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Abstract

Motivated by ongoing research into automating radiotherapy, this thesis is concerned
with linear feedback control and estimation problems where only a delayed output sig-
nal is measurable. Various discrete-time performance limitations are derived using tools
from model-matching theory as well as the early H∞ literature. It is shown that there ex-
ist performance limitations for both one-degree-of-freedom control and estimation prob-
lems, but the nature of the limitations differs depending on whether the plant is stable
or unstable. Some continuous-time performance limitations are also found, with more
complete results in the case where the plant is unstable. Extensions of the various per-
formance limitation to two-degree-of-freedom control are also studied.
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Chapter 1

Introduction

1.1 Motivation: A Radiotherapy Problem

This work was motivated by an ongoing research project into automating external beam
radiotherapy treatment. External beam radiotherapy is the most common form of radio-
therapy, and is used to treat many forms of cancer. Currently, the treatment is carried
out by applying a beam of high-energy radiation onto the tumour from various angles
over numerous treatment sessions, based on a complicated treatment planning proce-
dure. External beam radiotherapy is carried out on an adjustable machine, as shown in
Figures 1.1 and 1.2. The patient is placed on the table, and the radiation is emitted from
within the adjustable arm. A multi-leaf collimator, as shown in Figure 1.3, is placed
between the radiation source and the patient, inside the arm of the radiotherapy machine.
The collimator consists of two sets of heavy metal plates (or leaves), placed on each side,
that block the radiation from passing. By adjusting the position of these leaves, an open-
ing is created in the middle through which the radiation is allowed to pass. To deliver
treatment, the leaves are adjusted to create the shape required. The interested reader is
encouraged to see [25] and [22] for further details on the physics behind radiotherapy.

For various reasons (patient movement/shifting, internal tumour movement, breath-
ing, positioning bias), a safety margin around the tumour must be employed to ensure the
tumour receives the prescribed radiation dose. Unfortunately, this safety margin leads to
radiation hitting healthy tissue, which can lead to side effects, and is detrimental to the
cancer treatment. Minimizing the amount of healthy tissue irradiated during radiotherapy
treatment is a useful goal, and one that researchers are working on today.

The idea of “automating” radiotherapy is simple from a theoretical control perspec-
tive. If one can locate and track the tumour, then using a simple feedback control scheme,
the radiation beam can be moved via the multi-leaf collimator to the current tumour lo-
cation. There are several potential benefits of automating radiotherapy:

• Reduction of patient setup time due to the ability to correct an initial position bias.
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Figure 1.1: A picture of an external beam radiotherapy machine [19].

Figure 1.2: A few key components of a radiotherapy machine [31].
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Figure 1.3: A picture of a multi-leaf collimator [20].

• The ability to treat tumours in areas that are highly sensitive to movement (for
example, a lung tumour).

• Reduction of the amount of healthy tissue exposed to radiation if the patient shifts
position.

• The ability to create and deliver more complicated dose profiles from a single beam
position. This can also lead to shorter treatment times due to a possible reduction
in the required number of beam positions (which takes time to set up).

Unfortunately, implementing this sort of automatic feedback control is challenging.
Just locating the exact position of the tumour while it is undergoing radiation treatment is
an extremely difficult problem. However, previous researchers [7, 8] did arrive at a con-
trol scheme for the problem, as depicted in Figure 1.4. Their proposed control scheme
can be divided into two basic components: an estimation block, where the tumour loca-
tion is determined, and a feedback control block, where the beam location is determined
and implemented via the multi-leaf collimator. These blocks are described in more detail
later on.

An important aspect of the design in Figure 1.4 are the two time-delay blocks. Due to
the horrible image quality created by the powerful radiotherapy beam, various advanced
image processing algorithms need to be used. These algorithms introduce a time delay
of approximately 0.5s after the output but before the feedback, and therefore act as a
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“sensor time delay”. In this thesis, we characterize the effect that a sensor time delay has
on performance for both the estimation problem at the top of Figure 1.4 and the control
problem at the bottom of that same figure.

1.2 What are Performance Limitations?

The best way to illustrate the impact and usefulness of a performance limitations is with
a simple example. The Pointlessly Unstable Elevator Co. wants to be the first company
to market unstable elevators. They propose using the simple one-degree-of-freedom (1-
DOF) control setup depicted in Figure 1.5, with the plant, P, having stable dynamics
except for one real open right half plane (ORHP) pole, p, at s = 0.5. The plant also has
an integrator, resulting in zero steady-state error for a unit step input under a stabilizing
feedback controller. Assume there is an overall system requirement that the rise time, tr,
be 2 seconds. The Pointlessly Unstable Elevator Co. is wondering what happens to the
overshoot, yos, for their elevator.

Figure 1.6 shows a typical step response for a closed-loop stable system. For our
example, particular attention should be paid to the overshoot and rise time as depicted in
Figure 1.6. Definitions based on Figure 1.6 are as follows: the absolute overshoot is

yos ≡ sup
t
{y(t)−1} , (1.1)

the relative overshoot is
yosrel ≡ yos ·100%, (1.2)

and the rise time is (note that this is a non-standard definition of rise time)

tr ≡ sup
δ

{
δ : y(t)≤ t

δ
∀t ∈ [0,δ]

}
. (1.3)

Then, from [28], for any closed-loop stable system, the following relationship between
rise time, the location of a single ORHP pole, and overshoot holds:

yos ≥
p · tr

2
. (1.4)

It should be noted that (1.4) is not a tight bound, but it can still provide useful in-
formation to a designer. Substituting in the numbers for the example, it can quickly be
determined from (1.4) that the overshoot must be greater than 50%! If (1.4) was used
at an early stage of the design, the designer would quickly realize that a rise time re-
quirement of 2 seconds is practically incompatible with a plant that has an ORHP pole at
s = 0.5. The designer would then be able to do something, for example, install a better
actuator to allow for a much faster rise time or move the ORHP pole further left, in order
to obtain reasonable overshoot performance. This is one use of a performance limitation
since physical changes to the system, made to improve performance, are still possible.
However, performance limitations can also be used at a later stage of design, when plant
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Figure 1.4: The essential components of the radiotherapy tumor-tracking control scheme
proposed in [7, 8].
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Figure 1.5: A 1-DOF feedback setup.

Figure 1.6: A step response showing the overshoot, undershoot, and rise time definitions,
from [28].

modifications are not possible. For this example, using (1.4), the controller designer
would quickly understand that no matter what he tries to do, his system is going to have
far too much overshoot for an elevator; the designer would then have to ponder the use
of a two-degree-of-freedom (2-DOF) and/or a nonlinear controller.

It should also be noted that a more complicated relationship for a closed-loop stable
system can be found, also from [28]:

yos ≥
(p · tr−1) · ep·tr +1

p · tr
. (1.5)

This is also not a tight bound, but it is tighter than (1.4). Substituting the numbers for our
example into (1.5) proves that the overshoot must be greater than 100%! While (1.4) sug-
gested that the required design specifications produce significant overshoot, (1.5) shows
that the required specs leads to at least twice as much overshoot. So, why would someone
use (1.4) over (1.5)? The answer lies in the simplicty of (1.4), which allows for a simple
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hand calculation, creating a simple-to-use-and-remember “rule of thumb”. On the other
hand, (1.5), while still manageable, is more difficult to use and remember than (1.4). For
the example used, knowledge that the overshoot must be at least 50%, as obtained from
(1.4), is probably enough for the designer to rethink his physical design.

The above example demonstrates the dueling requirements of performance limita-
tions. On one hand, it is very desirable to have simple relationships that produce easy-
to-use rules. On the other hand, it is also desirable to have tight bounds to provide more
precise results. These two requirements, like many other aspects of control, often in-
volve trade offs, either towards simplicity or tightness. The example also demonstrates
the desirability of using performance limitations at an early stage of design. If the Point-
lessly Unstable Elevator Co. control engineer were simply handed the plant, as designed
by the mechanical engineering department, then the only use of (1.4)-(1.5) is to let the
control engineer explain to his boss why the elevator has over 100% overshoot. When
the pointlessly unstable elevator, starting at the first floor, goes all the way up to the third
floor before returning to the second floor, the control engineer will have proof justifying
that this is the best possible overshoot performance for the given elevator. However, had
the Pointlessly Unstable Elevator Co. used performance limitations at an earlier stage,
they could potentially have redesigned the elevator, perhaps moving the pole further to
the left, say to s = 0.005 instead of s = 0.5. Then the Pointlessly Unstable Elevator Co.
elevator could potentially have negligible overshoot.

There are other well-known performance limitations. For example, given a plant with
one real ORHP pole at s = p and one real ORHP zero at s = q (with p < q), and using
(1.1) as the definition of overshoot, then, from [28], any stabilizing controller results in
a closed-loop system that satisfies

yos ≥
p

q− p
. (1.6)

Similarly, and also from [28], if q > p, and defining the absolute undershoot, yus, as
shown in Figure 1.6 to be:

yus ≡ sup
t
{−y(t)} , (1.7)

then for any stabilizing controller, the closed-loop system satisfies

yus ≥
q

p−q
. (1.8)

Performance limitations can also be applied in the frequency domain. Define the sensi-
tivity function, S( jω), for the feedback control setup shown in Figure 1.5 as,

S( jω)≡ 1
1+P( jω)C( jω)

. (1.9)

Then, as first developed by Bode in [2], but taken from [17], assuming that
L(s) ≡ P(s)C(s) has relative degree of at least two and that the closed-loop system is
stable, ∫

∞

0
ln |S( jω)|dω≥ 0, (1.10)
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and, moreover, given a plant with ORHP poles at
{

p1, p2, ..., pn p
}

,

1
π

∫
∞

0
ln |S( jω)|dω≥

np

∑
i=1

pi. (1.11)

These two results, (1.10) and (1.11), are the basis behind the well-known “Bode waterbed
effect” [17, 28]: if |S( jω)| is made small (|S( jω)| < 1) over a certain frequency range,
then it must necessarily become large (|S( jω)| > 1) over some other frequency range.
Since |S( jω)| also encompasses disturbance rejection and sensitivity to plant perturba-
tions (as is shown in the next section), it is desirable to keep this small (|S( jω)| << 1).
However, (1.10) ensures that for any plant, keeping the sensitivity function small for all
frequencies is impossible, and some sort of design tradeoff must occur. For an unstable
plant, (1.11) simply makes the “Bode waterbed effect” more pronounced.

This section provided a few examples of various forms of performance limitations,
but many more exist. An interested reader is encouraged to read [17] for a quick survey
of numerous results. For a more in-depth treatment, [28] is recommended, as it has many
more results along with proofs. Also of note is that [28] tackles performance limitations
for estimation problems as well as for feedback control problems. This thesis deals with
performance limitations associated with a sensor time delay for both feedback control
and estimation problems. The next section briefly introduces these two problems, as
well as the performance metrics and tools that are used in the remainder of this thesis.

1.3 Basic Problem Setup

In this section we define the norms and performance metrics that are used in the re-
mainder of this thesis. First, an introduction and definition of the H∞-norm is presented,
followed by formal definitions of the various performance metrics that are used in sub-
sequent chapters. Finally, three important questions are posed, with answers provided
throughout Chapters 2-5.

What is the H∞ norm and why is it useful? Answering the first part of the question
first, given a continuous-time single-input single-output (SISO), linear, time-invariant,
causal, proper and rational transfer function G, its H∞ norm, denoted ‖G‖

∞
, is defined as

[10, 16]:
‖G‖

∞
≡ sup

ω

|G( jω)|. (1.12)

Similarly, given a discrete-time SISO, linear, time-invariant, causal, proper and rational
transfer function F , its H∞ norm, denoted ‖F‖

∞
, is defined as [10, 16]:

‖F‖
∞
≡ sup

θ

|F(e jθ)|. (1.13)

In essence, the H∞ norm describes the largest gain of a system over all frequencies. Given
a Bode plot of G, for example the plot shown in Figure 1.7, then ‖G‖

∞
is the highest peak

on the plot.
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Figure 1.7: A Bode plot of Tdy for the plant P(s) = (0.01s+1)2

(0.0001s+1)4 with C(s) = 1.
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It is sometimes convenient to switch between the continuous-time and discrete-time
domains. As a result, the well-known bilinear transformation, [27],

z =
1+ s
1− s

, (1.14)

is used throughout this thesis. Equation (1.14) is a conformal mapping between the
continuous-time s-plane and the discrete-time z-plane. This mapping maps the open
right-half-plane (ORHP) to outside the unit disk, and the open left-half-plane (OLHP) to
inside the unit disk, thereby preserving the stability of the system.

Due to a slight difference in the computation of a discrete-time norm compared to
a continuous-time norm, the following convention is used. In most circumstances, the
context should provide clarity as to whether a discrete-time or continuous-time norm
is required, and no extra notation will be used. However, occasionally a distinction is
noted between the continuous-time and discrete-time norm for added clarity by placing a
superscript DT (for discrete-time) or CT (for continuous-time) on the unclear norm. As
an example, given a continuous-time plant, G(s), and using the bilinear transformation
(1.14) to produce a discrete-time plant, Ĝ[z], the following notation for their respective
norms will be used when required for additional clarity: ‖G‖CT

∞ and ‖Ĝ‖DT
∞

Before answering why the H∞-norm is useful for measuring system performance, a
quick introduction of the performance metrics used throughout the remainder of this the-
sis is in order. A performance metric is an attempt to quantify system performance with a
computable number. For this thesis, each performance metric is a weighted H∞-norm of
some relevant transfer function. This thesis primarily focuses on four transfer functions,
which have slightly different forms between the control setup shown in Figure 1.8 (where
r is the input, d is a disturbance, y is the output, w is the noise, ym is the delayed output,
C is the controller, P is the plant, and F is the delay), and the estimation problem shown
in Figure 1.9 (where u is the input, d is the disturbance, y is the output, w is the noise, yd
is the delayed output, ŷ is the estimated output, P is the plant, F is the delay, and G1 and
G2 combine to form the estimator). For the presentation of these results, a discrete-time
plant will be assumed. For continuous-time results, replace the discrete-time complex
variable z with the continuous-time complex variable s. For the feedback control setup
in Figure 1.8, the four aspects of performance and corresponding transfer functions are:

• the tracking of the system represented as

Tre[z]≡
E[z]
R[z]

(1.15)

where e≡ r− y

• the sensitivity with respect to perturbations in P of the control system, represented
as

S[z]≡
∂Try[z]
∂P[z]

P[z]
Try[z]

(1.16)

10
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Figure 1.8: A block diagram of the feedback control problem with a sensor time delay.

• the disturbance rejection of the system represented as

Tdy[z]≡
Y [z]
D[z]

(1.17)

• and the sensor noise rejection of the system represented as

Twe[z]≡
E[z]
W [z]

. (1.18)

For the estimation problem of Figure 1.9, the tracking performance is dropped (for
reasons explained in Chapter 3). The three transfer functions of interest are then:

• the sensitivity of the estimator with respect to perturbations in P represented as

S[z]≡
∂Tyŷ[z]
∂P[z]

P[z]
Tyŷ[z]

(1.19)

• the disturbance rejection of the estimator represented as

Tde[z]≡
E[z]
D[z]

(1.20)

(where e≡ ŷ− y), and

• the sensor noise rejection of the estimator represented as

Twe[z]≡
E[z]
W [z]

. (1.21)

It should also be noted that the notational overlap between the feedback control setup
of Figure 1.8 and the estimation problem of Figure 1.9 should not be a problem. The
context of the chapter or theorem should make it clear what problem is being addressed.

Now, why is the H∞-norm a useful measure of performance? It is in essence a mea-
sure of the worst performance of a system. Given a Bode plot of a transfer function, the
H∞-norm is the highest gain achieved on the Bode plot. But that in and of itself is not
necessarily significant, as the “peak” could be outside of relevant frequencies. For exam-
ple, using the setup of Figure 1.8 and given a plant, P(s) = (0.01s+1)2

(0.0001s+1)4 , and controller,
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Figure 1.9: A block diagram of the estimation problem with a sensor time delay.

C(s) = 1, what is ‖Tdy‖∞? Figure 1.7 shows the Bode plot of Tdy, and from that ‖Tdy‖∞

is 25.125 (28 dB). At first glance, this makes it appear that ‖Tdy(s)‖∞ is quite poor and
that the system has poor disturbance rejection properties. However, if the maximum fre-
quency of the disturbance, d, was known to be 10 rad/s, then the H∞ norm alone is not
telling the entire story since the peak occurs at a very high frequency.

For this reason, instead of looking at solely the H∞-norm, for example, ‖Tdy‖∞, it is
better to look at a weighted H∞-norm. For the disturbance example above, a weighting
function would be employed to weight frequencies below 10 rad/s heavily, while virtually
ignoring frequencies above 10 rad/s. Letting W (s) = 1

1+0.1s , and plotting the Bode plot
of W (s)Tdy(s), as shown in Figure 1.10, a different picture emerges. Instead of a large
peak at very high frequency, the highest point is now at a low frequency, but with a
much lower gain of 0.5 (-6dB). The norm of interest, ‖WTdy‖∞ now makes more sense
than before, as it is providing more useful information. The fact that Tdy(s) has a large
peak at high frequencies does not matter for this particular example, and the weighting
function, W (s), filters that extraneous information out. The weighted H∞-norm is thus
a useful norm for system performance. It can be shifted to weight any frequency range
that is relevant to a particular problem, and it can thus quantify the worst performance
of a system at frequencies of interest, a very useful piece of information to know. For
simplicity, ‖W‖∞ = 1 is normally used to prevent artificial scaling of the result by the
weighting function and to allow for easier comparison of results. This assumption is not
strictly required, but is made throughout this thesis.

The performance metrics that are used throughout this thesis are presented in the
following table. The feedback control column refers to the problem shown in Figure 1.8,
and the estimation column refers to the problem shown in Figure 1.9.

Feedback Control Estimation
Weighted tracking ‖W1Tre‖∞

Weighted sensitivity to perturbations of P ‖W2S‖∞ ‖W5S‖∞

Weighted disturbance rejection ‖W3Tdy‖∞ ‖W6Tde‖∞

Weighted noise rejection ‖W4Twe‖∞ ‖W7Twe‖∞

Table 1.1: The various performance metrics used.

In Table 1.1, W1, W2, W3, W4, W5, W6 and W7 are stable, minimum phase, proper

12



Figure 1.10: A Bode plot of WTdy for the same P and C as Figure 1.7 with W (s) = 1
1+0.1s .
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Figure 1.11: A 1-DOF, discrete-time feedback setup with no sensor time delay (Cb will
be used as a “baseline” controller in future chapters).

(biproper in the discrete-time case) weighting functions with ‖Wi‖∞ = 1, i = 1, . . . ,7. It
should be noted that the assumption that the weighting functions be stable and minimum
phase can be made without a loss of generality. Since only the magnitude of the weight-
ing function matters, for a continuous-time weighting function, any RHP poles and zeros
can be replaced with the LHP mirror image, resulting in the exact same magnitude re-
sponse. The reader is encouraged to read [35] for further details on this, as well as the
importance and reasoning behind looking at a weighted H∞-norm.

This thesis addresses three questions. The first two apply to both the estimation and
control problems, while the third applies to only the control problem. These questions
are as follows:

Q1: For each performance metric in Table 1.1, is there a fundamental performance
limitation due to the sensor time delay, and if so, what is it?

Q2: If a fundamental performance limitation exists, does system performance get worse
as the delay, n, increases, and if so, does the performance get arbitrarily poor?

Q3: If a stabilizing controller is designed for the no-delay system of Figure 1.11, can a
new controller for the time delay system of Figure 1.8 be found so that the tracking
performance of the original no-delay system is recovered?

It should also be noted that results that isolate the sensor time delay are desired (i.e.,
plant independent results). While completely independent results are not always possi-
ble, results that use a minimal amount of knowledge of the plant are desired. For exam-
ple, knowledge of the open-loop stability of the plant or the location of one RHP pole
are sufficient information to use most of the performance metrics in this thesis. These
results ideally allow the user to fully comprehend the performance degradation that one
can expect to be caused solely by the sensor time delay, allowing design decisions to be
made at an earlier stage.

1.4 Organization of the Thesis

The organization of this thesis generally follows the chronological order of the research,
with a few minor deviations for clarity. The thesis starts with this introduction, followed

14



by a look at performance limitations associated with a standard feedback control setup
in the presence of a sensor time delay for both stable and unstable discrete-time plants.
Chapter 3 looks at performance limitations associated with a standard estimation prob-
lem, again, with a sensor time delay, again for discrete-time plants. Chapter 4 looks
at performance limitations for both the control and estimation problems for continuous-
time systems, which turns out to be more challenging; as a result, only partial results are
available for continuous-time systems. Chapter 5 briefly details some preliminary work
for further extensions. Finally, some conclusions and summaries of the most important
results are provided.
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Chapter 2

Discrete-Time SISO Control

2.1 Overview

The motivation for this research is the radiotherapy control problem detailed in Sec-
tion 1.1. This chapter concerns itself with the feedback control loop at the bottom of
Figure 1.4. This loop can essentially be viewed as a standard 1-DOF feedback control
loop, as depicted in Figure 1.11, with a sensor time delay, F [z] = 1

zn added, as shown in
Figure 1.8.

The answers to Q1-Q3 that were posed at the end of Section 1.3 are answered in
the remainder of this chapter. The next section provides some important background
material: the well-known Youla Parameterization, standard model-matching theory, and
an early H∞ result from [35]. After that, Q1-Q3 from Section 1.3 are answered, first for
a stable plant, and then for an unstable plant. Examples for both the stable plant case and
the unstable plant case highlight the various results at the end of their respective sections.

Unless specifically noted otherwise, all systems in this chapter are taken as discrete-
time, SISO linear time invariant, causal, with proper and rational transfer functions, ex-
cept in Section 2.2.1, where the input-output nature will always be specified for addi-
tional clarity (i.e., SISO or multi-input multi-output (MIMO)).

2.2 Background Results

2.2.1 Youla (Q) Parameterization

An early question in modern control theory was: which plants can be stabilized by feed-
back control? The answer, determined with remarkable completeness, was published by
Youla et al in [33, 34]. This result allows the computation of all stabilizing controllers
for a given plant, and specifies that any plant without an unstable (i.e., outside the unit
circle) pole/zero cancellation can be stabilized by feedback control. This parameteriza-
tion is remarkably simple, especially for a stable plant. By parameterizing all stabilizing
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controllers with a single variable, normally denoted as Q, entire new fields of control
were able to open up, including H∞ control. The coprime factorization and Youla pa-
rameterization results give below have been taken from [32], with only minor notational
changes. The results are presented without proofs, so the interested reader is encouraged
to consult [32] for the various proofs. We deal with discrete-time systems, but a similar
result applies to continuous-time systems.

Before stating the Youla parameterization results, we need to look at an important
tool, namely coprime factorization. To start, let S denote the set of all stable transfer
function matrices. The full coprime factorization result is given in the following lemma:

Lemma 2.1 [32] Given a MIMO system P[z], there exist N, Ñ, M, M̃, X , X̃ , Y , and Ỹ ∈ S
such that:

P[z] = N[z]M−1[z] = M̃[z]Ñ−1[z] (2.1)

and [
Y [z] X [z]
−Ñ[z] M̃[z]

][
M[z] −X̃ [z]
N[z] Ỹ [z]

]
=
[

I 0
0 I

]
. (2.2)

2

Lemma 2.1 brings about the terms “left coprime factorization” comprised of N[z],
M[z], X [z], and Y [x], and “right coprime factorization” comprised of Ñ[z], M̃[z], X̃ [z], and
Ỹ [z]. Due to the commutation property of scalars, their is no need to distinguish between
left and right coprime factorizations for SISO systems as there is for MIMO systems.
Since most of this thesis deals with SISO systems, a simpler form of (2.1)-(2.2) for SISO
systems is presented in the following corollary:

Corollary 2.1 Given a SISO system P[z], then there exist N,M,X , and Y ∈ S such that:

P[z] =
N[z]
M[z]

(2.3)

and
N[z]X [z]+M[z]Y [z] = 1. (2.4)

2

Their are numerous methods for calculating the various terms in Lemma 2.1. For
SISO systems only requiring N[z],M[z],X [z], and Y [x], Euclid’s formula may be used, as
shown in [10]. However, Euclid’s formula is cumbersome to use for more complicated
systems, and fails entirely for MIMO systems. As such, a state-space based approach is
preferred for computing N[z], Ñ[z], M[z], M̃[z], X [z], X̃ [z], Y [z], and Ỹ [z] for the MIMO
case, and N[z], M[z], X [z], and Y [x] for the SISO case. This algorithm is presented in the
following lemma:
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Lemma 2.2 [32] Given a MIMO or SISO system P[z] with state-space representation
A,B,C, and D such that P[z] = C(zI − A)−1B + D, with (A,B) stabilizable and (A,C)
detectable, select any matrices K and F such that A0 ≡ A−BK and Ã0 ≡ A−FC are both
stable (i.e., all eigenvalues have magnitude less than one). Then, a coprime factorization
satisfying (2.1) - (2.2) can be found by setting N[z], Ñ[z], M[z], M̃[z], X [z], X̃ [z], Y [z], and
Ỹ [z] as follows:

N[z] = (C−DK)(zI−A0)−1B+D (2.5)
D[z] = I−K(zI−A0)−1B (2.6)
X [z] = K(zI− Ã0)−1F (2.7)
Y [z] = I +K(zI− Ã0)−1(B−FD) (2.8)
Ñ[z] = C(zI− Ã0)−1(B−FD)+D (2.9)
M̃[z] = I−C(zI− Ã0)−1F (2.10)
X̃ [z] = K(zI−A0)−1F (2.11)
Ỹ [z] = I +(C−DK)(zI−A0)−1F. (2.12)

For SISO systems, only (2.5) - (2.8) need to be used. 2

For stable plants, it is unnecessary to use Lemma 2.2, as the following simplification
can be used:

Corollary 2.2 Given a system P ∈ S , then the following coprime factorization can be
used:

N[z] = Ñ[z] = P[z] (2.13)
M[z] = M̃[z] = I (2.14)
X [z] = X̃ [z] = 0 (2.15)
Y [z] = Ỹ [z] = I. (2.16)

2

The above results are now used to present the well-known Youla Parameterization,
which parameterizes the set of all stabilizing controllers with a single variable, often
denoted by Q, hence the term “Q-parameterization”. The result, again taken from [32],
is presented in the following lemma:

Lemma 2.3 [32] Given any MIMO system P, with a coprime factorization given by
Lemma 2.1, for the feedback setup shown in Figure 1.11, the set of all stabilizing con-
trollers, C[z], is given by:{

(Y [z]−Q[z]Ñ[z])−1(X [z]+Q[z]M̃[z]) : Q ∈ S ,Y −QÑ 6= 0
}

(2.17)

or
{
(X̃ [z]+M[z]Q[z])(Ỹ [z]−N[z]Q[z])−1 : Q ∈ S ,Ỹ −NQ 6= 0

}
. (2.18)

2
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Lemma 2.3 can be simplified for SISO systems as shown in the following corollary:

Corollary 2.3 Given a SISO system P, with a coprime factorization given by Corol-
lary 2.1, for the feedback setup shown in Figure 1.11, the set of all stabilizing controllers,
C[z], is given by: {

X [z]+M[z]Q[z]
Y [z]−N[z]Q[z]

: Q ∈ S ,Y −NQ 6= 0
}

. (2.19)

2

Furthermore, if the plant is stable, the coprime factorization can be found using
Corollary 2.2, resulting in a simpler Youla parameterization for both MIMO and SISO
plants, as given by the following corollaries:

Corollary 2.4 Given a MIMO system P ∈ S , with a coprime factorization given by
Lemma 2.1, for the feedback setup shown in Figure 1.11, the set of all stabilizing con-
trollers, C[z], is given by:{

(I−Q[z]P[z])−1(Q[z]) : Q ∈ S , I−QP 6= 0
}

(2.20)

or
{
(Q[z])(I−P[z]Q[z])−1 : Q ∈ S , I−PQ 6= 0

}
. (2.21)

2

Corollary 2.5 Given SISO system P ∈ S , with a coprime factorization given by Corol-
lary 2.1, for the feedback setup shown in Figure 1.11, the set of all stabilizing controllers,
C[z], is given by: {

Q[z]
1−P[z]Q[z]

: Q ∈ S ,1−PQ 6= 0
}

. (2.22)

2

It should be noted that in (2.17)-(2.22), the extra restrictions on Q (e.g., 1−PQ 6= 0
in (2.22)) beyond stability are satisfied if the plant is strictly proper (this can be verified
by noting the relative degree of the various coprime terms for strictly proper plants). In
almost all cases in this thesis, Youla parameterization is carried out on a plant augmented
with a sensor time delay. As a result, even for a biproper plant, when augmented with
the sensor time delay, 1

zn , the resulting system is strictly proper for n≥ 1. As such, these
additional constraints can be ignored when dealing with a discrete-time delayed system.

Finally, there exists a Youla parameterization for two-degree-of-freedom (2-DOF)
systems, but that is presented in the 2-DOF section later on in this thesis.
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2.2.2 SISO Model Matching

In deriving various H∞ performance limitations, the problem often reduces to a so-called
model-matching problem. This section details the SISO model-matching problem, and
is mainly taken from [10]. A MIMO version also exists, but it is dealt with in a later
chapter for simplicity. The result is stated for continuous time, but with use of the bilinear
transformation (1.14), it can be used for discrete time as well.

Given two transfer functions, T1(s) and T2(s), which are both stable, rational and
proper, with T2(s) also having no zeros on the imaginary axis, the model-matching prob-
lem is to find a stable Q(s) that minimizes ‖T1−T2Q‖∞. In essence, the problem is to find
Q to minimize the error between two “models”, T1 and T2Q. Define Ŝ to be the set of all
not-necessarily-proper transfer functions with poles in the OLHP. The model-matching
problem is denoted as

γopt ≡min
Q∈Ŝ
‖T1−T2Q‖∞, (2.23)

where γopt denotes the minimum error between the two models. It should also be noted
that Q is not required to be proper; however, from [35], a procedure for finding a stable
and proper Qp can be found to make ‖T1−T2Qp‖∞ arbitrarily close to γopt , so the lack
of properness is not a critical problem, i.e.,

inf
Qp∈S
‖T1−T2Qp‖∞ = min

Q∈Ŝ
‖T1−T2Q‖∞.

There are two solution techniques for the model-matching problem, one involving use
of Nevanlinna-Pick (NP) interpolation theory, and the other using a state-space solution.
Both techniques are presented here without proof, as the NP problem provides more
insight into the problem, while the state-space solution works better for computations.
For derivations of these solutions, the reader is encouraged to see [14, 30]. Details about
how to solve the NP interpolation problem are not provided here, so the interested reader
is encouraged to see [10] for a brief explanation and [1] for more details.

First, consider the NP solution to the model-matching problem. This is presented as
a simple algorithm to be followed, in order to find both the optimal Q and the minimum
error γopt [10]. Note the critical role that is played by the non-minimum phase zeros of
T2 in the model matching problem solution. The algorithm is as follows:

1. Find the RHP zeros of T2, denoted by {zi : 1 = 1,2, ...,m} where m is the number
of RHP zeros.

2. Define
bi ≡ T1(zi), i = 1,2, ...,m.

3. Create the following two matrices:

A≡
[

1
zi + z j

]
, B≡

[
bib j

zi + z j

]
.

20



4. The best achievable value of ‖T1−T2Q‖∞ is

γopt ≡ λmax

[
A−

1
2 BA−

1
2

]
,

where λmax denotes the maximum eigenvalue.

5. Solve the NP problem, with a solution given by the all-pass transfer function G,
with the following data (see [10, 1] for details):

z1 · · · zm

γ
−1
optb1 · · · γ

−1
optbm.

6. Set
Q =

T1− γoptG
T2

.

Now for the state-space based solution to the problem, which is also presented as an
algorithm for the computation of γopt and Q [10]:

1. Factor T2 as the product of an all pass factor, Tap, and a minimum-phase factor
Tmp, i.e.,

T2 = TapTmp.

2. Define
R =

T1

Tap
.

3. Factor R as R = R1 +R2 where R1 is strictly proper and with all poles in the RHP
and R2 has all poles in the OLHP (i.e., R2 is stable).

4. Find a minimal state-space realization of R1,

R1(s) =
[

A B
C 0

]
.

5. Solve the Lyaponov equations:

ALc +LcA′ = BB′

A′Lo +LoA = C′C.

6. Find the maximum eigenvalue of LcLo, with corresponding eigenvector w. Denote
the maximum eigenvalue as λ2.
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7. Define:

f (s) =
[

A w
C 0

]
,

g(s) =
[
−A′ λ−1Low
B′ 0

]
,

X(s) = R(s)− λ f (s)
g(s)

. (2.24)

8. Finally, set γopt = λ and Q = X(s)
Tmp(s)

.

To solve a discrete-time model-matching problem, convert the problem to continuous-
time using the bilinear transformation (1.14) and solve the resulting continuous-time
problem. Once solved, convert the optimal Q back to discrete time, again using the bi-
linear transformation. For example, for the discrete-time model-matching problem with
T1[z] = z

z+0.5 and T2[z] = 1
zn , use the bilinear transformation (1.14) to get the continuous-

time model-matching problem with T1[z] = 2(s+2)
s+3 and T2[z] =

( s−1
s+1

)n
. Note that the

particular problem of a discrete-time delay 1
zn gets mapped to n ORHP zeros at s = 1 for

n≥ 1. It should also be noted that a discrete-time transfer function T2[z] with relative de-
gree ρ will have ρ non-minimum phase zeros after conversion to continuous-time, T̃2(s),
via the bilinear transformation (1.14).

2.2.3 Francis-Zames Bound

Throughout the thesis, the following result is used when dealing with unstable plants.
It is a continuous-time, SISO result, so its use for discrete-time systems requires the
bilinear transformation (1.14), but that process is described as the result is used later on.
The result is a minor modification to a result from [35], and is presented below:

Lemma 2.4 Let S̃ denote the set of stable and proper continuous-time transfer functions.
Let R̃(s) be a proper, rational transfer function satisfying the interpolation conditions

R̃(p̃i) = 1 (i = 1, . . . ,m) (2.25)
R̃(z̃ j) = 0 ( j = 1, . . . ,n), (2.26)

where the p̃i and z̃ j are (possibly repeated) complex numbers with positive real parts.
Note that there may be other complex numbers a not equal to pi or z j where R̃(a) = 1 or
R̃(a) = 0.

Then, for any W̃ ∈ S̃ ,

‖W̃ R̃‖∞ ≥ max
i=1,2,..,m

∣∣∣∣∣W̃ (p̃i)
n

∏
j=1

(
z̃ j + p̃i

z̃ j− p̃i

)∣∣∣∣∣ . (2.27)

2
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Proof : A simple proof proceeds by defining the Blaschke product

B̃(s) =
n

∏
j=1

(
z̃ j− s
z̃ j + s

)
and factoring R̃(s) as R̃(s) = B(s)R̂(s), where R̂ ∈ S̃ . Then,

‖W̃ R̃‖∞ = ‖W̃BR̂‖∞

= ‖W̃ R̂‖∞

≥ max
i
|W̃ (p̃i)R̂(p̃i)| (2.28)

= max
i
|W̃ (p̃i)B−1(p̃i)R̃(p̃i)|

= max
i
|W̃ (p̃i)B−1(p̃i)|,

where the second equality holds because B(s) is all-pass, the inequality follows from the
Maximum Modulus Theorem, and the last equality holds since R̃(p̃i) = 1. 2

For a standard feedback control problem as shown in Figure 1.5, R̃(s) can be thought
of as the complementary sensitivity function, often denoted by T (s), with p̃i and z̃i being
the RHP poles and zeros of the plant. Lemma 2.4 will be used extensively when dealing
with unstable plants for both continuous-time and discrete-time systems. ‘

2.3 Stable Plant Case

Here we focus on performance limitations arising in Figure 1.8 with a stable plant, P.
Results for sensitivity to plant perturbations and tracking were originally derived in [9]
using a parameterization-of-observers scheme. However, that approach does not allow
for a result on disturbance rejection or for unstable plants (which is dealt with in the next
section). Using Youla parameterization, as described in [18], overcomes these original
difficulties, in addition to providing an alternative path to the results in [9]. This section
answers the three questions posed at the end of Section 1.3 for the four metrics presented
in the feedback control column of Table 1.1 with a stable plant.

It should also be noted that for the stable plant case, there is no fundamental limit
on noise rejection, as the zero controller (C[z] = 0) rejects all noise injected at w in
Figure 1.8. Obviously, this solution may not be ideal for other control objectives, but the
noise rejection can be made arbitrarily good (i.e., there is no fundamental performance
limitation for noise in the stable plant case). As a result, noise rejection is considered for
only the unstable plant case, which is presented in Section 2.4.

2.3.1 Is there a fundamental performance limitation?

The following theorem shows that for disturbance rejection and sensitivity, there is a
fundamental performance limitation imposed by the time delay. For tracking, there is no
fundamental performance limitation, as will be shown in Section 2.3.3.
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Theorem 2.1 Assume P[z] is stable for the feedback control setup shown in Figure 1.8.
For the sensor time delay F [z] = 1

zn with n≥ 1, define

βn ≡ inf
Q∈S
‖W2−W2PFQ‖∞ > 0 (2.29)

β
n
≡ inf

Q∈S
‖W2−FQ‖∞ > 0 (2.30)

γn ≡ inf
Q∈S
‖W3−W3PFQ‖∞ > 0 (2.31)

γ
n
≡ inf

Q∈S
‖W3−FQ‖∞ > 0. (2.32)

Then, assuming closed-loop stability,

‖W2S‖∞ ≥ βn ≥ β
n

(2.33)

‖W3Tdy‖∞ ≥ γn ≥ γ
n
. (2.34)

2

Proof: From Equation (1.16),

S[z] =
∂Try[z]
∂P[z]

P[z]
Try[z]

=
∂

P[z]C[z]
1+P[z]F [z]C[z]

∂P[z]
P[z]

P[z]C[z]
1+P[z]F [z]C[z]

=
C[z]+P[z]F [z]C2[z]−P[z]F [z]C2[z]

(1+P[z]F [z]C[z])2
P[z]+P2[z]F [z]C[z]

P[z]C[z]

=
C[z]

(1+P[z]F [z]C[z])2
1+P[z]F [z]C[z]

C[z]

=
1

1+P[z]F [z]C[z]
, (2.35)

and from (1.17),

Tdy[z] =
Y [z]
D[z]

=
1

1+P[z]F [z]C[z]
, (2.36)

which is the same as for S, i.e., Tdy = S. Using the stable case of Youla Parameterization
(2.22) for an augmented plant, P[z]F [z], and substituting into (2.35),

S[z] =
1

1+P[z]F [z] Q[z]
1−P[z]F [z]Q[z]

=
1−P[z]F [z]Q[z]

1−P[z]F [z]Q[z]+P[z]F [z]Q[z]
= 1−P[z]F [z]Q[z]. (2.37)
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Substituting the expression for S[z] given by (2.37) into the H∞ norms given in Table 1.1
from the feedback control column for S results in

‖W2S‖∞ = ‖W2−W2PFQ‖∞ (2.38)
≥ inf

Q∈S
‖W2−W2PFQ‖∞ = βn (2.39)

≥ inf
Q∈S
‖W2−FQ‖∞ = β

n
, (2.40)

and similarly, since Tdy[z] = S[z],

‖W3Tdy‖∞ = ‖W3−W3PFQ‖∞ (2.41)
≥ inf

Q∈S
‖W3−W3PFQ‖∞ = γn (2.42)

≥ inf
Q∈S
‖W3−FQ‖∞ = γ

n
. (2.43)

The argument for removing W2P and W3P in (2.40) and (2.43) is based on interpolation
theory, which forms the basis for a solution to the model-matching problem, as described
in Section 2.2.2. Specifically, the presence of W2P or W3P can never decrease the optimal
model-matching cost since extra factors in the T2 term only increase the optimal cost by
adding extra interpolation constraints. To verify this, consider an interpolation problem
with data points {xi : i = 1,2, ...,k}, giving an optimal error of yopt . Then consider the
same interpolation problem with the same points except with an extra point added on,
i.e., {xi : i = 1,2, ...,k +1}, resulting in an optimal error of zopt . Now, since at best the
optimal solution to the original problem contains the point xk+1, clearly, zopt ≥ yopt must
hold. 2

Bounds (2.40) and (2.43) do not depend on the plant, but only depend on the delay
and the weighting function, which makes them useful for characterizing the performance
degradation caused by the sensor time delay. These bounds show that for any specified
weight, a sensor time delay results in a plant-independent (subject to the plant being
stable) performance limitation for disturbance rejection and sensitivity to plant perturba-
tions.

2.3.2 What happens to performance as the sensor time delay is in-
creased?

We can argue that γn, γ
n
, βn and β

n
are non-decreasing function of the delay, n. For

simplicity, we will only deal with the γ
n

and β
n

to illustrate why this is the case, but
essentially the same argument can be made for γn and βn. Both (2.40) and (2.43) are
posed as model-matching problems, with T1 = W2 or T1 = W3 and T2 = F . As such,
using the same argument as at the end of the proof for Theorem 2.1 (that adding points
to an interpolation problem will produce an optimal error that is greater than or equal to
the previous optimal error), it is clear that increasing the delay (which adds extra points
to the interpolation problem since 1

zn becomes ( s−1
s+1)n after application of the bilinear
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transformation (1.14)), cannot reduce the error. This can be presented formally as follows
for any admissible W1 and W2:

γ
n
≤ γ

n+1
∀n≥ 1

β
n
≤ β

n+1
∀n≥ 1.

Similar arguments apply to the expressions in (2.39) and (2.42). Consequently, we
can say that the performance limitations γn and βn are non-decreasing functions of n, and
that for a given plant P, the optimal performance does not get better as n increases.

However, despite γn and βn being non-decreasing functions of n, they do not tend
to ∞. This is easily shown using the expressions for γn and βn in (2.40) and (2.43).
Substituting in Q = 0, which is stable and minimum phase (i.e., it is an admissible value
of Q), we conclude that γn and βn are no more than ‖W3‖∞ and ‖W2‖∞ respectively. Since
‖W2‖∞ and ‖W3‖∞ are defined as having an infinity norm equal to one, it is clear that:

γ
n
≤ γn ≤ 1 ∀n≥ 1

β
n
≤ βn ≤ 1 ∀n≥ 1.

Unfortunately, no proof has been developed showing that the limit of γn and βn as
n approaches ∞ equals one. But as will be seen in the examples, it appears that this is
indeed the case; in this sense, the performance limitations in Theorem 2.1 are tight.

2.3.3 Can tracking performance be recovered?

Given a stabilizing controller for the standard feedback control setup of Figure 1.11, can
a controller be designed for the setup with a sensor time delay shown in Figure 1.8 that
will mimic the tracking performance of the undelayed setup? The answer is that tracking
performance can indeed be recovered with a time delay in the feedback loop, as outlined
in the following theorem:

Theorem 2.2 Consider a stable plant, P, and a given stabilizing controller, Cb, with
transfer function from r to e denoted T b

re as shown in Figure 1.11. Then, given the same
plant P for the 1-DOF setup of Figure 1.8, with a transfer function from r to e denoted
Tre, the controller

C =
Cb

1+PCb(1−F)
(2.44)

is stabilizing and recovers tracking, i.e., Tre = T b
re. 2

Proof: Equation (2.44) follows from straightforward algebra and the 1-DOF Youla
parameterization. Using the simplified stable version of Youla (2.22), the stabilizing
controller Cb can be constructed as

Cb =
Qb

1−PQb (2.45)

(2.46)
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where Qb ∈ S . Moreover,

T b
re =

1
1+PCb

=
1

1+P Qb

1−PQb

= 1−PQb. (2.47)

Again by Youla, any stabilizing controller for Figure 1.8 can be written as

C =
Q

1−PQ
, (2.48)

(2.49)

and defining e≡ r− y for the setup in Figure 1.8,

Tre =
1

1+PFC
+

PC(F−1)
1+PCF

=
1

1+PF Q
1−PFQ

+
P(F−1)Q
1−PFQ

1+ PFQ
1−PFQ

= 1−PFQ+PFQ−PQ
= 1−PQ. (2.50)

Force Tre = T b
re in (2.47) and (2.50) to get

Q = Qb, (2.51)

which is stable since Qb ∈ S . Therefore, by Corollary 2.5, we know that a recovering
controller exists. To get (2.44), rearrange (2.45) to solve for Qb in terms of Cb:

Qb =
Cb

1+PCb . (2.52)

Then substitute (2.52) into (2.48),

Q =
Cb

1+PCb , (2.53)

and then substitute (2.53) into (2.48):

C =
Q

1−PFQ

=
Cb

1+PCb

1−PF Cb

1+PCb

=
Cb

1−PCb(1−F)
2 (2.54)
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Based on the above theorem, adding a delay to the feedback loop has no fundamental
penalty in terms of tracking performance, in the sense that performance of the undelayed
system in Figure 1.11 can be recovered. Also of note is that (2.51) shows that the same
Youla parameter Q recovers the tracking of the original system for the 1-DOF, stable
plant case, except it must be applied to the augmented plant, PF .

2.3.4 Examples

Two example calculations will be performed on a plant related to the radiotherapy prob-
lem outlined in the introduction. The plant is given by

P[z] =
0.044332
z−0.9704

, (2.55)

and is taken from [8]. The first calculation entails finding the bound (2.31) for various
delays given a frequency-varying weighting function, W3. The second problem involves
constructing the recovering controller (2.44) for the given plant. For all examples, the
sensor time delay is represented by F [z] = 1

zn .

Example 1: For the radiotherapy plant given above, we can compute γn from bound
(2.31) for a given weighting function, W3. So, using the discrete-time weighting function
(which is a discretized first order low pass filter)

W3[z] =
z tan(Ωb

2 )+ tan(Ωb
2 )

z(tan(Ωb
2 )+1)+ tan(Ωb

2 )−1
, (2.56)

with Ωb ∈ (0,π), it is possible to compute the performance limitations for various delays
and for various values of Ωb. To see how W3[z] varies with Ωb, consider Figure 2.1, which
shows the magnitude Bode plot of W3[z] for various values of Ωb; Ωb can be thought of
as the “bandwidth” of W3[z]. Figure 2.2 shows the fundamental performance limitation,
γn, for the best achievable weighted sensitivity for various values of the delay, n.

Figure 2.2 clearly shows the worsening effect of the time delay. For a given weighting
function (i.e., for a fixed value of Ωb), Figure 2.2 shows an increase in the best achievable
performance as the delay, n, increases, consistent with the discussion in Section 2.3.2.
Figure 2.2 also shows the upper bound of ||W ||∞ = 1 for large values of Ωb (which
corresponds to weighting almost all frequencies equally), as discussed in Section 2.3.2.

Example 2: This example explores the performance of the “recovering” controller,
which is described by (2.44). Consider the same radiotherapy plant (2.55) with a stabi-
lizing controller, Cb[z] = 10, designed without knowledge of the sensor time delay, as
shown by Figure 1.11. Then, given a sensor time delay, F [z] = 1

z3 , for the setup of Fig-
ure 1.8, a “recovering controller” can be designed through use of (2.44). For the given
problem, this “recovering” controller is given by

C[z] =
10z3(z−0.9704)

(z−0.9875)(z+0.7102)(z2−0.2499z+0.6321)
. (2.57)
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Figure 2.1: A magnitude Bode plot of W3[z] = z tan( Ωb
2 )+tan( Ωb

2 )

z(tan( Ωb
2 )+1)+tan( Ωb

2 )−1
for various values

of Ωb.

Figure 2.2: The weighted performance limitation for various values of n and Ωb.
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Figure 2.3: The step response from the input, r, to the output, y, for both the undelayed
system of Figure 1.11, with controller Cb[z] = 10, and the delay system of Figure 1.8,
with controller C[z] = 10z3(z−0.9704)

(z−0.9875)(z+0.7102)(z2−0.2499z+0.6321) .

The step responses for the delayed and undelayed feedback systems are shown in Fig-
ure 2.3, and as expected, both systems show identical performance in the tracking do-
main. However, the sensor time delay does degrade performance in other areas, despite
the ability to recover tracking performance. Consider the same systems, except with a
unit step disturbance, instead of a unit step reference. The output, y, for both systems
under the effect of the disturbance is shown in Figure 2.4. The effect of the time de-
lay is now quite clear, as the time-delayed system rejects the disturbance three samples
behind the undelayed system. Due to bounds (2.40) and (2.43), this result is not surpris-
ing, since the time delay creates a fundamental performance limitation for disturbance
rejection. In essence, the sensor time delay delays the effect of the feedback, creating a
quasi-feedforward control structure for the first n samples for an n sample sensor time
delay.
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Figure 2.4: The step response for a disturbance, d, to the output, y, for both the undelayed
system of Figure 1.11, with controller Cb[z] = 10, and the delay system of Figure 1.8,
with controller C[z] = 10z3(z−0.9704)

(z−0.9875)(z+0.7102)(z2−0.2499z+0.6321) .
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2.4 Unstable Plant Case

For the unstable plant case, two different approaches are taken. The first is equivalent
to the path taken for the stable plant case, using Youla Parameterization. Unfortunately,
while this can provide a computational tool for determining optimal performance for a
known plant and delay, the resulting expression is too complex to ascertain any trends or
gain any insight into the effect of the delay. This motivated a second approach, using the
Francis-Zames bound given in Lemma 2.4. While the resulting bound is not tight like the
Youla derived bound, it is simple to calculate and provides a clear picture of the effect
of the time delay. Also unlike in the stable case, a fundamental performance limitation
exists for noise rejection. Questions 1-3 from Chapter 1 are answered below, just as for
the stable plant case, and then followed with some examples.

2.4.1 Is there a fundamental performance limitation?

The short answer is that for all four metrics in Table 1.1, there is a fundamental perfor-
mance limitation for the unstable plant case. First, an insightful lower bound on perfor-
mance is presented, followed by an exact method for calculating optimal performance.
The insightful lower bound is based on the Francis-Zames bound in Section 2.2.3, and is
presented in the following theorem:

Theorem 2.3 Assume P[z] has k ≥ 1 possibly repeated unstable poles; denote these
poles by pi, i = 1, ...,k. If the closed-loop system in Figure 1.8 is stable, then the per-
formance metrics given in the feedback control column of Table 1.1 are bounded from
below as follows:

‖W1Tre‖DT
∞ ≥ max

i=1,...,k
|W1(pi) · pn

i |−‖W1‖DT
∞ (2.58)

‖W2S‖DT
∞ ≥ max

i=1,...,k
|W2(pi) · pn

i |−‖W2‖DT
∞ (2.59)

‖W3Tdy‖DT
∞ ≥ max

i=1,...,k
|W3(pi) · pn

i |−‖W3‖DT
∞ (2.60)

‖W4Twe‖DT
∞ ≥ max

i=1,...,k
|W4(pi) · pn

i | . (2.61)

2

Proof: Let P̃(s), C̃(s), and F̃(s) denote P[z], C[z], and F [z] after the applying the bilinear
transformation (1.14). Let p̃i, i = 1, . . . ,k denote the values of pi mapped to the s-plane,
also using (1.14). Also let z̃ j, j = 1, . . . ,m denote all zeros of P̃C̃F̃ with positive real
parts; note that there are at least n such zeros located at s = 1 due to the presence of F̃ .
Let the n zeros associated with F̃ be the first n zeros, i.e., z̃ j = 1 for j = 1, . . . ,n.

Let’s start by proving (2.60). The key element of the proof is to apply Lemma 2.4
with

R̃ =
P̃C̃F̃

1+ P̃C̃F̃
. (2.62)
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By the assumption of closed-loop stability, R̃(p̃i) = 1, i = 1, . . . ,k and R̃(z̃ j) = 0, j =
1, . . . ,m. The proof of (2.60) starts by using the fact that ‖ · ‖∞ norms are preserved
under mapping (1.14), recognizing that T̃dy = 1− R̃, applying the triangle inequality, and
exploiting Lemma 2.4:

‖W3Tdy‖DT
∞ = ‖W̃3T̃dy‖CT

∞

= ‖W̃3−W̃3R̃‖CT
∞

≥ ‖W̃3R̃‖CT
∞ −‖W̃3‖CT

∞

≥ max
i=1,...,k

∣∣∣∣∣W̃3(p̃i)
m

∏
j=1

(
z̃ j + p̃i

z̃ j− p̃i

)∣∣∣∣∣−‖W̃3‖CT
∞ . (2.63)

Next, use the fact that at least n of the z̃ j values are 1, and use (1.14) to convert back to
discrete time, as follows:

‖W3Tdy‖DT
∞ ≥ max

i=1,...,k

∣∣∣∣∣W̃3(p̃i)
(

1+ p̃i

1− p̃i

)n m

∏
j=n+1

(
z̃ j + p̃i

z̃ j− p̃i

)∣∣∣∣∣−‖W̃3‖CT
∞ (2.64)

≥ max
i=1,...,k

∣∣∣∣W̃3(p̃i)
(

1+ p̃i

1− p̃i

)n∣∣∣∣−‖W̃3‖CT
∞

= max
i=1,...,k

|W3(pi) · pn
i |−‖W3‖DT

∞ .

This proves (2.60); because S = Tdy, as shown by (2.35)-(2.36), it also proves (2.59).

The proof of (2.61) is very similar, except the triangle inequality step is not needed
since T̃we equals R̃:

‖W4Twe‖DT
∞ = ‖W̃4T̃we‖CT

∞

= ‖W̃4R̃‖CT
∞

≥ max
i=1,...,k

|W4(pi) · pn
i | .

The proof of (2.58) is again similar, except an extra step is needed to deal with the final
F̃ term in the relationship

T̃re = 1− P̃C̃
1+ P̃C̃F̃

= 1− R̃
F̃

.

The extra term is easily managed since |F̃( jω)|= 1 ∀ ω:

‖W1Tre‖DT
∞ = ‖W̃1T̃re‖CT

∞

=
∥∥∥∥W̃1−

W̃1R̃
F̃

∥∥∥∥CT

∞

≥
∥∥∥∥W̃1R̃

F̃

∥∥∥∥CT

∞

−‖W̃1‖CT
∞

= ‖W̃1R̃‖CT
∞ −‖W̃1‖CT

∞

≥ max
i=1,...,k

|W1(pi) · pn
i |−‖W̃1‖CT

∞ .2
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The ramifications of Theorem 2.3 are discussed after the next theorem, and are high-
lighted in the examples at the end of this chapter. The next theorem presents a method
for calculating the exact optimal performance using a model-matching approach:

Theorem 2.4 Consider the control setup of Figure 1.8 where P[z] is possibly unstable.
Perform a coprime factorization on the plant and delay, i.e., P[z]F [z], resulting in N[z],
M[z], X [z], and Y [z] as given by Corollary 2.1. Then, assuming closed loop stability,

‖W1Tre‖∞ ≥ inf
Q∈S
‖W1MPX−W1M2PQ‖∞ (2.65)

‖W2S‖∞ ≥ inf
Q∈S
‖W2MY −W2MNQ‖∞ (2.66)

‖W3Tdy‖∞ ≥ inf
Q∈S
‖W3MY −W3MNQ‖∞ (2.67)

‖W4Twe‖∞ ≥ inf
Q∈S
‖W4NX−W4MNQ‖∞. (2.68)

2

Proof: Only the result for Tdy is derived. The remaining three expressions can all be
derived in a similar fashion. The derivation starts with the expression for Tdy, and then
substitutes for the controller with its Youla parameterization, as follows:

Tdy =
1

1+PFC

=
1

1+ N
M

X+MQ
Y−NQ

=
MY −MNQ

MY +NX +MNQ−MNQ
= MY −MNQ.

Now, multiply by the weighting function, resulting in:

W3Tdy = W3MY −W3MNQ
⇒‖W3Tdy‖∞ ≥ inf

Q∈S
‖W3MY −W3MNQ‖∞

2

Unfortunately, both the T1 and T2 terms of the model-matching problems (2.65)-
(2.68) depend on the delay (since M, X , and Y depend on F), and therefore the bounds
of Theorem 2.4 provide almost no insight into the effect of the delay. However, they can
be used to compute the optimal performance, which is done in the examples at the end of
this section. The results of Theorem 2.3, on the other hand, provide great insight into the
effect of the delay, at the cost of introducing conservativeness. There are four sources of
conservativeness in (2.58)-(2.61):

• Use of the triangle inequality in deriving (2.58)-(2.60) results in conservativeness
(reflected in the presence of the −‖W‖∞ terms).
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• The bounds involve calculating a result for each unstable pole and then taking the
maximum over all unstable poles. The consequence is that only one pole affects
the resulting bounds, resulting in some conservativeness for systems with multiple
unstable poles.

• The dropping of any extra plant zeros with magnitude greater than one in (2.58)-
(2.61) to isolate the effect of the time delay results in conservativeness. This can
be overcome by converting (2.64) to discrete time and keeping the remaining plant
zeros, but at the expense of clarity on the effect of the delay.

• In the derivation in Lemma 2.4, specifically, (2.28), additional conservativeness
may be introduced.

The examples at the end of this section illustrate these sources of conservativeness.

2.4.2 What happens to performance as the sensor time delay is in-
creased?

The bounds in Theorem 2.3 increase exponentially as the delay increases; however, since
the bounds are not tight, all that can be said is that the lower bounds get worse as the
delay gets worse. The results of Theorem 2.4, on the other hand, provide little insight
into system behaviour as n increases. Take for example (2.66), and compare it to the
stable case, (2.39). For the stable case, when the time delay is increased, the only term
that changes is F , and the result is an extra interpolation condition that can only make
the optimal performance worse. However, for the unstable case, an increase in the time
delay not only affects F , but it also affects X and Y through the coprime factorization.
The effects of the change on X and Y are unclear and problem dependent, making it
impossible to say for certain that the optimal performance is a non-decreasing function
on n as it is for the stable plant case.

However, it is simple to see that the limit of (2.58)-(2.61) as the delay, n, approaches
infinity is also infinity. Since (2.58)-(2.61) are lower bounds on performance, and they
tend to infinity as the delay tends to infinity, it is safe to say that system performance
gets arbitrarily bad for an arbitrarily long delay. It should be noted that this result is
fairly intuitive. An infinite delay in the feedback loop is essentially the same thing as
not having a feedback loop at all. Since the results of Theorem 2.3 are for open loop
unstable plants, it is hardly surprising that in the absence of a feedback loop the various
performance measures blow up.

2.4.3 Can tracking performance be recovered?

Inequality (2.58) proves that tracking performance cannot always be recovered, since for
a long enough delay tracking performance becomes arbitrarily poor. This conclusion can
also be reached using Youla parameterization, except instead of finding a stable Q as in
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Theorem 2.2, the Q for the unstable case that would recover tracking performance is not
stable and therefore not admissible. This is outlined in the following theorem:

Theorem 2.5 Given an unstable plant, P, consider a stabilizing controller, Cb, with
transfer function from r to e denoted T b

re as shown in Figure 1.11. Then, given the same
unstable plant P for the 1-DOF, time-delayed setup of Figure 1.8, with a transfer function
from r to e denoted Tre, in general, no recovering controller exists (i.e., Tre 6= T b

re). 2

Proof: Using the same procedure as the proof of Theorem 2.2, the recovering Youla
parameter is given by:

Q =
1+M2N2Q2−M2Y2−PMX

PM2 . (2.69)

The unstable plant poles appear in the denominator of this expression, making it unstable
barring a fluke cancellation from the numerator. 2

2.4.4 Examples

This subsection illustrates the effect of the intuitive bounds (2.58)-(2.61) for a plant with
one unstable pole, and for a plant with two unstable poles. These bounds are compared to
the tighter model-matching bounds given by (2.65)-(2.68), to show the conservativeness
penalty for the intuition gained in (2.58)-(2.61). In both examples, the weighting function
used is the same as for the stable example (2.56), except with varying subscripts for W ,
i.e.,

W1[z] = W2[z] = W3[z] = W4[z] =
z tan(Ωb

2 )+ tan(Ωb
2 )

z(tan(Ωb
2 )+1)+ tan(Ωb

2 )−1
.

This is a simple first-order filter with cutoff frequency Ωb, as introduced in Example 1.

Example 3: Consider an unstable plant,

P[z] =
(z+0.5)2

(z+2)(z+0.25)
, (2.70)

which is biproper and has one pole with magnitude greater than one. For the sensor
time delay setup of Figure 1.8, bounds (2.58)-(2.61) can be computed. The first three
of these bounds, for tracking, disturbance rejection and sensitivity to plant perturbations,
are shown far various sensor time delays in Figure 2.5, and the bound for noise rejection
is shown in Figure 2.6. The main difference between the two figures is the lack of the
−||Wi||∞ term for the noise rejection bound. The difference is especially relevant at lower
values of Ωb, where the bounds in Figure 2.5 become negative. As a result, these bounds
are not shown on the logarithmic scale below these frequencies. The conclusion is that
bounds (2.58)-(2.60) do not provide meaningful information when both of n and Ωb are
“small”. The noise rejection bound does not suffer from this problem, and it shows a
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Figure 2.5: Bounds (2.58)-(2.60) for various values of n and Ωb with P given by (2.70).

Figure 2.6: Bound (2.61) for various values of n and Ωb with P given by (2.70).
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fundamental performance limitation for all values of Ωb. In both cases, as the delay, n,
increases, so too does the bound.

Now, the question of the conservativeness of the bounds in Figures 2.5 and 2.6 arises.
For this example, the degree of conservativeness is best shown by calculating bounds
(2.65)-(2.68) (which are tight) and comparing them to bounds (2.58)-(2.61). This will be
done for n = 3, in order to clearly illustrate the results. Figure 2.7 shows the result for
disturbance rejection and sensitivity to plant perturbations, while Figure 2.8 shows the
result for tracking.

Figures 2.7 and 2.8 are extremely similar, and effectively show the same thing. At
low values of Ωb, the −‖Wi‖∞ term dominates, resulting in a negative bound (and hence
the sharp drop off of the Francis-Zames curve). At higher values of Ωb, a non-trivial
bound ensues, but one that is still conservative compared to the tight model-matching
bound. Despite the conservative nature of (2.58)-(2.60) when compared to the tight
bounds (2.65)-(2.67), they are still quite useful. The major source of conservativeness is
the −||Wi||∞ term for these equations, which at small values of n and Ωb produce a triv-
ial bound. However, the same trends are illustrated by the Francis-Zames bounds in the
region where a non-trivial bound is produced, and the conclusions reached by a designer
would be very similar.

Figure 2.9 shows the result for noise rejection. When compared to the previous cases,
the biggest difference is the lack of the −‖Wi‖∞ term. The result is that (2.61), inter-
estingly, is exactly the same as (2.68). For this example, the only possible source of
conservativeness is from the derivation of the Francis-Zames bound in Lemma 2.4 (see
(2.28) for details); it appears that Lemma 2.4 is in fact tight for this example. However,
consider the strictly proper plant

P[z] =
z+0.5

(z+2)(z+0.25)
, (2.71)

which is the same as (2.70) except for the omission of one of the zeros. The new plant
(2.71) now has a non-zero relative degree, which adds conservativeness to (2.61) due
to the creation of a non-minimum-phase zero when mapped to continuous time. This
conservativeness is clearly demonstrated in Figure 2.10, which also shows a modified
version of (2.61), based on (2.64), which, just as for the biproper plant case, recreates
the tight model-matching bound (2.68). The conclusion is that for cases with only one
unstable plant pole, the Francis-Zames bound can produce a tight bound on the best
achievable performance for noise rejection.

Example 4: This example further explores the conservative nature of (2.58)-(2.61),
particularly as it applies to plants with multiple poles with magnitude greater than one.
Consider

P[z] =
(z+0.5)2

(z+2)(z+3)
, (2.72)

with the same weighting functions as before. As in the previous example, bounds can be
calculated for various values of the delay, n, and the weighting function cutoff frequency,
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Figure 2.7: Comparing (2.59)-(2.60) to (2.66)-(2.67) for n = 3 and one unstable pole at
p =−2.

Figure 2.8: Comparing (2.58) to (2.65) for n = 3 and one unstable pole at p =−2.
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Figure 2.9: Comparing (2.61) to (2.68) for n = 3 and for the plant (2.70) which is biproper
with one unstable pole at p = −2. Note that the dashed curve is the same as the solid
curve.
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Figure 2.10: Comparing (2.61) to (2.68) for n = 3 and for the plant (2.71) which is strictly
proper with one unstable pole at p = −2. Note that the dotted curve is the same as the
dashed curve.
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Figure 2.11: Bounds (2.58)-(2.60) for various values of n and Ωb with P given by (2.72).

Figure 2.12: Bound (2.61) for various values of n and Ωb with P given by (2.72).
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Figure 2.13: Comparing (2.59)-(2.60) to (2.66)-(2.67) for n = 3 and two unstable poles
at p =−2,−3.

Ωb. Results for tracking, disturbance rejection and sensitivity to plant perturbations are
shown in Figure 2.11, and those for noise rejection in Figure 2.12.

As for their conservativeness, again, using the same technique as the previous ex-
ample, a comparison can be made, again using a delay of three samples (n = 3). Fig-
ure 2.13 shows the result for disturbance rejection and sensitivity to plant perturbations,
Figure 2.14 shows the result for tracking and Figure 2.15 shows the result for noise rejec-
tion. In contrast to the previous example, the Francis-Zames bounds are more conserva-
tive then for the one-unstable-pole case. This is not surprising since bounds (2.58)-(2.61)
are based on only one of the unstable poles, and in effect, ignore the performance degra-
dation caused by the other unstable pole. The lines corresponding to the Francis-Zames
bounds would be the same for a plant with only one unstable pole at p =−3. This lim-
itation can be seen extremely well for the noise rejection bound shown in Figure 2.15.
For the one-unstable-pole case, shown in Figure 2.9, the Francis-Zames bound produces
the same curve as the tight model-matching bound. With the addition of a second un-
stable pole, this is no longer the case, and even the noise rejection bound shows some
conservativeness. However, the shape of the curve is correct, and a designer would reach
a similar conclusion based on the Francis-Zames bound as with the model-matching de-
rived bound.

43



Figure 2.14: Comparing (2.58) to (2.65) for n = 3 and two unstable poles at p =−2,−3.

Figure 2.15: Comparing (2.61) to (2.68) for n = 3 and two unstable poles at p =−2,−3.
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Chapter 3

Discrete-Time SISO Estimation

3.1 Overview

The motivation for this research is again the radiotherapy control problem described
in Section 1.1. This chapter concerns itself with the estimation subsystem at the top
of Figure 1.4. Figure 3.1 (which is a copy of Figure 1.9, repeated here for convenience)
shows a two-degree-of-freedom (2-DOF) generalized estimator scheme, with the delayed
output generated by passing the output signal through F [z] = 1

zn . The estimator’s role is
to estimate the current output, y, with only the input, u, and a delayed version of the
output, yd , being available. The estimate is denoted by ŷ.

For the estimation problem, only Q1-Q2 from page 11 are dealt with, since a “recov-
ering” controller does not make sense in the estimation setting. This chapter focuses on
answering those two questions, and is laid out in a similar fashion as Chapter 2. The next
section presents a new method for parameterizing all asymptotic estimators, resulting
in a Youla-esque parameterization for estimators instead of controllers. An “asymptotic
estimator” is simply an estimator that estimates perfectly as time goes to ∞ with no noise
or disturbances and with a known, nominal plant. After that, Q1 and Q2 are answered
for the estimation problem, first for a stable plant, and then for an unstable plant. Com-
mentary on the results (in particular, how they relate to the feedback control results of
Chapter 2) are also provided.

Unless specifically noted otherwise, all systems in this chapter are taken as discrete-
time, SISO linear time invariant, causal, with proper and rational transfer functions.

3.2 A Parameterization of all Asymptotic Estimators

This section outlines a Youla-esque parameterization of all asymptotic estimators for the
estimation problem shown in Figure 3.1. An asymptotic estimator is a pair (G1, G2) that
satisfies the following (for d = w = 0):

lim
k→∞

(ŷ[k]− y[k]) = 0 ∀u,∀initial conditions. (3.1)
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d

P yu

G2

ŷ

estimator w

G1 yd

F

Figure 3.1: A block diagram of the estimation problem with a sensor time delay.

By using the parameterization provided below, performance limitations similar to those
derived in Chapter 2 can be found. The parameterization was developed independently
in [5] using a state-space approach, and by us in [6] using a transfer function approach.
The work in [6] required an extension to account for cases with repeated poles, as well
as an extension for MIMO systems, which can be found in [24]. The SISO result with
the extension to repeated poles is given by the following theorem:

Theorem 3.1 Consider the estimation scheme in Figure 3.1 with d = w = 0. Let S
denote the set of all stable transfer functions and let p1, . . . , pm denote the unstable poles
of P, if any exist, with multiplicities r1, ..,rm. Perform a coprime factorization of the
system PF , as per Corollary 2.1, resulting in stable proper transfer functions N,M,X , and
Y .

Finally, define

Tyŷ ≡
Ŷ [z]
Y [z]

=
Ŷ [z]
U [z]
÷ Y [z]

U [z]
=

G2 +FG1P
P

, (3.2)

and the following four sets:

A ≡ {(G1,G2) : (3.1) is satisfied} (3.3)
B ≡ {(G1,G2) : G1 ∈ S ,G2 ∈ S ,Tyŷ = 1} (3.4)
C ≡ {(G1,G2) : G1∈S with

for i = 1, ...,m
for j = 1, ...,ri−1

d j

dzi G1[z]|z=pi =
d j

dzi
1

F [z]
|z=pi,

and G2 = P(1−G1F)} (3.5)
D ≡ {(G1,G2) : G1 = MPX +MQ and

G2 = MPY −NQ for Q ∈ S}. (3.6)

Then, A = B = C = D . 2

Proof: The proof involves showing that the above four sets are equivalent. In order
to do this, two pairs will be shown to be the same ( A = B , B = C ), and then D is shown
to be a subset of B and a superset of C (i.e., D ⊆ B and D ⊇ C ).
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x0δ[k]

y[k]C(zI−A)−1

D

u[k] B

Figure 3.2: Decomposition of a system with state-space realization (A,B,C,D), initial
condition x[0] = x0, input u[k], and output y[k]. In the diagram, δ[k] is the unit pulse
function.

Step 1: Show A ⊇ B

To show this, first fix (G1,G2) ∈ B , and introduce minimal state-space realizations for
each element in Figure 3.1:

P = (AP,BP,CP,DP) (with initial state xP0),
F = (AF ,BF ,CF ,DF) (with initial state xF0),

G1 = (A1,B1,C1,D1) (with initial state x10),and
G2 = (A2,B2,C2,D2) (with initial state x20).

Now, by superposition, the zero-input response and the zero-initial-condition response
of a linear system with input u, output y, state x, initial condition x0, and state-space
matrices (A,B,C,D) can be separated, as shown in Figure 3.2.

That is, the output can be decomposed as

Y [z] = H[z] ·U [z]+C(zI−A)−1X0[z],

where H[z] ≡ D +C(zI − A)−1B and X0[z] is the Z-transform of x0δ, i.e., X0[z] = x0.
Apply this decomposition to each element in Figure 3.1, to obtain

Y [z] = P[z]U [z]+CP(zI−AP)−1xP0 (3.7)
Ŷ [z] = (G2[z]+G1[z]F [z]P[z]) ·U [z]

+ C2(zI−A2)−1x20 +C1(zI−A1)−1x10

+ G1[z]CF(zI−AH)−1xF0

+ G1[z]F [z]CP(zI−AP)−1xP0. (3.8)

Define e≡ ŷ− y and use (3.7)–(3.8) to obtain

E[z] = (G2[z]+G1[z]F [z]P[z]−P[z]) ·U [z]
+ C2(zI−A2)−1x20 +C1(zI−A1)−1x10

+ G1[z]CF(zI−AF)−1xF0

+ (G1[z]F [z]−1)CP(zI−AP)−1xP0. (3.9)
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Next, use the facts that G2 +G1FP = P and G1F−1 =−G2/P (both which follow from
Tyŷ = 1) to obtain

E[z] = C2(zI−A2)−1x20 +C1(zI−A1)−1x10

+ G1[z]CF(zI−AF)−1xH0

− G2[z]
P[z]

CP(zI−AP)−1xP0. (3.10)

Due to the stability assumptions on G1, G2, and F , each of the first three terms in (3.10)
has stable poles. The last term in (3.10) also has stable poles; this can be argued by
writing the term as

G2[z]
P[z]

CPAdj(zI−AP)xP0

det(AP)
,

and recognizing that unstable poles can arise from exactly three sources:

• unstable roots of det(AP) (but all such roots are canceled by poles in P[z]),

• unstable zeros of P[z] (but, since Tyŷ = 1, all such zeros are canceled by zeros of
G2[z]), and

• unstable poles of G2[z] (but there are none since G2 is stable).

We conclude that the poles of each term in (3.10) are stable, and therefore, for any xP0,
xF0, x10, and x20, and any signal u, e[k]→ 0 as k→ ∞. Hence, (G1,G2) ∈ A and A ⊇ B .

Step 2: Show A ⊆ B
Fix (G1,G2) ∈ A . The expression (3.9) for E[z] still holds. Since, for any xP0, xF0, x10,
and x20, and any signal u, e[k]→ 0 as k→ ∞, we conclude that:

• the coefficient of U [z] in (3.9) must be zero (i.e., G2 + G1FP−P = 0, which is
equivalent to Tyŷ = 1),

• the coefficient of x20 in (3.9) must have no unstable poles (i.e., G2 must be stable),
and

• the coefficient of x10 in (3.9) must have no unstable poles (i.e., G1 must be stable).

These three conclusions imply that (G1,G2) ∈ B; hence, A ⊆ B , and therefore A = B .

Next, we will show that B = C for the special case of non-repeated poles (i.e., ri =
1∀i). To see the repeated pole case, refer to [24].

Step 3: Show B ⊆ C
Fix (G1,G2) ∈ B , i.e., G1 ∈ S , G2 ∈ S and Tyŷ = 1. Then,

Tyŷ =
G2 +FG1P

P
= 1

⇒ G2 +FG1P = P
⇒ G2 = P(1−FG1). (3.11)
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Since G2 ∈ S it follows from (3.11) that 1−FG1 cancels out any unstable poles of P,
i.e.,

1−F(pi)G1(pi) = 0

⇒ G1(pi) =
1

F(pi)
.

which is the form of G1 and G2 for C . Therefore, B ⊆ C .

Step 4: Show B ⊇ C
Fix (G1,G2) ∈ C , i.e., G1 ∈ S with G1(pi) = 1

F(pi)
, G2 = P(1−FG1). Then it follows

that, G2 ∈ S since:

• F ∈ S , G1 ∈ S implies that 1−FG1 ∈ S

• 1−F(pi)G1(pi) = 0 implies that pi is a zero of 1−FG1, giving P(1−FG1) ∈ S .

Finally to see that Tyŷ = 1 simply substitute G1, G2 into (3.2), resulting in:

Tyŷ =
G2 +PFG1

P

=
P−PFG1 +PFG1

P
= 1.

Therefore, C ⊆ B and B = C for the non-repeated pole case.

Step 5: Show D ⊆ B
First, fix (G1,G2) ∈D . Hence, there is a Q ∈ S such that

G1 = MPX +MQ (3.12)
G2 = MPY −NQ. (3.13)

Note the following:

• G1 in (3.12) is stable and proper since X , M, Q, and MP = N/F are stable and
proper.

• Similarly, G2 in (3.13) is stable and proper.

• Use (3.12), (3.13), (3.2) and Corollary 2.1 to calculate

Tyŷ =
G2

P
+FG1

= MY − NQ
P

+FMPX +HMQ

= 1−NX− NQ
P

+FMPX +HMQ

= 1− (N−FMP)X−
(

N
P
−FM

)
Q=1.
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We conclude that (G1,G2) ∈ B , and therefore D ⊆ B .

Step 6: Show D ⊇ C
Fix (G1,G2) ∈ C . It is claimed that (G1,G2) also lies in D with the following particular
value of Q:

Q0 ≡
G1−MPX

M
. (3.14)

To verify the claim, observe that:

• G1 = MPX +MQ0 holds (trivially).

• G2 = MPY −NQ0 holds because

G2 = P(1−G1F)
= P(NX +MY −G1F)
= P(FMPX +MY −G1F)
= PMY −PF(G1−MPX)

= MPY − N
M

(G1−MPX)

= MPY −NQ0.

• Q0 is proper because both G1−MPX and 1/M are proper.

• Q0 is stable because

– (G1−MPX) is stable (which follows because MP = N/F is stable), and

– the unstable zeros of M, i.e., the values p1, . . . , pm, are also zeros of G1−
MPX ; this last fact follows since

G1(pi) =
1

F(pi)
=

P(pi)M(pi)X(pi)
N(pi)X(pi)

=
P(pi)M(pi)X(pi)
1−M(pi)Y (pi)

= P(pi)M(pi)X(pi).

We conclude that (G1,G2) ∈D; hence, D ⊇ C and A = B = C = D . 2

Note from (3.4) that every asymptotic estimator satisfies Tyŷ = 1; hence, unlike in the
feedback control framework, there is no sense in considering performance limitations on
“tracking”. For the remainder of this chapter, the parameterization in Theorem 3.1 is
used to characterize the performance of the time-delayed estimation problem. For stable
plants, a simpler form for D can be found, and this is given in the following corollary:

Corollary 3.1 Given a stable plant P, D from Theorem 3.1 can be written as:

D ≡ {(G1,G2) : G1 = Q and
G2 = P−PFQ for Q ∈ S}. (3.15)

2
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Proof: To get the result, substitute into (3.6) the stable coprime terms given by Corol-
lary 2.2 for M, N, X , and Y . 2

3.3 Stable Plant Case

This section answers Q1-Q2 from the end of Chapter 1 for the estimation problem of
Figure 3.1 assuming a stable plant. The results in this section were first reported in
[6], and use the results of Theorem 3.1, along with the model-matching solution from
Section 2.2.2. Q3 will not be answered for the estimation problem, as the idea of a
“recovering” controller no longer makes sense.

Just like the stable-plant case for the feedback control problem in Section 2.3, there is
no fundamental performance limitation for noise rejection. Choosing G2 = P and G1 = 0
results in an asymptotic estimator that exhibits perfect noise rejection (i.e., Twe = 0 where
e = y− ŷ). Also of note is the similarity of the results of the estimation problem to the
results of the feedback control problem; this similarity will be discussed in more detail
after the results have been presented.

3.3.1 Is there a fundamental performance limitation?

It turns out that the answer is the same as for the feedback control case of the previous
chapter: there exists a fundamental performance limitation for disturbance rejection and
sensitivity to plant perturbations for any asymptotic estimator. This result is given by the
following theorem:

Theorem 3.2 Assume P[z] is stable for the 2-DOF estimation setup shown in Figure 3.1.
For the sensor time delay F [z] = 1

zn with n≥ 1, define

αn ≡ inf
Q∈S
‖W5−FQ‖∞ > 0 (3.16)

κn ≡ inf
Q∈S
‖W6−FQ‖∞ > 0. (3.17)

Then, for any asymptotic estimator,

‖W5S‖∞ ≥ αn (3.18)
‖W6Tde‖∞ ≥ κn. (3.19)

2

Proof: The proof is similar to the proof of Theorem 2.1, with the primary difference
being the use of Corollary 3.1 instead of Youla parameterization (Corollary 2.5). Start
by calculating the two required transfer functions (Tde and S):
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Tde = 1−FG1

= 1−FQ, (3.20)

and, beginning with (1.19) and using (3.2),

S =
∂Tyŷ[z]
∂P[z]

P[z]
Tyŷ[z]

=
PFG1−G2−PFG1

P2
P2

G2 +PFG1

=
−G2

G2 +PFG1

=
−1

1+PF G1
G2

(3.21)

=
−1

1+ PFQ
P−PFQ

=
−P+PFQ

P−PFQ+PFQ
= −1+FQ. (3.22)

Using (3.20) and (3.22), multiply by their respective weighting functions from Ta-
ble 1.1, and take their H∞ norms:

‖W5S‖∞ = ‖−W5 +W5FQ‖∞ (3.23)
= ‖W5−W5FQ‖∞ (3.24)

‖W6Tde‖∞ = ‖W6−W6FQ‖∞. (3.25)

By minimizing the norms over all stable Q, the desired bounds (3.18) and (3.19) can
be found. Weights W5 and W6 can be dropped from the T2 term of the model-matching
problem since they can only make the optimal norm worse (see the proof of Theorem 2.1
for a more detailed discussion). 2

Comparing the results from the estimation problem given by Theorem 3.2 to the feed-
back control problem given by Theorem 2.1, an interesting observation can be made: the
sensor time delay leads to the same fundamental performance limitations for both the
estimation problem (??)-(??) and the control problem (2.29)-(2.31). Given that the esti-
mation and control problems are only related by the sensor time delay, this is quite sur-
prising. However, there is a subtle difference between the two results, and that involves
the effect of the plant. For the estimation problem, the actual weighted disturbance re-
jection H∞-norm is given by (3.25), whereas for the feedback control case, it is given by
(see (2.41)):

‖W3Tdy‖∞ = ‖W3−W3PFQ‖∞ (3.26)
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If it was desired to calculate the actual best achievable performance, we would simply
find the infimum over all stable Q of (3.26) and (3.25). However, for the same plant and
weighting function (W3 = W6),

inf
Q∈S
‖W3−W3PFQ‖∞ ≥ inf

Q∈S
‖W6−W6FQ‖∞. (3.27)

Inequality (3.27) implies that the feedback control bounds found in Section 2.3 are more
conservative than the estimation bounds found in this section. Any plant zeros with mag-
nitude greater than one or any plant that is not biproper will degrade the best achievable
performance of the feedback control system, but will have no effect for the estimation
problem. Moreover, from (3.24)-(3.25), we see that for the estimation problem all stable
plants have identical disturbance rejection and sensitivity to plant perturbations.

3.3.2 What happens to performance as the sensor time delay is in-
creased?

Due to the similarities between Theorem 3.2 and Theorem 2.1, the same trends occur for
the estimation problem as for the feedback control problem. As a result, the discussion
in Section 2.3.2 also applies for the estimation problem, meaning that αn and κn are
non-decreasing functions of n and are bounded above by ‖W5‖∞ and ‖W6‖∞ respectively.
Formally, this means that

αn ≤ αn+1 ∀n≥ 1
κn ≤ κn+1 ∀n≥ 1,

and

αn ≤ 1 ∀n≥ 1
κn ≤ 1 ∀n≥ 1.

3.3.3 Example

Since the bounds of Theorem 3.2 are the same as those for Theorem 2.1, this section will
not repeat their calculation. Instead, in one example we compare the performance of two
different estimators to the optimal performance, and in a second example we clarify the
effect of plant non-minimum phase zeros.

Example 5: Using

P[z] =
0.044332
z−0.9704

(3.28)

W6[z] =
z tan(Ωb

2 )+ tan(Ωb
2 )

z(tan(Ωb
2 )+1)+ tan(Ωb

2 )−1
, (3.29)
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consider a standard Luenberger observer for a delay of three samples (i.e., F [z] = 1
z3 ), as

well as an estimator designed for optimal weighted disturbance rejection with Ωb = 0.1
for the given weighting function (3.29). The Luenberger observer has its poles placed at
z = 0.15,0.2,0.25,and 0.3, which is then mapped over to the 2-DOF estimator setting of
Figure 3.1, resulting in:

G1[z] =
0.044332(z+0.5204)(z2−0.45z+0.6)
(z−0.3)(z−0.25)(z−0.2)(z−0.15)

G2[z] =
0.30525(z+2.241x10−6)(z2−2.241x10−6z+5.021x10−12)

(z−0.3)(z−0.25)(z−0.2)(z−0.15)
. (3.30)

The optimal estimator constructed for Ωb = 0.1 results in the following G1 and G2:

G1[z] =
3.4324z3

(z+1)(z2 +0.7693z+0.2877)

G2[z] =
0.044332(z−0.9047)(z2 +2.674z+3.476)
(z−0.9704)(z+1)(z2 +0.7693z+0.2877)

. (3.31)

Note that the pole at z = −1 arises due to the improperness of the optimal Q found
in the model-matching solution. This unstable pole can be eliminated using a proper
approximation of the improper Q. For the purposes of keeping this example simple, this
step was not carried out.

With these two estimators, we can now plot their weighted disturbance rejection per-
formance over a wide range of Ωb for the given delay of n = 3. The performance of
the two estimators is compared to the optimal disturbance rejection (??) in Figure 3.3.
Of note is that the standard Luenberger observer performs worse than optimal at all fre-
quencies, and is substantially worse than the estimator designed with Ωb = 0.1, except
at large values of Ωb.

Example 6: This example compares, for a given plant and weighting function, the
optimal disturbance rejection for the estimation problem of Figure 3.1 (??) with that for
the feedback control problem of Figure 1.8 (2.42). Utilizing the same weighting function
as Example 5 (3.29), and the following plant, which contains a non-minimum-phase zero
at z = 5,

P[z] =
z−5

z−0.9704
, (3.32)

the optimal disturbance rejection can be computed. The results are shown in Figure 3.4,
where it is clear that the optimal performance for the estimation problem is lower (i.e.,
better) than for the feedback control problem. In essence, the non-minimum-phase zero
of the plant has no effect on the optimal performance of the estimation problem, but does
have an effect for the feedback control problem. The end result is that the performance
bounds given by Theorem 3.2 are tighter than the bounds given by Theorem 2.1. It should
also be noted that the disturbance rejection bound given by (2.31) in Theorem 2.1 would
generate the same curve as for the estimation problem.
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Figure 3.3: Comparing the performance of a Luenberger observer (3.30) to an estimator
designed optimally for Ωb = 0.1 (3.31) and to the optimal performance for all values of
Ωb.
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Figure 3.4: Optimal disturbance rejection for the estimation and feedback control prob-
lems for the plant given by (3.32).
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3.4 Unstable Plant Case

This section answers Q1-Q2 from the end of Chapter 1 for the unstable plant case. Just
as for the feedback control situation, two forms of performance limitations are presented:
first, an insightful bound based on the Francis-Zames bound of Section 2.2.3, and then a
non-insightful bound based on model-matching techniques. In another parallel between
the feedback control problem and the estimation problem, there is a fundamental perfor-
mance limitation on noise rejection for the estimation problem.

3.4.1 Is there a fundamental performance limitation?

The answer is a resounding yes, as shown by the following two theorems. Theorem 3.3
presents insightful, but conservative, bounds for weighted disturbance rejection, sensi-
tivity to plant perturbations, and noise rejection. Theorem 3.4 presents tight, but less
insightful, bounds for the same three metrics. As in the results for the feedback control
problem, due to a−‖W‖∞ term for weighted disturbance rejection and sensitivity to plant
perturbations, the insightful bound is trivial for systems with small delays and “gener-
ous” weighting functions. This term does not appear in the model-matching bounds,
which are positive for any delay and any weighting function.

The following technical lemma simplifies the proofs to follow:

Lemma 3.1 For an unstable plant P in Figure 3.1 with an asymptotic estimator, with M,
N, X , and Y a coprime factorization of PF given by Corollary 2.1, the following holds:

S =−MY +MFQ = −1+NX +MFQ (3.33)
Tde = MY −MFQ = 1−NX−MFQ (3.34)
Twe = NX +MFQ = 1−MY +MFQ. (3.35)

2

Proof: The proof follows using simple algebra on the various transfer functions after
substituting G1 and G2 as given by (3.6) and using the coprime factorization identity
(2.4). The technique will be demonstrated for S with the remaining two left to the reader.
The proof starts from the simplest form of S, given by (3.21):
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S =
−1

1+PF G1
G2

=
−1

1+ N
M

MPX+MQ
MPY−NQ

=
−MPY +NQ

MPY +NPX−NQ+NQ

=
−MPY +MPFQ

P(MY +NX)
= −MY +MFQ
= −1+NX +MFQ.

2

And now for the two main results, starting with the insightful performance limitations
based on the Francis-Zames bound:

Theorem 3.3 Assume that P in Figure 3.1 is unstable, with possibly repeated unstable
poles, denoted pi, i = 1, . . . ,m. Then, for any asymptotic estimator, the performance
measures in the estimation column of Table 1.1 are bounded from below as follows:

‖W5S‖DT
∞ ≥ max

i=1,...,m
|W5(pi) · pn

i |−‖W5‖DT
∞ (3.36)

‖W6Tde‖DT
∞ ≥ max

i=1,...,m
|W6(pi) · pn

i |−‖W6‖DT
∞ (3.37)

‖W7Twe‖DT
∞ ≥ max

i=1,...,m
|W7(pi) · pn

i |. (3.38)

2

Proof: The proof is similar to that of Theorem 2.3, and is based on Lemma 2.4. We
will start by proving (3.36).

First, use the bilinear transformation (1.14) on 1 + S, resulting in 1 + S̃. Define p̃i,
i = 1, ...,a, to be any poles of P̃F̃ with positive real parts, and z̃ j, j = 1, ...,b, to be any
zeros of F̃ with positive real parts. Note that only the plant poles are used; plant zeros
with positive real parts have no effect on the result. Also note that for F [z] = 1

zn , F̃(s) has
n zeros at s = 1. Choose, for the purposes of applying Lemma 2.4,

R̃ = 1+ S̃,

where p̃i and z̃ j are defined above. We need to show that R̃(p̃i) = 1 and R̃(z̃i) = 0. To
this end, note that

M̃(p̃i) = 0
Ñ(z̃ j) = 0
F̃(z̃i) = 0.

58



Now, apply Lemma 3.1 to S̃, giving

1+ S̃ = 1− M̃Ỹ + M̃F̃Q̃ (3.39)
= ÑX̃ + M̃F̃Q̃. (3.40)

From (3.39),

1+ S̃ = 1− M̃Ỹ + M̃F̃Q̃
⇒ 1+ S̃(p̃i) = 1− M̃(p̃i)Ỹ (p̃i)+ M̃(p̃i)F̃(p̃i)Q̃(p̃i)
⇒ R̃(p̃i) = 1 (3.41)

and then from (3.40),

1+ S̃ = ÑX̃ + M̃F̃Q̃
⇒ 1+ S̃(z̃ j) = Ñ(z̃ j)X̃(z̃ j)+ M̃(z̃ j)F̃(z̃ j)Q̃(z̃ j)
⇒ R̃(z̃i) = 0. (3.42)

The proof from this point is exactly the same as for Theorem 2.3, and will not be repeated
here.

For the remaining two bounds, using Lemma 3.1, it is easy to show that:

1+S = 1−Tde

1+S = Twe.

As a result, we can also apply Lemma 2.4 to 1−Tde and to Twe, and then continue exactly
as before. 2

Just as in the stable plant case, the asymptotic estimator bounds (in Theorem 3.3) are
identical to those for the feedback control problem (in Theorem 2.3). However, there is
a subtle difference in conservativeness between the asymptotic estimator bounds and the
feedback control bounds. Specifically, for the feedback control problem, an extra term
dealing with the non-minimum-phase zeros of P̃ arises, and is eliminated, in (2.64), but
this term does not arise in the estimator problem. Consequently, the bounds are more
conservative for the feedback control problem than for the estimator problem. This is
discussed in more detail with the help of an example at the end of this section. We now
turn to Theorem 3.4 which provides tight bounds for the estimator problem and sheds
more light on the above discussion:

Theorem 3.4 Consider the estimation setup of Figure 3.1 where P[z] is possibly unsta-
ble. Perform a coprime factorization on the plant and delay, i.e., P[z]F [z], resulting in
N[z], M[z], X [z], and Y [z] as given by Corollary 2.1. Then for any asymptotic estimator,

‖W5S‖∞ ≥ inf
Q∈S
‖W5MY −W5MFQ‖∞ (3.43)

‖W6Tde‖∞ ≥ inf
Q∈S
‖W6MY −W6MFQ‖∞ (3.44)

‖W7Twe‖∞ ≥ inf
Q∈S
‖W7NX +W7MFQ‖∞. (3.45)

2
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Proof: Use Lemma 3.1 as a starting point, and then simply follow the same procedure
as that used in the proof of Theorem 2.4. 2

The lack of performance degradation from the non-minimum-phase zeros of P̃ is
made even more clear in Theorem 3.4. Consider the noise rejection bound for the feed-
back control problem given by Theorem 2.4, that is,

‖W4Twe‖∞ ≥ inf
Q∈S
‖W4NX−W4MNQ‖∞, (3.46)

and compare it to the noise rejection bound for the estimation problem (3.45). The only
difference appears in the T2 term of the model-matching problem. For the estimation
bounds, the T2 term contains M and F , so interpolation constraints arise from the unstable
poles of P̃F̃ and the non-minimum-phase zeros of F̃ , whereas for the feedback control
bounds, the T2 term contains M and N, so interpolation constraints arise from the unstable
poles of P̃F̃ and the non-minimum-phase zeros of P̃F̃ . However, both Theorem 3.4 and
Theorem 2.4 provide tight bounds, and the conclusion is that plant non-minimum-phase
zeros do not affect the optimal performance for the estimation problem whereas they do
affect the optimal performance for the feedback control problem. This is further explored
in the example at the end of this section.

3.4.2 What happens to performance as the sensor time delay is in-
creased?

The conclusions drawn in Section 2.4.2 apply to the estimation problem as well. As the
delay gets arbitrarily bad, performance gets arbitrarily bad (for all three metrics). Due
to the complicated nature of the coprime factorization problem, it is not possible to say
that an increase in the sensor time delay must cause a degradation of the best achievable
performance, which is the same conclusion reached for the feedback control problem.

3.4.3 Example

The two examples in this section are the same as the examples in Section 3.3.3 except
the plant is now unstable.

Example 7: Using the same weighting function (3.29), and using the plant

P[z] =
1

z−10
, (3.47)

we construct a Luenberger observer and an estimator designed for optimal weighted
disturbance rejection when Ωb = 0.1, and compare their performance to the optimal
performance over a wide range of Ωb. The Lueneberger observer has its poles placed at
z =−0.05,−0.1,−0.15, and−0.2, and produces the following equivalent G1 and G2:

G1[z] =
(z+10.25)(z2 +0.25z+102.5)

(z+0.2)(z+0.15)(z+0.1)(z+0.05)

G2[z] =
10508.8127(z+6.215×10−5)(z2−6.215×10−5z+3.863×10−9)

(z+0.2)(z+0.15)(z+0.1)(z+0.05)
.(3.48)
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Figure 3.5: Comparing the performance of a Luenberger observer (3.48) to an estimator
optimized for Ωb = 0.1 (3.49) and to the optimal performance for all values of Ωb.

The optimal estimator produces the following G1 and G2:

G1[z] = 1209.068(z+0.7923)(z+0.8091)(z+0.6147)(z+0.5893)(z+0.3987)×
(z+0.3935)(z−0.9035)(z+3.263×10−5)(z2−3.263×10−5z+1.065×10−9)×

(z2 +0.8079z+0.1632)(z2 +1.599z+0.639)(z2 +1.196z+0.3577)
(z+0.8)4(z+1)(z+0.6)4(z+0.4)4(z−0.1)(z2 +0.09858z+0.008281)

G2[z] = (z+0.8642)(z+0.3856)(z−0.9047)(z2 +0.38z+0.03617)(z2 +0.4186z+0.044)×
(z2 +0.7172z+0.1309)(z2 +1.67z+0.7018)(z2 +0.9146z+0.2192)×

(z2 +1.465z+0.5506)(z2 +1.185z+0.3698)(z2 +11.9z+120.8)
(z+0.8)4(z+1)(z+0.6)4(z+0.4)4(z+0.2)4(z−0.1)(z2 +0.099z+0.0083)

. (3.49)

As before, note that the pole at z =−1 arises due to the improper nature of the continuous-
time optimal Q, and can be eliminated by using a proper approximation for Q. The
weighted disturbance rejection for both estimators is shown in Figure 3.5, along with the
the optimal disturbance rejection given by (3.44). Figure 3.5 shows a similar trend to
the stable case, where the optimal estimator gives optimal performance at Ωb = 0.1, and
outperforms the Luenberger observer for most values of Ωb, only falling off at higher
values of Ωb. It should also be noted that the optimal performance is much worse for this
unstable plant than for the stable plant case.

Example 8: This example demonstrates the differing impact of plant non-minimum-
phase zeros on the optimal performance. Given the same weighting function (3.29) and
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Figure 3.6: Optimal disturbance rejection for the estimation and feedback control prob-
lems for the plant given by (3.50).

the plant

P[z] =
z+2
z+4

, (3.50)

the optimal disturbance rejection for both the estimation problem given by Figure 3.1,
with corresponding bound (3.44), and the feedback control problem given by Figure 1.8,
with corresponding bound (2.67), are calculated for a wide range of Ωb. The results are
shown in Figure 3.6, and clearly show a lower (i.e., better) optimal performance for the
estimation problem than for the feedback control problem. The source of the difference
is the plant non-minimum-phase zero which adds an extra interpolation constraint to the
feedback control problem with everything else being the same for the two problems.
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Chapter 4

Continuous-Time SISO Extensions

4.1 Overview

This chapter deals with both the delayed control and delayed estimation problems in
a continuous-time setting. Unlike a discrete-time delay, a continuous-time delay is an
infinite-dimensional system. The end result is that in order to address Q1-Q3 from Chap-
ter 1, new approaches are required. For some problems, using a finite approximation and
then taking limits leads to a solution to the problem. For others, new tools that deal ex-
plicitly with the continuous-time delay must be used. Unfortunately, as will be seen later,
many of the infinite-dimensional tools are extremely complex, making them difficult to
calculate, and are nearly impossible to gain intuition from.

Figure 4.1 shows the feedback control problem (and is repeated from Chapter 1 for
convenience). However, in this chapter, P, C and F are all continuous-time systems, with
F no longer being rational, but instead having the form

F(s) = e−sT . (4.1)

When infinite-dimensional tools are used, C is also not necessarily rational. Figure 3.1
shows the estimation problem, and again, P, F , G1 and G2 are all continuous-time sys-
tems. The delay F has the same form as for the feedback control problem (4.1), and G1
and G2 are not necessarily rational.

This chapter starts by introducing some of the tools that we used, specifically, an in-
troduction to a rational, finite approximations of a continuous-time delay, and an infinite-
dimensional Youla-esque parameterization. Unfortunately, extending the parameteriza-
tion of asymptotic estimators to the infinite-dimensional case has not been worked out,
and would be an excellent candidate for future work. The chapter then continues with
the unstable-plant case, where an approximation method yields a similar result to those
in Chapters 2 and 3, followed by the stable-plant case. Two approaches are taken for the
stable-plant case, one using a finite approximation of the delay, and the other using the
various infinite-dimensional tools. Unfortunately, neither technique produces desirable
results.
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Figure 4.1: A block diagram of the feedback control problem with a sensor time delay.

4.2 Background Results

4.2.1 Approximating e−sT

One common technique for handling a continuous-time delay is to use an approximation.
There are many different approximations that are available, but this thesis concerns itself
with one of the simplest, taken from [29]. Start with

e−sT = lim
m→∞

(
1− T s

2m

1+ T s
2m

)m

(4.2)

to arrive at the approximation

e−sT ≈

(
1− T s

2m

1+ T s
2m

)m

. (4.3)

This approximation has two properties that lead to the “approximation conjecture”
that is explored later in the chapter. These two properties are outlined in the following
lemmas.

Lemma 4.1 Let Hm(s) denote the mth order approximation of a time delay, i.e.,

Hm(s) =

(
1− T s

2m

1+ T s
2m

)m

, (4.4)

and let H(s) denote the actual time delayed system, i.e., H(s) = e−sT . Then,

∠Hm( jω) ≥ ∠Hm+1( jω) ∀T,ω > 0 ∀m≥ 1 and (4.5)
∠Hm( jω) ≥ ∠H( jω) ∀T,ω > 0 ∀m≥ 1. (4.6)

2

Proof: The proof starts by showing (4.5). The phase can be written as

∠Hm( jω) =−m tan−1(
T ω

2m
), (4.7)
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so (4.5) is equivalent to

−m tan−1(
T ω

2m
)≥−(m+1) tan−1

(
T ω

2(m+1)

)
∀T,ω > 0 & m≥ 1. (4.8)

To show (4.8), introduce

f (x) = x tan−1(
1
x
). (4.9)

The left side of (4.8) can be written in terms of f (x) by choosing

x = x1 ≡
2m
T ω

, (4.10)

resulting in

−m tan−1(
T ω

2m
) = −T ωx1

2
tan−1(

1
x1

)

= −0.5T ω f (x1).

The right side of (4.8) can be written in a similar form, choosing

x = x2 =
2(m+1)

T ω
, (4.11)

resulting in

−(m+1) tan−1
(

T ω

2(m+1)

)
=−0.5T ω f (x2). (4.12)

We can then rewrite (4.8) as:

−0.5T ω f (x1) ≥ −0.5T ω f (x2)
⇔ f (x1) ≤ f (x2) .

We conclude that, since 0 < x1 < x2, (4.8) holds if f (x) is a non-decreasing function for
x > 0.

To show that f (x) is non-decreasing ∀x > 0, it will be shown that f ′(x)≥ 0 ∀x > 0.
In order to show that f ′(x)≥ 0 ∀x > 0, we show that f ′(x) starts off non-negative, i.e.,

lim
x→0+

f ′(x)≥ 0

and ends at zero, i.e.,
lim
x→∞

f ′(x) = 0

and that f ′′(x)≤ 0, i.e., f (x) is concave, implying that the function has no local minima
or maxima ∀x > 0.
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Start by writing f ′(x) as:

f ′(x) = tan−1(
1
x
)+

(
x

1+ 1
x2

)(
−1
x2

)
= tan−1(

1
x
)− x

x2 +1
,

and then computing
lim

x→0+
f ′(x) = tan−1(∞)−0 =

π

2
,

which is clearly ≥ 0. Next, we show that limx→∞ f ′(x) = 0 :

lim
x→∞

f ′(x) = tan−1(0)−0 = 0.

So, all that remains is showing that f ′′(x)≤ 0:

f ′′(x) =
−2

(x2 +1)2 ≤ 0 ∀x ∈ R .

As a result f (x) is a non-decreasing function ∀x > 0, and therefore, (4.5) holds.

Now, to prove (4.6), we start by writing the phase of H( jω) as

∠H( jω) =−ωT (4.13)

allowing us to rewrite (4.6) as

−m tan−1(
T ω

2m
)≥−ωT (4.14)

Using (4.10), and f (x) as defined by (4.9), we can rewrite (4.14) as

−0.5T ω f (x1) ≥ −ωT (4.15)
⇔ f (x1) ≤ 2. (4.16)

But, since f (0) = π

2 , and f (x) is non-increasing, (4.16) must hold. Therefore, (4.6) holds
as well. 2

Lemma 4.2 Let Hm(s) denote the mth order approximation of a time delay, i.e.,

Hm(s) =

(
1− T

2m

1+ T
2m

)m

, (4.17)

and let H(s) denote the actual time delay, i.e., H(s) = e−sT . Then,

∂∠Hm( jω)
∂ω

≥ ∂∠Hm+1( jω)
∂ω

∀ω,∀m≥ 1 and (4.18)

∂∠Hm( jω)
∂ω

≥ ∂∠H( jω)
∂ω

∀ω,∀m≥ 1. (4.19)

2
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Proof: We start by proving (4.18). Using (4.7), we can find the required derivatives
allowing us to write (4.18) as:

−2T m2

4m2 +T 2ω2 ≥
−2T (m+1)2

4(m+1)2 +T 2ω2 ∀T,ω > 0 & m≥ 1. (4.20)

Re-arranging (4.20), we get

−8T m2(m+1)2−2T 3m2
ω

2 ≥ −8T (m+1)2m2−2T 3(m)2
ω

2

⇔−m2 ≥ −(m+1)2 (4.21)

which is true for all m, and therefore, (4.18) is true for all T,ω ∈ R and for all integers
m≥ 1.

The proof of (4.19) is similar. We need to show that

−2T m2

4m2 +T 2ω2 ≥−T ∀T,ω > 0 & m≥ 1. (4.22)

Re-arrange the terms in (4.22) as follows:

−2m2 ≥ −4m2−T 2
ω

2

⇔ 0 ≥ −2m2−T 2
ω

2, (4.23)

which holds for any T,ω ∈ R and for any integer m. Therefore, (4.19) holds. 2

Lemma 4.1 implies that there is more phase lag at all frequencies for higher-order
approximations, and that the actual time delay has more phase lag than any approxima-
tion. Lemma 4.2 implies that the rate of change of phase lag with respect to frequency is
faster for a higher-order approximation, and fastest for the actual time delay. Figure 4.2
shows the phase plots for various delays, demonstrating the properties of Lemmas 4.1
and 4.2. Note that the curve for m = 1 is always higher than that for m = 2, and that the
slope of the m = 1 curve is less severe than for the m = 2 case. These two properties are
exploited in more detail later on in the chapter.

4.2.2 Time-Delay Youla Parameterization

Unfortunately, when dealing with a continuous-time delay, standard Youla parameter-
ization does not work. Fortunately, this problem can be overcome, and Youla-esque
factorizations do exist for delayed systems, for example, see [26]. The result in [26] is
an extension of Youla, and has a very similar form, including the use of a coprime factor-
ization for delay systems, again found in [26]. Both results are presented below without
proof. The interested reader is encouraged to consult [26] for further details, including a
procedure for performing the coprime factorization.

Lemma 4.3 [26] Define z as a delay operator of duration T , i.e., zx(t) = x(t−T ). Note
that the transfer function of z is e−sT . Then, given a strictly proper P(s,z), there exist
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Figure 4.2: Phase plot for a first and second order delay approximation (4.3) and the
actual delay.

stable, possibly irrational transfer function matrices N, Ñ, M, M̃, X , X̃ , Y , and Ỹ such
that:

P(s,z) = N(s,z)M−1(s,z) = M̃(s,z)Ñ−1(s,z) (4.24)

and [
Y (s,z) X(s,z)
−Ñ(s,z) M̃(s,z)

][
M(s,z) −X̃(s,z)
N(s,z) Ỹ (s,z)

]
=
[

I 0
0 I

]
. (4.25)

2

Lemma 4.4 [26] Using z as a delay operator, as in Lemma 4.3, and given any system
P(s,z) with a coprime factorization given by Lemma 4.3, for the feedback setup shown
in Figure 1.11, the set of all stabilizing controllers, C(s,z), is given by:{

(Y (s,z)−Q(s,z)Ñ(s,z))−1(X(s,z)+Q(s,z)M̃(s,z)) : Q stable
}

(4.26)

or
{
(X̃(s,z)+M(s,z)Q(s,z))(Ỹ (s,z)−N(s,z)Q(s,z))−1 : Q stable

}
. (4.27)

Note that C(s,z) will in general be infinite dimensional. 2

4.3 Unstable Plant Case

This section presents a result based on Lemma 2.4. By using (4.2), a nice, simple bound
on the optimal performance can be found for both the feedback control problem and the
estimation problem. These results are presented in the following theorems:
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Theorem 4.1 Assume P(s) has k ≥ 1 possibly repeated unstable poles; denote these
poles by pi, i = 1, ...,k. If the closed-loop system in Figure 4.1 is stable, with the delay
given by F(s) = e−sT , then the performance metrics given in the feedback control column
of Table 1.1 are bounded from below as follows:

‖W1Tre‖∞ ≥ max
i=1,...,k

∣∣W1(pi) · epiT
∣∣−‖W1‖∞ (4.28)

‖W2S‖∞ ≥ max
i=1,...,k

∣∣W2(pi) · epiT
∣∣−‖W2‖∞ (4.29)

‖W3Tdy‖∞ ≥ max
i=1,...,k

∣∣W3(pi) · epiT
∣∣−‖W3‖∞ (4.30)

‖W4Twe‖∞ ≥ max
i=1,...,k

∣∣W4(pi) · epiT
∣∣ . (4.31)

2

Proof: The proof follows by using (4.2) for the delay, then using the approxima-
tion (4.3) to satisfy the interpolation constraints required for the use of Lemma 2.4, and
then using (4.2) again to get to the desired form. We focus on proving (4.30), with the
remaining results derived using a similar approach.

To start, define

F̃(s) =

(
1− T s

2m

1+ T s
2m

)m

and (4.32)

T̃dy(s) =
1

1+PC
(

1− T s
2m

1+ T s
2m

)m (4.33)

and note that

lim
m→∞

F̃(s) = F(s) and (4.34)

lim
m→∞

T̃dy = Tdy(s). (4.35)
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Let z̃ j, j = 1, . . . ,m denote all zeros of F̃ with positive real parts, i.e., z̃ j = 2m
T . Now, to

use Lemma 2.4, set R̃ = 1+ T̃dy, with p̃i = pi and the defined z̃ j, resulting in:

‖W3Tdy‖∞ = lim
m→∞
‖W3T̃dy‖∞

= lim
m→∞
‖W3−W3R̃‖∞

≥ lim
m→∞
‖W3R̃‖∞−‖W3‖∞

≥ lim
m→∞

max
i=1,...,k

∣∣∣∣∣W3(p̃i)
m

∏
j=1

(
z̃ j + p̃i

z̃ j− p̃i

)∣∣∣∣∣−‖W3‖∞

= lim
m→∞

max
i=1,...,k

∣∣∣∣∣W3(pi)
m

∏
j=1

(
2m
T + pi

2m
T − pi

)∣∣∣∣∣−‖W3‖∞

= max
i=1,...,k

∣∣∣∣∣W3(pi) lim
m→∞

m

∏
j=1

(
2m
T + pi

2m
T − pi

)∣∣∣∣∣−‖W3‖∞

= max
i=1,...,k

∣∣W3(pi) · epiT
∣∣−‖W3‖∞.

The remaining bounds can be found using the same technique. 2

Theorem 4.2 Assume that P(s) in Figure 3.1 is unstable, with possibly repeated unstable
poles, denoted pi, i = 1, . . . ,k. Then, for any asymptotic estimator, the performance
measures in the estimation column of Table 1.1 are bounded from below as follows:

‖W5S‖∞ ≥ max
i=1,...,k

|W5(pi) · epiT |−‖W5‖∞ (4.36)

‖W6Tde‖∞ ≥ max
i=1,...,k

|W6(pi) · epiT |−‖W6‖∞ (4.37)

‖W7Twe‖∞ ≥ max
i=1,...,k

|W7(pi) · epiT |. (4.38)

2

Proof: The proof is essentially the same as for Theorem 4.1, and is left to the reader. 2

Theorems 4.1 and 4.2 provide extremely intuitive bounds into the performance of
a continuous-time delay system. As shown in the next section, most of the results that
work directly with e−sT require complex calculations and are difficult to use, whereas
the above results are easy to calculate and clearly show the worsening of performance as
the delay is increased. In fact, just like in the discrete-time case, an arbitrarily bad delay
produces arbitrarily poor performance for any unstable plant, for both the estimation and
control problems.

4.4 Stable Plant Case

In this section, two approaches to deal with the stable plant case are briefly explored. The
first approach is to consider infinite-dimensional tools that can handle the continuous-
time delay, while the second involves using the delay approximation (4.3) to compute
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various performance bounds. Unfortunately, neither approach leads to meaningful per-
formance limitations.

4.4.1 Exact Computational Approaches

Unfortunately, the techniques available in the literature to solve model-matching prob-
lems involving time delays either heavily restrict the class of weighting functions for
which a result applies, or are extremely complex. Two results are presented here, one
from [13], and the other from [23]. The result from [13] restricts the weighting function,
but in doing so, leads to a relatively useful bound. The other result, [23], applies for an ar-
bitrary weighting function, and re-derives the result from [13] for a first-order low-pass
filter weighting function. However, for a more complex weighting function, the prob-
lem devolves into computing the maximum root of a extremely complex function which
makes solving the problem difficult, and destroys any possibility of gaining meaningful
insight into the problem. At this time we deal only with the control problem, since an ex-
tension of the parameterization of asymptotic estimators to infinite-dimensional systems
is required to get continuous-time results.

Both [13] and [26] assume a pure time delay plant. However, since dropping ex-
tra plant information can only lower the optimal performance, the results still produce
meaningful bounds, and in essence, mimic the results in Chapter 2 where we drop the
plant to isolate the delay. Using Lemma 4.4, the various transfer functions can be written
in terms of a Youla parameter, for example, Tdy = 1

1−PFQ , which has a weighted infinity
norm of ‖W3−W3PFQ‖∞. Since removing the plant produces a smaller optimal norm,
we can say

inf
Q∈S
‖W3−W3PFQ‖∞ ≥ inf

Q∈S
‖W3− e−sT Q‖∞. (4.39)

Hence, for simplicity, infQ∈S ‖W3 − e−sT Q‖∞ is the problem that we focus on here.
Both [13] and [23] solve this problem, and their solutions are outlined in the following
two lemmas (the interested reader is encouraged to consult the sources for the required
proofs):

Lemma 4.5 [13] Assuming W (s) = 1
as+1 , then

inf
Q∈S
‖W − e−T sQ‖∞ =

1√
1+ a2y2

aT
T 2

(4.40)

where yaT is the unique root of
tany+

ay
T

= 0. (4.41)

2

Lemma 4.6 [23] Let A, B, C and D be a minimal state-space representation of a stable,
minimum phase weighting function W3(s), and let φ(s) = esT . Defining:

Fλ ≡
[

A+D(λ2−D2)−1BC λ(λ2−D2)−1BB′

−λ(λ2−D2)−1C′C −(A+D(λ2−D2)BC′)

]
, (4.42)

71



then
inf

Q∈S
‖W − e−sT Q‖∞ = sup{|D|,λ : det([φ∗(Fλ)](2,2)) = 0} (4.43)

where φ∗(s) = esT and [H](2,2) denotes the (2,2) block of the block matrix H. 2

Lemma 4.6 is a nightmare to work with, and drawing any conclusions is virtually
impossible. On the other hand, Lemma 4.5 is far more manageable, and drawing con-
clusions is in fact possible. Namely, while the proof is omitted here, it is possible to
show that the optimal performance for a pure time delay plant necessarily gets worse as
the delay T increases. Unfortunately, Lemma 4.5 applies only to first-order weighting
functions.

4.4.2 “Approximation Conjecture” Approach

This section details a conjecture dealing with the model-matching problem and the time
delay approximation (4.3). The conjecture is built on the two phase properties of the
time-delay approximation given in Lemmas 4.1 and 4.2. The conjecture (and the coun-
terexample that shows the conjecture does not apply to all weighting functions and
plants) is outlined below.

Conjecture 1 Given two all-pass functions, H1(s) and H2(s), with

∠H1( jω) ≥ ∠H2( jω) (4.44)
∂∠H1( jω)

∂ω
≥ ∂∠H2( jω)

∂ω
(4.45)

and any stable, minimum-phase weighting function W (s), then

inf
Q1∈S
‖W −WH1Q1‖∞ ≤ inf

Q2∈S
‖W −WH2Q2‖∞. (4.46)

2

If Conjecture 1 holds, it follows that any approximation of the form (4.3) results in
a model matching bound that is lower than the actual performance, i.e., a fundamental
performance limitation could be computed using (4.3) for any m. At first, the conjecture
appeared to be correct, since for any standard looking weighting function (i.e., a standard
low-pass or high-pass filter), simulation results supported the conjecture. In an attempt
to prove the conjecture, it was first decided to solve the model-matching problem using
the m = 1 and m = 2 time-delay approximations (4.3) to show the conjecture holds for a
specific H1(s) and H2(s), i.e.,

H1(s) =
1− T s

2

1+ T s
2

(4.47)

H2(s) =

(
1− T s

4

1+ T s
4

)2

. (4.48)
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An explicit solution to the model-matching problem was found for H1(s) and H2(s)
using [35]. The result for H1(s) was solved explicitly in [35], while the solution for
H2(s) was constructed using the technique for repeated poles provided in [35]. After
much tedious algebra, and letting 4

T = a, we get

inf
Q1∈S
‖W −WH1Q1‖∞ = W (

a
2
) (4.49)

inf
Q2∈S
‖W −WH2Q2‖∞ = W (a)

∣∣∣∣∣∣∣∣
−W (a)
W ′(a) +

√(
W (a)
W ′(a)

)2
+a2 +a

−W (a)
W ′(a) +

√(
W (a)
W ′(a)

)2
+a2−a

∣∣∣∣∣∣∣∣ . (4.50)

For Conjecture 1 to hold, we then require

W (a)

∣∣∣∣∣∣∣∣
−W (a)
W ′(a) +

√(
W (a)
W ′(a)

)2
+a2 +a

−W (a)
W ′(a) +

√(
W (a)
W ′(a)

)2
+a2−a

∣∣∣∣∣∣∣∣≥W (
a
2
), (4.51)

which, after more tedious algebra, can be shown to hold anytime W (a) ≥W (a
2) or any-

time both W (a)≤W (a
2) and

W (
a
2
)2 ≤W (a)2 +2a|W ′(a)|W (

a
2
). (4.52)

It can be shown that any first-order weighting function satisfies (4.52). Unfortunately,
higher-order weights need not satisfy (4.52). A counter-example is

W (s) =
101(s+0.001793)(s2 +0.315s+0.1104)

(s+10)(s+1)(s+0.1)(s+0.01)
, (4.53)

with associated Bode plot shown in Figure 4.3 (note that the Bode plot required is quite
bizarre and would be a very odd choice for a weighting function). The optimal perfor-
mance of H1(s) and H2(s) is shown in Figure 4.4. Note that (4.46) is violated for some
values of T .
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Figure 4.3: Bode plot of a weighting function that violates the conjecture.
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Figure 4.4: Optimal performance using the weighting function given by (4.53) and H1(s)
and H2(s).
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Chapter 5

Other Extensions

This section outlines a few other extensions to the work in Chapters 2 and 3. The first
extension is for a two-degree-of-freedom (2-DOF) feedback control setup, as shown in
Figure 5.1. It should be noted that the primary advantage to a 2-DOF controller is for
tracking performance. The second extension is for an alternative 1-DOF topology, as
shown in Figure 5.2, which again, only affects tracking performance. The final extension
is for MIMO systems, where a few numerical solution techniques are briefly discussed.
Further extensions to MIMO systems is an area for future work.

5.1 Alternative Topologies

5.1.1 2-DOF Feedback Control Topology

A 2-DOF topology with a sensor time delay, as shown in Figure 5.1, accomplishes two
important things. First, as is shown later in this section, it is possible to recover tracking
performance for an unstable plant. Second, it separates the tracking performance from
the other three aspects of performance (disturbance rejection, sensitivity and noise re-
jection). This is best seen through the 2-DOF Youla parameterization, taken from [32],
which has two free parameters, one for the controller in the feedback loop, C2, and one
for the feedforward controller, C1. This section primarily focuses on the first point, but,
the idea of the second point is that one can design C2[z] for optimal wighted disturbance

u
r yP[z]

w

d

-

ym

C1[z]

F [z]C2[z]

Figure 5.1: A block diagram of a 2-DOF control setup with a sensor time delay .
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−r

d

w

P[z]

F [z]C[z]

Figure 5.2: A block diagram of the alternative 1-DOF feedback control problem with a
sensor time delay.

rejection and then design C1[z] to recover tracking, leading to much better “overall” per-
formance than for a standard 1-DOF setup.

The 2-DOF Youla parameterization for SISO systems is presented below, without
proof:

Lemma 5.1 [32] Given a SISO system P, with a coprime factorization given by Corol-
lary 2.1, for the feedback setup shown in Figure 5.1, the set of all stabilizing controllers,
C1[z] and C2[z], is given by:

C1[z] =
{

R[z]
Y [z]−N[z]Q[z]

: Q,R ∈ S ,Y −NQ 6= 0
}

(5.1)

C2[z] =
{

X [z]+M[z]Q[z]
Y [z]−N[z]Q[z]

: Q ∈ S ,Y −NQ 6= 0
}

. (5.2)

2

Note that in particular, the parameterization for C2[z] has the same form as the standard
1-DOF Youla parameterization.

Using Lemma 5.1, it is possible to construct a “recovering” controller, as in Theo-
rem 2.2. This is shown in the following theorem:

Theorem 5.1 Consider a possibly unstable plant, P, and a given stabilizing controller,
Cb, with transfer function from r to e denoted T b

re as shown in Figure 1.11. Then, given
the same plant P for the 2-DOF setup of Figure 5.1, with a transfer function from r to
e denoted Tre, the tracking performance of the baseline system in Figure 1.11 can be
recovered, i.e., Tre = T b

re. In particular, perform coprime factorizations on both P and F :

P =
N1

M1
, N1X1 +M1Y1 = 1

F =
N2

M2
, N2X2 +M2Y2 = 1.

Let Qb denote the 1-DOF Youla parameter corresponding to stabilizing controller Cb,
i.e.,

Qb =
CbY1−X1

CbN1 +M1
.
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Then, using any controller for the 2-DOF setup of Figure 5.1 whose Youla parameters
satisfy

R =
X1 +M1Qb

M2
, Q ∈ S . (5.3)

recovers the baseline tracking performance. Note that R ∈ S sinceX1, M1, M2 and Q are
stable, and M2 has the poles of F , but F is stable and therefore, M2 has no non-minimum-
phase zeros (which would make R unstable).

Note that unlike many earlier results in this thesis, the stability of the sensor dynamics
is important. A recovering controller only exists for “stable” sensor dynamics (due to the
M2 term in the denominator of R). Since a sensor time delay of 1

zn is stable, the recovering
controller does exist. 2

Proof: The proof is left up the reader, but it is essentially the same as for Theorem 2.2.
2

It should also be mentioned that all the non-tracking bounds for a 1-DOF control
setup in Chapter 2 apply to the 2-DOF setup as well. The only gain from the second
degree of freedom is the separation of tracking from disturbance rejection, sensitivity
and noise rejection, and the ability to recover tracking performance for an unstable plant.

5.1.2 Limitations in the Alternative 1-DOF Setup

The alternative 1-DOF topology of Figure 5.2 behaves the same as the standard 1-DOF
topology of Figure 1.8 except in terms of tracking performance. In short, for the sta-
ble plant case, a recovering controller is not guaranteed to exist. This is shown in the
following lemma:

Lemma 5.2 Consider a stable plant, P, and a given stabilizing controller, Cb, with trans-
fer function from r to e denoted T b

re as shown in Figure 1.11. Then, given the same plant
P for the 1-DOF setup of Figure 5.2, with transfer function from r to e denoted Tre, no
stabilizing controller is guaranteed to exist. 2

Proof: Details are again left to the reader. The end result is an unstable Youla parameter,
Q, is required to recover tracking performance. That Q is shown below,

Q =
1+PCb−Cb

PF(1+PCb)
, (5.4)

which is improper in general. 2

This result is not surprising, as the controller is only receiving a delayed signal. In the
normal topology, the controller has access to the current input and can use feedforward
to recover tracking. By putting the controller in the feedback loop after the delay, the
controller has access to only the delayed output, eliminating the feedforward element,
and thereby not allowing a recovering controller to exist.
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5.2 MIMO Systems

We attempted to extend the results of Chapters 2 to discrete-time MIMO systems (a
MIMO extension of Theorem 3.1 would be required before solving MIMO estimation
problems). Using Lemma 2.3, we can write the various MIMO metrics in the form of a
MIMO model-matching problem. MIMO model-matching is a problem in the form

inf
Q∈S
‖W1TdeW2‖∞ = inf

Q∈S
‖W1T1W2−W1T2QT3W2‖∞, (5.5)

where W1 and W2 are stable, minimum-phase weighting function matrices and T1, T2 and
T3 are stable transfer function matrices. Using Lemma 2.3, with a coprime factorization
of PF given by Lemma 2.1, we can write our various transfer functions in the form of a
MIMO model-matching problem, for example, for disturbance rejection,

inf
Q∈S
‖W1TdeW2‖∞ = inf

Q∈S
‖W1Ỹ M̃W2−W1NQM̃W2‖∞. (5.6)

There are numerous tools for solving the MIMO model-matching problem, see [11,
12, 15, 21, 3]. The most progress was made with [3]. Unfortunately, even the simplest
approach is complex and virtually destroys any insight into the effect of the delay. One
re-occurring problem is handling the repeated zeros in T2 and T3 that arise from the
discrete-time delay, as many of the tools do not work with repeated zeros. One other
approach was attempted, based on [4]; unfortunately, this runs into the same repeated-
zero problem as before.

One final complication with MIMO systems is simply the form of the time delay.
Delays can be the same for each output, they can be different between various output
channels, and there can even be delayed cross-channel interactions. Their are numerous
problems that can be studied, and specifying a particular trend for a generalized time-
delay is virtually impossible.
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Chapter 6

Conclusions

A discrete-time sensor time delay imposes a fundamental performance limitation for:

• Weighted disturbance rejection and sensitivity for both feedback control and esti-
mation for both stable and unstable plants.

• Noise rejection for both control and estimation and tracking for a 1-DOF controller
with an unstable plant.

If a performance limitation exists, it is:

• Bounded from above for a stable plant.

• Unbounded for an unstable plant (i.e., an arbitrarily long delay produces an arbi-
trarily large bound).

A recovering controller exists if:

• The plant is stable.

• The plant is unstable and a 2-DOF controller is used.

Table 6.1 summarizes the various conclusions for discrete-time systems.

A continuous-time sensor time delay imposes a fundamental performance limitation
for weighted disturbance rejection, sensitivity, noise rejection, and tracking for feedback
control with an unstable plant, and for weighted disturbance rejection, sensitivity, and
noise rejection for estimation with an unstable plant.

The following are items for future work:

• For F [z] = 1
zn , and a stable, minimum phase W2 with ‖W2‖∞ = 1, show that

lim
n→∞

inf
Q∈S
‖W2−FQ‖∞ = 1.
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Feedback Control Estimation

Stable Plant Unstable Plant Stable Plant Unstable Plant

Tracking
Recovery

Unique 1-DOF
Controller

Many 2-DOF
Controllers

N/A N/A

Sensitivity
Bounded
Bound

Unbounded
Bound

Bounded
Bound

Unbounded
Bound

Disturbance
Rejection

Bounded
Bound

Unbounded
Bound

Bounded
Bound

Unbounded
Bound

Noise
Rejection

No Bound
Exists

Unbounded
Bound

No Bound
Exists

Unbounded
Bound

Table 6.1: Summary of the conclusions for discrete-time systems.

• Extend the parameterization of asymptotic estimators to include infinite-dimensional
systems (i.e., a continuous-time delay).

• Complete the work dealing with continuous-time delays, especially for the stable
plant case.

• Extend the results to multivariable systems.

• Explore other application areas involving sensor time delays.
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