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Abstract

Let E be an elliptic curve over the rationals without complex multiplication such

that any elliptic curve Q-isogenous to E has trivial Q-torsion. Koblitz conjectured

that the number of primes less than x for which ∣E(Fp)∣ is prime is asymptotic to

CE
x

(logx)2

for CE a real positive constant dependent on E. Miri and Murty showed that for

infinitely many p, ∣E(Fp)∣ has at most 16 prime factors using the lower bound

sieve and assuming the Generalized Riemann Hypothesis. This thesis generalizes

Koblitz’s conjectures to a function field setting through Drinfeld modules. Let φ be

a Drinfeld module of rank 2, and Fq a finite field with every Fq[t]-isogeny having no

Fq[t]-torsion points and with Endk(φ) = Fq[t]. Furthermore assume that for each

monic irreducible l ∈ Fq[t], the extension generated by adjoining the l-torsion points

of φ to Fq(t) is geometric. Then there exists a positive constant Cφ depending on

φ such that there are more than

Cφ
qx

x2

monic irreducible polynomials P with degree less then x such that χφ(P ) has at

most 13 prime factors. To prove this result we develop the theory of Drinfeld

modules and a translation of the lower bound sieve to function fields.
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Chapter 1

Introduction

1.1 Motivation

The twin prime conjecture asks whether infinitely many pairs of the form p, p + 2

where both p and p + 2 are prime exist. This question has generated countless

amounts of research and has motivated many techniques. In the following we study

a problem, though seemingly unrelated to the twin prime conjecture, which shares

the same structure and can be studied by similar means. We begin this study with

an overview of classical approaches to the twin prime conjecture.

1.1.1 Heuristics

Consider the following question: “How many primes p between 5 and n have the

property that p + 2 is prime?” Recall that the prime number theorem gives an

asymptotic expression for the number of primes less then n as n/ logn. Heuristically

the ‘probability’ that an integer 1 ≤m ≤ n is prime (denoted P (m)) is just 1/ logn.

This tempts us to say

P (p and p + 2 are prime) =
1

(logn)2

However this is under the assumption that the events, ’p is prime’ and ’p + 2 is

prime’ are independent, which is certainly not the case.

To account for dependence we use conditional probabilities. Note that for an
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arbitrary integer m ≤ n

P (p and p+2 are prime) =
P (p + 2 is prime∣p is prime)

P (m is prime)
P (p is prime)P (m is prime).

(1.1)

Now if we know that p is prime, then p ≢ 0 mod l for any prime l ≠ p. Thus

p + 2 can lie in l − 1 congruence classes modulo l of which l − 2 are nonzero, hence

P (l ∤ p) =
l − 2

l − 1
. If we assume that the probability that l ∤ p is independent for

different primes l, then

P (p + 2 is prime∣p is prime) = ∏
l≥3

l prime

l − 2

l − 1
.

This probability is approximately .66. Using similar reasoning as above we can also

see that

P (m is prime) = ∏
l≥3

l prime

l − 1

l
.

Also we see that by the above P (p is prime) = P (m is prime) = 1/ logn. Combining

these results and using (1.1) gives,

P (p and p + 2 are prime) = ∏
l≥3

l prime

(1 −
1

(l − 1)2
)

1

(logn)2
.

In particular Hardy and Littlewood extended this heuristic to the following

conjecture

Conjecture 1.1.1 ([6]). The number of twin prime pairs less then n, is asymptotic

to

2 ∏
l≥3

l prime

(1 −
1

(l − 1)2
)

n

(logn)2
.

Note that in our analysis we are assuming that p is any integer, however we

know for a fact that p + 2 must be odd so since there is a 1/2 probability of a

random integer being odd, leading too the correction factor of two so we do not

just count half the number of twin prime pairs.
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1.1.2 A Sieve

To establish the heuristics in the previous section, we need to be able to compute

an asymptotic formula for

∑
p≤x

p+2 is prime

1.

Presently such a direct attack is infeasible. As often happens in number theory we

are forced to study a weighted version of this sum using sieve methods.

In [1] Bombieri applied the lower bound sieve to establish the following result

Theorem 1.1.1. There are infinitely many primes p such that p+ 2 has at most 4

distinct prime factors.

Our exposition of this result is due to Murty and Cojocaru [2].

Bombieri studied the sum

∑
p≤x

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
d≤x1/8(logx)−B

d squarefree
d∣p+2

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

⎛
⎜
⎜
⎜
⎝

2 − ∑
q≤x1/4(logx)B

q∣p+2

1

⎞
⎟
⎟
⎟
⎠

where B is a positive constant and the λd are positive weights bounded in absolute

value by one. Using the lower bound sieve, he managed to show that for large x

the expression is positive. Thus for infinitely many x there must exist primes p for

which

2 − ∑
q≤x1/4(logx)B

q∣p+2

1 (1.2)

is positive. So for infinitely many p, p+2 has at most one odd prime factor less than

x1/4(logx)B, yet p + 2 can have at most 3 prime factors greater then x1/4(logx)B.

Thus there are infinitely many primes for which p + 2 has at most 4 prime factors.

We will study the lower bound sieve in more depth in Chapter 4.

1.2 Koblitz’s Conjecture

1.2.1 An analogous problem

In a seminal paper in 1988 Neal Koblitz outlined the fundamentals of elliptic curve

cryptography (see [8]). His method was based on the difficulty of the discrete

3



logarithm problem for certain elliptic curves defined over finite fields. In particular

a secure choice can be made by choosing an elliptic curve E and a finite field Fp so

that the group of points, E(Fp) has prime order.

For a fixed elliptic curve E let Np be the size of the set of points on the elliptic

curve over the finite field Fp for p prime. To prevent singularities we insist that

p ∤ ∆ where ∆ is the discriminant of E. In addition E must not be Q-isogenous

to a curve with nontrivial Q-torsion or have complex multiplication. In this case

Koblitz formulated the following conjecture

∣{primes p ≤ n, p ∤∆,Np is prime }∣ ≍ C
n

(logn)2
.

where C is a positive constant of the form ∏l prime a(l) which depends on E. To

understand this, we can use the heuristic method used for the twin prime conjecture.

Firstly we need to compute the probability that a given prime l does not divide

Np. Let E[l] denote the l-torsion points of E. Recall the following

Lemma 1.2.1. For an elliptic curve E defined over C, we have the following iso-

morphism of groups:

E[l] ≅
Z
lZ

×
Z
lZ
.

In particular the extension Q(E[l])/Q obtained by adjoining the coordinates of the

points in E[l] to Q is Galois.

Proof. Recall that the Weierstrass ℘ function induces a complex analytic isomor-

phism between the elliptic curve E and the torus
R2

Z + τZ
for an algebraic number τ

given by the Uniformization theorem (see for example [17], Corollary 5.1.1). Thus

the points of order l correspond to the points

(
m

l
,
nτ

l
) where 0 ≤m,n ≤ l − 1.

If (x, y) denotes a generic point of E then the equations giving [m](x, y) = 0

where [m] denotes the Z module operation of multiplying by m on a point of

E, are rational functions in x and y and the coefficients of E. Let σ ∈ Gal(Q),

then (σ(x), σ(y)) will satisfy [m](σ(x), σ(y)) = 0 and so given P ∈ E[l] we see

σ(P ) ∈ E[l].

This isomorphism gives rise to an action of the Galois group Gl of the Galois

extension Q(E[l])/Q onto the two dimensional Z/lZ vector space E[l]. In particular
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p ≠ l is unramified in this extension if and only if p ∤ NE (the conductor of E) i.e.

if E has good reduction over p. Furthermore Np is divisible by l if and only if the

Frobenius element σP of every P lying over p corresponds to an element in Gl fixing

a subspace of dimension one of E[l]. For p unramified, the σP form a conjugacy

class of Gl that we denote by the Artin symbol σp (see [18] for details).

Note that if E had non-trivial l-torsion then this would imply a point of order

l in E(Fp) for all but finitely many primes p. Then Np would not be prime since it

is divisible by l.

Serre ([16]) proved that for elliptic curves without complex multiplication, Gl =

GL(2,Z/lZ) for all but finitely many primes l. Let L′ denote the set of exceptions.

For the Artin symbol σp to fix a subspace of dimension one of E[l] we see that

for each P ∣p, σP must have eigenvalue one and hence σp must be contained in the

conjugacy class of matrices in GL(2,Z/lZ) with eigenvalue one. The probability of

this occurring is
∣{g ∈ Gl∣g has eigenvalue 1}∣

∣Gl∣
.

We can explicitly compute this ratio in the case l ∉ L′ to see that

P (l∣Np) =
l2 − 2

(l2 − 1)(l − 1)
.

To put this probability in perspective note that

l2 − 2

(l2 − 1)(l − 1)
=

1

l
+

1

l2
+O (

1

l3
) ≥

1

l
.

So the probability that l does divide Np is slightly bigger then if Np was random.

Now we can compute the probability that Np is prime given that p ≤ n. Re-

stricting to the case where L′ is empty, (so called ’Serre Curves’), and recalling the

formulation of Section 1.1.1

P (p and Np are prime) =
P (Np is prime∣p is prime)

P (m is prime)
P (p is prime)P (m is prime).

for any m ≤ n. Also

P (Np is prime∣p is prime) =∏
l≥3

P (l ∤ Np) =∏
l≥3

⎛

⎝

1 − l2−2
(l2−1)(l−1)

1 − 1
l

⎞

⎠

5



Table 1.1: Predicted and computed estimates for f(n) (see [8])

n Predicted f(n) f(n)
2000 26 30
4000 42 42
6000 55 51
10000 80 77
14000 103 103
18000 125 123
22000 145 141
26000 165 165
30000 184 183

so

P (p and Np are prime) =∏
l≥3

(1 −
l2 − l − 1

(l2 − 1)(l − 1)2
)

1

logn2
.

This density is approximately .5052. In the case where L′ is not empty we simply

change the respective probabilities, P (l ∤ Np), for the primes in L′.

As a concrete example Koblitz considers the Serre curve y2+y = x3−3. Let f(n)

denote ∣{p ≤ n ∶ p ∤∆,Np is prime }∣. Table 1.2.1 lists some values of f(n) and the

corresponding prediction by Koblitz’s conjecture. A sketch of this elliptic curve is

also given in Figure 1.1.

The Tchebotarev density theorem gives an effective estimate on the number of

unramified primes whose Frobenius elements lie in the conjugacy class of Gl which

have eigenvalue one.

Theorem 1.2.2 (The Effective Tchebotarev Density Theorem, [9]). Let L/K be a

finite extension of number fields and given a prime p ∈ K let σp denote the Artin

symbol of p. Let G be the Galois group of this extension and C a union of conjugacy

classes in G. Then assuming the Generalized Riemann Hypothesis (abv. GRH), if

πC(x) denotes the number of primes p in K with σp in C and NK/Qp (the norm of

p) less than some x ∈ Z,

πC(x) =
∣C ∣

∣G∣
πK(x) +O (

∣C ∣

∣G∣
x1/2(log dL + [L ∶ Q] logx))

where πK(x) denotes the number of primes in K with norm less than x and dL is

the discriminant of L.

6
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Figure 1.1: The Serre curve y2 + y = x3 − 3

In the case of Koblitz’s conjecture, K is Q, L is Q(E[l]) and C is the set of all

elements of Gl with eigenvalue one (denoted by C1). When l ∉ L′, ∣C1∣ = l2 − 2 and

∣Gl∣ = (l − 1)(l2 − 1) giving,

{p ≤ x ∶ l∣Np, p is unramified} = {p ≤ x ∶ σP has eigenvalue one for all P ∣p, p is unramified}

(1.3)

=
l2 − 2

(l − 1)(l2 − 1)
lix +O(l3/2x1/2 log(lNEx)) (1.4)

In general define a multiplicative function

δ(l) =
(l − 1)(l2 − 1)

l2 − 2
(1.5)

for l ∉ L′.

For l ∈ L′, define δ(l) to be the reciprocal of the size of the conjugacy class of

elements in Gl with eigenvalue one, C1, to ∣Gl∣. For this to be well defined ∣C1∣ must

be nonzero. In this case Np would be divisible by l for a positive density of primes

p namely, density ∣C1∣/∣Gl∣. But this cannot happen since E has no Q-torsion and

by the following theorem due to Katz.
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Theorem 1.2.3 ([7], Theorem 2). Let E be an elliptic curve over a number field

K, and m ≥ 2 an integer. If we have

Np ≡ 0 mod m

for a set of primes p of density one in K, then there exists a K-isogenous elliptic

curve E′ over K for which

∣Torsion of E′(K)∣ ≡ 0 mod m.

By the Ogg-Neron-Shafarevich criterion for elliptic curves δ is multiplicative

and we have that

∣{p ≤ x ∶ d∣Np, p is unramified}∣ =
1

δ(d)
lix +O(d3/2x1/2 log(dNEx)). (1.6)

for any d squarefree.

1.2.2 A First Sieve Approach

Miri and Murty applied the lower bound sieve to Koblitz’s conjecture in an analo-

gous fashion to the twin prime conjecture to prove the following result.

Theorem 1.2.4 ([11]). Assume the GRH. Let E be an elliptic curve without com-

plex multiplication. Then there exists a real positive constant CE such that there

are at least

CE
x

(logx)2

primes p ≤ x such that Np has at most 16 prime factors counting multiplicity.

We now sketch an outline of their proof beginning with a formulation of the

sieve methods used.

1.2.3 The General Sieve Problem

Let A be a finite set of integers and for p prime let Ap = {a ∶ a ∈ A, p∣f(a)} for

some function f ∶ A → Z. For d-squarefree let Ad =⋂
p∣d

Ap. Choose X to be a close

approximation to the size of A and δ a multiplicative function so that (1/δ(d))X

8



is a close approximation to the size of Ad. Define the remainder terms rd to be

rd ∶= ∣Ad∣ −
1

δ(d)
X.

Let P be a set of primes and P (z) =∏
p≤z
p∈P

p. The general sieve problem requires us to

determine the number of elements in A which are not divisible by any primes in P.

Hence we have to ’sift’ A by the set of primes P or compute the sieving function

S(A,P, z) = ∣{a ∈ A ∶ (f(a), P (z)) = 1}∣ = ∣A/ ⋃
p∣P (z)

Ap∣.

The most elementary techniques in sieving involve inclusion exclusion arguments

however we will study a weighted version of the sieve problem given by the lower

bound sieve.

Recall that given two arithmetic functions, ν and κ, the Dirichlet convolution

is

ν ∗ κ(n) =∑
d∣n

ν(d)κ(
n

d
)

Theorem 1.2.5. Keep the notation as above. Let δ(d) be a multiplicative function

for d squarefree. Let δ1 be the Dirichlet convolution δ ∗µ. Then for any y, z > 0 and

for any sequence of real numbers αt, λd which are supported at squarefree positive

integers composed of primes of P, we have

∑
a∈A

⎛
⎜
⎜
⎝

∑
t≤y
a∈At

αt

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
d≤z
a∈Ad

λd

⎞
⎟
⎟
⎠

2

= ∆X +E (1.7)

where

E ∶= O

⎛
⎜
⎜
⎜
⎝

∑
m≤yz2

m∣P (yz)

⎛
⎜
⎜
⎝

∑
t≤y
t∣m

∣αt∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
d≤z
d∣m

∣λd∣

⎞
⎟
⎟
⎠

2

∣rm∣

⎞
⎟
⎟
⎟
⎠

and

∆ = ∑
t≤y,d≤z

t∣P (y),d∣P (z)
(t,d)=1

αt
δ(t)δ1(d)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
r≤z/d
r∣P (z)
r∣t

µ(r)zdr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

(1.8)
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with

zr = µ(r)δ1(r) ∑
s≤z/r
s∣P (z)

λsr
δ(sr)

(1.9)

for any positive squarefree integer r composed of primes of P.

Note that with our definition of zr

λd = µ(d)δ(d) ∑
r≤z/d
r∣P (z)

µ2(rd)

δ1(rd)
zrd (1.10)

thus a choice of zr gives a choice of λd. We will omit a proof of the lower bound

sieve in the classical case. However in a later section we will give a proof of an

adapted version.

1.2.4 Applying the Sieve

For the specific case of Koblitz’s conjecture we use the following setup. Let A = {p ∶

p ≤ x} and f(p) = Np. We need an estimate on ∣Ad∣ and X. We can easily see that

X = π(x) where as usual π(x) denotes the number of primes less than or equal to

x. To compute ∣Ad∣ we recall the discussion given in Section 1.2.2 and apply the

effective form of the Tchebotarev density theorem given in (1.6).

∣Ad∣ = ∣{p ≤ x ∶ d∣Np, d ∤∆}∣ (1.11)

=
1

δ(d)
lix +O(d3/2x1/2 log(dNx)) (1.12)

where δ(d) is given by (1.5). This implies:

rd ≪ d3x1/2 log(dNx).

For now let y, z > 1 be free parameters and choose bounded sequences αt and λd

supported at squarefree integers such that αt = 0 for t > y, λd = 0 if d > z and with

10



∣λd∣ < 1. We first consider the error term E from Theorem 1.2.5

E ≪ ∑
m≤yz2

m∣P (yz)

⎛
⎜
⎜
⎝

∑
t≤y
t∣m

∣αt∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
d≤z
d∣m

∣λd∣

⎞
⎟
⎟
⎠

2

∣rm∣

≪ ∑
m≤yz2

d(m)3m3x1/2(log(mNx))

≪ (yz2)4x1/2+ε log(xN).

where d(m) is the number of positive divisors of m. If we require yz2 ≪ x1/8−ε then

we can see that this error is ≪ x1−ε.

We will now choose the αt and zr (since this gives a choice for λd) in two different

ways. Our first choice is

αt =

⎧⎪⎪
⎨
⎪⎪⎩

1, if t = 1,

0, otherwise
(1.13)

and

zr =

⎧⎪⎪
⎨
⎪⎪⎩

z1, if r < z and r is squarefree,

0, otherwise
(1.14)

for z1 a positive constant.

With this choice, equation (1.7) is

∑
p≤x

⎛
⎜
⎜
⎝

∑
d∣Np
d<z

λd

⎞
⎟
⎟
⎠

2

= z2
1 (∑

m<z

µ2(d)

δ1(d)
lix) +O(x1−ε) (1.15)

where our error term comes from the computation above.

Let our second choice of αt be

αt =

⎧⎪⎪
⎨
⎪⎪⎩

1, if t is prime < y,

0, otherwise
(1.16)

This allows αt to count divisors of Np. With the same choice of zr as above,
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equation (1.8) becomes

∆ = ∑
t≤y,d≤z

t∣P (y),d∣P (z)
(t,d)=1

αt
δ(t)δ1(d)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
r≤z/d
r∣P (z)
r∣t

µ(r)zdr

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

(1.17)

= ∑
d<z

µ2(d)

δ1(d)

⎛
⎜
⎜
⎜
⎝

∑
z
d
<l<y
l∤d

1

δ(l)

⎞
⎟
⎟
⎟
⎠

z2
1 (1.18)

At this point we apply some involved estimates and the GRH on the previous

result and equation 1.2.5 to conclude

∑
a∈A

⎛
⎜
⎜
⎝

∑
t≤y
a∈At

αt

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
d≤z
a∈Ad

λd

⎞
⎟
⎟
⎠

2

∼ (lix)((1 + log (
log y

log z
)) ∑

m<z

µ2(m)

δ1(m)
z2
1) . (1.19)

with αt and zr from our second choice. Though the details of this calculation will

be omitted we will prove something similar in Chapter 4.

Choose

y = x1/16+ε

and

z = x1/32−ε

thus preserving the condition that yz2 < x1/8−ε. Then subtracting equation (1.19)

from twice equation (1.15) gives the asymptotic

∑
a∈A

⎛
⎜
⎝

2 − ∑
t

a∈At

αt
⎞
⎟
⎠

⎛
⎜
⎜
⎝

∑
d

a∈Ad

λd

⎞
⎟
⎟
⎠

2

∼ lix((1 − log (
log y

log z
)) ∑

m<z

µ2(m)

δ1(m)
z2
1) . (1.20)

Now

1 − log (
log y

log z
) = 1 − log(

log(x1/16+ε)

log(x1/32−ε)
)

= 1 − log(

1
16 + ε
1
32 − ε

) > 0

12



Since this quantity is positive as x tends to infinity, for infinitely many primes p

⎛
⎜
⎝

2 − ∑
t

a∈At

αt
⎞
⎟
⎠
> 0. (1.21)

Our choice of αt now implies that ∑
t

a∈At

αt counts the prime divisors of Np less then y.

So for infinitely many primes Np has at most one prime factor less then y. Now since

p ≤ x and by Hasse’s bound, Np ≪ p (see [17]), we see that Np can have at most

15 prime factors greater then y. Thus Np can have at most 16 prime factors. Note

the similarity between equation (1.20) and the expression (1.2) used by Bombieri

for the twin prime conjecture.

Now recall from (1.10) that

λd = µ(d)δ(d) ∑
r≤z/d
r∣P (z)

µ2(rd)

δ1(rd)
zrd (1.22)

thus with our choice of zd we see

∑
d∣Np
d<z

λd ≪∑
d<z

δ(d)∑
r≤ z

d

1

δ1(rd)
∣z1∣

≪ log z

≪ logx.

Combining the previous estimate, (1.15) and the estimate lix ≍
x

logx
, the num-

ber of primes satisfying (1.21) is at least

CE
x

(logx)2
,

where CE is a real positive constant depending on E.

1.2.5 An Improved Result

By applying stronger sieving techniques we can hope to improve on Miri and

Murty’s result. Steuding and Weng have effectively applied the linear sieve with

logarithmic weights to prove the following.
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Theorem 1.2.6 ([18]). Assume the GRH. Let E be an elliptic curve without com-

plex multiplication such that any elliptic curve Q-isogenous to E has trivial Q tor-

sion. Then there exists a real positive constant CE such that there are at least

CE
x

(logx)2

primes p ≤ x such that Np is a product of at most 8 primes counting multiplicity.
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Chapter 2

Function Fields and the Drinfeld

Module

2.1 Function Fields

2.1.1 Number Theory in Function Fields

Fix a finite field Fq of prime characteristic p with size q = pc with c ∈ N. Let

A = Fq[t] be the polynomial ring over Fq with k = Fq(t), as the rational function

field. In general a function field will be a finite algebraic extension of k. Func-

tion fields possess a rich arithmetic structure analogous to that of the integers.

Many arithmetic quantities such as the Euler-Phi function and the prime counting

function translate well and have the same properties as their counterparts in the

integers. Furthermore Drinfeld modules give effective generalizations of cyclotomic

fields and elliptic curves.

This chapter will explain these connections and describe the number theoretic

properties of A. The ultimate goal is to translate Koblitz’s conjecture for elliptic

curves to Drinfeld modules. The majority of this section is based on the exposition

in [15].

Given f ∈ A, we can express f(t) = antn + an−1tn−1 + ⋯ + a0 for ai ∈ Fq. The

degree of f , denoted by deg f is the highest power of f with a nonzero coefficient.

By convention we define the degree of 0 to be −∞.

The following theorem says that A is a Euclidean domain and hence a unique

factorization domain.

15



Theorem 2.1.1. Let f, g ∈ A with g ≠ 0. Then there exist elements q, r ∈ A such

that f = qg+r and r = 0 or deg r < deg g. Moreover q and r are uniquely determined

by these conditions.

Proof. See Theorem 1.1 in [15].

Define

∣g∣ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qdeg g if g ≠ 0,

0 if g = 0.

Theorem 2.1.2. Let g ∈ A and g ≠ 0, then A/gA is a finite ring with ∣g∣ elements.

Proof. Using the division algorithm, we can quickly see that

{r ∈ A∣deg r <m}

is a set of coset representatives for gA. There are ∣g∣ such representatives.

For m ∈ Z, ∣m∣ = ∣Z/mZ∣, motivating the notation ∣g∣ above. We have the

following theorem about units.

Lemma 2.1.3. Let P be an irreducible polynomial in A and let e be a positive

integer. Then the size of the unit group of A/P eA (denoted (A/P eA)∗) is ∣P ∣e−1(∣P ∣−

1).

Proof. First we consider the case when e = 1. Since P is prime and A is a Euclidean

domain, PA is maximal hence A/PA is a field. Thus ∣(A/PA)∗∣ = ∣P ∣ − 1. In the

case where e > 1, PA/P eA is the unique maximal ideal of A/PA. Since (A/PA)∗ =

A/P eA − PA/P eA we see that ∣A/PA∣ = ∣P ∣e − ∣PA/P eA∣ = ∣P ∣e − ∣P ∣e−1, concluding

the proof.

Given f ∈ A and g ∈ A, with deg g < deg f, g will be a unit in A/fA if and only

if g is relatively prime to f. Let ϕ(f), the Euler-Phi function, denote the size of

the unit group of A/fA.

Theorem 2.1.4. If f ∈ A has the prime decomposition f = P e1
1 P

e2
2 ⋯P en

n then

ϕ(f) = ∣f ∣∏
P ∣f

(1 −
1

∣P ∣
) .
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Proof. From the Chinese Remainder Theorem

A

fA
=

A

P e1
1 A

×
A

P e2
2 A

⋯×
A

P en
n A

thus

ϕ(f) = ∣
A

fA
∣ = ∏

Pi∣f

∣
A

P ei
i A

∣

= ∏
Pi∣f

∣Pi∣
ei−1(∣Pi∣ − 1)

= ∣f ∣∏
Pi∣f

(1 −
1

∣Pi∣
)

2.1.2 Prime Number Theorem

The rich structure of function fields gives a natural analogue of the classical zeta

function.

Define the zeta function of A to be the series,

ζA(s) = ∑
f∈A

f monic

1

∣f ∣s
.

Since there are qd monic polynomials in A of degree d, we have

ζA(s) =∑
d≥0

qd

qds
=

1

1 − q1−s
,

an analytic function for all complex numbers s with real part greater then 1.

Analogous to the case for the classical Riemann zeta function, ζA(s) affords an

Euler product representation given by

ζA(s) = ∏
P monic irreducible

(1 −
1

∣P ∣s
)

−1

.

Let md be the number of monic irreducibles of degree d, then

ζA(s) =∏
d≥1

(1 −
1

qds
)
−md

.

17



This equation is the basis for the prime number theorem in function fields.

Theorem 2.1.5. The number md of monic irreducible polynomials of degree d in

A is given by

md =
qd

d
+O(

q
d
2

d
) .

Remark 2.1.6. If we let x = qd and πq(d) = md then we can rewrite the previous

expression as

πq(d) =
x

logq x
+O(

√
x

logq x
) .

This is similar to the conjectured classical version of the prime number theorem

dependent on the Riemann Hypothesis. In function fields the Riemann Hypothesis

trivially holds due to the ’nice’ form of the zeta function.

Proof. Firstly

∏
d≥1

(1 −
1

qds
)
−md

=
1

1 − q1−s
.

Let u = q−s and take logarithms of both sides of the previous expression.

∞

∑
d=1

−md log(1 − ud) = − log(1 − qu).

After differentiating and multiplying both sides by u we arrive at

∞

∑
d=1

qmd

1 − ud
ud =

qu

1 − qu

so by comparing coefficients of un on both sides we see

∑
d∣n

dmd = q
n.

Using Möbius inversion on the above gives

mn =
1

n
∑
d∣n

µ(d)q
n
d .

Now note that the highest power of q occurring in the sum above is qn. The next

highest power is q
n
2 followed by at most n terms with power no higher then q

n
3 .

Thus

∣mn −
qn

n
∣ ≤

q
n
2

n
+ q

n
3

giving our result.
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2.1.3 The Tchebotarev Density Theorem

The Tchebotarev density theorem is necessary to compute the size of the sets being

sieved in the classical version of Koblitz’s conjecture. We will need an analogous

effective version of the theorem in the function field case. Let L/K denote a finite

Galois extension of function fields, with integral rings OL and OK respectively. Let

G = Gal(L/K) and let C denote a union of conjugacy classes of G.

Given a prime P in K and a prime P lying over it, we know that Gal( OL
POL

/
OK
POK

)

is a cyclic group (since it is an extension of finite fields) generated by an element

σP where for any f ∈ OL/POL, σP(f) = f ∣OK/POK ∣.

P ÐÐÐ→ OK ÐÐÐ→ K
×
×
×
Ö

×
×
×
Ö

×
×
×
Ö

P ÐÐÐ→ OL ÐÐÐ→ L

Let the decomposition group of P be D(P/P ) = {σ ∈ G ∶ σ(P) = P}. Note that

since the decomposition group fixes P, there is a group homomorphism D(P/P )→

Gal( OL
POL

/
OK
POK

) with the kernel defined to be the inertia group, IP. In fact we can

show that this homomorphism is surjective so

D(P/P )

IP
≅ Gal(

OL

POL

/
OK

POK

) .

When P is unramified in L, the inertia group of each P over P is trivial, so σP

corresponds to an element of G. We can show that as P ranges over the primes

dividing P the resulting σP determine a conjugacy class of G completely determined

by P which we designate by σP (see [15]).

For x a positive integer we can define

πC(x,L/K) = ∣{P ∣degP = x,P is unramified in the extension L/K, and σP ⊆ C}.

Before we can state the effective version of the Tchebotarev density theorem, we

need to define several quantities related to the extension L/K. Let FK ,FL denote

the constant fields of K and L respectively and let rL = [L∩ F̄K ∶ FK]. When rL = 1

we say the extension L/K is geometric. Define dK = [FK ∶ Fq] and gL, gK to be the

genera of L and K respectively.

The effective version of the Tchebotarev density theorem gives the following.
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Theorem 2.1.7 ([3]). Let L/K be a finite Galois extension with Galois group G.

Let C ⊆ G be a conjugacy class whose restriction to FL is the a-th power of the

Frobenius automorphism of FK. Then for x ∈ N, if x /≡ a mod rL

πC(x,L/K) = 0.

If x ≡ a mod rL, we have

∣πC(x,L/K) − rL
∣C ∣

∣G∣

(qdK)x

x
∣ (2.1)

≤
2

x

∣C ∣

∣G∣
((∣G∣ + gLrL)(q

dK)x/2 + ∣G∣(2gK + 1)(qdK)x/4 + gLrL + ∣G∣d/dK)

Note that if we take k =K = L then applying the theorem gives

π(x) =
qx

x
+O(

q
x
2

x
)

which is just the prime number theorem in function fields.

2.2 Drinfeld Modules

Given a commutative k-algebra B, it is implicitly an A-module through the algebra

multiplication. Let τ denote the Frobenius element of k = Fq(t) where τ(X) = Xq

for X ∈ k. Then τ is an endomorphism on B and in particular any polynomial in

τ over k is also an endomorphism of B. Given h ∈ k and u ∈ B, the action of τ on

h ⋅ u is

τ(h ⋅ u) = (h ⋅ u)q = hquq = hqτ(u).

Instead of being a k-algebra homomorphism, τ performs the ’twisted action’ τh =

hqτ for h ∈ k. Also if a ∈ Fq then τ(a ⋅ u) = aτ(u) so τ is Fq linear. Denote the ring

of polynomials in τ over k with this ’twisted’ multiplication as k < τ > . This is

known as a twisted polynomial ring, and in particular we see that each element of

this ring induces an endomorphism of B.

We can view k < τ > in a more natural way as the set of additive polynomials

that are Fq linear over k.

Definition 2.2.1. A polynomial F ∈ k[X] is additive if inside the ring of polyno-

mials in two variables, k[X,Y ], F (X + Y ) = F (X) + F (Y ). We denote the set of

Fq linear additive polynomials by A(k).
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If F,G are two additive polynomials, note that

F (G(X + Y )) = F (G(X) +G(Y ))

= F (G(X)) + F (G(Y ))

so composition makes A(k) into a ring.

Since k has characteristic p the polynomial

G(X) = anX
qn + an−1X

qn−1 +⋯ + a0X

with coefficients in k is an additive polynomial. In particular we can find an element

g ∈ k < τ > such that g(τ)(f) = G(f) for any f ∈ k, namely

g(τ) = anτ
n + an−1τ

n−1 +⋯ + a0.

Thus there exists a natural correspondence between additive polynomials of the

form of G and polynomials in k < τ > .

Theorem 2.2.2. Every Fq linear additive polynomial G(X) is of the form

G(X) = anX
qn + an−1X

qn−1 +⋯ + a1X
q + a0X.

with ai ∈ Fq. Furthermore given the map determined by

G→ g(τ)

where g(τ) = anτn+an−1τn−1+⋯+a1τ +a0 demonstrated above from A(k) to k < τ >

is an isomorphism.

Proof. It is clear that every polynomial of the form given is in A(k). We prove

the other direction by induction on the degree of G(X). The result is clear for

constant and linear polynomials. Since G is additive G(X +Y ) = G(X)+G(Y ) and
∂
∂XG(X + Y ) = ∂

∂XG(X). Setting X = 0 we see that the formal derivative of G(X)

must be a constant. Let G(X) = ∑aiX i, G′(X) is a constant if and only if for each

i > 1 not divisible by p, ai = 0. Thus we can write

G(X) = a1X +∑
i≥1

apiX
pi = a1X +H(X)p

for some polynomial H(X) with coefficients in the field l obtained from k by ad-
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joining the pth roots of the coefficients api. Note that for a ∈ Fq

G(aX) = a1aX +∑
i≥1

apia
piXpi ,

so G(aX) = aG(X) if and only if api = 0 for pi ≠ qj for some j. Thus

G(X) = a1X +H(X)q.

H(X) is an additive polynomial in l[X] so by induction H(X) = ∑ bjXqj and

G(x) = a1X +∑
j

bqjX
qj+1

and since bqj ∈ k the result follows. The second claim now easily follows.

From the previous theorem we now see that A(k) and k < τ > induce the same

endomorphisms on the k-algebra B. In a natural way this allows us to put a new

A module structure on B by any homomorphism ρ ∶ A→ k < τ > .

Definition 2.2.3. A Drinfeld module for A defined over k will be an Fq-algebra

homomorphism ρ ∶ A → k < τ > such that for all f ∈ A the constant term of ρ(f) is

f and for at least one f in A, ρ(f) ∉ k.

The last condition is to guarantee that this A-module action is different from

the one induced by A as a k-algebra.

There is a natural way to interpret the previous results in terms of group

schemes. Namely let Ga/k be the additive group scheme over k. Given a com-

mutative k-algebra B, Ga/k assigns the underlying additive group structure B+.

From the previous discussion we know every additive polynomial gives rise to an

endomorphism of B+. Drinfeld managed to show that End(Ga/k) ≅ k < τ > . Thus

the module structure induced on B from a Drinfeld module is a canonical way to

make B an A-module.

2.2.1 The Carlitz Module and Cyclotomic Extensions

The Carlitz module is a concrete example of Drinfeld modules.

Since A is generated freely by one element t over k, for each element g ∈ k < τ >

with constant term t and g ∉ k we can determine a unique homomorphism from
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A to k < τ > by mapping t to g. Thus any Drinfeld module is determined by it’s

action on t.

The simplest choice of g = τ + t ∈ k < τ > gives the Carlitz module denoted by

C. For example

C(t2) = C(t)2

= (t + τ)2

= t2 + t ⋅ τ + τ ⋅ t + τ 2

= t2 + (t + tq)τ + τ 2.

In general we can let the Drinfeld module φ be determined by

φ(t) = t + c1τ + c2τ
2 +⋯ + crτ

r

where cr ≠ 0. We say that r is the rank of the Drinfeld module φ. Note that in

general the constant term of φ(tn) is tn and the degree in τ is nr. Thus for any

polynomial a ∈ A, the constant term of φ(a) is a and the degree in τ is r deg(a).

One way to view the Carlitz module is as a function field analogue of the unit

group of Z/mZ for an integer m. The analogous structure to Z/mZ in function

fields is A/fA for some polynomial f ∈ A. Under this identification we can consider

Z/mZ as a Z-module analogous to A/fA as an A-module. However (Z/mZ)
∗

is

also a Z-module under exponentiation with no clear analogy in the function field

case, since ’exponentiation’ by A is not defined in A/fA. The solution to this is

the Carlitz module C(A/fA). This discussion is summarized in the table below.

Table 2.1: Analogy between the Carlitz Module and Classical cases

Classical Function Field
Z-module A-module
m ∈ Z f ∈ A

Z
mZ

A

fA

(
Z
mZ

)

∗

C (
A

fA
)

Let the action of a Drinfeld module φ on k be denoted as kφ. Given f ∈ A the

torsion submodule of kφ is

φ[f] = {λ ∈ k∣φ(f)(λ) = 0}.
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Following the discussion above, the equation φ(f)(λ) = 0 is analogous to xl−a =

0 for a ∈ Z for x ∈ C and l an integer. We can precisely determine the structure of

φ[f].

Lemma 2.2.4. Let f ∈ A be nonzero. Let M be an A module and suppose for each

d∣f the submodule M[d] = {m ∈M ∣dm = 0} has qr deg d elements. Then

M[f] ≅ (
A

fA
)

r

.

Proof. Consider the prime decomposition of f = uP e1
1 P

e2
2 ⋯P en

n , where u is a con-

stant and the Pi are primes dividing f. Clearly

M[f] =M[P e1
1 ]⊕M[P e2

2 ]⊕⋯⊕M[P en
n ].

Using the Chinese Remainder Theorem we have

A

fA
≅

A

P e1
1 A

⊕
A

P e2
2 A

⊕⋯
A

P en
n A

so it suffices to establish the result for the case of f = P e for P a prime.

Since p is a prime A/PA is a field and M[P ] is a vector space of degree r over

A/PA with qr degP elements. We can apply the structure theorem of modules over

principle ideal domains to see that

M[P e] ≅
A

P k1A
⊕

A

P k2A
⊕⋯⊕

A

P krA

for some k1⋯kr ∈ A. The number of elements in M[P e] is qredegP but this must be

equal to q(k1+k2+⋯+kr)degP . Since ki ≤ e we have that ki = e for each i, 1 ≤ i ≤ r.

Theorem 2.2.5. Let φ be a Drinfeld module of rank r. Then for each nonzero

f ∈ A, we have

φ[f] ≅ (
A

fA
)

r

.

Proof. We begin by showing that for each f ∈ A, φ[f] has qr deg f elements. Note

that

φ(f)(X) = fX + a1X
q + a2X

q2 +⋯ + ar deg fX
qr deg f

where the ai ∈ k and ar deg f ≠ 0. The derivative of φ(f)(X) is nonzero so it is

separable and has qr deg f roots in k. Thus applying the previous lemma with M = kφ

gives the result.
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We can adjoin the elements of φ[f] to k to form the Galois extension k(φ[f])/k.

This gives an injection Φf ∶ Gal(k(φ[f])/k)→ AutA/aA(φ[f]) where AutA/aA(φ[f])

denotes the automorphisms of φ[f] as an A/fA module. However from the previous

result we see that

AutA/aA(φ[f]) ≅ GL(r,A/fA).

This gives us a representation of the Galois group which will be crucial in translating

Koblitz’s conjecture to function fields.
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Chapter 3

Generalizing the Lower Bound

Sieve

3.1 Bombieri’s Lower Bound Sieve

In this section we will reformulate the lower bound sieve in the context of poly-

nomials over a finite field. Our exposition will be based on the proof of the lower

bound sieve given in [2]. Fix a finite field Fq and following the notation from Sec-

tion 1.2.3 let A be a finite set of monic polynomials from A = Fq[t], P a set of

monic irreducible polynomials also from A, g be a function g ∶ A → A, and let

Al = {a ∈ A ∶ l∣g(a)} for monic irreducible polynomials l. We will write P (z) to

denote the product of all monic irreducibles in P with degree less than or equal to

z. Let X be a close approximation to ∣A∣ and δ(d) a multiplicative function so that

∣Ad∣ =
1

δ(d)
X + rd

for some error term rd. In general, sieving is concerned with finding the following

quantity:

S(A,P, z) =

RRRRRRRRRRRRRRR

A ∖ ⋃
l∈P

deg l≤z

Ap

RRRRRRRRRRRRRRR

.

Remark 3.1.1. Throughout the rest of the thesis all sums will be taken over monic

polynomials in A.
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Define the Möbius function µ on A ∖ {0} as

µ(f) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)ω(f) if f squarefree,

1 if f = 1,

0 otherwise

where ω(f) is the number of distinct irreducible factors of f

Selberg’s sieve relies on the inequality

S (A,P, z) = ∑
a∈A

∑
d∣P (z)
a∈Ad

µ(d),

≤ ∑
a∈Ad

⎛
⎜
⎜
⎝

∑
d∣P (z)
a∈Ad

λd

⎞
⎟
⎟
⎠

2

where λd is a sequence indexed by polynomials such that λ1 = 1, and λd supported

only on squarefree polynomials of degree less than z.

Bombieri modified this sieve by adding weights to each term in the sum on the

right hand side of the above inequality. In the function field case we have a result

analogous to Theorem 1.2.5.

Theorem 3.1.2. In the general sieving situation set up above, let δ be a multi-

plicative function defined for d squarefree, and let δ1(n) be the Dirichlet convolution

δ ∗ µ. Then for any y, z > 0 and any sequence of real numbers αt, λd supported only

at squarefree monic polynomials composed of primes of P, we have

∑
a∈A

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg t≤y
t∣P (y)
a∈At

αt

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
a∈Ad

λd

⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

= ∆X +E, (3.1)

where

E = O

⎛
⎜
⎜
⎜
⎝

∑
degm≤yz2

m∣P (yz)

⎛
⎜
⎜
⎝

∑
deg t≤y
t∣m

∣αt∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
deg d≤z
d∣m

∣λd∣

⎞
⎟
⎟
⎠

2

∣rm∣

⎞
⎟
⎟
⎟
⎠
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and

∆ = ∑
deg t≤y,deg s≤z
t∣P (y),s∣P (z)

(t,s)=1

αt
δ(t)δ1(t)

⎛
⎜
⎜
⎝

∑
deg r≤z−deg s
r∣P (z),r∣t

µ(r)zsr

⎞
⎟
⎟
⎠

2

,

with

zr = µ(r)δ1(r) ∑
deg s≤z−deg r

s∣P (z)

λsr
δ(sr)

for any positive squarefree integer r composed of primes from P.

Note that the above expression for zr yields

λd = µ(d)δ(d) ∑
deg r≤z−deg d

r∣P (z)

1

δ1(rd)
zrd,

so a choice for zr gives a choice for λd.

In order to prove this theorem, we need several technical lemmas. We fix the

notation δ(a, b) = δ((a, b)).

Lemma 3.1.3. For any multiplicative function δ, and squarefree polynomials t, d1, d2,

δ ([t, d1, d2]) =
δ(t)δ(d1)δ(d2)δ (t, d1, d2)

δ (t, d1) δ (t, d2) δ (d1, d2)
.

Proof. See Lemma 10.1.3 in [2].

Define

δ−1(n) =∑
d∣n

µ(d)

δ(nd )
.

By Möbius inversion,
1

δ(n)
=∑
d∣n

δ−1(d).

Lemma 3.1.4. If a, b are squarefree, monic polynomials, then

∑
[r,s]=b
s∣a

δ1(r)δ−1(s) =

⎧⎪⎪
⎨
⎪⎪⎩

δ1(b), if (a, b) = 1,

0, otherwise.
(3.2)
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Proof. Let τ = [r, s], ρ = (r, s). Since a, b are squarefree and δ1 is multiplicative,then

from Lemma 3.1.3

δ1(r) =
δ1(ρ)δ1(τ)

δ1(s)
.

We will sum over s, ρ instead of r, s. If [r, s] = b and s∣a then s∣(a, b); for each such

s any ρ which divides s uniquely determines an r such that [r, s] = b and (r, s) = ρ,

namely r = τb
s . Thus

∑
[r,s]=b
s∣a

δ1(r)δ−1(s) = ∑
s∣(a,b)
ρ∣s

δ1(b)δ−1(s)δ1(τ)

δ1(s)
,

= ∑
s∣(a,b)

δ1(b)δ−1(s)

δ1(s)
∑
ρ∣s

δ1(ρ),

=δ1(b) ∑
s∣(a,b)

δ−1(s)δ(s)

δ1(s)
.

Since δ, δ1, δ−1 are multiplicative for all irreducibles l,

δ−1(l)δ(l)

δ1(l)
=

( 1
δ(l) − 1) δ(l)

δ(l) − 1
= −1

So δ−1(s)δ(s)
δ1(s)

= µ(s). Thus,

∑
[r,s]=b
s∣a

δ1(r)δ−1(s) = δ1(b) ∑
s∣(a,b)

µ(s)

=

⎧⎪⎪
⎨
⎪⎪⎩

δ1(b), if (a, b) = 1,

0, otherwise.

By expanding and applying the definition of Ad,

∑
a∈A

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg t≤y
t∣P (y)
a∈Ad

αt

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
a∈Ad

λd

⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

= ∑
a∈A

∑
deg t≤y

deg d1,d2≤z
t∣P (y)

d1,d2∣P (z)
a∈A

[t,d1,d2]

αtλd1λd2
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= ∑
deg t≤y

deg d1,d2≤z
t∣P (y)

d1,d2∣P (z)

∑
a∈A

[t,d1,d2]

αtλd1λd2

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg t≤y

deg d1,deg d2≤z
t∣P (y)

d1,d2∣P (z)

αtλd1λd2
δ([t, d1, d2])

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣A∣ + ∑
deg t≤y

deg d1,deg d2≤z
t∣P (y)

d1,d2∣P (z)

αtλd1λd2r[t,d1,d2].

Let the coefficient of A be ∆′ and let E be the second summand.

Using the identity in Lemma 3.1.3, rearranging the terms inside the sum, and

applying the definitions of δ1 and δ−1 to δ(d1, d2) and 1/δ(t, d1, d2), we have

∆′ = ∑
deg t≤y;deg d1,deg d2≤z
t∣P (z);d1,d2∣P (z)

αtλd1δ(t, d1)λd2δ(t, d2)

δ(t)δ(d1)δ(d2)

⎛

⎝
∑

r∣(d1,d2)

δ1(r)
⎞

⎠

⎛

⎝
∑

s∣(t,d1,d2)

δ−1(s)
⎞

⎠
.

(3.3)

We can rearrange the summation signs by summing over r, s with s∣t and then

for each r, s, summing over d1, d2 such that r∣(d1, d2) and s∣(t, d1, d2). Since s∣t, this

occurs precisely when [r, s]∣d1 and [r, s]∣d2.

∆′ = ∑
deg t≤y;deg r,deg s≤z
t∣P (y);r,s∣P (z)

s∣t

αt
δ(t)

δ1(r)δ−1(s) ∑
deg d1,deg d2≤z
d1,d2∣P (z)
[r,s]∣d1
[r,s]∣d2

λd1δ (t, d1)λd2δ (t, d2)

δ(d1)δ(d2)

= ∑
deg t≤y;deg r,deg s≤z
t∣P (y);r,s∣P (z)

s∣t

αt
δ(t)

δ1(r)δ−1(s)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
[r,s]∣d

λdδ (t, d)

δ(d)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

2

, by symmetry in d1, d2.

Define

ηt,u = ∑
deg d≤z
d∣P (z)
u∣d

λdδ (t, d)

δ(d)
, (3.4)
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or

λuδ (t, u)

δ(u)
= ∑

deg d≤z
d∣P (z)
u∣d

µ(
d

u
) ηt,d

by dual Möbius inversion.

If d = su, then by summing over su such that s∣P (z),deg su ≤ z, (s, u) = 1 we

are summing over su such that s∣P (z),deg su ≤ z, since λsu = 0 if (s, u) /= 1.

λuδ (t, u)

δ(u)
= ∑

deg s≤z−degu
s∣P (z)

µ(s)ηt,su. (3.5)

If t = 1, (3.5) yields

λsu
δ(su)

= ∑
deg t≤z−deg su

t∣P (z)

µ(t)η1,stu. (3.6)

So by (3.5) and (3.6),

ηt,u = ∑
deg s≤z−degu

s∣P (z)

δ (t, su) ∑
deg t≤z−deg su

t∣P (z)

µ(t)η1,stu. (3.7)

But λ is supported only on squarefree polynomials. Thus (3.6) is zero unless (s, u) =

1. Say r = st, if s∣P (z), t∣P (z), and r ∤ P (z), then r has repeated factors and (3.6)

is zero. Thus,

ηt,u = ∑
deg r≤z−degu

r∣P (z)

∑
s∣r

µ(
r

s
) δ (

r

s
, su) η1,ru.

Analyzing the inner sum, if r∣t, then

∑
s∣r

µ(
r

s
) δ (

r

s
, su) =∑

s∣r

µ(
r

s
) δ(s)

= δ1(s).
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If r ∤ t, let v = (r, t) ≠ r, then as deg r/v > 0.

∑
s∣r

µ(
r

s
) δ (

r

s
, su) = ∑

s∣r/v

µ(
r

s
)∑
s∣v

µ(
r

s
) δ(s)

= 0.

So,

ηt,u = ∑
deg r≤z−degu
r∣P (z),r∣t

δ1(r)η1,ru

= ∑
deg r≤z−degu
r∣P (z),r∣t

δ1(r) ∑
deg s≤z−deg rs

s∣P (z)

λrsu
δ(rsu)

, by (3.4)

=
µ(u)

δ1(u)
∑

deg r≤z−degu
r∣P (z),r∣t

µ(r)µ(ru)δ1(ru) ∑
deg s≤z−deg ru

s∣P (z)

λrsu
δ(rsu)

. (3.8)

Substituting (3.4) and (3.8) into (3.3) gives

∆′ = ∑
deg t≤y;deg r,deg s≤z
t∣P (y);r,s∣P (z)

s∣t

αt
δ(t)

δ1(r)δ−1(s)η
2
t,[r,s].

By moving the sum over s inside, and indexing by u = [r, s], we have

∆′ = ∑
deg t≤y;degu≤z
t∣P (y);u∣P (z)

αt
δ(t)

η2
t,u ∑

[r,s]=u
s∣t

δ1(r)δ−1(s)

= ∑
deg t≤y;degu≤z
t∣P (y);u∣P (z)

(t,u)=1

αt
δ(t)

δ1(u)η
2
t,u by lemma 1.

= ∑
deg t≤y;degu≤z
t∣P (y),u∣P (z)

(t,u)=1

αt
δ(t)δ1(u)

⎛
⎜
⎜
⎝

∑
r≤z−degu
r∣P (z),r∣t

µ(r)µ(ru)δ1(ru)

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
deg s≤z−deg ru

s∣P (z)

λrsu
δ(rsu)

⎞
⎟
⎟
⎠

2

= ∑
deg t≤y;degu≤z
t∣P (y);u∣P (z)

(t,u)=1

αt
δ(t)δ1(t)

⎛
⎜
⎜
⎝

∑
deg r≤z−degu
r∣P (z),r∣t

µ(r)αru

⎞
⎟
⎟
⎠

2

, by substituting the definition of zr in (3.2).

=∆. (3.9)
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This is the coefficient of ∣A∣ in Bombieri’s lower bound sieve.

Returning to the error term, by summing over m = [t, d1, d2] we have

E = ∑
t≤y;d1,d2≤z

t∣P (y);d1,d2∣P (z)

αtλd1λd2r[t,d1,d2] (3.10)

=O

⎛
⎜
⎜
⎜
⎝

∑
degm≤yz2

m∣P (max{y,z})

⎛
⎜
⎜
⎝

∑
deg t≤y
t∣P (y)

∣αt∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
deg d≤z
d∣m

∣λd∣

⎞
⎟
⎟
⎠

2

∣rm∣

⎞
⎟
⎟
⎟
⎠

. (3.11)

This concludes the proof of the function field analogue of the lower bound sieve.

◻
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Chapter 4

Koblitz’s Conjecture for Function

Fields

4.1 The Euler Characteristic

Our ultimate goal is to present a version of Koblitz’s conjecture for Drinfeld mod-

ules. The starting point is to understand the respective module structures between

elliptic curves over finite fields and Drinfeld modules defined over quotients of A

by irreducible monic polynomials.

Drinfeld modules are the function field analogues of elliptic curves. In this thesis

we will only consider the rank two case. Though this will become clearer in the next

section, as an example note that given an elliptic curve over C, E[m] ≅ (Z/mZ)
2

and for a Drinfeld module φ and a polynomial f ∈ A, φ[f] ≅ (A/fA)
2
.

Fix an elliptic curve over a finite field E(Fl). This has a natural Z−module

structure induced by the additive group of the elliptic curve. Similarity by fixing

an irreducible polynomial f ∈ A, A/fA has a natural A-module structure.

In the elliptic curve case we are interested in studying the quantity ω(∣E(Fl)∣),
where ω(n) denotes the number of distinct prime factors of n. In our case ω (∣A/fA∣) =

1 regardless of f, thus is not a very interesting quantity to study. However from

the discussion in Chapter 2 we can construct a new A-module structure on A/fA

through a Drinfeld module φ. However ω (∣φ (A/fA)∣) = ω (∣A/fA∣) = 1, still an

unenlightening quantity to study.

Given an elliptic curve E and a prime l, for sufficiently divisible m ∈ Z we have

34



E(Fl) ⊆ E(Fl)[m], and

E(Fl) ≅
Z
m1Z

⊕
Z
m2Z

where ∣E(Fq)∣ =m1m2 for some m1,m2 ∈ Z.

Given a cyclic Z-module, Z/mZ we denote the Euler characteristic of Z/mZ
as χ(Z/mZ) = m. Extending this definition multiplicatively to E(Fl) we see that

∣E(Fl)∣ =m1m2 = χ(E(Fl)).

Using the decomposition theorem for finite modules over principle ideal domains,

we see that

φ(
A

fA
) ≃

A

f1A
⊕

A

f2A
...⊕

A

fsA

where the fi ∈ A and fi∣fi−1 for 2 ≤ i ≤ s. Since the Euler characteristic of A/fA is

f, we can decompose

χ(φ(
A

fA
)) ≃ χ(

A

f1A
⊕

A

f2A
...⊕

A

fsA
) (4.1)

= χ(
A

f1A
)⊕ χ(

A

f2A
) ...⊕ χ(

A

fsA
) (4.2)

= f1f2⋯fs. (4.3)

This quantity is the natural analogue of the size of E(Fl) for function fields.

We may now ask how often χ(φ(A/fA)) is prime for an irreducible polynomial f.

From now on we adopt the notation χφ(f) = χ(φ(A/fA)). Note that unlike the

elliptic curve case, our Euler characteristic is not an integer but a polynomial. We

can now formulate Koblitz’s conjecture for function fields.

Theorem 4.1.1 (Koblitz’s Conjecture for Function Fields.). Let φ be a Drin-

feld module of rank two with every A-isogeny having no A-torsion points and with

Endk(φ) = A. Furthermore assume that for each monic irreducible l ∈ A, k(φ[l])/k

is a geometric extension. Then given x ∈ Z+ there exists a real positive constant Cφ

depending on φ so that there are asymptotically

Cφ
qx

x2

monic irreducible polynomials p with degree at most x such that χφ(p) is prime.

We can also prove the following analogue of Miri and Murty’s result given in

Chapter 1.
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Theorem 4.1.2. Let φ be a Drinfeld module of rank two with every A-isogeny

having no A-torsion points and with Endk(φ) = A. Furthermore assume that for

each monic irreducible l ∈ A, k(φ[l])/k is a geometric extension. Then given x ∈ Z+

there exists a real positive constant Cφ depending on φ so that there are at least

Cφ
qx

x2

monic irreducible polynomials p with degree at most x such that χφ(p) has at most

13 prime factors.

Remark 4.1.3. Through an abuse of notation, we are going to use p to denote a

prime in A. Also prime and monic irreducible will be used interchangeably.

The various requirements we need will be explained.

4.2 Some Algebra

Before we begin a proof of Theorem 4.1.2 we need a proper algebraic formulation

of the divisibility properties of χφ(p) for p ∈ A prime analogous to those established

for Np in Section 1.2.1. Throughout this section, we assume that φ is a Drinfeld

module of rank 2.

Fix a prime l ∈ A and recall Theorem 2.2.5 gives,

φ[ln] ≅ (
A

lnA
)

2

.

Let φ[l∞] denote the direct limit of the φ[ln], namely

φ[l∞] = ⋃
n≥1

φ[ln].

If we allow Al and kl to be the completions of A and k at l then we can define the

l-adic Tate module of φ, Tl(φ) as

Tl(φ) = HomAl(kl/Al, φ[l
∞])

which is a free Al-module of rank r.

For all but finitely many irreducibles p ∈ A, φ has good reduction at A/pA.

By an analogue of the Ogg-Neron-Shafarevich theorem for Drinfeld modules, φ has
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good reduction at p if and only if p is unramified in the extension k(φ[l∞])/k for

all primes l ∈ A coprime to p. In this situation let σp denote the Artin symbol of p

in Gal(k(φ[l∞])/k). By choosing an appropriate basis for Tl(φ) there is an action

ρl,φ ∶ Gal(k̄(φ[l∞])/k)→ Aut(Tl(φ)) ≅ GL(2,Al).

In particular the characteristic polynomial Pp,φ of σp under this action is inde-

pendent of l and we have the following result:

Theorem 4.2.1 ([5]). As ideals of A,

χφ(p) = Pp,φ(1)A.

Since φ has rank 2 we know that Pp,φ = x2 − tr(σp) + detσp so if l∣χφ(p) then

1 − tr(σp) + detσp ≡ 0 mod l implying that σp has an eigenvalue of one.

Now recall the representation given in Section 2.2.1

Φf ∶ Gal(k(φ[l])/k)→ GL(2,A/lA).

In particular we have the following result:

Theorem 4.2.2. If φ has good reduction over p then χφ(p) is divisible by l if and

only if Φl(σp), where σp is the Artin symbol of p in the extension k(φ[l])/k, has

eigenvalue one.

In general since φ has rank 2 then for all but finitely many primes, we have that

Φl is an isomorphism provided Endk(φ) = A. Let the set of exceptional primes be

denoted by L′φ.

This is a specific case of the more general open image conjecture for which we

refer the reader to [14].

Now define

πφ(x, l) = {p ∈ A ∶ deg p = x, l∣χφ(p), p ∤ l, p unramified}.

From the above discussion we see that

πφ(x, l) = {p ∈ A ∶ deg p = x, p ∤ l,Φl(σp) has eigenvalue 1},

a quantity that we will now compute using the Tchebotarev density theorem.
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Let C denote the conjugacy class of matrices in GL(2,A/lA) which have eigen-

value 1. We will use Theorem 2.1.7 with L = k(φ[l]), under the assumption that

this extension is geometric (rL = 1). In addition we have the following theorem.

Theorem 4.2.3 ([4]). Let l ∈ A and let gk(φ[l]) be the genus of the extension

k(φ[l])/k. Then there exists a constant D(φ) depending on φ only, such that

gk(φ[l]) ≤D(φ)[k(φ[l]) ∶ k]deg l.

Applying Theorem 2.1.7 gives

πφ(x, l) =
∣C ∣

∣G∣
πq(x) +O(

2∣C ∣

x
qx/2 deg l) . (4.4)

Since A/lA is a finite field of size ∣l∣, ∣GL(2,A/lA)∣ = (∣l∣2 − ∣l∣)(∣l∣2 − 1) and

∣C ∣ = ∣l∣3 − 2∣l∣. Thus we see that for l ∉ L′φ,

πφ(x, l) =
∣l∣2 − 2

(∣l∣2 − 1)(∣l∣ − 1)
πq(x) +O(

∣l∣3

x
qx/2 deg l) (4.5)

=
1

δ(l)
πq(x) +O(

∣l∣3

x
qx/2 deg l) (4.6)

where we define δ(l) to be

δ(l) =
(∣l∣2 − 1)(∣l∣ − 1)

∣l∣2 − 2
.

Since L′φ is finite we can extend the definition of δ(l) to these primes also so

that (4.5) holds with δ(l) = ∣G∣/∣C ∣. The only issue in doing this is to guarantee

δ(l) > 1. However this is a direct consequence of the following analogue of Katz’s

theorem ([7]) for Drinfeld Modules.

Theorem 4.2.4. Let φ be a Drinfeld module and m ∈ A∖Fq . For each prime p of

k at which φ has good reduction, if

χφ(p) ≡ 0 mod m

for a set of primes of density one in k, then there exists a k-isogenous Drinfeld

module φ′ over K for which

∣Torsion of φ′∣ ≡ 0 mod m.
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The proof is identical to the elliptic curve case.

In particular from our formula for δ(l) when l ∉ L′φ and the fact that L′φ is finite,

for each l ∈ A, monic irreducible, we have that

δ(l) = ∣l∣ − al (4.7)

for some constant al. Furthermore we can find a positive constant C such that the

∣al∣ are uniformly bounded by C.

Let d = p1p2 be the prime decomposition of a squarefree polynomial (in gen-

eral the number of factors is irrelevant to this discussion), and let Gd (respectively

Gp1 ,Gp2) be the Galois group of the field k(φ[d]) (respectively k(φ[p1]), k(φ[p2]))

over k. By our previous discussion we know thatGd can be embedded inGL(2,A/mA).

By the analogue of Ogg-Neron-Shafarevich for Drinfeld modules, the reduction

of GL(2,A/dA) to GL(2,A/p1A) (or GL(2,A/p2A)) is compatible with the Ga-

lois action for Gd restricted to k(φ[p1]) (or k(φ[p2])). In particular a matrix in

GL(2,A/dA) has eigenvalue 1 if and only if it’s reductions on GL(2,A/p1A) and

GL(2,A/p2A) have eigenvalue 1. Since d∣χφ(p) if and only if p1∣χφ(p) and p2∣χφ(p),

δ is multiplicative and by the Tchebotarev Density theorem

πφ(x, d) = {p ∈ A ∶ deg p = x, d∣χφ(p), p ∤ d, p unramified} (4.8)

=
1

δ(d)
πq(x) +O(

∣d∣3

x
qx/2 deg d) . (4.9)

We summarize the analogy between elliptic curves and Drinfeld modules in the

following table.

Table 4.1: Analogy between the Drinfeld module and elliptic curves.

Classical Function Field
Z-module A-module

elliptic Curve E Drinfeld Module φ
p ∈ Z p ∈ A

E(Fp) φ(
A

fA
)

Np χφ(p)
Tate Module Tl(E) Tate Module Tl(φ)

EndQ(E) = Z Endk(φ) = A
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4.3 Applying the Sieve

We are now at the point that we can apply the lower bound sieve developed in

Chapter 3 to the situation at hand. Fix a Drinfeld module φ of rank 2 with the

assumptions in Theorem 4.1.2.

Let A = {p ∈ A ∶ deg p = x,φ has good reduction over p} and for d squarefree

let Ad = {p ∈ A ∶ χφ(p) ≡ 0 mod d}. In this case X = πq(x) and from the previous

section

∣Ad∣ =
1

δ(d)
X + rd

where

rd ≪
∣d∣3

x
qx/2 deg d.

As was done in the elliptic curve case, we will make two different choices of αt

and λd and allow y, z to be constants we will choose later.

The lower bound sieve, Section 3.1.2, tells us that

∑
p∈A

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg t≤y
t∣P (y)
t∣χφ(p)

αt

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
d∣χφ(p)

λd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

= ∆X +E. (4.10)

We divide the rest of this chapter into the computations of the error and the

main term respectively.

4.4 The Error Term

From above,

rm ≪
∣m∣3

x
qx/2 degm, (4.11)

thus

E = O

⎛
⎜
⎜
⎝

∑
degm≤y+2z
m∣P (y+z)

⎛
⎜
⎜
⎝

∑
deg t≤y
t∣m

∣αt∣

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∑
deg d≤z
d∣m

∣λd∣

⎞
⎟
⎟
⎠

2

∣rm∣

⎞
⎟
⎟
⎠

.
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Using (4.11), we see that this reduces to

E ≪ ∑
degm≤y+2z

d(m)3 ∣m∣3

x
qx/2 degm

≪
qx/2

x
∑

1≤n≤y+2z

∑
degm=n

n4q3n

≪
qx/2

x
∑

1≤n≤y+2z

n4q4n

≪
qx/2

x
(y + 2z)5q4(y+2z)

≪ q(1−ε)x

provided that

y + 2z ≪ (
1

8
− ε)x. (4.12)

4.5 The Main Term

Now we tackle the computation of ∆ present in the main term of (4.10) for two

different choices of sequences αt and λd.

We begin with a series of lemmas. The following result is crucial to our proof

and also interesting in its own right. A detailed proof is presented in Appendix A.

Lemma 4.5.1. For any positive integer z there exists a positive constant A1 and

a real number A2 such that

∑
degu≤z

u squarefree

1

δ1(u)
= A1z +A2 +O(

1

qz/2
) . (4.13)

The sum (4.13) will be referred to as V (z). This lemma is the analog of Lemma

10.2.3 in [2]. If z is an integer, then restricting the sum (4.13) to a single degree

yields:

∑
degu=z

u squarefree

1

δ1(u)
= ∑

degu≤z
u squarefree

1

δ1(u)
− ∑

degu≤z−1
u squarefree

1

δ1(u)

=A1 +O(
1

qz/2
) . (4.14)
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The function δ1 also satisfies the following lemma:

Lemma 4.5.2.

∑
degu≤z

u squarefree

1

δ1(u)
log (

1 + y

1 + z − degu
) = V (z) (1 + log (

1 + y

z
)) +O (log z) .

Proof.

∑
degu≤z

u squarefree

1

δ1(u)
log (

1 + y

1 + z − degu
)

= log(1 + y) ∑
degu≤z

u squarefree

1

δ1(u)
− ∑

1≤n≤z

(A1 +O(
1

qn/2−ε
)) log(1 + z − n), by (4.14)

=V (z) log(1 + y) −A1 ∑
1≤k≤z

log k +O( ∑
1≤k≤z

log k

qk/2−ε
) .

By partial summation,

∑
degu≤z

u squarefree

1

δ1(u)
log (

1 + y

1 + z − degu
) (4.15)

=V (z) log(1 + y) −A1 ([z] log z − ∫
z

1

[t]

t
dt) +O(log z) (4.16)

=V (z) log(1 + y) −A1z log z +A1z +O(log z)

=V (z) (1 + log (
1 + y

z
)) +O(log z), by (4.13). (4.17)

The error term in (4.16) comes from summing log k/qk/2−ε.

Lemma 4.5.3 (Mertens’ Formula). There exists a positive constant C such that

∑
deg l≤x

1

δ(l)
= log(1 + x) +C +O(

1

1 + x
) . (4.18)

Firstly note that from our discussion of δ(l) = ∣l∣ − al above, δ(l) ≍ ∣l∣. Now

RRRRRRRRRRR

∑
deg l≤z

1

∣l∣
− ∑

deg l≤z

1

δ1(l)

RRRRRRRRRRR

=

RRRRRRRRRRR

∑
deg l≤z

al
∣l∣δ(l)

RRRRRRRRRRR

.
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This sum converges absolutely, so there exists a constant C such that

RRRRRRRRRRR

∑
deg l≤z

1

∣l∣
− ∑

deg l≤z

1

δ1(l)

RRRRRRRRRRR

= C +

RRRRRRRRRRR

∑
deg l≥z

al
∣l∣δ(l)

RRRRRRRRRRR

= C +O(
1

qz
) ,

using the fact that the al are uniformly bounded.

By the prime number theorem for irreducibles in A,

∑
deg l≤x

1

∣l∣
= ∑
n≤x

qn

nqn
+O(

qn/2

nqn
)

= ∑
n≤x

1

n
+O(

1

nqn/2
)

= logx + γ +O(1/x).

But logx = log(1 + x) +O(1/x), and O(1/x) = O(1/(1 + x)), so the result follows.

We also have the following two lemmas.

Lemma 4.5.4.

∑
degu≤z

u squarefree

1

δ1(u)(1 + z − degu)
= O(log z). (4.19)

Proof. From Lemma 4.5.1

∑
degu≤z

u squarefree

1

δ1(u)(1 + z − degu)
= ∑

1≤n≤z

∑
degu=z

1

δ1(u)(1 + z − n)
(4.20)

= ∑
1≤n≤z

1

1 + z − n
(A1 +O(

1

qz/2
)) . (4.21)

≪ log z (4.22)

Lemma 4.5.5.

∑
degu≤z

u squarefree

1

δ1(u)
∑

z−degu<deg l≤y
l irreducible,

l∤u

1

δ(l)
= O(1). (4.23)
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These last two lemmas are analogs of Lemmas 10.2.4, and 10.2.5 in [2]. Recall-

ing the discussion from Section 3.1 on making a choice for λd through implicitly

choosing zr we make the following first choices of αt and zr as:

αt =

⎧⎪⎪
⎨
⎪⎪⎩

1, if deg t = 0

0, otherwise
(4.24)

and

zr =

⎧⎪⎪
⎨
⎪⎪⎩

z1, if deg r < z and r is squarefree

0, otherwise
(4.25)

If deg t ≤ z − degu and t∣P (z), then deg r ≤ z − degu and r∣P (z) for all r∣t, so

⎛
⎜
⎜
⎝

∑
deg r≤z−degu
r∣P (z),r∣t

µ(r)

⎞
⎟
⎟
⎠

2

= 0. (4.26)

Also, if t is a prime,

⎛
⎜
⎜
⎝

∑
deg r≤z−degu
r∣P (z),r∣t

µ(r)

⎞
⎟
⎟
⎠

2

=

⎧⎪⎪
⎨
⎪⎪⎩

1, if deg t > z − degu

0, otherwise.
(4.27)

The first choice for αt yields the following main term:

∆1 = z
2
1 ∑

deg t≤y,degu≤z
t∣P (y),u∣P (z)

(t,u)=1

αt
δ(t)δ1(u)

⎛
⎜
⎜
⎝

∑
deg r≤z−degu
r∣P (z),r∣t

µ(r)zur

⎞
⎟
⎟
⎠

2

= z2
1 ∑

degu≤z
u∣P (z)

1

δ1(u)
, by (4.26) and because t = 1,

= z2
1 . (4.28)

The second choice for αt is
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αt =

⎧⎪⎪
⎨
⎪⎪⎩

1, if t irreducible

0, otherwise
(4.29)

with zr remaining the same. This yields for the main term:

∆2 = z
2
1 ∑

deg t≤y,degu≤z
t∣P (y),u∣P (z)

(t,u)=1

αt
δ(t)δ1(u)

⎛
⎜
⎜
⎝

∑
deg r≤z−degu
r∣P (z),r∣t

µ(r)

⎞
⎟
⎟
⎠

2

= z2
1 ∑

degu≤z
z−degu<deg l≤y
u squarefree

l∤u

1

δ(l)δ1(u)
, by (4.29).

= z2
1 ∑

degu≤z
u squarefree

1

δ1(u)
∑

z−degu<deg l≤y
l∤u

1

δ(l)

= z2
1 ∑

degu≤z
u squarefree

1

δ1(u)

⎛
⎜
⎜
⎝

∑
z−degu<deg l≤y

1

δ(l)
− ∑
z−degu<deg l≤y

l∣u

1

δ(l)

⎞
⎟
⎟
⎠

.

By Mertens’ formula,

∆2 =z
2
1 ∑

degu≤z
u squarefree

1

δ1(u)

⎛
⎜
⎜
⎝

log (
1 + y

1 + z − degu
) +O(

1

1 + z − degu
) − ∑

z−degu<deg l≤y
l∣u

1

δ(l)

⎞
⎟
⎟
⎠

.

(4.30)

By appealing to Lemma 4.5.2,

∆2 = z
2
1 (1 + log (

1 + y

z
))V (z) +O (z2

1 log z)

+ z2
1 ∑

degu≤z
u squarefree

1

δ1(u)

⎛
⎜
⎜
⎝

O(
1

1 + z − degu
) − ∑

z−degu<deg l≤y
l∣u

1

δ(l)

⎞
⎟
⎟
⎠

.
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By Lemmas 4.5.4 and 4.5.5,

∆2 =z
2
1 (1 + log (

1 + y

z
))V (z) +O (z2

1 log z) . (4.31)

Substituting (4.28) and using our respective choices of αt into the main theorem

of the lower bound sieve gives the following.

∑
deg p≤x

p irreducible

⎛
⎜
⎜
⎜
⎝

∑
d∣P (z)
d∣χφ(p)

λd

⎞
⎟
⎟
⎟
⎠

2

= z2
1V (z)πq(x) +E, (4.32)

∑
deg p≤x

p irreducible

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg l≤y

l irreducible
l∣χφ(p)

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
d∣χφ(p)

λd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

= z2
1 ((1 + log (

1 + y

z
))V (z) +O (log z))πq(x) +E.

(4.33)

Taking a linear combination of (4.32) and (4.33) yields the following:

∑
deg p≤x

p irreducible

⎛
⎜
⎜
⎜
⎜
⎜
⎝

2 − ∑
deg l≤y

l irreducible
l∣χφ(p)

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
deg d≤z
d∣P (z)
d∣χφ(p)

λd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

= z2
1 (1 − log (

1 + y

z
)) ⋅ V (z) ⋅

qx

x
+E. (4.34)

Say that for large x,

1 + log (
1 + y

z
) > 0. (4.35)

This would imply that for infinitely many monic irreducible polynomials p

2 − ∑
deg l≤y

l irreducible
l∣χφ(p)

1

will be positive. These primes will contain at most one irreducible factor with

degree less then y and since degχφ(p) = deg p ≤ x they can have at most ⌊1/y⌋ ⋅x−1

prime factors other then y. So for infinitely many primes p, χφ(p) contains at most

⌊1/y⋅⌋ prime factors. To minimize this quantity we must maximize y subject to the
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constraints (4.35) and the constraint from our error term, (4.12). Let

y = (k + ε) ⋅ x and (4.36)

z = (l + ε) ⋅ x (4.37)

for k, l, ε > 0. After some simplification, (4.35) is equivalent to

k

l
< e.

and (4.12) becomes

k + 2l <
1

8
.

Combining these gives

k < .0720

and thus we see that for infinitely many primes p, χφ(p) has at most 13 prime

factors.

Now we can count the number of such primes we have identified with the use of

equation (4.32) and Lemma 4.13. From the definition of zr and Möbius inversion

we know that

λd = µ(d)δ(d) ∑
deg r≤z−deg d

r∣P (z)

1

δ1(rd)
zrd.

Thus

∑
deg d≤z
d∣P (z)
d∣χφ(p)

λd ≪ ∑
deg d<z

δ(d) ∑
deg r≤z−deg d

1

δ1(rd)
∣zrd∣ (4.38)

≪ z (4.39)

≪ x (4.40)

Thus equation (4.32) along with the prime number theorem gives that the number

of primes with χφ(p) having at most 13 prime factors is at least

Cφ
qx

x2

for some real positive constant Cφ depending only on φ.
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Figure 4.1: A Drinfeld module of rank 2, such that the reduction at every prime is
geometric.

As a final tribute to the elusive, monstrous and certainly mysterious Drinfeld

module, we present an artist’s rendition of a Drinfeld module of rank 2, such that

the reduction at every prime is geometric.
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Appendix A

A.1 A Sum

The goal of this appendix is to prove Lemma 4.5.1. We restate it here.

Lemma A.1.1. Let δ be a multiplicative function on A whose support is the set of

monic squarefree polynomials, and for any irreducible l,

δ(l) = ∣l∣ − al > 0

for some real number al. Furthermore, we assume that

al = O(1),

i.e., there exist a positive constant c such that ∣al∣ ≤ c for all irreducible l. Then,

for any z ∈ Z+, there exists a positive constant C1 and a real number C2 such that

∑
degu≤z

u squarefree

1

δ(u)
= C1z +C2 +O (q−z/2) .

Remark A.1.2. In the notation of chapter 4, the function δ1, defined δ1(l) = δ(l)−1

for l monic irreducible satisfies these properties by the discussion in Section 4.2.

This proves Lemma 4.5.1.

For any integer z ∈ Z, we have

∑
deg f≤z

1 =
qz+1

q − 1
+O(1).

For any f ∈ A, let ω(f) be the number of distinct irreducible factors of f . Then we

have

ω(f) = O(
deg f

log deg f
) .
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Let ϕ(f) be the cardinality of the unit group (A/fA)∗ of A/fA. From Theorem

2.1.4,

ϕ(f) = ∣f ∣ ⋅ ∏
l∣f

l irreducible

(1 −
1

∣l∣
) = ∣f ∣ ⋅∑

s∣f

µ(s)

∣s∣
.

The following lemma is the key step to prove our main lemma.

Lemma A.1.3. Let δ be a multiplicative function on A with the properties in

Lemma A.1.1. For any z ∈ Z+, there exists positive constant A such that

∑
degu≤z

u squarefree

∣u∣

δ(z)
= Aqz +O (qz/2) .

Proof. First of all, we can rewrite ∣u∣/δ(u) as follows:

∣u∣

δ(u)
= ∏

l∣u
l irreducible

∣l∣

δ(l)

= ∏
l∣u

l irreducible

1

1 − al/∣l∣

= ∏
l∣u

l irreducible

(1 + (al/∣l∣) + (al/∣l∣)
2 +⋯) = ∏

l∣u
l irreducible

(1 +
a′l
∣l∣

) ,

for some a′l which also has the property a′l = O(1). By abuse of notation, we

still use al to denote them. Then

∣u∣

δ(u)
= ∏

l∣u
l irreducible

(1 +
a′l
∣l∣

) =∑
d∣u

ad
∣d∣
,

where

ad = ∏
l∣d

l irreducible

al.

Thus,

∣ad∣ ≤ c
ω(d),

where the constant c is a uniform bound for the al. The sum in our lemma now
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becomes

∑
degu≤z

u squarefree

∣u∣

δ(z)
= ∑

degu≤z
u squarefree

∑
d∣u

ad
∣d∣

= ∑
deg d≤z

u squarefree

ad
∣d∣

( ∑
d∣u

degu≤z,u squarefree

1).

Define for z ∈ Z+

s(z, d)∶= ∑
d∣u

degu≤z
u squarefree

1.

Let’s modify s(z, d) in the following way

s(z, d) = ∑
d∣u

degu≤z−deg d,u squarefree

1

= ∑
degu′≤z−deg d,

u′ squarefree,(u′,d)=1

1

= ∑
deg r≤(z−deg d)/2

µ(r)( ∑
degu′≤z−deg d,
r2∣u′,(u′,d)=1

1).

Again, we consider the inner sum. If (r, d) ≠ 1, then the sum is zero. Hence, we

may assume that (r, d) = 1. Then

∑
degu′≤z−deg d
r2∣u′,(u′,d)=1

1 =∑
s∣d

µ(s) ∑
degu′′≤z−deg(d⋅r2⋅s)

1

=∑
s∣d

µ(s)(
qz−deg d−2deg r−deg s+1

q − 1
+O(1))

=
qz+1

q − 1
⋅

1

∣d∣ ⋅ ∣r∣2
⎛

⎝
∑
s∣d

µ(s)

∣s∣

⎞

⎠
+O(∑

s∣d

1)

=
q

q − 1
qz ⋅

ϕ(d)

∣r∣2 ⋅ ∣d∣2
+O (2ω(d)) .
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Thus, the original inner sum s(z, d) is

s(z, d) = ∑
(r,d)=1

deg r≤(z−deg d)/2

µ(r)(
q

q − 1
qz ⋅

ϕ(d)

∣r∣2 ⋅ ∣d∣2
+O(2ω(d))) (A.1)

=
q

q − 1
qz ⋅

ϕ(d)

∣d∣2
⋅ ∑

(r,d)=1
deg r≤(z−deg d)/2

µ(r)

∣r∣2
+O(2ω(d) ⋅ ∑

deg r≤(z−deg d)/2

1) (A.2)

=
q

q − 1
qz ⋅

ϕ(d)

∣d∣2
⋅ ∑

(r,d)=1
deg r≤(z−deg d)/2

µ(r)

∣r∣2
+O(2ω(d) ⋅ q(z−deg d)/2). (A.3)

Note that the sum

∑
(r,d)=1

deg r≤(z−deg d)/2,

µ(r)

∣r∣2

is absolute convergent as z goes to infinity. Hence, there exists a positive constant

cd = O(1) such that

∑
(r,d)=1

deg r≤(z−deg d)/2,

µ(r)

∣r∣2
= cd − ∑

(r,d)=1
deg r>(z−deg d)/2,

µ(r)

∣r∣2
= cd +O(q−(z−deg d)/2).

Since ϕ(d)
∣d∣ < 1 and cd = O(1), substituting this in (A.1) gives

s(z, d) = cd
q

q − 1
qz ⋅

ϕ(d)

∣d∣2
+O(2ω(d) ⋅ q(z−deg d)/2).

Now we come back to our original sum.

∑
degu≤z

u squarefree

∣u∣

δ(z)
= ∑

deg d≤z,
u squarefree

ad
∣d∣

⋅ s(z, d)

= ∑
deg d≤z,

u squarefree

ad
∣d∣

⋅ (cd ⋅
q

q − 1
qz ⋅

ϕ(d)

∣d∣2
+O(2ω(d) ⋅ q(z−deg d)/2))

=qz ⋅ ∑
deg d≤z,

u squarefree

(a′d ⋅
ϕ(d)

∣d∣3
) +O(qz/2 ⋅ ∑

deg d≤z

ad ⋅ 2ω(d)

∣d∣3/2
),

where a′d = ad ⋅ cd ⋅ q/(q − 1). Since ∣ad∣ ≤ cω(d), ω(d) = O(deg d/ log deg d), and

cd = O(1), for any ε > 0,

ad = O(∣d∣ε), a′d = O(∣d∣ε), 2ω(d) = O(∣d∣ε).
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Therefore, the sums

∑
deg d≤z,

u squarefree

a′d ⋅
ϕ(d)

∣d∣3
≪∑

x≤z

1

q(1−ε)x

and

∑
deg d≤z

∣ad∣ ⋅ 2ω(d)

∣d∣3/2
≪∑

x≤z

1

q(1/2−ε)x

are convergent. Furthermore, there exists a constant C such that

∑
deg d≤z,

u squarefree

a′d ⋅
ϕ(d)

∣d∣3
= C − ∑

deg d>z,
u squarefree

a′d ⋅
ϕ(d)

∣d∣3

= C +O(1/q(1−ε)z).

Putting all together, we get

∑
degu≤z

u squarefree

∣u∣

δ(z)
= qz ⋅ (C +O(1/q(1−ε)z)) +O(qz/2)

= C ⋅ qz +O(qz/2).

To justify the positivity of C, we come back to the original sum. The limit ∣u∣/δ(u)

is 1. Therefore, as z goes to infinity, the original sum is bounded below by

∑
degu≤z

u squarefree

1

2
≍ qz.

Therefore, C must be positive.

Proof of Lemma A.1.1. By the Abel summation formula and Lemma A.1.3

∑
degu≤z

u squarefree

1

δ(u)
= ∑

degu≤z
u squarefree

∣u∣

δ(u)
⋅ ∣u∣−1

=(C ⋅ qz +O(qz/2))q−z − ∑
x≤z−1

(C ⋅ qx +O(qx/2)) ⋅ (
1

qx+1
−

1

qx
)

=C +O(q−z/2) + (1 − 1/q) ⋅ ∑
x≤z−1

(C +O(q−x/2))

=C1z +C2 +O(q−z/2), since ∑
x

q−x/2 converges,

where C1 = (1 − 1/q) ⋅C > 0. It completes the proof.
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