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Abstract

This dissertation deals with the problem of scheduling in wireless MIMO (Multiple-

Input Multiple-Output) downlink systems. The focus is on the large-scale systems

when the number of subscribers is large.

In part one, the problem of user selection in MIMO Broadcast channel is stud-

ied. An efficient user selection algorithm is proposed and is shown to achieve the

sum-rate capacity of the system asymptotically (in terms of the number of users),

while requiring (i) low-complexity precoding scheme of zero-forcing beam-forming

at the base station, (ii) low amount of feedback from the users to the base station,

(iii) low complexity of search.

Part two studies the problem of MIMO broadcast channel with partial Channel

State Information (CSI) at the transmitter. The necessary and sufficient conditions

for the amount of CSI at the transmitter (which is provided to via feedback links

from the receivers) in order to achieve the sum-rate capacity of the system are

derived. The analysis is performed in various singnal to noise ratio regimes.

In part three, the problem of sum-rate maximization in a broadcast channel

with large number of users, when each user has a stringent delay constraint, is

studied. In this part, a new definition of fairness, called short-term fairness is intro-

duced. A scheduling algorithm is proposed that achieves: (i) Maximum sum-rate

throughput and (ii) Maximum short-term fairness of the system, simultaneously,

while satisfying the delay constraint for each individual user with probability one.

In part four, the sum-rate capacity of MIMO broadcast channel, when the

channels are Rician fading, is derived in various scenarios in terms of the value of

the Rician factor and the distribution of the specular components of the channel.
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Chapter 1

Introduction

1.1 MIMO Systems

Recently, there has been an increasing demand for high speed wireless multimedia

services. Traditionally, the achievable bit rate of a communication link is limited

by the available bandwidth and power. In traditional wireless systems based on

single transmit and single receive antenna, the only way to increase the bit rate is to

increase either the bandwidth or the power budget. Another interesting approach

to increase the bit rate in wireless systems without increasing the bandwidth or

power budget is to use multiple transmit and/or multiple receive antennas. This

transforms the channel into a Multiple-Input Multiple-Output (MIMO) system.

MIMO systems offer two main advantages: spatial diversity (independent fading

for different antennas) and multiplexing gain (creating multiple transmission chan-

nels). More precisely, using multiple antennas at the transmitter and the receiver

can increase the transmission rate up to min(M,K), where M is the number of

transmit antennas and K is the number of receive antennas [1, 2], or increase the

1



Introduction 2

reliability of transmission up to MK [3]. MIMO systems can be designed to sac-

rifice diversity to support high transmission rates (Bell Labs Layered Space-Time

(BLAST)), or to sacrifice the rate to create diversity (space-time codes). Space-

time codes, invented by Tarokh et al. [3], are a new family of codes for transmission

of data using multiple transmit antennas over Rayleigh or Rician wireless channels

using a trellis structure. More generally, space-time code is a combination of chan-

nel coding, modulation and transmit and receive diversity. BLAST [2] is based on

using the independence of the fading between pairs of antennas to create multiple

transmission channels. These channels overlap in time and frequency, however,

these are separate in space.

Most of the research work reported in the literature on MIMO systems have

addressed one of these two extreme solutions. However, in many cases, an inter-

mediate solution providing an appropriate tradeoff between “rate” and “diversity”

may be more appropriate. It is also desirable that such an intermediate solution

can adjust the tradeoff point in an adaptive fashion depending on the channel

condition.

MIMO systems with either transmit diversity or with spatial multiplexing has

proved their ability in terms of increasing the spectral efficiency of the wireless

systems. The large spectral efficiency obtained by using MIMO systems for a point-

to-point wireless communication, suggests applying MIMO systems into network

wireless systems.
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1.2 MIMO Downlink Systems

Network information theory generalizes Shannon point-to-point (two terminals)

communication to systems with more than two terminals. This general framework

allows us to consider transmission of more than one source, and/or over more

than one channel. For many years, theoretical studies in this subject have shown

potential for realizing high gains over conventional point-to-point communication

techniques. However, the lack of practical schemes has limited the application

of these ideas in the past. With the advances in hardware, these subjects have

received considerable attention over the last few years and are widely believed to

provide a viable solution for the future wireless networks.

One of the most important aspect of wireless communications is cellular com-

munications in which a Base Station (BS) communicates with several mobile users.

In a cellular systems, the communications takes place in two scenarios; (i) downlink

scenario in which the BS transmits data to the users, and (ii) uplink scenario in

which the users transmit data to the BS. When the BS is equipped with multiple

antennas, the downlink channel can be modeled as a MIMO Broadcast Channel

(MIMO-BC) and the uplink channel can be modeled as MIMO Multiple-Access

Channel (MIMO-MAC).

Unlike the MIMO-MAC, finding the capacity region of MIMO-BC is challenging

and can not be performed using the conventional coding methods. This is due to

the fact that MIMO-BC belongs to the category of non-degraded broadcast chan-

nels. Recently, there has been a lot of interest in characterizing the capacity region

of this channel [4,5,6,7,8]. In [5]- [7], it has been shown that the sum-rate capacity

of MIMO broadcast channels can be achieved by exploiting the surprising result of

Costa [9] on known-interference cancellation at the transmitter, so-called Dirty Pa-
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per Coding (DPC). Briefly, Costa showed that the capacity of the standard scalar

single-user additive white Gaussian noise channel is unchanged in the presence of

an independent additive Gaussian interferer, provided that the interferer’s signal

in known noncausally to the transmitter. This result effectively shows that, while

encoding the desired user’s signal, the transmitter can perform a pre-cancellation

of the interfering signal without a power or rate penalty. Several researchers have

investigated practical techniques to achieve the sum-rate capacity (the maximum

achievable sum of long-term average data rates transmitted to all users) promised

by dirty paper coding. Nested lattices are used in [10] for the interference channel,

as well as the general multiuser channel. Trellis coding for the broadcast channel

is presented in [11], [12] as a practical technique for the multiuser channel.

There has been another line of work studying the capacity of MIMO broadcast

channels. Randomization form of the fading channels in a wireless network for dif-

ferent users motivates utilizing a new technique called multiuser diversity [16], [17].

Traditionally, diversity can be achieved over fading channels either over space

(multiple antenna in reception and/or transmission ), over time (interleaving) or

in frequency (using of RAKE receiver in spread spectrum systems). In a point-

to-multipoint wireless network, multiuser diversity can be obtained exploiting the

time varying characteristics of the users’ channels. Multiuser diversity gain arises

from the fact that in a system with many users whose channels vary independently,

the overall throughput is maximized by allocating the channel resource to the user

which, at that time, can best exploited. The fading rate and the dynamic range

of the channel fluctuations are essential parameters for the exploitation of mul-

tiuser diversity, i.e., the larger the fluctuation, the larger the diversity gain. In

the single-input single-output (SISO) case, it has been shown that transmitting to
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the user with the strongest channel in the given time slot is a strategy that can

achieve sum-rate capacity [35]. However, in the case of multiple-antenna trans-

mitter, simultaneous transmission of data streams to multiple users is required to

achieve the sum-rate capacity. The challenge is to find the best sub-set of users

for achieving the sum-rate capacity (user selection problem), which is addressed in

the second chapter of this dissertation.

Unlike the point-to-point MIMO link, in the MIMO-BC, it is crucial for the

transmitter to have the channel state information for all the users. This is obtained

by providing a feedback channel from the receivers to the transmitter, which is very

impractical for large-scale networks. Hence, it is interesting to study the problem

of MIMO-BC with partial channel state information at the transmitter. More

precisely, what is the performance degradation in the system when the transmitter

knows only partial information about the users’ channels (instead of the whole

information), and what is the minimum amount of the channel information at the

transmitter (or equivalently, the minimum amount of feedback from the users to

the transmitter), in order not to have any degradation in the system performance?

This problem is addressed in chapter 3.

One of the most important challenges in wireless networks is to provide the sub-

scribers their quality of service demands, including throughput, delay, and fairness

constraints. Most of the conventional scheduling schemes try to either maximize

the throughput of the system (by exploiting multiuser diversity) or to maximiz-

ing the fairness (like the Round-Robin scheduling). Although lots of schedulings

proposed in the literature have considered both throughput and fairness in the

scheduling, it is interesting to know whether or not one can simultaneously max-

imize the throughput and fairness in a wireless system. Chapter 4 studies this
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problem in a large-scale wireless downlink system.

Most of the research done in the literature on MIMO broadcast channels have

considered either a deterministic model or Rayleigh fading model for the channels.

It is important to study how would the results change if a different model is used

for the channels. In chapter 5, the capacity of MIMO-BC is derived assuming

Rician fading model for the channels.

1.3 Summary of the Dissertation

In chapter 2, we consider a Rayleigh fading MIMO-BC with large number of users

and propose an efficient sub-optimum algorithm that assigns the coordinates of

transmission space to different users in order to achieve the best performance in

terms of the sum-rate throughput. It is assumed that the zero-forcing beam-

forming is used at the base station as the precoding scheme. The algorithm starts

by setting a threshold value. By applying Singular Value Decomposition (SVD)

to all users’ channel matrices, only the eigenvectors whose corresponding singular

values are above the set threshold are considered. Then, among these candidate

eigenvectors, the algorithm chooses a set of size M which are nearly orthogonal

to each other. For the asymptotic case of N → ∞, we give the necessary and

sufficient conditions for the threshold value in order to achieve the optimum sum-

rate capacity, such that the difference between the sum-rates approaches zero.

Moreover, it is demonstrated that the complexity of search and the amount of

feedback required at the base station is significantly reduced. Simulation results

indicate that the proposed algorithm performs well for practical scenarios as well.

In chapter 3, a large-scale Rayleigh fading MIMO-BC is considered, in which
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the channel state information is provided from the users to the transmitter via

feedback links. First, we define the amount of feedback as the average number

of users who send information to the BS. In the fixed and low SNR regimes, our

results show that it is not possible to achieve the maximum sum-rate with a finite

amount of feedback. Moreover, in the fixed SNR regime, in order to reduce the

gap between the achieved sum-rate and the optimum value to zero, the amount

of feedback must be greater than ln ln lnN . In the second part, we define the

amount of feedback as the number of information bits sent to the BS. In the fixed

SNR regime, our analysis shows that the minimum amount of feedback, in order to

reduce the gap to the optimum sum-rate to zero, scales as Θ(ln ln lnN), which can

be achieved using the Random Beam-Forming scheme proposed in [26]. However,

the optimality of Random Beam-Forming only holds for the region lnP 6= Ω(lnN).

In the regime of lnP = Ω(lnN), we consider two cases. In the case of K < M , we

prove that the minimum amount of feedback bits to reduce the gap between the

achievable sum-rate and the maximum sum-rate to zero grows logarithmically with

SNR, which is achievable by the “Generalized Random Beam-Forming” scheme,

proposed in [51]. In the case of K = M , we show that by using the Random Beam-

Forming scheme and the amount of feedback not growing with SNR the maximum

sum-rate capacity is achievable.

In chapter 4, we consider a hard delay constraint D for each user, which is

enforced by the application or physical limitations (e.g. buffer size). We define

a dropping event as the event that there exists a user who does not meet the

desired delay constraint. We propose a scheduling scheme for maximizing the

throughput of the system, while satisfying the delay constraint for all users. The

proposed scheduling algorithm works based on setting a threshold on the channel
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gain of the users and among the users with channel gains above the threshold,

the user with the minimum Packet Expiry Countdowns (PEC), which is defined

as the remaining time to the expiration of that users’ packet, is served. By doing

asymptotic analysis, it is proved that by selecting the threshold level properly,

the proposed scheduling algorithm achieves the maximum throughput, maximum

fairness, and minimum delay in the network, simultaneously, in the asymptotic

case of N → ∞. The analysis is based on characterizing the probability mass

function of PEC in terms of N , D , and the threshold value, and evaluating

the network dropping probability accordingly. It is also demonstrated that the

Round-Robin (RR) scheduling, which focuses on maximizing the fairness and min-

imizing the delay in the network, and Multi-User Diversity (MUD) scheduling,

which focuses on maximizing the throughput in the system, are two extreme cases

of the proposed algorithm, where the former suffers from the weak performance

in terms of throughput and the latter increases the network delay by a factor of

logN . Moreover, we have introduced a new notion of performance in the network,

called “Average Throughput”, which is defined as the product of the packet arrival

rate and the amount of information per channel use in each packet, and proved

that the proposed algorithm maximizes the Minimum Average Throughput in a

broadcast channel. It is also established that the proposed algorithm reaches the

boundaries of the capacity region and stability region of the underlying system,

simultaneously, in the asymptotic case of N → ∞. The proposed algorithm is also

generalized to MIMO Broadcast Channels (MIMO-BC) by modifying the Random

Beam-Forming scheme proposed in [26]. It is shown that the proposed algorithm is

capable of achieving the maximum throughput, maximum fairness, and minimum

delay, simultaneously, in the asymptotic case of N → ∞, in a MIMO-BC.



Introduction 9

In chapter 5, we consider a Rician MIMO-BC, in which a transmitter equipped

with M antennas communicates with N (N ≫ 1) single-antenna users. The chan-

nels are assumed to be perfectly known at both the transmitter and receiver sides.

The asymptotic (in terms of the number of users) sum-rate capacity of the system,

as well as the capacity-achieving strategies, are derived. The main results of the

chapter are as follows: i) in the region of K = o(logN), where K denotes the Rician

factor, the sum-rate capacity scales as M log(1 + P
M
η), where P denotes the SNR

and η , logN
1+K , which is achieved by Zero-Forcing Beam-Forming (ZFBF) along

with a low-complexity user selection algorithm that considers only the scattered

component of the users’ channels, ii) in the region K = ω(logN), in the case of co-

located transmit antennas, the capacity scales as log(1 +MP ), which is achieved

by TDMA, iii) in the region K = ω(logN), in the case of isotropically-distributed

specular components, the sum-rate capacity behaves as M log(1 + P ), which is

achieved by ZFBF, along with a user selection algorithm that considers only the

specular component of the users’ channels. Simulation results confirm the validity

of analytical results.

Chapter 6 presents a summary of the thesis contributions and discusses several

future research directions.



Chapter 2

User Selection in MIMO

Broadcast Channels

2.1 Introduction

Multiple-input multiple-output (MIMO) systems have proved their ability to achieve

high bit rates on a scattering wireless network [1]. In a MIMO broadcast chan-

nel, the base station equipped with multiple antennas communicates with several

multiple-antenna users. Recently, there has been a lot of interest in characteriz-

ing the capacity region of this channel [4, 5, 6, 7, 8]. In [5]- [7], it has been shown

that the sum-rate capacity of MIMO broadcast channels can be achieved by ap-

plying dirty-paper coding (DPC) [9] at the transmitter. Practical schemes for

approximate implementation of DPC are proposed in [10], [11], [12], [13], [14], [15].

However, achieving the theoretical limits promised by DPC faces many challenges.

In a network with a large number of users, the base station can increase the

throughput by selecting the best set of users to communicate with. This results in

10



User Selection in MIMO Broadcast Channels 11

the so-called “multiuser diversity” gain [16], [17]. However, achieving the optimum

multiuser diversity gain requires an exhaustive search over all possible combination

of the users, which is not practical for large-scale networks. To overcome this

problem, references [18] and [19] propose sub-optimum methods for user selection.

These methods exploit the multiuser diversity gain, but are based on assuming

DPC at the base station.

To avoid the complexity of DPC, the simple precoding scheme of “zero-forcing

beam-forming”, which is also called “channel inversion”, is considered by some

authors [20], [21], [4], [22]. In these works, it is assumed that the users are equipped

with a single antenna. Using zero-forcing beam-forming, the downlink channel with

M transmit antennas is decomposed into N ≤ M interference-free subchannels,

serving N users. Unfortunately, in cases that the number of users is equal to

the number of transmit antennas, this method does not offer a good performance

[22]. However, the case of N > M is more common in practical networks. In

this case, selecting the best set of users improves the performance of this scheme

significantly [8] , [23] (multiuser diversity gain). Due to the high complexity of

selecting the best set, reference [24] proposes a suboptimum algorithm for user

selection in order to maximize the sum-rate. This algorithm is based on using

zero-forcing beam-forming at the transmitter. The complexity of this algorithm is

shown to be O(M3N).

To achieve a good performance by using zero-forcing beam-forming, the selected

sub-channels must have high gains and be nearly orthogonal to each other. As the

number of users increases, it becomes easier to satisfy these requirements. However,

the exhaustive search for selecting the best set of users is very complex. In [25],

the authors propose a suboptimum algorithm for selecting such a set of users in a
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downlink environment with large number of single-antenna users. This algorithm

is similar to the greedy algorithm proposed in [18], with the difference in using

an orthogonality threshold for selecting the users in each step. As a result, the

channel vectors of the selected users become nearly orthogonal to each other with

considerable gains. It has been shown that using this algorithm, the optimum sum-

rate throughput of the system is asymptotically achieved as N → ∞. However,

in their approach, the base station must have perfect Channel State Information

(CSI) for all users.

To avoid the huge amount of feedback required by providing perfect CSI to

the base station, reference [26] proposes a downlink transmission scheme based on

random beam-forming relying on partial CSI at the transmitter. In this scheme,

the base station randomly constructs M orthogonal beams and transmits data to

the users with the maximum Signal to Interference plus Noise Ratio (SINR) for

each beam. Therefore, only the value of maximum SINR, and the index of the

beam for which the maximum SINR is achieved, are fed back to the base station

for each user. This significantly reduces the amount of feedback. Reference [26]

shows that when the number of users tends to infinity, the optimum sum-rate

throughput can be achieved. However, for practical number of users, it does not

perform well [25].

In this chapter, we consider a Rayleigh fading MIMO-BC with large number of

users and propose an efficient sub-optimum algorithm that assigns the coordinates

of transmission space to different users in order to achieve the best performance

in terms of the sum-rate throughput. It is assumed that the zero-forcing beam-

forming is used at the base station as the precoding scheme. The algorithm starts

by setting a threshold value. By applying Singular Value Decomposition (SVD)
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to all users’ channel matrices, only the eigenvectors whose corresponding singular

values are above the set threshold are considered. Then, among these candidate

eigenvectors, the algorithm chooses a set of size M which are nearly orthogonal

to each other. For the asymptotic case of N → ∞, we give the necessary and

sufficient conditions for the threshold value in order to achieve the optimum sum-

rate capacity, such that the difference between the sum-rates approaches zero. The

proposed algorithm follows the same approach as that of [25], with a difference in

the user selection strategy. The main advantage of our algorithm is that the

coordinates are selected among the eigenvectors with singular values above a given

threshold, and for the rest of the eigenvectors no information is sent to the base

station. Therefore, the complexity of search and the amount of feedback required

at the base station is significantly reduced. Moreover, we give the necessary and

sufficient conditions for the threshold value in order to achieve the optimum sum-

rate, such that the difference between the achievable sum-rate and the optimum

value approaches zero.

This chapter is organized as follows. In section 2.2, we introduce the system

model, and describe the proposed algorithm in section 2.3. Sections 2.4 and 2.5

are devoted to analyzing the performance, in terms of the sum-rate throughput,

and the complexity of our proposed algorithm, respectively. Finally, section 2.6

concludes the chapter.

2.2 System Model

In this work, a MIMO-BC in which a base station equipped with M antennas

communicates with N users, each equipped with K antennas, is considered. The



User Selection in MIMO Broadcast Channels 14

channel between each user and the base station is modeled as a zero-mean circularly

symmetric Gaussian matrix (Rayleigh fading). The received vector by user k can

be written as

yk = Hkx + nk, (2.1)

where x ∈ CM×1 is the transmitted signal, Hk ∈ CK×M is the channel matrix

from the transmitter to the kth user, which is assumed to be perfectly known at

the receiver side and provided to the BS via a noiseless feedback channel 1, and

nk ∈ CK×1 ∼ CN (0, IK) is the noise vector at this receiver. We assume that the

transmitter has an average power constraint P , i.e. E
{
Tr(xxH)

}
≤ P . The power

constraint is assumed to be per frame. In other words, the power constraint is

independent of the channel realization. The channels are assumed to be quasi-

static block fading, in which each channel Hk is drawn randomly at the start of

each transmission frame and remains constant for the whole transmission frame,

and changes independently to another realization in the start of the next frame.

The frame itself is assumed to be long enough to allow communication at rates

close to the capacity. Defining the sum-rate capacity of the system in the channel

realization H , {Hk}Nk=1, when the transmitter has perfect CSI about all users’

channels, as Csum(H), the average sum-rate capacity, denoted as Csum, is defined as

the average over time of Csum(H), which is by the ergodicity of the channel, equal

to EH {ROpt(H)}.
1As we will show later, the BS does not need to have the perfect CSI about all the users’

channels. However, the partial CSI that the BS receives through feedback is based on the perfect

CSI that the receivers have.
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Csum is shown in [5] to be equal to

Csum = EH




 max
Qk

P

Tr(Qk)=P

ln

∣∣∣∣∣IM +

N∑

k=1

HH
k QkHk

∣∣∣∣∣




 , (2.2)

where Qk is the transmit covariance matrix of the kth user. The capacity achieving

transmission strategy is shown to involve at least M , and at most M2 data streams

in total [27]. However, experimental results show thatM data streams are adequate

to achieve a significant portion of the capacity [18], [19].

As discussed earlier, the capacity achieving strategy in a downlink environment

requires applying dirty-paper coding at the base station, which is not practical in

many applications. For this reason, it is desirable to utilize a precoding scheme

with less complexity. Among the known precoding schemes, zero-forcing beam-

forming has received considerable attention, as it uses a simple structure of channel

matrix inversion. This scheme results in having M interference-free sub-channels.

Although this scheme does not yield a good performance for the case M = N [22]2,

for the case of N > M , which is more common in wireless networks, by selecting an

appropriate set of dimensions, the corresponding performance is shown to be good

[25], [24], [28]. In this work, using zero-forcing beam-forming at the base station,

we propose an efficient algorithm to find M coordinates for data transmission,

focusing on maximizing the sum-rate throughput.

2.3 Proposed Algorithm

As mentioned earlier, to maximize the sum-rate using zero-forcing beam-forming,

the selected eigenvectors must be nearly orthogonal to each other, and their cor-

2The result is derived for the case of single-antenna users
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responding singular values be sufficiently large. The measure of orthogonality

between two M × 1 vectors υ and ψ is defined as,

z(υ, ψ) =
|υHψ|2

‖υ‖2‖ψ‖2
. (2.3)

It is evident that the smaller is z(υ, ψ), the more orthogonal will be υ and ψ.

Using Singular Value Decomposition (SVD), Hk can be written as

Hk = UkΛkV
H
k , (2.4)

where Λk is a K ×M diagonal matrix containing the singular values of Hk, Uk

and Vk are K ×K and M ×M unitary matrices, respectively. Multiplying both

sides of (2.1) by UH
k,j, where Uk,j is the jth column of Uk, it is easy to show that

rk,j = gk,jx + wk,j. (2.5)

In the above equation, rk,j = UH
k,jyk, gk,j =

√
λj(k)V

H
k,j, where Vk,j is the jth

column of Vk and
√
λj(k) is the jth singular value of Hk, corresponding to Vk,j,

and wk,j ∼ CN (0, 1) is AWGN. This equation suggests that for selecting the di-

mensions with high gains, the norm of the equivalent channel introduced by (2.5),

namely gk,j, which is equal to
√
λj(k), can be compared with a threshold. This

threshold is set by the base station at the beginning of the transmission. Using

such a threshold reduces the amount of feedback and the size of search space for

selecting the coordinates. To satisfy the orthogonality criterion, the base station

can perform an exhaustive search for finding the “most orthogonal set”3 among the

pre-selected eigenvectors. Due to the large complexity of exhaustive search, the

coordinates can be chosen one by one. In other words, in each step the eigenvector

3In general, the orthogonality of a set {hi}Mi=1 can be measured by the orthogonality defect,

defined as
QM

i=1
‖hi‖

2

|HHH| , where H = [hT1 | · · · |hTM ]T .



User Selection in MIMO Broadcast Channels 17

which is the most orthogonal to the previously selected coordinates, is selected.

The first coordinate is chosen as the eigenvector with the maximum corresponding

singular value. The steps of the algorithm are given in the following:

Proposed Algorithm (Algorithm 1):

1. Using SVD, each user computes the eigenvectors and singular values of its

channel matrix and sends back the singular values which are larger than a

predetermined threshold t, along with their corresponding “right” eigenvec-

tors4, to the base station. The indices of these eigenvectors form the following

set:

S0 = {(k, j)| λj(k) > t}. (2.6)

2. Base station selects the index in S0, corresponding to the maximum eigen-

value. Let us define this index as (s1, d1), i.e., the d1th eigenvector of the

s1th user.

3. Define

S1 = S0 − {(s1, d1)},

and

γk,j(1) = z(Vs1,d1 ,Vk,j), ∀(k, j) ∈ S1, (2.7)

where z(., .) is defined in (2.3). Note that as ‖Vk,j‖ = ‖Vs1,d1‖ = 1,

z(Vs1,d1 ,Vk,j) = |VH
s1,d1

Vk,j|2.
4In the SVD of H as UΛV, U is called right eigenvector matrix and V is called left eigenvector

matrix.
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4. For 2 ≤ m ≤M , repeat the followings:

(sm, dm) = arg min
(k,j)∈Sm−1

γk,j(m− 1)

Sm = Sm−1 − {(sm, dm)}

γk,j(m) = z(Vsm,dm ,Vk,j) + γk,j(m− 1), ∀(k, j) ∈ Sm. (2.8)

In the above, γk,j(m− 1) =
∑m−1

i=1 z(Vsi,di
,Vk,j) is used as the measure of orthog-

onality between a candidate eigenvector Vk,j and the set of previously selected

eigenvectors, {Vsi,di
}m−1
i=1 . Since these eigenvectors are nearly orthogonal to each

other by the algorithm, with a good approximation, γk,j(m−1) can be interpreted

as the square magnitude of the projection of Vk,j over the sub-space spanned by

{Vsi,di
}m−1
i=1 . It is obvious that the smaller is this projection, the more orthogonal

will be Vk,j to this sub-space. The recursive structure of γk,j(m) facilitates its

computation at each step of the algorithm.

After selecting the dimensions, we construct the “selected coordinate matrix”

as

H =
[
gTs1,d1 | gTs2,d2 | · · · | gTsM ,dM

]T
. (2.9)

Using zero-forcing beam-forming, the transmitted vector x can be written as

x = H
−1u, (2.10)

where u = [us1,d1, · · · , usM ,dM
]T is the information vector. Using (2.5) and (2.10),

the received signal over the mth coordinate is equal to

rsm,dm = UH
sm,dm

ysm

= gsm,dmx + wsm,dm

= gsm,dmH
−1u + wsm,dm

= usm,dm + wsm,dm . (2.11)
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It can be seen that by applying zero-forcing beam-forming, the downlink channel

is decomposed to M interference-free sub-channels.

2.4 Performance Analysis

In this section, we examine the performance of our proposed algorithm in terms of

the sum-rate throughput. First, we consider the asymptotic case of N → ∞.

2.4.1 Asymptotic Analysis

The sum-rate capacity of MIMO-BC has been shown to scale as M ln lnN , as N

tends to infinity [26]. This implies that to achieve the optimum sum-rate, the

singular values corresponding to the selected dimensions must behave like lnN .

In other words, the threshold value should scale as lnN . The following theorems

indicates this fact with more details:

Theorem 2.1 The necessary condition to achieve limN→∞ Csum − RProp = 0 is

having

t = lnN + (M +K − 2) ln lnN − ρ(N), (2.12)

where ρ(N) satisfies

ρ(N) = o(lnN),

and

ρ(N) = ln ln ln lnN + ln[Γ(K)Γ(M)] + ω

(
1

ln ln lnN

)
,

where Γ(n) , (n− 1)!, for integer values of n.
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Proof - We show that by violating any of the above conditions, the optimum

sum-rate can not be achieved.

The necessity of ρ(N) ∼ o(lnN):

It is sufficient to show that

lim
N→∞

t

lnN
= 1. (2.13)

For this purpose, we consider the following cases:

Case I; limN→∞ t = ∞, limN→∞
t

lnN
< 1: The achievable sum-rate of the

proposed method, denoted by RProp, can be upper-bounded as

RProp ≤ E





max
Pi

PM
i=1 Pi=P

M∑

i=1

ln(1 + Pi‖gsi,di
‖2)






= E





max
Pi

PM
i=1 Pi=P

M∑

i=1

ln(1 + Piλdi
(si))





, (2.14)

where gsi,di
and λdi

(si) are defined in (2.5).

Since the optimum sum-rate is shown to be M ln
(
P
M

lnN +O(ln lnN)
)

[26], we
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have

Csum −RProp ≥ M ln

(
P

M
lnN +O(ln lnN)

)
−

E





max
Pi

PM
i=1 Pi=P

M∑

i=1

ln(1 + Piλdi
(si))





,

= M ln

(
P

M
lnN +O(ln lnN)

)
−

E





max
Pi

PM
i=1 Pi=P

M∑

i=1

ln(Piλdi
(si)) + ln

(
1 +

1

Piλdi
(si)

)




.

(2.15)

The right hand side of the above equation can be written as follows:

RH(2.15)
(a)

≥ min
Pi

PM
i=1 Pi=P

ln

(
(P/M)M
∏M

i=1 Pi

)
+M ln (lnN +O(ln lnN))

−
M∑

i=1

E {lnλdi
(si)} +O

(
1

t

)

= M ln (lnN +O(ln lnN)) −
M∑

i=1

E {lnλdi
(si)} +O

(
1

t

)

(b)

≥ M ln (lnN +O(ln lnN)) − E

{
max

k=1,··· ,N
lnλmax(Hk)

}

−(M − 1)E {lnλ/λ > t} +O

(
1

t

)
, (2.16)

where λmax(A) is the maximum singular value of AAH , and λ is a random variable,

denoting an unordered eigenvalue of a K × K Wishart matrix. (a) comes from

writing ln(P/M lnN +O(ln lnN)) as ln(P/M) + ln(lnN +O(ln lnN)) and ln(1 +

Piλdi
(si)) as lnPi+lnλdi

(si)+ln
(
1 + 1

Piλdi
(si)

)
, using the approximation ln(1+x) ∼

O(x), x≪ 1, noting that the solution to the maximization problem (2.14) satisfies
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Piλsi
(di) ≫ 1, i = 1, · · · ,M . (b) results from the fact that excluding the largest

maximum singular value from the set of singular values, which are greater than t,

reduces the expectation in the second line of (2.16). In writing (b), we also used the

fact that the eigenvectors and their corresponding singular values of a circularly

symmetric Gaussian matrix are independent. The distribution of λ, denoting as

f(λ) is derived in [1] as

f(λ) =
1

K

K−1∑

i=0

i!

(M −K + i)!
[LM−K

i (λ)]2λM−K exp(−λ), (2.17)

where LM−K
i (λ) is the associated Laguerre polynomial of order k [29]. Using the

above equation, it is easy to show that

E {lnλ/λ > t} =

∫∞
t

lnλf(λ)dλ

1 − F (t)

= ln t+

∫∞
t

1−F (λ)
λ

dλ

1 − F (t)

= ln t+O

(
1

t

)
, (2.18)

where F (.) stands for the CDF of λ. Moreover, we can write

E

{
max

k=1,··· ,N
lnλmax(Hk)

}
≤ E

{
max

k=1,··· ,N
ln ‖Hk‖2

}
, (2.19)

where ‖A‖2 denotes the Frobenius norm of matrix A. In [26], it has been shown

that with probability one,

max
k=1,··· ,N

‖Hk‖2 = lnN +O(ln lnN).

Therefore,

E

{
max

k=1,··· ,N
lnλmax(Hk)

}
≤ ln (lnN +O(ln lnN)) (2.20)
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Combining (2.16), (2.18), and (2.20), we get

Csum −RProp ≥ (M − 1) ln
lnN

t
+O

(
ln lnN

lnN

)
+O

(
1

t

)
. (2.21)

Consequently, for limN→∞ t = ∞ and limN→∞
t

lnN
< 1, limN→∞ Csum−RProp 6= 0.

Case II; limN→∞ t = c, where c is a constant : In this case, (2.16) can be

written as

Csum −RProp ≥ M ln

(
P

M
lnN +O(ln lnN)

)
−

M∑

i=1

E {ln(1 + Pλdi
(si))}

≥ M ln

(
P

M
lnN +O(ln lnN)

)
−

E

{
ln

(
1 + P max

k=1,··· ,N
λmax(Hk)

)}
−

(M − 1)E {ln(1 + Pλ)/λ > t} . (2.22)

Similar to (2.20), it is easy to see that

E

{
ln

(
1 + P max

k=1,··· ,N
λmax(Hk)

)}
≤ lnP + ln(lnN +O(ln lnN)). (2.23)

Moreover, since E {ln(1 + Pλ)} < ∞, we have E {ln(1 + Pλ)/λ > t} = O(1).

Hence,

Csum −RProp ≥ (M − 1) ln lnN +O(1). (2.24)

As a result, limN→∞ Csum −RProp 6= 0. This completes the proof of

lim
N→∞

t

lnN
< 1 ⇒ lim

N→∞
Csum −RProp 6= 0.

Case III; limN→∞
t

lnN
> 1: Let us define pk as the probability that the

maximum singular value of a randomly chosen user k is greater than t. In [19], it
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is shown that for a K ×M matrix A, whose entries are i.i.d Gaussian with zero

mean and variance one, we have

Pr{λmax(A) > t} =
tM+K−2 exp(−t)

Γ(M)Γ(K)

[
1 +O

(
t−1
)]
. (2.25)

Therefore,

pk =
tM+K−2 exp(−t)

Γ(M)Γ(K)

[
1 +O

(
t−1
)]
, (2.26)

which is independent of k, and we denote it with p. We define L as the number

of users whose maximum singular values are greater than t. Since L is a binomial

random variable with parameter p, E{L} = Np.

Using Theorem 3.2 in the next chapter, we can write

Csum −RProp ≥ (1 − p)N(R1 −RNCSI
A ), (2.27)

where R1 = E

{
max Qn

P

Tr(Qn)=P
ln
∣∣∣IM +

∑N
n=1 HH

n QnHn

∣∣∣
∣∣∣∣A
}

, A is the event that

L = 0, and RNCSI
A stands for the sum-rate of MIMO-BC when no CSI is available

at the base station, conditioned on A. In [31], it has been shown that

RNCSI = EHk

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣

}
. (2.28)

Since limN→∞
t

lnN
> 1, using (2.26), it can be easily shown that Np → 0. As a

result, with a similar approach as in [30], we have

RNCSI
A = EHk |A

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣

∣∣∣∣A
}

= O(1). (2.29)

Moreover, we can write

R1 ≥ E {ln(1 + Pθmax) |θmax < t}

≥ E {ln(1 + Pθmax) |θmax < t, θmax > lnN}Pr{θmax > lnN |θmax < t}

≥ ln(1 + P lnN)ϑ, (2.30)
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where θmax , maxk λmax(Hk), and ϑ , Pr{θmax > lnN |θmax < t}. Using (2.26), ϑ

can be written as follows:

ϑ =

(
1 − tM+K−2e−t(1+O(t−1))

Γ(M)Γ(K)

)N
−
(
1 − [lnN ]M+K−2(1+O([lnN ]−1))

NΓ(M)Γ(K)

)N

(
1 − tM+K−2e−t(1+O(t−1))

Γ(M)Γ(K)

)N . (2.31)

Since limN→∞
t

lnN
> 1, it can be shown that ϑ = 1 − o( 1

N
). Substituting ϑ in

(2.30), yields

R1 ≥ ln(1 + P lnN)

(
1 − o

( 1

N

))
. (2.32)

Using the above equation and (2.29), the right hand side of (2.27) can be lower-

bounded as,

RH(2.27) ≥ (1 − p)N [ln lnN +O(1)]

= e−Np(1+O(p))[ln lnN +O(1)]

= ln lnN. (2.33)

The last line in the above equation follows from limN→∞
t

lnN
> 1, which incurs

Np→ 0. As a result, Csum −RProp 6= 0. This completes the proof for the necessity

of ρ(N) ∼ o(lnN).

The necessity of ρ(N) = ln ln ln lnN + ln[Γ(K)Γ(M)] + ω

(
1

ln ln lnN

)
:

Let ρ(N) = ln ln ln lnN + ln[Γ(M)Γ(K)] + σ(N). Suppose that

ρ(N) 6= ln ln ln lnN + ln[Γ(K)Γ(M)] + ω

(
1

ln ln lnN

)
, (2.34)

which incurs σ(N) = O
(

1
ln ln lnN

)
, or σ(N) < 0. Using (2.27), we have

Csum −RProp ≥ (1 − p)N [R1 −RNCSI
A ]. (2.35)
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Similar to (2.29) and (2.32), under the assumption of (2.34), it can be shown that

R1 ≥ ln(1 + P lnN)

(
1 − o

( 1

N

))
,

RNCSI
A = O(1). (2.36)

Using the above equations and (2.26), we can write

Csum −RProp ≥
(

1 − tM+K−2 exp(−t)
Γ(M)Γ(K)

[
1 +O(t−1)

])N
[ln lnN +O(1)]

=

(
1 − eρ(N)

NΓ(M)Γ(K)

[
1 +O

(
ln lnN

lnN

)])N
[ln lnN +O(1)]

= exp

{
− eρ(N)

Γ(M)Γ(K)

}
[1 + o(1)] [ln lnN +O(1)]

= exp
{
−eσ(N) ln ln lnN

}
[ln lnN +O(1)] [1 + o(1)]

= M exp
{
[1 − eσ(N)] ln ln lnN

}
[1 + o(1)] . (2.37)

Under the assumption of (2.34), in the case of σ(N) = O

(
1

ln ln lnN

)
, i.e.,

lim
N→∞

σ(N) ln ln lnN = c <∞,

using (2.37), we have

Csum −RProp ≥ exp
{
[−σ(N) +O(σ2(N))] ln ln lnN

}
[1 + o(1)]

= exp {−σ(N) ln ln lnN} [1 + o(1)] . (2.38)

Hence,

lim
N→∞

Csum −RProp ≥ e−c

6= 0. (2.39)

Also, in the case of σ(N) < 0, using (2.37), we have

lim
N→∞

Csum −RProp ≥ 1

6= 0. (2.40)
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This completes the proof for the necessity of ρ(N) = ln ln ln lnN+ln[Γ(K)Γ(M)]+

ω

(
1

ln ln lnN

)
.

�

Theorem 2.2 The sufficient condition to achieve limN→∞ Csum − RProp = 0 is

having

t = lnN + (M +K − 2) ln lnN − ρ(N), (2.41)

where ρ(N) satisfies

ρ(N) = o(lnN),

and

ρ(N) = ln ln ln lnN + ω (1) .

Proof - First, we state and prove lemmas 2.3-2.7. In Lemma 2.3, we show that the

pre-selected eigenvectors in the first step of Algorithm 1 must correspond to the

maximum singular values of some users’ channel matrices, with probability one.

Having this, in Lemma 2.4, we obtain the number of pre-selected users in the first

step of Algorithm 1 in terms of ρ(N). Then, by deriving the pdf of the orthog-

onality measure defined in Lemma 2.5, in Lemma 2.7, we give a lower-bound on

the measure of orthogonality between the selected eigenvectors in terms of ρ(N).

Finally, the theorem is proved by obtaining a lower-bound on the achievable rate

of the proposed scheme and showing that if ρ(N) satisfies the conditions in The-

orem 2.2, the difference between this lower-bound and the sum-rate capacity of

MIMO-BC approaches zero, as N → ∞.
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Lemma 2.3 Assuming K > 1, define ΩJ as the probability of existing at least

one user from which J eigenvectors (J > 1) are selected in Algorithm 1. Setting

t = lnN + (M +K − 2) ln lnN − ρ(N), in which ρ(N) satisfies the conditions of

Theorem 2.2, we have

ΩJ = O

(
eo(lnN)

NJ−1

)
. (2.42)

Proof- Consider the following event 5:

Ak = {λi(k) > t, i = 1, · · ·J, λi(k) < t, i = J + 1, · · · , K}. (2.43)

We have

‖Hk‖2 = Tr{HkH
H
k }

=

K∑

i=1

λi(k)

≥
J∑

i=1

λi(k). (2.44)

Since t = lnN + o(lnN), we can write

Pr{Ak} ≤ Pr{‖Hk‖2 ≥ J lnN + o(lnN)}, (2.45)

As ‖Hk‖2 has a chi-square distribution with 2MK degrees of freedom [32], the

right hand side of (2.45) can be written as

Pr
{
‖Hk‖2 ≥ J lnN + o(lnN)

}
=

∫ ∞

J lnN+o(lnN)

xMK−1 exp(−x)
Γ(MK)

dx

=

MK−1∑

m=0

[J lnN + o(lnN)]m

m!
e−J lnN+o(lnN)

=

(
[J lnN ]MK−1 + o([lnN ]MK−1)

)
eo(lnN)

NJ (MK − 1)!

= ΨJ
[lnN ]MK−1eo(lnN)

NJ
[1 + o(1)], (2.46)

5We have assumed that the singular values are in the decreasing order, i.e., λ1 > λ2 > · · · > λK



User Selection in MIMO Broadcast Channels 29

where ΨJ = JMK−1

(MK−1)!
. Using (2.45), and (2.46), we can write ΩJ as

ΩJ = 1 −
N∏

k=1

(1 − Pr{Ak})

≤ 1 −
[
1 − ΨJ

[lnN ]MK−1eo(lnN)

NJ
[1 + o(1)]

]N

= 1 − exp

{
N ln

[
1 − ΨJ

[lnN ]MK−1eo(lnN)

NJ
[1 + o(1)]

]}

= 1 − exp

{
−ΨJ

[lnN ]MK−1eo(lnN)

NJ−1
[1 + o(1)]

}

= O

(
eo(lnN)

NJ−1

)
. (2.47)

�

As a result, limN→∞ ΩJ = 0, for J > 1. This implies that as N → ∞, with

probability one, at most one eigenvector for each user is likely to be selected by

this algorithm. This eigenvector corresponds to the maximum singular value of

that user.

Lemma 2.4 Let t = lnN + (M +K − 2) ln lnN − ρ(N), in which ρ(N) satisfies

the conditions of Theorem 2.2, and L be the number of users being selected in the

first step of Algorithm 1. Then, as N → ∞, with probability one

L =
eρ(N)

Γ(M)Γ(K)
[1 + o (1)] . (2.48)
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Proof- Using (2.26), the probability of a randomly chosen user k being pre-selected

in the first step of Algorithm 1 can be calculated as,

p = Pr{λmax(Hk) > t}

=
tM+K−2e−t

Γ(M)Γ(K)

(
1 +O(t−1)

)

=
eρ(N)

NΓ(M)Γ(K)
[1 + o(1)]

=
ln ln lnNeq(N)

NΓ(M)Γ(K)
[1 + o(1)] , (2.49)

where q(N) = ρ(N) − ln ln ln lnN . Consider the following probability:

ξ = Pr {Np(1 − ǫ) < L < Np(1 + ǫ)} , (2.50)

where ǫ =
√

2Γ(M)Γ(K)e
−q(N)

4 . Note that since q(N) = ω(1), we have limN→∞ ǫ =

0. ξ can be computed as

ξ =

⌊Np(1+ǫ)⌋∑

l=⌈Np(1−ǫ)⌉

(
N

l

)
pl(1 − p)N−l

≈ 1 −Q

(
Np−Np(1 − ǫ)√

Np(1 − p)

)

−Q

(
Np(1 + ǫ) −Np√

Np(1 − p)

)

= 1 − 2Q

( √
Npǫ√
1 − p

)

≈ 1 − 2
√

1 − p√
2π

√
Npǫ

exp

(
− Npǫ2

2(1 − p)

)
. (2.51)

Substituting p from (2.49), and having ǫ2 = 2Γ(M)Γ(K)e
−q(N)

2 , we have

ξ = 1 − O

(
e

−q(N)
4√

ln ln lnN

)
exp

{
− ln ln lnNe

q(N)
2 [1 + o(1)]

}
(2.52)
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Thus, limN→∞ ξ = 1. Finally, using (2.49) and (2.52), with probability one we

have

L = Np (1 +O(ǫ))

=
eρ(N)

Γ(M)Γ(K)
[1 + o (1)] . (2.53)

�

Since ρ(N) = o(lnN), from Lemma 2.4, it is evident that limN→∞
L
N

= 0.

Therefore, only a small fraction of users are pre-selected. This results in reducing

the amount of feedback sent to the base station.

As shown in Lemma 2.3, in the asymptotic case of N → ∞, at most one

eigenvector from each user is likely to be selected. This eigenvector corresponds

to the maximum singular value of that user’s channel matrix, and is denoted by

Vi,max. Hence, for the sake of simplicity of notation, we define the measure of

orthogonality between the users i and j, denoted by O(i, j), as the orthogonality

measure between Vi,max and Vj,max, defined in (2.3) as z (Vi,max,Vj,max). In other

words,

O(i, j) = |VH
i,maxVj,max|2. (2.54)

Lemma 2.5 The pdf of O(i, j) defined in (2.54) can be computed from

fO(i,j)(z) = (M − 1)(1 − z)M−2. (2.55)

Proof- In Appendix A.

Definition 2.6 A set S = {hi}Mi=1, in which hi ∈ C1×M , is called ǫ-orthogonal if

we have z(hi,hj) < ǫ, for every hi 6= hj ∈ S.
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Lemma 2.7 Let t = lnN + (M +K − 2) ln lnN − ρ(N), where ρ(N) satisfies the

conditions of Theorem 2.2. Then, as N → ∞, the selected coordinates by Algorithm

1 construct an ǫ(N)-orthogonal set, with probability one, where ǫ(N) = e−
q(N)

M , and

q(N) = ρ(N) − ln ln ln lnN .

Proof- After selecting the first user, s1, with largest maximum singular value,

the user which is most orthogonal to s1 is selected. In other words,

s2 = arg min
l∈S1

O(l, s1), (2.56)

where S1 is defined in (2.7). First, we show that the users s1 and s2 are with

probability one ǫ(N)-orthogonal to each other, or equivalently, O(s2, s1) < ǫ(N).

To do this, consider the following probability:

µ = Pr {O(s2, s1) < ǫ(N)} . (2.57)

Using (2.55), this probability can be written as

µ = Pr
{

min
l

O(l, s1) < ǫ(N)
}

= 1 − (Pr {O(l, s1) > ǫ(N)})L−1

= 1 −
(∫ 1

ǫ(N)

(M − 1)(1 − z)M−2dz

)L−1

= 1 − [1 − ǫ(N)](L−1)(M−1)

= 1 − exp {−(L− 1)(M − 1) ln [1 − ǫ(N)]}

= 1 − exp
{
−(L− 1)(M − 1)

[
ǫ(N) +O

(
ǫ2(N)

)]}
. (2.58)
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Defining the event D = {Np(1 − ǫ) < L < Np(1 + ǫ)}, with p and ǫ defined in

(2.49) and (2.50), and using (2.52), a lower bound for µ is found as,

µ ≥ Pr{D}
[
1 − exp

{
−(Np(1 − ǫ) − 1)(M − 1)

[
ǫ(N) +O

(
ǫ2(N)

)]}]

=

[

1 − O

(
e

−q(N)
4√

ln ln lnN

)

exp
{
− ln ln lnNe

q(N)
2 [1 + o(1)]

}]

×
[
1 − exp

{
− ln ln lnNe

(M−1)q(N)
M

Γ(M − 1)Γ(K)
[1 + o(1)]

}]
. (2.59)

Since q(N) ∼ ω(1), the above probability approaches one as N → ∞. Therefore,

with probability one users s1 and s2 are ǫ(N)-orthogonal to each other.

Now, assume that m users, which construct an ǫ(N)-orthogonal set Am, are se-

lected up to the mth step of Algorithm 1. We show that the selected user in

the (m + 1)th step of this algorithm, sm+1, is such that with probability one,

Am+1 = Am+{sm+1} is ǫ(N)-orthogonal, or equivalently, sm+1 is ǫ(N)-orthogonal

to all users in Am. To this end, we define the following probability:

νk,m = Pr{O(s1, k) < α,O(s2, k) < α, · · · ,O(sm, k) < α}, (2.60)

where α = ǫ(N)
M

. νk,m is the probability that a randomly selected user k is α-

orthogonal to all users in Am. This probability can be written as

νk,m = Pr {O(s1, k) < α}
m∏

i=2

κi, (2.61)

where κi = Pr {O(si, k) < α | O(s1, k) < α, · · · ,O(si−1, k) < α} . From (2.55),

the first term in the right hand side of the above equation can be written as

Pr {O(s1, k) < α} =

∫ α

0

(M − 1)(1 − z)M−2dz

= 1 − (1 − α)M−1

= (M − 1)α +O(α2). (2.62)
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In Appendix B, it has been proved that

κi = (M − i)α +O(α3/2). (2.63)

Hence, using (2.61), (2.62), and (2.63), we can write

νk,m =
[
(M − 1)α +O(α2)

] m∏

i=2

[
(M − i)α +O(α3/2)

]

=
Γ(M)

Γ(M −m)
αm +O

(
αm+1/2

)

=
Γ(M)

Γ(M −m)Mm

[
[ǫ(N)]m +O

(
[ǫ(N)](m+1/2)

)]
(2.64)

Now, we define ωm as the probability of existing at least one user α-orthogonal to

the users in the set Am. Noting that νk,m is the same for all k, we obtain,

ωm = 1 −
L−m∏

k=1

(1 − νk,m)

= 1 − exp {(L−m) ln (1 − νk,m)}

= 1 − exp
{
(L−m)

[
−νk,m +O(ν2

k,m)
]}
. (2.65)

Similar to (2.59), we can compute ωm as,

ωm =

[
1 − O

(
e

−q(N)
4√

ln ln lnN

)
exp

{
− ln ln lnNe

q(N)
2 [1 + o(1)]

}]
×

[

1 − exp

{

− ln ln lnNe
(M−m)q(N)

M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}]

. (2.66)

Since m ≤ M − 1, it follows that limN→∞ ωm = 1. In other words, as N tends to

infinity, with probability one there exists at least one user um+1, α-orthogonal to

all users in Am.
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Consider user sm+1 which is selected in the (m+ 1)th step of Algorithm 1. Obvi-

ously, we have
m∑

j=1

O(sm+1, sj) ≤
m∑

j=1

O(um+1, sj)

≤ mα

=
mǫ(N)

M

≤ ǫ(N). (2.67)

Knowing the fact that O(sm+1, sj) ≥ 0, for j = 1, · · ·m, we can write

O(sm+1, sj) ≤ ǫ(N), j = 1, · · ·m

which means that with probability one, sm+1 is ǫ(N)-orthogonal to the users in

the set Am, and consequently, Am+1 is an ǫ(N)-orthogonal set.

Let us define Xm as the event that the set Am is ǫ(N)-orthogonal. We can

write

Pr{XM} = Pr{X2}
M∏

m=3

Pr{Xm|Xm−1}. (2.68)

From (2.59) and (2.66), the above probability is lower-bounded as

Pr{XM} ≥ µ
M−1∏

m=2

ωm

≥
[
1 − O

(
e

−q(N)
4√

ln ln lnN

)
exp

{
− ln ln lnNe

q(N)
2 [1 + o(1)]

}]M−1

×
[
1 − exp

{
− ln ln lnNe

(M−1)q(N)
M

Γ(M − 1)Γ(K)
[1 + o(1)]

}]
×

M−1∏

m=2

[

1 − exp

{

− ln ln lnNe
(M−m)q(N)

M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}]

= 1 − exp

{
− ln ln lnNe

q(N)
M

MM−1Γ(K)
[1 + o(1)]

}
. (2.69)
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Therefore, limN→∞ Pr{XM} = 1. In other words, the selected coordinates by Al-

gorithm 1, with probability one, construct an ǫ(N)-orthogonal set as N tends to

infinity, which completes the proof of Lemma 2.7.

�

As mentioned earlier, after selecting the coordinates, the “selected coordinate ma-

trix”, H, is constructed using (2.9). By applying zero-forcing beam-forming, the

information vector, u, is multiplied by H
−1 to construct the transmitted signal as

(2.10). Using (2.11), we can write

r = u + w, (2.70)

where r = [rs1,d1 , · · · , rsM ,dM
]T , u = [us1,d1, · · · , usM ,dM

]T , and w = [ws1,d1, · · · , wsM ,dM
]T .

Having the power constraint P for x, the sum-rate capacity can be computed as [4],

RProp = EH




 max
Pm

PM
m=1 γmPm≤P

M∑

m=1

ln(1 + Pm)




 , γm =
[(

H
H

H
)−1
]

m,m
, (2.71)

where [A]i,j denotes the entry of matrix A in the ith row and the jth column. The

optimal Pm’s in (2.71) can be obtained by “water-filling”. Here, we assume that

Pm’s are all equal (uniform power allocation). Thus,

Pm =
P

Tr
{[

H
H
H
]−1
} . (2.72)

Consequently,

RU
Prop = EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}








 , (2.73)

where RU
Prop stands for the sum-rate achieving by the proposed method, when the

power is uniformly allocated among the coordinates.
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Having defined XM in (2.68) and using (2.69), the above equation can be written

as follows:

RU
Prop = EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
XM




Pr{XM} +

EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
XC
M




 (1 − Pr{XM})

≥ EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
XM




Pr{XM}

=

(
1 − exp

{
− ln ln lnNe

q(N)
M

MM−1Γ(K)
[1 + o(1)]

})
×

EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
XM




 , (2.74)

where XC
M is the complement of XM .

From Algorithm 1, it is obvious that the corresponding singular values of the

selected eigenvectors are greater that t = lnN + (M + K − 2) ln lnN − ρ(N).

However, the following lemma which is proved in Appendix C, states that the

singular values of all selected dimensions, with probability one, can not exceed

lnN + (M +K − 1) ln lnN :

Lemma 2.8 Let t = lnN + (M +K − 1) ln lnN . Then,

η = Pr

{
max

k=1,··· ,N
λmax(Hk) > t

}
= O

(
1

lnN

)
. (2.75)

As a result of this lemma, the singular values corresponding to the all selected

dimensions can be expressed as lnN + o(lnN).
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To compute the conditional probability EH

{
M ln

(
1 + P

Tr
n

[HHH]
−1

o

)∣∣∣∣XM

}
,

we define B = HH
H . Conditioned on XM , i.e., having ǫ(N)-orthogonality among

the selected dimensions, using (2.9), and the results of Lemma 2.7 and Lemma 2.8,

we can write

Bii = ‖gsi,di
‖2 = lnN + f(N), (2.76)

and

|Bij| =
√

‖gsi,di
‖2‖gsj ,dj

‖2z
(
Vsi,di

,Vsj,dj

)

=
√
O(lnN) × O(lnN) ×O (ǫ(N))

= O(ǫ(N) lnN), (2.77)

where f(N) = o(lnN). In Appendix D it has been shown that any diagonal

element of B
−1 can be expressed as [lnN ]−1 +O

(
h(N)
lnN

)
, where

h(N) , max

(
f(N)

lnN
, ǫ(N)

)
= o(1). (2.78)

Having this, and using the fact that Tr
{[

H
H
H
]−1
}

= Tr
{
B

−1
}
, we can write

EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
XM




 = EB

{

M ln

(

1 +
P

Tr
{
B

−1
}
)∣∣∣∣∣XM

}

= M ln



1 +
P

M [lnN ]−1 +O
(
h(N)
lnN

)





= M ln

(
1 +

P

M [lnN ]−1 [1 +O (h(N))]

)

= M ln

(
P

M
lnN +O(h(N) lnN)

)
. (2.79)
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From (2.74) and (2.79), we have

RU
Prop ≥ M ln

(
P

M
lnN +O(h(N) lnN)

)
×

(
1 − exp

{
− ln ln lnNe

q(N)
M

MM−1Γ(K)
[1 + o(1)]

})
. (2.80)

Since adaptive power allocation (using “water-filling”) results in higher sum-rate

than that of uniform power allocation, we have RProp ≥ RU
Prop. Having the fact

that [26]

Csum = M ln

(
P

M
lnN +O(ln lnN)

)
, (2.81)

and using (2.80), we have

Csum −RProp ≤ M ln

(
P

M
lnN + g1(N)

)
−

M ln

(
P

M
lnN + g2(N)

)
(1 − g3(N))

= M ln

(
1 +

Mg1(N)

P lnN

)
−M ln

(
1 +

Mg2(N)

P lnN

)
+

Mg3(N) ln

(
P

M
lnN + g2(N)

)
, (2.82)

where g1(N) = O(ln lnN), g2(N) = O (h(N) lnN), and

g3(N) = exp

{
− ln ln lnNe

q(N)
M

MM−1Γ(K)
[1 + o(1)]

}
= o

(
1

ln lnN

)
. (2.83)

From (2.78) and (2.83), and Using the approximation ln(1 + x) ≈ x, for x ≪ 1,

and we can write

Csum −RProp ∼ M

(
M [g1(N) − g2(N)]

P lnN

)
+Mg3(N) ln

(
P

M
lnN + g1(N)

)

= o(1). (2.84)
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Consequently,

lim
N→∞

Csum −RProp = 0, (2.85)

which completes the proof of Theorem 2.2.

�

Theorem 2.2 implies that using Algorithm 1, and applying zero-forcing beam-

forming at the base station, the same performance as when the optimum user

selection algorithm and optimum precoding scheme is utilized, can asymptotically

be achieved.

Remark 1- Although in the proof of Theorem 2.2, we showed that limN→∞ Csum−
RProp = 0, it is interesting to minimize the order of difference.

Rewriting (2.84), we get

Csum −RProp = O (̺(N)) + exp

{
− ln ln lnNe1/ǫ(N)

MM−1Γ(K)
[1 + o(1)]

}
O(ln lnN),

(2.86)

where ̺(N) = max
(
h(N), ln lnN

lnN

)
, and h(N) is defined in (2.78). Hence, in order

to minimize the order of difference, we must have h(N) = O
(

ln lnN
lnN

)
, which incurs

ǫ(N) = O
(

ln lnN
lnN

)
and f(N) = O(ln lnN). As a result,

q(N) = −M ln ǫ(N)

= M ln lnN −M ln ln lnN + ψ(N), (2.87)

where ψ(N) is an arbitrary function with the condition limN→∞ ψ(N) = c > 0.

Hence, using the definition of q(N) in Lemma 2.7, we can write

t = lnN + (K − 2) ln lnN +M ln ln lnN − ln ln ln lnN − ψ(N).

(2.88)
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Also, to guarantee f(N) = O(ln lnN), we must have

t = lnN +O(ln lnN), (2.89)

which means ψ(N) = O(ln lnN). Having these conditions on t, we can guarantee

Csum −RProp = O
(

ln lnN
lnN

)
.

Remark 2- It is important to note that satisfying limN→∞ Csum −RProp = 0,

is much more challenging than that of limN→∞
RProp

Csum
= 1. The following lemma,

which is proved in Appendix E, clarifies this fact:

Lemma 2.9 Suppose that in Algorithm 1, t = lnN , and the coordinates are cho-

sen randomly among the pre-selected eigenvectors. Then,

lim
N→∞

RProp

Csum
= 1. (2.90)

The above lemma states that to satisfy limN→∞
RProp

Csum
= 1, the orthogonality among

the coordinates is not a necessary condition.

2.4.2 Comparison with other Downlink Strategies

In this section, we compare the performance of our proposed scheme with some

other downlink strategies in terms of sum-rate capacity. To have a good measure

for comparison, we give the following definition:

Definition 2.10 For a MIMO-BC in which a base station, and average power

constraint P communicating to N users, using strategy S, the multiplexing gain
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is defined as 6

rS = lim
P→∞

RS(P,N)

lnP
, (2.91)

and the multiuser diversity gain is defined as

dS = lim
N→∞

RS(P,N)

rS ln lnN
, (2.92)

where RS(P,N) is the achievable sum-rate.

Lemma 2.11 Using the proposed algorithm, and applying zero-forcing beam-forming,

we can achieve r = M , and d = 1, which are the maximum achievable values in a

MIMO-BC.

Proof- Appendix F.

Time Division Multiple Access (TDMA)

In this scheme, the base station only serves one user in each time slot. Hence,

to achieve the maximum sum-rate, the user which has the maximum single-user

capacity should be served. Because of its simplicity, this strategy is widely used

in the downlink of the cellular networks. The achievable sum-rate of this scheme

can be written as

RTDMA = E




max
k

max
Qk

Tr{Qk}=P

ln
∣∣IK×K + HkQkH

H
k

∣∣




 , (2.93)

6 More precisely, as in [33], r is the maximum achievable multiplexing gain when diversity

gain approaches zero.
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where Qk is obtained by “water-filling”. Using (2.91) and (2.92), and the result

of Lemma 2.3 in [34], the multiplexing gain and multiuser diversity gain for this

scheme can be obtained as,

rTDMA = lim
P→∞

RTDMA(P,N)

lnP

= lim
P→∞

E

{
maxk

(∑min(M,K)
i=1 ln

(
Pλi(k)

min(M,K)

))}

lnP

= min(M,K), (2.94)

and,

dTDMA = lim
N→∞

RTDMA(P,N)

min(M,K) ln lnN

= 1. (2.95)

Hence, this scheme achieves the full multiuser diversity gain, while achieving the

full multiplexing gain only in the case of K ≥M .

Although this method has been shown to be optimal for single-antenna broadcast

channel (M = 1) [35], for the case of M > K ≥ 1, as a result of losing the

multiplexing gain, this method is no longer optimum 7.

From the proof of the Lemma 2.3 in [34], it can be observed that the upper

and lower bounds for RTDMA have the same behavior asymptotically almost surely,

when N → ∞. In other words8,

K ln

(
1 +

P

K
max
k

λmin(H
′
kH

′
k
H

)

)
≈ K ln

(
1 +

P

K2
max
k

Tr(HkH
H
k )

)

≈ K ln(1 +
P

K2
lnN), (2.96)

7For the case of K ≥M , this scheme is not optimal either. This fact will be discussed in more

details later.
8 It is assumed that K ≤M .



User Selection in MIMO Broadcast Channels 44

where H′
k (K ×K) is a truncated version of Hk by omitting the M −K columns

of Hk. From (2.96), and having the fact that λmin(H
′
kH

′
k
H) ≤ λmin(HkHk

H), the

following observations can be obtained:

Observation 1- For the user which maximizes the single-user capacity in (2.93),

(l), all the eigenvalues should be of the same order. In other words,

λj(HlH
H
l ) =

lnN

K
+O(ln lnN), j = 1, · · · , K. (2.97)

As a result of this, HlH
H
l tends to the identity matrix.

Observation 2- The user with maximum single-user capacity has the maximum

λmin, asymptotically.

For the case of K ≥ M , similar to (2.96), the asymptotic sum-rate capacity

can be computed as

RTDMA ≈ M ln

(
P

M2
lnN

)
. (2.98)

In this case, it can be easily shown that limN→∞
RTDMA

Csum
= 1. In other words,

the optimum sum-rate can asymptotically be achieved. However, the selected

dimensions by TDMA belong to the same user and have the asymptotic behavior

of lnN
M

, while in our proposed method the selected dimensions belong to different

users with the asymptotic behavior of lnN . Moreover, we have

Csum −RTDMA ≈ M ln

(
1 +

P

M
lnN

)
−M ln

(
1 +

P

M2
lnN

)

∼ M lnM. (2.99)

As can be observed from figure 2.2, this gap affects the performance significantly,

especially when M is large.
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Random Selection

In this method, the base station randomly selects M users for transmission. This

results in having fairness in the system. This strategy can also be regarded as

Round-Robin scheduling algorithm, when the users are randomly divided into

groups of size M , and the base station serves one group in each time slot.

In Appendix G, it is shown that using multiple dimensions for transmission results

in having multiplexing gain equal to M . However, because of random selection of

the users, this scheme does not provide multiuser diversity gain. More precisely,

dRS = lim
N→∞

RRS(P,N)

M ln lnN

= lim
N→∞

EH1,··· ,HM

{
max Qm

P

Tr(Qm)=P
ln
∣∣∣IM +

∑M
m=1 HH

mQmHm

∣∣∣
}

M ln lnN

= lim
N→∞

O(1)

M ln lnN

= 0. (2.100)

As a result of lacking multiuser diversity gain, this scheme shows a weak perfor-

mance especially for large number of users. (Figure 2.2)

2.4.3 Simulation Results

So far, we have shown that asN tends to infinity, our scheme achieves the optimum

sum-rate which scales like M ln
(
P
M

lnN
)
. In this section, simulation results are

provided to examine the performance of our proposed scheme in practical networks

with finite number of users.

Figure 2.1 shows the optimum threshold (computed by exhaustive search) as a

function of the number of users for M = 2, K = 1, and M = 4, K = 1. These
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curves show that the optimum threshold for each N , lies between lnN − ln lnN ,

and lnN , which is consistent with (2.88), in which we showed that the optimum

threshold behaves as lnN + (K − 2) ln lnN + O(ln ln lnN), which lies between

lnN + (K − 2) ln lnN and lnN + (K − 1) ln lnN . Note that, in general, the

optimum threshold value depends on both SNR and N . However, as N increases

(or SNR increases) this dependency decreases.

Figures 2.2 presents the plots of the corresponding sum-rate versus the number

of users for different number of transmit and receive antennas. The Signal to Noise

Ratio (SNR), which is equal to the transmitted power P , is fixed to 10 dB in all

curves. For comparison, the plots of the sum-rate when using TDMA and Random

Selection algorithms, as well as the optimum scheme of dirty-paper coding are also

given. For Random Selection algorithm, it is assumed that the optimum precoding

scheme of dirty-paper coding is used.

Figure 2.3 depicts the plots of sum-rate capacity versus SNR (P ), for M =

2, K = 1 and M = 4, K = 1. The number of users is fixed to 100 in both curves.

It can be observed that the sum-rate achieving by the proposed scheme shows a

linear increase with lnP in high SNRs with the slope equal to M . This confirms

achieving the multiplexing gain of M by the proposed scheme. The fading model

we have considered in our work is Rayleigh fading. However, it is interesting to

investigate the performance of our proposed algorithm for more general fading

models. Figure 2.4 depicts the achievable sum-rate of the proposed algorithm, as

well as the maximum sum-rate and achievable sum-rates of TDMA and Random

Selection schemes, versus the number of users . The fading model is assumed to be

Rician with Rician Factor 9 equal to one. It is also assumed that M = 2, K = 1

9Rician Factor is defined as the ratio of the power of Line of Sight (LOS) to the power of
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Figure 2.1: Optimum threshold versus the number of users.

and P = 10 dB. As can be observed, the proposed algorithm almost achieves the

capacity of the system. However, the convergence rate of the sum-rates is slower

than that of the Rayleigh fading case.

2.5 Complexity Analysis

2.5.1 Amount of Feedback

As can be observed in the proposed algorithm, only the eigenvectors that belong

to S0, defined in (2.6), must be sent back to the base station, along with their

corresponding singular values. For the asymptotic case of N → ∞, from Lemma

2.4, we conclude that the cardinality of S0 scales as eρ(N)

Γ(M)Γ(K)
. Assuming that

for each eigenvector and its singular value 2M real values must be fed back, the

total number of real values required at the base station is asymptotically equal to

Non-Line of Sight (NLOS) component.
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Figure 2.2: Sum-rate capacity versus the number of users, P = 10dB.
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2Meρ(N)

Γ(M)Γ(K)
.

From Theorem 2.1, we observe that to achieve the optimum sum-rate, i.e.,

limN→∞ Csum −RProp = 0, the following condition must be satisfied:

ρ(N) = ln ln ln lnN + ln[Γ(K)Γ(M)] + ω

(
1

ln ln lnN

)
. (2.101)

As a result,

NProp = 2M ln ln lnN + ω(1), (2.102)

where NProp stands for the amount of feedback (in terms of the total number of

real values required at the base station) in the proposed method. From the above

equation, it follows that the minimum amount of feedback required to achieve the

optimum performance is lower-bounded by ln ln lnN , in the proposed algorithm.

However, in [30], it has been shown that the same result holds for any other strate-

gies.

In order to guarantee limN→∞ Csum −RProp = 0 in the proposed scheme, using

Theorem 2.2, the following condition must be satisfied:

NProp = ω(ln ln lnN). (2.103)

Note that the computation of γk,j’s in Algorithm 1 (eq. (2.8)) can be performed

in the mobile sides, which reduces the amount of feedback further. This idea is

described in details as the following algorithm:

Algorithm 2 (Modified version of Algorithm 1):

1. Set the thresholds t and β.
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2. Define

S0 = {(k, j)| λj(k) > t}.

For all (k, j) ∈ S0, send λj(k) to the base station.

3. Let (s1, d1) = arg max(k,j)∈S0 λj(k). Base station informs the user s1 to

feed back the eigenvector corresponding to its maximum singular value and

after receiving it, sends these information to all the users in S0 − {(s1, d1)}.

4. Define γk,j(0) = 0 for all (k, j) ∈ S0. For m = 1 to M − 1 the following steps

are repeated:

– Define Sm =
{
(k, j)|(k, j) ∈ Sm−1, |VH

sm,dm
Vk,j|2 < β

}
and γk,j(m) =

|VH
sm,dm

Vk,j|2 + γk,j(m − 1), for all (k, j) ∈ Sm. All users in Sm feed

back their corresponding γk,j(m) to the base station.

– Select (sm+1, dm+1) = arg min(k,j)∈Sm γk,j(m). Base station inform

the user sm to feedback its dmth eigenvector, and after receiving, sends

it to all users in Sm −−{(sm, dm)}.

For the asymptotic case of N → ∞, having t = lnN + (M + K − 2) ln lnN −
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ln ln ln lnN−q(N) and β = e−
q(N)

M , and using equations (2.53) and (2.64), we have

NProp =

M−1∑

m=0

|Sm| + 2M2

=
M−1∑

m=0

L× Pr {k ∈ Sm|k ∈ S0} + 2M2

= L+ L

M−1∑

m=1

O(e−
mq(N)

M ) + 2M2

= L
[
1 +O

(
e−

q(N)
M

)]

=
eρ(N)

Γ(M)Γ(K)
. (2.104)

Figure 2.5 depicts the plots of the required amount of feedback versus the number

of users for M = 2, K = 1 and M = 4, K = 1, when Algorithm 1 and Algorithm

2 are used. The measure for the amount of feedback is defined as the number of

real components per user that should be sent to the base station. In these curves,

the optimum values for the thresholds (t and β) are found by exhaustive search.

Since the optimum threshold t is used in Algorithm 2, the achievable sum-rate of

this algorithm is the same as that of Algorithm 1.

Although Algorithm 2 decreases the amount of feedback significantly, however,

it increases the feedback delay. This can degrade the performance of the system

in practical scenarios, as the CSI can become outdated.

2.5.2 Search Complexity

Since at the first step of the algorithm, only a fraction of eigenvectors are pre-

selected, the size of the search space for next steps is decreased from NK to

L, which is defined in Lemma 2.4. As can be observed, at the mth step of the
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Figure 2.5: Amount of feedback

algorithm, the base station searches for the dimension with the smallest γk,j(m−1)

among Sm−1, which requires L −m + 1 searches. Therefore, the total number of

searches for selecting the desired set is equal to
∑M

m=1(L−m+1) = ML− M(M−1)
2

,

which is linear in L. Again, we can restrict our search space if the modified

algorithm stated in the previous section is used.

As mentioned earlier, the best M eigenvectors for maximizing the sum-rate

capacity can be found by exhaustive search. In this case, the size of the search

space is equal to
(
NK
M

)
.

In the asymptotic case of N → ∞, from Theorem 2.2, the total number of

searches in the proposed algorithm is Θ(eρ(N)) = o(N) and can be as low as

ω(ln ln lnN), which is much less than that of exhaustive search (Θ(NM)), and also

the algorithm in [25] (Θ(N)). Therefore, using our algorithm the complexity of

search at the base station is decreased significantly.



User Selection in MIMO Broadcast Channels 54

2.6 Conclusion

In this chapter, we have considered a downlink communication system, in which a

base station equipped with M transmit antennas communicates with N users, each

equipped with K receive antennas. We have proposed an efficient suboptimum al-

gorithm for selecting a set of users in order to maximize the sum-rate throughput

of the system, using zero-forcing beam-forming at the base station. For the asymp-

totic case of N → ∞, we have derived the necessary and sufficient conditions to

achieve the optimum sum-rate capacity, such that limN→∞ Csum −RProp = 0. We

have also investigated the complexity of our scheme in terms of the required amount

of feedback from the users to the base station, as well as the number of searches

needed for selecting the coordinates. The proposed algorithm is compared with

some other downlink strategies like TDMA and Random Selection algorithms.



Chapter 3

Feedback in MIMO Broadcast

Channels

3.1 Introduction

Multiple-Input Multiple-Output (MIMO) systems have proved their ability to

achieve high bit rates in a scattering wireless network. In a point-to-point scenario,

it has been shown that the capacity scales linearly with the minimum number of

transmit and receive antennas, regardless of the availability of Channel State Infor-

mation (CSI) at the transmitter [1] [2]. This linear increase is so-called multiplexing

gain.

In a MIMO Broadcast Channel (MIMO-BC), a BS equipped with multiple

antennas communicates with several multiple-antenna users. Recently, there has

been a lot of interest in characterizing the capacity region of this channel [5], [6],

[7], [8]. In these works, it has been shown that the sum-rate capacity of MIMO-

BC grows linearly with the minimum number of transmit and receive antennas,

55
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provided that both transmitter and receiver sides have perfect CSI. Moreover, in

a network with a large number of users, the BS can increase the throughput by

selecting the best set of users to communicate with. This results in the so-called

multiuser diversity gain [16], [17].

Unlike the point-to-point scenario, in MIMO-BC it is crucial for the transmitter

to have CSI. It has been shown that MIMO-BC without CSI at the BS is degraded

[31]. Moreover, for the case of single antenna users, multiplexing gain reduces to

one, and multiuser diversity gain disappears [40].

Due to the weak performance of having no CSI at the BS, some authors have

considered MIMO-BC with partial CSI [41, 42, 43, 26, 44, 45, 46, 47, 48, 49, 50, 51].

In [41], the authors have proposed a user selection strategy in a single-antenna

broadcast channel, which exploits the maximum sum-rate capacity with only one

bit feedback per user. This idea has been generalized for MIMO-BC in [42], using

the idea of antenna selection. In [43], the authors propose a scalable feedback

protocol, in which time slots for channel feedback correspond not to users, but to

a channel value. Through asymptotic analysis, this scheme is shown to achieve the

asymptotic sum-rate capacity of MIMO-BC, with the amount of feedback scaling

as lnN .

Reference [26] proposes a downlink transmission scheme based on random

beam-forming, relying on partial CSI at the transmitter. In this scheme, the BS

randomly constructs M orthogonal beams and transmits data to the users with the

maximum Signal to Interference plus Noise Ratio (SINR) for each beam. There-

fore, only the value of maximum SINR, and the index of the beam for which the

maximum SINR is achieved, are fed back to the BS for each user. This significantly

reduces the amount of feedback. Reference [26] shows that when the number of
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users tends to infinity, the optimum sum-rate throughput can be achieved. In [44],

a variant of Random Beam-Forming is introduced and shown to achieve the max-

imum sum-rate capacity of MIMO-BC with only one bit feedback per user.

Reference [45] considers a downlink channel where a transmitter with M anten-

nas communicates with M single-antenna receivers. It is assumed that receivers

have perfect CSI, but the transmitter only has the quantized information regard-

ing the channel instantiation. This reference shows that assuming Zero-Forcing

Beam-Forming (ZFBF) precoding at the transmitter, the full multiplexing gain

can be achieved with partial CSI, if the quality of the CSI is increased linearly

with the SNR. This result is generalized in [46] to the case of multiple-antenna

receivers, when the number of receive antennas is less than M , and also in [47]

to the case of multiple antenna receivers, where the aggregate number of receive

antennas equals the number of transmit antennas and the transmitter performs

block diagonalization. In [48], the authors compare the performance of quantized

(digital) channel feedback versus analog channel feedback for MIMO-BC and show

that the digital feedback is potentially superior, when the feedback channel uses

per channel coefficient is larger than 1. In [49], the authors consider a MIMO-

BC when a transmitter with two antennas transmits data to two single-antenna

receivers. They show that if the transmitter has the channel state with finite pre-

cision, the maximum achievable multiplexing gain is upper-bounded by 2
3

1. In

fact, references [45,46,47,48,49] study the performance degradation of MIMO-BC

due to the imperfect CSI, at the high SNR regime. The size of the network (the

number of users) is assumed to be fixed in these references.

In [50], we have considered a downlink scheme based on ZFBF and have proved

1It is assumed that the transmitted signal and the channel coefficients are real.
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that when the number of users, N , tends to infinity, the maximum sum-rate ca-

pacity is achievable with the amount of feedback scaling as ω(ln ln lnN). In [51],

the authors have considered a MIMO-BC with large number of users at high SNR.

They have shown that it is possible to achieve the maximum multiplexing gain with

the amount of feedback per user decreasing with N . However, it is still required

that the feedback load per user grows logarithmically with SNR. Two essential

questions arise here: i) Is it possible to achieve the maximum sum-rate capacity

with finite feedback in a large network (N → ∞)? ii) If not, what is the minimum

feedback rate (in terms of N and SNR) in order to achieve the sum-rate capacity

of the system?

In this chapter, we aim to answer the above questions. First, we define the

amount of feedback as the average number of users who send information to the

BS. In the fixed and low SNR regimes, our results show that it is not possible to

achieve the maximum sum-rate with a finite amount of feedback. Moreover, in the

fixed SNR regime, in order to reduce the gap between the achieved sum-rate and

the optimum value to zero, the amount of feedback must be greater than ln ln lnN .

In the second part, we define the amount of feedback as the number of information

bits sent to the BS. In the fixed SNR regime, our analysis shows that the minimum

amount of feedback, in order to reduce the gap to the optimum sum-rate to zero,

scales as Θ(ln ln lnN), which can be achieved using the Random Beam-Forming

scheme proposed in [26]. However, the optimality of Random Beam-Forming only

holds for the region lnP 6= Ω(lnN). In the regime of lnP = Ω(lnN), we consider

two cases. In the case of K < M , we prove that the minimum amount of feedback

bits to reduce the gap between the achievable sum-rate and the maximum sum-rate

to zero grows logarithmically with SNR, which is achievable by the “Generalized
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Random Beam-Forming” scheme, proposed in [51]. In the case of K = M , we show

that by using the Random Beam-Forming scheme and the amount of feedback not

growing with SNR the maximum sum-rate capacity is achievable.

The rest of the chapter is organized as follows: In section 3.2, we introduce

the system model, while section 3.3 is devoted to the asymptotic analysis of the

amount of feedback. Section 3.4 concludes the chapter.

3.2 System Model

In this work, we consider a MIMO-BC in which a BS equipped with M antennas

communicates with N users, each equipped with K antennas, where we assume

thatK ≤M . The channel between each user and the BS is modeled as a zero-mean

circularly symmetric Gaussian matrix (Rayleigh fading). The received vector by

user k can be written as

yk = Hkx + nk, (3.1)

where x ∈ C
M×1 is the transmitted signal, Hk ∈ C

K×M is the channel matrix

from the transmitter to the kth user, which is assumed to be perfectly known at

the receiver side and partially known (or completely unknown) at the transmitter

side, and nk ∈ CK×1 ∼ CN (0, IK) is the noise vector at this receiver. We assume

that the transmitter has an average power constraint P , i.e. E
{
Tr(xxH)

}
≤ P .

The power constraint is assumed to be per frame. In other words, the power

constraint is independent of the channel realization. The channels are assumed to

be quasi-static block fading, in which the channel is drawn randomly at the start

of each transmission frame, remains constant for the whole transmission frame,

and changes independently to another realization in the start of the next frame.
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The frame itself is assumed to be long enough to allow communication at rates

close to the capacity. Defining the sum-rate capacity of the system in the channel

realization H , {Hi}Ni=1, when the transmitter has perfect CSI about all users’

channels, as Csum(H), the average sum-rate capacity, denoted as Csum, is defined as

the average over time of Csum(H), which is by the ergodicity of the channel, equal to

EH {Csum(H)}. Similarly, for any scheme S 2, RS is defined as EH {RS(H)}, where

RS(H) denotes the achievable sum-rate of scheme S. It is assumed that there is a

separate error-free feedback channel from each user to the BS. The parameters of

interest in this chapter are: i) NS ; the number of users who send feedback to the

BS (or equivalently, the number of active feedback channels), and ii) FS ; the total

amount of information conveyed through all the feedback channels.

3.3 Asymptotic Analysis

3.3.1 The average number of users sending feedback to the

BS

In this section, we define the amount of feedback as the average number of users

who send feedback to the BS. It is assumed that the SNR (P ) is fixed. In Theo-

rems 3.2-3.4, we provide the necessary and sufficient conditions in order to achieve

limN→∞
RS
Csum

= 1 and limN→∞ Csum −RS = 0. Before that, we give the definition

of the user selection strategy as follows:

Definition 3.1 The user selection strategy S is defined as the decision rule in

2Here, by scheme we mean the way the transmitter selects the user to communicate with, the

way it allocates the power between the users, and the way it performs precoding.
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which each user i, based on its knowledge about its own channel 3, decides whether

or not to send feedback to the BS. More precisely, the user selection strategy S can

be defined as a binary indicator variable IS(i), i = 1, · · · , N , which is equal to 1 if

the user i sends feedback to the BS and 0 otherwise. Note that the user selection

strategy is assumed to be fixed during the whole transmission period and agreed in

advance between the BS and the users.

Theorem 3.2 Consider a MIMO-BC with N users (N → ∞), which utilizes a

fixed user selection strategy S. Let NS be the number of users who send information

to the BS in this strategy. Then, the necessary and sufficient condition to achieve

limN→∞
RS
Csum

= 1 is having

E{NS} = g, (3.2)

where g ≫ 1.

Proof- Necessary Condition- Let us denote GS as the set of users who send in-

formation to the BS using strategy S. In other words, GS is the set of users for

which IS(k) = 1. Define pS(k) as the probability that user k belongs to GS , i.e,

Pr{IS(k) = 1}. Since we consider a homogeneous network, this probability is inde-

pendent of k, and we denote it by pS. Therefore, NS = |GS| is a Binomial random

variable with parameters (N, pS), and we have E{NS} = NpS.

To compute Csum and RS , we use the basic Bayes formula. In general term, if

we have a partitioning (P,PC) of the sample space of the channel realizations H,

3Note that since the users are not aware of the other users’ channels, their decisions are solely

based on their own channels.
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and for any function of the channel realizations F(H), we have

EH {F(H)} = EH|P {F(H)|H ∈ P}Pr{H ∈ P} +

EH|PC

{
F(H)|H ∈ PC

}
Pr{H ∈ PC}. (3.3)

Here, the strategy S is defined to partition the sample space to P = AS and PC =

AC
S , where AS is the set of all channel realizations for which IS , (IS(1), · · · , IS(N)) =

0, in other words, the set of all realizations that no users are sending feedback to

the BS under user selection strategy S, which occurs with probability (1 − pS)
N ,

and AC
S is the complement of AS (Figure 3.1).

AS
AC

S

A

Given a user selection strategy S,

we partition the sample space of all channel

realizations (A) to AS

and AC
S

H|AC
S

, where H = {Hi}Ni=1

H|AS , where H = {Hi}Ni=1

Figure 3.1: Definition of the events AS and AC
S

Substituting F(H) by RS(H), the achievable rate of scheme S when the channel

realization is H, using the above equation, we have

RS = EH {RS(H)}

= EH|AS
{RS(H)|AS}Pr{AS} + EH|AC

S

{
RS(H)|AC

S

}
Pr{AC

S }. (3.4)
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Note that for any realization of the channels H = {Hi}Ni=1, the maximum achievable

sum-rate equals to:

Csum(H) = max
Qn

P

Tr(Qn)=P

ln

∣∣∣∣∣IM +

N∑

n=1

HH
n QnHn

∣∣∣∣∣ , (3.5)

which is derived based on the perfect CSI assumption at the BS. Therefore, for

any scheme S, we have

EH|AC
S

{
RS(H)|AC

S

}
≤ R2, (3.6)

where

R2 = EH|AC
S




 max
Qn

P

Tr(Qn)=P

ln

∣∣∣∣∣IM +

N∑

n=1

HH
n QnHn

∣∣∣∣∣

∣∣∣∣∣A
C
S




 .

Note that R2 is the expected value of the maximum sum-rate (assuming perfect

CSI) corresponding to those channel realizations in AC
S . Also, since conditioned on

AS, no users send feedback to the BS, there is no CSI at the transmitter. Hence,

for any scheme S, we have

EH|AS
{RS(H)|AS} ≤ RNCSI

AS
, (3.7)

where RNCSI
AS

= EH|AS

{
CNCSI

sum (H)|AS

}
, i.e., the maximum expected sum-rate when

the CSI is not available at the BS, conditioned on AS. Combining (3.4), (3.6) and

(3.7), we obtain

RS ≤ Pr{AS}RNCSI
AS

+ Pr{AC
S }R2

= (1 − pS)
NRNCSI

AS
+
[
1 − (1 − pS)

N
]
R2. (3.8)

Moreover, if we substitute F(H) by Csum(H) in (3.3), and define

R1 = EH|AS
{Csum(H)|AS} ,



Feedback in MIMO Broadcast Channels 64

noting that R2 = EH|AC
S

{
Csum(H)|AC

S

}
, we conclude

Csum = Pr{AS}R1 + Pr{AC
S }R2. (3.9)

Subtracting both sides of (3.8) and (3.9), we obtain

Csum −RS ≥ (1 − pS)
N(R1 −RNCSI

AS
). (3.10)

Since

max
Qn

P

Tr(Qn)=P

ln

∣∣∣∣∣IM +
N∑

n=1

HH
n QnHn

∣∣∣∣∣ ≥ ln

(
1 + P max

j,k
‖Hj,k‖2

)
,

we have

R1 ≥ E

{
ln

(
1 + P max

j,k
‖Hj,k‖2

)∣∣∣∣AS

}
, (3.11)

where Hj,k denotes the jth row of Hk. The right hand side of (3.11) can be

lower-bounded as,

RH(3.11) ≥ E

{
ln

(
1 + P max

j,k
‖Hj,k‖2

)∣∣∣∣AS,Ct

}
Pr {Ct|AS} , (3.12)

where Ct is the event that maxj,k ‖Hj,k‖2 > t, for some chosen t. Hence,

RH(3.11) ≥ ln(1 + Pt)
Pr{AS,Ct}

Pr{AS}

≥ ln(1 + Pt)
1 − Pr{AC

S } − Pr{C C
t }

Pr{AS}

= ln(1 + Pt)

(
1 − Pr{C C

t }
Pr{AS}

)
, (3.13)

where C C
t is the complement of Ct. Pr{C C

t } can be computed as

Pr{C C
t } = Pr

{
max
j,k

‖Hj,k‖2 ≤ t

}

(a)
=

(
1 −

M−1∑

m=0

tm

m!
e−t
)NK

, (3.14)
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where (a) comes from the fact that ‖Hj,k‖2 has chi-square distribution with 2M

degrees of freedom [32]. Now, assume that

E{NS} = NpS 6= g, (3.15)

i.e., NpS = O(1). Choosing t = lnN
2

, from (3.14), we obtain

Pr{C C
t } = e

−K
√

N(ln N)M−1

2M−1(M−1)!
[1+o(1)]

. (3.16)

Moreover, noting Pr{AS} = (1 − pS)
N and NpS = O(1), we have

Pr{AS} = Θ(1). (3.17)

Substituting (3.16) and (3.17) in (3.13) yields

RH(3.11) ≥ ln

(
1 +

P

2
lnN

)(
1 − Θ

(
e
−K

√
N(ln N)M−1

2M−1(M−1)!
[1+o(1)]

))

= ln lnN +O(1). (3.18)

Moreover, using the fact that in a homogeneous MIMO-BC (when the users’ chan-

nels have the same statistical behavior) with no CSI at the transmitter, the maxi-

mum sum-rate is achieved by time-sharing between the users [31], we can write

RNCSI
AS

= EHk |AS

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣

∣∣∣∣AS

}

≤ KEHk |AS

{
ln

(
1 +

P

M
‖Hk‖2

)∣∣∣∣AS

}

(a)

≤ K ln

(
1 +

P

M
EHk |AS

{
‖Hk‖2

∣∣AS

})

(b)

≤ K ln

(
1 +

P

M

EHk
{‖Hk‖2}

Pr{AS}

)

= K ln

(
1 +

PK

Pr{AS}

)

(3.17)
= Θ(1), (3.19)
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where (a) comes from the concavity of ln function and (b) comes from the fact

that EHk
{‖Hk‖2} ≥ EHk |AS

{‖Hk‖2| AS}Pr{AS}. Combining (3.11), (3.18), and

(3.19), and substituting in (3.10), under the assumption of (3.15), we get

Csum −RS ≥
(

1 − E{NS}
N

)N
[ln lnN +O(1)]

≈ e−E{NS} ln lnN.

⇒ RS
Csum

≤ 1 − e−E{NS} ln lnN

Csum

. (3.20)

As a result, noting that Csum ∼M ln lnN [26], we obtain

E{NS} 6= g ⇒ lim
N→∞

RS
Csum

6= 1. (3.21)

Sufficient Condition- Let us define the strategy S as selecting M users randomly

among the following set:

GS = {k|λmax(Hk) > t}, (3.22)

where λmax(Hk) is the maximum singular value of HkH
H
k , and t is a threshold

value. After selecting the users, the BS performs ZFBF, where the coordinates

are chosen as the eigenvectors, corresponding to the maximum singular values of

the selected users. In [19], it has been shown that for a K ×M matrix A, whose

elements are i.i.d Gaussian, we have

pS , Pr{λmax(A) > t} =
tM+K−2e−t(1 +O(e−tt−1))

Γ(M)Γ(K)
. (3.23)

Hence,

E{NS} = NpS

= N
tM+K−2e−t(1 +O(e−tt−1))

Γ(M)Γ(K)
. (3.24)
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Having E{NS} = g, yields,

t = lnN + (M +K − 2) ln lnN − g. (3.25)

Utilizing ZFBF at the BS, and defining

R∗ , MEH




 ln



1 +
P

Tr
{[

H
H
H
]−1
}





∣∣∣∣∣∣
|GS| ≥M




 ,

we can write

RS ≥ R∗Pr{|GS| ≥M}, (3.26)

where H =
[
gTs1,max| gTs2,max| · · · | gTsm,max

]T
in which gsi,max =

√
λmax(Hsi

)VH
si,max, i =

1, · · · , m, and Vsi,max is the eigenvector corresponding to maximum singular value

of the ith selected user (si), and m = min(M, |GS|).
ηS , Pr{|GS| ≥M} can be computed as follows:

ηS = 1 − Pr{|GS| < M}

= 1 −
M−1∑

m=0

(
N

m

)
pmS (1 − pS)

N−m

(a)

≥ 1 −
M−1∑

m=0

(NpS)
m

m!
e−(N−m)pS , (3.27)

where (a) results from the facts that
(
N
m

)
≤ Nm

m!
and (1 − pS)

N−m ≤ e−(N−m)pS .

Since NpS = g, we have ηS ≈ 1.

Moreover, we can lower-bound R∗ as

R∗ ≥ M lnP −MEH {X(H)| |GS| ≥M} , (3.28)

where X(H) , ln
(
Tr
{[

H
H
H
]−1
})

. In Appendix E, it has been shown that

EH {X(H)| |GS| ≥M} ≤ ln
M

t
+ (M − 1) ln(2M2). (3.29)
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Using the above equation and (3.28) and selecting t > lnN , yields,

R∗ ≥M ln

(
P lnN

M

)
−M(M − 1) ln(2M2). (3.30)

Substituting R∗ and ηS in (3.26), and having the fact that Csum ∼ M ln lnN [26],

yields

lim
N→∞

RS
Csum

= 1. (3.31)

�

Remark - Although in Theorem 3.2 it is established that for having limN→∞
RS
Csum

=

1, it is required that E{NS} → ∞, as shown in the proof of the sufficient condition,

E{NS} does not need to scale with N .

Theorem 3.3 For any user selection strategy S, the necessary condition to achieve

limN→∞ Csum −RS = 0 is having

E{NS} = ln ln lnN + g. (3.32)

Proof - Assume that

E{NS} 6= ln ln lnN + g. (3.33)

Similar to (3.10), we can write

Csum −RS ≥ (1 − pS)
N [R1 −RNCSI

AS
]. (3.34)

Following the same approach as in Theorem 3.2, under the assumption of (3.33),

we can show that R1 ≥ ln lnN +O(1), and RNCSI
AS

= O(ln ln lnN). Hence,

Csum −RS ≥ (1 − pS)
N [ln lnN +O(ln ln lnN)]

(a)
= e−E{NS}[1+O(pS)] [ln lnN +O(ln ln lnN)]

(b)
= e−(E{NS}−ln ln lnN) [1 + o(1)] . (3.35)
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(a) comes from the facts that E{NS} = NpS and ln(1− pS) = pS +O(p2
S), and (b)

results from writing ln lnN as eln ln lnN , noting that eE{NS}O(pS) = 1+o(1). Defining

d , E{NS} − ln ln lnN , it follows that

Csum −RS & e−d, (3.36)

meaning that in order to have limN→∞ Csum − RS = 0, we must have d → ∞.

Note that d does not need to scale with N . In fact, as shown in (3.36), −d gives

a lower bound on ln (Csum −RS), which must approach −∞, if we want to have

Csum −RS → 0. As a result,

E{NS} 6= ln ln lnN + g ⇒ lim
N→∞

Csum −RS 6= 0. (3.37)

�

The above theorem simply implies that if E{NS} does not have an infinite difference

to ln ln lnN , it is not possible to achieve limN→∞ Csum −RS = 0.

Theorem 3.4 A sufficient condition to achieve limN→∞Ropt −RS = 0 is having

E{NS} = M ln ln lnN + g. (3.38)

Proof - Consider the Random Beam-Forming strategy, introduced in [26]. In this

strategy, the BS randomly constructs M orthogonal beams and transmits data to

the users with the maximum SINR for each beam. Assuming each user’s antenna

as a separate user, we define the following set:

G(m)
RBF = {k|∃i, SINR

(m)
k,i > t}, m = 1, · · · ,M, (3.39)

where SINR
(m)
k,i is the received SINR over the ith antenna of the kth user, for the

mth transmitted beam. GRBF =
⋃M
m=1 G

(m)
RBF is the set of users who send feedback
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to the BS. The achievable sum-rate by this scheme, denoted by RRBF, is lower-

bounded as

RRBF ≥ M ln(1 + t)Pr

{
M⋂

m=1

Dm

}

≥ M ln(1 + t)

(
1 −

M∑

m=1

Pr{DC
m}
)
, (3.40)

where Dm is the event that |G(m)
RBF| ≥ 1, and DC

m is the complement of Dm.

For a randomly chosen user k, we define

p
(m)
k , Pr{k ∈ G(m)

RBF}

= Pr

{
K⋃

i=1

B
(m)
k,i

}

≤
K∑

i=1

η
(m)
k,i , (3.41)

where B
(m)
k,i is the event that SINR

(m)
k,i > t and η

(m)
k,i , Pr{B(m)

k,i }, which is inde-

pendent of k, i, m, and we denote it by η. Moreover, p
(m)
k is independent of k, m,

and is denoted by p. Hence, p ≤ Kη.

To evaluate the right hand side of (3.40), first we compute Pr{DC
m} as follows:

Pr{DC
m} = (1 − η)KN

≤
(
1 − p

K

)KN
. (3.42)

Therefore,

RH(3.40) ≥ M ln(1 + t)

[
1 −M

(
1 − p

K

)KN]

≥ M ln(1 + t)[1 −Me−Np]. (3.43)

Under the condition of (3.38), which implies that E{NRBF} = M ln ln lnN + g,

and having the facts that E{NRBF} ≈ MNp and η = e−Mt/P

(1+t)M−1 [26] and writing p
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as p = Tη, where T tends to a constant in the interval [1, K] as N → ∞ 4, we can

write

NT
e−Mt/P

(1 + t)M−1
≈ ln ln lnN + g.

⇒ t ≈ P

M

[
lnN − (M − 1) ln

( P
M

lnN
)
−

ln
(
ln ln lnN + g

)
+ lnT

]
. (3.44)

Substituting t in (3.43) yields

RRBF ≥ M ln

(
1 +

P

M
lnN +O(ln lnN)

)
×

(
1 −Me−Np

)
. (3.45)

Using the above equation and having the facts that Csum = M ln
(
1 + P

M
lnN +O(ln lnN)

)

[26], and E{NRBF} ≈MNp, we have

Csum −RRBF ≤ O

(
ln lnN

lnN

)
+M2e−(

E{NRBF}
M

−ln ln lnN)[1 + o(1)]

= o(1), (3.46)

where (a) follows from the fact that E{NRBF} = M ln ln lnN + g. Consequently,

limN→∞ Csum −RRBF = 0.

�

4This results from the fact that for any sets {Ai}Ki=1, we have Pr{Ai} ≤ Pr{⋃Ki=1 Ai} ≤
∑K

i=1 Pr{Ai}, which incurs that η ≤ p ≤ Kη. Defining T , p
η
, it follows that 1 ≤ T ≤ K. Note

that, T can be any arbitrary function of N . However, when N → ∞, T converges to a constant

number between 1 and K.
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3.3.2 Amount of bits fed back to the BS

In this section, we study the minimum amount of feedback required at the BS, in

terms of the number of bits 5, in order to achieve the maximum sum-rate capacity.

It is assumed that the SNR (P ) is fixed and the number of bits fed back by each

user is an integer.

Theorem 3.5 The necessary and sufficient condition to achieve limN→∞
RS
Csum

= 1

for any user selection strategy S is having

E{FS} = g, (3.47)

where FS is the total number of bits fed back to the BS.

Proof- Necessary condition- The proof of the necessary condition easily follows

from Theorem 3.2, and the fact that the number of bits fed back by each user is

an integer.

Sufficient Condition- Consider the Random Beam-Forming scheme. Given any

function f(N) , E{NS} = g, we set the threshold t as the solution to the following

equation:

e−Mt/P

(1 + t)M−1
=

f(N)

MNT
, (3.48)

where T is a constant between 1 and K. By selecting t as the above equation,

using the same approach as in the proof of Theorem 3.4, it can be shown that

limN→∞
RS
Csum

= 1. Since the users in G(m)
RBF only need to send the index m to the BS,

5In fact, it is more precise to express the amount of feedback in terms of binits, as it is assumed

that the users who do not send any information to the BS do not contribute to the total amount

of feedback.
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the total amount of feedback bits is equal to ⌈log2(M)⌉f(N) = g. Consequently,

it is possible to achieve limN→∞
RS
Csum

= 1, with any infinitely large average number

of feedback bits (but not necessarily scaling with N).

�

Theorem 3.6 The necessary and sufficient condition to achieve limN→∞ Csum −
RS = 0 is having

E{FS} = Θ(ln ln lnN) + g. (3.49)

Proof- The proof follows from Theorems 3.3 and 3.4, with the same approach

as that of Theorem 3.5.

�

Remark 1- From the above theorems, it follows that the Random Beam-forming

scheme is optimum in the fixed SNR regime, in the sense of achieving the maximum

sum-rate with the minimum order of the required amount of feedback.

Remark 2- Using the conventional ZFBF (with the user selection algorithm as

in the proof of the sufficient condition in Theorem 3.2), assuming that the selected

users quantize the eigenvectors corresponding to their maximum singular values

and feed back the quantization indices to the BS, from [45], it can be shown that

RZF −RQ
ZF ≤ M ln

(
1 + Pγ(lnN)2−

B
M−1

)
, (3.50)

where RZF denotes the achievable sum-rate of ZFBF when the BS has perfect

CSI from all the selected users, RQ
ZF is the achievable sum-rate when the BS only

has the quantization indices of the selected users’ channels, B is the number of

quantized bits for each selected user, and γ is a constant depending on the quan-

tization method, which is shown to be lower-bounded by M−1
M

[45]. From the
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above equation, it follows that in order to achieve limN→∞
RQ

ZF

Csum
= 1, we must have

B ≥ M−1
ln 2

ln lnN + o(ln lnN), and in order to achieve limN→∞ Csum −RQ
ZF = 0, the

condition B ≥ M−1
ln 2

ln lnN + g must be satisfied. In other words, the minimum

required amount of feedback to achieve the maximum sum-rate must scale at least

as ln lnN . This implies that although the proposed user selection algorithm in

Theorem 3.2, along with utilizing ZFBF, is shown to be optimal in terms of the

average number of users who send feedback to the BS, in terms of the average

number of feedback bits, it is not optimal.

3.3.3 Variable SNR Scenario

In the previous section, the SNR (P ) is assumed to be fixed. In this section,

we study the scaling law of the minimum amount of feedback in order to achieve

the maximum sum-rate, when the SNR itself is a function of N . To this end,

we consider two special regimes of low SNR and high SNR. Since achieving the

optimum sum-rate requires the square magnitudes of the selected coordinates to

behave as lnN , the effective SNR of the selected links scales as P lnN . Hence,

low SNR and high SNR regimes are defined by the regions of P lnN = o(1) and

P lnN = ω(1), respectively.

Low SNR Regime

In this regime, it can be shown that [39]

Csum ∼ PE{ηmax}, (3.51)

where ηmax , maxk λmax(Hk). In other words, the optimum strategy requires the

BS to perform beam-forming on the eigenvector corresponding to the maximum of



Feedback in MIMO Broadcast Channels 75

the largest eigenvalues among the users. Having the fact that E{ηmax} ∼ lnN [19],

it follows that in the low SNR regime, as Ropt ∼ P lnN = o(1), the achievability

of the optimum sum-rate for a given strategy S is defined by limN→∞
RS
Ropt

= 1.

Theorem 3.7 The necessary and sufficient condition in order to achieve the op-

timum sum-rate throughput in the low SNR regime is:

E{NS} = g,

and

E{FS} = g.

Proof - Following the approach of Theorem 3.2 and using the equations (3.10),

(3.13), (3.14), and (3.19), we have

Csum −RS ≥ (1 − pS)
N
(
R1 −RNCSI

AS

)
, (3.52)

R1 ≥ ln(1 + Pt)



1 −

(
1 −∑M−1

m=0
tm

m!
e−t
)NK

(1 − pS)N





(a)≈ Pt



1 −

(
1 −∑M−1

m=0
tm

m!
e−t
)NK

(1 − pS)N



 , (3.53)

and

RNCSI
AS

≤ K ln

(
1 +

PK

(1 − pS)N

)
. (3.54)

(a) comes from the low-SNR assumption and the fact that for x≪ 1, ln(1+x) ≈ x.

Under the assumption of E{NS} = NpS 6= g and choosing t = lnN
2

, we have
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R1 ∼ P lnN
2

and RNCSI
AS

= Θ(P ). Noting that Csum ∼ P lnN , we can write

RS
Csum

≤ 1 − (1 − pS)
N
R1 −RNCSI

AS

Csum

≈ 1 − e−E{NS}

2

< 1. (3.55)

As a result,

E{NS} 6= g ⇒ lim
N→∞

RS
Csum

< 1. (3.56)

The necessity of E{FS} = g directly follows from the above equation.

Sufficient condition - In this part, we prove that for any given g ≫ 1, one can

achieve the maximum sum-rate such that E{NS} ≤ g and E{FS} ≤ g. Assume

that the users in the following set:

GS , {k|λmax(Hk) > t}, (3.57)

where

t , max

(
lnN + (M +K − 2) ln lnN − 1

2
ln(g), lnN

)
, (3.58)

quantize the eigenvector corresponding to their maximum singular value, using

a quantization code book W, which consists of L = 2
√

g

2 randomly selected unit

vectors in the M-dimensional space (Random Vector Quantization (RVQ)). The

BS selects one of the users in GS at random and serves this user, performing beam-

forming on the direction of its quantized eigenvector. The achievable sum-rate of

this scheme can be lower-bounded as

RS ≥ E

{
ln
(
1 + Pt|ΦHΦ̂|2

)} [
1 − (1 − pS)

N
]

≈ PtE
{
|ΦHΦ̂|2

} [
1 − (1 − pS)

N
]

(a)

≥ PtE
{
|ΦHΦ̂|2

} [
1 − e−NpS

]
, (3.59)
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where pS , Pr{k ∈ GS} for a randomly chosen k, Φ denotes the eigenvector

corresponding to the maximum singular value of the selected user, and Φ̂ denotes

the quantized version of Φ. (a) comes from the fact that (1−pS)N ≤ e−NpS . Using

(3.23), we can write

pS =
tM+K−2e−t

Γ(M)Γ(K)

[
1 +O(e−tt−1)

]

(a)≈ 1

Γ(M)Γ(K)
min

(√
g

N
,
(lnN)M+K−2

N

)

⇒ e−NpS ≈ e
−Θ

„

min
(√

g,(lnN)M+K−2
)«

, (3.60)

where (a) comes from (3.58). We have

θ , |ΦHΦ̂|2

= max
cl

cl∈W
|ΦHcl|2. (3.61)

From Appendix A, it follows that the pdf of θl , |ΦHcl|2 is obtained from

fθl
(θl) = (M − 1)(1 − θl)

M−2, 0 ≤ θl ≤ 1. (3.62)

Hence,

Fθ(θ) = [Fθl
(θ)]L

=
[
1 − (1 − θ)M−1

]L
. (3.63)
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From the above equation, E{θ} can be lower-bounded as

E {θ} =

∫ 1

0

θfθ(θ)dθ

=

∫ 1

0

(1 − Fθ(θ))dθ

=

∫ 1

0

(
1 −

[
1 − (1 − θ)M−1

]L)
dθ

=

∫ 1

0

(
1 −

[
1 − µM−1

]L)
dµ

(a)

≥ 1 −
∫ 1

0

e−Lµ
M−1

dµ

(b)
= 1 − L− 1

M−1

M − 1

∫ L

0

u
2−M
M−1 e−udu

(c)

≥ 1 − L− 1
M−1

M − 1

[∫ 1

0

u
2−M
M−1 du+

∫ ∞

1

e−udu

]

= 1 − L− 1
M−1

(
1 +

e−1

M − 1

)

(d)
= 1 − 2

−
√

g

2(M−1)

(
1 +

e−1

M − 1

)
. (3.64)

In the above equation, (a) comes from the fact that
[
1 − µM−1

]L ≤ e−Lµ
M−1

, (b)

results from the change of variable u = LµM−1. (c) comes from the fact that as

M ≥ 2, 2−M
M−1

≤ 0, and as a result, for u ≥ 1, u
2−M
M−1 ≤ 1. (d) follows from the

definition of L as 2
√

g

2 . Combining (3.51), (3.58), (3.59), (3.60), and (3.64), and

the fact that E{ηmax} = lnN +O(ln lnN) [19], yields,

lim
N→∞

RS
Csum

= lim
N→∞

Pt

[
1 − 2−

√
g

2(M−1)

(
1 + e−1

M−1

)][
1 − e

−Θ

„

min
(√

g,(lnN)M+K−2
)«]

PE{ηmax}
= 1. (3.65)
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Moreover, we have

E{NS} = NpS
(3.60)

≤ √
g

< g, (3.66)

and

E{FS} = E{NS} log2(L)

≤ √
g

√
g

2

< g, (3.67)

which completes the proof of Theorem 3.7.

�

High SNR Regime

The sum-rate capacity in this regime can be written as [26],

Csum = M ln

(
P

M
lnN +O(P ln lnN)

)
. (3.68)

Theorem 3.8 i) The necessary condition to achieve limN→∞
RS
Csum

= 1 in the case

of K < M , and also K = M and SNR regime of lnP = O(ln lnN), is having

E{NS} = g. ii) in the case of K = M , and the regime of lnP = ω(ln lnN), it is

possible to achieve limN→∞
RS
Csum

= 1 without any CSI at the BS.

Proof - Proof of i): Similar to the proof of Theorem 3.2, we can write

Csum −RS ≥ (1 − pS)
N (R1 −RNCSI

AS
). (3.69)
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From [19], R1 can be lower bounded as

R1 ≥ E

{
M∑

j=1

ln

(
1 +

P

M
σ2
j

)∣∣∣∣∣AS

}

, (3.70)

where

σ2
j = max

k
max

x
xHHH

k Hkx

s.t. xHx = 1

ΞH
j x = 0, (3.71)

and Ξj , [v1| · · · |vj−1], in which vi, i = 1, · · · , j − 1, is the optimizing parameter

x, in the maximization of σ2
i . In other words, the maximizing parameter x is

found in the null space of the previously selected coordinates. Defining Ct ,
{⋂M

j=1

(
σ2
j > t

)}
, similar to (3.13), we can write

R1 ≥ M ln

(
1 +

P

M
t

)(
1 − Pr{C C

t }
Pr{AS}

)

(a)

≥ M ln

(
1 +

P

M
t

)(
1 −

∑M
j=1 Pr{σ2

j ≤ t}
Pr{AS}

)
, (3.72)

where (a) comes from the union bound for the probability. From [19], Lemma 3,

we have

Pr{σ2
j ≤ t} ≤

N∑

i=N−j+1

(
N

i

)
GK,M−j+1(t)

i [1 −GK,M−j+1(t)]
N−i , (3.73)

where Gn,m(t) is defined in [19], Lemma 1.

Setting t = lnN
2

, and using the result of [19], Appendix IV, on the asymptotic
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behavior of Gn,m(t) for large t, we have

Pr

{
σ2
j ≤

lnN

2

}
≤

N∑

i=N−j+1

(
N

i

)[
1 − Θ

(
(lnN)M+K−j−1

√
N

)]i
×

[
Θ

(
(lnN)M+K−j−1

√
N

)]N−i

≤ N j−1e−Θ(
√
N(lnN)M+K−j−1)

= o
(
N j−1e−

√
N
)
. (3.74)

Substituting in (3.72), we obtain

R1 ≥ M ln

(
1 +

P lnN

2M

)(

1 − o(NM−1e−
√
N)

Pr{AS}

)

. (3.75)

Assuming NpS 6= g, noting that Pr{AS} = (1 − pS)
N , incurs Pr{AS} = Θ(1),

which yields

R1 ≥ M ln

(
1 +

P lnN

2M

)(
1 − o(NM−1e−

√
N)
)
. (3.76)

Moreover, using (3.19), under the condition of NpS 6= g, we have

RNCSI
AS

≤ K ln

(
P

M

)
+ Θ(1). (3.77)

Substituting in (3.69), yields

Csum −RS ≥ (1 − pS)
N

[
(M −K) ln

(
P

M
lnN

)
+K ln lnN + Θ(1)

]
.

(3.78)

In the case of K < M , from the above equation and noting Csum ∼ M ln
(
P
M

lnN
)
,

it follows that

RS

Csum
. 1 − (1 − pS)

N (M −K)

M

≈ 1 − e−NpS(M −K)

M
. (3.79)
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Hence, having NpS 6= g results in

lim
N,P→∞

RS

Csum
< 1. (3.80)

Moreover, in the case of K = M , similar to (3.79), we can write

RS

Csum
. 1 − (1 − pS)

N ln lnN

lnP + ln lnN
. (3.81)

Therefore, for the regime of lnP = O(ln lnN), havingNpS 6= g incurs limN→∞
RS

Csum
6=

1.

Proof of ii): In the case of K = M and lnP = ω(ln lnN), assume that no

CSI is available at the BS. In this case, the best strategy, as mentioned earlier,

is time-sharing between the users. The achievable sum-rate in this case can be

written as

RS = E

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣

}

≈ M ln(
P

M
) + E

{
ln
∣∣HkH

H
k

∣∣}

= M lnP + Θ(1). (3.82)

As a result,

lim
N→∞

RS

Csum
= lim

N→∞

M lnP

M lnP +M ln lnN

= 1. (3.83)

�

Theorem 3.9 The necessary condition to achieve limN→∞ Csum −RS = 0 in the

case of K = M is having

E{NS} = ln ln lnN + g, (3.84)
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and in the case of K < M is having

E{NS} = ln ln(P lnN) + g, (3.85)

for the values of P satisfying ln ln(P lnN) = o(N).

Proof - The proof easily follows from (3.78) and the approach used in the proof

of Theorem 3.3.

�

Theorem 3.9 implies that in the case of K = M , the average number of users

sending feedback to the BS does not need to grow with the SNR 6. In the case of

K < M , writing ln ln(P lnN) as ln ln lnN+ln
(
1 + lnP

ln lnN

)
, it turns out that for the

values of P such that lnP = O(ln lnN), the condition E{NS} = ln ln(P lnN) + g

is equivalent to E{NS} = ln ln lnN + g, which implies that E{NS} does not need

to grow with SNR. Moreover, for the values of P satisfying lnP = ω(ln lnN), the

condition (3.85) reduces to E{NS} = ln lnP + g, which incurs that the average

number of users sending feedback to the BS must grow at least double logarithmic

with SNR.

In the previous section, we have observed that the Random Beam-forming

scheme introduced in [26] is asymptotically optimal in the sense of achieving the

maximum sum-rate with the minimum order of the required amount of feedback, in

the fixed SNR regime. The question here is for what ranges of SNR this optimality

holds. The following theorem answers this question:

Theorem 3.10 The necessary and sufficient condition to achieve limN→∞ Csum −
6This statement will be made rigorous in the proof of Theorem 3.16.
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RRBF = 0 is having 7

lnP 6= Ω(lnN) (or equivalently, lnP = |o(lnN)|). (3.86)

Proof - Necessary condition - The sum-rate throughput of Random Beam-forming

scheme can be upper-bounded as

RRBF = E

{
M∑

m=1

ln
(
1 + SINR(m)

max

)}

≤ M ln
(
1 + E{SINR(m)

max}
)
, (3.87)

where SINR(m)
max denotes the maximum received SINR over the mth transmitted

beam. Defining Xmax , SINR(m)
max, for all values of t, we can write

E{Xmax} =

∫ ∞

0

xfXmax(x)dx

=

∫ ∞

0

[1 − FXmax(x)] dx

≤ t+

∫ ∞

t

[1 − FXmax(x)] dx, t ≥ 0. (3.88)

Having the fact that FX(x) = 1− e−
Mx
P

(1+x)M−1 [26], where X , SINR
(m)
i,k , we can write

E{Xmax} ≤ t+

∫ ∞

t



1 −
(

1 − e−
Mx
P

(1 + x)M−1

)NK


 dx. (3.89)

Assuming that lnP = Ω(lnN), i.e., limN→∞
lnP
lnN

= c, where c > 0, we define

t ,






P
M

[lnN − 1
2
lnP ], c < 1;

P
2M

lnN, c ≥ 1.
(3.90)

7It is assumed that each received antenna is treated as a separate user.
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Substituting t in (3.89) yields,

E{Xmax} ≤ t+

∫ ∞

t

(
1 − exp

{
− NKe−

Mx
P

(1 + x)M−1

[
1 +O

(
e−

Mx
P

(1 + x)M−1

)]})
dx

(a)

≤ t+

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1

[
1 + O

(
e−

Mx
P

(1 + x)M−1

)]
dx

≤ t+

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1
dx

[
1 +O

(
e−

Mt
P

(1 + t)M−1

)]

(b)
= t+

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1
dx

[
1 +O

(
1√
N

)]

(c)

≤ t+

∫ ∞

t

NKe−
Mx
P

( P
M

)M−1
dx

[
1 +O

(
1√
N

)]

≤ t+

(
P

M

)2−M
NKe−

Mt
P

[
1 +O

(
1√
N

)]

(d)
= t+NKe−

Mt
P

[
1 +O

(
1√
N

)]

≤






P
M

[lnN − 1
2
lnP ]

[
1 +O

(
1√
P

)]
, c < 1;

P
2M

lnN
[
1 +O

(√
N
P

)]
, c ≥ 1,

(3.91)

where (a) comes from the fact that 1 − e−x ≤ x, ∀x, (b) comes from the fact that

t ≥ P
2M

lnN (from (3.90)), which incurs e−
Mt
P

(1+t)M−1 ≤ 1√
N

, (c) comes from the fact

that since t ≥ P
2M

lnN , for x > t, we have 1 + x > P
M

, and (d) comes from the fact

that M ≥ 2 and as a result
(
P
M

)2−M ≤ 1. Noting that Csum = M ln
(
P lnN
M

)
+ o(1),

and using (3.87), (3.89), (3.90), and (3.91), we can write

Csum −RRBF ≥





− ln

(
1 − lnP

2 lnN

)
+O

(
1√
P

)
, c < 1;

ln(2) − ln
[
1 +O

(√
N
P

)]
, c ≥ 1.

(3.92)
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Noting that in the case of c ≥ 1,
√
N
P

= o(1), it follows from the above equation

that

lnP = Ω(lnN) ⇒ lim
N→∞

Csum −RRBF 6= 0. (3.93)

Sufficient condition - Assume that lnP 6= Ω(lnN). RRBF can be lower-bounded

as

RRBF ≥ M ln(1 + t)Pr
{

SINR(1)
max > t, · · · , SINR(M)

max > t
}

≥ M ln(1 + t)

[

1 −
M∑

m=1

Pr
{

SINR(m)
max ≤ t

}]

= M ln(1 + t)
[
1 −M(1 − η)NK

]

≥ M ln(1 + t)
[
1 −Me−NKη

]
, (3.94)

where η , Pr{SINR
(m)
i,k ≤ t} = e−

Mt
P

(1+t)M−1 [26]. Setting

t =
P

M

[
lnN − (M − 1) ln

P

M
−M ln lnN

]
,

it is easy to show that η ≥ lnN
N

and hence,

RRBF ≥ M ln

(
1 +

P

M

[
lnN − (M − 1) ln

P

M
−M ln lnN

])(
1 − M

NK

)
.

(3.95)

Since lnP 6= Ω(lnN), it follows from the above equation that limN→∞ Csum −
RRBF = 0.

�

Theorem 3.10 implies that the Random Beam-forming scheme is not capable of

achieving the maximum sum-rate when lnP = Ω(lnN). In other words, the Ran-

dom Beam-forming scheme is not efficient in the high SNR regime. In fact, it is
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easy to show that the multiplexing gain of this scheme is zero. In the region of

lnP = |o(lnN)|, following the approach of Theorem 3.4, it can be shown that with

the number of feedback bits scaling as M⌈log2M⌉ ln ln(P lnN) + g, the maximum

sum-rate capacity can be achieved.

The weak performance of Random Beam-Forming in the high SNR regime is

due to the fact that the interference from the other users dominates the noise

term. It can be shown that in order to achieve the maximum sum-rate, we must

have limP→∞ I(P ) = 0, where I denotes the interference term. In other words,

the interference term must be negligible compared to the noise. The Random

Beam-Forming scheme can be considered as the quantization of the users’ channel

vectors by M orthogonal code words. Since the number of code words is fixed, the

quantization error, which is translated to the interference, grows with the SNR.

This suggests that at high SNRs the channel of the users must be known at the

BS with higher precision. This can be performed by increasing the size of the

quantization code book and more efficient methods of channel quantization. Some

efficient algorithms for channel quantization have been proposed in [52,53,54,55].

Theorem 3.11 Consider a MIMO-BC with N users (N → ∞), each equipped

with K receive antennas, in which the base station communicates with M of them

with the total power constraint P (P → ∞). Assume that each user quantizes

its channel matrix and sends the quantization index to the transmitter. Then,

for any quantization method chosen by the users, any user selection strategy and

any known precoding scheme chosen by the transmitter, the necessary condition to
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achieve limN→∞ Csum − CQ
sum = 0, in the case of K < M , is having

E{FQ} ≥ ln ln(P lnN) + g′ +
1

ln 2

M−K∑

i=1

[(M − i) ln(P lnN) − lnN + g′′]+ ,

(3.96)

and in the case of K = M is having

E{FQ} ≥ ln ln lnN + g, (3.97)

for some g′ ≫ 1, g′′ ≫ 1 and g ≫ 1, where FQ and CQ
sum are the total number of

bits fed back to the BS, and the maximum achievable sum-rate, when the BS only

has the quantized CSI, respectively, and a+ , max(0, a).

Proof - In order to prove the theorem, we assume that the BS selects M users, and

transmits x1, · · · ,xM , with covariance matrices Q1, · · · ,QM , respectively. Since

for a fixed set of transmit covariance matrices, Dirty-Paper Coding is proved to

achieve the Marton’s region [7] (which is proved to be the highest known achiev-

able region in BC), we consider this coding scheme for the proof of this theorem.

In Lemmas 3.12-3.14, we state the necessary conditions for the transmit covari-

ance matrices and the selected users, in order to achieve the maximum sum-rate

capacity. Then, in Lemma 3.15, we associate those conditions with the size of

quantization codebooks, utilized for the quantization of the selected users’ channel

matrices. Combining the results of the lemmas, the theorem is proved.

Lemma 3.12 The transmit covariance matrices of the selected users, maximizing

the sum-rate capacity in a MIMO-BC with N → ∞ users, are rank one, with

probability one.
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Proof - Assume that the selected users are indexed by 1 to M . Then, the sum-rate

capacity can be written as [5]

Csum = E





max
Qi,π

P

Tr{Qi}≤P

M∑

i=1

ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(

I + Hπ(i)

(
∑

j>i

Qπ(i)

)

HH
π(i)

)−1
∣∣∣∣∣∣





,

(3.98)

where the expectation is taken over the channel matrices H1, · · · ,HM . Using

the duality between the MIMO-BC and MIMO Multiple Access Channel (MIMO-

MAC), expressed in [5], the sum-rate capacity can be written as follows:

Csum = EH1,··· ,HM
max
Pi

P

Tr{Pi}≤P

ln

∣∣∣∣∣I +

M∑

i=1

HH
i PiHi

∣∣∣∣∣ , (3.99)

where Pi’s are the corresponding covariance matrices in the dual MIMO-MAC.

We first prove that to achieve the maximum sum-rate capacity, Pi’s must be rank

one, with probability one.

Since Pi’s are positive semi-definite, we can write them as UH
i ΛiUi, for some

unitary matrix Ui and diagonal matrix Λi. Defining Zi , UiHi and writing

Λi = Diag(ρi1, · · · , ρiK), we have

ln

∣∣∣∣∣I +

M∑

i=1

HH
i PiHi

∣∣∣∣∣ = ln

∣∣∣∣∣I +

M∑

i=1

ZH
i ΛiZi

∣∣∣∣∣

= ln

∣∣∣∣∣I +
M∑

i=1

K∑

l=1

ρilZi(l)
HZi(l)

∣∣∣∣∣ , (3.100)

where Zi(l) denotes the lth row of Zi. Having the fact that |A| ≤
(

Tr(A)
M

)M
for

any positive semi-definite matrix A, the right hand side of the above equation can

be upper-bounded as

ln

∣∣∣∣∣I +
M∑

i=1

K∑

l=1

ρilZi(l)
HZi(l)

∣∣∣∣∣ ≤M ln

(
1 +

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M

)
. (3.101)
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Now, assume that there exists a user k, such that ρkl = Θ(P ) and ρkj = Θ(P ), for

some 1 ≤ l, j ≤ K. In other words, this matrix is asymptotically of rank at least

2. We have

‖Zk(l)‖2 + ‖Zk(j)‖2 ≤ ‖Zk‖2

= ‖Hk‖2. (3.102)

In [26], it has been shown that ‖Hk‖2
max < lnN + MK ln lnN , with probability

one. This incurs that at least one of ‖Zk(l)‖2 and ‖Zk(j)‖2 must be less than

lnN+MK ln lnN
2

. Without loss of generality, assume that ‖Zk(j)‖2 < lnN+MK ln lnN
2

.

Having ρkj allocated to the coordinate (k, j) and using (3.101), yields

µ ≤ max
ρil

(i,l)6=(k,j)
P

ρil=P−ρkj

M ln

(

1 +

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M

)

= M ln




1 +

max ρil
(i,l)6=(k,j)

P

ρil=P−ρkj

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M





(a)

≤ M ln

(
1 +

ρkj
2M

lnN +O(ln lnN) +
P − ρkj
M

‖Z‖2
max

)
, (3.103)

where

µ , max
ρil

(i,l)6=(k,j)
P

ρil=P−ρkj

ln

∣∣∣∣∣I +

M∑

i=1

K∑

l=1

ρilZi(l)
HZi(l)

∣∣∣∣∣ ,

and ‖Z‖2
max , maxi,l ‖Zi(l)‖2. In the above equation, (a) comes from the fact that

the solution to the maximization problem in the second line is to allocate the rest

of the available power (P − ρkj) to the coordinate with the highest norm. By a

similar argument as before, we can show that ‖Z‖2
max < lnN +MK ln lnN , with
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probability one. Hence, using the above equation,

RH (3.103) ≤M ln

(
1 +

P − ρkj

2

M
[lnN +O(ln lnN)]

)
. (3.104)

Having the fact that Csum = M ln
(
P
M

lnN +O(ln lnN)
)
, and using the above

equation, we have

Csum − RH (3.103) ≥ M ln
(
1 − ρkj

2P

)
+O

(
ln lnN

lnN

)
. (3.105)

Hence, having ρkj = Θ(P ), incurs limN→∞ Csum −RH (3.103) > 0. In other words,

in order to have limN→∞ Csum − RH (3.103) = 0, for each user k, there must be at

most one ρkm scaling as Θ(P ), and the rest must scale as o(P ). In the following,

we will show that with probability one, for each user exactly one ρkm is non-zero,

and the rest are zero.

Using (3.101) and having the fact that
∑K

i=1 ‖Zk(i)‖2 < lnN + MK ln lnN

with probability one, it follows that the right hand side of (3.101) is upper-

bounded by M ln
(
P
M

lnN
)
, which is proved to be the maximum achievable sum-

rate throughput in MIMO-MAC. Hence, in order to achieve the maximum sum-

rate, the inequality in (3.101) must be turned into the equality, which means that
∑M

i=1

∑K
l=1 ρilZi(l)

HZi(l) must behave like P
M

lnN(I+o(I))8. Moreover, since from

each user at most one singular value can scale as fast as lnN [50], it follows that

the maximum singular values of the selected users must scale as lnN , and their

corresponding powers must scale as P
M

+ o(P ).

Now, assume that there exists i, l such that limN→∞
‖Zi(l)‖2

lnN
< 1, but ρil 6= 0.

In the above, we have seen that ρil = o(P ). The sum-rate can be upper-bounded

8
A = o(I) means that all the singular values of A are o(1).
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as

R ≤ Csum(P − ρil) +

ln

∣∣∣∣∣∣∣∣
I + ρil‖Zi(l)‖2φi(l)

Hφi(l)



I +
∑

(j,m)
(j,m)6=(i,l)

ρjmZj(m)HZj(m)





−1∣∣∣∣∣∣∣∣

(a)
= Csum(P − ρil) + ln

∣∣∣∣∣I +
ρil‖Zi(l)‖2

P−ρil

M
lnN(1 + o(1))

φi(l)
Hφi(l)

∣∣∣∣∣

(b)
= M ln

(
P − ρil
M

lnN(1 + o(1))

)
+ ln

(
1 +

ρil‖Zi(l)‖2

P−ρil

M
lnN(1 + o(1))

)

(c)
= M ln

(
P

M
lnN(1 + o(1))

)
− Mρil

P

(
1 − ‖Zi(l)‖2

lnN

)
+ o(

ρil
P

), (3.106)

where φi(l) , Zi(l)
‖Zi(l)‖ , and Csum(P − ρil) denotes the maximum sum-rate when the

power constraint is P − ρil. (a) comes from the fact that achieving the maximum

throughput of Csum(P − ρil) requires that

I +
∑

(j,m)
(j,m)6=(i,l)

ρjmZj(m)HZj(m) =
P − ρil
M

lnN (I + o(I)) .

(b) comes from the fact that Csum(P − ρil) = M ln
(
P−ρil

M
lnN(1 + o(1))

)
, and

finally (c) results from the fact that ρil = o(P ), and using the approximation

ln(1 + x) ≈ x, for x ≪ 1. Suppose that instead of allocating ρil to the coordinate

(i, l), it is allocated to the coordinate corresponding to the maximum eigenvalue

of any of the selected users. Let us denote the achievable sum-rate of the system

in this case by R∗. Since the maximum singular values of the selected users scale

as lnN , the second term in the last line of the above equation scales as o(ρil

P
) and

we have

R∗ −R =
Mρil
P

(
1 − ‖Zi(l)‖2

lnN

)
+ o(

ρil
P

). (3.107)
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As a result, if ρil > 0, R∗ > R, which incurs that in order to achieve the maximum

sum-rate ρil must be zero with probability one. Having this and the fact that

from each user at most one coordinate has the gain scaling as fast as lnN with

probability one [50], it follows that to achieve the maximum sum-rate in the dual

MIMO-MAC, the transmit covariance matrices must be rank one with probability

one. Using the result of [5], the following equation holds between the covariance

matrix of the user with the encoding order j in the MIMO-BC, denoted by Qπ(j),

and the covariance matrix of the user with the reverse decoding order j in the dual

MIMO-MAC, denoted by Pπ(j):

Qπ(j) = Mπ(j)Pπ(j)M
H
π(j), (3.108)

where Mπ(j) is an M ×K matrix. Since Pπ(j) is proved to be a rank one matrix

with probability one, it follows from the above equation that Qπ(j) is also rank one

with probability one, which completes the proof of Lemma 3.12.

�

Lemma 3.12 implies that the transmit covariance matrix for the jth user can

be written as

Qj = ρjΦjΦ
H
j , (3.109)

where Φj is a unit vector and ρj is the allocated power to the jth user.

Lemma 3.13 The necessary condition for achieving the maximum sum-rate is

that {Φj}Mj=1, defined in the above equation, form a semi-orthogonal basis for CM ,

i.e, |ΦH
j Φi| = o(1), i 6= j, with probability one.
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Proof - The sum-rate can be upper-bounded as

R
(a)

≤ E

{
M∑

i=1

ln
∣∣I + HiQiH

H
i

∣∣
}

(3.109)
= E

{
M∑

i=1

ln
∣∣I + ρiHiΦiΦ

H
i HH

i

∣∣
}

= E

{
M∑

i=1

ln
(
1 + ρi‖HiΦi‖2

)
}

= E

{
M∑

i=1

ln

(
1 + ρi

K∑

l=1

λl(i)
∣∣vHl (i)Φi

∣∣2
)}

= E

{
M∑

i=1

ln

(

1 + ρi

[

λ1(i)
∣∣vH1 (i)Φi

∣∣2 +

K∑

l=2

λl(i)
∣∣vHl (i)Φi

∣∣2
])}

,

(3.110)

where (a) comes from ignoring the interference terms, λl(i) denotes the lth or-

dered singular value of HiH
H
i , and vl(i) denotes its corresponding eigenvector.

Having the facts that λ1(i) = lnN + o(lnN), which has been proved to be the

necessary condition to achieve the maximum sum-rate (in Lemma 3.12), and

‖Hi‖2 =
∑

l λl(i) = lnN + o(lnN), with probability one [26], it follows that
∑K

l=2 λl(i)
∣∣vHl (i)Φi

∣∣2 = o(lnN). Having this and Csum = M ln
(
P
M

lnN + o(lnN)
)

[26], it follows that to achieve the maximum sum-rate we must have λ1(i)
∣∣vH1 (i)Φi

∣∣2 =

lnN [1 + o(1)], ∀i, 1 ≤ i ≤ M . Noting λ1(i) = lnN + O(ln lnN), we conclude
∣∣vH1 (i)Φi

∣∣2 = 1 + o(1), ∀1 ≤ i ≤ M . In other words, the coordinate of the trans-

mit covariance matrix for each user is almost in the direction of the eigenvector

corresponding to the maximum singular value of that user.
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The rate of the ith encoded user can be upper-bounded as

Rπ(i) = E




ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)

(
∑

j>i

Qπ(j)

)
HH
π(i)

)−1
∣∣∣∣∣∣






≤ 1

M − i

M∑

j=i+1

E

{
ln
∣∣∣I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)Qπ(j)H

H
π(i)

)−1
∣∣∣
}
.

(3.111)

Substituting Qπ(i) and Qπ(j) from (3.109) yields

Rπ(i) ≤ 1

M − i

M∑

j=i+1

E

{
ln

∣∣∣∣I + ρπ(i)ηπ(i)Ψπ(i)Ψ
H
π(i)

(
I + ρπ(j)I

π(i)
π(j)Ωπ(j)Ω

H
π(j)

)−1
∣∣∣∣

}

(a)
=

1

M − i

M∑

j=i+1

E

{
ln

(
1 + ρπ(i)ηπ(i)Ψ

H
π(i)

[
I −

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

Ωπ(j)Ω
H
π(j)

]
Ψπ(i)

)}

=
1

M − i

M∑

j=i+1

E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
+

E

{

ln

(

1 − ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

)}

(b)

≤ 1

M − i

M∑

j=i+1

E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
+

ln

(
1 − E

{
ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

})
, (3.112)

where ηπ(i) , ‖Hπ(i)Φπ(i)‖2, I
π(i)
π(j) , ‖Hπ(i)Φπ(j)‖2, Ψπ(i) ,

Hπ(i)Φπ(i)

‖Hπ(i)Φπ(i)‖ , Ωπ(j) ,
Hπ(i)Φπ(j)

‖Hπ(i)Φπ(j)‖ . (a) comes from the facts |I + AB| = |I + BA| and

(
I + ρπ(j)I

π(i)
π(j)Ωπ(j)Ω

H
π(j)

)−1

= I −
ρπ(j)I

π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

Ωπ(j)Ω
H
π(j),

and (b) comes from the concavity of ln function. From the above equation, and

noting the facts that E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
≤ ln

(
P
M

lnN + o(lnN)
)

and Csum =



Feedback in MIMO Broadcast Channels 96

M ln
(
P
M

lnN + o(lnN)
)
, it follows that in order to achieve the maximum sum-

rate, the term

ln

(
1 − E

{
ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

})

must approach zero for all i and j > i, which incurs that

E

{
ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

}
= o(1) ∀i, j > i.

Since ρπ(i) → ∞ (as P → ∞), and ηπ(i) ∼ lnN , the term
ρπ(i)ηπ(i)

1+ρπ(i)ηπ(i)
≈ 1,

with probability one. Writing v1(π(i)) as απ(i)Φπ(i) + v1(π(i))⊥ and Φπ(i) as

γπ(i)v1(π(i))+Φ⊥
π(i)), where απ(i) , ΦH

π(i)v1(π(i)), γπ(i) , v1(π(i))HΦπ(i), v1(π(i))⊥

denotes the projection of v1(π(i)) over the null space of Φπ(i) and Φ⊥
π(i) denotes the

projection of Φπ(i) over the null space of v1(π(i)), χ , E

{
ρπ(j)I

π(i)
π(j)

1+ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

}
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can be written as

χ = E






ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

∣∣∣ΦH
π(i)H

H
π(i)Hπ(i)Φπ(j)

∣∣∣
2

ηπ(i)I
π(i)
π(j)






= E






ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

∣∣∣∣
[
γπ(i)v1(π(i)) + Φ⊥

π(i))

]H
HH
π(i)Hπ(i)Φπ(j)

∣∣∣∣
2

ηπ(i)






(a)

≥ E






ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

(∣∣γπ(i)

∣∣
∣∣∣v1(π(i))HHH

π(i)Hπ(i)Φπ(j)

∣∣∣−
∣∣∣∣
(
Φ⊥
π(i)

)H
HH
π(i)Hπ(i)Φπ(j)

∣∣∣∣

)2

ηπ(i)






(b)

≥ E





ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

(∣∣γπ(i)

∣∣λmax(π(i))
∣∣v1(π(i))HΦπ(j)

∣∣− λmax(π(i))‖Φ⊥
π(i)‖

)2

ηπ(i)






(c)

≥ E

{
ρπ(j)λmax(π(i))

1 + ρπ(j)I
π(i)
π(j)

( ∣∣γπ(i)

∣∣
∣∣∣
[
απ(i)Φπ(i) + v1(π(i))⊥

]H
Φπ(j)

∣∣∣−
∥∥Φ⊥

π(i)

∥∥
)2
}

(d)

≥ E

{( ∣∣γπ(i)

∣∣ ∣∣απ(i)

∣∣ ∣∣ΦH
π(i)Φπ(j)

∣∣− ‖v1(π(i))⊥‖ −
∥∥Φ⊥

π(i)

∥∥
)2
}
, (3.113)

where λmax(π(i)) denotes the maximum singular value of HH
π(i)Hπ(i). (a) comes

from the fact that |a + b|2 ≥ (|a| − |b|)2. (b) results from the facts that v1(π(i))

is the eigenvector corresponding to the maximum singular value of Hπ(i), and hence,

v1(π(i))HHH
π(i)Hπ(i) = λmax(π(i))v1(π(i))H , and also

∣∣∣∣
(
Φ⊥
π(i)

)H
HH
π(i)Hπ(i)Φπ(j)

∣∣∣∣
2

≤
∥∥∥Φ⊥

π(i)

∥∥∥
2

λmax(π(i)). (c) comes from the fact that ηπ(i) =
∥∥Hπ(i)Φπ(i)

∥∥2 ≤ λmax(π(i)),

and finally (d) results from the facts that I
π(i)
π(j) =

∥∥Hπ(i)Φπ(j)

∥∥2 ≤ λmax(π(i)),
∣∣∣
[
απ(i)Φπ(i) + v1(π(i))⊥

]H
Φπ(j)

∣∣∣ ≥
∣∣απ(i)

∣∣ ∣∣ΦH
π(i)Φπ(j)

∣∣− ‖v1(π(i))⊥‖,

and |γπ(i)| < 1. Since
∣∣vH1 (π(i))Φπ(i)

∣∣ = 1 + o(1), it follows that |απ(i)| = |γπ(i)| =

1 + o(1) and ‖v1(π(i))⊥‖ =
∥∥∥Φ⊥

π(i)

∥∥∥ = o(1). Hence, the necessary condition to
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achieve the maximum sum-rate is having
∣∣∣ΦH

π(i)Φπ(j)

∣∣∣
2

= o(1), ∀i, j > i, with prob-

ability one. In other words, Φπ(i) and Φπ(j) must be semi-orthogonal to each other

with probability one, which completes the proof of Lemma 3.12.

Remark - It is worth to note that the right hand side of (3.110) achieves the max-

imum sum-rate of M ln
(
1 + P

M
lnN [1 + o(1)]

)
if the power is uniformly allocated

to the coordinates, almost surely. In other words, ρi = P
M

[1 + o(1)].

Lemma 3.14 Defining ǫi , vH1 (π(i))Υi, where Υi ,
[
Φπ(i+1)| · · · |Φπ(M)

]
, and

v1(π(i)) denotes the eigenvector corresponding to the maximum eigenvalue of the

ith encoded user, assuming Dirty-paper Coding, the necessary condition to have

limN→∞ Csum −R → 0, in the case K < M − i+ 1 is ‖ǫi‖2 = o
(

1
P lnN

)
and in the

case K ≥M − i+ 1 is ‖ǫi‖2 = o(1), with probability one.

Proof - Consider the user with the encoding order i. The rate of this user can

be upper-bounded as

Rπ(i) ≤ E




ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(

I + Hπ(i)

[
M∑

j=i+1

Qπ(j)

]

HH
π(i)

)−1
∣∣∣∣∣∣






= E




ln

∣∣∣∣∣∣
I + ρπ(i)Hπ(i)Φπ(i)Φ

H
π(i)H

H
π(i)

(

I + Hπ(i)

[
M∑

j=i+1

ρπ(j)Φπ(j)Φ
H
π(j)

]

HH
π(i)

)−1
∣∣∣∣∣∣




 .

(3.114)

Writing the SVD of Hπ(i) as Uπ(i)Λπ(i)V
H
π(i), we have

Rπ(i) ≤ E
{
ln
∣∣I + ρπ(i)λ1(π(i))Ψπ(i)Ψ

H
π(i)W

∣∣} , (3.115)

where W , (I + G)−1, in which G , Λπ(i)V
H
π(i)

[∑M
j=i+1 ρπ(j)Φπ(j)Φ

H
π(j)

]
Vπ(i)Λ

T
π(i),

and Ψπ(i) ,
Λπ(i)V

H
π(i)

Φπ(i)√
λ1(π(i))

. Having the facts that vH1 (π(i))Φπ(i) = 1 + o(1),
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vHj (π(i))Φπ(i) = o(1), j 6= 1 (Lemma 3.13), λ1(π(i)) ∼ lnN , and λj(π(i)) =

o(lnN), j 6= 1 (Lemma 3.12), we have Ψπ(i) = [1 + o(1), o(1), · · · , o(1)]T . In

other words, as N → ∞, Ψπ(i) approaches to the vector [1, 0, · · · , 0]T . Using

|I + AB| = |I + BA|, we can write

Rπ(i) ≤ E
{
ln
(
1 + ρπ(i)λ1(π(i))ΨH

π(i)WΨπ(i)

)}

≈ E
{
ln
(
1 + ρπ(i)λ1(π(i))W11 [1 + o(1)]

)}
, (3.116)

where Aij denotes the (i, j)th entry of matrix A. Using the concavity of ln function,

and having the facts that λ1(π(i)) = lnN + o(lnN) with probability one, we have

Rπ(i) ≤ ln
(
1 + ρπ(i)(lnN)E {W11} [1 + o(1)]

)
. (3.117)

Since the necessary condition to achieve the maximum sum-rate is having Rπ(i) =

ln( P
M

lnN) + o(1), ∀i, the above equation implies that the necessary condition to

have limN→∞ Csum −R = 0 is having E {W11} = 1 + o(1), which incurs that W11

must scale as 1 + o(1), with probability one. In the following, we calculate W11.

G = Λπ(i)V
H
π(i)

[∑M
j=i+1 ρπ(j)Φπ(j)Φ

H
π(j)

]
Vπ(i)Λ

T
π(i) can be written as

G = ZΘΘHZH , (3.118)

where Z ,
[√

λ1(π(i))v1(π(i))| · · · |
√
λK(π(i))vK(π(i))

]H
, and

Θ ,
[√
ρπ(i+1)Φπ(i+1)| · · · |√ρπ(M)Φπ(M)

]
.

ZΘ can be written as
[
ΞT |ΩT

]T
, where Ξ ,

√
λ1(π(i))vH1 (π(i))Θ and Ω , ZrΘ,

and

Zr ,
[√

λ2(π(i))v2(π(i)) |· · · |
√
λK(π(i))vK(π(i))

]H
.
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Substituting in the above equation yields

G =



 ‖Ξ‖2 ΞΩH

ΩΞH ΩΩH



 . (3.119)

As a result, W11 can be written as

W11 =
|I + ΩΩH |
|I + G|

=
|I + ΩΩH |

(1 + ‖Ξ‖2) |I + ΩΩH | +∑K
j=2(−1)j+1G1j |∆(C1j)|

, (3.120)

where ∆(C1j) denotes the minor of C1j and C , G+I. |∆(C1j)| can be computed

as

|∆(C1j)| =
∑

i
1,j /∈Ai

|∆Ai
(G1j)| , (3.121)

where ∆Ai
(G1j) denotes a sub-matrix of ∆(G1j), resulted from deleting the rows

and columns corresponding to the elements in Ai, and Ai is an arbitrary subset

of {1, 2, · · · , K}. Note that ∆∅(G1j) = ∆(G1j), where ∅ denotes the null set.

Similarly, we can write

|I + ΩΩH | =
∑

i
1/∈Ai

|∆Ai
(G11)| . (3.122)

Substituting (3.121) and (3.122) in (3.120), after some manipulations, we obtain

W11 =
|I + ΩΩH |

|I + ΩΩH | + |G| + ‖Ξ‖2δ1 +
∑K

j=2(−1)j+1G1jδj
, (3.123)

where δ1 ,
∑

i
1/∈Ai
Ai 6=∅

|∆Ai
(G11)| and δj ,

∑
i

1,j /∈Ai
Ai 6=∅

|∆Ai
(G1j)|. Two situations can

occur here:
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• Case I; K ≥ M − i + 1: In this case, since G is of rank at most M − i,

|G| = 0 in the above equation. We have observed that in order to achieve the

maximum sum-rate ρπ(j) = P
M

[1 + o(1)], which incurs |Glk| = Θ
(
Pf (1)(λ)

)
,

k, l 6= 1, where λ , [λ2(π(i)), · · · , λK(π(i))], and f (m)(λ) denotes a function

of λ, with order m 9. Having this, it can be easily proved that

‖Ξ‖2δ1 +
K∑

j=2

(−1)j+1G1jδj = Θ
(
PK−2‖Ξ‖2f (K−2)(λ)

)
,

and

|I + ΩΩH | = Θ
(
PK−1f (K−2)(λ)g(1)(λ)

)
. (3.124)

Using this and (3.123), it follows that the necessary condition to satisfy

W11 = 1 + o(1) is having ‖Ξ‖2 = o
(
Pg(1)(λ)

)
. Since g(1)(λ) = o(lnN), this

condition can be written as ‖Ξ‖2 = o (P lnN).

• Case II; K < M − i + 1: In this case, G is full-rank with probability one

and with a similar argument as in the previous part, we can show that

|G| = Θ
(
‖Ξ‖2PK−1f (K−2)(λ)g(1)(λ)

)
.

Hence, using (3.123) and (3.124), the necessary condition to satisfy W11 =

1 + o(1) is having ‖Ξ‖2 = o (1).

Having the facts that ρπ(j) ∼ P
M

and λ1(π(i)) ∼ lnN , we have ‖ǫi‖2 ∼ ‖Ξi‖2

P lnN
.

Therefore, the conditions of ‖Ξ‖2 = o (P lnN) and ‖Ξ‖2 = o (1) are translated

into ‖ǫi‖2 = o (1) and ‖ǫi‖2 = o
(

1
P lnN

)
, respectively, which completes the proof of

9 A function f(x1, · · · , xn) is said to be of order m, if it can be written as
∑

j cj
∏n
l=1 x

αl(j)
l ,

where
∑n

l=1 αl(j) = m, ∀j.
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Lemma 3.14.

�

Remark - Note that since

‖ǫi‖2 =

M∑

j=i+1

|vH1 (π(i))Φπ(j)|2,

it follows that for case 1,

|vH1 (π(i))Φπ(j)|2 = o (1) , i+ 1 ≤ j ≤M,

and for case 2,

|vH1 (π(i))Φπ(j)|2 = o

(
1

P lnN

)
, i+ 1 ≤ j ≤M.

In other words, achieving the maximum sum-rate imposes an orthogonality con-

straint between the eigenvector corresponding to the maximum singular value of

each user and the coordinates of the transmitted signal for users with higher en-

coding orders. This orthogonality constraint is much more restrictive in the second

case.

In Lemmas 3.12-3.14, we have proved that, for any user selection strategy and

any known precoding scheme, in order to achieve the maximum sum-rate capacity,

the following constraints must be satisfied with probability one:

• The maximum singular values of selected users must behave as lnN .

• The transmit covariance matrices must be rank one.

• The transmit coordinates must be almost orthogonal to each other. More-

over, they must be almost in the direction of the eigenvectors corresponding

to the maximum singular values of the selected users.
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• The transmit power must be allocated almost uniformly among the selected

users.

Having the above constraints satisfied, depending on the number of receive anten-

nas, an orthogonality constraint must be satisfied between the eigenvector corre-

sponding to the maximum singular value of each user and the transmit coordinates

of the users with higher encoding orders, with probability one. Now, the question

is that, taking the effect of quantization into account, how accurate should the BS

know the channels of the selected users such that the above constraints are satis-

fied. For this purpose, we focus on the last constraint and associate ‖ǫi‖2 with the

size of the quantization cookbook for the ith encoded user in the following lemma:

Lemma 3.15 Let Li be the size of the codebook used for the quantization of Hπ(i).

Then, for any quantization method and any value of θ, we have

Pr{‖ǫi‖2 > θ} ≥
[
max

(
0, 1 − Li

(
M − 1

i− 1

)
θM−i

)]N
. (3.125)

Proof - Since the transmitter only knows the quantized information about the

channel matrices, we can write v1(π(i)) as v̂1(π(i)) + ∆v1(π(i)), where v̂1(π(i))

is perfectly known by the transmitter and can be considered as a deterministic

vector, and ∆v1(π(i)) is unknown to the transmitter. Hence, we have

ǫi = [v̂1(π(i)) + ∆v1(π(i))]H Υi

= bπ(i) + ∆xπ(i), (3.126)

where bπ(i) , v̂H1 (π(i))Υi is a 1× (M − i) vector, known to the transmitter, while

∆xπ(i) , ∆vH1 (π(i))Υi is an unknown 1 × (M − i) vector. We can write

‖ǫi‖2 ≥ min
n

‖bn + ∆vH1 (n)Υi‖2, (3.127)
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where v1(n) denotes the eigenvector corresponding to the maximum singular value

of the nth user, ∆v1(n) denotes the error in v1(n) due to the quantization of Hn,

and bn , v̂H1 (n)Υi. In fact, in the above equation, it is assumed that all users

quantize their channel matrices, and ‖ǫi‖2 is lower-bounded by the minimum error.

Since ∆v1(n) are i.i.d random variables, it follows that µn , ‖bn + ∆xn‖2, where

∆xn , ∆vH1 (n)Υi, are independent from each other. Hence,

Pr{‖ǫi‖2 > θ} ≥
N∏

n=1

ξn, (3.128)

where ξn , Pr{µn > θ}. ξn can be lower-bounded as follows:

ξn
(a)

≥ 1 − Pr

{
Li⋃

l=1

‖xn − dl‖2 ≤ θ

}

(b)

≥ max

(

0, 1 −
Li∑

l=1

Pr
{
‖xn − dl‖2 ≤ θ

}
)

, (3.129)

where cl, l = 1, · · · , Li, are the corresponding quantization code words for the

quantization of xn , vH1 (n)Υi, and dl , cl − bn. (a) comes from the fact that all

the quantization bits are not necessarily utilized for the quantization of xn
10, and

(b) results from the union bound for the probability.

Since the columns of Υi, namely {Φπ(j)}Mj=i+1, are semi-orthogonal to each

other, xn , vH1 (n)Υi can be approximated by yn, which denotes the projection

of v1(n) over the (M − i)-dimensional sub-space spanned by {Φπ(j)}Mj=i+1. More

precisely,

xn = yn [I + o(I)] . (3.130)

10In fact, if we denote the original quantization code words, utilized for the quantization of

Hn, by {el}Li

l=1, we can write cl = f(el), 1 ≤ l ≤ Li, where f(.) is a mapping which depends on

the quantization method. Since the mapping f(.) is not necessarily one-to-one, it follows that

the number of distinct elements in the set {cl}Li

l=1 is at most Li.
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As v1(n) is an isotropically distributed unit vector in C1×M , the pdf of yn can be

computed from [36] as

p(yn) =
(M − 1)!

πM−i(i− 1)!

(
1 − ‖yn‖2

)i−1
, ‖yn‖ ≤ 1. (3.131)

Combining (3.130) and (3.131), Pr {‖xn − dl‖2 ≤ θ} can be computed as

Pr
{
‖xn − dl‖2 ≤ θ

}
=

∫

CM−i(dl,
√
θ)

p(xn)dxn

(3.130)≈
∫

CM−i(dl,
√
θ)

p(yn)dyn

(a)

≤ (M − 1)!

πM−i(i− 1)!

∫

CM−i(dl,
√
θ)

dyn

=
(M − 1)!

πM−i(i− 1)!
vol
(
CM−i(dl,

√
θ)
)

(b)
=

(
M − 1

i− 1

)
θM−i, (3.132)

where Cm(t, r) denotes the m-dimensional sphere (in the complex space) centered

at t with radius r, and vol(v) denotes the volume of the region v. (a) comes from

the fact that that from (3.131), p(yn) ≤ (M−1)!
πM−i(i−1)!

, and (b) results from the fact

that the volume of a sphere with radios d in the m-dimensional complex space is

equal to πm

m!
d2m. Substituting (3.132) in (3.129), we have

ξn ≥ max

(
0, 1 − Li

(
M − 1

i− 1

)
θM−i

)
. (3.133)

Substituting in (3.128), Lemma 3.15 easily follows.

�

In Lemma 3.14, we have shown that in order to achieve the maximum sum-

rate, in the case K < M − i + 1, we must have ‖ǫi‖2 = o
(

1
P lnN

)
and in the case

K ≥M − i+ 1, we must have ‖ǫi‖2 = o (1), with probability one. In other words,
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in the first case,

Pr

{
‖ǫi‖2 >

1

P lnN

}
= o(1), (3.134)

and in the second case,

Pr
{
‖ǫi‖2 > 1

}
= o(1). (3.135)

Combining the above equations with (3.125), it follows that for the user with the

encoding order i, such that i ≤M −K, we must have
(

1 − Li

(
M − 1

i− 1

)[
1

P lnN

]M−i
)N

= o(1) ⇒ Li = ω

(
[P lnN ]M−i

N

)

, (3.136)

and for the users with the encoding order greater than M −K,

Li = ω

(
1

N

)
. (3.137)

Therefore, in the case of K < M , the total amount of feedback can be written as

E{FQ}
(a)

≥ E{NQ} +

M−K∑

i=1

[log2(Li)]
+

(b)
= ln ln(P lnN) + g′ +

1

ln 2

M−K∑

i=1

[(M − i) ln(P lnN) − lnN + g′′]
+
,

(3.138)

for some g′ ≫ 1 and g′′ ≫ 1, where NQ denotes the number of users who send

feedback to the BS. (a) comes from the fact that at least NQ users send one bit

and (M − K) users each send [log2(Li)]
+ bits to the BS, where Li is computed

from (3.136). (b) results from (3.85) and (3.136).

In the case of K = M , (3.137) does not impose any constraints on Li. Hence,

the total amount of feedback can be lower-bounded as

E{FQ} ≥ E{NQ}

= ln ln lnN + g, (3.139)
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which completes the proof of Theorem 3.11.

�

Although the above theorem gives us the necessary conditions for the amount

of feedback to achieve the maximum sum-rate, the achievability of those conditions

is not clear. A subsequent theorem gives the sufficient condition for achieving the

maximum sum-rate.

From the above theorem the following observations can be made:

i) In the case of K < M , for the asymptotic scenario of P → ∞, the mini-

mum amount of feedback per user in order to achieve the maximum sum-rate grow

logarithmically with SNR. More precisely, in the region lnP = ω(lnN), the total

amount of feedback must be at least (M−K)(M+K−1)
2 ln 2

lnP , which means that the

minimum amount of feedback per user must be (M−K)(M+K−1)
2 ln 2

lnP
N

. This logarith-

mic growth is also shown for the fixed-size networks in [45], when the BS performs

ZFBF. Moreover, for the fixed SNR scenario, this theorem implies that the mini-

mum amount of feedback bits per user does not need to grow with N , which agrees

with the result of Theorem 3.6, where we showed that the maximum sum-rate is

achievable by a fixed amount of feedback per user.

ii) The more interesting observation is that, in the case of K = M , the above

theorem does not impose any constraints on the minimum amount of feedback bits

per user, even for the asymptotic scenario of P → ∞. One may argue that this is

not surprising as in this case, the transmitter can select the user which maximizes

the single-user capacity (with a fixed amount of feedback per user, regardless of

SNR), and communicates with that user, without knowing its channel. In [50], we

have shown that this argument is not valid, as limN→∞ Csum −RTDMA = M lnM .

In other words, there is a constant gap between the achieving sum-rate and the
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maximum sum-rate. In fact, the reason that this case differs form the case K < M

is the “interference hiding”. Since each user has M coordinates and the number of

interfering coordinates is M − 1, the transmitter can wisely hide the interference

coordinates in the null-space of the signal coordinate, and thus the receiver does not

see any interference. In other words, the transmitter does not need to “mitigate”

the interference, which requires much more precise information about the channels.

As a result, unlike the case K < M , the total amount of feedback does not need

to grow with SNR.

Theorem 3.16 The sufficient condition for achieving the maximum sum-rate,

such that limN,P→∞ Csum −R = 0, in the case of K < M is

E{FQ} =
1

ln 2
[M(M − 1) lnP −M(K − 1) ln lnN − o(lnN)]+ + ω(ln ln(P lnN)),

(3.140)

and in the case of K = M is

E{FQ} = M ln ln lnN + g. (3.141)

Proof - The proof is based on the two algorithms given in the following, in the

cases K < M and K = M . We show that by using these algorithms one can

achieve the maximum sum-rate throughput of the system in each case, while the

total amount of feedback satisfies (3.140) and (3.141), respectively.

Case K < M :

Consider the following algorithm:

1. Set the thresholds t, β, and ǫ.

2. Define

S0 = {k| λmax(k) > t},
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where λmax(k) is the the maximum singular value of the kth user.

3. All users in S0 quantize the eigenvector corresponding to the maximum singu-

lar value of their channel matrix, denoted by vk, using the quantization code

book C = {c1, · · · , c2B}, where {cl}2B

l=1 are i.i.d. unit vectors with uniform

distribution (RVQ). The quantized vector of vk, denoted by v̂k is selected as

v̂k = arg max
cl∈C

|vHk cl|.

4. All the users in the set

S1 =
{
k ∈ S0

∣∣∣ |vHk v̂k|2 > 1 − ǫ
}

send one bit to the BS. The BS selects one user in S1 at random and inform

this user (s1) to feed back its eigenvector. User s1 feeds back the quantization

index corresponding to its eigenvector to the BS. The BS sends this index to

all the users in the set S1 − {s1}.

5. For m = 2 to M the following steps are repeated:

– Define Sm =
{
k ∈ Sm−1

∣∣∣ |vHk v̂sm−1 |2 < β
}

. All users in Sm send one

bit to the BS.

– The BS selects one user in Sm at random and informs this user (sm) to

feed back its corresponding eigenvector.

– User sm feeds back the quantization index corresponding to its eigen-

vector to the BS. The BS sends this index to all the users in the set

Sm − {sm}.
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6. After selecting the users and receiving their quantized eigenvectors, the BS

forms the beams {Φsm}Mm=1, such that Φsm is in the null-space of v̂sj
, j 6= m

(Zero-Forcing Beam-Forming). In other words, ΦH
sm

v̂sj
= 0, ∀j 6= m.

7. The BS forms the transmitted signal as

x =

M∑

j=1

Φsj
xsj
, (3.142)

where xsj
∼ CN (0, P

M
) is the intended signal for the user sj .

8. At the receiver sm, the received vector ysm is multiplied by uHsm
, where usm

denotes the left eigenvector corresponding to the maximum eigenvalue of the

user sm, to form rsm = uHsm
ysm . Then, the decoding is performed.

Defining the event Q ,
⋂M
m=1{|Sm| 6= 0}, the sum-rate can be upper-bounded

as

R = Pr {Q}RQ + Pr
{
QC
}
RQC

≥ Pr {Q}RQ

(a)

≥
[
1 −

M∑

m=1

Pr {|Sm| = 0}
]
RQ, (3.143)

where RQ denotes the average sum-rate conditioned on Q and (a) comes from the

union bound for the probability. To compute RQ, we calculate the rate of each

user conditioned on Q. For this purpose, the received signal by the smth user is
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simplified as follows:

rsm = uHsm
ysm

= uHsm
[Hsmx + nsm ]

(a)
=

√
λmax(sm)vHsm

x + zsm

=
√
λmax(sm)vHsm

Φsmxsm +
∑

j 6=m

√
λmax(sm)vHsm

Φsj
xsj

+ zsm , (3.144)

where zsm ∼ CN (0, 1) is AWGN and (a) comes from writing SVD for Hsm. In

the above equation, the first term contains the desired signal and the rest are the

interference and noise terms. Hence, the rate of this user can be written as

Rsm = E

{
ln

(
1 +

P
M
λmax(sm)

∣∣vHsm
Φsm

∣∣2
∑

j 6=m
P
M
λmax(sm)

∣∣vHsm
Φsj

∣∣2 + 1

)}
. (3.145)

We can write

vsm = α‖
sm

v̂sm + v̂⊥
sm
, (3.146)

where α
‖
sm , v̂Hsm

vsm and v̂⊥
sm

is the projection of vsm over the sub-space perpen-

dicular to v̂sm . Using the above equation,
∣∣vHsm

Φsj

∣∣2 can be written as

∣∣vHsm
Φsj

∣∣2 =
∣∣∣
(
α‖
sm

v̂sm + v̂⊥
sm

)H
Φsj

∣∣∣
2

(a)
=

∣∣∣
(
v̂⊥
sm

)H
Φsj

∣∣∣
2

≤
∥∥v̂⊥

sm

∥∥2

= 1 −
∣∣v̂Hsm

vsm

∣∣2 , (3.147)

where (a) comes from the fact that v̂Hsm
Φsj

= 0, j 6= m, by the algorithm. Condi-

tioned on Q, we have λmax(sm) > t and
∣∣v̂Hsm

vsm

∣∣2 > 1 − ǫ. Therefore, the rate of

the smth user, conditioned on Q, can be lower-bounded as

Rsm|Q ≥ ln

(
1 +

Pt
M

∣∣vHsm
Φsm

∣∣2

1 + Ptǫ(M−1)
M

)
. (3.148)
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In Appendix H, we have shown that having β = o(1) and ǫ = o(1) guarantees
∣∣vHsm

Φsm

∣∣2 = 1 + o(1). Having this, it follows that choosing t = lnN + o(lnN)

and ǫ = o
(

1
P lnN

)
incurs Rsm|Q = ln

(
1 + P

M
lnN + o(lnN)

)
. Similarly, we can

show that the same rate is achievable for the other selected users. Hence, RQ =

M ln
(
1 + P

M
lnN + o(lnN)

)
and as a result, limP,N→∞ Csum −RQ = 0. Using this

fact and (3.143), it follows that the sufficient condition to achieve limP,N→∞ Csum−
R = 0 is

[∑M
m=1 Pr {|Sm| = 0}

]
RQ = o(1), which incurs Pr {|Sm| = 0} = o

(
1

ln(P lnN)

)
.

Since SM ⊆ SM−1 ⊆ · · · ⊆ S1, it suffices to consider only SM . Defining qk , Pr{k ∈
SM} for a randomly chosen user k, we have

qk = Pr
{
λmax(k) > t, |vHk v̂sm|2 < β,m = 1, · · · ,M − 1, |vHk v̂k|2 > 1 − ǫ

}
.(3.149)

Since the events A1 , {λmax(k) > t}, A2 ,
{
|vHk v̂sm |2 < β,m = 1, · · · ,M − 1

}

and A3 , {|vHk v̂k|2 > 1 − ǫ} are independent of each other, qk can be written as
∏3

i=1 qki, where qki , Pr{Ai}. We have

qk1
(a)
= Θ

(
e−ttM+K−2

)
,

qk2
(b)
= Θ(βM−1), (3.150)

where (a) comes from [19], and (b) comes from [50]. Furthermore,

qk3 = 1 − Pr
{
|vHk v̂k|2 < 1 − ǫ

}

= 1 −
L∏

l=1

Pr
{
|vHk cl|2 < 1 − ǫ

}

(a)
= 1 −

(
1 − ǫM−1

)L

≈ 1 − e−Lǫ
M−1

≤ LǫM−1, (3.151)
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where L , 2B and (a) results from Appendix A. Combining (3.150) and (3.151),

we can write

Pr{|SM | = 0} ≈ (1 − qk)
N

= (1 − qk1qk2qk3)
N

≥
[
1 − Θ

(
e−ttM+K−2βM−1LǫM−1

)]N

≈ exp
{
−Θ

(
Ne−ttM+K−2βM−1LǫM−1

)}
. (3.152)

Hence, in order to have Pr{|SM | = 0} = o
(

1
ln(P lnN)

)
, it suffices to have

L = Θ
(

(ln ln(P lnN) + g) (βǫ)−(M−1)N−1ett−(M+K−2)
)
. (3.153)

Choosing β = o(1), t = (1 − α) lnN , and ǫ = δ
P lnN

, where α, δ = o(1), and

substituting in the above equation, we obtain

L = Θ
(

(ln ln(P lnN) + g) [P lnN ]M−1(βδ)−(M−1)N−α[lnN ]−(M+K−2)
)

= Θ
(

(ln ln(P lnN) + g)PM−1[lnN ]−(K−1)(βδ)−(M−1)N−α
)
. (3.154)

Having B = [log2(L)]+, yields

B =
1

ln 2
[(M − 1) lnP − (K − 1) ln lnN + ln ln ln(P lnN) + g − o(lnN)]+ .(3.155)

Using the above equation, the total amount of feedback can be written as

E{FQ} = MB +
M∑

m=1

E{|Sm|}

= MB +

M∑

m=1

(N −m+ 1)Pr{k ∈ Sm}

(a)
= MB + ω(ln ln(P lnN))

= [M(M − 1) lnP −M(K − 1) ln lnN − o(lnN)]+ + ω(ln ln(P lnN)),

(3.156)
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where (a) comes from the fact that selecting L as in (2.53), results in NPr{k ∈
SM} = ln ln(P lnN) + g, and hence, NPr{k ∈ Sm} ∼ NPr{k ∈ SM}βm−M =

ω(ln ln(P lnN)).

Case K = M :

Consider the following algorithm:

1. Set the thresholds t and ǫ.

2. Define

S0 = {k| λmax(k) > t},

where λmax(k) is the the maximum singular value of the kth user.

3. The BS selects a unit vector Φs1 at random and sends this vector to all users

in S0.

4. All the users in the set

S1 =
{
k ∈ S0

∣∣∣ |vHk Φs1 |2 > 1 − ǫ
}
,

where vk denotes the eigenvector corresponding to the maximum eigenvalue

of user k, send one bit to the BS. The BS selects one user in S1 at random

indexed by s1.

5. For m = 2 to M the following steps are repeated:

– The BS selects a unit vector Φsm such that it is orthogonal to the

previously chosen vectors {Φsj
}m−1
j=1 , and sends it to the users in S0.

– Define Sm =
{
k ∈ S0

∣∣∣ |vHk Φsm|2 > 1 − ǫ
}

. All users in Sm send one

bit to the BS.
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– The BS selects one user in Sm at random indexed by sm.

6. The BS forms the transmitted signal as

x =

M∑

m=1

Φsmxsm , (3.157)

where xsm ∼ CN (0, P
M

) is the intended signal for the user sm.

7. At the receiver sm, the received vector is multiplied by R
−1/2
sm , where

Rsm , I +
∑

j 6=m

P

M
HsmΦsj

ΦH
sj
HH
sm
,

to form rsm = R
−1/2
sm ysm . Then, the decoding is performed.

As can be observed, this algorithm is very similar to the previous algorithm, with

the difference in the quantization code book and decoding. In this algorithm, the

quantization code book contains only one code word at each step, which is variable

and decided by the BS, while in the previous algorithm the quantization code book

is fixed and the number of code words grow with SNR. Moreover, the receiver uses

all coordinates for decoding the signal, while in the previous algorithm the decoding

is only performed in one coordinate. In fact, in the case of K < M , using all the

coordinates does not provide any gain, while in the case of K = M , it does. In the

case of K = M , if any of the sets Sm, m = 1, · · · ,M , is empty, the BS selects any

user at random and communicates with that user, setting the transmit covariance

matrix equal to P
M

I. This provides a rate scaling as M lnP , without requiring any

amount of feedback.
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Defining the event Q ,
⋂M
m=1{|Sm| 6= 0}, similar to (3.143), we can write

R = Pr{Q}RQ + [1 − Pr{Q}]RQC

RS

= RQ − [1 − Pr{Q}]
[
RQ −RQC

RS

]

≥ RQ −
(

M∑

m=1

Pr{|Sm| = 0}
)[

RQ −RQC

RS

]
, (3.158)

where RQC

RS denotes the achievable rate, when the BS selects one user at random

and communicates with that user, conditioned on QC . It is easy to show that

RQC

RS = M lnP + Θ(1).

The rate of the user sm, conditioned on Q, can be computed as

Rsm|Q = E

{
ln

∣∣∣∣I +
P

M
HsmΦsmΦH

sm
HH
sm

R−1
sm

∣∣∣∣

∣∣∣∣Q
}
. (3.159)

For ǫ = o (1) and t ∼ lnN , and using the equations (3.116) and (3.123), it follows

that

Rsm|Q ≥ E

{
ln

(
1 +

P

M
t(1 − ǫ)W11

)}

= ln

(
1 +

P

M
lnN [1 + o(1)]

)
, (3.160)

where W = R−1
sm

. Hence,

RQ = M ln

(
1 +

P

M
lnN [1 + o(1)]

)
, (3.161)

and as a result, Csum −RQ = o(1). Therefore, having the fact that RQ −RQC

RS ∼
M ln lnN , we can show that ηm , Pr{|Sm| 6= 0} = o

(
1

ln lnN

)
, ∀m, guarantees

Csum −R = o(1). ηm can be written as (1 − qm)N , where qm , Pr{k ∈ Sm}, for a

randomly chosen user k. qm can be computed as

qm = Pr{λmax(k) > t}Pr{|vHk Φsm|2 > 1 − ǫ}
(a)≈ e−ttM+K−2

Γ(M)Γ(K)
ǫM−1, (3.162)
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where (a) comes from [19] and [50]. Consequently,

ηm ≈
[
1 − e−ttM+K−2

Γ(M)Γ(K)
ǫM−1

]N

≈ e−N
e−ttM+K−2

Γ(M)Γ(K)
ǫM−1

. (3.163)

Choosing ǫ = 1
lnN

and t = lnN + (K − 1) ln lnN − ln ln ln lnN − ln Γ(M)Γ(K) −
ω
(

1
ln ln lnN

)
results in ηm = o

(
1

ln lnN

)
and hence, having limN,P→∞ Csum − R = 0.

The amount of feedback can be computed from

E{FQ} = E

{
M∑

m=1

|Sm|
}

= N

M∑

m=1

qm

(a)≈
M∑

m=1

ln(η−1
m )

= M ln ln lnN + g, (3.164)

where (a) comes from the fact that ηm = (1 − qm)N ≈ e−Nqm .

�

Remark 1- Comparing the necessary and sufficient conditions on the minimum

amount of feedback for achieving the maximum sum-rate, it turns out that the

proposed algorithm in the case of K < M is asymptotically optimal by a constant

multiplicative factor, in terms of the required amount of feedback, in the region

lnP = ω(lnN). Moreover, in the case K = M , the proposed algorithm is optimal

by a constant multiplicative factor, in terms of the required amount of feedback,

for all ranges of SNR.

Remark 2- Comparing the two cases K < M and K = M , it follows that the

minimum amount of feedback in the first case grows logarithmically with SNR

while in the second case it does not grow with SNR.
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Remark 3- In the case of K < M , when lnP 6= Ω(lnN), it is possible to

achieve the maximum sum-rate by using a finite-size quantization code book for

all the users (Random Beam-Forming). However, in the case of lnP = ω(lnN),

the size of the quantization code book must grow polynomially with SNR. In the

case of K = M , it is possible to achieve the maximum sum-rate with finite rate

quantization for all ranges of SNR. In other words, Random Beam-Forming is

always optimal in this case. Note that, however, the decoding must be performed

in all the coordinates.

Remark 4- The first algorithm can be considered as the generalization of Ran-

dom Beam-Forming, when the number of beams vary with SNR. This algorithm is

very similar to the algorithm proposed in [51], with the difference in limiting the

number of candidate users and thus reducing the amount of feedback furthermore.

3.4 Conclusion

In this chapter, the minimum required amount of feedback in order to achieve

the maximum sum-rate capacity in a MIMO-BC with large number of users and

different ranges of SNR is studied. In the fixed SNR and low SNR regimes, we

have proved that to achieve the maximum sum-rate the total amount of feedback

from the users to the BS must be infinity. However, it does not need to scale with

N . Moreover, in the fixed SNR regime, in order to reduce the gap to the sum-rate

capacity to zero, the amount of feedback must scale at least as ln ln lnN , which

is achievable by the Random Beam-Forming scheme introduced in [26]. Moreover,

it is shown that the optimality of Random Beam-Forming scheme only holds for

the region lnP 6= Ω(lnN). In the regime of lnP = Ω(N), we consider two cases.
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In the case of K < M , we prove that the minimum amount of feedback in order

to reduce the gap between the achievable sum-rate and the maximum sum-rate

to zero grows logarithmically with SNR, which is achievable by the “Generalized

Random Beam-Forming” scheme proposed in [51]. In the case of K = M , we

show that by using the Random Beam-Forming scheme with the total amount

of feedback not growing with SNR, the maximum sum-rate capacity is achieved,

provided that the decoding is performed in all the received coordinates.



Chapter 4

Fairness in the Scheduling

4.1 Introduction

With the development of personal communication services, one of the major con-

cerns in supporting data applications is providing quality of service (QoS) for

all subscribers. In most real-time applications, high data rates and small trans-

mission delays are desired. Most data-scheduling schemes proposed for current

systems have concentrated on the system throughput by exploiting multiuser di-

versity [17, 56, 57, 58, 59]. In cellular networks, by applying multiuser diversity,

the time-varying nature of the fading channel is exploited to increase the spectral

efficiency of the system. It is shown that transmitting to the user with the highest

signal to noise ratio (SNR) provides the system with maximum sum-rate through-

put [60]. The opportunistic transmission is proposed in Qualcomm’s High Data

Rate (HDR) system [56].

Although applying multiuser diversity through the scheme in [60] achieves the

maximum system throughput, QoS demands, including fairness and delay con-

120
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straints, provoke designing more appropriate scheduling schemes. The schemes

that consider delay constraints have been studied extensively in [17, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 75, 72, 73, 74]. In [61], the authors propose an algorithm

which maintains a balance between the throughput maximization, delay, and out-

age probability in a multiple access fading channel. The tradeoff between the

average delay and the average transmit power in fading environments is analyzed

in [62]. In [63, 64], authors propose scheduling metrics that combine multiuser di-

versity gain with the delay constraints. In [65], the scheduling scheme is designed

based on maximizing the effective capacity [76] which is characterized by data rate,

delay bound, and delay-bound violation probability triplet. The throughput-delay

tradeoff of the multicast channel is analyzed for different schemes in a single cell

system [66]. This trade-off has been obtained for more general network topologies

in [67]. In the static random network with n nodes, the results of [67] show that the

optimal tradeoff between throughput Tn and delay Dn is given by Dn = Θ(nTn).

They also show that the same result is achieved in random mobile networks, when

Tn = O(1/
√
n lnn). The first studies on achieving a high throughput and low de-

lay in ad-hoc wireless networks are framed in [58], [68], and [69]. This line of work

is further expanded in [67, 70, 71] by using different mobility models such as the

random walk and the Brownian mobility models. Neely and Modiano [71] consider

the delay-throughput tradeoff only for mobile ad-hoc networks. They investigate

the delay characteristics by using the redundant packets transmission through mul-

tiple paths. In [72], the authors have proposed and compared different scheduling

achemes based on the users’ channel qualities and their remaining job times, in the

downlink of a MIMO wireless cellular packet data system in fast and slow channel

variation scenarios. In [73], the authors have analytically characterized the schedul-
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ing gain achieved by opportunistic schedulers with both single-user and multi-user

multiplexing, and showed that the average delay grow double-exponentially with

the overall throughput, with any opportunistic (single-user time-sharing or multi-

user multiplexing) scheduling. In [74], the authors consider a wireless downlink

communication system, where the channels are characterized by frequency-selective

fading, modeled as a set of M parallel block-fading channels, and a frequency-flat

distance-dependent path loss. They compare delay-limited systems (which impose

hard fairness) with variable-rate systems (which impose proportional fairness), in

terms of the achieved system spectral efficiency C (bit/s/Hz) versus Eb/N0, and

find simple iterative resource allocation algorithms that converge to the optimal

delay-limited throughput for orthogonal (FDMA/TDMA) and optimal (superposi-

tion/interference cancellation) signaling. In the limit of large number of users and

finite M , the authors find closed-form expressions for C as a function of Eb/N0

and show that in this limit, the optimal allocation policy consists of letting each

user transmit on its best subchannel only.

In [75], the delay is defined as the minimum number of channel uses that

guarantees all n users successfully receive m packets. Reference [75] studies the

statistical properties of the underlaying delay function. However, the delay con-

straint is assumed to be soft, meaning that this scheme aims to minimize the total

average network delay and there is not any delay constraints for the individual

users.

In this chapter, we consider a hard delay constraint D for each user, which

is enforced by the application or physical limitations (e.g. buffer size). We de-

fine a dropping event as the event that there exists a user who does not meet

the desired delay constraint. We propose a scheduling scheme for maximizing the
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throughput of the system, while satisfying the delay constraint for all users. The

proposed scheduling algorithm works based on setting a threshold on the channel

gain of the users and among the users with channel gains above the threshold,

the user with the minimum Packet Expiry Countdowns (PEC), which is defined

as the remaining time to the expiration of that users’ packet, is served. By doing

asymptotic analysis, it is proved that by selecting the threshold level properly, the

proposed scheduling algorithm achieves the maximum throughput, maximum fair-

ness, and minimum delay in the network, simultaneously, in the asymptotic case

of N → ∞. The analysis is based on characterizing the probability mass function

of PEC in terms of N , D , and the threshold value, and evaluating the network

dropping probability accordingly. It is also demonstrated that the Round-Robin

(RR) scheduling, which focuses on maximizing the fairness and minimizing the

delay in the network, and Multi-User Diversity (MUD) scheduling, which focuses

on maximizing the throughput in the system, are two extreme cases of the pro-

posed algorithm, where the former suffers from the weak performance in terms

of throughput and the latter increases the network delay by a factor of lnN .

Moreover, we have introduced a new notion of performance in the network, called

“Average Throughput”, which is defined as the product of the packet arrival rate

and the amount of information per channel use in each packet, and proved that the

proposed algorithm maximizes the Minimum Average Throughput in a broadcast

channel. It is demonstrated that the proposed scheduling outperforms the conven-

tional multiuser diversity scheduling and Round-Robin scheduling in terms of the

Minimum Average Throughput, by factors lnN and ln lnN , respectively. It is also

established that the proposed algorithm reaches the boundaries of the capacity re-

gion and stability region of the underlying system, simultaneously. The proposed
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algorithm is also generalized to MIMO Broadcast Channels (MIMO-BC) by mod-

ifying the Random Beam-Forming scheme proposed in [26]. It is shown that the

proposed algorithm is capable of achieving the maximum throughput, maximum

fairness, and minimum delay, simultaneously, in the asymptotic case of N → ∞.

Moreover, it maximizes the Minimum Average Throughput in a MIMO-BC.

The rest of the chapter is organized as follows. In section 4.2, the system model

is introduced and the proposed algorithm is described. Section 4.3 is devoted

to the asymptotic analysis of the proposed algorithm. Section 4.4 describes the

generalization of the proposed algorithm for MIMO-BC, and finally, section 4.5

concludes the chapter.

4.2 System Model and Proposed Algorithm

4.2.1 System Model, Assumptions, and Definitions

In this chapter, a downlink environment in which a single-antenna Base Station

(BS) communicates with a large number (N) single-antenna users, is considered.

We assume a homogeneous network, where the channel between each user and

the BS is modelled as a zero-mean complex Gaussian random variable (Rayleigh

fading). The received signal at the kth terminal can be written as

yk = hkx+ nk, (4.1)

where x denotes the transmitted signal by the BS, which is assumed to be Gaussian

with the power constraint P , i.e., E{|x|2} ≤ P 1, hk ∼ CN (0, 1) denotes the channel

1Note that the power constraint here is per frame, i.e, is independent of the channel realiza-

tions.
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coefficient between the BS and the kth terminal, and nk ∼ CN (0, 1) is AWGN.

We assume that block coding for error free transmission is performed over frames,

where the information content of a frame is called packet. In addition, we assume

that the frame length is constant (unit of time), while the information content

of a frame can potentially vary depending on the capacity of the corresponding

channel realization. As we will see later, the proposed method results in almost

equal information content (packet length in bits) for all the frames. It is also

assumed that only one user is served during each frame. The channel coefficients

are assumed to be constant for the duration of a frame, and change independently

at the start of the next frame (block fading model). The frame itself is assumed to

be long enough to allow communication at rates close to the capacity. This model

is also used in [75] and [26].

It is assumed that the users have delay constraint D. In other words, the delay

between two consecutive received packets should not be greater than the duration

of D frames. Otherwise, the transmitted packet will be dropped. The network

dropping event, denoted by B, is defined as the event that dropping occurs for any

user in the network. We define a parameter ν for each user, which denotes the

expiry countdown of that user’s packet, i.e., the remaining time to the expiration

of the packet. ν is expressed in terms of an integer multiple of the frame length.

At the end of each frame, the expiry countdown of each user is decremented by

one, except for the user which is served during that frame. For this user, the expiry

countdown is set to D at the start of the next frame. Therefore, for all users ν ≤ D

(Fig. 4.1). Since the channel model is independent block fading, and the network

topology and the proposed scheduling algorithm are symmetric with respect to

the users, it can be easily shown that there exists a steady state for the system
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∀j, νk(j + 1) = νk(j) − 1, for k 6= s, νs(j + 1) = D,

∀j, νk(j) 6= νi(j), for i 6= k

νK(j)t = j

t = j + 1

ν1(j) ν2(j)

ν1(j + 1) ν2(j + 1)

k = 1 k = 2 k = K

νK(j + 1)

−∞ ≤ νk(j) ≤ D, ∀k, j

where s is the user which is serviced during the jth frame

Figure 4.1: A Schematic figure for the expiry countdown.

(no matter what the initial state is), in which the statistical behavior of the users’

expiry countdowns is independent of the time index. In the steady state, since in

each frame only one user is served by the transmitter, the expiry countdown of the

users are distinct in each time. All the results derived in this chapter are based on

the assumption that the system is in the steady state.

In this chapter, we are interested in maximizing the throughput and fairness in

the network. First, we give the definitions of throughput and fairness:

Definition 4.1 The throughput is defined as the average sum-rate of the system,

when the average is computed over all the channel realizations.

Definition 4.2 Consider a scheduling S . Then, the Fairness Factor (FF) for

this scheduling is defines as

FF (S ) ,
Dmin(S )

N
, (4.2)
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where Dmin(S ) denotes the minimum value of D such that Pr{B} → 0, using

scheduling S .

Definition 4.3 A scheduling S is said to achieve the maximum fairness, if FF (S ) =

1 2.

4.2.2 Proposed Scheduling Algorithm

The proposed scheduling algorithm is described as follows:

Algorithm 1:

1) The BS chooses a threshold Θ, and sends it to all users.

2) Let us define

S , {k| |hk|2 ≥ Θ}. (4.3)

All users in S send a confirmation message to the BS.

3) Among the users in S, the BS serves the one with the minimum ν (expiry

countdown).

In the proposed algorithm, the threshold Θ is set to trade-off the throughput vs.

the fairness in the system. If Θ is chosen to be very large, then the scheduling

tends to maximize the throughput. If Θ is chosen to be very small, the algorithm

tends to maximize the fairness in the network.

2This definition is motivated by the fact that for Round-Robin scheduling (which is known to

be the most fair scheduling), Dmin = N .
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4.3 Asymptotic Analysis

In this section, we analyze the network dropping probability, denoted as Pr{B},
in terms of the number of users N , and the delay constraint D, for the proposed

scheduling. We consider the asymptotic case of N → ∞ and derive the condition

for D such that Pr{B} → 0. To this end, the probability mass function (pmf) of

ν, denoted as fν(ν), is characterized in terms of D, N , and Θ. First, we consider

two special cases of the proposed algorithm:

4.3.1 Special Case I; Θ = 0:

In this case, the user with the minimum ν is served. In other words, the quality

of channel does not play any role in the scheduling. The set S which is defined in

(4.3) is simply the set of all users.

Theorem 4.4 For Θ = 0, fν(ν) can be obtained as follows:

fν(ν) =






1
N

D −N + 1 ≤ ν ≤ D

0 ν ≤ D −N
. (4.4)

Proof - Let us define νmin(t) , mink∈S νk(t), where νk(t) denotes the expiry count-

down for the kth user at time t. We have

Pr{νmin(t) = l} (a)
=

N∑

k=1

Pr{νk(t) = l, νi(t) > l, i 6= k}

(b)
= NPr{ν1(t) = l, ν2(t) > l, · · · , νN(t) > l}

= NPr{ν1(t) = l}Pr{ν2(t) > l, · · · , νN (t) > l| ν1(t) = l},(4.5)

where (a) follows from the fact that as in each channel use only one user is served,

the random variables νi(t)’s are distinct in each time slot t, and (b) results from
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the symmetry between the users. We have

Pr{ν2(t) > l, · · · , νN (t) > l| ν1(t) = l} = 0, for l > D −N + 1, (4.6)

which results from the fact that for l > D−N+1, there are at most N−2 possible

choices for each of νi(t), i = 2, · · · , N , and since νi(t) are distinct, the assignment

problem has no solution. Moreover, we can write,

Pr{νk(t) = l − 1} = Pr{νk(t− 1) = l,X C
k (t− 1)}, (4.7)

where Xk(t−1) represents the event that user k is served during the (t−1)th frame,

and X C
k (t − 1) denotes the complement of Xk(t − 1). Since we are studying the

behavior of the system in its steady state condition, it follows that the statistical

properties of νk(t) and Xk(t − 1) are independent of the time index. Hence, we

can drop the time index in the above equation and write

Pr{νk = l − 1} = Pr{νk = l,X C
k }

= Pr{νk = l} (1 − Pr{Xk|νk = l})

= Pr{νk = l} (1 − Pr{νmin = l|νk = l}) . (4.8)

Combining (4.5) and (4.8), and noting that Pr{νk = l} = fν(l) and Pr{νmin =

l|νk = l} = Pr{ν2 > l, · · · , νN > l|ν1 = l} (by the symmetry), we have

fν(l − 1) = fν(l) − fν(l)Pr{ν2 > l, · · · , νN > l|ν1 = l}. (4.9)

Substituting (4.6) in (4.9), we get

fν(l) = fν(l − 1), for D −N + 2 ≤ l ≤ D. (4.10)

Since during each frame, exactly one user is served, there is always one user with

expiry countdown equal to D in the system. In other words,

Pr

{
N⋃

k=1

(νk = D)

}
= 1. (4.11)
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Since the events νk = D, k = 1, · · · , N , are mutually exclusive, it follows that

N∑

k=1

Pr{νk = D} = 1

⇒ fν(D)
(a)
=

1

N
, (4.12)

where (a) comes from the fact that Pr{νk = D} is the same for all k, and is equal

to fν(D). Combining (4.10) and (4.12), we have

fν(l) =
1

N
, D −N + 1 ≤ l ≤ D. (4.13)

Since
∑D

l=−∞ fν(l) = 1, from the above equation it follows that

fν(l) = 0, l ≤ D −N, (4.14)

which completes the proof of Theorem 4.4.

�

The above theorem implies that the pmf of ν is a step function which is only non-

zero in the interval [D−N +1, D]. Since the probability of dropping for any given

user can be expressed as
∑0

l=−∞ fν(l), it follows from the above equation that for

D ≥ N , the dropping probability for each user is zero and as a result, the network

dropping probability is zero.

This scheduling is exactly the Round-Robin scheduling, when the users are

served based on a pre-determined order. One can observe that this scheduling is

the most fair scheduling (FF = 1), as all the users have the same opportunity

for being served, regardless of their channel quality. However, due to disregarding

the effect of channel quality in the scheduling, the achievable throughput is not

good. More precisely, it can be easily shown that the achievable throughput of this

scheduling scales as Θ(1).
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4.3.2 Special case II; Θ = maxk |hk|2:

In this scheduling, |S| = 1. In other words, the user with the best channel quality

is served during each frame. This results in the conventional scheduling to exploit

the multiuser diversity and achieves the maximum sum-rate throughput in the

system [77].

Theorem 4.5 For the Special Case II, fν(ν) is equal to

fν(ν) =
1

N

(
1 − 1

N

)D−ν
u(D − ν), (4.15)

where u(.) denotes the unit step function.

Proof - Similar to (4.8), we can write

fν(l − 1) = fν(l) (1 − Pr{Xk|νk = l})
(a)
= fν(l) (1 − Pr{Xk})
(b)
= fν(l)

(
1 − 1

N

)
, (4.16)

where (a) comes from the fact that the selection of users is performed regardless

of the value of their expiry countdown. (b) results from the fact that the fading

process is block-wise independent, and as a result, the probability that the channel

norm of any user is the highest during a frame is 1
N

. From the above equation, the

pmf of ν can be written as

fν(l) = fν(D)

(
1 − 1

N

)D−l
, l ≤ D. (4.17)

From (4.16) and noting that
∑D

l=−∞ fν(l) = 1, we have fν(D) = 1
N

. Hence,

fν(l) =
1

N

(
1 − 1

N

)D−l
u(D − l), (4.18)
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where u(.) denotes the unit step function. Hence, the pmf of ν follows the expo-

nential distribution with the parameter 1 − 1
N

.

Theorem 4.6 For N → ∞, the necessary and sufficient condition to have Pr{B} →
0 for the special case II is

D = N lnN + ω(N). (4.19)

Proof - Sufficient Condition: Using (4.18), the dropping probability for a user k,

denoted as Pr{Bk}, can be written as

Pr{Bk} =
0∑

l=−∞
fν(l)

=
0∑

l=−∞

1

N

(
1 − 1

N

)D−l

=

(
1 − 1

N

)D

∼ e−
D
N . (4.20)

The network dropping probability (Pr{B}) can be written as Pr{⋃N
k=1 Bk}. Using

the union bound for the probability, we have

Pr{B} ≤
N∑

k=1

Pr{Bk}

(4.20)∼ Ne−
D
N

= e−
D−N ln N

N . (4.21)

Hence, having D = N lnN + ω(N) guarantees Pr{B} → 0.

Necessary Condition: We can write

Pr{B} = 1 − Pr

{
N⋂

k=1

B
C
k

}
. (4.22)
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The dropping event for the kth user, Bk, is equivalent to νk ≤ 0. Hence, the above

equation can be written as

Pr{B} = 1 − Pr{ν1 > 0, · · · , νN > 0}

= 1 − Pr{ν1 > 0}
N∏

k=2

Pr{νk > 0|ν1 > 0, ν2 > 0, · · · , νk−1 > 0}

= 1 − Pr{ν1 > 0}
N∏

k=2

(∑
(a1,··· ,ak−1)

1≤ai≤D
fν1,··· ,νk−1

(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0|ν1 = a1, ν2 = a2, · · · , νk−1 = ak−1}
)

(4.23)

(a)
= 1 − Pr{ν1 > 0}

N∏

k=2

(∑
(a1,··· ,ak−1)

1≤ai≤D
fν1,··· ,νk−1

(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0|νk /∈ {a1, a2, · · · , ak−1}}
)

= 1 − Pr{ν1 > 0}
N∏

k=2

(∑
(a1,··· ,ak−1)

1≤ai≤D
fν1,··· ,νk−1

(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0} −∑k−1
i=1 fνk

(ai)

1 −∑k−1
i=1 fνk

(ai)

)
(4.24)

(b)

≥ 1 −
N∏

k=1

Pr{νk > 0}

(4.20)
= 1 −

[
1 −

(
1 − 1

N

)D]N

(c)

≥ 1 − e−N(1− 1
N )

D

, (4.25)

where (a) follows from the fact that the only dependency among νk’s is that they

are distinct random variables, (b) results from the fact that
Pr{νk>0}−Pk−1

i=1 fνk
(ai)

1−Pk−1
i=1 fνk

(ai)
≤

Pr{νk > 0}, and (c) results from the fact that (1 − x)n ≤ e−nx, ∀n > 0, x < 1. It
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follows from the above equation that in order to have Pr{B} → 0, we must have

e−N(1− 1
N )

D

→ 1, which incurs N
(
1 − 1

N

)D → 0. Since N → ∞, we can write

N

(
1 − 1

N

)D
= NeD ln(1− 1

N
)

= Ne−
D
N

(1+O(1/N))

= e−
D−N ln N

N
(1+O(1/N)). (4.26)

Hence, N
(
1 − 1

N

)D → 0 is equivalent to D−N lnN
N

→ ∞, which incursD = N lnN+

ω(N). This completes the proof of Theorem 4.6.

�

The above theorem states that the minimum delay constraint in order to have

small dropping probability in the network must scale as fast as N lnN . Compared

to the Round-Robin scheduling (Case I), we have a factor of lnN increase in the

Fairness Factor (or equivalently, a factor of lnN increase in the network delay),

which is due to ignoring ν in the scheduling 3

4.3.3 Proposed Algorithm; The general case:

In the previous sections, we have studied our proposed scheduling algorithm in

two extreme cases, where one extreme focuses on achieving the maximum fair-

ness, and the other extreme on achieving the maximum sum-rate throughput. In

general, it is possible to have a trade-off between the fairness and throughput, by

adjusting the threshold value. Now, the question is, whether or not, it is possible

to simultaneously achieve the maximum throughput and the maximum fairness of

3It should be noted that this scheduling is long-term fair, i.e., all the users are equally served

over a long period of time. However, with our definition of fairness (which can be called short-term

fairness), this scheduling is away from the maximum fairness by a factor of lnN .
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the system. The following theorem shows this is indeed possible in the asymptotic

case of N → ∞.

Theorem 4.7 Consider the proposed algorithm in the asymptotic case of N → ∞.

Then, for the values of Θ satisfying

lnN − 2 ln lnN < Θ < lnN − 1.5 ln lnN, (4.27)

one can simultaneously achieve:

I- Maximum Throughput:

lim
N→∞

Csum −R = 0, (4.28)

in which Csum denotes the maximum achievable sum-rate in the broadcast channel

and R denotes the achievable sum-rate of the proposed algorithm, and

II- Maximum Fairness:

lim
N→∞

D

N
= 1, while Pr{B} → 0 (or equivalently, lim

N→∞
FF = 1). (4.29)

Proof - The steps of the proof are as follows: in Lemma 4.8, we study the

behavior of fν(l) and derive a difference equation satisfied by fν(l). In Lemma

4.9, we derive an explicit solution for this difference equation. Based on this

solution, in Lemma 4.10, we present a sufficient condition such that the conditions

limN→∞
D
N

→ 1 and Pr{B} → 0 are satisfied simultaneously. Finally, the theorem

is proved by deriving a lower-bound on the achievable sum-rate, based on the

threshold level given in (4.27).

Lemma 4.8 Defining D0 = D −
√
Nn0(n0 − 1), where n0 = 3(lnN)2, for D0 ≤

l ≤ D, we have fν(l) = 1
N

[1 − o(1/N)], and for l < D0, fν(l) satisfies the following
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difference equation:

fν(l) − fν(l − 1) = ηfν(l) [1 − pFν(l)]
N−1

[
1 +O(1/

√
N)
]
, (4.30)

where p = e−Θ, η , p
1−p , and Fν(.) denotes the CDF of ν.

Proof - Similar to (4.8), we have

fν(l − 1) = fν(l) (1 − Pr{νmin = l, k ∈ S|νk = l}) , (4.31)

where νmin = mink{νk|k ∈ S}. Having the fact that

p , Pr{k ∈ S} = e−Θ, (4.32)

which is resulted from the exponential distribution for |hk|2 (as a result of the

Complex Gaussian distribution for hk), and the independence between the users’

channels, it follows that |S| is a Binomial random variable with parameters (N, p).
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As a result, we have

Pr{νmin = l, k ∈ S|νk = l} =
N∑

n=1

Pr{νmin = l, k ∈ S, |S| = n|νk = l}

=

N∑

n=1

Pr{|S| = n, k ∈ S |νk = l} ×

Pr{νmin = l| νk = l, |S| = n, k ∈ S}
(a)
=

N∑

n=1

Pr{|S| = n, k ∈ S} ×

Pr{νmin = l| νk = l, |S| = n, k ∈ S}

=

N∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−n ×

Pr{νmin = l| νk = l, |S| = n, k ∈ S}

=
N∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−n ×

Pr{νi > l, i ∈ S, i 6= k| νk = l, |S| = n, k ∈ S},

(4.33)

where (a) comes from the fact that the events |S| = n and k ∈ S are independent

of the event νk(t) = l. In fact, the event νk(t) = l is a function of {hk(j)}Nk=1, j < t,

while the events |S(t)| = n and k ∈ S(t) are functions of {hk(t)}Nk=1, and because

of the independent block fading assumption, are independent of {hk(j)}Nk=1, j < t,

and consequently independent of νk(t) = l.

To evaluate the right hand side of the above equation, we need to find the

following probability:

Pr{νi > l, i ∈ S, i 6= k| νk = l, |S| = n, k ∈ S}, (4.34)

which is, by symmetry, equal to

Pr{ν1 > l, · · · , νn−1 > l| νn = l}, (4.35)
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noting that νk(t) and hk(t) are independent random variables. An upper-bound

on this probability can be given as bellow:

Pr{ν1 > l, · · · , νn−1 > l| νn = l} = Pr{ν1 > l| νn = l} ×
n−1∏

i=2

Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l}(4.36)

(a)

≤ [Pr{νi > l| νn = l}]n−1

(b)
=

[
Gν(l)

1 − fν(l)

]n−1

, (4.37)

where (a) follows from (4.24), in which we have shown that Pr{νi > l| ν1 >

l, · · · , νi−1 > l} ≤ Pr{νi > l}, and by following the same approach we can show

Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l} ≤ Pr{νi > l| νn = l}, and (b) results from

the fact that the only dependency between νi and νn is that they are distinct, and

hence (νi > l| νn = l) is equivalent to (νi > l| νi 6= l), with the probability of Gν(l)
1−fν(l)

,

where Gν(l) , 1 − Fν(l).

In order to lower-bound Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l}, we need to derive

an upper-bound on fν(l). Since fν(l) is an increasing function of l (from (4.31)),

it follows that

fν(l) ≤ fν(D), ∀l. (4.38)

However, unlike the previous cases, fν(D) 6= 1
N

. This results from the fact that

using the proposed algorithm in the general case, it is probable that no user is

served. Defining the event X (t) ,
⋃N
k=1 Xk(t) as the event of serving at least one
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user in frame t, we have

Pr{X (t)} = Pr{|S(t)| > 0}

= 1 −
N∏

k=1

Pr{|hk|2 < Θ}

= 1 −
(
1 − e−Θ

)N
. (4.39)

Noting that lnN − 2 ln lnN < Θ < lnN − 1.5 ln lnN , we have (lnN)1.5

N
< e−Θ <

(lnN)2

N
, and hence,

(
1 − e−Θ

)N
. e−(lnN)1.5

. Moreover, Pr{X (t)} in terms of fν(D)

can be written as

Pr{X (t)} =

N∑

k=1

Pr{νk(t+ 1) = D}

= Nfν(D), (4.40)

where the first line comes from the distinction of νk’s and the second line follows

from the symmetry between the users and dropping the time index. Combining

(4.39) and (4.40) yields,

fν(D) =
1

N

[
1 −

∣∣∣O
(
e−(lnN)1.5

)∣∣∣
]
, (4.41)

which is less than 1
N

. Combining (4.38) with the above equation yields

fν(l) ≤
1

N
, ∀l. (4.42)



Fairness in the Scheduling 140

Similar to (4.23) and (4.24), we can lower-bound q2 , Pr{νi > l| ν1 > l, · · · , νi−1 >

l, νn = l} as follows:

q2 =

∑
(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr{νi > l| ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=

∑
(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr {νi > l| νi /∈ {a1, · · · , ai−1, l}}

=

∑
(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr{νi > l} −∑i−1
k=1 fνi

(ak)

1 −∑i−1
k=1 fνi

(ak) − fνi
(l)

≥

∑
(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×
(

Pr{νi > l} −
i−1∑

k=1

fνi
(ak)

)

(a)

≥ Gν(l) −
i− 1

N
, (4.43)

where (a) follows from the fact that fνi
(ak) ≤ 1

N
, ∀ak (equation (4.42)). From the

above equation and (4.36), Pr{ν1 > l, · · · , νn−1 > l| νn = l} can be lower-bounded

as

Pr{ν1 > l, · · · , νn−1 > l| νn = l} ≥
n−2∏

i=0

(
Gν(l) −

i

N

)
. (4.44)



Fairness in the Scheduling 141

Using the above equation, and defining n0 , 3(lnN)2 and D0 , D−
√
Nn0(n0−1),

a lower-bound on Pr{ν1 > l, · · · , νn−1 > l| νn = l} is given as,

Pr{ν1 > l, · · · , νn−1 > l| νn = l} ≥ g(n, l), (4.45)

where

g(n, l) ,






∏n−2
i=0

(
Gν(l) − i

N

)
l < D0 and n ≤ n0

0 Otherwise.
(4.46)

As we will see later, the form in (4.46) is more convenient to carry out our subse-

quent derivations.

From (4.33), (4.35), (4.36), and (4.37), an upper-bound on Pr{νmin = l, k ∈
S|νk = l} can be obtained as follows:

Pr{νmin = l, k ∈ S|νk = l} ≤
N∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−n

(
Gν(l)

1 − fν(l)

)n−1

= η
N∑

n=1

(
N − 1

n− 1

)
pn−1(1 − p)N−n+1

(
Gν(l)

1 − fν(l)

)n−1

= η

N−1∑

n=0

(
N − 1

n

)(
pGν(l)

1 − fν(l)

)n
(1 − p)N−n

= η

(
pGν(l)

1 − fν(l)
+ 1 − p

)N−1

(a)
< η

(
pGν(l)

(
1 +

2

N

)
+ 1 − p

)N−1

= η (1 − p Fν(l))
N−1

(
1 +

2pGν(l)

N(1 − pFν(l))

)N−1

(b)

≤ η (1 − p Fν(l))
N−1

(
1 +

2pGν(l)

N(1 − p)

)N−1

∼ η (1 − p Fν(l))
N−1 e

2p Gν (l)
1−p

(c)
= η (1 − p Fν(l))

N−1 [1 +O(p)], (4.47)
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where η , p
1−p . (a) comes from the facts that ∀l, fν(l) ≤ 1

N
(equation (4.42)),

and for x sufficiently small, 1
1−x < 1 + 2x, (b) results from Fν(l) ≤ 1, and (c)

follows from the fact that since lnN − 2 ln lnN < Θ < lnN − 1.5 ln lnN , we have

(lnN)1.5

N
< p = e−Θ < (lnN)2

N
, which implies that p = o(1).

Moreover, from (4.33), (4.35), and (4.45), a lower-bound on Pr{νmin = l, k ∈
S|νk = l}, for l < D0, is given as follows:

Pr{νmin = l, k ∈ S|νk = l} ≥
N∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−ng(n, l)

=

n0∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−n

n−2∏

i=0

(
Gν(l) −

i

N

)

=

n0∑

n=1

(
N − 1

n− 1

)
pn(1 − p)N−nGν(l)

n−1
n−2∏

i=0

(
1 − i

NGν(l)

)
.

(4.48)

By repeated application of (4.31) and using (4.47) to upper-bound Pr{νmin = l, k ∈
S|νk = l}, we obtain

fν(D) − fν(D0) ≤
D∑

l=D0

ηfν(l) (1 − pFν(l))
N−1 [1 +O(p)]

(a)

≤ η(D −D0 + 1)

N

(
1 − p + p

D −D0

N

)N−1

[1 +O(p)]

≤ η(D −D0 + 1)

N
e−(N−1)p(1−D−D0

N )[1 +O(p)], (4.49)

where (a) comes from the fact that fν(l) ≤ 1
N

and as a result Fν(l) ≥ 1 − D−l
N

,

which implies that Fν(l) ≥ 1 − D−D0

N
for l ≥ D0. Having the facts that D −

D0 ∼ 9
√
N(lnN)4 and lnN − 2 ln lnN < Θ < lnN − 1.5 ln lnN , which results in

(lnN)1.5

N
< p < (lnN)2

N
, and η = p

1−p ∼ p, the right hand side of the above equation
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can be upper-bounded as

RH(4.49) .
9(lnN)6

N3/2
e−(lnN)1.5

. (4.50)

Substituting in (4.49) and using (4.41), noting that e−(lnN)1.5
= o(1/N), we obtain

fν(D0) =
1

N
[1 + o(1/N)] . (4.51)

Since fν(l) is an increasing function of l, it follows from the above equation that

fν(l) =
1

N
[1 + o(1/N)] , ∀l, D0 ≤ l ≤ D. (4.52)

The above equation incurs that for l < D0, Gν(l) & D−D0

N
= n0(n0−1)√

N
. As a result,

∏n−2
i=0

(
1 − i

NGν(l)

)
in (4.48) can be lower-bounded as

n−2∏

i=0

(
1 − i

NGν(l)

)
(a)

&
n0−2∏

i=0

(
1 − i√

Nn0(n0 − 1)

)

(b)
≈

n0−2∏

i=0

e
− i√

Nn0(n0−1)

= e
− (n0−1)(n0−2)

2
√

Nn0(n0−1)

= 1 +O
(
1/
√
N
)
, (4.53)

where (a) follows from the fact that n ≤ n0, and (b) results from the fact that

as i < n0,
i√

Nn0(n0−1)
≪ 1, which implies that 1 − i√

Nn0(n0−1)
≈ e

− i√
Nn0(n0−1) .

Moreover, similar to (4.47), we can write Ψ ,
∑n0

n=1

(
N−1
n−1

)
pn(1−p)N−nGν(l)

n−1 as

Ψ = η

[
(1 − pFν(l))

N−1 −
N−1∑

n=n0

(
N − 1

n

)
pn(1 − p)N−nGν(l)

n

]

≥ η

[
(1 − pFν(l))

N−1 −
N−1∑

n=n0

(
N − 1

n

)
pn(1 − p)N−n

]

(a)
≈ η

[
(1 − pFν(l))

N−1 −Q

(
n0 − (N − 1)p√
(N − 1)p(1 − p)

)]
, (4.54)
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where (a) results from the Gaussian approximation for a Binomial distribution

with parameters (n, p), when np → ∞. Noting n0 = 3[lnN ]2 and p < [lnN ]2

N
, it

follows that n0 ≥ 3(N − 1)p. Substituting in the above equation, and having the

fact that Q(x) ≈
1√
2πx

e−x
2/2 for large enough x, the right hand side of the above

equation can be lower-bounded as

RH (4.54) ≥ η
[
(1 − pFν(l))

N−1 − e−2(N−1)p
]
. (4.55)

Having the facts that (1 − pFν(l))
N−1 ∼ e−(N−1)pFν(l) ≥ e−(N−1)p, RH (4.55) can be

lower-bounded as

RH (4.55) ≥ η (1 − pFν(l))
N−1 [1 − e−(N−1)p

]

(a)
= η (1 − pFν(l))

N−1 [1 +O(1/N)] , (4.56)

where (a) follows from the fact that as p > (lnN)1.5

N
, we have e−(N−1)p = O(1/N).

Combining (4.48), (4.53), (4.54), (4.55), and (4.56), we have

Pr{νmin = l, k ∈ S|νk = l} &= η (1 − pFν(l))
N−1

[
1 +O

(
1/
√
N
)]
, (4.57)

for l < D0. Combining (4.47) and (4.57), noting that p = o(1/
√
N), yields

Pr{νmin = l, k ∈ S|νk = l} = η (1 − pFν(l))
N−1

[
1 +O

(
1/
√
N
)]
, (4.58)

for l < D0. Substituting in (4.31), we have

fν(l) − fν(l − 1) = ηfν(l) (1 − pFν(l))
N−1

[
1 +O

(
1/
√
N
)]
, l < D0. (4.59)

Moreover, for D0 ≤ l ≤ D, from (4.52), we have fν(l) = 1
N

[1 + o(1/N)], which

completes the proof of Lemma 4.8.

�
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Lemma 4.9 The solution to the difference equation (4.30), in the asymptotic case

of N → ∞, is

fν(l) ∼
ϕ

(N−1)p
e(N−1)peϕ(l−D0)

1 + e(N−1)peϕ(l−D0)
l < D0, (4.60)

for some ϕ = η
[
1 +O

(
1√
N

)]
.

Proof - Rewriting (4.30), we have

fν(l) − fν(l − 1) = ηfν(l) (1 − pFν(l))
N−1

[
1 +O

(
1/
√
N
)]

(a)
= ηfν(l)e

−(N−1)pFν(l)[1+O(p)]
[
1 +O

(
1/
√
N
)]

= ηfν(l)e
−(N−1)pFν(l)

[
1 +O(Np2)

] [
1 +O

(
1/
√
N
)]

(b)
= ηfν(l)e

−(N−1)pFν(l)
[
1 +O

(
1/
√
N
)]

l < D0, (4.61)

where (a) comes from the fact that (1 + x)n = exn[1+O(x)] for x = o(1), and (b)

results from the fact that p < [lnN ]2

N
and as a result, Np2 = o

(
1/
√
N
)
.

Now, consider the following differential equation:

x′(u) = ϕx(u)e−(N−1)pX(u) u < D0, (4.62)

with the boundary conditions: x(−∞) = X(−∞) = 0, and X(D0) = 1− D−D0

N
, in

which u is a continuous variable, andX(u) =
∫ u
−∞ x(t)dt, and ϕ = η

[
1 +O

(
1√
N

)]
.

Writing the Taylor series for x(u− 1) about u, we have

x(u) − x(u− 1) = x′(u) +

∞∑

n=2

(−1)n+1x(n)(u)

n!
. (4.63)

For the second derivative of (4.62), we have

x′′(u) = ϕx′(u)e−(N−1)pX(u) − ϕ(N − 1)px(u)2e−(N−1)pX(u)

= ϕx′(u)e−(N−1)pX(u) − (N − 1)px′(u)x(u). (4.64)
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From the above equation, noting that with the given boundary conditions for the

differential equation in (4.62), we have e−(N−1)pX(u) ≤ 1 (which follows from the

facts that x′(u) ≥ 0 and x(u) ≥ 0, which incurs X(u) ≥ 0), and x(u) ≤ 1
N

(which

follows from solving (4.62) with the boundary condition X(D0) = 1 − D−D0

N
), it

is easy to see that |x′′(u)| < ϕ|x′(u)|. Similarly, we can show that |x(n)(u)| <
2n−1ϕn|x′(u)|. Substituting in (4.63), noting that ϕ ∼ η ∼ p < [lnN ]2

N
, yields

x(u) − x(u− 1) = x′(u)[1 +O(ϕ)]

(a)
= ϕx(u)e−(N−1)pX(u) [1 +O (ϕ)]

(b)
= ηx(u)e−(N−1)pX(u)

[
1 +O

(
1/
√
N
)]

u < D0, (4.65)

where (a) comes from (4.62) and (b) follows from the facts that ϕ = η
[
1 +O

(
1√
N

)]

and ϕ = O(1/
√
N). We also have

X(u)
(a)
=

u∑

v=−∞
[X(v) −X(v − 1)]

(b)
=

u∑

v=−∞

[

x(v) +

∞∑

n=1

(−1)nx(n)(v)

(n+ 1)!

]

(c)
=

u∑

v=−∞
x(v) [1 +O(ϕ)] , (4.66)

where (a) results from the fact that X(−∞) = 0, (b) follows from writing the

Tailor series for X(v − 1) about v, and (c) comes from the the fact that |x′(v)| ≤
ϕx(v), ∀v (4.62), and also |x(n)(v)| < 2n−1ϕn|x′(v)|, demonstrated earlier. Defining
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Z(u) ,
∑u

v=−∞ x(v) and using the above equation and (4.65), we have

x(u) − x(u− 1) = ηx(u)e−(N−1)pX(u)
[
1 +O

(
1/
√
N
)]

= ηx(u)e−(N−1)pZ(u)[1+O(ϕ)]
[
1 +O

(
1/
√
N
)]

(a)
= ηx(u)e−(N−1)pZ(u)

[
1 +O(Np2)

] [
1 +O

(
1/
√
N
)]

(b)
= ηx(u)e−(N−1)pZ(u)

[
1 +O

(
1/
√
N
)]
, (4.67)

where (a) results from the fact that ϕ ∼ p, and (b) follows from the fact that

p < [lnN ]2

N
and as a result, Np2 ∼ o

(
1/
√
N
)

(similar to (b) in (4.61)). The above

equation incurs that the solution of (4.62) also satisfies (4.61). More precisely,

for any value of l, l < D0, there exists a ϕ such that ϕ = η
[
1 +O

(
1√
N

)]
, and

fν(l) ∼ x(l), where fν(l) is the solution of (4.61) and x(l) is the solution of (4.62)

at u = l. This suggests us to solve the differential equation (4.62), instead of the

difference equation (4.61), assuming the same boundary conditions. The boundary

conditions are x(−∞) = fν(−∞) = 0 and X(D0) = Fν(D0) = 1 − D−D0

N
. The

second condition comes from the fact that fν(l) ≈
1
N

, for l ≥ D0.

By taking the integral from both sides of (4.62), we obtain

x(u) = − ϕ

(N − 1)p
e−(N−1)pX(u) + c. (4.68)

Noting that X(−∞) = x(−∞) = 0, c = ϕ
(N−1)p

. Substituting e−(N−1)pX(u) by x′(u)
ϕx(u)

from (4.62), we come up with the following differential equation:

x′(u)

ϕx(u)
[
1 − (N−1)p

ϕ
x(u)

] = 1, (4.69)
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which can be solved as follows:

x′(u)

x(u)
+

(N−1)p
ϕ

x′(u)

1 − (N−1)p
ϕ

x(u)
= ϕ

⇒ ln
x(u)

1 − (N−1)p
ϕ

x(u)
= ϕu+ b, (4.70)

where b is the constant of the integration, to be determined by the other boundary

condition. Solving the above equation, x(u) can be written as

x(u) =
Aeϕu

1 + A(N−1)p
ϕ

eϕu
, (4.71)

where A = eb. Using (4.68) and (4.71), we have

X(u) =
1

(N − 1)p
ln

(
1 +

A(N − 1)p

ϕ
eϕu
)
. (4.72)

Applying the condition X(D0) = 1 − D−D0

N
yields

A =
ϕ

(N − 1)p

[
e(N−1)p(1−D−D0

N
) − 1

]
e−ϕD0

≈
ϕ

(N − 1)p
e(N−1)p−ϕD0 , (4.73)

where the second line comes from the facts that (N − 1)p≫ 1 (since p > (lnN)1.5

N
)

and p(D −D0) ≪ 1 (since p < (lnN)2

N
and D − D0 ∼ 9

√
N(lnN)4). Substituting

A in (4.71), we have

x(u) ∼
ϕ

(N−1)p
e(N−1)peϕ(u−D0)

1 + e(N−1)peϕ(u−D0)
. (4.74)

One can easily check that x(D0) ∼ 1
N

, which is consistent with (4.51). Combining

(4.74) with the fact that fν(l) ∼ x(l), Lemma 4.9 easily follows.

�

Although the derived analytical pmf in (4.74) is valid in the asymptotic regime of
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Figure 4.2: fν(l); comparison between simulation and computation.

N → ∞, figure 4.2 shows that the analytical expression in (4.74) indeed works for

finite number of users. In this figure, fν(l) is depicted for the proposed scheduling

algorithm with the threshold values of 2 and 3, assuming N = 300 and D = 500.

As can be observed, the curves derived by simulation almost follow the curves

derived by computation of fν(l) from (4.74).

Figure 4.3 shows the plots of fν(l) for different values of threshold Θ. The plots

of fν(l) for the Round-Robing scheduling and the maximum-throughput schedul-

ing are also given for comparison. It is observed that as the value of threshold

decreases, fν(l) merges to that of Round-Robin scheduling, while by increasing the

threshold value, it merges to that of the maximum-throughput scheduling.

Lemma 4.10 Setting D0 = p
ϕ

(N − 1)+ lnN
ϕ

, for some ϕ such that ϕ = η
[
1 +O

(
1√
N

)]
,

yields Pr{B} → 0, while satisfying limN→∞
D
N

= 1.
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Proof - We have seen earlier that the dropping probability for each user is

equal to Fν(0). Using the union bound for the probability, it follows that having

Fν(0) ∼ o( 1
N

) guarantees Pr{B} → 0. Using (4.72) and (4.73), we have

Fν(0) ∼ X(0) =
1

(N − 1)p
ln
(
1 + e(N−1)p−ϕD0

)
, (4.75)

for some ϕ = η
[
1 +O

(
1√
N

)]
. From the above equation, the condition Fν(0) =

o
(

1
N

)
can be equivalently written as

e(N−1)p−ϕD0 = o(p).

It can be easily verified that having D0 = p
ϕ
(N−1)+ lnN

ϕ
, results in e(N−1)pe−ϕD0 =

1
N

, which satisfies the above condition (since 1
N

= o(p)). Furthermore, since Θ <

lnN − 1.5 ln lnN , it follows that ϕ ∼ η ∼ p > [lnN ]1.5

N
, which incurs that lnN

ϕ
.

N√
lnN

. Combining this with the facts that limN→∞
p
ϕ

= 1 andD = D0+9
√
N [lnN ]4

(which follows from the definition of D0), we have limN→∞
D
N

= 1. This completes

the proof of Lemma 4.10.

�

The achievable sum-rate of the proposed algorithm can be lower-bounded as

follows:

R = RX Pr{X } + RX CPr{X C}

≥ RX Pr{X }
(a)

≥ ln(1 + PΘ)Pr{X }
(4.39)

≥ ln(1 + PΘ)
[
1 −

∣∣∣O
(
e−(lnN)1.5

)∣∣∣
]
. (4.76)

where RX and RX C denote the achievable sum-rate conditioned on X and X C ,

respectively, and X C (complement of X ) is defined as the event that |S| = 0. In
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the above equation, (a) follows from the fact that conditioned on X , the channel

gain of the selected user is greater than Θ, and hence, the achievable sum-rate is

lower-bounded by ln(1 + PΘ).

From the above equation and noting the facts that Csum ∼ ln(1 + P lnN +

O(ln lnN)) [26], and Θ > lnN − 2 ln lnN , we have

Csum −R = O

(
ln lnN

lnN

)

⇒ lim
N→∞

Csum −R = 0. (4.77)

Combining the above equation with Lemma 4.10 completes the proof of Theorem

4.7.

�

Remark 1- Since D = N is the smallest delay constraint in order not to have

any dropping in the network, the above theorem simply implies that the proposed

scheduling algorithm is capable of achieving the maximum throughput and mini-

mum network delay, simultaneously.

Remark 2- Assume that the information data delivered to the users are put

in packets, which are stored in the transmitter buffer and each packet is mapped

to a coded frame, consisting of n channel uses, and transmitted over the channel

(Fig. 4.4). Assume that the Packet Arrival Rate (PAR) for user k to be fixed

and equal to rk (measured as the number of arrived packets per unit time, i.e.,

one frame duration) and the amount of information in each packet of that user to

be nRk. In order to have arbitrary small outage probability, Rk, k = 1, · · · , N ,

must be inside the capacity region of the underlying broadcast channel, which

implies that Rk ≤ Csum, ∀k. Moreover, in order to have arbitrarily small dropping

probability in the network, the vector consisting of the PAR of the users, denoted

by r = (r1, · · · , rN), must be inside the stability region of the network [78]. More
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Transmitter Buffer

User 1

User k

User K

n Channel uses
Packet for user 1

Total Rate = nRk
Dk = 1

rk

Packet for user k

The total information in each packet of user k is nRk
The Packet Arrival Rate (PAR) for user k is equal to rk

The latency between any consequative packet of user k is Dk

Coded frame for user k

Each data packet is transmitted by a coded frame

The time unit is equal to the duration of each coded frame

Packet for user k

Figure 4.4: Transmission of data packets over the broadcast channel

specifically, for r1 = r2 = · · · = rN = r, this condition reduces to r ≤ 1
N

4. From

this discussion, it follows that the maximum r and Rk, k = 1, · · · , N , in order not

to have any dropping or outage in the network scale as 1
N

and Csum, respectively.

The above theorem states that the proposed scheduling is capable of achieving

the maximum values of r and Rk, k = 1, · · · , N , simultaneously. In other words,

the proposed algorithm reaches the boundary of the capacity region and stability

region of the network, simultaneously. The following corollary illustrates this fact

from a different perspective:

Corollary 1 Consider a Broadcast system illustrated in Fig. 4.4, where the trans-

mitter has the buffer size of one packet for each user and the Packet Arrival Rate

(PAR) for the kth user is rk and the amount of information in each packet for

user k is nRk. Let us define the “average throughput” of user k (normalized per

4Note that this is based on the assumption that at each frame, only one user is served.
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channel use) as 5

Tk , rkRk. (4.78)

Then, for any scheduling scheme, any rate vector R = (R1, · · · ,RN) supported

by the channel (decoding error approaches zero), and for any PAR vector r =

(r1, · · · , rN), the necessary condition for Pr{B} → 0 is having

Tmin , min
k

Tk .
ln lnN

N
, (4.79)

which is achievable by the proposed algorithm.

Proof - Necessary Condition - Consider a long interval of time T . Defining Ak(t)

as the indicator variable taking one when the user k is served during the frame t,

and taking zero otherwise, we have

N∑

k=1

Ak(t)Rk ≤ Csum, ∀t, 1 ≤ t ≤ T. (4.80)

The above equation comes from the fact that the rates (R1, · · · ,RN) must be

supported by the channel. Taking the summation with respect to t, we can write

T∑

t=1

N∑

k=1

Ak(t)Rk ≤ CsumT. (4.81)

Since Pr{B} → 0, the arrival rate of the packets must be less than or equal

to their service rate, over a long period of time, almost surely. In other words,
∑T

t=1 Ak(t) & Trk, ∀k, 1 ≤ k ≤ N , with probability one. Substituting in the above

5This definition is motivated by the fact that there is a time delay of 1
rk

between two con-

secutive packets of user k, and as a result, the average amount of information per channel use

delivered to user k is equal to rkRk.
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equation yields

N∑

k=1

Tk =
N∑

k=1

rkRk . Csum

(a)∼ ln(P lnN), (4.82)

where (a) comes from [26]. Combining (4.78) and (4.82), yields

Tmin ≤
∑N

k=1 Tk

N

.
ln lnN

N
+

lnP

N

∼ ln lnN

N
. (4.83)

Sufficient Condition - Consider the proposed algorithm, with the condition of

Theorem 4.7, i.e., lnN − 2 ln lnN < Θ < lnN − 1.5 ln lnN . It is realized from

Lemma 4.10 that selecting rk = 1
D

for all users, where D is obtained as follows:

D =
p

ϕ
(N − 1) +

lnN

ϕ
+ 9

√
N [lnN ]4,

guarantees Pr{B} → 0. Furthermore, the channel can support the rate

Rk = ln [1 + P (lnN − 2 ln lnN)] ,

with probability Pr{X } (which is almost equal to 1 from (4.39)), for all users.

Hence,

Tmin ≥ ln [1 + P (lnN − 2 ln lnN)]

D

∼ ln lnN

N
. (4.84)

�
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In the above corollary, the minimum average throughput, denoted by Tmin,

is defined as the measure of performance. The average throughput itself can be

interpreted as the average amount of information (per channel use) delivered to

a user over a long period of time. This measure is suitable for the real-time

applications, where the packets have certain amount of information and certain

arrival rates. Note that in the above corollary, we have assumed that the users have

the buffer size of one, which is a very restrictive assumption in wireless networks.

For the realistic scenarios, this constraint is more relaxed. However, since we have

shown the optimality of our proposed scheduling for this assumption, it easily

follows that this optimality holds for more relaxed assumptions, as well.

Computing Tmin for the two special cases of the proposed algorithm, i.e.,

maximum-throughput scheduling (T MT
min ) and Round-Robin scheduling (T RR

min ),

yields,

T
MT

min ∼ ln lnN

N lnN
,

T
RR

min ∼ 1

N
. (4.85)

Therefore, the proposed algorithm outperforms these conventional scheduling al-

gorithms by a factor of lnN and ln lnN , respectively.

The above corollary states that the proposed scheduling scheme maximizes the

minimum average throughput of the system while making the network dropping

probability arbitrarily small in the asymptotic regime of N → ∞, for all the

threshold values in the interval [lnN − 2 ln lnN, lnN − 1.5 ln lnN ]. However, for

finite number of users, it is not possible to simultaneously maximize the minimum

average throughput and make the network dropping probability zero. In fact, for a

given constraint on the dropping probability, the minimum average throughput will
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Figure 4.5: Minimum average throughput vs. the threshold value.

be a function of the threshold value, which is desired to be maximized. Figure 4.5

shows the plots of the minimum average throughput versus the threshold value, for

different assumptions on the link and network dropping probabilities. The number

of users N is set to 3000 and the SNR value P is set to 0 dB. As can be observed,

for each plot, there is an optimum threshold value for which the minimum average

throughput is maximized. Moreover, by making the constraint on the dropping

probability more restrictive, the optimum threshold value decreases.
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4.4 Extension to the MIMO-BC

So far, we have assumed that the transmitter and the receivers are all equipped with

single antennas. In this section, we assume that the transmitter has M antennas,

while the receivers have single antennas. The main difference between this case and

the previous case is that for SISO-BC, serving one user at each time (TDMA) is

optimal in terms of achieving the maximum throughput of the system [77], while in

the MIMO-BC, this is not the case. Therefore, we must apply some modifications

to our proposed algorithm, to make it suitable for MIMO-BC.

4.4.1 System Model and Proposed Algorithm

The channel model for the kth user is assumed to be

yk = hkx + nk, (4.86)

where x ∈ CM×1 is the transmitted signal with the power constraint E{xHx} ≤ P ,

hk ∈ C1×M ∼ CN (0, I) is the channel vector, nk ∼ CN (0, 1) is AWGN, and yk is

the received signal by the kth user.

Algorithm 2:

1) Set the threshold Υ.

2) The BS selects M orthogonal unit vectors, denoted by Φ1, · · · ,ΦM , ran-

domly, and sends it to all users.

3) Among each of the following sets:

Sm = {k| SINR
(m)
k > Υ}, m = 1, · · · ,M, (4.87)
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the BS serves the user with the minimum expiry countdown. In the above

equation, SINR
(m)
k ,

P
M

|hkΦ
H
m|2

1+
P

j 6=m
P
M

|hkΦ
H
j |2 is the received Signal to Interference

plus Noise Ratio (SINR) on the mth transmitted beam, by the kth user.

As can be observed, this algorithm is a variant of Random-Beam-Forming scheme

proposed in [26], where the expiry countdown is considered in the scheduling.

4.4.2 Asymptotic Analysis

In this section, we analyze the performance of the proposed algorithm in the asymp-

totic case of N → ∞. Similar to the SISO case, it is interesting to investigate the

possibility of achieving the maximum throughput and fairness of the system, si-

multaneously, which is performed in the following theorem:

Theorem 4.11 Using Algorithm 2, for the values of Υ satisfying

P

M
[lnN − (M + 1) ln lnN ] < Υ <

P

M
[lnN − (M + 0.5) ln lnN ] , (4.88)

we have limN→∞ Csum−R = 0, and limN→∞
MD
N

= 1, while satisfying Pr{B} → 0.

Proof - Using the same approach as in the proof of Theorem 4.7, we first derive

fν(ν) in terms of N , D, and Υ. Consider the following sets:

S ′
m ,

{
k
∣∣∣ k ∈ Am, SINR

(m)
k > Υ

}
, m = 1, · · · ,M, (4.89)

where Am , {k| |hkΦH
m|2 > |hkΦH

j |2, ∀j 6= m}. For simplicity of analysis, we

assume that the step 3 of Algorithm 2 works based on S ′
m instead of Sm. It

is obvious that S ′
m ⊂ Sm. However, since

∑M
m=1 |hkΦH

m|2 = ‖hk‖2 < lnN +

O(ln lnN), with probability one [26], it follows that having SINR
(m)
k > Υ, where
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Υ ∼ β P
M

lnN and β > 1
2
, yields k ∈ Am. This implies that for the values of Υ

satisfying (4.88), we have S ′
m = Sm, with probability one. Rewriting (4.8), we have

fν(l − 1) = fν(l) (1 − Pr{Xk|νk = l}) . (4.90)

Pr{Xk|νk = l} can be written as follows:

Pr{Xk|νk = l} (a)
= Pr{Xk, k ∈ S ′|νk = l}

=
M∑

m=1

Pr{Xk, k ∈ S ′|νk = l,Fm}Pr{Fm|νk = l}

(b)
=

M∑

m=1

Pr{Xk, k ∈ S ′|νk = l,Fm}Pr{Fm}

(c)
=

1

M

M∑

m=1

Pr{Xk, k ∈ S ′
m|νk = l,Fm}

(d)
= Pr{Xk, k ∈ S ′

m|νk = l,Fm}, (4.91)

where S ′ ,
⋃M
m=1 S ′

m, and Fm , {k ∈ Am}. In the above equation, (a) results

from the fact that Xk ⊆ (k ∈ S ′), in order words, the necessary condition for

user k to be served is being in any of the sets S ′
m, s = 1, · · · ,M . (b) results

from the independence of the events νk = l and Fm
6. (c) follows from the

fact that conditioned on Fm, i.e. k ∈ Am, k ∈ S ′ incurs k ∈ S ′
m, and also

the fact that Pr{Fm} = 1
M

. (d) follows from the symmetry between the terms

Pr{Xk, k ∈ S ′
m|νk = l,Fm}, m = 1, · · · ,M .

6In fact, Fm(t) is a function of {hk(t)}Nk=1, while the event νk(t) = l is a function of

{hk(j)}Nk=1, j < t. Since the channel model is assumed to be independent block fading, the

independence of νk = l and Fm easily follows.
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We have

Pr{Xk, k ∈ S ′
m|νk = l,Fm}

(a)
=

N∑

n=1

N∑

s=n

Pr{Xk, k ∈ S ′
m, |S ′

m| = n, |Am| = s
∣∣ νk = l,Fm}

(b)
=

N∑

n=1

N∑

s=n

Pr{|Am| = s|Fm} ×

Pr
{
k ∈ S ′

m, |S ′
m| = n

∣∣ |Am| = s,Fm

}

× Pr{Xk|νk = l, |S ′
m| = n, |Am| = s, k ∈ S ′

m}. (4.92)

In the above equation, (a) follows from the fact that S ′
m ⊂ Am, and hence s ≥ n.

(b) results from the facts that the events |Am| = s and k ∈ S ′
m are independent of

νk = l (As explained in the footnote), and k ∈ S ′
m is a subset of Fm.

Pr{|Am| = s|Fm} can be computed as

Pr{|Am| = s|Fm} =
Pr{|Am| = s, k ∈ Am}

Pr{k ∈ Am}
(a)
= M

(
N − 1

s− 1

)(
1

M

)s(
M − 1

M

)N−s
, (4.93)

where (a) follows from the facts that Pr{k ∈ Am} = 1
M

, and |Am| is a Binomial

random variable with parameters (N, 1
M

). In order to compute

Pr
{
k ∈ S ′

m, |S ′
m| = n

∣∣|Am| = s,Fm

}
,

we first compute q , Pr{k ∈ S ′
m|Fm} as follows:

q =
Pr{k ∈ S ′

m, k ∈ Am}
Pr{k ∈ Am}

(a)
=

Pr{k ∈ Sm, k ∈ Am}
Pr{k ∈ Am}

= MpPr{k ∈ Am|k ∈ Sm}, (4.94)

where p , Pr{k ∈ Sm} = e−
MΥ
P

(1+Υ)M−1 [26]. In the above equation, (a) results from the

fact that (k ∈ S ′
m) = (k ∈ Sm)

⋂
(k ∈ Am). Note that as Pr{k ∈ Am|k ∈ Sm} ≈ 1,
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it follows that q ≈ Mp. Having q from the above equation, we can write

Pr
{
k ∈ S ′

m, |S ′
m| = n

∣∣|Am| = s,Fm

}
=

(
s− 1

n− 1

)
qn(1 − q)s−n. (4.95)

Substituting Pr{|Am| = s|Fm} and Pr
{
k ∈ S ′

m, |S ′
m| = n

∣∣|Am| = s,Fm

}
from

(4.94) and (4.95), and noting that conditioned on |S ′
m| = n, Xk is independent of

|Am| = s, RH (4.92) can be written as

RH(4.92) =
N∑

n=1

N∑

s=n

M

(
N − 1

s− 1

)(
1

M

)s(
M − 1

M

)N−s(
s− 1

n− 1

)
qn(1 − q)s−n ×

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m}

= M

(
M − 1

M

)N N∑

n=1

(
N − 1

n− 1

)(
q

1 − q

)n
×

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ×
N∑

s=n

(
N − n

s− n

)(
1 − q

M − 1

)s

= M

(
M − 1

M

)N N∑

n=1

(
N − 1

n− 1

)(
q

1 − q

)n
×

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ×(
1 − q

M − 1

)n [
1 +

1 − q

M − 1

]N−n

= M

N∑

n=1

(
N − 1

n− 1

)( q
M

)n (
1 − q

M

)N−n
×

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m}. (4.96)

As can be observed, the above equation is very similar to (4.33), and by a similar

argument we can show that

Pr{νi > l, i = 1, · · · , n, i 6= k|νk = l, |S ′
m| = n, k ∈ S ′

m} ≤

Pr{Xk | νk = l, |S ′
m| = n, k ∈ S ′

m} ≤

Pr{νi ≥ l, i = 1, · · · , n, i 6= k | νk = l, |S ′
m| = n, k ∈ S ′

m}. (4.97)



Fairness in the Scheduling 163

In the above equation, the first inequality results from the fact that having νi > l,

i 6= k, implies that the kth user has the minimum expiry countdown among S ′
m,

and hence, will be selected. The second inequality follows from the fact that the

kth user must have the minimum expiry countdown in S ′
m in order to be selected,

i.e., no user in S ′
m should have a smaller expiry countdown. Noting the symmetry

of the problem with respect to the users and the fact that the events νi > l (or

νi ≥ l) are independent of |S ′
m| = n and k ∈ S ′

m, the upper bound can be written

as Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l}, which is by the chain rule equal to

Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l} = Pr{ν1 ≥ l|νn = l} ×
n−1∏

i=2

Pr{νi ≥ l|ν1 ≥ l, · · · , νi−1 ≥ l, νn = l}.

(4.98)

Consider the following probability:

Pr{νi = l1|νj = l2}, i 6= j. (4.99)

For l1 = l2, the above probability can be upper-bounded as

Pr{νi = l1|νj = l1} ≤ fν(l1). (4.100)

The above inequality comes from the fact that Pr{νi = l1, νj = l1} ≤ Pr2{νi =

l1} = f 2
ν (l), which is shown in Appendix I. A brief explanation of this would

be, there are M(M − 1) possibilities for the users i and j to be selected in the

same frame (since there are M possibilities for assigning each of them to any of

the beams and they can not be assigned to the same beam), while in the term

Pr2{νi = l1} all the M2 possibilities are encountered.

Also, for l1 6= l2, we have

fν(l1) ≤ Pr{νi = l1|νj = l2} ≤ fν(l1)

1 − fν(l2)
. (4.101)
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To prove the above equation, first we note that the ratio
Pr{νi=l1|νj=l2}

fν(l1)
is the same

for all l1 6= l2. In other words, the condition νj = l2 scales the probabilities of the

outcomes νi = l1 by the same value for l1 6= l2 in the conditional sample space. To

establish (4.101), let us denote x , Pr{νi=l1|νj=l2}
fν(l1)

, l1 6= l2. We have

∑

u 6=l2
Pr{νi = u|νj = l2} + Pr{νi = l2|νj = l2} = 1.

⇒
∑

u 6=l2
fν(u)x+ Pr{νi = l2|νj = l2} = 1

⇒ x =
1 − Pr{νi = l2|νj = l2}

1 − fν(l2)
. (4.102)

Therefore,

Pr{νi = l1|νj = l2} = fν(l1)x

=
fν(l1) [1 − Pr{νi = l2|νj = l2]}

1 − fν(l2)
. (4.103)

Using (4.100) and the fact that Pr{νi = l2|νj = l2} ≥ 0, (4.101) easily follows.



Fairness in the Scheduling 165

Using (4.100) and (4.101), the upper-bound in (4.98), denoted by t1, can be

further upper-bounded as

t1 = Pr{νi ≥ l|ν1 ≥ l, · · · , νi−1 ≥ l, νn = l}

=
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

Pr{νi ≥ l | ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[
Pr{νi ≥ l,Y |Q} + Pr{νi ≥ l,Y C |Q}

]

=
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[
Pr{Y |Q}Pr{νi ≥ l |Y ,Q} +

Pr{Y C |Q}Pr{νi ≥ l |Y C ,Q}
]

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[
Pr{Y |Q} + Pr{νi ≥ l |Y C ,Q}

]

(a)

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[
i−1∑

k=1

Pr{νi = ak} + Pr{νi = l} + Pr{νi ≥ l |Y C ,Q}
]

(b)

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[
i−1∑

k=1

fν(ak) + fν(l) +
Pr{νi ≥ l} −∑i−1

k=1 fν(ak) − fν(l)

1 −∑i−1
k=1 fν(ak) − fν(l)

]

(c)

≤ Mi

N
+Gν(l − 1). (4.104)
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where Y ,
⋃i−1
k=1{νi = νk}

⋃{νi = νn} and Q , {ν1 = a1, · · · , νi−1 = ai−1, νn = l}.
In the above equation, (a) results from (4.100), which incurs that Pr{Y |Q} ≤
∑i−1

k=1 Pr{νi = ak} + Pr{νi = l} =
∑i−1

k=1 fν(ak) + fν(l), (b) results from (4.101),

noting that conditioned on Y C ,Q, the points a1, · · · , ai−1, l are excluded from the

sample space. (c) results from: (i) upper-bounding fν(ak), k = 1, · · · , i − 1, and

fν(l) by M
N

, which is due to the facts that fν(l) ≤ fν(D) and fν(D) = Pr{Xk} ≤ M
N

,

where Pr{Xk} is the probability that user k is being selected in a frame 7, and

(ii) upper-bounding
Pr{νi≥l}−

Pi−1
k=1 fν(ak)−fν(l)

1−Pi−1
k=1 fν(ak)−fν(l)

by Pr{νi ≥ l} = Gν(l − 1).

Using the above equation and (4.98), the upper bound in (4.97) can be upper-

bounded as

Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l} ≤
n−1∏

i=1

(
Gν(l − 1) +

Mi

N

)
. (4.105)

7In fact, Pr{Xk} ≤ M
N

follows from the union bound on the probability. More precisely,

denoting X
(m)
k as the event that user k is assigned to beam m, using the same argument as in

the SISO case, one can show that Pr{X (m)
k } ≤ 1

N
, and hence, Pr{Xk} = Pr{⋃Mm=1 X

(m)
k } ≤ M

N
.
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Moreover, to lower-bound the lower bound in (4.97), we first lower-bound t2 ,

Pr{νi > l|ν1 > l, · · · , νi−1 > l, νn = l} as follows:

t2 ≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{νi > l | ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

[
Pr{Y |Q}Pr{νi > l |Y ,Q} +

Pr{Y C |Q}Pr{νi > l |Y C ,Q}
]

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{Y C |Q}Pr{νi > l |Y C ,Q}
(a)

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{Y C |Q}Pr{νi > l}

=
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

(1 − Pr{Y |Q}) Pr{νi > l}
(b)

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

(
1 −

i−1∑

k=1

fν(ak) − fν(l)

)
Pr{νi > l}

(c)

≥ Gν(l) −
Mi

N
, (4.106)



Fairness in the Scheduling 168

where (a) results from (4.101) which implies that Pr{νi > l |Y C ,Q} ≥ Pr{νi >
l}, (b) follows from (4.100), which incurs that Pr{Y |Q} ≤ ∑i−1

k=1 fν(ak) + fν(l).

Finally, (c) results from the fact that fν(ν) ≤ M
N

, and writing Pr{νi > l} as Gν(l).

Using the above equation, the lower-bound in (4.97) can be lower-bounded as

Pr{ν1 > l, · · · , νn−1 > l|νn = l} ≥
n−1∏

i=1

(
Gν(l) −

Mi

N

)
. (4.107)

Similar to the approach used in the SISO case, by defining n0 = 3(lnN)2 and

D0 = D −
√
Nn0(n0 − 1), first we show that for D0 ≤ l ≤ D, we have fν(l) ∼ M

N
.

For this purpose, by repeated application of (4.90), and using (4.91), (4.92), (4.96),

(4.97), and (4.105), we have

fν(D) − fν(D0) ≤
D∑

l=D0+1

Wl, (4.108)

where Wl , M
∑N

n=1

(
N−1
n−1

)
( q
M

)n
(
1 − q

M

)N−n∏n−1
i=1

(
Gν(l − 1) + Mi

N

)
. In Appendix

J, it has been shown that Wl is upper-bounded as M (lnN)2

N
e−(lnN)1.5

, which implies

that

fν(D) − fν(D0) ≤ (D −D0)M
(lnN)2

N
e−(lnN)1.5

∼ 9M
(lnN)6

√
N

e−(lnN)1.5

= o
(
e−(lnN)1.5

)
. (4.109)

Moreover, fν(D) can be written as Pr{Xk} 8, which denotes the probability that

user k is selected in a frame. This probability can be expressed as Pr{⋃M
m=1 X

(m)
k },

where X
(m)
k denotes the event that the kth user is assigned to the mth beam.

8More precisely, fνk(t)(D) = Pr{Xk(t− 1)}, where the the time index are removed due to the

steady state condition.
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Defining X (m) ,
⋃N
k=1 X

(m)
k , which is the probability that the mth beam is

assigned to some user, we have

Pr{X (m)} = 1 − Pr{|S ′
m| = 0}

= 1 − (1 − Pr{k ∈ S ′
m})N

(a)
= 1 −

(
1 − q

M

)N

= 1 − e−Nq/M

(b)

≥ 1 − e−(lnN)1.5

, (4.110)

where (a) follows from the definition of q in (4.94), and (b) results from the fact that

q
M

∼ p > (lnN)1.5

N
, Having the fact that the events X

(m)
k , k = 1, · · · , N are mutually

exclusive, i.e., beams can not be assigned to multiple users simultaneously, we have

Pr{X (m)} =
N∑

k=1

Pr{X (m)
k } ≥ 1 − e−(lnN)1.5

⇒ Pr{X (m)
k } ≥ 1

N

(
1 − e−(lnN)1.5

)
, (4.111)

where the second line results from the symmetry between the users. Moreover,

since the sets S ′
m, m = 1, · · · ,M are disjoint, it follows that the events X

(m)
k ,

m = 1, · · · ,M are mutually exclusive. Therefore, using the above equation,

Pr{Xk} =
M∑

m=1

Pr{X (m)
k } ≥ M

N

(
1 − e−(lnN)1.5

)
. (4.112)

Combining the above equation with (4.109), it follows that

fν(l) =
M

N

[
1 + o

(
Ne−(lnN)1.5

)]
, D0 ≤ l ≤ D. (4.113)

In other words, in the interval [D0, D], fν(l) is almost constant.
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In the region l < D0, by defining the following functions:

gu(n, l) =






∏n−1
i=1

(
Gν(l − 1) + iM

N

)
, n ≤ n0

1 n > n0

, (4.114)

and

gl(n, l) =






∏n−1
i=1

(
Gν(l) − iM

N

)
, n ≤ n0

0 n > n0

, (4.115)

where n0 = 3(lnN)2, using the equations (4.97), (4.105), and (4.107), it follows

that

gl(n, l) ≤ Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ≤ gu(n, l), (4.116)

where Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} is the probability we need to find in order

to compute Pr{Xk|νk = l} in (4.96). From the above equation, Pr{Xk|νk = l}
can be upper-bounded as follows:

Pr{Xk|νk = l} ≤ M
N∑

n=1

(
N − 1

n− 1

)( q

M

)n (
1 − q

M

)N−n
gu(n, l)

(a)
= η

N−1∑

n=0

(
N − 1

n

)( q
M

)n (
1 − q

M

)N−n
gu(n + 1, l)

= η

n0∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n n∏

i=1

(
Gν(l − 1) +

iM

N

)
+

η

N−1∑

n0+1

(
N − 1

n

)( q
M

)n (
1 − q

M

)N−n

= η

n0∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n
Gν(l − 1)n ×

n∏

i=1

(
1 +

iM

NGν(l − 1)

)
+

η
N−1∑

n0+1

(
N − 1

n

)( q
M

)n (
1 − q

M

)N−n
, (4.117)



Fairness in the Scheduling 171

where η = q
1− q

M
. In the above equation, (a) results from taking the terms

q
M

1− q
M

outside the summation and make a change of variable n− 1 to n. Since fν(l) ∼ M
N

for D0 ≤ l ≤ D, it follows that Gν(D0) ∼ M(D−D0)
N

= Mn0(n0−1)√
N

, which implies that

Gν(l − 1) ≥ Mn0(n0−1)√
N

, for D0 ≤ l ≤ D. Therefore, the term
∏n

i=1

(
1 + iM

NGν(l−1)

)

can be written as

n∏

i=1

(
1 +

iM

NGν(l − 1)

)
≤

n∏

i=1

(
1 +

i√
Nn0(n0 − 1)

)

(a)≈ 1 +

n∑

i=1

i√
Nn0(n0 − 1)

= 1 +
n(n + 1)

2
√
Nn0(n0 − 1)

(b)
= 1 +O

(
1√
N

)
, (4.118)
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where (a) results from the fact that as i ≤ n0,
i√

Nn0(n0−1)
≪ 1, and (b) follows

from n ≤ n0. Having the above equation, RH (4.117) can be written as

RH (4.117) = η

n0∑

n=0

(
N − 1

n

)( q
M

)n (
1 − q

M

)N−n
Gν(l − 1)n

[
1 +O

(
1√
N

)]
+

η
N−1∑

n0+1

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n

≤ η
N−1∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n
Gν(l − 1)n

[
1 +O

(
1√
N

)]
+

η

N−1∑

n0+1

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n

(a)
= η

[
1 − q

M
Fν(l − 1)

]N−1
[
1 +O

(
1√
N

)]
+

ηQ



 n0 − (N − 1) q
M√

(N − 1) q
M

(
1 − q

M

)





(b)

≤ ηe−(N−1) q
M

[Fν(l)−fν(l)]

[
1 +O

(
1√
N

)]
+ ηe−2(N−1) q

M

(c)
= ηe−(N−1) q

M
Fν(l)

[
1 +O

(
1√
N

)
+ e−(N−1) q

M

]

(d)
= ηe−(N−1) q

M
Fν(l)

[
1 +O

(
1√
N

)]
. (4.119)

In the above equation, (a) follows from approximating the tale of the Binomial

random variable with the Gaussian Q(.) function. In deriving (b), we first ap-

proximate
[
1 − q

M
Fν(l − 1)

]N−1
by e−(N−1) q

M
Fν(l−1) = e−(N−1) q

M
[Fν(l)−fν(l)], which

follows from q ≪ 1. Using the fact that as P
M

[lnN − (M + 1) ln lnN ] < Υ <

P
M

[lnN − (M + 0.5) ln lnN ], we have q
M
< (lnN)2

N
, which implies that n0 > 3(N −

1) q
M

, and also the fact that for x ≫ 1, Q(x) < e−x
2/2, Q

(
n0−(N−1) q

M
q

(N−1) q
M (1− q

M )

)
is

upper-bounded as e−2(N−1) q
M . (c) results from the facts that: (i) as fν(l) ≤
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M
N

, we have e(N−1) q
M
fν(l) = 1 + O(q) = 1 + O

(
1√
N

)
, and ii) since Fν(l) ≤ 1,

e−(N−1) q
M
Fν(l) ≥ e−(N−1) q

M , and as a result, e−2(N−1) q
M ≤ e−(N−1) q

M e−2(N−1) q
M
Fν(l).

Finally, (d) follows from the fact that e−(N−1) q
M = o

(
1√
N

)
, which is due to the

fact that q > M (lnN)1.5

N
.

Similar to (4.117) and (4.119), a lower-bound for Pr{Xk|νk = l} can be given

as follows:

Pr{Xk|νk = l} ≥ M
N∑

n=1

(
N − 1

n− 1

)( q
M

)n (
1 − q

M

)N−n
gu(n, l)

= η

n0∑

n=0

(
N − 1

n

)( q
M

)n (
1 − q

M

)N−n n∏

i=1

(
Gν(l) −

iM

N

)

= ηe−(N−1) q
M
Fν(l)

[
1 +O

(
1√
N

)]
. (4.120)

Comparing (4.119) and (4.120), it follows that

Pr{Xk|νk = l} = ηe−(N−1) q
M
Fν(l)

[
1 +O

(
1√
N

)]
. (4.121)

Substituting in (4.91), we reach the following difference equation in the region

l < D0:

fν(l) − fν(l − 1) = ηfν(l)e
−(N−1) q

M
Fν(l)

[
1 +O

(
1√
N

)]
. (4.122)

Comparing the above equation with (4.30), it is realized that the above difference

equation is the same as the difference equation obtained in the SISO case, with

the difference in replacing N by N
M

, and p by q. Therefore, all the results stated

in Lemmas 4.8-4.10 are valid for the MIMO case, by substituting N by N
M

, which

completes the proof of Theorem 4.11.

�

In fact, algorithm 2 basically separates the MIMO-BC into M “virtual” SISO-

BCs by assigning the users to the beam for which the maximum SINR is attained.
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Therefore, the analysis of fν(l) is similar to the case of SISO-BC, discussed in

the previous section. However, there are two main differences: i) In SISO-BC,

all the users are always served by the same transmitter, while in MIMO-BC the

users are switched independently between the virtual transmitters, from frame to

frame. This causes ν1, · · · , νN (The packet expiry countdown of the users) not

to be necessarily distinct. However, we have shown in the proof of Theorem 4.11

that this does not affect the analysis. ii) The sizes of the virtual SISO-BCs (Am)

are not fixed. In fact, |Am|, m = 1, · · · ,M , are Binomial random variables with

parameters (N, 1
M

). Using Gaussian approximation for the Binomial distribution,

we can write

Pr

{
N

M
(1 − ǫ) < |Am| <

N

M
(1 + ǫ)

}
≈ 1 − 2Q




N
M
ǫ

√
N
M

(1 − 1
M

)



 . (4.123)

Setting ǫ ,
√

2(M−1) lnN
N

, and using the approximation Q(x) ≈
1√
2πx

e−
x2

2 for x≫ 1,

the above equation can be written as

Pr

{
N

M
(1 − ǫ) < |Am| <

N

M
(1 + ǫ)

}
= 1 − o

(
1

N

)
. (4.124)

Therefore, with probability one, the size of the sets Am scales as N
M

[
1 − O

(√
lnN
N

)]
.

Following the above discussions, MIMO-BC can be considered as M parallel SISO-

BCs, each serving approximately N
M

users. The network dropping event (B) can be

considered as the union of the dropping events for the SISO sub-channels, denoted

by Bm, m = 1, · · · ,M . From the union bound for the probability, we have

Pr{B} ≤
M∑

m=1

Pr{Bm}

= MPr{Bm}, (4.125)
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where the second line comes from the symmetry between the events Bm. Following

the steps of proof for Theorem 4.7, and setting [lnN ]1.5

N
< p < [lnN ]2

N
and D =

p
ϕ
N
M

+ lnN
ϕ

+ 9
√
N [lnN ]4, guarantees Pr{Bm} → 0, and hence, Pr{B} → 0. Note

that as p ∼ e−
MΥ
P

(1+Υ)M−1 [26], the condition [lnN ]1.5

N
< p < [lnN ]2

N
incurs that

P

M
[lnN − (M + 1) ln lnN ] < Υ <

P

M
[lnN − (M + 0.5) ln lnN ] . (4.126)

Noting that Csum ∼M ln(1+ P
M

lnN+O(ln lnN)) [26], it follows that limN→∞ Csum−
R = 0.

�

Theorem 4.11 implies that the proposed scheduling algorithm is capable of

achieving the maximum sum-rate throughput, while guaranteeing limN→∞
MDmin

N
=

1, where Dmin is the minimum value of D such that Pr{B} → 0. Noting that ⌈N
M
⌉

is the minimum value of D in MIMO-BC to have Pr{B} → 0, (using Round-Robin

scheduling, assuming that M users are served during each frame), it follows that

the proposed scheme achieves the maximum sum-rate and maximum fairness in

the network, simultaneously.

Defining the minimum average throughput as in (4.79), it is straightforward to

show that for the proposed algorithm,

Tmin ∼ M ln lnN

N
, (4.127)

which is asymptotically the maximum achievable value in MIMO-BC.

4.5 Conclusion

In this chapter, a single-antenna broadcast channel with large (N) number of users

is considered. It has been assumed that all users have hard delay constraint D. We
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have proposed a scheduling algorithm for maximizing the throughput of the system,

while satisfying the delay constraint for all users. By characterizing the network

dropping probability, in terms of N , D, and the threshold value in the algorithm,

it has been shown that by using the proposed algorithm, it is possible to achieve

the maximum throughput and maximum fairness in the network, simultaneously,

in the asymptotic case of N → ∞. Moreover, we have introduced a performance

measure in the network, called “Minimum Average Throughput”, and proved that

the proposed algorithm maximizes the maximum minimum average throughput in

a broadcast channel. Finally, the proposed algorithm is generalized for (MIMO-

BC), and shown to be optimum in the sense of achieving the maximum throughput

and maximum fairness in the network, simultaneously, in the asymptotic case of

N → ∞.



Chapter 5

Capacity of Rician MIMO

Broadcast Channels

5.1 Introduction

Multiple-input multiple-output (MIMO) systems have proved their ability to achieve

high bit rates on a scattering wireless network [1, 2]. In a MIMO broadcast chan-

nel, the base station equipped with multiple antennas communicates with several

users. Recently, there has been a lot of interest in characterizing the capacity

region of this channel [5, 6, 7, 8]. In these works, it has been demonstrated that

the sum-rate capacity of MIMO broadcast channels can be achieved by applying

dirty-paper coding (DPC) [9] at the transmitter.

Despite the fact that the sum-rate capacity of Gaussian MIMO-BC is known, it

is still interesting to study the behavior of sum-rate capacity in various scenarios.

[79] compares the achievable sum-rate of MIMO-BC for DPC to that achieved by

using linear precoding schemes, and characterizes the gap between the achievable

177
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sum-rates in the high SNR regime. [39] compares the achievable sum-rate of DPC

to that of Time Division Multiple Access (TDMA) for a Gaussian MIMO-BC. [26]

considers a MIMO-BC with a large number of users and shows that i) the sum-

rate capacity of the system scales as M ln lnN , when N is the number of users in

the network, and ii) a simple scheme of “Random Beam-Forming” asymptotically

achieves the sum-rate capacity as N → ∞. References [25, 50, 80] consider the

same network set-up and prove that one can achieve the sum-rate capacity of the

system by utilizing Zero-Forcing Beam-Forming at the transmitter, provided that

the user selection is performed wisely. In [34] the scaling laws of the sum-rate

for fading MIMO Gaussian broadcast channels using time-sharing to the strongest

user, DPC and beamforming, is derived for the asymptotic case of N → ∞. In all

the mentioned papers ( [79]- [34]), the channel model is assumed to be Rayleigh

fading. Therefore, it is of interest to investigate the sum-rate capacity of MIMO-

BC, assuming more general channel models.

One of the most widely-used models for the wireless channels is Rician fading.

This model is suitable for wireless links when there is a line of sight (LOS) link

between the transmitter and receiver. Several papers in the literature consider

Rician fading in the context of point-to-point MIMO communications. In [81], the

authors derive the exact capacity of MIMO Rician channel, when perfect Channel

State Information (CSI) is available at the receiver, but the transmitter has neither

instantaneous nor statistical CSI. Reference [82] studies the capacity of MIMO

Rician channel in the high and low SNR regimes, for both coherent and non-

coherenet communications. it is shown in [82] that in the low SNR regime, the

specular component of the channel completely determines the form of the optimum

signal whereas in the high SNR regime it has no effect on the optimum signal
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structure. In [83], the authors consider the min-capacity of a MIMO Rician channel

with an unknown deterministic specular component. [84] analyzes the capacity of

a MIMO Rician channel with isotropically random rank-one specular component,

when the channel is unknown at both the transmitter and receiver sides.

In this chapter, we consider a Rician MIMO-BC, in which a transmitter equipped

with M antennas communicates with N (N ≫ 1) single-antenna users. The chan-

nels are assumed to be perfectly known at both the transmitter and receiver sides.

The asymptotic (in terms of the number of users) sum-rate capacity of the system,

as well as the capacity-achieving strategies, are derived. The main results of the

chapter are as follows: i) in the region of K = o(lnN), where K denotes the Rician

factor, the sum-rate capacity scales as M ln(1 + P
M
η), where P denotes the SNR

and η , lnN
1+K , which is achieved by Zero-Forcing Beam-Forming (ZFBF) along

with a low-complexity user selection algorithm that considers only the scattered

component of the users’ channels, ii) in the region K = ω(lnN), in the case of

co-located transmit antennas, the capacity scales as ln(1+MP ), which is achieved

by TDMA, iii) in the region K = ω(lnN), in the case of isotropically-distributed

specular components, the sum-rate capacity behaves as M ln(1 + P ), which is

achieved by ZFBF, along with a user selection algorithm that considers only the

specular component of the users’ channels. Simulation results confirm the validity

of analytical results.

The rest of the chapter is organized as follows. In 5.2, we introduce the system

model. Section 5.3 is devoted to analyzing the asymptotic sum-rate capacity of

the underlying system. Some simulation results are presented in section 5.4, and

finally, section 5.5 concludes the chapter.
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5.2 System Model

In this work, a MIMO-BC in which a base station equipped with M antennas

communicates with N users, each equipped with single antennas, is considered.

The received signal by user k can be written as

yk = Hkx + nk, (5.1)

where x ∈ CM×1 is the transmitted signal, Hk ∈ C1×M is the channel vector

from the transmitter to the kth user, which is assumed to be perfectly known at

the receiver side and provided to the BS via a noiseless feedback channel 1, and

nk ∼ CN (0, 1) is the AWGN at this receiver.

Under Rician channel model, Hk can be written as

Hk =
√

1 − rkGk +
√
rkMbk, (5.2)

where Gk is a circularly symmetric zero mean unit variance Gaussian vector, re-

flecting the scattered component and bk is a unit-norm vector representing the

specular component of the channel, and rk is a constant related to the Rician fac-

tor Kk
2 via rk = Kk

Kk+1
. We consider two scenarios for bk: (i) The entries of Hk are

i.i.d Gaussian with mean bk and variance 1 − |bk|2, where bk is a complex number

satisfying |bk|2 = rk. In this case, it is easy to observe that bk = ejθk√
M

1, where

1 is the vector of all ones. This model corresponds to the case that the transmit

1In fact, the BS does not need to have the perfect CSI about all the users’ channels. However,

the partial CSI that the BS receives through feedback is based on the perfect CSI that the

receivers have.
2Rician factor is defined as the ratio of the power of the specular component to the power of

the scattered component.
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antennas are co-located, and consequently, the specular components from all trans-

mit antennas to each of the users are equal 3 . ii) The vector bk is isotropically

distributed in the unit sphere. This model has been used in [84]. It is assumed

that rk is fixed for all the users during the whole transmission period and is equal

to a constant r, i.e., r1 = r2 = · · · = rN = r.

We assume that the transmitter has an average power constraint P , i.e.,

E {Tr(xx∗)} ≤ P.

The power constraint is assumed to be per frame. In other words, the power

constraint is independent of the channel realization. The channels are assumed to

be quasi-static block fading, in which each channel Hk is drawn randomly at the

start of each transmission frame and remains constant for the whole transmission

frame, and changes independently to another realization in the start of the next

frame. The frame itself is assumed to be long enough to allow communication at

rates close to the capacity. Defining the sum-rate capacity of the system in the

channel realization H , {Hk}Nk=1, when the transmitter has perfect CSI about

all users’ channels, as Csum(H), the average sum-rate capacity, denoted as Csum,

is defined as the average over time of Csum(H), which is by the ergodicity of the

channel, equal to EH {Csum(H)}. Csum is shown in [5] to be equal to

Csum = EH




 max
Pk

P

Pk=P

ln

∣∣∣∣∣IM +

N∑

k=1

H∗
kPkHk

∣∣∣∣∣




 , (5.3)

where Pk is the transmit power allocated to the kth user.

3Note that however, the specular components from each transmit antenna to different users

are not necessarily equal.
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5.3 Asymptotic Analysis; Capacity Computation

In this section, we compute the capacity of MIMO-BC under Rician fading, in the

asymptotic scenario ofN → ∞. To this end, we consider two cases; (i) K = o(lnN)

and (ii) K = ω(lnN). For each case, we provide a lower-bound and upper-bound

for the capacity and prove that as N → ∞, these bounds converge to each other.

5.3.1 K = o(lnN)

Theorem 5.1 The capacity of the underlying MIMO-BC in the case of K =

o(lnN) equals

Csum = M ln

(
1 +

P

M

lnN

1 + K

)
+ o(1), (5.4)

which is asymptotically achievable by ZFBF.

Proof - The proof is based on the upper-bound and lower-bound given as fol-

lows:
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Upper-bound

Using (5.2), the upper-bound for the sum-rate capacity can be derived as [26]

Csum ≤ ME

{
ln

(
1 +

P

M
‖H‖2

max

)}

≤ ME

{
ln

(
1 +

P

M

[√
1 − r‖Gk‖ +

√
rM‖bk‖

]2
max

)}

(a)
= ME




ln



1 +
P

M
max
k

[√
1

1 + K‖Gk‖ +

√
KM
1 + K

]2









= ME

{
ln

(
1 +

P

M

1

1 + K‖G‖2
max

)
+

ln



1 +

P
M

(
2
√
KM

1+K ‖G‖max + MK
1+K

)

1 + P
M

1
1+K‖G‖2

max










(b)

≤ ME

{
ln

(
1 +

P

M

1

1 + K‖G‖2
max

)
+

2
√
KM‖G‖max

M
P

(1 + K) + ‖G‖2
max

+
KM

M
P

(1 + K) + ‖G‖2
max

}

(c)

≤ M ln

(
1 +

P

M

1

1 + KE
{
‖G‖2

max

})
+ME

{
2
√
KM‖G‖max

M
P

(1 + K) + ‖G‖2
max

}
+

ME

{
KM

M
P

(1 + K) + ‖G‖2
max

}
, (5.5)

where (a) follows from the facts that r = K
1+K and ‖bk‖ = 1, (b) results from

upper-bounding ln(1+x) by x, and (c) follows from the concavity of ln(.) function

which incurs that E
{
ln
(
1 + P

M
1

1+K‖G‖2
max

)}
≤ ln

(
1 + P

M
1

1+KE {‖G‖2
max}

)
. Defin-

ing A , M
P

(1+K), t , lnN+(M−3) ln lnN , and A as the event that ‖G‖2
max ≤ t,
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we have

E

{
2
√
KM‖G‖max

A + ‖G‖2
max

}

= E

{
2
√
KM‖G‖max

A+ ‖G‖2
max

∣∣∣∣∣A

}

Pr{A} +

E

{
2
√
KM‖G‖max

A+ ‖G‖2
max

∣∣∣∣∣A
C

}
Pr{AC}

≤
√

KM
A

Pr{A} +
2
√
KMt

A+ t
, (5.6)

where the second line results from the fact that 2‖G‖max

A+‖G‖2
max

≤ 1√
A

and also the

function 2‖G‖max

A+‖G‖2
max

is decreasing for ‖G‖2
max ≥ A, noting that as A = o(lnN) (since

K = o(lnN)), we have t > A. By a similar approach, the third term in RH(3.110)

can be upper-bounded as

E

{
KM

M
P

(1 + K) + ‖G‖2
max

}
≤ KM

A
Pr{A} +

KM
A + t

. (5.7)

In Appendix K, it has been shown that Pr{A} = o
(

1
N

)
. Noting that KM

A
= O(1)

and K = o(lnN), which incurs that K = o(t), we have

E

{
2
√
KM‖G‖max

A + ‖G‖2
max

}
= o(1), (5.8)

and

E

{
KM

M
P

(1 + K) + ‖G‖2
max

}
= o(1). (5.9)

Substituting in (3.110), the upper-bound on the sum-rate capacity can be written

as

Csum ≤ M ln

(
1 +

P

M

1

1 + KE
{
‖G‖2

max

})
+ o(1)

= M ln

(
1 +

P lnN

M(1 + K)

)
+ o(1), (5.10)

where the second line follows from the fact that E {‖G‖2
max} = lnN + O(ln lnN)

[26].
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Achievability: Scheduling based the scattered component

Consider the following algorithm:

Algorithm 1

• Set the threshold t = lnN + (M − 3) ln lnN

• Among the users in the following set:

S , {k| ‖Gk‖2 > t}, (5.11)

select one user at random. Call this user s1, and define S1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the (m − 1)th step as Am ,

{s1, · · · , sm−1}. Define Sm , S − Am.

– Define Pm as the sub-space spanned by the scattered channel compo-

nents of the users selected in the previous steps, i.e., {vsj
}m−1
j=1 , where

vk , Gk

‖Gk‖ , k = 1, · · · , N .

– Let {Φj}m−1
j=1 be m− 1 orthonormal bases for Pm. Then,

sm = arg min
k∈Sm

m−1∑

j=1

∣∣vkΦH
j

∣∣ . (5.12)

In the above algorithm, the user selection is solely performed based on the scattered

component of the channel. First, the users with scattered channel gains above the

threshold t are candidated. After that, the algorithm tries to find a set of semi-

orthogonal channel vectors out of the candidate users. To this end, at each step of

the algorithm, the user whose scattered channel vector is the most orthogonal to
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the sub-space spanned by the previously selected users’ scattered channel vectors is

selected. After selecting the users, the BS performs zero-forcing beam-forming on

the (whole) channel vectors of the selected users. Defining H ,
[
HT
s1
| · · · |HT

sM

]T

and u = [u1, · · · , uM ]T as the information vector for the selected users, we have

x = H
−1u. (5.13)

Therefore, the achievable sum-rate of this scheme can be written as

R = MEH

{

ln

(

1 +
P

Tr
{
[HHH]−1}

)}

. (5.14)

Defining B as the event that L , |S| > lnN , C as δ(GH) > 1 + 2M (lnN)
− 1

2(M−1) ,

and D as the event that ‖G‖2
max ≤ t+, where δ(A) denotes the orthogonality

defect [37] of A, ‖G‖2
max , maxk ‖Gk‖2, and t+ , lnN +M ln lnN , we have

R = MEH|B,C,D

{
ln

(
1 +

P

Tr
{
[HHH]−1}

)∣∣∣∣∣B,C,D

}
Pr{B,C,D} +

MEH|BC∪CC∪DC

{
ln

(
1 +

P

Tr
{
[HHH]−1}

)∣∣∣∣∣B
C ∪ CC ∪ DC

}
×

Pr{BC ∪ CC ∪ DC}

≥ MEH|B,C,D

{

ln

(

1 +
P

Tr
{
[HHH]−1}

)∣∣∣∣∣B,C,D

}

Pr{B,C,D}

≥
(
M lnP −MEH|B,C

{
ln
(
Tr
{[

H
H

H
]−1
})∣∣∣B,C,D

})
Pr{B}Pr{C|B} ×

Pr{D|B,C}. (5.15)

In Appendix L, it has been shown that Pr{B} = 1 + o
(

1
N

)
and Pr{C|B} =

1 + o
(

1
lnN

)
, and Pr{D|B,C} = 1 +O

(
1

ln2N

)
.
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Defining G ,
[
GT
s1
| · · · |GT

sM

]T
, and B ,

[
bTs1| · · · |bTsM

]T
, the term Tr

{[
HHH

]−1
}

can be written as

Tr
{[

H
H

H
]−1
}

= Tr









(√

1

K + 1
G +

√
MK

1 + KB

)H (√
1

K + 1
G +

√
MK
1 + KB

)


−1



= (K + 1)Tr

{[
G
H

G +
√
MK

(
G
H

B + B
H

G
)

+MKB
H

B

]−1
}

(a)

≤ (K + 1)Tr

{[
G
H

G − 2M
√

KTr{GHG}I
]−1
}

(b)

≤ (K + 1)Tr

{[
λmin

{
G
H

G
}

I − 2M
√

KTr{GHG}I
]−1
}

= M(K + 1)
(
λmin

{
G
H

G
}
− 2M

√
KTr{GHG}

)−1

. (5.16)

In the above equation, (a) follows from the facts that for any two positive definite

matrices A and B: i) if A � B, then Tr{A} ≤ Tr{B}, ii) if A � B, then

B−1 � A−1, iii) BHB � 0, and iv) GHB + BHG � −2
√
MTr{GHG}I. The latter

results from the fact that for any M ×M matrices A and B, and any M × 1 unit

norm vector x, we have

xH
(
AHB + BHA

)
x = 2ℜ{xHAHBx}

≥ −2 |Ax| |Bx|

≥ −2
√
λmax(A)λmax(B)

≥ −2
√

Tr{AHA}Tr{BHB}, (5.17)

where λmax(A) denotes the maximum eigenvalue of AHA. This implies that

|λi(C)| ≤ 2
√

Tr{AHA}Tr{BHB},
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i = 1, · · · ,M , where λi(C) denotes the ith singular value of C = AHB + BHA.

Hence,

AHB + BHA � −2
√

Tr{AHA}Tr{BHB}I. (5.18)

Substituting A by G and B by B, noting that Tr{BHB} = M , (a) follows. Also,

(b) results from the fact that GHG � λmin

(
GHG

)
I.

Conditioned on B and D, Tr{GHG} is upper-bounded by Mt+. Defining ε ,

2M(lnN)
− 1

2(M−1) , conditioned on C, we have

δ
(
G
H
)

=

∏M
i=1 ‖Gi‖2

|GHG| < 1 + ε

(a)
=⇒ tM

∏M
i=1 λi (G

HG)
< 1 + ε

(b)
=⇒ tM

λmin (GHG)
[
Tr(GHG)−λmin(GHG)

M−1

]M−1
< 1 + ε

(c)
=⇒ tM

λmin (GHG)
[
Mt+−λmin(GHG)

M−1

]M−1
< 1 + ε, (5.19)

where (a) follows from the fact that conditioned on B, we have ‖Gi‖2 ≥ t, (b)

results from the fact that knowing λmin

(
GHG

)
, the product of the rest of the

eigenvalues is maximized when they are equal, i.e.,

M∏

i=1

λi
(
G
H

G
)
≤ λmin

(
G
H

G
)
[
Mt+ − λmin

(
GHG

)

M − 1

]M−1

,

and (c) follows from the fact that conditioned on D, Tr
(
GHG

)
< Mt+.

Defining γ ,
λmin(GHG)

t+
, from the above equation, we can write

γ(M − γ)M−1

(M − 1)M−1
>

(t/t+)M

1 + ε
. (5.20)
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Since t = lnN + (M − 3) ln lnN and t+ = lnN +M ln lnN , it follows that t
t+
>

1 − 3 ln lnN
lnN

. Hence, using the inequality (1 − x)n ≥ 1 − nx, for 0 ≤ x ≤ 1, we

have
(
t
t+

)M
> 1 − 3M ln lnN

lnN
. Moreover, using the fact that 1

1+ε
> 1 − ε, the above

equation can be rewritten as

γ(M − γ)M−1

(M − 1)M−1
> 1 − ψ, (5.21)

where ψ , 3M ln lnN
lnN

+ ε. Since the function f(γ) = γ(M−γ)M−1

(M−1)M−1 is an increasing

function of γ over the interval [0, 1], writing the Tailor series of f(γ) about 1,

noting that f(1) = 1, f ′(1) = 0, and f ′′(1) = − M
M−1

, we have

γ(M − γ)M−1

(M − 1)M−1
> 1 − ψ

=⇒ M(1 − γ)2

2(M − 1)
< ψ

=⇒ γ > 1 −
√

2(M − 1)ψ

M
. (5.22)

Having the fact that ψ = O
(
(lnN)−

1
2(M−1)

)
, the above equation yields that con-

ditioned on B, C and D,

λmin

(
G
H

G
)

= t+
[
1 +O

(
(lnN)−

1
4(M−1)

)]

= lnN
[
1 +O

(
(lnN)−

1
4(M−1)

)]
, (5.23)

where the second line follows from the fact that t+ = lnN+M ln lnN = lnN
[
1 +O

(
ln lnN
lnN

)]
=

lnN
[
1 +O

(
(lnN)−

1
4(M−1)

)]
. Substituting in (5.16) yields that conditioned on B,
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C, and D,

Tr
{[

H
H

H
]−1
}

≤ M(K + 1)
(
t+
[
1 +O

(
(lnN)−

1
4(M−1)

)]
− 2M

√
KMt+

)−1

=
M(K + 1)

t+

[
1 +O

(
(lnN)

− 1
4(M−1)

)
+O

(
1√
t+

)]

(a)
=

M(K + 1)

t+

[
1 +O

(
(lnN)

− 1
4(M−1)

)]

=
M(K + 1)

lnN

[
1 +O

(
(lnN)−

1
4(M−1)

)]
, (5.24)

where (a) follows from the fact that 1√
t+

= O
(

1√
lnN

)
= o

(
(lnN)−

1
4(M−1)

)
. Sub-

stituting in (5.15) yields

R ≥ M ln

(
P lnN

M(1 + K)

[
1 +O

(
(lnN)−

1
4(M−1)

)])
Pr{B,C,D}

(b)
=

[
M ln

(
P lnN

M(1 + K)

)
+O

(
(lnN)−

1
4(M−1)

)] [
1 +O

(
1

lnN

)]

= M ln

(
P lnN

M(1 + K)

)
+ O

(
(lnN)−

1
4(M−1)

)
. (5.25)

Since K = o(lnK), it follows that ln
(

P lnN
M(1+K)

)
= ln

(
1 + P lnN

M(1+K)

)
+ o(1). Noting

this fact and comparing the above lower-bound with the upper-bound derived in

(5.10) completes the proof of Theorem 5.1.

�

5.3.2 K = ω(lnN)

Co-located transmit antennas

In this scenario, the specular components from all transmit antennas to each re-

ceiver are equal. In other words, bk = eiθk√
M

1M , where 1M the all-one vector with

size M . However, the scattered component of all users’ channels follow the circu-
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larly symmetric complex Gaussian distribution. The following theorem gives the

capacity of MIMO-BC in this scenario:

Theorem 5.2 The capacity of MIMO-BC in the case of K = ω(lnN) and co-

located transmit antennas scales as

Csum = ln(1 +MP ) + o(1), (5.26)

which is achievable by TDMA.

Proof - Like the proof of Theorem 5.1, we first give an upper-bound on the

sum-rate capacity and then, by giving an achievable rate which is asymptotically

equal to the upper-bound the theorem is proved.
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Upper-bound: Writing the sum-rate capacity of MIMO-BC from (5.3), we

have

Csum = EH




 max
Pk

P

Pk=P

ln

∣∣∣∣∣IM +

N∑

k=1

HH
k PkHk

∣∣∣∣∣






= EG




 max
Pk

P

Pk=P

ln

∣∣∣∣∣IM +
N∑

k=1

[√
1 − rkGk +

√
rkMbk

]H
Pk

[√
1 − rkGk +

√
rkMbk

]∣∣∣∣∣






= EG

{
max
Pk

P

Pk=P

ln

∣∣∣∣∣IM + rM
N∑

k=1

bHk Pkbk

∣∣∣∣∣+

ln

∣∣∣∣∣IM +

(
√
r(1 − r)M

N∑

k=1

[
GH
k Pkbk + bHk PkGk

]
+ (1 − r)

N∑

k=1

bHk Pkbk

∣∣∣∣∣

)
P

}

= EG

{
max
Pk

P

Pk=P

ln

∣∣∣∣∣IM + r1HM

(
N∑

k=1

Pk

)
1M

∣∣∣∣∣ +

ln

∣∣∣∣∣IM +

(
√
r(1 − r)M

N∑

k=1

[
GH
k Pkbk + bHk PkGk

]
+ (1 − r)

N∑

k=1

bHk Pkbk

)
P

∣∣∣∣∣

}

(a)

≤ ln (1 + rMP ) +

EG

{

max
Pk

P

Pk=P

ln

∣∣∣∣∣IM +
√
r(1 − r)M

N∑

k=1

[
GH
k Pkbk + bHk PkGk

]
+ (1 − r)

N∑

k=1

GH
k PkGk

∣∣∣∣∣

}

(b)

≤ ln (1 + rP ) +

MEG

{
max
Pk

P

Pk=P

ln



1 +

∑N
k=1 2Pk

(√
r(1 − r)MTr

{
GH
k bk

}
+ (1 − r)Tr

{
GH
k Gk

})

M




}
,

(5.27)

where G , {Gk}Nk=1 and P ,
(
IM + rP1HM1M

)−1
. In the above equation, (a)

follows from i) |I + AB| = |I + BA|, and hence,
∣∣IM + rP1HM1M

∣∣ = 1 + rP1M1HM ,
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noting that 1M1HM = M , and ii) as P � I, we have

ln

∣∣∣∣∣IM +

(
√
r(1 − r)M

N∑

k=1

[
GH
k Pkbk + bHk PkGk

]
+ (1 − r)

N∑

k=1

bHk Pkbk

)
P

∣∣∣∣∣ ≤

ln

∣∣∣∣∣IM +
√
r(1 − r)M

N∑

k=1

[
GH
k Pkbk + bHk PkGk

]
+ (1 − r)

N∑

k=1

bHk Pkbk

∣∣∣∣∣ .

Moreover, (b) results from the fact that for any A � 0, |A| ≤
(

Tr{A}
M

)M
. Noting

that Tr{GH
k bk} = Tr{bHk Gk} ≤ ‖Gk‖‖bk‖ = 1√

M
‖Gk‖‖, and Tr{GH

k Gk} =

‖Gk‖2, the second term in the right hand side of the above equation, denoted by

R2, can be further upper-bounded as follows:

R2 ≤ MEG




 max
Pk

P

Pk=P

ln



1 +

∑N
k=1 2Pk

(√
r(1 − r)‖Gk‖ + (1 − r)‖Gk‖2

)

M










(a)
= ME




ln



1 +
P
(√

r(1 − r)‖G‖max + (1 − r)‖G‖2
max

)

M










(b)

≤ M ln



1 +
P
(

E{‖G‖max}√
1+K + E{‖G‖2

max}
1+K

)

M





(c)
= M ln



1 +
P
(
O(

√
lnN)√

1+K + O(lnN)
1+K

)

M





(d)
= o(1), (5.28)

where ‖G‖max = maxk ‖Gk‖. In the above equation, (a) results from the fact that

the solution to the optimization problem in (5.28) is to allocate all the transmit

power to the user with the highest scattered gain. (b) follows from i) the concavity

of ln function along with the Jensen’s inequality which enables us to move the

expectation inside the ln, and ii) the fact that r = K
1+K , which incurs that r ≤ 1,
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and 1 − r = 1
1+K . (c) results from [26], in which it is shown that ‖G‖2

max =

lnN + O(ln lnN) with probability one, which incurs that E{‖G‖2
max} = O(lnN)

and E{‖G‖max} = O(
√

lnN), and finally, (d) follows from the assumption of K =

ω(lnN) and the fact that ln(1 + o(1)) = o(1). Substituting R2 in (5.27) yields

Csum ≤ ln(1 + rPM) + o(1)

≤ ln(1 + PM) + o(1), (5.29)

where the last line comes from the fact that r ≤ 1.

Achievability - In order to show that the sum-rate given in (5.26) is achievable,

we propose a random selection scheme, in which the transmitter selects a user at

random and communicates with that user. Therefore, the maximum achievable

rate is equal to the capacity of a MISO Rician channel, expressed as bellow:

R = EHk





max

Q

Tr{Q}≤P

ln
(
1 + HkQHH

k

)





= E
{
ln
(
1 + P‖Hk‖2

)}

≥ E

{
ln

(
1 + P

∣∣∣
√
rM −

√
1 − r‖Gk‖

∣∣∣
2
)}

. (5.30)

Let us define E as the event that ‖Gk‖2 < lnN . R can be lower-bounded as

R ≥ E

{
ln

(
1 + P

∣∣∣
√
rM −

√
1 − r‖Gk‖

∣∣∣
2
)∣∣∣∣E

}
Pr {E}

(a)
= ln (1 + PrM + o(1)) Pr {E}
(b)
= ln(1 + PM) + o(1). (5.31)

In the above equation, (a) follows from the assumption of K = ω(lnN), which

implies that conditioned on E,
√

1 − r‖Gk‖ = ‖Gk‖√
K+1

= o(1). (b) follows from

i) as ‖Gk‖2 has Chi-Square distribution with 2M degrees of freedom, Pr {E} ∼
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lnM N
(M−1)!N

= o(1) and ii) as r = K
K+1

and K = ω(lnN), we have r = 1+o
(

1
lnN

)
. This

completes the proof of achievability and hence, the proof of Theorem 5.2.

�

The case of isotropic specular components

In this case, it is assumed that the specular component of all users’ channels, i.e.,

bk, k = 1, · · · , N , are isotropically distributed in the unit sphere. The difference

between this case and the previous case is that in the case of co-located transmit

antennas, there is only one available coordinate in the system (the coordinate of

1M) for transmission, and as a result, we don’t have the M-fold capacity increase,

as we expect in Gaussian MIMO-BC. However, in this case, by wisely selecting the

users one can achieve the M-fold capacity increase. The following theorem gives

the capacity in this case:

Theorem 5.3 The capacity of Rician MIMO-BC in the case of K = ω(lnN) and

isotropic specular components is equal to

Csum = M ln(1 + P ) + o(1). (5.32)



Capacity of Rician MIMO Broadcast Channels 196

Proof - Upper-bound: In [26], Appendix B, an upper-bound on the capacity of

MIMO-BC is given as

Csum ≤ ME

{
ln

(
1 +

P

M
‖H‖2

max

)}

≤ ME

{
ln

(
1 +

P

M

∣∣∣
√
rM +

√
1 − r‖G‖max

∣∣∣
2
)}

(a)

≤ M ln

(
1 +

P

M
E

{∣∣∣
√
rM +

√
1 − r‖G‖max

∣∣∣
2
})

(b)
= M ln

(
1 +

P

M

∣∣∣
√
rM + o(1)

∣∣∣
2
)

= M ln(1 + rP ) + o(1)

(c)
= M ln(1 + P ) + o(1). (5.33)

In the above equation, (a) follows from the concavity of ln function along with

the Jensen’s inequality, (b) results from the fact that ‖G‖max = O(lnN) and since

1 − r = 1
1+K = o

(
1

lnN

)
, we have

√
1 − r‖G‖max = o(1), and (c) results from

r = 1 + o(1).

Achievability; Scheduling based on specular component Consider the following

algorithm:

Algorithm 2

• select one user at random. Call this user s1, and define S1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the (m − 1)th step as Am ,

{s1, · · · , sm−1}. Define Sm , S − Am.

– Define Pm as the sub-space spanned by the specular channel compo-

nents of the users selected in the previous steps, i.e., {bsj
}m−1
j=1 .



Capacity of Rician MIMO Broadcast Channels 197

– Let {Φj}m−1
j=1 be m− 1 orthonormal bases for Pm. Then,

sm = arg min
k∈Sm

m−1∑

j=1

∣∣bkΦH
j

∣∣ . (5.34)

• After selecting the users, the BS performs zero-forcing beam-forming on the

(whole) channel vectors of the selected users. Defining H ,
[
HT
s1| · · · |HT

sM

]T

and u = [u1, · · · , uM ]T as the information vector for the selected users, we

have

x = H
−1u. (5.35)

Defining the event F , {δ(BH) < 1 + ǫ} and Q ,
{
Tr{GHG} < lnN

}
, where

B =
[
bTs1 | · · · |bsM

]T
, G =

[
GT
s1 | · · · |GsM

]T
, and ǫ , 2MN− 1

2(M−1) , similar to

(5.15), we have

R ≥ MEH|F,Q

{
ln

(
1 +

P

Tr
{
[HHH]−1}

)∣∣∣∣∣F,Q
}

Pr{F,Q}. (5.36)

Since bk’s are isotropic unit vectors, Pr{F} can be computed similar to Pr{C|B},
which is performed in Appendix L, and shown to be 1 + o( 1

N
) 4. Moreover, since

the scattered component is not considered in the selection, it follows that G can be

considered as an M ×M circularly symmetric complex Gaussian matrix, and as a

result, Tr{GHG} has Chi-Square distribution with 2M2 degrees of freedom which

implies that Pr
{
Tr{GHG} > lnN

}
= [lnN ]M

2−1e− lnN

(M−1)!
[1 + o(1)] = O

(
[lnN ]M

2−1

N

)
.

Therefore, Pr{Q} = 1 + O
(

[lnN ]M
2−1

N

)
= o

(
1√
N

)
. Having computed Pr{F} and

Pr{Q}, noting that as the specular and scattered components of the channels are

independent, F and and Q are also independent, we have

Pr{F,Q} = 1 + o

(
1√
N

)
. (5.37)

4To this end, it is sufficient to substitute lnN by N in the steps of proof.
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Similar to (5.16), Tr
{[

HHH
]−1
}

can be upper-bounded as

Tr
{[

H
H

H
]−1
}

≤ (K + 1)Tr

{(
MKB

H
B − 2M

√
KTr{GHG}I

)−1
}

≤ (K + 1)Tr

{(
MKλmin

(
B
H

B
)
I − 2M

√
KTr{GHG}I

)−1
}

=

(
1 +

1

K

)(
λmin

(
B
H

B
)
− 2

√
Tr{GHG}

K

)−1

. (5.38)

Conditioned on Q, we have Tr{G
H

G} < lnN , and since K = ω(lnN), it follows

that 2

√
Tr{GHG}

K = o(1). Moreover, conditioned on F, i.e., δ(BH) < 1 + ǫ, and

following the equations (5.19)-(5.23) with t = t+ = 1, we have

λmin

(
B
H

B
)

= 1 +O
(
N− 1

4(M−1)

)
. (5.39)

Combining the above equation with (5.38) yields

Tr
{[

H
H

H
]−1
}
≤ 1 + o(1). (5.40)

Substituting in (5.36), noting (5.37), we have

R ≥M ln(1 + P ) + o(1), (5.41)

which completes the proof of Theorem 5.3.

�

Remark - Comparing the sum-rate capacity of the system in the two cases of co-

located transmit antennas and isotropic specular components when K = ω(lnN),

it follows that in the first case, the capacity grows logarithmically with M , while

in the second case it scales linearly with M . Moreover, since (1 + x)M > 1 +Mx,

∀x,M , it follows that

Cisotropicsum ≥ Cco−locatedsum . (5.42)
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5.3.3 K = Θ(lnN), Isotropic specular components

The following theorem gives the asymptotic sum-rate in this case:

Theorem 5.4 The sum-rate capacity of the system in the case of K = Θ(lnN)

and isotropic specular components can be obtained as

Csum = M ln

(
1 + P

[
1 +

√
η

M

]2
)

+ o(1), (5.43)

where η , limN→∞
lnN
K .

Proof - Upper-bound: Similar to (5.33), we can write

Csum ≤ M ln

(
1 +

P

M
E

{∣∣∣
√
rM +

√
1 − r‖G‖max

∣∣∣
2
})

= M ln



1 +
P

M
E






∣∣∣∣∣
√
rM +

√
‖G‖2

max

1 + K

∣∣∣∣∣

2









(a)
= M ln

(
1 +

P

M

[√
rM +

√
η[1 + o(1)]

]2)

(b)
= M ln

(

1 + P

[
1 +

√
η

M

]2
)

+ o(1), (5.44)

where (a) follows from the facts that i) ‖G‖2
max = lnN + o(lnN), with probability

one, and ii) η ∼ lnN
K+1

, and (b) results from the fact that as K = Θ(lnN), we have

r ∼ 1.

Achievability; Scheduling based on both specular and scattered components: Con-

sider the following algorithm:

Algorithm 3:

• Select the thresholds t = lnN − 2.5 ln lnN and γ = 2
lnN

.
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• Construct the following set:

S0 , {k | ℜ(vk,bk) ≥ 1 − γ}, (5.45)

where ℜ(x) denotes the real part of x, and vk , Gk

‖Gk‖ , k = 1, · · · , N .

• Among the users in the following set:

S , {k ∈ S0| ‖Gk‖2 > t}, (5.46)

select one user at random. Call this user s1, and define S1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the (m − 1)th step as Am ,

{s1, · · · , sm−1}. Define Sm , S − Am.

– Define Pm as the sub-space spanned by the scattered channel compo-

nents of the users selected in the previous steps, i.e., {vsj
}m−1
j=1 .

– Let {Φj}m−1
j=1 be m− 1 orthonormal bases for Pm. Then,

sm = arg min
k∈Sm

m−1∑

j=1

∣∣vkΦH
j

∣∣ . (5.47)

– After selecting the users, the BS performs zero-forcing beam-forming on

the (whole) channel vectors of the selected users, i.e.,

x = H
−1u. (5.48)

As can be observed, the above algorithm is very similar to Algorithm 1, with

the difference in putting an extra constraint for the user selection, which is, the
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scattered and specular components of the selected users must be almost in the

same direction.

Defining the events B, C, and D as in the proof of the achievability part of

Theorem 5.1, similar to (5.15), we have

R ≥ MEH|B,C,D

{

ln

(

1 +
P

Tr
{
[HHH}]−1}

)∣∣∣∣∣B,C,D

}

×

Pr{B}Pr{C|B}Pr{D|B,C}. (5.49)

Pr{C|B} and Pr{D|B,C} can be computed from Appendix L as 1 + o
(

1
lnN

)
and

1 +O
(

1
lnN

)
, respectively. For computing Pr{B}, we first compute ξ , Pr{k ∈ S}

as follows:

ξ = Pr{ℜ(vk,bk) > 1 − γ, ‖Gk‖2 > t}
(a)
= Pr{ℜ(vk,bk) > 1 − γ}Pr{‖Gk‖2 > t}
(b)

≥ Pr{z(vk,bk) > 1 − 0.5γ}Pr
{
cos
[
Θ(vkb

H
k )
]
> 1 − 0.5γ

}
Pr{‖Gk‖2 > t}

(c)
= (0.5γ)M−1

√
γ

π

tM−1e−t

(M − 1)!
[1 +O (1/t)] (5.50)

(d)
=

√
2 ln2N

π(M − 1)!N

[
1 +O

(
ln lnN

lnN

)]
, (5.51)

where Θ(x) denotes the phase of a complex number x, and for any 1 ×M vectors

u and v, z(u,v) is defined as |uvH |2
‖u‖2‖v‖2 . In the above equation, (a) follows from the

facts that i) z(vk,bk) is a function of only the direction of Gk and for Gaussian

vectors, norm and direction are independent, and ii) bk and vk are independent of

each other. (b) comes from the fact that since ℜ(vk,bk) = z(vk,bk) cos
[
Θ(vkb

H
k )
]
,

having the events z(vk,bk) > 1 − 0.5γ and cos
[
Θ(vkb

H
k )
]
> 1 − 0.5γ yields

ℜ(vk,bk) > 1−γ, and also the fact that the norm and phase of vkb
H
k are indepen-

dent of each other. (c) results from i) as bk and vk are two independent isotropic
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unit vectors, the pdf of Z , z(vk,bk) is computed in Lemma 2.5, as

pZ(z) = (M − 1)(1 − z)M−2 =⇒ Pr{Z > 1 − γ} = γM−1, (5.52)

ii) for small enough x, cos(x) ≈ 1− x2

2
, and hence, the event cos

[
Θ(vkb

H
k )
]
> 1−

0.5γ is equivalent to |Θ(vk,bk)| < √
γ, and since Θ(vk,bk) is uniformly distributed

between 0 and 2π, we have Pr
{
cos
[
Θ(Gkb

H
k )
]
> 1 − 0.5γ

}
≈

√
γ

π
, and iii) Since

‖Gk‖2 has Chi-square distribution with 2M degrees of freedom [32], it can be

shown that

Pr{‖Gk‖2 > t} =
tM−1e−t

(M − 1)!
[1 +O (1/t)] . (5.53)

Finally, (d) follows from substitution of t = lnN − 2.5 ln lnN and γ = 2
lnN

in

(5.50).

Similar to (5.16), Tr
{[

HHH
]−1
}

can be written as

Tr
{[

H
H

H
]−1
}

= Tr






[
1

K + 1
G
H

G +

√
MK

K + 1

(
G
H

B + B
H

G
)

+
MK
K + 1

B
H

B

]−1



 .

(5.54)

In Appendix M, it has been shown that z(Gsi
,Gsj

) ≤ ǫ, for i 6= j, where ǫ =

1 − 1

1+2M(lnN)
− 1

2(M−1)
≈ 2M(lnN)−

1
2(M−1) . As a result, conditioned on B, C, and

D, we have

∣∣∣Gsi
GH
sj

∣∣∣
2

≤ t+
2
ǫ. (5.55)

Moreover, since conditioned on B, ‖Gsi
‖2 > t, we have

G
H

G � D, (5.56)
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where D is an M × M matrix with Dii = t and Dij = Gsi
GH
sj

. Since t+

t
=

1+O
(

ln lnN
lnN

)
, from (5.55) it follows that D

t
= I+ǫO(I), where O(I) denotes a matrix

whose eigenvalues are O(1). Moreover, since lnN ∼ ηK and t = lnN −2.5 ln lnN ,

we have

1

K + 1
G
H

G � ηI + o(I). (5.57)

For computing
√
MK

K+1
F, where F , GHB + BHG, we need to find Fij = Gsi

bHsj
+

bsi
GH
sj

= 2ℜ
(
Gsi

bHsj

)
= 2‖Gsi

‖ℜ
(
vsi

bHsj

)
, ∀i, j. For i = j, due to the algorithm,

we have Fii ≥ 2
√
t(1− γ). Also, for i 6= j, Fij can be upper-bounded as 2

∣∣∣Gsi
bHsj

∣∣∣.

Writing bsj
as α

‖
jvsj

+ α⊥
j v⊥

sj
, where v⊥

sj
is perpendicular to vsj

, α
‖
j = bsj

vHsj
, and

‖v⊥
sj
‖ = 1. Hence,

Fij ≤ 2
∣∣∣Gsi

bHsj

∣∣∣

= 2

∣∣∣∣Gsi

(
α
‖
jvsj

+ α⊥
j v⊥

sj

)H∣∣∣∣
(a)

≤ 2
∣∣∣Gsi

vHsj

∣∣∣+
∣∣α⊥

j

∣∣ ‖Gsi
‖

(b)

≤ 2
[√

t+ǫ+
√

2γt+
]

=
√
t+O(

√
ǫ). (5.58)

where (a) follows from i) |a+b| ≤ |a|+ |b|, ii) |α‖
j | ≤ 1, and iii)

∣∣∣Gsi
v⊥
sj

H
∣∣∣ ≤ ‖Gsi

‖,
and (b) results from i)

∣∣∣Gsi
vHsj

∣∣∣ = ‖Gsi
‖
√
z(Gsi

,Gsj
), which is conditioned on C

and D upper-bounded by
√
t+ǫ, and ii)

∣∣α⊥
j

∣∣ =
√

1 −
∣∣α‖

j

∣∣2 =
√

1 −
∣∣bsj

vHsj

∣∣2 ≤
√

1 −
[
ℜ
(
bsj

vHsj

)]2 ≤
√

1 − (1 − γ)2 ≤ √
2γ. This implies that F = 2

√
t [I +

√
ǫO(I)].

Consequently, noting that lnN ∼ ηK and t = lnN − 2.5 ln lnN , we have

√
MK

K + 1
F = 2

√
ηM [I + o(I)] . (5.59)
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Finally, having the facts that
[
BHB

]
ii

= ‖bi‖2 = 1, and for i 6= j,

∣∣∣
[
B
H

B
]
ij

∣∣∣ =
∣∣∣bsi

bHsj

∣∣∣

=

∣∣∣∣
(
α
‖
ivsi

+ α⊥
i v⊥

si

)(
α
‖
jvsj

+ α⊥
j v⊥

sj

)H∣∣∣∣
(a)

≤
∣∣∣vsi

vHsj

∣∣∣ + |α⊥
i | + |α⊥

j | + |α⊥
i ||α⊥

j |
(b)

≤ √
ǫ+ 2

√
2γ + 4γ,

= O(
√
ǫ), (5.60)

in which (a) follows from the facts that i) |α‖
i | ≤ 1, |α‖

j | ≤ 1, |α⊥
i | ≤ 1, |α⊥

j | ≤ 1,

and ii)
∣∣vsi

vHsj

∣∣ ≤ 1,
∣∣v⊥
si
vHsj

∣∣ ≤ 1,
∣∣v⊥
si
v⊥
sj

H∣∣ ≤ 1, and (b) results from the facts that

i) |α⊥
i | ≤

√
2γ and conditioned on C,

∣∣∣vsi
vHsj

∣∣∣ ≤ √
ǫ, we have BHB = I +

√
ǫO(I),

and consequently,

MK
K + 1

B
H

B = MI +
√
ǫO(I). (5.61)

Combining (5.54), (5.57), (5.59), and (5.61) yields

Tr
{[

H
H

H
]−1
}

= Tr

{[
ηI + o(I) + 2

√
ηMI + o(I) +MI +

√
ǫO(I)

]−1
}

= Tr

{[
(
√
η +

√
M)2I + o(I)

]−1
}

((a)
=

M

(
√
η +

√
M)2

+ o(1), (5.62)
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where (a) follows from the fact that [I + o(I)]−1 = I + o(I). Substituting in (5.49)

yields

R ≥ M ln

(
1 + P

[
1 +

√
η

M

]2

+ o(1)

)
Pr{B}Pr{C|B}Pr{D|B,C}

=

[
M ln

(
1 + P

[
1 +

√
η

M

]2
)

+ o(1)

][
1 +O

(
1

lnN

)]

= M ln

(

1 + P

[
1 +

√
η

M

]2
)

+ o(1). (5.63)

This completes the proof of Theorem 5.4.

�

5.4 Simulation Results

In this section, we examine the analytical results in the previous section by simula-

tion. Figures 5.1-5.3 present the plots of the sum-rate capacity versus the number

of users, for different values of Rician factor K = 1, K = 10, and K = 100, re-

spectively. The SNR (P ) is assumed to be 10 dB in these figures and the number

of transmit antennas M is set to 2. Also, the plots of the achievable sum-rate for

ZFBF and TDMA are given for comparison. The user selection algorithm used for

ZFBF is the same as Algorithm 1 in chapter 2. As can be observed in th figures

the following observations can be made: i) The sum-rate capacity of the system

in the case of isotropic specular components is larger than the sum-rate capacity

in the case of co-located transmit antennas. ii) In the case of isotropic specular

components, ZFBF performs well for all values of K, while in the case of co-located

transmit antennas the performance of ZFBF is degraded significantly by increas-

ing K. iii) in the case of co-located transmit antennas and K = 100, the sum-rate
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Figure 5.1: Sum-rate capacity versus the number of users; K = 1.

of TDMA is almost close to the sum-rate capacity, which is compatible with the

result of Theorem 5.2.

Figure 5.4 presents the plots of sum-rate capacity versus SNR for different

values of Rician factor and two cases of isotropic specular components and co-

located transmit antennas. It is assumed that N = 100 and M = 2 in this figure.

As can be observed, by increasing the value of the Rician factor, the difference

between the sum-rate capacity of the system in the two cases of isotropic specular

components and co-located transmit antennas increases. Moreover, the slope of

the curves in the case of isotropic specular components is equal to 2, regardless

of the value of K, while the slope of the curves in the case of co-located transmit

antennas decreases with K, but increases with SNR. However, for high values of

SNR, the slope of all curves approaches 2, implying that the multiplexing gain of

the system is 2, regardless of the distribution of the specular components and the

value of the Rician factor.
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Figure 5.2: Sum-rate capacity versus the number of users; K = 10.
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Figure 5.3: Sum-rate capacity versus the number of users; K = 100.
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5.5 Conclusion

In this chapter, we have derived the asymptotic sum-rate capacity of MIMO-BC

with large number of users in a Rician fading environment. It is observed that in

the region K = o(lnN), the capacity achieving strategy is exactly the same as the

Rayleigh fading case. In the region K = ω(lnN), the sum-rate capacity depends

on the distribution of the specular component; in the case of co-located transmit

antennas, it is demonstrated that TDMA achieves the sum-rate capacity and the

capacity grows logarithmically with the number of transmit antennas. In the case

of isotropically distributed specular components, ZFBF along with a user selection

strategy which selects M users with semi-orthogonal specular components is shown

to be optimum. Moreover, the sum-rate capacity grows linearly with the number

of transmit antennas.



Chapter 6

Conclusion and Future Research

This dissertation focuses on scheduling in large-scale MIMO downlink systems.

In chapter 2, we consider a Rayleigh fading MIMO-BC with large number of

users and propose an efficient sub-optimum algorithm that assigns the coordinates

of transmission space to different users in order to achieve the best performance

in terms of the sum-rate throughput. It is assumed that the zero-forcing beam-

forming is used at the base station as the precoding scheme. The algorithm starts

by setting a threshold value. By applying Singular Value Decomposition (SVD)

to all users’ channel matrices, only the eigenvectors whose corresponding singular

values are above the set threshold are considered. Then, among these candidate

eigenvectors, the algorithm chooses a set of size M which are nearly orthogonal

to each other. For the asymptotic case of N → ∞, we give the necessary and

sufficient conditions for the threshold value in order to achieve the optimum sum-

rate capacity, such that the difference between the sum-rates approaches zero.

Moreover, it is demonstrated that the complexity of search and the amount of

feedback required at the base station is significantly reduced. Simulation results

209
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indicate that the proposed algorithm performs well for practical scenarios as well.

In chapter 3, a large-scale Rayleigh fading MIMO-BC is considered, in which

the channel state information is provided from the users to the transmitter via

feedback links. First, we define the amount of feedback as the average number

of users who send information to the BS. In the fixed and low SNR regimes, our

results show that it is not possible to achieve the maximum sum-rate with a finite

amount of feedback. Moreover, in the fixed SNR regime, in order to reduce the

gap between the achieved sum-rate and the optimum value to zero, the amount

of feedback must be greater than ln ln lnN . In the second part, we define the

amount of feedback as the number of information bits sent to the BS. In the fixed

SNR regime, our analysis shows that the minimum amount of feedback, in order to

reduce the gap to the optimum sum-rate to zero, scales as Θ(ln ln lnN), which can

be achieved using the Random Beam-Forming scheme proposed in [26]. However,

the optimality of Random Beam-Forming only holds for the region lnP 6= Ω(lnN).

In the regime of lnP = Ω(lnN), we consider two cases. In the case of K < M , we

prove that the minimum amount of feedback bits to reduce the gap between the

achievable sum-rate and the maximum sum-rate to zero grows logarithmically with

SNR, which is achievable by the “Generalized Random Beam-Forming” scheme,

proposed in [51]. In the case of K = M , we show that by using the Random Beam-

Forming scheme and the amount of feedback not growing with SNR the maximum

sum-rate capacity is achievable.

In chapter 4, we consider a hard delay constraint D for each user, which is

enforced by the application or physical limitations (e.g. buffer size). We define

a dropping event as the event that there exists a user who does not meet the

desired delay constraint. We propose a scheduling scheme for maximizing the
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throughput of the system, while satisfying the delay constraint for all users. The

proposed scheduling algorithm works based on setting a threshold on the channel

gain of the users and among the users with channel gains above the threshold,

the user with the minimum Packet Expiry Countdowns (PEC), which is defined

as the remaining time to the expiration of that users’ packet, is served. By doing

asymptotic analysis, it is proved that by selecting the threshold level properly,

the proposed scheduling algorithm achieves the maximum throughput, maximum

fairness, and minimum delay in the network, simultaneously, in the asymptotic

case of N → ∞. The analysis is based on characterizing the probability mass

function of PEC in terms of N , D , and the threshold value, and evaluating

the network dropping probability accordingly. It is also demonstrated that the

Round-Robin (RR) scheduling, which focuses on maximizing the fairness and min-

imizing the delay in the network, and Multi-User Diversity (MUD) scheduling,

which focuses on maximizing the throughput in the system, are two extreme cases

of the proposed algorithm, where the former suffers from the weak performance

in terms of throughput and the latter increases the network delay by a factor of

logN . Moreover, we have introduced a new notion of performance in the network,

called “Average Throughput”, which is defined as the product of the packet arrival

rate and the amount of information per channel use in each packet, and proved

that the proposed algorithm maximizes the Minimum Average Throughput in a

broadcast channel. It is also established that the proposed algorithm reaches the

boundaries of the capacity region and stability region of the underlying system,

simultaneously, in the asymptotic case of N → ∞. The proposed algorithm is also

generalized to MIMO Broadcast Channels (MIMO-BC) by modifying the Random

Beam-Forming scheme proposed in [26]. It is shown that the proposed algorithm is
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capable of achieving the maximum throughput, maximum fairness, and minimum

delay, simultaneously, in the asymptotic case of N → ∞, in a MIMO-BC.

In chapter 5, we consider a Rician MIMO-BC, in which a transmitter equipped

with M antennas communicates with N (N ≫ 1) single-antenna users. The chan-

nels are assumed to be perfectly known at both the transmitter and receiver sides.

The asymptotic (in terms of the number of users) sum-rate capacity of the system,

as well as the capacity-achieving strategies, are derived. The main results of the

chapter are as follows: i) in the region of K = o(logN), where K denotes the Rician

factor, the sum-rate capacity scales as M log(1 + P
M
η), where P denotes the SNR

and η , logN
1+K , which is achieved by Zero-Forcing Beam-Forming (ZFBF) along

with a low-complexity user selection algorithm that considers only the scattered

component of the users’ channels, ii) in the region K = ω(logN), in the case of co-

located transmit antennas, the capacity scales as log(1 +MP ), which is achieved

by TDMA, iii) in the region K = ω(logN), in the case of isotropically-distributed

specular components, the sum-rate capacity behaves as M log(1 + P ), which is

achieved by ZFBF, along with a user selection algorithm that considers only the

specular component of the users’ channels. Simulation results confirm the validity

of analytical results.

6.1 Future Research Directions

The dissertation can be continued in several directions as briefly explained in what

follows.

The results of the chapters 2 and 3 is based on the assumption that the feedback

links between the transmitter and the receivers are noise-less. A natural extension
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to these results can be considering noise in the feedback links and study the effect

of the feedback channel noise on the results and also efficient ways of channel

quantization and transmission through the feedback links.

In chapters 2-4, it is assumed that the channels are block fading, i.e., there is no

correlation between the channel gains in the consecutive blocks, and also, there is

no correlation between the transmit antennas or any of the receivers’ antennas. It

is interesting to investigate the effect of the temporal or spatial correlation on the

results of these chapters. Moreover, in chapter 4, the arrival process of the packets

is assumed to be deterministic with a constant rate. An extension to the results

of this chapter is to consider other arrival processes (like Poisson) and study the

possibility of simultaneously achieving the maximum throughput and maximum

short-term fairness in this scenario.

In chapter 5, the asymptotic sum-rate capacity of the systems is derived in

terms of the number of users and the Rician factor. However, the SNR is assumed

to be fixed throughout this chapter. Hence, it is interesting to consider a variable

SNR scenario (like in chapter 3), and investigate the behavior of the sum-rate

capacity with SNR.



Appendix A

Proof of Lemma 2.5

In this appendix, we derive the probability density function of O(i, j) = |VH
i,maxVj,max|2.

For simplicity of notation, Vi,max is denoted by φi, and Vj,max is denoted by φj.

Since φi and φj are the eigenvectors of two independent matrices whose entries

are independent CN (0, 1), it follows from [36] that φi and φj are independent

isotropically distributed unit vectors in CM , with the following probability density

function:

fφi
(φ) = fφj

(φ) =
Γ(M)

πM
δ(φHφ− 1). (A.1)

Moreover, this probability density function does not change by multiplying any

M ×M unitary matrix Θ, i.e.,

fΘφi
(φ) = fφi

(φ). (A.2)
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Now, define u = φHi φj, and let Θ be a unitary matrix whose first row is equal to

φi. We can write

u = φHi ΘHΘφj

= [Θφi]
H Θφj

= [1 0 · · · 0]φ
′
j

= φ
′
j(1), (A.3)

where φ
′
j = Θφj, and φ

′
j(1) is the first element of φ

′
j. Since Θ is unitary, φj and

φ
′
j have the same pdf. Hence, the probability density function of φ

′
j(1) is the same

as that of φj(1), and can be computed as [36]

fu(u) = fφj(1)(u) =
M − 1

π

(
1 − |u|2

)M−2
. (A.4)

Using the above equation, the probability density function of O(i, j) = |u|2 will be

equal to

fO(i,j)(z) = f|u|2(z)

=
f|u|(

√
z)

2
√
z

=
2π

√
zfu(

√
z)

2
√
z

= (M − 1)(1 − z)M−2. (A.5)



Appendix B

Proof of (2.63)

Since the selected vectors
{
Vsj ,max

}i−1

j=1
are nearly orthogonal to each other, they

form a basis for the sub-space spanned by them. We call this sub-space Pi−1. In

the following, we denote Vk,max, the eigenvector corresponding to the maximum

singular value of user k, by φk for the simplicity of notation.

Any vector v ∈ CM can be represented as

v = v⊥ +

i−1∑

j=1

〈
φsj

,v
〉
φsj

, (B.1)

where v⊥ is the project of v on the null space of Pi−1, denoted by P⊥
i−1, and

〈
φsj

,v
〉

= φHsj
v.

Defining the event Ci = {O(s1, k) < α, · · · ,O(si−1, k) < α} 1, the conditional

probability in (2.63) can be written as

κi = Prob {O(si, k) < α| Ci} . (B.2)

1Recall the definition of α which is ǫ(N)
M

.
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Using (2.54), we can write Ci by

Ci =
{
|φHs1φk|2 < α, · · · , |φHsi−1

φk|2 < α
}
. (B.3)

Hence, (B.2) can be expressed as

κi = Prob
{
|φHsi

φk|2 < α
∣∣∣ |φHs1φk|2 < α, · · · , |φHsi−1

φk|2 < α
}
. (B.4)

Using (B.1), we can write φk as

φk = φ⊥
k +

i−1∑

j=1

〈
φsj

, φk
〉
φsj

, (B.5)

and φsi
as

φsi
= φ⊥

si
+

i−1∑

j=1

〈
φsj

, φsi

〉
φsj

. (B.6)

Hence, |φHsi
φk|2 can be computed as,

|φHsi
φk|2 =

∣∣∣
〈
φ⊥
si
, φ⊥

k

〉
+

i−1∑

j=1

〈
φsi
, φsj

〉 〈
φsj

, φk
〉

+

i−1∑

j=1

i−1∑

l=1
l 6=j

〈
φsi
, φsj

〉
〈φsl

, φk〉
〈
φsj

, φsl

〉 ∣∣∣
2

. (B.7)

Defining

u1 =
〈
φ⊥
si
, φ⊥

k

〉
,

u2 =

i−1∑

j=1

〈
φsi
, φsj

〉 〈
φsj

, φk
〉
,

u3 =
i−1∑

j=1

i−1∑

l=1
l 6=j

〈
φsi
, φsj

〉
〈φsl

, φk〉
〈
φsj

, φsl

〉
, (B.8)



Proof of (2.63) 218

we have

|φHsi
φk|2 = |u1|2 + |u2|2 + |u3|2 + 2ℜ{u1u

H
2 } + 2ℜ{u2u

H
3 } + 2ℜ{u1u

H
3 }, (B.9)

where ℜ{x} denotes the real part of x. An upper bound for |φHsi
φk|2 is given by

|φHsi
φk|2 < |u1|2 + |u2|2 + |u3|2 + 2|u1|(|u2| + |u3|) + 2|u2||u3|. (B.10)

Having the facts that ‖φ⊥
k ‖2 < ‖φk‖2 = 1, and ‖φ⊥

si
‖2 < ‖φsi

‖2 = 1, we can write

|φHsi
φk|2 <

|u1|2
‖φ⊥

k ‖2‖φ⊥
si
‖2

+ 2
|u1|

‖φ⊥
k ‖‖φ⊥

si
‖(|u2| + |u3|) + (|u2| + |u3|)2

= O
(
φ⊥
k , φ

⊥
si

)
+ 2
√

O
(
φ⊥
k , φ

⊥
si

)
(|u2| + |u3|) + (|u2| + |u3|)2

=

(√
O
(
φ⊥
k , φ

⊥
si

)
+ |u2| + |u3|

)2

. (B.11)

Also, a lower bound for |φHsi
φk|2 can be given as

|φHsi
φk|2 > |u1|2 − 2|u1|(|u2| + |u3|) − 2|u2||u3|

> O
(
φ⊥
k , φ

⊥
si

)
‖φ⊥

k ‖2‖φ⊥
si
‖2 − 2

√
O
(
φ⊥
k , φ

⊥
si

)
(|u2| + |u3|)‖φ⊥

k ‖‖φ⊥
si
‖ − 2|u2||u3|

> O
(
φ⊥
k , φ

⊥
si

)
‖φ⊥

k ‖2‖φ⊥
si
‖2 − 2

√
O
(
φ⊥
k , φ

⊥
si

)
(|u2| + |u3|) − 2|u2||u3|. (B.12)

Using (B.5) and (B.6), we have

‖φ⊥
k ‖2 = 1 −

i−1∑

j=1

|φHsj
φk|2 +

i−1∑

j=1

i−1∑

l=1
l 6=j

〈
φk, φsj

〉 〈
φsj

, φsl

〉
〈φsl

, φk〉 , (B.13)

and

‖φ⊥
si
‖2 = 1 −

i−1∑

j=1

|φHsj
φsi

|2 +

i−1∑

j=1

i−1∑

l=1
l 6=j

〈
φsi
, φsj

〉 〈
φsj

, φsl

〉
〈φsl

, φsi
〉 . (B.14)



Proof of (2.63) 219

Conditioned on Ci, and knowing that the set {φsj
}ij=1 is ǫ(N)-orthogonal (or equiva-

lently, Mα-orthogonal, i.e., |φHsj
φsl

|2 < Mα, j, l = 1, · · · , i), from (B.8) we conclude

the followings:

|u2| < (i− 1)
√
Mα,

|u3| < (i− 1)(i− 2)Mα3/2,

‖φ⊥
k ‖2 > 1 − (i− 1)α− (i− 1)(i− 2)

√
Mα3/2,

‖φ⊥
si
‖2 > 1 − (i− 1)Mα− (i− 1)(i− 2)M3/2α3/2. (B.15)

Therefore, using (B.11), (B.12), and (B.15) the upper bound and lower bound for

|φHsi
φk|2 can be rewritten as

|φHsi
φk|2 <

(√
O
(
φ⊥
k , φ

⊥
si

)
+ (i− 1)

√
Mα+ (i− 1)(i− 2)Mα3/2

)2

, (B.16)

and

|φHsi
φk|2 > A.O

(
φ⊥
k , φ

⊥
si

)
− 2B

√
O
(
φ⊥
k , φ

⊥
si

)
− C, (B.17)

where

A =
(
1 − (i− 1)α− (i− 1)(i− 2)

√
Mα3/2

)
×

(
1 − (i− 1)Mα− (i− 1)(i− 2)M

√
Mα3/2

)
,

B = (i− 1)
√
Mα + (i− 1)(i− 2)Mα3/2, and C = 2(i− 1)2(i− 2)M3/2α5/2.

Using (B.2), (B.16), and (B.17) we have

κi > Prob

{[√
O
(
φ⊥
k , φ

⊥
si

)
+ (i− 1)

√
Mα+ (i− 1)(i− 2)Mα3/2

]2

< α

}

= Prob

{
O
(
φ⊥
k , φ

⊥
si

)
<
[√

α− (i− 1)
√
Mα + (i− 1)(i− 2)Mα3/2

]2}

= Prob
{
O
(
φ⊥
k , φ

⊥
si

)
< α− 2(i− 1)

√
Mα3/2 +O(α2)

}
, (B.18)
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and

κi < Prob

{
A.O

(
φ⊥
k , φ

⊥
si

)
− 2B

√
O
(
φ⊥
k , φ

⊥
si

)
− C < α

}

= Prob

{√
O
(
φ⊥
k , φ

⊥
si

)
<
B +

√
B2 + A(C + α)

A

}

= Prob

{√
O
(
φ⊥
k , φ

⊥
si

)
<

√
α + (i− 1)

√
Mα +O(α3/2)

}

= Prob
{
O
(
φ⊥
k , φ

⊥
si

)
< α + 2(i− 1)

√
Mα3/2 +O(α2)

}
. (B.19)

Since φ⊥
k and φ⊥

si
are the projections of φk and φsi

over P⊥
i−1, a (M − i + 1)-

dimensional subspace of CM×1,
φ⊥k

‖φ⊥k ‖ , and
φ⊥si

‖φ⊥si
‖ , can be considered as uniformly

distributed unit vectors in P⊥
i−1. Therefore, using Lemma 2.5, the probability

density function for O
(
φ⊥
k , φ

⊥
si

)
can be given as

fO(φ⊥k ,φ⊥si
)(z) = (M − i)(1 − z)M−i−1. (B.20)

Having (B.20), and using (B.18) and (B.19) we can write

κi <

∫ α+2(i−1)
√
Mα3/2+O(α2)

0

(M − i)(1 − z)M−i−1dz

= 1 −
[
1 − α− 2(i− 1)

√
Mα3/2 +O(α2)

]M−i

= (M − i)α + 2(M − i)(i− 1)
√
Mα3/2 +O(α2), (B.21)

and

κi >

∫ α−2(i−1)
√
Mα3/2+O(α2)

0

(M − i)(1 − z)M−i−1dz

= 1 −
[
1 − α+ 2(i− 1)

√
Mα3/2 +O(α2)

]M−i

= (M − i)α− 2(M − i)(i− 1)
√
Mα3/2 +O(α2). (B.22)

From (B.21) and (B.22) we conclude

κi = (M − i)α +O(α3/2). (B.23)



Appendix C

Proof of Lemma 2.8

Let us define

p = Prob {λmax(Hk) > t} , (C.1)

where t = lnN + (M +K − 1) ln lnN . Using (2.25), the above probability proba-

bility can be written as

p =
tM+K−2 exp(−t)

Γ(M)Γ(K)

[
1 +O(t−1)

]

=
[lnN + (M +K − 1) ln lnN ]M+K−2 +O

(
[lnN ]M+K−3

)

Γ(M)Γ(K)elnN+(M+K−1) ln lnN

=
1

N lnNΓ(M)Γ(K)
+O

(
ln lnN

N [lnN ]2

)
. (C.2)
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Using the above equation, the probability in (2.75) can be computed as,

η = 1 − (1 − p)N

= 1 − exp
(
−Np +O(Np2)

)

= 1 − exp

[
− 1

Γ(M)Γ(K) lnN
+O

(
ln lnN

[lnN ]2

)]

= 1 −
[
1 − 1

Γ(M)Γ(K) lnN
+O

(
ln lnN

[lnN ]2

)]

= O

(
1

lnN

)
. (C.3)



Appendix D

We have observed that B = HH
H is an M ×M matrix whose diagonal elements

behave like lnN + f(N), where f(N) = o(lnN), and its non-diagonal elements

scale as O(ǫ(N) lnN). For simplicity of notation, we define θ(N) = lnN + f(N)

and ϕ(N) = O(ǫ(N) lnN).

Let us define Am as a m×m matrix whose diagonal elements scale like θ(N), and,

its non-diagonal elements scale like ϕ(N). Hence, all diagonal elements of B
−1 can

be written as
|AM−1|
|AM | .

It can be easily shown that

|Am| = [θ(N)]m +O([θ(N)]m−2[ϕ(N)]2)

= [lnN ]m +O ([lnN ]mh(N)) , m = 2, · · · ,M. (D.1)

where h(N) = max
(
f(N)
lnN

, ǫ(N)
)

= o(1). Consequently, we can write any diagonal

element of B
−1 as

[B−1]ii =
[lnN ]M−1 +O

(
[lnN ]M−1h(N)

)

[lnN ]M +O ([lnN ]Mh(N))

= [lnN ]−1 +O
(
h(N)[lnN ]−1

)
. (D.2)
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Appendix E

Proof of Lemma 2.9

For the proposed method, we have seen that the achievable sum-rate can be lower-

bounded as

RProp ≥ EH




M ln



1 +
P

Tr
{[

H
H
H
]−1
}










≥ M lnP −MEH

{
ln
(
Tr
{[

H
H
H
]−1
})}

. (E.1)

where H is the “ selection coordinate matrix”, defined in (2.9).

In [37], it has been shown that

‖bi‖2‖ai‖2 ≤ δ(B), i = 1, · · · ,M, (E.2)

where bi, i = 1, · · · ,M , are the columns of B, a M × M matrix with the or-

thogonality defect δ(B), and ai, i = 1, · · · ,M , are the columns of A = (B−1)H .

Similarly, we can write

‖bi‖2‖ai‖2 ≤ δ(A), i = 1, · · · ,M. (E.3)
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Defining B = H
−1, and using the above equation, we can write

Tr
([

HH
H
]−1
)

=
M∑

i=1

‖bi‖2

≤
M∑

i=1

δ(HH)

‖ai‖2
, (E.4)

where ai, is the ith column of H
H, which is equal to gHsi

. Having the fact that

‖gsi
‖2 ≥ t (by the algorithm), we can rewrite (E.4) as

Tr
([

HH
H
]−1
)

≤ Mδ
(
H

H
)

t
. (E.5)

Defining X(H) = ln Tr
([

HH
H
]−1
)
, Y (H) = ln

Mδ
(
H

H
)

t
, Z(H) = ln δ(HH),

and FW (.) as the CDF of the random variable W , we have

E {X(H)} ≤ E {Y (H)}

= ln
M

t
+ E{Z(H)}

= ln
M

t
+

∫ ∞

0

zfZ(H)(z)dz

= ln
M

t
+

∫ ∞

0

[
1 − FZ(H)(z)

]
dz

= ln
M

t
+

∫ ∞

1

[
1 − Fδ(HH)(e

z)
]
dz. (E.6)

It can be easily shown that δ(HH) = δ(Ψ), where Ψ = [Ψ1| · · · |ΨM ] is the matrix

consisting of the normalized columns of H
H, i.e., Ψi =

H
H
i

‖HH
i‖

, i = 1, · · · ,M .

Since the rows of H are chosen randomly among the pre-selected eigenvectors, and

due to the fact that the eigenvalues of a zero-mean circularly symmetric Gaussian

matrix are independent of their corresponding eigenvectors, Ψ can be considered
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as a M ×M matrix whose column are M randomly selected unit vectors. We have

δ(Ψ) =
1

|Ψ|2

=
1

∏M−1
i=1 (1 − γi)

, (E.7)

where γi is the square norm of the project of Ψi+1 over the sub-space spanned

by {Ψj}ij=1, Pi. Now, consider Φ1, · · · ,ΦM , to be an orthonormal basis for the

M-dimensional space, where {Φj}ij=1 are a basis for Pi. Therefore, Ψi+1 can be

represented as (ψ1,i+1, · · · , ψi,i+1, 0, · · · , 0), where ψj,i+1 is the project of Ψi+1 over

Φj. In [36], the joint probability density function of Ψ
(i)
i+1 = (ψ1,i+1, · · · , ψi,i+1) is

given as,

f
Ψ

(i)
i+1

(ψ) =
Γ(M)

πiΓ(M − i)

(
1 − ‖ψ‖2

)M−i−1
. (E.8)

Using the above equation, the probability density function of γi = ‖Ψ(i)
i+1‖2 can be

written as

fγi
(z) =

Γ(M)

Γ(i)Γ(M − i)
zi−1(1 − z)M−i−1, (E.9)

which corresponds to the Beta distribution with parameters (i,M − i).

Using (E.7), (E.9), and independence of γi’s [4], we have

Prob {δ(Ψ) > r} ≤ Prob
{

max
i
γi > 1 − r−

1
M−1

}

= 1 −
M−1∏

i=1

Ii,M−i
(
1 − r−

1
M−1

)
, r ≥ 1, (E.10)

where Ir,s(.) denotes the Incomplete Beta Function, with parameters (r, s). In [38],

it has been shown that

Ir,s(x) =
Γ(r + s)xr(1 − x)s−1

Γ(r + 1)Γ(s)
+ Ir+1,s−1(x), ∀r, s ∈ Z

+, (E.11)
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which incurs that

Ir,s(x) ≥ Ir+1,s−1(x), ∀x ∈ [0, 1]. (E.12)

Consequently,

Ii,M−i(x) ≥ IM−1,1(x)

= xM−1, i = 1, · · · ,M − 1. (E.13)

Using (E.13) and (E.10), we can write,

Prob {δ(Ψ) > r} ≤ 1 −
(
1 − M−1

√
1/r
)(M−1)2

. (E.14)

Combining (E.6) and (E.14), we have

E{X(H)} ≤ ln
M

t
+

∫ ∞

1

[
1 −

(
1 − e

−r
M−1

)(M−1)2
]
dr

= ln
M

t
+

(M−1)2∑

m=1

(
(M − 1)2

m

)
(−1)m+1

∫ ∞

1

e−
mr

M−1dr

= ln
M

t
+

(M−1)2∑

m=1

(
(M − 1)2

m

)
(−1)m+1M − 1

m
e

−m
M−1

= ln
M

t
+ (M − 1)

(M−1)2∑

m=1

1 −
(
1 − e−

1
M−1

)m

m

≤ ln
M

t
+ (M − 1)

(M−1)2∑

m=1

1

m

≤ ln
M

t
+ (M − 1)[2 ln(M − 1) + 1]. (E.15)

Substituting (E.15) into (E.1) and having t = lnN , we get

RProp ≥M ln

(
P

M
lnN

)
−M(M − 1)[2 ln(M − 1) + 1]. (E.16)
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As a result,

lim
N→∞

RProp

Csum
= 1. (E.17)



Appendix F

Proof of Lemma 2.11

Achievability of the maximum multiplexing gain

Using (E.1), the multiplexing gain achieved by the proposed method, denoted by

rProp, can be lower-bounded as

rProp ≥ lim
P→∞

M lnP −MEH

{
ln
(
Tr
{[

H
H
H
]−1
})}

lnP

= M −M lim
P→∞

EH

{
ln Tr

{[
HH

H
]−1
}}

lnP
. (F.1)

Following the proof of Lemma 2.9 in Appendix E, and using equations (E.6),

and (E.15), and the union bound for the probability, we have

EH

{
ln Tr

{[
HH

H
]−1
}}

≤ ln
M

t
+

(
L

M

)∫ ∞

1

[
1 −

(
1 − e

−r
M−1

)(M−1)2
]
dr

≤ ln
M

t
+ (M − 1)[2 ln(M − 1) + 1]

(
L

M

)
, (F.2)

where L is the number of preselected eigenvectors in the first step of Algorithm 1.

Since L ≤ NK, we have EH

{
lnTr

{[
HH

H
]−1
}}

<∞, the second term in (F.1)
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approaches zero, and as a result rProp ≥M .

For the optimum strategy, the sum-rate can be upper-bounded as [39],

Csum ≤ME‖H‖max

{
ln

(
1 +

P

M
‖H‖2

max

)}
, (F.3)

where ‖H‖2
max is the maximum Frobenius norm of all channel matrices. This ran-

dom variable can be considered as the maximum of N χ2(2MK) random variables

which has the pdf of the form

f‖H‖2
max

(x) = N
xMK−1 exp(−x)

Γ(MK)
γ(x,MK)N−1, (F.4)

where γ(x,MK) =
∫∞
x

uMK exp(−u)
Γ(MK)

du. So, using (F.3) and (F.4), we can write the

upper bound for the sum-rate as

Csum ≤ M

∫ ∞

0

ln(1 +
P

M
x)N

xMK−1 exp(−x)
Γ(MK)

γ(x,MK)N−1dx. (F.5)

Thus, using the above equation, we have

rOpt = lim
P→∞

Csum

lnP

≤
M lnP +

∫∞
0
M ln(

x

M
)N

xMK−1 exp(−x)
Γ(MK)

γ(x,MK)N−1dx

lnP

= M. (F.6)

Since for any values of P and N , Csum(P,N) is the maximum achievable sum-

rate , rOpt will be the maximum achievable multiplexing gain in MIMO-BC. Hence,

using the above equation and having the fact that rProp ≥M , we conclude rOpt =

rProp = M Therefore, the proposed method achieves the maximum multiplexing

gain in MIMO-BC.
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Achievability of the optimum multiuser diversity

gain

In the proof of theorem 2, we observed that the sum-rate achieved by the proposed

strategy, as well as the optimum one, scales like M ln
(
P
M

lnN
)
. Hence, using (F.8)

the multiuser diversity gain for the optimal scheme, denoted by dOpt is equal to

dOpt = lim
N→∞

Csum

rOpt ln lnN

= lim
N→∞

M ln

(
P

M
lnN

)

M ln lnN

= 1. (F.7)

and for the proposed method,

dProp = lim
N→∞

RProp

rProp ln lnN

= lim
N→∞

M ln

(
P

M
lnN

)

M ln lnN

= 1. (F.8)

Therefore, the proposed method achieves the maximum multiuser diversity gain

in MIMO-BC. This, completes the proof of Lemma 2.11.



Appendix G

Multiplexing Gain in Random

Selection Method

In this appendix, we prove that the Random selection strategy achieves the max-

imum multiplexing gain, i.e., rRS = M . For this purpose, we consider the the

precoding scheme of zero-forcing beam-forming. We assume that the coordinates

are chosen randomly among the eigenvectors corresponding to the maximum sin-

gular value of each user’s channel matrix. Therefore, similar to (F.1), we have

rZFBF
RS ≥ M −M lim

P→∞

EH

{
ln Tr

{[
H

H
H
]−1
}}

lnP
, (G.1)

where H =
[
gTs1,max

∣∣gTs2,max

∣∣ · · ·
∣∣gTsM ,max

]T
, and the users s1, · · · , sM are selected

randomly. Defining B = H
−1, similar to (E.4), we can write

Tr
{[

HHH]−1
}

≤
M∑

i=1

δ(HH)

‖ai‖2
, (G.2)
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where ai is the ith column of H
H, which is equal to gsi

. Noting that ‖gsi
‖2 =

λmax(Hsi
), we have

Tr
{[

HHH]−1
}

≤
M∑

i=1

δ(HH)

λmax(Hsi
)

≤
M∑

i=1

Mδ(HH)

‖Hsi
‖2

. (G.3)

Using (E.6), (E.15), and (G.3) we can write

EH

{
ln Tr

{[
H

H
H
]−1
}}

≤ E

{
ln

(
M∑

i=1

Mδ(HH)

‖Hsi
‖2

)}

= lnM + E
{
ln δ(HH)

}
+ E

{

ln

(
M∑

i=1

1

‖Hsi
‖2

)}

≤ lnM + (M − 1)[2 ln(M − 1) + 1] +

ln

[
ME

{
1

‖Hsi
‖2

}]

≤ M [2 ln(M − 1) + 1] +

ln

[∫ ∞

0

x−1.
xMK−1 exp(−x)

Γ(MK)
dx

]

= M [2 ln(M − 1) + 1] − ln(MK − 1). (G.4)

Using (G.1) and (G.4), and noting that rZFBF
RS ≤ rRS ≤M , we conclude rRS = M .



Appendix H

To evaluate vHsm
Φsm, we define Pm as the sub-space defined by the vectors {v̂si

}i6=m.

We can write

vsm = v‖
sm

+ v⊥
sm
, (H.1)

where v
‖
sm is the projection of vsm over Pm, and v⊥

sm
is the projection of vsm over

P
⊥
m, and P

⊥
m denotes the sub-space perpendicular to Pm. Since Φm is perpendic-
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ular to all the vectors in the set {v̂si
}i6=m, it belongs to P

⊥
m, and we have

∣∣vHsm
Φsm

∣∣2 =
∣∣∣
(
v‖
sm

+ v⊥
sm

)H
Φsm

∣∣∣
2

=
∣∣ΦH

sm
v⊥
sm

∣∣2

= ‖v⊥
sm
‖2

= 1 − ‖v‖
sm
‖2

(a)≈ 1 −
∑

i6=m

∣∣vHsm
v̂si

∣∣2

(b)

≥ 1 −
m−1∑

i=1

β −
M∑

i=m+1

∣∣vHsm
v̂si

∣∣2

(c)
= 1 − (m− 1)β −

M∑

i=m+1

∣∣∣
(
α‖
mv̂sm + v̂⊥

sm

)H (
γ
‖
i vsi

+ v⊥
si

)∣∣∣
2

(d)

≥ 1 − (m− 1)β −
M∑

i=m+1

(∣∣v̂Hsm
vsi

∣∣+ ‖v̂⊥
sm
‖ + ‖v⊥

si
‖
)2

(e)

≥ 1 − (m− 1)β −
M∑

i=m+1

(√
β +

√
µm +

√
µi

)2

(f)

≥ 1 − (m− 1)β − 3

M∑

i=m+1

(β + µm + µi)

(g)

≥ 1 − (3M − 2m− 1)β − 6(M −m)ǫ. (H.2)

In the above equation, (a) follows from the fact that {v̂si
}i6=m form an semi-

orthogonal basis for P i. To see this, we evaluate
∣∣v̂Hsi

v̂sj

∣∣2, i, j 6= m, for i > j. For

this purpose, we write v̂si
as γ

‖
i vsi

+v⊥
si
, in which v⊥

si
denotes the projection of v̂si
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over the subspace perpendicular to vsi
, and γ

‖
i , vHsi

v̂si
. Then, we have

∣∣v̂Hsi
v̂sj

∣∣2 =

∣∣∣∣
(
γ
‖
i vsi

+ v⊥
si

)H
v̂sj

∣∣∣∣
2

≤
(∣∣γ‖i

∣∣ ∣∣vHsi
v̂sj

∣∣+
∣∣∣
[
v⊥
si

]H
v̂sj

∣∣∣
)2

≤
(√

β + ‖v⊥
si
‖
)2

≤
(√

β +
√
ǫ
)2

= o(1), (H.3)

where the first inequality results from the fact that |a + b|2 ≤ (|a| + |b|)2, ∀a, b,
the second inequality follows from the facts that

∣∣γ‖i
∣∣ ≤ 1,

∣∣vHsi
v̂sj

∣∣ <
√
β (by the

algorithm), and
∣∣∣
[
v⊥
si

]H
v̂sj

∣∣∣ ≤ ‖v⊥
si
‖, the third inequality results from the fact that

‖v⊥
si
‖2 = 1−

∣∣vHsi
v̂si

∣∣2, which is by the algorithm upper-bounded by ǫ, and finally,

the last line follows from the assumptions of ǫ = o(1) and β = o(1).

The inequality (b) in (H.2) comes from the fact that
∣∣vHsm

v̂si

∣∣2 < β for i < m by

the algorithm. The equality (c) results from writing vsm as α
‖
mv̂sm + v̂⊥

sm
and v̂si

as

γ
‖
i vsi

+ v⊥
si

with the assumption of v̂Hsm
v̂⊥
sm

= 0, and vHsi
v⊥
si

= 0. Hence, it follows

that α
‖
m = v̂Hsm

vsm , γ
‖
i = vHsi

v̂si
, ‖v̂⊥

sm
‖2 = 1 −

∣∣α‖
m

∣∣2, and ‖v⊥
si
‖2 = 1 −

∣∣γ‖i
∣∣2.

Inequality (d) follows from the fact that
∣∣γ‖i
∣∣ < 1,

∣∣α‖
m

∣∣ < 1,
∣∣v̂Hsm

v⊥
si

∣∣ <
∥∥v⊥

si

∥∥

and
∣∣vHsi

v̂⊥
sm

∣∣ <
∥∥v̂⊥

sm

∥∥. Inequality (e) comes from the fact that
∣∣v̂Hsm

vsi

∣∣2 < β for

i > m by the algorithm, and defining µm ,
∥∥v̂⊥

sm

∥∥2
= 1 −

∣∣vHsm
v̂sm

∣∣2 and µi ,
∥∥v⊥

si

∥∥2
= 1−

∣∣vHsi
v̂si

∣∣2. Inequality (f) comes from the fact that ∀a, b, c, (a+b+c)2 ≤
3(a2 + b2 + c2), and finally, (g) results from the fact that

∣∣vHsm
v̂sm

∣∣2 > 1 − ǫ for all

1 ≤ m ≤ M . From the above equation, it can be observed that having β = o(1)

and ǫ = o(1) yields
∣∣vHsm

Φsm

∣∣2 = 1 + o(1).
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Appendix I

Proof of (4.100)

From the definition of νi(t), we have

Pr{νi(t) = l1, νj(t) = l1} = Pr

{
νi(ψ) = D, νj(ψ) = D,

t⋂

l=ψ

X
C
i (l),

t⋂

l=ψ

X
C
j (l)

}

(a)
= Pr

{
Xi(ψ − 1),Xj(ψ − 1),

t⋂

l=ψ

X
C
i (l),

t⋂

l=ψ

X
C
j (l)

}

= Pr {Xi(ψ − 1)}Pr {Xj(ψ − 1) |Xi(ψ − 1)} ×

Pr

{
t⋂

l=ψ

X
C
i (l)

∣∣∣∣∣ Xi(ψ − 1),Xj(ψ − 1)

}

×

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xi(ψ − 1),Xj(ψ − 1),

t⋂

l=ψ

X
C
i (l)

}

(b)
= Pr {Xi(ψ − 1)}Pr {Xj(ψ − 1) |Xi(ψ − 1)} ×

Pr

{
t⋂

l=ψ

X
C
i (l)

∣∣∣∣∣ Xi(ψ − 1)

}
×

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xi(ψ − 1),Xj(ψ − 1),
t⋂

l=ψ

X
C
i (l)

}

(c)
= Pr{νi(t) = l1}Pr {Xj(ψ − 1) |Xi(ψ − 1)} ×

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xi(ψ − 1),Xj(ψ − 1),

t⋂

l=ψ

X
C
i (l)

}

,

(I.1)
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where ψ , t−D+l1. In the above equation, (a) comes from the fact that the events

νi(ψ) = D and Xi(ψ−1) are equivalent 1. (b) results from the fact that conditioned

on Xi(ψ − 1),
⋂t
l=ψ X C

i (l) is independent of Xj(ψ − 1) 2. Finally, (c) follows

from writing Pr {Xi(ψ − 1)}Pr
{⋂t

l=ψ X C
i (l)

∣∣∣ Xi(ψ − 1)
}

as Pr{νi(t) = l1}. For

computing σ , Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xi(ψ − 1),Xj(ψ − 1),
⋂t
l=ψ X C

i (l)
}

, we have

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1),
t⋂

l=ψ

X
C
i (l)

}
= σµ+ σ∗(1 − µ), (I.2)

where σ∗ , Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1),
⋂t
l=ψ−1 X C

i (l)
}

and

µ , Pr

{
Xi(ψ − 1)

∣∣∣∣∣Xj(ψ − 1),
t⋂

l=ψ

X
C
i (l)

}
.

From the above equation, σ can be written as

σ =
Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1),
⋂t
l=ψ X C

i (l)
}
− (1 − µ)σ∗

µ

(a)

≤
Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1)
}
− (1 − µ)σ∗

µ

(b)

≤
Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1)
}
− (1 − µ)Pr

{⋂t
l=ψ X C

j (l)
∣∣∣ Xj(ψ − 1),Zj

}

µ

(c)≈ Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1)

}
, (I.3)

1In fact, if we have Xi(ψ − 1), i.e., the user i is served in the (ψ − 1)th frame, in the next

frame its expiry countdown will be set to D. In other words, Xi(ψ− 1) results in νi(ψ) = D. By

a similar argument one can conclude that νi(ψ) = D results in Xi(ψ − 1). Therefore, this two

events are equivalent.
2In fact, since in each frameM users are served with probability one, conditioned on Xi(ψ−1),

there are M −1 other users which are served in the same frame. Since the rest of users are all the

same for the ith user (because of the homogeneity of the network), it follows that the condition

Xj(ψ − 1) does not change the conditional probability Pr
{⋂t

l=ψ X C
i (l)

∣∣∣ Xi(ψ − 1)
}
.
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where Zj denotes the event that user j is excluded from the network, and hence

is never served. (a) comes from the fact that the event
⋂t
l=ψ X C

i (l) reduces

Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1)
}

. (b) results from the fact that

σ∗ ≥ Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1),Zj

}
,

which is due to the fact that excluding the jth user from the network, increases

the chance of user i to be served during each frame and as a result, reduces the

conditional probability Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1),
⋂t
l=ψ−1 X C

i (l)
}

. (c) follows

from the fact that asN → ∞, the effect of excluding the user j from the network on

the conditional probability Pr
{⋂t

l=ψ X C
j (l)

∣∣∣ Xj(ψ − 1)
}

is negligible. In other

words,

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1),Zj

}

≈ Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1)

}

.

Substituting σ from the above equation in the right hand side of (I.1) yields

Pr{νi(t) = l1, νj(t) = l1} ≤ Pr{νi(t) = l1}Pr {Xj(ψ − 1) |Xi(ψ − 1)} ×

Pr

{
t⋂

l=ψ

X
C
j (l)

∣∣∣∣∣ Xj(ψ − 1)

}

(a)
= Pr{νi(t) = l1}Pr{νj(t) = l1}

Pr {Xj(ψ − 1) |Xi(ψ − 1)}
Pr{Xj(ψ − 1)}

(b)≈ Pr{νi(t) = l1}Pr{νj(t) = l1}
M − 1

M
, (I.4)

where (a) follows from the fact that Pr {Xj(ψ − 1)}Pr
{⋂t

l=ψ X C
i (l)

∣∣∣ Xi(ψ − 1)
}

=

Pr{νi(t) = l1}, and (b) results from the fact that Pr{Xj(ψ − 1)} ∼ M
N

(which we

have shown earlier in the paper in (4.112)) and also Pr {Xj(ψ − 1) |Xi(ψ − 1)} ∼
M−1
N

. The latter is due to the fact that conditioned on Xi(ψ−1), the network can
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be considered as a (N − 1)-user broadcast channel, in which (M − 1) beams are

to be assigned to (M − 1) users. Hence, the probability of assigning a beam to a

randomly selected user is M−1
N−1

≈ M−1
N

. From (I.4), (4.100) easily follows.



Appendix J

For upper-bounding the right hand side of (4.108), we use the fact that

Gν(l − 1) ≤ M(D − l + 1)

N
, (J.1)

which follows from the fact that fν(l) ≤ M
N

, ∀l, and consequently, Gν(l − 1) =
∑D

ν=l fν(ν) ≤ M(D−l+1)
N

. Having the above equation, RH (4.108) can be upper-

242
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bounded as follows:

RH (4.108) ≤ M

N∑

n=1

(
N − 1

n− 1

)( q
M

)n (
1 − q

M

)N−n n−1∏

i=1

(
M(D − l + 1)

N
+
Mi

N

)

= η

N−1∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n n∏

i=1

(
M(D − l + 1)

N
+
Mi

N

)

= η
N−1∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n
(
M(D − l + 1)

N

)n
×

n∏

i=1

(
1 +

1

D − l + 1
i

)

(a)

≤ η

N−1∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n
(
M(D − l + 1)

N

)n n∏

i=1

(1 + i)

= η

N−1∑

n=0

(
N − 1

n

)( q

M

)n (
1 − q

M

)N−n
(
M(D − l + 1)

N

)n
(n+ 1)!

(b)
= η

(
1 − q

M

)N N−1∑

n=0

(N − 1)!

Nn(N − n− 1)!
(n + 1) [(D − l + 1)η]n

(c)

≤ η
(
1 − q

M

)N N−1∑

n=0

(n + 1) [(D − l + 1)η]n

(d)

≤ η
(
1 − q

M

)N 1

[1 − (D − l + 1)η]2

∼ η
(
1 − q

M

)N

(e)

≤ M(lnN)2

N
e−(lnN)1.5

, (J.2)

where η = q
1− q

M
. In the above equation, (a) follows from the fact that D− l+1 ≥ 1

(since l ≤ D). (b) follows from writing
(
N−1
n

)
as (N−1)!

n!(N−n−1)!
and canceling out n! by

(n+1)!, which leaves the term n+1 in the numerator. (c) results from the fact that

(N−1)!
(N−n−1)!

= (N − 1)(N − 2) · · · (N − n) ≤ Nn, which leads to having (N−1)!
Nn(N−n−1)!

≤
1. (d) follows from upper-bounding the sum

∑N−1
n=0 (n + 1) [(D − l + 1)η]n by an
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infinite sum
∑∞

n=0(n+ 1) [(D − l + 1)η]n which equals to 1
[1−(D−l+1)η]2

, noting that

since D − l ≤ D − D0 ≤ 9
√
N(lnN)4 and η ∼ q ∼ Mp ≤ (lnN)2

N
1, we have

(D − l + 1)η ≪ 1. Finally, (e) results from upper-bounding η ∼ Mp by M(lnN)2

N
,

which is explained in the footnote, and also approximating
(
1 − q

M

)N
by e−

Nq
M ∼

e−Np which is upper-bounded by e−(lnN)1.5
, which is due to the fact that as Υ <

P
M

(lnN − (M + 0.5) ln lnN), p = e−MΥ/P

(1+ MΥ
P )

M−1 >
(lnN)1.5

N
.

1As it is shown in the paper, since P
M

(lnN − (M + 1) ln lnN) < Υ <

P
M

(lnN − (M + 0.5) ln lnN), we have p = e−MΥ/P

(1+ MΥ

P )
M−1 <

(lnN)2

N
.
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We have

Pr{A} = Pr{‖G‖2
max ≤ t}

=
(
Pr{‖G‖2

k ≤ t}
)N

. (K.1)

Using the fact that ‖Gk‖2 has Chi-square distribution with 2M degrees of freedom

[32], we have

Pr{‖G‖2
k ≤ t} = 1 −

M−1∑

m=0

tm

m!
e−t. (K.2)

Substituting t = lnN + (M − 3) ln lnN , the above equation can be rewritten as

Pr{‖G‖2
k ≤ t} = 1 − ln2N

N

[
1 +O

(
ln lnN

lnN

)]
. (K.3)

Substituting in (K.1), it is concluded that

Pr{A} =

(
1 − ln2N

N

[
1 +O

(
ln lnN

lnN

)])N

= o

(
1

N

)
. (K.4)
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Calculation of Pr{B}:

Consider a randomly selected user k. Using (K.2) and (K.3), we have

Pr{k ∈ S} =
ln2N

N

[
1 +O

(
ln lnN

lnN

)]
. (L.1)

Therefore, L = |S| is a Binomial random variable with parameters (N, p), where

p , Pr{k ∈ S}. Using the Gaussian approximation for Binomial distribution, we

have

Pr{B} =

N∑

l=⌊lnN⌋+1

(
N

l

)
pl(1 − p)N−l

≈ Q

(
lnN −Np√
Np(1 − p)

)

= 1 −Q

(
Np− lnN√
Np(1 − p)

)

(a)

≥ 1 − e
− (Np−ln N)2

2Np(1−p)

≥ 1 −Ne−
Np
2

(b)
= 1 − o (1/N) , (L.2)
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where (a) results from the fact that Q(x) ≤ e−x
2/2 and (b) follows from the fact

that Np ∼ ln2N
(M−1)!

, which incurs that e−Np/2 = o(N−2).

Calculation of Pr{C|B}:

Using equation (E.7) in Appendix E, we have

δ(GH) = δ(Ψ) =
1

∏M−1
i=1 βi

, (L.3)

where Ψ ,
[
vHs1| · · · |vHsM

]
, and βi denotes the projection of vsi+1

over P
⊥
i+1, which

denotes the null space of P i+1, the subspace spanned by {vsj
}ij=1. Defining ǫ ,

1 − 1

1+2M(lnN)
− 1

2(M−1)
, from (L.3), Pr{CC |B} can be written as

Pr{C|B} = Pr

{
M−1∏

i=1

βi < 1 − ǫ

∣∣∣∣∣B

}

(a)

≤
M−1∑

i=1

Pr
{
βi < 1 − ǫ

M

∣∣∣B
}

(b)

≤
M−1∑

i=1

Pr
{
βi < 1 − (lnN)−

1
2(M−1)

∣∣∣B
}
, (L.4)

where (a) follows from the fact that the event
∏M−1

i=1 βi < 1 − ǫ is a subset of the

event
⋃M−1
i=1

{
βi < 1 − ǫ

M

}
. To show this, we observe that if none of the events

{
βi < 1 − ǫ

M

}M−1

i=1
occur, it means that

∏M−1
i=1 βi >

(
1 − ǫ

M

)M
> 1 − ǫ. Also, (b)

results from the fact that as N → ∞, 2M(lnN)−
1

2(M−1) < 1.

From the algorithm, βi can be written as 1 − mink∈Si+1
zk,i, where zk,i denotes

the projection of vk over P i+1. The probability density function (pdf) of zk,i is
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given in the equation (E.9) in Appendix E as 1

pzk,i
(z) =

Γ(M)

Γ(M − i)Γ(i)
zi−1(1 − z)M−i−1. (L.5)

Since Vk’s are i.i.d. random variables (since the channel vector of users are in-

dependent of each other), it follows that zk,i’s are also i.i.d.. Hence, defining

θ , 1 − (lnN)−
1

2(M−1) , we have

Pr {βi < θ|B} (a)
= (Pr {zk,i > 1 − θ})L−i

= (1 − Ii,M−i(1 − θ))L−i

(b)

≤
(
1 − (1 − θ)M−1

)L−i

=

(
1 − 1√

lnN

)L−i

(c)

≤
(

1 − 1√
lnN

)lnN−i

∼ e−
√

lnN

= o

(
1

lnN

)
. (L.6)

In the above equation, (a) results from the fact that |Si+1| = L− i, and (b) follows

from the the fact that Ii,M−i(θ) ≥ IM−1,1(θ) = θM−1. (c) comes from the fact

that conditioned on B, L > lnN . Combining the avove equation with (L.4) yields

Pr{CC |B} = o
(

1
lnN

)
, which implies that Pr{C|B} = 1 + o

(
1

lnN

)
.

Computation of Pr{D|B,C}

To compute Pr{D|B,C}, we first note that since the norm and direction of circu-

larly symmetric complex Gaussian vectors are independent of each other and hav-

1Note that since the norm and direction of circularly symmetric complex Gaussian vectors

are independent of each other, the distribution of zk,i is independent of the condition B.
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ing the facts that B and D depend solely on the norm of {Gk}Nk=1 and C depends

only on the direction of these vectors, it follows that B and D are independent of

C. Therefore, we can ignore C in the condition and write

Pr{D|B,C} = Pr{D|B}

=
Pr{D,B}
Pr{B}

(a)

≥ Pr{D} − Pr{BC}
Pr{B} . (L.7)

Since we have already computed Pr{B} in this appendix, it suffices to compute

Pr{D}. Pr{DC} is computed in Appendix A, and shown to scale as O
(

1
lnN

)
.

Hence,

Pr{D|B,C} =
1 +O

(
1

lnN

)
+ o

(
1
N

)

1 + o
(

1
N

)

= 1 +O

(
1

lnN

)
. (L.8)
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Conditioned on C, we have
∏M−1

i=1 βi >
1

1+2M(lnN)
− 1

2(M−1)
= 1− ǫ. Since βi ≤ 1, this

incurs that βi ≥ 1 − ǫ, ∀i. In other words, γi ≤ ǫ, where γi denotes the projection

of vsi+1
over P i+1. Now, consider {Φj}ij=1 as j orthonormal bases for P i+1. Since

vsj
∈ P i+1, ∀j ≤ i, we can write

vsj
=

i∑

l=1

alΦl, (M.1)

where
∑i

l=1 |al|2 = 1. Therefore, for all i, j, j ≤ i, we have

z(Gsi+1
,Gsj

) = z(vsi+1
,vsj

)

=
∣∣∣vsi+1

vHsj

∣∣∣
2

=

∣∣∣∣∣

i∑

l=1

aHl
(
vsi+1

ΦH
l

)
∣∣∣∣∣

2

(a)

≤
i∑

l=1

∣∣vsi+1
ΦH
l

∣∣2

= γi

≤ ǫ, (M.2)

where (a) follows from the fact that
∣∣∣
∑i

l=1 albl

∣∣∣
2

≤
(∑i

l=1 |al|2
)(∑i

l=1 |bl|2
)
, not-

ing that
∑i

l=1 |al|2 = 1.
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