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Abstract

Clustering is a widely used technique, with applications ranging from data mining, bioinfor-
matics and image analysis to marketing, psychology, and city planning. Despite the practical
importance of clustering, there is very limited theoretical analysis of the topic. We make
a step towards building theoretical foundations for clustering by carrying out an abstract
analysis of two central concepts in clustering; clusterability and clustering quality.

We compare a number of notions of clusterability found in the literature. While all these
notions attempt to measure the same property, and all appear to be reasonable, we show
that they are pairwise inconsistent. In addition, we give the first computational complexity
analysis of a few notions of clusterability.

In the second part of the thesis, we discuss how the quality of a given clustering can be
defined (and measured). Users often need to compare the quality of clusterings obtained
by different methods. Perhaps more importantly, users need to determine whether a given
clustering is sufficiently good for being used in further data mining analysis. We analyze
what a measure of clustering quality should look like. We do that by introducing a set of
requirements (‘axioms’) of clustering quality measures. We propose a number of clustering
quality measures that satisfy these requirements.
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Chapter 1

Introduction

Clustering is a widely used technique, with applications ranging from data mining, bioin-

formatics and image analysis to marketing, psychology, and city planning. Clustering is

the problem of identifying groups of similar objects. Despite the practical importance of

clustering, there is very limited theoretical analysis of the topic. We make a step towards

building theoretical foundations for clustering by carrying out an abstract analysis of two

central concepts in clustering; clusterability and clustering quality.

Clustering methods can be categorized into algorithm-based and loss-based. Algorithm-

based clustering methods find clusterings using a specific algorithm. Linkage-based and

spectral clustering methods fall under this category. Loss-based clustering methods define

the optimal clusterings of a data set as the clusterings that minimize some loss function.

We compare a number of notions of clusterability found in the literature. Most of these

notions of clusterability apply to loss-based clustering. While all these notions attempt to

measure the same property, and all appear to be reasonable, we show that they are pairwise

inconsistent. Understanding how these notions relate to one another enables the formal

comparison of results on clusterability. In addition, understanding the relationships between

different notions of clusterability, such as their relative strength, helps to make informed
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choices when selecting clusterability notions for particular studies. We also give the first

computational complexity analysis of a few notions of clusterability.

We introduce a new notion of clusterability based on point perturbations. This notion

of clusterability is well-suited for center-based clustering over normed vector spaces. We

compare this notion to the notions of clusterability from the literature, finding that it is

distinct from these notions. We also present variations of this notion, which opens up a

whole new class of notions of clusterability.

In the second part of the thesis, we discuss how the quality of a given clustering can be

defined (and measured). Users often need to compare the quality of clusterings obtained

by different methods. Perhaps more importantly, users need to determine whether a given

clustering is sufficiently good for being used in further data mining analysis. We analyze

what a measure of clustering quality should look like. We introduce a set of axioms of

clustering quality measures. We then propose a number of clustering quality measures that

satisfy these axioms. These clustering quality measures apply in different settings and have

different properties. We introduce a number of measures specifically for loss-based clustering,

as well as a number of measures for center-based clustering.

In this thesis we take the first step towards establishing a theory of clustering. Through-

out this thesis, we propose alternative formalizations of clustering quality measures and some

notions of clusterability. We also discuss connections between clusterability and clustering

quality. We hope that this work will lead to further development of the theory of clustering

and believe that it will be of great benefit in practical applications.

1.1 Preliminaries

A k-clustering of data set X is a k-partition of X, that is, a set of k disjoint subsets of X

such that their union is X. A clustering of X is a k-clustering of X for some k ≥ 1. A
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clustering is trivial if each cluster consists of a single point, or if all points belong to the

same cluster. A clustering is non-trivial if it is not trivial. For x, y ∈ X and clustering C of

X, x ∼C y whenever x and y are in the same cluster of clustering C and x 6∼C y, otherwise.

We introduce additional definitions throughout the thesis, as appropriate.
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Chapter 2

Clusterability

2.1 Introduction

Clusterability is a central concept in clustering. The goal of clustering is to find meaningful

patterns in data and a measure of clusterability determines to what degree these patterns

exist. Authors often come up with new definitions of clusterability depending on the use

of clustering in their research. We selected a number of clusterability notions from the

literature. While all these notions attempt to measure the same property, and all appear to

be reasonable definitions, we found that they are pairwise inconsistent. Understanding how

these notions relate to one another enables the formal comparison of results on clusterability.

In addition, understanding the relationships between different notions of clusterability, such

as their relative strength, helps to make informed choices when selecting clusterability notions

for particular studies.

The other dimension on which we analyze notions of clusterability is so natural and im-

portant that it is surprising that it has not yet been studied. We ask the following question:

For a given notion of clusterability, how hard is it to determine the level of clusterability of a

data set? The answer to this question is central to the practical value of the notion in ques-
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tion. We give the first computational complexity analysis of a few notions of clusterability.

We also introduce a new notion of clusterability based on point perturbations. This

notion of clusterability is well-suited for center-based clustering and works on data sets over

normed vector spaces. We compare this notion to the notions of clusterability from the

literature, finding that it is distinct from these notions. We also present variations of this

notion, which opens up a whole new class of notions of clusterability.

In this chapter we work with data sets over normed vector spaces. Since the notions

of clusterability taken from the literature were originally defined for Euclidean spaces, our

definitions are more general. However, all definitions and most results pertaining to the

notions of clusterability from the literature can be easily generalized further, to arbitrary

spaces (where the input is a set of pairwise distances between points).

We now give an outline of this chapter. First, we introduce notions of clusterability from

the literature. We then introduce our new notion of clusterability as well as its variations.

Next we prove computational complexity results for the notions of clusterability appearing

in the literature. Then we perform a pairwise comparison of the notions and conclude with

open problems.

2.2 Notions of Clusterability from the Literature

A notion of clusterability is a function that takes a data set X and returns a real value. In

this chapter, we assume that the data sets are over normed vector spaces, therefore distances

between points are implicitly specified by the data sets. Since many of the notions found in

the literature are defined with respect to the k-means loss function, we focus our analysis on

clustering with respect to k-means. However, the notions of clusterability presented in this

chapter generalize in a natural way to work with other loss functions.

Given a data set X, the k-means problem is to find a k-partition {X1, X2, . . . , Xk} of
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X such that the k-means loss function
∑k

i=1

∑
x∈Xi

‖x − ci‖2 is minimized, where ci =

1
|Xi|

∑
x∈Xi

x is the center of mass of Xi. In this chapter, an optimal clustering refers to a

clustering with minimal k-means loss, unless specified otherwise. We let OPTk(X) denote

the loss of an optimal k-means clustering of X.

We introduce three notions of clusterability that appear in the literature. For each notion,

we discuss its range of values, previous work, and some relevant properties.

2.2.1 Separability Clusterability

In their paper “The Effectiveness of Lloyd-Type Methods for the k-Means Problem,” Ostro-

vsky, Rabani, Schulman, and Swamy define the notion of ε-separability[12].

Definition 1 (Separability). A data set X is (k, ε)-separable if OPTk(X) ≤ εOPTk−1(X).

For convenience, we define Sk(X) to be the smallest ε such that X is (k, ε)-separable. A

data set has better separability than another data set if it is separable for smaller ε. Data is

considered well-clusterable by the separability notion of clusterability if it is ε-separable for

sufficiently small ε.

Range of values

Let’s consider the upper and lower bounds of separability. Separability can be as good

as ε = 0. In particular, for any k, there is a data set that is (k, 0)-separable. An

example of such a data set is a set of k points positioned in different locations. Then

OPTk(X) = 0 and OPTk−1(X) > 0.

How high can ε be? Since the loss of an optimal k-clustering is no worse than the

loss of an optimal (k − 1)-clustering, Sk(X) ≤ 1. We show that separability can be

arbitrarily close to 1. Consider a data set X uniformly distributed on a line segment
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of length L. Then OPTk(X) ≈ n L2

16k2 for large enough n. Therefore, Sk(X) ≈ (k−1
k

)2.

Therefore, as k goes to infinity, ε approaches 1.

Relevant Results in Literature

The Lloyd algorithm is a simple center-based clustering algorithm. Initially, select

k centers. Then, perform a Lloyd step: find a k-partition by assigning each point

to its closest center, and let the new centers be the centers of mass of the resulting

clusters. Perform Lloyd steps until there is a step that does not change the centers.

Many variations of the Lloyd algorithm appear in the literature. The original greedy

iteration to minimize loss was proposed by Lloyd [8].

Ostrovsky et al. show that for data sets with better separability, a modified version of

the Lloyd algorithm yields solutions of better quality with higher probability[12]. An

interesting feature of this notion of clusterability is that it implies and is implied by

the condition that two near optimal solutions differ by a small fraction of data points,

as shown by Ostrovsky et al.[12]

2.2.2 Worst Pair Ratio Clusterability

Worst Pair Ratio (WPR) is a measure of clusterability that is based on distances between

points that are within and between clusters. Given clustering C, we denote the minimum

distance between two points in different clusters of C as the split between the two clusters,

and the minimal split between two clusters as the split of C; that is, splitC(X) = minx 6∼y‖x−

y‖. We denote the maximum distance between two points within a cluster in C as the width

of the cluster, and the maximal width of a cluster in C as the width of C; widthC(X) =

maxx∼y‖x− y‖.

We focus on optimal clusterings by the k-means measure of optimality. However, we
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could use any other measure of optimality.

Definition 2 (Worst Pair Ratio). Let C be the set of optimal k-means clusterings of X.

Then the worst pair ratio of X for k is

WPRk(X) = max
C∈C

splitC(X)

widthC(X)
.

Note that in most real data sets, there is a unique clustering with minimal k-means loss.

An alternative natural definition of WPR is the maximum ratio of split over width over

all k-clusterings of the data set. This version has been presented by Epter et al.[5] The

definition that we have chosen has the same flavour as the other notions presented in this

chapter. However, since these definitions are very similar, the complexity and comparison

results presented here apply to Epter’s version of WPR as well as the version that we focus

on, using essentially the same proofs.

The higher the value of WPRk(X), the more clusterable is the data set. We call data

set X WPR well-clusterable for k when WPRk(X) > 1 and WPR poorly-clusterable for k,

otherwise.

Range of values

How high can WPR be? For k = 1, between-cluster variance is poorly defined; we thus

consider the problem for k ≥ 2. We can easily see that WPR can be arbitrarily large.

For instance, consider k well spaced out clusters in R. Then by uniformly spacing out

the clusters, we can increase WPR arbitrarily.

How low can WPR be? Consider a set of n uniformly distributed points in R. The

optimal 2-means clustering groups the leftmost half of the points into one cluster and

all the other points into another cluster. By increasing the number of points in this

scenario, we can get values of WPR arbitrarily close to 0. To extend this example to
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arbitrary values of k, add k − 2 points sufficiently far from all other points and from

each other so that they make their own clusters in the optimal k-means clustering.

Thus, the range of WPR for k ≥ 2 is (0,∞).

Multiple Optimal Solutions

We illustrate that different optimal clusterings of the same data set may have different

minimum split, maximum cluster width, and split over width values. Consider the

points 1, 3, 14 and 14 + 8
√

3 in one-dimensional space. We cluster this data into 2

clusters. One optimal 2-means clustering is {A, B} where A = {1, 3, 14} and B =

{14 + 8
√

3}. The center of cluster A is 6 and the center of cluster B is 14 + 8
√

3.

Therefore, the loss of this clustering is 52 + 32 + 82 + 0 = 98. Another clustering has

clusters C = {1, 3} and D = {14, 14+8
√

3}. The center of C is 2 and the center of D is

14+4
√

3. Therefore, the loss of the second clustering is 1+1+ (4
√

3)2 +(4
√

3)2 = 98.

Clearly, there is no 2-clustering of this set with loss less than 98. Therefore, we have

two optimal clusterings, one with minimum separation 8
√

3 ≈ 13.9 and maximum

cluster width 13 and the other minimum separation 11 and maximum cluster width

8
√

3 ≈ 13.9. So we have split over width of ≈ 1.065 in one of the optimal clusterings,

and ≈ 0.794 in the other. So, according to one of the optimal clusterings the data is

well-clusterable and according to the other it is not. Therefore, we select the optimal

clustering with maximal split over width ratio in our definition of WPR.

Sensitivity to Noise and Outliers

One of the shortcomings of this notion is its intolerance to noise and outliers. For

instance, having only one out of a thousand clusters with high width pulls down

the worst pair ratio, suggesting that what may intuitively be well-clusterable data,

is poorly-clusterable by this notion of clusterability. Similarly, having a small num-
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ber of non-representative points can decrease the separation, labeling data that has

“innate” clusters as poorly-clusterable.

When using WPR as a measure of clusterability on real data sets it may be helpful to

preprocess data by removing noise and outliers. One way to remove noise is to run an

algorithm which detects dense areas, and then removes all points in areas of density

below a certain threshold. On the other hand, we could use WPR to detect noise, by

allowing the removal of a preset number of points that pulls down the worst pair ratio.

Without preprocessing, this is a rather unforgiving notion, but it is simple and has nice

properties. It is satisfying in a least one direction - if according to this notion a data

set is well clusterable, then it does have what seems to be an innate clustering. On

the other hand, if according to WPR a data set is poorly-clusterable, it is still possible

that it possesses an innate clustering that is not captured by this notion.

Relevant Previous Work

Epter et al.[5] present a heuristic for finding the number of clusters to use to cluster

data set X, assuming there is some clustering of the data set where the maximal width

of a cluster is smaller than the minimal split of the clustering. They present a method

for estimating a suitable number of clusters for X and a threshold c, so that two points

are in the same cluster if and only if they are at distance less than c.

2.2.3 Variance Ratio Clusterability

Variance Ratio (VR) is a very natural notion of clusterability that measures the ratio of the

between-cluster variance over the within-cluster variance. This measure can be viewed as a

relaxation of WPR. We can define the variance ratio of a data set X as
avgx6∼Cy‖x−y‖
avgx∼Cy‖x−y‖ , where

C is an optimal clustering by some measure of optimality.

10



A specialized version of this idea was presented by Bin Zhang [13]. Zhang presents a

version of variance ratio that is tailored for the k-means loss function. Recall that the

variance of X is σ2(X) = 1
|X|

∑
x∈X ‖x − c‖2, where c is the center of mass of X. Let

C = {X1, X2, . . . , Xk} be a clustering, where center(Xi) = ci. Let pi = |Xi|
|X| . Let BC(X) =∑k

i=1 pi‖ci − c‖2 denote the between-cluster variance of C. Let WC(X) =
∑k

i=1 piσ
2(Xi)

denote the within-cluster variance of C. Then,

σ2(X) = WC(X) + BC(X) =
k∑

i=1

piσ
2(Xi) +

k∑
i=1

pi‖ci − c‖2.

Notice that WC(X) is the loss function that k-means minimizes divided by |X|.

Definition 3 (Variance Ratio). Let C be the set of optimal k-mean clusterings of data set

X. The variance ratio of X for k is

V Rk(X) = max
C∈C

BC(X)

WC(X)
.

Since σ2(X) = WC(X) + BC(X) and σ2(X) is constant over all clustering of X, WC(X)

as well as BC(X) are equal in all optimal k-means clusterings that maximize the between

over within variance ratio. Thus, we let Wk(X) = WC(X) and Bk(X) = BC(X), where C

is some optimal k-means clustering that maximizes the between over within variance ratio

over all optimal k-means clusterings of X. Note that for higher values of VR, data is better

clusterable.

Range of Values

What is the maximum value of VR clusterability? For k = 1, V R1(X) = 0, since c1 = c.

For k ≥ 2, V Rk(X) can be arbitrarily large, by moving a single point arbitrarily far

away from the others. Note the sensitivity of the VR measure to the positioning of a
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single outlier. By placing a single point far away, it is possible to arbitrarily increase

V Rk(X).

How low can V Rk(X) be for k ≥ 2? Clearly, since distances are non-negative,

V Rk(X) ≥ 0. It remains open to find the lower bound of VR.

Relevant Results in Literature

Zhang [13] found through experiments that the more clusterable data is according to

VR clusterability, the harder it is to cluster. In particular, Zhang analyzes the quality

of algorithms for the following three problems: k-means, expectation minimization

with linear mixing of the Gaussian density function, and k-harmonic means. Let Mloc

be a local optimal clustering solution obtained by some algorithm. The Quality Ratio

is defined as

QR =
√

k-means(X, Mloc)/ min
M

√
k-means(X, M).

That is, the quality ratio is the k-means loss using centers Mloc over the optimal k-

means loss. Mloc could have been obtained using algorithms for any of the three listed

problems. If QR is low, the quality of a clustering is better. The average QR is

analyzed as a function of data set clusterability.

Zhang finds that for all three algorithms, the quality ratio is higher when the data

is better clusterable. That is, as V Rk(X) becomes larger, the loss obtained by the

algorithms differs more from the loss of the optimal solution. The explanation proposed

by Zhang for this phenomenon is that for well-clusterable data, incorrectly placed

centers incur higher penalty on the loss function.
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2.3 Perturbation-Based Notions of Clusterability

We now introduce a new notion of clusterability. There are a number of ways to define

clusterability in terms of perturbation. We present a version that is particularly well-suited

for center-based clustering. In the end of the section, we present a number of alternative

formulations. Given a good center-based clustering, if the centers of an optimal solution

are perturbed slightly, yielding a new clustering, the loss of the resulting clustering should

be close to the loss of the original clustering. Since we are working with normed vector

spaces, we define the center of a cluster as its center of mass. That is, cluster Xi has center

ci = 1
|X|

∑
x∈Xi

x.

We give a definition of perturbation loss with the k-means loss function, although any

loss function can be used. First, we need a preliminary definition.

Definition 4 (ε-close). Let X be a data set over S. Let C = {X1, X2, . . . , Xk} be a clustering,

with centers {c1, c2, . . . , ck}. Clustering C ′ = {X ′
1, X

′
2, . . . , X

′
k} of X is ε-close to C if there

exists a set {c′1, c′2, . . . , c′k} ⊆ S such that ‖c′i− ci‖ ≤ ε, and whenever x ∈ X ′
i then ‖x− c′i‖ ≤

‖x− c′j‖ for all i 6= j.

Note that the loss of C ′ is computed with respect to the centers of mass of its clusters,

which may not necessarily be {c′1, c′2, . . . , c′k}.

Definition 5 (Perturbation Loss Clusterability). Let ε be a non-negative real number, and

f : R+ ∪ {0} → {r ∈ R, r ≥ 1} a monotonic non-decreasing function. X is (ε, f)-PL

clusterable for k if for any k-means optimal clustering C, and C ′ ε-close to C, k-means(C ′) ≤

f(ε)k-means(C).

Thus, if f is a slow-growing function and ε is reasonably large relative to the positions

of points in the data set, then X is well-clusterable.
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An application of PL clusterability

We present an algorithm for finding a clustering that is ε-close to a k-means optimal

clustering. If we know that X is (ε, f)-PL clusterable, then we can estimate the quality

of the clustering found by the algorithm.

The following algorithm is based on an algorithm by Ben-David, Eiron, and Simon [3].

The algorithm checks all possible sets of k sets each having l points from X, where the

average of each set of l points defines a center. For each set of k centers, it performs a

Lloyd step to obtain a clustering. In particular, when the initial set of centers is found,

it finds the closest center for each point and recalculates the centers of the resulting

clusters. It chooses the clustering that gives the best k-means loss of the clusterings

found using this approach.

Algorithm 1.

INPUT: A data set X, k ≥ 1, l ≥ 1.

OUTPUT: Outputs a clustering CA of X such that

k-means(CA) ≤ min {k-means(C) | C is R√
l
-close to an optimal clustering.} where

R is the radius of the minimum hypersphere that contains all the points in X.

CA = ∅

for each set of k l-subsets of X

find the center of mass for each l-subset

for each point in X, find the closest of these centers, getting clustering Ĉ

let Ĉ ′ be the set of the centers of mass of Ĉ

calculate the loss of clustering with centers in Ĉ ′

if (CA = ∅ or k-means(CA) > k-means(Ĉ ′))

CA = Ĉ ′

return CA

We now show how the above algorithm relates to PL clusterability.
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Lemma 1. Given integers l, k ≥ 1 and data set X ⊆ Rm that is ( R√
l
, f)-PL clusterable,

Algorithm 1 finds k-clustering CA such that k-means(CA) ≤ f( R√
l
)k-means(C), where

C is an optimal k-means clustering of X.

Proof. Note that the radius of the data set, R, can be calculated by finding the points

of maximum distance and dividing by 2. The following is a result by Maurey [10]: For

any fixed l ≥ 1 and each x′ in the convex hull of X, there exist x1, x2, . . . , xl ∈ X

such that ‖x′ − 1
l

∑l
i=1 xi‖ ≤ R√

l
where R is the radius of the smallest hypersphere

that contains all of the points in X. Therefore, there is a clustering, Ĉ, examined by

Algorithm 1, that is R√
l
-close to the optimal clustering. After the Lloyd step, yielding

clustering Ĉ ′, the loss does not decrease. Since Algorithm 1 selects the minimal loss

clustering of the ones it reviews, k-means(CA) ≤ k-means(Ĉ). Since Ĉ is R√
l
-close to

C, k-means(CA) ≤ k-means(Ĉ) ≤ f( R√
l
)k-means(C).

By Lemma 1, if we know that X is ( R√
l
, f)-PL clusterable, then we have a quality

guarantee on the output of Algorithm 1. Note that for sufficiently large values of l,

k-means(CA) = k-means(C).

The running time of Algorithm 1 is mnlk+1, where n = |X| and X = Rm. We can

remove the dependence of the running time on |X| by sampling. Ben-David [2] showed

that if a sample S ⊆ X of size ≥ ln 2/δ
2γ2 is picked i.i.d then with probability > 1− δ the

centers found using S as the data set extend to a clustering of X of loss less than γ

away from the optimal clustering of X. Therefore, by using a sample of the data set,

we remove the dependence of Algorithm 1 from the size of the data set. Clearly, this

assumes that the data set is sufficiently large; however, this is permissible since for

small data sets the k-means problem is easier to solve exactly. Depending on the level

of certainty required, select a big enough sample. The running time of A with the use

of a sample is then m|S|lk+1.
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Alternative Formulations

Instead of comparing loss function values, we could consider the distance between the

optimal clustering and the clustering resulting from slight perturbation of the centers.

There are many ways to define the distance between clusterings, see [9] for a review of

some examples.

For instance, the following is a definition of distance between two clusterings Ĉ and

C ′ of data set X as defined by Meila [9]. Let Ĉ = {Ĉ1, Ĉ2, · · · , Ĉk} and C ′ =

{C ′
1, C

′
2, · · · , C ′

k}. Let mi,j = |Ĉi ∩ C ′
j|. Then the distance between clusterings Ĉ

and C ′ is D(Ĉ, C ′) = 1 − 1
n

max{π∈Π}
∑

i mi,π(i), where n is the number of points in

the data set and Π is the set of all permutations of {1, 2, . . . , k}. We define Pertur-

bation Distance clusterability using Meila’s definition of cluster distance, however, the

definition can work with many other ways of defining distances between clusterings.

Definition 6 (Perturbation Distance Clusterability). Let ε be a non-negative real num-

ber, and f : R+ ∪ {0} → R+ ∪ {0} a function. X is (ε, f)-PD clusterable for k if for

any k-means optimal clustering C, and C ′ an ε-close clustering to C, D(C, C ′) ≤ f(ε).

We now present a different variation of perturbation-based clusterability. In soft clus-

tering, a single point is assigned to many clusters with various probabilities. In hard

clustering, which is the type of clustering with which we are concerned, a point is as-

signed to a unique center (or the cluster which this center represents). Sometimes there

is a unique center that is by far the most appropriate for a specific point, whereas in

other situations many centers are about equally well-suited for a point. We can think

of the difference between the distance to the closest center and the distance to the

second closest center as the margin of a point. Then, we use the average margin as a

notion of clusterability. We now formalize these ideas.
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Definition 7 (Relative Point Margin). Let C with cluster centers {c1, c2, . . . , ck} be a

clustering. Let x ∈ X. Let ci be the closest center to x and cj the second closest center

to x. The relative margin of x with respect to C is RMC(x) = ‖x−ci‖
‖x−cj‖ .

Definition 8 (Relative Margin). Let C be the set of optimal k-means clusterings of X.

The relative margin of X is

RMk(X) = min
C∈C

avgx∈XRMC(x).

2.4 Computational Complexity of Clusterability

The computational complexity of clusterability has received surprising little attention in the

literature. We present the first results on the computational complexity of the notions of

clusterability appearing the literature that were presented in Section 2.2.

2.4.1 Computational Complexity of Separability

Separability and Variance Ratio were originally presented for data sets over Euclidean spaces.

We show that over Euclidean spaces, determining the separability and VR of a data set is

NP-hard.

Theorem 1. Given X ⊆ Rm, integer k ≥ 2, and 0 ≤ ε < 1, it is NP-hard to determine

whether Sk(X) ≤ ε.

Proof. The decision version of the k-means problem is: does there exist a set of centers such

that the loss function of k-means has value ≤ v if these centers are used to cluster X? This

problem is NP-complete for k ≥ 2 over Euclidean spaces.[4]

X is (2,ε)-separable clusterable if OPT2(X)
OPT1(X)

≤ ε. Suppose that we can determine whether

X ⊆ Rm is (2,ε)-separable for any arbitrary constant ε > 0 in polynomial-time. Then since
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OPT2(X) ≤ εOPT1(X) and OPT1(X) can be found in polynomial-time, we can find out

if OPT2(X) ≤ µ for any µ by checking if X is (2,ε)-separable for ε = µ
OPT1(X)

. However,

determining if OPT2(X) ≤ µ for any arbitrary µ > 0 is NP-hard. Therefore, determining if

X is (2,ε)-separable is NP-hard.

Since the problem is NP-hard for k = 2, it is NP-hard for k > 2. To show that the

problem is NP-hard for k > 2, we reduce the problem for k = 2 to the problem for any

k > 2. Given X, add k − 2 points sufficiently far away from all points in X and from each

other, so that each one of the new points will have to be its own cluster in the optimal

clustering. Then in any k-means optimal clustering, the remaining 2 clusters are an optimal

2-means solution for the original data set.

2.4.2 Computational Complexity of Variance Ratio

Theorem 2. Given X ⊆ Rm and integers k ≥ 2 and r ≥ 0, it is NP-hard to determine

whether V Rk(X) ≥ r.

Proof. We know that σ2(X) = Wk(X) + Bk(X). So,

V Rk(X) =
Bk(X)

Wk(X)

=
σ2(X)−Wk(X)

Wk(X)

=
σ2(X)

Wk(X)
− 1

=
|X|σ2(X)

OPTk(X)
− 1

Thus, if we can tell whether V Rk(X) = |X|σ2(X)
OPTk(X)

− 1 ≥ r for any r ≥ 0, then we can tell
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whether OPTk(X) ≤ |X|σ2(X)
(r+1)

. We can find |X|σ2(X) in polynomial time. Also, by definition

of OPTk(X), OPTk(X) ≤ |X|σ2(X). Thus, by setting r, we can find out if OPTk(X) ≤ v

for any v ≥ 0. However, this problem is NP-hard for k ≥ 2.

2.4.3 Computational Complexity of Worst Pair Ratio

Recall that a data set X is WPR well-clusterable for k whenever WPRk(X) > 1, and WPR

poorly-clusterable for k otherwise.

Theorem 3. Given an integer k and a data set X that is WPR well-clusterable for k, we

can find an optimal k-means clustering in polynomial-time.

Proof. Since X is WPR well-clusterable, there exists a clustering C with optimal k-means

loss where splitC(X) > widthC(X). Thus, if two points are in different clusters of C the

distance between them is at least splitC(X). If they are in the same cluster, the distance

between them is at most widthC(X). Therefore, two points belong to the same cluster if and

only if the distance between the points is less than splitC(X). Given the value of splitC(X),

we go through all pairs of points and determine which belong to the same cluster. Thus, we

find clustering C.

Since splitC(X) is a distance between some pair of points in X, it is one of at most
(

n
2

)
values corresponding to all possible pairwise distances between data points, where n is the

number of points in X. We try to find a clustering using each potential value of splitC(X).

The following algorithm is used:

Algorithm 2. Clustering WPR well-clusterable data

INPUT: A data set X and k ≥ 2 such that X is WPR well-clusterable for k.

OUTPUT: An optimal k-means clustering of X.

Let P be the set of pairwise distances between points in X

for each split ∈ P

find a clustering C ′ of X by the following procedure:
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for each pair of points in {a, b} ⊆ X

if ‖a− b‖ < split

a and b belong to the same cluster in X

find widthC′(X) and splitC′(X)

if widthC′(X) < splitC′(X) and C ′ has k clusters

return C ′

Note that only one of the clusterings for which widthC′(X) < splitC′(X) is going to have

k clusters. This is because using this scheme, as the value of split increases clusters can

merge, but not lose points. If X is WPR well-clusterable for k, then there exists an optimal

k-means clustering where the split is greater than the width. When split = splitk(X), that

clustering is found, since there is a unique clustering with the split greater than the width

for fixed split. Note that to speed up the procedure we can sort the elements in P and binary

search through the set until the desired number of clusters is reached.

Algorithm 2 shows that when a data set is WPR well-clusterable for k, then there is a

unique k-means optimal clustering C that maximizes the split over width ratio. To simplify

future discussion of WPR well-clusterable data sets, we let splitk(X) = splitC(X) and

widthk(X) = widthC(X), when X is WPR well-clusterable for k.

Since there are at most
(

n
2

)
potential values of split and finding a clustering and its width

given a value of split is done in O
(

n
2

)
, the running time of Algorithm 2 is O(n4).

Algorithm 2 can be used to find an appropriate number of clusters for a given data

set, given that the data set is WPR well-clusterable for some k ≥ 2. For each potential

value of split, we can find the corresponding clustering C, and check wherever splitC(X) >

widthC(X), if so, then the number of clusters in C is a good choice for the number of clusters

into which X should be separated. Binary search on the potential values of split can be used

to speed up the procedure. We can generalize this idea, and say that the number of clusters
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in clustering C is good if WPRC(X) ≥ t, for some threshold t.

We show that it is unlikely that there is a polynomial-time algorithm for finding the

optimal k-means clustering for a data set that is WPR poorly-clusterable for k.

Lemma 2. It is an NP-hard problem to find an optimal k-means clustering given a data set

which is WPR poorly-clusterable for k, where k ≥ 2.

Proof. Finding the optimal k clustering for k ≥ 2 is NP-complete[4]. Suppose that there

is a polynomial-time algorithm that finds an optimal k-means clustering of X for k ≥ 2

whenever X is WPR poorly-clusterable for k. By Theorem 3, there is a polynomial-time

algorithm that finds the optimal k-means clustering whenever X is WPR well-clusterable

for k. Running the two algorithms in parallel, terminating when the first one of the them

terminates, yields a polynomial-time algorithm for finding an optimal k-means clustering

for k ≥ 2. Therefore, it is NP-hard to find the optimal k-clustering of X whenever X is

WPR-poorly-clusterable.

If we are given the value of x and y, can we then find an optimal clustering in polynomial-

time? We cannot, unless P=NP.

Theorem 4. Unless P=NP, there is no polynomial-time algorithm for finding the optimal

k-means clustering of a data set X given the width and split of one of the optimal k-means

clusterings, for k ≥ 2.

Proof. Assume that, given the correct value of the width and split of some k-means optimal

clustering C, an optimal k-means clustering of X can be found in time nj for some j ≥ 1

using some Turing machine M . Then there exists a Turing machine T that takes as input

a data set and simulates M for up to nj steps for each potential pair of values for split

and width. It then selects the clustering with the minimal loss. Since there are
(

n
2

)
·
(

n
2

)
potential values for pairs of width and split, T is a Turing machine that finds an optimal k-
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means clustering in polynomial-time. Since clustering for k-means with k ≥ 2 is NP-hard[4],

clustering is NP-hard even given the split and width of some optimal k-means clustering.

We look at the problem of finding an upper bound on the width of an optimal clustering.

Given data set X, let w = min{widthC(X) | C a clustering of X}. Finding w is NP-hard

for k ≥ 3 ([1],[6]). In [6], it is pointed out that for k = 2 the problem can be reduce to

determining whether or not a graph is bipartite. We explain how. Start with an empty

graph G. For each point in X, add a vertex to G. If the distance between two points is

greater than a given threshold d, then place an edge between the associated vertices. Then

there exists a bipartition of G if and only if there is a 2 clustering of X where the distance

between any two points within a cluster is at most d.

We now look at the problem of finding s = max{splitC(X) | C a clustering of X}. As

shown by Narashinhan et. al. finding s can be solved in polynomial-time [11]. The same

result is also found by Asano et al. [1].

2.5 Comparisons of Notions of Clusterability

We perform a pairwise analysis of the notions of clusterability. Let A and B be notions

of clusterability. Good clusterability by notion A does not imply good clusterability by

notion B if there exist data sets with arbitrarily good A clusterability but arbitrarily bad

B clusterability. Otherwise, good clusterability by notion A implies good clusterability by

notion B. Notions A and B are equivalent if good clusterability by notion A implies good

clusterability by notion B and good clusterability by notion B implies good clusterability

by notion A. For all presented notions of clusterability, we found that no two notions are

equivalent. In addition, many interesting one-directional implications were discovered.
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2.5.1 Separability versus Variance Ratio

In this section, we explore the relationship between separability and variance ratio. First, we

show that for k ≥ 3, good VR clusterability does not entail good separability clusterability.

Then, we will show that for k = 2 the two notions are equivalent, and characterize the

relationship between these notions for k ≥ 3. We use the latter result to prove that good

separability clusterability implies good VR clusterability.

Theorem 5. Given z > 0, 0 ≤ ε < 1, and k ≥ 3, there is a data set X such that V Rk(X) ≥ z

and Sk(X) ≥ ε.

Proof. Arrange a data set so that Sk−1(X) ≥ ε. Then add another point sufficiently far away

to increase the between-cluster variance so that V Rk(X) is at least z. Place the last added

point sufficiently far so that it has its own cluster in any optimal k-means and any optimal

(k− 1)-means clustering. Therefore, the remaining points have the same clustering as in an

optimal (k − 1)-means clustering. The singleton cluster does not effect the k-means loss or

the (k − 1)-means loss. Therefore, Sk(X) ≥ ε.

We now present a complete characterization of the relationship between separability and

VR. We show that the notions are equivalent for k = 2 and present the more complex

relationship for k ≥ 3.

Theorem 6. For any data set X, V R2(X) = 1−S2(X)
S2(X)

.

Proof. We have the following:

σ2(X) = W2(X) + B2(X)

W2(X) =
OPT2(X)

|X|
=

S2(X)σ2(X)|X|
|X|

= S2(X)σ2(X)
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Thus,

V R2(X) =
B2(X)

W2(X)

=
σ2(X)−W2(X)

W2(X)

=
σ2(X)− S2(X)σ2(X)

S2(X)σ2(X)

=
1− S2(X)

S2(X)

Therefore, as S2(X) decreases, V R2(X) increases. Since S2(X) = 1
V R2(X)+1

, as V R2(X)

increases, S2(X) decreases. So for two clusters, a data set X has good separability if and

only if it has good VR.

Now, consider the behavior for k = 3. W3(X) = OPT3(X)
|X| . S3(X) = OPT3(X)

OPT2(X)
, so S3(X) =

OPT3(X)
S2(X)|X|σ2(X)

. Thus, OPT3(X) = S2(X)S3(X)|X|σ2(X), giving W3(X) = S2(X)S3(X)σ2(X).
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V R3(X) =
B3(X)

W3(X)

=
σ2(X)−W3(X)

W3(X)

=
σ2(X)− S2(X)S3(X)σ2(X)

S2(X)S3(X)σ2(X)

=
1− S2(X)S3(X)

S2(X)S3(X)

=
1− 1

V R2(X)+1
S3(X)

1
V R2(X)+1

S3(X)

=
V R2(X) + 1

S3(X)
− 1

Therefore, we can express V R3(X) = 1
S2(X)S3(X)

− 1, only in terms of S2(X) and S3(X),

or as V R3(X) = V R2(X)+1
S3(X)

− 1, in terms of V R2(X) and S3(X). Similarly, we can express

S3(X) = V R2(X)+1
V R3(X)+1

, or as S3(X) = 1
S2(X)(V R3(X)+1)

.

Lemma 3. For k ≥ 3, Wk(X) = S2(X)S3(X) · · ·Sk(X)σ2(X).

Proof. By the above, the lemma hold for k = 3. Assume it holds for all k = j − 1.

Then Wj−1(X) = S2(X)S3(X) · · ·Sj−1(X)σ2(X). OPTj(X) = |X|Wj(X), so Wj(X) =

1
|X|OPTj(X). Now, Sj(X) =

OPTj(X)

OPTj−1(X)
, so OPTj(X) = Sj(X)OPTj−1(X). Therefore,
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Wj(X) =
1

|X|
Sj(X)OPTj−1(X)

=
1

|X|
Sj(X)Sj−1(X)OPTj−2(X)

=
1

|X|
Sj(X)Sj−1(X)Sj−2(X)OPTj−3(X)

...

=
1

|X|
Sj(X)Sj−1(X)Sj−2(X) · · ·S2(X)|X|σ2(X)

= Sj(X)Sj−1(X)Sj−2(X) · · ·S2(X)σ2(X)

Theorem 7. For k ≥ 3, V Rk(X) = 1
S2(X)S3(X)···Sk(X)

− 1.

Proof. By Lemma 1, Wk(X) = S2(X)S3(X) · · ·Sk(X)σ2(X).

V Rk(X) =
Bk(X)

Wk(X)

=
σ2(X)−Wk(X)

Wk(X)

=
σ2(X)− S2(X)S3(X) · · ·Sk(X)σ2(X)

S2(X)S3(X) · · ·Sk(X)σ2(X)

=
1− S2(X)S3(X) · · ·Sk(X)

S2(X)S3(X) · · ·Sk(X)

=
1

S2(X)S3(X) · · ·Sk(X)
− 1
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By Theorem 7, we get that for k ≥ 3 the following hold:

V Rk(X) =
1

S2(X)S3(X) · · ·Sk(X)
− 1

V Rk(X) =
V Rk−1(X) + 1

Sk(X)
− 1

Sk(X) =
1

S2(X) · · ·Sk−1(X)(V Rk(X) + 1)

Sk(X) =
V Rk−1(X) + 1

V Rk(X) + 1

We now show that good separability clusterability implies good VR clusterability.

Theorem 8. V Rk(X) ≥ 1
Sk(X)

− 1 for k ≥ 2.

Proof. For k ≥ 3, since V Rk(X) = V Rk−1(X)+1

Sk(X)
−1 and V Rk−1(X) ≥ 0, V Rk(X) ≥ 1

Sk(X)
−1.

For k = 2, the result follows from Theorem 6.

Therefore, good Sk(X) clusterability provides a lower bound for VR clusterability.

2.5.2 Worst Pair Ratio versus Variance Ratio

We will show that it is possible to have arbitrarily high values of V Rk(X) for arbitarily low

values of WPRk(X). We will then show that WPR clusterability provides a lower bound

for VR clusterability.

Theorem 9. For any x, y ≥ 0, k ≥ 2, there exists a data set X such that V Rk(X) ≥ y and

WPRk(X) ≤ x.
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Figure 2.1: An example of a data set with good VR clusterability and poor WPR cluster-
ability.

Proof. We first describe an example for k ≥ 3. Consider a set of many small clusters all but

two of which are far apart from each other, so that the between-cluster variance is high and

the within-cluster variance is low. Exactly two of the clusters, A and B, are very close to

each other, and some other cluster is sufficiently large, so that WPRk(X) = x. However, by

moving all pairs of clusters, except for A and B, further away from each other we increase

V Rk(X) arbitrarily without increasing WPRk(X). For k = 2, consider the example in Figure

2.1. By increasing the radius of the circles, we can make WPR arbitrarily low. Moving the

circles further away from each other makes VR arbitrarily high, since most within cluster

pairs are much closer to each other than most between cluster pairs. To compensate for the

larger number of points on the line as the dense circles move further away from each other,

we can increase the density of the circles.

We prove that WPR clusterability can be used to find a lower bound to VR Clusterability.

First, we present an alternative formula for between-cluster variance.

Lemma 4. Let C = {X1, X2, . . . , Xk} be an optimal k-means clustering of X, where ci is

the center of mass of Xi. Then Bk(X) = 1
|X|2

∑
i6=j |Xi||Xj|‖ci − cj‖2.

Proof. The between-cluster variance of data set X is defined as
∑k

i=1
|Xi|
|X| ‖ci− c‖2, where c is

the center of mass of X. For a set P ⊆ S where S is a normed vector space,
∑

a,b∈P ‖a−b‖2 =

|P |
∑

a∈P ‖a − p‖2, where p is the center of mass of P . The between-cluster variance of X

is the same as the between-cluster variance of a data set X̄, having exactly |Xi| points at

position ci for all i ∈ {1, 2, . . . , k}. The between-cluster variance of X̄ is
∑k

i=1
|Xi|
|X| ‖ci− c‖2 =
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1
|X|

∑
x∈X̄ ‖x− c‖2 = 1

|X|2
∑

a,b∈X̄ ‖a− b‖2 = 1
|X|2

∑
i6=j |Xi||Xj|‖ci − cj‖2. Since the between-

cluster variance of X̄ is the same as the between-cluster variance of X, the result holds.

Theorem 10. If X is WPR well-clusterable for k, that is, WPRk(X) > 1, then V Rk(X) >

n−1
2n

(WPRk(X))2 where |X| = n.

Proof. First, we show that the between-cluster variability is at least n−1
2n

splitk(X)2.

Bk(X) =
1

n2

∑
i6=j

|Xi||Xj|‖ci − cj‖2 By Lemma 4

≥ 1

n2

∑
i6=j

‖ci − cj‖2

≥ 1

n2

∑
i6=j

splitk(X)2

=
1

n2

(
n

2

)
splitk(X)2

=
n− 1

2n
splitk(X)2

The third line holds since the distance between the centers of two clusters is at least the

minimal distance between a point in one of the clusters and a point in the other cluster.

For within-cluster variability, Wk(X) = 1
n

∑k
i=1

∑
a∈Xi

‖a−ci‖2 ≤ 1
n

∑k
i=1

∑
a∈Xi

widthk(X)2 =

widthk(X)2. Therefore, V Rk(X) = Bk(X)
Wk(X)

≥ n−1
2n

(WPRk(X))2.

Therefore, if X is WPR well-clusterable for k, then V Rk(X) is bounded from below by

≈ 1
2
(WPRk(X))2. This illustrates that for large WPR clusterability, VR clusterability is

high.
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2.5.3 Worst Pair Ratio versus Separability

We now prove that good separability clusterability does not imply good WPR clusterability.

We then show that good WPR clusterability implies good separability clusterability.

Theorem 11. For any x ≥ 0, 0 < ε < 1, k ≥ 2, there exists a data set X such that

Sk(X) ≤ ε and WPRk(X) ≤ x.

Proof. By Lemma 4, there exist data sets with arbitrarily low WRP and arbitrarily high VR

for k = 2. By Theorem 6, VR and separability are equivalent for k = 2. Therefore, there

is a data set with arbitrarily good separability and arbitrarily poor WPR. To generalize the

example for k ≥ 3, add k−2 points sufficiently far away from the remaining points and from

each other so that they make distinct cluster in the optimal k-means clustering.

On the other hand, consider the effect of a high value of WPRk(X) on separability

clusterability. High WPRk(X) means that we have k small clusters far away from each

other. What happens if we have to cluster this data into k − 1 clusters? If WPRk(X) is

sufficiently high, two of the clusters from the k clustering are joined into one. This illustrates

that WPR can be used to provide a weak bound on separability clusterability.

2.5.4 Perturbation Loss versus Worst Pair Ratio

We show that if a data set X is WPR well-clusterable, then X has good PL clusterability.

First, we demonstrate that that if WPRk(X) > 1 and Algorithm 1 is called on l, k, and

X, such that R√
l
< splitk(X)−widthk(X)

2
, where R is the radius of X, the clustering returned by

Algorithm 1 is an optimal k-means clustering. Next, we will show that good PL clusterability

does not imply good WPR clusterability.

Lemma 5. Given data set X and integer k ≥ 1, if X is WPR well-clusterable for k and

there exists a clustering C ′ that is r-close to an optimal clustering C of X, where r <

splitk(X)−widthk(X)
2

, then following a Lloyd step on C ′, C ′ = C.
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Proof. Let p be some point in X. Let ct be the closest center to p in C. Let c′ be the

closest center to ct in C ′. By the definition of a Lloyd step, it is sufficient to prove that

p is closer to c′ than any other center in C. Let d ≤ widthk(X) be the distance between

point p and ct. Let ct′ be any other center in C. Then the distance between points p and

ct′ is d′ ≥ splitk(X). Then the distance between p and c′ is < d + splitk(X)−widthk(X)
2

≤

widthk(X)+ splitk(X)−widthk(X)
2

= widthk(X)+splitk(X)
2

. The distance between p and the center in

C ′ closest to ct′ is ≥ d′− splitk(X)−widthk(X
2

≥ splitk(X)− splitk(X)−widthk(X)
2

= splitk(X)+widthk(X)
2

.

Therefore, p is assigned to the cluster with center c′ in C. Therefore, following a single Lloyd

step a set of optimal centers is found.

Corollary 1. If X is WPR well-clusterable for k, then X is ( splitk(X)−widthk(X)
2

, 1)-PL clus-

terable.

Note that the clustering returned by Algorithm 1 is splitk(X)−widthk(X)
2

-close to an optimal

clustering whenever l ≥ 4R2

(splitk(X)−widthk(X))2
. The above corollary shows that as the WPR

clusterability of a WPR well-clusterable set improves, PL clusterability improves as well. On

the other hand, there are data sets with low WPR clusterability but good PL clusterability.

Lemma 6. For any µ > 0, k ≥ 3, there is a data set X with (µ, 1)-PL clusterability and

WPR arbitrarily low.

Proof. Create k groups of data. Arrange k−1 of them such that each group forms a circle of

radius µ and the minimal distance between two points in different groups is at least 3µ and

there are at least 2 groups where the minimal separation is exactly 3µ. Then, make the last

group span a circle of radius qµ for any q and place it sufficiently far apart from the other

groups as well as adjust the density of all groups such that each groups makes a distinct

cluster in the optimal clustering. See Figure 2.2 for an example. Then the data is (µ, 1)-PL

clusterable and has arbitrarily low WPR clusterability.
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Figure 2.2: An example of a data set with good PL clusterability that is poorly-clusterable
according to WPR clusterability. k=6.

2.5.5 Perturbation Loss versus Variance Ratio

Assume that VR clusterability is high. Does this imply that the data is well-clusterable

by PL clusterability? We show that for arbitrarily high VR clusterability, we can have

low PL clusterability. We then show that good PL clusterability does not imply good VR

clusterability.

The following result is contained in Theorem 13, but presents an alternative solution for

the k = 3 case. This result is simpler than the general case for arbitrary k ≥ 3.

Theorem 12. Given µ > 0, α > 0, and ω > 0, there is a data set X with V R3(X) ≥

α for which there is a clustering µ-close to the optimal clustering that has loss at least

ωk-means(C), where C is an optimal 3-means clustering.

Proof. We construct data set X. See Figure 2.3 for an example. Let n−1 points be separated

into two groups A and B of equal size such that B is A shifted to the right. The minimum

distance between two points in different groups is µ. The maximum distance between two

points in the same cluster is set to any arbitrarily small ε � µ. Arrange the points within

the groups so that the average contribution of a point to the loss function is ( ε
2
)2. Let a

and b be the centers of mass of the two groups. Move center a and center b µ units to the
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Figure 2.3: The center of cluster A is a and the center of cluster B is b.

left, as in Figure 2.4. Then all the points in these two clusters would be assigned to center

b. After a Lloyd step, the center of the cluster containing the n − 1 points is in position

c in the middle of groups A and B, and therefore the contribution of each point to the

loss increases by at least µ2−2µε
4

. Let C̄ be the clustering using the moved centers. Then

k-means(C̄) ≥ k-means(C) + 1
4
(µ − ε)2(n − 1). By introducing another point far from the

two clusters, we can make B3(X) arbitrarily large without effecting W3(X). Therefore, we

can get arbitrarily large values of B3(X)
W3(X)

. Since the average contribution of a point in A or

B is ε
2
, k-means(C) = ε2

4
(n− 1).

k-means(C̄) ≥ k-means(C) +
1

4
(µ2 − 2µε)(n− 1)

=
ε2

4
(n− 1) +

1

4
(µ2 − 2µε)(n− 1)

=
ε2

4
(n− 1) +

ε2

4
· 1

4
(µ2 − 2µε)

4

ε2
(n− 1)

= (1 +
µ2 − 2µε

ε2
)k-means(C)

As ε goes to 0, (1+ µ2−2µε
ε2

) goes to infinity. In addition, the between-cluster variance does

not change and the within-cluster variance decreases, thus the VR clusterability improves.

Therefore, there is an ε such that k-means(C̄) ≥ ωk-means(C) and VR clusterability is at

least α.
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Figure 2.4: a and b moved by µ units left.

We now prove the result of k ≥ 3.

Theorem 13. Given µ > 0, α > 0, ω > 0, and an integer k ≥ 3, there is a data set X

with V Rk(X) ≥ α having n elements for which there is a clustering µ-close to the optimal

clustering that has loss at least ωk-means(C) where C is an optimal k-means clustering.

Proof. We construct X. In this example, n− 1 points in X are arranged into k − 2 clusters

around a central cluster as in Figure 2.5. The total number of points in these clusters is

n − 1 and each of the k − 1 clusters has an equal number of points. If k − 1 does not

divide n then the clusters will have only approximately the same size. This makes little

difference when n is large enough. Select ε and δ where δ < ε � µ. Make the width of

the clusters δ. Arrange the points within the k− 1 clusters so that the average contribution

of a point in each of them is ( δ
2
)2. The distance between a center of an outer cluster and

the center of the middle cluster is µ − ε. Move the centers of the outer clusters by µ as

in Figure 2.6. Call the clustering with the moved centers Ĉ. Then the average increase

in contribution of a point in an outer cluster to the loss function is greater than µ2 − 2µε.

Therefore, k-means(Ĉ) ≥ k-means(C)+ k−2
k−1

(µ2−2µε)(n−1). Place one point very far away,

and it becomes its own cluster and increases Bk(X)
Wk(X)

arbitrarily. In particular, Bk(X)
Wk(X)

can be

increased up to α. Since the average contribution of a point in the large k− 1 clusters is δ2

4
,

k-means(C) = δ2

4
(n− 1).
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Figure 2.5: An example of a data set with high VR clusterability but low PL clusterability.

k-means(Ĉ) ≥ k-means(C) +
k − 2

k − 1
(µ2 − 2µε)(n− 1)

=
δ2

4
(n− 1) +

k − 2

k − 1
(µ2 − 2µε(n− 1)

=
δ2

4
(n− 1) +

4(k − 2)

δ2(k − 1)

δ2

4
(µ2 − 2µε)(n− 1)

= (1 +
4(k − 2)

δ(k − 1)
)(µ2 − 2µε)k-means(C)

Note that ε can be arbitrarily small. As δ goes to 0, 1+ 4(k−2)
δ2(k−1)

(µ2− 2µε) goes to infinity.

Therefore, we can choose δ so that k-means(Ĉ) ≥ ωk-means(C). When δ decreases, the

between cluster variance does not change and the within cluster variance decreases, so VR

clusterability improves.

A data set has very good PL clusterability if it is (µ, f)-PL clusterable for large µ and

slow-growing function f . In particular, if f(η) = 1 for all η ≤ µ for some large µ then the

data set is well-clusterable by PL clusterable. We show that when this occurs we cannot

claim that VR clusterability is high.

Theorem 14. For any k ≥ 2 and µ > 0, there exists a data set that is (µ, 1)-PL clusterable
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Figure 2.6: An example of a data set with high VR clusterability but low PL clusterability.
The centers in the outer clusters are moved by µ units.

for k but with VR clusterability arbitrarily close to the worst possible VR for k clusters.

Proof. Consider a data set with the worst possible VR clusterability for k clusters. In an

optimal k-clustering, each point is no further from its center than any other center. Perturb

the points slightly so that each point is strictly closer to its center than to any other center.

Since this perturbation can be arbitrarily small, it does not have much effect on the VR.

Scale the data set so that the minimal difference in the distance between a point and its

center and a point and its second closest center is larger than 2µ. The resulting data set is

(µ, 1)-PL clusterable. Since scaling does not effect the VR (since the between and within

cluster variance are multiplied by the same constant), the VR of this data set is arbitrarily

close to the worst possible VR for k clusters.

The proof of Theorem 14 highlights a weakness of PL clusterability - its dependence on

the scaling of data sets. For future work, it would be interesting to consider a variation of

(µ, f)-PL clusterability where µ is scaled by some function of the distances in the data set,

such as the variance of the data set. More on scale invariance appears in the next chapter.

2.5.6 Perturbation Loss versus Separability

If a data set has good PL clusterability, does that mean that it has good separability clus-

terability? We show that a data set can have good PL clusterability and poor separability
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Figure 2.7: An example of data with good PL clusterability but low separability clusterabil-
ity.

clusterability.

Theorem 15. For any µ > 0 and k ≥ 3, there is a data set X with (µ, 1 + 1
k−1

)-PL

clusterability that and Sk(X) ≥ k−2
k−1

.

Proof. Consider a set of well-separated k − 1 clusters all at a distance of more than µ from

each other, so that moving each center by µ in any direction does not change the (k − 1)-

clustering. The k − 1 clusters are identical. See Figure 2.7. The k − 1 clusters are placed

sufficiently far away from each other so that if we are to cluster X optimally into k clusters,

then one of the k−1 clusters is separated into 2. Since each of the k−1 clusters are identical,

they each contribute α to the loss of the k − 1 clustering for some α ∈ R. In particular, the

optimal loss of clustering with k−1 clusters is OPTk−1(X) = (k−1)α. Then the optimal loss

of clustering with k clusters is OPT 2
k (X) ≥ (k − 2)α. Therefore, OPTk(X)

OPTk−1(X)
≥ (k−2)α

(k−1)α
= k−2

k−1
.

In the optimal k-clustering, k − 2 of the clusters do not change if centers are moved by at

most µ units. In the remaining two clusters, points can switch centers between these clusters

if centers are moved by at most µ units, which causes an increase of less than 1
k−1

OPTk(X)

to the loss of the clustering.

As k grows, we have examples of arbitrarily poor separability clusterability for arbitrarily

good PL clusterability.

We now show that good separability does not imply good PL.
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Theorem 16. Given µ > 0, α > 0, ω > 0, and an integer k ≥ 2, there is a data set X with

Sk(X) ≤ α having n elements for which there is a clustering µ-close to the optimal clustering

that has loss at least ωk-means(C), where C is an optimal k-means clustering.

Proof. Consider clusters A and B as in the proof of Theorem 12 (see Figure 2.5). By

decreasing the radius of these clusters, we both improve the separability of the data set and

worsen its PL clusterability. For an example on great than or equal to 3 clusters, use the

data set in the proof of Theorem 13 (see Figure 2.5), ignoring the outlier cluster. As in the

previous example, decreasing the radius of the clusters both improves the separability of the

data set and worsens its PL clusterability. This is because when the radius is sufficiently

small, the optimal (k− 1)-clustering merges two of the clusters, leaving the rest unchanged.

Therefore, the effect of the distance between the clusters becomes more significant as the

cluster radius decreases.

2.6 Conclusions

We have presented three notions of clusterability from the literature. We found some interest-

ing differences on the computational hardness of these notions of clusterability. Separability

and VR clusterability are computationally hard to find, while determining whether a data

set is WPR well-clusterable is computationally tractable. By Ostrovsky et al. [12], data

that is well-clusterable by separability clusterability is easier to cluster well. When data is

WPR well-clusterable it can be clustered optimally in polynomial-time. However, by VR

clusterability, according to Zhang’s [13] empirical study, it is easier to cluster data well when

it is poorly-clusterable.

We introduced a new notion of clusterability, based on point perturbation, as well as

variations of this notion. We found that all four of the presented notions are distinct. We

have also found many one-directional implications. The following table summarizes our
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comparisons. Cell (A, B) indicates whether good clusterability by measure A implies good

clusterability by measure B.

Separability VR WPR PL

Separability - X x x

VR x - x x

WPR X X - X

PL x x x -

Observe that WPR is the strongest notion of clusterability - if a data set is WPR well-

clusterable, then it has good clusterability by all the other notions as well. The only other

positive implication is that good separability clusterability implies good VR clusterability.

Therefore, WPR is the strongest notion of clusterability, followed by separability, followed by

VR and PL. In many of the comparisons, we make use of the number of points or the number

of clusters being arbitrarily large. It would be interesting to analyze these relationships when

these parameters are fixed. Also, the hardness of PL clusterability is yet to be determined.

We introduced a number of variants on PL clusterability. It would be interesting to explore

their computational complexity and how they compare with other notions of clusterability.
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Chapter 3

Clustering Quality

3.1 Introduction

There is a variety of clustering techniques and heuristics, which often find different clusterings

of the same data set. Users often need to compare the quality of clusterings obtained by

different methods. Perhaps more importantly, users need to determine whether a given

clustering is sufficiently good, as it is possible that there are no good clusterings for a given

data set. It is therefore surprising that there are no standard criterion for evaluating the

quality of clusterings. Furthermore, to our best knowledge the concept of a clustering quality

measure has never been previously formalized. In this chapter, we take the first steps to

formulate a theoretical basis for clustering quality evaluation.

We present three clustering quality measures. The first measure, variance ratio, can be

used for all clusterings. The second measure we introduce, called separability, is based on

the clusterability notion of separability by Ostrovsky et al. [12] Separability works with loss-

based clustering. We then introduce clustering quality measures for center-based clustering.

We also present generalizations and alternative formalizations of the measures.

To begin the theory of clustering quality measures, we introduce a set of axioms. We

40



then introduce our clustering quality measures. For each clustering quality measure, we

demonstrate that it satisfies the axioms of clustering quality measures. For a clustering

quality measure to be useful, it is important that the quality of a clustering using the measure

can be computed quickly. For each clustering quality measure we introduce, we show that

the quality of a clustering using that measure can be computed in polynomial time. In

addition, we also present generalizations and alternative formalizations of the measures.

In this chapter, we work in a very general setting. We assume that our set of points is

X = {1, 2, . . . , n}. To define the distances between points in X, we use a distance function.

A function d : X × X → R is a distance function if d(xi, xi) ≥ 0 for all xi ∈ X, for any

xi, xj ∈ X, d(xi, xj) > 0 if and only if xi 6= xj, and d(xi, xj) = d(xj, xi). Observe that

d(x, y) = 0 if and only if x = y.

3.2 Previous Work

Clustering quality measures are closely related to clustering functions and clusterability. Our

work on clustering quality measures makes use of ideas developed for these related concepts.

3.2.1 Clustering Functions

A clustering function is a function that takes a distance function over a data set and

outputs a partition of that data set. In “An Impossibility Theorem for Clustering,”

Kleinberg [7] addresses the question of whether there are any meaningful clustering

functions. He proposed three axioms of clustering functions: scale invariance, richness,

and consistency. He then demonstrates that no function can satisfy these three axioms

simultaneously, concluding that it is not possible to axiomatize clustering functions.

Since some of these axioms are relevant to our work, we present them in detail.

Scale invariance requires that the output of a clustering function be unaffected by
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uniform scaling of the input.

Definition 9 (Function Scale Invariance). Let d be a distance function. Let d′(x, y) =

αd(x, y) for all x, y ∈ X and some α > 0. A function f is scale-invariant if f(d) =

f(d′) for all such d and d′.

Richness requires that by modifying the distance function, any partition of the data

set can be obtained.

Definition 10 (Function Richness). A function f is rich if for each partition p of X,

there exists a distance function d over X so that f(d) = p.

Consistency requires that if within-cluster distances are decreased, and between cluster

distances are increased, then the output of a clustering function does not change.

Definition 11 (Consistent Variant). Let C be a clustering. Distance function d′ is a

C-consistent variant of d if d′(x, y) ≤ d(x, y) for x ∼C y, and d′(x, y) ≥ d(x, y) for

x 6∼C y, for all x, y ∈ X.

Definition 12 (Function Consistency). A function f is consistent if f(d) = f(d′)

whenever d′ is an f(d)-consistent variant of d.

Kleinberg’s conclusion that the inconsistency of these axioms means that clustering

functions cannot be axiomatized was premature, since we can demonstrate that con-

sistency has some counter-intuitive consequences. In Figure 3.1, we show a good 6-

clustering. On the right hand-side, we show a consistent change of this 6-clustering.

Notice that resulting data has a 3-clustering, that is arguably better than the original

6-clustering. Therefore, it is undesirable to reject a function for partitioning this data

set into 3 clusters.
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Figure 3.1: A consistent change of a 6-clustering. After the change, the quality of the original
clustering decreases.

As shown by Kleinberg [7], scale invariance and richness are consistent. However,

it is easy to show that these two axioms are insufficient, as we can find functions

that are scale invariant and rich, but do not output meaningful clusterings. Having

demonstrated that it might still be possible to axiomatize clustering functions, we do

not focus on doing so in this thesis. On the other hand, we use the ideas in Kleinberg’s

scale invariance and consistency axioms to develop some of the axioms of clustering

quality measures.

3.2.2 Clusterability

Clusterability is another concept closely related to clustering quality. A clustering

quality measure evaluates the quality of a specific clustering. A notion of clusterability,

on the other hand, determines how much clustered structure there is in a data set. In

Chapter 2, notions of clusterability depend on the quality of some optimal clusterings.

This approach is consistent with the approach that often appears in the literature.

When a measure of clusterability depends on the optimal clustering, it is often NP-

hard to find the degree of clusterability (As shown in Chapter 2). Using clustering

quality measures, we present an alternative approach to notions of clusterability that
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gives greater flexibility. We discuss this in more detail in Section 3.6.

On the other hand, we make use of the notions of clusterability discussed in Chapter 2

to define our measures of clustering quality. We present measures of clustering quality

based on the variance ratio, separability, and relative margin notions of clusterability.

Notice that notions of clusterability cannot be used directly as measures of clustering

quality, since measures of clustering quality evaluate the quality of specific clusterings.

3.3 Axioms of Clustering Quality Measures

A clustering quality measure is a function that is given a clustering C and distance function d,

and returns a non-negative real number. The range of a clustering quality measure over non-

trivial clusterings is an open interval. For a clustering quality measure to be meaningful, we

need to introduce additional constraints. In this section we present four axioms of clustering

quality measures. Note that in our discussions and definitions, we assume that quality

measure m gives higher values to better clusterings. When the reverse is true, simply reverse

the direction of inequalities that compare the quality of clusterings.

The first axiom, scale invariance, is based on Kleinberg’s scale invariance axiom for

clustering functions [7]. Scale invariance requires that clustering quality be unaffected by

uniform scaling of all pairwise distances. This requirement is one of the main reasons why

standard loss functions, such as k-means or k-median, should not be used as clustering

quality measures.

Definition 13 (Scale Invariance). Let α be a positive constant. Let d and d′ be distance

functions such that for all x, y ∈ X, d′(x, y) = αd(x, y). Let C be a clustering. A quality

measure m is scale invariant if for all such d, d′, and C, m(C, d) = m(C, d′).

The next axiom makes sure that quality measures are independent of point description.
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This axiom captures the idea that the quality of any clustering should depend only on the

pairwise distances between points.

Definition 14 (Isomorphism Invariance). Let C and C ′ be clusterings such that x ∼C y if

and only if φ(x) ∼C′ φ(y), for φ a distance-preserving isomorphism from X to X. A quality

measure m is isomorphism invariant if m(C, d) = m(C ′, d) for all such C and C ′.

The next axiom is more complex than the previous ones. We motivate the next axiom by

first discussing simpler variants. If we translate Kleinberg’s [7] clustering function consistency

axiom to a clustering quality axiom, we get the requirement that the quality of a clustering

does not worsen when pairs of points within clusters are moved closer together and pairs of

points in different clusters are moved further apart.

Definition 15 (Consistency). A quality measure m is consistent if m(C, d) ≥ m(C, d′) for

all clusterings C and distance functions d, whenever d′ is a C-consistent variant of d.

However, consistency does not make a good clustering quality axiom since it has some

counter-intuitive consequences. For instance, if some clusters are moved very far away from

all others, a smaller number of clusters may be more appropriate (See Figure 3.1). We do not

wish to reject measures by which the quality of clustering drops following such a consistent

change, since a clustering quality measure should indicate how good a clustering quality

measure is in the universe of all clusterings over all data sets.

A simple modification of consistency is the requirement that the distances between pairs

of points within each cluster shrink uniformly, and distances between pairs of points in

different clusters expand uniformly. The problem with this modification is that it has limited

application in Euclidean spaces, where clustering often takes place. In Euclidean space, if

we shrink each cluster uniformly, the distances between pairs of points in different clusters

may change is a non-uniform manner.
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We present a version of consistency, called local consistency, which does not have the

problem of consistency discussed above and fully applies to Euclidean spaces. The intuition

behind this axiom is as follows. Consider fixing a single point within each cluster. Then,

move the clusters away from each other, so that the pairwise distances between all fixed

points is scaled uniformly. Lastly, shrink each cluster, so that the distances between points

in the same cluster are changed uniformly. The distance between points in different clusters

cannot decrease; however, we do not require that these distances be scaled uniformly.

Definition 16 (Locally Consistent Variant). Given distance functions d and d′ and a clus-

tering C, we say that d′ is a C-locally consistent variant of d if

• For every cluster l of C there is a constant cl ≤ 1, such that for all x, y ∈ l, d′(x, y) =

cld(x, y).

• For every x 6∼C y, d′(x, y) ≥ d(x, y).

• For some set of points containing a point pl from every cluster l, there exists a constant

c ≥ 1 such that, for every pl, pl′, d′(pl, pl′) = c · d(pl, pl′).

Definition 17 (Local Consistency). A quality measure m is locally consistent if m(C, d′) ≥

m(C, d) whenever d′ is a C-locally consistent variant of d.

Constant functions, as well as a function that simply returns the number of points in

the data set, satisfy scale invariance, isomorphism invariance, and local consistency. We

therefore introduce another axiom, called fullness, which forces the quality measure to be

responsive to distances. The axiom of fullness requires that arbitrarily good (or bad) non-

trivial clusterings should be obtainable by bounding the distances between pairs of points

that are within clusters, and distances between pairs of points belonging to different clusters.

Definition 18 (Fullness). Let C be a k-clustering of data set X where each cluster has at

least two points and k ≥ 2. A clustering quality measure m is full if:
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• For any M ∈ range(m), there exist a, b ∈ R+ such that for every distance function d

where for all x ∼C y, d(x, y) ≤ a and for all x 6∼C y, d(x, y) ≥ b, m(C, d) > M (or

m(C, d) < M , if lower values of m indicate better clustering.)

• For any M ∈ range(m), there exist a, b ∈ R+ such that for every distance function d

where for all x ∼C y, d(x, y) ≥ a and for all x 6∼C y, d(x, y) ≤ b, m(C, d) < M (or

m(C, d) > M , if lower values of m indicate better clustering.)

Fullness captures the idea that the quality of a clustering can improve by tightening the

clusters and moving them further apart from each other. This is distinct from consistency and

local consistency, where we require that under certain conditions the quality of a clustering

should not get worse. By specifying how a clustering quality can be made better or worse,

fullness gives some indication for what makes a clustering good or bad, without being too

restrictive.

3.3.1 Axioms Non-redundancy

We now illustrate that all the axioms are non-redundant. To do that, we demonstrate

functions that do not make good clustering quality functions and satisfy all but one of the

axioms presented.

Non-redundancy of Scale Invariance

A clustering loss function is a function that takes a clustering of a data set and a dis-

tance function over the data set, and returns a real number. Many clustering algorithms

attempt to find clusterings that minimal a specific loss function. Therefore, it is natural

to propose to use the loss of a clustering as a measure of clustering quality. The k-means

and k-median are commonly used clustering loss functions. To use these loss functions

as quality measures, we let the loss of a clustering be its quality. For the k-means and
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k-median loss functions, such quality measures satisfy isomorphism-invariance, local

consistency, and fullness. However, clustering loss functions often depend on the scal-

ing of the data. In particular, k-means and k-median are not scale invariant. That

is, by scaling all pairwise distances uniformly, any loss function value can be obtained.

Therefore, such loss functions are inappropriate for comparing clusterings over different

distance functions. Since clustering quality measures should compare the quality of

clusterings over different data sets in a meaningful way, clustering loss functions such

as k-means and k-median do not make good clustering quality measures.

Non-redundancy of Isomorphism Invariance

To show that isomorphism invariance is non-redundant, consider any clustering quality

measure m that satisfies all four axioms. We present examples of such measures in the

next section. We will now create a clustering quality measure m′ that satisfies scale

invariance, local consistency, and fullness, but does not satisfy isomorphism invariance.

Using only the descriptions of the points, m selects two clusters. For instance, it can

select the two clusters with the highest maximal point values. Then, m′ applies m

only on these two clusters, ignoring the rest of the clusters. Due to the method of

selecting the two clusters on which m is applied, any two clusters can be selected

following a distance preserving isomorphism on the data set. Setting m to be any of

the clustering quality measures introduced in the next section, it is easy to construct

a clustering where m gives a different value when applied to each pair of clusters.

Therefore, m′ is not isomorphism invariant. Since m′ selects the two clusters on which

to apply m independently of distances between points, this measure does not make

a good clustering quality measure. That is, the two clusters selected may not be

representative of the features of the clustering. Note that m′ is scale-invariant, locally

consistent, and full.

48



Non-redundancy of Fullness

To see that fullness is non-redundant, notice that any constant function, or a func-

tion that returns the number of points in the data set, satisfies scale-invariance,

isomorphism-invariance, and local consistency. Clearly, such functions do not make

good clustering quality measures. Note that since these functions return the same

value for all clustering with no regard to distances between points, these measures are

not full.

Non-redundancy of Local Consistency

To illustrate that local consistency is non-redundant, consider a function with range

[0,∞) that returns the ratio
miny 6∼Cx d(x,y)

maxy∼Cx d(x,y)
when this ratio is in the range [0, 0.1] or

[1,∞], and returns 100 otherwise. This is a combination of a valid quality measure

with a constant function. Notice that this measure is scale invariant and isomorphism

invariant. This measure is full, due to its behavior outside (0.1, 1). However, given

a clustering with
miny 6∼Cx d(x,y)

maxy∼Cx d(x,y)
in the range [0.1, 1], some locally consistent variants of

the clustering will have lower quality measure than the clustering.

3.4 Examples of Quality Measures Satisfying the Ax-

ioms

We now introduce quality measures that satisfy the above axioms. Each measure has specific

properties that make it well suited for evaluating clusterings in different settings. Some of

the measures are defined with respect to a loss function, and therefore are well-suited when

it is expected that a specific loss function will capture the structure of a good clustering. We

also present clustering quality measures specifically for center-based clustering.
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For each quality measure, we discuss its motivation and special properties. We prove that

each one satisfies the four axioms: scale invariance, isomorphism invariance, local consistency,

and fullness. We also show how to find the quality of a clustering using each measure in

polynomial time.

3.4.1 Variance Ratio

We begin with a general purpose clustering quality measure. This measure looks at the

relationship of the between-cluster variance and the within-cluster variance. This clustering

quality measure is similar to the variance ratio notion of clusterability by Zhang [13].

Standard Variance Ratio

Let d be a distance function and C a clustering. Let the within-cluster variance of C

on d be W (C, d) = avgx∼Cyd(x, y), the average distance between elements within the

same cluster. Let the between-cluster variance of C on d be B(C, d) = avgx 6∼Cyd(x, y),

the average distance between elements in different clusters.

Definition 19 (Standard Variance Ratio). The Standard Variance Ratio of C on d is

SV R(C, d) =
B(C, d)

W (C, d)
.

Note that the range of SVR is [0,∞). Larger values of SVR indicate better clustering

quality.

Axiom Satisfaction

We now show that SVR satisfies the four axioms of clustering quality measures.

Lemma 7. Standard variance ratio is scale invariant.
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Proof. Let d and d′ be distance functions such that for all x, y ∈ X, d′(x, y) = αd(x, y)

for some constant α > 0. Then,

SV R(C, d′) =
B(C, d′)

W (C, d′)

=
avgx 6∼Cyd

′(x, y)

avgx∼Cyd′(x, y)

=
avgx 6∼Cyαd(x, y)

avgx∼Cyαd(x, y)

=
α · avgx 6∼Cyd(x, y)

α · avgx∼Cyd(x, y)

= SV R(C, d)

Lemma 8. Standard variance ratio is locally consistent.

Proof. Let d be a distance function and C a clustering. Let d′ be a C-locally consistent

variant of d. Then for all x ∼C y, d′(x, y) ≤ d(x, y) and for all x 6∼C y, d′(x, y) ≥

d(x, y). Therefore, W (C, d′) ≤ W (C, d) and B(C, d′) ≥ B(C, d). Thus, STV (C, d′) ≥

STV (C, d).

Lemma 9. Standard variance ratio is full.

Proof. The range of SVR over non-trivial clusterings is (0,∞). By setting d(x, y) ≤ 0.9

for x ∼C y and d(x, y) ≥ b for all x 6∼C y, we get SV R(C, d) > b. Therefore, SV R(C, d)

can be made arbitrarily large.

By setting d(x, y) ≥ 1.1 for all x ∼C y and d(x, y) ≤ b for all x 6∼C y, we get

SV R(C, d) < b. Therefore, SV R(C, d) can be made arbitrarily close to 0.
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Finally, we note that SVR is isomorphism invariant since it is independent of point

description.

Time Complexity

The within-cluster variance and the between-cluster variance can be found in total time

O
(

n
2

)
, by computing the distances between all pairs of points. Therefore, the SVR of

a clustering can be computed in polynomial time.

Generalized Variance Ratio

We present a variation on standard variance ratio that works with any loss function.

Let C1 denote the 1-clustering of X. Let L be any clustering loss function. Recall that

a clustering loss function is a function that takes a clustering and a distance function,

and returns a real number.

Definition 20 (Variance Ratio of C With Respect to L). Given a clustering C of data

set X and distance function d over X, the variance ratio of C with respect to L is

V RL(C, d) =
L(C1, d)− L(C, d)

L(C, d)
.

Note that standard variance ratio is variance ratio with L(C, d) = avgx∼Cyd(x, y).

Loss Conformity

With loss-based clustering, desirable clusterings should have low loss. As previously

noted, a first natural proposition for a quality measure of a clustering is the clustering

loss function. However, many commonly used loss functions, such as k-means and k-

median, depend on the scaling of the data, so they cannot be used as quality measures.
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On the other hand, it is sometimes desirable that a quality measure does not contradict

the loss function. That is, when comparing two clusterings of a data set, we expect the

clustering with lower loss to have better clustering quality. This is not a requirement

for all clustering quality measures, since often there is no relevant loss function, or the

loss function is not sufficiently reliable for such a requirement. However, when the user

believes that, modulo scale invariance, clusterings with lower loss are better, then loss

conformity is desirable.

Whenever a quality measure satisfies this property for a clustering loss function L, we

say that it conforms with L.

Definition 21 (Loss Conformity). Let L be a clustering loss function. Let C and C ′

be clusterings and d a distance function. A clustering quality measure m conforms with

L if whenever L(C, d) ≤ L(C ′, d), m(C, d) ≥ m(C ′, d).

We now show that VR with respect to L conforms with L.

Lemma 10. Variance ratio with respect to L conforms with L.

Proof.

V RL(C, d) =
L(C1, d)− L(C, d)

L(C, d)
.

Since L(C1, d) is constant over all clusterings of X, as L(C, d) decreases, V RL(C, d)

increases. Therefore, given two clusterings of the same data set, the clustering with

lower loss has better variance ratio with respect to L.

This property allows us to view generalized variance ratio as a normalized loss func-

tion; it preserves the comparative power of the loss function on clusterings of the same

distance function, and allows comparisons of clusterings over different distance func-

tions via its scale invariance. That is, while using a loss function as a clustering quality
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measure tends to be inappropriate since many are not scale invariant, using general-

ized variance ratio preserves the desirable quality of using a loss function as a quality

measure, while being scale invariant.

3.4.2 Separability

Ostrovsky et al.[12] introduced the separability notion of clusterability, discussed in detail

in Chapter 2. We wish to define a notion of clustering quality that captures similar features.

Consider the (k−1)-clustering C ′ of minimal loss that has the same clusters as a k-clustering

C, except with two of the clusters in C merged. The separability of clustering C is the ratio

of the loss of C over the loss of C ′.

Let C = {C1, C2, . . . , Ck} be some k-clustering, and L a clustering loss function. For all

i 6= j, let Cij = {C\{Ci, Cj} ∪ {Ci ∪Cj}} be a clustering identical to C, except with cluster

Ci and Cj merged. We define separability as follows1.

Definition 22 (Separability with respect to L). Let C be a clustering and d a distance

function. Then the separability of C on d with respect to L is,

S(C, d) =
L(C, d)

mini,j L(Cij, d)
.

Separability can be defined with respect to any loss function. As an example, loss func-

tions of the following form can be used with separability.

γ
k∑

i=1

1

|Ci|δ
∑

{x,y}∈Ci

d(x, y)β

for δ, β, γ ∈ R. For δ = 1, β = 2, γ = 1, we get the k-means loss function. For δ = 2, β = 2,

1To define separability for clustering quality measures in a manner similar to the definition of separability
as a notion of clusterability presented by Ostrovsky et al. [12], we say that C is ε-separable if L(C,d)

minL(Cij ,d) ≤ ε.
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γ = 1, the loss of a cluster is its variance. For δ = 0, β = 1, γ = 1, the loss of a cluster is

the sum of all pairwise distances in the cluster.

Separability with k-means

Ostrovsky et al. [12] defined separability as a notion of clusterability with the k-means

loss function. We discuss separability as a clustering quality measure with the k-

means loss function. We prove that separability with k-means satisfies the four axioms

of clustering quality measures, and discuss its various properties.

Axiom Satisfaction

We now show that separability with k-means satisfies the four axioms of clustering

quality measures. Similar proofs can be used to show that separability with many

other loss functions also satisfies these axioms.

Theorem 17. Separability with k-means is scale invariant.

Proof. Let d and d′ be distance functions so that d′(x, y) = λd(x, y) for all x, y ∈

X, and some λ ∈ R+. Therefore, k-means(C, d′) =
∑k

i=1
1
|Ci|

∑
{x,y}⊆Ci

d′(x, y)2 =∑k
i=1

1
|Ci|

∑
{x,y}⊆Ci

(λd(x, y))2 = λ2k-means(C, d). Therefore, for any clusterings C, C ′

of X, k-means(C,d)
k-means(C′,d)

= k-means(C,d′)
k-means(C′,d′)

. Therefore, it follows that S(X, d) = S(X, d′).

Theorem 18. Separability with k-means is locally consistent.

Proof. Let d a distance function, C a clustering, and d′ a C-locally consistent variant

of d. Let C = {C1 ∪ C2, C3, . . . , Ck} be a clustering of X. Without loss of generality,

we assume that k-means(C12) ≤ k-means(Cij) for all i 6= j. Observe that σ2
d(Y ) =

1
|Y |2

∑
{x,y}⊆Y d(x, y)2, is the variance of Y with respect to d, since

∑
{x,y}⊆Y d(x, y)2 =

|Y |
∑

y∈Y d(y, ȳ)2 where ȳ = 1
|Y |

∑
y∈Y y. For S ⊆ C, we let σ2

d(S) denote the variance

of the points in S.
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Then,

1

S(C, d)
=

k-means(C12, d)

k-means(C, d)

=
|C1 ∪ C2|σ2

d(C1 ∪ C2) + |C3|σ2
d(C3) + . . . + |Ck|σ2

d(Ck)

|C1|σ2
d(C1) + |C2|σ2

d(C2) + . . . + |Ck|σ2
d(Ck)

=
|C1 ∪ C2|σ2

d(C1 ∪ C2)− |C1|σ2
d(C1)− |C2|σ2

d(C2) +
∑k

u=1 |Cu|σ2
d(Cu)∑k

u=1 |Cu|σ2
d(Cu)

=
|C1 ∪ C2|σ2

d(C1 ∪ C2)− |C1|σ2
d(C1)− |C2|σ2

d(C2)∑k
u=1 |Cu|σ2

d(Cu)
+ 1

=

1
|C1∪C2|

∑
{x,y}⊆C1∪C2

d(x, y)2 − |C1|σ2
d(C1)− |C2|σ2

d(C2)

k∑
u=1

|Cu|σ2
d(Cu)

+ 1

Let r = 1
|C1|+|C2| . Then,

1

S(C, d)
=

r(
∑

x∼Cy,{x,y}⊆C1∪C2

d′(x, y)2 +
∑

x 6∼Cy,{x,y}⊆C1∪C2

d′(x, y)2)− |C1|σ2
d′(C1)− |C2|σ2

d′(C2)

k∑
u=1

|Cu|σ2
d(Cu)

+1.

Since |Ci|σ2
d′(Ci) = 1

|Ci|
∑

{x,y} d(x, y),

1

S(C, d)
=

r(
∑

x∼C y,{x,y}⊆C1∪C2

d(x, y)
2

+
∑

x6∼C y,{x,y}⊆C1∪C2

d(x, y)
2
)−

1

|C1|

∑
{x,y}⊆C1

d(x, y)−
1

|C2|

∑
{x,y}⊆C2

d(x, y)

k∑
u=1

|Cu|σ2
d(Cu)

+ 1.
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Therefore,

1

S(C, d)
=

( 1
|C1|+|C2|

− 1
|C1|

)
∑

x∼C y,{x,y}⊆C1

d
′
(x, y)

2
+ (r −

1

|C2|
)

∑
x∼C y,{x,y}⊆C2

d
′
(x, y)

2
+

∑
x6∼C y,{x,y}⊆C1∪C2

d
′
(x, y)

2

k∑
u=1

|Cu|σ2
d(Cu)

+ 1.

Now, let d′ be a C-locally consistent variant of d. Then,

1

S(C, d′)
≥

k-means(C12, d′)

k-means(C, d′)

=

(r − 1
|C1|

)
∑

x∼C y,{x,y}⊆C1

d
′
(x, y)

2
+ (r −

1

|C2|
)

∑
x∼C y,{x,y}⊆C2

d
′
(x, y)

2
+

∑
x6∼C y,{x,y}⊆C1∪C2

d
′
(x, y)

2

k∑
u=1

|Cu|σ2
d′ (Cu)

+ 1

≥

(r − 1
|C1|

)
∑

x∼C y,{x,y}⊆C1

d(x, y)
2

+ (r −
1

|C2|
)

∑
x∼C y,{x,y}⊆C2

d(x, y)
2

+
∑

x6∼C y,{x,y}⊆C1∪C2

d
′
(x, y)

2

k∑
u=1

|Cu|σ2
d(Cu)

+ 1

≥

(r − 1
|C1|

)
∑

x∼C y,{x,y}⊆C1

d(x, y)
2

+ (r −
1

|C2|
)

∑
x∼C y,{x,y}⊆C2

d(x, y)
2

+
∑

x6∼C y,{x,y}⊆C1∪C2

d(x, y)
2

k∑
u=1

|Cu|σ2
d(Cu)

+ 1

=
1

S(C, d)

Line (3) follows since 1
|C1|+|C2| ≤

1
|C2| ,

1
|C1|+|C2| ≤

1
|C1| , and d′(x, y) ≤ d(x, y) whenever

x ∼C y. Line (4) follows since d′(x, y) ≥ d(x, y) whenever x 6∼C y.

Theorem 19. Separability with k-means is full.

Proof. The range of separability over non-trivial clusterings is (0, 1). Consider a clus-

tering C where d(x, y) ≤ 1 for all x ∼C y and d(x, y) ≥ b for all x 6∼C y. The within

cluster distances bound the k-means loss of C. On the other hand, by increasing b,

we can make the loss of any clustering that merges two clusters in C arbitrarily high.

Therefore, S(C, d) can be made arbitrarily close to 0.
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To get values of S(C, d) arbitrarily close to 1, set d(x, y) ≥ 1 for all x ∼C y and

d(x, y) ≤ b for all x 6∼C y. Then as b decreases, the ratio of the k-means loss of C over

the loss of the minimal loss clustering that merges two clusters in C approaches 1.

Finally, we note that separability with k-means is isomorphism-invariant since it is

independent of point description.

Loss Conformity

While it may seem that separability is another way to normalize loss, it should be noted

that separability with k-means does not conform with the k-means loss function. The

reason for this is that the k-means loss function is independent of between-cluster

distances, while separability is not.

Consider the two clusterings as illustrated in Figure 3.2. The data set consists of 4

points in 1d, where the leftmost pair has distance 0.8, and the remaining distances

between consecutive points are 1 unit each. The clusterings C and C∗ are marked in

non-dashed ovals, whereas the dashed ovals illustrated the pairing up of clusters that

gives the best 2-clustering over all possible clusterings that consist of joining some pair

of clusters in each of C and C∗. It is immediate that the 3-means loss of C∗ is lower

than the 3-means loss of C. However, since we can obtain a better 2-clustering from

C∗ than from C, giving less of an improvement from the 3 to the 2-clustering in C∗,

C has better separability. In particular, we can show that the separability of C is

approximately 0.3086 whereas the separability of C∗ is no better than 0.39.

Time Complexity

Assuming that the loss function L of a k-clustering with respect to d with |X| = n

can be evaluated in g(n, k) operations where g(n, k) is a polynomial function, we can
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Figure 3.2: An example of two 3-clusterings, C and C∗, marked in non-dashed ovals, where
the 3-means loss of C∗ is smaller than the 3-means loss of C, but C has better separability
than C∗.

find S(C, d) in polynomial time. Since |{Cij | i 6= j}| =
(

k
2

)
, and we compute the loss

of each clustering Cij in g(n, k− 1) operations, we can find S(C, d) in
(

k
2

)
g(n, k− 1) +

g(n, k) operations. If L is the k-means loss function, which can be evaluated in O(n2)

operations, then we can find S(C, d) in O(k2n2) operations.

Alternative Formulations

Separability with loss functions such as k-means or k-median is sensitive to the minimal

separation between clusters. If there are two clusters that are very close together, then

the data set has low separability, regardless of how well separated are the rest of

the clusters. Notice that standard variance ratio behaves differently on this aspect,

since standard variance ratio can be made arbitrarily good by moving a single cluster

far away from all the other clusters, regardless of the relationship between the other

clusters.

We can consider alternative formulations of separability which behave differently in this

regard. For instance, we can define separability as L(C,d)
max{L(Cij ,d),i6=j} , which is sensitive

to the maximal separation between clusters. Alternatively, we could choose to look at

L(C,d)
avg{L(Cij ,d)|i6=j} . Other variations we may consider is merging more than two clusters of

C, followed by finding the minimal, maximal, or average such clustering, and computing

the ratio of the loss of the original clustering over the loss of the new clustering.

59



3.4.3 Margins

We now introduce quality measures for center-based clustering. Therefore, we defined a

center-based clustering as follows. A clustering C = {C1, C2, . . . , Ck} of data set X is

center-based if there exist points c1 ∈ C1, c2 ∈ C2, . . . , ck ∈ Ck such that for all x ∈ X, if

x ∈ Ci then d(x, ci) < d(x, cj), for all i 6= j. That is, C is a Voronoi partition. Note that

in the general setting, where the input is a distance function, we cannot use the center of

mass as the center of a cluster since it is not well-defined. To allow for different approaches

for determining centers, we assume that the centers of the clustering are given. Note that a

center-based clustering is fully specified by its set of centers.

Relative Margin

For each point in the data set, we consider the ratio of the distance from the point to

its closest center, over the distance from the point to the second closest center. We

then take the average over all ratios of non-centers. Intuitively, we can view smaller

margins as the points being “more sure” to which cluster they belong. This clustering

quality measure is based on the relative margin notion of clusterability introduced in

Chapter 2.

Definition 23 (Relative Point Margin). Let C = {C1, C2, . . . , Ck} be a center-based

clustering on distance function d, with ci the center of cluster Ci. For point x ∈ X,

the relative point margin of x in C on d is RMC,d(x) = d(x,ci)
d(x,cj)

, where ci is the closest

center to x and cj is a second closest center to x.

Definition 24 (Relative Margin). The relative margin of C on d is

RMd(C) = avgx∈X,x 6=ci for any iRMC,d(x).
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The range of relative margins is [0, 1). A smaller Relative Margin (RM) indicates a

better clustering.

Axiom Satisfaction

We now discuss how RM satisfies the four axioms of clustering quality measures. Since

relative point margin is independent of the description of the points, RM is isomorphism

invariant. We show that it is also scale-invariant, locally consistent, and full.

Lemma 11. Relative margin is scale invariant.

Proof. Let C be a center-based clustering on distance function d. Let d′ be a distance

function so that d′(x, y) = αd(x, y) for all x, y ∈ X and some α ∈ R+. Notice

that the centers in C on d′ are also valid centers in C on d, that is, C is a center-

based clustering on d′. Also, for any points x, y, z ∈ X, d(x,y)
d(x,z)

= d′(x,y)
d′(x,z)

. Therefore,

RMd′(C) = RMd(C).

Lemma 12. Relative margin is locally consistent.

Proof. Let C be a center-based clustering of distance function d. Let d′ be a C-locally

consistent variant of d. Since d′ is a C-locally consistent variant of d, for x ∼C y,

d′(x, y) ≤ d(x, y) and for x 6∼C y, d′(x, y) ≥ d(x, y). Therefore, the centers of C with

respect to d are valid centers for C with with respect to d′. In addition, for every point

x ∈ Ci for any 1 ≤ i ≤ k, d′(x, ci) ≤ d(x, ci), and d′(x, cj) ≥ d(x, cj) for i 6= j. Thus,

RMd′(C) ≤ RMd(C).

Lemma 13. Relative margin is full.

Proof. The range of RM over non-trivial clusterings is (0, 1). If we set d(x, y) ≤ a for

all x ∼C y, and d(x, y) ≥ 1 for all x 6∼C y, then RMd(C) ≤ a. To get RM arbitrarily
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close to 1, we set d(x, y) ≥ 1 − ε for all x ∼C y, and d(x, y) ≤ 1 for all x 6∼C y, then

RMd(C) ≥ 1− ε.

Time Complexity

We can find the relative point margin of all points in O(nk), where k is the number

of clusters in the clustering. Finding the average over all relative point margins adds

linear time. Thus, the total running time for finding the RM of a clustering is O(nk).

Alternative Formulations

There are many interesting variations of relative margin. We could look at the average

ratio of the distance to the closest center over the distance to the rth-closest center.

Alternatively, we could look at the average ratio of the closest center over the average

distance to all other centers. Also, instead of taking the average of ratio, we could take

the maximum over all ratios.

Additive Margin

Instead of looking at the ratio of the distance to the second closest center over the ratio

of the distance to the closest center, additive margin looks at the difference of these two

quantities. Additive margin is similar to the perturbation loss notion of clusterability,

presented in Chapter 2.

Definition 25 (Additive Point Margin). Let d be a distance function. Let C =

{C1, C2, . . . , Ck} be a center-based clustering, with ci the center of cluster Ci. For point

x ∈ X, the additive point margin of x in C on d is AMC,d(x) = d(x, cj) − d(x, ci),

where ci is the closest center to x and cj is a second closest center to x.

The additive margin of a clustering is the average additive point margin, divided by the

average within-cluster distance. The normalization is necessary for scale-invariance.
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Definition 26 (Additive Margin). The additive margin of C on d is

AMd(C) =
avgx∈XAMC,d(x)

avgx∼Cyd(x, y)
.

The range of additive margin is [0,∞). Unlike relative margin, additive margin gives

higher values to better clusterings.

Axiom Satisfaction

Lemma 14. Additive margin is scale invariant.

Proof. Let C be a center-based clustering of distance function d. Let d′ be a distance

function so that d′(x, y) = αd(x, y) for all x, y ∈ X and some α ∈ R+. Notice that C

is a center-based clustering on d′ using the same set of centers. Also, for any points

x, y, z ∈ X, d′(x, y)− d′(x, z) = α(d(x, y)− d(x, z)). Thus,

AMd′(C) =
avgx∈XAMC,d′(x)

avgx∼Cyd′(x, y)
=

α · avgx∈XAMC,d(x)

α · avgx∼Cyd(x, y)
= AMd(C).

Lemma 15. Additive margin is locally consistent.

Proof. Let C be a center-based clustering of distance function d. Let d′ be a C-locally

consistent variant of d. Since d′ is a C-locally consistent variant of d, for x ∼C y,

d′(x, y) ≤ d(x, y) and for x 6∼C y, d′(x, y) ≥ d(x, y). Therefore, the centers of C on d

are valid centers for C on d′. Also, a C-locally consistent change can only increase the

margin of each point. Combined with the fact that avgx∼Cyd
′(x, y) ≤ avgx∼Cyd(x, y),

we get that AMd′(C) ≥ AMd(C).
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Lemma 16. Additive margin is full.

Proof. The range of AM over non-trivial clusterings is (0,∞). Set d(x, y) > 1 for all

x ∼C y, and d(x, y) ≤ 1 + ε for all x 6∼C y and any ε > 0. Then AMd(C) < ε.

To see that arbitrarily large values of AM can be obtained by setting ranges for within

and between cluster distances, notice that if d(x, y) ≤ 0.9 for all x ∼C y, and d(x, y) ≥

1 + h for all x 6∼C y and any h > 0, then AMd(C) > h.

Time Complexity

As with relative point margin, we can find the additive point margin of all points in

O(nk). Finding the average over all additive point margins adds linear time. Finding

the average within-cluster distance takes O(n2) operations. Thus, the total running

time for finding the AM of a clustering is O(n2k).

Alternative Formulations

We could look at the difference between the distance to the rth-closest center and the

distance to closest center. We could also define additive point margin as the difference

of the average distance from the point to a center and the distance from the point

to its closest center. Instead of dividing by the average within-cluster distance, we

could divide by the minimum or maximum within-cluster distance. If we use the latter

approach, then then it would take O(nk) operations to find the quality of a clustering.

3.5 Minimal Subset Quality

The user may be interested in finding the best or worst clusterable parts of a given clustering.

The user may only be satisfied when all clusters are well separated from one another, or she

may like to know which parts of the clustering provide the most reliable information. To
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enable this type of study, given any quality measure m, we look at m over all subsets of

clusters.

To find the most clusterable part of a clustering C, we can compute maxS⊆C,|S|≥2 m(S, d).

Similarly, to find the least clusterable part, we can find the subset of clusters of C that gives

the lowest value of m(S, d).

This approach can also be used to get variations of clustering quality measures. Some

quality measures, like separability, are effected by the minimal distance between two clusters.

Other measures, like standard variance ratio, can be made arbitrarily good by moving a single

cluster far from all other clusters. Given any quality measure, we can modify the measure to

make it sensitive to the worst section of the clustering. That is, given any quality measure

m, we can define a clustering measure m′(C, d) = minS⊆C,|S|≥2 m(S, d). This variation is

suitable for standard variance ratio and additive margin.

3.6 Clusterability and Clustering Quality

In Chapter 2, we saw notions of clusterability where the clusterability of a data set is mea-

sured by the quality of some optimal clustering. Here we present an alternative perspective

at notions of clusterability.

We can say that a data set is well-clusterable if there exists a clustering that has suffi-

ciently good clustering quality. That is, given clustering quality measure m, we can say that

data set X with distance function d is well-clusterable if there exists a clustering C such that

m(C, d) ≥ α. The question then becomes on how to set α. Some measures of clusterability

lend themselves to some values of α. For example, when standard variance ratio is greater

than 1, then the between-cluster variance is greater than the within-cluster variance. When

relative margin is 1
y
, then on average, each point is y times closer to its center than to the

next closest center. Experimental results pertaining to specific applications can also be used
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to find values of α. In particular, by experimenting with random clusterings, we can find

ranges that indicate poor clustering quality. Given quality measures with which it takes

polynomial time to evaluate the quality of a clustering (such as the notions presented in

this chapter), it is promising that we can define useful and computationally easier notions

of clusterability.

3.7 Conclusions

We proposed four axioms of clustering quality measures, and demonstrated that all four

axioms are non-redundant. We also introduced clustering quality measures that satisfy

these axioms. These measures apply in different situations and have different properties.

Separability and generalized variance ratio work with loss-based clustering. Relative and

additive margin are used to evaluate the quality of center-based clusterings. For any loss

function L, generalized variance ratio with respect to L conforms with L. On the other

hand, separability with k-means does not conform with k-means. Separability with k-means

is sensitive to the minimal separation between clusters, while standard variance ratio and

additive margin are not. We presented techniques for modifying quality measures to change

their sensitivity to the best or worst clusterable parts of a clustering.

Much interesting research remains to be done. It would be interesting to see what kind

of properties follow from the axioms of clustering quality measures. The ideas for alterna-

tive definitions of clusterability proposed in Section 3.6 could be developed further. In the

practical domain, it would be interesting to see how the clustering quality measures pre-

sented here, and their variations, perform in practice. We hope that an interplay of theory

and practice will develop as practitioners examine which measures are most useful under

different circumstances, and theoreticians refine and add to the theory of clustering quality

measures.
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Chapter 4

Conclusions

We discussed two related but different concepts in clustering: clusterability and clustering

quality. We presented three notions of clusterability from the literature and analyzed their

computational complexity. We found that these notions of clusterability are inconsistent with

each other. That is, for each pair of notions, there are data sets that are well-clusterable

by one of the notions and poorly-clusterable by the other notion, to arbitrary degrees. Our

analysis shows that worst pair ratio is the strongest of these notions of clusterability, that is,

good clusterability by this notion implies good clusterability by the other notions. We also

introduced a new notion of clusterability, based on point perturbation, as well as variations

of this notion.

In the second part of the thesis, we proposed four axioms of clustering quality measures,

and demonstrated that all four axioms are non-redundant. We also introduced clustering

quality measures that satisfy these axioms. Most of these measures of clustering quality

are similar to some notions of clusterability, which highlights the close relationship between

these concepts. We illustrate that these measures vary on a number of dimensions, such as

loss conformity and sensitivity to the minimal separation between clusters. We also suggest

variations of each clustering quality measure.
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This work opens many directions for future research. In the practical domain, it would

be interesting to see how the clustering quality measures presented here perform in practice.

Through experiments with real data sets, the ideas for alternative definitions of clusterability

proposed in Section 3.6 could be developed further. In the theoretical realm, we could

evaluate whether the set of axioms for clustering quality measures is complete, that is,

whether all functions that do not make good clustering functions fail to satisfy at least one

of the axioms. It would also be interesting to explore what other properties follow from the

axioms of clustering quality measures. For clusterability, we could explore the hardness of

approximating the notions of clusterability presented in Chapter 2. In addition, it would

be interesting to explore axiomatization of clusterability and clustering functions using the

ideas developed in this thesis.
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