A Lagrangean Relaxation and A Heuristic for the Pooling
Problem

by

Hossa Almutairi

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Applied Science
in

Management Sciences

Waterloo, Ontario, Canada, 2008
(© Hossa Almutairi 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Hossa Almutairi

ii

Abstract

The pooling problem is one of the fundamental optimization problems encountered
in the petroleum industry. In the pooling problem, final products are produced
using two stages of blending operations. In the first stage, raw materials are mixed
together to produce intermediate products. In the second stage, intermediate prod-
ucts and some of the raw materials are blended together according to product
demand and quality requirements. Generally, the pooling problem is a nonlinear
problem because the output stream qualities, which are unknown, depend on the
volume, which is also unknown, and on the quality of the input streams. Specifically,
nonlinearity and nonconvexity are due to the use of bilinear terms either in the qual-
ity constraints or in the objective function. Nonlinearity and nonconvexity result
in several local optima, making the process of solving large-scale pooling problems
to global optimality very challenging. Therefore, developing efficient heuristics for
large-scale pooling problems is very desirable. Moreover, devising tight bounds on

the global solutions is essential to assess the quality of the proposed heuristics.

In this thesis, we use a Lagrangean relaxation approach where feasible solutions
and lower bounds are generated for the pooling problem. The procedure targets
all nonlinear constraints and penalizes their violation in the objective function.
The resulting Lagrangean subproblem has a nonlinear objective function and linear
constraints. The Lagrangean subproblem is reformulated as a mixed integer pro-
gramming problem where the nonlinearities in the objective function are eliminated
at the expense of using binary variables. The obtained Lagrangean lower bounds
are strengthened using valid cuts that are based on the relaxed bilinear terms. In
addition, at every iteration of the Lagrangean algorithm, the subproblem solutions

are used to generate feasible solutions to the pooling problem.

iii

The procedure is applied to fifteen pooling problems collected from the litera-
ture. Some of these problems have a single quality and others have multiple qual-
ities. Numerical results show that for eight solved cases, the obtained Lagrangean
lower bounds are equal to the global optima, whereas for seven cases the obtained
Lagrangean lower bound is on average 8.2% from the global optimum. Numerical
results indicate the efficiency of the heuristic. For nine cases, the heuristic gives
the global solution, and for the other cases the heuristic solutions are within 1.8%

of the global optimum.

v

Acknowledgments

All praise is to Allah who gave me the ability to finish this thesis. I have been
lucky enough to be accompanied by many people who have contributed directly or
indirectly to this thesis. It is a great pleasure to have the opportunity to express
my gratitude to all of them. Foremost, I am indebted to the custodian of the two
sacred mosques King Abdullah Ben Abdulaziz for all his support to Saudi women.

His vision, enthusiasm, and support have made a deep impression on me.

Also, I am deeply grateful to my supervisor Professor Samir Elhedhli whose
guidance and patience, and sharing of expertise and research insight made this
thesis possible. His encouragement, support, and suggestions have been invaluable
to me. I am really glad that I had the opportunity to work under his supervision.
Working with him is a valuable experience. It is hard to thank him enough. In

short, he is the best advisor I could have wished for.

I would like to thank my readers, Professor Elizabeth Jewkes and Professor
David Fuller for their valuable comments, insights and feedback. I would also
like to acknowledge the faculty, staff, and my colleagues in the Department of

Management Sciences for their help.

I wish to express my sincere gratitude to all my friends for their support and
valuable discussion. Especial appreciation is due to my best friend Seeta Almandeel

for her care, encouragement, and advice. A friend like her is a blessing.

I wish to thank The Ministry of Higher Education of Saudi Arabia for giving
me this opportunity via the Distinguished Saudi Scholarship and for their generous

support through the Saudi Arabian Cultural Bureau in Canada.

My special thanks go to my beloved husband. Life would not be the same with-

out his endless love, support, and encouragement. I am also grateful to my three

wonderful children for their help, patience, and showing an enthusiastic interest in

my research.

Finally, I am forever indebted to may parents and siblings for their constant

support, prayers, and unconditional love.

vi

Dedication

This thesis is dedicated to my father, who is my first teacher and greatest cham-
pion, who always believes in me, and whose support and advice are always there
when I need them. This thesis is also dedicated to my mother, who taught me that
hard work and patience make dreams come true. Her endless love and help are

always there. I am so thankful that you are more than great parents; you are also

my best friends. I love you!

vil

Contents

1 Introduction 1
2 Literature Review 10
2.1 Problem Formulations 10
2.1.1 The p-Formulation 11
2.1.2 The g-Formulation 13
2.1.3 The pg-Formulation 13
2.1.4 The Generalized Formulation 14
2.2 Solution Methodologies 14
2.2.1 The Recursive Approach 14
2.2.2 The Successive Linear-Programming (SLP) Approach 16
2.2.3 Benders Decomposition. 18
2.2.4 A Global Optimization Algorithm (GOP) 19

2.2.5 The Reformulation-Linearization/Convexification Tech-

nique (RLT) 21

2.2.6 Lagrangean Relaxation 24

2.2.7 Branch-and-Bound Algorithms 26

2.2.8 Heuristic Techniques 28

2.3 Conclusion L 29

3 Problem Formulation and Solution Methodology 31
3.1 Problem Formulation 31
3.1.1 The p-Formulation 32

3.1.2 The g-Formulation 36

3.1.3 The pg-Formulation 40

3.2 Proposed Lagrangean Relaxation 42

3.2.1 Lagrangean Relaxation for the General p-Formulation 43

3.3 An Illustrative Example 51
3.3.1 Lagrangean Relaxation for The Pooling Example .. 51

3.4 Strengthening the Lagrangean Lower Bounds o8
3.5 A Heuristic Approach and Overall Algorithm 59
3.6 Conclusion 61

4 Computational Results 63
4.1 Conclusion 73

5 Conclusion 76

1X

A Some Illustrative Examples

A.1 Lagrangean Relaxation for Foulds2

A.1.1 Problem Formulation

A.1.2 Lagrangean Relaxation . . .

A.2 Lagrangean Relaxation for Adhya2

A.21 Problem formulation

A.2.2 Lagrangean Relaxation . . .

List of Figures

1.1 The pooling problem oo 2
1.2 Haverly’s pooling problem L. 3
3.1 A Pooling Network 33
3.2 Haverly’s pooling problem (p-formulation) 36
3.3 Haverly’s pooling problem (g-formulation) 39
4.1 A Comparison of Lower Bounds and Optimal Values 68
4.2 A Comparison of Heuristic Solutions and Global Solutions 70
4.3 A Comparison of Lower bounds with and without cuts 72
4.4 A Comparison of Heuristic Solutions with and without cuts 72
A.1 Flowchart for Example 2. 98

xi

List of Tables

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

Summary of the Formulation Approaches for the Pooling Problem . 12

Summary of the Solution Methodologies for the Pooling Problem . . 15
Test Problem Characteristics 64
A Comparison of Lower Bounds and Global Optima (GO) 66
Lagrangean Bounds and Heuristic Results 67
A Comparison of Heuristic Solutions and Global Optima 69
A Comparison of Lower Bounds and Heuristic Solutions with and

without cuts 71

Computational Time Partition without cuts 74

xii

Chapter 1

Introduction

Blending crude or refined petroleum is at the core of any refinery operation. Most
of these blending operations involve two stages of blending. In the first stage, var-
ious raw materials are combined together, usually in pooling tanks, to produce
intermediate products. In the second stage, intermediate products and some of the
raw materials are mixed together to produce final products. This two-level blending
process is often referred to as a pooling problem (Tawarmalani and Sahinidis, 2002).
As shown in Figure 1.1, the pooling problem can be represented as a network with
three sets of nodes. The first set of nodes represents raw materials with known at-
tributes such as costs and qualities. The raw materials are distributed to the second
set of nodes, the pooling tanks, to produce intermediate products or to the third
set of nodes, to be used directly in blending final products. Taking into account
product demand and restriction on end product qualities such as sulfur content,
density, and octane number, the final products can be produced by blending raw
materials and intermediate products received from the pooling tanks (Fieldhouse,

1993; Tawarmalani and Sahinidis, 2002). Given the availability of raw materials

and their individual properties, as well as the demand and quality requirement of
the final product, decisions are made to determine the optimal flow of raw materials
to be mixed in order to minimize the difference between raw material cost and final

product revenue.

Q .

Raw materials Pooling tanks Final products

Figure 1.1: The pooling problem

As an illustration, Figure 1.2 shows a small pooling example presented by
Haverly (1978). In this example, a single pool received two input streams of crude
oil A and B. Each crude oil stream has different known properties, such as cost
and sulfur content. The third source of crude oil, C, is used to blend directly with
the pool output streams, producing two final products with some restrictions on

demand and sulfur content. The formulation of this example is given in Chapter 3.

The need for pooling raw materials arises in several situations, three of which

are detailed as follows. The first situation comes about when a refinery has limited

A

Sulfur 3 X1
Cost$6 fi1 Product | Sulfur2.5%,
1 demand 100
(Price $9)

B

Sulfur 1% f; —

Cost $16 Product | Sulfur 1.5% ,
X2 2 demand 200

C Ji2 (Price $15)

Sulfur 2%

Cost $10

Figure 1.2: Haverly’s pooling problem

storage facilities, leading to the storage of more than one product in one tank. The
second situation arises when several products are transported together in a single
pipeline or vessel. The third situation occurs when the requirements of the end
product are not satisfied by any single feed (Floudas and Pardalos, 2004; Lasdon
and Waren, 1980). In short, two products are pooled together, but the property of
the resulting mixture does not match the quality requirement for the end product
which makes blending a new product with the intermediate products a necessary

step (Foulds et al., 1992).

Currently, with the increase of environmental regulations on refinery operations
and refined product properties such as limiting sulfur and total aromatics contents
in gasoline, refineries experience downward pressures on profitability (DeWitt and
Lasdon, 1989; Duncan, 2000). The use of an efficient blending system plays a sig-
nificant role in improving refined product quality, reducing cost and, consequently,
improving profitability. Take for example the Texaco experience with its developed
decision support system, OMEGA, for gasoline blending operations which is imple-

mented in all its seven US refineries as well as its Canadian and Welsh refineries.

As stated in Dewitt and Lasdon (1989), the use of nonlinear optimization in solv-
ing pooling and blending problems results in better quality control and about 2.5
cents/gal of gasoline savings which are translated to more than 30 million dollars

of annual savings.

From the modeling point of view, several approaches have been proposed for the
pooling problem such as the p-formulation, the g-formulation, the pg-formulation,
and the Generalized formulation. The p-formulation is the most used formulation
since its introduction in Haverly (1978). Ben-Tal (1994) proposed the g-formulation
as an alternative formulation for the pooling problem. The primary difference be-
tween the two formulations lies in the source of nonlinearities. In the p-formulation,
explicit variables are used to represent pool qualities, and nonlinearities are due to
the multiplication of quality variables by flow rate variables. In the g-formulation,
proportion variables are introduced, instead of quality variables, to represent the
proportion of raw materials used in each pool. As a result, nonlinearities are due
to the multiplication of flow rate variables by proportion variables, and appear in
the objective function and quality requirement constraints. The pg-formulation
was proposed by Tawarmalani and Sahinidis (2002), as they sought to extend the
g-formulation by adding new nonlinear constraints. The added constraints were de-
rived by Quesada and Grossman (1995) using the reformulation linearization tech-
nique. Tawarmalani and Sahinidis (2002) proved that the linear programming relax-
ation of the pg-formulation using bilinear envelopes provides tighter lower bounds
than the ones obtained through the same relaxation of the p-formulation and the
g-formulation. A hybrid formulation of the p-formulation and the g-formulation
called the Generalized formulation, is suggested by Audet et al. (2004). This for-
mulation allows for interchanging intermediate products among the pools. Meyer

and Floudas (2006) generalized the pooling formulation to include decisions related

4

to pool existence and network structure. Continuous variables were used to model
flow rates and stream attributes whereas binary variables were used to model the

network structure.

Generally, all the proposed approaches are nonlinear formulations due to the
use of bilinear terms either in the quality constraints or in the objective function.
Balancing qualities around the pool introduces nonlinearity and nonconvexity to
the problem because the output stream qualities, which are unknown, depend on
the volume, which is also unknown, and the quality of the input streams (Field-
house, 1993; Tawarmalani and Sahinidis, 2002). Nonlinearity and nonconvexity
result in several local optima, making the process of solving the problem to global
optimality very challenging (Adhya et al., 1999; Tawarmalani and Sahinidis, 2002).
Consequently, the literature is rich with suggested approaches that could be used to
solve the various formulations of the pooling problem. One of the earlier developed
approaches was recursion, which appears in the work of Haverly (1978). This ap-
proach is based on the idea of estimating and fixing the value of recursion variables,
thus converting the nonlinear problem into a linear problem. This technique might
not converge to a solution, and if it does, it leads to local optima (Haverly, 1979;
Adhya et al., 1999). Successive linear-programming algorithms (SLP) have been
widely used to solve the pooling problem and nonlinear blending operations which
arise in the petrochemical industry. Some examples are: Baker and Lasdon (1985),
Lasdon and Waren (1979), Bodington and Randall (1979) and Simon and Azma
(1983). For further details, we refer the reader to the extensive survey article by
Lasdon and Waren (1980). SLP solves the pooling problem through a sequence of
linear programs (Baker and Lasdon, 1985; Griffith and Stewart, 1961), however, as
with the recursion technique, the obtained solution is also a local optimum (Baker

and Lasdon, 1985).

A decomposition strategy based on Geoffrion’s generalization of Benders de-
composition technique (Geoffrion, 1972) was suggested by Floudas and Aggarwal
(1990) to search for the global optimum of the pooling problem. After identifying
the source of nonconvexities, the variables are partitioned into complicating and
noncomplicating variables. The original problem can then be decomposed into a
master problem and a subproblem. Solving the master problem provides both a
lower bound on the global minimum and the values for the complicating variables.
In contrast, the solution of the subproblem yields an upper bound on the global
minimum and the values for the noncomplicating variables. Furthermore, the solu-
tion of the subproblem provides dual information to form Benders’ feasibility and
optimality cuts that are added to the master problem (Sahinidis and Grossmann,
1991). Iterating between these problems continues until the specified stopping cri-
teria are met. As is the case with previous approaches, identification of a global
optimum is difficult to guarantee (Sahinidis and Grossmann, 1991; Floudas and
Aggarwal, 1990). Visweswaran and Floudas (1990) developed a generalized ap-
proach, the Global Optimization Algorithm (GOP), to provide a global solution
for the pooling problem. The GOP algorithm makes use of the duality theory to
solve the pooling problem through a series of primal and relaxed dual subproblems.
Visweswaran and Floudas (1993) proposed new theoretical properties of the GOP

algorithm which improve its computational performance.

Audet et al. (2004) looked at the pooling problem from a slightly different angle.
They investigated the application of a new branch-and-cut quadratic programming
algorithm (Audet et al. 2000) to two formulations of the pooling problem: flow
and proportion models. These two models are equivalent to the p-formulation and
the g-formulation respectively. In addition, they developed a Multistart Alternate
heuristic (MALT') and a Variable Neighborhood Search (VNS) metaheuristic to ob-

6

tain starting solutions for exact algorithms and solve large instances of the pooling

problem (Audet et al., 2004).

In the last two decades, most of the work on the pooling problem has focused
on generating tight bounds on the global solutions using several relaxation tech-
niques. Some examples are. Adhya et al. (1999), Foulds et al. (1992), Liberti and
Pantelides (2006), Meyer and Foulds (2006), Quesada and Grossmann (1995), and
Tawarmalani and Sahinidis (2002). The resulting lower bounds are integrated into
global optimization techniques such as branch-and-bound algorithms in order to
find global solutions. Foulds et al. (1992) used convex relaxation to underestimate
and overestimate each bilinear term by its convex and concave envelopes respec-
tively. The Reformulation-Linearization technique (RLT) has been suggested by
some authors such as Liberti and Pantelides (2006), Meyer and Foulds (2006), and
Quesada and Grossmann (1995) to generate tighter lower bounds on the global solu-
tions of the pooling problem. Under this approach, additional nonlinear constraints
are derived by multiplying a set of nonnegative variable factors with some of the
original problem linear constraints (Sherali and Alameddine, 1992). The resulting
nonlinear constraints are linearized using bilinear envelopes. Adhya et al. (1999)
applied Lagrangean relaxation to the pooling problem. The basic idea behind this
technique is that most difficult problems can be converted into easier ones by as-
sociating Lagrangean multipliers with complicated constraints and adding them to
the objective function to penalize their violations. In the case of the pooling prob-
lem, complicated constraints are the ones that involve bilinear terms. Compared
to the original problem, the Lagrangean subproblem is easier to solve and provides
a lower bound on the optimal solutions for minimization problems, but as more
constraints are relaxed the quality of the bound might deteriorate (Adhya et al.,
1999; Ben-Tal et al., 1994).

Nowadays, global optimization techniques are quite effective in solving small-
scale pooling problems from the open literature. However, real life problems tend
to be large-scale problems. Solving large instances of the pooling problem to global
optimality using the available global optimization algorithms is challenging. Hence,
developing efficient heuristics for large-scale pooling problems is very desirable. In
addition, relaxations that provide tight bounds on the global solutions are essential

to assess and improve the quality of the heuristic solutions.

This thesis has two major contributions. The first contribution is the intro-
duction of a new lower bound to the pooling problem using Lagrangean relaxation
techniques. Lagrangean relaxation is applied to the p-formulation of the pooling
problem to obtain lower bound on the global solution. The procedure targets all
nonlinear constraints and penalizes their violation in the objective function. The
resulting Lagrangean subproblem has a nonlinear objective function and linear con-
straints. The Lagrangean subproblem is reformulated as a mixed integer program-
ming problem where the nonlinearities in the objective function are eliminated at
the expense of using binary variables. The obtained Lagrangean lower bounds are

strengthened by using valid cuts that are based on the relaxed bilinear terms.

The second contribution is the introduction of a heuristic technique, where
Lagrangean subproblem solutions are used to generate feasible solutions to the
pooling problem. At each iteration, the Lagrangean subproblem is solved for the
values of the noncomplicating variables, flow variables. The obtained values are
used to calculate the values of the complicating variables, quality variables, from
the quality balance constraints. A linear programming problem, resulting from
fixing the complicating variables in the original nonlinear problem, is solved at

each iteration to generate feasible solutions.

The proposed Lagrangean relaxation approach and heuristic technique are ap-
plied to fifteen pooling problems collected from the literature. Some problems have
a single quality, while others have multiple qualities. For eight solved cases, the
obtained Lagrangean lower bounds are equal to the global optima, whereas for the
other seven cases the obtained Lagrangean lower bound is on average 8.2% from the
global solutions. Numerical results indicate the efficiency of the heuristic solutions.
For nine cases, the heuristic gives the global solution, and for the other cases the

heuristic solutions are within 1.8% of the global solution.

The thesis is organized as follows: Chapter two presents a literature review
for the pooling problem in terms of modeling approaches and solution methodolo-
gies. Chapter three describes three of the pooling problem formulations and the
proposed Lagrangean relaxation for the p-formulation. Chapter four reports the

computational results. Finally, Chapter five concludes this thesis.

Chapter 2

Literature Review

The literature on the pooling problem focuses on two major complementary direc-
tions: formulations and solution methodologies. In the following two sections, we

first review the problem formulations and then the solution methodologies.

2.1 Problem Formulations

Using the terminology presented by Ben-Tal et al. (1994), and Tawarmalani and
Sahinidis (2002), pooling formulations can be classified as p-formulations,
g-formulations, and pg-formulations. Meyer and Floudas (2006) proposed a gen-
eralized formulation for the pooling problem in the context of petrochemical and
wastewater treatment industries to include decisions related to pool existence and
network structure. Audet et al. (2004) have also proposed a general pooling for-
mulation which is a hybrid formulation of the p-formulation and the g-formulation.
Table 2.1 summarizes the work that has been done on the pooling problem in terms

of formulation, number of pools, and qualities.

10

In this Chapter, we describe each formulation. In Chapter three, we explain
the mathematical models of the p-formulation, the g-formulation, and the pq-

formulation with illustrative examples.

2.1.1 The p-Formulation

The p-formulation was presented in Haverly (1978) and became the most common
formulation for the pooling problem in the petrochemical industry. The basic idea
of the p-formulation is the use of explicit variables to model the pool qualities
and flow volumes. Apart from the pool quality balancing constraints and quality
requirement constraints, the objective function and the remaining constraints are
linear. Since the nonlinear terms are dependent on the number of pool qualities,

bilinear terms increase as the number of qualities increases (Audet, 2004).

The same formulation is used by Lasdon et al. (1979), Floudas and Aggarwal
(1990), and Fieldhouse (1993). Baker and Lasdon (1985) used the p-formulation
to discuss the pooling problem at Exxon and developed a linearization technique
using successive linear programming algorithms, a process that will be discussed
later in the solution methodology section. Foulds et al. (1992) applied a generalized
Benders’ decomposition technique to the p-formulation to solve larger instances
involving multiple pools. Amos and Gill (1997) used the p-formulation to develop a
model that describes the pooling problem at the New Zealand Refining Company. In
their proposed model, they added new variables to represent temperature cut points
in each distillation. In addition, they introduced the use of cumulative functions

to describe the distillation yields. Adhya et al. (1999) used the p-formulation

11

Authors Formulation Pools Qualities
Adhya et al. (1999) p-formulation Multiple Multiple
Amos and Gill (1997) p-formulation Multiple Single
Flow, Proportion,
Audet et al (2004) and Generalized Multiple Multiple
formulation
Baker and Lasdon (1985) p-formulation Single Single
Ben-Tal et al (1994) g-formulation Multiple Multiple
Fieldhouse (1993) p-formulation Single Single
Floudas and Aggarwal (1990) p-formulation Single Single
Foulds et al. (1992) p-formulation Multiple Single
Haverly (1978), (1979) p-formulation Single Single
Lasdon et al. (1979) p-formulation Single Single
Liberti and Pantelides (2006) p-formulation Multiple Multiple
Generalized
Meyer and Floudas (2006) Multiple Multiple
formulation
pg-formulation
Quesada and Grossman (1995) Multiple Single
Generalized
Tawarmalani))
pg-formulation Multiple Multiple
and Sahinidis (2002)
Visweswaran and Floudas
p-formulation Multiple Multiple

(1993), (1996)

Table 2.1: Summary of the Formulation Approaches for the Pooling Problem

12

to develop a Lagrangian approach to the pooling problem. Audet et al. (2004)

developed a flow model of the pooling problem based on the p-formulation.

2.1.2 The g-Formulation

The g-formulation was proposed by Ben-Tal et al. (1994). In this formulation, a
new variable is introduced to represent the fraction of each stream used in each pool
instead of using explicit variables for pool qualities. As a result, the nonlinearities
arise in the objective function and quality requirement constraints, but with fewer
nonlinear constraints since there are no quality balance constraints. Also, the num-
ber of nonlinear variables is independent of the number of pool qualities, making
this formulation more practical as the number of qualities increases (Audet, 2004).
Audet et al. (2004) presented a similar formulation called the proportion model

which is based on the proportion of flows entering each pool.

2.1.3 The pg-Formulation

Tawarmalani and Sahinidis (2002) proposed the pg-formulation as an extension
of the g-formulation by adding nonlinear convexification constraints. The added
constraints were derived by Quesada and Grossman (1995), using the reformulation-
linearization technique (RTL), to obtain a global solution of bilinear process net-
works. Tawarmalani and Sahinidis (2002) proved that the linear programming
relaxation of the pg-formulation using bilinear envelopes dominates the linear pro-
gramming relaxation and the Lagrangean relaxation of the p-formulation and the

g-formulation.

13

2.1.4 The Generalized Formulation

Audet et al.(2004) proposed a hybrid formulation of the p-formulation and the
g-formulation for a general pooling problem. This formulation allows for intercon-
necting among the pools so that each pool receives input streams of raw materials
and intermediate products. The p-formulation is used to model the flows among
the pools whereas the g-formulation is applied for the rest of the flows. Meyer and
Floudas (2006) presented a generalized pooling problem in the context of the petro-
chemical and wastewater treatment industries. Binary variables were used to model
decisions regarding pool existence and network configuration whereas continuous

variables were used to model the flow rates and quality requirements.

2.2 Solution Methodologies

The main solution methodologies for the pooling problem are based on recursion,
successive linear-programming algorithms, a global optimization algorithm (GOP),
heuristic techniques, the reformulation-linearization technique (RLT), Benders de-
composition, Lagrangean Relaxation, and Branch-and-Bound algorithms. In the

following sections we describe each approach.

2.2.1 The Recursive Approach

The basic idea of the recursive approach is the estimation and fixing of the values
of some recursion variables such as quality variables (Haverly, 1978, 1979). Haverly
used two recursion variables: one as a quality variable and the other for the esti-

mated fraction of the pool quality that was used for one of the products. Therefore,

14

Authors Solution Methodology Optimum
Lagrangean Relaxation,

Adhya et al (1999) Global
Branch-and-Bound
Branch-and-cut quadratic

Audet et al (2004) Global
programming, Heuristic
Successive Linear

Baker and Lasdon (1985) Local
Programming (SLP)
Lagrangean Duality,

Ben-Tal et al (1994) Global
Branch-and-Bound

Fieldhouse (1993) Distributed Recursion Local
Generalized Benders

Floudas and Aggarwal (1990) Local
Decomposition
Convex Approximation,

Foulds et al. (1992) Global
Branch-and-Bound

Haverly (1978), (1979) Recursion Local
Genralized reduced

Lasdon et al. (1979) Local
gradient and SLP
RRLT constraints

Liberti and Pantelides (2006) Global
Branch-and-Bound
Reformulation-Linearization

Meyer and Floudas (2006) Global
Technique (RLT)

Quesada and Grossman (1995) (RLT) , Branch-and-Bound Global
convexification techniques,

Tawarmalani and Sahinidis (2002) Global
Branch-and-Bound

Visweswaran and Floudas (1993), (1996) | GOP Algorithm Global

Table 2.2: Summary of the Solution Methodologies for the Pooling Problem

15

the pooling problem is converted into a linear programming problem with only flow
variables. The suggested algorithm involves two steps. First, the resulting linear
program is solved, and then the quality value is calculated from the resulting flow
variable values. If the obtained quality values coincide with the guessed values, the
algorithm stops. Otherwise, the process is continued until the calculated quality
values coincide with the estimated ones (Haverly, 1979; Adhya, 1999). Haverly
shows that this approach may not converge to a solution, and when it converges,
it does not always converge to a global optimum. Moreover, the obtained solutions
depend on starting points. Main (1993) proved that this approach is stable for small
problems and can result in computational difficulty when the number of pools and

final product increase.

White and Trierwiller (1980) discussed the implementation and impact of an
improved recursion technique, distributive recursion, at Socal. After adding the
distributive recursion to Socal recursion program, the authors were able to model
and solve pooling problems in a more realistic manner. Results reveal that the
overall run time dropped 40 percent. The distributive recursion is equivalent to
Successive Linear-Programming algorithms, a method that is discussed in the next

subsection, as shown in Lasdon and Joffe (1990).

2.2.2 The Successive Linear-Programming (SLP) Approach

Successive linear-programming algorithms solve nonlinear optimization problems
by using a sequence of linear programs. The key idea of this approach is the re-
placement of bilinear terms by the first-order Taylor series expansions in order to
obtain a linearized SLP subproblem (Baker and Lasdon, 1985). Griffith and Stew-
art (1961) of Shell Oil described the application of SLP algorithms to nonlinear

16

programming problems arising from petroleum refinery optimization problems. In
their paper, the name they used for the proposed method is Mathematical Approx-
imation Programming (MAP) which is later replaced with SLP algorithms.

Baker and Lasdon (1985) discussed the application of SLP algorithms at Exxon
to nonlinear optimization problems involving the pooling problem. They proposed
a multiplicative formulation, a method which includes nonnegative deviation vari-
ables in order to prevent infeasibility of LP subproblems, to solve linearized SLP
subproblems. The multiplicative formulation has an advantage over the formulation
proposed by Griffith and Stewart (1961), additive formulation, in that the obtained
linearized problem is compatible with existing LP formulations (Baker and Lasdon,
1985). However, because of nonconvexities, convergence to a global optimum can

not be guaranteed.

Simon and Azma (1983) reported on Exxon’s experience with linear program-
ming and SLP systems. Exxon implemented a math programming system, PLATO-
FORM, for planning applications. Although the PLATOFORM was implemented
to solve large-scale linear programming problems, the system has evolved to handle
mixed integer and nonlinear problems. The PLATOFORM employed SLP algo-

rithms to solve nonlinear problems such as the pooling problem.

Lasdon et al. (1979) tested generalized reduced gradient and successive linear-
programming algorithms on the three cases of the Haverly pooling problems. Re-

sults show that the two tested algorithms outperform the recursion approach.

SLP was used to solve nonlinear optimization problems because of its ability to
utilize available LP codes and solve large-scale problems (Baker and Lasdon, 1985).

However, the resulting solutions are local optima. Therefore, since 1990 most of

17

the attempts to solve the pooling problem have focused on finding global solutions
using various approaches such as decomposition, relaxation, and Branch-and-Bound

algorithms. The following subsections summarize these attempts.

2.2.3 Benders Decomposition

Benders Decomposition has been used to solve large-scale linear and mixed-integer
problems with special structures, as well as nonlinear optimization problems since
its introduction in Benders (1962). The basic idea of this technique lies in fixing
the complicating variables: the variables that, when fixed temporarily, result in a
more tractable problem which is parameterized by the value of the complicating
variables vector. The resulting relaxed problem can be decomposed into both a
master problem and subproblems. The relaxed master problem is solved in order
to provide a lower bound for a minimization problem as well as the value of the
complicating variables. For fixed values of the complicating variables, the subprob-
lem is solved to generate an upper bound and the value of the noncomplicating
variables. Furthermore, the subproblem solutions are used to generate Benders’
feasibility and optimality cuts that are added to the master problem. The process
continues until the difference between lower and upper bound is sufficiently small

(Sahinidis and Grossmann, 1991; Geoffrion, 1972; Benders, 1962).

Geoffrion (1972) generalized Benders’ decomposition to account for broader
problems where the subproblems can be nonlinear program. Nonlinear convex
duality theory was used to derive the master problem. Floudas and Aggarwal
(1989) presented a global optimization approach based on the generalized Ben-

ders’ decomposition technique to search for the global solution of nonconvex NLP

18

and MINLP problems. Floudas and Aggarwal (1990) extended the work that had
been presented by Floudas in 1989 to determine the global optimum of the pooling
problem. The proposed approach consists of four stages. The first stage is the iden-
tification of the sources of nonconvexity. In the pooling problem, bilinear terms are
the source of nonconvexity. The second stage involves partitioning the variable set
into complicating and noncomplicating variables. Quality and estimated pool frac-
tion variables are selected to be the complicating variables in the pooling problem.
The third stage entails the decomposition of the original problem into a subproblem
and a master problem. The final stage is the iterating between the master problem
and subproblem solutions based on the generalized Benders’ decomposition tech-
nique until the specified stopping criteria are met. The procedure was applied to
Haverly’s pooling problems and one larger pooling problem. Although the global
solutions of the four problems were found, there is no guarantee for a convergence to
a global optimum (Sahinidis and Grossmann, 1991; Floudas and Aggarwal, 1990).
Such guarantee is provided by a decomposition technique, a Global Optimization

Algorithm, discussed next.

2.2.4 A Global Optimization Algorithm (GOP)

Visweswaran and Floudas (1990) proposed a generalized approach to determine a

global optimum for several classes of nonconvex programming problems of the form:

19

min f(z,y)

x,y

st g(x,y) <0
h(z,y) =
re X
yey

Where X and Y are non-empty, compact, convex sets. f(x,y),g(z,y), and h(z,y)
can be nonlinear functions leading to nonconvexities in the problem. The functions

f, h,and g should satisfy the following condition:

For fixed y = y*, f(x,y) and g(z,y) are convex in z, and h(x,y) is affine in 2, and
for every x = 2%, f(z,y) and g(x,y) are convex in y, and h(z,y) is affine in y (Liu

and Floudas, 1995; Visweswaran and Floudas, 1990).

The GOP algorithm employs duality theory to solve nonconvex optimization
problems through a series of primal and relaxed dual subproblems. The proposed al-
gorithm was proven to have finite convergence to an e-global optimum (Visweswaran
and Floudas, 1990). The GOP algorithm was applied to solve the three cases of
the Haverly pooling problems to optimality.

Following that, Visweswaran and Floudas (1993) presented new theoretical
properties of the GOP algorithm that improve the computational performance of
the algorithm. Pooling problems with five products and three pools, each pool

having two quality components, were solved to optimality.

Androulakis et al. (1995) identified the main computational bottlenecks of the

GOP algorithm which is the requirement to solve a very large number of relaxed

20

dual problems at a given iteration. Therefore, the authors proposed a distributed
implementation of the GOP algorithm to improve the computational efficiency of
the method. The proposed approach was able to solve large-scale, randomly gen-

erated, pooling problems with up to twelve components and thirty qualities.

Before discussing the third global optimization technique, we need to discuss
the relaxation techniques that are used to generate lower bounds on the global
solutions. These lower bounds are used within Branch-and-Bound algorithms to

search for a global solution.

2.2.5 The Reformulation-Linearization/Convexification Tech-

nique (RLT)

The Reformulation-Linearization technique has been applied to bilinear program-
ming problems since its introduction in Sherali and Alameddine (1992). The pro-
posed approach consists of two fundamental steps: Reformulation and Linearization
steps. In the reformulation step, additional nonlinear constraints are generated by
multiplying some of the existing linear constraints with some of the original problem

variables. For instance, consider the following bound constraints:

(0= 28 2 0. —2,) 20, j =1,]

and (¢, —q) > 0,(¢V —q)>0,i=1,...,1,

where g% < ; <z and ¢ < ¢; < ¢ are the original problem variables and

their range. Also, consider the linear constraints

I
—_

I
Zaijxj — bz = 0, 7
)

21

The RLT approach generates new constraints by multiplying bound constraints and

I
the linear constraints. For example, (q; — ql) (Z a;jT; — bi> =0

and (z; — ZUJL)(% — %L) > (0 are valid RLT constraints (Sherali and Alameddine,
1992; Liberti and Pantelides, 2004). The multiplication of bound constraints

(z; —2f) (@ —qf) >0 and (¥ —a2;)(¢V —¢;) > 0 leads to:
Tiq > xR+ qfxy — xiqf

riq > afqi + qf vy — 2 gl
and the multiplication of bound constraints

(% —2)(qi —¢) >0 and (z; —x})(q] —¢) >0 leads to:
ziq; < a¥q; + qfwy — 2 qf

L L
ziqi < x5q 4+ qf v — ahq?

In the linearization step, the resulting nonlinear programming problem is lin-
earized by replacing each bilinear term with a new variable. To illustrate, the above
inequalities are linearized by replacing each bilinear term z;¢; with a new variable

w;; as follows:

l l Ll

wij 2 TG + ¢x; — T4,
U u U U

wij 2> T3¢ + ;T — T3,
l l

wi; < X3¢ + Ty — xj}q;

l I
wi; < %539 + ¢l — 153G

Note that the obtained linearized constraints are the same as McCormick convex

relaxation (McCormick, 1976), where a bilinear term z;¢; is underestimated by

22

its convex envelope (the first two inequalities) and overestimated by its concave

envelope (the last two inequalities) (Liberti and Pantelides, 2004).

Although the newly added constraints have the potential of providing tight
bound in the convex relaxation, they contain redundant and inactive constraints
which increase the size of the resulting relaxed problem. To reduce the size of
the RLT constraints, Liberti and Pantelides (2006) proposed an algorithm, called
reduced reformulation linearization technique (RRLT'). The new reformulation con-
tains fewer bilinear terms and more linear constraints. The proposed approach was
applied to thirteen pooling problems. Results indicate the efficiency of the algo-

rithm in providing tight convex relaxations.

Quesada and Grossmann (1995) used the Reformulation-Linearization technique
in the context of general process networks that consist of splitters, mixers and
process units that are interconnected with multicomponent streams. The technique
is employed to establish a relation between two proposed formulations, composition
and individual flow formulations. Moreover, the authors presented preprocessing
steps to determine initial bounds on the variables involved in the nonconvex terms.
Numerical results of twelve test problems imply that the proposed approach is

capable of providing tight lower bounds.

Foulds et al. (1992) used McCormick convex relaxation to underestimate and
overestimate bilinear terms by their convex and concave envelopes respectively.
These envelopes are defined over the rectangular region derived from the bounds
on the variables involved in bilinear terms. The procedure is tested on five pooling
problems. For four solved problems, the resulting lower bounds are equal to the

global solutions.

23

Tawarmalani and Sahinidis (2002) employed convexification techniques based
on disjunctive programming to obtain lower bounds of the pg-formulation of the
pooling problem. The authors proved that the linear programming relaxation of
the pg-formulation using bilinear envelopes results in tighter lower bounds than the
ones obtained using Lagrangean relaxation of the same formulation. The proposed
technique is used to assess the relaxation quality of three formulations of the pooling
problem. Results of solving fourteen pooling problems indicate that the linear
programming relaxation of the pg-formulation using bilinear envelopes provides
tighter lower bounds than the ones obtained through the same relaxation of the

p-formulation and the g-formulation.

Meyer and Floudas (2006) discussed three techniques to generate a lower bound
of a generalized pooling problem. In the first and second techniques, convex and
concave envelopes of bilinear terms and the reformulation-linearization technique
are used, respectively, to generate the lower bounds. In the third technique, piece-
wise linear RLT formulation, binary variables are used to model a partition of the
continuous space. Then, the resulting MINLP is reformulated as a mixed-integer
linear program using RLT principles. The approach is applied to industrial case
study with seven sources, ten plants, single sink, and three qualities. The solution

of a subnetwork with four plants was verified to be 1.2% from the optimum.

2.2.6 Lagrangean Relaxation

Lagrangean Relaxation is a relaxation technique that converts difficult problems
into easier ones by associating Lagrangean multipliers with difficult constraints
and adding them to the objective function so as to penalize their violation. On the

one hand, solving the resulting Lagrangean subproblem is easier than the original

24

problem, and it also provides a lower bound on the optimal solution of the original
problem for a minimization case. On the other hand, as more constraints are
relaxed, the obtained bound might not be tight enough (Held, 1971; Adhya et
al., 1999). For the pooling problem case, the complicating constraints are the
constraints involving bilinear terms. By relaxing these constraints, the resulting

Lagrangean subproblem has a nonlinear objective function and linear constraints.

Ben-Tal et al. (1994) proposed a Lagrangean dual to obtain a lower bound to
the g-formulation for the pooling problem as well as a branch-and-bound algorithm
to partition the feasible set of the problem until the duality gap between the non-
convex program and its Lagrangean dual is reduced. The procedure was applied
to the Haverly’s three problems and to other larger examples. The results show
that the approach is successful in solving the examples to global optima. Adhya
et al. (1999) suggested a Lagrangean relaxation approach to obtain a lower bound
for the p-formulation of the pooling problem by dualizing all nonlinear and lin-
ear constraints and leaving linear bound constraints on the flow volume and pool
quality. The resulting Lagrangean subproblem consists of optimizing a nonlinear
objective function over a hypercube. The Lagrangean subproblem was reformu-
lated as a mixed integer linear program. The proposed approach was applied to
several previous problems and to four problems that were constructed in the course
of their study. Results indicated that the proposed relaxation provided a tighter
lower bound than the one obtained from the linear-programming approach based on
McCormick estimators. A branch-and-bound algorithm was used to solve the pro-
posed Lagrangean relaxation approach and obtain a global solution for the tested
problem. Tawarmalani and Sahinidis (2002) applied Lagrangean relaxation for the
pg-formulation and proved that this relaxation is no tighter than the linear pro-

gramming relaxation obtained using bilinear envelopes for the same formulation.

25

Similar to Adhya et al. (1999), the Lagrangean relaxation proposed in this
thesis is based on the p-formulation. However, our approach is different in that
the resulting Lagrangean subproblem reserves most of the original problem struc-
ture because we relaxed only the complicating constraints which are the nonlinear
constraints. Our approach is similar to Adhya et al. (1999) in that the result-
ing Lagrangean subproblems are reduced to mixed integer programming problems.
However, the differences are in the approaches used to eliminate nonlinearities and
reduce the Lagrangean subproblems to mixed integer programming problems as

will be explained in Chapter three.

Having discussed the relaxation techniques used for generating a lower bound
on the global solution of the pooling problem, we next describe Branch-and-Bound

Algorithms.

2.2.7 Branch-and-Bound Algorithms

Branch and Bound is a popular technique which uses relaxation and enumeration
to find global solutions of optimization problems. The algorithms partition the
relaxed feasible regions into subregions and generate a tree of subproblems which
have to be solved at each node. While the lower bound on the global solution of
a minimization problem is given by a relaxed problem optimal solution, the upper
bound on the global solution is found when the optimal solution of the subproblem
is a feasible solution to the original problem. Based on the obtained bounds, some
of the nodes are fathomed by optimality or feasibility arguments. The algorithms
proceed until all the nodes are solved or fathomed (Horst and Tuy, 1996; Adhya
et al., 1999).

Most of the reviewed papers used Branch-and-Bound algorithms to obtain a

26

global solution of the pooling problem. Since having tight bounds is essential to
reduce the search space, the proposed algorithms differ in the relaxation used to
provide lower bounds on the global optima. Ben-Tal et al. (1994) provided Branch-
and-Bound algorithms to partition the feasible set of the pooling problem until the
duality gap between a nonconvex program and its Lagrangean dual is reduced. Nu-
merical results of five solved pooling problems show that the optimal solutions of
the five problems were found. Foulds et al. (1992) used McCormick convex relax-
ation to generate lower bound on the global optimum of the pooling problem. The
resulting lower bounds were integrated into Branch-and-Bound algorithms to par-
tition the hyper-rectangle region to obtain global solutions. Five pooling problems
were solved to optimality using the suggested approach. However, results show that

the procedure is time consuming when applied to large problems.

Quesada and Grossmann (1995) applied RLT to obtain a tight lower bound on
the global optimum of the pooling problem. The obtained lower bound is used
within special Branch-and-Bound algorithms. Numerical results on twelve solved
pooling problems reveal that only a small number of nodes are needed in the Branch-
and-Bound search to identify the global solutions. After applying convexification
techniques to the pg-formulation, Tawarmalani and Sahinidis (2002) integrated the
resulting lower bounds into Branch-and-Bound algorithms. Computational results
demonstrate that the proposed approach leads to a significant reduction in the
size of the Branch-and-Bound search tree. Adhya et al. (1999) used Lagrangean
relaxation within a Branch-and-Bound framework to solve the pooling problem.
Thirteen pooling problems were solved to global optimality. Audet et al. (2004)
investigated how to apply a new Branch-and-Cut quadratic program, inspired by
Al-Khayyal and Falk’s (1983), to solve the pooling problem. Results imply that

the proportion formulation, which is equivalent to the g-formulation, is prefer-

27

able for these algorithms. Liberti and Pantelides (2006) used special Branch-and-
Bound algorithms after deriving tight lower bounds using the reduced reformulation
linearization technique (RRLT). Computational results of thirteen solved pooling
problems show that having tight lower bounds speeds up the special Branch-and-

Bound algorithms.

Small-scale problems from the open literature were solved to global optimality
using available global optimization algorithms. However, solving large-scale prob-
lems to global optimality is challenging. Therefore, the literature often proposes

heuristic techniques.

2.2.8 Heuristic Techniques

Audit et al. (2004) applied an Alternate heuristic and a Variable Neighborhood
Search (VNS) metaheuristic to solve large instances of the pooling problem. The
Alternate heuristic is based on the idea of dividing a set of variables into two
subsets: complicating and noncomplicating variables and alternately solving linear
programming problems, which result from fixing one of the subsets. The solution
of each solved linear programming problem is used as parameters for the other
one. Moreover, a multistart version of the Alternate heuristic (MALT) was used to

improve the quality of the solutions.

The Variable Neighborhood Search (VNS) metaheuristic is based on the sys-
tematic change of the neighborhood within the search. We refer the readers to
Hansen and Mladenovi¢ (2001) for a review of VNS and its applications to several
classical optimization problems. To improve VNS solutions, MALT best solutions

were used as initial solutions for VNS.

Audit et al. (2004) applied The Variable Neighborhood Search and the Multi-

28

start Alternate heuristic to the flow and the proportion models. Thirteen pooling
problems were solved and a comparison of the computational properties of the two
modeling approaches was given. Results show that for most cases, eleven cases,
there is no significant difference between the two formulations. For the other two
cases, the proportion model gives better results. Moreover, Audit et al. (2004)
used the heuristic approaches to solve randomly generated pooling problems. Re-

sults reveal that VNS always gives the best results.

2.3 Conclusion

This chapter has reviewed the various pooling problem formulations such as the
p-formulation, the g-formulation, the pg-formulation, and the generalized formu-
lation. This chapter has also reviewed solution methodologies including recursion,
successive linear-programming algorithms, Benders decomposition, a global opti-
mization algorithm (GOP), the reformulation-linearization technique (RLT), La-

grangean Relaxation, Branch-and-Bound algorithms, and heuristic techniques.

From this review, it is clear that the challenge of solving the pooling problem is
due to the appearance of bilinear terms which results in several local optima. Hence,
most of the attempts to solve the pooling problem to global optimality are only
achieved for small-scale problems. However, solving large-scale pooling problems
to global optimality is still challenging. Practically, pooling problems involve large
numbers of pools, qualities, and final products, which result in a model with a large
number of bilinear terms. Therefore, using heuristic techniques to find good feasible
solutions for large instances is desirable. One of the attempts in this direction is

due to Audet et al (2004).

29

In this thesis, we focus on generating a tight lower bound using a new La-
grangean relaxation and constructing feasible solutions using a Lagrangean-based
heuristic. In the following chapter, the proposed Lagrangean relaxation and heuris-

tic techniques are presented.

30

Chapter 3

Problem Formulation and

Solution Methodology

3.1 Problem Formulation

In the classical blending problem, end products are produced by mixing raw materi-
als directly. Therefore, the blending problem can be formulated as a linear problem
because the quality of the blend is approximated by the weighted average of the
qualities of the input streams (Audet et al., 2004). In contrast, in the pooling
problem, raw materials are blended together, and then the resulting blend as well
as other input streams are mixed together to produce end products. Hence, the
pooling problem can be formulated as a nonlinear problem because the quality of
the pool, which is unknown, depends on the qualities and the volume of the input

streams, which are also unknown (Audet et al., 2004 ; Fieldhouse, 1993).

As mentioned previously in Chapter two, several formulations have been pro-

posed in the literature for the pooling problem. In this Chapter, three formulations

31

of the pooling problem are given with illustrative examples. First, we present the
p-formulation which is based on Adhya et al. (1999). This formulation is the one
we use to develop the solution methodology. Then, we give the g-formulation and

the pg-formulation which are based on Tawarmalani and Sahinidis (2002).

3.1.1 The p-Formulation

The pooling problem can be stated as follows. Given a set of J pools and a set of [
available raw materials with known properties, as well as a set of K final products
and a set of W pool qualities, decisions are made to determine the optimal quantity
and quality of the streams. The aim is to minimize the difference between raw
materials cost and final product revenue while satisfying end product demand and
quality requirements (Adhya et al., 1999). Note that since not all raw materials are
delivered to pool j, we defined IV; to be the subset of raw materials ¢ that can be

fed into pool j. The representation of the pooling problem is shown in Figure 3.1.

Before presenting the formulation, the following notation are introduced.

Indices:

1 available raw materials,2 = 1,...., I.

k products,k =1, ..., K.

w qualities,w =1,, W.

32

Raw materials Pooling tanks Final products
i j k

Figure 3.1: A Pooling Network

Parameters:

¢ij unit cost of the 7th stream into pool j.

dy, unit price of product k.

s~ demand for product k.

Zrw wth quality requirement for product k.

tijw wth quality specification of the ith stream into pool j.
lower bound on flow for f;;

upper bound on flow for f;;

qj,, lower bound on flow for g;y,

4}, upper bound on flow for g;,

zy, lower bound on flow for @y,

z%, upper bound on flow for zy

33

Variables:

fi; flow of ith input stream into pool j.
xj; total flow from pool j to product k.

¢jw wth quality of pool j from pooling of streams.

The p-formulation for the pooling problem is:

J K J
(PP) min 37 > cijfyy — 2 di 30wk (1)
j=1ieN; k=1 j=1
K .
iEN; k=1
K .
Qjw > Tk — 2 tijwfij =0 Vi, w (3)
k=1 ieN;
J J
> GuwTik — Zkw Y Tik <0 Vi, w (4)
=1 j=1
J
ZL‘jk S Sk Vk (5)
=1
< fiy < Y Vi,j (6)
G < G < Gy Vi, w (7)
why < g < ol Vi ko (8)

Note that this formulation does not allow raw materials to be mixed directly
in the end products. To allow for such blending, a fake pool that receives only a

single input stream and has multiple output streams can be used.

The objective function (1) minimizes the difference between raw material cost

and end product revenue. Constraints (2) are mass balance constraints for each

34

pool. Constraints (3) represent the quality mass balances around pools. Con-
straints (4) ensure that end product quality requirements are satisfied. Constraints
(5) ensure that the total flows do not exceed demand. Constraints (3) and (4)
are bilinear constraints that introduce nonconvexity to the problem. Note that
constraints (4) in the “<” form are used when the end product qualities such as
sulfur content are undesirable; however, when the end product qualities such as
octane number are desirable, these constraints can be expressed in the “>” form.
Constraints (6), (7), and (8) represent the bound on the flow of the raw materi-
als, qualities, and the flows from pools to end products, respectively. The quality
bounds are estimated from the raw material qualities (Haverly, 1978). As an il-
lustration, from the streams fed into pool j, the stream with lower quality gives
the lower bound and the stream with the higher quality provides the upper bound.
Note also that except for those constraints which involve bilinear terms, which are

constraints (3) and (4), the objective function and all other constraints are linear.

An Illustrative Example of the p-Formulation

We use the pooling example (Haverly, 1978) presented in Chapter one to illustrate
how to drive the p-formulation of the pooling problem. In this example, two input
streams of crude oil, A and B are fed into a single pool. Each crude oil stream
has different known properties, such as cost and sulfur content. The third source
of crude oil, C, is used to blend directly with the pool output streams, producing
two final products with some restrictions on demand and sulfur content as shown

in Figure 3.2.

35

A
Sulfur 3
Cost $6

B

X11
Product

S

Sulfur 2.5% ,
demand 100
(Price $9)

Sulfur 1% f7; _—
Cost $16 Product | Sulfur 1.5% ,
X2 2 demand 200
C fi2 (Price $15)
Sulfur 2%
Cost $10
Figure 3.2: Haverly’s pooling problem (p-formulation)
min 6f11 -+ 16f21 + 10f12 — 93311 — 9%21 — 15%12 — 153322
st. fu+fa—xn—212=0
Ji2 — @91 — X220 =10
q(x11 + T12) = 3f11 — fa1 =0
qriy + 2%21 — 2.5(3311 + CC21> S 0
qr12 + 2w99 — 1.5(2124w92) < 0
T11 + To1 S 100
T12 + To2 S 200
¢ <qg<q¢
3.1.2 The g-Formulation

Ben-Tal et al. (1994) derived the g-formulation by using new variables to represent

the fraction of each input stream used in each pool instead of using explicit variables

for pool qualities.

36

We use the same notations as in 3.1.1 and define the following additional para-

meters and variables.

Parameters:
I number of available raw material
tiw wth quality of raw material ¢
b; availability of ith raw material
a; jth pool capacity

Variables:

gir. direct flow of raw material ¢ to product &
xj total flow from pool j to product k

pi; fraction of raw material ¢ used in pool j

Note that instead of using explicit variables f;; to represent the flow from raw
material ¢ to pool j and explicit variables ¢;, to represent pool qualities, only
proportion variables p;; are used. Therefore, each f;; variables in the p-formulation

K
is replaced with p;; > xj; Vi,j in the g-formulation.
%

The resulting g-formulation for the pooling problem is:

37

i=1 Jj=

min f: (i Tk zlj Cipij — di Z Tjk + Z(- dk)gzk> (9)

J I I

st 3 (Stwms -) Dt Y (tr —) <0 Vhw (10)
j=1 \i=1 =1
J I
Z Z Gir < Sk Vk (11)
? i=1
ik = 0 Vi, k (15)

The objective function (9) minimizes the difference between raw material cost
and end product revenue. Constraints (10) ensure that end product quality require-
ments are satisfied. Constraints (11) model end product demands. Constraints (12)
represent the mass balances for each pool. Constraints (13), (14), and (15) are non-

negativity constraints.

Note that raw material availability constraints, constraints (16), and pool ca-

pacity constraints, constraints (17), can be modeled as:

K K
>0 PiTik + Y gi < b; Vi (16)
‘ k=1
K .
> Tiw < a; Vi (17)

The above constraints were presented in Tawarmalani and Sahinidis (2002).

38

A
Sulfur 3
Cost $6

B
Cost $16
C

Cost $10

Sulfur 1%

pri(xii+ x12) X1

p21(x11+ x12)

Product
1

Product
2

Sulfur 2%

Sulfur 2.5% ,
demand 100
(Price $9)

Sulfur 1.5% ,
demand 200
(Price $15)

Figure 3.3: Haverly’s pooling problem (qg-formulation)

An illustrative example for the g-Formulation

Haverly’s pooling example can be written using the g-formulation as follows:

min 6(p11211 + puriz) + 16(p21211 + p21712) + 10(gs1 + g32)

s.t.

=9(z11 + g31) — 15(712 + g32)

r11 + g3 < 100

T12 + g3z < 200

(3p11 +pa1r — 2.5)x11 — 0.5g31 < 0
(3p11 +pa1 — 1.5)x12 + 0.5g32 < 0
pintpa =1

Dij> Tjk, gik = 0; Vi, j, k

39

3.1.3 The pg-Formulation

Starting from the g-formulation, Tawarmalani and Sahinidis (2002) derived the

pg-formulation by adding the following convexification constraints:
I .
Zpl'jl’jk = Tjk VJ, k (18)
i=1

The convexification constraints were derived using the idea of reformulation lin-
earization technique (RLT) which appeared in the work of Sherali and Adams
(1990), as well as the work of Quesada and Grossman (1995). Constraints (18) are
obtained by multiplying i]_ pij = 1 constraints with x;;. In a similar way, Tawar-
malani and Sahinidis (2002) derived constraints (19) by multiplying Z T < a;
constraints with p;; in order to strengthen the obtained lower bound 1f the pqg-

formulation is relaxed using the convex relaxation technique. The idea of deriving

constraints (19) was inspired by the work of Sherali et al. (1999).

K
kzlpijxjkgajpij Vi,j (19)

The resulting pg-formulation for the pooling problem is:

40

=
=}
0=

1=1

(Z Tjk Z Cipij — dy éJF ZI:(Ci — dk)Qik) (20)

J /1 I
s.t. Z Z iwPij —) Tk + Z(tzw - ka)gzk S 0 Vkaw (21)

=1 \u=1 i=1

J I

Z Z Jik < Sk Vk (22)
? =1

Z:lpw =1] (23)
J

1h=

]K .

> Tik < a; Vi o (28)
k=1

> DTk = Tjk Vi, j o (29)
i=1

K

kZ: DijTjk < jPij Vi,j (30)
-1

The objective function (20) minimizes the difference between raw material cost
and end product revenue. Constraints (21) ensure that end product quality require-
ments are satisfied. Constraints (22) model end product demands. Constraints (23)
represent the mass balances for each pool. Constraints (24), (25), and (26) are non-
negativity constraints. Constraints (27) and (28) model raw materials availabilities
and pool capacities, respectively. Constraints (29) and (30) are derived using the

reformulation-linearization technique.

41

An illustrative example for the pg-Formulation

Haverly’s pooling example can be written using the pg-formulation as follows:

min 6(p11711 + p117i2) + 16(p21711 + p2a1712) + 10(gs1 + g32)
—9(z11 + g31) — 15(212 + g32)
s.t. x11 4 g3 < 100
T12 + g32 < 200
(3p11 +pa1 — 2.5)x11 — 0.5g31 < 0
(3p11 + pa1 — 1.5)x12 + 0.5g32 < 0
pintpa =1
P + P21 = T
P11%12 + P21%12 = T12

Dij> Tik, gik = 03 Vi, j,k

3.2 Proposed Lagrangean Relaxation

As mentioned previously in Chapter two, Lagrangean relaxation converts difficult
problems into easier ones by dualizing complicating constraints. However, as more
constraints are relaxed the resulting Lagrangean bound might not be tight enough.
Adhya et al. (1999) constructed a Lagrangean relaxation for the p-formulation of
the pooling problem by relaxing all constraints except the bound constraints on
the flow and quality variables. Note also that Tawarmalani and Sahinidis (2002)
applied the same Lagrangean relaxation presented in Adhya et al. (1999) to the pqg-
formulation. Ben-Tal et al. (1994) proposed a Lagrangean dual based on relaxing

the entire constraint set except pool mass balance constraints.

42

In this Section, we present a new Lagrangean relaxation for the pooling problem
based on the p-formulation. The proposed relaxation differs from the relaxation of
Adhya et al. (1999) in that it targets only the nonlinear constraints. As a result,
the resulting Lagrangean subproblem has most of the original problem structure.
Moreover, the way we eliminate nonlinearities from the Lagrangean subproblem

objective function is different from the one used in Adhya et al. (1999).

3.2.1 Lagrangean Relaxation for the General p-Formulation

To apply Lagrangean relaxation, we associate unrestricted Lagrangean multipliers
oy, With constraints (33) and positive Lagrangean multipliers (,,, with constraints

(34) in (PP).

J K J
(PP) min >0 > cijfiy— 2 di 30w (31)
j=lieN; k=1 j=1
K .
s.t. Z fij — Z Tjp = 0 \V/] (32)
=Y k=1
K .
Gjw Z Tjk — Z tijwfij =0 Vi,w <« Aoy (33)
k=1 ieN;
J J
GwTjk — Zkw Y Tik < 0 VEk,w « B, >0 (34)
j=1 j=1
J
Z Tk < sg VEk (35)
j=1
qg'w S ij S q;tw v.]? w (37)
ahy <ape < a2l Vj, k (38)

43

The resulting Lagrangean subproblem is:

J w J K W
(SPP) min 3 > fij(cij — 21 tijuwCtw) + Zlkzl%‘k(—dk + 21 @jw (G + Bray)
w= = — w=

iEN; j=1
w
- Z kaﬁkw)
w=1
/ = ,
e Y = 2w =0 vy
1EN; k=1
J
> Tjr < Sk vk
7=1
l . .
i S fij < Z; Vi, j
qé’w S qu S q;w v.]vw
xék <z < x?k Vi, k

For a given value of Lagrangean multipliers («;y,, (4,), the optimal solution
of (SPP) provides a lower bound on the global solution of the original nonlinear

problem (PP).

Rearranging terms in (SPP), we get

44

W
Ti(—de — 3 Zkwbiw)
w=1

min o tijwQw) +
1€EN; j=1 w=1 j=1k=1
J K W
+ 22 20 k(D2 Giu(@w + Braw))
j=1k=1 w=1
t X :
5t Yo fii— >z =0 Vj
iGNj k=1
J
Jljk S Sk Vk
=1
< fiy < f Vi, j
aly <ap, <l v,k

To solve (SPP) to global optimality, we are interested in eliminating the non-
linearity from the Lagrangean subproblem objective function. To do that, we re-
formulate (SPP) into a mixed integer program as follows. First, if we define a new

continuous variable u;,, to satisfy the following relationship

K
Ujw = Qjw (Z xjk(ajw + Bkw))) ‘v’],w
k=1

then the nonlinearity can be eliminated by using the linear bound constraints

Q§'w < ¢juw < ¢}, and the fact that g;,, does not appear in the rest of the con-
K

straints. Depending on the sign of Y i (juw+5y,,) two cases should be considered:
k=1

45

K

1(Oéjw + Brw) Ti) Qo < Ujus < (I;(ajw + Brw) k) L

M=

(

k

K
if (32 7jk(w + Bry)) 20,
k=1

K K
(> (@ + Brw) Tt)y < Uy < (kzl(%‘w + Brw)Tik) L

K
if (Z ijk(ajw + /Bkw)) S 07

\ k=1

K
Hence, Replacing each g;,, (Z Tjk(ajy + B kw)) with w;,, in (SPP) reduces the
k=1

Lagrangean subproblem to:

(SPPU) min i fij(cij — Z tijwQtjuw) + Z Z Tk (—dy — %1 ZkwBrw)

1€N; j=1 Jj=1k=
J W
T2 D U
j=1lw=1
K .
s.t. Yo fii— > xip=0 Vj
1EN; k=1
J
Z Tk S Sk vk
ji
z] — fl,] S VZ,]
xjk < g < ol Vi, k
K } K]
(I;l(ajw + ﬁkw)xjk)qu S Ujw S <l;l(ajw + Bkw)xjk)q;w7 vj? w
=1 =
if (32 k(@ + Bra)) 2 0
Kk 1 X l |
(Z:l(ajw + Bkw)x]k)q]w < Ujw < (kz_:l(ajw + 5kw)$jk)qu, Vi, w
y -
if (3 @ju(w + Bry)) <0
k=1

46

Second, to model the if-then constraints in (SPPU), we define a binary variable

K
Lif (32 jw(@uw + Brw)) 2 0
ij = k=1
0 otherwise

and introduce big-M constraints as follows:

K
k=1

K
Ujuy < (k;(%‘w + Brw) i) @Gy + M(1 = yju) Vi, w

(3 (@ + B < o + My Vj,w
i < (3 + By + M Vj,w
(5 (0 + Bhe) > =M (=) Vj,w
(f: (jw + Braw)Tir) < Myju Vi, w

k

I
MR

The above constraints can be written as:

(é(%‘w + B Tik) Lo — W + Myjop < M Vi, w
_(é(%“’ + Brw)Tjk) @ + Ujw + Myjw < M Vi, w
(3 (o + a0 = 0 = My < 0 Vj,w
~(5 (g + By g~ Mypa S0 Viw
(35 (0 + Br)) + Mypo < M Vj.w
(i (jw + Brw)Tjn) — Myjw <0 Vi, w

B
Il
—

47

Therefore, (SPPU) is equivalent to the following mixed integer program:

J w J K w
(SMIP) min > 2 fijleiy — 22 tijwuw) + 20 20 Tin(—dk — Y2 ZkwBruw)
1€N; j=1 w=1 j=lk=1 w=1
J W
+2 2 U
j=lw=1
K .
iEN; k=1
J
> Tk < Sy, Vk
j=1
K .
(D2 (jw + Braw) it)@y — U + My < M Vi, w
k=1
K
k=1
K
(Z (ajw + 6kw)xjk)q;w = Ujw — Mij <0 vj> w
k=1
K
_(kz (ajw + Bkw)xjk)Qé'w + Ujw — Mij <0 \V/j, w
=1
K
(> —(jw + Bryw)Tjn) + Myjuw < M Vj, w
k=1
K
(kZ (jw + Brw)Tjr) — Myju <0 Vj, w
=1
fL<fy < fe Vi, j
:cék < zjp < T Vi, k
Yjw € {0, 1} Vi, w

The best Lagrangean lower bound is given by the optimal solution of the La-

grangean dual problem:

48

(J

min Y,

1€EN; j=
1%
- Z kaﬁkw)
w=1
s.t X
b = T =0 Vi
5>0,a Y
Z Tk S Sk Yk
j=1
l . .
ij S fij S @'1;' VZ,]
G < Gw < ¢y Vi, w
xék <z, < :c;Lk Vi k

Which is equivalent to:

K

J w
min - 32 3 fii(ciy = 2 tywage) + X
max 1€N; j=1 w=1 =1k
B8>0,0

w
- szl zkwﬁkw)

-1

%% J K w
1fij(cz‘j - 21 tijuwCtw) + Zl kzll“jk(—dk + Zl Gjw(Qjw + Bra)
w= 1= — w=

W
—dy + 21 @ (uw + Bru)

where H is the index set of extreme points to the set:

49

)

(

\

>

iENj

S
> Tix < Sk
—~

K
- x?k =0
k=1

J
K
(Z (ijw + Bkw)x?k)qéw jw + My]w — M

k=1

K
—(>- (ajuw + 6kw) 1) G ij + My]w <M
K
(Z(Qjy + 6[6’11))]k)q]w -

K
(Z (O-/Jw + 6kw) ?k)qéw + u?w -

ng iy =

ij

u
wy, < @l < alh,

yr, € {0,1}

which are also feasible to

)

(fh,il}h

q")

K
> iI;‘_kZ::lx?k:O

z€N
Zx < Sk

< fho< fu
Z]— ij — Jij

LS :c < x

20

jw — My, <0

My}, <0

vj
vk
Vi, j
Vi, w
Vi, k

vk

Vi, w
Vi, w
Vi, w
Vi, w
Vi, w
Vi, w
Vi, j
Vi, k
Vi, w)

If we define

J w J K N w N
20 3 filen = 2 tywasw) + 30 30 af(—di + 3 afu(0gu + Bru)
0 = min eN; j=1 w=1 Jj=1k=1 w=1
heH W

szl zkwﬁkw)

The Lagrangean dual problem can be written as the following linear program,

which we refer to as the master problem (M PP):

(MPP) mgug; 0
o J W
s.t. Z Z (Z tl]w q]w Z xjk) + Z Z Bkw
j=lw=1 1EN; lw 1
(ijk(zkw_qyw)) = Z ZCU dezxjkﬂ Vhe H
j=1 1€N; j=1
Bkw 2 0

3.3 An Illustrative Example

In this Section, we apply the proposed Lagrangean relaxation to the pooling exam-
ple presented in Section 3.1.
3.3.1 Lagrangean Relaxation for The Pooling Example

We construct the Lagrangean relaxation by associating the unrestricted Lagrangean
multiplier A with constraint (42) and positive Lagrangean multipliers a and § with

constraints (43) and (44) respectively.

o1

(PP) min 611 + 16fo; + 10 f12 — 9211 — 991 — 15215 — 15299 (
st. fu+fa—xn1—112=0 (
Ji2 = @1 — 222 =0 (
=3fu— far+qrin+qrip=0 — A (
(g —2.5)x11 — .Bxer <0 — a>0 (43
(g —1.5)x19 + .5rge <0 — >0 (
11+ T9p < 51 =100 (
T12 + Tog < So =200 (
¢ <q<q" (
fijyxje 2 05 Vi, g,k (

The resulting Lagrangean subproblem is:

(SPP) min (6 —3\)fi1 + (16 — A) for + 10 f12 + (=9 + g\ + ga — 2.5c0) 11
+(—=9 — ba)za; + (=15 4+ g\ + g8 — 1.58)x15 + (=15 + .50) w9
st fu+ fa—rn—12=0
Ji2 — a1 — 22 =0
11 + 291 < 57 = 100
T12 + x99 < S5 = 200
¢ <q<q"
fijy i > 0; Vi, 5,k

For a given value of Lagrangean multipliers (A, «, [3), the optimal solution
of (SPP) provides a lower bound on the global solution of the original nonlinear

problem (PP).

52

After rearranging the terms in (SPP), we get:

min (6 — 3\) fi1 + (16 —) for + 10 f12 + (=9 — 2.5c) 11 + (=9 — .ba)xay

+(—=15 = 1.58)z12 + (=15 + .58)x22 + q¢(A + @) x11 + g(A + B)x12
st. fu+fa—rn—112=0

fi2 — 91 — x99 =0

T11 + 221 < 100

T12 + T22 < 200

¢ <qg<q"

fij, i > 05 Vi, g,k

To solve (SPP) to global optimality, we are interested in eliminating the non-
linearity from the Lagrangean subproblem objective function. To do that, we re-
formulate (SPP) into a mixed integer program as follows. First, if we define a new

variable u to satisfy the following relationship

u=q((A+ o)z + (A + B)r12),

then the nonlinearity can be eliminated by using the linear bound constraints ¢' <
q < ¢" and the fact that ¢ does not appear in the other constraints. Two cases

should be considered depending on the sign of (A 4+ a)z11 + (A + fB)x12

(

(AN a)zn + AN+ B)r) ¢ <u < (AN+)z + (N + B)r12) ¢,
if (A +a)zy+ A+ B)r12) >0,
(A a)ry + AN+ 8)z12)¢* <u < (A+a)ry + (N +B)z12) ¢,
| (A @)z + (A + F)r) <0

23

where ¢! = 1, and ¢* = 3.
Hence, the subproblem is reduced to:

(SPPU) min (6 —3\)f11+ (16 — \) fo1 + 10f12 + (=9 — 2.50) 211 + (=9 — .Ba) oy
+(=15 — 1.58)15 + (—15 + 58) 75 + 1
st. fu+fa—x1—212=0
fi2 — 91 — x99 =0
11 + 221 < 100
T2 + 299 < 200
(A @)z + A+ B)x1e) <u<3(AN+a)ry + (A + B)z12),
if (A)z + A+ B)z12) >0,
(A a)zi + A+ B)z1e) Su< (A + @)z + (A + B)z1a),
if (A4 a)z+(A+5)z12) <0
fij, x> 0; Vi, 5,k

Second, to model the if-then constraints in (SPPU), we define a binary variable

y= { HE(A+a)en +(+ fan) 2 0

0 otherwise

and introduce big-M constraints as follows:

(A +a)zr + (A + B)z1e) <u+ M(1—y)
u < 3((A+)z + A+ B)za) + M(1—y)
3((A+ @)z1y + (A + B)z1z) <u+ My

u < (A)z + (A + B)z12) + My.

A+)z + A+ B)z1s > —M (1 —y)

A+ o)z + (A + Bz < My

o4

The above constraints can be written as follows

A+ a)ry+ A+ B)xe —u+My< M
u—((A+)3z — (A + B)3z12) + My < M
A+)3z + (A +)3z —u— My <0

— A+)y — AN+ B)r2+u— My <0
— A+)z — A+ Bz + My < M

(A +a)zn+ A+ B)r12) — My <0

Therefore, (SPPU) is equivalent to the following mixed integer program:

(SMIP) min (6 —3\)fi + (16 — A) for + 10f12 + (=9 — 2.50) 211 + (—9 — .5a)zay

(=15 — 1.58) 712 + (=15 + 58)z9s + v
st. fu+fa—21u1—212=0

Ji2 — T2 — T2 =0
11 + 221 < 100
12 + T22 < 200
A+a)ry + A+ B)xe—u+My< M
u—((A+)3z — (A + B)3z12) + My < M
A+ a)3x11+ (A +B8)3x12 —u— My <0
—(A+)z — A+ B)rie+u— My <0
— A+)z — A+ Bz + My < M
(A @)z + A+ B)r12) — My <0
fijsxje > 0; Vi, g, k; ye{0,1}.

95

The optimal solution of the above mixed integer Lagrangean subproblem pro-
vides a lower bound on the global solution of the original nonlinear problem How-
ever, the best Lagrangean lower bound is given by the optimal solution of the

Lagrangean dual problem.

[min (6 3\)fir + (16 — A)for + 1012 + (=9 + g\ + ga — 2.50) 211
+(=9 — Ba)ry + (=15 + gA + ¢B — 1.55)x12 + (=15 + .55) w20
st futfuo—rn—712=0
ax Ji2 — a1 — w22 =0
20,620 T11 + 221 < 100
T2 + Tog < 200
¢ <q<q"
fijy x> 0; Vi g,k

Which is equivalent to:

min (6 —3A\) 1y + (16 — N fl + 105 + (=9 + ¢"\ + ¢"a — 2.5a) 2!y
max heH
a=0.520 +(=9 — 5a)zl, + (=15 + "X + ¢"8 — 1.58)a", + (=15 + .53)ah,

where H is the index set of extreme points to the set:

26

(f" ot ul, ") f11+f21 — oy =0
flo — $§L2 =0
o+ 2l <100
2hy + 2y < 200
A+)t + (A + B)ahy, —uh + Myh < M
— (A4)3zt — (N + B)3ahy) + Myh < M
(A +)38 + (A + B)3xh, —u — My" <0
—(A+ a)xh, — (A + B)aky +u — My" <0
—A+)zl — N+ By + My < M
((A +a)zy + (A + B)aty) — My" <0
>0; Vi, jk; y"e€{0,1}.

L 1]7]k

which are also feasible to

(3

(fh et g™y fl+ i —aly —al, =0
f12 5’321 :z:’2‘2:O

oh 4+ 2h <100

H :
xh, + xh, < 200
¢ <q"<q¢",
\ haly> 00 Vigk o

If we define

.] (6 =3\ 4+ (16 — N\ + 100 + (=9 + ¢" A + ¢"a — 2.5a) 2],
= min
hel | (=9 — 5a)al, + (=15 + ¢"\ + ¢"B — 1.58)xly 4+ (=15 + .53)zh,

57

The Lagrangean dual problem can be written as the following linear program,

which we refer to as the master problem.

(MPP) max 6
o,5,0

st 0+ (Bff + fir + ¢ (=l — 21))A + (2.52; + 5afy — ¢"aly)e
+(L.5aly — bl — quly) B < 6ffy + 1631 + 10ffy — 9aly — 9y
—15xh, — 152h,; Vhe H
a>0,>0

3.4 Strengthening the Lagrangean Lower Bounds

Generally, for global optimization techniques such as Branch-and-Bound algorithms,
tight bounds reduce the search space and, consequently, improve the performance
of the algorithms. For heuristic techniques, tight bounds can also be useful in

improving the quality of the heuristic solutions.

In this Section, we seek to improve the quality of the heuristic solutions by
improving the Lagrangean lower bounds. In order to do that, we generate valid
cuts using the idea of replacing each bilinear term with a new linear variable and
adding linear constraints to the Lagrangean subproblem to bound the value of the
linear variables. For instance, if we define a new nonnegative variable v;y,, to replace

each bilinear term g¢;,,;; we have the following relationship
Vikw = QjuwTik V], k,w

Using the linear bound constraints qé-w < ¢jw < ¢}, , we can eliminate the nonlin-

earity and bound the value of the introduced variable vj,, as follows:
GoTit < Vjkw < @hprie Vi k,w (49)

o8

Thus, the quality constraints

K
Qjw 2 ik — 2 tijwfij =0 Vjw
=1

iENJ‘

J J
> Gk — Zkw Y Tik <0 Yk, w
J=1 J=1

can be written as:

K
I;Ujkw — > tijwfij =0 Vi, w (50)

iGNj
J J
> Vjkw — Zkw Y, Tjk <0 Vi, w (1)
=1

=1

Recall that in Section 3.2, we defined another new variable u;,, to satisfy the fol-

lowing relationship

K
Ujw = Gjuw (kzl T (o + 5kw)) Vi, w

The above constraints can also be written as:

K
Ujw = kz: Ujkw(ajw =+ 5kw> v.]? w (52)
=1

Constraints (49), (50), (51),and (52) are added to the Lagrangean subproblem to

strengthen the Lagrangean lower bound.

3.5 A Heuristic Approach and Overall Algorithm

In Section 3.2, we generated a lower bound on the global solution of the pooling

problem using Lagrangean relaxation. However, the solutions (f,) we get from

29

solving the Lagrangean subproblem, are mostly likely to be infeasible for the origi-
nal nonlinear problem. Hence, we use a Lagrangean heuristic to construct feasible
solutions and to provide an upper bound on the original nonlinear problem opti-
mal solution. Lagrangean heuristics typically work on the Lagrangean subproblem
solution by modifying it to be feasible to the original nonlinear problem. In our

approach, the Lagrangean heuristics works as follows:

1. Start with initial values for Lagrangean multipliers («, ().

2. Solve the Lagrangean subproblem (SMIP) and find the optimal values (f,

7) of the flow variables.

3. Keep the best Lagrangean lower bound Z7,, found so far.

4. Using the Lagrangean subproblem optimal solution (f, Z), calculate the qual-

ity values from the quality mass balance constraints

K
Gw > Tjk — 2 tijwfi; =0 Vj,w

k=1 iEN;
as follows:
> tijwlfis
Tjw = (—ZEN;() Vj,w
> Tk
k=1

5. Using the obtained gj,, values from 4, fix the quality values in the quality
balance and requirement constraints in (PP) and solve the resulting linear

program:

60

) J K J
min Y > cjifiy — Do di Do Tk
=1 =1

j=1iEN;
K .
iEN; =1

K
ij; Tjk — Y tijwfij =0 Vi, w
—1

1EN;

J J

Y GwTik — 2w Y Tjk <0 VEk, w

Jj=1 j=1
J

Tk S Sk Vk
j=1
< fi < Vi, j
xék < g < @l Vi, k

6. Keep the best found feasible solution Zz .y,

7. Solve the master problem (M PP) to get new values for Lagrangean multipli-

ers (o,) and get the value of its objective function Z 4.

8. If the stopping condition Zares — Z1qg > € is not met, update Lagrangean

multipliers in step 1 and repeat steps 2-8.

3.6 Conclusion

In this chapter, we explained with illustrative examples three mathematical models
of the pooling problem. These models are the p-formulation, the g-formulation,
and the pg-formulation. This chapter also presented a new Lagrangean relaxation
for the pooling problem based on the p-formulation. We relaxed only the com-
plicating constraints which are the quality balance and the quality requirement

constraints. We showed how the Lagrangean subproblem was reduced to a mixed

61

integer programming problem using binary variables. We improved the resulting
Lagrangean lower bounds by adding valid cuts to the Lagrangean subproblem. The
added constraints are derived using the idea of replacing each bilinear term with a
new continuous variable and adding linear constraints to the Lagrangean subprob-
lem to bound the value of the new variable. To construct feasible solutions, we
used a Lagrangean heuristic that modified the Lagrangean subproblem solutions to
be feasible to the relaxed constraints. The following chapter reports on numerical

results of fifteen pooling problems from the literature.

62

Chapter 4

Computational Results

The proposed approach is coded in Matlab 7. The master problem and the subprob-
lem are solved using GLPK. Fifteen pooling problems collected from the literature
were solved using the proposed approach. Table 4.1 shows test problem character-

istics in terms of number of pools, qualities, raw materials, and end products.

Table 4.2 shows a comparison between the proposed Lagrangean lower bound
and those lower bounds proposed in the literature. The second column displays the
linear-programming relaxation, LP, for the p-formulation using McCormick overes-
timators and underestimators (Foulds et al., 1992; Adhya et al, 1999). The third
column shows the obtained bounds from linear-programming relaxation , LP,,, of
the pg-formulation using standard bilinear envelopes as presented in Tawarmalani
and Sahinidis (2002). The fourth column, LPrgr7, shows the lower bounds pre-
sented in Liberti and Pantelides (2006). These lower bounds result from using
RRLT constraints. The fifth column shows the obtained bounds from the La-

grangean relaxation of Adhya et al. (1999) for the p-formulation (LRagt). The

63

Number of

Problem | Raw Materials | Pools | Qualities for Each Pool | End Products
Haverly1 3 1 1 2
Haverly2 3 1 1 2
Haverly3 3 1 1 2
Foulds2 6 2 1 4
Foulds3 11 8 1 16
Foulds4 11 8 1 16
Foulds) 11 4 1 16
Ben-Tal4 4 1 1 2
Ben-Talb 5) 3 2 5
Adhyal 5 2 4 4
Adhya2 5 2 6 4
Adhya3 8 3 6 4
Adhya4 8 2 4 5
RT1 3 2 4 3
RT2 3 2 4 3

Table 4.1: Test Problem Characteristics

64

previous lower bounds values are taken from Adhya et al. (1999), Tawarmalani and
Sahinidis (2002), and Liberti and Pantelides (2006). The sixth column shows the
proposed Lagrangean lower bounds. The seventh column shows the evaluation of

the quality of the Lagrangean lower bounds with respect to the global optima com-

puted as (lobal optimum -Lagrangean lower bound) ' 10 Finally, the last column, GO
Global optimum) ’ ’

shows the global optimum values. Results reveal that for eight solved cases the
obtained Lagrangean lower bounds are equal to the global optima, whereas for
seven cases the obtained Lagrangean lower bounds are within 8.2% of the global
solutions on average. Numerical results also indicate that for Haverly2, Haverly3,
and RT2 the proposed Lagrangean relaxation gives tighter lower bounds than the
ones obtained in the literature. The resulting lower bounds for Haverly1, Haverly?2,
Foulds2, Foulds3, Foulds4, Fouldsb, Ben-Tal4, and Ben-Tal5 are equal to the global

optima. Figure 4.1 summarizes this comparison.

Table 4.3 shows a comparison between the proposed Lagrangean lower bounds
and the heuristic solutions. The second column gives Lagrangean lower bounds
(Lag. LB). The third column shows the Lagrangean heuristic results obtained from
solving a linear program with fixed quality values calculated from the quality mass
balance constraints using the Lagrangean subproblem optimal solution at each iter-
ation. The fourth and fifth columns show the evaluation of the heuristic quality with

respect to the Lagrangean lower bound (LB) and global optimum (GO) computed

as Heuristic Solutiog -Lagrangean lower bound x 100 Heuristic solution —Qlobal optimum % 100 re-
Lagrangean lower bound) Global optimum

spectively. The sixth column shows the global solutions. Numerical results indicate
the efficiency of the Lagrangean heuristic technique. For nine cases the heuristic
gives the global optima, and for the other cases the heuristic solutions are within

1.8% of the global solution on average.

65

Lower Bounds

Quality
Problem LP LP,, LPurir | LRysr. | Lag. LB of LB GO.
w.r.t
GO
Haverlyl | -500 -500 -400 -500 -400 0 -400
Haverly2 | -1000 -1000 | -1000 | -1000 -600 0 -600
Haverly3 | -800 -800 -800 -800 | -781.67 4.2% -750
Foulds2 | -1100 -1100 | -1133.3 | -1100 | -1100 0 -1100
Foulds3 | -8.00 -8.00 -8.00 | -8.00 -8.00 0 -8.00
Foulds4 | -8.00 -8.00 -8.00 | -8.00 -8.00 0 -8.00
Foulds5 | -8.00 -8.00 -8.00 | -8.00 -8.00 0 -8.00
Ben-Tal4 | -550 -550 -450 -550 -450 0 -450
Ben-Tal5 | -3500 -3500 | -3500 | -3500 | -3500 0 -3500
Adhyal | -999.31 | -840.27 | -572.4 |-939.29 | -775.07 40.9% -549.80
Adhya2 | -854.10 | -574.78 | -572.4 | -825.59 | -642.55 16.9% -549.80
Adhya3 | -882.84 | -574.78 | -571.1 | -864.81 | -687.19 22.5% -561.05
Adhyad | -1012.50 | -961.93 | -1029 | -988.50 | -969.27 10.4% -877.65
RT1 - - - - -4287.98 3.6% -4136.21
RT2 | -6331.73 | -6034.87 - - -5485.38 24.8% | -4391.83

Table 4.2: A Comparison of Lower Bounds and Global Optima (GO)

66

Quality of Heuristic%

with respect

with respect

Problem | Lag. LB | Lag Heuristic GO.
to LB to GO
Haverlyl —400 —400 0 optimal —400
Haverly2 —600 —600 0 optimal —600
Haverly3 | —781.67 —750 4.1% optimal —750
Foulds2 —1100 —1000 0 9% —1100
Foulds3 —8.00 —8.00 0 optimal —8.00
Foulds4 —8.00 —8.00 0 optimal —8.00
Foulds5 —8.00 —8.00 0 optimal —8.00
Ben-Tal4 —450 —450 0 optimal —450
Ben-Tal5 | —3500 —3500 0 optimal —3500
Adhyal | —=775.07 —539.17 30.4% 1.9% —549.80
Adhya2 | —642.55 —549.42 14.5% 0.07% —549.80
Adhya3 | —687.19 —548.29 20.2% 2.3% —561.05
Adhyad | —969.27 —865.23 10.7% 1.4% —877.65
RT1 —4287.98 | —4136.21 3.5% optimal —4136.21
RT2 —5485.38 | —3785.53 30.9% 13.8% —4391.83

Table 4.3: Lagrangean Bounds and Heuristic Results

67

% Gap between Lower Bounds and Global Solutions
=— %= LB using LP LB using LP(pq) LB using LP(RRLT)
LB Lag ——@&— Proposed Lag -_ — GO
0% —_— (———— = —————
10% X { //\
20% \ e N /* .
30% \ /
% Gﬁp \
40% ¥ 1 X
50% \\ /
60% _ k=%
X Vs
80%
90% - .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Test Problems

Figure 4.1: A Comparison of Lower Bounds and Optimal Values

Table 4.4 compares the proposed Lagrangean heuristic to two heuristics from the
literature. Columns two and three display results for the Variable Neighborhood
Search (VNS) and the Multistart Alternate heuristic (MALT') respectively. These
results were presented in Audet et al. (2004) and were obtained from solving the
flow model of the poling problem. Column four gives the Lagrangean heuristic
results, and Column five provides the global solutions. Figure 4.2 summarizes
these results. VNS solutions are on average 4.08% from the global solutions, whereas
MALT solutions are within 6.76% of the global solutions. The Lagrangean heuristic
solutions are on average 1.8% from the global solutions. Numerical results indicate
that the proposed Lagrangean heuristic outperforms VNS and MALT in Adhya3
which has the largest number of qualities and pools. Although numerical results

of RT2 indicate that there is a significant difference between the VNS and MALT

68

Problem VNS MALT Lag Heuristic | Global Optimum
Haverlyl —400 —400 —400 —400
Haverly?2 —600 —600 —600 —600
Haverly3 —750 —700 —750 —750
Foulds2 —1100 | —1070.86 —1000 —1100
Foulds3 — — —8.00 —8.00
Foulds4 — — —8.00 —8.00
Fouldsb — — —8.00 —8.00
Ben-Tal4 —450 —450 —450 —450
Ben-Tal5 | —3500 —3240 —3500 —3500
Adhyal | —545.27 —-532.9 —539.17 —549.80
Adhya2 | —543.909 | —535.6 —549.42 —549.80
Adhya3 | —412.14 —-397.4 —548.29 —561.05
Adhya4 —876.2 —876.2 —865.23 —877.65
RT1 —4136.21 | —4136.21 —4136.21 —4136.21
RT2 —4391.83 | —4330.78 —3785.53 —4391.83

Table 4.4: A Comparison of Heuristic Solutions and Global Optima

results and Lagrangean heuristic results, finding a feasible solution for this problem
is difficult as stated in Audet et al. (2004). In the process of generating feasible
solution to RT2, Audet et al. (2004) generated 10,000 sets of proportion values at
random and there is no one feasible solution. Therefore, to improve VNS solutions
Audet et al. (2004) used MALT best solutions as initial solutions for VNS and tried
some tricks to find feasible solutions. Nevertheless, when we solve RT2, Lagrangean

heuristic gives three feasible solutions without using any tricks.

Table 4.5 shows a comparison between the obtained Lagrangean lower bounds

69

% Gap between Heuristic Solutions and Global Solutions
—e— MALT VNS Lag Heuristic GO ‘
0% - i — -
\ » ‘ ~.
\ 7 \ A~ |
v N \ |
10% \ |
% Gap \ /
Vo
20% \
i
v,
30% ‘ ‘ ‘ ‘ ‘ ; ; ; ; ; ; x ; ; ;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Test Problems

Figure 4.2: A Comparison of Heuristic Solutions and Global Solutions

without cuts and the ones obtained by adding the cuts proposed in Section 3.4. A
comparison between heuristic solutions before and after adding the cuts are also

“—” means that we do not add cuts to the problem because

given in the same table.
the Lagrangean lower bound is equal to the optimal solution. Results show that
the added cuts are effective in providing tighter lower bounds and, consequently,
improving the heuristic solutions. These comparisons are summarized in Figures

4.3 and 4.4

Tables 4.6 reports on the computational time partition and the number of iter-
ations before and after adding the cuts. Columns two and three show the number
of iterations before and after adding the cuts. Column seven shows the total CPU
time in seconds before adding the cuts whereas Columns 4, 5, and 6 show the com-
putational time of the subproblem (SP), master problem (MP), and heuristic (Lag
Heur.) respectively as a percentage of the total computational time before adding

the cuts. Column eleven shows the total CPU time in seconds after adding the

70

problem | Lag, Bound Lag. Bound | Lag Heur Lag Heur .
with Cuts without Cuts with Cuts
Haverlyl —500 —400 —400 —400 —400
Haverly2 | —1000 —600 —600 —600 —600
Haverly3 | —800 —781.67 —700 —750 —1750
Foulds2 | —1100 —1100 —1000 —1000 —1100
Foulds3 —8.00 - —8.00 — —8.00
Foulds4 —8.00 - —8.00 - —8.00
Foulds5 —8.00 - —8.00 - —8.00
Ben-Tald | —550 —450 —450 —450 —450
Ben-Tal5 | —3500 - —3500 - —3500
Adhyal | —937.59 —775.07 —462.5 —539.17 | —549.80
Adhya2 | —820.08 —642.55 —462.5 —549.42 | —549.80
Adhya3 | —864.55 —687.19 —525 —548.29 | —561.05
Adhyad | —986.89 —969.27 —470.83 —865.23 | —877.65
RT1 —4827.59 —4287.98 —4136.21 —4136.21 | —4136.21
RT2 —6134.04 —5485.38 —3749.88 —3785.53 | —4391.83

Table 4.5: A Comparison of Lower Bounds and Heuristic Solutions with and without

cuts

71

% Gap betweben Lower Bounds with and witout cuts and Global Solutions

‘ — &— Lag Bound without cut

—¥— Lag Bound with cut GO ‘
0% X A XXX
10% ; \ ./ﬂ\‘ e /)\
20% / \"/ \ <y / v\
1 \ / X
30% I \§/ \
%Ga \ /
P / N\ y \
40% \ X 1 *
I \
50% v\ i,
60% \ /
70% ‘

1 2 3 4 5 6 7 8 9

Test Problems

Figure 4.3: A Comparison of Lower bounds with and without cuts

% Gap betweben Lag Heuristic Solutions with and without Cuts and Global
Solutions

== o— [ag Heuristic without cuts === Lag Heuristic with cuts GO ‘
0% —X)(\ K\ //)(X X X X*/X\W"*’ﬁ
S A \
0 ~v \ \ I
10% \ V2R \‘
20% S
% Gap \ /
30% \ /
/
40% \ y
v/
i
50% ‘ ‘
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Test Problems

Figure 4.4: A Comparison of Heuristic Solutions with and without cuts

72

cuts whereas Columns 8, 9, and 10 show the computational time of the subproblem
(SP), master problem (MP), and heuristic (Lag Heur.) respectively as a percent-

“—" means that we

age of the total computational time after adding the cuts.
do not add cuts to the problem because the Lagrangean lower bound is equal to
the optimal solution. Clearly, subproblem solutions always account for most of the
computational time. On average, subproblem solutions use 91% of the total CPU
time before adding the cuts and 87.8% after adding the cuts. Heuristics solutions,
on average, account for 3.8% of the total CPU time before adding the cuts and 5%
after adding the cuts. For most of the cases there is an improvement in the total
CPU time; however, the significant improvement is in Adhaya2 and Adhaya3 prob-
lems. For Adhaya2, the total CPU time dropped from 4.1 minutes to 27.03 seconds

and for Adhaya3 the total CPU time dropped from 52.2 hours to 2.4 minutes.

4.1 Conclusion

This chapter reported on the computational results of solving fifteen pooling prob-
lems from the open literature. Some of the solved problems have a single quality
while others have multiple qualities. As the number of pools, qualities, and fi-
nal products increases, the number of bilinear terms also increases which increases
the computational complexity. However, the proposed Lagrangean relaxation and
heuristic performed well when the number of bilinear terms increased. The La-
grangean heuristic outperformed VNS and MALT in Adhya3 when the number of
bilinear terms is the highest. Except for Foulds2, Lagrangean heuristic found the

global solutions for all the single quality instances.

From the comparison between lower bounds obtained using the new Lagrangean

73

Number of iter

Computational Time without cuts

Computational Time with cuts

Total Total
No with
Problem SP% MPY% LH% cPU SP% MP% LH% cPU
cuts cuts

(sec.) (sec.)
Haverly1 9 6 50% 50% 0% 0.02 100% 0% 0% 0.015
Haverly?2 9 6 66.7% 33.3% 0% 0.03 100% 0% 0% 0.01
Haverly3 7 18 100% 0% 0% 0.02 100% 0% 0% 0.015
Foulds2 20 8 87.5% 0% 12.5% 0.08 62.5% | 12.5% | 25% 0.08
Foulds3 44 - 98.77% | 0.54% 0.69% 18.7 - - - -
Foulds4 35 - 98.77% | 0.68% 0.55% 16.2 - - - -
Foulds5 35 - 98.37% | 1.06% 0.57% 14.09 - - - -
Ben-Tald 14 5 66.7% 0% 33.3% 0.06 5% 0% 25% 0.04
Ben-Tals 35 - 86.95% 6.1% 6.95% 1.15 - - - -
Adhyal 81 109 94.94% | 4.28% 0.78% 10.28 88.5% | 11.1% | 0.4% 7.48
Adhya2 107 153 99.4% 0.57% 0.03% 246.19 | 90.42% | 9.14% | 0.44% | 27.03
Adhya3 192 194 99.99% | 0.003% | 0.0001% | 187940 | 96.54% | 3.3% | 0.16% | 144.62
Adhyad 89 193 92.15% | 6.48% 1.37% 8.03 82.3% 17% 0.7% 19.92
RT1 33 84 98% 1.6% 0.4% 2.3 74.5% | 21.5% 4% 1.49
RT2 66 73 95.25% 4.4% 0.35% 8.5 96.4% | 3.37% | 0.23% 12.8

Table 4.6: Computational Time Partition without cuts

74

relaxation and the ones proposed in the literature using other relaxations such
as LP relaxation using convex and concave envelopes, RRLT, LP relaxation of
the pg-formulation, and Lagrangean relaxation, the new Lagrangean relaxation
provided tighter lower bounds for Haverly2, Haverly3, and RT2. Moreover, the
new Lagrangean relaxation provided tighter lower bounds than the ones obtained
using Lagrangean relaxation proposed in Adhya et al. (1999) for all the multiple
quality instances and for Haverly2, Haverly3, and Ben-Tal4. For the other test
problems the two relaxations provided lower bounds equal to the global optima. On
the other hand, there are might be numerical difficulties with the approach. First,
the subproblem was reduced to a mixed integer programming problem where the
number of binary variables increases as the number of qualities and pools increases.
This is expected to increase the computational time of the subproblem. Second,
when the number of bilinear terms increases, the number of linear constraints and

continuous variables used to strengthen Lagrangean lower bounds increases.

5

Chapter 5

Conclusion

This thesis proposed a heuristic approach and a Lagrangean relaxation technique
to the p-formulation of the pooling problem. The Lagrangean relaxation converts
the pooling problem into an easier one by associating Lagrangean multipliers with
nonlinear constraints and adding them to the objective function to penalize their
violations. The resulting Lagrangean subproblem is a nonlinear problem since the
nonlinearity is transformed from the constraints to the objective function. Nonlin-
earity is eliminated by using linear bound constraints and binary variables. Hence,
the Lagrangean subproblem is reduced to a mixed integer programming problem.
Lagrangean lower bounds are strengthened by adding valid cuts to the Lagrangean
subproblem. The valid cuts are generated using the idea of replacing each bilinear
term in the nonlinear constraints with a nonnegative variable and adding some lin-
ear constraints to the Lagrangean subproblem to bound the value of the introduced

variable.

The Lagrangean heuristic works on the Lagrangean subproblem solutions by

modifying it to be feasible to the original nonlinear problem. At each iteration,

76

Lagrangean subproblem solutions are used to calculate the quality values from the
quality mass balance constraints. Then, a linear programming problem, resulting
from fixing the quality variable value, is solved at each iteration. The approach is
applied to fifteen pooling problems collected from the literature. Numerical results
indicate the efficiency of the procedure. For most cases, Lagrangean lower bounds

and heuristic solutions are equal to the proven global solutions.

Several extensions of this work are possible. First of all, despite the fact that
heuristic results indicate the efficiency of the technique in providing a good feasible
solution, future work should focus on further computational testing to demonstrate
the potential of the procedure in solving large instances of the pooling problem in
the chemical and wastewater treatment industries. Moreover, the obtained lower
bounds can be used within a Branch-and-Bound framework to find a global solu-
tion for the pooling problem. Another possible extension of this work is the im-
plementation of this approach to generalized formulations of the pooling problem
to account for strategic decisions related to pool existence and network configu-
ration. Furthermore, this approach can be applied to solve a general petroleum
supply chain involving pooling problems. Finally, future work may investigate how
to apply the proposed approach to other optimization problems involving bilinear
terms. Such problems arise in economics, game theory, production and nonlinear

multi-commodity network flows.

7

Bibliography

1]

2]

Adhya ,N.; Tawarmalani, M.; Sahinidis. N. (1999). A Lagrangian approach to
the pooling problem. Ind. Eng. Chem. Res. 38, 1956-1972.

Al-Khayyal, F. A.; Falk, J. E (1983). Jointly Constrained Biconvex Program-
ming. Math. Operat. Res. 8 (2), 124-131.

Androulakis, I. P.; Visweswaran, V.; Floudas, C. A. (1996). Distributed
Decomposition-Based Approaches. In State of the Art in Global Optimization :

Computational Methods and Applications. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 285-301.

Amos, F.; Ronngvist. M. (1997). Modeling the pooling problem at the New
Zealand refinery company. Journal of Operational Research Society, 48. (8).
T67-778.

Audet, C.; Hansen, P.; Jaumard, B.; Savard, G. (2000). A branch and cut
algorithm for nonconvex quadratically constrained quadratic programming.

Math. Programming. 87(1), 131-152.

Audet, C.; Brimberg, J.; Hansen, P.; Le Digabel, S.; Maldenovic, N. (2004).
Pooling Problem: Alternate Formulations and Solution Methods. Management

Sci.. 50 (6), T61-776.

78

[7] Baker, T. E; Lasdon L. S. (1985). Successive Linear Programming at Exxon.
Management Sci. 31, 264-274.

[8] Benders, J. F. (1962). Partitioning procedures for solving mixed variables pro-

gramming problems. Numer. Math. 4, 238-252.

[9] Ben-Tal, A.; Eiger, G.; Greshovitz, V. (1994). Global Minimization by Reduc-
ing the Duality Gap. Math. Program. 63, 193-212.

[10] Bodington, C. E.; Randall, W. C. (1979). Nonlinear Programs for Product
Blending. Joint National TIMS/ORSA Meeting, New Orleans, April/May.

[11] DeWitt, C. W; Lasdon, L. S.; Waren, A. D; Brenner, D. A; Melhem, S. A.
(1989). OMEGA: An Improved Gasoline Blending System for Texaco. Inter-
faces. 19 (1), 85-101.

[12] Duncan, Norman E..(2000). Refiners can boost profits using the conversion

index . Oil & Gas Journal . 98 (19).

[13] Dur, M.; Horst, R. (1997). Lagrange duality and partitioning techniques in
nonconvex global optimization. Journal of Optimization Theory and Applica-

tions. 95(2), 347-369.

[14] Falk, J. E. (1969). Lagrange Multipliers and Nonconvex Programs. SIAM Jour-
nal on Control and Optimization. 7(4), 534-545.

[15] Fieldhouse, M. (1993). The Pooling Problem. In Optimization in Industry.
Chapter 13 Ciriani, T. A., Leachman, R. C., Eds.; John Wiley & Sons Ltd:
New York.

[16] Foulds, L. R.; Haugland, D.; Jonsten, K. (1992). A Bilinear Approach to the
Pooling Problem. Optimization. 24, 165-180.

79

[17] Floudas, C. A.; Aggarwal, A.; Ciric, A. R. (1989) Global optimum search
for nonconvex NLP and MINLP problems. Computers chem. Engng. 13(10),
1117-1132.

[18] Floudas, C. A.; Aggarwal, A. (1990). A Decomposition Strategy for the Opti-
mum Search in the Pooling Problem. ORSA J. Comput. 2(3), 225-235.

[19] Floudas, C. A.(2000). Deterministic Global Optimization: Theory, Methods,
and Applications. Dordercht, The Netherlands: Kluwer Academic.

[20] Floudas, C. A.; Pardalos, P. (2004). Frontiers in Global Optimization. (Kluwer
Book Series in Nonconvex Optimization and its Applications, Vol. 74). Dor-

drecht, The Netherlands: Kluwer Academic.

[21] Geoffrion, A. M. (1972). Generalized Benders Decomposition. JOTA. 10, 237-
260.

[22] GLPK (GNU Linear Programming Kit). http: //www. gnu.org/software/qglpk/glpk. htmt.

[23] Greenberg, H. J. (1995). Analyzing the pooling problem. ORSA Journal on
Computing. 7(2), 205-217.

[24] Griffith, R. E.; Stewart, R. A. (1961). A Nonlinear Programming Technique
for the Optimization of Continuous Processing System. Management Sci. 7,

379-392.

[25] Hansen, P; Mladenovic, N. (2001). Variable Neighborhood Search: Principles
and Applications. Furopean Journal of Operational Research. 130, 449-467.

[26] Haverly, C. A. (1978). Studies of the Behavior of Recursion for the Pooling
Problem. ACM SIGMAP Bull. 25, 29-32.

80

[27]

[28]

[29]

[30]

[31]

[32]

Haverly, C. A. (1979). Behavior of Recursion Model-More Studies. ACM
SIGMAP Bull. 26, 22-28.

Held, M.; Karp, R. M. (1971). The Traveling-Saleman Problem and Minimum
Spanning Trees. Operat. Res. 18, 1138-1162.

Horst, R.; Tuy, H. (1996). Global Optimization, 3rd ed.; Springer: Berlin.

Lasdon, L. S.; Waren, A. D.; Sarkar, S.; Palacios-Gomez, F. (1979). Solving the
Pooling Problem using Generalized Reduced Gradient and Successive Linear

Programming Algorithm. ACM SIGMAP Bull. 27, 9-15.

Lasdon, L. S.; Waren, A. D. (1980). A Survey of Nonlinear Programming
Applications. Operations Research. 28(5), 1029-1073.

Lasdon, L. S.; Joffe, B. (1990). The relationship between distributive recursion
and successive linear programming in refining production planning models.

NPRA Comput. Conf. Seattle, WA.

Liberti, L.; Pantelides. C.C.(2004) Reformulation and Convex Relazation Tech-
niques for Global Optimization. Ph.D. Thesis, Imperial College London, UK.

Liberti, L.; Pantelides. C.C. (2006). An exact reformulation algorithm for large
nonconvex NLPs involving bilinear terms. Journal of Global Optimization. 36,

161-189.

Liu, W.B.; Floudas, C. A.(1995). Convergence of the (GOP) Algorithm for a
large Class of smooth Optimization Problems. J . Global Optimiz. 6, 207-211.

Main, R. A. (1993). Large Recursion Models: Practical Aspects of Recursion
Technique. In Optimization in Industry. Cirianiani, T. A., Leachman, R. C.,

Eds.:John Wiley & Sons Ltd: New York.

81

37]

[38]

[39]

[40]

[41]

[42]

McCormick, G. P. (1976) Computability of global solutions to factorable non-
convex programs. Part I-convex underestimating problems. Math. Program.

10, 147-175.

McCormick, G. P. (1983). Nonlinear Programming. Theory, Algorithms and
Applications, Wiley Interscience: New York.

Meyer, C.; Floudas, C. (2006). Global Optimization of a Combinatorially Com-
plex Generalized Pooling Problem. AIChE Journal. 52 (3), 1027-1037.

Quesada, I. ; Grossmann, I. E.; (1994). A global optimization algorithm for
linear fractional and bilinear programs. Journal of Global Optimization. 6, 39-

76.

Quesada, I. ; Grossmann, I. E.; (1995). Global Optimization of Bilinear Process
Networks and Multicomponent Flows. Comput. Chem. Eng. 19 (12), 1219-
1242.

Tawarmalani, M.; Sahinidis N.(2002) Convezification and global optimization
in continuous and mized-integer nonlinear programming : theory, algorithms,
software, and applications (Kluwer Book Series in Nonconvex Optimization

and its Applications, Vol. 65). Dordrecht, The Netherlands: Kluwer Academic.

Sahinidis, N. V.; Grossmann, 1. E. (1991). Convergence Properties of General-
ized Benders Decomposition. Comput. Chem. Eng. 15(7), 481-491.

Sahinidis, N.; Tawarmalani, M. (2005). Accelerating branch-and-bound
through a modeling language construct for relaxation-specific constraints.

Journal of Global Optimization. 32, 259-280.

82

[45]

[49]

[50]

[51]

[52]

Sherali, H. D.; Adams, W.P. (1990) Linearization Strategies for a Class of 0-1
Mixed Integer programming problems. Operations Research. 38(2), 217-226.

Sherali, H. D.; Alameddine, A.(1992). A New Reformulation-Linearization
Technique for Bilinear Programming Problems. Journal of Global Optimiza-

tion. 2, 379-410.

Sherali, H.D.; Adams, W.P; Driscoll, P.J. (1999). Exploiting special struc-
ture in constructing a hierarchy of relaxation for 0-1 mixed integer programs,

Operations Research. 46, 396-405

Sherali, H. D. (2007) RLT: A unified approach for discrete and continuous

nonconvex optimization. Annals of Operations Research. 149, 185-193.

Simon, J. D.; Azma, H. M. (1983). Exxon Experience with Large Scale Linear
and Nonlinear Programming Applications. Comput. Chem. Eng. 7(5), 605-614.

Visweswaran, V. ; Floudas, C. A. (1990). A Global Optimization Algorithm
(GOP) for Certain Classes of Nonconvex NLPs: Application of Theory and
Test Problems. Comp. & Chem. Eng. 14, 1419-1434..

Visweswaran, V.; Floudas, C. A. (1993). New Properties and Computational
Improvement of the GOP Algorithm for Problems with Quadratic Objective
Functions and Constraints. J . Global Optimiz. 3(3), 439-462.

White, D. L.; Trierwiler, L. D. (1980). Distributive Recursion at Socal. ACM
SIGMAP Bull. 28, 22-38.

83

Appendix A

Some Illustrative Examples

In this appendix, we derive the Lagrangean subproblem and Lagrangean dual for
two pooling examples. The first example has multiple pools each with single quality,

and the second example has multiple pools each with multiple qualities.

A.1 Lagrangean Relaxation for Foulds2

This example has six raw materials, two pools each with single quality, and four

end products. See Table 4.1.

84

A.1.1 Problem Formulation

min 611 + 16 fo1 + 10 f12 + 3 f13 + 13 fo3 + 7 f14 — 9711 — 9721 — 931 — Y248
-15x19 — 15299 — 15239 — 15249 — 613 — 6293 — 6233 — 643 — 12214
-12x94 — 12234 — 12244
st futfa—rn—r2—Ti3—714=0
Ji2 — To1 — T2 — Ta3 — T24 =0
Ji3 + fo3 — w31 — 32 — w33 — w34 = 0
J1a — a1 — Tz — 43 — 244 =0
T11 + T1 + T3 + x4 < 100
T12 + T2 + T2 + Tg2 < 200
13 + Xa3 + T3z + 243 < 100
14 + T + T3a + 244 < 200
—3f11 — fa + @1 + @12 + 13 + X1 =0
—3.5f13 — 1.5 f23 + @331 + q3T32 + q3%33 + quw34 = 0
(g1 —2.5)x11 — 0.5291 + (g5 — 2.5)x31 <0
(g1 — 1.5)x19 + 0.5290 + (g3 — 1.5) 30 + 740 < 0
(1 — 3)w13 — w23 + (g3 — 3)w33 — 0.5743 < 0
(@1 = 2)z14+ (g3 — 2)@34 + 0.5244 <0
4 <qa<q

& <q < ¥

85

A.1.2 Lagrangean Relaxation

min

s.t.

6f11 + 16 fo1 + 10f12 + 3f13 + 13 fo3 + 7f14 — 9211 — w21 — 933
—9x41 — 15212 — 15299 — 15395 — 15140 — 613 — 693 — 633
—6x43 — 122014 — 122094 — 12234 — 12244
Juutfa—rn—T12—r13—114=0
Ji2 — To1 — Tog — o3 — W24 =0
J13+ foz — 31 — 32 — 33 — w34 =0
J1a — Ta1 — Taz — 43 — T4y =0
11 + Xo1 + w31 + w41 < 100
T12 + Tog + w32 + w42 < 200
T13 + Tz + T3z + 43 < 100

T14 + Tog + T34 + 144 < 200

=3fi1 — fa +@rn + rie + ez + e =0 — A
—3.5f13 — 1.5 fo3 + q3w31 + @332 + q3733 + q4x34 = 0 — Ao
(@1 —2.5)x11 — 0.5291 + (g3 — 2.5)x3 <0 —a
(1 — 1.5)x12 + 0.5292 + (g5 — 1.5) w32 + 242 < 0 —f

(@1 — 3)713 — w23 + (g3 — 3)w33 — 0.5343 < 0 —

(@1 = 2)714 + (g3 — 2)@34 + 0.52494 <0 —9

¢ <a<dqg

g5 < a3 <y

fix>0

86

The resulting subproblem is:

min (6 — 3\)fir + (16 — M) far + 1015 + (3 — 3.5Xa) f1s + (13 — 1.5X2) fos
+7f1a+ (=9 + @\ + o — 2.5a)x1; + (=9 — 0.5) @91 + (—9 + g3)o
+qza — 2.50)x31 — 9241 + (=15 + 1\ + 18 — 1.58) 12 + (—15 + 0.53) x99
+(=15 4+ g3Ag + @38 — 1.58) x50 + (=15 + B)xa2 + (=6 + 11 + @17 — 37) 713
+(=6 —7)z2s + (=6 +g@3A2 +q37 — 37)x33 + (=6 — 0.57)z3 + (—12+ @\
+q10 — 20) 214 — 12294 + (=12 + g3Aa + q30 — 20) w34 + (—12 + 0.50) 244
st fut fu—rn— T2 —T3—112=0
Ji2 — a1 — T22 — T3 — T2a =0
J13+ fo3 — w31 — 32 — 33 — w34 =0
J1a — Ta1 — T2 — Ty3 — T4 =0
T1 + To1 + x31 + 21 < 100
T12 + T + X32 + 242 < 200
T13 + Ta3 + X33 + 243 < 100
T14 + Tog + T34 + T44 < 200
@ <a<q
¢ < a3 < g3
fix>0

87

which can be written as:

min (6 — 3\ fi1 + (16 — M) far + 1012 + (3 — 3.5X0) fis + (13 — 1.5X2) fos
+7f1a + (=9 — 2.5a) 211 + (—9 — Ba)zey + (=9 — 2.5) w31 — 9241 + (—15
—1.50)x12 + (=154 0.50) w92 + (—15 — 1.58) 230 + (=15 +)42 + (—6
—37)w13 + (=6 —) 223 + (=12 + 0.50) 244 + (=6 — 37)w33 + (—6 — 0.57) 43
+(—=12 = 20)x14 — 12294 + (—12 — 20) 34 + (M1 + @)qur11 + (A1 + B)qrr1o
+(M +Y)@ris + (M +0)qrs + (A2 + a)gzzsr + (A2 + B) gz
+(A2 +7)aswaz + (A2 + 0)gzw3s

st futfoo—rn — T2 — T3 — 714 =0
J12 — a1 — T22 — To3 — T =0
J13+ fo3 — w31 — 32 — 33 — w34 =0
J1a — a1 — T2 — Ty3 — 244 =0
T1 + To1 + x31 + 21 < 100
T12 + Taz2 + X3z + Ta2 < 200
T13 + a3 + X33 + 243 < 100
T14 + Tog + 34 + 244 < 200
¢ <aq<g
g5 < a3 < d§
fox > 0.

if we define

up = q1 (M + @)z + (M + B)zie + (M +7)x1s + (A +) x1a)
uy = g3 (A2 + @)zg1 + (A2 + B)wsa + (A2 + ¥)w3s + (A2 + 6)w34)

then the nonlinearity can be eliminated by using the linear bound constraints

¢ <q<qg, ¢ <qg3<q¢ andthe fact that ¢; and g3 do not appear in the con-

88

straints. Four cases should be considered depending on the sign of (A +a)x11+ (A1 +

6)%12"‘()\1""7)5(313"‘()\14‘5)5(314 and)\2—|—Oé)51331—|—<)\2—|—ﬁ)£€32—|—(}\2+’y)$33+()\2+(5)$34 :

(M +)z + M+ B)rie + (A +)23 + (A +0)7wa) ¢4 <y
wy < (A + o)z + (A + B)z1a + (M 4 7)x1s + (M + 0)z14) g,
if (M1 4+ a@)z1r + (M + Bz + (A1 +7)xis + (A1 + 6)x14) > 0,
(A 4 o)z + M+ Bzie + (M +)21 + (A 4+ 0)714) ¢ <
wy < (A + @)z + (A + B)z1z + (M 4 7)z1s + (A + 0)z14) ¢,
if (M + @)z + M+ B)ziz + (M +)21z + (A + 8)z14) <0
(Mg + @)xs1 + (Ao + Bz + (Ao + 1) w33 + (A2 + 6)a34) ¢ < ug
Uy < g% (Ao + a)zgy + (Ao + B3z + (Ao +)33 + (Ag + 6)234)
if (A2 +a)zsi + (A2 + B)xse + (Mg + ¥)wss + (A2 + 6)xsq) > 0,
(A2 + a@)xgr + (Ao + B)zse + (Ao +7)x3s + (Ao + §)x34) ¢ < ug

uz < g4 (A2 + @)xsr + (A + B)wa2 + (A2 + 7)x33 + (M2 + 0)x34)

if (Ao + @)zsr + (Ae+ B)age + (A2 + ¥)zs3 + (Ao +0)z34) <0

89

Hence, the subproblem reduces to:

I?ifn (6 — 3)\1)f11 + (16 —)\1)f21 + 10f12 + (3 - 3.5)\2)f13

s.t.

+(13 — 1.5A2) fog + Tf1a + (=9 — 2.5a)x11 + (=9 — .ba)xoy
+(—9 — 2.5a)x31 — 941 + (=15 — 1.58)x12 + (=15 + 0.508) 220
+(—15 = 1.58)w32 + (=15 + B)waz + (=6 — 37y)w13 + (—6 — 7) w23
(—
(—

+

—6 — 37)z33 + (—6 — 0.57) 243 + (=12 — 20) w14 — 12794
+(—12 — 20)x34 + (=12 + 0.50) 244 + v1 + V2
Juu+ fa—rn—x12 — w3 — 214 =0

J12 — To1 — T2g — a3 — T24 =0

Ji3 + fo3 — w31 — w32 — w33 — w34 = 0

J1a — Ta1 — Tag — 43 — T44 =0

T11 + Ta1 + 31 + x4 < 100

T2 + T2 + Tz2 + g2 < 200

13 + Ta3 + T3z + 243 < 100

T14 + Tog + T34 + 244 < 200

90

(A1 + @)z + (M + B)ziz + (M +7)21s + (M + 0)214) ¢ < g
up < (M + @)z + (M 4 B)zaz + (A +7)z1s + (A + 0)214) ¢
if (A1 + @)xn + (A + B)ziz + (A + 7)x1z + (AL + 6)z1a) >0,
(M + @)a1r + (A + B)zra + (A +7)a1s + (A + 0)710) ¢ < wa
ur < (M + @)z + (A + B)zie + (M +)21 + (A + 6)z1a) i,
if (A1 + @)an + (AL + B)ziz + (A +)71z + (A + 6)214) <0
(Mo + @)zz1 + (Mo + B)wsg + (Ao +7)w33 + (Ao + 0)w3s) ¢ < g
uz < g5 (A2 + a)wgs + (A2 + Bz + (A2 + 7)w33 + (A2 + 0)23q)
if (A2 + @)z + (A2 + B)asa + (A2 +7) 33 + (A2 + 0)x34) > 0,
(A2 + @)wsr + (A2 + B)r32 + (A2 + 7)wsz + (A2 +) x34) G5 < up
uz < g5 (A2 + a)zar + (A2 + B)wzs + (Ao +)33 + (A2 + 0)x34)
if (A2 +a)zz + (A2 + B)zse + (A2 +7)w33 + (A2 + 0)z34) <0
fyx > 0.

upon defining a binary variable y; that takes value 1 if (A + @)z + (A +
B)xia + (A1 + v)z13 + (A1 + 0)x14) > 0,and 0 otherwise, and a binary variable ys
that takes value 1 if

if (Ao + a)zsr + (A2 + B)xse + (Mg + ¥)x3s + (Ao + §)x34) > 0, the if constraints

91

can be modelled as

(M + @)z + (A + Baaz + (M +)21z + (M +0)z1a) ¢ < wr + M(1—y1)
up < (A1 + @)rnn + (A + Bz + (A + 7))@z + (A + 0)z1a) ¢f + M (1 — 1)
(M + @)z + (A + B)ziz + (A +7) 713 + (A + 0)714) ¢ < ug + My

ur < (1 + @) + O + Bz + O +7)21s + (M + 8)714) ¢ + My
M+)z + (M + B)ze + (M +7y)x13 + (M +)z > —M(1 —yy)

(A1 + @)z + (A + B)z12 + (M +)21z + (A + 0)a1a < My,

(A2 + @)z + (Ao + B)aaz + (Ao +) w3z + (A2 + 0)w34) g5 < uz + M(1 — 1)
uz < gz (A2 + @)war + (A2 + B)w32 + (A2 +7) w33 + (A2 + §)34) + M (1 — 1)
(M2 +a)rzr + (A2 + B)zs2 + (A2 +7)z33 + (A2 + 0)734) G5 < ug + My

us < g5 (A2 + @)z + (Ao + B)asz + (Ao +)33 + (A2 + 0)34) + Mys

(A2 + @)wsy 4+ (A2 + B)zs2 + (A2 +7)x33 + (Ao +6) w34 > —M (1 — y2)

(A2 + @)zz1 + (A2 + B) a2 + (A2 +) w33 + (A2 + 6) w34 < My

The resulting linear subproblem is:

92

min (6= 3M)fu + (16 = M) far + 10f12 + (3= 3.5) fig

+(13 — 1.5X\2) fag + 7f1a + (—9 — 2.5a) 211 + (—9 — .5a)xay

+(—9 — 2.5a)x31 — 9141 + (=15 — 1.58) 212 + (—15 + 0.58) w92
+(—15 —1.50)x32 + (=154 B)x4a + (=6 — 3y)x13 + (—6 — 7)T23
(—6 — 37)x33 + (—6 — 0.57) 243 + (—12 — 20) w14 — 12294

(=12 — 26)z34 + (—12 + 0.50)x44 + v1 + v

+

I
st futfou—Tn -T2 —Ti3—714=0
fi2 — @21 — To2 — T3 — Ty = 0
J13 + fo3 — T31 — 32 — w33 — w34 =0

Jia — g1 — Typ — T43 — Tgg = 0
11 + To1 + 231 + 241 < 100
T12 + Tz + X3z + 142 < 200
T13 + Tog + w33 + 143 < 100

T14 + Tog + X34 + 144 < 200

(A1 + a)ziigh + (M + B)w12gt + (A +7)213q1 + (M + 0)21agh — ua + Mys < M
— (M +a)rng’ — (M + B)zegy — (M +7)313¢) — (M + 0)z1agy + Myy < M

(M + @)zug + (A + B)zieg) + (M +7)z1sgt + (A + 0)z1agy — un — My: <0
— (M +a)rng — (M + B)ziagh — (M +)23 — (A + 0)w1ag) — My <0

—(A1+ @)z = (A + Bz — (M +7)a1s — (M + 0)za + Myy < M

(A1 + @)z + (A1 + B)z1z + (A +) 213 + (A + 0)a1a — My <0

93

(A2 + @)zs1g5 + (A2 + B)32g5 + (A2 + 7) w3365 + (Ao + 0)w3ags — ug + My, < M
ug — (A2 + a)z31q5 — (A2 + B)w32q5 — (M2 + 7)T33q5 — (M2 + 0)w34q5 + Mys < M
(A2 + @)z3105 + (A2 + B) 23265 + (A2 + 7)33¢5 + (A2 + 0)T34qy — up — My, <0
uy — (Mg + @)x31¢4 — (A2 + B)w32gh — (Mo + 7)w33¢5 — (Mg + 0)w3agh — Mys <0
—(A2 + @)wzr — (A2 + B)rzz — (A2 + ¥) 233 — (A2 + 0)w3s + My, < M
(Ao + a)zzy + (A2 + B)xse + (Mg + ¥)x3s + (Ao + 0)x3g — Mys <0
f,x>0.,y€{0,1}

The best Lagrangean lower bound is given by the optimal solution of the La-

grangean dual problem.

94

max
04767’77620

’
min (6 — 3)\1)f11 + (16 —)\1)f21 —+ 10f12 -+ (3 —_ 3.5)\2)f13

+(13 — 1.5X9) foz + Tf1a + (=9 + 1 M1 + qra — 2.5a) 213
+(=9 — 0.5a)x21 + (=9 + @3 A2 + @z — 2.5a)x31 — 9241
+H(=15+ g\ + @ f — 1.56)x12 + (=154 0.55) w02
+(=15 + gsA2 + g3 — 1.58) x50 + (=15 +) 242

+ (=6 + @ A1 + @1y — 3Y)w13 + (=6 —)T

+ (=6 4+ g3A2 + q37 — 37)xs3 + (—6 — 0.57) 243

+ (=124 @ 1 + q10 — 20) w14 — 12294

—I—(—12 + Q3>\2 + Q35 — 25)$34 + (—12 + 055)1’44

st fu+fa—xn1—Ti2—213—214=0

J13+ foz — w31 — 32 — 33 — w34 =0
Ji3+ fo3 — @31 — @32 — 33 — w34 =0
Jia —®a1 — T2 —Ty3 — 244 =10

11 + To1 + w31 + 241 < 100

T12 + Taz2 + Tz2 + 42 < 200

T13 + Tz + X33 + 43 < 100

T14 + Tog + X34 + 144 < 200

@ <a<q

¢ < g3 < g4

fix>0

Which is equivalent to:

95

max
a=0,6>0

where

min

he H

(

(fhaxhaqh) Cofutfa—rn—ri2—23—214=0

(6 — 3X\)fh + (16 — M) fy +10f8 + (3 — 3.5)0) fly
+(13 — L5X) fou + Ty 4+ (=9 + i\ + ¢ — 2.5a)x,
+(—

+(=15 4+ ghM + ¢ B — 1.58)ahy + (=15 + 0.53) 2k,
(=15 + gh Xy + g2 3 — 1.58)zh, + (=15 + B)zh,

+ (=6 + @M gty — 3y)aty + (=6 —)l

+ (=6 + g3 Aa + g4y — 3y)aks + (=6 — 0.57)
+ (=12 + ¢\ + ¢t — 26)ah, — 122,

+(=12 + ¢ hg + ¢B6 — 20)xk, + (=12 + 0.56)zh,

9 — 0.50)xh, + (=9 + @3\ + ¢ha — 2.50)xh, — 9l

+

\

J13 + fo3 — w31 — 32 — w33 — w34 =0
Jiz + fos — T30 — @32 — 33 — w34 =0
Jia — %41 — Tag — Ty3 — 044 =0

T11 + To1 + w31 + 141 < 100

Ti2 + Too + w32 + 142 < 200

T13 + T3 + T3z + 43 < 100

T1a + Tog + w34 + 144 < 200

¢ <aq <qf

s < g3 < g4

fix >0,

96

The master problem can be written as the following linear program.

max 0
a,3,7,6,0
s.t. 0+ (3f1y + [— ai(afy + afy + aly + 2ly)) M + (3.5 f]s + 1.5 f2

—qy (@ + aly + xly + 25)) Ao + (2.5 — g2ty + 5afy + (2.5 — g5)rh)
H((L.5 = gi)aty — 5afy + (1.5 — gh)aly — xly) B+ (3 — ¢f)wly + a5
+(3 = g§)als +0.52h)y + (2 — ¢7) oy + (2 — g3) vl — 0.520,)0 <

6f1y -+ 16f3; + 101y + 35 + 1335 + Tfly — 92y — 98y — 9ay — 9alfy
—15xh, — 1528, — 1528, — 1528, — 627y — 628, — 628, — 620y — 1227,
—122%, — 1228, — 1220, Vhe H

a>0,0>0

A.2 Lagrangean Relaxation for Adhya2

This example has five raw materials, two pools each with six qualities, and four

end products. See Table 4.1.

A.2.1 Problem formulation

This example is proposed in Adhya et al. (1999). Figure A.1

97

(Price, Demand)
(Quality requirements)

(16, 10)
fir (3,3,3.25,0.75,6,5)

(7, 1,6 ,4,0.5,5,9\
(3,4,1,3,2,4,4)
(25,25)
(4,2.5,35,1.5,7,6)
(2,4,5.5,3,0.9,7,10) fiz “
X21

(Cost, input qualities)

(10,3,3,3,1,3,4
.5,5.5,3.9,0.8,7,6)

(5.1,2.7,4,1.6,3,7)

(10, 10)
(3.4,4,1.8,6,6)

Figure A.1: Flowchart for Example 2.

min 7fi1 + 3fa1 + 2f12 + 10 fo2 + 5f32 — 16(z11 + T21) — 25(212 + Ta2)
—30(w13 + w23) — 10(214 + T24)
st fu+ far— 21— T2 — T13 — 214 =0
Jiz + fo2 + fa2 — To1 — T2 — a3 — T24 =0
11 + 221 <10
Tig + Tao < 25
T13 + x93 < 30

T14 + To4 S 10

98

Ju—4fa1=0
6/11— far =0
4fi1 =3f21=0
0.5f11 —2fo1 =0

q1(rn + 12+ 13+ T14) —

q2(T11 + T12 + 713 + T14) —

q13(T11 + 712 + T13 + T14) —

Qra(rn + z12 + 13+ T14) —

q15(T11 + 212 + 13+ T14) = 5f11 —4f1 =0
q16(T11 + T12 + T13 + T14) = 9f11 — 4f21 =0

@21(T21 + T2z + o3 + T24) — 4f12 — 3far — fz2 =0
G22(T21 + T2z + o3 + T24) — 5.5 f12 — 3for — 2.7f30 =0
q23(T21 + To2 + Tz + T24) — 3f12 — 3far —4f32 =0
Qoa(T21 + 29 + Tz + Tas) — 0.9f12 — far — 1.6f32 =0
Qo5(To1 + T2 + oz + T24) — Tf12 — 3far —3f32 =10
Q26(T21 + Ta2 + oz + T24) — 10f12 — 4 foo — Tf3p =0
quT11 + @221 — (w11 + 1) <0
Q12711 + @221 — 3(x11 +291) <O
Q711 + s — 8.25(@ny +am) < g Meeting product one requirements

Q1411 + Goaor — 0.75(x11 + 291) <

Q15T11 + GasTo1 — 6(211 + 221) <0

Q16711 + GaeT21 — B(T11 + x21) <0

99

;

Q1112 + @22 — (12 + 222) <0

<
<

(12712 + G22%22 — 2.5(212 + T22)

0

T1o + 23Tz — 3.5(x19 + X22) <0

iz T Gasta (@12 z2) Meeting product two requirements
0

Q1412 + @aTog — 1.5(z12 + 222) <

Q15712 + Q25 T2z — T(T12 + To2) <0
| T16712 + 6722 — 6(212 + 722) <O
(Q11713 + @23 — 1.5(z13 + @23) <0 \
Q12713 + @223 — 5.5(x13 + w23) <0
Q15713 + @ass — 3.9(@03 +7) <0 Meeting product three requirements
714713 + G243 — 0.8(713 + 23) < 0

15713 + Qo523 — T(X13 + Ta23) <

G16T13 + Q2623 — 6(x13 + T23) <
(\
Q11714 + 21224 — 3(T14 + Xo2q) <

0
Q12%14 + Goa%24 — 4(T14 + X24) <0
0

T14 + G23%og — 4(T14 + 204) <
it T Gasta (@16 21) Meeting product four requirements

IN
o

Q1a%14 + o424 — 1.8(214 + 224)

Q15T14 + Qo524 — 6(T14 + T2q) <

0
| Q16714 + Gas 24 —6(x14 +224) <0
1<qg1 <4, 1<q2<6,3<qi3<4, 05<qusa <2,
4<qi5 <5, 4<q6 <91 <qgo1 <4, 2.7 < g2 <5H.5,
3< g3 <4, 09< g <16, 3<qas5 <7, 4<qo6 <10

Tk, fi; > 0

100

A.2.2 Lagrangean Relaxation

min 7f11 + 3f21 + 2f12 + 10f22 —+ 5f32 — 16(%11 -+ $21) — 25(%12 + Igg)

s.t

—30(z13 + x23) — 10(x14 + x24)

Jin+ for — 21— T2 — 213 — 214 =0

Ji2 + foo + fao — @a1 — T2 — a3 — w24 =0

11 + 221 < 10

T12 + To2 < 25

T13 + w23 < 30

T14 + 124 < 10

Jin—4f21=0
6/11— fa1 =0

4fi1 —3f21 =0

QT + 12+ 13+ 214) —

Q12(T11 + 212 + 13 + T14) —

Q13(z11 + T12 + T13 + T14) —

qQua(11 + 212 + 13 + 214) — 0.5f11 — 2f21 =0
Q15(T11 + 212 + T13 + T14) = 5f11 — 4fa1 =0
Q16(T11 + 212 + T13 + T14) — 9f11 — 4f21 =0

o1 (21 + Too + o3 + To4) — 4f12 — 3for — fz2 =0
qo2(T21 + Tz + o3 + To4) — 5.5 f12 — 3far — 2.7f33 =0
q23(T21 + To2 + a3 + Toa) — 3f12 — 3f2 — 4f52 =0
q24(T21 + T2 + 3 + T24) — 0.9f12 — foo — 1.6f32 =0
o5 (21 + Tz + o3 + Toa) — Tf12 — 3f2o — 3f32 =0
G26(T21 + T2z + Tz + T24) — 10f12 — 4 foa — Tfse =0

101

— an
— Qg2
— Q13
— Qa4
— Qg5
— Qi
— Qg
— Q2
— Qg3
Qg
< Qg5

Qg6

p

(

11711 + 21721 — 3(x11 + 221) <0

Q12211 + G22%21 — 3(T11 + 221) <0

13%11 + Q23021 — 3.25(211 + X21)
1411 + @av21 — 0.75(x11 + x21)

15711 + Qo521 — 6(z11 + 221) <0

16711 + Q2621 — B(T11 + X21) <0

<0
<0

Q11%12 + G21%22 — 4(T12 + X22) < 0

Q12712 + G2aT22 — 2.5(712 + Ta2)

Q13712 + G23T22 — 3.5(712 + Ta2) <

Q1412 + @2aTo2 — 1.5(z12 + 222) <
Q15T12 + @o5To2 — T(T12 + T22)

Q16T12 + Ga6T22 — 6(T12 + Ta2)

11713 + G21%23 — 1.5(x13 + 223

() <
Q12713 + GaaToz — 5.5(713 + T23)
13713 + G23T23 — 3.9(w13 + T23)
714713 + G2aT23 — 0.8(w13 + 93) <
Q15713 + GosToz — T(T13 + T23)

Q16713 + Q2623 — 6(213 + T23)

11714 + @21 224 — 3(214 + T24)
Q12714 + @2T24 — 4(T14 + T24) <

Q13%14 + Qo324 — 4(T14 + To4)

Q14%14 + Goa%os — 1.8(14 + 224) <

Q15%14 + Q25224 — 6(T14 + T24)

Q16T14 + GasT24 — 6(T14 + T2q) <

102

AN

0
0
0

<0
<0

IN

IN

0
0
0
0

<0
<0

— Pu
— Pia
— B3
— By
— Pis

— 516

— By
— By
— PBas
— Boy
— B

— 526

— Ba1
— B9
— PBs3
— B34
— Bas

— Bag

— Bu
— Bus
— B3
— B
— Bus

H 546

1<gn <4, 1<q2<6,3<q3<4, 05<qus <2,
4<qi5 <5, 4<qis<9,1<qo <4, 2.7 < ggp <55,
B <3 <4,09< gy <16, 3<qos <7, 4< g6 <10

Zji fij > 0

The resulting subproblem is:

min (7 — 11 — 60(12 — 40(13 — 0.50414 — 50(15 — 9()(16)f11

+(3 — dagn — a1 — 3ous — 2014 — 4ags — dovg) fa

+

(

(2 — 40&21 — 5.50422 — 30&23 — 0.90424 — 70&25 — 100‘26)]012
(10 — g1 — 3argy — 3aroz — oy — 3args — 4agg) f22

(

+(5 — o1 — 2.70122 — 40123 — 1.60124 — 30125 — 70126)f32

(=16 + qi1(aa1 + B11) + qr2(a1z + Bro) + qis(cus + Bis)
+qra(ona + Brg) + qis(aas + B1s) + qi6(cae + Big) — 3611
=381 — 3.25813 — 0.758,4 — 6315 — 5B16) 711

+(—=16 + go1 (a1 + B11) + qoz(aos + B1o) + qos(vas + Bi3)
+qoa(v2a + B14) + qos(aas + B15) + qas (26 + B1g) — 3611
=331 — 3.258313 — 0.758,4 — 6315 — 5816) 721

+(—=25 + qui(aa1 + Bo1) + qr2(a1z + Bay) + qus(caz + Bas)
+qra(0na + Boy) + qis(ars + Bas) + qis(ce + Bag) — 4591
—2.5899 — 3.5893 — 1.5894 — TBa5 — 6846) 12

+(—=25 + go1 (o1 + Po1) + qoa(as + Bay) + qos(vaz + Bas)
+q2a(v2a + Bog) + qos(aas + Bas) + Gas (a6 + Bag) — 4591
—2.5899 — 3.5893 — 1.5894 — TB25 — 66)T22

103

+(=15 + qui (11 + Ba1) + qu2(a2 + B32) + qia(aas + Ba3)
+qra(a1s + Bsy) + qis(cus + Bss) + que(aas + Pag) — 1.565;
—5.5035 — 3.9833 — 0.8834 — T35 — 6836) 13

+(—15 + qo1 (21 + B31) + qaa(a2 + B32) + qos(as + B3)
+qoa(cos + Bsy) + qos(vas + Bss5) + qas(o + Pag) — 1.565;
—5.5035 — 3.9833 — 0.8834 — T35 — 6535) 23

+(=10 + qui (11 + Ba1) + qr2(1z + Bya) + qi3(ais + By3)
+qra(ona + Buy) + qis(ais + Bys) + qis(s + Byg) — 384
—4B49 — 4P43 — 1.8844 — 68,45 — 605,6)T14

+(—10 + ga1 (21 + By1) + qoa(vaz + Baa) + qas(aas + By3)
+qaa(voa + Buy) + qos(aas + Bys) + qas(v26 + Bug) — 384y
—4B40 — 4P43 — 1.8844 — 68,45 — 65,6)T24

st fu+fa—r1n—Ti2— 73— 214=0
Ji2+ foz + fao — a1 — T2 — a3 — w24 =0
T11 + 291 < 10
T12 + To2 < 25
T13 + x93 < 30
T4 + T2 < 10
1< <4, 1<q12<6, 3<q13<4,05<qua <2,
4<q15<5 4<q16 9,1 <@qo1 <4, 2.7 < g2 < 5.5,
3<q3<4,09<qs<16,3<qp<7, 4<qgp=<10

Tk, fij > 0

104

If we define

ur = qu (o + Bry)zn + (a1 + Bor) w1z + (o1 + Byy) 713 + (ann + Bay)14)
urz = qiz((o12 + B1a)w11 + (a2 + Bo) 12 + (12 + B39) 713 + (12 + Byz)714)
u13 = qu3((uz + By3)r11 + (aus + Bag) w12 + (uz + Ba3)T13 + (13 + By3)T14)

(s + Bra)zn + (aa + Bag) 1z + (s + B34) 713 + (a1a + Ba4)214)
uis = qi5((a1s + Bis)z1 + (ous + Bas) 212 + (a5 + Bas)213 + (s + Bys)214)
() () () ()214)

(
(
(
U1 = qua(
(
(

uie = qi6((ue + Big)T11 + (16 + Bag)Ti2 + (16 + Bsg)T13 + (s + Bug

ug1 = qa1((a21 + B11)T21 + (a1 + Ba1)Taz + (21 + B31)T23 + (a1 + By1)T24
Qa2 + B9g) T2 + (22 + B39)T23 +
23 + B3
24 + Pay

Qo5 + Bo5) T2 + (o5 + Bas) T3 +

Q2 + By9)T24
(o3 + P43
Qo4 + By

Q25 + Bys)T24

Ugo = qo2((vag + B1a)T21 +
a3 + B3
Q24 + By

ugs = qo5((vas + Bis)T21 +

(() (
(() (
(() T2 + (23 + Bag T4
24 = goa(() Toz + (24 + B34 T24
(() (
(() (

~—~~ I~ N

))
))
))
))
))
))

~—~~ I~

)¥24)
)%24)
)%24)
)¥24)
)%24)
)%24)

Uze = Qa6((vas + B1g)T2a1 + (o + Bog)T2o + (26 + Bag)Tas + (ag + Bug)T2a

then the nonlinearity can be eliminated by using the linear bound constraints

¢ < @jw < g}, - and the fact that ¢;,, does not appear in the constraints.

The resulting linear subproblem is:

105

min (7 — a1 — 6agz — 4ags — 0.5a14 — Hags — 9ae) f11
+(3 — 4aq1 — a1g — 3oz — 2004 — 4oy — dag) for
+(2 — 4an; — 5.5agy — 3z — 0.9y — Tags — 10a) f12
+(10 — 3ag; — 3age — 3ava3 — rag — 3avgs — davgg) fao
(

+

5 — gy — 2.Tagy — dagy — 1.6ciag — 3oy — Tavgg) f32

16 — 381, — 3815 — 3.25833 — 0.753,, — 65,5 — 5016) 711
16 — 3511 — 3815 — 3.2508,3 — 0.75814 — 6815 — 5016) %21
25 — 484, — 2.5059 — 3.5893 — 1.505, — TB9s — 6046)T12
25 — 40y — 2502 — 3.5023 — 1.5Bgy — Tfa5 — 685) 22
15 — 1.583; — 5.5055 — 3.98353 — 0.8854 — 7f35 — 635) 13
15 — 1.585; — 5.5039 — 3.9835 — 0.8344 — B35 — 653¢)T23
10 = 304 — 4845 — 4843 — 1.8844 — 6845 — 6846) 214

10 = 3841 — 4B4p — 4843 — 1.8844 — 6845 — 6046) 724

Up1 + U1z + U13 + W14 + Ui + Uie + U1 + Uz + Uz + Ug 1+ Us + Uoe

(_
(_
(_
(_
(_
(_
(_
(_

st fu+fa—rn—Ti2—r13—214=0
Jiz + fo2 + faa — T21 — Taz — a3 — w24 =0
T11 + x21 < 10
12 + T2 < 25
T13 + x93 < 30

T14 + Toq < 10

106

(a11 + Bip)zn + (oar + Bay) @iz + (ann + Ba1)z1s + (o + Ban) e — un
+Mynn < M

—(a1 + By1)4r11 — (a11 + By)4w12 — (11 + B3)4x13 — (a1 + By)4214 + un
+Mynn < M

(11 + Brp)drin + (cun + Bap)4z + (cun + B31)dx13 + (qun + Byp)4r14 — un
—My1; <0

—(a11 + Byy)T1n — (1 + Bay) 712 — (a1 + B3y) w13 — (a1 + Byy) 14 + un
+Mynn < M

— (a1 + Bi)rn — (ar + Bar)wiz — (o1 + Bay) w13 — (ann + Ba) s

+Myn < M

(a11 + Bry)zn + (ean + Bar)wiz + (ann + Bsy)x1s + (a1 + Bar)21a

—My;n <0

(12 + Bro)r11 + (12 + Bog) 12 + (12 + B3)w13 + (12 + Byp)T14
—u1z + My1s < M

—(a12 + B12)6z11 — (12 + Bo2)6x12 — (12 + P33)6213 — (12 + B4p)6714
+ure + My1s < M

(12 4 B12)6211 + (12 + Bag)6212 4 (012 + B3)6213 + (12 + B42)6714
—u13 — My <0

—(a12 + Bra)z1 — (a2 + Ba2)T12 — (12 +)13 — (12 + Pag) 714
turz — My12 <0

—(uz + Bia)T11 — (a12 + Bog)T12 — (12 + B3a)T13 — (12 + Bye)T14
+My1s < M

(a12 + Brp) w11 + (a2 4 Bag) 212 + (012 + Byp) 213 + (12 + Byg) 714
—My12 <0

107

(13 + B13)3z11 + (13 + Bag)3x12 + (s + B33)3713 + (13 + B43)3714
—u3 + Mys < M

— (a3 + Bi3)4r11 — (a3 + Bog)4w1a — (3 + Ba3)4w13 — (3 + By3)4w14
+uiz + Mys < M

(3 + Brz)dzin + (uz + Bag)dziz + (uz + Baz)dziz + (cuz + By3)da14
—u13 — Myi3 <0

— (a3 + B13)3711 — (3 + Bag)3712 — (3 + B33)3713 — (13 + By3)3714
+uiz — My;3 <0

—(auz + By3)z11 — (a3 + Baz) w12 — (s + Ba3)r13 — (s + By3)714
+Myz < M

(a13 + Brg)z1n + (s + Bag)mi2 + (a3 + Baz)x1s + (s + Bas)T1a
—Myi3 <0

(14 + 14)0.5211 + (s + B24)0.5212 + (14 + B34)0.5213 + (14 + 544)0.5214
—urg + Mya < M

—(014 + B14)2711 — (g + B94)2712 — (14 + B34)2713 — (14 + Byyg)2714
tuig + My < M

(Q1g + B14)2211 + (g + Bog)2212 + (Q1g + B34)2713 + (Q1a + Byg)2714

—u1qg — My14 <0

—(@1a + B14)0.5211 — (Q1a + B24)0.5212 — (@14 + B34)0.5213 — (14 + B44)0.5714
g — My14 <0

—(1a + Brg)r11 — (Q1a + Bog)T12 — (aa + B34)T13 — (14 + Bag) 714

+Myrs < M

(14 + Bra)min + (014 + B2)T12 + (0na + Bgg) 13 + (Qa + Bag) 14

—My14 <0

108

(15 4 Brs)4z11 + (15 + Bos)4x12 + (s + B35)4w13 + (s + B45)4714
—u1s + Mys < M

— (s + B15)5711 — (s + Bos)5712 — (s + B35)5713 — (5 + Bys)5714
+uys + Myis < M

(s + Bi5)5m11 + (s + Ba5)5712 + (s + B35)5213 + (s + By5)5714
—u1s — My <0

— (s + Bi5)4r11 — (s + Bos)4w12 — (s + Bas)4x13 — (s + Bys)4714
+uis — Myi5 <0

—(aus + Byg)z11 — (s + Bas) w12 — (s + Bag)r13 — (s + By5)714
+Mys < M

(15 4 Bis) 11 + (s + Bas)T12 + (a5 + Ba5) 13 + (15 + Ba5)T1a
—Myi5 <0

(16 + Brg)dw11 + (e + Bag)41z + (6 + Bag)d13 + (s + Byg)da14
—u1e + Myie < M

—(a16 + B16)9711 — (16 + Bog)912 — (16 + P36)9213 — (16 + Ba6)9714
+uie + Myg < M

(16 + B16)9711 + (16 + Bog) 9712 + (16 + B36)9713 + (16 + Bu6)9714
—u1e — My <0

— (a6 + Brg)4m11 — (6 + PBog)4r12 — (16 + B3)4T13 — (16 + Bug)4714
+u1s — Myis < 0

—(ug + Big)T11 — (16 + Bag)T12 — (s + B36)T13 — (16 + Bag)T14
+Myie < M

(6 + Big)T11 + (16 + Bag)T12 + (16 + B36) 13 + (16 + Bag)T14
—My16 <0

109

(21 + Br1) @21 + (@21 + Ba1) T2z + (21 + B31) @23 + (21 + Ba1)T2a
—ug1 + Mya < M

— (a1 + By1)4x21 — (a1 + By)4w22 — (a1 + B31)4723 — (a1 + Byy)4w24
+ugr + Myo < M

(a21 + B11)4@a1 + (21 + By)4waz + (21 + B31)4%23 + (21 + f41)4224
—ug1 — Mys <0

— (a1 + By1)Ta1 — (a1 + Boy)22 — (a1 + Bay)Taz — (a21 + By1) 724
tugr — Mys <0

—(a21 + Br1)zar — (021 + Bay) w22 — (21 + Ba1) w23 — (a1 + Byy)T24
+Mya < M

(21 + Br1) @21 + (@21 + Ba1)Ta2 + (21 + B31) @23 + (21 + Ba1)T2a
—Myn <0

(22 + B12)2.Tx21 + (22 + B99)2.722 + (22 + P39)2.7Tx23 + (a2 + [42)2.Tx04
—Ugg + Mysr < M

—(vag + [19)5.591 — (a2 + B99)5.5299 — (vag + [39)5.523 — (a2 + B45)5.5294
tuge + Mys < M

(g2 + B12)5.5221 + (22 + Ba9)5.5%2 + (2 + Pa9)5.5%93 + (o + [42)5.5x04
—ugg — Myss <0

—(uag + B12)2. 7221 — (Qiog + Bo9)2. 7729 — (qiag + B39)2.7T23 — (qiag + B49)2.7T24
g — Mys <0

—(az + B1a)Ta1 — (22 + Bogg) W22 — (Qaz + B33)Taz — (22 + By0) 724

+Myga < M

(22 + Br)mar + (@22 + Ba2)T22 + (22 + Bygy) 23 + (22 + Bya) 24

—My <0

110

(23 4 B13)3a1 + (a3 + Ba3)3x22 + (23 + P33)3w23 + (23 + B43)3724
—ugz + Myaz < M

— (a3 + B13)4w21 — (a3 + Bog)4w2 — (a3 + B33)4723 — (a3 + By3)4w24
+ugs + Mysz < M

(o3 + B13)491 + (a3 + Bag)42 + (a3 + B33)4T23 + (a3 + By3)4224
—ugz — Myz3 <0

— (a3 + B13)3721 — (a3 + Bog)3T22 — (a3 + B33)3723 — (a3 + By3)3724
+ugz — Mys3 <0

— (a3 + By3)Ta1 — (23 + Bo3) w22 — (vaz + B33)Ta3 — (23 + By3)T24
+Mysz < M

(23 4 Brg) 21 + (@23 + Ba3)Taz + (23 + B3) @23 + (23 + Ba3)T2a
—Mys3 <0

(24 + 514)0.9221 + (v2s + B24)0.9722 + (24 + 34)0.9723 + (24 + 544)0.9724
—Ugq + Mysq < M

— (a4 + B14)1.6291 — (o4 + Boy)1.6220 — (24 + B34)1.6703 — (o + By4)1.6724
tugg + Myay < M

(uoq + B14)1.6221 + (g + Poy)1.6290 + (v2g + B34)1.6295 + (og + 544)1.6224
—uzg — My2q <0

—(@aa + B14)0.9221 — (Qaa + B24)0.9722 — (vas + B34)0.9723 — (vas + B44)0.9724
Fugq — Myzs <0

—(aa + B14)Ta1 — (024 + Bog)T22 — (oa + B3y4)Taz — (24 + Byg) 724

+Mygy < M

(s + B1g)or + (024 + Bog) a2 + (a2a + B34)23 + (024 + Buy) 2

—My24 <0

111

(25 4 B15)321 + (a5 + Bo5)3T22 + (25 + B35)3T23 + (25 + B45)3724
—ugs + Myss < M

— (g5 + B15)4r21 — (a5 + Bos)4w22 — (a5 + B35)4w23 — (a5 + Bys)4w24
+ugs + Myss < M

(o5 + B15)491 + (a5 + Bas)42z + (a5 + B35)4T23 + (a5 + Bys)4224
—Ugs — Myzs <0

— (5 + B15)3721 — (a5 + Bos)3T22 — (a5 + B35)3723 — (a5 + Bys)3724
+ugs — Myss <0

— (a5 + Bi5)Tar — (s + Bo5) 22 — (a5 + Ba5)Ta3 — (s + By5)T24
+Myss < M

(25 4 B15)T21 + (@25 + Ba5)Ta2 + (25 + B35) 23 + (25 + Ba5)T2a
—Myss <0

(a6 + Brg)4wa1 + (quag + Bog)daaz + (as + Bag)4aas + (qas + Bag) 424
—Uge + Myss < M

— (26 + B16)10791 — (26 + Bo6) 1092 — (26 + B36)10293 — (6 + Byg) 10224
+uge + Myss < M

(a6 + B16)10221 + (aas + Ba6) 10222 + (azs + B36) 10223 + (aag + Fa6) 10224
—uge — Myzs <0

— (e + B16)4m21 — (a6 + Bog)4m22 — (o + B36)4Ta3 — (26 + Bug)4T24
tuze — Myss <0

—(cvas + B16)T21 — (26 + Bog) T2z — (vas + B36)T23 — (26 + Bag)Toa
+Myse < M

(26 + B16)T21 + (a6 + Bog)Taz + (26 + B3g)T23 + (Qvas + B46)T24

—Mys <0

112

The master problem is:

max 6

s.t

0+ (fis +4f50 — gy (2l + 2y + 2ty + 21y))an
H(61y + foy — aia (@l + 2y + 2l + 2ly)) o
HAf 313 — (@l + oy + 2y + 2y))ars
+(0.517% + 237 — qia(aty + 2y + 2y + 2y))ons
+(5 1 + 4S5 — afs(aly + 2y + s + 2y))ais
(Ofy + 413 — aia (@t + ally + 2y + 2fy))one
(4175 +3f35 + fin — dby (2, + aly + xly + 25,))an
+(5.5f1y + 3f35 + 2.7f35 — gy (a8 + a8y + 2y + 25,) oz
(3f15 + 3135 + 4f8h — ais(why + 2y + 2l + 25y))z
(09175 + f2h + 165 — qay(ahy + aby + 2y + 28y))
(T fly + 313 + 33 — abs(aly + xby + 2y + 28y))ass
(
(
(
(
(
(
(
(

+

+ -

+(10f7y + 4fh 4+ Tfih — aos(ahy + o8y + 28 + 25,)) asg

I

3 —qu)r + (3 — qa1)x21) By + ((3 — qr2)@11 + (3 — q22)721) 5o

I

3.25 — quz)x11 + (3.25 — qo3)w21) Br5 + ((0.75 — qua) 211 + (0.75 — go4)w21) By

+

(
(
(6 — q15)z11 + (6 — go5)wa1) 15 + ((5 — que)z11 + (5 — gos)21) B
(4 — qu)z1z + (4 — qa1)z22) By + ((2.5 — qi2) 12 + (2.5 — G22)222) Bsy
(

(

(

+

2)
3.5 — qu3)712 + (3.5 — q23)@22) B3 + (1.5 — qua) w12 + (1.5 — Goa)T2) Bos
7 —qu5)T12 + (7 — Go5)T22) Bas + ((6 — qi6)T12 + (6 — qo6)T22) Bog
+((1.5 — q11)x13 + (1 5 — q21)l‘)531 ((55 — q12)$13 + (55 — ng)x23)532

-+

113

(3.9 — @13)w13 + (3.9 — q23)w23) B35 + ((0.8 — qua) 13 + (10.8 — g24)23) B34

+((7 — q15)713 + (7 — qo5)723) B35 + (6 — q16)713 + (6 — q6)723) B3

(B = @11)z1a + (3 — g21)224) By + (4 — q12) @14 + (4 — ¢22)724) Byp

+((4 — q13)w14 + (4 — q23)724) Ba3 + (1.8 = qra)w1a + (1.8 — g2a)24) By
+((6 — q15)714 + (6 — qo5)724) Ba5 + ((6 — q16)T14 + (6 — Go6)T24) Bag <

7f11 + 3f21 + 2f12 + 10f2h2 + 5f§L2 — 161’11 — 16$21 — 251’12 — 251’22 — 15$13
—151‘23 — 101314 — 10.3(324; Vh € H

114

