
Features of A Multi-Threaded Memory Allo
atorbyAyelet WasikA thesispresented to the University of Waterlooin ful�llment of thethesis requirement for the degree ofMaster of Mathemati
sinComputer S
ien
eWaterloo, Ontario, Canada, 2008

Ayelet Wasik 2008

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESISI hereby de
lare that I am the sole author of this thesis. This is a true
opy of the thesis,in
luding any required �nal revisions, as a

epted by my examiners.I understand that my thesis may be made ele
troni
ally available to the publi
.

iii

Abstra
tMulti-pro
essor
omputers are be
oming in
reasingly popular and are important forimproving appli
ation performan
e. Providing high-performan
e memory-management isimportant for multi-threaded programs. This thesis looks at memory allo
ation of dynami
-allo
ation memory in
on
urrent C and C++ programs. The
hallenges fa
ing the designof any memory allo
ator in
lude minimizing fragmentation, and promoting good lo
ality.A multi-threaded memory-allo
ator is also
on
erned with minimizing
ontention, pro-viding mutual ex
lusion, avoiding false-sharing, and preventing heap-blowup (a form offragmentation).Several potential features are identi�ed in existing multi-threaded memory-allo
ators.These features in
lude per-thread heaps with a global heap, obje
t ownership, obje
t
on-tainers, thread-lo
al free-list bu�ers, remote free-lists, allo
ation bu�ers, and lo
k-free op-erations. When used in di�erent
ombinations, these features
an solve most of the
hal-lenges fa
ing a multi-threadedmemory-allo
ator. Through the use of a test suite
omposedof both single and multi-threaded ben
hmark programs, several existing memory allo
a-tors and a set of new allo
ators are
ompared. It is determined that di�erent featuresaddress di�erent multi-threaded issues in the memory allo
ator with respe
t to perfor-man
e, s
aling, and fragmentation. Finally, re
ommendations are made for the design ofa general-purpose memory-allo
ator.
v

A
knowledgmentsI would like to a
knowledge Peter Buhr, Ashif Harji, and Ri
hard Bilson for their inputand assistan
e in the work that went into this thesis. I would also like to a
knowledge themembers of my review
ommittee, Martin Karsten and Ondrej Lhotak, for the assistan
ethey provided. Lastly, a
knowledgments go to my family for their proofreading help.

vii

ContentsList of Tables xvList of Figures xvi1 Introdu
tion 11.1 Memory Stru
ture . 11.2 Dynami
-Memory Management . 21.3 Contributions . 31.4 Outline . 32 Memory Allo
ator Ba
kground 52.1 Components of a Memory Allo
ator . 52.2 Single-Threaded Memory Allo
ators . 72.2.1 Fragmentation . 72.2.2 Lo
ality . 112.3 Multi-Threaded Memory Allo
ators . 132.3.1 Mutual Ex
lusion . 132.3.2 False Sharing . 132.3.3 Heap Blowup . 15ix

3 Memory Allo
ator Design 173.1 Multi-Threaded Memory-Allo
ator Features 173.1.1 Per-Thread Heaps . 183.1.1.1 Ownership . 213.1.2 Obje
t Containers . 243.1.2.1 Containers with Ownership 273.1.2.2 Container Size . 293.1.2.3 Container Free-Lists . 323.1.3 Thread-lo
al free-list bu�er . 323.1.4 Remote Free-Lists . 353.1.5 Allo
ation Bu�er . 363.1.6 Lo
k-Free Operations . 373.2 Combining Features . 383.2.1 Individual Obje
t Headers { No Ownership 403.2.1.1 IN . 413.2.1.2 IN-l . 413.2.1.3 IN-
 . 413.2.1.4 IN-
l . 423.2.1.5 IN-r, IN-
r . 433.2.2 Individual Obje
t Headers { Obje
t Ownership 433.2.2.1 IO . 433.2.2.2 IO-l . 443.2.2.3 IO-
 . 443.2.2.4 IO-
l . 443.2.2.5 IO-r, IO-
r . 45x

3.2.3 Obje
t Containers { No Ownership 453.2.3.1 CN . 453.2.3.2 CN-l . 463.2.3.3 CN-r . 463.2.4 Obje
t Containers { Obje
t Ownership 463.2.4.1 CO . 463.2.4.2 CO-l . 473.2.4.3 CO-r . 483.3 Summary . 484 Existing Allo
ators 494.1 Solaris Mallo
 . 494.2 Dlmallo
 . 504.3 Ptmallo
 . 504.4 Hoard Allo
ator . 514.5 Stream
ow Allo
ator . 524.6 Summary . 535 Test Allo
ators 545.1 Allo
ator A: Base Case . 545.2 Allo
ator B: Add Thread Heaps . 555.3 Allo
ator C: Add Obje
t Containers . 565.4 Allo
ator D: Add Obje
t Ownership . 575.5 Allo
ator E: Add Restri
ted Container Movement 585.6 Allo
ator F1: Add Thread{Lo
al Free{List Bu�er 595.7 Allo
ator F2: Add Remote Free{Lists . 60xi

5.8 Allo
ator G: Vary Container Size . 605.9 Allo
ator H: Add Lo
k-Free Operations . 615.10 Coales
ing Allo
ator . 625.11 Summary . 646 Memory Allo
ator Test Suite 656.1 Single{Threaded Ben
hmarks . 656.1.1 P2C . 686.1.2 GS . 686.1.3 Espresso/Espresso-2 . 686.1.4 CFRAC/CFRAC-2 . 686.1.5 GMake . 696.1.6 GCC . 696.1.7 Perl/Perl-2 . 696.1.8 Gawk/Gawk-2 . 696.1.9 XPDF/XPDF-2 . 706.1.10 ROBOOP . 706.1.11 Lindsay . 706.2 Multi{Threaded Ben
hmarks . 706.2.1 Re
y
le . 716.2.2 Consume . 716.2.3 False{Sharing Mi
ro{ben
hmarks 716.2.4 Larson . 726.3 Tra
e Colle
tion . 726.4 Tra
e Results . 736.4.1 Sizes of Requests . 74xii

6.4.2 Lifetimes of Obje
ts . 756.4.3 Interarrival Times of Allo
ations and Deallo
ations 796.4.4 Allo
ation Footprint . 796.5 Ben
hmark Sele
tion . 806.6 Summary . 817 Memory Allo
ator Evaluation 827.1 Runtime and S
aling . 837.1.1 Single-Threaded Ben
hmarks . 847.1.2 Re
y
le . 847.1.3 Consume . 887.1.4 False-Sharing Ben
hmarks . 937.1.5 Larson . 947.2 Fragmentation . 1007.2.1 Fragmentation in Single-Threaded Ben
hmarks 1017.2.2 Fragmentation in Multi-Threaded Ben
hmarks 1037.3 Memory Usage . 1067.3.1 Memory Usage in Single-Threaded Ben
hmarks 1077.3.2 Memory Usage in Multi-Threaded Ben
hmarks 1087.4 Analysis . 1107.5 Summary . 1138 Con
lusions 1148.1 Memory{Allo
ation Challenges . 1148.2 Method of Analysis . 1158.3 Analysis Results . 115xiii

8.4 Future Work . 117A Tra
e Graphs 118Bibliography 134

xiv

List of Tables3.1 Feature Combinations . 406.1 Allo
ation Statisti
s . 676.2 Runtime Statisti
s . 676.3 Size of Requests . 746.4 Lifetimes . 766.5 Interarrival Times . 786.6 Allo
ation Footprint . 807.1 Test Setup . 837.2 Allo
ator F2 Compared to the Default Allo
ator 1127.3 Coales
ing Allo
ator Compared to the Default Allo
ator 113
xv

List of Figures1.1 Program Address Spa
e . 22.1 Memory Allo
ator Heap . 62.2 Allo
ated Obje
t . 72.3 Internal and External Fragmentation . 82.4 Fragmentation of Memory . 102.5 External Fragmentation . 102.6 Program-Indu
ed False-Sharing . 142.7 Allo
ator-Indu
ed A
tive False-Sharing . 142.8 Allo
ator-Indu
ed Passive False-Sharing 153.1 Single Heap Allo
ator . 193.2 Per-Thread Heaps . 193.3 Per-Thread Heaps with a Global Heap . 213.4 Per-Thread Heaps with Ownership . 223.5 Passive False-Sharing Avoidan
e . 233.6 Header Pla
ement . 253.7 A
tive False-Sharing using Containers . 283.8 External Fragmentation Using Obje
t Container Ownership 29xvi

3.9 Example Super-Containers . 313.10 Free Lists Stru
tures . 333.11 Thread-Lo
al Free-List Bu�er . 343.12 Remote Free-List . 355.1 Header and Trailer Stru
ture . 637.1 S
aling in Re
y
le on Setup A . 857.2 S
aling in Re
y
le on Setup B . 877.3 S
aling in Re
y
le on Setup C . 897.4 Runtime Performan
e in Consume . 917.5 Runtime Performan
e in Consume . 927.6 S
aling in False-Sharing Ben
hmark . 957.7 S
aling in Larson on Setup A . 977.8 S
aling in Larson on Setup B . 987.9 S
aling in Larson on Setup C . 997.10 Fragmentation in Single-Threaded Ben
hmarks 1027.11 Fragmentation in Re
y
le . 1047.12 Fragmentation in Consume . 1057.13 Memory Usage in Single-Threaded Ben
hmarks 1077.14 Memory Usage in Multi-Threaded Ben
hmarks 109A.1 Bin Size Distribution . 120A.2 Bin Size Distribution 2 . 121A.3 Bin Size Over Time . 122A.4 Bin Size Over Time 2 . 123A.5 Cumulative Lifetime Distribution . 124xvii

A.6 Cumulative Lifetime Distributions 2 . 125A.7 Lifetime Over Time . 126A.8 Lifetime Over Time 2 . 127A.9 Lifetime Over Time . 128A.10 Interarrival Times Cumulative Distribution 129A.11 Interarrival Times Cumulative Distribution 2 130A.12 Allo
ation Footprint . 131A.13 Allo
ation Footprint 2 . 132A.14 Allo
ation Footprint 3 . 133

xviii

Chapter 1Introdu
tionMulti-pro
essor
omputers are be
oming in
reasingly popular and are important for im-proving appli
ation performan
e. However, writing programs that take advantage ofmultiple pro
essors is not an easy task [Ale01℄. For example, shared resour
es
an be-
ome a bottlene
k for s
aling in a multi-threaded program. One typi
al shared resour
eis program memory, sin
e it is normally used by all threads in a
on
urrent program[BMBW00℄. Therefore, providing high-performan
e memory management is important formulti-threaded programs.1.1 Memory Stru
tureThe virtual-memory address-spa
e for a program is typi
ally divided into distin
t zones:stati

ode/data, dynami
 allo
ation, dynami

ode/data, and sta
k, with free memorysurrounding the dynami

ode/data [Sal℄. Figure 1.1 shows a typi
al layout of these zones.Stati

ode and data are loaded into memory at load time, and their allo
ations do not
hange during runtime. The sta
k has simple and �xed management in a single-threaded1

2 Chapter 1. Introdu
tion
Figure 1.1: Program Address Spa
eprogram. In multi-threaded programs, a new sta
k is
reated for ea
h new thread. Threadsta
ks are
ommonly
reated in dynami
-allo
ation memory. Management of dynami

ode/data, for example libraries that are loaded at runtime,
an be fairly
omplex espe
iallyin a multi-threaded program [HLM06℄. However, management of this area is handled by adynami
 loader, and is largely independent of a program, sin
e there is no me
hanism todire
tly a�e
t its behaviour. Therefore, this thesis
onsiders only the management of thedynami
-allo
ation memory, a very
omplex area of memory to manage.1.2 Dynami
-Memory ManagementModern programming languages manage dynami
-allo
ation memory in di�erent ways.Some languages, su
h as Java, provide memory management in whi
h data is expli
itlyallo
ated, but impli
itly deallo
ated through garbage
olle
tion. In general, garbage
ol-le
tion also supports memory
ompa
tion, in whi
h dynami
 data may be moved duringruntime in order to better utilize spa
e. Programming languages su
h as C and C++,provide the programmer with expli
it
ontrol over the allo
ation and deallo
ation of data.This thesis looks at expli
it dynami
-memory management. Garbage
olle
tion and
om-pa
tion are beyond the s
ope of this thesis.A memory allo
ator is responsible for managing dynami
 memory. Most programsuse a general-purpose memory-allo
ator, often the one provided by the programming lan-

1.3. Contributions 3guage's runtime library. However, high-performan
e memory allo
ators for multi-threadedprograms are still being designed and improved. C and C++ allow a programmer to re-pla
e the memory allo
ator with an alternative general-purpose memory-allo
ator. For thisreason, several general-purpose allo
ators have been written for C/C++ with the goal ofs
aling in a multi-threaded program [SAN06℄ [BMBW00℄ [Nak01℄ [GM℄. This thesis looksat the design of high-performan
e allo
ators for use by multi-threaded appli
ations writtenin C/C++.1.3 ContributionsSeveral existing memory allo
ators attempt to a
hieve good performan
e in multi-threadedprograms. This thesis examines these memory allo
ators to identify the underlying featuresthey employ to a
hieve good performan
e. These features, outlined in Chapter 3, in
lude:per-thread heaps with a global heap, obje
t ownership, obje
t
ontainers, thread-lo
al free-list bu�ers, remote free-lists, allo
ation bu�ers, and lo
k-free operations. I
reate severaltest allo
ators that di�er from ea
h other in terms of these fundamental features. A set ofben
hmark programs are used to
ompare the runtime, s
alability, and fragmentation ofthe test allo
ators in order to identify the e�e
ts of ea
h feature. Finally, I sele
t a set offundamental features that generate a good general-purpose memory-allo
ator.1.4 OutlineThis thesis is organized as follows. Chapter 2 provides ba
kground information on dynami
-memorymanagement. Chapter 3 dis
usses the design of a multi-threadedmemory-allo
ator.Chapter 4 des
ribes existing allo
ators and related work. Chapter 5 presents a set of test al-

4 Chapter 1. Introdu
tionlo
ators. Chapter 6 des
ribes a test suite for memory allo
ators using both single-threadedand multi-threaded ben
hmark programs. Chapter 7 presents results from testing and
om-paring the di�erent allo
ators des
ribed in Chapters 4 and 5 using the test suite des
ribedin Chapter 6. Finally, Chapter 8 provides a summary and some
on
lusions.

Chapter 2Memory Allo
ator Ba
kgroundWhen a program dynami
ally
reates a data stru
ture, referred to as an obje
t, it o

upiesmemory in the dynami
-allo
ation zone. The memory allo
ator is itself a data stru
turethat handles allo
ation and deallo
ation of obje
ts in the dynami
-allo
ation memory. Thedynami
-allo
ation area grows or shrinks by operating system
alls, su
h as mmap or sbrk.Dynami
 obje
ts are allo
ated and deallo
ated by the program through
alls su
h as mallo
and free in C, and new and delete in C++.2.1 Components of a Memory Allo
atorThere are two important parts to a memory allo
ator: storage data and heap. Storagedata reside in dynami
 allo
ation memory, while the heap may reside in dynami

odeand data memory. There are three types of storage data: allo
ated obje
ts, freed obje
ts,and reserved memory. Allo
ated obje
ts are memory allo
ated to the program through
alls to mallo
 or new (other forms exist, but they all funnel through to mallo
). Freedobje
ts are memory that was allo
ated to the program, and later deallo
ated through
alls5

6 Chapter 2. Ba
kground
Figure 2.1: Memory Allo
ator Heapto free or delete. Reserved memory is a blo
k of memory that has been obtained fromthe operating system, through
alls su
h as mmap or sbrk, but has not yet been allo
atedto the program. A memory allo
ator may
ontain several blo
ks of reserved memory.The se
ond important
omponent of the memory allo
ator is the heap. The heap isa data stru
ture that is lo
ated at a known memory address, and manages freed obje
tsand reserved memory. Allo
ated obje
ts are generally maintained by the program. Figure2.1 shows an example heap and its asso
iated storage data. The heap points to reservedmemory and the freed obje
ts in the heap. Ea
h freed obje
t in the heap, shown in grey,usually points to the next freed obje
t in the heap. The heap data-stru
ture
ontains allinformation ne
essary to manage the storage data of the heap.Allo
ated and freed obje
ts are typi
ally surrounded by additional management datathrough the use of headers and trailers. Obje
t headers and trailers
ontain informationregarding the obje
t, su
h as the obje
t size, and are lo
ated before and after the obje
t inmemory. A free obje
t may also hold additional information in the obje
t spa
e, but thatinformation may be lost on
e the obje
t is allo
ated to the program. Obje
t trailers are

2.2. Single-Threaded Memory Allo
ators 7Figure 2.2: Allo
ated Obje
tsometimes used for se
urity purposes to signify the end of an obje
t, or to simplify someallo
ation algorithm implementations. Obje
ts
an also be padded either before or afterthe obje
t, to ensure proper alignment. Some algorithms may require that a larger spa
ebe allo
ated to the program than the program requests, leaving additional spa
ing after theobje
t. Padding and spa
ing are reserved memory around an allo
ated obje
t that
annotbe used to satisfy a future allo
ation request while the
urrent allo
ation exists. Figure 2.2shows an allo
ated obje
t with a header, trailer, and some padding and spa
ing aroundthe obje
t. A free obje
t may
ontain additional memory-management data instead ofprogram data.2.2 Single-Threaded Memory Allo
atorsA single-threaded memory allo
ator does not a
tually run any threads itself, but is usedby a single-threaded program. Be
ause the memory allo
ator
ode is only exe
uted by thesingle program thread, issues of syn
hronization and mutual ex
lusion are avoided; however,there are two issues in designing a single-threaded memory allo
ator: fragmentation andlo
ality.2.2.1 FragmentationFragmentation is wasted spa
e in memory. Wasted spa
e is memory requested from theoperating system, but not used by the program. Fragmentation
an take one of two forms:

8 Chapter 2. Ba
kgroundFigure 2.3: Internal and External Fragmentationinternal or external.Internal fragmentation is memory spa
e that is allo
ated to the program, but is notintended to be a

essed by the program, su
h as headers, trailers, padding, and spa
ingaround an allo
ated obje
t. Internal fragmentation is typi
ally memory that is used by theallo
ator for management purposes or required by the ar
hite
ture for
orre
tness (e.g.,alignment).There are two de�nitions for external fragmentation: memory spa
e that is unusablefor a given allo
ation request (be
ause it is too small for example), or all memory spa
ereserved from the operating system but not allo
ated to the program [WJNB95℄ [Sie00℄[LPB98℄. In this thesis, the se
ond de�nition is used sin
e it en
ompasses both de�nitions.Using this de�nition, external fragmentation in
ludes reserved memory and freed obje
tswith their management data.Figure 2.3 shows an example se
tion of memory outlining internal and external fragmen-tation. The header, padding, spa
ing, and trailer are internal fragmentation used by theallo
ator to store information, to provide se
urity, or to ful�ll implementation requirements.The program data is not fragmentation. Free memory is external fragmentation. The freememory may
ontain freed obje
ts (in
luding their headers, trailers, and padding/spa
ing)and reserved memory.Internal fragmentation
an be problemati
 when the spa
e required to manage an obje
tis a signi�
ant proportion of the allo
ated obje
t. For example, if a header is as large as

2.2. Single-Threaded Memory Allo
ators 9the obje
t being managed, then the memory usage for that obje
t is doubled. An allo
atorshould strive to keep management information to a minimum.External fragmentation
an be problemati
 in two ways: heap blowup and highly frag-mented memory. Heap blowup o

urs when memory freed by the program is not reusedfor future allo
ations, leading to potentially unbounded external fragmentation growth[BMBW00℄. Heap blowup
an o

ur due to allo
ator poli
ies that are too restri
tive inreusing freed memory.Memory
an be
ome highly fragmented after multiple allo
ations and deallo
ationsof obje
ts. Figure 2.4 shows an example of how a small blo
k of memory
an be
omefragmented as obje
ts are allo
ated and deallo
ated, where white areas are obje
ts allo
atedto the program, and grey areas are freed obje
ts. Blo
ks of free memory be
ome smaller andnon-
ontiguous making them less useful in serving allo
ation requests. Memory is highlyfragmented when the sizes of most free blo
ks are unusable. For example, 2.5(a) and 2.5(b)have the same quantity of external fragmentation, but 2.5(b) is highly fragmented. If thereis a request to allo
ate a large obje
t, 2.5(a) is more likely to be able to satisfy it withexisting free memory, while 2.5(b) would likely have to request more memory from theoperating system.In a single-threaded memory allo
ator, there are a number of allo
ation algorithms that
an be used to
ontrol fragmentation [JW99℄. Sequential-�t algorithms maintain one listof free obje
ts that is sear
hed for a blo
k that is large enough to �t a requested obje
tsize. Di�erent poli
ies determine whi
h free obje
t is sele
ted, for example the �rst freeobje
t that is large enough, or a free obje
t that is
losest to the requested size [JW99℄.A segregated or binning allo
ation algorithm uses a set of bin sizes. The heap maintainsa set of lists of freed obje
ts, ea
h of a di�erent bin size. When an obje
t is allo
ated,the requested size is rounded up to the nearest bin size resulting in spa
ing around the

10 Chapter 2. Ba
kground
Figure 2.4: Fragmentation of Memory(a) Contiguous (b) Highly FragmentedFigure 2.5: External Fragmentationobje
t. The binning algorithm is very fast at �nding free memory of the appropriate size,sin
e the �rst free obje
t on the free list for that size is used. The fewer bin sizes thereare, the fewer lists need to be maintained by the heap; however, the bin sizes are less likelyto
losely �t the requested obje
t size, leading to more internal fragmentation. The morebin sizes there are, the less likely free obje
ts are to be reused, leading to more externalfragmentation and potentially heap blowup.A variation of the binning algorithm allows obje
ts to be allo
ated to the requestedsize, but when an obje
t is freed it is pla
ed on the free list of the next smallest or equal binsize [JW99℄. For example, with bin sizes of 8 and 16 bytes, a request for 12 bytes allo
ates12 bytes, but when the obje
t is freed, it is pla
ed on the 8 byte bin list. When later

2.2. Single-Threaded Memory Allo
ators 11allo
ation requests are made, the bin free-lists
ontain obje
ts of di�erent sizes, rangingfrom one bin size to the next (8-16 in this example), and a sequential-�t algorithm is usedto �nd an obje
t large enough for the requested size.A third algorithm is the buddy system. The buddy system makes use of splitting and
oales
ing. When an obje
t is deallo
ated it is
oales
ed with the obje
ts immediatelybefore and after it in memory, if they are free. Coales
ing the obje
ts turns them into onelarger obje
t. When an obje
t is allo
ated, if there are no free obje
ts of the requested size,a larger free obje
t may be split into two smaller obje
ts to satisfy the allo
ation requestwithout obtaining more memory from the operating system.Using the buddy system, a blo
k of dynami
 allo
ation memory is split into two equal
hunks, one of those
hunks is again split into two equal
hunks, and so on until a blo
kjust large enough to �t the requested obje
t is
reated. Similarly, a
hunk may be
oales
edwith its other half, if they are both
ompletely free, to
reate a large enough area to satisfyan allo
ation request [JW99℄.Splitting and
oales
ing
an be used with other algorithms to avoid highly fragmentedmemory. Coales
ing does not immediately redu
e external fragmentation. However,
oa-les
ed blo
ks of memory are more likely to be useful in future allo
ations, avoiding externalfragmentation growth.2.2.2 Lo
alityThe prin
iple of lo
ality re
ognizes that programs tend to referen
e a small set of data,
alled a working set, for a
ertain period of time [Den05℄. There are two types of lo
ality:temporal and spatial. If an obje
t is a

essed, temporal lo
ality suggests that same obje
twill be a

essed again within a short time period, while spatial lo
ality implies that a nearbyaddress is also likely to be a

essed within a short time period [Den05℄ [Wil℄. Temporal

12 Chapter 2. Ba
kgroundlo
ality
ommonly o

urs due to loops in a program, while spatial lo
ality
ommonlyappears when a

essing arrays of related data [Den05℄.Hardware takes advantage of spatial and temporal lo
ality through
a
hing. When anobje
t is a

essed, the memory physi
ally lo
ated around the obje
t is also
a
hed with theexpe
tation that the
urrent and nearby obje
ts will be referen
ed within a short period oftime. For example, entire virtual memory pages are brought into memory from disk, andentire
a
he lines are brought into
a
he. A program exhibiting good lo
ality has betterperforman
e due to fewer
a
he misses and page faults.Temporal lo
ality is dependent on the program, while spatial lo
ality is determined bythe memory allo
ator [FB05℄. An allo
ator providing optimal spatial lo
ality pla
es obje
tsthat are used together
lose by in memory, su
h that the working set of the program �tsinto the fewest possible pages and
a
he lines. However usage patterns are di�erent forevery program. Hen
e, no general-purpose memory-allo
ator
an provide perfe
t lo
alityfor every program, but an allo
ator
an try to avoid degrading lo
ality.One way a memory allo
ator
an degrade lo
ality is by in
reasing the working set.For example, a memory allo
ator may a

ess several obje
ts before �nding a free obje
tto satisfy an allo
ation request. If there are a large number of obje
ts a

essed in verydi�erent areas of memory, the allo
ator may
ause several
a
he or page misses [GZH93℄.Another way lo
ality may be degraded is by spatially separating related data. For example,in a binning allo
ator, obje
ts of di�erent sizes are allo
ated from di�erent bins that maybe lo
ated in di�erent pages of memory.

2.3. Multi-Threaded Memory Allo
ators 132.3 Multi-Threaded Memory Allo
atorsWhen referring to a multi-threaded allo
ator, it is not the allo
ator that is multi-threaded,but the program that uses it. The allo
ator
ode may be a

essed by multiple programthreads at any given time. In addition to lo
ality and fragmentation issues, there are issuesof mutual ex
lusion, false sharing, and heap blowup.2.3.1 Mutual Ex
lusionMutual ex
lusion provides sequential a

ess to a shared resour
e. In a memory allo
ator,the heap is a shared resour
e to whi
h a

ess must be
ontrolled using mutual ex
lusion.There are two performan
e drawba
ks to mutual ex
lusion. The �rst is the overheadne
essary in performing a hardware atomi
 operation every time the shared resour
e isa

essed. The se
ond drawba
k arises when multiple threads
ontend for a shared resour
esimultaneously, sin
e some threads may be unable to
ontinue until the resour
e is released.Contention
an be redu
ed through �ne-grained lo
king.2.3.2 False SharingFalse sharing
an lead to
a
he thrashing. It o

urs when two or more obje
ts that areea
h used by a di�erent thread share a
a
he line, assuming ea
h thread runs on a di�erentpro
essor with its own
a
he. Ea
h time one thread modi�es its obje
t, the other thread'sasso
iated
a
he is invalidated, even though it is uninterested in the modi�ed obje
t. Thereare three types of false sharing: program indu
ed, allo
ator-indu
ed a
tive, and allo
ator-indu
ed passive.Program-indu
ed false-sharing o

urs when one thread passes one of its obje
ts toanother thread as in Figure 2.6. If that obje
t
ame from a
a
he line with other obje
ts

14 Chapter 2. Ba
kground
Figure 2.6: Program-Indu
ed False-Sharing

Figure 2.7: Allo
ator-Indu
ed A
tive False-Sharingused by the �rst thread, then the two threads now share a
a
he line. When Task1 passesObje
t2 to Task2, they are in a false-sharing situation. Changes to Obje
t1 invalidateCPU2's
a
he line, and
hanges to Obje
t2 invalidate CPU1's
a
he line.Allo
ator-indu
ed a
tive false-sharing o

urs when an allo
ator allo
ates obje
ts thatfall in the same
a
he line to di�erent threads as shown in Figure 2.7. Ea
h thread allo
atesan obje
t and loads a
a
he line size of memory into its asso
iated
a
he. To keep the
a
he
onsistent, any
hanges to the
a
he line by one pro
essor invalidate the
a
he line for allpro
essors with the same memory in their
a
he.Passive false-sharing is another form of allo
ator-indu
ed false-sharing that is
ausedby program-indu
ed false-sharing. When an obje
t in a program-indu
ed false-sharing

2.3. Multi-Threaded Memory Allo
ators 15
(a)
(b)Figure 2.8: Allo
ator-Indu
ed Passive False-Sharingsituation is deallo
ated, a future allo
ation of that obje
t may
ause passive false-sharing.In Figure 2.8(a), Task2 deallo
ates Obje
t2, passed to it by Task1, leaving it free for afuture allo
ation request by Task2. Allo
ator-indu
ed passive false-sharing o

urs whenObje
t2 is allo
ated to Task2 while Task1 still uses Obje
t1 (as in 2.8(b)).2.3.3 Heap BlowupThe third issue in memory allo
ation for a multi-threaded program is an additional formof heap blowup. Heap blowup is the failure to reuse free memory, leading to unboundedexternal fragmentation [BMBW00℄. In a multi-threaded program, heap blowup
an o

ur

16 Chapter 2. Ba
kgroundwhen memory freed by one thread is ina

essible to other threads due to the allo
ationstrategy [GPT04℄.

Chapter 3Memory Allo
ator DesignThe previous
hapter des
ribes a number of
hallenging issues when designing a memoryallo
ator. This
hapter looks at several features found in existing allo
ators that addressthese issues. These features are then
onsidered in di�erent
ombinations to �nd potential
andidate allo
ators for evaluation.3.1 Multi-Threaded Memory-Allo
ator FeaturesThe following features may be present in a memory allo
ator,1. Per-thread heaps, but in
luding a global shared-heap to avoid heap blowup(a) with or without ownership2. Obje
t Containers(a) with or without ownership(b) �xed or di�erent sized 17

18 Chapter 3. Design(
) global or lo
al free-lists3. Thread-lo
al free-list bu�er4. Remote free-list5. Allo
ation bu�er6. Lo
k-free operationsThe �rst feature, per-thread heaps, looks at di�erent types of heaps. The se
ond fea-ture, obje
t
ontainers, looks at the organization of obje
ts within the storage area. Theremaining features
an be applied to di�erent parts of the allo
ator design or implementa-tion.3.1.1 Per-Thread HeapsA multi-threaded allo
ator may use one single heap, or multiple heaps with or without aglobal shared-heap. A single-heap allo
ator
onsists of one heap from whi
h obje
ts areallo
ated and to whi
h obje
ts are freed. Memory is allo
ated from the freed obje
ts in theheap or from the operating system. The heap may also o

asionally return freed obje
tsto the operating system. Figure 3.1 illustrates a multi-threaded program using a single-heap allo
ator. The running threads and the single shared heap are shown. The arrowsindi
ate the dire
tion in whi
h memory
on
eptually moves for ea
h type of operation. Thistype of allo
ator is essentially a single-threaded allo
ator, but with appropriate lo
king toprovide mutual ex
lusion to this shared resour
e. Whether using a single lo
k for all heapoperations, or �ne-grained lo
king on di�erent heap operations, the single heap may stillbe a signi�
ant sour
e of
ontention.

3.1. Multi-Threaded Memory-Allo
ator Features 19
Figure 3.1: Single Heap Allo
ator
Figure 3.2: Per-Thread HeapsIn order to signi�
antly redu
e
ontention in a multi-threaded program, multiple heapsare used. Having fewer heaps than threads, while redu
ing
ontention, does not allow forthe removal of lo
ks sin
e more than one thread may a

ess a heap at a time. Sin
e thebehaviour of the program
annot be predi
ted, a worst
ase s
enario is possible where allallo
ations o

ur to the same heap. Having more heaps than threads may be redundant ifthe heaps all behave the same. Later dis
ussion shows
ases in whi
h having more heapsthan threads
an be bene�
ial. However, as a starting point, the strongest
ase for multipleheaps is to have a single heap per thread, as in Figure 3.2.

20 Chapter 3. DesignPer-thread heaps provide in
reased
ontrol of the memory being allo
ated to ea
hthread. Using a one-to-one mapping of threads and heaps, ea
h thread only allo
atesfrom its heap, whi
h improves lo
ality sin
e all obje
ts for a thread may be allo
ated fromthe same area in memory. For example, in a program where ea
h thread allo
ates, uses,and deallo
ates its own obje
ts, a single heap allo
ator may spread the obje
ts of ea
hthread over a large area of memory, but a per-thread heap allo
ator
an allo
ate ea
hthread's obje
ts in a smaller area of memory, better utilizing ea
h CPUs
a
he and
ausingea
h thread to a

ess fewer pages.Per-thread heaps also
ause an in
rease in external fragmentation and may lead to heapblowup. The external fragmentation experien
ed by a program with a single heap is nowmultiplied by the number of threads, sin
e ea
h heap must allo
ate its own area of reservedmemory. Additionally, obje
ts freed by one heap
annot be reused by other threads
ausingheap blowup. In the worst
ase, a program in whi
h obje
ts are deallo
ated to one set ofthread heaps, but allo
ated from a di�erent set of thread heaps would mean freed obje
tsare never reused.A global shared-heap, shown in Figure 3.3, is often used to prevent heap blowup. Aglobal shared-heap is not used dire
tly by any thread, but is used to move free memoryamong thread heaps. When a thread heap rea
hes a
ertain threshold of free obje
ts, it freessome of those obje
ts to the global heap to be reused by another thread heap. Similarly,the global shared-heap may free memory to the operating system when it rea
hes a
ertainthreshold. Memory
an be allo
ated from the operating system either to the thread heapsor the global heap. However, sin
e any thread may free or allo
ate obje
ts from the globalheap, the global heap is a shared resour
e that requires lo
king.When a thread
ompletes, there are two options of how to handle its thread heap. Oneoption is to free all obje
ts on the thread heap to the global heap and destroy the thread

3.1. Multi-Threaded Memory-Allo
ator Features 21
Figure 3.3: Per-Thread Heaps with a Global Heapheap, while a se
ond option pla
es the thread heap on a list of available heaps and reuses itfor a new thread that starts up in the future. Destroying the thread heap immediately mayredu
e external fragmentation sooner, sin
e all free obje
ts are freed to the global heapand may be reused by other threads. Alternatively, reusing thread heaps may improveperforman
e if the inheriting thread makes similar allo
ation requests as the thread thatpreviously held the thread heap.Although
ontention is reintrodu
ed with the global heap, the
ost is minimal sin
e mostallo
ator operations should
omplete without the use of the global heap. As per-threadheaps are a key feature for a multi-threaded allo
ator, all further dis
ussion assumes per-thread heaps with a global shared-heap to prevent heap blowup.3.1.1.1 OwnershipOwnership is an option that is possible with per-thread heaps. Ownership is the notionthat an obje
t is owned by the thread that allo
ates it. Sin
e there is a one-to-one
orre-

22 Chapter 3. Design
Figure 3.4: Per-Thread Heaps with Ownershipsponden
e between threads and heaps, an obje
t is simultaneously owned by a thread andits heap.Without ownership, a task only frees obje
ts to its own heap, as shown in Figure 3.2.This approa
h means thread heaps are private to their owner thread and do not requireany lo
king. A drawba
k of per-thread heaps without ownership is that if an obje
t ispassed from one thread to another during program exe
ution, passive false-sharing mayo

ur. For example, if task A passes an obje
t to task B, and task B frees the obje
t, thenthe obje
t is freed to task B's thread heap. As a result, a future allo
ation request maylead to passive false-sharing, as des
ribed in Se
tion 2.3.2.With ownership, every obje
t must be deallo
ated to the heap that it was allo
atedfrom. This requirement means that heaps are no longer private to a single thread andrequire lo
ks to provide
onsisten
y, sin
e any thread may deallo
ate an obje
t to itsowner heap. Figure 3.4 shows an example of per-thread heaps with ownership (minus theglobal heap).The bene�t of ownership is the elimination of allo
ator-indu
ed passive false-sharing byreturning an obje
t to its owner thread so that it
an never be allo
ated to another thread.In general, all allo
ator-indu
ed false-sharing
an be eliminated by designating an area ofmemory to one thread heap, and ensuring that area of memory is always allo
ated to onethread. For example, assuming that page boundaries
oin
ide with
a
he line boundaries,

3.1. Multi-Threaded Memory-Allo
ator Features 23
(a) (b)(
) (d)Figure 3.5: Passive False-Sharing Avoidan
edesignating a page to a thread heap prevents allo
ator-indu
ed false-sharing sin
e no twothreads are allo
ated memory from the same page. In Figure 3.5, one thread allo
atestwo pie
es of memory that fall in the same
a
he line. False sharing
an only o

ur whenone thread passes an obje
t to another, as in part b. However, if that se
ond threaddeallo
ates the memory, ownership requires the obje
t be returned to the original threadheap. Thus, subsequent allo
ations allo
ate the obje
t to the original thread preventingany allo
ator-indu
ed false-sharing.Obje
t ownership
an be enfor
ed as immediate or delayed ownership. Deallo
atedobje
ts may be returned to the owner thread immediately or after some delay. For example,a thread may store an obje
t it does not own on its free list for a
ertain number of memoryoperations. The thread heap may allow these obje
ts to be reallo
ated to the lo
al thread

24 Chapter 3. Designor not. If delayed obje
t ownership is used su
h that it allows reallo
ation by the lo
althread, then some passive false-sharing may o

ur. For example, in Figure 3.5(
), Obje
t2may be deallo
ated to Task2's thread heap initially. If Task2 requests an obje
t beforeObje
t2 is returned to its owner, then the allo
ator may allo
ate Obje
t2 to Task2
ausingpassive false-sharing to o

ur.Delayed ownership with reallo
ation
an improve performan
e sin
e the lo
al thread
an
omplete some operations on its own thread heap where it might otherwise be requiredto go to the global heap. Delayed ownership without reallo
ation
an improve performan
eby bat
hing together free operations to a remote thread-heap.3.1.2 Obje
t ContainersA simple allo
ator pla
es headers/trailers with individual obje
ts, meaning memory ad-ja
ent to the obje
t is reserved for obje
t management information, as shown in Figure3.6(a). However, this approa
h leads to poor
a
he usage, sin
e only a portion of the
a
heline is holding useful information from the program's perspe
tive. Spatial lo
ality is alsonegatively a�e
ted; even though the header and obje
t are together in memory, they aregenerally not a

essed together. The obje
t is a

essed by the program when it is allo-
ated, while the header is a

essed by the allo
ator when the obje
t is free. This di�eren
ein usage patterns
an lead to poor
a
he lo
ality [FB05℄. Additionally, pla
ing headerson individual obje
ts
an lead to redundant management information. For example, if aheader stores only the obje
t size, then all obje
ts with the same size have identi
al head-ers. A more
omplex approa
h pla
es the headers in a separate lo
ation in memory. The
omplexity lies in �nding the obje
t header given only the obje
t address, sin
e that isnormally the only information passed to the deallo
ation operation.One approa
h to separating obje
t headers/trailers from obje
t
ontent is to use obje
t

3.1. Multi-Threaded Memory-Allo
ator Features 25(a) Obje
t Headers(b) Obje
t ContainerFigure 3.6: Header Pla
ement
ontainers [FB05℄. An obje
t
ontainer is a group of adja
ent obje
ts in memory, shownin Figure 3.6(b). The header for the
ontainer holds information ne
essary for all obje
tsin the
ontainer. A trailer may also be used at the end of the
ontainer.In general, the
ontainer header/trailer for any obje
t must be found solely from theaddress of the obje
t. One way to do this is to start
ontainers on aligned addresses inmemory, then trun
ate the lower bits of the obje
t address to obtain the header address(or round up and subtra
t the trailer size to obtain the trailer address). For example, if anobje
t at address 0xFC28EF08 is freed and
ontainers are aligned on 64KB (0x0001 0000)addresses, then the
ontainer header is at 0xFC28 0000.In general,
ontainers
ontain homogeneous obje
ts, with �xed information in theheader, whi
h is logi
ally distributed a
ross all
ontainer obje
ts (e.g., all obje
ts arethe same size). Containers with heterogeneous obje
ts implies di�erent headers des
ribingthem, whi
h introdu
es the problem of lo
ating a spe
i�
 header solely by an address. A
ouple of solutions
an be used to implement
ontainers with heterogeneous obje
ts. How-ever, the problem with allowing obje
ts of di�erent sizes is that the number of obje
ts, andtherefore headers, in a single
ontainer is unpredi
table.One solution allo
ates obje
ts at one end of the
ontainer, while allo
ating headersfrom the other end of the
ontainer, until the obje
ts meet the headers and the
ontaineris �lled. Freed obje
ts
annot be split or
oales
ed sin
e this would
ause the number of

26 Chapter 3. Designheaders to
hange. The diÆ
ulty in this strategy remains �nding the header for a spe
i�
obje
t. The individual headers in the
ontainer would have to be sear
hed until the headerfor a given obje
t is found.A se
ond solution
ombines the use of
ontainer headers and individual obje
t headers.Ea
h obje
t header stores the heterogeneous information of the obje
t, su
h as its size,while the
ontainer header stores the homogeneous information, su
h as the owner threadwhen using ownership. This approa
h allows
ontainers to hold di�erent types of obje
ts,but does not separate headers from their obje
ts. The bene�t of the
ontainer in this
aseis to redu
e some redundant information that is stored in the
ontainer header.In general, the
omplexity of heterogeneous obje
ts in a
ontainer is likely to outweighthe potential bene�ts. A
ontainer header is most eÆ
ient when all obje
ts in the
ontainerare homogeneous and therefore the same size; only one size is stored in the header, makingthe header a
onstant size regardless of the number of obje
ts in the
ontainer. Thisapproa
h greatly redu
es internal fragmentation sin
e far fewer headers are required. Usinghomogeneous obje
t
ontainers, ea
h
a
he line
an hold more obje
ts, sin
e the obje
tsare
loser together due to the la
k of headers among them.An additional bene�t to obje
t
ontainers is that they
an be used to avoid allo
ator-indu
ed a
tive false-sharing. Similar to the approa
h des
ribed in Se
tion 3.1.1.1, if
on-tainer boundaries
oin
ide with
a
he-line boundaries and all obje
ts in a
ontainer areallo
ated to the same thread, then allo
ator-indu
ed a
tive false-sharing is avoided.Two drawba
ks remain when using
ontainers with homogeneous obje
ts. Althoughsimilar obje
ts are
lose spatially within the same
ontainer, di�erent obje
ts are furtherapart in separate
ontainers. Depending on the program, this may or may not improvelo
ality. If the program uses several obje
ts of the same size in its working set, thenlo
ality is improved sin
e these obje
ts may all be in the same
ontainer. If a lot of

3.1. Multi-Threaded Memory-Allo
ator Features 27di�erent sized obje
ts are used, then a lot of
ontainers are in use, whi
h leads to poorpaging lo
ality, sin
e ea
h
ontainer
orresponds to another page that needs to be storedin memory. The se
ond drawba
k is that external fragmentation may be in
reased sin
e
ontainers reserve spa
e for obje
ts that may never be allo
ated by the program. However,external fragmentation
an be redu
ed by using smaller
ontainers.3.1.2.1 Containers with OwnershipUsing
ontainers without ownership, obje
ts are deallo
ated to the thread heap that freesthe obje
t. Thus, di�erent obje
ts in a
ontainer may be on di�erent thread-heap free-lists.When a thread heap frees obje
ts to the global heap, individual obje
ts are passed, furtherseparating obje
ts from other obje
ts in their
ontainer.Using obje
t ownership, all obje
ts in a
ontainer belong to the same thread heap.Ownership of an obje
t is determined by the owner of its
ontainer. In general, ownershipavoids passive false-sharing sin
e obje
ts are returned to the thread that allo
ated theobje
t. Passive false-sharing may still o

ur, as des
ribed in Se
tion 3.1.1.1, if delayedownership is used. As des
ribed in Se
tion 3.1.2, using
ontainers avoids a
tive false-sharing sin
e obje
ts in a
ontainer are all allo
ated to the same thread.Additionally, when a thread heap rea
hes its threshold of free obje
ts, it moves some
ontainers to another thread heap via the global heap. When a
ontainer
hanges own-ership, the ownership of all obje
ts within it
hange as well. Moving a
ontainer involvesmoving all obje
ts on the thread heap's free-list in that
ontainer to the new owner. Thisapproa
h redu
es
ontention for the global heap, sin
e ea
h request for obje
ts from theglobal heap returns a
ontainer of several obje
ts rather than individual obje
ts.Additional restri
tions may be applied to the movement of
ontainers. When a
ontainer
hanges ownership, if some of its obje
ts are in use by the program, a
tive false-sharing

28 Chapter 3. Design
(a) (b)
(
) (d)Figure 3.7: A
tive False-Sharing using Containersmay o

ur, as demonstrated in Figure 3.7. In 3.7(a), a
ontainer is moved from Heap1 toHeap2. When Task2 allo
ates an obje
t from the
ontainer it is in a false-sharing situation,as in 3.7(b). This s
enario is an example of a
tive false-sharing sin
e no obje
ts are passedamong threads. Note, on
e the obje
t is freed by Task1 in 3.7(
), no more false sharing
ano

ur until the
ontainer
hanges ownership again. To prevent this form of false sharing,
ontainer movement may be restri
ted to when all obje
ts in the
ontainer are free.A
onsequen
e of ownership is that free obje
ts in a
ontainer are on the same heap,making it easier to determine if all obje
ts in a
ontainer are free. In addition to using theglobal heap, this information leads to two additional approa
hes of preventing heap blowup.One approa
h returns the
ontainer to the operating system assuming the
ontainer was

3.1. Multi-Threaded Memory-Allo
ator Features 29
(a) Containers without Ownership(b) Containers with OwnershipFigure 3.8: External Fragmentation Using Obje
t Container Ownershipallo
ated using a
all like mmap, whi
h allows memory at an arbitrary address to be returned.A se
ond approa
h to avoiding heap blowup
lears the
ontainer so it
an be used to allo
ateobje
ts of a new size.Using
ontainers with ownership in
reases external fragmentation sin
e a new
ontainerfor a requested obje
t size must be allo
ated separately for ea
h thread requesting it. Inthe example shown in Figure 3.8, using obje
t ownership allo
ates 50% more spa
e thanrequired.3.1.2.2 Container SizeOne way to
ontrol the external fragmentation
aused by allo
ating a large
ontainer for asmall number of requested obje
ts is to vary the size of the
ontainer. As des
ribed earlier,
ontainer boundaries need to be aligned on addresses that are a power of two to alloweasy lo
ation of the header (by trun
ating the bits). Aligning
ontainers in this manneralso determines the size of the
ontainer. However, the size of the
ontainer has di�erent

30 Chapter 3. Designimpli
ations on the allo
ator.The larger the
ontainer, the fewer
ontainers are needed, and hen
e, the fewer headersneed to be maintained in memory, improving both internal fragmentation and potentiallyperforman
e. However, with more obje
ts in a
ontainer, there may be more obje
ts thatare not allo
ated, in
reasing external fragmentation. With smaller
ontainers, not onlyare there more
ontainers, but a se
ond new problem arises where some obje
ts are largerthan the
ontainer.In general, large obje
ts are allo
ated dire
tly from the operating system and are re-turned immediately to the operating system to redu
e external fragmentation due to in-frequent large obje
ts that are unlikely to be reused. If the
ontainer size is de
reased, forexample to 1KB, then an obje
t that is 1.5KB is treated as a large obje
t, whi
h is likelyto be inappropriate. Thus, it would be ideal to use smaller
ontainers for smaller obje
ts,and larger
ontainers for medium obje
ts, whi
h leads to the issue of lo
ating the
ontainerheader.In order to �nd the
ontainer header when using di�erent sized
ontainers, a
ontainersuperstru
ture, or super-
ontainer is used. The super-
ontainer is a
ontainer of obje
t
ontainers, as shown in Figure 3.9, that starts on an aligned address. The super-
ontainerspans several
ontainers, and
ontains a header with information for �nding ea
h
ontainerheader. Super-
ontainer headers are found using the same method that is used to �nd
ontainer headers when the
ontainers are �xed sizes, by dropping the lower bits of anobje
t address. In the example shown in Figure 3.9, the header of a 64KB super-
ontainerpoints to the headers of the
ontainers within it. Smaller obje
ts are held within 16KB
ontainers, while medium obje
ts are held within 64KB
ontainers. The free spa
e at theend of a super-
ontainer
an be used to allo
ate a new
ontainer for small obje
ts whenanother small
ontainer is needed.

3.1. Multi-Threaded Memory-Allo
ator Features 31
Figure 3.9: Example Super-ContainersThe
ontainers within a super-
ontainer may be di�erent sizes or all the same size. Ifthe
ontainers in the super-
ontainer are di�erent sizes, then the super-
ontainer headermust perform a sear
h to determine the spe
i�

ontainer for an obje
t given its address.If all
ontainers in the super-
ontainer are the same size, then a spe
i�

ontainer header
an be found by an O(1)
al
ulation.Minimal internal and external fragmentation is a
hieved by having as few
ontainersas possible, ea
h being as full as possible. It is also possible to a
hieve additional bene�tby using larger
ontainers for popular small sizes, sin
e when fewer
ontainers are used,there are fewer
ontainer headers in memory. However, it is impossible for an allo
atorto determine whi
h sizes are going to be popular in future requests. Keeping statisti
s onrequested sizes may allow the allo
ator to make a dynami
 de
ision about whi
h sizes arepopular. For example, after re
eiving a number of allo
ation requests for a parti
ular size,that size is
onsidered a popular request size and larger
ontainers are allo
ated for thatsize. However, the de
ision may be in
orre
t, leading to a larger
ontainer being allo
atedthat remains mostly unused. A programmer may be able to inform the allo
ator aboutpopular obje
t sizes in order to sele
t an appropriate
ontainer size for ea
h obje
t size.

32 Chapter 3. Design3.1.2.3 Container Free-ListsBesides the size of the obje
ts in the
ontainer, a
ontainer header may hold other usefulinformation that may improve performan
e. For example, maintaining free lists in a
on-tainer header (Figure 3.10(b)), rather than in the heap (Figure 3.10(a)),
an greatly redu
ethe
omplexity of moving all freed obje
ts belonging to a
ontainer onto another heap.Maintaining free lists within
ontainer headers assumes all free obje
ts in the
ontainerare on the same heap. Thus, it only applies to
ontainers that also enfor
e ownership. Tomove a
ontainer with free lists on heaps, as in Figure 3.10(a), the heap's free list is �rstsear
hed to �nd all obje
ts within the
ontainer. Ea
h obje
t is then removed from thefree list and linked together to be moved to the new heap. With free lists in
ontainers,as in Figure 3.10(b), the
ontainer is removed from the heap's free list and pla
ed on thenew heap's free list. Thus, when using free lists within
ontainers, the operation of moving
ontainers is redu
ed from O(n) to O(1). The
ost is adding information to a header, whi
hin
reases the header size, and therefore internal fragmentation.When all obje
ts in the
ontainer are the same size, a single free list is suÆ
ient.However, when the obje
ts in the
ontainer
an be of any size, the header needs to storea free list for ea
h size
lass when using a binning allo
ation algorithm, whi
h
an be avery signi�
ant in
rease in the
ontainer-header size. The alternative is to use a di�erentallo
ation algorithm with a single free list, su
h as a sequential-�t allo
ation-algorithm.3.1.3 Thread-lo
al free-list bu�erA thread-lo
al free-list bu�er
ontains lists of freed obje
ts. It is a private heap
ontainingonly memory that has been freed by its owner thread, as shown in Figure 3.11. It isprivate in that only the owning thread may a

ess the bu�er. The bu�er may be used

3.1. Multi-Threaded Memory-Allo
ator Features 33
(a) Free List Among Containers
(b) Free List Within ContainersFigure 3.10: Free Lists Stru
turesin an allo
ator with per-thread heaps or a single-shared heap. Pla
ing the bu�er in anallo
ator with only a single-shared heap generates a simple version of private per-threadheaps. However, that type of allo
ator is not
onsidered in this dis
ussion. The thread-lo
al bu�er redu
es
ontention for a shared heap. Allo
ation and deallo
ation requests that
an be
ompleted from the thread-lo
al bu�er avoid lo
king. However, when the bu�er is
leared, it requires obtaining a lo
k, and depending on the implementation of the threadheap, the operation is either O(1) if it is as simple as adding the list to the end of the

34 Chapter 3. Design
Figure 3.11: Thread-Lo
al Free-List Bu�erthread-heap's free-list, or O(n) if some management needs to be done for ea
h obje
t thatis freed.The obje
ts on the lists may or may not be owned by the lo
al thread-heap dependingon the implementation. Figure 3.11 shows an example allo
ator in whi
h obje
ts owned byother threads are immediately freed to their owner heap, enfor
ing immediate ownership.The thread-lo
al bu�er
an also be used to implement delayed ownership. Pla
ing obje
tsthat are owned by other threads on the bu�er temporarily allows the thread to reuse anobje
t before returning it to its owner.For a private heap with no ownership, where obje
ts are freed to the thread-heap thatdeallo
ates them, the thread-lo
al free-list bu�er gains no bene�t, sin
e it is essentiallythe same as the thread heap. However, it may still improve performan
e if thread-heapoperations require more
omplexity than a simple operation on the bu�er. There may alsobe some performan
e bene�t in storing obje
ts owned by other threads to be freed to theirowner heap all at on
e. The bu�er may or may not allow these obje
ts to be reused by thelo
al thread depending on the type of ownership enfor
ed.

3.1. Multi-Threaded Memory-Allo
ator Features 35
Figure 3.12: Remote Free-List3.1.4 Remote Free-ListsA remote free-list is a list of freed obje
ts. Figure 3.12 shows how a remote free-list is usedin an allo
ator. When obje
ts allo
ated by one thread are deallo
ated by another, ratherthan lo
king the thread heap of the thread owning the obje
t to perform a deallo
ation,the obje
t is pla
ed on the heap's remote free-list. Obje
ts deallo
ated by the thread thatallo
ated them
an be freed dire
tly to the owner's heap. To avoid heap blowup, the heapwith the remote free-list must reuse those free obje
ts before obtaining additional memory.A remote free-list
an redu
e
ontention for a thread heap. Rather than allowing anythread to free to the thread heap, other threads use the remote free-list. Lo
ks are movedfrom the thread heap to the remote free-list improving the time for lo
al allo
ations anddeallo
ations. Sin
e the remote free-list is
leared during an allo
ation when there are nomore freed obje
ts in the heap, some allo
ation operations take longer. Clearing the remotefree-list is O(1) if the list
an simply be added to the end of the thread-heap's free-list, orO(n) if some maintenan
e must be performed on ea
h freed obje
t. The time to obtaina

ess for the remote free-list
an be limited using lo
k-free operations (see Se
tion 3.1.6).As long as there is more than one freed obje
t on the list ea
h time the remote free-list is

36 Chapter 3. Design
leared, performan
e should be improved.A remote free-list
an also be added to a global heap. The remote free-list on theglobal heap a
ts a little di�erently than on thread heaps, sin
e all frees are remote on theglobal heap. Thus the remote free-list a
ts to separate
ontention for the global heap, sin
ethreads allo
ating from the global heap and threads deallo
ating to the global heap arenot usually
ontending for the same lo
k.3.1.5 Allo
ation Bu�erAn allo
ation bu�er is a
hunk of memory that has been allo
ated from the operatingsystem, but has not yet been allo
ated to the program. It is basi
ally an area of reservedmemory for allo
ating obje
ts when the free list is empty.An allo
ation bu�er is used to redu
e
ontention and the number of operating system
alls. Rather than reserving memory from the operating system to a

ommodate a singleobje
t, an entire bu�er is reserved from whi
h individual obje
ts are allo
ated later. Thebu�er may be asso
iated with the global heap, and used when the global heap has no freeobje
ts.An allo
ation bu�er may also be asso
iated with ea
h thread heap, allowing a thread toallo
ate from the bu�er before requesting obje
ts from the global heap, redu
ing
ontentionfor the global heap. To prevent heap blowup, obje
ts should be reused from the globalheap before allo
ating a new allo
ation bu�er. Allo
ation bu�ers are useful initially whenthere are no freed obje
ts in the thread heap and global heap. In the long term, freedobje
ts are used rather than obje
ts from the allo
ation bu�er. Thus, allo
ation bu�ersare allo
ated more frequently to start, but their use eventually diminishes.Asso
iating an allo
ation bu�er with a thread heap also avoids a
tive false-sharing,sin
e all obje
ts in the allo
ation bu�er are allo
ated to the same thread. If all obje
ts

3.1. Multi-Threaded Memory-Allo
ator Features 37sharing a
a
he line belong to the same allo
ation bu�er, then all obje
ts from a
a
he lineare allo
ated to the same thread, avoiding a
tive false-sharing. A
tive false-sharing maystill o

ur when obje
ts from a thread heap are freed to the global heap. Depending onwhi
h obje
ts are moved, a future allo
ation
ould
ause a
tive false-sharing.Allo
ation bu�ers may in
rease external fragmentation, sin
e some memory in the al-lo
ation bu�er may never be allo
ated. A smaller allo
ation bu�er redu
es the amountof external fragmentation, but in
reases the number of
alls to the global heap or to theoperating system. The allo
ation bu�er also slightly in
reases internal fragmentation, sin
ea pointer is ne
essary to lo
ate the next free obje
t in the bu�er.If used with
oales
ing, the bu�er
an be a large obje
t that is allo
ated from theglobal heap or the operating system and then split into several smaller obje
ts in futureallo
ations.The unused part of a
ontainer, neither allo
ated or freed, is an allo
ation bu�er. Forexample, when a
ontainer is
reated, rather than pla
ing all obje
ts within the
ontaineron the free list, the obje
ts form an allo
ation bu�er and are allo
ated from the bu�eras allo
ation requests are made. This lazy method of
onstru
ting obje
ts is bene�
ial interms of paging and
a
hing. For example, although an entire
ontainer, possibly spanningseveral pages, is allo
ated from the operating system, only a small part of the
ontainer isused in the working set of the allo
ator, redu
ing the number of pages and
a
he lines thatare brought into higher levels of
a
he.3.1.6 Lo
k-Free OperationsA lo
k-free algorithm guarantees that at all times at least one thread is making progressin the system [MHM03℄. A wait-free algorithm puts a �nite bound on the number of stepsany thread takes to
omplete [Her93℄. Lo
k-free operations
an be used in any allo
ator

38 Chapter 3. Designas a method to redu
e the use of lo
ks. The problem with using a lo
k is that if the kernelthread asso
iated with the holding user thread be
omes blo
ked, the system as a wholebe
omes blo
ked if all other user threads are waiting for that lo
k [Her93℄. However, thissituation is unlikely ex
ept in an allo
ator with a lot of
ontention. Lo
k-free algorithmsmay also redu
e the number of
ontext swit
hes, sin
e a thread does not yield while waitingfor a lo
k.The
onsequen
e of using lo
k-free operations is greater
omplexity and hardware de-penden
y. Lo
k-free algorithms
an be applied most easily to free lists to allow lo
k-freeinsertion and removal from the head of a list. Implementing lo
k-free operations for more
ompli
ated data stru
tures may be more
omplex and depend on hardware support.3.2 Combining FeaturesThe features dis
ussed in the previous se
tions
an be used in di�erent
ombinations whendesigning a multi-threaded memory allo
ator. An allo
ator that
ombines features
ansolve problems, su
h as allo
ator-indu
ed false-sharing, that
annot be solved using anyone feature.Analyzing all possible
ombinations of allo
ator features leads to a very large designspa
e. To redu
e the analysis, di�erent types of
ontainers and lo
k-free operations are notspe
i�
ally dis
ussed. The di�erent types of obje
t
ontainers, varying in size and headerinformation,
an be used inter
hangeably with a basi

ontainer and have little in
uen
eon the other features. Lo
k-free operations
an be added to any allo
ator regardless of theother features used.Per-thread heaps and a global shared-heap, as well as allo
ation bu�ers are featuresused in all allo
ators dis
ussed. An allo
ation bu�er is impli
itly present in a
oales
ing

3.2. Combining Features 39allo
ator, and simply an implementation detail when using obje
t
ontainers. Additionally,both passive and a
tive-false sharing are redu
ed when
ombining an allo
ation bu�er withobje
t ownership. Allo
ators without allo
ation bu�ers are possible, and potentially useful,but do not provide additional bene�ts when
onsidering the
ombination of features.The optional features of an allo
ator that are
onsidered in the dis
ussion are:
oa-les
ing, thread-lo
al free-list bu�ers, and remote free-lists. The
oales
ing feature is onlyapplied to allo
ators using individual obje
t headers. Coales
ing does not work well with
ontainers, sin
e when obje
ts are split and
oales
ed the sizes
hange. As des
ribed inSe
tion 3.1.2,
ontainers work best when all obje
ts in the
ontainer are the same size.Thread-lo
al free-list bu�ers are not
onsidered in
ombination with remote free-lists.These features are mostly independent of ea
h other. The bene�ts of using a remote-freelist in an allo
ator are the same whether or not thread-lo
al free-lists are used. Likewise,the bene�ts of using a thread-lo
al free-list bu�er are generally the same whether or nota remote free-list is used, with one ex
eption. The ex
eption is that sin
e a remote free-list removes
ontention for a lo
al thread-heap, adding a thread-lo
al free-list bu�er doesnot redu
e
ontention for the lo
al thread-heap. The thread-lo
al free-list bu�er may stillprovide other bene�ts in an allo
ator with remote free-lists, but they are the same bene�tsas in an allo
ator that does not use remote free-lists. Thus, the
ombination of thesefeatures is not dis
ussed sin
e they are mostly independent and no additional insights
anbe gained.The design spa
e is broken down based on two main
riteria: whether or not headersare
ontainer based, and whether or not ownership is enfor
ed. These two
riteria havethe greatest impli
ations on the performan
e of an allo
ator. Using these
riteria resultsin four main types of allo
ators:1. Allo
ators with individual obje
t headers and no ownership

40 Chapter 3. DesignTable 3.1: Feature CombinationsCoales
ing Base-Case Thread-Lo
alFree-List Bu�er RemoteFree-ListIndividual Obje
t Headers No IN IN-l IN-rNo Ownership Yes IN-
 IN-
l IN-
rIndividual Obje
t Headers No IO IO-l IO-rOwnership Yes IO-
 IO-
l IO-
rContainer HeadersNo Ownership No CN CN-l CN-rContainer HeadersOwnership No CO CO-l CO-rAll allo
ators use per-thread heaps, a global shared-heap, and an allo
ation bu�er.2. Allo
ators with individual obje
t headers and enfor
ed ownership3. Allo
ators with
ontainer headers and no ownership4. Allo
ators with
ontainer headers and enfor
ed ownershipUsing the simpli�
ations and design
riteria, Table 3.1 outlines the allo
ators dis
ussedin this se
tion. Ea
h allo
ator is given a unique name in the table. As a short form\l" refers to a thread-lo
al free-list bu�er, \r" refers to a remote-free list, and \
" refersto
oales
ing. The �rst letter indi
ates whether individual obje
t headers (I) are usedor
ontainers (C) and the se
ond letter indi
ates whether ownership is enfor
ed (N=noownership, O=ownership).3.2.1 Individual Obje
t Headers { No OwnershipThis se
tion looks at allo
ators that use individual obje
t headers and do not enfor
e obje
townership.

3.2. Combining Features 413.2.1.1 Base Case (IN)With no ownership, obje
ts are allo
ated and deallo
ated to the thread's own thread heap.Thus, thread heaps are only ever tou
hed by one thread and do not require any lo
king. Alo
k is only obtained for the global shared-heap when the thread heap has no free obje
tsor too many free obje
ts.The use of the allo
ation bu�er redu
es
ontention both for the global heap and theoperating system, as des
ribed in Se
tion 3.1.5. The allo
ation bu�er also redu
es a
tivefalse-sharing, by initially allo
ating all obje
ts in the bu�er to the same thread. However,a
tive false-sharing may still o

ur when obje
ts are freed to the global heap. As well,passive false-sharing
an o

ur, sin
e obje
ts are freed to the thread-heap that frees them,and may be reallo
ated to that thread.3.2.1.2 Thread-Lo
al Free-List Bu�er (IN-l)The thread-lo
al free-list bu�er adds no bene�t to the IN allo
ator sin
e there is no
on-tention on the thread heaps.3.2.1.3 Coales
ing (IN-
)Coales
ing is when two free obje
ts next to ea
h other in memory are merged to
reate alarger free obje
t. There are two options when designing an allo
ator with
oales
ing andthread heaps. One option only merges obje
ts on the same heap. A se
ond option allowsobje
ts on di�erent heaps to be merged, but requires lo
king and in
reases
ontention onall heaps. Coales
ing may avoid highly fragmented memory and may lead to less externalfragmentation than an allo
ator without
oales
ing, sin
e large obje
ts
an be reused forany smaller size request, and smaller obje
ts
an be
oales
ed to satisfy larger requests.However, internal fragmentation is in
reased sin
e obje
ts must maintain the lo
ation of

42 Chapter 3. Designobje
ts next to them in memory.Coales
ing may redu
e a
tive false-sharing. Using the idea of an allo
ation bu�er, whena heap requests memory from the operating system, it requests a large obje
t that is split tothe requested size. If this large obje
t is passed to a thread heap, and the thread heap usesthis obje
t to split and satisfy allo
ation requests, then all obje
ts from this large obje
tare allo
ated to the same thread heap, avoiding a
tive false-sharing. However, when athread heap frees obje
ts to the global heap, depending on whi
h obje
ts are passed, itmay still
ause a
tive false-sharing. As in allo
ator IN, passive false-sharing may still o

urwhen obje
ts are passed among threads in the program.3.2.1.4 Coales
ing and Thread-Lo
al Free-List Bu�er (IN-
l)Using a thread-lo
al free-list bu�er in a
oales
ing allo
ator
an also be used to delay theoperation of
oales
ing obje
ts. Obje
ts pla
ed on the bu�er do not
hange size sin
e theyare not
oales
ed. Hen
e, if
ertain obje
t sizes are frequently allo
ated and deallo
atedthey
an be reused from the bu�er without going through the pro
esses of being
oales
edand split. The bu�er a
ts as a form of
a
he,
a
hing obje
ts at their requested size untilthey are no longer useful. External fragmentation may be slightly in
reased sin
e obje
tson the thread-lo
al free-list bu�er are not
oales
ed and split. When the bu�er is
leared,the obje
ts are
oales
ed into larger obje
ts that may be more useful in future requests.If
oales
ing is used with lo
ks on thread heaps to allow obje
ts on free lists from twoseparate heaps to be
oales
ed, then the thread-lo
al free-list bu�er also prevents somelo
king. Operations involving only the lo
al bu�er avoid obtaining a lo
k for the threadheap. A
tive and passive false-sharing may still o

ur, as in allo
ator IN-
.

3.2. Combining Features 433.2.1.5 Remote Free-List (IN-r),Coales
ing and Remote Free-List (IN-
r)Adding a remote free-list to thread heaps gains no bene�t, sin
e there are no remote-freeoperations be
ause all obje
ts are freed to the thread heap of the thread that frees them. Aremote free-list may be added to the global shared-heap. When thread heaps free obje
ts tothe global heap they are pla
ed on the remote free-list. This approa
h separates
ontentionfor the global heap sin
e threads that are passing obje
ts to the global heap are not usually
ontending with threads that are requesting obje
ts from the global heap. All obje
ts fromthe remote free-list are moved to the main free-list when a thread requests an obje
t fromthe global heap and it has no more obje
ts on its main free-list. Adding the remote free-listhas no a�e
t on the ways in whi
h false sharing may o

ur in these allo
ators.3.2.2 Individual Obje
t Headers { Obje
t OwnershipLike the previous se
tion, this se
tion assumes individual obje
t headers, but with owner-ship. Ownership implies that obje
ts must be returned to the heap that allo
ated them. Inorder to do so, ea
h obje
t header must store information about the thread that allo
atesit.3.2.2.1 Base Case (IO)Adding obje
t ownership removes all passive false-sharing, sin
e an obje
t is freed to theheap that initially allo
ated it. Thread heaps must be lo
ked sin
e any thread
an a

essany other thread heap to deallo
ate an obje
t. A
tive-false sharing is greatly redu
ed byusing an allo
ation bu�er on ea
h thread heap, but may still o

ur when obje
ts are freedto the global shared-heap.

44 Chapter 3. Design3.2.2.2 Thread-Lo
al Free-List Bu�er (IO-l)Adding a thread-lo
al free-list bu�er redu
es
ontention for the thread heaps sin
e a thread
ompletes some operations dire
tly through the lo
al bu�er. Obje
ts not owned by the
urrent heap may be freed to the lo
al bu�er if delayed ownership is used. Delayed own-ership allows for potential reuse of the obje
t before the bu�er is
leared and the obje
t isreturned to its owner, however it also allows passive false-sharing to o

ur when the obje
tis reused.3.2.2.3 Coales
ing (IO-
)Using a
oales
ing allo
ator with ownership, all allo
ator-indu
ed false-sharing
an beeliminated if large free-obje
ts are allo
ated su
h that their boundaries fall on
a
he-lineboundaries. When a free obje
t is split, the ownership of the original free-obje
t is
opiedto the two new free-obje
ts. Thus, all obje
ts originating from the initial obje
t are ownedby the same thread, removing a
tive false-sharing. When freeing obje
ts to the globalheap, if only those original large-obje
ts are passed, then all a
tive false-sharing is avoided.The requirement that obje
ts be returned to their owner thread ensures that the originallarge-obje
ts eventually
oales
e to their original state as one obje
t. As in allo
ator IO,a thread heap must be lo
ked in order to allow any thread to deallo
ate an obje
t.3.2.2.4 Coales
ing and Thread-Lo
al Free-List Bu�er (IO-
l)The thread-lo
al free-list bu�er allows a thread to perform lo
al operations without lo
king,as in allo
ator IO-l. Additionally, the bu�er
an improve performan
e when obje
ts arereused at their deallo
ated size by avoiding extra
oales
ing and splitting, as in allo
atorIN-
l, at the
ost of a slight in
rease in external fragmentation, sin
e obje
ts are not
oales
ed while on the bu�er.

3.2. Combining Features 453.2.2.5 Remote Free-List (IO-r),Coales
ing and Remote Free-List (IO-
r)Adding a remote free-list to the thread heaps redu
es
ontention. Lo
ks
an be removedfrom the thread heaps sin
e they are no longer a

essed by other threads. Only the remotefree-list needs a lo
k. A remote free-list may also be added to the global shared-heap toredu
e
ontention, as des
ribed in Se
tion 3.2.1.5.3.2.3 Obje
t Containers { No OwnershipUsing obje
t
ontainers without ownership, means obje
ts are allo
ated and deallo
atedto the
ontainers in the thread's own thread heap. Using
ontainers
an greatly redu
e theamount of memory used to store headers, but may also in
rease external fragmentationdepending on the
ontainers used, as des
ribed in Se
tion 3.1.2. Ca
he usage is improvedby removing headers from obje
ts, but paging lo
ality may be poor sin
e obje
ts of di�erentsizes must be pla
ed in di�erent
ontainers.3.2.3.1 Base Case (CN)As des
ribed in Se
tion 3.1.5, a
tive false-sharing is avoided using
ontainers as an allo
a-tion bu�er. However, on
e a thread heap rea
hes its threshold of free obje
ts, it passes somefreed obje
ts to the global shared-heap. Depending on whi
h freed obje
ts are transferred,this may indu
e a
tive false-sharing. Passive false-sharing
an also exist sin
e obje
ts
anbe passed among threads in the program, but may not be returned to the initial thread.

46 Chapter 3. Design3.2.3.2 Thread-Lo
al Free-List Bu�er (CN-l)Sin
e there are no lo
ks required on thread heaps with no ownership, there is no bene�t inusing a thread-lo
al free-list bu�er.3.2.3.3 Remote Free-List (CN-r)Sin
e there are no lo
ks required on thread heaps with no ownership, there is no bene�t inusing a remote free-list. A remote free-list
an be added to the global heap in an attemptto redu
e
ontention, as des
ribed in Se
tion 3.2.1.5.3.2.4 Obje
t Containers { Obje
t OwnershipUsing
ontainers with ownership means obje
ts are deallo
ated to the heap that allo
atedthem. Obje
t ownership information is stored in the
ontainer header, applying to allobje
ts in the
ontainer. In order to
hange ownership of an obje
t, the entire
ontainermust
hange ownership. Thus, rather than moving obje
ts between the global heap andthread heaps, entire
ontainers are passed, redu
ing
ontention for the global heap.3.2.4.1 Base Case (CO)As in allo
ator CN, using
ontainers avoids a
tive false-sharing by initially allo
ating allobje
ts in a
ontainer to the same thread. When a thread heap rea
hes its threshold of freeobje
ts, it frees a
ontainer to the global heap,
hanging the ownership of the
ontainerand all of its obje
ts. This may
ause some a
tive false-sharing to o

ur, as des
ribedin Se
tion 3.1.2.1. Passive false-sharing is avoided by freeing obje
ts to the owner of the
ontainer.Additionally, some of the obje
ts in a
ontainer transferred to the global heap may still

3.2. Combining Features 47be in use by the program. Thus, some free operations may free an obje
t to a
ontainer thatis owned by the global heap, in
reasing
ontention for the global heap. However, moving
ontainers between the global shared-heap and a thread heap also redu
es
ontention forthe global heap. Rather than making a request to the global heap for every obje
t a threadheap needs, the thread heap makes one request and re
eives a
ontainer with several freeobje
ts at on
e.Adding restri
tions to the movement of
ontainers to require that a
ontainer
annot
hange ownership unless all of its obje
ts are free eliminates all forms of a
tive false-sharing.This restri
tion also avoids the situations where obje
ts may be freed to a
ontainer ownedby the global shared-heap, simplifying the global heap and redu
ing
ontention for it. Thisrestri
tion may in
rease external fragmentation, sin
e free obje
ts in a
ontainer
annot
hange ownership, and hen
e, are not being allo
ated.Maintaining free lists within
ontainers makes the movement of
ontainers a fast op-eration. A
ontainer is taken o� the thread heap's list, and moved to the global heapin
onstant time. If a free-list is not organized by
ontainer, then removing all of the
ontainer's obje
ts from the thread heap's free list requires O(n) operations.3.2.4.2 Thread-Lo
al Free-List Bu�er (CO-l)Adding the thread-lo
al free-list bu�er
an redu
e some of the
ontention for thread heaps.When a thread deallo
ates an obje
t that belongs to a
ontainer its thread heap owns,it
an pla
e the obje
t on its private bu�er to avoid a
quiring a lo
k. That obje
t
anlater be allo
ated by the thread again without obtaining a lo
k. If the obje
t is ownedby another thread, it
an be pla
ed on the bu�er if delayed ownership is used, potentially
ausing some passive-false sharing. When the bu�er is
leared, lo
ks are obtained to freethe obje
ts to the appropriate thread heaps.

48 Chapter 3. Design3.2.4.3 Remote Free-List (CO-r)A remote free-list
an be added to the global heap to redu
e
ontention, as des
ribed inSe
tion 3.2.1.5, and
an also be used to remove lo
ks from a thread heap. A remote free-listmay be added to ea
h thread-heap, or to ea
h
ontainer, moving the lo
k from the threadheap to the
ontainer header. A thread deallo
ating an obje
t from a
ontainer that itdoes not own, obtains the lo
k for either the owner thread heap's remote free-list or the
ontainer's remote free-list and pla
es the obje
t on the list.Using remote free-lists on
ontainer headers redu
es
ontention for lo
ks, but also in-
reases internal fragmentation sin
e ea
h
ontainer header holds a remote free-list. Thisapproa
h also avoids a situation in whi
h a remote-free operation
hases after a moving
ontainer. A thread deallo
ating an obje
t it does not own must determine the threadheap that
urrently owns the
ontainer, but the ownership may
hange while it is waitingto obtain a lo
k for the remote free-list. Using remote free-lists on
ontainer, even if theownership of the
ontainer
hanges, the remote free-list used to pla
e the obje
t does not
hange.3.3 SummaryThis
hapter des
ribes several features of a multi-threaded memory-allo
ator, and thepotential intera
tions of those features. The next two
hapters look at existing allo
atorsand a set of test allo
ators that use these features in di�erent
ombinations.

Chapter 4Existing Allo
atorsThe previous
hapter dis
usses the features present in multi-threaded memory-allo
ators.In order to evaluate how these features perform, both existing allo
ators and test allo
atorsare examined. There are several existing allo
ators that ta
kle the
hallenges fa
ing a singleor multi-threaded memory allo
ator. This
hapter gives an overview of existing allo
atorsthat are used to evaluate performan
e.4.1 Solaris Mallo
The default allo
ator on Solaris 8 is used for
omparison against other allo
ators in Chapter7. Rather than using a sequential-�t allo
ation algorithm (see Se
tion 2.2.1), it uses abinary sear
h tree to qui
kly �nd appropriate free obje
ts. Splitting and
oales
ing areused along with an allo
ation bu�er from the operating system, providing good
ontrolof fragmentation in single-threaded programs. Solaris mallo
 uses a single lo
k and asingle heap for all memory allo
ator operations, whi
h slows down multi-threaded programs[Nak01℄. 49

50 Chapter 4. Allo
ators4.2 Dlmallo
This single-threaded, single-heap allo
ator was
reated by Doug Lea [Lea℄. The allo
atoruses several te
hniques to minimizes fragmentation and improve lo
ality. The allo
ator isthread-safe, meaning that it
an be used by a multi-threaded program. However, a singlelo
k is used for the entire allo
ator, making it very ineÆ
ient for use by a multi-threadedprogram [AN03℄ [Nak01℄.Dlmallo
 is a
ombination of a sequential-�t and binning allo
ator. Lists of free memoryare maintained for ea
h bin size, but obje
ts on the list fall into a range of sizes. The listsare sear
hed for a best-�t, or
losest to the requested size,
hunk of free memory. Dlmallo
uses
oales
ing to merge two free obje
ts next to ea
h other in memory into a single largerfree obje
t. Large obje
ts are allo
ated and deallo
ated dire
tly from the operating system[Lea℄.Dlmallo
 is not tested in the evaluation presented in Chapter 7 sin
e it does not supportmulti-threaded programs. Instead, the default Solaris memory allo
ator is used.4.3 Ptmallo
Ptmallo
 is in
luded as the default glib
 allo
ator on Linux (with glib
 version 2.3.x) [Fer℄.The default Linux allo
ator is used in the evaluation presented in Chapter 7. It is anextension of Dlmallo
 with the intention of being used by multi-threaded programs [Glo℄.Ptmallo
 redu
es
ontention for the memory allo
ator by having multiple heaps, but it isnot exa
tly per-thread heaps. At ea
h memory operation, a thread �rst attempts to usethe heap it used previously, and if that heap is in use, then it is assigned another heap thatis not in use at that time of the request. A new heap is
reated for an allo
ation when allother heaps are lo
ked [Fer℄.

4.4. Hoard Allo
ator 51Ptmallo
 enfor
es obje
t ownership, but sin
e there is no one-to-one relationship be-tween threads and heaps, an obje
t is owned by the heap where it was allo
ated. Ea
h heapis responsible for large
hunks of memory, keeping the memory on ea
h heap separate frommemory on other heaps. This approa
h would eliminate a
tive and passive false sharing ifea
h thread always used the same heap, but in Ptmallo
 that is not guaranteed.4.4 Hoard Allo
atorHoard is a multi-threaded allo
ator built using the heap layers framework [BZM01℄. Theheap layers framework is meant to help build memory allo
ators using layers of fun
tion-ality. The framework provided with version 3.6 is used as the basis for implementing thedi�erent test allo
ators dis
ussed in Chapter 5. The Hoard allo
ator uses a binning algo-rithm, whi
h is also used as the basis for the test allo
ators. Hoard version 3.6 is usedin the evaluation presented in Chapter 7 and is available at [Ber℄. Several
hanges havebeen made to Hoard sin
e the original des
ription provided in [BMBW00℄. Version 3.6 isdes
ribed here.The Hoard allo
ator in
ludes several of the features des
ribed in Se
tion 3.1. It is a CO-lallo
ator in Table 3.1 that in
ludes per-thread heaps with a global shared-heap,
ontainers,an allo
ation bu�er, a thread-lo
al free-list bu�er, and delayed obje
t ownership. Its obje
t
ontainers,
alled superblo
ks, are of a �xed size, with all
ontained obje
ts being the samesize. The superblo
ks maintain free lists of obje
ts belonging to the superblo
k [BMBW00℄.Delayed obje
t ownership is enfor
ed. All obje
ts are freed to a thread-lo
al free-list bu�er, allowing for some passive-false sharing. However, when the bu�er is
leared, allobje
ts are freed to the superblo
k that owns them. Superblo
k movement is not restri
ted,allowing superblo
ks to move to other thread heaps even while they have obje
ts in use

52 Chapter 4. Allo
atorsby the program, whi
h does allow for some forms of a
tive false-sharing. However, this isan unlikely o

urren
e if the heap threshold of free obje
ts is set high enough so that any
ontainers moved are likely to be
ompletely free.Hoard employs additional optimizations when using
ertain thread libraries su
h aspthreads. A fun
tion in Hoard is
alled ea
h time a new thread is
reated, allowing Hoardto initialize the thread heap, and set a
ag indi
ating the program is multi-threaded.Using this optimization, atomi
 operations for lo
king are only used if a program is multi-threaded. This optimization
an only be used when support is provided by the threadlibrary.4.5 Stream
ow Allo
atorStream
ow [SAN06℄ is another multi-threaded memory allo
ator that has been shownto have better or equal performan
e to Hoard. The version of Stream
ow used in theevaluation presented in Chapter 7 is available at [SAN℄. Stream
ow introdu
es remotefree-lists in order to separate lo
al and remote operations.Stream
ow is a CO-r allo
ator in Table 3.1 that in
ludes per-thread heaps with a globalshared-heap, obje
t ownership, an allo
ation bu�er, remote free-lists, and
ontainers
alledpage blo
ks. Stream
ow uses a di�erent implementation than super-
ontainers to havedi�erent
ontainer sizes that depend on the size of the obje
ts in the
ontainer. Containerheaders are lo
ated in a BIBOP (big bag of pages), whi
h is a table
ontaining one headerfor every page in the virtual-memory address-spa
e. Thus, all obje
ts in a page share aheader and must be the same size. Stream
ow also maintains free lists of obje
ts by pageblo
ks.Stream
ow uses remote-free lists to remove heap lo
ks from both mallo
 and free op-

4.6. Summary 53erations, meaning that most allo
ation and deallo
ation operations
an
omplete withouta
quiring any lo
ks. In addition, Stream
ow employs lo
k-free operations in a

essing theirremote-free lists.4.6 SummaryThis
hapter dis
usses a group of existing allo
ators and the multi-threaded features presentin ea
h. In order to more fully understand the performan
e of the multi-threaded features,it is ne
essary to evaluate additional memory allo
ators. The next
hapter provides a setof test allo
ators that are used to identify the e�e
ts of di�erent multi-threaded feature
ombinations.

Chapter 5Test Allo
atorsThe previous
hapter dis
usses features present in existing memory allo
ators. In orderto better
omprehend the e�e
ts of the di�erent features des
ribed in Se
tion 3.1, I im-plemented a series of test allo
ators. The �rst allo
ator is a basi
 allo
ator, and ea
hsubsequent allo
ator adds one or two features at ea
h step to a
hieve a full-featured allo-
ator.The allo
ators are all built using the Hoard heap layers framework ([BZM01℄), withsome additional heap layers I implemented for spe
i�
 allo
ators. The allo
ators are de-s
ribed, along with some implementation details and the bene�ts and drawba
ks from theprevious allo
ator.5.1 Allo
ator A: Base CaseThe base-
ase allo
ator is a single-heap allo
ator with one lo
k around the entire heap.The heap itself is a binning allo
ator where obje
t requests are rounded up to a bin size.The allo
ator uses the same set of �xed bin-sizes used by the Hoard allo
ator. The bin54

5.2. Allo
ator B 55sizes are
loser together for smaller sizes and further apart for larger sizes. A free list ismaintained for ea
h bin size. Using a �xed number of bin sizes also implies a �xed numberof free lists. The free list for the
orresponding bin size is qui
kly
he
ked for a free obje
tof the
orre
t size. If there are no free obje
ts to reuse, a new obje
t is allo
ated from anallo
ation bu�er. The 128KB allo
ation bu�er is allo
ated using sbrk.A simple header is used with only the obje
t size. The largest bin size is 32KB less theobje
t-header size. Obje
ts larger than this size are allo
ated dire
tly using mmap so they
an be returned to the operating system immediately after deallo
ation. This approa
havoids large amounts of external fragmentation due to infrequent large obje
t requests.5.2 Allo
ator B: Add Thread HeapsThe �rst extension to the base allo
ator adds per-thread heaps and the base allo
atorbe
omes the global shared-heap. This extension makes allo
ator B equivalent to the INallo
ator in Table 3.1. The goal of this allo
ator is to redu
e lo
king and
ontention.Operations that
an be
ompleted using only the thread heap do not require any lo
ks,leading to redu
ed
ontention over the single-heap allo
ator. A lo
k is still required whenallo
ating from the global shared-heap.When an allo
ation request is made, the free list of the thread heap is
he
ked for afree obje
t of the
orresponding bin size. If there are no obje
ts on the list, the global heapis lo
ked while it
he
ks its free list for the
orresponding bin size. If the global heap hasno free obje
ts of that size, it allo
ates a new one from its allo
ation bu�er, whi
h
ouldrequire obtaining a new allo
ation bu�er using sbrk.When an obje
t is deallo
ated, it is added to the
urrent thread-heap's free list. Whena thread-heap's free list for any bin size holds free obje
ts taking up more spa
e than two

56 Chapter 5. Test Allo
atorstimes the largest bin size (whi
h is 32KB less the header size), half the obje
ts are freedto the global heap. Ea
h time a thread heap a

umulates more than 64 times the largestbin size on all its free lists, it
lears all its free obje
ts to the global heap. Allo
ations anddeallo
ations of large obje
ts are dire
tly handled through
alls to mmap, as in allo
ator A,without using the global heap.When a new thread starts, a new thread heap is
reated for it. When a thread runs to
ompletion, its thread heap is pla
ed on a list and reused when a new thread starts up inthe future. This reuse implies obje
ts freed by a thread to its thread heap may be reused bynew threads
reated after the initial thread dies. This design does not a�e
t false sharingsin
e the original thread is no longer running. However a thread that inherits a threadheap also inherits the false sharing of the
ompleted thread. Reusing thread heaps mayimprove performan
e if the new thread makes similar allo
ation requests as the originalthread, sin
e obje
ts are kept on the thread heap rather than being freed to the globalheap.5.3 Allo
ator C: Add Obje
t ContainersThe next allo
ator introdu
es �xed-size obje
t
ontainers with allo
ation bu�ers and ho-mogeneous obje
ts. This allo
ator is equivalent to the CN allo
ator in Table 3.1. The
ontainers are 64KB in size with the largest bin size �tting at least two obje
ts in a
on-tainer (i.e., 32KB less the size of the header). The
ontainer header
onsists of the obje
tsize, the start and end of the
ontainer, and an allo
ation bu�er. The allo
ation bu�erpoints to the next unallo
ated obje
t in the
ontainer's allo
ation bu�er. These obje
t
on-tainers redu
e internal fragmentation at the
ost of external fragmentation, and improve
a
he usage at the
ost of paging lo
ality.

5.4. Allo
ator D 57When an allo
ation request is made, the thread heap
he
ks the free list of the requestedbin size for a free obje
t. If there are no free obje
ts, then the thread heap attempts toallo
ate from the allo
ation bu�er of an appropriate
ontainer on its heap. If the allo
ationbu�er is empty, then the global heap
he
ks its free list. If there are no free obje
ts onthe global heap for the requested size, then a new
ontainer with an allo
ation bu�er isallo
ated using sbrk and returned to the thread heap from whi
h the obje
t is �nallyallo
ated. Deallo
ations o

ur using the same pro
ess as allo
ator B.5.4 Allo
ator D: Add Obje
t OwnershipThe ownership of obje
ts is added to remove some allo
ator-indu
ed false-sharing. Thisallo
ator is an implementation of a CO allo
ator in Table 3.1. In this allo
ator, obje
tsare deallo
ated to the thread heap that owns them, not the thread heap of the thread thatdeallo
ates them. Obje
t ownership leads to
ontention for thread heaps, requiring lo
ksto be added, but eliminates passive false-sharing.A free list is added to
ontainer headers so that
ontainers
an move easily amongthread heaps and the global shared-heap, and redu
e
ontention for the global heap. Theslight in
rease in size of the
ontainer header to a

ommodate the free list slightly in
reasesinternal fragmentation.When an allo
ation request is made, the thread heap is lo
ked and the free list for therequested bin size is
he
ked. The free list maintains a list of
ontainer headers owned bythis thread heap that have some free obje
ts, either in their allo
ation bu�er or on theirfree lists. If there are no free obje
ts on the list, a
ontainer is transferred from the globalheap, and an obje
t is allo
ated from that
ontainer.When an obje
t is deallo
ated, the obje
t is pla
ed at the head of the free list of

58 Chapter 5. Test Allo
atorsits
ontainer header, and the
ontainer is moved to the front of the
ontainer list. Thispla
ement allows the next allo
ation request to re
eive the last obje
t of that size to befreed. If all obje
ts in the
ontainer are free, the
ontainer is moved to a separate listof
ompletely-free
ontainers. Completely-free
ontainers are only used for an allo
ationrequest when there are no more obje
ts on the main
ontainer list. When any free list orall the free lists on a thread heap
umulatively rea
h a threshold of free obje
ts, as many
ontainers as required are transferred to the global heap, beginning with the
ontainersthat are
ompletely free.The global heap holds lists of
ontainers for ea
h obje
t bin size. When it rea
hes athreshold of 128 free
ontainers, up to half of the
ontainers are
onverted into allo
ationbu�ers that
an be used for a new obje
t size. Only
ompletely-free
ontainers
an be
onverted in this manner. Whenever the global heap has no
ontainers of a requested binsize on its free list, it either reuses one of these
ontainers or obtains a new one using sbrk.Sin
e the global heap
an be the owner of some obje
ts, it must handle requests to freeobje
ts on its heap, adding another sour
e of
ontention for the global heap. However,sin
e a thread heap re
eives a
ontainer with several free obje
ts from the global heap,rather than one individual free obje
t, it makes fewer requests to the global heap for freeobje
ts.5.5 Allo
ator E: Add Restri
ted Container MovementThe goal of this allo
ator is to remove all forms of allo
ator-indu
ed false-sharing by
om-bining
ontainers, obje
t ownership and
ontainer movement restri
tions. Although allo
a-tor E is di�erent from allo
ator D, it still falls into the
ategory of a CO allo
ator in Table3.1. The restri
tion is that a
ontainer
an only be moved when the
ontainer is
ompletely

5.6. Allo
ator F1 59free. Be
ause thread heaps are reused rather than destroyed when a thread heap
ompletes,this restri
tion means the global heap
an no longer be the owner of any obje
ts in use bythe program, and does not need to handle a free operation for an individual obje
t.When a thread heap rea
hes its free-list threshold, only
ontainers on the
ompletelyfree list are moved to the global heap. Contention for the global heap is further redu
edby the fa
t that ea
h time a thread heap re
eives a
ontainer from the global heap, ithas all obje
ts free, further redu
ing the number of requests a thread heap makes to theglobal heap. External fragmentation is slightly in
reased, however, sin
e free obje
ts on apartially free
ontainer
annot be used by other threads.5.6 Allo
ator F1: Add Thread{Lo
al Free{List Bu�erIn order to redu
e
ontention for thread heaps, introdu
ed by allo
ator D, a thread-lo
alfree-list bu�er is added. This allo
ator is equivalent to the CO-l allo
ator in Table 3.1. Im-mediate ownership is enfor
ed in order to avoid all allo
ator-indu
ed false-sharing. Hen
e,the thread-lo
al free-list bu�er only holds obje
ts that are owned by the lo
al thread.The thread-lo
al free-list bu�er
ontains a set of free lists; one for ea
h bin size. Whenany free list on the bu�er rea
hes a threshold of two times the
ontainer size in bytes, thebu�er is
leared to the thread heap. The operation is O(n) sin
e ea
h free obje
t must bepla
ed on its own
ontainer header's free list. However, operations that
an be
ompletedusing only the bu�er
an be
ompleted qui
kly with a simple addition or removal from alinked list.

60 Chapter 5. Test Allo
ators5.7 Allo
ator F2: Add Remote Free{ListsThis allo
ator adds remote free-lists that are separated by bin size to thread heaps, makingit equivalent to the CO-r allo
ator in Table 3.1. The situation des
ribed in Se
tion 3.2.4.3where remote-free operations may
hase after a moving
ontainer is not a
on
ern be
ause
ontainer movement is restri
ted. A
ontainer
an only
hange ownership if all obje
ts arefree and not on any remote free-list. Pla
ing remote free-lists on thread-heaps rather than
ontainer headers, avoids an in
rease in internal fragmentation. A remote free-list is alsoadded to the global heap to redu
e
ontention as des
ribed in Se
tion 3.1.4.Lo
ks that are added to thread heaps in allo
ator D are moved instead to the remotefree-list. Sin
e there are no lo
ks on thread heaps, a thread-lo
al free-list bu�er is unne
-essary for avoiding lo
ks on lo
al operations. Therefore, allo
ator F2 builds on allo
atorE. When a thread heap has no obje
ts of the requested bin size on its free list, it
learsall obje
ts on the remote free-list. One obje
t from the remote free-list is allo
ated to theprogram, while the remaining obje
ts are ea
h pla
ed on the free list of their
ontainerheaders. The operation is O(n) sin
e ea
h obje
t is freed to its own
ontainer header; thus,allo
ation time is variable.5.8 Allo
ator G: Vary Container SizeBuilding on allo
ator F2, allo
ator G adds the variation of the
ontainer size in order toredu
e external fragmentation. A 64KB super-
ontainer is used to hold
ontainers of 1KB,4KB, 16KB, or 64KB in size. All
ontainers within a super-
ontainer are the same size(although ea
h
ontainer may have a di�erent obje
t size that it holds) to simplify �ndingthe
ontainer header. The super-
ontainer header simply holds the size of the
ontainers

5.9. Allo
ator H 61within it. Sin
e the super-
ontainer header is so small, it is easiest to simply add this pie
eof information to ea
h
ontainer header. Thus, the �rst
ontainer in the super-
ontaineris used as the super-
ontainer header as well. This approa
h leads to all
ontainer headersbeing aligned within the super-
ontainer by the size of the
ontainers.To �nd the
ontainer header for an obje
t, the lower two bytes are dropped to �nd thesuper-
ontainer header (aligned on 64KB addresses). Then the size of the
ontainers withinthe super-
ontainer is used to �nd the
ontainer header. For example, if the
ontainersin the super-
ontainer are 4KB in size, then the lower 12 bits of the obje
t address aredropped to �nd its
ontainer header.The
ontainer size is determined based on two fa
tors. First, the smallest
ontainer that�ts at least two obje
ts of the requested size is used. Se
ond, the number of requests fora
ontainer of ea
h bin size is re
orded, and if this
ounter has rea
hed a
ertain number,then the
ontainer size is in
reased. The slight in
rease in header size and the in
rease innumber of
ontainers in
reases internal fragmentation.5.9 Allo
ator H: Add Lo
k-Free OperationsLo
k-free operations, dis
ussed in Se
tion 3.1.6, may improve performan
e. Adding lo
k-free operations to the F2 allo
ator removes lo
ks from remote free-list insertions and
learson both thread heaps and the global heap, removing all lo
ks from the allo
ator. Thedrawba
k to adding lo
k-free operations is the in
rease in
ode
omplexity and hardwaredependen
y.

62 Chapter 5. Test Allo
ators5.10 Coales
ing Allo
atorIn addition to the multiple non-
oales
ing test-allo
ators, I also implemented a single
oales
ing allo
ator, IO-
lr (a
ombination of IO-
l and IO-
r in Table 3.1). This allo
atoravoids all forms of false-sharing, and redu
es
ontention through the use of per-threadheaps and a remote-free list. The thread-lo
al free-list bu�er is also used in order to
a
hefreed obje
ts and redu
e some unne
essary
oales
ing and splitting. The same bin sizesare used as the other test allo
ators, with the largest bin size being 64KB less the headersize. However, a variation of binning is used that allo
ates obje
ts to the exa
t requestedsize. Ea
h free list
ontains obje
ts that range in size from next smallest bin size to the
urrent bin size.This allo
ator uses both headers and trailers ea
h
ontaining the obje
t size, as shownin Figure 5.1. The obje
t size allows the header to lo
ate the trailer and the trailer tolo
ate the header, whi
h is ne
essary when
oales
ing with obje
ts before and after theobje
t in memory. The trailer also holds an additional
ag to indi
ate whether the obje
tis allo
ated or free. In addition to the obje
t size, when the obje
t is allo
ated, the headerpoints to the owner of the obje
t, as shown in Figure 5.1(a). When the obje
t is free, asin Figure 5.1(b), the header points to the next obje
t on a free list, and the deallo
atedstorage points to the previous obje
t on a free list.When an allo
ation request is made, the thread-lo
al free-list bu�er is
he
ked �rst.The request size is rounded down to the nearest bin size, and if there are no obje
ts onthat list large enough for the requested size, then the next largest bin's free list is
he
ked.If there are no obje
ts on that free list, then the thread heap
he
ks its free-lists.The thread heap maintains doubly linked lists of free obje
ts. The request size isrounded down to the nearest bin size and if any obje
t on that free list is large enough, itis removed from the free list and allo
ated to the program. If there are no free obje
ts of

5.10. Coales
ing Allo
ator 63(a) Allo
ated Obje
t(b) Free Obje
tFigure 5.1: Header and Trailer Stru
turethat bin size, then the �rst obje
t found on any larger bin size is split. One pie
e be
omesan obje
t of the requested size, while the remaining pie
e is pla
ed on the free list for theappropriate bin size. If there are no free obje
ts large enough in the thread heap, theremote free-list is
leared. All obje
ts on the remote free-list are freed to the thread heap,and if any are large enough for the requested obje
t size, it is allo
ated to the program.If no free obje
t is large enough, then the thread heap requests an obje
t from the globalheap. The global heap maintains one list of free obje
ts, all 64KB in size. If the globalheap has no free obje
ts, it allo
ates one using sbrk with 64KB alignment.When an obje
t is deallo
ated, if it is owned by the
urrent thread, it is pla
ed onthe thread-lo
al free-list bu�er. Otherwise, it is pla
ed on the remote-free list of theowner thread. When the thread-lo
al free-list bu�er rea
hes a threshold of 64KB of freeobje
ts, all obje
ts are freed to the thread heap. When an obje
t is freed to the threadheap, it
he
ks the obje
ts immediately before and after it, and
oales
es them if theyare on a thread-heap free-list, are owned by the same thread, and belong to the same64KB alignment. The free obje
ts being
oales
ed are removed from their
urrent freelist,
oales
ed into one free obje
t, and pla
ed on a free list with a bin size based on the
oales
ed size. When obje
ts are
oales
ed into a 64KB obje
t, the obje
t is freed to the

64 Chapter 5. Test Allo
atorsglobal heap.5.11 SummaryThis
hapter des
ribes a set of test allo
ators that ea
h implement a subset of the multi-threaded features des
ribed in Chapter 3. The next
hapter
onsiders several single andmulti-threaded ben
hmarks that are used to evaluate the existing and test allo
ators.

Chapter 6Memory Allo
ator Test SuiteThe previous two
hapters des
ribe a set of existing allo
ators and test allo
ators used inevaluating multi-threaded memory-allo
ator features. This
hapter des
ribes a test suiteof single and multi-threaded ben
hmarks used to
ompare the memory allo
ators.6.1 Single{Threaded Ben
hmarksThere are several single-threaded ben
hmarks used for
omparing memory allo
ators[BMBW00℄ [BZM02℄ [BZM01℄ [DDZ93℄. This se
tion looks at several of these ben
hmarksand their allo
ation
hara
teristi
s. Finally, a smaller set of ben
hmarks is sele
ted for theevaluation of memory allo
ators.In order to
hara
terize the ben
hmarks, I modi�ed the Hoard allo
ator to in
lude anadditional layer for
olle
ting statisti
s. These statisti
s are independent of the allo
atorused. The number of memory allo
ations and deallo
ations is re
orded and summarized inTable 6.1. For example, the �rst row is for ben
hmark P2C indi
ating a total of 199,263allo
ation requests, a total of 188,058 deallo
ation requests, a total of 387,321 memory65

66 Chapter 6. Test Suiterequests (a sum of both allo
ations and deallo
ations), and 5.62% of allo
ated obje
ts arenot deallo
ated during the program's lifetime.I made a se
ond modi�
ation to Hoard to
olle
t timing information, by adding a layerto mark the time of the �rst memory operation to the last memory operation, as well asthe total time spent in all memory operations. Although these statisti
s are dependent onthe memory allo
ator, they provide a general idea about the behaviour of the program.Table 6.2 shows the statisti
s
olle
ted from running the ben
hmark programs with thisallo
ator. For example, the �rst row is for ben
hmark P2C indi
ating it runs for 780 msfrom its �rst allo
ation to its last allo
ation or deallo
ation (the last time the allo
ator has
ontrol), it makes 255,322 allo
ations and 496,287
alls to the memory allo
ator (in bothallo
ations and deallo
ations) per se
ond (based on its 780,436 us runtime and the numberof operations listed in Table 6.1), it spends a total of 109 ms in the memory allo
ator,whi
h is 14% of its total runtime (as measured from the �rst to last memory operation).This information gives a general idea of how memory intensive these ben
hmarks are.Espresso, CFRAC, GCC, Perl, Gawk and ROBOOP make a large number of memoryrequests, while Espresso-2, GMake, Perl-2, Gawk-2, and XPDF-2 make a small number ofmemory requests. All programs ex
ept GMake and Gawk-2 deallo
ate nearly all of theirobje
ts. Espresso, CFRAC, GCC, Perl, Gawk, ROBOOP, and Lindsay are long runningprograms, while Espresso-2, GMake, Perl-2, and Gawk-2 are short running programs. GS,Espresso, Espresso-2, CFRAC, CFRAC-2, Perl, Gawk, and ROBOOPmake a large numberof allo
ation/deallo
ation requests per se
ond and spend a signi�
ant portion of theirruntime in memory operations, while GCC, Perl-2, Gawk-2, and Lindsay make a smallnumber of allo
ation/deallo
ation requests per se
ond and spend an insigni�
ant portionof their runtime in memory operations. The following se
tions give a brief des
ription ofthe ben
hmark programs.

6.1. Single{Threaded Ben
hmarks 67Table 6.1: Allo
ation Statisti
sBen
hmark # Allo
s # Deallo
s Memory Ops % UnfreedP2C 199,263 188,058 387,321 5.62GS 108,546 102,388 210,934 5.67Espresso 1,675,492 1,675,490 3,350,982 0.00Espresso-2 24,759 24,757 49,516 0.01CFRAC 10,890,124 10,890,122 21,780,246 0.00CFRAC-2 227,092 227,090 454,182 0.00GMake 4,641 2,662 7,303 42.64GCC 651,919 645,359 1,297,278 1.01Perl 591,984 590,778 1,182,762 0.20Perl-2 16,343 15,865 32,208 2.92Gawk 874,306 873,809 1,748,115 0.06Gawk-2 3,760 2,953 6,713 21.46XPDF 227,073 224,471 451,544 1.15XPDF-2 61,501 58,975 120,476 4.11ROBOOP 9,268,177 9,268,175 18,536,352 0.00Lindsay 108,790 108,788 217,578 0.00Table 6.2: Runtime Statisti
sBen
hmark Total Run-time (us) Avg Al-lo
s/se
 Avg Mem-ory Ops/se
 Time in MemoryOps (us) Time inMemoryOps (%)P2C 780,436 255,323 496,288 109,709 14.1GS 358,263 302,978 588,768 70,209 19.6Espresso 3,700,698 452,750 905,500 1,020,538 27.6Espresso-2 49,898 496,196 992,352 14,432 28.9CFRAC 20,567,315 529,487 1,058,974 5,443,342 26.5CFRAC-2 311,489 729,053 1,458,099 118,520 38.1GMake 16,383 283,282 445,768 2,177 13.3GCC 15,546,826 41,933 83,443 608,727 3.9Perl 1,882,696 314,434 628,228 329,622 17.5Perl-2 102,332 159,706 314,741 10,102 9.9Gawk 2,602,546 335,943 671,694 529,742 20.4Gawk-2 42,619 88,224 157,513 2,020 4.7ROBOOP 14,563,440 636,400 1,272,800 5,295,497 36.4Lindsay 4,682,409 23,234 46,467 69,283 1.5

68 Chapter 6. Test Suite6.1.1 P2CP2C is a Pas
al to C translator. The version provided in Hoard heap layers version 3-4-0is
ompiled and run with an input provided by the download (mf.p).6.1.2 GSGS is a posts
ript interpreter and viewer. GS version 2.1 is run with a 422KB input �le,provided by the Zorn download, and the display turned o�, so that it only interprets theposts
ript �le [DDZ93℄.6.1.3 Espresso/Espresso-2Espresso is an optimizer for programmable logi
 arrays. Espresso version 2.3 (released01/31/88) is run with the two inputs that are in
luded in the Hoard heap layers download:largest.espresso as the �rst input and Z5XP1.espresso as the se
ond input. While theruntime and number of obje
ts in
rease as the size of the input �le in
reases, the average
alls per se
ond and per
ent of time spent in memory operations does not
hange.6.1.4 CFRAC/CFRAC-2CFRAC is an implementation of the
ontinued fra
tion algorithm for fa
toring large num-bers. The version provided by the Hoard heap layers download is
ompiled and run withtwo di�erent input numbers: 35 digits longs (41 757 646 344 123 832 613 190 542 166 099121) and 22 digits long (1 000 000 001 930 000 000 057, whi
h is a produ
t of two primes).The larger the number, the longer the program runs, but with both inputs, a signi�
antportion of the program is spent in memory operations.

6.1. Single{Threaded Ben
hmarks 696.1.5 GMakeGMake version 3.80 is run with the input provided in the Zorn download [DDZ93℄. Alarge portion of obje
ts are never deallo
ated, indi
ating that most memory operations areallo
ation requests.6.1.6 GCCGCC version 3.4.2 is run with options to run only the
ompile step and with se
ond leveloptimizations to
ompile
ombine.
 - the largest �le in the GCC sour
e
ode.6.1.7 Perl/Perl-2Perl is a s
ripting language. It handles all memory management for the s
ript that itruns. Perl version 5.005 03 for sun4-solaris is run with the two inputs provided in the Zorndownload [DDZ93℄. The �rst s
ript is
alled adj and formats text based on some inputs forline length and indentation. The se
ond s
ript,
alled hosts, transforms a host �le from oneformat to another. The runtime and number of memory requests varies greatly dependingon the s
ript being run.6.1.8 Gawk/Gawk-2Gawk is a s
ripting language like Perl. Gawk version 2.11 is run with the two inputsprovided in the Zorn download [DDZ93℄. The �rst s
ript is a Gawk version of the adjs
ript used for Perl. The se
ond s
ript,
alled prog,
al
ulates allo
ation
osts for a memorysimulation. Like Perl, the memory
all behaviour varies depending on the s
ript being run.

70 Chapter 6. Test Suite6.1.9 XPDF/XPDF-2XPDF version 3.01 is run twi
e to open a �le that has 13 pages and is about 730KB. XPDFis a graphi
al program, and thus required intera
tion to run. In the �rst run, the �rst 4pages are
ipped through and then the viewer is
losed. In the se
ond run, the viewer is
losed as soon as the window opens. The runtime and time spent in memory operationsare irrelevant for this ben
hmark sin
e it is highly dependent on input from the user, andhen
e do not appear in Table 6.2.6.1.10 ROBOOPROBOOP is a roboti
s simulation toolkit. Version 1.09 is run with the ben
h exe
utableprovided with the ROBOOP toolkit to ben
hmark di�erent operations. This ben
hmarkruns slightly longer than most of the single-threaded ben
hmarks, makes a large numberof memory requests, and spends a signi�
ant portion of its runtime in memory operations.6.1.11 LindsayLindsay is a hyper
ube simulation. The version provided with the Hoard download is
ompiled and run with the input provided. This ben
hmark is one of the least memoryintensive ben
hmarks making a relatively small number of memory requests, and spendinga small portion of its time in memory operations.6.2 Multi{Threaded Ben
hmarksSeveral mi
ro-ben
hmarks have been
reated for
omparing multi-threaded memory allo-
ators [BMBW00℄ [SAN06℄. This se
tion des
ribes them in detail. Ea
h ben
hmark has a

6.2. Multi{Threaded Ben
hmarks 71spe
i�
 memory allo
ation pattern and number of memory operations.6.2.1 Re
y
leThe Re
y
le ben
hmark stresses the ability of the allo
ator to handle di�erent threadsallo
ating and deallo
ating independently. There is no intera
tion among threads. Thenumber of threads is an input parameter. Ea
h thread allo
ates 1 000, 8-byte obje
ts thendeallo
ates them in the order they were allo
ated. The total number of obje
ts allo
atedin the program is 107 and is distributed among its threads. Hen
e, the work performed byea
h thread de
reases as the number of threads in
reases.6.2.2 ConsumeConsume is a mi
ro-ben
hmark that simulates a produ
er-
onsumer s
enario. Its purposeis to test for heap blowup in a situation where only one thread allo
ates obje
ts, and otherthreads only deallo
ate obje
ts. The number of
onsumer threads is an input parameter.One produ
er
reates 6 000, 8-byte obje
ts for ea
h
onsumer thread. On
e a set of 6 000obje
ts is
reated, it is given to a
onsumer to deallo
ate. This pro
ess is repeated 5 000times. No work is done on the obje
ts, so as
onsumer threads are added the produ
erbe
omes the bottlene
k.6.2.3 False{Sharing Mi
ro{ben
hmarksTwo mi
ro-ben
hmarks, Passive-False and A
tive-False, are used to test for passive anda
tive false-sharing. Both ben
hmarks are provided with the Hoard download. The numberof worker threads is an input parameter in ea
h ben
hmark. In Passive-False, the mainthread
reates a number of worker threads, passing to ea
h an 8 byte obje
t it allo
ated.

72 Chapter 6. Test SuiteEa
h worker thread deallo
ates the obje
t, allo
ates a new 8 byte obje
t, writes to it10 000 times, and then repeats the pro
ess 100 000 times divided by the number of threads.A
tive-False is the same as Passive-False, ex
ept that no initial obje
t is
reated by themain thread. The amount of work is
onstant and distributed over the number of threads.Therefore, ideally the runtime should s
ale with the number of threads.6.2.4 LarsonLarson is a mi
ro-ben
hmark provided with the Hoard download that simulates the memoryallo
ation behaviour of a server [LK99℄. The ben
hmark is run for 30 se
onds
reatingobje
ts of random sizes between 10 and 100 bytes. The number of a
tive threads remains
onstant through the life of the program, but is
on�gured as an input parameter. Ea
hthread is passed an array of 10 000 obje
ts. It then randomly sele
ts an obje
t to destroyand repla
es it with a new one, thus maintaining a working set of 10 000 obje
ts. Ea
hthread repeats the deallo
ation/allo
ation pro
ess 100 000 times. Finally, before the threadterminates it passes its array of 10 000 obje
ts to a new
hild thread to
ontinue the pro
ess.The number of generations varies depending on the speed of the threads. The throughputis
al
ulated as the number of allo
ations that o

ur per se
ond.6.3 Tra
e Colle
tionThe multi-threaded mi
ro-ben
hmarks are simple programs, and their allo
ation behaviouris well understood. To further analyze the allo
ation patterns of the single-threaded ben
h-marks, tra
es are
olle
ted. While statisti
s give general overall
hara
teristi
s of theprogram, tra
es
an be used to
olle
t information about the patterns of allo
ations anddeallo
ations throughout the lifetime of the program.

6.4. Tra
e Results 73To
olle
t the tra
es, I added a log heap-layer to the Hoard memory allo
ator writtenusing heap layers (version 3.4.0). For ea
h mallo
 and free, a log re
ord is generatedin
luding the size of the mallo
 and the address of the mallo
 or free. At the end of aprogram, the re
ords are all written out to a �le, whi
h redu
es the probe e�e
t on theprogram. Ea
h entry in the log also
ontains a time stamp when the operation o

urred.To add a time stamp to the re
ords, several methods for
olle
ting time were
onsidered,in
luding: getitimer, gettimeofday, gethrvtime/gethrtime, and
pu performan
e
ounters(all performan
e
ounters are hardware/software dependent). Ea
h method is
onsideredfor use on a Spar
 ma
hine running Solaris. Two requirements were used to sele
t a timingmethod: the timer resolution and its ability to measure virtual time. In these programsit is ne
essary to have mi
rose
ond resolution. A virtual timer that does not
ount timeduring a kernel-thread time sli
e (when the program is not running) is also ne
essary toobtain an a

urate measurement. Of the listed options, the
pu performan
e
ountersprovide a virtual timer at the required resolution.6.4 Tra
e ResultsAnalysis of the
olle
ted tra
es provide an overall distribution and variation over the life-time of the program for ea
h of the following pie
es of information:� sizes of requests� lifetime of obje
ts� interarrival times of allo
ations and deallo
ations� allo
ation footprint

74 Chapter 6. Test SuiteTable 6.3: Size of RequestsBen
hmark Averageobje
t size(bytes) Total al-lo
ated(bytes) Largest ob-je
t (bytes) Smallestbinsize(bytes) Most
ommonbin size (bytes) -frequen
y (%)P2C 24.3 4,851,116 8,200 8 24 - 63.0GS 173.3 18,806,773 20,016 16 296 - 38.4Espresso 64.0 107,184,579 55,072 8 32 - 52.1Espresso-2 43.1 1,068,053 8,200 8 8 - 41.1CFRAC 17.7 192,941,761 8,200 16 16 - 60.5CFRAC-2 14.7 3,338,366 8,200 8 16 - 71.1GMake 48.5 224,949 8,200 8 8 - 39.4GCC 880.5 574,031,347 932,052 8 40 - 30.0Perl 19.8 11,740,395 8,203 8 8 - 64.2Perl-2 25.7 420,114 8,257 8 24 - 38.1Gawk 55.9 48,836,034 8,200 8 8 - 28.0Gawk-2 28.4 106,848 8,200 8 8 - 81.5XPDF 229.0 51,991,393 2,955,168 8 8 - 56.7XPDF-2 327.1 20,118,022 2,955,168 8 24 - 35.0ROBOOP 34.7 321,322,872 8,200 8 24 - 54.6Lindsay 67.8 7,373,660 1,490,944 8 56 - 93.06.4.1 Sizes of RequestsSome general statisti
s on allo
ation sizes are shown in Table 6.3. The bin sizes used arethose used in the Hoard allo
ator. Half of the ben
hmarks have a majority of obje
tsfalling under one bin size. For all programs, the most
ommon bin size is quite small.Figures A.1 and A.2 show the distribution of obje
ts among bin sizes having at least oneper
ent of obje
ts. Most programs allo
ate obje
ts in only a few of the smaller bin sizes.Almost all of the ben
hmark programs have 75% of their obje
ts falling in one to threebin sizes. All bin sizes that a

ount for at least one per
ent of the obje
ts in the programfall in a small range from the smallest bin size to a bin size less than half a kilobyte. Thesingle ex
eption is GCC, whi
h has several larger obje
ts.

6.4. Tra
e Results 75The allo
ation sizes over time are shown in Figures A.3 and A.4. To redu
e the numberof data points on the graph, several nearby points are
ondensed into one point, with thedi�erent
olours indi
ating the number of obje
ts
ondensed into one point.The allo
ation behaviour falls into two
ategories. The �rst
ategory
onsists of pro-grams that are very uniform in the allo
ation behaviour for the entire program. The se
ond
ategory
onsists of programs that have distin
t segments with ea
h segment having dif-ferent allo
ation patterns. These segments of di�erent behaviour reappear in all graphsshowing allo
ation
hara
teristi
s over the runtime of the program. GS, CFRAC, Perl(both inputs), Gawk (both inputs), and Lindsay fall into the �rst
ategory. P2C, Espresso(both inputs, although it is more
lear for input 1), GMake, GCC, XPDF, and ROBOOPfall into the se
ond
ategory.In P2C, the allo
ation behaviour
hanges for two short periods during the program,while the rest of the time the allo
ation sizes are quite uniform. Espresso has severaldi�erent program segments that behave di�erently in terms of memory allo
ation sizes.GMake and GCC are diÆ
ult to
ategorize be
ause GMake has too few points, and GCChas too many. However, GMake allo
ates
ertain obje
t sizes in the �rst half of theprogram that are di�erent from those in the se
ond half. GCC has a short startup periodin whi
h the allo
ation behaviour di�ers from the rest of the program. XPDF has di�erentallo
ation patterns for startup, page loading, and shutdown. In the �rst input, the pagesof the do
ument are
ipped,
ausing a repeat of that segment of the program. ROBOOPhas three di�erent segments of di�erent allo
ation behaviour.6.4.2 Lifetimes of Obje
tsThe lifetime of an obje
t is
al
ulated as the di�eren
e between the timestamp taken justafter the mallo
 operation and the timestamp taken just before the free operation. Some

76 Chapter 6. Test SuiteTable 6.4: LifetimesBen
hmark Avg Lifetime(freed) (us) Avg Lifetime(all) (us) Shortest Life-time(us) Longest Life-time (freed)(us)P2C 4,206 30,858 0.2 771,008GS 67 12,657 0.5 352,524Espresso 625 630 0.2 3,699,626Espresso-2 178 183 0.2 48,926CFRAC 8,339 8,341 0.4 20,566,470CFRAC-2 772 774 0.4 310,698GMake 263 4,288 0.9 6,873GCC 2,622 105,298 0.2 15,524,398Perl 2,905 6,700 0.5 1,881,408Perl-2 1,986 4,852 0.6 101,201Gawk 47 1,511 0.7 2,599,207Gawk-2 453 8,835 1.1 38,128XPDF 66,535 104,850 0.5 3,520,422XPDF-2 53,597 82,725 0.5 826,259ROBOOP 102 105 0.6 14,562,460Lindsay 8,804 8,890 3.0 4,682,065statisti
s on average, shortest, and longest lifetime are shown in Table 6.4. An obje
t that isnever deallo
ated has a lifetime from the time it is allo
ated to the time of the last memoryoperation of the program (whi
h is the last measurable point for the logging layer). Theaverage lifetime of obje
ts is given both for obje
ts that are deallo
ated (freed) and for allobje
ts (in
luding ones not freed). The shortest lifetime is less than one mi
rose
ond formost programs. The longest lifetime of an obje
t that is deallo
ated before the
ompletionof the program is also shown. In many
ases, this is an obje
t that is allo
ated near thestart of the program, and deallo
ated just before the end of the program.Figures A.5 and A.6 show a
umulative distribution of lifetimes of obje
ts. Most obje
tslive for a very short time. The
umulative distribution of lifetimes indi
ates that foralmost all programs, at least half of the obje
ts live for less than 100 us. Plotting obje
t

6.4. Tra
e Results 77size relative to the obje
t's lifetime indi
ates that most obje
ts are small and have ashort lifetime. Lindsay is the only program to exhibit a very di�erent behaviour in termsof lifetime distribution. Almost all obje
ts in Lindsay live
lose to 10 000 us. No otherprogram exhibits su
h a large and steep spike in lifetime distribution and at a relativelylarge lifetime.For the most part, the lifetime distribution graphs tend to follow one of two patterns.The �rst pattern is an S-
urve in the
umulative distribution. This pattern indi
ates alarge portion of obje
ts having similar lifetimes. The programs that follow this pattern areP2C, GS, Espresso (both inputs), GMake, GCC, XPDF (both inputs) and ROBOOP. GS,GMake and XPDF are slightly di�erent. Their graphs indi
ate that a number of obje
tsalso have longer lifetimes. This behaviour is likely the result of a large number of obje
tsallo
ated near the start of the program and freed near the end. The se
ond pattern is a setof steps in the
umulative distribution graphs. This behaviour indi
ates several popularobje
t lifetimes. The programs that follow this pattern in
lude CFRAC (both inputs), Perl(both inputs), Gawk (both inputs) and Lindsay (although it really only has two steps).Gawk and Perl both have very similar fun
tions, that leads to similar behaviour in lifetimedistributions.Figures A.7 and A.8 plot the lifetime of obje
ts relative to the time in the programthey are allo
ated. These graphs show the
hanges in program behaviour that also appearin Figures A.3 and A.4 and are noted in Se
tion 6.4.1. Sin
e most obje
ts have very shortlifetimes, it is diÆ
ult to see detailed patterns in Figures A.7 and A.8. Figure A.9 showssome of the details in Figures A.7 and A.8 by showing only short-lived obje
ts over a shortperiod of time for some of the ben
hmark programs. These �gures show that there are atleast two
ommon patterns of repeated behaviour in terms of the lifetimes of obje
ts.One
ommon pattern, shown in Figures A.9(a) to A.9(e), are dots forming straight

78 Chapter 6. Test SuiteTable 6.5: Interarrival TimesAverage Time (us) Shortest Time (us) Longest Time (us)Ben
hmark All Allo
 Deallo
 All Allo
 Deallo
 All Allo
 Deallo
P2C 2.0 3.9 4.1 0.2 0.4 0.4 3,078 3,420 4,178GS 1.7 3.3 3.5 0.3 0.4 0.5 586 586 622Espresso 1.1 2.2 2.2 0.2 0.3 0.4 4,019 4,022 4,486Espresso-2 1.0 2.0 2.0 0.2 0.3 0.4 806 839 844CFRAC 0.9 1.9 1.9 0.2 0.3 0.4 408 5,237 413CFRAC-2 0.7 1.4 1.4 0.2 0.4 0.4 43 724 51GMake 2.1 3.3 5.7 0.3 0.3 0.4 137 137 273GCC 12.0 23.8 24.1 0.2 0.3 0.3 106873 106924 107578Perl 1.6 3.2 3.2 0.2 0.4 0.4 93 149 232Perl-2 3.2 6.2 6.4 0.2 0.4 0.5 79 91 261Gawk 1.5 3.0 3.0 0.2 0.4 0.4 65 82 384Gawk-2 6.2 11.1 14.0 0.3 0.5 0.5 98 112 1,166XPDF 7.8 15.5 15.7 0.2 0.4 0.4 141926 141931 141945XPDF-2 6.9 13.4 14.0 0.3 0.3 0.4 139194 139199 139215ROBOOP 0.8 1.6 1.6 0.3 0.4 0.4 471 471 113Lindsay 21.5 43.0 42.9 1.3 1.3 1.6 7466 7466 2697lines. When the dots in the line are
lose together, this indi
ates obje
ts that are allo
ated
lose together and are also freed
lose together. When these lines fall at 45 degrees, thisindi
ates that obje
ts are being allo
ated over time and then deallo
ated all at on
e. Whenthe line is verti
al, the obje
ts are allo
ated at the same time and then deallo
ated slowlyover time in reverse order. When the line is horizontal, the obje
ts are allo
ated togetherand deallo
ated together in the same order.A se
ond
ommon pattern is a group of repeated lifetimes, whi
h is likely
aused byrepeated behaviour in the program su
h as what might o

ur in a loop. This pattern isdemonstrated in Figures A.9(d) to A.9(h).

6.4. Tra
e Results 796.4.3 Interarrival Times of Allo
ations and Deallo
ationsThe interarrival time is
al
ulated as the amount of time sin
e the previous request. Theinterarrival times of all memory requests, allo
ations, and deallo
ations are
al
ulated fromthe tra
e logs. The average, shortest, and longest times are shown in Table 6.5. FiguresA.10 and A.11 show a
umulative distribution of the three types of interarrival times. Theinterarrival times are all very short, with about 90% of
alls being less than 10 us apart inall ben
hmarks ex
ept GCC and Lindsay. There appears to be a relationship between theinterarrival times and obje
t lifetimes, as the
umulative distribution graphs of both arevery similar in shape for these ben
hmarks programs.6.4.4 Allo
ation FootprintThe allo
ation footprint is
al
ulated by in
reasing the memory size by the requested size,ea
h time an obje
t is allo
ated, and de
reasing the memory size by the obje
t size, ea
htime an obje
t is deallo
ated. The memory size over the runtime of ea
h program is shownin Figures A.12 to A.14. The number of allo
ated obje
ts is also shown as a separate line.This line indi
ates whether large in
reases in the footprint are
aused by a large numberof obje
ts being allo
ated
lose together, or one large obje
t being allo
ated. Table 6.6shows the average and maximum values of these two lines.There are two types of patterns in the allo
ation footprint. One pattern is a gradualin
rease, the se
ond is a fast in
rease followed by a plateau and a �nal drop in the allo
ationfootprint and number of obje
ts. Programs that do not deallo
ate all obje
ts do not returnto a zero allo
ation-area size at the end of the program. The segments of di�erent programbehaviour noted in Se
tion 6.4.1, also appear in the allo
ation footprint graphs.

80 Chapter 6. Test SuiteTable 6.6: Allo
ation FootprintSize (bytes) Number of Obje
tsBen
hmark Average Maximum Average MaximumP2C 275,871 406,897 7,874 12,645GS 351,001 484,049 3,823 6,197Espresso 169,710 280,115 285 4,389Espresso-2 23,688 42,873 92 691CFRAC 75,784 150,036 4,417 8,810CFRAC-2 8,890 18,395 565 1,231GMake 44,511 62,366 1,165 1,987GCC 2,609,506 4,830,775 4,415 8,019Perl 114,888 123,694 2,107 2,137Perl-2 72,167 82,015 778 804Gawk 38,232 38,905 508 551Gawk-2 66,555 70,956 779 828XPDF 5,845,536 6,701,879 6,762 9,609XPDF-2 4,839,299 6,552,307 6,152 8,324ROBOOP 14,083 15,960 67 117Lindsay 1,910,420 1,915,712 207 2966.5 Ben
hmark Sele
tionSin
e single-threaded ben
hmarks do not highlight the eÆ
ien
y of a multi-threadedmemory-allo
ator, only a small set of single-threaded ben
hmarks are ne
essary. The programssele
ted are P2C, espresso (input 1), GCC, gawk (input 1), and ROBOOP. The analysisof the sele
ted ben
hmarks indi
ates that they have a wide range of allo
ation
hara
ter-isti
s, whi
h justi�es their use in
hara
terizing the performan
e of a memory allo
ator.The dis
arded ben
hmarks have very similar allo
ation behaviours to the sele
ted ben
h-marks or have some other disadvantage. For example, XPDF uses a graphi
al interfa
eand depends on user intera
tion, and some ben
hmarks have a relatively small number ofmemory allo
ations.

6.6. Summary 816.6 SummaryThis
hapter des
ribes the test suite used to evaluate memory allo
ator performan
e. Thenext
hapter uses this test suite to
ompare existing allo
ators and test allo
ators.

Chapter 7Memory Allo
ator EvaluationThe previous
hapter des
ribes a set of single and multi-threaded ben
hmark programsused to evaluate multi-threaded memory allo
ators. This
hapter analyzes the results ofrunning the ben
hmarks with existing allo
ators and test allo
ators.The main goal of a multi-threaded allo
ator is to allow a well behaved multi-threadedprogram to s
ale in performan
e as threads are added. If a program is written to s
ale withthe number of threads, the memory allo
ator should not be the bottlene
k preventing itfrom s
aling. S
aling
an be tested using mi
ro-ben
hmarks that are written to s
ale andstress the memory allo
ator in di�erent situations. A related measurement is the overallruntime of the programs. Running single and multi-threaded ben
hmark programs usingdi�erent memory allo
ators shows the overall e�e
t of the allo
ator in ea
h
ontext.Besides the runtime performan
e of a memory allo
ator, the amount of memory that itrequires may also be important. Typi
ally, there is a trade-o� between runtime performan
eand memory usage. Di�erent situations pla
e di�erent priorities on these goals.Internal and external fragmentation indi
ates the amount of additional memory re-quired by a memory allo
ator. However, these measures are diÆ
ult to obtain without82

7.1. Runtime and S
aling 83Table 7.1: Test SetupSetup OS Number of CPUs CPU detail MemoryA Solaris 8 8 900 MHz Spar
 16 GBB Linux 8 2.5 GHz Dual Core AMD Opteron 16 GBC Linux 64 1.3 GHz Itanium 2 IA-64 192 GBmodifying the sour
e
ode of the memory allo
ator. An indire
t way to observe the e�e
tof the memory allo
ator on memory usage is to observe the virtual memory and resident-set size used by the program while it is running. These measures indi
ate the amount ofmemory that is reserved from the operating system and the overall e�e
t of the allo
atoron the system in whi
h the program is running.Table 7.1 des
ribes the three test setups in whi
h the ben
hmark programs are run.Setup A and B are used by other users, and hen
e the ben
hmarks
annot make full use ofall CPUs. This interferen
e
auses a
attening of performan
e
urves at their ends. Thesetup C ma
hine had 8 CPUs isolated for the purpose of these tests. Due to the di�erentar
hite
tures, Stream
ow only supports setup C. On Setup A, the default allo
ator is Sun'smallo
 (a single-heap allo
ator), whereas on Setup B and C, the default allo
ator is Glib
(Ptmallo
).This se
tion looks at these measurements for the existing allo
ators des
ribed in Chap-ter 4 as well as the test allo
ators des
ribed in Chapter 5 using the ben
hmark programsdes
ribed in Chapter 6.7.1 Runtime and S
alingThe single-threaded ben
hmarks are tested for a
omparison between single-threaded andmulti-threaded allo
ators. The multi-threaded ben
hmarks show how di�erent memoryallo
ators in
uen
e the performan
e as threads are added to the program. Ea
h mi
ro-

84 Chapter 7. Evaluationben
hmark is designed to stress a di�erent issue in multi-threaded programs. This se
tionlooks at ea
h ben
hmark and how the di�erent allo
ators perform.7.1.1 Single-Threaded Ben
hmarksIn order to repla
e the default allo
ator for all programs, the new allo
ator should performat least as well as the
urrent default allo
ator in both single and multi-threaded programs.All the single-threaded ben
hmarks have very short runtimes of just a few se
onds. Sin
ethe runtimemeasurement only measures to a pre
ision of millise
onds, only large di�eren
es
an be identi�ed. However, the runtime varies very little among allo
ators. They allperform equally well to the default Solaris or Linux allo
ator.7.1.2 Re
y
leThe Re
y
le ben
hmark stresses the ability of the allo
ator to handle di�erent threadsworking independently. In this situation, per-thread heaps and redu
ed lo
king in lo
aloperations result in the best performan
e, sin
e all operations are lo
al to ea
h thread.The ben
hmark is run on all three test setups with the results in runtime and speedupshown in Figures 7.1 to 7.3. The speedup is
al
ulated as the runtime with one threaddivided by the runtime with n threads.In setup A, Figure 7.1(b) shows that a single-heap allo
ator limits the s
aling of Re
y
le.Both the Solaris default allo
ator and allo
ator A degrade the performan
e of the programas threads are added. The in
reased
ontention for the single heap prevents any parallelexe
ution in the program. Allo
ator B removes a great deal of the
ontention observed inthe Solaris and A allo
ators by adding per-thread heaps. However, allo
ator B does notprevent a
tive false-sharing, whi
h leads to slightly less than perfe
t s
aling. Allo
ator Cadds
ontainers, whi
h removes most a
tive false-sharing, leading to perfe
t s
aling up to

7.1. Runtime and S
aling 85
(a) Runtime
(b) SpeedupFigure 7.1: S
aling in Re
y
le on Setup A

86 Chapter 7. Evaluationsix pro
essors. Allo
ators D and E introdu
e lo
ks, whi
h in
reases their runtime by a
onstant amount, ex
ept in the
ase of one thread. An optimization in heap lo
king avoidsatomi
 operations if the program is single-threaded. For this reason, the single-threaded
ase performs slightly better and lowers the
al
ulated s
alability for the multi-threaded
ases in allo
ators D and E. Allo
ators F1 and F2 use thread-lo
al free-lists and remotefree-lists to remove the need to obtain lo
ks for memory operations in this program, leadingto perfe
t s
aling up to six pro
essors. Allo
ator G introdu
es super-
ontainers, whi
h
anredu
e performan
e due to additional
omplexity, but
an also improve performan
e byredu
ing the number of
ontainers. As a result, allo
ator G has similar performan
e to F2on this setup. The lo
k-free operations in allo
ator H show no e�e
t on performan
e. The
oales
ing allo
ator, whi
h has all the bene�ts of allo
ators F1 and F2 ex
ept that it doesnot use
ontainer headers, s
ales perfe
tly up to six pro
essors. Hoard, being very similarto F1, also s
ales perfe
tly up to six pro
essors.On setup B, shown in Figure 7.2, lo
ks have less of an in
uen
e on performan
e, soallo
ators D and E do fairly well, possibly due to faster atomi
 instru
tions on the newerar
hite
ture. A
tive false-sharing, seen in allo
ator B, has a signi�
ant e�e
t. The defaultLinux allo
ator, Ptmallo
, s
ales only slightly. Ptmallo
 redu
es
ontention by providingmultiple heaps. Although it is expe
ted that ea
h thread should request all of its obje
tsfrom one heap, by examining the addresses of the obje
ts allo
ated, I dis
overed thatthreads are
onstantly swit
hing heaps throughout the entire run of the program. Thus,although there is little
ontention for thread heaps, its s
aling ability is limited by a
tivefalse-sharing. Although Hoard has very good s
aling, it has a slower runtime. After furtherinvestigation, I found the
ause to be a di�eren
e in
al
ulation in the thread-lo
al free-list bu�er. Hoard rounds up request sizes to at least the size of two pointers. In thisben
hmark, all allo
ations are for 8 bytes, whi
h on a 64-bit ma
hine is smaller than two

7.1. Runtime and S
aling 87
(a) Runtime
(b) SpeedupFigure 7.2: S
aling in Re
y
le on Setup B

88 Chapter 7. Evaluationpointers. However, the rounding o

urs after the
he
k for obje
ts on the thread-lo
al free-list bu�er,
ausing obje
ts to be freed to a di�erent bin list than they are requested from.Hen
e, in setups B and C, the bu�er is not used,
ausing a slight redu
tion in runtimeperforman
e, but having no in
uen
e on s
aling.Setup C, shown in Figure 7.3 has similar results to setup B. Allo
ators A and B s
alequite poorly, where a
tive false-sharing o

urs. The Linux allo
ator does fairly well onthis ma
hine. The performan
e of Re
y
le using Ptmallo
 is highly dependent on theheap sele
ted for ea
h allo
ation. By examining the addresses of the obje
ts allo
ated, Idis
overed that threads swit
h heaps a few times at the start of the program, but thenqui
kly stabilize so that ea
h thread uses one heap. However, when there are more threadsrunning, the stabilization takes mu
h longer. Thus, the s
aling begins to level o� and dropswith six, seven, and eight threads. The new allo
ator to this test setup, Stream
ow, s
alesfairly well and its performan
e is similar to that of other
ommon ar
hite
ture allo
ators.7.1.3 ConsumeThe Consume ben
hmark is not expe
ted to s
ale as the number of threads in
reases sin
ethe amount of work also in
reases proportionally. As well, the produ
er is expe
ted to be-
ome the bottlene
k as more
onsumer threads are added. The purpose of this ben
hmarkis to test for heap blowup in a situation where only one thread allo
ates obje
ts, and otherthreads only deallo
ate obje
ts. Two features expe
ted to help the performan
e in thisben
hmark are an allo
ation bu�er for the produ
er thread to allo
ate from, and a remotefree-list for
onsumer threads to free to. The impa
t of these features is limited by thesyn
hronization in this program.In this ben
hmark, ea
h
onsumer has an array, and in ea
h iteration the produ
erthread �lls ea
h array with obje
ts. When an array is �lled, the
onsumer begins to

7.1. Runtime and S
aling 89
(a) Runtime
(b) SpeedupFigure 7.3: S
aling in Re
y
le on Setup C

90 Chapter 7. Evaluationdeallo
ate the obje
ts in its array. On
e the produ
er has �lled all
onsumer arrays, itwaits for them to all be
onsumed before moving to the next iteration. If �lling the arraytakes at least as long as
onsuming the array, then it is expe
ted that only one
onsumerthread runs at a time. If �lling the array takes less times than
onsuming the array, thenmultiple
onsumers may be running at on
e.Figures 7.4 and 7.5 show the runtime of running the ben
hmark with 6 000 obje
tsin ea
h array and 5 000 iterations with one produ
er thread and one to seven
onsumerthreads. Ea
h data point represents an average of �ve test runs. The shorter the runtime,the better the performan
e. It was observed that the runtime with ea
h allo
ator variessigni�
antly for this ben
hmark on all test setups. The instability in performan
e is aresult of
ontention for a shared resour
e. In all the tested allo
ators, the
onsumer threads
ontend for a shared resour
e: the single heap, the global shared heap, or the produ
erheap. Be
ause the performan
e tests provide unstable results, it is impossible to make anydetailed
on
lusions. Nevertheless, it is possible to make some general statements aboutthe results.In general, in allo
ators A, B and C, the produ
er thread must obtain ea
h obje
t itallo
ates individually, leading to generally poor performan
e. In allo
ator A, ea
h obje
t isobtained from sbrk. In allo
ator B, ea
h obje
t is obtained from the global heap. Althoughallo
ator C does use an allo
ation bu�er, it prefers to reuse obje
ts from the global heapbefore allo
ating a new allo
ation bu�er. Hen
e, on
e there are enough obje
ts in the globalheap, the produ
er thread requests obje
ts from the global heap rather than allo
ate a newallo
ation bu�er. Thus, the produ
er thread must obtain ea
h individual obje
t from theglobal heap.Allo
ators D to H all have similar and good linear performan
e. In these allo
ators,the produ
er thread obtains a
ontainer full of free obje
ts from the global heap. On
e

7.1. Runtime and S
aling 91
(a) Setup A
(b) Setup BFigure 7.4: Runtime Performan
e in Consume

92 Chapter 7. Evaluation
(a) Setup CFigure 7.5: Runtime Performan
e in Consumethe
onsumer threads begin to deallo
ate obje
ts, they are deallo
ated dire
tly to theprodu
er thread. Although the remote free-list in allo
ators F2, G, H, and Stream
owis expe
ted to improve performan
e by allowing the produ
er to run without
ontendingfor lo
ks, it is not always the
ase. The remote free-list removes lo
ks for most produ
eroperations. However, by allowing the produ
er to run faster, more
onsumer threads runat one time,
ausing more
ontention among
onsumer threads. In some situations, the
onsumer threads be
ome a bottlene
k, leaving the produ
er waiting for the
onsumerthreads to �nish
onsuming their arrays.The performan
e of the
oales
ing allo
ator is slightly redu
ed be
ause all deallo
ationsare remote frees. In this implementation of the allo
ator, when the remote free-list is
leared, the obje
ts are freed dire
tly to the thread heap. This de
ision means the obje
ts

7.1. Runtime and S
aling 93are
oales
ed immediately with nearby obje
ts, and not
a
hed at their deallo
ated size, aswhen they are lo
ally freed to the thread-lo
al free-list bu�er. Sin
e all obje
ts in Consumeare the same size, performan
e is negatively a�e
ted by this implementation de
ision.Although Hoard is similar to allo
ator F1, it generally performs slightly worse. Hoardallows any obje
t to be freed to the thread-lo
al free-list bu�er, not just those owned by thelo
al thread. Thus, a
onsumer thread using allo
ator F1 returns ea
h obje
t immediatelyto the produ
er thread, while a
onsumer thread using Hoard pla
es the obje
t on itsthread-lo
al free-list bu�er. Eventually, the free-list bu�er rea
hes its threshold of freeobje
ts and the bu�er is
leared. When this happens, ea
h obje
t is individually freedto the produ
er's thread heap, a
quiring a lo
k for ea
h obje
t. Thus, the thread-lo
alfree-list bu�er only adds additional
omplexity in this program.The default Solaris allo
ator has fairly poor performan
e, sin
e all threads
ontendfor the same heap. The default Linux allo
ator performs fairly well, sin
e the produ
erthread
an use another thread heap if its previous one is being used by a
onsumer threadto deallo
ate obje
ts. Having the produ
er swit
h heaps allows the produ
er to avoid
ontention, and distributes the deallo
ations of
onsumer threads among several heaps,avoiding some
ontention.7.1.4 False-Sharing Ben
hmarksThe false-sharing ben
hmarks test an allo
ator's ability to handle a
tive and passive false-sharing. Only one form of a
tive false-sharing is tested, sin
e the number of free obje
tsnever rea
hes a signi�
ant size and obje
ts are never freed to the global heap. The runtimeperforman
e of these ben
hmarks using di�erent allo
ators on the di�erent test setupsare shown in Figure 7.6. In all three setups, allo
ators that avoid false-sharing have verystable runtime performan
e and s
aling, while those that do not have random spikes of

94 Chapter 7. Evaluationslow runtimes due to hardware
a
he loading.The �rst
olumn shows that allo
ators using
ontainers avoid all
ases of a
tive false-sharing tested by the a
tive-false ben
hmark. The Linux allo
ator does exhibit someperforman
e loss due to a
tive false-sharing; however, it is not as extreme as allo
atorsA, B, and the Solaris allo
ator. The e�e
t in the Linux allo
ator is dependent upon thesele
tion of a heap to satisfy the allo
ation request. If a thread allo
ates from the sameheap most of the time, then it experien
es little a
tive false-sharing. Both Hoard andStream
ow prevent a
tive false-sharing and s
ale well.The se
ond
olumn shows that allo
ators A, B, and C exhibit poor s
aling on all testsetups be
ause they allow passive false-sharing to o

ur. Solaris also s
ales fairly poorly,while the Linux allo
ator s
ales slightly better. The Linux allo
ator would prevent passivefalse-sharing if ea
h thread always allo
ated from the same thread heap, but the resultsshow that this is not the
ase. Allo
ators D to H, and Stream
ow all prevent passivefalse-sharing, and all s
ale well.The only anomaly is Hoard, whi
h has poor s
aling in passive-false on setup A, butgood s
aling in passive-false on setups B and C. Hoard's delayed ownership should allowpassive false-sharing to o

ur through the thread-lo
al free-list bu�er. However, due to therounding of obje
t sizes on Hoard in 64-bit ma
hines, des
ribed in Se
tion 7.1.2, obje
tsin the bu�er are not used, eliminating passive false-sharing.7.1.5 LarsonLarson
al
ulates allo
ations per se
ond, whi
h should s
ale with the number of workerthreads. An array is
reated for ea
h working thread, and �lled with obje
ts of random sizesbetween 10 and 100 bytes. Ea
h worker thread randomly sele
ts an obje
t to deallo
atefrom its array and repla
es it with a new allo
ation. Ea
h thread repeats this pro
ess

7.1. Runtime and S
aling 95
(a) A
tive-False - Setup A (b) Passive-False - Setup A
(
) A
tive-False - Setup B (d) Passive-False - Setup B
(e) A
tive-False - Setup C (f) Passive-False - Setup CFigure 7.6: S
aling in False-Sharing Ben
hmark

96 Chapter 7. Evaluationseveral times, then
reates a new thread to
ontinue working on its array and dies. Theben
hmark is run with arrays of 10 000 obje
ts and ea
h thread repla
ing 100 000 obje
ts.There is little
ontention for thread heaps in Larson, sin
e deallo
ations are mostly forobje
ts owned by the
urrent thread, and the remaining few are for obje
ts owned by a
ompleted thread. Figures 7.7 to 7.9 show the throughput in allo
ations per se
ond and thespeedup for ea
h test setup. The speedup is
al
ulated as the throughput with n threadsdivided by the throughput with one thread. All the allo
ators s
ale quite well ex
ept forallo
ator A, and the default allo
ators on Solaris and Linux.Most of the allo
ators s
ale well for the following reasons. Ea
h allo
ated obje
t iswritten and read just twi
e, so false sharing has a minimal impa
t. Approximately tenper
ent of the deallo
ations are for obje
ts allo
ated by a thread that is no longer running(The �rst 10 000 deallo
ations repla
e all obje
ts in the array, and the remaining 90 000deallo
ations are of obje
ts allo
ated by the
urrent thread). Sin
e thread heaps andownership are inherited in the test allo
ators, obje
ts that were allo
ated by a
ompletedthread be
ome owned by a new a
tive thread. Thus, the remote free-list only helps a littlein the s
aling of throughput. Allo
ators F2, G, H, the
oales
ing allo
ator, and Stream
owall use a remote free-list and all have slightly better s
aling.Sin
e most operations in this ben
hmark are allo
ations and lo
al deallo
ations, theremoval of lo
ks from thread heaps improves performan
e. Allo
ators B and C have nolo
ks on thread heaps be
ause no ownership is enfor
ed, and tend to have very good relativeperforman
e on all test setups. These allo
ators have the simplest implementation. Sin
eallo
ations tend to stay within the lo
al thread, on
e the thread has obtained enoughobje
ts to satisfy its allo
ations it simply reuses them without any additional
ontentionor
omplexity. Allo
ator F1 does not require a lo
k for operations on the thread-lo
al free-list bu�er, whi
h
overs most operations in this ben
hmark. Allo
ators F2, G, and H all

7.1. Runtime and S
aling 97
(a) Setup A

(b) Setup A - SpeedupFigure 7.7: S
aling in Larson on Setup A

98 Chapter 7. Evaluation
(a) Setup B

(b) Setup B - SpeedupFigure 7.8: S
aling in Larson on Setup B

7.1. Runtime and S
aling 99
(a) Setup C

(b) Setup C - SpeedupFigure 7.9: S
aling in Larson on Setup C

100 Chapter 7. Evaluationavoid lo
king for lo
al operations with the use of a remote free-list. Thus, only allo
atorsA, D and E lo
k lo
al operations, giving them slightly worse performan
e on all test setups.Allo
ators A and Solaris exhibit poor s
aling simply be
ause all allo
ations and deal-lo
ations are performed on the same heap. The Linux allo
ator does not s
ale very well,even though multiple heaps are used. Ea
h time an allo
ation request is made, a thread at-tempts to use its previously used heap; however, when a new thread is
reated it attemptsto a
quire a lo
k for ea
h heap until it �nds one available. Sin
e Larson
reates manynew threads, one for every 100 000 obje
ts
reated, the pro
ess of establishing a heap fora thread happens frequently. As was noted in the Re
y
le ben
hmark, it
an take severalallo
ations before a thread stabilizes to using a single heap. In this ben
hmark, there is noopportunity for this stabilization to o

ur, redu
ing performan
e and limiting throughput.7.2 FragmentationThe internal and external fragmentation experien
ed by a program depends on the allo-
ator, and
an only be a

urately measured from within the allo
ator. Hen
e, the testallo
ators are modi�ed to in
lude a logging layer where they re
ord allo
ation and deallo-
ation requests along with the
hanges in internal and external fragmentation.The internal fragmentation is measured as the headers, padding and spa
ing aroundallo
ated obje
ts, while external fragmentation is all other memory reserved from theoperating system that is not allo
ated to the program. To determine the internal andexternal fragmentation, three measures are re
orded in the logs. These measures are:the allo
ation request size, the amount of memory used by the allo
ator to satisfy ea
hrequest, and the amount of memory reserved from the operating system through
alls tosbrk and mmap. A running total is
al
ulated to determine the total memory, internal

7.2. Fragmentation 101fragmentation, and external fragmentation at any time in the program by in
reasing thetotal at ea
h allo
ation and de
reasing the total at ea
h deallo
ation.Johnstone and Wilson dis
uss four di�erent ways to
al
ulate the fragmentation of aprogram [JW99℄. The �rst method is to average the fragmentation a
ross all points in time.The se
ond method is to use the fragmentation at the point in time when the program hasthe largest amount of bytes in use. The third method is to
ount the fragmentation at thepoint when the most memory is being held from the operating system. The fourth methodis to measure the di�eren
e between the high watermark (the most amount of memoryreserved from the operating system) and the most amount of memory used by the program[JW99℄. Ea
h method of measurement has its drawba
ks, but the fourth measure is usedbe
ause it avoids extreme measures of fragmentation (i.e. a best or worst
ase), whi
h maybe misleading.Fragmentation measurements for the single-threaded and some multi-threaded ben
h-marks are
olle
ted and dis
ussed in the next se
tions. Of the multi-threaded ben
hmarks,only Re
y
le and Consume are analyzed. Fragmentation in Larson is not measured sin
ethe number of allo
ations varies depending on the performan
e of the program, making itdiÆ
ult to
ompare fragmentation results for di�erent memory allo
ators. The a
tive-falseand passive-false ben
hmarks are also left out of this measurement sin
e their purpose isto test performan
e, and their memory usage patterns are very simple and uninteresting.7.2.1 Fragmentation in Single-Threaded Ben
hmarksSin
e the allo
ators are very similar, the main di�eren
es that e�e
t fragmentation arethe type of
ontainers and
oales
ing. Per-thread heaps do not in
uen
e fragmentation,sin
e the single-threaded ben
hmarks only require a single heap. Di�eren
es in fragmen-tation
aused by ownership and
ontainer movement restri
tions are not noti
eable in

102 Chapter 7. Evaluation
Figure 7.10: Fragmentation in Single-Threaded Ben
hmarkssingle-threaded programs. Thus, the allo
ators
an be separated into four
ategories: no
ontainers,
oales
ing, �xed-size
ontainers, and di�erent-size
ontainers. The No Con-tainers
ategory in
ludes allo
ators A and B, the Coales
ing
ategory is the
oales
ingallo
ator, the Fixed-Size Containers
ategory in
ludes allo
ators C through F2 and H, andthe Di�erent-Size Containers
ategory is allo
ator G.Figure 7.10 shows the internal and external fragmentation
al
ulated using the fourthmethod of measurement for ea
h of the single-threaded ben
hmarks for one allo
ator in ea
hof the four
ategories. There is negligible variation in fragmentation among the di�erentallo
ators in ea
h
ategory.As expe
ted,
oales
ing has more internal fragmentation from than an allo
ator withno
ontainers, sin
e more management information is required around ea
h obje
t. How-ever,
oales
ing has less external fragmentation than an allo
ator with no
ontainers, sin
e

7.2. Fragmentation 103freed obje
ts are more likely to be reused. In P2C, Gawk, and ROBOOP most requestsizes are small and
ommon leading to minimal external fragmentation in an allo
atorwith no
ontainers. Thus,
oales
ing does little to redu
e external fragmentation in theseben
hmarks. Espresso and GCC have more large and unique request sizes, leading to asigni�
ant de
rease in external fragmentation when adding
oales
ing to an allo
ator withno
ontainers.Adding
ontainers has the e�e
t of de
reasing internal fragmentation, while in
reasingexternal fragmentation by a signi�
ant amount. Using various sized
ontainers does de-
rease external fragmentation, while also in
reasing internal fragmentation a little, sin
ethere are more
ontainers.7.2.2 Fragmentation in Multi-Threaded Ben
hmarksBoth Re
y
le and Consume are run with a smaller overall number of allo
ations in orderto obtain manageable logs, while still performing the same fun
tion. Re
y
le is redu
edto allo
ate a total of 100 000 obje
ts, and Consume is run with an array of 600 obje
tsand for only 500 iterations. The maximum program allo
ation size in both Re
y
le andConsume is quite small. They both allo
ate and deallo
ate a large number of small obje
ts,without ever having a large number of allo
ated obje
ts at one time. The di�eren
es infragmentation
aused by ownership and
ontainer movement restri
tions are not noti
eable.Thus, the same
ategories used in Se
tion 7.2.1 are also used to
ompare fragmentation inRe
y
le and Consume.Figure 7.11 shows the fragmentation of the four
ategories in Re
y
le when run withone, two, and four threads. As the number of threads in
reases, the number of obje
tsallo
ated at on
e in
reases. Sin
e ea
h thread holds the same number of allo
ated obje
tsregardless of the number of threads, the number of allo
ated obje
ts is multiplied by the

104 Chapter 7. Evaluation
Figure 7.11: Fragmentation in Re
y
lenumber of threads. As more obje
ts are allo
ated, the reserved memory on the heapshrinks, until at some point a more reserved memory is allo
ated. External fragmentationde
reases as the reserved spa
e shrinks, and in
reases when it grows. Thus, with moreallo
ated obje
ts, external fragmentation de
reases unless another
hunk of reserved spa
eis allo
ated. Internal fragmentation is related to the number of obje
ts. As the number ofobje
ts in
reases, the internal fragmentation in
reases. However, sin
e nearly all obje
tsare the same size in this ben
hmark, the internal fragmentation relative to the number ofallo
ated obje
ts does not
hange as the number of obje
ts
hange.The number of allo
ated obje
ts is slightly di�erent ea
h time the ben
hmark is run dueto non-deterministi
 timing
hara
teristi
s, but the di�eren
e is very small. As expe
ted,adding
oales
ing to an allo
ator with no
ontainers in
reases internal fragmentation, buttends to de
rease external fragmentation. The expe
ted bene�t of
oales
ing is very small

7.2. Fragmentation 105
Figure 7.12: Fragmentation in Consumein this ben
hmark, sin
e almost all obje
ts are the same size. In fa
t, in some
ases,it appears the external fragmentation is in
reased slightly, but this is simply due to thedi�eren
es in the number of allo
ated obje
ts at one time.Obje
t
ontainers de
rease internal fragmentation, but at the
ost of in
reasing externalfragmentation. The in
rease in number of allo
ated obje
ts only slightly de
reases externalfragmentation in the
ase of �xed-size
ontainers, but makes a mu
h larger di�eren
e in the
ase of di�erent-size
ontainers. In the
ase of one thread, the reserved spa
e is in
reased bythe minimal amount, leaving no potential for improvement with di�erent-size
ontainers.With more threads, the �xed-size
ontainers require that more
ontainers be allo
atedfor ea
h new thread,
ausing more reserved spa
e to be allo
ated. With di�erent-size
ontainers, ea
h thread re
eives a small
ontainer that takes up a small portion of thereserved spa
e, avoiding a request for more reserved memory.

106 Chapter 7. EvaluationFigure 7.12 shows the fragmentation of the four
ategories in Consume when run withone, two, and four
onsumer threads. As the number of
onsumer threads in
reases, thenumber of obje
ts allo
ated in
reases. Thus, the internal fragmentation stays
lose tothe same, while the external fragmentation drops signi�
antly. Adding
oales
ing to anallo
ator with no
ontainers is not expe
ted to provide any savings sin
e nearly all obje
tsin this ben
hmark are the same size, but
oales
ing does de
rease external fragmentationslightly. Obje
t
ontainers de
rease internal fragmentation signi�
antly, but also in
reaseexternal fragmentation signi�
antly. Using di�erent-sized
ontainers helps to redu
e thein
rease in external fragmentation.7.3 Memory UsageFragmentation
auses the running program to
onsume more operating system resour
es.Two measures that indi
ate the memory resour
e usage of the program are virtual memorysize and resident set size. The virtual memory size is the number of pages reserved by theprogram, while the resident set size is the number of bytes that have been brought intomain memory. Virtual memory gives an indi
ation of the third method of measuringfragmentation, whi
h is the fragmentation at the point when the most memory is beingheld from the operating system. Although the resident set size is measured, it is highlydependent on the program and it is diÆ
ult to make any
on
lusions based on this measure.The top
ommand provides these two measures. Hen
e, the memory usage
an be obtainedfor any memory allo
ator without modifying any sour
e
ode. This information is
olle
tedfor both single and multi-threaded ben
hmarks by querying the top
ommand at one se
ondintervals when running a ben
hmark program and storing the highest re
orded measure.

7.3. Memory Usage 107
(a) Setup A (b) Setup BFigure 7.13: Memory Usage in Single-Threaded Ben
hmarks7.3.1 Memory Usage in Single-Threaded Ben
hmarksFigure 7.13 shows the virtual memory and resident set size normalized to that in allo
atorA. Setup C is nearly identi
al to setup B, and is therefore not shown. The virtual memoryusage shows that
ontainers in
rease memory usage. For most ben
hmarks, using di�erent-sized
ontainers redu
es this in
rease.In setup A, the Hoard allo
ator, in most
ases, in
reases both the virtual memory andresident set size, whi
h is due to the method of
alling mmap in Hoard running on Solaris.On Solaris, Hoard mmaps a large number of
ontainers at on
e, and pla
es ea
h of them ona list. This operation in
reases both the virtual memory and the resident set size due toinitialization.The default Solaris and Linux memory allo
ators generally uses less virtual memoryand have a smaller resident set size, whi
h is due to the method of loading in allo
ators.The test allo
ators are all
reated as dynami
ally loadable libraries. Dynami
ally loadingthis additional library in
reases the memory usage by a small amount (less than 1MB).However, sin
e the overall memory usage is quite small, the relative di�eren
e
aused by

108 Chapter 7. Evaluationloading the additional library appears to have a large e�e
t.The one ben
hmark that is noti
eably di�erent from the rest is GCC. GCC has a verysimilar virtual memory usage and resident set size for all allo
ators. This behaviour isbe
ause GCC allo
ates several very large obje
ts. Thus, a larger portion of the virtualmemory is always in use by the program.7.3.2 Memory Usage in Multi-Threaded Ben
hmarksEa
h ben
hmark is shown with one, two, and four threads run on the di�erent test setups.Figure 7.14 shows the results from running Re
y
le, Consume, and Larson. The false-sharing ben
hmarks are left out of these graphs sin
e they are intended to test performan
e,and do not have interesting memory usage
hara
teristi
s.As explained in Se
tion 7.3.1, Hoard has a signi�
antly larger virtual memory andresident set size for all ben
hmarks on Solaris. The di�eren
e in memory usage among allother allo
ators is quite small in setup A. The default Solaris allo
ator uses less memory,as explained in Se
tion 7.3.1, be
ause it is not dynami
ally loading additional libraries.On setup B, the Linux allo
ator in
reases memory usage signi�
antly as the numberof threads are in
reased in the Re
y
le and Consume ben
hmarks, due to a large initialallo
ation bu�er for ea
h heap. Spe
i�
ally, ea
h additional heap starts with approximately64MB of memory, leading to large in
reases in virtual memorywhen using multiple threads.In Larson, thread heaps grow beyond their initial size, leading to variations in virtualmemory that depend on the obje
ts allo
ated.On setup C, the Linux allo
ator starts the thread heaps at a smaller size, leading tosimilar memory usage to other allo
ators. The Stream
ow allo
ator uses a signi�
antamount of memory in all ben
hmarks, whi
h may be
aused by a large BIBOP table (seeSe
tion 4.5) on a 64 bit pro
essor. The di�eren
e is less signi�
ant in Larson where memory

7.3. Memory Usage 109
(a) Setup A
(b) Setup B
(
) Setup CFigure 7.14: Memory Usage in Multi-Threaded Ben
hmarks

110 Chapter 7. Evaluationusage is quite high for all allo
ators.7.4 AnalysisRunning the ben
hmark programs with existing and test allo
ators leads to several
on-
lusions regarding runtime performan
e and memory usage. Allo
ator A is a very basi
memory allo
ator providing fairly low fragmentation, but poor performan
e and limiteds
aling in all the multi-threaded ben
hmarks. Allo
ator B, with its per-thread heaps, in-
reases memory usage slightly on some multi-threaded ben
hmarks. Although allo
ator Bimproves performan
e in programs like Re
y
le where threads work independently, it doesnot avoid a
tive and passive false-sharing.Allo
ator C introdu
es
ontainers, improving performan
e in some multi-threaded pro-grams by avoiding most a
tive false-sharing. However,
ontainers
ause a large in
reasein external fragmentation (by an average of approximately 400%), with only a relativelyminor redu
tion in internal fragmentation. This larger external fragmentation
auses upto a 75% in
rease in virtual memory usage depending on the program.Allo
ators D and E introdu
e ownership and
ontainer-movement restri
tions, respe
-tively. These allo
ators improve performan
e in some multi-threaded programs by avoid-ing passive false-sharing in addition to a
tive false-sharing. A
onsequen
e of ownership islo
ks on thread heaps, whi
h redu
e performan
e and are a sour
e of
ontention in someben
hmarks. Fragmentation and memory usage remain very similar to allo
ator C.Allo
ator F1 introdu
es a thread-lo
al free-list bu�er to redu
e
ontention for threadheaps. The bu�er also provides additional performan
e bene�ts by pla
ing obje
ts onsimple free-lists and avoiding the
ontainer-based free-lists. The bu�er is most e�e
tivein programs like Larson where there is a mix of lo
al and remote deallo
ations. Allo
ator

7.4. Analysis 111F2 uses remote free-lists to redu
e
ontention on thread heaps. The remote free-list ismost e�e
tive in programs like Larson, where there are a signi�
ant number of remotedeallo
ations. Allo
ators F1 and F2 have very similar fragmentation and memory usageto allo
ators C, D, and E.Allo
ator G uses super-
ontainers to allow di�erent-sized
ontainers. External fragmen-tation is redu
ed by at least 50% over �xed-sized
ontainers in most programs. However,runtime performan
e su�ers slightly in some ben
hmark programs due to the additional
omplexity. External fragmentation remains signi�
antly higher than allo
ators without
ontainers, although this translates to a very small in
rease in virtual memory usage of atmost 10% in the programs tested. Allo
ator H adds lo
k-free operations to the remote free-lists in allo
ator F2. The lo
k-free operations provide insigni�
ant performan
e bene�ts inthe ben
hmark programs tested.The
oales
ing allo
ator avoids both a
tive and passive false-sharing by enfor
ing own-ership and
ontrolling obje
t movement to the global heap. The thread-lo
al free-list bu�erimproves performan
e in several of the ben
hmark programs by
a
hing obje
ts at theirallo
ated size. This e�e
t is made
lear by the Consume ben
hmark in whi
h the remotefree-list bypasses the thread-lo
al free-list bu�er when
learing the remote free-list havinga negative impa
t on performan
e. Regardless, the
oales
ing allo
ator performs relativelywell in all ben
hmark programs, while providing low fragmentation and memory usage.External fragmentation is redu
ed from the basi
 allo
ator in all programs, while internalfragmentation in
reases by a small amount in some programs.If a single allo
ator needs to be sele
ted for all programs, allo
ator F2 provides a good
ompromise between speed, memory usage, and
ode
omplexity for both sequential and amix of
on
urrent programs. Table 7.2 shows a summary of how the F2 allo
ator
omparesto the default allo
ator on ea
h test setup with respe
t to memory usage and runtime

112 Chapter 7. EvaluationTable 7.2: Allo
ator F2 Compared to the Default Allo
atorRuntime Throughput Memory UsageTest Setup Re
y
le Larson Single-Threaded ConsumeA 85% faster 2627% in
rease 125% in
rease 10% in
reaseB 7% faster 338% in
rease 142% in
rease 31% redu
tionC 2% faster 655% in
rease 82% in
rease 1% in
reaseperforman
e. The �rst
olumn indi
ates the average per
ent redu
tion in runtime fromthe default allo
ator when Re
y
le is run with one to eight threads. The se
ond
olumnshows the average per
ent in
rease in
al
ulated throughput over the default allo
ator whenrunning Larson with one to eight threads. The third
olumn shows the average per
entredu
tion in memory usage from the default allo
ator from the tested single-threadedben
hmarks. The �nal
olumn shows the average per
ent redu
tion in memory usagefrom the default allo
ator when Consume is run with one, two, and four threads. A fasterruntime and in
rease in throughput indi
ates that F2 has better runtime performan
e thanthe default allo
ator. A redu
tion in memory usage indi
ates that F2 has better memoryusage than the default memory allo
ator.As an alternative single allo
ator, the
oales
ing allo
ator also performs relatively wellwith smaller memory usage. The
oales
ing allo
ator is likely to bene�t from
learing theremote free-list to the thread-lo
al free-list bu�er, rather than the thread heap. Table 7.3shows how the
oales
ing allo
ator
ompares to the default allo
ator on ea
h test setupwith respe
t to memory usage and runtime performan
e. The information follows theformat of Table 7.2.

7.5. Summary 113Table 7.3: Coales
ing Allo
ator Compared to the Default Allo
atorRuntime Throughput Memory UsageTest Setup Re
y
le Larson Single-Threaded ConsumeA 90% faster 2897% in
rease 53% in
rease 10% in
reaseB 42% faster 310% in
rease 119% in
rease 31% redu
tionC 22% faster 682% in
rease 53% in
rease 1% in
rease7.5 SummaryThis
hapter provides results from
omparing di�erent existing allo
ators and test allo
a-tors. The next
hapter summarizes the �ndings of this thesis and provides some
on
lu-sions.

Chapter 8Con
lusions8.1 Memory{Allo
ation ChallengesAll memory allo
ators are
on
erned with providing fast performan
e while supportinggood lo
ality, limiting fragmentation and preventing heap blowup. Additionally, multi-threaded memory-allo
ators must provide mutual ex
lusion while redu
ing
ontention,avoiding false sharing, and preventing additional forms of potential heap blowup. Severalfeatures are presented as means for addressing the
on
erns of a multi-threaded memoryallo
ator. These features in
lude per-thread heaps with a global heap, obje
t ownership,obje
t
ontainers, allo
ation bu�ers, thread-lo
al free-lists, remote free-lists and lo
k-freeoperations. Evaluating the performan
e of these features
an assist in designing a memoryallo
ator to a
hieve
ertain goals.
114

8.2. Method of Analysis 1158.2 Method of AnalysisSeveral existing allo
ators are presented along with a des
ription of the multi-threadedfeatures they employ. In addition to these existing allo
ators, a set of test allo
ators areimplemented, ea
h employing a di�erent set of features. Through the use of a test suite
omposed of single and multi-threaded ben
hmark programs, these allo
ators are analyzedin order to evaluate the e�e
t of di�erent features.It is determined that ea
h feature has di�erent e�e
ts on the
hallenges that a memoryallo
ator
an address. Depending on the behaviour of the program, di�erent features
an beapplied to the memory allo
ator in order to a
hieve di�erent goals of runtime performan
e,s
aling, and fragmentation. Depending on the needs of a parti
ular program, the bestperforman
e
an be a
hieved through the use of a spe
i�
 set of features.8.3 Analysis ResultsAny multi-threaded program that is memory-allo
ation intensive bene�ts from the use ofmultiple heaps to redu
e
ontention. In general, the global heap is essential to maintaininga balan
e of free obje
ts among heaps.Programs in whi
h threads independently allo
ate and deallo
ate obje
ts, like Re
y
le,gain signi�
ant bene�ts from the use of per-thread heaps to redu
e
ontention. Addition-ally, a
tive false-sharing avoidan
e through the use of an allo
ation bu�er greatly improvesperforman
e in these appli
ations. Programs that allo
ate and deallo
ate obje
ts withinthe same thread do not require the overhead of enfor
ed ownership by the allo
ator.Programs in whi
h obje
ts are frequently shared among threads and allo
ated anddeallo
ated by di�erent threads gain signi�
ant bene�ts from ownership to avoid passivefalse-sharing. Using a remote free-list to avoid lo
ks on thread heaps when enfor
ing

116 Chapter 8. Con
lusionsownership greatly improves the performan
e of the allo
ator.Programs that use several obje
ts of the same size in their working set bene�t from theuse of
ontainers. In su
h programs,
ontainers redu
e internal fragmentation and improve
a
he usage. Programs that use di�erent sized obje
ts in their working set may preferto use an allo
ator with
oales
ing, where the obje
ts may be pla
ed
loser together inmemory. Programs using a large range of obje
t sizes in di�erent working sets
an bene�tfrom using an allo
ator with di�erent-sized
ontainers. Some external fragmentation
an beavoided by using di�erent-sized
ontainers at the
ost of a slight redu
tion in performan
e.Allo
ators using
ontainers and ownership
an also improve performan
e by pla
ing freelists of obje
ts on
ontainers.The thread-lo
al free-list bu�er
an improve the performan
e of some allo
ators byallowing some obje
ts to be
a
hed and easily a

essed by the lo
al thread, whi
h is es-pe
ially important in the
oales
ing allo
ator. Although remote free-lists have a greaterimpa
t on performan
e s
aling than the thread-lo
al free-list bu�er, using the two featuresin
ombination
an provide the greatest performan
e bene�t, as observed in the
oales
ingallo
ator. Using lo
k-free operations may improve performan
e in
ertain situations, on
ertain ma
hines, but the tests presented did not �nd any signi�
ant di�eren
es when usinglo
k-free operations.Thus, I re
ommend the following features for a general-purpose memory-allo
ator: per-thread heaps with a global shared-heap, obje
t ownership, obje
t
ontainers (with allo
a-tion bu�ers,
ontainer based free-lists, and restri
ted
ontainer movement), thread-lo
alfree-list bu�ers, and remote free-lists. This memory allo
ator demonstrated very goodperforman
e in several multi-threaded programs, improving performan
e by a fa
tor of100 in some ben
hmarks. The
ost is an in
rease in memory usage that is typi
ally lessthan 200% in the tested ben
hmarks. On systems with limited memory, I re
ommend a

8.4. Future Work 117
oales
ing allo
ator with the following features: per-thread heaps with a global shared-heap, obje
t ownership, thread-lo
al free-list bu�ers, and remote free-lists. This alternateallo
ator provides similar performan
e bene�ts with slightly redu
ed memory usage.8.4 Future WorkThe presented test suite is
omposed of real single-threaded appli
ations, but only mi
ro-ben
hmark multi-threaded programs. In sear
hing for real multi-threaded programs, nonewere found to be allo
ation-intensive. Some multi-threaded programs provide their ownspe
ial form of memory allo
ation within the program. As future work,
onverting some ofthese programs to work with general-purpose memory-allo
ators, or a further sear
h to �ndadditional memory-intensive multi-threaded programs may provide interesting analysis ofallo
ation behaviour in full-featured multi-threaded appli
ations. Su
h analysis would alsoprovide insight into the e�e
ts of
ontainers on lo
ality and paging in real multi-threadedprograms.

Appendix ATra
e GraphsFigures A.1 and A.2 show a distribution of obje
ts among bin sizes. Ea
h graph shows theportion of obje
ts allo
ated by the program that fall into ea
h bin size. Figures A.3 to A.4show the bin size of obje
ts relative to the time in the program when they are allo
ated.To redu
e the number of data points on the graph, several nearby points are
ondensedinto one point, with the di�erent
olours indi
ating the number of obje
ts
ondensed intoone point.Figures A.5 and A.6 show a
umulative distribution of the lifetime of obje
ts in ea
hprogram. Ea
h point in the graph indi
ates the portion of obje
ts that have a lifetimeequal to or shorter than that time. Figures A.7 and A.8 show the lifetime of obje
ts overthe runtime of the program. Again, to redu
e the number of data points on the graph,several nearby points are
ondensed into one point, with the di�erent
olours indi
atingthe number of obje
ts
ondensed into one point. Figure A.9 shows the lifetime of obje
tsrelative to the time they are allo
ated in the program for only short living obje
ts over ashort period of time, for a sele
t set of programs.Figures A.10 and A.11 show the
umulative distribution of interarrival times of all118

Tra
e Graphs 119memory operations, just mallo
 requests, and just free requests for ea
h program. Ea
hpoint in the graph indi
ates the portion of requests that arrive with equal to or less thanthe indi
ated time from the previous request.Figures A.12 to A.14 show the allo
ation footprint over the runtime of the program.Ea
h point in the graph indi
ates the amount of dynami
 memory in use by the programat that point in time of the program.

120 Chapter A. Tra
e Graphs
(a) P2C (b) GS

(
) Esprseso (d) Esprseso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.1: Bin Size Distribution

Tra
e Graphs 121
(a) Perl (b) Perl Input 2
(
) Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.2: Bin Size Distribution 2

122 Chapter A. Tra
e Graphs
(a) P2C (b) GS

(
) Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.3: Bin Size Over Time

Tra
e Graphs 123
(a) Perl (b) Perl Input 2
(
) Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.4: Bin Size Over Time 2

124 Chapter A. Tra
e Graphs
(a) P2C (b) GS

(
) Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.5: Cumulative Lifetime Distribution

Tra
e Graphs 125
(a) Perl (b) Perl Input 2
(
) Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.6: Cumulative Lifetime Distributions 2

126 Chapter A. Tra
e Graphs
(a) P2C (b) GS

(
) Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.7: Lifetime Over Time

Tra
e Graphs 127
(a) Perl (b) Perl Input 2
(
) Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.8: Lifetime Over Time 2

128 Chapter A. Tra
e Graphs
(a) P2C (b) Espresso Input 2

(
) GMake (d) XPDF
(e) ROBOOP (f) CFRAC

(g) Perl (h) GawkFigure A.9: Lifetime Over Time

Tra
e Graphs 129
(a) P2C (b) GS

(
) Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.10: Interarrival Times Cumulative Distribution

130 Chapter A. Tra
e Graphs
(a) Perl (b) Perl Input 2
(
) Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.11: Interarrival Times Cumulative Distribution 2

Tra
e Graphs 131
(a) P2C (b) GS

(
) Espresso (d) Espresso Input 2
(e) CFRAC Part 1 (f) CFRAC Part 2

(g) CFRAC Input 2Figure A.12: Allo
ation Footprint

132 Chapter A. Tra
e Graphs
(a) GMake (b) GCC
(
) Perl (d) Perl Input 2
(e) Gawk (f) Gawk - Input 2
(g) XPDF (h) XPDF - Input 2Figure A.13: Allo
ation Footprint 2

Tra
e Graphs 133
(a) ROBOOP Part 1 (b) ROBOOP Part 2

(
) LindsayFigure A.14: Allo
ation Footprint 3

Bibliography[Ale01℄ Andrei Alexandres
u. volatile { multithreaded programmer's best friend. Dr.Dobb's, February 2001. 1[AN03℄ Joseph Attardi and Neelakanth Nadgir. A
omparison of memory allo
atorsin multipro
essors. Sun Developer Network, 2003. 50[Ber℄ Emery Berger. The hoard memory allo
ator. http://www.hoard.org/. 51[BMBW00℄ Emery D. Berger, Kathryn S. M
Kinley, Robert D. Blumofe, and Paul R.Wilson. Hoard: A s
alable memory allo
ator for multithreaded appli
ations.In International Conferen
e on Ar
hite
tural Support for Programming Lan-guages and Operating Systems (ASPLOS-IX), pages 117{128, Cambridge, MA,November 2000. 1, 3, 9, 15, 51, 65, 70[BZM01℄ Emery D. Berger, Benjamin G. Zorn, and Kathryn S. M
Kinley. Composinghigh-performan
e memory allo
ators. In SIGPLAN Conferen
e on Program-ming Language Design and Implementation, pages 114{124, 2001. 51, 54,65[BZM02℄ Emery D. Berger, Benjamin G. Zorn, and Kathryn S. M
Kinley. Re
onsider-ing
ustom memory allo
ation. In Pro
eedings of the Conferen
e on Obje
t-134

Bibliography 135Oriented Programming: Systems, Languages, and Appli
ations (OOPSLA)2002, Seattle, Washington, November 2002. 65[DDZ93℄ David L. Detlefs, Al Dosser, and Benjamin Zorn. Memory allo
ation
ostsin large C and C++ programs. Te
hni
al Report CU-CS-665-93, 130 LyttonAvenue, Palo Alto, CA 94301 and Campus Box 430, Boulder, CO 80309, 1993.65, 68, 69[Den05℄ Peter J. Denning. The lo
ality prin
iple. Commun. ACM, 48(7):19{24, 2005.11, 12[FB05℄ Yi Feng and Emery D. Berger. A Lo
ality-Improving Dynami
 Memory Allo-
ator. In Pro
eedings of the 2005 Workshop on Memory System Performan
e,Chi
ago, Illinois, June 2005. 12, 24, 25[Fer℄ Justin N. Ferguson. Understanding the heap by break-ing it. https://www.bla
khat.
om/presentations/bh-usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf. 50[Glo℄ Wolfram Gloger. Wolfram gloger's mallo
 homepage.http://www.mallo
.de/en/. 50[GM℄ Sanjay Ghemawat and Paul Menage. T
mallo
 : Thread{
a
hing mallo
.http://goog-perftools.sour
eforge.net/do
/t
mallo
.html. 3[GPT04℄ Anders Gidenstam, Marina Papatrianta�lou, and Philippas Tsigas. Allo
atingmemory in a lo
k-free manner. Te
hni
al Report 2004-04, Computing S
ien
e,Chalmers University of Te
hnology, 2004. 16

136 Bibliography[GZH93℄ Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the
a
helo
ality of memory allo
ation. In PLDI '93: Pro
eedings of the ACM SIG-PLAN 1993
onferen
e on Programming language design and implementation,pages 177{186, New York, NY, USA, 1993. ACM Press. 12[Her93℄ Mauri
e Herlihy. A methodology for implementing highly
on
urrent dataobje
ts. ACM Trans. Program. Lang. Syst., 15(5):745{770, 1993. 37, 38[HLM06℄ Xianglong Huang, Brian T Lewis, and Kathryn S M
Kinley. Dynami

odemanagement: improving whole program
ode lo
ality in managed runtimes. InVEE '06: Pro
eedings of the 2nd international
onferen
e on Virtual exe
utionenvironments, pages 133{143, New York, NY, USA, 2006. ACM Press. 2[JW99℄ Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:solved? ACM SIGPLAN Noti
es, 34(3):26{36, 1999. 9, 10, 11, 101[Lea℄ Doug Lea. A memory allo
ator. http://gee.
s.oswego.edu/dl/html/mallo
.html.50[LK99℄ Per-�Ake Larson and Murali Krishnan. Memory allo
ation for long-runningserver appli
ations. ACM SIGPLAN Noti
es, 34(3):176{185, 1999. 72[LPB98℄ Tian F. Lim, Przemyslaw Pardyak, and Brian N. Bershad. A memory-eÆ
ientreal-time non-
opying garbage
olle
tor. In ISMM '98: Pro
eedings of the 1stinternational symposium on Memory management, pages 118{129, New York,NY, USA, 1998. ACM Press. 8[MHM03℄ V. Lu
hang
o M. Herlihy and M. Moir. Obstru
tion-free syn
hronization:Double-ended queues as an example. In Pro
eedings of the 23rd IEEE Inter-national Conferen
e on Distributed Computing Systems, may 2003. 37

Bibliography 137[Nak01℄ Greg Nakhimovsky. Improving s
alability of multithreaded dynami
 memoryallo
ation. Dr. Dobb's, 2001. 3, 49, 50[Sal℄ Peter Jay Salzman. Memory layout and the sta
k. 1[SAN℄ S
ott S
hneider, Christos Antonopoulos, and Dimitrios Nikolopoulos. Stream-
ow. http://people.
s.vt.edu/ s
s
hnei/stream
ow/. 52[SAN06℄ S
ott S
hneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos.S
alable lo
ality-
ons
ious multithreaded memory allo
ation. In InternationalSymposium on Memory Management (ISSM'06), pages 84{94, June 2006. 3,52, 70[Sie00℄ Fridtjof Siebert. Eliminating external fragmentation in a non-moving garbage
olle
tor for java. In CASES '00: Pro
eedings of the 2000 international
on-feren
e on Compilers, ar
hite
ture, and synthesis for embedded systems, pages9{17, New York, NY, USA, 2000. ACM Press. 8[Wil℄ Paul R. Wilson. Lo
ality of referen
e, patterns in program behavior, memorymanagement, and memory hierar
hies. 11[WJNB95℄ Paul R. Wilson, Mark S. Johnstone, Mi
hael Neely, and David Boles. Dynami
storage allo
ation: A survey and
riti
al review. In Pro
. Int. Workshop onMemory Management, Kinross S
otland, UK, 1995. 8

	List of Tables
	List of Figures
	Introduction
	Memory Structure
	Dynamic-Memory Management
	Contributions
	Outline

	Memory Allocator Background
	Components of a Memory Allocator
	Single-Threaded Memory Allocators
	Fragmentation
	Locality

	Multi-Threaded Memory Allocators
	Mutual Exclusion
	False Sharing
	Heap Blowup

	Memory Allocator Design
	Multi-Threaded Memory-Allocator Features
	Per-Thread Heaps
	Ownership

	Object Containers
	Containers with Ownership
	Container Size
	Container Free-Lists

	Thread-local free-list buffer
	Remote Free-Lists
	Allocation Buffer
	Lock-Free Operations

	Combining Features
	Individual Object Headers -- No Ownership
	IN
	IN-l
	IN-c
	IN-cl
	IN-r, IN-cr

	Individual Object Headers -- Object Ownership
	IO
	IO-l
	IO-c
	IO-cl
	IO-r, IO-cr

	Object Containers -- No Ownership
	CN
	CN-l
	CN-r

	Object Containers -- Object Ownership
	CO
	CO-l
	CO-r

	Summary

	Existing Allocators
	Solaris Malloc
	Dlmalloc
	Ptmalloc
	Hoard Allocator
	Streamflow Allocator
	Summary

	Test Allocators
	Allocator A: Base Case
	Allocator B: Add Thread Heaps
	Allocator C: Add Object Containers
	Allocator D: Add Object Ownership
	Allocator E: Add Restricted Container Movement
	Allocator F1: Add Thread--Local Free--List Buffer
	Allocator F2: Add Remote Free--Lists
	Allocator G: Vary Container Size
	Allocator H: Add Lock-Free Operations
	Coalescing Allocator
	Summary

	Memory Allocator Test Suite
	Single--Threaded Benchmarks
	P2C
	GS
	Espresso/Espresso-2
	CFRAC/CFRAC-2
	GMake
	GCC
	Perl/Perl-2
	Gawk/Gawk-2
	XPDF/XPDF-2
	ROBOOP
	Lindsay

	Multi--Threaded Benchmarks
	Recycle
	Consume
	False--Sharing Micro--benchmarks
	Larson

	Trace Collection
	Trace Results
	Sizes of Requests
	Lifetimes of Objects
	Interarrival Times of Allocations and Deallocations
	Allocation Footprint

	Benchmark Selection
	Summary

	Memory Allocator Evaluation
	Runtime and Scaling
	Single-Threaded Benchmarks
	Recycle
	Consume
	False-Sharing Benchmarks
	Larson

	Fragmentation
	Fragmentation in Single-Threaded Benchmarks
	Fragmentation in Multi-Threaded Benchmarks

	Memory Usage
	Memory Usage in Single-Threaded Benchmarks
	Memory Usage in Multi-Threaded Benchmarks

	Analysis
	Summary

	Conclusions
	Memory--Allocation Challenges
	Method of Analysis
	Analysis Results
	Future Work

	Trace Graphs
	Bibliography

