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Abstract

Multi-processor computers are becoming increasingly popular and are important for
improving application performance. Providing high-performance memory-management is
important for multi-threaded programs. This thesis looks at memory allocation of dynamic-
allocation memory in concurrent C and C++ programs. The challenges facing the design
of any memory allocator include minimizing fragmentation, and promoting good locality.
A multi-threaded memory-allocator is also concerned with minimizing contention, pro-
viding mutual exclusion, avoiding false-sharing, and preventing heap-blowup (a form of
fragmentation).

Several potential features are identified in existing multi-threaded memory-allocators.
These features include per-thread heaps with a global heap, object ownership, object con-
tainers, thread-local free-list buffers, remote free-lists, allocation buffers, and lock-free op-
erations. When used in different combinations, these features can solve most of the chal-
lenges facing a multi-threaded memory-allocator. Through the use of a test suite composed
of both single and multi-threaded benchmark programs, several existing memory alloca-
tors and a set of new allocators are compared. It is determined that different features
address different multi-threaded issues in the memory allocator with respect to perfor-
mance, scaling, and fragmentation. Finally, recommendations are made for the design of

a general-purpose memory-allocator.
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Chapter 1

Introduction

Multi-processor computers are becoming increasingly popular and are important for im-
proving application performance. However, writing programs that take advantage of
multiple processors is not an easy task [Ale01]. For example, shared resources can be-
come a bottleneck for scaling in a multi-threaded program. One typical shared resource
i1s program memory, since it is normally used by all threads in a concurrent program
[BMBWO00]. Therefore, providing high-performance memory management is important for

multi-threaded programs.

1.1 Memory Structure

The virtual-memory address-space for a program is typically divided into distinct zones:
static code/data, dynamic allocation, dynamic code/data, and stack, with free memory
surrounding the dynamic code/data [Sal]. Figure 1.1 shows a typical layout of these zones.

Static code and data are loaded into memory at load time, and their allocations do not

change during runtime. The stack has simple and fixed management in a single-threaded
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Static Dvnamic Free Dynamic Free
Code and Al?glcationa <— Codeand —*> = Stack
Data Memory Data Memory
Low address High address

Figure 1.1: Program Address Space

program. In multi-threaded programs, a new stack is created for each new thread. Thread
stacks are commonly created in dynamic-allocation memory. Management of dynamic
code/data, for example libraries that are loaded at runtime, can be fairly complex especially
in a multi-threaded program [HLMO06]. However, management of this area is handled by a
dynamic loader, and is largely independent of a program, since there is no mechanism to
directly affect its behaviour. Therefore, this thesis considers only the management of the

dynamic-allocation memory, a very complex area of memory to manage.

1.2 Dynamic-Memory Management

Modern programming languages manage dynamic-allocation memory in different ways.
Some languages, such as Java, provide memory management in which data is explicitly
allocated, but implicitly deallocated through garbage collection. In general, garbage col-
lection also supports memory compaction, in which dynamic data may be moved during
runtime in order to better utilize space. Programming languages such as C and C++4,
provide the programmer with explicit control over the allocation and deallocation of data.
This thesis looks at explicit dynamic-memory management. Garbage collection and com-
paction are beyond the scope of this thesis.

A memory allocator is responsible for managing dynamic memory. Most programs

use a general-purpose memory-allocator, often the one provided by the programming lan-
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guage’s runtime library. However, high-performance memory allocators for multi-threaded
programs are still being designed and improved. C and C+4+ allow a programier to re-
place the memory allocator with an alternative general-purpose memory-allocator. For this
reason, several general-purpose allocators have been written for C/C++ with the goal of
scaling in a multi-threaded program [SAN06] [BMBWO00] [Nak01] [GM]. This thesis looks
at the design of high-performance allocators for use by multi-threaded applications written

in C/C++.

1.3 Contributions

Several existing memory allocators attempt to achieve good performance in multi-threaded
programs. This thesis examines these memory allocators to identify the underlying features
they employ to achieve good performance. These features, outlined in Chapter 3, include:
per-thread heaps with a global heap, object ownership, object containers, thread-local free-
list buffers, remote free-lists, allocation buffers, and lock-free operations. I create several
test allocators that differ from each other in terms of these fundamental features. A set of
benchmark programs are used to compare the runtime, scalability, and fragmentation of
the test allocators in order to identify the effects of each feature. Finally, I select a set of

fundamental features that generate a good general-purpose memory-allocator.

1.4 OQOutline

This thesis is organized as follows. Chapter 2 provides background information on dynamic-
memory management. Chapter 3 discusses the design of a multi-threaded memory-allocator.

Chapter 4 describes existing allocators and related work. Chapter 5 presents a set of test al-
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locators. Chapter 6 describes a test suite for memory allocators using both single-threaded
and multi-threaded benchmark programs. Chapter 7 presents results from testing and com-
paring the different allocators described in Chapters 4 and 5 using the test suite described

in Chapter 6. Finally, Chapter 8 provides a summary and some conclusions.



Chapter 2

Memory Allocator Background

When a program dynamically creates a data structure, referred to as an object, it occupies
memory in the dynamic-allocation zone. The memory allocator is itself a data structure
that handles allocation and deallocation of objects in the dynamic-allocation memory. The
dynamic-allocation area grows or shrinks by operating system calls, such as mmap or sbrk.
Dynamic objects are allocated and deallocated by the program through calls such as malloc

and free in C, and new and delete in C++.

2.1 Components of a Memory Allocator

There are two important parts to a memory allocator: storage data and heap. Storage
data reside in dynamic allocation memory, while the heap may reside in dynamic code
and data memory. There are three types of storage data: allocated objects, freed objects,
and reserved memory. Allocated objects are memory allocated to the program through
calls to malloc or new (other forms exist, but they all funnel through to malloc). Freed

objects are memory that was allocated to the program, and later deallocated through calls
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Storage Data

o . PE——
o e /
St | /
reserved I E——
Heap memory |

Figure 2.1: Memory Allocator Heap

to free or delete. Reserved memory is a block of memory that has been obtained from
the operating system, through calls such as mmap or sbrk, but has not yet been allocated
to the program. A memory allocator may contain several blocks of reserved memory.

The second important component of the memory allocator is the heap. The heap is
a data structure that is located at a known memory address, and manages freed objects
and reserved memory. Allocated objects are generally maintained by the program. Figure
2.1 shows an example heap and its associated storage data. The heap points to reserved
memory and the freed objects in the heap. Each freed object in the heap, shown in grey,
usually points to the next freed object in the heap. The heap data-structure contains all
information necessary to manage the storage data of the heap.

Allocated and freed objects are typically surrounded by additional management data
through the use of headers and trailers. Object headers and trailers contain information
regarding the object, such as the object size, and are located before and after the object in
memory. A free object may also hold additional information in the object space, but that

information may be lost once the object is allocated to the program. Object trailers are
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Program | Padding/

Data Spacing Trailer

Header | Padding

Figure 2.2: Allocated Object

sometimes used for security purposes to signify the end of an object, or to simplify some
allocation algorithm implementations. Objects can also be padded either before or after
the object, to ensure proper alignment. Some algorithms may require that a larger space
be allocated to the program than the program requests, leaving additional spacing after the
object. Padding and spacing are reserved memory around an allocated object that cannot
be used to satisfy a future allocation request while the current allocation exists. Figure 2.2
shows an allocated object with a header, trailer, and some padding and spacing around
the object. A free object may contain additional memory-management data instead of

program data.

2.2 Single-Threaded Memory Allocators

A single-threaded memory allocator does not actually run any threads itself, but is used
by a single-threaded program. Because the memory allocator code is only executed by the
single program thread, issues of synchronization and mutual exclusion are avoided; however,
there are two issues in designing a single-threaded memory allocator: fragmentation and

locality.

2.2.1 Fragmentation

Fragmentation is wasted space in memory. Wasted space is memory requested from the

operating system, but not used by the program. Fragmentation can take one of two forms:
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Figure 2.3: Internal and External Fragmentation

internal or external.

Internal fragmentation is memory space that is allocated to the program, but is not
intended to be accessed by the program, such as headers, trailers, padding, and spacing
around an allocated object. Internal fragmentation is typically memory that is used by the
allocator for management purposes or required by the architecture for correctness (e.g.,
alignment).

There are two definitions for external fragmentation: memory space that is unusable
for a given allocation request (because it is too small for example), or all memory space
reserved from the operating system but not allocated to the program [WINB95] [Sie00]
[LPB98]. In this thesis, the second definition is used since it encompasses both definitions.
Using this definition, external fragmentation includes reserved memory and freed objects
with their management data.

Figure 2.3 shows an example section of memory outlining internal and external fragmen-
tation. The header, padding, spacing, and trailer are internal fragmentation used by the
allocator to store information, to provide security, or to fulfill implementation requirements.
The program data is not fragmentation. Free memory is external fragmentation. The free
memory may contain freed objects (including their headers, trailers, and padding/spacing)
and reserved memory.

Internal fragmentation can be problematic when the space required to manage an object

is a significant proportion of the allocated object. For example, if a header is as large as
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the object being managed, then the memory usage for that object is doubled. An allocator
should strive to keep management information to a minimum.

External fragmentation can be problematic in two ways: heap blowup and highly frag-
mented memory. Heap blowup occurs when memory freed by the program is not reused
for future allocations, leading to potentially unbounded external fragmentation growth
[BMBWO00]. Heap blowup can occur due to allocator policies that are too restrictive in
reusing freed memory.

Memory can become highly fragmented after multiple allocations and deallocations
of objects. Figure 2.4 shows an example of how a small block of memory can become
fragmented as objects are allocated and deallocated, where white areas are objects allocated
to the program, and grey areas are freed objects. Blocks of free memory become smaller and
non-contiguous making them less useful in serving allocation requests. Memory is highly
fragmented when the sizes of most free blocks are unusable. For example, 2.5(a) and 2.5(b)
have the same quantity of external fragmentation, but 2.5(b) is highly fragmented. If there
is a request to allocate a large object, 2.5(a) is more likely to be able to satisfy it with
existing free memory, while 2.5(b) would likely have to request more memory from the
operating system.

In a single-threaded memory allocator, there are a number of allocation algorithms that
can be used to control fragmentation [JW99]. Sequential-fit algorithms maintain one list
of free objects that is searched for a block that is large enough to fit a requested object
size. Different policies determine which free object is selected, for example the first free
object that is large enough, or a free object that is closest to the requested size [JW99].

A segregated or binning allocation algorithm uses a set of bin sizes. The heap maintains
a set of lists of freed objects, each of a different bin size. When an object is allocated,

the requested size is rounded up to the nearest bin size resulting in spacing around the
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Figure 2.5: External Fragmentation

object. The binning algorithm is very fast at finding free memory of the appropriate size,

since the first free object on the free list for that size is used. The fewer bin sizes there

are, the fewer lists need to be maintained by the heap; however, the bin sizes are less likely

to closely fit the requested object size, leading to more internal fragmentation. The more

bin sizes there are, the less likely free objects are to be reused, leading to more external

fragmentation and potentially heap blowup.

A variation of the binning algorithm allows objects to be allocated to the requested

size, but when an object is freed it is placed on the free list of the next smallest or equal bin

size [JW99]. For example, with bin sizes of 8 and 16 bytes, a request for 12 bytes allocates

12 bytes, but when the object is freed, it is placed on the 8 byte bin list. When later
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allocation requests are made, the bin free-lists contain objects of different sizes, ranging
from one bin size to the next (8-16 in this example), and a sequential-fit algorithm is used
to find an object large enough for the requested size.

A third algorithm is the buddy system. The buddy system makes use of splitting and
coalescing. When an object is deallocated it is coalesced with the objects immediately
before and after it in memory, if they are free. Coalescing the objects turns them into one
larger object. When an object is allocated, if there are no free objects of the requested size,
a larger free object may be split into two smaller objects to satisfy the allocation request
without obtaining more memory from the operating system.

Using the buddy system, a block of dynamic allocation memory is split into two equal
chunks, one of those chunks is again split into two equal chunks, and so on until a block
just large enough to fit the requested object is created. Similarly, a chunk may be coalesced
with its other half, if they are both completely free, to create a large enough area to satisfy
an allocation request [JW99].

Splitting and coalescing can be used with other algorithms to avoid highly fragmented
memory. Coalescing does not immediately reduce external fragmentation. However, coa-
lesced blocks of memory are more likely to be useful in future allocations, avoiding external

fragmentation growth.

2.2.2 Locality

The principle of locality recognizes that programs tend to reference a small set of data,
called a working set, for a certain period of time [Den05]. There are two types of locality:
temporal and spatial. If an object is accessed, temporal locality suggests that same object
will be accessed again within a short time period, while spatial locality implies that a nearby

address is also likely to be accessed within a short time period [Den05] [Wil]. Temporal
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locality commonly occurs due to loops in a program, while spatial locality commonly
appears when accessing arrays of related data [Den05].

Hardware takes advantage of spatial and temporal locality through caching. When an
object is accessed, the memory physically located around the object is also cached with the
expectation that the current and nearby objects will be referenced within a short period of
time. For example, entire virtual memory pages are brought into memory from disk, and
entire cache lines are brought into cache. A program exhibiting good locality has better
performance due to fewer cache misses and page faults.

Temporal locality is dependent on the program, while spatial locality is determined by
the memory allocator [FB05]. An allocator providing optimal spatial locality places objects
that are used together close by in memory, such that the working set of the program fits
into the fewest possible pages and cache lines. However usage patterns are different for
every program. Hence, no general-purpose memory-allocator can provide perfect locality
for every program, but an allocator can try to avoid degrading locality.

One way a memory allocator can degrade locality is by increasing the working set.
For example, a memory allocator may access several objects before finding a free object
to satisfy an allocation request. If there are a large number of objects accessed in very
different areas of memory, the allocator may cause several cache or page misses [GZH93].
Another way locality may be degraded is by spatially separating related data. For example,
in a binning allocator, objects of different sizes are allocated from different bins that may

be located in different pages of memory.
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2.3 Multi-Threaded Memory Allocators

When referring to a multi-threaded allocator, it is not the allocator that is multi-threaded,
but the program that uses it. The allocator code may be accessed by multiple program
threads at any given time. In addition to locality and fragmentation issues, there are issues

of mutual exclusion, false sharing, and heap blowup.

2.3.1 Mutual Exclusion

Mutual exclusion provides sequential access to a shared resource. In a memory allocator,
the heap is a shared resource to which access must be controlled using mutual exclusion.
There are two performance drawbacks to mutual exclusion. The first is the overhead
necessary in performing a hardware atomic operation every time the shared resource is
accessed. The second drawback arises when multiple threads contend for a shared resource
simultaneously, since some threads may be unable to continue until the resource is released.

Contention can be reduced through fine-grained locking.

2.3.2 False Sharing

False sharing can lead to cache thrashing. It occurs when two or more objects that are
each used by a different thread share a cache line, assuming each thread runs on a different
processor with its own cache. Each time one thread modifies its object, the other thread’s
associated cache is invalidated, even though it is uninterested in the modified object. There
are three types of false sharing: program induced, allocator-induced active, and allocator-
induced passive.

Program-induced false-sharing occurs when one thread passes one of its objects to

another thread as in Figure 2.6. If that object came from a cache line with other objects
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Figure 2.7: Allocator-Induced Active False-Sharing

used by the first thread, then the two threads now share a cache line. When Taskl passes
Object2 to Task2, they are in a false-sharing situation. Changes to Objectl invalidate
CPU2’s cache line, and changes to Object2 invalidate CPU1’s cache line.

Allocator-induced active false-sharing occurs when an allocator allocates objects that
fall in the same cache line to different threads as shown in Figure 2.7. Each thread allocates
an object and loads a cache line size of memory into its associated cache. To keep the cache
consistent, any changes to the cache line by one processor invalidate the cache line for all
processors with the same memory in their cache.

Passive false-sharing is another form of allocator-induced false-sharing that is caused

by program-induced false-sharing. When an object in a program-induced false-sharing
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Figure 2.8: Allocator-Induced Passive False-Sharing

situation is deallocated, a future allocation of that object may cause passive false-sharing.
In Figure 2.8(a), Task2 deallocates Object2, passed to it by Taskl, leaving it free for a
future allocation request by Task2. Allocator-induced passive false-sharing occurs when

Object2 is allocated to Task2 while Taskl still uses Objectl (as in 2.8(b)).

2.3.3 Heap Blowup

The third issue in memory allocation for a multi-threaded program is an additional form
of heap blowup. Heap blowup is the failure to reuse free memory, leading to unbounded

external fragmentation [BMBWO00]. In a multi-threaded program, heap blowup can occur
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when memory freed by one thread is inaccessible to other threads due to the allocation

strategy [GPT04].



Chapter 3

Memory Allocator Design

The previous chapter describes a number of challenging issues when designing a memory
allocator. This chapter looks at several features found in existing allocators that address
these issues. These features are then considered in different combinations to find potential

candidate allocators for evaluation.

3.1 Multi-Threaded Memory-Allocator Features

The following features may be present in a memory allocator,

1. Per-thread heaps, but including a global shared-heap to avoid heap blowup
(a) with or without ownership

2. Object Containers
(a) with or without ownership

(b) fixed or different sized

17
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(c) global or local free-lists
3. Thread-local free-list buffer
4. Remote free-list

5. Allocation buffer

6. Lock-free operations

The first feature, per-thread heaps, looks at different types of heaps. The second fea-
ture, object containers, looks at the organization of objects within the storage area. The
remaining features can be applied to different parts of the allocator design or implementa-

tion.

3.1.1 Per-Thread Heaps

A multi-threaded allocator may use one single heap, or multiple heaps with or without a
global shared-heap. A single-heap allocator consists of one heap from which objects are
allocated and to which objects are freed. Memory is allocated from the freed objects in the
heap or from the operating system. The heap may also occasionally return freed objects
to the operating system. Figure 3.1 illustrates a multi-threaded program using a single-
heap allocator. The running threads and the single shared heap are shown. The arrows
indicate the direction in which memory conceptually moves for each type of operation. This
type of allocator is essentially a single-threaded allocator, but with appropriate locking to
provide mutual exclusion to this shared resource. Whether using a single lock for all heap
operations, or fine-grained locking on different heap operations, the single heap may still

be a significant source of contention.
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Figure 3.2: Per-Thread Heaps

In order to significantly reduce contention in a multi-threaded program, multiple heaps
are used. Having fewer heaps than threads, while reducing contention, does not allow for
the removal of locks since more than one thread may access a heap at a time. Since the
behaviour of the program cannot be predicted, a worst case scenario is possible where all
allocations occur to the same heap. Having more heaps than threads may be redundant if
the heaps all behave the same. Later discussion shows cases in which having more heaps
than threads can be beneficial. However, as a starting point, the strongest case for multiple

heaps is to have a single heap per thread, as in Figure 3.2.
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Per-thread heaps provide increased control of the memory being allocated to each
thread. Using a one-to-one mapping of threads and heaps, each thread only allocates
from its heap, which improves locality since all objects for a thread may be allocated from
the same area in memory. For example, in a program where each thread allocates, uses,
and deallocates its own objects, a single heap allocator may spread the objects of each
thread over a large area of memory, but a per-thread heap allocator can allocate each
thread’s objects in a smaller area of memory, better utilizing each CPUs cache and causing
each thread to access fewer pages.

Per-thread heaps also cause an increase in external fragmentation and may lead to heap
blowup. The external fragmentation experienced by a program with a single heap is now
multiplied by the number of threads, since each heap must allocate its own area of reserved
memory. Additionally, objects freed by one heap cannot be reused by other threads causing
heap blowup. In the worst case, a program in which objects are deallocated to one set of
thread heaps, but allocated from a different set of thread heaps would mean freed objects
are never reused.

A global shared-heap, shown in Figure 3.3, is often used to prevent heap blowup. A
global shared-heap is not used directly by any thread, but is used to move free memory
among thread heaps. When a thread heap reaches a certain threshold of free objects, it frees
some of those objects to the global heap to be reused by another thread heap. Similarly,
the global shared-heap may free memory to the operating system when it reaches a certain
threshold. Memory can be allocated from the operating system either to the thread heaps
or the global heap. However, since any thread may free or allocate objects from the global
heap, the global heap is a shared resource that requires locking.

When a thread completes, there are two options of how to handle its thread heap. One
option is to free all objects on the thread heap to the global heap and destroy the thread
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Figure 3.3: Per-Thread Heaps with a Global Heap

heap, while a second option places the thread heap on a list of available heaps and reuses it
for a new thread that starts up in the future. Destroying the thread heap immediately may
reduce external fragmentation sooner, since all free objects are freed to the global heap
and may be reused by other threads. Alternatively, reusing thread heaps may improve
performance if the inheriting thread makes similar allocation requests as the thread that
previously held the thread heap.

Although contention is reintroduced with the global heap, the cost is minimal since most
allocator operations should complete without the use of the global heap. As per-thread
heaps are a key feature for a multi-threaded allocator, all further discussion assumes per-

thread heaps with a global shared-heap to prevent heap blowup.

3.1.1.1 Ownership

Ownership is an option that is possible with per-thread heaps. Ownership is the notion

that an object is owned by the thread that allocates it. Since there is a one-to-one corre-
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Figure 3.4: Per-Thread Heaps with Ownership

spondence between threads and heaps, an object is simultaneously owned by a thread and
its heap.

Without ownership, a task only frees objects to its own heap, as shown in Figure 3.2.
This approach means thread heaps are private to their owner thread and do not require
any locking. A drawback of per-thread heaps without ownership is that if an object is
passed from one thread to another during program execution, passive false-sharing may
occur. For example, if task A passes an object to task B, and task B frees the object, then
the object is freed to task B’s thread heap. As a result, a future allocation request may
lead to passive false-sharing, as described in Section 2.3.2.

With ownership, every object must be deallocated to the heap that it was allocated
from. This requirement means that heaps are no longer private to a single thread and
require locks to provide consistency, since any thread may deallocate an object to its
owner heap. Figure 3.4 shows an example of per-thread heaps with ownership (minus the
global heap).

The benefit of ownership is the elimination of allocator-induced passive false-sharing by
returning an object to its owner thread so that it can never be allocated to another thread.
In general, all allocator-induced false-sharing can be eliminated by designating an area of
memory to one thread heap, and ensuring that area of memory is always allocated to one

thread. For example, assuming that page boundaries coincide with cache line boundaries,
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designating a page to a thread heap prevents allocator-induced false-sharing since no two
threads are allocated memory from the same page. In Figure 3.5, one thread allocates
two pieces of memory that fall in the same cache line. False sharing can only occur when
one thread passes an object to another, as in part b. However, if that second thread
deallocates the memory, ownership requires the object be returned to the original thread
heap. Thus, subsequent allocations allocate the object to the original thread preventing
any allocator-induced false-sharing.

Object ownership can be enforced as immediate or delayed ownership. Deallocated
objects may be returned to the owner thread immediately or after some delay. For example,
a thread may store an object it does not own on its free list for a certain number of memory

operations. The thread heap may allow these objects to be reallocated to the local thread
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or not. If delayed object ownership is used such that it allows reallocation by the local
thread, then some passive false-sharing may occur. For example, in Figure 3.5(c), Object2
may be deallocated to Task2’s thread heap initially. If Task2 requests an object before
Object2 is returned to its owner, then the allocator may allocate Object2 to Task2 causing
passive false-sharing to occur.

Delayed ownership with reallocation can improve performance since the local thread
can complete some operations on its own thread heap where it might otherwise be required
to go to the global heap. Delayed ownership without reallocation can improve performance

by batching together free operations to a remote thread-heap.

3.1.2 Object Containers

A simple allocator places headers/trailers with individual objects, meaning memory ad-
jacent to the object is reserved for object management information, as shown in Figure
3.6(a). However, this approach leads to poor cache usage, since only a portion of the cache
line is holding useful information from the program’s perspective. Spatial locality is also
negatively affected; even though the header and object are together in memory, they are
generally not accessed together. The object is accessed by the program when it is allo-
cated, while the header is accessed by the allocator when the object is free. This difference
in usage patterns can lead to poor cache locality [FB05]. Additionally, placing headers
on individual objects can lead to redundant management information. For example, if a
header stores only the object size, then all objects with the same size have identical head-
ers. A more complex approach places the headers in a separate location in memory. The
complexity lies in finding the object header given only the object address, since that is
normally the only information passed to the deallocation operation.

One approach to separating object headers/trailers from object content is to use object
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containers [FB05]. An object container is a group of adjacent objects in memory, shown
in Figure 3.6(b). The header for the container holds information necessary for all objects
in the container. A trailer may also be used at the end of the container.

In general, the container header/trailer for any object must be found solely from the
address of the object. One way to do this is to start containers on aligned addresses in
memory, then truncate the lower bits of the object address to obtain the header address
(or round up and subtract the trailer size to obtain the trailer address). For example, if an
object at address 0xFC28 EF08 is freed and containers are aligned on 64 KB (0x0001 0000)
addresses, then the container header is at 0xFC28 0000.

In general, containers contain homogeneous objects, with fixed information in the
header, which is logically distributed across all container objects (e.g., all objects are
the same size). Containers with heterogeneous objects implies different headers describing
them, which introduces the problem of locating a specific header solely by an address. A
couple of solutions can be used to implement containers with heterogeneous objects. How-
ever, the problem with allowing objects of different sizes is that the number of objects, and
therefore headers, in a single container is unpredictable.

One solution allocates objects at one end of the container, while allocating headers
from the other end of the container, until the objects meet the headers and the container

is filled. Freed objects cannot be split or coalesced since this would cause the number of
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headers to change. The difficulty in this strategy remains finding the header for a specific
object. The individual headers in the container would have to be searched until the header
for a given object is found.

A second solution combines the use of container headers and individual object headers.
Each object header stores the heterogeneous information of the object, such as its size,
while the container header stores the homogeneous information, such as the owner thread
when using ownership. This approach allows containers to hold different types of objects,
but does not separate headers from their objects. The benefit of the container in this case
is to reduce some redundant information that is stored in the container header.

In general, the complexity of heterogeneous objects in a container is likely to outweigh
the potential benefits. A container header is most efficient when all objects in the container
are homogeneous and therefore the same size; only one size is stored in the header, making
the header a constant size regardless of the number of objects in the container. This
approach greatly reduces internal fragmentation since far fewer headers are required. Using
homogeneous object containers, each cache line can hold more objects, since the objects
are closer together due to the lack of headers among them.

An additional benefit to object containers is that they can be used to avoid allocator-
induced active false-sharing. Similar to the approach described in Section 3.1.1.1, if con-
tainer boundaries coincide with cache-line boundaries and all objects in a container are
allocated to the same thread, then allocator-induced active false-sharing is avoided.

Two drawbacks remain when using containers with homogeneous objects. Although
similar objects are close spatially within the same container, different objects are further
apart in separate containers. Depending on the program, this may or may not improve
locality. If the program uses several objects of the same size in its working set, then

locality i1s improved since these objects may all be in the same container. If a lot of
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different sized objects are used, then a lot of containers are in use, which leads to poor
paging locality, since each container corresponds to another page that needs to be stored
in memory. The second drawback is that external fragmentation may be increased since
containers reserve space for objects that may never be allocated by the program. However,

external fragmentation can be reduced by using smaller containers.

3.1.2.1 Containers with Ownership

Using containers without ownership, objects are deallocated to the thread heap that frees
the object. Thus, different objects in a container may be on different thread-heap free-lists.
When a thread heap frees objects to the global heap, individual objects are passed, further
separating objects from other objects in their container.

Using object ownership, all objects in a container belong to the same thread heap.
Ownership of an object is determined by the owner of its container. In general, ownership
avoids passive false-sharing since objects are returned to the thread that allocated the
object. Passive false-sharing may still occur, as described in Section 3.1.1.1, if delayed
ownership is used. As described in Section 3.1.2, using containers avoids active false-
sharing since objects in a container are all allocated to the same thread.

Additionally, when a thread heap reaches its threshold of free objects, it moves some
containers to another thread heap via the global heap. When a container changes own-
ership, the ownership of all objects within it change as well. Moving a container involves
moving all objects on the thread heap’s free-list in that container to the new owner. This
approach reduces contention for the global heap, since each request for objects from the
global heap returns a container of several objects rather than individual objects.

Additional restrictions may be applied to the movement of containers. When a container

changes ownership, if some of its objects are in use by the program, active false-sharing
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Figure 3.7: Active False-Sharing using Containers

may occur, as demonstrated in Figure 3.7. In 3.7(a), a container is moved from Heapl to
Heap2. When Task2 allocates an object from the container it is in a false-sharing situation,
as in 3.7(b). This scenario is an example of active false-sharing since no objects are passed
among threads. Note, once the object is freed by Taskl in 3.7(¢), no more false sharing can
occur until the container changes ownership again. To prevent this form of false sharing,
container movement may be restricted to when all objects in the container are free.

A consequence of ownership is that free objects in a container are on the same heap,
making it easier to determine if all objects in a container are free. In addition to using the
global heap, this information leads to two additional approaches of preventing heap blowup.

One approach returns the container to the operating system assuming the container was
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allocated using a call like mmap, which allows memory at an arbitrary address to be returned.
A second approach to avoiding heap blowup clears the container so it can be used to allocate
objects of a new size.

Using containers with ownership increases external fragmentation since a new container
for a requested object size must be allocated separately for each thread requesting it. In
the example shown in Figure 3.8, using object ownership allocates 50% more space than

required.

3.1.2.2 Container Size

One way to control the external fragmentation caused by allocating a large container for a
small number of requested objects is to vary the size of the container. As described earlier,
container boundaries need to be aligned on addresses that are a power of two to allow
easy location of the header (by truncating the bits). Aligning containers in this manner

also determines the size of the container. However, the size of the container has different
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implications on the allocator.

The larger the container, the fewer containers are needed, and hence, the fewer headers
need to be maintained in memory, improving both internal fragmentation and potentially
performance. However, with more objects in a container, there may be more objects that
are not allocated, increasing external fragmentation. With smaller containers, not only
are there more containers, but a second new problem arises where some objects are larger
than the container.

In general, large objects are allocated directly from the operating system and are re-
turned immediately to the operating system to reduce external fragmentation due to in-
frequent large objects that are unlikely to be reused. If the container size is decreased, for
example to 1 KB, then an object that is 1.5 KB is treated as a large object, which is likely
to be inappropriate. Thus, it would be ideal to use smaller containers for smaller objects,
and larger containers for medium objects, which leads to the issue of locating the container
header.

In order to find the container header when using different sized containers, a container
superstructure, or super-container is used. The super-container is a container of object
containers, as shown in Figure 3.9, that starts on an aligned address. The super-container
spans several containers, and contains a header with information for finding each container
header. Super-container headers are found using the same method that is used to find
container headers when the containers are fixed sizes, by dropping the lower bits of an
object address. In the example shown in Figure 3.9, the header of a 64 KB super-container
points to the headers of the containers within it. Smaller objects are held within 16 KB
containers, while medium objects are held within 64 KB containers. The free space at the
end of a super-container can be used to allocate a new container for small objects when

another small container is needed.
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The containers within a super-container may be different sizes or all the same size. If
the containers in the super-container are different sizes, then the super-container header
must perform a search to determine the specific container for an object given its address.
If all containers in the super-container are the same size, then a specific container header
can be found by an O(1) calculation.

Minimal internal and external fragmentation is achieved by having as few containers
as possible, each being as full as possible. It is also possible to achieve additional benefit
by using larger containers for popular small sizes, since when fewer containers are used,
there are fewer container headers in memory. However, it is impossible for an allocator
to determine which sizes are going to be popular in future requests. Keeping statistics on
requested sizes may allow the allocator to make a dynamic decision about which sizes are
popular. For example, after receiving a number of allocation requests for a particular size,
that size is considered a popular request size and larger containers are allocated for that
size. However, the decision may be incorrect, leading to a larger container being allocated
that remains mostly unused. A programmer may be able to inform the allocator about

popular object sizes in order to select an appropriate container size for each object size.
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3.1.2.3 Container Free-Lists

Besides the size of the objects in the container, a container header may hold other useful
information that may improve performance. For example, maintaining free lists in a con-
tainer header (Figure 3.10(b)), rather than in the heap (Figure 3.10(a)), can greatly reduce
the complexity of moving all freed objects belonging to a container onto another heap.

Maintaining free lists within container headers assumes all free objects in the container
are on the same heap. Thus, it only applies to containers that also enforce ownership. To
move a container with free lists on heaps, as in Figure 3.10(a), the heap’s free list is first
searched to find all objects within the container. Each object is then removed from the
free list and linked together to be moved to the new heap. With free lists in containers,
as in Figure 3.10(b), the container is removed from the heap’s free list and placed on the
new heap’s free list. Thus, when using free lists within containers, the operation of moving
containers is reduced from O(n) to O(1). The cost is adding information to a header, which
increases the header size, and therefore internal fragmentation.

When all objects in the container are the same size, a single free list is sufficient.
However, when the objects in the container can be of any size, the header needs to store
a free list for each size class when using a binning allocation algorithm, which can be a
very significant increase in the container-header size. The alternative is to use a different

allocation algorithm with a single free list, such as a sequential-fit allocation-algorithm.

3.1.3 Thread-local free-list buffer

A thread-local free-list buffer contains lists of freed objects. It is a private heap containing
only memory that has been freed by its owner thread, as shown in Figure 3.11. It is

private in that only the owning thread may access the buffer. The buffer may be used
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in an allocator with per-thread heaps or a single-shared heap. Placing the buffer in an

allocator with only a single-shared heap generates a simple version of private per-thread

heaps. However, that type of allocator is not considered in this discussion. The thread-

local buffer reduces contention for a shared heap. Allocation and deallocation requests that

can be completed from the thread-local buffer avoid locking. However, when the buffer is

cleared, it requires obtaining a lock, and depending on the implementation of the thread

heap, the operation is either O(1) if it is as simple as adding the list to the end of the
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Figure 3.11: Thread-Local Free-List Buffer

thread-heap’s free-list, or O(n) if some management needs to be done for each object that
is freed.

The objects on the lists may or may not be owned by the local thread-heap depending
on the implementation. Figure 3.11 shows an example allocator in which objects owned by
other threads are immediately freed to their owner heap, enforcing immediate ownership.
The thread-local buffer can also be used to implement delayed ownership. Placing objects
that are owned by other threads on the buffer temporarily allows the thread to reuse an
object before returning it to its owner.

For a private heap with no ownership, where objects are freed to the thread-heap that
deallocates them, the thread-local free-list buffer gains no benefit, since it is essentially
the same as the thread heap. However, it may still improve performance if thread-heap
operations require more complexity than a simple operation on the buffer. There may also
be some performance benefit in storing objects owned by other threads to be freed to their
owner heap all at once. The buffer may or may not allow these objects to be reused by the

local thread depending on the type of ownership enforced.
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3.1.4 Remote Free-Lists

A remote free-list is a list of freed objects. Figure 3.12 shows how a remote free-list is used
in an allocator. When objects allocated by one thread are deallocated by another, rather
than locking the thread heap of the thread owning the object to perform a deallocation,
the object is placed on the heap’s remote free-list. Objects deallocated by the thread that
allocated them can be freed directly to the owner’s heap. To avoid heap blowup, the heap
with the remote free-list must reuse those free objects before obtaining additional memory.

A remote free-list can reduce contention for a thread heap. Rather than allowing any
thread to free to the thread heap, other threads use the remote free-list. Locks are moved
from the thread heap to the remote free-list improving the time for local allocations and
deallocations. Since the remote free-list is cleared during an allocation when there are no
more freed objects in the heap, some allocation operations take longer. Clearing the remote
free-list is O(1) if the list can simply be added to the end of the thread-heap’s free-list, or
O(n) if some maintenance must be performed on each freed object. The time to obtain
access for the remote free-list can be limited using lock-free operations (see Section 3.1.6).

As long as there is more than one freed object on the list each time the remote free-list is
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cleared, performance should be improved.

A remote free-list can also be added to a global heap. The remote free-list on the
global heap acts a little differently than on thread heaps, since all frees are remote on the
global heap. Thus the remote free-list acts to separate contention for the global heap, since
threads allocating from the global heap and threads deallocating to the global heap are

not usually contending for the same lock.

3.1.5 Allocation Buffer

An allocation buffer is a chunk of memory that has been allocated from the operating
system, but has not yet been allocated to the program. It is basically an area of reserved
memory for allocating objects when the free list is empty.

An allocation buffer is used to reduce contention and the number of operating system
calls. Rather than reserving memory from the operating system to accommodate a single
object, an entire buffer is reserved from which individual objects are allocated later. The
buffer may be associated with the global heap, and used when the global heap has no free
objects.

An allocation buffer may also be associated with each thread heap, allowing a thread to
allocate from the buffer before requesting objects from the global heap, reducing contention
for the global heap. To prevent heap blowup, objects should be reused from the global
heap before allocating a new allocation buffer. Allocation buffers are useful initially when
there are no freed objects in the thread heap and global heap. In the long term, freed
objects are used rather than objects from the allocation buffer. Thus, allocation buffers
are allocated more frequently to start, but their use eventually diminishes.

Associating an allocation buffer with a thread heap also avoids active false-sharing,

since all objects in the allocation buffer are allocated to the same thread. If all objects
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sharing a cache line belong to the same allocation buffer, then all objects from a cache line
are allocated to the same thread, avoiding active false-sharing. Active false-sharing may
still occur when objects from a thread heap are freed to the global heap. Depending on
which objects are moved, a future allocation could cause active false-sharing.

Allocation buffers may increase external fragmentation, since some memory in the al-
location buffer may never be allocated. A smaller allocation buffer reduces the amount
of external fragmentation, but increases the number of calls to the global heap or to the
operating system. The allocation buffer also slightly increases internal fragmentation, since
a pointer is necessary to locate the next free object in the buffer.

If used with coalescing, the buffer can be a large object that is allocated from the
global heap or the operating system and then split into several smaller objects in future
allocations.

The unused part of a container, neither allocated or freed, is an allocation buffer. For
example, when a container is created, rather than placing all objects within the container
on the free list, the objects form an allocation buffer and are allocated from the buffer
as allocation requests are made. This lazy method of constructing objects is beneficial in
terms of paging and caching. For example, although an entire container, possibly spanning
several pages, is allocated from the operating system, only a small part of the container is
used in the working set of the allocator, reducing the number of pages and cache lines that

are brought into higher levels of cache.

3.1.6 Lock-Free Operations

A lock-free algorithm guarantees that at all times at least one thread is making progress
in the system [MHMO3]. A wait-free algorithm puts a finite bound on the number of steps

any thread takes to complete [Her93]. Lock-free operations can be used in any allocator
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as a method to reduce the use of locks. The problem with using a lock is that if the kernel
thread associated with the holding user thread becomes blocked, the system as a whole
becomes blocked if all other user threads are waiting for that lock [Her93]. However, this
situation is unlikely except in an allocator with a lot of contention. Lock-free algorithms
may also reduce the number of context switches, since a thread does not yield while waiting
for a lock.

The consequence of using lock-free operations is greater complexity and hardware de-
pendency. Lock-free algorithms can be applied most easily to free lists to allow lock-free
insertion and removal from the head of a list. Implementing lock-free operations for more

complicated data structures may be more complex and depend on hardware support.

3.2 Combining Features

The features discussed in the previous sections can be used in different combinations when
designing a multi-threaded memory allocator. An allocator that combines features can
solve problems, such as allocator-induced false-sharing, that cannot be solved using any
one feature.

Analyzing all possible combinations of allocator features leads to a very large design
space. To reduce the analysis, different types of containers and lock-free operations are not
specifically discussed. The different types of object containers, varying in size and header
information, can be used interchangeably with a basic container and have little influence
on the other features. Lock-free operations can be added to any allocator regardless of the
other features used.

Per-thread heaps and a global shared-heap, as well as allocation buffers are features

used in all allocators discussed. An allocation buffer is implicitly present in a coalescing
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allocator, and simply an implementation detail when using object containers. Additionally,
both passive and active-false sharing are reduced when combining an allocation buffer with
object ownership. Allocators without allocation buffers are possible, and potentially useful,
but do not provide additional benefits when considering the combination of features.

The optional features of an allocator that are considered in the discussion are: coa-
lescing, thread-local free-list buffers, and remote free-lists. The coalescing feature is only
applied to allocators using individual object headers. Coalescing does not work well with
containers, since when objects are split and coalesced the sizes change. As described in
Section 3.1.2, containers work best when all objects in the container are the same size.

Thread-local free-list buffers are not considered in combination with remote free-lists.
These features are mostly independent of each other. The benefits of using a remote-free
list in an allocator are the same whether or not thread-local free-lists are used. Likewise,
the benefits of using a thread-local free-list buffer are generally the same whether or not
a remote free-list is used, with one exception. The exception is that since a remote free-
list removes contention for a local thread-heap, adding a thread-local free-list buffer does
not reduce contention for the local thread-heap. The thread-local free-list buffer may still
provide other benefits in an allocator with remote free-lists, but they are the same benefits
as in an allocator that does not use remote free-lists. Thus, the combination of these
features is not discussed since they are mostly independent and no additional insights can
be gained.

The design space is broken down based on two main criteria: whether or not headers
are container based, and whether or not ownership is enforced. These two criteria have
the greatest implications on the performance of an allocator. Using these criteria results

in four main types of allocators:

1. Allocators with individual object headers and no ownership
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Table 3.1: Feature Combinations

Thread-Local Remote

Coalescing || Base-Case | Free-List Buffer | Free-List
Individual Object Headers | No IN IN-1 IN-r
No Ownership Yes IN-c IN-cl IN-cr
Individual Object Headers | No 10 10-1 10-r
Ownership Yes 10-c 10-cl [0-cr
Container Headers
No Ownership No CN CN-1 CN-r
Container Headers
Ownership No CcO CO-1 CO-r
All allocators use per-thread heaps, a global shared-heap, and an allocation buffer.

2. Allocators with individual object headers and enforced ownership
3. Allocators with container headers and no ownership
4. Allocators with container headers and enforced ownership

Using the simplifications and design criteria, Table 3.1 outlines the allocators discussed
in this section. Each allocator is given a unique name in the table. As a short form

“I” refers to a thread-local free-list buffer, “r”

refers to a remote-free list, and “c” refers
to coalescing. The first letter indicates whether individual object headers (I) are used
or containers (C) and the second letter indicates whether ownership is enforced (N=no

ownership, O=ownership).

3.2.1 Individual Object Headers — No Ownership

This section looks at allocators that use individual object headers and do not enforce object

ownership.
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3.2.1.1 Base Case (IN)

With no ownership, objects are allocated and deallocated to the thread’s own thread heap.
Thus, thread heaps are only ever touched by one thread and do not require any locking. A
lock is only obtained for the global shared-heap when the thread heap has no free objects
or too many free objects.

The use of the allocation buffer reduces contention both for the global heap and the
operating system, as described in Section 3.1.5. The allocation buffer also reduces active
false-sharing, by initially allocating all objects in the buffer to the same thread. However,
active false-sharing may still occur when objects are freed to the global heap. As well,
passive false-sharing can occur, since objects are freed to the thread-heap that frees them,

and may be reallocated to that thread.

3.2.1.2 Thread-Local Free-List Buffer (IN-1)

The thread-local free-list buffer adds no benefit to the IN allocator since there is no con-

tention on the thread heaps.

3.2.1.3 Coalescing (IN-c)

Coalescing is when two free objects next to each other in memory are merged to create a
larger free object. There are two options when designing an allocator with coalescing and
thread heaps. One option only merges objects on the same heap. A second option allows
objects on different heaps to be merged, but requires locking and increases contention on
all heaps. Coalescing may avoid highly fragmented memory and may lead to less external
fragmentation than an allocator without coalescing, since large objects can be reused for
any smaller size request, and smaller objects can be coalesced to satisfy larger requests.

However, internal fragmentation is increased since objects must maintain the location of
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objects next to them in memory.

Coalescing may reduce active false-sharing. Using the idea of an allocation buffer, when
a heap requests memory from the operating system, it requests a large object that is split to
the requested size. If this large object is passed to a thread heap, and the thread heap uses
this object to split and satisfy allocation requests, then all objects from this large object
are allocated to the same thread heap, avoiding active false-sharing. However, when a
thread heap frees objects to the global heap, depending on which objects are passed, it
may still cause active false-sharing. As in allocator IN, passive false-sharing may still occur

when objects are passed among threads in the program.

3.2.1.4 Coalescing and Thread-Local Free-List Buffer (IN-cl)

Using a thread-local free-list buffer in a coalescing allocator can also be used to delay the
operation of coalescing objects. Objects placed on the buffer do not change size since they
are not coalesced. Hence, if certain object sizes are frequently allocated and deallocated
they can be reused from the buffer without going through the processes of being coalesced
and split. The buffer acts as a form of cache, caching objects at their requested size until
they are no longer useful. External fragmentation may be slightly increased since objects
on the thread-local free-list buffer are not coalesced and split. When the buffer is cleared,
the objects are coalesced into larger objects that may be more useful in future requests.
If coalescing is used with locks on thread heaps to allow objects on free lists from two
separate heaps to be coalesced, then the thread-local free-list buffer also prevents some
locking. Operations involving only the local buffer avoid obtaining a lock for the thread

heap. Active and passive false-sharing may still occur, as in allocator IN-c.
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3.2.1.5 Remote Free-List (IN-r),
Coalescing and Remote Free-List (IN-cr)

Adding a remote free-list to thread heaps gains no benefit, since there are no remote-free
operations because all objects are freed to the thread heap of the thread that frees them. A
remote free-list may be added to the global shared-heap. When thread heaps free objects to
the global heap they are placed on the remote free-list. This approach separates contention
for the global heap since threads that are passing objects to the global heap are not usually
contending with threads that are requesting objects from the global heap. All objects from
the remote free-list are moved to the main free-list when a thread requests an object from
the global heap and it has no more objects on its main free-list. Adding the remote free-list

has no affect on the ways in which false sharing may occur in these allocators.

3.2.2 Individual Object Headers — Object Ownership

Like the previous section, this section assumes individual object headers, but with owner-
ship. Ownership implies that objects must be returned to the heap that allocated them. In
order to do so, each object header must store information about the thread that allocates

it.

3.2.2.1 Base Case (10)

Adding object ownership removes all passive false-sharing, since an object is freed to the
heap that initially allocated it. Thread heaps must be locked since any thread can access
any other thread heap to deallocate an object. Active-false sharing is greatly reduced by
using an allocation buffer on each thread heap, but may still occur when objects are freed

to the global shared-heap.
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3.2.2.2 Thread-Local Free-List Buffer (I0-1)

Adding a thread-local free-list buffer reduces contention for the thread heaps since a thread
completes some operations directly through the local buffer. Objects not owned by the
current heap may be freed to the local buffer if delayed ownership is used. Delayed own-
ership allows for potential reuse of the object before the buffer is cleared and the object is
returned to its owner, however it also allows passive false-sharing to occur when the object

is reused.

3.2.2.3 Coalescing (10-c)

Using a coalescing allocator with ownership, all allocator-induced false-sharing can be
eliminated if large free-objects are allocated such that their boundaries fall on cache-line
boundaries. When a free object is split, the ownership of the original free-object is copied
to the two new free-objects. Thus, all objects originating from the initial object are owned
by the same thread, removing active false-sharing. When freeing objects to the global
heap, if only those original large-objects are passed, then all active false-sharing is avoided.
The requirement that objects be returned to their owner thread ensures that the original
large-objects eventually coalesce to their original state as one object. As in allocator 10,

a thread heap must be locked in order to allow any thread to deallocate an object.

3.2.2.4 Coalescing and Thread-Local Free-List Buffer (10-cl)

The thread-local free-list buffer allows a thread to perform local operations without locking,
as in allocator I10-1. Additionally, the buffer can improve performance when objects are
reused at their deallocated size by avoiding extra coalescing and splitting, as in allocator
IN-cl, at the cost of a slight increase in external fragmentation, since objects are not

coalesced while on the buffer.
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3.2.2.5 Remote Free-List (I0-r),
Coalescing and Remote Free-List (IO-cr)

Adding a remote free-list to the thread heaps reduces contention. Locks can be removed
from the thread heaps since they are no longer accessed by other threads. Only the remote
free-list needs a lock. A remote free-list may also be added to the global shared-heap to

reduce contention, as described in Section 3.2.1.5.

3.2.3 Object Containers — No Ownership

Using object containers without ownership, means objects are allocated and deallocated
to the containers in the thread’s own thread heap. Using containers can greatly reduce the
amount of memory used to store headers, but may also increase external fragmentation
depending on the containers used, as described in Section 3.1.2. Cache usage is improved
by removing headers from objects, but paging locality may be poor since objects of different

sizes must be placed in different containers.

3.2.3.1 Base Case (CN)

As described in Section 3.1.5, active false-sharing is avoided using containers as an alloca-
tion buffer. However, once a thread heap reaches its threshold of free objects, it passes some
freed objects to the global shared-heap. Depending on which freed objects are transferred,
this may induce active false-sharing. Passive false-sharing can also exist since objects can

be passed among threads in the program, but may not be returned to the initial thread.
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3.2.3.2 Thread-Local Free-List Buffer (CN-I)

Since there are no locks required on thread heaps with no ownership, there is no benefit in

using a thread-local free-list buffer.

3.2.3.3 Remote Free-List (CN-r)

Since there are no locks required on thread heaps with no ownership, there is no benefit in
using a remote free-list. A remote free-list can be added to the global heap in an attempt

to reduce contention, as described in Section 3.2.1.5.

3.2.4 Object Containers — Object Ownership

Using containers with ownership means objects are deallocated to the heap that allocated
them. Object ownership information is stored in the container header, applying to all
objects in the container. In order to change ownership of an object, the entire container
must change ownership. Thus, rather than moving objects between the global heap and

thread heaps, entire containers are passed, reducing contention for the global heap.

3.2.4.1 Base Case (CO)

As in allocator CN, using containers avoids active false-sharing by initially allocating all
objects in a container to the same thread. When a thread heap reaches its threshold of free
objects, it frees a container to the global heap, changing the ownership of the container
and all of its objects. This may cause some active false-sharing to occur, as described
in Section 3.1.2.1. Passive false-sharing is avoided by freeing objects to the owner of the
container.

Additionally, some of the objects in a container transferred to the global heap may still
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be in use by the program. Thus, some free operations may free an object to a container that
is owned by the global heap, increasing contention for the global heap. However, moving
containers between the global shared-heap and a thread heap also reduces contention for
the global heap. Rather than making a request to the global heap for every object a thread
heap needs, the thread heap makes one request and receives a container with several free
objects at once.

Adding restrictions to the movement of containers to require that a container cannot
change ownership unless all of its objects are free eliminates all forms of active false-sharing.
This restriction also avoids the situations where objects may be freed to a container owned
by the global shared-heap, simplifying the global heap and reducing contention for it. This
restriction may increase external fragmentation, since free objects in a container cannot
change ownership, and hence, are not being allocated.

Maintaining free lists within containers makes the movement of containers a fast op-
eration. A container is taken off the thread heap’s list, and moved to the global heap
in constant time. If a free-list is not organized by container, then removing all of the

container’s objects from the thread heap’s free list requires O(n) operations.

3.2.4.2 Thread-Local Free-List Buffer (CO-l)

Adding the thread-local free-list buffer can reduce some of the contention for thread heaps.
When a thread deallocates an object that belongs to a container its thread heap owns,
it can place the object on its private buffer to avoid acquiring a lock. That object can
later be allocated by the thread again without obtaining a lock. If the object is owned
by another thread, it can be placed on the buffer if delayed ownership is used, potentially
causing some passive-false sharing. When the buffer is cleared, locks are obtained to free

the objects to the appropriate thread heaps.
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3.2.4.3 Remote Free-List (CO-r)

A remote free-list can be added to the global heap to reduce contention, as described in
Section 3.2.1.5, and can also be used to remove locks from a thread heap. A remote free-list
may be added to each thread-heap, or to each container, moving the lock from the thread
heap to the container header. A thread deallocating an object from a container that it
does not own, obtains the lock for either the owner thread heap’s remote free-list or the
container’s remote free-list and places the object on the list.

Using remote free-lists on container headers reduces contention for locks, but also in-
creases internal fragmentation since each container header holds a remote free-list. This
approach also avoids a situation in which a remote-free operation chases after a moving
container. A thread deallocating an object it does not own must determine the thread
heap that currently owns the container, but the ownership may change while it is waiting
to obtain a lock for the remote free-list. Using remote free-lists on container, even if the
ownership of the container changes, the remote free-list used to place the object does not

change.

3.3 Summary

This chapter describes several features of a multi-threaded memory-allocator, and the
potential interactions of those features. The next two chapters look at existing allocators

and a set of test allocators that use these features in different combinations.
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Existing Allocators

The previous chapter discusses the features present in multi-threaded memory-allocators.
In order to evaluate how these features perform, both existing allocators and test allocators
are examined. There are several existing allocators that tackle the challenges facing a single
or multi-threaded memory allocator. This chapter gives an overview of existing allocators

that are used to evaluate performance.

4.1 Solaris Malloc

The default allocator on Solaris 8 is used for comparison against other allocators in Chapter
7. Rather than using a sequential-fit allocation algorithm (see Section 2.2.1), it uses a
binary search tree to quickly find appropriate free objects. Splitting and coalescing are
used along with an allocation buffer from the operating system, providing good control
of fragmentation in single-threaded programs. Solaris malloc uses a single lock and a

single heap for all memory allocator operations, which slows down multi-threaded programs

[Nak01].

49
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4.2 Dlmalloc

This single-threaded, single-heap allocator was created by Doug Lea [Lea]. The allocator
uses several techniques to minimizes fragmentation and improve locality. The allocator is
thread-safe, meaning that it can be used by a multi-threaded program. However, a single
lock is used for the entire allocator, making it very inefficient for use by a multi-threaded
program [ANO03] [NakO1].

Dlmalloc is a combination of a sequential-fit and binning allocator. Lists of free memory
are maintained for each bin size, but objects on the list fall into a range of sizes. The lists
are searched for a best-fit, or closest to the requested size, chunk of free memory. Dlmalloc
uses coalescing to merge two free objects next to each other in memory into a single larger
free object. Large objects are allocated and deallocated directly from the operating system
[Leal.

Dlmalloc is not tested in the evaluation presented in Chapter 7 since it does not support

multi-threaded programs. Instead, the default Solaris memory allocator is used.

4.3 Ptmalloc

Ptmalloc is included as the default glibe allocator on Linux (with glibe version 2.3.x) [Fer].
The default Linux allocator is used in the evaluation presented in Chapter 7. It is an
extension of Dlmalloc with the intention of being used by multi-threaded programs [Glo].
Ptmalloc reduces contention for the memory allocator by having multiple heaps, but it is
not exactly per-thread heaps. At each memory operation, a thread first attempts to use
the heap it used previously, and if that heap is in use, then it is assigned another heap that
is not in use at that time of the request. A new heap is created for an allocation when all

other heaps are locked [Fer].
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Ptmalloc enforces object ownership, but since there is no one-to-one relationship be-
tween threads and heaps, an object is owned by the heap where it was allocated. Each heap
is responsible for large chunks of memory, keeping the memory on each heap separate from
memory on other heaps. This approach would eliminate active and passive false sharing if

each thread always used the same heap, but in Ptmalloc that is not guaranteed.

4.4 Hoard Allocator

Hoard is a multi-threaded allocator built using the heap layers framework [BZMO1]. The
heap layers framework is meant to help build memory allocators using layers of function-
ality. The framework provided with version 3.6 is used as the basis for implementing the
different test allocators discussed in Chapter 5. The Hoard allocator uses a binning algo-
rithm, which is also used as the basis for the test allocators. Hoard version 3.6 is used
in the evaluation presented in Chapter 7 and is available at [Ber]. Several changes have
been made to Hoard since the original description provided in [BMBWO00]. Version 3.6 is
described here.

The Hoard allocator includes several of the features described in Section 3.1. It is a CO-1
allocator in Table 3.1 that includes per-thread heaps with a global shared-heap, containers,
an allocation buffer, a thread-local free-list buffer, and delayed object ownership. Its object
containers, called superblocks, are of a fixed size, with all contained objects being the same
size. The superblocks maintain free lists of objects belonging to the superblock [BMBWO00].

Delayed object ownership is enforced. All objects are freed to a thread-local free-
list buffer, allowing for some passive-false sharing. However, when the buffer is cleared, all
objects are freed to the superblock that owns them. Superblock movement is not restricted,

allowing superblocks to move to other thread heaps even while they have objects in use
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by the program, which does allow for some forms of active false-sharing. However, this is
an unlikely occurrence if the heap threshold of free objects is set high enough so that any
containers moved are likely to be completely free.

Hoard employs additional optimizations when using certain thread libraries such as
pthreads. A function in Hoard is called each time a new thread is created, allowing Hoard
to initialize the thread heap, and set a flag indicating the program is multi-threaded.
Using this optimization, atomic operations for locking are only used if a program is multi-
threaded. This optimization can only be used when support is provided by the thread
library.

4.5 Streamflow Allocator

Streamflow [SANO06] is another multi-threaded memory allocator that has been shown
to have better or equal performance to Hoard. The version of Streamflow used in the
evaluation presented in Chapter 7 is available at [SAN]. Streamflow introduces remote
free-lists in order to separate local and remote operations.

Streamflow is a CO-r allocator in Table 3.1 that includes per-thread heaps with a global
shared-heap, object ownership, an allocation buffer, remote free-lists, and containers called
page blocks. Streamflow uses a different implementation than super-containers to have
different container sizes that depend on the size of the objects in the container. Container
headers are located in a BIBOP (big bag of pages), which is a table containing one header
for every page in the virtual-memory address-space. Thus, all objects in a page share a
header and must be the same size. Streamflow also maintains free lists of objects by page
blocks.

Streamflow uses remote-free lists to remove heap locks from both malloc and free op-
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erations, meaning that most allocation and deallocation operations can complete without
acquiring any locks. In addition, Streamflow employs lock-free operations in accessing their

remote-free lists.

4.6 Summary

This chapter discusses a group of existing allocators and the multi-threaded features present
in each. In order to more fully understand the performance of the multi-threaded features,
it is necessary to evaluate additional memory allocators. The next chapter provides a set
of test allocators that are used to identify the effects of different multi-threaded feature

combinations.
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Test Allocators

The previous chapter discusses features present in existing memory allocators. In order
to better comprehend the effects of the different features described in Section 3.1, I im-
plemented a series of test allocators. The first allocator is a basic allocator, and each
subsequent allocator adds one or two features at each step to achieve a full-featured allo-
cator.

The allocators are all built using the Hoard heap layers framework ([BZMO1]), with
some additional heap layers I implemented for specific allocators. The allocators are de-
scribed, along with some implementation details and the benefits and drawbacks from the

previous allocator.

5.1 Allocator A: Base Case

The base-case allocator is a single-heap allocator with one lock around the entire heap.
The heap itself is a binning allocator where object requests are rounded up to a bin size.

The allocator uses the same set of fixed bin-sizes used by the Hoard allocator. The bin

o4
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sizes are closer together for smaller sizes and further apart for larger sizes. A free list is
maintained for each bin size. Using a fixed number of bin sizes also implies a fixed number
of free lists. The free list for the corresponding bin size is quickly checked for a free object
of the correct size. If there are no free objects to reuse, a new object is allocated from an
allocation buffer. The 128 KB allocation buffer is allocated using sbrk.

A simple header is used with only the object size. The largest bin size is 32 KB less the
object-header size. Objects larger than this size are allocated directly using mmap so they
can be returned to the operating system immediately after deallocation. This approach

avoids large amounts of external fragmentation due to infrequent large object requests.

5.2 Allocator B: Add Thread Heaps

The first extension to the base allocator adds per-thread heaps and the base allocator
becomes the global shared-heap. This extension makes allocator B equivalent to the IN
allocator in Table 3.1. The goal of this allocator is to reduce locking and contention.
Operations that can be completed using only the thread heap do not require any locks,
leading to reduced contention over the single-heap allocator. A lock is still required when
allocating from the global shared-heap.

When an allocation request is made, the free list of the thread heap is checked for a
free object of the corresponding bin size. If there are no objects on the list, the global heap
is locked while it checks its free list for the corresponding bin size. If the global heap has
no free objects of that size, it allocates a new one from its allocation buffer, which could
require obtaining a new allocation buffer using sbrk.

When an object is deallocated, it is added to the current thread-heap’s free list. When

a thread-heap’s free list for any bin size holds free objects taking up more space than two
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times the largest bin size (which is 32 KB less the header size), half the objects are freed
to the global heap. Each time a thread heap accumulates more than 64 times the largest
bin size on all its free lists, it clears all its free objects to the global heap. Allocations and
deallocations of large objects are directly handled through calls to mmap, as in allocator A,
without using the global heap.

When a new thread starts, a new thread heap is created for it. When a thread runs to
completion, its thread heap is placed on a list and reused when a new thread starts up in
the future. This reuse implies objects freed by a thread to its thread heap may be reused by
new threads created after the initial thread dies. This design does not affect false sharing
since the original thread is no longer running. However a thread that inherits a thread
heap also inherits the false sharing of the completed thread. Reusing thread heaps may
improve performance if the new thread makes similar allocation requests as the original
thread, since objects are kept on the thread heap rather than being freed to the global
heap.

5.3 Allocator C: Add Object Containers

The next allocator introduces fixed-size object containers with allocation buffers and ho-
mogeneous objects. This allocator is equivalent to the CN allocator in Table 3.1. The
containers are 64 KB in size with the largest bin size fitting at least two objects in a con-
tainer (i.e., 32 KB less the size of the header). The container header consists of the object
size, the start and end of the container, and an allocation buffer. The allocation buffer
points to the next unallocated object in the container’s allocation buffer. These object con-
tainers reduce internal fragmentation at the cost of external fragmentation, and improve

cache usage at the cost of paging locality.
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When an allocation request is made, the thread heap checks the free list of the requested
bin size for a free object. If there are no free objects, then the thread heap attempts to
allocate from the allocation buffer of an appropriate container on its heap. If the allocation
buffer is empty, then the global heap checks its free list. If there are no free objects on
the global heap for the requested size, then a new container with an allocation buffer is
allocated using sbrk and returned to the thread heap from which the object is finally

allocated. Deallocations occur using the same process as allocator B.

5.4 Allocator D: Add Object Ownership

The ownership of objects is added to remove some allocator-induced false-sharing. This
allocator is an implementation of a CO allocator in Table 3.1. In this allocator, objects
are deallocated to the thread heap that owns them, not the thread heap of the thread that
deallocates them. Object ownership leads to contention for thread heaps, requiring locks
to be added, but eliminates passive false-sharing.

A free list is added to container headers so that containers can move easily among
thread heaps and the global shared-heap, and reduce contention for the global heap. The
slight increase in size of the container header to accommodate the free list slightly increases
internal fragmentation.

When an allocation request is made, the thread heap is locked and the free list for the
requested bin size is checked. The free list maintains a list of container headers owned by
this thread heap that have some free objects, either in their allocation buffer or on their
free lists. If there are no free objects on the list, a container is transferred from the global
heap, and an object is allocated from that container.

When an object is deallocated, the object is placed at the head of the free list of
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its container header, and the container is moved to the front of the container list. This
placement allows the next allocation request to receive the last object of that size to be
freed. If all objects in the container are free, the container is moved to a separate list
of completely-free containers. Completely-free containers are only used for an allocation
request when there are no more objects on the main container list. When any free list or
all the free lists on a thread heap cumulatively reach a threshold of free objects, as many
containers as required are transferred to the global heap, beginning with the containers
that are completely free.

The global heap holds lists of containers for each object bin size. When it reaches a
threshold of 128 free containers, up to half of the containers are converted into allocation
buffers that can be used for a new object size. Only completely-free containers can be
converted in this manner. Whenever the global heap has no containers of a requested bin
size on 1its free list, it either reuses one of these containers or obtains a new one using sbrk.

Since the global heap can be the owner of some objects, it must handle requests to free
objects on its heap, adding another source of contention for the global heap. However,
since a thread heap receives a container with several free objects from the global heap,
rather than one individual free object, it makes fewer requests to the global heap for free

objects.

5.5 Allocator E: Add Restricted Container Movement

The goal of this allocator is to remove all forms of allocator-induced false-sharing by com-
bining containers, object ownership and container movement restrictions. Although alloca-
tor E is different from allocator D, it still falls into the category of a CO allocator in Table

3.1. The restriction is that a container can only be moved when the container is completely
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free. Because thread heaps are reused rather than destroyed when a thread heap completes,
this restriction means the global heap can no longer be the owner of any objects in use by
the program, and does not need to handle a free operation for an individual object.
When a thread heap reaches its free-list threshold, only containers on the completely
free list are moved to the global heap. Contention for the global heap is further reduced
by the fact that each time a thread heap receives a container from the global heap, it
has all objects free, further reducing the number of requests a thread heap makes to the
global heap. External fragmentation is slightly increased, however, since free objects on a

partially free container cannot be used by other threads.

5.6 Allocator F1: Add Thread—Local Free—List Buffer

In order to reduce contention for thread heaps, introduced by allocator D, a thread-local
free-list buffer is added. This allocator is equivalent to the CO-1 allocator in Table 3.1. Im-
mediate ownership is enforced in order to avoid all allocator-induced false-sharing. Hence,
the thread-local free-list buffer only holds objects that are owned by the local thread.
The thread-local free-list buffer contains a set of free lists; one for each bin size. When
any free list on the buffer reaches a threshold of two times the container size in bytes, the
buffer is cleared to the thread heap. The operation is O(n) since each free object must be
placed on its own container header’s free list. However, operations that can be completed

using only the buffer can be completed quickly with a simple addition or removal from a

linked list.
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5.7 Allocator F2: Add Remote Free—Lists

This allocator adds remote free-lists that are separated by bin size to thread heaps, making
it equivalent to the CO-r allocator in Table 3.1. The situation described in Section 3.2.4.3
where remote-free operations may chase after a moving container is not a concern because
container movement is restricted. A container can only change ownership if all objects are
free and not on any remote free-list. Placing remote free-lists on thread-heaps rather than
container headers, avoids an increase in internal fragmentation. A remote free-list is also
added to the global heap to reduce contention as described in Section 3.1.4.

Locks that are added to thread heaps in allocator D are moved instead to the remote
free-list. Since there are no locks on thread heaps, a thread-local free-list buffer is unnec-
essary for avoiding locks on local operations. Therefore, allocator F2 builds on allocator
E.

When a thread heap has no objects of the requested bin size on its free list, it clears
all objects on the remote free-list. One object from the remote free-list is allocated to the
program, while the remaining objects are each placed on the free list of their container
headers. The operation is O(n) since each object is freed to its own container header; thus,

allocation time is variable.

5.8 Allocator G: Vary Container Size

Building on allocator F2, allocator G adds the variation of the container size in order to
reduce external fragmentation. A 64 KB super-container is used to hold containers of 1 KB,
4KB, 16 KB, or 64 KB in size. All containers within a super-container are the same size
(although each container may have a different object size that it holds) to simplify finding

the container header. The super-container header simply holds the size of the containers
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within it. Since the super-container header is so small, it is easiest to simply add this piece
of information to each container header. Thus, the first container in the super-container
is used as the super-container header as well. This approach leads to all container headers
being aligned within the super-container by the size of the containers.

To find the container header for an object, the lower two bytes are dropped to find the
super-container header (aligned on 64 KB addresses). Then the size of the containers within
the super-container is used to find the container header. For example, if the containers
in the super-container are 4 KB in size, then the lower 12 bits of the object address are
dropped to find its container header.

The container size is determined based on two factors. First, the smallest container that
fits at least two objects of the requested size is used. Second, the number of requests for
a container of each bin size is recorded, and if this counter has reached a certain number,
then the container size is increased. The slight increase in header size and the increase in

number of containers increases internal fragmentation.

5.9 Allocator H: Add Lock-Free Operations

Lock-free operations, discussed in Section 3.1.6, may improve performance. Adding lock-
free operations to the F2 allocator removes locks from remote free-list insertions and clears
on both thread heaps and the global heap, removing all locks from the allocator. The
drawback to adding lock-free operations is the increase in code complexity and hardware

dependency.
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5.10 Coalescing Allocator

In addition to the multiple non-coalescing test-allocators, I also implemented a single
coalescing allocator, I0-clr (a combination of I0-cl and I0-cr in Table 3.1). This allocator
avoids all forms of false-sharing, and reduces contention through the use of per-thread
heaps and a remote-free list. The thread-local free-list buffer is also used in order to cache
freed objects and reduce some unnecessary coalescing and splitting. The same bin sizes
are used as the other test allocators, with the largest bin size being 64 KB less the header
size. However, a variation of binning is used that allocates objects to the exact requested
size. Fach free list contains objects that range in size from next smallest bin size to the
current bin size.

This allocator uses both headers and trailers each containing the object size, as shown
in Figure 5.1. The object size allows the header to locate the trailer and the trailer to
locate the header, which is necessary when coalescing with objects before and after the
object in memory. The trailer also holds an additional flag to indicate whether the object
is allocated or free. In addition to the object size, when the object is allocated, the header
points to the owner of the object, as shown in Figure 5.1(a). When the object is free, as
in Figure 5.1(b), the header points to the next object on a free list, and the deallocated
storage points to the previous object on a free list.

When an allocation request is made, the thread-local free-list buffer is checked first.
The request size is rounded down to the nearest bin size, and if there are no objects on
that list large enough for the requested size, then the next largest bin’s free list is checked.
If there are no objects on that free list, then the thread heap checks its free-lists.

The thread heap maintains doubly linked lists of free objects. The request size is
rounded down to the nearest bin size and if any object on that free list is large enough, it

is removed from the free list and allocated to the program. If there are no free objects of
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Owner Size |Program Data| Size Allocatedl

(a) Allocated Object

—- -

Next Size Previous Size Free

(b) Free Object

Figure 5.1: Header and Trailer Structure

that bin size, then the first object found on any larger bin size is split. One piece becomes
an object of the requested size, while the remaining piece is placed on the free list for the
appropriate bin size. If there are no free objects large enough in the thread heap, the
remote free-list is cleared. All objects on the remote free-list are freed to the thread heap,
and if any are large enough for the requested object size, it is allocated to the program.
If no free object is large enough, then the thread heap requests an object from the global
heap. The global heap maintains one list of free objects, all 64 KB in size. If the global
heap has no free objects, it allocates one using sbrk with 64 KB alignment.

When an object is deallocated, if it is owned by the current thread, it is placed on
the thread-local free-list buffer. Otherwise, it is placed on the remote-free list of the
owner thread. When the thread-local free-list buffer reaches a threshold of 64 KB of free
objects, all objects are freed to the thread heap. When an object is freed to the thread
heap, it checks the objects immediately before and after it, and coalesces them if they
are on a thread-heap free-list, are owned by the same thread, and belong to the same
64 KB alignment. The free objects being coalesced are removed from their current free
list, coalesced into one free object, and placed on a free list with a bin size based on the

coalesced size. When objects are coalesced into a 64 KB object, the object is freed to the
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global heap.

5.11 Summary

This chapter describes a set of test allocators that each implement a subset of the multi-
threaded features described in Chapter 3. The next chapter considers several single and

multi-threaded benchmarks that are used to evaluate the existing and test allocators.



Chapter 6

Memory Allocator Test Suite

The previous two chapters describe a set of existing allocators and test allocators used in
evaluating multi-threaded memory-allocator features. This chapter describes a test suite

of single and multi-threaded benchmarks used to compare the memory allocators.

6.1 Single-Threaded Benchmarks

There are several single-threaded benchmarks used for comparing memory allocators
[BMBWO00] [BZMO02] [BZMO01] [DDZ93]. This section looks at several of these benchmarks
and their allocation characteristics. Finally, a smaller set of benchmarks is selected for the
evaluation of memory allocators.

In order to characterize the benchmarks, I modified the Hoard allocator to include an
additional layer for collecting statistics. These statistics are independent of the allocator
used. The number of memory allocations and deallocations is recorded and summarized in
Table 6.1. For example, the first row is for benchmark P2C indicating a total of 199,263

allocation requests, a total of 188,058 deallocation requests, a total of 387,321 memory

65
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requests (a sum of both allocations and deallocations), and 5.62% of allocated objects are
not deallocated during the program’s lifetime.

I made a second modification to Hoard to collect timing information, by adding a layer
to mark the time of the first memory operation to the last memory operation, as well as
the total time spent in all memory operations. Although these statistics are dependent on
the memory allocator, they provide a general idea about the behaviour of the program.
Table 6.2 shows the statistics collected from running the benchmark programs with this
allocator. For example, the first row is for benchmark P2C indicating it runs for 780 ms
from its first allocation to its last allocation or deallocation (the last time the allocator has
control), it makes 255,322 allocations and 496,287 calls to the memory allocator (in both
allocations and deallocations) per second (based on its 780,436 us runtime and the number
of operations listed in Table 6.1), it spends a total of 109 ms in the memory allocator,
which is 14% of its total runtime (as measured from the first to last memory operation).

This information gives a general idea of how memory intensive these benchmarks are.
Espresso, CFRAC, GCC, Perl, Gawk and ROBOOP make a large number of memory
requests, while Espresso-2, GMake, Perl-2, Gawk-2, and XPDF-2 make a small number of
memory requests. All programs except GMake and Gawk-2 deallocate nearly all of their
objects. Espresso, CFRAC, GCC, Perl, Gawk, ROBOOP, and Lindsay are long running
programs, while Espresso-2, GMake, Perl-2, and Gawk-2 are short running programs. GS,
Espresso, Espresso-2, CFRAC, CFRAC-2, Perl, Gawk, and ROBOOP make a large number
of allocation/deallocation requests per second and spend a significant portion of their
runtime in memory operations, while GCC, Perl-2, Gawk-2, and Lindsay make a small
number of allocation/deallocation requests per second and spend an insignificant portion
of their runtime in memory operations. The following sections give a brief description of

the benchmark programs.
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Table 6.1: Allocation Statistics
‘ Benchmark H # Allocs ‘ # Deallocs ‘ Memory Ops ‘ % Unfreed ‘

pP2C 199,263 188,058 387,321 5.62

GS 108,546 102,388 210,934 5.67

Espresso 1,675,492 1,675,490 3,350,982 0.00

Espresso-2 24,759 24,757 49,516 0.01

CFRAC 10,890,124 | 10,890,122 21,780,246 0.00

CFRAC-2 227,092 227,090 454,182 0.00

GMake 4,641 2,662 7,303 42.64

GCC 651,919 645,359 1,297,278 1.01

Perl 591,984 590,778 1,182,762 0.20

Perl-2 16,343 15,865 32,208 2.92

Gawk 874,306 873,809 1,748,115 0.06

Gawk-2 3,760 2,953 6,713 21.46

XPDF 227,073 224,471 451,544 1.15

XPDF-2 61,501 58,975 120,476 4.11

ROBOOP 9,268,177 | 9,268,175 18,536,352 0.00

Lindsay 108,790 108,788 217,578 0.00

Table 6.2: Runtime Statistics
Time n
Total Run- | Avg Al- | Avg Mem- | Time in Memory | Memory

Benchmark || time (us) locs/sec ory Ops/sec | Ops (us) Ops (%)
pP2C 780,436 255,323 496,288 109,709 14.1
GS 358,263 302,978 588,768 70,209 19.6
Espresso 3,700,698 452,750 905,500 1,020,538 27.6
Espresso-2 49,898 496,196 992,352 14,432 28.9
CFRAC 20,567,315 529,487 1,058,974 5,443,342 26.5
CFRAC-2 311,489 729,053 1,458,099 118,520 38.1
GMake 16,383 283,282 445,768 2,177 13.3
GCC 15,546,826 41,933 83,443 608,727 3.9
Perl 1,882,696 314,434 628,228 329,622 17.5
Perl-2 102,332 159,706 314,741 10,102 9.9
Gawk 2,602,546 335,943 671,694 529,742 20.4
Gawk-2 42,619 88,224 157,513 2,020 4.7
ROBOOP 14,563,440 636,400 1,272,800 5,295,497 36.4
Lindsay 4,682,409 23,234 46,467 69,283 1.5
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6.1.1 P2C

P2C is a Pascal to C translator. The version provided in Hoard heap layers version 3-4-0

is compiled and run with an input provided by the download (mf.p).

6.1.2 GS

GS is a postscript interpreter and viewer. GS version 2.1 is run with a 422 KB input file,
provided by the Zorn download, and the display turned off, so that it only interprets the
postscript file [DDZ93].

6.1.3 Espresso/Espresso-2

Espresso is an optimizer for programmable logic arrays. Espresso version 2.3 (released
01/31/88) is run with the two inputs that are included in the Hoard heap layers download:
largest.espresso as the first input and Z5XP1l.espresso as the second input. While the
runtime and number of objects increase as the size of the input file increases, the average

calls per second and percent of time spent in memory operations does not change.

6.1.4 CFRAC/CFRAC-2

CFRAC is an implementation of the continued fraction algorithm for factoring large num-
bers. The version provided by the Hoard heap layers download is compiled and run with
two different input numbers: 35 digits longs (41 757 646 344 123 832 613 190 542 166 099
121) and 22 digits long (1 000 000 001 930 000 000 057, which is a product of two primes).
The larger the number, the longer the program runs, but with both inputs, a significant

portion of the program is spent in memory operations.
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6.1.5 GMake

GMake version 3.80 is run with the input provided in the Zorn download [DDZ93]. A
large portion of objects are never deallocated, indicating that most memory operations are

allocation requests.

6.1.6 GCC

GCC version 3.4.2 is run with options to run only the compile step and with second level

optimizations to compile combine.c - the largest file in the GCC source code.

6.1.7 Perl/Perl-2

Perl is a scripting language. It handles all memory management for the script that it
runs. Perl version 5.005_03 for sun4-solaris is run with the two inputs provided in the Zorn
download [DDZ93]. The first script is called adj and formats text based on some inputs for
line length and indentation. The second script, called hosts, transforms a host file from one
format to another. The runtime and number of memory requests varies greatly depending

on the script being run.

6.1.8 Gawk/Gawk-2

Gawk 1s a scripting language like Perl. Gawk version 2.11 is run with the two inputs
provided in the Zorn download [DDZ93]. The first script is a Gawk version of the adj
script used for Perl. The second script, called prog, calculates allocation costs for a memory

simulation. Like Perl, the memory call behaviour varies depending on the script being run.
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6.1.9 XPDF/XPDF-2

XPDF version 3.01 is run twice to open a file that has 13 pages and is about 730 KB. XPDF
is a graphical program, and thus required interaction to run. In the first run, the first 4
pages are flipped through and then the viewer is closed. In the second run, the viewer is
closed as soon as the window opens. The runtime and time spent in memory operations
are irrelevant for this benchmark since it is highly dependent on input from the user, and

hence do not appear in Table 6.2.

6.1.10 ROBOOP

ROBOOP is a robotics simulation toolkit. Version 1.09 is run with the bench executable
provided with the ROBOOP toolkit to benchmark different operations. This benchmark
runs slightly longer than most of the single-threaded benchmarks, makes a large number

of memory requests, and spends a significant portion of its runtime in memory operations.

6.1.11 Lindsay

Lindsay is a hypercube simulation. The version provided with the Hoard download is
compiled and run with the input provided. This benchmark is one of the least memory
intensive benchmarks making a relatively small number of memory requests, and spending

a small portion of its time in memory operations.

6.2 Multi—-Threaded Benchmarks

Several micro-benchmarks have been created for comparing multi-threaded memory allo-

cators [BMBWO00] [SAN06]. This section describes them in detail. Each benchmark has a
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specific memory allocation pattern and number of memory operations.

6.2.1 Recycle

The Recycle benchmark stresses the ability of the allocator to handle different threads
allocating and deallocating independently. There is no interaction among threads. The
number of threads is an input parameter. Each thread allocates 1000, 8-byte objects then
deallocates them in the order they were allocated. The total number of objects allocated
in the program is 107 and is distributed among its threads. Hence, the work performed by

each thread decreases as the number of threads increases.

6.2.2 Consume

Consume is a micro-benchmark that simulates a producer-consumer scenario. Its purpose
is to test for heap blowup in a situation where only one thread allocates objects, and other
threads only deallocate objects. The number of consumer threads is an input parameter.
One producer creates 6000, 8-byte objects for each consumer thread. Once a set of 6000
objects is created, it is given to a consumer to deallocate. This process is repeated 5000
times. No work is done on the objects, so as consumer threads are added the producer

becomes the bottleneck.

6.2.3 False-Sharing Micro—benchmarks

Two micro-benchmarks, Passive-False and Active-False, are used to test for passive and
active false-sharing. Both benchmarks are provided with the Hoard download. The number
of worker threads is an input parameter in each benchmark. In Passive-False, the main

thread creates a number of worker threads, passing to each an 8 byte object it allocated.
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Each worker thread deallocates the object, allocates a new 8 byte object, writes to it
10000 times, and then repeats the process 100000 times divided by the number of threads.
Active-False is the same as Passive-False, except that no initial object is created by the
main thread. The amount of work is constant and distributed over the number of threads.

Therefore, ideally the runtime should scale with the number of threads.

6.2.4 Larson

Larson is a micro-benchmark provided with the Hoard download that simulates the memory
allocation behaviour of a server [LK99]. The benchmark is run for 30 seconds creating
objects of random sizes between 10 and 100 bytes. The number of active threads remains
constant through the life of the program, but is configured as an input parameter. Each
thread is passed an array of 10000 objects. It then randomly selects an object to destroy
and replaces it with a new one, thus maintaining a working set of 10000 objects. Each
thread repeats the deallocation/allocation process 100000 times. Finally, before the thread
terminates it passes its array of 10 000 objects to a new child thread to continue the process.
The number of generations varies depending on the speed of the threads. The throughput

is calculated as the number of allocations that occur per second.

6.3 Trace Collection

The multi-threaded micro-benchmarks are simple programs, and their allocation behaviour
is well understood. To further analyze the allocation patterns of the single-threaded bench-
marks, traces are collected. While statistics give general overall characteristics of the
program, traces can be used to collect information about the patterns of allocations and

deallocations throughout the lifetime of the program.
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To collect the traces, I added a log heap-layer to the Hoard memory allocator written
using heap layers (version 3.4.0). For each malloc and free, a log record is generated
including the size of the malloc and the address of the malloc or free. At the end of a
program, the records are all written out to a file, which reduces the probe effect on the
program. Each entry in the log also contains a time stamp when the operation occurred.

To add a time stamp to the records, several methods for collecting time were considered,
including: getitimer, gettimeofday, gethrvtime/gethrtime, and cpu performance counters
(all performance counters are hardware/software dependent). Each method is considered
for use on a Sparc machine running Solaris. Two requirements were used to select a timing
method: the timer resolution and its ability to measure virtual time. In these programs
it is necessary to have microsecond resolution. A virtual timer that does not count time
during a kernel-thread time slice (when the program is not running) is also necessary to
obtain an accurate measurement. Of the listed options, the cpu performance counters

provide a virtual timer at the required resolution.

6.4 Trace Results

Analysis of the collected traces provide an overall distribution and variation over the life-

time of the program for each of the following pieces of information:
e sizes of requests
e lifetime of objects
e interarrival times of allocations and deallocations

e allocation footprint
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Table 6.3: Size of Requests

Average Total al- Smallest Most  common

object size | located Largest ob- | bin bin size (bytes) -
Benchmark || (bytes) (bytes) ject (bytes) | size(bytes) | frequency (%)
P2C 24.3 4,851,116 8,200 8 24 - 63.0
GS 173.3 18,806,773 20,016 16 296 - 38.4
Espresso 64.0 | 107,184,579 55,072 8 32 -52.1
Espresso-2 43.1 1,068,053 8,200 8 §-41.1
CFRAC 17.7 ] 192,941,761 8,200 16 16 - 60.5
CFRAC-2 14.7 3,338,366 8,200 8 16 - 71.1
GMake 48.5 224,949 8,200 8 8-39.4
GCC 880.5 | 574,031,347 932,052 8 40 - 30.0
Perl 19.8 11,740,395 8,203 8 8 - 64.2
Perl-2 25.7 420,114 8,257 8 24 - 38.1
Gawk 55.9 48,836,034 8,200 8 8 - 28.0
Gawk-2 28.4 106,848 8,200 8 8 -81.5
XPDF 229.0 51,991,393 2,955,168 8 8 - 56.7
XPDF-2 327.1 20,118,022 2,955,168 8 24 - 35.0
ROBOOP 34.7 | 321,322,872 8,200 8 24 - 54.6
Lindsay 67.8 7,373,660 1,490,944 8 56 - 93.0

6.4.1 Sizes of Requests

Some general statistics on allocation sizes are shown in Table 6.3. The bin sizes used are
those used in the Hoard allocator. Half of the benchmarks have a majority of objects
falling under one bin size. For all programs, the most common bin size is quite small.
Figures A.1 and A.2 show the distribution of objects among bin sizes having at least one
percent of objects. Most programs allocate objects in only a few of the smaller bin sizes.
Almost all of the benchmark programs have 75% of their objects falling in one to three
bin sizes. All bin sizes that account for at least one percent of the objects in the program
fall in a small range from the smallest bin size to a bin size less than half a kilobyte. The

single exception 1s GCC, which has several larger objects.
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The allocation sizes over time are shown in Figures A.3 and A.4. To reduce the number
of data points on the graph, several nearby points are condensed into one point, with the
different colours indicating the number of objects condensed into one point.

The allocation behaviour falls into two categories. The first category consists of pro-
grams that are very uniform in the allocation behaviour for the entire program. The second
category consists of programs that have distinct segments with each segment having dif-
ferent allocation patterns. These segments of different behaviour reappear in all graphs
showing allocation characteristics over the runtime of the program. GS, CFRAC, Perl
(both inputs), Gawk (both inputs), and Lindsay fall into the first category. P2C, Espresso
(both inputs, although it is more clear for input 1), GMake, GCC, XPDF, and ROBOOP
fall into the second category.

In P2C, the allocation behaviour changes for two short periods during the program,
while the rest of the time the allocation sizes are quite uniform. Espresso has several
different program segments that behave differently in terms of memory allocation sizes.
GMake and GCC are difficult to categorize because GMake has too few points, and GCC
has too many. However, GMake allocates certain object sizes in the first half of the
program that are different from those in the second half. GCC has a short startup period
in which the allocation behaviour differs from the rest of the program. XPDF has different
allocation patterns for startup, page loading, and shutdown. In the first input, the pages
of the document are flipped, causing a repeat of that segment of the program. ROBOOP

has three different segments of different allocation behaviour.

6.4.2 Lifetimes of Objects

The lifetime of an object is calculated as the difference between the timestamp taken just

after the malloc operation and the timestamp taken just before the free operation. Some
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Table 6.4: Lifetimes

Longest  Life-
Avg  Lifetime | Avg  Lifetime | Shortest Life- | time (freed)

Benchmark || (freed) (us) (all) (us) time(us) (us)
P2C 4,206 30,858 0.2 771,008
GS 67 12,657 0.5 352,524
Espresso 625 630 0.2 3,699,626
Espresso-2 178 183 0.2 48,926
CFRAC 8,339 8,341 0.4 20,566,470
CFRAC-2 772 774 0.4 310,698
GMake 263 4,288 0.9 6,873
GCC 2,622 105,298 0.2 15,524,398
Perl 2,905 6,700 0.5 1,881,408
Perl-2 1,986 4,852 0.6 101,201
Gawk 47 1,511 0.7 2,599,207
Gawk-2 453 8,835 1.1 38,128
XPDF 66,535 104,850 0.5 3,520,422
XPDF-2 53,597 82,725 0.5 826,259
ROBOOP 102 105 0.6 14,562,460
Lindsay 8,804 8,890 3.0 4,682,065

statistics on average, shortest, and longest lifetime are shown in Table 6.4. An object that is
never deallocated has a lifetime from the time it is allocated to the time of the last memory
operation of the program (which is the last measurable point for the logging layer). The
average lifetime of objects is given both for objects that are deallocated (freed) and for all
objects (including ones not freed). The shortest lifetime is less than one microsecond for
most programs. The longest lifetime of an object that is deallocated before the completion
of the program is also shown. In many cases, this is an object that is allocated near the
start of the program, and deallocated just before the end of the program.

Figures A.5 and A.6 show a cumulative distribution of lifetimes of objects. Most objects
live for a very short time. The cumulative distribution of lifetimes indicates that for

almost all programs, at least half of the objects live for less than 100 us. Plotting object
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size relative to the object’s lifetime indicates that most objects are small and have a
short lifetime. Lindsay is the only program to exhibit a very different behaviour in terms
of lifetime distribution. Almost all objects in Lindsay live close to 10000 us. No other
program exhibits such a large and steep spike in lifetime distribution and at a relatively
large lifetime.

For the most part, the lifetime distribution graphs tend to follow one of two patterns.
The first pattern is an S-curve in the cumulative distribution. This pattern indicates a
large portion of objects having similar lifetimes. The programs that follow this pattern are
P2C, GS, Espresso (both inputs), GMake, GCC, XPDF (both inputs) and ROBOOP. GS,
GMake and XPDF are slightly different. Their graphs indicate that a number of objects
also have longer lifetimes. This behaviour is likely the result of a large number of objects
allocated near the start of the program and freed near the end. The second pattern is a set
of steps in the cumulative distribution graphs. This behaviour indicates several popular
object lifetimes. The programs that follow this pattern include CFRAC (both inputs), Perl
(both inputs), Gawk (both inputs) and Lindsay (although it really only has two steps).
Gawk and Perl both have very similar functions, that leads to similar behaviour in lifetime
distributions.

Figures A.7 and A.8 plot the lifetime of objects relative to the time in the program
they are allocated. These graphs show the changes in program behaviour that also appear
in Figures A.3 and A.4 and are noted in Section 6.4.1. Since most objects have very short
lifetimes, it 1s difficult to see detailed patterns in Figures A.7 and A.8. Figure A.9 shows
some of the details in Figures A.7 and A.8 by showing only short-lived objects over a short
period of time for some of the benchmark programs. These figures show that there are at
least two common patterns of repeated behaviour in terms of the lifetimes of objects.

One common pattern, shown in Figures A.9(a) to A.9(e), are dots forming straight
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Table 6.5: Interarrival Times

Average Time (us) Shortest Time (us) Longest Time (us)
Benchmark || All ‘ Alloc ‘ Dealloc || All ‘ Alloc ‘ Dealloc All ‘ Alloc ‘ Dealloc
P2C 2.0 3.9 4.1 0.2 0.4 0.4 3,078 | 3,420 4,178
GS 1.7 3.3 3.5 0.3 0.4 0.5 586 586 622
Espresso 1.1 2.2 2.2 0.2 0.3 0.4 4,019 | 4,022 4,486
Espresso-2 1.0 2.0 2.0 ] 0.2 0.3 0.4 806 839 844
CFRAC 0.9 1.9 1.9 0.2 0.3 0.4 408 | 5,237 413
CFRAC-2 0.7 1.4 1.4 0.2 0.4 0.4 43 724 51
GMake 2.1 3.3 5.7 0.3 0.3 0.4 137 137 273
GCC 12.0 | 23.8 24.1 1 0.2 0.3 0.3 || 106873 | 106924 | 107578
Perl 1.6 3.2 3.2 0.2 0.4 0.4 93 149 232
Perl-2 3.2 6.2 6.4 || 0.2 0.4 0.5 79 91 261
Gawk 1.5 3.0 3.0 || 0.2 0.4 0.4 65 82 384
Gawk-2 6.2 11.1 14.0 || 0.3 0.5 0.5 98 112 1,166
XPDF 7.8 | 15.5 15.7 || 0.2 0.4 0.4 || 141926 | 141931 | 141945
XPDF-2 6.9 134 14.0 || 0.3 0.3 0.4 || 139194 | 139199 | 139215
ROBOOP 0.8 1.6 1.6 || 0.3 0.4 0.4 471 471 113
Lindsay 21.5 | 43.0 4291 1.3 1.3 1.6 7466 7466 2697

lines. When the dots in the line are close together, this indicates objects that are allocated
close together and are also freed close together. When these lines fall at 45 degrees, this
indicates that objects are being allocated over time and then deallocated all at once. When
the line is vertical, the objects are allocated at the same time and then deallocated slowly
over time in reverse order. When the line is horizontal, the objects are allocated together
and deallocated together in the same order.

A second common pattern is a group of repeated lifetimes, which is likely caused by

repeated behaviour in the program such as what might occur in a loop. This pattern is

demonstrated in Figures A.9(d) to A.9(h).
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6.4.3 Interarrival Times of Allocations and Deallocations

The interarrival time is calculated as the amount of time since the previous request. The
interarrival times of all memory requests, allocations, and deallocations are calculated from
the trace logs. The average, shortest, and longest times are shown in Table 6.5. Figures
A.10 and A.11 show a cumulative distribution of the three types of interarrival times. The
interarrival times are all very short, with about 90% of calls being less than 10us apart in
all benchmarks except GCC and Lindsay. There appears to be a relationship between the
interarrival times and object lifetimes, as the cumulative distribution graphs of both are

very similar in shape for these benchmarks programs.

6.4.4 Allocation Footprint

The allocation footprint is calculated by increasing the memory size by the requested size,
each time an object is allocated, and decreasing the memory size by the object size, each
time an object is deallocated. The memory size over the runtime of each program is shown
in Figures A.12 to A.14. The number of allocated objects is also shown as a separate line.
This line indicates whether large increases in the footprint are caused by a large number
of objects being allocated close together, or one large object being allocated. Table 6.6
shows the average and maximum values of these two lines.

There are two types of patterns in the allocation footprint. One pattern is a gradual
increase, the second is a fast increase followed by a plateau and a final drop in the allocation
footprint and number of objects. Programs that do not deallocate all objects do not return
to a zero allocation-area size at the end of the program. The segments of different program

behaviour noted in Section 6.4.1, also appear in the allocation footprint graphs.
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Table 6.6: Allocation Footprint

Chapter 6. Test Suite

Benchmark

Size (bytes)

Number of Objects

Average ‘ Maximum ‘

Average ‘ Maximum

pP2C

GS
Espresso
Espresso-2
CFRAC
CFRAC-2
GMake
GCC

Perl
Perl-2
Gawk
Gawk-2
XPDF
XPDF-2
ROBOOP
Lindsay

275,871
351,001
169,710
23,688
75,784
8,390
44,511
2,609,506
114,888
72,167
38,232
66,555
5,845,536
4,839,299
14,083
1,910,420

406,897
484,049
280,115
42,873
150,036
18,395
62,366
4,830,775
123,694
82,015
38,905
70,956
6,701,879
6,552,307
15,960
1,915,712

7.874
3,823
285
92
4,417
565
1,165
4,415
2,107
778
508
779
6,762
6,152
67
207

12,645
6,197
4,389

691
8,310
1,231
1,987
8,019
2,137

804

551

828
9,609
8,324

117

296

6.5 Benchmark Selection

Since single-threaded benchmarks do not highlight the efficiency of a multi-threaded memory-

allocator, only a small set of single-threaded benchmarks are necessary. The programs

selected are P2C, espresso (input 1), GCC, gawk (input 1), and ROBOOP. The analysis

of the selected benchmarks indicates that they have a wide range of allocation character-

istics, which justifies their use in characterizing the performance of a memory allocator.

The discarded benchmarks have very similar allocation behaviours to the selected bench-

marks or have some other disadvantage. For example, XPDF uses a graphical interface

and depends on user interaction, and some benchmarks have a relatively small number of

memory allocations.
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6.6 Summary

This chapter describes the test suite used to evaluate memory allocator performance. The

next chapter uses this test suite to compare existing allocators and test allocators.



Chapter 7

Memory Allocator Evaluation

The previous chapter describes a set of single and multi-threaded benchmark programs
used to evaluate multi-threaded memory allocators. This chapter analyzes the results of
running the benchmarks with existing allocators and test allocators.

The main goal of a multi-threaded allocator is to allow a well behaved multi-threaded
program to scale in performance as threads are added. If a program is written to scale with
the number of threads, the memory allocator should not be the bottleneck preventing it
from scaling. Scaling can be tested using micro-benchmarks that are written to scale and
stress the memory allocator in different situations. A related measurement is the overall
runtime of the programs. Running single and multi-threaded benchmark programs using
different memory allocators shows the overall effect of the allocator in each context.

Besides the runtime performance of a memory allocator, the amount of memory that it
requires may also be important. Typically, there is a trade-off between runtime performance
and memory usage. Different situations place different priorities on these goals.

Internal and external fragmentation indicates the amount of additional memory re-

quired by a memory allocator. However, these measures are difficult to obtain without
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Table 7.1: Test Setup

Setup | OS Number of CPUs | CPU detail Memory
A Solaris 8 | 8 900 MHz Sparc 16 GB
B Linux 8 2.5 GHz Dual Core AMD Opteron | 16 GB
C Linux 64 1.3 GHz Itanium 2 TA-64 192 GB

modifying the source code of the memory allocator. An indirect way to observe the effect
of the memory allocator on memory usage is to observe the virtual memory and resident-
set size used by the program while it is running. These measures indicate the amount of
memory that is reserved from the operating system and the overall effect of the allocator
on the system in which the program is running.

Table 7.1 describes the three test setups in which the benchmark programs are run.
Setup A and B are used by other users, and hence the benchmarks cannot make full use of
all CPUs. This interference causes a flattening of performance curves at their ends. The
setup C machine had 8 CPUs isolated for the purpose of these tests. Due to the different
architectures, Streamflow only supports setup C. On Setup A, the default allocator is Sun’s
malloc (a single-heap allocator), whereas on Setup B and C, the default allocator is Glibe
(Ptmalloc).

This section looks at these measurements for the existing allocators described in Chap-
ter 4 as well as the test allocators described in Chapter 5 using the benchmark programs

described in Chapter 6.

7.1 Runtime and Scaling

The single-threaded benchmarks are tested for a comparison between single-threaded and
multi-threaded allocators. The multi-threaded benchmarks show how different memory

allocators influence the performance as threads are added to the program. Each micro-
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benchmark is designed to stress a different issue in multi-threaded programs. This section

looks at each benchmark and how the different allocators perform.

7.1.1 Single-Threaded Benchmarks

In order to replace the default allocator for all programs, the new allocator should perform
at least as well as the current default allocator in both single and multi-threaded programs.
All the single-threaded benchmarks have very short runtimes of just a few seconds. Since
the runtime measurement only measures to a precision of milliseconds, only large differences
can be identified. However, the runtime varies very little among allocators. They all

perform equally well to the default Solaris or Linux allocator.

7.1.2 Recycle

The Recycle benchmark stresses the ability of the allocator to handle different threads
working independently. In this situation, per-thread heaps and reduced locking in local
operations result in the best performance, since all operations are local to each thread.
The benchmark is run on all three test setups with the results in runtime and speedup
shown in Figures 7.1 to 7.3. The speedup is calculated as the runtime with one thread
divided by the runtime with n threads.

In setup A, Figure 7.1(b) shows that a single-heap allocator limits the scaling of Recycle.
Both the Solaris default allocator and allocator A degrade the performance of the program
as threads are added. The increased contention for the single heap prevents any parallel
execution in the program. Allocator B removes a great deal of the contention observed in
the Solaris and A allocators by adding per-thread heaps. However, allocator B does not
prevent active false-sharing, which leads to slightly less than perfect scaling. Allocator C

adds containers, which removes most active false-sharing, leading to perfect scaling up to
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six processors. Allocators D and E introduce locks, which increases their runtime by a
constant amount, except in the case of one thread. An optimization in heap locking avoids
atomic operations if the program is single-threaded. For this reason, the single-threaded
case performs slightly better and lowers the calculated scalability for the multi-threaded
cases in allocators D and E. Allocators F1 and F2 use thread-local free-lists and remote
free-lists to remove the need to obtain locks for memory operations in this program, leading
to perfect scaling up to six processors. Allocator G introduces super-containers, which can
reduce performance due to additional complexity, but can also improve performance by
reducing the number of containers. As a result, allocator G has similar performance to F2
on this setup. The lock-free operations in allocator H show no effect on performance. The
coalescing allocator, which has all the benefits of allocators F1 and F2 except that it does
not use container headers, scales perfectly up to six processors. Hoard, being very similar
to F1, also scales perfectly up to six processors.

On setup B, shown in Figure 7.2, locks have less of an influence on performance, so
allocators D and E do fairly well, possibly due to faster atomic instructions on the newer
architecture. Active false-sharing, seen in allocator B, has a significant effect. The default
Linux allocator, Ptmalloc, scales only slightly. Ptmalloc reduces contention by providing
multiple heaps. Although it is expected that each thread should request all of its objects
from one heap, by examining the addresses of the objects allocated, I discovered that
threads are constantly switching heaps throughout the entire run of the program. Thus,
although there is little contention for thread heaps, its scaling ability is limited by active
false-sharing. Although Hoard has very good scaling, it has a slower runtime. After further
investigation, I found the cause to be a difference in calculation in the thread-local free-
list buffer. Hoard rounds up request sizes to at least the size of two pointers. In this

benchmark, all allocations are for 8 bytes, which on a 64-bit machine is smaller than two
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pointers. However, the rounding occurs after the check for objects on the thread-local free-
list buffer, causing objects to be freed to a different bin list than they are requested from.
Hence, in setups B and C, the buffer is not used, causing a slight reduction in runtime
performance, but having no influence on scaling.

Setup C, shown in Figure 7.3 has similar results to setup B. Allocators A and B scale
quite poorly, where active false-sharing occurs. The Linux allocator does fairly well on
this machine. The performance of Recycle using Ptmalloc is highly dependent on the
heap selected for each allocation. By examining the addresses of the objects allocated, I
discovered that threads switch heaps a few times at the start of the program, but then
quickly stabilize so that each thread uses one heap. However, when there are more threads
running, the stabilization takes much longer. Thus, the scaling begins to level off and drops
with six, seven, and eight threads. The new allocator to this test setup, Streamflow, scales

fairly well and its performance is similar to that of other common architecture allocators.

7.1.3 Consume

The Consume benchmark is not expected to scale as the number of threads increases since
the amount of work also increases proportionally. As well, the producer is expected to be-
come the bottleneck as more consumer threads are added. The purpose of this benchmark
is to test for heap blowup in a situation where only one thread allocates objects, and other
threads only deallocate objects. Two features expected to help the performance in this
benchmark are an allocation buffer for the producer thread to allocate from, and a remote
free-list for consumer threads to free to. The impact of these features is limited by the
synchronization in this program.

In this benchmark, each consumer has an array, and in each iteration the producer

thread fills each array with objects. When an array is filled, the consumer begins to
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deallocate the objects in its array. Once the producer has filled all consumer arrays, it
waits for them to all be consumed before moving to the next iteration. If filling the array
takes at least as long as consuming the array, then it is expected that only one consumer
thread runs at a time. If filling the array takes less times than consuming the array, then
multiple consumers may be running at once.

Figures 7.4 and 7.5 show the runtime of running the benchmark with 6000 objects
in each array and 5000 iterations with one producer thread and one to seven consumer
threads. Each data point represents an average of five test runs. The shorter the runtime,
the better the performance. It was observed that the runtime with each allocator varies
significantly for this benchmark on all test setups. The instability in performance is a
result of contention for a shared resource. In all the tested allocators, the consumer threads
contend for a shared resource: the single heap, the global shared heap, or the producer
heap. Because the performance tests provide unstable results, it is impossible to make any
detailed conclusions. Nevertheless, it is possible to make some general statements about
the results.

In general, in allocators A, B and C, the producer thread must obtain each object it
allocates individually, leading to generally poor performance. In allocator A, each object is
obtained from sbrk. In allocator B, each object is obtained from the global heap. Although
allocator C does use an allocation buffer, it prefers to reuse objects from the global heap
before allocating a new allocation buffer. Hence, once there are enough objects in the global
heap, the producer thread requests objects from the global heap rather than allocate a new
allocation buffer. Thus, the producer thread must obtain each individual object from the
global heap.

Allocators D to H all have similar and good linear performance. In these allocators,

the producer thread obtains a container full of free objects from the global heap. Once
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the consumer threads begin to deallocate objects, they are deallocated directly to the
producer thread. Although the remote free-list in allocators F2, G, H, and Streamflow
is expected to improve performance by allowing the producer to run without contending
for locks, it is not always the case. The remote free-list removes locks for most producer
operations. However, by allowing the producer to run faster, more consumer threads run
at one time, causing more contention among consumer threads. In some situations, the
consumer threads become a bottleneck, leaving the producer waiting for the consumer
threads to finish consuming their arrays.

The performance of the coalescing allocator is slightly reduced because all deallocations
are remote frees. In this implementation of the allocator, when the remote free-list is

cleared, the objects are freed directly to the thread heap. This decision means the objects
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are coalesced immediately with nearby objects, and not cached at their deallocated size, as
when they are locally freed to the thread-local free-list buffer. Since all objects in Consume
are the same size, performance is negatively affected by this implementation decision.

Although Hoard is similar to allocator F1, it generally performs slightly worse. Hoard
allows any object to be freed to the thread-local free-list buffer, not just those owned by the
local thread. Thus, a consumer thread using allocator F1 returns each object immediately
to the producer thread, while a consumer thread using Hoard places the object on its
thread-local free-list buffer. Eventually, the free-list buffer reaches its threshold of free
objects and the buffer is cleared. When this happens, each object is individually freed
to the producer’s thread heap, acquiring a lock for each object. Thus, the thread-local
free-list buffer only adds additional complexity in this program.

The default Solaris allocator has fairly poor performance, since all threads contend
for the same heap. The default Linux allocator performs fairly well, since the producer
thread can use another thread heap if its previous one is being used by a consumer thread
to deallocate objects. Having the producer switch heaps allows the producer to avoid
contention, and distributes the deallocations of consumer threads among several heaps,

avoiding some contention.

7.1.4 False-Sharing Benchmarks

The false-sharing benchmarks test an allocator’s ability to handle active and passive false-
sharing. Only one form of active false-sharing is tested, since the number of free objects
never reaches a significant size and objects are never freed to the global heap. The runtime
performance of these benchmarks using different allocators on the different test setups
are shown in Figure 7.6. In all three setups, allocators that avoid false-sharing have very

stable runtime performance and scaling, while those that do not have random spikes of
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slow runtimes due to hardware cache loading.

The first column shows that allocators using containers avoid all cases of active false-
sharing tested by the active-false benchmark. The Linux allocator does exhibit some
performance loss due to active false-sharing; however, it is not as extreme as allocators
A, B, and the Solaris allocator. The effect in the Linux allocator is dependent upon the
selection of a heap to satisfy the allocation request. If a thread allocates from the same
heap most of the time, then it experiences little active false-sharing. Both Hoard and
Streamflow prevent active false-sharing and scale well.

The second column shows that allocators A, B, and C exhibit poor scaling on all test
setups because they allow passive false-sharing to occur. Solaris also scales fairly poorly,
while the Linux allocator scales slightly better. The Linux allocator would prevent passive
false-sharing if each thread always allocated from the same thread heap, but the results
show that this is not the case. Allocators D to H, and Streamflow all prevent passive
false-sharing, and all scale well.

The only anomaly is Hoard, which has poor scaling in passive-false on setup A, but
good scaling in passive-false on setups B and C. Hoard’s delayed ownership should allow
passive false-sharing to occur through the thread-local free-list buffer. However, due to the
rounding of object sizes on Hoard in 64-bit machines, described in Section 7.1.2, objects

in the buffer are not used, eliminating passive false-sharing.

7.1.5 Larson

Larson calculates allocations per second, which should scale with the number of worker
threads. An array is created for each working thread, and filled with objects of random sizes
between 10 and 100 bytes. Each worker thread randomly selects an object to deallocate

from its array and replaces it with a new allocation. Each thread repeats this process
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several times, then creates a new thread to continue working on its array and dies. The
benchmark is run with arrays of 10000 objects and each thread replacing 100000 objects.

There is little contention for thread heaps in Larson, since deallocations are mostly for
objects owned by the current thread, and the remaining few are for objects owned by a
completed thread. Figures 7.7 to 7.9 show the throughput in allocations per second and the
speedup for each test setup. The speedup is calculated as the throughput with n threads
divided by the throughput with one thread. All the allocators scale quite well except for
allocator A, and the default allocators on Solaris and Linux.

Most of the allocators scale well for the following reasons. Each allocated object is
written and read just twice, so false sharing has a minimal impact. Approximately ten
percent of the deallocations are for objects allocated by a thread that is no longer running
(The first 10000 deallocations replace all objects in the array, and the remaining 90 000
deallocations are of objects allocated by the current thread). Since thread heaps and
ownership are inherited in the test allocators, objects that were allocated by a completed
thread become owned by a new active thread. Thus, the remote free-list only helps a little
in the scaling of throughput. Allocators F2, G, H, the coalescing allocator, and Streamflow
all use a remote free-list and all have slightly better scaling.

Since most operations in this benchmark are allocations and local deallocations, the
removal of locks from thread heaps improves performance. Allocators B and C have no
locks on thread heaps because no ownership is enforced, and tend to have very good relative
performance on all test setups. These allocators have the simplest implementation. Since
allocations tend to stay within the local thread, once the thread has obtained enough
objects to satisfy its allocations it simply reuses them without any additional contention
or complexity. Allocator F1 does not require a lock for operations on the thread-local free-

list buffer, which covers most operations in this benchmark. Allocators F2, G, and H all
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avoid locking for local operations with the use of a remote free-list. Thus, only allocators
A, D and E lock local operations, giving them slightly worse performance on all test setups.

Allocators A and Solaris exhibit poor scaling simply because all allocations and deal-
locations are performed on the same heap. The Linux allocator does not scale very well,
even though multiple heaps are used. Each time an allocation request is made, a thread at-
tempts to use its previously used heap; however, when a new thread is created it attempts
to acquire a lock for each heap until it finds one available. Since Larson creates many
new threads, one for every 100000 objects created, the process of establishing a heap for
a thread happens frequently. As was noted in the Recycle benchmark, it can take several
allocations before a thread stabilizes to using a single heap. In this benchmark, there is no

opportunity for this stabilization to occur, reducing performance and limiting throughput.

7.2 Fragmentation

The internal and external fragmentation experienced by a program depends on the allo-
cator, and can only be accurately measured from within the allocator. Hence, the test
allocators are modified to include a logging layer where they record allocation and deallo-
cation requests along with the changes in internal and external fragmentation.

The internal fragmentation is measured as the headers, padding and spacing around
allocated objects, while external fragmentation is all other memory reserved from the
operating system that is not allocated to the program. To determine the internal and
external fragmentation, three measures are recorded in the logs. These measures are:
the allocation request size, the amount of memory used by the allocator to satisfy each
request, and the amount of memory reserved from the operating system through calls to

sbrk and mmap. A running total is calculated to determine the total memory, internal
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fragmentation, and external fragmentation at any time in the program by increasing the
total at each allocation and decreasing the total at each deallocation.

Johnstone and Wilson discuss four different ways to calculate the fragmentation of a
program [JW99]. The first method is to average the fragmentation across all points in time.
The second method is to use the fragmentation at the point in time when the program has
the largest amount of bytes in use. The third method is to count the fragmentation at the
point when the most memory is being held from the operating system. The fourth method
is to measure the difference between the high watermark (the most amount of memory
reserved from the operating system) and the most amount of memory used by the program
[JW99]. Each method of measurement has its drawbacks, but the fourth measure is used
because it avoids extreme measures of fragmentation (i.e. a best or worst case), which may
be misleading.

Fragmentation measurements for the single-threaded and some multi-threaded bench-
marks are collected and discussed in the next sections. Of the multi-threaded benchmarks,
only Recycle and Consume are analyzed. Fragmentation in Larson is not measured since
the number of allocations varies depending on the performance of the program, making it
difficult to compare fragmentation results for different memory allocators. The active-false
and passive-false benchmarks are also left out of this measurement since their purpose is

to test performance, and their memory usage patterns are very simple and uninteresting.

7.2.1 Fragmentation in Single-Threaded Benchmarks

Since the allocators are very similar, the main differences that effect fragmentation are
the type of containers and coalescing. Per-thread heaps do not influence fragmentation,
since the single-threaded benchmarks only require a single heap. Differences in fragmen-

tation caused by ownership and container movement restrictions are not noticeable in
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Figure 7.10: Fragmentation in Single-Threaded Benchmarks

single-threaded programs. Thus, the allocators can be separated into four categories: no
containers, coalescing, fixed-size containers, and different-size containers. The No Con-
tainers category includes allocators A and B, the Coalescing category is the coalescing
allocator, the Fixed-Size Containers category includes allocators C through F2 and H, and
the Different-Size Containers category is allocator G.

Figure 7.10 shows the internal and external fragmentation calculated using the fourth
method of measurement for each of the single-threaded benchmarks for one allocator in each
of the four categories. There is negligible variation in fragmentation among the different
allocators in each category.

As expected, coalescing has more internal fragmentation from than an allocator with
no containers, since more management information is required around each object. How-

ever, coalescing has less external fragmentation than an allocator with no containers, since
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freed objects are more likely to be reused. In P2C, Gawk, and ROBOOP most request
sizes are small and common leading to minimal external fragmentation in an allocator
with no containers. Thus, coalescing does little to reduce external fragmentation in these
benchmarks. Espresso and GCC have more large and unique request sizes, leading to a
significant decrease in external fragmentation when adding coalescing to an allocator with
no containers.

Adding containers has the effect of decreasing internal fragmentation, while increasing
external fragmentation by a significant amount. Using various sized containers does de-
crease external fragmentation, while also increasing internal fragmentation a little, since

there are more containers.

7.2.2 Fragmentation in Multi-Threaded Benchmarks

Both Recycle and Consume are run with a smaller overall number of allocations in order
to obtain manageable logs, while still performing the same function. Recycle is reduced
to allocate a total of 100000 objects, and Consume is run with an array of 600 objects
and for only 500 iterations. The maximum program allocation size in both Recycle and
Consume is quite small. They both allocate and deallocate a large number of small objects,
without ever having a large number of allocated objects at one time. The differences in
fragmentation caused by ownership and container movement restrictions are not noticeable.
Thus, the same categories used in Section 7.2.1 are also used to compare fragmentation in
Recycle and Consume.

Figure 7.11 shows the fragmentation of the four categories in Recycle when run with
one, two, and four threads. As the number of threads increases, the number of objects
allocated at once increases. Since each thread holds the same number of allocated objects

regardless of the number of threads, the number of allocated objects is multiplied by the
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number of threads. As more objects are allocated, the reserved memory on the heap
shrinks, until at some point a more reserved memory is allocated. External fragmentation
decreases as the reserved space shrinks, and increases when it grows. Thus, with more
allocated objects, external fragmentation decreases unless another chunk of reserved space
is allocated. Internal fragmentation is related to the number of objects. As the number of
objects increases, the internal fragmentation increases. However, since nearly all objects
are the same size in this benchmark, the internal fragmentation relative to the number of
allocated objects does not change as the number of objects change.

The number of allocated objects is slightly different each time the benchmark is run due
to non-deterministic timing characteristics, but the difference is very small. As expected,
adding coalescing to an allocator with no containers increases internal fragmentation, but

tends to decrease external fragmentation. The expected benefit of coalescing is very small
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In fact, in some cases,

it appears the external fragmentation is increased slightly, but this is simply due to the

differences in the number of allocated objects at one time.

Object containers decrease internal fragmentation, but at the cost of increasing external

fragmentation. The increase in number of allocated objects only slightly decreases external

fragmentation in the case of fixed-size containers, but makes a much larger difference in the

case of different-size containers. In the case of one thread, the reserved space is increased by

the minimal amount, leaving no potential for improvement with different-size containers.

With more threads, the fixed-size containers require that more containers be allocated

for each new thread, causing more reserved space to be allocated. With different-size

containers, each thread receives a small container that takes up a small portion of the

reserved space, avoiding a request for more reserved memory.
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Figure 7.12 shows the fragmentation of the four categories in Consume when run with
one, two, and four consumer threads. As the number of consumer threads increases, the
number of objects allocated increases. Thus, the internal fragmentation stays close to
the same, while the external fragmentation drops significantly. Adding coalescing to an
allocator with no containers is not expected to provide any savings since nearly all objects
in this benchmark are the same size, but coalescing does decrease external fragmentation
slightly. Object containers decrease internal fragmentation significantly, but also increase
external fragmentation significantly. Using different-sized containers helps to reduce the

increase in external fragmentation.

7.3 Memory Usage

Fragmentation causes the running program to consume more operating system resources.
Two measures that indicate the memory resource usage of the program are virtual memory
size and resident set size. The virtual memory size is the number of pages reserved by the
program, while the resident set size is the number of bytes that have been brought into
main memory. Virtual memory gives an indication of the third method of measuring
fragmentation, which is the fragmentation at the point when the most memory is being
held from the operating system. Although the resident set size is measured, it is highly
dependent on the program and it is difficult to make any conclusions based on this measure.
The top command provides these two measures. Hence, the memory usage can be obtained
for any memory allocator without modifying any source code. This information is collected
for both single and multi-threaded benchmarks by querying the top command at one second

intervals when running a benchmark program and storing the highest recorded measure.
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Figure 7.13: Memory Usage in Single-Threaded Benchmarks

7.3.1 Memory Usage in Single-Threaded Benchmarks

Figure 7.13 shows the virtual memory and resident set size normalized to that in allocator
A. Setup C is nearly identical to setup B, and is therefore not shown. The virtual memory
usage shows that containers increase memory usage. For most benchmarks, using different-
sized containers reduces this increase.

In setup A, the Hoard allocator, in most cases, increases both the virtual memory and
resident set size, which is due to the method of calling mmap in Hoard running on Solaris.
On Solaris, Hoard mmaps a large number of containers at once, and places each of them on
a list. This operation increases both the virtual memory and the resident set size due to
initialization.

The default Solaris and Linux memory allocators generally uses less virtual memory
and have a smaller resident set size, which is due to the method of loading in allocators.
The test allocators are all created as dynamically loadable libraries. Dynamically loading
this additional library increases the memory usage by a small amount (less than 1 MB).

However, since the overall memory usage is quite small, the relative difference caused by
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loading the additional library appears to have a large effect.

The one benchmark that is noticeably different from the rest is GCC. GCC has a very
similar virtual memory usage and resident set size for all allocators. This behaviour is
because GCC allocates several very large objects. Thus, a larger portion of the virtual

memory is always in use by the program.

7.3.2 Memory Usage in Multi-Threaded Benchmarks

Each benchmark is shown with one, two, and four threads run on the different test setups.
Figure 7.14 shows the results from running Recycle, Consume, and Larson. The false-
sharing benchmarks are left out of these graphs since they are intended to test performance,
and do not have interesting memory usage characteristics.

As explained in Section 7.3.1, Hoard has a significantly larger virtual memory and
resident set size for all benchmarks on Solaris. The difference in memory usage among all
other allocators is quite small in setup A. The default Solaris allocator uses less memory,
as explained in Section 7.3.1, because it is not dynamically loading additional libraries.

On setup B, the Linux allocator increases memory usage significantly as the number
of threads are increased in the Recycle and Consume benchmarks, due to a large initial
allocation buffer for each heap. Specifically, each additional heap starts with approximately
64 MB of memory, leading to large increases in virtual memory when using multiple threads.
In Larson, thread heaps grow beyond their initial size, leading to variations in virtual
memory that depend on the objects allocated.

On setup C, the Linux allocator starts the thread heaps at a smaller size, leading to
similar memory usage to other allocators. The Streamflow allocator uses a significant
amount of memory in all benchmarks, which may be caused by a large BIBOP table (see

Section 4.5) on a 64 bit processor. The difference is less significant in Larson where memory
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usage 1s quite high for all allocators.

7.4 Analysis

Running the benchmark programs with existing and test allocators leads to several con-
clusions regarding runtime performance and memory usage. Allocator A is a very basic
memory allocator providing fairly low fragmentation, but poor performance and limited
scaling in all the multi-threaded benchmarks. Allocator B, with its per-thread heaps, in-
creases memory usage slightly on some multi-threaded benchmarks. Although allocator B
improves performance in programs like Recycle where threads work independently, it does
not avoid active and passive false-sharing.

Allocator C introduces containers, improving performance in some multi-threaded pro-
grams by avoiding most active false-sharing. However, containers cause a large increase
in external fragmentation (by an average of approximately 400%), with only a relatively
minor reduction in internal fragmentation. This larger external fragmentation causes up
to a 75% increase in virtual memory usage depending on the program.

Allocators D and E introduce ownership and container-movement restrictions, respec-
tively. These allocators improve performance in some multi-threaded programs by avoid-
ing passive false-sharing in addition to active false-sharing. A consequence of ownership is
locks on thread heaps, which reduce performance and are a source of contention in some
benchmarks. Fragmentation and memory usage remain very similar to allocator C.

Allocator F1 introduces a thread-local free-list buffer to reduce contention for thread
heaps. The buffer also provides additional performance benefits by placing objects on
simple free-lists and avoiding the container-based free-lists. The buffer is most effective

in programs like Larson where there is a mix of local and remote deallocations. Allocator
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F2 uses remote free-lists to reduce contention on thread heaps. The remote free-list is
most effective in programs like Larson, where there are a significant number of remote
deallocations. Allocators F1 and F2 have very similar fragmentation and memory usage
to allocators C, D, and E.

Allocator G uses super-containers to allow different-sized containers. External fragmen-
tation is reduced by at least 50% over fixed-sized containers in most programs. However,
runtime performance suffers slightly in some benchmark programs due to the additional
complexity. External fragmentation remains significantly higher than allocators without
containers, although this translates to a very small increase in virtual memory usage of at
most 10% in the programs tested. Allocator H adds lock-free operations to the remote free-
lists in allocator F2. The lock-free operations provide insignificant performance benefits in
the benchmark programs tested.

The coalescing allocator avoids both active and passive false-sharing by enforcing own-
ership and controlling object movement to the global heap. The thread-local free-list buffer
improves performance in several of the benchmark programs by caching objects at their
allocated size. This effect is made clear by the Consume benchmark in which the remote
free-list bypasses the thread-local free-list buffer when clearing the remote free-list having
a negative impact on performance. Regardless, the coalescing allocator performs relatively
well in all benchmark programs, while providing low fragmentation and memory usage.
External fragmentation is reduced from the basic allocator in all programs, while internal
fragmentation increases by a small amount in some programs.

If a single allocator needs to be selected for all programs, allocator F2 provides a good
compromise between speed, memory usage, and code complexity for both sequential and a
mix of concurrent programs. Table 7.2 shows a summary of how the F2 allocator compares

to the default allocator on each test setup with respect to memory usage and runtime
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Table 7.2: Allocator F2 Compared to the Default Allocator

Runtime Throughput Memory Usage
Test Setup Recycle Larson || Single-Threaded ‘ Consume
A 85% faster | 2627% increase 125% increase 10% increase
B 7% faster | 338% increase 142% increase | 31% reduction
C 2% faster | 655% increase 82% increase 1% increase

performance. The first column indicates the average percent reduction in runtime from
the default allocator when Recycle is run with one to eight threads. The second column
shows the average percent increase in calculated throughput over the default allocator when
running Larson with one to eight threads. The third column shows the average percent
reduction in memory usage from the default allocator from the tested single-threaded
benchmarks. The final column shows the average percent reduction in memory usage
from the default allocator when Consume is run with one, two, and four threads. A faster
runtime and increase in throughput indicates that F2 has better runtime performance than
the default allocator. A reduction in memory usage indicates that F2 has better memory
usage than the default memory allocator.

As an alternative single allocator, the coalescing allocator also performs relatively well
with smaller memory usage. The coalescing allocator is likely to benefit from clearing the
remote free-list to the thread-local free-list buffer, rather than the thread heap. Table 7.3
shows how the coalescing allocator compares to the default allocator on each test setup

with respect to memory usage and runtime performance. The information follows the

format of Table 7.2.
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Table 7.3: Coalescing Allocator Com

pared to the Default Allocator

Runtime Throughput Memory Usage
Test Setup Recycle Larson || Single-Threaded ‘ Consume
A 90% faster | 2897% increase 53% increase 10% increase
B 42% faster | 310% increase 119% increase | 31% reduction
C 22% faster | 682% increase 53% increase 1% increase

7.5 Summary

113

This chapter provides results from comparing different existing allocators and test alloca-

tors. The next chapter summarizes the findings of this thesis and provides some conclu-

sions.
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Conclusions

8.1 Memory—Allocation Challenges

All memory allocators are concerned with providing fast performance while supporting
good locality, limiting fragmentation and preventing heap blowup. Additionally, multi-
threaded memory-allocators must provide mutual exclusion while reducing contention,
avoiding false sharing, and preventing additional forms of potential heap blowup. Several
features are presented as means for addressing the concerns of a multi-threaded memory
allocator. These features include per-thread heaps with a global heap, object ownership,
object containers, allocation buffers, thread-local free-lists, remote free-lists and lock-free
operations. Evaluating the performance of these features can assist in designing a memory

allocator to achieve certain goals.

114
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8.2 Method of Analysis

Several existing allocators are presented along with a description of the multi-threaded
features they employ. In addition to these existing allocators, a set of test allocators are
implemented, each employing a different set of features. Through the use of a test suite
composed of single and multi-threaded benchmark programs, these allocators are analyzed
in order to evaluate the effect of different features.

It is determined that each feature has different effects on the challenges that a memory
allocator can address. Depending on the behaviour of the program, different features can be
applied to the memory allocator in order to achieve different goals of runtime performance,
scaling, and fragmentation. Depending on the needs of a particular program, the best

performance can be achieved through the use of a specific set of features.

8.3 Analysis Results

Any multi-threaded program that is memory-allocation intensive benefits from the use of
multiple heaps to reduce contention. In general, the global heap is essential to maintaining
a balance of free objects among heaps.

Programs in which threads independently allocate and deallocate objects, like Recycle,
gain significant benefits from the use of per-thread heaps to reduce contention. Addition-
ally, active false-sharing avoidance through the use of an allocation buffer greatly improves
performance in these applications. Programs that allocate and deallocate objects within
the same thread do not require the overhead of enforced ownership by the allocator.

Programs in which objects are frequently shared among threads and allocated and
deallocated by different threads gain significant benefits from ownership to avoid passive

false-sharing. Using a remote free-list to avoid locks on thread heaps when enforcing
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ownership greatly improves the performance of the allocator.

Programs that use several objects of the same size in their working set benefit from the
use of containers. In such programs, containers reduce internal fragmentation and improve
cache usage. Programs that use different sized objects in their working set may prefer
to use an allocator with coalescing, where the objects may be placed closer together in
memory. Programs using a large range of object sizes in different working sets can benefit
from using an allocator with different-sized containers. Some external fragmentation can be
avoided by using different-sized containers at the cost of a slight reduction in performance.
Allocators using containers and ownership can also improve performance by placing free
lists of objects on containers.

The thread-local free-list buffer can improve the performance of some allocators by
allowing some objects to be cached and easily accessed by the local thread, which is es-
pecially important in the coalescing allocator. Although remote free-lists have a greater
impact on performance scaling than the thread-local free-list buffer, using the two features
in combination can provide the greatest performance benefit, as observed in the coalescing
allocator. Using lock-free operations may improve performance in certain situations, on
certain machines, but the tests presented did not find any significant differences when using
lock-free operations.

Thus, I recommend the following features for a general-purpose memory-allocator: per-
thread heaps with a global shared-heap, object ownership, object containers (with alloca-
tion buffers, container based free-lists, and restricted container movement), thread-local
free-list buffers, and remote free-lists. This memory allocator demonstrated very good
performance in several multi-threaded programs, improving performance by a factor of
100 in some benchmarks. The cost is an increase in memory usage that is typically less

than 200% in the tested benchmarks. On systems with limited memory, I recommend a
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coalescing allocator with the following features: per-thread heaps with a global shared-
heap, object ownership, thread-local free-list buffers, and remote free-lists. This alternate

allocator provides similar performance benefits with slightly reduced memory usage.

8.4 Future Work

The presented test suite is composed of real single-threaded applications, but only micro-
benchmark multi-threaded programs. In searching for real multi-threaded programs, none
were found to be allocation-intensive. Some multi-threaded programs provide their own
special form of memory allocation within the program. As future work, converting some of
these programs to work with general-purpose memory-allocators, or a further search to find
additional memory-intensive multi-threaded programs may provide interesting analysis of
allocation behaviour in full-featured multi-threaded applications. Such analysis would also
provide insight into the effects of containers on locality and paging in real multi-threaded

prograris.



Appendix A

Trace Graphs

Figures A.1 and A.2 show a distribution of objects among bin sizes. Each graph shows the
portion of objects allocated by the program that fall into each bin size. Figures A.3 to A.4
show the bin size of objects relative to the time in the program when they are allocated.
To reduce the number of data points on the graph, several nearby points are condensed
into one point, with the different colours indicating the number of objects condensed into
one point.

Figures A.5 and A.6 show a cumulative distribution of the lifetime of objects in each
program. Each point in the graph indicates the portion of objects that have a lifetime
equal to or shorter than that time. Figures A.7 and A.8 show the lifetime of objects over
the runtime of the program. Again, to reduce the number of data points on the graph,
several nearby points are condensed into one point, with the different colours indicating
the number of objects condensed into one point. Figure A.9 shows the lifetime of objects
relative to the time they are allocated in the program for only short living objects over a
short period of time, for a select set of programs.

Figures A.10 and A.11 show the cumulative distribution of interarrival times of all
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memory operations, just malloc requests, and just free requests for each program. Each
point in the graph indicates the portion of requests that arrive with equal to or less than
the indicated time from the previous request.

Figures A.12 to A.14 show the allocation footprint over the runtime of the program.
Each point in the graph indicates the amount of dynamic memory in use by the program

at that point in time of the program.
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