW . As

a result, we impose the Dirichlet condition

V (W,A, τ) = e−ατW, if W = Wmax (7.2.13)

Note that since we will choose Wmax � w0, evaluating V at W = Wmax using equation

(7.2.9) gives V = Wmax, which is the same as evaluating V at τ = 0 using equation

(7.2.13).

Let us define solution domains

Ω̄k = [0,Wmax]× [0, w0]× [τ k+
O , τ k+1

O ]

Ω̄ =
⋃
k

Ω̄k = [0,Wmax]× [0, w0]×
⋃
k

[τ k+
O , τ k+1

O ], k = 0, . . . , K − 1.
(7.2.14)

The pricing problem for discrete withdrawal contracts can be defined as follows:

Definition 7.1 (Pricing Problem under the Discrete Withdrawal Scenario). The pricing

problem for GMWB variable annuities under the discrete withdrawal scenario is defined

in Ω̄ as follows: within each domain Ω̄k, k = 0, . . . , K − 1, the solution to the problem is

the viscosity solution of a decoupled set of linear PDEs (7.2.7) along the A direction with

boundary conditions (7.2.12-7.2.13) and initial condition V (W,A, τ k+
O ) computed from the

nonlinear algebraic equation (7.2.6).

We next give an auxiliary result and then show that the pricing problem described in

Definition 7.1 is well defined in the sense that the solution to the problem is unique.

Lemma 7.2. If V (W,A, τ kO) is uniformly continuous on (W,A) ∈ [0,Wmax]× [0, w0], then

V (W,A, τ k+
O ) given by equation (7.2.6) is uniformly continuous on (W,A) ∈ [0,Wmax] ×

[0, w0].

Proof. See Appendix F.1.

Proposition 7.3. There exists a unique viscosity solution to the GMWB variable annuity

pricing problem described in Definition 7.1. In particular, the solution is continuous on

(W,A, τ) within each domain Ω̄k, k = 0, . . . , K − 1.
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Proof. See Appendix F.2

Remark 7.4. We do not define the problem on the continuous region τ ∈ [0, T ] since the

solution can be discontinuous (and hence not well defined) across the observation times

τ kO, k = 0, . . . , K − 1 in the τ direction for fixed (W,A) due to the no-arbitrage condition

(7.2.6).

7.3 Numerical Scheme for the Discrete Withdrawal

Model

We use an unequally spaced grid in the W direction for the PDE discretization, repre-

sented by [W0,W1, . . . ,Wimax ] with W0 = 0 and Wimax = Wmax. Similarly, we use an

unequally spaced grid in the A direction denoted by [A0, A1, . . . , Ajmax ] with A0 = 0 and

Ajmax = w0. We denote by 0 = ∆τ < . . . < N∆τ = T the discrete timesteps. Let

τn = n∆τ denote the nth timestep. We assume each discrete withdrawal time τ kO co-

incides with a discrete timestep, denoted by τnk with τn0 = τ 0 = 0. Let V (Wi, Aj, τ
n)

denote the exact solution of equations (7.2.6-7.2.7) when the value of the variable annuity

sub-account is Wi, the guarantee account balance is Aj and discrete time is τn. Let V n
i,j

denote an approximation of the exact solution V (Wi, Aj, τ
n).

It will be convenient to define ∆Wmax = maxi
(
Wi+1−Wi

)
, ∆Wmin = mini

(
Wi+1−Wi

)
,

∆Amax = maxj
(
Aj+1 − Aj

)
, ∆Amin = minj

(
Aj+1 − Aj

)
. We assume that there is a mesh

size/timestep parameter h such that

∆Wmax = C1h ; ∆Amax = C2h ; ∆τ = C3h ; ∆Wmin = C ′1h ; ∆Amin = C ′2h.

(7.3.1)

where C1, C
′
1, C2, C

′
2, C3 are constants independent of h.

As in previous chapters, we use standard finite difference methods to discretize the

operator LV as given in (7.2.8). Let (LhV )ni,j denote the discrete value of the differential

operator (7.2.8) at node (Wi, Aj, τ
n). The operator (7.2.8) can be discretized using central,
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forward, or backward differencing in the W,A directions to give

(LhV )ni,j = αiV
n
i−1,j + βiV

n
i+1,j − (αi + βi + r)V n

i,j , i < imax, (7.3.2)

where αi and βi are determined using an algorithm in Appendix B. The algorithm guar-

antees αi and βi satisfy the following positive coefficient condition:

αi ≥ 0 ; βi ≥ 0 , i = 0, . . . , imax − 1. (7.3.3)

At time τ = 0, we apply terminal boundary condition (7.2.9) by

V 0
i,j = max(Wi, (1− κ)Aj), i = 0, . . . , imax, j = 0, . . . , jmax. (7.3.4)

At a withdrawal time τnk = τ kO, k = 0, . . . , K − 1, we apply the no-arbitrage condition

(7.2.6) in the following manner. Let V n
î,ĵ

be an approximation of V
(
max(Wi−γni,j, 0), Aj−

γni,j, τ
n
)

obtained by linear interpolation; in other words, if φ(W,A, τ) is a smooth function

on (W,A, τ) with φni,j = φ(Wi, Aj, τ
n), then we have

φn
î,ĵ

= φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+O

((
∆Wmax + ∆Amax

)2)
. (7.3.5)

Then at τ = τ kO = τnk , we solve the local optimization problem

V n+
i,j = sup

γn
i,j∈[0,Aj ]

[
V n
î,ĵ

+ f
(
γni,j
)]
, i = 0, . . . , imax − 1, j = 0, . . . , jmax, n = nk, (7.3.6)

where τnk+ denotes the time infinitesimally after τnk . We describe in Section 7.4 the

method used to solve the optimization problem (7.3.6).

Within the interval τ ∈ [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1, we use a fully implicit timestep-
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ping scheme to discretize (7.2.7). Specifically, we compute V n+1
i,j by

V n+1
i,j = V n+

i,j + ∆τ
(
LhV

)n+1

i,j
, i = 0, . . . , imax − 1, j = 0, . . . , jmax, n+ 1 = nk + 1;

V n+1
i,j = V n

i,j + ∆τ
(
LhV

)n+1

i,j
, i = 0, . . . , imax − 1, j = 0, . . . , jmax, n+ 1 = nk + 2, . . . , nk+1;

V n+1
i,j = e−ατ

n+1

Wmax, i = imax, j = 0, . . . , jmax, n+ 1 = nk + 1, . . . , nk+1.

(7.3.7)

Remark 7.5. Assuming that max(Wi − γni,j, 0) and Aj − γni,j reside within an interval

[Wl,Wl+1] and [Am, Am+1], respectively, where 0 ≤ l < imax, 0 ≤ m < jmax, then V n
î,ĵ

is

linearly interpolated using grid nodes V n
l,m, V n

l+1,m, V n
l,m+1 and V n

l+1,m+1.

In the discrete equation (7.3.6), V n
î,ĵ

is a function of γni,j, representing the continuous

curve on the interpolated surface constructed by linear interpolation using discrete values

V n
i,j, i = 0, . . . , imax, j = 0, . . . , jmax, along the piecewise line segments (W,A)(γni,j) =

(max(Wi − γni,j, 0), Aj − γni,j). Since the values of V n
i,j are bounded (see Lemma 7.8), then

V n
î,ĵ

is uniformly continuous on γni,j.

According to (7.2.5), f(γk) is uniformly continuous on the closed interval [0, Aj]. Thus

the supremum in (7.3.6) is achieved by a control γk ∈ [0, Aj].

7.4 Solution of the Local Optimization Problem

As indicated in (7.3.6), the numerical schemes need to solve a discrete local optimization

problem

sup
γn

i,j∈[0,Aj ]

[
V n
î,ĵ

+ f
(
γni,j
)]

(7.4.1)

at a mesh node (Wi, Aj, τ
n), where f

(
γni,j
)

is a piecewise function of γni,j given in (7.2.5)

and V n
î,ĵ

is a function of γni,j (see Remark 7.5).

It is expensive to directly solve problem (7.4.1) by constructing the curve V n
î,ĵ

and then

seeking the maximum of the objective function along the curve. In this section, we present

the following consistent approximation to problem (7.4.1). We first select a sequence of

control values γni,j, denoted by Aj, from the interval [0, Aj], where Aj includes 0, Aj, Wi
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and Gk (if Gr∆τ < Aj and Wi < Aj), and the distance between two consecutive elements

in sequence Aj is bounded by O(h). We then evaluate the function V n
î,ĵ

+ f
(
γni,j
)

using

all elements γni,j ∈ Aj, and return as output the maximum among the set of evaluated

values. The above procedure indicates that we actually solve an alternative (and simpler)

problem

sup
γn

i,j∈Aj

[
V n
î,ĵ

+ f
(
γni,j
)]
. (7.4.2)

In terms of a smooth test function, the solutions to problems (7.4.1-7.4.2) satisfy the

following conditions:

Proposition 7.6. Let φ(W,A, τ) be a smooth function with φni,j = φ(Wi, Aj, τ
n). Then

the optimization procedure introduced above results in

sup
γn

i,j∈Aj

[
φn
î,ĵ

+ f
(
γni,j
)]

= sup
γn

i,j∈[0,Aj ]

[
φn
î,ĵ

+ f
(
γni,j
)]

+O(h2) (7.4.3)

= sup
γn

i,j∈[0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ f
(
γni,j
)]

+O(h2).

(7.4.4)

Proof. See Appendix F.3.

7.5 Convergence of the Numerical Scheme

In this section, we prove the convergence of scheme (7.3.4-7.3.7) to the unique viscosity

solution of the pricing problem defined in Definition 7.1 by showing that the scheme is

l∞-stable, pointwise consistent and monotone.

Definition 7.7 (l∞-Stability). Discretization (7.3.4-7.3.7) is l∞-stable if

‖V n+1‖∞ ≤ C4 , (7.5.1)

for 0 ≤ n ≤ N − 1 as ∆τ → 0, ∆Wmin → 0, ∆Amin → 0, where C4 is a constant

independent of ∆τ , ∆Wmin, ∆Amin. Here ‖V n+1‖∞ = maxi,j |V n+1
i,j |.
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Lemma 7.8 (l∞ Stability). If the discretization (7.3.2) satisfies the positive coefficient

condition (7.3.3) and linear interpolation is used to compute V nk

î,ĵ
, then the scheme is

stable according to Definition 7.7.

Proof. The Lemma directly follows from the stability proof of the corresponding scheme

under the continuous withdrawal scenario which we discuss in Chapter 8. We refer the

reader to the proof of Lemma 8.5 in Chapter 8.

We can write discrete equations (7.3.7) at a node (Wi, Aj, τ
n+1) for τnk+1 ≤ τn+1 ≤

τnk+1 as

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
l,m

}
l 6=i
m6=j

, V n+
i,j ,

{
V n
i,j

})

≡


V n+1
i,j − V n+

i,j −∆τ
(
LhV

)n+1

i,j
if 0 ≤ Wi < Wimax , 0 ≤ Aj ≤ Ajmax , τn+1 = τnk+1;

V n+1
i,j − V n

i,j −∆τ
(
LhV

)n+1

i,j
if 0 ≤ Wi < Wimax , 0 ≤ Aj ≤ Ajmax , τnk+2 ≤ τn+1 ≤ τnk+1 ;

V n+1
i,j − e−ατn+1

Wmax if Wi = Wimax , 0 ≤ Aj ≤ Ajmax , τnk+1 ≤ τn+1 ≤ τnk+1

= 0,

(7.5.2)

where
{
V n+1
l,m

}
l 6=i
m6=j

is the set of values V n+1
l,m , l 6= i, l = 0, . . . , imax and m 6= j, m =

0, . . . , jmax, and
{
V n
i,j

}
is the set of values V n

i,j, i = 0, . . . , imax, j = 0, . . . , jmax.

Definition 7.9 (Pointwise Consistency, Discrete Withdrawal). The scheme (7.5.2) is

pointwise consistent with the PDE (7.2.7) and boundary conditions (7.2.12-7.2.13) if, for

any smooth test function φ,

lim
h→0

∣∣∣∣Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
l,m

}
l 6=i
m6=j

, φn+
i,j ,
{
φni,j
})
− (φτ − Lφ)ni,j

∣∣∣∣ = 0 , (7.5.3)

for any point in Ω̄, where the solution domain Ω̄ is defined in (7.2.14).

With the above definition, it is straightforward to verify that scheme (7.5.2) is consis-

tent using Taylor series.

Lemma 7.10 (Pointwise Consistency). The discrete scheme (7.5.2) is pointwise consis-

tent.
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Remark 7.11. According to Proposition 7.6, the scheme (7.5.2) is still pointwise con-

sistent in the case when the discrete equation (7.3.6) solves the alternative optimization

problem (7.4.2).

The following result shows that scheme (7.5.2) is monotone according to the definition

in [11, 6]:

Lemma 7.12 (Monotonicity). If discretization (7.3.2) satisfies the positive coefficient

condition (7.3.3) then discretization (7.5.2) is monotone according to the definition in

[11, 6], i.e.,

Gn+1
i,j

(
h, V n+1

i,j ,
{
Xn+1
l,m

}
l 6=i
m6=j

, Xn+
i,j ,
{
Xn
i,j

})
≤ Gn+1

i,j

(
h, V n+1

i,j ,
{
Y n+1
l,m

}
l 6=i
m 6=j

, Y n+
i,j ,

{
Y n
i,j

})
; for all Xn

i,j ≥ Y n
i,j, ∀i, j, n.

(7.5.4)

Proof. It is straightforward to verify that the discretization (7.5.2) satisfies inequality

(7.5.4) for all mesh nodes (Wi, Aj, τ
n).

Theorem 7.13 (Convergence to the Viscosity Solution). Assuming that scheme (7.3.4-

7.3.7) satisfies all the conditions required for Lemmas 7.8, 7.10 and 7.12, then as h→ 0,

scheme (7.3.4-7.3.7) converges to the unique viscosity solution to the pricing problem

defined in Definition 7.1 in the domain Ω̄.

Proof. See Appendix F.4.

7.6 Summary

Our contribution in this chapter is summarized as follows:

• We formulate a pricing model for the valuation of GMWB variable annuities assum-

ing withdrawals are allowed only at discrete times.

• We present a numerical scheme for solving the pricing model and prove that the

scheme converges to the unique viscosity solution of the problem.
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• The numerical method proposed in this chapter will be generalized to price GMWB

contracts where continuous withdrawals are permitted.
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Chapter 8

Pricing GMWB Variable Annuities

under the Continuous Withdrawal

Scenario

In the previous chapter we have proposed a pricing model for valuing GMWB variable

annuities where the investor is allowed to withdraw funds only at discrete times. In this

chapter we will study the GMWB valuation problem assuming continuous withdrawals

are allowed.

Under the continuous withdrawal scenario, the valuation of the GMWB variable an-

nuities is characterized as a stochastic control problem with the withdrawal rate as the

control variable. In contrast to the gas storage valuation problem introduced in Chapter 2,

the withdrawal rate at a given time can be either finite or infinite, i.e., the withdrawal

rate may be unbounded. A finite withdrawal rate represents a continuous withdrawal,

while an infinite rate corresponds to withdrawing a finite amount instantaneously.

We model the GMWB variable annuity pricing problem in the continuous withdrawal

case as an impulse control problem with two control variables: most of time the con-

tract holder withdraws money continuously at a finite rate (the rate of withdrawal serves

as a control variable), and, from time to time, the holder withdraws a finite amount

instantaneously (the amount of withdrawal serves as a control variable).
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The impulse control formulation has been used in the context of transaction cost mod-

els in portfolio optimization [70, 59], liquidity risk and price impact in optimal portfolio

selection [83], and execution delay [16]. Refer to [60] for other applications of impulse

control in finance and to [72] for a survey of various stochastic controls (including impulse

control) and the applications in finance.

Intuitively, the continuous withdrawal problem is the limiting case of the discrete

withdrawal problem when the withdrawal intervals decrease to zero. Consequently, we

can generalize the numerical scheme for the discrete withdrawal contract in Chapter 7

to solve the impulse control problem corresponding to the continuous withdrawal case.

We then prove that the scheme converges to the viscosity solution of the continuous

withdrawal problem, provided a strong comparison result holds.

The numerical scheme can be regarded as an extension of the semi-Lagrangian timestep-

ping method for the bounded stochastic control problems (e.g., the gas storage problem

described in Chapter 2) to the case of unbounded stochastic control problems. Therefore,

we have a unified numerical scheme based on a semi-Lagrangian approach that is able to

solve both bounded and unbounded stochastic control problems as well as the discrete

cases where the operations are allowed only at discrete times.

At the end of this chapter, we will conduct numerical experiments for the discrete and

continuous withdrawal contracts.

8.1 Previous Work

The GMWB variable annuity valuation problem was previously formulated as a singular

control problem in [69, 31], where the withdrawal rate is the only control variable. As

shown in Remark 8.1, the impulse control formulation, proposed by us, is more general

than the singular control formulation.

The authors of [31] use a penalty approach, initially proposed in [47] for pricing Amer-

ican options, to solve the HJB variational inequality for the singular control formulation.

Although the penalty method is shown to converge numerically, there is no convergence
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proof of the numerical scheme, based on the penalty method, to the viscosity solution of

the singular control framework.

The authors of [31] also conduct some experimental computations to show that the

numerical solution of the discrete withdrawal contract converges to that of the continuous

withdrawal contract as the withdrawal intervals decrease towards zero. Nevertheless, no

proof of this convergence was given in [31].

8.2 Continuous Withdrawal Model

Under the continuous withdrawal scenario, we denote by γ̂ the control variable represent-

ing the continuous withdrawal rate. The investor is allowed to withdraw funds from the

sub-account at a rate no higher than a contractually specified rate Gr. The investor may

withdraw at a rate above Gr, but some penalties are incurred (see below). We denote

by V̂ (W,A, t) the no-arbitrage value of the GMWB variable annuity at time t when the

value of the sub-account is W and the balance of the guarantee account is A.

For continuous withdrawal contracts, the dynamics of the balance of the sub-account

W also follows (7.2.3-7.2.4).

In this section, we first recall the singular stochastic control formulation presented in

[31], and then propose our impulse control formulation.

8.2.1 Singular Control Formulation

Following [31], we assume 0 ≤ γ̂ ≤ λ, where λ is the upper bound of γ̂. As shown in [31],

the dynamics of the balance of the guarantee account A are determined by the dynamics

of γ̂ as follows (in contrast to (7.2.2)):

dA = −γ̂dt, (8.2.1)

where we require that γ̂dt be bounded as dt→ 0.
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Let f̂(γ̂) be a function of γ̂ denoting the rate of cash flow received by the policyholder

due to the continuous withdrawal. According to [31], we assume that if γ̂ ≤ Gr, there is

no penalty imposed; if γ̂ > Gr, then there is a proportional penalty charge κ(γ̂ − Gr),

that is, the net revenue rate received by the policyholder is γ̂−κ(γ̂−Gr) if γ̂ > Gr, where

κ > 0 is the deferred surrender charge. Consequently, we can write f̂(γ̂) as a piecewise

linear function

f̂(γ̂) =

 γ̂ if 0 ≤ γ̂ ≤ Gr,

γ̂ − κ(γ̂ −Gr) if γ̂ > Gr.
(8.2.2)

Under the singular control framework, the value of V̂ (W,A, t) is given by

V̂ (W,A, t)

= sup
γ̂(s)∈[0,λ]

EQ
[∫ T

t

e−r(s−t)f̂
(
γ̂(s)

)
ds+ e−r(T−t)V̂

(
W (T ), A(T ), T

)]
,

(8.2.3)

where

• W (s) is a path of the balance of the sub-account given by (7.2.3-7.2.4).

• A(s) is a path of the balance of the guarantee account given by (8.2.1).

• γ̂(s) is a path of withdrawal rate in the time direction.

• EQ is the expectation taken under the risk neutral Q measure conditional on W (t) =

W and A(t) = A.

Following a procedure similar to Appendix A, the value V̂ (W,A, t) satisfies the fol-

lowing HJB equation

V̂t + LV̂ + sup
γ̂∈[0,λ]

[
f̂
(
γ̂
)
− γ̂V̂W − γ̂V̂A

]
= 0, (8.2.4)

where the operator L is given in (7.2.8). Using the notation V (W,A, τ) with V (W,A, τ) =

V̂ (W,A, T − τ) = V̂ (W,A, t), we can rewrite equation (8.2.4) as

Vτ − LV − sup
γ̂∈[0,λ]

[
f̂
(
γ̂
)
− γ̂VW − γ̂VA

]
= 0. (8.2.5)
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Since the function f̂(γ̂) is piecewise linear, the supremum in (8.2.5) is achieved at γ̂ = 0,

γ̂ = Gr, or γ̂ = λ. Thus, equation (8.2.5) is identical to the following free boundary value

problem resulting from evaluating the objective function of the maximization problem at

γ̂ = 0, Gr, λ, respectively

Vτ − LV ≥ 0, (8.2.6)

Vτ − LV −Gr(1− VW − VA) ≥ 0, (8.2.7)

Vτ − LV − κGr − λ
[
(1− κ)− VW − VA

]
≥ 0, (8.2.8)

where the equality holds in at least one of the three cases above. Since f̂(γ̂) = γ̂ for

γ̂ ∈ [0, Gr], inequalities (8.2.6-8.2.7) are identical to

Vτ − LV − sup
γ̂∈[0,Gr]

[
γ̂(1− VW − VA)] ≥ 0. (8.2.9)

Taking the limit λ → ∞ (corresponding to an infinite withdrawal rate, or a finite with-

drawal amount), inequality (8.2.8) is equivalent to

VW + VA − (1− κ) ≥ 0, (8.2.10)

where the expression Vτ − LV − κGr in (8.2.8) becomes negligible as λ→∞.

Consequently, combining inequalities (8.2.9-8.2.10) and using the fact that the equal-

ity holds in one of the two cases results in the following HJB variational inequality, as

proposed in [31]:

min

{
Vτ − LV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
, VW + VA − (1− κ)

}
= 0. (8.2.11)

8.2.2 Impulse Control Formulation

As discussed in [92], it is advantageous to reformulate the pricing equation (8.2.11) with

a similar HJB variational inequality based on an impulse control argument. Roughly

speaking, the policyholder can choose to either withdraw continuously at a rate no greater
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than Gr or withdraw a finite amount instantaneously. Withdrawing a finite amount is

subject to a penalty charge proportional to the amount of the withdrawal as well as

subject to a strictly positive fixed cost, denoted by c. Due to the associated penalty, the

withdrawal of a finite amount is optimal only at some discrete stopping times tks .

Since the amount of a finite withdrawal can be infinitesimally small, it is difficult to

distinguish two cases: withdrawing at a finite rate or withdrawing an infinitesimal amount.

This results in non-uniqueness of the solution to the impulse control formulation. As a

result, the nonzero fixed cost c is introduced as a technical tool to distinguish these

two cases and resolve the non-uniqueness problem. The nonzero fixed cost is commonly

assumed in the impulse control literature [3, 60, 70, 83, 72]. Note that the discrete

withdrawal model proposed in Chapter 7 allows the fixed cost to be zero.

Under the impulse control framework, the control of the investor will consist of a

combination of a continuous control γ̂(s), γ̂(s) ∈ [0, Gr], representing the rate of the

continuous withdrawal, and an impulse control (γk, tks), k = 1, 2, . . ., representing the

amount and time of a withdrawal of a finite amount. Here t ≤ t1s < t2s < . . . ≤ T are

Fs-stopping times and γk ∈ [0, A(tks−)], where A(tks−) is the balance of the guarantee

account at the instant infinitesimally before the withdrawal of γk occurs.

Given such a control path γ̂(s), (γk, tks), the dynamics of A satisfies

dA = −γ̂(s)dt, if tks ≤ s < tk+1
s , (8.2.12)

A(s) = A(s−)− γk+1, if s = tk+1
s , (8.2.13)

Given (8.2.12-8.2.13), the dynamics of W in (7.2.3-7.2.4) can be rewritten as

dW = (r − α)Wdt+ σWdZ − γ̂(s)dt, if tks ≤ s < tk+1
s and W > 0, (8.2.14)

W (s) = max(W (s−)− γk+1, 0), if s = tk+1
s and W > 0, (8.2.15)

dW = 0 if W = 0. (8.2.16)

The value of V̂ (W,A, t) can be written as the following impulse control problem1,

1 To be precise, it is a mixed stochastic control problem. We call it an impulse control problem in
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containing both a regular stochastic control (i.e., rate of the continuous withdrawal) and

an impulse control (i.e., amount of a finite withdrawal),

V̂ (W,A, t−) = sup
γ̂(s)∈[0,Gr]

γk∈[0,A(tk−s )]

tks∈[t,T ]

EQ

[∫ T

t

e−r(s−t)γ̂(s)ds+
∑
k=1

e−r(t
k
s−t)
[
(1− κ)γk − c

]

+ e−r(T−t)V̂
(
W (T ), A(T ), T

)]
,

(8.2.17)

where

• EQ is the expectation taken under the risk neutral Q measure conditional onW (t−) =

W and A(t−) = A. The purpose of beginning with t− is to handle the case when

t1s = t, that is, the first impulse operation occurs at time t.

• The integral term is the total discounted cash due to the continuous withdrawals

with the withdrawal rate following the path γ̂(s). In this case there is no penalty

applied since γ̂(s) ≤ Gr.

• The summation term represents the total discounted cash due to the instantaneous

withdrawals of finite amounts. Note that a withdrawal of γk is always subject to a

penalty κγk and a fixed cost c > 0 since it corresponds to the continuous withdrawal

with an infinite withdrawal rate.

Using the dynamic programming principle and Itô’s Lemma, in Appendix G we heuris-

tically derive the following HJB variational inequality from the impulse control represen-

tation (8.2.17):

min

{
Vτ − LV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]}
= 0,

(8.2.18)

order to emphasize the impulse operations.
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where we change the variable from V̂ (W,A, t) to V (W,A, τ). Here γ̂ and γ are control

variables representing continuous withdrawal rate and finite withdrawal amount, respec-

tively.

In the following, we will consider only the impulse control formulation (8.2.18) with

c > 0. Although c > 0 is required in our theoretical formulation, our numerical scheme

proposed in a later section accepts both c > 0 and c = 0. However, convergence is proved

only for the c > 0 case. In practice, of course, we would expect that a very small c > 0

will have very little effect on the computed solution, and we verify this in our numerical

experiments. Indeed, our results for small c > 0 are the same (to within discretization

errors) as those reported in [31] based on the singular control formulation.

Remark 8.1 (Comparison of Singular Control Formulation and Impulse Control Formu-

lation). As shown in the following, the impulse control formulation is more general than

the singular control formulation:

• The singular control formulation requires a piece-wise linear cash flow term in case

the control is infinite; the impulse control formulation can be used for any type of

cash flow model. For instance, if the revenue function f̂(γ̂) in (8.2.2) is a nonlinear

function of γ̂ in case γ̂ > Gr, then one cannot obtain an inequality similar to

(8.2.10). However, it is straightforward to modify variational inequality (8.2.18) to

handle this case.

• The singular control formulation allows only zero fixed cost. The impulse control

formulation allows both a non-zero and an infinitesimal fixed cost. An infinitesimal

fixed cost is effectively the same as the zero fixed cost in the singular control for-

mulation. Indeed, as verified in our numerical experiments, our results for a small

fixed cost are the same (to within discretization errors) as the results obtained from

the singular control formulation in [31].

• It is straightforward to incorporate complex features of real contracts, such as the

reset provision on the guarantee level (see [31] and Chapter 9 for details), into
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the impulse control formulation. This will be very difficult for the singular control

formulation.

8.2.3 Boundary Conditions for the Impulse Control Problem

In order to completely specify the GMWB variable annuity pricing problem, we need to

provide boundary conditions for equation (8.2.18). Similar to the condition (7.2.9) in the

discrete withdrawal case, we use the following the terminal boundary condition:

V (W,A, τ = 0) = max(W, (1− κ)A− c), (8.2.19)

where we have incorporated the fixed cost c into the payoff.

The domain for equation (8.2.18) is (W,A) ∈ [0,∞] × [0, w0]. For computational

purposes, we need to solve the equation in a finite computational domain [0,Wmax]×[0, w0].

As A → 0, that is, the guarantee account balance approaches zero, the withdrawal

rate γ̂ must approach zero. Thus by taking γ̂ → 0 and A → 0 in equation (8.2.18), we

obtain a linear PDE

Vτ − LV = 0 (8.2.20)

at A = 0. Note that this is essentially a Dirichlet boundary condition at A = 0 because

we can simply solve equation (8.2.20) independently without using any information other

than at A = 0.

As A → w0, since γ̂ ≥ 0, the characteristics of the PDE in (8.2.18) are outgoing or

zero in the A direction at A = w0. As a result, we can directly solve equation (8.2.18)

along the A = w0 boundary, no further information is needed.

As W → 0, following [31], we assume VW = 0 (i.e., W cannot go negative). Taking

the limit W → 0 in (8.2.18) and applying VW = 0, we obtain

min

{
Vτ − rV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VA

)
, V − sup

γ∈(0,A]

[
V (0, A− γ, τ) + (1− κ)γ − c

]}
= 0

(8.2.21)
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at W = 0. Thus, similar to equation (8.2.20), equation (8.2.21) is essentially a Dirichlet

boundary condition since we can solve the equation without requiring any information

other than at W = 0.

As W →∞, we apply the following Dirichlet boundary condition as condition (7.2.13):

V (W,A, τ) = e−ατW, if W = Wmax. (8.2.22)

8.3 Numerical Scheme for the Continuous Withdrawal

Model

In this section, we generalize the numerical scheme for the discrete withdrawal contracts

in Section 7.3 to solve the HJB variational inequality (8.2.18) and the associated boundary

conditions (8.2.19-8.2.22).

The intuition behind this is that the value of a discrete withdrawal contract should

converge to that of a continuous withdrawal contract as the observation interval ∆τ kO → 0.

Therefore, we set ∆τ kO = ∆τ in the scheme for the discrete withdrawal contracts, where

k = 0, . . . , K − 1 and K = N . In other words, each discrete timestep τn corresponds to

a withdrawal time τ kO. Then ∆τ kO → 0 as we take ∆τ → 0.

In this case, according to the assumption ∆τ kO = ∆τ , the cash flow f(γni,j) resulting

from (7.2.5) becomes

f(γni,j) =

 γni,j if 0 ≤ γni,j ≤ Gr∆τ ,

γni,j − κ(γni,j −Gr∆τ)− c if γni,j > Gr∆τ ,
(8.3.1)

where we substitute Gk = Gr∆τ
k
O = Gr∆τ into (7.2.5). We also incorporate the fixed

cost c into f(γni,j) for any excessive withdrawal above Gk.

We impose condition (8.2.19) at τ = 0 by

V 0
i,j = max(Wi, (1− κ)Aj − c)), i = 0, . . . imax, j = 0, . . . , jmax. (8.3.2)
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Meanwhile, discrete equations (7.3.6-7.3.7) turn into

V n+
i,j = sup

γn
i,j∈[0,Aj ]

[
V n
î,ĵ

+ f
(
γni,j
)]
, i = 0, . . . , imax − 1, j = 0, . . . , jmax, (8.3.3)

V n+1
i,j = V n+

i,j + ∆τ
(
LhV

)n+1

i,j
, i = 0, . . . , imax − 1, j = 0, . . . , jmax, (8.3.4)

V n+1
i,j = e−ατ

n+1

Wmax, i = imax, j = 0, . . . jmax (8.3.5)

for n = 0, . . . , N − 1, where Lh is given in (7.3.2). Here V n
î,ĵ

is the approximation of

V (max(Wi − γni,j, 0), Aj − γni,j, τn) by linear interpolation.

Substituting discrete equation (8.3.3) into (8.3.4) gives

V n+1
i,j − sup

γn
i,j∈[0,Aj ]

[
V n
î,ĵ

+ f
(
γni,j
)]
−∆τ

(
LhV

)n+1

i,j
= 0, i = 0, . . . , imax − 1, j = 0, . . . , jmax.

(8.3.6)

Remark 8.2 (Semi-Lagrangian Discretization). We can also formally obtain scheme

(8.3.6) by discretizing the PDE (8.2.5) using the fully implicit, semi-Lagrangian discretiza-

tion described in Chapter 2, and then taking the limit as λ → ∞. Therefore, under the

impulse control framework (i.e., when the control is unbounded), the scheme generalized

from the discrete withdrawal scenario is identical to that based on the limiting case of a

semi-Lagrangian timestepping method. In fact, the correspondence has been verified for

the gas storage problem with a bounded control in Chapter 2.

Remark 8.3. Since c > 0, f(γni,j) in (8.3.1) is discontinuous at Gr∆τ . Nevertheless, the

supremum in (8.3.3) can be achieved by a control γni,j ∈ [0, Aj]. To see this, we can write

(8.3.3) as

V n+
i,j = max

{
sup

γn
i,j∈[0,min(Gr∆τ,Aj)]

[
V n
î,ĵ

+ f
(
γni,j
)]
, sup
γn

i,j∈(Gr∆τ,Aj ]

[
V n
î,ĵ

+ f
(
γni,j
)]}

(8.3.7)

with the convention that (Gr∆τ, Aj] = ∅ if Gr∆τ ≥ Aj. Since V n
î,ĵ

and f(γni,j) are con-

tinuous on [0,min(Gr∆τ, Aj)], the first supremum in (8.3.7) can be achieved by a control

γni,j ∈ [0,min(Gr∆τ, Aj)]
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Equation (8.3.1) implies that

f(γni,j = Gr∆τ) = lim
γn

i,j→[Gr∆τ ]−
f(γni,j) > lim

γn
i,j→[Gr∆τ ]+

f(γni,j), (8.3.8)

where limγn
i,j→[Gr∆τ ]− f and limγn

i,j→[Gr∆τ ]+ f represent the left and right limits of f at

γni,j = Gr∆τ , respectively. Consequently, if the second supremum in (8.3.7) is achieved

by the limiting point [Gr∆τ ]+, since f(Gr∆τ) > f([Gr∆τ ]+), then the value of the first

supremum in (8.3.7) will be greater than that of the second one. Thus, the supremum in

(8.3.3) can be achieved by a control γni,j ∈ [0, Aj].

Remark 8.4 (Complexity of the Optimization Problem). The discrete optimization prob-

lem in (8.3.6) can be solve using the method described in Section 7.4. Proposition 7.6 still

holds in this case.

Our implementation uses an unequally spaced (W,A) mesh. As a result, a binary

search is required to find the interpolants V n
î,ĵ

. Let us consider the scheme (8.3.2-8.3.5) for

the continuous withdrawal case. Since there are O(1/h3) optimizations performed in total

(recall that we need to solve a discrete optimization problem (7.4.2) at each mesh node

(Wi, Aj, τ
n) in this case) and each optimization performs O(1/h) linear interpolations

(i.e., there are O(1/h) elements in sequence Aj), resulting in O(1/h4) binary searches

(each costing O(|log(1/h)|)).

We can reduce the number of binary searches as follows. At each timestep, we trans-

form all the discrete values V n
i,j in the original unequally spaced (W,A) mesh to another

equally spaced (W,A) mesh by linear interpolation. Then we can solve optimization prob-

lems (7.4.2) for all nodes in the equally spaced mesh without using an additional binary

search. The above procedure requires only O(1/h3) binary searches in total and results

in O(h2) discretization errors for a smooth test function, which hence does not affect the

convergence of the numerical scheme to the viscosity solutions. Note that we still require

O(1/h4) interpolation operations. An obvious alternative is to use a one dimensional op-

timization method which would normally not require O(1/h) function evaluations at each

optimization. However, this is not guaranteed to obtain the global maximum along the

curve.
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8.4 Convergence to the Viscosity Solution

As shown in Chapter 3, provided a strong comparison result for the PDE applies, a

numerical scheme will converge to the viscosity solution of the equation if it is l∞-stable,

monotone and consistent based on the results in [11, 6]. In this section, we prove the

convergence of our numerical scheme (8.3.2-8.3.5) (or scheme (8.3.2), (8.3.5) and (8.3.6))

to the viscosity solution of problem (8.2.18) associated with boundary conditions (8.2.19-

8.2.22) by verifying these three properties, assuming a strong comparison principle holds.

8.4.1 l∞-Stability

At first we show the l∞-stability of our scheme (8.3.2-8.3.5) by verifying Definition 7.7.

Lemma 8.5 (l∞-stability). If the discretization (7.3.2) satisfies the positive coefficient

condition (7.3.3) and linear interpolation is used to compute V n
î,ĵ

, then the scheme (8.3.2-

8.3.5) satisfies

‖V n+‖∞ ≤ ‖V 0‖∞ + Ajmax and ‖V n‖∞ ≤ ‖V 0‖∞ + Ajmax (8.4.1)

for 0 ≤ n ≤ N as ∆τ → 0, ∆Wmin → 0, ∆Amin → 0, where Ajmax = w0.

The stability result (8.4.1) also holds for the discrete withdrawal case with ∆τnO > 0.

Proof. See Appendix H.1.

8.4.2 Consistency

It will be convenient to rewrite scheme (8.3.2), (8.3.5) and (8.3.6) using the following

idea. If Aj > Gr∆τ , we can separate the control region into two subregions: [0, Aj] =

[0, Gr∆τ ] ∪ (Gr∆τ, Aj]. We will then write equation (8.3.6) in terms of these two subre-
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gions. Let us define

Hn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
l,m

}
l 6=i
m6=j

,
{
V n
i,j

})
=

1

∆τ

[
V n+1
i,j − sup

γn
i,j∈[0,min(Aj ,Gr∆τ)]

(
V n
î,ĵ

+γni,j
)
−∆τ

(
LhV

)n+1

i,j

]
(8.4.2)

and (assuming Aj > Gr∆τ)

In+1
i,j

(
h, V n+1

i,j ,
{
V n+1
l,m

}
l 6=i
m6=j

,
{
V n
i,j

})
= V n+1

i,j − sup
γn

i,j∈(Gr∆τ,Aj ]

[
V n
î,ĵ

+ (1− κ)γni,j + κGr∆τ − c
]
−∆τ

(
LhV

)n+1

i,j
,

(8.4.3)

where h is the mesh size/timestep parameter defined in (7.3.1). Note that within (8.4.2-

8.4.3), the cash flow term f(γni,j) in (8.3.6) is replaced by the piecewise representation given

in (8.3.1) based on the subregion where the control γni,j resides. Given the definitions of

H and I, we can write scheme (8.3.2), (8.3.5) and (8.3.6) in an equivalent way at a node

(Wi, Aj, τ
n+1) as

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
l,m

}
l 6=i
m6=j

,
{
V n
i,j

})

≡



Hn+1
i,j if 0 ≤ Wi < Wimax , 0 ≤ Aj ≤ Gr∆τ, 0 < τn+1 ≤ T ;

min
{
Hn+1
i,j , In+1

i,j

}
if 0 ≤ Wi < Wimax , Gr∆τ < Aj ≤ Ajmax , 0 < τn+1 ≤ T ;

V n+1
i,j − e−ατn+1

Wmax if Wi = Wimax , 0 ≤ Aj ≤ Ajmax , 0 < τn+1 ≤ T ;

V n+1
i,j − if 0 ≤ Wi ≤ Wimax , 0 ≤ Aj ≤ Ajmax , τn+1 = 0

max(Wi, (1− κ)Aj − c)

= 0,

(8.4.4)

Let Ω̄ = [0,Wmax] × [0, w0] × [0, T ] be the closed domain in which our problem is

defined. The domain Ω̄ can be divided into the following regions:

Ωin = (0,Wmax)× (0, w0]× (0, T ] ; ΩW0 = {0} × (0, w0]× (0, T ] ;

ΩA0 = [0,Wmax)× {0} × (0, T ] ; ΩWm = {Wmax} × [0, w0]× (0, T ] ;

Ωτ0 = [0,Wmax]× [0, w0]× {0},

(8.4.5)
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where Ωin represents the interior region, and ΩW0 ,ΩA0 ,ΩWm ,Ωτ0 denote the boundary

regions. Let us define vector x = (W,A, τ), and let DV (x) and D2V (x) be its first and

second derivatives of V (x), respectively. Let us define the following operators:

Fin
(
D2V (x), DV (x), V (x),x

)
= min

{
Vτ − LV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]}
,

(8.4.6)

FW0

(
D2V (x), DV (x), V (x),x

)
= min

{
Vτ − rV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VA

)
,

V − sup
γ∈(0,A]

[
V (0, A− γ, τ) + (1− κ)γ − c

]}
, (8.4.7)

FA0

(
D2V (x), DV (x), V (x),x

)
= Vτ − LV, (8.4.8)

FWm(V (x),x) = V − e−ατW, (8.4.9)

Fτ0(V (x),x) = V −max(W, (1− κ)A− c). (8.4.10)

Then the pricing problem (8.2.18-8.2.22) can be combined into one equation as follows:

F
(
D2V (x), DV (x), V (x),x

)
= 0 for all x = (W,A, τ) ∈ Ω̄ , (8.4.11)

where F is defined by

F =



Fin
(
D2V (x), DV (x), V (x),x

)
if x ∈ Ωin,

FW0

(
D2V (x), DV (x), V (x),x

)
if x ∈ ΩW0 ,

FA0

(
D2V (x), DV (x), V (x),x

)
if x ∈ ΩA0 ,

FWm

(
V (x),x

)
if x ∈ ΩWm ,

Fτ0

(
V (x),x

)
if x ∈ Ωτ0 .

(8.4.12)

In order to demonstrate consistency as defined in [11, 6], we first need some interme-

diate results. We define operators

FA′
(
D2V (x), DV (x), V (x),x

)
= Vτ − LV − sup

γ̂∈[0,A/∆τ ]

(
γ̂ − γ̂VW − γ̂VA

)
,
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where 0 ≤ A/∆τ ≤ Gr , (8.4.13)

FW ′
(
D2V (x), DV (x), V (x),x

)
= Vτ − rV − sup

γ̂∈[0,A/∆τ ]

(
γ̂ − γ̂VA

)
, where 0 ≤ A/∆τ ≤ Gr.

(8.4.14)

Lemma 8.6. Let x = (Wi, Aj, τ
n+1). Suppose the mesh size and the timestep parameter

satisfy conditions (7.3.1) and assume

∆Wmin ≥ Gr∆τ. (8.4.15)

Then for any smooth function φ(W,A, τ) having bounded derivatives of all orders in

(W,A, τ) ∈ Ω̄, with φn+1
i,j = φ(Wi, Aj, τ

n+1), and for h sufficiently small, we have that

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m 6=j

,
{
φni,j + ξ

})

=



Fin +O(h) + c(x)ξ if 0 < Wi < Wimax , Gr∆τ < Aj ≤ Ajmax , 0 < τn+1 ≤ T ;

FW0 +O(h) + c(x)ξ if Wi = 0, Gr∆τ < Aj ≤ Ajmax , 0 < τn+1 ≤ T ;

FW ′ +O(h) + c(x)ξ if Wi = 0, 0 < Aj ≤ Gr∆τ, 0 < τn+1 ≤ T ;

FA0 +O(h) + c(x)ξ if 0 ≤ Wi < Wimax , Aj = 0, 0 < τn+1 ≤ T ;

FA′ +O(h) + c(x)ξ if 0 < Wi < Wimax , 0 < Aj ≤ Gr∆τ, 0 < τn+1 ≤ T ;

FWm + c(x)ξ if Wi = Wimax , 0 ≤ Aj ≤ Ajmax , 0 < τn+1 ≤ T ;

Fτ0 + c(x)ξ if 0 ≤ Wi ≤ Wimax , 0 ≤ Aj ≤ Ajmax , τn+1 = 0,

(8.4.16)

where ξ is a constant, c(x) is a bounded function of x satisfying |c(x)| ≤ max(r, 1) for all

x ∈ Ω̄, operators Fin, FW0 , FA0 , FA′ , FW ′ are functions of (D2φ(x), Dφ(x), φ(x),x), and

operators FWm , Fτ0 are functions of (φ(x),x).

Proof. See Appendix H.2.

Remark 8.7. To ease the presentation of the scheme, we impose the grid size condition
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(8.4.15) for the purpose of making

V
(
max(Wi−γni,j, 0), Aj−γni,j, τn

)
= V

(
Wi−γni,j, Aj−γni,j, τn

)
, ∀γni,j ∈ [0, Gr∆τ ] and ∀Wi > 0.

(8.4.17)

However, we can avoid this condition by modifying the scheme according to the following

ideas: at first we extend the W grid in the W < 0 direction, that is, the extended grid

includes nodes with negative W values. Then at each timestep τn+1 > 0, we first compute

V n+1
0,j at W = 0 using discrete equation (8.3.6) (this is possible since we do not require

information from other grid nodes in W direction), and then we set V n+1
i,j = V n+1

0,j for all

Wi < 0. Finally, we compute V n+1
i,j using a modification of equation (8.3.6):

V n+1
i,j − sup

γn
i,j∈[0,Aj ]

[
V n
ī,ĵ

+ f
(
γni,j
)]
−∆τ

(
LhV

)n+1

i,j
= 0, (8.4.18)

where the term V n
ī,ĵ

is the approximation of V (Wi − γni,j, Aj − γni,j, τn) by linear interpola-

tion. Since V n
ī,ĵ

exists in the case when Wi − γni,j < 0 and is equal to the approximation

of V (0, Aj − γni,j, τ
n), the modified scheme is identical to the original one. Therefore,

with respect to the modified scheme, (8.4.17) follows without imposing condition (8.4.15).

Hence condition (8.4.15) can be eliminated.

Remark 8.8. It can be verified that the operators Fin(M, p, g,x), FW0(M, p, g,x), FA0(M, p, g,x),

FA′(M, p, g,x), and FW ′(M, p, g,x) defined in (8.4.6-8.4.8) and (8.4.13-8.4.14) are con-

tinuous on (M, p, g,x), given a smooth function g(x); meanwhile, operators FWm(g,x) and

Fτ0(g,x) in (8.4.9-8.4.10) are continuous on (g,x). In particular, φ−supγ∈(0,A]

[
φ(max(W−

γ, 0), A − γ, τ) + (1 − κ)γ − c
]

is continuous on x based on an argument similar to the

proof of Lemma 7.2.

The Lemma below proves that scheme (8.4.4) is consistent, as defined in [11, 6].

Lemma 8.9 (Consistency). Assuming all the conditions in Lemma 8.6 are satisfied, then

the scheme (8.4.4) is consistent to the impulse control problem (8.2.18-8.2.22) in Ω̄ ac-

cording to the definition in [11, 6]. That is, for all x̂ = (Ŵ , Â, τ̂) ∈ Ω̄ and any func-

tion φ(W,A, τ) having bounded derivatives of all orders in (W,A, τ) ∈ Ω̄ with φn+1
i,j =
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φ(Wi, Aj, τ
n+1) and x = (Wi, Aj, τ

n+1), we have

lim sup
h→0
x→x̂
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
≤ F ∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(8.4.19)

and

lim inf
h→0
x→x̂
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
≥ F∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(8.4.20)

where F ∗ and F∗ are respectively the usc and lsc envelopes of F , as defined in Defini-

tion 3.7.

Proof. See Appendix H.3.

8.5 Monotonicity

It is straightforward to verify that scheme (8.4.4) is monotone. We omit the proof.

Lemma 8.10 (Monotonicity). If the discretization (7.3.2) satisfies the positive coefficient

condition (7.3.3) and linear interpolation is used to compute V n
î,ĵ

, then the discretization

(8.4.4) is monotone according to the definition

Gn+1
i,j

(
h, V n+1

i,j ,
{
Xn+1
l,m

}
l 6=i
m6=j

,
{
Xn
i,j

})
≤ Gn+1

i,j

(
h, V n+1

i,j ,
{
Y n+1
l,m

}
l 6=i
m 6=j

,
{
Y n
i,j

})
; for all Xn

i,j ≥ Y n
i,j, ∀i, j, n.

(8.5.1)

8.6 Convergence

In order to prove the convergence of our scheme using the results in [11, 6], similar to

Assumption 3.15, we need to assume the following strong comparison result, as defined

in [11, 6], for equation (8.2.18).
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Assumption 8.11. If u and v are an usc subsolution and a lsc supersolution of the pricing

equation (8.2.18) associated with the boundary conditions (8.2.19-8.2.22), respectively,

then

u ≤ v on Ωin. (8.6.1)

The strong comparison result is proved for other similar (but not identical) impulse

control problems in [3, 83, 70, 56]. From Lemmas 8.5, 8.9, 8.10 and Assumption 8.11,

using the results in [11, 6], we can obtain the following convergence result:

Theorem 8.12 (Convergence to the Viscosity Solution). Assuming that discretization

(8.3.2-8.3.5) (or scheme (8.3.2), (8.3.5), (8.3.6), or scheme (8.4.4)) satisfies all the con-

ditions required for Lemmas 8.5, 8.9 and 8.10, and that Assumption 8.11 is satisfied, then

scheme (8.3.2-8.3.5) converges to the unique continuous viscosity solution of the problem

(8.2.18-8.2.22) in Ωin.

Remark 8.13 (Domain of Convergence). Note that we only consider convergence in Ωin.

As discussed in [83], in general, the strong comparison result may only hold in Ωin for

impulse control problems.

8.7 Numerical Experiments

Having presented a consistent numerical scheme for pricing the GMWB variable annuities

in Chapter 7 and this chapter, respectively assuming the discrete and continuous with-

drawal scenarios, in this section we conduct numerical experiments based on the scheme.

Under the continuous withdrawal scenario, we observe that the numerical solutions

obtained by choosing a sufficiently small fixed cost (e.g., c = 10−8) are identical to those

obtained by choosing c = 0 up to at least seven digits. Since the solutions are also close to

that given in [31] (see, e.g., Table 8.4), this suggests that our impulse control formulation

(8.2.18) will converge to the singular control formulation (8.2.11) as c→ 0. It also shows

that our scheme can solve both the singular control problem (8.2.11) with c = 0 and
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Parameter Value

Expiry time T 10.0 years
Interest rate r .05
Maximum withdrawal rate Gr 10/year
Withdrawal penalty κ .10
Initial Lump-sum premium w0 100
Initial guarantee account balance 100
Initial sub-account value 100

Table 8.1: Common data used in the numerical tests.

the impulse control problem (8.2.18) with c > 0. We will use c = 10−8 in the numerical

experiments below.

Recall that the computational domain has been localized in theW direction to [0,Wmax].

Initially, we set Wmax = 1000. We repeated the computations with Wmax = 5000. All the

numerical results at t = 0, A = W = w0 were the same to seven digits. In the following,

all the results are reported with Wmax = 1000.

Table 8.1 gives the common input parameters for the numerical tests in this sec-

tion. We first carry out a convergence analysis for the GMWB guarantees with the mesh

size/timestep parameters chosen in Table 8.2. Table 8.3 presents the convergence results

for the value of the GMWB guarantee with respect to two volatility values, assuming

a zero insurance fee and continuous withdrawal. The convergence ratio in the table is

defined as the ratio of successive changes in the solution, as the timestep and mesh size

are reduced by a factor of two. A ratio of two indicates first-order convergence. As shown

in Table 8.3, our scheme achieves a first-order convergence as the convergence ratios are

approximately two. The table also reveals that a greater volatility produces a higher

contract value.

Since no fee is paid at the inception of a GMWB contract, the insurance company

needs to charge a proportional insurance fee α so that the contract value V is equal to the

initial premium w0 paid by the investor. This is the no-arbitrage or fair fee. That is, let

V (α;W = w0, A = w0, t = 0) be the value of a GMWB contract at the contract inception

as a function of α. Then the fair insurance fee is a solution to the algebraic equation
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Level W Nodes A Nodes Timesteps
0 65 51 60
1 129 101 120
2 257 201 240
3 513 401 480
4 1025 801 960
5 2049 1601 1920

Table 8.2: Grid and timestep data for convergence tests.

Refinement σ = .20 σ = .30
level Value Ratio Value Ratio

1 107.6950 n.a. 115.8032 n.a.
2 107.7132 n.a. 115.8457 n.a.
3 107.7232 1.82 115.8678 1.92
4 107.7284 1.92 115.8787 2.03
5 107.7313 1.79 115.8842 1.98

Table 8.3: Convergence study for the value of the GMWB guarantee at t = 0, W =
A = w0 = 100. No insurance fee (α = 0) is imposed. Data are given in Table 8.1.
Continuous withdrawal is permitted.

V (α;w0, w0, 0) = w0. In this thesis, we solve the equation numerically using Newton

iteration. Our experiment indicates that Newton iteration seems able to converge to a

unique solution at a close-to-second-order rate.

Table 8.4 shows the convergence of the fair insurance fees assuming continuous with-

drawal for two volatility values σ = .2 and σ = .3. Table 8.4 also lists the corresponding

fees computed in [31]. These results are close to those reported in [31].

Table 8.5 computes the fair insurance fees under the discrete withdrawal scenario with

withdrawal interval being half a year and one year, respectively. Comparing Tables 8.4

and 8.5, we find that the insurance fees increases as the specified withdrawal frequency

increases (from once every half a year to an infinite number of times). Furthermore, the

insurance fees corresponding to the continuous withdrawal case are very close to those

corresponding to the half a year withdrawal case (the difference is less than 6 basis points

for σ = .2 for the fourth refinement level).

In Figure 8.1, we show the value of the GMWB guarantee as a function of W at t = 0,

140



Refinement level σ = .20 σ = .30
0 .0152023 .0317364
1 .0145009 .0313861
2 .0141471 .0312579
3 .0139699 .0312536
4 .0138905 .0312584

Value from [31] .0137 .0304

Table 8.4: Convergence study for the value of the fair insurance fee α, with respect
to different values of σ. Data are given in Table 8.1. The value of α is computed so
that the option value V satisfies V = w0 = 100 at t = 0. Continuous withdrawal is
permitted.

Refinement σ = .20 σ = .30
level ∆tO = 1.0 ∆tO = .50 ∆tO = 1.0 ∆tO = .50

0 .0128893 .0135554 .0291106 .0301345
1 .0128631 .0133379 .0292137 .0301367
2 .0128881 .0133312 .0292781 .0301912
3 .0129025 .0133441 .0293104 .0302238
4 .0129102 .0133516 .0293270 .0302407

Table 8.5: Convergence study for the value of the fair insurance fee α in the discrete
withdrawal case. Different withdrawal intervals ∆tO and different values of σ are con-
sidered. Data are given in Table 8.1. The value of α is computed so that the option
value V satisfies V = w0 = 100 at t = 0.
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Figure 8.1: The value of the GMWB guarantee as a function of W at t = 0, A = 100,
with respect to various values of the insurance fee α corresponding to W = 100 including
the fair value α = .03126. The fair value of the fee occurs when the value of the guarantee
V satisfies V = w0 = 100. Data for this example are given in Table 8.1 with σ = .30.
Continuous withdrawal is allowed.

A = 100, with respect to various values of the insurance fee α including the fair value

α = .03126. The figure indicates that when W is relatively small, α has no effect on the

contract value since in this case, the guarantee component of the contract dominates the

equity component (i.e., A � W ). Hence the contract value is determined only by the

guarantee account value and is independent of the insurance fee which is imposed on the

equity component. As the fee increases, the no-arbitrage value of the contract decreases

near W = 100. Eventually, the value of the contract is precisely V = 100 at W = 100

when the fair fee is charged.

Figure 8.2 plots the value surface of the GMWB guarantee at t = 0 as a function of

W and A assuming a fair insurance fee is imposed. The figure shows that the contract

value increases as W and A increase. The value curve along the W direction transforms

from a parabolic shape to a straight line as A changes from A = 100 to A = 0. Note that

the surface forms a cusp along the line A = W near A = W = 0.

We next study the optimal withdrawal strategy for an investor who maximizes the

no-arbitrage value of the GMWB guarantee. More precisely, this is the worst case for
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Figure 8.2: The value of the GMWB guarantee at t = 0 as a function of sub-account
balance W and guarantee account balance A. Data for this example are given in Table 8.1
with σ = .30 and the fair insurance fee α = .03126. Continuous withdrawal is allowed.

the provider of the guarantee. According to [31], the optimal strategy is either not to

withdraw, or withdraw at the maximum rate Gr, or withdraw a finite amount instanta-

neously. Figure 8.3 shows a contour plot of the optimal withdrawal strategy at t = ∆τ

for different values of W and A computed numerically using the data from Table 8.1 with

σ = .3 and using the fair insurance fee. From the figure, the (W,A)-plane is divided into

a blank region and three shaded regions. The blank region corresponds to withdrawing

continuously at the rate Gr. The upper left and upper right shaded areas correspond to

withdrawing a finite amount instantaneously.

Within the elliptical shaded area in the lower left corner, our numerical results suggest

zero withdrawals as the optimal strategy. This is unexpected. As is conjectured in [31],

based on financial reasoning and numerical tests, it is never optimal not to withdraw since

the investor will lose the proportional insurance fee α. To study the control behaviour

within this region more carefully, we compute the ratio

Ri,j =
V h(Wi, Aj,∆τ)−

[
V h(Wi −Gr∆τ, Aj −Gr∆τ,∆τ) +Gr∆τ

]
Gr∆τ

, (8.7.1)

where V h(Wi, Aj,∆τ) represents the approximate solution at the mesh node (W,A, t) =
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(Wi, Aj,∆τ) and V h(Wi −Gr∆τ, Aj −Gr∆τ,∆τ) is the corresponding approximate con-

tract value after a withdrawal of Gr∆τ . According to the optimization problem (7.4.2), if

Ri,j > 0, our numerical scheme chooses a zero control at (Wi, Aj). If Ri,j < 0, the scheme

suggests that it is optimal to withdraw at the rate Gr. We observe that for nodes residing

within the shaded elliptical region, the ratios Ri,j are positive but decrease towards zero

quickly as we refine the mesh size (for example, the ratios are approximately 10−3 for the

third refinement level). On the one hand, since the value of |Ri,j| is insignificant, it is

difficult for a numerical scheme to compute the sign of its exact value as ∆τ → 0 due to

numerical errors. As a result, Ri,j may not have the same sign as its exact value and hence

the zero withdrawal strategy returned by our scheme may not be correct. On the other

hand, since the value of |Ri,j| is very small, choosing γ̂ = 0 or γ̂ = Gr will not affect the

value of the guarantee. To verify this, we repeated the computation, but this time, we con-

strained the mesh nodes within the continuous withdrawal region to use the control value

Gr, and disallowed zero as a possible control. The solution at (W,A, t) = (100, 100, 0)

resulting from this constraint is identical to the solution without imposing this constraint

up to four digits.

To see this more clearly, assuming V h is smooth and ∆τ is sufficiently small, using

Taylor series expansion leads to the approximation

Ri,j ≈ VW (Wi, Aj,∆τ) + VA(Wi, Aj,∆τ)− 1. (8.7.2)

Since we observe thatRi,j converges to zero within this region, VW+VA−1 also converges to

zero in this region. According to the pricing equation (8.2.18), in this region, the equality

Vτ − LV − sup
γ̂∈[0,Gr]

[
γ̂(1− VW − VA)

]
= 0 (8.7.3)

holds since the continuous withdrawal strategy is used. This implies that when VW +

VA − 1 ∼ 0, the optimal control γ̂ can take any value between 0 and Gr, and hence

is not unique. From the discussions above, our numerical results seem to suggest that

VW + VA − 1 = 0 for mesh nodes within this region and thus the corresponding optimal

144



control is indeterminate, that is, any γ̂ ∈ [0, Gr] is optimal.

The region of withdrawing a finite amount in the upper left of Figure 8.3 is also ob-

served in [31]. In this region, W is less than A before the withdrawal; after the withdrawal,

W decreases to zero and the investor carries on withdrawing the remaining balance from

the guarantee account at the rate Gr. The strategy can be explained as follows. In this

region, the guarantee account balance of the contract dominates the sub-account bal-

ance. Hence it is highly probable that the guarantee account value still dominates the

sub-account balance, i.e., A � W , at maturity, and in this case the investor receives

(1−κ)A− c as the final payoff. In other words, the equity component has a small chance

of contributing to the final payoff, but instead requires insurance fee payments. Con-

sequently, it is optimal for the investor to withdraw all the funds from the sub-account

(even subject to a penalty).

In Figure 8.3, the upper right region represents withdrawing a finite amount when

the sub-account value W dominates the guarantee account value A. In this case, a finite

withdrawal is optimal in order to reduce the insurance fee payment, since the guarantee

has little value. Note that after the withdrawal, the sub-account balance still dominates

the guarantee account value and can contribute to the contract payoff.

In the blank region of Figure 8.3, it is optimal to withdrawal at the rate Gr because

this avoids the excessive withdrawal penalty due to withdrawing a finite amount and

also avoids the additional insurance fee payment which would result if no withdrawals

occurred.

8.8 Summary

Our work in this chapter is summarized as follows:

• We formulate the valuation of the GMWB variable annuities as an impulse control

problem. As discussed in Remark 8.1, the impulse control formulation is a more

general approach compared to the singular control formulation used in [69, 31].
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Figure 8.3: The contour plot for the optimal withdrawal strategy of the GMWB
guarantee at t = ∆τ in the (W,A)-plane. In the regions of withdrawing finite amounts,
contour lines representing the same withdrawal levels are shown, where the withdrawal
amounts are posted on those contour lines. Data for this example are given in Table 8.1
with σ = .30 and the fair insurance fee α = .03216. Continuous withdrawal is allowed.
In the region labeled indeterminate, the numerical results indicate that the same value
is obtained for any control rate in [0, Gr].

• We generalize the scheme for the discrete withdrawal case to the continuous with-

drawal case. As shown in Remark 8.2, the scheme is identical to an extension of the

semi-Lagrangian timestepping method for the bounded stochastic control problems,

introduced in Chapter 2. Therefore, we have a single numerical method for solving

the bounded and unbounded stochastic control problems as well as their discrete

versions where the operations are performed only at discrete times.

• Provided a strong comparison result holds, we prove that the scheme converges to

the unique viscosity solution of the HJB variational inequality corresponding to the

impulse control problem by verifying the l∞-stability, monotonicity and consistency

of the scheme and using the basic results in [11, 6].

• We provide some numerical tests which indicate that the no-arbitrage fee for the

discrete withdrawal contract is very close to the continuous contract fee (i.e. to

within a few basis points) even for fairly infrequent withdrawal intervals (e.g. once

every half a year).
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• For the continuous withdrawal case, the numerical results suggest that our impulse

control formulation converges to the singular control formulation in [31] as the fixed

cost vanishes. The numerical results also demonstrate that our scheme can solve

the impulse control problem with a nonzero fixed cost as well as the singular control

problem by setting the fixed cost to be zero, although the convergence is proved

only for the former case.

• Our numerical results appear to show that the optimal control strategy may not be

unique. That is, there exists a region where different control strategies can result in

the same guarantee value.
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Chapter 9

The Effect of Modelling Parameters

on the Value of GMWB Guarantees

In previous chapters, we have introduced GMWB variable annuities and proposed nu-

merical schemes for pricing the contracts. In this chapter, we conduct an extensive study

of the no-arbitrage fee for GMWB contacts assuming various parameters and contract

details.

In particular, we study the following:

• In practice, the underlying mutual fund charges a separate layer of fees for managing

the fund. It has been suggested that the apparent underfunding of the GMWB rider

can be explained if we assume that some of these mutual fund fees are diverted to

managing the GMWB rider. However, as suggested in [90, 88, 63], the mutual fund

fees are often not available for hedging purposes. We will derive the no-arbitrage

PDE which results from this fee splitting, and provide numerical results which show

the effect of the fee splitting. This fee separation is important in practice, and does

not appear to have been taken into account in previous work (e.g., [69, 31, 13]).

Inclusion of this fee separation increases the value of the GMWB rider.

• The authors of [28] discuss various assumptions about investor behaviour when

pricing variable annuities. A conservative approach is to assume optimal investor
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behaviour, and then to recognize extraordinary earnings in the event of sub-optimal

behaviour. Another possibility is to develop a model of non-optimal behaviour,

and incorporate this into the pricing model. We will examine both approaches in

this chapter. Our base case assumes optimal behaviour, but we also model the

effect of sub-optimal withdrawal behaviour using the approach suggested in [54].

Sub-optimal behaviour considerably reduces the value of the GMWB rider.

• We will include results with both the classic Geometric Brownian motion process

for the underlying asset, as well as a jump diffusion process, which may be a more

realistic model for long term guarantees. Making the assumption that there is

reasonable (risk neutral) probability of a market crash during the lifetime of the

guarantee dramatically increases the value of the GMWB rider.

• We will also examine the effect of various contract parameters, such as reset provi-

sions, maturities, withdrawal intervals, and surrender charges. Some contract fea-

tures (e.g. the reset provision) have almost no effect on the value of the guarantee,

while others have considerable influence. In addition to the value of the guarantee,

we explore the impact of some of these various alternative modelling assumptions

on the policyholder’s optimal withdrawal strategy. Plots of the contour levels of the

optimal withdrawal amounts show that the investor’s optimal strategy can be quite

sensitive to modelling assumptions.

9.1 The Mathematical Model

We assume that the withdrawal occurs only at predetermined discrete times (see Chapter 7

for the description of a simple discrete withdrawal contract). This problem can also

be posed in terms of continuous withdrawals described in Chapter 8. However, as we

verify through numerical experiments in Chapter 8 and this chapter, the value of the

continuous withdrawal formulation is very close to the discrete withdrawal case if the

withdrawal intervals are less than one year. In addition, many contracts only allow discrete

withdrawals.
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Year Surrender Charge κ
0 ≤ t < 2 8%
2 ≤ t < 3 7%
3 ≤ t < 4 6%
4 ≤ t < 5 5%
5 ≤ t < 6 4%
6 ≤ t < 7 3%
t ≥ 7 0%

Table 9.1: Time-dependent surrender charges κ(t).

The problem notation has been given in Chapter 7. In contrast to the contract de-

scribed in Chapter 7, in this chapter we assume the guarantee fees include a mutual fund

management fee. Let αtot ≥ 0 denote the proportional total fees (including mutual fund

management expenses and fees charged for the GMWB rider) paid by the policy holder.

Let αg be the fee paid to fund the guarantee, and αm be the mutual fund management fee,

so that αtot = αg + αm. Given this notation, according to (7.2.3-7.2.4), the risk neutral

process of the sub-account value W is given by

dW = (r − αtot)Wdt+ σWdZ, if W > 0 (9.1.1)

dW = 0, if W = 0. (9.1.2)

In a typical contract, the deferred surrender charge κ = κ(t) is time-dependent and

normally decreases over time to zero. Table 9.1 shows a typical specification for κ(t). The

cash flow received by the investor after a withdrawal of γk at the withdrawal time τ kO is

given in (7.2.5).

The terminal condition for the annuity is given in (7.2.9).

At the withdrawal time τ = τ kO, V satisfies the optimality condition (7.2.6).

Within each time interval [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1, the annuity value function

V (W,A, τ), solves the following linear PDE which has A dependence only through equa-

tion (7.2.6):

Vτ = LV + αmW, τ ∈ [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1. (9.1.3)
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Parameter Value
T Expiry time 10 years
r Interest rate 5%
G Contract withdrawal amount 10
w0 Initial lump-sum premium 100
σ Volatility .15

∆tO Withdrawal interval 1 year
αm Mutual fund fee 1%

Table 9.2: Base case parameters.

where the operator L is

LV =
1

2
σ2W 2VWW + (r − αtot)WVW − rV. (9.1.4)

The derivation of (9.1.3) is given in Appendix I, based on a no-arbitrage hedging argument.

The fair insurance fee αg (recall αtot = αg + αm) is determined so that the contract

value V at τ = T is equal to the initial premium w0 paid by the investor [69, 31, 28]. The

pricing equations are solved numerically using the methods described in Chapter 7. In

the following, all results are given correct to the number of digits shown, based on grid

and timestep refinement studies.

9.2 Numerical Results

9.2.1 Base Case

We first compute the value of the guarantee for a representative base case, and then

perturb the problem parameters and compare to this base case. The base case parameters

are given in Table 9.2, with the surrender charge κ(t) (see equation (7.2.5)) given in

Table 9.1.

For this base case, the no-arbitrage insurance fee is αg = 117 basis points. Figure 9.1

shows a contour plot of the optimal withdrawal strategy γk at the first withdrawal time

(t = 1) for different values of W and A. In particular, we show contour levels of γ =
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10, γ = .2. We choose these two contour levels to show that in some cases the optimal

withdrawal amount γ rapidly changes from the contract amount Gk to zero. (Due to

contouring artifacts, a contour value γ < .2 results in very jagged contour levels, since it

is difficult to determine numerically the zero withdrawal region). For practical purposes,

the γ = .2 contour level shows the region where it is optimal to withdraw nothing. For

a discussion of the conditions under which it may be optimal to withdraw nothing, see

Chapter 8.

From Figure 9.1, we can observe the following:

• There is a shaded region in the left side of the figure representing excessive with-

drawals (i.e. withdrawals above the contract amount) when A dominates W . In

this region, it is unlikely that the amount in the risky sub-account will ever exceed

the guarantee account. Intuitively, the investor withdraws as rapidly as possible

(subject to minimizing the surrender charges) because the total guarantee available

is just w0 and delaying withdrawal is costly due to a lower present value of the

funds withdrawn. As a specific example, consider the case where (W,A) = (0.0, 80).

From Table 9.1, the investor will receive .92 of any withdrawal above 10. Also, note

(from Table 9.2) that r = .05. In this case, it is optimal to withdraw 70 imme-

diately, and then withdraw 10 the next year. The present value of this strategy

is 10 + 60 × .92 + e−.0510 = 74.71. This is slightly better than withdrawing 80

immediately, which has value of 10 + 70× .92 = 74.40.

• There is a blank region in the right side of the figure representing the withdrawal

of the contract amount γk = Gk.

• There is a narrow area surrounding the line W = A, in which the optimal strategy

is to withdraw an amount less than Gk. The contour line for withdrawing γk = .2

is also shown, to illustrate the rapid change in the withdrawal amount over a small

region in the (W,A) plane.

152



Figure 9.1: Optimal withdrawal strategy of the GMWB guarantee at the first with-
drawal time (t = 1 year) in the (W,A)-plane. Contour lines representing the same
withdrawal levels are shown, where the withdrawal amounts are posted on those contour
lines. Parameters for this example are given in Tables 9.1 and 9.2. The contour line
showing γ = .2 shows the region where it is optimal to withdraw essentially nothing.
Fair insurance fee αg = 117b.p.

Volatility σ Insurance Fee αg
.15 117 b.p.
.20 214 b.p.
.25 326 b.p.
.30 440 b.p.
.35 552 b.p.

Table 9.3: GMWB guarantee fees αg determined with different choices of the volatility
σ. Other parameter values are given in Tables 9.1 and 9.2.

9.2.2 Effect of Volatility

The insurance fees for different choices of volatility σ are given in Table 9.3. The table

shows that volatility has a large effect on the no-arbitrage value of the guarantee fee αg.

For example, the fee level almost doubles when σ is set to .20 compared to the base case

of σ = .15.

Figures 9.2, 9.3 and 9.4 show the optimal withdrawal strategy for σ = .20 at the first,

fourth and eighth withdrawal time forwards in time (with respect to t = 1st year, t = 4th

year and t = 8th year). The figures reveal that:
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• Compared with Figure 9.1, increasing volatility generates another excessive with-

drawal region when W dominates A. When W � A, the guarantee is effectively

out the money. Hence the investor withdraws an amount which minimizes the fees

charged for this out of the money guarantee, subject to minimizing the surrender

charges.

• As t increases, the shaded regions representing excessive withdrawals expand. At

the same time, the blank region representing the withdrawal of the contract amount

Gk shrinks. This is due to the decrease of the surrender charge κ over time, which

imposes a smaller penalty on excessive withdrawals. However, it is also interesting

to note that the no-withdrawal region (i.e. the region enclosed by the γ = .2 contour)

expands as well.

• Excessive withdrawals at a later time (i.e. a larger t) will result in an equal or less

remaining balance in the guarantee account compared with excessive withdrawals at

an earlier time (i.e. a smaller t). In particular, at the eighth withdrawal time when

κ = 0, the optimal strategy is to withdraw the whole amount from the guarantee

account in the left shaded region (where A dominates W ) as well as in the right

shaded region (where W dominates A), excluding the triangular area surrounding

the line W = A. The area near W = A can be regarded as an at the money put

option. Since there are only two years left in the contract, the fees charged for

this at the money put are comparatively low, and hence it is worthwhile for the

policyholder to keep the option intact (i.e. not to withdraw).

9.2.3 Incorporating Price Jumps

Many studies have shown that for long term contingent claims, it is important to consider

jump processes [4]. For this example, we assume that the dynamics of W follows a jump
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Figure 9.2: Optimal withdrawal strategy of the GMWB guarantee at the first with-
drawal time forwards in time (t = 1 year) in the (W,A)-plane with σ = .20. Other
parameter values are given in Tables 9.1 and 9.2. The contour line showing γ = .2
shows the region where it is optimal to withdraw essentially nothing.

diffusion process given by

dW = (r − αtot − λβ)Wdt+ σWdZ + (η − 1)Wdq, if W > 0 (9.2.1)

dW = 0, if W = 0, (9.2.2)

where:

• dq is an independent Poisson process with dq =

0 with probability 1− λdt

1 with probability λdt

,

• λ is the jump intensity representing the mean arrival rate of the Poisson process,

• η is a random variable representing the jump size of W ; we assume that η follows a

log-normal distribution g(η) given by

g(η) =
1√

2πζη
exp
(
−(log(η)− ν)2

2ζ2

)
(9.2.3)

with parameters ζ and ν,

• β = E[η − 1], where E[η] = exp(ν + ζ2/2) given the distribution function g(η) in
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Figure 9.3: Optimal withdrawal strategy of the GMWB guarantee at the fourth with-
drawal time forwards in time (t = 4 years) in the (W,A)-plane with σ = .20. Other
parameter values are given in Tables 9.1 and 9.2. The contour line showing γ = .2
shows the region where it is optimal to withdraw essentially nothing.

(9.2.3).

Note that we are working here in an incomplete market, so that the equivalent martingale

pricing measure is not in general unique. As in [4], we can calibrate the parameters of

equation (9.2.1) to traded prices of options. This means that the parameters of (9.2.1)

will correspond to those from the market’s pricing measure.

Using (9.2.1), it is straightforward to to generalize the pricing PDE (9.1.3) to the

pricing partial integrodifferential equation (PIDE)

Vτ − LV −HV − αmW = 0, τ ∈ [τ k+
O , τ k+1

O ], k = 0, . . . , K − 1, (9.2.4)

where the operator H satisfies

HV = λE
[
V (Wη)− V − (η − 1)WVW

]
= λ

∫ ∞
0

V (Wη)g(η)dη − λV − λβWVW . (9.2.5)

We solve PIDE (9.2.4) using the numerical methods described in [41]. Table 9.4 gives

the jump diffusion parameters which we will use in our tests. These parameters are
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Figure 9.4: Optimal withdrawal strategy of the GMWB guarantee at the eighth with-
drawal time forwards in time (t = 8 years) in the (W,A)-plane with σ = .20. Other
parameter values are given in Tables 9.1 and 9.2. The contour line showing γ = .2
shows the region where it is optimal to withdraw essentially nothing.

Parameter Value
λ .1
ζ .45
ν -.9
σ .15

Table 9.4: Parameters for the jump diffusion case.

essentially the (rounded) parameters obtained in [4] from calibration to S&P 500 index

option prices.

The fair insurance fees for the jump and no jump cases are given in Table 9.5. The table

shows that incorporating jumps greatly increases the insurance fees. Note that a volatility

of σ = .15 may appear to be reasonable if one examines recent long term data for implied

volatility of a major stock index. However, the implied volatilities are based on short term

options, which do not capture long term information about jumps. Table 9.5 shows that

ignoring the possibility of jumps for long term guarantees may severely underestimate

the hedging cost. Methods for hedging contracts under jump diffusions are discussed in

[53, 58].
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Insurance Fee αg
With jump 356 b.p.

Base case (no jump) 117 b.p.

Table 9.5: Insurance fees with/without price jumps. Parameters are given in Ta-
bles 9.1, 9.2 and 9.4.

Mutual Fund Fee αm Insurance Fee αg
0.0% 88 b.p.
0.5% 102 b.p.
1.0% 117 b.p.
1.5% 136 b.p.
2.0% 157 b.p.
2.5% 184 b.p.

Table 9.6: Insurance fees determined by different choices of the mutual fund fees.
Other parameter values are given in Tables 9.1 and 9.2.

9.2.4 Separation of Mutual Fund Fee

Recall that in equation (9.1.3), we are careful to distinguish between the fees used to

manage the underlying mutual fund (αm) and the fees used to fund the GMWB guarantee

(αg). This is because the provider of the GWMB rider may be a completely separate

business unit from the unit managing the mutual fund [63]. A precise hedging scenario

for this case is given in Appendix I.

The no-arbitrage GMWB guarantee fees αg for different choices of the mutual fund

fees αm (assuming no jumps in W ) are given in Table 9.6. The table shows that the

GMWB fee αg is very sensitive to the mutual fund fee αm. The effect of the mutual fund

fee on the GMWB fee has not been taken into account previously. Note that a mutual

fund fee of αm = 1.0% increases the GMWB fee by 29 b.p. compared to the case where

αm = 0. The intuition for this is straightforward: the guarantee applies to the initial value

of the account w0, prior to any fees being deducted. As the mutual fund fees increase,

the account value is correspondingly reduced over time, thereby increasing the value of

the guarantee.
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Insurance Fee αg
Constant κ 95 b.p.

Decreasing κ 117 b.p.

Table 9.7: Insurance fees for constant/decreasing κ. For the decreasing κ(t) case, the
data is given in Table 9.1. For the constant κ case, the flat rate is 8%. Other parameter
values are in Table 9.2.

9.2.5 Constant Surrender Charge

Table 9.7 provides the GMWB guarantee fees for a constant surrender charge κ = 8% and

for the base case κ(t) as in Table 9.1. It is perhaps surprising that the GMWB fee does

not appear to decrease greatly for the case where the surrender fee is constant compared

to the case where κ(t) decreases to zero. Intuitively, one reason for this is because the

reported values are at t = 0, and the benefit to the investor of the reduced surrender charge

is discounted for a relatively lengthy period of time. Moreover, this benefit only arises

in states in which it is optimal to withdraw an amount greater than that contractually

specified. It is also worth recalling that we are assuming that the surrender charges can

be used to fund the guarantee. In general, though, decreasing the fee to zero appears to

be mainly a marketing tool, rather than a valuable option for the investor.

9.2.6 Sub-optimal Control Strategy

The previous results were computed assuming an optimal withdrawal policy by the GMWB

contract holder. The issue of how to model consumer behaviour when pricing and hedging

variable annuities is controversial. It is instructive to reproduce a quote from [28]:

“Assumptions should reflect that an option will impact policyholder behaviour,

and the degree to which it impacts policyholder behaviour will be a function of

how much the option is in the money...

Some actuaries believe that all policyholders should be expected to always act

optimally, and earnings only recognized when sub-optimal behaviour occurs.
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Because the valuation is typically done using risk-neutral assumed returns,

some actuaries believe it is appropriate to adjust policyholder behaviour as-

sumptions to reflect policyholder decisions based on a ‘real world’ environ-

ment. Others believe that this approach is inconsistent with a risk neutral

framework.”

We model non-optimal behaviour using the method suggested in [54]. We consider here

the sub-optimal behaviour of the investor described as follows: at each withdrawal time

τ kO, the default strategy of the investor is to precisely withdraw the contract withdrawal

amount Gk. Nevertheless, the investor will switch to the optimal withdrawal strategy (if

it is different from the default strategy) if the difference between the value corresponding

to the optimal strategy and the value corresponding to the default strategy is no less than

a fraction S of the initial lump-sum payment. This makes it more likely that the holder

will act optimally if the option is deep in the money. To be more precise, the value V (τ k+
O )

instantaneously following each withdrawal time τ kO is determined by Algorithm 9.1.

// Value obtained from the default strategy

Ud(W,A, τ
k+
O ) = V

(
max(W − γk∗ , 0), A− γk∗ , τ kO

)
+ f(γk∗ ), where γk∗ = min(A,Gk)

// Value obtained from the optimal strategy

Uo(W,A, τ
k+
O ) = sup

γk∈[0,A]

[
V
(
max(W − γk, 0), A− γk, τ kO

)
+ f(γk)

]
// Model the sub-optimal behaviour by comparing the above two values

If Uo(W,A, τ
k+
O )− Ud(W,A, τ k+

O ) ≥ Sw0 Then

V (W,A, τ k+
O ) = Uo(W,A, τ

k+
O )

Else

V (W,A, τ k+
O ) = Ud(W,A, τ

k+
O )

Algorithm 9.1: Sub-optimal behaviour

Effectively, we are assuming that the holder will not bother to withdraw optimally,

unless the optimal strategy is considerably more valuable than the default strategy (scaled

by the initial lump-sum payment). Table 9.8 gives the fair insurance fees obtained under
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Parameter S σ = .15 σ = .20
0 (Always withdraw optimally) 117 b.p. 214 b.p.

0.03 86 b.p. 162 b.p.
0.05 77 b.p. 150 b.p.

∞ (Always withdraw Gk) 64 b.p. 123 b.p.

Table 9.8: Insurance fees for the sub-optimal and optimal control strategies. Other
parameter values are given in Tables 9.1 and 9.2. It is assumed that the holder will
take the default action (withdraw at contract rate) unless the gain in acting optimally
is larger than Sw0, where w0 is the initial lump-sum payment. See Algorithm 9.1 for
details.

the above sub-optimal behaviour for different choices of the volatility σ and the optimality

parameter S. We can see from Table 9.8 that if the holder always withdraws at the default

rate, then the value of the guarantee is reduced by about one-half. However, the sub-

optimal GMWB guarantee is still quite valuable for moderate volatilities (123 b.p. for

σ = .20).

9.2.7 Reset Provision

We next consider a reset provision in the contract. This feature was discussed in [69, 31],

but no results were reported for this case in those papers. Under this provision, if an

excessive withdrawal occurs at some withdrawal time, that is, if γk > Gk for some k, then

the guarantee account balance A is reset to the minimum of A−γk and the resulting sub-

account value, max(W − γk, 0). Let Ak denote the remaining guarantee account balance

after withdrawal. Then we have

Ak =

A− γ
k if γk ≤ Gk

min
{
A− γk,max(W − γk, 0)

}
if γk > Gk

. (9.2.6)

In this case, the optimality condition (7.2.6) becomes

V (W,A, τ k+
O ) = sup

γk∈[0,A]

[
V
(
max(W − γk, 0),Ak, τ kO

)
+ f(γk)

]
, k = 0, . . . , K − 1.

(9.2.7)

161



σ = .15 σ = .20
With reset provision 116 b.p. 212 b.p.

Without reset provision 117 b.p. 214 b.p.

Table 9.9: Insurance fees with/without reset provision. Other parameter values are
given in Tables 9.1 and 9.2.

Table 9.9 provides the fair insurance fees after imposing the reset provision for different

choices of volatility. The table shows that the reset provision has little effect on the

insurance fee.

Figure 9.5 shows the optimal withdrawal strategy at the first withdrawal time after

imposing reset provision, where we set σ = .20. Compared with the control strategy

without imposing reset provision in Figure 9.2, we can observe that:

• The right side excessive withdrawal region in Figure 9.5 is identical to that in Fig-

ure 9.2.

• The left side excessive withdrawal region in Figure 9.5 amounts to withdrawing all

the remaining guarantee account balance, as opposed to the corresponding region in

Figure 9.2, where the remaining balance after excessive withdrawal is 10. This is due

to the extra penalty imposed on A (see equation (9.2.6)) that promotes complete

withdrawal in order to reduce the resulting loss. Even though the addition of the

reset provision (9.2.6-9.2.7) results in a different optimal strategy when A � W

compared with the base case, these regions clearly must have a low (risk neutral)

probability, so that the guarantee value is almost unchanged (see Table 9.9).

9.2.8 Different Maturities

Table 9.10 gives the fair insurance fees with respect to different maturities. The contract

withdrawal rate Gk = w0/T for these cases. As might be expected, the value of the guar-

antee decreases as the maturity increases, due to the reduced time value of the guarantee

(recall that the total guaranteed withdrawal amount initially is w0, irrespective of the

maturity date).
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Figure 9.5: Optimal withdrawal strategy of the GMWB guarantee at the first with-
drawal time forwards in time (t = 1 year) in the (W,A)-plane with reset provision
imposed and with σ = .2. Other parameters are given in Tables 9.1 and 9.2. The con-
tour line showing γ = .2 shows the region where it is optimal to withdraw essentially
nothing.

Maturity T Insurance Fee αg
5 Years 183 b.p.
10 Years 117 b.p.
20 Years 79 b.p.

Table 9.10: Insurance fees for different maturities. Other parameters are given in
Tables 9.1 and 9.2. The contract withdrawal rate Gk = w0/T for these cases.

9.2.9 Different Withdrawal Intervals

Table 9.11 gives the fair insurance fees with respect to different withdrawal intervals. In

this case, the maximum withdrawal without penalty is given by Gk = 10∆tO, where ∆tO

is the withdrawal interval. The table shows that the withdrawal intervals have a fairly

small effect on the insurance fees. For example, decreasing the withdrawal interval from

one year to one month increases the fee by only 5 b.p. This means that allowing more

frequent withdrawals (but at the same yearly rate) does not increase the value of the

guarantee significantly.
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Withdrawal Interval Insurance Fee αg
2 Years 107 b.p.
1 Year 117 b.p.

6 Months 119 b.p.
1 Month 122 b.p.

Table 9.11: Fair insurance fees for different choices of withdrawal intervals. Other
parameters are given in Tables 9.1 and 9.2. Gk = 10∆tO, where ∆tO is the withdrawal
interval.

Interest Rate Insurance Fee αg
1% 761 b.p.
3% 227 b.p.
5% 117 b.p.
7% 68 b.p.
9% 41 b.p.

Table 9.12: Fair insurance fees for different values of r. Other parameters are given
in Tables 9.1 and 9.2.

9.2.10 Varying Interest Rates

Table 9.12 gives the fair insurance fees with respect to different values of the risk free

interest rate r. The guarantee values are extremely sensitive to interest rates, due to the

time value of the guarantee account. A reduction in the risk free rate drastically increases

the value of the GMWB guarantee.

9.3 Summary

Our work in this chapter is summarized as follows:

• We have carried out an extensive analysis of the no-arbitrage fee for GMWB guaran-

tees. Typical fees for GMWB guarantees are less than 50 b.p. [69]. Fees of this level

can be justified (assuming that the guarantee is hedged) only if all of the following

assumptions are made:
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– Volatilities are 15% or less. Market crashes (jumps) are either impossible or at

least extremely unlikely over the lifetime of these contracts (under the pricing

measure).

– Contract holders withdraw sub-optimally.

– Interest rates do not drop to relatively low levels.

• In all other cases, the GMWB no-arbitrage fee should be considerably higher than

50 b.p. This would suggest that insurers are exposed to considerable risk, since the

fees collected are not enough to cover hedging costs.

• In many cases, the business unit hedging the guarantee is separate from the unit

managing the mutual fund. For typical parameters, the GMWB hedging fee in-

creases by about 30 b.p. due to this fee splitting.

• We note that most GMWB contracts have additional optionality (e.g. ratchet pro-

visions and increases in the guarantee account if withdrawals are skipped), which

can only increase the value of the guarantee. Finally, we have implicitly assumed

throughout this chapter (this is made explicit in Appendix I) that the insurer can

hedge these contractual obligations using a traded instrument that is perfectly cor-

related with the investment in the investor’s account. In other words, we have

ignored basis risk. Of course, our stochastic modelling assumptions are also rather

simple (e.g. constant volatility and interest rates). Hedging risk exposures arising

from such real world features would require additional reserves. Consequently, the

guarantee values calculated in this chapter will undervalue typical contracts. This

reinforces our primary conclusion that insurance companies are not charging enough

to hedge these contracts.
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Chapter 10

Conclusion

In this thesis, we develop partial differential equation (PDE) based numerical methods to

solve the optimal stochastic control problems in finance.

A stochastic control problem is linked with a nonlinear PDE in the viscosity sense,

that is, the solution of the stochastic control problem is normally identical to the viscos-

ity solution of the corresponding PDE. Therefore, the solution to the stochastic control

problem can be computed by solving the corresponding PDE numerically, as long as the

convergence to the viscosity solution is guaranteed.

Stochastic control problems with bounded controls correspond to Hamilton-Jacobi-

Bellman (HJB) equations. We develop a fully implicit scheme based on a semi-Lagrangian

timestepping to discretize the HJB equation. Initially introduced by [42, 74] for atmo-

spheric and weather numerical predictions, semi-Lagrangian schemes can effectually re-

duce the numerical problems arising for convection dominated equations. Our numerical

scheme has the following desired properties:

• The scheme is unconditionally stable, i.e., there are no timestep limitations due to

stability considerations.

• The scheme can be shown rigorously to converge to the viscosity solution.

• The semi-Lagrangian timestepping completely separates the inventory component
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from the underlying stochastic model. Thus, it can easily handle more complex

stochastic models such as jump diffusion and regime-switching models.

• The semi-Lagrangian timestepping is more efficient than standard implicit finite

difference discretizations given in [46], since it avoids Policy type iterations at each

mesh node at each timestep. Instead, it requires solution of a local optimization

problem at the mesh point, which can be solved efficiently. The semi-Lagrangian

method also reduces the problem to a set of independent sub-problems, which makes

it ready for parallel implementation.

• The scheme is algebraically identical to a discretization based on a scenario that the

operations are performed only at discrete times.

We demonstrate the properties of our scheme by valuing natural gas storage facilities

using a one-factor mean-reverting model for natural gas spot prices. We then extend the

scheme to solve the same problem assuming a more complex regime-switching model for

natural gas spot, which we demonstrate by calibration is able to fit the market data more

accurately than the one-factor mean-reverting model.

We then study the stochastic control problems with unbounded controls. We model

the unbounded control problems as impulse control problems, resulting in HJB variational

inequalities. We show that the impulse control framework is more general than the sin-

gular control framework. We then generalize the semi-Lagrangian timestepping for the

bounded control case to solve the HJB variable inequality corresponding to the impulse

control formulation.

The generalized scheme also satisfies the desired properties above except that in the

impulse control case the local optimization problem at each mesh point will be more

costly to solve compared with the existing penalty methods [47, 31], although the penalty

methods require nonlinear iterations. However, we have a unified numerical method for

both the bounded and the unbounded control problems as well as the discrete cases where

the controls are allowed only at discrete times.

We demonstrate the properties of the semi-Lagrangian timestepping for the unbounded
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control case by pricing the variable annuities with guaranteed minimum withdrawal ben-

efits (GMWBs).

10.1 Future Work

There are some research directions that can be pursued in the future work.

• The optimization problem in the impulse control case is expensive to solve since

a search across the whole discretization grid is required. It would be desirable to

develop a method that is able to solve the optimization problem more efficiently.

• The penalty method can be used to solve the singular control formulation; no op-

timization problem needs to be solved in this case. It would be interesting to

compare our semi-Lagrangian discretization with the penalty method in terms of

running time and accuracy.

• Finally, it would be interesting to apply our scheme to solve other stochastic control

problems such as portfolio selection problems, optimal hedging etc.
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Appendix A

Derivation of Natural Gas Storage

Pricing Equation

This chapter heuristically derives the gas storage pricing PDE from the stochastic control

formulation (2.2.8) using dynamic programming (Bellman’s Principle) and Ito’s Lemma.

We assume V̂ is smooth.

We first rewrite the equation (2.2.8) as

V̂ (P, I, t)

= sup
c(s)∈C(I(s))

EQ
[∫ t+δt

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds+

∫ T

t+δt

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds

+ e−r(T−t)V̂
(
P (T ), I(T ), T

)]
= sup

c(s)∈C(I(s))

EQ
[∫ t+δt

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds

+ e−rδt
[∫ T

t+δt

e−r(s−(t+δt))
[
c(s)− a(c(s))

]
P (s)ds+ e−r(T−(t+δt))V̂

(
P (T ), I(T ), T

)]]
= sup

c(s)∈C(I(s))

EQ
[∫ t+δt

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds+ e−rδtV̂

(
P + δP, I + δI, t+ δt

)]
,

(A.1)

where we use dynamic programming to obtain the last equality and where δP , δI are the

random changes from (P, I) in the interval t→ t+δt. Using notation δV̂ = V̂ (P +δP, I+
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δI, t+ δt)− V̂ (P, I, t) we can write the above equation as

sup
c(s)∈C(I(s))

EQ
[∫ t+δt

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds+ e−rδtδV̂ +

(
e−rδt − 1

)
V̂

]
= 0.

(A.2)

Using Ito’s Lemma as well as equations (2.2.4-2.2.5) and (2.2.9) give

δV̂ =

∫ t+δt

t

U(s)ds+

∫ t+δt

t

σ̂(P (s))P (s)V̂P (P (s), I(s), s)dZ(s)

−
∫ t+δt

t

[
c(s) + a(c(s))

]
V̂I(P (s), I(s), s)ds,

(A.3)

where U(s) is defined as

U(s) = V̂t(P (s), I(s), s) + α
[
K(s)− P (s)

]
V̂P (P (s), I(s), s)

+
1

2
σ̂2(P (s))P 2(s)V̂PP (P (s), I(s), s)

(A.4)

Substituting (A.3) into (A.2) and using EQ[dZ] = 0 yields

sup
c(s)∈C(I(s))

EQ

[∫ t+δt

t

e−r(s−t)
[
c(s)− a(c(s))

]
P (s)ds

+ e−rδt
[∫ t+δt

t

U(s)ds−
∫ t+δt

t

[
c(s) + a(c(s))

]
V̂Ids

]
+
(
e−rδt − 1

)
V̂

]
= 0.

(A.5)

If we take a constant control c(s) = c̄ for t ≤ s ≤ t + δt, where c̄ is any value in

C(I(t)), then (A.5) implies

EQ

[∫ t+δt

t

e−r(s−t)(c̄− a(c̄))P (s)ds+ e−rδt
[∫ t+δt

t

U(s)ds−
∫ t+δt

t

(c̄+ a(c̄))V̂Ids
]

+
(
e−rδt − 1

)
V̂

]
≤ 0.

(A.6)

Dividing through by δt and taking limits as δt → 0 (assuming we can interchange the
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limit with the expectation) leads to

V̂t + α(K(t)− P )V̂P +
1

2
σ̂2(P )P 2V̂PP + (c̄− a(c̄))P − (c̄+ a(c̄))V̂I − rV̂ ≤ 0. (A.7)

On the other hand, we assume that c∗(s) is a continuous optimal control path that

achieves the supremum in (A.5). Then following a similar argument gives

V̂t +α(K(t)−P )V̂P +
1

2
σ̂2(P )P 2V̂PP +

[
c∗(t)− a(c∗(t))

]
P −

[
c∗(t) + a(c∗(t))

]
V̂I − rV̂ = 0.

(A.8)

Consequently, inequality (A.7) holds for all controls c ∈ C(I), while it holds with

equality for c = c∗(t) (according to (A.8)), which is equivalent to the following HJB

equation

sup
c∈C(I)

[
V̂t+α(K(t)−P )V̂P +

1

2
σ̂2(P )P 2V̂PP +(c−a(c))P − (c+a(c))V̂I−rV̂

]
= 0. (A.9)

Moving all terms independent of the control c out of the sup expressions result in

V̂t+α(K(t)−P )V̂P +
1

2
σ̂2(P )P 2V̂PP + sup

c∈C(I)

[
(c−a(c))P − (c+a(c))V̂I

]
−rV̂ = 0. (A.10)
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Appendix B

Discrete Equation Coefficients

In this appendix, we give the coefficients of discrete differential operator Lh defined in

(2.3.4). For i = 0, we impose boundary condition (2.2.16) as P → 0 by using forward

differencing to evaluate the first-order derivative term in (2.3.2) and setting VPP = 0,

which results in

γn0 = 0 ; βn0 =
α(K(T − τn)− P0)

P1 − P0

. (B.1)

Similarly, for i = imax, the boundary condition (2.2.17) at P = Pmax can be imposed by

setting

γnimax
= −α(K(T − τn)− Pimax)

Pimax − Pimax−1

; βnimax
= 0, (B.2)

where γnimax
and βnimax

are obtained by evaluating the first-order derivative term in (2.3.2)

with backward differencing and setting VPP = 0.

Away from i = 0 and i = imax, applying the second-order central differencing in the

first and second order derivative terms in equation (2.3.2) leads to the following values of

coefficients γni and βni :

γni,central =
(σ̂(Pi)Pi)

2

(Pi − Pi−1)(Pi+1 − Pi−1)
− α(K(T − τn)− Pi)

Pi+1 − Pi−1

, (B.3)

βni,central =
(σ̂(Pi)Pi)

2

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
α(K(T − τn)− Pi)

Pi+1 − Pi−1

, i = 1, . . . , imax − 1.

If either γni,central or βni,central is negative, the discrete scheme will not be monotone. Mono-
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tonicity can be restored by using first-order forward or backward differencing in the first-

order derivative term at the problem nodes. Forward differencing produces:

γni,forward =
(σ̂(Pi)Pi)

2

(Pi − Pi−1)(Pi+1 − Pi−1)
, (B.4)

βni,forward =
(σ̂(Pi)Pi)

2

(Pi+1 − Pi)(Pi+1 − Pi−1)
+
α(K(T − τn)− Pi)

Pi+1 − Pi
, i = 1, . . . , imax − 1.

while backward differencing gives:

γni,backward =
(σ̂(Pi)Pi)

2

(Pi − Pi−1)(Pi+1 − Pi−1)
− α(K(T − τn)− Pi)

Pi − Pi−1

, (B.5)

βni,backward =
(σ̂(Pi)Pi)

2

(Pi+1 − Pi)(Pi+1 − Pi−1)
, i = 1, . . . , imax − 1.

On one hand, we want to use central differencing to achieve second-order correctness.

On the other hand, we need to maintain γni and βni positive so that the scheme is mono-

tone. Consequently, we decide on central or forward/backward discretization at each node

(Pi, Ij), i = 1, . . . , imax − 1, j = 0, . . . , jmax, based on Algorithm B.1.

If [γni,central ≥ 0 and βni,central ≥ 0] then

γni = γni,central

βni = βni,central

ElseIf [βni,forward ≥ 0] then

γni = γni,forward

βni = βni,forward

Else

γni = γni,backward

βni = βni,backward

EndIf

Algorithm B.1: Selection of the central, forward or backward discretization

Note that (B.1-B.2) and Algorithm B.1 guarantee that both γni and βni are non-

negative. Equations (B.3) imply that γni,central and βni,central are positive if Pi is close

to K(T − τn), which is the equilibrium price of the risk neutral natural gas spot price at
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t = T − τn. Hence the strategy in Algorithm B.1 will use central differencing for those

nodes Pi close to the equilibrium price. These nodes are in the region of interest, since

the gas spot price will not stray too far away from the mean-reversion equilibrium price.

Consequently, the use of a low-order differencing scheme for nodes far away from the equi-

librium price should not result in poor convergence for the nodes near the equilibrium

price.
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Appendix C

Discrete Optimal Control Strategy

for the Natural Gas Storage

In this Appendix, we derive a discretization based on purely physical reasoning, assuming

that the operator of a gas storage facility can change the controls only at fixed discrete

times. We will see that the final discrete equations are identical to the fully implicit

semi-Lagrangian discretization derived in Section 2.3.2. This provides justification for

the choice of integration points used in deriving the fully implicit discretization (2.3.15-

2.3.17). It is interesting to observe that the fully implicit semi-Lagrangian discretization

can be interpreted as a no-arbitrage jump condition.

Suppose we have N + 1 discrete times, denoted by 0 = t0 < t1 < . . . < tN = T , over

the period from t = 0 to t = T . Let t0, t1, . . . , tN−1 be the discrete operation times where

the operator of a natural gas storage facility can choose to change the controls. At each

decision time t = tn−1, n = 1, 2, . . . , N , the operator either does nothing or chooses to

inject or produce gas at a constant rate. This decision cannot be changed until the next

decision time tn.

We assume that no cash flows will occur until the end of a time interval. In other

words, given a decision at tn−1, then the revenue is obtained for all the gas produced

in [tn−1, tn) at tn. We also imagine that the inventory is regarded as constant during

[tn−1, tn). The inventory is adjusted only at tn to reflect the gas produced/injected during
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[tn−1, tn). Clearly, if we let N → ∞, then the above discrete control scenario will turn

into a continuous control scenario.

Let us consider a path of inventory level in the gas storage facility at different times

with respect to a fixed natural gas spot price, denoted by Î(t). Such a path is generated

by the control strategy that the operator applies to the storage facility along a specific

time path.1 As described above, under our discrete control scenario, the gas inventory

changes only at discrete times tn. Thus, the path Î(t) is a piece-wise constant function

with Î(t) = Î(tn−1) for t ∈ [tn−1, tn), n = 1, 2, . . . , N . Let V̂
(
P, Î(t), t

)
denote the

value of the gas storage facility at forward time t with gas spot price fixed at P and gas

inventory following the path Î(t). In the rest of this section, we will investigate the value

of V̂
(
P, Î(t), t

)
at discrete times t = tn−1, n = 1, 2, . . . , N .2 Note that in contrast to the

inventory path Î, we use notation I to represent a gas inventory value independent of P

and t, as appears in PDE (2.2.12).

We denote by ζ̂
(
P, Î(tn−1), tn−1

)
the constant rate of the control chosen by the storage

facility operator at t = tn−1 when the gas spot price is fixed at P and gas inventory

path Î arrives at Î(tn−1). The control ζ̂
(
P, Î(tn−1), tn−1

)
is applied to the gas storage

facility for t ∈ [tn−1, tn). In accordance with the convention in Section 2.2.1, we assume

that ζ̂
(
P, Î(tn−1), tn−1

)
> 0 represents production, ζ̂

(
P, Î(tn−1), tn−1

)
< 0 represents

injection, and ζ̂
(
P, Î(tn−1), tn−1

)
= 0 represents no operation. From Section 2.2.1, we

require the control ζ̂ to satisfy the constraint ζ̂
(
P, Î(tn−1), tn−1

)
∈ C(Î(tn−1)), where

C(Î) = [cmin(Î),−k5] ∪ [0, cmax(Î)], as defined in equation (2.2.7).

According to the above assumptions, the gas inventory along the path Î is fixed at

Î(tn−1) for t ∈ [tn−1, tn), and switches to Î(tn) at t = tn. Let ∆t = tn− tn−1. The change

of the gas inventory from t = tn−1 to t = tn, due to gas injection, production and gas loss,

1 We do not need to introduce the control as a variable in Î because we assume that an optimal
control strategy will always be chosen by a rational operator, as explained below, under our discrete
control scenario; the optimal strategy will produce an optimal control that is determined by the gas spot
price P and gas inventory Î at the decision time. Hence, we will not set the control as a variable in Î.

2 Note that V̂
(
P, Î(t), t

)
for t = tN is given by a payoff condition.
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satisfies

Î(tn) = Î(tn−1)−∆t
[
ζ̂
(
P, Î(tn−1), tn−1

)
+ a

(
ζ̂
(
P, Î(tn−1), tn−1

))]
. (C.1)

Note that equation (C.1) is the discrete-time version of the ODE (2.2.4) with variable c re-

placed by ζ̂. For convenience, we introduce the notation În = Î(tn), ζ̂n = ζ̂
(
P, Î(tn), tn

)
.

We drop the dependence of ζ̂ on (P, Î) for the purpose of simplifying our presentation.

Using the notation introduced above, equation (C.1) can be written as

În = În−1 −∆t
(
ζ̂n−1 + a(ζ̂n−1)

)
. (C.2)

Due to physical storage constraints, after imposing the control ζ̂n−1 at t = tn−1,

the resulting gas inventory În from (C.2) must remain inside the domain [0, Imax]. In

particular, if În−1 = 0, then the operator cannot produce gas at t = tn−1 and thus we

require ζ̂n−1 + a(ζ̂n−1) ≤ 0. Similarly, if În−1 = Imax, we require ζ̂n−1 + a(ζ̂n−1) ≥ 0.

These two conditions are the discrete version of boundary conditions (2.2.14) and (2.2.15)

satisfied by PDE (2.2.12), respectively. We refer to a control ζ̂n−1 as admissible control if

it satisfies ζ̂n−1 ∈ C(În−1) and În calculated from (C.2) is bounded within [0, Imax]. We

denote by Ĉn−1 the set of all admissible controls at t = tn−1.

Recall that, under the discrete control assumptions, for t ∈ [tn−1, tn), the gas inventory

is fixed at În−1 and no cash flows appear. At t = tn, the inventory switches to În and a

revenue ∆t(ζ̂n−1 − a(ζ̂n−1))P is created, which is the product of the amount of gas lost,

injected or produced, i.e., ∆t(ζ̂n−1 − a(ζ̂n−1)), during the period of [tn−1, tn) and the gas

spot price. Let tn− = tn − ε with ε > 0, ε → 0, that is, tn− is the time infinitesimally

before tn. By no-arbitrage [86], at t = tn, V̂ must satisfy the following condition

V̂ (P, În, tn) = V̂ (P, În−1, tn−)−∆t
(
ζ̂n−1 − a(ζ̂n−1)

)
P. (C.3)

Out of a variety of choices, the problem next is to find the optimal value of ζ̂n−1. A rational

operator will choose a control ζ̂n−1 that maximizes the facility value V̂ at t = tn−. Thus,
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the no-arbitrage condition (C.3) can be written as

V̂ (P, În−1, tn−) = sup
ζ̂n−1∈Ĉn−1

{
V̂ (P, În, tn) + ∆t

(
ζ̂n−1 − a(ζ̂n−1)

)
P
}
, (C.4)

În = În−1 −∆t
(
ζ̂n−1 + a(ζ̂n−1)

)
; În ∈ [0, Imax] for any ζ̂n−1 ∈ Ĉn−1. (C.5)

During the interval [tn−1, tn−], the inventory in the path Î is a constant În−1 and no

cash flows occur, hence the value of the facility is given by the solution of the PDE

V̂t +
1

2
σ̂2(P )P 2V̂PP + α(K(t)− P )V̂P − rV̂ = 0 . (C.6)

We can semidiscretize this in time over the interval [tn−1, tn−] using fully implicit timestep-

ping

V̂ (P, În−1, tn−)− V̂ (P, În−1, tn−1)

∆t
+
σ̂2(P )P 2

2
V̂PP (P, În−1, tn−1)

+α
(
K(tn−1)− P

)
V̂P (P, În−1, tn−1)− rV̂ (P, În−1, tn−1) = 0 . (C.7)

Note that we will solve equation (C.6) backward in time, so that fully implicit timestepping

uses the values of the diffusion, drift and discounting terms at t = tn−1.

Substituting equation (C.4) into equation (C.7) gives

supζ̂n−1∈Ĉn−1

{
V̂ (P, În, tn) + ∆t

(
ζ̂n−1 − a(ζ̂n−1)

)
P
}
− V̂ (P, În−1, tn−1)

∆t

+
σ̂2(P )P 2

2
V̂PP (P, În−1, tn−1) + α

(
K(tn−1)− P

)
V̂P (P, În−1, tn−1) (C.8)

−rV̂ (P, În−1, tn−1) = 0 .

Based on the semidiscretization scheme (C.8), assuming V̂ (P, În, tn) is known, we are

able to compute V̂ (P, În−1, tn−1) at the previous time t = tn−1 with gas inventory moving

along a path (given in (C.5)) generated by the optimal control strategy.

Equation (C.8) is written in terms of forward times t. We can rewrite this equation in

terms of backward times τ = T − t. Let I(τ) denote the gas inventory path at backward
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times as a function of τ , that is, I(τ) = I(T − t) = Î(t). Let ζ
(
P, I(τ), τ

)
denote

the control at backward times as a function of P, I, τ with ζ
(
P, I(τ), τ

)
= ζ

(
P, I(T −

t), T − t
)

= ζ̂
(
P, Î(t), t

)
. Similarly, we can define the value of a gas storage facility as a

function of P, I, τ as V
(
P, I(τ), τ

)
, where, in terms of V̂

(
P, Î, t

)
, we have the identity

V
(
P, I(τ), τ

)
= V

(
P, I(T − t), T − t

)
= V̂

(
P, Î(t), t

)
. Let k = N−n, k = 0, 1, . . . , N−1,

so that k counts backwards. Since tN = T , we have that τ k = T − tn, τ k+1 = T − tn−1.

Let Ik = I(τ k), ζk = ζ
(
P, I(τ k), τ k

)
, ∆τ = τ k+1 − τ k.3 We can obtain the following

identities between discrete forward and backward times:

ζ̂n−1 = ζk+1; În−1 = Ik+1; În = Ik; ∆t = ∆τ ; K(tn−1) = K(T − τ k+1) (C.9)

V̂ (P, În−1, tn−1) = V (P, Ik+1, τ k+1); V̂ (P, În, tn) = V (P, Ik, τ k).

Using identities of (C.9) in equation (C.8), we obtain the optimal control problem in

backwards time

V (P, Ik+1, τ k+1)− supζk+1∈Ck+1

{
V (P, Ik, τ k) + ∆τ(ζk+1 − a(ζk+1))P )

}
∆τ

=
σ̂2(P )P 2

2
VPP (P, Ik+1, τ k+1) + α

(
K(T − τ k+1)− P

)
VP (P, Ik+1, τ k+1)

− rV (P, Ik+1, τ k+1),

(C.10)

where

Ik = Ik+1−∆τ
(
ζk+1 +a(ζk+1)

)
; Ck+1 ⊆ C(Ik+1) , Ik ∈ [0, Imax] for any ζk+1 ∈ Ck+1 .

(C.11)

Let us further discretize the scheme (C.11-C.10) in the (P, I) direction by setting

k = n, P = Pi, Ik+1 = Ij, Ik = In
ĵ
, ζk+1 = ζn+1

i,j , Ck+1 = Cn+1
j ,

V (P, Ik+1, τ k+1) = V n+1
i,j , V (P, Ik, τ k) = V n

i,ĵ

in (C.11-C.10) and replacing the right hand side of (C.10) by the discrete differential

3 Here we also drop the dependence of ζ on (P, I) for convenience.
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operator (LhV )n+1
i,j given in (2.3.4). Then we can recognize that the full discretization of

the semi-discretization (C.11-C.10) (based on a discrete optimal control) is algebraically

identical to the semi-Lagrangian, fully implicit discretization (2.3.15-2.3.17).

Remark C.1. The optimal control in (C.10) is evaluated at τ = τ k+1 (i.e., at the end

of the timestep, going backwards). Note that this corresponds to the beginning of a time

interval going forwards in time. This is because, as is usual in stochastic control, the

operator must make a decision at the beginning of a time interval, and then let the system

evolve randomly.
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Appendix D

Consistency Proof for the Gas

Storage Problem

Prior to proving Lemma 3.19, we first show the following Lemmas.

Lemma D.1. Let Cn+1
j ⊆ C

(
In
ĵ

)
× C(Ij) be the set of admissible controls such that In

ĵ

calculated from

In
ĵ

= Ij − (1− θ)∆τ
(
ζn+1
i,j + a(ζn+1

i,j )
)
− θ∆τ

(
ζni,j + a(ζni,j)

)
(D.1)

is bounded within [0, Imax], where C
(
In
ĵ

)
, C(Ij) are defined based on equation (2.2.7). Then

by taking ∆τ sufficiently small, we have

Cn+1
j = C

(
In
ĵ

)
× C(Ij) (D.2)

provided that cmax, cmin and a(c) satisfy equations (2.2.1), (2.2.3) and (2.2.5), respectively.

Proof. Consider the case where ε∗ ≤ Ij ≤ Imax− ε∗, where ε∗ � Imax is independent of h.

In other words, we exclude a small strip of finite size near I = 0 and I = Imax.

If we let ζni,j, ζ
n+1
i,j be two arbitrary controls satisfying

ζni,j ∈ C
(
In
ĵ

)
; ζn+1

i,j ∈ C(Ij), (D.3)
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then since ζni,j, ζ
n+1
i,j are bounded, there exists a constant D > 0 such that

|ζni,j + a
(
ζni,j
)
| < D ; |ζn+1

i,j + a
(
ζn+1
i,j

)
| < D. (D.4)

Equations (D.1) and (D.4) imply that

Ij −∆τD < In
ĵ
< Ij + ∆τD. (D.5)

Thus, by taking ∆τ < min
{ Ij
D
,
Imax−Ij

D

}
, from equation (D.5), we obtain that In

ĵ
∈ [0, Imax],

assuming ε∗ ≤ Ij ≤ Imax−ε∗. The above argument shows that ζni,j and ζn+1
i,j are admissible

controls such that (ζni,j, ζ
n+1
i,j ) ∈ Cn+1

j for a sufficiently small ∆τ . This amounts to the

identities in (D.2) for the case ε∗ ≤ Ij ≤ Imax − ε∗.

Now, consider the nodes in the strip Ij < ε∗. For j fixed, we have Ij = O(h), hence

the condition on ∆τ becomes

∆τ ≤ const.
h

D
, (D.6)

which implies that we have consistency only if there is a condition on ∆τ/h. Recall that

we have assumed only that condition (2.3.1) holds for any constant C3. Condition (D.6)

adds an extra condition which seems unnatural. The strip Ij > Imax − ε∗ also gives rise

to a similar condition.

In fact, this condition disappears if we carry out a more precise analysis. This proof is

very long and tedious, and involves examination of many different cases. We will outline

the proof for a simple case only.

Consider the fully implicit case, and Ij < ε∗. In this case we have

In
ĵ

= Ij −∆τ
(
ζn+1
i,j + a

(
ζn+1
i,j

))
. (D.7)

Equations (2.2.1), (2.2.5) and (2.2.6) imply that

Ij −∆τcmax(Ij) ≤ In
ĵ

(D.8)
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so that in order to have In
ĵ
> 0, we must have

∆τcmax(Ij) < Ij (D.9)

From equation (2.2.1), we have that

cmax(I) = O(
√
I) ; I → 0 . (D.10)

Assuming that Ij = O(h), then equations (D.9-D.10) give

∆τ = O(
√
h) , (D.11)

but this is a weaker condition than the assumption (2.3.1). Hence condition (D.9) is

satisfied for any ζn+1
i,j ∈ C(Ij) when ∆τ sufficiently small, with no additional restriction

on ∆τ/h (other than assumption (2.3.1)). Equation (D.2) holds in this case. Similar

arguments show that (D.2) holds in all cases for 0 ≤ Ij ≤ Imax, for ∆τ sufficiently

small, provided that cmax, cmin and a(c) satisfy equations (2.2.1), (2.2.3) and (2.2.5),

respectively.

Lemma D.2. Suppose F (c1, c2) and H(c1, c2) are bounded functions defined in some

domain c1 ∈ C1, c2 ∈ C2. Then there exists a bounded function Q(h) where

Q(h) ≤ sup
c1,c2

|H(c1, c2)| (D.12)

such that

inf
c1,c2
{F (c1, c2) +H(c1, c2)h} = inf

c1,c2
{F (c1, c2)}+ hQ(h), (D.13)

Proof. According to [46], we have that

inf
c1,c2
{H(c1, c2)h} ≤ inf

c1,c2
{F (c1, c2) +H(c1, c2)h} − inf

c1,c2
{F (c1, c2)} ≤ sup

c1,c2

{H(c1, c2)h)} .

(D.14)

Equation (D.13) directly follows from the above inequalities.
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Lemma D.3 (Point-wise Consistency). Assume that all conditions in Lemma 3.19 are

satisfied. Let x = (Pi, Ij, τ
n+1). Then for any test function φ(P, I, τ) having bounded

derivatives of all orders in (P, I, τ) ∈ Ω̄ with φn+1
i,j = φ(Pi, Ij, τ

n+1), we have

lim
h→0

∣∣∣F̄(D2φ(x), Dφ(x), φ(x),x)
)
− Gn+1

i,j

(
h, φn+1

i,j ,
{
φn+1
k,j

}
k 6=i,

{
φni,j
})∣∣∣ = 0;

i = 0, . . . , imax, j = 0, . . . , jmax, n+ 1 = 0, . . . , N ,

(D.15)

where the function F̄ is given in (3.1.39).

Proof. When n + 1 = 0, F̄ = φ(x) − B(x). Then according to equation (3.2.2), it is

obvious to see that equation (D.15) holds with n+ 1 = 0.

We then consider the case when n+ 1 ≥ 1. In this case,

F̄
(
D2φ(x), Dφ(x), φ(x),x

)
= inf

c∈C(Ij)

{(
φτ + (c+ a(c))φI − (c− a(c))P − Lφ

)n+1

i,j

}
, if n+ 1 ≥ 1.

(D.16)

Let us consider the discrete function Gn+1
i,j in equation (3.2.1) for n+1 ≥ 1. We define vec-

tor φn with components [φn]i,j = φ(Pi, Ij, τ
n). Assuming the discretization in Appendix B

is used, then from Taylor series expansions, we obtain that

(Lφn+1)i,j = (Lφ)n+1
i,j +O(∆Pmax). (D.17)

Let us assume that the interpolation error in equation (2.3.23), due to operation Φn+1,

is O((∆Imax)2). In other words, linear or higher order interpolation is used to compute

φ
(
Pi, I

n
ĵ
, τn
)
. Consequently, we can write

[
Φn+1φn

]
i,j

= φ
(
Pi, I

n
ĵ
, τn
)

+O((∆Imax)2) (D.18)[
Φn+1Lφn

]
i,j

= (Lφ)
(
Pi, I

n
ĵ
, τn
)

+O(∆Pmax + (∆Imax)2), (D.19)

where

In
ĵ

= Ij − (1− θ)∆τ
(
ζn+1
i,j + a(ζn+1

i,j )
)
− θ∆τ

(
ζni,j + a(ζni,j)

)
, (D.20)
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and Lφ is regarded as a single function. In the above equation (D.19), we use (D.17) to

estimate the error between the discrete operation [Lφn]ij, as given in (2.3.22), and the

exact operation (Lφ)ni,j.

According to (D.20) and (D.18), we have that

φn+1
i,j −

[
Φn+1φn

]
i,j

∆τ
= (φτ )

n+1
i,j + (1− θ)

(
ζn+1
i,j + a(ζn+1

i,j )
)
(φI)

n
i,j + θ

(
ζni,j + a(ζni,j)

)
(φI)

n
i,j

+O
(
∆τ + (∆Imax)2/∆τ

)
,

(D.21)

where Taylor series is used to expand φ
(
Pi, I

n
ĵ
, τn
)

at (Pi, Ij, τ
n). Similarly, expanding

(D.19) at (Pi, Ij, τ
n+1) gives

[
Φn+1Lφn

]
i,j

= (Lφ)n+1
i,j +O(∆τ + ∆Pmax + (∆Imax)2) (D.22)

For convenience, we define

W
(
Pi, Ij, τ

n+1; c
)

=
(
φτ + (c+ a(c))φI − (c− a(c))P − Lφ

)n+1

i,j
. (D.23)

Substituting equations (D.17), (D.21-D.22) and (φI)
n
i,j = (φI)

n+1
i,j +O(∆τ) into Gn+1

i,j given

in (3.2.1), then writing Gn+1
i,j in terms of notation (D.23), gives

Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
k,j

}
k 6=i,

{
φni,j
})

= inf
(ζn

i,j ,ζ
n+1
i,j )∈Cn+1

j

{
(1− θ)W

(
Pi, Ij, τ

n+1; ζn+1
i,j

)
+ θW

(
Pi, Ij, τ

n+1; ζni,j
)

+O
(
∆τ + ∆Pmax + (∆Imax)2/∆τ + (∆Imax)2

)}
= inf

(ζn
i,j ,ζ

n+1
i,j )∈Cn+1

j

{
(1− θ)W

(
Pi, Ij, τ

n+1; ζn+1
i,j

)
+ θW

(
Pi, Ij, τ

n+1; ζni,j
)

+O(h)
}
,

(D.24)

where we use equations (2.3.1) to unify the mesh size/timestep size using h. Note that

the multiplier function for the O-notation in equation (D.24) is a function of ζni,j and ζn+1
i,j .

In other words, we may write O(h) = H
(
ζni,j, ζ

n+1
i,j

)
h, where H is a bounded function of
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ζni,j, ζ
n+1
i,j .

According to Lemma D.1, by taking ∆τ sufficiently small, given equations (2.2.1),

(2.2.3) and (2.2.5), we can relax the constraint (ζni,j, ζ
n+1
i,j ) ∈ Cn+1

j in above equation

(D.24) to ζn+1
i,j ∈ C(Ij), ζ

n
i,j ∈ C

(
In
ĵ

)
.

The above argument together with Lemma D.2 allows us to write equation (D.24) as

Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
k,j

}
k 6=i,

{
φni,j
})

= (1− θ) inf
ζn+1
i,j ∈C(Ij)

W
(
Pi, Ij, τ

n+1; ζn+1
i,j

)
+ θ inf

ζn
i,j∈C(In

ĵ
)
W
(
Pi, Ij, τ

n+1; ζni,j
)

+Q(h)h,

(D.25)

where Q is a bounded function satisfying (for some function H
(
ζni,j, ζ

n+1
i,j

)
)

Q(h) ≤ sup
ζn
i,j∈C(In

ĵ
),ζn+1

i,j ∈C(Ij)

∣∣H(ζni,j, ζn+1
i,j

)∣∣.
By (D.25) and (D.16), the left hand side of the equation (D.15) can be written using

the notation (D.23) as

lim
h→0

∣∣∣∣∣ inf
c∈C(Ij)

W
(
Pi, Ij, τ

n+1; c
)
− (1− θ) inf

ζn+1
i,j ∈C(Ij)

W
(
Pi, Ij, τ

n+1; ζn+1
i,j

)
−θ inf

ζn
i,j∈C(In

ĵ
)
W
(
Pi, Ij, τ

n+1; ζni,j
)
−Q(h)h

∣∣∣∣∣
= lim

h→0

∣∣∣∣∣θ inf
c∈C(Ij)

W
(
Pi, Ij, τ

n+1; c
)
− θ inf

ζn
i,j∈C(In

ĵ
)
W
(
Pi, Ij, τ

n+1; ζni,j
)
−Q(h)h

∣∣∣∣∣
= 0,

(D.26)

where the last equality follows because as h→ 0, then ∆τ → 0, and hence C
(
In
ĵ

)→ C(Ij).

Therefore, we have proved the pointwise consistency result (D.15) for the semi-Lagrangian

discretization (3.2.1-3.2.2).

After presenting Lemmas D.1, D.2 and D.3, in the following we prove Lemma 3.19.

Let x̂ = (P, I, τ) and let x = (Pi, Ij, τ
n+1) be a discrete mesh node. First we consider

186



the region x̂ ∈ Ω = [0, Pmax] × [0, Imax] × (0, T ]. According to the definition in (3.1.39),

F̄ = F in Ω, where, from (3.1.1),

F
(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
= inf

c∈C(I)
{φτ + (c+ a(c))φI − (c− a(c))P − Lφ} (D.27)

Since F (M, p, g, y)(M = D2V, p = DV, g = V, y = x̂) is a continuous function of

(M, p, g, y), then F̄∗ = F̄ ∗ = F in Ω. Consequently, inequalities (3.2.5-3.2.6) reduce

to the point-wise consistency condition:

lim
h→0

∣∣∣F(D2φ(x), Dφ(x), φ(x),x
)
− Gn+1

i,j

(
h, φn+1

i,j ,
{
φn+1
k,j

}
k 6=i,

{
φni,j
})∣∣∣

= lim
h→0

∣∣∣∣ inf
c∈C(Ij)

{(
φτ + (c+ a(c))φI − (c− a(c))P − Lφ

)n+1

i,j

}
−

Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
k,j

}
k 6=i,

{
φni,j
})∣∣∣

= 0 ∀n+ 1 ≥ 1,

(D.28)

which has been proved in Lemma D.3.

Next we need to prove inequalities (3.2.5-3.2.6) at the boundary region (P, I, τ) ∈

[0, Pmax] × [0, Imax] × {0}. This can be done by following the same method described

in Chapter 8. We omit the details here because the Dirichlet boundary condition for

the problem here is much easier compared with degenerate boundary conditions for the

problem we will see in Chapter 8.
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Appendix E

Regime-Switching Model Calibration

In this appendix we illustrate the procedure of calibrating the models in Section 5.2 to

the market gas futures prices and options on futures.

E.1 Calibration to Futures

In this section we describe the calibration of the regime-switching model (5.2.8-5.2.9)

to the market futures prices; the calibration procedure of the MR model (5.2.1-5.2.2) is

similar but simpler, and hence omitted here.

E.1.1 Futures Price Valuation

Let F k(P, t, T ) denote the natural gas futures price in regime k, k ∈ {0, 1}, at time t with

delivery at T , while the gas spot price resides at P . Assuming the risk neutral natural

gas spot price follows the regime-switching model (5.2.8-5.2.9), we can write F k(P, t, T )

as the risk neutral expectation of the spot price at T

F k(p, t, T ) = EQ[P (T ) | P (t) = p,m(t) = k], (E.1)

where m(t) is the two-state Markov chain given in (5.2.7), representing the regime in

which the risk neutral gas spot price resides at t. From equation (E.1), F k satisfies two
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PDEs that are coupled with each other given by

F k
t +

[
αk
(
Kk

0 − P
)

+ Sk(t)P
]
F k
P +

1

2
(σk)2P 2F k

PP + λk→(1−k)(F 1−k − F k) = 0 , k ∈ {0, 1}

(E.2)

with the boundary conditions

F k(P, T, T ) = P , k ∈ {0, 1}. (E.3)

The solution to PDEs (E.2) has the form

F k(P, t, T ) = ak(t, T ) + bk(t, T )P, (E.4)

where functions a, b are independent of P . Substituting equation (E.4) into equations

(E.2-E.3) gives an ODE system

akt + λk→(1−k)(a1−k − ak) + αkKk
0 b
k = 0

bkt −
[
αk − Sk(t) + λk→(1−k)

]
bk + λk→(1−k)b1−k = 0 , k ∈ {0, 1}

(E.5)

subject to the boundary conditions

ak(T, T ) = 0 ; bk(T, T ) = 1 , k ∈ {0, 1}. (E.6)

Remark E.1. For the regime-switching model, equation (E.4) and the ODE system (E.5-

E.6) imply that the futures prices F k(t, T ), k ∈ {0, 1} at time t when the gas spot price is

known are independent of the spot price volatilities σ0, σ1. Similar observations indicate

that the futures price is independent of spot price volatility for the MR model. Conse-

quently, the volatility needs to be calibrated using financial instruments other than futures

contracts; in this thesis, we choose options on futures (see Section E.2 for the detailed

calibration procedure).
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E.1.2 Calibration Procedure

Let θ = {αk, Kk
0 , β

k
A, β

k
SA, A0, SA0, λ

k→(1−k) | k ∈ {0, 1}} denote the set of parameters we

need to obtain through calibrating to the futures price data.

We use a least squares approach for the calibration. For each observation day t, we

need to determine the regime in which the risk neutral gas spot price lies. Following

the approach in [27, 91], we treat the regime number as a latent variable and reveal its

value through calibration. Specifically, we perform the calibration by solving the following

optimization problem:

min
θ

∑
t

∑
T

(
F̂ k̂(t;θ)

(
P (t), t, T ; θ

)
− F (t, T )

)2

, where

k̂(t; θ) = arg min
k∈{0,1}

∑
T

(
F̂ k
(
P (t), t, T ; θ

)
− F (t, T )

)2

,
(E.7)

where F (t, T ) is the market futures price on the observation day t with maturity T ;

F̂ k̂(t;θ)(P (t), t, T ; θ) is the corresponding model implied futures price in regime k̂(t; θ)

calculated numerically from equations (E.4-E.6) using the market spot price P (t) and

the parameter set θ. In equation (E.7), the range of t consists of all the observation

days in our sample data and that of T covers the thirteen consecutive delivery months

starting two months after the month of t. We use the MATLAB nonlinear least squares

optimization routine to solve the problem (E.7). The routine is not guaranteed to work

since it assumes the object function is differentiable.

Here an optimal regime number k̂(t; θ) is determined for each observation date t and

for a given parameter set θ. Let θ̂ be the parameters returned by the calibration procedure.

Then the regime k̂(t; θ̂) is where the realized market gas price actually resides at time t,

revealed from the calibration. Note that the time spent in a given regime, as determined

by calibration, will depend on the P measure transition densities, not the Q measure

densities.

Remark E.2. In [78, 27], the commodity spot price serves as an unknown parameter,

instead of an observed market value, and is estimated from the calibration process. This
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may help improve the calibration results.

In [27], the estimated spot price is assured to be consistent with the simultaneously

calibrated model volatilities and correlations. Note that in our case the spot price is ob-

served from the market and the latent variable k̂(t; θ) does not have such a consistency

requirement. This is because the transition densities under the P and Q measures are not

the same.

E.2 Calibration to Options on Futures

In this section, we calibrate the volatility using market European call options on natural

gas futures. We demonstrate the calibration procedure only for the regime-switching

model (5.2.8-5.2.9). Similar but simpler procedures follow for the MR model.

E.2.1 Futures Option Valuation

Let V̄ k(F, t, Tv) denote the European call option value in regime k at time t with maturity

at Tv, where F represents the price of the underlying futures contract at time t. Let K

denote the strike price of the option. Let F k(t, T ) represent the price of the underlying

futures contract in regime k at time t with maturity at T , where T satisfies T ≥ Tv.

In NYMEX, the trading of a European option ends on the business day immediately

preceding the expiration of the underlying futures contract. As a result, we can assume

Tv = T , and we will thus use T as the maturity for both an option and its underlying

futures contract.

We can write V̄ k(F, t, T ) in the form of the risk neutral expectation as

V̄ k(f, t, T ) = e−r(T−t)EQ [(Fm(T )(T, T )−K
)
1Fm(T )(T,T )≥K | F k(t, T ) = f,m(t) = k

]
= e−r(T−t)EQ [(P (T )−K

)
1P (T )≥K | ak(t, T ) + bk(t, T )P (t) = f,m(t) = k

]
,

(E.8)
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where 1x≥y is an indicator function that returns 1 if x ≥ y, or 0 if x < y; the second

equality above uses the fact that Fm(T )(T, T ) = P (T ) at maturity T as well as the relation

(E.4) between futures price F and spot price P at time t assuming the risk neutral gas

spot price follows the regime-switching model (5.2.8-5.2.9). Let V k(P, t, T ) represent a

synthetic European call option on spot price P at time t, in regime k with maturity T

and strike K. Then we can write V k(P, t, T ) in the form of the risk neutral expectation

as

V k(p, t, T ) = e−r(T−t)EQ [(P (T )−K
)
1P (T )≥K | P (t) = p,m(t) = k

]
. (E.9)

Comparing equations (E.8) and (E.9), we have

V k

(
f − ak(t, T )

bk(t, T )
, t, T

)
= V̄ k(f, t, T ), (E.10)

where ak and bk are computed from the ODE system (E.5-E.6). As a result, we can

compute V̄ k(F, t, T ) using equation (E.10) as long as we are able to solve for V k(P, t, T ).

Let r denote the constant riskless interest rate. Assuming that the spot price process

follows SDE (5.2.8-5.2.9) and using the risk neutral expectation formulation (E.9), we

find that the synthetic option value V k satisfies the coupled PDEs

V k
t +

[
αk
(
Kk

0 − P
)

+ Sk(t)P
]
V k
P +

1

2
(σk)2P 2V k

PP − rV k+

λk→(1−k)(V 1−k − V k) = 0 , k ∈ {0, 1}
(E.11)

subject to the boundary conditions

V k(P, T, T ) = max[P −K, 0] , k ∈ {0, 1}, (E.12)

We will solve equations (E.11-E.12) numerically in the computational domain P ∈

[0, Pmax] with Pmax � K. For this purpose, we need to impose boundary conditions at

the computational boundary P = 0 and P = Pmax. At the P = 0 boundary, taking the
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limit as P → 0, equations (E.11) become

V k
t + αkKk

0V
k
P − rV k + λk→(1−k)(V 1−k − V k) = 0 , k ∈ {0, 1}. (E.13)

Since αkKk
0 ≥ 0 for all variations of the regime-switching model we consider (see Sec-

tion 5.2.2), the characteristics are outgoing or zero in the P direction at P = 0. As a

result, we can solve equations (E.13) without requiring additional boundary conditions,

as we do not need information from outside the computational domain. At the P = Pmax

boundary, we make the assumption that V k(Pmax, t, T ) → payoff. In other words, we

impose the Dirichlet boundary condition

V k(Pmax, t, T ) = Pmax −K , k ∈ {0, 1}. (E.14)

The error introduced by this approximation will be small if Pmax is sufficiently large.

During calibration, we will solve equations (E.11-E.14) using a standard fully implicit

finite difference scheme that is stable, monotone and consistent and hence the scheme

converges to the unique solution of equations (E.11-E.14). We skip the details here.

E.2.2 Calibration Procedure

The first step of the calibration is to determine the regime in which the underlying futures

contract lies; the approach is given in Section E.1.2. After determining the optimal regime,

denoted by k̂, for the futures contract at time t, we use a least squares approach to calibrate

the volatility σk by solving

min
σ0,σ1

∑
K

(
V̄ k̂
(
F (t, T ), t, T ; θ,K, σ0, σ1

)
− C(t, T ;K)

)2

, (E.15)

where C(t, T ;K) represents the value of a market call option on futures at time t with

maturity at T and strike price at K; V̄ k̂ is the corresponding model implied option value in

regime k̂ using the market futures price F (t, T ), the parameter set θ = {αk, Kk
0 , β

k
A, β

k
SA, A0,

SA0, λ
k→(1−k) | k ∈ {0, 1}} and the volatility pair σ0, σ1. The values of V̄ k̂ are computed
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by first solving PDEs (E.11-E.14) numerically to obtain values of V k at time t and at

discrete grid nodes in the P direction and then linearly interpolating these discrete values

using equation (E.10). We choose the mesh size so that the error in V̄ k̂ is less than 10−2.
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Appendix F

Proofs for Discrete Withdrawal

GMWB Variable Annuities

In this appendix we give the proofs for Lemma 7.2, Proposition 7.3, Proposition 7.6 and

Theorem 7.13.

F.1 Proof for Lemma 7.2

The proof of Lemma 7.2 relies on the following Lemma.

Lemma F.1. This Lemma provides some useful results. Given any a, b ∈ R, it is straight-

forward to verify that

|max(a, 0)−max(b, 0)| ≤ |a− b|. (F.1)

Suppose X(x), Y (x) are functions defined for some bounded compact domain x ∈ D,

then according to [46], we have

∣∣∣sup
x∈D

X(x)− sup
y∈D

Y (y)
∣∣∣ ≤ sup

x∈D
|X(x)− Y (x)|. (F.2)

After presenting Lemma F.1, in the following we prove Lemma 7.2. At first, from

equation (7.2.6), we know V (W,A, τ k+
O ) exists for all (W,A) ∈ [0,Wmax] × [0, w0]. To
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prove the uniform continuity of V (W,A, τ k+
O ) on (W,A), by definition, we need to show

that ∀ε > 0, ∃σ > 0, such that ∀(W ′, A′), (W ′′, A′′) ∈ [0,Wmax] × [0, w0] satisfying√
(W ′ −W ′′)2 + (A′ − A′′)2 < σ, we have |V (W ′, A′, τ k+

O )− V (W ′′, A′′, τ k+
O )| < ε.

Let Y (γ;W,A) be a function of γ ∈ [0, A] defined as

Y (γ;W,A) = V (max(W − γ, 0), A− γ, τ kO) + f(γ), (F.3)

where f(γ) is given in (7.2.5). Without loss of generality, we assume A′ ≥ A′′. We can

write

|V (W ′, A′, τ k+
O )− V (W ′′, A′′, τ k+

O )|

≤

∣∣∣∣∣V (W ′, A′, τ k+
O )− sup

γk∈[0,A′′]

[
V
(
max(W ′ − γk, 0), A′ − γk, τ kO

)
+ f(γk)

]∣∣∣∣∣
+

∣∣∣∣∣ sup
γk∈[0,A′′]

[
V
(
max(W ′ − γk, 0), A′ − γk, τ kO

)
+ f(γk)

]
− V (W ′′, A′′, τ k+

O )

∣∣∣∣∣
≤

[
sup

γk∈[0,A′]

{
Y (γk;W ′, A′)

}
− sup

γk∈[0,A′′]

{
Y (γk;W ′, A′)

}]
+ sup

γk∈[0,A′′]

∣∣V (max(W ′ − γk, 0), A′ − γk, τ kO
)
− V

(
max(W ′′ − γk, 0), A′′ − γk, τ kO

)∣∣ ,
(F.4)

where the term inside the bracket of the last inequality above is due to the definition in

(F.3)1, and the last term in the last inequality above is due to (F.2). Next we will consider

these two expressions individually.

Let us first consider the expression supγk∈[0,A′] Y (γk;W ′, A′)−supγk∈[0,A′′] Y (γk;W ′, A′).

1 This term is always positive since [0, A′′] ⊆ [0, A′] and the functions in the two sup expressions are
identical. Thus there is no need to take the absolute value for this term.
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We can write

sup
γk∈[0,A′]

Y (γk;W ′, A′)− sup
γk∈[0,A′′]

Y (γk;W ′, A′)

= max

[
sup

γk∈[0,A′′]

Y (γk;W ′, A′), sup
γk∈(A′′,A′]

Y (γk;W ′, A′)

]
− sup

γk∈[0,A′′]

Y (γk;W ′, A′)

= max

[
0, sup

γk∈(A′′,A′]

Y (γk;W ′, A′)− sup
γk∈[0,A′′]

Y (γk;W ′, A′)

] (F.5)

Since V (W,A, τ kO) is uniformly continuous on (W,A) and since f(γk) is uniformly

continuous, we obtain

lim
γk→[γ]−

Y (γk;W ′, A′) = lim
γk→[γ]+

Y (γk;W ′, A′), ∀γ ∈ [0, A′]. (F.6)

According to (F.6), we have

lim
γk→[A′′]+

Y (γk;W ′, A′) = lim
γk→[A′′]−

Y (γk;W ′, A′)

≤ sup
γk∈[0,A′′]

Y (γk;W ′, A′).
(F.7)

Since we have

lim
A′→A′′

sup
γk∈(A′′,A′]

Y (γk;W ′, A′) = lim
γk→[A′′]+

Y (γk;W ′, A′), (F.8)

(F.7-F.8) imply that

lim
A′→A′′

sup
γk∈(A′′,A′]

Y (γk;W ′, A′) ≤ sup
γk∈[0,A′′]

Y (γk;W ′, A′). (F.9)

This together with (F.5) shows that, ∀ε > 0,

∃σ0 > 0, ∀|A′ − A′′| < σ0, sup
γk∈[0,A′]

Y (γk;W ′, A′)− sup
γk∈[0,A′′]

Y (γk;W ′, A′) < ε/2. (F.10)

Let us now consider the last term in inequality (F.4). Since V (W,A, τ kO) is uniformly
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continuous on (W,A), then ∀ε > 0, ∃σ1 > 0, ∀(W1, A1), (W2, A2) ∈ [0,Wmax] × [0, w0]

satisfying
√

(W1 −W2)2 + (A1 − A2)2 < σ1, we have

∣∣V (W1, A1, τ
k
O

)
− V

(
W2, A2, τ

k
O

)∣∣ < ε/2. (F.11)

Let

W1 = max(W ′ − γk, 0), W2 = max(W ′′ − γk, 0), A1 = A′ − γk, A2 = A′′ − γk. (F.12)

Inequality (F.1) implies that
√

(W1 −W2)2 + (A1 − A2)2 ≤
√

(W ′ −W ′′)2 + (A′ − A′′)2.

Consequently, if (W ′, A′), (W ′′, A′′) satisfy

√
(W ′ −W ′′)2 + (A′ − A′′)2 < σ1, (F.13)

then (F.11-F.12) lead to

∣∣V (max(W ′ − γk, 0), A′ − γk, τ kO
)
− V

(
max(W ′′ − γk, 0), A′′ − γk, τ kO

)∣∣ < ε/2. (F.14)

As a result, ∀ε > 0, ∃σ0, σ1, ∀(W ′, A′), (W ′′, A′′) ∈ [0,Wmax] × [0, w0] satisfying√
(W ′ −W ′′)2 + (A′ − A′′)2 < min(σ0, σ1), then according to (F.4), (F.10) and (F.13-

F.14), we obtain

|V (W ′, A′, τ k+
O )− V (W ′′, A′′, τ k+

O )| < ε. (F.15)

This verifies the uniform continuity of function V (W,A, τ k+
O ) on (W,A) ∈ [0,Wmax]×[0, w0]

by definition.

F.2 Proof for Proposition 7.3

In this section we prove Proposition 7.3.

The terminal boundary condition (7.2.9) implies that V (W,A, τ 0
O) is uniformly con-

tinuous on (W,A) ∈ [0,Wmax] × [0, w0]. Then according to Lemma 7.2, V (W,A, τ 0+
O )
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is a uniformly continuous function of (W,A). Since in addition the boundary equation

(7.2.12) at W = 0 is the limit of equation (7.2.7) towards the boundary and boundary

equation (7.2.13) at W = Wmax is a standard Dirichlet condition, then there exists a

unique continuous classical solution (and hence a viscosity solution) to equation (7.2.7)

in the domain Ω̄0 with initial condition V (W,A, τ 0+
O ) and boundary conditions (7.2.12-

7.2.13). Consequently, the proposition holds by applying the above arguments to each

interval [τ k+
O , τ k+1

O ], k = 1, . . . , K − 1.

F.3 Proof for Proposition 7.6

In this section we prove Proposition 7.6.

Let us define g(γni,j) as a piecewise linear function of γni,j ∈ [0, Aj] constructed using

the discrete values from the set
{
φn
î,ĵ

∣∣∣ γni,j ∈ Aj} by linear interpolation. Without loss

of generality, we assume Aj > Wi > Gk. Since f(γni,j) is a piecewise linear function on

γ ∈ [0, Gk] and γ ∈ (Gk, Aj], and since all the nodes 0, Gk,Wi, Aj belong to Aj, then the

supremum of function g(γni,j) + f(γni,j) occurs at a node γni,j ∈ Aj. Consequently, we have

sup
γn

i,j∈[0,Aj ]

[
g(γni,j) + f(γni,j)

]
= sup

γn
i,j∈Aj

[
φn
î,ĵ

+ f
(
γni,j
)]
. (F.16)

For any γni,j ∈ Aj, equations (7.3.5) and (7.3.1) imply g(γni,j) = φ
(
max(Wi−γni,j, 0), Aj−

γni,j, τ
n
)

+ O(h2). Since in addition φ is smooth and the distance between any two con-

secutive elements in Aj is bounded by O(h), we have (recall that Wi ∈ Aj, so that

max(Wi − γni,j, 0) is smooth between the nodes in Aj)

g(γni,j) = φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+O(h2), ∀γni,j ∈ [0, Aj]. (F.17)

Equation (F.17) and a result similar to Lemma D.2 imply that

sup
γn

i,j∈[0,Aj ]

[
g(γni,j) + f(γni,j)

]
= sup

γn
i,j∈[0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ f
(
γni,j
)]

+O(h2).

(F.18)
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Therefore, (7.4.4) follows from (F.16) and (F.18).

Finally, equation (7.4.3) holds according to (7.4.4) and the following equation implied

from (7.3.5) and (7.3.1):

sup
γn

i,j∈[0,Aj ]

[
φn
î,ĵ

+ f
(
γni,j
)]

= sup
γn

i,j∈[0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ f
(
γni,j
)]

+O(h2).

(F.19)

F.4 Proof for Theorem 7.13

In this section we prove Theorem 7.13.

Let V h(τ 0+
O ) denote the approximate solution computed by (7.3.6) at τ 0+

O with the

mesh size/timestep parameter h. V h(τ 0+
O ) is only defined at mesh nodes (Wi, Aj). Let

V h
I (τ 0+

O ) denote the value of the approximate solution which is interpolated using linear

interpolation for any point (W,A). Let V (τ 0+
O ) be the exact solution to equation (7.2.6).

Here we suppress the variables (W,A) in the above notation. Since (7.3.6) is a consistent

discretization of equation (7.2.6), then V h
I (τ 0+

O ) converges to V (τ 0+
O ) as h→ 0.

Let any x = (W,A, τ) ∈ Ω̄0, where Ω̄0 = [0,Wmax] × [0, w0] × [τ 0+
O , τ 1

O] as defined

in (7.2.14). Let V h
(
V h
I (τ 0+

O )
)

denote the approximate solution resulting from equation

(7.3.7) with initial condition V h
I (τ 0+

O ) at mesh nodes (Wi, Aj, τ
n+1) ∈ Ω̄0. Accordingly,

let V h
I

(
x, V h

I (τ 0+
O )
)

be the value of the approximate solution at x obtained by linear

interpolation using V h
(
V h
I (τ 0+

O )
)

defined only at mesh nodes. Let V
(
x;V (τ 0+

O )
)

and

V
(
x;V h

I (τ 0+
O )
)

denote the unique viscosity solution to equation (7.2.7) and boundary

conditions (7.2.12-7.2.13), with initial condition V (τ 0+
O ) and V h

I (τ 0+
O ), respectively. Since

V h
I (τ 0+

O )→ V (τ 0+
O ) as h→ 0, we have

V
(
x;V h

I

(
τ 0+
O

))
→ V

(
x;V

(
τ 0+
O

))
as h→ 0. (F.20)

According to Lemmas 7.8, 7.10 and 7.12, scheme (7.3.7) is l∞ stable and monotone, and

pointwise consistent to PDE (7.2.7) and its boundary conditions (7.2.12-7.2.13). Thus,

200



convergence results in [11, 6] imply that

V h
I

(
x;V h

I

(
τ 0+
O

))
→ V

(
x;V h

I

(
τ 0+
O

))
as h→ 0. (F.21)

Using equation (F.20-F.21), we have

∣∣∣V h
I

(
x;V h

I

(
τ 0+
O

))
− V

(
x;V

(
τ 0+
O

))∣∣∣
≤
∣∣∣V h
I

(
x;V h

I

(
τ 0+
O

))
− V

(
x;V h

I

(
τ 0+
O

))∣∣∣+
∣∣∣V (x;V h

I

(
τ 0+
O

))
− V

(
x;V

(
τ 0+
O

))∣∣∣
→ 0 as h→ 0.

(F.22)

Thus we prove the Theorem in Ω̄0. Equation (F.22) implies that V h
I (τ 1+

O ) → V (τ 1+
O ) as

h→ 0. Consequently, the Theorem follows by sequentially applying the above argument

to regions Ω̄k, k = 1, . . . , K − 1.
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Appendix G

Derivation of GMWB Variable

Annuity Pricing Equation under the

Continuous Withdrawal Scenario

This appendix heuristically derives the GMWB variable annuity pricing PDE from the

impulse control formulation (8.2.17) using dynamic programming (Bellman’s Principle)

and Ito’s Lemma. The derivation is based on the arguments in [60]. In the following we

assume V̂ is smooth.

First, let us consider all the paths (W (s), A(s)) generated by optimal controls and

the random factor dZ, where the impulse operation (i.e., withdraw a finite amount γk

instantaneously) never occurs during the interval [t, T ]. (i.e., it is not optimal to have a

control (γ1, t1s) with t ≤ t1s ≤ T ). In this case, the impulse control formulation (8.2.17)

reduces to

V̂ (W,A, t−) = sup
γ̂(s)∈[0,Gr]

EQ

[∫ T

t

e−r(s−t)γ̂(s)ds+ e−r(T−t)V̂
(
W (T ), A(T ), T

)]
. (G.1)

This is a regular bounded stochastic control problem with γ̂ as the only control variable.

As such, we can use an approach similar to that in Appendix A to derive the following

HJB equation from (G.1), (8.2.12) and (8.2.14) (assuming all assumptions in Appendix A
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are satisfied)

V̂t + LV̂ + sup
γ̂∈[0,Gr]

(
γ̂ − γ̂V̂W − γ̂V̂A

)
= 0, if t1s ∈ [t, T ] does not exist, (G.2)

where the operator L is given in (7.2.8). In the following, we only consider the cases

where the first optimal impulse time t1s ≤ T .

For an arbitrary path (W (s), A(s)) with t1s ≤ T , starting from (W (t1s−), A(t1s−), t1s−),

the instant infinitesimally before the impulse time t1s, equation (8.2.17) still follows. Con-

sequently, from (8.2.17) we have

V̂
(
W (t1s−), A(t1s−), t1s−

)
= sup

γ̂(s)∈[0,Gr]

γk∈[0,A(tk−s )]

tks∈[t,T ]

EQ

[∫ T

t1s

e−r(s−t
1
s)γ̂(s)ds+

∑
k=1

e−r(t
k
s−t1s)

[
(1− κ)γk − c

]

+ e−r(T−t
1
s)V̂
(
W (T ), A(T ), T

)]

= sup
γ̂(s)∈[0,Gr]

γk∈[0,A(tk−s )]

tks∈[t,T ]

EQ

[
(1− κ)γ1 − c+

[∫ T

t1s

e−r(s−t
1
s)γ̂(s)ds+

∑
k=2

e−r(t
k
s−t1s)

[
(1− κ)γk − c

]

+ e−r(T−t
1
s)V̂
(
W (T ), A(T ), T

)]]
= sup

γ1∈[0,A(t1−s )]

[
(1− κ)γ1 − c+ V̂

(
W (t1s), A(t1s), t

1
s

)]
(G.3)

= sup
γ1∈[0,A(t1−s )]

[
(1− κ)γ1 − c+ V̂

(
max(W (t1s−)− γ1, 0), A(t1s−)− γ1, t1s

)]
, (G.4)

where the expectation EQ is conditional on the known value (W (t1s−), A(t1s−), t1s−);

equation (G.3) above follows from dynamic programming for the impulse control problems

[60, 16]; equation (G.4) above is due to dynamics (8.2.13) and (8.2.15).

In particular, if t1s = t, that is, if the first impulse operation occurs at time t, equation

203



(G.4) reduces to

V̂
(
W (t−), A(t−), t

)
= V̂

(
W,A, t

)
= sup

γ∈(0,A]

[
V̂ (max(W − γ, 0), A− γ, t) + (1− κ)γ − c

]
, if t = t1s,

(G.5)

where V̂
(
W (t−), A(t−), t) = V̂

(
W,A, t) since we have assumed V̂ is continuous on t and

used the notation (W (t−), A(t−)) = (W,A) as the starting point of the path W (s), A(s).

Note that we can require γ > 0 in (G.5) because γ = 0 is never optimal due to the positive

fixed cost c.

Next, assuming t ≤ t1s ≤ T , we can rewrite equation (8.2.17) as

V̂ (W,A, t−) if t ≤ t1s ≤ T

= sup
γ̂(s)∈[0,Gr]

γk∈[0,A(tk−s )]

tks∈[t,T ]

EQ

[∫ t1s

t

e−r(s−t)γ̂(s)ds+

∫ T

t1s

e−r(s−t)γ̂(s)ds+ e−r(t
1
s−t)
[
(1− κ)γ1 − c

]

+
∑
k=2

e−r(t
k
s−t)
[
(1− κ)γk − c

]
+ e−r(T−t)V̂

(
W (T ), A(T ), T

)]

= sup
γ̂(s)∈[0,Gr]

γk∈[0,A(tk−s )]

tks∈[t,T ]

EQ

[∫ t1s

t

e−r(s−t)γ̂(s)ds+ e−r(t
1
s−t)
[
(1− κ)γ1 − c

]

+ e−r(t
1
s−t)

[∫ T

t1s

e−r(s−t
1
s)γ̂(s)ds+

∑
k=2

e−r(t
k
s−t1s)

[
(1− κ)γk − c

]
+ e−r(T−t

1
s)V̂
(
W (T ), A(T ), T

)]]

= sup
γ̂(s)∈[0,Gr]

γ1∈[0,A(t1−s )]
t1s∈[t,T ]

EQ

[∫ t1s

t

e−r(s−t)γ̂(s)ds+ e−r(t
1
s−t)
[
(1− κ)γ1 − c

]
+ e−r(t

1
s−t)V̂

(
W (t1s), A(t1s), t

1
s

)]
,

(G.6)

where the last equality again follows from dynamic programming. The last equation in
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(G.6) implies that

V̂
(
W,A, t

)
= V̂

(
W,A, t−

)
≥ sup

γ∈(0,A]

[
V̂ (max(W − γ, 0), A− γ, t) + (1− κ)γ − c

]
, if t ≤ t1s,

(G.7)

where the inequality above is obtained by substituting t1s = t into (G.6) and using the

assumption that the supremum in (G.6) is achieve at the stopping times equal to or

greater than t. Following an argument similar to the above, we can show that (G.7) also

holds if the impulse operation never occurs.

Let us now study equation (G.6) from another perspective. Assuming the first optimal

impulse time t ≤ t1s ≤ T , the last equality in (G.6) implies that

V̂ (W,A, t−) ≥ sup
γ̂(s)∈[0,Gr]
t1s∈(t,T ]

sup
γ1∈[0,A(t1−s )]

EQ

[∫ t1s

t

e−r(s−t)γ̂(s)ds (G.8)

+ e−r(t
1
s−t)
[
(1− κ)γ1 − c+ V̂

(
W (t1s), A(t1s), t

1
s

)]]

= sup
γ̂(s)∈[0,Gr]
t1s∈(t,T ]

EQ

[∫ t1s

t

e−r(s−t)γ̂(s)ds+ e−r(t
1
s−t)V̂

(
W (t1s−), A(t1s−), t1s−

)]
.

(G.9)

Note that we require t1s > t in the inequalities above, and the inequality (G.8) still holds

in this case. In order to obtain (G.9) above, we first interchange operators supγ1∈[0,A(t1s−)]

and EQ in (G.8) (we assume they are interchangeable) and then substitute equation (G.4).

Since by assumption t1s is the first time for the impulse operation, then there exist only

continuous withdrawals during the interval [t, t1s−]. Consequently, inequality (G.9) only

consists of a regular stochastic control γ̂. Let u be any fixed time satisfying t < u ≤ T

and assume there is no impulse operation during [t, u−]. Then inequality (G.9) implies
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that

V̂ (W,A, t) = V̂ (W,A, t−) ≥ sup
γ̂(s)∈[0,Gr]

EQ

[∫ u

t

e−r(s−t)γ̂(s)ds+ e−r(u−t)V̂
(
W (u−), A(u−), u−

)]
.

(G.10)

Since inequality (G.10) contains only a regular stochastic control, we can use a procedure

similar to that in Appendix A to derive the following inequality :

V̂t + LV̂ + sup
γ̂∈[0,Gr]

(
γ̂ − γ̂V̂W − γ̂V̂A

)
≤ 0. (G.11)

Let us look at equality (G.6) again. Suppose there exist an optimal pair (t1∗s , γ
1∗) with

t < t1∗s ≤ T that achieves the supremum in (G.6). As a result, equation (G.6) becomes

V̂ (W,A, t)

= V̂ (W,A, t−)

= sup
γ̂(s)∈[0,Gr]

EQ

[∫ t1∗s

t

e−r(s−t)γ̂(s)ds+ e−r(t
1∗
s −t)

[
(1− κ)γ1∗ − c+ V̂

(
W (t1∗s ), A(t1∗s ), t1∗s

)]]

= sup
γ̂(s)∈[0,Gr]

EQ

[∫ t1∗s

t

e−r(s−t)γ̂(s)ds+ e−r(t
1∗
s −t)V̂

(
W (t1∗s −), A(t1∗s −), t1∗s −

)]
,

(G.12)

where the last equality is due to (G.4). Since there is no impulse control in (G.12), we

can follow the steps in Appendix A to derive the following equation:

V̂t + LV̂ + sup
γ̂∈[0,Gr]

(
γ̂ − γ̂V̂W − γ̂V̂A

)
= 0, if t < t1∗s ≤ T . (G.13)

From the discussions above, if the impulse operation never occurs, then equation (G.2)

follows; if the first optimal impulse operation occurs at t < t1s ≤ T , then equation (G.13)

follows; if t1s = t, then equation (G.5) holds. This together with inequalities (G.7) and
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(G.11) imply that

V̂
(
W,A, t)− sup

γ∈(0,A]

[
V̂ (max(W − γ, 0), A− γ, t) + (1− κ)γ − c

]
≥ 0

−V̂t − LV̂ − sup
γ̂∈[0,Gr]

(
γ̂ − γ̂V̂W − γ̂V̂A

)
≥ 0

(G.14)

and at least one of the inequalities above holds with equality. This is equivalent to the

following HJB variational inequality

min

{
− V̂t − LV̂ − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂V̂W − γ̂V̂A

)
,

V̂
(
W,A, t)− sup

γ∈(0,A]

[
V̂ (max(W − γ, 0), A− γ, t) + (1− κ)γ − c

]}
= 0.

(G.15)

Using the notation V (W,A, τ) with V (W,A, τ) = V̂ (W,A, T − τ) = V̂ (W,A, t), we can

rewrite pricing equation (G.15) as

min

{
Vτ − LV − sup

γ̂∈[0,Gr]

(
γ̂ − γ̂VW − γ̂VA

)
,

V
(
W,A, t)− sup

γ∈(0,A]

[
V (max(W − γ, 0), A− γ, τ) + (1− κ)γ − c

]}
= 0.

(G.16)
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Appendix H

Proofs for Continuous Withdrawal

GMWB Variable Annuities

In this appendix we give the proofs for Lemmas 8.5, 8.6 and 8.9

H.1 Proof for Lemma 8.5

In this section we prove Lemma 8.5.

Let us define ‖V n
j ‖∞ = maxi |V n

i,j|. As well, let (V n
j )max = maxi(V

n
i,j), (V n+

j )max =

maxi(V
n+
i,j ), (V n

j )min = mini(V
n
i,j), and (V n+

j )min = mini(V
n+
i,j ). Here we only consider the

continuous withdrawal case; the discrete withdrawal case follows from the same arguments.

To prove the Lemma, it is sufficient to show

(V n
j )max ≤ ‖V 0‖∞ + Aj , (H.1)

(V n+
j )max ≤ ‖V 0‖∞ + Aj (H.2)

(V n
j )min ≥ 0 (H.3)

(V n+
j )min ≥ 0 (H.4)

for all 0 ≤ j ≤ jmax, 0 ≤ n ≤ N . We will prove inequalities (H.1-H.4) using induction.
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From condition (8.3.2), it is obvious that inequalities (H.1), (H.3) hold when n = 0 and

0 ≤ j ≤ jmax.

Assume inequalities (H.1), (H.3) hold for n ≤ n∗ and 0 ≤ j ≤ jmax, where n∗ < N .

We next show inequalities (H.2), (H.4) hold for n = n∗, 0 ≤ j ≤ jmax and then (H.1),

(H.3) follow for n = n∗ + 1, 0 ≤ j ≤ jmax.

We first consider discrete equation (8.3.3) at n = n∗. That is,

V n∗+
i,j = sup

γn∗
i,j ∈[0,Aj ]

[
V n∗
î,ĵ

+ f
(
γn∗i,j
)]
, i = 0, . . . , imax − 1, j = 0, . . . , jmax. (H.5)

According to Remark 8.3, the supremum in the right hand side of (H.5) is achieved by

a control, denoted by γ̄n∗i,j . Assume that max(Wi − γ̄n∗i,j , 0) and Aj − γ̄n∗i,j reside within an

interval [Wl,Wl+1] and [Am, Am+1], respectively, where 0 ≤ l < imax − 1, 0 ≤ m < jmax.

Then computing V n∗
î,ĵ

using linear interpolation results in

V n∗
î,ĵ

= xA
[
xWV

n∗
l,m + (1− xW )V n∗

l+1,m

]
+ (1− xA)

[
xWV

n∗
l,m+1 + (1− xW )V n∗

l+1,m+1

]
, (H.6)

where xW and xA are interpolation weights satisfying 0 ≤ xW ≤ 1 and 0 ≤ xA ≤ 1.

Specifically, we have

xA =
Am+1 − (Aj − γ̄n∗i,j )

Am+1 − Am
. (H.7)

Using equation (H.7) and the induction assumptions V n∗
l,m ≤ ‖V 0‖∞ + Am, V n∗

l+1,m ≤

‖V 0‖∞ + Am, V n∗
l,m+1 ≤ ‖V 0‖∞ + Am+1, V n∗

l+1,m+1 ≤ ‖V 0‖∞ + Am+1, equation (H.6) leads

to

V n∗
î,ĵ
≤ ‖V 0‖∞ + Aj − γ̄n∗i,j , ∀ 0 ≤ i < imax, 0 ≤ j ≤ jmax. (H.8)

Since c, κ ≥ 0, equation (8.3.1) implies that

f
(
γ̄n∗i,j
)
≤ γ̄n∗i,j , ∀ 0 ≤ i < imax, 0 ≤ j ≤ jmax. (H.9)

Equations (H.5) and (H.8-H.9) lead to (the max operator disappears since we have taken
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the optimal control γ̄n∗i,j ),

V n∗+
i,j = V n∗

î,ĵ
+ f
(
γ̄n∗i,j
)
≤ ‖V 0‖∞ + Aj ∀ 0 ≤ i < imax, 0 ≤ j ≤ jmax. (H.10)

This proves (H.2) at n = n∗, 0 ≤ j ≤ jmax.

By the induction assumptions we have V n∗
i,j ≥ 0, hence from equations (H.5-H.6), we

must have

V n∗+
i,j ≥ 0 ∀ 0 ≤ i < imax, 0 ≤ j ≤ jmax. (H.11)

hence equation (H.4) holds at n = n∗, 0 ≤ j ≤ jmax.

For any i < imax, 0 ≤ j ≤ jmax, and at n = n∗ + 1, substituting (7.3.2) into (8.3.4)

gives

V n∗+1
i,j

(
1 + ∆τ(r + αi + βi)

)
− αi∆τV n∗+1

i−1,j − βi∆τV
n∗+1
i+1,j = V n∗+

i,j (H.12)

Let i∗ be the index such that V n∗+1
i∗,j = (V n∗+1

j )max. First consider the case when i∗ < imax.

Since r ≥ 0, and αi ≥ 0, βi ≥ 0, as indicated by the positive coefficient condition (7.3.3),

equation (H.12) implies that

V n∗+1
i∗,j

(
1 + ∆τ(r + αi∗ + βi∗)

)
≤ (V n∗+

j )max + V n∗+1
i∗,j ∆τ(αi∗ + βi∗). (H.13)

Since we have just shown that (V n∗+
j )max ≤ ‖V 0‖∞ + Aj, inequality (H.13) results in

V n∗+1
i∗,j ≤ (V n∗+

j )max ≤ ‖V 0‖∞ + Aj. (H.14)

Next consider the case when i∗ = imax. Discrete equation (8.3.5) and ‖V 0‖∞ ≥ Wmax

imply that

V n∗+1
i∗,j = e−ατ

n∗+1

Wmax ≤ ‖V 0‖∞ + Aj. (H.15)

The inequality in (H.15) is due to α ≥ 0. Finally, inequalities (H.14-H.15) and the

assumption V n∗+1
i∗,j = (V n∗+1

j )max show that inequality (H.1) holds for all 0 ≤ j ≤ jmax
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and n = n∗ + 1. A similar argument shows equation (H.3) holds for all 0 ≤ j ≤ jmax and

n = n∗ + 1.

H.2 Proof for Lemma 8.6

In this section, we prove Lemma 8.6.

We first consider the case when 0 < Wi < Wimax , Gr∆τ < Aj ≤ Ajmax , and 0 < τn+1 ≤

T . In this case, condition (8.4.15) implies that Wi > γni,j for all γni,j ∈ [0, Gr∆τ ]. Thus,

according to approximation (7.3.5), we have

(φ+ ξ)n
î,ĵ

=

 φ
(
Wi − γni,j, Aj − γni,j, τn

)
+ ξ +O

(
(∆Wmax + ∆Amax)2

)
, γni,j ∈ [0, Gr∆τ ],

φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ ξ +O

(
(∆Wmax + ∆Amax)2

)
, γni,j ∈ (Gr∆τ, Aj].

(H.16)

Here we can take the term ξ out of the interpolation operation (·)n
î,ĵ

since it is a linear

interpolation. Let us define a new variable γ̂ni,j = γni,j/(∆τ). Then equation (H.16)

becomes

(φ+ ξ)n
î,ĵ

= φ
(
Wi− γ̂ni,j∆τ, Aj− γ̂ni,j∆τ, τn

)
+ ξ+O

(
(∆Wmax + ∆Amax)2

)
, if γ̂ni,j ∈ [0, Gr].

(H.17)

Equation (H.17) implies

(
φn+1
i,j + ξ

)
− (φ+ ξ)n

î,ĵ

∆τ
= (φτ )

n+1
i,j + γ̂ni,j(φW )ni,j + γ̂ni,j(φA)ni,j

+O
(

∆τ +
(
∆Wmax + ∆Amax

)2
/∆τ

)
, if γ̂ni,j ∈ [0, Gr],

(H.18)

where Taylor series is used to expand φ
(
Wi− γ̂ni,j∆τ, Aj− γ̂ni,j∆τ, τn) at (Wi, Aj, τ

n). Note

that the terms in the O(·) expressions are bounded functions of γ̂ni,j.

Assuming a discretization similar to that in Appendix B is used to discretize operator
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Lφ, then from Taylor series expansions and equation (7.3.2), we obtain that

(
Lh(φ+ ξ)

)n+1

i,j
= (Lφ)n+1

i,j − rξ +O(∆Wmax). (H.19)

Substituting equations (H.18), (H.19), (φW )ni,j = (φW )n+1
i,j +O(∆τ), (φA)ni,j = (φA)n+1

i,j +

O(∆τ) into Hn+1
i,j given in (8.4.2), then unifying the mesh size/timestep parameter for the

O(·) terms in terms of h in (7.3.1), leads to

Hn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
=
[
φτ − Lφ− sup

γ̂n
i,j∈[0,Gr]

[
γ̂ni,j − γ̂ni,jφW − γ̂ni,jφA +O(h)

]]n+1

i,j
+ rξ

=
[
φτ − Lφ− sup

γ̂n
i,j∈[0,Gr]

(
γ̂ni,j − γ̂ni,jφW − γ̂ni,jφA

)]n+1

i,j
+O(h) + rξ.

(H.20)

Here the constant for the O(h) term in the first equality is a bounded function of γ̂ni,j, that

is, O(h) = H(γ̂ni,j)h, where H is a bounded function of γ̂ni,j. Since γ̂ni,j is bounded, we can

move the O(h) term out of the sup operator following an argument similar to Lemma D.2.

We next present an intermediate result. According to Remark 7.5, φn
î,ĵ

is a uniformly

continuous function of γni,j on [0, Aj]. As a result, using (7.3.1) and (7.3.5) we have

sup
γn

i,j∈(Gr∆τ,Aj ]

[
φn
î,ĵ

+ (1− κ)γni,j − c
]

= max
γn

i,j∈[Gr∆τ,Aj ]

[
φn
î,ĵ

+ (1− κ)γni,j − c
]

= max
γn

i,j∈[Gr∆τ,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ (1− κ)γni,j − c

]
+O(h2).

(H.21)

It can be shown that φ
(
max(Wi − γni,j, 0), Aj − γni,j, τ

n
)

+ (1 − κ)γni,j − c is uniformly
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continuous on γni,j ∈ [0, Aj]. Consequently, from (H.21) we have

sup
γn

i,j∈(Gr∆τ,Aj ]

[
φn
î,ĵ

+ (1− κ)γni,j − c
]

− sup
γn

i,j∈(0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ (1− κ)γni,j − c

]
= max

γn
i,j∈[Gr∆τ,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ (1− κ)γni,j

]
+O(h2)

− max
γn

i,j∈[0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn

)
+ (1− κ)γni,j

]
= O(h).

(H.22)

Note that the subtraction of two max expressions above produces an O(h) error, since the

function inside the max expressions is continuous on γni,j ∈ [0, Aj] and the difference of the

optimal values of γni,j for two max expressions are bounded by Gr∆τ = O(h). Substituting

(H.19) into In+1
i,j in (8.4.3), and using (H.22) and φ(max(Wi − γni,j, 0), Aj − γni,j, τ

n) =

φ(max(Wi − γni,j, 0), Aj − γni,j, τn+1) +O(h), gives

In+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
= φn+1

i,j − sup
γn

i,j∈(Gr∆τ,Aj ]

[
φn
î,ĵ

+ (1− κ)γni,j − c
]
− κGr∆τ −∆τ

(
Lφ
)n+1

i,j
+ rξ∆τ +O(h2)

= φn+1
i,j − sup

γn
i,j∈(0,Aj ]

[
φ
(
max(Wi − γni,j, 0), Aj − γni,j, τn+1

)
+ (1− κ)γni,j − c

]
+O(h),

(H.23)

where the last equality uses the fact that kGr, (Lφ)n+1
i,j and rξ are all bounded.

According to (8.4.4), (8.4.6), (H.20) and (H.23), we can write

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
− Fin

(
D2φ(x), Dφ(x), φ(x),x

)
= O(h) + c(x)ξ, if 0 < Wi < Wimax , Gr∆τ < Aj ≤ Ajmax , 0 < τn+1 ≤ T ,

(H.24)

where c(x) is bounded satisfying 0 ≤ c(x) ≤ r. This proves the first equation in (8.4.16).

Following similar arguments as above, we can prove the rest of equations in (8.4.16).
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We omit the details here.

H.3 Proof for Lemma 8.9

In this appendix we prove Lemma 8.9.

Let us first prove (8.4.19). According to the definition of lim sup, there exist sequences

hk, ik, jk, nk, ξk such that

hk → 0, ξk → 0, xk ≡
(
Wik , Ajk , τ

nk+1
)
→ (Ŵ , Â, τ̂) as k →∞, (H.25)

and

lim sup
k→∞

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m6=jk

,
{
φnk
i,j + ξk

})
= lim sup

h→0,ξ→0,
x→x̂

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
.

(H.26)

At first, we consider the case when x̂ ∈ Ωin. Let ∆τk denote the timestep corresponding

to parameter hk. Then if hk is sufficiently small, we have 0 < Wik < Wimax , Gr∆τk <

Ajk ≤ Ajmax and 0 < τnk+1 ≤ T . According to (8.4.16), we have

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m 6=jk

,
{
φnk
i,j + ξk

})
= Fin

(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+O(hk) + c(xk)ξk.

(H.27)

Thus, (H.26-H.27) and continuity of Fin (see Remark 8.8) lead to

lim sup
h→0,ξ→0,

x→x̂

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m6=j

,
{
φni,j + ξ

})
≤ lim sup

k→∞
Fin
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+ lim sup

k→∞

[
O(hk) + c(xk)ξk

]
= Fin

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
= F ∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(H.28)
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which verifies condition (8.4.19) for x̂ ∈ Ωin.

We then consider the case when x̂ ∈ ΩA0\{0}×{0}×(0, T ], that is, x̂ resides in region

ΩA0 excluding a corner line x̂ ∈ {0}×{0}× (0, T ]. When k is sufficiently large so that xk

is sufficiently close to x̂, each element in the convergent sequence xk = (Wik , Ajk , τ
nk+1)

satisfies 0 < τnk+1 ≤ T , 0 < Wik < Wimax , and either Gr∆τk < Ajk ≤ Ajmax , or 0 < Ajk ≤

Gr∆τk, or Ajk = 0. Thus from (8.4.16), we have

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m6=jk

,
{
φnk
i,j + ξk

})

=


Fin
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+O(hk) + c(xk)ξk if Gr∆τk < Ajk ≤ Ajmax ;

FA′
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+O(hk) + c(xk)ξk if 0 < Ajk ≤ Gr∆τk;

FA0

(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+O(hk) + c(xk)ξk if Ajk = 0.

(H.29)

From definitions of FA0 and FA′ in (8.4.8) and (8.4.13), and from supγ̂∈[0,Ajk
/∆τk]

[
γ̂ −

γ̂φW (xk)− γ̂φA(xk)
]
≥ 0, we observe that

FA′
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
≤ FA0

(
D2φ(xk), Dφ(xk), φ(xk),xk

)
, if 0 < Ajk ≤ Gr∆τk .

(H.30)

As a result, (8.4.11-8.4.12) and (H.29-H.30) lead to

lim sup
k→∞

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m 6=jk

,
{
φnk
i,j + ξk

})
≤ lim sup

k→∞
F
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+ lim sup

k→∞

[
O(hk) + c(xk)ξk

]
≤ F ∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
.

(H.31)

This together with (H.26) verify (8.4.19) for x̂ ∈ ΩA0\{0} × {0} × (0, T ].

Following arguments similar to the above, we can prove (8.4.19) for the corner line

x̂ ∈ {0} × {0} × (0, T ] as well as for the boundary regions ΩW0 , ΩWm and Ωτ0 . We omit

the details here.

Showing condition (8.4.20) follows in the same manner as above: we verify the condi-
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tion for different regions defined in (8.4.5). Here we only show (8.4.20) for x̂ ∈ ΩA0\{0}×

{0} × (0, T ]. Let hk, ik, jk, nk, ξk be sequences satisfying (H.25) such that

lim inf
k→∞

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m 6=jk

,
{
φnk
i,j + ξk

})
= lim inf

h→0,ξ→0,
x→x̂

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
l,m + ξ

}
l 6=i
m 6=j

,
{
φni,j + ξ

})
.

(H.32)

Then for sufficiently large k, from (8.4.16), equation (H.29) holds as discussed above.

Then from definitions of Fin and FA′ in (8.4.6) and (8.4.13), and from supγ̂∈[0,Ajk
/∆τk]

[
γ̂−

γ̂φW (xk)− γ̂φA(xk)
]
≤ supγ̂∈[0,Gr]

[
γ̂− γ̂φW (xk)− γ̂φA(xk)

]
if 0 < Ajk ≤ Gr∆τk, we obtain

FA′
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
≥ Fin

(
D2φ(xk), Dφ(xk), φ(xk),xk

)
, if 0 < Ajk ≤ Gr∆τk .

(H.33)

Consequently, (8.4.11-8.4.12), (H.29) and (H.33) lead to

lim inf
k→∞

Gnk+1
ik,jk

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
l,m + ξk

}
l 6=ik
m 6=jk

,
{
φnk
i,j + ξk

})
≥ lim inf

k→∞
F
(
D2φ(xk), Dφ(xk), φ(xk),xk

)
+ lim inf

k→∞

[
O(hk) + c(xk)ξk

]
≥ F∗

(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(H.34)

which together with (H.32) conclude (8.4.20) for x̂ ∈ ΩA0\{0} × {0} × (0, T ]. The other

cases for (8.4.20) follow using similar steps.
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Appendix I

Derivation of GMWB Variable

Annuity Pricing Equation under the

Discrete Withdrawal Scenario

In this appendix, we will derive the pricing equations for the annuity value under the

discrete withdrawal scenario with the presence of the mutual fund management fee. In

many cases, the GMWB guarantee is provided as a separate rider for an underlying

investment in a mutual fund. The GMWB rider is funded by a fee which is distinct from

any management fees associated with the mutual fund. The mutual fund management

may be a completely separate business unit from the unit providing the GMWB guarantee,

hence the mutual fund management fees are not available to fund the GMWB guarantee.

Under this scenario, the unit managing the guarantee is not permitted to short the mutual

fund, and uses an index proxy to hedge the guarantee [63]. Therefore, it is important to

distinguish between these two sets of fees.

We will first derive the equations for the pure GMWB guarantee. We will use the

same arguments used in [90] to model segregated funds. We then convert these equations

into the value of the total variable annuity, which can then be related to previous work

on GMWB guarantees [69, 31].

Let αm be the proportional fee charged by the manager of the underlying mutual

217



fund. Let αg be the fee used to fund the GMWB guarantee, with αtot = αm + αg.

For simplicity, we will derive the equations assuming that the underlying asset follows

Geometric Brownian Motion.

Consider the following scenario. The underlying asset W in the investor’s account

follows

dW = (µ− αtot)Wdt+WσdZ, (I.1)

where µ is the drift rate and dZ is the increment of a Wiener process. We ignore with-

drawals from the account in equation (I.1) for the moment. We assume that the mutual

fund tracks an index Ŵ which follows the process

dŴ = µŴdt+ ŴσdZ. (I.2)

We assume that it is not possible to short the mutual fund, so that the obvious arbitrage

opportunity cannot be exploited. We further assume that it is possible to track the index

Ŵ without basis risk.

Now, consider the writer of the GMWB guarantee, with no-arbitrage value U(W,A, t).

The terminal condition is

U(W,A, t = T ) = max(A(1− κ)−W, 0) (I.3)

which represents the cash flow which must be paid by the guarantee provider. The writer

sets up the hedging portfolio

Π(W, Ŵ , t) = −U(W, t) + xŴ , (I.4)

where x is the number of units of the index Ŵ .
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Over the time interval t→ t+ dt, between withdrawal dates,

dΠ = −
[(
Ut + (µ− αtot)WUW +

1

2
σ2W 2UWW

)
dt+ σWUWdZ

]
+ x[µŴdt+ σŴdZ] + αgWdt, (I.5)

where the term (αgWdt) represents the GMWB fee collected by the hedger. Choose

x =
W

Ŵ
UW , (I.6)

so that equation (I.5) becomes

dΠ = −
[(
Ut − αtotWUW +

1

2
σ2W 2UWW

)
dt

]
+ αgWdt. (I.7)

Setting dΠ = rΠ dt (since the portfolio is now riskless) gives

Uτ =
1

2
σ2W 2UWW + (r − αtot)WUW − rU − αgW, (I.8)

where τ = T − t. Note that equation (I.8) has the same form as that used to value

segregated fund guarantees [90, 88].

At withdrawal times τ kO, the holder of the GMWB will maximize the value of the

guarantee, so that

U(W,A, τ k+
O ) = sup

γk∈[0,A]

[
U(max(W − γk, 0), A− γk, τ kO) + f(γk)−min(γk,W )

]
. (I.9)

Note that

f(γk)−min(γk,W ) =



0 γk ≤ Gk ; γk < W

−κ(γk −Gk) γk > Gk ; γk < W

γk −W γk ≤ Gk ; γk > W

(γk −W )− κ(γk −Gk) γk > Gk ; γk > W

, (I.10)
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which represents the total cash outflows from the writer of the guarantee to the holder of

the GMWB contract, i.e. cash flows required to make up any guarantee shortfall net of

penalties for withdrawals above the contract amount.

Now, let V (W,A, τ) be the value of the total variable annuity contract, i.e.

V = U +W. (I.11)

In other words, V is the total variable annuity value, which includes the amount in

the risky account and the separate GMWB guarantee. Substituting equation (I.11) into

equation (I.3) gives

V (W,A, τ = 0) = max (W,A(1− κ)) . (I.12)

Similarly, substituting (I.11) into (I.8) gives

Vτ =
1

2
σ2W 2VWW + (r − αtot)WVW − rV + αmW, (I.13)

and finally, at withdrawal times τ kO we obtain (from equations (I.11) and (I.9))

V (W,A, τ k+
O ) = sup

γk∈[0,A]

[
V (max(W − γk, 0), A− γk, τ kO) + f(γk)

]
. (I.14)

Note that if αm = 0, then equations (I.12 - I.14) reduce to the GMWB equations

(7.2.6-7.2.7) for the discrete withdrawal case.

Although at first sight the term αmW on the right hand side of equation (I.13) seems

counter-intuitive, we can also derive this equation assuming the following scenario. Imag-

ine that the hedger replicates the cash flows associated with the total GMWB contract.

In this case, the underlying mutual fund can be regarded as a purely virtual instrument,

following process (I.1). The hedging instrument follows process (I.2), and the hedging

unit pays a sales fee of αmW to the mutual fund unit. In other words, rather than having

the investor directly pay the proportional fees αm to the mutual fund unit and αg to the

guarantee provider, the investor pays a proportional fee of αtot = αm+αg to the guarantee

provider, which keeps αgW to hedge the guarantee and passes along αmW to the mutual

220



fund unit. Following a similar argument as in equations (I.4-I.8), and noting that the

hedger must pay the mutual fund fees αmW , results in equation (I.13).
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