
Features of A Multi-Threaded Memory AlloatorbyAyelet WasikA thesispresented to the University of Waterlooin ful�llment of thethesis requirement for the degree ofMaster of MathematisinComputer SieneWaterloo, Ontario, Canada, 2008Ayelet Wasik 2008

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESISI hereby delare that I am the sole author of this thesis. This is a true opy of the thesis,inluding any required �nal revisions, as aepted by my examiners.I understand that my thesis may be made eletronially available to the publi.

iii

AbstratMulti-proessor omputers are beoming inreasingly popular and are important forimproving appliation performane. Providing high-performane memory-management isimportant for multi-threaded programs. This thesis looks at memory alloation of dynami-alloation memory in onurrent C and C++ programs. The hallenges faing the designof any memory alloator inlude minimizing fragmentation, and promoting good loality.A multi-threaded memory-alloator is also onerned with minimizing ontention, pro-viding mutual exlusion, avoiding false-sharing, and preventing heap-blowup (a form offragmentation).Several potential features are identi�ed in existing multi-threaded memory-alloators.These features inlude per-thread heaps with a global heap, objet ownership, objet on-tainers, thread-loal free-list bu�ers, remote free-lists, alloation bu�ers, and lok-free op-erations. When used in di�erent ombinations, these features an solve most of the hal-lenges faing a multi-threadedmemory-alloator. Through the use of a test suite omposedof both single and multi-threaded benhmark programs, several existing memory alloa-tors and a set of new alloators are ompared. It is determined that di�erent featuresaddress di�erent multi-threaded issues in the memory alloator with respet to perfor-mane, saling, and fragmentation. Finally, reommendations are made for the design ofa general-purpose memory-alloator.
v

AknowledgmentsI would like to aknowledge Peter Buhr, Ashif Harji, and Rihard Bilson for their inputand assistane in the work that went into this thesis. I would also like to aknowledge themembers of my review ommittee, Martin Karsten and Ondrej Lhotak, for the assistanethey provided. Lastly, aknowledgments go to my family for their proofreading help.

vii

ContentsList of Tables xvList of Figures xvi1 Introdution 11.1 Memory Struture . 11.2 Dynami-Memory Management . 21.3 Contributions . 31.4 Outline . 32 Memory Alloator Bakground 52.1 Components of a Memory Alloator . 52.2 Single-Threaded Memory Alloators . 72.2.1 Fragmentation . 72.2.2 Loality . 112.3 Multi-Threaded Memory Alloators . 132.3.1 Mutual Exlusion . 132.3.2 False Sharing . 132.3.3 Heap Blowup . 15ix

3 Memory Alloator Design 173.1 Multi-Threaded Memory-Alloator Features 173.1.1 Per-Thread Heaps . 183.1.1.1 Ownership . 213.1.2 Objet Containers . 243.1.2.1 Containers with Ownership 273.1.2.2 Container Size . 293.1.2.3 Container Free-Lists . 323.1.3 Thread-loal free-list bu�er . 323.1.4 Remote Free-Lists . 353.1.5 Alloation Bu�er . 363.1.6 Lok-Free Operations . 373.2 Combining Features . 383.2.1 Individual Objet Headers { No Ownership 403.2.1.1 IN . 413.2.1.2 IN-l . 413.2.1.3 IN- . 413.2.1.4 IN-l . 423.2.1.5 IN-r, IN-r . 433.2.2 Individual Objet Headers { Objet Ownership 433.2.2.1 IO . 433.2.2.2 IO-l . 443.2.2.3 IO- . 443.2.2.4 IO-l . 443.2.2.5 IO-r, IO-r . 45x

3.2.3 Objet Containers { No Ownership 453.2.3.1 CN . 453.2.3.2 CN-l . 463.2.3.3 CN-r . 463.2.4 Objet Containers { Objet Ownership 463.2.4.1 CO . 463.2.4.2 CO-l . 473.2.4.3 CO-r . 483.3 Summary . 484 Existing Alloators 494.1 Solaris Mallo . 494.2 Dlmallo . 504.3 Ptmallo . 504.4 Hoard Alloator . 514.5 Streamow Alloator . 524.6 Summary . 535 Test Alloators 545.1 Alloator A: Base Case . 545.2 Alloator B: Add Thread Heaps . 555.3 Alloator C: Add Objet Containers . 565.4 Alloator D: Add Objet Ownership . 575.5 Alloator E: Add Restrited Container Movement 585.6 Alloator F1: Add Thread{Loal Free{List Bu�er 595.7 Alloator F2: Add Remote Free{Lists . 60xi

5.8 Alloator G: Vary Container Size . 605.9 Alloator H: Add Lok-Free Operations . 615.10 Coalesing Alloator . 625.11 Summary . 646 Memory Alloator Test Suite 656.1 Single{Threaded Benhmarks . 656.1.1 P2C . 686.1.2 GS . 686.1.3 Espresso/Espresso-2 . 686.1.4 CFRAC/CFRAC-2 . 686.1.5 GMake . 696.1.6 GCC . 696.1.7 Perl/Perl-2 . 696.1.8 Gawk/Gawk-2 . 696.1.9 XPDF/XPDF-2 . 706.1.10 ROBOOP . 706.1.11 Lindsay . 706.2 Multi{Threaded Benhmarks . 706.2.1 Reyle . 716.2.2 Consume . 716.2.3 False{Sharing Miro{benhmarks 716.2.4 Larson . 726.3 Trae Colletion . 726.4 Trae Results . 736.4.1 Sizes of Requests . 74xii

6.4.2 Lifetimes of Objets . 756.4.3 Interarrival Times of Alloations and Dealloations 796.4.4 Alloation Footprint . 796.5 Benhmark Seletion . 806.6 Summary . 817 Memory Alloator Evaluation 827.1 Runtime and Saling . 837.1.1 Single-Threaded Benhmarks . 847.1.2 Reyle . 847.1.3 Consume . 887.1.4 False-Sharing Benhmarks . 937.1.5 Larson . 947.2 Fragmentation . 1007.2.1 Fragmentation in Single-Threaded Benhmarks 1017.2.2 Fragmentation in Multi-Threaded Benhmarks 1037.3 Memory Usage . 1067.3.1 Memory Usage in Single-Threaded Benhmarks 1077.3.2 Memory Usage in Multi-Threaded Benhmarks 1087.4 Analysis . 1107.5 Summary . 1138 Conlusions 1148.1 Memory{Alloation Challenges . 1148.2 Method of Analysis . 1158.3 Analysis Results . 115xiii

8.4 Future Work . 117A Trae Graphs 118Bibliography 134

xiv

List of Tables3.1 Feature Combinations . 406.1 Alloation Statistis . 676.2 Runtime Statistis . 676.3 Size of Requests . 746.4 Lifetimes . 766.5 Interarrival Times . 786.6 Alloation Footprint . 807.1 Test Setup . 837.2 Alloator F2 Compared to the Default Alloator 1127.3 Coalesing Alloator Compared to the Default Alloator 113
xv

List of Figures1.1 Program Address Spae . 22.1 Memory Alloator Heap . 62.2 Alloated Objet . 72.3 Internal and External Fragmentation . 82.4 Fragmentation of Memory . 102.5 External Fragmentation . 102.6 Program-Indued False-Sharing . 142.7 Alloator-Indued Ative False-Sharing . 142.8 Alloator-Indued Passive False-Sharing 153.1 Single Heap Alloator . 193.2 Per-Thread Heaps . 193.3 Per-Thread Heaps with a Global Heap . 213.4 Per-Thread Heaps with Ownership . 223.5 Passive False-Sharing Avoidane . 233.6 Header Plaement . 253.7 Ative False-Sharing using Containers . 283.8 External Fragmentation Using Objet Container Ownership 29xvi

3.9 Example Super-Containers . 313.10 Free Lists Strutures . 333.11 Thread-Loal Free-List Bu�er . 343.12 Remote Free-List . 355.1 Header and Trailer Struture . 637.1 Saling in Reyle on Setup A . 857.2 Saling in Reyle on Setup B . 877.3 Saling in Reyle on Setup C . 897.4 Runtime Performane in Consume . 917.5 Runtime Performane in Consume . 927.6 Saling in False-Sharing Benhmark . 957.7 Saling in Larson on Setup A . 977.8 Saling in Larson on Setup B . 987.9 Saling in Larson on Setup C . 997.10 Fragmentation in Single-Threaded Benhmarks 1027.11 Fragmentation in Reyle . 1047.12 Fragmentation in Consume . 1057.13 Memory Usage in Single-Threaded Benhmarks 1077.14 Memory Usage in Multi-Threaded Benhmarks 109A.1 Bin Size Distribution . 120A.2 Bin Size Distribution 2 . 121A.3 Bin Size Over Time . 122A.4 Bin Size Over Time 2 . 123A.5 Cumulative Lifetime Distribution . 124xvii

A.6 Cumulative Lifetime Distributions 2 . 125A.7 Lifetime Over Time . 126A.8 Lifetime Over Time 2 . 127A.9 Lifetime Over Time . 128A.10 Interarrival Times Cumulative Distribution 129A.11 Interarrival Times Cumulative Distribution 2 130A.12 Alloation Footprint . 131A.13 Alloation Footprint 2 . 132A.14 Alloation Footprint 3 . 133

xviii

Chapter 1IntrodutionMulti-proessor omputers are beoming inreasingly popular and are important for im-proving appliation performane. However, writing programs that take advantage ofmultiple proessors is not an easy task [Ale01℄. For example, shared resoures an be-ome a bottlenek for saling in a multi-threaded program. One typial shared resoureis program memory, sine it is normally used by all threads in a onurrent program[BMBW00℄. Therefore, providing high-performane memory management is important formulti-threaded programs.1.1 Memory StrutureThe virtual-memory address-spae for a program is typially divided into distint zones:stati ode/data, dynami alloation, dynami ode/data, and stak, with free memorysurrounding the dynami ode/data [Sal℄. Figure 1.1 shows a typial layout of these zones.Stati ode and data are loaded into memory at load time, and their alloations do nothange during runtime. The stak has simple and �xed management in a single-threaded1

2 Chapter 1. Introdution
Figure 1.1: Program Address Spaeprogram. In multi-threaded programs, a new stak is reated for eah new thread. Threadstaks are ommonly reated in dynami-alloation memory. Management of dynamiode/data, for example libraries that are loaded at runtime, an be fairly omplex espeiallyin a multi-threaded program [HLM06℄. However, management of this area is handled by adynami loader, and is largely independent of a program, sine there is no mehanism todiretly a�et its behaviour. Therefore, this thesis onsiders only the management of thedynami-alloation memory, a very omplex area of memory to manage.1.2 Dynami-Memory ManagementModern programming languages manage dynami-alloation memory in di�erent ways.Some languages, suh as Java, provide memory management in whih data is expliitlyalloated, but impliitly dealloated through garbage olletion. In general, garbage ol-letion also supports memory ompation, in whih dynami data may be moved duringruntime in order to better utilize spae. Programming languages suh as C and C++,provide the programmer with expliit ontrol over the alloation and dealloation of data.This thesis looks at expliit dynami-memory management. Garbage olletion and om-pation are beyond the sope of this thesis.A memory alloator is responsible for managing dynami memory. Most programsuse a general-purpose memory-alloator, often the one provided by the programming lan-

1.3. Contributions 3guage's runtime library. However, high-performane memory alloators for multi-threadedprograms are still being designed and improved. C and C++ allow a programmer to re-plae the memory alloator with an alternative general-purpose memory-alloator. For thisreason, several general-purpose alloators have been written for C/C++ with the goal ofsaling in a multi-threaded program [SAN06℄ [BMBW00℄ [Nak01℄ [GM℄. This thesis looksat the design of high-performane alloators for use by multi-threaded appliations writtenin C/C++.1.3 ContributionsSeveral existing memory alloators attempt to ahieve good performane in multi-threadedprograms. This thesis examines these memory alloators to identify the underlying featuresthey employ to ahieve good performane. These features, outlined in Chapter 3, inlude:per-thread heaps with a global heap, objet ownership, objet ontainers, thread-loal free-list bu�ers, remote free-lists, alloation bu�ers, and lok-free operations. I reate severaltest alloators that di�er from eah other in terms of these fundamental features. A set ofbenhmark programs are used to ompare the runtime, salability, and fragmentation ofthe test alloators in order to identify the e�ets of eah feature. Finally, I selet a set offundamental features that generate a good general-purpose memory-alloator.1.4 OutlineThis thesis is organized as follows. Chapter 2 provides bakground information on dynami-memorymanagement. Chapter 3 disusses the design of a multi-threadedmemory-alloator.Chapter 4 desribes existing alloators and related work. Chapter 5 presents a set of test al-

4 Chapter 1. Introdutionloators. Chapter 6 desribes a test suite for memory alloators using both single-threadedand multi-threaded benhmark programs. Chapter 7 presents results from testing and om-paring the di�erent alloators desribed in Chapters 4 and 5 using the test suite desribedin Chapter 6. Finally, Chapter 8 provides a summary and some onlusions.

Chapter 2Memory Alloator BakgroundWhen a program dynamially reates a data struture, referred to as an objet, it oupiesmemory in the dynami-alloation zone. The memory alloator is itself a data struturethat handles alloation and dealloation of objets in the dynami-alloation memory. Thedynami-alloation area grows or shrinks by operating system alls, suh as mmap or sbrk.Dynami objets are alloated and dealloated by the program through alls suh as malloand free in C, and new and delete in C++.2.1 Components of a Memory AlloatorThere are two important parts to a memory alloator: storage data and heap. Storagedata reside in dynami alloation memory, while the heap may reside in dynami odeand data memory. There are three types of storage data: alloated objets, freed objets,and reserved memory. Alloated objets are memory alloated to the program throughalls to mallo or new (other forms exist, but they all funnel through to mallo). Freedobjets are memory that was alloated to the program, and later dealloated through alls5

6 Chapter 2. Bakground
Figure 2.1: Memory Alloator Heapto free or delete. Reserved memory is a blok of memory that has been obtained fromthe operating system, through alls suh as mmap or sbrk, but has not yet been alloatedto the program. A memory alloator may ontain several bloks of reserved memory.The seond important omponent of the memory alloator is the heap. The heap isa data struture that is loated at a known memory address, and manages freed objetsand reserved memory. Alloated objets are generally maintained by the program. Figure2.1 shows an example heap and its assoiated storage data. The heap points to reservedmemory and the freed objets in the heap. Eah freed objet in the heap, shown in grey,usually points to the next freed objet in the heap. The heap data-struture ontains allinformation neessary to manage the storage data of the heap.Alloated and freed objets are typially surrounded by additional management datathrough the use of headers and trailers. Objet headers and trailers ontain informationregarding the objet, suh as the objet size, and are loated before and after the objet inmemory. A free objet may also hold additional information in the objet spae, but thatinformation may be lost one the objet is alloated to the program. Objet trailers are

2.2. Single-Threaded Memory Alloators 7Figure 2.2: Alloated Objetsometimes used for seurity purposes to signify the end of an objet, or to simplify somealloation algorithm implementations. Objets an also be padded either before or afterthe objet, to ensure proper alignment. Some algorithms may require that a larger spaebe alloated to the program than the program requests, leaving additional spaing after theobjet. Padding and spaing are reserved memory around an alloated objet that annotbe used to satisfy a future alloation request while the urrent alloation exists. Figure 2.2shows an alloated objet with a header, trailer, and some padding and spaing aroundthe objet. A free objet may ontain additional memory-management data instead ofprogram data.2.2 Single-Threaded Memory AlloatorsA single-threaded memory alloator does not atually run any threads itself, but is usedby a single-threaded program. Beause the memory alloator ode is only exeuted by thesingle program thread, issues of synhronization and mutual exlusion are avoided; however,there are two issues in designing a single-threaded memory alloator: fragmentation andloality.2.2.1 FragmentationFragmentation is wasted spae in memory. Wasted spae is memory requested from theoperating system, but not used by the program. Fragmentation an take one of two forms:

8 Chapter 2. BakgroundFigure 2.3: Internal and External Fragmentationinternal or external.Internal fragmentation is memory spae that is alloated to the program, but is notintended to be aessed by the program, suh as headers, trailers, padding, and spaingaround an alloated objet. Internal fragmentation is typially memory that is used by thealloator for management purposes or required by the arhiteture for orretness (e.g.,alignment).There are two de�nitions for external fragmentation: memory spae that is unusablefor a given alloation request (beause it is too small for example), or all memory spaereserved from the operating system but not alloated to the program [WJNB95℄ [Sie00℄[LPB98℄. In this thesis, the seond de�nition is used sine it enompasses both de�nitions.Using this de�nition, external fragmentation inludes reserved memory and freed objetswith their management data.Figure 2.3 shows an example setion of memory outlining internal and external fragmen-tation. The header, padding, spaing, and trailer are internal fragmentation used by thealloator to store information, to provide seurity, or to ful�ll implementation requirements.The program data is not fragmentation. Free memory is external fragmentation. The freememory may ontain freed objets (inluding their headers, trailers, and padding/spaing)and reserved memory.Internal fragmentation an be problemati when the spae required to manage an objetis a signi�ant proportion of the alloated objet. For example, if a header is as large as

2.2. Single-Threaded Memory Alloators 9the objet being managed, then the memory usage for that objet is doubled. An alloatorshould strive to keep management information to a minimum.External fragmentation an be problemati in two ways: heap blowup and highly frag-mented memory. Heap blowup ours when memory freed by the program is not reusedfor future alloations, leading to potentially unbounded external fragmentation growth[BMBW00℄. Heap blowup an our due to alloator poliies that are too restritive inreusing freed memory.Memory an beome highly fragmented after multiple alloations and dealloationsof objets. Figure 2.4 shows an example of how a small blok of memory an beomefragmented as objets are alloated and dealloated, where white areas are objets alloatedto the program, and grey areas are freed objets. Bloks of free memory beome smaller andnon-ontiguous making them less useful in serving alloation requests. Memory is highlyfragmented when the sizes of most free bloks are unusable. For example, 2.5(a) and 2.5(b)have the same quantity of external fragmentation, but 2.5(b) is highly fragmented. If thereis a request to alloate a large objet, 2.5(a) is more likely to be able to satisfy it withexisting free memory, while 2.5(b) would likely have to request more memory from theoperating system.In a single-threaded memory alloator, there are a number of alloation algorithms thatan be used to ontrol fragmentation [JW99℄. Sequential-�t algorithms maintain one listof free objets that is searhed for a blok that is large enough to �t a requested objetsize. Di�erent poliies determine whih free objet is seleted, for example the �rst freeobjet that is large enough, or a free objet that is losest to the requested size [JW99℄.A segregated or binning alloation algorithm uses a set of bin sizes. The heap maintainsa set of lists of freed objets, eah of a di�erent bin size. When an objet is alloated,the requested size is rounded up to the nearest bin size resulting in spaing around the

10 Chapter 2. Bakground
Figure 2.4: Fragmentation of Memory(a) Contiguous (b) Highly FragmentedFigure 2.5: External Fragmentationobjet. The binning algorithm is very fast at �nding free memory of the appropriate size,sine the �rst free objet on the free list for that size is used. The fewer bin sizes thereare, the fewer lists need to be maintained by the heap; however, the bin sizes are less likelyto losely �t the requested objet size, leading to more internal fragmentation. The morebin sizes there are, the less likely free objets are to be reused, leading to more externalfragmentation and potentially heap blowup.A variation of the binning algorithm allows objets to be alloated to the requestedsize, but when an objet is freed it is plaed on the free list of the next smallest or equal binsize [JW99℄. For example, with bin sizes of 8 and 16 bytes, a request for 12 bytes alloates12 bytes, but when the objet is freed, it is plaed on the 8 byte bin list. When later

2.2. Single-Threaded Memory Alloators 11alloation requests are made, the bin free-lists ontain objets of di�erent sizes, rangingfrom one bin size to the next (8-16 in this example), and a sequential-�t algorithm is usedto �nd an objet large enough for the requested size.A third algorithm is the buddy system. The buddy system makes use of splitting andoalesing. When an objet is dealloated it is oalesed with the objets immediatelybefore and after it in memory, if they are free. Coalesing the objets turns them into onelarger objet. When an objet is alloated, if there are no free objets of the requested size,a larger free objet may be split into two smaller objets to satisfy the alloation requestwithout obtaining more memory from the operating system.Using the buddy system, a blok of dynami alloation memory is split into two equalhunks, one of those hunks is again split into two equal hunks, and so on until a blokjust large enough to �t the requested objet is reated. Similarly, a hunk may be oalesedwith its other half, if they are both ompletely free, to reate a large enough area to satisfyan alloation request [JW99℄.Splitting and oalesing an be used with other algorithms to avoid highly fragmentedmemory. Coalesing does not immediately redue external fragmentation. However, oa-lesed bloks of memory are more likely to be useful in future alloations, avoiding externalfragmentation growth.2.2.2 LoalityThe priniple of loality reognizes that programs tend to referene a small set of data,alled a working set, for a ertain period of time [Den05℄. There are two types of loality:temporal and spatial. If an objet is aessed, temporal loality suggests that same objetwill be aessed again within a short time period, while spatial loality implies that a nearbyaddress is also likely to be aessed within a short time period [Den05℄ [Wil℄. Temporal

12 Chapter 2. Bakgroundloality ommonly ours due to loops in a program, while spatial loality ommonlyappears when aessing arrays of related data [Den05℄.Hardware takes advantage of spatial and temporal loality through ahing. When anobjet is aessed, the memory physially loated around the objet is also ahed with theexpetation that the urrent and nearby objets will be referened within a short period oftime. For example, entire virtual memory pages are brought into memory from disk, andentire ahe lines are brought into ahe. A program exhibiting good loality has betterperformane due to fewer ahe misses and page faults.Temporal loality is dependent on the program, while spatial loality is determined bythe memory alloator [FB05℄. An alloator providing optimal spatial loality plaes objetsthat are used together lose by in memory, suh that the working set of the program �tsinto the fewest possible pages and ahe lines. However usage patterns are di�erent forevery program. Hene, no general-purpose memory-alloator an provide perfet loalityfor every program, but an alloator an try to avoid degrading loality.One way a memory alloator an degrade loality is by inreasing the working set.For example, a memory alloator may aess several objets before �nding a free objetto satisfy an alloation request. If there are a large number of objets aessed in verydi�erent areas of memory, the alloator may ause several ahe or page misses [GZH93℄.Another way loality may be degraded is by spatially separating related data. For example,in a binning alloator, objets of di�erent sizes are alloated from di�erent bins that maybe loated in di�erent pages of memory.

2.3. Multi-Threaded Memory Alloators 132.3 Multi-Threaded Memory AlloatorsWhen referring to a multi-threaded alloator, it is not the alloator that is multi-threaded,but the program that uses it. The alloator ode may be aessed by multiple programthreads at any given time. In addition to loality and fragmentation issues, there are issuesof mutual exlusion, false sharing, and heap blowup.2.3.1 Mutual ExlusionMutual exlusion provides sequential aess to a shared resoure. In a memory alloator,the heap is a shared resoure to whih aess must be ontrolled using mutual exlusion.There are two performane drawbaks to mutual exlusion. The �rst is the overheadneessary in performing a hardware atomi operation every time the shared resoure isaessed. The seond drawbak arises when multiple threads ontend for a shared resouresimultaneously, sine some threads may be unable to ontinue until the resoure is released.Contention an be redued through �ne-grained loking.2.3.2 False SharingFalse sharing an lead to ahe thrashing. It ours when two or more objets that areeah used by a di�erent thread share a ahe line, assuming eah thread runs on a di�erentproessor with its own ahe. Eah time one thread modi�es its objet, the other thread'sassoiated ahe is invalidated, even though it is uninterested in the modi�ed objet. Thereare three types of false sharing: program indued, alloator-indued ative, and alloator-indued passive.Program-indued false-sharing ours when one thread passes one of its objets toanother thread as in Figure 2.6. If that objet ame from a ahe line with other objets

14 Chapter 2. Bakground
Figure 2.6: Program-Indued False-Sharing

Figure 2.7: Alloator-Indued Ative False-Sharingused by the �rst thread, then the two threads now share a ahe line. When Task1 passesObjet2 to Task2, they are in a false-sharing situation. Changes to Objet1 invalidateCPU2's ahe line, and hanges to Objet2 invalidate CPU1's ahe line.Alloator-indued ative false-sharing ours when an alloator alloates objets thatfall in the same ahe line to di�erent threads as shown in Figure 2.7. Eah thread alloatesan objet and loads a ahe line size of memory into its assoiated ahe. To keep the aheonsistent, any hanges to the ahe line by one proessor invalidate the ahe line for allproessors with the same memory in their ahe.Passive false-sharing is another form of alloator-indued false-sharing that is ausedby program-indued false-sharing. When an objet in a program-indued false-sharing

2.3. Multi-Threaded Memory Alloators 15
(a)
(b)Figure 2.8: Alloator-Indued Passive False-Sharingsituation is dealloated, a future alloation of that objet may ause passive false-sharing.In Figure 2.8(a), Task2 dealloates Objet2, passed to it by Task1, leaving it free for afuture alloation request by Task2. Alloator-indued passive false-sharing ours whenObjet2 is alloated to Task2 while Task1 still uses Objet1 (as in 2.8(b)).2.3.3 Heap BlowupThe third issue in memory alloation for a multi-threaded program is an additional formof heap blowup. Heap blowup is the failure to reuse free memory, leading to unboundedexternal fragmentation [BMBW00℄. In a multi-threaded program, heap blowup an our

16 Chapter 2. Bakgroundwhen memory freed by one thread is inaessible to other threads due to the alloationstrategy [GPT04℄.

Chapter 3Memory Alloator DesignThe previous hapter desribes a number of hallenging issues when designing a memoryalloator. This hapter looks at several features found in existing alloators that addressthese issues. These features are then onsidered in di�erent ombinations to �nd potentialandidate alloators for evaluation.3.1 Multi-Threaded Memory-Alloator FeaturesThe following features may be present in a memory alloator,1. Per-thread heaps, but inluding a global shared-heap to avoid heap blowup(a) with or without ownership2. Objet Containers(a) with or without ownership(b) �xed or di�erent sized 17

18 Chapter 3. Design() global or loal free-lists3. Thread-loal free-list bu�er4. Remote free-list5. Alloation bu�er6. Lok-free operationsThe �rst feature, per-thread heaps, looks at di�erent types of heaps. The seond fea-ture, objet ontainers, looks at the organization of objets within the storage area. Theremaining features an be applied to di�erent parts of the alloator design or implementa-tion.3.1.1 Per-Thread HeapsA multi-threaded alloator may use one single heap, or multiple heaps with or without aglobal shared-heap. A single-heap alloator onsists of one heap from whih objets arealloated and to whih objets are freed. Memory is alloated from the freed objets in theheap or from the operating system. The heap may also oasionally return freed objetsto the operating system. Figure 3.1 illustrates a multi-threaded program using a single-heap alloator. The running threads and the single shared heap are shown. The arrowsindiate the diretion in whih memory oneptually moves for eah type of operation. Thistype of alloator is essentially a single-threaded alloator, but with appropriate loking toprovide mutual exlusion to this shared resoure. Whether using a single lok for all heapoperations, or �ne-grained loking on di�erent heap operations, the single heap may stillbe a signi�ant soure of ontention.

3.1. Multi-Threaded Memory-Alloator Features 19
Figure 3.1: Single Heap Alloator
Figure 3.2: Per-Thread HeapsIn order to signi�antly redue ontention in a multi-threaded program, multiple heapsare used. Having fewer heaps than threads, while reduing ontention, does not allow forthe removal of loks sine more than one thread may aess a heap at a time. Sine thebehaviour of the program annot be predited, a worst ase senario is possible where allalloations our to the same heap. Having more heaps than threads may be redundant ifthe heaps all behave the same. Later disussion shows ases in whih having more heapsthan threads an be bene�ial. However, as a starting point, the strongest ase for multipleheaps is to have a single heap per thread, as in Figure 3.2.

20 Chapter 3. DesignPer-thread heaps provide inreased ontrol of the memory being alloated to eahthread. Using a one-to-one mapping of threads and heaps, eah thread only alloatesfrom its heap, whih improves loality sine all objets for a thread may be alloated fromthe same area in memory. For example, in a program where eah thread alloates, uses,and dealloates its own objets, a single heap alloator may spread the objets of eahthread over a large area of memory, but a per-thread heap alloator an alloate eahthread's objets in a smaller area of memory, better utilizing eah CPUs ahe and ausingeah thread to aess fewer pages.Per-thread heaps also ause an inrease in external fragmentation and may lead to heapblowup. The external fragmentation experiened by a program with a single heap is nowmultiplied by the number of threads, sine eah heap must alloate its own area of reservedmemory. Additionally, objets freed by one heap annot be reused by other threads ausingheap blowup. In the worst ase, a program in whih objets are dealloated to one set ofthread heaps, but alloated from a di�erent set of thread heaps would mean freed objetsare never reused.A global shared-heap, shown in Figure 3.3, is often used to prevent heap blowup. Aglobal shared-heap is not used diretly by any thread, but is used to move free memoryamong thread heaps. When a thread heap reahes a ertain threshold of free objets, it freessome of those objets to the global heap to be reused by another thread heap. Similarly,the global shared-heap may free memory to the operating system when it reahes a ertainthreshold. Memory an be alloated from the operating system either to the thread heapsor the global heap. However, sine any thread may free or alloate objets from the globalheap, the global heap is a shared resoure that requires loking.When a thread ompletes, there are two options of how to handle its thread heap. Oneoption is to free all objets on the thread heap to the global heap and destroy the thread

3.1. Multi-Threaded Memory-Alloator Features 21
Figure 3.3: Per-Thread Heaps with a Global Heapheap, while a seond option plaes the thread heap on a list of available heaps and reuses itfor a new thread that starts up in the future. Destroying the thread heap immediately mayredue external fragmentation sooner, sine all free objets are freed to the global heapand may be reused by other threads. Alternatively, reusing thread heaps may improveperformane if the inheriting thread makes similar alloation requests as the thread thatpreviously held the thread heap.Although ontention is reintrodued with the global heap, the ost is minimal sine mostalloator operations should omplete without the use of the global heap. As per-threadheaps are a key feature for a multi-threaded alloator, all further disussion assumes per-thread heaps with a global shared-heap to prevent heap blowup.3.1.1.1 OwnershipOwnership is an option that is possible with per-thread heaps. Ownership is the notionthat an objet is owned by the thread that alloates it. Sine there is a one-to-one orre-

22 Chapter 3. Design
Figure 3.4: Per-Thread Heaps with Ownershipspondene between threads and heaps, an objet is simultaneously owned by a thread andits heap.Without ownership, a task only frees objets to its own heap, as shown in Figure 3.2.This approah means thread heaps are private to their owner thread and do not requireany loking. A drawbak of per-thread heaps without ownership is that if an objet ispassed from one thread to another during program exeution, passive false-sharing mayour. For example, if task A passes an objet to task B, and task B frees the objet, thenthe objet is freed to task B's thread heap. As a result, a future alloation request maylead to passive false-sharing, as desribed in Setion 2.3.2.With ownership, every objet must be dealloated to the heap that it was alloatedfrom. This requirement means that heaps are no longer private to a single thread andrequire loks to provide onsisteny, sine any thread may dealloate an objet to itsowner heap. Figure 3.4 shows an example of per-thread heaps with ownership (minus theglobal heap).The bene�t of ownership is the elimination of alloator-indued passive false-sharing byreturning an objet to its owner thread so that it an never be alloated to another thread.In general, all alloator-indued false-sharing an be eliminated by designating an area ofmemory to one thread heap, and ensuring that area of memory is always alloated to onethread. For example, assuming that page boundaries oinide with ahe line boundaries,

3.1. Multi-Threaded Memory-Alloator Features 23
(a) (b)() (d)Figure 3.5: Passive False-Sharing Avoidanedesignating a page to a thread heap prevents alloator-indued false-sharing sine no twothreads are alloated memory from the same page. In Figure 3.5, one thread alloatestwo piees of memory that fall in the same ahe line. False sharing an only our whenone thread passes an objet to another, as in part b. However, if that seond threaddealloates the memory, ownership requires the objet be returned to the original threadheap. Thus, subsequent alloations alloate the objet to the original thread preventingany alloator-indued false-sharing.Objet ownership an be enfored as immediate or delayed ownership. Dealloatedobjets may be returned to the owner thread immediately or after some delay. For example,a thread may store an objet it does not own on its free list for a ertain number of memoryoperations. The thread heap may allow these objets to be realloated to the loal thread

24 Chapter 3. Designor not. If delayed objet ownership is used suh that it allows realloation by the loalthread, then some passive false-sharing may our. For example, in Figure 3.5(), Objet2may be dealloated to Task2's thread heap initially. If Task2 requests an objet beforeObjet2 is returned to its owner, then the alloator may alloate Objet2 to Task2 ausingpassive false-sharing to our.Delayed ownership with realloation an improve performane sine the loal threadan omplete some operations on its own thread heap where it might otherwise be requiredto go to the global heap. Delayed ownership without realloation an improve performaneby bathing together free operations to a remote thread-heap.3.1.2 Objet ContainersA simple alloator plaes headers/trailers with individual objets, meaning memory ad-jaent to the objet is reserved for objet management information, as shown in Figure3.6(a). However, this approah leads to poor ahe usage, sine only a portion of the aheline is holding useful information from the program's perspetive. Spatial loality is alsonegatively a�eted; even though the header and objet are together in memory, they aregenerally not aessed together. The objet is aessed by the program when it is allo-ated, while the header is aessed by the alloator when the objet is free. This di�erenein usage patterns an lead to poor ahe loality [FB05℄. Additionally, plaing headerson individual objets an lead to redundant management information. For example, if aheader stores only the objet size, then all objets with the same size have idential head-ers. A more omplex approah plaes the headers in a separate loation in memory. Theomplexity lies in �nding the objet header given only the objet address, sine that isnormally the only information passed to the dealloation operation.One approah to separating objet headers/trailers from objet ontent is to use objet

3.1. Multi-Threaded Memory-Alloator Features 25(a) Objet Headers(b) Objet ContainerFigure 3.6: Header Plaementontainers [FB05℄. An objet ontainer is a group of adjaent objets in memory, shownin Figure 3.6(b). The header for the ontainer holds information neessary for all objetsin the ontainer. A trailer may also be used at the end of the ontainer.In general, the ontainer header/trailer for any objet must be found solely from theaddress of the objet. One way to do this is to start ontainers on aligned addresses inmemory, then trunate the lower bits of the objet address to obtain the header address(or round up and subtrat the trailer size to obtain the trailer address). For example, if anobjet at address 0xFC28EF08 is freed and ontainers are aligned on 64KB (0x0001 0000)addresses, then the ontainer header is at 0xFC28 0000.In general, ontainers ontain homogeneous objets, with �xed information in theheader, whih is logially distributed aross all ontainer objets (e.g., all objets arethe same size). Containers with heterogeneous objets implies di�erent headers desribingthem, whih introdues the problem of loating a spei� header solely by an address. Aouple of solutions an be used to implement ontainers with heterogeneous objets. How-ever, the problem with allowing objets of di�erent sizes is that the number of objets, andtherefore headers, in a single ontainer is unpreditable.One solution alloates objets at one end of the ontainer, while alloating headersfrom the other end of the ontainer, until the objets meet the headers and the ontaineris �lled. Freed objets annot be split or oalesed sine this would ause the number of

26 Chapter 3. Designheaders to hange. The diÆulty in this strategy remains �nding the header for a spei�objet. The individual headers in the ontainer would have to be searhed until the headerfor a given objet is found.A seond solution ombines the use of ontainer headers and individual objet headers.Eah objet header stores the heterogeneous information of the objet, suh as its size,while the ontainer header stores the homogeneous information, suh as the owner threadwhen using ownership. This approah allows ontainers to hold di�erent types of objets,but does not separate headers from their objets. The bene�t of the ontainer in this aseis to redue some redundant information that is stored in the ontainer header.In general, the omplexity of heterogeneous objets in a ontainer is likely to outweighthe potential bene�ts. A ontainer header is most eÆient when all objets in the ontainerare homogeneous and therefore the same size; only one size is stored in the header, makingthe header a onstant size regardless of the number of objets in the ontainer. Thisapproah greatly redues internal fragmentation sine far fewer headers are required. Usinghomogeneous objet ontainers, eah ahe line an hold more objets, sine the objetsare loser together due to the lak of headers among them.An additional bene�t to objet ontainers is that they an be used to avoid alloator-indued ative false-sharing. Similar to the approah desribed in Setion 3.1.1.1, if on-tainer boundaries oinide with ahe-line boundaries and all objets in a ontainer arealloated to the same thread, then alloator-indued ative false-sharing is avoided.Two drawbaks remain when using ontainers with homogeneous objets. Althoughsimilar objets are lose spatially within the same ontainer, di�erent objets are furtherapart in separate ontainers. Depending on the program, this may or may not improveloality. If the program uses several objets of the same size in its working set, thenloality is improved sine these objets may all be in the same ontainer. If a lot of

3.1. Multi-Threaded Memory-Alloator Features 27di�erent sized objets are used, then a lot of ontainers are in use, whih leads to poorpaging loality, sine eah ontainer orresponds to another page that needs to be storedin memory. The seond drawbak is that external fragmentation may be inreased sineontainers reserve spae for objets that may never be alloated by the program. However,external fragmentation an be redued by using smaller ontainers.3.1.2.1 Containers with OwnershipUsing ontainers without ownership, objets are dealloated to the thread heap that freesthe objet. Thus, di�erent objets in a ontainer may be on di�erent thread-heap free-lists.When a thread heap frees objets to the global heap, individual objets are passed, furtherseparating objets from other objets in their ontainer.Using objet ownership, all objets in a ontainer belong to the same thread heap.Ownership of an objet is determined by the owner of its ontainer. In general, ownershipavoids passive false-sharing sine objets are returned to the thread that alloated theobjet. Passive false-sharing may still our, as desribed in Setion 3.1.1.1, if delayedownership is used. As desribed in Setion 3.1.2, using ontainers avoids ative false-sharing sine objets in a ontainer are all alloated to the same thread.Additionally, when a thread heap reahes its threshold of free objets, it moves someontainers to another thread heap via the global heap. When a ontainer hanges own-ership, the ownership of all objets within it hange as well. Moving a ontainer involvesmoving all objets on the thread heap's free-list in that ontainer to the new owner. Thisapproah redues ontention for the global heap, sine eah request for objets from theglobal heap returns a ontainer of several objets rather than individual objets.Additional restritions may be applied to the movement of ontainers. When a ontainerhanges ownership, if some of its objets are in use by the program, ative false-sharing

28 Chapter 3. Design
(a) (b)
() (d)Figure 3.7: Ative False-Sharing using Containersmay our, as demonstrated in Figure 3.7. In 3.7(a), a ontainer is moved from Heap1 toHeap2. When Task2 alloates an objet from the ontainer it is in a false-sharing situation,as in 3.7(b). This senario is an example of ative false-sharing sine no objets are passedamong threads. Note, one the objet is freed by Task1 in 3.7(), no more false sharing anour until the ontainer hanges ownership again. To prevent this form of false sharing,ontainer movement may be restrited to when all objets in the ontainer are free.A onsequene of ownership is that free objets in a ontainer are on the same heap,making it easier to determine if all objets in a ontainer are free. In addition to using theglobal heap, this information leads to two additional approahes of preventing heap blowup.One approah returns the ontainer to the operating system assuming the ontainer was

3.1. Multi-Threaded Memory-Alloator Features 29
(a) Containers without Ownership(b) Containers with OwnershipFigure 3.8: External Fragmentation Using Objet Container Ownershipalloated using a all like mmap, whih allows memory at an arbitrary address to be returned.A seond approah to avoiding heap blowup lears the ontainer so it an be used to alloateobjets of a new size.Using ontainers with ownership inreases external fragmentation sine a new ontainerfor a requested objet size must be alloated separately for eah thread requesting it. Inthe example shown in Figure 3.8, using objet ownership alloates 50% more spae thanrequired.3.1.2.2 Container SizeOne way to ontrol the external fragmentation aused by alloating a large ontainer for asmall number of requested objets is to vary the size of the ontainer. As desribed earlier,ontainer boundaries need to be aligned on addresses that are a power of two to alloweasy loation of the header (by trunating the bits). Aligning ontainers in this manneralso determines the size of the ontainer. However, the size of the ontainer has di�erent

30 Chapter 3. Designimpliations on the alloator.The larger the ontainer, the fewer ontainers are needed, and hene, the fewer headersneed to be maintained in memory, improving both internal fragmentation and potentiallyperformane. However, with more objets in a ontainer, there may be more objets thatare not alloated, inreasing external fragmentation. With smaller ontainers, not onlyare there more ontainers, but a seond new problem arises where some objets are largerthan the ontainer.In general, large objets are alloated diretly from the operating system and are re-turned immediately to the operating system to redue external fragmentation due to in-frequent large objets that are unlikely to be reused. If the ontainer size is dereased, forexample to 1KB, then an objet that is 1.5KB is treated as a large objet, whih is likelyto be inappropriate. Thus, it would be ideal to use smaller ontainers for smaller objets,and larger ontainers for medium objets, whih leads to the issue of loating the ontainerheader.In order to �nd the ontainer header when using di�erent sized ontainers, a ontainersuperstruture, or super-ontainer is used. The super-ontainer is a ontainer of objetontainers, as shown in Figure 3.9, that starts on an aligned address. The super-ontainerspans several ontainers, and ontains a header with information for �nding eah ontainerheader. Super-ontainer headers are found using the same method that is used to �ndontainer headers when the ontainers are �xed sizes, by dropping the lower bits of anobjet address. In the example shown in Figure 3.9, the header of a 64KB super-ontainerpoints to the headers of the ontainers within it. Smaller objets are held within 16KBontainers, while medium objets are held within 64KB ontainers. The free spae at theend of a super-ontainer an be used to alloate a new ontainer for small objets whenanother small ontainer is needed.

3.1. Multi-Threaded Memory-Alloator Features 31
Figure 3.9: Example Super-ContainersThe ontainers within a super-ontainer may be di�erent sizes or all the same size. Ifthe ontainers in the super-ontainer are di�erent sizes, then the super-ontainer headermust perform a searh to determine the spei� ontainer for an objet given its address.If all ontainers in the super-ontainer are the same size, then a spei� ontainer headeran be found by an O(1) alulation.Minimal internal and external fragmentation is ahieved by having as few ontainersas possible, eah being as full as possible. It is also possible to ahieve additional bene�tby using larger ontainers for popular small sizes, sine when fewer ontainers are used,there are fewer ontainer headers in memory. However, it is impossible for an alloatorto determine whih sizes are going to be popular in future requests. Keeping statistis onrequested sizes may allow the alloator to make a dynami deision about whih sizes arepopular. For example, after reeiving a number of alloation requests for a partiular size,that size is onsidered a popular request size and larger ontainers are alloated for thatsize. However, the deision may be inorret, leading to a larger ontainer being alloatedthat remains mostly unused. A programmer may be able to inform the alloator aboutpopular objet sizes in order to selet an appropriate ontainer size for eah objet size.

32 Chapter 3. Design3.1.2.3 Container Free-ListsBesides the size of the objets in the ontainer, a ontainer header may hold other usefulinformation that may improve performane. For example, maintaining free lists in a on-tainer header (Figure 3.10(b)), rather than in the heap (Figure 3.10(a)), an greatly reduethe omplexity of moving all freed objets belonging to a ontainer onto another heap.Maintaining free lists within ontainer headers assumes all free objets in the ontainerare on the same heap. Thus, it only applies to ontainers that also enfore ownership. Tomove a ontainer with free lists on heaps, as in Figure 3.10(a), the heap's free list is �rstsearhed to �nd all objets within the ontainer. Eah objet is then removed from thefree list and linked together to be moved to the new heap. With free lists in ontainers,as in Figure 3.10(b), the ontainer is removed from the heap's free list and plaed on thenew heap's free list. Thus, when using free lists within ontainers, the operation of movingontainers is redued from O(n) to O(1). The ost is adding information to a header, whihinreases the header size, and therefore internal fragmentation.When all objets in the ontainer are the same size, a single free list is suÆient.However, when the objets in the ontainer an be of any size, the header needs to storea free list for eah size lass when using a binning alloation algorithm, whih an be avery signi�ant inrease in the ontainer-header size. The alternative is to use a di�erentalloation algorithm with a single free list, suh as a sequential-�t alloation-algorithm.3.1.3 Thread-loal free-list bu�erA thread-loal free-list bu�er ontains lists of freed objets. It is a private heap ontainingonly memory that has been freed by its owner thread, as shown in Figure 3.11. It isprivate in that only the owning thread may aess the bu�er. The bu�er may be used

3.1. Multi-Threaded Memory-Alloator Features 33
(a) Free List Among Containers
(b) Free List Within ContainersFigure 3.10: Free Lists Struturesin an alloator with per-thread heaps or a single-shared heap. Plaing the bu�er in analloator with only a single-shared heap generates a simple version of private per-threadheaps. However, that type of alloator is not onsidered in this disussion. The thread-loal bu�er redues ontention for a shared heap. Alloation and dealloation requests thatan be ompleted from the thread-loal bu�er avoid loking. However, when the bu�er isleared, it requires obtaining a lok, and depending on the implementation of the threadheap, the operation is either O(1) if it is as simple as adding the list to the end of the

34 Chapter 3. Design
Figure 3.11: Thread-Loal Free-List Bu�erthread-heap's free-list, or O(n) if some management needs to be done for eah objet thatis freed.The objets on the lists may or may not be owned by the loal thread-heap dependingon the implementation. Figure 3.11 shows an example alloator in whih objets owned byother threads are immediately freed to their owner heap, enforing immediate ownership.The thread-loal bu�er an also be used to implement delayed ownership. Plaing objetsthat are owned by other threads on the bu�er temporarily allows the thread to reuse anobjet before returning it to its owner.For a private heap with no ownership, where objets are freed to the thread-heap thatdealloates them, the thread-loal free-list bu�er gains no bene�t, sine it is essentiallythe same as the thread heap. However, it may still improve performane if thread-heapoperations require more omplexity than a simple operation on the bu�er. There may alsobe some performane bene�t in storing objets owned by other threads to be freed to theirowner heap all at one. The bu�er may or may not allow these objets to be reused by theloal thread depending on the type of ownership enfored.

3.1. Multi-Threaded Memory-Alloator Features 35
Figure 3.12: Remote Free-List3.1.4 Remote Free-ListsA remote free-list is a list of freed objets. Figure 3.12 shows how a remote free-list is usedin an alloator. When objets alloated by one thread are dealloated by another, ratherthan loking the thread heap of the thread owning the objet to perform a dealloation,the objet is plaed on the heap's remote free-list. Objets dealloated by the thread thatalloated them an be freed diretly to the owner's heap. To avoid heap blowup, the heapwith the remote free-list must reuse those free objets before obtaining additional memory.A remote free-list an redue ontention for a thread heap. Rather than allowing anythread to free to the thread heap, other threads use the remote free-list. Loks are movedfrom the thread heap to the remote free-list improving the time for loal alloations anddealloations. Sine the remote free-list is leared during an alloation when there are nomore freed objets in the heap, some alloation operations take longer. Clearing the remotefree-list is O(1) if the list an simply be added to the end of the thread-heap's free-list, orO(n) if some maintenane must be performed on eah freed objet. The time to obtainaess for the remote free-list an be limited using lok-free operations (see Setion 3.1.6).As long as there is more than one freed objet on the list eah time the remote free-list is

36 Chapter 3. Designleared, performane should be improved.A remote free-list an also be added to a global heap. The remote free-list on theglobal heap ats a little di�erently than on thread heaps, sine all frees are remote on theglobal heap. Thus the remote free-list ats to separate ontention for the global heap, sinethreads alloating from the global heap and threads dealloating to the global heap arenot usually ontending for the same lok.3.1.5 Alloation Bu�erAn alloation bu�er is a hunk of memory that has been alloated from the operatingsystem, but has not yet been alloated to the program. It is basially an area of reservedmemory for alloating objets when the free list is empty.An alloation bu�er is used to redue ontention and the number of operating systemalls. Rather than reserving memory from the operating system to aommodate a singleobjet, an entire bu�er is reserved from whih individual objets are alloated later. Thebu�er may be assoiated with the global heap, and used when the global heap has no freeobjets.An alloation bu�er may also be assoiated with eah thread heap, allowing a thread toalloate from the bu�er before requesting objets from the global heap, reduing ontentionfor the global heap. To prevent heap blowup, objets should be reused from the globalheap before alloating a new alloation bu�er. Alloation bu�ers are useful initially whenthere are no freed objets in the thread heap and global heap. In the long term, freedobjets are used rather than objets from the alloation bu�er. Thus, alloation bu�ersare alloated more frequently to start, but their use eventually diminishes.Assoiating an alloation bu�er with a thread heap also avoids ative false-sharing,sine all objets in the alloation bu�er are alloated to the same thread. If all objets

3.1. Multi-Threaded Memory-Alloator Features 37sharing a ahe line belong to the same alloation bu�er, then all objets from a ahe lineare alloated to the same thread, avoiding ative false-sharing. Ative false-sharing maystill our when objets from a thread heap are freed to the global heap. Depending onwhih objets are moved, a future alloation ould ause ative false-sharing.Alloation bu�ers may inrease external fragmentation, sine some memory in the al-loation bu�er may never be alloated. A smaller alloation bu�er redues the amountof external fragmentation, but inreases the number of alls to the global heap or to theoperating system. The alloation bu�er also slightly inreases internal fragmentation, sinea pointer is neessary to loate the next free objet in the bu�er.If used with oalesing, the bu�er an be a large objet that is alloated from theglobal heap or the operating system and then split into several smaller objets in futurealloations.The unused part of a ontainer, neither alloated or freed, is an alloation bu�er. Forexample, when a ontainer is reated, rather than plaing all objets within the ontaineron the free list, the objets form an alloation bu�er and are alloated from the bu�eras alloation requests are made. This lazy method of onstruting objets is bene�ial interms of paging and ahing. For example, although an entire ontainer, possibly spanningseveral pages, is alloated from the operating system, only a small part of the ontainer isused in the working set of the alloator, reduing the number of pages and ahe lines thatare brought into higher levels of ahe.3.1.6 Lok-Free OperationsA lok-free algorithm guarantees that at all times at least one thread is making progressin the system [MHM03℄. A wait-free algorithm puts a �nite bound on the number of stepsany thread takes to omplete [Her93℄. Lok-free operations an be used in any alloator

38 Chapter 3. Designas a method to redue the use of loks. The problem with using a lok is that if the kernelthread assoiated with the holding user thread beomes bloked, the system as a wholebeomes bloked if all other user threads are waiting for that lok [Her93℄. However, thissituation is unlikely exept in an alloator with a lot of ontention. Lok-free algorithmsmay also redue the number of ontext swithes, sine a thread does not yield while waitingfor a lok.The onsequene of using lok-free operations is greater omplexity and hardware de-pendeny. Lok-free algorithms an be applied most easily to free lists to allow lok-freeinsertion and removal from the head of a list. Implementing lok-free operations for moreompliated data strutures may be more omplex and depend on hardware support.3.2 Combining FeaturesThe features disussed in the previous setions an be used in di�erent ombinations whendesigning a multi-threaded memory alloator. An alloator that ombines features ansolve problems, suh as alloator-indued false-sharing, that annot be solved using anyone feature.Analyzing all possible ombinations of alloator features leads to a very large designspae. To redue the analysis, di�erent types of ontainers and lok-free operations are notspei�ally disussed. The di�erent types of objet ontainers, varying in size and headerinformation, an be used interhangeably with a basi ontainer and have little inueneon the other features. Lok-free operations an be added to any alloator regardless of theother features used.Per-thread heaps and a global shared-heap, as well as alloation bu�ers are featuresused in all alloators disussed. An alloation bu�er is impliitly present in a oalesing

3.2. Combining Features 39alloator, and simply an implementation detail when using objet ontainers. Additionally,both passive and ative-false sharing are redued when ombining an alloation bu�er withobjet ownership. Alloators without alloation bu�ers are possible, and potentially useful,but do not provide additional bene�ts when onsidering the ombination of features.The optional features of an alloator that are onsidered in the disussion are: oa-lesing, thread-loal free-list bu�ers, and remote free-lists. The oalesing feature is onlyapplied to alloators using individual objet headers. Coalesing does not work well withontainers, sine when objets are split and oalesed the sizes hange. As desribed inSetion 3.1.2, ontainers work best when all objets in the ontainer are the same size.Thread-loal free-list bu�ers are not onsidered in ombination with remote free-lists.These features are mostly independent of eah other. The bene�ts of using a remote-freelist in an alloator are the same whether or not thread-loal free-lists are used. Likewise,the bene�ts of using a thread-loal free-list bu�er are generally the same whether or nota remote free-list is used, with one exeption. The exeption is that sine a remote free-list removes ontention for a loal thread-heap, adding a thread-loal free-list bu�er doesnot redue ontention for the loal thread-heap. The thread-loal free-list bu�er may stillprovide other bene�ts in an alloator with remote free-lists, but they are the same bene�tsas in an alloator that does not use remote free-lists. Thus, the ombination of thesefeatures is not disussed sine they are mostly independent and no additional insights anbe gained.The design spae is broken down based on two main riteria: whether or not headersare ontainer based, and whether or not ownership is enfored. These two riteria havethe greatest impliations on the performane of an alloator. Using these riteria resultsin four main types of alloators:1. Alloators with individual objet headers and no ownership

40 Chapter 3. DesignTable 3.1: Feature CombinationsCoalesing Base-Case Thread-LoalFree-List Bu�er RemoteFree-ListIndividual Objet Headers No IN IN-l IN-rNo Ownership Yes IN- IN-l IN-rIndividual Objet Headers No IO IO-l IO-rOwnership Yes IO- IO-l IO-rContainer HeadersNo Ownership No CN CN-l CN-rContainer HeadersOwnership No CO CO-l CO-rAll alloators use per-thread heaps, a global shared-heap, and an alloation bu�er.2. Alloators with individual objet headers and enfored ownership3. Alloators with ontainer headers and no ownership4. Alloators with ontainer headers and enfored ownershipUsing the simpli�ations and design riteria, Table 3.1 outlines the alloators disussedin this setion. Eah alloator is given a unique name in the table. As a short form\l" refers to a thread-loal free-list bu�er, \r" refers to a remote-free list, and \" refersto oalesing. The �rst letter indiates whether individual objet headers (I) are usedor ontainers (C) and the seond letter indiates whether ownership is enfored (N=noownership, O=ownership).3.2.1 Individual Objet Headers { No OwnershipThis setion looks at alloators that use individual objet headers and do not enfore objetownership.

3.2. Combining Features 413.2.1.1 Base Case (IN)With no ownership, objets are alloated and dealloated to the thread's own thread heap.Thus, thread heaps are only ever touhed by one thread and do not require any loking. Alok is only obtained for the global shared-heap when the thread heap has no free objetsor too many free objets.The use of the alloation bu�er redues ontention both for the global heap and theoperating system, as desribed in Setion 3.1.5. The alloation bu�er also redues ativefalse-sharing, by initially alloating all objets in the bu�er to the same thread. However,ative false-sharing may still our when objets are freed to the global heap. As well,passive false-sharing an our, sine objets are freed to the thread-heap that frees them,and may be realloated to that thread.3.2.1.2 Thread-Loal Free-List Bu�er (IN-l)The thread-loal free-list bu�er adds no bene�t to the IN alloator sine there is no on-tention on the thread heaps.3.2.1.3 Coalesing (IN-)Coalesing is when two free objets next to eah other in memory are merged to reate alarger free objet. There are two options when designing an alloator with oalesing andthread heaps. One option only merges objets on the same heap. A seond option allowsobjets on di�erent heaps to be merged, but requires loking and inreases ontention onall heaps. Coalesing may avoid highly fragmented memory and may lead to less externalfragmentation than an alloator without oalesing, sine large objets an be reused forany smaller size request, and smaller objets an be oalesed to satisfy larger requests.However, internal fragmentation is inreased sine objets must maintain the loation of

42 Chapter 3. Designobjets next to them in memory.Coalesing may redue ative false-sharing. Using the idea of an alloation bu�er, whena heap requests memory from the operating system, it requests a large objet that is split tothe requested size. If this large objet is passed to a thread heap, and the thread heap usesthis objet to split and satisfy alloation requests, then all objets from this large objetare alloated to the same thread heap, avoiding ative false-sharing. However, when athread heap frees objets to the global heap, depending on whih objets are passed, itmay still ause ative false-sharing. As in alloator IN, passive false-sharing may still ourwhen objets are passed among threads in the program.3.2.1.4 Coalesing and Thread-Loal Free-List Bu�er (IN-l)Using a thread-loal free-list bu�er in a oalesing alloator an also be used to delay theoperation of oalesing objets. Objets plaed on the bu�er do not hange size sine theyare not oalesed. Hene, if ertain objet sizes are frequently alloated and dealloatedthey an be reused from the bu�er without going through the proesses of being oalesedand split. The bu�er ats as a form of ahe, ahing objets at their requested size untilthey are no longer useful. External fragmentation may be slightly inreased sine objetson the thread-loal free-list bu�er are not oalesed and split. When the bu�er is leared,the objets are oalesed into larger objets that may be more useful in future requests.If oalesing is used with loks on thread heaps to allow objets on free lists from twoseparate heaps to be oalesed, then the thread-loal free-list bu�er also prevents someloking. Operations involving only the loal bu�er avoid obtaining a lok for the threadheap. Ative and passive false-sharing may still our, as in alloator IN-.

3.2. Combining Features 433.2.1.5 Remote Free-List (IN-r),Coalesing and Remote Free-List (IN-r)Adding a remote free-list to thread heaps gains no bene�t, sine there are no remote-freeoperations beause all objets are freed to the thread heap of the thread that frees them. Aremote free-list may be added to the global shared-heap. When thread heaps free objets tothe global heap they are plaed on the remote free-list. This approah separates ontentionfor the global heap sine threads that are passing objets to the global heap are not usuallyontending with threads that are requesting objets from the global heap. All objets fromthe remote free-list are moved to the main free-list when a thread requests an objet fromthe global heap and it has no more objets on its main free-list. Adding the remote free-listhas no a�et on the ways in whih false sharing may our in these alloators.3.2.2 Individual Objet Headers { Objet OwnershipLike the previous setion, this setion assumes individual objet headers, but with owner-ship. Ownership implies that objets must be returned to the heap that alloated them. Inorder to do so, eah objet header must store information about the thread that alloatesit.3.2.2.1 Base Case (IO)Adding objet ownership removes all passive false-sharing, sine an objet is freed to theheap that initially alloated it. Thread heaps must be loked sine any thread an aessany other thread heap to dealloate an objet. Ative-false sharing is greatly redued byusing an alloation bu�er on eah thread heap, but may still our when objets are freedto the global shared-heap.

44 Chapter 3. Design3.2.2.2 Thread-Loal Free-List Bu�er (IO-l)Adding a thread-loal free-list bu�er redues ontention for the thread heaps sine a threadompletes some operations diretly through the loal bu�er. Objets not owned by theurrent heap may be freed to the loal bu�er if delayed ownership is used. Delayed own-ership allows for potential reuse of the objet before the bu�er is leared and the objet isreturned to its owner, however it also allows passive false-sharing to our when the objetis reused.3.2.2.3 Coalesing (IO-)Using a oalesing alloator with ownership, all alloator-indued false-sharing an beeliminated if large free-objets are alloated suh that their boundaries fall on ahe-lineboundaries. When a free objet is split, the ownership of the original free-objet is opiedto the two new free-objets. Thus, all objets originating from the initial objet are ownedby the same thread, removing ative false-sharing. When freeing objets to the globalheap, if only those original large-objets are passed, then all ative false-sharing is avoided.The requirement that objets be returned to their owner thread ensures that the originallarge-objets eventually oalese to their original state as one objet. As in alloator IO,a thread heap must be loked in order to allow any thread to dealloate an objet.3.2.2.4 Coalesing and Thread-Loal Free-List Bu�er (IO-l)The thread-loal free-list bu�er allows a thread to perform loal operations without loking,as in alloator IO-l. Additionally, the bu�er an improve performane when objets arereused at their dealloated size by avoiding extra oalesing and splitting, as in alloatorIN-l, at the ost of a slight inrease in external fragmentation, sine objets are notoalesed while on the bu�er.

3.2. Combining Features 453.2.2.5 Remote Free-List (IO-r),Coalesing and Remote Free-List (IO-r)Adding a remote free-list to the thread heaps redues ontention. Loks an be removedfrom the thread heaps sine they are no longer aessed by other threads. Only the remotefree-list needs a lok. A remote free-list may also be added to the global shared-heap toredue ontention, as desribed in Setion 3.2.1.5.3.2.3 Objet Containers { No OwnershipUsing objet ontainers without ownership, means objets are alloated and dealloatedto the ontainers in the thread's own thread heap. Using ontainers an greatly redue theamount of memory used to store headers, but may also inrease external fragmentationdepending on the ontainers used, as desribed in Setion 3.1.2. Cahe usage is improvedby removing headers from objets, but paging loality may be poor sine objets of di�erentsizes must be plaed in di�erent ontainers.3.2.3.1 Base Case (CN)As desribed in Setion 3.1.5, ative false-sharing is avoided using ontainers as an alloa-tion bu�er. However, one a thread heap reahes its threshold of free objets, it passes somefreed objets to the global shared-heap. Depending on whih freed objets are transferred,this may indue ative false-sharing. Passive false-sharing an also exist sine objets anbe passed among threads in the program, but may not be returned to the initial thread.

46 Chapter 3. Design3.2.3.2 Thread-Loal Free-List Bu�er (CN-l)Sine there are no loks required on thread heaps with no ownership, there is no bene�t inusing a thread-loal free-list bu�er.3.2.3.3 Remote Free-List (CN-r)Sine there are no loks required on thread heaps with no ownership, there is no bene�t inusing a remote free-list. A remote free-list an be added to the global heap in an attemptto redue ontention, as desribed in Setion 3.2.1.5.3.2.4 Objet Containers { Objet OwnershipUsing ontainers with ownership means objets are dealloated to the heap that alloatedthem. Objet ownership information is stored in the ontainer header, applying to allobjets in the ontainer. In order to hange ownership of an objet, the entire ontainermust hange ownership. Thus, rather than moving objets between the global heap andthread heaps, entire ontainers are passed, reduing ontention for the global heap.3.2.4.1 Base Case (CO)As in alloator CN, using ontainers avoids ative false-sharing by initially alloating allobjets in a ontainer to the same thread. When a thread heap reahes its threshold of freeobjets, it frees a ontainer to the global heap, hanging the ownership of the ontainerand all of its objets. This may ause some ative false-sharing to our, as desribedin Setion 3.1.2.1. Passive false-sharing is avoided by freeing objets to the owner of theontainer.Additionally, some of the objets in a ontainer transferred to the global heap may still

3.2. Combining Features 47be in use by the program. Thus, some free operations may free an objet to a ontainer thatis owned by the global heap, inreasing ontention for the global heap. However, movingontainers between the global shared-heap and a thread heap also redues ontention forthe global heap. Rather than making a request to the global heap for every objet a threadheap needs, the thread heap makes one request and reeives a ontainer with several freeobjets at one.Adding restritions to the movement of ontainers to require that a ontainer annothange ownership unless all of its objets are free eliminates all forms of ative false-sharing.This restrition also avoids the situations where objets may be freed to a ontainer ownedby the global shared-heap, simplifying the global heap and reduing ontention for it. Thisrestrition may inrease external fragmentation, sine free objets in a ontainer annothange ownership, and hene, are not being alloated.Maintaining free lists within ontainers makes the movement of ontainers a fast op-eration. A ontainer is taken o� the thread heap's list, and moved to the global heapin onstant time. If a free-list is not organized by ontainer, then removing all of theontainer's objets from the thread heap's free list requires O(n) operations.3.2.4.2 Thread-Loal Free-List Bu�er (CO-l)Adding the thread-loal free-list bu�er an redue some of the ontention for thread heaps.When a thread dealloates an objet that belongs to a ontainer its thread heap owns,it an plae the objet on its private bu�er to avoid aquiring a lok. That objet anlater be alloated by the thread again without obtaining a lok. If the objet is ownedby another thread, it an be plaed on the bu�er if delayed ownership is used, potentiallyausing some passive-false sharing. When the bu�er is leared, loks are obtained to freethe objets to the appropriate thread heaps.

48 Chapter 3. Design3.2.4.3 Remote Free-List (CO-r)A remote free-list an be added to the global heap to redue ontention, as desribed inSetion 3.2.1.5, and an also be used to remove loks from a thread heap. A remote free-listmay be added to eah thread-heap, or to eah ontainer, moving the lok from the threadheap to the ontainer header. A thread dealloating an objet from a ontainer that itdoes not own, obtains the lok for either the owner thread heap's remote free-list or theontainer's remote free-list and plaes the objet on the list.Using remote free-lists on ontainer headers redues ontention for loks, but also in-reases internal fragmentation sine eah ontainer header holds a remote free-list. Thisapproah also avoids a situation in whih a remote-free operation hases after a movingontainer. A thread dealloating an objet it does not own must determine the threadheap that urrently owns the ontainer, but the ownership may hange while it is waitingto obtain a lok for the remote free-list. Using remote free-lists on ontainer, even if theownership of the ontainer hanges, the remote free-list used to plae the objet does nothange.3.3 SummaryThis hapter desribes several features of a multi-threaded memory-alloator, and thepotential interations of those features. The next two hapters look at existing alloatorsand a set of test alloators that use these features in di�erent ombinations.

Chapter 4Existing AlloatorsThe previous hapter disusses the features present in multi-threaded memory-alloators.In order to evaluate how these features perform, both existing alloators and test alloatorsare examined. There are several existing alloators that takle the hallenges faing a singleor multi-threaded memory alloator. This hapter gives an overview of existing alloatorsthat are used to evaluate performane.4.1 Solaris MalloThe default alloator on Solaris 8 is used for omparison against other alloators in Chapter7. Rather than using a sequential-�t alloation algorithm (see Setion 2.2.1), it uses abinary searh tree to quikly �nd appropriate free objets. Splitting and oalesing areused along with an alloation bu�er from the operating system, providing good ontrolof fragmentation in single-threaded programs. Solaris mallo uses a single lok and asingle heap for all memory alloator operations, whih slows down multi-threaded programs[Nak01℄. 49

50 Chapter 4. Alloators4.2 DlmalloThis single-threaded, single-heap alloator was reated by Doug Lea [Lea℄. The alloatoruses several tehniques to minimizes fragmentation and improve loality. The alloator isthread-safe, meaning that it an be used by a multi-threaded program. However, a singlelok is used for the entire alloator, making it very ineÆient for use by a multi-threadedprogram [AN03℄ [Nak01℄.Dlmallo is a ombination of a sequential-�t and binning alloator. Lists of free memoryare maintained for eah bin size, but objets on the list fall into a range of sizes. The listsare searhed for a best-�t, or losest to the requested size, hunk of free memory. Dlmallouses oalesing to merge two free objets next to eah other in memory into a single largerfree objet. Large objets are alloated and dealloated diretly from the operating system[Lea℄.Dlmallo is not tested in the evaluation presented in Chapter 7 sine it does not supportmulti-threaded programs. Instead, the default Solaris memory alloator is used.4.3 PtmalloPtmallo is inluded as the default glib alloator on Linux (with glib version 2.3.x) [Fer℄.The default Linux alloator is used in the evaluation presented in Chapter 7. It is anextension of Dlmallo with the intention of being used by multi-threaded programs [Glo℄.Ptmallo redues ontention for the memory alloator by having multiple heaps, but it isnot exatly per-thread heaps. At eah memory operation, a thread �rst attempts to usethe heap it used previously, and if that heap is in use, then it is assigned another heap thatis not in use at that time of the request. A new heap is reated for an alloation when allother heaps are loked [Fer℄.

4.4. Hoard Alloator 51Ptmallo enfores objet ownership, but sine there is no one-to-one relationship be-tween threads and heaps, an objet is owned by the heap where it was alloated. Eah heapis responsible for large hunks of memory, keeping the memory on eah heap separate frommemory on other heaps. This approah would eliminate ative and passive false sharing ifeah thread always used the same heap, but in Ptmallo that is not guaranteed.4.4 Hoard AlloatorHoard is a multi-threaded alloator built using the heap layers framework [BZM01℄. Theheap layers framework is meant to help build memory alloators using layers of funtion-ality. The framework provided with version 3.6 is used as the basis for implementing thedi�erent test alloators disussed in Chapter 5. The Hoard alloator uses a binning algo-rithm, whih is also used as the basis for the test alloators. Hoard version 3.6 is usedin the evaluation presented in Chapter 7 and is available at [Ber℄. Several hanges havebeen made to Hoard sine the original desription provided in [BMBW00℄. Version 3.6 isdesribed here.The Hoard alloator inludes several of the features desribed in Setion 3.1. It is a CO-lalloator in Table 3.1 that inludes per-thread heaps with a global shared-heap, ontainers,an alloation bu�er, a thread-loal free-list bu�er, and delayed objet ownership. Its objetontainers, alled superbloks, are of a �xed size, with all ontained objets being the samesize. The superbloks maintain free lists of objets belonging to the superblok [BMBW00℄.Delayed objet ownership is enfored. All objets are freed to a thread-loal free-list bu�er, allowing for some passive-false sharing. However, when the bu�er is leared, allobjets are freed to the superblok that owns them. Superblok movement is not restrited,allowing superbloks to move to other thread heaps even while they have objets in use

52 Chapter 4. Alloatorsby the program, whih does allow for some forms of ative false-sharing. However, this isan unlikely ourrene if the heap threshold of free objets is set high enough so that anyontainers moved are likely to be ompletely free.Hoard employs additional optimizations when using ertain thread libraries suh aspthreads. A funtion in Hoard is alled eah time a new thread is reated, allowing Hoardto initialize the thread heap, and set a ag indiating the program is multi-threaded.Using this optimization, atomi operations for loking are only used if a program is multi-threaded. This optimization an only be used when support is provided by the threadlibrary.4.5 Streamow AlloatorStreamow [SAN06℄ is another multi-threaded memory alloator that has been shownto have better or equal performane to Hoard. The version of Streamow used in theevaluation presented in Chapter 7 is available at [SAN℄. Streamow introdues remotefree-lists in order to separate loal and remote operations.Streamow is a CO-r alloator in Table 3.1 that inludes per-thread heaps with a globalshared-heap, objet ownership, an alloation bu�er, remote free-lists, and ontainers alledpage bloks. Streamow uses a di�erent implementation than super-ontainers to havedi�erent ontainer sizes that depend on the size of the objets in the ontainer. Containerheaders are loated in a BIBOP (big bag of pages), whih is a table ontaining one headerfor every page in the virtual-memory address-spae. Thus, all objets in a page share aheader and must be the same size. Streamow also maintains free lists of objets by pagebloks.Streamow uses remote-free lists to remove heap loks from both mallo and free op-

4.6. Summary 53erations, meaning that most alloation and dealloation operations an omplete withoutaquiring any loks. In addition, Streamow employs lok-free operations in aessing theirremote-free lists.4.6 SummaryThis hapter disusses a group of existing alloators and the multi-threaded features presentin eah. In order to more fully understand the performane of the multi-threaded features,it is neessary to evaluate additional memory alloators. The next hapter provides a setof test alloators that are used to identify the e�ets of di�erent multi-threaded featureombinations.

Chapter 5Test AlloatorsThe previous hapter disusses features present in existing memory alloators. In orderto better omprehend the e�ets of the di�erent features desribed in Setion 3.1, I im-plemented a series of test alloators. The �rst alloator is a basi alloator, and eahsubsequent alloator adds one or two features at eah step to ahieve a full-featured allo-ator.The alloators are all built using the Hoard heap layers framework ([BZM01℄), withsome additional heap layers I implemented for spei� alloators. The alloators are de-sribed, along with some implementation details and the bene�ts and drawbaks from theprevious alloator.5.1 Alloator A: Base CaseThe base-ase alloator is a single-heap alloator with one lok around the entire heap.The heap itself is a binning alloator where objet requests are rounded up to a bin size.The alloator uses the same set of �xed bin-sizes used by the Hoard alloator. The bin54

5.2. Alloator B 55sizes are loser together for smaller sizes and further apart for larger sizes. A free list ismaintained for eah bin size. Using a �xed number of bin sizes also implies a �xed numberof free lists. The free list for the orresponding bin size is quikly heked for a free objetof the orret size. If there are no free objets to reuse, a new objet is alloated from analloation bu�er. The 128KB alloation bu�er is alloated using sbrk.A simple header is used with only the objet size. The largest bin size is 32KB less theobjet-header size. Objets larger than this size are alloated diretly using mmap so theyan be returned to the operating system immediately after dealloation. This approahavoids large amounts of external fragmentation due to infrequent large objet requests.5.2 Alloator B: Add Thread HeapsThe �rst extension to the base alloator adds per-thread heaps and the base alloatorbeomes the global shared-heap. This extension makes alloator B equivalent to the INalloator in Table 3.1. The goal of this alloator is to redue loking and ontention.Operations that an be ompleted using only the thread heap do not require any loks,leading to redued ontention over the single-heap alloator. A lok is still required whenalloating from the global shared-heap.When an alloation request is made, the free list of the thread heap is heked for afree objet of the orresponding bin size. If there are no objets on the list, the global heapis loked while it heks its free list for the orresponding bin size. If the global heap hasno free objets of that size, it alloates a new one from its alloation bu�er, whih ouldrequire obtaining a new alloation bu�er using sbrk.When an objet is dealloated, it is added to the urrent thread-heap's free list. Whena thread-heap's free list for any bin size holds free objets taking up more spae than two

56 Chapter 5. Test Alloatorstimes the largest bin size (whih is 32KB less the header size), half the objets are freedto the global heap. Eah time a thread heap aumulates more than 64 times the largestbin size on all its free lists, it lears all its free objets to the global heap. Alloations anddealloations of large objets are diretly handled through alls to mmap, as in alloator A,without using the global heap.When a new thread starts, a new thread heap is reated for it. When a thread runs toompletion, its thread heap is plaed on a list and reused when a new thread starts up inthe future. This reuse implies objets freed by a thread to its thread heap may be reused bynew threads reated after the initial thread dies. This design does not a�et false sharingsine the original thread is no longer running. However a thread that inherits a threadheap also inherits the false sharing of the ompleted thread. Reusing thread heaps mayimprove performane if the new thread makes similar alloation requests as the originalthread, sine objets are kept on the thread heap rather than being freed to the globalheap.5.3 Alloator C: Add Objet ContainersThe next alloator introdues �xed-size objet ontainers with alloation bu�ers and ho-mogeneous objets. This alloator is equivalent to the CN alloator in Table 3.1. Theontainers are 64KB in size with the largest bin size �tting at least two objets in a on-tainer (i.e., 32KB less the size of the header). The ontainer header onsists of the objetsize, the start and end of the ontainer, and an alloation bu�er. The alloation bu�erpoints to the next unalloated objet in the ontainer's alloation bu�er. These objet on-tainers redue internal fragmentation at the ost of external fragmentation, and improveahe usage at the ost of paging loality.

5.4. Alloator D 57When an alloation request is made, the thread heap heks the free list of the requestedbin size for a free objet. If there are no free objets, then the thread heap attempts toalloate from the alloation bu�er of an appropriate ontainer on its heap. If the alloationbu�er is empty, then the global heap heks its free list. If there are no free objets onthe global heap for the requested size, then a new ontainer with an alloation bu�er isalloated using sbrk and returned to the thread heap from whih the objet is �nallyalloated. Dealloations our using the same proess as alloator B.5.4 Alloator D: Add Objet OwnershipThe ownership of objets is added to remove some alloator-indued false-sharing. Thisalloator is an implementation of a CO alloator in Table 3.1. In this alloator, objetsare dealloated to the thread heap that owns them, not the thread heap of the thread thatdealloates them. Objet ownership leads to ontention for thread heaps, requiring loksto be added, but eliminates passive false-sharing.A free list is added to ontainer headers so that ontainers an move easily amongthread heaps and the global shared-heap, and redue ontention for the global heap. Theslight inrease in size of the ontainer header to aommodate the free list slightly inreasesinternal fragmentation.When an alloation request is made, the thread heap is loked and the free list for therequested bin size is heked. The free list maintains a list of ontainer headers owned bythis thread heap that have some free objets, either in their alloation bu�er or on theirfree lists. If there are no free objets on the list, a ontainer is transferred from the globalheap, and an objet is alloated from that ontainer.When an objet is dealloated, the objet is plaed at the head of the free list of

58 Chapter 5. Test Alloatorsits ontainer header, and the ontainer is moved to the front of the ontainer list. Thisplaement allows the next alloation request to reeive the last objet of that size to befreed. If all objets in the ontainer are free, the ontainer is moved to a separate listof ompletely-free ontainers. Completely-free ontainers are only used for an alloationrequest when there are no more objets on the main ontainer list. When any free list orall the free lists on a thread heap umulatively reah a threshold of free objets, as manyontainers as required are transferred to the global heap, beginning with the ontainersthat are ompletely free.The global heap holds lists of ontainers for eah objet bin size. When it reahes athreshold of 128 free ontainers, up to half of the ontainers are onverted into alloationbu�ers that an be used for a new objet size. Only ompletely-free ontainers an beonverted in this manner. Whenever the global heap has no ontainers of a requested binsize on its free list, it either reuses one of these ontainers or obtains a new one using sbrk.Sine the global heap an be the owner of some objets, it must handle requests to freeobjets on its heap, adding another soure of ontention for the global heap. However,sine a thread heap reeives a ontainer with several free objets from the global heap,rather than one individual free objet, it makes fewer requests to the global heap for freeobjets.5.5 Alloator E: Add Restrited Container MovementThe goal of this alloator is to remove all forms of alloator-indued false-sharing by om-bining ontainers, objet ownership and ontainer movement restritions. Although alloa-tor E is di�erent from alloator D, it still falls into the ategory of a CO alloator in Table3.1. The restrition is that a ontainer an only be moved when the ontainer is ompletely

5.6. Alloator F1 59free. Beause thread heaps are reused rather than destroyed when a thread heap ompletes,this restrition means the global heap an no longer be the owner of any objets in use bythe program, and does not need to handle a free operation for an individual objet.When a thread heap reahes its free-list threshold, only ontainers on the ompletelyfree list are moved to the global heap. Contention for the global heap is further reduedby the fat that eah time a thread heap reeives a ontainer from the global heap, ithas all objets free, further reduing the number of requests a thread heap makes to theglobal heap. External fragmentation is slightly inreased, however, sine free objets on apartially free ontainer annot be used by other threads.5.6 Alloator F1: Add Thread{Loal Free{List Bu�erIn order to redue ontention for thread heaps, introdued by alloator D, a thread-loalfree-list bu�er is added. This alloator is equivalent to the CO-l alloator in Table 3.1. Im-mediate ownership is enfored in order to avoid all alloator-indued false-sharing. Hene,the thread-loal free-list bu�er only holds objets that are owned by the loal thread.The thread-loal free-list bu�er ontains a set of free lists; one for eah bin size. Whenany free list on the bu�er reahes a threshold of two times the ontainer size in bytes, thebu�er is leared to the thread heap. The operation is O(n) sine eah free objet must beplaed on its own ontainer header's free list. However, operations that an be ompletedusing only the bu�er an be ompleted quikly with a simple addition or removal from alinked list.

60 Chapter 5. Test Alloators5.7 Alloator F2: Add Remote Free{ListsThis alloator adds remote free-lists that are separated by bin size to thread heaps, makingit equivalent to the CO-r alloator in Table 3.1. The situation desribed in Setion 3.2.4.3where remote-free operations may hase after a moving ontainer is not a onern beauseontainer movement is restrited. A ontainer an only hange ownership if all objets arefree and not on any remote free-list. Plaing remote free-lists on thread-heaps rather thanontainer headers, avoids an inrease in internal fragmentation. A remote free-list is alsoadded to the global heap to redue ontention as desribed in Setion 3.1.4.Loks that are added to thread heaps in alloator D are moved instead to the remotefree-list. Sine there are no loks on thread heaps, a thread-loal free-list bu�er is unne-essary for avoiding loks on loal operations. Therefore, alloator F2 builds on alloatorE. When a thread heap has no objets of the requested bin size on its free list, it learsall objets on the remote free-list. One objet from the remote free-list is alloated to theprogram, while the remaining objets are eah plaed on the free list of their ontainerheaders. The operation is O(n) sine eah objet is freed to its own ontainer header; thus,alloation time is variable.5.8 Alloator G: Vary Container SizeBuilding on alloator F2, alloator G adds the variation of the ontainer size in order toredue external fragmentation. A 64KB super-ontainer is used to hold ontainers of 1KB,4KB, 16KB, or 64KB in size. All ontainers within a super-ontainer are the same size(although eah ontainer may have a di�erent objet size that it holds) to simplify �ndingthe ontainer header. The super-ontainer header simply holds the size of the ontainers

5.9. Alloator H 61within it. Sine the super-ontainer header is so small, it is easiest to simply add this pieeof information to eah ontainer header. Thus, the �rst ontainer in the super-ontaineris used as the super-ontainer header as well. This approah leads to all ontainer headersbeing aligned within the super-ontainer by the size of the ontainers.To �nd the ontainer header for an objet, the lower two bytes are dropped to �nd thesuper-ontainer header (aligned on 64KB addresses). Then the size of the ontainers withinthe super-ontainer is used to �nd the ontainer header. For example, if the ontainersin the super-ontainer are 4KB in size, then the lower 12 bits of the objet address aredropped to �nd its ontainer header.The ontainer size is determined based on two fators. First, the smallest ontainer that�ts at least two objets of the requested size is used. Seond, the number of requests fora ontainer of eah bin size is reorded, and if this ounter has reahed a ertain number,then the ontainer size is inreased. The slight inrease in header size and the inrease innumber of ontainers inreases internal fragmentation.5.9 Alloator H: Add Lok-Free OperationsLok-free operations, disussed in Setion 3.1.6, may improve performane. Adding lok-free operations to the F2 alloator removes loks from remote free-list insertions and learson both thread heaps and the global heap, removing all loks from the alloator. Thedrawbak to adding lok-free operations is the inrease in ode omplexity and hardwaredependeny.

62 Chapter 5. Test Alloators5.10 Coalesing AlloatorIn addition to the multiple non-oalesing test-alloators, I also implemented a singleoalesing alloator, IO-lr (a ombination of IO-l and IO-r in Table 3.1). This alloatoravoids all forms of false-sharing, and redues ontention through the use of per-threadheaps and a remote-free list. The thread-loal free-list bu�er is also used in order to ahefreed objets and redue some unneessary oalesing and splitting. The same bin sizesare used as the other test alloators, with the largest bin size being 64KB less the headersize. However, a variation of binning is used that alloates objets to the exat requestedsize. Eah free list ontains objets that range in size from next smallest bin size to theurrent bin size.This alloator uses both headers and trailers eah ontaining the objet size, as shownin Figure 5.1. The objet size allows the header to loate the trailer and the trailer toloate the header, whih is neessary when oalesing with objets before and after theobjet in memory. The trailer also holds an additional ag to indiate whether the objetis alloated or free. In addition to the objet size, when the objet is alloated, the headerpoints to the owner of the objet, as shown in Figure 5.1(a). When the objet is free, asin Figure 5.1(b), the header points to the next objet on a free list, and the dealloatedstorage points to the previous objet on a free list.When an alloation request is made, the thread-loal free-list bu�er is heked �rst.The request size is rounded down to the nearest bin size, and if there are no objets onthat list large enough for the requested size, then the next largest bin's free list is heked.If there are no objets on that free list, then the thread heap heks its free-lists.The thread heap maintains doubly linked lists of free objets. The request size isrounded down to the nearest bin size and if any objet on that free list is large enough, itis removed from the free list and alloated to the program. If there are no free objets of

5.10. Coalesing Alloator 63(a) Alloated Objet(b) Free ObjetFigure 5.1: Header and Trailer Struturethat bin size, then the �rst objet found on any larger bin size is split. One piee beomesan objet of the requested size, while the remaining piee is plaed on the free list for theappropriate bin size. If there are no free objets large enough in the thread heap, theremote free-list is leared. All objets on the remote free-list are freed to the thread heap,and if any are large enough for the requested objet size, it is alloated to the program.If no free objet is large enough, then the thread heap requests an objet from the globalheap. The global heap maintains one list of free objets, all 64KB in size. If the globalheap has no free objets, it alloates one using sbrk with 64KB alignment.When an objet is dealloated, if it is owned by the urrent thread, it is plaed onthe thread-loal free-list bu�er. Otherwise, it is plaed on the remote-free list of theowner thread. When the thread-loal free-list bu�er reahes a threshold of 64KB of freeobjets, all objets are freed to the thread heap. When an objet is freed to the threadheap, it heks the objets immediately before and after it, and oaleses them if theyare on a thread-heap free-list, are owned by the same thread, and belong to the same64KB alignment. The free objets being oalesed are removed from their urrent freelist, oalesed into one free objet, and plaed on a free list with a bin size based on theoalesed size. When objets are oalesed into a 64KB objet, the objet is freed to the

64 Chapter 5. Test Alloatorsglobal heap.5.11 SummaryThis hapter desribes a set of test alloators that eah implement a subset of the multi-threaded features desribed in Chapter 3. The next hapter onsiders several single andmulti-threaded benhmarks that are used to evaluate the existing and test alloators.

Chapter 6Memory Alloator Test SuiteThe previous two hapters desribe a set of existing alloators and test alloators used inevaluating multi-threaded memory-alloator features. This hapter desribes a test suiteof single and multi-threaded benhmarks used to ompare the memory alloators.6.1 Single{Threaded BenhmarksThere are several single-threaded benhmarks used for omparing memory alloators[BMBW00℄ [BZM02℄ [BZM01℄ [DDZ93℄. This setion looks at several of these benhmarksand their alloation harateristis. Finally, a smaller set of benhmarks is seleted for theevaluation of memory alloators.In order to haraterize the benhmarks, I modi�ed the Hoard alloator to inlude anadditional layer for olleting statistis. These statistis are independent of the alloatorused. The number of memory alloations and dealloations is reorded and summarized inTable 6.1. For example, the �rst row is for benhmark P2C indiating a total of 199,263alloation requests, a total of 188,058 dealloation requests, a total of 387,321 memory65

66 Chapter 6. Test Suiterequests (a sum of both alloations and dealloations), and 5.62% of alloated objets arenot dealloated during the program's lifetime.I made a seond modi�ation to Hoard to ollet timing information, by adding a layerto mark the time of the �rst memory operation to the last memory operation, as well asthe total time spent in all memory operations. Although these statistis are dependent onthe memory alloator, they provide a general idea about the behaviour of the program.Table 6.2 shows the statistis olleted from running the benhmark programs with thisalloator. For example, the �rst row is for benhmark P2C indiating it runs for 780 msfrom its �rst alloation to its last alloation or dealloation (the last time the alloator hasontrol), it makes 255,322 alloations and 496,287 alls to the memory alloator (in bothalloations and dealloations) per seond (based on its 780,436 us runtime and the numberof operations listed in Table 6.1), it spends a total of 109 ms in the memory alloator,whih is 14% of its total runtime (as measured from the �rst to last memory operation).This information gives a general idea of how memory intensive these benhmarks are.Espresso, CFRAC, GCC, Perl, Gawk and ROBOOP make a large number of memoryrequests, while Espresso-2, GMake, Perl-2, Gawk-2, and XPDF-2 make a small number ofmemory requests. All programs exept GMake and Gawk-2 dealloate nearly all of theirobjets. Espresso, CFRAC, GCC, Perl, Gawk, ROBOOP, and Lindsay are long runningprograms, while Espresso-2, GMake, Perl-2, and Gawk-2 are short running programs. GS,Espresso, Espresso-2, CFRAC, CFRAC-2, Perl, Gawk, and ROBOOPmake a large numberof alloation/dealloation requests per seond and spend a signi�ant portion of theirruntime in memory operations, while GCC, Perl-2, Gawk-2, and Lindsay make a smallnumber of alloation/dealloation requests per seond and spend an insigni�ant portionof their runtime in memory operations. The following setions give a brief desription ofthe benhmark programs.

6.1. Single{Threaded Benhmarks 67Table 6.1: Alloation StatistisBenhmark # Allos # Deallos Memory Ops % UnfreedP2C 199,263 188,058 387,321 5.62GS 108,546 102,388 210,934 5.67Espresso 1,675,492 1,675,490 3,350,982 0.00Espresso-2 24,759 24,757 49,516 0.01CFRAC 10,890,124 10,890,122 21,780,246 0.00CFRAC-2 227,092 227,090 454,182 0.00GMake 4,641 2,662 7,303 42.64GCC 651,919 645,359 1,297,278 1.01Perl 591,984 590,778 1,182,762 0.20Perl-2 16,343 15,865 32,208 2.92Gawk 874,306 873,809 1,748,115 0.06Gawk-2 3,760 2,953 6,713 21.46XPDF 227,073 224,471 451,544 1.15XPDF-2 61,501 58,975 120,476 4.11ROBOOP 9,268,177 9,268,175 18,536,352 0.00Lindsay 108,790 108,788 217,578 0.00Table 6.2: Runtime StatistisBenhmark Total Run-time (us) Avg Al-los/se Avg Mem-ory Ops/se Time in MemoryOps (us) Time inMemoryOps (%)P2C 780,436 255,323 496,288 109,709 14.1GS 358,263 302,978 588,768 70,209 19.6Espresso 3,700,698 452,750 905,500 1,020,538 27.6Espresso-2 49,898 496,196 992,352 14,432 28.9CFRAC 20,567,315 529,487 1,058,974 5,443,342 26.5CFRAC-2 311,489 729,053 1,458,099 118,520 38.1GMake 16,383 283,282 445,768 2,177 13.3GCC 15,546,826 41,933 83,443 608,727 3.9Perl 1,882,696 314,434 628,228 329,622 17.5Perl-2 102,332 159,706 314,741 10,102 9.9Gawk 2,602,546 335,943 671,694 529,742 20.4Gawk-2 42,619 88,224 157,513 2,020 4.7ROBOOP 14,563,440 636,400 1,272,800 5,295,497 36.4Lindsay 4,682,409 23,234 46,467 69,283 1.5

68 Chapter 6. Test Suite6.1.1 P2CP2C is a Pasal to C translator. The version provided in Hoard heap layers version 3-4-0is ompiled and run with an input provided by the download (mf.p).6.1.2 GSGS is a postsript interpreter and viewer. GS version 2.1 is run with a 422KB input �le,provided by the Zorn download, and the display turned o�, so that it only interprets thepostsript �le [DDZ93℄.6.1.3 Espresso/Espresso-2Espresso is an optimizer for programmable logi arrays. Espresso version 2.3 (released01/31/88) is run with the two inputs that are inluded in the Hoard heap layers download:largest.espresso as the �rst input and Z5XP1.espresso as the seond input. While theruntime and number of objets inrease as the size of the input �le inreases, the averagealls per seond and perent of time spent in memory operations does not hange.6.1.4 CFRAC/CFRAC-2CFRAC is an implementation of the ontinued fration algorithm for fatoring large num-bers. The version provided by the Hoard heap layers download is ompiled and run withtwo di�erent input numbers: 35 digits longs (41 757 646 344 123 832 613 190 542 166 099121) and 22 digits long (1 000 000 001 930 000 000 057, whih is a produt of two primes).The larger the number, the longer the program runs, but with both inputs, a signi�antportion of the program is spent in memory operations.

6.1. Single{Threaded Benhmarks 696.1.5 GMakeGMake version 3.80 is run with the input provided in the Zorn download [DDZ93℄. Alarge portion of objets are never dealloated, indiating that most memory operations arealloation requests.6.1.6 GCCGCC version 3.4.2 is run with options to run only the ompile step and with seond leveloptimizations to ompile ombine. - the largest �le in the GCC soure ode.6.1.7 Perl/Perl-2Perl is a sripting language. It handles all memory management for the sript that itruns. Perl version 5.005 03 for sun4-solaris is run with the two inputs provided in the Zorndownload [DDZ93℄. The �rst sript is alled adj and formats text based on some inputs forline length and indentation. The seond sript, alled hosts, transforms a host �le from oneformat to another. The runtime and number of memory requests varies greatly dependingon the sript being run.6.1.8 Gawk/Gawk-2Gawk is a sripting language like Perl. Gawk version 2.11 is run with the two inputsprovided in the Zorn download [DDZ93℄. The �rst sript is a Gawk version of the adjsript used for Perl. The seond sript, alled prog, alulates alloation osts for a memorysimulation. Like Perl, the memory all behaviour varies depending on the sript being run.

70 Chapter 6. Test Suite6.1.9 XPDF/XPDF-2XPDF version 3.01 is run twie to open a �le that has 13 pages and is about 730KB. XPDFis a graphial program, and thus required interation to run. In the �rst run, the �rst 4pages are ipped through and then the viewer is losed. In the seond run, the viewer islosed as soon as the window opens. The runtime and time spent in memory operationsare irrelevant for this benhmark sine it is highly dependent on input from the user, andhene do not appear in Table 6.2.6.1.10 ROBOOPROBOOP is a robotis simulation toolkit. Version 1.09 is run with the benh exeutableprovided with the ROBOOP toolkit to benhmark di�erent operations. This benhmarkruns slightly longer than most of the single-threaded benhmarks, makes a large numberof memory requests, and spends a signi�ant portion of its runtime in memory operations.6.1.11 LindsayLindsay is a hyperube simulation. The version provided with the Hoard download isompiled and run with the input provided. This benhmark is one of the least memoryintensive benhmarks making a relatively small number of memory requests, and spendinga small portion of its time in memory operations.6.2 Multi{Threaded BenhmarksSeveral miro-benhmarks have been reated for omparing multi-threaded memory allo-ators [BMBW00℄ [SAN06℄. This setion desribes them in detail. Eah benhmark has a

6.2. Multi{Threaded Benhmarks 71spei� memory alloation pattern and number of memory operations.6.2.1 ReyleThe Reyle benhmark stresses the ability of the alloator to handle di�erent threadsalloating and dealloating independently. There is no interation among threads. Thenumber of threads is an input parameter. Eah thread alloates 1 000, 8-byte objets thendealloates them in the order they were alloated. The total number of objets alloatedin the program is 107 and is distributed among its threads. Hene, the work performed byeah thread dereases as the number of threads inreases.6.2.2 ConsumeConsume is a miro-benhmark that simulates a produer-onsumer senario. Its purposeis to test for heap blowup in a situation where only one thread alloates objets, and otherthreads only dealloate objets. The number of onsumer threads is an input parameter.One produer reates 6 000, 8-byte objets for eah onsumer thread. One a set of 6 000objets is reated, it is given to a onsumer to dealloate. This proess is repeated 5 000times. No work is done on the objets, so as onsumer threads are added the produerbeomes the bottlenek.6.2.3 False{Sharing Miro{benhmarksTwo miro-benhmarks, Passive-False and Ative-False, are used to test for passive andative false-sharing. Both benhmarks are provided with the Hoard download. The numberof worker threads is an input parameter in eah benhmark. In Passive-False, the mainthread reates a number of worker threads, passing to eah an 8 byte objet it alloated.

72 Chapter 6. Test SuiteEah worker thread dealloates the objet, alloates a new 8 byte objet, writes to it10 000 times, and then repeats the proess 100 000 times divided by the number of threads.Ative-False is the same as Passive-False, exept that no initial objet is reated by themain thread. The amount of work is onstant and distributed over the number of threads.Therefore, ideally the runtime should sale with the number of threads.6.2.4 LarsonLarson is a miro-benhmark provided with the Hoard download that simulates the memoryalloation behaviour of a server [LK99℄. The benhmark is run for 30 seonds reatingobjets of random sizes between 10 and 100 bytes. The number of ative threads remainsonstant through the life of the program, but is on�gured as an input parameter. Eahthread is passed an array of 10 000 objets. It then randomly selets an objet to destroyand replaes it with a new one, thus maintaining a working set of 10 000 objets. Eahthread repeats the dealloation/alloation proess 100 000 times. Finally, before the threadterminates it passes its array of 10 000 objets to a new hild thread to ontinue the proess.The number of generations varies depending on the speed of the threads. The throughputis alulated as the number of alloations that our per seond.6.3 Trae ColletionThe multi-threaded miro-benhmarks are simple programs, and their alloation behaviouris well understood. To further analyze the alloation patterns of the single-threaded benh-marks, traes are olleted. While statistis give general overall harateristis of theprogram, traes an be used to ollet information about the patterns of alloations anddealloations throughout the lifetime of the program.

6.4. Trae Results 73To ollet the traes, I added a log heap-layer to the Hoard memory alloator writtenusing heap layers (version 3.4.0). For eah mallo and free, a log reord is generatedinluding the size of the mallo and the address of the mallo or free. At the end of aprogram, the reords are all written out to a �le, whih redues the probe e�et on theprogram. Eah entry in the log also ontains a time stamp when the operation ourred.To add a time stamp to the reords, several methods for olleting time were onsidered,inluding: getitimer, gettimeofday, gethrvtime/gethrtime, and pu performane ounters(all performane ounters are hardware/software dependent). Eah method is onsideredfor use on a Spar mahine running Solaris. Two requirements were used to selet a timingmethod: the timer resolution and its ability to measure virtual time. In these programsit is neessary to have miroseond resolution. A virtual timer that does not ount timeduring a kernel-thread time slie (when the program is not running) is also neessary toobtain an aurate measurement. Of the listed options, the pu performane ountersprovide a virtual timer at the required resolution.6.4 Trae ResultsAnalysis of the olleted traes provide an overall distribution and variation over the life-time of the program for eah of the following piees of information:� sizes of requests� lifetime of objets� interarrival times of alloations and dealloations� alloation footprint

74 Chapter 6. Test SuiteTable 6.3: Size of RequestsBenhmark Averageobjet size(bytes) Total al-loated(bytes) Largest ob-jet (bytes) Smallestbinsize(bytes) Most ommonbin size (bytes) -frequeny (%)P2C 24.3 4,851,116 8,200 8 24 - 63.0GS 173.3 18,806,773 20,016 16 296 - 38.4Espresso 64.0 107,184,579 55,072 8 32 - 52.1Espresso-2 43.1 1,068,053 8,200 8 8 - 41.1CFRAC 17.7 192,941,761 8,200 16 16 - 60.5CFRAC-2 14.7 3,338,366 8,200 8 16 - 71.1GMake 48.5 224,949 8,200 8 8 - 39.4GCC 880.5 574,031,347 932,052 8 40 - 30.0Perl 19.8 11,740,395 8,203 8 8 - 64.2Perl-2 25.7 420,114 8,257 8 24 - 38.1Gawk 55.9 48,836,034 8,200 8 8 - 28.0Gawk-2 28.4 106,848 8,200 8 8 - 81.5XPDF 229.0 51,991,393 2,955,168 8 8 - 56.7XPDF-2 327.1 20,118,022 2,955,168 8 24 - 35.0ROBOOP 34.7 321,322,872 8,200 8 24 - 54.6Lindsay 67.8 7,373,660 1,490,944 8 56 - 93.06.4.1 Sizes of RequestsSome general statistis on alloation sizes are shown in Table 6.3. The bin sizes used arethose used in the Hoard alloator. Half of the benhmarks have a majority of objetsfalling under one bin size. For all programs, the most ommon bin size is quite small.Figures A.1 and A.2 show the distribution of objets among bin sizes having at least oneperent of objets. Most programs alloate objets in only a few of the smaller bin sizes.Almost all of the benhmark programs have 75% of their objets falling in one to threebin sizes. All bin sizes that aount for at least one perent of the objets in the programfall in a small range from the smallest bin size to a bin size less than half a kilobyte. Thesingle exeption is GCC, whih has several larger objets.

6.4. Trae Results 75The alloation sizes over time are shown in Figures A.3 and A.4. To redue the numberof data points on the graph, several nearby points are ondensed into one point, with thedi�erent olours indiating the number of objets ondensed into one point.The alloation behaviour falls into two ategories. The �rst ategory onsists of pro-grams that are very uniform in the alloation behaviour for the entire program. The seondategory onsists of programs that have distint segments with eah segment having dif-ferent alloation patterns. These segments of di�erent behaviour reappear in all graphsshowing alloation harateristis over the runtime of the program. GS, CFRAC, Perl(both inputs), Gawk (both inputs), and Lindsay fall into the �rst ategory. P2C, Espresso(both inputs, although it is more lear for input 1), GMake, GCC, XPDF, and ROBOOPfall into the seond ategory.In P2C, the alloation behaviour hanges for two short periods during the program,while the rest of the time the alloation sizes are quite uniform. Espresso has severaldi�erent program segments that behave di�erently in terms of memory alloation sizes.GMake and GCC are diÆult to ategorize beause GMake has too few points, and GCChas too many. However, GMake alloates ertain objet sizes in the �rst half of theprogram that are di�erent from those in the seond half. GCC has a short startup periodin whih the alloation behaviour di�ers from the rest of the program. XPDF has di�erentalloation patterns for startup, page loading, and shutdown. In the �rst input, the pagesof the doument are ipped, ausing a repeat of that segment of the program. ROBOOPhas three di�erent segments of di�erent alloation behaviour.6.4.2 Lifetimes of ObjetsThe lifetime of an objet is alulated as the di�erene between the timestamp taken justafter the mallo operation and the timestamp taken just before the free operation. Some

76 Chapter 6. Test SuiteTable 6.4: LifetimesBenhmark Avg Lifetime(freed) (us) Avg Lifetime(all) (us) Shortest Life-time(us) Longest Life-time (freed)(us)P2C 4,206 30,858 0.2 771,008GS 67 12,657 0.5 352,524Espresso 625 630 0.2 3,699,626Espresso-2 178 183 0.2 48,926CFRAC 8,339 8,341 0.4 20,566,470CFRAC-2 772 774 0.4 310,698GMake 263 4,288 0.9 6,873GCC 2,622 105,298 0.2 15,524,398Perl 2,905 6,700 0.5 1,881,408Perl-2 1,986 4,852 0.6 101,201Gawk 47 1,511 0.7 2,599,207Gawk-2 453 8,835 1.1 38,128XPDF 66,535 104,850 0.5 3,520,422XPDF-2 53,597 82,725 0.5 826,259ROBOOP 102 105 0.6 14,562,460Lindsay 8,804 8,890 3.0 4,682,065statistis on average, shortest, and longest lifetime are shown in Table 6.4. An objet that isnever dealloated has a lifetime from the time it is alloated to the time of the last memoryoperation of the program (whih is the last measurable point for the logging layer). Theaverage lifetime of objets is given both for objets that are dealloated (freed) and for allobjets (inluding ones not freed). The shortest lifetime is less than one miroseond formost programs. The longest lifetime of an objet that is dealloated before the ompletionof the program is also shown. In many ases, this is an objet that is alloated near thestart of the program, and dealloated just before the end of the program.Figures A.5 and A.6 show a umulative distribution of lifetimes of objets. Most objetslive for a very short time. The umulative distribution of lifetimes indiates that foralmost all programs, at least half of the objets live for less than 100 us. Plotting objet

6.4. Trae Results 77size relative to the objet's lifetime indiates that most objets are small and have ashort lifetime. Lindsay is the only program to exhibit a very di�erent behaviour in termsof lifetime distribution. Almost all objets in Lindsay live lose to 10 000 us. No otherprogram exhibits suh a large and steep spike in lifetime distribution and at a relativelylarge lifetime.For the most part, the lifetime distribution graphs tend to follow one of two patterns.The �rst pattern is an S-urve in the umulative distribution. This pattern indiates alarge portion of objets having similar lifetimes. The programs that follow this pattern areP2C, GS, Espresso (both inputs), GMake, GCC, XPDF (both inputs) and ROBOOP. GS,GMake and XPDF are slightly di�erent. Their graphs indiate that a number of objetsalso have longer lifetimes. This behaviour is likely the result of a large number of objetsalloated near the start of the program and freed near the end. The seond pattern is a setof steps in the umulative distribution graphs. This behaviour indiates several popularobjet lifetimes. The programs that follow this pattern inlude CFRAC (both inputs), Perl(both inputs), Gawk (both inputs) and Lindsay (although it really only has two steps).Gawk and Perl both have very similar funtions, that leads to similar behaviour in lifetimedistributions.Figures A.7 and A.8 plot the lifetime of objets relative to the time in the programthey are alloated. These graphs show the hanges in program behaviour that also appearin Figures A.3 and A.4 and are noted in Setion 6.4.1. Sine most objets have very shortlifetimes, it is diÆult to see detailed patterns in Figures A.7 and A.8. Figure A.9 showssome of the details in Figures A.7 and A.8 by showing only short-lived objets over a shortperiod of time for some of the benhmark programs. These �gures show that there are atleast two ommon patterns of repeated behaviour in terms of the lifetimes of objets.One ommon pattern, shown in Figures A.9(a) to A.9(e), are dots forming straight

78 Chapter 6. Test SuiteTable 6.5: Interarrival TimesAverage Time (us) Shortest Time (us) Longest Time (us)Benhmark All Allo Deallo All Allo Deallo All Allo DealloP2C 2.0 3.9 4.1 0.2 0.4 0.4 3,078 3,420 4,178GS 1.7 3.3 3.5 0.3 0.4 0.5 586 586 622Espresso 1.1 2.2 2.2 0.2 0.3 0.4 4,019 4,022 4,486Espresso-2 1.0 2.0 2.0 0.2 0.3 0.4 806 839 844CFRAC 0.9 1.9 1.9 0.2 0.3 0.4 408 5,237 413CFRAC-2 0.7 1.4 1.4 0.2 0.4 0.4 43 724 51GMake 2.1 3.3 5.7 0.3 0.3 0.4 137 137 273GCC 12.0 23.8 24.1 0.2 0.3 0.3 106873 106924 107578Perl 1.6 3.2 3.2 0.2 0.4 0.4 93 149 232Perl-2 3.2 6.2 6.4 0.2 0.4 0.5 79 91 261Gawk 1.5 3.0 3.0 0.2 0.4 0.4 65 82 384Gawk-2 6.2 11.1 14.0 0.3 0.5 0.5 98 112 1,166XPDF 7.8 15.5 15.7 0.2 0.4 0.4 141926 141931 141945XPDF-2 6.9 13.4 14.0 0.3 0.3 0.4 139194 139199 139215ROBOOP 0.8 1.6 1.6 0.3 0.4 0.4 471 471 113Lindsay 21.5 43.0 42.9 1.3 1.3 1.6 7466 7466 2697lines. When the dots in the line are lose together, this indiates objets that are alloatedlose together and are also freed lose together. When these lines fall at 45 degrees, thisindiates that objets are being alloated over time and then dealloated all at one. Whenthe line is vertial, the objets are alloated at the same time and then dealloated slowlyover time in reverse order. When the line is horizontal, the objets are alloated togetherand dealloated together in the same order.A seond ommon pattern is a group of repeated lifetimes, whih is likely aused byrepeated behaviour in the program suh as what might our in a loop. This pattern isdemonstrated in Figures A.9(d) to A.9(h).

6.4. Trae Results 796.4.3 Interarrival Times of Alloations and DealloationsThe interarrival time is alulated as the amount of time sine the previous request. Theinterarrival times of all memory requests, alloations, and dealloations are alulated fromthe trae logs. The average, shortest, and longest times are shown in Table 6.5. FiguresA.10 and A.11 show a umulative distribution of the three types of interarrival times. Theinterarrival times are all very short, with about 90% of alls being less than 10 us apart inall benhmarks exept GCC and Lindsay. There appears to be a relationship between theinterarrival times and objet lifetimes, as the umulative distribution graphs of both arevery similar in shape for these benhmarks programs.6.4.4 Alloation FootprintThe alloation footprint is alulated by inreasing the memory size by the requested size,eah time an objet is alloated, and dereasing the memory size by the objet size, eahtime an objet is dealloated. The memory size over the runtime of eah program is shownin Figures A.12 to A.14. The number of alloated objets is also shown as a separate line.This line indiates whether large inreases in the footprint are aused by a large numberof objets being alloated lose together, or one large objet being alloated. Table 6.6shows the average and maximum values of these two lines.There are two types of patterns in the alloation footprint. One pattern is a gradualinrease, the seond is a fast inrease followed by a plateau and a �nal drop in the alloationfootprint and number of objets. Programs that do not dealloate all objets do not returnto a zero alloation-area size at the end of the program. The segments of di�erent programbehaviour noted in Setion 6.4.1, also appear in the alloation footprint graphs.

80 Chapter 6. Test SuiteTable 6.6: Alloation FootprintSize (bytes) Number of ObjetsBenhmark Average Maximum Average MaximumP2C 275,871 406,897 7,874 12,645GS 351,001 484,049 3,823 6,197Espresso 169,710 280,115 285 4,389Espresso-2 23,688 42,873 92 691CFRAC 75,784 150,036 4,417 8,810CFRAC-2 8,890 18,395 565 1,231GMake 44,511 62,366 1,165 1,987GCC 2,609,506 4,830,775 4,415 8,019Perl 114,888 123,694 2,107 2,137Perl-2 72,167 82,015 778 804Gawk 38,232 38,905 508 551Gawk-2 66,555 70,956 779 828XPDF 5,845,536 6,701,879 6,762 9,609XPDF-2 4,839,299 6,552,307 6,152 8,324ROBOOP 14,083 15,960 67 117Lindsay 1,910,420 1,915,712 207 2966.5 Benhmark SeletionSine single-threaded benhmarks do not highlight the eÆieny of a multi-threadedmemory-alloator, only a small set of single-threaded benhmarks are neessary. The programsseleted are P2C, espresso (input 1), GCC, gawk (input 1), and ROBOOP. The analysisof the seleted benhmarks indiates that they have a wide range of alloation harater-istis, whih justi�es their use in haraterizing the performane of a memory alloator.The disarded benhmarks have very similar alloation behaviours to the seleted benh-marks or have some other disadvantage. For example, XPDF uses a graphial interfaeand depends on user interation, and some benhmarks have a relatively small number ofmemory alloations.

6.6. Summary 816.6 SummaryThis hapter desribes the test suite used to evaluate memory alloator performane. Thenext hapter uses this test suite to ompare existing alloators and test alloators.

Chapter 7Memory Alloator EvaluationThe previous hapter desribes a set of single and multi-threaded benhmark programsused to evaluate multi-threaded memory alloators. This hapter analyzes the results ofrunning the benhmarks with existing alloators and test alloators.The main goal of a multi-threaded alloator is to allow a well behaved multi-threadedprogram to sale in performane as threads are added. If a program is written to sale withthe number of threads, the memory alloator should not be the bottlenek preventing itfrom saling. Saling an be tested using miro-benhmarks that are written to sale andstress the memory alloator in di�erent situations. A related measurement is the overallruntime of the programs. Running single and multi-threaded benhmark programs usingdi�erent memory alloators shows the overall e�et of the alloator in eah ontext.Besides the runtime performane of a memory alloator, the amount of memory that itrequires may also be important. Typially, there is a trade-o� between runtime performaneand memory usage. Di�erent situations plae di�erent priorities on these goals.Internal and external fragmentation indiates the amount of additional memory re-quired by a memory alloator. However, these measures are diÆult to obtain without82

7.1. Runtime and Saling 83Table 7.1: Test SetupSetup OS Number of CPUs CPU detail MemoryA Solaris 8 8 900 MHz Spar 16 GBB Linux 8 2.5 GHz Dual Core AMD Opteron 16 GBC Linux 64 1.3 GHz Itanium 2 IA-64 192 GBmodifying the soure ode of the memory alloator. An indiret way to observe the e�etof the memory alloator on memory usage is to observe the virtual memory and resident-set size used by the program while it is running. These measures indiate the amount ofmemory that is reserved from the operating system and the overall e�et of the alloatoron the system in whih the program is running.Table 7.1 desribes the three test setups in whih the benhmark programs are run.Setup A and B are used by other users, and hene the benhmarks annot make full use ofall CPUs. This interferene auses a attening of performane urves at their ends. Thesetup C mahine had 8 CPUs isolated for the purpose of these tests. Due to the di�erentarhitetures, Streamow only supports setup C. On Setup A, the default alloator is Sun'smallo (a single-heap alloator), whereas on Setup B and C, the default alloator is Glib(Ptmallo).This setion looks at these measurements for the existing alloators desribed in Chap-ter 4 as well as the test alloators desribed in Chapter 5 using the benhmark programsdesribed in Chapter 6.7.1 Runtime and SalingThe single-threaded benhmarks are tested for a omparison between single-threaded andmulti-threaded alloators. The multi-threaded benhmarks show how di�erent memoryalloators inuene the performane as threads are added to the program. Eah miro-

84 Chapter 7. Evaluationbenhmark is designed to stress a di�erent issue in multi-threaded programs. This setionlooks at eah benhmark and how the di�erent alloators perform.7.1.1 Single-Threaded BenhmarksIn order to replae the default alloator for all programs, the new alloator should performat least as well as the urrent default alloator in both single and multi-threaded programs.All the single-threaded benhmarks have very short runtimes of just a few seonds. Sinethe runtimemeasurement only measures to a preision of milliseonds, only large di�erenesan be identi�ed. However, the runtime varies very little among alloators. They allperform equally well to the default Solaris or Linux alloator.7.1.2 ReyleThe Reyle benhmark stresses the ability of the alloator to handle di�erent threadsworking independently. In this situation, per-thread heaps and redued loking in loaloperations result in the best performane, sine all operations are loal to eah thread.The benhmark is run on all three test setups with the results in runtime and speedupshown in Figures 7.1 to 7.3. The speedup is alulated as the runtime with one threaddivided by the runtime with n threads.In setup A, Figure 7.1(b) shows that a single-heap alloator limits the saling of Reyle.Both the Solaris default alloator and alloator A degrade the performane of the programas threads are added. The inreased ontention for the single heap prevents any parallelexeution in the program. Alloator B removes a great deal of the ontention observed inthe Solaris and A alloators by adding per-thread heaps. However, alloator B does notprevent ative false-sharing, whih leads to slightly less than perfet saling. Alloator Cadds ontainers, whih removes most ative false-sharing, leading to perfet saling up to

7.1. Runtime and Saling 85
(a) Runtime
(b) SpeedupFigure 7.1: Saling in Reyle on Setup A

86 Chapter 7. Evaluationsix proessors. Alloators D and E introdue loks, whih inreases their runtime by aonstant amount, exept in the ase of one thread. An optimization in heap loking avoidsatomi operations if the program is single-threaded. For this reason, the single-threadedase performs slightly better and lowers the alulated salability for the multi-threadedases in alloators D and E. Alloators F1 and F2 use thread-loal free-lists and remotefree-lists to remove the need to obtain loks for memory operations in this program, leadingto perfet saling up to six proessors. Alloator G introdues super-ontainers, whih anredue performane due to additional omplexity, but an also improve performane byreduing the number of ontainers. As a result, alloator G has similar performane to F2on this setup. The lok-free operations in alloator H show no e�et on performane. Theoalesing alloator, whih has all the bene�ts of alloators F1 and F2 exept that it doesnot use ontainer headers, sales perfetly up to six proessors. Hoard, being very similarto F1, also sales perfetly up to six proessors.On setup B, shown in Figure 7.2, loks have less of an inuene on performane, soalloators D and E do fairly well, possibly due to faster atomi instrutions on the newerarhiteture. Ative false-sharing, seen in alloator B, has a signi�ant e�et. The defaultLinux alloator, Ptmallo, sales only slightly. Ptmallo redues ontention by providingmultiple heaps. Although it is expeted that eah thread should request all of its objetsfrom one heap, by examining the addresses of the objets alloated, I disovered thatthreads are onstantly swithing heaps throughout the entire run of the program. Thus,although there is little ontention for thread heaps, its saling ability is limited by ativefalse-sharing. Although Hoard has very good saling, it has a slower runtime. After furtherinvestigation, I found the ause to be a di�erene in alulation in the thread-loal free-list bu�er. Hoard rounds up request sizes to at least the size of two pointers. In thisbenhmark, all alloations are for 8 bytes, whih on a 64-bit mahine is smaller than two

7.1. Runtime and Saling 87
(a) Runtime
(b) SpeedupFigure 7.2: Saling in Reyle on Setup B

88 Chapter 7. Evaluationpointers. However, the rounding ours after the hek for objets on the thread-loal free-list bu�er, ausing objets to be freed to a di�erent bin list than they are requested from.Hene, in setups B and C, the bu�er is not used, ausing a slight redution in runtimeperformane, but having no inuene on saling.Setup C, shown in Figure 7.3 has similar results to setup B. Alloators A and B salequite poorly, where ative false-sharing ours. The Linux alloator does fairly well onthis mahine. The performane of Reyle using Ptmallo is highly dependent on theheap seleted for eah alloation. By examining the addresses of the objets alloated, Idisovered that threads swith heaps a few times at the start of the program, but thenquikly stabilize so that eah thread uses one heap. However, when there are more threadsrunning, the stabilization takes muh longer. Thus, the saling begins to level o� and dropswith six, seven, and eight threads. The new alloator to this test setup, Streamow, salesfairly well and its performane is similar to that of other ommon arhiteture alloators.7.1.3 ConsumeThe Consume benhmark is not expeted to sale as the number of threads inreases sinethe amount of work also inreases proportionally. As well, the produer is expeted to be-ome the bottlenek as more onsumer threads are added. The purpose of this benhmarkis to test for heap blowup in a situation where only one thread alloates objets, and otherthreads only dealloate objets. Two features expeted to help the performane in thisbenhmark are an alloation bu�er for the produer thread to alloate from, and a remotefree-list for onsumer threads to free to. The impat of these features is limited by thesynhronization in this program.In this benhmark, eah onsumer has an array, and in eah iteration the produerthread �lls eah array with objets. When an array is �lled, the onsumer begins to

7.1. Runtime and Saling 89
(a) Runtime
(b) SpeedupFigure 7.3: Saling in Reyle on Setup C

90 Chapter 7. Evaluationdealloate the objets in its array. One the produer has �lled all onsumer arrays, itwaits for them to all be onsumed before moving to the next iteration. If �lling the arraytakes at least as long as onsuming the array, then it is expeted that only one onsumerthread runs at a time. If �lling the array takes less times than onsuming the array, thenmultiple onsumers may be running at one.Figures 7.4 and 7.5 show the runtime of running the benhmark with 6 000 objetsin eah array and 5 000 iterations with one produer thread and one to seven onsumerthreads. Eah data point represents an average of �ve test runs. The shorter the runtime,the better the performane. It was observed that the runtime with eah alloator variessigni�antly for this benhmark on all test setups. The instability in performane is aresult of ontention for a shared resoure. In all the tested alloators, the onsumer threadsontend for a shared resoure: the single heap, the global shared heap, or the produerheap. Beause the performane tests provide unstable results, it is impossible to make anydetailed onlusions. Nevertheless, it is possible to make some general statements aboutthe results.In general, in alloators A, B and C, the produer thread must obtain eah objet italloates individually, leading to generally poor performane. In alloator A, eah objet isobtained from sbrk. In alloator B, eah objet is obtained from the global heap. Althoughalloator C does use an alloation bu�er, it prefers to reuse objets from the global heapbefore alloating a new alloation bu�er. Hene, one there are enough objets in the globalheap, the produer thread requests objets from the global heap rather than alloate a newalloation bu�er. Thus, the produer thread must obtain eah individual objet from theglobal heap.Alloators D to H all have similar and good linear performane. In these alloators,the produer thread obtains a ontainer full of free objets from the global heap. One

7.1. Runtime and Saling 91
(a) Setup A
(b) Setup BFigure 7.4: Runtime Performane in Consume

92 Chapter 7. Evaluation
(a) Setup CFigure 7.5: Runtime Performane in Consumethe onsumer threads begin to dealloate objets, they are dealloated diretly to theproduer thread. Although the remote free-list in alloators F2, G, H, and Streamowis expeted to improve performane by allowing the produer to run without ontendingfor loks, it is not always the ase. The remote free-list removes loks for most produeroperations. However, by allowing the produer to run faster, more onsumer threads runat one time, ausing more ontention among onsumer threads. In some situations, theonsumer threads beome a bottlenek, leaving the produer waiting for the onsumerthreads to �nish onsuming their arrays.The performane of the oalesing alloator is slightly redued beause all dealloationsare remote frees. In this implementation of the alloator, when the remote free-list isleared, the objets are freed diretly to the thread heap. This deision means the objets

7.1. Runtime and Saling 93are oalesed immediately with nearby objets, and not ahed at their dealloated size, aswhen they are loally freed to the thread-loal free-list bu�er. Sine all objets in Consumeare the same size, performane is negatively a�eted by this implementation deision.Although Hoard is similar to alloator F1, it generally performs slightly worse. Hoardallows any objet to be freed to the thread-loal free-list bu�er, not just those owned by theloal thread. Thus, a onsumer thread using alloator F1 returns eah objet immediatelyto the produer thread, while a onsumer thread using Hoard plaes the objet on itsthread-loal free-list bu�er. Eventually, the free-list bu�er reahes its threshold of freeobjets and the bu�er is leared. When this happens, eah objet is individually freedto the produer's thread heap, aquiring a lok for eah objet. Thus, the thread-loalfree-list bu�er only adds additional omplexity in this program.The default Solaris alloator has fairly poor performane, sine all threads ontendfor the same heap. The default Linux alloator performs fairly well, sine the produerthread an use another thread heap if its previous one is being used by a onsumer threadto dealloate objets. Having the produer swith heaps allows the produer to avoidontention, and distributes the dealloations of onsumer threads among several heaps,avoiding some ontention.7.1.4 False-Sharing BenhmarksThe false-sharing benhmarks test an alloator's ability to handle ative and passive false-sharing. Only one form of ative false-sharing is tested, sine the number of free objetsnever reahes a signi�ant size and objets are never freed to the global heap. The runtimeperformane of these benhmarks using di�erent alloators on the di�erent test setupsare shown in Figure 7.6. In all three setups, alloators that avoid false-sharing have verystable runtime performane and saling, while those that do not have random spikes of

94 Chapter 7. Evaluationslow runtimes due to hardware ahe loading.The �rst olumn shows that alloators using ontainers avoid all ases of ative false-sharing tested by the ative-false benhmark. The Linux alloator does exhibit someperformane loss due to ative false-sharing; however, it is not as extreme as alloatorsA, B, and the Solaris alloator. The e�et in the Linux alloator is dependent upon theseletion of a heap to satisfy the alloation request. If a thread alloates from the sameheap most of the time, then it experienes little ative false-sharing. Both Hoard andStreamow prevent ative false-sharing and sale well.The seond olumn shows that alloators A, B, and C exhibit poor saling on all testsetups beause they allow passive false-sharing to our. Solaris also sales fairly poorly,while the Linux alloator sales slightly better. The Linux alloator would prevent passivefalse-sharing if eah thread always alloated from the same thread heap, but the resultsshow that this is not the ase. Alloators D to H, and Streamow all prevent passivefalse-sharing, and all sale well.The only anomaly is Hoard, whih has poor saling in passive-false on setup A, butgood saling in passive-false on setups B and C. Hoard's delayed ownership should allowpassive false-sharing to our through the thread-loal free-list bu�er. However, due to therounding of objet sizes on Hoard in 64-bit mahines, desribed in Setion 7.1.2, objetsin the bu�er are not used, eliminating passive false-sharing.7.1.5 LarsonLarson alulates alloations per seond, whih should sale with the number of workerthreads. An array is reated for eah working thread, and �lled with objets of random sizesbetween 10 and 100 bytes. Eah worker thread randomly selets an objet to dealloatefrom its array and replaes it with a new alloation. Eah thread repeats this proess

7.1. Runtime and Saling 95
(a) Ative-False - Setup A (b) Passive-False - Setup A
() Ative-False - Setup B (d) Passive-False - Setup B
(e) Ative-False - Setup C (f) Passive-False - Setup CFigure 7.6: Saling in False-Sharing Benhmark

96 Chapter 7. Evaluationseveral times, then reates a new thread to ontinue working on its array and dies. Thebenhmark is run with arrays of 10 000 objets and eah thread replaing 100 000 objets.There is little ontention for thread heaps in Larson, sine dealloations are mostly forobjets owned by the urrent thread, and the remaining few are for objets owned by aompleted thread. Figures 7.7 to 7.9 show the throughput in alloations per seond and thespeedup for eah test setup. The speedup is alulated as the throughput with n threadsdivided by the throughput with one thread. All the alloators sale quite well exept foralloator A, and the default alloators on Solaris and Linux.Most of the alloators sale well for the following reasons. Eah alloated objet iswritten and read just twie, so false sharing has a minimal impat. Approximately tenperent of the dealloations are for objets alloated by a thread that is no longer running(The �rst 10 000 dealloations replae all objets in the array, and the remaining 90 000dealloations are of objets alloated by the urrent thread). Sine thread heaps andownership are inherited in the test alloators, objets that were alloated by a ompletedthread beome owned by a new ative thread. Thus, the remote free-list only helps a littlein the saling of throughput. Alloators F2, G, H, the oalesing alloator, and Streamowall use a remote free-list and all have slightly better saling.Sine most operations in this benhmark are alloations and loal dealloations, theremoval of loks from thread heaps improves performane. Alloators B and C have noloks on thread heaps beause no ownership is enfored, and tend to have very good relativeperformane on all test setups. These alloators have the simplest implementation. Sinealloations tend to stay within the loal thread, one the thread has obtained enoughobjets to satisfy its alloations it simply reuses them without any additional ontentionor omplexity. Alloator F1 does not require a lok for operations on the thread-loal free-list bu�er, whih overs most operations in this benhmark. Alloators F2, G, and H all

7.1. Runtime and Saling 97
(a) Setup A

(b) Setup A - SpeedupFigure 7.7: Saling in Larson on Setup A

98 Chapter 7. Evaluation
(a) Setup B

(b) Setup B - SpeedupFigure 7.8: Saling in Larson on Setup B

7.1. Runtime and Saling 99
(a) Setup C

(b) Setup C - SpeedupFigure 7.9: Saling in Larson on Setup C

100 Chapter 7. Evaluationavoid loking for loal operations with the use of a remote free-list. Thus, only alloatorsA, D and E lok loal operations, giving them slightly worse performane on all test setups.Alloators A and Solaris exhibit poor saling simply beause all alloations and deal-loations are performed on the same heap. The Linux alloator does not sale very well,even though multiple heaps are used. Eah time an alloation request is made, a thread at-tempts to use its previously used heap; however, when a new thread is reated it attemptsto aquire a lok for eah heap until it �nds one available. Sine Larson reates manynew threads, one for every 100 000 objets reated, the proess of establishing a heap fora thread happens frequently. As was noted in the Reyle benhmark, it an take severalalloations before a thread stabilizes to using a single heap. In this benhmark, there is noopportunity for this stabilization to our, reduing performane and limiting throughput.7.2 FragmentationThe internal and external fragmentation experiened by a program depends on the allo-ator, and an only be aurately measured from within the alloator. Hene, the testalloators are modi�ed to inlude a logging layer where they reord alloation and deallo-ation requests along with the hanges in internal and external fragmentation.The internal fragmentation is measured as the headers, padding and spaing aroundalloated objets, while external fragmentation is all other memory reserved from theoperating system that is not alloated to the program. To determine the internal andexternal fragmentation, three measures are reorded in the logs. These measures are:the alloation request size, the amount of memory used by the alloator to satisfy eahrequest, and the amount of memory reserved from the operating system through alls tosbrk and mmap. A running total is alulated to determine the total memory, internal

7.2. Fragmentation 101fragmentation, and external fragmentation at any time in the program by inreasing thetotal at eah alloation and dereasing the total at eah dealloation.Johnstone and Wilson disuss four di�erent ways to alulate the fragmentation of aprogram [JW99℄. The �rst method is to average the fragmentation aross all points in time.The seond method is to use the fragmentation at the point in time when the program hasthe largest amount of bytes in use. The third method is to ount the fragmentation at thepoint when the most memory is being held from the operating system. The fourth methodis to measure the di�erene between the high watermark (the most amount of memoryreserved from the operating system) and the most amount of memory used by the program[JW99℄. Eah method of measurement has its drawbaks, but the fourth measure is usedbeause it avoids extreme measures of fragmentation (i.e. a best or worst ase), whih maybe misleading.Fragmentation measurements for the single-threaded and some multi-threaded benh-marks are olleted and disussed in the next setions. Of the multi-threaded benhmarks,only Reyle and Consume are analyzed. Fragmentation in Larson is not measured sinethe number of alloations varies depending on the performane of the program, making itdiÆult to ompare fragmentation results for di�erent memory alloators. The ative-falseand passive-false benhmarks are also left out of this measurement sine their purpose isto test performane, and their memory usage patterns are very simple and uninteresting.7.2.1 Fragmentation in Single-Threaded BenhmarksSine the alloators are very similar, the main di�erenes that e�et fragmentation arethe type of ontainers and oalesing. Per-thread heaps do not inuene fragmentation,sine the single-threaded benhmarks only require a single heap. Di�erenes in fragmen-tation aused by ownership and ontainer movement restritions are not notieable in

102 Chapter 7. Evaluation
Figure 7.10: Fragmentation in Single-Threaded Benhmarkssingle-threaded programs. Thus, the alloators an be separated into four ategories: noontainers, oalesing, �xed-size ontainers, and di�erent-size ontainers. The No Con-tainers ategory inludes alloators A and B, the Coalesing ategory is the oalesingalloator, the Fixed-Size Containers ategory inludes alloators C through F2 and H, andthe Di�erent-Size Containers ategory is alloator G.Figure 7.10 shows the internal and external fragmentation alulated using the fourthmethod of measurement for eah of the single-threaded benhmarks for one alloator in eahof the four ategories. There is negligible variation in fragmentation among the di�erentalloators in eah ategory.As expeted, oalesing has more internal fragmentation from than an alloator withno ontainers, sine more management information is required around eah objet. How-ever, oalesing has less external fragmentation than an alloator with no ontainers, sine

7.2. Fragmentation 103freed objets are more likely to be reused. In P2C, Gawk, and ROBOOP most requestsizes are small and ommon leading to minimal external fragmentation in an alloatorwith no ontainers. Thus, oalesing does little to redue external fragmentation in thesebenhmarks. Espresso and GCC have more large and unique request sizes, leading to asigni�ant derease in external fragmentation when adding oalesing to an alloator withno ontainers.Adding ontainers has the e�et of dereasing internal fragmentation, while inreasingexternal fragmentation by a signi�ant amount. Using various sized ontainers does de-rease external fragmentation, while also inreasing internal fragmentation a little, sinethere are more ontainers.7.2.2 Fragmentation in Multi-Threaded BenhmarksBoth Reyle and Consume are run with a smaller overall number of alloations in orderto obtain manageable logs, while still performing the same funtion. Reyle is reduedto alloate a total of 100 000 objets, and Consume is run with an array of 600 objetsand for only 500 iterations. The maximum program alloation size in both Reyle andConsume is quite small. They both alloate and dealloate a large number of small objets,without ever having a large number of alloated objets at one time. The di�erenes infragmentation aused by ownership and ontainer movement restritions are not notieable.Thus, the same ategories used in Setion 7.2.1 are also used to ompare fragmentation inReyle and Consume.Figure 7.11 shows the fragmentation of the four ategories in Reyle when run withone, two, and four threads. As the number of threads inreases, the number of objetsalloated at one inreases. Sine eah thread holds the same number of alloated objetsregardless of the number of threads, the number of alloated objets is multiplied by the

104 Chapter 7. Evaluation
Figure 7.11: Fragmentation in Reylenumber of threads. As more objets are alloated, the reserved memory on the heapshrinks, until at some point a more reserved memory is alloated. External fragmentationdereases as the reserved spae shrinks, and inreases when it grows. Thus, with morealloated objets, external fragmentation dereases unless another hunk of reserved spaeis alloated. Internal fragmentation is related to the number of objets. As the number ofobjets inreases, the internal fragmentation inreases. However, sine nearly all objetsare the same size in this benhmark, the internal fragmentation relative to the number ofalloated objets does not hange as the number of objets hange.The number of alloated objets is slightly di�erent eah time the benhmark is run dueto non-deterministi timing harateristis, but the di�erene is very small. As expeted,adding oalesing to an alloator with no ontainers inreases internal fragmentation, buttends to derease external fragmentation. The expeted bene�t of oalesing is very small

7.2. Fragmentation 105
Figure 7.12: Fragmentation in Consumein this benhmark, sine almost all objets are the same size. In fat, in some ases,it appears the external fragmentation is inreased slightly, but this is simply due to thedi�erenes in the number of alloated objets at one time.Objet ontainers derease internal fragmentation, but at the ost of inreasing externalfragmentation. The inrease in number of alloated objets only slightly dereases externalfragmentation in the ase of �xed-size ontainers, but makes a muh larger di�erene in thease of di�erent-size ontainers. In the ase of one thread, the reserved spae is inreased bythe minimal amount, leaving no potential for improvement with di�erent-size ontainers.With more threads, the �xed-size ontainers require that more ontainers be alloatedfor eah new thread, ausing more reserved spae to be alloated. With di�erent-sizeontainers, eah thread reeives a small ontainer that takes up a small portion of thereserved spae, avoiding a request for more reserved memory.

106 Chapter 7. EvaluationFigure 7.12 shows the fragmentation of the four ategories in Consume when run withone, two, and four onsumer threads. As the number of onsumer threads inreases, thenumber of objets alloated inreases. Thus, the internal fragmentation stays lose tothe same, while the external fragmentation drops signi�antly. Adding oalesing to analloator with no ontainers is not expeted to provide any savings sine nearly all objetsin this benhmark are the same size, but oalesing does derease external fragmentationslightly. Objet ontainers derease internal fragmentation signi�antly, but also inreaseexternal fragmentation signi�antly. Using di�erent-sized ontainers helps to redue theinrease in external fragmentation.7.3 Memory UsageFragmentation auses the running program to onsume more operating system resoures.Two measures that indiate the memory resoure usage of the program are virtual memorysize and resident set size. The virtual memory size is the number of pages reserved by theprogram, while the resident set size is the number of bytes that have been brought intomain memory. Virtual memory gives an indiation of the third method of measuringfragmentation, whih is the fragmentation at the point when the most memory is beingheld from the operating system. Although the resident set size is measured, it is highlydependent on the program and it is diÆult to make any onlusions based on this measure.The top ommand provides these two measures. Hene, the memory usage an be obtainedfor any memory alloator without modifying any soure ode. This information is olletedfor both single and multi-threaded benhmarks by querying the top ommand at one seondintervals when running a benhmark program and storing the highest reorded measure.

7.3. Memory Usage 107
(a) Setup A (b) Setup BFigure 7.13: Memory Usage in Single-Threaded Benhmarks7.3.1 Memory Usage in Single-Threaded BenhmarksFigure 7.13 shows the virtual memory and resident set size normalized to that in alloatorA. Setup C is nearly idential to setup B, and is therefore not shown. The virtual memoryusage shows that ontainers inrease memory usage. For most benhmarks, using di�erent-sized ontainers redues this inrease.In setup A, the Hoard alloator, in most ases, inreases both the virtual memory andresident set size, whih is due to the method of alling mmap in Hoard running on Solaris.On Solaris, Hoard mmaps a large number of ontainers at one, and plaes eah of them ona list. This operation inreases both the virtual memory and the resident set size due toinitialization.The default Solaris and Linux memory alloators generally uses less virtual memoryand have a smaller resident set size, whih is due to the method of loading in alloators.The test alloators are all reated as dynamially loadable libraries. Dynamially loadingthis additional library inreases the memory usage by a small amount (less than 1MB).However, sine the overall memory usage is quite small, the relative di�erene aused by

108 Chapter 7. Evaluationloading the additional library appears to have a large e�et.The one benhmark that is notieably di�erent from the rest is GCC. GCC has a verysimilar virtual memory usage and resident set size for all alloators. This behaviour isbeause GCC alloates several very large objets. Thus, a larger portion of the virtualmemory is always in use by the program.7.3.2 Memory Usage in Multi-Threaded BenhmarksEah benhmark is shown with one, two, and four threads run on the di�erent test setups.Figure 7.14 shows the results from running Reyle, Consume, and Larson. The false-sharing benhmarks are left out of these graphs sine they are intended to test performane,and do not have interesting memory usage harateristis.As explained in Setion 7.3.1, Hoard has a signi�antly larger virtual memory andresident set size for all benhmarks on Solaris. The di�erene in memory usage among allother alloators is quite small in setup A. The default Solaris alloator uses less memory,as explained in Setion 7.3.1, beause it is not dynamially loading additional libraries.On setup B, the Linux alloator inreases memory usage signi�antly as the numberof threads are inreased in the Reyle and Consume benhmarks, due to a large initialalloation bu�er for eah heap. Spei�ally, eah additional heap starts with approximately64MB of memory, leading to large inreases in virtual memorywhen using multiple threads.In Larson, thread heaps grow beyond their initial size, leading to variations in virtualmemory that depend on the objets alloated.On setup C, the Linux alloator starts the thread heaps at a smaller size, leading tosimilar memory usage to other alloators. The Streamow alloator uses a signi�antamount of memory in all benhmarks, whih may be aused by a large BIBOP table (seeSetion 4.5) on a 64 bit proessor. The di�erene is less signi�ant in Larson where memory

7.3. Memory Usage 109
(a) Setup A
(b) Setup B
() Setup CFigure 7.14: Memory Usage in Multi-Threaded Benhmarks

110 Chapter 7. Evaluationusage is quite high for all alloators.7.4 AnalysisRunning the benhmark programs with existing and test alloators leads to several on-lusions regarding runtime performane and memory usage. Alloator A is a very basimemory alloator providing fairly low fragmentation, but poor performane and limitedsaling in all the multi-threaded benhmarks. Alloator B, with its per-thread heaps, in-reases memory usage slightly on some multi-threaded benhmarks. Although alloator Bimproves performane in programs like Reyle where threads work independently, it doesnot avoid ative and passive false-sharing.Alloator C introdues ontainers, improving performane in some multi-threaded pro-grams by avoiding most ative false-sharing. However, ontainers ause a large inreasein external fragmentation (by an average of approximately 400%), with only a relativelyminor redution in internal fragmentation. This larger external fragmentation auses upto a 75% inrease in virtual memory usage depending on the program.Alloators D and E introdue ownership and ontainer-movement restritions, respe-tively. These alloators improve performane in some multi-threaded programs by avoid-ing passive false-sharing in addition to ative false-sharing. A onsequene of ownership isloks on thread heaps, whih redue performane and are a soure of ontention in somebenhmarks. Fragmentation and memory usage remain very similar to alloator C.Alloator F1 introdues a thread-loal free-list bu�er to redue ontention for threadheaps. The bu�er also provides additional performane bene�ts by plaing objets onsimple free-lists and avoiding the ontainer-based free-lists. The bu�er is most e�etivein programs like Larson where there is a mix of loal and remote dealloations. Alloator

7.4. Analysis 111F2 uses remote free-lists to redue ontention on thread heaps. The remote free-list ismost e�etive in programs like Larson, where there are a signi�ant number of remotedealloations. Alloators F1 and F2 have very similar fragmentation and memory usageto alloators C, D, and E.Alloator G uses super-ontainers to allow di�erent-sized ontainers. External fragmen-tation is redued by at least 50% over �xed-sized ontainers in most programs. However,runtime performane su�ers slightly in some benhmark programs due to the additionalomplexity. External fragmentation remains signi�antly higher than alloators withoutontainers, although this translates to a very small inrease in virtual memory usage of atmost 10% in the programs tested. Alloator H adds lok-free operations to the remote free-lists in alloator F2. The lok-free operations provide insigni�ant performane bene�ts inthe benhmark programs tested.The oalesing alloator avoids both ative and passive false-sharing by enforing own-ership and ontrolling objet movement to the global heap. The thread-loal free-list bu�erimproves performane in several of the benhmark programs by ahing objets at theiralloated size. This e�et is made lear by the Consume benhmark in whih the remotefree-list bypasses the thread-loal free-list bu�er when learing the remote free-list havinga negative impat on performane. Regardless, the oalesing alloator performs relativelywell in all benhmark programs, while providing low fragmentation and memory usage.External fragmentation is redued from the basi alloator in all programs, while internalfragmentation inreases by a small amount in some programs.If a single alloator needs to be seleted for all programs, alloator F2 provides a goodompromise between speed, memory usage, and ode omplexity for both sequential and amix of onurrent programs. Table 7.2 shows a summary of how the F2 alloator omparesto the default alloator on eah test setup with respet to memory usage and runtime

112 Chapter 7. EvaluationTable 7.2: Alloator F2 Compared to the Default AlloatorRuntime Throughput Memory UsageTest Setup Reyle Larson Single-Threaded ConsumeA 85% faster 2627% inrease 125% inrease 10% inreaseB 7% faster 338% inrease 142% inrease 31% redutionC 2% faster 655% inrease 82% inrease 1% inreaseperformane. The �rst olumn indiates the average perent redution in runtime fromthe default alloator when Reyle is run with one to eight threads. The seond olumnshows the average perent inrease in alulated throughput over the default alloator whenrunning Larson with one to eight threads. The third olumn shows the average perentredution in memory usage from the default alloator from the tested single-threadedbenhmarks. The �nal olumn shows the average perent redution in memory usagefrom the default alloator when Consume is run with one, two, and four threads. A fasterruntime and inrease in throughput indiates that F2 has better runtime performane thanthe default alloator. A redution in memory usage indiates that F2 has better memoryusage than the default memory alloator.As an alternative single alloator, the oalesing alloator also performs relatively wellwith smaller memory usage. The oalesing alloator is likely to bene�t from learing theremote free-list to the thread-loal free-list bu�er, rather than the thread heap. Table 7.3shows how the oalesing alloator ompares to the default alloator on eah test setupwith respet to memory usage and runtime performane. The information follows theformat of Table 7.2.

7.5. Summary 113Table 7.3: Coalesing Alloator Compared to the Default AlloatorRuntime Throughput Memory UsageTest Setup Reyle Larson Single-Threaded ConsumeA 90% faster 2897% inrease 53% inrease 10% inreaseB 42% faster 310% inrease 119% inrease 31% redutionC 22% faster 682% inrease 53% inrease 1% inrease7.5 SummaryThis hapter provides results from omparing di�erent existing alloators and test alloa-tors. The next hapter summarizes the �ndings of this thesis and provides some onlu-sions.

Chapter 8Conlusions8.1 Memory{Alloation ChallengesAll memory alloators are onerned with providing fast performane while supportinggood loality, limiting fragmentation and preventing heap blowup. Additionally, multi-threaded memory-alloators must provide mutual exlusion while reduing ontention,avoiding false sharing, and preventing additional forms of potential heap blowup. Severalfeatures are presented as means for addressing the onerns of a multi-threaded memoryalloator. These features inlude per-thread heaps with a global heap, objet ownership,objet ontainers, alloation bu�ers, thread-loal free-lists, remote free-lists and lok-freeoperations. Evaluating the performane of these features an assist in designing a memoryalloator to ahieve ertain goals.
114

8.2. Method of Analysis 1158.2 Method of AnalysisSeveral existing alloators are presented along with a desription of the multi-threadedfeatures they employ. In addition to these existing alloators, a set of test alloators areimplemented, eah employing a di�erent set of features. Through the use of a test suiteomposed of single and multi-threaded benhmark programs, these alloators are analyzedin order to evaluate the e�et of di�erent features.It is determined that eah feature has di�erent e�ets on the hallenges that a memoryalloator an address. Depending on the behaviour of the program, di�erent features an beapplied to the memory alloator in order to ahieve di�erent goals of runtime performane,saling, and fragmentation. Depending on the needs of a partiular program, the bestperformane an be ahieved through the use of a spei� set of features.8.3 Analysis ResultsAny multi-threaded program that is memory-alloation intensive bene�ts from the use ofmultiple heaps to redue ontention. In general, the global heap is essential to maintaininga balane of free objets among heaps.Programs in whih threads independently alloate and dealloate objets, like Reyle,gain signi�ant bene�ts from the use of per-thread heaps to redue ontention. Addition-ally, ative false-sharing avoidane through the use of an alloation bu�er greatly improvesperformane in these appliations. Programs that alloate and dealloate objets withinthe same thread do not require the overhead of enfored ownership by the alloator.Programs in whih objets are frequently shared among threads and alloated anddealloated by di�erent threads gain signi�ant bene�ts from ownership to avoid passivefalse-sharing. Using a remote free-list to avoid loks on thread heaps when enforing

116 Chapter 8. Conlusionsownership greatly improves the performane of the alloator.Programs that use several objets of the same size in their working set bene�t from theuse of ontainers. In suh programs, ontainers redue internal fragmentation and improveahe usage. Programs that use di�erent sized objets in their working set may preferto use an alloator with oalesing, where the objets may be plaed loser together inmemory. Programs using a large range of objet sizes in di�erent working sets an bene�tfrom using an alloator with di�erent-sized ontainers. Some external fragmentation an beavoided by using di�erent-sized ontainers at the ost of a slight redution in performane.Alloators using ontainers and ownership an also improve performane by plaing freelists of objets on ontainers.The thread-loal free-list bu�er an improve the performane of some alloators byallowing some objets to be ahed and easily aessed by the loal thread, whih is es-peially important in the oalesing alloator. Although remote free-lists have a greaterimpat on performane saling than the thread-loal free-list bu�er, using the two featuresin ombination an provide the greatest performane bene�t, as observed in the oalesingalloator. Using lok-free operations may improve performane in ertain situations, onertain mahines, but the tests presented did not �nd any signi�ant di�erenes when usinglok-free operations.Thus, I reommend the following features for a general-purpose memory-alloator: per-thread heaps with a global shared-heap, objet ownership, objet ontainers (with alloa-tion bu�ers, ontainer based free-lists, and restrited ontainer movement), thread-loalfree-list bu�ers, and remote free-lists. This memory alloator demonstrated very goodperformane in several multi-threaded programs, improving performane by a fator of100 in some benhmarks. The ost is an inrease in memory usage that is typially lessthan 200% in the tested benhmarks. On systems with limited memory, I reommend a

8.4. Future Work 117oalesing alloator with the following features: per-thread heaps with a global shared-heap, objet ownership, thread-loal free-list bu�ers, and remote free-lists. This alternatealloator provides similar performane bene�ts with slightly redued memory usage.8.4 Future WorkThe presented test suite is omposed of real single-threaded appliations, but only miro-benhmark multi-threaded programs. In searhing for real multi-threaded programs, nonewere found to be alloation-intensive. Some multi-threaded programs provide their ownspeial form of memory alloation within the program. As future work, onverting some ofthese programs to work with general-purpose memory-alloators, or a further searh to �ndadditional memory-intensive multi-threaded programs may provide interesting analysis ofalloation behaviour in full-featured multi-threaded appliations. Suh analysis would alsoprovide insight into the e�ets of ontainers on loality and paging in real multi-threadedprograms.

Appendix ATrae GraphsFigures A.1 and A.2 show a distribution of objets among bin sizes. Eah graph shows theportion of objets alloated by the program that fall into eah bin size. Figures A.3 to A.4show the bin size of objets relative to the time in the program when they are alloated.To redue the number of data points on the graph, several nearby points are ondensedinto one point, with the di�erent olours indiating the number of objets ondensed intoone point.Figures A.5 and A.6 show a umulative distribution of the lifetime of objets in eahprogram. Eah point in the graph indiates the portion of objets that have a lifetimeequal to or shorter than that time. Figures A.7 and A.8 show the lifetime of objets overthe runtime of the program. Again, to redue the number of data points on the graph,several nearby points are ondensed into one point, with the di�erent olours indiatingthe number of objets ondensed into one point. Figure A.9 shows the lifetime of objetsrelative to the time they are alloated in the program for only short living objets over ashort period of time, for a selet set of programs.Figures A.10 and A.11 show the umulative distribution of interarrival times of all118

Trae Graphs 119memory operations, just mallo requests, and just free requests for eah program. Eahpoint in the graph indiates the portion of requests that arrive with equal to or less thanthe indiated time from the previous request.Figures A.12 to A.14 show the alloation footprint over the runtime of the program.Eah point in the graph indiates the amount of dynami memory in use by the programat that point in time of the program.

120 Chapter A. Trae Graphs
(a) P2C (b) GS

() Esprseso (d) Esprseso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.1: Bin Size Distribution

Trae Graphs 121
(a) Perl (b) Perl Input 2
() Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.2: Bin Size Distribution 2

122 Chapter A. Trae Graphs
(a) P2C (b) GS

() Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.3: Bin Size Over Time

Trae Graphs 123
(a) Perl (b) Perl Input 2
() Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.4: Bin Size Over Time 2

124 Chapter A. Trae Graphs
(a) P2C (b) GS

() Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.5: Cumulative Lifetime Distribution

Trae Graphs 125
(a) Perl (b) Perl Input 2
() Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.6: Cumulative Lifetime Distributions 2

126 Chapter A. Trae Graphs
(a) P2C (b) GS

() Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.7: Lifetime Over Time

Trae Graphs 127
(a) Perl (b) Perl Input 2
() Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.8: Lifetime Over Time 2

128 Chapter A. Trae Graphs
(a) P2C (b) Espresso Input 2

() GMake (d) XPDF
(e) ROBOOP (f) CFRAC

(g) Perl (h) GawkFigure A.9: Lifetime Over Time

Trae Graphs 129
(a) P2C (b) GS

() Espresso (d) Espresso Input 2
(e) CFRAC (f) CFRAC Input 2
(g) GMake (h) GCCFigure A.10: Interarrival Times Cumulative Distribution

130 Chapter A. Trae Graphs
(a) Perl (b) Perl Input 2
() Gawk (d) Gawk Input 2
(e) XPDF (f) XPDF Input 2

(g) ROBOOP (h) LindsayFigure A.11: Interarrival Times Cumulative Distribution 2

Trae Graphs 131
(a) P2C (b) GS

() Espresso (d) Espresso Input 2
(e) CFRAC Part 1 (f) CFRAC Part 2

(g) CFRAC Input 2Figure A.12: Alloation Footprint

132 Chapter A. Trae Graphs
(a) GMake (b) GCC
() Perl (d) Perl Input 2
(e) Gawk (f) Gawk - Input 2
(g) XPDF (h) XPDF - Input 2Figure A.13: Alloation Footprint 2

Trae Graphs 133
(a) ROBOOP Part 1 (b) ROBOOP Part 2

() LindsayFigure A.14: Alloation Footprint 3

Bibliography[Ale01℄ Andrei Alexandresu. volatile { multithreaded programmer's best friend. Dr.Dobb's, February 2001. 1[AN03℄ Joseph Attardi and Neelakanth Nadgir. A omparison of memory alloatorsin multiproessors. Sun Developer Network, 2003. 50[Ber℄ Emery Berger. The hoard memory alloator. http://www.hoard.org/. 51[BMBW00℄ Emery D. Berger, Kathryn S. MKinley, Robert D. Blumofe, and Paul R.Wilson. Hoard: A salable memory alloator for multithreaded appliations.In International Conferene on Arhitetural Support for Programming Lan-guages and Operating Systems (ASPLOS-IX), pages 117{128, Cambridge, MA,November 2000. 1, 3, 9, 15, 51, 65, 70[BZM01℄ Emery D. Berger, Benjamin G. Zorn, and Kathryn S. MKinley. Composinghigh-performane memory alloators. In SIGPLAN Conferene on Program-ming Language Design and Implementation, pages 114{124, 2001. 51, 54,65[BZM02℄ Emery D. Berger, Benjamin G. Zorn, and Kathryn S. MKinley. Reonsider-ing ustom memory alloation. In Proeedings of the Conferene on Objet-134

Bibliography 135Oriented Programming: Systems, Languages, and Appliations (OOPSLA)2002, Seattle, Washington, November 2002. 65[DDZ93℄ David L. Detlefs, Al Dosser, and Benjamin Zorn. Memory alloation ostsin large C and C++ programs. Tehnial Report CU-CS-665-93, 130 LyttonAvenue, Palo Alto, CA 94301 and Campus Box 430, Boulder, CO 80309, 1993.65, 68, 69[Den05℄ Peter J. Denning. The loality priniple. Commun. ACM, 48(7):19{24, 2005.11, 12[FB05℄ Yi Feng and Emery D. Berger. A Loality-Improving Dynami Memory Allo-ator. In Proeedings of the 2005 Workshop on Memory System Performane,Chiago, Illinois, June 2005. 12, 24, 25[Fer℄ Justin N. Ferguson. Understanding the heap by break-ing it. https://www.blakhat.om/presentations/bh-usa-07/Ferguson/Whitepaper/bh-usa-07-ferguson-WP.pdf. 50[Glo℄ Wolfram Gloger. Wolfram gloger's mallo homepage.http://www.mallo.de/en/. 50[GM℄ Sanjay Ghemawat and Paul Menage. Tmallo : Thread{ahing mallo.http://goog-perftools.soureforge.net/do/tmallo.html. 3[GPT04℄ Anders Gidenstam, Marina Papatrianta�lou, and Philippas Tsigas. Alloatingmemory in a lok-free manner. Tehnial Report 2004-04, Computing Siene,Chalmers University of Tehnology, 2004. 16

136 Bibliography[GZH93℄ Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the aheloality of memory alloation. In PLDI '93: Proeedings of the ACM SIG-PLAN 1993 onferene on Programming language design and implementation,pages 177{186, New York, NY, USA, 1993. ACM Press. 12[Her93℄ Maurie Herlihy. A methodology for implementing highly onurrent dataobjets. ACM Trans. Program. Lang. Syst., 15(5):745{770, 1993. 37, 38[HLM06℄ Xianglong Huang, Brian T Lewis, and Kathryn S MKinley. Dynami odemanagement: improving whole program ode loality in managed runtimes. InVEE '06: Proeedings of the 2nd international onferene on Virtual exeutionenvironments, pages 133{143, New York, NY, USA, 2006. ACM Press. 2[JW99℄ Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:solved? ACM SIGPLAN Noties, 34(3):26{36, 1999. 9, 10, 11, 101[Lea℄ Doug Lea. A memory alloator. http://gee.s.oswego.edu/dl/html/mallo.html.50[LK99℄ Per-�Ake Larson and Murali Krishnan. Memory alloation for long-runningserver appliations. ACM SIGPLAN Noties, 34(3):176{185, 1999. 72[LPB98℄ Tian F. Lim, Przemyslaw Pardyak, and Brian N. Bershad. A memory-eÆientreal-time non-opying garbage olletor. In ISMM '98: Proeedings of the 1stinternational symposium on Memory management, pages 118{129, New York,NY, USA, 1998. ACM Press. 8[MHM03℄ V. Luhango M. Herlihy and M. Moir. Obstrution-free synhronization:Double-ended queues as an example. In Proeedings of the 23rd IEEE Inter-national Conferene on Distributed Computing Systems, may 2003. 37

Bibliography 137[Nak01℄ Greg Nakhimovsky. Improving salability of multithreaded dynami memoryalloation. Dr. Dobb's, 2001. 3, 49, 50[Sal℄ Peter Jay Salzman. Memory layout and the stak. 1[SAN℄ Sott Shneider, Christos Antonopoulos, and Dimitrios Nikolopoulos. Stream-ow. http://people.s.vt.edu/ sshnei/streamow/. 52[SAN06℄ Sott Shneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos.Salable loality-onsious multithreaded memory alloation. In InternationalSymposium on Memory Management (ISSM'06), pages 84{94, June 2006. 3,52, 70[Sie00℄ Fridtjof Siebert. Eliminating external fragmentation in a non-moving garbageolletor for java. In CASES '00: Proeedings of the 2000 international on-ferene on Compilers, arhiteture, and synthesis for embedded systems, pages9{17, New York, NY, USA, 2000. ACM Press. 8[Wil℄ Paul R. Wilson. Loality of referene, patterns in program behavior, memorymanagement, and memory hierarhies. 11[WJNB95℄ Paul R. Wilson, Mark S. Johnstone, Mihael Neely, and David Boles. Dynamistorage alloation: A survey and ritial review. In Pro. Int. Workshop onMemory Management, Kinross Sotland, UK, 1995. 8

	List of Tables
	List of Figures
	Introduction
	Memory Structure
	Dynamic-Memory Management
	Contributions
	Outline

	Memory Allocator Background
	Components of a Memory Allocator
	Single-Threaded Memory Allocators
	Fragmentation
	Locality

	Multi-Threaded Memory Allocators
	Mutual Exclusion
	False Sharing
	Heap Blowup

	Memory Allocator Design
	Multi-Threaded Memory-Allocator Features
	Per-Thread Heaps
	Ownership

	Object Containers
	Containers with Ownership
	Container Size
	Container Free-Lists

	Thread-local free-list buffer
	Remote Free-Lists
	Allocation Buffer
	Lock-Free Operations

	Combining Features
	Individual Object Headers -- No Ownership
	IN
	IN-l
	IN-c
	IN-cl
	IN-r, IN-cr

	Individual Object Headers -- Object Ownership
	IO
	IO-l
	IO-c
	IO-cl
	IO-r, IO-cr

	Object Containers -- No Ownership
	CN
	CN-l
	CN-r

	Object Containers -- Object Ownership
	CO
	CO-l
	CO-r

	Summary

	Existing Allocators
	Solaris Malloc
	Dlmalloc
	Ptmalloc
	Hoard Allocator
	Streamflow Allocator
	Summary

	Test Allocators
	Allocator A: Base Case
	Allocator B: Add Thread Heaps
	Allocator C: Add Object Containers
	Allocator D: Add Object Ownership
	Allocator E: Add Restricted Container Movement
	Allocator F1: Add Thread--Local Free--List Buffer
	Allocator F2: Add Remote Free--Lists
	Allocator G: Vary Container Size
	Allocator H: Add Lock-Free Operations
	Coalescing Allocator
	Summary

	Memory Allocator Test Suite
	Single--Threaded Benchmarks
	P2C
	GS
	Espresso/Espresso-2
	CFRAC/CFRAC-2
	GMake
	GCC
	Perl/Perl-2
	Gawk/Gawk-2
	XPDF/XPDF-2
	ROBOOP
	Lindsay

	Multi--Threaded Benchmarks
	Recycle
	Consume
	False--Sharing Micro--benchmarks
	Larson

	Trace Collection
	Trace Results
	Sizes of Requests
	Lifetimes of Objects
	Interarrival Times of Allocations and Deallocations
	Allocation Footprint

	Benchmark Selection
	Summary

	Memory Allocator Evaluation
	Runtime and Scaling
	Single-Threaded Benchmarks
	Recycle
	Consume
	False-Sharing Benchmarks
	Larson

	Fragmentation
	Fragmentation in Single-Threaded Benchmarks
	Fragmentation in Multi-Threaded Benchmarks

	Memory Usage
	Memory Usage in Single-Threaded Benchmarks
	Memory Usage in Multi-Threaded Benchmarks

	Analysis
	Summary

	Conclusions
	Memory--Allocation Challenges
	Method of Analysis
	Analysis Results
	Future Work

	Trace Graphs
	Bibliography

