
A Lagrangean Relaxation and A Heuristic for the Pooling
Problem

by

Hossa Almutairi

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Management Sciences

Waterloo, Ontario, Canada, 2008

c© Hossa Almutairi 2008

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Hossa Almutairi

ii

Abstract

The pooling problem is one of the fundamental optimization problems encountered

in the petroleum industry. In the pooling problem, final products are produced

using two stages of blending operations. In the first stage, raw materials are mixed

together to produce intermediate products. In the second stage, intermediate prod-

ucts and some of the raw materials are blended together according to product

demand and quality requirements. Generally, the pooling problem is a nonlinear

problem because the output stream qualities, which are unknown, depend on the

volume, which is also unknown, and on the quality of the input streams. Specifically,

nonlinearity and nonconvexity are due to the use of bilinear terms either in the qual-

ity constraints or in the objective function. Nonlinearity and nonconvexity result

in several local optima, making the process of solving large-scale pooling problems

to global optimality very challenging. Therefore, developing efficient heuristics for

large-scale pooling problems is very desirable. Moreover, devising tight bounds on

the global solutions is essential to assess the quality of the proposed heuristics.

In this thesis, we use a Lagrangean relaxation approach where feasible solutions

and lower bounds are generated for the pooling problem. The procedure targets

all nonlinear constraints and penalizes their violation in the objective function.

The resulting Lagrangean subproblem has a nonlinear objective function and linear

constraints. The Lagrangean subproblem is reformulated as a mixed integer pro-

gramming problem where the nonlinearities in the objective function are eliminated

at the expense of using binary variables. The obtained Lagrangean lower bounds

are strengthened using valid cuts that are based on the relaxed bilinear terms. In

addition, at every iteration of the Lagrangean algorithm, the subproblem solutions

are used to generate feasible solutions to the pooling problem.

iii

The procedure is applied to fifteen pooling problems collected from the litera-

ture. Some of these problems have a single quality and others have multiple qual-

ities. Numerical results show that for eight solved cases, the obtained Lagrangean

lower bounds are equal to the global optima, whereas for seven cases the obtained

Lagrangean lower bound is on average 8.2% from the global optimum. Numerical

results indicate the efficiency of the heuristic. For nine cases, the heuristic gives

the global solution, and for the other cases the heuristic solutions are within 1.8%

of the global optimum.

iv

Acknowledgments

All praise is to Allah who gave me the ability to finish this thesis. I have been

lucky enough to be accompanied by many people who have contributed directly or

indirectly to this thesis. It is a great pleasure to have the opportunity to express

my gratitude to all of them. Foremost, I am indebted to the custodian of the two

sacred mosques King Abdullah Ben Abdulaziz for all his support to Saudi women.

His vision, enthusiasm, and support have made a deep impression on me.

Also, I am deeply grateful to my supervisor Professor Samir Elhedhli whose

guidance and patience, and sharing of expertise and research insight made this

thesis possible. His encouragement, support, and suggestions have been invaluable

to me. I am really glad that I had the opportunity to work under his supervision.

Working with him is a valuable experience. It is hard to thank him enough. In

short, he is the best advisor I could have wished for.

I would like to thank my readers, Professor Elizabeth Jewkes and Professor

David Fuller for their valuable comments, insights and feedback. I would also

like to acknowledge the faculty, staff, and my colleagues in the Department of

Management Sciences for their help.

I wish to express my sincere gratitude to all my friends for their support and

valuable discussion. Especial appreciation is due to my best friend Seeta Almandeel

for her care, encouragement, and advice. A friend like her is a blessing.

I wish to thank The Ministry of Higher Education of Saudi Arabia for giving

me this opportunity via the Distinguished Saudi Scholarship and for their generous

support through the Saudi Arabian Cultural Bureau in Canada.

My special thanks go to my beloved husband. Life would not be the same with-

out his endless love, support, and encouragement. I am also grateful to my three

v

wonderful children for their help, patience, and showing an enthusiastic interest in

my research.

Finally, I am forever indebted to may parents and siblings for their constant

support, prayers, and unconditional love.

vi

Dedication

This thesis is dedicated to my father, who is my first teacher and greatest cham-

pion, who always believes in me, and whose support and advice are always there

when I need them. This thesis is also dedicated to my mother, who taught me that

hard work and patience make dreams come true. Her endless love and help are

always there. I am so thankful that you are more than great parents; you are also

my best friends. I love you!

vii

Contents

1 Introduction 1

2 Literature Review 10

2.1 Problem Formulations . 10

2.1.1 The p-Formulation . 11

2.1.2 The q-Formulation . 13

2.1.3 The pq-Formulation . 13

2.1.4 The Generalized Formulation 14

2.2 Solution Methodologies . 14

2.2.1 The Recursive Approach 14

2.2.2 The Successive Linear-Programming (SLP) Approach 16

2.2.3 Benders Decomposition 18

2.2.4 A Global Optimization Algorithm (GOP) 19

2.2.5 The Reformulation-Linearization/Convexification Tech-

nique (RLT) . 21

viii

2.2.6 Lagrangean Relaxation 24

2.2.7 Branch-and-Bound Algorithms 26

2.2.8 Heuristic Techniques . 28

2.3 Conclusion . 29

3 Problem Formulation and Solution Methodology 31

3.1 Problem Formulation . 31

3.1.1 The p-Formulation . 32

3.1.2 The q-Formulation . 36

3.1.3 The pq-Formulation . 40

3.2 Proposed Lagrangean Relaxation 42

3.2.1 Lagrangean Relaxation for the General p-Formulation 43

3.3 An Illustrative Example . 51

3.3.1 Lagrangean Relaxation for The Pooling Example . . 51

3.4 Strengthening the Lagrangean Lower Bounds 58

3.5 A Heuristic Approach and Overall Algorithm 59

3.6 Conclusion . 61

4 Computational Results 63

4.1 Conclusion . 73

5 Conclusion 76

ix

A Some Illustrative Examples 84

A.1 Lagrangean Relaxation for Foulds2 84

A.1.1 Problem Formulation . 85

A.1.2 Lagrangean Relaxation 86

A.2 Lagrangean Relaxation for Adhya2 97

A.2.1 Problem formulation . 97

A.2.2 Lagrangean Relaxation 101

x

List of Figures

1.1 The pooling problem . 2

1.2 Haverly’s pooling problem . 3

3.1 A Pooling Network . 33

3.2 Haverly’s pooling problem (p-formulation) 36

3.3 Haverly’s pooling problem (q-formulation) 39

4.1 A Comparison of Lower Bounds and Optimal Values 68

4.2 A Comparison of Heuristic Solutions and Global Solutions 70

4.3 A Comparison of Lower bounds with and without cuts 72

4.4 A Comparison of Heuristic Solutions with and without cuts 72

A.1 Flowchart for Example 2. 98

xi

List of Tables

2.1 Summary of the Formulation Approaches for the Pooling Problem . 12

2.2 Summary of the Solution Methodologies for the Pooling Problem . . 15

4.1 Test Problem Characteristics . 64

4.2 A Comparison of Lower Bounds and Global Optima (GO) 66

4.3 Lagrangean Bounds and Heuristic Results 67

4.4 A Comparison of Heuristic Solutions and Global Optima 69

4.5 A Comparison of Lower Bounds and Heuristic Solutions with and

without cuts . 71

4.6 Computational Time Partition without cuts 74

xii

Chapter 1

Introduction

Blending crude or refined petroleum is at the core of any refinery operation. Most

of these blending operations involve two stages of blending. In the first stage, var-

ious raw materials are combined together, usually in pooling tanks, to produce

intermediate products. In the second stage, intermediate products and some of the

raw materials are mixed together to produce final products. This two-level blending

process is often referred to as a pooling problem (Tawarmalani and Sahinidis, 2002).

As shown in Figure 1.1, the pooling problem can be represented as a network with

three sets of nodes. The first set of nodes represents raw materials with known at-

tributes such as costs and qualities. The raw materials are distributed to the second

set of nodes, the pooling tanks, to produce intermediate products or to the third

set of nodes, to be used directly in blending final products. Taking into account

product demand and restriction on end product qualities such as sulfur content,

density, and octane number, the final products can be produced by blending raw

materials and intermediate products received from the pooling tanks (Fieldhouse,

1993; Tawarmalani and Sahinidis, 2002). Given the availability of raw materials

1

and their individual properties, as well as the demand and quality requirement of

the final product, decisions are made to determine the optimal flow of raw materials

to be mixed in order to minimize the difference between raw material cost and final

product revenue.

Raw materials Pooling tanks Final products

Figure 1.1: The pooling problem

As an illustration, Figure 1.2 shows a small pooling example presented by

Haverly (1978). In this example, a single pool received two input streams of crude

oil A and B. Each crude oil stream has different known properties, such as cost

and sulfur content. The third source of crude oil, C, is used to blend directly with

the pool output streams, producing two final products with some restrictions on

demand and sulfur content. The formulation of this example is given in Chapter 3.

The need for pooling raw materials arises in several situations, three of which

are detailed as follows. The first situation comes about when a refinery has limited

2

Product
1

Product
2

Sulfur 2.5% ,
demand 100

(Price $9)

Sulfur 1.5% ,
demand 200
(Price $15)

x11

x12

A
Sulfur 3
Cost $6

C
Sulfur 2%
Cost $10

B
Sulfur 1%
Cost $16

x21

x22

f11

f21

f12

Pool

q

Figure 1.2: Haverly’s pooling problem

storage facilities, leading to the storage of more than one product in one tank. The

second situation arises when several products are transported together in a single

pipeline or vessel. The third situation occurs when the requirements of the end

product are not satisfied by any single feed (Floudas and Pardalos, 2004; Lasdon

and Waren, 1980). In short, two products are pooled together, but the property of

the resulting mixture does not match the quality requirement for the end product

which makes blending a new product with the intermediate products a necessary

step (Foulds et al., 1992).

Currently, with the increase of environmental regulations on refinery operations

and refined product properties such as limiting sulfur and total aromatics contents

in gasoline, refineries experience downward pressures on profitability (DeWitt and

Lasdon, 1989; Duncan, 2000). The use of an efficient blending system plays a sig-

nificant role in improving refined product quality, reducing cost and, consequently,

improving profitability. Take for example the Texaco experience with its developed

decision support system, OMEGA, for gasoline blending operations which is imple-

mented in all its seven US refineries as well as its Canadian and Welsh refineries.

3

As stated in Dewitt and Lasdon (1989), the use of nonlinear optimization in solv-

ing pooling and blending problems results in better quality control and about 2.5

cents/gal of gasoline savings which are translated to more than 30 million dollars

of annual savings.

From the modeling point of view, several approaches have been proposed for the

pooling problem such as the p-formulation, the q-formulation, the pq-formulation,

and the Generalized formulation. The p-formulation is the most used formulation

since its introduction in Haverly (1978). Ben-Tal (1994) proposed the q-formulation

as an alternative formulation for the pooling problem. The primary difference be-

tween the two formulations lies in the source of nonlinearities. In the p-formulation,

explicit variables are used to represent pool qualities, and nonlinearities are due to

the multiplication of quality variables by flow rate variables. In the q-formulation,

proportion variables are introduced, instead of quality variables, to represent the

proportion of raw materials used in each pool. As a result, nonlinearities are due

to the multiplication of flow rate variables by proportion variables, and appear in

the objective function and quality requirement constraints. The pq-formulation

was proposed by Tawarmalani and Sahinidis (2002), as they sought to extend the

q-formulation by adding new nonlinear constraints. The added constraints were de-

rived by Quesada and Grossman (1995) using the reformulation linearization tech-

nique. Tawarmalani and Sahinidis (2002) proved that the linear programming relax-

ation of the pq-formulation using bilinear envelopes provides tighter lower bounds

than the ones obtained through the same relaxation of the p-formulation and the

q-formulation. A hybrid formulation of the p-formulation and the q-formulation

called the Generalized formulation, is suggested by Audet et al. (2004). This for-

mulation allows for interchanging intermediate products among the pools. Meyer

and Floudas (2006) generalized the pooling formulation to include decisions related

4

to pool existence and network structure. Continuous variables were used to model

flow rates and stream attributes whereas binary variables were used to model the

network structure.

Generally, all the proposed approaches are nonlinear formulations due to the

use of bilinear terms either in the quality constraints or in the objective function.

Balancing qualities around the pool introduces nonlinearity and nonconvexity to

the problem because the output stream qualities, which are unknown, depend on

the volume, which is also unknown, and the quality of the input streams (Field-

house, 1993; Tawarmalani and Sahinidis, 2002). Nonlinearity and nonconvexity

result in several local optima, making the process of solving the problem to global

optimality very challenging (Adhya et al., 1999; Tawarmalani and Sahinidis, 2002).

Consequently, the literature is rich with suggested approaches that could be used to

solve the various formulations of the pooling problem. One of the earlier developed

approaches was recursion, which appears in the work of Haverly (1978). This ap-

proach is based on the idea of estimating and fixing the value of recursion variables,

thus converting the nonlinear problem into a linear problem. This technique might

not converge to a solution, and if it does, it leads to local optima (Haverly, 1979;

Adhya et al., 1999). Successive linear-programming algorithms (SLP) have been

widely used to solve the pooling problem and nonlinear blending operations which

arise in the petrochemical industry. Some examples are: Baker and Lasdon (1985),

Lasdon and Waren (1979), Bodington and Randall (1979) and Simon and Azma

(1983). For further details, we refer the reader to the extensive survey article by

Lasdon and Waren (1980). SLP solves the pooling problem through a sequence of

linear programs (Baker and Lasdon, 1985; Griffith and Stewart, 1961), however, as

with the recursion technique, the obtained solution is also a local optimum (Baker

and Lasdon, 1985).

5

A decomposition strategy based on Geoffrion’s generalization of Benders de-

composition technique (Geoffrion, 1972) was suggested by Floudas and Aggarwal

(1990) to search for the global optimum of the pooling problem. After identifying

the source of nonconvexities, the variables are partitioned into complicating and

noncomplicating variables. The original problem can then be decomposed into a

master problem and a subproblem. Solving the master problem provides both a

lower bound on the global minimum and the values for the complicating variables.

In contrast, the solution of the subproblem yields an upper bound on the global

minimum and the values for the noncomplicating variables. Furthermore, the solu-

tion of the subproblem provides dual information to form Benders’ feasibility and

optimality cuts that are added to the master problem (Sahinidis and Grossmann,

1991). Iterating between these problems continues until the specified stopping cri-

teria are met. As is the case with previous approaches, identification of a global

optimum is difficult to guarantee (Sahinidis and Grossmann, 1991; Floudas and

Aggarwal, 1990). Visweswaran and Floudas (1990) developed a generalized ap-

proach, the Global Optimization Algorithm (GOP), to provide a global solution

for the pooling problem. The GOP algorithm makes use of the duality theory to

solve the pooling problem through a series of primal and relaxed dual subproblems.

Visweswaran and Floudas (1993) proposed new theoretical properties of the GOP

algorithm which improve its computational performance.

Audet et al. (2004) looked at the pooling problem from a slightly different angle.

They investigated the application of a new branch-and-cut quadratic programming

algorithm (Audet et al. 2000) to two formulations of the pooling problem: flow

and proportion models. These two models are equivalent to the p-formulation and

the q-formulation respectively. In addition, they developed a Multistart Alternate

heuristic (MALT) and a Variable Neighborhood Search (VNS) metaheuristic to ob-

6

tain starting solutions for exact algorithms and solve large instances of the pooling

problem (Audet et al., 2004).

In the last two decades, most of the work on the pooling problem has focused

on generating tight bounds on the global solutions using several relaxation tech-

niques. Some examples are. Adhya et al. (1999), Foulds et al. (1992), Liberti and

Pantelides (2006), Meyer and Foulds (2006), Quesada and Grossmann (1995), and

Tawarmalani and Sahinidis (2002). The resulting lower bounds are integrated into

global optimization techniques such as branch-and-bound algorithms in order to

find global solutions. Foulds et al. (1992) used convex relaxation to underestimate

and overestimate each bilinear term by its convex and concave envelopes respec-

tively. The Reformulation-Linearization technique (RLT) has been suggested by

some authors such as Liberti and Pantelides (2006), Meyer and Foulds (2006), and

Quesada and Grossmann (1995) to generate tighter lower bounds on the global solu-

tions of the pooling problem. Under this approach, additional nonlinear constraints

are derived by multiplying a set of nonnegative variable factors with some of the

original problem linear constraints (Sherali and Alameddine, 1992). The resulting

nonlinear constraints are linearized using bilinear envelopes. Adhya et al. (1999)

applied Lagrangean relaxation to the pooling problem. The basic idea behind this

technique is that most difficult problems can be converted into easier ones by as-

sociating Lagrangean multipliers with complicated constraints and adding them to

the objective function to penalize their violations. In the case of the pooling prob-

lem, complicated constraints are the ones that involve bilinear terms. Compared

to the original problem, the Lagrangean subproblem is easier to solve and provides

a lower bound on the optimal solutions for minimization problems, but as more

constraints are relaxed the quality of the bound might deteriorate (Adhya et al.,

1999; Ben-Tal et al., 1994).

7

Nowadays, global optimization techniques are quite effective in solving small-

scale pooling problems from the open literature. However, real life problems tend

to be large-scale problems. Solving large instances of the pooling problem to global

optimality using the available global optimization algorithms is challenging. Hence,

developing efficient heuristics for large-scale pooling problems is very desirable. In

addition, relaxations that provide tight bounds on the global solutions are essential

to assess and improve the quality of the heuristic solutions.

This thesis has two major contributions. The first contribution is the intro-

duction of a new lower bound to the pooling problem using Lagrangean relaxation

techniques. Lagrangean relaxation is applied to the p-formulation of the pooling

problem to obtain lower bound on the global solution. The procedure targets all

nonlinear constraints and penalizes their violation in the objective function. The

resulting Lagrangean subproblem has a nonlinear objective function and linear con-

straints. The Lagrangean subproblem is reformulated as a mixed integer program-

ming problem where the nonlinearities in the objective function are eliminated at

the expense of using binary variables. The obtained Lagrangean lower bounds are

strengthened by using valid cuts that are based on the relaxed bilinear terms.

The second contribution is the introduction of a heuristic technique, where

Lagrangean subproblem solutions are used to generate feasible solutions to the

pooling problem. At each iteration, the Lagrangean subproblem is solved for the

values of the noncomplicating variables, flow variables. The obtained values are

used to calculate the values of the complicating variables, quality variables, from

the quality balance constraints. A linear programming problem, resulting from

fixing the complicating variables in the original nonlinear problem, is solved at

each iteration to generate feasible solutions.

8

The proposed Lagrangean relaxation approach and heuristic technique are ap-

plied to fifteen pooling problems collected from the literature. Some problems have

a single quality, while others have multiple qualities. For eight solved cases, the

obtained Lagrangean lower bounds are equal to the global optima, whereas for the

other seven cases the obtained Lagrangean lower bound is on average 8.2% from the

global solutions. Numerical results indicate the efficiency of the heuristic solutions.

For nine cases, the heuristic gives the global solution, and for the other cases the

heuristic solutions are within 1.8% of the global solution.

The thesis is organized as follows: Chapter two presents a literature review

for the pooling problem in terms of modeling approaches and solution methodolo-

gies. Chapter three describes three of the pooling problem formulations and the

proposed Lagrangean relaxation for the p-formulation. Chapter four reports the

computational results. Finally, Chapter five concludes this thesis.

9

Chapter 2

Literature Review

The literature on the pooling problem focuses on two major complementary direc-

tions: formulations and solution methodologies. In the following two sections, we

first review the problem formulations and then the solution methodologies.

2.1 Problem Formulations

Using the terminology presented by Ben-Tal et al. (1994), and Tawarmalani and

Sahinidis (2002), pooling formulations can be classified as p-formulations,

q-formulations, and pq-formulations. Meyer and Floudas (2006) proposed a gen-

eralized formulation for the pooling problem in the context of petrochemical and

wastewater treatment industries to include decisions related to pool existence and

network structure. Audet et al. (2004) have also proposed a general pooling for-

mulation which is a hybrid formulation of the p-formulation and the q-formulation.

Table 2.1 summarizes the work that has been done on the pooling problem in terms

of formulation, number of pools, and qualities.

10

In this Chapter, we describe each formulation. In Chapter three, we explain

the mathematical models of the p-formulation, the q-formulation, and the pq-

formulation with illustrative examples.

2.1.1 The p-Formulation

The p-formulation was presented in Haverly (1978) and became the most common

formulation for the pooling problem in the petrochemical industry. The basic idea

of the p-formulation is the use of explicit variables to model the pool qualities

and flow volumes. Apart from the pool quality balancing constraints and quality

requirement constraints, the objective function and the remaining constraints are

linear. Since the nonlinear terms are dependent on the number of pool qualities,

bilinear terms increase as the number of qualities increases (Audet, 2004).

The same formulation is used by Lasdon et al. (1979), Floudas and Aggarwal

(1990), and Fieldhouse (1993). Baker and Lasdon (1985) used the p-formulation

to discuss the pooling problem at Exxon and developed a linearization technique

using successive linear programming algorithms, a process that will be discussed

later in the solution methodology section. Foulds et al. (1992) applied a generalized

Benders’ decomposition technique to the p-formulation to solve larger instances

involving multiple pools. Amos and Gill (1997) used the p-formulation to develop a

model that describes the pooling problem at the New Zealand Refining Company. In

their proposed model, they added new variables to represent temperature cut points

in each distillation. In addition, they introduced the use of cumulative functions

to describe the distillation yields. Adhya et al. (1999) used the p-formulation

11

Authors Formulation Pools Qualities

Adhya et al. (1999) p-formulation Multiple Multiple

Amos and Gill (1997) p-formulation Multiple Single

Audet et al (2004)

Flow, Proportion,

and Generalized

formulation

Multiple Multiple

Baker and Lasdon (1985) p-formulation Single Single

Ben-Tal et al (1994) q-formulation Multiple Multiple

Fieldhouse (1993) p-formulation Single Single

Floudas and Aggarwal (1990) p-formulation Single Single

Foulds et al. (1992) p-formulation Multiple Single

Haverly (1978), (1979) p-formulation Single Single

Lasdon et al. (1979) p-formulation Single Single

Liberti and Pantelides (2006) p-formulation Multiple Multiple

Meyer and Floudas (2006)
Generalized

formulation
Multiple Multiple

Quesada and Grossman (1995)
pq-formulation

Generalized
Multiple Single

Tawarmalani

and Sahinidis (2002)
pq-formulation Multiple Multiple

Visweswaran and Floudas

(1993), (1996)
p-formulation Multiple Multiple

Table 2.1: Summary of the Formulation Approaches for the Pooling Problem

12

to develop a Lagrangian approach to the pooling problem. Audet et al. (2004)

developed a flow model of the pooling problem based on the p-formulation.

2.1.2 The q-Formulation

The q-formulation was proposed by Ben-Tal et al. (1994). In this formulation, a

new variable is introduced to represent the fraction of each stream used in each pool

instead of using explicit variables for pool qualities. As a result, the nonlinearities

arise in the objective function and quality requirement constraints, but with fewer

nonlinear constraints since there are no quality balance constraints. Also, the num-

ber of nonlinear variables is independent of the number of pool qualities, making

this formulation more practical as the number of qualities increases (Audet, 2004).

Audet et al. (2004) presented a similar formulation called the proportion model

which is based on the proportion of flows entering each pool.

2.1.3 The pq-Formulation

Tawarmalani and Sahinidis (2002) proposed the pq-formulation as an extension

of the q-formulation by adding nonlinear convexification constraints. The added

constraints were derived by Quesada and Grossman (1995), using the reformulation-

linearization technique (RTL), to obtain a global solution of bilinear process net-

works. Tawarmalani and Sahinidis (2002) proved that the linear programming

relaxation of the pq-formulation using bilinear envelopes dominates the linear pro-

gramming relaxation and the Lagrangean relaxation of the p-formulation and the

q-formulation.

13

2.1.4 The Generalized Formulation

Audet et al.(2004) proposed a hybrid formulation of the p-formulation and the

q-formulation for a general pooling problem. This formulation allows for intercon-

necting among the pools so that each pool receives input streams of raw materials

and intermediate products. The p-formulation is used to model the flows among

the pools whereas the q-formulation is applied for the rest of the flows. Meyer and

Floudas (2006) presented a generalized pooling problem in the context of the petro-

chemical and wastewater treatment industries. Binary variables were used to model

decisions regarding pool existence and network configuration whereas continuous

variables were used to model the flow rates and quality requirements.

2.2 Solution Methodologies

The main solution methodologies for the pooling problem are based on recursion,

successive linear-programming algorithms, a global optimization algorithm (GOP),

heuristic techniques, the reformulation-linearization technique (RLT), Benders de-

composition, Lagrangean Relaxation, and Branch-and-Bound algorithms. In the

following sections we describe each approach.

2.2.1 The Recursive Approach

The basic idea of the recursive approach is the estimation and fixing of the values

of some recursion variables such as quality variables (Haverly, 1978, 1979). Haverly

used two recursion variables: one as a quality variable and the other for the esti-

mated fraction of the pool quality that was used for one of the products. Therefore,

14

Authors Solution Methodology Optimum

Adhya et al (1999)
Lagrangean Relaxation,

Branch-and-Bound
Global

Audet et al (2004)
Branch-and-cut quadratic

programming, Heuristic
Global

Baker and Lasdon (1985)
Successive Linear

Programming (SLP)
Local

Ben-Tal et al (1994)
Lagrangean Duality,

Branch-and-Bound
Global

Fieldhouse (1993) Distributed Recursion Local

Floudas and Aggarwal (1990)
Generalized Benders

Decomposition
Local

Foulds et al. (1992)
Convex Approximation,

Branch-and-Bound
Global

Haverly (1978), (1979) Recursion Local

Lasdon et al. (1979)
Genralized reduced

gradient and SLP
Local

Liberti and Pantelides (2006)
RRLT constraints

Branch-and-Bound
Global

Meyer and Floudas (2006)
Reformulation-Linearization

Technique (RLT)
Global

Quesada and Grossman (1995) (RLT) , Branch-and-Bound Global

Tawarmalani and Sahinidis (2002)
convexification techniques,

Branch-and-Bound
Global

Visweswaran and Floudas (1993), (1996) GOP Algorithm Global

Table 2.2: Summary of the Solution Methodologies for the Pooling Problem

15

the pooling problem is converted into a linear programming problem with only flow

variables. The suggested algorithm involves two steps. First, the resulting linear

program is solved, and then the quality value is calculated from the resulting flow

variable values. If the obtained quality values coincide with the guessed values, the

algorithm stops. Otherwise, the process is continued until the calculated quality

values coincide with the estimated ones (Haverly, 1979; Adhya, 1999). Haverly

shows that this approach may not converge to a solution, and when it converges,

it does not always converge to a global optimum. Moreover, the obtained solutions

depend on starting points. Main (1993) proved that this approach is stable for small

problems and can result in computational difficulty when the number of pools and

final product increase.

White and Trierwiller (1980) discussed the implementation and impact of an

improved recursion technique, distributive recursion, at Socal. After adding the

distributive recursion to Socal recursion program, the authors were able to model

and solve pooling problems in a more realistic manner. Results reveal that the

overall run time dropped 40 percent. The distributive recursion is equivalent to

Successive Linear-Programming algorithms, a method that is discussed in the next

subsection, as shown in Lasdon and Joffe (1990).

2.2.2 The Successive Linear-Programming (SLP) Approach

Successive linear-programming algorithms solve nonlinear optimization problems

by using a sequence of linear programs. The key idea of this approach is the re-

placement of bilinear terms by the first-order Taylor series expansions in order to

obtain a linearized SLP subproblem (Baker and Lasdon, 1985). Griffith and Stew-

art (1961) of Shell Oil described the application of SLP algorithms to nonlinear

16

programming problems arising from petroleum refinery optimization problems. In

their paper, the name they used for the proposed method is Mathematical Approx-

imation Programming (MAP) which is later replaced with SLP algorithms.

Baker and Lasdon (1985) discussed the application of SLP algorithms at Exxon

to nonlinear optimization problems involving the pooling problem. They proposed

a multiplicative formulation, a method which includes nonnegative deviation vari-

ables in order to prevent infeasibility of LP subproblems, to solve linearized SLP

subproblems. The multiplicative formulation has an advantage over the formulation

proposed by Griffith and Stewart (1961), additive formulation, in that the obtained

linearized problem is compatible with existing LP formulations (Baker and Lasdon,

1985). However, because of nonconvexities, convergence to a global optimum can

not be guaranteed.

Simon and Azma (1983) reported on Exxon’s experience with linear program-

ming and SLP systems. Exxon implemented a math programming system, PLATO-

FORM, for planning applications. Although the PLATOFORM was implemented

to solve large-scale linear programming problems, the system has evolved to handle

mixed integer and nonlinear problems. The PLATOFORM employed SLP algo-

rithms to solve nonlinear problems such as the pooling problem.

Lasdon et al. (1979) tested generalized reduced gradient and successive linear-

programming algorithms on the three cases of the Haverly pooling problems. Re-

sults show that the two tested algorithms outperform the recursion approach.

SLP was used to solve nonlinear optimization problems because of its ability to

utilize available LP codes and solve large-scale problems (Baker and Lasdon, 1985).

However, the resulting solutions are local optima. Therefore, since 1990 most of

17

the attempts to solve the pooling problem have focused on finding global solutions

using various approaches such as decomposition, relaxation, and Branch-and-Bound

algorithms. The following subsections summarize these attempts.

2.2.3 Benders Decomposition

Benders Decomposition has been used to solve large-scale linear and mixed-integer

problems with special structures, as well as nonlinear optimization problems since

its introduction in Benders (1962). The basic idea of this technique lies in fixing

the complicating variables: the variables that, when fixed temporarily, result in a

more tractable problem which is parameterized by the value of the complicating

variables vector. The resulting relaxed problem can be decomposed into both a

master problem and subproblems. The relaxed master problem is solved in order

to provide a lower bound for a minimization problem as well as the value of the

complicating variables. For fixed values of the complicating variables, the subprob-

lem is solved to generate an upper bound and the value of the noncomplicating

variables. Furthermore, the subproblem solutions are used to generate Benders’

feasibility and optimality cuts that are added to the master problem. The process

continues until the difference between lower and upper bound is sufficiently small

(Sahinidis and Grossmann, 1991; Geoffrion, 1972; Benders, 1962).

Geoffrion (1972) generalized Benders’ decomposition to account for broader

problems where the subproblems can be nonlinear program. Nonlinear convex

duality theory was used to derive the master problem. Floudas and Aggarwal

(1989) presented a global optimization approach based on the generalized Ben-

ders’ decomposition technique to search for the global solution of nonconvex NLP

18

and MINLP problems. Floudas and Aggarwal (1990) extended the work that had

been presented by Floudas in 1989 to determine the global optimum of the pooling

problem. The proposed approach consists of four stages. The first stage is the iden-

tification of the sources of nonconvexity. In the pooling problem, bilinear terms are

the source of nonconvexity. The second stage involves partitioning the variable set

into complicating and noncomplicating variables. Quality and estimated pool frac-

tion variables are selected to be the complicating variables in the pooling problem.

The third stage entails the decomposition of the original problem into a subproblem

and a master problem. The final stage is the iterating between the master problem

and subproblem solutions based on the generalized Benders’ decomposition tech-

nique until the specified stopping criteria are met. The procedure was applied to

Haverly’s pooling problems and one larger pooling problem. Although the global

solutions of the four problems were found, there is no guarantee for a convergence to

a global optimum (Sahinidis and Grossmann, 1991; Floudas and Aggarwal, 1990).

Such guarantee is provided by a decomposition technique, a Global Optimization

Algorithm, discussed next.

2.2.4 A Global Optimization Algorithm (GOP)

Visweswaran and Floudas (1990) proposed a generalized approach to determine a

global optimum for several classes of nonconvex programming problems of the form:

19

min
x,y

f(x, y)

s.t g(x, y) ≤ 0

h(x, y) = 0

x ∈ X

y ∈ Y

Where X and Y are non-empty, compact, convex sets. f(x, y), g(x, y), and h(x, y)

can be nonlinear functions leading to nonconvexities in the problem. The functions

f, h,and g should satisfy the following condition:

For fixed y = yk, f(x, y) and g(x, y) are convex in x, and h(x, y) is affine in x, and

for every x = xk, f(x, y) and g(x, y) are convex in y, and h(x, y) is affine in y (Liu

and Floudas, 1995; Visweswaran and Floudas, 1990).

The GOP algorithm employs duality theory to solve nonconvex optimization

problems through a series of primal and relaxed dual subproblems. The proposed al-

gorithm was proven to have finite convergence to an ε-global optimum (Visweswaran

and Floudas, 1990). The GOP algorithm was applied to solve the three cases of

the Haverly pooling problems to optimality.

Following that, Visweswaran and Floudas (1993) presented new theoretical

properties of the GOP algorithm that improve the computational performance of

the algorithm. Pooling problems with five products and three pools, each pool

having two quality components, were solved to optimality.

Androulakis et al. (1995) identified the main computational bottlenecks of the

GOP algorithm which is the requirement to solve a very large number of relaxed

20

dual problems at a given iteration. Therefore, the authors proposed a distributed

implementation of the GOP algorithm to improve the computational efficiency of

the method. The proposed approach was able to solve large-scale, randomly gen-

erated, pooling problems with up to twelve components and thirty qualities.

Before discussing the third global optimization technique, we need to discuss

the relaxation techniques that are used to generate lower bounds on the global

solutions. These lower bounds are used within Branch-and-Bound algorithms to

search for a global solution.

2.2.5 The Reformulation-Linearization/Convexification Tech-

nique (RLT)

The Reformulation-Linearization technique has been applied to bilinear program-

ming problems since its introduction in Sherali and Alameddine (1992). The pro-

posed approach consists of two fundamental steps: Reformulation and Linearization

steps. In the reformulation step, additional nonlinear constraints are generated by

multiplying some of the existing linear constraints with some of the original problem

variables. For instance, consider the following bound constraints:

(xj − xLj) ≥ 0, (x
U
j − xj) ≥ 0 , j = 1,, J

and (qi − qLi) ≥ 0, (q
U
i − qi) ≥ 0 , i = 1,, I,

where xLj ≤ xj ≤ xUj and qLi ≤ qi ≤ qUi are the original problem variables and

their range. Also, consider the linear constraints

I∑

i

aijxj − bi = 0, i = 1,I

21

The RLT approach generates new constraints by multiplying bound constraints and

the linear constraints. For example, (qi − qLi)

(
I∑

i

aijxj − bi

)
= 0

and (xj − xLj)(qi − qLi) ≥ 0 are valid RLT constraints (Sherali and Alameddine,

1992; Liberti and Pantelides, 2004). The multiplication of bound constraints

(xj − xLj)(qi − qLi) ≥ 0 and (xUj − xj)(q
U
i − qi) ≥ 0 leads to:

xjqi ≥ xLj qi + qLi xj − xLj q
L
i

xjqi ≥ xUj qi + qUi xj − xUj q
U
i

and the multiplication of bound constraints

(xUj − xj)(qi − qLi) ≥ 0 and (xj − xLj)(q
U
i − qi) ≥ 0 leads to:

xjqi ≤ xUj qi + qLi xj − xUj q
L
i

xjqi ≤ xLj qi + qUi xj − xLj q
U
i

In the linearization step, the resulting nonlinear programming problem is lin-

earized by replacing each bilinear term with a new variable. To illustrate, the above

inequalities are linearized by replacing each bilinear term xjqi with a new variable

wij as follows:

wij ≥ xljqi + qlixj − xljq
l
i

wij ≥ xuj qi + qui xj − xuj q
u
i

wij ≤ xuj qi + qlixj − xuj q
l
i

wij ≤ xljqi + qui xj − xljq
u
i

Note that the obtained linearized constraints are the same as McCormick convex

relaxation (McCormick, 1976), where a bilinear term xjqi is underestimated by

22

its convex envelope (the first two inequalities) and overestimated by its concave

envelope (the last two inequalities) (Liberti and Pantelides, 2004).

Although the newly added constraints have the potential of providing tight

bound in the convex relaxation, they contain redundant and inactive constraints

which increase the size of the resulting relaxed problem. To reduce the size of

the RLT constraints, Liberti and Pantelides (2006) proposed an algorithm, called

reduced reformulation linearization technique (RRLT). The new reformulation con-

tains fewer bilinear terms and more linear constraints. The proposed approach was

applied to thirteen pooling problems. Results indicate the efficiency of the algo-

rithm in providing tight convex relaxations.

Quesada and Grossmann (1995) used the Reformulation-Linearization technique

in the context of general process networks that consist of splitters, mixers and

process units that are interconnected with multicomponent streams. The technique

is employed to establish a relation between two proposed formulations, composition

and individual flow formulations. Moreover, the authors presented preprocessing

steps to determine initial bounds on the variables involved in the nonconvex terms.

Numerical results of twelve test problems imply that the proposed approach is

capable of providing tight lower bounds.

Foulds et al. (1992) used McCormick convex relaxation to underestimate and

overestimate bilinear terms by their convex and concave envelopes respectively.

These envelopes are defined over the rectangular region derived from the bounds

on the variables involved in bilinear terms. The procedure is tested on five pooling

problems. For four solved problems, the resulting lower bounds are equal to the

global solutions.

23

Tawarmalani and Sahinidis (2002) employed convexification techniques based

on disjunctive programming to obtain lower bounds of the pq-formulation of the

pooling problem. The authors proved that the linear programming relaxation of

the pq-formulation using bilinear envelopes results in tighter lower bounds than the

ones obtained using Lagrangean relaxation of the same formulation. The proposed

technique is used to assess the relaxation quality of three formulations of the pooling

problem. Results of solving fourteen pooling problems indicate that the linear

programming relaxation of the pq-formulation using bilinear envelopes provides

tighter lower bounds than the ones obtained through the same relaxation of the

p-formulation and the q-formulation.

Meyer and Floudas (2006) discussed three techniques to generate a lower bound

of a generalized pooling problem. In the first and second techniques, convex and

concave envelopes of bilinear terms and the reformulation-linearization technique

are used, respectively, to generate the lower bounds. In the third technique, piece-

wise linear RLT formulation, binary variables are used to model a partition of the

continuous space. Then, the resulting MINLP is reformulated as a mixed-integer

linear program using RLT principles. The approach is applied to industrial case

study with seven sources, ten plants, single sink, and three qualities. The solution

of a subnetwork with four plants was verified to be 1.2% from the optimum.

2.2.6 Lagrangean Relaxation

Lagrangean Relaxation is a relaxation technique that converts difficult problems

into easier ones by associating Lagrangean multipliers with difficult constraints

and adding them to the objective function so as to penalize their violation. On the

one hand, solving the resulting Lagrangean subproblem is easier than the original

24

problem, and it also provides a lower bound on the optimal solution of the original

problem for a minimization case. On the other hand, as more constraints are

relaxed, the obtained bound might not be tight enough (Held, 1971; Adhya et

al., 1999). For the pooling problem case, the complicating constraints are the

constraints involving bilinear terms. By relaxing these constraints, the resulting

Lagrangean subproblem has a nonlinear objective function and linear constraints.

Ben-Tal et al. (1994) proposed a Lagrangean dual to obtain a lower bound to

the q-formulation for the pooling problem as well as a branch-and-bound algorithm

to partition the feasible set of the problem until the duality gap between the non-

convex program and its Lagrangean dual is reduced. The procedure was applied

to the Haverly’s three problems and to other larger examples. The results show

that the approach is successful in solving the examples to global optima. Adhya

et al. (1999) suggested a Lagrangean relaxation approach to obtain a lower bound

for the p-formulation of the pooling problem by dualizing all nonlinear and lin-

ear constraints and leaving linear bound constraints on the flow volume and pool

quality. The resulting Lagrangean subproblem consists of optimizing a nonlinear

objective function over a hypercube. The Lagrangean subproblem was reformu-

lated as a mixed integer linear program. The proposed approach was applied to

several previous problems and to four problems that were constructed in the course

of their study. Results indicated that the proposed relaxation provided a tighter

lower bound than the one obtained from the linear-programming approach based on

McCormick estimators. A branch-and-bound algorithm was used to solve the pro-

posed Lagrangean relaxation approach and obtain a global solution for the tested

problem. Tawarmalani and Sahinidis (2002) applied Lagrangean relaxation for the

pq-formulation and proved that this relaxation is no tighter than the linear pro-

gramming relaxation obtained using bilinear envelopes for the same formulation.

25

Similar to Adhya et al. (1999), the Lagrangean relaxation proposed in this

thesis is based on the p-formulation. However, our approach is different in that

the resulting Lagrangean subproblem reserves most of the original problem struc-

ture because we relaxed only the complicating constraints which are the nonlinear

constraints. Our approach is similar to Adhya et al. (1999) in that the result-

ing Lagrangean subproblems are reduced to mixed integer programming problems.

However, the differences are in the approaches used to eliminate nonlinearities and

reduce the Lagrangean subproblems to mixed integer programming problems as

will be explained in Chapter three.

Having discussed the relaxation techniques used for generating a lower bound

on the global solution of the pooling problem, we next describe Branch-and-Bound

Algorithms.

2.2.7 Branch-and-Bound Algorithms

Branch and Bound is a popular technique which uses relaxation and enumeration

to find global solutions of optimization problems. The algorithms partition the

relaxed feasible regions into subregions and generate a tree of subproblems which

have to be solved at each node. While the lower bound on the global solution of

a minimization problem is given by a relaxed problem optimal solution, the upper

bound on the global solution is found when the optimal solution of the subproblem

is a feasible solution to the original problem. Based on the obtained bounds, some

of the nodes are fathomed by optimality or feasibility arguments. The algorithms

proceed until all the nodes are solved or fathomed (Horst and Tuy, 1996; Adhya

et al., 1999).

Most of the reviewed papers used Branch-and-Bound algorithms to obtain a

26

global solution of the pooling problem. Since having tight bounds is essential to

reduce the search space, the proposed algorithms differ in the relaxation used to

provide lower bounds on the global optima. Ben-Tal et al. (1994) provided Branch-

and-Bound algorithms to partition the feasible set of the pooling problem until the

duality gap between a nonconvex program and its Lagrangean dual is reduced. Nu-

merical results of five solved pooling problems show that the optimal solutions of

the five problems were found. Foulds et al. (1992) used McCormick convex relax-

ation to generate lower bound on the global optimum of the pooling problem. The

resulting lower bounds were integrated into Branch-and-Bound algorithms to par-

tition the hyper-rectangle region to obtain global solutions. Five pooling problems

were solved to optimality using the suggested approach. However, results show that

the procedure is time consuming when applied to large problems.

Quesada and Grossmann (1995) applied RLT to obtain a tight lower bound on

the global optimum of the pooling problem. The obtained lower bound is used

within special Branch-and-Bound algorithms. Numerical results on twelve solved

pooling problems reveal that only a small number of nodes are needed in the Branch-

and-Bound search to identify the global solutions. After applying convexification

techniques to the pq-formulation, Tawarmalani and Sahinidis (2002) integrated the

resulting lower bounds into Branch-and-Bound algorithms. Computational results

demonstrate that the proposed approach leads to a significant reduction in the

size of the Branch-and-Bound search tree. Adhya et al. (1999) used Lagrangean

relaxation within a Branch-and-Bound framework to solve the pooling problem.

Thirteen pooling problems were solved to global optimality. Audet et al. (2004)

investigated how to apply a new Branch-and-Cut quadratic program, inspired by

Al-Khayyal and Falk’s (1983), to solve the pooling problem. Results imply that

the proportion formulation, which is equivalent to the q-formulation, is prefer-

27

able for these algorithms. Liberti and Pantelides (2006) used special Branch-and-

Bound algorithms after deriving tight lower bounds using the reduced reformulation

linearization technique (RRLT). Computational results of thirteen solved pooling

problems show that having tight lower bounds speeds up the special Branch-and-

Bound algorithms.

Small-scale problems from the open literature were solved to global optimality

using available global optimization algorithms. However, solving large-scale prob-

lems to global optimality is challenging. Therefore, the literature often proposes

heuristic techniques.

2.2.8 Heuristic Techniques

Audit et al. (2004) applied an Alternate heuristic and a Variable Neighborhood

Search (VNS) metaheuristic to solve large instances of the pooling problem. The

Alternate heuristic is based on the idea of dividing a set of variables into two

subsets: complicating and noncomplicating variables and alternately solving linear

programming problems, which result from fixing one of the subsets. The solution

of each solved linear programming problem is used as parameters for the other

one. Moreover, a multistart version of the Alternate heuristic (MALT) was used to

improve the quality of the solutions.

The Variable Neighborhood Search (VNS) metaheuristic is based on the sys-

tematic change of the neighborhood within the search. We refer the readers to

Hansen and Mladenovíc (2001) for a review of VNS and its applications to several

classical optimization problems. To improve VNS solutions, MALT best solutions

were used as initial solutions for VNS.

Audit et al. (2004) applied The Variable Neighborhood Search and the Multi-

28

start Alternate heuristic to the flow and the proportion models. Thirteen pooling

problems were solved and a comparison of the computational properties of the two

modeling approaches was given. Results show that for most cases, eleven cases,

there is no significant difference between the two formulations. For the other two

cases, the proportion model gives better results. Moreover, Audit et al. (2004)

used the heuristic approaches to solve randomly generated pooling problems. Re-

sults reveal that VNS always gives the best results.

2.3 Conclusion

This chapter has reviewed the various pooling problem formulations such as the

p-formulation, the q-formulation, the pq-formulation, and the generalized formu-

lation. This chapter has also reviewed solution methodologies including recursion,

successive linear-programming algorithms, Benders decomposition, a global opti-

mization algorithm (GOP), the reformulation-linearization technique (RLT), La-

grangean Relaxation, Branch-and-Bound algorithms, and heuristic techniques.

From this review, it is clear that the challenge of solving the pooling problem is

due to the appearance of bilinear terms which results in several local optima. Hence,

most of the attempts to solve the pooling problem to global optimality are only

achieved for small-scale problems. However, solving large-scale pooling problems

to global optimality is still challenging. Practically, pooling problems involve large

numbers of pools, qualities, and final products, which result in a model with a large

number of bilinear terms. Therefore, using heuristic techniques to find good feasible

solutions for large instances is desirable. One of the attempts in this direction is

due to Audet et al (2004).

29

In this thesis, we focus on generating a tight lower bound using a new La-

grangean relaxation and constructing feasible solutions using a Lagrangean-based

heuristic. In the following chapter, the proposed Lagrangean relaxation and heuris-

tic techniques are presented.

30

Chapter 3

Problem Formulation and

Solution Methodology

3.1 Problem Formulation

In the classical blending problem, end products are produced by mixing raw materi-

als directly. Therefore, the blending problem can be formulated as a linear problem

because the quality of the blend is approximated by the weighted average of the

qualities of the input streams (Audet et al., 2004). In contrast, in the pooling

problem, raw materials are blended together, and then the resulting blend as well

as other input streams are mixed together to produce end products. Hence, the

pooling problem can be formulated as a nonlinear problem because the quality of

the pool, which is unknown, depends on the qualities and the volume of the input

streams, which are also unknown (Audet et al., 2004 ; Fieldhouse, 1993).

As mentioned previously in Chapter two, several formulations have been pro-

posed in the literature for the pooling problem. In this Chapter, three formulations

31

of the pooling problem are given with illustrative examples. First, we present the

p-formulation which is based on Adhya et al. (1999). This formulation is the one

we use to develop the solution methodology. Then, we give the q-formulation and

the pq-formulation which are based on Tawarmalani and Sahinidis (2002).

3.1.1 The p-Formulation

The pooling problem can be stated as follows. Given a set of J pools and a set of I

available raw materials with known properties, as well as a set of K final products

and a set ofW pool qualities, decisions are made to determine the optimal quantity

and quality of the streams. The aim is to minimize the difference between raw

materials cost and final product revenue while satisfying end product demand and

quality requirements (Adhya et al., 1999). Note that since not all raw materials are

delivered to pool j, we defined Nj to be the subset of raw materials i that can be

fed into pool j. The representation of the pooling problem is shown in Figure 3.1.

Before presenting the formulation, the following notation are introduced.

Indices:

i available raw materials, i = 1,, I.

j pools,j = 1,, J.

k products,k = 1,,K.

w qualities, w = 1,,W.

32

Raw materials

i

Pooling tanks

j

Final products

k

fij

qjwxjk

Raw materials

i

Pooling tanks

j

Final products

k

fij

qjwxjk

Raw materials

i

Pooling tanks

j

Final products

k

fij

qjwxjk

Figure 3.1: A Pooling Network

Parameters:

cij unit cost of the ith stream into pool j.

dk unit price of product k.

sk demand for product k.

zkw wth quality requirement for product k.

tijw wth quality specification of the ith stream into pool j.

f l
ij lower bound on flow for fij

fu
ij upper bound on flow for fij

qljw lower bound on flow for qjw

qujw upper bound on flow for qjw

xljk lower bound on flow for xjk

xujk upper bound on flow for xjk

33

Variables:

fij flow of ith input stream into pool j.

xjk total flow from pool j to product k.

qjw wth quality of pool j from pooling of streams.

The p-formulation for the pooling problem is:

(PP) min
J∑

j=1

∑

i∈Nj

cijfij −
K∑

k=1

dk
J∑

j=1

xjk (1)

s.t.
∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j (2)

qjw
K∑

k=1

xjk −
∑

i∈Nj

tijwfij = 0 ∀j, w (3)

J∑

j=1

qjwxjk − zkw
J∑

j=1

xjk ≤ 0 ∀k, w (4)

J∑

j=1

xjk ≤ sk ∀k (5)

f l
ij ≤ fij ≤ fu

ij ∀i, j (6)

qljw ≤ qjw ≤ qujw ∀j, w (7)

xljk ≤ xjk ≤ xujk ∀j, k (8)

Note that this formulation does not allow raw materials to be mixed directly

in the end products. To allow for such blending, a fake pool that receives only a

single input stream and has multiple output streams can be used.

The objective function (1) minimizes the difference between raw material cost

and end product revenue. Constraints (2) are mass balance constraints for each

34

pool. Constraints (3) represent the quality mass balances around pools. Con-

straints (4) ensure that end product quality requirements are satisfied. Constraints

(5) ensure that the total flows do not exceed demand. Constraints (3) and (4)

are bilinear constraints that introduce nonconvexity to the problem. Note that

constraints (4) in the “≤” form are used when the end product qualities such as

sulfur content are undesirable; however, when the end product qualities such as

octane number are desirable, these constraints can be expressed in the “≥” form.

Constraints (6), (7), and (8) represent the bound on the flow of the raw materi-

als, qualities, and the flows from pools to end products, respectively. The quality

bounds are estimated from the raw material qualities (Haverly, 1978). As an il-

lustration, from the streams fed into pool j, the stream with lower quality gives

the lower bound and the stream with the higher quality provides the upper bound.

Note also that except for those constraints which involve bilinear terms, which are

constraints (3) and (4), the objective function and all other constraints are linear.

An Illustrative Example of the p-Formulation

We use the pooling example (Haverly, 1978) presented in Chapter one to illustrate

how to drive the p-formulation of the pooling problem. In this example, two input

streams of crude oil, A and B are fed into a single pool. Each crude oil stream

has different known properties, such as cost and sulfur content. The third source

of crude oil, C, is used to blend directly with the pool output streams, producing

two final products with some restrictions on demand and sulfur content as shown

in Figure 3.2.

35

Product
1

Product
2

Sulfur 2.5% ,
demand 100

(Price $9)

Sulfur 1.5% ,
demand 200
(Price $15)

x11

x12

A
Sulfur 3
Cost $6

C
Sulfur 2%
Cost $10

B
Sulfur 1%
Cost $16

x21

x22

f11

f21

f12

Pool

q

Figure 3.2: Haverly’s pooling problem (p-formulation)

min 6f11 + 16f21 + 10f12 − 9x11 − 9x21 − 15x12 − 15x22

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

q(x11 + x12)− 3f11 − f21 = 0

qx11 + 2x21 − 2.5(x11 + x21) ≤ 0

qx12 + 2x22 − 1.5(x12+x22) ≤ 0

x11 + x21 ≤ 100

x12 + x22 ≤ 200

ql ≤ q ≤ qu

fij , xjk ≥ 0; ∀i, j, k

3.1.2 The q-Formulation

Ben-Tal et al. (1994) derived the q-formulation by using new variables to represent

the fraction of each input stream used in each pool instead of using explicit variables

for pool qualities.

36

We use the same notations as in 3.1.1 and define the following additional para-

meters and variables.

Parameters:

I number of available raw material

tiw wth quality of raw material i

bi availability of ith raw material

aj jth pool capacity

Variables:

gik direct flow of raw material i to product k

xjk total flow from pool j to product k

pij fraction of raw material i used in pool j

Note that instead of using explicit variables fij to represent the flow from raw

material i to pool j and explicit variables qjw to represent pool qualities, only

proportion variables pij are used. Therefore, each fij variables in the p-formulation

is replaced with pij
K∑

k

xjk ∀i, j in the q-formulation.

The resulting q-formulation for the pooling problem is:

37

min
K∑

k=1

(
J∑

j=1

xjk
I∑

i=1

cipij − dk
J∑

j=1

xjk +
I∑

i=1

(ci − dk)gik

)

(9)

s.t.
J∑

j=1

(
I∑

i=1

tiwpij − zkw

)
xjk +

I∑

i=1

(tiw − zkw)gik ≤ 0 ∀k, w (10)

J∑

j=1

xjk +
I∑

i=1

gik ≤ sk ∀k (11)

I∑

i=1

pij = 1 ∀j (12)

pij ≥ 0 ∀i, j (13)

xjk ≥ 0 ∀j, k (14)

gik ≥ 0 ∀i, k (15)

The objective function (9) minimizes the difference between raw material cost

and end product revenue. Constraints (10) ensure that end product quality require-

ments are satisfied. Constraints (11) model end product demands. Constraints (12)

represent the mass balances for each pool. Constraints (13), (14), and (15) are non-

negativity constraints.

Note that raw material availability constraints, constraints (16), and pool ca-

pacity constraints, constraints (17), can be modeled as:

J∑

j=1

K∑

k=1

pijxjk +
K∑

k=1

gik ≤ bi ∀i (16)

K∑

k=1

xjk ≤ aj ∀j (17)

The above constraints were presented in Tawarmalani and Sahinidis (2002).

38

Pool

Product
1

Product
2

Sulfur 2.5% ,
demand 100

(Price $9)

Sulfur 1.5% ,
demand 200
(Price $15)

p11(x11+ x12)

p21(x11+ x12)

g31

g32

x11

x12

A
Sulfur 3
Cost $6

C
Sulfur 2%
Cost $10

B
Sulfur 1%
Cost $16

Figure 3.3: Haverly’s pooling problem (q-formulation)

An illustrative example for the q-Formulation

Haverly’s pooling example can be written using the q-formulation as follows:

min 6(p11x11 + p11x12) + 16(p21x11 + p21x12) + 10(g31 + g32)

−9(x11 + g31)− 15(x12 + g32)

s.t. x11 + g31 ≤ 100

x12 + g32 ≤ 200

(3p11 + p21 − 2.5)x11 − 0.5g31 ≤ 0

(3p11 + p21 − 1.5)x12 + 0.5g32 ≤ 0

p11 + p21 = 1

pij , xjk, gik ≥ 0; ∀i, j, k

39

3.1.3 The pq-Formulation

Starting from the q-formulation, Tawarmalani and Sahinidis (2002) derived the

pq-formulation by adding the following convexification constraints:

I∑

i=1

pijxjk = xjk ∀j, k (18)

The convexification constraints were derived using the idea of reformulation lin-

earization technique (RLT) which appeared in the work of Sherali and Adams

(1990), as well as the work of Quesada and Grossman (1995). Constraints (18) are

obtained by multiplying
I∑

i=1

pij = 1 constraints with xjk. In a similar way, Tawar-

malani and Sahinidis (2002) derived constraints (19) by multiplying
K∑

k=1

xjk ≤ aj

constraints with pij in order to strengthen the obtained lower bound if the pq-

formulation is relaxed using the convex relaxation technique. The idea of deriving

constraints (19) was inspired by the work of Sherali et al. (1999).

K∑

k=1

pijxjk ≤ ajpij ∀i, j (19)

The resulting pq-formulation for the pooling problem is:

40

min
K∑

k=1

(
J∑

j=1

xjk
I∑

i=1

cipij − dk
J∑

j=1

+
I∑

i=1

(ci − dk)gik

)

(20)

s.t.
J∑

j=1

(
I∑

i=1

tiwpij − zkw

)
xjk +

I∑

i=1

(tiw − zkw)gik ≤ 0 ∀k, w (21)

J∑

j=1

xjk +
I∑

i=1

gik ≤ sk ∀k (22)

I∑

i=1

pij = 1 ∀j (23)

pij ≥ 0 ∀i, j (24)

xjk ≥ 0 ∀j, k (25)

gik ≥ 0 ∀i, k (26)
J∑

j=1

K∑

k=1

pijxjk +
K∑

k=1

gik ≤ bi ∀i (27)

K∑

k=1

xjk ≤ aj ∀j (28)

I∑

i=1

pijxjk = xjk ∀i, j (29)

K∑

k=1

pijxjk ≤ ajpij ∀i, j (30)

The objective function (20) minimizes the difference between raw material cost

and end product revenue. Constraints (21) ensure that end product quality require-

ments are satisfied. Constraints (22) model end product demands. Constraints (23)

represent the mass balances for each pool. Constraints (24), (25), and (26) are non-

negativity constraints. Constraints (27) and (28) model raw materials availabilities

and pool capacities, respectively. Constraints (29) and (30) are derived using the

reformulation-linearization technique.

41

An illustrative example for the pq-Formulation

Haverly’s pooling example can be written using the pq-formulation as follows:

min 6(p11x11 + p11x12) + 16(p21x11 + p21x12) + 10(g31 + g32)

−9(x11 + g31)− 15(x12 + g32)

s.t. x11 + g31 ≤ 100

x12 + g32 ≤ 200

(3p11 + p21 − 2.5)x11 − 0.5g31 ≤ 0

(3p11 + p21 − 1.5)x12 + 0.5g32 ≤ 0

p11 + p21 = 1

p11x11 + p21x11 = x11

p11x12 + p21x12 = x12

pij , xjk, gik ≥ 0; ∀i, j, k

3.2 Proposed Lagrangean Relaxation

As mentioned previously in Chapter two, Lagrangean relaxation converts difficult

problems into easier ones by dualizing complicating constraints. However, as more

constraints are relaxed the resulting Lagrangean bound might not be tight enough.

Adhya et al. (1999) constructed a Lagrangean relaxation for the p-formulation of

the pooling problem by relaxing all constraints except the bound constraints on

the flow and quality variables. Note also that Tawarmalani and Sahinidis (2002)

applied the same Lagrangean relaxation presented in Adhya et al. (1999) to the pq-

formulation. Ben-Tal et al. (1994) proposed a Lagrangean dual based on relaxing

the entire constraint set except pool mass balance constraints.

42

In this Section, we present a new Lagrangean relaxation for the pooling problem

based on the p-formulation. The proposed relaxation differs from the relaxation of

Adhya et al. (1999) in that it targets only the nonlinear constraints. As a result,

the resulting Lagrangean subproblem has most of the original problem structure.

Moreover, the way we eliminate nonlinearities from the Lagrangean subproblem

objective function is different from the one used in Adhya et al. (1999).

3.2.1 Lagrangean Relaxation for the General p-Formulation

To apply Lagrangean relaxation, we associate unrestricted Lagrangean multipliers

αjw with constraints (33) and positive Lagrangean multipliers βkw with constraints

(34) in (PP).

(PP) min
J∑

j=1

∑

i∈Nj

cijfij −
K∑

k=1

dk
J∑

j=1

xjk (31)

s.t.
∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j (32)

qjw
K∑

k=1

xjk −
∑

i∈Nj

tijwfij = 0 ∀j, w ← αjw (33)

J∑

j=1

qjwxjk − zkw
J∑

j=1

xjk ≤ 0 ∀k, w ← βkw ≥ 0 (34)

J∑

j=1

xjk ≤ sk ∀k (35)

f l
ij ≤ fij ≤ fu

ij ∀i, j (36)

qljw ≤ qjw ≤ qujw ∀j, w (37)

xljk ≤ xjk ≤ xujk ∀j, k (38)

43

The resulting Lagrangean subproblem is:

(SPP) min
∑

i∈Nj

J∑

j=1

fij(cij −
W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xjk(−dk +
W∑

w=1

qjw(αjw + βkw)

−
W∑

w=1

zkwβkw)

s.t. ∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

J∑

j=1

xjk ≤ sk ∀k

f l
ij ≤ fij ≤ fu

ij ∀i, j

qljw ≤ qjw ≤ qujw ∀j, w

xljk ≤ xjk ≤ xujk ∀j, k

For a given value of Lagrangean multipliers (αjw, βkw), the optimal solution

of (SPP) provides a lower bound on the global solution of the original nonlinear

problem (PP).

Rearranging terms in (SPP), we get

44

min
∑

i∈Nj

J∑

j=1

fij(cij −
W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xjk(−dk −
W∑

w=1

zkwβkw)

+
J∑

j=1

K∑

k=1

xjk(
W∑

w=1

qjw(αjw + βkw))

s.t. ∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

J∑

j=1

xjk ≤ sk ∀k

f l
ij ≤ fij ≤ fu

ij ∀i, j

qljw ≤ qjw ≤ qujw ∀j, w

xljk ≤ xjk ≤ xujk ∀j, k

To solve (SPP) to global optimality, we are interested in eliminating the non-

linearity from the Lagrangean subproblem objective function. To do that, we re-

formulate (SPP) into a mixed integer program as follows. First, if we define a new

continuous variable ujw to satisfy the following relationship

ujw = qjw

(
K∑

k=1

xjk(αjw + βkw)

)

, ∀j, w

then the nonlinearity can be eliminated by using the linear bound constraints

qljw ≤ qjw ≤ qujw and the fact that qjw does not appear in the rest of the con-

straints. Depending on the sign of
K∑

k=1

xjk(αjw+βkw) two cases should be considered:

45

(
K∑

k=1

(αjw + βkw)xjk)q
l
jw ≤ ujw ≤ (

K∑

k=1

(αjw + βkw)xjk)q
u
jw,

if (
K∑

k=1

xjk(αjw + βkw)) ≥ 0,

(
K∑

k=1

(αjw + βkw)xjk)q
u
jw ≤ ujw ≤ (

K∑

k=1

(αjw + βkw)xjk)q
l
jw,

if (
K∑

k=1

xjk(αjw + βkw)) ≤ 0,

Hence, Replacing each qjw

(
K∑

k=1

xjk(αjw + βkw)

)
with ujw in (SPP) reduces the

Lagrangean subproblem to:

(SPPU) min
∑

i∈Nj

J∑

j=1

fij(cij −
W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xjk(−dk −
W∑

w=1

zkwβkw)

+
J∑

j=1

W∑

w=1

ujw

s.t.
∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

J∑

j=1

xjk ≤ sk ∀k

f l
ij ≤ fij ≤ fu

ij ∀i, j

xljk ≤ xjk ≤ xujk ∀j, k

(
K∑

k=1

(αjw + βkw)xjk)q
l
jw ≤ ujw ≤ (

K∑

k=1

(αjw + βkw)xjk)q
u
jw, ∀j, w

if (
K∑

k=1

xjk(αjw + βkw)) ≥ 0

(
K∑

k=1

(αjw + βkw)xjk)q
u
jw ≤ ujw ≤ (

K∑

k=1

(αjw + βkw)xjk)q
l
jw, ∀j, w

if (
K∑

k=1

xjk(αjw + βkw)) ≤ 0

46

Second, to model the if-then constraints in (SPPU), we define a binary variable

yjw =

1 if (
K∑

k=1

xjk(αjw + βkw)) ≥ 0

0 otherwise

and introduce big-M constraints as follows:

(
K∑

k=1

(αjw + βkw)xjk)q
l
jw ≤ ujw +M(1− yjw) ∀j, w

ujw ≤ (
K∑

k=1

(αjw + βkw)xjk)q
u
jw +M(1− yjw) ∀j, w

(
K∑

k=1

(αjw + βkw)xjk)q
u
jw ≤ ujw +Myjw ∀j, w

ujw ≤ (
K∑

k=1

(αjw + βkw)xjk)q
l
jw +Myjw ∀j, w

(
K∑

k=1

(αjw + βkw)xjk) ≥ −M(1− yjw) ∀j, w

(
K∑

k=1

(αjw + βkw)xjk) ≤Myjw ∀j, w

The above constraints can be written as:

(
K∑

k=1

(αjw + βkw)xjk)q
l
jw − ujw +Myjw ≤M ∀j, w

−(
K∑

k=1

(αjw + βkw)xjk)q
u
jw + ujw +Myjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)xjk)q
u
jw − ujw −Myjw ≤ 0 ∀j, w

−(
K∑

k=1

(αjw + βkw)xjk)q
l
jw + ujw −Myjw ≤ 0 ∀j, w

(
K∑

k=1

−(αjw + βkw)xjk) +Myjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)xjk)−Myjw ≤ 0 ∀j, w

47

Therefore, (SPPU) is equivalent to the following mixed integer program:

(SMIP) min
∑

i∈Nj

J∑

j=1

fij(cij −
W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xjk(−dk −
W∑

w=1

zkwβkw)

+
J∑

j=1

W∑

w=1

ujw

s.t.
∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

J∑

j=1

xjk ≤ sk ∀k

(
K∑

k=1

(αjw + βkw)xjk)q
l
jw − ujw +Myjw ≤M ∀j, w

−(
K∑

k=1

(αjw + βkw)xjk)q
u
jw + ujw +Myjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)xjk)q
u
jw − ujw −Myjw ≤ 0 ∀j, w

−(
K∑

k=1

(αjw + βkw)xjk)q
l
jw + ujw −Myjw ≤ 0 ∀j, w

(
K∑

k=1

−(αjw + βkw)xjk) +Myjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)xjk)−Myjw ≤ 0 ∀j, w

f l
ij ≤ fij ≤ fu

ij ∀i, j

xljk ≤ xjk ≤ xujk ∀j, k

yjw ∈ {0, 1} ∀j, w

The best Lagrangean lower bound is given by the optimal solution of the La-

grangean dual problem:

48

max
β≥0,α

min
∑

i∈Nj

J∑

j=1

fij(cij −
W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xjk(−dk +
W∑

w=1

qjw(αjw + βkw)

−
W∑

w=1

zkwβkw)

s.t. ∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

J∑

j=1

xjk ≤ sk ∀k

f l
ij ≤ fij ≤ fu

ij ∀i, j

qljw ≤ qjw ≤ qujw ∀j, w

xljk ≤ xjk ≤ xujk ∀j, k

Which is equivalent to:

max
β≥0,α

min
h∈H

∑

i∈Nj

J∑

j=1

fh
ij(cij −

W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xhjk(−dk +
W∑

w=1

qhjw(αjw + βkw)

−
W∑

w=1

zkwβkw)

where H is the index set of extreme points to the set:

49

H :

(fh, xh, uh, yh) :
∑

i∈Nj

fh
ij −

K∑

k=1

xhjk = 0 ∀j

J∑

j=1

xhjk ≤ sk ∀k

(
K∑

k=1

(αjw + βkw)x
h
jk)q

l
jw − uhjw +Myhjw ≤M ∀j, w

−(
K∑

k=1

(αjw + βkw)x
h
jk)q

u
jw + uhjw +Myhjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)x
h
jk)q

u
jw − uhjw −Myhjw ≤ 0 ∀j, w

−(
K∑

k=1

(αjw + βkw)x
h
jk)q

l
jw + uhjw −Myhjw ≤ 0 ∀j, w

(
K∑

k=1

−(αjw + βkw)x
h
jk) +Myhjw ≤M ∀j, w

(
K∑

k=1

(αjw + βkw)x
h
jk)−Myhjw ≤ 0 ∀j, w

f l
ij ≤ fh

ij ≤ fu
ij ∀i, j

xljk ≤ xhjk ≤ xujk ∀j, k

yhjw ∈ {0, 1} ∀j, w

which are also feasible to

H :

(fh, xh, qh) :
∑

i∈Nj

fh
ij −

K∑

k=1

xhjk = 0 ∀j

J∑

j=1

xhjk ≤ sk ∀k

f l
ij ≤ fh

ij ≤ fu
ij ∀i, j

qljw ≤ qhjw ≤ qujw ∀j, w

xljk ≤ xhjk ≤ xujk ∀j, k

50

If we define

θ = min
h∈H

∑

i∈Nj

J∑

j=1

fh
ij(cij −

W∑

w=1

tijwαjw) +
J∑

j=1

K∑

k=1

xhjk(−dk +
W∑

w=1

qhjw(αjw + βkw)

−
W∑

w=1

zkwβkw)

The Lagrangean dual problem can be written as the following linear program,

which we refer to as the master problem (MPP):

(MPP) max
α,β,θ

θ

s.t. θ +
J∑

j=1

W∑

w=1

αjw(
∑

i∈Nj

tijwf
h
ij − qhjw

K∑

k=1

xhjk) +
K∑

k=1

W∑

w=1

βkw

(
J∑

j=1

xhjk(zkw − qhjw)) ≤
∑

i∈Nj

J∑

j=1

cijf
h
ij −

K∑

k=1

dk
J∑

j=1

xhjk; ∀h ∈ H

βkw ≥ 0

3.3 An Illustrative Example

In this Section, we apply the proposed Lagrangean relaxation to the pooling exam-

ple presented in Section 3.1.

3.3.1 Lagrangean Relaxation for The Pooling Example

We construct the Lagrangean relaxation by associating the unrestricted Lagrangean

multiplier λ with constraint (42) and positive Lagrangean multipliers α and β with

constraints (43) and (44) respectively.

51

(PP) min 6f11 + 16f21 + 10f12 − 9x11 − 9x21 − 15x12 − 15x22 (39)

s.t. f11 + f21 − x11 − x12 = 0 (40)

f12 − x21 − x22 = 0 (41)

−3f11 − f21 + qx11 + qx12 = 0 ←− λ (42)

(q − 2.5)x11 − .5x21 ≤ 0 ←− α ≥ 0 (43)

(q − 1.5)x12 + .5x22 ≤ 0 ←− β ≥ 0 (44)

x11 + x21 ≤ S1 = 100 (45)

x12 + x22 ≤ S2 = 200 (46)

ql ≤ q ≤ qu (47)

fij, xjk ≥ 0; ∀i, j, k (48)

The resulting Lagrangean subproblem is:

(SPP) min (6− 3λ)f11 + (16− λ)f21 + 10f12 + (−9 + qλ+ qα− 2.5α)x11

+(−9− .5α)x21 + (−15 + qλ+ qβ − 1.5β)x12 + (−15 + .5β)x22

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

x11 + x21 ≤ S1 = 100

x12 + x22 ≤ S2 = 200

ql ≤ q ≤ qu

fij, xjk ≥ 0; ∀i, j, k

For a given value of Lagrangean multipliers (λ, α, β), the optimal solution

of (SPP) provides a lower bound on the global solution of the original nonlinear

problem (PP).

52

After rearranging the terms in (SPP), we get:

min (6− 3λ)f11 + (16− λ)f21 + 10f12 + (−9− 2.5α)x11 + (−9− .5α)x21

+(−15− 1.5β)x12 + (−15 + .5β)x22 + q(λ+ α)x11 + q(λ+ β)x12

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

x11 + x21 ≤ 100

x12 + x22 ≤ 200

ql ≤ q ≤ qu

fij, xjk ≥ 0; ∀i, j, k

.

To solve (SPP) to global optimality, we are interested in eliminating the non-

linearity from the Lagrangean subproblem objective function. To do that, we re-

formulate (SPP) into a mixed integer program as follows. First, if we define a new

variable u to satisfy the following relationship

u = q ((λ+ α)x11 + (λ+ β)x12) ,

then the nonlinearity can be eliminated by using the linear bound constraints ql ≤

q ≤ qu and the fact that q does not appear in the other constraints. Two cases

should be considered depending on the sign of (λ+ α)x11 + (λ + β)x12 :

((λ+ α)x11 + (λ+ β)x12) q
l ≤ u ≤ ((λ+ α)x11 + (λ+ β)x12) q

u,

if ((λ+ α)x11 + (λ+ β)x12) ≥ 0,

((λ+ α)x11 + (λ+ β)x12) q
u ≤ u ≤ ((λ+ α)x11 + (λ+ β)x12) q

l,

if ((λ+ α)x11 + (λ+ β)x12) ≤ 0

53

where ql = 1, and qu = 3.

Hence, the subproblem is reduced to:

(SPPU) min (6− 3λ)f11 + (16− λ)f21 + 10f12 + (−9− 2.5α)x11 + (−9− .5α)x21

+(−15− 1.5β)x12 + (−15 + .5β)x22 + u

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

x11 + x21 ≤ 100

x12 + x22 ≤ 200

((λ+ α)x11 + (λ+ β)x12) ≤ u ≤ 3 ((λ+ α)x11 + (λ+ β)x12) ,

if ((λ+ α)x11 + (λ+ β)x12) ≥ 0,

3 ((λ+ α)x11 + (λ+ β)x12) ≤ u ≤ ((λ+ α)x11 + (λ+ β)x12) ,

if ((λ+ α)x11 + (λ+ β)x12) ≤ 0

fij , xjk ≥ 0; ∀i, j, k

Second, to model the if-then constraints in (SPPU), we define a binary variable

y =

1 if ((λ+ α)x11 + (λ + β)x12) ≥ 0

0 otherwise

and introduce big-M constraints as follows:

((λ+ α)x11 + (λ+ β)x12) ≤ u+M(1− y)

u ≤ 3 ((λ+ α)x11 + (λ+ β)x12) +M(1− y)

3 ((λ+ α)x11 + (λ+ β)x12) ≤ u+My

u ≤ ((λ+ α)x11 + (λ+ β)x12) +My.

(λ+ α)x11 + (λ+ β)x12 ≥ −M(1− y)

(λ+ α)x11 + (λ+ β)x12 ≤My

54

The above constraints can be written as follows

(λ+ α)x11 + (λ+ β)x12 − u+My ≤M

u− ((λ+ α)3x11 − (λ+ β)3x12) +My ≤M

(λ+ α)3x11 + (λ+ β)3x12 − u−My ≤ 0

−(λ+ α)x11 − (λ+ β)x12 + u−My ≤ 0

−(λ+ α)x11 − (λ+ β)x12 +My ≤M

((λ+ α)x11 + (λ+ β)x12)−My ≤ 0

Therefore, (SPPU) is equivalent to the following mixed integer program:

(SMIP) min (6− 3λ)f11 + (16− λ)f21 + 10f12 + (−9− 2.5α)x11 + (−9− .5α)x21

+(−15− 1.5β)x12 + (−15 + .5β)x22 + v

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

x11 + x21 ≤ 100

x12 + x22 ≤ 200

(λ+ α)x11 + (λ+ β)x12 − u+My ≤M

u− ((λ+ α)3x11 − (λ+ β)3x12) +My ≤M

(λ+ α)3x11 + (λ + β)3x12 − u−My ≤ 0

−(λ+ α)x11 − (λ+ β)x12 + u−My ≤ 0

−(λ+ α)x11 − (λ+ β)x12 +My ≤M

((λ+ α)x11 + (λ+ β)x12)−My ≤ 0

fij, xjk ≥ 0; ∀i, j, k; y ∈ {0, 1}.

55

The optimal solution of the above mixed integer Lagrangean subproblem pro-

vides a lower bound on the global solution of the original nonlinear problem How-

ever, the best Lagrangean lower bound is given by the optimal solution of the

Lagrangean dual problem.

max
α≥0,β≥0

min (6− 3λ)f11 + (16− λ)f21 + 10f12 + (−9 + qλ+ qα− 2.5α)x11

+(−9− .5α)x21 + (−15 + qλ+ qβ − 1.5β)x12 + (−15 + .5β)x22

s.t. f11 + f21 − x11 − x12 = 0

f12 − x21 − x22 = 0

x11 + x21 ≤ 100

x12 + x22 ≤ 200

ql ≤ q ≤ qu

fij , xjk ≥ 0; ∀i, j, k

Which is equivalent to:

max
α≥0,β≥0

min
h∈H

(6− 3λ)fh
11 + (16− λ)fh

21 + 10f
h
12 + (−9 + qhλ+ qhα− 2.5α)xh11

+(−9− .5α)xh21 + (−15 + qhλ+ qhβ − 1.5β)xh12 + (−15 + .5β)xh22

where H is the index set of extreme points to the set:

56

(fh, xh, uh, yh) : fh
11 + fh

21 − xh11 − xh12 = 0

fh
12 − xh21 − xh22 = 0

xh11 + xh21 ≤ 100

xh12 + xh22 ≤ 200

(λ+ α)xh11 + (λ+ β)xh12 − uh +Myh ≤M

uh −
(
(λ+ α)3xh11 − (λ+ β)3xh12

)
+Myh ≤M

(λ+ α)3xh11 + (λ+ β)3xh12 − uh −Myh ≤ 0

−(λ + α)xh11 − (λ+ β)xh12 + uh −Myh ≤ 0

−(λ + α)xh11 − (λ+ β)xh12 +Myh ≤M
(
(λ+ α)xh11 + (λ+ β)xh12

)
−Myh ≤ 0

fh
ij , x

h
jk ≥ 0; ∀i, j, k; yh ∈ {0, 1}.

which are also feasible to

H :

(fh, xh, qh) : fh
11 + fh

21 − xh11 − xh12 = 0

fh
12 − xh21 − xh22 = 0

xh11 + xh21 ≤ 100

xh12 + xh22 ≤ 200

ql ≤ qh ≤ qu,

fh
ij , x

h
jk ≥ 0; ∀i, j, k

If we define

θ = min
h∈H

(6− 3λ)fh

11 + (16− λ)fh
21 + 10f

h
12 + (−9 + qhλ+ qhα− 2.5α)xh11

+(−9− .5α)xh21 + (−15 + qhλ+ qhβ − 1.5β)xh12 + (−15 + .5β)xh22

57

The Lagrangean dual problem can be written as the following linear program,

which we refer to as the master problem.

(MPP) max
α,β,θ

θ

s.t. θ + (3fh
11 + fh

21 + qh(−xh11 − xh12))λ+ (2.5x
h
11 + .5xh21 − qhxh11)α

+(1.5xh12 − .5xh22 − qxh12)β ≤ 6f
h
11 + 16f

h
21 + 10f

h
12 − 9x

h
11 − 9x

h
21

−15xh12 − 15x
h
22; ∀h ∈ H

α ≥ 0, β ≥ 0

3.4 Strengthening the Lagrangean Lower Bounds

Generally, for global optimization techniques such as Branch-and-Bound algorithms,

tight bounds reduce the search space and, consequently, improve the performance

of the algorithms. For heuristic techniques, tight bounds can also be useful in

improving the quality of the heuristic solutions.

In this Section, we seek to improve the quality of the heuristic solutions by

improving the Lagrangean lower bounds. In order to do that, we generate valid

cuts using the idea of replacing each bilinear term with a new linear variable and

adding linear constraints to the Lagrangean subproblem to bound the value of the

linear variables. For instance, if we define a new nonnegative variable vjkw to replace

each bilinear term qjwxjk we have the following relationship

vjkw = qjwxjk ∀j, k, w

Using the linear bound constraints qljw ≤ qjw ≤ qujw , we can eliminate the nonlin-

earity and bound the value of the introduced variable vjkw as follows:

qljwxjk ≤ vjkw ≤ qujwxjk ∀j, k, w (49)

58

Thus, the quality constraints

qjw
K∑

k=1

xjk −
∑

i∈Nj

tijwfij = 0 ∀j, w

J∑

j=1

qjwxjk − zkw
J∑

j=1

xjk ≤ 0 ∀k, w

can be written as:

K∑

k=1

vjkw −
∑

i∈Nj

tijwfij = 0 ∀j, w (50)

J∑

j=1

vjkw − zkw
J∑

j=1

xjk ≤ 0 ∀k, w (51)

Recall that in Section 3.2, we defined another new variable ujw to satisfy the fol-

lowing relationship

ujw = qjw

(
K∑

k=1

xjk(αjw + βkw)

)
∀j, w

The above constraints can also be written as:

ujw =
K∑

k=1

vjkw(αjw + βkw) ∀j, w (52)

Constraints (49), (50), (51),and (52) are added to the Lagrangean subproblem to

strengthen the Lagrangean lower bound.

3.5 A Heuristic Approach and Overall Algorithm

In Section 3.2, we generated a lower bound on the global solution of the pooling

problem using Lagrangean relaxation. However, the solutions (f̄ , x̄) we get from

59

solving the Lagrangean subproblem, are mostly likely to be infeasible for the origi-

nal nonlinear problem. Hence, we use a Lagrangean heuristic to construct feasible

solutions and to provide an upper bound on the original nonlinear problem opti-

mal solution. Lagrangean heuristics typically work on the Lagrangean subproblem

solution by modifying it to be feasible to the original nonlinear problem. In our

approach, the Lagrangean heuristics works as follows:

1. Start with initial values for Lagrangean multipliers (α, β).

2. Solve the Lagrangean subproblem (SMIP) and find the optimal values (f̄ ,

x̄) of the flow variables.

3. Keep the best Lagrangean lower bound Z̄Lag found so far.

4. Using the Lagrangean subproblem optimal solution (f̄ , x̄), calculate the qual-

ity values from the quality mass balance constraints

qjw
K∑

k=1

xjk −
∑

i∈Nj

tijwfij = 0 ∀j, w

as follows:

q̄jw =

(
∑

i∈Nj

tijwf̄ij

K∑

k=1

x̄jk

)
∀j, w

5. Using the obtained q̄jw values from 4, fix the quality values in the quality

balance and requirement constraints in (PP) and solve the resulting linear

program:

60

min
J∑

j=1

∑

i∈Nj

cijfij −
K∑

k=1

dk
J∑

j=1

xjk

s.t.
∑

i∈Nj

fij −
K∑

k=1

xjk = 0 ∀j

q̄jw
K∑

k=1

xjk −
∑

i∈Nj

tijwfij = 0 ∀j, w

J∑

j=1

q̄jwxjk − zkw
J∑

j=1

xjk ≤ 0 ∀k, w

J∑

j=1

xjk ≤ sk ∀k

f l
ij ≤ fij ≤ fu

ij ∀i, j

xljk ≤ xjk ≤ xujk ∀j, k

6. Keep the best found feasible solution Z̄Heur.

7. Solve the master problem (MPP) to get new values for Lagrangean multipli-

ers (α, β) and get the value of its objective function Z̄Mas.

8. If the stopping condition ZMas − ZLag > ε is not met, update Lagrangean

multipliers in step 1 and repeat steps 2-8.

3.6 Conclusion

In this chapter, we explained with illustrative examples three mathematical models

of the pooling problem. These models are the p-formulation, the q-formulation,

and the pq-formulation. This chapter also presented a new Lagrangean relaxation

for the pooling problem based on the p-formulation. We relaxed only the com-

plicating constraints which are the quality balance and the quality requirement

constraints. We showed how the Lagrangean subproblem was reduced to a mixed

61

integer programming problem using binary variables. We improved the resulting

Lagrangean lower bounds by adding valid cuts to the Lagrangean subproblem. The

added constraints are derived using the idea of replacing each bilinear term with a

new continuous variable and adding linear constraints to the Lagrangean subprob-

lem to bound the value of the new variable. To construct feasible solutions, we

used a Lagrangean heuristic that modified the Lagrangean subproblem solutions to

be feasible to the relaxed constraints. The following chapter reports on numerical

results of fifteen pooling problems from the literature.

62

Chapter 4

Computational Results

The proposed approach is coded in Matlab 7. The master problem and the subprob-

lem are solved using GLPK. Fifteen pooling problems collected from the literature

were solved using the proposed approach. Table 4.1 shows test problem character-

istics in terms of number of pools, qualities, raw materials, and end products.

Table 4.2 shows a comparison between the proposed Lagrangean lower bound

and those lower bounds proposed in the literature. The second column displays the

linear-programming relaxation, LP, for the p-formulation using McCormick overes-

timators and underestimators (Foulds et al., 1992; Adhya et al, 1999). The third

column shows the obtained bounds from linear-programming relaxation , LPpq, of

the pq-formulation using standard bilinear envelopes as presented in Tawarmalani

and Sahinidis (2002). The fourth column, LPRRLT , shows the lower bounds pre-

sented in Liberti and Pantelides (2006). These lower bounds result from using

RRLT constraints. The fifth column shows the obtained bounds from the La-

grangean relaxation of Adhya et al. (1999) for the p-formulation (LRAST). The

63

Number of

Problem Raw Materials Pools Qualities for Each Pool End Products

Haverly1 3 1 1 2

Haverly2 3 1 1 2

Haverly3 3 1 1 2

Foulds2 6 2 1 4

Foulds3 11 8 1 16

Foulds4 11 8 1 16

Foulds5 11 4 1 16

Ben-Tal4 4 1 1 2

Ben-Tal5 5 3 2 5

Adhya1 5 2 4 4

Adhya2 5 2 6 4

Adhya3 8 3 6 4

Adhya4 8 2 4 5

RT1 3 2 4 3

RT2 3 2 4 3

Table 4.1: Test Problem Characteristics

64

previous lower bounds values are taken from Adhya et al. (1999), Tawarmalani and

Sahinidis (2002), and Liberti and Pantelides (2006). The sixth column shows the

proposed Lagrangean lower bounds. The seventh column shows the evaluation of

the quality of the Lagrangean lower bounds with respect to the global optima com-

puted as
(
Global optimum -Lagrangean lower bound

Global optimum

)
× 100. Finally, the last column, GO,

shows the global optimum values. Results reveal that for eight solved cases the

obtained Lagrangean lower bounds are equal to the global optima, whereas for

seven cases the obtained Lagrangean lower bounds are within 8.2% of the global

solutions on average. Numerical results also indicate that for Haverly2, Haverly3,

and RT2 the proposed Lagrangean relaxation gives tighter lower bounds than the

ones obtained in the literature. The resulting lower bounds for Haverly1, Haverly2,

Foulds2, Foulds3, Foulds4, Foulds5, Ben-Tal4, and Ben-Tal5 are equal to the global

optima. Figure 4.1 summarizes this comparison.

Table 4.3 shows a comparison between the proposed Lagrangean lower bounds

and the heuristic solutions. The second column gives Lagrangean lower bounds

(Lag. LB). The third column shows the Lagrangean heuristic results obtained from

solving a linear program with fixed quality values calculated from the quality mass

balance constraints using the Lagrangean subproblem optimal solution at each iter-

ation. The fourth and fifth columns show the evaluation of the heuristic quality with

respect to the Lagrangean lower bound (LB) and global optimum (GO) computed

as
(
Heuristic solution -Lagrangean lower bound

Lagrangean lower bound

)
×100 ,

(
Heuristic solution -Global optimum

Global optimum

)
×100 re-

spectively. The sixth column shows the global solutions. Numerical results indicate

the efficiency of the Lagrangean heuristic technique. For nine cases the heuristic

gives the global optima, and for the other cases the heuristic solutions are within

1.8% of the global solution on average.

65

Lower Bounds

Problem LP LPp q LPRRLT LRAST . Lag. LB

Quality

of LB

w.r.t

GO

GO.

Haverly1 -500 -500 -400 -500 -400 0 -400

Haverly2 -1000 -1000 -1000 -1000 -600 0 -600

Haverly3 -800 -800 -800 -800 -781.67 4.2% -750

Foulds2 -1100 -1100 -1133.3 -1100 -1100 0 -1100

Foulds3 -8.00 -8.00 -8.00 -8.00 -8.00 0 -8.00

Foulds4 -8.00 -8.00 -8.00 -8.00 -8.00 0 -8.00

Foulds5 -8.00 -8.00 -8.00 -8.00 -8.00 0 -8.00

Ben-Tal4 -550 -550 -450 -550 -450 0 -450

Ben-Tal5 -3500 -3500 -3500 -3500 -3500 0 -3500

Adhya1 -999.31 -840.27 -572.4 -939.29 -775.07 40.9% -549.80

Adhya2 -854.10 -574.78 -572.4 -825.59 -642.55 16.9% -549.80

Adhya3 -882.84 -574.78 -571.1 -864.81 -687.19 22.5% -561.05

Adhya4 -1012.50 -961.93 -1029 -988.50 -969.27 10.4% -877.65

RT1 - - - - -4287.98 3.6% -4136.21

RT2 -6331.73 -6034.87 - - -5485.38 24.8% -4391.83

Table 4.2: A Comparison of Lower Bounds and Global Optima (GO)

66

Quality of Heuristic%

Problem Lag. LB Lag Heuristic
with respect

to LB

with respect

to GO
GO.

Haverly1 −400 −400 0 optimal −400

Haverly2 −600 −600 0 optimal −600

Haverly3 −781.67 −750 4.1% optimal −750

Foulds2 −1100 −1000 0 9% −1100

Foulds3 −8.00 −8.00 0 optimal −8.00

Foulds4 −8.00 −8.00 0 optimal −8.00

Foulds5 −8.00 −8.00 0 optimal −8.00

Ben-Tal4 −450 −450 0 optimal −450

Ben-Tal5 −3500 −3500 0 optimal −3500

Adhya1 −775.07 −539.17 30.4% 1.9% −549.80

Adhya2 −642.55 −549.42 14.5% 0.07% −549.80

Adhya3 −687.19 −548.29 20.2% 2.3% −561.05

Adhya4 −969.27 −865.23 10.7% 1.4% −877.65

RT1 −4287.98 −4136.21 3.5% optimal −4136.21

RT2 −5485.38 −3785.53 30.9% 13.8% −4391.83

Table 4.3: Lagrangean Bounds and Heuristic Results

67

%Gap between Lower Bounds and Global Solutions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test Problems

%Gap

LB using LP LB using LP(pq) LB using LP(RRLT)

LB Lag Proposed Lag GO

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 4.1: A Comparison of Lower Bounds and Optimal Values

Table 4.4 compares the proposed Lagrangean heuristic to two heuristics from the

literature. Columns two and three display results for the Variable Neighborhood

Search (VNS) and the Multistart Alternate heuristic (MALT) respectively. These

results were presented in Audet et al. (2004) and were obtained from solving the

flow model of the poling problem. Column four gives the Lagrangean heuristic

results, and Column five provides the global solutions. Figure 4.2 summarizes

these results. VNS solutions are on average 4.08% from the global solutions, whereas

MALT solutions are within 6.76% of the global solutions. The Lagrangean heuristic

solutions are on average 1.8% from the global solutions. Numerical results indicate

that the proposed Lagrangean heuristic outperforms VNS and MALT in Adhya3

which has the largest number of qualities and pools. Although numerical results

of RT2 indicate that there is a significant difference between the VNS and MALT

68

Problem VNS MALT Lag Heuristic Global Optimum

Haverly1 −400 −400 −400 −400

Haverly2 −600 −600 −600 −600

Haverly3 −750 −700 −750 −750

Foulds2 −1100 −1070.86 −1000 −1100

Foulds3 − − −8.00 −8.00

Foulds4 − − −8.00 −8.00

Foulds5 − − −8.00 −8.00

Ben-Tal4 −450 −450 −450 −450

Ben-Tal5 −3500 −3240 −3500 −3500

Adhya1 −545.27 −532.9 −539.17 −549.80

Adhya2 −543.909 −535.6 −549.42 −549.80

Adhya3 −412.14 −397.4 −548.29 −561.05

Adhya4 −876.2 −876.2 −865.23 −877.65

RT1 −4136.21 −4136.21 −4136.21 −4136.21

RT2 −4391.83 −4330.78 −3785.53 −4391.83

Table 4.4: A Comparison of Heuristic Solutions and Global Optima

results and Lagrangean heuristic results, finding a feasible solution for this problem

is difficult as stated in Audet et al. (2004). In the process of generating feasible

solution to RT2, Audet et al. (2004) generated 10,000 sets of proportion values at

random and there is no one feasible solution. Therefore, to improve VNS solutions

Audet et al. (2004) used MALT best solutions as initial solutions for VNS and tried

some tricks to find feasible solutions. Nevertheless, when we solve RT2, Lagrangean

heuristic gives three feasible solutions without using any tricks.

Table 4.5 shows a comparison between the obtained Lagrangean lower bounds

69

%Gap between Heuristic Solutions and Global Solutions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test Problems

MALT VNS Lag Heuristic GO

%Gap

0%

10%

20%

30%

Figure 4.2: A Comparison of Heuristic Solutions and Global Solutions

without cuts and the ones obtained by adding the cuts proposed in Section 3.4. A

comparison between heuristic solutions before and after adding the cuts are also

given in the same table. “–” means that we do not add cuts to the problem because

the Lagrangean lower bound is equal to the optimal solution. Results show that

the added cuts are effective in providing tighter lower bounds and, consequently,

improving the heuristic solutions. These comparisons are summarized in Figures

4.3 and 4.4

Tables 4.6 reports on the computational time partition and the number of iter-

ations before and after adding the cuts. Columns two and three show the number

of iterations before and after adding the cuts. Column seven shows the total CPU

time in seconds before adding the cuts whereas Columns 4, 5, and 6 show the com-

putational time of the subproblem (SP), master problem (MP), and heuristic (Lag

Heur.) respectively as a percentage of the total computational time before adding

the cuts. Column eleven shows the total CPU time in seconds after adding the

70

Problem Lag. Bound
Lag. Bound

with Cuts

Lag Heur

without Cuts

Lag Heur

with Cuts
GO.

Haverly1 −500 −400 −400 −400 −400

Haverly2 −1000 −600 −600 −600 −600

Haverly3 −800 −781.67 −700 −750 −750

Foulds2 −1100 −1100 −1000 −1000 −1100

Foulds3 −8.00 − −8.00 − −8.00

Foulds4 −8.00 − −8.00 − −8.00

Foulds5 −8.00 − −8.00 − −8.00

Ben-Tal4 −550 −450 −450 −450 −450

Ben-Tal5 −3500 − −3500 − −3500

Adhya1 −937.59 −775.07 −462.5 −539.17 −549.80

Adhya2 −820.08 −642.55 −462.5 −549.42 −549.80

Adhya3 −864.55 −687.19 −525 −548.29 −561.05

Adhya4 −986.89 −969.27 −470.83 −865.23 −877.65

RT1 −4827.59 −4287.98 −4136.21 −4136.21 −4136.21

RT2 −6134.04 −5485.38 −3749.88 −3785.53 −4391.83

Table 4.5: A Comparison of Lower Bounds and Heuristic Solutions with and without

cuts

71

%Gap betweben Lower Bounds with and witout cuts and Global Solutions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test Problems

Lag Bound without cut Lag Bound with cut GO

%Gap

0%

10%

20%

30%

40%

50%

60%

70%

Figure 4.3: A Comparison of Lower bounds with and without cuts

%Gap betweben Lag Heuristic Solutions with and without Cuts and Global

Solutions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test Problems

Lag Heuristic without cuts Lag Heuristic with cuts GO

%Gap

0%

10%

20%

30%

40%

50%

Figure 4.4: A Comparison of Heuristic Solutions with and without cuts

72

cuts whereas Columns 8, 9, and 10 show the computational time of the subproblem

(SP), master problem (MP), and heuristic (Lag Heur.) respectively as a percent-

age of the total computational time after adding the cuts. “–” means that we

do not add cuts to the problem because the Lagrangean lower bound is equal to

the optimal solution. Clearly, subproblem solutions always account for most of the

computational time. On average, subproblem solutions use 91% of the total CPU

time before adding the cuts and 87.8% after adding the cuts. Heuristics solutions,

on average, account for 3.8% of the total CPU time before adding the cuts and 5%

after adding the cuts. For most of the cases there is an improvement in the total

CPU time; however, the significant improvement is in Adhaya2 and Adhaya3 prob-

lems. For Adhaya2, the total CPU time dropped from 4.1 minutes to 27.03 seconds

and for Adhaya3 the total CPU time dropped from 52.2 hours to 2.4 minutes.

4.1 Conclusion

This chapter reported on the computational results of solving fifteen pooling prob-

lems from the open literature. Some of the solved problems have a single quality

while others have multiple qualities. As the number of pools, qualities, and fi-

nal products increases, the number of bilinear terms also increases which increases

the computational complexity. However, the proposed Lagrangean relaxation and

heuristic performed well when the number of bilinear terms increased. The La-

grangean heuristic outperformed VNS and MALT in Adhya3 when the number of

bilinear terms is the highest. Except for Foulds2, Lagrangean heuristic found the

global solutions for all the single quality instances.

From the comparison between lower bounds obtained using the new Lagrangean

73

Numb er of iter Computational T ime w ithout cuts Computational T ime w ith cuts

Problem

No

cuts

w ith

cuts

SP% MP% LH%

Tota l

CPU

(sec.)

SP% MP% LH%

Tota l

CPU

(sec .)

Haverly1 9 6 50% 50% 0% 0.02 100% 0% 0% 0.015

Haverly2 9 6 66.7% 33.3% 0% 0.03 100% 0% 0% 0.01

Haverly3 7 18 100% 0% 0% 0.02 100% 0% 0% 0.015

Foulds2 20 8 87.5% 0% 12.5% 0.08 62.5% 12.5% 25% 0.08

Foulds3 44 - 98.77% 0.54% 0.69% 18.7 - - - -

Foulds4 35 - 98.77% 0.68% 0.55% 16.2 - - - -

Foulds5 35 - 98.37% 1.06% 0.57% 14.09 - - - -

Ben-Tal4 14 5 66.7% 0% 33.3% 0.06 75% 0% 25% 0.04

Ben-Tal5 35 - 86.95% 6.1% 6.95% 1.15 - - - -

Adhya1 81 109 94.94% 4.28% 0.78% 10.28 88.5% 11.1% 0.4% 7.48

Adhya2 107 153 99.4% 0.57% 0.03% 246.19 90.42% 9.14% 0.44% 27.03

Adhya3 192 194 99.99% 0.003% 0.0001% 187940 96.54% 3.3% 0.16% 144.62

Adhya4 89 193 92.15% 6.48% 1.37% 8.03 82.3% 17% 0.7% 19.92

RT1 33 84 98% 1.6% 0.4% 2.3 74.5% 21.5% 4% 1.49

RT2 66 73 95.25% 4.4% 0.35% 8.5 96.4% 3.37% 0.23% 12.8

Table 4.6: Computational Time Partition without cuts

74

relaxation and the ones proposed in the literature using other relaxations such

as LP relaxation using convex and concave envelopes, RRLT, LP relaxation of

the pq-formulation, and Lagrangean relaxation, the new Lagrangean relaxation

provided tighter lower bounds for Haverly2, Haverly3, and RT2. Moreover, the

new Lagrangean relaxation provided tighter lower bounds than the ones obtained

using Lagrangean relaxation proposed in Adhya et al. (1999) for all the multiple

quality instances and for Haverly2, Haverly3, and Ben-Tal4. For the other test

problems the two relaxations provided lower bounds equal to the global optima. On

the other hand, there are might be numerical difficulties with the approach. First,

the subproblem was reduced to a mixed integer programming problem where the

number of binary variables increases as the number of qualities and pools increases.

This is expected to increase the computational time of the subproblem. Second,

when the number of bilinear terms increases, the number of linear constraints and

continuous variables used to strengthen Lagrangean lower bounds increases.

75

Chapter 5

Conclusion

This thesis proposed a heuristic approach and a Lagrangean relaxation technique

to the p-formulation of the pooling problem. The Lagrangean relaxation converts

the pooling problem into an easier one by associating Lagrangean multipliers with

nonlinear constraints and adding them to the objective function to penalize their

violations. The resulting Lagrangean subproblem is a nonlinear problem since the

nonlinearity is transformed from the constraints to the objective function. Nonlin-

earity is eliminated by using linear bound constraints and binary variables. Hence,

the Lagrangean subproblem is reduced to a mixed integer programming problem.

Lagrangean lower bounds are strengthened by adding valid cuts to the Lagrangean

subproblem. The valid cuts are generated using the idea of replacing each bilinear

term in the nonlinear constraints with a nonnegative variable and adding some lin-

ear constraints to the Lagrangean subproblem to bound the value of the introduced

variable.

The Lagrangean heuristic works on the Lagrangean subproblem solutions by

modifying it to be feasible to the original nonlinear problem. At each iteration,

76

Lagrangean subproblem solutions are used to calculate the quality values from the

quality mass balance constraints. Then, a linear programming problem, resulting

from fixing the quality variable value, is solved at each iteration. The approach is

applied to fifteen pooling problems collected from the literature. Numerical results

indicate the efficiency of the procedure. For most cases, Lagrangean lower bounds

and heuristic solutions are equal to the proven global solutions.

Several extensions of this work are possible. First of all, despite the fact that

heuristic results indicate the efficiency of the technique in providing a good feasible

solution, future work should focus on further computational testing to demonstrate

the potential of the procedure in solving large instances of the pooling problem in

the chemical and wastewater treatment industries. Moreover, the obtained lower

bounds can be used within a Branch-and-Bound framework to find a global solu-

tion for the pooling problem. Another possible extension of this work is the im-

plementation of this approach to generalized formulations of the pooling problem

to account for strategic decisions related to pool existence and network configu-

ration. Furthermore, this approach can be applied to solve a general petroleum

supply chain involving pooling problems. Finally, future work may investigate how

to apply the proposed approach to other optimization problems involving bilinear

terms. Such problems arise in economics, game theory, production and nonlinear

multi-commodity network flows.

77

Bibliography

[1] Adhya ,N.; Tawarmalani, M.; Sahinidis. N. (1999). A Lagrangian approach to

the pooling problem. Ind. Eng. Chem. Res. 38, 1956-1972.

[2] Al-Khayyal, F. A.; Falk, J. E (1983). Jointly Constrained Biconvex Program-

ming. Math. Operat. Res. 8 (2), 124-131.

[3] Androulakis, I. P.; Visweswaran, V.; Floudas, C. A. (1996). Distributed

Decomposition-Based Approaches. In State of the Art in Global Optimization :

Computational Methods and Applications. Kluwer Academic Publishers, Dor-

drecht, The Netherlands, 285-301.

[4] Amos, F.; Ronnqvist. M. (1997). Modeling the pooling problem at the New

Zealand refinery company. Journal of Operational Research Society, 48. (8).

767-778.

[5] Audet, C.; Hansen, P.; Jaumard, B.; Savard, G. (2000). A branch and cut

algorithm for nonconvex quadratically constrained quadratic programming.

Math. Programming. 87(1), 131—152.

[6] Audet, C.; Brimberg, J.; Hansen, P.; Le Digabel, S.; Maldenovic, N. (2004).

Pooling Problem: Alternate Formulations and Solution Methods.Management

Sci.. 50 (6), 761-776.

78

[7] Baker, T. E; Lasdon L. S. (1985). Successive Linear Programming at Exxon.

Management Sci. 31, 264-274.

[8] Benders, J. F. (1962). Partitioning procedures for solving mixed variables pro-

gramming problems. Numer. Math. 4, 238-252.

[9] Ben-Tal, A.; Eiger, G.; Greshovitz, V. (1994). Global Minimization by Reduc-

ing the Duality Gap. Math. Program. 63, 193-212.

[10] Bodington, C. E.; Randall, W. C. (1979). Nonlinear Programs for Product

Blending. Joint National TIMS/ORSA Meeting, New Orleans, April/May.

[11] DeWitt, C. W; Lasdon, L. S.; Waren, A. D; Brenner, D. A; Melhem, S. A.

(1989). OMEGA: An Improved Gasoline Blending System for Texaco. Inter-

faces. 19 (1), 85-101.

[12] Duncan, Norman E..(2000). Refiners can boost profits using the conversion

index . Oil & Gas Journal . 98 (19).

[13] Dur, M.; Horst, R. (1997). Lagrange duality and partitioning techniques in

nonconvex global optimization. Journal of Optimization Theory and Applica-

tions. 95(2), 347-369.

[14] Falk, J. E. (1969). Lagrange Multipliers and Nonconvex Programs. SIAM Jour-

nal on Control and Optimization. 7(4), 534-545.

[15] Fieldhouse, M. (1993). The Pooling Problem. In Optimization in Industry.

Chapter 13 Ciriani, T. A., Leachman, R. C., Eds.; John Wiley & Sons Ltd:

New York.

[16] Foulds, L. R.; Haugland, D.; Jonsten, K. (1992). A Bilinear Approach to the

Pooling Problem. Optimization. 24, 165-180.

79

[17] Floudas, C. A.; Aggarwal, A.; Ciric, A. R. (1989) Global optimum search

for nonconvex NLP and MINLP problems.Computers chem. Engng. 13(10),

1117-1132.

[18] Floudas, C. A.; Aggarwal, A. (1990). A Decomposition Strategy for the Opti-

mum Search in the Pooling Problem. ORSA J. Comput. 2(3), 225-235.

[19] Floudas, C. A.(2000). Deterministic Global Optimization: Theory, Methods,

and Applications. Dordercht, The Netherlands: Kluwer Academic.

[20] Floudas, C. A.; Pardalos, P. (2004). Frontiers in Global Optimization. (Kluwer

Book Series in Nonconvex Optimization and its Applications, Vol. 74). Dor-

drecht, The Netherlands: Kluwer Academic.

[21] Geoffrion, A. M. (1972). Generalized Benders Decomposition. JOTA. 10, 237-

260.

[22] GLPK (GNULinear Programming Kit). http://www.gnu.org/software/glpk/glpk.htmt.

[23] Greenberg, H. J. (1995). Analyzing the pooling problem. ORSA Journal on

Computing. 7(2), 205-217.

[24] Griffith, R. E.; Stewart, R. A. (1961). A Nonlinear Programming Technique

for the Optimization of Continuous Processing System. Management Sci. 7,

379-392.

[25] Hansen, P; Mladenovic, N. (2001). Variable Neighborhood Search: Principles

and Applications. European Journal of Operational Research. 130, 449-467.

[26] Haverly, C. A. (1978). Studies of the Behavior of Recursion for the Pooling

Problem. ACM SIGMAP Bull. 25, 29-32.

80

[27] Haverly, C. A. (1979). Behavior of Recursion Model—More Studies. ACM

SIGMAP Bull. 26, 22-28.

[28] Held, M.; Karp, R. M. (1971). The Traveling-Saleman Problem and Minimum

Spanning Trees. Operat. Res. 18, 1138-1162.

[29] Horst, R.; Tuy, H. (1996). Global Optimization, 3rd ed.; Springer: Berlin.

[30] Lasdon, L. S.; Waren, A. D.; Sarkar, S.; Palacios-Gomez, F. (1979). Solving the

Pooling Problem using Generalized Reduced Gradient and Successive Linear

Programming Algorithm. ACM SIGMAP Bull. 27, 9-15.

[31] Lasdon, L. S.; Waren, A. D. (1980). A Survey of Nonlinear Programming

Applications. Operations Research. 28(5), 1029-1073.

[32] Lasdon, L. S.; Joffe, B. (1990). The relationship between distributive recursion

and successive linear programming in refining production planning models.

NPRA Comput. Conf. Seattle, WA.

[33] Liberti, L.; Pantelides. C.C.(2004) Reformulation and Convex Relaxation Tech-

niques for Global Optimization. Ph.D. Thesis, Imperial College London, UK.

[34] Liberti, L.; Pantelides. C.C. (2006). An exact reformulation algorithm for large

nonconvex NLPs involving bilinear terms. Journal of Global Optimization. 36,

161-189.

[35] Liu, W.B.; Floudas, C. A.(1995). Convergence of the (GOP) Algorithm for a

large Class of smooth Optimization Problems. J . Global Optimiz. 6, 207-211.

[36] Main, R. A. (1993). Large Recursion Models: Practical Aspects of Recursion

Technique. In Optimization in Industry. Cirianiani, T. A., Leachman, R. C.,

Eds.:John Wiley & Sons Ltd: New York.

81

[37] McCormick, G. P. (1976) Computability of global solutions to factorable non-

convex programs. Part I-convex underestimating problems. Math. Program.

10, 147-175.

[38] McCormick, G. P. (1983). Nonlinear Programming. Theory, Algorithms and

Applications, Wiley Interscience: New York.

[39] Meyer, C.; Floudas, C. (2006). Global Optimization of a Combinatorially Com-

plex Generalized Pooling Problem. AIChE Journal. 52 (3), 1027-1037.

[40] Quesada, I. ; Grossmann, I. E.; (1994). A global optimization algorithm for

linear fractional and bilinear programs. Journal of Global Optimization. 6, 39-

76.

[41] Quesada, I. ; Grossmann, I. E.; (1995). Global Optimization of Bilinear Process

Networks and Multicomponent Flows. Comput. Chem. Eng. 19 (12), 1219-

1242.

[42] Tawarmalani, M.; Sahinidis N.(2002)Convexification and global optimization

in continuous and mixed-integer nonlinear programming : theory, algorithms,

software, and applications (Kluwer Book Series in Nonconvex Optimization

and its Applications, Vol. 65). Dordrecht, The Netherlands: Kluwer Academic.

[43] Sahinidis, N. V.; Grossmann, I. E. (1991). Convergence Properties of General-

ized Benders Decomposition. Comput. Chem. Eng. 15(7), 481-491.

[44] Sahinidis, N.; Tawarmalani, M. (2005). Accelerating branch-and-bound

through a modeling language construct for relaxation-specific constraints.

Journal of Global Optimization. 32, 259-280.

82

[45] Sherali, H. D.; Adams, W.P. (1990) Linearization Strategies for a Class of 0-1

Mixed Integer programming problems. Operations Research. 38(2), 217-226.

[46] Sherali, H. D.; Alameddine, A.(1992). A New Reformulation-Linearization

Technique for Bilinear Programming Problems. Journal of Global Optimiza-

tion. 2, 379-410.

[47] Sherali, H.D.; Adams, W.P; Driscoll, P.J. (1999). Exploiting special struc-

ture in constructing a hierarchy of relaxation for 0-1 mixed integer programs,

Operations Research. 46, 396-405

[48] Sherali, H. D. (2007) RLT: A unified approach for discrete and continuous

nonconvex optimization. Annals of Operations Research. 149, 185-193.

[49] Simon, J. D.; Azma, H. M. (1983). Exxon Experience with Large Scale Linear

and Nonlinear Programming Applications. Comput. Chem. Eng. 7(5), 605-614.

[50] Visweswaran, V. ; Floudas, C. A. (1990). A Global Optimization Algorithm

(GOP) for Certain Classes of Nonconvex NLPs: Application of Theory and

Test Problems. Comp. & Chem. Eng. 14, 1419-1434..

[51] Visweswaran, V.; Floudas, C. A. (1993). New Properties and Computational

Improvement of the GOP Algorithm for Problems with Quadratic Objective

Functions and Constraints. J . Global Optimiz. 3(3), 439-462.

[52] White, D. L.; Trierwiler, L. D. (1980). Distributive Recursion at Socal. ACM

SIGMAP Bull. 28, 22-38.

83

Appendix A

Some Illustrative Examples

In this appendix, we derive the Lagrangean subproblem and Lagrangean dual for

two pooling examples. The first example has multiple pools each with single quality,

and the second example has multiple pools each with multiple qualities.

A.1 Lagrangean Relaxation for Foulds2

This example has six raw materials, two pools each with single quality, and four

end products. See Table 4.1.

84

A.1.1 Problem Formulation

min 6f11 + 16f21 + 10f12 + 3f13 + 13f23 + 7f14 − 9x11 − 9x21 − 9x31 − 9x41

-15x12 − 15x22 − 15x32 − 15x42 − 6x13 − 6x23 − 6x33 − 6x43 − 12x14

-12x24 − 12x34 − 12x44

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

−3f11 − f21 + q1x11 + q1x12 + q1x13 + q1x14 = 0

−3.5f13 − 1.5f23 + q3x31 + q3x32 + q3x33 + q4x34 = 0

(q1 − 2.5)x11 − 0.5x21 + (q3 − 2.5)x31 ≤ 0

(q1 − 1.5)x12 + 0.5x22 + (q3 − 1.5)x32 + x42 ≤ 0

(q1 − 3)x13 − x23 + (q3 − 3)x33 − 0.5x43 ≤ 0

(q1 − 2)x14 + (q3 − 2)x34 + 0.5x44 ≤ 0

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

85

A.1.2 Lagrangean Relaxation

min 6f11 + 16f21 + 10f12 + 3f13 + 13f23 + 7f14 − 9x11 − 9x21 − 9x31

−9x41 − 15x12 − 15x22 − 15x32 − 15x42 − 6x13 − 6x23 − 6x33

−6x43 − 12x14 − 12x24 − 12x34 − 12x44

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

−3f11 − f21 + q1x11 + q1x12 + q1x13 + q1x14 = 0 ← λ1

−3.5f13 − 1.5f23 + q3x31 + q3x32 + q3x33 + q4x34 = 0 ← λ2

(q1 − 2.5)x11 − 0.5x21 + (q3 − 2.5)x31 ≤ 0 ← α

(q1 − 1.5)x12 + 0.5x22 + (q3 − 1.5)x32 + x42 ≤ 0 ← β

(q1 − 3)x13 − x23 + (q3 − 3)x33 − 0.5x43 ≤ 0 ← γ

(q1 − 2)x14 + (q3 − 2)x34 + 0.5x44 ≤ 0 ← δ

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

f, x ≥ 0

86

The resulting subproblem is:

min (6− 3λ1)f11 + (16− λ1)f21 + 10f12 + (3− 3.5λ2)f13 + (13− 1.5λ2)f23

+7f14 + (−9 + q1λ1 + q1α− 2.5α)x11 + (−9− 0.5α)x21 + (−9 + q3λ2

+q3α− 2.5α)x31 − 9x41 + (−15 + q1λ1 + q1β − 1.5β)x12 + (−15 + 0.5β)x22

+(−15 + q3λ2 + q3β − 1.5β)x32 + (−15 + β)x42 + (−6 + q1λ1 + q1γ − 3γ)x13

+(−6− γ)x23 + (−6 + q3λ2 + q3γ − 3γ)x33 + (−6− 0.5γ)x43 + (−12 + q1λ1

+q1δ − 2δ)x14 − 12x24 + (−12 + q3λ2 + q3δ − 2δ)x34 + (−12 + 0.5δ)x44

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

f, x ≥ 0

87

which can be written as:

min (6− 3λ1)f11 + (16− λ1)f21 + 10f12 + (3− 3.5λ2)f13 + (13− 1.5λ2)f23

+7f14 + (−9− 2.5α)x11 + (−9− .5α)x21 + (−9− 2.5α)x31 − 9x41 + (−15

−1.5β)x12 + (−15 + 0.5β)x22 + (−15− 1.5β)x32 + (−15 + β)x42 + (−6

−3γ)x13 + (−6− γ)x23 + (−12 + 0.5δ)x44 + (−6− 3γ)x33 + (−6− 0.5γ)x43

+(−12− 2δ)x14 − 12x24 + (−12− 2δ)x34 + (λ1 + α)q1x11 + (λ1 + β)q1x12

+(λ1 + γ)q1x13 + (λ1 + δ)q1x14 + (λ2 + α)q3x31 + (λ2 + β)q3x32

+(λ2 + γ)q3x33 + (λ2 + δ)q3x34

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

f, x ≥ 0.

if we define

u1 = q1 ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ,

u2 = q3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ,

then the nonlinearity can be eliminated by using the linear bound constraints

ql1 ≤ q1 ≤ qu1 , ql3 ≤ q3 ≤ qu3 and the fact that q1 and q3 do not appear in the con-

88

straints. Four cases should be considered depending on the sign of (λ1+α)x11+(λ1+

β)x12+(λ1+γ)x13+(λ1+δ)x14 and λ2+α)x31+(λ2+β)x32+(λ2+γ)x33+(λ2+δ)x34 :

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1 ≤ u1

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 ,

if ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ≥ 0,

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 ≤ u1

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1,

if ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ≤ 0

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
l
3 ≤ u2

u2 ≤ qu3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34)

if ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ≥ 0,

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
u
3 ≤ u2

u2 ≤ ql3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34)

if ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ≤ 0

89

Hence, the subproblem reduces to:

min
x,f

(6− 3λ1)f11 + (16− λ1)f21 + 10f12 + (3− 3.5λ2)f13

+(13− 1.5λ2)f23 + 7f14 + (−9− 2.5α)x11 + (−9− .5α)x21

+(−9− 2.5α)x31 − 9x41 + (−15− 1.5β)x12 + (−15 + 0.5β)x22

+(−15− 1.5β)x32 + (−15 + β)x42 + (−6− 3γ)x13 + (−6− γ)x23

+(−6− 3γ)x33 + (−6− 0.5γ)x43 + (−12− 2δ)x14 − 12x24

+(−12− 2δ)x34 + (−12 + 0.5δ)x44 + v1 + v2

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

90

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1 ≤ u1

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 ,

if ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ≥ 0,

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 ≤ u1

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1,

if ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ≤ 0

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
l
3 ≤ u2

u2 ≤ qu3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34)

if ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ≥ 0,

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
u
3 ≤ u2

u2 ≤ ql3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34)

if ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ≤ 0

f, x ≥ 0.

upon defining a binary variable y1 that takes value 1 if ((λ1 + α)x11 + (λ1 +

β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) ≥ 0,and 0 otherwise, and a binary variable y2

that takes value 1 if

if ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) ≥ 0, the if constraints

91

can be modelled as

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1 ≤ u1 +M(1− y1)

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 +M(1− y1)

((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
u
1 ≤ u1 +My1

u1 ≤ ((λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14) q
l
1 +My1.

(λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14 ≥ −M(1− y1)

(λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14 ≤My1

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
l
3 ≤ u2 +M(1− y2)

u2 ≤ qu3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) +M(1− y2)

((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) q
u
3 ≤ u2 +My2

u2 ≤ ql3 ((λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34) +My2

(λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34 ≥ −M(1− y2)

(λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34 ≤My2

The resulting linear subproblem is:

92

min
x,f

(6− 3λ1)f11 + (16− λ1)f21 + 10f12 + (3− 3.5λ2)f13

+(13− 1.5λ2)f23 + 7f14 + (−9− 2.5α)x11 + (−9− .5α)x21

+(−9− 2.5α)x31 − 9x41 + (−15− 1.5β)x12 + (−15 + 0.5β)x22

+(−15− 1.5β)x32 + (−15 + β)x42 + (−6− 3γ)x13 + (−6− γ)x23

+(−6− 3γ)x33 + (−6− 0.5γ)x43 + (−12− 2δ)x14 − 12x24

+(−12− 2δ)x34 + (−12 + 0.5δ)x44 + v1 + v2

s.t. f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 − x21 − x22 − x23 − x24 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

(λ1 + α)x11q
l
1 + (λ1 + β)x12q

l
1 + (λ1 + γ)x13q

l
1 + (λ1 + δ)x14q

l
1 − u1 +My1 ≤M

u1 − (λ1 + α)x11q
u
1 − (λ1 + β)x12q

u
1 − (λ1 + γ)x13q

u
1 − (λ1 + δ)x14q

u
1 +My1 ≤M

(λ1 + α)x11q
u
1 + (λ1 + β)x12q

u
1 + (λ1 + γ)x13q

u
1 + (λ1 + δ)x14q

u
1 − u1 −My1 ≤ 0

u1 − (λ1 + α)x11q
l
1 − (λ1 + β)x12q

l
1 − (λ1 + γ)x13 − (λ1 + δ)x14q

l
1 −My1 ≤ 0

−(λ1 + α)x11 − (λ1 + β)x12 − (λ1 + γ)x13 − (λ1 + δ)x14 +My1 ≤M

(λ1 + α)x11 + (λ1 + β)x12 + (λ1 + γ)x13 + (λ1 + δ)x14 −My1 ≤ 0

93

(λ2 + α)x31q
l
3 + (λ2 + β)x32q

l
3 + (λ2 + γ)x33q

l
3 + (λ2 + δ)x34q

l
3 − u2 +My2 ≤M

u2 − (λ2 + α)x31q
u
3 − (λ2 + β)x32q

u
3 − (λ2 + γ)x33q

u
3 − (λ2 + δ)x34q

u
3 +My2 ≤M

(λ2 + α)x31q
u
3 + (λ2 + β)x32q

u
3 + (λ2 + γ)x33q

u
3 + (λ2 + δ)x34q

u
3 − u2 −My2 ≤ 0

u2 − (λ2 + α)x31q
l
3 − (λ2 + β)x32q

l
3 − (λ2 + γ)x33q

l
3 − (λ2 + δ)x34q

l
3 −My2 ≤ 0

−(λ2 + α)x31 − (λ2 + β)x32 − (λ2 + γ)x33 − (λ2 + δ)x34 +My2 ≤M

(λ2 + α)x31 + (λ2 + β)x32 + (λ2 + γ)x33 + (λ2 + δ)x34 −My2 ≤ 0

f, x ≥ 0., y ∈ {0, 1}

The best Lagrangean lower bound is given by the optimal solution of the La-

grangean dual problem.

94

max
α,β,γ,δ≥0

min (6− 3λ1)f11 + (16− λ1)f21 + 10f12 + (3− 3.5λ2)f13

+(13− 1.5λ2)f23 + 7f14 + (−9 + q1λ1 + q1α− 2.5α)x11

+(−9− 0.5α)x21 + (−9 + q3λ2 + q3α− 2.5α)x31 − 9x41

+(−15 + q1λ1 + q1β − 1.5β)x12 + (−15 + 0.5β)x22

+(−15 + q3λ2 + q3β − 1.5β)x32 + (−15 + β)x42

+ (−6 + q1λ1 + q1γ − 3γ)x13 + (−6− γ)x23

+ (−6 + q3λ2 + q3γ − 3γ)x33 + (−6− 0.5γ)x43

+ (−12 + q1λ1 + q1δ − 2δ)x14 − 12x24

+(−12 + q3λ2 + q3δ − 2δ)x34 + (−12 + 0.5δ)x44

s.t f11 + f21 − x11 − x12 − x13 − x14 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

f, x ≥ 0

Which is equivalent to:

95

max
α≥0,β≥0

min (6− 3λ1)f
h
11 + (16− λ1)f

h
21 + 10f

h
12 + (3− 3.5λ2)f

h
13

h ∈ H +(13− 1.5λ2)f
h
23 + 7f

h
14 + (−9 + qh1λ1 + qh1α− 2.5α)x

h
11

+(−9− 0.5α)xh21 + (−9 + qh3λ2 + qh3α− 2.5α)x
h
31 − 9x

h
41

+(−15 + qh1λ1 + qh1β − 1.5β)x
h
12 + (−15 + 0.5β)x

h
22

+(−15 + qh3λ2 + qh3β − 1.5β)x
h
32 + (−15 + β)xh42

+ (−6 + qh1λ1 + qh1γ − 3γ)x
h
13 + (−6− γ)xh23

+ (−6 + qh3λ2 + qh3γ − 3γ)x
h
33 + (−6− 0.5γ)x

h
43

+ (−12 + qh1λ1 + qh1δ − 2δ)x
h
14 − 12x

h
24

+(−12 + qh3λ2 + qh3 δ − 2δ)x
h
34 + (−12 + 0.5δ)x

h
44

where

H :

(fh, xh, qh) : f11 + f21 − x11 − x12 − x13 − x14 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f13 + f23 − x31 − x32 − x33 − x34 = 0

f14 − x41 − x42 − x43 − x44 = 0

x11 + x21 + x31 + x41 ≤ 100

x12 + x22 + x32 + x42 ≤ 200

x13 + x23 + x33 + x43 ≤ 100

x14 + x24 + x34 + x44 ≤ 200

ql1 ≤ q1 ≤ qu1

ql3 ≤ q3 ≤ qu3

f, x ≥ 0,

96

The master problem can be written as the following linear program.

max
α,β,γ,δ,θ

θ

s.t. θ + (3fh
11 + fh

21 − qh1 (x
h
11 + xh12 + xh13 + xh14))λ1 + (3.5f

h
13 + 1.5f

h
23

−qh3 (x
h
31 + xh32 + xh33 + xh34))λ2 + ((2.5− qh1)x

h
11 + .5xh21 + (2.5− qh3)x

h
31)α

+((1.5− qh1)x
h
12 − .5xh22 + (1.5− qh3)x

h
32 − xh42)β + ((3− qh1)x

h
13 + xh23

+(3− qh3)x
h
33 + 0.5x

h
43)γ + ((2− qh1)x

h
14 + (2− qh3)x

h
34 − 0.5x

h
44)δ ≤

6fh
11 + 16f

h
21 + 10f

h
12 + 3f

h
13 + 13f

h
23 + 7f

h
14 − 9x

h
11 − 9x

h
21 − 9x

h
31 − 9x

h
41

−15xh12 − 15x
h
22 − 15x

h
32 − 15x

h
42 − 6x

h
13 − 6x

h
23 − 6x

h
33 − 6x

h
43 − 12x

h
14

−12xh24 − 12x
h
34 − 12x

h
44; ∀h ∈ H

α ≥ 0, β ≥ 0

A.2 Lagrangean Relaxation for Adhya2

This example has five raw materials, two pools each with six qualities, and four

end products. See Table 4.1.

A.2.1 Problem formulation

This example is proposed in Adhya et al. (1999). Figure A.1

97

(C ost, in pu t q ualities)

(7 , 1 ,6 ,4 , 0 .5 , 5 , 9)

(3 , 4 , 1 , 3 , 2 , 4 , 4)

(2 , 4 , 5 .5 , 3 , 0 .9 , 7 , 10)

(1 0 , 3 , 3 , 3 , 1 , 3 , 4)

(5 , 1 , 2 .7 , 4 , 1 .6 , 3 , 7)

f1 1

f21

f1 2

f22

f32

1

2

(P rice , D em and)

(Q u ality requ ire m en ts)

(1 6 , 1 0)
(3 , 3 , 3 .25 , 0 .7 5 , 6 , 5)

(2 5 , 2 5)
(4 , 2 .5 , 3 .5 , 1 .5 , 7 , 6)

(1 5 , 3 0)

(1 .5 , 5 .5 , 3 .9 , 0 .8 , 7 , 6)

(1 0 , 1 0)
(3 , 4 , 4 , 1 .8 , 6 , 6)

1

2

3

4

x 13

x 14

x 21
x 22

 x 11

 x12

x 23

x 24

Figure A.1: Flowchart for Example 2.

min 7f11 + 3f21 + 2f12 + 10f22 + 5f32 − 16(x11 + x21)− 25(x12 + x22)

−30(x13 + x23)− 10(x14 + x24)

s.t f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 + f22 + f32 − x21 − x22 − x23 − x24 = 0

x11 + x21 ≤ 10

x12 + x22 ≤ 25

x13 + x23 ≤ 30

x14 + x24 ≤ 10

98

q11(x11 + x12 + x13 + x14)− f11 − 4f21 = 0

q12(x11 + x12 + x13 + x14)− 6f11 − f21 = 0

q13(x11 + x12 + x13 + x14)− 4f11 − 3f21 = 0

q14(x11 + x12 + x13 + x14)− 0.5f11 − 2f21 = 0

q15(x11 + x12 + x13 + x14)− 5f11 − 4f21 = 0

q16(x11 + x12 + x13 + x14)− 9f11 − 4f21 = 0

q21(x21 + x22 + x23 + x24)− 4f12 − 3f22 − f32 = 0

q22(x21 + x22 + x23 + x24)− 5.5f12 − 3f22 − 2.7f32 = 0

q23(x21 + x22 + x23 + x24)− 3f12 − 3f22 − 4f32 = 0

q24(x21 + x22 + x23 + x24)− 0.9f12 − f22 − 1.6f32 = 0

q25(x21 + x22 + x23 + x24)− 7f12 − 3f22 − 3f32 = 0

q26(x21 + x22 + x23 + x24)− 10f12 − 4f22 − 7f32 = 0

q11x11 + q21x21 − 3(x11 + x21) ≤ 0

q12x11 + q22x21 − 3(x11 + x21) ≤ 0

q13x11 + q23x21 − 3.25(x11 + x21) ≤ 0

q14x11 + q24x21 − 0.75(x11 + x21) ≤ 0

q15x11 + q25x21 − 6(x11 + x21) ≤ 0

q16x11 + q26x21 − 5(x11 + x21) ≤ 0

Meeting product one requirements

99

q11x12 + q21x22 − 4(x12 + x22) ≤ 0

q12x12 + q22x22 − 2.5(x12 + x22) ≤ 0

q13x12 + q23x22 − 3.5(x12 + x22) ≤ 0

q14x12 + q24x22 − 1.5(x12 + x22) ≤ 0

q15x12 + q25x22 − 7(x12 + x22) ≤ 0

q16x12 + q26x22 − 6(x12 + x22) ≤ 0

Meeting product two requirements

q11x13 + q21x23 − 1.5(x13 + x23) ≤ 0

q12x13 + q22x23 − 5.5(x13 + x23) ≤ 0

q13x13 + q23x23 − 3.9(x13 + x23) ≤ 0

q14x13 + q24x23 − 0.8(x13 + x23) ≤ 0

q15x13 + q25x23 − 7(x13 + x23) ≤ 0

q16x13 + q26x23 − 6(x13 + x23) ≤ 0

Meeting product three requirements

q11x14 + q21x24 − 3(x14 + x24) ≤ 0

q12x14 + q22x24 − 4(x14 + x24) ≤ 0

q13x14 + q23x24 − 4(x14 + x24) ≤ 0

q14x14 + q24x24 − 1.8(x14 + x24) ≤ 0

q15x14 + q25x24 − 6(x14 + x24) ≤ 0

q16x14 + q26x24 − 6(x14 + x24) ≤ 0

Meeting product four requirements

1 ≤ q11 ≤ 4, 1 ≤ q12 ≤ 6, 3 ≤ q13 ≤ 4, 0.5 ≤ q14 ≤ 2,

4 ≤ q15 ≤ 5, 4 ≤ q16 ≤ 91 ≤ q21 ≤ 4, 2.7 ≤ q22 ≤ 5.5,

3 ≤ q23 ≤ 4, 0.9 ≤ q24 ≤ 1.6, 3 ≤ q25 ≤ 7, 4 ≤ q26 ≤ 10

xjk,fij ≥ 0

100

A.2.2 Lagrangean Relaxation

min 7f11 + 3f21 + 2f12 + 10f22 + 5f32 − 16(x11 + x21)− 25(x12 + x22)

−30(x13 + x23)− 10(x14 + x24)

s.t f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 + f22 + f32 − x21 − x22 − x23 − x24 = 0

x11 + x21 ≤ 10

x12 + x22 ≤ 25

x13 + x23 ≤ 30

x14 + x24 ≤ 10

q11(x11 + x12 + x13 + x14)− f11 − 4f21 = 0 ← α11

q12(x11 + x12 + x13 + x14)− 6f11 − f21 = 0 ← α12

q13(x11 + x12 + x13 + x14)− 4f11 − 3f21 = 0 ← α13

q14(x11 + x12 + x13 + x14)− 0.5f11 − 2f21 = 0 ← α14

q15(x11 + x12 + x13 + x14)− 5f11 − 4f21 = 0 ← α15

q16(x11 + x12 + x13 + x14)− 9f11 − 4f21 = 0 ← α16

q21(x21 + x22 + x23 + x24)− 4f12 − 3f22 − f32 = 0 ← α21

q22(x21 + x22 + x23 + x24)− 5.5f12 − 3f22 − 2.7f32 = 0 ← α22

q23(x21 + x22 + x23 + x24)− 3f12 − 3f22 − 4f32 = 0 ← α23

q24(x21 + x22 + x23 + x24)− 0.9f12 − f22 − 1.6f32 = 0 ← α24

q25(x21 + x22 + x23 + x24)− 7f12 − 3f22 − 3f32 = 0 ← α25

q26(x21 + x22 + x23 + x24)− 10f12 − 4f22 − 7f32 = 0 ← α26

101

q11x11 + q21x21 − 3(x11 + x21) ≤ 0 ← β11

q12x11 + q22x21 − 3(x11 + x21) ≤ 0 ← β12

q13x11 + q23x21 − 3.25(x11 + x21) ≤ 0 ← β13

q14x11 + q24x21 − 0.75(x11 + x21) ≤ 0 ← β14

q15x11 + q25x21 − 6(x11 + x21) ≤ 0 ← β15

q16x11 + q26x21 − 5(x11 + x21) ≤ 0 ← β16

q11x12 + q21x22 − 4(x12 + x22) ≤ 0 ← β21

q12x12 + q22x22 − 2.5(x12 + x22) ≤ 0 ← β22

q13x12 + q23x22 − 3.5(x12 + x22) ≤ 0 ← β23

q14x12 + q24x22 − 1.5(x12 + x22) ≤ 0 ← β24

q15x12 + q25x22 − 7(x12 + x22) ≤ 0 ← β25

q16x12 + q26x22 − 6(x12 + x22) ≤ 0 ← β26

q11x13 + q21x23 − 1.5(x13 + x23) ≤ 0 ← β31

q12x13 + q22x23 − 5.5(x13 + x23) ≤ 0 ← β32

q13x13 + q23x23 − 3.9(x13 + x23) ≤ 0 ← β33

q14x13 + q24x23 − 0.8(x13 + x23) ≤ 0 ← β34

q15x13 + q25x23 − 7(x13 + x23) ≤ 0 ← β35

q16x13 + q26x23 − 6(x13 + x23) ≤ 0 ← β36

q11x14 + q21x24 − 3(x14 + x24) ≤ 0 ← β41

q12x14 + q22x24 − 4(x14 + x24) ≤ 0 ← β42

q13x14 + q23x24 − 4(x14 + x24) ≤ 0 ← β43

q14x14 + q24x24 − 1.8(x14 + x24) ≤ 0 ← β44

q15x14 + q25x24 − 6(x14 + x24) ≤ 0 ← β45

q16x14 + q26x24 − 6(x14 + x24) ≤ 0 ← β46

102

1 ≤ q11 ≤ 4, 1 ≤ q12 ≤ 6, 3 ≤ q13 ≤ 4, 0.5 ≤ q14 ≤ 2,

4 ≤ q15 ≤ 5, 4 ≤ q16 ≤ 9, 1 ≤ q21 ≤ 4, 2.7 ≤ q22 ≤ 5.5,

,3 ≤ q23 ≤ 4, 0.9 ≤ q24 ≤ 1.6, 3 ≤ q25 ≤ 7, 4 ≤ q26 ≤ 10

xjk,fij ≥ 0

The resulting subproblem is:

min (7− α11 − 6α12 − 4α13 − 0.5α14 − 5α15 − 9α16)f11

+(3− 4α11 − α12 − 3α13 − 2α14 − 4α15 − 4α16)f21

+(2− 4α21 − 5.5α22 − 3α23 − 0.9α24 − 7α25 − 10α26)f12

+(10− 3α21 − 3α22 − 3α23 − α24 − 3α25 − 4α26)f22

+(5− α21 − 2.7α22 − 4α23 − 1.6α24 − 3α25 − 7α26)f32

(−16 + q11(α11 + β11) + q12(α12 + β12) + q13(α13 + β13)

+q14(α14 + β14) + q15(α15 + β15) + q16(α16 + β16)− 3β11

−3β12 − 3.25β13 − 0.75β14 − 6β15 − 5β16)x11

+(−16 + q21(α21 + β11) + q22(α22 + β12) + q23(α23 + β13)

+q24(α24 + β14) + q25(α25 + β15) + q26(α26 + β16)− 3β11

−3β12 − 3.25β13 − 0.75β14 − 6β15 − 5β16)x21

+(−25 + q11(α11 + β21) + q12(α12 + β22) + q13(α13 + β23)

+q14(α14 + β24) + q15(α15 + β25) + q16(α16 + β26)− 4β21

−2.5β22 − 3.5β23 − 1.5β24 − 7β25 − 6β26)x12

+(−25 + q21(α21 + β21) + q22(α22 + β22) + q23(α23 + β23)

+q24(α24 + β24) + q25(α25 + β25) + q26(α26 + β26)− 4β21

−2.5β22 − 3.5β23 − 1.5β24 − 7β25 − 6β26)x22

103

+(−15 + q11(α11 + β31) + q12(α12 + β32) + q13(α13 + β33)

+q14(α14 + β34) + q15(α15 + β35) + q16(α16 + β36)− 1.5β31

−5.5β32 − 3.9β33 − 0.8β34 − 7β35 − 6β36)x13

+(−15 + q21(α21 + β31) + q22(α22 + β32) + q23(α23 + β33)

+q24(α24 + β34) + q25(α25 + β35) + q26(α26 + β36)− 1.5β31

−5.5β32 − 3.9β33 − 0.8β34 − 7β35 − 6β36)x23

+(−10 + q11(α11 + β41) + q12(α12 + β42) + q13(α13 + β43)

+q14(α14 + β44) + q15(α15 + β45) + q16(α16 + β46)− 3β41

−4β42 − 4β43 − 1.8β44 − 6β45 − 6β46)x14

+(−10 + q21(α21 + β41) + q22(α22 + β42) + q23(α23 + β43)

+q24(α24 + β44) + q25(α25 + β45) + q26(α26 + β46)− 3β41

−4β42 − 4β43 − 1.8β44 − 6β45 − 6β46)x24

s.t f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 + f22 + f32 − x21 − x22 − x23 − x24 = 0

x11 + x21 ≤ 10

x12 + x22 ≤ 25

x13 + x23 ≤ 30

x14 + x24 ≤ 10

1 ≤ q11 ≤ 4, 1 ≤ q12 ≤ 6, 3 ≤ q13 ≤ 4, 0.5 ≤ q14 ≤ 2,

4 ≤ q15 ≤ 5, 4 ≤ q16 ≤ 9, 1 ≤ q21 ≤ 4, 2.7 ≤ q22 ≤ 5.5,

3 ≤ q23 ≤ 4, 0.9 ≤ q24 ≤ 1.6, 3 ≤ q25 ≤ 7, 4 ≤ q26 ≤ 10

xjk,fij ≥ 0

104

If we define

u11 = q11((α11 + β11)x11 + (α11 + β21)x12 + (α11 + β31)x13 + (α11 + β41)x14)

u12 = q12((α12 + β12)x11 + (α12 + β22)x12 + (α12 + β32)x13 + (α12 + β42)x14)

u13 = q13((α13 + β13)x11 + (α13 + β23)x12 + (α13 + β33)x13 + (α13 + β43)x14)

u14 = q14((α14 + β14)x11 + (α14 + β24)x12 + (α14 + β34)x13 + (α14 + β44)x14)

u15 = q15((α15 + β15)x11 + (α15 + β25)x12 + (α15 + β35)x13 + (α15 + β45)x14)

u16 = q16((α16 + β16)x11 + (α16 + β26)x12 + (α16 + β36)x13 + (α16 + β46)x14)

u21 = q21((α21 + β11)x21 + (α21 + β21)x22 + (α21 + β31)x23 + (α21 + β41)x24)

u22 = q22((α22 + β12)x21 + (α22 + β22)x22 + (α22 + β32)x23 + (α22 + β42)x24)

u23 = q23((α23 + β13)x21 + (α23 + β23)x22 + (α23 + β33)x23 + (α23 + β43)x24)

u24 = q24((α24 + β14)x21 + (α24 + β24)x22 + (α24 + β34)x23 + (α24 + β44)x24)

u25 = q25((α25 + β15)x21 + (α25 + β25)x22 + (α25 + β35)x23 + (α25 + β45)x24)

u26 = q26((α26 + β16)x21 + (α26 + β26)x22 + (α26 + β36)x23 + (α26 + β46)x24)

then the nonlinearity can be eliminated by using the linear bound constraints

qljw ≤ qjw ≤ qujw , and the fact that qjw does not appear in the constraints.

The resulting linear subproblem is:

105

min (7− α11 − 6α12 − 4α13 − 0.5α14 − 5α15 − 9α16)f11

+(3− 4α11 − α12 − 3α13 − 2α14 − 4α15 − 4α16)f21

+(2− 4α21 − 5.5α22 − 3α23 − 0.9α24 − 7α25 − 10α26)f12

+(10− 3α21 − 3α22 − 3α23 − α24 − 3α25 − 4α26)f22

+(5− α21 − 2.7α22 − 4α23 − 1.6α24 − 3α25 − 7α26)f32

(−16− 3β11 − 3β12 − 3.25β13 − 0.75β14 − 6β15 − 5β16)x11

(−16− 3β11 − 3β12 − 3.25β13 − 0.75β14 − 6β15 − 5β16)x21

(−25− 4β21 − 2.5β22 − 3.5β23 − 1.5β24 − 7β25 − 6β26)x12

(−25− 4β21 − 2.5β22 − 3.5β23 − 1.5β24 − 7β25 − 6β26)x22

(−15− 1.5β31 − 5.5β32 − 3.9β33 − 0.8β34 − 7β35 − 6β36)x13

(−15− 1.5β31 − 5.5β32 − 3.9β33 − 0.8β34 − 7β35 − 6β36)x23

(−10− 3β41 − 4β42 − 4β43 − 1.8β44 − 6β45 − 6β46)x14

(−10− 3β41 − 4β42 − 4β43 − 1.8β44 − 6β45 − 6β46)x24

u11 + u12 + u13 + u14 + u15 + u16 + u21 + u22 + u23 + u24 + u25 + u26

s.t f11 + f21 − x11 − x12 − x13 − x14 = 0

f12 + f22 + f32 − x21 − x22 − x23 − x24 = 0

x11 + x21 ≤ 10

x12 + x22 ≤ 25

x13 + x23 ≤ 30

x14 + x24 ≤ 10

106

(α11 + β11)x11 + (α11 + β21)x12 + (α11 + β31)x13 + (α11 + β41)x14 − u11

+My11 ≤M

−(α11 + β11)4x11 − (α11 + β21)4x12 − (α11 + β31)4x13 − (α11 + β41)4x14 + u11

+My11 ≤M

(α11 + β11)4x11 + (α11 + β21)4x12 + (α11 + β31)4x13 + (α11 + β41)4x14 − u11

−My11 ≤ 0

−(α11 + β11)x11 − (α11 + β21)x12 − (α11 + β31)x13 − (α11 + β41)x14 + u11

+My11 ≤M

−(α11 + β11)x11 − (α11 + β21)x12 − (α11 + β31)x13 − (α11 + β41)x14

+My11 ≤M

(α11 + β11)x11 + (α11 + β21)x12 + (α11 + β31)x13 + (α11 + β41)x14

−My11 ≤ 0

(α12 + β12)x11 + (α12 + β22)x12 + (α12 + β32)x13 + (α12 + β42)x14

−u12 +My12 ≤M

−(α12 + β12)6x11 − (α12 + β22)6x12 − (α12 + β32)6x13 − (α12 + β42)6x14

+u12 +My12 ≤M

(α12 + β12)6x11 + (α12 + β22)6x12 + (α12 + β32)6x13 + (α12 + β42)6x14

−u12 −My12 ≤ 0

−(α12 + β12)x11 − (α12 + β22)x12 − (α12 + β32)x13 − (α12 + β42)x14

+u12 −My12 ≤ 0

−(α12 + β12)x11 − (α12 + β22)x12 − (α12 + β32)x13 − (α12 + β42)x14

+My12 ≤M

(α12 + β12)x11 + (α12 + β22)x12 + (α12 + β32)x13 + (α12 + β42)x14

−My12 ≤ 0

107

(α13 + β13)3x11 + (α13 + β23)3x12 + (α13 + β33)3x13 + (α13 + β43)3x14

−u13 +My13 ≤M

−(α13 + β13)4x11 − (α13 + β23)4x12 − (α13 + β33)4x13 − (α13 + β43)4x14

+u13 +My13 ≤M

(α13 + β13)4x11 + (α13 + β23)4x12 + (α13 + β33)4x13 + (α13 + β43)4x14

−u13 −My13 ≤ 0

−(α13 + β13)3x11 − (α13 + β23)3x12 − (α13 + β33)3x13 − (α13 + β43)3x14

+u13 −My13 ≤ 0

−(α13 + β13)x11 − (α13 + β23)x12 − (α13 + β33)x13 − (α13 + β43)x14

+My13 ≤M

(α13 + β13)x11 + (α13 + β23)x12 + (α13 + β33)x13 + (α13 + β43)x14

−My13 ≤ 0

(α14 + β14)0.5x11 + (α14 + β24)0.5x12 + (α14 + β34)0.5x13 + (α14 + β44)0.5x14

−u14 +My14 ≤M

−(α14 + β14)2x11 − (α14 + β24)2x12 − (α14 + β34)2x13 − (α14 + β44)2x14

+u14 +My14 ≤M

(α14 + β14)2x11 + (α14 + β24)2x12 + (α14 + β34)2x13 + (α14 + β44)2x14

−u14 −My14 ≤ 0

−(α14 + β14)0.5x11 − (α14 + β24)0.5x12 − (α14 + β34)0.5x13 − (α14 + β44)0.5x14

+u14 −My14 ≤ 0

−(α14 + β14)x11 − (α14 + β24)x12 − (α14 + β34)x13 − (α14 + β44)x14

+My14 ≤M

(α14 + β14)x11 + (α14 + β24)x12 + (α14 + β34)x13 + (α14 + β44)x14

−My14 ≤ 0

108

(α15 + β15)4x11 + (α15 + β25)4x12 + (α15 + β35)4x13 + (α15 + β45)4x14

−u15 +My15 ≤M

−(α15 + β15)5x11 − (α15 + β25)5x12 − (α15 + β35)5x13 − (α15 + β45)5x14

+u15 +My15 ≤M

(α15 + β15)5x11 + (α15 + β25)5x12 + (α15 + β35)5x13 + (α15 + β45)5x14

−u15 −My15 ≤ 0

−(α15 + β15)4x11 − (α15 + β25)4x12 − (α15 + β35)4x13 − (α15 + β45)4x14

+u15 −My15 ≤ 0

−(α15 + β15)x11 − (α15 + β25)x12 − (α15 + β35)x13 − (α15 + β45)x14

+My15 ≤M

(α15 + β15)x11 + (α15 + β25)x12 + (α15 + β35)x13 + (α15 + β45)x14

−My15 ≤ 0

(α16 + β16)4x11 + (α16 + β26)4x12 + (α16 + β36)4x13 + (α16 + β46)4x14

−u16 +My16 ≤M

−(α16 + β16)9x11 − (α16 + β26)9x12 − (α16 + β36)9x13 − (α16 + β46)9x14

+u16 +My16 ≤M

(α16 + β16)9x11 + (α16 + β26)9x12 + (α16 + β36)9x13 + (α16 + β46)9x14

−u16 −My16 ≤ 0

−(α16 + β16)4x11 − (α16 + β26)4x12 − (α16 + β36)4x13 − (α16 + β46)4x14

+u16 −My16 ≤ 0

−(α16 + β16)x11 − (α16 + β26)x12 − (α16 + β36)x13 − (α16 + β46)x14

+My16 ≤M

(α16 + β16)x11 + (α16 + β26)x12 + (α16 + β36)x13 + (α16 + β46)x14

−My16 ≤ 0

109

(α21 + β11)x21 + (α21 + β21)x22 + (α21 + β31)x23 + (α21 + β41)x24

−u21 +My21 ≤M

−(α21 + β11)4x21 − (α21 + β21)4x22 − (α21 + β31)4x23 − (α21 + β41)4x24

+u21 +My21 ≤M

(α21 + β11)4x21 + (α21 + β21)4x22 + (α21 + β31)4x23 + (α21 + β41)4x24

−u21 −My21 ≤ 0

−(α21 + β11)x21 − (α21 + β21)x22 − (α21 + β31)x23 − (α21 + β41)x24

+u21 −My21 ≤ 0

−(α21 + β11)x21 − (α21 + β21)x22 − (α21 + β31)x23 − (α21 + β41)x24

+My21 ≤M

(α21 + β11)x21 + (α21 + β21)x22 + (α21 + β31)x23 + (α21 + β41)x24

−My21 ≤ 0

(α22 + β12)2.7x21 + (α22 + β22)2.7x22 + (α22 + β32)2.7x23 + (α22 + β42)2.7x24

−u22 +My22 ≤M

−(α22 + β12)5.5x21 − (α22 + β22)5.5x22 − (α22 + β32)5.5x23 − (α22 + β42)5.5x24

+u22 +My22 ≤M

(α22 + β12)5.5x21 + (α22 + β22)5.5x22 + (α22 + β32)5.5x23 + (α22 + β42)5.5x24

−u22 −My22 ≤ 0

−(α22 + β12)2.7x21 − (α22 + β22)2.7x22 − (α22 + β32)2.7x23 − (α22 + β42)2.7x24

+u22 −My22 ≤ 0

−(α22 + β12)x21 − (α22 + β22)x22 − (α22 + β32)x23 − (α22 + β42)x24

+My22 ≤M

(α22 + β12)x21 + (α22 + β22)x22 + (α22 + β32)x23 + (α22 + β42)x24

−My22 ≤ 0

110

(α23 + β13)3x21 + (α23 + β23)3x22 + (α23 + β33)3x23 + (α23 + β43)3x24

−u23 +My23 ≤M

−(α23 + β13)4x21 − (α23 + β23)4x22 − (α23 + β33)4x23 − (α23 + β43)4x24

+u23 +My23 ≤M

(α23 + β13)4x21 + (α23 + β23)4x22 + (α23 + β33)4x23 + (α23 + β43)4x24

−u23 −My23 ≤ 0

−(α23 + β13)3x21 − (α23 + β23)3x22 − (α23 + β33)3x23 − (α23 + β43)3x24

+u23 −My23 ≤ 0

−(α23 + β13)x21 − (α23 + β23)x22 − (α23 + β33)x23 − (α23 + β43)x24

+My23 ≤M

(α23 + β13)x21 + (α23 + β23)x22 + (α23 + β33)x23 + (α23 + β43)x24

−My23 ≤ 0

(α24 + β14)0.9x21 + (α24 + β24)0.9x22 + (α24 + β34)0.9x23 + (α24 + β44)0.9x24

−u24 +My24 ≤M

−(α24 + β14)1.6x21 − (α24 + β24)1.6x22 − (α24 + β34)1.6x23 − (α24 + β44)1.6x24

+u24 +My24 ≤M

(α24 + β14)1.6x21 + (α24 + β24)1.6x22 + (α24 + β34)1.6x23 + (α24 + β44)1.6x24

−u24 −My24 ≤ 0

−(α24 + β14)0.9x21 − (α24 + β24)0.9x22 − (α24 + β34)0.9x23 − (α24 + β44)0.9x24

+u24 −My24 ≤ 0

−(α24 + β14)x21 − (α24 + β24)x22 − (α24 + β34)x23 − (α24 + β44)x24

+My24 ≤M

(α24 + β14)x21 + (α24 + β24)x22 + (α24 + β34)x23 + (α24 + β44)x24

−My24 ≤ 0

111

(α25 + β15)3x21 + (α25 + β25)3x22 + (α25 + β35)3x23 + (α25 + β45)3x24

−u25 +My25 ≤M

−(α25 + β15)4x21 − (α25 + β25)4x22 − (α25 + β35)4x23 − (α25 + β45)4x24

+u25 +My25 ≤M

(α25 + β15)4x21 + (α25 + β25)4x22 + (α25 + β35)4x23 + (α25 + β45)4x24

−u25 −My25 ≤ 0

−(α25 + β15)3x21 − (α25 + β25)3x22 − (α25 + β35)3x23 − (α25 + β45)3x24

+u25 −My25 ≤ 0

−(α25 + β15)x21 − (α25 + β25)x22 − (α25 + β35)x23 − (α25 + β45)x24

+My25 ≤M

(α25 + β15)x21 + (α25 + β25)x22 + (α25 + β35)x23 + (α25 + β45)x24

−My25 ≤ 0

(α26 + β16)4x21 + (α26 + β26)4x22 + (α26 + β36)4x23 + (α26 + β46)4x24

−u26 +My26 ≤M

−(α26 + β16)10x21 − (α26 + β26)10x22 − (α26 + β36)10x23 − (α26 + β46)10x24

+u26 +My26 ≤M

(α26 + β16)10x21 + (α26 + β26)10x22 + (α26 + β36)10x23 + (α26 + β46)10x24

−u26 −My26 ≤ 0

−(α26 + β16)4x21 − (α26 + β26)4x22 − (α26 + β36)4x23 − (α26 + β46)4x24

+u26 −My26 ≤ 0

−(α26 + β16)x21 − (α26 + β26)x22 − (α26 + β36)x23 − (α26 + β46)x24

+My26 ≤M

(α26 + β16)x21 + (α26 + β26)x22 + (α26 + β36)x23 + (α26 + β46)x24

−My26 ≤ 0

112

The master problem is:

max θ

s.t θ + (fh
11 + 4f

h
21 − qh11(x

h
11 + xh12 + xh13 + xh14))α11

+(6fh
11 + fh

21 − qh12(x
h
11 + xh12 + xh13 + xh14))α12

+(4fh
11 + 3f

h
21 − qh13(x

h
11 + xh12 + xh13 + xh14))α13

+(0.5fh
11 + 2f

h
21 − qh14(x

h
11 + xh12 + xh13 + xh14))α14

+(5fh
11 + 4f

h
21 − qh15(x

h
11 + xh12 + xh13 + xh14))α15

+(9fh
11 + 4f

h
21 − qh14(x

h
11 + xh12 + xh13 + xh14))α16

+(4fh
12 + 3f

h
22 + fh

32 − qh21(x
h
21 + xh22 + xh23 + xh24))α21

+(5.5fh
12 + 3f

h
22 + 2.7f

h
32 − qh22(x

h
21 + xh22 + xh23 + xh24))α22

+(3fh
12 + 3f

h
22 + 4f

h
32 − qh23(x

h
21 + xh22 + xh23 + xh24))α23

+(0.9fh
12 + fh

22 + 1.6f
h
32 − qh24(x

h
21 + xh22 + xh23 + xh24))α24

+(7fh
12 + 3f

h
22 + 3f

h
32 − qh25(x

h
21 + xh22 + xh23 + xh24))α25

+(10fh
12 + 4f

h
22 + 7f

h
32 − qh26(x

h
21 + xh22 + xh23 + xh24))α26

+((3− q11)x11 + (3− q21)x21)β11 + ((3− q12)x11 + (3− q22)x21)β12

+((3.25− q13)x11 + (3.25− q23)x21)β13 + ((0.75− q14)x11 + (0.75− q24)x21)β14

+((6− q15)x11 + (6− q25)x21)β15 + ((5− q16)x11 + (5− q26)x21)β16

+((4− q11)x12 + (4− q21)x22)β21 + ((2.5− q12)x12 + (2.5− q22)x22)β22

+((3.5− q13)x12 + (3.5− q23)x22)β23 + ((1.5− q14)x12 + (1.5− q24)x22)β24

+((7− q15)x12 + (7− q25)x22)β25 + ((6− q16)x12 + (6− q26)x22)β26

+((1.5− q11)x13 + (1.5− q21)x23)β31 + ((5.5− q12)x13 + (5.5− q22)x23)β32

113

+((3.9− q13)x13 + (3.9− q23)x23)β33 + ((0.8− q14)x13 + (10.8− q24)x23)β34

+((7− q15)x13 + (7− q25)x23)β35 + ((6− q16)x13 + (6− q26)x23)β36

+((3− q11)x14 + (3− q21)x24)β41 + ((4− q12)x14 + (4− q22)x24)β42

+((4− q13)x14 + (4− q23)x24)β43 + ((1.8− q14)x14 + (1.8− q24)x24)β44

+((6− q15)x14 + (6− q25)x24)β45 + ((6− q16)x14 + (6− q26)x24)β46 ≤

7fh
11 + 3f

h
21 + 2f

h
12 + 10f

h
22 + 5f

h
32 − 16x11 − 16x21 − 25x12 − 25x22 − 15x13

−15x23 − 10x14 − 10x24; ∀h ∈ H

114

