SHORT CHIRAL SYNTHESES

OF MORPHINAN AND RELATED SYSTEMS

by
Jihong Gao

A thesis
presented to the University of Waterloo in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Chemistry

Waterloo, Ontario, Canada, 2008
© Jihong Gao 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Morphine and its derivatives continue to challenge the creativity of synthetic chemists. The aim of this research is to execute a short chiral synthesis of the morphinan system. Chirality is introduced via asymmetric reduction; the key step is the formation of four ringsthe tetracyclic phenanthrofuran by an intramolecular Diels-Alder cycloaddition. The fifth ring was completed by three different methods, and three different pentahydrophenanthrofuran systems were obtained.

Acknowledgements

From the bottom of my heart, I thank my supervisor, Professor Russell Rodrigo, for all he did for me during the past two years. I have learned a lot from him on Chemistry and English. Plus, his patience, his humor and his guidance encouraged me to go through all the difficulties and to complete my study.

I also thank my committee members, Professor Mike Chong and Professor Gary Dmitrienko for their time and advice on my thesis. I acknowledge Professor Mike Chong for directing me on the reagent for methylation reaction. I am grateful to Ms. Jan Venne for her assistance with NMR experiments.

I also thank my friends, my labmates from past and present for their friendship and assistance. All the enjoyable time with them together makes my study more colorful.

Last, but not least, I sincerely thank my mom, my husband and my daughter for all their support, encouragement and love. Especially my daughter brings me a lot of laughing and happiness, which make me stand all the bad times. Without them, I can never complete my study.

To my mom, my husband Heng and my daughter Jessica

Table of Contents

Abstract iii
Acknowledgements iv
Table of Contents vi
List of Figures ix
List of Tables. x
List of Abbreviations. xi
CHAPTER 1 Introduction 1
1.1 History of morphine and its derivatives 1
1.2 Literature review of total and formal syntheses 2
1.3 Previous work in our laboratory 7
1.3.1 Ortho-Benzoquinone monoketals as synthetic intermediates 7
1.3.2 Three step syntheses of phenanthrofurans related to (-)-morphine from o-benzoquinone monoketals 11
1.3.3 Modification of IMDA reactants 14
1.4 Synthetic strategy 15
CHAPTER 2 Synthesis of homochiral tetracycles related to 45 17
2.1 Synthesis of (S)-(-)-3-ethenyl-2-(2-propenyl)-2-cyclohexen-1-ol 39b 17
2.2 Synthesis of (S)-(-)-2-[(2-Allyl-3-vinylcyclohex-2-en-1-yl)oxy]phenol 52 19
2.3 The intramolecular Diels-Alder reaction of (\pm)-52 and (s)-(-)-52 20
CHAPTER 3 Incorporation of the nitrogen atom 26
3.1 Selective oxidation of double bond 26
3.2 Conversion of aldehyde 66 to an amine 28
3.3 The position of the double bond 30
3.4 Conversion of aldehyde 66 to a nitrile 32
3.5 Conversion to an amide 33
CHAPTER 4 Closure of the fifth ring 39
4.1 The ring closure to a five membered ring. 39
4.2 Rearrangement of the indolinocodeine system to the mophinan system 49
4.3 Attempts to cyclise N-methyl ethanamines 53
CHAPTER 5 Summary and future work 62
5.1 Summary 62
5.2 Future work 62
CHAPTER 6 Experimental procedures 64
6.1 General conditions 64
6.2 Reaction conditions and experimental data 65
Reference 100
Appendix 104

1. X-ray structure of dimer $\mathbf{6 2}$ 104
2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 0}$ 117
3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 7}$ 118
4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 0}$. 119
5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 5}$ 120
6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1 0}$ 121
7. HPLC chromatogram of (S)-(-)-39b. 122

List of Figures

1.1 Morphine, congeners, and synthetic derivatives.. 2
1.2 The structure of benzoquinones and monoketals.. 8

List of Tables

4.1 Cyclization with different catalytic system 40
4.2 The reaction conditions for compound $\mathbf{8 6}$ 41
4.3 Results of attempts to various nitrile and amide substrates 47
4.4 Result of attempt to react with 94 54
4.5 H_{10} comparison among different compounds 58

List of Abbreviations

BTMAICl ${ }_{2}$	benzyltrimethylammonium iododichloride
CB	catecholborane
CDI	carbonyldiimidazole
COSY	correlation spectroscopy
DAIB	(diacetoxy)iodobenzene
DBS	dibenzosuberyl
DCC	N,N'-dicyclohexylcarbodiimide
DIBAL	diisobutylaluminumhydride
DMAP	4-(N,N-dimethylamino)pyridine
DMSO	dimethylsulfoxide
DPPB	1,4-Bis(diphenylphosphino)butane
EDG	electron donating group
ee	enantiomeric excess
EWG	electron withdrawing group
h	hour
HMDS	hexamethyldisilazane
HMQC	heteronuclear multiple quantum correlation
IMDA	intramolecular Diels-Alder
LAH	lithium aluminium hydride
PIFA	phenyliodonium (III) bis (trifluoroacetate)
rt	room temperature

RED-Al	sodium bis-(2-methoxyethoxy)aluminum hydride
TBDMS	tert-butyldimethylsilyl
THF	tetrahydrofuran
TFA	trifluoroacetic acid
TFAA	trifluoroacetic acid anhydride
TLC	thin-layer chromatography
UHP	urea hydrogen peroxide

CHAPTER 1

INTRODUCTION

1.1 History of morphine and its derivatives

Morphine (1) is the active principal constituent of opium, which became well known as an analgesic in the fourth century BC. ${ }^{1}$ Its pure form was isolated in 1806, and from then on, because of its medicinal value, people started to investigate its structure and synthesis.

All morphine used today is still obtained from poppy plants, which are mainly grown in India, Afghanistan, and Turkey, where poppies contain up to 20% of morphine in their latex. ${ }^{1}$ Besides morphine, the latex contains approximately $3-4 \%$ codeine (2), $0.1-2 \%$ thebaine (3), 1$7 \%$ narcotine and $0.5 \%-1 \%$ papaverine as well. ${ }^{2}$ Most of these opium alkaloids are used directly either in pain relief or for the production of synthetic opiates. Because of the highly addictive property of morphine, people tried to modify these alkaloids to produce less addictive drugs for medicinal purposes. Heroin (4), formed by simple acetylation of natural morphine, was an attempt to decrease addiction, but it has proved to be many times more addictive, and therefore more profitable on the illegal market. Naloxone (5), one antagonist (Figure 1.1), is effective in the treatment of accidental overdose of morphine, and has been shown to be useful in the treatment of alcohol abuse and eating disorders; it is manufactured from thebaine by synthetic modification in several steps. ${ }^{3}$ Hasubanonine (6), is also an antagonist and represents the first example of a group of alkaloids related to the morphine structure. Since the nitrogen bridge in these compounds has the opposite configuration to that in the morphinan system, they are less active than morphine in their affinity for opiate receptors. ${ }^{4}$

1

4

2

5

3

6

Figure 1.1 Morphine, congeners, and synthetic derivatives

To date, there are more than 20 total syntheses reported in addition to some other approaches to the morphine ring system, but a chiral synthesis at a cost competitive with that of isolation from natural opium has not been achieved yet. The search for a practical synthesis still continues.

1.2 Literature review of total and formal syntheses

The total synthesis of the morphinan system has proven to be a difficult task, and has occupied the attention of several research groups for many years. The main difficulties remain the efficient formation of the C_{4} secondary ether linkage and the C_{13} quaternary center, with the correct absolute stereochemistry. ${ }^{3}$

Since Gates' landmark total synthesis of morphine in 1952, there have been 22 total syntheses of the morphinan system to date. Only four of the more important syntheses will be briefly summarized below, but recent reviews covering most of them and most recent synthetic studies since year of review are also available. ${ }^{1,5,6}$

The most practical preparation of the morphinan system was achieved by Rice in 1980^{7} (Scheme 1.1). This whole synthesis required isolation of only six intermediates, obtained sufficiently pure for immediate further use, and proceeded in 29% overall yield. The key feature is Rice's employment of bromo derivative $\mathbf{1 0}$ to avoid an undesired para coupling; the bromine atom could be easily removed by hydrogenolysis later. Resolution of (\pm)-9 to separate the (R)-(-)-enantiomer afforded entry into the natural morphine series.

Scheme 1.1 Rice's synthesis of (-)-dihydrocodeinone

Remarkably, all of the published syntheses of morphine until 1993 were either racemic or involved classical resolution. Overman changed this situation by reporting the first asymmetric route to the morphinan system. ${ }^{8}$ An enantioselective reduction of 2-allylcyclohexenone (13) introduced chirality (Scheme 1.2), providing the corresponding (S)-(-)cyclohexenol 14 in $>96 \%$ ee. The crucial step involved an intramolecular Heck reaction to complete ring B, and afforded morphinan 16 with the correct stereochemistry at $\mathrm{C}_{9}, \mathrm{C}_{13}$ and C_{14}. Oxidation, followed by reductive cleavage of the DBS protecting group in the presence of formaldehyde yielded (-)-dihydrocodeinone (12) with 91% ee.

Scheme 1.2 Overman's synthesis of (-)-dihydrocodeinone

Trost's enantioselective total synthesis of (-)-codeine and (-)-morphine appeared in $2002 .{ }^{9}$ Chirality was introduced via asymmetric allylic alkylation of phenol $\mathbf{1 8}$ (Scheme 1.3), with ester $\mathbf{1 7}$ to give $\mathbf{1 9}$ in good yield and ee (72% and 88%, respectively). The key features of Trost's synthesis are the Heck cyclization of nitrile $\mathbf{2 0}$, establishing the C_{13} quarternary center, Heck cyclization of $\mathbf{2 2}$ and an intramolecular hydroamination to produce (-)- codeine (2).

Scheme 1.3 Trost's synthesis of (-)-codeine

18

Another noteworthy work is Parker's enantioselective synthesis of (-)-dihydrocodeinone (12), published in January 2006. ${ }^{5}$ Cyclohexenol (R)-26, prepared by CBS reduction of enone 25, is the source of chirality (Scheme 1.4). The key steps are accomplished by Mitsunobu coupling, affording aryl ether 29, which undergoes tandem radical cyclization to produce a tetracyclic styrene 31, then followed by reductive hydroamination to complete the synthesis of (-)-dihydrocodeinone (12) with 75\% ee.

Scheme 1.4 Parker's total synthesis of (-)-Dihydrocodeinone

1.3 Previous work in our laboratory

1.3.1 Ortho-benzoquinone monoketals as synthetic intermediates

The pentacyclic morphine structure features three carbocycles and two heterocycles, which can be formed by different synthetic methods. Among these methods, the inter- and intramolecular Diels-Alder reaction has become one of the most useful reactions in our lab to synthesize several natural products since it provides easy access to a wide variety of cyclic compounds.

The use of o-benzoquinones and their monoketals (Figure 1.2) as dienes in Diels-Alder reactions has been well documented. ${ }^{10}$ Their potential as intermediates in the synthesis of natural products has been restricted by their propensity for dimerization and rapid decomposition. However, their use as both dienes and dienophiles has been rapidly developed during the past 10 years. ${ }^{1,12,13}$ These monoketals constitute valuable electrophilic intermediates because their electronically different double bonds have the potential of being regioselectively converted into various cyclic organic skeletons. Furthermore, the ketal group permits the differentiation of adjacent oxygen functionalities, and also provides monoprotection of the 1,2-dicarbonyl unit, therefore, o-benzoquinone monoketals sometimes are referred to as "masked" ortho-benzoquinones. ${ }^{10}$ When they function as dienophiles in intermolecular Diels-Alder reactions, they are reacted in the presence of an excess amount of a diene (3 to 20 fold molar equivalents), thereby suppressing the dimerization and polymerization reactions to some extent.

o-benzoquinones

o-benzoquinone monoketals

Figure 1.2 The structure of benzoquinones and monoketals

There are two methods most commonly used to generate o-benzoquinone monoketals: (1) chemical oxidative alkoxylation and (2) electrochemical anodic oxidation of phenols 32 (Scheme 1.5). Recent preparations have relied much more on chemical oxidation than anodic oxidation; non-toxic and easy-to-handle hypervalent iodine(III)-based reagents which effect chemical oxidation have been developed rapidly to make these quinonoid species.

Scheme 1.5 The generation of o-benzoquinone monoketals

> R=alkyl, acyl, or aryl group
> $\mathrm{R}^{\prime}=a l k y l$, acyl, or aryl group
> Z=various substituent(s)

The two hypervalent iodine reagents, diacetoxyiodobenzene $\mathrm{PhI}(\mathrm{OAc})_{2}$, also referred to as DAIB and phenyliodine(III) bis(trifluoroacetate), also referred to as PIFA, have been the most frequently used two-electron oxidants in recent preparations of o-benzoquinone monoketals from phenols. This popularity is due to their being good electrophiles as well as their possessing a good leaving group by releasing iodobenzene (PhI), and their lack of toxicity in comparison to traditional metallic oxidants. The oxidation process, (Scheme 1.6), has been postulated ${ }^{14}$ to occur via 34 to give desired o-benzoquinone monoketals 33. A small electron releasing ortho-substituent such as a methoxy group plays a significant role in both stabilizing
a cationic intermediate of type $\mathbf{3 5}$ and in orienting the nucleophilic attack preferentially at the corresponding substituted carbon center, even when this position is the most sterically hindered one.

Scheme 1.6 The mechanism of formation of o-benzoquinone monoketals

R=alkyl, aryl, acyl group
$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$ or CF_{3}
$\mathrm{Z}=$ various substituent(s)
$\mathrm{Nu}=\mathrm{ROH}$

The capability of o-benzoquinone monoketals to react either as a diene or a dienophile component in $[4 \pi+2 \pi]$ cycloadditions is their principal virtue in organic synthesis. Although most earlier utilizations ${ }^{15}$ of o-benzoquinone monoketals in IMDA reactions have been as 4π components, today an increasing number of reports describe ${ }^{12,13,16}$ the use of the title ketals as 2π dienones with electron-rich dienes. Normally, when o-benzoquinone monoketals react
intramolecularly with other 4π - systems, they behave both as a diene and as a dienophile to give mixtures of endo- and bridged bicyclo[2.2.2]octenones. A typical example is the intramolecular reaction of dialkoxy- cyclohexa-2,4-dienone with a pendant diene: the moiety behaves both as a diene (path a) and as a dienophile (path b) to give mixtures of bicyclo[2,2,2]octenones of type $\mathbf{3 6}$ and endo-products of type $\mathbf{3 7}$ respectively. Furthermore, the bicyclo[2.2.2]octenones of type $\mathbf{3 6}$ undergo thermally-allowed [3,3]-sigmatropic Cope rearrangements to furnish compound 37 . (Scheme 1.7)

The tetracyclic phenanthrofuran system, which is related to morphine, is also readily accessible by application of the same chemistry. ${ }^{12}$

Scheme 1.7

1.3.2 Three step syntheses of phenanthrofurans related to (-)-morphine from obenzoquinone monoketals

The reaction of methyl vanillate (38) with three equivalents of (\pm)-3-vinylcyclohex-2-enol (39a) in the presence of PIFA produced a mixture of exo 40 and endo 41 IMDA adducts, together with a small amount of the bridged adduct 42 (Scheme 1.8). During this reaction, the transitory monoketals were formed, it is believed, in two diastereomeric configurations $\left(\mathrm{R} * \mathrm{~S}^{*}\right.$ and $\left.S^{*} S^{*}\right)$, because the configuration at C_{4} in the monoketal can not be controlled. The $R * S *$ monoketal formed exo adducts 40 only, because intolerable steric interactions exist in the IMDA transition states leading to $\mathbf{4 1}$ and $\mathbf{4 2}$. The $S^{*} S^{*}$ monoketals formed endo and bridged adducts 41 and $\mathbf{4 2}$ respectively, since no such steric interactions exist in the transition states.

The endo isomer 41a was easily aromatized by treatment with TFA to eliminate MeOH and produce the dienone 43a, followed by ester hydrolysis and decarboxylation to furnish 44a. The exo isomer 40a was stable to acid treatment at room temperature. Similarly, the 2allylcyclohexenol 39b, prepared from 2-allylcyclohexan-1,3-dione in a similar way to 39a, reacted with methyl vanillate ($\mathbf{3 8}$) and PIFA to provide a mixture of three adducts. The endo isomer 41b was converted to dienone 43b by brief exposure to TFA (trifluoroacetic acid) while exo adduct 40b was stable to similar acid treatment. This was observed generally with many exo and endo adducts of this type and was attributed to an anomeric effect. Elimination of methanol can take place only when one lone pair of the endocyclic oxygen atom is anti and parallel with the C-OMe bond. This enables the lone pair to overlap with the antibonding orbital of the $\mathrm{C}-\mathrm{OMe}$ bond thus weakening and lengthening it. Such differences in $\mathrm{C}-\mathrm{OMe}$ bond lengths were confirmed by X-ray crystallography of several such examples. ${ }^{17}$ The bridged adduct 42 was subjected to the thermal Cope rearrangment with elimination of MeOH
in refluxing 1,1,2,2-tetrachloroethane to produce 43b, and saponification and decarboxylation resulted in 44b. ${ }^{12}$

In this reaction, enantioselectivity was achieved by reduction of 2-allyl-3-vinylcyclohex-2enone with borane and a (R)-oxazaborolidine ligand to provide the (S)-(-)-cyclohexenol 39b in 50% yield and 91% ee. ${ }^{18}$ Subsequent reaction with 38 then established the correct configurations at C_{5} and C_{13}.

The use of one step to deliver absolute stereocontrol at two of the five chiral centers of the molecule is very attractive, but some practical problems still remain, which include (1) the poor yield of the endo-exo mixture; (2) the inability to transform the exo-adduct to the next intermediate; (3) the necessity of using an excess of dienol and the difficulty of removing the high boiling dienol from the reaction after it is completed and (4) the incomplete conversion of 42 to $\mathbf{4 3}$ in the Cope reaction. Therefore, more work was needed to modify and improve this route.

Scheme 1.8

[^0]
1.3.3 Modification of IMDA reactants

Extensive studies have been performed in our laboratory on the design of a suitable diene and dienophile in order to solve the problems in the IMDA reaction, ${ }^{19}$ and after evaluation of the results it was decided that prior attachment of the diene to the catechol (i.e. before oxidation) offers several advantages: (1) The use of excess of dienol in the IMDA reaction will be unnecessary; (2) Methanol can be used as solvent as well as nucleophile in the oxidation with PIFA. Recovery of the excess of the dienol is avoided and the excess methanol is easily removed; (3) The decarboxylation step is not required when a guaiacol is used without the C_{4} ester, and the Cope rearrangement of any bridged adduct under mildly acidic conditions provides an aromatic compound directly, and might therefore be expected to go to completion. The desired catechol monoether 52 then becomes the key substrate for synthesis of the morphinan system by this route. (Scheme 1.9)

The synthesis of monoether 52 from catechol and $\mathbf{3 9 b}$ proved to be challenging. The Mitsunobu reaction, palladium-catalyzed alkylation of allyl carbonates, and DCC coupling were performed ${ }^{18}$ but with only marginal yields of the desired product 52. Therefore nucleophilic aromatic substitutions of ortho- fluoro aromatic substrates such as 46a, 46b, 46c were attempted, but only 46a provided the desired substitution product 47. Compound 47 undergoes a reduction to afford the corresponding aldehyde 50, and although there are so many reports about this partial reduction of cyanides, only a complex formed from LAH and $\mathrm{N}, \mathrm{N}^{\prime}-$ dimethylethylenediamine ${ }^{20}$ works in this case. Subsequently 50 was subjected to the BaeyerVilliger oxidation with hydrogen peroxide and a catalytic amount of diphenyldiselenide ${ }^{21,22}$ to give formate 51; subsequent base hydrolysis generated target molecule 52, initially as the racemate in 54% overall yield.

Scheme 1.9

1.4 Synthetic strategy

The previous outcome with the synthesis of monoether 52 was very promising. The following problems now remained to be addressed:

1. To prepare S-(-)-52 with acceptable yield and enantiomeric excess;
2. To make tetracyclic system $\mathbf{4 4 b}$ in better yield than before (Scheme 1.8); this would require significant improvement in the yield and experimental protocols of the IMDACope sequence (Scheme 1.8);
3. To selectively oxidize the terminal $\mathrm{C}_{16}-\mathrm{C}_{17}$ double bond of a tetracyclic system like $\mathbf{4 5}$ (Scheme 1.10, conversion 1);
4. Subsequently to incorporate the required nitrogen atom at C_{16} (Scheme 1.10 , conversion 2);
5. To complete the fifth ring by constructing the $\mathrm{C}_{9}-\mathrm{N}$ bond leading to morphinan system or constructing the $\mathrm{C}_{14}-\mathrm{N}$ bond resulting in a Hasubanan-like alkaloid system (Scheme 1.10, conversion3).

These efforts are summarized in the generalized Scheme 1.10 and described in the following sections.

Scheme 1.10

CHAPTER 2

Synthesis of homochiral tetracycles related to 45

2.1 Synthesis of (S)-(-)-3-ethenyl-2-(2-propenyl)-2-cyclohexen-1-ol 39b

This synthesis is mainly based on the previous preparation of racemic 52 (Scheme 1.9). ${ }^{19} \mathrm{~A}$ few modifications have been incorporated to improve certain steps and a chiral reduction of the ketone $\mathbf{5 7}$ has been optimized.

The synthesis begins with the commercially available 1,3-cyclohexanedione (54) (Scheme 2.1), which is alkylated with allyl bromide. Instead of heating at reflux for 4 hours in dioxane and water as in the previous work, this experiment is performed with a metallic copper catalyst in water for 2 hours at room temperature. ${ }^{23}$ The product 2-allyl-1,3-cyclohexanedione (55) was easily isolated by merely filtering and then separating the copper by dissolving $\mathbf{5 5}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ without the need for chromatographic purification. Several trial experiments showed that a reaction time of 2 h gives the best yield (57%) for this reaction compared to 1 hour or 3 hours' reaction yielding 33% and 38%, respectively. It is speculated that fewer hours result in incomplete reaction while more hours would lead to a double alkylation. Therefore, 2 hours reaction time, mild reaction conditions, and easier isolation of an intermediate pure enough for the next step make this method suitable for large-scale production, which is meaningful with respect to the entire synthetic route.

Scheme 2.1

The allylation is followed by treatment of $\mathbf{5 5}$ with $\mathrm{Me}_{2} \mathrm{SO}_{4}{ }^{24}$ to give O-methylated product 56. $\mathrm{Me}_{2} \mathrm{SO}_{4}$ is considerably cheaper than the $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ and $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ used previously; and also it is not sensitive to moisture, unlike $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ which must be from a freshly opened bottle and used at once to ensure that the reaction goes to completion. The product $\mathbf{5 6}$ is subsequently reacted with vinylmagnesium bromide to generate 3-ethenyl-2-(2-propenyl)-2-cyclohexen-1one 57, the precursor of (S)-(-)-3-ethenyl-2-(2-propenyl)-2-cyclohexen-1-ol 39b. Since the concentration stated on the label of commercial vinylmagnesium bromide is always unreliable, freshly prepared vinyl magnesium bromide was used.

Chirality is introduced by reduction of enone 57 with $20 \mathrm{~mol} \%$ of R-oxazaborolidine as catalyst and catecholborane as reductant in toluene at $-78^{\circ} \mathrm{C}$ for 18 hours ${ }^{25}$ to afford cyclohexenol (S)-(-)-39b 89% yield, 98.6% ee, and $[\alpha] D^{23}=-272\left(\mathrm{CHCl}_{3}\right)$. This is significant improvement when compared to using borane as reductant at $35^{\circ} \mathrm{C}$ as in the earlier work ${ }^{19}$ providing the cyclohexenol $(\mathrm{S})-(-)-\mathbf{3 9 b} 50 \%$ yield, 91% ee and $[\alpha]_{\mathrm{D}}{ }^{23}=-235\left(\mathrm{CHCl}_{3}\right)$. This
difference is probably due to the fact that olefins are sensitive to borane at moderate temperatures and subject to hydroboration resulting in poorer yields, and the higher reaction temperature leads to poorer enantioselectivity.

2.2 Synthesis of (S)-(-)-2-[(2-allyl-3-vinylcyclohex-2-en-1-yl)oxy]phenol 52

(S)-(-)-39b has the correct configuration needed for the morphinan system. Subsequent work follows the routes shown in Scheme 1.9 to furnish the key intermediate (S)-(-)-52. Some improvements are implemented at this stage and higher yields are realized as well.

Ortho-fluoro cyanide 46a undergoes nucleophilic aromatic substitution with the anion of 39b to generate chiral $(S)-(-)-47$ with retention of configuration at C_{1} of $(S)-(-)-39 b,\left([\alpha]_{D}{ }^{23}=\right.$ -304.8 $\left(\mathrm{CHCl}_{3}\right)$).

From (S)-(-)-benzonitrile 47 to (S)-(-)-phenol 52, three steps are developed to be performed successively without any chromatographic purification between each step. The products in each step are pure enough for immediate use in the next. An overall three-step yield of 62% of (S)-(-)-phenol 52 is obtained after chromatographic purification.
(S)-(-)-benzonitrile 47 is reduced by the complex lithium $\mathrm{N}^{\prime} \mathrm{N}^{\prime}$ dimethylethylenediaminoaluminum hydride (LDMEDAH) ${ }^{20}$ formed from LAH and $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ dimethylethylenediamine to generate (S)-(-)-benzaldehyde 50 (Scheme 1.9). The reaction is performed at $0^{\circ} \mathrm{C}$ and all the starting materials need to be pre-cooled; otherwise the aromatic imine $\mathbf{6 0}$ will be formed by overreduction of some of the nitrile to the benzyl amine. It displays a characteristic ${ }^{1} \mathrm{H}$ NMR peak at 8.05 ppm for the imine proton instead of the aldehyde ${ }^{1} \mathrm{H}$ NMR peak at 10.46 ppm (Scheme 2.2). This step proceeds with 100% conversion and furnishes a 84% yield of (S)-(-)-benzaldehyde 50 with optical rotation $[\alpha]_{\mathrm{D}}{ }^{23}=-266\left(\mathrm{CHCl}_{3}\right)$.

Scheme 2.2

The product $\mathbf{5 0}$ undergoes a Baeyer-Villiger reaction with 30% aqueous hydrogen peroxide and $20 \mathrm{~mol} \%$ of diphenyldiselenide which produces phenylseleninic acid to act as the oxidizing agent. ${ }^{21,22}$ The reaction needs to be stirred vigorously due to the two phase conditions, and the benzaldehyde $\mathbf{5 0}$ is converted to (S)-(-)-formate $\mathbf{5 1}$ in $\mathbf{9 4 \%}$ yield (Scheme 1.9). Without any purification, the formate $\mathbf{5 1}$ is dissolved in MeOH , treated with 4% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{26}$ instead of 4% aqueous KOH as the other option for this experiment which lead to variable yield ranging from 52% to 81%, and the formate $\mathbf{5 1}$ is completely converted to (S)-(-) $\mathbf{5 2}$ in a reproducible yield of 78%. It should be noted that $\mathbf{5 2}$ does not carry the ester group para to the hydroxyl group.

2.3 The intramolecular Diels-Alder reaction of (\pm)-52 and (S)-(-)-52

The IMDA cyclization is the key step that affords two more rings, one carbocyclic and one heterocyclic, of the morphinan system in one step with control of stereochemistry at C_{5} and C_{13}. Initially the key intermediate ($\mathbf{\pm}$)-52 was subjected to hypervalent iodine oxidation in methanol and IMDA cyclization to provide adducts via the o-benzoquinone monoketals $\mathbf{6 0}$ (Scheme 2.3).

As a result of nucleophilic attack of MeOH on oxonium ion 59 taking place without facial control, two diastereomeric pairs of ketals $S^{*} S^{*}$ and $\mathrm{R}^{*} \mathrm{~S}^{*}$ will be formed.

As in the previous case of ketals generated in Scheme 1.8, it is proposed that the SS, RR pair 60 produces the endo and bridged IMDA adducts 53 and $\mathbf{6 1}$ corresponding to compound 41 and 42 of Scheme 1.8. The other RS, SR pair now lacking the C_{4} ester group, is less activated to form IMDA exo adduts, (such an ester group was incorporated in the corresponding quinone monoketals of Scheme 1.8 to improve dienophilicity in the IMDA pathway); this diastereomer prefers to dimerise instead by an intermolecular Diels-Alder process. The dimer (\pm)-62, obtained from (\pm)-52, was separated and crystallized ${ }^{19}$ and X-ray analysis was used to confirm its structure and RS, SR relative configuration at the ketal carbon atoms (Appendix 1).

Scheme 2.3

With (S)-(-)-52, the same reaction was performed. Thus (S)-(-)-52 in methanol is added to a solution of DAIB in methanol over 1 h at room temperature. The resulting reaction mixture is stirred overnight at room temperature and monitored by TLC. The mixture of endo adduct 53, bridged adduct 61 and dimer (-)-62 is generated. The dimer 62 was again purified by chromatography and obtained in 14% yield. The endo product and bridged adducts can not be separated from each other in this step, as they overlap on TLC in several solvent systems; they are taken to the next step directly as a mixture. However, the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture clearly indicates the presence of both compounds $\mathbf{5 3}$ and $\mathbf{6 1}$ in a ratio of $1.2: 1$ as estimated by integration of the methoxyl signals of $\mathbf{5 3}$ (3.21ppm) and $\mathbf{6 1}$ (3.46ppm).

In an attempt to minimize the formation of the RS ketal, and thus to minimize the formation of dimer, one option explored was to vary the alkyl group of the solvent alcohol. Thus an experiment was performed by changing the solvent alcohol from methanol to isopropanol which has the more bulky alkyl group. From the ratio of dimer (18\%), bridged and endo adducts (52\%) obtained, it is inferred that the formation of the RS ketal increases when the size of alkyl group of the solvent alcohol does. Therefore methanol appears to be the most suitable solvent for this reaction.

The mixed endo and bridged adducts (-)-53 and (+)-61 both form aromatic compound (-)64. When the mixture of (-)-53 and (+)-61 was treated with TFA and acetic anhydride for 15 min , the endo adduct converts to the aromatic acetate leaving the bridged compound unchanged (Scheme 2.4). Pure (+)-61 was thereby isolated $[\alpha]^{23}=+299\left(\mathrm{CHCl}_{3}\right)$ by chromatography. Then (+)-61 was heated in 1,1,2,2-tetrachloroethane with a few drops of acetic anhydride for 4 days at $140^{\circ} \mathrm{C}$, and it undergoes the Cope arrangement to form aromatic compound (-)-64 with complete conversion (Scheme 2.5). The solvent tetrachloroethane over
four days near its boiling point probably generates some acid which is responsible for the demethoxylation and aromatization of 53. This aromatization also drives the Cope reaction to completion unlike in the previous case ${ }^{12}$, where only 59% conversion was realized. The acetic anhydride is used to directly transform the generated phenol 63 to acetate (-)-64 since phenol 63 was previously found to be rather unstable. The whole reaction sequence results in a 42% yield of the aromatic acetate (-)-64 from (-)-52, it was purified by chromatography, providing $[\alpha]_{\mathrm{D}}{ }^{23}=-208\left(\mathrm{CHCl}_{3}\right)$.

The assignment of SS configurations to the endo and bridged adducts (-)-53 and (+)-61 is not simply based on a default argument. The relative configurations of the corresponding racemic exo and endo adducts $(\pm)-40 \mathrm{a}$ and $(\pm)-41 \mathrm{a}$ from the ketal of Scheme 1.8 was established by X-ray analysis as $S^{*} \mathrm{R}^{*}$ and $\mathrm{S}^{*} \mathrm{~S}^{*}$ respectively. There is little reason to doubt that the reaction follows a similar course with the ketals of Scheme 2.3. Furthermore the endo adduct (-)-53 aromatises easily by elimination of methanol, a result entirely consistent with the behaviour of other SS adducts. The bridged adduct (+)-61 undergoes a Cope rearrangementacetylation sequence to afford (-)-64 identical with the tetracyclic acetate obtained from (-)-53 (Scheme 2.4). These facts serve to identify the absolute configurations of all three products (-)53, (+)-60 and (-)-62 in Scheme 2.3 and support the proposal that relates configuration of the transitory o-quinone monoketals (SS and RS 60) to the products of the reaction.

Scheme 2.4

53

Scheme 2.5

CHAPTER 3

INCORPORATION OF THE NITROGEN ATOM

3.1 Selective oxidation of double bond

With the (-)-64 in hand, a regioselective cleavage of the terminal double bond of the allyl group had to be attempted in order to generate a suitable substrate for incorporation of the nitrogen atom with loss of the terminal C_{17} carbon. An appropriate target is the aldehyde $\mathbf{6 6}$ which might be accessed in two steps as shown in Scheme 3.1.

Scheme 3.1

Initial attempts at selective epoxidation resulted only in a mixture of α and $\beta 9$, 14 epoxides, leaving the allyl group unaffected ${ }^{12}$. Osmylation was therefore attempted with some hope of success since it had been reported ${ }^{27}$ that regioselective osmylation of the only one double bond of three (Scheme 3.2), in a complex intermediate 67 was successfully achieved. That regioselectivity was attributed to a π-stacking interaction between the aromatic heterocyclic base used in the osmylation and a neighbouring benzene ring in the substrate ${ }^{27,28}$.

Scheme 3.2

The structure of $\mathbf{6 4}$ offers the possibility that the $\mathrm{C}_{16}-\mathrm{C}_{17}$ double bond, closer to the benzene ring, can adopt a position that permits such a π-stacking interaction by a mere rotation about the $\mathrm{C}_{13}-\mathrm{C}_{15}$ single bond. This effect, as well as the greater accessibility of the $\mathrm{C}_{16}-\mathrm{C}_{17}$ alkene to the OsO_{4}-base complex in comparison with $\mathrm{C}_{9}-\mathrm{C}_{14}$ bond augured well for the desired result. The experimental result of the osmylation, with DMAP as the heterocyclic base, was gratifying. The terminal double bond was indeed selectively hydroxylated in 91% yield and the mixture of diastereomeric diols produced was pure enough to be used directly for the subsequent cleavage. Oxidative cleavage of the diols 65 by NaIO_{4} provided the aldehyde 66 in excellent yield (94\%) and high purity. The two step process thus gives a pure product in 85% overall yield and was preferred to the one-pot osmylation-oxidation cleavage process $\left(\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}-2,6\right.$-lutidine) recently reported ${ }^{29}$ because a trial experiment yielded the aldehyde in lower yield.

3.2 Conversion of aldehyde 66 to amine

From the aldehyde 66, the nitrogen atom can be introduced into a molecule in different ways (Scheme 3.3). Considerations leading to the choice of nitrogen functionality must include notions of subsequent cyclisation at C_{9} or C_{14} to form the fifth ring of the system. Parker's synthesis ${ }^{5}$ and Trost's synthesis ${ }^{9}$ of morphine employ a secondary amine function for ring closure by means of a reductive amination of a suitably placed double bond (Scheme 3.4). Formation of an amine at the C_{16} carbon was therefore evaluated initially; two routes were attempted for this reaction as shown in Scheme 3.5.

Scheme 3.3

Scheme 3.4

Scheme 3.5

Reductive amination of aldehyde $\mathbf{6 6}$ was investigated with methylamine hydrochloride and sodium cyanoborohydride at $\mathrm{pH} 6-8^{30}$. However, only a modest yield of 70 was obtained (67%). Following a report that hexamethyldisilazane (HMDS) and ZnCl_{2} can be used instead, to form a N -bisdimethylsilylaminal followed by NaBH_{4} reduction to produce a primary amine ${ }^{31}$ in high yield, the same procedure was attempted with 66. A poor yield (ca. 40%) was obtained together with the C_{16} alcohol from reduction of the aldehyde; therefore, the first route with methylamine hydrochloride and sodium cyanoborohydride was preferred.

3.3 The position of the double bond

With compound 70 at hand, the regiochemistry of ring closure was considered. The double bond which can be used to construct the fifth ring is at $\mathrm{C}_{14}-\mathrm{C}_{9}$. However if the ring closure reaction is performed, it is likely that such a process will result in a 5-exo-trig cyclization at C_{14} leading to the Hasubanan alkaloid skeleton rather the desired 6-endo cyclisation at C_{9} to the mophinan ring system. The easiest way to solve this problem is to simply attempt a migration of the $\mathrm{C}_{9}-\mathrm{C}_{14}$ bond to $\mathrm{C}_{9}-\mathrm{C}_{10}$ bringing it into conjugation with the aromatic ring; cyclization will now become a 6-exo-trig process which is well precedented in morphine synthesis.

A particularly attractive possibility for this migration is a singlet oxygen ene reaction (Scheme 3.6). This reaction has been intensively studied and hydrogen abstraction in trisubstituted alkenes has been observed to occur on the more substituted side of the double bond ${ }^{32}$. Since there is no H atom at C_{13}, the better possibility is H -abstraction at C_{10} rather than at C_{8} since the latter methylene group is on the less substituted side of the $\mathrm{C}_{9}-\mathrm{C}_{14}$ double bond. The hydroxyl group then will end up at C_{14} (perhaps in the α-configuration) and the double
bond will relocate at $\mathrm{C}_{9}-\mathrm{C}_{10}$; more details for this singlet oxygen ene reaction will be discussed subsequently.

Scheme 3.6

Amine 70 will probably not be stable to the singlet oxygen because it may be oxidized during the process, therefore it is better to convert the secondary amine to an amide which is more stable to singlet oxygen. TsCl and DMAP were used to convert 70 to 71 (scheme 3.5). This reaction proceeds in mild conditions and short time affording a 78% yield of the tosylamide 71.

This compound is now ready for the singlet oxygen ene reaction. The reaction was performed with an oxygen bubbler and visible light irradiation in a polar solvent, with Rose Bengal as the sensitizer. After stirring for 7 h , the NMR spectrum showed no reaction at all, with the starting material left unchanged. The possible reason for the lack of reactivity was probably the steric hindrance from bulky group attached to nitrogen in the compound 71, thus blocking access of oxygen from one side of the double bond. Therefore a smaller group may be
better, but such a group also needs to be unreactive to the oxygen. The cyanide group was chosen for these reasons.

3.4 Conversion of aldehyde 66 to a nitrile

Three different methods were tried (Scheme 3.7) to convert aldehyde 66 to the corresponding cyanide.

In route a compound $\mathbf{6 6}$ is converted to aldoxime 73 in a reaction promoted by molecular sieves ${ }^{33}$ and without the need for reflux or microwave heating. This is followed by dehydration with $\mathrm{CDI}{ }^{34}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Overall yield for the two steps is 34%. In route \mathbf{b} compound 73 is simply refluxed in 95% formic acid with hydroxylamine for half an hour ${ }^{35}\left(70-80^{\circ} \mathrm{C}\right)$, with a few drops of acetic anhydride to prevent the phenolic acetate at C_{3} from hydrolyzing to a phenol under the conditions. The yield for this one step reaction was 63%.

Route c provides a new and easy "one-pot" route to nitriles from aldehydes via N,Ndialkylhydrazones and subsequent treatment of the reaction mixture with MMPP ${ }^{36}$. This new procedure for the conversion of an aldehyde to a nitrile via the hydrazone has some practical value compared with the previous synthesis of nitriles from aldehydes: 1) reagents (dimethylhydrazine and magnesium monoperoxyphthalate hexahydrate) are not expensive and very convenient to use; 2) short reaction times (5 minutes reaction from hydrazone to nitrile) and mild conditions (low temperature) are employed; 3) a simple work up and the nitriles are isolated without isomerization of any adjacent chiral centers. A Cope elimination of $\mathrm{N}, \mathrm{N}-$ dimethylhydroxylamine is believed to produce the nitrile. This method gave the best overall yield (69\%).

This route was therefore preferred for the conversion. After compound 75 was prepared, it was subjected to the singlet oxygen ene reaction, but again the reaction only returned the starting materials after 7 h of irradiation.

Scheme 3.7

3.5 Conversion to an amide

Since the singlet oxygen ene reaction was unsuccessful, attention had to be turned to other routes. Amide formation was the next consideration, since intramolecular
aminohydroxylation ${ }^{37}$ can only be attempted with the amide, perhaps with a favorable regiochemical outcome (Scheme 3.8).

Scheme 3.8

Whether the intramolecular aminohydroxylation provides a 6 -membered ring or a 5membered one remains uncertain, however, since the preferred orientation of the Os (VIII) complex can't be predicted with certainty.

After a careful survey of the literature, three methods were evaluated for this amide preparation (Scheme 3.9).

Scheme 3.9

One of the methods reported ${ }^{38}$ an efficient conversion of aldehydes into the corresponding amides via a Beckmann rearrangement. The catalyst ZnO is mixed with the aldehydes and hydroxylamine hydrochloride thoroughly. Then the mixture was heated at $140-170^{\circ} \mathrm{C}$, without additional solvent. This method is unlike the normal Beckmann rearrangement requiring use of strong Bronsted or Lewis acids, which make sensitive starting materials unstable to the reaction conditions; in our case this experiment did not generate any product.

Another way to form amides is from nitriles. The partial hydrolysis of nitriles is a method frequently used for preparation of carboxylic acid amides. Traditional methods for the hydration of nitriles usually apply strongly acidic conditions, which precludes the use of sensitive substrates. One method reported ${ }^{39}$ using an excess of UHP in the presence of a catalytic amount of potassium carbonate for the conversion of various nitrile to the respective amides without the use of strong acids. Our trial experiment resulted in no amide formation with only partially hydrolyzed byproduct (phenolic OAc hydrolyzed to OH and CN unchanged) formed. It appears that the $\mathrm{K}_{2} \mathrm{CO}_{3}$ functioned as a reagent for phenyl acetate hydrolysis.

Another effective method ${ }^{40}$ to convert nitrile to the amide is by application of a mild and reversible hydration of nitrile with PdCl_{2} in aqueous acetamide (Scheme 3.10). It was found that primary amides were produced at room temperature from nitriles in THF/water by using acetamide to force the hydration process. This process was catalyzed by 0.1 equiv of PdCl_{2} per mole of substrate. But $\mathrm{Pd}(\mathrm{OAc})_{2}$ is better since it dissolves to give solutions with a pH in the range 4.7-5. Thus $\mathrm{Pd}(\mathrm{OAc})_{2}$ would be preferred for substrates particularly sensitive to an strongly acidic environment.

Scheme 3.10

When the reaction was performed with $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ using 75, it did not go to completion. After separation by chromatography, NMR analysis (Appendix 2) showed that the product has two alkene proton signals as clear doublets at $\delta 5.59$ and $6.39(J=9.6 \mathrm{~Hz})$; the mass spectrum also showed that the molecular ion was at $\mathrm{m} / \mathrm{z} 311$ suggesting the presence of one more unsaturated unit compared to the expected $\mathrm{m} / \mathrm{z} 313$. From the COSY and HMQC spectra, it was deduced that the product is the result of a ring closure, with the amide nitrogen atom attached to C_{14} to form the Hasubanan system (Scheme 3.11).

Scheme 3.11

Even though the expected amide compound 77 was not produced, the process of fivemembered ring closure is a promising result for further investigation. More details for this reaction and its mechanism will be discussed in the next section.

CHAPTER 4

CLOSURE OF THE FIFTH RING

4.1 The ring closure to a five membered ring

As previously stated, nitrile 75 goes through a hydration-cyclisation process under the influence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ producing the five-membered ring by connecting the nitrogen atom with C_{14}. This interesting "one-pot" conversion probably proceeds in two separate steps. The hydration of the nitrile $\mathbf{7 5}$ by exchange of the elements of water between nitrile and acetamide produces the amide 77. Even though water is not a participant in the proposed mechanism (Scheme 4.1) and no detailed information was provided about the role of water in this process, water is crucial for the reaction. Without water, no such conversion takes place ${ }^{40}$. Amide 77 then undergoes intramolecular cyclisation by nucleophilic attack of the nitrogen on the palladium (II) coordinated double bond, followed by the usual syn elimination of PdHOAc, which undergoes reductive elimination to Pd^{0} and acetic acid. (Schemes 4.1, 4.2)

Scheme 4.1

Scheme 4.2

Since the two reactions in one pot both need $\mathrm{Pd}(\mathrm{II})$, making the reaction catalytic in Pd requires an oxidant to regenerate $\mathrm{Pd}(\mathrm{II})$. Initially, using a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ without an oxidant resulted in incomplete conversion of the starting material. Subsequently using a stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and prolongation of the reaction time to 72 h made the reaction go to completion in 93% yield.

Compound 78, produced by hydrolysis of $\mathbf{7 5}$ (Scheme 4.3) to 81, and methylation with dimethyl sulfate, undergoes the same reaction to afford a 5 -membered cyclised product $\mathbf{8 2}$ as well.

Scheme 4.3

Both 80 and 82 undergo N-methylation by treatment with NaH^{41} in dry THF and iodomethane (Scheme 4.5) for 3 h at $0^{\circ} \mathrm{C}$ to afford $\mathbf{8 3}$ and $\mathbf{8 4}$, respectively. Then reduction of 84 by Red- Al^{42} provides the Hasubanonine like system 85 also known as the indolinocodeine system. Reduction of $\mathbf{8 3}$, unlike $\mathbf{8 4}$, gave a complex mixture of products probably due to reduction of the acetate as well as the amide.

Scheme 4.4

This intramolecular cyclization promoted by $\mathrm{Pd}(\mathrm{II})$ looks promising; therefore more investigations were conducted on this type of reaction hoping to make it catalytic and modify it for ring closure at C_{9} and formation of the morphine system. Larock and co-workers have reported ${ }^{43}$ a similar cyclization with the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{O}_{2} / \mathrm{DMSO} / \mathrm{NaOAc}$ system. This catalytic system generally results in five- or six-membered ring products; some examples (Table 4.1)
even show that this system is more prone to generate a 6 -membered ring than other catalytic systems.

Table 4.1 Cylization with different catalytic system ${ }^{43}$
entry

Based on this expectation, experiments were performed in an attempt to achieve a similar six-membered ring closure from the nitrile 75 via the amide 77 in one pot. Therefore using Larock's catalyst system for ring closure and combining it with the requirement of nitrile hydration to 77, the following reaction conditions were tested: a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in DMSO under an atmosphere of O_{2} with NaOAc and acetamide were added to the nitrile, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . After purification, the NMR spectrum showed no OAc peak but one new signal appeared at $\delta 6-6.5 \mathrm{ppm}$. Based on COSY, HMQC and mass spectra $\left(\mathrm{M}^{+} 251\right)$ data, the structure of this product is proposed to be $\mathbf{8 6}$ (Scheme 4.5). The NMR spectrum of compound 87 formed by methylation of $\mathbf{8 6}$, is shown in Appendix 3.

Scheme 4.5

This is a nice surprise because the reaction has generated the desired $\mathrm{C}_{9}-\mathrm{C}_{10}$ double bond for subsequent 6 -exo-trig ring closure at C_{9}. In order to determine the role of the individual reactants and the best conditions for this reaction, a series of experiments were performed as outlined in Table 4.2.

Table 4.2 The reaction conditions for compound 86

entry	Reagents and conditions	$\mathbf{8 6}$ yield $\%$
1	Acetamide, $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NaOAc}, \mathrm{DMSO}, \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$	56
2	Acetamide, $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NaOAc}, \mathrm{DMSO}: \mathrm{H}_{2} \mathrm{O}(3: 1), \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 7 \mathrm{days}$	No reaction
3	$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NaOAc}, \mathrm{DMSO}, \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$	64
4	$\mathrm{NaOAc}, \mathrm{DMSO}, \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$	82

Entry 1 used the initial reaction conditions but longer reaction time in order to determine if the reaction is reproducible and whether the reaction will go to completion. The result shows it is reproducible with starting material completely consumed and a yield of 56%. However, one important reagent (water) is missing from the reactants in entry $\mathbf{1}$. This is crucial in converting the nitrile to the amide as previously stated. Since water was missing in entry $\mathbf{1}$
experiment causing the nitrile not to be converted to the amide, one more experiment (entry $\mathbf{2}$) was performed with compound 75 using a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in DMSO under an atmosphere of O_{2} with NaOAc , acetamide, and water added to the nitrile and stirring continued at $80^{\circ} \mathrm{C}$ for 7 days, but to our surprise no reaction occurred at all with the starting acetate being recovered.

Since compound 75 was not converted to the amide under either set of conditions, acetamide might not be required in the reaction. Thus the conditions summarized in entry 3 were tested and the same product 86 was produced with a slightly better yield of 64%. Considering functions of the different reagents in entry $\mathbf{3}$, the possibility that $\mathrm{Pd}(\mathrm{OAc})_{2}$ might not be necessary at all since the nitrile was neither hydrated nor cyclised in the previous reactions, $\mathrm{Pd}(\mathrm{OAc})_{2}$ was removed and the reaction performed under the conditions of entry 4. A significant increase in yield (82%) of 86 was realized thereby. This reaction probably proceeds by acetolysis of the acetate, followed by oxidation of the resulting phenolate to form a transient, conjugated p-quinomethide which rearomatises by loss of proton from the C_{8} methylene group (Scheme 4.6).

Scheme 4.6

The requirement for initial formation of the phenolate from compound 75 was confirmed when the methyl ether $\mathbf{7 8}$ was found to be unaffected under the conditions of Entry 2 or $\mathbf{4}$ (Scheme 4.7).

Scheme 4.7

The conditions in Entry 2, include water, but the nitrile 75 was completely unaffected. This surprising stability can in fact be attributed to the presence of water as a large constituent of the solvent system (DMSO: $\mathrm{H}_{2} \mathrm{O}=3: 1$). The nucleophilicity of the acetate (from anhydrous NaOAc), enhanced in dry DMSO, will be significantly reduced in water by solvation. Thus, the first step of the proposed mechanism (Scheme 4.6) is blocked, phenolate can not form and the subsequent reaction sequence can not ensue just like the case of methyl ether 78.

The attempts at cyclising 78 under palladium catalysis produced very different results which depended on the quantity of catalyst and the nature of the solvent. This is clear in Scheme 4.3 and 4.7. Therefore 78 was treated with a stoichiometric amount of catalyst (Table 4.3, Entry 4) under conditions of Entry 5 with no different result.

Then, the conditions in Scheme 4.4 were used on the phenolic nitrile 86 (Scheme 4.8), but no reaction occurred and 86 was returned unchanged. Suspecting that phenol 86 might not be compatible with the reaction conditions, it was methylated with dimethyl sulfate in acetone to convert it to methyl ether 87. Treating 87 under the same conditions (Scheme 4.9) produced the same result. It would appear that the presence of the diene prevents the palladiumpromoted hydration of the nitrile in some way.

It was disappointing that the one-pot hydration-cyclisation reaction could not be performed with diene 86 or its methyl ether 87 , but other avenues have been opened up by these results for profitable processing of these dienes to the morphine system.

Scheme 4.8

Scheme 4.9

Larock and co-workers have reported that the cyclization of olefinic tosylamides with the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{O}_{2} / \mathrm{DMSO} / \mathrm{NaOAc}$ system generally results in six-membered ring products. This possibility encouraged us to expect that the same result might occur in our system. Therefore compound $\mathbf{7 8}$ was converted to tosylamide by reduction with LAH^{44} to form amine $\mathbf{8 8}$ first, and then followed by tosylation ${ }^{5}$ with DMAP, TsCl to obtain compound $\mathbf{8 9}$ (Scheme 4.10). This compound was the substrate for the "Larock cyclisation".

Scheme 4.10

When the compound $\mathbf{8 9}$ was reacted under the Larock system, the product was still the 5membered ring compound 90 based on ${ }^{1} \mathrm{H}$ NMR (Appendix 4), ${ }^{13} \mathrm{C}$ NMR, and MS. (Scheme 4.11)

Scheme 4.11

Other efforts to cyclise the various $\mathrm{C}_{9}, \mathrm{C}_{10}$ unsaturated compounds at C_{9} will be discussed later. For now, a brief summary of the results described in this section is provided in Table 4.3.

Table 4.3 Results of attempts to cyclise various nitrile and amide substrates

entry	substrate	reagents and conditions	results (yield\%)
1		$\xrightarrow[\text { THF/H2O/RT }]{\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{MeCONH}_{2}}$	
2		$\xrightarrow[\substack{\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{RT}}]{\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{MeCONH}_{2}}$	
3			No Reaction
4			No Reaction
5			No Reaction
6		$\mathrm{NaOAc}, \mathrm{DMSO}, \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$	
7		$\mathrm{NaOAc}, \mathrm{DMSO}, \mathrm{O}_{2}, 80^{\circ} \mathrm{C}, 72 \mathrm{~h}$	No Reaction

(

4.2 Rearrangement of the indolinocodeine to the mophinan system

One of the efforts to achieve a six-membered ring was attempted from the five-membered ring products. An early report ${ }^{45}$ that the hasubanan system 91 can be rearranged to the morphinan 93 via the aziridine intermediate 92 in good yield (Scheme 4.12), prompted us to attempt a similar transformation with our synthetic products containing a 9, 10 double bond and an ethanamine (or amide) at C_{15} (eg. $\mathbf{8 5}$ and related compounds)

Scheme 4.12

A leaving group at C_{9} might be generated by functionalizing the double bond by electophilic attack from its α-face. ($\mathrm{X}=\mathrm{O}, \mathrm{Br}^{+}, \mathrm{I}^{+}$, or a leaving group as designated in Scheme 4.13).

Scheme 4.13

First, formation of a 6 -membered ring from the 5 -membered ring amide $\mathbf{8 2}$ was attempted. It had been reported ${ }^{46}$ that $\mathrm{Et}_{4} \mathrm{NI}(\mathrm{OAc})_{2}$ can be a source of acetyl hypoiodite (IOAc) which reacts with a cycloalkene such as cyclohexene to form a iodonium ion, followed by the nucleophilic attack of acetate to open the ring. With compound $\mathbf{8 2}$, it was expected that the intermediate iodonium ion $\left(\mathrm{X}=\mathrm{I}^{+}\right)$would be cleaved by nucleophilic attack of the amide nitrogen thus forming an aziridine similar to $\mathbf{9 2}$. When the reaction was attempted with one equivalent of reagent $\mathrm{Et}_{4} \mathrm{NI}(\mathrm{OAc})_{2}$, nothing happened. Therefore, a second equivalent was added, but still nothing happened. The lactam nitrogen might not be nucleophilic enough, so the more nucleophilic amine compound $\mathbf{8 5}$ was used, with two equivalent of $\mathrm{Et}_{4} \mathrm{NI}(\mathrm{OAc})_{2}$, but still nothing happened.(Scheme 4.14); the alternative nucleophilic amine 94, whose preparation will be discussed later, was reacted with $\mathrm{PhCH}_{2} \mathrm{NMe}_{3} \mathrm{ICl}_{2}\left(\mathrm{BTMAlCl}_{2}\right)$ which is a source of ICl^{47}, hoping for the formation of a $\mathrm{C}_{9}-\mathrm{C}_{10}$ iodonium species again, but no reaction occurred at all (Scheme 4.14).

Scheme 4.14

Compound $\mathbf{9 4}$ was used because compound $\mathbf{8 5}$ is not a secondary amine like $\mathbf{8 8}$. Therefore lactam 82 was reduced with 3 equivalents of Red-Al in order to obtain secondary amine $\mathbf{9 4}$. After 2 h , the starting material was completely consumed, and three compounds formed were separated by column chromatography. After analyzing them by NMR, COSY, HMQC and mass spectrometry, their structures were assigned as shown in Scheme 4.15; the yield for these three compounds are 40% (compound 95), 29% (compound 94) and 11% (compound 96).

Scheme 4.15

One last effort was made to rearrange the 5 -membered to the 6 -membered ring employing $\mathrm{Li} / \mathrm{NH}_{3}{ }^{5}$ with our 5-membered ring compound 90 . Since reductive detosylation will generate a nitrogen radical or radical anion based on Parker's synthesis of morphine, this intermediate might add to the $\mathrm{C}_{9}-\mathrm{C}_{10}$ double bond with the possibility of rearrangement taking place. Treatment of tosylamide $\mathbf{9 0}$ with $\mathrm{Li} / \mathrm{NH}_{3}$ in the presence of t - BuOH afforded one compound lacking a tosyl group (Scheme 4.16).

Based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, COSY, HMQC and mass spectra, the product was assigned 5membered ring structure 96. The spectrum of the product was exactly the same as the compound 96 produced in Scheme 4.15.

Scheme 4.16

The five-membered ring substrates investigated so far had failed to rearrange like $\mathbf{9 1}$ did in the earlier work. However it should be noted that the successful ring expansion represented by the conversion of $\mathbf{9 1}$ to 93 was conducted in a substrate that did not contain a $\mathrm{C}_{4}-\mathrm{C}_{5}$ oxygen bridge. The presence of this furanoid moiety in all our substrates presumably changes the shape of these molecules and denies easy access of the various electrophiles to the $\mathrm{C}_{9}-\mathrm{C}_{10}$ double bond.

4.3 Attempts to cyclise \mathbf{N}-methyl ethanamines

Since the nitrile group did not cyclise directly at C_{9} under many conditions, in the next set of experiments, the compound 87 was converted to the amine 97 using a one pot reduction-transimination-reduction procedure ${ }^{9,48}$ (Scheme 4.17). The cyano group was reduced by DIBAL at low temperature, when reduction was complete ammonium bromide in dry methanol was added to destroy excess DIBAL and to convert the imine-aluminium complex into the free $\mathrm{N}-\mathrm{H}$ imine. Introduction of the N -methyl group was then achieved by conversion of the primary imine into the more stable secondary imine by addition of excess methyl amine hydrochloride. Sodium borohydride reduction overnight afforded the N -methyl β-ethanamine 97 in good overall yield (73\%). The ring closure was then attempted with amine 97.

Scheme 4.17

Our attention was then turned to compound 97 and with the same idea of selectively functionalizing the $\mathrm{C}_{9}-\mathrm{C}_{10}$ double bond (Scheme 4.18), the following experiments were attempted. (Table 4.4)

Scheme 4.18

$\mathrm{X}=\mathrm{O}, \mathrm{Br}^{+}, \mathrm{I}^{+}$, or a metallic leaving group

Table 4.4 Results of attempts to derivatize 97

entry	procedure/reagents	result
1	$\mathrm{Et}_{3} \mathrm{NIOAc}$	No reaction
2	$\mathrm{BTMAICl}_{2}$	No reaction
3	Red-Al/Cp2 TiCl_{2}	No reaction
4	$\mathrm{OsO}_{4} / \mathrm{DMAP}$	Complex mixture of products
5	PIFA	Complex mixture of products
6	$\mathrm{Rh}(\mathrm{COD}) \mathrm{BF}_{4} / \mathrm{DPPB}$	Complex mixture of products
7	BuLi	Complex mixture of products

Entries 1-3 represent attempts similar to those made with the indolinocodeine substrates. The results were equally disappointing. Oxidative functionalisation (Entry 4,5) with osmium (VIII) and iodine(III) also failed presumably due to the presence of the basic nitrogen atom. The hydroamination represented by Entry 6 was based on the reported ${ }^{49}$ anti-Markovnikov addition of amines to styrenes as in Scheme 4.19.

Scheme 4.19

Entry 7 is based on intramolecular hydroamination of dienes ${ }^{50}$ with high selectivity to the corresponding bicyclic allylic amines with catalytic amount of BuLi as a strong base (Scheme 4.20). Treatment of dienes with this strong base may provide a stabilized dienyl anion that would then be protonated intramolecularly by the secondary amine, but the reaction produced a complex mixture of products in our case.

Scheme 4.20

The presence of the basic nitrogen atom in $\mathbf{9 7}$ might have been responsible for the complex mixtures of products obtained in entries 4 and 5 . The amine 97 was therefore acylated with TFAA 51 and the resulting amide $\mathbf{1 0 0}$ subjected to osmylation in the belief that π-stacking effects ${ }^{27,28}$ would favor reaction at the $\mathrm{C}_{9}-\mathrm{C}_{10}$ double bond (Scheme 4.21). The osmylation of the $\mathbf{1 0 0}$ produced the diol $\mathbf{1 0 1}$, but its NMR spectrum was quite complex presumably because of the existence of amide tautomers. However, the cyclic carbonate $\mathbf{1 0 2}$ could be obtained by treatment with triphosgene ${ }^{52}$ and although H_{9} and H_{10} signals could be seen, the spectrum was
still rather complex. A further problem was our inablility to determine whether the carbonate was α or β oriented with respect to the ethanamine. Attempts to hydrolyze the trifluoroacetamide led to complex mixtures of products, and lack of sufficient material led us abandon this multi-step ring closure in favour of more direct methods which are described next.

Scheme 4.21

We decided to use our supplies of $\mathbf{9 7}$ instead to replicate ring closures achieved by Parker and Trost in their syntheses of the morphinan pentacycle. We were aware that those methods were applied to substrates containing only the one double bond at $\mathrm{C}_{9}-\mathrm{C}_{10}$ rather than conjugated system of our substrate 97.

Beginning with the Parker cyclisation ${ }^{5}$, the amine 97 was tosylated to afford the tosylamide 104 (Scheme 4.22) which was subjected to reduction with $\mathrm{Li} / l i q u i d$ ammonia. A cyclized
product $\mathbf{1 0 5}$ lacking the tosyl group was obtained in 89% yield, but the regiochemistry of the cyclisation was questionable. Cyclization at the diene termini $\mathrm{C}_{8}, \mathrm{C}_{10}$ or cyclization at C_{9} are possible outcomes leading to structure $\mathbf{1 0 5}, \mathbf{1 0 6}, \mathbf{1 0 7}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix 5) of the product showed the presence of only one alkene proton ($\delta=5.78-5.79 \mathrm{ppm}$) and the ${ }^{13} \mathrm{C}$ spectrum showed the presence of two alkene carbons: one quaternary, and the other bearing the single alkene proton. The mass spectrum $\left(\mathrm{M}^{+} 283\right)$ at low and high resolution also indicated that cyclisation of the ethanamine had occurred.

Scheme 4.22

However, further examination of the NMR data clearly showed the presence of a twoproton signal centered at $\delta 3.20$. It was an ABX system $\left(J_{\mathrm{AB}}=19 \mathrm{~Hz}\right)$ with each half further
coupled, but not identically, to a third proton. This signal was therefore assigned to the C_{10} methylene group with the upfield part of quartet coupled $(J=6 \mathrm{~Hz})$ to the alkene proton H_{9} at δ 5.78ppm. The downfield section of the AB quartet displayed a very small coupling to H_{9} $(J=3.6 \mathrm{~Hz})$, which only produced a broadening of that part of the quartet. A similar H_{10} proton pattern also appears for the several intermediates such as compounds $\mathbf{6 4}, \mathbf{7 0}, \mathbf{7 5}, 78$ which have the same $\mathrm{C}_{9}-\mathrm{C}_{14}$ alkene structure (Table 4.5). Further COSY and HMQC confirmed the ${ }^{1} \mathrm{H}$ assignments. Therefore structure $\mathbf{1 0 5}$ was assigned to the product.

The product 105 contains about 10% of an impurity whose structure could be the detosylated uncyclized amine, which we will attempt to separate from the product.

Table 4.5 $\mathbf{H}_{\mathbf{1 0}}$ Comparison Among different compounds

Compound	$\mathrm{H}_{10}(\delta, J)$	$\mathrm{H}_{9}(\delta)$
	$\begin{aligned} & 3.11-3.17, \mathrm{dd}, J=19.2,6.0 \mathrm{~Hz} \\ & 3.29-3.30, \mathrm{dd}, J=19.2,3.5 \mathrm{~Hz} \end{aligned}$	5.70-5.86
	$\begin{aligned} & 3.15-3.28 \text {, dd, } J=19.2,6.0 \mathrm{~Hz} \\ & 3.30-3.40 \text {, dd, } J=19.2,3.5 \mathrm{~Hz} \end{aligned}$	5.80-5.85
	$\begin{aligned} & 3.20-3.28, \mathrm{dd}, J=19.8,6.0 \mathrm{~Hz} \\ & 3.43-3.55, \mathrm{dd}, J=19.8,3.5 \mathrm{~Hz} \end{aligned}$	5.99-6.01

$3.11-3.20, \mathrm{dd}, J=19.8,6.0 \mathrm{~Hz}$	$5.94-5.97$	
	$3.11-3.17, \mathrm{dd}, J=19.1,6.0 \mathrm{~Hz}$	$5.78-5.51, \mathrm{dd}, J=19.8,3.5 \mathrm{~Hz}$

This uncommon pentacyclic system (3-Methoxy-7, 9c-(methyliminoethano)-4a, 5, 6, 9, 9c-pentahydrophenanthro[4,5-bcd]furan) containing a ethanamine bridge has not been synthesized before. However, tetracycle 108 containing a similar ethanamine bridge had been prepared ${ }^{53}$ much earlier in order that its analgesic properties could be evaluated. It may be worthwhile to determine the biological activity of this variant (105) of the morphinan pentacycle.

Figure 4.1 The structure of compound 108

One more experiment to apply the $\mathrm{Li} / \mathrm{NH}_{3}$ reaction to compound $\mathbf{8 9}$ only caused detosylation without ring closure. The reason for attempting the same reaction on compound $\mathbf{8 9}$
was that the nitrogen intermediate might add at C_{9}, leaving a stable tertiary radical at C_{14}, which may facilitate the reaction, but this was not the case unfortunately. (Scheme 4.23)

Scheme 4.23

A second experiment was tried based on Trost's synthesis ${ }^{9}$ in which diisopropylamine was added to 6eq. of BuLi and 97 with irradiation by a visible light source. The experiment was attempted with our diene substrate under those conditions. The intramolecular hydroamination did not go to completion (55\% conversion) and two compounds $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ were detected, in addition to unchanged starting material $\mathbf{9 7}$ (Scheme 4.24). Compound $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ can be separated by TLC, while compound 109 overlapped with starting material 97 in many solvent systems. The NMR spectrum of the mixture of $\mathbf{1 0 9}$ and $\mathbf{9 7}$ clearly showed the peaks attribute to 109 with one alkene proton signal. Believing that the ether linkage was opened by the strong base used, and that might have happened after the six-membered ring closure, more BuLi and diisopropylamine was added in order to convert compound $\mathbf{1 0 9}$ to compound $\mathbf{1 1 0}$ for easier separation. This was successful and it proved that more base cleaved the ether linkage completely, converting compound $\mathbf{1 0 9}$ to $\mathbf{1 1 0}$. This also suggested that $\mathbf{1 0 9}$ has the same cyclic system as $\mathbf{1 1 0}$ but with the $\mathrm{C}_{4}-\mathrm{C}_{5}$ ether linkage.

Scheme 4.24

This reaction might be facilitated by single electron transfer process ${ }^{9}$ initiated by irradiation with an ordinary tungsten light bulb. The suggested structure of $\mathbf{1 1 0}$ is based on its mass spectrum $\left(\mathrm{M}^{+}\right.$283), ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix 6) and COSY. $\mathrm{M}^{+} 283$ implies same degree of unsaturation as the compound 105. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of three alkene protons ($\delta=5.88-6.20 \mathrm{ppm}$), but with no H_{5} signal which usually appears at $4-5 \mathrm{ppm}$. Although this reaction has been repeated with same outcome, we have been unable to purify the compound rigorously; it appears that the free phenol may be unstable, and can not easily be purified by the usual methods. Considerations will be given to acetylation of phenol $\mathbf{1 1 0}$ before attempting purification.

CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

Short chiral syntheses of morphinan and two other related systems were completed in less than 20 steps. These three systems have the same tetracyclic intermediate $\mathbf{7 5}$. Starting with 75, one-pot hydration and cyclisation reaction by palladium furnished the hasubanan system; also starting with 75, methylamine 97 was obtained and irradiated by a visible light source under LDA obtaining morphinan system; while $\mathrm{Li} / \mathrm{NH}_{3}$ reduction was applied on methylamine 97, the third uncommon pentacyclic system was generated.

5.2 Future work

The structure $\mathbf{1 1 0}$ must be confirmed; if correct, it may undergo palladium(II)-catalyzed intramolecular cylization ${ }^{56}$ to generate 6-demethoxythebaine. (Scheme 5.1)

Scheme 5.1

Other methods of oxygen ring closure are also possible such as selective epoxidation of the $\mathrm{C}_{5}-\mathrm{C}_{6}$ double bond and intramolecular attack of the phenol to result in compound $112 .{ }^{8}$ (Scheme 5.2)

Scheme 5.2

Treatment of $\mathbf{1 1 0}$ with an oxidizing reagent ${ }^{57}$ generates demethoxylsalutaridine 113, followed by reduction to form 114, and ring closure to furnish demethoxythebaine $\mathbf{1 1 1} .{ }^{58}$ (Scheme 5.3)

Scheme 5.3

CHAPTER 6

EXPERIMENTAL PROCEDURES

6.1 General Conditions

All reactions involving air or moisture sensitive reagents were performed using oven dried glassware and under an inert atmosphere $\left(\mathrm{Ar}\right.$ or $\left.\mathrm{N}_{2}\right)$. THF, ether, toluene and benzene were distilled from sodium using benzophenone ketyl as indicator. Dichoromethane was distilled from CaH_{2}. Commercially available reagents were used without further purification.

For thin layer chromatography analysis, E. Merck 5554 pre-coated silica gel $60 \mathrm{~F}_{254}$ aluminum sheets were used. The developed sheets were viewed under UV light or stained with an acidic oxidizing solution of $\mathrm{NH}_{4} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \&\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot \mathrm{H}_{2} \mathrm{O}$, or an acidic solution of vanillin. Flash chromatography was carried out using silica gel 60 (230-400 mesh), and the solvent mixtures used as eluent are indicated in each case.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker AM-300 and AMX-500 instruments. Chemical shifts for NMR were determined relative to the internal standard tetramethylsilane ($\delta 0.00$) or CDCl_{3} ($\delta 7.26$) for ${ }^{1} \mathrm{H}$ spectra, and CDCl_{3} ($\delta 77.0$) for ${ }^{13} \mathrm{C}$ spectra. Coupling constants were obtained directly from the spectra by first-order analysis. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assigned based on COSY and HMQC data. All NMR spectra were run in CDCl_{3} unless otherwise specified. Mass spectra were run at the WATSPEC Mass Spectrometry Facility, Department of Chemistry, University of Waterloo. Specific rotations $[a]_{D}$ were measured on a Perkin-Elmer 241 Polarimeter instrument at ambient temperature. Chiral
separations were performed by HPLC using Chiralcel®-OD columns eluting with hexanes/isopropanol.

Regarding known compounds, only the reference to the reported preparation and characterization data is given; unless compounds have been prepared via a significantly modified or previously unreported route, in which case both experimental procedures and ${ }^{1} \mathrm{H}$ NMR data have been included.

6.2 Reaction Conditions and Experimental Data

2-Allyl-1,3-cyclohexanedione 55

To a 5% aqueous KOH solution ($250 \mathrm{~mL}, 0.223 \mathrm{~mol}$) was added cyclohexanedione (25 g , 0.223 mol) and copper powder ($14.2 \mathrm{~g}, 0.223 \mathrm{~mol}$). While stirring, allyl bromide ($26 \mathrm{~mL}, 0.307$ mol) was added dropwise within 1 h and the reaction mixture was stirred at room temperature for 2 h more. After filtration, the residue was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The mixture was filtered again, and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford the solid. Washing with ether ($2 \times 50 \mathrm{~mL}$) gave a white solid product ($19.3 \mathrm{~g}, 57 \%$) which was used without any purification in the next step.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.95(2 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.55(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.05(2 \mathrm{H}$, d, $\left.J=6.4 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{d}, J=17.3$ $\left.\mathrm{Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.82\left(1 \mathrm{H}, \mathrm{m}, J=17.3,10.2,7.2 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum recorded was in complete agreement with the data reported in the literature ${ }^{23}$

2-Allyl-3-methoxy-2-cyclohexenone 56

Cyclohexanedione $55(20 \mathrm{~g}, 0.13 \mathrm{~mol})$ was refluxed with $\mathrm{Me}_{2} \mathrm{SO}_{4}(11.3 \mathrm{~mL}, 0.14 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(20.7 \mathrm{~g}, 0.15 \mathrm{~mol})$ in acetone $(300 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$. After 3 h , acetone was removed in vacuo, and the residue was washed with water (250 mL), and extracted with EtOAc (2×300 $\mathrm{mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by distillation $\left(0.01 \mathrm{~mm}, 82^{\circ} \mathrm{C}\right)$ gave the product $(18.7 \mathrm{~g}, 87 \%)$ as a pale yellow liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $1.96(2 \mathrm{H}, \mathrm{m}), 2.32(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 2.55(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}), 3.0(2 \mathrm{H}, \mathrm{d}$, $\left.J=6.2 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}), 4.85\left(1 \mathrm{H}, \mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95$ $\left(1 \mathrm{H}, \mathrm{dd}, J=17.3,1.8 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.75\left(1 \mathrm{H}, \mathrm{m}, J=17.3,10.2,6.2 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum recorded was in complete agreement with the data reported in the literature ${ }^{54}$.

3-Ethenyl-2-(2-propenyl)-2-cyclohexen-1-one 57

Vinylmagnesium bromide (1.0 M in THF, $80 \mathrm{~mL}, 79.5 \mathrm{mmol}$) was added dropwise over 1 h to a solution of cyclohexenone $56(8.8 \mathrm{~g}, 53 \mathrm{mmol})$ in dry THF $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 h . A 3 N aqueous HCl solution was added until $\mathrm{pH} 2-3$ was reached and the resulting solution was stirred for 2 h more at room temperatures. The reaction was extracted with ether ($2 \times 150 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified on a silica column (EtOAc: Hexanes 1:1) to give the product ($7 \mathrm{~g}, 81 \%$) as yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 2.00(2 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.51(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.19(2 \mathrm{H}$, d, $J=6.0 \mathrm{~Hz}), 4.93(2 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}),, 5.78(1 \mathrm{H}, \mathrm{m}$, $J=17.8,9.5,6.0 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=17.5,11.0 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR spectrum recorded was in complete agreement with the data reported in the literature ${ }^{12}$.

(S)-3-Ethenyl-2-(2-propenyl)-2-cyclohexen-1-ol 39b

To a solution of $\mathbf{5 7}(8 \mathrm{~g}, 0.049 \mathrm{~mol})$ in dry toluene (200 mL) and Methyl Oxazaborolidine (1.0 M in toluene, $7.4 \mathrm{~mL}, 0.0074 \mathrm{~mol}$) at $-78^{\circ} \mathrm{C}$ was added a solution of catecholborane (9.5 mL , 0.089 mol) in toluene (80 mL) via syringe pump over 1 h . After stirring for 18 h at $-78^{\circ} \mathrm{C}$, NaOH solution ($1 \mathrm{~N}, 600 \mathrm{~mL}$) was added; the resulting solution was stirred at room temperature for an additional 30 min . The organic phase was separated and the aqueous phase was extracted with diethyl ether ($2 \times 300 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (hexane: $\mathrm{EtOAc}=3: 1$) to give the product $(7.2 \mathrm{~g}, 89 \%)$ as light yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.56(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.65-1.85(4 \mathrm{H}, \mathrm{m}), 2.10-2.35(2 \mathrm{H}, \mathrm{m}), 3.10(2 \mathrm{H}$, d, $J=6.0 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{br}), 5.00-5.20(3 \mathrm{H}, \mathrm{m}), 5.30(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{m}, J=17.2$, $11.0,6.0 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=17.2,11.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,25.0,31.8,34.3,68.2,114.0,115.4,132.9,134.6,135.0,136.7$
LRMS(EI): 164 (6), 123 (100)
HRMS: m/z Calcd. For $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O} \mathrm{M}^{+} 164.1201$, Found 164.1200
$[\alpha]_{\mathrm{D}}=-271.5\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)$
ee $=98.66 \%$ (Appendix 7)

(S)-2-[(2-Allyl-3-vinylcyclohex-2-en-1-yl)oxy]benzonitrile 47

The general method of Wandless and coworkers ${ }^{55}$ was employed. NaHMDS (1.0 M in THF, 60 $\mathrm{mL}, 60 \mathrm{mmol}$) was added dropwise over 1 h to a solution of (\mathbf{S})-39b ($7.5 \mathrm{~g}, 46 \mathrm{mmol}$) and 2fluorobenzonitrile ($7.2 \mathrm{~g}, 60 \mathrm{mmol}$) in dry THF $(180 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and was stirred for $3 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ was added and washed once with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$. The aqueous layer was back-extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified on a silica column (EtOAc: hexanes 1:4) to give the product (10.8 g, 89\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.63-1.71(2 \mathrm{H}, \mathrm{m}), 1.85-2.17(3 \mathrm{H}, \mathrm{m}), 2.37-2.44(1 \mathrm{H}, \mathrm{m}), 2.87-2.95$ ($1 \mathrm{H}, \mathrm{dd}, J=15.7,7.6 \mathrm{~Hz}$), 3.19-3.25 ($1 \mathrm{H}, \mathrm{dd}, J=15.7,4.8 \mathrm{~Hz}$), 4.82 ($1 \mathrm{H}, \mathrm{br}$), 4.90-5.00 ($2 \mathrm{H}, \mathrm{m}$), $5.16(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 5.34(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 5.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.78(1 \mathrm{H}, \mathrm{dd}$, $\left.J=17.4,11.0 \mathrm{~Hz}, \mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.93-7.03(2 \mathrm{H}, \mathrm{m}), 7.45-7.56(2 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,25.0,27.5,34.2,75.1,103.4,113.8,114.9,115.7,116.6,120.7$, $130.9,134.0,134.1,134.3,135.4,136.0,160.4$

LRMS(EI): 265(2.2), 147(100), 105(35), 91(35)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ON} \quad \mathrm{M}^{+}$265.1467 Found 265.1465.
$[\alpha]_{\mathrm{D}}=-304.8\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$

(S)-2-[(2-Allyl-3-vinylcyclohex-2-en-1-yl)oxy]benzaldehyde 50

Ice cold N, N '-dimethylethylenediamine ($1.5 \mathrm{~mL}, 0.0139 \mathrm{~mol}$) was added via cannula to a suspension of LAH ($0.53 \mathrm{~g}, 0.0139 \mathrm{~mol}$) in dry THF (30 mL) at $-78^{\circ} \mathrm{C}$ under argon. The suspension was stirred for 1 h and hydrogen was released through a bubbler. Then the mixture was diluted with dry THF (24 mL) and allowed to warm to $0^{\circ} \mathrm{C}$.

To the above mixture was added a cooled solution of benzonitrile $47(2.45 \mathrm{~g}, 0.0093 \mathrm{~mol})$ in THF (20 mL) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . Cold $3 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$ was added untill the pH reached 2-3 and stirring continued for 10 min . The mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic layer was washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, brine (20 mL), dried and concentrated to give the product used directly without purification for the next step. For the purpose of accurate rotation measurement, the residue was purified on a silica column (EtOAc: hexanes $=1: 2$) to give the product ($2.1 \mathrm{~g}, 84 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.72-1.82(3 \mathrm{H}, \mathrm{m}), 2.08-2.21(2 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{m}), 2.87-2.95(1 \mathrm{H}, \mathrm{dd}$, $J=15.7,7.0 \mathrm{~Hz}), 3.19-3.25(1 \mathrm{H}, \mathrm{dd}, J=15.7,4.8 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{br}), 4.94-5.06(2 \mathrm{H}, \mathrm{m}), 5.22(1 \mathrm{H}$, d, $J=11.0 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 5.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.83(1 \mathrm{H}, \mathrm{dd}, J=17.4$, $\left.11.0 \mathrm{~Hz}, \mathrm{R}-\mathrm{C} \underline{\mathrm{H}}=\mathrm{CH}_{2}\right), 6.96-7.24(2 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{m}), 10.50(1 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.7,25.0,27.5,34.3,74.3,113.7,114.9,115.7,120.5,125.9,128.3$, $131.2,134.2,135.2,135.8,135.9,161.1,190.1$

LRMS(EI): 268(2), 147(100), 105(35), 91(35)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \quad \mathrm{M}^{+} 268.1463$. Found 268.1465
$[\alpha]_{\mathrm{D}}=-265.7\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right)$

(S)-2-[(2-Allyl-3-vinylcyclohex-2-en-1-yl)oxy] phenylformate 51

To a solution of $\mathrm{PhSeSePh}(230 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(1.7 \mathrm{~g}, 15$ mmol, $30 \% \mathrm{w} / \mathrm{w}$). The yellow solution was stirred until colorless, and a solution of benzaldehyde $\mathbf{5 0}(1 \mathrm{~g}, 3.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added. The reaction was stirred vigorously at rt overnight. Water (50 mL) was added, and the reaction mixture was separated. The organic layer was washed successively with 10% aqueous $\mathrm{NaHSO}_{3}(20 \mathrm{~mL})$, sat. aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, brine (30 mL), dried and concentrated. The resulting yellow oil ($1.0 \mathrm{~g}, 94 \%$) was directly used for the next step without further purification.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.57-1.69(3 \mathrm{H}, \mathrm{m}), 1.98-2.04(2 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{m}), 2.89-2.93(1 \mathrm{H}, \mathrm{dd}$, $J=15.7,7.2 \mathrm{~Hz}), 3.14-3.17(1 \mathrm{H}, \mathrm{dd}, J=15.7,4.6 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{br}), 4.92-5.01(2 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}$, d, $J=11.0 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}), 6.91-$ $6.97(1 \mathrm{H}, \mathrm{m}), 7.03-7.11(2 \mathrm{H}, \mathrm{m}), 7.17-7.20(1 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,25.0,27.3,34.0,74.4,114.5,115.0,115.5,120.9,122.9,127.2$, $131.6,134.4,135.0,135.8,136.1,149.6,159.3$

LRMS(EI): 147 (100), 105(35), 91(30)
LRMS(CI): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 302.2$

(S)-2-[(2-Allyl-3-vinylcyclohex-2-en-1-yl)oxy]phenol 52

Ice cold aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($12.2 \mathrm{~mL}, 3.52 \mathrm{mmol}, 4 \% \mathrm{v} / \mathrm{v}$) was added dropwise over 30 min . to the solution of phenyl formate $\mathbf{5 1}(1 \mathrm{~g}, 3.52 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After evaporating the methanol, the mixture was neutralized with dry ice to $\mathrm{pH}=7$, then extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layer was dried and concentrated. The residue was purified on a silica column (EtOAc: hexanes $=1: 4)$ to give the product $(0.7 \mathrm{~g}, 78 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.56-1.75(3 \mathrm{H}, \mathrm{m}), 2.01-2.07(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{m}), 2.97-3.00(1 \mathrm{H}, \mathrm{dd}$, $J=15.7,7.0 \mathrm{~Hz}), 3.08-3.10(1 \mathrm{H}, \mathrm{dd}, J=15.7,5.0 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{br}), 4.96-5.05(2 \mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}$, d, $J=11.0 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.75-5.95(2 \mathrm{H}, \mathrm{m}), 6.78-6.94(5 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.7,24.9,27.5,34.3,75.2,112.8,114.7,114.8,115.6,120.0,121.4$, $131.5,134.3,135.2,136.3,145.1,146.7$

LRMS(EI): 256 (2), 147 (100), 105(40), 91(35)
HRMS: m/z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2} \quad \mathrm{M}^{+} 256.1461$. Found 256.1463
$[\alpha]_{D}=-247\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$

Oxidation and intramolecular Diels Alder reaction of (-)2-[(2-allyl-3-vinylcyclohex-2-en-1-yl)oxy]phenol 52

To a solution of phenol $\mathbf{5 2}(1 \mathrm{~g}, 3.9 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$ was added a solution of DAIB $(1.50 \mathrm{~g}, 4.66 \mathrm{mmol})$ in methanol $(70 \mathrm{~mL})$ via syringe pump over 1 h . The reaction mixture was stirred overnight, $\mathrm{NaHCO}_{3}(1.25 \mathrm{~g})$ was added and the mixture stirred for 20 min . After the methanol was removed in vacuo, the residue was extracted with EtOAc ($2 \times 40 \mathrm{~mL}$), washed with water (50 mL), brine (40 mL), dried and evaporated. The residue was purified on a silica column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: hexane: $\left.\mathrm{CH}_{3} \mathrm{OH}=5: 1: 0.1\right)$ to give the endo $\mathbf{5 3}$ and bridged compound $\mathbf{6 1}$ mixture $(714 \mathrm{mg}, 64 \%$, endo: bridged $=1.2: 1)$ as a yellow oil, and the dimer $62(312 \mathrm{mg}, 14 \%)$ as a yellow solid. The endo 53 and bridged compound $\mathbf{6 1}$ mixture could not be separated in any solvent system, therefore it was used directly for the next reaction.

3a-methoxy-9c-(2'-propenyl)-3,3a,4a,5,6,7,9,9a,9b,9c-decahydrophenanthro[4,5-

bcd]furan-3-one 53

8b-(2''-propenyl)-2-methoxy-9-oxo-5a-ethenyl-2,5-methano-2a,5,5a,6,7,8,8a,8b-

 octahydro[2H]naphtha[1,8-bc]furan 61

Dimer compound (-)62

${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \quad \delta 1.15-1.75(4 \mathrm{H}, \mathrm{m}), 1.85-2.15(5 \mathrm{H}, \mathrm{m}), 2.16-2.30(2 \mathrm{H}, \mathrm{m}), 2.65-2.85$ $(2 \mathrm{H}, \mathrm{m}), 2.86-3.05(2 \mathrm{H}, \mathrm{m}), 3.15-3.25(3 \mathrm{H}, \mathrm{m}), 3.30(1 \mathrm{H}, \mathrm{s}), 3.42(4 \mathrm{H}, \mathrm{br}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.79$ $(1 \mathrm{H}, \mathrm{br}), 4.24(1 \mathrm{H}, \mathrm{br}), 4.87-4.97(4 \mathrm{H}, \mathrm{m}), 5.02-5.09(2 \mathrm{H}, \mathrm{m}), 5.21-5.27(2 \mathrm{H}, \mathrm{dd}, J=17.3 \mathrm{~Hz}$,
$J=10.0 \mathrm{~Hz}), 5.50-5.72(2 \mathrm{H}, \mathrm{m}), 5.75-5.82(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.05-6.13(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.27-$ $6.35(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 6.45-6.55(1 \mathrm{H}, \mathrm{dd}, J=10 \mathrm{~Hz}, J=4 \mathrm{~Hz}), 6.58-6.75(2 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,17.7,24.9,24.9,28.4,29.3,30.8,31.8,32.9,40.0,41.1,42.4,49.7$, $50.6,53.0,72.1,72.3,96.9,100.2,114.4,114.8,115.3,115.5,127.3,129.4,133.1,133.4$, 134.4, 134.4, 134.4, 134.6, 135.2, 136.1, 146.8, 193.8, 202.5
$[\alpha]_{D}=-118.6\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-propenyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 64

TFA $(3.0 \mathrm{~mL})$ and acetic anhydride $(3.0 \mathrm{~mL})$ were added to a solution of mixture of endo $\mathbf{5 3}$ and bridged compound $\mathbf{6 1}(500 \mathrm{mg}, 1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, and stirred at rt for 15 min . NaHCO_{3} was added in small portions until the pH reached 7, then washed with water (2×30 $\mathrm{mL})$. The layers were partitioned and organic layer was dried and concentrated to give an oil that was further purified by column chromatography (hexane:ether $=6: 1$) to give the product ($214 \mathrm{mg}, 76 \%$) as a light yellow oil $\left(\mathrm{R}_{\mathrm{f}}=0.33\right)$ and the unchanged bridged adduct $(225 \mathrm{mg})$ as a light yellow oil $\left(\mathrm{R}_{\mathrm{f}}=0.2\right)$.

To a solution of bridged compound $\mathbf{6 1}(225 \mathrm{mg}, 0.79 \mathrm{mmol})$ in tetrachloroethane (20 mL) was added acetic anhydride (3 mL). The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for four days. After
the tetrachloroethane was removed by vacuum distillation, the residue was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL})$ and washed with water $(2 \times 20 \mathrm{~mL})$. The organic layer was dried and concentrated. The residue was purified by column chromatography (hexane: ether=6:1) to give the product ($147 \mathrm{mg}, 63 \%$) as a light yellow oil.

Bridged compound 61:

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 1.45(1 \mathrm{H}, \mathrm{m}), 1.57-1.60(2 \mathrm{H}, \mathrm{m}), 1.75-1.95(3 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{dd}$, $J=14.3,7.0 \mathrm{~Hz}), 2.17(1 \mathrm{H}, \mathrm{dd}, J=14.3,7.8 \mathrm{~Hz}), 2.88-2.90(1 \mathrm{H}, \mathrm{dd}, J=6.5,1.1 \mathrm{~Hz}), 3.20-3.22$ $(1 \mathrm{H}, \mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}), 3.49(3 \mathrm{H}, \mathrm{s}), 4.28(1 \mathrm{H}, \mathrm{t}), 5.04-5.12(4 \mathrm{H}, \mathrm{m}), 5.75-5.85(1 \mathrm{H}, \mathrm{m}), 5.97-$ 6.03 (1H, dd, $J=17.5,11.1 \mathrm{~Hz}), 6.18-6.28(2 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 16.0,25.6,32.2,38.3,44.3,48.4,48.5,48.9,60.0,80.0,99.5,113.4$, 118.7, 128.3, 131.8, 134.2, 141.7, 201.8

LRMS(EI): 258(50), 217(100), 157(45), 131(52)
LRMS(CI): $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 304.2$ (100)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ [M-CO] ${ }^{+} 258.1620$ Found 258.1621
$[\alpha]_{\mathrm{D}}=+299\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-propenyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 64

${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \quad \delta 1.10-1.24(1 \mathrm{H}, \mathrm{m}), 1.45-1.60(1 \mathrm{H}, \mathrm{m}), 1.70-1.78(2 \mathrm{H}, \mathrm{m}), 2.29-2.37$
(7H, m), 3.11-3.17 (1H,dd, $J=19.2,6.0 \mathrm{~Hz}), 3.29-3.30(1 \mathrm{H}, \mathrm{dd}, J=19.2,3.5 \mathrm{~Hz}), 4.74-4.78(1 \mathrm{H}$, dd, $J=12.2,4.2 \mathrm{~Hz}), 5.05-5.09(2 \mathrm{H}, \mathrm{m}), 5.72-5.80(2 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,20.8,25.3,25.7,29.7,42.0,50.1,90.2,118.4,118.9,121.1,123.3$, $132.5,133.7,134.0,134.2,140.5,147.0,168.7$

LRMS(EI): 296(6), 255(87), 213(75), 195(100), 167(45)
HRMS: m/z Calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \quad \mathrm{M}^{+}$296.1412 Found 296.1411
$[\alpha]_{D}=-208\left(c=0.19, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2', 3'-hydroxy)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 65

To a solution of DMAP ($644 \mathrm{mg}, 5.28 \mathrm{mmol}$) and phenanthrofuran $64(650 \mathrm{mg}, 2.20 \mathrm{mmol})$ in THF (150 mL) was added $\mathrm{OsO}_{4}(676 \mathrm{mg}, 2.64 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 12 h , then $10 \% \mathrm{NaHSO}_{3}$ solution (30 mL) was added and stirring continued for another hour. The mixture was extracted with EtOAc $(2 x 40 \mathrm{~mL})$, and the organic layer seperated washed with brine $(80 \mathrm{~mL})$, then dried and concentrated to give the product ($661 \mathrm{mg}, 91 \%$), a colorless oil, as a diastereomeric mixture which was used directly without further purification for the next step.
${ }^{1} \mathrm{H}$ NMR (500 MHz) mixture of diastereomers $\delta 1.10-1.75(4 \mathrm{H}, \mathrm{m}), 1.85-1.95(1 \mathrm{H}, \mathrm{m}), 2.17$ $(1 \mathrm{H}, \mathrm{m}), 2.30-2.50(7 \mathrm{H}, \mathrm{m}), 3.19-3.55(4 \mathrm{H}, \mathrm{m}), 3.65(0.55 \mathrm{H}, \mathrm{m}), 4.00(0.45 \mathrm{H}, \mathrm{m}), 4.86-4.88$
($0.45 \mathrm{H}, \mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}), 5.00-5.04(0.55 \mathrm{H}, \mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}), 5.79-5.81(0.45 \mathrm{H}, \mathrm{m}), 5.73-$ $5.75(0.55 \mathrm{H}, \mathrm{m}), 6.73-6.82(2 \mathrm{H}, \mathrm{m})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta \underline{19.0,19.1}$ (1C) 20.7, 24.9, 25.5, 29.3,29.4 (1C) 39.9, 40.1 (1C), 48.6,
 $\underline{123.4}(2 \mathrm{C}), 132.2, \underline{133.3,133.8,134.3,}(2 \mathrm{C}), \underline{141.4,141.6}$ (1C), $\underline{146.7,147.1}$ (1C), $\underline{168.8,}$ 169.1(1C)

LRMS(EI): 330 (25), 288(40), 255(55), 213(100), 195(60)
HRMS: m/z Calcd. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \quad \mathrm{M}^{+} 330.1467$. Found 330.1462
$[\alpha]_{\mathrm{D}}=-29.2\left(\mathrm{c}=0.76, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-oxo-ethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 66

$\mathrm{NaIO}_{4}(1.52 \mathrm{~g}, 7.1 \mathrm{mmol})$ was added to a solution of diol $\mathbf{6 5}(650 \mathrm{mg}, 1.97 \mathrm{mmol})$ in water and t - BuOH ($25 \mathrm{~mL}: 25 \mathrm{~mL}$), and stirred at rt for 1.5 h . The reaction mixture was extracted with EtOAc (80 mL), the organic layer was washed with water ($2 \times 30 \mathrm{~mL}$), dried and concentrated to give a colorless oil ($552 \mathrm{mg}, 94 \%$) directly used for the next reaction without further purification.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 1.17-1.79(3 \mathrm{H}, \mathrm{m}), 2.29-2.50(6 \mathrm{H}, \mathrm{m}), 2.59-2.65(1 \mathrm{H}, \mathrm{dd}, J=14.9,3.0$ $\mathrm{Hz}), 2.68-2.73(1 \mathrm{H}, \mathrm{dd}, J=14.9,2.6 \mathrm{~Hz}), 3.23-3.26(2 \mathrm{H}, \mathrm{m}), 4.82-4.86(1 \mathrm{H}, \mathrm{dd}, J=12.2,4.6 \mathrm{~Hz})$, $5.83-5.86(1 \mathrm{H}, \mathrm{m}), 6.75-6.77(1 \mathrm{H}, \mathrm{d}, J=8.0), 6.83-6.86(1 \mathrm{H}, \mathrm{d}, J=8.0), 9.65(1 \mathrm{H}, \mathrm{t}, J=2.8 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,20.7,25.0,25.4,29.6,47.5,50.2,90.7,119.5,121.9,124.5,132.7$, $132.8,133.9,139.7,147.1,168.5,200.9$

LRMS(EI): 298(20), 256(65), 212(100), 195(35)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \quad \mathrm{M}^{+}$298.1211. Found 298.1205
$[\alpha]_{\mathrm{D}}=-51.8\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-methylaminoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5$b c d]$ furan 70

To a solution of aldehyde $66(43 \mathrm{mg}, 0.144 \mathrm{mmol})$ in methanol (10 mL) was added $\mathrm{MeNH}_{2} . \mathrm{HCl}(58.4 \mathrm{mg}, 0.864 \mathrm{mmol})$, and the mixture was stirred for 6 h at rt . Then NaCNBH_{3} ($18 \mathrm{mg}, 0.288 \mathrm{mmol}$) was added and stirred overnight. After methanol was evaporated, the residue was extracted with EtOAc (2x15 mL) ; the organic layer was washed with water (2×10 mL), dried, and evaporated. The residue was purified by column chromatography (hexane: ether=6:1) to give the product ($30 \mathrm{mg}, 67 \%$) as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.05-1.85(5 \mathrm{H}, \mathrm{m}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.20-2.50(7 \mathrm{H}, \mathrm{m}), 2.75-3.10(2 \mathrm{H}, \mathrm{m})$, 3.15-3.28 (1H, dd, $J=19.2,6.0 \mathrm{~Hz}), 3.30-3.40(1 \mathrm{H}, \mathrm{dd}, J=19.2,3.5 \mathrm{~Hz}), 4.80-4.87(1 \mathrm{H}, \mathrm{dd}$, $J=12.2,4.5 \mathrm{~Hz}), 5.80-5.85(1 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,20.7,25.0,25.5,25.8,30.1,34.6,48.6,52.5,90.6,119.6,121.9$, $125.5,132.7,132.9,134.1,138.9,147.0,168.5$

LRMS(EI): 313(15), 254(25), 212(100), 195(30)
HRMS: m/z Calcd. For $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \quad \mathrm{M}^{+}$313.1678. Found 313.1674
$[\alpha]_{\mathrm{D}}=-62.6\left(\mathrm{c}=0.51, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-methyltosylaminoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5bcd]furan 71

To a solution of methylamine $70(30 \mathrm{mg}, 0.095 \mathrm{mmol})$ in methanol (10 mL) were added DMAP ($23.2 \mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{TsCl}(27.2 \mathrm{mg}, 0.14 \mathrm{mmol})$, the mixture was stirred for 6 h at rt . The methanol was evaporated, the residue was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$; the organic layer was washed with water ($2 \times 10 \mathrm{~mL}$), dried, and evaporated. The residue was purified by column chromatography (hexane: ether $=1: 1$) to give the product ($35 \mathrm{mg}, 78 \%$) as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.15-1.78(4 \mathrm{H}, \mathrm{m}), 1.90-2.03(2 \mathrm{H}, \mathrm{m}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.45(5 \mathrm{H}, \mathrm{br})$, $2.63(3 \mathrm{H}, \mathrm{s}), 2.90-2.99(1 \mathrm{H}, \mathrm{m}), 3.19-3.23(2 \mathrm{H}, \mathrm{m}), 3.24-3.6(1 \mathrm{H}, \mathrm{m}), 4.73-4.76(1 \mathrm{H}, \mathrm{dd}, J=12$ $\mathrm{Hz}, J=5 \mathrm{~Hz}), 5.80-5.81(1 \mathrm{H}, \mathrm{m}), 6.72-6.73(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.81-6.82(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.28-$ 7.35 (2H, BB'), 7.62-7.64 (2H, AA')
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,20.7,20.8,25.2,29.7,35.3,35.7,40.1,47.0,48.6,91.1,119.1$, $121.9,123.1,127.5,128.3,129.6,129.8,132.7,132.9,133.9,134.4,140.2,143.2,147.2,168.4$ LRMS(EI): 467(22), 425(29), 312(58), 270(100), 213(88), 185(46)

HRMS: m/z Calcd. For $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S} \quad \mathrm{M}^{+}$467.1770. Found 467.1776
$[\alpha]_{\mathrm{D}}=-43.2\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right)$

3-Acetoxy -9c-(2'-oxoethyl-N,N-dimethylhydrazone)-4a, 5, 6, 7, 9, 9c-

 pentahydrophenanthro[4,5-bcd]furan 76

N , N-Dimethylhydrazine ($0.12 \mathrm{~mL}, 1.57 \mathrm{mmol}$) was added to a solution of aldehyde $\mathbf{6 6}$ (334 $\mathrm{mg}, 1.12 \mathrm{mmol})$ in methanol (60 mL). The mixture was stirred for 2 hrs at rt ., and methanol was removed in vacuo. The residue was extracted with EtOAc (70 mL), washed with water (50 mL) and separated. The organic layer was dried and concentrated to give a colorless oil (339 mg , 89%) used directly for the next reaction without further purification.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ mixture of diastereomers $\delta 1.11-1.72(4 \mathrm{H}, \mathrm{m}), 2.25-2.39(6 \mathrm{H}, \mathrm{m}), 2.48-$ $2.52(1 \mathrm{H}, \mathrm{m}), 2.68-2.71(6 \mathrm{H}, \mathrm{m}), 3.08-3.35(2 \mathrm{H}, \mathrm{dd}, J=19.1,5.7 \mathrm{~Hz}), 4.78-4.84(1 \mathrm{H}, \mathrm{m}), 5.73-$ $5.76(1 \mathrm{H}, \mathrm{m}), 6.35-6.40(1 \mathrm{H}, \mathrm{m}), 6.60-6.79(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$
 40.1(1C), 43.0, 43.2, 49.7, 49.9(1C), 89.4, 89.9 (1C), 115.5, 119.0, 119.2(1C), 121.2, 123.0, $132.4,133.5,133.9,140.4,140.6(1 \mathrm{C}), 147.5,168.5$

LRMS(EI): 340(30), 255(80), 213(100), 195(90), 86(45)
HRMS: m/z Calcd. For $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \quad \mathrm{M}^{+}$340.1787. Found 340.1794

3-Acetoxy -9c-(2'-cyanoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 75

To a solution of MMPP. $6 \mathrm{H}_{2} \mathrm{O}(890 \mathrm{mg}, 1.8 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added a solution of dimethylhydrazone 76 ($259 \mathrm{mg}, 0.76 \mathrm{mmol}$) in methanol (30 mL) at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir for 5 min ., and $\mathrm{H}_{2} \mathrm{O}(180 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and the aqueous layer was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, and the combined organic extracts were dried and concentrated. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a white solid product $(173 \mathrm{mg}, 77 \%)$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.18-1.86(4 \mathrm{H}, \mathrm{m}), 2.31-2.50(4 \mathrm{H}, \mathrm{m}), 2.54-2.73(3 \mathrm{H}, \mathrm{m}), 3.20-3.28$ $(1 \mathrm{H}, \mathrm{dd}, J=19.8,6.0 \mathrm{~Hz}), 3.43-3.55(1 \mathrm{H}, \mathrm{dd}, J=19.8 \mathrm{~Hz}, 3.5 \mathrm{~Hz}), 4.80-4.87(1 \mathrm{H}, \mathrm{dd}, J=12.1$, $4.4 \mathrm{~Hz}), 5.99-6.01(1 \mathrm{H}, \mathrm{m}), 6.77-6.84(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.87-6.91(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.2,20.7,25.0,25.3,25.6,29.7,47.5,90.5,117.5,119.7,122.5,126.3$, $131.3,132.9,134.3,137.9,147.0,168.5$

LRMS(EI): 295(25), 253(85), 213(100), 195(57), 167(25)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{3} \quad \mathrm{M}^{+}$295.1208. Found 295.1214
$[\alpha]_{\mathrm{D}}=-89.8\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$

3-Methoxy -9c-(2'-cyanoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 78

$\mathrm{NaOH}(5 \mathrm{~mL}, 1 \mathrm{~N})$ was added to a solution of acetoxy nitrile $75(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ in MeOH $(15 \mathrm{~mL})$. The reaction mixture was stirred at rt overnight. Methanol was removed in vacuo, and dry ice was added to reach a pH of 6-7. The resulting mixture was extracted with EtOAc (2x10 $\mathrm{mL})$. The organic layer was dried, concentrated to obtain crude 3-hydroxy -9c-(2'-cyanoethyl)$4 \mathrm{a}, 5,6,7,9,9 \mathrm{c}$-pentahydrophenanthro[4,5-bcd]furan. To the solution of above product and dimethylsulfate ($74.8 \mathrm{mg}, 0.68 \mathrm{mmol}$) in acetone $(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(234.6 \mathrm{mg}, 1.7$ mmol) The mixture was stirred at rt for 16 h , and acetone removed in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and washed with water (15 mL). The aqueous layer was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried, concentrated and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a white solid $(41 \mathrm{mg}, 91 \%)$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.13-1.86(4 \mathrm{H}, \mathrm{m}), 2.38-2.65(4 \mathrm{H}, \mathrm{m}), 3.11-3.20(1 \mathrm{H}, \mathrm{dd}, J=19.8,6.0$ $\mathrm{Hz}), 3.36-3.51(1 \mathrm{H}, \mathrm{dd}, J=19.8,3.5 \mathrm{~Hz}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.76-4.82(1 \mathrm{H}, \mathrm{dd}, J=12.1,4.4 \mathrm{~Hz}), 5.94-$ $5.97(1 \mathrm{H}, \mathrm{m}), 6.71(2 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) 17.3, 25.1, 25.4, 25.6, 29.3, 47.5, 56.5, 89.7, 113.2, 117.6, 119.5, 126.6, $128.5,130.3,137.9,143.3,145.3$

LRMS(EI): 267(85), 227(58), 195(100)
HRMS: m / z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \quad \mathrm{M}^{+} 267.1257$ Found 267.1259
$[\alpha]_{D}=-108.3\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)$

Palladium catalyzed cyclization of tetracyclic nitriles

3-Acetoxy -7a, 9c-(aminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-bcd]furan 80

3-Methoxy-7a, 9c-(aminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-bcd]furan 82

The nitrile 75 or $78(0.15 \mathrm{mmol})$ was dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}: \mathrm{THF}=1: 3(12 \mathrm{~mL})$. Acetamide $(0.60 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(0.16 \mathrm{mmol})$ were added and the mixture was stirred at rt for 3 days. THF was removed in vacuo, and resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 20 \mathrm{~mL})$. The organic layer was washed with water (20 mL), dried and concentrated. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}=99: 1\right)$ to give the product.

3-Acetoxy -7a, 9c-(aminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-bcd]furan was obtained in 93% yield as a light yellow solid by the above procedure.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.20-1.59(4 \mathrm{H}, \mathrm{m}), 1.78-1.83(1 \mathrm{H}, \mathrm{m}), 2.05-2.15(1 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s})$, $2.52-2.59(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}), 2.61-2.67(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}), 4.74-4.81(1 \mathrm{H}, \mathrm{dd}, J=10.3,7.0 \mathrm{~Hz})$, $5.59(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{br}) 6.39(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.78-6.81(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, 6.85-6.88 (1H, d, J=8.0 Hz)
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 15.2,20.7,28.1,31.8,42.8,47.7,62.9,92.3,118.4,122.6,123.2,126.8$, 127.3, 133.7, 134.7, 147.7, 168.4, 176.6

LRMS(EI): 311(19), 269(100)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \quad \mathrm{M}^{+} 311.1158$. Found 311.1157
$[\alpha]_{D}=-158.5\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$

3-Methoxy-7a, 9c-(aminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-bcd]furan was obtained in 91% yield as a light yellow solid by the above procedure.
${ }^{1} \mathrm{H}$ NMR (300 MHz) δ 1.19-1.52 (4H, m), 1.80-1.85 ($1 \mathrm{H}, \mathrm{m}$), 2.05-2.15 $(1 \mathrm{H}, \mathrm{m}), 2.50-2.56(1 \mathrm{H}$, d, $J=16.8 \mathrm{~Hz}), 2.57-2.64(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 4.73-4.80(1 \mathrm{H}, \mathrm{dd}, J=10.3,7.0 \mathrm{~Hz})$, $5.59(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{br}), 6.65-6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, 6.69-6.72 (1H, d, $J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 14.1,28.3,31.9,43.0,48.1,56.3,62.8,91.4,113.1,118.6,121.9,122.8$, $126.4,131.8,144.8,145.3,176.6$

LRMS(EI): 283(100), 240(10)
HRMS: m/z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \quad \mathrm{M}^{+}$283.1206. Found 283.1208
$[\alpha]_{D}=-172.3\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$

\mathbf{N}-methylation of pentacyclic lactams

3-Acetoxy -7a, 9c-(methylaminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5$b c d]$ furan 83

3-Methoxy-7a, 9c-(methylaminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5$b c d]$ furan 84

$\mathrm{NaH}(0.14 \mathrm{mmol}, 60 \%$ in mineral oil) was added to a solution of amide $\mathbf{8 0}$ or $\mathbf{8 2}(0.096 \mathrm{mmol})$ and MeI $(6.6 \mathrm{~mL})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was continued to stir at $0^{\circ} \mathrm{C}$ for 3 h and warmed to rt . After adding Sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, the aqueous layer was extracted with diethyl ether ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), separated and dried. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{CH}_{3} \mathrm{OH}=99: 1$) to give the product.

3-Acetoxy -7a, 9c-(methylaminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5$\boldsymbol{b} \boldsymbol{c} \boldsymbol{d}]$ furan was obtained in 87% yield as a light yellow solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 0.99-1.29(4 \mathrm{H}, \mathrm{m}), 1.99-2.23(2 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.58(2 \mathrm{H}, \mathrm{s}), 2.84$ $(3 \mathrm{H}, \mathrm{s}), 4.68-4.75(1 \mathrm{H}, \mathrm{dd}, J=10.3,7.0 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, $6.69-6.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.86-6.89(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 16.0,20.3,28.1,30.2,31.8,40.8,44.7,62.9,92.3,118.4,122.8,123.6$, 127.1, 127.3, 133.7, 134.7, 147.7, 168.4, 174.8

LRMS(EI): 325(25), 283(100)
HRMS: m/z Calcd. For $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{4} \quad \mathrm{M}^{+} 325.1314$ Found 325.1315
$[\alpha]_{D}=-153.1\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right)$

3-Methoxy-7a, 9c-(methylaminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-

 $\boldsymbol{b} \boldsymbol{c} \boldsymbol{d}]$ furan was obtained (89%) as a light yellow solid.${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.03-1.33(2 \mathrm{H}, \mathrm{m}), 1.44-1.56(2 \mathrm{H}, \mathrm{m}), 1.99-2.17(2 \mathrm{H}, \mathrm{m}), 2.49-2.54(1 \mathrm{H}$, d, $J=16.5 \mathrm{~Hz}), 2.56-2.63(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 2.83(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}, \mathrm{s}), 4.67-4.74(1 \mathrm{H}, \mathrm{dd}$, $J=10.3,7.0 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.65-6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.69-6.73(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75MHz) $\delta 15.1,24.6,28.2,29.9,42.5,46.7,56.3,66.1,91.4,113.1,118.6,122.1$, $123.3,126.8,126.9,144.8,145.3,174.3$

LRMS(EI): 297(100), 283(10)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \quad \mathrm{M}^{+} 297.1360$ Found 297.1365
$[\alpha]_{\mathrm{D}}=-166.7\left(\mathrm{c}=0.67, \mathrm{CHCl}_{3}\right)$

3-Methoxy-7a, 9c-(methyliminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-

 bcd]furan 85

Compound $\mathbf{8 4}(10 \mathrm{mg}, 0.034 \mathrm{mmol})$ in benzene $(3 \mathrm{~mL})$ was added to a solution of Red-Al (15 $\mu \mathrm{L}, 0.051 \mathrm{mmol}, 65 \% \mathrm{w} / \mathrm{w})$ in benzene $(0.5 \mathrm{~mL})$. The reaction mixture heated spontaneously and the apparatus was connected with a condenser. The mixture was stirred at rt for 1.5 h .

Water (6 mL) was added until precipitation occured and the mixture was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried, concentrated, purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}:=95: 5\right)$ to give a white solid $(7.4 \mathrm{mg}, 77 \%)$.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.03-1.87(6 \mathrm{H}, \mathrm{m}), 2.11-2.25(2 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.40-2.44(1 \mathrm{H}, \mathrm{m})$, 3.17-3.20 ($1 \mathrm{H}, \mathrm{m}$), $3.86(3 \mathrm{H}, \mathrm{s}), 4.73-4.80(1 \mathrm{H}, \mathrm{dd}, J=10.3,7.0 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, $6.40(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.61-6.64(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.65-6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 15.1,20.4,24.6,28.2,42.5,46.7,48.0,56.7,66.1,92.4,112.3,117.4$, 122.1, 123.3, 125.8, 126.1, 144.5, 145.1

LRMS(EI): 283 (100), 268(50), 149(50), 57(48)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \quad \mathrm{M}^{+} 283.1568$ Found 283.1572
$[\alpha]_{D}=-169.1\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$

3-Methoxy -9c-(2'-aminoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan 88

To a solution of LAH ($5.5 \mathrm{mg}, 0.144 \mathrm{mmol}$) in ether (5 mL) was added nitrile $78(8.5 \mathrm{mg}$, $0.032 \mathrm{mmol})$ at rt . The reaction mixture was refluxed for 5 h , and water $(8 \mathrm{~mL})$ was added. The mixture was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The
combined organic layer was dried and concentrated. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\left.\mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 10: 10\right)$ provided the amine ($5.9 \mathrm{mg}, 69 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.05-1.40(4 \mathrm{H}, \mathrm{m}), 1.60-1.95(4 \mathrm{H}, \mathrm{m}), 2.25-2.45(2 \mathrm{H}, \mathrm{m}), 2.58-2.81$ $(2 \mathrm{H}, \mathrm{m}), 3.03-3.15(1 \mathrm{H}, \mathrm{dd}, J=19.3,6.0 \mathrm{~Hz}), 3.18-3.35(1 \mathrm{H}, \mathrm{dd}, J=19.3,3.5 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s})$, 4.67-4.73 (1H, dd, $J=12.1,4.4 \mathrm{~Hz}), 5.70-5.78(1 \mathrm{H}, \mathrm{m}), 6.67(2 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.5,25.4,25,8,29.3,34,1,42.4,47.5,56.5,90.5,113.2,119.5,126.6$, $128.5,130.3,137.9,143.3,145.3$

LRMS(EI): 271(22), 228(100), 195(30)
HRMS: m/z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \quad \mathrm{M}^{+}$271.1563. Found 271.1572

3-Methoxy -9c-(2'-tosylaminoethyl)-4a, 5, 6, 7, 9, 9c-pentahydrophenanthro[4,5-bcd]furan

 89

A solution of methoxy ethylamine $\mathbf{8 8}(5.9 \mathrm{mg}, 0.022 \mathrm{mmol})$ and DMAP ($4 \mathrm{mg}, 0.033 \mathrm{mmol}$) in THF (10 ml) at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{TsCl}(5.5 \mathrm{mg}, 0.029 \mathrm{mmol})$. The reaction was stirred 3 h at rt , and acidified with $\mathrm{HCl}(1 \mathrm{~N})$ to $\mathrm{pH}=1-2$, and after stirring at rt for 6 h , two layers in the reaction mixture was separated. The aqueous layer was extracted with ether ($2 \times 25 \mathrm{~mL}$). The
combined organic layer was dried and concentrated. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 5: 5\right)$ provided amine tosylate $(8.0 \mathrm{mg}, 85.5 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.05-1.17(1 \mathrm{H}, \mathrm{m}), 1.50-1.60(2 \mathrm{H}, \mathrm{m}), 1.69-1.76(2 \mathrm{H}, \mathrm{m}), 1.9-1.94(1 \mathrm{H}$, m), 2.30-2.34 ($2 \mathrm{H}, \mathrm{m}$), 2.44-2.49 ($4 \mathrm{H}, \mathrm{br}), 2.96-3.00(2 \mathrm{H}, \mathrm{m}), 3.10-3.11(1 \mathrm{H}, \mathrm{br}), 3.87(3 \mathrm{H}, \mathrm{s})$, $4.29(1 \mathrm{H}, \operatorname{tr}, J=6.1 \mathrm{~Hz}), 4.63-4.67(1 \mathrm{H}, \mathrm{dd}, J=12.1,4.4 \mathrm{~Hz}), 5.76-5.78(1 \mathrm{H}, \mathrm{br}), 6.63-6.69(2 \mathrm{H}$, ABq, $J=8.0 \mathrm{~Hz}$), 7.23-7.27(2H, BB'), 7.64-7.77 (2H, AA')
${ }^{13} \mathrm{C}$ NMR (75MHz) $\delta 17.5,20.8,25.0,25.1,28.7,36.9,39.7,48.8,55.3,74.3,89.8,113.0$, $118.9,122.8,126.5,126.6,128.1,128.5,131.7,136.9,140.4,143.2,143.3,144.3$

LRMS(EI): 425(28), 270(40), 227 (75), 71(100)
HRMS: m/z Calcd. For $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}^{(} \mathrm{M}^{+} 425.1658$ Found 425.1661

3-Methoxy-7a, 9c-(tosyliminoethano)-4a, 5, 6, 7, 9c-pentahydrophenanthro[4,5-bcd]furan

90

$\mathrm{NaOAc}(3.1 \mathrm{mg}, 0.038 \mathrm{mmol})$ and PdOAc ($0.3 \mathrm{mg}, 0.0019 \mathrm{mmol}$) were added to a solution of amine tosylate $\mathbf{8 9}(8.0 \mathrm{mg}, 0.019 \mathrm{mmol})$ in DMSO $(10 \mathrm{~mL})$ under an atmosphere of O_{2}. The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 3days, and then cooled to rt , diluted with THF and ether $(10 \mathrm{~mL}+20 \mathrm{~mL})$. The mixture was washed with brine and then the aqueous layer was extracted
with ether ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with $10 \% \mathrm{NaCl}$ solution (10 $\mathrm{mL})$, dried and concentrated. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 5: 5\right)$ gave the product as a yellow solid ($6.7 \mathrm{mg}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 0.95-1.45(4 \mathrm{H}, \mathrm{m}), 1.90-2.10(3 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}), 2.83-2.90(1 \mathrm{H}, \mathrm{m})$, 3.16-3.25 (1H, m), 3.73-3.77 ($1 \mathrm{H}, \mathrm{m}$), $3.89(3 \mathrm{H}, \mathrm{s}), 4.51-4.54(1 \mathrm{H}, \mathrm{dd}, J=10.2,6.5 \mathrm{~Hz}), 6.26-$ $6.34(2 \mathrm{H}, \mathrm{ABq}, J=9.7 \mathrm{~Hz}), 6.70-6.75(2 \mathrm{H}, \mathrm{ABq}, J=8.0 \mathrm{~Hz}), 7.32-7.35(2 \mathrm{H}, \mathrm{BB})$), 7.78-7.80 (2H, AA')
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 22.7,28.7,28.9,29.2,29.6,45.9,52.4,56.2,72.0,89.6,116.5,118.3$, $122.4,125.0,127.2,127.4,127.5,128.1,130.2,138.6,140.7,143.0,144.4,144.9$

LRMS(EI): 423(100), 268(60), 225(18)
HRMS: m/z Calcd. For $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S} \quad \mathrm{M}^{+} 423.1496$ Found 423.1504

3-Methoxy-7a, 9c-(iminoethano)-4a, 5, 6, 7, 8, 9, 9c-heptahydrophenanthro[4,5-bcd]furan 96

To a two-necked round bottom flask (50 mL) containing dry THF (10 mL) fitted with a dry ice condenser, was added $\mathrm{NH}_{3}(40 \mathrm{~mL})$ and $\mathrm{t}-\mathrm{BuOH}(0.05 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. With stirring, $\mathrm{Li}(20 \mathrm{mg})$ was added. After the solution turned blue, a solution of amine tosylate ($6.5 \mathrm{mg}, 0.015 \mathrm{mmol}$) in

THF (5 mL) was added. The reaction mixture stirred for 15 min at $-78^{\circ} \mathrm{C}$, then the dry ice bath was removed, and the NH_{3} allowed to evaporate. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{~mL})$ solution was added dropwise, and reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The organic layer was dried, evaporated and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}\right.$: $\mathrm{NH}_{4} \mathrm{OH}=90: 5: 5$) to give product ($3.4 \mathrm{mg}, 80 \%$) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.03-1.40(2 \mathrm{H}, \mathrm{m}), 1.42-1.56(3 \mathrm{H}, \mathrm{m}), 1.58-1.65(1 \mathrm{H}, \mathrm{m}), 1.95-2.08$ $(3 \mathrm{H}, \mathrm{m}), 2.25-2.36(1 \mathrm{H}, \mathrm{m}), 2.61-2.70(1 \mathrm{H}, \mathrm{m}), 2.81-2.92(2 \mathrm{H}, \mathrm{m}), 3.15-3.28(2 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}$, s), 4.62-4.66 (1H, dd, $J=10.3,6.8 \mathrm{~Hz}), 6.65-6.68(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.74-6.76(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$ ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.4,25.1,28.2,29.7,35.5,38.9,43.7,51.2,56.5,61.7,91.3,113.2$, $119.8,125.8,131.0,143.3,145.7$

LRMS(EI): 271(100), 228(50), 120(15)
HRMS: m/z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{M}^{+}$271.1578 Found 271.1572

3-Hydroxy -9c-(2'-cyanoethyl)-4a, 5, 6, 9c-tetrahydrophenanthro[4,5-bcd]furan 86

$\mathrm{NaOAc}(51 \mathrm{mg}, 0.62 \mathrm{mmol})$ was added to a solution of acetoxy nitrile $75(91 \mathrm{mg}, 0.31 \mathrm{mmol})$ in DMSO (25 mL) under an atmosphere of O_{2}. The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 3 days, and then cooled to rt , diluted with THF and ether $(20 \mathrm{~mL}+40 \mathrm{~mL})$. The mixture was
washed with brine and two layers was separated. The aqueous layer was extracted with ether $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $10 \% \mathrm{NaCl}$ solution (20 mL), dried and concentrated to give a white solid ($64 \mathrm{mg}, 82 \%$) directly used for the next reaction without further purification.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.27-1.42(2 \mathrm{H}, \mathrm{m}), 2.21-2.32(2 \mathrm{H}, \mathrm{m}), 2.55-2.74(2 \mathrm{H}, \mathrm{ABq}, J=16.6 \mathrm{~Hz})$, $4,85(1 \mathrm{H}, \mathrm{br}), 5.21-5.25(1 \mathrm{H}, \mathrm{m}), 6.21(2 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 6.66-6.74(2 \mathrm{H}, \mathrm{ABq}$, $J=8.0 \mathrm{~Hz}$)
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 21.1,26.2,28.9,46.3,90.4,117.1,117.2,118.7,123.8,124.1,124.5$, $126.9,131.9,136.6,140.5,142.6$

LRMS(EI): 251(35), 211(100), 165(27)
HRMS: m/z Calcd. For $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \quad \mathrm{M}^{+} 251.0942$ Found 251.0946
$[\alpha]_{D}=+110.3\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right)$

3-Methoxy -9c-(2'-cyanoethyl)-4a, 5, 6, 9c-tetrahydrophenanthro[4,5-bcd]furan 87

$\mathrm{K}_{2} \mathrm{CO}_{3}$ ($303.6 \mathrm{mg}, 2.2 \mathrm{mmol}$) was added to a solution of hydroxy nitrile $\mathbf{8 6}(55 \mathrm{mg}, 0.22 \mathrm{mmol})$ and dimethylsulfate $(0.084 \mathrm{~mL}, 0.88 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$. The mixture was stirred at rt for 16 h , and acetone removed in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and
washed with water $(30 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and the combined organic extracts were dried, concentrated and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a white solid ($56 \mathrm{mg}, 96 \%$)
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 1.25-1.35(2 \mathrm{H}, \mathrm{m}), 2.21-2.24(2 \mathrm{H}, \mathrm{m}), 2.53-2.74(2 \mathrm{H}, \mathrm{ABq}, J=16.5 \mathrm{~Hz})$, $3.87(3 \mathrm{H}, \mathrm{s}), 5.19-5.23(1 \mathrm{H}, \mathrm{m}), 6.20-6.24(2 \mathrm{H}, \mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 6.72(2 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 21.2,26.3,28.9,46.3,56.3,90.0,113.2,117.2,118.4,123.8,124.1$, $124.9,126.9,130.9,132.4,136.6,142.6$

LRMS(EI): 265(35), 225(100), 165(15)
HRMS: m/z Calcd. For $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2} \quad \mathrm{M}^{+}$265.1103. Found 265.1096
$[\alpha]_{D}=+136.7\left(\mathrm{c}=0.29, \mathrm{CHCl}_{3}\right)$

3-Methoxy -9c-(2'-methylaminoethyl)-4a, 5, 6, 9c-tetrahydrophenanthro[4,5-bcd]furan 97

To a solution of methoxy diene nitrile $87(45 \mathrm{mg}, 0.17 \mathrm{mmol})$ in a mixed solvent of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}+2 \mathrm{~mL})$ was added DIBAL $(0.59 \mathrm{~mL}, 1 \mathrm{M}$ in hexane $)$ at $-78^{\circ} \mathrm{C}$. After stirring at $78^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for an additional 1 h . To the reaction mixture was added a solution of $\mathrm{NH}_{4} \mathrm{Br}(46 \mathrm{mg}, 0.47 \mathrm{mmol})$ in dry methanol (1 mL) followed by a $\mathrm{MeNH}_{2}(1.4 \mathrm{~mL}, 2 \mathrm{M})$ solution in methanol. The cooling bath was removed and
the stirring was continued for 2 h at room temperature. The mixture was cooled in an ice bath and $\mathrm{NaBH}_{4}(114 \mathrm{mg}, 3 \mathrm{mmol})$ was added in three portions. The reaction mixture was stirred overnight at rt. The excess NaBH_{4} was destroyed by addition of $\mathrm{HCl}(2 \mathrm{M})$. The pH was adjusted to >12 using 3 N NaOH . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$. The combined organic layer was dried and concentrated. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 5: 5\right.$) provided amine ($35 \mathrm{mg}, 73 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.23-1.94(5 \mathrm{H}, \mathrm{m}), 2.09-2.20(2 \mathrm{H}, \mathrm{m}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.57-2.80(2 \mathrm{H}, \mathrm{m})$, $3.85(3 \mathrm{H}, \mathrm{s}), 5.03-5.11(1 \mathrm{H}, \mathrm{m}), 5.93(1 \mathrm{H}, \mathrm{m}) 6.12(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz})$, $6.90(2 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (300 MHz) $\delta 21.5,29.2,36.5,37.4,46.7,47.6,56.2,90.3,111.8,117.8,123.9$, $124.6,125.6,128.3,130.4,135.2,139.9,144.3$

LRMS(EI): 283(40), 226(100)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \quad \mathrm{M}^{+}$283.1572. Found 283.1573 $[\alpha]_{\mathrm{D}}=+103.2\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right)$

6-demethoxy-7-deoxysalutaridine 110

To a solution of methylamine $97(6 \mathrm{mg}, 0.021 \mathrm{mmol})$ in a mixed solvent of THF (1 mL) and diisopropylamine $(0.36 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(174 \mu \mathrm{~L}, 0.252 \mathrm{mmol}, 1.45 \mathrm{M}$ in hexane $)$ at $78^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 7 h under argon with irradiation from a 600 W tungsten lamp at a distance of 0.7 m . The solution was quenched with aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 6 \mathrm{~mL})$. The organic layer was dried, concentrated and purified by column chromatography to give the product as a white solid (2.6 $\mathrm{mg}, 61 \%)$ and recovered starting material (1.7 mg).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.23-1.55(3 \mathrm{H}, \mathrm{m}), 1.73-1.83(2 \mathrm{H}, \mathrm{m}), 2.03-2.20(2 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s})$, 2.61-2.64 (1H, m), 2.72-2.79 (1H, m), 3.86 (3H, s), $5.88(1 \mathrm{H}, \mathrm{br}), 6.09-6.19(2 \mathrm{H}, \mathrm{m}) 6.55(1 \mathrm{H}$, d, $J=8.1 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$

LRMS(EI): 283(47), 240(45), 226(63), 193(100), 165(55)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \quad \mathrm{M}^{+}$283.1572. Found 283.1573

3-Methoxy -9c-(2'-methyltosylaminoethyl)-4a, 5, 6, 9c-tetrahydrophenanthro[4,5-

bcd]furan 104

To a solution of methyl amine $97(5 \mathrm{mg}, 0.018 \mathrm{mmol})$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{TsCl}(4.5$ $\mathrm{mg}, 0.023 \mathrm{mmol})$ and DMAP ($4.4 \mathrm{mg}, 0.036 \mathrm{mmol}$). The reaction mixture was stirred at rt for

5 h , and water (5 mL) was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic layer was dried and concentrated. Flash column chromatography (hexane: ether: $\left.\mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 90: 10: 10\right)$ provided amine tosylate $(6.3 \mathrm{mg}, 82 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.23-1.94(4 \mathrm{H}, \mathrm{m}), 2.11-2.20(2 \mathrm{H}, \mathrm{m}), 2.39(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 2.57-$ $2.80(2 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 5.00-5.06(1 \mathrm{H}, \mathrm{m}), 5.97(1 \mathrm{H}, \mathrm{m}) 6.13(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.36(1 \mathrm{H}, \mathrm{d}$, $J=9.6 \mathrm{~Hz}), 6.67(2 \mathrm{H}, \mathrm{s}), 7.25\left(2 \mathrm{H}, \mathrm{BB}^{\prime}\right), 7.58\left(2 \mathrm{H}, \mathrm{AA}^{\prime}\right)$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 21.5,21.5,29.1,34.5,34.7,46.2,56.2,89.8,112.1,118.0,124.0,124.4$, $125.4,126.4,127.0,127.3,128.0,129.4,129.8,132.3,134.5,138.8,140.1,143.2,144.4$

LRMS(EI): 421(27), 266(45), 225(100)
HRMS: m/z Calcd. For $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}^{+} \mathrm{M}^{+}$421.1710. Found 421.1712
$[\alpha]_{\mathrm{D}}=+89.2 \quad\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$

3-Methoxy-7, 9c-(methyliminoethano)-4a, 5, 6, 9, 9c-pentahydrophenanthro[4,5bcd]furan 105

To a two-necked round bottom flask (50 mL) containing dry THF (10 mL) cooled to $-78^{\circ} \mathrm{C}$ and fitted with a dry ice condenser was added $\mathrm{NH}_{3}(40 \mathrm{~mL})$ and $\mathrm{t}-\mathrm{BuOH}(0.05 \mathrm{~mL})$. With stirring, $\mathrm{Li}(20 \mathrm{mg})$ was added. After the solution turned blue, a solution of methyl amine
tosylate $104(6.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ in THF (5 mL) was added. The reaction mixture stirred for 15 min at $-78^{\circ} \mathrm{C}$, then the dry ice bath was removed, and the NH_{3} allowed to evaporate. $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mg) in $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{~mL}$) solution was added dropwise, and reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The organic layer was dried, evaporated and purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{NH}_{4} \mathrm{OH}=90: 5: 5\right)$ to give product ($3.8 \mathrm{mg}, 89 \%$) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 1.03-1.87(6 \mathrm{H}, \mathrm{m}), 1.92-1.95(1 \mathrm{H}, \mathrm{m}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.54-2.57(1 \mathrm{H}, \mathrm{m})$, 2.66-2.70 ($1 \mathrm{H}, \mathrm{m}$), $3.15(1 \mathrm{H}, \mathrm{dd}, J=19.1,6.0 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=19.1,3.6 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s})$, 4.75-4.79 ($1 \mathrm{H}, \mathrm{dd}, J=12.1,4.6 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{m}), 6.70(2 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 17.7,25.4,29.4,36.5,37.9,47.8,56.4,61.6,66.8,90.5,111.9,119.0$, 123.4, 128.7, 132.9, 141.0, 143.0, 144.4

LRMS(EI): 283(50), 228(100), 211(40), 195(35)
HRMS: m/z Calcd. For $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{M}^{+}$283.1569. Found 283.1572

REFERENCES

1. Zezula, J.; Hudlicky, T. Synlett. 2005, 388
2. Blakemore, P. R.; White, J. D. Chem. Commun. 2002, 1159
3. Hudlicky, T.; Butora, G.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R. Studies in

Natural Products Chemistry 1996, 18, 43
4. Matsui, M. " The Alkaloids", 1988, 33, 307
5. Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71, 449
6. Uchida, K; Yokoshima S.; Kan, T.; Fukuyama, T. Org. Lett. 2006, 8, 5311
7. Rice, K.C. J. Org. Chem. 1980, 45, 3135
8. Hong, C.Y.; Kado, N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028
9. Trost, B.M.; Tang, W. J. Am. Chem. Soc. 2002, 124, 14542
10. Quideau, S.; Pouysegu, L. Org. Prep. Proc. Int. 1999, 31, 617
11. Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856,
12. Carlini, R.; Higgs, K.; Rodrigo, R.; Taylor, N. Chem. Commun. 1998, 65
13. Sutherland, H. S.; Higgs, K.C.; Taylor, N. J.; Rodrigo, R. Tetrahedron 2001, 57, 309
14. Tamura, Y.; Yakura, T.; Haruta, J. I.; Kita, Y. J. Org. Chem. 1987, 52, 3927
15. Hsiu, P.Y.; Liao, C.-C. Chem. Commun. 1997, 1085
16. Coleman, R. S.; Grant, E. B. J. Am. Chem. Soc. 1995, 117, 10889
17. Simon, J. O. ; M. Sc. Thesis, University of Waterloo 2004
18. Rodrigo, R. Unpublished result 2005
19. Simon, J.O. Unpublished result 2005
20. Cha, J. S.; Jang, S. H.; Kwon, S. Y. Bull. Korean Chem. Soc. 2002, 23, 1697
21. Brink, G. T.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66, 2429
22. Brink, G. T.; Fernandes, B. C. M. ; Vliet, M.C.A.; Arends, I. W. C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans I. 2001, 224
23. Meyers, A. I.; Price, D. A. Chirality, 1998, 10, 88
24. Delpech, B.; Calvo, D.; Lett, R. Tetrahedron Lett., 1996, 37, 1015
(Acknowledgement to Professor Mike Chong for directing me to this publication)
25. Calvo, D.; Port, M.; Delpech, B.; Lett, R. Tetrahedron Lett., 1996, 37, 1023
26. Rosa, C.; Kienzler, M.; Olson, B.; Trauner, D. Tetrahedron, 2007, 63, 6529
27. Zhang, W.; Carter, R.G. Org. Lett. 2005, 7, 4209
28. Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J. J. Org. Chem. 2002, 67, 7946
29. Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, H. Org. Lett. 2004, 6, 3217
30. Lane, C.F. Synthesis 1975, 139
31. Cvetovich, R.J.; Kelly, D.H.; DiMichele, L.M. J. Org. Chem. 1994, 59. 7704
32. a) Orfanopoulos, M.; Stratakis, M.; Elemes, Y.; Smonou, I. " Dioxygen Activation and Homogeneous Catalytic Oxidation" 1991, 65. Elsevier Science Publishers L.I. Simandi (Ed.)
b) Orfanopoulos, M.; Grdina, B.M.Sr.; Stephenson, L.M. J.Am. Chem. Soc. 1979, 101, 275
c) Denny, R.W.; Nickon, A. Organic Reactions, 1973, 20, 133
33. Bigdeli, M.; Rahmati, A. J. Chem. Research, 2005, 605
34. Tatsuta, K.; Yoshimoto, T.; Gunji, H.; Okado, Y. Chemistry Lett., 2000, 646
35. Olah, G.A.; Keumi, T. Synth. Commun, 1979, 9, 112
36. Fernandez, R; Gasch, C.; Lassaletta, J.; Llera, J. Tetrahedron Lett., 1993, 34, 141
37. Donohoe, T.J.; Johnson, P. P.; Cowley, A.; Keenan, M. J. Am. Chem. Soc. 2002, 124, 12934
38. Sharghi, H.; Hosseini, M. Synthesis 2002, 1057
39. Balicki, R.; Kacamarek, L. Synth. Commun., 1993, 23, 3149
40. Maffioli, S.; Marzorati, E.; Marazzi, A. Org. Lett., 2005, 7, 5237
41. Simandan T.; Smith, M. B. Synth. Commun., 1996, 26, 1827
42. Cerny, M.; Malek, J.; Capka, M.; Chvalovsky, V. Chem. Commun. 1969, 34, 1033
43. Larock, R.C.; Hightower, T.R.; Hasvold, L.A.; Peterson, K.P. J. Org. Chem., 1996, 61, 3584
44. Koenig, T.; Mitchell, D. Tetrahedron Lett., 1994, 35, 1339
45. Monkovic, I.; Conway, T. ; Wong, H.; Perron, Y. G. J. Am. Chem. Soc. 1973, 95, 7910
46. Doleschall, G.; Toth, G. Tetrahedron 1980, 36, 1649
47. Kajigaeshi, S.; Moriwaki, M.; Fujisaki, S.; Kakinami, T. BCJ 1990, 63, 3033
48. Zandbergen, P.; Brussee, J. Tetrahedron 1992, 48, 3977
49. Takemiya, A.; Hartwig, J. J. Am. Chem. Soc. 2006, 128, 6042
50. Lebeuf, R.; Robert F.; Schenk, K.; Landais, Y. Org. Lett. 2006, 8, 4755
51. Pyne, S.G. Tetrahedron Lett., 1987, 28, 4737
52. Burk, R.M.; Roof, M.B. Tetrahedron Lett. 1993, 34, 395
53. May, E. J. Org. Chem., 1958, 23, 947
54. Malose, J.M.; Tomasz, A.M. J. Org. Chem. 1995, 60, 8236
55. Woiwode, T.F.; Rose, C.; Wandless, T. J. J. Org. Chem. 1998, 63, 9594
56. Zeni, G; Larock, R. Chem Rev. 2004, 104, 2285
57. Barton, R.; Kirby, G. W.; Steglich, W.; Thomas, G. M.; Battersby, A. R.; Dobson, T. A.; Ramuz, H. J. Chem. Soc., 1965, 2423
58. Cordell, G.; Brosi, A. The Alkaloids, 1994, 45, 170

APPENDIX

1. X-ray structure of dimer compound $\mathbf{6 2}{ }^{\mathbf{1 9}}$

Table 1. Crystal data and structure refinement for dimer compound 62

Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{6}$
Formula weight	572.71
Temperature	150(1) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	$\mathrm{a}=8.9733(18) \AA, \mathrm{b}=19.948(4) \AA, \mathrm{c}=34.123(7) \AA$
Volume	6108(2) \AA^{3}
Z, Calculated density	$8,1.246 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
$F(000)$	2464
Crystal size	$0.40 \times 0.38 \times 0.11 \mathrm{~mm}$
Theta range for data collection	2.04 to 26.02 deg.
Limiting indices	$-10<\mathrm{h}<11,-24<\mathrm{k}<24,-40<1<42$
Reflections collected / unique	$35634 / 6003[\mathrm{R}(\mathrm{int})=0.0432]$

$$
\text { Reflections collected / unique } 35634 / 6003[\mathrm{R}(\mathrm{int})=0.0432]
$$

Completeness to $\theta=26.02$

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F^{2}

Final R indices [I>2 $\sigma(\mathrm{I})$]

R indices (all data)

Extinction coefficient

Largest diff. peak and hole

None

Full-matrix least-squares on F^{2}

6003 / 0 / 380
3.149
$R 1=0.0670, w R 2=0.1212$
$\mathrm{R} 1=0.0824, \mathrm{wR} 2=0.1227$
0.0010(2)
0.688 and -0.508 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U (eq)
C (1)	766 (2)	3954 (1)	-207(1)	43 (1)
C (2)	1985 (3)	4346 (1)	-420 (1)	38 (1)
C (3)	3497(2)	3982 (1)	-402 (1)	32 (1)
C (4)	3327 (2)	3443 (1)	-74 (1)	33 (1)
C (4A)	2798(2)	3822 (1)	301 (1)	32 (1)
C (5)	3026 (2)	3434 (1)	683 (1)	33 (1)
C (6)	1938(3)	2832 (1)	697 (1)	40 (1)
C (7)	372 (3)	3032 (1)	654 (1)	47 (1)
C (8)	42 (3)	3599 (1)	456 (1)	43 (1)
C (8A)	1127(2)	4026 (1)	249 (1)	37 (1)
C (9)	2171 (3)	2954 (1)	-218(1)	39 (1)
C (10)	887 (3)	3222 (1)	-310(1)	43 (1)
O(11)	1819(2)	4905 (1)	-556(1)	45 (1)
O(12)	3855 (2)	3625 (1)	-749(1)	32 (1)
C (13)	3583 (3)	3932 (1)	-1132(1)	38 (1)
C (14)	3522 (3)	3353 (1)	-1416(1)	44 (1)
C (15)	4557 (3)	3264 (1)	-1697(1)	55 (1)
C (16)	5932 (3)	3682 (1)	-1715(1)	65 (1)
$\mathrm{C}(17)$	6174 (3)	4110 (1)	-1350(1)	55 (1)

C (18)	4733 (3)	4453 (1)	-1239 (1)	47 (1)
C (19)	2151 (3)	2924 (1)	-1374 (1)	52 (1)
C (20)	562 (9)	3194(3)	-1538(2)	54(2)
C (21)	521 (7)	3564 (3)	-1831 (2)	71 (2)
C (20A)	1061 (7)	3233 (3)	-1630 (2)	52 (2)
C (21A)	-229(7)	3442 (3)	-1474 (2)	72 (2)
C (22)	4379 (4)	2763 (1)	-2008(1)	79 (1)
C (23)	5320 (5)	2664 (2)	-2304 (1)	114 (2)
O(24)	4545 (2)	4486 (1)	-314 (1)	38 (1)
C (25)	6074 (2)	4273 (1)	-300(1)	42 (1)
O(26)	2723 (2)	3909 (1)	983 (1)	32 (1)
C (27)	2173 (3)	3666 (1)	1362 (1)	46 (1)
C (28)	1572 (2)	4276 (1)	1572 (1)	35 (1)
C (29)	2067 (2)	4465 (1)	1925 (1)	41 (1)
C (30)	3376 (3)	4127 (2)	2120 (1)	65 (1)
C (31)	4234 (3)	3691 (2)	1821 (1)	87 (1)
C (32)	3269 (4)	3262 (2)	1599(1)	80 (1)
C (33)	305 (2)	4616 (1)	1358 (1)	36 (1)
C (34)	-1209(3)	4351 (1)	1457 (1)	45 (1)
C (35)	-1535 (3)	3950 (1)	1746 (1)	58 (1)
C (36)	1351 (3)	5009(1)	2144 (1)	54 (1)
C (37)	1772(3)	5253(2)	2491 (1)	80 (1)
O(38)	4462 (2)	3157 (1)	716 (1)	36 (1)
C (39)	5645 (2)	3628 (1)	749 (1)	45 (1)
O(40)	2324 (2)	2264 (1)	754 (1)	52 (1)

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$]

$C(1)-C(10)$	1.505 (3)
$C(1)-C(2)$	1.528(3)
C (1) - C (8A)	1.595 (3)
C (2) - 0 (11)	1.218(2)
$C(2)-C(3)$	1.540 (3)
C (3) - 0 (24)	1.408(2)
C (3) -o (12)	1.419 (2)
$C(3)-C(4)$	1.560(3)
$C(4)-C(9)$	1.507(3)
C (4) - C (4A)	1.559 (3)
$C(4 A)-C(5)$	1.529 (3)
$C(4 A)-C(8 A)$	1.564 (3)
C (5) -o (38)	1.406(2)
$C(5)-O(26)$	1.420 (2)
$C(5)-C(6)$	1.549(3)
C(6)-O(40)	1.201 (3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.468 (3)
$C(7)-C(8)$	1.351 (3)
C (8) - C (8A)	1.474 (3)
C (9) - C (10)	1.307(3)
$\mathrm{O}(12)-\mathrm{C}(13)$	1.464 (2)
C (13) -C (18)	1.510 (3)
C (13) -C (14)	1.510 (3)
$C(14)-C(15)$	1.347(3)
C (14) -C (19)	1.506(3)

$C(15)-C(22)$	1.467 (4)
$C(15)-C(16)$	1.490(4)
$C(16)-C(17)$	1.526 (3)
$C(17)-C(18)$	1.511 (3)
C (19) - C (20A)	1.450 (7)
$C(19)-C(20)$	1.624 (8)
$C(20)-C(21)$	1.243 (9)
$C(20 A)-C(21 A)$	1.340 (9)
C (22) - C (23)	1.330 (4)
O(24)-C(25)	1.437 (2)
O (26)-C(27)	1.469 (3)
C (27) - C (32)	1.507 (3)
$C(27)-C(28)$	1.510 (3)
C (28) - C (29)	1.339 (3)
C (28) - C (33)	1.511 (3)
C (29) - C (36)	1.467 (3)
C (29) - C (30)	1.510 (3)
C (30) - C (31)	1.547 (4)
$C(31)-C(32)$	1.434 (4)
$C(33)-C(34)$	1.496 (3)
C (34)-C(35)	$1.302(3)$
C (36)-C(37)	1.334 (3)
O(38)-C(39)	1.421 (2)
$C(10)-C(1)-C(2)$	109.48(19)
C (10) - C (1)-C (8A)	107.42(19)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8 \mathrm{~A})$	105.79(18)

$\mathrm{O}(11)-\mathrm{C}(2)-\mathrm{C}(1)$	124.2(2)
$\mathrm{O}(11)-\mathrm{C}(2)-\mathrm{C}(3)$	123.7(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	111.78(19)
$\mathrm{O}(24)-\mathrm{C}(3)-\mathrm{O}(12)$	112.58(16)
$\mathrm{O}(24)-\mathrm{C}(3)-\mathrm{C}(2)$	105.13(16)
$\mathrm{O}(12)-\mathrm{C}(3)-\mathrm{C}(2)$	113.68(17)
$\mathrm{O}(24)-\mathrm{C}(3)-\mathrm{C}(4)$	113.91(17)
$\mathrm{O}(12)-\mathrm{C}(3)-\mathrm{C}(4)$	106.00(15)
$C(2)-C(3)-C(4)$	105.50(17)
$C(9)-C(4)-C(4 A)$	111.89(17)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(3)$	106.16(17)
$C(4 A)-C(4)-C(3)$	106.47(16)
$C(5)-C(4 A)-C(4)$	114.31(17)
$C(5)-C(4 A)-C(8 A)$	110.92(16)
$C(4)-C(4 A)-C(8 A)$	108.95(17)
$\mathrm{O}(38)-\mathrm{C}(5)-\mathrm{O}(26)$	112.25(16)
$\mathrm{O}(38)-\mathrm{C}(5)-\mathrm{C}(4 \mathrm{~A})$	113.01(17)
$\mathrm{O}(26)-\mathrm{C}(5)-\mathrm{C}(4 \mathrm{~A})$	104.48(16)
$\mathrm{O}(38)-\mathrm{C}(5)-\mathrm{C}(6)$	105.71(17)
$\mathrm{O}(26)-\mathrm{C}(5)-\mathrm{C}(6)$	111.93(17)
$C(4 A)-C(5)-C(6)$	109.58(17)
$\mathrm{O}(40)-\mathrm{C}(6)-\mathrm{C}(7)$	123.3(2)
$\mathrm{O}(40)-\mathrm{C}(6)-\mathrm{C}(5)$	123.7(2)
$C(7)-C(6)-C(5)$	112.95(19)
$C(8)-C(7)-C(6)$	119.1(2)
$C(7)-C(8)-C(8 A)$	125.4(2)
$C(8)-C(8 A)-C(4 A)$	115.38(18)

$\mathrm{C}(8)-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(1)$	106.37(18)
$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(1)$	106.39(16)
$C(10)-C(9)-C(4)$	114.9(2)
$C(9)-C(10)-C(1)$	113.9(2)
$\mathrm{C}(3)-\mathrm{O}(12)-\mathrm{C}(13)$	119.91(15)
$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	112.96(18)
$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	105.09(16)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	113.35(19)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	123.9(2)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	122.2(2)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(13)$	113.7(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(22)$	122.0(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.7(2)
$\mathrm{C}(22)-\mathrm{C}(15)-\mathrm{C}(16)$	116.3(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	113.5(2)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	109.6(2)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	109.46(19)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(19)-\mathrm{C}(14)$	104.5(3)
$C(20 A)-C(19)-C(20)$	19.6(3)
C (14)-C (19)-C (20)	119.7(3)
C (21)-C (20)-C(19)	120.1(7)
$C(21 A)-C(20 A)-C(19)$	118.4(6)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(15)$	125.5(3)
$C(3)-O(24)-C(25)$	115.71(15)
$C(5)-O(26)-C(27)$	118.64(16)
$\mathrm{O}(26)-\mathrm{C}(27)-\mathrm{C}(32)$	115.5(2)
$\mathrm{O}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	105.73(17)

```
C(32)-C(27)-C(28)
C(29)-C(28)-C (27)
C(29) -C (28) -C (33)
C(27)-C(28)-C(33)
C(28)-C(29)-C(36)
C(28)-C(29)-C(30)
C(36)-C(29)-C(30)
C(29)-C(30) -C (31)
C(32)-C(31)-C(30)
C(31)-C(32)-C(27)
C(34)-C(33)-C(28)
C(35)-C(34)-C(33)
C(37) -C (36) -C (29)
C(5)-O(38)-C(39)
```

114.3(2)
122.3(2)
123.8(2)
113.76(19)
121.5(2)
122.0(2)
116.5(2)
$110.2(2)$
112.6(2)
110.9(3)
114.56(19)
126.3(2)
$126.8(3)$
115.55(16)

Table 4. Hydrogen coordinates ($\mathbf{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{\mathbf{2}} \times 10^{\mathbf{3}}\right.$)

	x	y	z	U (eq)
H (1)	-246	4134	-271	51
H(4)	4296	3210	-25	40
H (4A)	3392	4245	320	38
H(7)	-399	2766	765	56
H (8)	-973	3734	450	52
H (8A)	989	4503	331	45
H(9)	2360	2488	-241	47
H (10)	103	2977	-430	51
H (13)	2582	4152	-1126	46
H (16X)	5873	3979	-1946	78
H (16Y)	6804	3384	-1750	78
H (17X)	6515	3823	-1130	66
H (17Y)	6953	4450	-1402	66
H (18X)	4904	4756	-1014	56
H (18Y)	4370	4725	-1462	56
H (19U)	2006	2823	-1087	62
H (19V)	2344	2479	-1499	62
H (20)	-341	3113	-1411	57
H (21U)	1453	3648	-1968	100
H (21V)	-370	3717	-1934	100

H (19X)	2352	2447	-1451	62
H (19Y)	1793	2913	-1094	62
H (20A)	1228	3302	-1904	57
H (21X)	-406	3353	-1205	100
H (21Y)	-975	3631	-1634	100
H (22)	3520	2485	-1998	95
H (23X)	6194	2931	-2326	171
H (23Y)	5119	2327	-2493	171
H (25X)	6123	3784	-328	63
H (25Y)	6510	4403	-47	63
H (25Z)	6631	4485	-513	63
H (27)	1304	3367	1307	55
H (30X)	3017	3841	2338	78
H (30Y)	4052	4470	2231	78
H (31X)	4784	3988	1638	105
H (31Y)	4975	3413	1962	105
H (32X)	2721	2961	1780	95
H (32Y)	3873	2979	1421	95
H (33X)	331	5101	1419	43
H (33Y)	466	4567	1073	43
H (34)	-2009	4488	1293	54
H (35X)	-773	3799	1917	86
H (35Y)	-2535	3809	1784	86
H (36)	499	5209	2027	64
H (37X)	2617	5071	2621	120
H (37Y)	1227	5608	2608	120
H (39X)	5734	3880	503	67

$H(39 Y)$	6580	3390	801	67
$H(39 Z)$	5437	3939	964	67

2. NMR spectrum of $\mathbf{8 0}$

3. NMR spectrum of $\mathbf{8 7}$

4. NMR spectrum of 90

5. NMR spectrum of 105

6. NMR spectrum of 110

7. HPLC Chromatogram of (S)-(-)-39b

Conditions: OD-H column

Flow rate 1.5 ml
Solvent: $1 \% \mathrm{iPrOH}, 99 \%$ Hexanes, 0.1\%TFA $\lambda=254 \mathrm{~nm}$

Chiral reduction with $\mathrm{BH}_{3}-$ THF complex

Reduction with Catachol Borane

1	Retention Time	Area	\% Area
z	7.326	42501557	99.33
8.623	285296	0.67	

[^0]: * Relative configuration established by X-ray crystallography

