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Abstract

This thesis is divided into two parts. The first part is a study of the general problem
of vacuum energy or so-called ‘zero point fluctuations’ of a quantum field on expanding
spacetimes and the interplay between the dilution of energy as a mode expands and the
generation of energy as new modes enter from below the ultraviolet cutoff. The second
deals with the phenomenon of superoscillations and some of the consequences in quantum
theory and cosmology.

Modern theoretical cosmology sits upon the theory of inflation which assumes that
the universe underwent a period of accelerated expansion sometime in the past. Indeed, a
whole new scientific discipline was born known as high precision observational cosmology
when ground breaking detailed measurements were made in the late 1990’s that confirmed
some predictions of the theory of inflation. However, inflation is essentially a classical
phenomenon with the inclusion of the quantum theory relegated to the provision of initial
perturbations of an otherwise homogeneous and isotropic spacetime usually interpreted
as the inexorable quantum fluctuations of a (classical) scalar field coupled to the metric.

Quantum field theory on curved spacetime, on the other hand, has some novel features
in comparison to it’s flat spacetime cousin. The inclusion of some of these effects into
a discussion of the novel inflationary picture should provide some very interesting and
non-trivial insights to the very early universe and perhaps might shed some light on
the fundamental nature of the gravitational interaction itself. Usually when studying
quantum fields in curved spacetime and the energetic interaction between gravity and the
quanta one works in the semi-classical picture where gravity remains a classical field. This
is not only because a fully consistent quantum theory of gravity has not been constructed
yet. Indeed, there should exist a presumably quite extensive regime where the picture
of quantum fields propagating on a classical background remains a valid approximation.
In the first part of this thesis we study this regime and some of the interesting physics
that arises. Eventually, however, we go one step further than a semi-classical treatment
and investigate the hypothesis that the dynamics of cosmologically significant spacetimes
is provided by the spacetime dependence of the quantum vacuum energy of a scalar
field on that spacetime. Put more simply, we discuss the possibility that the tendency
for a spacetime to expand and accelerate it’s expansion reduces to the statement that
it is vacuum-energetically favorable to do so. The idea that the gravitational degrees of
freedom are induced in this way is an old one due to Sakharov and is one represented in
this thesis in simplified form and with specific calculations and examples. We find that
such an interpretation is at least not excluded and, in fact, sits satisfactorily with the
ideas of inflation.

Along the way to our conclusive discussion of the ‘induced cosmology’ we discuss,
after briefly reviewing inflation and quantum field theory in curved spacetime, the general
problem of vacuum energy in curved spacetime and some simplified models of the quantum
mechanical ground state energy of a collection of harmonic oscillators on expanding spaces
including some discrete models. Our philosophy throughout will be one of pragmatism; we
assume a cutoff on momenta (or length scales) at an unspecified energy scale and assume
our conclusions hold, if not all the way from the Planck scale (which would presumably
be subject to beyond the standard model ‘quantum gravitational’ effects), then at least in
some meso-scale between the Hubble scale and the Planck scale. It is certainly true that
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a quantum scalar field really is a collection of independent harmonic oscillators one for
each different comoving length scale (wavelength). The question that we seek to address
in this thesis is “what of the vacuum energy of those modes associated with neither the
extreme ultraviolet (where ordinary field theory breaks down) nor the extreme infrared
(where ordinary general relativity is assumed to break down)?”. After discussing an
infrared divergence which we find to be present in a larger class of powerlaw spacetimes
than has been previously found, we also implement an infrared cutoff on energies. An
interpretation of the infrared cutoff as the realization of a local expansion of a patch of
an otherwise flat and very large ‘ambient’ spacetime is attempted and the corresponding
picture of an energetic initiation of inflation is provided.

The phenomenon of superoscillations for bandlimited functions is the observation
that a function may approximate to arbitrary precision a plane wave not contained in it’s
Fourier decomposition. In particular, it is possible for a function with compact support in
the frequency domain to approximate with arbitrary precision a high frequency waveform
outside of this support on an arbitrary long interval. This phenomenon has only recently
begun to be studied in the literature and as yet very few quantitative results have been
obtained. In the second part of this thesis we study the energetic response of a classical
and quantum harmonic oscillator driven by a superoscillating driving force. We find
that the oscillator indeed responds to the ‘imposter’ driving force as if it were real and,
dubbing the response ‘ghost resonance’, we investigate some consequences in quantum
field theory and cosmology.
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Conventions and Notation

Although this thesis assumes a basic understanding of both general relativity to the
level of [1] for the study of cosmology and scalar quantum field theory to the level some-
where between [2] and [3] some introductory remarks are made in the first chapter of
Part I in order to make the presentation complete. Throughout we try to stick with the
(— 4+ ++) signature convention and use the Heisenberg picture of quantum evolution un-
less explicitly stated. Also, we use geometric notation for derivatives so that f,,:= 0, f
for functions and v, := V,v® for covariant derivatives. In general ¢ will represent a
classical (number valued) field whereas ¢ stands for a scalar quantum field, 7, will rep-
resent the Minkowski metric diag(—1,1,1,1) and g,, a general spacetime metric. We
work in natural units where i = ¢ = 1 and 87G = 1. For cosmological time derivatives
we use ‘dot’ " to represent the cosmological time derivative 9; and ‘prime’ ’ to represent
the comoving time derivative 0,,.
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Part 1

Quantum Field Theory in
Cosmology



Introduction

The reality of the vacuum energy of quantum fields is an experimentally verified fact of
nature as exhibited by the Casimir force [4] known to act between two parallel conduct-
ing plates. The force is understood to arise from the suppression due to the presence of
the conducting plates of the ground state energies of a subset of the independent har-
monic oscillators that collectively represent the electromagnetic field. For a scalar field
in Minkowski spacetime the vacuum energy density is formally infinite even for a field
defined only on a finite region due to the infinite number of harmonic oscillators making
up the field. This is a well known and much discussed divergence known as the ultravio-
let divergence. The Casimir energy is understood as the difference between the formally
infinite vacuum energy of the field as it acts with the conducting plates and energy of the
field without the plates. The problem of vacuum energy on non-trivial backgrounds is
an obvious generalization of the problem of the Casimir energy. Such studies have been
carried out using some simplified versions of quantum field theory (conformally coupled
theories) and various techniques of regularization, for example [3], 6] [7, 8, 9]. However,
these early studies used approximate methods such as the adiabatic approximation (where
the spacetime is assumed to be varying slowly) and were conducted at a time when the
foundations of quantum field theory in curved spacetime were being first understood. The
study of vacuum energy in curved spacetime waned in the years after the initial enthu-
siasm once the quantum field theory was well understood. However modern theoretical
cosmology has motivated a revisiting of these old ideas with the introduction of quantum
field theory in curved spacetime into testable science. In particular the theory of infla-
tion utilizes quantum field theory in an essential way in providing a mechanism for the
formation of large scale structure in our unverse. In this, the first part of this thesis, we
make a systematic study of the role of quantum vacuum energy in expanding spacetime
and in particular on cosmologically realistic backgrounds. We emphasize exact solutions
and physical justifications for the simplifications we make. Despite the fact that in the
standard presentation inflation is formally generated by the dynamics of a classical scalar
field there is an intuitive understanding in the community that the inflationary dynamics
ought to be ultimately a result of the non-trivial evolution of the vacuum energy of the
quantum fields of nature. Such an idea has only recently been made more precise in the
literature [10} [1T) 12, T3] but the idea that spacetime dynamics is nothing but the reaction
of spacetime to the dynamical vacuum energy in the presence of a Planck scale cutoff is
an old one due to Sakharov [14] proposed well before the theory of inflation or quantum
field theory on curved spacetime were developed.

The layout of this part is as follows. We begin with a concise review of the separate
ingredients, cosmology and quantum field theory that are necessary for a study of vacuum
energy in cosmology. This review is not intended to be exhaustive or complete but serves



only to make the presentation complete. However we do highlight some interesting and
original points in these sections. We then discuss vacuum energy in general and partic-
ularly the idea of a dynamical (time dependent) vacuum energy in the full cosmological
scenario. We also study the dynamical vacuum energy in simplified frameworks in or-
der to provide a more complete picture of the physics involved. We end with the main
yet rather speculative chapter concerned with realizing the idea that the cosmological
dynamics are wholly due to non-trivial dynamical vacuum energy.



Chapter 1

Quantum Field Theory and
Cosmology

In this chapter we review the inflationary scenario in cosmology and also aspects of
quantum field theory (QFT) on a curved manifold essential for an understanding of the
material presented in the following chapters of this thesis.

1.1 Inflationary Cosmology

During the last century, our picture of the large scale structure and history of the universe
underwent a drastic revolution. Starting with Edwin Hubble’s observation of the recession
of distant galaxies interpreted at the time within the new theory of general relativity as
an isotropic and homogeneous expansion of space and ending with Penzias and Wilson’s
observation of the primordial cosmic microwave background radiation (CMB) in 1965 [15],
a very detailed picture of the universe as a whole emerged. This so-called standard big
bang model (SBBM) in cosmology painted a picture of the universe starting in a state of
extremely high energy density and cooling through expansion, the forces of nature and the
constituent matter emerging through phase transitions providing the structure and laws
of the astrophysics we observe today. The SBBM was, however, always faced with serious
conceptual and theoretical obstacles to a position of a rigorous and complete model of the
very early universe. These days one usually quotes the ‘horizon’ and ‘flatness’ problems of
the SBBM when discussing how economically the inflationary model solves them [16]. The
horizon problem of SBBM is the observation that two photons arriving at earth telescopes
from opposite directions in the sky should have originated from causally disconnected
regions and so should not be correlated in any way yet we observe an almost perfectly
isotropic CMB. On the other hand, the flatness problem is the observation of almost
exact spatial ﬂatnessE] of the observable universe today. Under the standard assumptions
of SBBM it is known that spatial flatness is dynamically unstable, and hence in order
for space to be so flat today the initial parameters (such as energy density, pressure and
radiation content) need to be extremely fine tuned. Such fine tuning is unsatisfactory for
a fundamental scientific theory.

!These terms will be defined and discussed below.



The simple and far reaching inflationary hypothesis that turns these anomalies into
natural features is that the universe underwent a sufficiently long period of accelerated
expansion. Once the accelerated period was completed the universe is assumed to have
settled down to a standard decelerated expansion in accordance with our usual intuitive
(and to a degree rigorous due to the singularity theoremsEI) understanding of the at-
tractive nature of the gravitational force, precisely as in SBBM. Under this seemingly
innocent single additional assumption, regions previously causally disconnected in space-
time become connected, avoiding the horizon problem, and spatial flatness becomes a
stable fixed point of the evolution. On top of the success of the inflationary hypothesis in
solving the above mentioned problems and additionally a possible explanation of the ori-
gin of large scale structure in the universe (to be discussed below), the theory of inflation
made a detailed and consequently confirmed prediction about the fine structure of the
CMB and hence entered the realm of real and testable scientific theory. For this reason
the picture of an early period of inflation followed by standard decelerated expansion is
widely accepted today by cosmologists as an accurate description of the early evolution
of our universe. However, as yet there is no completely satisfying mechanism for the
onset or even the end of an inflationary period and there is much contention as to the
detailed interpretation of the model. It is part of the goal of this thesis to shed at least a
little light on this problem based on a more thorough investigation of the role of quantum
fluctuations in an accelerating spacetime.

1.1.1 Friedman Lemaitre Spacetime

Under the observationally justified assumptions of large scale homogeneity and isotropy
(HI), the metric that describes our universe, known as the Friedmann Lemaitre (FL)
metric, is written in so-called co-moving coordinates as

2
ds* = dt* + a(t)? <1d7"

- +r2d92> . (1.1.1)
— RT

Here a hypersurface of constant coordinate time t is a maximally symmetric three man-
ifold here labeled by the parameter k. The three types of maximally symmetric three
manifold are represented by

k>0 = three sphere
k=0 = flat space

k<0 = space of constant negative curvature.

These three cases are known respectively as closed, flat and open universes. In this
normalization the scale factor a(t) is dimensionless, the radial coordinate has a dimension
of length and x has the dimension of (length)™2 and parameterizes ‘how curved’ the
spacial three-slices are. Experimentally [19] it is found that on large scales our universe

2The singularity theorems of classical general relativity [I7] are essentially rigorous mathematical
statements that ‘reasonable’ matter is gravitationally attracted to other reasonable matter resulting in
gravitational collapse and singular gravitational fields where ‘reasonable’ is defined in terms of certain
intuitively motivated energy conditions. It is interesting to note however that certain quantum fields have
been found to violate the energy conditions that go into the singularity theorems [18].



is described by a FL metric with flat spatial sectionslﬂ In what follows we shall set kK =0
unless otherwise stated.

The FL model thus encodes the large scale dynamics of the universe into the single
function a(t). The Einstein field equation (EE) G, + Agu, = T}, for this restricted class
of spacetimes reduces to the non-linear differential equations for a

L\ 2
3 <a> =p+ A — The “Friedmann equation” (1.1.2)
a
a a
2 (2L 2 _A_p 1.1.3
(5)+5 (1.1.3)

where we model the classical matter content in such an idealized cosmology by an isotropic
and homogeneous perfect fluid possessing energy momentum described by the well known
tensor (in a co—movin@ﬂ frame)

—p

T =

0
0
X (1.1.4)

o oo
o oMy o
o ygo o

P

Here p is referred to as the energy density and P the pressure of the fluid. The
dynamics of the fluid are prescribed by specifying an equation of state P(p) relating
the pressure and energy density; a period of time in which w := P/p, known as the
equation of state parameter, is approximately constant is referred to as an epoch.
In general however, the energy momentum tensor (EMT) 7),, that acts as a source for
the EE is defined to be proportional to the functional derivative of the matter action S,

with respect to the metric:
-2 685

p = ﬁdgﬂu
where /g is the (absolute value of the) determinant of the metric, and should be subject
to its own (coupled) dynamics arising from an action principle for S,,. Matter whose

EMT can be put into the form for some choice of coordinates is also referred to as
a perfect fluid.

It will be convenient to introduce a new time coordinate, the conformal time 7 defined

n(t) =/ ac(li:)? (1.1.5)

with respect to which the FL metric is manifestly conformally flat:

as

ds* = a(n)? (—d772 + dr? + r2dQ2) .

These coordinates greatly simplify the d’Alembertian differential operator 1 = V,V#
(the contraction of the covariant derivative) and which will be useful in the quantum
theory.

3Recall that this was the essential observation leading to the horizon problem of SBBM.
“The co-moving frame is that frame in which the four velocity U of the fluid takes the form U =
(1,0,0,0).



De Sitter spacetime

De Sitter spacetime corresponds to a vacuum solution to[l.1.2]in the presence of a positive
cosmological constant A. In the absence of matter the Friedmann equation becomes

N 2
(a) 1y

a 3
and hence the de Sitter scale factor is a(t) = agef’* with H = \/A/3. The other Einstein
equation [1.1.3|is automatically satisfied by this solution. For physical reasons we choose
when discussing de Sitter spacetime in the context of cosmology the expanding branch of
the square root since we observe our universe to be expanding. Technically [20], the de
Sitter manifold is the full branched solution where there exists a causally disconnected
sector represented by an exponentially contracting space.

Note that, instead of being a gravitational parameter, A is interpretable as a diagonal
(and rather non-standard) contribution to the EMT. Examining [1.1.2] and [1.1.3| we see
that one might view A as a perfect fluid with p = A and P = —A and hence w = —1.
The cosmological constant thus contributes as if it were a type of matter with constant
positive energy density but negative pressure. Hence we conclude that matter with w ~ —1
gives rise to approximate exponential expansion. We will see in the next section that a
scalar field with a particularly slowly varying potential function possesses precisely this
type of behaviour. We will almost exclusively work with A = 0 in this thesis since we
most certainly do not live in a de Sitter universe and moreover, dynamical evolution
corresponding to near exponential expansion is still achievable even with A = 0.

The parameter H of de Sitter spacetime not only controls the rate of expansion (which
might be thought to be merely a coordinate choice) but also defines what is known as
the cosmological horizon present in all expanding spacetimes. Consider an observer
at point A = z(0) = 0 at time ¢ = 0 sending a signal at the speed of light to an observer
at point B. In a small time §t the signal travels a proper distance a(t)dz and we have

dx 1 Ht
— =a ({)=¢e
o (t)
possessing solution z(t) = %e_m + % Hence we see that the co-moving distance

traversable by the signal is bounded with z — % as t — 0o. We are led to the conclusion
that observers separated by a co-moving distance of 2/H, known as (twice) the horizon
distance, or more cannot observe one another. We shall go into more detail on horizons
below and also in the next chapter in the quantum theory.

The reason why de Sitter spacetime is of interest to cosmologists is two fold. One the
one hand, de Sitter spacetime provides a simple example where the quantum wave equa-
tion may be solved exactly and implications of the existence of a cosmological horizon may
be (and are below) studied, while on the other hand our own universe while undergoing
inflation is expected to have been evolving approximately as a de Sitter spacetime. This
is the essence of the slow roll approximation in inflation, discussed later in this chapter.



Powerlaw spacetime

A large class of non-vacuum exact solutions to are given by the so called
powerlaw line element, a FL solution with scale factor a(t) = (t/to)pﬂ The matter is
assumed to be a perfect fluid where different equations of state correspond to different
powers of p as discussed below.

Specifically we realize the perfect fluid by a coupled homogeneous and isotropic scalar
field ¢(t) which evolves as [21]

_ af Vot
¢ = py/2pl < o )

3p—1)u

Lf:p&mp<_v2i>_ (1.1.6)

In these expressions p is an arbitrary mass scale. Here ¢ satisfies its own field equation

av 1 ) v
%:ﬁ(\/ggu ¢7V)7u+%_07

with potential

Uo +
arising from the action

Sn=y [ VE's (46,000 +2V(0)

under the HI assumptions. The EMT associated with such a field is given by with
fluid parameters

1.
P=_¢*-V
5%

1.

p:§&+4/ (1.1.7)
which for powerlaw become

2
“
P=p(2-3p)5

2

!

Hence the equation of state parameter w for powerlaw is

2

== 1

We read off some physically relevant special cases found in the literature [21]:

1
Radiation domination : a(t) = t%, w=g
2
Matter (dust) domination : a(t) = t%, w=g3
Vacuum energy domination: p— oo, w=—1.

5Recall that we choose units and coordinates such that the scale factor is dimensionless.



We notice that as long as p > 1 or in other words w < —1/3, we have d(t) > 0 so that
p > 1 powerlaw spacetimes satisfy the condition for inflation.

The limit p — oo is of special interest and we will study this limit more below in
the quantum theory. We see that in this limit the equation of state behaves as w —
—1 converging to the equation of state for a pure cosmological constant and de Sitter
spacetime. This is not surprising since the exponential function is that function whose
rate of change is greater than any polynomial power so that one would expect de Sitter
spacetime to emerge in the high p limit in this sense.

It should also be noted that, in consistency with its interpretation as an approxima-
tion to de Sitter spacetime, the powerlaw solution too possesses a cosmological horizon.
Repeating the argument presented above for de Sitter we see that for an observer A
at x = 0 at t = ¢y a signal sent out radially cannot be received at arbitrary comoving
separation from A as

A S N
a;(t):l_ —10_ — 0_1 as t — oo.
p p p

This is known as the co-moving particle horizon distance and is defined [22] at arbi-

trary times ¢ by
t gy
dt
dop = / e
to G/(t,>

On the other hand the co-moving event horizon distance is defined [22] by

o0 dt/
d = —
or / a(t')

and is the physically meaningful distance for the dynamics of quantum fields representing
(co-moving) distances beyond which events are causally disconnected. We see that the
proper event horizon distance for de sitter is special in that it is constant in time

e Mt 1

ddS: tddS:Ht _
pr =a(t)dcy =e H H

whereas the proper powerlaw event horizon distance is time dependent

=" (to=0)
and expands as time progresses. The result derived in the previous section about the
de Sitter horizon displays the fact that the co-moving event horizon converges to the
constant physical event horizon in numerical value in the infinite future. Of course, in
the conformal coordinates, the worldline z = || corresponds to the boundary of a light
cone. In proper coordinates this world line is described by & = a(n)xr = 1/H (since
a(n) o« 1/m) which is constant in time. In powerlaw this result is perturbed to read
T X ]77\1/ (1-P) which is approximately constant for high p. Below we will also see that for
sufficiently high p (the so-called slow roll spacetimes) the generalization of the Hubble
parameter H(t) = a/a for these spacetime behaves like H ~ /V(¢). Hence for high

5The sub and super scripts on the various horizon scales refer to ‘physical’, ‘comoving’, ‘event’, ‘particle’
i werlaw’.
and of course ‘de Sitter’ and ‘powerlaw’



p the proper horizon distance is expressible also as dbk, ~ 1/H(t) in analogy to the de
Sitter result.

As will be discussed below the presence of causal discontinuity in this physically real-
istic spacetime is of great significance for inflation where the dynamics of perturbations
on scales greater than the horizon during inflation are magnified to macroscopic scales so
as to become seeds for structure formation. It is the signatures of these magnified per-
turbations observed in the CMB that allow cosmologists to study the detailed dynamics
of the very early universe and to possibly test candidate theories of Planck scale physics.

For the powerlaw scale factor there exists a singularity in the conformal time variable
at 7(0) so that we choose the lower limit of integration as some arbitrarily small
parameter € and consider the domain of the variable ¢ to be (e, 00). We will wish eventually
to refer to times when a co-moving wavelength possesses an arbitrarily small proper
wavelength which occurs for vanishingly small ¢. Hence € should be as small a quantity
as necessary to allow 7 to represent as much of the limit ¢ — 0T as necessary in any
limit argument. This procedure will be a modification of the Bunch Davies vacuum
identification criterion discussed below and will allow us to choose particular solutions to
the wave equation by imposing a boundary condition in the limit ¢ — 0". To simplify
the equations we also choose the reference time ty to be tg = 1. We have

) = 7= (77 =)

so that the range of 7 is
(0, 00) forp <1
776{(07(51;_;) forp>1

The special case of p = 1 is unique since in that case

n(t) = In(t) — In(e)

so that
n € (0,00) forp=1.

Further, the scale factor in conformal time is found by a simple calculation to be
1— _p
a(n) = (L=pm+e )77, p#1; a(n) =e, p=1.

We shift the coordinate 7 by
1-p
€

1-p

)p/ (1-p)

so that the scale factor becomes a(n) = ((1 —p)n and the range of n (dropping

the overline) is now

1—

& poo) forp <1

1-p>

*pei_lp , O) forp > 1

Range n =

Note that this shift leaves the metric invariant. We see again one of the many continuity
features between high p power law spacetime and de Sitter spacetime. For high p the

10



powerlaw conformal time is entirely negative and the infinite future is represented by the
limit 1 — 0% as is also the case for the de Sitter conformal time given by n = —e~H!/H.
Again, the special case p = 1 is unique in that the shift is undefined in that case.

It should be noted that without implementing the e regulator we would have missed
the negative range of the variable n for p > 1 and not been able to refer to the limit
1n — —oo necessary for identifying the vacuum as we will do below in the quantum field
theory. This discussion is not highlighted in the literature.

1.2 Quantum Field Theory in Curved Spacetime

Quantum field theory is the generalization of the principles of quantum mechanics to the
description of continuous fields. In curved spacetime the theory of quantum fields is far
less developed than the flat spacetime counterpart. The subject received great attention
in the late 1960’s and early 1970’s with the pioneering work of Parker on the creation of
particles in expanding universes [23] 24, 25] and the appearance of the first review articles
[26]. Other authors such as Ford, Fulling, Unruh, Davies and DeWitt made significant
contributions to the subject over the following decade culminating in a satisfactory theory
of the renormalization of the energy momentum tensor and description of quantum fields
on FL backgrounds (see Ref. [2] and references therein). Modern presentations start with
the observation that the objects ¢ are better understood not as a field of ‘operators at
a point’ but as an operator valued distribution, mapping functions into operators on a
Hilbert space or, more generally, an abstract operator algebra [27]. Although we present
a brief discussion on the effective action and the so-called induced gravity proposal in
a later section we will not be concerned with the development of these and other more
sophisticated techniques here in this thesis since the problems we wish to address here
may be studied on a more intuitive and conceptual level. In this thesis we will be attempt
to take some essential features of what QFT is and study them in a context in which
some of the essential features of inflation are important. For this purpose a rigorous
formulation is not necessary.

In this section we develop some of the techniques that will be used in the next chapter
concerned with the dynamics of vacuum energy in expanding spacetimes. Much of the
material in this section is spread throughout the books [28| [3] 2, 29] and various review
articles in the literature such as [30} B1] but here we add a unique perspective on these
issues. Unless otherwise stated in this chapter we will use the notation ), to stand for
either Voﬁ >y or (2m)~3/2 [ d®k so that our results apply to both compact and non-
compact spaces X. Similarly the notation dj ;s is read as the Kronecker and Dirac delta
functions respectively in the two cases.

1.2.1 Quantum fields and the choice of vacuum state

We take the philosophy that a quantum field ¢ is an entity which satisfies the Klein
Gordon (KG) operator equation (0 — m? — ¢R)p = V/(p) arising out of a canonical
quantization of a classical field satisfying the classical (number valued function) equivalent
of the wave equation. The classical wave equation is the Euler Lagrange equation for the
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action

Slel = _;/d4$\/§ (9" @y oo +H(m? + ER)O* + 2V () | (1.2.1)

where R is the Ricci scalar, here written in curved spacetime. That is, to quantize the
classical field we postulate the equal time canonical commutation relations
[o(t,2), m(t,2)] = i6°(x — 2')

[So(tax)’ 4,0(75,1',)] =
7(t,z), m(t,2)] =0

—

where
68yl

50,00’
and the first order Hamilton equations of motion 0;¢ = [H, ¢|, Oy = [H, 7] (equivalent
to the second order KG equation).

m(t,x) =

A classical field is said to be free if V() = 0, interacting if it is not (for example the
commonly used V(p) = 1/4! ¢* potential), minimally coupled if ¢ = 0, conformally
coupled when £ = 1/6 and massless when m = 0. Each of these different theories have
significantly different structures, particularly at the quantum level and we shall have time
to mention at least a few concrete examples of these differences in later chapters. The
free, massless, minimally coupled version of the KG equation is thus written as

Oy = 0. (1.2.2)

We restrict ourselves to this wave equation in this thesis because this is mathematically
the simplest field with which to study the essential quantum phenomena in the context
of a cosmologically interesting background spacetime and further, these are the fields
which are utilized in inflation to provide the initial perturbations on which the large scale
structures of spacetime are seeded.

Fields in Minkowski space

The dynamics of a classical field ¢ specified by in flat spacetime is equivalent to the
dynamics of a collection of independent undamped harmonic oscillators. In flat spacetime
we have (¢ = —02¢ + V2¢. Expanding the field ¢ at fixed a time into eigenfunctions to
the spatial Laplacian V2

fela,t) = op(t)e™™

we see that the coefficient ¢, satisfies the oscillator equation of motion (97 +w?) ¢y (t) =0
where w,% = k-k. Thus a complete description of the dynamics of each of the independent
oscillators ¢y, is equivalent to a complete description of the dynamics of ¢ itself. This is
useful since the quantum theory of a harmonic oscillator is very well understood. In this
way one understands a field as simply a collection of harmonic oscillators.

It is important to note that due to the generality of the mathematical description each
oscillator equation possesses two independent solutions given by the complex exponentials
with positive and negative frequency +wp = £v'k-k. The full solution space of the
classical field (isomorphic to the tensor product space of the oscillator Fourier components
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H = ®Hi) may therefore be decomposed H ~ S, & S, into positive and negative
frequency parts S, and STD respectively where S, is that space spanned by those oscillators
¢ (t) for each k with positive frequency wy, only. Quantum field theory on flat spacetime
utilizes this decomposition into positive and negative frequency solutions in an essential
way as described below.

By writing a classical field as a sum of independent classical harmonic oscillators
¢r(t) one can, by direct quantization of the oscillators, write a quantum field as a sum of
independent quantum harmonic oscillators. This is done in the usual way by introducing
the auxiliary variables a; and az for each k in terms of which the field is written

olt.0) =3, o) = 7 (ot + ol 0)

Just as in the quantum mechanics of a harmonic oscillator each degree of freedom ¢ (t) is
described by the creation and annihilation operators af(¢) and a(t) respectively whose
time dependence is given by solving the time independent harmonic oscillator equation:

efuukt Wit

f) = ot &
2wk’ CL() a\/2wk

a(t) = ag
with [ag, QL] = 19y 1» We write this as

Pr(t) = \}5 (akvk(t) - aikvz) . (1.2.3)

or even more concisely
w= Z apug + a;rcu;;
k

where
1
ug(z,t) = ——e

V2w
The vacuum state is that state |0) for which ax|0) = 0 for all k. The states of the theory
are described by the n-particle states constructed out of the vacuum state as in quantum
mechanics. For example the state |1;) = az|0) is interpreted as a state containing one
particle of momentum k. This basis is known as the Fock basis.

—iwgt+k-z

It is important to note that specifying a splitting of the basis functions vy into positive
and negative frequencies is the same as specifying a splitting of ¢ into aj and az and
hence into different notions of what the particle content of a given state is. In flat
spacetime as noted above however there is a natural choice for the functions vp given
by the positive and negative frequency exponentials defined with respect to the global
inertial coordinate system of Minkowski spacetimeﬂ In the second part of this thesis we
will discuss a phenomenon known as the Unruh effect whereby the vacuum state |0) is
seen not to be empty (as in ag|0) = 0) but to contain a thermal spectrum of particles.
This is achieved by choosing not the inertial Lorentzian time coordinate but the timelike
direction defined by a congruence of constantly accelerating observers. This surprising
result, that to an accelerated observer the inertial vacuum state is highly excited, is at
the heart of some of the most modern applications of QFT in curved spacetime including
Hawking radiation and the holographic principle which we discuss in the final chapter.

"The inertial Minkowski coordinates are precisely those coordinate systems in which the line element
and hence the d’Alembertian is of the standard form as given above. Thus in all ‘natural’ coordinate
systems in flat space the idea of the ‘positive frequency solutions to the KG equation’ is a unique one.
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Curved spacetime

In the transition from quantum field theory (QFT) on Minkowski spacetime to the curved
spacetime theory one is forced to abandon many notions that might have at first seemed
necessary for a consistent interpretation. In particular there exists in general no preferred
timelike vector field with which to define a time evolution and, more importantly for our
purposes, no preferred definition of positive frequency mode function. Furthermore, in
general the wave equation .
ﬁ (\/gg/“’¢,u ) o 0

is not separable and even if it is, the freedom to make arbitrary coordinate transformations
including time dependent ones makes the decomposition of a field at a fixed time into
Fourier modes arbitrary. In this way, the picture of a quantum field as a collection of
harmonic oscillators is more obscure in curved spacetime.

We saw that in Minkowski spacetime a split of the solution space into positive and
negative frequency subspaces was tantamount to a decomposition of the field into creation
and annihilation operators a and a' respectively. Therefore in curved spacetime we expect
the notion of ‘particle’ to lose meaning being dependent on a choice of coordinates.
Another concept, closely related to the definition of particle, made ambiguous in curved
spacetime is that of the vacuum state for the quantum field. One might expect the
vacuum state to simply be given by that state in which all the harmonic oscillators are in
their ground state at one time. This prescription is ambiguous in curved spacetime due
to the ambiguity of the decomposition of a Fourier mode of the field into creation and
annihilation operators.

We will not need to address all the complexities of the general theory here in this thesis
since we will be applying the formalism only to FL backgrounds for which a preferred set
of observers exists given by the so-called co-moving observers that observe an isotropic
expansion of spacetime. Still, however, it is worth keeping in mind the subtle dependence
of the content of quantum states on the symmetries of spacetime. We elucidate these
comments in the following section with some concrete examples.

1.2.2 Quantum fields in FL spacetime

Let ¢ be a classical scalar field on a FL spacetime. Then the KG field equation is
. 2 .
é—3(“> b p— V=0,
a a

To quantize this field system we reduce the field to a collection of independent degrees
of freedom for which the quantization is known. To this end we choose the conformal
time coordinate 7 and define the new field variable (which we call the co-moving field)
X = a(n)¢. With respect to this new time coordinate and field variable we have

"

X"—*X—VZX:O
a
so that the instantaneous Fourier coefficient yj(n) satisfies

a

"
Xp + <k2 - ) Xk = 0. (1.2.4)

a
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It is thus the variables x;, which have a consistent interpretation as the independent
harmonic oscillators but now with time dependent frequencies w,% = k% —d"/a. We write

1 *
Xk = ﬁ (vkak + vkaJr_k)

where, in addition to solving the classical (number valued) version of the functions
v, must also satisfy the so-called Wronskian condition

U]J)Z — U;;’L')k = -2

in order for the commutation relations [ay, aL,} = 0y 1 to be consistent with the spacetime
commutation [¢(x),w(2')] = id(x — 2’). The unique exponential mode functions associ-
ated with the inertial time coordinate in Minkowski spacetime trivially satisfy this extra
condition as can be easily checked. However, in general the Wronskian condition is an
extra condition on the vy fixing a choice of normalization. Notice that due to the cosmo-
logical assumption of isotropy the mode equation only depends on the magnitude of
3-vector k. This allows us to make the simplifying isotropy assumption on the functions
vy, allowing us later to integrate out the spherical symmetry in integral expressions such
as [ d3kF(vg) = [ dk 2mk*F(vg).

It is the time dependence of the frequencies of the constituent harmonic oscillators
that is solely responsible for all the non-trivial features of QF T on FL backgrounds. From
it is clear that what at one time is a positive frequency, at another may not be. For
example let us specify a scale factor a(n) which is constant in the distant past (or past
boundary) and distant future (or future boundary) but these constant values are different
from one another. Then we construct particular mode function solutions by providing
the initial condition that v converge to the usual Minkowski mode functions vg in past
boundary. These mode functions are used to define the operators a and aL and hence the
vacuum state ag|0) = 0. Since the mode equation is not the Minkowski one, these
particular mode functions will not evolve so as to be equal to the Minkowski ones for all
time and indeed will be distinct from them after passing through the non-trivial region
where the mode equations differ. That is, at the future boundary one would expect the
‘state with no particles in it’ or vacuum state to be that state defined by the Minkowski
mode functions there. But the ‘real’ state and ‘real’ particle content is defined by the
‘real”’ mode functions which are distinct from 1)2 at the future boundary and hence the
vacuum state |0) contains particles with respect to an asymptotic observer who is ignorant
to the prior period of non-trivial gravitational field. We can easily obtain a quantitative
measure of the number of particles present in the state |0) after the expansion has taken
place by expanding vg in terms of the mode function solutions which converge to the
Minkowskian modes in the asymptotic future vy as

Vi = Z Oékjf}j + ﬁkjf);
J
implying a expansion of the creation and annihilation operators

_ N e
ap = g &l — B0,
J

The two choices of mode functions define two different vacuum states |0) and |0) respec-
tively. Unaccelerated observers in the remote past will of course observe no particles since
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we assume the (Heisenberg) state to be |0). In the remote future however unaccelerated
observers will not detect “no particles” since that would correspond to the quantum state
being |0). The number of G particles present in the state |0) is given by the expectation
of the number operator

(0)a ax|0) = Z 161>

The coefficients o, §;; are known as Bogollubov coefficients. One might say that the
anomalous particles were ‘produced’ by the time dependent gravitational field. This effect
is a general feature of QF T in curved spacetime where we interpret the (minimal) coupling
between gravity and the field ¢ as producing field excitation when the spacetime is not
static in an analogous way to the production of electromagnetic waves by time dependent
electromagnetic fields (for an excellent article on exactly this analogy see [32]).

Even more striking than the ambiguousness of the definition of positive frequency, it
seems possible that the frequency wi(t)? = k* — @”/a might become imaginary if a”/a
were to dominate k? in It turns out that this is exactly the feature of the theory
that allows inflation to explain the large scale structure of the observable universe. As
will be discussed below, the dynamics of perturbations in a FL background are described
by an equation of motion essentially identical to Each mode in an inflationary
epoch possesses a time beyond which the effective frequency of its harmonic oscillator
description is imaginary and hence branches into a decaying and exponentially growing
solution. It is this amplification of possibly initially microscopic fluctuations to observable
galactic scales that places inflation in a position to explain the large scale structure of
the observable universe.

Bunch Davies vacuum in de Sitter and powerlaw backgrounds

In conformal time, both the de Sitter and p > 1 powerlaw spacetime scale factors behave
as a(n) — 0 as n — —oo. This feature allows one to argue for a particular choice of mode
function solutions to define the vacuum state which we will call the Bunch-Davies
vacuumlﬂ The argument proceeds as follows: Since the decoupled degrees of freedom
of the quantum field are the co-moving modes which expand with the spacetime, in the
limit where a(n) — 0 the proper wavelength of the decoupled modes becomes negligible
with respect to any curvature scale. Thus in this limit the modes behave as though
the curvature was negligible and hence as though they were in Minkowski spacetime. We
choose the Bunch Davies mode functions to be those mode function solutions to KG which
converge to the Minkowski functions in the remote past. Note that this is a different
physical criterion than arguing for Minkowski modes based on an asymptotically flat
remote past and is applicable to the realistic cosmological models of spacetime evolution
based on SBBM and inflation. In de Sitter spacetime becomes

2
fr (1 )=

possessing the general mode function solution

= A\/mJ3/2(k|77|) + B\/WYg/z(kzln!)

81n the literature this is usually the name reserved for the de Sitter spacetime construction only but
here we extend the definition to p > 1 powerlaw.
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where J3/5 and Y35 are the Bessel J and Bessel Y functions of parameter 3/2. The
Bunch Dayvies solution is obtained by imposing the asymptotic behaviour

1 eiwkn ’U;c (77)

v — , — WE  as — —00
k() VK vk(n) ; !
where
2 2 2
n
In this limit the Bessel functions behave as [3]
nrt o 2 . nT o
Jn(A) — ECOS(A - 7 - Z), Y’I’L()\) — asln()\ — 7 — Z)

Noting that in this same limit the frequency behaves as w,% — k we find the particular

solution
7 .
v =\ =5 (Jajz(klnl) = i¥32(k|n))) (1.2.5)

For powerlaw, using the mode equation

2p—1)
" k‘2 _ p( —
vkt < (1—p2p2) " !

the procedure proceeds identically, with the result that

o) = "5 Gkl = ¥akin) . 0= 34 S 12)

Hence the spacetime dynamics is entirely encoded into the solutions to the KG through
the order parameter n of the Bessel function solutions when we assume Bunch Davies
boundary conditions. In Figure we plot the Bessel function order parameter as a
function of the power p of the associated scale factor. We note that this particular
solution converges to the de Sitter particular solution (with order parameter n = 3/2) in
the p — oo and p — —oo limits. Curiously there is also another value of p for which this
solution is exactly the de Sitter solution, namely for p = 2/3. This power law spacetime is
of physical relevance as it describes a dust dominated solution to the classical EE. Another
feature of note is that to each value n of the Bessel parameter there corresponds exactly
two powers p (except for the pathological p = 1 case) for which the Bessel functions of
order n are particular Bunch Davies mode functions. It should be pointed out however
that this does not mean that the QFT of the two spacetimes corresponding to a given
n are identical since, as we shall see in the next chapter, quantities of physical interest
such as the energy momentum tensor of the quantum field involve the scale factor a so
that different powers p give rise to physically distinct theories.

A note on zero modes and quantization
The quantization of a field by a direct quantization of its constituent harmonic oscillators

has some technical difficulties. Firstly, the effective frequency wg(n) can be imaginary
indicating a complete breakdown of the particle picture as provided by the operators
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Figure 1.1: The index of the Bessel mode function particular solution specifying the
Bunch Davies vacuum in powerlaw spacetime (red) versus the power p. The de Sitter
Bessel parameter is displayed as the horizontal asymptote (blue).

a; and a' usually associated with the addition of one energy quanta to the state of
a harmonic oscillator. It would seem that those oscillators with imaginary frequencies
should be quantized by alternative means. However, we take the position adopted in the
literature that the mathematical methods of the oscillator quantization - the introduction
of the operators aj taking care of the commutation properties of ¢ and the functions vy
taking care of the field equation - remain valid even in the case where an oscillator
interpretation is unavailable. Secondly (and less problematically) there exists modes for
which the frequency vanishes wy () = 0 and hence for which the mode function solutions
are linear functions:
Ukzza”/a = A?] + B

since they satisfy vj = 0. The reason the zero mode is irrelevant is that zero modes
constitute a set of measure zero (at a fixed time) in the set of all modes so that their
behaviour does not effect quantities (which we will calculate and utilize later on) such as

fdgk |Uk|2.

A note on p =1 powerlaw

The p = 1 powerlaw spacetime seems arise as a special case is almost all of the analysis
thus far. It is therefore worth making a study of this particular spacetime and the QFT
on it. We shall have more to say about p = 1 in a later section on horizons in powerlaw
spacetime.

The regularized scale factor for p = 1 powerlaw is a(n) = ee" where due to a partic-
ularity the conformal time in this case 7(¢t) = In(t) — In(e) is dimensionless. Shifting n
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by n — 7 = n + lne and dropping the tilde we have n € (In¢,00) and the mode equation

equation reads
i+ (K*=1) xxg =0.

Hence the constituent harmonic oscillators possess time independent frequencies just as
in Minkowski spacetime. The exact mode function solution satisfying the Wronskian
condition is

b it

(k2 — 1)1/4

which along with the complex conjugate form a complete basis. It would seem that in this
spacetime the issues of the ambiguity of the vacuum state are avoided; what is positive
frequency at one time is always positive frequency.

Vi =

The equation of motion now has a two parameter family of zero modes given by
the boundary of the unit ball in three dimensional k-space. However this is still a set of
measure zero for the full k-space.

One interpretation of the absence of particle production is that since the event horizon
of powerlaw spacetime expands linearly with ¢ and the co-moving modes with a(t) = ¢
the quantum modes never cross the horizon as they do in de Sitter or p > 1 spacetime
where the modes expand ‘faster’ than linearly in ¢. One might imagine that the co-moving
quantum field does not ‘know’ it lives in an expanding spacetime when expressed in co-
moving coordinates since none of the modes ever cross the horizon. Again we regard
this case as pathological since it is on the boundary of those spacetimes classified as
inflationary and those not. In a realistic transition from inflation to SBBM presumably
the scale factor will pass through p = 1 power law behaviour but only locally in time
avoiding the issues associated with the global p = 1 solution.

A note on conformal coupling

Above and elsewhere we have considered a massless minimally coupled scalar field in an
external classical gravitational field. It is of interest to study alternative couplings to
isolate generic features of such coupled fields. Of particular simplicity is the conformally
coupled field possessing action functional with & = 1/6 and m = 0. This coupling is
the one almost exclusively studied in the early papers (see the references quoted in the
introduction) in this subject and hence is worth mentioning here.

The Euler Lagrange equation reads
1
(WS 63)%0 =0

which is invariant under conformal transformations of the classical metric g(x) — Q2(x)g(z)
and simultaneous transformation of the field variable ¢ — Q.

As already discussed, all flat FL models are manifestly conformally flat upon the
redefinition of the cosmological time

0= [

19




where the arbitrary constant is left unspecified in the general case. In particular models
the geometry can become singular at finite times and singularities at infinite ¢ may be
mapped to finite 7 times.

By the above discussion we are led to the conclusion that mode function solutions to
the conformally coupled wave equation in FL backgrounds are identical to the Minkowski
space solutions. One has the time dependent Ricci scalar

a a\2 a”’
Rt:6P (f)} R(n) = 6L
=6+ (" () =6
where @ stands for 0;a and o’ stands for d,a. Hence the massless conformally coupled

wave equation reads
"

(D—gﬁwzo (1.2.7)
Now,
" / 2
o' 2d , Vi
Op=—"% — — —_
14 a? a3¢+ a?

so that, re-expressing ((1.2.7)) in terms of the co-moving field x = ap we have

and hence
n* 0,0, x = 0 (1.2.8)

where n* is the Minkowski metric. This shows explicitly how the wave equation reduces
to the Minkowskian wave equation when the field is conformally coupled to the confor-
mally flat FL spacetime. In this case, like the p = 1 powerlaw case there is no trouble with
identifying the positive frequency solutions and hence there should be no field excitation
for this theory. It is for this reason that we do not study the conformally (or any alterna-
tively) coupled theory in this thesis since, in essence, this choice is merely a mathematical
trick which sweeps the issues of the interaction between QFT and non-trivial spacetime
evolution ‘under the rug’ so to speak. Furthermore there have been several studies in-
dicating that non-minimal coupling is an un-physical choice by considering violations of
energy conditions in general relativity [18) 33].

1.3 Slow Roll Inflation and cosmological perturbations

In this section we bring together the material of the previous two sections in a discussion of
the theory of cosmological perturbations in inflation (for a concise and modern review see
[34]). To this end we also elucidate the nature of the so-called slow-roll approximation
in inflation whereby a classical scalar field is used to provide an epoch of w ~ —1 and
hence an approximate de Sitter evolution of the background spacetime.

Perturbations

In order to account for the inhomogeneous structure of the universe one needs to generalize
the idealized cosmologies described above to include inhomogeneous matter distributions.
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The beauty of the inflationary picture is that these inhomogeneities are not imposed
in an ad-hoc way as initial conditions but instead are shown to be a result of taking
into account the quantum mechanical behaviour of the relevant perturbative degrees of
freedom describing the matter/spacetime system.

The issue of which degrees of freedom one should choose to describe quantum me-
chanically was a point of debate in the early history of this subject but was solved by
Bardeen [35] in 1980. The problem is subtle due to the general covariance of the EE. Let
us assume a classical scalar field ¢° coupled to the gravitational field ggy. If one wishes
to describe small perturbations from homogeneity of the form

3(t, %) = ¢°(t) + 06(t, %), g (t, %) = g, () + 8, (£, %)

and treat them quantum mechanically then one should be sure that all the perturbations
that are quantized are ‘real’ in the sense that they cannot be removed by a suitable choice
of coordinates. The following example will help to highlight this issue. Imagine that we
add a small perturbation d¢ to the field ¢ only, leaving the metric unperturbed. The
field ¢¥ is assumed to be evolving monotonically (say decreasing) with the coordinate ¢ (as
is the case in the example of the scalar field supporting the powerlaw background). Then
in our co-moving coordinates (see the previously spatially homogeneous scalar field
has a value which varies slightly from place to place on a co-moving spatial section. Let
us define a new time variable 7 by saying that sections of constant 7 are those spatial
sub-manifolds (which we will call homogeneous sections) in which the value of the scalar
field is constant. In other words we choose to slice the four dimensional spacetime into
three dimensional spatial sections such that at a point on the co-moving section where the
value of the field is slightly higher than the homogeneous value, we choose to slice ‘after’
the co-moving section to a time when the field has a lower value, restoring the constant
field value. On the other hand we choose to slice ‘before’ the co-moving section for points
where the perturbed field has a lower value than the homogeneous value. This is all
done in a continuous way since we assume the perturbations to be sufficiently smooth.
Such a perturbation is clearly un-physical since we were able to completely remove it by a
change of coordinates under which, by general covariance, the physics should be invariant.
Therefore one requires perturbation variables which are coordinate or gauge invariant
functions of the field and metric for the classical and especially the quantum theory. Such
variables exist and were first described by Bardeen [35] and describe separately scalar,
vector and tensor perturbations of the metric/field system. The splitting of perturbations
into scalar, vector tensor characters is analogous to the splitting of the electromagnetic
field strength tensor into components derivable from the scalar potential, parts derivable
from the vector potential and purely tensorial components representing a homogeneous
self sustained field configurations (traveling waves). For gravity coupled to one scalar
field we write the perturbed metric in full generality as

ds* = a®(n)[—(1 + 2®)dn* + 2(B,; —S;)dz'dn
where Slfi = le = 6 hij = h;; = 0. Therefore the metric perturbations are described
by the scalar functions ®, ¥, E and B which contribute (along with the scalar field

perturbations discussed shortly) to the scalar perturbations, the vectors S and F and
the (0,2) tensor h which describe the vector and tensor perturbations respectively. The
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gauge invariant variable alluded to above describing the scalar perturbations including
the perturbations of the scalar field ¢ itself is given by [34]

N\ 2 /
5¢ + ¢p(B — E') (1 + <Z> > + ‘;qbgcl)] .

In the literature [34] it is stated that upon expanding the action to second order in
perturbations we obtain the action for perturbations

C(nv x) =

1
S = —3 /d4x z(n)Qn’“’C,u Co (1.3.1)

followed by the statement that the field equations are

"

(20)" = (2¢) = V2(2¢) = 0 (1.3.2)
where -
() = L% (1.3.3)

= ou
(This is analogous to where we must scale the physical field ¢ — x = a¢ to obtain
decoupled harmonic oscillator mode equations.) This action and field equation look very
similar to the action for a scalar field on a background FL spacetime with scale factor
z(n). However, since integration on manifolds only makes sense when one uses the proper
integration measure d*z,/g and that the real background spacetime is a FL background
with scale factor not z(n) but a(n) we should really write the action as

1
Y

from which follows the field equation

- (3), ()0

by a now legitimate application of the Euler Lagrange equations

08

SR
HOV G

To the author it is unclear what it would mean to quantize such a field equation, and to the
authors knowledge all accounts of the quantized scalar perturbations use the ‘illegitimate’
field equation We will see in fact that this issue can be partially resolved by
assuming a particular form for the background dynamics of the classical field ¢ and hence
that of a. This will be the slow roll approximation with constant slow roll parameter.
We will see that this corresponds to a powerlaw evolution of the unperturbed spacetime.

One important thing to note about the so-called Mukhanov variable z( is that in the
limit of de Sitter evolution represented by ¢;, — 0 or in other words w — —1 for the
background homogeneous field, the function z(7) vanishes. This means that in de Sitter
spacetime the scalar fluctuations vanish (to second order in the action) since their action
is multiplied by the pre-factor z.
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Slow roll

The essential assumption of slow roll inflation is an assumption on the dynamics of the
spacetime supporting scalar field and reads V(¢) >> %d)Q The terminology comes from
the analogy of a ball rolling slowly down a slope of very small gradient - the kinetic
energy is small yet the potential is high. If such a condition is satisfied we say that the
spacetime is undergoing slow roll inflation. The reason why we add the word inflation to
the definition is that during such regimes we have by[I.1.7] w ~ —1 and hence approximate
de Sitter evolution of the spacetime. Following [34] we define the slow-roll parameters
€, 0 and & characterizing the slowness of the roll by

e(t) == gq's? <;<i>2 + V) , (1.3.4)
i(t) = _Ifq'b
(1) = <20

where in analogy to de Sitter spacetime we make the general definition of the time de-
pendent Hubble parameter

Essentially, € characterizes the slowness of the roll and § the slowness of the slow roll.
Inflation occurs if € ~ n << 1. Thus during slow roll we have by and without
cosmological constant that

H(t)~+/V/3

which might be interpreted as a time dependent Hubble constant; during slow roll the
function V' varies only very slightly so that H is approximately constant.

The EE for the unperturbed fields without cosmological constant read

a\?> 1.
3() =-¢*+V
a 2

which may be rearranged and written in conformal timdﬂ to read

a\?
(s
a
where €(n) is the first slow roll parameter [1.3.4] That is, we have

z(n) = ay/e

furnishing a consistent interpretation of  as a legitimate quantum field defined on the
curved background gravitational field with (slightly non-standard) action

1
S = 2/d4x\/§e(n)g‘“’8u§&,§.

9Note that 8; = cfl@n.
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We are therefore justified in importing the quantization formalism and interpretive results
developed in the previous section The results certainly go through when we assume
a/z = € ~ constant in which case the field equation s exactly that of a scalar field on
the unperturbed background spacetime I = 0.

As promised above we examine the case when ¢ = ¢ = constant. Then it can be shown
that

H(t)= eV/39()

and consequently that a(t) = ¢'/¢ [36] so that we identify the slow roll parameter as the
inverse of the powerlaw power ¢ = 1/p when the parameter is constant. We can see that
for powerlaw potential and field [I.1.6] the first slow roll parameter becomes

which is small for large p. Recall that for powerlaw w = 33 — 1 so that we conclude that
the powerlaw background undergoes slow roll inflation for large p. In this constant € case
we have 27” = %" and hence the scalar perturbations obey exactly the equations of motion
for a scalar field on the homogeneous FL background with scale factor a.

It is also worth noting that the tensor perturbation automatically satisfy a standard
equation of motion without recourse to a slow roll regime [34]

"
W — L h—V2h =0
a

where h := h;tj are the independent polarizations and tensor components of the tensor
perturbations. For these perturbations we therefore also have a straight forward applica-
tion of the quantization procedure in describing quantized gravitational waves and
that this interpretation is independent on the background dynamics of the gravitational
and scalar fields.

Slow roll inflation as a mechanism of structure formation

As we have seen, quantized scalar and tensor perturbations of a FL. background coupled
to a (classical) scalar field satisfy the quantum KG equation and that the perturbations
are only defined for approximate (slow roll) de Sitter expansion. Therefore we are led by
Heisenberg uncertainty for the quantum modes which, crucially, contain metric degrees
of freedom, to the conclusion that exactly FL geometry is impossible if we are to take
seriously the quantum behaviour of the fields into account. Further, one can make def-
inite predictions on the character of perturbations based on the quantum theory. One
experimental window on the inhomogeneities and anisotropies of the physical universe is
through our measurement of the primordial CMB radiation. It is observed that the CMB
is subtly anisotropic across the sky and that the correlation of the temperature fluctu-
ations as a function of subtended angle follows the characteristic (and by now iconic)
shape [1.2] This correlation is directly calculable from the quantum two point function
G(z,2") == (0p(x)e(2')|0), where |0) is the assumed Bunch Davies vacuum, and the
knowledge of the detailed relativistic hydrodynamics of the matter during the subsequent
evolution. The n-point functions of a quantum field theory are directly interpreted as
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Figure 1.2: The theoretical curve predicted for the angular dependence of the correlations
of temperature fluctuations with some experimental data superimposed. (Taken from the
NASA web site LAMBDA (Legacy Archive for Microwave Background Data Analysis)
and due to the WMAP science team [37]).
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correlations between the different realizations of the probabilistic field amplitudes among
the ensemble of all possible fields. This interpretation is most transparent in the path
integral formulation of QFT where the n-point functions are literally weighted sums (in-
tegrals) over all the possible fields of the product of the field amplitude at each of the n
points where the n-point function is being evaluated:

(p(@)p(a)) = /{ pla)ple)e

Here the weight given to each history () is given by the exponential of the evaluation
of the action functional on that trajectory (times i).

However, since quantum fluctuations are naturally microscopic in origin, how is it
that they are responsible for such macroscopic effects as CMB fluctuations? The answer
is in the KG equation. Assume that sometime during its evolution a quantum mode ¢y,
associated with the scalar perturbations for example, becomes classical ¢ — ¢ by some
process such as decoherence. Then the perturbation evolves according to the classical
KG equation (since that is what is assumed in the quantization process to begin with!)

"

o+ (kQ — 6;) br =0, d"/a o 1/n? for powerlaw.

For late times in powerlaw, the k? term becomes negligible and the ‘harmonic oscillators’
evolve into the region where their frequencies become imaginary. In this limit the KG
equation becomes
Pk
o %

02
possessing the general solution

1 1 p2p—-1) 1
= Ag|n|™ + Bg|n|" =—x4/-+——-F=—-*n.

where n was defined previously as the order parameter of powerlaw Bessel exact mode
function solutions (using the Bunch Davies vacuum). Indeed, as will also be discussed in
the next chapter, the exact Bessel function solutions possess the asymptotics

= T (ki) — Yo (k1)) ~ V7Tl ((klnl)" — iCkfa) ™) asn — 07, (135)

In this limit the smaller exponent dominates giving rise to the runaway solution. Defining
the averaged field on the region V = L3 as ¢y := fV d®z () and fluctuation spectrum
as

o= 01t 0) = [ @ | @ 0le@e)l0
it is easy to show that
Sr(kyn) ~ a = (1)K vy ().

It is the function o7, (kn) that characterizes the magnitude of perturbation of the mode vy
on scales of magnitude L and should be evaluated at some time 7; at the end of inflation
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when the universe settles down to a regular matter dominated FL spacetime. Hence using
and the expression for the scale factor a o |n[?/(1=P) we see that

p _ [1,.p@p=1) 3 [1, p(2p-1)
> \/4+““’)2k2 ERNCRE

1
o o |n|” ~ 1 for large p.

This is one of the most important results of inflation - that the spectrum of fluctua-
tions is independent of both the co-moving wavenumber and time. This is known as the
scale invariant spectrum. This prediction rests strongly on the assumption that the
background is evolving as a high p powerlaw.

An intuitive understanding of why the fluctuation spectrum becomes constant on
large proper scales is found in the presence of the cosmological horizon. In fact for co-
moving modes k = 27/, where A is the co-moving wavelength, of size approximately the
co-moving event horizon scale

1-p
A~ t
p—1
we have
21 al/r—1 ortl—p
nlk = —Inl = = ~1
A (p—DA  (p—1A

so that precisely where the frequency w,% = k2 — A /n? becomes imaginary the mode
crosses the event horizon. It is then clear that such modes should not oscillate as usual
and should ‘freeze out’ since the wave is not in causal contact with parts of itself!

1.4 The state of the art

As an epilogue to the picture we have painted of the physical universe above we mention
here a few problems with the standard model of inflation (involving a classical scalar field
with potential) as well as some recent developments stemming from some rather exciting
observations made in the late 1990’s.

The inflationary hypothesis is a very economic one as described above. Assuming the
most general case of slow roll inflation the only input to the theory is the classical potential
function V(¢). However this function needs to be of a rather specific form in order to
produce inflation, namely it is required to be slowly rolling and of large amplitude, and it
is unclear why nature would choose such particular dynamics. Furthermore it is observed
today that the universe is entering into a second inflationary era [38]. This is essentially
unexplainable by slow roll inflation where the scalar potential is usually assumed to ‘settle
down’ into a ground state at the end of inflation. As we will discuss in Chapter 3 a much
more satisfactory interpretation of inflation is as a dynamical response of the spacetime
to the presence of vacuum energy. Another problematic feature of standard inflation is
that it makes any reference to classical matter at all in a regime of energies that are
supposed to exceed even the highest achievable in modern particle accelerators. Again
a purely quantum mechanism for inflation would be more satisfactory. Also, throughout
the analysis of the generation of structure by quantum perturbations no reference is made
of the energetic backreaction of the quantum field upon the background spacetime. In
effect the quantum field fluctuations (when the field is in the ground state) are assumed to
be ‘test fields’ providing perturbations of negligible energetic content. In the next chapter
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we will study precisely this energetic content and show that it is far from behaving like a
test field, possessing non-trivial dynamics (time dependence) and large competitive effects
between the ultraviolet and infrared which should be taken into account in any complete
inflationary theory.
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Chapter 2

The Dynamics of Vacuum Energy

The specific problem we wish to discuss in this chapter is the generation or dilution of the
vacuum energyE] in an expanding spacetime as the interplay between the incorporation of
new degrees of freedom at a shortest length scale and the dilution of energy as degrees of
freedom expand. As exemplified by the theory of inflation, the physics of an expanding
spacetime is highly non-trivial while on the other hand QFT, in particular the existence
of inexorable vacuum fluctuations, is undeniably novel in its own right. One thus expects
some very interesting physics to arise in the interplay between the physics of an expanding
spacetime and the physics of vacuum energy. The physical picture that we study is
simple: assuming a smallest meaningful length in nature renders the vacuum energy
ultraviolet finite and allows one to study the evolution (that is production or dilution) of
the total vacuum energy as spacetime expands. In this way one may study the energetic
favourability or otherwise of the very expansion of space itself.

Such studies of the dynamics of vacuum energy in curved spacetime are rare in the
literature since in order to even begin the discussion authors must be willing to break
(local) Lorentz invariance by imposing an ultraviolet (UV) cutoff to render the energy
finite or else develop sophisticated (and perhaps obscuring) renormalization techniques.
For this reason we motivate carefully our starting assumption of a shortest length cutoff.
We argue that, regardless of the expectation that non-trivial quantum gravity effects are
expected to become pertinent before we reach the scale where traditional QFT breaks
down, a picture of at least how the character of the vacuum energy is modified on a
time dependent expanding background space for intermediate energies is useful. Further,
we establish and discuss at the end of this chapter a new class of infrared (IR) diver-
gences in the vacuum energy in a class of powerlaw expanding spacetimes. These results
essentially justify our ‘sweeping under the rug’ of the physics in the UV by displaying
the significance of the IR physics of vacuum energy. After discussing and justifying a
further cutoff, an infrared cutoff, the stage will then be set for a study and interpreta-
tion of the results which will be the subject of the following chapter where we interpret
the vacuum energy dynamics as that vessel which supports the background spacetime
solution on which the field whose vacuum energy we calculate is defined. In this way we
begin to address the problem of the quantum backreaction on the classical spacetime

! At this point the term ’vacuum energy’ has not been defined. Below we will adopt various positions
on such a definition which all essentially relate to the zero point fluctuations inherent in particle quantum
mechanics.
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usually embedded within an effective action framework and, in a more speculative vein
the proposal of induced gravity where the dynamics of gravity itself is interpreted as a
geometrical dependence and evolution of quantum vacuum energy alone (discussed in the
following chapter).

After carrying out an exact calculation on the full four dimensional cosmological
spacetimes we investigate some simplified models of quantum field theory on an expand-
ing background that possess to increasing degrees of sophistication essentially the same
calculation to elucidate the dependence of the results on the various complexities involved
in the full cosmological calculation. Initially we write down a discrete model of an ex-
panding piece of string and then move on to low dimensional examples of continuum field
theory. In all cases we are concerned with the dynamical evolution of the vacuum energy
as an interplay between the incorporation of new degrees of freedom at the shortest length
scale and the dilution of energy as degrees of freedom expand.

2.1 Vacuum energy and minimal lengths

It is one of the more interesting predictions of quantum mechanics (QM) that all quantum
systems undergo inexorable energetic fluctuations on all scales. The fact that H|0) = %hw
has far reaching consequences in one particle QM not the least that of the stability
of atoms. Above we saw how a quantum field may be interpreted as a collection of
ordinary quantum harmonic oscillators. The property of a quantum field that all of its
constituent harmonic oscillators possess a minimal energy is as necessary a consequence
of the principles of QM as it is a paradox and is known as the ultraviolet divergence
of the vacuum energy of the quantum field. For an excellent review article on the
mysterious and counterintuitive properties of the quantum vacuum see [39].

To get a handle on the nature of these fluctuations we present the following argument
found in [3]. In the schrodinger picture in the ground state each harmonic oscillator mode
o of ¢ will be described by the wave function of the number valued eigenvalues ¢y, of

the operators ¢y,
g\ VA k2
() o ()

possessing an uncertainty in the value ¢, of the field

S = /(B2 ~ k2,

Hence for the averaged field in a region V =L x L x L,

oL =+ [ ¢d’x
)y,

3k
0% = (¢h) = [ ook

where Fj, = [[,2/(k'L) sin(k'L/2) is negligible for |kL| > 1. Approximating d¢) to be
constant on the box we obtain

we have

(p1) ~ L7360% |ker 1
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and finally
1 1
dpr, ~ | —= = —.
PLUNR T L

The moral of this story is that the fluctuations become arbitrarily large on short length
scales and are arbitrarily suppressed on large length scales. The picture that the severity
of these quantum fluctuations depends on the length scale on which they act is something
that does not generalize to expanding, and in particular inflationary spacetimes as de-
scribed in the first chapter. However on very short length scales where the non-triviality
of the background geometry should be negligible this spectrum should be accurate.

The point here, however, is that since quantum theory itself does not contain an
intrinsic length scale below which the picture of fluctuating quantum modes breaks down,
we are led by the theory to accommodate for arbitrarily large fluctuations of energy on
extremely small length scales. It is clear that the total ground state energy which is
the sum of all the constituent harmonic oscillator ground state energies will be badly
divergent. This is why we call this the ultraviolet divergence.

A simple example here illustrates the essential issues of the ultraviolet problem. Con-
sider a piece of string of arbitrary length and subject to Dirichlet boundary conditions.
In the classical description of a string in arbitrary motion, one finds that the dynamics
reduces to a countable family of harmonic oscillators due to the property of superposition
for waves. The exact excitement of each independent mode solution is found directly
from the initial condition and the conservation of energy. Thus, in classical mechanics
as long as one chooses a state of finite energy initially, the energy is rendered finite for
all time. In contrast, given that each mode is an independent degree of freedom, the
Heisenberg uncertainty principle tells us that each and every mode comes with a finite
ground state energy in any quantum state. That the total zero point energy is infinite is
merely a problem of the continuous nature of the mathematical model of the string since
in practice one expects a smallest possible wavelength mode allowable by, for example
the atomic nature of the string or the finite thickness of the string. Hence one expects
the ground state energy of the piece of string to be the sum of only those modes up to
the minimal wavelength and moreover be finite. It is for this reason that pieces of string
(which are presumably subject to the laws of quantum mechanics even at macroscopic
scales) do not possess an infinite energy!

As with the piece of string above, clearly the problem with the derivation of the
result that a quantum field possesses an infinite energy due to arbitrarily large quantum
fluctuations on arbitrarily short length scales is in the expectation that the principles
of QM and our description of fields holds unmodified all the way to infinitesimal length
scales (the high frequency modes in the sum). This is a more fundamental obstruction
then the finite thickness of a physical piece of string since the quantum fields of nature
are supposed to be fundamental in every sense of the word. In fact, there is good reason
to believe that this expectation is naive. It is well known that by applying the principles
of QM to the gravitational field one reaches the conclusion that there should be a smallest
measurable distance in nature [40] and, further, the quantum ground state fluctuations
of the gravitational field will render meaningless a continuum picture of geometry on the
smallest length scales [41]. There seems to be two ways out of this conundrum: Either
ignore the vacuum energy and argue that only energy differences are relevant for physics
or else seek to describe the modifications required of either continuum QFT or GR at
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very short length scales. The first of these two options is the course taken by high energy
physicists who do their calculations on flat spacetime. One might argue that in GR, all
energy gravitates so that this tactic will not be applicable when gravitational effects need
to be accounted for. The second option leads one to speculate about the nature of the
unfinished theory of quantum gravity and how might QFT be modified when quantum
gravity cannot be ignored.

In [42] a modification to the first quantized canonical commutation relations is made
which when second quantized yields a field equation that incorporates the notion of a
minimal length into its formulation. The essential idea of [42] is to modify spacetime
commutation relations such that the modified Heisenberg uncertainty relation states that
there exists a minimal uncertainty in spatial position. Brought to the second quantized
theory this modification implies a smallest possible proper wavelength for composite
modes of a quantum field and hence a cutoff on the mode sum of ground state energies.
When the background spacetime is expanding this implies that each mode comes with a
creation time when its proper wavelength exceeds the cutoff length and hence a continual
generation of vacuum energy is associated with each newly generated mode. In [43] it
is found that the vacuum energy contribution of such a modified field is divergent at
the generation time and hence the question of the net generation of vacuum energy is
unanswerable within that framework. Although the model of [42] is the one of the very
few consistent and complete mechanisms proposed in the literature that incorporates an
ultraviolet modification to QFT it is probably does not represent accurately the real
physics in the ultraviolet on which the full dynamics of the vacuum energy rests strongly.

In [44] a model of expanding spacetime as a growing lattice is presented. The authors
use the model to study the problem of the generation of vacuum energy in the presence of a
minimal length scale in nature in much the same spirit (but using very different methods)
of this thesis. In the next section we present a similar (but significantly simplified) discrete
model of dynamical vacuum energy. It would be interesting to compare these two models
in higher dimensions.

A very different proposed mechanism for avoiding the UV problem is the freedom in
principle to modify the high energy behaviour of the dispersion relation usually assumed,
and experimentally confirmed at low energies to be wy = k. Such modifications come from
a desire to cure the ultraviolet divergences of QFT without introducing discrete structures
or minimal lengths. Further, such modified dispersion relations are a phenomenological
way to model expected modifications to QFT arising from the quantum behaviour of
spacetime itself in the extreme ultraviolet where we expect the modes of a quantum
field to be interacting strongly with the gravitational quanta and be dispersive there.
Several modified dispersion relations have been proposed in the literature usually cast
in the framework of the trans-Planckian problems of Hawking evaporation and inflation
(see [45] and [46] for example). We will not go into these details here and defer such
considerations to future study.

In the rest of this chapter we take the position already presented in the introduc-
tion that although ultraviolet (or quantum gravitational) physics might have significant
dynamical effect on the intricate details of the energetics of inflation, still there exists a
meso-scale (from sub-Planckian to galactic scales) of energies associated with a quantum
field that could have significant cosmological effects. This is an extremely large energy
range encompassing all of the energies tested experimentally by terrestrial experiments,
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within which we can be sure to trust QFT and GR and hence the conclusions drawn from
their (at times awkward) union.

2.2 A Discrete Model of Dynamical Vacuum Energy

Firstly, in this section we consider a simple model of a finite collection of harmonic
oscillators as a stripped down model of a real quantum field in curved spacetime. We
study the energetics of the ground state fluctuations when we let the number of oscillators
be variable.

Consider a collection of independent quantum mechanical harmonic oscillators with
fundamental frequencies wy and the corresponding total zero point energy

Et)=> %hwk.
k

This sum is clearly dependent on the number of oscillators which we allow to depend on
time as

1 a(t)A
k=ko

where a(t) is a (discreteED time dependent factor. The sum is to be interpreted as the
sum of the zero point fluctuations of the independent modes on a piece of string with
a time dependent upper bound on the contributing wave numbers. Thus we form the
energy density by dividing by the length of the string which we take to be expanding as
L(t) = a(t)Lo;

1 1 1 a(t)A
p(t) = mE(t) =20 Lﬂhk:zko W

where here and below, the sum is to be taken over the discrete modes associated with
the finite string length k = nw/L(t), n € N. Then we have

n=AL(t)/7

h nw
p(t) = 2L ; ()
5 AL(t)/m
= 2L nzo "
~ SEgE * L0/ (ALO/7) +1)
hA? hA
- St (2.2.1)

Hence the energy density is time dependent but converges to a constant at late times.
The decaying term is an interesting modification to the expected quadraticﬂ (in A) result
due to the presence of the time dependent frequencies.

2We remark here that in practice the upper limit of the sum is taken to be very large as to render the
‘scale factor’ a(t) effectively continuous.
3This term is the analogue of the familiar quartic ultraviolet divergence in Minkowski space QFT.
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Let us derive this result in a different way which highlights the mechanisms at work.
This time we use the expanding piece of string and a discrete time evolution whereby
the time steps are such that during one time step the string expands by one unit of the
fundamental length A.

Consider when the string length L is one cutoff length A, L = A. Then there is only
one contribution to the energy and it is given by
1 27 hr
Ey=-h—=—.
°T2'A T A
After the first time step there will be two contributions from the two allowed normal
modes that fit on the string

() -1

Ev="3 oA

After each step, the sum should include one extra term which will be the new term
arising from the incoming smallest mode. In addition, the previous terms all get multi-
plied by a factor of (N — 1)/N since the existing modes wavelengths all stretch by the
factor N/(N —1). Notice that, by tracing its history, a mode that came in (as a minimal
wavelength / maximal momentum mode) at the nth step would contribute an energy at
the N > nth step proportional to the stretched momentum

i N-—-1

N-Lna _N-IN-2,y, ~_N-IN-2 oy Ny
n N N-1" N N—-1 ""np41 ™M N

" N

Hence we express the total energy at the Nth step as
N N N
1 1 n wh wh 1 ThN  wh
Exn=-hY kN =2nh —Fkmax = —— =—X=NN+1)=—+—.
V= ghd k= gh D fhme = R 2n= a X gV D = S0+ ox
n n=1 n=1
We see that the total energy diverges for large time steps N. However, the energy density
p, given by the total energy divided by the length of the string length L = NA is

_Th o mh
P=9oA2 T aAL

which agrees with the first calculated result [2.2.1]

We interpret the result as implying the almost exact cancelation of the ground state
energy production due to the new modes entering the sum and the dilution of ground
state energy of each mode as its frequency decays with the expanding string.

2.3 Vacuum energy in QFT

2.3.1 Measures of Field Excitation
As we saw in the first chapter, in curved spacetime the choice of basis functions that we

choose to expand a quantum field in terms of is arbitrary. This was equivalent to arbi-
trariness of the ‘particle content’ of a quantum state as made explicit by the Bogoliubov
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transformation coefficient 3. In certain idealized spacetimes there exists natural defini-
tions of what the particle content should be in asymptotic regions such as FL. models with
a(n) — constant. However neither does the physical universe possess such a region nor
do we even trust the measure of field excitation based on Bogoliubov transformations as
in This is particularly pertinent in the light of the fact that there exist non-trivial
Bogoliubov coeflicients between two sets of mode functions that are solutions to the same
KG equation written in different coordinates on the same background manifold. After all,
these coefficients merely represent a change of basis for the space of functions assumed
for the physical model. We therefore look for more objective measures of field excitation.

One such measure is the expectation value of the energy momentum tensor. Certainly
this object depends on the choice of coordinates of the background spacetime but the
tensorial structure of the energy momentum tensor is related directly to the geometry via
the EE giving it an objective significance. More importantly, however, is the expectation
that is should be (TW) that describes the classical energy momentum associated with
a quantum ﬁeldﬂ This expectation is motivated by the Ehrenfest theorem for quantum
mechanics [47] which states that the expectation values of quantum observables follow the
same equations of motion as the classical counterparts. Thus if G, = T}, for classical
scalar fields then G, should be equal to (TW> for quantum fields. At this point we will
not be concerned with solving the equation G, = <T ) for the metric but use it only as
a justification for the validity of the calculations of <TW) below.

2.3.2 Vacuum energy on realistic expanding spaces

In the following we calculate the vacuum energy density in de Sitter and powerlaw back-
grounds in 3+ 1 dimensions by computing the expectation value of Tg and discuss several
issues that arise in the analysis including a new class of infrared divergences not found
in the literature.

De Sitter spacetime - a consistent and exact result

We showed in how to solve the KG equation in de Sitter space-time for the operator
field x1, = a(n)pr, where p(x) = [ d3k(2m) =327, is the physical scalar field where
we use conformal time 7 and co-moving modes k. We used the Bunch Davies boundary
conditions in order to select a (physically well motivated) vacuum state. The mode
functions v for each k are expressed as a linear combination of Bessel functions of the

variable A = k|n),
[T .

where xr = 21/ 2(apvp + aikv;‘). These half integer Bessel functions are expressed in

terms of elementary functions as

2 /sinA
J32(N) = a( 3 —cos)\>

2 . COSA
Y30(\) = \/H(—Sm)\— 3 )

4By which we mean the gravitational influence of such energy momentum.
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We list here some expressions involving these mode functions that will be needed in later
calculations

9 1+ k:2772
[vg|* = —5—5—
k312
L2 1—k*n? + k'
k k3774
% _ 1- Zk3‘n‘3
SN PE

and of course we have that these mode functions satisfy the standard Wronskian condition

VpUE — Vg = 2i.

Using the form of the expectation value of T 8 derived in the appendix valid for
general FL spacetimes

R 1 a—4 a a’
R N 37,1712 2, 07 2 a,
p=(08) = Jiomys [ PR IE+ (8245 ) o =0, (L)

the de Sitter scale factor a(n) = —1/Hn and the mode functions one finds

H4’I’]4 0 k
= dk 2k3 + —.
P 82 /0 + n?

Here we have moved to polar coordinates to impose the isotropy of mode functions that
until now has merely been utilized in simplifying calculations.

It remains to impose a proper momentum cutoff to tame the ultraviolet divergenceﬂ
at kmae = Aa(n) where A is a fixed proper momentum value. That is, we cut off the
integral for those co-moving modes satisfying

k> a(n)A

which will depend on time through the scale factor since co-moving modes expand with
the spacetime.

The energy density then evolves as

A* A2
= 2.3.2
p(n) 1672 + 1672a%n? ( )
A4 A?H?
= — 4+ —F 2.3.
1672 + 1672 (2.3.3)

which is independent of time. This result is somewhat expected since de Sitter space-time
is time translation invariant. The result 2.3.3]is an finer characterization of the vacuum
energy density over the Minkowski quartic A divergence usually quoted in the literature.
This result is also robust against a modified dispersion as we show in Appendix [C]

Here we have seen that by interpreting the ultraviolet cutoff as a real constraint aris-
ing, as discussed above, from more fundamental quantum gravity considerations, we have

50r alternatively this cutoff might be interpreted as only taking into account a ‘meso-scale’ of ground
state fluctuation of the co-moving constituent harmonic oscillators.
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found a quadratic divergence also that depends on the Hubble parameter. This result
is also contrary to the results of [48] where infrared divergences are found using Greens
function and renormalization techniques. A possible explanation is that the renormaliza-
tion, usually utilized in taming ultraviolet divergences, also modifies the infrared limit
of the theory. We will see below that the situation is drastically different in powerlaw
spacetime.

Powerlaw spacetime - a class of infrared divergences

Apart from ultraviolet divergence, quantum fields, usually only massless fields, are some-
times subject to infrared divergences. These divergences are associated with long wave-
lengths and are present even after the ultraviolet divergences are regulated. A small class
of such infrared divergences have been studied in [49] where, using different methods to
here, the authors find an infrared divergence in the energy momentum tensor generically
for powers 2/3 < p < 2. To this end we wish to study the behaviour of a scalar field in a
powerlaw background spacetime with metric given as above by

ds® = —dt® + tPdx>.

We interpret this spacetime as a justifiable approximation to full exponential expansion
(de Sitter spacetime) during slow roll expansion and the field to be either quantized grav-
itational waves or quantized scalar perturbations. Therefore we will mainly be interested
in results that apply for p > 1 but for completeness we discuss the powerlaw spacetime
for all positive powers which includes some special cases that highlight some interesting
points.

Using again the result from the appendix[B.0.3]and the exact Bessel function solutions
it is found that p is infrared divergent numerically (using Maple) for powers p > 2/3.
The cases of p = 2/3, 2, 3/2 and 4/3 are analytically calculable (all powers of the form
(s +1)/s give rise to half integer Bessel function solutions for which the results are
analytically calculable) where the mode functions take the form of half-integer Bessel
functions expressible in terms of elementary functions. For example we have for p = 2/3

w|n| (sin k|n . cos k|n
vp(n) =4/ ‘2| ( k|77" _ cos k|n| +1 <sm kln| + k!n; ‘)) (2.3.4)

as in which is integrable (in the variable k) in closed form. For this solution one
calculates

1 6561 k 9
@2/3) = = dk 2K +4— + — 2.3.5

4167218 / + n? + kn* ( )
which clearly diverges in the infrared due to the inverse power of k in the third term.
Somewhat miraculously the p = 2 result has the same integrand,

@_L1 1
4 16m2n*

k
/dk 2k3 4 4? + 2 (2.3.6)

also possessing the described infrared divergence. It would be interesting to investigate
this seeming coincidence further using some more powerful computational techniques.
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For arbitrary powers one must resort to an asymptotic analysis of the Bessel functions.
For small arguments we have [49]

Jp(x) ~ 2™ forz — 0

1
Y, (x) ~ e forx — 0

so that the well known and only point x = 0 of non-analyticity of the Bessel functions
is displayed through the Bessel Y function. This behaviour is confirmed in the explicit
solution given above We see that in terms of |vg|? alone

k2o |? ~ k202 (2.3.7)

so that for —2n + 2 < —1, or in other words n > 3/2, the infrared divergence of the
integrated quantity is explicit. Similarly since the divergent part of |v},| behaves as

1 Y 7|7 < ny,
V| ~ s — —kYp 1+ —

we see the same infrared behaviour in this derivative term
o2 ~ 2

signifying a divergence for n > 3/2. This range corresponds to powers p > 2/3 as already
mentioned. Only the high p part of this result will be of interest in what follows since we
will be focusing on the realistic inflationary scenario.

It is important to keep in mind that this divergence as well as the ultraviolet divergence
is a divergence of a local density; the infrared divergence of the energy density p cannot
be attributed to the infinite volume of space. However, certain separate issues arise in
the spatially compact case (the k = 1 version of the FL. geometry . In that case the
spectrum of the spatial Laplacian is discrete and the mode integrals become mode sums
possessing a finite minimal value for the offending momentum variable k corresponding to
the first harmonic of the three sphere. All the analysis carries through identically apart
from the addition of this discreteness. In this way the energy density of a spacetime
with compact spatial sections is never infrared divergent and has been studied in the
conformally coupled case in [50]. For example the corresponding result to fork=1

would be
k 9

x ) 23 448 4

where 7 is a index that runs over the discrete spectrum of V on S3. Again we cite the
experimental observation of almost exact spatial flatness as motivation for not considering
closed spatial geometry in this thesis. Furthermore since mode sums are not in general
expressible in closed form in contrast to mode integrals we stick to the spatially infinite
case where the spectrum of the Laplacian is continuous.

It is interesting to note that not only does the limit k|n| — 0 say something about the
infrared behaviour of the theory but also about the late time behaviour since for p > 1,
the infinite future is represented by n — 0~. The quantum field theory seems to tie up
the combination k|n| in interesting ways; the physics of late times is related to the physics
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of large scales when spacetime is expanding. That is, we may conclude that there exists
a late time divergence of the vacuum energy density even after taking into account the
infrared divergence. However, this conclusion is not as robust due to the non-trivial time
dependent factors that we neglected in the expansion and indeed, one would not
necessarily place much physical significance on a divergence that occurs at a coordinate
singularity such as n = 0 where objects such as a’/a are singular.

One might inquire as to the avoidance of this infrared divergence in the de Sitter
spacetime since that calculation also utilized the Bessel functions 2.3.4 On closer in-
spection, there is a subtle cancelation of divergent terms in the integrand yielding the
convergent result. Presumably, above a certain power p one would expect a similar can-
celation due to the analyticity of Bessel functions with respect to the order parameter
[5I] as n — 3/2 (p — o0). However since we are interested in the limit as the argument
approaches a point of non-analyticity for Bessel functions we should not expect the limit
to be uniform and hence not expect necessarily that powerlaw spacetime becomes infrared
finite for sufficiently high powers p.

The two-point function in powerlaw spacetime

Before moving on to more simple examples we will point out an observation on the two-
point function and the relation to the infrared divergence. For p = 2 the equal time two
point function is written as

L ik(z—a' 1 3k2772+k’47’]4+9 ike(z—a!
OG0 = oy [ dk et = L g PLLEIES e

It is clear that for large spatial separation the correlation converges to zero by a Lebesgue
type argument and yet for small separation this result is infrared divergent due to the
inverse powers of k in the integrand. Pausing for a minute on this result we realize that
it is natural for the two-point correlator to be divergent since the field at a point should
clearly be influenced strongly by the field at a very nearby point. However, the divergence
here is of a different sort, namely it is an infrared divergence and is due to arbitrarily large
wavelength modes ‘piling up’ upon themselves. The point is that the infrared divergence
of the EMT is related to this analogous divergence in the two point correlator signifying
some sort of causal singularity for this massless theory in the infrared. It has been
suggested by Professor Robert Broutﬁ that such a divergence might be interpreted as a
geometric property of a self avoiding random walk problem in a spacetime with horizon.
It would be interesting to investigate this possibility further in the future.

2.3.3 Isolating the source of the divergence

In the following few sections we investigate sequentially more sophisticated models of
field theory on expanding spaces in order to isolate the infrared divergence found above
in the case of 3 + 1 powerlaw spacetime.

81n private conversation.
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Field theory on an expanding circle

Let ¢ be governed by the action

1 v
S = 2/\/§d2x "o e (2.3.8)

defined on the time dependent version of S!, ds? = —dt? + a?(t)df#* which may be
written in the manifestly conformally flat form ds* = a(n)* (—dn? + d6?). In general
in d-dimensions the Klein Gordon equation reads

10 (a2 0,)

so that for d = 2 we obtain

(—02+05) ¢ =0.

We see here that there is no friction term present and conclude that the decoupling modes
are the proper modes (where by ‘proper’ modes we mean the ‘co-moving modes of the
proper field ¢). Indeed the wave equation is identical to that of a non-expanding circle
except for the irrelevant time dependent pre-factor. However, in 141 dimensions the
Ricci curvature scalar is R = 2d/a so that only in the case of constant expansion rate
(a cone) would the curvature vanish. Thus it would seem that the spacetime curvature
alone is not responsible for field excitation.

The quantum field theory on a non-constantly expanding circle is given again by the

Minkowski mode functions

o—iwrn+iko

1
uk(nﬁ) = \/TTk;

where the time independent frequency is given by w,% = k2. We have for these functions

1
2 = wlul? = S

The quantum field is given by the sum over the discrete harmonic (co-moving) modes
associated with the circle

e(n,0) = apui + aluj
k

so that the energy density is
0 Loy 1o
OIT8I0) = (0156 + 5870,0,510)
1 2 g2 2 L
= 5 Ek e L Ek Wk

Hence we retrieve the asymptotically finite and time independent result derived in the
previous section justifying our intuitive picture there. In this case the final step to
make the identification is to place a proper ultraviolet cutoff on the mode sum and input
the time dependent proper momentum k, = k./a.
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Two dimensional expanding space

As above we compute the Euler Lagrange equations associated with the action but now
in 241 dimensions. The result is

!/
¢//+%¢1_v2¢:0

where we at last see the appearance of the friction term responsible for gravitational
particle creation. Recall that in 341 dimensions we make the field redefinition x = a¢
in order to eliminate the friction term. This procedure is modified here where we define
X = va@. This results in the decoupled equation

1/ad\?> 1a"
" e _77_V2 —0.
X +<4<a> 2a X

For the power law scale factor a(n) = [(1 — p)7] ﬁ we have

2 2p—1)
" k2 p _ p( —
Xt < - A1 —pp2p 201 —pp2) X 0

possessing Bunch Davies mode function solutions

ve(n) = 7T|2m(Jn(k|77’)—iYn(k|n]))7 n— ‘11+ng—_p§§'

A plot of the Bessel function solution order parameter n against power p is given in Fig.

2T
Not that, in 2 + 1 dimensions the de Sitter scale factor a(n) = —1/(Hn) gives rise to

the mode equation
31
" k2 v - =0

possessing Bessel function solutions

Vg = @(Jl(kln) —iY1(k|n|)) -

Hence, just as in 341 dimensions, the powerlaw mode functions converge to the de Sitter
mode functions as p — oo as is expected from the interpretation of powerlaw spacetime
as an approximation to de Sitter spacetime.

In 2+ 1 the EMT is modified to read

<T0>_16L—3 /d2k‘/‘2+ 1 ail 2—}—]{:2 | |2_1 (i/ (8| |2)
0/ = 1 (2m)2 Yk 1\a R AT A

"Recall that for a proper behaviour the scale factor requires a regularization term. The stated expres-
sions are accurate and refer to the results obtained by regularizing and consequently shifting the definition
of 1, where the shift required to absorb the regulatory factor in a’?/a? is the same as that required to
absorb the factor in a”/a.
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Figure 2.1: The Bessel function order parameter of the mode functions in 2+1 powerlaw
spacetime versus power p of the powerlaw scale factor. Also plotted is the asymptotic
n = 1 order parameter corresponding to the mode functions in 2 + 1 de Sitter spacetime.

which displays an even more severe infrared divergence than in 3 + 1 dimensions due to
the fact that momentum space is two dimensional contributing only one power of k in the
isotropic measure d’k — 27k dk. Using the asymptotic expansion of the Bessel functions
we have

k‘|1}k|2 ~ k—2n+1

so that the integral will be divergent at the lower bound whenever —2n+1 < —1ormn > 1,
once again the precise Bessel parameter of the de Sitter solutions. This corresponds
to powerlaw powers p > 3/4. Somehow the de Sitter mode functions are playing a
limiting role of an infrared divergence. For 2 + 1 de Sitter the solution is not calculable
in closed form due to the fact that the Bessel functions are of non-half integer order and
the integrals of their squares are expressible only in terms of hypergeometric series. A
numerical calculation reveals that, at least around the origin, the integrand in the de
Sitter case actually converges to zero.

Higher dimensions

In general on N dimensional FL spacetime we have

¢" 4+ (N — 2>Z/¢’ —~ V% =0
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which decouples for the scaled field y = aV=2)/2¢ as
12 "
X'+ <ANCL2 -i-BNCL — V2> x=20
a a
where the functions Ay and By are given by

1 1
Ay = NN =2)— (N - 2)?

1
By =—=(N—-2).
2
It is clear that such a mode equation possesses Bessel function solutions with order

parameter
1 v p(2p — 1)
2
n=—-+An—5+Bn
4 (1-p)? (1-p)?
which becomes imaginary for high dimension indicating a breakdown of the arguments
leading to the isolation of the infrared divergence. In this way one could expect the
infrared divergence to be cured for high dimensions as might be intuitively expected by

the appearance of higher positive powers of k in the isotropic measure.

A note on massive fields

Throughout we have restricted our attention to the massless scalar field. Massless fields
are usually assumed to be more prone to infrared divergences than massive ones. In-
tuitively, massless quanta travel at the maximum velocity 1 = ¢ and so ‘spread’ their
influence maximally to large distances. Infrared divergences arise as an overwhelming
contribution from large wavelength (small momentum) modes. So it is of interest to see
whether the infrared divergence discussed here is a result of using the massless field or
whether it is a genuine feature of the expansion of space. We note that the mode equation
is modified in the presence of a mass to be

al/
vy + </<:2 + a*m? — ) v = 0.
a
For powerlaw this is written as

i 2 2 22 p(2p—1)
i (1m0t - B2 Y o,
which is not soluble in terms of Bessel functions. In fact Maple was unable to solve this
differential equation at all in general for arbitrary p. Asymptotically for late times, for
any p > 1 the k2 and a”/a (being of inverse power 2 in conformal time) are negligible
compared to the m? term since p/(1 — p) approaches —2 from below as p — oco. Hence
the mode equation reduces for late times to

vl +m? ((1 = p)n) > vy = 0.

For p = 2 this becomes



possessing general solution

v = An cos + Bn sin °.
n n

For this asymptotic solution we have that |vg|? is badly divergent for n — 07 suggesting
a divergence of the vacuum energy in the infraredﬂ

This is a very rough approximation to a full calculation but at least provides circum-
stantial evidence for an infrared divergence despite the fact that we work with a massive
field. Based on this very rough estimate it would seem that the cosmological infrared
divergence is not a relic of the masslessness of the fields under consideration.

2.3.4 Interpretation of an infrared cutoff as a model of a local expanding
patch of flat spacetime

Above we saw that <T[§)> was not only ultraviolet but also infrared divergent for powerlaw
spacetime. In order to proceed further one must regulate such a divergence but also keep
in mind any physical interpretation of the regularization. In this case we have the fol-
lowing reasonable physical interpretation of cutting off the co-moving integral at a lower
bound. Traditionally, the infrared cutoff energy is interpreted as the vacuum energy of
a co-moving box (with proper ultraviolet cutoff) or alternatively as the manifestation
of a closed universe (compact spatial sections). That is, one calculates the energy con-
tribution from only those modes less than a maximal co-moving wavelength (or in the
closed universe sums over the discrete eigenvalues of the spatial Laplacian) corresponding
or proper maximal wavelength that expands with the spacetime. Such a ‘box regular-
ization’ is sometimes motivated to make the quantum theory more tenable by reducing
the number of degrees of freedom to a countable number given by the normal modes
(under suitable boundary conditions) of the compact box region. More satisfactorily and
importantly for our purposes, however, one might interpret it as the implementation of
the idea that the expansion of spacetime is a process driven by the dynamics of vacuum
energy and initiated by a quantum fluctuation in its value on a finite region. This is the
motivation we use here.

8Recall that an expanding spacetime couples the 7 — 0~ limit with the & — 0T so that our conclusions
here should apply by continuity to the small k infrared limit of the field theory.
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Chapter 3

Semiclassical Self Sustained
Vacuum Energy Solutions

In this chapter we present some slightly more speculative ideas associated with a partic-
ular interpretation of the above calculated vacuum energies. This chapter attempts to
address the back-reaction problem of semiclassical gravity but in a novel way. Specifically
we attempt below to interpret the time dependence of vacuum energy as the isotropic and
homogeneous classical scalar potential supporting the very spacetime solution where the
quantum field lives. In this way, one might argue on energetic grounds for the quantum
fields alone that a dynamical evolution of the spacetime manifold towards accelerated ex-
pansion is provided by the dynamics of the vacuum energy or at least that it is a plausible
interpretation.

Up until now we have regarded the quantum field ¢ as somewhat of a test field with
respect to the background geometry of spacetime. We have assumed that the spacetime
on which the QFT is defined is supported by the classical matter. In the case of inflation
the classical matter and the quantum field are more intimately related, the quantum field
being composed of quantized perturbations of the classical field (and metric) but still the
assumption that the quantum field is a test field is made in general and throughout the
literature. Studies of the backreaction of the quantum field on the spacetime dynamics
periodically appear in the literature (for example [52), [53]) in a specific context but the
results appear to be mostly inconclusive due to the ultraviolet divergence and ambiguity
of the vacuum state.

Above we performed a calculation of the vacuum energy density on a fixed background
manifold which was assumed to be a solution to the Einstein field equations sustained
by a classical (homogeneous and isotropic) scalar field. One might ask however why one
would expect the low energy behaviour of quantum fields (and in particular the ubiquitous
vacuum energy) to not have significant energetic effects that ruin the finely balanced scalar
and gravitational field coupled solutions. At present there is no fully satisfactory way of
representing quantum matter in a classical gravitational theory. However, at the end of
the previous chapter we investigated the effect of (and provided an interpretation for) the
existence of an infrared divergence in the vacuum energy. We then imposed an infrared
cutoff and provided an interpretation in terms of an expanding patch of spacetime. This
allowed us to get a handle on the time dependence of the vacuum energy (since an
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infinite quantity is always infinite, infinite quantities have very boring dynamics!) and
in particular begin to address the question of the production or not of vacuum energy as
spacetime expands.

As mentioned in the introduction, intuitively at least, it is expected that the infla-
tionary dynamics are a result of an interplay with a dynamical vacuum energy of the
quantum fields of nature. The idea that spacetime dynamics, and in particular inflation,
is a phenomenon associated with the vacuum energy of quantum fields is only recently
becoming popular (for example see [10, 11, 12} 13]) with the current interest in ‘high
energy cosmology’. This research brings together the techniques and results of high en-
ergy physics into the context of cosmology in order to describe the very counterintuitive
physics of inflation and the current accelerating universe.

As far as our approach is concerned, one could argue that a non-covariantly regularized
divergent quantity is as meaningless as a divergent one but we take the position here that
it is an interesting and worthwhile endeavor to see where one can get by taking seriously
the vacuum energy and in particular the time dependence of the vacuum energy in non-
trivial spacetime under a non-covariant cutoff scheme. Is it possible for example for there
to exist self consistent vacuum energy supported classical solutions to EE? Is it possible
that the entire gravitational dynamics is ‘induced’ by the spacetime dependence of the
vacuum energy? This chapter is devoted to a study of such questions.

The structure of this chapter is as follows. In the first section we review a proposal
of exactly the nature alluded to above of trying to make sense of the so-called semi-
classical Einstein equation where geometry is sourced by quantum matter in the EE.
We also discuss the more radical proposal that the gravitational dynamics is nothing but
the spacetime dependence of dynamical vacuum energy. We then use the results of the
previous chapter to apply these ides in the cosmological context. This is an entirely new
construction which is not found in the literature.

3.1 Semiclassical and Induced Gravity

In this section we briefly review and discuss some work that attempts to describe the
backreaction of quantum fields defined on a spacetime on the dynamics of the space-
time metric itself. Traditionally one starts by writing down the semi-classical Einstein
equations

G = (T))
where <TW> is the expectation value of the quantum version of the classical energy mo-
mentum tensor which for a massless, minimally coupled scalar field ¢ is again written

as
. 1

Tuy == SDyp, QO7V _iglw (gal@(f%a’ @75 +2V(SO)) . (311)

As mentioned previously this equation is somewhat justified by the Ehrenfest theorem of
particle quantum mechanics. Serious difficulties present themselves when trying to make
sense of as a field equation for gravity coupled to quantum matter but nonetheless
[B.1.7] has been extensively studied in the literature and is the main subject of the standard
reference monograph in the field [2]. One of the main difficulties in the early days was
making sense of the object <T w) due to the appearance of UV divergences. The issue
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was settled in the 1970’s with the understanding that <TW)(:U) is a well defined object at
all points where the two point function G(z,z’) = (¢(z)p(z)) is of ‘Hadamard form’ by
a renormalization procedure. This is a technical assumption concerning the singularity
structure of the limit x — 2’ in G which we will not discuss here (for the details see
chapter 9 of [28]) except to say that in any globally hyperboli(ﬂ spacetime dense in the
set of quantum states is a set of states for which <Tw> is of Hardamard form. The
resulting object is known as the renormalized energy momentum tensor and Wald has
provided an axiomatic description of these objects [54]. Constructively, the procedure
for defining <Tw> involves the usual steps of a renormalization: (i) Regularize the object,
(ii) absorb functionally independent divergent (if the regulator were removed) parts into
dimensionally equivalent constants of the theory, (iii) remove the regulator leaving only
the finite result with the assumption that an infinite shift in the parameters of a theory is
irrelevant since we only measure the shifted values for these constants, the ‘bare’ constants
being unobservable due to the omnipresence of the quantum fields. In this case the
regularization is done by splitting the points in the quadratic T),,. That is, one calculates

T (2,2) = s (2 () = 5000 (670 (2)5 ()

and, knowing the singularity structure of (¢(x)p(z’)) subtracts off the singular pieces
and places them inside the gravitational constants as in

GRenorm = GBare + <T,uu>ging

~

such that the dimensions of Gpare and (7 W>gng agree. The mathematical details of such
an isolation of singularities is beyond the scope of this thesis but suffice it to say that the
mathematical theory is only rigorously developed in the Riemannian signature (4++++)
case and it is an open mathematical problem to extend the results to Lorentzian (-4+++)

signature.

Up to this point we have taken a rather different approach to (7},,) than the renormal-
ization theory which is the focus of much of the literature in this subject. Here we regard
a minimal length in nature as fundamental and not something to be regulated away. This
is the same attitude taken in the early work of Sakharov [14] on the quantum backreac-
tion problem. Regardless, we assume that the sophisticated renormalization techniques
mentioned here should have no effect on the meso and infrared scale of vacuum energies
we study in this thesis. Regardless of which (regularized and with justification) energy
momentum tensor one decides to use, the notion of semiclassical gravity is clear: find self
consistent solutions to the semiclassical EE.

It is often said that de Sitter spacetime with a scalar field is the only known solution
to semiclassical gravity. To show this we need to assume that Minkowski spacetime is
also a self consistent solution to the semiclassical EE. That is, we must assume that the
quartic divergent vacuum energy is not effected by gravity. Indeed from [2.3.3]it is clear
that with the understanding of a natural ultraviolet cutoff at the (for example) Planck
momentum A the vacuum energy density is constant. The i # j component of (T),,) is
calculated as

1
(Tizj) o = /d?’kkikjka =0

'Recall that a spacetime is said to be globally hyperbolic essentially if the Cauchy problem for the
spacetime in a 3 + 1 decomposition is well posed.
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since v are assumed to be isotropic so that it is an even function of each component k;.
Similarly the components (Tp;) vanish by the same reasoning. Hence energy momentum
tensor is diagonal. However we have (no sum implied on the indices)

Ti = Soh — S (Vo) +
270 2 ’
which is evaluated under expectation values (after some more miraculous cancelations)
to be
A2 H2

- 1672 + <90,i>'
Hence if it is justifiable to ignore the quartic divergence by appealing to the notion
that flat spacetime QFT should be also a self consistent solution to the semiclassical
EE and also that the anisotropic term (¢ ;) is ignorable then indeed the quantum scalar
field is a self consistent solution to EE with equation of spate parameter w = —1. The
second assumption about the anisotropic term is slightly shaky in the authors opinion.
However, this term is difficult to calculate due to the inability to collapse the three
dimensional k-space integral down to the one dimensional integral over the magnitude
V' k - k. Nevertheless it would be possible in principle to remove such a term by choosing
an appropriately anisotropic set of mode function solutions to KG; the offending term
would vanish and the pertinent terms would remain in the same proportionality.

Pi=(T}) =

Is powerlaw also subject to an interpretation as a self consistent solution to the semi-
classical EE? Once again we argue that the quartic A* term of the energy density is an
artifact of Minkowski space and set this term to zero. We also argue that the anisotropic
term can be set to zero by a judicious choice of mode function. Then for p = 2 we have

a=? 4k 9
= [ dk | =+ =
P 87r2/ (n2 * W‘)

a? —2k 9
P=— [dk |— - -——].
82 ( n? kn4>

Placing a comoving infrared cutoff and a proper ultraviolet cutoff and moving back to
cosmic time t we have, for example

1 (e 4k 9
= dk | 22 4+ =
P~ 82 /M <t6 * k:t4>

1 (A% 9 5 B9
= 87‘(’2(252+t41nAt_t6_t41n'u>'

whereas

Here we see the trade off of ultraviolet modes beginning to contribute to the energy as
they enter from below the cutoff scale and the dilution of energy at the infrared cutoff.
We see that the energy coming in at a fixed proper momentum is being compensated less
and less by the fixed comoving infrared energy being diluted but that the total energy
density is decreasing over time. More importantly however (keeping in mind that we have
neglected the quartic term) we see that for late times the energy density and also the
pressure are dominated by a term proportional to 1/t
2 2
p= Aij P = _Ai'
8m2t2 1672t2
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This is a very interesting and surprising result since we saw in earlier chapters [I.1.8] that
this is the precise time dependence of the energy density p of the classical scalar field
supposed to sustain the slowly rolling inflationary spacetime. Furthermore the effective
equation of state for this vacuum energy is w = —1/2. Recall that the equation of state
parameter for the classical field sustaining powerlaw spacetime of power p is given by
w = 327) — 1. We see that for p = 2 the asymptotic vacuum energy equation of state
w = —1/2 agrees rather well with the one necessary to sustain the spacetime w = —2/3.
Therefore we interpret this result as reason to believe that ‘pure’ powerlaw (without
classical matter) is a semiclassical self consistent solution. It is interesting to note that
the vacuum energy does not possess an equation of state parameter w = —1 - the very
thing allowing for the possibility that finite p powerlaw might be self consistent. In the
literature w = —1 is generally referred to as the equation of state parameter of vacuum

energy. This suggests a change in terminology is necessary.

As far as the generality of this result is concerned, we expect this result to be more
robust with higher powers p since high p powerlaw spacetime approximates the semiclas-
sical de Sitter solution more and more closely. However p > 2 solutions are not exactly
soluble and one would need to resort to more powerful numerical techniques (particularly
with regards to the singularity at the origin of the mode functions). The important point
is that the vacuum energy does not only consist of the often quoted quartic divergence
(which we regard here as unphysical) but takes on a different character precisely of the
correct form that lends to it a consistent interpretation as the source of the EE.

In general, divergences other than quartic in the cutoff are expected for the vacuum
energy in curved spacetime (see Chapter. 6 of [2]) and this is usually interpreted as
invalidating the ‘subtract the Minkowski spacetime vacuum energy’ tactic to obtain the
true vacuum energy. That position assumes that the cutoff is a purely regulatory device
not representing a feature of the real world and to be removed at the end of a calculation.
Here we interpret the appearance of new divergences as an indication of the ability of
vacuum energy to become part of the dynamical equations. What is quite robust is that
there should not exist divergences of higher order than quartic and that logarithmic and
quadratic divergences are expected.

Induced Gravity

The material presented in the following is of a more mathematically caviler nature due
to the indefiniteness of the path integral formulation of Lorentzian QFT.

Recall that the path integral is an attempt at making precise the intuitive notion
that to any quantum process every possible evolution from the initial to the final state
contributes in an additive way to the total probability amplitude with a phase given
by € where S is the action functional evaluated for the particular evolution. This is
represented by the path integral and is written for the case of a quantum scalar field as

/ DgoeiS‘P

where S, is given by the expression In semiclassical gravity one seeks a framework
within which both classical and quantum matter can coexist. The path integral framework
provides just this. In principle the full theory of nature would quantize both gravity and
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matter in the path integral by integrating over both metric and field degrees of freedom.
To ‘quantize’ only the scalar field ¢ and not gravity g one only integrates over the ¢ and
leaves g free:

ols _ /D@ei(s¢+5g)

where S, is the action for gravity (for example the Einstein Hilbert action). Here T',
is known as the effective action for gravity and is developed in [3] for example. The
essential observation of the induced gravity proposal is that even without postulating
an independent classical gravitational action Sg the effective action I'g contains purely
gravitational terms such as the Ricci scalar R comprising the Einstein Hilbert action.
Recall, crucially, that the matter action depends on the metric through the d’Alembertian
and density factor in the measure. Such a result involves some sophisticated mathematics
in abstract differential geometry (see for example the text [55] for a simple presentation
of the relevant material) and is not completely rigorous in the Lorentzian signature case
but was anticipated as early as 1967 by Sakharov [14].

In a nutshell, the effective action is expressible as the ‘determinant’ (the product of
the eigenvalues) of the d’Alembertian operator [, which is meaningless in the Lorentzian
case when [ is hyperbolic with negative and zero eigenvalues. Under the Wick rotation
t — it the signature of the metric becomes Riemannian and [J an elliptic operator. Then
the determinant makes sense and is evaluated using an asymptotic (in the limit s — 0)
expansion of the solution kernel of the differential equation (95 + )y = 0 known as the
heat kernel. It is a remarkable fact that the (constant) coefficients in the asymptotic
expansion of the heat kernel are geometric invariants depending on the local geometry
of the manifold. This observation expresses the intuitive idea that the heat flow on a
surface on very short time scales should depend only on the local geometry only and
not on the global topology. Heat flow on large time scales should of course depend on
the global topology and some very deep and abstract results linking global topology
and local geometry have been obtained by studying the flow of information from one
to the other using the heat kernel and heat equation [55]. Of course, the expansion is
merely an asymptotic one and does not converge in any classical sense - an expression of
the ultraviolet divergences of QFT. Regular renormalization theory on curved spacetime
merely isolates these divergences in the heat kernel and places them inside the constants
of the geometric gravitational action. The key observation of induced gravity (and the
philosophy adhered to in this thesis) is that the ultraviolet cutoff in nature is real (by
some as yet unknown mechanism) so that the divergent pieces of the heat kernel do not
even arise. This leaves one with a heat kernel expansion consisting of geometric terms
multiplied by finite constants. What need do we have of postulating a bare gravitational
action if those geometrical objects arise naturally in the quantum theory of a scalar field?
Sakharov answered this question with a resounding ‘none’ when he showed that with a
cutoff at the Planck scale the numerical constantﬂ come out to be exactly right for the
resulting geometric terms in the heat kerneﬁ to be the gravitational action. Put more
simply, the quantum amplitude for a particular field evolution depends on the geometry
of the manifold and that dependence is precisely given by the Einstein Hilbert action
functional (plus higher order correctionsEI).

2With the notable caveat of the cosmological constant term interpreted as the vacuum energy.
3 Although he did not use this modern language. For a modern review of induced gravity see [56).
4Which, it should be added have not been ruled out by any of the low energy experimental tests of
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In our context of trying to explain the particular cosmological evolution we have seen
that the energy momentum tensor is of the correct form (and, of course, dimension) to
be equated with the gravitational side of EE in order to argue that de Sitter spacetime
was a self consistent solution to the semiclassical equations. With some hand waving we
also argued that it was plausible that powerlaw spacetime could be also a semiclassical
solution. However in the light of induced gravity we see that an exact matching of the
dynamics of the vacuum energy and that of the classical energy momentum necessary to
sustain the very spacetime on which the quantum field is defined is not necessary if there
is no ‘bare’ geometrical side of the EE. Without a ‘locked’” dynamics for the spacetime, the
manifold is free do what is chosen for it by the scalar field. If the vacuum energy evolves
as if it were on a powerlaw spacetime but that this power is changing over time this would
amount to an evolution of the spacetime through the spectrum of powers. Such a scheme
amounts to a precise realization of slow roll inflation. It would be very interesting to
expand on this idea by studying the evolution of vacuum energy more closely using more
powerful computational techniques and under more general conditions.

The essential point of this small section is that a self consistent semiclassical dynamics
is not necessary to ‘fine tune’ in the induced gravity picture where the vacuum energy
dynamics is interpreted as geometric dynamics. Such a picture is motivated by the full
induced gravity proposal [56] but which finds a simplified and concrete example in the
considerations presented in this thesis.

3.2 A Mechanism for Inflation?

As briefly mentioned above, the infrared cutoff can be interpreted as an implementation
of the idea that the expansion of spacetime be initiated by a quantum fluctuation of the
vacuum energy in flat spacetime giving rise to a dynamical energy source and hence space-
time dynamics as described in the sections above. We have used throughout the vacuum
energy density at a spatial point x <T8> which of course is independent of x. In practice
we would expect inhomogeneous fluctuations of energy on all scales that average to the
homogeneous value calculated in the quantities <T8>. From the analysis presented here
this possibility seems feasible and we have provided some concrete calculations supporting
this intuitively held possibility. This mechanism of course seems to assume that, indeed,
Minkowski spacetime is a semiclassical solution to the EE but that it is an unstable one
able to decay into an inflating universe. This picture of an unstable field theoretic fixed
point decaying into an inflating universe is one commonly held in the field [57].

GR.
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Chapter 4

Summary and Outlook

Based on the preliminary studies presented here one could proceed in one of many di-
rections. There are many unsolved problems at the interface of gravitation and QFT.
As mentioned at the end of Chapter 1, the glaring dark energy problem in cosmology is
widely regarded as one of the greatest unsolved problems in physics. Even, as we have
attempted here in a concrete manner, if one interprets dark energy as quantum vacuum
energy, somehow the peculiar dynamics including the apparent second inflationary era
beginning today needs to be explained. This all requires a study of dynamical vacuum
energy which presumably can be studied within the context of QFT in curved spacetime.

In this part of the thesis I have introduced and discussed QFT on cosmological back-
grounds and the theory of inflation as a phenomenon driven by the dynamics of vacuum
energy. The theory of inflation was motivated as an experimentally confirmed hypothesis
and some of its short comings were pointed out. I have provided an in-depth and exact
study of the powerlaw solution and the quantum field theory on it and also embedded this
spacetime in the larger picture of a slow roll inflation scenario. A large class (p > 2/3)
of infrared divergences were found in powerlaw spacetime superseding results previously
obtained in the literature for a limited range of powers p. I discussed an interpretation of
the infrared cutoff as a realization of the idea that spacetime is induced by a fluctuation
in the vacuum energy density on an otherwise flat ambient spacetime. The idea there was
to interpret the inflating spacetime as a self sustaining process whereby a bubble of flat
spacetime initially possesses a raised energy density, expands in a backreaction and con-
tinues to do so through the non-trivial dynamics of the vacuum energy on the expanding
patch. In this thesis I have modeled this process as regular, unbounded (flat) powerlaw
spacetime with a co-moving infrared cutoff. I also discussed more radical proposal that
not only is the spacetime sourced by the vacuum energy but that the spacetime dynamics
itself is nothing but the geometrical dependence of the vacuum energy. It was only in this
scenario that a slow roll picture was possible where the spacetime solution is not fixed.
It is interesting that a number of desirable properties of the quantum theory rested on
the assumption of a slow roll inflating spacetime. Namely, the existence of scalar per-
turbations at all on the background spacetime, the consistent interpretation of the scalar
Mukhanov fluctuations as a scalar field propagating on a background spacetime and the
interpretation of the time dependence of the vacuum energy as an ‘induced cosmology’.

Throughout I pointed out a number of opportunities for future work and also made
speculative connections with some of the previously existing literature. These included a
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more detailed comparison of the study of Jacobson’s discrete quantum field theory and
other discrete dynamical ground state energy calculations, a more thorough numerical
investigation of higher p powerlaw spacetime quantum field theory and the generalization
to more general types of fields including massive fields to perhaps tame the infrared
divergence. I also alluded to a possible connection between the infrared divergence in
expanding spacetime with a self avoiding random walk problem.

In conclusion, quantum field theory and cosmology are two very different models of
the world and yet the union of some of the lessons provided separately by these theories
seems to be a natural one providing a rather novel picture of the early evolution and large
scale structure of our universe.
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Part 11

Superoscillation - Induced
Resonance
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Introduction

There exists a growing body of research that studies the seemingly paradoxical phe-
nomenon of superoscillation wherein a signal (or function) may locally oscillate faster than
the highest Fourier component. Superoscillations have been first studied by Aharonov
Berry and others [58] in quantum theory and have seen application in information theory
[59], the trans-Planckian problem in black hole evaporation [60], very recently to sub
wavelength resolution in optical experiments [61] and shown to imply various other un-
usual quantum mechanical phenomena such as self acceleration [62], [63]. The relationship
between superoscillations, quantum field theory and information theory is presented in
the excellent article Ref [64]. To the best of the authors knowledge however there has
been to date no attempt at a quantitative study of what might be called the ‘reality’
of the superoscillations. What we mean by ‘reality’ will be revealed in the rest of this
part of this thesis but as an introductory remark we will make the following mysterious
comment: superoscillations are low frequency waveforms in the disguise of high frequency
waveforms. The ‘reality of the superoscillations’ would be the extent to which a super-
oscillating function can be distinguished from a bona fide high frequency waveform and in
particular, the extent to which a mechanical system coupled to a superoscillating source
behaves as if it really were driven by a high frequency waveform. In this second part of
this thesis we study the reality of superoscillations in the above sense.

The outline is as follows. In the first chapter we explore the methods developed
in [62, [63] for constructing superoscillating functions of one variable. This chapter is
furnished in the second section by a discussion on harmonic oscillators in order for the
material in the following chapter containing the results of a graphical and analytical
study to be self contained. We end with a chapter discussing some possible applications
in quantum field theory and cosmology.
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Chapter 5

Superoscillations and Harmonic
Oscillators

5.1 Constructing superoscillations

The general theory of the classes of bandlimitedE] functions provides us with the following
resultﬂ implying the existence of superoscillations:

Theorem 5.1.1. Let F be the Fourier operator on H = L?>(R), X C R be any compact
interval and define the projection Py € B(H) by

Po=F 'Xxi_aaF

and the projection Px € B(H) by (Pxf)(z) = xx(z)f(z) for all f € L*(R) where x is
the characteristic function. Then PxPoH is dense in L*(X) for any non-zero .

That is, the projection of the space of bandlimited functions onto a compact interval X
is dense in L2(X). Put even more simply, the theorem states that one may approximate to
arbitrary precision an arbitrary square integrable function on an interval by bandlimited
functions. Thus we are not surprised to find bandlimited functions that locally oscillate
faster than their highest Fourier mode!

We turn now to the explicit construction of custom made superoscillating functions
which will be used in the subsequent section.

5.1.1 Constructive proof

As discussed above we consider functions possessing compactly supported Fourier trans-

forms 0
_ L 3 ikx
fla) == [ _di flbye

'Recall that a square integrable function is said to be ‘bandlimited’ if its Fourier transform possesses
compact support. Since we will be considering real valued functions here we restrict to the case when the
Fourier transform is an even function.

2For the proof see [63].
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and ask whether we can constrain such a function to have the N prescribed amplitudes
flx;)) =a;, for i=1,... N.

That is, we require

e
i =—— [ dk f(k)e™ "
o= [k i®)

Of course, there will be many (indeed an infinite numbelﬁ) of functions satisfying the
bandlimit and constraints. Therefore, to obtain a unique expression for our superoscillat-
ing source we ask in addition for the function to have minimal L? norm. Writing this as
an optimization problem, we seek to minimize the functional F'[f] under the constraints

Gi[f]=0 Whereﬂ
Fifl = [ F09F09. Gl = - [k fwes.

The standard Euler-Lagrange solution involves the Lagrange multipliers p;:
oF i 0G;
6f(k) " 6f (k)

where the sum over ¢ is implied. Specifically we have

fk) = —p;

1 e—ixik'
V2rm
Integrating both sides of this expression against the constraining plane waves gives
e
aj = —#;‘k% /_Q dk oi(*i—zi)k

1 sin(z; — ;)2
= T R kg
ILL’L 27_[_ 7'['(1’] _ ml) /"LZ Jt

so that we may solve for the multipliers as
-1
i = =5}, aj.
Therefore the unique solution is written as

sin Q(x — z;)

Q ~ . Q .
f(z) = \/:;7 /Qdk f(k)e e = Sj_ilaj /Qdk el mik Sj_ilaj

m(x — x;)

The unique superoscillating function is seen to be a subtle linear combination of shifted
sinc functions. By choosing the amplitudes a; judiciously to approximate any function we

3The existence of at least one such function is guaranteed by the theorem. That there exists an infinity
of functions is demonstrated by the fact that we may add to our first candidate function any function
which vanishes at the prescribed points and which we may choose to take an arbitrary prescribed value
at a point distinct from the prescribed points. There are clearly an infinity of such additional functions.

“Both G; and F are functionals of the infinitely many variables f(k) and f*(k) characterizing a given
function f. Formally, the variables f (k) are independent of f * (k) however this is a redundancy since the
two sets of Lagrange equations carry the same information. We will thus only vary with respect to the
f (k) variables.
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like we are able to custom make a superoscillating signal. For example, given a bandlimit
of say () = 4 one can prescribe the amplitudes f(n) = (—1)" for integer n say between —5
and 5 effectively forcing the function to oscillate with wavelength A = 2 on this stretch.

Although a rigorous definition of ‘superoscillating function’ does not exist we will
take it as an intuitive notion that has meaning in at least those cases when a bandlimited
function ‘looks’ sinusoidal with frequency higher than the bandlimit on some interval. It
is these such superoscillating functions that we will utilize in the next chapter. Firstly
however, we provide a short discussion on harmonic oscillators in both the quantum and
classical cases. These sections are not entirely necessary for the discussion since the
material is standard (for example see Ch. 3 of [3]) but they provide continuity to the
results in the rest of this chapter.

5.2 Oscillator mechanics

The basic mathematical problem we are concerned with in this part is the local behaviour
of the solutions to the driven oscillator equation

G+ w?q=J(t)

near a superoscillating region of a bandlimited signal J. We proceed now through a short
derivation of the relevant equations used in the numerical studies later on.

The Green’s function for the driven harmonic oscillator is written as the kernel of the
solution:

o(t) = /_ R T Ll Gk PP (5.2.1)

where ©(t) is the Heaviside step function. This is the physically relevant retarded Green’s
function implementing the initial conditions ¢(tog) = ¢(to) = 0.

The well known classical Hamiltonian functional for the oscillator is given by
Ly 1499
== = —J
H 5P + 5w 4 q

from which follow the equations of motion via Hamilton’s equations. We might char-
acterize the energy imparted on the oscillator by tracking the numerical value of the
Hamiltonian across the superoscillating region. That is, using [5.2.1], we seek to study the
local behaviour of

t
H(t) = % / dt’ dt” J(t")J(t")cos w(t — t")cos w(t —t")

—0o0

1 t
+5 / dt’ dt”" J(t")J(t")sin w(t — t')sin w(t — ")

+J(t) /t g gySet=t). (5.2.2)

oo w

An alternative and convenient choice of variables is the choice

olt) = |/ Sal0) + (0
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and its complex conjugate af := a*. It will be necessary to introduce these alternative
variables in the quantum case where a direct integral kernel solution analogous to [5.2.1
is unavailable. In terms of these variables the Hamiltonian reduces to the form

—wdla— —— I +a
H(t) = \/@J( +a)

providing the equations of motion

. i . s

a = —iwa + mJ, (at) = (a)*. (5.2.3)
It should be noted that, despite the fact that we merely take complex linear combinations,
the change of variables (¢,p) — (a,a') does not correspond to a ‘canonical’ (in some
literature ‘contact’) transformation - one that preserves the canonical structure. That is,
the Poisson bracket for these new variables is {a,a’} = i in contrast to {p,q} = 1. For
this reason the equations of motion are not the Hamiltonian equations associated with
the new variables i.e: a # 0,+ H but instead are obtained directly from those of (p, q).

It is clear the relations [5.2.3] are exactly soluble by an integrating factor:

- ¢
1 (4!

dt' ezw(t 7t)J "

5 )i ()

where the dependence on the initial conditions has been made explicit with the introduc-
tion of the initial time ¢t = ¢y and constant ag. Of course for ag = 0 the Hamiltonian in
terms of this exact solution is written as in [£.2.21

a(t) = age” ™t 4+

5.2.1 Quantum oscillator

There are a number of noteworthy differences between the quantum analysis of the har-
monic oscillator and the classical one which we highlight here. To make the transition
from the classical oscillator the canonical Hamiltonian method is most transparent. Thus
we seek to solve the coupled operator equations

..o _ ..o 5
Q=g =P b= = wq + J(t)

where ¢ and p are the position and momentum operators representing these observables

constrained to satisfy the commutation [q, p] = ¢, J is the driving force and

1 1
H(p,q,t) = 5292 + 5w2q2 — J(t)q

is the time dependent Hamiltonian as above. For convenience as usual we introduce the
auxiliary operator a(t) and its adjoint af(¢) by

o =[5 (a0 + L) =@ 0

in terms of which the Hamiltonian reads

H(t) = w <aT(t)a(t) + 1) L (aT(t) + a(t)) J(t). (5.2.4)



Once again we have the equations of motion

ia(t) = walt) — \/%J(t)

and commutation [a(t), a(t)’] = 1 soluble again by an integrating factor

- t
\/Zﬂ t dt’ J(t')ew® 1) (5.2.5)
0

a(t) =ae ™+ 1

just in case
[a,al] = 1.

Here a is a fixed operator understood as the initial condition a(to)ﬂ The physical meaning
of choosing an initial operator a is that of choosing what might be called the kinematical
Hilbert space H. To H there corresponds a unique vacuum vector |(2) satisfying a|Q) = 0
and orthonormal basis vectors v/n!|n) = (af)?|Q) which are eigenvectors to the kine-
matical Hamiltonian H = H(a,a’,J = 0) = w(afa) + w/2. This is to be regarded as a
reference space (and state); H is the Hilbert space associated with the un-driven oscillator
to which will be compared the family of vacuum states |{2;) associated with the family
of operators a(t) and Hamiltonians H (t) as time progresses through the superoscillating
region. Of course, our superoscillating driving forces extend non-trivially all the way to
infinity where they decay to zero. Hence H is to be thought of as the asymptotic Hilbert
space; the initial time £y will be —oo so that the kinematical Hamiltonian H is recognized
as the limit lim;_,_ o H(t).

Here, again, we wish to estimate the excitation of the oscillator during the action of
a superoscillating source. One measure of this is the numerical value of the Hamiltonian
vacuum expectation interpreted as the statistical average energy imparted to the ground
state of the oscillator by the driving source. This quantity is written explicitly as

sinw(t’ — t)

w

(QH#)|Q) = w|T|* + %w + J(t) /t dt’ J(t) (5.2.6)

where we define the partial Fourier transform J; of J as

t

7 Ty

T = /dtJt’eW.
! V2w ()

To get an explicit and complete picture of the excitation process we could also calculate
the expectation of ¢(t) in the initial vacuum.

5There is an alternative way of obtaining this solution if the use of an intergrating factor for operators
makes one a little uneasy: The most general family {a(t)}+er of operators satisfying the commutation
[a(t),af(t)] = 1 for all ¢ is parameterized by a(t) = awv(t) + lu(t) where [a,a’] = 1. Reinserting this
into the equation of motion we obtain the relation a (it —wv) = 1 (it — wu + J/v/2w) implying that
both numerical factors vanish. An ordinary integrating factor may then be utilized for the right factor to
solve for u which, combined with the requirement of consistency with the commutation relations, gives
the solution
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5.2.2 Interpretation of the quantum solution

Examining the derivation of we find the following result,
q(t) _ (((IT _{_%*) eiwt + (CL—I-\%) e—iwt)

(ae_w +alet 4 2%2{%}]1)

B~ 8- 8-
S S S

(ae—iwt + aTeiwt> +1 ! dr’ Sin(w(t — t/))
to w

J(t")
from which we obtain

Wlaol) = [ dt sin(wt =) 7

to w

where |¢) is normalized and arbitrary. This expression is precisely the expression for
the classical solution g(¢) with initial conditions G(to) = g(to) = 0 under the influence a
driving force. That is, we have

a(t) = q(t) + (1)1 (5.2.7)

where we have introduced the kinematic position operator q associated with the un-driven
oscillator. The expression provides us with the interpretation of the driven quantum
oscillator solution as ‘quantum fluctuations’ about the classical solution.

5.2.3 Relationship between the classical and quantum Hamiltonians

In an analogous way we may also derive the relation

p(t) = p(t) +p(?)

from which we obtain the expression for the Hamiltonian expectation

(H(p,q,t)) = (H(p,q)) + H(p,q,t)

where we use the shorthand (p) := (¢|p[t)). For example when [¢) is a pure Hamiltonian
eigenstate |1)) = |n) (for example when n = 0 we consider |¢)) = |2)) then the quantum
energy expectation is given by the classical expression plus the constant value w(n+1/2).

5.2.4 Convergence of quantum states

As noted above, for any finite time the Hamiltonian possesses the non-trivial time depen-
dence given by

H(t) = w <aT(t)a(t) + ;) - Jlﬂ (aT(t) + a(t)) J(t)
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the ground state |€2;) of which will differ from [Q2). Here a(t) is given by We can
estimate this difference by expressing |{2) in terms of the basis eigenstates |n); of H(t).
One finds the normalized squeezed state

1 S
) = exp (510 32 72

where S(t) is the scaled partial Fourier transform

7

V2w

t
S(t) = / dt’ eV J(t').

This expression shows us that

(i) = exo (157 (5.2.8)

implying the convergence of the vacuum states [2;) — |{2) as t — oo for any source whose
Fourier decomposition does not contain the resonant frequency w.
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Chapter 6

Ghost Resonance by Bandlimited
Signals

We move on now to the main subject of this part of the thesis. The question we wish to
address is the following:

To what extent does a forced harmonic oscillator driven by a bandlimited sig-
nal that does not contain the resonant frequency but which nevertheless is
constructed to superoscillate at the resonant frequency behave as if it were
truly driven by a resonant source?

The question is non-trivial since the source is precisely constructed to not possess the
resonant frequency and so should not excite the oscillator at all. This physical fact is dis-
played by the result above which shows that the oscillator returns to the (quantum)
ground state asymptotically if the source does not contain the resonant frequency and
hence is not excited by the driving force. The question arose in a discussion about the
physical problem of bandlimited electromagnetic wave propagation which may illuminate
the issue we seek to address. In this realistic scenario the above question is restated as

Do water molecules in a material ‘see’ localy (in time) resonant electromag-
netic waves in a bandlimited superoscillating source and if so, why does the
coupled wave/molecule system behave globally (in time) as if they did not?

Here, the water molecules act as a filter for the signal, filtering out the resonant frequency
as the electromagnetic wave passes through the material. However, we are left with the
problem of explaining how the appropriately bandlimited superoscillating wave manages
to locally excite the oscillator (and hence is locally filtered) only to have the resonant
modes replaced later on, reconstructing the full, unfiltered signal. Some conspiracy be-
tween the molecules and wave seems to be taking place! It is in this mood that we
present the results of an analytic and numerical study of a harmonic oscillator coupled
to a superoscillating driving source.
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Figure 6.1: Amplitude versus time for the superoscillating section of the signal J(¢) (red)
and the exactly resonant plane wave (blue).

6.1 Results

Based on the methods of Chapter [f] the signal shown in Figure [6.1] was constructed by
specifying nine amplitudes in the constraint procedure. The superoscillating signal is
bandlimited to a minimum wavelength of two units and approximates the resonant plane
wave of wavelength one unit. The global nature of the superoscillating signal is displayed
in Figure where the relative magnitude of the superoscillating section to the remainder
is displayed. In addition, signals with 5, 7 and 8 prescribed points were constructed all
with the same general structure of a small amplitude superoscillating section bounded by
large amplitude ‘lobes’ that decay to zero far from the superoscillations. Indeed it is clear
that the signals asymptotically approach zero as ¢ — +o0o by the method of construction
since the signal is a linear combination of shifted sinc functions which decay to zero at
infinity.

The expectation of the Hamiltonian operator [5.2.6] in the quantum case is plotted
in Figure As a comparison, we have also included here in Figure the shape of
the classical total energy function associated with an oscillator driven by an exactly out
of phase exactly resonant force. The characteristic parabolic shape indicates the most
efficient linear (with time) damping and consequent linear increase in the amplitude of
oscillations of the oscillator and it is clear that this behaviour is seen in the energy
function of the superoscillation driven oscillator. Recall that the Hamiltonian function is
quadratic in the canonical variables. We see that, to become in phase with the driving
force, the oscillator’s energy actually reduces to zero before being driven at resonance in
phase.

By comparison of the actual result [6.3] with the
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Figure 6.2: The global picture of J(t) (red). Note the large amplitude of the oscillations
outside the superoscillating region.
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Figure 6.3: The classical Hamiltonian function (equal to the quantum expectation
value minus the constant 1/2h) against time for the driven harmonic oscillator in
the superoscillating region.
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Figure 6.4: The classical Hamiltonian function of an exactly resonant driving force ini-
tially completely out of phase with the oscillations near the turning point.

6.2 Interpretation

The behaviour of the quantum driven oscillator above substantiates the (perhaps obvi-
ous) claim that ‘physics is local’. What we mean by this is that the harmonic oscillator
responds only to the local conditions, in this case the local (in time) resonant oscillations,
independently of global structures. However this interpretation is as expected as it is mys-
terious for the reasons stated in the introduction, namely that the resonance experienced
by the oscillator somehow gets ‘taken back’ by the source after the fact so as to render
the source globally invisible to the oscillator which is only supposed to respond to one
particular frequency - the resonant frequency. This perhaps requires more explanation.
During the period before the resonant superoscillations nothing very special seems to be
occurring (we will come back to this) since the oscillator is being driven by a function
that is varying on characteristic time scale well above that of the resonant frequency w.
During the superoscillations on the other hand, the oscillator behaves exactly as if it were
being driven by a resonant driving force. However this ‘resonance’ has a strange character
since the oscillator emerges from the superoscillations with exactly the same energy as
it had when it entered. This is somewhat expected by a consideration of the symmetry
of the driving force J. This indicates that the first (in time) lobe (non-superoscillating)
section of the driving force has the effect of placing the oscillator in such a state that the
superoscillating section of the driving force exactly removes and subsequently replaces
the oscillations before the driving force enters the second (in time) lobe phase. That is,
the lobes together ‘contain’ the resonant frequency even though this is not manifest in the
shape of the driving force curve. The sequence of events is thus summarized as follows:
The first lobe section induces oscillations which are firstly removed and then replaced by
the superoscillations. These residual oscillations a subsequently removed by the second
lobe of the driving force.
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One might argue against the reality of superoscillations by pointing out that oscilla-
tors behave in an approximately resonant manner when subject to approximately resonant
driving sources. However, this interpretation is inapplicable in this case since we used in
the construction a source that was bandlimited to twice the frequency of the superoscil-
lating section and oscillators driven at twice the resonant frequency do not possess the
characteristic quadratic amplification of the energy normally associated with a resonant
driving force.

These results open up an interesting possibility for a different interpretation of super-
oscillations. The time period up until the superoscillating stretch imparts an energy into
the oscillator exactly equal to the energy initially removed and subsequently replaced in
a resonating fashion by the source during the superoscillations. This seems to suggest
that the high amplitude slowly varying lobes also contain the (relatively) high frequency
resonant mode. The key point here is that the lobes are not of one single frequency as can
be seen upon close inspection in Fig. [6.5] Perhaps the requirement of a slowly varying
frequency and amplitude will manifest itself in a relatively small amplitude stretch where
the signal becomes close to zero. Another interesting possibility is that superoscillating
functions are those bandlimited functions that come ‘closest’ to vanishing on an interval.
By a remark due to Feynman in the context of antiparticles [65] a bandlimited function
cannot vanish on any finite interval. It would be interesting to make a study of these
constructed superoscillating functions under these alternative hypotheses. Certainly it
would be possible to use the same methods as above in that analysis.
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Figure 6.5: The exterior ‘lobe’ section of the constructed superoscillating signal. For
comparison we also display an exact sine wave (which has no special significance other
than it matches the initial part of the ‘lobe’)) and tried to match it to the first period
of oscillation of the lobe. Note that the two signals become out of phase after a time
indicating that the lobe has a ‘slowly varying frequency’.
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Chapter 7

Applications of Superoscillations
in Gravity and Field Theory

In this chapter we try to make connections between the two seemingly disparate sections
presented in this thesis. In fact some connections have already been made in the litera-
ture between superoscillations and QFT in the context of Hawking radiation. We here
speculate on some further implications for the existence of superoscillations in physics.
It is the authors opinion that a true understanding of QFT cannot be achieved without
an appreciation of the existence of superoscillations, particularly in the light of the ul-
traviolet problem and its resolution in terms of a quantum gravity motivated minimal
meaningful length.

7.1 The Unruh Effect

In we briefly mentioned a phenomenon known as the Unruh effect in Minkowski
spacetime whereby the ‘no particle’ Fock vacuum state as defined in inertial coordinates
is seen to contain a thermal spectrum of particles in accelerated coordinates. There we
drew parallels with the non-uniqueness of the vacuum state in curved spacetime where
there exists no preferred class of coordinate systems analogous to the inertial Minkowskian
coordinates. The radiation associated with accelerated observers in Minkowski spacetime
was first studied in the context of an investigation of Hawking radiation (discussed below)
by Davies in 1974 [66] based on earlier work on QFT in Rindler spacetime by Fulling [67].
The use of localized particle detectors was pioneered by Unruh in 1976 [68] from whence
the phenomenon was known as the Unruh effect. For a modern review of the subject see
[69].

The physical model is simple. Consider a quantum field ¢ and a point-like detector
possessing internal quantum states |E),) labeled by the energies E,, following the space-
time trajectory x*(7) parameterized by the proper time of the detector. To first order in
perturbation theory the probability amplitude for the quantum field to make the transi-
tion from the vacuum state |0) to |1;) while simultaneously the coupled detector makes
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the transition from the ground state |Ep) to the excited |F) at time 7 is given at by[|

ZC<E|QO‘E0> /T ei(E_EO)T/e_ikx(T/)UZ(7”)6(7") dr' (711)
2m)?/2 o, J-

where €(7) is a function determining the detector efficiency and vy, is the standard mode

function evaluated along an arbitrary trajectory. It is usually assumed that this expres-

sion gives an objective measure of the content of the Minkowski vacuum state from the

perspective of an observer in general (possibly non-inertial) motion at arbitrary times.

Although we will be mainly interested in the single transition amplitude, one can go
further than by summing over all possible final momenta k& and all possible excited
energy eigenstates |F,) and evaluating the amplitude at 7 = co. One obtains the result
[2] that the total probability of transition to arbitrary final states is given by

—CZZI (E|Qo|Eo) |2/ / UE=E) (=) Gt (2(7), a(7)) drdr’

where G is the Wightman function associated with the quantum field given in terms of
a two point function as G (z,2") = (0|¢(x)p(2')|0). Here, |0) is the unique Minkowski
vacuum state minimizing the energy of the field.

It is a celebrated result [2] that when the trajectory x(7) is one of uniform acceleration,
the function P takes on the thermal character

P Z (E — Eo)|(En(0 )|E0>‘2
exp(2m(E — Ep)a) — 1

where « is the magnitude of acceleration. We see the appearance of the Planck factor in
the denominator displaying the thermality.

7.1.1 Introduction of superoscillations

The phenomenon of superoscillations has some very counterintuitive implications for the
particle concept in QFT. Examining[7.1.1] we see that the transition probability amplitude
takes the form of a partial (as defined in Chepter [5) Fourier transform of a product of
functions one of which is entirely phase another entirely real and the mode function. Let
us assume that one is able to construct a world line such that the integrand in the formula
did not contain the frequency E — Ey. Then for 7 — oo the transition probability
would be zero since the integral would be the Fourier transform of the integrand evaluated
at the missing £ — Ey frequency. However it would be possible to have a non-zero
transition probability in the intermediate region by having the integrand superoscillate
at the missing frequency. This cuts right to the heart of the seeming paradox of the
superoscillation induced ‘ghost resonance’ described in the previous chapter. Since in
Minkowski spacetime the mode function is entirely a complex phase, the lobes of the
superoscillating form could be interpreted as the effect of a peculiar switching function
whereas the resonance would be interpreted as an effect due to the path and mode function
alone. In any case the picture of the vacuum state and in particular its ‘content’ is very
much modified in the light of superoscillating functions that can ‘pretend’ to be local
particles through an Unruh detector.

!See Appendix |A| for a derivation in the case of a general spacetime.
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7.2 Hawking Effect

The use of superoscillations in addressing the trans-Planckian problem in the Hawking
effect has been studied in the papers [0, 60]. The Hawking effect suffers from the
problem that the derivation seems to make reference to arbitrarily large momentum field
modes. In [71] the author argues against the existence of Hawking radiation based on the
backreaction of the trans-Planckian modes on the surrounding spacetime via EE. The
content of [70] is the observation that the process of Hawking radiation which usually
suffers from a reference to ultra Planckian frequencies (a regime where we expect QFT to
be somehow replaced by a more fundamental theory and where the energies of the quanta
individually approach those able to effect the spacetime geometry itself) is able to be
mimicked by a superoscillating field. Recall that a superoscillating function necessarily
possesses a relatively much larger amplitude phase. This part of the field is constructed
explicitly to lie inside the event horizon and out of causal contact with the rest of the
universe. The main point of these studies is that the process of black hole formation and
evaporation can still be robust against a Planck scale cutoff on momenta. Such a cutoff
would be interpreted as a bandlimit for the fields of nature. Superoscillations allow for
the possibility of trans-Planckian waveforms without trans-Planckian frequencies.

7.3 Cosmology

Recall that on proper scales larger than the proper horizon scale comoving mode functions
freeze out and increase as an exponent of 17 or decay with the same exponent whereas on
scales smaller than the horizon the mode functions oscillate as regular waves should. In
the light of superoscillations, the question would be “would a collection of super-horizon
modes behave as if it were sub-horizon if it were constrained to superoscillate on sub-
horizon scales?” The question is non-trivial since, based on the expectation that quantum
fields make use of all possible configurations, the dynamics of super-horizon scale modes
would need to be considered in inflationary predictions as a possible source of non-scale
invariance. Usually, since super-horizon modes never behave as harmonic oscillators in a
theory with a finite duration of inflation, the initial conditions of super horizon modes are
left un-assumed but here the existence of superoscillations makes way for the possibility
of ‘frozen modes at arbitrary scales’.
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Chapter 8

Summary and Conclusion

In this second part of this thesis I have introduced superoscillations and conducted a
numerical and analytical study of a quantum and a classical harmonic oscillator coupled
to a superoscillating source. Specifically we used the methods developed in [62], 63] to
construct custom made signals that superoscillate precisely at the resonant frequency
of a harmonic oscillator. I found the interesting result that the driving force put the
oscillator in such a state that it was exactly out of phase with the superoscillations at the
beginning of the superoscillating stretch, was maximally damped down to zero amplitude
precisely half way through the superoscillating stretch and consequently was driven at
resonance back to the energy it possessed at the beginning of the superoscillations. At
that point the signal took the form of a slowly changing low frequency wave again. This
opened up a new perspective on superoscillations not found in the literature, namely
that superoscillations might alternatively be regarded as the consequence of requiring a
bandlimited function to possess a ‘slowly varying local frequency’. We ended the analysis
with some applications in gravity and QFT.

Possible future research opportunities arising from this work include a more thorough
investigation of the alternative definition of superoscillations stated above as well as an
investigation of the third possibility that superoscillations are those functions constrained
to ‘almost vanish’ on an interval. Also it would be interesting to investigate the appli-
cations in the Unruh effect further to see for example whether it is possible to actually
construct time like trajectories or switching functions €(7) that implement the described
‘false detector clicks’. Finally it would be interesting to study the possibility of higher
dimensional superoscillations or superoscillations in Lorentzian signature spaces with an
eye towards physical applications.
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Appendix A

Derivation of the Unruh
transition probability amplitude
in arbitrary spacetime

The following is a new result not published in the literature although it is a trivial
extension of the known result for Minkowski spacetime [69]. Let ¢ be a quantum scalar
field in an arbitrary background spacetime manifold, Q be a detector observable for a
detector possessing internal states {|E,)} following the timelike worldline z#(7) and |0)
be the vacuum state of the quantum field associated with the mode functions {vg(n)} as
defined in section Let the combined detector/ field system be initially in the state
|) = |Ep) ® |0) and let the interaction be facilitated by a term in the Hamiltonian

Hin (1) = (1) Q(1) (2" (7))

with € a small (with respect to the eigenvalues E,, and characteristic energies of interest)
function. We work in the interaction picture where operators evolve with respect to the
free hamiltonian and states with respect to the interacting part of the Hamiltonian. Then
the time evolution operator for states may be approximated in first order perturbation
theory as

A~ A~

0 =1+i [ " (Ao ().

Hence at a time 7 the transition probability for the transition to the state |E,) ® |Q is
given by

(Eal @ (Q) U (7)) = i/T dr’ e(r")(Eq|Q(r") | Eo) (2io(7")[0).

We notice that since ¢ = % >k Vkak + via_j the only non-trivial transitions allowed for
the field are |0) — |1j) in which case the probability amplitude is

1<En’QO|E0>
V2
In the terminology of this result states that the transition probability for a particle

detector to be excited at time 7 is given by the partial Fourier transform of the product
of the mode function with an exponential and the efficiency function.

/ dr’' eiAET’eikﬂ:i(T’)e(T/)U;; (77(7—,))
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Appendix B

Derivation of the expectation of
the physical energy momentum
tensor

Here we compute the energy momentum tensor for the physical field ¢ in terms of the
mode function solutions associated with the co-moving field x. Here we perform the
calculation in 3 4+ 1 dimensions but the general methods are applicable to the calculation
in 2 4+ 1 dimensions done in chapter 2.

The energy momentum tensor in co-moving coordinates and conformal time is ex-
pressed as

. 1
T,uzz = Cba,u Do _gg;wgaﬁd)aa ¢aﬂ
so that

. 1 1
Too = 5 (Bxa™")” + §G—2(vx)2 (B.0.1)

2
. 1—2 12 2 0’7/ a;/ / / E—QV 2 BO2
= o [ XFHx —a(xx+xx) +5a (V)7 (BO2)

Where here and throughout, prime will denote differentiation with respect to 7.

Recall that the Lagrangian for the physical (massless, free and minimally coupled)
field ¢ is given by

I = —;/d3l‘ CLQ(,D/Q —GQ(VQD)Q

where we have used /g = a*(n), so that

and we obtain the Hamiltonian

gm:l/dza 2 4 (V)
2 a? v
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We wish to express this physical Hamiltonian in terms of the y variables which we know
explicitly as solutions to the appropriate KG equation. We have the relations

x = ay

so that the Hamiltonian becomes

/ !/

N 1 a'\2 a
(¢) — = 3 (x))2 hadl 2 _ 2 (0 () 2
H —Q/dl‘(7r ) +(a)x (T XY + (VX))

We see that the above expression is identical in form to Tho which of course is expected
since we know that in general

H= /d3:c V—=gTy.

Here we have the same scale factor pre-factor due to T(()) = goof’og = a_2T00 and /—¢ = a*.

Now, there are two ways we can think of this quantity. One the one hand we may
think of this as the Hamiltonian density existing under a spatial integral whereas on the
other we write it explicitly as a function of z. In the first case we may perform such

operations as
/ Brr(z) = / B ( / Bk (277)_3/27rk) m(z)
_ / &k / P x(2m) 2 (z) )
= / d3kmpm_

where upon taking expectation values we obtain

1
( / Prr@) = ; / Bk {(agol +at ol ) (ago™, + alvl))

1
= 5 [ @i a0

if we follow the prescription whereby one commutes all creation operators to the left. In
the second case we simply expand the operators outright to obtain

1 . /
P(z)) = =(2m)3 / &k Bk ((apvyy + aT_k,vfg/) (arvy + aT_kv;g)>e’(k+k )z

2

1 . /
- / BRd K oo EHIT 5 4 )
- ;(27r)3/d3k:|v§€|2.

We see that the two expressions differ by a replacement by (27)~2 the factor of §(0) in
the Hamiltonian.
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Inserting the mode expansion into the expression [B.0.2] and taking the vacuum expec-
tation value as is done above one obtains the general expression valid in all space-times
and for any choice of vacuum

0_ oy L a? 31100 (2 5 a” 2 a
TO:<TO>:Z(27T)3 d°k o |+  k t |vk|” — 0y E|vk| ~ (B.0.3)
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Appendix C

On the vacuum energy in de
Sitter spacetime with modified
dispersion

Non-trivial dispersion relations such as

k

FY (k) = Atanh¥/P[ (=
(k) = Avan[ ()]

k

F(?)(k,) — (k,2 + kam(?)Qm)l/Q
C
having the asymptotics F(k) ~ k for small k are considered in the literature for various
reasons including the trans-Planckian problems of inflation [46] and Hawking evaporation
[45]. In this appendix we discuss these possibilities briefly and in the context of de Sitter

spacetime.

C.0.1 Modified Bunch Davies criterion

One possibility is to introduce the dispersion function into the action for a massless scalar
field written in Fourier space

1 ;
S=3 / dnd’k(a®¢ — a*(n)k*¢7)

1
o [ (@6~ a F 1/ a) ).

This modification manifests itself in the equation of motion for the scaled field x = a(n)¢,
usually introduced for the purpose of removing first time derivatives in the corresponding
Klein Gordon equation, as

"

- %);zk —0.

Xi + (a®F?(k/a)

In our test case F'(A) = Atanh(A/A) we take the third order Taylor approximation
and obtain the field equation

4 kS 4 KA 2
)

" k2 = . o
Xk+( +9@4/\4 3a2A2 p

)Xk
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Since the modified dispersion relation differs from the usual dispersion only in the high
(proper) k regime, the Bunch Davies vacuum identification criteria must be modified
in order to identify the correct vacuum state. In other words, stipulating a modified
dispersion relation in the ultraviolet conflicts with the identification of the vacuum mode-
functions in the following sense: Usually, in identifying the vacuum state mode-functions,
we assume that on very short length scales (equivalently for high k) the vacuum should be
that of a Minkowski vacuum. We impose asymptotic conditions on the mode functions
that amount to equating these functions with those of the Minkowski vacuum in the
k — oo limit. However, it is precisely in this regime that the dispersion relation is
constructed to diverge from the usual dispersion. It is clear that to be consistent with
the modified dispersion, we must equate in the limit the given de Sitter mode functions
with, not the usual Minkowski mode functions

e %e—iwk’
Wi
but the modified generalization of the Minkowski mode functions (sometimes called adi-
abatic mode functions)

1 —i [Tdn'aF (k/a)

corresponding to the vacuum state in flat space-time of the field with modified dispersion.
This procedure is obviously quite involved since explicit solutions to the initial value
problem would seem to be difficult to obtain since the field equation is not of the form
such that it can be solved by Bessel functions. We defer such a study to a future project.

C.0.2 Modified dispersion without modified wave equation

We now turn to a simpler realization of modified dispersion. In the following we will
show that no suitably regular modified dispersion in de Sitter space time introduces time
dependence into the Bunch Davies vacuum expectation value of the energy momentum
tensor for a massless scalar field. (One may easily generalize this to a massive scalar field
and also to a Power Law spacetime which is proposed to be a more accurate description
of our universe during an inflationary epoch).

Let F) be a real function of one variable (called the dispersion function) with the
following properties:

Fa(k) =k, for k—0, Fp(0)=0
Fy(k) —1 for k—0, FA0)=1
Fr(k) — k for A — oo

F\ possesses a Taylor expansion at k = 0.

These properties characterize what we mean by a modified dispersion relation that reduces
to the usual dispersion at large scales. We explicitly introduce a characteristic scale A, a
constant in proper coordinates and which is used to generate an absolute scale to which
we compare proper lengths. In practice, we interpret A as a Planck scale beyond which
ordinary quantum field theory (even with a modified dispersion or cutoff) is assumed to
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break down due to non-trivial gravitational back-reaction. A modified dispersion relation
is obtained by making the replacement in the energy momentum tensor

k* — a*F(k/a)>. (C.0.1)

An Explicit Example

Firstly we make a Taylor approximation to the modified dispersion relations .
Specifically we consider the first such relation F m(k). Letting p = 1 for simplicity we
have,
1

FO(k) =k — oYL
Now, it is the purpose of a modified dispersion relation to somehow take into account
the granular or quantum nature of space-time on very short proper scales. To this end
we must introduce the modified behavior for very high proper momenta k and make the
replacement
4 kS 4 kS
9a*A2  3aA?’

The vacuum expectation value of the energy density T(? is given in general by

k? — a®F2(k) = a®F?(k/a) = k* +

0 0 a”t [ a2 2 (VN2 2 2
T =(15) = o | dk[RP R () + K2
=) = Gz [ a[El 2 o
/
—2k2a—(v;€* + z)}
a
so that the non-trivial dispersion mapping gives rise to the new terms in the modified
energy density expectation Tg ,

—4 o] 8 3
=0 0, @ 4 k 4 k
B=10+35 | g e,

2
=3 [t

Inserting the Bunch Davies mode functions

A . o 142k
v = \/;(J:a/z()\) - ZY3/2()\)>, log|= = T

where J3 /9 and Y35 are bessel functions of the first and second kind respectively, A = knl,
and the de Sitter scale factor is a(n) = —1/(Hn), we obtain after imposing the proper
wavenumber cutoff at kproper = A (in other words we impose the upper limit of integration

kmaz = a(n)/\)v
N AH2 /A3 A3 A3 1IN
_ 70 _ g0 _ AHT AT AT AT L
o0p =Ty — Ty 187r2<6 1>+67r2(24 5)]0

which again is independent of time.

Therefore we have shown that this particular modification to the dispersion relation
does not produce a net surplus or net deficit of vacuum energy production in an expand-
ing spacetime. The argument is easily generalized to arbitrary dispersion functions and
arbitrarily high order Taylor approximations.
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