

SoftMAC in Heterogeneous Wireless Network

By

 Jinsong Li

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2008

© Jinsong Li 2008

 ii

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Wireless networks are growing exponentially by the steady improvement of its speed

and quality. IEEE 802.11-based Wireless Local Area Networking (WLAN) has been

developed for mobile computing devices in LANs, in a short and limited range. IEEE

802.16 Wireless Metropolitan Area Network (WMAN) is designed for a line-of-sight

(LOS) distance with QoS capability. The IEEE 802.11 standard has a totally different

MAC layer compared to the IEEE 802.16 standard, normally they will communicate at

the Network Layer by switches or routers.

This thesis investigates the major design requirements for SoftMAC design, and will

demonstrate a prototype that can meet the design requirements. It proves the possibility

and flexibility of using SoftMAC to connect and control Heterogeneous Wireless

Network, in order to fulfill seamless handover among multiple heterogeneous wireless

interfaces. We will show that by adding the proposed SoftMAC on top of the traditional

MAC layer, the mobile station cannot only perform handover between access points, but

also essentially open a door to a wider range of application and services.

 iv

Acknowledgements

I would like to thank Professor Pin-han Ho for giving me the opportunity to carry out

this research project. His encouragement and advice during the entire process is

appreciated. I would like to thank Xiaodong Li, James Ho for their hard working and

helping in the project. It is a pleasure of working with the team and I am grateful to be a

master student of Electrical and Computer Engineering department at the University of

Waterloo. My sincere thanks to all those generous individuals who are working on open

source projects and kindly replied to my queries. Finally, I would like to thank my family

for their constant support and encouragement.

 v

Table of Contents

Abstract .. ii

 Author's Declaration .. iii

Acknowledgements .. iv

1. Introduction .. 1

1.1. IEEE 802.11 wireless network .. 1

1.2. IEEE 802.16 wireless network .. 3

1.3. SoftMAC in Heterogeneous Wireless Network 4

2. Background ... 6

2.1. TCP/IP Model .. 6

2.2. IEEE 802.11 MAC Layer .. 8

2.3. IEEE 802.16 MAC Layer .. 11

2.4. Linux Kernel Network Driver ... 14

2.5. MADWiFi and SoftMAC .. 16

3. Theory Approaches ... 19

4. Platform and Implementation ... 24

4.1. IXP425 Test Board ... 25

4.2. SoftMAC for MADWiFi Driver .. 27

4.3. SoftMAC Layer Structure Design .. 30

4.4. Handover Algorithm .. 33

4.5. Experimental Results ... 35

5. Discussion and Future Work ... 39

References .. 40

 vi

List of Figures

Figure 1.1: Networking Architecture of SoftMAC .. 5

Figure 2.1: OSI Model .. 6

Figure 2.2: TCP/IP Model ... 7

Figure 2.3: IEEE 802.11 Packet Format ... 10

Figure 2.4: IEEE 802.16 Reference Model and Protocol Stack 12

Figure 2.5: Linux Network Architecture .. 15

Figure 2.6: Architecture of Atheros NIC driver .. 16

Figure 3.1: Layer 2.5 SoftMAC architecture .. 20

Figure 3.2: SoftMAC in Linux Network Architecture .. 22

Figure 4.1 SoftMAC with 802.11 and 802.16 .. 24

Figure 4.2 IXP425 test board .. 25

Figure 4.3: Algorithm for the Handover Algorithm ... 34

Figure 4.4: Seamless Handover Test-Bed ... 35

Figure 4.5: ifconfig of the Wireless Cards in the Client Station 36

Figure 4.6: Handover Result with SoftMAC .. 37

Figure 4.7: Handover without SoftMAC .. 38

 vii

List of Tables

Table 1: MADWiFi Required for Linux Kernel compile 27

Table 2: Procedure for MADWiFi Driver Configuration. 28

Table 3: SoftMAC for MADWiFi. ... 29

Table 4: Structure of SOFTMAC_LAYER_INFO. .. 30

Table 5: Scripts to load SoftMAC .. 30

Table 6: Procedure for MultiMAC Configuration .. 31

Table 7: Required Parameters for Intelligent Handover Algorithm 32

 viii

Glossary

802.11 IEEE 802.11 standard, Wireless Local Area Network in the 5 GHz and

2.4 GHz public spectrum bands. [1]

WLAN Wireless Local Area Network, also called ―Wi-Fi‖ (Wireless Fidelity).

802.16 IEEE 802.16 standard, Wireless Metropolitan Area Networks with a

line-of-sight (LOS) capability. [1]

WMAN Wireless Metropolitan Area Network, also called “WiMAX‖

(Worldwide Interoperability for Microwave Access).

LOS Line-of-sight capability.

CSMA/CD Carrier Sense Multiple Access with Collision Detection, CSMA/CD is a

modification of pure Carrier Sense Multiple Access (CSMA). Collision

Detection is used to improve CSMA performance by terminating

transmission as soon as a collision is detected, and reducing the

probability of a second collision on retry. [1]

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance, CSMA/CA is

a modification of pure Carrier Sense Multiple Access (CSMA). Collision

Avoidance is used to improve CSMA performance by checking if the

channel is sensed busy before transmission then the transmission is

deferred for a "random" interval. This reduces the probability of

collisions on the channel. [1]

MAC Media Access Control, a layer of OSI model.

LLC Logical Link Control, the upper sublayer of the data link layer. The LLC

sublayer is primarily concerned with multiplexing protocols transmitted

over the MAC layer (when transmitting) and demultiplexing them (when

receiving). [1]

PHY Physical layer, a layer of OSI model.

SoftMAC An additional MAC layer original developed by University of Colorado

to provide a flexible environment for experimenting with MAC

protocols.

QoS Quality of Service, which is the ability to provide different priority to

different applications, users, or data flows, or to guarantee a certain level

of performance to a data flow. [1]

 ix

QAM Quadrature amplitude modulation (QAM) is a modulation scheme which

conveys data by changing (modulating) the amplitude of two carrier

waves. [1]

BPSK Binary phase-shift keying, it is a digital modulation scheme that conveys

data by changing, or modulating, the phase of a reference signal (the

carrier wave) by using two phases which are separated by 180° and so

can also be termed 2-PSK.

NIC Network Interface Card, a piece of computer hardware designed to allow

computers to communicate over a computer network. It is both an OSI

layer 1 (physical layer) and layer 2 (data link layer) device. [1]

SNR Signal to Noise Ratio, is an electrical engineering concept, also used in

other fields (such as scientific measurements, biological cell signalling

and oral lore), defined as the ratio of a signal power to the noise power

corrupting the signal. [1]

WEP Wired Equivalent Privacy security algorithm, is part of the 802.11a,

802.11b, and 802.11g standards.

MADWiFi Open source project, Multiband Atheros Linux kernel Driver for

Wireless LAN, Atheros chipsets support IEEE 802.11a/b/g.

 1

1. Introduction

With the steady improvement of the speed and quality recent years, wireless networks

are growing exponentially. IEEE 802.11 and 802.16 wireless networks are two popular

wireless networks, which are designed for different ranges. 802.11 WLAN (WiFi) is

developed for mobile computing devices in LANs, in a short and limited range. 802.16

WMAN (WiMAX) is developed to delivery the last mile wireless broadband access as an

alternative to cable and DSL. There are many technical differences between the two

wireless standards.

1.1 IEEE 802.11 wireless network

IEEE 802.11-based wireless network is called Wireless Local Area Networking

(WLAN) or Wireless Fidelity (Wi-Fi). It is deployed very popularly at home, school or

company and wide available hardware devices make it the first choice for many users.

Wi-Fi is widely available in more than 250,000 public hotspots and tens of millions of

homes and university campuses all over the world. Compared to larger range wireless

solution, there are many advantages of a 802.11 network, such as lower cost, lower power

consumption, inter-operablability with different competitive brands and higher

availability.

At the MAC layer, the 802.11 families use CSMA/CA (Carrier Sense Multiple

Access/Collision Avoidance) medium sharing mechanism instead of the classic Ethernet

CSMA/CD (Collision Detection). It is impossible to detect a radio collision in a wireless

environment. The 802.11 standard defines the standard protocol and interconnection

method of data communication via the air, radio or infrared, in a local area network

(LAN). The basic access method for 802.11 is called Distributed Coordination Function

(DCF) and it’s mandatory for all stations. Another media access control method, the Point

Coordination Function (PCF), is an optional extension to DCF. PCF provides a time

division duplexing capability to allow the access point to deal with time-bounded,

connection-oriented services. Using this method, one AP controls the access through a

polling system. CSMA/CA needs each station to listen to other users. If the channel is

idle the station is allowed to transmit. If it is busy, each station waits a random back off

 2

period until the other transmission stops. Packet reception in DCF requires

acknowledgements (ACK). The period between completion of packet transmission and

start of the ACK frame is one Short Inter Frame Space (SIFS). ACK frames have a higher

priority than other traffic. Fast acknowledgement is one of the features of the 802.11

standard, because it requires ACKs to be handled at the MAC sublayer.

CRC checksum and packet fragmentation are two other robust features of the 802.11

MAC layer. Each packet has a CRC attached to ensure its correctness. This is different

from Ethernet, where higher-level protocols such as TCP handle error checking. The

MAC layer is responsible for reassembling the received fragments; this makes the

process transparent to higher-level protocols.

Research has discovered significant problems with the 802.11 MAC layer. These

problems are:

1). Nodes in an 802.11 network with heterogeneous transmission rate will lead to a

low throughput.[20]

2). Resource allocation policy is not suitable for multi-hop networks.

3). It cannot meet QoS requirement for delay-sensitive applications.

A typical IEEE 802.11 Wi-Fi home router using 802.11b or 802.11g with a stock

antenna might have a range of 32 m (120 ft) indoors and 95 m (300 ft) outdoors, and the

signal are easily obstructed. Wi-Fi performance also decreases exponentially as the range

increases. The Wi-Fi pollution, or an excessive number of access points in the area,

especially on the same or neighboring channel, can prevent access and interfere with the

use of other access points by others. This is caused by overlapping channels in the

802.11g/b spectrum, as well as with decreased signal-to-noise ratio (SNR) between

access points.

 3

1.2 IEEE 802.16 wireless network

The IEEE 802.16 family is officially called Wireless MAN with a line-of-sight (LOS)

capability. It aims to provide high-throughput wireless broadband connections over a

longer distance, to offer a high speed/capacity, low cost, and a scalable solution to extend

fiber optic backbones. After the famous "Worldwide Interoperability for Microwave

Access" forum to improve its interoperability, 802.16 standard has been called

―WiMAX‖ also.

The first IEEE 802.16 standard, published in April 2002 to enable the delivery of the

last mile wireless broadband access to homes, small businesses, and commercial

buildings as an alternative to traditional wired connections, such as cable or DSL. IEEE

802.16 supports point-to-multipoint architecture in the 10-66 GHz range, transmitting at

data rates up to 120Mbps.

The IEEE 802.16 medium access control (MAC) layer supports many different

physical layer specifications, both licensed and unlicensed. Through the 802.16 MAC,

every base station dynamically distributes uplink and downlink bandwidth to subscriber

stations using Time-Division Multiple Access (TDMA). This is a dramatic difference

from the 802.11 MAC.

The 802.16e implemented a number of enhancements, which including better support

for Quality of Service and the use of Scalable Orthogonal Frequency Division

Multiplexing Access (OFDMA). 802.16e uses Scalable OFDMA to carry data, supporting

channel bandwidths of between 1.25 MHz and 20 MHz, with up to 2048 sub-carriers. It

supports adaptive modulation and coding, so that in conditions of good signal, a highly

efficient 64 QAM coding scheme is used, whereas where the signal is poorer, a more

robust Binary phase-shift keying (BPSK) coding mechanism is used. In intermediate

conditions, 16 QAM and QPSK can also be employed. Other PHY features include

support for Multiple-in Multiple-out (MIMO) antennas in order to provide good NLOS

(Non-line-of-sight) characteristics (or higher bandwidth) and Hybrid automatic repeat

request (HARQ) for good error correction performance.

The 802.16 MAC describes a number of Convergence Sublayers, which describe how

wireline technologies such as Ethernet, ATM and IP are encapsulated on the wireless

 4

interface and how data is classified, etc. It also describes how secure communications are

delivered, by using secure key exchange during authentication, and encryption using AES

or DES (as the encryption mechanism) during data transfer. Further features of the MAC

layer include power saving mechanisms (using Sleep Mode and Idle Mode) and handover

mechanisms.

A key feature of 802.16 is that it is a connection-oriented technology. The subscriber

station (SS) cannot transmit data until it has been allocated a channel by the Base Station

(BS). This allows 802.16e to provide strong support for Quality of Service (QoS).

1.3 SoftMAC in Heterogeneous Wireless Network

SoftMAC is an additional MAC layer originally developed at the University of

Colorado to provide a flexible environment for experimenting the MAC protocols.

SoftMAC uses a commodity 802.11a/b/g networking card with a chipset manufactured by

the Atheros Corporation. Atheros chipset has a software controlled radio with a

predefined physical layer but a flexible MAC layer to provide a flexibility format of the

transmitted packets, though this flexibility is not generally exposed by network drivers.

By the reverse-engineering of the original driver from Atheros, under Linux platform

MADWiFi (Multiband Atheros Driver for WiFi) provides a driver that allows extensive

control for Atheros chipset over the MAC layer while still allowing the flexible

underlying physical layer to define the waveforms. SOFTMAC is developed depends on

the MADWiFi, and also includes a software control system that allows its users to

address many of the "systems level" issues facing researchers. [9]

To extend the ability of the SoftMAC to control different chipsets and different

wireless networks, a standard SoftMAC interface is defined and a SoftMAC control layer

is abstracted from the original SoftMAC. Under Linux system, both 802.11 and 802.16

wireless network drivers will implement the SoftMAC interface, which will register them

into SoftMAC control layer. The SoftMAC control layer is the only layer expose to the

Linux Network Interface Layer. It will report the wireless network’s status and transfer

data packets to the upper layer of system. Figure 1.1 shows the Networking Architecture

of SoftMAC.

 5

Figure 1.1 : Networking Architecture of SoftMAC

This SoftMAC architecture will allow researchers or users to query the status of

registered wireless network and to control the data transmission through which wireless

network. The extended SoftMAC is built on the top of existing MAC layer for each

wireless network, and eliminates the significant different of wireless network MAC

protocols.

 6

2. Background

2.1 TCP/IP Model

The Open Systems Interconnection Reference Model (OSI Model) is a layered,

abstract description for communications and computer network protocol design. From top

to bottom, the OSI Model consists of the Application, Presentation, Session, Transport,

Network, Data Link, and Physical layers [1]. A layer is a collection of related functions

that provides services to the layer above it and receives service from the layer below it.

Figure 2.1 displays all layers and functions in each layer.

Figure 2.1 OSI Model [1]

TCP/IP is the environment that handles all these operations and coordinates them with

remote hosts. The name TCP/IP refers to a suite of data communication protocols. Its

name comes from the Transmission Control Protocol (TCP) and the Internet Protocol

(IP). TCP/IP was created using the DoD (Department of Defense) model, which is made

 7

up of four layers instead of the seven that make up the OSI model. TCP/IP standards are

defined and described in Request for Comment (RFC) documents. The layers are as

following:

Application layer

 Refers to standard network services like http, ftp, telnet as well as communication

methods used by various application programs

 Also defines compatible representation of all data

Transport layer

 Manages the transfer of data by using connection oriented (TCP) and

connectionless (UDP) transport protocols

 Manages the connections between networked applications

Internet layer

 Manages addressing of packets and delivery of packets between networks

 Fragments packets so that they can be dealt with by lower level layer (Network

Interface layer Network)

Network Interface layer

 Delivers data via physical link (Ethernet is the most common link level protocol)

 Provides error detection and packet framing

TCP is Connection-Oriented protocol for communication between applications. When

an application wants to communicate with another application via TCP, it sends a

communication request. This request must be sent to an exact address. After a

"handshake" between the two applications, TCP will setup a "full-duplex"

communication between the two applications. The "full-duplex" communication will

occupy the communication line between the two computers until it is closed by one of the

two applications. UDP is very similar to TCP, but is simpler and less reliable.

IP is Connection-Less protocol for communication between computers. IP is

"connection-less" as it does not occupy the communication line between two

communicating computers. This way IP reduces the need for network lines. Each line can

be used for communication between many different computers at the same time. With IP,

messages (or other data) are broken up into small independent "packets" and sent

 8

between computers via the Internet. IP is responsible for "routing" each packet to its

destination.

Figure 2.2 TCP/IP Model [1]

2.2 IEEE 802.11 MAC Layer

The IEEE 802.11 standard describes two types of wireless LANs, an ad hoc network

and an infrastructure network. An ad hoc wireless LAN consists only of mobile stations.

This type of wireless LAN is often set up for a very specific purpose, such as exchanging

data during a single connection, and its lifetime is usually limited. An infrastructure

network integrates mobile stations into a large network infrastructure through the use of

access points (AP). The IEEE 802.11 MAC and MAC-management functions allow the

mobile stations to find other mobile stations and APs, register with the wireless LAN,

request encryption and power management services from the wireless LAN, and

exchange data with other mobile stations and APs.

 The basic access mechanism of 802.11 MAC is carrier sense multiple accesses with

collision avoidance (CSMA/CA). The DCF (distributed coordination function) may be

used in either the ad hoc or infrastructure wireless LANs. The DCF is quite similar to the

CSMA with collision detection (CSMA/CD) used in IEEE 802.3 Ethernet. CSMA/CA

 9

works by sensing the medium for activity before every transmission and deferring the

transmission if the medium is active. As in 802.3, 802.11 uses a binary exponential

backoff mechanism to spread transmission opportunities in time and minimize the

likelihood of subsequent collisions.

The following summarizes primary 802.11 MAC functions, especially as they relate

to infrastructure wireless LANs:

Scanning: The 802.11 standard defines both passive and active scanning. Passive

scanning is mandatory where each NIC scans individual channels to find the best access

point signal. Access Point periodically broadcast Beacons, which contain information

about the Access Point, including the Service Set Identifier (SSID), supported data rates,

etc. The NIC receives and use these Beacons to decide to use which AP.

Optional active scanning is that the mobile NIC initiates the process by broadcasting a

Probe frame, and all Access Points will respond with a Probe response. Active scanning

enables the NIC to receive immediate response from access points, without waiting for a

beacon transmission.

Authentication: The 802.11 standard specifies two forms: Open system

authentication and shared key authentication. Shared key authentication uses WEP (wired

equivalent privacy) key for data communication. The radio NIC starts by sending an

authentication request frame to the access point. The access point then places a text into

the frame body of a response frame and sends it to the radio NIC. The radio NIC uses its

WEP key to encrypt the text and then sends it back to the access point in another

authentication frame. The access point decrypts the text and compares it to the initial text.

If the text is equivalent, then the access point assumes that the radio NIC has the correct

key. The access point finishes the sequence by sending an authentication frame to the

radio NIC with the approval or disapproval.

Association: Once authenticated, the radio NIC must associate with the access point

before sending data frames. Association is necessary to synchronize the radio NIC and

access point with important information, such as supported data rates. The radio NIC

initiates the association by sending an association request frame containing elements such

as a SSID and supported data rates. The Access Point responds by sending an association

response frame containing an association ID along with other information regarding the

 10

access point. Once the radio NIC and Access Point complete the association process, they

can send data frames to each other.

RTS/CTS: The optional request-to send and clear-to-send (RTS/CTS) function

allows the access point to control use of the medium for stations activating RTS/CTS.

The use of RTS/CTS alleviates the hidden node problem, that is, where two or more radio

NICs can't hear each other and they are associated with the same access point.

 Power Save Mode: The optional power save mode allows the radio NIC to be turn

on or off to save battery power when there is no need to send data. In order to still receive

data frames, the sleeping NIC must wake up periodically to receive regular beacon

transmissions from the access point.

Fragmentation: The optional fragmentation function enables an 802.11 station to

divide data packets into smaller frames to avoid needing to retransmit large frames in the

presence of RF interference. The bits errors resulting from RF interference are likely to

affect only a single frame. It requires less overhead to retransmit a smaller frame rather

than a larger one.

Figure 2.3 IEEE 802.11 Packet Format [1]

Figure 2.3 shows a 802.11 Packet in MAC layer. During 802.11 packet assembly,

payload data from the IP layer, or the data that is being communicated, is encapsulated

with MAC (media access controller) data and another four-byte segment of data that

functions as a check sum (CRC or FCS). All of this data is assembled into an MPDU

(MAC Packet Data Unit). When the packet is transmitted, the PHY layer appends a

synchronization header.

 11

802.11 PHY Layer

The infrared (IR) PHY uses baseband pulse position to transmit data at 1 and,

optionally, 2 Mb/s. The frequency hopping (FH) PHY also provides data rates of 1 and,

optionally, 2 Mb/s. This PHY was suitable for operation under the U.S. FH spread

spectrum rules for the 2.4 GHz band designated for industry, scientific, and medical (ISM)

applications; it remains usable under the rules as liberalized in 2000 to allow wideband

FH spread spectrum systems. The 802.11 FH PHY provides 79 channels with a channel

bandwidth of 1 MHz. For 1 Mb/s, the modulation used is two-level Gaussian frequency

shift keying (GFSK) with a nominal bandwidth bit period of 0.5.

The direct sequence (DS) PHY, as extended in the 802.11b amendment, provides data

rates of 1, 2, 5.5, and 11 Mb/s. The modulation used for these rates is differential binary

phase shift keying (DBPSK) and differential quadrature phase shift keying (DQPSK),

respectively. The 5.5 and 11 Mb/s data rates use complementary code keying (CCK) as

the spreading mechanism.

The orthogonal frequency division multiplexing (OFDM) PHY, described in 802.11a,

provides eight data rates: 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s. It uses binary phase shift

keying (BPSK), quadrature phase shift keying (QPSK), 16-QAM (quadrature amplitude

modulation), and 64-QAM modulation schemes coupled with forward error correction

coding of rates 1/2, 2/3, and 3/4.

2.3 IEEE 802.16 MAC Layer

The IEEE 802.16 MAC protocol was designed for point-to-multipoint broadband

wireless access applications. It addresses the need for very high bit rates, both uplink (to

the BS) and downlink (from the BS). Access and bandwidth allocation algorithms must

accommodate hundreds of terminals per channel with the possibility of multiple end users

sharing each terminal. The services required by these end users are varied in their nature

and include legacy time-division multiplex (TDM) voice and data, Internet Protocol (IP)

connectivity, and packetized voice over IP (VoIP). To support this variety of services, the

802.16 MAC must accommodate both continuous and bursty traffic. Additionally, these

services expect to be assigned QoS in keeping with the traffic types.

 12

Figure 2.4 IEEE 802.16 Reference Model and Protocol Stack [2]

The 802.16 MAC protocol was designed for point-multi-point broadband wireless

access. Access and bandwidth allocation algorithms accommodate hundreds of user

terminals per single channel. User terminals may also be shared among many end-user

equipments like phones and PCs. To support variety of services, 802.16 needs to

accommodate bursty and continuous traffic, with required QoS of every service. On

downlink data is multiplexed with TDM. Uplink is shared with TDMA. 802.16 is

connection-oriented. All services, even those inherently connectionless, are mapped to a

connection. It provides mechanism for required bandwidth, associating Grade of Service

(GoS) and traffic parameters and for transporting and routing data to the appropriate

sublayer. Connections are referred with 16-bit Connection Identifiers (CID) and may

require continuously bandwidth or band-on-demand. Upon entering the network, three

management connections are established, in both directions. Every connection is used for

different QoS connection type:

 basic connection – used to transfer of short, time critical MAC and RLC messages

 13

 secondary management Connection – used for transfer of standard-based protocols

such as DHCP,TFTP,SNMP

 Other types of connection, like connection reserved for broadcasting

The 802.16 MAC protocol must also support a variety of backhaul requirements,

including both asynchronous transfer mode (ATM) and packet-based protocols.

Convergence Sublayers are used to map the transport-layer-specific traffic to a MAC that

is flexible enough to efficiently carry any traffic type. Through such features as payload

header suppression, packing, and fragmentation, the convergence sublayers and MAC

work together to carry traffic in a form that is often more efficient than the original

transport mechanism.

802.16 PHY Layer

802.16 Physical layer was defined for a wide range of frequency from 2 up to 66

GHz. The sub-range 10-66 GHz, there is an assumption of Line-Of-Sight propagation. In

this scheme single carrier modulation was chosen, because of low complexity of the

system. The downlink channel is shared among users with TDM signals. Subscriber unit

are being allocated individual time slots. Access in uplink is being realized with TDMA.

Channel bandwidths are 20 or 25 MHz in USA and 28MHz (Europe). Duplex can be

realized with either TDD or FDD scheme. In the 2-11 GHz bands communication can be

achieved for licensed and non-licensed bands. The communication is also available in

NLOS conditions.

 The 802.16a Draft3 air interface specification describes three formats:

 Single Carrier modulation (SC)

 OFDM with 256 point transform

 OFDMA with 2048 point transform

The Forward Error Correction (FEC) is used with Reed-Salomon Codes GF(256). It is

also paried with inner block convolutional code to robustly transmit critical data, like

Frame Control or Initial Access.

One aspect of WiMAX QoS provisioning is a grant-request mechanism for letting

users into the network. This mechanism’s operation and value become apparent from a

comparison of WiMAX with the CSMA/CD or CSMA/CA mechanisms used in LAN

 14

technologies such as 802.11. When a CSMA/CA based wireless LAN has fewer than 10

users per access point, the network experiences little contention for use of airtime.

Occasional packet collisions occur, and they require back-off and retransmissions, but the

resulting overhead does not waste a significant amount of bandwidth. If the number of

CSMA/CA accesspoint users goes up to dozens or hundreds of users, many more users

tend to collide, back-off and retransmit data. In such an environment, average network

loading factors can easily rise past 20 to 30 percent. Thus, users will notice delays—

especially in streaming-media services. WiMAX avoids such issues by using a grant-

request mechanism that allocates a small portion of each transmitted frame as a

contention slot. With this contention slot, a subscriber station can enter the network by

asking the base station to allocate an uplink (UL) slot. The base station evaluates the

subscriber station’s request in the context of the subscriber’s service-level agreement and

allocates a slot in which the subscriber station can transmit (send UL packets).

2.4 Linux Network Device Driver

Linux operating system is based on a monolithic kernel. The network drivers are

compiled into the kernel space. The Linux kernel is inherently considered efficient and

secure for networking. In Linux, the logical-link control (LLC) layer is implemented in

the operating system kernel with network adapters connected to the operating system

kernel by the network devices. Figure 2.5 illustrates the architecture of the Linux

Network.

 15

Figure 2.5 Linux Network Architecture [3]

Modularity and granularity of recent Linux kernel, provides a concise well-organized,

efficient and a solely higher layer protocol independent coding interface. This enables a

programmer to develop a network device driver as kernel module, instead of part of the

monolithic kernel. As a kernel module, the WLAN chipset driver, request resources

needed for the operations of the device such as I/O port, interrupt (IRQ) number etc. The

kernel maintains a global list of detected network devices. Each interface defined by

struct net_device, declared in /include/linux/netdevice.h. The net_device structure forms

the basis of each network device in the Linux kernel. It contains not only information

about the network adapter hardware (interrupt, ports, driver functions, etc.), but also the

configuration data of the network device with regard to the higher network protocols (IP

address, subnet mask, etc.). The net_device structure has the following information:

 General Fields of a Network Device

 Hardware-Specific Fields

 Data on the Physical Layer

 Data on the Network Layer

 Device-Driver Methods

This represents the general interface between higher protocol instances and the

hardware used. It also allows you to abstract from the network components used. For an

efficient implementation of this abstraction, we once again use the concept of function

pointers. For this reason, the net_device structure contains a number of function pointers,

 16

which are called by higher protocols by using their global names, and then the hardware-

specific methods of the driver are called from each network device.

Whenever a device driver register itself, using register_netdevice(), it initializes the

hardware and allocate the resources it needs by filling up net_device’s items. The

following methods are common for each network device interface in init_module() when

a driver as kernel module is loaded into the kernel.

2.5 MADWiFi and SoftMAC

Multiband Atheros Driver for WiFi (MADWIFI) is an open-source Linux driver for

802.11a/b/g universal NIC cards - Cardbus, PCI, or miniPCI - using Atheros chip sets.

MADWiFi is one of the most advanced WLAN drivers available for Linux today. It is

stable and has an established userbase. The driver itself is open source but depends on the

proprietary Hardware Abstraction Layer (HAL) that is available in binary form only.

NET80211

ATH and

ATH_RATE

HAL

Figure 2.6 Architecture of Atheros NIC driver (MADWiFi)

Atheros uses a "hardware abstraction layer" or HAL to provide a common hardware

interface for operating systems. The HAL is written in the machine code of the computer

hosting the wireless card, and abstracts common functionality across different individual

chipsets. Although the HAL is distributed in binary-only format and not extensively

documented, there have been attempts to produce an "open-source" HAL. We have only

used these open-source references during development.

 17

The current MADWiFi driver supports multiple APs and concurrent AP/Station mode

operation on the same device. The devices are restricted to using the same underlying

hardware, thus are limited to coexisting on the same channel and using the same physical

layer features. Each instance of an AP or station is called a Virtual AP (or VAP). Each

VAP can be in either AP mode, station mode, ―special‖ station mode or monitor mode.

Every VAP has an associated underlying base device, which is created when the driver is

loaded. The MADWiFi driver supports a wireless extension kernel API that allows

configuring the device using common wireless tools like ifconfig and iwconfig. A rich

supported operational modes such as station, i.e. managed mode, Access Point, i.e. master

mode, ad-hoc mode i.e. IBSS mode, WDS (wireless distributed system) to create large

wireless network by linking with neighbor AP, monitor mode etc. made MADWiFi

platform complex, not easily understandable and has been cumulated lots of code.

The whole MADWiFi code is consists of several parts. The device driver, as kernel

module named ath_pci consists from modules ath, ath_HAL, net80211 and ath_rate.

 net80211 or ieee80211 stack

net80211 or ieee80211 stack is originally hacked from FreeBSD which contains

generic IEEE802.11 functionality. For BSDs, this stack supports numerous WLAN

devices. It, however, has been imported and customized only for Atheros wireless LAN

chipsets. This module implements lost of called back which can be called by ath_HAL,

ath module provided that, it has to be exported by EXPORT_SYMBOL. net80211

module also consists of WLAN authentication, cryptographically part.

 ath module

ath module defines Atheros WLAN controller specific callbacks for net80211 module

access to the hardware through HAL module. It contains time critical part of 802.11

management, e.g. beacon management, device’s ioctl, configure and setup transmit

(TX) and receive (RX) queue, PCI bus controlling connected with the CPU etc.

 ath_HAL module

HAL module, Hardware Access Layer, is responsible to access to hardware. This

closed source component, basically maintained by the vendor, Atheros, itself, can be

thought something like firmware of card with the only exception is, its not stored into

the card, instead consider as kernel module. Commercial point is, it’s required less flash

 18

memory on the board, which can reduce market value of device. By definition, HAL is

not exactly firmware, since firmware is hardware program executable on board

microcontroller. According to the argument of vendor, due to chipset’s versatility to

tune wide range of frequencies, even in unlicensed bands (non-ISM), to enforce limit on

transmit power etc and for some legal issue, Atheros keeps the code of HAL module as

closed source. Moreover, there is no documentation for HAL exception a public

interfaces in HAL/ah.h. Soon we will see this unavailability has made our

implementation so hard.

 ath_rate module

ath_rate module selects the appropriate algorithm for the best transmission rate.

Among 802.11a, b, g, multiple bit rates, this module sets the device’s transmission

when sending data packet. MADWiFi includes three different algorithms to choose bit

rate:

a) onoe algorithm

b) amrr algorithm

c) SampleRate algorithm.

SoftMAC is proposed and developed by University of Colorado based on MADWiFi

and is for Atheros chipset only. It is an open source project to allow researchers to easily

construct and deploy dynamic MAC layers on system running Linux. The algorithms and

codes can be found and download from Internet, but as all open-source projects, the

detailed document and support of SoftMAC is not described.

The key point of the SoftMAC system is to precisely control the content and timing of

wireless transmission and reception. As an extension for SoftMAC system, Multi-MAC is

introduced. It allows researchers to implement multiple MAC protocols simultaneously to

achieve best network performance. Multi-MAC chooses the MAC layer capable of

achieving the best performance while ensuring that incoming frames are decoded using

the correct MAC layer algorithm.

 19

3. Theory Approaches

The popularly deployed 802.11-based WLAN and its wide availability hardware

facility make it first choice for many users. 802.16 wireless network has a better LOS

(line of sight) capacity and QoS support. When both wireless networks are available,

suppose that we have to do the switch or handoff between the two wireless networks,

there are different ways to solve the problem.

1. Transportation or Routing layer application

It is easy to implement. But it still can’t solve 802.11 MAC problems.

2. New MAC protocol

802.11 and 802.16 have a total different MAC layer. To design a new MAC

protocol, it is too complicated, too expensive and too hard to implement.

3. SoftMAC: Layer 2.5 MAC Proposed by Microsoft

This solution has a low cost and easy to implement on current MAC layer,

however, it is tied to Microsoft Windows and only limited to 802.11 MAC

interface. More importantly, we don’t have the source code to research and thus

no ability to do any possible modification.

4. SoftMAC: Proposed and developed by University of Colorado

This solution has a lower cost and easy to implement on current MAC layer, easy

to modify and integration with higher layers. It allows researchers to easily

construct and deploy dynamic MAC layers on system running Linux. More

important, it is an open-source project.

SoftMAC is a software controlled platform between MAC layer (or Ethernet MAC

layer) and IP layer to realize some control function on content and scheduling of

transmission to improve network performance.

SoftMAC, first is proposes by MS Research Center, designed Layer 2.5 SoftMAC

objective is to coordinate the Best-effort and multi-streaming traffic to improve QoS of

multimedia service as audio/ video service over multi-hop wireless Network and Ethernet

and WLAN combined typical home network. [14]

 20

Figure 3.1 Layer 2.5 SoftMAC architecture

As shown in Figure 3.1, this SoftMAC, working between the MAC layer and the

network layer has two planes: a control plane and a data plane. Depending on the

decision the control plane has made, the data plane implements corresponding functions.

The core mechanism of this implementation is

1. Admission Control for regulating the load RT traffic

2. Rate Control to minimize the effect BE traffic on real-time traffic

3. Non-Preemptive Queuing to provide high priority to real time traffic.

Second, the SoftMAC and extended Multi-MAC proposed and developed by

University of Colorado, it has developed a software system for researchers to easily

construct and deploy experiment on MAC protocol. SoftMAC system uses a commodity

802.11a/b/g network card with a chipset manufactured by Atheros Corporation to build a

software radio with predefined physical layers and flexible MAC layer. [9]

The key point of the SoftMAC system is to precisely control the content and timing of

wireless transmission and reception. Specifically, this is realized by performing following

6 tasks:

1. Override 802.11 MPDU frame format

2. Eliminate automatic ACK and retransmission

3. Eliminate RTS/CTS exchange

 21

4. Eliminate virtual carrier sense (NAV)

5. Control PHY Clear Channel Assessment (CCA)

6. Control transmission backoff.

As an extension for SoftMAC system, MultiMAC is introduced [10]. It allows

researchers to implement multiple MAC protocols simultaneously to achieve best

network performance. Multi-MAC chooses the MAC layer capable of achieving the best

performance while ensuring that incoming frames are decoded using the correct MAC

layer algorithm. The decision is made to specific node and traffic flow. For example,

when the traffic is busy, TDMA is used in MAC layer, while in low-contention periods, it

uses CSMA/CA MAC protocol with Reed-Solomon coding to reduce the bit-error rate at

the expense of extra coding and CPU overhead. The interface of Multi-MAC connecting

Linux Kernel Network stack and physical emphasize three aspects of MAC protocols-

reception decoding, transmission encoding and transmission timing.

 Before above SoftMAC is proposed, Rao and Stoica in Berkeley proposed the

concept of Overlay MAC Layer [8], which can not only provide better flexibility but

improving fairness, throughput and predictability as well. The overlay design and

implementation focus more on best-effort traffic. And [11] introduces a systematic and

automatic method to dynamically combine several MAC protocols into a single higher

layer. The new approach makes it possible to achieve best performance by choosing most

appropriate MAC protocol without knowing the changing and unpredictable network

conditions. It runs without any centralized control or exchange of messages but only with

local network feedback information.

From the discussion above, we can draw the conclusion. To connect 802.11 and

802.16 in MAC layer, SoftMAC from Colorado is the better choice for us to do the

project.

To extend the ability of the SoftMAC, a standard SoftMAC interface is defined. We

add an additional layer on the top of existing MAC layer, which is regardless the

significant difference of different wireless network protocols. So we have created a

software architecture that permits researchers to easily construct and deploy experimental

 22

dynamic MAC layers on systems running Linux. By implement the SoftMAC on top of

802.11 and 802.16 MAC layer, we can connect the system to the two wireless network

and achieve the switch over functions. See Figure 1.1 for Networking Architecture of

SoftMAC

Figure 3.2 SoftMAC in Linux Network Architecture

SoftMAC is an abstraction designed to facilitate the creation of custom and

experimental MAC layers when used with Software Defined Radio hardware. A

traditional network interface system is structured with a tightly coupled MAC and PHY

layer exporting a standard API to the operating system. The SoftMAC breaks out the

integrated MAC and PHY layer into separate (but still coupled) components. Our

SoftMAC is designed running on Linux platform. To better understand the Linux network

system, Figure 3.2 shows SoftMAC in Linux Network Architecture.

 23

The standard SoftMAC interface will enhance the native Linux net_device structure.

Both 802.11 and 802.16 drivers will inherent from this interface. So SoftMAC control

layer can have a standard way to access the status of the each sub network, and control

the packet transmission of each wireless network.

This architecture affords greater flexibility than the traditional network stack when

used with appropriately capable hardware. Most MAC layers are still implemented either

wholly or partially by the underlying hardware and are immutable. With such hardware

the SoftMAC abstraction makes no sense, and serves only as an extra layer of

inefficiency. However, recent advances in Software Defined Radio technology have

resulted in much more flexible network hardware. Fully exploiting the capabilities of this

hardware requires a more flexible network stack. SoftMAC is designed to strike a balance

between flexibility and efficiency that will permit experimentation with this hardware.

 24

4. Platform and Implementation

The SoftMAC in Heterogeneous Wireless Network project is funded by The Institute

for Information Industry (III). In this project, a 802.11 WiFi wireless network card and a

802.16 WiMAX wireless network card are used. The system is required to run on an

IXP425 test board. From Figure 4.1, we can see the relationship between the 802.11

SoftMAC driver and 802.16 SoftMAC driver and the SoftMAC control layer.

Figure 4.1 SoftMAC with 802.11 and 802.16

The SoftMAC interface is defined and compiled into the 802.11 or 802.16 wireless

network card’s driver. For 802.11, MADWiFi, the open source driver is used, and the

802.11 NIC is Atheros AR5212. For 802.16, there is no open source driver that can be

used. Our partner provides a NIC, which is limited to use a driver on Linux Kernel

2.4.22. The SoftMAC control layer will communicate with both 802.11 and 802.16

SoftMAC interface. It can query the status of each wireless connection, or get the SNR of

each individual wireless network. By the algorithm, the SoftMAC control layer will

select the better link to transfer or receive packets.

 25

4.1 IXP425 Test Board

 The system is implemented on an IXP425 test board. The IXP425 network processor

is a highly integrated, versatile single-chip processor that can be used in a variety of

products requiring network connectivity and high performance to run their unique

software applications. The Intel IXP425 network processor combines integration with

support for multiple WAN and LAN technologies in a common architecture to meet

requirements for high-end gateways, Voice over IP (VoIP) applications, wireless access

points, SME routers,switches, security devices, (DSLAMs), xDSL line cards, industrial

control and networked imaging applications. The IXP425 is an implementation of the

ARM compliant, Intel XScale microarchitecture combined with communication

peripherals including, 2 high speed Ethernet MACs, hardware accelerated cryptography,

2 high speed serial ports, a local PCI interface and DMA controller.

Figure 4.2 IXP425 test board

The IXP425 network processor’s primary features (as used in Pronghorn SBC) are:

 Intel XScale Core running at 266 MHz or 533 MHz (depending on SBC model)

 Three NPEs for Layer-2 packet/frame network processing.

 Two 10/100-Mbps, full-duplex IEEE-802.3 MAC’s with MII interface (not all

SBC models support two actual Ethernet ports)

 26

 Dedicated SDRAM with 32-bit memory interface operating at 133 MHz (equal to

system clock frequency)

 Expansion Bus

 Two UARTS

 PCI 2.2 bus:

 GPIOs

 IXP425 network processor has a RISC instruction set. Like other RISC architectures,

ARM processors are designed to efficiently access 'aligned data' - i.e. words which lie on

addresses that are multiples of 4 and halfwords which lie on addresses that are multiples

of 2. Such data is located on its natural size boundary. ARM's compilers normally align

global variables to these natural size boundaries so that these items can be accessed

efficiently using the LDR/STR instructions. This contrasts with most CISC architectures

where instructions are available to directly access 'unaligned data'. This means that care

needs to be taken when porting legacy code, which carries out, such unaligned accesses

from such architectures to the ARM. The following differences have to be concerned

during the development and porting:

 Unaligned Pointers

 Unaligned fields in structures

 Unaligned LDR for accessing halfwords

 The ARM compilers expect normal 'C' pointers to point to an aligned word in

memory, as this allows the compiler to generate more efficient code. Thus if you wish to

define a pointer to a word that can be at any address (i.e. that can be at a non-natural

alignment) then you must specify this using the __packed qualifier when defining the

pointer:

 __packed int *pi; // pointer to unaligned int

The ARM compilers will not then use an LDR, but instead generate code which correctly

accesses the value regardless of the alignment of the pointer. This code generated will be

a sequence of byte accesses, or variable alignment-dependent shifting and masking

(depending on the compile options) and will therefore incur a performance and code size

 27

penalty. Porting code and detecting unaligned accesses is a big headache in the whole

project.

4.2 SoftMAC for MADWiFi Driver

MADWiFi driver lives in Linux kernel space, is for WLAN device based on Atheros

WLAN chipset. In the project, we have selected WLAN card based on Atheros AR5212

chipset which supports 802.11a/b/g. Atheros WLAN chipset has multi-protocol MAC or

baseband processor supports Radio-on-Chip (RoC) that can operate dual band 2.4/5GHz.

The radio modem use OFDM in 5 GHz band in 8 different channels with throughput of

up to 54Mb/s rates (depending of range).

MADWiFi is an Open Source Linux kernel device driver for Wireless LAN chipsets

from Atheros. Since MADWiFi is an open source code, modifications to the existing

coding and implementations of new features can be performed without restrictions. This

driver will be installed on all four computers in the test bed. The driver works such that

the WLAN card (D-link WDA 1320) will appear as a normal network interface in the

system. Additionally, there is support for the Wireless Extensions API. The API provides

different operational modes such as client station, access point, network monitor, and ad-

hoc mobile station. For this design project, one of the computers is configured as the

client station, one as a dummy internet server while the other two computers are

configured as access points.

In order to support the WiMAX driver provided by our partner, all of the computers

must have Linux Kernel 2.4.x (Redhat 9) series installed in them. The items in Table 1

must also be supported in the Linux kernel.

Crypto support

Wireless Extensions support

CONFIG_NET_DIVERT

Table 1: MADWiFi Required for Linux Kernel compile.

 28

After installing MADWiFi, the steps to configure the driver are documented in Table

2.

Steps Command Code

1. Loading MADWiFi Module modprobe ath_pci

2. Creating an Interface for client station wlanconfig atho create wlandev wifi0

wlanmode sta

3. Creating an Interface for Access Point wlanconfig atho create wlandev wifi0

wlanmode ap

4. Initialize all wireless interface in each

computer

Ifconfig ath0 up

5. Insert the AP scanning module into the

client mobile station

modprobe wlan_scan_sta

6. Scan for the AP from client wlanconfig ath0 list scan

7. Connect to AP1 iIwconfig ath0 essid “AP1”

8. Obtain IP address without DHCP Ifconfig ath0 <IP address> netmask

<netmask> up

Table 2: Procedure for MADWiFi Driver Configuration.

We have to modify the MADWiFi driver to support SoftMAC Layer. SoftMAC PHY

layer is embedded in the MADWiFi driver to support the SoftMAC control layer

functions. Table 3 is part of the modification of MADWiFi driver.

SoftMAC for MADWiFi

struct ath_softc {

 struct net_device sc_dev; /* NB: must

be first */

 struct net_device sc_rawdev; /* live monitor

device */

 struct semaphore sc_lock; /* dev-level lock */

 struct net_device_stats sc_devstats; /* device

statistics */

 struct ath_stats sc_stats; /* private statistics */

 29

...

…

 /* SoftMAC PHY*/

 int sc_cu_softmac;

 int sc_cu_softmac_alwaystxintr;

 int sc_cu_softmac_phocus_settletime;

 int sc_cu_softmac_phocus_enable;

 u_int32_t sc_cu_softmac_phocus_state;

 u_int8_t sc_cu_softmac_wifictl0;

 u_int8_t sc_cu_softmac_wifictl1;

 int sc_cu_softmac_noautocalibrate;

 int64_t sc_cu_softmac_zerotime;

 atomic_t sc_cu_softmac_tx_packets_inflight;

 struct tq_struct sc_cu_softmac_worktq;

 u_int32_t sc_cu_softmac_txlatency;

 u_int32_t sc_cu_softmac_options;

 CU_SOFTMAC_MACLAYER_INFO *sc_cu_softmac_mac;

 CU_SOFTMAC_MACLAYER_INFO

*sc_cu_softmac_defaultmac;

 CU_SOFTMAC_PHYLAYER_INFO *sc_cu_softmac_phy;

 int sc_cu_softmac_phy_id; /* instance id */

 struct cu_softmac_athmac_instance *sc_cu_softmac_mac_inst;

 struct list_head sc_cu_softmac_procfs_data;

 struct list_head sc_cu_softmac_phy_list;

 struct list_head sc_cu_softmac_mac_list;

};

Table 3: SoftMAC for MADWiFi.

 30

4.3 SoftMAC Layer Structure Design

The source code of the SoftMAC is compiled and loaded into the /proc file system in

the Linux kernel. Table 4 shows part of the structure for SoftMAC Control Layer. It is the

key part of the project. All handover function will be implementing here. It will

communicate with SoftMAC PHY layer in MADWiFi driver to get enough information

to do the algorithm. Now only a simple handover algorithm is used.

SoftMAC Layer Info

typedef struct CU_SOFTMAC_LAYER_INFO_t {

 /* @brief Layer name. */

 char name[CU_SOFTMAC_NAME_SIZE];

 /* @brief Create a new instance of this layer type */

 void *(*cu_softmac_layer_new_instance)(void*);

 /* @brief Destroy an existing instance of this layer type */

 void (*cu_softmac_layer_free_instance)(void*, void *inst);

 /* @brief Private data */

 void *layer_private;

….

….

 /* softmac internal */

 struct hlist_node name_hlist;

 /* softmac query funtions */

 float(*snr)(const void*); /* Signal-to-noise ratio*/

 float(*packet_loss_statistics)(const void*); /* packet

loss ratio*/

 int(*status_of_MACs)(const void*); /* status of MAC */

};

Table 4: Structure of SOFTMAC_LAYER_INFO.

 31

For each Network driver in Linux, it has to be embedded the functions to support by

SoftMAC control. In the SoftMAC Control layer, we can call the functions defined in

SoftMAC PHY layer to get these values.

1. SNR/CINR,

 The register in MC236 has provided the 'SNR/CINR' value. However, the type is

unsigned integer which follows the definition in 802.16 specification. (unit : 0.25dBm)

2. Packet Error rate,

 There is not such field to describe the value. But there are 3 values that we can use to

calculate the PER :

 (1) Number of Rx-Msg : the number of PDU put in Rx-Data-FIFO. (HW)

 (2) Number of CRC-Error : the number of dropped PDU due to CRC-error

 (3) Number of Symb-Error : the number of dropped PDU due to at least one symbol

error.

 Therefore,

 PER = (2) + (3) / ((1) + (2) + (3))

3. Status of MAC (active / inactive)

4. Packet data Tx/Rx between softmac and 802.16 interface

Table 5 has the Script to load SoftMAC to Linux Kernel.

Command Code

ifconfig ath0 up

ifconfig ath0 down

iwconfig ath0 mode monitor

iwconfig ath0 channel 5

iwconfig ath0 essid SoftMAC97

ifconfig ath0 up

insmod SoftMAC_netif

insmod SoftMAC_rslib

insmod SoftMAC_multimac

echo athphy > /proc/SoftMAC/create_instance

echo 1 > /proc/SoftMAC/insts/athphy0/SoftMAC_enable

Table 5: Scripts to load SoftMAC.

 32

Table 6 shows how to load MultiMAC by using the SoftMAC to send data to different

destinations.

Steps Command Code

1. Create a SoftMAC instance echo multimac >

/proc/SoftMAC/create_instance

2. Allocate the MAC layer resources

to SoftMAC

echo multi1 >

/proc/SoftMAC/insts/athphy0/mac_layer

2. Add each MAC layer resources to

SoftMAC

echo formagemac >

/proc/SoftMAC/insts/multi1/addmaclayer

3. Set the computer as client mode #iwconfig ath0 mode client

Table 6: Procedure for MultiMAC Configuration.

 33

4.4 Handover Algorithm

There are a number of parameters associated with the functionality of the handover

process. These parameters are defined as constants and may be manipulated by the user to

tailor the handover constraints necessary for the desired application. Each parameter is

associated with a specific constraint, which are detection, power, and throughput.

Detection type parameters store constants that relate to the detection of the intelligent

handover scheme. Power type parameters are used as decision parameters to aid the

determination of an effective handover by using SNR. Throughput parameters use

bandwidth as the decision comparison. This work is done in ―Seamless Wireless

Integration‖, by James Ho, Christie Kong. [14] Table 7 summarizes the parameters and

their corresponding purposes.

Type Parameter Purpose

Detection T_drop Duration of time under threshold before connection

dropout

Refresh_time Duration between optimal connection determination

maximum_cxns Number of simultaneously active connections

Power power_threshold Minimum SNR threshold to maintain connection

power_enable Flag to optimize connection based on SNR

Throughput thru_threshold Minimum bandwidth threshold to maintain

connection

thru_enable Flag to optimize connection based on bandwidth

Table 7: Required Parameters for Intelligent Handover Algorithm [14]

To summarize the handover process implemented in the admission control block, the

generic algorithm for the handover algorithm is outlined in Figure 6.

refresh_counter = 0;

while (true)

{

 34

 refresh_counter++;

 if (refresh_counter == refresh_time)

 {

 refreshcounter = 0;

 list = detect_environment();

 max_snr = -1;

 max_bw = -1;

 foreach (list)

 {

 if (power_enable == true && power > power_threshold)

 {

 if (current_snr > max_snr)

 {

 max_snr = current_snr;

 best_cnx = this;

 }

 }

 if (thru_enable == true && thru > thru_threshold)

 {

 if (current_bw > max_bw)

 {

 max_bw = current_bw;

 best_cnx = this;

 }

 }

 }

 }

}

Figure 4.3: Algorithm for the Handover Algorithm. [14]

The above algorithm serves as the intelligent handover scheme for the prototype

demonstration. The refresh timer is a predefined variable set for duration between optimal

connection determinations. In our demonstration, 1 second is used as the value of refresh

timer. Therefore, SoftMAC will detect the available access point in the near environment

in every 2 seconds. In our algorithm, there are two factors to optimize the connection

which are SNR and throughput. Every time when SoftMAC go over the access point

 35

table, it will check if the current access point’s signal strength exceeds the threshold value

and the current best signal strength. If it does, it will replace the current access point with

this access point. Therefore, our client station will always be able to connect or handover

to the best access point available before losing any connection.

4.5 Experimental Results

The purpose of building a new network layer (SoftMAC) is to perform seamless

handover between IEEE 802.11 and IEEE 802.16 access points. Due to the limitation of

the 802.16 Linux driver and the absent of the 802.16 access point, the whole system can

not be tested and demonstrated in a 802.11 and 802.16 heterogeneous wireless network.

But the theory, the model and the SoftMAC coding can be tested in a system with two

802.11 wireless network cards installed.

This test and demonstrate is recorded in ―Seamless Wireless Integration‖, by James

Ho, Christie Kong. [14] It summarizes the deviations from the original design

functionality and discusses any design constraints that were not met. For the design

specifications that were met, the novelty of the design and how much the design exceeded

the requirement specifications are discussed.

Demonstration of the SoftMAC Handover

The handover procedure is demonstrated using one desktop terminal installed with

MADWiFi and SoftMAC as well as three more wireless desktop stations with MADWiFi.

The test bed consists of two stations working as access points/bridge, one station working

as a dummy internet server and one station with SoftMAC working as a client node. All

desktops are running on RedHat Linux 2.4.21. The framework is shown in Figure 4.4.

 36

Figure 4.4: Seamless Handover Test-Bed. [14]

Each station is installed with two 802.11 wireless card in order to maintain a seamless

connection. Figure 4.5 below shows the IP configuration of the two wireless cards in the

client station. It shows that they have a different IP address and that they are used to

connect to one of the access point separately. They both communicate with the multiMac

layer in SoftMAC to decide which access point to connect to.

Figure 4.5: ifconfig of the Wireless Cards in the Client Station [14]

 37

The SoftMAC client station can connect to the dummy internet server through one of

the access points. The goal of the test is to see if the implementation of SoftMAC can

successfully provide an uninterrupted connection when the client node switches

connection between the two access points and still be able to connect to the dummy

internet server with an IP address of 192.168.8.97.

In the demonstration, the client station first pings to the dummy internet server through

access point 1 using the wireless card with IP address 192.168.8.99. During the pinging,

access point 2 is turned on. The MIH function and the link status measurement block will

input access point 2 into a table. The next step is bringing access point 1 down. The

behavior of the client station is observed. Two scenarios are demonstrated: client station

with SoftMAC and client station without SoftMAC.

Figure 4.6: Handover Result with SoftMAC [14]

For the client station with SoftMAC, when access point 1 goes down, it will look

through the access point table and find the one with the strongest SNR to handover to. In

this case, this access point will be access point 2. Figure 4.6 shows that the client is able

 38

to handover to access point 2 within 1 second using the wireless card with IP address

192.168.8.98.

Therefore the client station can have a seamless connection to the dummy internet

server without showing any failure (Destination Host Unreachable). This test case is done

in the EIT lab office which is under the University of Waterloo Public wireless network;

therefore network packet collision exists. From Figure 4.7, it is shown that one duplicated

packet (DUP!) occurred because there is one packet loss/collision and the client needs to

resend the packet one more time.

Figure 4.7: Handover without SoftMAC [14]

For the client station without SoftMAC, which is the current technology, Figure 10

shows a disconnected pinging status when access point 1 goes down. When access point

1 goes down, it takes approximately 10 seconds for the client station to reconnect to

access point 2 and the dummy internet server using the wireless card with IP address

192.168.8.98. Figure 10 shows the disconnection when it is trying to reconnect through

access point 2.

 39

5. Discussion and Future Work

This thesis has investigated the major design requirements for SoftMAC design, and

has demonstrated that the implemented prototype has met the design requirements. It

proves the possibility and flexibility of using SoftMAC to connect and control

Heterogeneous Wireless Network, in order to fulfill seamless handover among multiple

heterogeneous wireless interfaces. The thesis has demonstrated that by adding the

proposed SoftMAC on top of the traditional MAC layer, the mobile station cannot only

perform handover between access points, but also essentially open a door to a wider

range of application and services. The data plane of the SoftMAC provides the first

priority to the real-time packet to get transmitted and ensure the quality of service.

There are still some limitations of the implementation. One is that the security part of

both 802.11 and 802.16 isn’t concerned. Another is that only part of the IEEE 802.16

standard is implemented. Due to the popularity of Linux version 2.6, the future design

could be making the SoftMAC solution compatible with these two versions of Linux.

Furthermore, the SoftMAC interface can be defined and developed to be more functional

allowing support for more NICs.

In conclusion, this thesis has provided a kernel-based prototypal solution for wireless

extension of SoftMAC on the existing hardware for connecting 802.11 protocol and

802.16 protocol. The implementation has been done directly in kernel space of Linux

operating system that manages NIC driver and partially MAC layer. Implementation of

proposed approaches was difficult since most of resources are undocumented and vendor

specified the IXP425 platform and 802.16 driver. However, the goal of the connection

and control of Heterogeneous Wireless Network has been achieved with a known

limitation. Experimental result shows that, it is nontrivial to implement SoftMAC

approach on existing hardware and standard.

 40

References

[1] “Wikipedia,‖ Current Jan. 2008; http://en.wikipedia.org

[2] IEEE 802.16 Documents http://grouper.ieee.org/groups/802/16/index.html

[3] The Linux Networking Architecture: Design and Implementation of Network

Protocols in the Linux Kernel, By Klaus Wehrle, Frank Pahlke, Hartmut Ritter,

Daniel Muüller, Marc Bechler, PRENTICE HALL, 2004

[4] AiroPeek NX-Wireless Network Protocol Analyzer. http://www.wildpackets.com/.

[5] Ethereal-Network Protocol Analyzer. http://www.ethereal.com/.

[6] MADWiFi. http://MADWiFi.org/.

[7] IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications, ISO/IEC 8802-11: 1999(E), Aug. 1999

[8] A. Rao and I. Stoica, An overlay MAC layer for 802.11 networks, in MobiSys ’05:

Proceedings of the 3rd international conference on Mobile systems, applications,

and services, (New York, NY, USA), pp. 135–148, ACM Press, 2005.

[9] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, D. Grunwald, SoftMAC: A flexible

wireless research platform, in Proceedings of HotNets IV, 2005.

[10] Doerr, Weingart, Sicker, and Grunwald, MultiMAC - An Adaptive MAC

Framework for Dynamic Radio Networking. In IEEE/ACM DySPAN (Dynamic

Spectrum Access Networks), 2005.

[11] Shugong Xu and Tarek Saadawi,‖ Does the IEEE 802.11 MAC protocol Work

Well in Mutihop Wireless Ad Hoc Networks‖ Challenges in mobile ad hoc

networking

[12] IEEE80211 SoftMAC Layer, http://SoftMAC.sipsolutions.net/

[13] IEEE80211 Subsystem for Linux, http://ieee80211.sourceforge.net/

[14] Jame Ho, Christie Kong, Seamless Wireless Integration, 2008

[15] H. Javaheri, G. Noubir, Y. Wang (2007). ― Cross-Layer distributed diversity for

heterogeneous wireless networks‖, in Proceedings of the Fifth International

Conference on Wired/Wireless Internet Communication, WWIC'07 , LNCS,

Springer-Verlag.

http://en.wikipedia.org/
http://grouper.ieee.org/groups/802/16/index.html
http://ieee80211.sourceforge.net/

 41

[16] Haitao Wu, Yunxin Liu, IEEE Globecom 2005, ―Layer 2.5 SoftMAC: End-system

based Media Streaming Support on Home Networks.‖

[17] Haitao Wu,Yunxin Liu,Qian Zhang,Zhi-Li Zhang, SoftMAC: Layer 2.5

Collaborative MAC for Multimedia Support in Multihop Wireless Networks,

Mobile Computing, IEEE Transactions, 2007.

[18] H.Wu, Y.Peng, K. Long, et al., Performance of Reliable Transport Protocol over

IEEE 802.11 Wireless LAN: Analysis and Enhancement, Proc. IEEE INFOCOM

2002

[19] K. Langendoen and G. Halkes, Embedded Systems Handbook. CRC Press, Aug.

2005, ch. Energy-Efficient Medium Access Control.

[20] M. Heusse, F,Rousseau, G. Berger-Sabbatel and A. Duda, ―Performance anomaly

of 802.11b.

[21] PAPAGIANNAKI, K., YARVIS, M., AND CONNER, W. S. Experimental

characterization of home wireless networks and design implications. Proc. of

INFOCOM ,2006.

