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Abstract

This thesis is devoted to the analysis of a class of iterative probabilistic algorithms in regular
graphs, called locally greedy algorithms, which will provide bounds for graph functions in
regular graphs with large girth. This class is useful because, by conveniently setting the
parameters associated with it, we may derive algorithms for some well-known graph problems,
such as algorithms to find a large independent set, a large induced forest, or even a small
dominating set in an input graph G. The name “locally greedy” comes from the fact that, in
an algorithm of this class, the probability associated with the random selection of a vertex v
is determined by the current state of the vertices within some fixed distance of v.

Given r ≥ 3 and an r-regular graph G, we determine the expected performance of a
locally greedy algorithm in G, depending on the girth g of the input and on the degree r
of its vertices. When the girth of the graph is sufficiently large, this analysis leads to new
lower bounds on the independence number of G and on the maximum number of vertices
in an induced forest in G, which, in both cases, improve the bounds previously known. It
also implies bounds on the same functions in graphs with large girth and maximum degree
r and in random regular graphs. As a matter of fact, the asymptotic lower bounds on the
cardinality of a maximum induced forest in a random regular graph improve earlier bounds,
while, for independent sets, our bounds coincide with asymptotic lower bounds first obtained
by Wormald. Our result provides an alternative proof of these bounds which avoids sharp
concentration arguments.

The main contribution of this work lies in the method presented rather than in these
particular new bounds. This method allows us, in some sense, to directly analyse prioritised
algorithms in regular graphs, so that the class of locally greedy algorithms, or slight modi-
fications thereof, may be applied to a wider range of problems in regular graphs with large
girth.
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Chapter 1

Introduction

In this thesis, we shall analyse a class of iterative probabilistic algorithms in regular graphs,
which we call locally greedy algorithms. This will provide bounds for graph functions in regular
graphs with large girth, since, by conveniently setting the parameters associated with locally
greedy algorithms, we could derive algorithms for some well-known graph problems, such as
algorithms to find a large independent set and a large induced forest in an input graph G.
The name “locally greedy” comes from the fact that, in an algorithm of this class, the random
selection of a vertex v occurs with a probability determined by the current state of the vertices
within some fixed distance of v. A more precise name for this class would be “random locally
greedy”, but we omit the reference to randomness for concision.

The output produced by one of these algorithms is a subset of the vertices of the input
graph. If this set satisfies a particular property P , the expected performance of the algorithm
naturally leads to bounds on the size of an extremal set in G with property P . Indeed, this
expectation is a lower bound on the cardinality of a maximum set with this property, as one
of the possible outcomes of the algorithm is a set containing at least as many elements as
the expected size of the set produced in a given application of the algorithm. Since another
possible outcome is a set with at most as many elements, this expectation is also an upper
bound on the cardinality of a minimum set satisfying property P .

The above observation motivates the following approach. We determine the expected
performance of a locally greedy algorithm in any fixed regular graph, which, as we shall see,
depends on two parameters, the girth g of the input and the degree r of its vertices. This is
then used to give lower bounds, in the case of graphs with large girth, on the independence
number of G and on the maximum number of vertices in an induced forest in G. In both cases,
the bounds obtained here are a significant improvement in the bounds previously known. We
would like to emphasise, however, that the main contribution of this work lies in the method
presented rather than in these particular new bounds. This method allows us, in some sense,
to directly analyse algorithms in regular graphs for which some operations are applied with
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2 CHAPTER 1. INTRODUCTION

higher priority then others. Such algorithms are called prioritised. As a consequence, the
class of locally greedy algorithms, or slight modifications thereof, may be applied to a wider
range of problems in regular graphs with large girth.

1.1 Preliminaries

Before discussing our work in more detail, we give a few basic definitions. For the terminology
not explicitly defined in this thesis, the reader is referred to Diestel [21].

In this thesis, a graph is a pair G = (V,E) of sets, called the sets of vertices and edges,
respectively, such that

E ⊆ {{u, v} ∈ V 2 : u 6= v}.
In particular, all the graphs we consider have no loops or multiple edges. The degree of a
vertex v is defined to be the number of elements of E containing v, and a graph is r-regular
if all its vertices have degree equal to r.

A cycle in a graph G is a sequence v0e1v1e2 . . . etvt in which the elements vi are vertices,
all of which are distinct with the exception of v0 = vt, and the elements ei are the edges
{vi−1, vi} in the edge set of the graph. The number t of edges in a cycle is called the length
of the cycle, while the girth of a graph is the length of a shortest cycle in the graph. By
convention, the girth is infinite if the graph is acyclic. The Petersen graph, a 3-regular graph
with girth 5 is given in Figure 1.1.1.
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Figure 1.1.1: A 3-regular graph with girth 5.

The results in this thesis concern graphs with large girth. The interplay between the girth
of a graph and other graph parameters has been an active subject of study in graph theory
for a long time. An example of this is a seminal probabilistic result, proved by Erdős [25] in
the late fifties, which establishes that, for any given positive integers k and g, there exists a
graph with girth at least g and chromatic number at least k, evincing the global character of
the chromatic number of a graph.

A series of structural results about this class of graphs have also been established. To
cite a few, Thomassen [52] proved that graphs with large girth and minimum degree at least
three share many properties with graphs of large minimum degree. For instance, graphs in
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these two classes have a contraction containing a large clique, they contain cycles of all even
lengths modulo a prescribed natural number and they have many disjoint cycles of the same
length. Moreover, in terms of topological minors, Kühn and Osthus [38] showed that, if H is
a graph whose maximum degree ∆(H) is at least 2, then every graph G of minimum degree
at least max{∆(H), 3} and girth at least

166 log |V (H)|
log ∆(H)

contains a subdivision of H.

Another driving force in the study of graphs with large girth is the interest in expander
graphs, which play an important role in the theory of error-correcting codes, in the de-
randomisation of random algorithms and in the design of robust computer networks, to name
a few of its applications. One way of obtaining an expander family is to find a sequence
{G1, G2, . . .} of graphs with bounded degree satisfying

lim
n→∞ g(Gn) =∞,

where g(Gn) denotes the girth of the n-th graph in the sequence. This leads to the prob-
lem of explicitly constructing families of graphs containing elements with arbitrarily large
girth. Several constructions, involving algebraic and number-theoretical tools, can be found
in Davidoff et al. [19] and in Biggs [12]. For a comprehensive account of expander graphs, see
Hoory, Linial and Wigderson [30].

1.2 Independent sets

A set of vertices in a graph is called independent if no two vertices in the set are joined by an
edge. Such a set is also known under the name of stable set. A classical decision problem in
graph theory is the independent set problem, which, for a given graph G and a fixed positive
integer k, asks whether G contains an independent set of size at least k. The corresponding
optimisation problem is the maximum independent set problem, which consists of determining
the size α(G) of a largest independent set in a graph G. The interest in this problem has
been partly fueled by its wide range of real world applications, which include problems such
as information retrieval, shape and pattern recognition [16], signal transmission analysis and
scheduling (see [27] and [5]). Independent sets also play an important role in coding and
information theory [15].

The independent set problem is inherently difficult for general graphs. Indeed, it is among
the early problems shown to be NP-complete in a seminal paper by Karp [36]. However, there
exist efficient algorithms to obtain α(G) in some particular classes of graphs, such as line
graphs, perfect graphs and their complements, claw-free graphs and bipartite graphs. For
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references on these and other instances for which the independent set problem is polynomial-
time solvable, the reader is referred to [48].

Since the independence number of a graph is in general hard to compute, much of the
research in this problem has been devoted to obtaining bounds on α(G). A general lower
bound in terms of the maximum degree ∆(G) has been provided by Berge (for a proof, see
for instance [11]) through a simple greedy algorithm. It establishes that

α(G) ≥
⌈ |V (G)|

∆(G) + 1

⌉
.

This bound is tight for the complete graph Kn, the graph on n vertices for which every pair of
vertices is adjacent. Clearly, the maximum degree is ∆ = n− 1 and the largest independent
set has size one. However, this bound is very weak in other cases. One such example is the
complete bipartite graph Kn,n. On the one hand, since ∆ = n, Berge’s bound is equal to 2.
On the other hand, a largest independent set in the graph has size n, with an extremal set
being given by each of the classes in the bipartition of the graph.

In terms of upper bounds, a spectral result stating that

α(G) ≤ min{|V (G)| − n+(A), |V (G)| − n−(A)}, (1.2.1)

where n+(A) and n−(A) denote the number of positive and negative eigenvalues in the adja-
cency matrix A of G, respectively, was found by Cvetković et al. [17]. The same examples of
the previous case illustrate situations for which this bound is tight or behaves poorly. Indeed,
the eigenvalues of the adjacency matrix of Kn are n − 1, with multiplicity 1, and −1, with
multiplicity n− 1, so the above bound is tight. For Kn,n, however, the eigenvalues are n and
−n, each with multiplicity 1, and 0, with multiplicity 2n − 2. As a consequence, the bound
in (1.2.1) gives us

n = α(G) ≤ min{|V (G)| − n+(A), |V (G)| − n−(A)} = 2n− 1,

and therefore may be arbitrarily far from the actual size of the maximum independent set.
The values of the eigenvalues of these graphs can be found in any book in algebraic graph
theory, see for instance [28].

Again, more can be said for particular classes of graphs. One such class is the class
of planar graphs. In their proof of the Four-Colour Theorem [46], Robertson et al. give a
polynomial-time algorithm of O(n2) steps that finds a 4-colouring of a planar graph G, and
hence provides an independent set of this graph containing at least |V (G)|/4 vertices, namely
the largest colour class in this colouring.

Our work studies large independent sets in the class of r-regular graphs with large girth,
where r is fixed. We only consider r ≥ 3, since the cases r = 1 and r = 2 are very simple. To
simplify the statement of bounds on the independence number of a graph, we introduce the
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related concept of independence ratio αR(G) of a graph G. This quantity is defined by

αR(G) =
α(G)
|V (G)| ,

and therefore gives the proportion of vertices in a maximum independent set.
The first result relating the girth of a graph and its independence ratio was provided by

Ajtai, Komlós and Szemerédi, who proved in [1] that, if the average degree d of a triangle-free
graph on n vertices is sufficiently large, then

αR(G) ≥ ln d
100d

.

Shearer [49] improved this bound to

αR(G) ≥ d ln d− d+ 1
(d− 1)2

,

which now holds for all values of d. Around the same time, Hopkins and Staton [31] showed
that, for any δ > 0, if G is a cubic graph on n vertices with girth sufficiently large, it contains
an independent set with at least (

7
18
− δ
)
n

vertices. Note that, by a cubic graph, we mean a graph whose vertices all have degree three.
The fraction in this bound was later improved to 125/302 by Shearer [50], who also gave
bounds in the general r-regular graph case in terms of a recursive function f(r). Lauer and
Wormald [39] improved Shearer’s bound for r ≥ 7, by showing that, for any δ > 0, r-regular
graphs with girth large enough satisfy

αR(G) ≥ 1
2

(
1− (r − 1)−2/(r−2)

)
− δ.

Their proof method, which consists of analysing a simple algorithm to find an independent
set in a graph, will be generalised here, and will therefore be presented in more detail as our
contribution is discussed.

In this thesis, we give new lower bounds λ(r) on the independence ratio of r-regular
graphs with large girth. As with the bounds obtained in [39], the numbers λ(r) are derived,
for each r ≥ 3, from the solution to a system of ordinary differential equations associated
with r. However, these equations are not solved analytically, and the bounds are calculated
separately for each r.

The numbers λ(r) have been previously derived in the context of random r-regular graphs
by Wormald in [56] (see also [57] for a detailed account, and [58] for an alternative approach).
His result establishes that, if an r-regular graph on n vertices is chosen uniformly at random
over all r-regular graphs on n vertices, then the probability that it contains an independent
set of size at least λ(r)n tends to one as n tends to infinity. This is commonly expressed,
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in the language of random graphs, as a random r-regular graph on n a.a.s. containing an
independent set of size λ(r)n. (For a sequence of probability spaces Ωn, n ≥ 1, an event An
of Ωn occurs asymptotically almost surely, or a.a.s. for brevity, if limn→∞P(An) = 1.)

Wormald proves this result through the analysis of a prioritised algorithm, which he
calls degree-greedy, that finds a large independent set in a graph. This analysis cannot be
directly carried over into our class of graphs, since we wish to analyse an algorithm in a fixed
graph, and not in a random graph, yet Wormald’s degree greedy algorithm, especially in its
deprioritised version [58], plays an important role in motivating the choice of parameters to
optimise the performance of a locally greedy algorithm for independent sets.

1.3 Induced forests

An induced forest in a graph G is an acyclic induced subgraph of G. The term “induced”
comes from the notion of an induced subgraph of a graph G = (V,E), which is a graph with
vertex set S ⊆ V and with edge set consisting of the set of all edges in G with both endpoints
in S. The subgraph of G induced by a set S ⊆ V is denoted by G[S]. The problem of finding
a large induced forest in a graph G has been a widely studied topic in graph theory, especially
in its form known as the decycling set problem or the feedback vertex set problem. A decycling
set of a graph is a subset of its vertices whose deletion yields an acyclic graph. From this
definition, we deduce that a set S ⊆ V is such that G[S] is an induced forest of G = (V,E)
if and only if V \ S is a decycling set of G. Therefore, finding a lower bound for τ(G), the
maximum number of vertices in an induced forest of G, amounts to finding an upper bound
for φ(G), the minimum cardinality of a decycling set of G.

The problem of finding a large induced forest or, equivalently, a small decycling set, also
has numerous real world applications, as varied as deadlock prevention [53], chip design [35]
and genome assembly [45]. Historically, the problem of obtaining an acyclic subgraph of a
graph G by removing vertices was already considered by Kirchhoff in his work on spanning
trees [37]. Erdős et. al. also worked on this problem stated in terms of maximum induced
trees in a graph [26]. As with the independent set problem, however, finding a decycling set
of a given size in a graph is among the NP-complete problems in [36]. As a matter of fact,
there is no efficient algorithm for this problem, unless P = NP , even in special families of
graphs such as bipartite graphs, planar graphs or perfect graphs.

On the other hand, there exist polynomial-time algorithms to solve instances of this
problem in cubic graphs [40], permutation graphs [41] and interval graphs [42]. Also, tighter
bounds or even the exact value of the decycling number have been determined for bipartite
graphs in [3] and for graphs such as grids and cubes in [6] and [8].

However, given a graph G on n vertices, there are not many results that bound the
maximum number of vertices in an induced forest. Alon et al. showed in [2] that, if the
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average degree of G is at most d ≥ 2, then the maximum cardinality τ(G) of a subset of
vertices inducing an acyclic subgraph of G satisfies

τ(G) ≥ 2n
d+ 1

.

Whenever d + 1 divides n, this bound is tight, as shown by the graph containing n/(d + 1)
disjoint copies of the graph Kd+1. With Mubayi and Thomas [3], Alon also established that,
in the case of triangle-free graphs with maximum degree d,

τ(G)
n

= Ω
(

log d
d

)
,

as d tends to infinity, which is tight for some classes of triangle-free graphs. Another result
in this paper gives a lower bound on τ(G) as a function of its order n, its maximum degree
∆ and its independence number, namely

τ(G) ≥ α(G) +
n− α(G)
(∆− 1)2

,

provided that ∆ ≥ 3.
Results of this type have also been obtained in the probability space of random regular

graphs. Indeed, asymptotic upper and lower bounds on the size of a minimum decycling set
were given by Bau, Wormald and Zhou in [7]. Recall that the meaning of this result is that, if
an r-regular graph on n vertices is chosen uniformly at random over all r-regular graphs on n
vertices, then the probability that the proportion of vertices in a largest induced forest in this
graph is bounded between the values provided in [7] tends to one as n tends to infinity. As
with several bounds for random r-regular graphs, the lower bounds are obtained through the
analysis of a randomised algorithm over the probability space of random regular graphs. As
we shall see, a simple algorithm for induced forests in regular graphs finds the same numbers
to be bounds in the case of graphs with large girth. The class of locally greedy algorithms
generalises this algorithm, and, for a particular choice of parameters, implies even better
bounds.

We should also mention that, for graphs with girth sufficiently large, the cardinality of a
maximum induced forest is connected with the concept of fragmentability in a graph. Given
a real λ > 0 and an integer m, a graph is (λ,m)-fragmentable if there is a set X ⊆ V (G) such
that |X| ≤ λ|V (G)| and Y = V (G) \ X is m-fragmented, that is, every component of G[Y ]
has at most m vertices. For an integer r, define λ(r) as the infimum of λ such that there
is an m for which every graph with maximum degree at most r is (λ,m)-fragmentable. A
remark in [29] relates, for a random r-regular graph G, the problem of finding the cardinality
of a minimum decycling set in G and the problem of finding the infimum of λ such that G is
(λ,m)-fragmentable for some m. This relation can be easily restated in the case when G is
a graph with large girth and maximum degree r: for any r, g and ε > 0, there is an n0 such
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that, for any r-regular graph G of order n ≥ n0 and girth larger than g, the size φ(G) of a
minimum decycling set in G satisfies

|φ(G)− nλ(r)| < nε.

Thus, the problem of finding bounds on λ(r) and on the size of φ(G) of a minimum decycling
set (and hence on the cardinality τ(G) of a largest induced forest) are equivalent. The best
upper bounds on the fragmentability of r-regular graphs with girth sufficiently large,

λ(r) ≤ r − 2
r + 1

,

have been provided by Edwards and Farr [24]. These bounds give the best possible result for
r = 3. Note that, for induced forests, this implies the bound τ(G)/n ≥ 0.75, where G is a
graph on n vertices. However, for all values of r ≥ 4 determined through our approach, the
bounds provided in this thesis are superior.

1.4 Random regular graphs

Based on our discussion about independent sets and induced forests, there seems to be a
connection between bounds for r-regular graphs with large girth and asymptotic bounds for
random r-regular graphs. We now argue that this is indeed the case. On the one hand, if we
determine a lower bound on the proportion of vertices satisfying some property in a graph
with girth sufficiently large, then, structural results about random regular graphs proved by
Bollobás [13] and Wormald [55] imply that this is also an asymptotic lower bound for random
regular graphs, provided that this property is in a quite general class of properties introduced
in Chapter 2. In particular, by showing that the property of being an independent set in
a graph and the property of inducing a forest in a graph are in this class, we deduce that
the bounds obtained in this work for r-regular graphs with large girth hold asymptotically
for random r-regular graphs. In particular, this thesis improves the asymptotic bounds on
the size of a maximum induced forest in a random r-regular graph, while, in the case of
independent sets, it provides a new proof for the bounds first obtained in [56]. We note that
this new proof is essentially different from the previous proofs, since it does not rely on sharp
concentration arguments.

Less can be said about the converse. It is true that every result establishing that a random
r-regular graph a.a.s. satisfies some property implies that, for every g > 0, there exists an
r-regular graph with girth at least g satisfying this property, since the results in [13] and
[55] also imply that the class of r-regular graphs on n vertices with girth at least g are an
asymptotically positive proportion of all r-regular graphs on n vertices.

Furthermore, we shall see in this thesis that, although the algorithms used to prove asymp-
totic lower bounds for random r-regular graph, such as the algorithms in [56] and in [58], in
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the case of independent sets, and the algorithm in [7], in the case of induced forests, cannot
be analysed when the input graph is fixed, some of their properties will help us determine
parameters for which the performance of a locally greedy algorithm is optimal. We should
also point out that Wormald and the author of this thesis have work in progress concerning
the derivation of a class of results in r-regular graphs with large girth assisted by asymptotic
results in the probability space of random r-regular graphs. One such result would be the
extension of the lower bounds on the independence number of random r-regular graphs estab-
lished in [58] to r-regular graphs with large girth, providing an alternative way to derive the
bounds obtained in this thesis. Several other bounds in random regular graphs would also be
extended to r-regular graphs with large girth through this method, including the bounds on
the independent domination number in [22], on small k-dominating sets in [23] and on large
k-independent sets [9].

Nevertheless, it is not true that asymptotic properties of random regular graphs always
hold in r-regular graphs with girth sufficiently large. For instance, Robinson and Wormald
showed in [47] that random r-regular graphs are a.a.s. Hamiltonian, which is obviously not
the case for all graphs with girth sufficiently large, since some of these graphs might not even
be connected. Furthermore, in joint work with Benjamini, Ofek, Pralat and Wormald [10],
the author of this thesis investigated the “shape” of random regular graphs. Among other
things, we showed that, if two vertices in a random r-regular graph are chosen uniformly
at random, then they are a.a.s. connected to each other through r internally disjoint paths,
which obviously does not hold for all r-regular graphs with girth sufficiently large.

1.5 The structure of this thesis

We now describe the organisation of this thesis. The points of original contribution will be
emphasised, as will the thesis’ connection with previous work in this area.

In Chapter 2, we introduce a simple randomised algorithm to grow an induced forest in
an r-regular graph, where r ≥ 3 is a fixed integer. By estimating the expected size of the
set produced by this algorithm, we obtain a lower bound ξ1(r) on the proportion of vertices
in a maximum induced forest in an r-regular graph when the girth of the input graph is
sufficiently large. The numbers ξ1(r) coincide with the numbers obtained in [7] as asymptotic
lower bounds on the proportion of vertices in a maximum induced forest in a random r-
regular graph. Our approach extends the method initiated by Lauer and Wormald in [39],
and the ideas in the analysis of this simple algorithm are useful to illustrate the more general
approach in terms of locally greedy algorithms. It should be mentioned that the construction
and analysis of this algorithm consists of joint work with Wormald [32].

In Chapter 3, the class of locally greedy algorithms is presented. Recall that the origin
of this name is in the fact that, in an algorithm of this class, the random selection of a ver-
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tex v occurs with a probability determined by the current state of the vertices within some
fixed distance of v. On the one hand, the assignment of particular parameters to this class
yields algorithms producing sets with various graph properties, including the algorithm for
independent sets analysed in [39] and the algorithm for induced forests analysed in Chapter
2. However, the importance of this class of algorithms goes beyond extending the application
of the method from Chapter 2 to other problems. Indeed, it allows us to devise algorithms
for which, in a given iteration, the probability that a random choice is made depends, in
some sense, on the way that the vertex was affected by the algorithm up to this iteration. In
particular, this will lead to an algorithm for independent sets in r-regular graphs whose ex-
pected performance in any fixed graph with sufficiently large girth approximates the expected
performance of prioritised algorithms in random regular graphs, such as the ones analysed
in [56] and [58]. We shall also devise an algorithm for induced forests in r-regular graphs
for which the random choices are prioritised, whose analysis leads to an improvement of the
lower bounds on the size of a maximum induced forest in an r-regular graph with large girth
obtained in Chapter 2.

Despite the general framework, the analysis of a locally greedy algorithm resembles the
analysis of the simple algorithm in Chapter 2. Nevertheless, the quality of the bounds ob-
tained depends on the assignment of probabilities to each type of operation performed by
the algorithm, and a lot of work is necessary to assign the probabilities so as to get good
lower bounds in the case of independent sets and induced forests. In Chapter 4, we define the
probabilities associated with a locally greedy algorithm in terms of a general set of functions.
Moreover, we impose conditions upon this set so as to ensure that the expected performance
of the algorithm can be estimated through the solutions of a system of ordinary differential
equations, as was the case in Chapter 2.

In Chapters 5 and 6, we use the work of the previous chapters to provide instances of the
locally greedy algorithm that provide the new bounds for independent sets and induced forests.
Each of these bounds depends on the solutions of a system of ordinary differential equations
that resembles the system obtained in [58] in the context of deprioritised algorithms in random
regular graphs, and a good deal of the work in these two chapters consists of verifying that the
conditions established in Chapter 4 are satisfied by our particular assignments of probabilities.
We observe that, to obtain the numerical bounds given in Table 5.3.1, for independent sets,
and in Table 6.3.1, for induced forests, the numerical solutions to these systems of differential
equations need to be obtained.



Chapter 2

A simple algorithm in regular

graphs

In this chapter, we shall introduce a simple algorithm to find induced forests in a regular graph.
We shall extend the method initiated by Lauer and Wormald in [39] to find lower bounds
on the size of largest independent sets [39] in such graphs. The proof involves analysing the
performance of an iterative randomised algorithm that generates an independent set in a
graph. Although their algorithm is applicable to any graph, the number of iterations allowed
is bounded by a function that increases with the girth, and, because of this, better bounds
can be obtained as the girth increases. We shall use a similar approach to obtain bounds on
the size of an induced forest in a graph whose girth is large.

The algorithm that we analyse here is a particular instance of the class of locally greedy
algorithms, which will be defined in Chapter 3. This is a simplified version, and its analysis is
consequently simpler. Nevertheless, several ingredients in the analysis of the general algorithm
will also be presented here. The results in this chapter constitute joint work with Wormald
[32].

2.1 Lower bounds on induced forests

For each r ≥ 3, we shall determine lower bounds on the size τ(G) of a largest induced forest
in an r-regular graph with girth sufficiently large. The bounds are derived from the solution
of a system of differential equations that will naturally arise in the analysis of an algorithm
for this problem. More precisely, the following theorem will be proved.

Theorem 2.1.1 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every r-regular
graph G on n vertices with girth greater than or equal to g satisfies τ(G) ≥ (ξ1(r) − δ)n,
where the constants

ξ1(r) = sup
p0∈(0,1]

ξ1(r, p0)

11
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r 3 4 5 6 7 8 9 10

ξ1(r) 0.7268 0.6045 0.5269 0.4711 0.4283 0.3940 0.3658 0.3419

Table 2.1.1: Lower bounds on τ(G)/n, whereG is an n-vertex, r-regular graph with sufficiently
large girth.

are defined in (2.6.3) with respect to the solution to the initial value problem defined in (2.5.2).

Numerical lower bounds on ξ1(r) are given in Table 2.1.1 for some values of r.
Before discussing the proof of this theorem in more detail, we shall see that bounds for

r-regular graphs with large girth can sometimes be translated into bounds for graphs with
large girth and maximum degree r, and even into asymptotic bounds for random r-regular
graphs. This is true if the graph property P under consideration is a property defined over
subsets of the vertex sets of graphs such that, if S ⊆ V (G) ∩ V (H) satisfies property P in G

and G[S] = H[S], then S satisfies P in H. Moreover, if S satisfies P in G, then every subset
of S satisfies P in G. Such a property P will be called a vertex monotone property. Note
that the property of being an induced forest in a graph is vertex monotone. Indeed, if S lies
in the intersection of the vertex sets of graphs G and H, and if we know that S induces an
acyclic subgraph of G and G[S] = H[S], then the fact that S induces a forest in H is trivial.
Moreover, it is also clear that, if S induces a forest in G, then every subset of S must do the
same.

The following result shows the connection between bounds for r-regular graphs with large
girth and bounds for graphs with large girth and maximum degree r in this case.

Lemma 2.1.2 Let r ≥ 3 be a positive integer and let γ > 0. Consider a vertex monotone
property P , and suppose that there exists g > 0 such that every r-regular graph G with girth
at least g contains a set of vertices S with cardinality |S| ≥ γ|V (G)| satisfying property P .
Then, for any graph H with maximum degree r and girth at least g, there exists T ⊆ V (H)
such that |T | satisfies P and |T | ≥ γ|V (H)|.

Proof Let g > 0 be such that every r-regular graph G with girth at least g contains a set of
vertices S with cardinality |S| ≥ γ|V (G)| satisfying property P , and let H be a graph with
maximum degree r and with girth at least g. It is easy to see that we may create an r-regular
graph H ′ by taking copies of H and joining some pairs of vertices from different copies so as
to make the resulting graph H ′ r-regular. This can be done without decreasing the girth if
sufficiently many copies of H are used.

Now, by hypothesis, the graph H ′ contains a set S′ that satisfies property P and has
cardinality at least γ|V (H ′)|. Let H1 be one of the copies of H in H ′ with most vertices in
S′, and define S1 = S′ ∩ V (H1). By our definition of S1, it is clear that |S1| ≥ γ|V (H)|.
On the other hand, S1 satisfies property P in H ′, since it is contained in the set S′, which



2.1. LOWER BOUNDS ON INDUCED FORESTS 13

satisfies this property in H ′. By construction, we also have H[S] = H ′[S], so that, using
vertex monotonicity, we deduce that S is a subset of H with cardinality at least γ|V (H)|
satisfying property P , as required. �

In particular, the bounds ξ1(r) given in the statement of Theorem 2.1.1 also hold for
graphs with maximum degree r and girth sufficiently large. A similar result can be obtained
for random regular graphs. It relies on the following result in the theory of random regular
graphs. For a proof, see Wormald [55] or Bollobás [13].

Lemma 2.1.3 Let r ≥ 3 and g be fixed positive integers. Then a random r-regular graph G
on n vertices a.a.s. contains o(n) cycles of length at most g.

We can now find a connection between bounds for r-regular graphs with large girth and
asymptotic bounds for random regular graphs.

Lemma 2.1.4 Let r ≥ 3 be a positive integer and let γ > 0. Consider a vertex monotone
property P and suppose that there exists g > 0 such that every r-regular graph G with girth
at least g contains a set of vertices S with cardinality at least γ|V (G)| satisfying property P .
Then a random r-regular graph on n vertices a.a.s contains a set of vertices T satisfying P
such that |T | ≥ γ (n− o(n)).

Proof Consider a vertex monotone property P and suppose that there exists g > 0 such
that every r-regular graph G with girth at least g contains a set of vertices S that satisfies
property P and has cardinality at least γ|V (G)|.

By Lemma 2.1.3, G a.a.s. can be turned into a graph G′ with maximum degree r and girth
at least g by deleting o(n) of its vertices. By Lemma 2.1.2, G′ contains a set S satisfying P
and with cardinality at least γ (n− o(n)) ≥ γ(n − ε) vertices. Since G′ was obtained from
G through the deletion of vertices, we must have G′[S] = G[S], and, therefore, S satisfies
property P in G, establishing the lemma. �

Our main objective in this chapter is to establish Theorem 2.1.1, whose proof is structured
as follows. We first introduce a randomised greedy algorithm that finds an induced forest
of a given graph. When this algorithm is applied to an r-regular graph G with sufficiently
large girth, its expected performance leads to the bounds in the statement of the theorem,
and hence guarantees the existence of an induced forest on the same proportion of vertices by
the first moment principle. To estimate the expected performance of the algorithm, we shall
establish preliminary lemmas that help us understand the behaviour of our algorithm, which
will then be used to derive a system of recurrence equations involving the cardinality of the
set of vertices in the induced forest. Finally, we shall approximate this system of recurrence
equations by a system of ordinary differential equations whose solution provides us with the
bounds in the statement of Theorem 2.1.1.

Our method also produces (weaker) bounds on τ(G) if a specific lower bound on the girth
of G is given. However, we do not compute the precise constants for any particular bound on
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girth.

2.2 An algorithm for induced forests

We now introduce an algorithm that will help us find a large induced forest in a graph
G = (V,E). At any given step of the algorithm, we shall associate colours with the vertices of
the graph as follows. The colour purple is assigned to vertices in a set P , a subset of V that
induces a subgraph of G with “a few” cycles only. A vertex is blue if it is not yet in P , but
could join it in the next iteration, whereas yellow is assigned to vertices whose addition to P
would yield cycles in G[P ]. The remaining vertices are coloured white and are the vertices
not adjacent to vertices of the forest.

Algorithm 2.2.1 (Simple algorithm)

Input: A graph G, a positive integer N and a pair of probabilities (p0, p).

1. Start with all the vertices of the graph coloured white. In the first step, colour each
vertex purple with probability p0, at random, independently of all others. Non-purple
vertices are coloured blue if they have exactly one purple neighbour and yellow if they
have at least two purple neighbours.

2. At each step i, choose blue vertices randomly and independently with probability p and
colour them purple. The sets of blue and yellow vertices are updated using the rule given
in 1. We refer to the set of white vertices as W , to the set of blue vertices as B and to
the set of purple vertices as P . Repeat this iteratively for N steps.

3. Create a set P̄ ⊆ P by deleting any pair of adjacent vertices added to P in the same
step.

Output: The acyclic set P̄ and the set of white vertices W̄ lying in acyclic components of
G[W ].

In the first phase, the roots of the induced trees are chosen and coloured purple, and
vertices that could be added to the trees without creating cycles or connecting distinct com-
ponents are coloured blue. In each step of the second phase, the forest is extended by choosing
blue vertices and adding them to P , and at each step the colours associated with each vertex
are updated so that the sets of white, blue and yellow vertices at the end of each step repre-
sent the vertices with 0, 1, and more than one, purple neighbours, respectively. Note that it
would be possible to alter p at each step, and this would be useful if optimising the algorithm
for the set of graphs with particular girth (as done in [39] for independent sets), but we do
not do this here.
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The graph G[P ] at the end of Phase 2 is not necessarily acyclic. As a matter of fact, it
may happen that two neighbouring blue vertices are added to the forest in the same step and
create a cycle. These cycles are broken in the third phase of the algorithm.

A drawback to the analysis of Algorithm 2.2.1 in its original version is that the random
selection of vertices at a given step depends on the outcome of the previous steps. To avoid
this, we introduce an equivalent model for which the random choices are uniform over the
whole set of vertices. Indeed, with each vertex v ∈ V , we shall first associate a random
sequence of labels S(v) ⊆ {0, 1, 2, . . .} so that label i is in S(v) independently at random with
probability p0, if i = 0, or p, if i ≥ 1. In other words, we choose sets of vertices at times
0, 1, . . ., and assign to a vertex v the labels {i : v was chosen at time i}. In the context of
our algorithm, we shall then consider the set of vertices with label 0 to be the set of vertices
selected in Phase 1 and use vertices with label i to recreate the set of vertices added to P

at step i in Phase 2 of our algorithm. It is clear that some of the labels are ill-suited. For
instance, a vertex with label 1 will not be selected to join P at step 1 if it also has label 0, in
which case it already belongs to P , or if none of its neighbours has label 0, in which case it is
not blue after the first phase of the algorithm. This motivates a classification of the labels as
relevant or irrelevant, that is, as labels that represent an action of our algorithm or as labels
that do not.

Definition 2.2.2 (Relevant and irrelevant labels)
Let G = (V,E) be a graph, and, for every v ∈ V , let S(v) ⊆ N be the set of labels associated
with v. We define relevant labels inductively (labels that are not relevant are said to be
irrelevant). A label i is relevant for v if:
I. i = 0 ∈ S(v), or
II. i ∈ S(v), j is irrelevant for v for all j < i, and there is a unique neighbour of v with a
relevant label strictly smaller than i.

The sets of vertices with relevant label equal to i are denoted by Ri, while the ones
with relevant label less than or equal to i are denoted by R≤i. We refer to the sequence
[S(v) : v ∈ V ] as S. Now, for each ` ∈ N, the sequence S may be used to construct a
colouring of G with colours purple, blue, white and yellow.

Definition 2.2.3 (Colouring of G at time `)
Given a graph G and a sequence S as above, the colouring of G at time ` ∈ N is the function
assigning colours purple, blue, yellow and white to the vertices of G defined as follows. Given
u ∈ V ,

(a) u is white if u /∈ R≤l and v /∈ R≤l, for all v ∈ N(u), where N(u) denotes the neighbour-
hood of u.

(b) u is blue if u /∈ R≤l and there is a unique v ∈ N(u) such that v ∈ R≤l.
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(c) u is yellow if u /∈ R≤l and there exist distinct v, w ∈ N(u) with v, w ∈ R≤l.

(d) u is purple if u ∈ R≤l.

It is clear from this definition that the colouring of G at time ` is fully determined by the
sequence [S(v) ∩ {0, . . . , l} : v ∈ V ]. Moreover, this colouring coincides with the colouring
of the graph induced by our algorithm if we assume the set P after k steps to be R≤k, as
formalised by the next lemma.

Lemma 2.2.4 Let G = (V,E) be a graph, and consider a subgraph H of G and a colouring
c of H with colours purple, blue, yellow and white. Then the following events have the same
probability:

(i) the colouring of G at time ` induced by the sequence S = [S(v) : v ∈ V (G)] restricted
to H is equal to c, where S is obtained by adding each nonnegative integer i to S(v)
independently with probability p0, if i = 0, or p, if i ≥ 1, for all v ∈ V .

(ii) Algorithm 2.2.1 applied to G obtains c as the colouring of H after step `.

Proof We create a new algorithm by modifying part 2 of Algorithm 2.2.1 as follows. At
each step i, every vertex v ∈ V (G) is chosen with probability p. However, the algorithm takes
no action if a non-blue vertex is selected. So, the modified algorithm makes more random
choices, but the random choices that do not correspond to a random choice in the original
algorithm are irrelevant. So, these two algorithms clearly obtain c as the colouring of H after
step ` with the same probability. On the other hand, a simple inductive argument implies
that the event that, after step `, the new algorithm yields colouring c in a subgraph H of G
corresponds to the event described in (i), establishing the lemma.

Given this equivalence, we shall work in the probability space of the sequence S of sets of
labels, which we call the probability space of labellings.

2.3 Independence lemmas

We prove results that allow us to compute the probability, using local information only, of
a vertex of an r-regular graph G being assigned some given colour at time i. Henceforth,
we shall fix an r-regular graph G = (V,E) with girth g and consider a sequence of sets
S = [S(v) : v ∈ V (G)], where i ∈ N is in S(v) with probability p0, if i = 0, or p, if i ≥ 1, for
all v.

Lemma 2.3.1 Let G = (V,E) be a graph and consider a sequence of sets of labels S = [S(v) :
v ∈ V ]. Given u ∈ V , define a sequence of sets of labels S ′ by replacing, in S, S(u) by some
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set S′(u). Let w be a vertex of G whose colour at time i with respect to S and S ′ differs,
where i is a nonnegative integer.

Then there exists a path P from u to w for which every vertex except possibly w gained or
lost a relevant label less than or equal to i when S was replaced by S ′. Moreover, the relevant
labels gained or lost by each vertex along the path are in strictly increasing order when the
path is considered from u to w.

Proof The proof is by induction on i. For i = 0, since the colour of w at time 0 has changed
after replacing S(u) by S′(u), it must be that u has gained or lost relevant label 0 and that
either u = w or u and w are neighbours. In both cases, P = (u,w) satisfies the conditions in
the statement of this lemma.

Now, let i > 0 and assume that this result holds earlier. If u = w nothing needs to be
done, so suppose that this is not the case. Since the colour of w changed at time i, there exists
a neighbour w′ of w that gained or lost a relevant label smaller than or equal to i. If w′ = u,
our result is clearly true, so suppose that they are distinct. Then the relevant label gained or
lost by w′ is not equal to 0 and, by the definition of relevant label, there is a neighbour w′′

of w′ that gained or lost a relevant label at a time j strictly smaller than the relevant label
gained or lost by w′. In particular, the colour of w′′ changed at time j, so, by induction, there
is a path P ′′ from u to w′′ under the conditions of the lemma. Thus, the path P obtained by
appending vertices w′ and u to P ′′ satisfies the required properties.

Corollary 2.3.2 Let u ∈ V (G) and i ∈ N. Then for any given colour c and any collection
of subsets S′v of N, where v ranges over the vertices at distance at least i+ 2 of u, the event
that u has colour c at time i is independent of the event that S(v) = S′v.

Proof It is sufficient to show that, if Ŝ = [Ŝ(v) : v ∈ V (G)] is any given family of sets of
labels and new sets S′(v) are assigned to each vertex v satisfying d(u, v) ≥ i + 2, then the
colour of u at time i relative to Ŝ is the same as the colour of u at time i relative to S ′, where
S ′ is obtained by replacing each Ŝ(v) by S′(v).

We now prove this sufficient condition. Suppose for a contradiction that the colours of
u with respect to Ŝ and S ′ differ, and order the vertices v ∈ V satisfying d(u, v) ≥ i + 2 as
v1, v2, . . . , vm. Consider, for l ∈ {0, . . . ,m}, the sequences Sl obtained from Ŝ by replacing
Ŝ(v1), . . . , Ŝ(vl) by S′(v1), . . . , S′(vl). Our assumption implies the existence of j such that
the colours of u with respect to Sj and Sj+1 are distinct. By Lemma 2.3.1, there is a path P
in G from vj+1 to u such that every vertex except possibly u gained or lost a relevant label
less than or equal to i when Sj was replaced by Sj+1. Also, the relevant labels gained or lost
on each vertex along the path are in strictly increasing order when the path is considered
from vj+1 to u. In particular, P contains at most i + 2 vertices, i.e., d(u, vj+1) ≤ i + 1, a
contradiction.

Let Bi and Wi denote the sets of vertices coloured blue and white at time i, respectively.
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For events E1 and E2, let E1 ∧ E2 denote their intersection.

Corollary 2.3.3 Let u ∈ V and let v be one its neighbours. Then the probabilities P(u ∈Wi),
P(u ∈ Bi), P(u ∈Wi ∧ v ∈Wi), P(u ∈ Bi ∧u ∈Wi) and P(u ∈ Bi ∧ v ∈ Bi) are independent
of u and v whenever 2i < g − 3. Moreover, if we let w be a neighbour of u distinct from v,
P(v ∈ Bi ∧ u ∈ Bi ∧ w ∈ R≤i) does not depend on u, v or w.

Proof We know from Corollary 2.3.2 that the colour of u at time i depends only on the sets of
labels of vertices at distance at most i+1 from u. In other words, u is fully determined by the
sets of labels in the subgraph Gu = G[{v : d(u, v) ≤ i+ 1}]. But our restriction on i implies
that, for every u ∈ V , the graphs Gu are isomorphic. Our first two claims immediately follow,
since distinct vertices are assigned sets of labels independently with the same probability. It
is clear that an analogous argument can be used to prove the remaining statements.

Before stating the next result, a definition is necessary.

Definition 2.3.4 (Branches around vertex u) Let u ∈ V and let u1, . . . , ur be its neigh-
bours. For each s ∈ {1, . . . , r} and positive integer m < g/2, the component Tu,s,m of
G[{v : d(u, v) ≤ m} \ u] containing us is a tree, which we consider as a rooted tree with
root us. We shall refer to these trees as branches around vertex u.

In the next result, we shall use the concept of mutual independence of events. By a
collection of events H1, ..., Hm being mutually independent, it is meant that, for any subset
of the collection, the joint probability of all events occurring is equal to the product of the
probabilities of the individual events.

Lemma 2.3.5 Let u ∈ V and let v1, . . . , vr be its neighbours. Fix i ∈ N such that 2(i+ 2) <
g− 2 and consider, for each j ∈ {1, . . . , r}, the tree Tu,j,2 rooted at vj given by the component
of G[{v : d(u, v) ≤ 2} − u] containing vj. Then the following assertions hold.
1. Let X1, . . . , Xr be colourings of the tree isomorphic to the rooted trees Tu,j,2 (the isomor-
phism is a consequence of our restriction on i). Then, conditional upon u ∈ Wi, the events
E1, . . . , Er are mutually independent, where Ej stands for the event that Tu,j,2 has colouring
Xj at time i.
2. Conditional upon u ∈ Bi and vl ∈ R≤i for some l ∈ {1, . . . , r}, the same events Ej are
mutually independent for all j 6= l.

Proof By Lemma 2.3.1, the colour of a vertex w at time i is altered when replacing S1(v)×
· · · × Sr(v) by S′1(v) × · · · × S′r(v) only if there is a path P from v to w such that all the
vertices on P that are not purple at time i with respect to S have a different colour with
respect to S ′. This is because, given any non-purple vertex w′ at time i lying on P, it either
gains a relevant label, in which case it is purple at time i with respect to S ′, or it is equal to
w, in which case its colour changes by assumption.
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Now, if w and v are vertices in different branches with respect to u, our restriction on i

implies by Corollary 2.3.2 that any path from v to w that is short enough for every interior
vertex to gain or lose a relevant label passes through u. Hence, conditional upon u being
white, changes in S1(v)× · · · × Sr(v) do not affect the colour of w at time i.

Moreover, we also know by Corollary 2.3.2 that the colour at time i of vertices at distance
at most two from u are not affected by changes in the set of labels of vertices whose distance
to u is greater that i+ 3. Let Vu,i+3 be the set of vertices in G at distance at most i+ 3 from
u, excluding vertex u.

So,

P(E1 ∧ E2 ∧ . . . ∧ Er | u ∈Wi) =
∑
?

P(S(v) = Sv, ∀v ∈ Vu,i+3 | u ∈Wi),

where
∑

? denotes the sum over vectors (Sv : v ∈ Vu,i+3) such that the event S(v) = Sv, ∀v ∈
Vu,i+3, implies E1 ∧ E2 ∧ . . . ∧ Er. Now, observe that our restriction on i implies that the
branches Tu,j,i+3 are all disjoint. In particular, we can first sum over sets of labels of vertices
in Tu,1,i+3 (notation

∑
??) and then over the remaining vertices (notation

∑
???) to obtain

P(E1 ∧ E2 ∧ . . . ∧ Er | u ∈Wi) =
∑
??

∑
???

P(S(v) = Sv, ∀v ∈ Vu,i+3 | u ∈Wi).

Using conditional probability and rearranging the sum, this becomes

∑
??

P(S(v) = Sv, ∀v ∈ Tu,1,i+3 | u ∈Wi)

×
∑
???

P(S(v) = Sv, ∀v /∈ Tu,1,i+3 | (u ∈Wi) ∧ (S(v) = Sv, ∀v ∈ Tu,1,i+3))

=
∑
??

P(S(v) = Sv, ∀v ∈ Tu,1,i+3 | u ∈Wi) P(E2 ∧ . . . ∧ Er | u ∈Wi)

= P(E1 | u ∈Wi) P(E2 ∧ . . . ∧ Er | u ∈Wi).

These manipulations can be done since, conditional upon u being white, changes in S(v) do
not affect the colours of other branches, for any v ∈ Tu,1,i+3.

Repeating this argument for the remaining branches, we obtain

P(E1 ∧ E2 ∧ . . . ∧ Er | u ∈Wi) =
r∏

j=1

P(Ej | u ∈Wi),

and our first claim is true.

For the second part, we proceed analogously by leaving both the blue vertex u and the
branch of its neighbour with relevant label untouched, and then summing over all possibilities
of labels for vertices in the other branches.
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2.4 Applications of the independence lemmas

In this section, the independence results of the previous section will be used to obtain re-
currence equations relating the probabilities of events that are important in the analysis of
Algorithm 2.2.1. We introduce some notation. Let u be a vertex of graph G. An arbitrary
neighbour of u will be denoted by v, while we use v1, . . . , vr to refer to the set of neighbours
of u. When u has a neighbour with relevant label, this will be referred as vk and we shall
assume that v 6= vk.

Furthermore, for any i ≥ 0, we know by Corollary 2.3.3 that the quantities wi = P(u ∈
Wi), bi = P(u ∈ Bi), qi = P(u ∈ Wi ∧ v ∈ Wi), si = P(u ∈ Bi ∧ v ∈ Wi) and ti = P(u ∈
Bi∧v ∈ Bi), or even P(u ∈ Bi∧v ∈Wi∧vk ∈ R≤i) and P(u ∈ Bi∧v ∈ Bi∧vk ∈ R≤i), do not
depend on u, v or k. We now let 1 ≤ i < (g − 3)/2 and establish the following consequences
of the previous independence lemmas.

Corollary 2.4.1 The following equations hold in the probability space of labellings.

(i) Let J = {j1, . . . , jm} ⊆ {1, . . . , r}. Then

P(vj /∈ Ri, ∀j ∈ J | u ∈Wi−1) =
∏

j∈J
P(vj /∈ Ri | u ∈Wi−1).

(ii) Let J ⊆ {1, . . . , r} \ {k}. Then

P(vj /∈ Ri, ∀j ∈ J | u ∈ Bi−1 ∧ vk ∈ R≤i−1) =
∏

j∈J
P(vj /∈ Ri | u ∈ Bi−1 ∧ vk ∈ R≤i−1).

Proof We prove part (i) by induction on m. For m = 1, the result follows immediately, so
let m > 1 and assume the result holds for any smaller set J .

First observe that, because a vertex receives relevant label i ≥ 1 only if it is blue at time
i− 1, it is important to consider the set of blue neighbours of u at time i− 1. In light of this,
we associate a vector ω ∈ Zm2 with the set of neighbours vjt of u so that ω(t) = 1 if and only
if vjt ∈ Bi−1.

Note that, for a vertex not to become purple at time i, it either was not blue at the
previous step or it was blue, but i is not contained in its set of labels. Thus,

P(vj /∈ Ri, ∀j ∈ J | u ∈Wi−1)

=
∑

ω∈Zm2
P((vjt ∈ Bi−1 ∧ i /∈ S(vjt), if ω(t) = 1) ∧ (vjt /∈ Bi−1, if ω(t) = 0) | u ∈Wi−1).

The fact that S(v) contains any nonnegative integer independently at random (and label i
does not influence the colouring at time i − 1), together with Lemma 2.3.5, ensures that
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the events of the form (vjt ∈ Bi−1 ∧ i /∈ S(vjt)) and vjs /∈ Bi−1 are mutually independent
conditional upon u being white. So, the equation becomes

P(vj /∈ Ri, ∀j ∈ J | u ∈Wi−1)

=
∑

ω∈Zm2

∏

{jt:ω(t)=1}
P(vjt ∈ Bi−1 ∧ i /∈ S(vjt) | u ∈Wi−1)

∏

{jt:ω(t)=0}
P(vjt /∈ Bi−1 | u ∈Wi−1).

= P(vjm ∈ Bi−1 ∧ i /∈ S(vjm) | u ∈Wi−1)
∑

ω′∈Zm−1
2

∏

{jt:ω′(t)=0}
P(vjt /∈ Bi−1 | u ∈Wi−1)

×
∏

{jt:ω′(t)=1}
P(vjt ∈ Bi−1 ∧ i /∈ S(vjt) | u ∈Wi−1)

+ P(vjm /∈ Bi−1 | u ∈Wi−1)
∑

ω′∈Zm−1
2

∏

{jt:ω′(t)=0}
P(vjt /∈ Bi−1 | u ∈Wi−1)

×
∏

{jt:ω′(t)=1}
P(vjt ∈ Bi−1 ∧ i /∈ S(vjt) | u ∈Wi−1)

= P(vjm ∈ Bi−1 ∧ i /∈ S(vjm) | u ∈Wi−1)P(vj /∈ Ri, ∀j ∈ J \ {m} | u ∈Wi−1)

+ P(vjm /∈ Bi−1 | u ∈Wi−1)P(vj /∈ Ri, ∀j ∈ J \ {m} | u ∈Wi−1)

By induction, this is equal to

P(vjm ∈ Bi−1 ∧ i /∈ S(vjm) | u ∈Wi−1)
∏

j∈J\{m}
P(vj /∈ Ri | u ∈Wi−1)

+ P(vjm /∈ Bi−1 | u ∈Wi−1)
∏

j∈J\{m}
P(vj /∈ Ri | u ∈Wi−1)

=
∏

j∈J
P(vj /∈ Ri | u ∈Wi−1),

as required for (i).
An analogous argument gives (ii).

Remark 2.4.1 This corollary can also be extended to conditioning upon u ∈Wi−1∧v ∈Wi−1,
where u, v are neighbours in G (or any other combination of restrictions on u, v being white or
blue). As a matter of fact, if u1, . . . , ur−1, v1, . . . , vr−1 denote the neighbours of u, v distinct
from u and v, and J,K ⊆ {1, . . . , r − 1}, then

P((uj /∈ Ri, ∀j ∈ J) ∧ (vm /∈ Ri, ∀m ∈ K) | u ∈Wi−1 ∧ v ∈Wi−1)

=
∏

j∈J
P(uj /∈ Ri | u ∈Wi−1)

∏

m∈K
P(vm /∈ Ri | v ∈Wi−1).

This can be obtained by expanding the initial probability into a sum over vectors ω ∈ Z|J |+|K|2

and then using the fact that, for any event E, we have

P(E | u ∈Wi−1 ∧ v ∈Wi−1) =
P(E ∧ u ∈Wi−1 | v ∈Wi−1)

P(u ∈Wi−1 | v ∈Wi−1)
,
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so that Lemma 2.3.5 can be applied first with respect to u ∈ Wi−1 and then with respect to
v ∈Wi−1. It is clear that similar results can be stated by conditioning upon other combinations
of u and v being white or blue.

Corollary 2.4.2 The following formulae hold in the probability space of labellings.

(i) P(u ∈Wi | u ∈Wi−1) =
(

1− psi−1

wi−1

)r

(ii) P(u ∈ Bi | u ∈Wi−1) =
rpsi−1

wi−1

(
1− psi−1

wi−1

)r−1

Proof For (i), we just observe that, for u to cease to be white at time i, at least one of its
neighbours has relevant neighbour i. Thus,

P(u ∈Wi | u ∈Wi−1) = P(vj /∈ Ri, ∀j | u ∈Wi−1).

Now, by Corollary 2.4.1, part (i), this last expression is equal to

r∏

j=1

P(vj /∈ Ri | u ∈Wi−1).

Finally, Corollary 2.3.3 guarantees that the probability of vj having relevant label i is inde-
pendent of vj and equals the probability of the event that i ∈ S(vj) and vj is coloured blue
at time i− 1. So,

P(vj ∈ Ri | u ∈Wi−1) =
psi−1

wi−1
,

and
P(u ∈Wi | u ∈Wi−1) =

(
1− psi−1

wi−1

)r

as a consequence.
Assertion (ii) may be proven using a similar approach.

Corollary 2.4.3 P(u ∈ Bi | u ∈ Bi−1) = (1− p)
(

1− rpti−1

(r − 1)bi−1

)r−1

Proof The fact that u is blue at step i−1 implies that exactly one of its neighbours v1, . . . , vr

has a relevant label less than or equal to i− 1. Thus,

P(u ∈ Bi | u ∈ Bi−1) =
r∑

m=1

P(u ∈ Bi | u ∈ Bi−1 ∧ vm ∈ R≤i−1)P(vm ∈ R≤i−1 | u ∈ Bi−1).

Moreover, u remains blue at time i if neither itself nor any of its neighbours gains a
relevant label at time i, i.e.,

P(u ∈ Bi | u ∈ Bi−1 ∧ vm ∈ R≤i−1) = (1− p)P(vj /∈ Ri, ∀j 6= m | u ∈ Bi−1 ∧ vm ∈ R≤i−1).
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By Corollary 2.4.1, part (ii), we obtain

P(vj /∈ Ri, ∀j 6= m | u ∈ Bi−1 ∧ vm ∈ R≤i−1)

=
∏

j 6=m
P(vj /∈ Ri | u ∈ Bi−1 ∧ vm ∈ R≤i−1)

= (1− pP(vj ∈ Bi−1 | u ∈ Bi−1 ∧ vm ∈ R≤i−1))r−1 .

The last equality follows from the fact that v ∈ Ri only if it has label i and was blue at time
i− 1.

Finally, we note that

P(vj ∈ Bi−1 | u ∈ Bi−1 ∧ vm ∈ R≤i−1) =
P(vj ∈ Bi−1 ∧ u ∈ Bi−1 ∧ vm ∈ R≤i−1)

P(u ∈ Bi−1 ∧ vm ∈ R≤i−1)

=
P(vj ∈ Bi−1 ∧ u ∈ Bi−1) P(vm ∈ R≤i−1 | vj ∈ Bi−1 ∧ u ∈ Bi−1)

P(u ∈ Bi−1) P(vm ∈ R≤i−1 | u ∈ Bi−1)
.

By Corollary 2.3.3, we conclude that all the neighbours of u have the same probability of
having a relevant label earlier than the other neighbours, since the probability of having
relevant label i is equal to p0, if i = 0, or pbi−1, if i ≥ 1, for any vertex. In particular, we
must have P(vm ∈ R≤i−1 | u ∈ Bi−1) = 1

r and P(vm ∈ R≤i−1 | vj ∈ Bi−1 ∧ u ∈ Bi−1) = 1
r−1 .

So,

P(u ∈ Bi | u ∈ Bi−1) = (1− p)
r∑

m=1

P(vm ∈ R≤i−1 | u ∈ Bi−1)
(

1− rpti−1

(r − 1)bi−1

)r−1

= (1− p)
(

1− rpti−1

(r − 1)bi−1

)r−1

,

with the last equation following from
∑r

m=1 P(vm ∈ R≤i−1 | u ∈ Bi−1) = 1. This concludes
the proof.

Corollary 2.4.4 The following equations hold in the probability space of labellings.

(i) P(u ∈Wi ∧ v ∈Wi | u ∈Wi−1 ∧ v ∈Wi−1) =
(

1− psi−1

wi−1

)2r−2

,

(ii) P(u ∈Wi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈Wi−1) =
(r − 1)psi−1

wi−1

(
1− psi−1

wi−1

)2r−3

,

(iii) P(u ∈ Bi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈Wi−1) =
(r − 1)2p2s2

i−1

w2
i−1

(
1− psi−1

wi−1

)2r−4

,

(iv) P(u ∈Wi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈ Bi−1)

= (1− p)
(

1− psi−1

wi−1

)r−1(
1− rpti−1

(r − 1)bi−1

)r−2

,
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(v) P(u ∈ Bi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈ Bi−1)

=
(r − 1)p(1− p)si−1

wi−1

(
1− psi−1

wi−1

)r−2(
1− rpti−1

(r − 1)bi−1

)r−2

,

(vi) P(u ∈ Bi ∧ v ∈ Bi | u ∈ Bi−1 ∧ v ∈ Bi−1) = (1− p)2

(
1− rpti−1

(r − 1)bi−1

)2r−4

.

Proof Let u1, . . . , ur−1 be the neighbours of u other than v and v1, . . . , vr−1 be the neighbours
of v distinct from u. Then

P(u ∈Wi ∧ v ∈Wi | u ∈Wi−1 ∧ v ∈Wi−1)

= P(u1, . . . , ur−1, v1, . . . , vr−1 /∈ Ri | u ∈Wi−1 ∧ v ∈Wi−1)

=
r−1∏

j=1

P(uj /∈ Ri | u ∈Wi−1)
r−1∏

j=1

P(vj /∈ Ri | v ∈Wi−1)

=
(

1− psi−1

wi−1

)2r−2

.

This is based on the remark after Corollary 2.4.1.
A similar strategy leads to the other formulae.

2.5 Differential equations

Using the expressions calculated in the last section, we can now determine recursive formulae
for the variables introduced for the analysis of our algorithm.

1. Formula for wi:

wi = P(u ∈Wi) = P(u ∈Wi ∧ u ∈Wi−1)

= P(u ∈Wi−1)P(u ∈Wi | u ∈Wi−1) = wi−1

(
1− psi−1

wi−1

)r
.

2. Formula for bi:

bi = P(u ∈ Bi) = P(u ∈ Bi ∧ u ∈ Bi−1) + P(u ∈ Bi ∧ u ∈Wi−1)

= P(u ∈ Bi−1)P(u ∈ Bi | u ∈ Bi−1) + P(u ∈Wi−1)P(u ∈ Bi | u ∈Wi−1)

= bi−1(1− p)
(

1− rpti−1

(r − 1)bi−1

)r−1

+ rpsi−1

(
1− psi−1

wi−1

)r−1

.

3. Formula for qi:

qi = P(u ∈Wi ∧ v ∈Wi)

= P(u ∈Wi−1 ∧ v ∈Wi−1)P(u ∈Wi ∧ v ∈Wi | u ∈Wi−1 ∧ v ∈Wi−1)

= qi−1

(
1− psi−1

wi−1

)2r−2

.



2.5. DIFFERENTIAL EQUATIONS 25

4. Formula for si:

si = P(u ∈ Bi ∧ v ∈Wi)

= P(u ∈ Bi−1 ∧ v ∈Wi−1)P(u ∈ Bi ∧ v ∈Wi | u ∈ Bi−1 ∧ v ∈Wi−1)

+ P(u ∈Wi−1 ∧ v ∈Wi−1)P(u ∈ Bi ∧ v ∈Wi | u ∈Wi−1 ∧ v ∈Wi−1)

= si−1(1− p)
(

1− psi−1

wi−1

)r−1(
1− rpti−1

(r − 1)bi−1

)r−2

+
(r − 1)pqi−1si−1

wi−1

(
1− psi−1

wi−1

)2r−3

.

5. Formula for ti:

ti = P(u ∈ Bi ∧ v ∈ Bi)
= P(u ∈ Bi−1 ∧ v ∈ Bi−1)P(u ∈ Bi ∧ v ∈ Bi | u ∈ Bi−1 ∧ v ∈ Bi−1)

+ P(u ∈ Bi−1 ∧ v ∈Wi−1)P(u ∈ Bi ∧ v ∈ Bi | u ∈ Bi−1 ∧ v ∈Wi−1)

+ P(v ∈Wi−1 ∧ u ∈ Bi−1)P(u ∈ Bi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈ Bi−1)

+ P(v ∈Wi−1 ∧ u ∈Wi−1)P(u ∈ Bi ∧ v ∈ Bi | u ∈Wi−1 ∧ v ∈Wi−1)

= ti−1(1− p)2

(
1− rpti−1

(r − 1)bi−1

)2r−4

+ 2si−1(1− p)
(

1− rpti−1

(r − 1)bi−1

)r−2 (r − 1)psi−1

wi−1

(
1− psi−1

wi−1

)r−2

+ qi−1
(r − 1)2p2s2

i−1

w2
i−1

(
1− psi−1

wi−1

)2r−4

.

We need to evaluate w0, b0, q0, s0 and t0 to have the necessary set of initial conditions for
solving the system of recurrence equations found above. It is easy to see that w0 = P(u ∈
W0) = (1 − p0)r+1 and b0 = rp0(1 − p0)r, since for the former neither u nor its neighbours
can have relevant label 0, and for the latter u cannot have relevant label 0, but exactly one
of its neighbours must have it.

Now,
q0 = P(u ∈W0 ∧ v ∈W0) = (1− p0)2r,

since the event v ∈W0∧u ∈W0 is equivalent to neither u, v nor any of their other neighbours
being chosen in the first phase of the algorithm (and each vertex is chosen independently with
probability p0).

The equation for s0 is given by

s0 = P(u ∈ B0 ∧ u ∈W0) = (r − 1)p0(1− p0)2r−1

because v ∈ B0 ∧ u ∈W0 occurs when u, v are not chosen, no neighbours of u are chosen and
precisely one neighbour of v is chosen.
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Finally, the equation for t0 is

t0 = P(u ∈ B0 ∧ v ∈ B0) = (r − 1)2p2
0(1− p0)2r−2

with similar justification.

The recurrence equation for wi obtained at the beginning of this section can be seen as

wi = wi−1 − prsi−1 +O(p2).

For p small, the term O(p2) should only have a minor influence. Similarly, each of the other
equations of the system of recurrence equations can be rewritten as a main term added to a
term of the order of p2. By ignoring the latter, we obtain the following auxiliary system of
recurrence equations:

w′i = w′i−1 − prs′i−1

b′i = b′i−1 + p
(−b′i−1 − rt′i−1 + rs′i−1

)

q′i = q′i−1 − p
(2r − 2)q′i−1s

′
i−1

w′i−1

s′i = s′i−1 + p

(
−s′i−1 +

(r − 1)q′i−1s
′
i−1

w′i−1

− (r − 1) s′i−1
2

w′i−1

− r(r − 2)s′i−1t
′
i−1

(r − 1)b′i−1

)

t′i = t′i−1 + p

(
−2t′i−1 +

2(r − 1) s′i−1
2

w′i−1

− 2r(r − 2) t′i−1
2

(r − 1)b′i−1

)

w′0 = (1− p0)r+1, b′0 = rp0(1− p0)r, q′0 = (1− p0)2r,

s′0 = (r − 1)p0(1− p0)2r−1, t′0 = (r − 1)2p2
0(1− p0)2r−2

(2.5.1)

Note that the auxiliary system of recurrence equations (2.5.1) can be converted into a
system of differential equations by means of first order approximations. Setting p = ε in the
recurrence equation for w′i obtained above implies

w′i − w′i−1 = −εrs′i−1.

This suggests that, for ε small, the solutions to this recurrence equation are approximated by
the functions ŵ, ŝ satisfying the differential equation

dŵ

dx
= −rŝ.

Using the same idea with the other recurrence formulae in (2.5.1), the following system of
differential equations arises. This system will be referred to as the system of differential
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equations associated with (r, p0).

dŵ

dx
= −rŝ

db̂

dx
= −b̂− rt̂+ rŝ

dq̂

dx
= −(2r − 2)q̂ŝ

ŵ
dŝ

dx
= −ŝ+

(r − 1)q̂ŝ
ŵ

− (r − 1)ŝ2

ŵ
− r(r − 2)ŝt̂

(r − 1)b̂
dt̂

dx
= −2t̂+

2(r − 1)ŝ2

ŵ
− 2r(r − 2)t̂2

(r − 1)b̂

ŵ(0) = (1− p0)r+1, b̂(0) = rp0(1− p0)r, q̂(0) = (1− p0)2r,

ŝ(0) = (r − 1)p0(1− p0)2r−1, t̂(0) = (r − 1)2p2
0(1− p0)2r−2.

(2.5.2)

Given p0 ∈ (0, 1), T > 0 and γ > 0, where γ < min{w0, b0, q0, s0, t0}, this system of
differential equations has a solution in the domain Ω(γ, T ) = {(x, ŵ, b̂, q̂, ŝ, t̂) ∈ (−γ, T ) ×
(γ, 1)5} which may be uniquely extended arbitrarily close to the boundary of the domain, by
the following standard result in the theory of first order differential equations (see Hurewicz
[33], Chapter 2, Theorem 11). The proof is omitted.

Lemma 2.5.1 If a set of functions fi : Rs+1 → R is Lipschitz in a bounded region Ω and the
point (x0, y

′
1, . . . , y

′
s) lies in Ω, then the solution of

dzi
dx

= fi(x, z1, . . . , zs), i = 1, . . . , s,

zi(x0) = y′i, i = 1, . . . , s,

may be uniquely extended arbitrarily close to the boundary of Ω.

As expected, there is a connection between the original system of recurrence equations
and the system of differential equations (2.5.2). This connection is summarised in the lemma
below and follows from the solutions to the original system being well-approximated by the
solutions of the modified system (2.5.1), as well as from the relation between the solutions of
(2.5.1) and of (2.5.2) given by Euler’s method. The proof is routine, so is omitted. However,
the main ideas involved in the proof of this result can be found in the proof of Theorem 4.2.2
in Chapter 4.

Lemma 2.5.2 Let r ≥ 3 be an integer and p0 ∈ (0, 1). Let k0 > 0 such that the system of
differential equations (2.5.2) with the initial conditions defined by p0 has positive solutions in
Ω defined at x = k0. Then, given ξ > 0,

(i) there exists ε0 > 0 satisfying the following property. If 0 < ε ≤ ε0 and the system of
recurrence equations (2.5.1) is solved with p = ε, then |wi − ŵ(εi)| < ξ, |bi − b̂(εi)| < ξ,
|qi − q̂(εi)| < ξ, |si − ŝ(εi)| < ξ and |ti − t̂(εi)| < ξ, for i = 0, 1, . . . , dk0/εe.
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(ii) there exists ε1 > 0 such that for 0 ≤ ε ≤ ε1,
∣∣∣∣∣∣

∫ k0

0
b̂(x) dx−

dk0/εe−1∑

i=0

εbi

∣∣∣∣∣∣
< ξ, for every 0 < ε ≤ ε1.

Using this lemma, we can now determine additional properties of the solutions to (2.5.2).

Lemma 2.5.3 Given p0 ∈ (0, 1), the system of differential equations (2.5.2) has unique so-
lutions ŵ(x), b̂(x), q̂(x), ŝ(x) and t̂(x) defined over the entire nonnegative real line satisfying
the following properties:

(i) ŵ(x), b̂(x), q̂(x), ŝ(x) and t̂(x) are positive,

(ii)
∫ ∞

0
b̂(x) dx converges.

Proof As mentioned before, a standard result in the theory of first order differential equations
ensures that, for p0 ∈ (0, 1), T > 0 and γ < min{w0, b0, q0, s0, t0}, the system of differential
equations has a solution in the domain Ω(γ, T ) = {(x, ŵ, b̂, q̂, ŝ, t̂) ∈ (−γ, T )×(γ, 1)2×(γ, 1)3}
which may be uniquely extended arbitrarily close to the boundary of the domain.

Given p0 ∈ (0, 1) and T > 0, we show that there exists γ = γ(T ) > 0 such that this system
of differential equations in the domain Ω(γ, T ) has a unique solution defined for x arbitrarily
close to x = T . This implies that the solutions are defined over the nonnegative real line.

Suppose on the contrary that, for some T > 0, no γ(T ) with the above property exists.
Let x0 denote the infimum of such T . Let (x′, w′, b′, q′, s′, t′) be any point in the interior
of a region Ω(γ0, x0) such that a solution to the system of differential equations exists for
0 ≤ x ≤ x′ and ŵ(x′) = w′, b̂(x′) = b′, q̂(x′) = q′, ŝ(x′) = s′ and t̂(x′) = t′, where γ0 > 0. By
Lemma 2.5.2, given ξ > 0, there exists ε0 such that for 0 < ε ≤ ε0 and 0 ≤ i ≤ dx′/εe,

|wi − ŵ(εi)| < ξ, |bi − b̂(εi)| < ξ, |qi − q̂(εi)| < ξ, |si − ŝ(εi)| < ξ, |ti − t̂(εi)| < ξ.

Since the quantities wi, bi, qi, si and ti represent probabilities of specific events after i steps
of a randomised algorithm, we conclude that

qi + si ≤ wi, si + ti ≤ bi.

Using this and the fact that w′, b′, q′, s′, t′ > γ0 (which is independent of ξ), we have

max{q̂(x′), ŝ(x′)} < ŵ(x′), max{ŝ(x′), t̂(x′)} < b̂(x′). (2.5.3)

Let m0 be a positive integer such that

1
m0

< min{w0, b0, q0, s0, t0}.
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The definition of x0 implies that one of the functions ŵ, b̂, q̂, ŝ, t̂ must get arbitrarily close to
0 in the neighbourhood of a point x0, 0 < x0 < T . By (2.5.3), it must be one of q̂, ŝ or t̂.
(Note that this argument also applies in the case that x = 0.)

Suppose this is the case for q̂. Let x′ be such that the system of differential equations
have a positive solution in [0, x′]. Recall that

dq̂

dx
= −(2r − 2)q̂ŝ

ŵ
= q̂

(−(2r − 2)ŝ
ŵ

)
,

and, by equation (2.5.3),
−(2r − 2)ŝ(x)

ŵ(x)
≥ −(2r − 2)

for 0 ≤ x ≤ x′. Now, if f is the solution for
df

dx
= −(2r − 2)f, f(0) = q̂(0),

we must have q̂(x) ≥ f(x) for every x in the interval [0, x′]. However, f(x) = f(0)e−(2r−2)x is
a strictly positive function in this interval bounded below by the constant f(0)e−(2r−2)x′ . So
q̂(x) cannot approach 0 at x′. Similar arguments yield contradictions for the cases when ŝ(x)
or t̂(x) approach 0 in the neighbourhood of the point x0, since

dŝ

dx
=

(
−1 +

(r − 1)q̂
ŵ

− (r − 1)ŝ
ŵ

− r(r − 2)t̂

(r − 1)b̂

)
ŝ

≥
(
−1− (r − 1)− r(r − 2)

r − 1

)
ŝ,

and
dt̂

dx
= −2t̂+

2(r − 1)ŝ2

ŵ
− 2r(r − 2)t̂2

(r − 1)b̂

≥
(
−2− 2r(r − 2)

r − 1

)
t̂.

Thus, the solutions to the system of differential equations are indeed defined over the entire
nonnegative real line. Furthermore, the previous argument ensures that they are positive,
concluding the proof of part (i).

For part (ii), note that the differential equations for ŵ and b̂ in (2.5.2) imply

d(ŵ + b̂)
dx

= −b̂− rt̂,
so

b̂(x) = −d(ŵ + b̂)
dx

(x)− rt̂(x) ≤ −d(ŵ + b̂)
dx

(x), ∀x.
As a consequence, for every T > 0,

∫ T

0
b̂(x) dx ≤

∫ T

0
−d(ŵ + b̂)

dx
(x) dx = ŵ(0) + b̂(0)− ŵ(T )− b̂(T ) ≤ ŵ(0) + b̂(0).

This proves part (ii).
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2.6 Proof of Theorem 2.1.1

We wish to obtain a lower bound on the cardinality of a largest vertex subset that induces
a forest in an r-regular graph G not containing short cycles. Recall our definition of τ(G),
given by

τ(G) = max {|V (F )| : F is an induced forest in G}.

Let G be an r-regular graph on n vertices with girth g and consider the set P of purple
vertices at the end of step 2 when Algorithm 2.2.1 is applied to G with N < g/2 − 2. It is
clear that the induced graph G[P ] contains a cycle only if some vertex v with at least two
purple neighbours has been added to P . By the description of our algorithm, this cannot
happen unless v was selected in the same step as one of its neighbours. It follows that, if P̄
is the set obtained from P by deleting any pairs of adjacent vertices added to P in the same
step, the induced subgraph G[P̄ ] is acyclic.

Now, given a vertex in Ri, the probability that none of its neighbours is also selected
is at least (1 − p)r, since a vertex has at most r neighbours that could be added to Ri.
Therefore, the expected number of vertices added to P at time i that are not removed is at
least p(1− p)rbi−1n and

E|P̄ | ≥ p0(1− p0)rn+
N∑

i=1

p(1− p)rbi−1n. (2.6.1)

Part of the set W of white vertices produced at the end of the algorithm will also be
added to the forest. By definition, these vertices have no purple neighbours, so that no cycle
containing purple vertices is created by adding white vertices to P̄ . Thus G[P̄ ∪ W̄ ] is still
acyclic, where W̄ denotes the set of vertices in acyclic components of G[W ].

Now, since G has girth g, no cycles appear if we add white vertices lying in components of
G[W ] for which every pair of vertices are at distance at most g−1 from each other. Therefore,
a lower bound on the size of W̄ can be obtained by estimating the number of vertices in small
components of G[W ]. This will be done through a branching process argument.

To define the branching process, start with a white vertex v0 and set the random variable
Y0 = {v0}. In general, Yi denotes the set of white vertices already exposed, but whose
neighbours have not been considered yet. Define U0 = V (G)−{v0} and let Ui be the random
variable accounting for the set of vertices which have not been exposed by the branching
process up to step i. After step i, either |Yi| = 0, in which case the process has died out,
or |Yi| > 0, in which case we choose a white vertex vi in Yi, expose its white neighbours
NW (vi) ⊆ Ui and define Yi+1 = Yi ∪NW (vi)− {vi}, Ui+1 = Ui \N(vi). We are interested in
estimating the probability that |Yg/2−1| > 0, i.e., that the branching process has not died out
after g/2− 1 steps.
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Proposition 2.6.1 Let δ > 0, fix an integer r ≥ 3 and suppose the existence of p0 > 0 such
that the solutions to the system of differential equations associated with (r, p0) satisfy

lim
x→∞

(r − 1)q̂(x)
ŵ(x)

< 1.

Then there exist g > 0, 0 < N < g/2 − 1 and 0 < p < 1 such that, if Algorithm 2.2.1 is
applied to an r-regular graph G with girth at least g for N steps with probabilities (p0, p), then

P(|Yg/2−1| > 0) < δ.

Proof Let Zi denote the random variable counting the number of neighbours of vi in Ui.
Note that Z0 has binomial distribution Bin(r, qN/wN ), since Corollary 2.3.3 and Lemma 2.3.5
ensure that, conditional upon v0 being white, the events associated with each of its neighbours
being white are mutually independent and have probability qN/wN . Furthermore, Zi has
distribution Bin(r − 1, qN/wN ) for every i ≥ 1, since the condition 0 < i < g − 1 implies
|N(vi) ∩ Ui| = r − 1, and Corollary 2.3.3 and Lemma 2.3.5 are applicable in the same way.

Let k0 > 0 such that the solution to the system of differential equations (2.5.2) satisfies

(r − 1)q̂(k0)
ŵ(k0)

< 1.

Let ξ > 0 be such that
(r − 1)(q̂(k0) + ξ)

ŵ(k0)− ξ < 1.

Fix ε0 as in Lemma 2.5.2, part (i), and let ε < ε0 such that N = k0/ε is an integer. Now,
apply Algorithm 2.2.1 for N steps with the given p0 and p = ε, for all i ≥ 1, to a graph G

with girth g ≥ 2N + 3. Then

(r − 1)qN
wN

≤ (r − 1)(q̂(k0) + ξ)
ŵ(k0)− ξ < 1.

So, we have (r − 1)qN/wN < 1, and a branching process argument as in [4] shows that, by
choosing g sufficiently large,

P(|Yg/2−1| > 0) < δ,

as required.
By the above proposition, given δ > 0 and p0 > 0 such that the solutions to the system

of differential equations associated with (r, p0) satisfy

lim
x→∞

(r − 1)q̂(x)
ŵ(x)

< 1,

we may fix g, N and p so as to have the property P(Yg/2−1 > 0) < δ, i.e., P(Yg/2−1 = 0) ≥
1− δ. It follows that for such g the expected number of white vertices in acyclic components
of G[W ] is bounded below by

(1− δ)wNn. (2.6.2)
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We are now ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1 Fix r ∈ N and δ > 0. We show that, given p0 ∈ (0, 1), the
inequality τ(G) ≥ (ξ(p0)− δ)n holds, where

ξ(p0, r) =




p0(1− p0)r +

∫ ∞
0

b̂(x) dx+ lim
x→∞ ŵ(x), if lim

x→∞
(r − 1)q̂(x)

ŵ(x)
< 1

p0(1− p0)r +
∫ ∞

0
b̂(x) dx, otherwise.

(2.6.3)

Here, ŵ, b̂ and q̂ are solutions to the system of differential equations associated with (r, p0).
By Lemma 2.5.3, this system has positive solutions ŵ, b̂, q̂, ŝ, t̂ defined over the nonnegative

real line such that
∫ ∞

0
b̂(x) dx converges.

Let k0 > 0 be such that, for every k > k0,
∣∣∣∣
∫ ∞

0
b̂(x) dx−

∫ k

0
b̂(x) dx

∣∣∣∣ <
δ

6
. (2.6.4)

Using Lemma 2.5.2, fix ε0 > 0 such that

|wi − ŵ(εi)| < δ

6
, i = 0, 1, . . . ,

⌈
k0

ε

⌉
,

and fix ε1 > 0 satisfying
∣∣∣∣∣∣∣

∫ k0

0
b̂(x) dx−

l
k0
ε

m
−1∑

i=0

εbi

∣∣∣∣∣∣∣
<
δ

6
, for every 0 < ε ≤ ε1.

Let ε = min{ε0, ε1, 1 − (1 − δ/6)1/r} and N = dk0/εe. Fix g = 2N + 3. Then, given an
r-regular graph G with girth larger than or equal to g, we apply Algorithm 2.2.1 for N steps
with probabilities (p0, p = ε). The first moment principle leads to a lower bound for τ(G).
As a matter of fact, our lower bound (2.6.1) on the cardinality of P̄ implies

E|P̄ | ≥ np0(1− p0)r + n(1− ε)r
(

N∑

i=1

εbi−1

)

≥ np0(1− p0)r + n(1− ε)r
(∫ k0

0
b̂(x) dx− δ

6

)

≥ np0(1− p0)r + n

(
1− δ

6

)(∫ ∞
0

b̂(x) dx− 2δ
6

)

≥ n
(
p0(1− p0)r +

∫ ∞
0

b̂(x) dx
)
− δ n

2
,

(2.6.5)

If, in addition, the solutions to the system of differential equations associated with (r, p0)
satisfy

lim
x→∞

(r − 1)q̂(x)
ŵ(x)

< 1,
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Proposition 2.6.1 establishes a lower bound (2.6.2) on the cardinality of the set W̄ of white
vertices that can be added to the forest. Clearly, k0 in (2.6.4) may be chosen so that, for
every k > k0, we also have ∣∣∣∣ lim

x−>∞ ŵ(x)− ŵ(k)
∣∣∣∣ <

δ

6

and
(r − 1)q̂(k)

ŵ(k)
< 1.

The girth g can also be taken larger, if necessary, to ensure that the size of W̄ is bounded
below by (1− δ/6)wNn.

Thus,

E|W̄ | ≥ n
(

1− δ

6

)
wN ≥ n

(
1− δ

6

)2

ŵ(εN)

≥ n
(

1− δ

6

)3

lim
x→∞ ŵ(x) ≥ n lim

x→∞ ŵ(x)− δ n

2
,

(2.6.6)

Now, given that τ(G) ≥ E|P̄ ∪ W̄ | and using equations (2.6.5) and (2.6.6), we conclude
that τ(G) ≥ (ξ(p0, r)− δ)n. In particular, if

ξ(r) = sup
p0∈(0,1]

ξ(p0, r),

we have
τ(G) ≥ (ξ(r)− δ)n,

as claimed. Numerical approximations of these quantities lead us to the bounds in Table 2.1.1.
We note that, for every value of r tested, we were able to choose a constant p0 such that
the numerical solutions to the system of differential equations associated with (r, p0) satisfy

lim
x→∞

(r − 1)q̂(x)
ŵ(x)

< 1.





Chapter 3

Locally greedy algorithms

In this chapter, we introduce a class of probabilistic algorithms which can be applied to
regular graphs. This class of algorithms is a generalisation of the algorithm for induced
forests introduced in the previous chapter, which, in Chapters 5 and 6, will be used to derive
new lower bounds on the independence number and on the number of vertices in a maximum
induced forest in a regular graph with girth sufficiently large.

3.1 The class of algorithms

The class of locally greedy algorithms is given as follows. The parameters consist of positive
integers r, d and `, with ` ≤ r, and of an assignment of probabilities to the random choices
made by a particular instance of the algorithm.

Algorithm 3.1.1 (Locally greedy algorithm)

Input: An r-regular graph G, a positive integer N , an initial probability p0 and vectors of
probabilities pi = (pi,j,k : j, k ≥ 0, j + k ≤ r, j < l), i = 1, . . . , N .

1. Start with all the vertices of the graph coloured white. In the first step, colour each vertex
purple with probability p0, at random, independently of all others. Vertices are coloured
purple if they are at distance at most d − 1 of one of the chosen vertices. Non-purple
vertices are coloured yellow if they have at least ` purple neighbours.

2. At each step i, a set of white vertices is chosen, where a white vertex with j purple
neighbours and k yellow neighbours is chosen randomly, independently of all others,
with probability pi,j,k. The chosen vertices and the vertices at distance at most d− 1 of
them become purple. Non-purple vertices are coloured yellow if, at the end of this step,
they have at least ` purple neighbours. Repeat this iteratively for N steps.

35
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3. Create a set P̄ by deleting, from the set of purple vertices, any pair of vertices within
distance 2d − 1 that were chosen in the same step and all vertices at distance at most
d− 1 of one of these two vertices that turned purple because of this.

Output: The set P̄ .

This algorithm is used to generate a set of vertices satisfying some graph property of
interest. This set of vertices is often contained in the set of vertices that are chosen by the
algorithm, as will be the case in the applications we shall present, but there are examples in
which this may not be the case. Also, for the graph properties studied in this thesis, this
algorithm will be applied with parameter d = 1, so the sets of chosen vertices and of purple
vertices are equal. However, we shall consider the more general case for which d is a fixed
positive integer, since this may lead to useful generalisations of our results without creating
serious complications. Note that, if a vertex is purple at a given step of the algorithm, it
cannot be chosen in the later steps. The same is true for yellow vertices, so the white vertices
are the vertices that could still be chosen in the future.

The next proposition describes the output of the algorithm with two specific assignments
of parameters.

Proposition 3.1.2 The output produced by an instance of the locally greedy algorithm with
parameters d = ` = 1 is an independent set in the input graph. If the parameters are ` = 1
and d = 2, the set obtained by the locally greedy algorithm induces a forest in the input graph.

Proof In the case ` = d = 1, we show that the output P̄ produced by the algorithm is an
independent set. Indeed, any two adjacent vertices in the set of purple vertices must have
been chosen in the same step, since, once a white vertex is chosen, all its white neighbours
that were not chosen in this step become yellow, which prevents them from being chosen in
the future. But adjacent vertices chosen in the same step are removed when P̄ is created at
the third part of the algorithm, so P̄ is independent as claimed.

Now, let d = 1 and ` = 2 and suppose that, at the end of part 2 of the algorithm, a set
of purple vertices induces a cycle C in the input graph G. Let v be a vertex in this cycle
that became purple at the latest step. If the two vertices adjacent to v in this cycle had been
chosen in earlier steps, v would have had two purple neighbours before being chosen, which
would have forced it to turn yellow by the definition of the algorithm, a contradiction. This
implies that vertex v is not in the set P̄ produced by the algorithm, and, as a consequence,
P̄ induces an acyclic subgraph of G.

Special cases of this class of algorithms have been used before. As a matter of fact, if r ≥ 3
and d = ` = 1, and if the probabilities are p0 = 0 and pi,j,k = pi, for some fixed constants pi,
for every j and k, this algorithm coincides with the algorithm to generate independent sets
given in [39].
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In the case when d = 1, ` = 2 and pi,j,k = δj,1p, where p is a constant, for every j and k,
this algorithm is just the simple algorithm for induced forests introduced in Chapter 2. (Here
δm,n denotes the Kronecker delta function.) In that algorithm, however, the white vertices
with a purple neighbour were treated separately and called blue vertices.

LetG = (V,E) be an r-regular graph with girth at least g. Consider a set P of probabilities
pi,j,k, i ≥ 0, (j, k) ∈ I, where

I = {(j, k) ∈ Z2 : j, k ≥ 0, j < `, j + k ≤ r}. (3.1.1)

As with the simple algorithm in Chapter 2, we shall analyse the performance of an algo-
rithm in the class of locally greedy algorithms by looking at an equivalent model that makes
the random choices uniform over the whole set of vertices. However, since the probability of
a vertex v being chosen at a given step i may depend on the number of purple and yellow
neighbours of v after step i− 1 in the algorithm, we now associate several sequences of labels
with each vertex, one for each type of random choice. Indeed, with each vertex v ∈ V , and
each pair (j, k) ∈ I, we associate random variables Sj,k(v) ⊆ {0, 1, 2, . . .}, where label i is
placed in Sj,k(v) with probability pi,j,k, and all these choices are made independently of each
other and independently of the other sets Sj′,k′(v′). The sequence [(Sj,k(v))(j,k)∈I : v ∈ V ]
will be used to denote the random variables of sets of labels associated with each vertex in the
graph, whereas the sequence S = [(Svj,k)(j,k)∈I : v ∈ V ] will denote an assignment of sets to
these random variables. These assignments of sets to the vertices will also be called labellings
of the graph.

As in Chapter 2, given a graph G, parameters d and `, and a labelling S of the graph,
we shall inductively define the concepts of relevant label of a vertex and of colouring of G at
time i. As before, a vertex has relevant label i if and only if it is chosen by the algorithm at
the i-th step when the random choices made by the algorithm are determined by the labelling
S. Moreover, the colouring of the graph at time i simply corresponds to the colours assigned
to each vertex in the graph in an application of the algorithm for which the set of vertices
chosen at time i are precisely the sets of vertices with relevant label i.

For a vertex u ∈ V , we let N(u) = {v ∈ V : uv ∈ E} denote the set of vertices adjacent
to u and we let Ns(u) = {v ∈ V : d(u, v) ≤ s}, so that N(u) denotes the set of vertices in the
graph at distance at most s from u.

Definition 3.1.3 A nonnegative integer i is the relevant label of a vertex u if i = 0 and
0 ∈ S0,0(u), or if i > 0, u ∈ Wi−1, |Pi−1 ∩N(u)| = j, |Yi−1 ∩N(u)| = k and i ∈ Sj,k(u),
for some pair (j, k) ∈ I, where the definition of the sets Wi−1, Pi−1 and Yi−1 follows. The
colouring of G = (V,E) at time i is the partition of V into three colour classes Pi, Wi and
Yi, with Pi being the set of all vertices at distance at most d − 1 of a vertex with relevant
label smaller than or equal to i. Of the vertices not in Pi, Wi is the set of vertices adjacent
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to fewer than ` elements of Pi and Yi is the set of vertices adjacent to at least ` elements of
Pi. If the relevant label of u is undefined for any i ≥ 0, we define it at this point to be ∞.

The set of vertices with relevant label i is denoted by Ri. So, Pi = {u ∈ V :
⋃i
t=0Rt ∩

Nd−1(u) 6= ∅}, Wi = {u ∈ V :
⋃i
t=0Rt ∩ Nd−1(u) = ∅ ∧ |Pi ∩N(u)| < `} and Yi = {u ∈ V :⋃i

t=0Rt ∩Nd−1(u) = ∅ ∧ |Pi ∩N(u)| ≥ `}. The elements of each of these sets will be called
the purple, the yellow and the white vertices at time i, respectively. The relevant label of v
with respect to the labelling S is denoted by LS(v).

It is clear from this definition that the colouring of G at time i is fully determined by the
sequence S = [(Svj,k ∩ {0, . . . , i})(j,k)∈I : v ∈ V ]. Moreover, this colouring coincides with the
colouring of the graph induced by Algorithm 3.1.1 in a natural way, which is formalised in
the next proposition. Note the similarity with Lemma 2.2.4.

Proposition 3.1.4 Let r, d, ` and N be positive integers with r ≥ 3 and ` ≤ r, and fix an
initial probability p0 and vectors of probabilities pi = (pi,j,k : (j, k) ∈ I), i = 1, . . . , N . Let
G = (V,E) be a graph, and consider a subgraph H of G and a colouring c of H with colours
purple, yellow and white. Then the following events have the same probability:

(i) the colouring of G at time i induced by the sequence S = [(Sj,k(v))(j,k)∈I : v ∈ V (G)]
restricted to H is equal to c, where S is obtained by adding each nonnegative integer i to
Sj,k(v) independently with probability p0, if (j, k) = (0, 0) and i = 0, or pi,j,k, if i ≥ 1,
for all v ∈ V .

(ii) Algorithm 3.1.1 applied to G obtains c as the colouring of H after step i.

Proof We may modify part 2 of Algorithm 3.1.1 as follows. At each step i, every vertex
v ∈ V (G) is chosen with respect to each pair (j, k) ∈ I with probability pi,j,k. However,
the algorithm takes no action unless a white vertex with j purple neighbours and k yellow
neighbours is chosen for the corresponding pair (j, k). So, the modified algorithm undertakes
more random choices, but a random choice is irrelevant unless it corresponds to a choice that
the original algorithm could have made.

By induction, it is easy to see that the event that, at step i, this new algorithm yields
colouring c in a subgraph H of graph G corresponds to the event described in (i), establishing
our result.

In the remainder of this work, we shall work in the probability space of the sequence
S of sets of labels. In particular, we shall analyse the performance of Algorithm 3.1.1 by
calculating the probability of several events in this probability space, such as the probability
of a fixed vertex having a given colour at a fixed time. To achieve this, a pair of independence
results will be proved.

The first, which we call independence of vertex labelling, shows that the colouring produced
by a given labelling in a small connected subgraph of G does not depend on the particular
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vertices in the subgraph, where “small” is measured with respect to the girth of the graph.
This type of independence is the equivalent for locally greedy algorithms of the independence
given by Corollary 2.3.3 for the algorithm of Chapter 2. More precisely, if there is an isomor-
phism φ : V (H ′)→ V (H) between two connected subgraphs H ′ and H of G, then the event
that H has colouring c at time i occurs with the same probability as the event that, at time i,
each vertex v ∈ V (H ′) has the colour assigned by c to φ(v). As a consequence, independence
of vertex labelling allows us to consider the probability of an unlabelled subgraph of G having
a given colouring.

Recall that, if u is a fixed vertex, the definition of the branches around u was given
in Definition 2.3.4. Also recall that, by a collection of events H1, ...,Hm being mutually
independent, it is meant that, for any subset of the collection, the joint probability of all
events occurring is equal to the product of the probabilities of the individual events. Our
second independence result, which we call conditional independence of branches, specifies
conditions under which the colourings of a set of branches rooted at different neighbours of
u are mutually independent. Note that independence of branches is the analog, in the case
of locally greedy algorithms, of the independence given by Lemma 2.3.5 for the algorithm of
Chapter 2.

We now concentrate on establishing independence of vertex labelling. The following result
is a first step in this direction, as it deals with the way in which the influence of a small change
in S propagates as more steps of the algorithm are performed.

Lemma 3.1.5 Let G = (V,E) be a graph, let u ∈ V and consider labellings S and Ŝ that
only differ at u, that is, (Svj,k)(j,k)∈I = (Ŝvj,k)(j,k)∈I for all v 6= u. Let w be a vertex of G
such that LS(w) 6= LŜ(w) and let i be the minimum of the labels in the symmetric difference.
Then there exists a sequence of vertices u = w0, w1, . . . , wt = w such that LS(ws) 6= LŜ(ws)
for all s, d(ws−1, ws) ≤ d + 1 and min{LS(ws−1), LŜ(ws−1)} < min{LS(ws), LŜ(ws)} for all
1 ≤ s ≤ t.
Proof The proof is by induction on i. If i = 0, it must be that u = w, so the sequence
w0 = u satisfies the properties in the statement of this lemma. Now, let i > 0 and assume
that this result holds for all smaller values of i. If u = w, the result is immediate, so assume
this is not the case. By definition of relevant label, one of the sets

⋃i−1
t=0Rt ∩ Nd−1(w),

Pi−1 ∩ N(w) or Yi−1 ∩ N(w) has different cardinalities with respect to S and to Ŝ. This
implies that a vertex w′ at distance at most d + 1 from w satisfies LS(w′) 6= LŜ(w′) with
i′ = min{LS(w′), LŜ(w′)} < i, since, in the worst case, the sets of yellow neighbours of w
with respect to the two labellings are distinct at time i − 1, which could be caused by the
relevant label of a vertex within distance d from a neighbour of w. By induction, there is a
sequence u = w0, w1, . . . , wt−1 = w′ such that d(ws−1, ws) ≤ d + 1, LS(ws) 6= LŜ(ws) and
min{LS(ws−1), LŜ(ws−1)} < min{LS(ws), LŜ(ws)} for all 1 ≤ s ≤ t − 1. So, we can append
w to this sequence to obtain a sequence with the required properties.
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Using this, we can immediately bound the distance of vertices whose labels influence the
colour of a vertex at time i.

Corollary 3.1.6 Let G = (V,E) be a graph, let u ∈ V and consider labellings S and Ŝ that
only differ at u. If the colours of w ∈ V with respect to S and Ŝ are distinct at time i, then
d(u,w) ≤ (d+ 1)i+ d.

Proof If w has different colours at time i with respect to S and Ŝ, then, by definition of
colouring, there is a vertex w′ and a positive integer i′ such that d(w′, w) ≤ d and LS(w′) 6=
LŜ(w′), min{LS(w′), LŜ(w′)} = i′. Lemma 3.1.5 applies and, in particular, d(u,w′) ≤ (d+1)i.
As a consequence, d(u,w) ≤ d(u,w′) + d(w′, w) ≤ (d+ 1)i+ d, as required.

We are now ready to prove independence of vertex labelling. Recall that, if u is a vertex
with neighbours u1, . . . , ur, and if s ∈ {1, . . . , r} and 0 < m < g/2, the rooted tree Tu,s,m is
the component of G[{v : d(u, v) ≤ m} \ u] rooted at us.

Corollary 3.1.7 (Independence of vertex labelling) Let u ∈ V and fix nonnegative
integers i and t. Consider us1 , . . . , ust ∈ N(u) and positive integers d′1, · · · , d′t such that
2((d+ 1)i+ d+ max{d′j}) < g. Then the probability that u has colour c and each Tu,sj ,d′j has
colouring Cj,d′j at time i is independent of u and of the set {us1 , . . . , ust}.

Proof Let d′ = maxj{d′j}. We know from Corollary 3.1.6 that the colours of vertices at
distance at most d′ from u at time i depend only on the sets of labels of vertices at distance
at most (d+ 1)i+ d+ d′ from u. In other words, the colouring of {u}∪⋃j Tu,sj ,d′j at time i is
fully determined by the sets of labels in the subgraph Gu = G[{v : d(u, v) ≤ (d+1)i+d+d′}].
Now, the probability that a vertex has given sets of labels associated with it is the same for
every vertex and is independent of the sets of labels associated with any other vertex. Also,
the graphs Gu are isomorphic trees for every u ∈ V by our restriction on i, and the operation
of interchanging two branches Tu,s,d′ and Tu,t,d′ in Gu induces an automorphism of this tree.
The result follows.

An immediate consequence of this result is that the probability of a vertex v being white
and having purple neighbours v1, . . . , vj and yellow neighbours vj+1, . . . , vj+k, with the re-
maining neighbours being white, does not depend on the choice of v or on the choice of the
sets of neighbours {v1, . . . , vj} and {vj+1, . . . , vj+k}. In other words, if W j,k

i is the set of white
vertices with exactly j yellow neighbours and k purple neighbours at time i, then P(v ∈W j,k

i )
does not depend on v and can be denoted by wi,j,k.

Before moving to conditional independence of branches, we use the definition of colouring
at time i and the results leading to independence of vertex labelling to actually calculate the
probability of an event in the probability space of labellings. This example is not fundamental
for the comprehension of the results following it. We also note that the calculations are not
complete, but are developed up to a point in which the interplay between the colours of the
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vertices is understood. Rigorous calculations of the probability of this event are given in the
appendix.

Example 3.1.8 We consider a version of Algorithm 3.1.1 with parameters r = 3, d = 1
and ` = 2. Let N = 1 and fix probabilities p0 > 0 and p1,j,k, where p1,0,k = 0, for every k,
p1,1,0 = p1,0 > 0, p1,1,1 = p1,1 > 0 and p1,1,2 = 1. Let G be a 3-regular graph with girth larger
than 9. We shall calculate the probability of the partial colouring of G in Figure 3.1.1, at time
1. In the figure, the white vertices are represented by unfilled circles and the purple vertices
are represented by black circles.

u

u2

u1

v

Colouring 1

v2

v1

Figure 3.1.1: A partial colouring of G.

We wish to calculate the probability that the adjacent vertices u and v are both purple
and that their remaining neighbours are all white at time 1, that is, that they are white after
step 1 in an application of the locally greedy algorithm. First note that, because pi,0,k = 0
for every i ≥ 1 and k ∈ {0, . . . , 3}, a vertex can only turn purple at some Step i, i ≥ 1, if at
least one of its neighbours is purple before step i. So, since we would like u1, u2, v1 and v2 to
be white at time 1, at least one of u and v has to be purple at time 0, otherwise they would
not become purple at time 1.

We first consider the event for which both u and v are purple at time 0. This happens
with probability p2

0, since each vertex is chosen with probability p0, and the choices are
independent. Now, we also need the remaining neighbours of u and v to be white at time 0.
On the one hand, these vertices cannot be chosen at time 0, otherwise they would be purple.
On the other hand, since each of them already has a purple neighbour, namely u or v, their
other neighbours also cannot be chosen at time 0. Indeed, if one such vertex were chosen
its neighbour among u1, u2, v1 or v2 would have two purple neighbours at time 0, so that it
would turn yellow. In total, we are conditioning on 12 vertices not being chosen at time 0,
which happens with probability (1− p0)12.

Conditioning on all the previous events, which occur with a combined probability of
p2

0(1− p0)12, the colouring of the graph at time 0 is given by Figure 3.1.2. The grey vertices
in the figure corresponds to a vertex whose colour is unknown. We observe that the fact that
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this figure represents the subgraph containing all vertices at distance at most four of u or v
is due to our assumption on the girth.

u v

u1 v1

v2u2

Figure 3.1.2: The vertices whose labels may influence Colouring 1.

Now, define the branches rooted at u1, u2, v1 and v2 are defined as the trees Tu,1,4, Tu,2,4,
Tv,1,4 and Tv,2,4, respectively. It can be shown that the colourings of the different branches
at time 1 are mutually independent. We omit details of this in this sketch. So, to ensure
that u1 is white at time 1, we only need to look at the branch rooted at u1. Moreover, using
independence and symmetry, the probability that u1, u2, v1 and v2 are all white at time 1 is
the fourth power of the probability that u1 is white at time 1. We look more closely at the
branch rooted at u1, which is given in Figure 3.1.3.

u1

a2

a

b1 b2

a1

b

Figure 3.1.3: The vertices in the branch rooted at u1.

For u1 to remain white at time 1, it must be that u1 is not chosen at time 1, and neither
are its neighbours a and b. Now, the probability that u1 is not chosen at time 1 depends on
the colours of its neighbours at time 0, since we already know that, at time 0, u1 has a purple
neighbour u and two neighbours a and b. Clearly, the colours of a and b at time 0 depend on
the number of purple neighbours that they have. For instance, if a1, a2 and b1 are purple,
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but b2 is not, then a is yellow and b is white at time 0, so u1 is not chosen with probability
1 − p1,1. Conditional on this, we know that a cannot become purple at time 1, since it is
yellow at time 0. On the other hand, b has exactly one purple neighbour at time 0, so it could
turn purple with a probability depending on the colour of b2, which in turn depends on the
number of purple neighbours it has at time 0. With probability p2

0, both neighbours of b2
other than b are purple at time 0, so that b2 is yellow and b is not chosen with probability
1 − p1,1. With probability 1 − p2

0, however, b2 is not yellow and hence b2 is not chosen with
probability 1− p1,0.

In particular, the probability of u1 being white at time 1 with the assumptions of the
previous paragraph is equal to

(1− p0)3p0(1− p1,1)(p2
0(1− p1,1) + (1− p2

0)(1− p1,0)).

The product (1 − p0)3p0 corresponds to the event that a1, a2 and b1 are chosen, but b2
is not chosen. The factor (1 − p1,1) is the probability of u1 given that a is yellow and b

is white, while the probability that b is not chosen at time 1 under this circumstances is
(p2

0(1 − p1,1) + (1 − p2
0)(1 − p1,0)). If we consider all the other possible cases in this way, we

find the total probability of u1 being white at time 1. This is done in the appendix. �

This example suggests that the calculation of the probability of an event in the probability
space of random labellings may become quite involved if we rely only on the independence
results presented so far. So, we consider an additional tool for computing probabilities, which
we already introduced as conditional independence of branches. Recall that, with conditional
independence of branches, our aim is to specify conditions under which the colourings of a set
of branches rooted at different neighbours of u are mutually independent. Our next result is
a first step in this direction, since it establishes that, if u and v are white adjacent vertices,
then the colouring of branches around u is independent of the colouring of branches around v,
where, by the branches around u, we mean the branches rooted at neighbours of u other than
v, and vice-versa. To illustrate the importance of conditioning upon u and v being white, we
show first that conditional independence of branches does not always hold.

Example 3.1.9 Consider the instance of Algorithm 3.1.1 and the graph G introduced in
Example 3.1.8 with p0 = 1/10, p1,0 = 1/2 and p1,1 = 3/4. Let C1 and C2 be the events that,
at time 1, a labelling of G induces the partial colourings χ1 and χ2 given in Figure 3.1.4.
Recall that white vertices are unfilled in the picture, while the purple vertices are filled. We
show that these events are not independent if we assume that u and v are purple at time 1.

For C1 and C2 to be independent conditional upon u and v being purple at time 1, we must
have

P(C2 | C1) = P(C2 | u ∈ P1 ∧ v ∈ P1).
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u v

v2

v1

Colouring χ2Colouring χ1

u1

u2

vu

Figure 3.1.4: Two partial colourings of G.

This implies

P(C1 ∧ C2)P(u ∈ P1 ∧ v ∈ P1)

= P(C1)P(C2 | C1)P(u ∈ P1 ∧ v ∈ P1)

= P(C1)P(C2).

(3.1.2)

Now, the event {C1 ∧ C2} is precisely the event that, at time 1, a labelling of G induces the
partial colouring in Example 3.1.8. On the other hand, the events C1 and {u ∈ P1 ∧ v ∈ P1}
give the colourings in Figure 3.1.5. For p0 = 1/10, p1,0 = 1/2 and p1,1 = 3/4, the event

u v

u2

u1

u v

Figure 3.1.5: The colourings induced by {C1 ∧ u ∈ P1 ∧ v ∈ P1} and {u ∈ P1 ∧ v ∈ P1}.

{C1 ∧C2} occurs with probability approximately 0.0029, while the other two colourings have
probability approximately 0.0205 and 0.0902, respectively. Note that these probabilities may
be calculated as in Example 3.1.8.

Now, by independence of vertex labelling, the events C1 and C2 occur with the same
probability, so the above values are a contradiction to (3.1.2). �

We now establish that, if u and v are white adjacent vertices, then the colouring of
branches around u is independent of the colouring of branches around v.

Theorem 3.1.10 Consider adjacent vertices u, v ∈ V and fix i, d′ ∈ N such that 2((d+ 1)i+
d + d′) + d + 1 < g. The neighbours of u and v are denoted by u1, . . . , ur and v1, . . . , vr,
respectively. Let Cu and Cv be the events that Nu,d′ =

⋃
ut 6=v Tu,t,d′ and Nv,d′ =

⋃
vt 6=u Tv,t,d′

have colourings χu and χv. Then, conditional upon the event {u ∈ Wi ∧ v ∈ Wi}, the events
Cu and Cv are independent.
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Proof We have to show that

P (Cu ∧ Cv | E) = P (Cu | E) P (Cv | E) ,

where E is the event {u ∈ Wi ∧ v ∈ Wi}. The main ingredient of the proof is to show that,
conditional upon E, the colouring of Nu,d′ is not influenced by the labelling of the vertices in
{v} ∪⋃vt 6=u Tv,t,(d+1)i+d+d′ .

We now analyse the colourings at the level of labellings. Given i′ ≤ i, let the i′-branches
rooted at u and v be the sets Bu,i′ = {u} ∪

(⋃
ut 6=v Tu,t,(d+1)(i−i′)+d+d′

)
and Bv,i′ = {v} ∪(⋃

vt 6=u Tv,t,(d+1)(i−i′)+d+d′
)

, respectively.

Let S = [(Sj,k(w))(j,k)∈I : w ∈ V ] and Ŝ = [(Ŝj,k(w))(j,k)∈I : w ∈ V ] be assignments of
labels such that Sj,k(w) = Ŝj,k(w) if min{d(u,w), d(v, w)} > (d + 1)i + d + d′, for every j

and k. Further suppose that S and Ŝ each imply the event F = Cu ∧ Cv ∧ E. Now, let S ′
be the assignment of labels defined by S′j,k(w) = Ŝj,k(w) if w ∈ Bv,0 and S′j,k(w) = Sj,k(w)
otherwise, for every j and k.

Claim 3.1.11 For every i′ ≤ i,

(i) The colourings of the vertices in Bu,i′ induced by S and by S ′ are the same at time i′.

(ii) The colourings of the vertices in Bv,i′ induced by Ŝ and by S ′ are the same at time i′.

Proof of the Claim We use induction on i′.
For the base case i′ = 0, note that the vertices with relevant label 0 in Bu,0 with respect

to S and S ′ coincide. The vertices with relevant label 0 in Bv,0 with respect to Ŝ and S ′ are
also clearly the same, whereas all other vertices have relevant label 0 with respect to S ′ if and
only if they have relevant label 0 with respect to both S and Ŝ.

Let w ∈ Bu,0 and suppose w ∈ P0 with respect to S. If w ∈ R0, then w is also purple
with respect to S ′ by the previous discussion. Now, if w′ ∈ R0 ∩ Nd−1(w), then w′ ∈ Bu,0
or (d+ 1)i + d+ d′ < d(u,w′) < (d+ 1)(i + 1) + d+ d′, otherwise we would have d(u,w′) <
d(w,w′) ≤ d−1, contradicting the fact that u is white at time i with respect to S and Ŝ. Since
the restriction on the girth implies that all cycles have length larger than 2((d+1)i+d+d′)+d,
we conclude that the vertex w′ has the same labels with respect to S and S ′, hence w is also
purple with respect to S ′ in this case. The same argument applies to the converse, and w is
purple at time 0 with respect to S if w ∈ P0 with respect to S ′. By symmetry, this shows
that, if w ∈ Bv,0, then w ∈ P0 with respect to S ′ if and only if it is purple at time 0 with
respect to Ŝ. Clearly, the condition on the girth also implies that the vertices at distance
exactly (d+ 1)i+ d+ d′ + 1 from u or v are purple at time 0 with respect to S ′ if and only if
they are purple with respect to S or Ŝ, according to the branch they are in.

Now, assume that w is not purple with respect to S ′. If w ∈ Bu,0 ∪Bv,0 \ {u, v}, then its
neighbours are either in Bu,0 ∪N(Bu,0) \ {v} or in Bv,0 ∪N(Bv,0) \ {u}. Supposing without
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loss of generality that the former is the case, the neighbours are in P0 with respect to S ′ if and
only if they are in P0 with respect to S. Hence, w has the same colour at time 0 with respect
to S ′ and Ŝ. If w ∈ {u, v}, say w = u, then its neighbours in Bu,0 are purple with respect to
S ′ if and only if they are purple with respect to S. Also, v is not purple with respect to S ′,
otherwise it would be so with respect to Ŝ. We conclude that u is also white with respect S ′,
and the same argument holds for v by symmetry, establishing the base of induction.

The induction step follows the same lines. Since by the induction hypothesis the colours
on Bu,i′−1 are the same at time i′ − 1, we can show that the relevant labels in the branches
Bu,i′−1 have to be the same at time i′. From here, we repeat the previous argument to show
that the colours have to be the same on Bu,i′ , which concludes the proof of the claim. �

We now have

P (Cv | Cu ∧ E) =
∑

Su,Sv

P (Su ∧ Sv | Cu ∧ E) P (Cv | Cu ∧ E ∧ Su ∧ Sv) (3.1.3)

where Su and Sv range over all the possible labellings of Bu,0 and Bv,0, respectively, such
that P (Su ∧ Sv | Cu ∧ E) > 0, that is, such that Su ∧ Sv implies Cu ∧ u ∈ Wi ∧ v ∈ Wi.
(This equivalence is justified by the fact that the vertices not labelled by Su or Sv cannot
influence the colours of Nu,d′ and Nv,d′ at time i as a consequence of Corollary 3.1.6.) Now,
the probability P (Cv | Cu ∧ E ∧ Su ∧ Sv) is equal to 1 if Su ∧ Sv also implies Cu ∧ Cv ∧ u ∈
Wi ∧ v ∈Wi. By our previous claim, this does not depend on the particular Su and Cu, so

P (Cv | Cu ∧ E ∧ Su ∧ Sv) = P (Cv | E ∧ Sv) .

The right-hand side of Equation (3.1.3) becomes
∑

Su,Sv

P (Su ∧ Sv | Cu ∧ E) P (Cv | E ∧ Sv)

=
∑

Sv

P (Cv | E ∧ Sv)
∑

Su

P (Su ∧ Sv | Cu ∧ E)

=
∑

Sv

P (Cv | E ∧ Sv) P (Sv | Cu ∧ E)

(3.1.4)

Our claim also implies that P (Sv | Cu ∧ E) = P (Sv | E), since it shows that the colouring
of Nu,d′ is not affected by the labelling of Bv,0 conditional upon the event E. Using this fact,
equation (3.1.4) can be rewritten as

∑

Sv

P (Cv ∧ Sv | E) = P (Cv | E) .

Thus,
P (Cu ∧ Cv | E) = P (Cu | E) P (Cv | E ∧ Cu) = P (Cu | E) P (Cv | E) ,

which concludes the proof of the theorem.
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Conditional independence of branches is an easy consequence Theorem 3.1.10. We prove
that, conditional upon knowing the purple and yellow neighbours of a white vertex, the
colourings of the branches rooted at the remaining neighbours are mutually independent
(that is, the colourings of the branches rooted at the white neighbours of u are mutually
independent). Before proving this, we note that it is indeed necessary to condition upon
knowing the purple and yellow neighbours. We present an easy example to justify why
conditional independence of branches does not hold when this is not the case. Let d = 1 and
` = 2, and suppose that u is a white vertex, without conditioning on the colour of any of its
neighbours. Clearly, the probability of a given neighbour being purple may be nonzero, since
u can have up to one purple neighbour. However, once we know that one of the neighbours
is purple, none of the other neighbours can be purple, since u would not be white otherwise,
hence the colours of the neighbours of u are not independent. Conditional independence of
branches also fails if the yellow neighbours are not known. For, suppose that ` = 1 and that,
for some every i > 0, pi,0,k is a small positive constant, if k ≤ 1, and pi,0,k = 1, if k > 1. Now,
if one of the branches around the white u is known to contain a yellow neighbour of u, then
the probability that another branch satisfies the same property may be much smaller, since a
white vertex u can only have two yellow neighbours for one step, as it would be chosen with
probability 1 on the next step.

Corollary 3.1.12 (Conditional independence of branches) Let u ∈ V and A,B ⊆
N(u), and fix nonnegative integers i and d′ such that 2((d+ 1)i+ d+ d′) + d < g. Consider
colourings χt of Tu,t,d′, ut ∈ N(u) \ (A ∪B) and let Ct be the event that Tu,t,d′ has colouring
χt at time i. Then, conditional upon the event {u ∈Wi∧ (N(u)∩Pi = A)∧ (N(u)∩Yi = B)},
the events Ct are mutually independent.

Proof Let {u1, . . . , ut} ⊆ N(u) \ (A ∪B). We have

P

(
t∧

t′=1

Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)

)

= P (Ct | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B))

×P

(
t−1∧

t′=1

Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B) ∧ Ct
)

(3.1.5)

Now, the event u ∈ Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B) ∧ Ct can be rewritten as
u ∈Wi∧ut ∈Wi∧Du∧Ct, where Du = (N(u)∩Pi = A)∧(N(u)∩Yi = B)∧(ut′ ∈Wi, t

′ < t).
We apply Theorem 3.1.10 to the vertices u and ut, and to the event

∧t−1
t′=1Ct′ , which fixes a
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colouring of some of the vertices in Nu,d′ , to obtain

P

(
t−1∧

t′=1

Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B) ∧ Ct
)

= P

(
t−1∧

t′=1

Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)

)
.

Thus, equation (3.1.5) becomes

P(Ct | u ∈Wi∧(N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)

×P(
t−1∧

t′=1

Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B))

and, repeating the same argument for the other branches, we obtain

t∏

t′=1

P(Ct′ | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)),

as required.
In the previous result, we conditioned upon knowing the sets A and B of purple and

yellow neighbours of a vertex u. However, Theorem 3.1.10 can also be used to show that the
particular sets A and B do not affect the probability that one of the remaining branches has
a given colouring.

Corollary 3.1.13 Let u ∈ V , A,B ⊆ N(u) and ut ∈ N(u) \ (A∪B), and fix i ∈ N such that
2((d + 1)i + d + d′) + d + 1 < g. Let χt be a colouring of the branch Tu,t,d′ and consider the
event Ct that Tu,t,d′ has colouring χt at time i. Then

P(Ct | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)) = P(Ct | u ∈Wi ∧ ut ∈Wi).

Proof Let Cu denote the colouring of N(u) \ {v} such that the vertices in A are purple, the
vertices in B are yellow and the remaining vertices are white. We have

P(Ct | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B))

= P(Ct | u ∈Wi ∧ ut ∈Wi ∧ Cu).

Applying Theorem 3.1.10 to the white vertices u and ut and the colourings Ct and Cu, we
deduce that

P(Ct | u ∈Wi ∧ ut ∈Wi ∧ Cu) = P(Ct | u ∈Wi ∧ ut ∈Wi),

which is independent of Cu, hence of A and B.
An important special case of this result is that P

(
v ∈W j,k

i | u ∈W j′,k′
i ∧ v ∈Wi

)
is

independent of j′, k′ and can be denoted by qi,j,k. A formula for qi,j,k can be obtained in
terms of the probabilities wi,j′,k′ , as seen in the following corollary.
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Corollary 3.1.14

qi,j,k =
(r − j − k)wi,j,k∑

j′,k′(r − j′ − k′)wi,j′,k′
.

Proof The expected number of pairs (a, b) ∈ V 2 such that a ∈ W j,k
i and b ∈ W j′,k′

i is given
by

e(j, j′, k, k′) =
∑

a∈V

∑

b∈N(a)

P
(
b ∈W j′,k′

i ∧ a ∈Wi

)
P
(
a ∈W j,k

i | b ∈W j′,k′
i ∧ a ∈Wi

)
.

By definition, we have P
(
a ∈W j,k

i | b ∈W j′,k′
i ∧ a ∈Wi

)
= qi,j,k.

Now, b ∈W j′,k′
i has exactly r− j′−k′ white neighbours, and, conditional on this fact, the

probability that a given neighbour of u is white does not depend on the particular neighbour,
by the independence of vertex labelling given in Corollary 3.1.7. This implies

P
(
b ∈W j′,k′

i ∧ a ∈Wi

)
= wi,j′,k′P(a ∈Wi | b ∈W j′,k′

i ) = (r − j′ − k′)wi,j′,k′/r,

from which
e(j, j′, k, k′) = (r − j′ − k′)wi,j′,k′qi,j,kn

But the expected number of pairs (a, b), where a ∈W j,k
i and b ∈Wi, is equal to (r − j −

k)wi,j,kn, since G is expected to contain wi,j,kn vertices in W j,k
i , and each of these vertices is

adjacent to exactly r − j − k white vertices. We have

(r − j − k)wi,j,kn =
r−1∑

j′,k′
n(r − j′ − k′)wi,j′,k′qi,j,kn,

that is,

qi,j,k =
(r − j − k)wi,j,k∑

j′,k′(r − j′ − k′)wi,j′,k′
.

3.2 Recurrence equations

Let r ≥ 3, ` ≤ r and d be fixed positive integers. Also fix N ∈ N and the probabilities p0 and
(pi,j,k)0≤i≤N,(j,k)∈I . LetG be an r-regular graph with girth g greater than 2((d+1)N+d)+d+1
and consider an application of Algorithm 3.1.1 to G with the quantities fixed above.

The work in the previous section ensures that the values of wi,j,k = P(u ∈W j,k
i ), where u

is a vertex of G, are independent of the particular vertex u and even of the particular graph G.
Our objective in the current section is to calculate these probabilities. Although the events
whose probability is being considered are not the same, this will resemble the derivation of
the recurrence equations in Section 2.4.

In the case when i = 0, these numbers depend only on r, d, ` and p0, and can be easily
calculated. We now calculate them in the case of independent sets, since, by Proposition 3.1.2,
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a locally greedy algorithm for independent sets is obtained if the parameters are d = ` = 1.
Because ` = 1, a white vertex cannot have purple neighbours, so we only need to calculate the
probability that a vertex v is white and has exactly k yellow neighbours after step 0. Clearly,
this event occurs if and only if v does not have relevant label 0, none of its neighbours
do, and exactly k of its neighbours are adjacent to a vertex with relevant label 0. Now, a
vertex is assigned label 0 at random, independently of all other vertices, with probability
p0. In particular, the probability that neither v nor its neighbours have relevant label 0 is
(1 − p0)r+1. Conditional on this event, if we look at a fixed neighbour of v, the event that
none of its neighbours have relevant label 0 has probability (1−p0)r−1 (since we already know
that v does not have relevant label 0). Because exactly k neighbours of v must be adjacent
to at least one vertex with relevant label zero, it follows that

w0,0,k = (1− p0)r+1

(
r

k

)
(1− p0)(r−1)(r−k)

(
1− (1− p0)r−1

)k
.

With similar arguments, the following formula can be obtained for d = 1 and ` ∈
{1, . . . , r − 1} may be obtained. Observe that this case includes the locally greedy algo-
rithm for induced forests suggested in Proposition 3.1.2, since the parameters are d = 1 and
` = 2.

w0,j,k =
(
r

j

)(
r − j
k

)
(1− p0)r−j+1

(
1−

`−1∑

s=0

(
r − 1
s

)
ps0(1− p0)r−s)

)k

×
(
`−1∑

s=0

(
r − 1
s

)
ps0(1− p0)r−s

)r−j−k (3.2.1)

Henceforth, for fixed r, d and `, we shall use w0,j,k(p0) to denote the probability of the event
u ∈W j,k

0 as a function of the initial probability.
We now consider wi,j,k in the case i > 0. We shall express wi as a function of pi and

wi−1, giving a recurrence relation that allows us to inductively calculate all the probabilities.
The recurrence equations we aim to find are of the form

wi = wi−1 + F(pi,wi−1) + E(pi,wi−1), i = 1, . . . , N, (3.2.2)

where F = (Fj,k)(j,k)∈I and E = (Ej,k)(j,k)∈I are vector functions with domain R2|I| and
range R|I| satisfying the following properties:

• Fj,k and Ej,k are polynomials in the first |I| variables (that is, on the variables corre-
sponding to the vector pi) whose coefficients are rational functions on the remaining |I|
variables (which correspond to wi−1).

• Fj,k, as a polynomial in the first |I| variables, is homogeneous of degree one (that is, all
its monomials have degree one in pi).
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• Ej,k, as a polynomial in the first |I| variables, contains only monomials of degree larger
than one.

Clearly, if such F and E exist, they are unique, and F will be called the function associated
with Algorithm 3.1.1 in this case, whereas E is the error function associated with Algorithm
3.1.1. The reason for these names is that, when the probabilities are small, the value of Ej,k is
negligible in comparison with Fj,k, so the behaviour of the Algorithm is essentially described
by F .

In the remainder of this section, we show that recurrence equations of this form may be
found for the case d = 1 and ` = 1 and the case d = 1 and ` = 2, which will play a fundamental
role in the analysis of locally greedy algorithms for independent sets and induced forests. Our
first lemma, however, holds for any ` ∈ {1, . . . , r}.

Before stating this result, we prove an auxiliary result, which is once more a form of
conditional independence of branches, but is proved only in the case d = 1. Here, conditional
upon a vertex u being white at time i and not having relevant label i + 1, we show that, at
time i + 1, the colourings of the branches around u rooted at white vertices at time i are
mutually independent.

Corollary 3.2.1 Let u ∈ V and A,B ⊆ N(u), and fix nonnegative integers i and d′ such
that 2((d+ 1)(i+ 1) + d+ d′) + d < g. Consider colourings χt of Tu,t,d′, ut ∈ N(u) \ (A ∪B)
and let Ct be the event that Tu,t,d′ has colouring χt at time i+ 1. Then, conditional upon the
event E(A,B) = u ∈ Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B) ∧ u /∈ Pi+1, the events Ct are
mutually independent. Moreover, the probabilities P(Ct | E(A,B)) are independent of A and
B, for every t.

Proof We look at P (
∧
tCt | E(A,B)). In other words, we aim to compute the probability

that each branch rooted at a white neighbour ut of u at time i has colouring Ct at time
i+ 1. We are given the colours of u and its neighbours at time i, and the additional piece of
information that u does not have relevant label i+ 1.

Using this, the colouring of a given branch Tu,t,d′ at time i+1 only depends on the vertices
with relevant label i + 1 in the branch Tu,t,d′+1, by the definition of colouring at time i + 1
(see Definition 3.1.3). But this dependency is actually on the colouring of this branch at time
i, since the labels are given in advance, independently of each other. Now, conditional on the
event u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B), the colourings of the branches rooted at
vertices in N(u) \ (A ∪B) are mutually independent by Corollary 3.1.12. Furthermore, they
do not depend on the sets A and B, by Corollary 3.1.13. This establishes our result.

We are now ready to establish the following recurrence formula for wi,j,k = P(u ∈W j,k
i ).

Lemma 3.2.2 Fix d = 1 and let r, ` and N be positive integers ` ≤ r. Fix probabilities
p0 and (pi,j,k)1≤i≤N,(j,k)∈I . Let G be an r-regular graph with girth greater than 4N + 4 and
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consider adjacent vertices u and v in G. Then, if (j, k) ∈ I and 1 ≤ i ≤ N ,

wi,j,k =
j∑

j′=0

k∑

k′=0

(
r − j′ − k′
j − j′

)(
r − j − k′
k − k′

)
(1− pi,j′,k′)wi−1,j′,k′

×P(v ∈Wi | Ei−1)r−j−kP(v ∈ Pi | Ei−1)j−j
′
P(v ∈ Yi | Ei−1)k−k

′
,

where Ei−1 denotes the event {u ∈Wi−1 ∧ v ∈Wi−1 ∧ u /∈ Pi}.

Proof By definition of wi,j,k and using conditional probability,

wi,j,k = P(u ∈W j,k
i )

=
j∑

j′=0

k∑

k′=0

P(u ∈W j′,k′
i−1 )P(u ∈W j,k

i | u ∈W j′,k′
i−1 )

=
j∑

j′=0

k∑

k′=0

wi−1,j′,k′P(u /∈ Pi | u ∈W j′,k′
i−1 )P(u ∈W j,k

i | u ∈W j′,k′
i−1 ∧ u /∈ Pi)

=
j∑

j′=0

k∑

k′=0

wi−1,j′,k′(1− pi,j′,k′)P(u ∈W j,k
i | u ∈W j′,k′

i−1 ∧ u /∈ Pi).

(3.2.3)

Note that, when we say that P(u /∈ Pi | u ∈ W j′,k′
i−1 ) = 1 − pi,j′,k′ , we are assuming that u

becomes purple at time i if and only if it has relevant label 1, which is the case when d = 1.

To analyse the term P(u ∈W j,k
i | u ∈W j′,k′

i−1 ∧ u /∈ Pi), we sum over all possible distribu-
tions of colours around u at time i−1, that is, over the set A = {(A,B) : A,B ⊆ N(u), |A| =
j′, |B| = k′, A ∩B = ∅}. We have

P(u ∈W j,k
i | u ∈W j′,k′

i−1 ∧ u /∈ Pi)
=

∑

(A,B)∈A
P(E(A,B) | u ∈W j′,k′

i−1 ∧ u /∈ Pi)

×P(u ∈W j,k
i | E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi),

(3.2.4)

where E(A,B) = {(N(u) ∩ Pi−1 = A) ∧ (N(u) ∩ Yi−1 = B)}.
But, by assuming that u does not have relevant label i, u moves from W j′,k′

i−1 to W j,k
i if

and only if exactly j − j′ of its white neighbours at time i− 1 turn purple and k − k′ of the
white neighbours at time i− 1 turn yellow at time i. Here, we are again using the restriction
d = 1. In more general cases, a yellow vertex might become purple by being at distance at
most d − 1 of a vertex with relevant label i. So, u is in W j,k

i conditional upon the event
{E(A,B)∧u ∈Wi−1∧u /∈ Pi} if and only if the event F (A′, B′) = (N(u)∩Pi∩Wi−1 = A′)∧
(N(u)∩Yi∩Wi−1 = B′) holds for some sets A′, B′ ⊆ N(u)\(A∪B), |A′| = j−j′, |B′| = k−k′.
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Let A′ = {(A′, B′) : A′, B′ ⊆ N(u) \ (A∪B), |A′| = j− j′, |B| = k− k′, A′ ∩B′ = ∅}. Then

P(u ∈W j,k
i | E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi)

=
∑

(A′,B′)∈A′
P(F (A′, B′) | E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi)

×P(u ∈W j,k
i | F (A′, B′) ∧ E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi))

=
∑

(A′,B′)∈A′
P(F (A′, B′) | E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi),

(3.2.5)

since P(u ∈W j,k
i | F (A′, B′) ∧ E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi)) = 1.

We look at P(F (A′, B′) | E(A,B) ∧ u ∈ Wi−1 ∧ u /∈ Pi). It involves the colourings at
time i of branches known to be rooted at white vertices at time i− 1. By Corollary 3.2.1, the
colourings of these branches at time i are mutually independent, and the probabilities that
given colourings are achieved are independent of A and B. As a consequence, if Ei−1 denotes
the event {u ∈ Wi−1 ∧ v ∈ Wi−1 ∧ u /∈ Pi} and N(A,A′, B,B′) = N(u) \ (A ∪ A′ ∪ B ∪ B′),
we have

P(F (A′, B′) | E(A,B) ∧ u ∈Wi−1 ∧ u /∈ Pi))
=

∏

v∈N(A,A′,B,B′)

P(v ∈Wi | Ei−1)
∏

v∈A′
P(v ∈ Pi | Ei−1)

∏

v∈B′
P(v ∈ Yi | Ei−1)

= P(v ∈Wi | Ei−1)r−j−kP(v ∈ Pi | Ei−1)j−j
′
P(v ∈ Yi | Ei−1)k−k

′
.

(3.2.6)

The last equality comes from the fact that all these probabilities are independent of the
particular vertex v by Corollary 3.1.7.

Equation (3.2.5) sums this same expression |A′| times, which leads to the multiplicative
factor

(
r−j′−k′
j−j′

)(
r−j−k′
k−k′

)
. Now, the terms P(u ∈ W j,k

i | E(A,B) ∧ u ∈ Wi−1 ∧ u /∈ Pi) in
equation (3.2.4) do not depend on (A,B), so that equation (3.2.3) becomes

wi,j,k =
j∑

j′=0

k∑

k′=0

(
r − j′ − k′
j − j′

)(
r − j − k′
k − k′

)
(1− pi,j′,k′)wi−1,j′,k′

×P(v ∈Wi | Ei−1)r−j−kP(v ∈ Pi | Ei−1)j−j
′
P(v ∈ Yi | Ei−1)k−k

′
,

establishing our result.
This lemma tells us that a recurrence relation for wi,j,k will be obtained if we express the

probabilities P(v ∈ Wi | Ei−1), P(v ∈ Pi | Ei−1) and P(v ∈ Yi | Ei−1) in terms of wi−1 and
pi. These probabilities depend on the value of `. Indeed, if ` = 1, for v to be white at time
i conditional on the event {u ∈ Wi−1 ∧ v ∈ Wi−1 ∧ u /∈ Pi}, it must be that neither v nor its
white neighbours at time i− 1 have relevant label i. However, for larger values of `, some of
the white neighbours of v are allowed to have relevant label i. We now look more closely at
the cases when ` = 1 and ` = 2.
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3.3 Recurrence equations for independent sets

We consider the case d = 1 and ` = 1, for which white vertices never have purple neighbours.
Since j is always equal to zero, we omit the value of j from the notation, that is, W j,k

i = W k
i ,

wi,j,k = wi,k and qi,j,k = qi,k. To obtain a recurrence relation for wi from Lemma 3.2.2, we
need to calculate P(u ∈Wi | Ei−1) and P(u ∈ Yi | Ei−1) in terms of pi and wi−1, where Ei−1

is the event {u ∈Wi−1 ∧ v ∈Wi−1 ∧ u /∈ Pi}.
We calculate P(u ∈ Wi | Ei−1). In the first step, we use conditional probabilities to fix

the number of yellow neighbours of v at time i− 1.

P (v ∈Wi | Ei−1) =
r−1∑

k′′=0

P
(
v ∈W k′′

i−1 | Ei−1

)
P
(
v ∈Wi | v ∈W k′′

i−1 ∧ Ei−1

)
.

Note that, once we condition on {u ∈ Wi−1}, the event {u /∈ Pi} influences the colouring of
the graph at time i− 1 through the number of purple and yellow neighbours of u. Now, as a
consequence of Corollary 3.1.13, the probability qi−1,k′′ that v lies in W k′′

i−1 given that u and
v are white at time i − 1 is independent of the set of purple and yellow neighbours of u, so
P
(
v ∈W k′′

i−1 | Ei−1

)
= qi−1,k′′ .

Now, the term P
(
v ∈Wi | v ∈W k′′

i−1 ∧ Ei−1

)
in the above equation may be rewritten as

P
(
v ∈Wi | v ∈W k′′

i−1 ∧ Ei−1

)

= P
(
v /∈ Pi | v ∈W k′′

i−1 ∧ Ei−1

)
P
(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
.

(3.3.1)

We have P
(
v /∈ Pi | v ∈W k′′

i−1 ∧ Ei−1

)
= 1 − pi,k′′ , since v is not in Pi if and only if it does

not have relevant label i. We now look at the term P
(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
.

Since we are conditioning upon u and v not having relevant label i, the event v ∈Wi holds if
and only if none of the remaining r− k′′− 1 white neighbours of v at time i− 1 have relevant
label i. Let S be the set of white neighbours of v at time i− 1, with the exception of u. We
have

P
(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)

= P

(∧

w∈S
w /∈ Pi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
.

This last expression concerns the colourings, at time i, of branches around a white vertex v
rooted at white vertices at time i− 1. Moreover, v does not contain relevant label i. We may
apply Corollary 3.2.1 to conclude that these colourings are independent, so that

P
(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
=
∏

w∈S
P (w /∈ Pi | v /∈ Pi ∧ v ∈Wi−1) .
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In this equation, the term P
(
w /∈ Pi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
has been turned into the

term P (w /∈ Pi | v /∈ Pi ∧ v ∈Wi−1). This can be done because, by Corollary 3.2.1, events
such as the number of yellow neighbours of v or the colouring of u and its neighbours at time
i− 1 do not affect the colour of w at time i conditional upon v /∈ Pi ∧ v ∈Wi−1.

Finally, for any w ∈ S,

P (w /∈ Pi | v /∈ Pi ∧ v ∈Wi−1)

=
r−1∑

k?=0

P
(
w ∈W k?

i−1 | v /∈ Pi ∧ v ∈Wi−1

)
P
(
w /∈ Pi | w ∈W k?

i−1 ∧ v /∈ Pi ∧ v ∈Wi−1

)

=
r−1∑

k?=0

qi−1,k? (1− pi,k?) .

Using this, equation (3.3.1) may be rewritten as

P
(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
= (1− pi,k′′)

(
r−1∑

k?=0

qi−1,k? (1− pi,k?)
)r−k′′−1

,

from which we conclude that

P (v ∈Wi | Ei−1) =
r−1∑

k′′=0

qi−1,k′′(1− pi,k′′)
(

r−1∑

k?=0

qi−1,k?(1− pi,k?)
)r−k′′−1

. (3.3.2)

We also have

P (v ∈ Yi | Ei−1) =
r−1∑

k′′=0

qi−1,k′′(1− pi,k′′)

1−

(
r−1∑

k?=0

qi−1,k?(1− pi,k?)
)r−k′′−1


 . (3.3.3)

The argument for this case follows exactly the same steps of the case v ∈ Wi, until we reach
an equivalent version of equation (3.3.1), namely

P
(
v ∈ Yi | v ∈W k′′

i−1 ∧ Ei−1

)

= P
(
v /∈ Pi | v ∈W k′′

i−1 ∧ Ei−1

)
P
(
v ∈ Yi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
.

Here, P
(
v ∈ Yi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
= 1 − P

(
v ∈Wi | v /∈ Pi ∧ v ∈W k′′

i−1 ∧ Ei−1

)
,

since any non-purple vertex is either white or yellow, which leads to the formula in equation
(3.3.3).

Now that we have expressions for P (v ∈Wi | Ei−1) and P (v ∈ Yi | Ei−1) in terms of wi−1
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and pi, we may apply Lemma 3.2.2 to obtain

wi,k = P
(
u ∈W k

i

)

=
k∑

k′=0

wi−1,k′
(
1− pi,k′

)(r − k′
k − k′

)

×



r−1∑

k′′=0

qi−1,k′′(1− pi,k′′)
(

r−1∑

k?=0

qi−1,k?(1− pi,k?)
)r−k′′−1



r−k

×



r−1∑

k′′=0

qi−1,k′′(1− pi,k′′)

1−

(
r−1∑

k?=0

qi−1,k?(1− pi,k?)
)r−k′′−1





k−k′

.

Expanding this and using the formula for qi−1,k given in Corollary 3.1.14, we obtain

wi,k = wi−1,k − pi,kwi−1,k − (r − k)wi−1,k

r−1∑

k′′=0

pi,k′′(r − k′′)wi−1,k′′

si−1

+ ((r − k + 1)wi−1,k−1δk≥1 − (r − k)wi−1,k)

(
r−2∑

k′′=0

(r − k′′)(r − k′′ − 1)wi−1,k′′

s2
i−1

)

×
(

r−1∑

k?=0

pi,k?(r − k?)wi−1,k?

)
+ Ek(p,w),

(3.3.4)

where si =
∑r−1

t=0 (r − t)wi,t and Ek(p,w) is a polynomial in the indeterminates pi,k for
which every monomial has degree at least two. The coefficients are rational functions in
the indeterminates wi−1 whose denominators are powers of si−1 = si−1(w). In particular,
the function E = (Ek)rk=0 is the error function defined in equation (3.2.2). The function
associated with the algorithm F = (Fk)rk=0 is given by

Fk(p,w) = −pi,kwi−1,k − (r − k)wi−1,k

r−1∑

k′′=0

pi,k′′(r − k′′)wi−1,k′′

si−1

+ ((r − k + 1)wi−1,k−1δk≥1 − (r − k)wi−1,k)

×
(

r−2∑

k′′=0

(r − k′′)(r − k′′ − 1)wi−1,k′′

s2
i−1

)(
r−1∑

k?=0

pi,k?(r − k?)wi−1,k?

)
.

(3.3.5)

3.4 Recurrence equations for induced forests

We now consider the case when d = 1 and ` = 2, for which I = {(j, k) : j, k ≥ 0, j ∈
{0, 1}, j + k ≤ r}. Recall that we want to calculate P (v ∈Wi | Ei−1), P (v ∈ Pi | Ei−1) and
P (v ∈ Yi | Ei−1) to obtain a recurrence equation for wi,j,k through Lemma 3.2.2.

The formula for P (v ∈ Pi | Ei−1) can be obtained as follows. First, we fix the colouring
of the neighbourhood of v at time i− 1. Now, there is the possibility that a white vertex has
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a purple neighbour, so

P (v ∈ Pi | Ei−1) =
r−2∑

k′′=0

P
(
v ∈W 1,k′′

i−1 | Ei−1

)
P
(
v ∈ Pi | v ∈W 1,k′′

i−1 ∧ Ei−1

)

+
r−1∑

k′′=0

P
(
v ∈W 0,k′′

i−1 | Ei−1

)
P
(
v ∈ Pi | v ∈W 0,k′′

i−1 ∧ Ei−1

)
,

Here, we have P
(
v ∈W 1,k′′

i−1 | Ei−1

)
= qi−1,1,k′′ and P

(
v ∈W 0,k′′

i−1 | Ei−1

)
= qi−1,0,k′′ , since,

as with the case d = 1 and ` = 1, these probabilities do not depend on the set of purple and
yellow vertices of u at time i− 1 by Corollary 3.1.13. On the other hand,

P
(
v ∈ Pi | v ∈W j′′,k′′

i−1 ∧ Ei−1

)
= pi,j′′,k′′ ,

since v ∈ Pi if and only if it has relevant label i. As a consequence,

P (v ∈ Pi | Ei−1) =
1∑

j′′=0

r−j′′−1∑

k′′=0

pi,j′′,k′′qi−1,j′′,k′′ .

Now, we calculate P (v ∈Wi | Ei−1). As before, this can be rewritten as

P (v ∈Wi | Ei−1) =
r−2∑

k′′=0

P
(
v ∈W 1,k′′

i−1 | Ei−1

)
P
(
v ∈Wi | v ∈W 1,k′′

i−1 ∧ Ei−1

)

+
r−1∑

k′′=0

P
(
v ∈W 0,k′′

i−1 | Ei−1

)
P
(
v ∈Wi | v ∈W 0,k′′

i−1 ∧ Ei−1

) (3.4.1)

The term P
(
v ∈Wi | v ∈W 1,k′′

i−1 ∧ Ei−1

)
is equal to

P
(
v /∈ Pi | v ∈W 1,k′′

i−1 ∧ Ei−1

)
P
(
v ∈Wi | v /∈ Pi ∧ v ∈W 1,k′′

i−1 ∧ Ei−1

)
. (3.4.2)

Clearly, P
(
v /∈ Pi | v ∈W 1,k′′

i−1 ∧ Ei−1

)
= 1 − pi,1,k′′ . For the other term, note that, because

we are conditioning on u and v not having relevant label i, vertex v is in Wi if and only if
none of its remaining r − k′′ − 2 white neighbours have relevant label i. As in the case d = 1
and ` = 1, if S denotes the set of white neighbours of v other than u at time i − 1, we may
apply Corollary 3.2.1 to obtain

P
(
v ∈Wi | v /∈ Pi ∧ v ∈W 1,k′′

i−1 ∧ Ei−1

)
=
∏

w∈S
P (w /∈ Pi | v ∈Wi−1 ∧ v /∈ Pi) ,

with

P (v ∈Wi | v ∈Wi−1 ∧ v /∈ Pi) =
1∑

j?=0

r−j?−1∑

k?=0

P
(
w ∈W j?,k?

i−1 | v /∈ Pi ∧ v ∈Wi−1

)

×P
(
w /∈ Pi | w ∈W j?,k?

i−1 ∧ v /∈ Pi ∧ v ∈Wi−1

)

=
1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?) .

(3.4.3)
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This implies that

P
(
v ∈Wi | v ∈W 1,k′′

i−1 ∧ Ei−1

)
= (1− pi,1,k′,′)




1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−2

.

The term P
(
v ∈Wi | v ∈W 0,k′′

i−1 ∧ Ei−1

)
in equation (3.4.1) can be treated similarly, and

we obtain

P
(
v ∈Wi | v ∈W 0,k′′

i−1 ∧ Ei−1

)
=




1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−1

+
(
r − k′′ − 1

1

)


1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k?pi,j?,k?






1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−2

.

Observe that the first term in this sum refers to the case in which none of the white neighbours
of v is in Pi, while the second term refers to the case when exactly one of them is in Pi.

Substituting these values into equation (3.2.5), we obtain the formula

P (v ∈Wi | Ei−1) =
r−2∑

k′′=0

(
1− pi,1,k′′

)
qi−1,1,k′′




1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−2

+
r−1∑

k′′=0

(
1− pi,0,k′′

)
qi−1,0,k′′




1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−1

+
(
r − k′′ − 1

1

)(
1− pi,0,k′′

)
qi−1,0,k′′




1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k?pi,j?,k?




×



1∑

j?=0

r−j?−1∑

k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−2

.

A formula for the term P (v ∈ Yi | Ei−1) may be obtained by proceeding as in the calcula-
tion of P (v ∈Wi | Ei−1), but with {v ∈ Yi} replacing {v ∈Wi}, up until equation (3.4.3). In
this equation, we see that P (v ∈ Yi | v /∈ Pi ∧ v ∈Wi−1) = 1−P (v ∈Wi | v /∈ Pi ∧ v ∈Wi−1),
which has already been calculated. This gives

P (vt ∈ Yi | E) =
r−2∑

k′′=0

(
1− pi,1,k′′

)
qi−1,1,k′′


1−




1,r−1∑

j?,k?=0

qi−1,j?,k? (1− pi,j?,k?)


r−k′′−2



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By Lemma 3.2.2,

wi,j,k = P(u ∈W j,k
i )

=
j∑

j′=0

k∑

k′=0

wi−1,j′,k′(1− pi,j′,k′) (r − j′ − k′)!
(r − j − k)!(j − j′)!(k − k′)!P (vt ∈Wi | E)r−j−k

× P (vt ∈ Pi | E)j−j
′
P (vt ∈ Yi | E)k−k

′

By substituting the expressions obtained and by using the formula for qi−1,j,k given in Corol-
lary 3.1.14, we have

wi,j,k =wi−1,j,k − pi,j,kwi−1,j,k

− (r − j − k)wi−1,j,k

si−1

1∑

j′′=0

r−1−j′′∑

k′′=0

pi,j′′,k′′(r − j′′ − k′′)wi−1,j′′,k′′

+ δj=1
(r − j − k + 1)wi−1,0,k

si−1




1∑

j′′=0

r−1−j′′∑

k′′=0

(r − j′′ − k′′)wi−1,j′′,k′′pi,j′′,k′′




+
δk≥1(r − j − k + 1)wi−1,j,k−1 − (r − j − k)wi−1,j,k

s2
i−1

× λi




1∑

j?=0

r−j?−1∑

k?=0

(r − j? − k?)wi−1,j?,k?pi,j?,k?




+ Ej,k(pi,wi−1)

(3.4.4)

where

si =
1∑

j?=0

r−1−j∑

k?=0

(r − j? − k?)wi,j?,k? , λi =

(
r−3∑

k′′=0

(r − k′′ − 1)(r − k′′ − 2)wi−1,1,k′′

)
,

and Ej,k is the error function, as defined in equation (3.2.2). Again, the denominators of the
rational coefficients of Ej,k with respect to wi−1 are powers of si−1. All the other terms in the
above expansion are monomials of degree 1 with respect to pi, which gives us the function
F = (Fj,k)j,k∈I associated with the algorithm.





Chapter 4

The analysis of locally greedy

algorithms

In Chapter 3, we have seen that it is possible to obtain recurrence equations for the probabil-
ities wi,j,k = P(u ∈ W j,k

i ) associated with an application of a locally greedy algorithm with
fixed parameters to a fixed input graph. Recall that similar results were obtained in Chapter
2 with regard to the greedy algorithm, even though the variables in the recurrence equations
in that chapter were the probabilities of a different set of events. In this chapter, we aim
to extend the remainder of the analysis in Chapter 2 to estimate the expected performance
of a locally greedy algorithm. That is, we would like to approximate the probabilities wi,j,k,
the solutions to the system of recurrence equations given by equation (3.2.2) and with initial
conditions defined in (3.2.1), by the solutions of an associated system of differential equations.
The new bounds on the independence number and on the size of a largest induced forest for
regular graphs with large girth would then be obtained by solving these associated systems
of differential equations for the appropriate choice of parameters, where d = ` = 1 in the case
of independent sets, and d = 1 and ` = 2 for induced forests.

However, we are faced with the additional difficulty of defining the probabilities p0 and
pi,j,k in a way that optimises the performance of the algorithm, since a considerable degree
of latitude seems to be allowed in the assignment of these probabilities. As a consequence,
before introducing a framework in which the probabilities are fixed, we shall first describe
some properties that we would like our locally greedy algorithm to satisfy. This will be
motivated by the analysis of the performance of prioritised algorithms in the probabilistic
space of random regular graphs, which has originally been done in [56] (see also [57] for a more
detailed account). In the context of random regular graphs, the objective is to determine the
expected performance of the algorithm on a large typical input graph, that is, on an r-regular
graph on n vertices that is chosen uniformly among all r-regular graphs on n vertices. This
simplifies the analysis, since we may avoid complicated configurations by proving that they
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occur with negligible probability. On the other hand, the results obtained are asymptotic,
that is, it is shown that, with an input graph chosen uniformly among all r-regular graphs on
n vertices, the probability that the algorithm performs as argued in the analysis tends to 1 as
n tends to infinity. Our objective here is different, since we wish to analyse a locally greedy
algorithm for which the input graph is fixed in advance, and the results aimed at refer to all
graphs with sufficiently large girth. Nevertheless, we shall see that, even though the analysis
done in the case of random regular graphs cannot readily adapted to our case, it is a good
source of motivation in the development of a framework that works in large girth graphs.

In Section 4.1, we look at random algorithms for a particular problem, the problem of
obtaining a large independent set in an r-regular graph G. We discuss how to introduce
prioritisation in such an algorithm, as well as its performance on a typical graph. This
discussion is not rigorous, but it sheds light on later definitions.

In Section 4.2, we introduce a framework for defining the probabilities in the input of a
locally greedy algorithm which, in some sense, lets us define an algorithm with the properties
suggested in Section 4.1, but, at same time, can still be analysed through the method of
Chapter 2. As an illustration, we discuss an application of this framework to the analysis of
a simple locally greedy algorithm in Section 4.3.

The remaining sections of this chapter are devoted to defining the probabilities so as to
improve the performance of a locally greedy algorithm. This will be used in the proof of
the new bounds on the independence number and on the size of a largest induced forest for
regular graphs with large girth, which are obtained in Chapter 5 and Chapter 6, respectively.

4.1 An example: independent sets in r-regular graphs

As an illustration of the ideas involved in our approach, we discuss the particular case of
finding large independent sets in r-regular graphs. We solve this problem by considering a
deletion algorithm with parameters d = ` = 1, which produces an independent set of the
input graph, as seen in Proposition 3.1.2.

Here, white vertices are never adjacent to purple vertices. So, we may define an equiv-
alent version of this algorithm, which, instead of colouring the chosen vertices purple and
their neighbours yellow, deletes both purple and yellow vertices. This new version is called
a deletion algorithm for independent sets. Clearly, the vertices with degree r − k in the
graph after i steps of the local deletion algorithm correspond to the white vertices with k

yellow neighbours in the colouring at time i in an application of Algorithm 3.1.1 with these
parameters. This new version of the algorithm may be written as follows.

Algorithm 4.1.1 Deletion algorithm for independent sets

Input: An r-regular graph G, a positive integer N , an initial probability p0 and vectors of
probabilities pi = (pi,k : 0 ≤ k ≤ r), i = 1, . . . , N .



4.1. AN EXAMPLE: INDEPENDENT SETS IN R-REGULAR GRAPHS 63

1. In the first step, add each vertex in G to a set S0 with probability p0, at random,
independently of all others. Let G0 = G \ (S0 ∪N0), where N0 is the set of vertices in
G adjacent with vertices in S0.

2. At each step i, vertices of Gi−1 are randomly and independently added to a set Si, where
a vertex with degree r−k is added with probability pi,k. Let Gi = Gi−1 \ (Si∪Ni), where
Ni is the set of vertices in Gi−1 adjacent with vertices in Si. Repeat this iteratively for
N steps.

3. Create a set S̄ ⊆ S =
⋃N
i=0 Si by deleting every pair of adjacent vertices in S.

Output: The set S̄.

The performance of an instance of this algorithm obviously depends on the definition of
the probabilities p0 and pi,k. A very simple way of assigning these probabilities is to set
p0 = pi,k = p for every i ∈ {1, . . . , N} and every k ∈ {0, . . . , r}, where p is some positive
constant. This yields a greedy algorithm for independent sets in r-regular graphs, in the sense
that, at every step, vertices that are not in the independent set nor adjacent with a vertex in
the independent set are chosen with the same probability. An algorithm with an equivalent
definition, but which ignores degrees of vertices in Gi−1, given that they are irrelevant for the
algorithm, has been previously analysed in [39].

Such a choice of probabilities may have the advantage of simplifying the analysis of our
algorithm, but it clearly does not use its full power, which resides precisely in the possibility
of defining the probabilities according to the degree of the vertex in Gi−1. In principle, one
would expect that a vertex of smaller degree should be chosen with larger probability, since
the addition of such a vertex to Si causes the deletion of fewer vertices when Gi is obtained
from Gi−1. In order to take maximum advantage of this fact, one would ideally choose, at a
given step i, only vertices in Gi−1 with minimum degree. Such an algorithm has been called
degree-greedy. For simplicity, we discuss the behaviour of a degree-greedy algorithm for which
a single vertex is added to the independent set at each step, with the vertex added at step
i being randomly chosen amongst all vertices with minimum degree in Gi−1. We suppose
that the graph to which this algorithm is applied is a large typical graph, or a random graph.
We also assume that the number N of steps performed by the algorithm is such that the
algorithm only ends when GN is the empty graph.

Initially, all the vertices in G have degree r, so any vertex of the graph may be chosen,
and, once a vertex v is chosen, the graph G0 is obtained by deleting v and its neighbours
from G. Clearly, the vertices at distance two from v in the original graph have degree smaller
than r in G0. In fact, all of them have degree exactly r − 1 unless v is part of a 4-cycle.
¿From now on, vertices of degree smaller than r will be chosen. Early in the process, it is
unlikely that any vertices of degree smaller than r − 1 will be created, and any such vertices
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created are chosen in the next few steps until none remain. We will say that the algorithm
is in Phase 1, for which adding a vertex of degree r − 1 to the independent set is the basic
operation. As our algorithm evolves, however, the occasional vertices of degree r − 2 created
will become increasingly common, until we reach a point for which, as a vertex of degree r−2
is chosen, more vertices of degree r− 2 tend to be created, that is, the vertices of degree r− 2
begin to regenerate themselves faster than they are consumed. Our algorithm now enters in
Phase 2, whose basic operation is to choose a vertex of degree r − 2. In general, when the
algorithm is in Phase k, the basic operation consists of adding a vertex of degree r − k to
the independent set. Again, vertices of smaller degree may be created during this phase, and
they are all added to the independent set before another basic operation is performed. There
will be a point in which vertices of degree r − k − 1 regenerate themselves faster than they
are consumed, which marks the transition of the algorithm to Phase k+ 1, in which the basic
operation is choosing a vertex of degree r − k − 1. Vertices of degree 0 cannot accumulate,
since no vertices of degree 0 are ever created due to the selection a vertex of degree 0. As a
consequence, Phase k − 1, whose basic operation is choosing a vertex of degree 1, is the last
possible phase of this algorithm.

Note that, in this discussion, we have assumed that the phases proceed in an orderly
fashion, which is not at all obvious. On the one hand, we implicitly supposed that, in Phase
k, as vertices of degree k are the basic vertices processed, the vertices of degree k − 1 begin
regenerating themselves fast enough for the next phase to start before the vertices of degree
k are exhausted. If this were not the case, we would reach a point in which the minimum
degree of the deletion graph created by the algorithm would be larger than r − k, and the
algorithm would have to reverse to an earlier phase. On the other hand, we assumed that a
phase whose basic vertices have degree r−k is followed by a phase in which the basic vertices
have degree r − k − 1, that is, we assumed that the algorithm would not skip the vertices of
degree r − k − 1 and jump to a phase whose basic vertices have smaller degree, say degree
r − k − 2.

By performing numerical calculations, Wormald shows in [57] that, if the degree-greedy
algorithm is applied to a random r-regular graph with r ≤ 100, these phases can be defined
precisely, and that this algorithm a.a.s. proceeds in the way described above. In Section
4.4, we shall discuss in more depth how this degree-greedy algorithm can be analysed in
the context of random regular graphs, since this will be useful in defining probabilities pi,k
that lead to a locally greedy algorithm whose performance approximates the degree-greedy
algorithm.
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4.2 A framework for analysis

Our objective in this section is to present conditions under which the performance of the
locally greedy algorithm can be analysed. We bear in mind that, to prove our main results,
we shall fix the parameters of Algorithm 3.1.1 in a way that approximates the degree-greedy
behaviour discussed in the previous section.

So, we first discuss, in the particular case of independent sets, the influence of each of the
parameters of Algorithm 4.1.1. The initial probability p0 will act as an initial step, as was
the case when a vertex of degree r was initially selected in the degree-greedy algorithm of
Section 4.1. To apply Algorithm 4.1.1, we also need to define the number of steps N and the
probabilities pi,k. Note that, once these values are fixed, the vector wi = (wi,k)rk=0, where
wi,k is the probability that a vertex u ∈ V (G) has degree r − k in Gi, satisfies the system of
recurrence equations

wi = wi−1 + F(pi,wi−1) + E(pi,wi−1), i = 1, . . . , N,

w0 = w0(p0),

where F and E are the functions associated with Algorithm 3.1.1 in the case d = 1 and
` = 1, which are given in equation (3.3.4), and w0(p0) denotes the initial conditions defined
in (3.2.1). Recall that the error term E(pi,wi−1) is a polynomial in the variables pi for which
every monomial has total degree at least 2. In particular, for the error to be negligible, we
need small probabilities pi,k. Moreover, in order to give a degree-greedy character to the
algorithm, we should allow for the definition of the vectors of probabilities pi and pi+1 to
differ considerably in a finite set of steps i ∈ {1, . . . , N}, these being the steps in which the
algorithm goes through a phase transition.

We now present an overview of our strategy. For fixed parameters r, d and `, and a given
initial probability p0, the vector of initial conditions w0(p0) is defined as in (3.2.1). Again,
we shall restrict to the case d = 1, since this simplifies the discussion slightly, in addition to
being the relevant case for the theorems to be proved.

Suppose that this choice of d and ` determines functions F = (Fj,k)(j,k)∈I and E =
(Ej,k)(j,k)∈I associated with the algorithm, as defined in (3.2.2). To apply Algorithm 3.1.1 to
an r-regular graph, we still need to define the number of steps N and the probabilities pi,j,k,
1 ≤ i ≤ N , (j, k) ∈ I. For the latter, we will specify bounded nonnegative functions

p̂j,k : R→ R, for every (j, k) ∈ I,

which are fixed in the following discussion. Now, given a sufficiently small constant ε > 0, we
may define the probabilities as

pi,j,k = pi,j,k(ε) = εp̂j,k(iε).
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Having the probabilities defined in this way is convenient, since it allows us to consider
arbitrarily small probabilities by letting ε go to zero. Moreover, we let these functions p̂j,k
have discontinuities in some finite set {x1, . . . , xm−1}, which are related with the steps of the
algorithm in which a phase transition occurs.

Let ε > 0. We consider the application of Algorithm 3.1.1 with d = 1 and parameters
r and `. The probabilities are p0 and pi,j,k = εp̂j,k(iε), for i ∈ {1, . . . , N} and (j, k) ∈ I.
Here, the number of steps N is given by N = bxm/εc, where xm is a positive real number
larger than xm−1 that will be defined later and naturally arises as a termination condition
for the algorithm. We also let an input graph G have girth at least 4N + 4 to ensure that the
independence results in Section 3.1 hold.

Let wεi,j,k denote the probability P(u ∈ W j,k
i ) when this algorithm is applied with some

fixed ε > 0. Then, by our previous assumption, the quantities wεi,j,k satisfy a system of
recurrence equations of the form

wεi,j,k = wεi−1,j,k + Fj,k(εp̂(iε),wε
i−1) + Ej,k(εp̂(iε),wε

i−1), i = 1, . . . , N, (j, k) ∈ I,
wε0,j,k = w0,j,k(p0), (j, k) ∈ I,

(4.2.1)

with the functions p̂ = (p̂j,k) being fixed. We shall show that, as ε tends to zero, the solutions
to this system of recurrence equations are approximated by the solution to the systems of
differential equations given as follows, provided that some technical conditions to be specified
later hold. For t ∈ {1, . . . ,m},

dyj,k
dx

= Fj,k(p̂(x),y), (j, k) ∈ I, for x in the interval [xt−1, xt)

yj,k(xt−1) = βt−1,j,k, (j, k) ∈ I,
(4.2.2)

where β0,j,k = w0,j,k(p0) and, inductively,

βt,j,k = lim
x→x−t

yj,k(x), if t > 1.

These systems of differential equations will be called the systems of differential equations
associated with the algorithm.

By inductively solving this system of differential equations for t = 1, . . . ,m, we derive
information about the expected performance of Algorithm 3.1.1, from which a bound on the
desired graph property is deduced. Observe that, as ε approaches zero, the number of steps
N undertaken by the algorithm increases, and so does the girth of the graphs to which the
algorithm can be applied without affecting the independence results of Section 3.1.

This framework is now developed in more detail. Again, let d = 1, and let 0 < l ≤ r and
p0 ∈ [0, 1] be fixed. Let (w0,j,k(p0))(j,k)∈I be the initial conditions associated with Algorithm
3.1.1 with these parameters, given in equation (3.2.1).

For γ,M > 0, we define a region Ωγ,M given by

{(x,y) ∈ R|I|+1 : 0 ≤ x ≤M, y0,0 ≥ γ and 0 ≤ yj,k ≤M, for every (j, k) ∈ I}, (4.2.3)
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and we fix γ,M in such a way that the vector of initial conditions (0, (w0,j,k(p0))(j,k)∈I) lies
in Ωγ,M .

For a given positive integer m, consider real numbers x0 = 0 < x1 < x2 < · · · < xm ≤M

and, for (j, k) ∈ I, let p̂j,k : [0, xm) → R+ be functions bounded by a positive constant C
which are piecewise continuous, with discontinuities restricted to the set {x1, . . . , xm−1}. The
real numbers in this set are called the points of phase transition.

Assume that, for this choice of d and `, there exist functions F = (Fj,k)(j,k)∈I and E =
(Ej,k)(j,k)∈I associated with the algorithm, as defined in (3.2.2). Recall that F and E are
vector functions such that, for every (j, k) ∈ I, Fj,k = Fj,k(p,w) and Ej,k = Ej,k(p,w) are
polynomials whose variables are coordinates of p and whose coefficients are rational functions
in the coordinates of w. Moreover, Fj,k is homogeneous with degree 1 in the variables p,
while all the monomials of Ej,k have total degree at least 2.

We shall consider the functions fj,k : Ωγ,M → R given by

fj,k(x,y) = Fj,k(p̂(x),y).

These functions describe the expected rate of change of the variable indexed by (j, k) ∈ I
in an application of the algorithm. To emphasise the fact that each phase will be analysed
separately, we use the notation

f
(t)
j,k(x,y) = fj,k(x,y)

for every (j, k) ∈ I, t ∈ {1, . . . ,m} and x ∈ [xt−1, xt).

Assumption 4.2.1 The functions F = (Fj,k) and E = (Ej,k) satisfy the following properties.

(P1) The coefficients of the polynomials Ej,k, which are rational functions in the variables
w, do not have poles in the region Ωγ,M .

(P2) The functions f (t)
j,k are Lipschitz in the region

Ωγ,M ∩
(

[xt−1, xt)× R|I|
)
,

for each t ∈ {1, . . . ,m} and (j, k) ∈ I.

(P3) There exist functions ŵ(x) = (ŵj,k(x))(j,k)∈I defined for x in the interval [0, xm) such
that (x, ŵ(x)) ∈ Ωγ,M for every x and that

dŵj,k
dx

= f
(t)
j,k(x, ŵ) in the interval [xt−1, xt), t = 1, . . . ,m

ŵj,k(xt−1) = βt−1,j,k,

(4.2.4)

where βt−1,j,k is equal to the initial condition w0,j,k(p0), if t = 1, and is inductively
defined as

lim
x→x−t−1

ŵj,k(x) if t > 1.
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Intuitively, the first condition ensures that the influence of the error term Ej,k(εp̂(iε),wε
i−1)

in equation (4.2.1) is negligible in comparison with the influence of Fj,k(εp̂(iε),wε
i−1). The

second condition guarantees that the functions describing the behaviour of the algorithm are
well-behaved in each phase.

We now relate this framework with the expected behaviour of Algorithm 3.1.1, and, in
particular, we shall require the properties of the above assumption.

Our results will refer to an application of Algorithm 3.1.1, where d = 1 and the parameters
r and ` are fixed. Suppose that the initial probability p0 is given, and, for some ε > 0, the
number of steps is N = bxm/εc and the probabilities pi,j,k are given by εp̂j,k(iε). Also assume
that the input graph G is r-regular with girth larger than 4N + 4 so that the independence
results of Section 3.1 hold. Since the functions p̂j,k are bounded by a constant C, the additional
condition ε < 1/C ensures that the probabilities pi,j,k are always between 0 and 1.

Recall that, by definition of the function F associated with the algorithm, we have that

wεi,j,k = P
(
u ∈W j,k

i

)

satisfies the recurrence equation

wεi,j,k = wεi−1,j,k + Fj,k(εp̂(iε),wε
i−1) + Ej,k(εp̂(iε),wε

i−1). (4.2.5)

Because Fj,k is homogeneous with degree 1 in the variables p, we have

Fj,k(εp̂(iε),wε
i−1) = εFj,k(p̂(iε),wε

i−1) = εfj,k(iε,wε
i−1).

Moreover, recall that Ej,k(p,w) is a polynomial in the variables p whose monomials have
degree at least two and whose coefficients are rational functions in the variables w with no
poles if (x,w) ∈ Ωγ,M . So, there exists a constant K1 for which

|Ej,k(εp̂(iε),wε
i−1)| < K1ε

2

whenever (εp̂(iε),wε
i−1) ∈ Ωγ,M .

The next result shows that, as ε > 0 goes to zero, the solutions of the system of differential
equations (4.2.4) approximate the solution to the system of recurrence equations (4.2.5). To
ensure that the analysis of these systems occurs within the region Ωγ,M , we define the time
Nf as the last step for which (iε,wε

i) is inside Ωγ,M , namely

Nf = Nf (ε) = min{i− 1 : i ≤ N and (iε,wε
i) /∈ Ωγ,M}. (4.2.6)

If the latter set is empty, we use the convention that Nf = N . We observe that, because the
solutions of (4.2.5) are events in a well defined probability space, the only reason for (iε,wε

i)
to leave Ωγ,M is that wεi,0,0 becomes smaller than γ or that some of wεi,j,k becomes larger than
M . Note that the latter never occurs if M is larger than 1, which will be typically the case
in our applications.
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Theorem 4.2.2 For any ξ > 0, there exists ε′ > 0 such that, if 0 < ε < ε′,

∣∣wεi,j,k − ŵj,k(iε)
∣∣ < ξ, i = 0, 1, . . . , Nf = Nf (ε).

Proof The proof of this fact is basically the proof of convergence of Euler’s method for the
solution of differential equations. Some additional work will be required when analysing the
transition between systems of differential equations at the points x1, . . . , xm−1.

The following will be a useful tool.

Claim 4.2.3 Let a0, a1, . . . be a sequence of non-negative real numbers that satisfy an+1 ≤
(1 +A)an +B, n = 0, 1, . . ., where A and B are positive constants. Then

an ≤ (a0 +B/A)eAn.

Proof of the Claim We prove, by induction on n, that

an ≤ (a0 +B/A)(1 +A)n −B/A.

The base case n = 0 is trivial. Now, supposing that this inequality is true for some value of
n ≥ 0, we have that

an+1 ≤ (1+A)an+B ≤ (1+A)[(a0+B/A)(1+A)n−B/A]+B = (a0+B/A)(1+A)n+1−B/A,

concluding the induction. From this, because 1 + x ≤ ex for all values of x and because a0 is
non-negative and A,B are positive, we deduce that

an ≤ (a0 +B/A)(1 +A)n −B/A ≤ (a0 +B/A)eAn. �

Let ξ > 0. We have to show the existence of ε′ > 0 with the property that, for 0 < ε < ε′,

|wεi,j,k − ŵj,k(iε)| < ξ, i = 0, 1, . . . , Nf .

Before proceeding with the proof, we fix two constants. Since each function f
(t)
j,k , (j, k) ∈ I

and 1 ≤ t ≤ m, is Lipschitz in the respective region Ωγ,M ∩ ([xt−1, xt)× R|I|), we may
choose the constant K as an upper bound on the Lipschitz constants of all the functions
f

(t)
j,k , (j, k) ∈ I and 1 ≤ t ≤ m, where the Lipschitz constants are taken with respect to the

L1-norm. Moreover, given that each function f
(t)
j,k is Lipschitz in the bounded region under

consideration, it must be bounded in this region, so we may fix L as an upper bound on all
|f (t)
j,k(x,y)|, where (x,y) ∈ Ωγ,M ∩ ([xt−1, xt)× R|I|).

Let ε > 0 be fixed and define the error term

ei =
∑

(j,k)∈I
|ŵj,k(iε)− wεi,j,k|,
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for every i ∈ {0, . . . , Nf}. Since the initial conditions are the same in both cases, we have
e0 = 0.

We now find an upper bound for ei+1 in terms of ei. Two cases have to be considered.
The first case occurs when, for some t ∈ {1, 2, . . . ,m}, we have xt−1 ≤ iε ≤ (i+ 1)ε ≤ xt, that
is, the step from i to i+ 1 is fully contained in the interval [xt−1, xt]. As a consequence, the
system of differential equations is determined by f (t) only. We have

|ŵj,k((i+ 1)ε)− wεi+1,j,k| ≤ |ŵj,k(iε)− wεi,j,k|+ | − wεi+1,j,k + wεi,j,k + εf
(t)
j,k(iε,wε

i)|
+ |ŵj,k((i+ 1)ε)− ŵj,k(iε)− εf (t)

j,k(iε, ŵ(iε))|+ ε|f (t)
j,k(iε, ŵ(iε))− f (t)

j,k(iε,wε
i)|.

(4.2.7)

We shall bound the terms on the right-hand side. We first look at

| − wεi+1,j,k + wεi,j,k + εf
(t)
j,k(iε,wε

i)|.

By definition,

wεi+1,j,k − wεi,j,k − εf (t)
j,k(iε,wε

i) = Ej,k(εp̂(iε),wε
i).

Now, our choice of Nf ensures that (iε,wε
i) ∈ Ωγ,M , so

|Ej,k(εp̂(iε),wε
i)| < K1ε

2

for some given constant K1 > 0. Hence,
∣∣∣−wεi+1,j,k + wεi,j,k + εf

(t)
j,k(iε,wε

i)
∣∣∣ ≤ K1ε

2.

The second term to be bounded is
∣∣∣ŵj,k((i+ 1)ε)− ŵj,k(iε)− εf (t)

j,k(iε, ŵ(iε))
∣∣∣ .

Since ŵj,k(x) is differentiable for x in the interval [xt−1, xt) with derivative f (t)
j,k(x, ŵ(x)), we

have

ε min
x∈[iε,(i+1)ε)

f
(t)
j,k(x, ŵ(x)) ≤ ŵj,k((i+ 1)ε)− ŵj,k(iε) ≤ ε max

x∈[iε,(i+1)ε)
f

(t)
j,k(x, ŵ(x)). (4.2.8)

Observe that, because ŵ(xt) = lim
x→x−t

ŵ(x), this conclusion also holds in the case when (i +

1)ε = xt. But f (t)
j,k is Lipschitz with Lipschitz constant at most K over the region

Ωγ,M ∩
(

[xt−1, xt)× R|I|
)
,

with the Lipschitz constant being given with respect to the L1-norm. As a consequence, we
have

|f (t)
j,k(x, ŵ(x))− f (t)

j,k(iε, ŵ(iε))| < K(ε+ ei),
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and, in particular,

|ŵj,k((i+ 1)ε)− ŵj,k(iε)− εf (t)
j,k(iε, ŵ(iε))|

≤ ε max
x∈[iε,(i+1)ε)

|f (t)
j,k(x, ŵ(x))− f (t)

j,k(iε, ŵ(iε))| ≤ εK(ε+ ei).
(4.2.9)

Finally, we see that the term

ε
∣∣∣f (t)
j,k(iε, ŵ(iε))− f (t)

j,k(iε,wε
i)
∣∣∣

can be easily bounded because, by our choice of Nf , the Lipschitz condition may also be
applied. We obtain

ε
∣∣∣f (t)
j,k(iε, ŵ(iε))− f (t)

j,k(iε,wε
i)
∣∣∣ < εKei.

Equation (4.2.7) now becomes

∣∣ŵj,k((i+ 1)ε)− wεi+1,j,k

∣∣ ≤ ∣∣ŵj,k(iε)− wεi,j,k
∣∣+ ε2K1 + εK(ε+ ei) + εKei

≤ ∣∣ŵj,k(iε)− wεi,j,k
∣∣+ 2Kεei + (K +K1)ε2.

Summing this over all pairs (j, k) ∈ I, we obtain

ei+1 =
∑

(j,k)∈I

∣∣ŵj,k(iε)− wεi,j,k
∣∣ ≤ ei + 2K|I|εei + (K +K1)|I|ε2. (4.2.10)

Note that, by definition, |I| = `(2r − `+ 3)/2.
By applying Claim 4.2.3 to ei with

A = 2K|I|ε, B = (K +K1)|I|ε2 and n = bx1/εc,

we conclude that the error accumulated up to time bx1/εc is at most

ε(K +K1)
2K

e2K|I|x1 . (4.2.11)

We now look at the bound for ei+1 in terms of ei in the transition between two systems
of differential equations. In this case, iε ≤ xt but (i+ 1)ε > xt. We write

|ŵj,k((i+ 1)ε)−wεi+1,j,k| ≤ |ŵj,k(iε)− wεi,j,k|+ | − wεi+1,j,k + wεi,j,k + εf
(t)
j,k(iε,wε

i)|
+ |ŵj,k(xt)− ŵj,k(iε)− (xt − iε)f (t)

j,k(iε, ŵ(iε))|
+ |ŵj,k((i+ 1)ε)− ŵj,k(xt)|+ |[(i+ 1)ε− xt]f (t)

j,k(iε, ŵ(iε))|
+ ε|f (t)

j,k(iε,wε
i)− f (t)

j,k(iε, ŵ(iε))|.

(4.2.12)

We use the arguments of the first case with respect to the region

Ωγ,M ∩ ([iε, xt)× R|I|),
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which, as argued before, can be extended to the point x = xt because ŵj,k(xt) = lim
x→x−t

ŵj,k(x).

This establishes that
|wεi+1,j,k − wεi,j,k − εf (t)

j,k(iε,wi)| ≤ K1ε
2

and that
|ŵj,k(xt)− ŵj,k(iε)− (xt − iε)f (t)

j,k(iε, ŵ(iε))| < εK(ε+ ei).

In addition, we have

ε|f (t)
j,k(iε,wε

i)− f (t)
j,k(iε, ŵ(iε))| < εK(ε+ ei).

To bound the other terms in the right-hand side of equation (4.2.12), we use the upper
bound L on the value of |f (t)

j,k(x,w)| in the region Ωγ,M ∩ ([xt−1, xt)× R|I|). Recall that this

bound is a consequence of f (t)
j,k being Lipschitz in this bounded region.

This leads to, ∣∣∣[(i+ 1)ε− xt]f (t)
j,k(iε, ŵ(iε))

∣∣∣ ≤ εL.
Finally, if we use equation (4.2.8) for phase t+ 1 instead of phase t, we obtain

|ŵj,k((i+ 1)ε)− ŵj,k(xt)| ≤ ε max
x∈[xt,(i+1)ε)

∣∣∣f (t+1)
j,k (x, ŵ(x))

∣∣∣

≤ εL.

Thus, equation (4.2.12) becomes

|ŵj,k((i+ 1)ε)− wεi+1,j,k| ≤ |ŵj,k(iε)− wεi,j,k|+ ε2K1 + 2εK(ε+ ei) + 2εL,

so
ei+1 =

∑

(j,k)∈I
|ŵj,k(iε)− wεi,j,k| ≤ ei + 2K|I|εei + (K1ε+ 2Kε+ 2L)|I|ε. (4.2.13)

Adding this to the error obtained in (4.2.11), the error accumulated between time 0 and
bx1/εc+ 1 is at most

ε(K +K1)
2K

e2K|I|x1 (1 + 2K|I|ε) + |I|(K1ε+ 2Kε+ 2L)ε.

This can now be used as the initial error for the second system of differential equations,
and, inductively, we can bound the error over the entire process, since the number of tran-
sitions is finite. The arguments for bounding the error in the remaining intervals [xi, xi+1],
for 1 ≤ i ≤ m− 1 are exactly the same, and will therefore be omitted. As a consequence, for
some ε′ > 0 sufficiently small, we have that

|wεi,j,k − ŵj,k(iε)| < ξ, i = 0, 1, . . . , Nf

whenever 0 < ε < ε′, establishing our result.
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The above result is now used to obtain bounds on the expected size of the output set
of the algorithm. Recall that we are considering an application of Algorithm 3.1.1, where
d = 1 and the parameters r and ` are fixed, and for which the initial probability p0 is given.
For some ε > 0, the number of steps is N = bxm/εc and the probabilities pi,j,k are equal to
εp̂j,k(iε). We are also assuming that the input graph G is r-regular with girth larger than
4N + 4 and that ε < 1/C, so as to ensure that the probabilities pi,j,k are always between 0
and 1.

In the following, for each 0 < ε < 1/C, let Pi(ε) and P̄ (ε) be the random variables
equivalent to the sets Pi and P̄ in the instance of the algorithm where the probabilities pi,j,k
are equal to εp̂j,k(iε) and the number of steps is Nf = Nf (ε).

Theorem 4.2.4 Given δ > 0, there exists ε > 0 such that
∣∣∣∣∣∣
E|P̄ (ε)| − n


p0(1− p0)r +

∫ εNf

0

∑

(j,k)∈I
p̂j,k(x)ŵj,k(x) dx



∣∣∣∣∣∣
≤ δn.

Proof We have to bound the expected size of the set P̄ (ε) returned by Algorithm 3.1.1. By
the description of the algorithm, the set P̄ (ε) is clearly contained in the set PNf (ε)\Q0, where
Q0 is the set of all vertices that are in P0(ε) and which are adjacent to a vertex also in P0(ε).
Thus,

E|P̄ (ε)| ≤ E|P0(ε)| −E|Q0|+
Nf∑

i=1

E|Pi(ε)|

= p0n− p0(1− (1− p0)r)n+
Nf∑

i=1

E|Pi(ε)|

= p0(1− p0)rn+
Nf∑

i=1

E|Pi(ε)|.

(4.2.14)

On the other hand, a vertex that is added to Pi at step i but is not in P̄ must be adjacent to
another vertex that was added to Ri. Now, given a vertex in the graph, the probability that
none of the vertices adjacent it are in Ri is at least (1−max{pi,j,k : j, k})r, since, to be in
Ri, a vertex needs to have label i with some probability pi,j,k corresponding to the values j
and k given by the colouring of its neighbours at time i− 1. This also relies on the fact that
the labels are assigned independently. As a consequence,

E|P̄ (ε)| ≥ p0(1− p0)rn+
Nf∑

i=1

E|Pi(ε)| (1−max{pi,j,k : j, k})r . (4.2.15)

Let δ > 0 and let h(x) be given by

h(x) =
∑

(j,k)∈I
p̂j,k(x)ŵj,k(x).
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By definition, h(x) is a bounded function with a finite number of discontinuities in the interval
[0, εNf ) ⊆ [0, xm), so it is integrable over this interval. Let ε1 > 0 such that, for 0 < ε < ε1,

∣∣∣∣
∫ εNf

0
h(x) dx−

Nf∑

i=0

εh(iε)
∣∣∣∣ < δ/3. (4.2.16)

By Theorem 4.2.2, there exists ε2 > 0 such that, for 0 < ε < ε2 and wεi,j,k = P
(
u ∈W j,k

i

)
,

∣∣wεi,j,k − ŵj,k(iε)
∣∣ < δ

3|I|Cxm , i = 0, 1, . . . , Nf .

As a consequence,

∣∣∣∣∣∣

Nf∑

i=1

E|Pi(ε)| −
Nf∑

i=0

εh(iε)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

Nf∑

i=0

∑

(j,k)∈I
εpi,j,kw

ε
i,j,k −

Nf∑

i=0

εh(iε)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

Nf∑

i=0

∑

(j,k)∈I
εp̂j,k(iε)wεi,j,k −

Nf∑

i=0

εh(iε)

∣∣∣∣∣∣

≤ Cε
Nf∑

i=0

∑

(j,k)∈I
|wεi,j,k − ŵj,k(iε)|

≤ CεNf |I|max
i,j,k
|wεi,j,k − ŵj,k(iε)|

≤ δ/3.

(4.2.17)

We now choose 0 < ε ≤ min{ε1, ε2} with the additional property that (1−Cε)r > 1− δ/3.
On the one hand, equation (4.2.14), combined with equations (4.2.16) and (4.2.17), implies
that

E|P̄ (ε)| ≤ p0(1− p0)rn+
Nf∑

i=1

E|Pi(ε)|

≤ np0(1− p0)r + n




Nf∑

i=1

εh(iε) + δ/3




≤ np0(1− p0)r + n

(∫ εNf

0
h(x) dx+ 2δ/3

)

< n

(
p0(1− p0)r +

∫ εNf

0
h(x) dx+ δ

)
.

(4.2.18)

On the other hand, equation (4.2.15), combined with equations (4.2.16) and (4.2.17), leads
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to

E|P̄ (ε)| ≥ p0(1− p0)rn+
Nf∑

i=1

E|Pi(ε)| (1−max{pi,j,k : j, k})r

≥ np0(1− p0)r + n(1− Cε)r



Nf∑

i=1

εh(iε)− δ/3



≥ np0(1− p0)r + n (1− Cε)r
(∫ εNf

0
h(x) dx− 2δ/3

)

≥ n
(
p0(1− p0)r +

∫ εNf

0
h(x) dx− δ

)
,

(4.2.19)

concluding the proof of the theorem.
In particular, if we define functions p̂j,k and real numbers 0 < x1 < · · · < xm satisfying

the properties in Assumption 4.2.1, then, as ε > 0 goes to zero, the solution to the system of
differential equations (4.2.4) approximates the solution to the system of recurrence equations
(4.2.5), which describes the performance of Algorithm 3.1.1 applied for N = bxm/εc with
probabilities pi,j,k = εp̂j,k(iε). This framework will be used later to analyse the performance
of locally greedy algorithms with particular choices of probabilities.

In the next section, we shall illustrate how this idea can be used to obtain the bounds
on the size of a maximum independent set in a graph in a simple situation, for which the
functions p̂j,k are constants.

4.3 A simple algorithm for independent sets

As mentioned in the previous section, we shall use the framework introduced there to deter-
mine the performance of a greedy algorithm for independent sets, which was first analysed
in [39]. Here, Algorithm 3.1.1 chooses white vertices independently with the same probabil-
ity. Note the similarity between this algorithm and Algorithm 2.2.1, the simple algorithm
introduced in Chapter 2 in the case of induced forests.

Let r ≥ 3. If we set d = 1 and ` = 1, the output P̄ produced by Algorithm 3.1.1 is an
independent set. Recall that this is because two adjacent elements can be added to P only if
they are added in the same step, in which case they are not added to P̄ .

Let p0 = 0 and define, for every k ∈ {0, . . . , r}, functions p̂k : R→ [0, 1] by

p̂k(x) = 1, for every x.

This obviously satisfies p̂k(x) < C whenever C > 1. Since these functions have no disconti-
nuities, the algorithm will have only one phase.

Consider the functions F = (Fk)0≤k≤r and E = (Ek)0≤k≤r associated with Algorithm
3.1.1 with parameters d = 1 and ` = 1, which are given in equation (3.3.4). In order to verify
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that Assumption 4.2.1 holds in this case, we would have to define x1, γ and M in advance.
However, we shall first show that properties (P1) and (P2) hold for any choice of positive
values γ, M and x1, while (P3) holds for any x1 > 0 as long as M is sufficiently large and γ

is sufficiently small. Using this, we will fix convenient constants γ, M and x1.
For Property (P1), we use the fact that the coefficients of Ek(p,w), seen as polynomials

in the indeterminates p, are rational functions in the indeterminates w whose denominators
are powers of

s(w) =
r−1∑

t=0

(r − t)wt. (4.3.1)

So, if w is such that (x,w) ∈ Ωγ,M , for some x ≥ 0 and γ,M > 0, then s(w) ≥ γr > 0. In
particular, these rational functions have no poles if (x,w) ∈ Ωγ,M , as required.

Now, by equation (3.3.4), we conclude fk(x,w) = Fk(p̂(x),y) is equal to

fk(x,w) = Fk(p̂(x),w) = −(r − k + 1)wk

+
(r − k + 1)wk−1δk≥1 − (r − k)wk

s(w)

r−2∑

k′′=0

(r − k′′)(r − k′′ − 1)wk′′ ,

with s(w) as in (4.3.1). Since fk is a rational function with no poles in the compact set Ωγ,M ,
we conclude that fk is Lipschitz in Ωγ,M for every γ,M > 0, and, in particular, is Lipschitz
in

Ωγ,M ∩
(

[0, x1)× R|I|
)
.

This verifies Property (P2).
As for Property (P3), consider the system of differential equations

dyk
dx

= fk(x,y(x)), k ∈ {0, . . . , r},
y0(0) = 1, yk(0) = 0 if k ≥ 1.

Note that the values of the initial conditions come from equation (3.2.1) with d = ` = 1 and
p0 = 0. It has non-negative solutions

ŵk(x) =
(
r

k

)
w(x)q(x)r−k(1− q(x))k, k = 0, . . . , r, (4.3.2)

defined over the entire positive real line, where

w(x) =
e−x

((r − 1)− (r − 2)e−x)r(r−2)

and
q(x) =

e−x

(r − 1)− (r − 2)e−x
.

Clearly, if M ≥ x1 and γ > 0 is sufficiently small, (x, ŵ(x)) ∈ Ωγ,M for every x ∈ [0, x1).
This verifies Property (P3).
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As promised, we shall now fix the constants x1, M and γ.
Let δ′ > 0. Fix M > 0 so that
∣∣∣∣∣
∫ ∞

0

e−x

((r − 1)− (r − 2)e−x)r(r−2)
dx−

∫ M

0

e−x

((r − 1)− (r − 2)e−x)r(r−2)
dx

∣∣∣∣∣ < δ′/2,

let x1 = M and let γ such that ŵ0(x) ≥ γ > 0 for 0 ≤ x ≤ M . Note that ŵ0(x) is strictly
positive, since the only term that could be equal to zero in the product in the right-hand side
of equation (4.3.2) is 1− q(x), which does not appear when k = 0.

Consider Algorithm 3.1.1 with parameters r and d = ` = 1, and apply Theorem 4.2.4 with
m = 1, x1 = xm = M and δ = δ′/2. As a consequence, there exists ε > 0 such that, if the
algorithm is applied for Nf = N = bM/εc steps and with probabilities p0 = 0 and pi,k = ε to
an input graph with girth at least 4N + 4, then, by our choice of M , the expected size of the
independent set returned satisfies

E|P̄ (ε)| ≥ n
(∫ M

0

r∑

k=0

ŵk(x) dx− δ′/2
)

= n

(∫ M

0
e−x/

(
(r − 1)− (r − 2)e−x

)r(r−2)
dx− δ′/2

)

≥ n
(∫ ∞

0
e−x/

(
(r − 1)− (r − 2)e−x

)r(r−2)
dx− δ′

)

≥ n
(

1
2

(1− (r − 1)−2/(r−2))− δ′
)
.

By the first moment principle, any r-regular graph G on n vertices with girth at least g = g(ε)
has an independent set of size at least

n

(
1
2

(1− (r − 1)−2/(r−2))− δ′
)
,

which is precisely the bound given in [39]. In that paper, however, the analysis is simpler,
since the variables considered are only

∑r
k=0wi,k and

∑r
k=0 qi,k (denoted there by ri and wi,

respectively). But this is to be expected, since the power of Algorithm 3.1.1, which lies in
the possibility of defining the probability of a vertex being chosen according to its number of
purple and yellow neighbours, is not used in this application.

4.4 Independent sets in r-regular graphs revisited

After seeing an application of the discussion in Section 4.2 to a simple example, our objective
is now to define the functions p̂j,k in a way that improves the performance of a locally greedy
algorithm. In Section 4.1, we have described a prioritised algorithm for independent sets
whose performance was previously analysed for a random regular graph. In light of this,
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we now revisit this example in order to discuss some of the main ideas used by Wormald
in [57] and [58] to analyse prioritised algorithms in the context of random regular graphs.
We emphasise that the analysis presented here is not applicable for algorithms in which the
input graph is fixed in advance, which happens to be the case for locally greedy algorithms.
Moreover, the presentation of the results in this section is not rigorous, and the proofs of our
later theorems do not depend on them. Nonetheless, this section will shed light on some of
the definitions in later proofs.

In Section 4.1, we introduced an instance of Algorithm 3.1.1 that produces independent
sets in r-regular graphs. As a reminder, this algorithm is repeated below.

Algorithm 4.1.1
Input: An r-regular graph G, a positive integer N , an initial probability p0 and vectors of
probabilities pi = (pi,k : 0 ≤ k ≤ r), i = 1, . . . , N .

1. In the first step, add each vertex in G to a set S0 with probability p0, at random,
independently of all others. Let G0 = G \ (S0 ∪N0), where N0 is the set of vertices in
G adjacent with vertices in S0.

2. At each step i, vertices of Gi−1 are randomly and independently added to a set Si, where
a vertex with degree r−k is added with probability pi,k. Let Gi = Gi−1 \ (Si∪Ni), where
Ni is the set of vertices in Gi−1 adjacent with vertices in Si. Repeat this iteratively for
N steps.

3. Create a set S̄ ⊆ S =
⋃N
i=0 Si by deleting any pair of adjacent vertices in S.

Output: The set S̄.

When this algorithm was first presented in Section 4.1, we observed that, since it adds a
vertex to the independent set at step i with a probability depending on the degree of this
vertex in Gi−1, one would expect its performance to be best if the vertices added to the
independent set had minimum degree.

This motivated the discussion of a simplified algorithm, which we called degree-greedy,
in which vertices are added to the independent set one at a time, and the vertex added at
step i is chosen randomly amongst the vertices of minimum degree of Gi−1. In Section 4.1,
we suggested that an application of this algorithm to a large typical graph would go through
several phases, where, in Phase k, the basic operation consists of adding a vertex of degree
r − k to the independent set. Recall that vertices of smaller degree may be created while
the algorithm is in this phase, which, by the definition of the algorithm, are all added to the
independent set before another basic operation is performed. We now discuss some of the
main ideas in the analysis an application of this algorithm to a random regular graph, which
is rigorously presented in [57].
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Let Zk(i) be the random variable denoting the number of vertices of degree r− k in Gi in
an application of the degree-greedy algorithm. Our choice of notation reflects the fact that,
when the algorithm is in Phase k, the basic operation consists of processing a vertex of degree
r − k.

Suppose that, after running this algorithm for i − 1 steps, we obtain a graph Gi−1 with
minimum degree δ(Gi−1) = l. Let v be the vertex of degree l in Gi−1 selected for the
independent set in the next step, and let e1, . . . , el be the edges incident with v in Gi−1.

We shall make two independence assumptions in our next discussion. In some sense, these
assumptions hold for random regular graphs, but we do not justify this here. In fact, the
analysis of an application of this algorithm to a random regular graph involves generating the
graph while the algorithm is being applied, so all the events are conditional on the part of
the graph that has already been generated. Moreover, the events are not quite independent,
and part of the analysis involves arguing that the error due to treating them as if they were
independent is small. For a rigorous discussion, the reader is referred to [57].

(A1) Let Es denote the event that the other end of edge es has degree ks, where s ∈ {1, . . . , l}
and ks ∈ {1, . . . , r}. Then the events Es are mutually independent.

(A2) The probability of the vertex adjacent to v through es having degree ks is equal to the
proportion of the edges in Gi−1 with an endpoint in a vertex of degree ks.

Note that an analog of each of these types of independence has been verified in the case of
Algorithm 3.1.1. The first is an analog of conditional independence of branches, given in
Corollary 3.1.12, while the second is an analog of Corollary 3.1.13.

Using this independence, when v is added to the independent set, the probability that the
other endpoint of a given edge incident with v has degree r − j is

(r − j)Zj(i− 1)
S(i− 1)

,

where

S(i− 1) =
r−1∑

s=0

(r − s)Zs(i− 1).

As a consequence, the expected number of vertices of degree r − j among the neighbours of
v is

(r − l)(r − j)Zj(i− 1)
S(i− 1)

. (4.4.1)

All these vertices are deleted from Gi−1 when Gi is created, so they contribute to a decrease
in Zj .

Now, by the same argument, each time such a vertex w of degree r − j is found to be
adjacent to v, the expected number of vertices of degree r− k (other than v) adjacent to w is

(r − j − 1)(r − k)Zk(i− 1)
S(i− 1)

,
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hence the total number of vertices of degree 4− k affected due to being at distance two from
v in Gi−1 is

r−2∑

j=0

(r − l)(r − j)Zj(i− 1)
S(i− 1)

× (r − j − 1)(r − k)Zk(i− 1)
S(i− 1)

.

If none of the vertices affected are adjacent to two neighbours of v, their degree changes from
r − k in Gi−1 to r − k − 1 in Gi. However, it could happen that one of the vertices affected,
call it w, is adjacent to two neighbours of v, which would be the case if v and w were in a
common cycle of length 4. Nevertheless, this can be ignored in this analysis. Note that this
contributes to both a decrease in Zk and an increase in Zk+1. Therefore, when a vertex of
degree l is chosen by the greedy algorithm, the expected change in the value of Zk conditional
on Gi−1 is given by

φ
(l)
k (Z0(i− 1), . . . , Zr(i− 1)) = −δk,l − (r − l)(r − k)Zk(i− 1)

S(i− 1)

+
r−2∑

j=0

(r − j − 1)(r − j)[(r − k + 1)δk≥1Zk−1(i− 1)− (r − k)Zk(i− 1)]Zj(i− 1)
S(i− 1)2

.

(4.4.2)

In other words,

E (Zk(i)− Zk(i− 1)| Gi−1 ∧ (δ(Gi−1) = l)) = φ
(l)
k (Z0(i− 1), . . . , Zr(i− 1)). (4.4.3)

Let i ∈ {1, . . . , N} and let Gi−1 be the graph produced by the algorithm after step i− 1.
Recall that, when the degree-greedy algorithm is in Phase k, the basic operation consists of
processing vertices of degree r− k. However, vertices with many different degrees, all smaller
than or equal to r − k, may be processed in Phase k, since vertices of smaller degrees can be
created as a vertex is deleted from the graph. As a consequence, Wormald chose to determine
the expected number of steps between two points in which the algorithm processes a vertex
with the basic degree of the phase, and he used this to find the expected change of the value
of each random variable Zk between any two of these steps.

Once the expected changes in the variables are determined, the analysis of the algorithm
for a random regular graph is concluded with the proof that, in an application of the algorithm,
all the variables a.a.s. are sharply concentrated around their expected values, which is achieved
through a general-purpose theorem (see [57], Theorem 5.1). This method has also been used
to analyse other algorithms in random regular graphs and is now known as the Differential
Equation Method.

It is important to mention that the analysis of the expected changes in these variables is
rather involved due to the priority constraints. A different approach was given by the same
author in a later work [58]. In this work, instead of adhering to the priorities, he considered
an algorithm for which a probability vector p = p(n, x) = (p1, . . . , pr−1) is prescribed for each
Gi. The probability vector depends only on the number n of vertices in the original graph
and on a parameter x, which is related with the current step i of the algorithm.
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This new algorithm, at step i, first decides the degree of the vertex to be added to the
independent set, with the degree being r−j with some probability pi,j given by p. The vertex
is then randomly chosen among the vertices with the selected degree. The new algorithm is
deprioritised, since the vertices are no longer prioritised according to degree, they just have
different probabilities of being chosen. Despite some inherent complications, such as the need
to ensure that Gi−1 contains a vertex of degree j if the algorithm calls for one, the analysis
becomes easier. The main reason for this is that the expected change in Zk can now be
determined one step at a time, being given by

E(Zk(i)− Zk(i− 1)| Gi−1) =
r−1∑

l=1

pi,lφ
(l)
k (Z0(i− 1), . . . , Zr(i− 1)), (4.4.4)

with φ
(l)
j (Z0(i− 1), . . . , Zr(i− 1)) given in (4.4.2).

For this deprioritised version to approximate the original prioritised algorithm, Wormald
defines the probabilities in terms of the system of differential equations obtained in the pri-
oritised case. However, his proof is technically independent of the analysis of the prioritised
algorithm. As with the prioritised case, the fact that, in an application of the algorithm,
all the variables a.a.s. are sharply concentrated around their expected values comes from a
general-purpose theorem, namely Theorem 2 in [58].

We now suggest an alternative way to define probabilities for a deprioritised version of
the algorithm. Here, we derive them directly from some simple properties that a deprioritised
degree-greedy algorithm should satisfy. This approach has been previously used in the context
of the bisection width of random d-regular graphs by Dı́az, Serna and Wormald [20], and in
the context of colouring of random regular graphs by Shi and Wormald [51].

Firstly, it is clear that
r−1∑

l=1

pi,l = 1, for every i,

since, at every step, the algorithm has to choose the degree of the vertex to process. Also, if
the algorithm is in phase t, all the vertices processed should have degree at most r− t, hence

pi,l = 0 if the algorithm is in phase t and l < t.

Finally, during Phase t, the vertices of degree smaller than r − t that are created should not
be accumulated. In quantitative terms, this means that, if k > t, we must have

E(Zk(i)− Zk(i− 1)| Gi−1) =
r−1∑

l=1

pi,lφ
(l)
k (Z0(i− 1), . . . , Zr(i− 1)) = 0.

So, if the algorithm is in phase t, the probabilities (pi,t, pi,t+1, . . . , pi,r−1) should satisfy the
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system of equations
r−1∑

l=t

pi,l = 1

r−1∑

l=t

pi,lφ
(l)
k = 0, if t < k ≤ r − 1,

(4.4.5)

This is a linear system of r − t equations on r − t variables, which has a unique solution
whenever the matrix 



1 1 . . . 1

φ
(t+1)
t+1 φ

(t+2)
t+1 · · · φ

(r−1)
t+1

φ
(t+1)
t+2 φ

(t+2)
t+2 · · · φ

(r−1)
t+2

· · · · · ·
· · · · · ·

φ
(t+1)
r−1 φ

(t+2)
r−1 · · · φ

(r−1)
r−1




(4.4.6)

has a nonzero determinant. Note that the solutions to this system are functions, since they
are given in terms of the functions φ(t)

k .

Also, we remark that the probabilities defined here differ slightly from the probabilities
defined in [58]. We illustrate this difference in terms of the greedy algorithm described above.
Suppose that the algorithm is in Phase k and that r−k > 3. We have seen that at each step,
the algorithm could process a vertex with degree r− k, a vertex with degree r− k− 1 or even
a vertex with smaller degree. It turns out that processing a vertex of the latter type is a very
rare event, and the analysis in [58] was done as if none of these vertices were processed. In
other words, the probabilities in [58] were given by the solution to the linear system derived
from (4.4.5) by assuming that pi,k = 0 for k ≥ t+ 2 and by removing the equations

r−1∑

l=t

pi,lφ
(l)
k = 0

for k ≥ t+ 2.

The fact that we are using a different assignment of probabilities is somewhat more conve-
nient for our later analysis. It also has the advantage of not requiring any previous knowledge
about the process, and therefore can be easily generalised to other applications. However,
both choices of probabilities lead to the same results, as will be discussed later.
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4.5 A class of systems of differential equations

We shall later use the intuitive ideas of the previous section to devise a locally greedy algorithm
whose performance approximates that of a prioritised algorithm in a random regular graph.
The analysis of such an algorithm will depend on the solution of a special class of systems of
differential equations, which will be presented in this section.

Note that, as in the case of the algorithm for independent sets in Section 4.3, we shall
carry out this analysis using the framework of Section 4.2, and one of the ingredients of
this framework, specified by Property (P3) in Assumption 4.2.1, is the existence of solutions
ŵ(x) = (ŵj,k(x))(j,k)∈I to a system of differential equations

dyj,k
dx

= f
(t)
j,k(x,y), (j, k) ∈ I, in the interval [xt−1, xt), t = 1, . . . ,m

yj,k(xt−1) = βt−1,j,k, (j, k) ∈ I,
(4.5.1)

where the initial conditions βt−1,j,k are equal to the initial conditions w0,j,k(p0), if t = 1, and
are inductively defined as

lim
x→x−t−1

ŵj,k(x)

if t > 1. The constants 0 = x0 < x1 < · · · < xm are the points of phase transition, while the
functions f (t)

j,k represent the rate of change in the variable associated with (j, k) ∈ I when the
basic operation realised by the algorithm has type t.

We shall now look at a particular class of systems of differential equations of this type. Let
I be a finite set of indices containing an element i0 and let J = {j1, . . . , jm} be a subset of I
not containing i0, where m ≥ 1. As the name suggests, the set I represents the set indexing
the variables in the system of differential equations, while, in terms of the prioritised algorithm
discussed in Section 4.4, the set J indexes the variables associated with each operation in the
algorithm. For simplicity, the operation indexed by jt will be called the operation of type t.

We also define a region

Ωγ,µ,M = {(x,y) ∈ R1+|I| : −µ ≤ x ≤M, yi0 ≥ γ and − µ ≤ yi < M, for every i ∈ I},

where γ, µ and M are positive constants. The difference between this region and the region
Ωγ,M , defined in (4.2.3) with i0 replacing the element (0, 0), is that some of the variables are
now allowed to be negative. The reason for this choice is purely technical: it will be easier
to analyse the system of differential conditions inside a region if the initial conditions lie in
its interior. In the cases we shall analyse, the initial conditions always lie in the interior of
Ωγ,µ,M , but may lie on the boundary of Ωγ,M . Nevertheless, our analysis will also show that
the solutions remain within Ωγ,M .

We consider, for each i ∈ I and each t ∈ {1, . . . ,m}, a function φ
(t)
i : R1+|I| → R. In

terms of the discussion in Section 4.4, the functions φ(t)
i play the role of the functions in
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(4.4.3), that is, they represent the rate of change of the variable indexed by i if the algorithm
realises an operation of type t. We assume that these functions have the property that, for
every γ > 0 and M > 1, there is µ > 0 with the property that φ(t)

i is Lipschitz in Ωγ,µ,M .
For t ∈ {1, 2, . . . ,m}, let (α(t)

l (x,y))ml=1 be the vector denoting the proportion of operations
of each type undertaken as the algorithm is in Phase t. Also based on the discussion in Section
4.4, we let α(t)

k = 0 if k < t, while α(t)(x,y) = (α(t)
l (x,y))ml=t is a solution to the linear system

given in (4.4.5), which is precisely



1 1 · · · 1
φ

(t)
jt+1

(x,y) φ
(t+1)
jt+1

(x,y) · · · φ
(m)
jt+1

(x,y)
· · · · · ·
· · · · · ·

φ
(t)
jm

(x,y) φ
(t+1)
jm

(x,y) · · · φ
(m)
jm

(x,y)







α
(t)
t

α
(t)
t+1

·
·
α

(t)
m




=




1
0
·
·
0



. (4.5.2)

So, if M (t)(x,y) is the matrix in the above equation and M
(t)
k is its submatrix obtained by

removing the first row and the kth column, Cramer’s Rule establishes that

α
(t)
k (x,y) =

(−1)k−t detM (t)
k−t+1(x,y)

detM (t)(x,y)
, k = t, . . . ,m, (4.5.3)

provided that
detM (t)(x,y) 6= 0. (4.5.4)

Note that, in the case t = m, the vector α(t) has a unique coordinate α(m)
m = 1.

For the present, we proceed as if condition (4.5.4) held for all points (x,y(x)) of interest,
which will be ensured subsequently. Then the vector α(1) is well defined and we may consider
the system of differential equations

dyi
dx

=
m∑

l=1

α
(1)
l (x,y(x))φ(l)

i (x,y(x)), i ∈ I

yi0(0) = 1, yi(0) = 0 if i 6= i0.

(4.5.5)

Observe that the initial conditions given here correspond to the initial conditions in equation
(4.5.1) in the case when p0 = 0. Moreover, since the function φ

(t)
i represents the rate of

change of the variable indexed by i as the algorithm realises operation t and the vector α(1)

defines the proportion of vertices of each type processed by the algorithm during Phase 1, we
call (4.5.5) the system associated with Phase 1.

We would like to ensure that this system of differential equations has a solutions in an
interval, which we call the interval of definition of Phase 1. In particular, following our
suggestion that the components of α(1) represent proportions, we need 0 ≤ α(1)

k (x,y(x)) ≤ 1
for every k, and for every x in the interval of definition of Phase 1. Also, because we wish
to use the solution to this system in the context of Section 4.2, we look for solutions as in
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Property (P3) of Assumption 4.2.1. In particular, we also require that, for some positive
constants γ and M , the point (x,y(x)) lies in the region Ωγ,M for any x in this interval, with
Ωγ,M defined as in (4.2.3).

As a consequence, we impose conditions on the functions φ(t)
i to ensure the existence of

a solution to (4.5.5) satisfying these additional conditions in an interval of definition [0, x1],
where the point x1 > 0, still to be defined, marks the end of Phase 1. Before stating these
conditions, we fix constants γ > 0, M > 1 and µ > 0 with the property that the functions
φ

(t)
i (x,y) are Lipschitz in the region Ωγ,µ,M for every i ∈ I and every t ∈ {1, . . . ,m}. These

constants will be used in the definition of our conditions.
Our first assumption is that

| detM (1)(0,y(0))| > γ. (4.5.6)

This ensures that the condition given in (4.5.4) is fulfilled at x = 0, so that, because
detM (1)(x,y) is a continuous function, the vector α1(x,y(x)) is defined in a neighbourhood of
x = 0 for which y(x) is defined. Now, to show that y(x) is indeed defined in a neighbourhood
of x = 0, we use Lemma 2.5.1. This result is applied to the system of differential equations
(4.5.5), with Ω = Ωγ,µ,M , to find a solution y(x) that is uniquely extended arbitrarily close
to the boundary of Ωγ,µ,M . Note that, because the initial conditions are in the interior of
Ωγ,µ,M , the solution can be extended to x in an interval [0, x′] for some x′ > 0. To ensure
that x′ may be chosen in a way that neither α(1)

k nor yk leave the interval [0, 1], we assume
that this system also satisfies the properties below. Assumption (a) in this list has already
been made in (4.5.6) and is repeated here for future reference.

Assumption 4.5.1 (Assumptions for Phase 1) Consider the sets

A1 =

{
k ∈ {1, . . . ,m} :

dα
(1)
k

dx
≡ 0

}
and Y1 =

{
i ∈ I :

dyi
dx
≡ 0
}
.

The system of differential equations (4.5.5) satisfies

(a) | detM (1)(0,y(0))| > γ.

(b) α
(1)
1 (0) > γ, and for each k ∈ {2, . . . ,m} \A1, at least one of the following holds:

(i) α
(1)
k (0) > γ,

(ii) 0 ≤ α(1)
k (0), the set A1,k =

{
s ≥ 1 :

dsα
(1)
k

dxs
(0) 6= 0

}
is not empty and is such that

dνα
(1)
k

dxν
(0) > γ, where ν = minA1,k;

(c) for each i ∈ I \ Y1, at least one of the following holds



86 CHAPTER 4. THE ANALYSIS OF LOCALLY GREEDY ALGORITHMS

(i) yi(0) > γ,

(ii) 0 ≤ yi(0), the set Y1,i =
{
s ≥ 1 :

dsyi
dxs

(0) 6= 0
}

is not empty and is such that

dνyi
dxν

(0) > γ, where ν = minY1,i;

(d)
dyi0
dx

(0) < −γ.

In the above,
dνα

(1)
k

dxν
=
dνα

(1)
k (x,y(x))
dxν

,

that is, y is also seen as a function of x in this derivative. Also note that the conditions
involving α(1) and the derivatives of the variables yi are in fact conditions on the functions
φ

(k)
i because of the equations (4.5.3) and (4.5.5).

Before proceeding with our discussion, we justify the above conditions. Recall that our
objective is to find a solution to (4.5.5) in an interval [0, x′], x′ > 0, such that neither α(1)

k

nor yk leave the interval [0, 1].
Indeed, condition (b) guarantees that, if α(1)

k is not bounded away from zero at x = 0
(i.e., if (i) does not hold), then it either becomes positive in a neighbourhood of the point
x = 0 (i.e., (ii) holds) or it is equal to 0 at every x for which a solution to (4.5.5) is defined
(i.e., k ∈ A1). Note that, by ensuring that, for every k, α(1)

k (x,y(x)) ≥ 0 in a neighbourhood
of x = 0, the requirement α(1)

k (x,y(x)) ≤ 1 is automatically satisfied, since, by the definition
of the vector α(1), its coordinates add up to 1. Analogously, condition (c) ensures that the
solutions yi are nonnegative in a neighbourhood of x = 0. Finally, condition (d) guarantees
that yi0 is not greater than 1 in a neighbourhood of x = 0.

We now extend our solution to (4.5.5) to all x ∈ [0, x1], where x1 is defined as the infimum
of all x > 0 for which at least one of the following termination conditions hold:

1. for some k ∈ {1, . . . ,m} \A1, α
(1)
k (x,y(x)) = 0;

2. for some i ∈ I \ Y1, yi(x) = 0 or yi(x) = 1;

3. detM (1)(x,y(x)) = 0;

4. the solution is outside Ωγ,µ,M , or does not exist.

(4.5.7)

Since system (4.5.5) is the system associated with Phase 1, the above x1 is the point where
Phase 1 terminates. If one of the above conditions holds for some x, we say that the condition
is active at x.

We show that none of the above conditions are active arbitrarily close to x = 0. Clearly,
condition 3 is not active due to part (a) in Assumption 4.5.1. Parts (c) and (d), together with
the fact that the derivatives of the functions yi are bounded in a neighbourhood of x = 0
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(since the functions φ(1)
i are Lipschitz in Ωγ,µ,M ), ensure that we may choose x′ > 0 such that

0 ≤ yi(x) ≤ 1, for x ∈ [0, x′] and i ∈ I.

In particular, condition 2 is not active at x arbitrarily close to 0. This also implies that
condition 4 is not active in a neighbourhood of x = 0.

To show that condition 1 is inactive in a neighbourhood of x = 0, we use part (b) of
Assumption 4.5.1 in a similar way as part (c) was used to show that condition 2 is inactive.
This can be done because the derivative of

α
(1)
k =

detM (1)
k (x,y)

detM (1)(x,y)

exists and is bounded in a neighbourhood of x = 0, since these determinants are polynomials
in the Lipschitz functions φ(t)

i and detM (1)(x,y(x)) is bounded away from zero in a neigh-
bourhood of x = 0. This proves that, under assumptions (a), (b), (c) and (d), we must have
x1 > 0.

If any termination condition other than

α
(1)
k (x,y(x)) = 0

is active at x1 or if

α
(1)
k (x1,y(x1)) = 0 and

dα
(1)
k

dx
(x1) ≥ 0,

we define Phase 1 to be the final phase. The intuitive reason for this definition comes from
the algorithm, as we now see. Clearly, if conditions 3 or 4 are active at x, then the vector α(1)

or the solutions yi are not well defined at this point. Now, if termination condition 2 is active
at x1 for some yi ∈ I, where i /∈ Y1, then it must be that yi(x1) = 0 and, in terms of the
algorithm, there are no vertices of type i in the graph. This may prevent us from choosing
vertices in our graph with the proportion prescribed by the degree-greedy algorithm. Finally,
if termination condition 1 is active for some k, the current phase of the algorithm has to finish,
otherwise α(1)

k may become negative, in which case the algorithm would have to process a
negative proportion of vertices of type k. As we shall see, the fact that k = 1 is necessary for
the next phase to start, as is the condition on the derivative.

Now, we suppose that Phase 1 is not the final phase. More generally, we inductively assume
that Phase t−1 is not the final phase and that there exist constants 0 = x0 < x1 < · · · < xt−1,
and functions yi(x), i ∈ I, over the interval [0, xt−1] satisfying, for s ∈ {1, . . . , t− 1},

dyi
dx

=
m∑

l=s

α
(s)
l (x,y)φ(l)

k (x,y), for x in the interval [xs−1, xs), i ∈ I,

yi(xs−1) = βs−1,i, i ∈ I,
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where, β0,i0 = 1, β0,i = 0, if i 6= i0, and, for s > 1,

βs−1,i = lim
x→x−s−1

yk(x).

We consider the system of differential equations

dyi
dx

=
m∑

l=t

α
(t)
l (x,y)φ(l)

i (x,y), i ∈ I

yi(xt−1) = βt−1,i, i ∈ I.
(4.5.8)

We impose conditions to launch Phase t as with Assumption 4.5.1 in the case t = 1. Two
cases have to be considered: the case when t < m and the case t = m. If t < m, we suppose
that the following conditions hold.

Assumption 4.5.2 (Assumptions for Phase t) Consider the sets

At =

{
k ∈ {t, . . . ,m} :

dα
(t)
k

dx
≡ 0

}
and Yt =

{
i ∈ I :

dyt
dx
≡ 0
}
.

The system of differential equations (4.5.8) satisfies

(a’) |detM (t)(xt−1,y(xt−1))| > γ.

(b’) α
(t)
t (xt−1) > γ and, for each k ∈ {t, . . . ,m} \At, at least one of the following holds:

(i) α
(t)
k (xt−1) > γ,

(ii) 0 ≤ α(t)
k (xt−1), the set At,k =

{
s ≥ 1 :

dsα
(t)
k

dxs
(xt−1) 6= 0

}
is not empty and is such

that
dνα

(t)
k

dxν
(xt−1) > γ, where ν = minAt,k;

(c’) for each i ∈ I \ Yt, at least one of the following holds:

(i) yi(xt−1) > γ,

(ii) 0 ≤ yi(xt−1), the set Yt,i =
{
s ≥ 1 :

dsyi
dxs

(xt−1) 6= 0
}

is not empty and is such

that
dνyi
dxν

(xt−1) > γ, where ν = Yt,i;

(d’) for every i ∈ I, yi(xt−1) < 1− γ,

Parts (a’), (b’) and (c’) are analogous to (a), (b) and (c) in Assumption 4.5.1. Part (d’), how-
ever, differs from part (d) in the case t = 1, but still implies that yi(x) ≤ 1 in a neighbourhood
of x = xt−1 if a solution y(x) of (4.5.8) is defined in a neighbourhood of this point.
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These assumptions again guarantee that a solution to

dyi
dx

=
m∑

l=t

α
(t)
l (x,y)φ(l)

i (x,y), i ∈ I,

where the initial conditions at xt−1 are equal to the values of the solution to the system of
Phase t− 1 at xt−1, can be extended up to the point xt > xt−1, which we now define as the
infimum of all x > xt−1 for which at least one of the following termination conditions holds:

1. for some k ∈ {t, . . . ,m} \At, α(t)
k (x,y(x)) = 0;

2. for some i ∈ I \ Yt, yi(x) = 0 or yi(x) = 1;

3. detM (t)(x,y(x)) = 0;

4. the solution is outside Ωγ,µ,M , or does not exist.

(4.5.9)

The point x = xt is the point where Phase t terminates. If any termination condition other
than

α
(t)
k (x,y(x)) = 0

is active at xt, or if

α
(t)
k (xt,y(xt)) = 0 and

dα
(t)
k

dx
(xt) ≥ 0,

we define Phase t to be the final phase, otherwise the next phase can be defined by induction.
Now, if t = m, Phase t is again defined as the final phase of the algorithm. In this case,

the conditions to launch Phase t are only parts (c’) and (d’) in Assumption 4.5.2, since the
other two assumptions involve the definition of the vector α(t), which for t = m has a single
component, which is equal to the constant 1. This phase continues up to a point xm, the
point where Phase m terminates, which we again define as the infimum of all x > xm−1 for
which at least one of the following termination conditions hold:

1. for some i ∈ I, yi(x) = 0 or yi(x) = 1;

2. the solution is outside Ωγ,µ,M , or does not exist.
(4.5.10)

So, we defined the point in which each phase terminates and the concept of final phase. If xt
is the point where Phase t terminates, and xt is not the final phase, we say that xt is a point
of phase transition.

Let b ∈ {1, . . . ,m} denote the index of the final phase. In conclusion, if Assumption 4.5.1
hold at x = 0 and Assumption 4.5.2 holds at every point of phase transition, this discussion
establishes the existence of a solution to the following systems of differential equations, defined
for t ∈ {1, . . . , b},

dyi
dx

=
m∑

k=t

α
(t)
k (x,y(x))φ(k)

i (x,y(x)), i ∈ I, if x ∈ [xt−1, xt)

yi(xt−1) = βt−1,i, i ∈ I,
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where β0,i0 = 1, β0,i = 0, if i 6= i0, and, if t > 0,

βt,i = lim
x→x−t

yi(x),

with the points x1, x2, . . . , xb being defined through the termination conditions. Moreover,
the solutions are within the region Ωγ,M for every x in the interval [0, xb], while the term
α

(t)
k (x,y(x)) lies in [0, 1], for every t ∈ {1, . . . , b}, every k ∈ {t, . . . ,m} and every x ∈ [xt−1, xt).



Chapter 5

Independent sets

In this chapter, we shall apply the framework of Section 4.2 to analyse the performance of
a locally greedy algorithm for independent sets, as with the example presented in Section
4.3. This will lead to new lower bounds on the cardinality of a maximum independent set in
regular graphs with large girth.

We again fix parameters ` = d = 1 in the definition of Algorithm 3.1.1, since, as seen in
Proposition 3.1.2, locally greedy algorithms produce independent sets in this case. Now, in
order to apply the results of Section 4.2, we need to specify bounded nonnegative functions
p̂k, k = 0, . . . , r, and constants 0 = x0 < x1 < · · · < xm such that the discontinuities of the
functions p̂k are restricted to the set {x1, . . . , xm−1}. Then, given ε > 0 sufficiently small
and p0 ∈ [0, 1], we may consider an application of Algorithm 3.1.1 for N = bxm/εc steps with
initial probability p0 and probabilities pi,k = εp̂k(iε), for i ∈ {0, . . . , N} and k ∈ {0, . . . , r}.

Recall that the definition of the functions p̂k, k = 0, . . . , r, and of the constants 0 = x0 <

x1 < · · · < xm in the example Section 4.3 was quite simple. Indeed, the functions there all
had constant value, so that the ensuing algorithm runs on a single phase. In particular, there
are no phase transitions and the only constants are x0 and x1. However, since we now aim for
an algorithm with a degree-greedy behaviour, the definition of these quantities will be more
complicated. In fact, it will be based on the solutions of a system of differential equations.
We also observe that, for the functions p̂k, k = 0, . . . , r, and the points of phase transition
x1 < x2 < · · · < xm−1 to be well defined, the solutions to these systems of differential
equations are required to satisfy a series of properties, whose establishment in turn depends
on a detailed analysis of the differential equations and on the numerical verification of some
conditions that they satisfy. To make our argument more concise, we shall write the aspects
related with the solutions to the differential equations as a property, which is shown to hold in
Section 5.2. We then verify that, for our choice of parameters, there exist constants γ and M
for which the properties of Assumption 4.2.1 are satisfied, so that the framework of Section
4.2 may be used to derive a lower bound on the independence number of regular graphs with
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large girth through Theorem 4.2.4.

5.1 A general system of differential equations

Our goal is to devise an algorithm whose performance in a graph with large enough girth
approximates the performance of the degree-greedy algorithm in a random regular graph. In
Sections 4.1 and 4.4, we have seen that this algorithm performs different types of operations,
with some operations having higher priority than others. In this chapter, we also define
different types of operation in the context of locally greedy algorithms. Indeed, we shall say
that the algorithm performs an operation of type t when it processes a white vertex with t

yellow neighbours, which we call a vertex of type t.

Inspired by the description of the main ideas involved in the analysis of the performance
of the degree-greedy algorithm in a random regular graph, given in Section 4.4, we first
introduce a system of differential equations associated with locally greedy algorithms. To
ensure a degree-greedy character, we pretend that, if only operations of type t are applied,
the rate of change of the number of vertices of each type is given by equation (4.4.2), as in
the case of random regular graphs. We only consider t ∈ {1, . . . , r − 1}. This is because,
on the one hand, white vertices with no yellow neighbours will only be processed in the
initialization step. On the other hand, once the algorithm has produced an independent set,
all the remaining white vertices with r yellow neighbours can be added to the set without
affecting independence, and therefore there is no need of choosing any of them during the
algorithm.

So, for 1 ≤ t ≤ r − 1 and 0 ≤ k ≤ r, we consider the functions φ(t)
k : Rr+2 → R given by

φ
(t)
k (x,w0, . . . , wr) = −δk,t − (r − k)(r − t)wk/s(w0, . . . , wr)

+ (r − t)(r − k + 1)wk−1δk≥1 − (r − k)wk
s(w0, . . . , wr)2

r−2∑

k′′=0

(r − k′′)(r − k′′ − 1)wk′′ ,
(5.1.1)

where

s(w0, . . . , wr) =
r−1∑

k′=0

(r − k′)wk′ . (5.1.2)

Note that the index t refers to the type of operation performed by the algorithm, whereas k
corresponds to the different types of vertices.

Now, as suggested in Section 4.4, the proportion α
(t)
k of operations of type k while the

algorithm is in Phase t, for a fixed t ∈ {1, . . . , r − 1}, should satisfy the linear system in
(4.4.5). If we use our values for φ(t)

k , this linear system is equal to

M (t) u = v, (5.1.3)
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where M (t) is the matrix given by



1 1 1 · · · 1
(r − t)at+1 (r − t− 1)at+1 − 1 (r − t− 2)at+1 · · · at+1

(r − t)at+2 (r − t− 1)at+2 (r − t− 2)at+2 − 1 · · · at+2

· · · · · · ·
· · · · · · ·

(r − t)ar−1 (r − t− 1)ar−1 (r − t− 2)ar−1 · · · ar−1 − 1




(5.1.4)

and the vectors u and v are given by

u =




α
(t)
t

α
(t)
t+1

·
·
α

(t)
m




and v =




1
0
·
·
0



. (5.1.5)

Here,

ak = ak(x,w) = −(r − k)wk/s+ [(r − k + 1)wk−1 − (r − k)wk]λ/s2, k = 1, . . . , r − 1,

with s = s(x,w) defined as in equation (5.1.2) and

λ = λ(x,w) =
r−2∑

k=0

(r − k)(r − k − 1)wk.

It will be proved in Proposition B.1.6 that the matrix M (t) in this system has determinant

detM (t) = (−1)r−t+1

(
1 +

r−1∑

l=t+1

(l − t)ak
)
.

When this determinant is nonzero, the solution to this linear system is

α
(t)
k (x,w) =





1−∑r−1
l=t+1(r − l)al

1 +
∑r−1

l=t+1(l − t)al
, if k = t,

(r − t)ak
1 +

∑r−1
l=t+1(l − t)al

, if k > t.

(5.1.6)

In the case t = r − 1, the solution is given by

α
(r−1)
r−1 = α

(r−1)
r−1 (x,w) = 1.

Once again, we extrapolate the discussion of Section 4.4, and, inspired by equation (4.4.4),
we force the rate of change of the variable wk during Phase t to equal

r−1∑

l=t

α
(t)
l (x,w)φ(l)

k (x,w).
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As yet, there is no information about the points of phase transition, but, if we fix constants
0 = x0 < · · · < xr−1, a phase t ∈ {1, . . . , r − 1}, and initial values µt = (µt,k)rk=0 ∈ Rr+1, we
may define the following system of differential equations, called the basic system of differential
equations;

dwk
dx

= F
(t)
k (x,w(x)) for x ∈ [xt−1, xt], k = 0, . . . , r,

wk(xt) = µt,k,

(5.1.7)

where

F
(t)
k (x,w0, . . . , wr) =





r−1∑

l=1

α
(t)
l (x,w)φ(l)

k (x,w), t ≤ r − 2,

φ
(r−1)
k (x,y), t = r − 1,

(5.1.8)

with φ
(l)
k given by equation (5.1.1) and α

(t)
k given by equation (5.1.6), if k ≥ t, and by

α
(t)
k (x,y) = 0, if k < t.

Our objective is to assign probabilities to a locally greedy algorithm in such a way that
the performance of the algorithm is described by the solutions to the system of differential
equations in (5.1.7). To do this, we define the following property associated with the system of
differential equations. The intuitive reasons behind each of the assumptions will be discussed
following its statement.

Definition 5.1.1 (Property (b, p′0,x)) Let b ∈ {1, . . . , r − 1} and p′0 ∈ (0, 1]. With respect
to a vector x of fixed functions

x1, . . . , xb : [0, p′0]→ [0, 1],

where 0 < x1(p0) < x2(p0) < · · · < xb(p0), for every p0, we say that the basic system of
differential equations (5.1.7) satisfies Property (b, p′0,x) if the following holds. For p0 ∈ [0, p′0],
there are bounded functions yp0(x) = (yp0

k (x))rk=0 defined for x in the interval [0, xb(p0)) such
that, for t ∈ {1, . . . , b},

dyp0

k

dx
= F

(t)
k (x,yp0(x)) for x ∈ [xt−1(p0), xt(p0)), k = 0, . . . , r,

yp0

k (xt−1(p0)) = βp0

t−1,k.

(5.1.9)

Here, the functions F (t)
k are defined as in (5.1.8) and βp0

t,k is given as follows. If t = 1, it is
equal to the initial condition w0,k(p0) given by equation (3.2.1) with ` = d = 1. If t > 1, it is
inductively defined as

βp0

t,k = lim
x→xt−1(p0)−

yp0

k (x).

The following additional properties hold.
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1. For x in the interval [xt−1(p0), xt(p0)), we have 0 ≤ α(t)
k (x,yp0(x)) ≤ 1 for every k.

2. Given p0 ∈ (0, p′0] and ξ > 0, there exists γp0

ξ > 0 such that γp0

ξ ≤ yp0

k (x) ≤ 1− γp0

ξ for
every x ∈ [0, xb(p0) − ξ] and every k ∈ {0, . . . , r}. In particular, (x,y(x)) ∈ Ωγ

p0
ξ ,Mp0

for every x ∈ [0, xb(p0)− ξ], where Mp0 is an upper bound on the functions yp0

k .

3. For each t ∈ {1, . . . , b}, limp0→0+ xt(p0) = xt(0).

In future applications of this definition, the number b ∈ {1, . . . , r − 1} will represent the
number of phases in the algorithm, while the functions xt = xt(p0) determine the points of
transition from Phase t to Phase t+ 1 for different values of the initial probability p0.

Before proceeding, we briefly discuss the necessity of items 1, 2 and 3 in the previous
definition. It is clear that the solutions to the system of differential equations should satisfy
item 1, since the vector α(t)

k plays the role of a vector of probabilities. The second item is
useful because, in terms of the algorithm, having yk bounded away from zero implies that the
graph has a positive proportion of vertices of type k, which rules out the possibility that the
algorithm calls for more vertices of type k in one step than there actually are vertices of this
type in the graph. The third item allows us to obtain a bound on the size of the independent
set that is essentially the limit, as p0 goes to zero, of the bounds obtained for each p0 > 0.

The following result shows that, if the system of differential equations (5.1.7) satisfies
Property (b, p′0,x) for a fixed assignment of b, p′0 and x, then it can be used to devise and
analyse a locally greedy algorithm for independent sets, producing a lower bound on the
independence ratio of r-regular graphs with girth sufficiently large. We observe, however,
that the quality of the bound provided depends on the choice of b, p′0 and x. We shall see
how to define these quantities in Section 5.2.

Theorem 5.1.2 Let b ∈ {1, . . . , r − 1} and p′0 ∈ (0, 1], and consider functions

x1, . . . , xb : [0, p′0]→ [0, 1]

for which the basic system of differential equations defined in equation (5.1.7) satisfies Prop-
erty (b, p′0,x). Then, for δ > 0 and r ∈ N, there exists g > 0 such that every r-regular graph
G on n vertices with girth greater than or equal to g satisfies α(G) ≥ (xb(0)− δ)n.

Proof Let δ′ > 0. By item 3 in the definition of Property (b, p′0,x), we may choose p0 with
the property that |xb(p0)− xb(0)| < δ′/4. If we fix ξ = δ′/4, we have

|xb(p0)− ξ − xb(0)| < δ′

2
.
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We are now ready to define the functions p̂k : R→ [0, xb(p0)− ξ] by

p̂k(x) =





α
(t)
k (x,yp0(x))
yp0

k (x)
, if t ≤ k and x ∈ [xt−1(p0), xt(p0)), t = 1, . . . ,min{b, r − 2},

1
yp0
r−1(x)

, if k = b = r − 1 and x ∈ [xr−2(p0), xr−1(p0)],

0, in all other cases.

Items 1 and 2 in the definition of Property (b, p′0,x), which are satisfied by the solutions
yp0(x) of (5.1.9), ensure that, if we fix a constant

C >
1
γp0

ξ

,

these functions satisfy 0 ≤ p̂k(x) < C, for every x ∈ [0, xb(p0)− ξ].
With pi,k = εp̂k(εi), the function associated with the algorithm F = (Fk)rk=0, which was

obtained in (3.3.5), induces, for t ∈ {1, . . . , b}, the system of differential equations

dwk
dx

= f
(t)
k (x,w(x)) for x in the interval [xt−1(p0), xt(p0)), k = 0, . . . , r,

wk(xt−1(p0)) = βp0

t−1,k, k = 0, . . . , r,
(5.1.10)

where

f
(t)
k (x,w0, . . . , wr) = Fk(p̂(x),w) =

r−1∑

l=1

α
(t)
l (x,yp0(x))φ(l)

k (x,w).

Here, yp0 = yp0(x) is the solution of (5.1.9). The initial conditions βp0

t−1,k are defined as
follows. If t = 1, they are given by w0,k(p0), defined in equation (3.2.1) with ` = d = 1. If
t > 1, they are given inductively by

βp0

t,k = lim
x→xt−1(p0)−

wk(x).

To use our results of Section 4.2, we now verify that the properties in Assumption 4.2.1 are
satisfied. To remind the reader of these assumptions, we restate them in terms of the current
notation. Recall that these assumptions are given in terms of the functions F = (Fk)rk=0

and E = (Ek)rk=0 defined through the system of recurrence equations associated with the
algorithm in (3.2.2) and calculated in (3.3.5).

Assumption 4.2.1 The functions F = (Fk)rk=0 and E = (Ek)rk=0 satisfy the following prop-
erties.

(P1) The coefficients of the polynomials Ek, which are rational functions in the variables w,
do not have poles in the region Ωγ

p0
ξ ,Mp0 .
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(P2) The functions f (t)
k (x,w) = Fk(p̂(x),w) are Lipschitz in the region

Ωγ
p0
ξ ,Mp0 ∩

(
[xt−1(p0), xt(p0))× Rr+1

)
,

for each t ∈ {1, . . . , b} and k ∈ {0, . . . , r}.

(P3) There exist functions ŵ(x) = (ŵk(x))rk=0 defined for x in the interval [0, xb(p0)) such
that (x, ŵ(x)) ∈ Ωγ

p0
ξ ,Mp0 for every x and that, for t = 1, . . . , b,

dŵk
dx

= f
(t)
k (x, ŵ), k = 0, . . . , r, in the interval [xt−1(p0), xt(p0)),

ŵk(xt−1(p0)) = βt−1,k, k = 0, . . . , r
(4.2.11)

where βt−1,k is equal to the initial condition w0,k(p0), if t = 1, and is inductively defined
as

lim
x→xt−1(p0)−

ŵk(x), if t > 1.

The solution ŵ(x) of Property (P3) is precisely the solution to (5.1.10), which clearly coincides
with the solution to (5.1.9) provided by Property (b, p′0,x).

We verify the remaining properties. Property (P1) holds as in the case of the greedy
algorithm (see Section 4.3), since it depends only on the definition of Ej,k, and not on the
particular assignment of probabilities.

For Property (P2), note that each f
(t)
k is Lipschitz in the region

Ωγ
p0
ξ ,Mp0 ∩ ([xt−1(p0), xt(p0))× Rr),

as the functions φ(t)
k are Lipschitz in the region Ωγ

p0
ξ ,Mp0 and the terms α(t)

l (x,yp0(x)) are
continuous and bounded in [xt−1(p0), xt(p0)). Thus, all the properties in Assumption 4.2.1
hold in this case. (To simplify the notation, the interval [xb−1(p0), xb(p0)) appears in the
above, even if the interval [xb−1(p0), xb(p0)− ξ] is really meant.)

We are now ready to define an instance of the locally greedy algorithm to which the results
of Section 4.2 may be applied. Indeed, consider Algorithm 3.1.1 with parameters d = ` = 1
and r, and initial probability p0. For 0 < ε < 1/C, suppose that the number of steps is

N =
⌊
xb(p0)− ξ

ε

⌋

and the probabilities are pi,k = εp̂k(iε).
We first argue that, if ε > 0 is sufficiently small, the final point Nf in the statement of

Theorem 4.2.4, which is defined in (4.2.6), is equal to N . Recall that, with initial conditions
determined by p0, the solutions to the system of differential equations (4.2.4) and to the
system of recurrence equations (4.2.5) are arbitrarily close to each other for sufficiently small
ε by Theorem 4.2.2, as long as both solutions lie in the region Ωγ

p0
ξ ,Mp0 . By item 2 in the
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definition of Property (b, p′0,x), the point (x, yp0(x)) is in the interior of the compact region
Ωγ

p0
ξ ,Mp0 for every x in the interval [0, xb(p0)−ξ], where y = y(x) is a solution to (4.2.11). As

a consequence, for some ε1 > 0 small enough, the solution wε
i to (4.2.5) cannot leave Ωγ

p0
ξ ,Mp0

for i ≤ N = b(xb(p0)− ξ)/εc whenever 0 < ε < ε1. This establishes that

Nf = Nf (ε) =
⌊
xb(p0)− ξ

ε

⌋
,

as desired.
We may now use Theorem 4.2.4 with M = Mp0 , γ = γp0

ξ , m = b, xm = xb(p0) − ξ and
δ = δ′/2. This yields ε > 0, also satisfying ε < ε1, such that, if Algorithm 3.1.1 is applied
with probabilities fixed by this value of ε to a graph G with girth larger than 4N + 4, then
the expected size of the independent set returned satisfies

E|P̄ (ε)| ≥ n
(
p0(1− p0)r +

∫ xb(p0)−ξ

0
h(x, ŵ(x)) dx− δ′/2

)

= n

(
p0(1− p0)r +

∫ xb(p0)−ξ

0
dx− δ′/2

)

= n(p0(1− p0)r + xb(p0)− ξ − δ′/2),

where h(x) denotes the function
∑r

k=0 p̂k(x)ŵk(x). The fact that h(x, ŵ(x)) = 1 follows
immediately from the fact that the systems of differential equation (5.1.9) and (5.1.10) have
the same solutions for a fixed p0.

As a consequence, by the first moment principle, any r-regular graph G with girth at least
g = g(ε) has an independent set of size at least

n
(
p0(1− p0)r + xb(p0)− ξ − δ′/2) ≥ n(xb(0)− δ′).

This concludes the proof of our theorem.

5.2 An appropriate choice of parameters

In the previous section, we have obtained a bound on the independence number of a graph
with sufficiently large girth, which depends on the solution to the basic system of differen-
tial equations defined in (5.1.7), provided that this system satisfies Property (b, p′0,x), for a
positive integer b ∈ {1, . . . , r − 1}, a constant p′0 ∈ (0, 1] and functions

x1, . . . , xb : [0, p′0]→ [0, 1].

Our aim in this section is to define these quantities in such a way that Property (b, p′0,x) is
satisfied. Moreover, they should be defined so that Theorem 5.1.2 produces “good” bounds,
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which, in our case, will be numbers that are equal to the bounds obtained in [56] for inde-
pendent sets in random regular graphs.

Let r ≥ 3 be fixed. Recall that Property (b, p′0,x) involves solutions, satisfying a series of
properties, to the system of differential equations

dyp0

k

dx
= F

(t)
k (x,yp0(x)) for x ∈ [xt−1(p0), xt(p0)), k = 0, . . . , r,

yp0

k (xt−1(p0)) = βp0

t−1,k, k = 0, . . . , r.
(5.2.1)

Here, the functions F (t)
k are defined as in (5.1.8) and βp0

t,k is given as follows. If t = 1, it is
equal to the initial condition w0,k(p0) given by equation (3.2.1) with ` = d = 1. If t > 1, it is
inductively defined as

βp0

t,k = lim
x→xt−1(p0)−

yp0

k (x).

The remainder of this section is devoted to determining parameters b, p′0 and x =
(x1, . . . , xb) so as to have xb as large as possible. This will be done in two parts. The first part
consists of analysing the system of differential equations (5.2.1) when the initial conditions are
given with p0 = 0. This is a system of differential equations in the class introduced in Section
4.5, and, in particular, we can prove the existence of a solution satisfying a series of properties
by verifying that the conditions defined in Section 4.5 are satisfied. For γ > 0 sufficiently
small, we shall obtain b = b(γ) ∈ {1, . . . , r − 1} and constants x0

1 = x0
1(γ), . . . , x0

b = x0
b(γ),

where, in the terminology of Section 4.5, b is the number of phases in the algorithm until a
termination condition of the final phase is met, while x0

t is the point of termination of Phase
t.

In the second part, we derive solutions to (5.2.1) with initial conditions given with respect
to a small positive integer p0 by analysing the sensitivity of this system with respect to its
initial conditions. More specifically, we show that, for any value of γ for which the conditions
of the first part hold, we may find p′0 > 0 and functions x1, . . . , xb : [0, p′0]→ [0, 1] for which
the system of differential equations (5.2.1) satisfies Property (b, p′0,x). Moreover xt(0) = x0

t ,
for every t ∈ {1, . . . , b}.
First part As already mentioned, we shall find a solution to the system of differential equa-
tions (5.2.1) in the particular case in which the initial conditions are defined with p0 = 0,
which will be done by means of Section 4.5.

We first fix the value of the parameters specified in that section. For r ≥ 3, the finite set
I indexing the variables in the differential equations is

I = {(j, k) ∈ Z2 : j = 0, 0 ≤ k ≤ r},

with the element i0 being equal to (0, 0). The set J indexing the variables associated with
each operation in the algorithm is

J = {(0, 1), (0, 2), . . . , (0, r − 1)}.
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Since, in the present application to independent sets, the coordinate j is always equal to 0, it
will henceforth be dropped from the notation.

As in the definition of the functions F (t)
k in (5.1.8), we let the functions φ(t)

0,k = φ
(t)
k be

given by

φ
(t)
k (x,w0, . . . , wr) = −δk,t − (r − k)(r − t)wk/s(w0, . . . , wr)

+ (r − t)(r − k + 1)wk−1δk≥1 − (r − k)wk
s(w0, . . . , wr)2

r−2∑

k′′=0

(r − k′′)(r − k′′ − 1)wk′′ ,
(5.2.2)

which are precisely the functions φ(t)
k defined in (5.1.1).

We shall show that, with this choice of φ(t)
k , there exist constants M , γ and µ for which

Assumption 4.5.1 is verified at the point x = 0 and, whenever Phase t − 1 is not the final
phase for some t > 1, Assumption 4.5.2 is verified at x = xt−1, the point where Phase t − 1
terminates. If these assumptions hold, the discussion in Section 4.5 implies that there exists
a solution y(x) to the following systems of differential equations, defined for t ∈ {1, . . . , b},

dyk
dx

=
r−1∑

l=t

α
(t)
l (x,y(x))φ(l)

k (x,y(x)), k ∈ {0, . . . , r}, if x ∈ [xt−1, xt)

yk(xt−1) = βt−1,k, k ∈ {0, . . . , r},
where β0,0 = 1, β0,k = 0, if k > 0, and, if t > 0,

βt,k = lim
x→x−t

yk(x).

The points x1, x2, . . . , xb are obtained through the termination conditions of each phase, which
are defined in Section 4.5, while b is the index of the final phase. Moreover, the solutions
lie inside the region Ωγ,M for every x in the interval [0, xb], and the term α

(t)
k (x,y(x)) lies in

[0, 1], for every t ∈ {1, . . . , b}, every k ∈ {t, . . . , r − 1} and every x ∈ [xt−1, xt).
Let M > 1. In the discussion that follows, we shall show that there exists γ > 0 such that

Assumption 4.5.1 and Assumption 4.5.2 hold if

0 < µ <
rγ∑r−1

k=1(r − k)
=

2γ
r − 1

.

For this choice of µ, the term
r−1∑

k=0

(r − k)yk is always positive in Ωγ,µ,M , so the functions φ(t)
k

are rational functions with no poles in the compact set Ωγ,µ,M , and hence are Lipschitz in
this set.

We start with some fixed value 0 < γ < 1, which may be redefined as a smaller value if
necessary. This can be done because, whenever the assumptions are satisfied for γ > 0, they
are also satisfied for any γ′ in the interval (0, γ), so the action of decreasing γ at some point
of the argument does not affect the assumptions verified prior to this.
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We first verify that Assumption 4.5.1 is satisfied at the point x = 0. Recall that we are
looking for a solution to

dyk
dx

=
r−1∑

l=1

α
(1)
l (x,y(x))φ(l)

k (x,y(x)), 0 ≤ k ≤ r,

y0(0) = 1, yk(0) = 0 if k > 0,

(5.2.3)

where the vector α(1) = (α(1)
l )r−1

l=1 satisfies the linear system given in (4.5.2), which, for our
values of φ(t)

k , is equal to

M (1) u = v, (5.2.4)

where

u =




α
(1)
1

α
(1)
2

α
(1)
3

·
·

α
(1)
r−1




and v =




1
0
0
·
·
0




,

while M (1) = M(r − 1, a2, . . . , ar−1), where the matrix on the right-hand side is defined by

M(n, c1, . . . , cn−1) =




1 1 1 · · · 1
n c1 (n− 1)c1 − 1 (n− 2)c1 · · · c1

n c2 (n− 1)c2 (n− 2)c2 − 1 · · · c2

· · · · · · ·
· · · · · · ·

n cn−1 (n− 1)cn−1 (n− 2)cn−1 · · · cn−1 − 1




. (5.2.5)

Here, for k = 1, . . . , r − 1

ak = ak(x,y) = −(r − k)yk/s+ [(r − k + 1)yk−1 − (r − k)yk]λ/s2, (5.2.6)

with

s = s(x,y) =
r−1∑

k=0

(r − k)yk

and

λ = λ(x,y) =
r−2∑

k=0

(r − k)(r − k − 1)yk. (5.2.7)

We repeat the statement of Assumption 4.5.1 with our current notation to help with the
verification of each of its properties.
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Assumption 4.5.2 (Assumptions for Phase 1) Consider the sets

A1 =

{
k ∈ {1, . . . , r − 1} :

dα
(1)
k

dx
≡ 0

}
and Y1 =

{
k ∈ {0, . . . , r} :

dyk
dx
≡ 0
}
.

The system of differential equations (5.2.3) satisfies

(a) |detM (1)(0,y(0))| > γ.

(b) α
(1)
1 (0) > γ, and for each k ∈ {2, . . . , r − 1} \A1, at least one of the following holds:

(i) α
(1)
k (0) > γ,

(ii) 0 ≤ α(1)
k (0), the set A1,k =

{
s ≥ 1 :

dsα
(1)
k

dxs
(0) 6= 0

}
is not empty and is such that

dνα
(1)
k

dxν
(0) > γ, where ν = minA1,k;

(c) for each k ∈ {0, . . . , r} \ Y1, at least one of the following holds

(i) yk(0) > γ,

(ii) 0 ≤ yk(0), the set Y1,k =
{
s ≥ 1 :

dsyk
dxs

(0) 6= 0
}

is not empty and is such that

dνyk
dxν

(0) > γ, where ν = minY1,k;

(d)
dy0

dx
(0) < −γ.

It is a consequence of Proposition B.1.6 that

detM (1)(x,y) = (−1)r
(

1 +
r−1∑

k=2

(k − 1)ak

)
.

By the definition of ak in (5.2.6) and by the initial conditions of the system of differential
equations (5.2.3), the elements ak(0,y(0)) are nonnegative and we have

| detM (1)(0,y(0))| = 1 +
r−1∑

k=2

(k − 1)ak(0,y(0)) ≥ 1 > γ,

so that part (a) of Assumption 4.5.1 is satisfied.
Now, whenever detM (1)(x,y) 6= 0, the solution to the linear system (5.2.4) is

α
(1)
k (x,y) =





1−∑r−1
l=2 (r − l)al

1 +
∑r−1

l=2 (l − 1)al
, if k = 1,

(r − 1)ak
1 +

∑r−1
l=2 (l − 1)al

, if k > 1.
(5.2.8)



5.2. AN APPROPRIATE CHOICE OF PARAMETERS 103

Recall that α(1) has been defined as the solution to (5.2.4) precisely to ensure that, for
2 ≤ k ≤ r − 1, the differential equations in (5.2.3) satisfy

dyk
dx

=
r−1∑

l=1

α
(1)
l φ

(l)
k ≡ 0.

In particular, {2, . . . , r−1} ⊆ Y1, with Y1 defined as in Assumption 4.5.1. Moreover, the initial
conditions of the differential equations (5.2.3) tell us that yk(0) = 0 for k ∈ {2, . . . , r−1}. As
a consequence,

yk(x) = 0 for every k ∈ {2, . . . , r − 1}, (5.2.9)

for every x in the interval of definition of a solution to the system of differential equations in
(5.2.3).

By equation (5.2.6), this implies that

a2(x,y(x)) = (r − 1)y1(x)λ(x,y(x))/s(x,y(x))2 (5.2.10)

and that
ak(x,y(x)) = 0 for every x, if 3 ≤ k ≤ r − 1. (5.2.11)

In particular {3, . . . , r − 1} ⊆ A1, where A1 is defined as in Assumption 4.5.1.
As {2, . . . , r−1} ⊆ Y1, the only cases to be considered in the verification of part (c) of the

assumption are k ∈ {0, 1, r}. Since y0(0) = 1 > γ, item (i) holds for k = 0. The case k = r is
also simple, since, by equation (5.2.3),

dyr(x)
dx

=
r−1∑

l=1

α
(1)
l φ

(l)
r−1 =

r−1∑

l=1

α
(1)
l (r − l)λyr−1

s2
≡ 0,

given that yr−1 ≡ 0 by (5.2.9). This shows that r ∈ Y1. We observe that the reason for which
the case k = r has to be treated separately from the case involving values of k with k > 1
is a consequence of our option, in Section 5.1, of not processing white vertices with r yellow
neighbours during the algorithm, and instead just adding them to the independent set when
the algorithm ends.

For the case k = 1, note that equation (5.2.6) leads to α(1)
1 (0,y(0)) = 1 and to α(1)

l (0,y(0)) = 0,
if l > 1. By equation (5.2.3), we get

dy1

dx
(0) =

r−1∑

l=1

α
(1)
l (0,y(0))φ(l)

1 (0,y(0))

= α
(1)
1 (0,y(0))φ(1)

1 (0,y(0))

=
r(r − 1)y0(0)r(r − 1)y0(0)

r2y0(0)2
− 1 = (r − 1)2 − 1 > γ,

(5.2.12)

concluding the verification of part (c).
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We may also derive part (b) of Assumption 4.5.1. If k > 2, we know from (5.2.11) that
k ∈ A1 and, if k = 1, we have already seen that α(1)

1 (0,y(0)) = 1 > γ. So, it remains to show
that this assumption is satisfied in the case k = 2. By equations (5.2.8) and (5.2.10),

α
(1)
2 (x,y) =

(r − 1)a2

1 +
∑r−1

l=2 (l − 1)al
=

(r − 1)2y1λ

s2 + s2
∑r−1

l=2 (l − 1)al
.

In particular, α(1)
2 (0,y(0)) = 0. Moreover, because equations (5.2.7) and (5.2.12) imply

λ(0,y(0)) ≥ r(r − 1)γ > 0 and
dy1

dx
(0) > 0, respectively, we have

dα
(1)
2

dx
(0) > 0.

So, either item (ii) in (b) holds for the first derivative of α(1)
2 with our current choice of γ, or

it holds by redefining γ as a smaller positive constant. This concludes the verification of part
(b).

To conclude the verification of Assumption 4.5.1, we note that equations (5.2.3) and (5.2.8)
lead to

dy0(x)
dx

(0) =
r−1∑

t=1

α
(1)
t (0,y(0))φ(t)

0 (0,y(0)) = φ
(1)
0 (0,y(0))

= − r2y0(0)
s(0,y(0))

− r2y0(0)r(r − 1)y(0)
0

s(0,y(0))2
= −r − r(r − 1) = −r2 < −γ,

implying part (d), as required. By the discussion in Section 4.5, we may extend our solution
to (5.2.3) to all x ∈ [0, x1], where x1 is defined as the infimum of all x > 0 for which at least
one of the following termination conditions hold:

1. for some k ∈ {1, . . . , r − 1} \A1, α
(1)
k (x,y(x)) = 0;

2. for some k ∈ {0, . . . , r} \ Y1, yk(x) = 0 or yk(x) = 1;

3. detM (1)(x,y(x)) = 0;

4. the solution is outside Ωγ,µ,M , or does not exist.

(5.2.13)

Also, if any termination condition other than

α
(1)
k (x,y(x)) = 0

is active at x1, or if

α
(1)
k (x1,y(x1)) = 0 and

dα
(1)
k

dx
(x1) ≥ 0,

Phase 1 was defined to be the final phase. We observe that the termination condition yk(x) = 1
will never be active in our discussion. This is because the function

∑r
k=0 yk(x) is a sum of
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nonnegative functions which is equal to 1 at x = 0, and the derivative of this function is
strictly negative.

If Phase 1 is not the final phase, in particular condition 2 above does not hold, so we may
redefine γ > 0 as a smaller positive number, if necessary, to ensure that

(i) γ < yk(x1) < 1− γ if k /∈ Y1;

(ii)
dα

(1)
1

dx
(x1) ≤ −γ.

(5.2.14)

So, we must have
yk(x1) > γ, if k ≤ 1, and yk(x1) = 0, if k > 1, (5.2.15)

where the second fact comes from (5.2.9).
We now show that, provided that Phase t − 1 is not the final phase, Assumption 4.5.2

holds at the point x = xt−1, the point in which Phase t − 1 terminates. In other words, let
2 ≤ t ≤ r − 1 and inductively assume that xt−1 has been defined and that

α
(t−1)
t−1 (xt−1,y(xt−1)) = 0

is the only active termination condition of Phase t− 1 at xt−1 and that

dα
(t−1)
t−1

dx
(xt−1) < 0.

We may also inductively assume that γ > 0 has been defined so that

(i) γ < yk(xt−1) < 1− γ, if k /∈ Yt−1;

(ii)
dα

(t−1)
t−1

dx
(xt−1) ≤ −γ,

(5.2.16)

and that, as in equation (5.2.15),

yk(xt−1) > γ, if k ≤ t− 1, and yk(xt−1) = 0, if k > t− 1. (5.2.17)

In Phase t, the system of differential equations of interest is

dyk
dx

=
r−1∑

l=t

α
(t)
l (x,y(x))φ(l)

k (x,y(x)), 0 ≤ k ≤ r, (5.2.18)

with initial conditions at x = xt−1 given by the values of each yk at the termination of Phase
t − 1. Recall that the terms α(t)

k in the previous equations are the solutions to the linear
system (4.5.2), where the matrix M (t)(x,y) is given by M(r− t, at+1, . . . , ar−1), as defined in
(5.2.5), and with ak defined in (5.2.6).

We remind the reader of the statement of Assumption 4.5.2 under the current notation.
We also observe that, although the several of the assumptions of Phase t are the same as the
assumptions of Phase 1, we opted to verify them separately to clarify the inductive character
of the argument.
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Assumption 4.5.3 (Assumptions for Phase t) Consider the sets

At =

{
k ∈ {t, . . . ,m} :

dα
(t)
k

dx
≡ 0

}
and Yt =

{
k ∈ {0, . . . , r} :

dyk
dx
≡ 0
}
.

The system of differential equations (5.2.18) satisfies

(a’) |detM (t)(xt−1,y(xt−1))| > γ.

(b’) α
(t)
t (xt−1) > γ and, for each k ∈ {t, . . . , b} \At, at least one of the following holds:

(i) α
(t)
k (xt−1) > γ,

(ii) 0 ≤ α(t)
k (xt−1), the set At,k =

{
s ≥ 1 :

dsα
(t)
k

dxs
(xt−1) 6= 0

}
is not empty and is such

that
dνα

(t)
k

dxν
(xt−1) > γ, where ν = minAt,k;

(c’) for each k ∈ {0, . . . , r} \ Yt, at least one of the following holds:

(i) yk(xt−1) > γ,

(ii) 0 ≤ yk(xt−1), the set Yt,k =
{
s ≥ 1 :

dsyk
dxs

(xt−1) 6= 0
}

is not empty and is such

that
dνyk
dxν

(xt−1) > γ, where ν = minYt,k;

(d’) for every k ∈ {0, . . . , r}, yk(xt−1) < 1− γ.

As in the verification of the assumptions at the start of Phase 1, we can use Proposition
B.1.6 to obtain

| detM (t)(xt−1,y(xt−1))| =
∣∣∣∣∣(−1)r−t+1

(
1 +

r−1∑

k=t+1

(k − t)ak(xt−1,y(xt−1))

)∣∣∣∣∣ ≥ 1,

which establishes part (a’) of Assumption 4.5.2, and

α
(t)
k (x,y) =





1−∑r−1
l=t+1(r − l)al

1 +
∑r−1

l=t+1(l − t)al
, if k = t,

(r − t)ak
1 +

∑r−1
l=t+1(l − t)al

, if k > t.

(5.2.19)

Again, the definition of α(t) is such that

dyk
dx
≡ 0 if t+ 1 ≤ k ≤ r − 1,

so {t+1, . . . , r−1} ⊆ Yt, where Yt is defined in Assumption 4.5.2. By the inductive hypothesis
in (5.2.17), this also implies that

yk(x) = 0 for k ∈ {t+ 1, . . . , r − 1}, (5.2.20)
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for every x in the interval of definition of the solution to (5.2.18).

We now look at part (b’) of Assumption 4.5.2. By equations (5.2.6) and (5.2.20), this
implies that

at+1(x,y(x)) = (r − t)yt(x)λ(x,y(x))/s(x,y(x))2 (5.2.21)

and that

ak(x,y(x)) = 0 for every x, if t+ 2 ≤ k ≤ r − 1. (5.2.22)

In particular {t+ 2, . . . , r − 1} ⊆ At.
Moreover, equation (5.2.19) leads to

α
(t)
t (xt−1,y(xt−1)) = 1 > γ and α

(t)
k (xt−1,y(xt−1)) = 0 if k > t,

which establishes part (b’) for k = t. So, in the verification of part (b’) of this assumption,
only the case k = t+1 remains. Note that this case will follow if we can show that the nonzero
derivative of smallest order of α(t)

t+1 is positive, which, by the definition of α(t)
t+1, amounts to

showing that the nonzero derivative of smallest order of yt is positive at x = xt−1.

This will be derived from our verification of part (c’). We have already seen that {t +
1, . . . , r − 1} ⊆ Yt. Also, if k ≤ t− 1, we have yk(xt−1) > γ by the choice of γ in (5.2.16), so
item (i) in part (c’) of the assumption is satisfied. Now, we look at the case k = t. We shall
show that

dyt
dx

(xt−1) = −α(t−1)
t−1 (xt−1,y(xt−1)) = 0 and

d2yt
dx2

(xt−1) > 0.

This implies that the case k = t satisfies part (c’) due to item (ii), possibly by decreasing
the value of γ. For the first part, note that, by equation (5.2.18) and by the fact that
α

(t)
k (xt−1) = 0 for k > t,

dyt
dx

(xt−1) =
r−1∑

k=t

α
(t)
k (xt−1,y(xt−1))φ(k)

t (xt−1,y(xt−1)) = φ
(t)
t (xt−1,y(xt−1))

=
(r − t+ 1)(r − t)yt−1(xt−1)λ(xt−1,y(xt−1))

s(xt−1,y(xt−1))2
− 1

= −α(t−1)
t−1 (xt−1,y(xt−1)) = 0.

The last equality comes from our assumption on the active termination condition of Phase
t− 1. For the second part, we have

d2yt
dx2

=
r−1∑

k=t

dα
(t)
k

dx
φ

(k)
t + α

(t)
k

dφ
(k)
t

dx
.

Since, at x = xk−1, we have already seen that α(t)
k = 0 for k > t and that

dα
(t)
k

dx
= 0 for
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k > t+ 1, this becomes

d2yt
dx2

(xt−1) =
dα

(t)
t

dx
(xt−1)φ(t)

t (xt−1,y(xt−1)) +
dα

(t)
t+1

dx
(xt−1)φ(t+1)

t (xt−1,y(xt−1))

+ α
(t)
t (xt−1,y(xt−1))

dφ
(t)
t

dx
(xt−1,y(xt−1)).

On the one hand,

φ
(t)
t (xt−1,y(xt−1)) = −α(t−1)

t−1 (xt−1,y(xt−1)) = 0.

On the other hand,
dα

(t)
t+1

dx
=

d

dx

(r − t)at+1

1 +
∑r−1

l=t+1(l − t)al
.

By (5.2.21), if we calculate the derivative of the right-hand side using the quotient rule, every
term multiplies the function yt or its first derivative, and they both vanish at the point xt−1.
This implies

d2yt
dx2

(xt−1) = α
(t)
t (xt−1,y(xt−1))

dφ
(t)
t

dx
(xt−1,y(xt−1))

=
dφ

(t)
t

dx
(xt−1,y(xt−1))

=
d

dx

(r − t)(r − t+ 1)yt−1(xt−1)λ(xt−1,y(xt−1)
s(xt−1,y(xt−1))2

= −
(

1 +
yt−1(xt−1)λ(xt−1,y(xt−1)

s(xt−1,y(xt−1))2

)
dα

(t−1)
t−1

dx
(xt−1) > 0,

as required. In the previous calculations, we used the definitions of α(t) and α(t−1) given in
(5.2.19) and the definition of φ(t) in (5.2.2). We also use the termination condition of Phase
t − 1 and the fact that yt and its first derivative vanish at xt−1. Note that, as mentioned
above, this also verifies the case k = t+ 1 of part (b’) in the assumption.

To conclude the verification of part (c’) of Assumption 4.5.2, we look at the case k = r.
Note that

dyr
dx

=
r−1∑

l=t

α
(t)
l (r − l)λyr−1

s2
≡ 0.

If t < r − 1, then yr−1 is identically zero and r ∈ Yt. If t = r − 1, our result in the case k = t

implies that the function yr and its derivatives of order one and two vanish at x = xt−1, but
its third derivative is positive at this point.

Finally, part (d’) is an immediate consequence of the induction hypothesis assumed about
γ at the end of Phase t − 1, given by equations (5.2.16) and (5.2.17). This concludes the
verification of Assumption 4.5.2 at the point xt−1. If Phase t is not the final phase, we may
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again redefine γ > 0 as a smaller positive number, if necessary, to ensure that

(i) γ < yk(xt) < 1− γ, if k /∈ Yt;

(ii)
dα

(t)
t

dx
(xt) ≤ −γ.

Moreover, in the above calculations, we established that

yk(xt) > γ, if k ≤ t, and yk(xt) = 0, if k > t,

validating the induction hypothesis given in equations (5.2.16) and (5.2.17).

Let b denote the index of the final phase, as defined in Section 4.5. Since γ is redefined
a finite number of times in the previous discussion, always being assigned a positive value,
there exists γ > 0 for which the assumptions hold. As a consequence, by the discussion in
Section 4.5, there is a solution to the following systems of differential equations, defined for
t ∈ {1, . . . , b};

dyk
dx

=
r−1∑

l=t

α
(t)
l (x,y(x))φ(l)

k (x,y(x)), 0 ≤ k ≤ r, if x ∈ [xt−1, xt),

yk(xt−1) = βt−1,k, 0 ≤ k ≤ r,

where β0,0 = 1, β0,k = 0, if k > 0, and, if t > 0,

βt,k = lim
x→x−t

yk(x),

with the points x1, x2, . . . , xb being defined through the termination conditions. Furthermore,
the solutions are within the region Ωγ,M for every x in the interval [0, xb], while α(t)

k (x,y(x))
lies in [0, 1], for every t ∈ {1, . . . , b}, every k ∈ {t, . . . , r − 1} and every x ∈ [xt−1, xt).

We shall call the constants defined above x0
0 = 0 < x0

1 < · · · < x0
b . These constants, the

number of phases b and the functions y0(x) = (y0
k(x))rk=0 will appear in Property (b, p′0,x)

with p0 = 0, for some constant p′0 > 0 and functions x1, . . . , xb. Before showing that these can
determined, we discuss the dependency of b and x0

1, . . . , x
0
b on γ. On the one hand, it is clear

that, by choosing a smaller value of γ, there is no change in the values of x0
1, . . . , x

0
b−1, since

all the conditions and termination conditions would be verified in the same way. However,
if the only active termination condition at x0

b is y0(x0
b) = γ, it may be the case that, by

decreasing γ, the solution of the differential equation could be extended beyond x0
b . It is even

conceivable that a different termination condition would then become active, which could
potentially originate a new phase. However, if b(γ) denotes the index of a final phase for a
particular choice of γ, the limit

b = lim
γ→0+

b(γ), (5.2.23)
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is well defined, since b(γ) is bounded above by r − 1 and is non-decreasing as γ decreases.
Moreover, since b(γ) is integer-valued, we know that this limit is achieved for γ sufficiently
small. For this value of b, we may also define

λ(r) = lim
γ→0+

x0
b(γ), (5.2.24)

since x0
b(γ) is again non-decreasing as γ decreases, and it is easy to see that 1 is an upper

bound on its value.

Second part In order to determine the functions x1, . . . , xb for which the basic system of
differential equations satisfies Property (b, p′0,x), we discuss the dependency of the system of
differential equations (5.2.1) upon its initial conditions, as we now look at this system with
initial conditions, at x = 0, given by β0,k = w0,k(p0), where p0 is now a small positive real.
Recall that w0 is defined in (3.2.1) with parameters d = 1 and ` = 1.

The following result will be especially useful. A proof of this result is standard, by the
method of successive approximations (see [33], Theorem 2, Chapter 2, or [34], Section 3.22),
and therefore is omitted.

Lemma 5.2.1 Suppose that y satisfies the equations
dwi
dx

= fi(x,w) in a bounded open set

Ω ⊆ Rn+1 with initial conditions y(0) = y0 = y0(ε). Let z denote another solution, with
initial conditions z(0) = z0 = z0(ε). Suppose that the functions fi are Lipschitz on Ω and
|y0(ε)− z0(ε)| → 0 as ε→ 0. Let

x1 = inf{x : (x,y(x)) /∈ Ω or (x, z(x)) /∈ Ω}.

Then |y(x)− z(x)| → 0 uniformly for x ∈ [0, x1).

Let p0 > 0 and consider the system of differential equations

dy
(p0)
k

dx
= F

(1)
k (x,y(p0)(x))

y
(p0)
k (0) = w0,k(p0),

(5.2.25)

given in Definition 5.1.1 with this value of p0 and t = 1. Also consider the region Ωγ,µ,M ,
where γ, µ and M are defined as in the proof of existence of a solution in the case p0 = 0.

Note that, as functions of p0, the initial conditions w0,k(p0) are continuous. Moreover, it
is clear that, if p0 is sufficiently small, they are interior points of Ωγ,µ,M , since w0,k(0) lies in
the interior of this region.

So, we may again uniquely extend the solution yp0 to (5.2.25) arbitrarily close to the
boundary of Ωγ,µ,M through Lemma 2.5.1, as we did in the case p0 = 0.

To show that this solution can be extended so as to satisfy the properties of Property
(b, p′0,x), we now verify that, if p0 > 0 is sufficiently small, Assumption 4.5.1, with the
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probability p0 changed from 0 to a small positive constant, also holds for yp0 at x = 0. The
continuity of the initial conditions immediately implies that this is the case for part (a), for
item (i) of parts (b) and (c), and for part (d).

So, the only parts of Assumption 4.5.1 that require additional discussion involve the
definition of the indices in Y1 and A1 or item (ii) in parts (b) and (c). In the analysis of the
case p0 = 0, these assumptions only appear in the verification of the facts that

1.
dα

(1)
k

dx
≡ 0 if k > 2,

2.

α
(1)
2 (0,y0(0)) = 0 and

dα
(1)
2

dx
(0) > γ,

3.
dy0
k

dx
≡ 0, if k > 1,

4.

y0
1(0) = 0 and

dy0
1

dx
> γ.

For the items 3 and 4, note that, because α(1) is defined so as to imply that

dyp0

k

dx
=

r−1∑

l=1

α
(1)
l φ

(l)
k ≡ 0 (5.2.26)

for 1 < k ≤ r − 1, we still have {2, . . . , r − 1} ⊆ Y1. Also,

dyp0
r

dx
=

r−1∑

l=1

α
(1)
l (r − l)λyp0

r−1

s2
,

with

s = s(x,y) =
r−1∑

k=0

(r − k)yk

and

λ = λ(x,y) =
r−2∑

k=0

(r − k)(r − k − 1)yk.

So, this derivative is positive at x = 0 when the initial conditions are given with p0 > 0. More
generally, we must have yp0

r (x) ≥ 0 for every x for which s(x,yp0(x)) > 0, and yp0
r−1(x) and

λ(x,yp0(x)) are nonnegative. Finally, for p0 > 0, we have yp0
1 > 0, while, by continuity of the

initial conditions, we still have
dyp0

1

dx
> γ.



112 CHAPTER 5. INDEPENDENT SETS

We now look at the conditions involving α(1)
k for k ≥ 2. From equation (5.2.8), we know

that, for these values of k,

α
(1)
k =

(r − 1)ak
1 +

∑r−1
l=2 (l − 1)al

, (5.2.27)

where

ak = ak(x,y) = −(r − k)yk/s+ [(r − k + 1)yk−1 − (r − k)yk]λ/s2.

By definition, for (x,y) ∈ Ωγ,M , we have the bounds

rγ = s(r) ≤ s(x,y) ≤ S(r) =
r(r − 1)

2

and

(r − 1)(r − 2)γ = λ(r) ≤ λ(x,y) ≤ Λ(r) =
r−2∑

k=0

(r − k)(r − k − 1).

On the one hand, this implies that, for (x,y) ∈ Ωγ,M ,

ak = ak(x,yp0) ≥ (r − k + 1)λ(r)
S(r)2

yp0

k−1 −
(r − k)(S(r) + Λ(r))

s(r)2
yp0

k . (5.2.28)

On the other hand, for k ≥ 1,

yk(0) = w0,k = (1− p0)r+1

(
r

k

)
(1− p0)(r−1)(r−k)

(
1− (1− p0)r−1

)k
,

which is a polynomial in the variable p0 with minimum degree k whose coefficient of order
k is positive. So, for k ≥ 2, the lower bound on ak(0,yp0(0)) provided by equation (5.2.28)
is a polynomial in p0 with minimum degree k − 1 whose coefficient of order k is positive. In
particular, if p0 is sufficiently small, ak(0,yp0(0)) > 0 for every such k.

However, for k > 2, we also know that the values of yk are constant over the interval
of definition of the solution to (5.2.25), since, by equation (5.2.26), their derivatives are
identically zero in this interval. Hence, these lower bound also imply that ak(x,yp0(x))) > 0
for every k > 2 and every x in the interval of definition of a solution to (5.2.25). We conclude
that α(1)

k (x,yp0(x))) > 0 in this interval. Finally, in the case k = 2, we have, for p0 > 0
sufficiently small, that

α
(1)
2 (0, yp0(0)) > 0 and

dα
(1)
2

dx
(0) > γ,

where the first part follows from the previous argument and the second part is a consequence
of the continuity of the initial conditions.

This concludes the verification of Assumption 4.5.1 at x = 0, with the initial probability
p0 = 0 being replaced by a small positive value. As a consequence, by the same argument
as in the case p0 = 0, a solution to (5.2.25) can be extended up to xp0

1 , the infimum over all
x > 0 for which at least one of the termination conditions in (4.5.7) holds for (x,yp0(x)).
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We now argue that we may choose p′0 so that, for 0 < p0 ≤ p′0, any active termination
condition at (xp0

1 ,y
p0(xp0

1 )) is also an active termination condition at (x0
1,y

0(x0
1)) in the case

p0 = 0.
Firstly, any of the termination conditions that appear at (x0

1, y
0(x0

1)), yet are not active
at this point, cannot be active at (xp0

1 , y
p0(xp0

1 )) for p0 sufficiently small, because, by Lemma
5.2.1, the functions yp0(x) and y0(x) are arbitrarily close to each other for x in the interval
[0,min{x0

1, x
p0
1 }].

Secondly, note that there could be termination conditions arising in the case p0 > 0 which
were not present for p0 = 0. However, these conditions are only related to indices that are
in the sets A1 and Y1 with respect to p0 = 0, but are not in these sets when p0 > 0. In our
particular case, this happens for the indices 3, . . . , r − 1 in A1 and for the index r in Y1. So,
we have to show that, for p0 sufficiently small, Phase 1 does not terminate because

α
(1)
k (xp0

1 ,y
p0(xp0

1 )) = 0

for some k ∈ {3, . . . , r − 1} or because yp0
r (xp0

1 ) = 0. For α(1), this is an easy consequence of
equations (5.2.27) and (5.2.28), while the derivative of yp0

r has been shown to be nonnegative.
As a consequence, we may indeed choose p′0 so that, for 0 < p0 ≤ p′0, any active termination

condition at (xp0
1 ,y

p0(xp0
1 )) is also active at (x0

1,y
0(x0

1)) in the case p0 = 0. In particular, if
Phase 1 is not the final phase with respect to p0 = 0, the only active termination condition
at (xp0

1 ,y
p0(xp0

1 )) is

α
(1)
1 (xp0

1 ,y
p0(xp0

1 )) = 0 and
dα

(1)
1

dx
(xp0

1 ) > 0.

We may now apply Lemma 5.2.1 again to deduce that

lim
p0→0+

xp0
1 = x0

1.

Note that the above discussion also implies that, for x in the interval [0, xp0
1 ], we must

have yp0

k (x) > 0, since, for p0 > 0, all the components of yp0(0) are strictly positive, and, for
p0 ≤ p′0, the termination conditions yp0

k (x) = 0 do not hold for x in the interval [0, xp0
1 ), for

every ξ > 0, and could only hold at x = xp0
1 if Phase 1 were the final phase.

The behaviour of yp0 in the next phases can be analysed similarly. That is, we again derive
it from the information we have about the solution in the case p0 = 0, using Lemma 2.5.1 and
Lemma 5.2.1. Most of the details may be verified in exactly the same way, and therefore are
omitted. However, one case is different. Indeed, if xt−1 is the point of termination of Phase
t− 1, and this phase is not final, then we have shown in the case p0 = 0 that

dνy0
t

dxν
(xt−1) = 0, if ν ≤ 1 and

d2y0
t

dx2
(xt−1) > γ.

In the case p0 > 0, since the derivative of yp0
t can be inductively shown to vanish in the

intervals [xp0
s−1, x

p0
s ] for s ≤ t− 1, we have

yp0
t (xt−1) = yp0

t (0) > 0.



114 CHAPTER 5. INDEPENDENT SETS

Recall that
dyp0
t

dx
=

r−1∑

k=t

α
(t)
k φ

(k)
t . (5.2.29)

Now, the definition of α(t) in equation (5.2.19) implies that

α
(t)
t (xp0

t−1,y
p0(xp0

t−1)) =
1−∑r−1

l=t+1(r − l)al(xp0
t−1, y

p0(xp0
t−1))

1 +
∑r−1

l=t+1(l − t)al(xt−1, y(xt−1))

=
(r − t)at(xp0

t−1, y
p0(xt−1))

1 +
∑r−1

l=t+1(l − t)al(xp0
t−1, y(xp0

t−1))
,

where the last step uses the fact that the quantity

1−
r−1∑

l=t

(r − l)al(xp0
t−1, y

p0(xp0
t−1))

is equal to the numerator of α(t−1)
t−1 (xp0

t−1,y
p0(xp0

t−1)), which is equal to zero by the termination
condition of Phase t − 1. By the definitions of φ(t)

k and of ak, given in (5.2.2) and (5.2.6),
respectively, we have

φ
(t)
t = −1 + (r − t)at and φ

(k)
t = (r − k)at.

So, if we multiply the right-hand side of equation (5.2.29) by the positive quantity

1 +
r−1∑

l=t+1

(l − t)al,

we obtain

(r − t)at (−1 + (r − t)at) +
r−1∑

k=t+1

(r − t)ak(r − k)at

= −(r − t)at
(

1−
r−1∑

k=t

(r − k)ak

)
.

But the term within brackets is precisely the numerator of α(t−1)
t−1 , hence the first derivative of

yp0
t vanishes at xp0

t−1, as claimed. Finally, by continuity, we may again choose p0 sufficiently
small so as to have

d2y0
t

dx2
(xt−1) > γ,

concluding the verification of our property. Applying the argument used in the case t = 1,
we may again choose p′0 so that, for 0 < p0 ≤ p′0, any active termination condition at
(xp0
t−1,y

p0(xp0
t−1)) is also an active termination condition at (x0

t−1,y
0(x0

t−1)) in the case p0 = 0.
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In particular, for p′0 sufficiently small and p0 ∈ [0, p′0], we find functions yp0(x) = (yp0

k (x))rk=0

such that, for t ∈ {1, . . . , b},

dyp0

k

dx
= F

(t)
k (x,yp0(x)) for x ∈ [xp0

t−1, x
p0
t ), k = 0, . . . , r,

yp0

k (xp0
t−1) = βp0

t−1,k,

where the initial conditions βp0

0,k are defined as in Definition 5.1.1, and the constants xp0
0 =

0 < · · · < xp0

b are defined through the termination conditions.
Now, recall that, for p0 > 0, all the components of yp0(0) are strictly positive. Moreover,

for p0 ≤ p′0, none of the termination condition yp0

k (x) = 0, k ∈ {0, . . . , r}, hold for x in the
interval [0, xp0

b ], except possibly at x = xp0

b . Thus, for any ξ > 0,

γp0

ξ = inf{yk(x) : x ∈ [0, xp0

b − ξ], k ∈ {0, . . . , r}} > 0.

With the values of b, p′0 and xp0
t defined as above, we are now ready to define functions

x1, . . . , xb : [0, p′0]→ [0, 1]

by setting

xt(p0) = xp0
t , for every t ∈ {1, . . . , b} and every p0 ∈ [0, p′0].

By the work done above, it is clear that, for these values of b and p′0, and these functions
x1, . . . , xb, Property (b, p′0,x) is satisfied.

5.3 A lower bound on the independence ratio

We shall now combine the results of the previous two sections to give new lower bounds λ(r)
on the independence ratio of r-regular graphs with large girth.

In the previous section, we proved that there exist a positive integer b ∈ {1, . . . , r − 1}, a
constant p′0 ∈ (0, 1] and functions

x1, . . . , xb : [0, p′0]→ [0, 1]

for which the system of differential equations in (5.1.7) satisfies Property (b, p′0,x). To obtain
these values, we first showed that exists γ > 0 for which the solution of (5.1.7) with initial
conditions given with p0 = 0 could be extended until a point xb(0), with the points of
phase transition x1(0), . . . , xb−1(0) being determined by means of the termination conditions.
We then proved that, with this value of γ, we could find a constant p′0 > 0 and functions
x1, . . . , xb : [0, p′0]→ [0, 1] for which Property (b, p′0,x) holds.

For each r ≥ 3, consider the positive integer b ∈ {1, . . . , r− 1} defined in (5.2.23) and the
constant λ(r) defined in (5.2.24). We have the following theorem.
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Theorem 5.3.1 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every r-regular
graph G on n vertices with girth greater than or equal to g satisfies α(G) ≥ (λ(r)− δ)n.

Proof Let r ≥ 3 and let δ′ > 0. Let γ > 0 such that, in the definition of λ(r), we have

|xb(0)− λ(r)| ≤ δ′

2
.

Consider p′0 ∈ (0, 1] and the functions

x1, . . . , xb : [0, p′0]→ [0, 1],

as defined in the previous section, for which the system of differential equations in (5.1.7)
satisfies Property (b, p′0,x). By Theorem 5.1.2, there exists g > 0 such that every r-regular
graph G on n vertices with girth greater than or equal to g satisfies

α(G) ≥
(
xb(0)− δ′

2

)
n ≥ (λ(r)− δ′)n,

as required.
Now, it is easy to see that being an independent set is a vertex monotone property, as

defined in Chapter 2. In particular, Lemma 2.1.2 and Lemma 2.1.4 immediately lead to the
following results.

Corollary 5.3.2 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every graph G

on n vertices with maximum degree r and girth greater than or equal to g satisfies α(G) ≥
(λ(r)− δ)n.

Corollary 5.3.3 Let δ > 0 and r ≥ 3. Then a random r-regular graph G on n vertices a.a.s
satisfies α(G) ≥ (λ(r)− δ)n.

In the case of random r-regular graphs, the numbers λ(r) coincide with the bounds given by
Wormald in [56]. The work done here provides a new proof of the validity of these bounds,
the first proof of this result that does not rely on sharp concentration.

Now, as seen in the previous section, the numbers λ(r) are defined in terms of the system
of differential equations (5.1.7). We “solved” the system numerically, without using careful
error bounds, but just apparent good convergence as the step size was made smaller. The
points of phase transition were determined by the termination conditions, as in Section 5.2.
However, since the points of phase transition are not determined exactly, we also verified that,
if we slightly perturb the points in which there is transition from one differential equation
to the next, the overall change in the solutions was very small. Furthermore, we observed
that, in a small interval in which a phase transition seems to occur, the values given by the
numerical calculations suggest that the remaining conditions are “far” from being satisfied,
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Table 5.3.1: Lower and upper bounds on α(G)/n.

r λ1(r) λ2(r) λ(r) Λ(r)

3 0.4139 0.3750 0.4328 0.4554

4 0.3510 0.3333 0.3901 0.4163

5 0.3085 0.3016 0.3566 0.3844

6 0.2771 0.2764 0.3296 0.3580

7 0.2528 0.2558 0.3071 0.3357

8 0.2332 0.2386 0.2880 0.3165

9 0.2169 0.2240 0.2716 0.2999

10 0.2032 0.2113 0.2573 0.2852

hence we have numerically verified that the appropriate termination condition is active at the
end of the phase, which ensures that the next phase does start, as defined in the framework
of Section 4.5.

The numerical lower bounds on λ(r) are given in Table 5.3.1 for some values of r. As a
remark, we observe that, for all values of r for which a numerical bound was calculated, the
final phase of the process was Phase r−2. The numbers γ1(r) and γ2(r) in this table approx-
imate the lower bounds obtained by Shearer [50] and Lauer and Wormald [39], respectively,
while the numbers Λ(r) are the best upper bounds known to date, due to McKay [44].

An alternative numerical approach to obtain rigorous lower bounds is as follows. Since
our system of differential equations is well-behaved, in the sense that the derivatives may be
easily bounded (with the exception of a small interval close to the end of the process, for
which the function s = s(x,w) in the denominator may approximate zero), we could solve
this system using interval arithmetic. That is, we could use a numerical method that, at
every step, gives upper and lower bounds on the actual value of the solution at that point.
At the same time, this would allow us to obtain upper and lower bounds on the values of
the functions involved in the termination conditions. which allows us to identify an interval
in which a phase transition has to occur. So, if our bounds show that all but one of the
termination conditions cannot be satisfied in this interval, we can undoubtedly determine
which termination condition became active first and, therefore, we may decide whether the
final phase of the algorithm was reached or the next phase begins. This has been applied by
Shi and Wormald in [51] to the solution of a system of differential equations arising in the
analysis of an algorithm for colouring random regular graphs. In this work, they also had to
determine points of phase transition. For more information concerning interval arithmetic,
the reader is referred to [43]. A similar approach has been investigated in preparation for this
thesis, but the bounds obtained were not very accurate.





Chapter 6

Induced forests

In Chapter 2, we have found lower bounds on the maximum number of vertices inducing
a forest in regular graphs with large girth. The simple algorithm presented there has been
generalised by the class of locally greedy algorithms. Indeed, a locally greedy algorithm
coincides with Algorithm 2.2.1 if we set its parameters to be d = 1 and ` = 2, and we fix the
probabilities as follows. The initial probability is a constant p0 ∈ [0, 1] and, for some constant
p ∈ [0, 1], the remaining probabilities are pi,0,k = 0 and pi,1,k = p, for every value of k. We
observe that this algorithm can be analysed using the framework of Chapter 4 just as the
simple locally greedy for independent sets was analysed in Section 4.3, producing the lower
bounds stated in Theorem 2.1.1.

These lower bounds will be improved in this chapter. The idea here is to define the prob-
abilities assigned to the locally greedy algorithm in a cleverer way, which strongly resembles
the work done for independent sets in Chapter 5.

6.1 A generalised system of differential equations

As with independent sets in Chapter 5, we shall classify the operations performed by the
algorithm as different types and then rank them according to their benefit to the algorithm.
We then look for probabilities in such a way that the ensuing locally greedy algorithm gives
priority to operations with higher rank.

The type of an operation performed by this algorithm will again be defined in terms of
the number of purple and yellow neighbours of a vertex added by the algorithm to the set of
purple vertices, so that, for an r-regular graph, the operations are labelled by the set

I = {(j, k) : 0 ≤ j ≤ 1, 0 ≤ k ≤ r − j}. (6.1.1)

However, not all the possible types of operations will be performed by the algorithm. To
understand why this is the case, we go back to the definition of Algorithm 3.1.1. Recall that
there is an initialization step in which all vertices are chosen with some fixed probability p0.
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The chosen vertices are coloured purple, while the remaining vertices are coloured white if
they have at most one purple neighbour and yellow otherwise. In a subsequent step, call it
Step i, we choose each white vertex v with a given probability pi,j,k, where j is the number
of yellow neighbours of v and k is the number of purple neighbours of v. Again, the chosen
vertices become purple, while white vertices turn yellow if their number of purple neighbours
becomes larger than 1.

In terms of induced forests, the set P of purple vertices is precisely the set of vertices
inducing the forest, while the set of yellow vertices corresponds to the set of vertices that will
not be added to this induced forest because their addition may create a cycle in the graph.
However, if all the purple neighbours of a yellow vertex lie in different components of G[P ],
the addition of this vertex would not create a cycle, but just merge two different components
of G[P ]. Unfortunately, our algorithms cannot identify whether this is the case, and so, as
a result, even yellow vertices merging two components are not allowed to be added to the
induced forest and, although these extra components might lead to nonminimal forests, there
is nothing that can be done about this.

Given that the extra components are wasteful, priority should be given to white vertices
adjacent to a purple vertex. In fact, we shall require that only white vertices with a purple
neighbour are added to the set of purple vertices after the initial step, that is, pi,0,k is set to
be 0 for every k ∈ {0, . . . , r}. Note that, by not choosing white vertices that are not adjacent
to purple neighbours, we may reach a point in which there are still white vertices, but none of
them are adjacent to purple. For instance, this is expected to happen in the simple algorithm
for induced forests in Chapter 2, and we analysed the “leftover” white vertices separately.
However, we shall assign probabilities pi,j,k to a local greedy algorithm in a way such that
this does not seem to occur, as indicated by the analysis of the algorithm that we will carry
out.

Moreover, white vertices that do not have any white neighbours are also not selected,
since they can be dealt with at the end of the algorithm. This is because, on the one hand,
they will not become yellow due to the addition of a white vertex to P , since none of their
neighbours are white. On the other hand, they can all be added to the induced forest at the
end of the algorithm without creating cycles, since they have at most one purple neighbour
and are not adjacent to each other.

In light of the above, we say that the algorithm performs an operation of type t when it
chooses a white vertex adjacent to one purple vertex and to t yellow vertices. A vertex will be
assigned higher priority if it has more yellow neighbours, since the addition of such a vertex
to the the set of purple vertices is expected to create fewer new yellow vertices.

For 0 ≤ t ≤ r − 2 and (j, k) ∈ I, with I defined as in (6.1.1), we introduce functions
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φ
(t)
j,k : R2r+1 → R given by

φj,k
(t)(x,w) = −δk,tδj,1 − (r − j − k)(r − t− 1)wj,k/s(w)

+ (r − t− 1)
(r − j − k + 1)wj,k−1δk≥1 − (r − j − k)wj,k

s(w)2
λ(w)

+ δj,1(r − j − k + 1)(r − t− 1)wj−1,k/s(w),

(6.1.2)

where

s(w) = s(w0,0, . . . , w0,r, w1,0, . . . , w1,r−1) =
1∑

j′′=0

r−j∑

k′′=0

(r − j′′ − k′′)wj′′,k′′ (6.1.3)

and

λ(w) =
r−3∑

k′′=0

(r − k′′ − 1)(r − k′′ − 2)w1,k′′ . (6.1.4)

We note that, as in the case of independent sets, the formula for φ(t)
j,k may be deduced by

looking at the rate of change of the number of vertices with j yellow neighbours and k purple
neighbours when the algorithm performs operation of type t. Also, since the value of t ranges
from 0 to r− 2, and the first phase applies operations of type 0, it is convenient to refer to it
as Phase 0.

Now, the proportion α
(t)
k of operations of type k performed by the algorithm while in

Phase t, for a fixed t ∈ {0, . . . , r − 2}, is given by the solution to the linear system (4.4.6)
with our choice of functions φ(t)

j,k, so that

α
(t)
k (x,w) =





1−∑r−2
l=t+1(r − l − 1)al

1 +
∑r−2

l=t+1(l − t)al
, if k = t

(r − t− 1)ak
1 +

∑r−2
l=t+1(l − t)al

, if k > t.

(6.1.5)

Here,

ak = ak(x,w) = −(r − k − 1)w1,k/s+ (r − k)w0,k/s+ [(r − k)w1,k−1 − (r − k − 1)w1,k]λ/s2,

with s = s(x,w) and λ = λ(x,w) defined as in (6.1.3) and (6.1.4), respectively.
We now define a basic system of differential equations, as in the case of independent

sets. For a fixed set of constants 0 = x−1 < x0 < · · · < xr−2, which represent the points of
phase transition in the algorithm, a phase t ∈ {0, . . . , r − 2} and a set of initial conditions
µt = (µt,j,k)(j,k)∈I ∈ R|I|+1, we consider the basic system of differential equations

dwj,k
dx

= F
(t)
j,k (x,w(x)) for x ∈ [xt−1, xt), (j, k) ∈ I,

wj,k(xt) = µt,j,k,

(6.1.6)
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where

F
(t)
j,k (x,w) =





r−2∑

l=0

α
(t)
l φ

(l)
j,k t ≤ r − 3

φ
(r−2)
k (x,w), t = r − 2

(6.1.7)

with functions φ(l)
j,k defined as in (6.1.2) and α

(t)
k given by equation (6.1.5), if k ≥ t, and by

α
(t)
k (x,y) = 0, if k < t.

Now, to devise a locally greedy algorithm for induced forests whose performance ap-
proximates the solution to the system of differential equations in (6.1.6), we shall again use
Property (b, p′0,x).

Definition 6.1.1 (Property (b, p′0,x)) Let b ∈ {0, . . . , r − 2} and p′0 ∈ (0, 1]. With respect
to a vector x of fixed functions

x0, . . . , xb : [0, p′0]→ [0, 1],

where 0 < x0(p0) < x1(p0) < · · · < xb(p0), for every p0, we say that the system of differential
equations (6.1.6) satisfies Property (b, p′0,x) if the following holds. For p0 ∈ [0, p′0], there are
bounded functions yp0(x) = (yp0

j,k(x))(j,k)∈I defined for x in the interval [0, xb(p0)) satisfying,
for t ∈ {0, . . . , b},

dyp0

j,k

dx
= F

(t)
j,k (x,yp0(x)), (j, k) ∈ I, for x ∈ [xt−1(p0), xt(p0)),

yp0

j,k(xt−1(p0)) = βp0

t−1,j,k, (j, k) ∈ I.
(6.1.8)

Here, the functions F (t)
j,k are defined as in (6.1.7) and βp0

t,j,k is defined as follows. If t = −1, it
is equal to the initial condition w0,j,k(p0) defined in equation (3.2.1) with d = 1 and ` = 2. If
t ≥ 0,

βp0

t,j,k = lim
x→xt(p0)−

yp0

j,k(x).

Moreover, the following additional properties hold.

1. For x in the interval [xt−1(p0), xt(p0)), we have 0 ≤ α
(t)
k (x,yp0(x)) ≤ 1 for every k ∈

{t, . . . , r − 2}.

2. Given p0 ∈ (0, p′0] and ξ > 0, there exists γp0
ε > 0 such that

γp0
ε < yp0

j,k(x) < 1− γp0
ε

for every x ∈ [0, xb(p0)− ξ] and every (j, k) ∈ I. In particular, (x,y(x)) ∈ Ωγ
p0
ε ,Mp0 for

every x ∈ [0, xb(p0)− ξ], where Mp0 is an upper bound on the functions yp0

j,k.
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3. For each t ∈ {0, . . . , r−2}, limp0→0+ xt(p0) = xt(0), and, for every ξ > 0, |yp0

j,k − y0
j,k| → 0

uniformly in the interval [0, x0
b − ξ] as p0 → 0+.

The following theorem establishes that, if the system of differential equations in (6.1.6)
satisfies Property (b, p′0,x) for some b, p′0 and x, we may derive bounds on the minimum
number of vertices in a largest induced forest of a regular graph with sufficiently large girth,
where the bounds depend on the values of b, p′0 and x. A “good” choice of parameters will
be defined in Section 6.2.

Theorem 6.1.2 Let b ∈ {0, . . . , r − 2} and p′0 ∈ (0, 1], and consider functions

x0, . . . , xb : [0, p′0]→ [0, 1]

for which the basic system of differential equations defined in equation (6.1.6) satisfies Prop-
erty (b, p′0,x), and let y = y(x) be the solution to this system. Then, for δ > 0 and r ≥ 3,
there exists g > 0 such that every r-regular graph G on n vertices with girth greater than or
equal to g satisfies

τ(G) ≥ (xb(0) + y0,r(xb(0)) + y1,r−1(xb(0))− δ)n,

where y = y(x) is a solution to the system of differential equations (6.1.8) with initial condi-
tions given with p0 = 0.

Proof Let δ′ > 0. By item 3 in the definition of Property (b, p′0,x), we may choose p0 with
the property that |xb(p0)− xb(0)| < δ′/8. Also, if we fix ξ = δ′/8, the constant p0 may be
chosen as to further satisfy

|yp0
0,r(xb(p0)− ξ)− y0,r(xb(0))| < δ′

8
and |yp0

1,r−1(xb(p0)− ξ)− y1,r−1(xb(0))| < δ′

8
,

by item 3 of Property (b, p′0,x) and by continuity of the functions y0,r and y1,r−1.
As a consequence, we have

|xb(p0)− ξ + y0,r(xb(p0)− ξ) + y1,r−1(xb(p0)− ξ)− xb(0)− y0,r(xb(0))− y1,r−1(xb(0))| < δ′

2
.

As in the case of independent sets, we may now define p̂k : R→ [0, xb(p0)− ξ] by

p̂j,k(x) =





α
(t)
k (x,y(x))
yp0

1,k(x)
, if j = 1, t ≤ k, x ∈ [xt−1(p0), xt(p0)), t = 0, . . . ,min{b, r − 3}

1
yp0

1,r−2(x)
, if j = 1, k = b = r − 2 and x ∈ [xr−3(p0), xr−2(p0)),

0, in all other cases.

Items 1 and 2 in the definition of Property(b, p′0,x) imply that, if the constant

C >
1
γp0

ξ
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is fixed, we have 0 ≤ p̂j,k(x) < C, for every x ∈ [0, xb(p0)− ξ].
The functions F = (Fj,k)(j,k)∈I and E = (Ej,k)(j,k)∈I associated with the algorithm in the

case d = 1 and ` = 2 were obtained in (3.4.4). If pi,j,k = εp̂j,k(εi), they induce, in the sense of
Section 4.2, the following system of differential equations, for t ∈ {0, . . . , b};

dwj,k
dx

= f
(t)
j,k(x,w(x)), (j, k) ∈ I, for x ∈ [xt−1(p0), xt(p0)),

wj,k(xt−1(p0)) = βt,j,k, (j, k) ∈ I,
(6.1.9)

where

f
(t)
j,k(x,w) =

r−2∑

l=0

α
(t)
l (x,yp0(x))φ(l)

j,k(x,w),

and the initial conditions βp0

t,j,k are defined as follows. If t = −1, it is equal to the initial
condition w0,j,k(p0) defined in equation (3.2.1) with d = 1 and ` = 2. If t ≥ 0,

βp0

t,j,k = lim
x→xp0−t

yp0

j,k(x).

Note that the function yp0 = yp0(x) in the above equation is the solution of (6.1.8).
Recall that the equivalent theorem in the case of independent sets has been obtained by

applying the results of Section 4.2. In order to use a similar argument here, we need to check
the validity of the properties in Assumption 4.2.1.

The fact that Property (P3) is satisfied follows immediately from the solution to (6.1.9),
which coincides with the solution yp0 to (6.1.8) given by Property (b, p′0,x).

We look at the remaining properties of Assumption 4.2.1. For Property (P1), note that
the denominators of the coefficients of each polynomial Ej,k are powers of the term s(x,w)
defined in (6.1.3), and that s(x,w) has no zeroes in the region Ωγ

p0
ξ ,Mp0 . So, the coefficients

of Ej,k do not have poles in Ωγ
p0
ξ ,Mp0 , and Property (P1) is satisfied.

Property (P2) also holds, since the functions φ(t)
j,k are Lipschitz in the region Ωγ

p0
ξ ,Mp0 and

the terms α(t)
l (x,yp0(x)) are continuous and bounded in [xt−1(p0), xt(p0)), and therefore each

f
(t)
j,k is Lipschitz in the region

Ωγ
p0
ξ ,Mp0 ∩ ([xt−1(p0), xt(p0))× R|I|).

This concludes the verification of Assumption 4.2.1 in this case. To simplify the notation, we
again refer to the interval [xb−1(p0), xb(p0)) even if the interval [xb−1(p0), xb(p0)− ξ] is really
meant.

We now consider a locally greedy algorithm with parameters d = 1 and ` = 2 and r, and
with initial probability p0. For 0 < ε < 1/C, suppose that the number of steps is

N =
⌊
xb(p0)− ξ

ε

⌋
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and the remaining probabilities are pi,j,k = εp̂j,k(iε).
With the same argument as in the proof of Theorem 5.1.2, we may show that there is

ε1 > 0 for which the solution wε
i to (4.2.5) cannot leave Ωγ

p0
ξ ,Mp0 for i ≤ N = b(xb(p0)− ξ)/εc

if 0 < ε < ε1, so

Nf = Nf (ε) =
⌊
xb(p0)− ξ

ε

⌋
.

We may now apply Theorem 4.2.4 with M = Mp0 , γ = γp0

ξ , m = b, xm = xb(p0) − ξ and
δ = δ′/2. This establishes the existence of 0 < ε < ε1 such that, if a locally greedy algorithm
is applied, with the probabilities given by this value of ε, to an r-regular graph G with girth
larger than 4N + 4, then the expected size of the induced forest returned satisfies

E|P̄ (ε)| ≥ n
(
p0(1− p0)r +

∫ xb(p0)−ξ

0
h(x, ŵ(x)) dx− δ′/2

)

= n

(
p0(1− p0)r +

∫ xb(p0)−ξ

0
dx− δ′/2

)

= n(p0(1− p0)r + xb(p0)− ξ − δ′/2),

where h(x) denotes the function
∑

(j,k)∈I p̂j,k(x)ŵj,k(x). The fact that h(x, ŵ(x)) = 1 follows
immediately from the fact that the systems of differential equation (6.1.8) and (6.1.9) have the
same solutions for a fixed p0. Now, we may obtain a larger induced forest by adding, to the set
P̄ , any vertices that are in W 0,r

N and W 1,r−1
N , since their addition does not create any cycles.

Now, the expected number of vertices in each of these sets are given by nŵ0,r(xb(p0) − ξ)
and nŵ1,r−1(xb(p0)− ξ), respectively. As a consequence, by the first moment principle, every
n-vertex, r-regular graph G with girth at least

g = g(ε) =
⌊

4(xb(p0)− ξ)
ε

⌋
+ 4

has an induced forest with at least

n
(
p0(1− p0)r + xb(p0)− ξ + ŵ0,r(xb(p0)− ξ) + ŵ1,r−1(xb(p0)− ξ)− δ′/2)

vertices. By our choice of p0, this leads to

α(G) ≥ n (xb(0) + y0,r(xb(0)) + y1,r−1(xb(0))− δ′) ,

concluding the proof of the theorem.

6.2 An appropriate choice of parameters

In this section, we shall how to find a positive integer b ∈ {1, . . . , r−1}, a constant p′0 ∈ (0, 1]
and functions

x1, . . . , xb : [0, p′0]→ [0, 1]
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so as to obtain a good bound for induced forests using Theorem 6.1.2. The discussion here
is completely analogous to the work done in Section 5.2. However, the system of differential
equations under consideration is now given in (6.1.6).

As before, the first part of our discussion analyses the system of differential equations in
(6.1.8) when the initial conditions are given with p0 = 0, while, in the second part, we derive
solutions to (6.1.8) with initial conditions given with respect to a small positive integer p0 by
analysing the sensitivity of this system with respect to its initial conditions.

First part We show that, if the initial conditions of the differential equations (6.1.8) are
defined with p0 = 0, a solution can be obtained through the framework of Section 4.5. For a
fixed r ≥ 3, let

I = {(j, k) ∈ Z2 : 0 ≤ j ≤ 1, 0 ≤ k ≤ r − j},

let i0 be the element (0, 0) and let the index set J of the variables associated with each
operation in the algorithm be given by

{(1, 0), (1, 1), . . . , (1, r − 2)}.

As in the definition of the functions F (t)
j,k in (6.1.7), we let the functions φ(t)

j,k be given by

φ
(t)
j,k(x,w) = −δk,tδj,1 − (r − j − k)(r − t− 1)wj,k/s(w)

+ (r − t− 1)
(r − j − k + 1)wj,k−1δk≥1 − (r − j − k)wj,k

s(w)2
λ(w)

+ δj,1(r − j − k + 1)(r − t− 1)wj−1,k/s(w),

(6.2.1)

which are the functions φ(t)
j,k defined in (6.1.2), where

s = s(x,y) =
1∑

j=0

r−1−j∑

k=0

(r − j − k)yj,k (6.2.2)

and

λ = λ(x,y) =
r−3∑

k=0

(r − k − 1)(r − k − 2)y1,k. (6.2.3)

Since, in this case, the basic operation of the first phase is j = 1 and k = 0, and the operations
undertaken by the locally greedy algorithm are determined by the value of k, we shall call
the first phase Phase 0 to simplify the use of the indices. Also, the endpoints of the phases
will be denoted 0 = x−1 < x0 < · · · < xr−2 so that Phase k terminates at the point xk.

As in the case of independent sets, we have to show that there exist constants M , γ and
µ for which the assumptions in Section 4.5 hold, that is, for which Assumption 4.5.1 holds at
x = 0 and Assumption 4.5.2 holds at the point x = xt−1, whenever xt−1 is the termination
point of Phase t− 1, and Phase t− 1 is not the final phase.
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Let M > 1, let 0 < γ < 1 be some fixed value, which may be redefined as a smaller
constant during the argument, and let

0 < µ <
rγ∑

(j,k)∈I\{(0,0)}(r − j − k)

be defined in terms of γ. This choice of µ ensures that the functions φ(t)
j,k are Lipschitz in

Ωγ,µ,M , since the term

s(x,y) =
1∑

j′′=0

r−j∑

k′′=0

(r − j′′ − k′′)yj′′,k′′ ,

which is the only term to appear as a denominator of the rational functions φ(t)
j,k(x,w), is

positive in Ωγ,µ,M .
Our first step is to verify that Assumption 4.5.1 is satisfied at the point x = 0. Recall

that we are looking for a solution to

dyj,k
dx

=
r−2∑

l=0

α
(0)
l (x,y(x))φ(l)

j,k(x,y(x)), (j, k) ∈ I,

y0,0(0) = 1, yj,k(0) = 0 if (j, k) 6= (0, 0),

(6.2.4)

where the vector α(0) = (α(0)
l )r−2

l=0 satisfies the linear system given by

M (0) u = v, (6.2.5)

where

u =




α
(0)
0

α
(0)
1

α
(0)
2

·
·

α
(0)
r−2




and v =




1
0
0
·
·
0




,

and the matrix M (0)(x,y(x)) is equal to M(r− 1, a1, . . . , ar−2), as defined in (5.2.5). For our
values of φ(t)

j,k, the elements ak are defined as

ak = ak(x,y) = −(r − k − 1)y1,k/s+ (r − k)y0,k/s

+ [(r − k)y1,k−1 − (r − k − 1)y1,k]λ/s2, for k = 0, . . . , r − 2,
(6.2.6)

with s = s(x,y) and λ(x,y) defined as in (6.2.2) and (6.2.3), respectively.
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In our current notation, Assumption 4.5.1 is given as follows.

Assumption 4.5.2 (Assumptions for Phase 0)

Consider the sets

A0 =

{
k ∈ {1, . . . , r − 2} :

dα
(0)
k

dx
≡ 0

}
and Y0 =

{
(j, k) ∈ I :

dyj,k
dx
≡ 0
}
.

The system of differential equations (6.2.4) satisfies

(a) |detM (0)(0,y(0))| > γ.

(b) α
(0)
0 (0) > γ, and for each k ∈ {1, . . . , r − 2} \A0, at least one of the following holds:

(i) α
(0)
k (0) > γ,

(ii) 0 ≤ α(0)
k (0), the set A0,k =

{
s ≥ 1 :

dsα
(0)
k

dxs
(0) 6= 0

}
is not empty and is such that

dνα
(0)
k

dxν
(0) > γ, where ν = minA0,k;

(c) for each (j, k) ∈ I \ Y0, at least one of the following holds

(i) yj,k(0) > γ,

(ii) 0 ≤ yj,k(0), the set Y0,j,k =
{
s ≥ 1 :

dsyj,k
dxs

(0) 6= 0
}

is not empty and is such that

dνyj,k
dxν

(0) > γ, where ν = min{s : s ∈ Y0,j,k};

(d)
dy0,0

dx
(0) < −γ.

Again using Proposition B.1.6,

| detM (0)(0,y(0))| =
∣∣∣∣∣(−1)r

(
1 +

r−2∑

l=1

l al(0,y(0))

)∣∣∣∣∣ = 1 > γ,

since yj,k(0) = 0 if (j, k) 6= (0, 0). This establishes part (a) of the previous assumption.
Moreover,

α
(0)
k (x,y) =





1−∑r−2
l=1 (r − l − 1)al

1 +
∑r−2

l=1 l al
, if k = 0

(r − 1)ak
1 +

∑r−2
l=1 l al

, if k > 0.
(6.2.7)

We now verify parts (b) and (c) of Assumption 4.5.1. The former is true for l = 0, since

α
(0)
0 (0,y(0)) = 1 > γ,
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and the latter holds for (0, 0) and (1, k), 1 ≤ k ≤ r − 2, since, by the initial conditions,
y0,0(0) = 1 > γ, while, by our choice of α(0),

dy1,k

dx
≡ 0,

hence {(1, 1), . . . , (1, r − 2)} ⊆ Y0, with Y0 defined in the statement of Assumption 4.5.1. So,

y1,k(x) = 0 for every k ∈ {1, . . . , r − 2}. (6.2.8)

Because of this, equation (6.2.6) leads to

a1(x,y(x)) = (r − 1)y0,1(x)/s(x,y(x)) + (r − 1)y1,0(x)λ(x,y(x))/s(x,y(x))2 (6.2.9)

and to
ak(x,y(x)) = (r − k)y0,k(x)/s(x,y(x)), if 2 ≤ k ≤ r − 2. (6.2.10)

We now look at part (c) of the assumption for the element (1, 0). By the initial conditions
in (6.2.4), we have y1,0(0) = 0. By equations (6.2.7) and (6.2.6), we also have α(0)

0 (0,y(0)) = 1
and α

(0)
k (0, 0) = 0 if k > 0. So,

dy1,0

dx
(0) =

r−2∑

l=0

α
(0)
l (0)φ(l)

1,0(0,y(0))

= φ
(0)
1,0(0,y(0)) =

r(r − 1)y0,0(0)
s(0)

− 1 = r − 2 > γ,

so that (1, 0) satisfies item (ii) in part (c) of Assumption 4.5.1 with ν = 1.
We now show that part (b) holds for α(0)

k , whenever k ∈ {1, . . . , r − 2}, while part (c)
holds for y0,k if k ≥ 1. The initial conditions in (6.2.4), together with equations (6.2.6) and
(6.2.7), implies that all these quantities are equal to zero at the point x = 0. The following
result will be useful for this purpose.

Claim 6.2.1 For 1 ≤ a ≤ r,
d2a−1y0,k

dx2a−1
(0) = 0, for every k ≥ a,

d2ay0,a

dx2a
(0) =

(2a− 1)!! r! (r − 1)a(Dλ(0,y(0)))a

(r − a)! s(0,y(0))2a
, and

d2ay0,k

dx2a
(0) = 0, if k > a,

(6.2.11)

where Dλ denotes the derivative
dλ(x,y(x))

dx
and (2a − 1)!! denotes the product of all odd

numbers smaller than or equal to 2a− 1, respectively.

Before proving this claim, we argue that it fulfils our objective. Clearly, it implies part
(c) of Assumption 4.5.1 for y0,k, k ∈ {1, . . . , r}, since it shows that its 2k-th derivative is
positive at x = 0, hence larger than γ, possibly by redefining γ as a smaller positive constant,
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while all derivatives of smaller order vanish at this point. By (6.2.6), the same fact is true for
ak, k ∈ {1, . . . , r − 1}, hence the same holds for α(0)

k by (6.2.7), leading to part (b) for these
values of k, and therefore concluding the verification of part (b). To conclude the verification
of part (c), we look at the case (1, r − 1). By (6.2.4) and the above claim, it is easy to see
that the nonzero derivative of smallest order of y1,r−1, which is the derivative of order 2r− 1,
is nonnegative.

We now prove the above claim by induction on a.

Proof of the Claim For a = 1,

d2a−1y0,k

dx2a−1
(0) =

dy0,k

dx
(0) =

r−2∑

l=0

α
(0)
l (0,y(0))φ(l)

0,k(0,y(0)) = φ
(0)
0,k(0,y(0)),

since α(0)
l (0,y(0)) = δ0,l. Now,

φ
(l)
0,k(x,y) = −(r − k)(r − l − 1)y0,k

s(0,y(0))

+
(r − k + 1)(r − l − 1)y0,k−1λ(0,y(0))

s(0,y(0))2
− (r − k)(r − l − 1)y0,kλ(0,y(0))

s(0,y(0))2
,

(6.2.12)

so every summand of φ(0)
0,k has a multiplicative factor of yl for some l ≥ k, or of λ, all of which

are zero at x = 0. This establishes the first part.

For the second part, we have

d2y0,k

dx2
(0) =

d

dx

r−2∑

l=0

α
(0)
l (0,y(0))φ(l)

0,k(0,y(0)).

Consider expressing the derivative of the right-hand side of this equations using the sum and
product rules. We have already seen that φ(l)

0,k(0,y(0)) = 0 for k ≥ 1 and l ≥ 0, so the only

possible nonzero summands involve derivatives of φ(l)
0,k. We also have α(0)

l (0,y(0)) = δ0,l, so

only the term multiplying
dφ

(0)
0,k

dx
(0) may be nonzero.

Now, we look at the definition of φ(0)
0,k in (6.2.12). Consider its derivative obtained through

the product and quotient rules. Every summand in this derivative that multiplies one of λ,

y0,l or
dy0,l

dx
for some l ≥ 1 vanishes at x = 0, since these three elements vanish at x = 0.

Note that, for k ≥ 2, all summands have this property, so the derivative of φ(0)
0,k vanishes at

x = 0 for k ≥ 2. For k = 1, this same observation leads to

d2y0,1

dx2
(0) =

dφ
(0)
0,1

dx
=
r(r − 1)y0,0(0)Dλ(0)

s(0,y(0))2
,

which concludes the base of induction.
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A very similar argument is used for the induction step. Assume that the result is true for
1 ≤ a− 1 < r and consider, for k ≥ a,

d2a−1y0,k

dx2a−1
(0) =

d2a−2

dx2a−2

r−2∑

l=0

α
(0)
l (0,y(0))φ(l)

0,k(0,y(0)).

In the definition of φ(l)
0,k, all the summands multiply y0,k or y0,k−1. By induction, these two

functions and their derivatives of order smaller than or equal to 2a − 2 vanish at x = 0,
provided that k > a. In the case k = a, the only possibly non-vanishing summand in the
expression obtained by calculating the right-hand side of the above equation using the sum,

product and quotient rules multiplies
d2a−2ya−1

dx2a−2
. Now, this term must come from the (2a−2)-

nd derivative of φ(0)
0,a at x = 0, and, as a consequence, it multiplies λ(0,y(0)) in this derivative,

which is equal to zero.

We may use the same argument to deduce that
d2ay0,k

dx2a
(0) vanishes if k > a. If k = a, the

only nonzero term in the derivative of the right-hand side of

d2ay0,k

dx2a
(0) =

d2a−1

dx2a−1

r−2∑

l=0

α
(0)
l (0,y(0))φ(l)

0,k(0,y(0))

is

d2a−1φ0,k

dx2a−1
(0) = (2a− 1)

(r − a+ 1)(r − 1)Dλ(0)
s(0,y(0))2

d2a−2ya−1

dx2a−2
(0)

=
(2a− 1)(r − a+ 1)(r − 1)Dλ(0)

s(0,y(0))2

(2a− 3)!!r!(r − 1)a−1Dλ(0)a−1

(r − a+ 1)!s(0,y(0))2a−2

=
(2a− 1)!! r! (r − 1)a(Dλ(0,y(0)))a

(r − a)! s(0,y(0))2a
,

concluding the proof of our claim. �
Now, to prove part (d) of Assumption 4.5.2, observe that

dy0,0

dx
(0) =

r−2∑

l=0

α
(0)
l (0,y(0))φ(l)

0,0(0,y(0))

= φ
(0)
0,0(0,y(0))

= −r(r − 1)y0,0(0)/s2 = −(r − 1)/r < −γ,

as required (once again, γ > 0 is redefined if necessary).

As a consequence, Assumption 4.5.1 holds at x = 0. By the discussion in Section 4.5, we
may extend our solution to (6.2.4) to all x ∈ [0, x0], where x0 is defined as the infimum of all
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x > 0 for which at least one of the following termination conditions hold:

1. for some k ∈ {0, . . . , r − 2} \A0, α
(0)
k (x,y(x)) = 0;

2. for some (j, k) ∈ I \ Y0, yj,k(x) = 0 or yj,k(x) = 1;

3. detM (0)(x,y(x)) = 0;

4. the solution is outside Ωγ,µ,M , or does not exist.

(6.2.13)

Also, if any termination condition other than

α
(0)
k (x,y(x)) = 0

is active at x0, or if

α
(0)
k (x0,y(x0)) = 0 and

dα
(0)
k

dx
(x0) ≥ 0,

Phase 0 was defined to be the final phase.
In particular, if Phase 0 is not the final phase, we may redefine γ > 0 as a smaller positive

number, if necessary, to ensure that

(i) γ < yj,k(x0) < 1− γ, if (j, k) /∈ Y0;

(ii)
dα

(0)
0 (x,y(x))
dx

(x0) ≤ −γ.
(6.2.14)

So, we must have

yj,k(x0) = 0, if (j, k) = (1, k) and k ≥ 1,
γ < yj,k(x0) < 1− γ, otherwise,

(6.2.15)

where the second fact comes from (6.2.8).
We now show that, provided that Phase t − 1 is not the final phase, Assumption 4.5.2

holds at the point x = xt−1, the point in which Phase t − 1 terminates. In other words, let
1 ≤ t ≤ r − 2 and inductively assume that xt−1 has been defined, that

α
(t−1)
t−1 (xt−1,y(xt−1)) = 0

is the only active termination condition of Phase t− 1 at xt−1 and that

dα
(t−1)
t−1

dx
(xt−1) < 0.

We may also inductively assume that γ > 0 has been defined so that

(i) γ < yj,k(xt−1) < 1− γ, if (j, k) /∈ Yt−1;

(ii)
dα

(t−1)
t−1

dx
(xt−1) ≤ −γ,

(6.2.16)
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and that, as in equation (6.2.15),

yj,k(xt−1) = 0, if (j, k) = (1, k) and k ≥ t,
γ < yj,k(x0) < 1− γ, otherwise.

(6.2.17)

In Phase t, the system of differential equations of interest is

dyj,k
dx

=
r−2∑

l=t

α
(t)
l (x,y(x))φ(l)

j,k(x,y(x)), (j, k) ∈ I, (6.2.18)

with initial conditions at x = xt−1 given by the values of each yj,k at the termination of
Phase t − 1. Recall that the terms α(t)

k in the previous equations are the solutions to the
linear system (4.5.2), where the matrix M (t)(x,y) is given by M(r − t − 1, at+1, . . . , ar−2),
defined in (5.2.5), with ak defined in (6.2.6).

Recall that the statement of Assumption 4.5.2 is as follows.

Assumption 4.5.3 (Assumptions for Phase t) Consider the sets

At =

{
k ∈ {t, . . . , r − 2} :

dα
(t)
k

dx
≡ 0

}
and Yt =

{
(j, k) ∈ I :

dyj,k
dx
≡ 0
}
.

The system of differential equations (6.2.18) satisfies

(a’) | detM (t)(xt−1,y(xt−1))| > γ.

(b’) α
(t)
t (xt−1) > γ and, for each k ∈ {t, . . . , r − 2} \At, at least one of the following holds:

(i) α
(t)
k (xt−1) > γ,

(ii) 0 ≤ α(t)
k (xt−1), the set At,k =

{
s ≥ 1 :

dsα
(t)
k

dxs
(xt−1) 6= 0

}
is not empty and is such

that
dνα

(t)
k

dxν
(xt−1) > γ, where ν = minAt,k;

(c’) for each (j, k) ∈ I \ Yt, at least one of the following holds:

(i) yj,k(xt−1) > γ,

(ii) 0 ≤ yj,k(xt−1), the set Yt,j,k =
{
s ≥ 1 :

dsyj,k
dxs

(xt−1) 6= 0
}

is not empty and is

such that
dνyj,k
dxν

(xt−1) > γ, where ν = minYt,j,k;

(d’) for every (j, k) ∈ I, yj,k(xt−1) < 1− γ,

Using the formula in Proposition B.1.6, we obtain

| detM (t)(xt−1,y(xt−1))| = 1 +
r−2∑

k=t+1

(k − t)ak(xt−1,y(xt−1)) ≥ 1 > γ,
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establishing part (a’) of the assumption. Also,

α
(t)
k (x,y(x)) =





1−∑r−2
l=t+1(r − l − 1)al

1 +
∑r−2

l=t+1(l − t)al
, if k = t

(r − t− 1)ak
1 +

∑r−2
l=t+1(l − t)al

, if k > t.

(6.2.19)

The definition of α(t) is such that

dy1,k

dx
≡ 0 if k > t,

so {(1, t+ 1), . . . , (1, r − 2)} ⊆ Yt, with Yt defined in the statement of Assumption 4.5.2, and

y1,k(x) = 0 for every k ∈ {t+ 1, . . . , r − 2}, (6.2.20)

for every x in the interval of definition of the solution to (6.2.18). Using (6.2.6), this implies
that

at+1(x,y(x)) = (r−t−1)y0,t(x)/s(x,y(x))+(r−t−1)y1,t−1(x)λ(x,y(x))/s(x,y(x))2 (6.2.21)

and that
ak(x,y(x)) = (r − k)y0,k/s(x,y(x)), if t+ 1 < k ≤ r − 2. (6.2.22)

We now verify parts (b’) and (c’) of Assumption 4.5.2. For the latter, we have already
seen that {(1, t + 1), . . . , (1, r − 2)} ⊆ Yt. Now, by our choice of γ in equation (6.2.16), we
have that yj,k(xt−1) > γ for the case j = 0, the case j = 1 and k < t, and the case j = 1 and
k = r − 1. Hence, the only remaining case to verify for part (c’) is j = 1 and k = t.

Before analysing this case, we look at part (b’) of the assumption. By equations (6.2.21)
and (6.2.22), we have

ak(xt−1,y(xt−1)) ≥ (r − k)y0,k(xt−1)/s(xt−1,y(xt−1)),

which is positive by 6.2.15, for every k ≥ t. So, by (6.2.19), item (i) of part (b’) of Assumption
4.5.2 holds for α(t)

k , k = t + 1, . . . , r − 2, possibly by decreasing the value of γ. To conclude
the verification of part (b’), we consider the case k = t. The numerator of α(t)

t in equation
(6.2.19) is given by

1−
r−2∑

l=t+1

(r − l − 1)al =

(
1−

r−2∑

l=t

(r − l − 1)al

)
+ (r − t− 1)at,

where the first summand on the right-hand side is the numerator α(t−1)
t−1 , which vanishes at

x = xt−1 by the termination condition of Phase t− 1. Since

at(xt−1,y(xt−1)) =
(r − t)y0,t(xt−1)
s(xt−1,y(xt−1))

+
(r − t)y1,t−1(xt−1)λ(xt−1, y(xt−1))

s(xt−1,y(xt−1))2
> 0,
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part (b’) also holds in this case.
Recall that, to end the verification of part (c’) of the assumption, we only have to consider

the case (j, k) = (1, t). By (6.2.15), we know that y1,t(xt−1) = 0. We shall show that the
derivative of this function also vanishes at x = xt−1, but the second derivative is positive at
this point, which implies that item (ii) of part (c’) holds in this case.

We start by calculating the first derivative of y1,t. By equation (6.2.18),

dy1,t

dx
=

r−2∑

k=t

α
(t)
k φ

(k)
1,t . (6.2.23)

Now, equation (6.2.19) implies that

α
(t)
t (xt−1,y(xt−1)) =

1−∑r−2
l=t+1(r − l − 1)al(xt−1, y(xt−1))

1 +
∑r−2

l=t+1(l − t)al(xt−1, y(xt−1))

=
(r − t− 1)at(xt−1, y(xt−1))

1 +
∑r−2

l=t+1(l − t)al(xt−1, y(xt−1))
,

where the last step uses the fact that the quantity

1−
r−2∑

l=t

(r − l − 1)al(xt−1, y(xt−1))

is equal to the numerator of α(t−1)
t−1 (xt−1,y(xt−1)), which is equal to zero by the termination

condition of Phase t − 1. By the definitions of φ(t)
j,k and of ak, given in (6.2.1) and (6.2.6),

respectively, we have

φ
(t)
1,t = −1 + (r − t− 1)at and φ

(k)
1,t = (r − k − 1)at.

So, if we multiply the right-hand side of equation (6.2.23) by the positive quantity

1 +
r−2∑

l=t+1

(t− l)al,

we obtain

(r − t− 1)at (−1 + (r − t− 1)at) +
r−2∑

k=t+1

(r − t− 1)ak(r − k − 1)at

= −(r − t− 1)at

(
1−

r−2∑

k=t

(r − k − 1)ak

)
.

But the term within brackets is precisely the numerator of α(t−1)
t−1 , hence the first derivative

of y1,t vanishes at xt−1, as claimed.
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We now calculate the second derivative of y1,t, given by

d2y1,t

dx2
=

d

dx

r−2∑

k=t

α
(t)
k φ

(k)
1,t

=
r−2∑

k=t

dαk
dx

φ
(k)
1,t + α

(t)
k

dφ
(k)
t

dx
.

(6.2.24)

Since our calculations will be somewhat more involved, we omit references to the point
(xt−1,y(xt−1)) from the equations. However, we shall consider the functions applied at this

point. To have a more compact notation, we shall also use h′ to denote the derivative
dh

dx
.

Finally, each summand in the right-hand side of equation (6.2.24) will be referred as a term

in the expansion of
d2y1,t

dx2
.

We now calculate the value of different types of terms in this expansion. Again, we use
the definition of α(t) in (6.2.19) and the identities

φ
(t)
1,t = −1 + (r − t− 1)at and φ

(t)
1,k = (r − k − 1)at,

so that

α
(t)′
t φ

(t)
1,t =

(
−(r − t− 1)at

D2

r−2∑

l=t+1

(l − t)a′l −
1
D

r−2∑

l=t+1

(r − l − 1)a′l

)

× (−1 + (r − t− 1)at) ,

α
(t)′
k φ

(k)
1,t =

(
−(r − t− 1)ak

D2

r−2∑

l=t+1

(l − t)a′l +
(r − t− 1)a′k

D

)

× (r − k − 1)at, if t < k ≤ r − 2,

α
(t)
k φ

(t)′
1,k =

(r − t− 1)ak
D

(r − k − 1)a′t, t ≤ k ≤ r − 2,

(6.2.25)

where

D = 1 +
r−2∑

l=t+1

(l − t)al.

The last part holds in the case k = t because the numerator of α(t)
t is the sum of the numerator

of α(t−1)
t−1 , which vanishes at x = xt−1, and the term (r − t− 1)at.
If we sum the numerators of the terms above with quadratic denominator, we obtain

(r − t− 1)at
r−2∑

l=t+1

(l − t)a′l
(

1− (r − t− 1)at −
r−2∑

k=t+1

(r − k − 1)ak

)
= 0,

once again by the fact that αt−1(xt−1,y(xt−1)) = 0. As a consequence, the terms involving
derivatives of α(t) sum to

r−2∑

l=t+1

(r − l − 1)a′l/D, (6.2.26)
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while the terms involving derivatives of φ(t) in (6.2.24) sum to

(r − t− 1)a′t
r−2∑

k=t

(r − k − 1)ak/D = (r − t− 1)a′t/D. (6.2.27)

Putting everything together, we obtain

d2y1,t

dx2
(xt−1) =

r−2∑

l=t

(r − l − 1)a′l/D.

But note that

dα
(t−1)
t−1

dx
(xt−1) = −

r−2∑

l=t

(r − l − 1)a′l

1 +
r−2∑

l=t

(l − t− 1)al

< 0,

from which we deduce that the second derivative of y1,t is positive at xt−1, as claimed.
Observe that, to obtain the results about the derivatives of y1,t at xt−1, we only used the

definitions of ak and φ(k)
1,t , the fact that αt−1(xt−1,y(xt−1)) = 0 and the fact that y1,k(xt−1) = 0

if t ≤ k ≤ r − 2.
Finally, to conclude the verification of Assumption 4.5.2, we note that part (d’) is satisfied,

since
yj,k(xt−1) < 1− γ for every (j, k) ∈ I,

due to our choice of γ in (6.2.14). If Phase t is not the final phase, we may again redefine
γ > 0 as a smaller positive number, if necessary, to ensure that

(i) γ < yj,k(xt) < 1− γ, if (j, k) /∈ Yt;

(ii)
dα

(t)
t

dx
(xt) ≤ −γ.

Moreover, in the above calculations, we established that

yj,k(xt) = 0, if (j, k) = (1, k) and k ≥ t+ 1
γ < yj,k(x0) < 1− γ, otherwise.

validating the induction hypothesis in (6.2.17).
Again, γ is only redefined a finite number of times in this discussion, always being as-

signed a positive value, hence there exists γ > 0 for which the assumptions hold at the
points x0 = 0 and xt−1, t > 1, as long as the only termination condition for Phase t − 1 is
α

(t−1)
t−1 (xt−1, y(xt−1)) = 0, with the first derivative of α(t−1)

t−1 being negative at this point. Let
b be the index of the final phase obtained by this method for such a value of γ > 0. As in the
case of independent sets, we could potentially have b(γ′) < b(γ) if γ′ < γ. However, the limit

b = lim
γ→0+

b(γ), (6.2.28)
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is well defined, since b(γ) is bounded above by r − 2 and is non-decreasing as γ decreases.
Moreover, since b(γ) is integer-valued, we know that this limit is achieved for γ sufficiently
small. For this value of b, we may also define

ξ(r) = lim
γ→0+

x0
b(γ) + y0,r(x0

b(γ)) + y1,r−1(x0
b(γ)), (6.2.29)

where y0,r(x) and y1,r−1(x) are components of the solution to the system of differential equa-
tions obtained here. It is easy to see that this limit exists, since all the terms in this sum are
non-decreasing as γ increases and they are bounded above by 1.

Second part As for independent sets, this argument provides a solution to the system of
differential equations of interest, in this case (6.1.8), in the situation when p0 = 0. To extend
the result to p0 ∈ (0, p′0] for some p′0 > 0, we again use Lemma 2.5.1 and Lemma 5.2.1. Some
of the details are omitted, since the argument used is very similar to the one in the case of
independent sets.

Let p0 > 0 and consider the system of differential equations

dyj,k
dx

=
r−2∑

l=0

α
(0)
l (x,y(x))φ(l)

j,k(x,y(x)), (j, k) ∈ I,

y0,0(0) = 1, yj,k(0) = 0 if (j, k) 6= (0, 0),

(6.2.30)

which is given in Definition 6.1.1 with this value of p0 and t = 0. Also consider the region
Ωγ,µ,M , where γ, µ and M are defined as in the case t = 0.

As in the case of independent sets, the initial conditions w0,k(p0) are continuous as func-
tions of p0, and it is clear that, if p0 is sufficiently small, the point (0,w(0)) lies in the interior
of Ωγ,µ,M , since w0,k(0) lies in the interior of this region. By Lemma 2.5.1, we may again
uniquely extend the solution yp0 to (6.2.30) arbitrarily close to the boundary of Ωγ,µ,M .

To show that this solution can be extended so as to satisfy the properties in Property
(b, p′0,x), we now verify that, if p0 > 0 is sufficiently small, Assumption 4.5.1, with the
probability p0 changed from 0 to a small positive constant, also holds for yp0 at x = 0. The
continuity of the initial conditions immediately implies that this is the case for part (a), for
item (i) of parts (b) and (c), and for part (d). So, the only parts of Assumption 4.5.1 that
require additional discussion involve the definition of the indices in Y1 and A1 or item (ii) in
parts (b) and (c). In the analysis of the case p0 = 0, these assumptions only appear in the
verification of the following facts:

1.
dy0

1,k

dx
≡ 0, if 1 ≤ k ≤ r − 2,

2.

y0
1,0(0) = 0 and

dy0
1,0

dx
(0) > γ,
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3.
dνy0

0,k

dxν
(0) = 0, if ν < 2k, and

d2ky0
0,k

dx2k
(0) > γ, if k ≥ 1,

4.
dνα

(0)
k

dxν
(0) = 0, if ν < 2k, and

d2kα
(0)
k

dx2k
(0) > γ, if k ≥ 1,

5.
dνy0

1,r−1

dxν
(0) = 0, if ν < 2r − 1, and

d2r−1y0
0,k

dx2r−1
(0) > γ.

For p0 > 0, since the definition of α(t)
k is still such that

dyp0

1,k

dx
≡ 0 if k ∈ {2, . . . , r − 2},

item 1 clearly holds in this case. Item 2 is also easy. Indeed, we now have yp0
1,0(0) > 0, and,

by continuity of the initial conditions, we still have

dyp0
1,0

dx
(0) > γ.

However, we need to be more careful in verifying that the remaining items are also satisfied.
This is because, for p0 > 0, the terms α(0)

k (0,yp0(0)) are not equal to zero. For instance,
Claim 6.2.1 does not hold for yp0 . However, by the same type of analysis in the proof of that
result, we can show that, for k ≥ 1 and s < 2k, the terms

dsyp0

0,k

dxs
(0)

can be shown to be polynomials in the variable p0 with minimum degree p2k−s
0 and such

that the coefficient of the monomial with minimum degree is positive. In particular, for p0

sufficiently small, the derivatives of yp0

0,k of order smaller than 2k are all positive, but cannot be
bounded below by a constant, since the lower bounds depend on p0. However, by continuity
of the initial conditions, we derive that the derivative of order 2k of yp0

0,k is bounded below by
a positive constant independent of p0. This verifies item 3 when p0 is a small positive integer.
By definition of ak in (6.2.6) and of α(0)

k in (6.2.7), it is clear that item 4 also holds, whereas
item 5 may be obtained by the same argument.

As with independent sets, we may now argue that, for p′0 > 0 sufficiently small and
0 < p0 ≤ p′0, the solution to the system of differential equations (6.2.30) can be extended
to a point xp0

0 that tends to x0
0 as p0 tends to 0. The additional claim that yp0

j,k uniformly
approximates y0

j,k is an easy consequence of Lemma 5.2.1.
The behaviour of yp0 in the remaining phases can be analysed similarly. That is, we again

derive it from the information we have about the solution in the case p0 = 0, using Lemma
2.5.1 and Lemma 5.2.1. Note that several of the conditions are easier to verify, since we now
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have y0
0,k(xt−1) > γ and α(t)

k (xt−1,y(xt−1) > γ, so that an argument using Claim 6.2.1 is not
needed. Finally, the case that was different for independent sets, namely the extension to
p0 > 0 of the formula

dνy0
1,t

dxν
(xt−1) = 0, if ν ≤ 1 and

d2y0
1,t

dx2
(xt−1) > γ,

can be easily treated here. This is because the calculations leading to this fact in the case
p0 = 0 did not use any properties of the solutions, but only the definitions of φ(t)

j,k, α
(t)
k and

ak, and the assumption that Phase t − 1 was not the final phase. As a consequence, the
same calculations are valid in the case p0 > 0. All the other cases can be resolved easily, and
therefore are omitted.

In particular, for p′0 sufficiently small and p0 ∈ [0, p′0], we find functions yp0(x) = (yp0

j,k(x))(j,k)∈I
such that, for t ∈ {0, . . . , b},

dyp0

j,k

dx
= F

(t)
j,k (x,yp0(x)) for x ∈ [xp0

t−1, x
p0
t ), k = 0, . . . , r,

yp0

j,k(x
p0
t−1) = βp0

t−1,j,k,

where the initial conditions βp0

0,k are defined as in Definition 6.1.1, and the constants xp0
0 =

0 < · · · < xp0

b are defined through the termination conditions.

Now, for p0 > 0, all the components of yp0(0) are strictly positive. Moreover, for p0 ≤ p′0,
none of the termination conditions yp0

j,k(x) = 0, (j, k) ∈ I hold for x in the interval [0, xp0

b ],
except possibly at x = xp0

b . Thus, for any ξ > 0,

γp0

ξ = inf{yj,k(x) : x ∈ [0, xp0

b − ξ], (j, k) ∈ I} > 0.

With these values of b, p′0 and xp0
t , we may define functions

x0, . . . , xb : [0, p′0]→ [0, 1]

by setting

xt(p0) = xp0
t , for every t ∈ {0, . . . , b} and every p0 ∈ [0, p′0].

By the work done above, it is clear that, for these values of b and p′0, and these functions
x0, . . . , xb, the system of differential equations (6.1.6) satisfies Property (b, p′0,x).

6.3 A lower bound on a largest induced forest

As in the case of independent sets, we combine the results of the last two sections to give new
lower bounds on τ(G), the number of vertices in a largest induced forest of a graph G, when
G is a regular graph with sufficiently large girth.
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In the previous section, we proved that there exists a positive integer b ∈ {1, . . . , r − 1},
a constant p′0 ∈ (0, 1] and functions

x1, . . . , xb : [0, p′0]→ [0, 1]

for which the system of differential equations in (6.1.6) satisfies Property (b, p′0,x). To obtain
these values, we first showed that exists γ > 0 for which the solution of (6.1.8) with initial
conditions given with p0 = 0 could be extended to a point xb(0), with the points of phase tran-
sition x0(0), . . . , xb−1(0) being determined by termination conditions. We then proved that,
with this value of γ, we could find a constant p′0 > 0 and functions x1, . . . , xb : [0, p′0]→ [0, 1]
for which Property (b, p′0,x) holds.

For each r ≥ 3, consider the positive integer b ∈ {0, . . . , r− 2} defined in (6.2.28) and the
constant ξ(r) defined in (6.2.29). We have the following theorem.

Theorem 6.3.1 Let δ > 0 and r ≥ 3. Then, there exists g > 0 such that every r-regular
graph G on n vertices with girth greater than or equal to g satisfies τ(G) ≥ (ξ(r)− δ)n.

Proof Let r ≥ 3 and let δ′ > 0. Let γ > 0 be such that, in the definition of ξ(r), we have

|xb(0) + y0,r(xb(0)) + y1,r−1(xb(0))− ξ(r)| ≤ δ′

2
.

Consider p′0 ∈ (0, 1] and the functions

x0, . . . , xb : [0, p′0]→ [0, 1],

as defined in the previous section, for which the system of differential equations in (6.1.6)
satisfies Property (b, p′0,x). By Theorem 6.1.2, there exists g > 0 such that every r-regular
graph G on n vertices with girth greater than or equal to g satisfies

τ(G) ≥
(
xb(0) + y0,r(xb(0)) + y1,r−1(xb(0))− δ′

2

)
n.

By our choice of γ, this leads to

τ(G) ≥ (ξ(r)− δ′)n,

as required.
We have shown in Chapter 2 that the property of inducing a forest in a graph is vertex

monotone. In particular, by Lemma 2.1.2, the bounds for r-regular graphs in Theorem 6.3.1
can be extended to graphs with maximum degree r.

Corollary 6.3.2 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every graph G

on n vertices with maximum degree r and girth greater than or equal to g satisfies τ(G) ≥
(ξ(r)− δ)n.
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Table 6.3.1: Lower and upper bounds on τ(G)/n

r ξ(r) ξ1(r) Ξ(r)

3 0.7368 0.7268 0.7500

4 0.6351 0.6045 0.6667

5 0.5662 0.5269 0.6216

6 0.5149 0.4711 0.5776

7 0.4746 0.4283 0.5403

8 0.4415 0.3940 0.5086

9 0.4137 0.3658 0.4811

10 0.3898 0.3419 0.4570

Moreover, by Lemma 2.1.4, the numbers ξ(r) are also asymptotic bounds for random
regular graphs.

Corollary 6.3.3 Let δ > 0 and r ≥ 3. Then a random r-regular graph G on n vertices a.a.s
satisfies τ(G) ≥ (ξ(r)− δ)n.

Numerical approximations of the numbers ξ(r), given in Table 6.3.1, have been obtained
by numerically solving the system of differential equations (6.1.8) with initial conditions given
with p0 = 0. The method used in this computations is the same used for independent sets,
so we refer to Section 5.3 for a discussion.

The numbers ξ1(r) and Ξ(r) in the table are the lower bounds obtained in Chapter 2
and the upper bounds found in [7]. The numbers ξ(r) improve the bounds previously known
for all values of r ≥ 4 for which they were calculated. (If r = 3, the best lower bound
is τ(G) ≥ 0.75n obtained in [24].) They are also new best asymptotic bounds for random
regular graphs, improving, for all r ≥ 4, the bounds given in [7].
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Conclusion

In this thesis, we have analysed the class of locally greedy algorithms, a class of probabilistic
algorithms in regular graphs for which the random selection of a vertex v of the input graph is
determined by the current state of the vertices within some fixed distance of v. This allows us
to consider algorithms for which the different operations processed are ranked, so that some
are given priority over others.

If the parameters d and ` in the class of algorithms are given by d = 1 and ` = 1, the
output of the algorithm is an independent set, while, with parameters d = 1 and ` = 2, the
algorithm produces a set inducing an acyclic subgraph of the input graph. This has been
used to derive new lower bounds on the independence number α(G) of r-regular graphs with
sufficiently large girth and on the the number τ(G) of vertices in a largest induced forest
of G. These bounds are defined through the solution to the systems of ordinary differential
equations defined in (5.1.7) and (6.1.6), respectively. For a few fixed values of r, numerical
approximations of these lower were shown in Table 5.3.1 and in Table 6.3.1.

In the case of independent sets, the new bounds improve the previous best bounds for all
values of r for which they were calculated. In Corollary 5.3.2, we extended these bounds to
the more general case of graphs with large girth and maximum degree r. We also translated
them into asymptotic bounds for random r-regular graphs. Even if, in this particular case,
the numbers obtained here do not improve the bounds first given by Wormald in [56], our
work provides a new proof of the validity of these bounds, the first proof of this result that
does not rely on sharp concentration results.

For induced forests, the new bounds can again be extended to regular graphs with maxi-
mum degree r, and they improve the previous best bounds for all particular values of r ≥ 4
for which they were determined. Furthermore, unlike in the case of independent sets, the
associated bounds for random r-regular also improve the previous best bounds, which were
given in [7], for every r ≥ 4.

It is clear that the same method, or modifications thereof, could be applied to several
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other graph problems. One such problem involves independent dominating sets, which we
now define. In a graph G = (V,E), a set S ⊆ V is k-dominating if every vertex that does not
lie in S is at distance at most k of a vertex in S. When k = 1, such a set is called a dominating
set. An independent dominating set S in the graph is now a set that is both dominating and
independent. Note that these are precisely the maximal independent sets in the graph, that
is, the sets of vertices in the graph that are independent, but such that the addition of any
new vertex would create a set that is not independent. The associated optimisation problem
consists of determining the size of an independent dominating set of minimum cardinality in
the graph.

Recall that a locally greedy algorithm with parameters ` = 1 and d = 1 produces an
independent set in the input graph. Moreover, when it is applied to find a large independent
set in a graph, as with the instance introduced in Chapter 5, it actually finds a maximal
independent set in a clever way, so as to include as many vertices as possible. Thus, if instead
the probabilities were adjusted so as to generate a maximal independent set with as few
vertices as possible, we may derive good upper bounds on the size of a smallest independent
dominating set in the graph. Here, we should mention that the output of the algorithm is
not exactly a maximal independent set, since there will still be a few white vertices at the
end of the algorithm. This is due to the restriction on the number of steps performed by it.
However, the solutions of the differential equations also give us the expected proportion of
white vertices at the end of the algorithm. In particular, an upper bound on the proportion
of vertices in a minimum independent dominating set is given by the sum of the proportion of
purple vertices produced by the algorithm and the proportion of white vertices that remain
at the end of the algorithm.

Another concept of vertex domination is as follows. A subset S of vertices is k-fold-
dominating if each vertex not in S is joined to at least k vertices in S. This definition was
proposed by Dai and Wu in [18], who referred to it as k-dominating, motivated by the study
of wireless networks. In such a network, an important problem is to find a set of nodes to
form a backbone that supports routing, which corresponds to a dominating set in the graph
modelling this network. An efficient backbone is given by a small dominating set. Now,
if dominating sets are replaced by k-fold-dominating sets, the backbone produced balances
efficiency and fault tolerance. Again, the efficiency of the backbone is measured by its size,
with smaller backbones being more efficient.

We now observe that the class of locally greedy algorithms may also be used to provide a
small k-fold-dominating set in an r-regular graph. Indeed, if we fix d = 1 and ` = k, the white
vertices are vertices with less than k purple neighbours, that is, they are the vertices in the
graph that are not k-dominated by the set of purple vertices. So, by assigning probabilities
in such a way that there are “few” white vertices at the end of the algorithm, and, at the
same time, keeping the set of purple vertices “small”, we may find a good upper bound on
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the cardinality of a smallest k-fold-dominating set in the graph.
Note that, to obtain the bounds suggested for the above problems, it suffices to determine

the probabilities conveniently and to solve the differential equations associated with this choice
of probability, since the remainder is covered by this thesis. To be precise, we would also have
to obtain the recurrence equations when the parameters d and ` satisfy d = 1 and ` > 2, but
this can be easily done with arguments as in Section 3.2.

On the other hand, more work would be required to use locally greedy algorithms in
applications for which the parameter d is larger than 1, but we believe that this can be done.
Recall that the results in Chapter 2 are all proved for general d and, although this is not
the case for Chapter 4, the results in that section can be easily generalised to d > 1. The
real difficulty lies in obtaining the recurrence equations for wi,j,k, since, as the choice of a
vertex may now directly affect a vertex at distance d of it, in addition to the results involving
independence of branches around white vertices, given by Corollaries 3.1.12, 3.1.13 and 3.1.14,
we would also need information about the distribution of white vertices around yellow and
purple neighbours to determine whether a white vertex v has been affected by the selection
of a vertex not adjacent to v.

Generalisations of locally greedy algorithms may also be obtained by considering more
classes of vertices. For instance, in the simple algorithm of Chapter 2, in addition to white,
purple and yellow vertices, we considered an additional set of blue vertices. We have seen
later that, by analysing this algorithm differently, we could group the blue and white vertices
of the original algorithm in a single class. Nevertheless, this approach could be useful for
other purposes. For instance, we could devise a class of algorithms for dominating sets as
follows: purple vertices correspond to vertices in the dominating set, blue vertices correspond
to the non-purple vertices dominated by purple (that is, with at least one purple neighbour)
and white vertices correspond to the vertices not dominated by purple. At each step of the
algorithm, white and blue vertices are randomly chosen with a probability determined by the
number of neighbours of each colour. Now, the goal of the algorithm is to produce a “small”
set of purple vertices in such a way that only a few white vertices remain, which would lead to
a bound on the size of a minimum dominating set. The analysis of the expected performance
of such an algorithm should strongly resemble the work done in this thesis. A lot of additional
problem-oriented generalisations could be analysed by a similar method.

Moreover, Wormald and the author of this thesis are currently developing an alternative
method to the study of properties of graphs with large girth, combining the approach of this
thesis with other ideas. This work is motivated by [58], which analyses a quite general class of
algorithms in random regular graphs. We believe that a general result concerning this class of
algorithms can be obtained for graphs with sufficiently large girth. This is a very promising
approach, since it should cover the dominating set problem and a number of other results in
the literature.
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[38] D. Kühn and D. Osthus, Topological minors in graphs of large girth, Journal of Combi-
natorial Theory, Series B 86:364–380, 2002.

[39] J. Lauer and N.C. Wormald, Large independent sets in random graphs with large girth,
Journal of Combinatorial Theory, Series B 97:999–1009, 2007.

[40] D.M. Li and Y.P. Liu, A polynomial algorithm for finding the minimum feedback vertex
set of a 3-regular simple graph, Acta Math. Sci., 19(4):375–381, 1999.

[41] Y.D. Liang, On the feedback vertex problem in permutation graphs, Inform. Process.
Lett., 52:123–129, 1994.

[42] Y.D. Liang and M.S. Chang, Minimum feedback vertex sets in cocomparability graphs
and convex bipartite graphs, Acta Inform., 34:337–346, 1997.



150 BIBLIOGRAPHY

[43] R. de la Llave, Computer Aided Proofs in Analysis,(K. Meyer and D. Schmidt, eds),
Springer Verlag, New York, 1991.

[44] B. D. McKay, Independent sets in regular graphs of high girth, Proceedings of
the Australia-Singapore Joint Conference on Information Processing and Combinatorial
Mathematics, Singapore, 1986, Ars Combinatoria 23A:179–185, 1987.

[45] M. Pop, D. S. Kosack, and S. L. Salzberg, Hierarchical scaffolding with Bambus, Genome
Research 14(1):149–159, 2004.

[46] N. Robertson, D. Sanders, P. Seymour and R. Thomas, The four-colour theorem, Journal
of Combinatorial Theory, Series B 70:2–44, 1997.

[47] R. W. Robinson and N. C. Wormald, Almost all regular graphs are hamiltonian, Random
Structures and Algorithms 5:363–374, 1994.

[48] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer Verlag,
Berlin Heidelberg, 2003.

[49] J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete
Mathematics 46:83–87, 1983.

[50] J. B. Shearer, A note on the independence number of triangle-free graphs, II, Journal of
Combinatorial Theory, Series B 53:300–307, 1991.

[51] L. Shi and N. C. Wormald, Colouring random 4-regular graphs, Combinatorics, Proba-
bility and Computing 16(2):309–344, 2007.

[52] C. Thomassen, Girth in graphs, Journal of Combinatorial Theory, Series B 35:129–141,
1983.

[53] C. Wang ,E. Lloyd and M. Soffa, Feedback vertex sets and cyclically reducible graphs,
Journal of the ACM 32:296–313, 1985.

[54] N. C. Wormald, Some Problems in the Enumeration of Labelled Graphs, Doctoral thesis,
Newcastle University, 1978.

[55] N. C. Wormald, The asymptotic distribution of short cycles in random regular graphs,
J. Combinatorial Theory, Series B 31:168–182, 1981.

[56] N. C. Wormald, Differential equations for random processes and random graphs, The
Annals of Applied Probability 5, No.4 :1217–1235, 1995.

[57] N. C. Wormald, The differential equation method for random graph processes and greedy
algorithms, Lectures on Approximation and Randomized Algorithms, (M. Karoński and
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Appendix A

Example 3.1.8 revisited

In this appendix, we add a detailed discussion of Example 3.1.8, in which the independence
assumptions are proven and the probabilities are calculated in the probability space of sets
of labels.

Example A.1.4 We consider a version of Algorithm 3.1.1 with parameters r = 3, d = 1
and ` = 2. Let N = 1 and fix probabilities p0 > 0 and p1,j,k, where p1,0,k = 0, for every k,
p1,1,0 = p1,0 > 0, p1,1,1 = p1,1 > 0 and p1,1,2 = 1. Let G be a 3-regular graph with girth larger
than 9. We shall calculate the probability of the partial colouring of G in Figure A.1.1, at
time 1. In the figure, the white vertices are represented by unfilled circles, while the purple
vertices are filled circles.

u

u2

u1

v

Colouring 1

v2

v1

Figure A.1.1: A partial colouring of G.

We wish to calculate the probability that the adjacent vertices u and v are both purple
and that their remaining neighbours are all white at time 1, that is, that they are white after
step 1 in an application of the locally greedy algorithm. We shall consider cases according to
the relevant labels of u and v. First note that the relevant labels cannot both be 1. If they
were, u and v would not have a purple neighbour at time 0 and therefore would not turn
purple at time 1, as p1,0,k = 0 for every k. Moreover, the case for which u has relevant label
0 and v has relevant label 1 is symmetric to the case for which u has relevant label 1 and v
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has relevant label 0, so their probabilities are the same by independence of vertex labelling.
This leaves us with two cases to consider.

Case 1 : In this case, u and v both have relevant label 0. Since u1, u2, v1 and v2 are white
at time 1, they clearly cannot have relevant label 0, and neither can their neighbours other
than u and v (otherwise one of u1, u2, v1 and v2 would be yellow). The probability that these
events occur is p2

0(1− p0)12.
Now, Corollary 3.1.6 implies that the colour of any vertex in the graph at time i =

1 depends only on the labels of vertices within distance (d + 1)i + d = 3 of this vertex.
In particular, only the labelling of the subgraph of G given in Figure A.1.2 is relevant for
Colouring 1. Note that the colours in this figure represent the colouring of the vertices at

u v

u1 v1

v2u2

Figure A.1.2: The vertices whose labels may influence Colouring 1.

time 0 under the assumptions already made. A vertex whose colour is unknown is coloured
grey in the picture.

The branches rooted at u1, u2, v1 and v2 are defined as Tu,1,4, Tu,2,4, Tv,1,4 and Tv,2,4,
respectively. We prove that, conditional upon the events already assumed, the labelling of each
branch cannot influence the colour, at time 1, of any vertex in the set A = {u, v, u1, u2, v1, v2}
other than its root vertex.

Claim A.1.5 Conditional on the event that, among all vertices at distance at most 2 from
u or v, only u and v have relevant label 0, the labelling of Tu,1,4 does not affect the colour, at
time 1, of a vertex in A other than its root vertex u1.

Proof of the Claim Consider the branch Tu,1,4 rooted at u1 and fix two labellings of the graph,
S and Ŝ, differing only in Tu,1,4 but not inducing the same colouring on A at time 1.

Let w1, . . . , wk be the vertices whose labels with respect to S and Ŝ are different, and let
Sj be the labelling obtained by assigning the labels of Ŝ to the vertices w1, . . . , wj and the
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labels of S to all other vertices in the graph. In particular, S0 = S and Sk = Ŝ, so there is a
smallest j ∈ {1, . . . , k} such that the colourings induced to A by Sj−1 and Sj differ. Let w be
a vertex in A for which the colour changes. Clearly, w is not equal to u, since this vertex has
relevant label 0, hence its colour cannot be modified. There are two reasons for the colour of
w to change. On the one hand, it could have relevant label 1 with respect to exactly one of the
labellings, and, on the other hand, one of its neighbours, call it ŵ, could have relevant label
0 or 1 with respect to only one of the labellings. In the former case, using Lemma 3.1.5, we
conclude that the vertex wj must be at distance at most 2 from w. This lemma also ensures
that min{LS(wj), LŜ(wj)} < min{LS(w), LŜ(w)} = 1, so wj must have relevant label 0 with
respect to only one of the labellings. This is a contradiction, since the only vertex in Tu,1,4

within distance two of w is u1, and we are conditioning upon u1 not having relevant label 0.
The same contradiction may be reached by applying the same argument to ŵ, since ŵ cannot
be equal to u. This establishes our claim. �

Therefore, the colour of u1 at time 1 only depends on the labelling of the branch Tu,1,4

rooted at u1, and the corresponding statement is true for the vertices u2, v1 and v2. By
symmetry, it suffices to look at the labellings of Tu,1,4 for which the vertex u1 is white at time
1. The vertices in this branches are named as in Figure A.1.3.

u1

a2

a

b1 b2

a1

b

Figure A.1.3: The vertices in the branch rooted at u1.

We already know that u1, a and b do not have relevant label 0. Under these conditions,
u1 is not white at time 1 if and only if at least one of these three vertices has relevant label
1, since we already know that u is purple at time 1. We subdivide into cases according to the
labels of a1, a2, b1 and b2 at time 0. Symmetric cases are treated together. Moreover, all the
cases are considered conditional on the assumptions made so far, namely on the event that,
among all vertices at distance at most two of u or v, only u and v have relevant label 0.

Case 1.0 : None of the four vertices have relevant label 0. This happens with probability
(1− p0)4.

As a consequence, a and b are white at time 0, so u1 does not have relevant label 1 with
probability (1−p1,0). Moreover, none of the neighbours of a and b are purple at time 0, hence
a and b cannot have relevant label 1 by our choice of probabilities.
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Hence, the conditional probability associated with Case 1.0 conditional on the earlier
discussion is equal to

(1− p0)4(1− p1,0).

Case 1.1 : Exactly one vertex in {a1, a2, b1, b2} has relevant label 0. This happens with
probability 4p0(1− p0)3.

Without loss of generality, assume that a1 has relevant label 0. We again have that a and
b are white at time 0. As a consequence, u1 does not have relevant label 1 with probability
(1−p1,0). Since b does not have any purple neighbours at time 0, it cannot have relevant label
1. Now, a will be have relevant label 1 with probability p1,1 if a2 is yellow and with probability
p1,0 if a2 is white. The former happens with probability p2

0, since its two neighbours of other
than a have to be purple. The latter occurs with probability (1− p2

0). We deduce that a does
not have relevant label 1 with probability 1− (p1,1p

2
0 + p1,0(1− p2

0)).
The probability associated with this case is therefore

4p0(1− p0)3(1− p1,0)[1− (p1,1p
2
0 + p1,0(1− p2

0))].

Case 1.2 : Exactly two vertices in {a1, a2, b1, b2} have relevant label 0. Two distinct situations
may arise in this case.

If the two purple vertices at time 0 are adjacent to the same vertex, call it a, then a

is purple at time 0 and b is white at time 0. Now, u1 does not have relevant label 1 with
probability (1− p1,1), while a and b cannot have relevant label 1.

If a and b are both adjacent to a purple vertex at time 0, the probability that none of u1,
a and b have relevant label 1 is

(1− p1,0)[1− (p1,1p
2
0 + p1,0(1− p2

0))]2,

by proceeding as in Case 1.1.
The probability associated with this case is

2p2
0(1− p0)2(1− p1,1) + 4p2

0(1− p0)2(1− p1,0)[1− (p1,1p
2
0 + p1,0(1− p2

0))]2.

Case 1.3 : Exactly three vertices in {a1, a2, b1, b2} have relevant label 0. So one of a and b is
yellow at time 0, while the other is white with a purple neighbour. Using the arguments of
the previous cases, the probability associated with this case is

4p3
0(1− p0)(1− p1,1)[1− (p1,1p

2
0 + p1,0(1− p2

0))].

Case 1.4 : The vertices a1, a2, b1 and b2 have relevant label 0. This situation cannot happen
in any labelling implying our event, since u1 would be white with a purple neighbour and two
yellow neighbours at time 0, so it would have relevant label 1 with probability 1.
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This concludes the analysis of Case 1. In particular, if q = 1− (p1,1p
2
0 + p1,0(1− p2

0)) and

r = (1− p0)4(1− p1,0) + 4p0(1− p0)3(1− p1,0)q + 2p2
0(1− p0)2(1− p1,1)

+ 4p2
0(1− p0)2(1− p1,0)q2 + 4p3

0(1− p0)(1− p1,1)q,

the probability associated with Case 1, that is, the probability that u and v have relevant
label 0 and that u1, u2, v1 and v2 are all white at time 1 is equal to.

p2
0(1− p0)12r4.

Case 2 : By symmetry, we shall only consider the case for which u has relevant label 0 and
v has relevant label 1, which will be multiplied by 2 to give the total probability associated
with this case. Again, u1, u2, v1 and v2 cannot have relevant label 0, and neither can their
neighbours other than u and v. Indeed, if one such vertex adjacent to u1 had relevant label 0,
u1 would again be yellow at time 0, whereas, if a neighbour of v1 had relevant label 0, v1 would
be yellow at time 1 . From here, we also deduce that v has relevant label 1 with probability
p1,0. So, these events all occur with probability p0(1 − p0)p1,0(1 − p0)12. Conditional upon
these events, we may proceed just as in Case 1. Here, we can also show that the labelling
of the branches rooted at u1, u2, v1 and v2 cannot influence the colour, at time 1, of any
vertex in the set A = {u, v, u1, u2, v1, v2} other than its root vertex. The branches rooted at
u1 and u2 can be treated exactly as before, while the branches rooted at v1 and v2 must take
into account the fact that v does not have relevant label 0. Such calculations gives us the
probability associated with Case 2, which is equal to

2p0(1− p0)p1,0(1− p0)12r2s2,

where r comes from Case 1 and

s = (1− p0)4 + 4p0(1− p0)3q + 2p2
0(1− p0)2 + 4p2

0(1− p0)2q2 + 4p3
0(1− p0)q.

The difference between this term and r is that, because v does not have relevant label 0, its
neighbour in the branch, say v1, cannot have relevant label 1.

The probability that the labelling of G induces Colouring 1 at time 1 is the sum of the
probabilities associated with Cases 1 and 2, that is,

p2
0(1− p0)12r4 + 2p0(1− p0)p1,0(1− p0)12r2s2. �





Appendix B

A determinant

In this appendix, we prove a formula for the determinant of a matrix that was used repeatedly
in this thesis.

Proposition B.1.6 Let r be a positive integer and let a1, . . . , ar be real numbers. Consider
the square matrix

A =




1 1 1 · · · 1
ra1 (r − 1)a1 − 1 (r − 2)a1 · · · a1

ra2 (r − 1)a2 (r − 2)a2 − 1 · · · a2

· · · · · · ·
· · · · · · ·

rar−1 (r − 1)ar−1 (r − 2)ar−1 · · · ar−1 − 1




.

Then

detA = (−1)r−1

(
1 +

r−1∑

k=1

k ak

)
.

Proof If B = (bi,j)ni,j=1 is a matrix, basic linear algebra tells us that the determinant of B
is given by

detB =
∑
σ

sgn(σ)
n∏

i=1

bi,σ(i), (B.1.1)

where σ ranges over all permutations of the sequence (1, 2, . . . , n). The summand associated
with a fixed permutation σ will be called the term of the permutation σ. The function sgn(σ),
called the sign of a permutation, assigns value 1 to even permutations, i.e., to permutations
that can be obtained from (1, 2, . . . , n) by interchanging an even number of pairs, and assigns
value −1 to the odd permutations, which are the permutations obtained from (1, 2, . . . , n) by
interchanging an odd number of pairs.

Applying formula (B.1.1) to the matrix A, we can see that detA is a polynomial in the
variables a1, . . . , ar−1, which is linear with respect to each ak. Here, we shall index the
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rows and columns from 0 to r − 1, since this will simplify the discussion. Analogously, the
permutations are permutations of (0, 1, . . . , r − 1).

As a polynomial the variables a1, . . . , ar−1, the only terms with degree 0 in A are the
elements in the first row and the summands -1 in each element of the diagonal. Thus, the
only permutation whose term can generate a monomial of degree 0 is σ = (0, . . . , r− 1). This
permutation is even by definition, and the monomial of degree 0 that it generates is (−1)r−1.

Now, a monomial of degree 1 on the variable ak has to be generated by a permutation σ

such that σ(i) = i for every i ∈ {1, . . . , r− 1} \ {k}, since all the non-diagonal elements in the
i-th row of the matrix are monomials of degree 1 in the variable ai. The only permutations
satisfying this are the identity and the permutation that interchanges the elements 0 and k.
By definition, the former is even and generates the monomial (−1)r−2(r − k)ak, while the
latter is odd, and therefore generates the monomial (−1)r−1rak. In particular, the monomials
of degree in detA sum to

r−1∑

k=1

(−1)r−1 (rak − (r − k)ak) = (−1)r−1
r−1∑

k=1

k ak.

Now, let 2 ≤ l ≤ r − 1. Fix J = {i1, . . . , il} ⊆ {1, . . . , r − 1} and consider the coefficient
of ai1ai2 · · · ail in detA. As in the previous cases, we may again argue that any permutations
whose term generates such a monomial must keep the elements in {1, . . . , r−1}\J fixed. For
each k ∈ {0} ∪ J , we consider the set of permutations Σk for which {1, . . . , r− 1} \ J is fixed
and σ(0) = k. By the definition of the matrix a, it is easy to see that, in absolute value, the
coefficient of ai1ai2 · · · ail generated by each σ ∈ Σk is equal to

r!
(r − k)

∏
j /∈J(r − j) .

So, if we show that, for every k, exactly half the permutations in Σk are even, it will follow
that the monomials generated by even and odd permutations will cancel out, so that the
coefficient of ai1ai2 · · · ail in detA is equal to zero.

If k = 0, the permutations in Σ0 are the ones that fix {0, . . . , r − 1} \ J . These can be
viewed as permutations of the symbols in J , and, since J contains at least two elements, the
same number of them are even or odd. Note that the sign of the permutation σ ∈ Σ0 is equal
to the sign of its restriction to J , since all other elements are fixed, so our result follows in
this case.

If k 6= 0, each element in Σk is determined by a bijection between the sets J and J ′ =
(J \ {k}) ∪ {0}, since the image of all the other elements is known. By formally identifying
the element k in J and the element 0 in J ′ as the same element, these can again be seen
as permutations in a set of symbols containing at least two elements, so the same number
of them are even or odd. Now, the sign of a permutation σ ∈ Σk is clearly the opposite of
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the sign of the permutation obtained by restricting this permutation to J and identifying the
elements k and 0, so it is still true that exactly half of them are even.

This implies that the coefficient of any monomial of degree at least 2 in detA is 0, and
therefore

detA = (−1)r−1

(
1 +

r−1∑

k=1

k ak

)
,

as required.


