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Abstract

In the first part of the thesis, we study the trade-off between the transmission relia-

bility and data rate in high signal-to-noise ratio regime in ad-hoc wireless networks.

Bandwidth allocation plays a significant role in this trade-off, since dividing bandwidth

reduces the number of users on each band and consequently decreases the interference

level, however it also decreases the data rate. Noting that the interference power is

substantially influenced by the network density, this trade-off introduces a measure for

appropriate bandwidth allocation among users considering the network density. The

diversity-multiplexing trade-off is derived for a one-dimensional regular ad-hoc network.

In the second part of the thesis, we study the performance of point-to-point and broad-

cast systems with partial channel state information at the transmitter in a time-varying

environment. First, the capacity of time-varying channels with periodic feedback at the

transmitter is evaluated. It is assumed that the channel state information is perfectly

known at the receiver and is fed back to the transmitter at the regular time-intervals.

The system capacity is investigated in two cases: i) finite state Markov channel, and

ii) additive white Gaussian noise channel with time-correlated fading. In a multiuser

scenario, we consider a downlink system in which a single-antenna base station commu-

nicates with single antenna users, over a time-correlated fading channel. It is assumed

that channel state information is perfectly known at each receiver, while the rate of

channel variations and the fading gain at the beginning of each frame are known to the

transmitter. The asymptotic throughput of the scheduling that transmits to the user

with the maximum signal to noise ratio is examined applying variable code rate and/or

variable codeword length signaling. It is shown that by selecting a fixed codeword

length for all users, the order of the maximum possible throughput (corresponding to

quasi-static fading) is achieved.
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Chapter 1

Introduction

The rapidly increasing number of wireless users and new bandwidth-consuming appli-

cations fuel the growing demand for more bandwidth and higher data rates. This, in

turn, tends to exhaust the valuable resource of frequency spectrum, and necessitates

the development of spectrally efficient signaling schemes.

One of the most effective techniques to increase the spectral efficiency in wireless

systems is channel reuse in which several links communicate at the same time and at

the same frequency through a shared channel. The main source of impairment in this

scheme is the interference of the users to each other, which is called the co-channel

interference. In channel reuse schemes, the links sharing the same channel are graphi-

cally separated such that co-channel interference is minimized. As a result, the overall

data rate in the shared bandwidth increases. Applying channel reuse by sharing band-

width between users decreases the number of users in each frequency band. Although

this results in decreasing the co-channel interference and increasing the transmission

reliability, the data rate decreases due to the smaller allocated bandwidth. Thus, im-

proving the spectral efficiency in this scheme requires investigating the optimal trade-off

between the transmission reliability and data rate. In the first part of this thesis, we

1



Introduction 2

study this trade-off in a one-dimensional regular network and use it as a measure to

determine the optimal bandwidth allocation among users. Diversity-multiplexing trade-

off which quantifies the trade-off between the transmission reliability and data rate in

high signal-to-noise ratio (SNR) regime was first developed for multiple-input multiple-

output (MIMO) systems by Zheng and Tse [29]. Let C(SNR) be a family of codes

indexed by SNR and Pe be the error probability. If

lim
SNR→∞

logPe(SNR)

log SNR
≤ −d

then this family of codes achieves a diversity gain of d. The higher the diversity gain,

the faster Pe decays as SNR increases. Let R(SNR) be the transmission rate. If

lim
SNR→∞

R(SNR)

log SNR
≥ r

then this family of codes achieves multiplexing gains of r. The diversity-multiplexing

trade-off has been established for some wireless networks including multiple-access chan-

nel [16] and relay network [25]. We study diversity-multiplexing trade-off in Z-channel

and one-dimensional interference channel.

Adaptive transmission is another efficient technique to increase the spectral ef-

ficiency of time-varying wireless channels by adaptively modifying the transmission

rate, power, etc., according to the state of the channel seen by the receiver. Adaptive

transmission with perfect channel state information (CSI) at the transmitter and the

receiver, was first proposed in the late 1960’s [23]. In practice, the CSI is not perfectly

available at the transmitter or at the receiver. Practical implementation of adaptive

transmission schemes with partial CSI at the transmitter or at the receiver has been

the subject of numerous research works (see [4, 10, 51, 58] and references therein). In

these works, various feedback models have been adopted that reflect the limitations to

perfectly delivering the CSI to the transmitter. In our work, we consider a different
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form of feedback, namely periodic feedback, that updates the CSI in regular intervals.

As a special case, the CSI can be updated at the beginning of each transmission frame

of data. We consider a point-to-point time-varying channel with perfectly known CSI

at the receiver. The CSI is provided at the transmitter through a noiseless feedback link

at regularly-spaced time intervals. Every T channel use, the CSI of the current channel

use is fed back to the transmitter. We obtain the channel capacity of the system and

show that it is achievable by multiplexing T codebooks across the channel.

In a multiuser scenario, we consider a downlink system in which a single-antenna

base station (BS) communicates with single antenna users, over a time-correlated fading

channel. It is assumed that the CSI of users is known at the beginning of each trans-

mission frame. In this system, we analyze the system throughput by utilizing adaptive

code rate and adaptive codeword length. The throughput is defined as the average rate

of information that is reliably transmitted to the receiver. We use error exponent as a

reliability measure. Error exponent expresses the trade-off between the probability of

error and the codeword length. More precisely, the reliability function quantifies the ex-

ponential behavior of the probability of error for the best coding schemes, as the coding

delay is increased with the rate of transmission held fixed. It is well known that in-

creasing the codeword length results in improving the error probability in additive white

Gaussian noise (AWGN) channel. However, in a time-varying channel with partial CSI

at the transmitter, it is not always possible to obtain arbitrary small error probabilities

by increasing the codeword length. In fact, increasing the codeword length also results

in increasing the fading fluctuations over the frame, and consequently, the throughput

will decrease. In other words, a finite codeword length maximizes the throughput. We

evaluate the error exponent and derive the system throughput based on the rate of

channel variation.

The rest of this chapter is devoted to a brief summary of the materials presented in
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the following chapters.

Thesis Outline

(Chapter 2) is devoted to the diversity-multiplexing trade-off analysis in interference

channels. The diversity-multiplexing tradeoff in Z-channel is investigated assuming the

interference channel is known/unknown at the receiver.

(Chapter 3) investigates diversity-multiplexing trade-off in a one-dimensional wireless

network to optimally allocate bandwidth among users.

(Chapter 4) obtains the capacity of the Markovian time-varying channel and time-

correlated flat fading channel assuming the availability of periodic feedback.

(Chapter 5) is devoted to the evaluation of the reliability measure for the time-varying

channels assuming partial CSI at the transmitter. We evaluate the random coding error

exponent of the time-correlated flat fading channel in a wireless downlink system. The

data rate and codeword length is optimized based on the rate of channel variation of

users to maximize the system throughput.

(Chapter 6) presents a summary of the thesis contributions and future works.

(Appendix A) proves Theorem 5.1.



Chapter 2

Diversity-Multiplexing Trade-off in

Z-channel

The fundamental trade-off between the diversity and multiplexing gains has been

characterized for MIMO systems in [29] and is extended for MIMO multiple-access

channel in [16]. This approach has been applied for other wireless channels and net-

works [21,25,37]; In [25], the trade-off between the rate and the reliability is studied for

different strategies in a wireless relay network. In [37], diversity-multiplexing trade-off

upper bounds are obtained for cooperative diversity protocols in a wireless network.

We consider a simple Z-channel with an arbitrary interference power and derive the

diversity-multiplexing trade-off of this channel. Throughout this chapter, all channels

are assumed to be flat Rayleigh fading and quasi-static, i.e., the channel gains remain

constant during a coherence interval and change independently from one coherence in-

terval to another. We assume the use of random Gaussian codebooks, where a codeword

spans the entire coherence interval of the channel. This assumption has been applied

in similar works such as [25].

The rest of the chapter is organized as follows; Section 2.1 introduces the structure

5



Diversity-Multiplexing Trade-off in Z-channel 6

of the Z-channel. In Section 2.2, the diversity-multiplexing trade-off in Z-channel is

studied. In Section 2.3, the diversity-multiplexing trade-off for the multiple-access

channel and z-channel with unknown interference is derived. Moreover, the comparison

between the diversity-multiplexing trade-off between Z-channel with known interference

channel, unknown interference channel and multiple-access channel is studied. Section

2.4 concludes the chapter.

2.1 System Model

We consider a Z-Channel (Fig. 2.1) in which the transmitters and receivers are equipped

with single antennas. The received signal at the first receiver can be written as

y1 = h1x1 + h0x2 + n1, (2.1)

and the second link will be a standard point-to-point link as

y2 = h2x2 + n2, (2.2)

where xi ∼ CN (0, ρi) is the transmitted signal from the ith transmitter with the power

constraint E{‖xi‖2} ≤ ρi, and ni ∼ CN (0, 1) is the AWGN at ith receiver for i = 1, 2

(CN (m, v) denotes complex Gaussian distribution with mean m and variance v). All

the channels are assumed to be quasi-static Rayleigh fading, i.e. the channel coefficients

h0, h1 and h2 have complex Gaussian distribution with zero mean and unit variance.

It is assumed that h0 and h1 are perfectly known at the first receiver and unknown at

both transmitters. The channel coefficient h2 is assumed to be perfectly known at the

second receiver and unknown at both transmitters.
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T2

T1

x1 y1

y2x2

h1

h0

h2

Figure 2.1: Z-channel

2.2 Analysis of Diversity-Multiplexing Trade-off

Investigating the diversity-multiplexing trade-off curves for this setup requires the as-

sumption of ρ1, ρ2 → ∞. Hence, using the definition of the diversity and multiplexing

in [29], for each link, we have

ri = lim
ρi→∞

Ri(ρi)

log ρi
,

di = lim
ρi→∞

− log Pi(ρi)

log ρi
, i = 1, 2, (2.3)

where Ri(ρi) denotes the transmission rate, and Pi(ρi) represents the average error

probability of link i. Assuming large enough block lengths, from [29] it is realized that

the average error probability is equal to the outage probability almost surely, i.e.

Pi(ρi) = Pr{C(ρi) < Ri(ρi)}, (2.4)

where C(ρi) denotes the capacity of link i. We focus on characterizing the diversity-

multiplexing trade-off curve for the first link, since the second link is an ordinary

point-to-point link. For this purpose, we derive the outage probability for this link, for

any given multiplexing gain vector (r1, r2).

From the first receiver’s point of view, the channel is a multiple-access channel

(MAC). However, since the first receiver is not interested in the data of the second
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transmitter, the outage event is different from that of MAC. In fact, the outage in this

case can be written as the intersection of the following events:

B1 , {(R1,R2) /∈ CMAC},

B2 , {R1 > I(x1;y1)}, (2.5)

where CMAC denotes the capacity region of the MAC at the first receiver. The first

event corresponds to the case that the first receiver can not decode both x1 and x2.

The second event corresponds to the case that the first receiver can not decode x1,

considering x2 as noise. The above events can be written in terms of the channel fading

gains as follows:

B1 =



















log(1 + ρ1h1) < R1

⋃

log(1 + ρ2h0) < R2

⋃

log(1 + ρ2h0 + ρ1h1) < R1 + R2



















,

B2 =

{

log(1 +
ρ1h1

1 + ρ2h0
) < R1

}

, (2.6)

where hi , ‖hi‖2, i = 0, 1. The intersection of these two events is depicted in Fig. 2.2.

As can be observed, the outage event can be expressed as the union of the events A1

and A2. A1 is the outage event when there is no interference. The effect of interference

from the second user is captured in A2.

Theorem 2.1. Assuming ρ1 = ρ and ρ2 = ρβ, 0 ≤ β, the diversity-multiplexing trade-

off for the first user of Z-channel is

d∗Z(r1, r2) =







min(1 − r1, (1 + β) − 2(r1 + βr2)) r1 + βr2 < η

µ− r1 − βr2 η < r1 + βr2 < µ
(2.7)

where η , min(1, β) and µ , max(1, β).
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h11 h1h12

h02

h01

A1

A2

h0

R1 = log
(

1 + h1ρ1

1+h0ρ2

)

R1 = log(1 + h1ρ1)

R2 = log(1 + h2ρ2)

R1 + R2 = log(1 + h1ρ1 + h0ρ2)

Figure 2.2: Outage region of Z-channel

Proof. Defining the total outage event as B, we have

Pr{B} = Pr{A1} + Pr{A2}. (2.8)

Considering Fig. 2.2, we formulate the probability of A1 and A2 as follows:

Pr{A1} =

∫ h11

0

f(h1)dh1, (2.9)

Pr{A2} =

∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

f(h1)f(h0)dh0dh1, (2.10)

where h11 , eR1−1
ρ1

, h01 , eR2−1
ρ2

, h12 , eR2(eR1−1)
ρ1

, h02 , eR1(eR2−1)
ρ2

, m1 , h01

h12−h11
,

m2 , h02−h01

h12−h11
, and f(h0) and f(h1) are the probability distribution function (pdf) of h0

and h1, respectively. Since f(h0) = e−h0 and f(h1) = e−h1, we derive (2.9) and (2.10)

as follows:

Pr{A1} = 1 − e−h11 , (2.11)
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Pr{A2}=

∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

e−h0e−h1dh0dh1

=

∫ h12

h11

e−h1
(

e−m1(h1−h11) − e−(h02+m2(h11−h1))
)

dh1

=



































1
m1+1

[

e−h11 − e−(h12+h01)
]

− 1
1−m2

[

e−(h02+h11) − e−(h12+h01)
]

m2 6= 1

1
m1+1

[

e−h11 − e−(h12+h01)
]

−(h12 − h11)e
−(h11+h02) m2 = 1.

=



































1
m1+1

e−h11
(

1 − e−(1+m1)(h12−h11)
)

1
m2−1

e−(h12+h01)
(

1 − e−(m2−1)(h12−h11)
)

m2 6= 1

1
m1+1

e−h11
(

1 − e−(1+m1)(h12−h11)
)

−(h12 − h11)e
−(h11+h02) m2 = 1.

(2.12)

Setting ρ1 = ρ and ρ2 = ρβ, where β is a constant and using (2.3), we have

h11 = ρr1−1
(

1 − ρ−r1
)

,

h12 = ρr1+βr2−1
(

1 − ρ−r1
)

,

h01 = ρβ(r2−1)
(

1 − ρ−βr2
)

,

h02 = ρr1+βr2−β
(

1 − ρ−βr2
)

,

m1 = ρ1−β−r1
(

1 − ρ−r1
)−1

,

m2 = ρ1−β. (2.13)

Noting (2.11) and (2.13), we can write

Pr{A1} .
= ρr1−1, r1 < 1 (2.14)

where b
.
= ρa is equivalent to limρ→∞

log b
log ρ

= a. We consider 3 scenarios to derive

Pr{A2}:
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2.2.1 Weak interference (β < 1)

From (2.13), it follows that m2 → ∞ as ρ→ ∞. Hence, (2.12) can be written as

Pr{A2} =
1

m1 + 1
e−h11

(

1 − e−(1+m1)(h12−h11)
)

−
1

m2 − 1
e−(h12+h01)

(

1 − e−(m2−1)(h12−h11)
)

(a)
⋍ e−h11(h12 − h11) −

1

m2 − 1
e−(h12+h01)

(

1 − e−(m2−1)(h12−h11)
)

, (2.15)

where (a) comes from applying the approximation 1−e−(1+m1)(h12−h11) ⋍ (1+m1)(h12−
h11), since (1 + m1)(h12 − h11)

.
= ρ1−β−r1ρr1+βr2−1 = ρβ(r2−1), and as a result (1 +

m1)(h12 − h11) → 0 noting that r2 < 1. We consider two scenarios:

i) r1 + βr2 > β: Using (2.15), we can write

Pr{A2}
(a)
⋍ e−h11(h12 − h11) −

1

m2 − 1
(2.16)

.
= ρr1+βr2−1 − ρβ−1

.
= ρr1+βr2−1, (2.17)

where (a) comes from the fact that (m2 −1)(h12 −h11)
.
= ρ1−βρr1+βr2−1 = ρr1+βr2−β →

∞.

ii) r1 + βr2 < β: Noting (2.15), we have

Pr{A2} ⋍ e−h11(h12 − h11) −
1

m2 − 1
e−(h11+h02)

(

e(m2−1)(h12−h11) − 1
)

,

(a)
⋍ e−h11

(

1 − e−h02
)

(h12 − h11)

(b)
⋍ h02(h12 − h11) (2.18)

.
= ρ2(r1+βr2)−(1+β), (2.19)
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where (a) results from the fact that (m2 − 1)(h12 − h11) → 0, and subsequently

e(m2−1)(h12−h11)−1
m2−1

⋍ (h12 − h11) and (b) comes from the fact that e−h11 ⋍ 1 and e−h02 ⋍

1 − h02, noting h11, h02 → 0. In summary, we have

Pr{A2} .=







ρ2(r1+βr2)−(1+β) r1 + βr2 < β

ρr1+βr2−1 β < r1 + βr2 < 1
. (2.20)

2.2.2 Moderate interference (β = 1)

Noting that m2 = ρ1−β = 1 in this scenario, from (2.12), we can write

Pr{A2}=
1

m1 + 1
e−h11

(

1 − e−(1+m1)(h12−h11)
)

− (h12 − h11)e
−(h11+h02). (2.21)

Having the fact that m1 → 0 and 0 < h11 < h12, the necessary condition to have

Pr{A2} → 0 is h12 → 0, which incurs r1 + r2 < 1 (otherwise the diversity gain is zero).

Using (2.21) and the approximation 1
m1+1

(

1 − e−(1+m1)(h12−h11)
)

⋍ (h12−h11), we have

Pr{A2} ⋍ e−h11
(

1 − e−h02
)

(h12 − h11)

⋍ h02(h12 − h11)

.
= ρ2(r1+r2−1). (2.22)
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2.2.3 Strong interference (β > 1)

From (2.13), it follows that in this case m1 → 0 and as a result (2.12) can be written

as

Pr{A2}=
1

m1 + 1
e−h11

(

1 − e−(1+m1)(h12−h11)
)

−
1

1 −m2
e−(h11+h02)

(

1 − e−(1−m2)(h12−h11)
)

. (2.23)

Here, we consider two cases:

i) r1 + βr2 < 1: In this case, it is easy to show that the first term and the second term

in (2.23) behaves as (h12 − h11) and e−h02(h12 − h11), respectively. Since β > 1, this

condition also incurs that h02 ∼ ρr1+βr2−β → 0, and as a result,

Pr{A2} ⋍
(

1 − e−h02
)

(h12 − h11)

⋍ h02(h12 − h11)

.
= ρ2(r1+βr2)−(1+β). (2.24)

ii) 1 < r1 +βr2 < β: In this case, noting (2.13), it is easy to see that h12−h11 → ∞.

Therefore, we can write

Pr{A2} ⋍
1

1 +m1
− 1

1 −m2
e−h02

(a)
⋍ (1 −m1) − (1 +m2)e

−h02

(b)
⋍ h02 − (m1 +m2e

−h02)
(c).
= ρr1+βr2−β, (2.25)

where (a) comes from using the approximation 1
1−x

⋍ 1 + x for x≪ 1, (b) results from

the assumption of r1 + βr2 < β which incurs h02 → 0, and (c) results from the fact
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Figure 2.3: Diversity-Multiplexing trade-off for various values of β, r2 = 0.3.

that since r1 + βr2 > 1, h02 ∼ ρr1+βr2−β dominates m1 and m2. Unifying (2.20), (2.22),

(2.24), and (2.25), we obtain

Pr{A2} .
=







ρ2(r1+βr2)−(1+β) r1 + βr2 < η

ρr1+βr2−µ η < r1 + βr2 < µ
(2.26)

where η , min(1, β), µ , max(1, β). Using (2.8), (2.14) and (2.26), the result of the

theorem is achieved.

Fig. 2.3 depicts the optimal diversity-multiplexing trade-off curve for β = 0.5, β = 1

and β = 1.3. As can be observed, the curve corresponding to β = 1.3 outperforms the

other curves. Moreover, comparing the two curves corresponding to β = 0.5 and β = 1,

we realize that for moderate values of multiplexing gain, the curve corresponding to

β = 1 yields the higher diversity gain, while for high multiplexing gain values, β = 0.5

is preferable. Fig. 2.4 shows the maximum diversity gain versus β, for the fixed
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Figure 2.4: Diversity vs. β for various values of multiplexing gains, r1 = r2 = r.

multiplexing gain values of 0.3, 0.4, and 0.5, assuming r1 = r2. As can be observed, all

the curves have a global minimum, depending on the value of the multiplexing gain.

2.3 Multiple-Access Channel and Unknown Inter-

ference Channel

In this section, we compare the diversity-multiplexing trade-off curve, derived in the

previous section, with two other scenarios; i) Multiple-Access channel (MAC), where

the first receiver decodes the transmitted data from both senders, and ii) Z-channel

assuming that interference fading channel h0 is not known at the first receiver. The

former is studied in [16], for the case that all links have the same power constraint. In

the following, we derive diversity-multiplexing trade-off for the MAC assuming ρ1 = ρ

and ρ2 = ρβ.
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2.3.1 Multiple-Access channel

The outage event probability of the MAC denoted as BMAC (Fig. 2.5) can be written

as

Pr{BMAC}=

∫ h11

0

e−h1dh1

+

∫ h12

h11

∫ h02+m2(h11−h1)

0

e−h0e−h1dh0dh1

+

∫ ∞

h12

∫ h01

0

e−h0e−h1dh0dh1

=1 − e−h11 + χ+ (1 − e−h01)e−h12 , (2.27)

where

χ =



































(

e−h11 − e−h12
)

− 1
m2−1

[

e−(h01+h12) − e−(h02+h11)
]

m2 6= 1
(

e−h11 − e−h12
)

−e−(h01+h12) (h12 − h11) m2 = 1

(2.28)

Following similar arguments in the proof of Theorem 2.1, we can easily show that

χ
.
=







ρ2(r1+βr2)−(1+β) r1 + βr2 < η

ρr1+βr2−µ η < r1 + βr2 < µ
, (2.29)

where η = min(1, β) and µ = max(1, β). Using (2.27) and (2.29), we can write

d∗MAC(r1, r2) =







min(1 − r1, 1 + β − 2(r1 + βr2), β(1 − r2)) r1 + βr2 < η

min(1 − r1, µ− r1 − βr2, β(1 − r2)) η < r1 + βr2 < µ

We interpret the diversity gain of MAC in terms of that of Z-channel as follows:

d∗MAC(r1, r2) =







d∗Z(r1, r2) 1 < r1 + βr2 < β

min(d∗Z(r1, r2), β(1 − r2)) Otherwise
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Figure 2.5: Outage region of multiple-access channel

2.3.2 Z-channel with unknown interference

In this scenario, we consider the system model of Z-channel described in Section 2.1.

However, we assume that the first receiver only knows the direct channel (h1) and does

not have any information about the interference channel (h0).

Lemma 2.2. The outage event of a point-to-point Rayleigh fading channel with un-

known interference in high-SNR regime is

BZ−NCSI = Pr{R1 > log(1 + ρ1−βh1)}, (2.30)

where h1 = ‖h1‖2 and ρ and ρβ are SNR of the direct link and the interference link,

respectively.

Proof. Let us define

B
U
Z−NCSI , {R1 > I(x1;y1|h1)}, (2.31)

and

B
L
Z−NCSI , {R1 > I(x1;y1|x2,h1)}. (2.32)
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BL
Z−NCSI denotes the outage event when the first receiver considers x2 as noise and

BU
Z−NCSI denotes the outage event when the second users data is decoded correctly at

the first receiver. Following the above definitions, we have

Pr{BL
Z−NCSI} ≤ Pr{BZ−NCSI} ≤ Pr{BU

Z−NCSI}. (2.33)

We derive the mutual information in (2.31) and (2.32) as follows:

I(x1;y1|h1) = H(y1|h1) −H(y1|h1,x1)

= H(h1x1 + h0x2 + n1|h1)

− H(h0x2 + n1)

(a)

≥ H(h1x1 + n1|h1)

− log (2πeVar(h0x2 + n1)) (2.34)

= log(2πe(ρh1 + 1)) − log(2πe(ρβ + 1))

⋍ log(1 + ρ1−βh1), (2.35)

where (a) comes from the fact that H(X+Y ) > H(X), for independent X and Y , and

H(X) ≤ log(2πeVar(X)). Substituting (2.34) in (2.31), we obtain

Pr{BU
Z−NCSI} ≤ Pr{R1 > log(1 + ρ1−βh1)}. (2.36)
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For calculating the lower-bound, we first compute I(x1;y1|x2,h1) as follows:

I(x1;y1|x2,h1)} = H(y1|x2,h1) −H(y1|x1,x2,h1)

= H(h1x1 + h0x2 + n1|x2,h1)

− H(h0x2 + n1|x2)

(a)
= E

x2

{

log(2πe(ρh1 + |x2|2 + 1))
}

− E
x2

{

log(2πe(|x2|2 + 1))
}

(2.37)

= e
1+ρh1

ρβ E1(
1 + ρh1

ρβ
) + log(1 + ρh1) − eρ−β

E1(ρ
−β)

(b)
⋍ log(1 + ρ1−βh1), (2.38)

where E1(x) =
∫∞

x
e−udu

u
. In (2.37), (a) results from the fact that conditioned on h1 and

x2, h1x1 and h0x2 are independent Gaussian variables with variances h1ρ1 = |h1|2ρ1

and |x2|2, respectively and (b) results following the equality E1(x) = −γ − log x −
∑∞

n=1
(−1)nxn

n!n
and the asymptotic expansion E1(x) = e−x

x
[1− 1

x
+ 2

x2 + · · · ]. As a result,

the lower-bound on the outage probability can be expressed as

Pr{BL
Z−NCSI} ≥ Pr{R1 > log(1 + ρ1−βh1)}. (2.39)

Considering (2.33), (2.36) and (2.39), the result of the lemma follows.

From Lemma 2.2, it is concluded that

Pr{BZ−NCSI} .
= ρ1−β−r1 , r1 < 1 − β, (2.40)

or equivalently,

d∗Z−NCSI(r1) = max(1 − β − r1, 0). (2.41)

Hence, the diversity gain in this scenario is equivalent to the diversity gain in (2.7) with

r2 = 1. Note that in this scenario, β is limited to be strictly less than one (otherwise

the diversity gain is zero). It is realized that in this case, the diversity-multiplexing

curve is strictly below the curve when the interference channel is known at the receiver.
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2.4 Conclusion

The diversity-multiplexing trade-off curve is characterized for Z-channel assuming known

and unknown interference channel at the receiver. The diversity-multiplexing gain of

MAC is obtained assuming different scenarios for the SNR of the links and is interpreted

in terms of the diversity-multiplexing gain of Z-channel.



Chapter 3

Applications of

Diversity-Multiplexing Trade-off in

Network Design

One of the most effective scheme to increase the spectral efficiency is the scheme known

as channel reuse. In this scheme, time slots (frequency channels) can be shared by

wireless users geographically separated so that small interference is obtained [19, 24,

40]. It is of interest to find the channel reuse factor which yields the highest spectral

efficiency while maintaining a required quality of service. In this regard, there is an

inherent tradeoff between the reliability of reception and the rate of communication.

Dividing bandwidth reduces the number of users and decreases the interference level.

While this boosts the reliability of the network, it decreases the achievable data rate.

On the other hand, the rate can be increased by sharing the bandwidth among users

at the cost of a considerable interference level.

In wireless ad-hoc networks, the performance of channel reuse has been studied

and the impact of the this scheme on the performance of the network capacity is

21
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investigated [35, 36, 49, 52]. Implementing the channel reuse scheme requires studying

bandwidth allocation among users. Algorithms for spectrum sharing in ad-hoc wireless

network are proposed in [28, 57, 59] using a game theory approach. Optimal spectrum

sharing for a single-hop wireless network is studied and power allocation among different

users has been determined in [44].

We propose a different approach to optimally allocating bandwidth in a wireless

network in high-SNR regime. Investigating the diversity-multiplexing trade-off of in-

terference channels, we determine the optimal time-division multiple-access scheme

which maximizes the network spectral efficiency considering the network density in a

one-dimensional network. It is assumed that the interference from each link to the

other links grows exponentially with the distance, such that the interference between

two neighboring links declines as ρ−α0 where ρ is the received SNR and α0 is a constant.

We study this model in two following scenarios; i) the interference channel is not known

at the receiver. ii) the interference channel of the corresponding strongest interferer is

known at each receiver. It is shown that for any given multiplexing gain r, the max-

imum diversity gain is achieved by utilizing a general time-sharing scheme where the

active users form equal-size equally-spaced clusters (a group of adjacent nodes) with

the size at most 3 and the distance spread of at most ⌈ 1
α0
⌉. The maximum diversity

gain for each value of r is obtained by taking the maximum diversity gain among all the

time-sharing strategies. We analyze the effect of network density on the performance

by deriving the diversity gain in terms of the distances. Throughout this chapter,

all channels are assumed to be flat Rayleigh fading and quasi-static, i.e., the channel

gains remain constant during a coherence interval and change independently from one

coherence interval to another.

The rest of the chapter is organized as follows; Section 3.1 introduces the structure

of the one-dimensional network and the channel model. Section 3.2 is devoted to the
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analysis of the diversity-multiplexing trade-off for a one-dimensional ad-hoc network.

In Section 3.3, the diversity gain is derived in terms of the network density for a one-

dimensional network which utilizes a general TDMA scheme. Section 3.4 concludes the

chapter.

3.1 System Model

We consider a homogeneous one-dimensional network, consisting of n pairs of trans-

mitters and receivers. The nodes are equally spaced on two parallel lines such that the

corresponding transmitter-receiver links are parallel (Fig. 3.1). The network utilizes

a general TDMA scheme which assigns transmission rights to the links, i.e. transmit-

ter/receiver pairs such that the ith link is active in δi portion of the time. It is assumed

that transmitters are centrally synchronized and use the same length data blocks. The

objective is to find the optimum δ = (δ1, · · · , δn) and η(t) = (η1(t), · · · , ηn(t)), where

ηi(t) is one, if the ith link is active at the tth transmission block and otherwise is zero.

We study this network in the following two scenarios; i) the interference channels are

not available at the receiver nodes, ii) the strongest interference channels are available

at the receiver nodes.

The received signal at the ith link’s receiver at the tth transmission block can be

written as

yi(t) =
√
αiihi(t)xi(t)ηi(t) +

∑

j 6=i

√
αjihji(t)xj(t)ηj(t) + ni(t), (3.1)

where hi(t) ∼ CN (0, 1), xi(t) ∼ CN (0, ρ), hji(t) ∼ CN (0, 1), ni(t) ∼ CN (0, 1), αii, and

αji denote the direct channel, the transmitted signal, the interference channel from the

jth transmitter to the ith receiver, additive Gaussian noise, the attenuation from the ith

transmitter to the ith receiver, and the attenuation factor from the jth transmitter to the
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ith receiver, respectively. The power constraint for the ith transmitter is E{‖xi‖2} ≤ ρ.

The channel between each transmitter and each receiver node is assumed to be Rayleigh

fading. The attenuation factor from each transmitter node to its receiver is assumed

to be negligible, i.e. αii = 1. The attenuation factor from each transmitter node to

its receiver neighbors is assumed to be ρα0 , i.e. αij = ρ−α0 for |i − j| = 1. Since the

attenuation model is assumed to be exponentially related to the distance, the closest

active link will dominate the interference.

3.2 Diversity-Multiplexing Trade-off Analysis

The network consists of n pairs of transmitters and receivers. For each link, we define

ri = lim
ρ→∞

Ri(ρ)

log ρ
, (3.2)

where Ri(ρ) denotes the transmission rate of link i. The optimal diversity-multiplexing

tradeoff curve for this setup is defined as an (n+1)-dimensional vector (r1, · · · , rn, d
∗(r)),

r , (r1, · · · , rn), such that

d∗(r) = max
η,δ

lim
ρ→∞

log Pr{B(r)}
log ρ

, (3.3)

where B(r) ,
⋃n

i=1 Bi(r) and Bi(r) denotes the outage event in link i, and the max-

imization is taken over all time-sharing strategies. For simplicity, we study a special

case in which the multiplexing gains of all the links are the same, i.e., r1 = · · · = rn = r.

Hence, we can express d∗(r) as d∗(r). The outage probability of the network can be

bounded as

Pr{Bmax(r)} ≤ Pr{B(r)} ≤ nPr{Bmax(r)}, (3.4)
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where Bmax(r) , Bj(r) and j = arg maxi Pr{Bi(r)}. Assuming logn ∼ o(log ρ) and

Pr{Bmax(r)} = ρξ, we have

nPr{B(r)} = ρξ+ log n
log ρ

∽ ρξ. (3.5)

Using (3.4) and (3.5), we can write

Pr{B(r)} ∽ Pr{Bmax(r)}. (3.6)

In the following, we focus on deriving Pr{Bmax(r)} assuming known/unknown inter-

ference channel at the receiver.

3.2.1 Unknown interference channel

In this part, it is assumed that each receiver perfectly knows the channel to its corre-

sponding transmitter, however, it does not have any information about the interference

channel. We assume that the ith link receives the dominant interference from the mth

transmitter. Let us define αν , αmi = ρ−|m−i|α0 .

Theorem 3.1. The diversity-multiplexing trade-off of the ith link is given by

di(r) = 1 − βν −
r

δi
, (3.7)

where βν , (1 + log αν

log ρ
)+.

Proof. Similar to the approach of proving Lemma 2.2, we derive the upper-bound and

lower-bound of the outage probability. We note that depending on TDMA strategy,

each link can have one or two dominant interferers (Fig. 3.1 ). Using (2.34) and (3.1),
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we can write

I(xi;yi|hi)≥H(hixi + ni|hi)

− log

(

2πeVar(
∑

j 6=i

αjihjixj + ni)

)

= log(2πe(ρhi + 1)) − log(2πe(
∑

j 6=i

ηjαjiρj + 1))

& log(1 +
ρ1−βνhi

n
). (3.8)

Using (2.37) and (3.1), we have

I(xi;yi|Vi,hi)} = E

{

log(2πe(hiρ+
∑

j 6=i

ηjαji|xj |2 + 1))

}

− E

{

log(2πe(
∑

j 6=i

ηjαji|xj|2 + 1))

}

≤ E

{

log(2πe(hiρ+
∑

j

αmi|xj|2 + 1))

}

− E
{

log(2πe(αmi|xm|2 + 1))
}

(a)

. log(1 + ρhi) − eρ−βν
E1(ρ

−βν )

⋍ log(1 + hiρ
1−βν ), (3.9)

where Vi = {xj |1 ≤ j ≤ n, j 6= i} and (a) results from the following

E

{

log(hiρ+
∑

j

αmi|xj|2 + 1)

}

=

∫ ∞

0

e−uun−1

(n− 1)!
log(1 + ρhi + ρβνu)du

= log(1 + ρhi) + I, (3.10)
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since
∑

j αmi|xj|2 has a χ2
n distribution and I can be bounded as follows:

I =

∫ ∞

0

e−u

(n− 1)!(u+ ϕ)
((n− 1)! +

n−2
∑

k=0

ψ(n, k)un−k−1)du

=
∑

ψ(n, k)

∫ ∞

0

e−uun−k−1

(n− 1)!(u+ ϕ)
du+

∫ ∞

0

e−u

u+ ϕ
du

=
∑

ψ(n, k)(

∫ log ϕ

0

e−uun−k−1

(n− 1)!(u+ ϕ)
du+

∫ ∞

log ϕ

e−uun−k−1

(n− 1)!(u+ ϕ)
du)

+ eϕE1(ϕ)

≤
∑

ψ(n, k)(
(logϕ)n−k−1

(n− 1)!(logϕ+ ϕ)

∫ log ϕ

0

e−udu+

∫ ∞

log ϕ

e−uun−k−1

(n− 1)!(logϕ+ ϕ)
du)

= O(
(logϕ)n−1

ϕ
), (3.11)

where ϕ = 1+ρhi

ρβν . Noting (3.8) and (3.9), we have

Pr{Ri > δi log(1 + ρ1−βνhi)} ≤ Pr{Bi} ≤ Pr{Ri > δi log(1 +
ρ1−βνhi

n
)}. (3.12)

Using (3.12), the result of the theorem follows.

3.2.2 Known interference channel

In this part, it is assumed that each receiver perfectly knows the channel to its corre-

sponding transmitter, as well as the channel corresponding to the strongest interference.

In the following, X0(t) and H0 represent the strongest interference signal and the

corresponding interference channel for the ith link, respectively. Let us define τi as the

number of ith link’s strong interferes. We distinguish between two scenarios:

• One strong interferer (τi = 1): The ith link receives the dominant interference

from the mth transmitter. In this case, X0(t) , xm(t), H0 , hmi, R0 , Rm and

αν , αmi = ρ−|m−i|α0 .
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Figure 3.1: D > D′: One strong interferer; D = D′: Two strong interferers.

• Two strong interferers (τi = 2): The ith link receives two equal interference from

mth and lth transmitters such that m − i = i − l. In this case, we have X0(t) ,

[xl(t),xm(t)]T , H0 , [hli,hmi], R0 , Rl + Rm, and αν , αli = αmi = ρ−|m−i|α0 .

Lemma 3.2. The probability of the outage event of the ith user is as follows:

Pr{Bi}=Pr

{[

Ri > δi log

(

hiρ

1 + αφρ

)]

⋃

[

Ri + R0 > δi log

(

ανρ‖H0‖2 + hiρ

1 + αφρ

)]

⋂

[

Ri > δi log

(

1 +
ρhi

1 + ανρ‖H0‖2 + αφρ

)]}

, (3.13)

where αφ = maxj,j /∈[2i−m,m],ηj=1 αji.

Proof. Noting (3.1), for all the links (except the first and last ones), we can write

yi(t) = Hi(t)xi(t)ηi(t) +
√
ανH0(t)X0(t)

+
∑

j,j /∈[2i−m,m]

√
αjiHji(t)xj(t) + ni(t), (3.14)

Let us define BL
i and BU

i as follows:

B
L
i ,

{

(Ri > I (xi;yi|Hi,X0,H0,V0))
⋃

(Ri + R0 > I (xi,X0;yi|Hi,H0,V0))
⋂

(Ri > I (xi;yi|Hi,H0,V0))
}

, (3.15)
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where V0 includes all the transmitted signals except xi and X0.

B
U
i ,

{

(Ri > I (xi;yi|Hi,X0,H0))
⋃

(Ri + R0 > I (xi,X0;yi|Hi,H0))
⋂

(Ri > I (xi;yi|Hi,H0))
}

. (3.16)

In fact, BL
i denotes the outage event for the ith link, when the receiver has full access

to the other users data, and BU
i stands for the outage event in the ith link, when the

receiver treats all the users data, except the dominant interference, as noise. It is clear

that

Pr{BL
i } ≤ Pr{Bi} ≤ Pr{BU

i }. (3.17)

We compute the mutual information in (3.15) and (3.16) as follows:

I (xi;yi|Hi,X0,H0)

= Pr{ηi = 1}I (xi;yi|Hi,X0,H0, ηi = 1)

≥ δiH(Hixi +
√
ανH0X0 + ni|Hi,X0,H0)

− δi log



2πeVar





∑

j,j /∈[2i−m,m]

√
αjiHjixjηj + ni









= δi log(2πe(ρhi + 1))

− δi log



2πe





∑

j,j /∈[2i−m,m]

αjiρηj + 1









= δi log

(

hiρ+ 1
∑

j,j /∈[2i−m,m] αjiρηj + 1

)

. (3.18)
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I (xi,X0;yi|Hi,H0)

≥ δiH(Hixi +
√
ανH0X0 + ni|Hi,H0)

− δi log



2πeVar





∑

j,j /∈[2i−m,m]

√
αjiHjixjηj + ni









= δi log

(

hiρ+ ανρ‖H0‖2 + 1
∑

j,j /∈[2i−m,m] αjiρηj + 1

)

. (3.19)

I (xi;yi|Hi,H0) ≥

δi log

(

hiρ+ ανρ‖H0‖2 + 1

ανρ‖H0‖2 +
∑

j,j /∈[2i−m,m] αjiρηj + 1

)

. (3.20)

I (xi;yi|Hi,X0,H0,V0) ≥

δi log

(

1 +
ρhi

1 +
∑

j,j /∈[2i−m,m] αjiρηj

)

. (3.21)

I (xi,X0;yi|Hi,H0,V0) ≥

δi log

(

1 +
ρhi + ανρ‖H0‖2

1 +
∑

j,j /∈[2i−m,m] αjiρηj

)

. (3.22)

I (xi;yi|Hi,H0,V0) ≥

δi log

(

1 +
ρhi

1 + ανρ‖H0‖2 +
∑

j,j /∈[2i−m,m] αjiρηj

)

. (3.23)

We define αφ , maxj,j /∈[2i−m,m],ηj=1 αji. As ρ→ ∞, we have
∑

j,j /∈[2i−m,m] αjiρηj ⋍ αφρ.

From the equations (3.18)-(3.23), we can see that Pr{BL
i } ⋍ Pr{BU

i } and the result

of the lemma follows.
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Lemma 3.2 determines the outage probability region. We derive the corresponding

diversity gain using the same approach applied in the previous section by computing

the probability of the equivalent outage events A1 and A2 in Fig. 2.2.

Theorem 3.3. The diversity-multiplexing trade-off of the ith link is given by

di(r) =



































min(1 − βφ − r
δi
, (1 + τiβν − (τi + 1)βφ)

− (τi+1)r
δi

(1 + τiβν)) F1

1 − βφ − r
δi

(1 + τiβν) F2

0 Otherwise

, (3.24)

where βν , (1 + log αν

log ρ
)+, βφ , (1 +

log αφ

log ρ
)+, F1 ≡ r <

δi(βν−βφ)

1+τiβν
, and F2 ≡ δi(βν−βφ)

1+τiβν
<

r <
δi(1−βφ)

1+τiβν
.

Proof. Let us define

h11 ,
1 + αφρ

ρ
(e

Ri
δi − 1),

h01 ,
1 + αφρ

ανρ
(e

R0
δi − 1 + e

−Ri
δi ),

h12 ,
1 + αφρ

ρ
(e

Ri+R0
δi − e

R0
δi + e

−Ri
δi − 1),

h02 ,
1 + αφρ

ανρ
(e

Ri+R0
δi − e

Ri
δi + 1),

m1 ,
h01

h12 − h11

,

m2 ,
h02 − h01

h12 − h11

. (3.25)

Considering the result of Lemma 3.2 and noting Fig. 2.2, the outage probability in

(3.13) can be written as

Pr{Bi}=Pr{A1} + Pr{A2}

=1 − e−h11

+

∫ h12

h11

∫ h02+m2(h11−h1)

m1(h1−h11)

f(h1)f(h0)dh0dh1, (3.26)
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where h0 , ‖H0‖2. We consider the following two scenarios:

• Single strong interferer : In this case, f(h0) = e−h0 and f(h1) = e−h1. The results

in (3.24) is obtained following the approach of the proof of Theorem 2.1 in Section

2.2.1. Noting (3.25), for the case r >
δi(βν−βφ)

1+βν
, the approximation in (2.16) is true

for Pr{A2}. Substituting (3.25) in (2.16), we have

Pr{A2} ⋍ e−h11(h12 − h11) −
1

m2 − 1
.
= ρ

r
δi

(1+βν)+βφ−1
. (3.27)

For the case that r <
δi(βν−βφ)

1+βν
, substituting (3.25) in (2.18), we have

Pr{A2} ⋍ h02(h12 − h11)

.
= ρ

2r
δi

(1+βν)−1−βν+2βφ. (3.28)

• Two strong interferers: In this case, f(h0) = h0e
−h0 and f(h1) = e−h1. In (3.26),

defining I , Pr{A2}, we upper-bound and lower-bound I as follows:

I ≤I
U ,

∫ h12

h11

∫ h02

0

h0e
−h0e−h1dh0dh1

=
(

e−h11 − e−h12
) (

1 − (1 + h02)e
−h02

)

, (3.29)

I ≥I
L ,

∫ h12

h11

[e−m1(h1−h11)

− (h02 + 1)e−(h02+m2(h11−h1))]e−h1dh1

= e−h11 [
1

m1 + 1

(

1 − e−(1+m1)(h12−h11)
)

− e−h02
(h02 + 1)

m2 − 1

(

e(m2−1)(h12−h11) − 1
)

]. (3.30)

For r <
δi(βν−βφ)

1+2βν
, the first and the second terms in (3.29) can be approximated by

(h12−h11) and h2
02, respectively. For r >

δi(βν−βφ)

1+2βν
, (3.29) can be approximated by
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h12 −h11. It can be easily shown that the same result is true for the lower-bound.

Therefore, Pr{A2} can be summarized as follows:

Pr{A2} .
=







ρ
3r
δi

(1+2βν)+3βφ−1−2βν r <
δi(βν−βφ)

1+2βν

ρ
r
δi

(1+2βν)+βφ−1 δi(βν−βφ)

1+2βν
< r <

δi(1−βφ)

1+τiβν

(3.31)

Using (3.26), (3.27), (3.28) and (3.31), we obtain the diversity gain in (3.24).

3.3 Network Design

In the previous part, we have derived the maximum diversity gain for the ith link,

conditioned on having a fixed δi and η. In this part, we obtain the optimum values

for δ = (δ1, δ2, · · · , δn) and η, based on α0 and r. Let us consider the following special

cases:

• α0 > 1: In this case, it is easy to see that the interference from all the links are

negligible with respect to the noise. Therefore, we can consider this case as a

parallel non-interfering ad-hoc Network, where the optimal values of η and δ are

equal to 1 and 1, respectively. The maximum diversity gain of the network can

be obtained as

d∗(r) = 1 − r, 0 ≤ r < 1. (3.32)

• α0 = 0: In this case, the attenuation of all interference channels is 1. Assuming

that the interference channel is not available at the receiver nodes, the diversity

gain is zero (noting the result of Theorem 3.1). Assuming that all the receiver

nodes know all their corresponding channels (direct channel and interference chan-
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nels), similar to (3.33), the outage probability for the ith link can be written as

Pr{Bi}=Pr
{

[r log ρ > δi log(1 + hiρ)]
⋃

[

n′r log ρ > δi log(1 + ρ‖H0‖2)
]

⋂

[

r log ρ > δi log

(

1 +
ρhi

ρ‖H0‖2 + 1

)]}

, (3.33)

where H0 , [hπ1i, · · · ,hπn′ i], πj ’s are active links and n′ denotes the number of

active links in the network. Due to the symmetry between the links, we have

δi = δ, ∀i. As a consequence, n′ = nδ. Following (3.26), (3.29), and (3.30), and

noting that f(h0) =
hn′−1
0 e−h0

(n′−1)!
, we have

di(r) =







min
(

1 − r
δ
, n′(1 − n′r

δ
)
)

r < δ
n′

0 Otherwise

=







min
(

1 − r
δ
, nδ(1 − nr)

)

r < 1
n

0 Otherwise
(3.34)

The value of δ which maximizes the diversity gain in (3.34) is 1. Hence,

d∗(r) =







min (1 − r, n(1 − nr)) r < 1
n

0 Otherwise
(3.35)

For 0 < α0 < 1, we make the following observations:

• Since all the links are in the same situation (we ignore the edge effect), as a result

of the symmetry, we have δi = δ, ∀i. This suggests that we only need to derive

the diversity-multiplexing trade-off for one link.

• We can categorize the links into clusters, where each cluster consists of some

neighboring links, which are active simultaneously. Because of the symmetry in

the network, all the clusters have the same number of links.
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• As observed in Theorems 3.1 and 3.3, the diversity gain of one link depends only

on the corresponding dominant interferers received power. Considering (3.6), we

note that the diversity gain of a cluster is the minimum of the diversity gains of

the links in that cluster. In the unknown-interference scenario, following Theorem

3.1, the diversity gain corresponding to a cluster with two or more links is the

same as the diversity gain if all links are active simultaneously. In the known-

interference scenario, noting Theorem 3.3, the diversity gain corresponding to

a cluster with more than 3 links is the same as the diversity if all the links

are active. The number of the links in each cluster must be one in unknown-

interference scenario and less than or equal to 3 in known-interference scenario,

since otherwise diversity gain is upper-bounded by that of the all-active case and

time-sharing is not necessary.

• Let us define the distance between two clusters as

D(C1, C2) , min
l1∈C1,l2∈C2

D(l1, l2), (3.36)

where l1 and l2 are two links in the clusters C1 and C2, respectively, and D(l1, l2)

denotes the distance between these links (normalized in terms of the distance

between two neighboring links). For D(Ci, Cj) > ⌈ 1
α0
⌉, the interference from

neighboring clusters is negligible with respect to the noise and increasing the

distance between the clusters while incurs that less portion of the time is allocated

to the clusters, it does not effect the diversity gain. Therefore, we consider

D(Ci, Cj) ≤ ⌈ 1

α0
⌉, (3.37)

for any active neighboring clusters Ci and Cj .

From all the above observations, it follows that the diversity gain is a function of k,

the number of links in a cluster, and s, the distance between two neighboring clusters.
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We denote the diversity gain of the specified cluster by d(k,s)(r).

3.3.1 Unknown interference channel

Following Theorem 3.1, we have

d(1,s)(r) = 1 − (1 − sα0)
+ − rs, (3.38)

where 1 ≤ s ≤ ⌈ 1
α0
⌉. The network diversity is optimized on the distance between

clusters as follows:

d∗(r) = max
s
d(1,s)(r). (3.39)

Noting (3.38) and (3.39), we can write

d∗(r) =



















1 − (s∗ + 1)r r ≤ 1 − s∗α0

s∗(α0 − r) 1 − s∗α0 ≤ r ≤ α0

0 Otherwise

(3.40)

where s∗ = ⌊ 1
α0
⌋. The diversity-multiplexing trade-off of the network is depicted in

Fig. 3.3.1 for α0 = 0.32. It is compared with the diversity-multiplexing trade-off of two

scenarios; i) all the links are active simultaneously (all-active), ii) the active links do

not see interference from each other (orthogonal-transmission). It can be observed that

orthogonal-transmission scheme is optimum for low multiplexing gains while all-active

scheme is closer to optimum for high multiplexing gains.

3.3.2 Known interference channel

Defining Fτ (
r
δ
, βν , βφ) as the diversity gain in (3.24), we interpret d(k,s)(r) in terms of

F as follows:

d(1,s)(r) = F2(rs, (1 − sα0)
+, (1 − 2sα0)

+). (3.41)
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Figure 3.2: The diversity gain of a one-dimensional network vs. multiplexing gain for

α0 = 0.32.

d(2,s)(r) = F1(
r(s+ 1)

2
, (1 − α0)

+, (1 − sα0)
+). (3.42)

d(3,s)(r) = min(d′(r), d′′(r)), (3.43)

where

d′(r) = F1(
r(s+ 2)

3
, (1 − α0)

+, (1 − sα0)
+), (3.44)

and

d′′(r) = F2(
r(s+ 2)

3
, (1 − α0)

+, (1 − (s+ 1)α0)
+). (3.45)

The maximum diversity gain can be obtained as

d∗(r) = max
k,s

d(k,s)(r). (3.46)
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Figure 3.3: The diversity gain of a one-dimensional network vs. multiplexing gain for

α0 = .4.

The diversity-multiplexing trade-off of the network is depicted in Fig. 3.3.2 for α0 = 0.4

and is compared with all-active and orthogonal-transmission scenarios. Fig. 3.3.2

clearly shows that the optimum scheme depends on the rate of transmission, e.g. for

low multiplexing gains, the performance of orthogonal-transmission scheme is close to

optimum while for high multiplexing gains, the performance of all-active scheme is

optimum.

3.4 Conclusion

This chapter introduces a measure for optimally allocating bandwidth among users con-

sidering network’s infrastructure density in wireless networks. The diversity-multiplexing

trade-off curve is characterized for one-dimensional equally-spaced Rayleigh fading net-
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work. The results show that we can significantly improve the performance if we carefully

select the TDMA scheme based on the desired data rate and network density.



Chapter 4

Time-varying Single-User Channel

with Partial CSI

Communications theory over time-varying channels has been widely studied from differ-

ent perspectives regarding the availability of the channel state information (CSI) at the

transmitter and/or the receiver. Communication with perfect CSI at the transmitter

is studied by Shannon in [13], where the capacity is expressed as that of an equivalent

memoryless channel without side information at either the transmitter or the receiver.

Communication with perfect CSI at the receiver is investigated, for example, in [26].

With the assumption of perfect CSI at both the transmitter and the receiver, the capac-

ity of finite state Markov channels (FSMCs) and compound channels is studied in [9]

and [55], respectively.

In practice, the assumption of perfect CSI is not practical due to estimation in-

accuracy, limited feedback channel capacity, or feedback delay. Communication with

imperfect side information is well investigated in the literature [6,18,32,33,47]. In [18],

the capacity of FSMCs is evaluated based on the assumed statistical relationship of

the channel state and side information at the transmitter. The channel capacity, when

40
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feedback delay is taken into account, is studied in [22, 53]. The optimal transmission

and feedback strategies with finite feedback alphabet cardinality is investigated in [54].

In this chapter, we consider a point-to-point time-varying channel with perfectly

known CSI at the receiver. It is assumed that the channel is constant during a channel

use and varies from one channel use to the next, based on a Markov random process.

The CSI is provided at the transmitter through a noiseless feedback link at regularly-

spaced time intervals. Every T channel use, the CSI of the current channel use is fed

back to the transmitter. We obtain the channel capacity of the system and show that

it is achievable by multiplexing T codebooks across the channel. It is worth mentioning

that for FSMCs, the results of [18] apply directly to compute the channel capacity, if

the CSI at the transmitter and receiver are jointly stationary. However, in our model,

the CSI at the transmitter is not stationary. Moreover, we utilize the introduced feed-

back model to obtain the capacity of additive white Gaussian noise (AWGN) channel

with time-correlated fading. It is shown that the capacity is achievable using a sin-

gle codebook with adaptively allocating power based on the side information at the

transmitter. Also, the optimum power allocation is derived.

The rest of the chapter is organized as follows; In Section 4.1, the system model

is described and the channel capacity is obtained. The capacity of time-correlated

fading channel with periodic feedback is derived in Section 4.2. The impact of channel

correlation and feedback error on the capacity is evaluated in Section 4.3. Finally, the

chapter is concluded in Section 4.4.

4.1 Markov Channel With Feedback State

We consider a channel with discrete input Xn ∈ X and discrete output Yn ∈ Y at

time instant n. The channel state is characterized as a finite-state first order Markov
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process:

Pr(un|un−k
1 ) = Pr(un|un−k). (4.1)

The channel output at time n is assumed to depend only on the channel input and state

at time n, i.e. Pr(yn|xN
1 , u

N
1 ) = Pr(yn|xn, un). Hence, the block transition probability

of the channel is

Pr(yN
1 |xN

1 , u
N
1 ) =

N
∏

n=1

Pr(yn|xn, un), (4.2)

which implies that the channel is memoryless given the state process Un ∈ U . It

is assumed that CSI is perfectly known at the receiver. The CSI is provided at the

transmitter through a noiseless feedback link periodically at every T symbols, i.e.,

U1, UT+1, U2T+1, · · · are sent over the feedback link and instantly received at the trans-

mitter. Assume that the codeword length, N , is an integer factor of T and M , N
T

.

Let us define Vi , UT (i−1)+1 for 1 ≤ i ≤M and ñ , ⌊ n
T
⌋ + 1.

Encoding and Decoding

Assume that W ∈ W is the message to be sent by the transmitter and Aw = 2NR is the

cardinality of W. A codeword of length N is a sequence of the encoding function ϕn

which maps the set of messages to the channel input alphabets. The input codeword

at time n depends on the message w and the CSI at the transmitter up to time n, i.e.

vñ
1 ,

xn = ϕn(w, vñ
1 ). (4.3)

The decoding function, φ, maps a received sequence of N channel outputs using CSI

at the receiver to the message set such that the decoded message is ŵ = φ(yN
1 , u

N
1 ).

Theorem 4.1. The capacity of a finite state Markov channel with periodic feedback is
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given by

1

T

T
∑

t=1

∑

v

Pr(v) max
qt(x|v)

∑

u

Pt(u|v)I(X;Y |u, v), (4.4)

where T is the feedback period, Pt(u|v) = Prui|ui−t+1
(u|v) and qt(x|v) is the random

coding probability distribution function (PDF) parametrized with subscript t to reflect

the dependency on time.

4.1.1 Achievability

We state a result on the capacity of FSMCs, which we then apply in the proof. It is

shown that the capacity of FSMCs with perfectly known CSI, U , at the receiver and

side information V at the transmitter is [18]

C =
∑

v

Pr(v) max
q(x|v)

∑

u

Pr(u|v)I(X;Y |u, v), (4.5)

where U and V are jointly stationary and ergodic with joint PDF Pr(U, V ) and V is a

deterministic function of U .

We consider the channel as T parallel subchannels where the tth subchannel (1 ≤
t ≤ T ) occurs in time instances (i−1)T+t, 1 ≤ i ≤M . Noting that the channel state of

the tth subchannel {U(i−1)T+t}M
i=1 and the side information at the transmitter {Vi}M

i=1 =

{U(i−1)T+1}M
i=1 are jointly stationary and ergodic, we define Pt(u|v) = Prui|ui−t+1

(u|v)
for 1 ≤ t ≤ T . Using (4.5), the achievable rate of the tth subchannel is

Rt =
∑

v

Pr(v) max
qt(x|v)

∑

u

Pt(u|v)I(X;Y |u, v). (4.6)

T codebooks are designed corresponding to Rt for 1 ≤ t ≤ T and multiplexed across

the T subchannels, i.e., at time instants (i− 1)T + t for 1 ≤ i ≤M , the channel inputs

from the tth codebook are sent over the channel. Therefore, the achievable rate is

R =
1

T

T
∑

t=1

∑

v

Pr(v) max
qt(x|v)

∑

u

Pt(u|v)I(X;Y |u, v). (4.7)
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4.1.2 Converse

In this part, we prove the converse to the capacity theorem. The proof is motivated by

the proof in [18]. From the Fano’s inequality [20], we have

H(W |Y N
1 , UN

1 ) ≤ Pe logAw + h(Pe) = NǫN , (4.8)

where Pe = Pr(W 6= Ŵ ) and ǫN → 0 as N → ∞.

H(W |Y N
1 , UN

1 ) = H(W |UN
1 ) − I(W ;Y N

1 |UN
1 )

= NR− I(W ;Y N
1 |UN

1 ). (4.9)

Using (4.8) and (4.9), we can write

R ≤ 1

N
I(W ;Y N

1 |UN
1 ) + ǫN . (4.10)

Then we have,

I(W ;Y N
1 |UN

1 )

=

N
∑

n=1

I(W ;Yn|UN
1 , Y

n−1
1 )

=
N
∑

n=1

H(Yn|UN
1 , Y

n−1
1 ) −H(Yn|UN

1 , Y
n−1
1 ,W )

≤
N
∑

n=1

H(Yn|Un, V
ñ
1 ) −H(Yn|UN

1 , Y
n−1
1 ,W )

a
≤

N
∑

n=1

H(Yn|Un, V
ñ
1 ) −H(Yn|Un, Xn, V

ñ
1 ) (4.11)

=
N
∑

n=1

I(Xn;Yn|Un, V
ñ
1 ), (4.12)

where (a) follows from the fact that the channel output is independent of the message

and past channel outputs given the state of the channel and the channel input. On the
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other hand, for a given n, we have

I(Xn;Yn|Un, V
ñ
1 )

=
∑

un,vñ
1

Pr(un|vñ, v
ñ−1
1 )Pr(vñ−1

1 |vñ)Pr(vñ)I(Xn;Yn|un, v
ñ−1
1 , vñ)

b
=
∑

un,vñ

Pr(un|vñ)Pr(vñ)
∑

vñ−1
1

Pr(vñ−1
1 |vñ)I(Xn;Yn|un, v

ñ−1
1 , vñ)

c
≤
∑

un,vñ

Pr(un|vñ)Pr(vñ) max
q(xn|vñ)

I(Xn;Yn|un, vñ), (4.13)

where q(xn|vñ) ,
∑

vñ−1
1

Pr(vñ−1
1 |vñ)Pr(xn|vñ

1 ), (b) follows from the property in (4.1),

and (c) results from the concavity of mutual information with respect to the input

distribution. Replacing n = (ñ− 1)T + t in (4.13) and using (4.12), we have

I(W ;Y N
1 |UN

1 )

≤
M
∑

ñ=1

T
∑

t=1

∑

vñ

∑

u(ñ−1)T+t

Pr(u(ñ−1)T+t|vñ)Pr(vñ) ×

max
q(x(ñ−1)T+t|vñ)

I(X(ñ−1)T+t;Y(ñ−1)T+t|u(ñ−1)T+t, vñ)

(4.14)

=M

T
∑

t=1

∑

u,v

Pt(u|v)Pr(v) max
qt(x|v)

I(X;Y |u, v), (4.15)

where (4.15) follows from the fact that {Vi}M
i=1 and {U(i−1)T+t}M

i=1 are jointly stationary

and ergodic and the right-hand side of (4.14) does not depend on ñ. Using (4.10) and

(4.15), we have

R ≤ 1

T

T
∑

t=1

∑

v

Pr(v) max
qt(x|v)

∑

u

Pt(u|v)I(X;Y |u, v) + ǫN . (4.16)

�
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4.2 Gaussian Channel

In this section, we consider a point to point transmission over a time-correlated fading

channel. It is assumed that the channel gain is constant over each channel use (symbol)

and varies from symbol to symbol, following a first order Markovian random process.

The signal at the receiver is

rn = hnxn + zn, (4.17)

where hn ∈ C is the fading gain and zn is AWGN with zero mean and unit variance. It

is assumed that the CSI is perfectly known to the receiver. Every T channel use, the

instantaneous fading gain is sent to the transmitter through a noiseless feedback link,

i.e., |h1|, |hT+1|, · · · , |h(M−1)T+1| are fed back and instantly received at the transmitter.

Let us define un , |hn|2 for 1 ≤ n ≤ N , vi , |h(i−1)T+1|2 for 1 ≤ i ≤ M

and Pt(u|v) , Prui|ui−t+1
(u|v). The average input power is subject to the constraint

E[|xn|2] ≤ P. In the following, Et[g(U, V )] denotes the expectation value over g(u, v)

where U and V have joint PDF Pt(u, v).

Theorem 4.2. The capacity of time-correlated fading channel with periodic feedback is

max
ρ1···ρT

1

T

T
∑

t=1

Et[log(1 + Uρt(V ))], (4.18)

subject to 1
T

∑T
t=1 E[ρt(V )] ≤ P, where T is the feedback period.

First, we recount some results on the capacity of single user channels, which is

applied in the proof. A general formula for the capacity of single user channels which is

not necessarily information stable or stationary is obtained in [50]. Consider input X

and output Y as sequences of finite-dimensional distribution, where Y is induced by X

via a channel which is an arbitrary sequence of finite-dimensional conditional output

distribution from input alphabets to the output alphabets. The general formula for the
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channel capacity is as follows:

C = sup
X
I(X;Y ), (4.19)

where I(X;Y ) is defined as the liminf in probability of the normalized information

density [50]

iN (XN
1 ;Y N

1 ) =
1

N
log

Pr(Y N
1 |XN

1 )

Pr(Y N
1 )

. (4.20)

Assume that the channel state information, Q, is available at the receiver. Considering

Q as an additional output, the channel capacity is C = supX I(X;Y,Q). If Q is not

available at the transmitter and is consequently independent of X, then the capacity

is [8]

C = sup
X
I(X;Y |Q), (4.21)

where I(X;Y |Q) is the liminf in probability of the normalized conditional information

density

iN(XN
1 ;Y N

1 |QN
1 ) =

1

N
log

Pr(Y N
1 |XN

1 , Q
N
1 )

Pr(Y N
1 |QN

1 )
. (4.22)

Now, we are ready to prove Theorem 2, where the proof is motivated by the proof

in [18].

4.2.1 Achievability

Noting (4.17), the processed received signal at time n is

yn = rn
h∗n
|hn|

= |hn|xn + z′n, (4.23)

where z′n = h∗
n

|hn|zn, which has the same distribution as zn. The transmitter sends

xn =
√

ρn(vñ)sn, (4.24)

over the channel where sn is an i.i.d. Gaussian codebook with zero mean and unit

variance, and ρn : R+ → R+ is the power allocation function. Using (4.23) and (4.24),
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we can write

yn =
√
qnsn + z′n, (4.25)

where qn = ρn(vñ)|hn|2 = ρn(vñ)un. Noting (4.25), we have a channel with input S and

output Y and channel state Q, which is known at the receiver. Since QN
1 is independent

of SN
1 , we can use (4.21) to obtain the achievable rate.

iN (SN
1 ;Y N

1 |QN
1 ) =

1

N
log

Pr(Y N
1 |SN

1 , Q
N
1 )

Pr(Y N
1 |QN

1 )

d
=

1

N

N
∑

n=1

log
Pr(Yn|Sn, Qn)

Pr(Yn|Qn)

=
1

N

N
∑

n=1

(

log(1 +Qn) +
|Yn|2

1 +Qn
− |Z ′

n|2
)

, (4.26)

where (d) results from the fact that SN
1 and Z ′N

1 are i.i.d. sequences and the last line

follows from the fact that Yn conditioned onQn is Gaussian with zero mean and variance

1+Qn. Note that as N → ∞, 1
N

∑N
n=1

|Yn|2
1+Qn

= 1
N

∑N
n=1 |Z ′

n|2 = 1 with probability one.

Therefore, with probability one, we have

iN(SN
1 ;Y N

1 |QN
1 )

=
1

N

N
∑

n=1

log(1 +Qn)

=
1

MT

T
∑

t=1

M
∑

i=1

log(1 +Q(i−1)T+t)

=
1

T

T
∑

t=1

1

M

M
∑

i=1

log
(

1 + U(i−1)T+tρ(i−1)T+t(Vi)
)

. (4.27)

Noting that {U(i−1)T+t}M
i=1 and {Vi}M

i=1 are jointly stationary and ergodic for 1 ≤ t ≤ T ,

we define Pt(u, v) to be their joint PDF. We set ρ(i−1)T+t = ρt for 1 ≤ i ≤ M and

1 ≤ t ≤ T . As M → ∞ in (4.27), the sample mean converges in probability to the
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expectation. Therefore, the achievable rate is

R =
1

T

T
∑

t=1

Et[log(1 + Uρt(V ))]. (4.28)

4.2.2 Converse

Using (4.11), we have

I(W ;Y N
1 |UN

1 )≤
N
∑

n=1

H(Yn|Un, V
ñ
1 ) −H(Yn|Un, Xn, V

ñ
1 )

≤
N
∑

n=1

E[log(1 + UnE[|Xn|2|V ñ
1 ])]. (4.29)

The above inequality relies on the facts that

H(Yn|Un, Xn, V
ñ
1 ) = H(Zn) = log 2πe (4.30)

and

H(Yn|Un, V
ñ
1 ) ≤ E[log(2πe(1 + UnE[|Xn|2|V ñ

1 ]))]. (4.31)

The upper-bound in (4.31) is achieved if Xn conditioned on V ñ
1 has a Gaussian distri-

bution. We set xn =
√

fn(vñ
1 )sn where fn : Rñ

+ → R+ and SN
1 is an i.i.d. Gaussian

sequence with zero mean and unit variance. On the other hand,

E[log(1 + Unfn(V ñ
1 ))] = E[E[log(1 + Unfn(V ñ

1 ))|Un, Vñ]]

d
≤E[log(1 + E[Unfn(V ñ

1 )|Un, Vñ])]

= E[log(1 + UnE[fn(V ñ
1 )|Vñ])], (4.32)
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where (d) follows from the concavity of the logarithm. Let us define ρn(Vñ) , E[fn(V ñ
1 ))|Vñ].

By using (4.29) and (4.32), we obtain

1

N
I(W ;Y N

1 |UN
1 )

≤ 1

N

N
∑

n=1

E[log(1 + Unρn(Vñ))]

=
1

T

T
∑

t=1

1

M

M
∑

i=1

E[log(1 + U(i−1)T+tρ(i−1)T+t(Vi))]

≤ 1

T

T
∑

t=1

E[log(1 +
1

M

M
∑

i=1

U(i−1)T+tρ(i−1)T+t(Vi))]. (4.33)

Using (4.33) and noting the fact that that {U(i−1)T+t}M
i=1 and {Vi}M

i=1 are jointly sta-

tionary and ergodic for 1 ≤ t ≤ T , we can write

1

N
I(W ;Y N

1 |UN
1 )≤ 1

T

T
∑

t=1

Et[log(1 + Uρt(V ))], (4.34)

where ρt(.) , 1
M

∑M
i=1 ρ(i−1)T+t(.). Combining (4.10) and (4.34), we conclude that

R ≤ 1

T

T
∑

t=1

Et[log(1 + Uρt(V ))], (4.35)

subject to 1
T

∑T
t=1 E[ρt(V )] ≤ P.

�

Remark: In Section 4.1, we proved that the capacity of Markov channels is generally

achieved by using multiple code multiplexing technique. However, for AWGN channel

with time-correlated fading, the proof relies on using one Gaussian codebook, where

the symbols are adaptively scaled by the appropriate power allocation function based

on the side information at the transmitter.
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4.3 Performance Evaluation

We study the impact of the channel correlation and feedback period on the capacity

of the time-correlated Rayleigh fading channel. Let us assume that time-correlated

Rayleigh fading channel is a Markov random process with the following PDF [11]:

Pr(u) =







e−u u ≥ 0

0 Otherwise
. (4.36)

P1(u|v) = δ(v),

Pt(u|v) = Φ(u, v, αt−1), (4.37)

where

Φ(u,v,σ)=

8

>

>

>

<

>

>

>

:

1
1−σ2 exp

(

−u+σ2v
1−σ2

)

I0(
2σ

√
uv

1−σ2 ) u ≥ 0,

0 Otherwise.
(4.38)

In (4.38), 0 < σ < 1 describes the channel correlation coefficient and I0(.) denotes

the modified Bessel function of order zero. Noting that the capacity in (4.18) is a

strictly concave region of ρt, 1 ≤ t ≤ T , we numerically solve the convex optimization

problem.

In Figure 4.1, the capacity is depicted versus the feedback period for various channel

correlation coefficients and compared to the capacity when no CSI is available at the

transmitter.

4.4 Conclusion

We have obtained the capacity of finite state Markov channel with periodic feedback

at the transmitter. Also, the channel capacity and optimal adaptive coding is derived
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Figure 4.1: Capacity of time-correlated Rayleigh fading channel versus T for SNR = 1

and channel correlation coefficients α = 0.97, 0.95, 0.9, 0.8. The dash-dot line is the

capacity with no side information at the transmitter.
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for the time-correlated fading channel with periodic feedback. It is shown that the

optimal adaptation can be achieved by a single Gaussian codebook, while scaling by

the appropriate power.



Chapter 5

Time-varying Multi-User Channel

with Partial CSI

The time-varying fading inherent to the wireless link is one of the main challenges

in designing wireless communication systems. Adaptive signaling schemes which use

knowledge of the current channel fading values to optimize the transmitted signal, can

significantly improve the performance of communications systems operating over fading

channels. Utilizing optimal dynamic power and rate allocation strategies, the ergodic

capacities with CSI at both the transmitter and the receiver of a single-user fading

channel, a fading multiple access channel, and a fading broadcast channel are obtained

in [1], [2] and [27], respectively.

In practice, the assumption of perfect CSI is not feasible due to estimation inac-

curacy, limited feedback channel capacity, or feedback delay. Communication with

partial CSI in time-varying point-to-point channel is well investigated in the litera-

ture [6,18,32,33,47]. However, there are few results on the performance of time-varying

broadcast channels with partial CSI at the transmitter. The capacity region for a cer-

tain class of fading Gaussian broadcast channels when the receivers have the perfect

54
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CSI while the transmitter has no CSI is derived in [15]. In [42], the ergodic capacity

region for a fading broadcast channel is obtained assuming the transmitter knows only

the channel ordering information of the users. In this work, applying adaptive signaling,

we study the asymptotic throughput of a time-varying broadcast channel with partial

CSI at the transmitter assuming large number of users in the system.

We confine the signaling scheme to opportunistic scheduling which employs mul-

tiuser diversity. In a broadcast channel where users have independent fading and feed

back their SNR to the base station (BS), system throughput is maximized by transmit-

ting to the user with the strongest SNR [14,41]. Multiuser diversity underlies much of

the recent works for downlink scheduling [7, 39, 43, 46, 56]. Multiuser diversity has also

been studied in the context of multiple antenna systems [38] and ad-hoc networks [31].

We consider a broadcast channel in which a BS transmits data to a large number of

users in a time-correlated flat fading environment. It is assumed that CSI is perfectly

known to the receivers, while the BS only knows the statistical characteristics of the

fading process for all users (which is assumed to be constant during a long period).

Moreover, each user feeds back its channel gain to the BS at the beginning of each

frame (initial fading gain). Based on this information, the BS selects the user with

maximum initial fading gain for transmission in each frame. The BS adapts the rate

and/or the codeword length of the selected user based on the available information.

We analyze different adaptive signaling schemes; i) the BS adapts the rate of the

selected user to its initial fading gain, ii) the BS adapts the rate based on both the initial

fading gain and statistical characteristics of the fading process of the selected user, and

iii) the BS adapts the rate and codeword length based on the initial fading gain and

statistical characteristics of the fading process of the selected user. We characterize

the asymptotic throughput of the system applying the underlying adaptive techniques

assuming large number of users.
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The rest of the chapter is organized as follows; In Section 5.1, the system model is

described. Section 5.2 is devoted to study of the error exponent of time-correlated fading

channel in the downlink system described in Section 5.1. In Section 5.3, asymptotic

throughput of various adaptive signaling strategies are derived for large number of

users. Finally, in Section 5.4, we conclude the chapter.

Throughout this chapter, E{.} and var{.} represents the expectation and variance,

respectively, “log” is used for the natural logarithm, and rate is expressed in nats. For

given functions f(N) and g(N), f(N) = O(g(N)) is equivalent to limN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
<∞,

f(N) = o(g(N)) is equivalent to limN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
= 0, f(N) = ω(g(N)) is equivalent

to limN→∞
f(N)
g(N)

= ∞, and f(N) = Ω(g(N)) is equivalent to limN→∞
f(N)
g(N)

= c, where

0 < c <∞.

5.1 System model

The channel of any given user is modeled as a time-correlated fading process. It is

assumed that the channel gain is constant over each channel use (symbol) and varies

from symbol to symbol, following a Markovian random process. Assume that the fading

gain of kth user is hk = [h1,k, . . . , hNk,k]
T where hi,k, 1 ≤ i ≤ Nk are complex Gaussian

random variables with zero mean and unit variance and Nk is the codeword length of

the kth user. The received signal for the kth user is given by

rk = Xkhk + nk, (5.1)

where Xk = diag(x1,k, x2,k, . . . , xNk,k) is the transmitted codeword with the power

constraint1 E{|xi,k|2} ≤ P , and nk is AWGN with zero mean and covariance matrix I.

Assume that h0,k is the fading gain at the time instant before Xk is transmitted. The

1Obviously, for maximizing the throughput, the power constraint translates to E{|xi,k|2} = P .
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sequence ui,k = |hi,k|, 0 ≤ i ≤ Nk, is assumed to be a stationary ergodic chain with the

following probability density function [11]:

fu0,k
(u) =







2ue−u2
, u ≥ 0

0. otherwise
(5.2)

f(u1,k, u2,k, · · · , uNk,k|u0,k) =

Nk
∏

i=1

qk(ui,k|ui−1,k), (5.3)

where,

qk(u|v) =







2u
1−α2

k
exp

(

−u2+α2
kv2

1−α2
k

)

I0(
2αkuv
1−α2

k
) u ≥ 0

0 otherwise

in which 0 < αk < 1 describes the channel correlation coefficient of the kth user and

I0(.) denotes the modified Bessel function of order zero. It is assumed that CSI is

perfectly known at each receiver, while u0,k, 1 ≤ k ≤ K are known at the transmitter.

It is assumed that αk, 1 ≤ k ≤ K, are i.i.d. random variables which remain fixed during

the entire transmission. We assume that αmin < αk < αmax where 0 < αmin < αmax < 1,

i.e. we exclude the i.i.d. fast fading and quasi-static fading model. To obtain the result

in a closed form, we assume that αk has a uniform distribution. Generalizing the results

for other distributions is straightforward.

5.2 Time-Correlated Fading Channel’s Throughput

We use average throughput per channel use as our measure of performance to compare

the performance of various adaptation schemes. Average throughput per channel use

is frequently applied to study the performance of communication systems, e.g. [12,48].

First, we evaluate the error exponent of the channel model described in previous section

and derive the corresponding achievable throughput. Using the concept of random



Time-varying Multi-User Channel with Partial CSI 58

coding error exponent [20], the frame error probability, pe, can be upper-bounded as

pe ≤ inf
0≤ρ≤1

e−N(E(ρ)−ρR), (5.4)

where R is the transmitted rate per channel use and E(ρ) is the corresponding error

exponent. This bound is tight for rates close to the capacity as used in [3, 5, 17]. We

define the kth user’s average throughput per channel use, denoted by Tk, as

Tk , Rk(1 − inf
0≤ρ≤1

e−N(Ek(ρ)−ρRk)). (5.5)

Assuming si,k, 1 ≤ i ≤ Nk, are Gaussian and i.i.d., it is shown that the random coding

error exponent for the kth user, Ek(ρ), is given by [3],

Ek(ρ) = − 1

Nk

log Euk

{

Nk
∏

i=1

(

1

1 + P
1+ρ

u2
i,k

)ρ}

, (5.6)

where uk = [u1,k, . . . , uNk,k].

In the following, we assume that u0,k ≫ 1. Since in schemes introduced in this work,

a user is selected if the corresponding initial fading gain is maximum, this assumption

is valid when the number of users is large.

Theorem 5.1. For the channel model described in the previous section, and assuming

u0,k is known, we have

Ek(ρ) =
1

Nk

Nk
∑

i=1

ρ log

(

1 +
Pu2

0,kα
2i
k

(1 + ρ)

)

+O

(

1
√
u0,k

)

− O
(

e−u2
0,k

)

. (5.7)

Proof. See Appendix A.
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Noting (5.7), we have

Ek(ρ) − ρRk =
1

Nk

Nk
∑

i=1

ρ log

(

1 +
Pu2

0,kα
2i
k

(1 + ρ)

)

− ρRk +O

(

1
√
u0,k

)

− O
(

e−u2
0,k

)

=
1

Nk

Nk
∑

i=1

ρ log

(

Pu2
0,kα

2i
k

(1 + ρ)

)

− ρRk +
1

Nk

Nk
∑

i=1

ρ log

(

1 +
(1 + ρ)

Pu2
0,kα

2i
k

)

+ O

(

1
√
u0,k

)

−O
(

e−u2
0,k

)

=
ρ

Nk

Nk
∑

i=1

(

log
(

Pu2
0,k

)

+ 2i log(αk) − log(1 + ρ)
)

− ρRk

+
1

Nk

Nk
∑

i=1

O

(

1

u2
0,k

)

+O

(

1
√
u0,k

)

− O
(

e−u2
0,k

)

= ρ[log(Pu2
0,k) + (Nk + 1) log(αk) − log(ρ+ 1) −Rk]

+ O

(

1
√
u0,k

)

−O
(

e−u2
0,k

)

. (5.8)

It is easy to show that ρopt
k which minimizes the bound in (5.4) or equivalently maximizes

(5.8) for large values of u0,k is

log(1 + ρopt
k ) +

ρopt
k

1+ρopt
k

= βk, βk < log(2) + 1
2

ρopt
k = 1, βk ≥ log(2) + 1

2

(5.9)

where

βk = log(Pu2
0,k) + (Nk + 1) log(αk) − Rk. (5.10)

Using (5.4), (5.5), (5.7) and (5.8), we have

Tk = Rk

[

1 − e−Nk(Ek(ρopt
k )−ρopt

k Rk)
]

= Rk

[

1 − e−ρopt
k Nk(log(Pu2

0,k)+(Nk+1) log(αk)−log(ρopt
k +1)−Rk)

]

. (5.11)
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5.3 Adaptive Signaling Schemes: Performance Anal-

ysis

In this part, we study the asymptotic throughput of various adaptive signaling schemes

in a time-correlated fading broadcast channel assuming large number of users. In these

schemes, the BS transmits to the user with the maximum initial fading gain applying

code rate and/or codeword length adaptation. The adaptation is performed based on

the initial fading gain and/or channel correlation coefficient of the selected user. For

simplicity of notation, let us define υ as the initial fading gain of the selected user, i.e.

υ , max1≤k≤K u
2
0,k and α as the fading correlation coefficient of the corresponding user.

5.3.1 Adaptive Code Rate

In this scheme, the rate of the selected user is adapted to its initial fading gain. The

codeword length is assumed to be fixed for all users at all time, i.e., N1 = N2 = · · · =

NK = N , where N is selected such that the system throughput is maximized.

Theorem 5.2. The asymptotic throughput of the system scales as

T 1 ∼ log

(

P logK

2

)

− 2
√

log(α−1
min) log log (P logK), (5.12)

as K → ∞.

Proof. We derive the lower-bound for the throughput of the selected user by setting

ρopt = 1. Using (5.11), we can write2

T1(υ, α) ≥ R
[

1 − e−N(log(Pυ
2 )+(N+1) log(α)−R)

]

. (5.13)

2We drop user index of parameters R and ρopt for the selected user.
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By averaging over α, we have

Eα{T1(υ, α)} ≥ R

[

1 − e−N(log(Pυ
2 )−R) α

−N(N+1)+1
min − α

−N(N+1)+1
max

(N(N + 1) − 1)(αmax − αmin)

]

≥ R

[

1 − e−N(log(Pυ
2 )+(N+1) log(αmin)−R)

(N(N + 1) − 1)ϕ

]

, (5.14)

where ϕ = αmax−αmin

αmin
. The lower-bound can be tightened by maximizing the right-hand

side in (5.14) over N . Consequently, we have

Eα{T1(υ, α)} ≥ log

(

Pυ

2

)

− 2
√

log(α−1
min) log log (Pυ). (5.15)

Noting that υ ∼ logK+O(log logK), with probability one [34], we obtain the following

lower-bound on the achievable throughput of the system.

T 1 & log

(

P logK

2

)

− 2
√

log(α−1
min) log log (P logK). (5.16)

To derive the upper-bound, we re-write the averaged throughput as follows:

Eα{T1(υ, α)} = Eα{T1(υ, α)|B}P (B) + Eα{T1(υ, α)|Bc}P (Bc). (5.17)

where B ≡ {ρopt
k = 1}. We characterize the region of B over [αmin, αmax] by formulating

ρopt
k as follows:

log(1 + ρopt) + ρopt

1+ρopt = β, αmin < α < α0

ρopt = 1, α0 < α < αmax

(5.18)

where α0 can be optimized to maximize the throughput of the selected user.

Eα{T1(υ, α)|Bc} = Eα{R(1 − e
−N(ρopt)2

1+ρopt )}

≤ R(1 − e
−Eα{ (ρopt)2

1+ρopt }N )

≤ R(1 − e−
N
2 )

(a)

≤ R(1 − e
− log(Pυ)−R

2 log(α−1
0 ) ), (5.19)
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where (a) follows from the fact that βk ≥ 0 in (5.10) and therefore N ≤ log(Pυ)−R
log(α−1)

.

Maximizing the right-hand side of (5.19) over R, for large values of υ, we have

Eα{T1(υ, α)|Bc} ≤ log(Pυ)− 2 log(α−1
0 ) log log(Pυ). (5.20)

On the other hand, we have

Eα{T1(υ, α)|B} = Eα

{

R
[

1 − e−N(log(Pυ
2 )+(N+1) log(α)−R)

]}

≤ log

(

Pυ

2

)

− 2
√

log(α−1
min) log log (Pυ). (5.21)

Noting (5.17), (5.20) and (5.21)

Eα{T1(υ, α)} . log

(

Pυ

2

)

− 2
√

log(α−1
min) log log (Pυ). (5.22)

T 1 = E{T1(υ, α)} . log

(

P logK

2

)

− 2
√

log(α−1
min) log log (P logK). (5.23)

Noting (5.16) and (5.23), the result of the theorem is obtained.

5.3.2 Rate Adaptation based on Correlation Coefficient

The BS adapts the data rate of the selected user with respected to both the initial

fading and fading correlation coefficient of its channel. The codeword length of all

users is fixed and is selected such that the throughput of the system is maximized.

Theorem 5.3. The asymptotic throughput of the system scales as

T 2 ∼ log

(

P logK

2

)

− 2
√

E{log(α−1)} log log(P logK), (5.24)

as K → ∞.
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Setting the derivative of (5.11) with respect to R to zero, we find the rate of the

selected user and the corresponding throughput in terms of υ and α as follows:

R = log

(

Pυ

1 + ρopt

)

+ (N + 1) log(α) − log(1 + ρoptNR)

ρoptN
, (5.25)

T2(υ, α) =

[

log

(

Pυ

1 + ρopt

)

+ (N + 1) log(α) − log(1 + ρoptNR)

ρoptN

]

×
[

1 − 1

1 + ρoptNR

]

, (5.26)

where noting (5.9), ρopt is determined as follows:

log(1 + ρopt) + ρopt

1+ρopt = β, β < log(2) + 1
2

ρopt = 1, β ≥ log(2) + 1
2

(5.27)

Using (5.10) and (5.25), we have

β = log(1 + ρopt) +
log(1 + ρoptNR)

ρoptN
. (5.28)

Let us define R∗ and event A as follows:

R∗ , log(Pυ) + (N + 1) log(α)

(5.25),(5.28)
= R + β, (5.29)

A ≡ {R∗ >
1

2
log(P logK)}. (5.30)

In the following, we derive upper-bounds for the throughput of the system in terms of

R∗ and A which we use later in Lemma 5.4 and Lemma 5.5.

T 2 = E{T2(υ, α)}
(5.25),(5.26)

≤ E{R}

= E{R|A}Pr{A} + E{R|AC}Pr{AC}
(5.29)
= (E{R∗|A} − E{β|A})Pr{A} + E{R|AC}Pr{AC}

≤ E{R∗} − E{β|A}Pr{A} (5.31)

≤ E{R∗}, (5.32)
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where (5.31) is derived by replacing R with R∗, noting R ≤ R∗, and Pr{A} can be

computed as follows:

Pr{A} = Pr{log(Pυ) + (N + 1) logα >
1

2
log(P logK)}

= 1 − Pr{log(Pυ) + (N + 1) logα ≤ 1

2
log(P logK)}

= 1 −
∫ ∞

0

Pr

{

logα <
1

N + 1

(

1

2
log(P logK) − log(Px)

)∣

∣

∣

∣

x

}

fυ(x)dx

= 1 −
∫ ∞

0

Fα

(

e
1

N+1(
1
2

log(P log K)−log(Px))
)

fυ(x)dx, (5.33)

where fy(.) and Fy(.) are probability density function and cumulative density function

of random variable y, respectively. Noting that α has a uniform distribution, we have

Pr{A} = 1 − e
log log K
2(N+1)

∫ ∞

0

e−
log(Px)

N+1 fυ(x)dx

≃ 1 − max{0, e
− log(P log K)

2(N+1) − αmin

αmax − αmin
}

= min{1, 1 +
αmin − e

− log(P log K)
2(N+1)

αmax − αmin
}, (5.34)

where the second line follows from the fact that υ ∼ logK +O(log logK), with proba-

bility one [34].

According to (5.27), there are two regions for ρopt of the selected user. To obtain

the throughput of the system, we upper-bound the throughput in these two regions

in Lemma 5.4 and Lemma 5.5, respectively. Then, we derive a lower-bound for the

throughput of the system in Lemma 5.6.

Lemma 5.4. Assuming β < log(2) + 1
2
, the throughput is upper-bounded as follows:

T 21 . log(P logK) − (log(log(P logK) − 2 log(2)))E{log(α−1)}Pr{A}. (5.35)

Proof. Using (5.27) and (5.28) and noting β < log(2) + 1
2
, we obtain

(ρopt)−1 + (ρopt)−2 =
N

log(1 + ρoptNR)
. (5.36)
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Noting ρopt < 1, it follows from (5.36) that

N > log(1 + ρoptNR). (5.37)

Assuming R is large enough, from (5.36), we have

ρoptNR

log(1 + ρoptNR)
> 2R ⇒ ρoptN > 2. (5.38)

Using (5.37) and (5.38), we can write

N
(5.37)
> E

{

log(1 + ρoptNR)|A
}

Pr{A}
(5.38)
> E{(log(1 + 2R))|A}Pr(A)

a
> (log(log(P logK) − 2 log(2)))Pr{A}, (5.39)

where (a) results from the fact that conditioned on A, we have R = R∗ − β >

1
2
log(P logK) − 1

2
− log(2). Noting that υ ∼ logK + O(log logK), we can write the

throughput of the system as follows:

T 21

(5.29),(5.32)

≤ E{log(Pυ) + (N + 1) log(α)}

= E{log(Pυ)} − (N + 1)E{log(α−1)}
(5.39)

. log(P logK) − (log(log(P logK) − 2 log(2)))E{logα−1}Pr{A}.(5.40)

Lemma 5.5. Assuming β ≥ log(2) + 1
2
, the throughput is upper-bounded as follows:

T 22 . log

(

P logK

2

)

− 2
√

E{logα−1}
√

log log(P logK). (5.41)
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Proof. Noting β ≥ log(2) + 1
2
, from (5.27), we have ρopt = 1. Hence, using (5.29) and

(5.31) and noting υ ∼ logK, we can write

T 22 ≤ log (P logK) − (N + 1)E{log(α−1)} − E{β|A}Pr{A}
(5.28)

. log (P logK) − (N + 1)E{log(α−1)} − E{log(2) +
log(1 +NR)

N
|A}Pr{A}

a

. log (P logK) − (N + 1)E{log(α−1)}

−
[

log(1
2
log(P logK) − log(1+N log(P log K))

N
− log(2))

N
+

logN

N
+ log(2)

]

Pr{A},

(5.42)

where (a) follows from the fact that conditioned on A, we have

R = R∗ − β

>
1

2
log(P logK) − log(1 +NR)

N
− log(2)

>
1

2
log(P logK) − log(1 +N log(P logK))

N
− log(2). (5.43)

The last line results from the fact that R < log(P logK) which follows from (5.25).

Substituting (5.34) in (5.42), and setting the derivative of T 22 to zero with respect to

N , we obtain

Nopt ∼
√

log log(P logK)

E{logα−1} [1 + o(1)]. (5.44)

Substituting (5.34) and (5.44) in (5.42), the result of the lemma follows.

Lemma 5.6. The throughput can be lower-bounded as follows:

T 2 & log

(

P logK

2

)

− 2
√

E{logα−1} log log(P logK). (5.45)

Proof. The throughput can be lower-bounded by setting ρopt = 1 for all values of υ and

α in (5.26). Using (5.25) and (5.26), we can write

T 2 ≥ E{R− R

1 +NR
}, (5.46)
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where

R = log

(

Pυ

2

)

+ (N + 1) log(α) − log(1 +NR)

N
. (5.47)

Averaging the right-hand side of (5.46) and setting N =
√

log log(P log K)
E{log α−1} , the result of

the lemma is obtained.

The Proof of Theorem 5.3: Lemma (5.4) and Lemma (5.5) provide upper-bounds on

two complementary cases where ρopt of the selected user is either less than 1 or equal

to 1 in (5.35) and (5.41), respectively. Lemma (5.6) lower-bounds the throughput of

the system as in (5.45). Comparing (5.35), (5.41) and (5.45), we conclude the result of

the theorem.

�

5.3.3 Adaptive Code Rate and Adaptive Codeword Length

In this scheme, both the code rate and codeword length of the selected user are adapted

to maximize the corresponding throughput. First, we determine the corresponding code

rate and codeword length. We re-write the throughput of kth user from (5.11):

Tk = Rk

[

1 − e−ρopt
k Nk(log(Pu2

0,k)+(Nk+1) log(αk)−log(ρopt
k +1)−Rk)

]

. (5.48)

It is easy to show that Tk is a concave function of variables Rk and Nk, and the values

of Rk and Nk which maximize the throughput (Ropt
k and Nopt

k ) satisfy the following

equations:

Ropt
k = log(Pu2

0,k) + (2Nopt
k + 1) log(αk) − log(ρopt

k + 1), (5.49)

Nopt
k =

√

log
(

1 + ρopt
k Nopt

k Ropt
k

)

ρopt
k log(α−1

k )
. (5.50)
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It follows that Nopt
k → ∞ and Ropt

k → ∞ as u0,k → ∞. Using (5.49) and (5.50), (5.48)

can be re-written as follows:

Tk =

(

log

(

Pu2
0,k

ρopt
k + 1

)

+ (2Nopt
k + 1) log(αk)

)(

1 − 1

1 + ρopt
k Nopt

k Ropt
k

)

. (5.51)

Substituting (5.49) in (5.10), we have

βk = Nopt
k log(α−1

k ) + log(ρopt
k + 1). (5.52)

From (5.9) and (5.52), it is concluded that

ρopt
k =







Nopt
k log(α−1

k )

1−Nopt
k log(α−1

k )
Nopt

k log(α−1
k ) < 1

2

1 Nopt
k log(α−1

k ) ≥ 1
2

(5.53)

Note that since αk is fixed and αk < 1, then Nopt
k log(α−1

k ) ≥ 1
2

for large values of u0,k

with probability one. In the case ρopt
k = 1, the asymptotic throughput is obtained by

substituting (5.49) and (5.50) in (5.51) as follows:

Tk = log

(

Pu2
0,k

2

)

− 2
√

log(α−1
k ) log log

(

Pu2
0,k

)

×
(

1 +O

(

log log log(u0,k)

log log(u0,k)

))

. (5.54)

From (5.50), the optimum codeword length scales as follows:

Nopt
k ∼

√

log log(Pu2
0,k)

logα−1
k

. (5.55)

Theorem 5.7. Assuming K → ∞, the asymptotic throughput of the system scales as

follows:

T 3 ∼ log

(

P logK

2

)

− 2E{
√

log(α−1)}
√

log log (P logK). (5.56)

Proof. Noting that the case ρopt = 1 happens with probability one and using (5.54),

we can write

T 2 = E

{

log

(

Pυ

2

)

− 2

√

log(α−1) log log

(

Pυ

2

)(

1 +O

(

log log log(υ)

log log(υ)

))

}

.(5.57)
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Noting that υ ∼ logK + O(log logK) with probability one, and υ and α are indepen-

dent, we obtain the result of the theorem.

Remark 1- Although limK→∞
T 1

T max
= limK→∞

T 2

T max
= limK→∞

T 3

T max
= 1, where

T max ∼ log (P logK) is the maximum achievable throughput for a quasi-static fad-

ing channel [34], there exists a gap of Ω(
√

log log(P logK)) between the achievable

throughput of these schemes and the maximum throughput.

Remark 2- Comparing the performance of the underlying schemes, in general we

have T 1 ≤ T 2 ≤ T 3. As an example, for the case of αmin = .2 and αmax = .95, we have

T 1 ∼ log

(

P logK

2

)

− 2.5
√

log log(P logK). (5.58)

T 2 ∼ log

(

P logK

2

)

− 1.6
√

log log(P logK). (5.59)

T 3 ∼ log

(

P logK

2

)

− 1.5
√

log log(P logK). (5.60)

5.4 Conclusion

A multiuser downlink communication over a time-correlated fading channel has been

considered. We have studied the asymptotic throughput of various adaptive signaling

schemes. Assuming a large number of users in the system, we show that using the

scheduling that transmits to the user with maximum SNR with fixed codeword length

optimized over fading correlation coefficient of the users achieves the order of maximum

throughput. Although the system performance improves by using both adaptive code



Time-varying Multi-User Channel with Partial CSI 70

rate and adaptive codeword length at the price of extra complexity, it is shown that

the order of the gap between the maximum throughput and the achievable throughput

remains the same.



Chapter 6

Summary and Future Work

In the first part of thesis, we introduced the diversity-multiplexing trade-off as a mea-

sure for optimally allocating bandwidth among users considering network density. The

diversity-multiplexing trade-off is characterized for Z-channel and multiple-access chan-

nel assuming different scenarios for the SNR of the transmitters. Moreover, we assessed

the performance of a one-dimensional regular wireless network under a general TDMA

scheme. This work can be extended in both theoretical and practical aspects. The

channel model and network model can be changed to fit the practical requirements.

The assumption of regularity in the network ( the transmitter and receivers are equally

spaced) can be relaxed. A random distribution model can be considered for users

locations.

We have obtained the diversity-multiplexing trade-off of Z-channel which is a spe-

cial case of two-user interference channel. Although the capacity region of two-user

interference channel is still unknown, there are some results that show the outer-bound

for the interference channel is tight in high SNR regime [45]. In continuation of this

work, the diversity-multiplexing trade-off analysis can be generalized for two-user in-

terference channel by defining the cross-channel coefficients (interference channels) as

71
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the multiplication of Rayleigh fading and attenuation factor which is an exponential

function of SNR.

Multiple-antenna systems with two well-known benefits, i.e. diversity gain and mul-

tiplexing gain, play a significant role in rate-reliability trade-off in a MIMO wireless

network. The problem of bandwidth allocation in a wireless system in which trans-

mitters and receivers are equipped with multiple antennas is substantially important

in developing next generation communications systems. In this respect, the problem

can be approached through diversity-multiplexing trade-off analysis of MIMO wireless

networks.

In the second part of the thesis, the performance of time-varying channels with par-

tial CSI at the transmitter is investigated. First, we obtained the capacity of finite state

Markov channel with periodic feedback at the transmitter and we designed a codebook

that achieves the capacity. The channel capacity and optimal adaptive coding are also

derived for the time-correlated fading channel with periodic feedback. It is shown that

the optimal adaptation can be achieved by a single Gaussian codebook, while scaling by

the appropriate power. In this part, We have assumed that the CSI is known perfectly

at the receiver. Moreover, the feedback link has unlimited capacity and consequently,

the CSI is received perfectly at the transmitter in regular time instants. To complete

this work, we can consider the channel estimation error at the receiver in our model.

Also, we can assume a limited capacity for the feedback link. By assuming power con-

straint for sending the CSI through feedback link and limited feedback capacity, there

exists a trade-off between the frequency and the accuracy of transferring the CSI. The

more frequently the CSI is fed back, the less precisely the side information is received

at the transmitter. On the other hand, long period feedback results in outdated CSI

and degrades the performance. Therefore, there is an optimal feedback period that

maximizes the capacity.
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In Chapter 5, a multiuser downlink communication over a time-correlated fading

channel has been considered. We have studied the asymptotic throughput of various

adaptive signaling schemes. Assuming a large number of users in the system, we have

shown that using the scheduling that transmits to the user with maximum SNR with

fixed codeword length optimized over fading correlation coefficient of the users achieves

the order of maximum throughput. Although the system performance improves by

using both adaptive code rate and adaptive codeword length at the price of extra

complexity, it is shown that the order of the gap between the maximum throughput and

the achievable throughput remains the same. In this part, we analyze the performance

of the broadcast channel when users have different channel statistics. A very basic

problem can be defined as follows; Consider a Rayleigh fading broadcast channel with

two users. Assume that the channels corresponding to the first user and the second

user are slowly fading and fast fading, respectively. In this scenario, channel coding

design for sum-rate maximization is an interesting problem.



Appendix A

For simplicity, we drop the user index. Noting (5.6), we have E0(ρ) = − 1
N

log IN , where

IN =

∫

uN

...

∫

u1

N
∏

i=1

(

1

1 + P
1+ρ

u2
i

)ρ

p(u|u0)dui. (A.1)

Using (5.3), we have

IN =

∫

uN

...

∫

u1

N
∏

i=1

2ui

1 − α2
exp

{

−u
2
i + α2u2

i−1

1 − α2

}

I0

(

2αuiui−1

1 − α2

)

(

1

1 + P
1+ρ

u2
i

)ρ

dui.(A.2)

Substituting vi = ui

u0

√
(1−α2)/2

, 0 ≤ i ≤ N , we have

IN =

∫

vN

...

∫

v1

N
∏

i=1

u2
0vie

−
v2
i +α2v2

i−1

2/u2
0 I0(αu

2
0vivi−1)f(vi)dvi

=

∫

vN

...

∫

v1

N
∏

i=1

u2
0vie

− (vi−αvi−1)2

2/u2
0 e−αu2

0vivi−1I0(αu
2
0vivi−1)f(vi)dvi, (A.3)

where,

f(vi) =





1

1 +
Pu2

0(1−α2)

2(1+ρ)
v2

i





ρ

. (A.4)

For large values of u0, we evaluate the following integral.

I = u2
0ve

− (v−µ)2

2/u2
0 e−u2

0vµI0(u
2
0vµ)ϕ(v)

=

∫ ∞

0

g(v)
1

√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv, (A.5)
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where g(v) ,
√

2πvu0I0(u
2
0vµ)e−u2

0vµϕ(v) and ϕ(v) is differentiable and satisfies 0 ≤
ϕ(v) ≤ 1 and ϕ(v) ∼ O( 1

uρ
0
). Noting that [30]

I0(z)e
−z
√

2πz = 1 +O

(

1

z

)

, z ≫ 1 (A.6)

it is easy to show that g(n)(µ) is bounded for µ ≥ 0 and n ≥ 1. Using Taylor series of

g(υ) about µ, we have

I =

∫ ∞

0

(

g(µ) +
∞
∑

n=1

g(n)(µ)

n!
(v − µ)n

)

1
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv

= g(µ)(1 −Q(µu0)) +

∫ ∞

0

∞
∑

n=1

g(n)(µ)

n!
(v − µ)n 1

√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv

= g(µ)(1 −Q(µu0)) +

∫ µ+ 1√
u0

[µ− 1√
u0

]+

∞
∑

n=1

g(n)(µ)

n!
(v − µ)n 1

√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv + ε

= g(µ)(1 −Q(µu0)) +O

(

g′(µ)√
u0

)

+ ε. (A.7)

where ε can be bounded as follows:

ε
a
≤

∫ [µ− 1√
u0

]+

0

g(v)
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv +

∫ ∞

µ+ 1√
u0

g(v)
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv

b
≤

√
2πu0

∫ [µ− 1√
u0

]+

0

v
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv +

√
2πu0

∫ ∞

µ+ 1√
u0

v
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv

≤ 2
√

2πu0

∫ ∞

µ+ 1√
u0

v
√

2π/u2
0

e
− (v−µ)2

2/u2
0 dv

= 2
√

2πu0

(

Q(
√
u0)

(

µ+
1√
u0

)

+

∫ ∞

√
u0

Q(z)dz

)

c
≤ 2

√
2πu0
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e−
u0
2 +
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2 dz

)

d
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√
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2 u0

((

µ+
1√
u0

)

+
√

2π

)

≤ O
(

u0e
−u0

2

)

(A.8)
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where (a) results from the fact that g(µ) ≥ 0, (b) is valid because I0(µz)e
−µz ≤ 1 for

µ ≥ 0 and z ≥ 0, and (c) and (d) follow from the fact that Q(z) , 1√
2π

∫∞
z
e−t2/2dt ≤

e−z2/2. Moreover, using (A.6), we can write

g(µ) = ϕ(µ)
√

2πµu0I0(u
2
0µ

2)e−u2
0µ2

= ϕ(µ)

(

1 +O

(

1

u2
0

))

. (A.9)

Also, using (A.6) and noting ϕ(v) ∼ O( 1
uρ
0
), we have

g(v) = ϕ(v)

√

v

µ

(

1 +O

(

1

u2
0

))

⇒ O(g′(v)) = O

(

ϕ(v)

2
√
vµ

+ ϕ′(v)

√

v

µ

)

⇒ O(g′(µ)) = O(ϕ(µ)). (A.10)

Using (A.7), (A.8), (A.9) and (A.10), we have

I = ϕ(µ)

(

1 +O

(

1√
u0

))

+O
(

u0e
−u0

2

)

a
= ϕ(µ)

(

1 +O

(

1√
u0

))

, (A.11)

where (a) follows from the fact that ϕ(µ) = O
(

1
uρ
0

)

. Applying (A.11) in (A.3), we have

IN =

∫

vN−1

...

∫

v1

f(αvN−1)

(

1 +O

(

1√
u0

))

(1 −Q(αvN−1u0)) ×

N−1
∏

i=1

u2
0vie

− (vi−αvi−1)2

2/u2
0

−αu2
0vivi−1I0(αu

2
0vivi−1)f(vi)dvi

=

∫

vN−2

...

∫

v1

f(α2vN−2)f(αvN−2)

(

1 +O

(

1√
u0

))2
(

1 −Q(α2vN−2u0)
)

×

(1 −Q(αvN−2u0))
N−2
∏

i=1

u2
0vie

− (vi−αvi−1)2

2/u2
0

−αu2
0vivi−1I0(αu

2
0vivi−1)f(vi)dvi

= · · · =

N
∏

i=1

f(αiv0)

(

1 +O

(

1√
u0
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(

1 −Q(αiv0u0)
)

(A.12)
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Substituting v0 = 1√
(1−α2)/2

, we have

IN =
N
∏

i=1

f

( √
2αi

√

(1 − α2)

)

(

1 +O

(

1√
u0

))

(

1 −Q

( √
2αiu0

√

(1 − α2)

))

=

N
∏

i=1

f

( √
2αi

√

(1 − α2)

)

(

1 +O

(

1√
u0

))

(

1 −O
(

e−u2
0

))

(A.13)

Using (A.4) and (A.13) and noting E0(ρ) = − 1
N

log IN , we conclude Theorem 5.1.
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