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Abstract

Many new materials used in mechanical and structural engineering exhibit viscoelastic

properties, that is, stress depends on the past time history of strain, and vice versa. Investi-

gating the behaviour of viscoelastic materials under dynamical loads is of great theoretical

and practical importance for structural design, vibration reduction, and other engineering

applications. The objective of this thesis is to find how viscoelasticity affects the stability of

structures under random loads.

The time history dependence of viscoelasticity renders the equations of motion of vis-

coelastic bodies in the form of integro-partial differential equations, which are more difficult

to study compared to those of elastic bodies.

The method of stochastic averaging, which has been proved to be an effective tool in

the study of dynamical systems, is applied to simplify some single degree-of-freedom linear

viscoelastic systems parametrically excited by wide-band noise and narrow-band noise. The

solutions of the averaged systems are diffusion processes characterized by Itô differential

equations. Therefore, the stability of the solutions is determined in the sense of the moment

Lyapunov exponents and Lyapunov exponents, which characterize the moment stability and

the almost-sure stability, respectively. The moment Lyapunov exponents may be obtained by

solving the averaged Itô equations directly, or by solving the eigenvalue problems governing

the moment Lyapunov exponents.

Monte Carlo simulation is applied to study the behaviour of stochastic dynamical systems

numerically. Estimating the moments of solutions through sample average may lead to er-

roneous results under the circumstances that systems exhibit large deviations. An improved

algorithm for simulating the moment Lyapunov exponents of linear homogeneous stochas-

tic systems is presented. Under certain conditions, the logarithm of norm of a solution

converges weakly to normal distribution after suitably normalized. This property, along

with the results of Komlós-Major-Tusnády for sums of independent random variables, are

applied to construct the algorithm. The numerical results obtained from the improved

algorithm are used to determine the accuracy of the approximate analytical moment Lya-
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punov exponents obtained from the averaged systems. In this way the effectiveness of the

stochastic averaging method is confirmed.

The world is essentially nonlinear. A single degree-of-freedom viscoelastic system with

cubic nonlinearity under wide-band noise excitation is studied in this thesis. The approx-

imated nonlinear stochastic system is obtained through the stochastic averaging method.

Stability and bifurcation properties of the averaged system are verified by numerical simu-

lation. The existence of nonlinearity makes the system stable in one of the two stationary

states.
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1C H A P T E R

Introduction

1.1 Stability and Bifurcation of Stochastic Dynamical
Systems

1.1.1 Stochastic Stability

Stability problems spread widely in physical sciences and engineering applications. For

example, the vibration of buildings under wind and seismic loads should not be too large,

or in better cases, diminish gradually as time passes by. Phenomenally, stable system means

that its output should be under a preset level, provided that its input is small. If a system

becomes unstable, its ouput will exceed a critical level or lose control even if the input is

small enough.

Mathematically, a deterministic system with state vector x ∈R d may be characterized by

the differential equation

ẋ(t) = A(t, x), x(0) = x0 ∈R d. (1.1.1)

If the mapping A : [0, ∞)×R d →R d is continuous, and locally Lipschitz with respect to

x, then equation (1.1.1) has a unique solution in the neighborhood of the initial point

(0, x0) [12], [49]. Since a shift transformation can always be applied, the trivial solution

or zero equilibrium point of the transformed system is usually considered, without loss

of generality, when studying the stability property of the corresponding solution for the

1



1.1 stability and bifurcation of stochastic dynamical systems 2

original system. Different types of stability for system (1.1.1) can be found in many classical

references, such as [79], [18], and [120].

It is usual that a system is affected by some indetermined or random parameters, and

external disturbances or noises. A vector stochastic process ξ(t), which describes the

indetermined disturbances, may be introduced and thus leads to the so-called stochastic

differential dynamical system

ẋ(t) = A(t, x, ξ(t)), x(0) = x0 ∈R d . (1.1.2)

The existence of ξ(t) makes the stochastic system different from the deterministic system

since the state at any fixed time is not uniquely determined, thus the stability has to be

defined first in order to investigate system (1.1.2) in a rigorous sense.

Similar to deterministic systems, the equilibrium point x∗ =0 can be considered for

system (1.1.2), without loss of generality, by applying a shift transformation, provided that

it is a solution of the transformed system. The most frequently used stochastic stability

concepts are almost-sure stability and moment stability, whose definitions follow Kushner

[68], Khasminskii [58], and Arnold [8] below.

Almost-Sure (a.s.) Stability or Stability with Probability One (w.p.1)

The equilibrium point x∗ =0 is stable with probability 1 (w.p.1) if, for any ε>0 and ρ>0,

there exists δ(ε, ρ)>0 such that

P

{

sup
t > 0

∥

∥x(t)
∥

∥>ε
}

<ρ,

whenever
∥

∥x(0)
∥

∥<δ, where P { · } denotes the probability,
∥

∥ ·
∥

∥ denotes a suitable vector

norm.

Almost-Sure Asymptotic Stability

The equilibrium point x∗ =0 is asymptotically stable w.p.1 if and only if it is stable w.p.1

and

P

{

lim
t→∞

∥

∥x(t)
∥

∥=0
}

=1.
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Moment Stability

The equilibrium point x∗ =0 is stable in the pth moment if, for any ε>0, there exists δ>0

such that E
[∥

∥x(t)
∥

∥

p]
<ε, for all t >0 and

∥

∥x(0)
∥

∥<δ, where E[ · ] denotes the expectation.

Lyapunov’s direct method is widely used in studying the stability of deterministic sys-

tems. The idea is to find a function, that is positive everywhere, except at the origin where it

takes zero value. This function is known as the Lyapunov function and can be treated as the

total energy of the system. If the derivative of this function with respect to time is less than

or equals to zero, it means that the total energy of the system is nonincreasing with time. In

this sense the trivial equilibrium point is stable. More details on Lyapunov’s direct method

can be found in references such as [12] and [54].

With the theory of probability and stochastic processes, there is also the stochastic

Lyapunov function theorem for determining the stability of stochastic dynamical systems,

which has a close relation with the martingale theory, since the derivative of Lyapunov

function may be evaluated in accordance with Itô’s theorem. More details may be refered

to the work by Kushner [68], Khasminskii [58], and Arnold [8]. Compared to deterministic

cases, it is generally more difficult to find the Lyapunov functions for stochastic systems.

Although Lyapunov function theorem provides a method to determine the stochastic

stability of dynamical systems, it is generally not an easy task to find the Lyapunov functions

for stochastic systems. Therefore, other direct methods concerning with the stochastic

stability, such as determining the Lyapunov exponents and the moment Lyapunov exponents

of stochastic dynamical systems, are exploited.

For a linear system

ẋ(t) = A(t) x(t), x(0) = x0 6= 0,

the Lyapunov exponents are defined by

λx(t)(x0) = lim
t →∞

1

t
log

∥

∥x(t; x0)
∥

∥, (1.1.3)

which characterize the exponential rates of growth or decay of the solutions as t →∞. The

Lyapunov exponents were first introduced by Lyapunov [78], and later advanced by Oseledec

[89] to stochastic dynamical systems. Another approach to the Lyapunov exponents is the

product of independent and identically distributed (i.i.d.) invertible random matrices (see,
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e.g. [38], [39], [23]), which gives an alternative proof to Oseledec’s multiplicative ergodic

theorem. It is shown that λx(t)(x0) exist w.p.1 if A(t) is a stationary stochastic process

with E
[∥

∥A(t)
∥

∥

]

<∞. If moreover A(t) is ergodic, then λx(t)(x0) take only finitely many

deterministic real values.

Hence, the Lyapunov exponents determine the almost-sure stability. If the largest Lya-

punov exponent is negative, the solution will decay to zero exponentially as t →∞, and

hence the system is asymptotically stable w.p.1. If the largest Lyapunov exponent is positive,

the system is unstable w.p.1. Lyapunov exponents are widely used in stability analysis be-

cause they provide a criteria for asymptotic stability w.p.1, which has a better performance

than stability w.p.1, when the state of a system is required to return to the equilibrium state

under small stochastic perturbations.

Generally, convergence w.p.1 does not imply convergence in moments, and vice versa.

Thus stability w.p.1 may not be enough in engineering applications if moment stability is

required. The moment Lyapunov exponents are defined by

3x(t)(p; x0) = lim
t →∞

1

t
log E

[

∥

∥x(t; x0)
∥

∥

p
]

. (1.1.4)

3x(t)(p; x0) determine the stability of the pth moments of the solutions of a dynamical

system. The pth moments are asymptotically stable if 3x(t)(p; x0)<0.

The connection between the moment Lyapunov exponent and the Lyapunov exponent,

i.e. the moment stability and the almost-sure stability, was established by Molchanov [81]

and extended by Arnold et al. [9], [7], [5] for linear stochastic dynamical systems in the

form of

dx(t) = B0(t, x)dt +
r
∑

i=1

Bi(t, x)dWi,

and

ẋ(t) = A
(

ξ(t)
)

x(t),

where A is analytic and ξ(t) is a stationary ergodic diffusion process. It has been proved

that, if the non-degenerate conditions hold, λx(t)(x0) and 3x(t)(p; x0) are independent of

the non-zero initial condition x0, and λx(t)(x0)=λmax
x(t) almost-surely with λmax

x(t) being the

largest (top) Lyapunov exponent. Moreover,3x(t)(p) is a convex analytic function in p with

3x(t)(0)=0 and3′
x(t)(0)=λmax

x(t) .
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The stability index δx(t), which is the non-trivial zero of3x(t)(p), i.e.3x(t)(δx(t))=0, char-

acterizes the stability range of the moment. With the convexity of3x(t)(p) and3x(t)(0)=0,

if δx(t)<0, then 3x(t)(p)>0 for all p>0, which means all the pth moments ( p>0) are

unstable. Therefore, only δx(t)>0 is meaningful in applications. When 0< p<δx(t), the pth

moment is asymptotically stable.

From Jensen’s inequality, it can be concluded that higher moment stability implies lower

moment stability. However, following Markov’s inequality and Chebyshev’s inequality, the

stability of pth moment ( p>0) implies only weak stochastic stability, i.e.

lim
‖x(0)‖→0

sup
t > 0

P

{

∥

∥x(t)
∥

∥>ε
}

=0, for all ε>0, (1.1.5)

which is weaker than the definition of almost-sure stability. These two stability concepts

are equivalent for linear autonomous systems [58], [8]. But for a general system, there is

no such result. Therefore it is important to determine both the largest Lyapunov exponent

(almost-sure stability) and the moment Lyapunov exponent (moment stability) in order to

have a complete picture of the dynamical stability of stochastic system (1.1.2).

1.1.2 Stochastic Bifurcation

The deterministic bifurcation theory studies the stability of equilibrium points of a family

of deterministic paramerized systems

ẋ(t) = A(x; α), x ∈R d , α∈R m, (1.1.6)

with α being the m-dimensional parameter. The equilibrium solutions of equation (1.1.6)

are determined by A(x; α)=0 when α varies. If the Fréchet derivative DxA(x; α) with

respect to x has zero eigenvalue at some equilibrium point (x0, α0), some branches of the

equilibrium solutions may change their stability properties. In this case it is said that

bifurcation occurs [45], [113].

For general stochastic dynamic systems (1.1.2), the solutions are stochastic processes.

It is interesting to study a class of solutions that are Markovian, stationary, and ergodic

processes.

Markov property says that the future is independent of the past when the present is

known. It is known that a solution of system (1.1.2) is a Markov process provided that
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ξ(t) is a family of independent random vectors which are also independent of x0 [8].

The transition probability function P (s, X, t, B) of a Markov process x(t) defined on a

probability space (�, F, P ) is a conditional distribution given by

P (s, X, t, B) = P
{

x(t)∈B
∣

∣ x(s)=X
}

,

where 06 s6 t<∞, X ∈R d , B∈B d , B d is the Boral sigma-algebra. The transition proba-

bility satisfies the Chapman-Kolmogorov equation [40], [105]

P (s, X, t, B) =
∫

R
d

P (τ , y, t, B)P (s, X, τ , dy). (1.1.7)

Using this equation, all finite-dimensional distributions of a Markov process can be deter-

mined from the initial distribution and the transition probability; thus all the properties

of the process are known. A Markov process is homogeneous in time t if its transition

probability is stationary or invariant under time shift, that is,

P (s, X, t, B) = P (s+u, X, t+u, B).

In this case it can be written that P (s, X, t, B)=P (t−s, X, B).

A stochastic process x(t) is (strict) stationary if, for any sequence of t1, t2, · · · , tn and

arbitrary h, the joint distribution of random vectors x(t1), x(t2), · · · , x(tn) are the same as

that of x(t1+h), x(t2+h), · · · , x(tn+h). This means that all joint probability distributions

of a stationary process are invariant under time shift. Thus stationary processes play

a significant role in applications. The necessary and sufficient conditions for a Markov

process to be a stationary process are (see, e.g. [58], [8]) that, x(t) is homogeneous, and an

invariant distribution ̺ exists such that

̺(B) =
∫

R
d

P (t, y, B)̺(dy), for all B∈B d , t > 0. (1.1.8)

This invariant distribution is the stationary limit distribution of x(t) and is independent of

the initial distribution [8].

For a stationary Markov process, it is reasonable to expect further that the ergodic

property holds, i.e. the space average of a function can be evaluated by the time average

along the trajectories almost everywhere [18], [11], [101]. This requires that ([41], [102]), the
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invariant probability measure ̺ is unique, and for every bounded B-measurable function

f : � → B,

lim
T →∞

1

T

∫ T

0
f (x(t))dt =

∫

R
d

f (x)̺(dx). (1.1.9)

If system (1.1.2) is linear, it is obvious that the trivial solution is a stationary solution and

its stability can be determined in the sense of Lyapunov exponents and moment Lyapunov

exponents. Consider a general stochastic dynamical system of the form

ẋ(t) = A(x, ξ(t); α), x ∈R d , α∈R m, (1.1.10)

where α denotes the m-dimensional parameter. Without loss of generality, assume that

x =0 is a stationary solution, since a shift transformation can always be applied. Similar to

deterministic systems, the stability of this trivial solution can be investigated by linearizing

equation (1.1.10) at x =0 with respect to x,

v̇ = DxA(0, ξ(t); α)v = Ã(ξ(t); α)v. (1.1.11)

If the linearization is applied directly for the non-trivial stationary solution xst(t), then the

equation for the perturbed variable v =x−xst becomes

v̇ = DxA(xst(t), ξ(t); α)v,

ẋst(t) = A(xst(t), ξ(t); α).

(1.1.12)

Obviously, the equations for the perturbed variable v in (1.1.11) and (1.1.12) are lin-

ear and homogeneous. Thus the stability of the trivial or non-trivial solutions may be

determined by the Lyapunov exponents and moment Lyapunov exponents for a given α.

Moreover, the Lyapunov exponents can be the indicators of stochastic bifurcation, that is,

when α varies, change of the sign of the largest Lyapunov exponent indicates change in

the stability of the trivial solution. This type of bifurcation is called stochastic dynamical

bifurcation, or D-bifurcation [10].

It is possible that, when the parameter α varies, the stability of a stationary solution

does not change, but the invariant distribution ̺ of the stationary solution has a “qual-

itative change”. This phenomena is called stochastic phenomenological bifurcation, or

P-bifurcation [10], [87], although some researchers doubt that if it should be called a bifur-

cation, since the stability of the solution keeps unchanged and it is not obvious to define
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a “qualitative change” [24]. The relation between P-bifurcation and stability index, i.e. the

non-trivial zero of moment Lyapunov exponents, can be found in [10].

1.2 Approximate Method for Stochastic Dynamical
Systems

For the general stochastic dynamical system (1.1.2), it is difficult to find the solution or even

to determine if a solution exists. Therefore approximate methods have to be applied so that

system (1.1.2) can be converted to or approximated by some types of system which may be

more easily studied.

1.2.1 Method of Stochastic Averaging

The method of averaging, after it was developed by Krylov, Bogoliubov and Mitropolskii

[66], [20], has been widely used in investigating deterministic dynamical systems. The

principle is to separate the variables of the system into two parts, slow-varying variables

and fast-varying variables. Then the terms related to the slow-varying variables may be

approximately replaced by some simpler forms. After this simplification the solution of the

approximate dynamical system may be obtained.

Consider the following deterministic system

ẋ(t) = εA(t, x, ε), (1.2.1)

where 0<ε≪1 is a small parameter. If A is T-periodic in t, A and its derivatives are

continuous and bounded, system (1.2.1) can be approximated in the first-order by the

averaged system

ẏ(t) = ε ĀT(y), (1.2.2)

where

ĀT(y) = 1

T

∫ τ+T

τ

A(t, y, 0)dt = M
t

{

A(t, y, 0)
}

. (1.2.3)

Under the above conditions and approximation,
∥

∥x(t)−y(t)
∥

∥ =O(ε) on the time scale ε−1

as ε→0.
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In more general cases, the averaging operator M
t

{ · } defined in (1.2.3) may be extended

to the form

M
t

{ · } = lim
T →∞

1

T

∫ τ+T

τ

{ · } dt, (1.2.4)

provided that the limit exists. The standard averaging operator in (1.2.3) requires that the

functions being averaged be periodic. However, the functions to be averaged in (1.2.4) are

not necessarily periodic, although a better approximation is obtained if these functions are

almost periodic. The extension of the averaging operator enlarges the cases where averaging

method can be applied. Additional discussion can be found in [97], [76], [82].

A more complex case is the integro-differential system in the form of

ẋ(t) = εA(t, x)+ ε

∫ t

0
H(t, s, x(s))ds, (1.2.5)

where A and H are continuous for all t, s>0 and x. The averaging method due to Larionov

[69] shows that, if there exists the limit

lim
T →∞

1

T

∫ T

0

[

A(t, x)+
∫ t

0
H(t, s, x(s))ds

]

dt = Â(x), (1.2.6)

in which A(t, x), H(t, s, x(s)), Â(x) satisfy the Lipschitz condition with respect to x, the

solution to the differential equation

ẏ(t) = ε Â(y), y(0)=x(0), (1.2.7)

is defined for t >0, and, for any finite time interval [t1, t2] along the trajectory y,

∣

∣

∣

∣

∫ t2

t1

Â(y(s))ds

∣

∣

∣

∣

6 C(t2 − t1),

with C being a constant, then the solution of equation (1.2.5) can be approximated by the

solution of (1.2.7) over a time interval of order ε−1/2.

If the second-order averaging for deterministic system (1.2.1) is considered, x is expressed

as x(t)= y(t)+εx1(t, y), and A(t, x, ε) is expanded as Taylor series in terms of the small

parameter ε. Then it can be obtained, by substituting x(t) into equation (1.2.1),

ẏ(t) = ε

[

I + ε
∂x1(t, y)

∂y

]−1 {[

A(t, y, 0)− ∂x1(t, y)

∂t

]

+ ε
∂A(t, y, 0)

∂ε

}

+ o(ε2). (1.2.8)
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Expanding the matrices in equation (1.2.8) and neglecting the higher-order terms result in

the second-order averaged equation

ẏ(t) = ε

[

A(t, y, 0)− ∂x1(t, y)

∂t

]

+ ε2B(t, y, x1). (1.2.9)

To solve the averaged equation (1.2.9),

∂x1(t, y)

∂t
= A(t, y, 0)− ĀT(y) (1.2.10)

may be chosen. After x1 is obtained from equation (1.2.10), equation (1.2.9) can be solved

for y(t). Similar procedures can be followed in order to obtain higher-order averaging

approximations.

The averaging method for stochastic differential equations was proposed by Stratonovich

[106], [107] and developed by Khasminskii [57], [56]. For a stochastic system

ẋ(t) = εA(t, x, ξ(t), ε), x(0) = x0, (1.2.11)

where 0<ε≪1 is a small parameter, ξ(t) is a zero mean value, stationary stochastic process.

If as ε→0, A(t, x, ξ(t), ε) can be expressed uniformly in t, x, ξ as

A(t, x, ξ(t), ε) = A0(t, x, ξ(t))+ εA1(t, x)+ o(ε), (1.2.12)

where A0, A1 and their first- and second-order derivatives with respect to x are smooth

and bounded functions, A, A0 and A1 are measurable for fixed x and ε, and the correlation

function E
[

ξ(t)ξ(t+τ)
]

decays to zero fast enough as τ increases, or ξ(t) is a wide-band

process, then system (1.2.11) can be approximated uniformly in weak sense (see, e.g. [56],

[34], [103], [102]) on the time scale ε−2 by a Markov diffusion process x̄(t) satisfying

dx̄(t) = ε2 m(x̄)dt + εσ (x̄)dW(t), (1.2.13)

provided that the following limits exist

m(x̄) = M
t

{

A1 +
∫ 0

− ∞
E
[∂A0

∂x
A0τ

]

dτ

}

,

σ (x̄)σ T(x̄) = M
t

{∫ ∞

− ∞
E
[

A0 AT
0τ

]

dτ

}

, (1.2.14)
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where A0τ =A0(t+τ , x, ξ(t+τ)).
Stochastic version of higher-order averaging may follow the same procedure as the deter-

ministic case. In fact, the weak convergence of stochastic averaging as ε→0 is the result of

the functional central limit theorem for stochastic processes [34], [103], [102]. The condi-

tions for weak convergence of averaging principle are very general assumptions, which are

considered to be satisfied in many physical and engineering applications.

It is also stated ([57], [34], [35], [103], [102]) that, if A(t, x, ξ(t), 0) in equation (1.2.11)

satisfies the strong law of large numbers for fixed x, i.e.

Ā(x) = lim
T →∞

1

T

∫ T

0
E
[

A(t, x, ξ(t), 0)
]

dt, (1.2.15)

then the averaging principle leads to convergence w.p.1 to the solution of a deterministic

system

ẋ(t) = ε Ā(x), x(0) = x0, (1.2.16)

on time interval of order ε−1 as ε→0. The difference between the solutions of the original

system (1.2.11) and the averaged system (1.2.16), after normalized by
√
ε, converges weakly

to a Gaussian Markov process over a wider time interval of order ε−2. Similar almost-

sure convergence results are also established in [47], [64], [65] under some slightly more

restrictive conditions.

By applying the stochastic averaging method, the state variables of the original stochastic

dynamical system will be approximated by a new set of averaged variables which are Markov

processes. The transition density functions of the averaged variables can be obtained

from the Fokker-Plank-Kolmogorov equation, and thus the properties of the approximate

solution are known.

Although stochastic averaging principle only ensures that the approximate solution given

by equation (1.2.13) converges in distribution to the true solution of equation (1.2.11) over

a finite time interval, it still provides a useful approach when the true solution is difficult

to obtain. The accuracy of the approximate solutions may be verified by experiments or

simulations in practice.
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1.2.2 Existence and Uniqueness of Solutions of Stochastic
Differential Equations

From Section 1.2.1 it is known that a general stochastic dynamical system may be approxi-

mated by the Itô stochatic differential equation

dx(t) = m(x)dt + σ (x)dW(t). (1.2.17)

Before studying the stability of its solution, it should be confirmed that a solution exists.

For this purpose, the following more general form of equation can be considered

dx(t) = m(t, x)dt + σ (t, x)dW(t), x(0) = x0 ∈ R d , 0 6 t 6 T<∞, (1.2.18)

where m is a d-dimensional vector, σ is a d×r matrix, and W is a r-dimensional vector

Wiener process. Equation (1.2.18) is a formal expression of stochastic integral

x(t) = x0 +
∫ t

0
m(s, x(s))ds +

∫ t

0
σ (s, x(s))dW(s). (1.2.19)

It has been shown ([58], [115], [41], [8], [36]) that, if m(t, x) and σ (t, x) are measurable on

[0, T]×R d and, for all t ∈[0, T], x, y ∈R d , satisfy the Lipschitz condition

∥

∥m(t, x)− m(t, y)
∥

∥+
∥

∥σ (t, x)− σ (t, y)
∥

∥ 6 K
∥

∥x − y
∥

∥, (1.2.20)

and the restriction on growth condition

∥

∥m(t, x)
∥

∥

2 +
∥

∥σ (t, x)
∥

∥

2
6 K2

(

1 +
∥

∥x
∥

∥

2)
, (1.2.21)

where K>0 is a constant and ‖σ‖2 = tr
(

σσ T
)

, then equation (1.2.18) has a unique solution

continuous w.p.1 on [0, T] satisfying the given initial condition. For the special case when

equation (1.2.18) is linear, which finds wide applications in physics and engineering, it has

a unique solution continuous w.p.1.

The solution of equation (1.2.18) is a diffusion process with m(t, x) being the drift

coefficient and b(t, x)=σ (t, x)σ (t, x)T being the diffusion coefficient. Diffusion process

is a special case of Markov processes with continuous sample functions and usually serve

as the theoretical model of physical diffusion phenomena. If its transition density function

q(t, x; t0, x0) has continuous derivative with respect to t and continuous second-order
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derivatives with respect to x, then for fixed x0 and t0 such that t0 6 t, q satisfies the well-

known Fokker-Plank or Forward Kolmogorov equation (FPK equation) [8]

∂q

∂t
+

d
∑

i=1

∂
[

mi(t, x)q
]

∂xi

− 1

2

d
∑

i=1

d
∑

j=1

∂2
[

bij(t, x)q
]

∂xi∂xj

= 0, (1.2.22)

with the initial condition

q(t, x; t0, x0) → δ(x−x0), as t ↓ t0, (1.2.23)

where mi and bij, i, j=1, 2, · · · , d are the elements of m and b. It can be seen ([41], [8])

that, every Markov diffusion process is uniquely determined by its infinitesimal generator

defined by

G
t
=

d
∑

i=1

mi(t, x)
∂

∂xi

+ 1

2

d
∑

i=1

d
∑

j=1

bij(t, x)
∂2

∂xi∂xj

. (1.2.24)

The stability property of a diffusion process may be determined through its transition

density function, since the density function of state vector x at time t can be obtained by the

Chapman-Kolmogorov equation (1.1.7) using the initial distribution. However, the Fokker-

Plank-Kolmogorov equation (1.2.22) is not always easy to solve. Hence it is necessary to

find other ways to analyse the stability property of equation (1.2.18).

It is shown ([81], [9], [7], [5], [111]) that, for a linear stochastic system, the pth moment

Lyapunov exponent3(p) is the principal eigenvalue of the differential eigenvalue problem

L (p)T(p) = 3(p)T(p),

where L (p) is a differential operator associated with the system parameters, T(p) is the

corresponding non-negative eigenfunction. Solving this eigenvalue problem by methods

such as perturbation, the pth moment Lyapunov exponent can be obtained.

1.3 Noise Models and Monte Carlo Simulation

1.3.1 Wide-band and Narrow-band Noises

In oder to study the properties of dynamical systems under the perturbation of noise,

suitable mathematical models for different types of noises have to be established. With
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the application of stochastic integrals, noises may be defined as the solutions of certain

stochastic differential equations, since the existence, uniqueness, and Markov properties of

solutions are based on the properties of the governing equations.

Gaussian white noise process ξ(t) is the formal derivative of the Wiener process given by

ξ(t)dt =
√

S0 dW(t), (1.3.1)

with constant power spectral density S(ω)=S0. Such noise does not exist in reality since its

power is infinity. However, it provides a very simple and useful mathematical idealization

for wide-band noise.

A real noise, or more specifically an Ornstein-Uhlenbeck process, is defined by

dξ(t) = −αξ(t)dt + σ dW(t), (1.3.2)

with power spectral density

S(ω) = σ 2

α2 + ω2
. (1.3.3)

Ornstein-Uhlenbeck process is stationary and Gaussian [40]. From (1.3.3) it can be seen

that its power mainly concentrates in lower frequency band. Whenα increases, the spectrum

becomes “flatter”, which means it may be considered as an approximate model of wide-band

noise by suitably choosing α and σ .

The more general definition of “real noise” is defined as a stationary ergodic diffusion

vector process ξ(t), which is described by the Stratonovich stochastic differential equation

dξ(t) = Q0

(

ξ(t)
)

dt +
r
∑

i=1

Qi

(

ξ(t)
)

◦ dWi,

with Qi, i =0, 1, . . . , r, being smooth [9]. Such noise may not be Gaussian but may be

more suitable to describe noises in the real world.

The bounded noise process was introduced by Stratonovich [106]. It overcomes the

shortcoming of Ornstein-Uhlenbeck process, which is not bounded. The unit bounded

noise is given by

ξ(t) = cos
[

νt + σW(t)+ θ
]

, (1.3.4)
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where θ is a uniformly distributed random number in [0, 2π) and is independent of W(t).

Using Itô’s Lemma, it can be seen that ξ(t) is the solution of the Itô differential equation

dξ(t) = −
(

ν

√

1 − ξ 2 + 1

2
σ 2ξ

)

dt − σ

√

1 − ξ 2 dW(t), (1.3.5)

or equivalently, the Stratonovich stochastic differential equation

dξ(t) = −ν
√

1 − ξ 2 dt − σ

√

1 − ξ 2 ◦ dW(t). (1.3.6)

Thus the bounded noise is a special kind of non-Gaussian general “real noises”. The power

spectral density of the unit bounded noise is

S(ω) =
σ 2
(

ω2 + ν2 + 1
4σ

4
)

2
[

(ω + ν)2 + 1
4σ

4
][

(ω − ν)2 + 1
4σ

4
] . (1.3.7)

Equation (1.3.7) shows that the power of the bounded noise can be controlled by adjusting

the values of ν and σ , and it mainly distributes in the neighborhood of ν. Hence the

bounded noise is a very good realistic model of narrow-band noise and is widely used in

many engineering applications.

1.3.2 Monte Carlo Simulation

For Itô stochastic differential equations, the complete behaviour of solutions can be obtained

by solving the determininstic Fokker-Planck-Kolmogorov equations for the transition prob-

ability density functions. However, in many cases such procedures may have great practical

difficulies, although it can be done analytically or numerically in principle. Therefore, direct

numerical approaches to the corresponding Itô equations may have to be applied. Moreover,

the generation of noises may be obtained by computer simulation of stochastic differential

equations.

There are two types of discrete schemes, strong approximation scheme and weak approx-

imation scheme. The difference between them is the way they converge to the exact solution

[60], [80].

A strong approximation scheme with order γ requires that the error of approximation

satisfies

ǫ(h) = E
[∥

∥x(T)− xh(T)
∥

∥

]

6 C hγ , (1.3.8)
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where x is the exact solution, xh is the discrete approximation, h>0 is the time step, T is the

total length of time of simulation, C and γ are positive constants, and C is independent of h.

Weak schemes do not require path-wise approximation but focus on obtaining more

information about the probability measure. Hence for a weak scheme whose approximation

converges weakly with order γ >0 to the exact solution, the error of approximation only

needs to satisfy

ǫ(h) =
∣

∣

∣
E
[

g(x(T))
]

− E
[

g(xh(T))
]

∣

∣

∣
6 C hγ , (1.3.9)

where g(x) is a continuously differentiable function with derivative at least of the order of

2(γ+1).

The direct numerical simulation schemes and their features are always associated with the

properties of Wiener process and Itô differential equation. The simplest numerical scheme,

the Euler scheme, for system (1.2.18) is

xk+1 = xk + m(tk, xk) h + σ (tk, xk) 1Wk, k = 0, 1, 2, · · · , (1.3.10)

which is obtained from the stochastic Taylor expansion of stochastic integral [60], [59].

The superscript k means the value at the kth iteration. Time step h= tk+1−tk, and 1Wk

satisfies the l-dimensional Gaussian distribution with zero mean and covariance matrix hI.

The Euler schemes are strong approximation schemes of order 0.5 and weak approximation

schemes with order 1.0, and are widely used in applications due to their simple forms. Sim-

ilar to Euler scheme, higher order schemes can also be constructed through the stochastic

Taylor expansion.

1.4 Viscoelasticity and Integro-differential Equations

1.4.1 Equations of Motion for Linear Viscoelastic Bodies

Viscoelasticity has been observed in a number of materials, such as polymers, composites,

metals, and alloys at high temperatures. Investigating the behaviour of viscoelastic materials

under dynamical loads is of great help for engineering applications.

Generally speaking, elastic materials have the capacity to store mechanical energy without

dissipation because they have the property to recover to the original states after they are
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unloaded. On the other hand, Newtonian viscous fluid cannot store mechanical energy

except in non-hydrostatic stress state. However, some materials both store and dissipate

mechanical energy; such property is called viscoelasticity. In classical elasticity, there are no

strain-rate effects. That is the strain at time t depends only on the stress at time t, and vice

versa. However, for viscoelastic materials, stress is not a function of instantaneous strain

but depends on the past time history of strain; this dependent relation also holds for strain.

It has been observed that, typically, the strain of viscoelastic material under constant stress

increases with time in creep test, while the stress decreases with time under constant strain

in relaxation test.

In the case of linear aging viscoelasticity, where aging means the mechanical properties

of a given material change with its age, the relation between uniaxial strain ε(t) and stress

σ(t) can be expressed as Stieltjes integrals, according to the Riesz’s representation theorem

[33], [25],

ε(t) =
∫ t

− ∞
F(t, τ)dσ(τ), σ(t) =

∫ t

− ∞
G(t, τ)dε(τ ), (1.4.1)

where F(t, τ) is called the creep function, and G(t, τ) is the relaxation function. In the

complicated strain and stress states, the integral representation will be

εij(t) =
∫ t

− ∞
Fijkl(t, τ)dσkl(τ ), σij(t) =

∫ t

− ∞
Gijkl(t, τ)dεkl(τ ), (1.4.2)

where {εij(t)}=ε(t) is the strain tensor and {σij(t)}=σ (t) is the stress tensor. Corre-

spondingly, Fijkl(t, τ) is the tensorial creep function and Gijkl(t, τ) is the tensorial relaxation

function.

For linear non-aging materials, the time when they are loaded can be selected as the time

origin without loss of generality. Therefore, the creep function and the relaxation function

are only determined by the time difference t−τ . If the creep function, relaxation function,

strain, and stress are further assumed to be differentiable, then the constitutive relation

reduces to

εij(t) =
∫ t

0
Fijkl(t−τ)dσkl(τ ) = Fijkl(0)σkl(t)+

∫ t

0
Ḟijkl(t−τ)σkl(τ )dτ ,

σij(t) =
∫ t

0
Gijkl(t−τ)dεkl(τ ) = Gijkl(0)εkl(t)+

∫ t

0
Ġijkl(t−τ)εkl(τ )dτ ,

(1.4.3)
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where Gijkl(0) is the instantaneous elastic modulus. The conditions

∫ +∞

0

∥

∥Ġijkl(t)
∥

∥ dt < ∞,

∫ +∞

0
t
∥

∥Ġijkl(t)
∥

∥ dt < ∞ (1.4.4)

ensure that the equilibrium elastic modulus Gijkl(+∞) exists. There are also differential

representations of the constitutive relation. They include the derivatives of strain and stress,

which describe their dependence on time history. These two types of representation are

equivalent [25].

One choice of relaxation and creep functions under uniaxial strain state often used is

G(t) = E e− t
λ , F(t) = 1

E

(

1 + t

λ

)

, (1.4.5)

where E is the general elastic modulus, λ is known as the relaxation time. Equation

(1.4.5) describes the stress relaxation and creep phenomena and is associated with the

well-known differential Maxwell model [25], [32]. Furthermore, the generalized Maxwell

model, which consists of a sequence of differential Maxwell units coupled in parallel, can be

used as an approximation to most linear viscoelastic behavior as close as possible [96], [32].

Obviousely, the relaxation function for generalized Maxwell model will be given by

G(t) =
M
∑

j=1

Ej e−t/λj , (1.4.6)

where M is the number of Maxwell units in the parallel chain.

The linear theory is often used under the assumption of infinitesimal deformation. How-

ever, for some materials, such as concrete subjected to high stresses or partial unloading

[27], the deformation is beyond the range where superposition and, therefore, linearity are

valid. As a result, the general theory of nonlinear viscoelasticity has to be applied. However,

the constitutive relation for nolinear viscoelastic materials is far more complicated and is

still under development. Generally it is defined through the deformation gradient but not

strain, and there may be many choices due to the variety of materials. Green-Rivlin theory

[43] is a common approach in determining the mechanical properties of viscoelastic solids.
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From linear elasticity theory, the governing equations for the dynamic response of an

elastic body with boundary and initial data are given by, using Newton’s Second Law [37],

ρ
∂2ui

∂t2
−
∂σij

∂xj

= fi(x, t), in D×[0, T), (1.4.7)

ui = 0, on ∂Du×[0, T),

σijνj = gi, on ∂Dσ×[0, T),

ui(x, 0) = ui0, in D,

∂ui(x, 0)

∂t
= ui1, in D, (1.4.8)

where i =1, 2, 3, ρ is the mass density of the elastic body, u(x, t)=(u1, u2, u3) is the dis-

placement vector, x ∈D⊂R 3, ∂D=∂Du ⊕∂Dσ is the boundary of D, f(x, t)=( f1, f2, f3) is

the body force, and ν=(ν1, ν2, ν3) is the unit outward vector normal to ∂Dσ . If viscoelastic-

ity is considered, then from the constitutive relationship (1.4.3) one has the integro-partial

differential equation

ρ
∂2ui

∂t2
−
∫ t

0
Gijkl(t−τ)

∂2εkl(u(x, τ))

∂xj∂τ
dτ = fi, in D×[0, T),

or

ρ
∂2ui

∂t2
− Gijkl(0)

∂εkl(u(x, t))

∂xj

−
∫ t

0
Ġijkl(t−τ)

∂εkl(u(x, τ))

∂xj

dτ = fi, (1.4.9)

combining with the boundary and initial conditions in equations (1.4.8). Under the as-

sumption of small deformation, the symmetric strain tensor is given by [37]

εij(x, t) = 1

2

[

∂ui(x, t)

∂xj

+
∂uj(x, t)

∂xi

]

, i, j = 1, 2, 3. (1.4.10)

Substituting equation (1.4.10) into (1.4.9) leads to the general form of equations of motion

for viscoelastic dynamical system with the displacement vector u(x, t) as variables.

1.4.2 Stability of Integro-Differential Equations

Stability of elastic structures under deterministic loads has been investigated by many re-

searchers for decades [21], [22], [121], [72]. Stability of elastic structures under random

loads can also be found in some references such as [75], [73], [119]. However, the study of
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stability of viscoelastic structures is in its infancy, since it is more difficult to study the sta-

bility of integro-partial differential equations, and moreover, the constitutive relationships

for viscoelastic materials are also under development.

For one-dimensional small deformation problems, the governing equation of motion

reduces to hyperbolic partial differential equation of the form

ρ
∂2u(x, t)

∂t2
− E

∂2u(x, t)

∂x2
= f (x, t), (1.4.11)

for elastic case, and

ρ
∂2u(x, t)

∂t2
−
∫ t

0
G(t−τ)∂

3u(x, τ)

∂x2∂τ
dτ = f (x, t),

or

ρ
∂2u(x, t)

∂t2
− G(0)

∂2u(x, t)

∂x2
−
∫ t

0
Ġ(t−τ)∂

2u(x, τ)

∂x2
dτ = f (x, t), (1.4.12)

for linear viscoelastic case. Thus studying the dynamic response of a viscoelastic body may

lead to studying an integro-partial differential equation of the type

utt(x, t) =
[

φ(ux(x, t))
]

x
−
∫ t

0
H(t−τ)

[

ψ(ux(x, τ))
]

x
dτ + f (x, t). (1.4.13)

Note that equation (1.4.13) includes the linear and nonlinear viscoelastic constitutive rela-

tionship. When one takesφ(x)=c1x andψ(x)=c2x, where c1 and c2 are constants, equation

(1.4.13) can be converted to (1.4.12) easily.

The stability of equation (1.4.13) in deterministic cases has been studied by some re-

searchers. If the viscoelasticity vanishes, i.e. H(t)≡0, equation (1.4.13) describes the one-

dimensional nonlinear elastic response when φ is nonlinear, and it is known that generally

the corresponding initial-boundary value problem does not have globally smooth solution

for any nonzero initial and boundary data. However, for the cases when viscoelasticity ex-

ists, the results given in [28], [29], [19] show that, for materials with linear viscoelasticity, i.e.

φ andψ are linear functions, the initial-boundary value problems associated with equation

(1.4.13) have globally defined smooth solutions, provided that the initial data in equations

(1.4.8) and forcing function f are suitably smooth and small, and these solutions tend to

zero as t →∞. Furthermore, if H(t) is an exponential kernel, i.e. Maxwell viscoelastic

model, the initial data and f need not be small to ensure that the response reduces to zero
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with time [51]. This implies that viscoelasticity has the similar effect as damping and helps

to stabilize structures.

1.5 Scope of the Thesis

Study on the stability of dynamical systems in engineering mechanics arises from the

investigation of responses of strucures subjected to dynamic loads. Although there are

numerous works on the stability of elastic structures, research on the stability of viscoelastic

structures, especially for the cases under random loads, appears to be limited. Due to the

wide applications of viscoelastic materials, research in this area is of great importance.

This thesis focuses on the stability of viscoelastic systems under stochastic perturbations.

The main goal is to obtain the Lyapunov exponents and moment Lyapunov exponents of

certain models of viscoelastic systems. These models may be simplifications of realistic

structures, such as buildings subjected to earthquake or wind loads. After the Lyapunov and

moment Lyapunov exponents are known, the stability of these systems may be improved by

adjusting or optimizing system parameters.

This chapter presents the preliminary backgrounds which will be applied to the study

of stochastic stability. Stochastic differential equations provide the mathematical models

for realistic stochastic phenomena, on which analytical and numerical methods can be

applied to investigate the properties of these systems. Generally speaking, the methods of

averaging and perturbation are two important methods for obtaining approximate solutions

of dynamical systems. Numerical methods may be employed when the analytical methods

are difficult to apply, or when the analytical approximations need to be validated.

Chapter 2 presents a new algorithm on simulation of moment Lyapunov exponents for

linear homogeneous stochastic systems. Since numerical simulation results can be used to

verify the accuracy of approximate analytical solutions of stochastic systems, an accurate

and efficient algorithm is necessary.

In Chapter 3, an example of single degree-of-freedom (SDOF) linear viscoelastic system is

established. Then the method of stochastic averaging, both the first- and the second-order,
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is applied to determine the moment Lyapunov exponents of the sytem under wide-band

and narrow-band noise excitations.

In Chapter 4, a SDOF nonlinear viscoelastic system is considered. The system is simplified

using the method of stochastic averaging. Lyapunov exponents for the trivial and non-trivial

stationary solutions are then obtained. Stochastic bifurcation phenomena associated with

the nonlinear system are studied.

Chapter 5 presents some conclusions from this study and directions for future research.



2C H A P T E R

Monte Carlo Simulation of Moment
Lyapunov Exponents

As introduced in Chapter 1, the moment Lyapunov exponents characterize the moment

stability of a stochastic dynamical system. Although it is quite straightforward to set up the

partial differential eigenvalue problem with the pth moment Lyapunov exponent 3(p) as

the principal eigenvalue ([9], [7], [5], [111], see also [119]), the actual solution of the eigen-

value problem is very difficult. For certain simple two-dimensional or four-dimensional

systems, approximate analytical methods, such as stochastic averaging or perturbation, have

been applied to obtain approximate analytical results of the moment Lyapunov exponent

3(p) (see, e.g. [4], [55], [84], [86], [116], [117]). In general, numerical approaches, such as

Monte Carlo simulations, have to be applied to determine the moment Lyapunov exponents.

Furthermore, even when approximate analytical results are available, their accuracies have

to be verified by numerical simulations.

When investigating the stability of a general stochastic dynamical system, it is usual to

consider the corresponding linearized system near its stationary solution as presented in

Section 1.1.2. The linearized system is homogeneous. This shows the importance of linear

homogeneous systems in the study of stochastic dynamical systems.

There are some references discussing the numerical approximation of Lyapunov expo-

nents, such as [109], [110], [44]. However, there seems to be only one numerical algorithm

23
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for determining the moment Lyapunov exponents using Monte Carlo simulation published

so far [118], which is described briefly in Section 2.1.

2.1 Numerical Algorithm Using Sample Norm

Consider a general d-dimensional linear homogeneous stochastic dynamical system

Ẋ(t) = A
(

ξ(t)
)

X(t), X(0) = X0. (2.1.1)

In the cases that ξ(t) is described by Itô or Stratonovich stochastic differential equations,

equation (2.1.1) is solved using an appropriate numerical discretization scheme with a time

step h. To have an accurate estimation of the pth moment, E
[∥

∥X(t)
∥

∥

p]
, a large number of

sample realizations must be simulated, since the evaluation of expectation is determined by

the sample average.

When system (2.1.1) is stable, the solution decays exponentially in time, whereas, when it

is unstable, the solution grows exponentially with time. To avoid float-point data overflow

or underflow, it is essential to devise an appropriate scheme to normalize the solutions

regularly during simulation. In practice, there is no need to normalize the solution at every

iteration. Suppose the solution is normalized after every K iterations, or after every time

period TN =Kh.

Let S d−1 be the unit sphere in d-dimensional space R d . For a given initial condition

X(0)=X0 ∈S d−1, i.e.
∥

∥X0

∥

∥=1, and simulation time T =MTN , one has

∥

∥X(T)
∥

∥ =
∥

∥X(T , X0)
∥

∥ =
M
∏

m=1

∥

∥X(mTN , X0)
∥

∥

∥

∥X
(

(m−1)TN , X0

)∥

∥

. (2.1.2)

Since equation (2.1.1) is linear homogeneous, it can be seen that

Xm(t) =
X
(

(m−1)TN +t, X0

)

∥

∥X
(

(m−1)TN , X0

)∥

∥

, m = 1, 2, . . . (2.1.3)

solves equation (2.1.1) with the initial condition

Xm(0) =
X
(

(m−1)TN , X0

)

∥

∥X
(

(m−1)TN , X0

)∥

∥

∈S d−1. (2.1.4)
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Thus

∥

∥X(T)
∥

∥ =
M
∏

m=1

∥

∥Xm(TN )
∥

∥. (2.1.5)

Equations (2.1.3) and (2.1.4) indicate that normalization procedure can be performed for

every time period TN such that the solution of the stochastic differentials always restarts

from initial conditions with unit norm right after the normalization (see Figure 2.1).

||Xm−1(t)||

(m−1)TN

1

true solution

mth normalized
solution

(m−2)TN mTN
t(m+1)TN

||X(t)||

||X((m+1)TN)||

||X(mTN)||

||X((m−1)TN)||
||Xm(t)||

||Xm+1(t)||

Figure 2.1 Growth of the solution and normalization

Let X̄h denote the solution from an appropriate numerical discretization scheme with

time step h. For a large simulation time T with M large, the pth moment Lyapunov

exponent should be approximated as

3̄h(p) = 1

T
log E

[

∥

∥X̄h(T)
∥

∥

p
]

= 1

MTN

log E

[

M
∏

m=1

∥

∥X̄h
m(TN )

∥

∥

p

]

. (2.1.6)
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In the algorithm in Xie [118], the pth moment Lyapunov exponent is evaluated as

3̄h(p) = 1

MTN

log
M
∏

m=1

E
[

∥

∥X̄h
m(TN )

∥

∥

p
]

, (2.1.7)

where the expectation is determined by the sample average

E
[

∥

∥X̄h
m(TN )

∥

∥

p
]

= 1

N

N
∑

s=1

∥

∥X̄h,s
m (TN )

∥

∥

p
, (2.1.8)

with N being the sample size for simulation, and X̄h,s
m the sth sample path of X̄h

m.

It is obvious that equations (2.1.6) and (2.1.7) are different since all
∥

∥X̄h
m(TN )

∥

∥ are

dependent and thus the order of the expectation operation and the product operation

cannot be exchanged. Noticing that equation (2.1.7) can be rewritten as

3̄h(p) = 1

M

M
∑

m=1

1

TN

log E
[

∥

∥X̄h
m(TN )

∥

∥

p
]

, (2.1.9)

it actually gives the average of M moment Lyapunov exponents simulated for a time period

of TN rather than the moment Lyapunov exponent simulated for a long time period of

T =MTN . Theoretically, the larger the value of TN , the more accurate the approximation.

Unfortunately, to avoid float-point data overflow and underflow, the value of TN cannot be

very large. Although each simulation of the moment Lyapunov exponent for a relatively

short time period of TN may not be accurate, for some systems the algorithm based on

equation (2.1.7) yields satisfactory results because of the Central Limit Theorem. However,

there are systems for which equation (2.1.7) leads to erroneous results.

One possible revision to correct the insufficiency of algorithm (2.1.7) for linear homoge-

neous systems is to normalize the solutions by their expectations, but not their norms as in

equation (2.1.3). With unit norm initial condition and the definition

Ȳ
h
m(t) =

X̄h
(

(m−1)TN +t, X0

)

E
[∥

∥X̄h
(

(m−1)TN , X0

)∥

∥

] , m = 1, 2, . . . , (2.1.10)
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the approximate moment Lyapunov exponents at time T are given by

3̄h(p) = 1

MTN

log

{

E
[∥

∥X̄h(MTN )
∥

∥

p]

E
[∥

∥X̄h
(

(M−1)TN

)∥

∥

]p

M−1
∏

m=1

E
[∥

∥X̄h(mTN )
∥

∥

]p

E
[∥

∥X̄h
(

(m−1)TN

)∥

∥

]p

}

= 1

MTN

log E

[∥

∥

∥

∥

∥

X̄h(MTN )

E
[∥

∥X̄h
(

(M−1)TN

)∥

∥

]

∥

∥

∥

∥

∥

p]

+ 1

MTN

M−1
∑

m=1

p log E

[∥

∥

∥

∥

∥

X̄h(mTN )

E
[
∥

∥X̄h
(

(m−1)TN

)∥

∥

]

∥

∥

∥

∥

∥

]

= 1

MTN

{

log E
[∥

∥Ȳ
h
M(TN )

∥

∥

p]+
M−1
∑

m=1

p log E
[∥

∥Ȳ
h
m(TN )

∥

∥

]

}

. (2.1.11)

The solution of equation (2.1.1) may be a diffusion process and its variance may in-

crease significantly with time. Although equation (2.1.11) is exact theoretically when M

approaches infinity, there are two main sources that will lead to significant numerical errors.

First, according to the Central Limit Theorem, for independent and identically distributed

(i.i.d.) random variables x1, x2, . . . with the same mean valueµ and variance σ 2, the distri-

bution of sample average x̄ =
(
∑N

s=1 xs

)

/N tends to the normal distribution N(µ, σ 2/N).

This means that equation (2.1.8) will not give acceptable results of the expected values

when the variances of the solutions are so large that it is impossible to reduce the error of

estimation to an acceptable level with a finite number of samples.

Second, due to the finite lengths of floating-point representations in computers, when

two numbers are summed up, the smaller one will be neglected if the difference of their

exponent bits exceeds the limit. If a system is unstable, its solution grows exponentially

with time. Even when the system is stable and the chance that the solution takes extremely

large values may be rare, once it happens, all the contributions from other samples will be

eliminated. Thus this truncated error in estimating the expectations will be dominant in

simulations with large variances.

To illustrate, consider the first-order linear homogeneous stochastic system

dx(t) = ax(t)dt + σx(t)dW(t), (2.1.12)
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where a and σ are real constants. The solution of system (2.1.12) is given by

x(t) = x(0) exp
{(

a− 1

2
σ 2
)

t + σW(t)
}

.

The pth moment Lyapunov exponent can be easily determined as

3(p) = lim
t →∞

1

t
log E

[∣

∣x(t)
∣

∣

p] = p

2

[

(p−1)σ 2 + 2a
]

,

and the variance of norm is

Var
[
∣

∣x(t)
∣

∣

]

= E
[∣

∣x(t)
∣

∣

2]−
{

E
[∣

∣x(t)
∣

∣

]}2 = e2at(eσ
2t − 1).

Figure 2.2 shows the numerical results of the moment Lyapunov exponents for a=0,

σ =1, and different values of the total time of simulation T , in which equation (2.1.12) is

solved numerically using the explicit Euler scheme. The time step for iteration is h=0.001,

the sample size is N =5000 and equation (2.1.11), i.e. the revised algorithm, is used to

determine the approximate moment Lyapunov exponents. It is obvious that the longer

the time T for simulation, the worse the results. Because the variance of
∣

∣x(t)
∣

∣ increases

exponentially with time, it is impossible to get an accurate estimate of the pth moment using

sample average from finite sample sizes N for t large.

2.2 Estimation of the Expectation through Logarithm of
Norm

Because of the possible large errors in simulating moment Lyapunov exponents with in-

creasing time of simulation, it is required to develop a new algorithm to overcome the

difficulty in estimating the moments. Since the errors are caused by large variances of the

solutions, it is clear that how to reduce the variances in order to obtain a good estimation of

the moments using a finite number of samples is the key.

There exists variance reduction techniques in Monte Carlo simulation [60], [80]. These

methods construct either an alternate correction process or a new random variable to reduce

the variance of estimation through the sample average. However, in order to have the best

effect, the solution to the equation to be simulated should be known in advance. In practice,

one has to guess and choose the required functions for estimation. Thus it is not easy to say

how much these techniques will improve the results.
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Figure 2.2 Simulation of moment Lyapunov exponents for a first-orderlinear system

Notice that

log E
[

∥

∥X(T)
∥

∥

p
]

= log E
[

e p log‖X(T)‖
]

= C(p), (2.2.1)

where C(p) is the cumulant generating function of log
∥

∥X(T)
∥

∥. In the special case when

log
∥

∥X(T)
∥

∥ is normal, C(p) takes the simple form

C(p) = pE
[

log
∥

∥X(T)
∥

∥

]

+ 1

2
p2 Var

[

log
∥

∥X(T)
∥

∥

]

, (2.2.2)

where Var[ · ] denotes the variance. Therefore it may be possible to use the statistical

properties of log
∥

∥X(T)
∥

∥ in estimating the moment Lyapunov exponents.

2.2.1 Asymptotic Normality of Logarithm of Norm

Since the simulation of stochastic dynamical systems is based on the theory of stochastic

integrals, it is natural to start with the following d-dimensional Itô stochastic differential
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equation

dX(t) = B0(X, t)dt +
r
∑

i=1

Bi(X, t)dWi. (2.2.3)

When the system is linear homogeneous with constant coefficients, equation (2.2.3) takes

the form

dX(t) = B0 X(t)dt +
r
∑

i=1

Bi X(t)dWi, (2.2.4)

where Bi, i =0, 1, . . . , r, are d×d constant matrices. Let ρ(t)= log
∥

∥X(t)
∥

∥ and λ be the

largest Lyapunov exponent. It has been shown ([58], p. 243) that the limit distribution of
(

ρ(t)−λt
)/

√

Var [ρ(t)] is standard normal as t →∞ if Var [ρ(t)] →∞, and there exists

a constant α>0 such that, for any vector Y,

r
∑

i=1

(

YT BiX
)2

> α
∥

∥X
∥

∥

2∥
∥Y
∥

∥

2
(2.2.5)

is satisfied.

However, in applications, there are many cases that the non-degenerate condition (2.2.5)

is not satisfied. An extended result by Arnold et al. [7] shows that, for any X(0) 6=0,

lim
t →∞

1

t
ρ(t) = λ a.s., lim

t →∞
1

t
log E

[

∥

∥X(t)
∥

∥

p
]

= 3(p), (2.2.6)

and the normalized ρ(t) converges weakly to Gaussian distribution with

ρ(t)− λt√
t

D−→N
(

0,3′′(0)
)

, t →∞, (2.2.7)

provided that

dim LA
(

gi : 0 6 i 6 r
)

(s)=d−1, for all s∈PJ d−1, (2.2.8)

where LA(gi) denotes the Lie algebra generated by the set of vector fields gi, dim the

dimension, PJ d−1 the projective space obtained from S d−1 by identifying s and −s, and gi

are given by

g0(s) = g

(

B0 − 1

2

r
∑

i=1

B2
i , s

)

, gi(s) = g(Bi, s), i = 1, 2, . . . , r, (2.2.9)
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in which g is defined as, for any d×d matrix B and s∈S d−1,

g(B, s) =
(

B − (sT Bs)I
)

s = Bs − (sT Bs)s. (2.2.10)

It is obvious that g(B, s) is the orthonormal component of vector Bs with respect to s.

The linear homogeneous system with constant coefficients, i.e. equation (2.2.4), can be

converted to the Stratonovich form. Thus it can describe the stochastic dynamical system

Ẋ(t) =
(

B0 − 1

2

r
∑

i=1

B2
i +

r
∑

i=1

Bi ξi(t)

)

X(t) = A
(

ξ(t)
)

X(t),

with ξi(t), i =1, 2, . . . , r, being unit Gaussian white noises. It is very likely that noise ξ(t)

takes other forms. The result obtained by Arnold et al. [9], [5] solves this problem under

some conditions.

Return to the general d-dimensional linear homogeneous system (2.1.1), with A being

an analytic function and ξ(t) being a vector stochastic process on a connected smooth

manifold M described by Stratonovich stochastic differential equation

dξ(t) = Q0

(

ξ(t)
)

dt +
r
∑

i=1

Qi

(

ξ(t)
)

◦ dWi, (2.2.11)

where Qi, i =0, 1, . . . , r, are smooth. If

dim LA
(

Qi : 1 6 i 6 r
)

(ξ)= dim M, for all ξ ∈M, (2.2.12)

dim LA
(

g
(

A(ξ), s
)

: ξ ∈M
)

(s)=d−1, for all s∈PJ d−1, (2.2.13)

then, for any X(0) 6=0, equations (2.2.6) and (2.2.7) are still true. Condition (2.2.12)

ensures that ξ(t) is a stationary ergodic diffusion process with a unique smooth and positive

invariant density ̺ on manifold M [5]. Fortunately, condition (2.2.13) is satisfied for most

problems frequently considered in engineering applications [9]. Moreover, conditions

(2.2.12) and (2.2.13) can be replaced by

dim LA

(

Q0+g(A, s)+ ∂

∂t
, Q1, . . . , Qr

)

(ξ , s, t) = dim M + d,

for all (ξ , s, t)∈M×PJ d−1×R ,

(2.2.14)
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As a result of equations (2.2.6) and (2.2.7), one can write [4]

3(p) = λp + 1

2
3′′(0)p2 + o(p2). (2.2.15)

2.2.2 Estimation through Logarithm of Norm

Suppose
∥

∥X(T)
∥

∥ is obtained for linear homogeneous systems (2.2.4) or (2.1.1), and the

corresponding system satisfies conditions (2.2.8), or (2.2.12) and (2.2.13). When T is large

enough and X(0) 6=0, ρ(T)= log
∥

∥X(T)
∥

∥ is near Gaussian according to the discussion in

Section 2.2.1.

Let X̄h(T) still be the solution at time T obtained from an appropriate numerical dis-

cretization scheme with time step h, and X̄h,s(T), s=1, 2, . . . , N , be the different samples

of X̄h(T). Then X̄h,s(T) can be treated as independent and identically distributed (i.i.d.)

random vectors with the same distribution as X̄h(T). Thus the pth moment Lyapunov

exponent is approximated as

3̄h(p) = 1

T
log E

[

∥

∥X̄h(T)
∥

∥

p
]

= 1

NT
log

{

N
∏

s=1

E
[

∥

∥X̄h,s(T)
∥

∥

p
]

}

= 1

NT
log E

[

exp

(

p

N
∑

s=1

log
∥

∥X̄h,s(T)
∥

∥

)

]

. (2.2.16)

By defining

ρ̄h(T) = log
∥

∥X̄h(T)
∥

∥,

µ̄h
T = E

[

ρ̄h(T)
]

,
(

σ̄ h
T

)2 = Var
[

ρ̄h(T)
]

,

ρ̂h,s(T) =
ρ̄h,s(T)− µ̄h

T

σ̄ h
T

, RN =
N
∑

s=1

ρ̂h,s(T),

(2.2.17)

equation (2.2.16) becomes

3̄h(p) = 1

NT
log E

[

exp
(

pµ̄h
T N + pσ̄ h

T RN

)

]

= p
µ̄h

T

T
+ 1

NT
log E

[

e pσ̄ h
T RN

]

. (2.2.18)

With the notation

ζN = RN√
N

, (2.2.19)
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equation (2.2.18) is converted to

3̄h(p) = p
µ̄h

T

T
+ 1

NT
log E

[

e
√

N pσ̄ h
T ζN
]

. (2.2.20)

Let F∗N
ζ (x) be the cumulative distribution function of ζN , then F∗N

ζ (x) tends to the

standard normal distribution of N(0, 1) as N →∞ according to the Central Limit Theorem,

i.e. F∗N
ζ (x)→8(x) uniformly, where8(x) is the standard normal distribution function

8(x) = 1√
2π

∫ x

− ∞
exp

(

−y2

2

)

dy.

Using the Edgeworth expansion theorem for distribution [42], [31], one may have

F∗N
ζ (x) = 8(x)+

∞
∑

k=3

ck8
(k)(x), (2.2.21)

where8(k)(x) is the kth derivative of8(x), and the coefficients ck can be determined by the

equality of moments on both sides of equation (2.2.21). Notice that ζN has zero mean and

unit variance. If the kth central moment of ρ̂h(T) is µ̄h
k , for k>3, then using integration by

parts, it is easy to deduce from equation (2.2.21) that

c3 = −1

6

µ̄h
3√

N
(

σ̄ h
T

)3
, c4 = 1

24

µ̄h
4 − 3

(

σ̄ h
T

)4

N
(

σ̄ h
T

)4
, · · · .

Therefore equation (2.2.20) yields

3̄h(p) = p
µ̄h

T

T
+ 1

NT
log

∫ ∞

− ∞
e
√

N pσ̄ h
T xdF∗N

ζ (x)

= p
µ̄h

T

T
+ 1

NT
log

{

e
1
2 N p2(σ̄ h

T )
2
[

1 − N 3/2 p3
(

σ̄ h
T

)3
c3 + N 2 p4

(

σ̄ h
T

)4
c4 + · · ·

]}

= p
µ̄h

T

T
+ 1

2
p2

(

σ̄ h
T

)2

T
+ 1

NT
log

{

1 + 1

6
N p3µ̄h

3 + 1

24
N p4

[

µ̄h
4 −3

(

σ̄ h
T

)4
]

+ · · ·
}

.

(2.2.22)

The tail distribution of F∗N
ζ (x) is of paramount significance, since it is required to de-

termine the expectation of e
√

N pσ̄ h
T ζN in equation (2.2.20) from a finite sample size N in

simulation. This means that accurate higher-order moments of ρ̄h(T) are required in order

to obtain a good approximation of E
[

e
√

N pσ̄ h
T ζN
]

. However, it is very difficult to do so in
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practice. If only lower-order moments are considered, the estimation error of moments

may make the sum of a finite number of terms within the argument of the last logarithm in

equation (2.2.22) be negative when N becomes large, which will lead to invalid operation

in simulation. Despite there are many methods to estimate the distribution of a random

variable in statistics, for example, the saddle point approximation [100], [13], [61], the kernal

function estimation [30], these methods only ensure the uniform approximation of the

probability density function, which is not enough to obtain a good approximation of the

expectation of e
√

N pσ̄ h
T ζN . Therefore, the distribution of ρ̄h(T) has to be considered to find

an appropriate estimation.

Noticing that equation (2.2.2) is true for normal distribution, one may attempt to see if the

last logarithm term in equation (2.2.22) can be dropped in simulation since the distribution

of the normalized ρ̄h(T) approaches normal as T goes to infinity, just as indicated by

equation (2.2.7). Actually, ρ̄h(T) obtained from simulation always takes values within some

finite interval [A, B]. If the truncation of ρ̄h(T), i.e. ρ̄h(T)1[A,B], is considered, where 1[A,B]
is the indicator function of [A, B], E

[

e pρ̄h(T)1[A,B]
]

approaches E
[

e pρ̄h(T)
]

as close as possible

when A→−∞ and B→∞. Helly’s second theorem ([77], pp.45, see also [53]) shows that

the value of E
[

e pρ̄h(T)1[A,B]
]

can be approximated by evaluating the expectation using normal

distribution when T is large enough. These reasons provide a support that E
[

e pρ̄h(T)
]

may

be estimated by taking ρ̄h(T) as a normal random variable.

From the definition of ρ̂h,s(T), it can be seen that ρ̂h,s(T), s=1, 2, …, N , are i.i.d.

random variables with E
[

ρ̂h,s(T)
]

=0, Var
[

ρ̂h,s(T)
]

=1. Moreover, using equation (2.2.1),

it is obvious that the existence of moment Lyapunov exponents ensures that E
[

eηρ̂
h,s(T)

]

<∞
for

∣

∣η
∣

∣6η0, where η0 is some constant. Then according to the theorem proved by Komlós

et al. [62], [63], a sequence of standard normal random variables zs, s=1, 2, …, N , can

be constructed such that, for every N and all x>0, the partial sums Rk =
k
∑

s=1

ρ̂h,s(T) and

Vk =
k
∑

s=1

zs satisfy

P

{

max
k 6 N

∣

∣Rk − Vk

∣

∣ > C0 log N + x
}

< δ0e−δx, (2.2.23)
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where C0, δ, δ0 depend only on the distribution of ρ̂h,s(T), and δ can be as large as possible

by choosing C0 large enough. Thus it follows
∣

∣RN −VN

∣

∣=O(log N) almost-surely for every

N [62], [63].

Considering the near normality of ρ̂h,s(T) and the finite sample size, events with zero

probability are treated as not likely to occur in simulation. This means that RN is replaced by

VN +O(log N) in the evaluation of expectation and thus equation (2.2.18) is approximated

as

3̄h(p) = p
µ̄h

T

T
+ 1

NT
log E

[

e pσ̄ h
T

{

VN +O(log N)
}

]

= p
µ̄h

T

T
+ 1

2
p2

(

σ̄ h
T

)2

T
+ O

(

log N

N

)

. (2.2.24)

Hence, when the sample size N is large enough, by neglecting the last term in equation

(2.2.24) and estimating the mean and variance of logarithm of norm, the pth moment

Lyapunov exponent is given by

3̄h(p) = 1

T

{

pE
[

log
∥

∥X̄h(T)
∥

∥

]

+ 1

2
p2 Var

[

log
∥

∥X̄h(T)
∥

∥

]

}

. (2.2.25)

It is obvious that the variance of log
∥

∥X̄h(T)
∥

∥ will be much smaller than the variance of
∥

∥X̄h(T)
∥

∥ when
∥

∥X̄h(T)
∥

∥ becomes large; therefore obtaining a good estimation of the pth

moment Lyapunov exponent through sample average is possible.

From equation (2.2.25) one also sees that the largest Lyapunov exponent can be approxi-

mated as

λ̄h = 1

T
E
[

log
∥

∥X̄h(T)
∥

∥

]

, (2.2.26)

which is the same result as given by Talay [109].
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2.3 Algorithm for Linear Homogeneous Stochastic
Systems

2.3.1 Implementation of Algorithm

Following equation (2.2.25), an algorithm for simulating the moment Lyapunov exponents

of linear homogeneous stochastic dynamical system (2.2.4)

dX(t) = B0 X(t)dt +
r
∑

i=1

Bi X(t)dWi,

or equivalently, in the Stratonovich’s form,

dX(t) =
(

B0 − 1

2

r
∑

i=1

B2
i

)

X(t)dt +
r
∑

i=1

Bi X(t) ◦ dWi,

and system (2.1.1)

Ẋ(t) = A
(

ξ(t)
)

X(t),

dξ(t) = Q0

(

ξ(t)
)

dt +
r
∑

i=1

Qi

(

ξ(t)
)

◦ dWi,

can be described as follows. Since the simulation requires the statistical properties of

logarithm of the norm, the normalization operation described in Section 2.1 can be applied.

Step 1. Use an appropriate time discrete approximation, such as the Euler scheme, to

discretize system (2.2.4) or (2.1.1) with time step h. Details of various numerical schemes

for solving stochastic differential equations can be found in [60].

Step 2. Set the initial conditions of the state vector X̄h
(

t, X̄h(0)
)

by X̄h(0)∈Sd−1, i.e.

∥

∥X̄h,s(0)
∥

∥ = 1, s = 1, 2, . . . , N ,

where N is the sample size,
∥

∥X
∥

∥=
√

XT X is the Euclidean norm of vector X.

Step 3. Solve the discretized system iteratively. Apply the normalization procedure as

described in Section 2.1, i.e. normalization is performed after every K iterations or after

every time period TN =Kh. At the mth normalization, or at t =mTN , the sth sample is

normalized using equation (2.1.4), i.e.

X̄h,s
m+1(0) =

X̄h,s
(

mTN , X̄h,s(0)
)

∥

∥X̄h,s
(

mTN , X̄h,s(0)
)∥

∥

=
X̄h,s

m

(

TN , X̄h,s
m (0)

)

∥

∥X̄h,s
m

(

TN , X̄h,s
m (0)

)∥

∥

, m = 1, 2, . . . .
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Simulation is then continued with the initial condition X̄h,s
m+1(0) with

∥

∥X̄h,s
m+1(0)

∥

∥=1 for

another K iterations.

Step 4. Defining

ρ̄h,s(mTN ) = log
∥

∥X̄h,s
(

mTN , X̄h,s(0)
)∥

∥, ρ̄h,s
m (TN ) = log

∥

∥X̄h,s
m

(

TN , X̄h,s
m (0)

)∥

∥,

then, using equation (2.1.5),

ρ̄h,s(MTN ) = log
∥

∥X̄h,s
(

MTN , X̄h,s(0)
)∥

∥

= log

[

M
∏

m=1

∥

∥X̄h,s
m

(

TN , X̄h,s
m (0)

)∥

∥

]

=
M
∑

m=1

ρ̄h,s
m (TN ).

Step 5. After KM iterations, i.e. at time T =MKh, use the following equations

E
[

log
∥

∥X̄h(T)
∥

∥

]

= E
[

ρ̄h(T)
]

= 1

N

N
∑

s=1

ρ̄h,s(T) = µ̄h
T ,

Var
[

log
∥

∥X̄h(T)
∥

∥

]

= Var
[

ρ̄h(T)
]

= 1

N −1

N
∑

s=1

[

ρ̄h,s(T)2 −
(

µ̄h
T

)2
]

=
(

σ̄ h
T

)2
,

(2.3.1)

to estimate the mean and variance of log
∥

∥X̄h(T)
∥

∥.

Step 6. Use equation (2.2.25), combining with equations (2.3.1), i.e.

3̄h(p) = 1

T

[

pµ̄h
T + 1

2
p2
(

σ̄ h
T

)2
]

, (2.3.2)

to calculate the moment Lyapunov exponents for all values of p of interest.

It is known from statistics [26] that the estimators for µ̄h
T and

(

σ̄ h
T

)2
in equations (2.3.1)

have accuracy of order 1/N . As introduced in Section 1.3.2, Euler scheme is a weak approx-

imation scheme with order 1.0. Thus if Euler scheme is applied to discretize the system, the

error of approximations for E
[

log
∥

∥X(T)
∥

∥

]

and Var
[

log
∥

∥X(T)
∥

∥

]

is of order O(h). Com-

bining these results with equations (2.2.15) and (2.2.24), when T is large enough, the error

of algorithm presented in this section for simulating the moment Lyapunov exponents is

approximately
∣

∣

∣
3̄h(p)−3(p)

∣

∣

∣
= o(p2)+ O(h)+ O

(

log N

N

)

. (2.3.3)

It should be mentioned that, although higher order schemes lead to more accurate results,

it is easier to implement the Monte Carlo simulation using the Euler scheme due to its simple
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form, especially when the system is high dimensional and complicated. Moreover, Romberg

extrapolation may be applied to increase the accuracy of the results to O(h2) using the Euler

scheme [108].

Before the algorithm presented in this section can be applied, conditions (2.2.8) (for

system (2.2.4)), (2.2.12) and (2.2.13), or (2.2.14) (for system (2.1.1)) need to be satisfied.

According to the definition of Lie algebra ([52] and [88]), LA(gi) is actually a vector space

generated by the set of vectors gi, thus dim LA(gi)(s) can be determined by the dimension

of this vector space. It turns out that condition (2.2.8) is satisfied, provided that the space

spanned by vectors
{

gi : 06 i 6r
}

has dimension d, i.e. the set of vectors
{

gi : 06 i 6r
}

has

rank d, since s∈PJ d−1. For system (2.1.1), condition (2.2.13) is satisfied for the special case

[5]

A(ξ) =





















0 1 0 · · · 0

0 0 1 · · · 0
...

...

0 0 0 · · · 1

a1(ξ) a2(ξ) a3(ξ) · · · ad(ξ)





















. (2.3.4)

In particular, when d =2, equation (2.3.4) stands for the general second-order oscillator

q̈(t)− a2(ξ) q̇(t)− a1(ξ)q(t) = 0. (2.3.5)

If a2(ξ) is constant, equation (2.3.5) becomes

q̈(t)+ β q̇(t)+ f
(

ξ(t)
)

q(t) = 0, (2.3.6)

which describes the motion of a damped oscillator under noise perturbation. For equation

(2.3.6), one has

A
(

ξ(t)
)

=





0 1

−f
(

ξ(t)
)

−β



 . (2.3.7)

When f (ξ) is not a constant function, the vectors g
(

A(ξ), s
)

are not in the same direction

for different values of ξ . Thus it can be easily verified that condition (2.2.13) is true.

It is stated in reference [5] that most systems considered in physics and engineering satisfy

the required conditions to ensure the existence of the moment Lyapunov exponents and the
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asymptotic normality of logarithm of norm. This means that the algorithm in this section

may be applied directly in most cases, and the asymptotic normality of the logarithm of

norm may be verified through the histogram estimation obtained in simulation.

2.3.2 Speedup of Simulation

To obtain a more accurate estimation of the mean and variance of log
∥

∥X̄h(T)
∥

∥ from equa-

tions (2.3.1), large sample size N has to be used. Moreover, time for simulation T has to be

large enough to get a good approximation of moment Lyapunov exponents according to the

definition. This means iteration times in solving the system will be extremely large. Since

the simulation of different samples can be implemented independently, parallel computa-

tion using MPI (Message Passing Interface) or OpenMP application program interface will

be a great benefit to the simulation of moment Lyapunov exponents.

Message passing is a programming standard used widely on multiprocessing computer

systems with distributed memory, where each processor runs the codes on its own memory.

When it is required to communicate among processors, messages and data will be sent

through a programming interface, namely the Message Passing Interface [104].

Let Ts be the serial execution time of simulation on a single processor. If the simulation

task is distributed uniformly to a multiprocessing system with m processors, then the

execution time on each processor will be Ts/m. Moreover, if the communication time

among processors during simulation is Tc , then according to Amdahl’s timing model [92],

[112], the speedup of simulation is defined as

Spd(m) = Ts

Ts/m + Tc
= m

1 + mTc/Ts
. (2.3.8)

It can be seen that, if Tc ≪Ts, the speedup is almost m. When m is large, the execution time

of simulation will be reduced greatly.

From the steps of the algorithm presented in Section 2.3.1, the iteration procedure for

solving the discretized system in Step 3 is the most time-consuming part. This part of

simulation can be distributed to multiprocessors, and each processor can run the iteration

procedure of some samples independently without knowing the information on other pro-

cessors. Only in Step 5, the logarithm of norm simulated by different processors needs
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to be gathered to evaluate the mean and variance. Thus the communication time among

processors is only the time of sending a small amount of data to a processor, which is

obviousely far less than the iteration time in simulation. Since Tc ≪Ts is satisfied, parallel

computation using MPI is extremely suitable for the simulation of moment Lyapunov ex-

ponents. For more information about programming with MPI and OpenMP, one can refer

to http://www.mpiweb.org and http://www.openmp.org.

2.4 Examples in Application

The Monte Carlo simulation algorithm presented in Section 2.3 is applicable to linear

homogeneous stochastic dynamical systems, which have wide applications in engineering

mechanics, such as oscillators under parametric excitations of noises. In this section,

moment Lyapunov exponents of three single degree-of-freedom systems under white noise,

real noise, and bounded noise excitations, respectively, are determined. The numerical

results of simulation are compared with known approximate analytical results.

2.4.1 An Oscillator under White Noise Excitation

Consider the following two-dimensional oscillator under the excitation of white noises

q̈(t)+
[

2εβ + ε1/2σ2ζ2(t)
]

q̇(t)+ ω2
[

1 + ε1/2σ1ζ1(t)
]

q(t) = 0, (2.4.1)

where ζ1(t) and ζ2(t) are unit Gaussian white noise processes, 0<ε≪1 is a small parameter.

Approximate moment Lyapunov exponents can be obtained by the method of perturbation

([55], see also [119]), which is given by

3(p) = εp

(

−β + p + 2

16
ω2σ 2

1 + 3 p + 2

16
σ 2

2

)

+ O(ε3). (2.4.2)

Equation (2.4.1) can be converted to the Itô differential equations






x1

x2







=





0 1

−ω2 −ε
(

2β − 1
2σ

2
2

)











x1

x2







dt

+





0 0

−ε1/2ω2σ1 0











x1

x2







dW1(t)+





0 0

0 −ε1/2σ2











x1

x2







dW2(t), (2.4.3)
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where x1(t)=q(t), x2(t)= q̇(t). It is obvious that system (2.4.3) is of the form (2.2.4) with

d =2, r =2, and

B0 =





0 1

−ω2 −ε
(

2β − 1
2σ

2
2

)



 , B1 =





0 0

−ε1/2ω2σ1 0



 , B2 =





0 0

0 −ε1/2σ2



 .

Using equation (2.2.10), it can be verified that the set of vectors {g0, g1, g2} spans a space

with dimension 2 since all gi, i =0, 1, 2, are two dimensional vectors. Thus for s∈PJ d−1,

condition (2.2.8) is satisfied. Therefore the algorithm presented in Section 2.3 can be applied

to simulate the moment Lyapunov exponents.
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Figure 2.3 Moment Lyapunov exponents under white noise excitation (ε=0.1)

The explicit Euler scheme is applied for the simulation

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
[

− ω2xk
1 − ε

(

2β − 1

2
σ 2

2

)

xk
2

]

· h − ε1/2ω2σ1xk
1 ·1W k

1 − ε1/2σ2 ·1W k
2 .
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The damping coefficient is set to β=0, and ω=1. The sample size is N =10000, time step

h=0.0001, and the number of iterations is MK =5×107, i.e. the total length of time of

simulation is T =5000.
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Figure 2.4 Moment Lyapunov exponents under white noise excitation (ε=0.5)

Figures 2.3 and 2.4 show the comparison of approximate analytical moment Lyapunov

exponents given by equation (2.4.2) and the Monte Carlo simulation results for different

values of σ1, σ2, and ε. It can be seen that the approximate analytical results agree rather

well with the simulation results in most cases, implying that the algorithm in Section 2.3

works well as predicted.

To illustrate the asymptotic normality of logarithm of norm, the normalized histograms

of log
∥

∥x(T)
∥

∥ for some typical values of σ1 and σ2 are plotted in Figure 2.5. The correspond-
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Figure 2.5 Histograms of logarithm of norm compared with normal density approximations

under white noise excitation

ing normal density approximations given by

ϕ̄(x) = 1√
2πσ̄ h

T

exp

[

−
(

x − µ̄h
T

)2

2
(

σ̄ h
T

)2

]

, (2.4.4)

are also shown in the same figure for comparison. It appears that, as the time of simulation

T is large enough, the distribution of log
∥

∥x(T)
∥

∥ does approach normal distribution. This

is also a complementary evidence that system (2.4.1) is eligible for the new algorithm when

simulating the moment Lyapunov exponents.
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2.4.2 An Oscillator under Real Noise Excitation

Consider an oscillator under the excitation of real noise or Ornstein-Uhlenbeck process

ζ(t):

q̈(t)+ 2εβq̇(t)+ ω2
[

1 − ε1/2ζ(t)
]

q(t) = 0,

dζ(t) = −αζ(t)dt + σ dW(t).
(2.4.5)

Xie ([116], see also [119]) determined the approximate moment Lyapunov exponents using

the method of perturbation as

3(p) = −εpβ + p(p+2)

[

ε
σ 2ω2

16(α2+4ω2)
+ ε2 (α

4+22α2ω2+48ω4)σ 4ω4

32α(α2+ω2)(α2+4ω2)3

]

+ O(ε3). (2.4.6)

Obviously, system (2.4.5) can be simulated using the algorithm presented since it takes

the form of equation (2.3.6) with f (x)=ω2 − ε1/2ω2x.

Letting

x1(t) = q(t), x2(t) = q̇(t), x3(t) = ζ(t), (2.4.7)

system (2.4.5) can be converted to the Itô differential equations


















x1

x2

x3



















=



















x2

−ω2x1 − 2εβx2 + ε1/2ω2x3x1

−αx3



















dt +



















0

0

σ



















dW(t). (2.4.8)

The iteration equations using explicit Euler scheme are then given by

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 + (−ω2xk
1 − 2εβxk

2 + ε1/2ω2xk
3xk

1) · h,

xk+1
3 = xk

3 − αxk
3 · h + σ ·1W k.

The state vector is (x1, x2)
T , i.e. the norm for evaluating the moment Lyapunov exponents is

∥

∥x(t)
∥

∥=
(

x2
1 +x2

2

)1/2
. The sample size for estimating the expected value is N =20000, time

step h=0.0001, and the total length of time of simulation is T =5000, i.e. the number of

iterations is MK =5×107.
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Figure 2.6 Moment Lyapunov exponents under real noise excitation for different α

Figures 2.6 and 2.7 show typical results of the moment Lyapunov exponents for different

values of α and σ , with the parameters taken as ε=0.1, β=0.05, ω=1. It can be seen

that when σ is small, i.e. the noise intensity is weak, and for different values of α, the

approximate results from the perturbation method agree well with the simulation results.

This is reasonable since the analytical approximations are obtained by weak noise expansion

of eigenvalue problem governing the moment Lyapunov exponents.

The normalized histograms of log
∥

∥x(T)
∥

∥ are plotted in Figure 2.8 with selected values

of α and σ . It can be seen that the histograms agree with the normal density functions in all

cases; this fact implies that the simulated moment Lyapunov exponents using the algorithm

in Section 2.3 are more reliable if the approximated analytical results from perturbation

method do not agree well with the simulation results.
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Figure 2.7 Moment Lyapunov exponents under real noise excitation for different σ

2.4.3 An Oscillator under Bounded Noise Excitation

Consider an oscillator under the excitation of bounded noise,

q̈(t)+ 2εβq̇(t)+ ω2 [1 − εµ cos ζ(t)] q(t) = 0,

dζ(t) = νdt + ε1/2σ dW(t).
(2.4.9)

Xie ([117], see also [119]) determined the approximate moment Lyapunov exponents using

the method of perturbation as

3(p) = −εpβ +
ε3 p(p+2)ω4µ2σ 2

[

ν2+4(ω2−ε2β2)+ 1
4ε

2σ 4
]

32(ω2−ε2β2)
[

(

2
√

ω2−ε2β2+ν
)2+ 1

4ε
2σ 4

] [

(

2
√

ω2−ε2β2−ν
)2+ 1

4ε
2σ 4

]

+ o(ε3) (2.4.10)

Similar to the real noise case, condition (2.2.13) is satisfied with f (x)=ω2 − εµω2x in

the form of equation (2.3.6). And the bounded noise cos ζ(t) satisfies condition (2.2.12)
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Figure 2.8 Histograms of logarithm of norm compared with normal density approximations

under real noise excitation

according to equations (1.3.5) and (1.3.6). Therefore the algorithm presented in Section 2.3

can be applied. Using the same notation as (2.4.7), the Itô differential equations for system

(2.4.9) become



















x1

x2

x3



















=



















x2

−ω2x1 − 2εβx2 + εω2µx1 cos x3

ν



















dt +



















0

0

ε1/2σ



















dW(t). (2.4.11)
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Figure 2.9 Moment Lyapunov exponents under bounded noise excitation for different σ

The iteration equations using explicit Euler scheme are then given by

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
(

− ω2xk
1 − 2εβxk

2 + ε1/2ω2µxk
1 cos xk

3

)

· h,

xk+1
3 = xk

3 + ν · h + ε1/2σ ·1W k.

The norm for evaluating the moment Lyapunov exponents is
∥

∥x(t)
∥

∥=
(

x2
1 +x2

2

)1/2
. The

sample size for estimating the expected value is N =20000, time step h=0.0001, and the

total length of time of simulation is T =5000, i.e. the number of iterations is MK =5×107.

Typical results of the moment Lyapunov exponents for different values of σ and µ are

shown in Figures 2.9 and 2.10, with the parameters taken as ε=0.1, β=0.05, ω=1, ν=2.

It can be seen that the approximate results from perturbation method agree well with the

simulation results for small µ and large σ . This is the result that, in the eigenvalue problem

governing the moment Lyapunov exponents, the approximate analysis using perturbation
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Figure 2.10 Moment Lyapunov exponents under bounded noise excitation for different µ

method requires εµ be small enough and εσ 2 be in the order O(1). The discrepancy

between perturbation and simulation for small σ and relatively large µ shows that some

better approximation methods have to be considered.

Figure 2.11 shows the asymptotic normality of log
∥

∥x(T)
∥

∥, where the histograms for

selected values of µ and σ are plotted and compared with the corresponding normal

density approximations. The simulated moment Lyapunov exponents using the algorithm

in Section 2.3 and the old algorithm in Section 2.1, which uses the direct sample average of

norm as the estimation of moment, are compared in Figure 2.12, with the same values of µ

and σ used in Figure 2.11.

It can be seen that, for µ=1 and σ =5, the variance of log
∥

∥x(T)
∥

∥ is small and the values

of
∥

∥x(T)
∥

∥ are also small, since
∥

∥x(T)
∥

∥= exp
{

log
∥

∥x(T)
∥

∥

}

, thus direct sample average of
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Figure 2.11 Histograms of logarithm of norm compared with normal density approximations

under bounded noise excitation

pth norm gives a good estimation of pth moment. As a result, the moment Lyapunov

exponents from both algorithms are almost the same in a wide range of p.

When µ=0.5 and σ =1, most samples of log
∥

∥x(T)
∥

∥ are negative, this implies that the

variance of
∥

∥x(T)
∥

∥ is small, thus theoretically the sample average of pth norm should be a

good estimator of pth moment. However, Figure 2.11 shows that the variance of log
∥

∥x(T)
∥

∥

is rather large. Note that the estimated pth moment through the sample average of pth

norm is given by

E
[

∥

∥x(T)
∥

∥

p
]

= 1

N

N
∑

s=1

∥

∥xs(T)
∥

∥

p = 1

N

N
∑

s=1

exp
{

p log
∥

∥xs(T)
∥

∥

}

,
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when different samples of
∥

∥xs(T)
∥

∥

p
are summed up, the truncated error due to the finite

lengths of floating-point representations will be significant, especially for large
∣

∣p
∣

∣, just as

described in Section 2.1. This effect can be observed clearly from the difference of moment

Lyapunov exponents for large
∣

∣p
∣

∣ in Figure 2.12.
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Figure 2.12 Comparison of algorithms for simulation of moment Lyapunov exponents

In the other two cases, i.e. µ=1, µ=1.5, and σ =1, it is obvious that the values and

the variances of
∥

∥x(T)
∥

∥ are all extremely large, therefore the estimation of pth moment of
∥

∥x(T)
∥

∥ in the old algorithm is not accurate for large p, and correspondingly the simulated

moment Lyapunov exponents can only be trusted for small values of p.

2.5 Summary

Contrary to intuition, Monte Carlo simulation of moment Lyapunov exponents of stochas-

tic dynamical systems is a very challenging topic. Because the solution of a system grows
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exponentially when it is unstable and decays exponentially when it is stable, float-point

overflow or underflow renders “brute-force” approaches inapplicable. Furthermore, be-

cause the variance of the solution may grow with time, it is very challenging to obtain an

accurate estimation of the moments with finite sample size.

For linear homogeneous stochastic dynamical systems satisfying some conditions, the

limit distribution of the logarithm of norm of the solution is normal. The mean value

and variance of the logarithm of norm, combined with normalization of the solution, can

be used to reduce the possible large variance of the solution so that the pth moment can

be estimated. Numerical examples illustrated in Section 2.4 show that this approach gives

a better numerical approximation than the previous method [118], which uses the direct

sample average of norm as the estimation of expectation.



3C H A P T E R

Stochastic Stability of SDOF Linear
Viscoelastic Systems

As shown in Section 1.4, the general equations of motion for linear viscoelastic systems are

integro-partial differential equations, which are generally difficult to solve, and the stability

of their solutions are not easy to determine. In applications, it may be possible to derive

a simpler form of equations, say integro-ordinary differential equations, when considering

the boundary conditions. In this way, studying the stability properties of the solutions may

be easier.

3.1 An Example of SDOF Linear Viscoelastic System

Consider an elastic beam under dynamical axial compressive load P(t). It is known that the

equation of motion is given by

ρA
∂2v

∂t2
+ β0

∂v

∂t
+ EI

∂4v

∂x4
+ P(t)

∂2v

∂x2
= 0,

where v(x, t) is the transverse deflection of the beam, x the axial coordinate, ρA the mass

per unit length of the beam, β0 the damping constant, and EI the flexural rigidity of the

beam.

53
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Since the term including EI is associated with the constitutive relation, the equation of

motion for the viscoelastic case becomes, using equation (1.4.3),

ρA
∂2v

∂t2
+ β0

∂v

∂t
+ EI(1 − H )

∂4v

∂x4
+ P(t)

∂2v

∂x2
= 0, (3.1.1)

where the material relaxation operator H is taken as

H
{

u(t)
}

=
∫ t

0
H(t−s)u(s)ds, (3.1.2)

in which H(t) is the relaxation function describing the property of viscoelasticity.

If the beam is simply supported, the transverse deflection can be expressed as

v(x, t) =
∞
∑

n=1

qn(t) sin
nπx

L
. (3.1.3)

Substituting equation (3.1.3) into (3.1.1) leads to the equations of motion

q̈n(t)+ 2βq̇n(t)+ ω2
n

[

1 − P(t)

Pn

− H
]

qn(t) = 0, n = 1, 2, . . . , (3.1.4)

where

β = β0

2ρA
, ω2

n = EI

ρA

(nπ

L

)4
, Pn = EI

(nπ

L

)2
.

If only the nth mode is considered, and the damping, viscoelastic effect, and the amplitude

of load are all small, the equation of motion of a single degree-of-freedom (SDOF) system

can be written as, by introducing a small parameter ε,

q̈(t)+ 2εβq̇(t)+ ω2

{

[

1 + ε1/2ξ(t)
]

q(t)− ε

∫ t

0
H(t−s)q(s)ds

}

= 0. (3.1.5)

The presence of small parameter ε is reasonable since damping and noise perturbation

are small in many engineering applications. Moreover, the memory effect of many mate-

rials used in structural engineering is not too strong, therefore the viscoelasticity is also

considered to be weak.

The almost-sure stability of viscoelastic systems has been investigated by some re-

searchers. For example, Ariaratnam [1] studied the almost-sure stability of a SDOF linear

viscoelastic system subjected to random fluctuation in the stiffness parameter by evaluat-

ing the largest Lyapunov exponent using the method of stochastic averaging for integro-

differential equations due to Larionov [69]. Potapov [90] studied the almost-sure stability of
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a viscoelastic column under the excitation of a random wide-band stationary process using

Lyapunov’s direct method. Potapov [91] described the behaviour of stochastic viscoelas-

tic systems by numerical evaluation of Lyapunov exponents of linear integro-differential

equations.

However, as described in Chapter 1, almost-sure stability cannot assure moment stability

for non-autonomous systems. Therefore it is important to study the moment stability of

SDOF linear viscoelastic systems (3.1.5) in terms of moment Lyapunov exponents.

For small ε such that ω2−ε2β2>0, letting

q(t) = x(t)e−εβt , (3.1.6)

the damping term in equation (3.1.5) can be removed to yield

ẍ(t)+ ω̃2

{

[

1 + ε1/2ξ̃ (t)
]

x(t)− ε

∫ t

0
H̃(t−s)x(s)ds

}

= 0, (3.1.7)

where

ω̃2 = ω2 − ε2β2, ξ̃ (t) = ω2

ω2−ε2β2
ξ(t), H̃(t) = ω2

ω2−ε2β2
e−εβt h(t).

It is easy to verify that the moment Lyapunov exponents of systems (3.1.5) and (3.1.7) are

related as

3q(t)(p) = −εpβ +3x(t)(p). (3.1.8)

Therefore, without loss of generality, the stochastic stability of the SDOF viscoelastic system

q̈(t)+ ω2

{

[

1 + ε1/2ξ(t)
]

q(t)− ε

∫ t

0
H(t−s)q(s)ds

}

= 0 (3.1.9)

may be considered by determining its pth moment Lyapunov exponent.

3.2 Stability under Wide-band Noise Excitation

Consider the case that ξ(t) in equation (3.1.9) is a wide-band stationary noise with zero

mean. In this section, the method of averaging, both first-order and second-order, will

be applied to obtain the differential equations governing the pth moment. The moment

stability of viscoelastic system (3.1.9) can then be determined by solving the averaged

equations.
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As stated in Section 1.2, the solution of the averaged system (1.2.13) converges weakly to

the solution of the original system (1.2.11) only in time scale of order 1/ε2 as ε→0. The

definition of moment Lyapunov exponents requires to consider the moments of solutions

as time approaches infinity, in this sense the results from the averaging method may not be

close to the true results. Although this limitation exists, the averaging method still provides

a way to simplify the generally more complicated systems and to obtain the corresponding

properties as an approximation. Moreover, considering that the integral operator H has

the low-pass property, i.e. it has the effect of depressing the fast-varying components, one

can expect that the averaging method leads to a good approximation in the stability analysis

of viscoelastic systems. On the other hand, numerical approaches for the original systems

may also be applied. Combining the results from the averaging method and numerical

approaches, it is possible to understand the behaviour of original systems.

3.2.1 First-Order Stochastic Averaging

In order to use the method of stochastic averaging to investigate system (3.1.9), the following

transformation is applied

q(t) = a(t) cos8(t), q̇(t) = −ωa(t) sin8(t), 8(t) = ωt + ϕ(t). (3.2.1)

From the first two equations of (3.2.1), one has

ȧ(t) cos8(t)− a(t)ϕ̇(t) sin8(t) = 0. (3.2.2)

Substituting (3.2.1) into system (3.1.9) yields

ȧ(t) sin8(t)+ a(t)ϕ̇(t) cos8(t)

= −ε1/2ωξ(t)a(t) cos8(t)− εω

∫ t

0
H(t−s)a(s) cos8(s)ds. (3.2.3)

Letting P =a p, it is easy to see that P is the pth norm of system (3.1.9). Thus from equations

(3.2.2) and (3.2.3), P(t) and ϕ(t) can be solved as






Ṗ(t)

ϕ̇(t)







= εF(1)(P,ϕ, t)+ ε1/2 F(0)(P,ϕ, ξ , t), (3.2.4)
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where

F(1)(P,ϕ, t) =







−ωpIhP(t) sin8(t)

−ω Ih cos8(t)







=







F
(1)
1 (P,ϕ, t)

F
(1)
2 (P,ϕ, t)







,

F(0)(P,ϕ, ξ , t) =







1
2ωpP(t)ξ(t) sin 28(t)

1
2ωξ(t)

[

1 + cos 28(t)
]







=







F
(0)
1 (P,ϕ, ξ , t)

F
(0)
2 (P,ϕ, ξ , t)







,

Ih =
∫ t

0
H(t−s)

[

P(s)

P(t)

]1/p

cos8(s)ds.

Then system (3.2.4) can be approximated by the following averaged equations

d







P̄(t)

ϕ̄(t)







= ε







m̄P

m̄ϕ







dt + ε1/2 σ̄dW(t), (3.2.5)

where

m̄P = M
t

{

F
(1)
1 (P,ϕ, t)+

∫ 0

−∞
E

[

∂F
(0)
1

∂P
F
(0)
1τ + ∂F

(0)
1

∂ϕ
F
(0)
2τ

]

dτ

}

,

m̄ϕ = M
t

{

F
(1)
2 (P,ϕ, t)+

∫ 0

−∞
E

[

∂F
(0)
2

∂P
F
(0)
1τ + ∂F

(0)
2

∂ϕ
F
(0)
2τ

]

dτ

}

,

[

σ̄ σ̄ T
]

ij
= M

t

{∫ ∞

−∞
E
[

F
(0)
i F

(0)
jτ

]

dτ

}

, i, j = 1, 2,

M
t

{ · } = lim
T →∞

1

T

∫ T

0
{ · } dt,

F
(0)
jτ = F

(0)
j

(

P,ϕ, ξ(t+τ), t+τ
)

, j = 1, 2.

Noting that equations (3.2.4) are integro-differential equations, the averaging method for

integro-differential equations [69] should also be applied. That is to say, in order to simplify

the system, the method of stochastic averaging due to Khasminskii is used to obtain the

approximate Itô stochastic differential equations, and the averaging method for integro-

differential equations due to Larionov is used to obtain the approximate drift terms in the

Itô equations in which the viscoelastic terms are involved.
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When applying the averaging operation, P(t) and ϕ(t) are treated as unchanged, i.e. they

are replaced by P̄ and ϕ̄ directly. Now consider m̄P first. By substituting in the corresponding

terms one has

m̄P = −ωpP̄ M
t

{

Isc
h

}

+ 1

4
ω2pP̄ M

t

{

J1

}

,

where

Isc
h = sin8(t)

∫ t

0
H(t−s) cos8(s)ds,

J1 =
∫ 0

−∞
R(τ )

{

p sin 28(t) sin 28(t+τ)+ 2 cos 28(t)
[

1 + cos 28(t+τ)
]

}

dτ ,

and R(τ )=E
[

ξ(t)ξ(t+τ)
]

is the correlation function of the wide-band noise ξ(t).

Observing that conditions (1.4.4) are required, i.e. H(t) and t · H(t) are integrable over

[0, ∞), then applying the transformation s= t−τ and changing the order of integration

lead to

M
t

{

Isc
h

}

= lim
T →∞

1

T

∫ T

t=0

∫ t

s=0
H(t−s) cos8(s) sin8(t)ds dt

= lim
T →∞

1

T

∫ T

t=0

∫ t

τ=0
H(τ ) sin8(t) cos8(t−τ)dτ dt

= lim
T →∞

1

2T

∫ T

τ=0

∫ T

t=τ
H(τ )

[

sin(2ωt−ωτ+2ϕ̄)+ sinωτ
]

dt dτ

= 1

2

∫ ∞

0
H(τ ) sinωτ dτ = 1

2
H

s(ω).

Similarly, it can be shown that

M
t

{

cos8(t)
∫ t

0
H(t−s) cos8(s)ds

}

= 1

2
H

c(ω),

where

H
s(ω) =

∫ ∞

0
H(τ ) sinωτ dτ and H

c(ω) =
∫ ∞

0
H(τ ) cosωτ dτ (3.2.6)

are the sine and cosine transformations of the viscoelastic kernel function H(t).
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On the other hand,

M
t

{J1} = lim
T →∞

p+2

2T

∫ T

t=0

∫ 0

τ=−∞
R(τ ) cos 2ωτ dτ dt

+ lim
T →∞

1

T

∫ T

t=0

∫ 0

τ=−∞
R(τ )

[2−p

2
cos (4ωt+2ωτ+4ϕ̄)

+ 2 cos(2ωt+2ϕ̄)
]

dτ dt

= p+2

2

∫ 0

τ=−∞
R(τ ) cos 2ωτ dτ = p+2

4
S(2ω),

where the cosine and sine power spectral density functions of noise ξ(t) are given by

S(ω) =
∫ ∞

−∞
R(τ ) cosωτ dτ = 2

∫ ∞

0
R(τ ) cosωτ dτ = 2

∫ 0

−∞
R(τ ) cosωτ dτ ,

9(ω) = 2

∫ ∞

0
R(τ ) sinωτ dτ = −2

∫ 0

−∞
R(τ ) sinωτ dτ. (3.2.7)

Similarly, m̄ϕ and
[

σ̄ σ̄ T
]

i
can be evaluated to yield

m̄P = ωpP̄

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

, m̄ϕ = −ω
[

1

2
H

c(ω)+ 1

8
ω9(2ω)

]

,

[

σ̄ σ̄ T
]

11
= b11 = 1

8
ω2p2P̄2S(2ω),

[

σ̄ σ̄ T
]

12
=
[

σ̄ σ̄ T
]

21
= 0,

[

σ̄ σ̄ T
]

22
= b22 = 1

8
ω2
[

2S(0)+ S(2ω)
]

. (3.2.8)

Noting that the transition probability density function for the solution of the averaged

equation is the solution of the Fokker-Planck equation, which depends on the diffusion

matrix σ̄ σ̄ T but not every single element σ̄ij, thus one can take

σ̄12 = σ̄21 = 0, σ̄11 =
√

b11 = ωpP̄

√

S(2ω)

8
, σ̄22 =

√

b22 = ω

√

2S(0)+S(2ω)

8
.

(3.2.9)
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Finally the averaged Itô differential equations are

dP̄ = εωpP̄

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

dt + ε1/2ωpP̄

√

S(2ω)

8
dW1(t), (3.2.10)

dϕ̄ = −εω
[

1

2
H

c(ω)+ 1

8
ω9(2ω)

]

dt + ε1/2ω

√

2S(0)+S(2ω)

8
dW2(t). (3.2.11)

It can be seen that P̄(t) does not depend on ϕ̄(t); therefore it can be solved independently.

The property of independent increment of Wiener process indicates that the expectation of

the second term in equation (3.2.10) is zero. Therefore taking the expected value on both

sides of eqation (3.2.10) yields

dE
[

P̄
]

= εωp

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

E
[

P̄
]

dt. (3.2.12)

From equation (3.2.12) it is easy to obtain the moment Lyapunov exponents for the averaged

system by

3(p) = lim
t →∞

log E
[

P̄
]

t
= εωp

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

, (3.2.13)

and the Lyapunov exponent is given by

λ = 3′(0) = εω

[

−1

2
H

s(ω)+ 1

8
ωS(2ω)

]

. (3.2.14)

From equations (3.2.13) and (3.2.14) it is clear that the viscoelasticity helps to stabilize the

system, whereas noises destabilize the system. The stronger the noise, the more unstable the

system. The boundaries for almost-sure stability and pth moment stability are determined

by λ=0 and3(p)=0, respectively.

Equations (3.2.13) and (3.2.14) show that, in the first-order approximation, the stability

of the averaged system (3.2.5) is determined by the power spectral density of the wide-band

random excitation at 2ω. Using equations (1.3.1) and (1.3.3), the pth moment Lyapunov

exponent for Gaussian white noise model is reduced to

3(p) = εωp

[

−1

2
H

s(ω)+ p+2

16
ωσ 2

]

, (3.2.15)

and that for real noise model becomes

3(p) = εωp

[

−1

2
H

s(ω)+ p+2

16

ωσ 2

α2 + 4ω2

]

. (3.2.16)
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A general choice of viscoelastic kernel function is, according to equation (1.4.6) of gener-

alized Maxwell model,

H(t) =
M
∑

j=1

γj e−κjt . (3.2.17)

Its sine and cosine transformations are given by

H
s(ω) =

M
∑

j=1

ωγj

κ2
j + ω2

, H
c(ω) =

M
∑

j=1

γjκj

κ2
j + ω2

. (3.2.18)

Thus, from equations (3.2.13) and (3.2.14), when

S(2ω)<

M
∑

j=1

4γj

κ2
j + ω2

,

system (3.2.5) is asymptotically stable almost-surely. When

S(2ω)<

M
∑

j=1

8γj

(p+2)(κ2
j +ω2)

,

the pth moment of system (3.2.5) is asymptotically stable. These results indicate that the

stronger the viscoelastic effect (i.e. larger γ ), the wider the stability region; the larger the

relaxation time (i.e. smaller κ), the wider the stability region.

3.2.2 Second-Order Stochastic Averaging

The first-order stochastic averaging may not be adequate in some applications. Similar to

deterministic systems, higher-order averaging may be applied to obtain better approxima-

tions. Hijawi et al. [48] studied the dynamic response of nonlinear elastic structure under

random load using both the first-order and the second-order stochastic averaging methods.

Lin and Cai [74] also presented several examples where some terms in equations may not be

small enough. In this section, a second-order averaging method is applied and the results

are compared with those obtained using the first-order averaging.

Rewrite equations (3.2.4) as






Ṗ(t)

ϕ̇(t)







= ε







f1

f2







+ ε1/2







g1

g2







, (3.2.19)
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where

f1 = −ωpP

∫ t

0
H(t−s)

[

P(s)

P(t)

]1/p

sin(ωt+ϕ) cos(ωs+ϕ)ds,

f2 = −ω
∫ t

0
H(t−s)

[

P(s)

P(t)

]1/p

cos(ωt+ϕ) cos(ωs+ϕ)ds,

g1 = 1

2
ωpPξ(t) sin(2ωt+2ϕ),

g2 = 1

2
ωξ(t)

[

1 + cos(2ωt+2ϕ)
]

.

Let

P(t) = P̄(t)+ εP1(P̄, ϕ̄, t), ϕ(t) = ϕ̄(t)+ εϕ1(P̄, ϕ̄, t), (3.2.20)

where P̄(t) and ϕ̄(t), as will be shown, are the results of the first-order averaging and will be

determined later. Differentiating equations (3.2.20) with respect to time t yields







Ṗ

ϕ̇







= A







˙̄P
˙̄ϕ







+ ε















∂P1

∂t

∂ϕ1

∂t















, (3.2.21)

where

A =









1 + ε
∂P1

∂P̄
ε
∂P1

∂ϕ̄

ε
∂ϕ1

∂P̄
1 + ε

∂ϕ1

∂ϕ̄









.

It is easy to check that

A−1 =









1 − ε
∂P1

∂P̄
−ε∂P1

∂ϕ̄

−ε∂ϕ1

∂P̄
1 − ε

∂ϕ1

∂ϕ̄









+ o(ε). (3.2.22)
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Substituting equations (3.2.21) and (3.2.22) into equation (3.2.19) yields







˙̄P
˙̄ϕ







= εA−1















f1 − ∂P1

∂t

f2 − ∂ϕ1

∂t















+ ε1/2A−1







g1

g2







= ε















f1 − ∂P1

∂t

f2 − ∂ϕ1

∂t















+ ε2















−∂P1

∂P̄

(

f1 − ∂P1

∂t

)

− ∂P1

∂ϕ̄

(

f2 − ∂ϕ1

∂t

)

−∂ϕ1

∂P̄

(

f1 − ∂P1

∂t

)

− ∂ϕ1

∂ϕ̄

(

f2 − ∂ϕ1

∂t

)















+ ε1/2







g1

g2







+ ε3/2















−∂P1

∂P̄
g1 − ∂P1

∂ϕ̄
g2

−∂ϕ1

∂P̄
g1 − ∂ϕ1

∂ϕ̄
g2















+ o
(

ε2
)

. (3.2.23)

Expanding f1, f2, g1 and g2 at P̄ and ϕ̄ leads to

f1 = −ωp
[

P̄Isc + εP1Isc + εP̄ϕ1(I
cc − Iss)

]

− εωP̄ J sc + o(ε),

f2 = −ω
[

Icc − εϕ1(I
cs + Isc)

]

− ε
ω

p
Jcc + o(ε),

g1 = 1

2
ωpP̄ξ(t) sin(2ωt+2ϕ̄)

+ εωpξ(t)

[

P1

2
sin(2ωt+2ϕ̄)+ P̄ϕ1 cos(2ωt+2ϕ̄)

]

+ o(ε),

g2 = 1

2
ωξ(t)

[

1 + cos(2ωt+2ϕ̄)
]

− εωϕ1ξ(t) sin(2ωt+2ϕ̄)+ o(ε),

where

Icc =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p

cos(ωt+ϕ̄) cos(ωs+ϕ̄)ds,

Iss =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p

sin(ωt+ϕ̄) sin(ωs+ϕ̄)ds,

Ics =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p

cos(ωt+ϕ̄) sin(ωs+ϕ̄)ds,

Isc =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p

sin(ωt+ϕ̄) cos(ωs+ϕ̄)ds,
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Jcc =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p [
P1

P̄(s)
− P1

P̄(t)

]

cos(ωt+ϕ̄) cos(ωs+ϕ̄)ds,

J sc =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]1/p [
P1

P̄(s)
− P1

P̄(t)

]

sin(ωt+ϕ̄) cos(ωs+ϕ̄)ds.

Thus equation (3.2.23) can be written as







˙̄P
˙̄ϕ







= ε











f ∗
1

f ∗
2











+ ε2











f ∗∗
1

f ∗∗
2











+ ε1/2







g∗
1

g∗
2







+ ε3/2







g∗∗
1

g∗∗
2







+ o
(

ε2
)

, (3.2.24)

where

f ∗
1 = −ωpP̄Isc − ∂P1

∂t
, f ∗

2 = −ωIcc − ∂ϕ1

∂t
,

g∗
1 = 1

2
ωpP̄ξ(t) sin(2ωt+2ϕ̄), g∗

2 = 1

2
ωξ(t)

[

1 + cos(2ωt+2ϕ̄)
]

,

f ∗∗
1 = −∂P1

∂P̄
f ∗
1 − ∂P1

∂ϕ̄
f ∗
2 − ω

[

pP1Isc + pP̄ϕ1(I
cc−Iss)+ P̄ J sc

]

,

f ∗∗
2 = −∂ϕ1

∂P̄
f ∗
1 − ∂ϕ1

∂ϕ̄
f ∗
2 + ω

[

ϕ1(I
cs+Isc)− 1

p
Jcc

]

,

g∗∗
1 = −∂P1

∂P̄
g∗

1 − ∂P1

∂ϕ̄
g∗

2 + ωpξ(t)

[

P1

2
sin(2ωt+2ϕ̄)+ P̄ϕ1 cos(2ωt+2ϕ̄)

]

,

g∗∗
2 = −∂ϕ1

∂P̄
g∗

1 − ∂ϕ1

∂ϕ̄
g∗

2 − ωϕ1ξ(t) sin(2ωt+2ϕ̄). (3.2.25)

From Section 3.2.1, it is known that

M
t

{

Isc
}

= 1

2
H

s(ω),

in which P̄ is treated as a constant under the averaging operation. The first-order term in

the P̄ equation of (3.2.24) is given by f ∗
1 , which, after averaging, should be the same as the

result of the first-order averaging. Setting f ∗
1 to the averaged result of the deterministic term

in the P equation of (3.2.4), i.e. M
t

{

F
(1)
1

}

in m̄P of equation (3.2.5), one obtains

∂P1

∂t
= −ωpP̄

[

Isc − 1

2
H

s(ω)

]

.
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When P̄ is treated as a constant in Isc, it can be seen that

Isc − 1

2
H

s(ω)

=
∫ t

0
H(t−s) sin(ωt+ϕ̄) cos(ωs+ϕ̄)ds − 1

2

∫ ∞

0
H(τ ) sinωτ dτ

=
∫ t

0
H(τ ) sin(ωt+ϕ̄) cos(ωt−ωτ+ϕ̄)dτ − 1

2

∫ ∞

0
H(τ ) sinωτ dτ

= 1

2

∫ ∞

0
H(τ ) sin(2ωt−ωτ+2ϕ̄)dτ −

∫ ∞

t
H(τ ) sin(ωt+ϕ̄) cos(ωt−ωτ+ϕ̄)dτ ,

(3.2.26)

and
∣

∣

∣

∣

∫ ∞

t
H(τ ) sin(ωt+ϕ̄) cos(ωt−ωτ+ϕ̄)dτ

∣

∣

∣

∣

6

∫ ∞

t

∣

∣H(τ )
∣

∣dτ.

From conditions (1.4.4), H(t) is absolutely integrable over [0, ∞), this means the second

integral in equation (3.2.26) tends to zero as t approaches to infinity. Therefore one can

choose approximately

∂P1

∂t
= −1

2
ωpP̄

∫ ∞

0
H(τ ) sin(2ωt−ωτ+2ϕ̄)

∣

∣dτ

= −1

2
ωpP̄

[

H
c(ω) sin(2ωt+2ϕ̄)− H

s(ω) cos(2ωt+2ϕ̄)
]

,

i.e.

P1 = 1

4
pP̄
[

H
c(ω) cos(2ωt+2ϕ̄)+ H

s(ω) sin(2ωt+2ϕ̄)
]

. (3.2.27)

Similarly, noticing that
∂ϕ1

∂t
= −ω

[

I cc − 1

2
H

c(ω)

]

,

it can be set approximately

∂ϕ1

∂t
= −1

2
ω
[

H
c(ω) cos(2ωt+2ϕ̄)+ H

s(ω) sin(2ωt+2ϕ̄)
]

,

or

ϕ1 = 1

4

[

H
s(ω) cos(2ωt+2ϕ̄)− H

c(ω) sin(2ωt+2ϕ̄)
]

. (3.2.28)

Since P1 andϕ1 have been determined, equation (3.2.24) can be simplified by substituting

equations (3.2.27) and (3.2.28) into equations (3.2.25), and then the stochastic averaging
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method can be performed for equation (3.2.24) as in Section 3.2.1. Thus following the same

procedure as the first-order averaging, after some tedious deduction, the averaged version

of equations (3.2.24) is given by, still denoted by P̄ and ϕ̄,

dP̄ = m̄∗
P dt + σ̄ ∗

11 dW1 + σ̄ ∗
12 dW2,

dϕ̄ = m̄∗
ϕ dt + σ̄ ∗

21 dW1 + σ̄ ∗
22 dW2,

(3.2.29)

where higher-order terms have been neglected, and

m̄∗
P = εωpP̄

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

+ ε2 p
(

p+2
)

16
ω2P̄H

c(ω)S(2ω),

m̄∗
ϕ = εω

[

− 1

2
H

c(ω)− 1

8
ω9(2ω)

]

+ ε2 1

8
ω
{

−
[

H
c(ω)

]2 −
[

H
s(ω)

]2 −ωH
c(ω)9(2ω)

}

,

b∗
11 =

[

σ̄ ∗σ̄ ∗T
]

11
= 1

8
ω2 p2P̄2S(2ω)

[

ε + ε2
H

c(ω)
]

,

b∗
12 =

[

σ̄ ∗σ̄ ∗T
]

12
= b∗

21 =
[

σ̄ ∗σ̄ ∗T
]

21
= 0,

b∗
22 =

[

σ̄ ∗σ̄ ∗T
]

22
= 1

8
ω2 [S(2ω)+2S(0)]

[

ε + ε2
H

c(ω)
]

.

Similar to the first-order averaging, it can be set that σ̄ ∗
12 = σ̄ ∗

21 =0 and thus

σ̄ ∗
11 =

√

b∗
11 = ωpP̄

√

1

8
S(2ω)

[

ε + ε2H c(ω)
]

,

σ̄ ∗
22 =

√

b∗
22 = ω

√

1

8
[S(2ω)+2S(0)]

[

ε + ε2H c(ω)
]

.

Therefore by taking the expectation on both sides of the Itô differential equation for P̄ in

(3.2.29) one has

dE
[

P̄
]

=
{

εωp

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

+ ε2 p(p+2)

16
ω2

H
c(ω)S(2ω)

}

E
[

P̄
]

dt,

and the pth moment Lyapunov exponent, including the second-order term, is

3(p) = εωp

[

−1

2
H

s(ω)+ p+2

16
ωS(2ω)

]

+ ε2 p(p+2)

16
ω2

H
c(ω)S(2ω). (3.2.30)

Obviously, the largest Lyapunov exponent from the second-order averaging is given by

λ = εω

[

−1

2
H

s(ω)+ 1

8
ωS(2ω)

]

+ ε2 1

8
ω2

H
c(ω)S(2ω). (3.2.31)
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3.2.3 Numerical Results and Discussion

In order to check the accuracy of the approximate results obtained by the method of

stochastic averaging, Monte Carlo simulation is applied to compute the moment Lyapunov

exponents.

In the Monte Carlo simulation, the viscoelastic kernel function takes the form of equation

(1.4.6), i.e.

H(t) =
M
∑

j=1

γj e
−κjt .

Two different models of wide-band noise approximation, i.e. Gaussian white noise and real

noise, will be discussed separately.

Case I: The wide-band noise is taken as the simplest model, i.e. Gaussian white noise

(1.3.1).

Letting

x1(t) = q(t), x2(t) = q̇(t), xj+2(t) =
∫ t

0
γj e−κj(t−s)q(s)ds, j = 1, 2, · · · , M,

(3.2.32)

equation (3.1.5) can be written as an (M+2) degrees-of-freedom system of Itô differential

equations

d











































x1

x2

x3
...

xM+2











































=





















0 1 0 0 0

−ω2 −2εβ εω2 · · · εω2

γ1 0 −κ1 0 0
... 0 0

. . . 0

γM 0 0 0 −κM































































x1

x2

x3
...

xM+2
















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dW(t).

(3.2.33)

Equation (3.2.33) is linear homogeneous. It can be verified that the algorithm introduced

in Section 2.3 can be applied to simulate the moment Lyapunov exponents. The norm

for evaluating the moment Lyapunov exponents is
∥

∥x(t)
∥

∥=
√

x2
1 +x2

2 + · · · +x2
M+2. The
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iteration equations are given by, using the explicit Euler scheme,

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
(

− ω2xk
1 − 2εβxk

2 + εω2
M
∑

j=1

xk
j+2

)

h − ε1/2σω2xk
1 ·1W k,

xk+1
j = xk

j +
(

γjx
k
1 − κjx

k
j+2

)

h, j = 1, 2, · · · , M.

(3.2.34)

with h being the time step and k denoting the kth iteration.

Figure 3.1 Moment Lyapunov exponents under white noise excitation for different ε and σ

Figure 3.1 shows typical results of the moment Lyapunov exponents for different values of

ε and σ , where the parameters are taken as β=0.05, M =2, γ1 =κ1 =1, γ2 =κ2 =0.5,ω=1.

The analytical results from the first-order and the second-order averaging are also included

in the figure. In Monte Carlo simulation, the sample size for estimating the expected value
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is N =5000, time step is h=0.0001, and the total length of time for simulation is T =5000,

i.e. the number of iteration is 5×107.
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Figure 3.2 Moment Lyapunov exponents under white noise excitation

It can be seen that the first-order averaging results agree with the simulation results very

well when ε and σ are small, i.e. the intensity of noise is weak. The second-order averaging

does give a better approximation. As shown in equations (3.2.14) and (3.2.15), when the

intensity of noise σ increases, the system becomes more and more unstable in the sense that

the largest Lyapunov exponents and moment Lyapunov exponents (for p>0) increase.

Figures 3.2 and 3.3 illustrate the variation of moment Lyapunov exponents from second-

order averaging with respect to the viscoelastic characteristic parameters γ and κ . The

curves 3(p)=0 give the boundaries of the moment stability. The pth moments for p>0
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Figure 3.3 Moment Lyapunov exponents under white noise excitation

are of interest in application. As the figures show, with the increase of viscoelastic intensity

γ , the stability region for p>0 becomes wider, which indicates that the viscoelasticity

helps to stabilize the system. Moreover, when κ increases, i.e. when the relaxation time

of viscoelasticity decreases, the stability region for p>0 becomes narrower, implying that

larger relaxation time helps to stabilize the system.

Case II: The wide-band noise is approximated by a real noise, the Ornstein-Uhlenbeck

process, given by equation (1.3.2).

Denoting

x1(t) = q(t), x2(t) = q̇(t), xj+2(t) =
∫ t

0
γj e−κj(t−s)q(s)ds, j = 1, 2, · · · , M,

xM+3(t) = ξ(t), (3.2.35)
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equation (3.1.5) is converted to the Itô differential equations
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dW(t).

(3.2.36)

Thus the discretized equations using explicit Euler scheme are

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
(

−ω2xk
1 − 2εβxk

2 + εω2
M
∑

j=1

xk
j+2 − ε1/2ω2xk

1xk
M+3

)

· h,

xk+1
j+2 = xk

j+2 +
(

γjx
k
1 − κjx

k
j+2

)

· h, j = 1, 2, · · · , M,

xk+1
M+3 = xk

M+3 +
(

−αxk
M+3

)

· h + σ ·1W k. (3.2.37)

The norm for evaluating the moment Lyapunov exponents is
∥

∥x(t)
∥

∥=
√

x2
1 +x2

2 + · · · +x2
M+2,

and the algorithm presented in Section 2.3 is applied to simulate the moment Lyapunov ex-

ponents.

The moment Lyapunov exponents for different values of viscoelastic parameters are

plotted in Figures 3.4 and 3.5, with ε=0.1, β=0.05, ω=α=σ =1, and M =2. Other

parameters for numerical iterations are the same as for the case of Gaussian white noise.

Figure 3.4 shows that the stronger the viscoelasticity (i.e. larger γj), the more stable the

system, and larger relaxation times (i.e. smaller κj) make the system more stable as shown

in Figure 3.5. These conclusions are indicated by equation (3.2.16) and are the same as the

case of Gaussian white noise excitation.

Figures 3.4 and 3.5 also indicate that the second-order averaging method does not im-

prove the accuracy of approximation significantly. Therefore the approximate results from

the first-order averaging are acceptable in engineering applications.
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Figure 3.4 Moment Lyapunov exponents under real noise excitation for different γ

Figure 3.6 shows the comparison of moment Lyapunov exponents for different values of

α, with ε=0.1,β=0.05, M =2,γ1 =1,κ1 =2,γ2 =κ2 =ω=1,σ =2. As discussed in Section

1.3.1, the power spectral density of real noise is flatter for larger values of α and thus a real

noise can be approximated as a wide-band noise. The simulation results show that, when α

is large but still of the same order as σ , this approximation is acceptable.

It should also be mentioned that, for Euler scheme in the Monte Carlo simulation of

stochastic differential equations, the error of discrete approximation for moments is of the

order of h. Since the numerical estimation of moment Lyapunov exponents requires large

time T for simulation, the number of iteration must be extremely large to make the time

step h be small enough, this increases the numerical error during computation. Therefore

the discrepancy between the simulation results and averaging results is partly contributed

by the round-off error in the iterative computation.
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Figure 3.5 Moment Lyapunov exponents under real noise excitation for different κ

Figures 3.7 and 3.8 show the variation of moment Lyapunov exponents from second-

order averaging with respect to the parameters of real noise. From Figure 3.7, it can be

seen that the larger the noise parameter α, the wider the stability region for p>0, i.e. the

more stable the system. According to equation (1.3.3), larger α means that the power of

noise spreads over a wider frequency band, which reduces the power of the noise in the

neighbourhood of resonance. Figure 3.8 shows that with the increase of noise intensity σ ,

the stability region of the pth moment (for p>0) dwindles away as expected.

3.3 Stability under Narow-band Noise Excitation

It is often the case that the noise perturbation in equation (3.1.5) is not wide-band. A general

model of narrow-band noise is bounded noise, as described in Section 1.3.1. Ariaratnam

[2] determined the largest Lyapunov exponent of a linear viscoelastic system parametrically
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Figure 3.6 Moment Lyapunov exponents under real noise excitation for different α

excited by a bounded noise using the averaging method. Xie [119] obtained the largest

Lyapunov exponent of a linear viscoelastic system excited by a bounded noise, which was

a revised version to that of Ariaratnam [2]. In this section, the method of stochastic

averaging, both first-order and second-order, will be used again to obtain the eigenvalue

problem governing the pth moment Lyapunov exponent. The moment Lyapunov exponents

of the system can then be determined by solving the eigenvalue problem.

In order to apply the averaging method for integro-differential equation, the SDOF

viscoelastic system (3.1.5) is rewritten as

q̈(t)+ 2εβq̇(t)+ ω2

{

[

1 − εξ(t)
]

q(t)− ε

∫ t

0
H(t−s)q(s)ds

}

= 0, (3.3.1)

where the excitation takes the form of bounded noise

ξ(t) = µ cos[νt + ε1/2σW(t)+ θ ]. (3.3.2)
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Figure 3.7 Moment Lyapunov exponents under real noise excitation

3.3.1 First-Order Stochastic Averaging

Applying the transformation

q(t) = a(t) cos8(t), q̇(t) = −ωa(t) sin8(t),

8(t) = 1

2
νt + ϕ(t), P(t) = a(t)p,

ψ = ε1/2σW(t)+ θ ,

(3.3.3)

and taking

ε1 = ω − 1

2
ν (3.3.4)
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Figure 3.8 Moment Lyapunov exponents under real noise excitation

lead to the equations for P(t) and ϕ(t)

Ṗ(t) = εpP
{

β [cos 28(t)− 1] + µω

2
cos(νt+ψ) sin 28(t)

}

− εωpPUc sin8(t),

ϕ̇(t) = ε
{

1− β sin 28(t)+ µω

2
cos(νt + ψ) [1+ cos 28(t)]

}

− εωUc cos8(t),

dψ(t) = ε1/2σdW(t), (3.3.5)

where

Uc =
∫ t

0
H(t−s)

[

P(s)

P(t)

]
1
p

cos8(s)ds.

Obviously, P(t) is the pth norm of the state vector for system (3.3.1).

When applying the averaging operation, P(t) and ϕ(t) are treated as unchanged, i.e. they

are replaced by the corresponding averaged variables directly.
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Using the results in Section 3.2, it can be seen that

M
t

{

Uc sin8(t)
}

= 1

2
H

s
(

1
2 ν
)

,

M
t

{

Uc cos8(t)
}

= 1

2
H

c
(

1
2 ν
)

.

Thus the averaged equations for P(t) and ϕ(t) are given by, still denoted by P(t) and ϕ(t),

Ṗ(t) = εpP

[

−β + µω

4
sin(2ϕ−ψ)− 1

2
ωH

s
(

1
2 ν
)

]

,

ϕ̇(t) = ε

[

1+ µω

4
cos(2ϕ−ψ)− 1

2
ωH

c
(

1
2 ν
)

]

.

(3.3.6)

Denote

β̂ = β + 1

2
ωH

s
(

1
2 ν
)

, 10 = 1− 1

2
ωH

c
(

1
2 ν
)

. (3.3.7)

Applying the transformation

2 = ϕ(t)− 1

2
ψ(t), (3.3.8)

and using the Itô’s Lemma lead to the Itô differential equations

dP(t) = mP P dt,

d2(t) = m2dt − ε1/2 σ

2
dW(t),

dψ(t) = ε1/2σ dW(t),

(3.3.9)

where

mP =εp
(1

4
µω sin 22− β̂

)

, m2=ε
(

10 + 1

4
µω cos 22

)

. (3.3.10)

Solving the probability distribution of P(t) from equations (3.3.9) is rather difficult since

these equations are coupled. It is easier to obtain the eigenvalue problem governing the pth

moment Lyapunov exponent. By taking a linear stochastic transformation

S = T(2)P, 0626π , (3.3.11)

where 2 takes the value in [0,π ] because the coefficients in equations (3.3.9) are periodic

functions in2 of period π , the Itô equation for the transformed pth norm process S is

dS =
(

mPT + m2T ′ + εσ 2

8
T ′′
)

P dt − ε1/2σ

2
T ′P dW(t)

= 1

T

(

mPT + m2T ′ + εσ 2

8
T ′′
)

Sdt − ε1/2σ

2

T ′

T
SdW(t). (3.3.12)
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T(2) is chosen as a bounded and non-singular transformation such that processes P and

S have the same stability behaviour [111]. Hence it is required that the drift term of the Itô

equation (3.3.12) be independent of 2, i.e.

1

T

(

mPT + m2T ′ + εσ 2

8
T ′′
)

= 3,

so that

dS = 3Sdt + σS dW(t). (3.3.13)

Taking the expected value of equation (3.3.13) leads to dE[S]=3E[S]dt. According to the

definition of the moment Lyapunov exponent, 3 is the moment Lyapunov exponent of

the averaged system (3.3.9). Comparing the drift terms in equations (3.3.12) and (3.3.13)

results in the eigenvalue problem governing the pth moment Lyapunov exponent

σ 2

8
T ′′ +

(

10 + µω

4
cos 22

)

T ′ + p
(

− β̂ + µω

4
sin 22

)

T = 3̂T , (3.3.14)

with3q(t)(p) = 3(p) = ε3̂(p).

For the special case σ =0, i.e. the bounded noise reduces to harmonic excitation, the

problem becomes deterministic, and it is not necessary to solve the eigenvalue problem

(3.3.14) to determine the stability property. In this case, the averaged equations (3.3.6)

reduce to, by taking p=1 to restore to variable a(t),

ȧ(t) = εa

[

−β̂ + 1

4
µω sin(2ϕ−θ)

]

,

ϕ̇(t) = ε

[

10 + 1

4
µω cos(2ϕ−θ)

]

.

(3.3.15)

Since equations (3.3.15) are not stochastic differential equations, the method for determin-

istic systems can be used to study this system. Applying the transformations

x(t) = a(t) cosϕ(t), y(t) = a(t) sin ϕ(t),

leads to






ẋ

ẏ







=







−εβ̂ − 1
4εµω sin θ −ε10 + 1

4εµω cos θ

ε10 + 1
4εµω cos θ −εβ̂ + 1

4εµω sin θ













x

y







.
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The characteristic equation is given by

(ρ + εβ̂)2 + ε2

(

12
0 − 1

16
µ2ω2

)

= 0.

It is obvious that the roots of the characteristic equation are not affected by θ , and they are

given by

ρ1,2 =















ε
(

− β̂ ± 1
4

√

µ2ω2 − 1612
0

)

, µω>410,

ε
(

− β̂ ± i 1
4

√

1612
0 − µ2ω2

)

, µω<410.

(3.3.16)

Since the solution a(t) can be written in the form of a(t)=c1 exp(ρ1t)+c2 exp(ρ2t), the

stability of system (3.3.6) under the case σ =0 is determined from equation (3.3.16) by the

Lyapunov exponents

λ1,2 =











ε
(

− β̂ ± 1
4

√

µ2ω2 − 1612
0

)

, µω>410,

−εβ̂, µω<410.

(3.3.17)

From equation (3.3.17) it can be seen that, when µω<410, system (3.3.6) is always stable.

However, if µω>410, and
√

µ2ω2 − 1612
0>4β̂, system (3.3.6) becomes unstable.

3.3.2 Second-Order Stochastic Averaging

The second-order averaging operation may be applied to improve the accuracy of moment

Lyapunov exponents. Similar to the case of wide-band noise excitation, the transformations

(3.2.20), i.e.

P(t) = P̄(t)+ εP1(P̄, ϕ̄, t), ϕ(t) = ϕ̄(t)+ εϕ1(P̄, ϕ̄, t),

are applied again with P̄(t) and ϕ̄(t) being determined later. Substituting equations (3.2.20)

into equations (3.3.5) yields







Ṗ

ϕ̇







= ε







pP̄ f1

f2







+ ε2







p(P̄g1 + P1 f1)

g2







+ o(ε2), (3.3.18)
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where

8̄(t) = 1

2
νt + ϕ̄(t),

f1 = β
[

cos 28̄(t)− 1
]

+ µω

2
cos(νt+ψ) sin 28̄(t)− ωŪc sin 8̄(t),

f2 = 1− β sin 28̄(t)+ µω

2
cos(νt+ψ)

[

1 + cos 28̄(t)
]

− ωŪc cos 8̄(t),

g1 = −2βϕ1 sin 28̄(t)+ µωϕ1 cos(νt+ψ) cos 28̄(t)

− ωϕ1Ūc cos 8̄(t)+ ωϕ1Ūs sin 8̄(t)− ω

p
U∗

c sin 8̄(t),

g2 = −2βϕ1 cos 28̄(t)− µωϕ1 cos(νt+ψ) sin 28̄(t)

+ ωϕ1Ūc sin 8̄(t)+ ωϕ1Ūs cos 8̄(t)− ω

p
U∗

c cos 8̄(t),

Ūc =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]

1
p

cos 8̄(s)ds,

Ūs =
∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]

1
p

sin 8̄(s)ds,

U∗
c =

∫ t

0
H(t−s)

[

P̄(s)

P̄(t)

]

1
p
[

P1(s)

P̄(s)
− P1(t)

P̄(t)

]

cos 8̄(s)ds.

Using equations (3.2.21) and (3.2.22), and neglecting the third- and higher-order terms

of ε, equations (3.3.18) are converted to a dynamical system in variables P̄ and ϕ̄







˙̄P

˙̄ϕ







= ε















pP̄ f1 − ∂P1

∂t

f2 − ∂ϕ1

∂t















+ ε2











p(P̄g1 + P1 f1)

g2











+ ε2















−(pP̄ f1 − ∂P1

∂t
)
∂P1

∂P̄
− ( f2 − ∂ϕ1

∂t
)
∂P1

∂ϕ̄

−(pP̄ f1 − ∂P1

∂t
)
∂ϕ1

∂P̄
− ( f2 − ∂ϕ1

∂t
)
∂ϕ1

∂ϕ̄















. (3.3.19)

Noticing that f1 and f2 yield the same results as those of the first-order averaging after

they are averaged, ∂P1/∂t and ∂ϕ1/∂t can be taken as the fast oscillation terms to avoid the

complexity of solving the integro-differential equations, i.e. the terms which vanish after the
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averaging operation,

∂P1

∂t
= pP̄

[

β cos(νt+2ϕ̄)+ µω sin(2νt+2ϕ̄+ψ)
4

]

,

∂ϕ1

∂t
= −β sin(νt+2ϕ̄)+ µω cos(νt+ψ)

2
+ µω cos(2νt+2ϕ̄+ψ)

4
.

(3.3.20)

Solving P1 and ϕ1 from equations (3.3.20) leads to

P1 = pP̄

[

β sin(νt+2ϕ̄)

ν
− µω cos(2νt+2ϕ̄+ψ)

8ν

]

,

ϕ1 = β cos(νt+2ϕ̄)

ν
+ µω sin(νt+ψ)

2ν
+ µω sin(2νt+2ϕ̄+ψ)

8ν
.

(3.3.21)

After P1 and ϕ1 are known, the averaging operation can be performed over equations

(3.3.19). In the process of averaging, P̄ and ϕ̄ are still treated as constants. Based on the

results in Section 3.2, it is easy to obtain that

M
t

{

Ūc sin 8̄(t)
}

= 1

2
H

s
(

1
2 ν
)

, M
t

{

Ūc cos 8̄(t)
}

= 1

2
H

c
(

1
2 ν
)

,

M
t

{

Ūs sin 8̄(t)
}

= 1

2
H

c
(

1
2 ν
)

, M
t

{

Ūs cos 8̄(t)
}

= −1

2
H

s
(

1
2 ν
)

.

Hence the second-order averaged equations are

d











P̄

ϕ̄











= ε











p
(

1
4µω sin 22̄−β̂

)

P̄

10+ 1
4µω cos 22̄











dt + ε2 1

2ν











µωp
(

−β̂ cos 22̄+α̂ sin 22̄
)

P̄

δ̂+µω
(

β̂ sin 22̄+α̂ cos 22̄
)











dt

+ ε1/2











0

−1
2σ











dW(t), (3.3.22)

where

2̄ = ϕ̄(t)− 1

2
ψ(t), α̂ = 1

2
ωH

c
(

1
2 ν
)

, δ̂ = 2β(β − 2β̂)− 1

16
µ2ω2. (3.3.23)

Similar to the first-order averaging, taking the transformation S̄= T̄(2̄)P̄, 062̄6π , and

using the Itô’s Lemma lead to the eigenvalue problem

ε

[

σ 2

8
T ′′ +

(

10 + µω

4
cos 22

)

T ′ + p
(

− β̂ + µω

4
sin 22

)

T

]

+ ε2 1

2ν

[

δ̂ + µω
(

β̂ sin 22+ α̂ cos 22
)]

T ′ + ε2µωp

2ν

(

α̂ sin 22− β̂ cos 22
)

T = 3T ,

(3.3.24)
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in which, for simplicity of presentation, the overbar has been dropped.

3.3.3 Solving the Eigenvalue Problems

It is still not easy to find the analytical solutions to eigenvalue problems (3.3.14) and (3.3.24).

Noticing that the coefficients in equations (3.3.14) and (3.3.24) are periodic in2with period

π , thus eigenfunctions T(2) can be expanded to a Fourier series in the form

T(2) = C0 +
∞
∑

k=1

(Ck cos 2k2+ Sk sin 2k2). (3.3.25)

Substituting the expansion into eigenvalue problem (3.3.14) or (3.3.24) yields a set of

homogeneous linear algebraic equations with infinitely many equations for the unknown

coefficients C0, Ck and Sk, k=1, 2, . . .. In particular, for the first order eigenvalue problem

(3.3.14), one has

−(c0 + 3̂)C0 + b0S1 = 0,

−(c1 + 3̂)C1 + d1S1 + b1S2 = 0,

2a1C0 + d1C1 + (c1 + 3̂)S1 + b1C2 = 0,

akSk−1 − (ck + 3̂)Ck + dkSk + bkSk+1 = 0,

akCk−1 + dkCk + (ck + 3̂)Sk + bkCk+1 = 0, k = 2, 3, . . . ,

(3.3.26)

where

an = 1

8
µω(2n−2−p), bn = 1

8
µω(2n+2+p),

cn = 1

2
σ 2n2 + pβ̂, dn = 210n, n = 0, 1, 2, . . . .

In principle, infinite terms of coefficients Ck and Sk are required to obtain the exact

solutions of the eigenvalue problems. However it is difficult to do so in practice. Therefore,

only a finite number of terms are considered to obtain an approximate solution. If the

expansion is truncated to order K , i.e.

T(2) = C0 +
K
∑

k=1

(Ck cos 2k2+ Sk sin 2k2), (3.3.27)
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the system of equations, e.g. (3.3.26), reduces to a generalized linear algebraic eigenvalue

problem of the form

[

A − 3̂(K)B
]

Y=0, (3.3.28)

where Y={C0, C1, S1, . . . , CK , SK}T , A and bB are (2K +1)×(2K +1) matrices including

the coefficients an, bn, cn, dn.

Equation (3.3.28) has non-trivial solutions only if the determinant
∣

∣A−3̂(K)B
∣

∣=0, which

leads to a polynomial equation for 3̂(K) of degree 2K +1. Solving the polynomial equation

for the largest root leads to the approximate moment Lyapunov exponents. Generally

there is no analytical solution for this polynomial equation of 3̂(K) when K>1. Therefore

numerical method has to be adopted.

3.3.4 Numerical Results and Discussion

In the Monte Carlo simulation, the Maxwell viscoelastic model is considered, i.e. the vis-

coelastic kernel function is taken as H(t)=γ e−κt . Let

x1(t) = q(t), x2(t) = q̇(t), x3(t) =
∫ t

0
H(t−s)q(s)ds,

x4(t) = νt + ε1/2σW(t)+ θ. (3.3.29)

Equation (3.3.1) can be rewritten as Itô differential equations

d



































x1

x2

x3

x4



































=



































x2

−2εβx2 − ω2(1 + εµ cos x4)x1 + εω2x3

γ x1 − κx3

ν



































dt +



































0

0

0

ε1/2σ



































dW(t). (3.3.30)

The norm for evaluating the moment Lyapunov exponents is
∥

∥x(t)
∥

∥=
√

x2
1 +x2

2 +x2
3 . The

moment Lyapunov exponents are simulated using the algorithm in Section 2.3 with explicit
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Euler scheme given by

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
(

− ω2xk
1 − 2εβxk

2 + εω2xk
3 − εµω2xk

1 cos xk
4

)

h,

xk+1
3 = xk

3 +
(

γ xk
1 − κxk

3

)

h,

xk+1
4 = xk

4 + ν · h + ε1/2σ ·1W k.

(3.3.31)

Figure 3.9 Moment Lyapunov exponents under bounded noise excitation for different γ

Different parameters are selected to compare the moment Lyapunov exponents obtained

by the averaging method and Monte Carlo simulation. The Fourier series expansion for

T(2) is truncated to the order 4, i.e. K =4, to obtain the approximate analytical result. The

sample size for evaluating the ensemble average as the expected value is N =5000, time step

h=0.001, and the number of iterations is 5×106. The following parameters are fixed as:

ε=0.1,β=0.05,ω=1.0, ν=2.0, i.e.1=0.
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Figure 3.10 Moment Lyapunov exponents under bounded noise excitation for different κ

Figure 3.9 shows the moment Lyapunov exponents for different γ with κ=σ =µ=1. The

simulation results and the approximate analytical results agree very well for small values of

γ and p>0. It can be seen that with the increase of the intensity of material relaxation, the

moment Lyapunov exponents at p>0 decrease. This observation implies that the material

viscoelasticity helps to stabilize the system.

The moment Lyapunov exponents for different κ at γ =σ =µ=1 are plotted in Figure

3.10. It shows that the averaging method provides a good approximation of the moment

Lyapunov exponents. It is obvious that, the smaller the value of κ , the smaller the moment

Lyapunov exponents for p>0. Since small κ means large relaxation time constant, this

result indicates that longer relaxation time will also help to stabilize the system.

In Figure 3.11, the moment Lyapunov exponents for different values of σ and γ =0.5,

κ=µ=1 are presented. It is clearly seen that the stability of the system increases, when the

noise intensity parameter σ increases, in the sense that the moment Lyapunov exponents
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Figure 3.11 Moment Lyapunov exponents under bounded noise excitation for different σ

decrease for p>0. It is because that, the larger the value of σ , the wider the frequency

band of the power spectral distribution. This means that the power of the noise will not

be concentrated in the neighborhood of the central frequency ν, which reduces the effect

of the primary parametric resonance. Also, increasing the noise parameter σ decreases the

discrepancy between the simulation results and the approximate analytical results for p>0.

The moment Lyapunov exponents for various values of µ are showed in Figure 3.12,

where γ =0.5, κ=1, σ =2. The result indicates that, as expected, increasing the noise

amplitude µ makes the system unstable. Moreover, with the increase of amplitude µ, the

difference between the simulation results and the approximate analytical results becomes

more and more significant.

Figure 3.13 shows the asymptotic normality of log
∥

∥x(T)
∥

∥ for some selected parameters,

where the histograms and the corresponding normal density approximations are compared.

From the figure it can be seen that the sample size N =5000 may not be enough in simulation.
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Figure 3.12 Moment Lyapunov exponents under bounded noise excitation for different µ

To improve the simulation results, larger sample size is required to obtain a better estimation

of the mean and variance of log
∥

∥x(T)
∥

∥.

On the other hand, from Figure 3.9 to Figure 3.12, it can be observed that the second-order

averaging does not improve the accuracy of analytical results too much. To illustrate this

more, some typical numerical results of the moment Lyapunov exponents obtained from

the eigenvalue problems are plotted in Figure 3.14. The Fourier series is expanded to the

fourth order, i.e. K =4. It is obvious that the results for the first-order and the second-order

averaging have no significant difference provided that 0<ε≪1. This means that as far as

the method of averaging is concerned, the first-order is enough to determine the stability of

SDOF viscoelastic system with small parameter ε under bounded noise excitation.
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Figure 3.13 Histograms of logarithm of norm compared with normal density approximations

under bounded noise excitation

3.4 Summary

SDOF viscoelastic systems under parametric perturbations of random loads, including

wide-band noise and narrow-band noise, are studied in this chapter. As described in Section

1.3.1, Gaussian white noise and Ornstein-Uhlenbeck process are the models of wide-band

noise, and bounded noise is treated as a narrow-band noise. Stochastic averaging method

is applied to simplify the equations of motion, which are integro-differential equations.

Then the stability of the averaged systems is determined in the sense of moment Lyapunov

exponents. The algorithm presented in Section 2.3 is used to simulate the stability of the
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Figure 3.14 Comparison of moment Lyapunov exponents for the 1st-order and 2nd-order av-

eraging

original SDOF viscoelastic systems. Comparing the approximate analytical results and the

simulation results, it can be seen that averaging method provides a good approximation to

the original SDOF viscoelastic systems in most cases. However, in the cases when the energy

of noises concentrate in the neighborhood the primary parametric resonance frequency and

their intensities are not small enough, the averaging method appears to be insufficient, as

indicated by the results from bounded noise excitation. Moreover, higher-order averaging

seems to provide no significant improvement for the analytical approximation; thus the

first-order averaging is enough in determining the stability of viscoelastic systems.

From the approximate analytical results and the Monte Carlo simulation results of the

moment Lyapunov exponents in Section 3.2 and 3.3, it is clear that increasing the intensity of

viscoelasticity, material relaxation time, and decreasing the noise intensity help to stabilize

the viscoelastic system. This result is useful in engineering applications.



4C H A P T E R

Stochastic Stability of SDOF Nonlinear
Viscoelastic Systems

Stochastic stability of SDOF linear viscoelastic systems has been discussed in Chapter 3 in

the sense of moment Lyapunov exponents, where only the trivial solutions are considered.

In engineering applications, the linear constitutive relation may not be sufficient for many

materials. Therefore it is necessary to consider the situation where nonlinear viscoelasticity

is exhibited.

4.1 An Example of SDOF Nonlinear Viscoelastic System

With the material relaxation operator H defined by equation (3.1.2), the linear viscoelastic

constitutive relation for uniaxial stress σ(t) and strain ε(t) can be expressed as

σ(t) = E
[

ε(t)−
∫ t

0
H(t−τ)ε(τ )dτ

]

= E(1 − H )ε(t), (4.1.1)

where E is the Young’s modulus.

The exploration of nonlinear theory has started its way many years ago since the be-

haviour of materials cannot always be described by the linear theory correctly. However,

due to the complexity of modelling of materials, which is related to many other areas such as

physics and chemistry, the study of nonlinear constitutive relations for viscoelastic materials

has a long way to go.

90
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In the common approach of Green-Rivlin theory, stress is expressed as a polynomial

expansion in linear functionals of strain history. Thus the one-dimensional uniaxial con-

stitutive relation has the form [25]

σ(t) =
∫ t

0
H1(t−τ)

de(τ )

dτ
dτ

+
∫ t

0

∫ t

0

∫ t

0
H3(t−τ1, t−τ2, t−τ3)

de(τ1)

dτ1

de(τ2)

dτ2

de(τ3)

dτ3

dτ1 dτ2 dτ3 + · · · ,

(4.1.2)

where e(τ ) is the nonlinear strain measure. In the case of one dimension, e(τ ) is given by

e(τ ) = 1

2

{

[1+ε(τ )]2−1
}

. (4.1.3)

Equation (4.1.2) appears to be too complicated in practice. Therefore, there are many

other different but simplier forms of constitutive relations related to the variety of materials.

One possible constitutive relation is

σ(t) = E
[

g(ε(t))−
∫ t

0
H(t−τ)g(ε(τ ))dτ

]

= E(1 − H )g(ε(t)), (4.1.4)

where

g(ε) = ε
(

1+δ1ε+δ2ε
2
)

, (4.1.5)

and δ1, δ2 are small constants related to materials. Constitutive relation (4.1.4) was in-

troduced by Leaderman [71]; it has been used to characterize the large deformation of

rubberlike network polymers and textile fibers [70], [46].

Using equation (4.1.4) for nonlinear visoelastic materials, it is possible to derive the

equations of motion, which are generally integro-partial differential equations and are

difficult to solve as described in Section 1.4. As an example, consider a column under

dynamical axial compressive load P(t) as shown in Figure 4.1. The equation of motion is

∂2M(x, t)

∂x2
= ρA

∂2v(x, t)

∂t2
+ β0

∂v(x, t)

∂t
+ P(t)

∂2v(x, t)

∂x2
, (4.1.6)

where ρ is the mass density per unit volumne of the column, A the cross-sectional area,

v(x, t) the transverse displacement of the central axis,β0 the damping constant, M(x, t) the

moment at the cross-section x.
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Figure 4.1 A column under axial compressive load

Noticing that the geometry relation

ε = −∂
2v

∂x2
z = −vxx z

holds, in which z is the distance from the central axis of a point in the cross-section. If the

column is elastic, one obtains

M(x, t) =
∫

A
σ z dA = −

∫

A
Evxxz2 dA = −EI vxx,

where I is the moment inertia of the cross-section. If the column takes the nonlinear

viscoelastic constitutive relation (4.1.4), and the cross-section is symmetry about the central

axis, then

M(x, t) =
∫

A
σ z dA =

∫

A
E(1 − H )g(ε)z dA

= −EI(1 − H )vxx − δ2EJ(1 − H )v3
xx, (4.1.7)

where J is given by

J =
∫

A
z4 dA.

Substituting equation (4.1.7) into (4.1.6) leads to the equations of motion

ρA
∂2v

∂t2
+ β0

∂v

∂t
+ P(t)

∂2v

∂x2
+ EI(1 − H )

∂4v

∂x4

+ 3δ2EJ(1 − H )
[

2
∂2v

∂x2

(∂3v

∂x3

)2
+
(∂2v

∂x2

)2 ∂4v

∂x4

]

= 0. (4.1.8)
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Further suppose the column is simply supported, then the boundary conditions are

v(0, t) = v(L, t) = vxx(0, t) = vxx(L, t) = 0, (4.1.9)

where L is the length of the column.

It is not an easy task to solve the nonlinear equation (4.1.8) analytically. To simplify the

problem, if the axial compressive force does not greatly exceed the Euler buckling load of

linear elastic column, it is reasonable to assume that the transverse displacement can be

approximated by the one-mode vibration [22], i.e. the Galerkin approximation in the form

of

v(x, t) = q(t) sin
πx

L
, (4.1.10)

which satisfies the boundary conditions (4.1.9) automatically. Substituting equation (4.1.10)

into (4.1.8) yields

ρAq̈ + β0q̇ −
(π

L

)2
P(t)q

+
(π

L

)4
EI(1 − H )q + 3δ2EJ

4

(π

L

)8
(1 − H )q3 = 0. (4.1.11)

Letting

β = β0

2ρA
, ω2 = EI

ρA

(π

L

)4
, ξ(t) = P(t)

EI

( L

π

)2
, δ = 3δ2J

4I

(π

L

)4
,

equation (4.1.11) becomes the following general single degree-of-freedom nonlinear vis-

coelastic system with cubic nonlinearity,

q̈ + 2βq̇ + ω2
[

(1 − H )q − ξ(t)q + δ(1 − H )q3
]

= 0. (4.1.12)

It can be seen that, when δ=0, equation (4.1.12) reduces to a SDOF linear viscoelastic

system, whose stochastic stability properties have been studied in Chapter 3. The existence

of cubic nonlinearity makes the behaviour of equation (4.1.12) different from that of the

linear cases. As it will be shown, stochastic bifurcation phenomena, which never exist in

linear systems, may occur.
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4.2 Stability and Bifurcation under Wide-band Noise
Excitation

There seems no previous study on the stochastic stability properties of nonlinear viscoelas-

tic systems in the form of equation (4.1.12). Only a similar problem was discussed by

Ariaratnam [3], where the nonlinearity appears in the damping term but not the stiffness

term and viscoelastic term.

Consider the case that the excitation ξ(t) in equation (4.1.12) is a wide-band noise with

zero mean. Similar to the study in Chapter 3, the stochastic averaging method is applied

to simplify equation (4.1.12) so that it is easier to investigate the properties of the averaged

system.

4.2.1 Approximation by Stochastic Averaging

In order to use the averaging method, in the cases that the damping, viscoelastic effect, and

the amplitude of excitation are all small, a small parameter 0<ε≪1 is introduced such that

equation (4.1.12) becomes

q̈(t)+ 2εβq̇(t)+ ω2
{

[

1 − ε1/2ξ(t)
]

q(t)− ε

∫ t

0
H(t−s)q(s)ds

}

+ ω2δ
{

q3(t)− ε

∫ t

0
H(t−s)q3(s)ds

}

= 0. (4.2.1)

After the same transformation as that in equations (3.2.1), i.e.

q(t) = a(t) cos8(t), q̇(t) = −ωa(t) sin8(t), 8(t) = ωt + ϕ(t),

is applied, it is found that

ȧ(t) = F
(1)
1 (a,ϕ, t)+ F

(0)
1 (a,ϕ, ξ , t),

ϕ̇(t) = F
(1)
2 (a,ϕ, t)+ F

(0)
2 (a,ϕ, ξ , t),

(4.2.2)
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where

F
(1)
1 (a,ϕ, t) = −εβa(t)

[

1 − cos 28(t)
]

+ δ
ω

8
a3(t)

[

sin 48(t)+ 2 sin 28(t)
]

− εω sin8(t)Ic − εδω sin8(t)J c ,

F
(1)
2 (a,ϕ, t) = −εβa(t) sin 28(t)+ δ

ω

8
a2(t)

[

cos 48(t)+ 4 cos 28(t)+ 3
]

− ε
ω

a(t)
cos8(t)Ic − εδ

ω

a(t)
cos8(t)J c ,

F
(0)
1 (a,ϕ, ξ , t) = −1

2
ε1/2ωξ(t)a(t) sin 28(t),

F
(0)
2 (a,ϕ, ξ , t) = −1

2
ε1/2ωξ(t)a(t)

[

1 + cos 28(t)
]

,

Ic =
∫ t

0
H(t−s)a(s) cos8(s)ds,

J c =
∫ t

0
H(t−s)a3(s) cos38(s)ds.

Since ξ(t) is a wide-band noise, δ is also a small constant, according to the method

of stochastic averaging, equations (4.2.2) can be approximated by the following averaged

equations

d







ā(t)

ϕ̄(t)







=







m̄a

m̄ϕ







dt + σ̄ dW(t), (4.2.3)

where the coefficients are determined following the same procedure as that in Section 3.2,

m̄a = ε
[

− β − 1

2
ωH

s(ω)+ 3

16
ω2S(2ω)− 3

8
δωH

s(ω)ā2
]

ā,

m̄ϕ = ε
[

− 1

2
ωH

c(ω)− 1

8
ω29(2ω)− δω

3

8
H

c(ω)ā2
]

+ 3

8
δωā2,

[

σ̄ σ̄ T
]

11
= b11 = 1

8
εω2S(2ω)ā2,

[

σ̄ σ̄ T
]

12
=
[

σ̄ σ̄ T
]

21
= 0,

[

σ̄ σ̄ T
]

22
= b22 = 1

8
εω2

[

2S(0)+ S(2ω)
]

. (4.2.4)
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To make the variables ā(t) and ϕ̄(t) decoupled, the elements of matrix σ̄ can be chosen as

σ̄11 =
√

b11 = ε1/2ωā

√

S(2ω)

8
,

σ̄22 =
√

b22 = ε1/2ω

√

2S(0)+ S(2ω)

8
,

σ̄12 = σ̄21 = 0.

Therefore, the Itô stochastic differential equation for ā is given by

dā = ε
(

η1ā − η2ā3
)

dt + ε1/2η3ādW(t), (4.2.5)

where

η1 = −β − 1

2
ωH

s(ω)+ 3

16
ω2S(2ω), η2 = 3

8
δωH

s(ω), η3 = ω

√

S(2ω)

8
. (4.2.6)

Note that for a given initial condition, the transition density function of equations (4.2.3)

determines the properties of the one-point motion, i.e. the motion of
(

ā(t), ϕ̄(t)
)

with the

given
(

ā(0), ϕ̄(0)
)

. This means the stationary response of equations (4.2.3) is completely

described by the one-point motion. Since the selection of σ̄ which resulting in equation

(4.2.5) does not change the form of Fokker-Plank equation associating with equations

(4.2.3), the stability of amplitude of the one-point motion can be determined through

equation (4.2.5), which is decoupled from ϕ̄(t) and is easier to solve.

However, if one is interested in the variation of invariant measure for the random dy-

namical system generated by equations (4.2.3), the n-point motion, i.e. the simultaneous

motion of n pairs of
(

ā(t), ϕ̄(t)
)

with different initial conditions has to be considered. This

implies that the system is studied in the view of stochastic flow [15]. There are many possible

stochastic differential equations which have the same one-point motion as that of equations

(4.2.3) [67], different choices of stochastic differential equations may have different invari-

ant measures [15]. Since only the amplitude of motion of the original equation (4.2.1) is of

interested in this chapter, and the study of stability is through the corresponding linearized

system, it is an appropriate way to consider the stability of equation (4.2.5). For more details

about the n-point motion and stochastic flow, one may refer to [67], and other articles such

as [15], [14], [6], [98], [99], [16], and [17].



4.2 stability and bifurcation under wide-band noise excitation 97

It is observed that the nonlinearity of stiffness term in system (4.2.1) does not contribute

in the averaged equation (4.2.5). This is due to the transformation (3.2.1) in standard

stochastic averaging method, which appears to neglect the contribution from the cubic

nonlinear stiffness term. If the viscoelastic terms do not appear in equation (4.2.1), i.e.

if system (4.2.1) reduces to an elastic nonlinear system, the standard stochastic averaging

method leads to a linear averaged system, which makes it impossible to study stochastic

bifurcation. Therefore standard averaging method is generally ineffective in investigating

systems with strong nonlinearity in stiffness terms [95], [93]. If the nonlinearity in stiffness

term can not be neglected, modified averaging method accounting the total system energy

may be applied to certain autonomous systems whose stiffness terms are integrable [94].

However, the viscoelastic terms in equation (4.2.1) make the system being non-autonomous,

thus it is not an easy task to proceed following the modified averaging method. Fortunately,

the presence of viscoelasticity leads to an averaged equation including nonlinear effect as

in equation (4.2.5), which is of great importance in stability analysis. Moreover, δ is small

because both δ1 and δ2 are small constants for most materials characterized by equation

(4.1.5). This means the contribution from nonlinear stiffness term may be neglected com-

pared to the damping effect of viscoelasticity. Hence, the approximation from the standard

stochastic averaging method in this section is easier to apply and may be acceptable in

applications.

4.2.2 Stability and Bifurcation of the Averaged System

The Stratonovich form of equation (4.2.5) is

dā = ε
[(

η1− 1

2
η2

3

)

ā−η2ā3
]

dt + ε1/2η3ā ◦ dW(t), (4.2.7)

which acts as a mathematical model of the deterministic system

dā

dt
= ε

[(

η1− 1

2
η2

3

)

ā−η2ā3
]

(4.2.8)

under parametric white noise perturbation.

Consider the deterministic nonlinear system (4.2.8). Note that ā should be non-negative

in transformation (3.2.1), thus, from the deterministic stability theory, it is known that there
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are equilibrium points a0 =0 in all cases, and

a1 =
√

1

η2

(

η1− 1

2
η2

3

)

,

if η1− 1
2η

2
3 and η2 take the same signs. Linear stability analysis shows that the eigenvalue,

i.e. the Lyapunov exponent associated with a0 =0, is

λ0 = ε
(

η1− 1

2
η2

3

)

.

Therefore the trivial solution is stable if λ0<0. Similarly, by linearizing equation (4.2.8)

near a1 as
du

dt
= ε

[(

η1− 1

2
η2

3

)

−3η2ā2
1

]

u,

where u denotes the variation of solution from a1, it can be seen that the eigenvalue associ-

ated with a1 is

λ1 = ε
[(

η1− 1

2
η2

3

)

−3η2ā2
1

]

= −2ε
(

η1− 1

2
η2

3

)

,

which indicates that the non-trivial solution a1 is stable when λ1<0.

Clearly, noise in equation (4.2.5) or (4.2.7) is multiplicative with respect to the trivial

solution, since a0 =0 is also the solution of the noise-disturbed system. On the other hand,

is additive with respect to the non-trivial solution of the undisturbed system (4.2.8) because

a1 cannot solve equation (4.2.5) or (4.2.7) [10].

For the stochastic nonlinear system (4.2.5) or (4.2.7), it is obvious that a0 =0 is the trivial

stationary solution. In order to find the the non-trivial stationary solution as(t), i.e. the

“stochastic attractor”, one may follow the procedure in [3]. Letting rs(t)= ln as(t) and

applying Itô’s Lemma lead to

drs = ε
(

η1 − 1

2
η2

3 − η2a2
s

)

dt + ε1/2η3 dW(t). (4.2.9)

Since as(t) is stationary, so is rs(t), thus

dE
[

rs(t)
]

dt
= 0.

Taking expectation on both sides of equation (4.2.9) yields

η1 − 1

2
η2

3 − η2E
[

a2
s

]

= 0. (4.2.10)
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Define η∗ by

η∗ ,
1

η2

(

η1− 1

2
η2

3

)

. (4.2.11)

It can be seen that, only when η∗>0, E
[

a2
s

]

can be solved from equation (4.2.10) as

E
[

a2
s

]

= η∗ = 1

η2

(

η1− 1

2
η2

3

)

, (4.2.12)

i.e. the non-trivial stationary solution only exists when η∗>0.

The stationary probability density ps(a) for system (4.2.5) is determined by the Fokker-

Planck equation

−
d
[

ε
(

η1a − η2a3
)

ps(a)
]

da
+ 1

2

d2
[

εη2
3a2ps(a)

]

da2
= 0. (4.2.13)

Solving equation (4.2.13) yields, ps(a)=δ(a) associated with the trivial solution in all cases,

where δ(a) is the Dirac delta function; and when η1− 1
2η

2
3>0,

ps(a) =











Ca2η1/η
2
3−2 exp

(

− η2a2

η2
3

)

, a > 0,

0 a 6 0,

(4.2.14)

where C is a normalization constant. The condition that ps(a) is a density function requires

η2>0, therefore η∗>0 is satisfied and the existence of the non-trivial stationary solution is

confirmed.

The stability of stochastic dynamical system in the form of equation (4.2.5) or (4.2.7) has

been well-studied in many books and articles such as [10]. Since the Lyapunov exponents of

a stochastic system can characterize its almost-sure stability, the largest Lyapunov exponent

of equation (4.2.5) is solved below and then the stability of the trivial and non-trivial

stationary solutions can be determined.

By linearizing equation (4.2.5) at the trivial solution a0 =0, the corresponding Lyapunov

exponent is given by

λ0 = ε
(

η1− 1

2
η2

3

)

= ε
[

−β− 1

2
ωH

s(ω)+ 1

8
ω2S(2ω)

]

. (4.2.15)

It can be seen that the nonlinearity in viscoelasticity has no contribution in λ0, therefore it

does not affect the almost-sure stability of the trivial solution.
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Denote the variation of solution from the non-trivial stationary solution as(t) by

u(t) = ā(t)− as(t).

Then u(t) can be used to determine the stability of as(t). Substituing u(t) into equation

(4.2.5) and considering the linear parts with respect to u(t) lead to the linearized system

du = ε
(

η1 − 3η2a2
s

)

u dt + ε1/2η3u dW(t). (4.2.16)

Letting r(t)= ln
∣

∣u(t)
∣

∣ and applying Itô’s Lemma yield

dr = ε
(

η1 − 1

2
η2

3 − 3η2a2
s

)

dt + ε1/2η3 dW(t),

i.e.

r(t) = r(0)+ ε

∫ t

0

(

η1 − 1

2
η2

3 − 3η2a2
s

)

ds +
∫ t

0
ε1/2η3 dW(s).

Since as(t) is stationary and ergodic, from the ergodic theory it is known that

lim
t →∞

1

t

∫ t

0
a2

s ds = E
[

a2
s

]

. (4.2.17)

Thus using the law of iterated logarithm for Wiener process, equations (4.2.17) and (4.2.12),

the Lyapunov exponent for the non-trivial stationary solution is given by

λ1 = lim
t →∞

1

t
ln
∣

∣u(t)
∣

∣ = ε
(

η1 − 1

2
η2

3 − 3η2E
[

a2
s

]

)

= −2ε
(

η1− 1

2
η2

3

)

= 2ε
[

β+ 1

2
ωH

s(ω)− 1

8
ω2S(2ω)

]

. (4.2.18)

When λ1 is negative, as(t) is stable w.p.1. Again, the nonlinearity in viscoelasticity does not

affect the almost-sure stability of the non-trivial solution.

From equations (4.2.15) and (4.2.18), it can be seen that, when system parameters change

such that λ0 varies from negative to positive, the trivial solution will change its stability

from stable to unstable with probability one. If η∗>0 such that the non-trivial solution

exists, because λ1 takes the opposite sign as λ0,λ1 will change from positive to negative and

thus the non-trivial solution will change from unstable state to stable state with probability

one. This means the “jump” from a stationary solution to another stationary solution, and

indicates that system (4.2.5) exhibits stochastic dynamic or D-bifurcation [10] at the point

where η1− 1
2η

2
3 =0.



4.2 stability and bifurcation under wide-band noise excitation 101

If the non-trivial solution exists with the stationary density function given by equation

(4.2.14), one may describe the properties of ps(a) by its shape. The peak value of ps(a), if

exists, locates at the point where
dps(a)

da
=0. For a>0,

dps(a)

da
= 2C

η1 − η2
3 − η2a2

η2
3

a2η1/η
2
3−3 exp

(

− η2a2

η2
3

)

. (4.2.19)

Since η2>0, it can be seen that equation dps(a)/da=0 has solution only when η1−η2
3>0.

This indicates that whenη1−η2
3 ≤ 0, ps(a)has no peak; whileη1−η2

3>0, ps(a)has one peak.

Thus the shape of ps(a) has a qualitative change, i.e. the system exhibits phenomenological

or P-bifurcation [10], at the point where η1−η2
3 =0.

Define two variables bD and bP as

bD , η1 − 1

2
η2

3 = −β − 1

2
ωH

s(ω)+ 1

8
ω2S(2ω), (4.2.20)

bP , η1 − η2
3 = −β − 1

2
ωH

s(ω)+ 1

16
ω2S(2ω). (4.2.21)

Obviously bD>bP , λ0 =εbD, λ1 = −2εbD. The complete bifurcation scheme can be de-

scribed as follow.

When bP<bD<0, one has λ0<0,λ1>0, thus only the trivial solution exists and is stable.

If the system parameters change such that bP<0<bD, the Lyapunov exponents become

λ0>0, λ1<0, therefore the trivial solution loses its stability, and the non-trivial stationary

solution appears and is stable. This indicates that, phenomenally, the solution of the system

“jumps” from the trivial solution to the non-trivial stationary solution. Furthermore, if

system parameters continue changing such that 0<bP<bD, the stability of the stationary

solutions do not change, i.e. only the non-trivial stationary solution appears as stable.

However, the shape of the stationary density function changes, from having no peak to

having one peak.

The bifurcation phenomenon can be clearly described in Figure 4.2, with the power

spectral density of the wide-band noise being the varied parameter. The D-bifurcation

point is given by

SD = 8

ω2

[

β + 1

2
ωH

s(ω)
]

,
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while the P-bifurcation point is

SP = 16

ω2

[

β + 1

2
ωH

s(ω)
]

.

ps(a)

SD SP S(2ω)

E[aS
2]

a a a

ps(a) ps(a)

D-bifurcation P-bifurcation

λ0<0,   λ1>0

bP < bD < 0

λ0>0 λ0>0

λ1<0

λ1<0

bP < 0 < bD 0 < bP < bD

Figure 4.2 Illustration of D-bifurcation and P-bifurcation

4.2.3 Numerical Results and Discussion

In order to validate the approximate analytical results in the previous section, Monte Carlo

simulation is applied to the original nonlinear viscoelastic system (4.2.1). The Maxwell

viscoelastic model is considered, i.e. the viscoelastic kernel function is taken as H(t) =
γ e−κt .

The wide-band excitation is taken as the Gaussian white noise with constant power

spectral density σ 2. Let

x1(t) = q(t), x2(t) = q̇(t), x3(t) =
∫ t

0
H(t−s)q(s)ds,

x4(t) =
∫ t

0
H(t−s)q3(s)ds. (4.2.22)
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Equation (4.2.1) can be converted to Itô differential equations, which are the same as

Stratonovich form,

d



































x1

x2

x3

x4



































=



































x2

−2εβx2 − ω2x1 + εω2x3 − δω2x3
1 + εδω2x4

γ x1 − κx3

γ x3
1 − κx4



































dt

+



































0

ε1/2ω2σx1

0

0



































dW(t) (4.2.23)

The explicit Euler scheme is applied to simulate the response of system (4.2.23), i.e.

xk+1
1 = xk

1 + xk
2 · h,

xk+1
2 = xk

2 +
[

−ω2xk
1 − 2εβxk

2 + εω2xk
3 + εδω2xk

4 − δω2
(

xk
1

)3
]

· h + ε1/2ω2σ ·1W k,

xk+1
3 = xk

3 +
(

γ xk
1 − κxk

3

)

· h,

xk+1
4 = xk

3 +
[

γ
(

xk
1

)3 − κxk
4

]

· h.

The amplitude of response is taken as, corresponding to equation (3.2.1),

a(t) =
[

x2
1 +

(x2

ω

)2]1/2
. (4.2.24)

In the simulation, time step is chosen as h=0.0005. The following parameters are fixed as:

ε=0.1,ω=1,β=0.05.

In order to illustrate the stationary solution and inspect the bifurcation phenomenon,

different initial conditions should be used. A simple choice is to initialize the samples with

the initial displacement and velocity
(

x1(0), x2(0)
)

uniformly distributed in a region.

Figures 4.3 to 4.6 show the numerical solutions for σ =0.5, σ =1.0, and σ =1.5, respec-

tively, with γ =0.5, κ=3, δ=0.01 fixed. The sample size is taken up to N =50000 to better

illustrate the statistic properties. The histogram of a(T) can be an approximation of the

stationary probability density ps(a) when T is large enough.
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Figure 4.3 Stationary solution for δ=0.01, σ =0.5

A simple calculation shows that, for σ =0.5,

bD = −β − 1

2
ωH

s(ω)+ 1

8
ω2σ 2 = −0.04375 < 0,

bP = −β − 1

2
ωH

s(ω)+ 1

16
ω2σ 2 = −0.059375 < 0,

λ0 = εbD = −0.004375 < 0, λ1 = −2εbD = 0.00875 > 0. (4.2.25)

Obviously, approximate analytical results show that the trivial solution is a stable stationary

solution. This is indicated in Figure 4.3, as the first- and second-order moment appear to be

zero and have almost no change when simulation time t>2000. The histogram of a(T) at

T =7000 shows that the stationary density function approaches the Dirac function.

In the case σ =1.0,

bD = −β − 1

2
ωH

s(ω)+ 1

8
ω2σ 2 = 0.05 > 0,

bP = −β − 1

2
ωH

s(ω)+ 1

16
ω2σ 2 = −0.0125 < 0,

λ0 = εbD = 0.005 > 0, λ1 = −2εbD = −0.01 < 0. (4.2.26)



4.2 stability and bifurcation under wide-band noise excitation 105

0 1000 2000 3000 4000 5000 6000
5

10

15

20

25

E
[a

(t
)]

t

0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

 H
is

to
gr

am

a(T)

¾ = 1.0,  T = 6150

Stationary probability density
of the averaged system

0 1000 2000 3000 4000 5000 6000

100

200

300

400

500

600

700

E
[a

2 (t
)]

t

Figure 4.4 Stationary solution for δ=0.01, σ =1.0

0 1000 2000 3000 4000 5000

20

30

40

50

E
[a

(t
)]

t

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

 H
is

to
gr

am

a(T)

¾ = 1.5,  T = 5750

Stationary probability density
of the averaged system

0 1000 2000 3000 4000 5000
500

1000

1500

2000

2500

3000

3500

E
[a

2 (t
)]

t

Figure 4.5 Stationary solution for δ=0.01, σ =1.5

Since bP<0<bD, the trivial solution loses its stability property, and the solution should

appear as a non-trivial solution, i.e. D-bifurcation has occurred. The trends of E
[

as

]

and
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E
[

a2
s

]

and their values for large t in Figure 4.4 show that it is true. Moreover, the histogram of

a(T) for large simulation time T =6150 has no peak, just the same as what the approximate
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analytical result predicts. This indicates that the attraction from the non-trivial stationary

solution is not strong enough, thus most sample trajectories are still be attracted by the

trivial solution. The stationary density function of the averaged system given by equation

(4.2.14) is plotted and compared with the histogram of a(T). It shows that the averaged

system has some difference with the original system, although their stability properties are

similar.

For σ = 1.5,

bD = −β − 1

2
ωH

s(ω)+ 1

8
ω2σ 2 = 0.20625 > 0,

bP = −β − 1

2
ωH

s(ω)+ 1

16
ω2σ 2 = 0.065625 > 0,

λ0 = εbD = 0.020625 > 0, λ1 = −2εbD = −0.04125 < 0. (4.2.27)

It is expected that the stability of non-trivial stationary solution should not change. This

is also verified by Figure 4.5. One peak appears in the histogram of a(T) at time T =5800,

which agrees with the approximate analytical result and shows that P-bifurcation has oc-

curred. The difference of the stationary density function ps(a) and the histogram of a(T)

again shows that the averaged system can not thoroughly describe the behaviour of the

original system.

Some joint density fuctions of the state variables x1 and x2, i.e. the displacement and

velocity of the system, are shown in Figure 4.6. They can be approximated by the joint

histograms of x1 and x2. The left column is the initial joint densities p0(x1, x2) at t =0,

which are set to be uniformly distributed in a rectangle region. The right column shows the

stationary densities ps(x1, x2), which are approximated at large simulation time T =5000.

The differences of ps(x1, x2) can be seen in the figure.

In order to simulate the Lyapunov exponents, linearization near the stationary solution

is required. For the Lyapunov exponent λ0, which is related to the trivial solution, the
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equations for simulation is
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(4.2.28)

While for the Lyapunov exponent λ1 related to the non-trivial solution, the equations for

simulation become

d



































u1

u2

u3

u4



































=



































u2

−2εβu2 − ω2u1 + εω2u3 + εδω2u4 − 3δω2(xst
1 )

2u1

γ u1 − κu3

3γ (xst
1 )

2u1 − κu4



































dt

+



































0

ε1/2ω2σu1

0

0



































dW(t), (4.2.29)

where xst
1 is the stationary solution of equation (4.2.23), i.e. the simultion of λ1 should start

after the sample solutions of equation (4.2.23) have entered stationary state. This can be

reached by running the iteration of equation (4.2.23) for a long enough period of time.

Figures 4.7 shows the simulated Lyapunov exponents for different values of σ withγ =0.5,

κ=3. The results for two cases, δ=0.01 and δ=0.1, are plotted in the same figure. The

analytical results given by equations (4.2.15) and (4.2.18) are also plotted in the figure for

comparison. It can be seen that the approximate Lyapunov exponents related to the trivial

solution λ0 agree very well with the simulation results. However, the simulation results of

λ1 through equation (4.2.29) stand totally on the opposite side of the axis, although the

simulation results in Figures 4.3 to 4.6 show that the non-trivial stationary solutions are

stable. The reason may be due to the method of simulation, i.e. the linearized equation
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Figure 4.7 Lyapunov exponents for different values of σ

(4.2.29) near the non-trivial stationary solution may not be proper in numerical calculation

of λ1. Although the simulated stationary solutions have close probability properties with

the true stationary solutions in the statistic sense, each single trajectory may have large

changes or jumps during the simulation, which makes the estimation of variation between

the staionary solution and the perturbed solution impossible.

An alternative way of simulation of λ1 is through the equation

du = ε
[

η1 − 3η2

(

ast(t)
)2
]

udt + ε1/2η3udW(t), (4.2.30)

which is the linearization of equation (4.2.5) near its non-trivial stationary solution, and

ast(t) is the non-trivial staionary solution of the original system (4.2.1) and can be obtained

by equation (4.2.24) using the stationary simulation results of (4.2.23). The simulated ast(t)

is be better than xst
1 (t)because it is the amplitude of motion and has much less variation than

every single state variable. However, equation (4.2.5) is the averaged version of equation

(4.2.1), thus it is still not sufficient to describe the stability properties of the true stationary
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Figure 4.8 Lyapunov exponents for different values of γ

solution. The simulated Lyapunov exponents λ1 through the alternative equation (4.2.30)

are plotted in Figure 4.7. It can be seen that they correctly indicate that the true non-trivial

stationary solution is stable, but the rates of decay may not be accurate.

All the simulated results of λ1 in Figure 4.7 show that different values of δ have very little

effect in the stability of the stationary solutions, provided that δ is small. This verifies the

approximate ananlytical result obtained in Section 4.2.2, where it is stated that δ has no

contribution to the Lyapunov exponents.

Figures 4.8 and 4.9 show the comparison of the Lyapunov exponents for different values of

γ and κ , which illustrate the effect of viscoelasticity on the stability of stationary solutions.

Both figures confirm that the analytical approximation through averaging agrees with the

simulation of λ0, i.e. the stability of trivial solution. It can be seen that, with the increase

of viscoelastic intensity, the trivial solutions will change from unstable to stable. That is,

viscoelasticity helps to reduce the amplitude of vibration. On the other hand, with the
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Figure 4.9 Lyapunov exponents for different values of κ

decrease of κ , or the increase of the relaxation time 1/κ , the trivial solutions also become

stable. Therefore materials with longer relaxation time help to stabilize the system to a lower

level of vibration.

Figure 4.10 shows the approximated analytical results of the Lyapunov exponents ob-

tained through stochastic averaging with the variation of γ and κ , for the case of S(2ω)=1.5,

where both the boundaries of D-bifurcation and P-bifurcation are plotted. It can be seen

that, under the excitation of wide-band noise with a certain intensity, the nonlinear vis-

coelastic system stays near the non-trivial staionary solution when γ is small. When γ

increases, the system change to stay near the trivial staionary solution. The larger the value

of γ , the wider the area where the system stays near zero.



4.3 summary 112

4.3 Summary

The stochastic stability and bifurcation of a SDOF nonlinear viscoelastic system under

the parametric excitation of wide-band noise are studied in Section 4.2. By applying the

standard stochastic averaging method and the averaging method for integro-differential

equations, the largest Lyapunov exponents associated with the trivial and non-trivial sta-

tionary solutions are obtained for the nonlinear averaged system.
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Figure 4.10 Lyapunov exponents and boundaries of bifurcations

The existence of nonlinearity induces stochastic bifurcation when the intensity of random

excitation increases, which makes it different from the linear case. Combining the largest

Lyapunov exponents and the stationary probability density, the existence of nonlinear
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viscoelasticity indicates that, when the power spectral density of wide-band excitation

increases, the system “jumps” from the trivial solution to the non-trivial stationary solution

with probability one. When the intensity of excitation continues to increase, the stationary

probability density ps(a) will change its form, from having no peak to having one peak.

The existence of viscoelasticity always help to stabilize the system to the static state in the

sense that the largest Lyapunov exponents associated with the trivial solution are smaller

and the energy of random excitation required to stimulate the stochastic bifurcation is

larger. Unlike linear viscoelastic systems, with the increase of the intensity of excitation, the

amplitude of vibration of a nonlinear viscoelastic system does not increase to infinity with

probability one, but limit to a higher level of vibration with large probability. This is an

important property in engineering applications of viscoelastic materials.

Monte Carlo simulation confirms the bifurcation phenomena. The simulated results

show that the standard stochastic averaging method provides a good approximation for

the nonlinear viscoelastic system when the nonlinear effect is small. The discrepancy of

the largest Lyapunov exponents between simulation and analytical approximation appears

after D-bifurcation occurs, this means an improvement of simulation methods should be

considered.



5C H A P T E R

Conclusions and Future Research

5.1 Conclusions

The objective of this thesis is to study the stability properties of viscoelastic systems un-

der stochastic excitations. The equations of motion of viscoelastic bodies appear to be

integro-partial differential equations due to the time history dependence of viscoelastic

constitutive relation. Therefore, it is impossible to solve the equations analytically in almost

all the cases. Under certain boundary conditions, the general equations of motions may

reduce to integro-differential equations, which are easier to be investigated, analytically or

numerically. The Lyapunov exponents, which characterize the almost-sure stability, and

the moment Lyapunov exponents, which describe the moment stability, may be obtained

through different approximate methods. Since the equations of motion of a viscoelastic

body includes the time history, they are non-autonomous. Hence, it is required to study the

moment stability of such systems so that the complete behaviour of the responses can be

determined.

Monte Carlo simulation is an important numerical approach to study the properties of

stochastic dynamical systems. It may also be a referential criterion to determine how ac-

curate the approximate analytical solution is. The simulated moment Lyapunov exponents

may be evaluated through the sample average of norms. However, when a system is unsta-

ble, its solution may grow exponentially with large variance. This makes the estimation of

114
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moments through sample average norms inaccurate. Therefore a good algorithm for the

simulation of moment Lyapunov exponents is necessary.

An improved algorithm for simulating the moment Lyapunov exponents of linear ho-

mogenuous systems is presented in Chapter 2. The importance of linear homogenuous

systems lies in the fact that studying the stability of a general stochastic dynamical system

usually leads to the stability problem of a homogeneous system linearized near the station-

ary solution. Considering the asymptotic normality of the logarithm of norm, which is

satisfied by most systems in applications, the estimation of moments is converted to the

estimation of mean and variance of the logarithm of norm, which uses the results of sums of

independent random variables by Komlós-Major-Tusnády. Numerical examples show that

this approach works well for different cases in engineering applications.

The stability of a single degree-of-freedom linear viscoelastic system under the paramet-

ric excitation of wide-band noise and narrow-band noise is studied in Chapter 3, where

the bounded noise is the model of narrow-band noise, and the Gaussian white noise and

Ornstein-Uhlenbeck process are the models of wide-band noise in Monte Carlo simula-

tion. The method of averaging, both first-order and second-order, is applied to simplify

the integro-differential equations. Then the moment Lyapunov exponents are determined

directly from the averaged equations for the cases of wide-band noise excitation, or are de-

termined numerically by Fourier series expansion from the eigenvalue problems governing

the moment Lyapunov exponents in the bounded noise case. The stability of the SDOF

linear viscoelastic system is determined in the sense of the moment Lyapunov exponents.

Numerical simulations using the algorithm presented in Chapter 2 show that the approx-

imated analytical results from the averaged system agree well with the simulation results.

This indicates that the method of stochastic averaging is an effective tool in analyzing the

stability properties of viscoelastic systems.

The approximate analytical results and the Monte Carlo simulation results of the moment

Lyapunov exponents in Chapter 3 show that, in order to stabilize the SDOF linear viscoelastic

system, the intensity of viscoelasticity and the material relaxation time have to be increased,

while the noise intensity has to be decreased.
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Since nonlinearity exists everywhere, Chapter 4 investigates the stability of a SDOF

viscoelastic system with cubic nonlinearity under the parametric excitation of wide-band

noise. Stochastic averaging method is applied again to simplify the system. The existence

of nonlinear viscoelasticity makes the nonlinear analysis possible because the averaged

equation is nonlinear. The Lyapunov exponents of the averaged system are solved using

the ergodic property of the stationary solutions. Monte Carlo simulation is also applied

to obtain the Lyapunov exponents numerically. The results indicate that, when the trivial

stationary solution loses its stability property under the change of some system parameters,

the response does not always increase infinitely, but stays as the non-trivial stationary

solution. This D-bifurcation phenomenon makes the behaviour of nonlinear viscoelastic

systems different for that of linear viscoelastic systems. The nonlinear viscoelastic system

may exhibit P-bifurcation under some conditions. However, P-bifurcation does not mean

the change of stability of solutions, but the formal change of stationary probability density.

In the case of weak nonlinearity, the averaging method provides a good approximation to

the original SDOF nonlinear viscoelastic system.

From the results in this thesis, it can be concluded that viscoelasticity always help to

stabilize the system, in the sense that the Lyapunov exponents and moment Lyapunov

exponents decrease when the effect of viscoelasticity increases.

5.2 Future Research

It can be seen that the method of stochastic averaging plays an important role in the

research of this thesis. As introduced in Chapter 1, the solution of the averaged system only

converges weakly to the solution of the original system in a finite time scale. However, the

evaluation of Lyapunov exponents and moment Lyapunov exponents requires the properties

of the solutions at infinite time according to their definitions. Therfore, theoretically, the

Lyapunov exponents and moment Lyapunov exponents obtained from the averaged systems

are still not sufficient to totally describe the properties of the original systems. Although

there is such limitation, as an effective approximation, the averaging method has widely

used in physical sciences and engineering since it was developed, and it has provided many
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important results in applications. If the averaging principle can be strengthened in the

convergence properties or in wider time scale, it would be of great help. However, this seems

to be a challenge work, and has to wait for the advances in mathematics.

The results in Chapter 4 advise that modified averaging methods need to be developed

for the cases with strong nonlinearity. Even in the cases of weak nonlinearity, the standard

averaging method needs to be improved if considering the difference of staionary density

functions between the averaging approximation and the simulation. The simulation results

of the Lyapunov exponents related to the non-trivial solution also require improvement in

algorithm. It seems that simulation through the linearized equations of nonlinear systems

is not an appropriate approach, especially for high-dimensional systems. One possible

approach may be through the non-trivial solutions themselves, i.e. the Lyapunov exponents

are found from the stationary time series [114], [50].

In the practical analysis of structural dynamics, a large structure is usually discretized

by finite element method, which leads to a multiple degrees-of-freedom (MDOF) system.

Therefore, studying the stability of MDOF viscoelastic systems under stochastic perturba-

tions is of great importance. Some research have been found for coupled oscillators, i.e. the

cases of two degrees-of-freedom elastic systems, where the polar coordinate transformation

similar to the SDOF case was applied [83], [84], [85]. However, for systems with degrees-

of-freedom higher than 2, even in the elastic cases, the analysis is not easy to proceed when

considering the random perturbations.

The theory of stochastic dynamical systems are far from complete. There is a long way to

go before a satisfactorily complete understanding can be obtained. However, the splendid

world encourages everyone step deep into the research of this essentially random nature.



Bibliography

1. S.T. Ariaratnam. Stochastic stability of linear viscoelastic systems. Probablistic

Engineering Mechanics, 8, pp. 153–155, 1993.

2. S.T. Ariaratnam. Stochastic stability of viscoelastic systems under bounded noise

excitation. In A. Naess and S. Krenk, editors, IUTAM Symposium on Advances in

Nonlinear Stochastic Mechanics, pp. 11–18. Kluwer Academic Publishers, 1996.

3. S.T. Ariaratnam. Stochastic bifurcation in hereditary systems. In Proceedings of the

8th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Relia-

bility, University of Notre Dame, Notre Dame, Indiana, 2000. CD-ROM Proceedings

(Kareem, Haldar, Spencer, and Johnson, eds.), paper PMC2000-163, 6 pages.

4. L. Arnold, M.M. Doyle, and N.S. Namachchivaya. Small noise expansion of

moment Lyapunov exponents for two-dimensional systems. Dynamics and Stability of

Systems, 12(3), pp. 187–211, 1997.

5. L.Arnold,W. Kliemann, and E. Oeljeklaus. Lyapunov exponents of linear stochas-

tic systems. In L. Arnold and V. Wihstutz, editors, Lecture Notes in Mathematics,

vol. 1186, pp. 85–125, Berlin, 1986. Springer-Verlag. Proceedings of a Workshop, Bre-

men, Germany, 1984.

6. L.Arnold, N.S. Namachchivaya, and K. Schenk-Hoppé. Toward an understanding

of the stochastic hopf bifurcation: a case study. International Journal of Bifurcation

and Chaos, 6(11), pp. 1947–1975, 1996.

7. L. Arnold, E. Oeljeklaus, and E. Pardoux. Almost sure and moment stability for

linear Itô equations. In L.Arnold andV.Wihstutz, editors, Lecture Notes in Mathematics,

vol. 1186, pp. 129–159, Berlin, 1986. Springer-Verlag. Proceedings of a Workshop,

Bremen, Germany, 1984.

118



bibliography 119

8. L. Arnold. Stochastic Differential Equations : Theory and Applications. John Wiley &

Sons, Inc., New York, 1974.

9. L. Arnold. A formula connecting sample and moment stability of linear stochastic

systems. SIAM Journal of Applied Mathematics, 44(4), pp. 793–802, 1984.

10. L. Arnold. Random Dynamical Systems. Springer-Verlag, Berlin, 1998.

11. V.I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Addisin-Wesley

Publishing Company, Inc., Redwood City, California, 1968.

12. V.I. Arnold. Ordinary Differential Equations. The MIT Press, Cambridge, Mas-

sachusetts, 1973. Translated from the Russian by R.A. Silverman.

13. O.E. Barndorff-Nielsen and D.R. Cox. Asymptotic Techniques for Use in Statistics.

Chapman and Hall, London, 1989.

14. P.H. Baxendale and D.W. Stroock. Large deviations and stochastic flows of diffeo-

morphisms. Probability Theory and Related Fields, 80, pp. 169–215, 1988.

15. P.H. Baxendale. Asymptotic behavior of stochastic flows of diffeomorphisms. In

K. Itô and T. Hida, editors, Lecture Notes in Mathematics, vol. 1203, pp. 1–19, Berlin,

1986. Springer-Verlag. Proceedings of the International Conference Held in Nagoya,

1985.

16. P.H. Baxendale. Stability along trajectories at a stochastic bifurcation point. In

H. Crauel and M. Gundlach, editors, Stochastic Dynamics, pp. 1–25, New York, 1999.

Springer-Verlag.

17. P.H. Baxendale. Stochastic averaging and asymptotic behavior of the stochastic

Duffing-van der Pol equation. Stochastic Processes and Their Applications, 113, pp. 235–

272, 2004.

18. G.D. Birkhoff. Dynamical Systems. American Mathematical Society, Providence,

Rhode Island, 1966.

19. F. Bloom. Ill-Posed Problems for Integrodifferential Equations in Mechanics and Elec-

tromagnetic Theory. Society for Industrial and Applied Mathematics, Philadelphia,

1981.



bibliography 120

20. N. Bogoliubov and A. Mitropolskii. Asymptotic Methods in the Theory of Non-

linear Oscillations. Gordon and Breach, New York, 1961.

21. V.V. Bolotin. Nonconservative Problems of the Theory of Elastic Stability. Pergamon

Press, Oxford, 1963. Translated from the Russian.

22. V.V. Bolotin. The Dynamic Stability of Elastic Systems. Holden-Day, Inc., San Fran-

cisco, 1964. Translated from the Russian.

23. P. Bougerol and J. Lacroix. Products of Random Matrices with Applications to

Schrödinger Operators. Birkhäuser, Boston, 1985.

24. P. Boxler. Lyapunov exponents indicate stability and detect stochastic bifurcations.

In P. Krée and W. Wedig, editors, Probabilistic Methods in Applied Physics, pp. 97–119,

Berlin, 1995. Springer-Verlag.

25. R.M. Christensen. Theory of Viscoelasticity: An Introduction. Academic Press, New

York, second edition, 1982.

26. H. Cramér. Mathematical Methods of Statistics. Princeton University Press, Princeton,

1946.

27. G.J. Creus. Viscoelasticity : Basic Theory and Applications to Concrete Structures.

Springer-Verlag, Berlin, 1986.

28. C.M. Dafermos and J.A. Nohel. Energy methods for nonlinear hyperbolic volterra

integrodifferential equations. Communication in Partial Differential Equations, 4(3),

pp. 219–278, 1979.

29. C.M. Dafermos and J.A. Nohel. A nonlinear hyperbolic volterra equation in vis-

coelasticity. In D.N. Clark, G. Pecelli, and R. Sacksteder, editors, Contributions to

Analysis and Geometry, pp. 87–116. The John Hopkins University Press, 1981. Supple-

ment to the American Journal of Mathematics.

30. L. Devroye and L. Györfi. Nonparametric Density Estimation : The L1 View. John

Wiley & Sons, Inc., New York, 1984.

31. W. Feller. An Introduction to Probability Theory and Its Applications, vol. 2. John

Wiley & Sons, Inc., New York, second edition, 1965.



bibliography 121

32. J.D. Ferry. Viscoelastic Properties of Polymers. John Wiley & Sons, Inc., New York,

third edition, 1980.

33. W. Flugge. Viscoelasticity. Blaisdell Publishing Company, 1967.

34. M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems.

Springer-Verlag, New York, 1984.

35. M.I. Freidlin and A.D. Wentzell. Random Perturbations of Hamiltonian Systems,

vol. 109 of Memoirs of the American Mathematical Society, No. 523. American Mathe-

matical Society, Providence, Rhode Island, 1994.

36. A. Friedman. Stochastic Differential Equations and Applications, vol. 1. Academic

Press, New York, 1975.

37. Y.C. Fung. A First Course in Continuum Mechanics. Prentice Hall, Inc., second edition,

1977.

38. H. Furstenberg and H. Kesten. Products of random matrices. The Annals of

Mathematical Statistics, 31(2), pp. 457–469, 1960.

39. H. Furstenberg and H. Kesten. Noncommuting random products. Transactions of

the American Mathematical Society, 108(3), pp. 377–428, 1963.

40. C.W. Gardiner. Handbook of Stochastic Methods : for Physics, Chemistry, and the

Natural Sciences. Springer-Verlag, Berlin, third edition, 2004.

41. I.I. Gihman and A.V. Skorohod. Stochastic Differential Equations. Ergebnisse der

Mathematik und Ihrer Grenzgebiete, Band 72. Springer-Verlag, Berlin, 1972. Translated

by Kenneth Wickwire.

42. B.V. Gnedenko and A.N. Kolmogorov. Limit Distributions for Sums of Independent

Random Variables. Addison-Wesley Publishing Company, Inc., 1954. Translated from

the Russian.

43. A.E. Green and R.S. Rivlin. The mechanics of nonlinear materials with memory.

part i. Archive for Rational Mechanics and Analysis, 1(1), 1957.

44. A. Grorud and D. Talay. Approximation of Lyapunov exponents of nonlinear

stochastic differential equations. SIAM Journal on Applied Mathematics, 56(2), pp.627–

650, 1996.



bibliography 122

45. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and

Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

46. I.H. Hall. Viscoelasticity of textile fibers at finite strains. Journal of Polymer Science

Part A-2 : Polymer Physics, 5(6), pp. 1119–1144, 1967.

47. A.J. Heunis and M.A. Kouritzin. Strong convergence in the stochastic averaging

principle. Journal of Mathematical Analysis and Applications, 187, pp. 134–155, 1994.

48. M. Hijawi, R.A. Ibrahim, and N. Moshchuk. Nonlinear random response of ocean

structures using first- and second-order stochastic averaging. Nonlinear Dynamics,

12(2), pp. 155–197, 1997.

49. M.W.Hirsch, S.Smale, and R.L.Devaney. Differential Equations, Dynamical Systems

and An Introduction to Chaos. Elsevier Academic Press, San Diego, California, second

edition, 2004.

50. J. Holzfuss and U. Parlitz. Lyapunov exponents from time series. In L. Arnold,

H. Crauel, and J.-P. Eckmann, editors, Lecture Notes in Mathematics, vol. 1486, pp. 263–

270, Berlin, 1991. Springer-Verlag. Proceedings of a Conference, Oberwolfach, Ger-

many, 1990.

51. W.J. Hrusa. Global existence and asymptotic stability for a semilinear hyperbolic

volterra equation with large initial data. SIAM Journal on Mathematical Analysis,

16(1), pp. 110–134, 1985.

52. N. Jacobson. Lie Algebras. John Wiley & Sons, Inc., New York, 1962.

53. T. Kawata. Fourier Analysis in Probability Theory. Academic Press, New York, 1972.

54. H.K. Khalil. Nonlinear Systems. Prentice Hall, Inc., Upper Saddle River, N.J., third

edition, 2002.

55. R.Z. Khasminskii and N. Moshchuk. Moment Lyapunov exponent and stability

index for linear conservative system with small random perturbation. SIAM Journal

of Applied Mathematics, 58(1), pp. 245–256, 1998.

56. R.Z. Khasminskii. A limit theorem for the solutios of differential equations with

random right-hand sides. Theory of Probability and Its Applications, 11(3), pp. 390–

406, 1966. English translation.



bibliography 123

57. R.Z. Khasminskii. On stochastic processes defined by differential equations with a

small parameter. Theory of Probability and Its Applications, 11(2), pp. 211–228, 1966.

English translation.

58. R.Z. Khasminskii. Stochastic Stability of Differential Equations. Kluwer Academic

Publishers, Norwell, MA, 1980. English translation.

59. P.E. Kloeden, E. Platen, and H. Schurz. Numerical Solution of SDE Through Com-

puter Experiments. Springer-Verlag, Berlin, 1994.

60. P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Springer-Verlag, Berlin, 1992.

61. J.E. Kolassa. Series Approximation Methods in Statistics. Springer Science+Business

Media, Inc., New York, third edition, 2006.

62. J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of in-

dependent rv’s and the sample df. i. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32,

pp. 111–131, 1975.

63. J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of inde-

pendent rv’s and the sample df. ii. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 34,

pp. 33–58, 1976.

64. M.A. Kouritzin and A.J. Heunis. Rates of convergence in a central limit theorem for

stochastic processes defined by differential equations with a small parameter. Journal

of Multivariate Analysis, 43, pp. 58–109, 1992.

65. M.A. Kouritzin and A.J. Heunis. A law of the iterated logarithm for stochastic

processes defined by differential equations with a small parameter. The Annals of

Probability, 22(2), pp. 659–679, 1994.

66. N. Krylov and N. Bogoliubov. Introduction to Nonlinear Mechanics. Princeton

University Press, Princeton, NJ, 1943.

67. H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Univer-

sity Press, Cambridge, 1990.

68. H.J. Kushner. Stochastic Stability and Control. Academic Press, New York, 1967.



bibliography 124

69. G.S. Larionov. Investigation of the vibrations of relaxing systems by the averaging

method. Mechanics of Composite Materials, 5(5), pp. 714–720, 1969. English translation

from Mekhanika Polimerov, No. 5, pp. 806¨C813, September¨COctober, 1969.

70. H. Leaderman, F. McCrackin, and O. Nakada. Large longitudinal retarded elastic

deformation of rubberlike network polymers. ii. application of a general formulation

of nonlinear response. Journal of Rheology, 7(1), pp. 111–123, 1963.

71. H.Leaderman. Large longitudinal retarded elastic deformation of rubberlike network

polymers. Journal of Rheology, 6(1), pp. 361–382, 1962.

72. H. Leipholz. Stability of Elastic Systems. Sijthoff & Noordhoff, Alphen aan den Rijn,

The Netherlands, 1980.

73. Y.K. Lin and G.Q. Cai. Probabilistic Structural Dynamics : Advanced Theory and

Applications. McGraw-Hill, Inc., New York, 1995.

74. Y.K.Lin and G.Q.Cai. Some thoughts on averaging techniques in stochastic dynamics.

Probabilistic Engineering Mechanics, 15(1), pp. 7–14, 2000.

75. Y.K. Lin. Probabilistic Theory of Structural Dynamics. McGraw-Hill, Inc., New York,

1967.

76. P. Lochak and C. Meunier. Multiphase Averaging for Classical Systems : with Appli-

cations to Adiabatic Theorems. Springer-Verlag, New York, 1988.

77. E. Lukacs. Characteristic Functions. Charles Griffin & Company Ltd., London, second

edition, 1970.

78. A.M. Lyapunov. Problème générale de la stabilité du mouvement. Communications

de la Société Mathématique de Kharkov, 2, pp. 265–272, 1892. Reprinted in Annals of

Mathematical Studies, vol. 17, Princeton University Press, Princeton, 1947.

79. A.M. Lyapunov. Stability of Motion. Mathematics in Science and Engineering, vol. 30.

Academic Press, New York, 1966.

80. G.N. Milstein. Numerical Integration of Stochastic Differential Equations. Kluwer

Academic Publishers, Dordrecht, 1995.

81. S.A. Molchanov. The structure of eigenfunctions of one-dimensional unordered

structures. Mathematics of the USSR. Izvestija, 12, pp. 69–101, 1978.



bibliography 125

82. J.A. Murdock. Perturbations. Theory and Methods. Society for Industrial and Applied

Mathematics, Philadelphia, 1999.

83. N.S. Namachchivaya, H.J. Van Roessel, and M.M. Doyle. Moment Lyapunov

exponent for two coupled oscillators driven by real noise. SIAM Journal of Applied

Mathematics, 56(5), pp. 1400–1423, 1996.

84. N.S. Namachchivaya and H.J. Van Roessel. Moment Lyapunov exponent and

stochastic stability of two coupled oscillators driven by real noise. ASME Journal

of Applied Mechanics, 68(6), pp. 903–914, 2001.

85. N.S. Namachchivaya and H.J. Van Roessel. Stochastic stability of coupled oscilla-

tors in resonance : A perturbation approach. ASME Journal of Applied Mechanics, 71,

pp. 759–768, 2004.

86. N.S. Namachchivaya and L. Vedula. Stabilization of linear systems by noise :

application to flow induced oscillations. Dynamics and Stability of Systems, 15(2),

pp. 185–208, 2000.

87. N.S. Namachchivaya. Stochastic bifurcation. Applied Mathematics and Computation,

30, pp. 37–95, 1990.

88. P.J. Olver. Applications of Lie Groups to Differential Equations. Springer-Verlag, New

York, second edition, 1993.

89. Y.I. Oseledec. A multiplicative ergodic theorem. Lyapunov characteristic number for

dynamical systems. Transactions of the Moscow Mathematical Society, 19, pp. 197–231,

1968. English translation.

90. V.D. Potapov. On almost sure stability of a viscoelastic column under random loading.

Journal of Sound and Vibration, 173(3), pp. 301–308, 1994.

91. V.D. Potapov. Numerical method for investigation of stability of stochastic integro-

differential equations. Applied Numerical Mathematics, 24, pp. 191–201, 1997.

92. M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, Boston,

2004.

93. J.B. Roberts and J.F. Donne. Literature review : Nonlinear random vibration in

mechanical systems. The Shock and Vibration Digest, 20(6), pp. 16–25, 1988.



bibliography 126

94. J.B. Roberts and P.D. Spanos. Stochastic averaging : An approximate method of

solving random vibration problems. International Journal of Non-Linear Mechanics,

21(2), pp. 111–134, 1986.

95. J.B. Roberts. Techniques for nonlinear random vibration problems. The Shock and

Vibration Digest, 16(9), pp. 3–14, 1984.

96. R. Roscoe. Mechanical models for the representation of visco-elastic properties.

British Journal of Applied Physics, 1, pp. 171–173, 1950.

97. J.A. Sanders and F. Verhulst. Averaging Methods in Nonlinear Dynamical Systems.

Springer-Verlag, New York, 1985.

98. K.R. Schenk-Hoppé. Bifurcation scenarios of the noisy duffing-van der Pol oscillator.

Nonlinear Dynamics, 11, pp. 255–274, 1996.

99. K.R. Schenk-Hoppé. Stochastic Hopf bifurcation: an example. International Journal

of Nonlinear Mechanics, 31(5), pp. 685–692, 1996.

100. R.J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons,

New York, 1980.

101. A.N. Shiryayev. Probability. Springer-Verlag, New York, 1984.

102. A.V. Skorokhod, F.C. Hoppensteadt, and H. Salehi. Random Perturbation Methods

with Applications in Science and Engineering. Springer-Verlag, New York, 2002.

103. A.V. Skorokhod. Asymptotic Methods in the Theory of Stochastic Differential Equa-

tions. American Mathematical Society, Providence, Rhode Island, 1989.

104. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI : The

Complete Reference. The MIT Press, Cambridge, Massachusetts, 1996.

105. K. Sobczyk. Stochastic Differential Equations : with Applications to Physics and Engi-

neering. Kluwer Academic Publishers, Dordrecht, 1991.

106. R.L. Stratonovich. Topics in the Theory of Random Noise, vol. 1. Gordon and Breach

Science Publishers, Inc., New York, 1963.

107. R.L. Stratonovich. Topics in the Theory of Random Noise, vol. 2. Gordon and Breach

Science Publishers, Inc., New York, 1967.



bibliography 127

108. D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving

stochastic differential equations. Stochastic Analysis and Applications, 8(4), pp. 483–

509, 1990.

109. D. Talay. Approximation of upper Lyapunov exponents of bilinear stochastic differ-

ential systems. SIAM Journal on Numerical Analysis, 28(4), pp. 1141–1164, 1991.

110. D.Talay. Simulation of stochastic differential systems. In P.Krée and W.Wedig, editors,

Probabilistic Methods in Applied Physics, pp. 54–96, Berlin, 1995. Springer-Verlag.

111. W. Wedig. Lyapunov exponent of stochastic systems and related bifurcation prob-

lems. In S.T. Ariaratnam, G.I. Schuëller, and I. Elishakoff, editors, Stochastic Structural

Dynamics – Progress in Theory and Applications, pp. 315–327, London, 1988. Elsevier

Applied Science.

112. R.E. White. Computational Mathematics : Models, Methods and Analysis with MAT-

LAB and MPI. CHAPMAN & HALL/CRC, Boca Raton, Florida, 2004.

113. S.Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-

Verlag, 1990.

114. A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano. Determining Lyapunov expo-

nents from a time series. Physica, 16D, pp. 285–317, 1985.

115. E. Wong. Stochastic Processes in Information and Dynamical Systems. McGraw-Hill,

New York, 1971.

116. W.C. Xie. Moment Lyapunov exponents of a two-dimensional system under real noise

excitation. Journal of Sound and Vibration, 239(1), pp. 139–155, 2001.

117. W.C. Xie. Moment Lyapunov exponents of a two-dimensional system under bounded

noise parametric excitation. Journal of Sound and Vibration, 263(3), pp. 593–616, 616

2003.

118. W.C. Xie. Monte Carlo simulation of moment Lyapunov exponents. ASME Journal of

Applied Mechanics, 72(2), pp. 269–275, 2005.

119. W.C. Xie. Dynamic Stability of Structures. Cambridge University Press, 2006.

120. E. Zeidler. Nonlinear Functional Analysis and Its Application, vol. 1 : Fixed-Point

Theorems. Springer-Verlag, New York, 1985.



bibliography 128

121. H. Ziegler. Principles of Structural Stability. Blaisdell Publishing Company, Waltham,

MA, 1968.


