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Abstract  

The Na+-K+-ATPase (pump) is a transmembrane, multi-subunit (α and β) protein that is 

expressed in all cells, and particularly in skeletal muscle cells. In one cycle, it pumps 3 Na+ 

ions out of the cell and 2 K+ ions into the cell at the expense of 1 ATP molecule. This 

enzyme is responsible for maintaining muscle cell excitability. This is of particular 

importance during contractile activity, when the flux of Na+ and K+ across the cell 

membrane is high. The activity of the Na+-K+-ATPase is highly regulated and very 

responsive to hormonal stimuli. Previous research has shown that 20-30 min insulin 

exposure in vivo induces the translocation of pumps from intracellular stores to the plasma 

membrane. However, no study has examined the catalytic properties of this enzyme in 

response to short insulin exposures. The objective of this study was to investigate the 

response of the Na+-K+-ATPase to short insulin incubation in vitro in muscles of different 

fibre type. It was hypothesized that the short insulin treatment would result in an increase in 

pump activity, not only through translocation but also increased intrinsic activity. Using an 

in vitro model, rat soleus (Sol), red gastrocnemius (RG), and white gastrocnemius (WG) 

muscle homogenates were incubated at 37°C for 5 min with and without 75μM insulin (Ins). 

Next, in order to separate mechanisms of translocation and intrinsic activation, the plasma 

(SLP) and endosomal (EN) membranes were separated through a fractionation procedure.  

This allowed the investigation of insulin-induced increases in intrinsic activity in SLP and 

EN fractions of Na+-K+-ATPase; SLP and EN (non-treated) membranes were incubated at 

37°C for 5 min with and without 75μM insulin. Lastly, muscle homogenates were insulin-

treated for 5 min at 37°C with 625μM insulin prior to fractionation. These SLP and EN 

fractions (insulin-treated) were then incubated at 37°C for 5 min with and without 75μM 
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insulin. Na+-K+-ATPase maximal activity (Vmax, mmol·mg prot-1·h-1) and km (substrate 

affinity), α2 content, and tyrosine phosphorylation (Tyr-P) were probed. It was found that 

insulin increased Vmax (P<0.05) in Sol and RG, but not WG, homogenates (Con vs Ins, 

Sol=221±17 vs 256±21; RG=190±14 vs 256±18; WG=104±4.6 vs 99±1.8). In non-treated 

fractions, insulin increased Vmax (P<0.05) in Sol and RG SLP fractions (Con vs Ins, 

Sol=1710±186 vs 1970±231; RG=1476±128 vs 1655±139). A main effect, Con<Ins (P<0.05) 

was observed in non-treated WG SLP. Insulin also increased Vmax in non-treated RG EN 

(Con vs Ins, 246±38 vs 304±43). In insulin-treated fractions, insulin increased Vmax in RG 

SLP only (Con vs Ins, 1145±119 vs 1426±150). Increased Vmax was not observed in insulin-

treated fractions when compared to non-treated fractions. No evidence of translocation or 

increased Tyr-P was detected with insulin treatment via α2 Western blotting. Short insulin 

exposure induced increases in Na+-K+-ATPase activity, and these increases were due to 

stimulation of intrinsic activity and not due to translocation. 
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Chapter One 

 Statement of the Problem 

Introduction 

Skeletal muscle is specialized for developing varying amounts of force, which is essential 

for performing the diverse tasks necessary for survival. A system must be in place that 

allows the muscle cell to respond to commands from neural input by conducting signals to 

the interior of the muscle cell. In a resting muscle cell, the membrane potential is ~70mV, 

with extracellular concentrations of Na+ and K+ of ~145 and 4.5mM, respectively, and 

intracellular concentrations of Na+ and K+ of ~4.5 and ~145mM, respectively (65). Neural 

input causes the release of acetylcholine (ACh) from nerve endings at the neuromuscular 

junction, which in turn binds to receptors on the muscle motor end plate and initiates an 

action potential (AP) (39). An AP is caused by the opening of voltage-gated Na+ channels in 

the sarcolemmal membrane, which allows a rapid influx of Na+ and depolarization of the 

sarcolemmal membrane (39). This depolarization signal is propagated across the 

sarcolemma and into the T-tubules, which initiates an intracellular release of Ca2+ from the 

sarcoplasmic reticulum (SR) and subsequent muscle contraction (39). An outward flux of K+, 

through voltage-sensitive K+ channels, is necessary to restore resting membrane potential 

(65).  

 This system relies on the concentration gradients for Na+ and K+ to conduct action 

potentials. However, with repetitive action potentials, the gradients of these ions become 

depleted. During contractile activity, AP frequency reaches up to 55Hz depending on the 

characteristics of activity and the fibre type of the muscle (57). Such a stress could deplete 

the Na+ and K+ concentration gradients in a relatively short time. Thus, for repetitive action 

potentials to occur, a structure is needed that can rapidly transport Na+ and K+ against their 
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respective concentration gradients in order to maintain muscle cell responsiveness to neural 

input. The Na+-K+ ATPase (pump) is the trans-membrane enzyme responsible for 

maintaining and restoring muscle cell excitability through the active transport of Na+ and K+. 

The Na+-K+ pump cycles 3 Na+ ions out of the cell and 2 K+ ions into the cell at the expense 

of a single molecule of ATP (37). This results in the net movement of a single positive 

charge out of the cell and repolarization of the membrane following action potential 

propagation. The resting membrane potential is re-established and voltage-gated Na+ 

channels re-activated. Restoration of the Na+ and K+ gradients to resting concentrations 

allows membrane excitability to be protected. 

 The large increases in Na+ and K+ flux that occur with contractile activity require a 

rapid increase in Na+-K+-ATPase activity. As such, intricate regulatory mechanisms exist to 

match pump activity to task demand. Na+-K+ ATPase activity is low at rest but increases 

dramatically within seconds of contractile activity due to activation by increased 

intracellular Na+ concentrations (57). Hormonal stimulation of the Na+-K+-ATPase can 

further increase pump activity within minutes (57). Furthermore, there are multiple isoforms 

of the Na+-K+-ATPase, each exhibiting unique catalytic properties, which are differentially 

expressed in tissue and muscle fibre types to confer differential regulation and responses to 

contractile stimuli (10). 

 

Na+-K+-ATPase Structure and Cellular Localization 

The Na+-K+-ATPase (pump) is a transmembrane, multi-subunit protein that is expressed in 

all cells, and particularly in skeletal muscle cells. These pumps are localized in the plasma 

membrane, which is composed of the sarcolemma and the T-tubules, and in intracellular 
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sites. Although fractionation techniques have confirmed the existence of a pool of Na+-K+ 

pumps distinct from the plasma membrane pool (27; 69), the exact localization of these sites 

has yet to be elucidated. Some evidence suggests that these intracellular sites include tubular 

and vesicular structures located in subsarcolemmal and triadic regions (53). The Na+-K+ 

ATPase consists of a ~110 kDa α subunit and a ~40 kDa heavily glycosylated β subunit (10). 

Both of these proteins are required for enzymatic function (10). More recently, two members 

of the FXYD protein family have been associated with the Na+-K+ pump: FXYD1, also 

called phospholemman (PLM), and FXYD2, also called the γ subunit of the Na+-K+ ATPase 

(29). These proteins, although not essential for catalytic activity, bind to and modify the 

behaviour of the Na+-K+-ATPase (29). Unlike PLM, the γ subunit has not yet been detected 

in skeletal muscle (73). 

 

Muscle isoforms of the Na+-K+-ATPase: Distribution and Properties 

Several isoforms exist for the α and β subunits of the Na+-K+ pump, each with distinct 

properties. There are 4 α isoforms, although only three have been reported in skeletal muscle 

(α1, α2, and α3), and three β isoforms (β1, β2 and β3), all of which have been detected in 

skeletal muscle (10). The α subunit contains the catalytic site which binds Na+, K+, and ATP 

(10). The β subunit serves a regulatory function and is necessary for both the transport of αβ 

heterodimers from intracellular synthesis sites to the plasma membrane and for the catalytic 

activity of the enzyme (10). Na+-K+-ATPase catalytic properties, which include the maximal 

rate of ATPase activity (Vmax) as a measure of pump capacity for ATP usage and the k50 as a 

measure of substrate (Na+, K+, or ATP) affinity, are influenced by both the α and the β 

isoform (10). 
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 These isoforms appear to be distributed in tissue and fibre type specific manners (22). 

The α1β1 combination is found in nearly every tissue while the other α and β isoforms are 

more restricted in their expression (10). Much work has been done to elucidate the specific 

expression patterns within skeletal muscles of different fibre types. Muscle fibres are 

generally classified according to their myosin heavy chain composition; these classes, in 

order of slowest to fastest velocity of contraction, are type I, type IIA, type IIX(D), and type 

IIB (63). These classes are consistent across species (63). However, it has been reported that 

the properties of the Na+-K+ ATPase correlate with the oxidative potential of muscle fibres 

more so than with contractile speed of the fibres (22). In rat skeletal muscle the oxidative 

potential of fibre types ranks in the order of type IIA>I>IID/X>IIB fibres (18) whereas in 

humans the order is type I>IIA>IID/X  fibres (21). Slow oxidative (type I) fibres contain 

α1β1 and α2β1 complexes (22), the α1 isoform representing 15-25% of the total pool of Na+-

K+ ATPase in soleus (Sol) (35). The fast glycolytic fibres (type IIX, IIb), such as white 

gastrocnemius (WG), contain α1β2 and α2β2 complexes while fast oxidative-glycolytic fibres 

(type IIA), such as red gastrocnemius (RG), have all four combinations (22). The α3 and β3 

isoforms have been reported to be present in negligible quantities in skeletal muscle (22). 

However, a recent report detecting these two isoforms in human vastus lateralis muscle (56) 

illustrates the need for further investigation into their distribution and role in the different 

fibre types. Also, even though a single isoform may be found in multiple fibre types, the 

expression levels of the Na+-K+ pump isoforms are skewed. In a comparison between rat 

skeletal muscles of different fibre types [Sol, RG, extensor digitorum longus (EDL), and 

WG], it was reported that Sol contained the greatest amount of α1 and β1 isoforms while 

having significantly less β2 isoform than the other three muscles (22). All muscles had 
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comparable amounts of α2 isoform (22).  Based upon this fibre type analyses, it seems as 

though the β isoform distinguishes slow from fast fibres (22). In terms of Vmax, the rank 

order from highest to lowest was Sol > RG = EDL > WG (22). The fibre type distribution of 

Na+-K+ pumps in rat skeletal muscle is summarized in Table 1. 

Table 1: Relative fibre type specific expression of rat Na+-K+ ATPase isoforms

Type I Type IIA Type IIX/IIB
α1 100 75 25
β1 100 70 70
α2 100 100 100
β2 25 100 100

dominant isozymes α1β1, α2β1 α1β1, α2β1, α1β2, α2β2 α1β2, α2β2  

[ref (22)]  

The catalytic properties of the Na+-K+ ATPase are primarily determined by the α 

isoform and modified by the β isoform (10). The use of heterologous expression systems has 

allowed the separate expression of each isoform; however, attempts to characterize the 

enzymatic properties of the Na+-K+ ATPase isoforms have resulted in contradictory results 

(10). The tissue under study and the specific αβ heterodimers both influence catalytic 

properties (10). For example, the renal α1β1 isozyme was reported to have lower ATP, 

similar K+, and higher Na+ affinities than the neuronal enzyme composed of  α2 and α3 

isoforms (10). It has also been reported that the α1 and α2 isoforms have similar affinities for 

Na+ and K+, but that these affinities are higher and lower than those of the α3 isoform, 

respectively (70). These reports are most likely influenced in part by the membrane 

environment in which the different experiments were conducted (i.e. different species, 

expression systems, or tissues). Consistent positive correlations between molecular activity 

(enzyme activity/enzyme number) and increasing levels of polyunsaturation and 

unsaturation index (avg. number of double bonds per fatty acid residue) have been reported 
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(20). Furthermore, ‘cross over’ experiments, in which membranes from tissues of species 

that display high molecular activity were exchanged with membrane from the same tissue of 

a species with lower molecular activity, have shown that the Na+-K+ pumps display 

molecular activities shifting in the direction of the added membrane source (20).  

Measures performed on isoforms synthesized in heterologous expression systems 

from rat cDNA clones show apparent affinity for Na+ ranks in the order of α2β2 > α2β1 > 

α1β1 = α3β2 > α3β1; apparent affinity for K+ ranks in the order of α1β1 > α2β1 = α2β2 > α3β1 = 

α3β2; and activation by ATP is equivalent for α2 and α3 isoforms, which is approximately 

four times lower than that of the α1β1 complex (10). These catalytic properties of the 

different rat Na+-K+ ATPase α isoforms are summarized in Table 2. 

Table 2: Catalytic properties of rat Na+-K+ ATPase isoforms
             

α1 α2 α3
Na+ affinity medium highest lowest
K+ affinity highest medium lowest

ATP activation highest low low  

   [ref (10)] 

 In Xenopus oocytes, the catalytic properties of all nine human isoform combinations 

have also been characterized (16). The α1 isoform displayed the highest turnover rates and 

Na+ affinity while K+ activation varied depending on the α-β combination (16). The 

difference in K+ activation was particularly pronounced in the comparison between the α2β1 

and α2β2 isozymes, in which the α2β1 isozyme showed a more than 2 fold higher affinity for 

K+ than the α2β2 isozyme (16). Also, the α2 isoform displayed higher Na+ affinity than the α3 

isoform (16). Voltage dependence was influenced by the α isoform present, with α2 showing 

a steeper voltage dependence than α1 and α3 being nearly voltage-independent (16). The 
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catalytic properties of the different human Na+-K+ ATPase α isoforms are summarized in 

Table 3. 

Table 3: Catalytic properties of the human Na+-K+ ATPase isoforms

α1 α2 α3
Vmax highest medium lowest

Na+ affinity highest medium lowest
K+ affinity depends on αβ combination 

voltage dependence medium highest lowest  

  [ref (16)] 

Specific cellular roles for the Na+-K+ ATPase isoforms also appear to exist. In 

human soleus muscle, the α1 isoform has been identified mainly in the sarcolemma while the 

α2 isoform was distributed in both the sarcolemma and T-tubules (14). A similar distribution 

was observed in rat skeletal muscle (14). Furthermore, α2, β1, and β3 subunits have been 

shown to populate intracellular membranes as well (48). The α2 content always exceeds that 

of the α1, ranging from (α2: α1 ratio) 1.6 in surface membranes to 3-7 in internal membranes, 

and the β content always exceeds that of the α (48). This suggests that the expression pattern 

of the Na+-K+ ATPase isoforms is skewed in order to achieve optimal enzymatic activity in 

skeletal muscle.  

Higher activity reported for the α2 isoform when compared to the α1 isoform (10) 

may indicate a greater role for the α2 isoform during contractile activity. Given such 

observations, and the ubiquitous expression of the α1β1 complex, it has been hypothesized 

that the α2 isoform is the major catalytic isoform (22). However, evidence from tissues other 

than skeletal muscle suggest that it is unlikely the α1 isoform is strictly active during rest. In 

tissues such as the kidney and rat heart, where the α1 isoform predominates, similar 

regulation of the Na+-K+ ATPase is observed as in skeletal muscle (14). Thus, the α1 isoform 

appears to respond to the same stimuli that have been attributed to increased α2 pump 
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activity in skeletal muscle. Interactions with the surrounding membrane environment may 

explain some of the differences in catalytic activity reported between the α1 and α2 isoforms 

in skeletal muscle and discrepancies in the role for the α1 isoform in different tissues. A 

study using gene targeted mice lacking one copy of either the α1 or α2 isoform gene reported 

that reduction in the α2 isoform resulted in an increase in isometric force while reduction in 

the α1 isoform resulted in a decrease in isometric force (36). This illustrates that, although 

the exact roles of these two α isoforms are unclear, they do in fact play different roles in 

maintaining muscle cell excitability.  

In summary, the differences in the catalytic properties of the different Na+-K+ pump 

isoforms suggests that the expression of multiple α and β isoforms within a given cell is not 

redundant (70). Diversity in the isoform characteristics of the Na+-K+ ATPase allows for 

tissue and fibre type specific roles of the enzyme. Therefore, the ability of the Na+-K+ 

ATPase to maintain Na+ and K+ gradients, as determined by Vmax and protein abundance, 

will be influenced by the isoform combinations of the α and β subunits. This allows for the 

possibility of differential regulation of these isoforms so that a given stimulus may 

independently influence the catalytic properties of the Na+-K+ pumps in different cellular 

compartments, fibres, or tissues.  

 

Measurement of Na+-K+ ATPase Properties 

The distinct properties associated with each isoform depend on differences in catalytic 

properties. As previously stated, the catalytic properties of interest are the Vmax and the k50. 

The k50 is the substrate concentration at which half Vmax is achieved. These properties can be 

measured in vitro using a kinetic assay of ATPase activity or through measurement of Na+-
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K+ pump current. The standard assay for measuring Na+-K+ ATPase activity in skeletal 

muscle homogenate is the K+ stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) 

assay. This is an indirect measure of activity, as the direct hydrolysis of ATP is not 

measured. Of all of the ATPases in skeletal muscle, the Na+-K+ ATPase accounts for <10% 

of the total ATP usage at rest and this percentage is not likely to increase during work (14). 

As such, it is difficult to measure direct hydrolytic activity in muscle homogenate without 

first purifying the sample. Purification of Na+-K+ ATPase fractions often leads to low 

recovery of the total Na+-K+ ATPase content and thus limits generalizations based on these 

findings (14); it is unknown if these yields constitute a representative sample of the total 

pump content. The 3-O-MFPase assay has been optimized as described by Fraser and 

McKenna (26) and later modified by Barr et al (4). This assay can provide measures of 

catalytic properties by measuring K+ stimulated 3-O-MFPase activity over increasing 

concentrations of K+ so as to develop a kinetic curve for Na+-K+ ATPase activity. However, 

the 3-O-MFPase assay is not without limitations. One major issue with this assay is the non-

specific background activity. Variability in background activity can provide issues with 

obtaining reliable measures. This background is ~70% of the total measured activity. Thus, 

it would be preferred to measure Na+-K+ ATPase activity using a hydrolytic assay specific to 

the Na+-K+ ATPase in crude muscle homogenate.  

 

Na+-K+ ATPase Responses to Contractile Activity 

Based on the diversity of the Na+-K+ ATPase isoforms, it is not surprising that the Na+-K+ 

pumps from muscles composed of different fibre types respond differently to contractile 

stimuli. The demands introduced by contractile activity require the catalytic rate of the Na+-
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K+ ATPase to be rapidly increased. The catalytic rate depends not only on protein-isoform 

abundance, but also on acute regulatory influences and translocation. Skeletal muscle 

contains a high concentration of Na+-K+ pumps that can be activated in response to 

contractile activity (57). In muscle, Na+-K+ ATPase activity is low at rest but increases 

dramatically within seconds of contractile activity due to activation by increased 

intracellular Na+ concentrations (57). This quick response is necessary to prevent rundown 

of Na+ and K+ gradients caused by the large influx of Na+ and efflux of K+ with membrane 

depolarization. A rundown of these gradients has been shown to cause reductions in tetanic 

force output in isolated rat Sol (60). Activation of the Na+-K+ pumps by means of 

salbutamol (β2 agonist), insulin, or epinephrine resulted in recovery of force to 80-90% of 

the normal level (60). Using an in vitro method that stimulates the nicotinic ACh receptors 

at the motor end plate of an isolated muscle instead of methods that vary the Na+ and K+ 

concentrations in an incubation medium, a more physiological response of Na+ and K+ 

gradients can be mimicked (51). Under conditions mimicking intense exercise, the ability of 

the Na+-K+ ATPase to restore muscle excitability and contractility was confirmed through 

the use of salbutamol, epinephrine, and calcitonin gene-related peptide (51). These studies 

illustrate the importance of acute regulatory factor(s) activation of the Na+-K+ ATPase in 

restoring muscle excitability during contractile activity. 

 Repetitive Exercise and Na+-K+ ATPase Responses  

A number of studies have investigated the acute response of Na+-K+ ATPase activity 

to various exercise protocols, in both rats and humans (23-25; 50). In general, these studies 

indicate a reduction of Vmax with repetitive exercise. In rat, this pattern of reduced Vmax has 

been observed across all muscle types [Sol, red vastus lateralis (RV), EDL, and white vastus 
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lateralis (WV)] (23). In humans, sustained, moderate-intensity, isometric knee extension 

exercise (24), heavy isokinetic exercise (25), and prolonged cycling exercise at 50% (68) 

and 75% (50) VO2peak have resulted in reductions in Vmax of the enzyme at fatigue. Together, 

these studies show that fatiguing exercise reduces Vmax in muscle across a diverse range of 

exercise types, durations, and intensities (50). It has been suggested that this response to 

exercise is obligatory in the regulation of skeletal muscle homeostasis (25). 

In contrast, repetitive contractile activity in rats, as performed by electrical 

stimulation (500 ms train at 30Hz every 1.5 seconds for 90 min) in vivo, has been shown to 

increase Vmax as measured on Sol muscle homogenates in vitro (69). Also, some studies 

performed in humans that have investigated M-wave (muscle compound action potential) 

properties with contractile activity have not reported depressions in M-wave properties as 

would be expected with decreased Vmax. The M-wave is a measure of the excitability of the 

cell membrane and consequently an indirect measure of the ability of the Na+-K+ ATPase to 

maintain ion gradients (61). Increases in M-wave duration are associated with decreases in 

the conduction speed of an action potential across the sarcolemma and t-tubules (66). 

Decreases in M-wave amplitude and area are generally associated with reductions in the 

ability to restore Na+ and K+ gradients across the sarcolemma (66). Brief isometric 

maximum voluntary contractions (MVCs) in the adductor pollicis (8) and short duration 

fatigue in the plantar flexors through intermittent isometric contractions (5) found no 

decreases in M-wave properties. This suggests that not all contractile activity results in 

inactivation of pump activity; there appears to be a dependence on duration, intensity, and 

type of activity in the response of the Na+-K+ pumps. Muscle excitability is not commonly 

compromised during volitional exercise if fatigue is induced by high intensity, short duration 
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contractions; however, contractions repeated for longer durations appear to induce greater 

reductions in Vmax or membrane excitability (24).  

Whereas measurements of Vmax in vitro suggest a pattern of pump inhibition with 

contractile activity, the physiological response of the Na+-K+-ATPase to contractile activity 

is activation. This discrepancy illustrates the difference between the measurement of enzyme 

capacity (Vmax) and in vivo activity. Although Na+-K+-ATPase activity may remain higher at 

fatigue when compared to rest, its maximal capacity of transport has decreased. As 

mentioned previously, increased intracellular Na+ concentration is a potent stimulus to 

increase Na+-K+ pump activity within seconds of membrane depolarization (57). 

Translocation may be one of the mechanisms for increasing Na+-K+ ATPase activity. 

Transient translocation of pump subunits from intracellular membranes to the plasma 

membrane can be induced by both contractile activity and insulin (38; 43; 44; 53; 72). These 

studies generally utilize fractionation techniques to identify increases in sarcolemmal Na+-

K+ pump content and subsequent decreases in the Na+-K+ pump content of intracellular 

stores. In humans, short, high intensity exercise induces the translocation of α2 and β1 

subunits (44) while in rats both long-lasting low-intensity running and short-lasting high-

intensity contractions induce translocation of all isoforms present, in both oxidative and 

glycolytic fibres (43). However, Sandiford et al (69) demonstrated translocation of α1 and α2 

subunits but no translocation of any β subunits in rat soleus using in vivo electrical 

stimulation. Translocation was associated with increased α2 Tyr phosphorylation (69). 

Interestingly, it has been reported that the translocation of α2 and β1 subunits following 

insulin injection was restricted to muscles composed of mostly oxidative fibres (49), which 



13 

is contrary to observations during contractile activity. Thus, there may be differences 

between contractile and insulin-induced translocation.  

Although strong evidence exists that translocation is a mechanism for Na+-K+ 

ATPase activation during contractile activity, it is unclear as to what isoforms undergo 

translocation, the mechanism through which translocation occurs, and whether it is 

individual isoforms or functional heterodimers that translocate. 

 Changes in Na+-K+ pump Expression in Response to Contractile Activity 

The stimulation protocol employed by Sandiford et al (69) induced an increase in α1 

protein by 90 min of stimulation, providing evidence that just a single bout of exercise 

provides enough stimulus to increase the expression of selected α subunits. This illustrates 

the highly malleable nature of the Na+-K+ ATPase. Evidence for such rapid responses to 

stress exists in humans as well. It has been shown that just 6 min of intense knee extensor 

exercise upregulates the mRNA expression of all six Na+-K+ ATPase isoforms in VL, but 

not protein expression (56). Thus, a very brief stimulus is sufficient to initiate a cellular 

response towards increasing Na+-K+ pump content. A follow up study that used this same 

exercise protocol reported a transient depression in Vmax from rest to fatigue that recovered 

by 3 hours post-exercise (62). Depressed Vmax was inversely correlated to the increase in 

expression of α1 and α2 mRNA, which suggests that reversible depression in muscle Vmax 

with fatiguing exercise may act as a stimulus to increase muscle Na+-K+ ATPase gene 

expression (62).  

More long term training studies, performed in humans, have reported increased 

protein turnover. Using a 6 day training model of cycle exercise at 60-65% VO2 peak for 2 

hours/day, Green et al (31) reported an increase in pump content by day 3, but no increase in 
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Vmax until day 6. Analysis of isoform content revealed that only α2 had increased by 3 days 

of training but β1 increased after 6 days of training (31). Thus, an increase in the content of 

one subunit alone is not enough evidence to conclude increased catalytic function; 

measurements of activity are required to assess whether increases in protein turnover result 

in increases in functional heterodimers. Other training protocols also increase pump content. 

For example, resistance training for 30 min, 3 times per week for 16 weeks was sufficient to 

increase α1, α2, and β1 protein content (17). Sprint training (17) and cycle (60-65% VO2peak) 

training (31) have also been shown to increase the content of Na+-K+ pumps. Training infers 

protective effects on Vmax. It has been shown, in well-trained athletes, that chronic 

intermittent hypoxia does not depress Vmax as previously shown in untrained individuals (2). 

In theory, the increase in pump content that occurs with training infers upon the cell a 

greater potential to maintain Na+ and K+ gradients through an increase in pumping capacity. 

This, in turn, could delay time to fatigue with exercise in trained individuals. 

 

Regulation of the Na+-K+ ATPase 

Given the requirement for rapid modulation of Na+-K+ ATPase activity, it is not surprising 

that this enzyme appears to be under complex regulatory control, both acute and long-term. 

Acute regulation involves either direct effects on the kinetic behaviour of the enzyme or 

translocation of Na+-K+ pumps from intracellular membranes to the plasma membrane (73). 

One key mechanism through which this regulation is carried out in the skeletal muscle cell is 

second messenger mediated kinase and phosphatase activity (70; 73). Residues specific to a 

given isoform can be covalently modified, which in turn can induce conformational changes 

that influence enzyme catalytic properties or availability. The major stimuli for such changes 



15 

are hormones, but other factors such as substrate availability, metabolic by-products, and 

redox state of the cell may also modify Na+-K+ pump function. Long term regulation 

generally involves alterations in de novo synthesis or degradation (73), in which hormones 

may also play a role. 

The major signaling cascades associated with Na+-K+ pump modulation are:  

1) adenosine 3’-5’-cyclic monophosphate (cAMP) activation of protein kinase A     

     (PKA)  

2) the diacylglycerol (DAG – formed by phospholipase C (PLC)) activation of    

     protein kinase C (PKC) 

3) free intracellular Ca2+ activation of calmodulin (CaM) kinase  

4) guanosine 3’-5’-cyclic monophosphate (cGMP) activation of protein kinase G  

     (PKG) 

[ref (70; 73)]  

Further downstream modulators of Na+-K+ properties include tyrosine kinases, protein 

phospatases 1, 2A and 2B (PP1, PP2A and PP2B respectively), and phospholipase A2 (PLA2) 

(73). There is evidence to suggest that signaling cascades activating kinases correlate with 

inhibition of pump activity and signaling cascades activating phosphatases correlate with 

stimulation of pump activity (69). This does not mean that all protein kinases inhibit pump 

activity; for example, PKC has been reported to both activate and inhibit pump activity 

depending on tissue and isoform expression (69). Thus, different responses to signaling 

cascades are possible depending on tissue, isoform diversity (in both the signaling proteins 

and the target proteins), and terminal action of the cascade (i.e. phosphorylation or 

dephosphorylation).  
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 Different phosphorylation sites on the α isoform have been identified for PKA and 

PKC (69), and this most likely also plays a role in whether pump activity is stimulated or 

inhibited. The main site of PKA stimulated phosphorylation is serine (Ser)-943 (10). PKA 

inhibits the pump through direct phosphorylation of the E1 state (73). However, it was 

recently shown in COS cells that the concentration of Ca2+ ions is important in determining 

whether PKA stimulates or inhibits Na+-K+ ATPase activity (73). In various systems, PKA 

has been shown to inhibit Na+-K+ ATPase activity by activating PLA2, activating a protein 

phosphatase inhibitor, and phosphorylating monomeric actin (73). This same pathway has 

been shown to activate Na+-K+ ATPase activity by phosphorylating polymeric actin (73). 

There also appears to be isoform specific effects of PKA activation. PKA activation in insect 

cells expressing rat Na+-K+-ATPase isoforms stimulated pump activity of α3β1 but inhibited 

pump activity of α1β1 and α2β1 isozymes (10).  

 PKC phosphorylation sites have been identified at Ser-16, Ser-23, and threonine 

(Thr)-15, although Ser-16 is only present in the α1 isoform and Thr-15 is only present in the 

α2 isoform (10; 13). The effects of PKC are tissue specific and depend on the isoform of 

PKC involved (73). In the kidney proximal tubule PKC has been reported to inhibit Na+-K+ 

pump activity, both through activation of the PLA2 pathway and through causing 

endocytosis of pumps via direct phosphorylation (73). There are multiple putative cytosolic 

PKC phophorylation sites on the Na+-K+ ATPase α subunit, with the site of phosphorylation 

appearing to be important in whether PKC activates or inhibits pump activity (73). There is 

also evidence that phosphorylation occurs preferentially in the E2 conformation (73). 

 Tyrosine phosphorylation by non-receptor tyrosine kinase c-src appears to occur at 

tyrosine (Tyr)-10 on the α1 isoform and on Tyr-543 on the α2 isoform (13). PKG, activated 
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by increases in cGMP, inhibits Na+-K+ pump activity in skeletal muscle (73). Regulation by 

these processes is not as well understood as those by PKA and PKC. 

The FXYD1 protein phospholemman (PLM) also elicits a regulatory role on skeletal 

muscle Na+-K+ ATPase function; however, this role is not well defined. In native skeletal 

muscle tissue, PLM has been shown to associate with the α1β- isozymes and less efficiently 

with α2β- isozymes (15). In Xenpus oocytes, interaction of PLM with Na+-K+ pumps results 

in a small decrease in extracellular K+ affinity and a nearly 2 fold decrease in intracellular 

Na+ affinity (15). It has been suggested that reduced Na+ affinity of the Na+-K+ pumps 

associated with PLM is necessary for efficient muscle contractility; maximal transport rates 

are not achieved before sufficient depolarization and the capacity to increase rates with 

further increases in Na+ exists (15). However, studies in PLM-deficient mice suggest that 

PLM stimulates rather than inhibits the Na+-K+ ATPase, as the Na+ affinity was not different 

between wild type and PLM-deficient mice (29). PLM phosphorylation has been reported 

through PKA and PKC mediated pathways (15).  

In mouse ventricular myocytes, PKA phosphorylates PLM at Ser-68 and PKC 

phosphorylates PLM at both Ser-63 and Ser-68 (33). PKC activation leads to 

phosphorylation of PLM at Ser-63 and Ser-68 and increased Vmax, without altering Na+ 

affinity (33). This effect is not observed in PLM knockout mice (33). Furthermore, this 

effect has been shown to be to α2β and not α1β isozymes (7). PKA activation increased PLM 

phosphorylation at Ser-68 and increased Na+ affinity (but not Vmax), an effect that was 

additive with that of PKC (33). This effect is similar in both α2β and α1β isozymes (7). Thus, 

although the functional effects of PLM on Na+-K+ ATPase activity in skeletal muscle remain 



18 

unclear, evidence from cardiac myocytes suggests that PLM may play a key role in 

regulating the effects of signaling cascades, in particular PKC. 

 

Figure 1: Overall summary of messenger signaling influences on the Na+-K+ ATPase 

[(73)] 

 

 Hormonal Regulation of Na+-K+-ATPase Function 

Two key hormones involved in the long term regulation of muscle Na+-K+-ATPase 

are aldosterone and thyroid hormone. Aldosterone is involved in long term regulation of 

Na+-K+ pump biosynthesis (73). This hormone directly interacts with receptor complexes on 

nuclear DNA to sustain long-term increases in expression of α1 and β1 isoforms of the Na+-

K+ ATPase (73). There is evidence that cAMP-inducible factors mediate this effect and that 

this effect can be abolished by calcineurin (PP2B) inhibition (73). Thyroid hormone is a 

long term regulator of steady state Na+-K+ ATPase activity (70). Through effects on gene 
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transcription, mRNA stability, and transport of subunits from the nucleus to the cytosol, 

thyroid hormone stimulates pump activity by increasing the number of pumps without 

altering the catalytic properties of the enzyme (70). This regulation is isoform specific; for 

example, in rat, it is the α2 and β2 isoforms that are upregulated with thyroid hormone 

treatment (70). 

The catecholamines have been shown to have marked effects on the Na+-K+ ATPase. 

Epinephrine (Epi) has been shown to increase pump activity in rat skeletal muscle as 

measured through active Na+-K+ transport, presumably through increased cAMP and 

activation of the PKA pathway (70). This effect leads to membrane hyperpolarization, which 

is more pronounced in type I fibres when compared to type II fibres (14). Norepinephrine 

(Norepi) stimulates pump activity and hyperpolarization in liver and kidney tissue (70; 73), 

as well as in skeletal muscle (14). This mechanism involves a Norepi-induced increase in 

intracellular free calcium concentration ([Ca2+]f), which activates calcineurin, keeping the 

pumps in an active, dephosphorylated state (73).  

Modulation of Na+-K+ ATPase activity by Epi and Norepi involves both α and β 

adrenergic receptors. Generally, β-adrenergic stimulation is associated with cAMP and PKA 

activation while α-adrenergic stimulation is associated with PKC activation (73). The 

significance of catecholamine induced increases in Na+-K+ pump activity has been well 

documented. During exercise, plasma catecholamine concentrations increase in an intensity-

dependent manner (34). Recent evidence suggests that β2 adrenergic stimulation causes a 

rapid increase in the affinity of Na+-K+ pumps for intracellular Na+ through measurement of 

86Rb+ uptake (11). This increased affinity does not require Na+ influx but does appear to 

require the generation of action potentials (11). Such a stimulus was shown to substantially 



20 

restore tetanic force in isolated Sol and EDL muscles during electrical stimulation that 

mimicked intense exercise and loss of cellular integrity (34; 55). Improved contractility was 

associated with membrane hyperpolarization (34; 55). Thus, the increase in catecholamines 

observed during exercise appears to contribute to maintaining cell excitability and 

contractility through sensitization of the Na+-K+ ATPase to Na+.  

 Insulin Regulation of Na+-K+-ATPase Function 

Peptide hormones are another major class of Na+-K+ ATPase regulators, the most 

studied of these being insulin. Insulin has been reported to stimulate Na+-K+ ATPase activity 

in rat skeletal muscle and to induce hyperpolarization of the cell (14). Studies in rat skeletal 

muscle cell lines have associated this effect with activation of PKC and dephosphorylation 

of the α1 subunit, mediated by a Ser-Thr protein phosphatase (14). In HEK-293 cells, insulin 

induced rat α1 isoforms to undergo translocation (72). Evidence suggests this translocation 

involves decreasing serine phosphorylation via PKC and phosphatidylinotisol-3-kinase 

(PI3K) (72).  

The major mechanism of insulin action in skeletal muscle is through the triggering of 

pump translocation from intracellular stores to the plasma membrane (73). Using 

fractionation and immunohistochemistry, it has been shown that α2 and β1 subunits increase 

in abundance at the muscle surface with insulin stimulation (38; 53). The differentiation 

between translocation to the sarcolemma and T-tubule has not been determined. The time 

course for this action is 15-30 minutes (70). In rat skeletal muscle this effect appears to be 

specific to oxidative fibres (type I and IIA) and to the α2 and β1 isoforms (49).  

Other mechanisms of insulin action have also been identified. Insulin indirectly 

stimulates Na+-K+ ATPase activity through insulin-induced opening of Na+ transport 
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channels and elevation in intracellular Na+ (70). Also, insulin has been reported to increase 

the Na+-K+ ATPase affinity for Na+ in kidney cortical tubules; however, this finding has not 

been extrapolated to muscle (73). Such a mechanism was proposed by McKenna et al (54) to 

occur in skeletal muscle after they failed to find evidence of insulin-stimulated pump 

translocation using the 3H-ouabain binding technique (54). Ouabain, which is a cardiac 

glycoside that binds irreversibly to the α subunit in a 1:1 molecular stoichiometry (14), is 

used to measure total Na+-K+ pump content (βmax) in resting muscle (22). The assumption 

with this measure is that ouabain binding is selective to the α isoforms in the sarcolemma 

(69). However, it is possible that ouabain penetrates to the subsarcolemmal space; it has 

been shown that ouabain causes the internalization of α subunits within one hour of ouabain 

exposure (75). Thus, this measure may not be appropriate for detecting changes in Na+-K+-

ATPase cellular distribution. Given growing evidence supporting translocation and the lack 

of evidence for insulin-induced increases in Na+ affinity in muscle, the assessment of pump 

translocation as the major mechanism of insulin action in skeletal muscle seems appropriate. 

 The rapid action of insulin is triggered through the insulin receptor signaling cascade 

(70). The insulin receptor tyrosine kinase stimulates atypical PKC activation, which results 

in the transient phosphorylation of the Na+-K+ ATPase α subunit (13). Chibalin et al (13) 

reported transient translocation and increased phosphorylation of Na+-K+ pumps by PKC 

with insulin treatment of rat Sol (13). Since the insulin-mediated modifications to the Na+-

K+ ATPase resulted in increased Vmax in plasma membrane fractions but not in muscle 

homogenate, this suggests that insulin did not alter the catalytic properties of the pump (13). 

Phosphoamino acid analysis of Sol revealed that phosphorylation of the α subunit occurred 

primarily on Ser residues, with a small amount of Thr phosphorylation (13). Tyrosine 
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phosphorylation was detected in Sol when incubated with insulin (13). Based on the time 

course of phosphorylation, it was hypothesized that tyrosine (Tyr) residue phosphorylation 

was responsible for the translocation effect with the α2 isoform but not with the α1 isoform, 

and specifically the Tyr-543 residue was postulated as a probable target for PKC (13). It was 

hypothesized, based on sequence analysis, that tyrosine phosphorylation of the α2 subunit at 

Tyr-543 may prevent endocytosis of pumps by blocking a clathrin mediated endocytotic 

motif (13). A role for PLM in mediating insulin-dependent PKC influences on pump 

function in skeletal muscle has not yet been considered. Given recent evidence that PLM 

mediates pump stimulation by PKC in cardiac myocytes (33), studies that investigate a role 

for PLM in the regulation of insulin-dependent stimulation of pump activity are needed. 

In summary, evidence suggests that translocation is specific to the α2 isoform of the 

Na+-K+ ATPase; however, a role for the α1 and β1 isoforms cannot yet be discounted. It 

remains unclear what isoforms undergo translocation, the exact mechanism through which 

translocation occurs, and whether it is individual isoforms or functional heterodimers that 

translocate. Apart from PKC, roles for Protein Kinase A (PKA) (70) and PLM in mediating 

translocation cannot be discounted. Downstream of the insulin receptor tyrosine kinase, a 

role for PKC, protein phosphatase activation, and pump phosphorylation have all been 

implicated in insulin mediated regulation of Na+-K+ pump activity (73). 
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Figure 2: Summary of PKA and PKC mediated messenger pathways (10; 13; 70; 73) 

 

 Summary of Na+-K+-ATPase Regulation 

The elucidation of regulatory influences on Na+-K+ ATPase function remains a 

growing concern. The precise mechanisms of Epi and insulin action through PKA and PKC 

pathways are incomplete. Specific isoforms of PKC involved in insulin-induced 

translocation are speculative. Furthermore, it is unknown if there are muscle fibre type 

differences with regards to the different isoforms of signaling molecules involved in the 

messenger pathways and the sensitivities of these pathways to hormone stimulation. Given 

the apparent fibre type specific response of insulin-induced translocation, it is very feasible 

to hypothesize that Na+-K+ pump regulation is both isoform and fibre type specific. 

  

Substrate Utilization by, and Energy Supply of, the Na+-K+ ATPase 
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It appears that the properties of the Na+-K+ ATPase, specifically Vmax, correlate with the 

oxidative potential of muscle fibres more so than with contractile speed of the fibres (22). It 

has been shown that both the α subunit content and the oxidative potential of the muscle 

fibre are upregulated within days following the onset of regular activity (30; 31). Given this 

relationship, it is inviting to suggest that the Na+-K+ ATPase derives its energy from 

oxidative phosphorylation. However, evidence suggests that the energy requirements of the 

Na+-K+ ATPase are supplied preferentially through glycolysis (41; 42).  

Increased lactate production is evidence of increased glucose metabolism by the 

glycolytic pathway and has been reported in the presence of oxygen (41). Decreased skeletal 

muscle membrane potential and increased intracellular Na+ concentrations have been 

described in experimental models of sepsis and shock, conditions in which lactate 

production is abnormally high (41). It has been shown that the rate of lactate production can 

be reduced in the presence of ouabain (41). Co-localization between the glycolytic enzymes 

and the Na+-K+ pumps has been proposed to account for this association (41). The coupling 

of Na+-K+ ATPase activity to glycolysis has been observed in glioma cells, brain astrocytes, 

diaphragm, and smooth muscle (41). Incubation of Sol and EDL muscles in media designed 

to increase intracellular Na+ stimulated glycolysis and increased lactate production in 

proportion to the increase in Na+-K+ ATPase activity (41). When glucose was replaced with 

pyruvate as the sole energy source no increase in lactate production was observed, indicating 

that glucose was essential for stimulation of the Na+-K+ pumps (41).  

When the effects of Epi on Na+-K+ ATPase activity and glycolysis were examined, it 

was reported that Epi treatment significantly increased lactate production and decreased 

intracellular Na+ in a dose dependent manner in both Sol and EDL (42). Both lactate 
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production and Na+-K+ transport were inhibited by ouabain (42). These measures were of 

whole muscle lactate; it would be ideal to measure subsarcolemmal lactate production to 

identify the coupling of glycolysis to Na+-K+ pump function. Epi also caused a significant 

reduction in muscle glycogen in both Sol and EDL that was significantly inhibited by 

ouabain (42). Also, a study investigating the role of Na+-K+ pumps in insulin-induced lactate 

release by skeletal muscle reported that stimulation of Na+-K+ ATPase activity by 

hyperinsulinemia was associated with increased lactate production in skeletal muscle (58). 

 Direct support for a protective role of glycogen in maintaining fibre excitability was 

reported in mechanically skinned fibres, in which higher glycogen content conferred an 

increased ability to respond to T-system depolarization (3). This demonstrates the Na+-K+ 

ATPase dependence on glucose for ATP. At rest, this dependence was shown to be 

specifically through glycolysis and not oxidative phosphorylation in a study that used 

oxidative and glycolytic inhibition to show that oxidative inhibition did not alter 

intracellular Na+ or K+ content while blocked glycolysis dramatically increased intracellular 

Na+ (59). This suggests that, normally, glycolysis is required to fuel the Na+-K+ ATPase. 

Fatigue associated with prolonged sub-maximal exercise has been shown to correlate 

with muscle glycogen depletion (6). Furthermore, carbohydrate (CHO) ingestion increases 

exercise time to fatigue during prolonged exercise (45). Since glycolysis is required for Na+-

K+ pump function and muscle glycogen stores are limited in the muscle, it is possible that 

supplements containing glucose could prolong exercise time through protection of glycogen 

stores. This effect has been shown during running exercise at 70% VO2peak (74) when 

glucose supplementation began immediately before exercise. However, it was recently 

reported that glucose supplementation during prolonged cycle exercise at 60% VO2peak in 
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humans had no glycogen sparing effect in skeletal muscle (19). Glucose supplementation 

started after 30 min of exercise (19). Thus, it appears as though there may be an intensity 

and timing dependency for a glycogen sparing effect of glucose supplementation.  

In rat plantaris (mixed fibre type composition), glucose infusion during prolonged 

indirect electrical stimulation in situ did not protect muscle glycogen stores even though 

fatigue was attenuated (45). Instead, the attenuation of fatigue was associated with better 

maintenance of M-wave characteristics, suggesting that the beneficial effect of glucose 

infusion could at least partly be due to a better maintenance of the electrical properties of the 

sarcolemma (45). This observation allows one to speculate that the increased plasma glucose 

could have increased the Na+-K+ ATPase activity by providing ATP produced by glycolysis 

(45). There was also a marked increase in plasma insulin concentration with the glucose 

infusion, which introduces the possibility that the protection of cell excitability was through 

insulin stimulation of Na+-K+ ATPase activity (45). However, a subsequent study that 

increased insulin concentration independent of plasma glucose during the same prolonged 

indirect electrical stimulation protocol did not observe the same attenuation of muscle 

fatigue as with glucose infusion (46). Thus, it was concluded that the high plasma glucose 

concentration and/or its delivery to the muscle protected sarolemmal excitability (46).  

Given the biochemical differences between type I and type II fibres, it was 

hypothesized that glucose infusion could protect both muscle function and muscle glycogen 

in Sol (52). However, even in type I fibres there was no glycogen sparing effect of glucose 

infusion; glucose infusion during prolonged indirect electrical stimulation of rat Sol muscle 

in situ did not attenuate glycogen utilization despite attenuating muscle fatigue (52). 

Attenuation of muscle fatigue was greater in Sol than in plantaris (52). Together, this data 
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suggests that a role may exist for the Na+-K+ ATPase in attenuating muscle fatigue during 

glucose infusion through glucose stimulated increases in Na+-K+ ATPase activity to protect 

M-wave characteristics. However, since glycogen utilization is not altered with this 

stimulation protocol, this suggests that the infused glucose is not being used as the primary 

substrate for ATP production. Infused glucose may act as the substrate for increased ATP 

production to accommodate glucose-induced increases in Na+-K+ ATPase activty. Na+-K+ 

ATPase activity has not been directly measured with this protocol; thus, it is purely 

speculation that the glucose stimulated an increase in Na+-K+ ATPase activity. Promising 

results in this regard have been obtained in humans where glucose supplementation during 

prolonged cycle exercise resulted in a transient increase in Na+-K+ ATPase activity (32). 

 

Relationship between Na+-K+-ATPase and GLUT4 regulation 

The glucose transporter 4 (GLUT4) protein is the major transporter of glucose into the 

muscle cell (28). This protein is a facilitated transporter of glucose. It is concentrated in 

intracellular membranes but is rapidly translocated to the plasma membrane during both 

exercise and insulin stimulation (28). Interestingly, the regulation of the Na+-K+-ATPase 

(specifically the α2 subunit) and the GLUT4 transporter is remarkably similar. These 

proteins are found both in sarcolemmal and intracellular membranes, and exercise and 

insulin stimulation induce translocation of both proteins from intracellular sites to the 

sarcolemmal membrane (27; 40; 53). However, there is segregation of the GLUT4 and Na+-

K+-ATPase intracellular pools (47). Given common responses to insulin stimulation, 

growing evidence that the Na+-K+-ATPase depends greatly on glucose as a substrate, and the 

tightly regulated nature of glucose metabolism, it may be hypothesized that the Na+-K+-



28 

ATPase and GLUT4 proteins share common and/or co-regulated signaling pathways. 

Evidence for such a link may be drawn from a study by Ramlal et al (64), which involved 

transgenic mice over-expressing human GLUT4. An increase in GLUT4 content in both 

intracellular and sarcolemmal membranes, a greater insulin response, and a higher glucose 

load tolerance were observed. This was associated with a decreased Na+-K+-ATPase content 

but a higher translocation of α2 and β1 subunits (64). Furthermore, in animal models of 

diabetes, decreased Na+-K+-ATPase activity and altered isoform expression are commonly 

observed. These conditions are not always reversed through insulin therapy (71). This 

suggests that the Na+-K+-ATPase may also display insulin resistance. Such a condition could 

become implicated in diabetic complications such as obesity and neuropathy since a 

decrease in pump response to insulin would result in lower activity and less ATP 

consumption (71). 

The mechanism of GLUT4 transport in response to insulin stimulation has been 

investigated to a greater extent than that of the Na+-K+-ATPase. It has been demonstrated 

that GLUT4 responds to insulin stimulation via 2 independent pathways: one that induces 

translocation and one that increases intrinsic activity (28). The translocation pathway, 

including the mapping of vesicular trafficking for GLUT4, has been a topic of intense 

investigation. One regulatory element that appears to be shared for both proteins is PI3 

kinase (71). However, downstream of PI3 kinase, it is not clear if signaling molecules are of 

shared or divergent pathways. Although upstream signals may be shared, there is likely a 

divergence of downstream pathways specific to each protein. 

The pathway leading to increased intrinsic activity of GLUT4 is less understood. For 

some time insulin activation of GLUT4 intrinsic activity was believed to be directed by 
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mitogen activated protein kinase (MAPK) (28). However, decreased insulin-stimulated 

glucose uptake was observed in the presence of drugs that inhibit MAPK, even in the 

presence of drug resistant MAPK (1). Thus, although there appears to be 2 distinct pathways 

of insulin stimulation of GLUT4, the mechanism through which insulin increases intrinsic 

activity remains unclear. However, the existence of such a pathway suggests a similar 

mechanism may be present for the Na+-K+-ATPase.  

 

Rationale for this Study 

The aim of this study is to investigate the acute regulation of the Na+-K+ ATPase in muscles 

of different fibre type composition in response to insulin. Some work done with in vivo (49) 

and ex vivo (13) systems suggest that insulin stimulates Na+-K+-ATPase activity solely 

through a translocation mechanism in skeletal muscle. This effect occurs within 15-30 min 

of insulin exposure (70). These previous studies examined only Vmax and a thorough analysis 

of Na+-K+-ATPase behaviour has yet to be performed. The focus of this thesis is to 

determine the effects of acute insulin treatment on the kinetic characteristics of Na+-K+-

ATPase activity in vitro. The use of an in vitro model allows for the control of all 

experimental conditions so that the specific effects of insulin can be isolated without 

speculation on possible confounding variables.  

Specific consideration will be given to the possibility that insulin stimulates 

increased intrinsic pump activity. To-date, no studies have supported such a finding in 

skeletal muscle; however, insulin has been shown to increase Na+ affinity in kidney cortical 

tubules (73). It is possible that acute stimulation of intrinsic Na+-K+-ATPase activity occurs 

in a shorter time frame than that of translocation. Thus, a mechanism to increase activity 
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with insulin stimulation both immediately (intrinsic activation) and over longer durations 

(translocation) would be in place. Experiments involving insulin exposure of 15-30 min 

would thus not detect increases in intrinsic activity. Intrinsic activity may also be increased 

throughout insulin exposure. Because previous studies detected increases in Vmax in 

sarcolemmal fractions following insulin exposure, but not in muscle homogenate, it has been 

concluded that the increased activity was due to a translocation mechanism not detectable in 

homogenate (13). This infers that the population of pumps in the endosomal membranes is 

active. Since Vmax did not increase in homogenate, insulin must not have altered intrinsic 

activity. However, it is possible that insulin had an isoform specific effect that was masked 

by the stimulation of all pumps; increases in intrinsic activity may have been masked by the 

large population of pumps being measured versus small increases in intrinsic activity. Thus, 

the increase in Vmax reported in sarcolemmal fractions may in fact be a combination of 

increased intrinsic activity and translocation. Evidence for such a possibility has been 

recently found in a model that uses cyclic stretch of cultured skeletal muscle cells to increase 

pump activity (76). This study detected increased Vmax and translocation in homogenates 

using the 3-O-MFPase assay (76). Furthermore, since previous studies have only 

investigated insulin-induced increases in Vmax, it is possible that insulin alters the sensitivity 

of the pumps.  

Using fractionation techniques and in vitro insulin exposure, the effect of insulin on 

Na+-K+-ATPase activity in the absence of any translocation event can be examined. The 

possibility of translocation is eliminated through fractionation, which separates the 

sarcolemmal and endosomal pools of Na+-K+ pumps. Acute insulin exposure can then be 

administered. In this way it can be determined if the role of insulin in Na+-K+-ATPase 
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regulation is purely through translocation or through a combination of increases in intrinsic 

activity and translocation. Treatment of muscle homogenates with insulin prior to 

fractionation will be used to mimic previous in vivo and ex vivo studies of insulin exposure. 

This condition can be used to determine if the in vitro insulin treatment induces 

translocation. Na+-K+-ATPase α2 and GLUT4 content will be probed in each fraction for 

evidence of translocation. Furthermore, it can be examined whether translocation induces an 

increase in Na+-K+-ATPase activity in the sarcolemmal fraction as previously reported. 

Acute insulin exposure in these fractions can then determine whether or not insulin 

stimulates further increases in Na+-K+-ATPase activity over and above any increases that 

result from homogenate incubation with insulin prior to fractionation. In this way, the 

contributions of translocation and increased intrinsic activity can be evaluated. 

In order to hypothesize a possible mechanism for insulin action on the Na+-K+-

ATPase, α2 tyrosine phosphorylation will be probed. It has been previously reported that Sol 

α2 isoform undergoes tyrosine phosphorylation with insulin exposure ex vivo (13).  

Homogenates treated with insulin can be probed for α2 tyrosine phosphorylation to 

determine if in vitro insulin exposure also increases α2 tyrosine phosphorylation. 

Thus, using in vitro techniques to assess Na+-K+-ATPase function, the ability of 

insulin to stimulate Na+-K+-ATPase activity through intrinsic activation and translocation 

can be evaluated. Furthermore, a role for α2 tyrosine phosphorylation in the signaling of 

these processes can be investigated. Also, given differences in oxidative potential and 

isoform distribution in muscles of different fibre types (22), the effect of insulin to stimulate 

Na+-K+-ATPase will be examined in Sol, RG, and WG muscles. 
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Statement of the Problem 

The purpose of this study is to examine the in vitro effects of insulin on Na+-K+-ATPase 

activity in skeletal muscles of different fibre types. 

Subsidiary Problem 

A secondary objective is to examine the role of the in vitro protocol in stimulating intrinsic 

activity and possible mechanisms through which insulin stimulation of the Na+-K+-ATPase 

occurs. 

Hypotheses 

1. It is hypothesized that insulin will stimulate an increase in Na+-K+-ATPase activity 

in muscle homogenates, as measured with the 3-O-MFPase assay.  

2. Fractionation will result in 2 active pools of Na+-K+ pumps: a sarcolemmal and an 

endosomal pool.  

3. Insulin exposure in sarcolemmal and endosomal fractions will result in increases in 

Na+-K+-ATPase activity.  

4. Pre-treatment of homogenates with insulin prior to fractionation will result in a 

higher Na+-K+-ATPase activity in these insulin-treated fractions, when compared to 

non-treated fractions. 

5. Pump activity in pre-treated fractions will not be further increased with acute insulin 

exposure.  

6. α2 tyrosine phosphorylation will be associated with translocation. As such, it was 

expected that α2 tyrosine phosphorylation will increase in muscle homogenates with 

insulin incubation.  
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Chapter Two 

 Methods 

Animals 

Twelve week old male Sprague Dawley rats (n=14) were used for all experimental 

procedures. The animals, weighing 378 ± 4.98 g (mean ± SE), were provided with food and 

water ad libitum and maintained on reverse light-dark cylces. Sampling was performed in 

the mid-morning. Animals were anaesthetized with a dose of sodium pentobarbital 

(~0.1mL/100g body wt) (Somnotol, MTC Pharmaceuticals, Cambridge, ON, Canada) and 

soleus (Sol), red gastrocnemius (RG), and white gastrocnemius (WG) muscles were excised. 

Careful consideration was taken to excise only pure red and pure white regions of the 

gastrocnemius. These regions contain predominately Type I/IIA and Type IIB fibres, 

respectively (18). Soleus is composed of predominately Type I fibres (18). Connective tissue 

was removed and muscles were frozen in liquid nitrogen until further analysis. 

 

Experimental Design 

Three different experiments were conducted in order to examine the role of insulin in 

stimulating Na+-K+-ATPase activity. The experimental design is summarized in Figure 3. 

 In Experiment 1, pump activity was measured in muscle homogenates with (Insulin – 

Ins) and without (Control – Con) 5 min insulin exposure at 37°C. These experiments were 

designed to determine if the 3-O-MFPase assay could detect changes in activity with short 

insulin incubation. 

 In Experiment 2, the populations of pumps found in the plasma and endosomal 

membranes were separated using fractionation techniques. In this way, insulin-induced 
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translocation of the Na+-K+-ATPase could not be a mechanism of increased pump activity. 

Na+-K+-ATPase activity was measured, in both plasma membrane (SLP) and endosomal 

(EN) fractions, with (Ins) and without (Con) 5 min insulin (75μM) exposure at 37°C. Any 

increase in activity due to insulin incubation was due solely to insulin stimulation of 

intrinsic pump activity. 

 In Experiment 3, muscle homogenates were pre-treated with insulin (625μM) for 5 

min at 37°C prior to fractionation of SLP and EN membranes. As in the second experiment, 

3-O-MFPase activity was then measured on SLP and EN fractions with (Ins) and without 

(Con) 5 min insulin (75 μM) exposure at 37°C. This experiment was designed to examine 

possible mechanisms of insulin stimulated Na+-K+-ATPase activity. The activity of insulin-

treated fractions (Experiment 3 - Con) was compared with that of non-treated fractions 

(Experiment 2 – Con). This comparison determined whether or not the 5 min pre-incubation 

with insulin stimulated increases in pump activity. The addition of insulin to fractions 

already pre-treated with insulin (Experiment 3 – Ins) determined if insulin could stimulate 

further increases in pump activity. This condition gave insight into the time dependence of 

the insulin-induced changes in pump activity. 

 Western blots were performed for the α2 subunit of the Na+-K+-ATPase and GLUT4 

protein in the SLP and EN fractions from both non-treated (Experiment 2 - Con) and insulin-

treated (Experiment 3 - Con) homogenates. This data determined if any increase in pump 

activity in insulin-treated SLP fractions could be attributed to translocation. Also, tyrosine 

phosphorylation (Tyr-P) of the α2 subunit was measured in homogenates of non-treated and 

insulin-treated samples in order to examine a role for Tyr-P in an insulin-induced effect on 

Na+-K+-ATPase activity. 
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Figure 3: Overview of the experimental design. Procedures were performed on soleus (Sol), 
red gastrocnemius (RG), and white gastrocnemius (WG) muscle samples (Con=Control; 
Ins=Insulin (75μM); SLP=sarcolemmal enriched fraction; EN=endosomal fraction;  
Tyr-P=tyrosine phosphorylation). 
 

Whole Homogenate Preparation 

Whole homogenates were prepared by homogenizing portions of previously frozen samples 

(~40 mg) in 20 vol of ice-cold buffer containing (in mM) 10 trometamol, 2-amino-2-

(hydroxymethyl)-1-3-propanediol (Tris base), 25 EDTA, and 250 sucrose (pH 7.4), and a 

commercially prepared combination of protease inhibitors – inhibits serine, cysteine, 

metalloproteases, and calpains (Roche Diagnostics, Indianapolis, IN). Samples were 

homogenized on ice with a glass-on-glass hand homogenizer. All samples were aliquoted 
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and quickly frozen in liquid nitrogen until further analysis. These samples were used to 

assess K+-stimulated Na+-K+-ATPase activity in Experiment 1 (n = 10 for each of Sol, RG, 

and WG). 

  

Lowry Protein Assay to Determine Total Protein Concentration  

Each sample was run in triplicate. Fifty μL of homogenate, previously diluted to a total of 

1000x, was added to a 12 x 75mm culture tube. A volume of (0.5 mL) alkaline copper 

reagent (in grams: 0.05 CuSO4·5H2O, 0.1 potassium sodium tartrate, 2.0 NaOH, and 10 

Na2CO3) was added to all tubes, mixed well, and left to stand at room temperature for 10 

min. Next, 2 mL of phenol reagent (5 mL of 2N into 80 mL H2O) was added and mixed 

immediately in each tube. Samples were incubated at 55°C for 5 min. Samples were 

removed from the heat and cooled for 1 min in tap water before being read on a 

spectrophotometer at a wavelength 650 nm. Fifty μL of water served as a “blank” and 50 μL 

of standards with protein concentrations of (in mg/mL) 0.5, 0.25, and 0.125 were used to 

generate a standard curve to check linearity.  

 

K+-stimulated 3-O-methylfluorescein phosphatase Activity Assay 

The K+-stimulated 3-O-methylfluorescein phosphatase activity (3-O-MFPase) was assessed 

fluorometrically with a SpectraMax GeminiXS microplate fluorometer (Molecular Devices, 

Sunnydale, CA). This procedure was adapted from Fraser and McKenna (26) and modified 

by our laboratory (69). The sample preparation was as follows. Samples were diluted 5x in 

cold homogenate buffer containing 0.1% deoxycholate. 5 μL of this was added to 

microcentrifuge tubes containing 300 μL of various KCl (pH 7.40) concentrations made up 
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in assay medium (in mM: 5 MgCl2, 1.25 EDTA, 1.25 EGTA, 100 Tris base). The KCl 

concentrations used were (in mM) 0, 0.2, 0.5, 0.75, 1.0, 1.5, 3.0, and 5.0. Microcetrifuge 

tubes were mixed well and 250 μL of each KCl concentration was added to a well in the 

microplate before being incubated for 5 min at 37°C (Appendix A - Con). The reaction was 

started with the addition of 160 μM 3-O-methylfluorescein phosphate (3-O-MFP). The 

metabolism of this substrate, and subsequent appearance of the fluorescing compound 3-O-

MF, was measured over 3 min an excitation wavelength of 475nm and an emission 

wavelength of 515nm (SpectraMax GeminiXS microplate fluorometer, Molecular Devices, 

Sunnydale, CA). The resulting slope was corrected against a known standard of 3-O-MF, 

and the K+-stimulated 3-O-MFPase activity was determined as the difference between the 

slopes generated from samples incubated in medium containing the different concentrations 

of KCl and “blank” samples incubated in medium without KCl. Values were expressed 

relative to homogenate total protein concentration as determined by the Lowry protein assay. 

Vmax was calculated as the maximal activity measured in the assay. The km was calculated 

from a theoretical curve generated using GraphPad Prism 4.0 software. Data was fit to a 

hyperbolic (Michaelis-Menten) curve based on the relationship between free K+ 

concentration and Na+-K+-ATPase activity by using the following equation: 

 Y = Ymax + X/(km + X) 

where Y is the activity of the sample at a specific substrate concentration (X), Ymax = Vmax, 

and km is Michaelis-Menten constant. In cases when 3-O-MFPase activity decreased at high 

KCl concentrations and skewed calculations, these values were removed from the 

calculation. 

 



38 

Generation of Dose-Response Curve 

A dose-response curve for 3-O-MFPase activity at 5 mM KCl with varying concentrations 

of insulin was generated in order to determine 1) if insulin exhibited a dose response and 2) 

the optimal insulin concentration for in vitro activation of 3-O-MFPase activity. Given the in 

vitro nature of all experiments, supra physiological insulin concentrations were chosen in 

order to avoid a null effect of insulin on activity measures due to a lack of receptor 

saturation in the preparation. The samples were read as described above under the 3-O-

MFPase activity assay with the following modifications. Five mM KCl was used in all 

samples, as it was only the concentration of insulin that was manipulated. Concentrations of 

(in μM) 0, 25, 50, 75, 375, 500, and 625 insulin were tested. The measured activity values 

were corrected against a “blank” (0 mM KCl; 0 μM Ins) and compared to the value obtained 

with 5 mM KCl and 0 μM insulin. This experimental setup is depicted in Appendix B; the 

concentration dependency curves can be found in Appendix C (Sol N=7; RG N=4; WG 

N=4). 

 

Time Dependency for the Response of 3-O-MFPase Activity to Insulin 

In order to determine the time required for a maximal insulin effect on in vitro 3-O-MFPase 

activity, incubations at 37°C of 5, 10, 15, and 20 min in 5 mM KCl and 75 μM insulin prior 

to the addition of 3-O-MFP were examined. An additional incubation was added consisting 

of 20 min in 5 mM KCl followed by the addition of 75 μM insulin and an additional 5 min 

incubation. This extra condition served to determine if the same insulin effect achieved after 

5 min could be detected after 5 min insulin incubation 20 min later. A control trial 

containing 5 mM KCl and 0 μM insulin was run with each incubation time. Following 
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analysis of these time dependencies, additional time dependencies were examined with  1) 

5mM DTT and 2) 1% PPase inhibitor present in the homogenate buffer in an attempt to 

prevent decreases in 3-O-MFPase activity with incubation time. A summary of these 

findings can be found in Appendix D (Sol N=4; RG N=4; WG N=3). 

 

K+-dependent 3-O-MFPase Activity for Sol, RG, and WG Homogenates Incubated with 75 

μM Insulin 

The 3-O-MFPase activity was measured as described above. Sixteen wells of the microplate 

were read at one time for each trial. All samples (n=10) were run in triplicate. One set of 8 

wells served as a control (Con); this set contained the 8 different KCl concentrations (in mM: 

0, 0.2, 0.5, 0.75, 1, 1.5, 3, and 5). The second set of 8 wells served as the insulin (Ins) 

condition. This set contained the same 8 KCl concentrations; however, wells 2-8 also 

contained 75 μM insulin. The kinetic curves obtained for the control and insulin treated 

conditions were compared to determine if insulin treatment affected Vmax or km. On a 

separate occasion a series of “blanks” were measured with and without 75 μM insulin in the 

“blank” to determine the influence of insulin on the background 3-O-MFPase activity in the 

assay. The diagram for this setup is found in Appendix A.  

 

Enriched Sarcolemmal Fraction Preparation 

Muscle samples were separated into two membrane fractions: a sarolemmal particulate 

fraction (SLP) and an endosomal fraction (EN). This procedure was conducted as described 

by Sandiford et al (69), and adapted from Fuller et al (27). As stated by Sandiford et al (69), 

this isolation protocol was favored over other methods because only two fractions are 
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generated from the tissue samples and only a small amount of the membranes are discarded. 

The SLP fraction, at least in cardiac tissue, contains in excess of 85% of the ouabain-

sensitive ATPase activity (27). 

 Samples from each muscle (Sol, RG, WG) were cut and weighted into ~140 mg 

pieces. For this it was necessary to pool tissue. Initially, 5 soleus samples were pooled in 

each of 2 fractions. Four more soleus samples were added to increase the N. Three RG 

samples and 3 WG samples were each pooled into each of 3 fractions. Four more samples 

were added to each of these groups. All steps in the fractionation procedure were carried out 

at 4°C. Samples were minced and incubated for 30 min at 4°C in a salt solution containing 

0.5 M NaCl and 20 mM HEPES, pH 7.4. The high-salt solution detaches the membranes 

from the myofilaments (myofilaments are then pelleted at low speed and discarded) (27). 

The samples were then homogenized in 10x the volume of homogenate buffer containing (in 

mM) 250 sucrose, 1 EDTA, 20 HEPES (pH 7.4), and a commercially prepared combination 

of protease inhibitors (Roche Diagnostics). Homogenates were centrifuged at 1,000 g for 5 

min and the pellets resuspended. Next, a second 1,000 g spin for another 5 min was 

performed and the supernatants of both 1000 g spins were combined. These supernatants 

were then centrifuged at 100 g for 10 min. The supernatants from this step were then 

centrifuged at 5,000 g for 10 min. The pellets from this spin were stored on ice, and the 

resulting supernatants were centrifuged at 20,000 g for 30 min. Pellets from the 5,000 g and 

20,000 g spins were combined, resuspended in ~400μL of homogenate buffer, aliquoted, and 

frozen in liquid nitrogen and stored at -80°C until use. This was the SLP fraction. The 

supernatant from the 20,000 g spin represented the EN fraction. The EN fraction was 

suspended in the same buffer as described for SLP, aliquoted, frozen, and stored under 
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similar conditions (see Appendix E for flow diagram). The two resulting fractions (SLP and 

EN) were assayed to determine the K+-stimulated 3-O-MFPase activity of the Na+-K+-

ATPase as well as to perform Western blotting using antibodies against the α2 subunit of the 

Na+-K+-ATPase, GLUT4, and tyrosine phosphorylated residues. 3-O-MFPase activity was 

performed as described above, where a set of KCl concentrations were assayed both with 

and without exposure to 75μM insulin in order to determine acute insulin effects on activity 

in these fractions (Appendix A). 

 Two groups of fractions were made: non-treated (Experiment 2) and insulin-treated 

(Experiment 3). Non-treated fractions were made exactly as above. For the insulin-treated 

group, samples were incubated for 5 min at 37°C in 625μM insulin following 

homogenization and frozen in liquid nitrogen immediately. The insulin concentration was 

determined in pilot work; the same insulin concentration was used as that determined to 

stimulate maximam Tyr-P. Samples were frozen in liquid nitrogen to capture any effect of 

insulin at the conclusion of 5 min. This procedure mimics those previously performed in 

whole soleus muscle (13; 69). These 2 conditions allowed for the assessment of insulin 

treatment to induce both subunit redistribution and stimulation of intrinsic activity.  

 

Imunoprecipitation of Tyrosine Phosphorylated Residues 

All Tyr-P proteins were immunoprecipitated and probed for the presence of the α2 subunit of 

the Na+-K+-ATPase. This procedure was performed on homogenates of non-treated and 

insulin-treated groups (n=5). An insulin concentration of 625μM was determined to be 

optimal in stimulating Tyr-P of the α2 subunit of the Na+-K+-ATPase. Samples were 

incubated for 5 min at 37°C before being frozen in liquid nitrogen to capture any effect of 
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insulin at the conclusion of 5 min. A sub-sample of SLP and EN non-treated and insulin-

treated fractions were also probed for Tyr-P. 

 This procedure was conducted as described by Sandiford et al (69). Samples were 

homogenized (2 x 10-15mg per sample) in 20x homogenate buffer containing (in mM) 10 

Tris base (pH 7.4), 25 EDTA, 250 sucrose, and a commercially prepared combination of 

protease inhibitors (Roche Diagnostics, Indianapolis, IN). A volume of homogenate 

corresponding to 750μg of protein was aliquoted from each sample. Samples were incubated 

at 37°C for 5 min, with or without 625μM insulin before being frozen in liquid nitrogen. 

Then, samples were thawed and incubated for 1 h at 4°C in 3x ice cold lysis buffer 

containing (in mM) 20 Tris (pH 8.0), 135 NaCl, 10 Na4P2O7, 10 NaF, 1 Na3VO4, 10% 

glycerol, and 1% Triton-X. Following lysis buffer treatment, samples were centrifuged at 

300 g for 10 min at 4°C and the supernatants treated with 60μL of a 50% protein A-agarose 

bead slurry (KPL, Gaithersburg, MD) for 1 h at 4°C. Samples were then centrifuged at 

14000 g for 20 sec and the supernatant incubated with 50μL of anti-phosphotyrosine (PY69) 

antibody (BD Biosciences Canada) and 100μL of the protein A-agarose slurry for 4 h at 4°C. 

Samples were once again centrifuged at 14000 g for 20 sec and the supernatant saved for 

contamination profiling. The pellets were washed 4x with lysis buffer, once with wash 1 (in 

M: 0.1 Tris pH 8.0, 0.5 LiCl), once with wash 2 (in mM: 10 Tris pH 7.6, 150 NaCl, 1 

EDTA), and once with wash 3 (in mM: 20 HEPES pH 7.4, 5 MgCl2, 1 DTT). Samples were 

then suspended in 20μL of each homogenate buffer and 4x SDS-PAGE sample buffer and 

stored at 4°C overnight. The next morning samples were heated to 95°C for 5 min to elute 

the antigen from the antibody-agarose complex and the Tyr-P samples were probed via 
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Western blotting for the presence of the α2 subunit of the Na+-K+-ATPase (see Appendix F 

for a flow diagram).   

 

Western Blotting Procedures 

Samples containing either 25 μg protein (fractions that probed for α2, GLUT4) or 35μL 

(Tyr-P samples that probed for α2) were electrophoresed on 7.5% sodium dodecyl 

polyacrylamide gels (Bio-Rad Mini-PROTEAN III) according to the general procedures 

previously published from our laboratory (22). Briefly, a biotinylated ladder was used as a 

molecular weight standard (Cell Signaling Technology, Beverly, MA). Proteins were 

transferred to polyvinylidene difluoride membranes (PVDF membrane, Bio-Rad) and 

blocked for 1 h in 5% nonfat milk (GLUT4) or 5% BSA (α2) in Tris-buffered saline (TBS, 

pH 7.5). Membranes were incubated with primary monoclonal antibodies against GLUT4 

(1:200) or polyclonal antibodies against α2 (1:500) overnight (Upstate Biotechnology, Lake 

Placid, NY). After being washed 6 x 5 min in 0.1% TBS Tween-20 (TBS-T), membranes 

were incubated for 60 min in goat anti-mouse secondary antibody (GLUT4) or goat anti-

rabbit secondary antibody (α2) (Chemicon International, Temecula, CA) diluted to 1:3000 

(GLUT4) and 1:1000 (α2) in TBS-T. An enhanced chemiluminescence procedure was used 

for antibody identification (Amersham, Buckinghamshire, UK). Blots were analyzed by use 

of a Chemi Genius2 model bio imaging system (SynGene, Frederick, MD). Protein 

expression was expressed relative to a brain standard for α2 and α-actin (Sigma Chemical, St. 

Louis, MO) for GLUT4. Supernatants from the Tyr-P procedure were blocked overnight in 

5% nonfat milk in TBS (pH 7.5) and incubated for 2 h with primary monoclonal antibodies 

against Tyr-P diluted to 1:1000. After a 30 min wash out period, membranes were incubated 
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with goat anti-mouse secondary antibody for 1 h (1:1000 dilution), washed, and detected 

using the enhanced chemiluminescence procedure. 

 

Maximal Citrate Synthase (CS) Activity 

Frozen tissue (~5mg each, n=8 for each of Sol, RG, WG) was homogenized in a phosphate 

buffer (pH 7.4) containing 16mM Na2HPO4, 4mM KH2PO4,  0.02% bovine serum albumin 

(BSA), 5mM β-mercaptoethanol, and 0.5mM EDTA and diluted (1:100) in 20 mM 

immidazole buffer with 0.02% BSA. The maximal activity of CS was determined 

fluorometrically, as described in Appendix G. 

 

K+-dependencies for 3-O-MFPase Activity for Sol, RG, and WG Homogenates Incubated 

with 7mM Glucose 

Given evidence suggesting a protective role for glucose supplementation on membrane 

excitability, the effect of glucose on Na+-K+-ATPase activity independent of insulin was 

investigated. This experiment was designed exactly as that for the K+ dependent 3-O-

MFPase activity with 75μM insulin except that insulin was replaced by 7mM glucose 

solution made up in assay medium (n=5). This glucose concentration was selected during 

pilot work in which a concentration dependency of glucose was conducted using 5mM KCl 

during the 3-O-MFPase assay (n=3). Appendices A and B display the setup for these 

experiments. The concentration dependencies can be found in Appendix H. This data is 

presented in Appendix I. 

 

Statistical Analysis 
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All values are presented as mean ± SE. Statistical analysis was performed using Statistica 

version 5 software (Statsoft, Tulsa, OK, 1996). A one-way, repeated measures ANOVA was 

used to analyze maximal CS activity to determine if differences in muscle oxidative 

potential existed. Two-way, repeated measures ANOVA were used to identify differences in 

K+-stimulated activity dependencies between 1) Con and Ins conditions in homogenate and 

fractions and 2) non-treated and insulin-treated experiments in fractions. Two-way, repeated 

measures ANOVA were also used to analyze Western blot and Tyr-P data to detect 

differences in α2 subunit distribution and α2 subunit Tyr-P between non-treated and insulin-

treated experiments. Significance was set at P<0.05. Post hoc analysis of mean values was 

performed using a Newman-Keuls test. A student t-test was used to analyze differences in 

Vmax and km between Con and Ins in each experiment and between non-treated and insulin-

treated experiments, with significance set at P<0.05. 

 In Appendix H, two-way, repeated measures ANOVA were used to identify 

differences in K+-stimulated activity dependencies between Con and GLU conditions in 

skeletal muscle homogenates. Significance was set at P<0.05. Post hoc analysis of mean 

values was performed using a Newman-Keuls test. 
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Chapter Three 

Results 

 
Citrate Synthase Activity 

In order to confirm that the muscles differed in oxidative potential, maximal citrate synthase 

activity was measured (Figure 4). As expected, the oxidative potential of the muscles ranked 

RG>Sol>WG (P<0.01). 

 

Figure 4: Maximal citrate synthase (CS) activity in skeletal muscle homogenates of different muscle 
types (Sol = soleus; RG = red gastrocnemius; WG = white gastrocnemius). Values are mean ± SE 
(n=8). * Significantly different from Sol; # Significantly different from RG. 
 

Insulin-stimulated Na+-K+-ATPase Activity in Skeletal Muscle Homogenates – Experiment 1 

Kinetic curves for K+-dependent 3-O-MFPase activity were determined in Sol, RG, and WG 

muscle homogenates (Figure 5). Vmax and km data are summarized in Table 4. Insulin 

exposure caused a 16 and 34% increase in Vmax in Sol and RG, respectively. In WG, Vmax 

was unaltered by insulin exposure but km increased 53%. 
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Table 4: Summary of Vmax and km properties for Na+-K+-ATPase activity in skeletal muscle 
homogenates of different muscle types, with and without 75μM insulin, for 5 min at 37°C 
 

Con Ins Con Ins Con Ins
Vmax 221 ± 17 256 ± 21* 190 ± 14 256 ± 18 * 104 ± 4.6 99 ± 1.8
km 0.76 ± 0.07 0.73 ± 0.11 0.68 ± 0.04 0.75 ± 0.12 0.38 ± 0.07 0.96 ± 0.17 *

Sol RG WG

 
Values are means ± SE (n=10). * Significantly different from Con (P<0.05). Vmax, maximal activity (nmol·mg 
prot-1·h-1); km, K+ activity required for 50% of maximal Na+-K+-ATPase activity; Sol = Soleus; RG = red 
gastrocnemius; WG = white gastrocnemius. 
 
 In Sol, main effects of KCl concentration (0<0.2<0.5<0.75<1.0<1.5<3.0=5.0) and 

condition (Con<Ins) were found (P<0.01). In RG, an interaction between KCl concentration 

and condition was observed (P<0.02). Na+-K+-ATPase activity was higher in the Ins 

condition at all KCl concentrations. An interaction between KCl concentration and condition 

was also observed in WG (P<0.01). Although there was no difference between Con and Ins 

at Vmax, pump activity was lower in Ins than in Con at lower KCl concentrations (0.5, 0.75, 

1.0 and 1.5 mM). The difference between Con and Ins could be attributed to an insulin-

stimulated increase in non-specific activity that was not present in Sol or RG.  
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Figure 5: K+-dependent Na+-K+-ATPase activity in skeletal muscle homogenates of A) soleus, B) 
red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with and without 75μM insulin 
for 5 min at 37°C (Con = control, Ins = insulin). Values are means ± SE (n=10). In A, main effects 
(P<0.05) for KCl (0<0.2<0.5<0.75<1.0<1.5<3.0=5.0) and condition (Con<Ins) were found. In B and 
C, interactions (P<0.05) between KCl concentration and condition were found. * Significantly 
different from Con; # Significantly greater than 1.5 mM KCl. In C, a significant difference was also 
detected in km, Con<Ins. 
 
 A comparison between muscles shows that, for Vmax in Con,  WG<RG=Sol (P<0.01). 

However, a trend exists for Sol>RG (P<0.07). There was no difference in Vmax between Sol 
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and RG in the Ins condition, with WG<Sol=RG (P<0.01). The km was lower in WG Con 

than in Sol or RG Con (P<0.01). No difference in km was observed between muscles in the 

Ins condition. 

 
Insulin-stimulated Na+-K+-ATPase Activity in Non-Treated SLP and EN Fractions – 

Experiment 2 

K+-dependent 3-O-MFPase activity was then assessed in non-treated SLP and EN fractions 

(Figures 6 and 7, respectively). Vmax and km data are summarized in Table 5. In SLP 

fractions, Vmax increased by 15 and 12% in Sol and RG, respectively. In Sol SLP, km also 

decreased by 22% with insulin exposure. No change in Vmax or km was observed with insulin 

exposure in WG SLP. In EN fractions, no change in Vmax or km was observed in Sol or WG. 

However, in RG EN, a 24% increase in Vmax was detected with insulin exposure.  

 
Table 5: Summary of Vmax and km properties for Na+-K+-ATPase activity in non-treated fractions of 
different muscle types, with and without 75μM insulin, for 5 min at 37°C 
 

Con Ins Con Ins Con Ins
SLP
Vmax 1710 ± 186 1970 ± 231* 1476 ± 128 1655 ± 139 * 960 ± 88 1220 ± 111
km 0.86 ± 0.15 0.67 ± 0.12 * 1.52 ± 0.21 1.55 ± 0.22 0.88 ± 0.15 0.94 ± 0.35 

EN
Vmax 300 ± 45 352 ± 73 246 ± 38 304 ± 43* 169 ± 4.1 168 ± 24
km 0.31 ± 0.08 0.44 ± 0.15 0.54 ± 0.11 0.74 ± 0.11 0.39 ± 0.08 0.40 ± 0.09

Sol RG WG

 
Values are means ± SE (Sol, n=6; RG, WG, n=7). * Significantly different from Con (P<0.05). Vmax, maximal 
activity (nmol·mg prot-1·h-1); km, K+ activity required for 50% of maximal Na+-K+-ATPase activity; Sol = 
Soleus; RG = red gastrocnemius; WG = white gastrocnemius; SLP = plasma membrane fraction; EN = 
endosomal membrane fraction 
 
 In Sol SLP fractions, main effects of KCl concentration (0<0.2<0.5<0.75=1.0<1.5 

<3.0=5.0) and condition (Con<Ins) were observed (P<0.01). From Figure 7A, it is evident 

that the Sol EN fraction contains a population of pumps that is active. In Sol EN, no 

significant difference was observed between Con and Ins, but a main effect of KCl 
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concentration was found (0<0.2<0.5<1.5=3.0, 1.5>5.0). It can be seen that, at high KCl 

concentrations, KCl exhibits an inhibitory effect on pump activity in the Sol EN fraction. 

 In RG SLP, an interaction between KCl concentration and conditions was observed 

(P<0.03). There was no difference between Con and Ins conditions at low KCl 

concentrations; however, Con<Ins at high concentrations of KCl. In Figure 7B, it can be 

seen that the RG EN fraction also contains an active population of Na+-K+-ATPase. In RG 

EN, a main effect for KCl concentration was found (0<0.2<0.5<0.75<1.5=3.0=5.0, 1.0<3.0). 

However, unlike in Sol EN, a trend (P<0.10) was observed for a condition effect, Con<Ins. 

 In WG SLP fractions, main effects of KCl concentration ( 0<0.2=0.5<0.75<1.0=1.5< 

3.0<5.0) and condition (Con<Ins) were detected (P<0.05). In WG EN fractions, a main 

effect of KCl was observed (0<0.2<0.5<1.0=1.5=3.0> 5.0, 0.75<1.5) (P<0.05).  A decrease 

in pump activity was observed at 5.0 mM KCl. As in Sol and RG, the WG EN fraction 

contained an active population of Na+-K+-ATPase. 
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Figure 6: K+-dependent Na+-K+-ATPase activity in non-treated sarcolemmal enriched (SLP) 
fractions of A) soleus, B) red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with 
and without 75μM insulin for 5 min at 37°C (Con = control, Ins = insulin). Values are means ± SE [n 
= 6 (Sol), 7 (RG, WG)]. In A, main effects (P<0.05) for KCl (0<0.2<0.5<0.75=1.0<1.5<3.0=5.0) and 
condition (Con<Ins) were found. In C, main effects (P<0.05) for KCl (0<0.2=0.5<0.75<1.0=1.5<3.0 
<5.0) and condition (Con<Ins) were found. In B, an interaction between KCl and condition was 
observed (P<0.05). * Significantly different from Con; # Significantly different from 1.5mM KCl; † 
Significantly different from 3mM KCl. In A, a significant difference was also observed in km, Ins<Con. 
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Figure 7: K+-dependent Na+-K+-ATPase activity in non-treated endosomal (EN) fractions of A) soleus, 
B) red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with and without 75μM insulin 
for 5 min at 37°C (Con = control, Ins = insulin). Values are means ± SE [n = 6 (Sol), 7 (RG, WG)]. A 
main effect for KCl (P<0.05) was found in A, B, and C (P<0.05). In A, 0<0.2<0.5< 1.5=3.0, 1.5>5.0; in B, 
0<0.2<0.5<0.75<1.5=3.0=5.0, 1.0<3.0; and in C, 0<0.2<0.5<1.0=1.5=3.0> 5.0, 0.75<1.5. No significant 
differences were detected between Con and Ins. 
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 In non-treated SLP fractions, a comparison between muscles shows that, for Vmax,  

WG<RG=Sol (P<0.01). However, a trend exists for Sol>RG (P<0.07). The Vmax in Ins was 

also greater than that in Con (P<0.01). The km was higher in RG than in Sol or WG (P<0.01). 

No difference in km was observed between Con and Ins conditions. 

 In non-treated EN fractions, a comparison between muscles shows that, for Vmax, 

WG<RG=Sol (P<0.02). There was no difference between Con and Ins. For km, 

Sol=WG<RG (P<0.03). 

 A within-muscle comparison between SLP and EN fractions showed that km was 

lower in EN when compared to SLP in Sol (P<0.05) and in RG (P<0.01). A trend for the km 

to be lower in EN when compared to SLP was observed in WG (P<0.06). 

 
 
Insulin-stimulated Na+-K+-ATPase Activity in Insulin-Treated SLP and EN Fractions – 

Experiment 3 

Next, K+-dependent 3-O-MFPase activity was assessed in the insulin-treated SLP and EN 

fractions (Figures 8 and 9, respectively). Vmax and km data are summarized in Tables 7 and 8. 

In SLP fractions, an increase in Vmax (24%) with insulin exposure was only observed in RG. 

Insulin exposure caused a 15% increase in km in Sol SLP. In EN fractions, no change in Vmax 

or km was detected in any muscle; however, a trend (P<0.10) for an increase in Vmax was 

detected in RG EN. 
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Table 6: Summary of Vmax and km properties for Na+-K+-ATPase activity in insulin-treated fractions 
of different muscle types, with and without 75μM insulin, for 5 min at 37°C 
 

Con Ins Con Ins Con Ins
SLP
Vmax 1461 ± 92 1569 ± 141 1145 ± 119 1426 ± 150 * 966 ± 83 1092 ± 119
km 0.66 ± 0.12 0.76 ± 0.15 * 0.79 ± 0.11 1.01 ± 0.21 0.46 ± 0.06 0.60 ± 0.12 

EN
Vmax 305 ± 38 287 ± 45 246 ± 26 306 ± 21 156 ± 11 151 ± 18
km 0.52 ± 0.07 0.53 ± 0.06 0.33 ± 0.09 0.61 ± 0.23 0.32 ± 0.07 0.32 ± 0.07

Sol RG WG

 
Values are mean ± SE (Sol n=6; RG, WG n=7). * Significantly different from Con (P<0.05). Vmax, maximal 
activity (nmol·mg prot-1·h-1); km, K+ activity required for 50% of maximal Na+-K+-ATPase activity; Sol = 
Soleus; RG = red gastrocnemius; WG = white gastrocnemius; SLP = plasma membrane fraction; EN = 
endosomal membrane fraction 
 
. 
 In both Sol SLP and Sol EN fractions, no difference in pump activity was observed 

between Con and Ins. However, main effects of KCl concentration were detected in both 

SLP (0<0.2<0.5<0.75< 1.0<1.5<3.0=5.0) and EN (0<0.2<0.5<0.75<1.5 & 3.0) fractions 

(P<0.01).  

 In RG SLP fractions, as observed in RG homogenate and non-treated SLP fractions, 

an interaction between KCl concentration and condition was observed (P<0.01). 3-O-

MFPase activity was greater in Ins than in Con at higher concentrations of KCl. In RG EN 

fractions, an interaction was also observed between KCl concentration and condition 

(P<0.02). 3-O-MFPase activity was greater in Ins than in Con at 1.5 and 3mM KCl.  

 In WG SLP fractions, a main effect of KCl concentration (0<0.2<0.5<0.75<1.0<1.5< 

3.0=5.0) was observed (P<0.01). No difference was detected between Con and Ins. In EN 

fractions, an interaction was observed between KCl concentration and condition (P<0.01). 3-

O-MFPase activity was greater in Ins than in Con at 5mM KCl; however, maximal activity 

was reached at 1.5mM KCl and there were no differences between conditions at this 

concentration. 
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Figure 8: K+-dependent Na+-K+-ATPase activity in insulin-treated sarcolemmal enriched (SLP) 
fractions of A) soleus, B) red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with 
and without 75μM insulin for 5 min at 37°C (Con = control, Ins = insulin). Values are means ± SE [n 
= 6 (Sol), 7 (RG, WG)]. A main effect for KCl concentration (P<0.05) was found in A and C 
(0<0.2<0.5<0.75<1.0<1.5<3.0=5.0). In B, an interaction between KCl concentration and condition 
was observed (P<0.05). * Significantly different from Con; # Significantly different from 1.5 mM 
KCl; † Significantly different from 3 mM KCl. 
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Figure 9: K+-dependent Na+-K+-ATPase activity in Ins-treated endosomal (EN) fractions of A) soleus, B) 
red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with and without 75μM insulin for 5 
min at 37°C (Con = control, Ins = insulin). Values are means ± SE [n = 6 (Sol), 7 (RG, WG)]. A main 
effect for KCl concentration (P<0.05) was found in A (0<0.2<0.5<0.75<1.5 and 3.0). In B and C, an 
interaction between KCl concentration and condition (P<0.05) was observed. * Significantly different 
from Con; # Significantly different from all other KCl concentrations; † Significantly different from 3 mM 
KCl. 
 

0 1 2 3 4 5 6
0

100

200

300

400
Con
Ins

KCl (mM)

3-
O

-M
FP

as
e 

ac
tiv

ity
(n

m
ol

⋅m
g 

pr
ot

-1
⋅h

-1
)

A 

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350
Con
Ins

KCl (mM)

3-
O

-M
FP

as
e 

ac
tiv

ity
(n

m
ol

⋅m
g 

pr
ot

-1
⋅h

-1
)

* # * #B 

*

†

0 1 2 3 4 5 6
0

50

100

150

200
Con
Ins

KCl (mM)

3-
O

-M
FP

as
e 

ac
tiv

ity
(n

m
ol

⋅m
g 

pr
ot

-1
⋅h

-1
)

C 



57 

 In insulin-treated SLP fractions, a comparison between muscles shows that, for Vmax,  

WG<Sol (P<0.02) and Con<Ins. Also, a trend exists for RG>WG (P<0.07). The km was 

lower in WG when compared to RG (P<0.05). No difference in km was observed between 

Con and Ins conditions. 

 In insulin-treated EN fractions, a comparison between muscles shows that, for Vmax, 

WG<RG=Sol (P<0.01). There was no difference between Con and Ins. Differences in km 

were not found between muscles or between Con and Ins. 

 A within muscle comparison between SLP and EN fractions showed that km was 

lower in EN when compared to SLP in RG (P<0.01). A trend for the km to be lower in EN 

when compared to SLP was observed in WG (P<0.07). No difference in km between 

fractions was detected in Sol. 

 
 
Effect of Insulin-Treatment on Na+-K+-ATPase Activity in SLP and EN Fractions – 

Comparison between Experiment 2 Con and Experiment 3 Con 

Comparisons were made between the Na+-K+-ATPase activity in non-treated and insulin-

treated fractions in order to determine if the insulin treatment caused an increase in pump 

activity. In Sol SLP fractions, an interaction between KCl concentration and experimental 

condition was observed (P<0.05), non-treated > insulin-treated at 3 and 5 mM KCl (Figure 

10A). No difference between non-treated and insulin-treated experiments was observed in 

the EN fractions. For km, insulin-treated was 23% lower than non-treated in SLP while no 

difference was observed in EN fractions. 

 In RG SLP fractions, an interaction between KCl concentration and experimental 

condition was observed (P<0.01) (non-treated > insulin-treated at 3 and 5 mM KCl, Figure 
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10B). An interaction was also observed in RG EN fractions between KCl concentration and 

experimental condition (P<0.01) (insulin treated > non-treated at 0.2, 0.5, and 1.0 mM KCl, 

Figure 10C). Insulin-treatment caused 48 and 39% reductions in km in SLP and EN fractions, 

respectively, when compared to non-treated fractions. 

 In WG, no differences in activity were observed between non-treated and insulin-

treated experiments, in either the SLP or the EN fractions. However, km was 48% lower in 

insulin-treated SLP fractions when compared to non-treated SLP fractions. 
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Figure 10: Comparison of the K+-dependent Na+-K+-ATPase activity between non-treated (Exp. 2 
Con) and insulin-treated (Exp. 3 Con) experiments in A) Soleus (Sol) sarcolemmal enriched (SLP) 
fractions, B) Red gastrocnemius (RG) SLP fractions, and C) RG endosomal (EN) fractions. Values 
are means ± SE [n = 6 (Sol), 7 (RG, WG)]. An interaction between KCl concentration and 
Experimental condition was observed in A, B, and C. * Significantly different from Exp. 2 Con; # 
Significantly different from 1.5mM KCl. 
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Western-Blotting Data from SLP and EN Fractions 

The α2 subunit distribution was measured in non-treated (Exp. 2 Con) and insulin-treated 

(Exp. 3 Con) SLP and EN fractions of all muscles (Figure 11). No difference was found in 

α2 subunit distribution between non-treated and insulin-treated groups or between muscles in 

the SLP fractions. However, in EN fractions, a main effect (P<0.03) of muscle was observed, 

with α2 subunit distribution ranking WG<RG=Sol. A main effect of condition was also 

observed in EN fractions, Control > Insulin-treated (P<0.02). A comparison between SLP 

and EN fractions revealed a significant difference, SLP>EN (P<0.01), in all muscles. 

 

 
Figure 11: α2 subunit distribution in A) sarcolemmal enriched (SLP) and B) endosomal (EN) 
fractions of non-treated (Exp. 2 Con) and insulin-treated (Exp. 3 Con) experiments (Sol = soleus; RG 
= red gastrocnemius; WG = white gastrocnemius). Values are means ± SE [n = 6 (Sol), 7 (RG, WG)]. 
In SLP fractions, no differences were detected between muscles or conditions. In EN fractions, main 
effects (P<0.05) of muscle (WG < RG = Sol) and experimental condition (non-treated > insulin-
treated) were observed. A main effect (P<0.05) was also observed between fractions (SLP>EN).  
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 GLUT4 distribution showed a similar response to insulin-treatment as the α2 subunit 

(Figure 12). No difference was found in GLUT4 distribution between non-treated and 

insulin-treated groups in SLP fractions, but a decrease in GLUT4 distribution was detected 

in the insulin-treated when compared to the non-treated condition in EN fractions (P<0.05). 

In both SLP and EN fractions, GLUT4 content appears to be greatest in RG when compared 

to Sol and WG. A comparison between SLP and EN fractions was not performed due to the 

nature of the GLUT4 content calculations. GLUT4 content was normalized to α-actin, which 

was different between the SLP and EN fractions. 

 

 

Figure 12: GLUT4 distribution in A) sarcolemmal enriched (SLP) and B) endosomal (EN) fractions 
of non-treated (Exp. 2 Con) and insulin-treated (Exp. 3 Con) experiments (Sol = soleus; RG = red 
gastrocnemius; WG = white gastrocnemius). Values are means ± SE [n = 2 (Sol), 3 (RG, WG)]. In 
SLP fractions, a main effect (P<0.05) of muscle (Sol=WG<RG) was detected. In EN fractions, a 
main effect (P<0.05) of experimental condition (non-treated > insulin-treated) was observed.  
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α2 subunit Western-Blotting Data from Homogenates Following Immunoprecipitation of 

Tyrosine Phosphorylated (Tyr-P) Residues 

Tyr-P residues of muscle homogenates from non-treated and insulin-treated experiments 

were immunoprecipitated and Western blots for the detection of the α2 subunit were 

performed (Figure 13). The presence of α2 subunits in these blots reveals that the α2 subunits 

are phosphorylated on tyrosine residues. No difference in α2 subunit Tyr-P was detected 

between muscles or conditions. However, within muscle comparisons detected an increase 

in α2 subunits Tyr-P in WG, insulin treated > non-treated (P<0.05). 

 

 

 
 
 
 
 
 
 
 
 
Figure 13: Tyrosine phosphorylation of the Na+-K+-ATPase α2 subunit in muscle homogenates of 
non-treated and insulin-treated experiments (Sol = soleus; RG = red gastrocnemius; WG = white 
gastrocnemius). Values are means ± SE (n=5). No significant differences were found between 
muscles or conditions. 
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Chapter Four 

Discussion 

Insulin-stimulated Na+-K+-ATPase Activity in Muscle Homogenates – Experiment 1 

The present study offers new insights into the role of insulin in stimulating Na+-K+-ATPase 

activity. In agreement with our first hypothesis, insulin stimulated increases in Vmax, but 

only in Sol and RG homogenates (Experiment 1). Increased Na+-K+-ATPase activity was 

also observed at lower KCl concentrations. This novel finding, observed using the 3-O-

MFPase assay, is contrary to those observations reported previously (13; 38; 49; 53). These 

earlier studies have provided evidence that the effect of insulin is limited to involve 

translocation of α2 (13; 38; 49; 53) and β1 (38; 49) subunits from intracellular membranes to 

the plasma membrane. In particular, insulin-induced α2 subunit translocation in the absence 

of increased Vmax in Sol homogenate (13) has provided strong evidence for this hypothesis. 

However, a recent study has shown that cyclic stretch in cultured skeletal muscle cells not 

only induces translocation of α2 subunits from intracellular membrane to the plasma 

membrane, but also increases Vmax in the homogenate (76). Inhibition of translocation 

significantly attenuated, but did not abolish,  the increase in Vmax associated with cyclic 

stretch (76). The relevance of this study is that the authors used the 3-O-MFPase assay to 

detect changes in Vmax (76). This observation suggests that the 3-O-MFPase assay can detect 

changes in Vmax associated with a translocation mechanism in homogenate. In the current 

study, the increased Vmax observed in homogenates from Sol and RG exposed to insulin 

cannot be attributed solely to translocation or intrinsic activity; it may be a combination of 

both. 
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 In WG homogenate, 5 min insulin exposure decreased Na+-K+-ATPase activity at 

lower KCl concentrations; the km was increased by 53% in the Ins conditions. Before 

concluding that insulin decreases pump sensitivity in WG further attention is warranted. 

Insulin stimulated an increase in background activity in WG homogenates that was not 

observed in Sol or RG homogenates. This larger background, once subtracted, accounts for 

the decrease in pump activity. The source of this non-specific activity needs to be identified 

in order to determine the true nature of insulin’s effect in WG homogenate.  

 The observation that insulin affects muscles composed of mostly oxidative fibres, 

and not muscles of glycolytic fibres, has been previously reported (49). Lavoie et al (49) 

reported that insulin-induced translocation of the α2 subunit and subsequent increases in 

Vmax in plasma membrane fractions were specific to oxidative fibres. The null effect of 

insulin on Vmax in WG homogenate observed in this study supports the hypothesis that 

insulin-induced changes in Na+-K+-ATPase distribution and activity are fibre type specific.  

 

Insulin-stimulated Na+-K+-ATPase Activity in Control SLP and EN Fractions – Experiment 

2 

In Experiment 2, the plasma membrane (SLP) and endosomal (EN) enriched pools of Na+-

K+-ATPase were separated. The fractionation protocol employed has been reported to isolate 

70% of Na+-K+-ATPase immunoreactivity and 86% of the ouabain sensitive ATPase activity 

to the SLP fraction, at least in cardiac tissue (27). By using these fractions, it was possible to 

assess the insulin-induced influence on pump intrinsic activity, without the confounding 

effect of translocation. Thus, it could be investigated whether the increase in Vmax observed 

in Sol and RG homogenates was due to translocation or intrinsic activity, or both. As 
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hypothesized, an active pool of Na+-K+-ATPase was detected in both non-treated SLP and 

non-treated EN fractions. Insulin exposure increased Vmax in Sol and RG, but not in WG, 

non-treated SLP fractions. However, an increase in Vmax in non-treated EN fractions was 

only observed in RG. This evidence suggests that insulin regulates Na+-K+-ATPase 

differentially in the plasma and endosomal membranes.  

 Although evidence suggests that insulin-induced translocation is specific to the α2 

(13; 38; 49; 53) and β1 (38; 49) subunits, it is unclear whether individual isoforms or 

functional heterodimers translocate. Indirect evidence would suggest that it is functional 

heterodimers that undergo translocation. Chibalin et al (13) showed no change in Vmax in Sol 

muscle homogenate following 20 min insulin incubation, but did report increases in Vmax in 

plasma membrane fractions. This implies that the intracellular stores of pumps were in a 

fully active state; if only α2 subunits underwent translocation and formed functional 

herterodimers on the plasma membrane with previously embedded β subunits, an increase in 

Vmax in homogenate should have been detected following incubation with insulin. Evidence 

in the present study supports the assumptions of Chibalin et al (13) that the EN pool of 

pumps does display activity. 

 In Sol non-treated SLP fractions, insulin exposure caused a 15% increase in Vmax, 

almost identical to that in Sol homogenate. A similar pattern of insulin-induced increases in 

pump activity was also observed at lower KCl concentrations. This suggests that the 

increase in 3-O-MFPase activity observed in muscle homogenate was due to an insulin-

stimulated increase in intrinsic activity. However, a 12% decrease in km was also detected in 

the Ins condition, suggesting that insulin can also increase pump affinity for K+. Insulin 

failed to cause a significant increase in pump activity in Sol non-treated EN fractions, which 
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suggests that the insulin stimulated increase in pump activity detected in Sol homogenate 

was due solely to activation of pumps on the plasma membrane, and not to increased pump 

abundance mediated by translocation. 

 The data from RG non-treated fractions also suggests that the increase in insulin-

stimulated activity in RG homogenate was due to increases in intrinsic activity; insulin 

caused a 34% increase in Vmax in homogenate and a 36% increase in Vmax in the non-treated 

fractions (SLP+EN). Neither the non-treated SLP nor EN fractions showed higher activity at 

KCl concentrations below 1mM. This suggests that an additive effect of insulin in SLP and 

EN fractions contributed to the change in RG homogenate. 

 In WG non-treated SLP fractions, there was a trend (P<0.07) for an insulin-induced 

increase in Vmax. A main effect, Con<Ins, was also observed. This suggests that an insulin-

induced increase in Na+-K+-ATPase activity was masked in homogenate by an unknown 

factor causing high non-specific activity. Although it was suggested that a null effect of 

insulin in WG homogenate agrees with previous evidence (49) of fibre type specific 

responses to insulin-induced translocation, this observation suggests a more complicated 

scenario in which WG may respond to insulin stimulation. It is possible some regulatory 

factor that inhibits insulin-induced pump stimulation in homogenate became dissociated 

from the Na+-K+-ATPase during fractionation procedures. Since the population of pumps in 

the WG non-treated EN fraction displayed no response to insulin, it can be hypothesized that 

such a factor is associated only with the plasma membrane.  

 A comparison between muscles showed that Vmax was greater in Sol and RG than in 

WG (Con homogenates, non-treated SLP fractions, and non-treated EN fractions). This 

observation agrees with previous work that suggests Vmax correlates with oxidative potential 
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(22). The measurement of maximal CS activity in this study confirmed that the muscles of 

different fibre type possessed different oxidative potential (RG>Sol>WG). Interestingly, the 

km was WG<RG=Sol in homogenate and WG=Sol<RG in non-treated SLP and EN fractions. 

Furthermore, km was lower in EN fractions when compared to SLP fractions. Differences in 

isoform distribution, αβ heterodimers, and total pump content [ranking RG>Sol=WG (22)] 

likely contribute to differences in Vmax and km. However, independent from differences due 

to the intrinsic properties of the isoforms present in the muscles of different fibre type, 

rationale for the observed differences in Vmax and km between muscle types can be 

hypothesized from evidence of differential phospholipid fatty acid composition between 

Type I and Type II muscle fibres (9). The membrane environment has been reported to be a 

determining factor of Na+-K+-ATPase molecular activity (enzyme activity/enzyme number) 

in homogenate (20). It is also possible that the populations of pumps in the SLP and EN 

membranes exist in different phospholipid environments, which in turn influences catalytic 

properties and molecular activity. If molecular activity could be measured in each of the 

SLP and EN fractions, it could be determined if the 2 populations of pumps are in the same 

active state. If pumps in the SLP fraction have a greater molecular activity, this could 

explain how translocation could be detected in muscle homogenates; translocation of pumps 

from EN to SLP would theoretically shift them into a more active state and thus contribute 

to increased 3-O-MFPase activity. Thus, it is possible that differing membrane environments 

in the plasma and endosomal membranes contributes to differences in activity between SLP 

and EN populations of pumps. 
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Insulin-stimulated Na+-K+-ATPase Activity in Insulin-treated SLP and EN Fractions – 

Experiment 3 

In Experiment 3, K+-dependent 3-O-MFPase activity was measured in insulin-treated SLP 

and EN fractions. Prior to fractionation, homogenates were treated with insulin (625μM) for 

5 min at 37°C. The plasma membrane (SLP) and endosomal (EN) enriched pools of Na+-K+-

ATPase were then separated, exactly as performed in Experiment 2. Assessment of 3-O-

MFPase activity was performed on insulin-treated SLP and EN fractions under both Con and 

Ins conditions. In the Ins condition, fractions were exposed to 75μM insulin for 5 min at 

37°C prior to the measurement of activity.  

 The experimental procedure mimicked those procedures from in vivo and ex vivo 

studies (13; 38; 49; 53). Samples were incubated with insulin, frozen quickly, and then 

thawed and subjected to analysis at a later time. This experiment was performed in order to 

examine the possibility of α2 subunit translocation in response to 5 min in vitro insulin 

incubation. The goal was to determine if translocation could have contributed to the 

increases in pump activity observed in homogenates. Although data from Experiment 2 

suggests that increases in intrinsic activity can explain the increased activity in homogenate, 

this experiment was required to confirm this hypothesis. If no evidence of translocation was 

detected and pump activity was higher in insulin-treated Con fractions vs non-treated Con 

fractions, it could have been concluded that 5 min in vitro insulin incubation of homogenates 

was not sufficient to stimulate translocation; instead, increases in pump activity observed in 

muscle homogenates in Experiment 1 were due entirely to insulin-induced increases in 

intrinsic activity. Also, the exposure of the insulin-treated fractions to 75 μM insulin, as 
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performed in Experiment 2, could determine if further increases in pump activity were 

possible with subsequent insulin exposure. 

 Contrary to our hypothesis, an increase in pump activity was not observed in insulin-

treated Con fractions when compared to the activity in non-treated Con fractions; in fact, 

Vmax was actually reduced in insulin-treated Sol and RG SLP Con fractions. However, km 

was lower in insulin-treated SLP Con fractions of all muscles (Sol, RG, WG) and in insulin-

treated RG Con EN fractions when compared to non-treated Con fractions. Since an insulin-

induced decrease in km was only observed in non-treated Sol Ins SLP in Experiment 2, this 

effect of insulin on km is puzzling. It is possible that the higher concentration of insulin used 

in the insulin treatment of homogenates in Experiment 3 was responsible for the differing 

effect. 

 Western blotting data indicates that the insulin treatment was not sufficient to induce 

translocation of α2 subunits from EN membranes to SLP membranes. Although a decrease in 

α2 subunit abundance was observed in the EN fractions treated with insulin, no increase in α2 

subunit abundance was observed in the respective SLP fractions. As well, no change in 

GLUT4 distribution was observed in SLP or EN fractions with insulin treatment. Actin 

filament remodeling plays a key role in regulating the translocation of GLUT4 from 

intracellular membranes to the plasma membrane (67). GLUT4 translocation to the plasma 

membrane is almost completely abolished if actin remodeling is disrupted (67). The high 

salt treatment performed prior to homogenization in preparation of fractionation detaches the 

myofilaments from membranes (27). It is possible that this treatment inhibits GLUT4 

translocation. If the α2 subunit possesses a similar mechanism of translocation, this too may 

be inhibited. A decrease in EN membranes may still be observed if translocation is initiated 
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and subunits are moved into vesicles for trafficking. These vesicles may be lost during low 

speed centrifugation steps in the fractionation procedure. Thus, it can be concluded that the 

insulin-treatment of homogenates prior to fractionation did not result in translocation of α2 

subunits (or GLUT4) from EN to SLP membranes. 

 In the absence of translocation, data from Experiment 2 suggests that the 5 min 

insulin incubation prior to fractionation should have caused increases in intrinsic pump 

activity in insulin-treated Con SLP fractions. It is possible that, since the membranes in the 

homogenate were not permeated prior to insulin incubation, the insulin treatment did not 

activate the insulin signaling cascade. If vesicles formed inside-out during homogenization, 

could insulin bind to the insulin receptor? Also, if the insulin-receptor tyrosine kinase was 

located on the inside of intact vesicles, then it may not be able to activate the downstream 

regulatory elements necessary to illicit an insulin response. The use of membrane 

permeating agents or freeze thawing could address these concerns. 

 It was originally hypothesized that pump activity in insulin-treated fractions would 

not be increased further with the 75μM insulin exposure. However, given insulin’s lack of 

effect on pump activity in insulin-treated Con fractions, the hypothesis may be made that 

subsequent insulin exposure should induce increases in pump activity, as observed in 

Experiment 2. Also, since deoxycholate is used to permeate membranes prior to insulin 

exposure, an increase in pump activity would provide indirect evidence that the insulin 

signaling cascade was not activated in the insulin-treated Con fractions.  

 In Sol and WG tissues, insulin exposure of the insulin-treated SLP fractions did not 

yield an increase in pump activity as observed in the non-treated fractions; the Sol SLP Ins 

condition even showed an increase in km as opposed to the decrease in km observed in non-
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treated Sol SLP Ins. As in the non-treated EN fractions, pump activity in the Sol and WG 

insulin-treated EN fractions was not stimulated by insulin. Compared to Con, an increase in 

Vmax was observed in insulin-treated RG SLP Ins. Furthermore, the K+-dependent 3-O-

MFPase activity in insulin-treated RG SLP Con and Ins conditions, although of lower 

magnitude, was of almost identical pattern to that in the non-treated RG SLP Con and Ins 

conditions. Insulin also had a stimulatory effect on pump activity at the high concentrations 

of KCl in insulin-treated RG EN. Another observation consistent with that in non-treated 

fractions is that km was lower in EN fractions when compared to SLP fractions.  

 Given some similarities between non-treated and insulin-treated fractions responses 

to insulin exposure, it is unknown why Sol and WG insulin-treated SLP Con and Ins 

conditions did not show the same relationship as that in non-treated SLP Con and Ins 

conditions. It appears as though the conditions under which insulin-treatment prior to 

fractionation altered the ability of the Na+-K+-ATPase in Sol and WG insulin-treated SLP 

fractions to respond to subsequent insulin exposure. However, insulin-treated RG SLP 

fractions displayed the ability to retain the response to insulin exposure, suggesting some 

regulatory element that allows for the insulin induced increase in Na+-K+-ATPase activity to 

be preserved following insulin-treatment of homogenates prior to fractionation. In all 3 

experiments, RG was most responsive to insulin, followed by Sol and then WG. This 

suggests a relationship between oxidative potential of the fibre and insulin-stimulated pump 

activity. This hypothesis is supported by the maximal CS activity data in this study, which 

ranked, highest to lowest, RG>Sol>WG. Previous studies have also identified a relationship 

between both oxidative potential and pump activity (22) and oxidative potential and insulin-

induced increases in Vmax (49). 
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Possible Mechanisms for Insulin-induced Increases in Na+-K+-ATPase Activity 

The role of Tyr-P in the stimulation of intrinsic activity by insulin could not be evaluated in 

this study. Although no increase in α2 Tyr-P was observed in muscle homogenates following 

insulin treatment, the fact that no increase in translocation or intrinsic pump activity was 

detected in insulin-treated fractions when compared to non-treated fractions indicates that 

the insulin treatment was not effective in stimulating pump activity. Chibalin et al (13) 

reported increases in Tyr-P in muscle homogenate following ex vivo insulin treatment of Sol 

in association with the translocation of α2 subunits. This suggests that Tyr-P is specific to 

translocation. A hypothesis that Tyr-P is not associated with insulin-induced increases in 

intrinsic Na+-K+-ATPase activity would parallel observations with the GLUT4 protein. 

GLUT4 is stimulated by insulin to both increase intrinsic activity and translocate from 

intracellular membranes to the plasma membrane (28). However, the signaling pathways for 

these two events diverge somewhere along the insulin signaling cascade (28). Thus, it is 

possible that the Na+-K+-ATPase undergoes similar regulation with respect to insulin 

stimulation. 

 Given a role for PKC in the insulin-induced stimulation of pump activity, serine 

phosphorlyation should also be considered as a possible mechanism of insulin-induced 

increases in Na+-K+-ATPase activity. Ser-23 of the Na+-K+-ATPase has been identified as a 

target for PKC (10); however, PKC phosphorylation of the pump generally leads to 

inhibition of activity (12). The possibility exists that the increase in intrinsic activity is not 

mediated by direct phosphorylation. The regulatory protein PLM may be implicated. A PKC 

dependent mechanism of Na+-K+-ATPase regulation through PLM phosphorylation has been 
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reported in cardiac myocytes (33). In fact, PKC phosphorylation of PLM on Ser-63 and Ser-

68 causes an increase in Vmax without altering Na+ affinity (33). Although PKA 

phosphorylation of PLM is associated with increases in pump affinity of Na+ (33), no effect 

on apparent K+ affinity was detected in Xenopus oocytes (7). Thus, it is unlikely that PKA 

phosphorylation of PLM mediated changes in km that were observed in this study. The 

absence of PKC-mediated increases in pump activity in PLM-knockout mice suggests that 

PKC-dependent effects on the pump are mediated primarily by PLM rather than direct pump 

phosphorylation (33). Furthermore, it has been recently reported that PKC phosphorylation 

of PLM increases the intrinsic activity of the Na+-K+-ATPase α2β1 heterdimer in the 

Xenopus oocyte expression system (7). The possibility of an increase in cell surface 

expression was eliminated (7). The phosphorylation of PLM did not result in a complete 

dissociation from the Na+-K+-ATPase (7). Thus, such a mechanism may be possible in 

skeletal muscle in which PLM phosphorylation mediates an increase in catalytic activity as 

stimulated by PKC downstream of insulin receptor tyrosine kinase. 

 The observation that insulin did not increase Na+-K+-ATPase activity in WG muscle 

homogenate may indicate a fibre type specific effect of insulin. Although insulin stimulated 

activity in WG non-treated SLP fractions, this may simply indicate that some regulatory 

mechanism was removed during fractionation. Given the diversity in isoform properties and 

muscle specific expression of these isoforms, differential regulation in response to hormonal 

stimuli seems appropriate. The specificity of insulin-induced translocation of α2β1 to 

oxidative fibres is an example of such differential regulation (49). Previous work has shown 

that WG expresses higher amounts of the β2 subunit (22). The prevelance of α2β2 

heterdimers in WG may be involved in this differential response to insulin stimulation in 
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muscle homogenates. However, simple isoform diversity cannot explain why WG non-

treated SLP Ins fractions show an increase in pump activity. Ultimately, the source of the 

insulin-induced non-specific activity in WG homogenates must be determined before the 

functional significance of insulin-induced increases in pump activity in WG SLP fractions 

can be interpreted. 

 

Comparison of “in vitro” Model to “in vivo” and “ex vivo” Models 

Some key differences exist that may explain the discrepancy in findings between this study 

and those performed previous. In studies utilizing an in vivo model, animals were injected 

with insulin and left for 30 min (38; 49; 53); of these studies, only Lavoie et al (49) 

measured Vmax, and the measures were restricted to membrane fractions of red and white 

fibres. Chibalin et al (13) used an ex vivo (whole muscle excised and incubated in media 

supplemented with nutrients) model in which whole Sol muscle was incubated in a solution 

containing insulin for 30 min. Vmax was measured through a 32P-radiolabelled assay that 

required 15 min incubation (13). Chibalin et al (13) reported an increase in Vmax in Sol 

plasma membrane fractions, but no change in Vmax in Sol homogenate, following insulin 

treatment (13). This observation implies that the entire population of pumps in the muscle 

was active in the homogenate. As a result, translocation would not lead to a change in Vmax 

in the homogenate. Any change (or lack there of) in Vmax would be an indication of insulin 

influence on intrinsic activity. Lavoie et al (49) detected increased Vmax in plasma membrane 

fractions of red muscle fibres using the 3-O-MFPase assay. However, no measures of Vmax 

in homogenate were performed in the study (49).  
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 Both the in vivo and the ex vivo studies observed an increase in α2 subunit abundance 

at the plasma membrane with insulin treatment (13; 38; 49; 53). As concluded by Chibalin et 

al (13), the observed increase in Vmax was a result of α2 subunit translocation to the plasma 

membrane. However, these previous studies used long incubation times with insulin (13; 38; 

49; 53). Furthermore, the duration of the assay used by Chibalin et al (13) to measure Vmax 

was considerably longer than the one employed in the present study. It is possible that these 

previous experiments (13; 38; 49; 53) were not suited to detect possible influences of insulin 

on intrinsic pump activity. A short, possibly transient, effect of insulin on intrinsic activity 

could serve to increase pump activity as a mechanism to maintain Na+ and K+ homeostasis 

until the translocation pathway can be fully activated. Such a hypothesis is supported by our 

data, which shows insulin stimulated increases in Vmax in Sol and RG after 5 min incubation 

at 37°C. Also, insulin-incubation time dependencies show that Vmax decreases with longer 

incubation times (Appendix D). A short insulin exposure, as performed in this study, may 

not be of sufficient time to induce translocation of α2 subunits from intracellular stores to the 

plasma membrane. However, it cannot be assumed that translocation did not occur, as this 

phenomenon may occur more quickly in vitro.  

 The use of an in vitro model allows for control of the experimental conditions in a 

way not possible with in vivo studies. With in vivo studies, the contribution of confounding 

variables that may influence the desired experimental perturbation is a concern. For example, 

stress of the animals may increase catecholamine levels, which in turn influences dependent 

measures. Also, if blood flow distribution to the muscle is not homogeneous, then 

measurements in whole muscle homogenate may dilute an effect of the treatment. With the 

use of an ex vivo model, is the whole muscle exposed to the surrounding fluid environment? 
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The muscle is incubated in an oxygenated medium containing nutrients and any treatment 

(ex. hormone, drug). Since there is not perfusion of the muscle, are fibres in the interior of 

the muscle exposed to the same concentration of supplements in the media as those in direct 

contact with the media? 
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Chapter 5 

Summary and Conclusions 

Summary 

This is the first study to show insulin-induced increases in Na+-K+-ATPase activity in 

skeletal muscle homogenates. The fractionation of plasma membrane and endosomal 

populations of Na+-K+-ATPase allowed for the assessment of pump activity without the 

possibility of translocation. Insulin stimulated increases in pump activity in the SLP 

fractions, providing evidence that insulin can stimulate increases in intrinsic activity. 

However, fibre type differences in the response to insulin stimulation suggest differential 

regulation with respect to oxidative potential. Given differences in isoform distribution and 

αβ heterodimer combinations in muscles of different fibre types, such regulation is not 

surprising. Also, differences in catalytic properties between SLP and EN membranes suggest 

that the membrane environment of the pump may play an intricate role in determining pump 

activity. Insulin-treatment of homogenates in vitro may allow for further investigation into 

the mechanism of insulin-induced stimulation of intrinsic Na+-K+-ATPase activity and the 

possible role of Tyr-P in this stimulation.  

 

Limitations 

One limitation of the present study is the concentration of insulin investigated. During pilot 

work, insulin concentration dependency curves (Appendix C) were performed in each 

muscle in order to determine optimal insulin-stimulated increases in Vmax. Since insulin 

incubation was in vitro, we wanted to ensure insulin receptor saturation. With muscle 

homogenization, membranes form vesicles and become interspersed in the homogenate. As 
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such, the organization of hormone receptors in close vicinity to hormone delivery (i.e. 

localized on plasma membrane with close capillarization and short diffusion distances for 

hormones) is not maintained and the probability of stimulating signaling cascades may be 

decreased. We did not want to observe a null effect of insulin due to inadequate dosage. Our 

study appears to be the first attempt to assess insulin influence on Na+-K+-ATPase activity in 

vitro using the 3-O-MFPase assay. The goal was to determine whether or not it was possible 

to detect an insulin effect, not to simulate physiological conditions. This insulin activation of 

3-O-MFPase activity was shown to be specific to the Na+-K+-ATPase: insulin stimulation of 

background activity was measured and subtracted in each muscle preparation. Also, trials 

conducted in Sol homogenate with a Ca2+-ATPase inhibitor, thapsigargin, showed no 

influence of thapsigargin on 3-O-MFPase activity (unpublished observations). The 

specificity of the assay to the Na+-K+-ATPase could not be determined with conventional 

ouabain incubations. The incubation of muscle homogenate with 5mM ouabain for 20 min 

inhibits >90% of the K+-stimulated 3-O-MFPase activity (69). Given optimal insulin 

exposure was 5 min, with subsequent decreases in Vmax with longer incubations (Appendix 

D), the use of ouabain to measure the specificity of insulin-induced increases in Vmax was 

inappropriate. Despite the high insulin concentrations utilized, the observed effect of insulin 

is intriguing. These measurements should be performed with physiological concentrations of 

insulin to increase the impact of the current findings; it must be determined if this in vitro 

model can still detect insulin-stimulated increases in pump intrinsic activity with 

physiological insulin concentrations. 

 Second, the procedure in Experiment 3 prevented the investigation of some 

hypotheses. The absence of an insulin-induced increase in pump activity in fractions 
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following homogenate incubation with insulin prevented the investigation of a role for Tyr-P 

in mediating changes in pump activity. Future experiments may circumvent this issue by 

using membrane permeating procedures prior to insulin incubation. Also, translocation may 

have been abolished due to treatment of homogenates with high salt solution. However, an 

experimental model in which translocation is inactivated may prove to be useful. In this way, 

any changes in activity observed with insulin incubation must be attributed to changes in 

intrinsic activity. Tyr-P could then be measured to determine its role in mediating this 

change. Thus, this model may very well provide an ideal method of investigating the 

mechanisms of insulin-induced changes in intrinsic activity. 

 Third, in Experiment 3, there was no control condition in which samples were 

incubated at 37°C without insulin-treatment. In Experiment 2, non-treated homogenates 

were not incubated at 37°C for 5 min prior to fractionation. These samples were treated the 

same as homogenates in Experiment 1 in order to determine if increases in intrinsic activity 

could account for changes in activity observed in homogenates. Thus, the conditions under 

which insulin-treatment occurred may have altered the response of the Na+-K+-ATPase to 

insulin stimulation.  

 Fourth, in Experiment 2 it was suggested that insulin differentially regulates Na+-K+-

ATPase in SLP and EN membranes. This was postulated because insulin did not increase 

pump activity in EN fractions as it did in SLP fractions. This suggests that some regulatory 

element(s) was missing. It is also possible that the necessary signaling proteins to illicit an 

insulin response were not present in EN fractions. In fact, since the exact insulin signaling 

pathway is not known, the presence of all the necessary proteins to illicit an insulin response 

could not be confirmed in either fraction. It is possible that insulin had a direct effect on the 
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Na+-K+-ATPase. To test this, experiments in which downstream proteins in the insulin 

signaling cascade are inhibited and pump activity measured are required. 

 

Future Direction 

The findings from this study provide a basis for further investigations into the effects of 

insulin on Na+-K+-ATPase function. First, Experiments 1 and 2 should be completed using 

physiological concentrations of insulin in order to determine if the in vitro model is a valid 

method to measure insulin-induced influences on pump activity at these concentrations. 

Second, as suggested above, inhibitors of proteins in the insulin signaling cascade could be 

used to investigate the pathway through which insulin is influencing Na+-K+-ATPase 

activity in the in vitro model. Third, modification to the insulin-treatment in Experiment 3 

may lead to a novel model in which translocation mechanisms are inhibited and insulin-

induced changes in activity can be isolated. Using this model, the mechanism of insulin-

stimulation of pump activity can be investigated. For example, probing of Tyr-P in each of 

SLP and EN fractions could investigate if Tyr-P has a role in insulin-induced effects and if 

these two membrane sources of pumps are differentially modified by insulin. 

 The findings from in vitro studies can also be applied to an in vivo animal model. 

Previous experiments have shown that glucose supplementation attenuates fatigue without 

sparing muscle glycogen stores (32; 45; 52). Furthermore, Karelis et al (45; 52) have 

demonstrated protection of cell excitability as measured by the M-wave in rat Sol and 

plantaris muscles. Recent work by Green et al (32) provides evidence of Na+-K+ ATPase 

activation during glucose supplementation in human VL muscle. It may be hypothesized that 

Na+-K+-ATPase is activated by the elevated insulin during glucose supplementation. Using 
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electrical stimulation in the anaesthetized rat with glucose infusion, the role of translocation, 

Tyr-P, and intrinsic activation of the Na+-K+-ATPase can be investigated. If steps in the 

mechanism of insulin activation are known from in vitro studies, these steps can be probed 

in muscle following the in vivo treatment to determine their role, if any, in maintaining 

membrane excitability.  
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Appendix A: 
Set-up of the micro-plate for the measurement of 3-O-MFPase activity 

 

 
 
 
Appendix A: A black, flat bottom micro-plate was loaded with 250μL of sample in each 
well. A set of 8 wells was used for each of control (Con) and insulin (Ins). The blank well 
contained 0 mM KCl.  
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Appendix B: 
Set-up of the micro-plate to generate a dose response curve in the 

 measure of 3-O-MFPase activity 
 
 
 

 
 
 
 
 
 
Appendix B: A black, flat bottom micro-plate was loaded with 250μL of sample in each 
well. A set of 8 wells was used to generate a dose response curve. Blanks contained 0 mM 
insulin (Ins) or GLU (glucose) and 0 mM KCl. Five mM KCl was present in wells 2-7. 
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Appendix C: 
Insulin-concentration dependent Na+-K+-ATPase activity 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix C: Insulin-concentration dependent Na+-K+-ATPase activity in muscle 
homogenates of different muscle types (Sol = soleus; RG = red gastrocnemius; WG = white 
gastrocnemius). Valued are mean ± SE (Sol n=7; RG n=4; WG n=4). Maximal insulin-
stimulated activity was observed at 75μM insulin. 
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Appendix D 
 Time dependence of 3-O-MFPase activity, with and without 75μM Insulin 

 
 

 

Appendix D: Time-dependent Na+-K+-ATPase activity in muscle homogenates, with and without 75μM insulin 
at 37°C, of A) Soleus (Sol); B) red gastrocnemius (RG); and C) white gastrocnemius (WG). Valued are mean ± 
SE (Sol n=4; RG n=4; WG n=3). In Sol, main effects of time, 20min<10min<5min, and condition, Con<Ins, 
were found. In RG, main effects of time, 20min=15min=10min<5min, and condition, Con<Ins, were found. In 
WG, a main effect of condition, Con<Ins, was found. Also, a trend (P<0.07) was detected for an effect of time. 
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Appendix E 
 Fractionation of Sarcolemmal enriched and Endosomal membranes 

 

 
 

 
 
 

Appendix E: Flow diagram of fractionation procedure 
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Appendix F:  
Immunoprecipitation of Tyrosine Phosphorylated Proteins 

 

 
 

Appendix F: Flow diagram of Tyr-P immunoprecipitation protocol 
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Appendix G  

Maximal Citrate Synthase Activity Assay 
Reaction 1 
 
   * 10 µl of 1:2500 dil. homog. (4 µg muscle) is added to 100 µl reagent 1.  
   - the above step requires a 50x (10 ul sample added to 490 ul buffer) dilution of the 
      original 1:50 homogenate using diluting media. 
   - 3.33, 6.67 and 10 nmoles citric acid / 10 µl used as standards. 
   - this is allowed to react for 1 hour at room temp. 
   * stopped by adding 10 µl of 0.5 N NaOH and heating at 95oC for 5 min. 
        (this also destroys any excess oxaloacetate) 
__________________________________________________________________________ 
 
Reaction 2 
 
   * 1 ml of reagent 2 is added to the product of the first reaction. 
   - leave for 20 min at room temp. 
   * add 60 ul of 1 N HCl, leave 10 min at room temp. 
   * add 100 ul aliquot to 1 ml of 6 N NaOH/Imidazole 
   - heat at 60oC for 20 min. 
   - a fluorescing NAD+ by product is measured.  
__________________________________________________________________________ 
 

Enzymes, Substrates and Products 
 

Reaction 1 
                                                                                 Citrate Synthase 
                              Oxaloacetate + S-Acetyl-CoA ⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Citrate 
                                                                                      EC 4.1.3.7 
                                                 add 0.5 N NaOH and heat to 95oC to destroy excess oxaloacetate 
 
Reaction 2 
                                                    Citrate Lyase 
                                Citrate ⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Acetate + Oxaloacetate 
                                                      EC 4.1.3.6 
 
                                                                      Malate Dehydrogenase 

Oxaloacetate + NADH + H+ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Malate + NAD+ 
                                                                              EC 1.1.1.37
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Reagent Preparation (citrate synthase) 
 

Reagent 1 (100 µl / sample)                                                                                           
 Stock   for 5 ml  Final Conc. 
    
1. Tris-HCl  1M  250µl  50mM 
    
2. Acetyl CoA FW 809.6 1.62mg 0.4mM  
   (Sigma A-2056)    
3. Oxalacetate  FW 132.1 0.33mg  0.5mM 

added  just  prior  to   the   start  of  the  assay   
4. BSA  10% 125µl   0.25%  
 
MIX ITEMS 1 AND 4 WITH 4ml OF H2O, BRING TO VOL. WITH dH2O, ADD ITEM 2. pH TO 8.1.  

 
Reagent 2 (1 ml / sample) 
  Stock  for 30 ml  Final Conc.  
    
1. Tris-HCl 1M  3ml  100mM 
    
2. ZnCl2  100mM  30µl   100µM 
    
3. BSA   10%  30µl  0.01%  
    
4. NADH   FW 709.4 0.64mg 30µM  
     
5. Citrate Lyase   0.625U/ml  150µl  0.003U/ml 

(2.5mg into 1ml 100mM Tris) (BM 354 074)   
6. Malate 
dehydrogenase 

5mg/ml  15µl 3U/ml 

        (BM 127 914)  (1200 U/mg)    
 
MIX ITEMS ITEMS 1,2,3 AND 4 WITH 15ml OF dH2O, BRING TO VOL., ADD ITEMS 5 AND 6. pH TO 7.5. 
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Standard Preparation 
 
Citric acid - MW 192.1 
   - 2.666, 5.333 and 8 nmole of standard are required in the 10 µl of standard to be added. 
   - place 19.21 mg of citric acid into 10 ml of dH2O (100 nmoles / 10 µl). Freeze in small        

      aliquots (500 µl) in eppendorf tubes and store at -50oC or lower. 
   - bring 500 µl of the concentrated standard prepared above to 5 ml using 4.5 ml of  
      dH2O (10 nmole / 10 µl).  
   - add 333 and 667 µl of this solution to 667 and 333 µl of dH2O respectively. 
   - this yields 2 additional standards of 3.33 and 6.67 nmoles / 10 µl. 
 
 
Calculations (sample only! absolute units of fluorescence will vary) 
 
Highest standard: 8 nmoles / 10 µl 
            Fluorescence per 8 nmoles is 19.75/hr 
  Fluorescence per nmole is 2.469/hr/nmole 
 
Sample: a 4 ug sample of tissue yields a fluorescence of 170 units. 
 # nmoles converted per 4µg of tissue : 8 / 2.469 = 3.240 nmoles/hr/4 ug tissue 
                                                or  0.810 µmoles/hr/µg tissue 
                                                or  0.810 mmoles/hr/g tissue 
 
Assuming 15 % protein: 
 # mmoles/hr/g protein:  0.810 /.15 =  5.400 mmoles/hr/g prot 
 
                                           or 5.400 moles/hr/kg prot 
 
 
Method adapted with small changes from 
 
   American Journal of Physiology. 244 (Cell Physiology 13): C276-C287, 1983 

 
 
 
 
 
 
 
 
 
 
 
 
 



104 

Appendix H:  
Glucose-concentration dependent Na+-K+-ATPase Activity 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix G: Glucose-concentration dependent Na+-K+-ATPase activity in muscle 
homogenates of different muscle types (Sol = soleus; RG = red gastrocnemius; WG = white 
gastrocnemius). Valued are mean ± SE (n=3). No significant differences in glucose-
stimulated activity were observed; however 7mM glucose was chosen for experimentation 
because it is in the higher range of physiological glucose concentrations and there appears to 
be a slight spike in activity at this glucose concentration. 
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Appendix I: 
 Glucose stimulation of Na+-K+-ATPase Activity 

 
  

 

 

 
 
Appendix H: K+-dependent Na+-K+-ATPase activity in skeletal muscle homogenates of  
A) soleus, B) red gastrocnemius (RG), and C) white gastrocnemius (WG) muscles, with and without 
7mM glucose (GLU) for 5 min at 37°C. Values are means ± SE (n=5). In A, main effects (P<0.05) for 
KCl (0<0.2<0.5<0.75<1.0=1.5=3.0=5.0) and condition (Con<GLU) were found. In B, an interaction 
between KCl concentration and condition was observed (P<0.05). In C, a main effect (P<0.05) of KCl 
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concentration (0<0.2<0.5<0.75<1.5=3.0=5.0, 1.0<3) was observed. * Significantly different from Con; # 
Significantly different from 1.5 mM KCl. 
 
 
 
 
 Given evidence that glucose stimulates Na+-K+-ATPase activity, the effect of 7mM 

glucose on the K+-stimulated 3-O-MFPase activity was assessed in Sol, RG, and WG muscle 

homogenates. In this experiment, glucose was not used as a substrate. Thus, it can be 

examined whether glucose has any effect on Na+-K+-ATPase activity as a signaling 

molecule. This data suggests that, at least in Sol, GLU may serve a role as a signaling 

molecule in stimulating pump activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


