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Abstract

This thesis is about minimal transitive factorizations of permutations into

transpositions. We focus on finding direct combinatorial proofs for the cases

where no such direct combinatorial proofs were known. We give a description

of what has been done previously in the subject at the direct combinatorial

level and in general. We give some new proofs for the known cases. We

then present an algorithm that is a bijection between the set of elements

in {1, ..., k} dropped into n cyclically ordered boxes and some combinatorial

structures involving trees attached to boxes, where these structures depend

on whether k > n, k = n or k < n. The inverse of this bijection consists of

removing vertices from trees and placing them in boxes in a simple way. In

particular this gives a bijection between parking functions of length n and

rooted forests on n elements. Also, it turns out that this bijection allows us

to give a direct combinatorial derivation of the number of minimal transitive

factorizations into transpositions of the permutations that are the product

of two disjoint cycles.
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Chapter 1

Introduction and Background

1.1 Introduction

Motivated by the geometric problem of counting distinct ramified covers

of the sphere by the sphere, Hurwitz [7], in 1891, considered the following

combinatorial problem in the symmetric group Sn on {1, . . . , n}. Let σ ∈ Sn

be a fixed permutation with m cycles and τ1, . . . , τk be transpositions in the

symmetric group Sn. We call (τ1, . . . , τk) a minimal transitive factorization

into transpositions of σ if it satisfies the following conditions:

1. τ1τ2 . . . τk = σ,

2. k = m+ n− 2,

3. 〈τ1, . . . , τk〉 acts transitively on {1, . . . , n}.
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We call these factorizations minimal because the number of factors in condi-

tion 2 is the minimal possible value consistent with conditions 1 and 3. For

example, with n = 6 and m = 2, we have (1, 4)(2, 3)(4, 5)(3, 5)(3, 6)(1, 2) =

(1, 6, 3)(2, 5, 4), where we multiply permutations left to right. It is straight-

forward to check that these 6 transpositions act transitively on {1, . . . , 6}, so

this is a minimal transitive factorization into transpositions of (1, 6, 3)(2, 5, 4).

We say that a permutation σ ∈ Sn is in the conjugacy class (c1, . . . , cm) when

c1, . . . , cm specify the lengths of the disjoint cycles for σ. The formula that

Hurwitz obtained, published without proof, is as follows:

Theorem 1. (See [7]) If σ ∈ Sn and σ is in the conjugacy class (c1, c2, . . . , cm)

then the number of minimal transitive factorizations into transpositions of σ

is

Cσ = nm−3(n +m− 2)!

m∏

i=1

ci
ci

(ci − 1)!

Hurwitz sketched how he would prove it but did not complete the proof.

In 1996, Strehl [13] reconstructed the proof of Hurwitz. In 1997, Goulden and

Jackson [4] published a generating function proof of this result using a partial

differential equation called the join-cut equation. In 2000, Bousquet-Mélou

and Schaeffer [1] generalized the problem to arbitrary factors by considering

h-tuples (σ1, . . . .σh), for σ ∈ Sn with m cycles. We call these minimal transi-

tive factorizations with h factors of σ if they satisfy the following conditions:

1. σ1σ2 . . . σh = σ,

2



2.
∑h

i=1(n− ℓ(σi)) = n+m− 2, where ℓ(σi) denotes the number of cycles

of σi,

3. 〈σ1, . . . , σh〉 acts transitively on {1, . . . , n}.

For example, take σ1 = (2, 5)(4, 3), σ2 = (1, 3, 5)(2, 4), σ3 = id and σ4 =

(2, 6), omitting fixed points, then σ1σ2σ3σ4 = (1, 3, 6, 2)(4, 5). It is straight-

forward to check the transitivity and we have
∑4

i=1 n− l(σi) = 2+3+0+1 =

6 + 2 − 2 = n +m− 2, so it satisfies condition 2.

Theorem 2. (See [1]) Let σ ∈ Sn in the conjugacy class (c1, . . . , cm). For

h ≥ 0, the number of minimal transitive factorizations with h factors of σ is

Dσ(h) = h
[(h− 1)n− 1]!

[(h− 1)n−m+ 2]!

m∏

i=1

[

ci

(
h ci − 1

ci

)]

Bousquet-Mélou and Schaeffer’s proof is a direct bijection, using combi-

natorial structures called constellations and Eulerian trees. They also showed

that Theorem 2 implies Theorem 1 in an indirect way via an inclusion-

exclusion argument.

Only in a few special cases is a direct combinatorial proof of Theorem 1

known. For the simplest case when σ is a full cycle, several direct combina-

torial bijection are known [6, 8, 5, 10, 2]. One of these bijections, involving

parking functions, has been extended to give a combinatorial proof for the

conjugacy classes (n−1, 1), (n−2, 2) and (n−3, 3) [8, 11]. In this thesis, we

give a direct combinatorial proof of Theorem 1 for the case of an arbitrary
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Figure 1.1: A directed graph in A3,12.

conjugacy class with 2 cycles. The main combinatorial component of this

proof is a simple bijective proof of the enumerative result given in Theorem

3 below. For positive integers θ, γ, let Aθ,γ be the set of connected directed

graphs labelled on edges in the set {1, . . . , θ + γ}, with exactly one directed

cycle of length at least 2 (and no other undirected cycles), θ descents along

the oriented cycle (a descent is a vertex on the cycle, where the labels of the

two edges adjacent to it on the cycle are in decreasing order with respect to

the orientation of the cycle, and an ascent corresponds to increasing order).

The descents on this cycle have total degree equal to 2. All other edges lie

in rooted trees attached to ascents (of the cycle), and we direct all edges on

such trees towards the root (on the cycle). See Figure 1.1 for an example of
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a directed graph in A3,12. Then we get the following theorem:

Theorem 3. For θ, γ ≥ 1, the cardinality of Aθ,γ is equal to:

γγ+θ−1

The proof of Theorem 3 will appear in Chapter 4 (it will be proven using

similar structures). In the rest of this Chapter, we introduce some back-

ground material and give an outline of the thesis.

1.2 Background Material

1.2.1 The Symmetric Group

Let Nn = {1, . . . , n}. The Symmetric Group Sn consists of all bijections from

Nn to Nn. Clearly there are n! of these. Each σ ∈ Sn can be represented as

the product of disjoint cycles such that each element in Nn appears in one

of the cycles. We will assume multiplication is from left to right for Sn. We

denote the length of the disjoint cycles of σ by the m-tuple (c1, c2, . . . , cm),

called the conjugacy class of σ (or cycle type), and obviously
∑m

i=1 ci = n.

When the ci’s are rearranged in decreasing order, this gives a partition of n.

Let ℓ(σ) = m be the number of disjoint cycles in σ.

A transposition is a permutation that permutes only 2 elements, or sym-

bolically, (i, j), where i 6= j, in which the transposition interchanges elements

i and j of Nn (it is in the conjugacy class (2,1,...,1)).

5



Proposition 4. Let t1, . . . , tk be transpositions in Sn. The subgroup 〈t1, . . . , tk〉

acts transitively on Nn, if and only if the graph with n labelled points in Nn,

with an edge between two points if there is a transposition that is composed

of both endpoints, is connected.

Proof. We will show that the fact that the graph is connected implies that

the set of transpositions generates Sn which is stronger than transitivity. It

is easy to see that if a set of permutations generates all transpositions then

it generates Sn. Let (i, j), i 6= j, be a transposition. Consider a path from

the point i to the point j (there must be such a path since the graph is

connected). Call this path w1, . . . , wr where the w′s are in {t1, . . . , tk}. Then

(i, j) = (t1 · t2 · · · · · tk)(tk−1 · tk−2 · · · · · t1). The converse is trivial.

Note that if we multiply a permutation σ ∈ Sn with a transposition, say

(i, j), to obtain σ(i, j), and the values i, j are in different cycles, then these

two cycles become one cycle in a specific way. Call this a join. Conversely,

if they are in the same cycle, this cycle splits into two cycles, one containing

i and the other containing j. Call this a cut. A join reduces the number of

connected components (cycles) by 1 and a cut augments it by 1. From this,

we get the following theorem:

Theorem 5. (See [4]) Let σ ∈ Sn with cycle type (c1, . . . , cm), then the

minimal length k such that t1 · · · tk = σ and 〈t1, . . . , tk〉 is transitive on Nn

(so the graph is connected by the previous theorem) is equal to n +m− 2.

6



Proof. Let (t1, . . . , tk) be a minimal transitive factorization of σ into trans-

positions. For any i = 0, . . . , k, let H(t1, . . . , ti) be the graph with vertices

in the set Nn and edges in the set Ni. Denote the edge with the value j

to be the edge between the two vertices interchanged by transposition tj .

Since H(t1, . . . , tk) is a connected graph, construct a spanning tree by tak-

ing the edge tr if this edge reduces the number of connected components of

H(t1, . . . , tr−1). This gives (n − 1) joins. Suppose there are x other joins

and y cuts. Then since a join reduces the number of connected components

by 1 and a cut augments the number of components by 1, we need to have

n− ((n− 1) + x− y) = m since σ has m cycles. Then x− y = m− 1, and so

k = (n−1)+x+y ≥ (n−1)+x−y ≥ (n−1)+(m−1) = n+m−2. Now all

that is left to show is that we can create such a factorization with n+m− 2

transpositions. Take the product (12)(13)(14) · · · (1n) = (1234 . . . n). Then

simply use (m − 1) transpositions to cut the full cycle into a permutation

θ such that ℓ(θ) = m and θ has any cycle type with m disjoint cycles. By

renaming, since this procedure depends only on cycle type, we can obtain σ

with (n+m− 2) steps.

1.2.2 Parking Functions

We will consider all functions f : Nn 7→ Nn such that

| { j ∈ Nn : f(j) ≤ i} | ≥ i ∀ i ∈ Nn.

7



Such functions are called parking functions and date from 1966 [9]. The

number of such functions is (n + 1)n−1. There exists more than one proof

but we will only give one. We will use this theorem later to see how a simple

generalization allows us to extend parking functions in a way and give some

constructions from that extension. Before giving the proof, we will give an

interpretation of parking functions that is well known. Suppose there are

n cars and n parking spots in a parking lot (parking spots correspond to

the image of the function of f), linearly arranged. One by one in increasing

order, car i comes into the parking lot, going to f(i) first, and parking itself

in the unused parking spot with the smallest value greater or equal to f(i).

If no such spot exists for at least one car, then f is not a parking function.

It is easy to see that each car will find a parking spot (i.e. f is a parking

function) if and only if

| { j ∈ Nn : f(j) ≤ i} | ≥ i ∀ i ∈ Nn.

The following theorem is due to Pollack.

Theorem 6. (See [12]) The number of parking functions from Nn to Nn is

(n+ 1)n−1.

Proof. Suppose we add an extra parking spot with value n + 1 and then

consider all functions f : Nn 7→ Nn+1. Put these n + 1 parking spots into

circular order, so that the last parking spot is just before the first one in

this circular order. As before, cars enter the parking lot, starting at parking

8



spot with value f(i), but now they take the empty spot that happens first

circularly from f(i). For each such function f , we have a unique empty spot

1, . . . , n + 1. If we consider f + r, for any r ∈ Nn+1, then we see when we

compare with f + r + 1, that each car parks in the parking spot one more

modulo (n + 1) compared to where it parked under f + r. In particular the

empty spot is different ∀r ∈ Nn+1. So we then get (n+1)n

n+1
= (n + 1)n−1 of

these functions such that the parking spot with value (n+1) is empty. Each

of these clearly corresponds to a parking function. Conversely, each parking

function gives rise to the parking spot with value (n+1) being empty. Thus,

the number of parking functions is (n + 1)n−1.

Note that since there is only one parking function in {f + r : r ∈ Nn+1},

where f : Nn 7→ Nn+1, one can forget about the values of the parking spots

linearly and just see them as ordered circularly. This fact is important since

this is precisely the simple observation that will allow an extension of parking

functions in the cases that there might be more or fewer cars than parking

spots. From this easy statement, some simple algorithms will be stated in

Chapter 4 that will give direct bijections with well known structures.

1.3 Outline of the Thesis

In Chapter 2, we will explain further what others have done. We will also

explain some combinatorial interpretations for the results that are known.

In Chapter 3, we give some simple (new) proofs for known results.

9



In Chapter 4, we will give the extensions of parking functions that were

discussed. This will be divided into 3 cases and some examples of simple

algorithms that give combinatorial interpretations for well known structures

will be provided.

In Chapter 5, we give a combinatorial interpretation for minimal tran-

sitive factorizations into transpositions, in the case where σ ∈ Sn is in the

conjugacy class (α, β). It builds on the construction of Chapter 4. Not only

will a simple argument be given to prove this in a concise way, but the steps

involved prior to obtaining this simple result will be provided.

In Chapter 6, general comments and questions that could not be solved

will be addressed.

10



Chapter 2

Some simple definitions and a

known combinatorial

interpretation

2.1 Introduction

We will first give a graphical interpretation of a factorization of a permuta-

tion into transpositions and start with some easy definitions that will follow

for the rest of the thesis. In particular, this is valid for minimal transitive

factorizations of a permutation into transpositions. It is easy to represent

a factorization of a permutation into transpositions graphically where the

vertices are labelled with the elements in Nn and the edges represent the

transpositions such that if a transposition is the ith factor, we label this edge

11



by the value i. If we denote the factorization by F , then we will call this

graphical representation the Picture of a product of transpositions, and we

denote it by P(F). For example, in Figure 2.1 we give P (F ) for the factor-

ization F given by (1, 2)(2, 4)(1, 3)(4, 5)(1, 4)(1, 3) = (1, 5, 3, 4, 2).

6
2

4

5

3

1
1

2
3

4

5

Figure 2.1: Picture of product of transpositions

Let F be a factorization as mentioned above and let P (F ) be the Picture

of the product of the transpositions of F . For any vertex v in P (F ), we will

call PSIV (v), which denotes the Path by the Smallest Increasing Value from

vertex v, to be the directed path (allow repeated vertices but not repeated

edges) starting at vertex v with the following conditions. If v is not incident

with any edge, the path is empty. Otherwise, follow the smallest edge by

label from v, say e1. Traverse this edge with smallest value and get to

another vertex, call it v1. Now, for i = 1, 2, . . ., repeat the following until

termination: Let S be the set of edges incident with vi that have label larger

than ei; if S = ∅, then terminate with t = i, otherwise let ei+1 be the edge

12



with the smallest label in S, and follow ei+1 from vi to vertex vi+1.

We will denote PSIV (v) by (v : e1, e2, . . . , et) (since v1, . . . , vi are then

uniquely implied). For example, in Figure 2.1, we have PSIV (1) = (1 :

1, 2, 4), PSIV (2) = (2 : 1, 3, 6), PSIV (3) = (3 : 3, 5), PSIV (4) = (4 : 2),

and PSIV (5) = (5 : 4, 5, 6). Note that in a product of transpositions equal

to σ ∈ Sn, if PSIV (v) = (v : e1, e2, . . . , et) then vt is just equal to σ(v). We

get the following simple proposition that will be useful later on.

Proposition 7. Let G be a non-directed graph , V (G) is the set of vertices

in G and ~E(G) is the set of oriented edges of G (so each non-oriented edge

of G gives rise to two oriented edges, one in each direction). Let F be a

factorization of the permutation σ ∈ Sn into transpositions, then

⋃

v∈V (P (F ))

~E(PSIV (v)) = ~E(P (F ))

Proof. Take two vertices v1 and v2. Suppose that the paths PSIV (v1) and

PSIV (v2) pass by the same edge in the same direction. By the description

above, it is easy to see that the two paths will end at the same place. Then

we get that σ(v1) = σ(v2), so v1 = v2. We conclude each edge is traversed at

most once in each direction.

To see that each edge is traversed exactly once in each direction, consider

any edge e with a given direction. Let w be the vertex that is the tail of this

directed edge. The only thing we need to do is to backtrack the procedure

that was used for the PSIV . In order to construct a path that starts at the

13



vertex w, follow the biggest edge smaller then e (if it does not exist, stop).

Call this edge e1 and this new vertex w1. From w1, look for the biggest edge

smaller then e1. Continue this process until it stops. Suppose it stops at

the vertex wx. Then it is straightforward to see that PSIV (wx) will pass

through the oriented edge e as mentioned above.

Sometimes we will also refer to the concept of Picture of product of trans-

positions in the same way except that we will delete the labels on the vertices

and just keep this information separately.

For example we will just label one or two of the vertices and say that

all the labels of the other vertices could be easily obtained by following the

PSIV (v) iteratively for all the vertices v (starting with the label of the ver-

tices known and continuing to label the vertices by looking at the permutation

that is the product of the transpositions).

There is one gadget that is really simple that we will introduce here

and will be used repeatedly for this problem of counting minimal transitive

factorizations into transpositions. We will call this gadget a tentacle. This is

simply a tree with at least 2 vertices and labelled on edges, that is rooted at

one of the leaves. We will use this in the context where we will identify this

root with a vertex from a different graph. More precisely, we will identify the

root of a tentacle with a vertex from a cycle for many tentacles and this will

help us to construct the map of Chapter 5. For example, at the top of Figure

2.2 we show three tentacles, in which the rooted leaf is circled in each case,

together with a cycle of length four. At the bottom of Figure 2.2 we give an

14



Attach each tentacle to one of 

9

2

3

12

5

1

1148 10

7
6

10
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9

2

3

12
8

5

1

114

The three tentacles

the vertices on the cycle

Figure 2.2: Example of tentacles that are attached to another graph

edge-labelled connected graph obtained by identifying the rooted leaves with

vertices on the cycle. We have also some other questions related to tentacles

in Chapter 5.
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2.2 The proof of Moszkowski for the full cycle

case

The following proof is similar in spirit to the one by Moszkowski [10] for the

number of minimal transitive factorizations of the full cycle (1, 2, . . . , n). We

present it using the notation that we have developed above. We also present

this proof since it is based on the same kind of approach that we use for our

mapping for minimal transitive factorization in the two cycle case in Chapter

5.

Theorem 8. The number of minimal transitive factorizations of (1, 2, 3 . . . , n),

or any other full cycle, is nn−2.

Proof. Let A denote the set of minimal transitive factorizations of (1, 2, . . . , n)

into transpositions. Let B denote the set of rooted trees on n vertices in which

the edges are labelled in Nn−1. If C is the set of trees with n vertices labelled

in Nn, then there is a simple bijection between B and C: for a tree in C, root

the tree at the vertex labelled n (removing the label), and “pull” the label

on each other vertex onto the incident edge toward the root. In particular,

this implies that |B| = nn−2.

Now we give a bijection f : A → B. Take an element of A and denote

it by t1t2 . . . tn−1 where the ti’s are transpositions. Since the set of trans-

positions {t1, . . . , tn−1} is transitive on Nn, the Picture of the factorization

(as defined above) is connected by Theorem 5. It has (n − 1) edges and n

16



vertices, so it must be a tree. Now remove the labels of the vertices and

simply root the resulting edge-labelled tree at the vertex which has label

n. So define f(t1, t2, . . . , tn−1) to be this rooted edge labelled tree. Fig-

ure 2.3 shows an example of the bijection f for the factorization (in S7)

(2, 3)(4, 5)(1, 7)(2, 4)(2, 7)(6, 7).

Now define g : B → A by labelling the root vertex n. Now follow

PSIV (n) until its end and label that vertex 1. Do the same for PSIV (1) and

denote this vertex 2. Repeat this process until all the vertices are labelled

(this covers all the vertices, which can be seen from Theorem 5 with the fact

that the set of transpositions is transitive and there are (n − 1) transposi-

tions, so it has to be a full cycle). Just read the product of transpositions

from the graph and get a factorization of (1, 2, 3, . . . , n). Clearly f ◦ g = id

and g ◦ f = id, so

|A| = |B| = nn−2

f
1

2

4

3

5
(2,3)(4,5)(1,7)(2,4)(2,7)(6,7)

6

Figure 2.3: Example of the bijection f
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Chapter 3

A simple proof for the (n− 1, 1)

case

In this chapter, we give a different proof from the one of Kim and Seo (See

[8]) that the number of minimal transitive factorizations into transpositions

of a permutation in the conjugacy class (n − 1, 1) is equal to (n − 1)n. We

will first introduce a basic lemma. We have been unable to find this result

explicitly stated in the literature, although it is so simple that it must have

been known previously.

Lemma 9. The number of rooted labelled trees with n vertices such that the

root has a smaller label than its neighbours is equal to (n− 1)n−1, for n ≥ 2.

Proof. Let A be the set of rooted labelled trees on n vertices such that the

root has smaller label than its neighbours. Let B be the set of doubly rooted

labelled trees on (n − 1) vertices. We will give a bijection f : A → B.
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Let a ∈ A and let the vertex r be the the root of a. Let N ′ be the set

{x1, . . . , xdeg(r)} of neighbours of r, arranged in increasing order. Let the

vertex xt be the neighbour of r that contains vertex n among its descendants,

including itself (For n ≥ 2, r 6= n since deg(r) ≥ 1, and n cannot be smaller

than any other label). Let N = N ′ \ {xt}. We will define f(a) by breaking

a into smaller pieces and connecting them in a particular way to get f(a):

Delete the edge between each element of N and r. The result is a collection

of subtrees; one contains r, the others each contain one element of N . Root

them at the elements of N . Let S1 be the set of these rooted trees that

contain an element of N . Let R be the rooted tree that contains r (and n).

In R, delete the edges adjacent to n and root the subtrees of n at its sons.

Let S2 be the set of (rooted) subtrees of n. The vertex n is deleted and will

not appear in f(a). Create a path that is first made of the roots of the trees

in S1 (if S1 is not empty) in decreasing order and then followed by the vertex

r. The first root of f(a) is the first vertex of this path and the second root

is the father of the element n in a. Now only the trees in S2 must be placed.

Add an edge from all the roots of the trees in S2 to the vertex r. Then the

doubly rooted tree f(a) has been constructed. See Figure 3.1 for an example

of this, in which r = 4, n = 18. It is easy to define an inverse function: the

longest decreasing path starting at the first root contained in the path from

this root to the second root finishes at the element that will become the root

of the tree in the inverse map. Thus f : A → B is a bijection. The result

follows since |B| = (n− 1)n−3 (n− 1)2.
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Figure 3.1: Bijection from rooted tree with root smaller than neighbours and
doubly rooted trees with one less vertex.

From Lemma 9, we immediately obtain a proof of Kim and Seo’s [8]

result.

Theorem 10. The number of minimal transitive factorizations of the per-

mutation (1, 2, 3, . . . , (n− 1))(n) into transpositions is equal to (n− 1)n.

Proof. From Theorem 5, the number of transpositions in any factorization
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Figure 3.2: We show where a tentacle could be placed on a cycle

is n. We will use the description of the Picture of a factorization given at

the beginning of Chapter 2 and the other constructions given there. So as

before, if we take a look at the Picture (with only one cycle of length at

least 2) of a factorization and delete all labellings of vertices, the underlying

structure (edges labelled) has exactly the following characteristics (we keep

in mind that we have only one cycle in the graph for the rest of this chapter):

There exists a unique v ∈ V such that PSIV (v) finishes at v (n is the only

fixed point in the product permutation, so v must have had label n). This is

equivalent to structures where (the following is easy, but tedious, to show):
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1. There exists an orientation of the cycle such that starting at one of

the vertices, the entire cycle is increasing (this cycle must have length

≥ 2).

2. Take any edge incident to one of the vertices on the cycle, but not in

the cycle. The label on this edge is not between (mod n) the labels on

the two edges of the cycle that are incident with that vertex, following

the orientation of the cycle. See Figure 3.2 for an example.

For example, in Figure 3.3, the cycle has length 5, with edge labels 2 <

5 < 8 < 9 < 12. Edge labels 1 and 10 are not between 5 and 8, edge label

11 is not between 8 and 9 and edge label 3 is not between 9 and 12. We

form a tentacle for each edge, say edge e, incident to a vertex on the cycle

but not in the cycle. For each of these edges, take the vertex incident to it

on the cycle. This vertex becomes the root of the tentacle with the (only)

edge adjacent to it to be e (note that each vertex on the cycle might appear

multiple times). Construct tentacles so that each edge not in the cycle is in

exactly one tentacle (in other words take the tentacle to be as big as possible).

So from condition 2 above, we see that given an increasing (oriented) cycle

of length l and some tentacles, we can attach each tentacle to l − 1 vertices

on the cycle so that it is a picture of a minimal product of transpositions

(the reason is that the value of the edge adjacent to the empty vertex of each

tentacle will fall in the middle of two consecutive edges on the cycle mod(n),

following the orientation, in only one place since the cycle is increasing, so
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Figure 3.3: Bijection for the (n-1,1) case.

this tentacle could be attached to all vertices on the cycle except this one)

From these two characteristics, it is easy to see that the set of factoriza-

tions (minimal transitive) is in bijection with the rooted trees on n vertices

such that the root has smaller index than its neighbours with a value in Nn−1

attached to it. The bijection is as follows:

We will again start with a minimal transitive factorization, take the Picture

of the factorization, break it into smaller pieces and then construct the image
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of this map from these pieces (except that the values on edges will become

values on vertices) (see Figure 3.3). The element that is attached corresponds

to the value other than n that is contained in the first transposition that con-

tains n. From the underlying structure as described above, the root of the

tree corresponds to the value of the edge that is the smallest on the cycle.

Its neighbours are the other values of the edges on the cycle (note that the

value on an edge becomes a vertex). Now clear the tentacles from the cycle

as explained above and just remember to which vertex they were attached

on the cycle. Then starting at the vertex that is mapped onto itself and

following the orientation in condition 1 (the orientation that makes the cycle

increasing), do the following for each tentacle. If the tentacle is attached to

the ith place (see Figure 3.2) where it could have been attached, then attach

it to the ith smallest neighbour of the new root (by pushing the values away

from the empty vertex so that they become values on vertices instead). Then

get a rooted tree with n − 1 vertices such that the root has smaller index

then its neighbours and a value in {1, 2, . . . , (n−1)} attached to it. It is easy

to find an inverse function. Thus, this is a bijection.

From Lemma 10, since there are (n − 1)n−1 rooted trees on n vertices

such that the root has smallest index than its neighbours and (n− 1) values

in {1, 2, . . . , (n− 1)}, we get that the number of such factorizations is (n −

1)n.
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Chapter 4

An extension of Parking

Functions

4.1 Some Definitions

We saw in Chapter 1 in Theorem 6 that parking functions are equivalent to

dropping the values of Nn into (n+1) cyclically ordered boxes. This could be

obviously extended to dropping the elements of Nk into n cyclically ordered

boxes. The number of ways to do this is nk−1. We will construct a bijection

from these constructions with other kinds of structures and this will be useful

to give an interpretation of the problem of minimal transitive factorizations

of permutations into transpositions where the permutations are the product

of two disjoint cycles.

Dropping elements into boxes that are cyclically ordered could be done
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by putting the elements in each box in descending order (from left to right)

and denoting the boundary between boxes with straight bars. We always

read this from left to right cyclically. For example, in the following we have

k = 8 elements dropped into n = 5 boxes, in which one box is empty:

7, 2
∣
∣6, 4, 3

∣
∣
∣
∣1
∣
∣8, 5

∣
∣

Thus the combinatorial objects we consider are cyclic sequences of n bars

and the elements of Nk, for k ≥ 0, n ≥ 1, so that consecutive elements are

descents if they are not separated by a bar. We denote this set by Dk,n and

let D =
⋃
Dk,n where the union is over all k ≥ 0, n ≥ 1. First we need

to introduce some simple facts and some notation. Suppose that we replace

the elements with open parentheses and the bars with closed parentheses.

Our goal is to pair up the elements with the bars by using the usual pairing

of their associated parentheses. If an open parenthesis faces (is immediately

followed by, cyclically) a closed one, then we say that they are partners. Now

we erase these two partners and do the same thing recursively. At the end,

we will either have that all elements and bars are paired up, some elements

are not paired up but all bars are, or some bars are not paired up but all

elements are. These three possibilities correspond exactly to whether the

number of bars, which is the number of boxes, is equal, smaller or greater

than the number of elements respectively. For example, suppose we have the
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following box structure with representation as parentheses below:

2
∣
∣
∣
∣6, 4, 3

∣
∣
∣
∣1
∣
∣7, 5

∣
∣

( ))( ( ( ))( )( ( )

Remember that we read cyclically. The element 1 is partnered with the fifth

bar, 2 with the first bar, 3 with the third bar, 4 with the fourth bar and

5 with the sixth bar. Also, the element 7, which corresponds to the sixth

open parenthesis (linear order from the left) since it is the sixth element, is

partnered with the second closed parenthesis. The element 6 has no partner.

Let x be an element in one of the box(es) that has a partnered bar. We

will denote the interval of x by the sequence of elements and bars that starts

at x and finishes at its partnered bar inclusively. Let the strict interval of x be

the interval of x without x and its partnered bar. In the example above, the

interval that starts at the element 7 is 7, 5|2|| . The strict interval contained

in this interval is 5|2|. Note the convention that we use for “contained in”:

for an element x which has a partnered bar, we always consider the sequence

to be cyclically rewritten so that x is to the left of its partnered bar. By

considering the parenthesis representation, it is straightforward to obtain

the following results, which we record as a Lemma for later use.

Lemma 11. For any cyclic sequence in D, for any interval, all elements and

bars in the corresponding strict interval must have a partner, and the strict

interval must consist of a linearly ordered list of intervals. In particular,

27



if a strict interval is non empty, then it terminates with a bar (so that the

corresponding interval terminates with two consecutive bars). For any two

intervals, either they are disjoint or one is contained in the other. Finally,

any element or bar without a partner cannot be contained in any interval.

Extend the set D as follows. Let D′ be the set that consists of all ways

to drop some (distinct) positive integers into an arbitrary (positive) number

of boxes. Equivalently, these are cyclic sequences of bars and the elements

of a set of distinct positive integers. Using D′, we define a new set Ek,n in 3

different ways depending if k > n, k = n or k < n.

For k > n: The set of structures with a d′ ∈ D′ such that the elements in

the boxes of d′ form a subset S of Nk, the bars are ascents, the elements in

a box are in decreasing order and having the following characteristics. The

elements of Nk \S are vertex labels in rooted trees such that each rooted tree

is attached to one of the bars (note that an arbitrary number of rooted trees

can be attached to a given bar). Also the number of boxes plus (k − n) is

equal to the number of elements in boxes. See Figure 4.1 (a) for an example

in Ek,n when k = 13, n = 10. (It is easy to see that the set Aθ,γ in Theorem

3 is equivalent to the set Ek,n for this case, with k = θ + γ, n = γ.)

For k < n: The set of structures with a d′ ∈ D′ such that the boxes are

empty, there are (n − k) bars and the elements of Nk are vertex labels in

rooted trees such that each rooted tree is attached to one of the bars. Figure

4.1 (b) gives an example in Ek,n when k = 11, n = 15.
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For k = n: The set of structures with a d′ ∈ D′ with only one box and only

one element (in Nk) in that box. The rest of the elements of Nk are vertex

labels in rooted trees such that each rooted tree is attached to the bar. See

Figure 4.1 (c) for an example in Ek,n when k = n = 8.

(a)

11,3 9,7,5 10

4

8 1
6 13

12 2

5

1 2

7 6 43

8

43 9

8 1 5

10

7

6 2

11

(b)

(c)

Figure 4.1: (a) For k > n, an element of E13,10. (b) For k < n, an element of
E11,15. (c) For k = n, an element of E8,8
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4.2 Some Bijections

Now we will give an algorithm from Ek,n → Dk,n that turns out to be a

bijection, as we prove later in this chapter.

Algorithm 1. Repeat until there are no vertices attached to the bars (so

all elements are contained in boxes). Take any bar that has some vertices

attached to it. Take the vertex with the smallest label that is attached to it,

clear its link to the bar, and drop its label in the box just before the bar it was

attached to so that the elements are still in decreasing order in that box. Add

a new bar immediately after this new element that was dropped in and attach

its sons (with their subtrees), if any, to this new bar.

See Figure 4.3 (at the end of the chapter) for an example of Algorithm

1 on an instance of Ek,n for k > n. Figure 4.5 (at the end of the chapter)

presents an example of Algorithm 1 on an instance of Ek,n for k < n (before

the word “Reverse”). Figure 4.6 (at the end of the chapter) presents an

example of Algorithm 1 on an instance of Ek,n for k = n (before the word

“Reverse”).

Note that, in performing Algorithm 1, in the underlying cyclic sequence at

each stage, the new element is partnered with the new bar, and all previous

pairings of elements with bars are maintained. Also all elements originally on

trees, together with their partner bars, are inserted into the cyclic sequence to

the left of the bar for that tree and to the right of all original bars. Thus this

is a well defined Algorithm since what happens in each box is independent
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of the others, so the final result doesn’t depend of the order we follow in

Algorithm 1. Note that at every stage of Algorithm 1, we have a cyclic

sequence in D′ together with some rooted trees such that each rooted tree is

attached to one of the bars.

These objects belong to the set Wk,n for some k ≥ 0, n ≥ 1 defined by

relaxing the conditions of Ek,n in the following way: The set of structures

with a d′ ∈ D′ such that the elements in the boxes of d′ form a subset S of

Nk; the elements of Nk \ S are vertex labels in rooted trees such that each

rooted tree is attached to one of the bars. Also, the number of boxes plus

the number of elements in the rooted trees is equal to n. Note the stronger

statement that Algorithm 1 is a function from Wk,n → Dk,n by the same

argument as above.

To prove that Algorithm 1 is a bijection from Ek,n → Dk,n, we begin with

an inverse algorithm and then prove that they are inverse functions, so they

are both bijections. We begin with two conditions that will be useful for

stating the inverse algorithm. These conditions apply to the elements of the

boxes. For a member of Wk,n, any k, n, take an element, say θ in a box.

Condition 1: θ has a partnered bar, θ and this bar are consecutive (θ to

the left of the bar), and the bar is either a descent or a left delimiter of an

empty box.

Condition 2: If one reads to the left of θ and stops at the first bar, then

this bar has no partner or its partner is smaller than or equal to the element
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immediately after this bar (adjacent to the right).

For example, take the box structure (where there might be some rooted

trees attached to the bars, but they don’t matter for the conditions):

7, 6
∣
∣4, 3, 2

∣
∣
∣
∣9, 1

∣
∣8, 5

∣
∣

The elements 6 and 2 satisfy Condition 1 and the elements 7, 6, 9, 1, 8 and 5

satisfy Condition 2.

Lemma 12. For any k ≥ 0, n ≥ 1, let w ∈ Wk,n. If there is an element

in w that satisfies Condition 1, there must be an element that satisfies both

Condition 1 and Condition 2.

Proof. We will show first that an element that satisfies Condition 2 must

exist (note that if an element in a box satisfies Condition 2, then all other

elements in that box satisfy it). Then we will find using a simple construction

that an element that satisfies Conditions 1 and 2 must exist.

From the fact that there is an element that satisfies Condition 1, it follows

that at least one box is nonempty. If we have at least one element in one of

the boxes, then we will show that there must exist an element that satisfies

Condition 2. Take that element, look to its left until you get a bar. The

element that immediately follows the bar (to the right of the bar) must

be smaller than the partner of that bar and this partner must exist since

otherwise we would have an element that satisfies Condition 2. Now we can
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repeat the same process and look to the left of this new element until we get

a bar and we see that if no element satisfies Condition 2 in this sequence (to

the left), then the values of the elements are unbounded, which is impossible.

Therefore there must exist an element that satisfies Condition 2.

Now we will show that there must exist an element that satisfies Condition 1

and Condition 2. Take one element that satifies Condition 2 and look to its

right (previously we were looking left, cyclically, now we look to the right)

until we see a bar. If the element that precedes this bar satisfies Condition

1, then we are done since it is in the same box as an element that satisfies

Condition 2, so it must satisfy Condition 2 also. If not then the failure of

Condition 1 implies that the box after the bar is not empty and the element

before the bar is smaller than the element that follows the bar (to the right).

But then we could look to the right of this bigger element and repeat. By

iterating this process, if no element satisfies Condition 2, then we will get that

all bars are ascents and so no element satisfies Condition 1, which violates

the hypothesis. So there must exist an element that satisfies Condition 1 and

Condition 2.

So now we can state Algorithm 2, the inverse algorithm from Dk,n →

Ek,n. The algorithm is stated iteratively. We will actually prove, for any

k ≥ 0, n ≥ 1, that Algorithm 2 is a function from Wk,n → Ek,n. In Algorithm

1 we removed elements from trees, and used the language of “dropping” them

in boxes. In Algorithm 2, we remove elements from boxes and place them in

trees, as labels for new vertices; here we use the language of “popping” the
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elements out of the box. Apply Algorithm 2 to any w ∈Wk,n.

Algorithm 2. Repeat until there are no more elements that satisfy Condition

1. Let δ be any element satisfying Condition 1 and Condition 2. We will pop

out δ in the following way. Erase the partner bar of δ (that is adjacent to

δ by Condition 1), attach δ to the first bar to the right of where the partner

of δ was, and create edges from δ to the roots of the rooted trees that were

attached to the erased bar.

See Figure 4.4 (at the end of the Chapter) for an example of Algorithm

2 applied on an instance of Dk,n for k > n. In Figure 4.5, after the word

“Reverse”, we perform Algorithm 2 on an instance of Dk,n for k < n. Also, in

Figure 4.6, after the word “Reverse”, we perform Algorithm 2 on an instance

of Dk,n for k = n.

Note that in performing Algorithm 2, if an element is partnered with a

bar, it is partnered with this bar at all stages until it gets popped out, if it

does. Note that it is not clear that Algorithm 2 is a well defined function,

though it is clear that at all stages we have an element of Wk,n. We will

prove that it is well defined on any element on Wk,n, for any k ≥ 0, n ≥ 1.

We give some lemmas that will help us to finish the proof that Algorithm

2 is well defined.

Lemma 13. For k ≥ 0, n ≥ 1, let w ∈ Wk,n, obtained at an intermediate

stage of Algorithm 2, and x be one of the elements in the boxes that has

a partnered bar. Suppose that the strict interval of x is not empty. Then
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there will always be an element in this interval that satisfies Condition 1.

In particular, Algorithm 2 is never finished until all the strict intervals are

empty. Morever, the strict interval of x needs to be empty before x could be

popped out under Algorithm 2.

Proof. Lemma 11 implies that the interval of x terminates with two con-

secutive bars. So reading to the left of the leftmost of these bars, we will

eventually get an element (in the strict interval of x) and this element will

obviously satisfy Condition 1 since it will be followed by an empty box. This

is obvious since for x to satisfy Condition 1, it needs to be adjacent to its

partner, which implies that its strict interval needs to be empty in order for

x to be popped out.

For w ∈Wk,n, obtained at any stage of Algorithm 2, we next give a simple

procedure that will tell us exactly which element will be popped out under

Algorithm 2 and exactly which bar will be its father.

Take w ∈ Wk,n and take an element in a box, say x, that has a partner

bar in w. Look to the right of the partnered bar of x by skipping the strict

intervals when there is one and stop at the first instance of the following (one

of these must occur). We will call these the Possibilities:

Possibility 1: An element that has no partnered bar and that is bigger than

x.

Possibility 2: A bar that has no partner.

Possibility 3: A bar that has a partner, say z, such that the strict interval
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of z contains the element x.

Possibility 4: An element, say θ, that is smaller than x.

Possibility 5: The element x.

Lemma 14. For any k ≥ 0, n ≥ 1, when performing Algorithm 2 and obtain-

ing w ∈Wk,n at an intermediate stage, we get the following for any instance

of Algorithm 2. If Possibility 1 or Possiblity 5 happens first, then x is never

popped out under Algorithm 2. If Possibility 2 happens first, x will be a son

of that bar with no partner. If Possibility 3 happens first, then x will be the

son of the partner of z. If Possibility 4 happens first, x will be a son of the

bar that is the closest to the right of θ.

Proof. For Possibilities 1 and 5, this is easy to show since the element x will

never satisfy Condition 1 (the element that is adjacent on the right to the

partnered bar of x will always be greater than or equal to x).

For Possibility 2, we note that since we have a bar that has no partner, we

have more boxes than elements and therefore we will always have an empty

box, so then all elements will be popped out at the end of Algorithm 2 (since

there will always remain an element that satifies Condition 1 otherwise). So

we just need to show that x can’t be attached to any bar before the one

mentioned in Possibility 4. Again, it is not hard to show that the sequence

starting after the partnered bar of x to the bar mentioned in Possibility 4 will

be a well defined bracketing sequence (linearly), so made of some consecutive

intervals. Since it didn’t satisfy the other possibilities before, we know all
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the elements not in the strict intervals of these intervals will be bigger than

x, so this tells us that x will not be able to satisfy Condition 1 unless all

these intervals are popped out. So x must be attached to the bar mentioned

in Possibility 2 (the bar that has no partner).

For Possibility 3, x is contained in the strict interval of z, then x must be

popped out by Lemma 13 during Algorithm 2. The same reasoning as in the

previous paragraph could be applied to prove that the element x can only

become the son of the partner of z. So x will always become the son of the

partner of z under Algorithm 2.

For Possibility 4, then we will first show that θ can’t be popped out unless

x is popped out. We will then show that when Algorithm 2 is finished, x

must be popped out. We will then show that the only bar that x could be the

son of is the bar mentioned in Possibility 4. Let’s say this bar in Possibility

4 has partner y. We will first give a picture of the box structure of w for

what matters here to us:

︷ ︸︸ ︷

xSx

∣
∣

︷ ︸︸ ︷

r1 Sr1

∣
∣

︷ ︸︸ ︷

r2 Sr2

∣
∣ . . .

∣
∣

︷ ︸︸ ︷

rj Srj

∣
∣ θ..y

∣
∣

Here each
︷ ︸︸ ︷

ri Sri
| is the interval of ri and all the intervals of r′s are consecutive

(where Sq is the strict interval of the element q). The sequence θ..y is made

only of elements (no bars). So θ ≥ y and by above x > θ. Since the first

element of each of these intervals is bigger than x which is bigger than θ,

then y can’t be popped out unless x is popped out since all elements in the
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sequence from the value x to the bar before θ need to be popped out so

that y could satisfy Condition 2. So y could be popped out only after x is

popped out. Now to show that the only bar that x could be the son of is

the partner of y, we just have to show that x can’t be popped out unless all

the bars between x and y have been popped out. But this is easy since all

the consecutive intervals from x to θ have a first element that is bigger than

x, so x can only satisfy Condition 1 when all these bars have been popped

out. So the only place that x could be attached when popped out is the

partnered bar of y (also since y can’t be popped out before x). Now we show

that if the element x is not popped out after performing Algorithm 2 on w,

then there will be an element satisfying Condition 1. The sequence from θ

to the element y will still be in boxes if x is not popped out by above, so just

take the bar that is adjacent to θ at the left and this bar needs to have a

partner since the sequence between the partnered bar of x and the element

θ is a well defined bracketing sequence linearly (made of some consecutive

intervals) initially, so it will always remain a well defined bracketing sequence

as Algorithm 2 is performed (by Lemma 11). Therefore the bar before the

element θ has a partner (after Algorithm 2 is performed) and we know by

the picture above and by Lemma 13 that this element is one of the r′s or

x, which are bigger than θ. So we will have that this bar has an adjacent

partner (to the left) that satisfies Condition 1 or the strict interval of the

partner of this bar is not empty, in which case Lemma 13 guarantees to us

that there is an element that satisfies Condition 1. So this shows that at the
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end of Algorithm 2, x will be popped out always. So by above, x is always

popped out and is always attached to the same bar.

Proposition 15. For any k ≥ 0, n ≥ 1, Algorithm 2 is a well defined func-

tion from Wk,n → Ek,n. In particular it is a well defined function from

Dk,n → Ek,n.

Proof. Obvious from the above lemma.

Now we still need to show that Algorithm 1 and Algorithm 2 are inverse

functions in the special cases that are of interest to us. We will start by

giving some simple lemmas that will be useful.

Lemma 16. If Algorithm 1 is performed on an element of Ek,n, then when an

element, say θ, is dropped in a box, the first element, if any, that is dropped

in the box delimited to the left by the partner of θ is bigger than θ.

Proof. This is true since if an element, say γ, is dropped first in the box after

the partner of θ then that means that θ and γ were attached to the same bar

and that θ was chosen before γ, so θ < γ.

Lemma 17. If Algorithm 1 is performed on an element of Ek,n, then the

element that is adjacent to a given bar at the right is weakly increasing as

Algorithm 1 is performed.

Proof. This is obvious since when an element is dropped in a box , it main-

tains the decreasing order in the box and the bar is put at the right of the

element dropped.
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Lemma 18. While Algorithm 1 is performed on an element of Ek,n, if an

element, say θ, is followed by a bar and a smaller element, say γ, or an

empty box, then θ has been dropped at an earlier stage of Algorithm 1.

Proof. If θ had not been dropped earlier, then there should have been an

element bigger or equal to θ in the box that follows θ before Algorithm 1

is performed. But then by Lemma 17, the element adjacent to the right

of the partner of θ would still be bigger or equal to θ, contradicting the

hypothesis.

The consecutive points in the boxes represent only elements, not bars

.........f

g gh ..... g1< < < g gh ..... g1< < <

g gh ..... g1< < <

f f
b)

g.........

<gh .....< g1

......... .........

a)
.........

>f

Figure 4.2: In (a) f is dropped in. In (b) g is dropped in.

Lemma 19. For any k ≥ 0, n ≥ 1, if Algorithm 2 is performed on any ele-

ment of Dk,n, then when an element is popped out, it is the smallest element

that is attached to the bar where it gets attached.
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Proof. Suppose that such a statement is wrong and that this is the first

occurence of a counterexample, so that an element, say f , is not the smallest

(compared to the other elements that are attached to the same bar as f gets

attached). So say elements g1, . . . , gh, g are in decreasing order and so the

last one that was popped out is g (so f > g). Figure 4.2 (a) shows on the left

the stage just before f is popped out and on the right, the stage just after (f

is popped out). We know that g was popped out at an earlier stage than f

was popped out. Figure 4.2 (b) shows on the left the stage just before g was

popped out and on the right, the stage just after. Note that in Figure (b), it

is easy to see that there are no bars between the partner of f and the element

g (since otherwise there should have been another element that would have

been popped out at a stage between when g is popped out and f is popped

out and attached to the same bar as the one that g is attached to). So by

Figure 4.2 (b) on the left, we see that there must be an element in the same

box as g, say θ, that is bigger than f and so that g satisfies Condition 2. But

then θ must be in the box after f in Figure 4.2 (a), preventing f from being

popped out at that stage. This is a contradiction and the result follows.

Proposition 20. Each step of Algorithm 1 when applied to an element of

Ek,n can be reversed by Algorithm 2, and each step of Algorithm 2 when

applied to an element of Dk,n can be reversed by Algorithm 1.

Proof. Suppose we get the following iteration of Algorithm 1, where γ has just
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been dropped in (we use this overbrace relation for the partnered relation):

︷ ︸︸ ︷

θ Sθ

∣
∣ r . . . γ

∣
∣ . . .

∣
∣ or

︷ ︸︸ ︷

θ Sθ

∣
∣ γ
∣
∣r . . .

∣
∣

Now suppose γ cannot be popped out under Algorithm 2, then we get θ > r, γ

(r might not exist). This means that θ was dropped in previously by Lemma

18. But then this contradicts Lemma 17 and Lemma 16.

For the other direction, this is straightforward from Lemma 19.

From the propositions above, we get the following theorem.

Theorem 21. Algorithm 1 is a bijection from Ek,n → Dk,n and Algorithm 2

is its inverse.

Corollary 1.

∣
∣Ek,n

∣
∣ = nk−1

For k > n, Figure 4.4 is the inverse (Algorithm 2) of Figure 4.3 that

performs Algorithm 1. For k < n, Figure 4.5 performs first Algorithm 1 and

then Algorithm 2. For k = n, Figure 4.6 performs Algorithm 1 and then

Algorithm 2. We see that in the three cases, we always come back to the

same original element in Ek,n.
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7,3

6 14
1

13 8

12,11 7,315
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6

11 13

14 1

15

8

10,9,5 12,7,3

1

1

10,9,5,4,2 12,7,3

6
11

14 13
15

8

Doing two steps at once,

6 13 14,1 815,10,9,5,4,2

6 13 15 7,3

14 1 8

6 13 14 15 7,3

1 8

10,9,5,4,2 10,9,5,4,2

6

14
1

13 8

15 7,310,9,5,4,2 10,9,5,4,2

12,1112,11

12,11

12,11

12,7,3

62
8

15
11 13

14

10,9,5,4

12,11

6 14

1 13
15
8

7,3

Figure 4.3: When k = 15 > 11 = n, an example of Algorithm 1.
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14,1

15

8
14
1

15

8
14
1

10,9,5,4

6 2
13

15

8
14
113

11

6 2

4
10,9,5 12,7,3

13

116 2

12,7,3

6 2

13

7,3 10,9,5,410,9,5,4 12,11

10,9,5,410,9,5,4

6 2
13

15

81
14

12,11

13 14,110,9,5,4,2 6 7,315,812,11

6

10,9,5,4,2 13 12,11 7,315,8 15,8 7,3

15

8

12,11 14
1

10,9,5,4

6 2
13 15

8

12,11

14
16 2

13 12,11

15

8

7,3 7,3

7,3 7,3

10,9,5,4

6 2
13 12,1114,1 14,1

Figure 4.4: When k = 15 > 11 = n, Algorithm 2 is applied to the last part
of the previous Figure.
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51 3 7
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6 5 3
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2 64

1 5 3 7
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1 5 3 7

64 2

1 5 3
4 6

2
7

1 3
74

6 5 2

514 3 7,2 1 5 3 7,2

6 6 4

6
1

4
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2
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3

1 5

6 4
7
2

3 7

1
6

5 2

4 6 1 5 3 7,2

Now, reverse

1 3 7

6 5 24

4

Figure 4.5: When k = 7 < 11 = n, Algorithm 1 followed by Algorithm 2
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6 1
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3
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4,16
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5
72

Reverse,

Figure 4.6: When k = 7 = n, Algorithm 1 followed by Algorithm 2
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Chapter 5

The (α, β) case

In this chapter we give a direct, but artificial, combinatorial interpretation

of the number of minimal transitive factorizations of permutations that are

the product of two disjoint cycles. It is artificial since it is not symmetrical

and a bit obscure. In the first section, we include the calculations because

we hope that a similar reasoning for the more general case (where σ ∈ Sn is

arbitrary) might help. In the second section, we give the actual mapping.

5.1 Calculations and Details of Method

5.1.1 Counting

We consider minimal transitive factorizations into transpositions for a permu-

tation with two disjoint cycles. One of these cycles has length α and the other

β, with α+β = n. Let, for example, the first cycle be (1, 2, 3, . . . , α) and the
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second ((α + 1), . . . , n), so consider the minimal transitive factorizations of

the permutation µ = (1, 2, 3, . . . , α)((α+ 1), . . . , n), that is in the conjugacy

class (α, β). Let F (α, β) be the number of minimal transitive factorizations

of µ into transpositions (or any other permutation in the conjugacy class

(α, β)). From the formula in Theorem 1, we know F (α, β) = ααββ+1
(

n−1
α−1

)
.

We start by giving some easy statements. For the Picture of each factoriza-

tion we have n edges, n vertices and a graph that is connected by Theorem

5. This implies we have only one cycle in the graph, which we will refer to

as the cycle of the factorization. Define

PSIV (α−cycle) :=
⋃

v∈α−cycle

PSIV (v),

PSIV (β−cycle) :=
⋃

v∈β−cycle

PSIV (v).

In Figure 5.1, we start with a factorization of µ = (1, ..., 7)(8, .., 15) at

the top of the figure, and immediately below that we give its Picture of the

factorization (with labels on vertices). Then in (a), we give the PSIV (α−

cycle). In (b), we give the PSIV (β−cycle).

(Note that the Picture has one cycle, described above, but the permutation

µ has two cycles.) We give some simple lemmas that concern the picture

of minimal transitive factorizations into transpositions of µ, without proofs.

They are simple but tedious to prove. The argument that helps to establish

them is Proposition 7.
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14

(6,7)(6,14)(8,9)(8.10)(8,15)(1,3)(12,13)(1,11)(4,5)(1,12)(2,3)(1,14)(11,15)(6,15)(4,6)

2 12

8

13

6

10

1 11

7
3

9

4

1

2

5

15 35 4
6

14

7

8

9

10

11
12

13

14

15

1

2

345 6

7

2 12

8

13

10

7
3

4

5

14
8

9

10

11
12

13

14

15

(a)

(b)

2 12

8

13

6

1 11
9 15

Figure 5.1: Example of (a) PSIV (α−cycle) and (b) PSIV (β−cycle) for a
minimal transitive factorization of µ for α = 7 and β = 8

Lemma 22. PSIV (α−cycle) traverses the cycle of the factorization in one

direction and denote that direction to be the α-direction. PSIV (β−cycle)

traverses it in the other direction and denote it by the β-direction.

For example, in 5.1(a), the α-direction in the cycle of the factorization is

clockwise, as shown. In (b), we do the same thing for the β-cycle and show

the β-direction (opposite to the α-direction). All the remaining lemmas apply
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for the β-cycle also.

Lemma 23. The vertices on the cycle of the factorization that belong to the

α-cycle of µ correspond to the vertices that are descents in the α-direction.

For any Picture of a factorization (of a minimal transitive factorization

into transpositions) of µ, it is made of a cycle and some tentacles where the

root of each tentacle is identified with a vertex on the cycle. Figure 5.2 shows

the tentacles split from the cycle of the factorization at the top of Figure 5.1

(where vertex labels have been removed).

6

1
2 12

8

13

11

14
4

3
5

9 15

7
10

Figure 5.2: We split the tentacles from the cycle of the factorization from
the top of Figure 5.1

Lemma 24. For each of these tentacles, all of its vertices except the root are

contained in the α-cycle or in the β-cycle (follows from Proposition 7). So

we can call each tentacle whose vertices belongs to the α-cycle, an α-tentacle,

or for the β-cycle, a β-tentacle.

Figure 5.3 shows the α-tentacles in part (a) and the β-tentacles in part

(b) of the factorization at the top of Figure 5.1.
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(b)

1

9 15

11
6

4

3
5

7
10

(a)

Figure 5.3: In (a), the α-tentacles of Figure 5.1, the β-tentacles of Figure 5.1

Lemma 25. A tentacle is an α-tentacle if and only if the (only) edge adjacent

to the root falls between the two consecutive edges on the cycle adjacent to

the vertex that the tentacle is identified with following the α-direction.

All the above lemmas are necessary conditions for the Picture of a fac-

torization. Conversely, we see that if we build a Picture of a factorization

(without labels on vertices) by first creating a cycle and then adding tentacles

so that it gives rise to one cycle of length α and another of length β, then

we just need to fix the values of one of the vertices for each cycle to give rise

to a minimal transitive factorization of µ. In particular from Lemma 25, we

get the following result.

Lemma 26. Suppose we have a cycle of length at least 2, with distinct la-

bels on edges, and a specified α-direction with d descents in the α-direction.

Then there are d vertices on the cycle where for any tentacle its root can be

identified so that it becomes an α-tentacle (all edge labels are distinct). In

particular, these d vertices are independent of the fact that other tentacles

might be identified (by their root) with vertices on the cycle.
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If you fix the number of edges on the cycle of the factorization and d, and

decide which edges belong to the cycle of the factorization, the α-tentacles

and the β-tentacles, the counting of the Pictures of the factorization with

these characteristics is independent of the allocation of edges. To help find

a combinatorial interpretation, I will first give an enumeration and then

transform it into an interpretation. Everything that has been said about the

α-cycle can be said about the β-cycle (with respect to the β-direction on the

cycle).

Using all the details of above, we now give the enumeration. We are

going to calculate F (α, β) directly (where as mentioned above, F (α, β) is

the number of minimal transitive factorizations into transpositions for any

permutation in the conjugacy class (α, β)). So the enumeration is as follows:

Lemma 27. For α, β ≥ 1, with α+ β = n, we have

F (α, β) = αβ

n∑

i=2

i−1∑

j=1

(Li,j T|α|,j T|β|,i−j)

(
n

i, α− j, β − (i− j)

)

j(i− j),

where Li,j is the number of directed cycles of i distinct elements with j de-

scents, Tx,x−y (where x > y ≥ 0) is the number of ways to put y labelled edges

in (x− y) cyclically ordered rooted trees and
(

n

i,α−j,β−(i−j)

)
is the multinomial

coefficient.

Proof. The following proof make use of Lemmas 22, 23, 24, 25 and 26. In the

outer summation, i represents the size of the cycle in the factorization, and

in the inner summation, j is the number of descents for the α− cycle (so in

52



the direction that the α− cycle traverses the cycle of the factorization). The

external factors α and β correspond to the fact that these graphs have no

values on vertices, so by fixing any vertex of each cycle, we fix all others. The

term Tx,x−y is precisely Ek,n, as in Chapter 4, with n = x > k = y. So we

have Tx,x−y = xy−1 from Corollary 1. The factor j corresponds to linearizing

the orientation of the bars for T|α|,j (in other words, breaking the cyclic order

to obtain a total order). The factor (i − j) corresponds to linearizing the

orientation of the bars of T|β|,i−j. In the term
(

n

i,α−j,β−(i−j)

)
, i represents the

edges in the cycle of the factorization, (α − j) the edges that belong to the

α-tentacles (for the α-cycle) and β − (i − j) the edges that belong to the

β-tentacles (for the β-cycle).

We now evaluate the triple summation in Lemma 27. For x, y ≥ 0,
(

x

y

)

denotes the binomial coefficient. We get for Li,j (from [3], p.495):

Li,j =

i−j
∑

t=1

ti−1(−1)i+j+t

(
i

t+ j

)

, (5.1)

and so F (α, β)

=

n∑

i=2

i−1∑

j=1

(
i−j
∑

t=1

ti−1(−1)i+j+t

(
i

t+ j

))

j(i− j)αα−jββ−(i−j)

(
n

i, α− j, β − (i− j)

)

=

α∑

j=1

∑

t

(
j+β
∑

i=t+j

ββ−(i−j)(−t)i−1(i− j)

(
β − t

i− j − t

))

jαα−j n!(−1)i+j+1

(t+ j)!(α− j)!(β − t)!
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where the inner sum is equal to, when t = β:

ββ−(β)(−β)i−1β · 1 = −(−β)i

and when t 6= β:

=

j+β
∑

i=t+j

ββ−(i−j)(−t)i−1(i− j − t)

(
β − t

i− j − t

)

−

j+β
∑

i=t+j

ββ−(i−j)(−t)i

(
β − t

i− j − t

)

= (β − t)(β − t)β−t−1(−t)j+t − (β − t)β−t(−t)j+t

= 0

Thus we have

F (α, β) =
α∑

j=1

−(−β)j+β(−1)j+β+1 · jαα−j n!

(β + j)!(α− j)!

=

α∑

j=1

jαα−j

(
n

β + j

)

βj+β

= (n− 1)!
α∑

j=1

(nj)
αα−j

(α− j)!

βj+β

(j + β)!
(5.2)
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with nj = α(β + j) − (α− j)β,

= (n− 1)!

(
α∑

j=1

αα−j+1

(α− j)!

ββ+j

(β + j − 1)!
−

α−1∑

j=1

αα−j

(α− j − 1)!

ββ+j+1

(β + j)!

)

= (n− 1)!(αβ)

(
α∑

j=1

αα−j

(α− j)!

ββ+j+1

(β + j − 1)!
−

α−1∑

j=1

αα−j−1

(α + j − 1)!

ββ+j

(β + j)!

)

= (n− 1)!(αβ)
αα−1

(α− 1)!

ββ

β!

= ααββ+1

(
n− 1

α− 1

)

,

which is consistent with Theorem 1 when m = 2.

5.1.2 Some Interpretations

We will sketch the main steps that lead us to the combinatorial interpretation.

The alternating formula (5.1) for Li,j follows simply from the principle of

inclusion-exclusion (see [3], p.495). We get an involution τ from it.

The rest of this section is really sketchy. The involution τ is basically

applied on sets of boxes with elements in them. We can extend the involution

by adjoining rooted forests where each rooted tree is attached to boxes. The

fact that the triple sum collapses to a single sum in the development after

Lemma 27 can be used to give another involution, say φ, on the same set

as the (extended) τ such that (fix τ) 6= (fix φ). By alternating these two

involutions, we can give a bijection from the set of factorizations and the

quantity in (5.2), just before we do the telescope. Then we just have to
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give a combinatorial interpretation of the simple telescope and by combining

these two bijections, we are done.

The fact that the triple sum becomes a simple sum was the way we

guessed Theorem 21 for k > n. The inclusion-exclusion helped us to find the

Algorithm 1 of Chapter 4 since we found that this algorithm was giving the

same thing as the inclusion-exclusion map in a direct way. We now give the

simplified reduction of the map described above.

5.2 The Mapping

Assume for the rest of the Chapter that α ≤ β.

The factor αβ in the statement of Lemma 27 won’t be considered here, so

we will assume no values on vertices (just keep in memory the two values in

the first transposition that contained an element from the cycle (1, 2, 3, . . . , α)

and another from ((α + 1), . . . , n), with µ = (1, 2, 3, . . . , α)((α+ 1), . . . , n) .

First I will give a simple bijection. Let Ft,α be the set of Pictures of fac-

torization (of µ) such that the value n (on edge) belongs to the α-tentacles

and the α-tentacles have t edges. Let Ft,β be the set of Pictures of factoriza-

tion (of µ) such that the value n doesn’t belong to the α-tentacles and the

α-tentacles have t edges, with 0 ≤ t ≤ α − 1. In the rest of Chapter 5, for

x, y ≥ 0,
(

x

y

)
denotes the set of subsets of size y of the set Nx.

Let

St,α = N t−1
α ×Nn−t−1

β ×N(α−t) ×

(
n− 1

t− 1

)
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St,β = N t−1
α ×Nn−t−1

β ×N(α−t) ×

(
n− 1

t

)

I will give a simple bijection from Ft,α → St,α and another from Ft,β → St,β

that will be very similar.

Figure 5.4 (at the end of the chapter) gives an example of what is going on

here, where the α-tentacles are on the left and the rest of the structure is on

the right. Take an element in Ft,α. We will first concentrate on the α-tentacles

and change a bit the structure so that we can apply Algorithm 1 (of Chapter

4), after which we will do a similar thing for the rest of the structure. Take

the cycle of the factorization with the α-direction, start at the vertex before

visiting the biggest edge (on that cycle, since we need a point of reference),

and we know the root of a tentacle could be identified with (α − t) vertices

on the cycle of the factorization so that this tentacle is an α-tentacle (since

we know there are (α− t) vertices on the cycle that belongs to the α-cycle).

Put (α − t) bars in linear order (the bars and elements in boxes and trees

correspond to the structure of Ek,n, for this case k = t, n = α). So count

the position where this tentacle is attached, say the jth vertex (considering

only the vertices that make it an α-tentacle), then identify the root of the

tentacles with the jth bar . Do this for all α-tentacles, and then put the (α−t)

bars in cyclic order. Then perform Algorithm 1 on it. After, by convention,

say the biggest element, which is n, is in box 1. This puts a total order on

all the other edge-labels. The (t − 1) edge-labels that are chosen in the set

Nn−1 are the edge-labels in the α-tentacles except n. The sequence in N t−1
α
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corresponds to the position of the values, starting with the smallest value,

and then the second smallest and so on (again all except n). The element in

Nα−t corresponds to the order of the vertex on the cycle of the factorization

where the root of the tentacle that contains the edge-label n is identified (or

in other words, the position that this tentacle occupied when starting at the

vertex on the cycle of the factorization just before the biggest edge of this

cycle as explained above).

So we just need to explain the sequence inNn−t−1
β . This will be done similarly

to the α-tentacles. Consider all edge-labels not in the α-tentacles. So you

have the cycle and the β-tentacles. Again take each β-tentacle and following

the α-direction on the cycle of the factorization, start at the vertex before the

edge with biggest label (on the cycle of the factorization). Put the edge-labels

of the edges of the cycle of the factorization in boxes so that the order is the

same as the way they are visited under the α-direction. The bars (delimiters

of the boxes) are at each ascent. If a tentacle is attached to the jth vertex

(considering only the vertices that make it a β-tentacle), then attach it to

the jth ascent (bar) following this orientation (this corresponds to descents

in the β-direction). Now we get a structure in Ek,n for k = α− t+β = n− t.

Now apply Algorithm 1 to it and from it, by saying the biggest edge-label is

in box 1, do as for the α-tentacles by putting the position of the edge-labels

starting with the smallest (again all of them except the biggest edge-label).

Do the same thing for the bijection from Ft,β → St,β, except that the

subset of Nn−1 will contain all the t values in the α-tentacles.
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We summarize the above in the following theorem.

Theorem 28. The first process above is a bijection from the set of fac-

torisations Ft,α to the set St,α and the second is a bijection from the set of

factorisations Ft,β to the set St,β, for 0 ≤ t ≤ α− 1.

Proof. Straightforward.

Define ρ to be the process above for all t and for the α and the β part.

Then ρ is a bijection from the set of Pictures of factorizations (without values

on vertices) to the set
⋃α−1

t=0 (St,α × St,β).

For 0 ≤ t ≤ α− 1, let

Rt = N t
α ×Nn−t−1

β ×

(
n− 1

t

)

I will give a bijection

φ : Rt−1 × St,α × St,β → Rt

By iterating the function φ until you reach an element in Rα−1, you get a

function from the set of factorizations to Rα−1, which has the cardinality

that we want (up to the factor αβ). Call this iterating function of φ by ψ.

The function φ is described as follows (3 cases).

1. If y ∈ Rt−1, then

y = (α1, . . . , αt−1) × (β1, . . . , βn−t) × {γ1, . . . , γt−1}
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for some α’s, β’s and γ’s, where γ1 < γ2 < . . . < γt−1. Let z be the β th
n−t

smallest value in Nn−1\{γ1, . . . , γt−1}. Suppose γi−1 < z < γi for some i

(assume γ0 = 0 and γt is a number larger than n). Then

φ(y) = (α1, . . . , αt−1, i) × (β1, . . . , βn−t−1) × {γ1, . . . , γt−1, z}

2. If y ∈ St,α, then

y = (α1, . . . , αt−1) × (β1, . . . , βn−t−1) × (δ1) × {γ1, . . . , γt−1}

for some α’s, β, δ1 and γ’s, where γ1 < γ2 < . . . < γt−1. Let z be the (δ1+β)th

smallest element in Nn−1\{γ1, . . . , γt−1}. Suppose γi−1 < z < γi for some i

(assume γ0 = 0 and γt is a number larger than n). Then

φ(y) = (α1, . . . , αt−1, i) × (β1, . . . , βn−t−1) × {γ1, . . . , γt−1, z}

3. If y ∈ St,β, then

y = (α1, . . . , αt−1) × (β1, . . . , βn−t−1) × (δ1) × {γ1, . . . , γt}

for some α’s, β, δ1 and γ’s, where γ1 < γ2 < . . . < γt. Then

φ(y) = (α1, . . . , αt−1, (δ1 + t)) × (β1, . . . , βn−t−1) × {γ1, . . . , γt}

It is easy to see that φ is injective and to find its inverse φ−1 (tedious), so φ
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is a bijection. By iterating φ, we get the following theorem.

Theorem 29. The function ψ is a bijection from the set
⋃α−1

t=0 (St,α×St,β) to

the set Rα−1 = Nα−1
α ×N

β
β ×

(
n−1
α−1

)
, which has cardinality

αα−1ββ−1(n− 1)!

(α− 1)!(β − 1)!
.

We get by adjoining the factor αβ for the values of the vertices the com-

plete mapping.

Corollary 2. The function ψ ◦ ρ is a bijection from the set of factorizations

(by adjoining the values on vertices) to the set Nα×Nβ ×N
α−1
α ×Nβ

β ×
(

n−1
α−1

)
,

which has cardinality
ααββ(n− 1)!

(α− 1)!(β − 1)!
as required.

Proof. Immediate.

See Figure 5.4 and Figure 5.5 for an example of ψ ◦ ρ (Figure 5.4 is

applying ρ and Figure 5.5 is applying ψ).

61



9

(3,5,3,5) x (5,8,3,8,5,9,4,9,5,2,9,6)x (2) x {4,6,10,15}
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64
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18 10,4 15,6
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x

x

x x {4,6,10,15}

(2)

(2)

(2)

14,11,3 9 12,5,2
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8

17
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1 16

14,11,8 17 13 3 9 12,7,1 16

(5,8,3,8,5,9,4,9,5,2,9,6)

5,2

12

3

11

14

2

18
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13
17

10 4

7
1

16

15 65

Figure 5.4: On a structure of a factorization (without values on vertices), then
apply map ρ. The orientation given is the orientation that PSIV (α−cycle)
traverses the cycle of the factorization
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{2,4,6,8,10,13,14,15}

x (5,8,3,8,5,9,4,9,5,2,9) x {4,6,8,10,14,15}

(5,8,3,8,5,9,4,9,5,2,9,6) {4,6,10,15}x(2)x(3,5,3,5) x

(3,5,3,5,4) x (5,8,3,8,5,9,4,9,5,2,9,6) x {4,6,10,14,15}

x(3,5,3,5,4,3,5) (5,8,3,8,5,9,4,9,5,2)x {4,6,8,10,13,14,15}

(3,5,3,5,4,3,5,1) x (5,8,3,8,5,9,4,9,5) x

(3,5,3,5,4,3)

Figure 5.5: Apply ψ from Figure 5.4
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Chapter 6

Conclusion

The map that is given in Chapter 5 is artificial. It is a direct map but

it looks too complicated. Finding some structures that would make it nicer

would be preferable. Towards it, maybe changing the map for the telescoping

sum would help, although it would probably not make the argument that

much nicer. Trying to give some other bijections with other kinds of known

structures would be great especially for the case where k > n in Chapter 4.

This would be interesting and maybe could give some insights to what these

nice objects that we are trying to find should be. Algorithm 1 is interesting in

itself. We could compare Algorithm 1 to the other bijections in the literature

between forests and Parking Functions (this is when k = n− 1).

The enumeration that we get in Chapter 4 for k > n that basically counts

the number of structures of factorizations (referred to as Picture of the fac-

torization in the text) where the α-cycle is not allowed to have vertices in
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the tentacle but the β-cycle is allowed piques our curiosity in the sense that

we are curious if we could get some reasonable formulas for the number of

these structures where some cycles are allowed to have tentacles but some

others are not (that is for the case where the permutation is an arbitrary

permutation). An example of such an enumeration would be a permutation

as a product of 3 disjoint cycles α, β and γ where the α and the β parts

are allowed to have tentacles but the γ part is not. So that means that

all the vertices of the γ-cycle are in the two connected components and the

paths between them, but we allow the vertices of the α and β part to have

vertices in tentacles. We point out that all these values could be obtained

by solving a system of linear equations and using the number of minimal

transitive factorizations of permutations as transpositions. If this is success-

ful we could reverse this approach and try to give a direct enumeration for

factorizations as transpositions for an arbitrary permutation. We must ad-

mit that we didn’t have time to try the things mentioned in this paragraph,

but propose to look at them in the future. We only realized using Maple

that when a permutation is the product of 3 disjoint cycles, it is much more

symmetrical with respect to this tentacles approach. In particular, you get

some nice counting no matter who is allowed to have tentacles, and (n+ 1)!

for the number of Pictures when nobody is allowed to have tentacles. We

will investigate this in the near future.
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conjugacy class, 5

cut, 6

cycle of the factorization, 49

interval of an element, 27
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minimal transitive factorizations with
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Symmetric Group, 5

tentacle, 14
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[2] J. Dénes, The representation of a permutation as the product of a min-

imal number of transpositions and its connection with the theory of

graphs, Publ. Math. Institute Hung. Acad. Sci. 4 (1959), 63–70.

[3] I.P. Goulden and D.M. Jackson, Combinatorial enumeration, John Wi-

ley and Sons,Dover Reprint.

[4] , Transitive factorizations into transpositions and holomorphic

mappings of the sphere, Proc. Amer. Math. Soc. 125 (1997), 51–60.

[5] I.P. Goulden and S. Pepper, Labelled trees and factorizations of a cycle

into transpositions, Discrete Math. 113 (1993), 263–268.

[6] I.P. Goulden and A. Yong, Tree-like properties of cycle factorizations, J.

Combin. Theory Ser. A 125 (1997), 51–60.

67



[7] A. Hurwitz, Ueber Riemann’sche Flachen mit gegebenen Verzei-

gungspunkten, Mathematische Annalen 39 (1891), 1–60.

[8] Dongsu Kim and Seunghyun Seo, Transitive cycle factorizations and

prime parking functions, J. Combin Theory Series A 124 (2003), 125–

135.

[9] A.G. Konheim and B.Weiss, An occupancy discipline and applications,

Siam J. Appl. Math 14 (1966), 1266–1274.

[10] P. Moszkowski, A solution to a problem of Dénes: a bijection between
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