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ABSTRACT 
 

Field and modelling investigations of eight failed or removed dams have been undertaken 

to examine the upstream effects of low head dam decommissioning on channel 

morphology.  Failed or decommissioned sites were selected such that no upstream 

interventions or channel mitigation had been applied since the time of decommissioning 

resulting in a physically-based analog consistent with the passive dam removal 

restoration approach.  Field surveys of the sites, which failed between 2 years and 70 

years ago, included longitudinal profiles, cross-sections and bed material pavement 

sampling on each riffle, run, and headcut. 

  

Findings demonstrate that vertical disturbances typically in the form of headcuts 

frequently extend well beyond the backwater limits of most reservoirs.  Although in most 

cases, critical velocity and shear stress thresholds were exceeded, the localized increases 

in friction slope where headcuts occurred demonstrated that the velocities associated with 

larger flows exceeded critical thresholds more often than critical shear stress thresholds.  

Findings show that if the grain size distributions of the underlying alluvial geologic units 

are close to that of critical velocity thresholds, when headcuts are initiated (with their 

resulting increase in friction slope), they can result in continued channel degradation 

upstream of impoundment regions.   
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Notation 
Symbol Unit Description 
   
a [-] sediment rating curve regression fitting parameter 
A [L2] channel cross-sectional area 
A' [-] empirical coefficient 
b [-] sediment rating curve regression fitting parameter 
B [M L-3] soil bulk density 
ds [L] particle size 
di [L] particle size where i denotes percentage finer 
C [-] coefficient of friction 
DA [L2] effective drainage area 
E [M L-2T -1] detachment rate per unit area 
f [-] Darcy-Weisbach friction factor 

FN [M LT-2] force normal to the bed slope 

FO [M LT-2]  fricitonal stress opposing motion 
F [-] Froude number 
g [L T -2] acceleration due to gravity 
G [-] specific gravity of bed material 
h [L] initial drop height of the headcut 
hn [L] normal flow depth  
hu [L] flow depth at the crest of the headcut 
P [M L1T-1]  stream power 
 
 [M T-1]  unit stream power 

QBF [L3 T -1]  bankfull discharge 

Qi [L3 T -1]  observed discharge 

QEFF [L3 T -1]  effective discharge 

QF [L3 T -1]  channel forming discharge 

QSi [M T -1]  sediment transport rate related to discharge Qi 

qs [M L-1T -1]  rate of sediment transport per unit width 
Qs  [L3 T -1]  bed material discharge 
R [L] hydraulic radius 
Rc [L] radius of curvature 
Sf [-] friction slope 
Sv [-] valley slope 
So [-] bed slope 

P̂



 xi

t [T] time interval 
T [L] top width of channel discharge 
Td [T] time for the impingement scour to develop horizontally and 

reach the toe of the vertical face 

Tu [T] 
time for upstream vertical scour to reach the toe of the vertical 
face 

u* [L/T] shear velocity 
V [L T -1] flow velocity 

vm [L T -1] kinematic viscosity of fluid 
W [L] top width of bankfull channel 
x [L] distance along the channel 
y [L] elevation 
Yo [L] constant elevation by which the baselevel is lowered at x = 0 
   
   
Greek   
Λ [L] wetted perimeter 
ξ [-] empirical coefficient 

ρm [M L-3] fluid density (1000kg/m3) 
t* [dimensionless] Shield's parameter 
tC [M L-1T -2]  critical shear strength 
to [M L-1T -2]  shear at the bed 

γs [M L-2T -2]  bulk unit weight of the sediment (2650 kg/m3) 

γw [M L-2T -2]  specific weight of water (9810 kg/m3) 
Ø [-] critical angle of repose  
Ω [-] sinuosity 
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1 INTRODUCTION 
 
Dams have been integral to the advancement of mankind for hundreds of years by 

providing sources of power, water supply, flood control, irrigation, and navigation; 

amongst many other uses.  Correspondingly, the siting and construction of dams have 

segmented the majority of rivers in the Northern Hemisphere resulting in large-scale 

environmental disruption (Dynesius, 1994). The environmental impacts dams can have 

on their surrounding physical and biological environments are well documented (Petts, 

1984; Ligon, 1995; Bednarek, 2001). 

 

In more recent times, the removal of dams has garnered considerable attention; primarily 

related to structures which are no longer fulfilling their primary design purpose.  The 

acceleration in structure removals reflects expiring life expectancies, the desire to restore 

ecological connectivity, and national policies directed at mitigating environmental 

impacts of riverine structures.  Several studies have also been focused on the 

ecological effects, sediment transport responses, and channel adjustments downstream of 

impoundments post removal (Dynesius, 1994; Ligon, 1995; Pansic et al., 1998; Dolye et 

al., 2003; Doyle, 2005; Cui et al., 2005; Ashley, 2006).   

 

In general, dam restoration projects consist of removing the physical barrier and the re-

establishment of a stable channel; floodplain; and sediment continuity within the 

impoundment footprint.  There are two typical approaches to channel recovery which are 

commonly referred to as active and passive restoration.  Active restoration entails the 

design and construction of a river channel to either it’s historical or new stable channel 



 2

morphology and removing the impounded sediments to pre-dam topographic conditions.  

Passive restoration involves channelization through the impoundment sediments via 

initiating erosional processes (i.e. headcuts) at the dam face to form a channel.  Over time 

with the upstream propagation of headcuts, an incised channel forms through the 

impoundment sediments, which, eventually tends toward a state of dynamic morphologic 

stability. The active restoration strategy, however, is notably more costly than the passive 

approach rendering the passive approach to often being the preferred remediation 

alternative. 

 

The passive restoration approach, however, can have several negative impacts to the local 

ecology and river stability if not properly considered and mitigated in the design and 

construction process.  Headcuts initiated at the dam face migrate upstream to achieve 

base level lowering within the impoundment and initially create an incised channel.  The 

scale of the headcuts, and associated incision, is dependent upon the extent of base level 

lowering necessary to achieve channel stability in addition to establishing discharge and 

sediment continuity between the upstream and downstream reaches of the impoundment. 

Incised channels, of which headcuts are a physical identifier, have distinctive 

characteristics which affect the hydraulic, sedimentological and geomorphical processes 

and typically indicate periods of channel instability or disequilibrium (Simon and Darby, 

1999).  An incised channel typically has increased bank heights and enlarged cross-

sections with increased channel discharge capacity relative to a bankfull channel and 

flood plain dominated morphology.  The incised channel morphology results in higher 

shear stresses; velocities; and unit stream power during moderate to high flood flows as 
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the floodplain is rendered inaccessible (Simon, 1998).  Consequently, an excess of 

sediment transport capacity occurs within the incised channel reaches relative to the 

amount of sediment supplied.  This initiates an increased sediment yield within the 

incised channel (i.e. within the reservoir impoundment) to the downstream reaches.  This 

degradational process can affect the impoundment and downstream reaches over several 

years until dynamic channel stability is attained and often results in declines of both  

hydraulic and ecosystem function (Shields et al., 2000; Beechie et al., 2007).  The 

degradational processes can also have socio-economic ramifications resulting from land 

loss, the undercutting of bridges, road crossing or other man made structures.   

 

 It is commonly believed that headcuts and channel incision related to the passive 

restoration approach diminish in size and terminate at the upstream extent of the 

impoundment.  However, depending upon such factors as headcut size, headcut slope, 

local hydraulic grade lines, local geology, geometric characteristics, and flood forming 

flows, headcuts may continue to migrate beyond the upstream limits of the impoundment.  

Therefore, the act of inducing headcuts at the dam face to initiate a passive restoration 

strategy may have upstream effects well beyond the intended limits of the reservoir 

impoundment leading to continued channel degradation. 

 

The purpose of this study is to examine if channel disturbances related to the 

decommissioning of low head dams exist, utilizing the passive restoration approach, 

upstream of reservoir impoundments.  If channel disturbances are found, a secondary 

objective of this work is to provide remediation strategies to mitigate such upstream 
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disturbances.  As there are a limited number of dam restoration projects with sufficient 

time lines to study the effects of upstream channel degradation, an examination of 

channel morphologies and evolutions using the analog of removed or failed dams with no 

upstream interventions to the headcut driven channel formation processes will be studied.  

As channel evolution is dependent upon numerous criteria such as local geology, valley 

slopes, particle sizes and gradations, reservoir sediment levels and channel forming flow 

depths, failed or removed dams will be studied on a broad spectrum of environmental 

factors. 
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2 BACKGROUND 
 
The literature review provided within this thesis is assembled into the following sections: 

• Rationales for dam removal; 

• Methods of dam removal; 

• Geomorphic and hydraulic responses to channelization through reservoir 

impoundments; 

• Tractive force analysis; and 

• Longitudinal channel evolution responses to dam removal. 

 

2.1 Rationales for Dam Removal 
 
Pohl [2002] compiled a database of dams within the U.S.A. and analyzed both spatial and 

temporal trends in dam removal strategies.  Pohl found that dam removal initiatives were 

strongly related geographically to ecological values and funding opportunities for the 

dismantling of structures.   Four principle motivations were identified: environmental 

initiatives to re-establish riparian corridor connectivity, dam safety, economics, and dam 

failures.  Pohl [2002] also identified an escalation of dam removals in the 1990s, as 

illustrated in Figure 1, for environmental reasons due to social and environmental policy 

changes. 
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Figure 1.  Rationales for dam removals in the U.S.A. (modified from Pohl, 2002). 

A study was conducted by the American Association of State Highway and 

Transportation Officials [2005] to summarize existing research on low head dam removal 

projects.  They found that the majority of removals that have occurred in the United 

States are not accompanied by environmental impact studies, even though it was found 

that the primary rational behind dam removal is related to ecological benefit.  Of 129 

agencies surveyed, 50 responses were received.  Results of the study concluded: 

• Dam removals were relatively uncommon before the 1980s but have escalated 

significantly in the 21st century. The recent acceleration of dam removals 

reflects problems associated with aging structures, growing interest in 

restoring rivers and fish passage, new funding opportunities to support dam 

removal, and national policies aimed at improving the safety of aging 

structures and mitigating the environmental impacts of these structures. 

• The three most common reasons for dam removals in order of frequency were: 

ecology, economics, and safety.  
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• Most of the dams removed have a structural height smaller than six meters. 

This is in agreement with observations made by the Heinz Center [2002].  The 

majority of low head dams (79%) were completely removed with the 

remaining structures either being breached or partially removed.  Further, the 

study found that the deconstruction cost typically accounted for approximately 

50% of the total removal cost, where the remaining costs were related to 

sediment management, stream channel restoration and monitoring. 

 

Public reaction to dam removal is often quite varied.  Commonly, a portion of the public 

opposes removal based upon issues such as loss of recreation opportunities, reduced 

access to aquatic environments, alteration of aesthetic parameters, private land owner 

concerns, loss of cultural or historic values, and costs related to removal.  In contrast, 

support is often found for environmental enhancements to water quality and fish 

migration, along with residents and government agencies concerned with dam safety, 

liability and litigation (Canadian Dam Association, 2005).   

 

2.2 Methods of Dam Removal 

Standard methods and/or generic guidelines do not exist for the removal of dams and 

reservoir restorations; similar to the state of the science for river restoration (Copeland et 

al., 2000).  In order to achieve the desired effects from dam removal; be it related to 

environmental restoration, minimizing public health and safety risks, reducing liability, 

or minimizing maintenance costs to dam owners, dam removal is highly site specific and 
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techniques must vary to suit the socio-economic, local ecological and geomorphologic 

conditions.   

 

Socio-economic considerations include the funding sources for dam removal, the 

impending risk and liability of dam failure, public support or protests, public safety, 

functionality, and ownership.  Ecological aspects consider changes in: flow regime; water 

temperature; sediment and pollutant releases and super-saturations; aquatic habitats; and 

the migration of fish and other aquatic organisms.  The geomophological implications 

include: downstream sedimentation and upstream erosion; channelization through the 

impoundment; bank stability; lateral and transverse channel adjustment and degradation; 

and attaining a natural channel in a state of quasi-equilibrium for the given surrounding 

geology and valley slopes.   

 

Although many of the socio-economic, ecological and geomorphological considerations 

overlap in a dam removal project, they are seldom congruent (Bednarek, 2001).  The 

Heinz Center [2002] developed a systematic approach to assess the feasibility of a dam 

removal.  This approach establishes goals, identifies major issues of concern and assesses 

potential outcomes of the river ecology and morphology as outlined in Figure 2. 
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Step 1: Define goals and objectives

For keeping dam:
Water supply
Irrigation
Flood control
Hydroelectric power
Navigation
Flat-water recreation
Waste disposal

For removing dam:
Safety & security 
considerations
Legal & liability concerns
Recreation
Site restoration
Ecosystem restoration
Water quality

Step 2: Identify major issues of concern

Safety & Security

Social

Environment

Economic

Legal

Management

Step 3: Collect and assess data

Physical Biological Legal Social Economic

Step 4: Decision making

Leave in place Remove

Step 5: Dam Removal

Step 6: Data collection, assessment, and 
monitoring  

Figure 2.  Proposed systematic approach for dam removal decision making  

(after Heinz Center, 2002). 

 

2.2.1 Removal Alternatives of the Physical Barrier 

There are several common methods for removing the physical structure of a dam, 

whether it is a series of notched or staged reductions of the spillway crest as part of a 

gradual dam removal (Figure 3), using controlled explosives or heavy machinery for 

immediate removal, or the simple removal of gates or stop logs.   An alternative to 
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removing the physical barrier is to divert the river around the dam completely if sufficient 

land is available. 

Stage I. Pre-removal Stage II. Dewatering stage

Stage III. Initial channel 
incision

Stage IV - n. Stages removed 
until complete

Underlying geologic unit

Impacted Sediment

 

Figure 3.  Dam removal using staged reduction. 

 
Removals can also be limited to partial removal or dam breaches if complete removal is 

deemed not to be the preferred option.  In these scenarios, the majority of the physical 

structure is left intact, and either a vertical notch is cut through the entire height of the 

dam face (typically consistent with the downstream bankfull channel width) or the height 

of the spillway is reduced to the upstream height of the deposited sediments.  Partial 

removal is often considered a preferred restoration alternative to avoid the costs of full 

removal, to stabilize upstream reservoir sediments (particularly if contaminated sediment 

concerns exist), and to retain some structure for historic or cultural purposes. 
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2.2.2 Impoundment Composition and Remediation Considerations 

Dams affect the transport of both sediment and organic material.  Upon construction of a 

dam, channel velocities decrease approaching the dam face, the gradually varied flow 

profile depicts an M1 profile for a mildly sloping channel, and a reduction in sediment 

transport capacity results.  Sediments entering a reservoir commonly deposit throughout 

its full length, both raising the bed elevation and reducing the channel bed slope over 

time as sediment transport from upstream reaches continues.  Sediments within a 

reservoir are mainly comprised of fine silt and sand near the dam face, transported by 

density currents, while coarser material often settles closer to the inflow of the reservoir 

(Julien, 1995; Kondolf, 1997) often forming small deltas.  In some cases impoundments 

completely fill with sediment, rendering the primary function of the dam (water 

retention) ineffective.  Figure 4 depicts a typical reservoir sedimentation pattern. 

 

Figure 4.  Typical reservoir sedimentation pattern (modified from Julien, 1995). 

 

A notable concern of most dam removals is the fate of sediments and pollutants stored 

within the reservoir impoundment.  Rapid flushing of fine sediments and mobilization of 

 

Fine Sediments 

Coarse Sediments 

Sediment Distribution 
Velocity Distribution 



 12

potential pollutants accumulated from the impoundment region upstream of the dam face 

to downstream channel reaches may cause considerable channel aggradation and have 

severe ecological and water quality effects (Wohl, 2000).  Cheng and Granata [2004] also 

identifies that the downstream release of sediments can have prohibitive effects upon 

infrastructure and water intakes.  

 

A primary objective of dam restoration is to minimize sedimentation to downstream 

reaches.  This is commonly achieved within the impoundment region by developing a 

dynamically stable channel and floodplain using one of two general methods.  The first 

method considers the construction of a channel and floodplain within the impoundment 

region consistent with the historical topography and / or stable upstream morphology by 

excavating a channel and the preponderance of the sediments to the pre-dam conditions.  

This is referred to as the active channel recovery method (Stanley and Doyle, 2002; Selle 

et al., 2007).  The active channel recovery method typically requires sizable 

investigations (both spatially and temporally), engineered designs, and often significant 

disposal fees for contaminated sediments and construction costs that often render this 

alternative financially prohibitive. 

 

An alternative approach, commonly referred to as the passive channel recovery method 

(Stanley and Doyle, 2002; Selle et al., 2007) does not require the removal of the entire 

structure or impounded sediments.   This approach entails channelization through the 

impoundment sediments while leaving the majority of deposited material in place, and 

allows a channel to evolve to a state of quasi-equilibrium (Leopold et al., 1964) with 
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time.  Although a channel can be constructed through the impoundment sediments using 

natural channel design techniques, the passive method typically subscribes to the 

initiation of headcuts at the dam face (via notches in the dam face) resulting in a channel 

evolving through the impoundment sediment with time tending towards a state of quasi-

equilibrium.  This approach utilizes little, if any, mechanical means of channel 

construction and relies solely upon the migration of a headcut or headcuts to recreate the 

channel and associated floodplains.  In turn, the dispositions of impounded sediments rely 

solely on downstream conveyance and depositional patterns (Selle et al., 2007).  If the 

rate and volumes of downstream sedimentation can be controlled while meeting the 

remaining objectives of the project, the passive approach garners considerable interest as 

a cost effective remediation alternative.  

 

2.3 Upstream Geomorphic and Hydraulic Responses Following 

Passive Dam Removal 

 
The focus of the discussion herein will consist of the upstream hydraulic, 

sedimentological and geomorphological outcomes of passive impoundment 

channelization initiated by headcut migration.  Headcuts are initiated from an abrupt 

change in channel invert caused by either aggradation within the impoundment, 

illustrated in Figure 5c, degradation below the dam (Figure 5b), or a combination of the 

two (Figure 5a). 
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Figure 5.  Three scenarios founding abrupt change in channel invert following dam removal. 

 
Doyle et al. [2003] identified that passive dam removals with impoundments principally 

composed of fine sediments are geomorphically analogous to that of alluvial channels 

responding to base level lowering, specifically alluvial channel incision.  Researchers in 

the fields of fluvial hydraulics and geomorphology have long observed and studied 

spatial and temporal channel adjustments in response to disturbances such as base level 

lowing (Schumm, 1969; Emerson, 1971; Simon and Darby, 1999).  Channels responding 

to such perturbations tend to follow a series of generalized geomorphic responses related 

to discharge and sediment continuity, geotechnical stability and geomorphic processes.  

The series of channel adjustments are commonly referred to as the channel evolution 

model (CEM) (Schumm et al., 1984).  Doyle et al. [2002] modified the CEM to depict the 

geomorphic responses which are consistent with the channel evolution upstream of a dam 
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where base level lowering has been instigated by the development of a headcut at the 

dam face (Figure 6).  As illustrated in Figure 6b, channel evolution propagates upstream 

in response to base level lowering at the dam face.  Several morphologic features such as 

headcuts and knickpoints (smaller scale versions of headcuts) are observed along the 

longitudinal profile which indicates continued vertical instability and degradation in the 

channel profile.   
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Equilibrium

Reservoir Sediments

Aggraded Material

Dam Location

Plunge Pool

Stage II
Stage I

Stage III Stage IV Stage V

Aggradational Zone

Aggraded Material

Reservoir Sediment

Stage II Stage III

Headcuts

a)

b)

Stage I.  Pre-Removal
Stage II.  Degradation 

from Headcut Migration 
Stage III.  Degradation 

and Widening

Stage IV.  Aggradation and 
Widening 

Stage V.  Quasi-
Equilibrium

Reservoir Sediments

Aggraded Material

Dam Location

Plunge Pool

Stage II
Stage I

Stage III Stage IV Stage V

Aggradational Zone

Aggraded Material

Reservoir Sediment

Stage II Stage III

Headcuts

a)

b)

 

Figure 6.  a) Cross-sectional and b) longitudinal upstream evolution of channel morphology through 
a reservoir following dam removal (modified from Doyle et al., 2002). 

 
Rapid longitudinal channel degradation ensues as the headcut or headcuts migrate 

through the impoundment (Stage II), while the wetted perimeter of the cross-section 

upstream of the advancing headcut remains largely undisturbed maintaining a Stage I 
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channel morphology (Doyle et al., 2003).  The Stage I channel morphology is 

characterized by a bankfull channel with an associated floodplain that is commonly either 

a riffle-pool or step-pool dominated morphology.  Continued channel degradation begins 

to decrease the channel gradient (by increasing sinuosity) resulting in increased bank 

heights and steeper channel side slopes.  This continued geomorphic response leads to 

channel widening by mass-wasting and bank failure (Stage III) once bank heights and 

angles exceed their critical angles of repose and critical shear stress thresholds (Simon 

and Darby, 1999).  As channel degradation continues to migrate further upstream, the 

reaches closer to the dam face begin to aggrade (Stage IV) resultant from elevated 

sediment loads from upstream reaches where Stage III is occurring.  The evolution of 

Stage V continues to experience aggradation, reductions in channel slope and decreasing 

bank height, and channel side slope angles by meander extension (Simon and Darby, 

1999).  Over time, a new dynamic equilibrium channel and floodplain develops in Stage 

V which is similar in cross-sectional profile to Stage I but at a lower base elevation.   

 

The geomorphic response throughout the stages of the CEM is often expressed using 

Lane’s stream power proportionality (Lane, 1955): 

[ 1 ] 

 

where QF is the channel forming discharge [L3 T-1], So is the bed slope [-], Qs is the bed 

material discharge [L3 T-1], di is the characteristic particle size [L], and γW [M L-2T-2] and 

γS [M L-2T-2] are the specific weights of water and sediment respectively.  The initial 

disturbance is caused by the localized increase in bed slope at the headcut causing an 

isSoFw dQSQ γγ ∝
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increase in the sediment discharge and permissible particle size.  This describes the 

evolution from the first to the second stage of channel evolution.  In each subsequent 

stage, an imbalance is present causing corresponding shifts in the other variables 

expressed in Equation 1.  As the channel tends towards a more stable state, such that a 

new dynamic equilibrium is attained in Stage V, a new balance is attained in Equation 1 

which has adjusted to the surrounding topographic, geologic and hydraulic environment.  

Differences exist in the sediment routing and carrying capacity characteristics within 

each stage of the channel evolution sequence which is strongly related to bank heights 

and access to the adjacent floodplain.  Flows that frequently overtop their banks onto 

floodplains (Stages I and V) maintain lower in-channel velocities and shear stresses 

relative to the incised channel reaches where there is limited access to the floodplain 

(Stages II, III, IV).  Figure 7 illustrates the resulting average velocities for increasing 

discharge for the five different stages of channel evolution.   In Stage II where vertical 

incision occurs, there is limited access to the adjacent floodplain and higher flows are 

contained within the limits of the channel.  As a result, velocities continue to increase 

with increasing discharge.  In Stages III and IV where channel widening ensues, the 

range in discharge may still be contained within the channel cross-section with no access 

to the floodplain; however, with the increasing cross-sectional area, velocities begin to 

decrease relative to Stage II. Points of inflection in Stages I, IV and V indicate flow 

conditions where floodplain access is achieved.  A similar response is observed for 

average channel shear stress whereby the hydraulic radius increases more dramatically in 

Stages II, III and IV relative to Stages I and V.  In the stages of channel evolution where 

velocities and shear stresses increase, there is an increased tendency for channel 
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degradation to occur for the reason that velocity and shear stress thresholds may be 

exceeded relative to the bed material sizes and cohesiveness required to maintain channel 

bed and bank stability. 
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Figure 7.  Average channel velocity profiles for increasing discharge within each stage of the channel 
evolution model suggested by Doyle et al., 2002.  QBF, Q2, Q20, Q50, Q100 values represent the bankfull, 

2-year, 20-year, 50-year, and 100-year discharge frequency magnitudes respectively. 

 
Inherent within Figure 7 is the observation that where inflections occur in the velocity 

profiles (and in the corresponding shear stress profiles), there are particular discharges 

that dominate the rate of channel evolution known as the channel forming discharge (QF).  

The channel forming discharge is defined as the theoretical discharge, if maintained 

indefinitely, that would produce the same channel geometry as the natural long-term 

hydrograph (Copeland et al., 2000).  This discharge is significant as many researchers 

and practitioners use this single representative discharge to determine the stable channel 
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geometry (Copeland et al., 2000).  In channel Stages I and V, bankfull discharge (QBF) 

[L3 T-1] dominates the channel evolution which is defined as the discharge, over a long 

period of time that defines the dynamically-stable equilibrium channel (Leopold et al., 

1964).  In floodplain dominated stream morphologies, this stage is commensurate with 

the top of the bank just prior to flows entering the flood plain, thus QBF = QF.   The 

recurrence interval or frequency of flows that overtop the banks in the unstable sections 

(Stages II – IV) is often much greater than the recurrence interval of bankfull discharge 

associated with the stable sections and occurs too infrequently to define the channel form.  

In these channel morphologies, effective discharge QEFF [L3 T-1] dominates the evolution 

of the channel evolution (i.e. QF = QEFF).  Effective discharge is defined as the discharge, 

or range of discharges, that transports the largest proportion of annual sediment loads 

over the long period of time (Wolman and Miller, 1960).  A graphical representation of 

the bed material load histogram, as a function of sediment transport and frequency of the 

transport used to define effective discharge, after Biedenharn and Copeland [2000], is 

illustrated in Figure 8. 
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Figure 8.  Derivation of total sediment load surcharge curve to predict effective discharge (modified 
from Biedenharn and Copeland, 2000). 

 
Determining the effective discharge is a theoretical calculation which cannot be field 

validated.  Effective discharge is typically determined by performing a partial duration 

series analysis on a sufficiently long time series (typically greater than 42 years of record) 

to determine the flow frequency distribution.  After both the partial (pdf) and cumulative 

(cdf) distribution frequencies have been determined, the sediment pdf and cdf are 

calculated by use of a rating curve typically in the form of: 

[ 2 ] 

 

where QSi [M T-1] is the sediment transport rate related to discharge observed (Qi) [L3 T-1]  

and a and b are sediment rating curve regression fitting parameters.  The sediment pdf is 

plotted as a function of discharge, and the local maxima of the resulting histogram is 

b
iSi aQQ =
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defined as the effective discharge (QEFF) as illustrated in Figure 8.  It should be noted that 

in channel evolution stages I and V QF = QBF = QEFF.  

 

2.3.1 Modes of Headcut Migration 

Vertical channel migration, either in the form of degradation or aggradation, is 

determined with respect to the channel thalweg.  Brush and Wolman [1960] assert that 

the shear forces acting along the channel boundary is the primary factor causing vertical 

erosion, consequential to surpassing the critical shear strength (τC) [M L-1T-2] of the 

channel bed composition.  The rate of sediment transport per unit width of channel qs [M 

L-1T-1] is a function of shear stress along the channel bed defined by: 

             [ 3 ] 

 
where t0 [M L-1T-2] is the shear at the channel bed boundary defined by: 

[ 4 ] 

 
where R [L] is the hydraulic radius of the channel defined by R = A/ Λ where A [L2] and 

Λ [L] are the channel cross-sectional area and wetted perimeter respectively of the 

submerged cross-section.  Sf [-] is the friction slope for the conditions of gradually varied 

flow.   

 

Headcutting caused by base level lowering creates a localized change in friction slope 

(Sf) which often leads to the bed shear exceeding the critical bed shear threshold τC [M L-

1T-2] such that τ0 > τC.  Under these conditions, a headcut will migrate upstream.  

According to Leopold et al. [1964], there are two modes that headcut migration may be 

)( 0τfqs =

fwo RSγτ =
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predisposed to follow: migration of a vertical headcut where the vertical form is 

maintained in an upstream propagation; or migration of an initially vertical headcut that 

flattens along its migration path until eliminated.  Factors that determine the migration 

mode are characteristics of the bed material sediments and the hydraulic properties of the 

channel cross-section.  The importance of the bed material properties, including the 

cohesiveness of underlying layers on the mode of headcut migration, is illustrated in 

Figure 9 as offered by Brush and Wolman [1960].   

Original profile

Profile after time

Resistant bed material

Nonresistant bed material

A B C

D

 

Figure 9.  The influence of various combinations of resistant and nonresistant bed material on 
headcut migration (modified from Bush and Wolman, 1960). 

 

Brush and Wolman [1960] observed that the behavior of a headcut or knickpoint 

migration is governed by the discharge regime of the river and composition of the bed 

and bank materials.  As illustrated in Figure 9, profile A is applicable to homogeneous 

materials such as those found in large alluvial valleys.  This profile eventually attains the 

average channel slope as the headcut migrates upstream and diminishes in size and extent 

over time.  Profile B includes a resistant stratum located below the nonresistant surface 

bed material that is exposed at the oversteepened reach.   This profile, over time, typically 
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maintains a headcut or knickpoint profile and has a relatively slow rate of upstream 

channel retreat.  Profile C, is similar to that of profile B with the exception that the 

upstream resistant bed material overlies a more erodible underlying unit.  Similar to 

profile B, the headcut shape of profile C remains relatively intact.  The rate of upstream 

channel migration of profile C is dependent upon the rate of erosion of the underlying 

upstream layer, related to toe scour, causing the overriding layer to cantilever and fail.    

Lastly, profile D is a variant of the three preceding profiles.  The channel response may 

behave similar to that of profile A if the resistant layer is located below the vertical centre 

of the over-steepened reach and the resulting channel bed slope is sufficiently shallow 

such that τ0 < τC.  Conversely, if the resistant layer is positioned above the centre of the 

over-steepened reach, the profile of the headcut and the localized channel bed slope may 

remain and continue to migrate upstream if the localized friction slope remains 

sufficiently large such that τ0 > τC along the channel thalweg. 

 

Begin et al. [1980] numerically evaluated upstream headcut migration for the two general 

profiles of sustained headcut migration and flattening with upstream channel distance.  

Their work was based upon the assumptions of sediment continuity between upstream 

and downstream reaches with no localized sediment sinks or sources from lateral inflows.  

The equation used by Begin et al. [1980] which retains its over-steepened profile was 

defined as: 

[ 5 ] 

 

where x [L] is the distance along the channel (positive in the upstream where x = 0 at the 

outlet), t [T] is the time interval, h [L] is the height of the headcut as illustrated in Figure 

h
q

dt
dx

s

ds

γ
=
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10, qSd and qSU are the unit sediment discharges of the downstream and upstream reaches 

respectively relative to the location of the headcut where qS and γS have been previously 

defined.  

α

h
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Bed at t2

x1

x2

qsd

qsu

 

Figure 10.  The physical parameterization of a of a headcut profile (modified from Begin et al., 1980). 

 
For the headcut flattening scenario, Begin et al. [1980] also provide equations for 

predicting the rate of vertical degradation [Equation 6] and maximum upstream 

degradation [Equation 7] as defined by: 

[ 6 ] 

 

 

[ 7 ] 

 

respectively where Yo [L] is a constant elevation by which the baselevel is lowered at x = 

0, and k is defined as:  

[ 8 ] 
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where f [-] is the Darcy-Weisbach friction factor, g [L T-2] is the acceleration due to 

gravity, and C [-] is the coefficient of friction, and all other terms have been previously 

been defined. 

 

Stein and Julien [1993] studied the migration of headcuts similar to those considered by 

Begin et al. [1980]; however, in this study they considered stepped headcuts that retain 

their vertical faces or rotating headcuts that flatten along migration   They characterized 

the type of headcut, based upon the relative erosion rates in the accelerated region at the 

face of the headcut and along the impingement region (defined as the effected reaches 

both immediately upstream and downstream of the headcut).  They defined TU [T] as the 

time for upstream vertical scour to reach the toe of the vertical face of the headcut, as 

illustrated in Figure 15, and Td [T] as the  downstream timescale for the impingement 

scour to develop horizontally and reach the toe of the vertical face of the headcut.  

Further, Stein and Julien [1993] defined that the headcuts are maintained if TU > Td, and 

rotating headcuts when Td < TU. 
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Figure 11.  Modes of headcut migration for a) rotating headcuts and b) stepped headcuts (modified 
from Stein and Julien, 1993). 

 
In further works by Stein and Julien [1993], they studied headcut migration employing 

sediment detachment theory to determine erosion time and length scales when the 

primary control of headcut migration is based upon bed material grain size 

characteristics.  Their approach was consistent with that offered by Foster and Meyer 

[1975] who applied critical shear stress criteria to determine the detachment rate of 

sediment particles per unit area E [M L-2T-1] defined as:  

[ 9 ] 

 

 
where k and ξ are empirical coefficients.  The Stein and Julien [1993] headcut migration 

mode equation is expressed by: 

 

[ 10 ] 
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where subscripts u and d denote upstream and downstream reaches relative to the 

location of the headcut, A’ is an empirical coefficient, and B [M L-3] is soil bulk density.  

Stein and Julien [1993] identified that if the ratio of Tu / Td > 1, downstream erosion is 

dominant over upstream erosion and a headcut retreat will maintain its vertical form.  

Where Tu / Td < 1, a headcut was found to rotate and diminish in form with upstream 

propagation.   

 

2.3.2 Lateral Migration of Channels Following Dam Removal 

MacBroom [2005] asserts that at sites where low head dams have been removed, channel 

degradation occurs primarily in the early stages of evolution by rapid vertical incision 

(Stage II of the revised channel evolution model offered by Doyle et al. [2002]), which 

creates a steep slope (relative to the surrounding valley slope), low sinuosity stream 

channel.  In subsequent stages of channel evolution over time, the channel adjusts its 

pattern laterally to fit its flow, particle sizes and gradation, and slope; consistent with 

Stages III - V of the revised channel evolution model offered by Doyle et al. [2002]. 

 

Channel migration is often detrimental to various types of floodplain land-use (Shields et 

al., 2000).  Lateral adjustment of a channel upstream of a former dam are consistent with 

Stages III - V of the revised channel evolution model offered by Doyle et al. [2002] 

whereby the subsequent increase in migration rate decreases channel slope and decreases 

the cross-sectional area of the effective discharge channel which is tending towards a 

state of dynamic equilibrium between discharge continuity, sediment continuity and 

slope.  Channel widening and migration, by mass-wasting, occurs once bank heights and 



 28

angles exceed the critical shear strength threshold of the bank material (Simon and 

Darby, 1999), also commonly referred to as basal end-point control. 

  

Sheilds et al. [2000] defines the rate of channel movement (or channel activity) as: 

 
[ 11 ] 

 
where channel activity [L T-1] is the mean rate of lateral migration along a river reach as 

illustrated in Figure 12 where the channel centrelines at times t1 and t2 are the temporal 

changes in channel location. 

 

Rates of channel activity have been empirically and analytically related to combinations 

of channel geometry, principally relating mean bend radius of curvature (Rc) [L], 

normalized by the mean channel width (W) [L], to migration rates (Hickin and Nanson, 

1975; Julien, 2002).  Findings show that the greatest rates of channel migration occur 

when 2≤ Rc/W ≥ 3, and decrease as Rc/W > 3.  

 

Centreline at time t1

Centreline at time t2

 

Figure 12.  Channel centreline migration over time to define channel activity (modified from Shields 
et al., 2000). 
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Although general agreements have been found between RC / W and the rates of channel 

migration which relate to the intensity of secondary flow in bends and basal end-point 

control, Shields et al. [2000] assert that the nature of the heterogeneity in boundary 

materials and channel geometry fail to explain the large variation in migration rates, 

especially over shorter time periods.  Nanson and Hickin [1983] suggests that the lateral 

upstream river adjustments following dam removal are defined by the basal sediment size 

and stream power P [M L1T-1] as defined by: 

[ 12 ] 

 
where Q is the range in discharges above the low flow conditions where sediment 

transport and the ensuing mass wasting processes dominate channel evolution and basal 

sediment size.  Beatty [1984] further subscribes that mass wasting typically generates 

much of the lateral adjustments within an impoundment, a condition which is typified by 

great uncertainty and unpredictability in migration rates.   

 

2.4 Sediment Transport and Tractive Force Analysis 

Leopold et al. [1964] states that any mechanical system having no mean acceleration 

must obtain an equilibrium of applied forces.  In the case of solids immersed in fluids, the 

excess weight of the solids must be transmitted to the ground either by direct contact, flux 

of fluid momentum, or a combination of both.  Incipient motion of a single particle is 

defined as the threshold conditions between erosion and sedimentation.  Moreover, 

Papanicolaou [2002] defines the critical condition just less than that necessary to initiate 

sediment movement as the threshold, and incipient motion as the commencement of 

movement of bed particles that previously were at rest instigated by changing flow 

fwQSP γ=
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conditions.  At incipient motion, the coefficient of friction is defined as ratio of forces 

FN/FO = 1 as illustrated in Figure 13:  

FO

FN=Mg cosb

b

b

 
Figure 13.  Relation of applied and resisting forces on a particle resting on a supporting surface 

(modified from Leopold et al., 1964). 

 
where FO [M LT-2] is defined as the frictional stress opposing motion of a particle, and FN 

[M LT-2] is the force normal to the bed slope for a simple two-dimensional particle.  

Fluid flow around sediment particles exert forces which initiate particle motion and are 

resisted by the particle weight and shape (Julien, 1995).  Motion of a particle along the 

channel bed is initiated when the hydrodynamic moment of forces acting on a particle 

causing boundary shear (τo) exceeds the resisting moment shear maximum (τc).  As the 

slope of the supporting surface increases, as is the case along the bed of a headcut, the 

frictional force opposing motion must increase at a rate proportional to cosβ, thus the 

resisting force decreases and channel erosion ensues. 

 

The Shields parameter (τ*) is a dimensionless shear stress which compares experimental 

results of particle movement thresholds to predict incipient motion, as defined by: 

[ 13 ] 
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where u* [L T-1] is the shear velocity, ds [L] is the representative particle size diameter, 

and ρm [M L-3]is the density of the fluid.  The Shields method [1936] defines the ratio of 

the hydrodynamic forces to the submerged weights when the moment arms are 

equivalent.  The Shields curve has replicate parameters on both sides of the equation, thus 

requiring an iterative approach for a solution (Marsh, 2004).  Furthermore, Shields [1936] 

determined the critical shear stress corresponding to the beginning of motion (τo =  τc) for 

a range of particle sizes depending upon whether the encompassing flow condition is 

either laminar or turbulent as illustrated in Figure 14: 
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Figure 14.  Shields particle motion diagram (modified from Julien, 1995). 

where the critical values (t*C) of the Shields parameter are approximated as: 
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[ 14 ] 

 

 

 

where d* is the dimensionless particle diameter defined as: 

[ 15 ] 

 

and vm [L/T] is the kinematic viscosity of fluid, G [-] is the specific gravity of the bed 

material, and Ø is the critical angle of repose [-] of the bed material of interest.   

 

Figure 14 can be summarized into a tabular format consistent with that outlined in Table 

1 for bed material sizes (ds) and approximate threshold conditions for granular particles at 

200C.   
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Table 1.  Approximate threshold conditions for granular material by particle size (modified from 
Julien, 1995) 

Class name ds (mm) d * Ф (deg) τ*c τc (Pa) u*c (m/s)
Boulder
Very large >2048 51800 42 0.054 1790 1.33
Large >1024 25900 42 0.054 895 0.94
Medium >512 12950 42 0.054 447 0.67
Small >256 6475 42 0.054 223 0.47
Cobble
Large >128 3235 42 0.054 111 0.33
Small >64 1620 41 0.052 53 0.23

Gravel
Very coarse >32 810 40 0.05 26 0.16
Coarse >16 404 38 0.047 12 0.11
Medium >8 202 36 0.044 5.7 0.074
Fine >4 101 35 0.042 2.71 0.052
Very fine >2 50 33 0.039 1.26 0.036
Sand
Very coarse >1 25 32 0.029 0.47 0.0216
Coarse >0.5 12.5 31 0.033 0.27 0.0164
Medium >0.25 6.3 30 0.048 0.194 0.0139
Fine >0.125 3.2 30 0.072 0.145 0.0120
Very fine >0.0625 1.6 30 0.109 0.110 0.0105
Silt
Coarse >0.031 0.8 30 0.083 0.083 0.0091
Medium >0.016 0.4 30 0.065 0.065 0.0080  

 

In describing the particle size distribution of bed material composed of nonuniform-

noncohesive sediment mixtures, Julien [1995] describes the relationships between critical 

particle size movement and the heterogeneity of the bed material surface as illustrated in 

Figure 15.  The first grain size mixture presented in Figure 15a (No Motion) illustrates 

the applied shear stress is unable to move any of the particles and is composed of the 

original bed material.  In the second scenario (Figure 15b) the shear is increased 

triggering motion of the finer particles.  As a result of transporting only the finer material, 

the remaining surface forms an amour layer which is coarser than the original d50 bed 

material and in turn shields the finer underlying particles from erosion.  This is the 

condition whereby a headcut retreats upstream at a slow rate such that τ0< τC for di<d50. 
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The final case presented in Figure 15c illustrates the condition where sufficient bed shear 

exists to initiate movement of all bed material particle sizes.  The amour layer is no 

longer maintained in this scenario and the displacement of the finer particles to the 

surface creates a plane in which the coarse particles can easily roll.  This is the condition 

when a headcut retreats at the fastest rate upstream, when Sf is sufficiently large such that 

τ0> τC for all bed material sizes and gradations. 

Motion MotionMotionNo Motion No Motion No Motion
tc tc tc

a) No Motion b) Partial Motion c) Full Motion  
Figure 15.  Bed surface for nonuniform grain size mixtures (modified from Julien, 1995). 

 
The critical value of shear stress (τC) for different grain sizes has been related to the 50th 

percentile (d50) based upon a bed material grain size analysis (Egiazaroff, 1965; Parker et 

al., 1982; Komar, 1987; Ashworth and Ferguson, 1989; Kuhnle, 1992; Wilcock and 

Southard, 1997) which is commonly expressed as: 

[ 16 ] 

 

where τ*Ci, is the critical shear stress threshold of the bed material particle diameter di and 

τ*C50 is the critical shear stress threshold value of the d50 bed material diameter 

respectively.  Furthermore, z is referred to as a hiding function, which varies widely 

)/(/ 5050** ddz icci =ττ
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(Shvidchenko et al., 2001) and is largely related to particle shape and grain size 

gradation.  Typical ranges in hiding functions are outlined in Figure 16. 
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Figure 16.  Comparison of different hiding functions (modified from Shvidchenko et al., 2001). 

 

2.5 Longitudinal Hydraulic and Sedimentological Channel 
Evolution Responses to Passive Dam Removal 

 
With both the theory and physical conceptualizations of how channel degradation may 

occur upstream of a dam (Sections 2.3 and 2.4), the channel evolution model proposed by 

Doyle et al. [2002] (Figure 6) can be interpreted throughout the longitudinal profile of a 

river channel.  A conceptually based HEC-RAS© model was developed with channel 

geometry consistent with Figure 6 to elucidate the hydraulic and sedimentological 

processes occurring throughout a river channel upstream of a dam consistent with a 

passive restoration recovery approach. 
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Figure 17 and Figure 18 illustrate the unit stream power ( P̂ ) [M T-1] as defined by: 

[ 17 ] 

 
where T [L] is the top width of the channel, the average channel velocity (V ) [L T-1], the 

main channel velocity (VMAIN) [L T-1], the average channel shear (τO), and the main 

channel shear (τOMAIN).  In Stages I and V of the channel evolution sequence, the VMAIN 

and τO MAIN are consistent with the bankfull channel hydraulic geometry.  Five discrete 

flows are illustrated in each CEM stage ranging between bankfull discharge (QBF) and the 

100-year return period (Q100). 

 

Figure 17a illustrates that the lowest unit stream power occurs in Stages I and V where 

bankfull discharge dominates the flow regime.  These are the regions where the channel 

is considered to be in a state of quasi-equilibrium.  It should also be noted that when the 

discharge state exceeds bankfull, the top width of the channel dramatically increases 

across the floodplain, thereby maintaining a low unit stream power and a low potential 

for channel degradation to occur.  Stage II has the highest unit stream power for each 

discharge value, which also relates to the channels evolutionary stage where there is no or 

limited floodplain relief.  The newly formed channel has yet to widen and contains all 

discharges within the same channel width.  This is also the stage where the highest rates 

of vertical erosion occur.  The unit stream power in Stages III and IV consistently 

decrease as channel widening begins to occur through meander extension.  By stage IV 

the stream power is sufficiently low such that bed material deposition begins to occur 

with the continued decrease in unit stream power.  

 

T
QS

P fwγ=ˆ



 37

The average channel velocity and main channel velocity have similar responses to those 

of the unit stream power for the different discharges, as illustrated in Figure 17b and 

Figure 17c respectively.  For Stages II – IV, the main channel velocities may be 

sufficiently large, such that they exceed the critical particle size thresholds (dC) and the 

volumes of bed material transport in these reaches exceeds the flux entering the reservoir 

system from upstream.  Consequently, with a discrepancy in sediment continuity, channel 

degradation ensues.  It is also noteworthy to identify that the average bankfull channel 

discharge results in the highest average channel velocity (Figure 17b) in Stages I and V 

although the main channel discharge  (Figure 17c) continues to increase with increasing 

discharge.  This is common within a floodplain dominated channel morphology and also 

typifies the channel morphology where bankfull discharge and effective discharge are 

synonymous with the channel forming flow (i.e. QF = QBF = QEFF).  In evolution Stages II 

– IV where the flow depth and velocities continue to increase with increasing discharge, 

there exists the ability to transport greater volumes of sediment.  These are the stages 

where effective discharge dominates the channel evolution (i.e. QF = QEFF). 

 

The average channel shear and main channel shear also have similar responses to that of 

the unit stream power, average channel velocity and main channel velocity for the 

different discharges as illustrated in Figure 18a and Figure 18b respectively.  When 

discharges exceed the bankfull depths in Stages I and V, the wetted perimeter 

significantly increases as the flows begin to inundate their respective floodplains.  With 

the significant increases in wetted perimeters (Λ) the hydraulic radii (R) begin to 

decrease with increasing stage above bankfull depth resulting in the shear stress 
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remaining relatively low in Stages I and V.  Conversely, in Stages II – IV with increasing 

discharge, there is no or limited access to floodplains.  As a result, in Stages II – IV, the 

flow depth continues to increase with increasing discharge and the wetted perimeter does 

not increase as quickly, relative to Stages I and V, resulting in increased shear stress.  The 

highest rates of channel shear which occur in Stage II diminish as the evolutionary 

sequence tends towards stage IV where sediment deposition may begin to dominate the 

evolution of the channel morphology. 
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Figure 17.  Typical a) unit stream power, b) average channel velocities, and c) main channel velocities 
for the five stages of channel evolution after Doyle et al. [2002] for a discrete range in flows between 

bankfull (QBF) and the 100-year (Q100) magnitude discharge events.  
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Figure 18.  Typical a) average channel shear and b) main channel shear for the five stages of channel 
evolution after Doyle et al. [2002] for a discrete range in flows between bankfull (QBF) and the 100-

year (Q100) magnitude discharge events. 

 
Another method of interpreting and illustrating the unit stream power, average channel 

velocity, main channel velocity, average channel shear, and main channel shear which is 

similar to those illustrated in Figure 17 and Figure 18 is by analyzing the hydraulic 

responses along the longitudinal profile for 100 equally partitioned incremental 

discharges ranging between 0 < Q < Q100.  This method of analysis captures the average, 

standard deviation, bankfull, minimum, and maximum flows typically encountered at 

each cross-section, which are then illustrated using box-and-whisker plots of the 

hydraulic parameters.  Figure 19 and Figure 20 define similar profiles of unit stream 

power, velocity and shear at each stage of the CEM illustrating the range of the 100 

separate discharge analyses.  This is also the standard reporting method used throughout 
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the remainder of this research to present the hydraulic results over the range of discharges 

from 0 < Q < Q100. 

 

The analyses based upon this method further illustrate that in Stages I and V, the bankfull 

average channel velocity remains the highest (Figure 19b) for the entire range in 

discharges considered whereas the unit stream power (Figure 19a), main channel velocity 

(Figure 19c), average shear stress (Figure 20a), and main channel shear associated with 

bankfull discharge (Figure 20b) are either the lowest or close to the lowest values for the 

range in discharges.  The small range in standard deviations of the hydraulic parameters 

in Stages I and V also addresses the damping effects of the floodplain on hydraulic 

responses in these channel morphologies.  The smaller total and standard deviation 

ranges in hydraulic parameters of Stages I and V identify that there will not be as 

dramatic of a response in the channel evolution for the entire range in flows; relative to 

Stages II - IV.  The greater range in standard deviations and total ranges of the hydraulic 

parameters in Stages II – IV indicate a larger vulnerability to channel degradation based 

upon the magnitude and recurrence interval of particular discharge events of interest.  At 

some location within the standard deviation ranges of hydraulic parameters in Stages II – 

IV is the discharge associated with the effective discharge that dictates channel evolution.  

It is also noted in Stages II – IV that hydraulic conditions associated with bankfull 

discharge are notably below each standard deviation, further indicating that QBF is not a 

significant discharge of the channel evolution in these stages. 
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Figure 19.  Typical a) unit stream power, b) averge channel velocities, and c) main channel velocities 

for the five stages of channel evolution after Doyle et al. [2002] for 100 different incremental 
discharges between 0 < Q < Q100 
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Figure 20.  Typical a) average channel shear and b) main channel shear for the five stages of channel 

evolution after Doyle et al. [2002] for 100 different incremental discharges between  

0 < Q < Q100 
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3 FIELD AND ANALYSIS METHODS 
 
Upon canvassing local and provincial agencies, 20 decommissioned / failed dams were 

identified in Southern Ontario south of the Canadian Shield in glacio-fluvial deposits.  

The dams identified had either been removed or failed from severe flooding, 

abandonment, or lack of operations maintenance.  In order to meet the objectives of this 

study no upstream interventions, restorations or rehabilitation could have occurred since 

the time of dam failure or removal till present day.  The primary selection criteria results 

in a morphologic response with minimal anthropogenic disturbances, analogous to the 

passive dam remediation approach consistent with an abrupt dam removal and without 

any upstream works undertaken.  Further, sites were chosen to cover a broad range of 

valley slopes and underlying geology (i.e. differing grain sizes) as these are often 

principle factors in channel evolution and sediment transport.  Based upon the above 

criteria, eight dam sites were identified from both aerial and field reconnaissance which 

are listed in Table 2 with their associated valley slopes and predominate upstream 

catchment area physiography (Chapman and Putnam, 1966).  The general locations of the 

dams are illustrated in Figure 21.  Detailed site locations of each of the dam sites are 

outlined in Appendices A – H. 
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Table 2.  List of dam study sites, river names, valley slope and dominant upstream physiography. 

Ref. No. Dam Name River Name and Neighboring 
Town

Valley Slope 
(m/m)

Physiography

1 Croton Dam Big Creek at Delhi 1.80E-03 Sand Plain
2 Hawkesville Dam Conestogo River at 1.90E-03 Till Moraine
3 Huttonville Dam Credit River at Huttonville 2.70E-03 Till Plain
4 Chilligo Dam Ellis Creek at Cambridge 3.10E-03 Spillway
5 Greenfield Dam Nith River at Greenfield 1.70E-03 Kame Moraine
6 Sutton Dam Patterson Creek at Simcoe 2.05E-03 Sand Plain
7 Teeswater Dam Teeswater River at Teeswater 2.40E-03 Kame Moraine
8 Bognor Dam Walter's Creek at Bognor 8.00E-03 Drumlinized Till Plain  
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Figure 21.  Locations of study sites within Southern Ontario. 

 
Background studies were conducted for each site using the Geographic Information 

Systems (GIS) program ArcGIS® and AutoCAD®.  Time series aerial photographs were 

acquired for each site, ranging from 1954 – 2002 photographs provided by the Ontario 

department of Lands, Ontario Ministry of Natural Resources and the local conservation 

authorities.  Hard copy aerial photographs were scanned and georeferenced for time-
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series morphometric analysis which included channel activity and effective catchment 

area land use change.   

 

3.1 Field Surveys 
 
Longitudinal profiles and a series of cross-sections were surveyed at each site consistent 

with methods outlined by Annable [1996] using a Set 5E Sokkia® total station, data 

logger and single-optic prism pole.  Each survey began downstream of each former dam 

at either a hydraulic control or approximately one meander wavelength downstream of 

each dam.  The upstream limit of each study terminated at either a hydraulic control (such 

as a culvert or a bridge) or where the channel demonstrated dynamically stable 

characteristics (Leopold et al., 1964) for approximately 2 meander wavelengths upstream 

of the uppermost headcut. 

 

Total station surveys were geo-referenced to NAD 1983 UTM Zone 17N coordinates 

acquired with a Trimble® Geo XT GPS unit at the starting and ending control 

benchmarks of each survey.  A typical plan view survey of the channel profile, cross-

sections and additional field attributes are illustrated in Figure 22 for the Teeswater site at 

Teeswater, Ontario.  Appendices A - H detail the total station surveys conducted at each 

site. 
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Figure 22.  Example plan view of a field survey of Teeswater River at Teeswater. 

 
 

3.1.1 Longitudinal Profiles 

Thalweg measurements were obtained along the study reach at approximately every 

bankfull channel width, in addition to the maximum inverts of pools, notable changes in 

channel slope, and at the tops and bottoms of riffles and headcuts respectively consistent 

with the methods outlined by Annable [1996].  Using thalweg measurements, a 

longitudinal profile was developed for every site as illustrated in Figure 23 for the 

Teeswater dam.  Appendices A - H also detail each of the longitudinal profiles. 
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Figure 23.  Longitudinal profile of Teeswater River at Teeswater. 

 
The lengths and slopes of riffles, runs, headcuts, knickpoints, inter-riffle and inter-pool 

lengths were determined from the longitudinal profile.  Slopes and lengths were 

determined from the average elevation of the three survey points at the top and bottom of 

each morphological feature respectively. 

 

3.1.2 Cross-Sectional Profiles 

Cross-sections define the geometric boundary conditions of a river or stream 

perpendicular to flow along the channel and adjacent floodplains.  Cross-sections were 

defined and measured perpendicular to the channel within the upper third of each riffle, 

run or headcut and extended out into the floodplains in sufficient detail to define cross-

sections for undertaking hydraulic analysis using Hydrologic Engineering Center’s River 

Analysis System (HEC-RAS® 4.0) for flood conditions.  At each cross-section, 

characteristics such as top and bottom of banks, bankfull stage, and thalweg were 

defined, in addition to all notable breaks in slope and terraces identified in the field.  

Ideally, the extent of each cross-section was surveyed from, at minimum, the top of 
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valley walls to the channel thalweg.  In cases where it was not possible to extend the 

survey to the top of the valley walls, due to line of sight limitations with the total station, 

the extents of the cross-section along the floodplain were extrapolated using topographic 

maps at a scale of 1:10 000 once the field surveys were geo-referenced. 

 

3.1.3 Sediment Sampling 
 
Bed material sampling was undertaken to obtain particle size distributions of riffles, runs, 

and headcuts within each disturbed reach in addition to reaches upstream of the erosional 

effects or the uppermost headcut.  Sampling methods were consistent with those offered 

by Klingeman and Emmett [1982] and Annable [1996] for the gravel- and cobble-bed 

streams; and by Ashmore [1988] for the sand-bed channels.  Two-to-three random 

locations (dependent on channel width) across both the upper and lower thirds of each 

feature were sampled and their locations geographically referenced using a Trimble® 

GeoXT.  Figure 24 and Figure 25 illustrate the typical locations where samples were 

collected along riffles and headcuts respectively. 
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Figure 24.  Locations of bed material samples along a riffle. 
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Figure 25.  Locations of bed material samples along a headcut. 
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Notable exceptions to the methods above were in the cases where the bed material was 

principally comprised of boulders too large to be extracted for laboratory analysis.  In 

these cases, a modified version of the Wolman [1954] pebble count method was 

employed. The modified Wolman pebble count method consisted of two passes between 

the bankfull channel limits along the bed of the channel on the morphological feature of 

interest randomly sampling approximately 50 particles.  The three principle particle axes 

of each particle were measured (a-axis, b-axis, c-axis) which relate to the largest, 

intermediate and smallest particle axis lengths respectively, and the particle converted to 

its spherical volume equivalent.  Using this volume estimate, the mass was estimated 

using a bulk density of 2650 kg/m3.  Grain size analyses were conducted on each 

sediment sample collected using dry sieving methods at 0.5φ  intervals (Friedman and 

Sanders, 1978) for particles smaller than 32mm (di < 32mm), where  

[ 18 ] 

 
Particles greater than 32mm were measured and massed individually in the field and 

segregated into 0.5 φ  intervals.  Both field and dry sieve data on each sample were 

combined after the various sampling and particle sorting methods and the d5, d16, d25, d50, 

d75, d84, d95 percentiles determined.  The mean, standard deviation, kurtosis and skewness 

of each sediment sample were also calculated in addition to a composite grain size 

distribution (Friedman and Sanders, 1978) of each morphological feature (i.e. riffles, 

runs, headcuts, knickpoints).  Figure 26 illustrates the analysis results of sediment 

sampling of a riffle, along with the respective sampling locations.  Appendices A – H 

contain these analyses for each site. 

 

).(log 2 id=φ
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An aggregate grain size distribution for each study reach was also calculated by 

combining the masses of each size interval from all of the bed material samples 

(regardless of location).  The mean particle diameter (d50) from the reach based aggregate 

grain size analysis was then used to determine the general reach grain size classification 

consistent with the methods offered by Bunte and Abt [2001].  Table 3 outlines the 

general reach grain size classifications.   

 

TOP 

d mm
5 4.68
16 22.77
25 33.75
50 67.59
75 171.29
84 180.26
95 191.88  

BOTTOM 

d mm
5 1.05
16 21.39
25 33.25
50 63.62
75 93.74
84 122.18
95 133.89  

d mm
5 3.86
16 29.68
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Figure 26.  Example pavement sample distributions of the uppermost riffle (Riffle 1) of Credit River 
at Huttonville. 
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Table 3.  General channel bed grain size distributions based upon the median bed-material particle 
size (after Bunte and Abt, 2001). 

Ref. No. Dam Name River Name d50(mm) Class
1 Croton Dam Big Creek at Delhi 1.7 Sand
2 Hawkesville Dam Conestogo River at Hawkesville 81 Cobble
3 Huttonville Dam Credit River at Huttonville 65 Cobble
4 Chilligo Dam Ellis Creek at Cambridge 31 Gravel
5 Greenfield Dam Nith River at Greenfield 69 Cobble
6 Sutton Dam Patterson Creek at Simcoe 0.3 Sand
7 Teeswater Dam Teeswater River at Teeswater 32 Gravel
8 Bognor Dam Walter's Creek at Bognor 60 Gravel  

 
 
Reservoir sediments were also collected along the exposed incised channel banks within 

the impoundment regions.  Samples were collected using a spade at approximately the 

vertical centre of the incised channel banks.  Samples were collected from two separate 

locations along the incised channel; the first location was collected proximal to the dam 

face and the other near the upstream limit of the abandoned reservoir.  Grain size 

analyses were performed on each impoundment sample using hydrometer testing 

methods consistent with those described by the American Society for Testing Materials 

[1958]. 

 

3.2 Numerical Analysis Methods 
 
Field data collected from each of the eight study sites as presented in Section 3.1 were 

then used to define each of the modelling domains and the boundary conditions for the 

hydraulic and sediment transport analysis using HEC-RAS® 4.0. 

 
HEC-RAS® has been developed to undertake one-dimensional hydraulic modelling 

which include: steady flow, transient flow and basic sediment transport analyses.  The 

current research developed and applied a HEC-RAS model for each of the study sites to 
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investigate the hydraulic characteristics of the study reaches over a series of discharges 

ranging between 0 < Q < Q100.   

 

In the development of each site model, additional cross-sections were required to reduce 

conveyance ratio errors.  Cross-sections were added at locations where numerical errors 

were identified by using the representative cross-sectional form of the adjacent upstream 

and downstream cross-sections and adjusting the elevation of the thalweg of the 

synthetically generated cross-section to be consistent with the field measured thalweg 

elevation. 

 

In some instances, a location of hydraulic control was not identified in the field to 

provide downstream boundary conditions.  In these situations, a downstream hydraulic 

control flow condition was assumed, however, the downstream limit of the site model 

was extended downstream such that normal depth was achieved immediately downstream 

of the dam for discharge conditions ranging between 0 < Q < Q100.  The river reach was 

typically extended downstream of the dam a distance equal to 40 times the top width (T) 

of the Q100 discharge event.  In mild slope channel conditions, the channel extension 

distance is considered to be adequate to address any numerical artifacts of assuming a 

downstream critical flow depth (Totz and Klotz, 2003).  An average channel cross-

section was assumed for the downstream channel extension reach based upon surveyed 

cross-sections downstream of each dam.  Stream channel slope (SO) was determined from 

the relationship: 

[ 19 ] 

 Ω
= V

O
SS
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where SV [-] is the valley slope and Ω [-] is the channel sinuosity down stream of the 

dams which were determined from 1:10000 topographic maps and / or digital elevation 

models. 

 

Estimates of Manning’s roughness coefficients (n) for each cross-sections bankfull 

channel were determined using the equation offered by Limerinos [1970] which relates 

Manning’s n values to the hydraulic radius (R) and the 84th percentile of the bed material 

particle size (d84) as defined by: 

 
[ 20 ] 

 

 
Manning’s n values for each cross-sections left and right floodplains were estimated 

using a series of photographs provided by the Arcement and Schneider [1989] of 

vegetated floodplains for which the roughness coefficients had been verified.   

 

Bankfull discharge from regional analysis methods (discussed in Section 3.2.1) were 

compared to the field calibrated bankfull discharges in the upstream stable sections of 

each river and compared to the HEC-RAS analysis results.  Bankfull discharge model 

calibrations were achieved by adjusting the stream bed Manning’s roughness coefficient, 

within acceptable tolerances, until as close of an agreement could be achieved between 

bankfull discharges determined from HEC-RAS, the field calibrated bankfull depth, and 

the localized maximum in the average channel velocity (as discussed in Section 2.5 and 

illustrated in Figure 19b).  The results of the bankfull calibration methods are illustrated 

in Figure 27a, where the HEC-RAS calibrated bankfull discharge is compared to the 
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regional analysis method offered by Annable [1996] for Q1.5.  Correspondingly, Figure 

27b illustrates the differences in Manning’s roughness values using Equation 20 to 

predict the bed material roughness and the final calibrated values from the HEC-RAS 

sensitivity analyses. 
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Figure 27.  Comparison of a) HEC-RAS calibrated vs. regional analysis method for bankfull 
discharge and b) adjusted Manning’s roughness coefficient vs. estimated Manning’s roughness 

coefficient using Limerinos [1970]. 

 

3.2.1 Discharge Frequency Estimates 
 
100 individual discharge analyses were undertaken ranging between 0 < Q < Q100 for 

each of the river reaches developed in HEC-RAS® in addition to the Q1.5, Q2, Q20, and 

Q100 return frequencies.  Typically, discharge frequency analyses (such as a Weibull 

plotting position or a Log-Pearson III) are commonly undertaken based upon flow data 

from nearby discharge gauging stations on the same river.  However, of the eight sites 

surveyed, only four were locally occupied with hydrometric gauging stations and only 

three gauging stations had a sufficiently long period of record to undertake a flow 

frequency statistical analysis.  Alternatively, where gauge stations did not exist and / or 
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DAbaQx loglog +=

gauges with too short of a time record to predict return frequencies or to calibrate rating 

curves, the watershed drainage area was used in conjunction with regionalization 

methods to predict flood flow recurrence intervals. 

 

Regionalization techniques provided by Gingras et al. [1994] were employed to 

determine the Q2, Q20 and Q100 return periods. These techniques relate particular flood 

quantiles to the effective drainage areas within the provinces of Ontario and Quebec 

using the equation: 

[ 21 ] 

 
where Qx [L3/T]is the flood flow of return period x [T], DA is the effective drainage area 

[L2] of the watershed, and parameters a and b are regression coefficients specific to the 

hydrophysiographic region.  For the purposes of this study and hydrogeographic region, 

Region 7 and 8 coefficients for a and b specified by Gingras et al. [1994] were utilized.  

In the case of bankfull discharge (QBF), a similar regionalization technique was offered 

for southern Ontario by Annable [1996] of the form: 

.[ 22 ] 

 
Annable [1996] also identified that QBF≈Q1.5 for rural rivers in southern Ontario.  

 

Drainage areas for each site were obtained through hydrological analysis of digital 

elevation models (DEMs) at 10m2 grid scales.  Hydrological analyses were performed 

using ArcGIS 9.1®, and the DEMs obtained from the Geological Survey of Canada to 

delineate the effective catchment areas.  Figure 28 illustrates an example of effective 

catchment area delineation for the Conestoga River at Hawkesville.  Based upon the 

74.052.0 DAQBF =
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ArcGIS 9.1® analysis algorithms, the effective catchment area was determined for each 

watershed studied. 

")"")0 105
km

­

HAWKESVILLE DAM

 

Figure 28.  Conestoga River at Hawkesville sub-watershed DEM within the Upper Grand River 
watershed. 

 
A summary of flood recurrence interval discharges using coefficients for Region 7 and 8 

by Gingras et al. [1994] for each site are listed in Table 4. 
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Table 4.  Flood flow frequency each site. 

1.5 2 20 100
1 Croton Dam Big Creek at Delhi 7 363 41.8 63.2 131.5 159.6
2 Hawkesville Dam Conestogo River at Hawkesville 7 651 63.7 109.8 222.9 265.5
3 Huttonville Dam Credit River at Huttonville 7 648 63.5 109.4 222.1 264.6
4 Chilligo Dam Ellis Creek at Cambridge 7 57 7.1 10.9 24.6 31.6
5 Greenfield Dam Nith River at Greenfield 7 842 76.6 140.0 281.3 332.3
6 Sutton Dam Patterson Creek at Simcoe 7 90 15.3 16.9 37.2 47.2
7 Teeswater Dam Teeswater River at Teeswater 8 123 15.3 15.8 29.1 35.0
8 Bognor Dam Walter's Creek at Bognor 8 45 5.6 6.6 12.6 15.2

7 a - -0.621 -0.198 -0.032
7 b - 0.946 0.905 0.873
8 a - -0.613 -0.274 -0.196
8 b - 0.867 0.832 0.833

Annable 
(1996)

Gingras et al. (1994)

Ref. 
No.

Return Period (m3/s)Dam Name River Name Area 
(km2)

Region

coefficients

 
 
For the three sites that were in close proximity to gauge stations (Big Creek, Conestoga 

River and Credit River), the Weibull Plotting position and the Log Pearson-III analysis 

were performed, consistent with methods offered by Bulletin 17b (U.S. Department of 

the Interior, 1981) and compared to the regionalization methods.  The effective catchment 

areas at each gauge station were used in the regionalization methods rather than the 

effective catchment area associated with each dam location.  Figure 29 illustrates the 

differences in the various methods considered in this research. 

 

As illustrated in Figure 29, the regionalization methods considerably over predict both 

the Log Pearson-III and Weibull analysis for Big Creek (Figure 29a) and the Credit River 

(Figure 29c), and under predict in the case of the Conestoga River (Figure 29b).  The 

regionalization method offered by Annable [1996] is the closest to those calculated using 

the Log Pearson-III and Weibull analysis methods which provides the initial estimate of 

bankfull discharge for calibration purposes.  The remaining regionalization methods 

offered by Gingras et al. [1994] varies widely relative to the flow frequencies predicted 

using either the Log Pearson-III or the Weibull analysis.  It should be noted, however, 
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that the accuracy of either the Q20 or the Q100 is not relevant in the HEC-RAS model 

accuracy or calibration.  In particular the Q100 values obtained from the regionalization 

method offered by Gingras et al. [1994] simply provided an upper bound to estimate the 

Q100 such that 100 individual hydraulic analyses could be undertaken between 0 < Q < 

Q100 in evenly spaced intervals.  The hydraulic responses of interest relevant to this study 

(where flows would overtop either the bankfull channel or the impoundment sediment 

levels) are captured somewhere within the range between 0 < Q < Q100, and then be used 

for analysis purposes.    
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Figure 29.  Comparison of yearly instantaneous maximum discharges, Weibull Plotting Position, Log 
Pearson-III Analysis, Gingras et al. [1994] and Annable [1996] methods of discharge estimation for the 
Q1.5, Q2, Q20 and Q100 return periods for Environment Canada gauge stations proximal to study sites at a) 

Big Creek near Delhi (02GC006) b) Conestoga River at Glen Allan (02GA028) and c) Credit River at 
Norval (02HB025). 
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3.2.3 Tractive Force and Permissible Velocity Analysis 
 
The stability of the bed material along a river reach is affected through shearing forces 

and permissible velocity.  For both shear forces and velocities, critical values were 

calculated to determine the threshold values to differentiate between particle motion or 

stability. 

 

The threshold shear value (tcds), was calculated as a function of Shields parameter as 

defined by Julien (1995):  

[ 23 ] 

 

Furthermore, critical shear is specific for each particle size, and in turn was calculated for 

t*c5, t*c16, t*c25, t*c50, t*c75, t*c84, t*c95 particle sizes from each sample.  These values 

were compared to the bed shear within the main channel defined using Duboy’s equation:  

[ 24 ] 

 
which was calculated with the HEC-RAS analysis for the range of flows discussed 

previously.   

 

Critical velocities (vcids) [L T -1] were determined using the equation offered by Novak 

and Nalluri [1984]:   

[ 25 ] 

 
 

for each of the different discharges (Qi) studied, where Ri represents the hydraulic radius 

of a given hydraulic analysis at a given cross-section.  As critical velocity is both a 
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function of hydraulic radius and particle size, a suite of critical velocities exist for each 

flood flow and particle size respectively.  The main channel velocity (Vi) and associated 

hydraulic radii (Ri) calculated in HEC-RAS were used to determine the critical particle 

size (dcv) that would remain stable on the channel bed for the range in discharges between 

0 < Qi < Q100 using the equation defined by Novak and Nalluri [1984]: 

[ 26 ] 

 

The critical particle values for the range in flows analyzed were then compared to the 

range of particle size percentiles determined by the sediment analysis (i.e. d5, d16, d25, d50, 

d75, d84, d95) at each sample location to determine the particle size class associated with 

the critical cessation velocity. 

 

5
4

)1(
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= −

Gg
Ri

2
i

cv

V
d



 63

4 RESULTS AND DISCUSSION 

This chapter presents the hydraulic and sedimentological results obtained for each study 

site.  Unit stream power, velocity and shear stress analyses are presented for flows 

ranging between 0 < Q < Q100.  Subsequently, results of permissible and critical velocities 

and shear stress are presented and further interpreted with respect to continued upstream 

headcut migration.  As all of the study sites range in longitudinal profile lengths (ranging 

between 1050m and 5600m), a normalized length comparison was developed for analysis 

purposes.  For each study site, the distance along each thalweg longitudinal profile, 

starting at the dam face, was normalized with respect to the thalweg length between the 

dam face and the backwater limit of each reservoir.  Using this approach, ratios of zero 

and one consistently occur at the dam face and the backwater limits of the reservoirs 

respectively (i.e. the region of the impoundments).  Positive ratios reflect distances 

progressing upstream of the dam face, whereas negative values represent reaches 

progressing downstream of the dam face.  The reference numbers identified in each graph 

refer to each site studied as outlined in Table 2.   

4.1 Upstream Disturbance Propagation 

Upstream disturbances initiated from dam failure are presented using field observations 

of headcuts and knickpoints.  The longitudinal ratio here is defined as the maximum 

upstream extent of observed headcutting, relative to the dam face, normalized by the 

thalweg length of the reservoir.  Figure 30 illustrates the longitudinal ratio versus the 

number of years since the dam was functional.   
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Figure 30.  Ratio of maximum upstream headcut extent to normalized reservoir limit. 

 
Vertical disturbances in the forms of headcuts and knickpoints initiated from dam 

removal or failure were identified at six of the eight study sites beyond the backwater 

limits of the reservoir.  This confirms the hypothesis that headcuts and upstream vertical 

channel disturbances initiated from dam removal, consistent with the passive restoration 

approach, can extend beyond the backwater limits of the reservoirs.  In most cases, the 

headcuts upstream of each reservoir are maintaining a vertical bed separation (although 

decreasing in vertical relief with upstream distance) rather than rotating and diminishing 

as discussed in Section 2.1.  In the cases of sites 4 and 6, where headcut migration has not 

propagated upstream of the reservoir limits, both of these sites have had the least amount 

of time for upstream degradational processes to occur.  In the subsequent sections of the 
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discussion, the sedimentological, shear stress and cessation velocities analyzed will be 

evaluated for each site and interpretations discussed with respect to the extent of 

upstream degradation (including Sites 4 and 6). 

 

4.2 Power, Velocity and Shear Profiles 

Analysis of unit stream power ( P̂ ), average channel velocity (V ), main channel velocity 

(VMAIN), average channel shear (τO), and main channel shear (τOMAIN) were undertaken 

using the HEC-RAS models developed for each site to interpret the hydraulic responses 

along the longitudinal profiles of the 100 equally partitioned incremental discharges 

ranging between Q < Q < Q100.  The results of these analyses are presented in Figure 31 

Figure 32 for Site 3 (Huttonville Dam on the Credit River).  Appendices A – H contain 

similar plots for the remaining seven sites.    

 

The bankfull delineation in each of the figures represents the hydraulic response of 

bankfull discharge (QBF) at each cross-section and how it compares to the hydraulic 

responses of the remaining group of unique discharges analyzed.  As mentioned in 

Section 3.2.1, bankfull discharge was field determined from the stable upstream reaches 

and validated within each HEC-RAS analysis as the local maximum in the average 

channel velocity for the entire suite of discharges analyzed, as illustrated in Figure 33.  

The longitudinal profile is also included in Figure 31d to illustrate the bed variability 

along the reach in addition to the locations of headcuts and other field features of 

relevance.   
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It should further be noted that a longitudinal profile was not undertaken by wading the 

channel for site 1 similar to the other seven sites.  Rather, channel cross-sections were 

surveyed using a Sokkia® Set 5E total station and their locations geo-referenced using a 

differentially corrected first order accurate GPS.  Cross-sections were exclusively 

surveyed for this reach as there was significant tree fall (woody debris) and channel 

incisement making the navigation through the channel very prohibitive over the 4km 

incised channel reach.  
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Figure 31.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 
incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 

longitudinal profile for the Credit River at Huttonville (Site 3). 
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Figure 32.  Results of a) average channel shear stress and b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100 along the longitudinal profile for the 
Credit River at Huttonville (Site 3). 
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Figure 33.  Average channel velocities of a stable upstream cross-section and the envelope of incised 

channel cross-sections for discharges ranging between Q  < Q <  Q100 for the Credit River at 
Huttonville (Site 3). 
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Figure 31 a, b and c illustrate that the lowest unit stream power, highest average channel 

velocity and lowest main channel velocity occur upstream of the uppermost headcut 

where a stable bankfull channel was observed.  This is further supported by the smallest 

range in standard deviations for the three previously mentioned hydraulic parameters 

suggesting that floodplain conveyance is occurring at larger discharges to attenuate flood 

flows and maintain channel stability.  Conversely, throughout the impoundment reach 

upstream to Heritage Road, notable increases in each of the hydraulic parameters are 

identified in Figure 31 a, b and c; and each of the standard deviations in hydraulic 

parameters respectively.  These channel responses are consistent with the idealized 

example presented in Section 2.5 for the incised channel reaches of the CEM (Stages II – 

IV).  Within the incised channel reaches, the hydraulic parameters associated with QBF 

presented in Figure 31 a, b and c indicate that QBF does not predominant as a channel 

forming flow.  Rather within the incised reaches, the effective discharge predominates the 

channel forming processes (i.e. QEFF = QF), typically found at some discharge within the 

standard deviation range of each hydraulic parameter analyzed.  It should be further 

noted; that the effective discharge was not explicitly calculated at any site.  Sediment 

rating curves did not exist at any of the sites; and only three of the eight sites were 

occupied with a hydrometric monitoring station possible for undertaking a partial series 

duration analysis. 

 

The entire range in flows between 0 < Q < Q100 are contained within the incised channel 

reach and are all conveyed in the main channel, whereas the uppermost stable section 

accesses the floodplains when the discharge exceeds Q ≈ 41 m3/s.  As the channel 
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velocities increase with increasing discharge for the incised channel reaches (as 

illustrated in Figure 33, larger particles are able to be entrained within the bedload 

transport fractions.  The velocities within the incised channel reach are compared to those 

where bankfull discharge (and its associated velocity as illustrated in Figure 33) dominate 

the channel evolution in a floodplain channel morphology.  As a result of the differences 

between velocities in the incised vs. bankfull reaches, and in turn the sizes and the mass 

of material able to be transported in each reach, a discontinuity exists in sediment 

transport from the upstream stable to incised channel reaches.  Since the upstream 

reaches are not able to transport sufficient mass and sizes to maintain sediment continuity 

within the incised channel reaches, channel degradation by mass transport ensues leading 

to further channel incision and widening.  This response is common to transport 

regardless if the average channel velocity (Figure 33) or main channel velocities are 

considered (Figure 34).     
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Figure 34.  Main channel velocities of a upstream stable cross-section and the envelope of incised 

cross-sections for discharges ranging between Q  < Q <  Q100 for Site 3. 
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Upon detailed examination of the longitudinal profile in Figure 31d, channel bed slope 

(So) within the reservoir was calculated at S0 = 0.33% as compared to the adjacent valley 

slope of SV = 0.27%.  Channel slopes greater than their associated valley slopes are 

another indicator of channel degradation consistent with Stages II and III channel 

evolution.  In stable river channels, the channel bed slope is always less than or equal to 

the valley slope (i.e. SO > SV) by reason of meander bend extension. The increase in 

localized bed slope through the incised reaches results in increased hydraulic responses of 

stream power and channel velocities potentially in excess of the surrounding geological 

material incipient thresholds that were deposited over centuries.  Over geologic time 

lines, the stable bed material size and channel slope evolve to a condition whereby SO > 

SV, which is not the case in the incised channel reaches.  Along the increased channel 

slope associated with headcut migration, the critical particle size thresholds may be 

exceeded to erode particles otherwise stable; leading to continued channel degradation.  

These results will be presented in Section 4.3. 

 

Figure 32a and Figure 32b illustrate the average and main channel shear stress 

respectively along the channel profile in a similar hydraulic fashion to Figure 31a through 

Figure 31c.  When discharges exceed QBF in the floodplain dominated morphology, the 

wetted perimeter (Λ) significantly increases with inverse affects on the hydraulic radius 

(R) resulting in shear stresses remaining relatively low for the entire range of flows.  

Conversely, in the cross-sections where flows exceed QBF and do not access their 

adjacent floodplains, flow depths continue to increase with discharge and Λ increases at a 

relatively lower rate to that of the stable channels reaches until overbank access is 
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attained.  This results in main channel shear (τOMAIN) and average channel shear (τO) 

continuously increasing until floodplains are accessed where Λ significantly increases.  

Moreover, there is an increased tendency in the incised sections for channel degradation 

to occur as shear thresholds are more likely to be exceeded as a result of increasing 

hydraulic radii relative to the bed material sizes and cohesiveness required to maintain 

channel bed and bank stability.    

 

Hydraulic responses for P̂ ,  V , VMAIN, τOAVERAGE, and τOMAIN for the seven other sites 

are included in Appendices A – H.  The hydraulic responses of the seven other sites 

studied are thematically similar to Site 3 (Huttonville Dam on the Credit River) which are 

presented in Figure 31 and Figure 32.   

 

To further summarize the effects of vertical channel degradation identified by migrating 

headcuts, plots were constructed which illustrate P̂  (Figure 35 ), V  and VMAIN (Figure 

36), τO and τOMAIN (Figure 37) for the discharge at each channel cross-section when 

overbank cresting occurs (i.e. when water begins to spill out onto the adjacent flood 

plain) for all of the river reaches studied.  In the cases of the bankfull channel reaches, 

this discharge is synonymous with QBF.  Within the incised channel reaches, the 

discharge used in the analyses is the unique flow observed when an inflection occurs in 

the average velocity vs. discharge plots for each cross-section (similar to those presented 

in Figure 33 and Figure 34) and/or where a notable increase in top widths occurred with 

increasing discharge.  In the event that a channel inflection does not occur at a given 

cross-section, the Q100 discharge was used in the analysis.  Ratios greater than 1.0 on the 
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ordinate indicate hydraulic parameter ratios in excess of the upstream stable cross-

sectional profile, hence indicating channel degradation is occurring at these locations.  

Moreover, cross-sections with ordinate ratios > 1 indicate effective discharge dominates 

the channel evolution, and QBF < QF = QEFF. 
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Figure 35.  Results of unit stream power of flows which overtop banks vs. normalized longitudinal 
channel profile distance. 
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Figure 36.  Results of a) average channel velocity and b) main channel velocity of flows which 
overtop banks vs. normalized longitudinal channel profile distance. 
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Figure 37.  Results of a) average channel shear and b) main channel shear of flows which overtop 

banks vs. normalized longitudinal channel profile distance. 
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The hydraulic parameter ( P̂ , V , VMAIN, τO, τOMAIN) responses at each site are similar, 

with the exception of site 1, and maintain ratios >1 on the ordinate immediately upstream 

of the dam, indicative of channel evolution Stages II - III.  Elevated hydraulic 

characteristics at flows that overtop banks above bankfull discharge are consistent with 

incised channels causing increased sediment carrying capacity and decreased channel 

sinuosity resulting in steeper bed slopes or some combination thereof.  Where ratios 

exceed unity, effective discharge dominates the channel evolution.  Additionally, at these 

cross-sections there is an increased tendency for further channel degradation to occur, as 

thresholds of greater particle sizes and cohesiveness are exceeded for flows greater than 

bankfull.  The trend of cross-sections tends towards unity with increasing distance 

upstream of the reservoir. 

 

Site 1 is the exception in the hydraulic responses relative to the other seven sites.  

Examining the cross-sections for site 1 immediately upstream of the dam in Figures 35, 

Figure 36 and Figure 37, overbank flow ratios are < 1.  These cross-sections have been 

evolving for approximately 70 years (since the time of failure) and demonstrate Stage IV 

or Stage V characteristics.  As cross-sections are examined in sequence of increasing 

distance upstream from the dam, the effects of incision gradually increase (tending 

towards stages III and II of the CEM sequence).  Moreover, Figure 6b in Section 2.3 

demonstrates this longitudinal evolution of channel morphology, where downstream 

reaches are in a state of quasi-equilibrium and upstream reaches are increasing in both 

vertical and cross-sectional profiles consistent with the location of the uppermost 

headcut.    
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4.3 Tractive Force and Velocity Results 

This section presents shear stress and velocity hydraulic results for modeled flood flows 

of QBF, Q2 and Q20.  Results are presented as the ratios of each event’s hydraulic 

responses to critical thresholds for d50 and d84 particle sizes of the observed bed material 

at riffles, runs and headcuts.  Figure 38, Figure 39 and Figure 40 present the results of the 

shear stress analysis for the three increasing discharges previously cited.  Similarly, 

Figure 41, Figure 42 and Figure 43 present the results of the critical particle sizes as a 

function of cessation velocity (critical velocity) for the three flows previously cited. 

 

Ratios on the ordinate greater than 1 indicate that critical thresholds have been exceeded 

and particle motion is expected.  Each range in ratio represents the variations in critical 

values for the suite of sediment samples collected on each morphological feature.  The 

symbol depicted in each range represents the average determined for a given 

morphological feature.   
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Figure 38.  Results of a) main channel shear vs. tc50 threshold and b) main channel shear vs. tc 84 

threshold along the normalized longitudinal profile at QBF. 
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Figure 39.  Results of a) main channel shear vs. tc 50 threshold and b) main channel shear vs. tc 84 
threshold along the normalized longitudinal profile at Q2. 
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Figure 40. Results of a) main channel shear vs. tc 50 critical threshold and b) main channel shear vs. 

tc 84 critical threshold along the normalized longitudinal profile at Q20. 
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Figure 41.  Results of a) maximum permissible particle size at QBF vs. the range of measured d50 

values and b) maximum permissible particle size at QBF vs. the range of measured d84 values along 
the normalized longitudinal profile. 
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Figure 42.  Results of a) maximum permissible particle size at Q2 vs. the range of measured d50 values 

and b) maximum permissible particle size at Q2 vs. the range of measured d84 values along the 
normalized longitudinal profile. 
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Figure 43.  Results of a) maximum permissible particle size at Q20 vs. the range of measured d50 

values and b) maximum permissible particle size at Q20 vs. the range of measured d84 values along the 
normalized longitudinal profile. 
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A common trend observed in Figure 38 – Figure 43 is that with increasing discharge, a 

greater number of the morphological features (i.e. headcuts, runs and riffles) begin to 

incrementally exceed both their critical shear stress and velocity thresholds.  As many of 

the sites range in age between 2 years and 20 years, continued and enhanced channel 

degradation is predicted with the hydraulic responses between the Q2 and Q20 year 

return periods.  Further, the general trends presented in Figure 38 – Figure 43 also 

indicate that, in most cases, the particle sizes comprising the bed material, and their 

associated critical thresholds, are more often exceeded relative to the critical shear 

thresholds for the range in flows studied. 

 

General trends, most apparent within the velocity results for Q20 (Figure 43) illustrate 

higher surpluses in the permissible thresholds of particles within the incised sections of 

the reservoir compared to cross-sections upstream with less incision.  Within the 

reservoir, the greatest surpluses (greatest ratios) occur at sites 6 and 4; the youngest two 

dam failure sites.  This is consistent among the results of shear and velocity.  The 

analyses of morphological features within the reservoir at both of these sites are 

experiencing the effects of Stage II channel evolution.  Sites 4 and 6 are still evolving as 

the maximum upstream headcut at both sites have not surpassed the reservoir limit.  In 

turn, the most recently removed dams show the greatest susceptibility to erosion during 

floods within the reservoir caused by highly incised, low sinuosity channels.  This 

susceptibility will be maintained until the channel widens and increases in sinuosity, 

indicative of later stages of channel evolution.   
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The uppermost feature for each site indicates the sediment range of the stable bankfull 

morphology which has yet to be affected by vertical incision.  Figure 38a demonstrates 

that at QBF, the shear along the channel bed is insufficient to degrade the stable bankfull 

morphology d50 particles at six of the eight sites (2, 3, 4, 5, 7, and 8).  Moreover, Sites 2, 

3, 4, 7, and 8 experience erosion of d50 at QBF due to shear at some features downstream.  

These observations support the hypothesis that sediment discontinuities of d50 particles at 

QBF are occurring at five of the sites.  These discontinuities cause further degradation of 

the channel bed and banks, and are a principle driving force in headcut migration.   

 

It was mentioned in Section 4.2 that Site 1 cross-sections immediately upstream of the 

dam had evolved to later stages of channel evolution (Stage IV or V) and experienced 

low hydraulic responses to floods attributed to floodplain access at lower discharge 

levels.  Further upstream at Site 1, however, severe channel incision is still apparent as 

illustrated in Figure 38 – Figure 43 as ratios on the ordinate typically exceed unity.  

These results further the conclusion as the foremost riffle upstream of the dam at Site 1 

indicates stability of d50 and d84 particles with respect to shear for QBF, Q2, Q20 and 

velocity for QBF and Q2.  Within the incised cross-sections upstream, erosion due to the 

exceedances of shear and velocity thresholds are apparent for all particles at all flood 

flows.   

 

To simplify the results presented in Figure 38 – Figure 43, the following summary tables 

were prepared for the shear stress ratios (Table 5) and critical velocity ratios (Table 6).  

These tables identify for each site and discharge analyzed, the particle sizes which exceed 
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their respective critical thresholds (i.e. values greater than unity in Figure 38 – Figure 

43).  Further, the tables have been divided into two sections to depict the erosion of the 

specified particle ranges within the impoundment and upstream of the impoundment.   

Table 5.  Summary of bed material and sizes exceeding critical shear stress thresholds for QBF, Q2,  
and Q20 within and upstream of site impoundments.  Note: if particle sizes are identified in the table, 

they exceed critical thresholds at one or more morphological features. 

 Within Impoundment Upstream of Impoundment 
SITE QBF Q2 Q20 QBF Q2 Q20 

Time Since 
Failure 
(Years) 

1 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 70 
2   d50    67 
3   d50 d50 d50/d84 d50 37 
4 d50/d84 d50/d84 d50/d84 d50 d50 d50 7 
5  d50 d50  d50 d50 39 
6 d50/d84 d50/d84 d50/d84    2 
7 d50/d84 d50/d84 d50/d84 d50 d50 d50 15 
8 d50 d50  d50    16 

 

Table 6. Summary of bed material and sizes exceeding critical velocity thresholds for QBF, Q2, and 
Q20 within and upstream of site impoundments.  Note: if particle sizes are identified in the table, they 

exceed critical thresholds at one or more morphological features. 

 Within Impoundment Upstream of Impoundment 
SITE QBF Q2 Q20 QBF Q2 Q20 

Channel 
Slope (SO) 

(-) 
1 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 - 
2 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 3.6E-03 
3 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 3.3E-03 
4 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 3.8E-03 
5   d50/d84    2.0E-03 
6 d50/d84 d50/d84 d50/d84    8.0E-03 
7 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 d50/d84 3.0E-03 
8 d50/d84 d50/d84 d50/d84 d50 d50 d50/d84 8.0E-03 

 

Comparison of Table 5 (shear) to Table 6 (velocity) show that increased levels of velocity 

at flood flows have greater influences on erosion than shear stress.  The notable exception 

is site 5 where shear stress with increasing discharge has dominated the channel 

evolution.  Site 5 is located within a kame moraine deposit which has the largest source 
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of course material from upstream bank erosion (relative to the other sites), and the bed 

material averages the second most coarse (d50 ≈ 69 mm – Table 3) particle size.  Further, 

the valley slope is the shallowest of all sites studied (1.7x10-3 m/m – Table 2) suggesting 

that the combination of the course bed material sizes and the shallowest slopes would 

result in velocities insufficient to typically move the range in bed material sizes.  

Therefore, the predominant mechanism for Site 5 is by channel shear. 

 

In the case of Site 6 (the most recent dam failure) headcuts have not been observed 

upstream of the impoundment region.  However, in undertaking the critical shear and 

velocity threshold analyses, both the d50 and the d84 values exceed both critical thresholds 

for all flows.  Considering that the local geology of this site is a sand plain deposit and 

the bed material at this site is primarily composed of sand (d50 ≈ 0.3mm – Table 3), it is 

likely that this watercourse will experience continued headcutting beyond the limits of 

the impoundment region.  Inspection of the HEC-RAS model developed for this site 

upstream of the impoundment  indicates that both shear and velocity conditions for the 

QBF, Q2 and Q20 exceed critical thresholds for the sand bed composition measured within 

and upstream of the study site.  The hydraulic analysis further supports the position that 

upstream channel degradation should be expected at this river reach.   

 

A similar argument to that posed for Site 6 is also consistent for Site 4 (which is the 

second youngest dam – 7 years).  The reach is a gravel bed channel (d50 ≈ 31mm – Table 

3), however, as indicated in Table 5 and Table 6 the critical velocity thresholds are 

exceeded throughout the impoundment and upstream regions for both d50 and d84 grain 
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sizes.  Moreover, the critical shear stress thresholds for d50 and d84 are exceeded within 

the impoundment in addition to the shear stress thresholds for the d50 values upstream of 

the impoundment.  These results suggest that headcut migration should be expected 

upstream of the impoundment, however, due to the short time span since dam removal, 

upstream migration has not evolved to the upper reaches. 
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5 CONCLUSIONS and RECOMMENDATIONS 
 
Field and modelling studies of eight removed or failed dam sites with no upstream 

interventions were used as the analog to passive channel restoration with a headcut driven 

channel formation.  The results show that vertical disturbances identified by headcuts 

extend for considerable distances upstream of the backwater limits of six of the eight 

reservoir study sites.  Furthermore, headcuts were observed and measured at all sites, 

which ranged in age between 2 years – 70 years since dam failure with the likelihood in 

all cases that channel degradation will continue in the future.  Similar results are probable 

at sites where passive dam removals are implemented without any upstream intervention. 

 

The hydraulic responses of unit stream power, velocity and shear strength within the 

disturbed channel reaches at flood flows that overtop banks were much greater than 

bankfull discharges upstream of the disturbed sections.  Main channel velocities 

exceeding critical thresholds dominated the channel evolution processes for the range in 

bed material particle sizes (0.3mm < d50 < 81mm) over critical shear stress thresholds 

with increasing discharges.  Only one site seems to have regained a stable channel 

morphology upstream of the dam face within the reservoir – which also corresponds to 

the oldest channel evolution at 70 years before present.  Channel degradation and the 

upstream propagation of headcuts will continue at the remaining sites until new dynamic 

equilibriums are achieved when sediment and discharge continuity are established; and 

geotechnical and geomorphic stability attained for each set of unique site-based 

conditions.  
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5.1 Recommendations 
 
To prevent vertical disturbances of the channel bed from migrating beyond the reservoir 

limits, grade control solutions should be incorporated into the channel restoration 

approach to ensure that the disturbances from dam decommissioning do not propagate 

upstream beyond the backwater limits.  Watson and Biedenharn [1999] identified two 

main categories of grade control structures which either construct a hard point within the 

main channel, by increasing bed material size that exceeds both critical shear stress and 

velocity thresholds, or by introducing a hydraulic control structure to decrease the energy 

slope.  Watson and Biedenharn [1999] further define the applicability of the type of grade 

control structure depends on factors such as hydraulic conditions, sediment size, channel 

morphology, and funding constraints, amongst many others.  Neilson et al. [1991] 

provides a comprehensive outline on types and applications of grade control structures.  

If fish passage is of interest, grade control structures that facilitate this intent should be 

considered.  Such structures may include rocky-ramps (Newbury and Gaboury, 1993) or 

cross-vane structures (Rosgen, 1996) if properly constructed within a bankfull cross-

sectional channel profile at appropriate locations. 

 

Furthermore, the extent of base level lowering may be controlled, to reduce the energy 

grade line, by a partial removal of the structure to the upper limit of the impounded 

sediments.  This would decrease the height of headcuts initiated at the dam face and 

would increase the likelihood of them diminishing by the reservoir limits and decrease 

the likelihood of velocities and shear stress exceeding critical thresholds. 
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Appendix A:  Croton Dam on Big Creek at Delhi 
Dam Location: 
Northing: 4740972m 
Easting: 540213m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure A – 1.  Croton Dam on Big Creek at Delhi site survey. 
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Figure A – 2.  Locations of sediment samples on Big Creek in Delhi. 
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Figure A – 8.  Results of a) unit stream power, b) average velocity, and c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, along the longitudinal profile for Big Creek at 
Delhi. 
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Figure A – 9.  Results of a) average channel shear stress and b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100 along the longitudinal profile for Big 
Creek at Delhi . 
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Appendix B:  Hawkesville Dam on Conestoga River at 
Hawkesville 
Dam Location: 
Northing: 4823911m 
Easting: 529356m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure B – 1.  Hawkesville Dam on Conestoga River at Hawkesville site survey. 
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Figure B – 2.  Locations of pavement samples on Conestoga River.at Hawkesville. 
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Figure B – 5.  Pavement sample characteristics of Headcut 3. 
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Figure B – 6.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for the Conestoga River at Hawkesville. 
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Figure B – 7.  Results of a) average channel shear stress, b) main channel shear stress for incremental 

discharge analyses ranging between Q  < Q <  Q100,, and c) thalweg elevation along the longitudinal 
profile for the Conestoga River at Hawkesville. 
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Appendix C:  Huttonville Dam on Credit River at 
Huttonville 
Dam Location: 
Northing: 4809470m 
Easting: 553860m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
 

")
UPPERMOST HEADCUT

FLOW DAM LOCATION

HERITAGE

MISSISSAUGA

EMBLE
TO

N

RIVER

QUEE
N

BROW
NS

OS
TR

AN
DE

R

LI
NKS

C
LIFFSID

E

M
ILL

HURON

RIVERCREST

0 10.5 KM

­

Legend

") Dam Location
Survey Points
Reservoir Area

HUTTONVILLE

 
Figure C – 1.  Huttonville Dam on Credit River at Huttonville site survey. 
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 Figure C – 2.  Locations of pavement samples on Credit River at Huttonville. 
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Figure C – 4.  Pavement sample characteristics of Headcut 2. 
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Figure C – 5.  Pavement sample characteristics of Headcut 3. 

 
BOTTOM 

d mm
5 1.0
16 7.9
25 21.9
50 46.2
75 69.5
84 98.4
95 132.2  

TOP 
d mm
5 0.9
16 13.6
25 24.2
50 58.9
75 65.6
84 68.2
95 98.1

d mm
5 0.3
16 0.9
25 2.3
50 9.5
75 29.6
84 34.5
95 46.6  

d mm
5 0.3
16 0.9
25 3.6
50 20.8
75 60.3
84 65.1
95 88.3

0.01 0.1 1 10 100 1000
PARTICLE SIZE (mm)

0

20

40

60

80

100

CU
M

U
LA

TI
V

E
 P

E
RC

E
N

T 
FI

N
E

R 
(%

)

TOP OF RUN
BOTTOM OF RUN

CLAY/SILT SANDS GRAVELS COBBLES BOULDERS

 d mm
5 0.9
16 7.6
25 23.9
50 89.1
75 125.5
84 130.4
95 136.6

Figure C – 6.  Pavement sample characteristics of Run 4. 



 115

BOTTOM 
d mm
5 1.0
16 8.8
25 30.1
50 66.1
75 89.7
84 92.8
95 96.8  

TOP 
d mm
5 0.9
16 9.4
25 30.1
50 87.4
75 124.2
84 129.6
95 136.4

d mm
5 3.4
16 30.5
25 45.4
50 90.8
75 244.3
84 256.3
95 271.8  

d mm
5 7.1
16 44.5
25 84.2
50 129.6
75 423.2
84 439.3
95 459.9

0.01 0.1 1 10 100 1000
PARTICLE SIZE (mm)

0

20

40

60

80

100
CU

M
U

LA
TI

V
E

 P
E

RC
E

N
T 

FI
N

E
R 

(%
)

TOP OF RUN
BOTTOM OF RUN

CLAY/SILT SANDS GRAVELS COBBLES BOULDERS

d mm
5 1.2
16 9.0
25 22.6
50 59.7
75 120.3
84 126.9
95 135.5  

d mm
5 4.4
16 32.0
25 48.7
50 83.8
75 123.8
84 129.2
95 136.3

Figure C – 7.  Pavement sample characteristics of Run 5. 

 
BOTTOM 

d mm
5 0.6
16 7.1
25 17.0
50 61.2
75 92.1
84 122.7
95 134.1  

TOP 
d mm
5 1.0
16 9.1
25 32.0
50 86.1
75 126.1
84 130.8
95 136.8

d mm
5 0.5
16 2.3
25 8.0
50 32.3
75 86.2
84 93.8
95 128.7  

d mm
5 0.6
16 4.6
25 16.4
50 62.3
75 87.9
84 92.7
95 119.1

0.01 0.1 1 10 100 1000
PARTICLE SIZE (mm)

0

20

40

60

80

100

CU
M

U
LA

TI
V

E
 P

E
RC

E
N

T 
FI

N
E

R 
(%

)

TOP OF RUN
BOTTOM OF RUN

CLAY/SILT SANDS GRAVELS COBBLES BOULDERS

d mm
5 0.9
16 8.1
25 23.7
50 67.6
75 183.9
84 235.5
95 264.7  

d mm
5 0.5
16 2.0
25 6.8
50 23.8
75 48.5
84 62.4
95 68.2

Figure C – 8.  Pavement sample characteristics of Run 6. 



 116

BOTTOM 
 

TOP 
d mm
5 1.7
16 7.9
25 24.2
50 62.6
75 93.1
84 121.5
95 133.7

 d mm
5 0.3
16 1.8
25 4.4
50 22.1
75 43.4
84 59.1
95 90.0

0.01 0.1 1 10 100 1000
PARTICLE SIZE (mm)

0

20

40

60

80

100
CU

M
U

LA
TI

V
E

 P
E

RC
E

N
T 

FI
N

E
R 

(%
)

TOP OF RUN
BOTTOM OF RUN

CLAY/SILT SANDS GRAVELS COBBLES BOULDERS

  

Figure C – 9.  Pavement sample characteristics of Run 7. 
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Figure C – 10.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Credit River at Huttonville. 
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Figure C – 11.  HEC Results of a) average channel shear stress, b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the 
longitudinal profile for Credit River at Huttonville. 
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Appendix D:  Chilligo Dam on Ellis Creek at Cambridge 
Dam Location: 
Northing: 4809470m 
Easting: 553860m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure D – 1.  Chilligo Dam on Ellis Creek at Cambridge site survey. 
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Figure D – 2.  Locations of pavement samples at Chilligo Dam on Ellis Creek. 
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Figure D – 3.  Pavement sample characteristics of Run 2. 
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Figure D – 4.  Pavement sample characteristics of Run 3. 
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Figure D – 5.  Pavement sample characteristics of Headcut 5. 
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Figure D – 6.  Pavement sample characteristics of Riffle 6. 
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Figure D – 7.  Pavement sample characteristics of Riffle 7. 
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Figure D – 8.  Pavement sample characteristics of Riffle 8. 
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Figure D – 9 Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Ellis Creek at Cambridge. 
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Figure D – 10.  Results of a) average channel shear stress, b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the 
longitudinal profile for Ellis Creek at Cambridge. 
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Appendix E:  Greenfield Dam on Nith River at Greenfield 
Dam Location: 
Northing: 4794080m 
Easting: 542633m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure C – 1.  Greenfield Dam on Nith River at Greenfield site survey. 

 



 127

")

!

!

!

"

UPPERMOST HEADCUT

GREENFIELD
DAM LOCATION

40
1

TR
U

SSLER

GREENFIELD

TOWNSHIP RD 11

40
1

TRUSSLER

Run 1

Run 2

Riffle 4

Headcut 3

0 10.5 km

­

Legend

") Dam Location
" Headcut
! Riffle / Run

Reservoir Area

FLOW

 
Figure E – 2.  Locations of pavement samples at Greenfield Dam on Nith River. 
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Figure E – 4.  Pavement sample characteristics of Run 2. 
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Figure E – 5.  Pavement sample characteristics of Headcut 3. 
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Figure E –6.  Pavement sample characteristics of Riffle 4. 
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Figure E – 7.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Nith River at Greenfield. 
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Figure E – 8.  Results of a) average channel shear stress, b) main channel shear stress for incremental 

discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the longitudinal 
profile for Nith River at Greenfield. 
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Appendix F:  Sutton Dam on Patterson Creek at Simcoe 
Dam Location 
Northing: 4744209m 
Easting: 556476m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure F – 1:  Sutton Dam on Patterson Creek at Simcoe site survey. 
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Figure F – 2:  Locations of pavement samples at Sutton Dam on Patterson Creek. 
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Figure F – 3.  Pavement sample characteristics of Riffle 3. 
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Figure F – 3.  Pavement sample characteristics of Headcut 5. 
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Figure F – 5.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Patterson Creek at Simcoe. 
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Figure F – 6.  Results of a) average channel shear stress and b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the 
longitudinal profile for Patterson Creek at Simcoe. 
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Appendix G:  Teeswater Dam on Teeswater River at 
Teeswater 
Dam Location: 
Northing: 4871951m 
Easting: 477291m 
(Coordinate System: NAD 1983 UTM Zone 17N) 
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Figure G – 1:  Teeswater Dam on Teeswater River at Teeswater site survey. 
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Figure G – 2:  Locations of pavement samples at Teeswater Dam on Teeswater River. 
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Figure G – 3.  Pavement sample characteristics of Riffle 1. 
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Figure G – 4.  Pavement sample characteristics of Riffle 2. 
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Figure G – 5.  Pavement sample characteristics of Headcut 3. 
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Figure G – 6.  Pavement sample characteristics of Run 4. 
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Figure G – 7.  Pavement sample characteristics of Run 5. 
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Figure G – 8.  Pavement sample characteristics of Run 6. 
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Figure G – 9.  Pavement sample characteristics of Headcut 7. 
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Figure G – 10.  Pavement sample characteristics of Run 8. 
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Figure G – 11.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Teeswater River at Teeswater. 
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Figure G – 12.  Results of a) average channel shear stress, b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the 
longitudinal profile for Teeswater River at Teeswater for 100 equivalent flows up to 100 year flood. 
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Appendix H:  Bognor Dam on Walter’s Creek at Bognor 
Dam Location: 
Northing: 4930020m 
Easting: 520701m 
(Coordinate System: NAD 1983 UTM Zone 17N 
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Figure H – 1:  Bognor Dam on Walter’s Creek at Bognor site survey. 
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Figure H – 2:  Locations of pavement samples at Bognor Dam on Walter’s Creek. 
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Figure H – 3.  Pavement sample characteristics of Riffle 2. 
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Figure H – 4.  Pavement sample characteristics of Headcut 3. 
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Figure H – 5.  Results of a) unit stream power, b) average velocity, c) main channel velocity for 

incremental discharge analyses between 0  < Q <  Q100, and d) thalweg elevation along the 
longitudinal profile for Walter’s Creek at Bognor. 
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Figure H – 6.  Results of a) average channel shear stress, b) main channel shear stress for 

incremental discharge analyses ranging between Q  < Q <  Q100, and c) thalweg elevation along the 
longitudinal profile for Walter’s Creek at Bognor. 

 
 
 

 
 
 


