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Abstract

The main goal of this Masters’ thesis is to explore isomorphism types of quater-

nion algebras using the theory of quadratic forms, number theory and algebra.

I would also present ways to characterize quaternion algebras, and talk about

how quaternion algebras are important in Brauer groups by describing a theo-

rem proved by Merkurjev in 1981.
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Chapter 1

Quadratic Forms

(From Chapter I of [8])

1.1 Quadratic Forms and Quadratic Spaces

An n-ary quadratic form (i.e. a 2-form) over a field F is a polynomial f in n

variables over F that is homogeneous of degree 2. (Please note that throughout

this article, the characteristic of F is assumed not to be 2.) It has the general

form

f(X1, · · · , Xn) =
n∑

i=1

n∑
j=1

aijXiXj

where aij ∈ F , for all i, j. Since F is a field, XiXj = XjXi for any i, j, we can

make the coefficients symmetric by rewriting f as

f(X1, · · · , Xn) =
n∑

i=1

n∑
j=1

1
2 (aij + aji)XiXj

Now f determines uniquely a symmetric matrix Mf where (Mf )ij = 1
2 (aij + aji).
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For convenience we write f(X1, · · · , Xn) as f(X) and view X as a column

vector, so then in terms of matrix notation, f(X) satisfies

f(X) = (X1, · · · , Xn)Mf


X1

...

Xn

 = XtMfX

Let f and g be quadratic forms, we say that f is equivalent to g (or f ∼= g) if

there exists an invertible matrix C ∈ GLn(F ) such that f(X) = g(CX). Notice

that

f(X) = g(CX) = (CX)tMg(CX) = Xt(CtMgC)X

this implies that Mf = CtMgC. Thus, equivalence of forms can be regarded

as congruence of the associated symmetric matrices and it is an equivalence

relation. We can define the quadratic map Qf defined by f to be Qf : Fn → F

such that Qf (x) = xtMfx, for any x ∈ Fn viewed as a column vector. In

relation with the equivalence of forms, f ∼= g amounts to the existence of a linear

automorphism C of Fn such that Qf (x) = Qg(Cx) for every column tuple x.

It’s easy to that the quadratic map Qf determines uniquely the quadratic form

f . We also have the property that Qf (ax) = a2Qf (x) for any a ∈ F .

In addition to the quadratic map, we can ”polarize” Qf by defining

Bf (x, y) = [Qf (x + y)−Qf (x)−Qf (y)]/2

then Bf : Fn × Fn → F is a symmetric bilinear pairing. Here, symmetry is
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clear, and bilinearity follows easily from the observation that

Bf (x, y) = [(x + y)tMf (x + y)− xtMfx− ytMfy]/2

= [xtMfy + ytMfx]/2

= xtMfy

We can get back Qf from Bf by ”depolarization”, that is

Qf (x) = Bf (x, x)

Now we are in the position to define quadratic spaces.

Let V be a finite dimensional F -vector space, and B : V × V → F be a

symmetric bilinear pairing on V . We call the pair (V,B) a quadratic space, and

associate it with a quadratic map denoted by qB or q when the context is clear.

It is defined by q(x) = B(x, x). As described above, we have

q(ax) = B(ax, ax) = a2B(x, x) = a2q(x)

and

q(x + y)− q(x)− q(y) = B(x + y, x + y)−B(x, x)−B(y, y)

= B(x, y) + B(y, x)

= 2B(x, y)

Since q and B determines each other, we can use (V, q) to represent (V,B).

While (V,B) determines a unique quadratic map, it also determines a unique

equivalence class of quadratic forms in the following way. If we choose a basis

e1, e2, · · · , en for V , then the quadratic space (V,B) gives rise to a quadratic
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form over F

f(X1, · · · , Xn) =
n∑

i=1

n∑
j=1

B(ei, ej)XiXj

with the associated matrix n by n Mf such that (Mf )ij = B(ei, ej). Note that

if we identify V with Fn using the given coordination, then qB corresponds

precisely to the quadratic map qf associated with the form f .

If we choose another basis e′1, e
′
2, · · · , e′n for V , and write e′i =

∑n
k=1 ckiek for

some cki ∈ F and for each i, we have

(M ′
f )ij = B(

n∑
k=1

ckiek,

n∑
l=1

cljel)

=
n∑

k=1

n∑
l=1

ckiB(ek, el)clj

= (CtMfC)ij

where C is the matrix with (C)kl = ckl. Therefore we have that M ′
f and Mf are

congruent, so that the forms f ′ and f are equivalent. This unique equivalence

class of forms determined by (V,B) is denoted by (fB)

If (V,B) and (V ′, B′) are quadratic spaces, we say that they are isometric

(∼=) if there exists a linear isomorphism τ : V → V ′ such that

B′(τ(x), τ(y)) = B(x, y) for all x, y ∈ V

Notice that if f is the quadratic form corresponding to a basis e1, e2, · · · , en

for V , and f ′ is a quadratic form corresponding to the basis τ(e1), τ(e2), · · · , τ(en)

4



for V ′, then

(Mf )ij = B(ei, ej)

= B′(τ(ei), τ(ej))

= (M ′
f )ij

From this, it is clear that (V,B) ∼= (V ′, B′) ⇔ (fB) = (f ′B).

Here is a summary of the above results.

• An n-ary quadratic form f determines uniquely the following,

1. a symmetric n by n matrix Mf

2. a quadratic map Qf : Fn → F defined by Qf (x) = xtMfx

3. a symmetric bilinear pairing Bf : Fn × Fn → F ,

Bf (x, y) = [Qf (x + y)−Qf (x)−Qf (y)]/2

• We can ”depolarize” Bf to get back Qf by Qf (x) = Bf (x, x).

• If B : V × V → F is a symmetric bilinear pairing on a finite dimensional

F -vector space V , the quadratic space (V,B) determines uniquely the

following,

1. a quadratic map qB (or q) such that qB(x) = B(x, x). Since qB and

B determines each other, we can write (V,B) as (V, q).

2. an equivalence class of quadratic forms. Equivalent quadratic forms

correspond to equivalent bases of V .

• There is a one-to-one correspondence between the equivalence classes of

n-ary quadratic forms and the isometry classes of n-dimensional quadratic

spaces, so we can freely identify them.
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Definition 1.1.1 Let (V,B) be a quadratic space, and M a symmetric matrix

associated to one of the quadratic forms in the equivalence class (fB). We say

(V,B) is a regular (or non-singular) quadratic space if one of the following

equivalent conditions holds

1. M is a non-singular matrix.

2. x 7→ B( , x) defines an isomorphism ϕ : V → V ∗, where V ∗ is the vector

space dual of V .

3. If x ∈ V such that B(x, y) = 0 for all y ∈ V , then x = 0.

Even though the zero quadratic space (in which B ≡ 0) does not satisfy condition

(1), we call it a regular quadratic space too.

Definition 1.1.2 Let (V,B) be a quadratic space, and S be a subspace of V .

Then (S, B|S×S) is also a quadratic space. The the orthogonal complement of

S is defined by

S⊥ = {x ∈ V | B(x, S) = 0}

The orthogonal complement of V itself is called the radical of (V,B) and it’s

denoted by V ⊥ = rad V . Observe that (V,B) is regular iff rad V = 0. However,

if (V,B) is regular, the subspace S of V need not be regular. For instance,

consider (R2, B) where B((a, b), (c, d)) = bc + ad and let S = span{(0, 1)},

B|S×S ≡ 0.

Analogous to vector spaces, quadratic spaces satisfy the following dimension

theorem.

Proposition 1.1.3 Let (V,B) be a regular quadratic space, and S be a sub-

space of V . Then,

1. dim S + dim S⊥ = dim V
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2. (S⊥)⊥ = S

Proof: Consider the isomorphism ϕ : V → V ∗ defined in Definition 1.1.1.

Then S⊥ is the subspace of V annihilated by the functionals in ϕ(S). By the

usual duality theory in linear algebra, we have

dim S⊥ = dim V ∗ − dim ϕ(S)

= dim V − dim S

This proves (1). And by applying (1) twice,

dim (S⊥)⊥ = dim V − (dim V − dim S) = dim S

and since (S⊥)⊥ ⊇ S, result (2) follows. �

1.2 Diagonalization of Quadratic Forms

Definition 1.2.1 Let f be a (n-ary) quadratic form over F , and d ∈ Ḟ , where

Ḟ is the multiplicative group of non-zero elements in F .

We say f represents d if there exist x1, x2, · · · , xn ∈ F such that f(x1, · · · , xn) =

d. The set of elements in Ḟ represented by f is denoted by D(f) or sometimes

DF (f). This set clearly depends only on the equivalence class of f . And if

(V,B) is any quadratic space corresponding to the equivalence class of f , then

D(f) (or in this case D(V )) is exactly the set of values represented by qB.

Group structure of D(f)

Since f is a quadratic form, if a, d ∈ Ḟ , then clearly we have d ∈ D(f) iff

a2d ∈ D(f). Thus D(f) consists of a union of cosets of Ḟ modulo Ḟ 2. We call

Ḟ /Ḟ 2 the group of square classes of F .
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The set D(f) is always closed under inverses, since d ∈ D(f) iff d−1 = (d−1)2d ∈

D(f). However, f might not represent 1, so D(f) might not contain the identity

and is thus not a group. Even if it contains 1, it may not be closed under

multiplication. Consider the form f = X2 +Y 2 +Z2 over Q, then D(f) contains

1, 2, 2−1, 14. However 2−1 · 14 = 7, and 7 is not a sum of three squares in Q.

Note that if D(f) happens to be closed under multiplication, then for any d ∈

D(f), D(f) will contain d · d−1 = 1, which makes it a subgroup of Ḟ . In this

case we call f a group form over F .

Definition 1.2.2 If (V1, B1), (V2, B2) are quadratic spaces, the orthogonal sum

V1⊥V2 = (V,B) is defined with V = V1 ⊕ V2, and B : V × V− > F is given by

B((x1, x2), (y1, y2)) = B1(x1, y1) + B2(x2, y2)

for any x1, y1 ∈ V1 and x2, y2 ∈ V2.

Clearly, this B is symmetric and bilinear, which makes (V,B) a quadratic

space. If we identify V1 with the set {(x, 0) : x ∈ V1}, and V2 with the set

{(0, x) : x ∈ V2}, we have B(V1, V2) = 0. Also B|V1×V1 = B1 since B2(0, 0) = 0,

similarly, B|V2×V2 = B2. This justifies why we call it an orthogonal sum. As

for the associated quadratic form, for any x1 ∈ V1 and x2 ∈ V2

qB(x1, x2) = B((x1, x2), (x1, x2))

= B1(x1, x1) + B2(x2, x2)

= qB1(x1) + qB2(x2)

Proposition 1.2.3 The quadratic space (V,B) = V1⊥V2 is regular if and only

if (V1, B1) and (V2, B2) are regular.
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Proof: Say β1 = {e1, · · · , en} and β2 = {en+1, · · · , en+m} are bases of V1 and V2

respectively. Let M be the matrix associated with (V,B), then Mij = B(ei, ej).

We already saw that B(V1, V2) = 0, so if the matrices corresponding to B1 and

B2 are M1 and M2 respectively, it’s clear that M has the form,

M1 O

O M2


where O represents a block of zeroes. From this, it’s clear that M is invertible if

and only if M1 and M2 are invertible. The result then follows from the definition

of regular spaces immediately.�

For d ∈ F , we write 〈d〉 to denote the isometry class of the 1-dimensional

space corresponding to the quadratic form dX2, or equivalently the bilinear

pairing dXY . Clearly, 〈d〉 is regular iff d ∈ Ḟ .

Theorem 1.2.4 Representation Criterion

Let (V,B) be a quadratic space, and d ∈ Ḟ . Then d ∈ D(V ) iff there exists

another quadratic space (V ′, B′) together with an isometry V ∼= 〈d〉⊥V ′.

Proof: First assume V ∼= 〈d〉⊥V ′. Then since qB ≡ dX2 + q′B , d is represented

by (1, 0), here 1 ∈ 〈d〉 and 0 ∈ V ′. In other words, d ∈ D(〈d〉⊥V ′) = D(V ).

Conversely, suppose d ∈ D(V ), there exists v ∈ V such that qB(v) = d.

The radical of V , rad V , is a subspace of V , and the associated quadratic map of

rad V is identically zero. Let W be a subspace of V such that V = (rad V )⊕W ,

since rad V is orthogonal to every vector, we have V = (rad V )⊥W . Since

qV = qradV + qW , and we have qradV = 0, qV = qW and thus they represents

the same set of values, i.e. D(V ) = D(W ). Here W is a regular space, so we

may assume without loss of generality that V is regular. Consider the linear
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isomorphism τ : F · v → 〈d〉 defined by τ(v) = 1. For any a, b ∈ F

B(av, bv) = abB(v, v) = abd = dτ(av)τ(bv)

which shows that the quadratic subspace F · v is isometric to 〈d〉, and

(F · v) ∩ (F · v)⊥ = 0

Since V is regular, by Proposition 1.1.3, we have

dim(F · v) + dim(F · v)⊥ = dimV

Therefore we conclude that V ∼= 〈d〉⊥(F ·v)⊥. (Note that when V is not regular,

rad V is also contained in (F · v)⊥) �

By repeatedly applying the Representation Criterion, we have proved the

existence of an orthogonal basis. This is stated as the following corollary.

Corollary 1.2.5 If (V,B) is a quadratic space over F , then there exist scalars

d1, d2, · · · , dn ∈ F such that V ∼= 〈d1〉⊥ · · · ⊥〈dn〉. (In other words, any n-ary

quadratic form is equivalent to some diagonal form, d1X
2
1 + · · · + dnX2

n, also

denoted by 〈d1, · · · , dn〉)

Proof: If D(V ) is empty, then B is identically zero. In this case, every pair

of vectors in V is orthogonal, so that V is isometric to an orthogonal sum of

〈0〉’s, so we can take any basis of V . If there exists some d ∈ D(V ), then by

the Representation Criterion, we have V ∼= 〈d〉⊥V ′ for some (V ′, B′), and the

result follows, by induction on dimV .�

Note that the special n-ary quadratic form 〈d, · · · , d〉 is denoted by n〈d〉.

For example, 3〈a〉⊥4〈b〉 means 〈a, a, a, b, b, b, b〉
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Corollary 1.2.6 If (V,B) is a quadratic space and S is a regular subspace,

then:

1. V = S⊥S⊥

2. If T is a subspace of V such that V = S⊥T , then T = S⊥.

Proof: (1) Since S is regular, S∩S⊥ = 0. Since we already have the dimension

theorem for regular subspaces, it suffices to show that V is spanned by S and

S⊥. By Corollary 1.2.5, S has an orthogonal basis x1, · · · , xp. The regularity

of S implies that B(xi, xi) 6= 0 for all i, since if B(xi, xi) = 0 for some i, the

matrix associated with B will not be invertible. Given any z ∈ V , consider

y = z −
p∑

i=1

B(z, xi)
B(xi, xi)

xi

Then for any j

B(y, xj) = B(z, xj)−
p∑

i=1

B(z, xi)
B(xi, xi)

B(xi, xj)

= B(z, xj)− B(z, xj)
B(xj , xj)

B(xj , xj) = 0

which says that y ∈ S⊥, and so

z = y +
p∑

i=1

B(z, xi)
B(xi, xi)

xi ∈ S⊥S⊥

This finishes the proof of (1).

(2) If V = S⊥T = S ⊕ T , then T ⊆ S⊥. Therefore by (1) we have,

dimT = dimV − dimS = dimS⊥

and it follows that T = S⊥. �
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Corollary 1.2.7 Let (V,B) be a regular quadratic space. A subspace S is reg-

ular iff there exists T ⊆ V such that V = S⊥T .

Proof: If S is regular, take T = S⊥.

Conversely if V = S⊥T , then rad S ⊆ rad V = 0, thus S is regular. �

Definition 1.2.8 The determinant of a nonsingular quadratic form f is defined

to be d(f) = det(Mf ) · Ḟ 2 which is an element of Ḟ /Ḟ 2. Note that if f ∼= g,

then there are some nonsingular C such that Mf = CtMgC. We have

d(f) = det(Mf ) · Ḟ 2 = det(Mg) · det(C)2 · Ḟ 2 = d(g)

That is, d(f) is an invariant of the equivalence class of f . By considering block

diagonal matrices, we see that

d(f1⊥f2) = d(f1)d(f2)

So if V ∼= 〈d1, · · · , dn〉 and V corresponds to f , then we have d(f) = d1 · · · dn ·

Ḟ 2. In this case, d(f) is called the determinant of V and can be denoted by

d(V ).

Proposition 1.2.9 Let q = 〈a, b〉, q′ = 〈c, d〉 be regular binary quadratic forms.

(So that a, b, c, d are all nonzero.) Then q ∼= q′ iff d(q) = d(q′), and q, q′

represent a common element e ∈ Ḟ .

Proof: The only if part is clear. Conversely, assume that d(q) = d(q′) ∈ Ḟ /Ḟ 2

and e ∈ D(q)∩D(q′). By the Representation Criterion, we know that q ∼= 〈e, e′〉

for some e′ ∈ Ḟ , since q has dimension 2. Taking their determinants, we have

abḞ 2 = ee′Ḟ 2, so e′ = abe. Therefore we have q ∼= 〈e, abe〉 = eX2 + abeY 2,

and similarly q′ ∼= 〈e, cde〉 = eX2 + cdeY 2. But from d(q) = d(q′) we have that

abḞ 2 = cdḞ 2, so abeY 2 and cdeY 2 are isometric and thus q ∼= q′. �
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1.3 Hyperbolic Plane and Hyperbolic Spaces

Definition 1.3.1 Let v be a nonzero vector in a quadratic space (V,B). We

say that v is an isotropic if B(v, v) = qB(v) = 0, and anisotropic otherwise. The

quadratic space (V,B) is said to be isotropic if it contains an isotropic vector,

and it is anisotropic otherwise. And (V,B) is totally isotropic if every non-zero

vector in V is isotropic, i.e. B ≡ 0.

Theorem 1.3.2 Let (V, q) be a 2-dimensional quadratic space. The following

are equivalent.

1. V is regular and isotropic.

2. V is regular, with d(V ) = −1 · Ḟ 2.

3. V is isometric to 〈1,−1〉.

4. V corresponds to the equivalence class of the binary quadratic form X1X2.

Note: A 2-dimensional quadratic space satisfying any of the above statements is

called a hyperbolic plane, and it can be denoted by H.

An orthogonal sum of hyperbolic planes is called hyperbolic space, with its

corresponding quadratic form in the form

X1X2 + · · ·+ X2m−1X2m or (X2
1 −X2

2 ) + · · ·+ (X2
2m−1 −X2

2m)

Proof:

(3) ⇔ (4) Let g(X1, X2) = X1X2, and C be the invertible linear transformation

(X1, X2) 7→ (X1 + X2, X1 −X2)

then g(C(X1, X2)) = (X1 + X2)(X1 −X2) = X2
1 −X2

2 = 〈1,−1〉
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(1) ⇒ (2) Let x1, x2 be an orthogonal bases for V , so B(x1, x2) = 0. The

quadratic space V is regular implies that q(xi) = di 6= 0, for i = 1, 2. If

ax1 + bx2 is an isotropic vector, then a, b 6= 0, and,

0 = q(ax1 + bx2) = a2d1 + b2d2

which implies that d1 = −(ba−1)2d2 and we have

d(V ) = d1d2 · Ḟ 2 = −(ba−1d2)2Ḟ 2 = −1 · Ḟ 2

(2) ⇒ (3) Assuming (2), and say q = aX2 + bY 2 for some a, b ∈ Ḟ , such

that d(V ) = ab · Ḟ 2 = −1 · Ḟ 2. Therefore ab ∈ −1 · Ḟ 2 and equivalently

a/b ∈ −1 · Ḟ 2, and there exists k ∈ Ḟ such that a/b = −k2. By applying the

linear transformation Y 7→ kY , we see that

q ∼= aX2 + bk2Y 2 = aX2 + b(−a/b)Y 2 = aX2 − aY 2

Therefore the associated quadratic form is equivalent to aXY by using similar

argument in proving (3) ⇔ (4). Now the map aX 7→ X gives

q ∼= aXY ∼= XY ∼= X2 − Y 2 = 〈1, 1〉

(3) ⇒ (1) For the quadratic form 〈1,−1〉 = X2
1−X2

2 , (1, 1) is an isotropic vector

of the quadratic space. �

Next, we are going to see how to find a decomposition of a quadratic space by

considering its hyperbolic ”parts”.

Theorem 1.3.3 Let (V,B) be a regular quadratic space. Then:

1. Every totally isotropic subspace of U ⊆ V of positive dimension r is con-
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tained in a hyperbolic subspace T ⊆ V of dimension 2r.

2. V is isotropic iff V contains a hyperbolic plane.

Proof: We can prove (1) by using induction on r. First, let {x1, x2, · · · , xr}

be a basis of U , and let S = span{x2, · · · , xr}, so that dimS = r − 1. We have

that U⊥ ⊆ S⊥. Since V is regular, the dimension formula applies,

dimS⊥ = dimV − dimS > dimV − dimU = dimU⊥

Thus there exists y ∈ S⊥ such that y is not in U⊥. In other words, y is orthogo-

nal to all of x2, · · · , xr, but not orthogonal to x1. Assume for contradiction that

y = ax1 for some a ∈ F . Since U is a totally isotropic space, x1 is isotropic

and B(x1, x1) = 0. Then

B(y, x1) = B(ax1, x1) = aB(x1, x1) = 0

which means y is orthogonal to x1 which contradicts the property of y. Therefore

we have that y and x1 are linearly independent. Consider the subspace H =

Fx1 + Fy which has determinant

d(H) =

∣∣∣∣∣∣∣
0 B(x1, y)

B(x1, y) B(y, y)

∣∣∣∣∣∣∣ · Ḟ 2 = −1 · Ḟ 2

We want to show that H is regular. Assume that ax1 + by ∈ H is such that

B(ax1 + by, cx1 + dy) = 0 for any c, d ∈ F . Then since B(x1, x1) = 0 we have

(ad + bc)B(y, x) + bdB(y, y) = 0

By looking at the coefficients of c, d, and the fact that B(y, x) 6= 0, it’s easy to

see that a = b = 0. Hence H is regular. So by Theorem 1.3.2, this shows that
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H is a hyperbolic plane. Since H is regular, we can write V = H⊥V ′, where V ′

contains x2, · · · , xr. By Corollary 1.2.7, V ′ is regular, and the result follows

by induction.

(1)⇒(2) If V is an isotropic space, it contains an isotropic vector v. However

for any a ∈ F

B(av, av) = a2B(v, v) = 0

that is, V contains at least a 1-dimensional totally isotropic subspace U spanned

by v. This subspace U satisfies the condition in the statement of (1) with

r = 1. Therefore, V contains a hyperbolic plane. The converse is clear, since

a hyperbolic plane is represented by X2
1 −X2

2 , the space spanned by (1, 1) is a

totally isotropic subspace. �

1.4 Witt’s Decomposition and Cancellation

These two classical theorems in quadratic form theory first appeared in Witt’s

seminal paper in 1937. Please note that both theorems are proved for arbitrary

quadratic spaces (V, q), without any regularity assumptions on (V, q). First, let

us look at the statements of the theorems.

Witt’s Decomposition Theorem 1.4.1 Let (V, q) be a quadratic space. Then

(V, q) = (Vt, qt)⊥(Vh, qh)⊥(Vα, qα)

where Vt is totally isotropic, Vh is hyperbolic (or zero), and Vα is anisotropic,

and Vt, Vh, Vα are uniquely determined up to isometries.

Witt’s Cancellation Theorem 1.4.2 If q, q1, q2 are arbitrary quadratic forms,

then q⊥q1
∼= q⊥q2 ⇒ q1

∼= q2.
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We will need to apply the Cancellation theorem to prove the Decomposition

theorem.

Proof of Witt’s Decomposition Theorem: To show existence, let V0 be such that

V = (radV )⊕ V0 = (radV )⊥V0

since V0 is obviously orthogonal to radV . If V0 were not regular, there would

be an element r ∈ V0 such that, B(r, v) = 0 for any v ∈ V0. However we also

have B(r, w) = 0 for any w ∈ radV , that means r is orthogonal to every vector

in V , i.e. r ∈ radV , which is a contradiction. So V0 is regular, and radV is

obviously totally isotropic. If V0 is isotropic, by Theorem 1.3.3, it contains a

hyperbolic plane H1, and we can write V0 = H1⊥V1. If V1 is again isotropic, we

may further write V1 = H2⊥V2, where H2 is a hyperbolic plane. After a finite

number of steps, we achieve a decomposition

V0 = (H1⊥ · · ·⊥Hm)⊥Vα

so now Vh = H1⊥ · · ·⊥Hm is hyperbolic (or zero, if V0 is not isotropic), and

Vα is anisotropic. For uniqueness, assume that V has another decomposition

V ′
t⊥V ′

h⊥V ′
α. Since V ′

t is totally isotropic and V ′
h⊥V ′

α is regular, we have

radV = rad(V ′)⊥rad(V ′
h⊥V ′

α) = V ′
t

So by the Cancellation Theorem, Vh⊥Vα
∼= V ′

h⊥V ′
α. Write Vh

∼= m ·H, that is,

m orthogonal copies of hyperplanes, and V ′
h
∼= m′ ·H. By using the Cancellation

theorem to cancel one H at a time, we conclude that m = m′ and Vα
∼= V ′

α,

since Vα, V ′
α are anisotropic. This finishes the proof of Witt’s Decomposition

Theorem. �
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Definition 1.4.3 The integer m = 1
2dimVh uniquely determined in the proof

of Witt’s Decomposition Theorem is called the Witt index of the quadratic space

(V, q). The isometry class of Vα is called the anisotropic part of (V, q).

To establish Witt’s Cancellation Theorem, we need to introduce the notion

of a hyperplane reflection. Say (V, q) is any quadratic space, we will write

Oq(V ) = O(V ) to denote the group of of isometries of (V, q), it is sometimes

called orthogonal group. Next we are going to associate an element τy ∈ O(V )

to every anisotropic vector y ∈ V . As a map from V to itself, τy is defined by

τy(x) = x− 2B(x, y)
q(y)

y

for any x ∈ V . Since B(x, y) = (q(x + y) − q(x) − q(y))/2, B(x, y) is linear in

x. This shows that

1. τy is a linear endomorphism.

2. τy is the identity map on (F · y)⊥. To see this, consider when B(x, y) = 0,

then τy(x) = x. Also, we have

τy(y) = y − 2B(y, y)
q(y)

y = y − 2y = −y

Therefore (τy)2 is the identity map and we say that τy is an involution.

In other words, it fixes the hyperplane (F · y)⊥, and reflects the vector y

across (F · y)⊥ to −y.
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3. τy ∈ O(V ), that is, τy is an isometry. This is proved as follows

B(τy(x), τy(x′)) = B

(
x− 2B(x, y)

q(y)
y, x′ − 2B(x′, y)

q(y)
y

)
= B(x, x′) +

4B(x, y)B(x′, y)
q(y)2

B(y, y)− 4B(x, y)B(x′, y)
q(y)

= B(x, x′) (since B(y, y) = q(y))

4. As a linear automorphism, τy has determinant −1.

Proposition 1.4.4 Let (V, q) be a quadratic space, and x, y be vectors such that

q(x) = q(y) 6= 0. Then there exists an isometry τ ∈ O(V ) such that τ(x) = y.

Proof: First, we claim that for such a pair of x, y, we have that q(x − y) and

q(x + y) cannot be both zero. Consider

q(x + y) + q(x− y) = B(x + y, x + y) + B(x− y, x− y)

= 2B(x, x) + 2B(y, y)

= 2q(x) + 2q(y) = 4q(x) 6= 0

which proves the claim. Assume q(x− y) 6= 0. First of all

q(x− y) = B(x− y, x− y)

= B(x, x)− 2B(x, y) + B(y, y)

= 2B(x, x)− 2B(x, y)

= 2B(x, x− y)

Thus, τx−y(x) = x− 2B(x, x− y)
q(x− y)

(x− y) = x− (x− y) = y

If instead q(x + y) 6= 0, then τx+y(x) = −y and −τx+y is the function that we

are looking for. �
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Proof of Witt’s Cancellation Theorem:

Suppose that q⊥q1
∼= q⊥q2.

Case 1: Assume that q is totally isotropic and q1 is regular. Then the symmetric

bilinear form B and the matrix associated with q are identically zero. Let M1

and M2 be the matrix corresponding to q1 and q2 respectively. The hypothesis

q⊥q1
∼= q⊥q2 implies that

 0 0

0 M1

 is congruent to

 0 0

0 M2

, so there

exists an invertible matrix E =

 A B

C D

 such that

 0 0

0 M1

 = Et

 0 0

0 M2

E =

 ∗ ∗

∗ DtM2D


In particular, M1 = DtM2D. Since M1 and D are invertible, M1,M2 are

congruent and thus q1
∼= q2.

Case 2: Assume that q is totally isotropic. Without loss of generality, assume

that there are exactly r zeros in the diagonalization of q1, and that that of q2

has at least r zeros. Then we can rewrite q⊥q1
∼= q⊥q2 as

q⊥r〈0〉⊥q′1
∼= q⊥r〈0〉⊥q′2

here q⊥r〈0〉 is totally isotropic and q′1 is regular. Using the result in Case 1, we

have that q′1
∼= q′2 and q1

∼= r〈0〉⊥q′1
∼= r〈0〉⊥q′2

∼= q2. Therefore the cancellation

also holds for Case 2.

Case 3: No assumptions on q, q1 and q2. Let 〈a1, · · · , an〉 be a diagonalization

of q. By inducing on n, we are reduced to the case n = 1, as we can add one

ai at a time. If a1 = 0, this is reduced to Case 2, in which we proved that
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the cancellation holds. Thus we may assume that a1 6= 0. Then the hypothesis

q⊥q1
∼= q⊥q2 becomes (V,B) ∼= 〈a1〉⊥q1

∼= 〈a1〉⊥q2. Let φi : (V,B) → 〈a1〉⊥qi

be such isometries, then we can pick x, y ∈ V such that φ1(x) = 1⊥~0 and

φ2(y) = 1⊥~0, then

(F · x)⊥q1
∼= 〈a1〉⊥q1

∼= 〈a1〉⊥q2
∼= (F · y)⊥q2

By Proposition 1.4.4, and assuming that x− y 6= 0 we know that τx−y is an

isometry such that τx−y(x) = y. Moreover, for any vector z in the quadratic

space corresponding to q1,

B(y, τx−y(z)) = B

(
y, z − 2B(z, x− y)

q(x− y)
(x− y)

)
= B(z, y) +

2B(z, x− y)
q(x− y)

[B(x, y)−B(y, y)]

= B(z, y) + B(z, x)−B(z, y) = 0

since B(z, x) = 0, B(x, x) = B(y, y) and q(x − y) = 2[B(x, y) − B(x, x)]. This

shows that the image of z under τx−y is orthogonal to y, in other words, τx−y is

an isometry that takes the orthogonal complement of (F · x) to the orthogonal

complement (F ·y). That is, q1
∼= q2 and Witt’s Cancellation Theorem is proved.

�
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Chapter 2

Quaternion Algebras

(From [4], Chapter III of [8], [10], Chapter 22 of [11])

2.1 Basic Properties of Quaternion Algebras

In 1843, William Rowan Hamilton discovered the real quaternions H. It is a

non-commmutative algebra of dimension 4 over the real numbers R. We write

H = {α + βi + γj + δk | α, β, γ, δ ∈ R}

with addition defined by

(α+βi+γj+δk)+(α′+β′i+γ′j+δ′k) = (α+α′)+(β+β′)i+(γ+γ′)j+(δ+δ′)k

scalar multiplication defined by λ(α + βi + γj + δk) = λα + λβi + λγj + λδk

for any λ, α, β, γ, δ, α′, β′, γ′, δ′ ∈ R.

A natural basis for this vector space over R is {1, i, j, k}
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The set H is also a non-commutative ring with multiplication defined by

i2 = j2 = k2 = −1, ij = −ji = k

with the usual distributivity. We can see that

1
α + βi + γj + δk

=
α− βi− γj − δk

α2 + β2 + γ2 + δ2

if at least one of α, β, γ, δ, is non-zero. This shows that H is a division algebra.

In the case where the real part of a quaternion is zero, that is, α = 0, it is called

a pure quaternion.

The real numbers R is a subring of H identified with the set of quaternions

with β = γ = δ = 0. The complex numbers C is also a subring of H identified

with R + Ri.

In general, we can have quaternions over an arbitrary field F , and i2 and j2

need not equal −1. (Assume that the characteristic of F is not 2.) For non-zero

a, b ∈ F , we define the quaternion algebra A = (a,b
F ) to be the 4 dimensional

F -algebra on two generators i, j with the defining relations

i2 = a, j2 = b, ij = −ji

Like in the real quaternions, we define k = ij and now k2 = −ab, and

ik = −ki = aj, kj = −jk = bi

We say that any two of the elements i, j, k anticommute. And here, {1, i, j, k}

is a basis for A over F so that A has dimension 4 over F .

Therefore in the case where a = b = −1 and F = R, (−1,−1
R ) is the real

quaternions.
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2.2 Determining the Isomorphism Type

For a general quaternion algebra A over a field F , we are interested in its

isomorphism type. While A can be a division algebra (e.g.H), it is also possible

that A is isomorphic to M2F , the algebra of all 2×2 matrices with entries from

F . In fact, these are the only possibilities! To see this, let us first show that A

is a central simple algebra. Since i, j, k do not commute pairwise, and A is a

F -vector space, A has center F . Also, A has no non-trivial two-sided ideal, in

other words, it is simple. (See P.232 Lemma 3 of [4]) Thus A is a central simple

algebra. Consider the following theorem.

Theorem 2.2.1 Artin-Wedderburn Theorem

A semisimple ring R is isomorphic to a product of nk by nk matrix rings over

division rings Dk, for some integers nk, both of which are uniquely determined

up to permutation of the index k.

And as an immediate corollary,

Corollary 2.2.2 Any central simple algebra which is finite dimensional over

its center F is isomorphic to an algebra MnD, where n is a positive integer and

D is a division algebra over F .

Say the quaternion algebra is (a,b
F ), dimF (a,b

F ) = 4 and dimF MnD = n2

dimF D, so the only possibilities are n = 1 and D = (a,b
F ), or n = 2 and D = F .

Notice that when n = 1, D = (a,b
F ) is a division algebra. Whereas in the case

where n = 2, (a,b
F ) ∼= M2D, in other words, it is split. (If an F -algebra is

isomorphic to a full matrix algebra over F we say that the algebra is split.)

The question is, how do we determine when it is a division algebra, and

when it is split? The answer is to look at its norm form.

Definition 2.2.3 Let q ∈ (a,b
F ), say q = α + βi + γj + δk with α, β, γ, δ ∈ F .

Denote the conjugate of q, by q̄ = α− βi− γj − δk
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Define the norm form N : (a,b
F ) → F by N(q) = qq̄ for every q ∈ (a,b

F ) and the

trace by T (x) = x + x̄.

Note that if q = α + βi + γj + δk,

N(q) = qq̄ = q̄q = α2 − aβ2 − bγ2 + abδ2

which is a quadratic form in four variables α, β, γ, δ and it is denoted by <

1,−a,−b, ab >. This < 1,−a,−b, ab > corresponds to the diagonal entry of the

matrix representation of the quadratic form. In fact, the quaternion algebra

(a,b
F ) can be considered as a quadratic space, with the associated quadratic

form being the norm form N . The symmetric bilinear pairing B is then given

by B(x, y) = (xȳ + yx̄)/2 = T (xȳ)/2.

The conjugation function is called an involution. In general, an F -involution

(or an involution of the first kind) of an algebra A is a map σ : A → A which

is F -linear and satisfies

1. σ(x + y) = σ(x) + σ(y) for all x, y ∈ A

2. σ(xy) = σ(y)σ(x) for all x, y ∈ A

3. σ(σ(x)) = x for all x ∈ A

In the case of the real quaternions H, we have seen that the inverse of an

element q is q̄
N(q) , and in H, we have

N(q) = α2 + β2 + γ2 + δ2

which is represented by < 1, 1, 1, 1 >. This is a sum of 4 squares in R, and since

R is a real closed field, N(q) is zero if and only if q = 0. This is saying that

the only element that has no inverse in H is zero, implying that H is a division

algebra. However, when we are dealing with general quaternion algebras over
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arbitrary fields, it’s possible that the norm of a non-zero element q is zero, which

further implies that q (and q̄) are zero divisors. As a matter of fact, we have

the following theorem.

Theorem 2.2.4 The quaternion algebra (a,b
F ) is a division algebra if and only

if its norm form N : (a,b
F ) → F satisfies N(q) = 0 ⇒ q = 0, i.e. the norm form

is anisotropic.

Proof: If (a,b
F ) is a division algebra, for q ∈ (a,b

F ) if N(q) = qq̄ = 0, either q = 0

or q̄ = 0, both of which implies q = 0, so that the norm form is anisotropic. For

the other direction, we see that q−1 = q̄
N(q) if N(q) 6= 0. Now N(q) = 0 ⇒ q = 0,

that says that every non-zero element of (a,b
F ) is invertible, i.e. (a,b

F ) is a division

algebra. �

This theorem gives us a criterion to determine whether a quaternion algebra

is a division algebra or not. And as an immediate consequence, we have that

the quaternion algebra is split (i.e. ∼= M2(F )) if and only if the norm form is

isotropic, i.e. the norm of a non-zero element is zero.

Theorem 2.2.5 Identification Theorem for Quaternion Algebras

Let B be a 4-dimensional algebra over a field F (charF 6= 2), and let c, d ∈ Ḟ

and u, v ∈ B be such that,

u2 = c, v2 = d, and uv = −vu

then B ∼= ( c,d
F ). (From Page 351 of [11])

Proof: Let A = ( c,d
F ), and h : A → B be F -linear such that,

h(1) = 1, h(i) = u, h(j) = v, h(k) = uv
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It is clear that h preserves addition, multiplication, and the anti-commutativity

of i, j, k. The kernel of a homomorphism is an ideal of the domain. Here A is

a central simple algebra, therefore h cannot have a non-zero kernel. And h is

obviously surjective, thus h is an isomorphism. �

Definition 2.2.6 Let A be a quaternion algebra, an element v = α+βi+γj+δk

is said to be a pure quaternion if α = 0. The F -vector space of pure quaternions

of A is denoted by A0.

Proposition 2.2.7 Let A = (a,b
F ), and v be a non-zero element of A. Then

v ∈ A0 iff v /∈ F and v2 ∈ F .

Proof: If v = α + βi + γj + δk, we have

v2 = (α2 + aβ2 + bγ2 − abδ2) + 2α(βi + γj + δk)

Therefore when α = 0, v2 ∈ F . Conversely, if v /∈ F , then one of β, γ, δ must

be non-zero. For v2 ∈ F to be true, the above equation implies that α = 0, and

hence v is a pure quaternion.�

Corollary 2.2.8 If A = (a,b
F ), A′ = (a′,b′

F ′ ) , and ϕ : A → A′ is an F -algebra

isomorphism, then ϕ(A0) = A′
0. In particular, A0 is stable under any F -algebra

endomorphism of A.

Proof: Since ϕ is an F -algebra isomorphism, by Proposition 2.2.7 we have

v ∈ A0 ⇔ v /∈ F, v2 ∈ F

⇔ ϕ(v) /∈ F,ϕ(v)2 ∈ F

⇔ ϕ(v) ∈ A′
0

The second conclusion is clear since A is a central simple algebra and every

F -algebra endomorphism of A is an automorphism. �
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We have come to one of our major theorems linking quaternion algebras and

quadratic forms.

Theorem 2.2.9 For A = (a,b
F ), A′ = (a′,b′

F ), the following statements are equiv-

alent:

1. A and A′ are isomorphic as F -algebras.

2. A and A′ are isometric as quadratic spaces.

3. A0 and A′
0 are isometric as quadratic spaces.

In other words, to determine whether two quaternion algebras are isomorphic,

we only have to check if their norm forms are isometric. This will be important

in finding the isomorphism class of a quaternion algebra.

Proof: (1) ⇒ (2) Suppose ϕ : A → A′ is an F -algebra homomorphism, then by

Corollary 2.2.8 we have that ϕ(A0) = A′
0. If x = α + x0 where α ∈ F and

x0 ∈ A0, then x̄ = α− x0, and hence ϕ(x) = α + ϕ(x0) and ϕ(x̄) = α− ϕ(x0).

Since ϕ(x0) ∈ A′
0, we have ϕ(x) = ϕ(x̄). Therefore,

N(ϕ(x)) = ϕ(x)ϕ(x) = ϕ(x)ϕ(x̄) = ϕ(N(x)) = N(x)

so ϕ is an isometry from A to A′.

(2) ⇒ (3) If A = 〈1〉⊥A0 and A′ = 〈1〉⊥A′
0 are isometric, then by Witt’s

Cancellation Theorem, A0 and A′
0 are isometric.

(3) ⇒ (1) Let σ : A0 → A′
0 be an isometry (which is a linear isomorphism).

Then,

N(σ(i)) = N(i) = −a

and

N(σ(i)) = σ(i)σ(i) = σ(i)σ(̄i) = −σ(i)2
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clearly σ(i)2 = a, and similarly σ(j)2 = b. Finally,

0 = B(i, j) = B(σ(i), σ(j)) = (−σ(i)σ(j)− σ(j)σ(i))/2

implies that σ(i)σ(j) = −σ(j)σ(i) and hence A′ ∼= (a,b
F ) = A by Theorem

2.2.5. �

Since isomorphic quaternion algebras are isometric as quadratic spaces and

vice versa, from now on, we will freely interchange between A = (a,b
F ) and

〈1,−a,−b, ab〉 or X2
1 −aX2

2 − bX2
3 +abX2

4 which is its norm form. The elements

a, b are always non-zero, so that 〈1,−a,−b, ab〉 is always a regular form. Let us

look at some examples of isomorphic quaternion algebras.

Examples 1

1. The quaternion algebra A = (a,b
F ) is isomorphic to B = ( b,a

F ) because their

norm forms 〈1,−a,−b, ab〉 and 〈1,−b,−a, ab〉 are isometric. In fact, the

isometry will be sending X2 7→ X3 and X3 7→ X2.

2. For any x, y ∈ Ḟ , A = (a,b
F ) is isomorphic to B = (ax2,by2

F ). The elements

u = xi and v = yj in A satisfy u2 = ax2, v2 = by2 and uv = −vu.

So by the Identification Theorem for Quaternion Algebras, A and B are

isomorphic.

3. In A = (a,b
F ), since the elements u = i and v = k satisfy u2 = a, v2 = −ab

and uv = −vu, by the Identification Theorem, A ∼= (a,−ab
F ).

4. Since a2X2 are isometric to X2 by the linear isomorphism X 7→ aX, we

have

〈1,−a, 1,−a〉 ∼= 〈1,−a, a2,−a〉 ∼= 〈1,−a,−a, a2〉

Therefore (a,a
F ) ∼= (a,−1

F ).
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5. Let A = M2(F ), u =

 0 1

−1 0

, v =

 0 1

1 0

. Then u2 = −I and

v2 = I and uv = −vu, where I is the 2 by 2 identity matrix. Therefore

by the Identification Theorem, we have A ∼= ( 1,−1
F ).

Theorem 2.2.10 For A = (a,b
F ), the following statements are equivalent:

1. A ∼= ( 1,−1
F )

2. A is isotropic as a quadratic space. (So by Theorem 2.2.4, A ∼= M2(F ))

3. A is hyperbolic as a quadratic space.

4. The binary form 〈a, b〉 represents 1.

Proof:

(1)⇒(2) ( 1,−1
F ) ∼= 〈1,−1, 1,−1〉 is isotropic because N(1 + i) = 0.

(2)⇒(1) If A is isotropic, A ∼= M2(F ), and so A ∼= ( 1,−1
F ) by Example 1(5).

(1)⇔(3) is the definition of a 4-dimensional hyperbolic space, which has the

associated form 〈1,−1, 1,−1〉.

(1)⇒(4) Assume that A ∼= ( 1,−1
F ), then we also have 〈1,−a,−b, ab〉 ∼= 〈1,−1, 1,−1〉.

Consider q = 〈1,−1〉, q represents 1, so by Proposition 1.2.9

q ∼= 〈a, 1 · −1 · a〉 ∼= 〈a,−a〉

similarly q ∼= 〈b,−b〉. Therefore

〈1,−a,−b, ab〉 ∼= 〈1,−1, 1,−1〉 ∼= 〈a,−a, b,−b〉

By Witt’s Cancellation Theorem, we can cancel the −a and −b and get

q′ = 〈1,−ab〉 ∼= 〈a, b〉 = q′′
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Since (1, 0) is a vector such that q′(1, 0) = 1. Also q′ and q′′ are isometric, so

there exists (x, y) ∈ F × F such that q′′(x, y) = ax2 + by2 = 1.

(4)⇒(1) Now if 〈a, b〉 represents 1, then 〈a, b〉 ∼= 〈1, ab〉 by Proposition 1.2.9.

Now

〈1,−a,−b, ab〉 ∼= 〈1,−1,−ab, ab〉 ∼= 〈1,−1, 1,−1〉

which implies (a,b
F ) ∼= ( 1,−1

F ). �

Note: In the above theorem, the equivalence (1)⇔(4) is also called Hilbert’s

Criterion for the splitting of the quaternion algebra A. Whether the form 〈a, b〉

represents 1, can also be written as whether the Hilbert equation ax2 + by2 = 1

has a solution over a field F . In elementary number theory, this equation is

used to define the Hilbert symbol over a local field K as follows,

(a, b) =


1 if z2 = ax2 + by2 has a non-zero solution (x, y, z) ∈ K3

−1 otherwise

From the theorems we had above, we have that (a,b
F ) splits if (a, b) = 1, and

it is a division algebra if (a, b) = −1. Here are some examples of quaternion

algebras that split.

Examples 2

1. For any a ∈ Ḟ , (a,−a
F ) is split because of Hilbert’s Criterion. The binary

form 〈a,−a〉 represents 1, since

a

(
1 + a

2a

)2

− a

(
1− a

2a

)2

= 1

2. If again a ∈ Ḟ , 〈1, a〉 represents 1 obviously so ( 1,a
F ) is split.
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3. If a 6= 0, 1, then let u =

 0 a

1 0

, v =

 1 −a

1 −1

.

Then u2 = aI and v2 = (1 − a)I and uv = −vu, so by the Identification

Theorem, M2(F ) ∼= (a,(1−a)
F ).

Corollary 2.2.11 The algebra A = (−1,a
F ) splits iff a is a sum of two squares

in F (not necessarily non-zero).

Proof:

If the imaginary number i ∈ F , then

(
1 + a

2

)2

+
(

1− a

2
i

)2

= a

so that a is always a sum of two squares. Therefore if a = X2 + Y 2 for some

X, Y ∈ F , X2 + Y 2 − a(1)2 − a(0)2 = 0 which implies that the norm form

〈1, 1,−a,−a〉 is isotropic. The algebra A is always split.

Instead if i 6∈ F

(
−1, a

F

)
splits

⇔ 〈−1, a〉 represents 1

⇔ there are X, Y ∈ F such that −X2 + aY 2 = 1 where Y cannot be zero

⇔ there are X, Y ∈ F such that a = Y −2 + X2Y −2

That is a is a sum of two squares in F . �

Corollary 2.2.12 For any prime p ≡ 1 mod 4, (−1,−p
Q ) ∼= (−1,−1

Q ) is a division

algebra, and (−1,p
Q ) ∼= M2(Q)

Proof: The norm form of (−1,−p
Q ) is X2

1 +X2
2 +pX2

3 +pX2
4 which is positive over

the non-zero rationals and thus anisotropic, so by Theorem 2.2.4 it is a division
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algebra. By Fermat’s Theorem, p is a sum of two squares, say p = c2 + d2. Let

u = i, and v = (cj + dk)/p, then u2 = −1, v2 = (−pc2 − pd2)/p2 = −1, and

uv = −vu. We can then apply the Identification Theorem to get

(
−1,−p

Q

)
∼=
(
−1,−1

Q

)

We already have p = c2 + d2, and we can apply Corollary 2.2.11 to get

(−1,p
Q ) ∼= M2(Q). �

2.3 Quaternion Algebras over Different Fields

In general there is no procedure to decide if two quadratic forms are isometric,

or if two quaternion algebras are isomorphic. This question is specific to a field.

Two forms isometric over a field need not be isometric over another field. It is

exactly because of this that a theory of quadratic forms becomes necessary. To

illustrate this, let us look at quaternion algebras over different fields.

• The complex numbers C

(a,b
C ) is isomorphic to M2(C) for any non-zero a, b ∈ C because the norm

form 〈1,−a,−b, ab〉 is always isotropic. (∵ (
√

a)2 − a(1)2 = 0)

• The real numbers R

Whenever a, b ∈ R are negative, the norm form is 〈1,−a,−b, ab〉 and the

norm of a non-zero real number is always a sum of positive numbers.

Therefore it is anisotropic and (a,b
R ) is a division algebra which is isomor-

phic to the real quaternions H, by Frobenius’s Theorem on Real Division

Algebra.
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Otherwise, if at least one of a, b is positive, 〈1,−a,−b, ab〉 is isotropic,

since either (
√

a)2 − a · 12 = 0 or (
√

b)2 − b · 12 = 0. Thus the form is

isotropic and (a,b
R ) is split.

• The p-adic fields Qp where p is a prime

This is the completion of the field Q with respect to the p-adic absolute

value on Q. For each prime p there is a unique quaternion division algebra

over Qp. This follows from the fact that, up to isometry, there is a unique

anisotropic quadratic form of dimension 4 and it is the norm form of a

quaternion algebra. However the proof of this is beyond the scope of this

article; please see T.Y.Lam [8] Chapter VI for details.

• The finite fields Fn with n elements

By the 1905 theorem of Wedderburn, any finite division ring is commuta-

tive. However, (a,b
Fn

) is not commutative, therefore it is not a division ring

and it splits.

• The rational numbers Q

There are infinitely many non-isomorphic quaternion algebras over Q, to

see this, consider the following lemmas.

Lemma 1 A positive integer n is a sum of two squares of integers if and only if

n can be factored as ab2 such that a is not divisible by any prime that is 3mod4,

a, b ∈ Z. (See [2])

Proof: First assume that n can be factored as ab2 such that a is not divisible

by any prime that is 3 mod 4. Then a is a product of 2 and primes which are

1 mod 4. By Fermat’s Theorem, 2 and every prime that is 1 mod 4 is a sum of

two squares. Also, product of sums of squares is also a sum of squares, since

(α2 + β2)(γ2 + δ2) = (αγ − βδ)2 + (αδ + βγ)2
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Therefore a = a2
1 + a2

2 for some a1, a2 ∈ Z, and n = a2
1b

2 + a2
2b

2 which is a sum

of two squares.

Now say n is a sum of two squares of integers x2 + y2. We will proceed by

induction on n. Assume that every sum of squares that is smaller than n can be

factored as the form ab2 with a not divisible by primes congruent to 3 mod 4. If

n does not have prime factors that are 3 mod 4, then n is of course in the form

ab2 with that property. So say there exists q ≡ 3mod4 such that q | n = x2 +y2.

Since q is 3 mod 4, q is irreducible in Z[i], and thus q | (x + yi) and q | (x− yi).

This implies that q | x and q | y, let x = qx′ and y = qy′. Now n = q2(x′2 + y′2)

and x′2 + y′2 is a smaller sum of squares. By induction hypothesis x′2 + y′2 is

of the form ab2 such that a is not divisible by any prime 3 mod 4, it follows that

n = aq2b2 is also of the desired form. �

Lemma 2 For any prime q ≡ 3 mod 4, (−1,−q
Q ) and (−1,q

Q ) are non-isomorphic

division algebras. (See page 362 of [11])

Proof: If they were isomorphic, their norm forms would be isometric and we

have

〈1, 1, q, q〉 ∼= 〈1, 1,−q,−q〉

By Witt’s Cancellation Theorem, we cancel the two 1’s and get 〈q, q〉 ∼= 〈−q,−q〉

which is obviously wrong. The form 〈q, q〉 is always non-negative and 〈−q,−q〉

is never positive. Therefore these two algebras are non-isomorphic.

Now, consider the form 〈−1,−q〉 = −X2 − qY 2, it is negative for any non-zero

X, Y ∈ Q. Hence the form does not represent 1, and by Hilbert’s Criterion,

(−1,−q
Q ) is a division algebra.

Next, we want to show that (−1,q
Q ) is a division algebra. Using Hilbert’s Criterion

once again, we aim to prove that the binary form 〈−1, q〉 does not represent 1.

Assume the contrary, there exist x, y ∈ Q such that −x2 +qy2 = 1. Rearranging
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the terms, this is saying there exist a, b, c, d ∈ Z such that gcd(a, b) = gcd(c, d) =

1 and q = (a/b)2 + (c/d)2, we have

q(bd)2 = (ad)2 + (bc)2

In the prime factorization of q(bd)2, the exponent of q must be odd, and q ≡

3 mod 4. However q(bd)2 is a sum of squares here, this contradicts Lemma 1.

We conclude that 〈−1, q〉 does not represent 1 and by Hilbert’s Criterion (−1,q
Q )

is a division algebra.�

Proposition 2.3.1 Let p ≡ q ≡ 3 mod 4 be distinct prime numbers. We have

(
−1, p

F

)
6∼=
(
−1, q

F

)
,

(
−1, p

F

)
6∼=
(
−1,−q

F

)
,

(
−1,−p

F

)
6∼=
(
−1,−q

F

)

Proof: Assume for contradiction that
(−1,−p

F

) ∼= (−1,−q
F

)
, then 〈1, 1, p, p〉 ∼=

〈1, 1, q, q〉. By Witt’s Cancellation Theorem, 〈p, p〉 ∼= 〈q, q〉. However consider

Sp =
{

p

(
X2

Z2
+

Y 2

Z2

) ∣∣∣∣ X, Y, Z ∈ Z
}

and also define Sq in a similar manner. So Sp is the set of values 〈p, p〉 repre-

sents. In the prime factorizations X2 + Y 2 and Z2, p and q both appears even

number of times by Lemma 1, therefore Sp and Sq cannot be the same set of

rationals, 〈p, p〉 and 〈q, q〉 are thus non-isometric. This is a contradiction and

hence
(−1,−p

F

)
6∼=
(−1,−q

F

)
. Similarly, we also have that

(−1,p
F

)
6∼=
(−1,q

F

)
. The

proof of
(−1,p

F

)
6∼=
(−1,−q

F

)
is easy. The set S−p is not positive whereas Sq is not

negative, therefore 〈1, 1,−p,−p〉 and 〈1, 1, q, q〉 cannot be isometric. �

From Lemma 2 and Proposition 2.3.1, we have that there are infinitely

many non-isomorphic non-split quaternion algebras over Q, namely (−1,±q
Q )

where q ≡ 3 mod 4.

36



Chapter 3

The Brauer Group and the

Theorem of Merkurjev

(From Section 4.6 and 4.7 of [4], [10])

3.1 Properties of the Brauer Group

Closely related to quaternion algebras is the Brauer group. This group consists

of similarity classes of central simple algebras over a specific field, with the group

operation being tensor product over that field. Quaternion algebras and tensor

products of them have order 1 or 2 in this group, we’ll justify this by using

tools from algebra and quadratic form theory. A.A. Albert conjectured that the

subgroup generated by all the quaternion algebras over a field actually contains

all the elements of order 2 in the Brauer group. This theorem was finally proved

by Merkurjev in 1981 using tools from Milnor K-theory. Let us start by looking

at some properties of central simple algebras.

Proposition 3.1.1 If B is an algebra over F , then Mn(B) ∼= Mn(F )⊗F B.
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Proposition 3.1.2 Mm(F )⊗F Mn(F ) ∼= Mmn(F )

These are basic results of tensor products of matrix algebras and proofs can

be easily found in many algebra books, so the proofs will be left to the reader.

Please see Jacobson, [4] page 216 for more details.

Theorem 3.1.3 If A is a finite dimensional central simple algebra over a field

F , then the enveloping algebra Ae = A⊗F Aop is isomorphic to Mn(F ), where

n = dim A and Aop is the opposite algebra of A, that is, A with multiplication

in reverse order.

Proof: (Sketch) A can be regarded as an Ae-module. Then A is irreducible

and EndAeA = F . Also, A is finite dimensional over F . Hence by the density

theorem Ae maps onto EndF A. Since both Ae and EndF A has dimension n2,

we therefore have an isomorphism of Ae onto EndF A. Since EndF A ∼= Mn(F ),

the result follows. �

Now we are in a position to define the Brauer group over a field.

Definition 3.1.4 In the Brauer Group B(F ) over a field F , the elements are

similarity classes of central simple algebra. Let A and B be central simple al-

gebras over F . We say that A and B are similar, denoted by A ∼ B, if for

some positive integers m,n such that Mm(A) ∼= Mn(B) as F − algebras, or

equivalently Mm(F )⊗A ∼= Mn(F )⊗B. If [A] denotes the similarity class of A,

the group operation is defined by [A][B] = [A⊗B]

The similarity condition is clearly reflexive and symmetric. Now if we have

Mm(F )⊗A ∼= Mn(F )⊗B, and Mr(F )⊗B ∼= Ms(F )⊗ C
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then consider

Mmr(F )⊗A ∼=Mr(F )⊗Mm(F )⊗A ∼= Mr(F )⊗Mn(F )⊗B

∼= Mn(F )⊗Mr(F )⊗B ∼= Mn(F )⊗Ms(F )⊗ C ∼= Mns(F )⊗ C

Therefore the similarity relation is a equivalence relation.

Suppose we have A ∼ A′ and B ∼ B′. Then there exist positive integers

m,m′, n, n′ such that Mm(F )⊗A ∼= M ′
m(F )⊗A′ and Mn(F )⊗B ∼= M ′

n(F )⊗B′.

This implies that Mmn ⊗ A ⊗ B ∼= Mm′n′ ⊗ A′ ⊗ B′. Hence A ⊗ B ∼ A′ ⊗ B′

and the binary group operation is well defined. Obviously the group operation

is also associative and commutative. The identity element is [F ], that is, if

A ∼= Mn(F ) for some n, A belongs to the identity class. Finally, Theorem

3.1.3 implies that [Aop] is the inverse of [A]. Therefore we have that the Brauer

group over a field F is an abelian group.

If A is finite dimensional central simple over F , it is also Artinian. By

Artin-Wedderburn Theorem we can write A ∼= Mn(F ) ⊗ ∆, where ∆ is a fi-

nite dimensional central division algebra. Conversely, if ∆ is such an algebra,

Mn(F )⊗∆ is finite dimensional central simple over F . Also, since Mn(∆) is a

simple Artinian Ring, if Mn(∆) =∼= M ′
n(∆′) for division algebras ∆, ∆′, then

n = n′ and ∆ ∼= ∆′. So the division algebra ∆ in A ∼= Mn(F )⊗∆ is determined

up to isomorphism. Thus a similarity class [A] contains a single isomorphism

class of finite dimensional central division algebras and distinct similarity classes

are associated with non-isomorphic division algebras.
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3.2 The Role of Quaternion Algebras in the Brauer

Group

The tensor product A = A1 ⊗F A2 of two quaternion algebras A1, A2 is called

a biquaternion algebra. As a consequence of Wedderburn’s theorem on cen-

tral simple algebras, this 16-dimensional algebra is isomorphic to one of the

following:

1. A is a division algebra.

2. A is split, i.e. A is isomorphic to M4(F ).

3. A is isomorphic to M2(D) for some quaternion division algebra D.

These three cases correspond to different similarity classes in the Brauer

group over F , since their division algebras are different. Being analogous to the

norm form of a quaternion algebra, we can define the Albert quadratic form of

the biquaternion algebra

A =
(

a1, b1

F

)
⊗
(

a2, b2

F

)

as the 6-dimensional quadratic form φA = 〈a1, b1,−a1b1,−a2,−b2, a2b2〉. A

theorem of Albert says the following.

Theorem 3.2.1 Let A be a biquaternion algebra, then

1. A is a division algebra if and only if φA is anisotropic.

2. A is split if and only if φA is hyperbolic, i.e. φA
∼= 〈1,−1, 1,−1, 1,−1〉.

Otherwise, A is isomorphic to M2(D) for some quaternion division algebra D.

For a proof of this theorem, see T.Y.Lam [8] page 70.

Consider the special case when A1 = A2 = (a,b
F ) and B = A1 ⊗ A2, for some
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non-zero a, b ∈ F . Then

φB = 〈a, b,−ab,−a,−b, ab〉

From Example 2(1) in Section 2.2, we know that 〈a,−a〉 represents 1. So by

Proposition 1.2.9,

〈a,−a〉 ∼= 〈1,−a2〉 ∼= 〈1,−1〉

and we have φB = 〈1,−1, 1,−1, 1,−1〉. That is, B is split, by the theorem of

Albert. The above implies that if A is a quaternion algebra over F , we have

[A][A] = [A ⊗ A] = 1. Therefore non-split quaternion algebras have order 2 in

the Brauer group.

Another way to view this is the following. If A = (a,b
F ), then consider u = i

and v = j in the opposite algebra Aop. Now

(u2)op = a, (v2)op = b, (uv)op = (ij)op = ji = −ij = −(ji)op = −(vu)op

So by the Identification Theorem for Quaternion Algebras, Aop ∼= (a,b
F ) = A.

We have already seen that [Aop] is the inverse of [A], therefore we have

[A][A] = [Aop][A] = 1

and [A] has at most order 2 in B(F ).

Brauer Groups Over Different Fields

1. By Frobenius’s Theorem on Real Division Algebras in 1877, B(R) ∼= {±1}

for any real closed field R, with the only non-trivial element being (−1,−1
R ).

2. The fact that there are infinitely non-isomorphic quaternion division alge-

bras over the rationals Q was proven earlier. Therefore B(Q) is infinite.
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3. If F is the completion of a number field at a finite place, then there exists

an isomorphism inv : B(F ) ∼= Q/Z. This is one of the central facts in

local class field theory.

3.3 The Theorem of Merkurjev

In 1981, Merkurjev proved the conjecture suggested by Albert which is an im-

plication of the following theorem.

Theorem 3.3.1 (Merkurjev) Let k2F denote the reduced Milnor K-theory group

of the field F generated by the symbols [a, b] and Br2F be the subgroup of B(F )

generated by all the elements of order ≤ 2. The map α : k2F → Br2F such

that

α([a, b]) =
[(

a, b

F

)]
for any a, b ∈ Ḟ is an isomorphism.

The proof of this theorem is nowhere close to trivial, and is way beyond the

scope of this article. However, we can check intuitively why this is right.

The reduced Milnor K-theory group k2F of the field F , is a multiplicative

group generated by the bimultiplicative symbols [a, b] with a, b ∈ F satisfying

the set of relations

[a, 1− a] = 1 (a ∈ Ḟ , a 6= 1)

[a, b] = [b, a] (a, b ∈ Ḟ )

[a, a] = [a,−1] (a ∈ Ḟ )
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We have already seen that quaternion algebras over F satisfy the same kind

of relations.

(
a, 1− a

F

)
∼=
(

1,−1
F

)
,

(
a, b

F

)
∼=
(

b, a

F

)
,
(a, a

F

)
∼=
(

a,−1
F

)

Therefore the map α is well-defined.

Albert proved that a central simple F -algebra A has order ≤ 2 in B(F ) if

and only if A has an F -involution, but was unable to show that such an algebra

is a tensor product of quaternion algebras. Merkurjev’s result provided an

affirmative answer to Albert’s question. The surjectivity of the map α amounts

to the fact that any element of order 2 in B(F ) is expressible as a product of

quaternion algebras.
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Chapter 4

Characterization of

Quaternion Algebras

4.1 Three Similar Theorems

As a consequence of Albert’s work and Merkurjev’s Theorem, we know that

if A is an algebra which admits an F -involution, then it is a tensor product

of quaternion algebras. And if A is of dimension 4 over F , then of course we

have a quaternion algebra. One of the oldest and most important results is the

theorem of Frobenius on real division algebras.

Theorem 4.1.1 Frobenius’s Theorem on Real Division Algebras

If D is a finite dimensional division algebra over R, then D = R, D = R(i) = C

or D = (H), the division algebra of real quaternions.

Note: The theorem is actually true for finite dimensional division algebras over

any real closed field, here we will present a proof of it with the real closed field

being R. The proof is from Chapter 13 of [7]
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Proof: If D = R, we are done. So we may assume that dimRD ≥ 2. Take an

element α ∈ D\R, then R[α] is a proper algebraic extension of R, so R[α] ∼= C.

Fix a copy of C in D, and view D as a left vector space over C. Let i denote

the complex number
√
−1 ∈ C.

Let

D+ = {d ∈ D : di = id} ⊇ C

D− = {d ∈ D : di = −id}

These are C-subspaces of CD (left vector space) with D+ ∩ D− = 0. Also, for

any d ∈ D, let d+ = id + di, and d− = id− di, then we have

id+ = i2d + idi = −d + idi = di2 + idi = d+i

so that d+ ∈ D+, and similarly d− ∈ D−. Since d = (2i)−1(d++d−) ∈ D++D−,

D is a direct sum of D+ and D−, i.e. D = D+ ⊕D−.

For any d+ ∈ D+, C[d+] = C since C is algebraically closed, thus D+ = C.

If D− = 0, we are done; D = D+ = C. Assume D− 6= 0. Fix an element

z ∈ D−\{0} (so that z 6∈ C). Consider the injective C-linear map µ : D− → D+

sending x 7→ xz. Since dimCD+ = 1, it follows that dimCD− = 1, and so

dimRD = 2 dimCD = 4

Therefore the element z is algebraic over R, but C is already the algebraic

closure of R, so z2 ∈ R + Rz. On the other hand, z2 = µ(z) ∈ D+ = C but

z 6∈ C, then

z2 ∈ C ∩ (R + Rz) = R
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If z2 > 0 in R, then ±z ∈ R, which contradicts z 6∈ C. Thus z2 < 0 in R. Since

every positive real number is a square, there exists r ∈ R such that z2 = −r2.

Letting j = z/r, we have i2 = j2 = −1, and ji = −ij, which shows that

D = C⊕ Cj = R⊕ Ri⊕ Rj ⊕ Rij

and D is a copy of the real quaternions. �

In case the center of the division algebra is not R, but a general field F , we

can identify a quaternion algebra using the following theorem. The proof of this

theorem is exactly similar to the above theorem.

Theorem 4.1.2 Let A 6= F be a simple F -algebra of dimension ≤ 4 with center

F . Then A is isomorphic to a quaternion algebra F . (Section 3.5 of [8])

Proof: By Wedderburn’s Theorem, A ∼= Mn(D) for some positive integer n and

some division algebra D. Since dimF A ≤ 4, we have A ∼= M2(F ) ∼= ( 1,1
F ) (in

which case we are done), or n = 1 and A is a division algebra of dimension 4

over F . Say A is a division algebra, fix a non-central element i ∈ A, and let K

be the field F (i). Since K is a field, the center of it is K, and thus K cannot

be equal to A. Also, F ( K ( A, implies that dimF K = 2 and dimF A = 4.

Therefore K is a quadratic field extension of F , and we may assume that i ∈ K

to have been chosen such that i2 = a ∈ F\{0} (if char F 6= 2). Let f : A → A

be the inner automorphism f(x) = i−1xi. Then f2 = Id, and we have, as in

the previous proof, an eigenspace decomposition A = A+ ⊕A−, where

A+ = {a ∈ A : f(a) = a} = {a ∈ A : ai = ia}

A− = {a ∈ A : f(a) = −a} = {a ∈ A : ai = −ia}
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Now fix an element j ∈ A−. Since K ⊆ A+ and K · j ⊆ A−, we must have

K = A+ and K · j = A−, by considering their dimensions as an F -module and

the fact that dimF A = 4. Since j ∈ A−, ij = −ji and ij2 = j2i; that is,

j2 ∈ A+ = K. Also, F (j) is a quadratic field extension of F , so j satisfies a

quadratic equation j2 + cj − b = 0, for some b, c ∈ F . Now cj = b − j2 ∈ K

implies that c = 0 and j2 = b ∈ F\0. Therefore

A = K ⊕K · j = F ⊕ Fi⊕ Fj ⊕ Fij ∼=
(

a, b

F

)

and A is isomorphic to a quaternion algebra.�

As another way to characterize quaternion algebras, we will also present

a proof of the following theorem. Gerstenhaber and Yang [3] gave a proof of

a modified form of the theorem of Frobenius stated above, by weakening the

assumption and the conclusion. The exact statement is as follows.

Theorem 4.1.3 Modified Frobenius’s Theorem

If D is a division ring containing a real closed field R, such that D is a finite

dimensional left vector space over R, then either D = R, D = R(i) or D is the

quaternion algebra over a real closed field F such that F(i) ∼= R(i)

The proof of this theorem requires quite a lot of tools from the theory of

real closed fields, and here are some of them that we will see in the proof.

4.2 Properties of Real Closed Fields

Recall the definitions of formally real fields and real closed fields. (From [5] and

[9])

Definition 4.2.1 A field is called formally real if
∑n

r=1 a2
r = 0 iff ar = 0 for

any r.
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Definition 4.2.2 A field Φ is called real closed if Φ is formally real and no

proper algebraic extension of Φ is formally real.

Theorem 4.2.3 If Φ is real closed, then any element of Φ is either a square or

negative of a square.

Proof: Say a ∈ Φ is not a square. Then Ω = Φ(
√

a) is a proper algebraic

extension of Φ. And since no algebraic extension of a real closed field is formally

real, Ω is not formally real. Therefore, there exist bi, ci ∈ Φ, ci not all zero, s.t.

∑
(bi + ci

√
a)2 = 0

Expanding, we have

∑
(b2

i + c2
i a) +

∑
2bici

√
a = 0

Since
√

a 6∈ Φ, we have
∑

(b2
i + c2

i a) = 0 =
∑

2bici.

Here,
∑

c2
i 6= 0 since Φ is formally real. Moreover, Σ(Φ), the set of sums of

squares, is closed under addition, multiplication and inverse.(To see why Σ(Φ)

is closed under inverse, if α is a sum of squares, then αα−2 is a sum of squares.)

Thus

−a = (
∑

b2
i )(
∑

c2
i )−1 ∈ Σ(Φ)

But −1 6∈ Σ(Φ) since Φ is formally real. This implies that a 6∈ Σ(Φ). This shows

that if an element is not a square, then it is not a sum of squares. Taking the

contrapositive, if an element is a sum of squares, then it is actually a square.

But we have already shown that if a is not a square, then −a ∈ Σ(Φ) which

implies that −a is a square.

Therefore, either a is a square, or −a is a square.�
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Theorem 4.2.4 Φ is a real closed field if and only if Φ is a field, i 6∈ Φ and

Φ(i) is algebraically closed.

Proof: First assume that Φ is a real closed field. Clearly,
√
−1 6∈ Φ, let’s

consider the algebraic extension Φ(
√
−1) of Φ.

Step 1: Show that every element in Φ(
√
−1) has a square root in Φ(

√
−1).

Proof of 1: First of all, if α ∈ Φ, then we proved that α is either a square

or the negative of a square in Φ. But since
√
−1 ∈ Φ(

√
−1), the negative of a

square in Φ is a square in Φ(
√
−1).

Check that for any x ∈ Φ, x +
√

x2 + 1 ≥ 0 or x−
√

x2 + 1 ≥ 0

otherwise, x +
√

x2 + 1 < 0 and x−
√

x2 + 1 < 0

⇒ (x +
√

x2 + 1)(x−
√

x2 + 1) > 0

⇒ −1 = x2 − x2 − 1 > 0 which is a contradiction.

Let
√
−1 = i. Now consider a general element α+βi where β 6= 0 and α, β ∈ Φ.

Let σ =

√√√√α

β
+

√
α2

β2
+ 1 if

α

β
+

√
α2

β2
+ 1

 > 0

If not, then let σ =

√√√√α

β
−

√
α2

β2
+ 1 with

α

β
−

√
α2

β2
+ 1

 > 0

Therefore, σ ∈ Φ. Then one can check that

(√
β

2
(
σ + iσ−1

))2

= α + βi

where

√
β

2
σ ∈ Φ and

√
β

2
σ−1 ∈ Φ. This finishes Step 1.

Step 2: Show that for any f(x) ∈ Φ[x], f(x) has a root in Φ(
√
−1).

Proof of 2: Let f(x) ∈ Φ[x]. Let E be the splitting field of (x2 + 1)f(x) over

Φ. That means
√
−1 ∈ E, so we may assume that E ⊇ Φ(

√
−1). We have seen

that ordered fields, and thus real closed fields, have characteristic zero. That
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means E is also of characteristic zero, which in turn implies that the extension

E/Φ is separable. Therefore, E is Galois over Φ. Let G be the Galois group, say

G = 2nm where m is odd. By Sylow’s First Theorem, Sylow 2-subgroups exist.

Let H be a subgroup of G of order 2n. Let F be the corresponding subfield of

E, i.e. the subfield fixed by automorphisms in H. We have [E : F ] = 2n and

[F : Φ] = m. However, since Φ is a real closed field, by Theorem ??, every

polynomial of odd degree is reducible in Φ. This implies that Φ does not have

an extension of odd degree. So, m = 1, F = Φ and G = H. Since G has order

2n, G is solvable.

If n = 1, E = Φ(
√
−1) and this means Φ(

√
−1) is the splitting field of (x2 +

1)f(x). Therefore, f(x) has a root in Φ(
√
−1) and we are done.

If n > 1 and E 6= Φ(
√
−1), by the Galois Correspondence, there is a subfield

K of E such that [K : Φ(
√
−1)] = 2. However, by the result of Step 1, we have

that every polynomial of degree 2 over Φ(
√
−1) is reducible. Therefore, there

does NOT exist an algebraic extension of Φ(
√
−1) of degree 2. And this gives a

contradiction. Done for Step 2.

Finally, for any g(x) ∈ Φ(
√
−1)[x], g(x)g(x) ∈ Φ[x], where the bar on top

denotes the conjugate. If a is a root of g(x)g(x), then ā is also a root, since

x − a and x − ā both divide the polynomial. This implies that either a or ā is

a root of g(x). But we have already shown that every polynomial in Φ[x] has a

root in Φ(
√
−1), so g(x) must have a root in Φ(

√
−1). This shows that Φ(

√
−1)

is algebraically closed, and we are done for forwards.

Conversely, assume that Φ is a field, i 6∈ Φ and Φ(i) is algebraically closed.

Let f(x) ∈ Φ[x] be an irreducible polynomial and let θ be a root of f(x) in

Φ(i). Then [Φ(θ) : Φ] ≤ [Φ(i) : Φ] = 2. So the irreducible polynomials in Φ[x]

has degree 1 or 2.
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Next, let’s show that Φ is formally real. Consider the polynomial g(x) ∈ Φ[x],

where

g(x) = (x2 − a)2 + b2

with a, b ∈ Φ, a 6= 0 6= b, then

g(x) = (x−
√

a + bi)(x +
√

a + bi)(x−
√

a− bi)(x +
√

a− bi)

Therefore the linear factors are not in Φ[x], which means that g(x) factors as

two irreducible polynomials in Φ[x].

However (x−
√

a− bi)(x +
√

a− bi) = x2− (a− bi) is not in Φ[x]. Same for the

two linear factors with
√

a + bi. This implies that the only possible irreducible

factors of g(x) are

(x +
√

a + bi)(x +
√

a− bi) and (x−
√

a + bi)(x−
√

a− bi)

or

(x−
√

a + bi)(x +
√

a− bi) and (x +
√

a + bi)(x−
√

a− bi)

In either case, we have
√

a2 + b2 ∈ Φ. In other words, a sum of two non-zero

squares is a square in Φ. Inductively, any sum of squares is a square. Since i is

not in Φ, −1 is not a sum of squares, implying that Φ is formally real.

Since the degree of irreducible polynomials in Φ[x] is 1 or 2, any proper algebraic

extension of Φ is isomorphic to Φ(i), so the extension is not formally real. Φ is

real closed.�

Theorem 4.2.5

A proper algebraic extension of a real closed field is algebraically closed.

Proof: Let R be a real closed field. Let α be algebraic over R.

If i ∈ R(α), then R(α) contains R(i) which is algebraically closed. That means
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R(i) contains the element α since α is algebraic over R. Thus R(i) = R(α) by

double inclusion. In this case, R(α) is a proper algebraic extension of R and is

algebraically closed.

Instead if i 6∈ R(α), consider R(α, i). Since α is algebraic over R, and R(i)

is algebraically closed, R(α, i) = R(i). We thus have [R(α, i) : R] = 2. Also,

i 6∈ R(α) implies that [R(α, i) : R(α)] = 2 . Moreover, we also have R(α) ⊇ R,

that means R(α) = R. Therefore R(α) is not a proper extension of R. �

Theorem 4.2.6 (Artin)

If C is any algebraically closed field of characteristic zero and R is a proper

subfield of C such that [C : R] < ∞, then [C : R] = 2 and C = R(i).

The proof of this theorem can be found in Jacobson, Basic Algebra II, Second

Edition, p.674. One can show that R can be ordered by defining a non-zero

element of R to be positive if it is the norm of an element in C. It follows that

R is a real closed field.

Remark: When C is a larger field than that of all algebraic numbers then the

real closed field R is not determined up to isomorphism.

4.3 R need not be in the center of D

Referring back to the Modified Frobenius Theorem (Theorem 4.1.3), in this

section, we are going to see that the division ring D does not necessarily have

R in the center.

(From a paper of A. BIA LYNICKI-BIRULA [1].)

Proposition 4.3.1 Let R be a real closed field of power continuum, then the

field R(
√
−1) is isomorphic to the field of complex numbers.

Proof: Since R is real closed, R(i) is algebraically closed, by Theorem 4.2.4.

Also, algebraically closed fields of power continuum and of characteristic zero
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are isomorphic to the field of complex numbers.

Therefore if R is a real closed field of power continuum, then R(i) is isomorphic

to the field of complex numbers.�

There exist non-isomorphic real closed fields of power continuum, for exam-

ple the field of all real numbers R and the real closure of the ordered field R(t),

where 0 < t < a for any positive a ∈ R. See [1] and page 655 and 656 of [4].

Also, by the Remark after Theorem 4.2.6, an immediate consequence of

the proposition is as follows:

Corollary 4.3.2 There exist non-isomorphic real closed subfields R and R′ of

the field of complex numbers C such that R(i) and R′(i) are isomorphic to C.

Since C contains R (which is real closed), there exists a subfield R′ of C such

that R 6∼= R′ and C = R(i) ∼= R′(i).

Now let a quaternion algebra over R′ be Q. Since Q contains R′(i) ∼= C, Q

contains a copy R of R. Also, Q has dimension two over C ∼= R(i) ∼= R′(i),

therefore Q is a four dimensional left vector space over R. Since R is not iso-

morphic to R′, R is not in the center of Q.

This example shows that a division ring D may contain R and be a finite dimen-

sional left vector space over R, but that R need not be contained in the center

of D.

4.4 A Few Lemmas and the Proof

Assuming D is a division ring containing a real closed field R such that D is

a finite dimensional left vector space over R. Let i ∈ D satisfy i2 = −1. We

distinguish two cases:
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Case 1: R is a maximal subfield of D.

In other words, there is no (commutative) field F contained in D and properly

containing R. Let Z = center of D. We can say that i 6∈ Z. (If i were in Z,

R(i) would be commutative, and is a proper extension of R in D)

Let A = D ⊗ Z(i), tensor product taken over Z. This is the ring obtained by

extending D to have i in it’s center.

By identifying D and the subring {d⊗1 : d ∈ D}, we may say that D is contained

in A, and every element in A may be written in the form a + bi with a,b ∈ D.

(Since d⊗ (z1 + z2i) = d⊗ z1 + d⊗ z2i = dz1 ⊗ 1 + dz2 ⊗ i) Hence the algebra

A contains a copy of R(i), which we will denote by C and which is algebraically

closed. Any basis of D over R is also a basis of A over C.

Case 2: R is not a maximal subfield of D

Since D is a finite dimensional left vector space over R, D contains a proper

algebraic extension C of R. However, by Theorem 4.2.5, C can only be the

algebraic closure of R. We can write D ⊇ C = R(i). Note that here, i commutes

with every element in R. Now, let A = D, so that in both cases, A contains an

algebraically closed field R(i).

In this part, a few lemmas will be proven, in order to prove Theorem 4.1.3.

In the following proofs, we will often refer to Case 1 and Case 2 described above.

When a statement about A does not specify which case we are dealing with, it

will be meant to hold for both.

Lemma 3 Let x, y be non-zero elements of A. Then there exists λ ∈ R such

that xλy 6= 0.

Proof: In Case 1, if xy 6= 0 we can take λ = 1 so that xλy 6= 0. Thus we may

assume that xy = 0. By writing x = a + bi and y = c + di, where a, b, c, d ∈ D,

we have xy = 0 if and only if a−1b+dc−1 = 0 and (dc−1)2 = −1 by the following

observations.

54



Observation 1: In Case 1 A is obtained by extending D so that i is in the

center, therefore i commutes with a, b, c, and d.

Assume xy = 0, then 0 = xy = (a + bi)(c + di) = ac− bd + (ad + bc)i.

Keep in mind that these products are tensor products, only written like usual

products. And the tensor product is taken over Z which does not contain i. It

should actually be written like 0 = (ac− bd)⊗ 1 + (ad + bc)⊗ i.

From here it’s obvious that (ad + bc) = 0 which means (dc−1 + a−1b) = 0 since

D is a division ring.

Observation 2: Assume xy = 0, then

0 = (a + bi)(c + di) = (a + bi)(a− bi)(c + di)(c− di) = (a2 + b2)(c2 + d2)

and since D is a division ring, we have c2 + d2 = 0 and so (dc−1)2 = −1.

Observation 3: If a−1b + dc−1 = 0 and (dc−1)2 = −1, therefore

0 = c2 + d2 = (a2 + b2)(c2 + d2) = (a + bi)(c + di)(a− bi)(c− di)

so that ((ac − bd) + (ad + bc)i)((ac − bd) − (ad + bc)i) = 0. By the assump-

tion, ad + bc = 0, therefore we have (ac− bd)2 = 0 implying that (ac− bd) = 0.

With ad+bc = 0 and (ac−bd) = 0, it’s easy to see that xy = (a+bi)(c+di) = 0.

Now (dc−1)2 = −1 implies that dc−1 6∈ R, since R is formally real. If

it’s not in R but it commutes with everything in R, this would give a proper

commutative extension of R in D. However, R is maximal in D in Case 1, so

this can’t happen. Therefore, there exists a λ ∈ R such that λdc−1λ−1 6= dc−1.

Then a−1b + (λd)(λc)−1 6= 0, hence xλy 6= 0.

And for Case 2, A=D which is a division ring and we can take λ = 1. �
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Right multiplication by a ∈ A to elements in A is a linear transformation

on A (as a vector space over C). Let this transformation be Ra : A → A such

that Ra(x) = xa for any x ∈ A. In particular Rλ is defined for all λ ∈ C.

Left multiplication La by an element a ∈ A is not always a linear transformation

over C. La is a C-linear transformation if and only if a commutes with every

element of C. In particular, Lλ is a linear transformation for every λ ∈ C.

For λ ∈ C, let Cλ = Rλ−Lλ, so that Cλ(x) = xλ−λx for all x ∈ A. Note that if

λ ∈ R, then Cλ is a linear transformation of D into itself. Also Cλ is a derivation

of D. (A derivation is a function d : D → D satisfying d(ab) = ad(b) + d(a)b)

Lemma 4 If λ ∈ R and Cλ is nilpotent, then Cλ is the zero transformation.

i.e. λ is in the center of D.

Proof: Let a be an element of D. First let’s assume Cλ
2(a) = 0. Cλ is a

derivation of D, so we have Cλ(a2) = aCλ(a) + Cλ(a)a and so

Cλ
2(a2) = Cλ(a)Cλ(a) + aCλ

2(a) + Cλ
2(a)a + Cλ(a)Cλ(a) = 2Cλ(a)2

and Cλ
3(a2) = 2Cλ(a)Cλ

2(a) + 2Cλ
2(a)Cλ(a) = 0 With these base cases, ap-

plying induction, one can prove that Cλ
m(an) = 0 if m > n, and

Cλ
n(an) = n!Cλ(a)n for n > 1

Since D is finite dimensional over R, a satisfies some equation of the form

an + r1a
n−1 + · · ·+ rn = 0

Applying Cλ on the above equation n times, we have n!Cλ(a)n = 0, which

means Cλ(a) is nilpotent. However Cλ(a) belongs to D which is a division
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algebra, that means Cλ(a) = 0. Here we proved that if a ∈ D and Cλ
2(a) = 0

then Cλ(a) = 0.

As in the assumption in the lemma, Cλ is nilpotent. For b ∈ D, ∃ a least

non-negative integer m such that Cλ
m(b) = 0. But if m > 1,

Cλ
m(b) = Cλ

2(Cλ
m−2(b)) = 0

and from above, we know that Cλ(Cλ
m−2(b)) = 0, that is Cλ

m−1(b) = 0 which

contradicts the minimality of m. Therefore m = 1 and Cλ is the zero transfor-

mation. This finishes the proof.�

The transformations Rλ commute for all λ ∈ C. Therefore they have the

same generalized eigenspaces. Thus, A can be written as a direct sum of sub-

spaces A = A1 + · · ·+ Ak such that,

1) Rλ(An) ⊆ An for λ ∈ C and n = 1, 2, · · · , k,

2) for each λ and n, Rλ has only one generalized eigenvalue λn in An, i.e.

Rλ − Lλn
restricted to An is nilpotent.

3) Each An is irreducible. In other words, it cannot be expressed as a direct

sum of proper subspaces with properties 1) and 2).

In each An, there exists a non-zero dn, unique up to left multiplication by ele-

ments in C, which is an eigenvector simultaneously for all Rλ for λ ∈ C. That is,

given λ ∈ C and n, there exists λn ∈ C such that dnλ = λndn. Define σn : C → C

by σn(λ) = λn. If λ 6= 0, then λn 6= 0. And since dn is an eigenvector for all Rλ

simultaneously, σn will preserve addition and multiplication, so it is an isomor-

phism of C into itself.

Note that if for some λ ∈ C we have σn(λ) = λ, then Rλ−Lλ is nilpotent. (This

is explained in the second property of the decomposition of A.)
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Lemma 5 Let a1, · · · , am be non-zero elements of A and suppose that for each

n there exists an isomorphism τn from C to C such that anλ = τn(λ)an for all

λ ∈ C. If the τn are distinct, for n = 1, · · · ,m, then {a1, · · · am} is linearly

independent over C.

Proof: Assuming the contrary, there is a relation of the form
∑

µnan = 0 with

µn ∈ C not all zero. A is a division ring, so the relation has more than one

term. Suppose that this relation has the minimum number of non-zero terms.

If for any λ ∈ C, τj(λ) = τi(λ), for all i, j such that µi 6= 0, µj 6= 0, these τj

will not be distinct, which is a contradiction. Let λ be an element of C and

fix a j such that τj(λ) 6= τi(λ) for some i 6= j such that µi, µj 6= 0. Then,

τj(λ)−1
∑

µnanλ = 0 and using anλ = τn(λ)an given in the lemma, we have∑
µnτj(λ)−1τn(λ)an = 0. Subtracting this from

∑
µnan = 0 gives a relation

with fewer non-zero terms, which is a contradiction. The lemma is proven. �

Lemma 6 Let σ and τ be isomorphisms from C to C and suppose there exist

non-zero elements a and b of A such that aλ = σ(λ)a and bλ = τ(λ)b for all

λ ∈ C. Then there is a non-zero c ∈ A such that cλ = σ(τ(λ))c for all λ ∈ C.

Proof: By Lemma 3, there exists a µ ∈ C such that aµb 6= 0. Let c = aµb,

then

cλ = (aµb)λ = aτ(λ)b = aτ(λ)µb = σ(τ(λ)(aµb) = σ(τ(λ))c

Lemma 7 The isomorphisms σ1, σ2, · · · , σk of C generate a finite group G of

order 1 or 2.

Let F ⊆ C denote the fixed field of G. i.e. λ ∈ F if and only if σ(λ) = λ for all

σ ∈ G. We have either [C : F ] = 2, F is a real closed field, and C = F(i), or

else C = F .

Proof: Let G denote the semigroup generated by σ1, σ2, · · · , σk. By Lemma

6, if τ ∈ G, then there exists an aτ ∈ A such that aτλ = τ(λ)aτ for all λ ∈ C.
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(The a and b in Lemma 6 exist because of the existence of eigenvectors dn in

each An) By Lemma 5 the aτ corresponding to distinct elements τ of G are

linearly independent over C , hence finite in number since A is finite dimensional

over C. Therefore G is finite, from which it follows that G is a group. Since

[C : F ] equals the order of the group G, which is finite, by Artin’s Theorem,

either C = F (in which case G has order 1), or [C : F ], F is real closed, C = F(i)

and G has order 2. �

Note that any element of C which is in the center of A must commute with

aτ , as defined above, for any τ ∈ G. Therefore it must be in the fixed field F

of G.

Proposition 4.4.1

Let D be a division ring over a real closed field R over which D has finite

dimension as a left vector space. If R is a maximal subfield of D (i.e. Case 1),

then D = R.

Proof: By construction in Case 1, i is in the center of A and therefore, as

explained above, in the fixed field F of G. Therefore F is not a real field and by

Lemma 7, C = F . It follows that the generalized eigenvalues of Rλ are equal

to λ for any λ ∈ C and so Rλ−Lλ is nilpotent. In particular this is true for any

λ ∈ R, by Lemma 4, λ is in the center of D. So R is in the center of D. By

the general form of Frobenius Theorem (Theorem 4.1.1), D = R, D = R(i)

or D is the quaternion algebra over R. However for the last two cases R is not

a maximal subfield of D, so we conclude that D = R.

Proposition 4.4.2

In Case 2, F is the center of D.

Proof: The center Z of D must be contained in C, since C ⊆ D is algebraically

closed. In Case 2, A = D, so C ∩ Z is in F . For the other containment, if
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λ ∈ F , then λ is fixed by the group G, and so Rλ has generalized eigenvalue λ.

Therefore Rλ−Lλ is nilpotent, and by Lemma 4, λ is in Z. So the proposition

is proved by double inclusion.�

C has dimension 2 over F and D is finite dimensional over C, so D is a finite

dimensional division algebra over the real closed field F and we can then apply

the Frobenius Theorem. Although we have C = F(i), and C = R(i), we cannot

say that R ∼= F , as explained before using the power continuum argument.

(Note that if R is the field of real algebraic numbers, then R ∼= F)

The results we have now is a proof of Theorem 4.1.3, which we’ll restate below.

Theorem 4.1.3 Modified Frobenius’s Theorem

If D is a division ring containing a real closed field R, such that D is a finite

dimensional left vector space over R, then either D = R, D = R(i) or D is the

quaternion algebra over a real closed field F such that F(i) ∼= R(i)
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