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Abstract 

Advances in technology and the introduction of high speed processors have increased the 

demand for fast, compact and commercial methods for transferring large amounts of data. 

The next generation of the communication access network will use optical fiber as a media 

for data transmission to the subscriber. In optical data or chip-to-chip data communication, 

the continuous received data needs to be converted to discrete data. For the conversion, a 

synchronous clock and data are required. A clock and data recovery (CDR) circuit recovers 

the phase information from the data and generates the in-phase clock and data. 

In this dissertation, two clock and data recovery circuits for Giga-bits per second (Gbps) 

serial data communication are designed and fabricated in 180nm and 90nm CMOS 

technology. The primary objective was to reduce the circuit power dissipation for multi-

channel data communication applications. The power saving is achieved using low swing 

voltage signaling scheme. Furthermore, a novel low input swing Alexander phase detector 

is introduced. The proposed phase detector reduces the power consumption at the 

transmitter and receiver blocks.  

The circuit demonstrates a low power dissipation of 340µW/Gbps in 90nm CMOS 

technology. The CDR is able to recover the input signal swing of 35mVp. The peak-to-

peak jitter is 21ps and RMS jitter is 2.5ps. Total core area excluding pads is approximately 

0.01mm2. 
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Chapter 1 

Introduction 

1.1 Introduction 

Advances in technology and the introduction of high-speed processors have increased the 

demand for fast, compact and commercial methods for transferring large amounts of data. 

People and businesses rely increasingly on the Internet for Web access, virtual private 

networks, e-commerce, video streams, training and customer support. According to the 

International Domain Survey made by Network Wizard, the number of hosts advertised in 

the domain name system (DNS) jumped from 4 million on January 1995 to  450 million on 

January 2007 (Figure 1-1)[1]. 

The amount of information traveling over a long haul wide-area-network (WAN) and a 

short reach local-area-network (LAN) is growing at the rate of 200 percent each year [2], 

[3]. 
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Figure 1-1: Host count over years [1]. 

 

A LAN is a computer network covering a small geographic area, like a home, office, or 

group of buildings (distance less than 10km). The combination of several LANs generates a 

WAN, which covers larger distance (more than 100km). The block diagram of a present 

day communication access network is shown in Figure 1-2. The subscribers and local 

exchanges are connected by a LAN, and these LANs are connected to the central office 

through a WAN. Copper cables are used between the subscriber and the local exchange. 

The local exchange includes electronic cross point switches and electro/optical (E/O) 

converters [4].  
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Figure 1-2: Present day data distribution network. 

 

A future communication access network is shown in  

Figure 1-3.  The optical fiber will extend all the way to the subscriber terminal replacing the 

current copper cable infrastructure [3].  Employing the high bandwidth media such as fiber 

optic in local area networks provides the ability of voice and video signal transition.  
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Figure 1-3: Future data distribution network. 

Despite the fact that a completely optical transmission system is the objective, there is still 

need for E/O converters in the implementation of fiber optic transceiver systems. For 

example, an E/O converter is needed to connect electronic equipment, such as a computer 

to the other parts of the optical network. Also, E/O converters are used in moderate-speed 

(less than 10Gbps) single-wavelength fiber optic regenerators [5], [4].  In the high 

bandwidth media such as fiber optic, the electronic circuits dictate the limit of the data 

transmission.  

Meanwhile when networking companies decide on a cabling system, they make a decision 

that is critical to the network infrastructure and long term in its horizon [6]. With the 

ratification of 1000BASE-T in June 1999 (IEEE 802.3 Ethernet Standard for Gigabit 

Ethernet on Category 5 copper), the one Gigabit Ethernet standard is already being 

deployed in large numbers in both corporate and public data networks. The 10 Gigabit 

Ethernet standards are being driven not only by the increase in normal data traffic, but also 

by the proliferation of new bandwidth-intensive applications. The standard for the 10 

Gigabit Ethernet is significantly different in some respects from the earlier Ethernet 

standards, primarily in that it will only function over optical fiber, and only operate in full-

duplex mode, meaning that collision detection protocols are unnecessary. Ethernet can 

now step up to 10 Gbps, however, it remains Ethernet. The packet format and the current 

capabilities are compatible with the old version. The 10 Gigabit Ethernet standard provides 

a significant increase in bandwidth while maintains maximum compatibility with the 
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installed base of 802.3 standard interfaces. At the present, researchers are designing 

building blocks for the 10 Gigabit Ethernet. The 10 Gigabit Ethernet does not obsolete 

current investments in network infrastructure. The standard enables Ethernet packets to 

travel across synchronous optical networking (SONET) links with very little inefficiency 

[7]. 

1.2 A Fiber Optic Transceiver System 

In a typical fiber optic transceiver, the data is converted to light pulses by the transmitter 

and detected by the receiver (Figure 1-4). At the transmitter side of a typical fiber optic 

transceiver, the high speed digital data is converted to high frequency optical pulses with a 

laser driver. These ultra-fast laser pulses are transmitted over the fiber optic channel. An 

ultra-pure glass fiber is used to guide the light.  

 

Figure 1-4: Typical fiber optic transceiver. 

 

At the receiver side of a typical optical transceiver, a photo diode converts the optical signal 

to an electric signal. With a pre-amplifier and a limiter, the voltage pulses, with the 

appropriate logic levels, are produced at the receiver. A clock and data recovery circuit 
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(CDR) extracts an in-phase clock from the data. The extracted clock is used to sample the 

analog waveforms at the optimum sampling time. Figure 1-5 shows the optimum sampling 

time at a given eye diagram. 

 

Figure 1-5: Optimum sample point. 

1.3 Chip-to-Chip Communication 

The desire for higher chip-to-chip bit rates stems from the computer industry. For most of 

the history of the computer, system performance has been limited by the maximum clock 

frequency of the CPU. In recent years, improvements in integrated circuit (IC) fabrication 

technology have led to computer chips running at speeds approaching 4 GHz. This 

frequency is approximately equal to the bandwidth of a typical chip-to-chip channel on a 

printed circuit board (PCB). An important performance-limiting factor is the speed at 

which data can be sent between different chips in the same system. As the operation speed 
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of the chip increased over the past two decades, the aggregate chip-to-chip bit rate was 

typically grown by increasing the number of input/output (I/O) pins. Nevertheless, the the 

aggregate bit rate equals to bit rate per channel multiply by the number of channels [8]. 

1.4 Clock and Data Recovery Circuit 

In order to sample the continuous-time received signal and convert it to a discrete-time 

sequence, the receiver needs an in-phase clock at the symbol rate. In some digital systems 

such as on-board chip-to-chip communication, the clock signal is transmitted separately. 

However, in most digital systems, transmission of a separate clock will increase the expense 

of the system and make it inefficient. Thus, the necessary timing information should be 

extracted from the data at the receiver side. 

1 0 1 1 0

Time

Tb

Data

NRZ

RZ

 

Figure 1-6: NRZ and RZ data stream. 
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If the spectral energy of the incoming data is not zero at the clock frequency, such as 

return-to-zero (RZ) signals (Figure 1-6), the timing reference can be extracted by simply 

passing the data through a band-pass filter with a center frequency equal to the symbol 

rate.  

The autocorrelation function (RX) of the signal with a null in its spectrum at the clock 

frequency, such as non-return-to-zero signals (Figure 1-6) is given by (1-1). 

 
⎪
⎩

⎪
⎨

⎧

>

<−
=

b

b
bX

T

T
TR

τ

τ
τ

τ
0

1
)(   (1-1) 

where 21 tt −=τ and Tb is the bit time. Rx(τ) results into a power spectral density (PSD) 

function given by the following equation [9] 

 
2

)sin(
)( ⎥

⎦

⎤
⎢
⎣

⎡
=

fT
fT

TfS
b

b
bX π

π
  (1-2) 

The power spectral density function of NRZ data is shown in Figure 1-7. If the input signal 

has a null in its spectrum at the clock frequency, such as non-return-to-zero (NRZ) signals 

shown in Figure 1-7, this spectral energy can be generated using a nonlinear element 

(Figure 1-8). 
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Figure 1-7: Power spectral density of random NRZ data. 

 

Edge detectors and squaring circuits are two of the commonly used nonlinearities. The 

required band-pass filter can be realized with an LC-tank or with a surface acoustic wave 

(SAW) filter. This filter is tuned to the desired frequency. Alternatively, this filter can be 

implemented using a phase-locked loop (PLL). The LC-tanks or SAW filters are neither 

tunable nor monolithic. A PLL can lock over a wide tuning range and it is also monolithic, 

making it preferable to the two other filters. This dissertation focuses on the phase-locking 

CDR architectures. 



Chapter 1:  Page:10  Introduction 

 

   

 

Figure 1-8: Open loop CDR. 

1.5 Power Awareness in Serial Data Communication 

Reported serial data transceiver systems consume around 20 to 30mW/Gbps.  Figure 1-9 

shows the power reduction trend over the years, which has been achieved by CMOS 

scaling. 

 

Figure 1-9: Reported power per data rate over years [10]. 

 

On the other hand, the power break down of a typical serial link receiver is shown in 

Figure 1-10. 
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Figure 1-10: Serial data link receiver power break down [10]. 

 

The CDR block dissipates around 30% of the total power consumption of the receiver 

block. High-speed operation in CMOS technology requires high power dissipation. 

Realizing multi-GHz logic in the phase detector block makes the CDR the most power 

consuming block among other blocks of the serial data link receiver. 

In the last decade, cost and integration of CMOS technology encouraged designers to 

design high-speed CMOS circuits. However, designing CMOS transceivers faces multifold 

challenges such as noise, speed, voltage headroom, and substrate noise [9]. 

1.6 Summary and Motivation 

The thesis started with an introduction to data communication and necessity of the CDR in 

data communication system. Next chapter includes the present clock and data recovery 

architectures and the building blocks of CDRs. Chapter 3 is devoted to system level 
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simulation of the different types of CDR systems. Proposed strategies for power reduction 

are disclosed in chapter 4. Chapter 5 presents the experimental results of two low power 

CDR circuits and chapter 6 concludes the thesis and suggested area for future work. 

The main focus of the thesis is on power reduction of a high speed clock and data 

recovery. This goal has been achieved by implementing the CDR circuit in static CMOS 

circuit. However, a conventional static CMOS sampler (DFF) is not able to sense the small 

input swing data. A new architecture for static CMOS DFF, called Switched DFF (SDFF) 

has been introduced in chapter 4, and it is able to sample low input signal swing data. 

Future more to reduce the effect of substrate noise on VCO, a new architecture for low 

power single ended ring VCO has been disclosed on Chapter 4. The novel low substrate 

noise VCO uses current time sharing technique to keeps the switching current constant 

during operation and results in lower ground rail variation. The jitter performance is 

reduced due to less ground variation. The SDFF and low substrate noise VCO have been 

implemented in two different CMOS technology and the implementation results are 

presented in Chapter 5. 
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Chapter 2 

CDR Architecture 

2.1 Introduction 

The clock and data recovery (CDR) circuit architectures are categorized in two major 

groups; open-loop CDRs, and phase-locking CDRs [1].  

2.1.1 Open-Loop CDR 

The spectrum of an NRZ sequence does not carry a frequency tone at the data rate (Figure 

1-7). However, the information about the frequency of the data can be extracted from the 

spacing between its transitions. These transitions appear as the rising and falling edges of 

the data signal. If a high-speed data sequence is passed through a differentiator, the 

resulting signal will carry positive and negative pulses for rising and falling edges of the 

clock signal, respectively. This differentiated signal does not provide a strong spectral line 

at the frequency of the data because the polarity of these pulses is random [1]. 
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Figure 2-1:  Open-Loop CDR Architecture. 

 

 
 

Figure 2-2: Signals of Open-Loop CDR. 
 

Figure 2-1 shows the open-loop CDR architecture. If the output of differentiator is passed 

through the rectifier, all edges will be converted to positive pulses, as shown in Figure 2-2 

(no random polarity).There are some limitations for using this type of CDR in high-speed 

data commutation systems. Implementing a narrow band band-pass filter in silicon is a 

challenging task due to the process variation of fabrication. Different architectures, shown 

in Figure 2-3, had been used to implement the open loop CDR. 
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Figure 2-3: Different architecture for Open loop CDR [2]. 

 

2.1.2 Phase-Locking CDR  

A simple block diagram of a PLL is shown in Figure 2-4. The Voltage-Controlled 

Oscillator (VCO) attempts to produce a signal, Y(t), which tracks the phase of the input, 

X(t). The phase detector (PD) measures the phase error between X(t) and Y(t). This phase 

error is passed through a low-pass filter (LPF), thus producing the control voltage for the 

VCO. In the locked state, the output phase tracks the input phase with a constant phase 

difference. This constant phase error depends on the structure of the LPF and the PD. 

The structure of the PLL is simple, but it is difficult to analyze. This is because the system 

is inherently nonlinear. For small phase errors, however, a linear model for studying the 
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PLL can be used (Figure 2-5). The behavior of an unlocked PLL is very nonlinear and 

complicated to analyze. Further work can be found with details in [3], [4]. 

 

Figure 2-4: Phase-Locking PLL architecture. 

 

 

Figure 2-5: PLL linear model. 

 

he PD is the most nonlinear block of the CDR. Most PDs have linear relationships 

 

T

between their average outputs and phase difference inputs for small phase errors (ignoring 

digital PDs) [3]. Using a simple feedback analysis, the ratio of the VCO phase to the input 

phase of a PLL that is, the jitter transfer function, can be obtained as: 

)(1
)(

)(
sHKK
sHKK

sH
LPVCOPD

LPVCOPD

+
=   (2-1) 

where KPD is phase detector gain, KVCO is the VCO constant and HLP(s) is loop filter 

transfer function.  
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mperature and process variations can cause significant changes in the 

The performance of a CDR is very dependent on its jitter transfer function and hence the 

choice of LPF. Te

VCO free-running frequency. These changes could be large such that the PLL may not 

achieve the locked state. The acquisition behavior of a CDR can be improved by 

employing a Frequency Detector (FD). In Figure 2-6, a block diagram of an aided 

acquisition PLL with frequency detector is shown. The FD must be turned off whenever 

the frequency error is small [5], which is controlled via a lock detector. Complexity of the 

circuit and extra required blocks are major drawbacks of this architecture. 

 
 

Figure 2-6: Aided Acquisition with Frequency Detector. 
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2.2 Pre-Amplifier and Limiter 

The signal traveling through the channel (wire or fiber) experiences loss before reaching a 

receiver. Therefore, the received signal needs to be amplified at the receiver before 

sampling and clock recovery. The amplifier must have a minimal bandwidth to reduce the 

total integrated noise. However, the limited bandwidth introduces intersymbol interference 

(ISI). Accordingly proper bandwidth selection is required. Nevertheless, the pre-amplifier 

must have enough gain to overcome the signal loss and make the signal level detectable. 

Thus, at high speed of operation and low supply voltage realizing pre-amplifier is a crucial 

task. Most of the limiters are designed using distributed amplifier concept [6], [7]. The 

theory of distributed or traveling-wave amplification using discrete transistors is a 

technique whereby the gain–bandwidth product of an amplifier may be increased. In this 

approach, the input and output capacitances of the transistors are combined with lumped 

inductors to form artificial transmission lines (TL). These lines are coupled by the trans-

conductance of the devices. The amplifier can be designed to give a flat, low-pass response 

up to very high frequencies [8]. A distributed integrated circuit design is one of the 

effective approaches for the design of optical communication ultra-wideband circuits, 

particularly in CMOS technology [9]. Early distributed amplifiers were implemented using 

vacuum tubes and high-speed GaAs MESFETs [10]-[14]. Wide-band pre-amplifiers and 

gain-controlled amplifiers (or limiting amplifiers) are the key building blocks of optical 

receivers [15]. Since distributed amplifiers (DAs) have no gain-bandwidth trade-off, unlike 
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other amplifier configurations, they can offer wide-band amplification for high speed 

application. 

Conventional microwave DAs are constructed of two TLs that connect the drain and gate 

terminals of several field effect transistors. The CMOS interconnects with typical length 

(less than a few hundred micro meters) are not considered to be TLs at frequencies up to 

80 GHz. Thus, the TLs are artificially constructed using a ladder of lumped-element 

inductors and capacitors in Figure 2-7. 

 

Figure 2-7: Distributed amplifier. 

 

The intrinsic capacitors of transistors – the main cause of bandwidth limitation – are 

separated by series on-chip inductors to form a low-pass filter topology. This structure 

provides a relatively low gain due its additive nature of the paralleled gain cell, but achieves 

wideband amplification due to distribution of the parasitic capacitors in a low-pass LC 

circuit topology. The main drawback of distributed amplifier topology is its large die area 
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because it requires several on-chip inductors.  Similar to two cascaded low-pass LC filters, 

the maximum bandwidth of a DA is limited to the cutoff frequencies of the artificial gate 

and drain TLs. In practice, the bandwidth is further limited by the resistive loss of the TLs 

and by the output resistance of the amplifier cell gains. 

2.3 Phase Detector 

Phase detectors generate a DC component proportional to deviation of the sampling point 

from center of data cycle [2]. In this section different architecture for phase detector is 

explained. 

2.3.1 Linear and Binary Phase Detector 

Phase detectors for random NRZ data can be divided into two major groups: linear and 

digital (binary). For the linear phase detector, each data transition produces an error pulse 

whose width is linearly proportional to the phase error between the data edge and the clock 

edge. For small phase errors, the resulting pulse width will be small. This phenomenon 

makes the circuit design complicated and is often not practical in some technologies. 

A digital phase detector produces only two states: clock up and clock down. If no data 

transition happens, the phase detector keeps its former state and may generate a large 

amount of data pattern dependent jitter. A three-state phase detector has zero output in the 

absence of any data transitions. This keeps the charge-pump output unchanged, and, 

hence, produces less jitter. During the locked state, the digital phase detector produces up 
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and down signals, which are random in nature, with an average that keeps the phase error 

zero. These random up and down pulses will increase the phase noise of the recovered 

clock. 

2.3.1.1 Hogge Linear Phase Detector 

The Hogge phase detector [16] is popular in the literature and applications. Several 

modified versions of this phase detector have also been reported [17]. Figure 2-8 depicts 

the block diagram of Hogge phase detector. The data signal is sampled at clock with a D-

flip-flop (DFF) to generate the error signal. The second DFF samples the error signal at 

opposite phase of the clock to produce the reference signal. The width of the reference 

signal is fixed at half of the clock period. The width of the error signal is proportional to 

the phase difference between the clock edge and the data edge.  

Q

QSET

CLR

D

DFF

Q

QSET

CLR

D

DFF

Datain

Clock

+
-

Dataout

 

Figure 2-8: Hogge linear phase detector. 
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The DC value of the difference between the error signal and reference signal is linearly 

proportional to the phase error. In the absence of any data transition, both error and 

reference signals become zero and the charge-pump output stays constant. 

2.3.1.2 Alexander’s Binary Phase Detector 

In a binary phase detector, the detected phase error is digitized. If the clock edge is leading 

the data edge, the down signal becomes high, regardless of the amount of leading phase. If 

the clock edge is lagging behind the data edge, the up signal becomes high, and the down 

signal becomes low. If no data transition occurs, the PD keeps its previous state. This 

phenomenon increases the recovered clock jitter for long periods following ones or zeros. 

Loop dynamics of a PLL with a binary phase detector are very complicated to analyze. 

Simplified analysis can be found in [21], [22]. 

A three-state PD adds a tri-state to the binary PD. Up and down signals are set to be pulses 

with fixed width. In case of a data transition, proper up or down pulses are generated. If no 

data transition happens, no up or down pulse is generated. In this case, the charge-pump is 

off and the charge on the LPF capacitors is not changed. This will keep the VCO control 

voltage constant and no excess jitter is produced. 

A simple algorithm for implementing a binary PD suitable for the NRZ data type was first 

suggested by Alexander [18]. A block diagram of Alexander’s PD is shown in Figure 2-9. 

With proper selection of the PD logic, the Alexander’s binary PD can be modified to a 
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three-state PD [23]. Table 2-1 shows the proper logic for a three-state Alexander phase 

detector. 

 

Figure 2-9: Alexander’s binary phase detector. 

 

Table 2-1: Logic for a three-state Alexander Phase Detector 

A B C  

0 1 0 Clock is fast 

1 0 1 Clock is fast 

0 1 1 Clock is slow 

1 0 0 Clock is slow 

 

2.3.1.3 Pottbacker Binary Phase Detector 

The Alexander phase detector samples the data signal on clock0 and clock180 edges. Then 

the PD logic block decides if the clock is early or late. As opposed to Alexander’s PD, 
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Pottbacker’s PD samples the clock with the data signal [5]. A simplified block diagram of 

this phase detector is shown in Figure 2-10. 

 

Figure 2-10: Pottbakcer’s binary phase detector. 

2.3.2 Full-Rate and Fractional-Rate Phase Detector 

The architecture of the closed-loop CDR can be grouped into two main categories: full-rate 

and fractional-rate.  The idea of fractional-rate phase detector started by half-rate phase 

detector. Figure 2-11 shows the signals (clock and data) for full-rate and 1/2 – rate phase 

detector. There have also been some half-rate linear phase detectors reported in papers 

[20], [28], [29].  
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(a) 

 

 
(b) 

 

Figure 2-11: Waveforms for full-rate and half-rate CDR: (a) full-rate, (b) half-rate. 

 

In the fractional-rate phase detector the clock frequency is a fraction of the input data rate, 

hence, the phase detector can be implemented in a technology with a lower bandwidth. 

Using a fractional-N rate phase detector has the advantage of reducing the required clock 

frequency by a factor of N. Furthermore, without additional circuitry, the implementation 

provides a 1:N demultiplxing that simplifies the design of the demultiplexer which is 

usually needed at the output of a serial receiver. 
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In design of a fractional rate CDR the major concern is the clock duty cycle mismatch that 

causes an intrinsic static phase error between the clock and the data optimum sampling 

point [27]. 

2.3.2.1 Half-Rate Alexander Phase Detector 

A half rate PD uses a clock with frequency equals to half of the bit rate. The key idea in a 

half-rate PD is to utilize the in-phase and quadrature phases of the half rate clock signal. A 

block diagram of a half-rate Alexander PD is shown in Figure 2-12. 

 

Figure 2-12: Half-Rate Alexander phase detector. 
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The proper selection of the PD logic is important for the operation of the circuit in high 

bit rates. The logic should be simple in order to decrease the delay in the loop. Also, the 

logic circuits should have a symmetric structure to make the delays in the PD matched. 

Haueneschild in [24] uses a complicated logic that increases the delays in the PLL loop 

(Figure 2-13). Haueneschild’s phase detector has also been implemented in CMOS 

technology [21]. Ramezani [26] implements a half-rate Alexander PD with a simple logic 

(Figure 2-14). The AND gates inputs of this circuit are not symmetric, and, hence, it is 

difficult to match the signal paths through the AND gate. 

 

Figure 2-13: Haueneschild’s phase detector. 
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Figure 2-14: Ramezani’s half-rate phase detector. 

 

2.3.2.2 Anderson’s Phase Detector 

A binary version of Anderson’s phase detector [19] was used by Savoj in [30]. This phase 

detector (shown in Figure 2-15) consists of two double-edge triggered DFFs. If during any 

two sequential in-phase clock edges, any data transition happens, the output of the upper 

DFF complements. Note that this transition is in-phase with the clock and triggers the 

output DFF. 

The output DFF, using the information provided by DFF2, makes the up or down decision. 

Note that DFF2 samples the data at quadrature clock edges. If a data transition happens, 
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the output of DFF2 identifies whether the data has gone from either high to low or from 

low to high. 

 

Figure 2-15: Anderson’s half-rate phase detector. 

 

Savoj’s version of Anderson’s phase detector suffers from its two-state behavior. If no data 

transition occurs, the phase detector keeps its previous state and continually outputs either 

up or down signal. This causes a significant amount of data-dependent jitter. This phase 

detector can be modified as shown in Figure 2-16 [28]. This modified version of 
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Anderson’s phase detector is a three-state PD and produces less data-dependent jitter. A 

linear version of Anderson’s phase detector has also been implemented [20]. 

This phase detector utilizes sample and hold (SAH) blocks instead of DFF and hence has a 

linear behavior. 

 

Figure 2-16: Modified half-rate Anderson’s phase detector 

2.3.2.3 Binary 1/4 Rate-Phase Detector 

Another fractional phase detector was published in [25], the proposed architecture employs 

a clock whose frequency is 1/4 of the full-rate phase detector frequency. This phase 
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detector (shown in Figure 2-17) is very similar to Alexander phase detector. The PD 

compares every two consecutive samples by means of an XOR gate, generating a l if an 

edge has occurred. To determine the polarity of the phase error from three consecutive 

samples, the outputs of two XORs are applied to a voltage to current (V/I) converter, 

which produces a net current if its inputs are unequal. In lock condition, every other 

sample serves as a retimed and demultiplexed output. 

 

Figure 2-17: Lee’s 1/4 Rate-Phase Detector. 

 

It is important to note that, in the absence of data transitions, the DFFs generate equal 

outputs, and each V/I converter produces a zero current, in essence presenting a tri-state 

(high) impedance to the oscillator control. This is in contrast to other bang-bang topologies 

[32], [29] that continue to apply a high or low logic level to the VCO during long runs. 

Therefore, it creates a potentially high jitter at the output [25]. 
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2.3.2.4 Linear 1/8-Rate Phase Detector 

Figure 2-18 shows the block diagram of the linear 1/8-rate PD. It consists of eight data 

sampling latches, a data and clock transition (DCT) detector, and a DCT generator. The 

linear 1/8-rate PD accomplishes three tasks with no systematic offset: data transition 

detection, linear phase error detection, and data regeneration. In the latch stage, the 

incoming NRZ data stream is sampled in each bit at every rising and falling edges of the 

four half-quadrature clocks. Then, the DCT detector generates the four DCT signals 

(DCT0–DCT3) and provides the retimed data output (D0-D3) which are the 1:4 

demultiplexed data. With the incoming four DCT signals, the DCT generator produces the 

DT and CT signals to determine the phase error between the data and the clock [31]. 

 

Figure 2-18: Linear 1/8 Rate-Phase Detector. 



Chapter 2: CDR Architecture  Page:35 

 

   

2.3.2.5 Binary 1/8 Rate Phase Detector 

The structure of the proposed 1/8 rate PD is shown in Figure 2-19. The input data signal is 

applied to 16 master/slave DFFs. Sixteen different clocks are used (together with their 

complements), where each clock is offset by 22.5 degrees with respect to the adjacent 

clocks. The phase detector is an improved version of the digital 1/4-rate phase detector 

published in [25]. Figure 2-20 shows a 10Gbps 1/8-rate binary phase detector characteristic 

in 0.18µm CMOS process. 

 

Figure 2-19: Proposed binary 1/8-rate-phase detector. 
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Figure 2-20: 10Gbps phase detector characteristic. 

 

2.4 Voltage-Controlled Oscillators 

A Voltage-Controlled Oscillator (VCO) generates the clock signal in a CDR circuit. The 

design of the VCO directly impacts the jitter performance of the CDR system. The two 

common methods for designing VCOs for CDR applications are the LC topology; and  the 

ring oscillator. 

2.4.1 LC Based VCO 

The majority of the LC oscillators have a structure similar to the one shown in Figure 2-21 

[1], [34], [27]. Due to the narrow bandwidth of the LC-tank, the oscillator inevitably has a 

frequency that is equal to the tuned frequency of the tank as long as the gain of the circuit 

is larger than one. To tune the oscillator, a varactor is used in conjunction with LC 
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structure. Changing the control voltage (VC) changes the varactor capacitance and it results 

in variation of the LC oscillator center frequency. 

 

Figure 2-21: Schematic of an LC-tank oscillator. 

 

With an LC based VCO it is possible to achieve frequencies close to fMAX (Transistor cut-

off frequency). The disadvantages of using an inductor are the large chip area and the 

process dependency. Furthermore, this type of VCOs does not provide a wide frequency 

range to compensate for process and temperature variations and usually needs design and 

fabrication iteration to achieve the desired frequency range. An LC-based VCO is suitable 

for application with strict phase noise or jitter requirements such as SONET regenerators 

[34]. This structure is not economical for LAN applications. 
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2.4.2 Ring Oscillator VCO 

A ring oscillator is formed by using a cascade of odd number of single-ended gain stage in 

a loop. At the frequency of oscillation total phase shift is 180° and the loop gain of the 

system is larger than one. An even number of differential delay cells is commonly used for 

the ring oscillator VCOs to provide quadrature signals in communications circuits. To 

make the total phase shift of 180°, in an even number differential delay cells, it is necessary 

to flip the output of one of the delay cells before closing the loop. The schematic of a four-

stage differential ring oscillator is shown in Figure 2-22. Parasitic capacitors are usually used 

with active resistors to provide the phase shift. Control voltage changes the size of the 

active resistor to change the phase shift and as a result the frequency variation of the 

oscillator. A ring oscillator VCO has a lower center frequency and larger phase noise 

compared to an LC based VCO. However, the ring oscillator consumes less chip area and 

is more suitable for implementation in a CMOS process. Also, the operating frequency of 

the ring oscillator VCO can be changed faster than the LC one. This makes the ring 

oscillator VCOs preferable in a binary CDR, where the small delay of the closed loop 

results in less jitter generation. A ring oscillator VCO is a better choice for applications that 

do not have strict phase noise or jitter transfer requirements such as LAN [33]. 
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Figure 2-22: Schematic of a four-stage differential ring oscillator. 

 

2.5 Loop Filter and Charge pump 

PLLs based on charge-pumps exhibit a number of desired features. First, they do not 

exhibit false lock. Second, when the system is in lock, the phase error between the VCO 

output and the input data becomes almost zero [35]. A simple block diagram of a charge-

pump PLL [37] is shown in Figure 2-23. The phase detector produces up or down signals, 

and the charge-pump injects or extracts the charge stored across the capacitors in the LPF. 

If the phase detector can not make correct decision about the phase error, no up or down 

signals should be generated. In this case, the charge-pump does not change the charge of 

the LPF capacitors, and, hence, leaves the VCO control voltage unchanged. 



Chapter 2: CDR Architecture  Page:40 

 

   

 

Figure 2-23: Simple Charge-Pump and Loop-Filter. 

 

The charge-pump PLL loop dynamics can be simplified as follows. It is necessary to 

assume that the phase error between the VCO output signal and input signal does not vary 

rapidly. In other words the frequency error is small. In this case, the average current 

flowing through LPF will be: 

 Ch
in

Avg II
π
φ

2
∆

=  (2-2) 

where the ICh is the charge pump current. Without considering the effect of C2, which is 

usually very small compared to C1, the voltage over the LPF will be: 

 
1
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+
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The necessary stabilizing zero is provided by the resistor. Every time the charge-pump 

switches are turned on, the charge-pump current flows through the resistor, which is in 

series with the capacitor. This creates a ripple in the VCO control voltage. This voltage 

ripple will then modulate the VCO and add jitter to the recovered clock. The resistor in the 

LPF is necessary for the PLL loop stability and can not be deleted. In order to suppress 

these ripples, a smaller capacitor (C2) is added. The value of C2 is normally 1/20 of C1 or 

even smaller [28]. Introducing this second capacitor decreases the jitter significantly, 

however, it makes the CDR a third order system. Because C2 is small, the pole due to this 

second capacitor is far from the loop resonant frequency, and second order approximation 

for the loop transfer function is valid [17], [36].  
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Chapter 3 

Analysis of  CDR Circuit 

3.1 Introduction 

The PLL based CDR is a non-linear system and mathematical analysis is quite difficult. A 

non-linear theory that could adequately explain the behavior of the loop has not been 

published yet. The analog CDR analysis can be categorized in two groups: 

1) Analog CDR: when the phase detector is linear and the loop filter is analog circuit. 

2) Hybrid CDR: when the phase detector is binary and the loop filter is analog circuit. 
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3.2 Analog CDR 

An analog CDR (analog PLL) can be classified based on the number of integrator and the 

loop filter order. In general, type of PLL is dictated by number of integrators in the loop 

plus one [1].  

3.2.1 Analog CDR Type I 

The analysis of analog CDR (or analog PLL) can be divided in two conditions, locked 

condition and un-locked (tracking) condition. 

In the locked condition, a CDR can be analyzed by approximating each block with a linear 

transfer function.  

The time domain function of a VCO is given by: 

 CVCOcCo VKfVf +=)(  (3-1) 

As the phase detector operates in phase domain, the VCO phase domain equation can be 

derived as: 

 CVcCo VKV += ωω )(  (3-2) 

The integral of ωo over the time results in the phase of the VCO. 

 CVo VK ∆=∆ω  (3-3) 

 ∫∫ ∆=∆=∆ dtVKdt CVoo ωϕ  (3-4) 



Chapter 3:  Page:49  Analysis of CDR Circuit 

 

   

Using Laplace transform (3-4) can be derived as 

 
s
K

sV
s

sH V

C

o
VCO ==

)(
)(

)(
ϕ

 (3-5) 

On the other hand, phase domain function of a linear phase detector can be given by: 

 eorPD KK ϕϕϕϕ ϕϕ =−= )(  (3-6) 

then 

 ePD KsH ϕϕ=)(  (3-7) 

Nevertheless, the low pass filter transfer function is  

 

LPF

LPF s
sH

ω+
=

1
1)(  (3-8) 

Bringing these equations into play results a linear model for analog PLL in lock condition 

(shown in Figure 3-1). 

 

Figure 3-1: Linear model of an analog CDR. 
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The open loop transfer function, G(s), can be derived as: 
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or  
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KsG

LPF
+

=

ω
2

1)(  (3-10) 

where K is the loop gain. 

 VKKK φ=  (3-11) 

According to the (3-9, 3-10, and 3-11) there is one pole at s = -ωLPF and another at s = 0. It 

can be observed that for low frequency (small s) open loop gain goes to infinity due to 

existing of a pole at origin. In this case, the feedback circuit passes the small changes in the 

φi to the φo. In other words, if the input excess phase varies very slowly, the output excess 

phase “track” it. However, if the transients in φi have decayed, then the change in φo is 

precisely equal to the change in φi [2]. 

Bode plot of an analog CDR based on (3-10) is shown in Figure 3-2. The closed loop 

transfer function can be written as: 

 
)(1

)()(
sG
sGsH LoopClosed +

=−  (3-12) 
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Figure 3-2: Bode plots for analog CDR. 

 

Equation 3-13 can be rewrite in the form of 

 22 2
)(

nn

n

ss
sH

ωξω
ω

++
=  (3-14) 

where 

 VLPFn KKϕωω =   (3-15) 
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KKϕ
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=  (3-16) 

The close loop transfer function has two poles (3-17). If ξ > 1, both poles are real and 

system is over-damped. If ξ < 1, system is under-damped and the poles are complex 

furthermore the response to an input frequency step ωin=∆ωu(t) is equal to 

 )()1sin(
1

11)( 2

2
tutet n

t
out

n ωθξω
ξ

ω ξω ∆
⎥
⎥
⎦

⎤

⎢
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−= −  (3-17) 
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Figure 3-3: Step response for an analog CDR.  
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Phase error transfer function can be derived as: 

 22

2

2
2

)()(
nn

n

i

e
e ss

ss
ssH

ωξω
ξω

ϕ
ϕ

++

+
==  (3-18) 

Above equations show K=Kφ.KV and ωLPF cannot be chosen independently. As phase 

error and damping factor are inversely proportional to K; lowering the phase error 

inevitably makes the system less stable. These constraints translate to significant phase 

error between the input and the output as well as a narrow capture range [3]. In summary 

the analog CDR type-I suffers from trade-offs between the settling time, the ripple on the 

control voltage of the oscillator, the phase error and stability [2]. 
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Figure 3-4: Bode diagrams of the error transfer function. 
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3.2.2 Analog CDR Type-II 

The analysis of Analog CDR Type-I (section 3.2.1) shows some shortcomings such as 

limited acquisition range, and trade-offs between damping factor and ωLPF. Analog CDR 

type II is used in many modern applications to have more freedom to chose the PLL 

parameters such as damping factor and ωLPF separately.  Figure 3-5 shows a charge pump 

with associated capacitor. 

 

 

Figure 3-5: Charge pump and capacitor. 

 

The linear model for analog CDR with phase detector and charge pump loop filter is 

shown in Figure 3-6. 
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Figure 3-6: Analog CDR linear model block diagram. 

 

The transfer functions of phase detector, charge-pump and loop filter are given by: 

 
s
KsH I

LPF =)(  (3-19) 

where 

 CKI
1=  (3-20) 

and 

 πφ 2
CPIK =  (3-21) 

The open loop transfer function is derived as: 

 2)(
s
KKK

sG IVCO ϕ=  (3-22) 
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Therefore, close loop transfer function is equal to 

 
IVCO

IVCO

KKKs
KKK

sH
ϕ

ϕ

+
= 2)(  (3-23) 

Figure 3-2 shows Bode diagrams for analog CDR with charge pump. 

 

Figure 3-7: Bode diagram for analog CDR with charge pump. 

 

As Bode diagrams show, the two poles results in -180˚ phase shift allowing the system to 

oscillate at the gain cross over frequency. To make the system stable we need to decrease 

the absolute phase shift and one can add a zero to the system. 

Figure 3-8 shows the block diagram of PLL based CDR with the new loop filter. 
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Figure 3-8: charge pump with new loop filter. 

 

The modified loop filter has the transfer function of  

 
s
KKsH I

pLPF +=)(  (3-24) 

then the open loop transfer function is changed to 
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Therefore, the close loop transfer function is equal to 
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where 

 IVCO KKKK ϕ=  (3-27) 

 
p

I

K
Kz =  (3-28) 

Bode diagrams for two different systems one with zero and one with added zero are shown 

in Figure 3-9. It shows that added zero is able to compensate the phase shift and makes the 

system stable. 
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Figure 3-9: Bode diagrams for system with zero and without zero. 
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Equations (3-25) and (3-26) can be rewritten in the form of 

 2
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=  (3-29) 

and  
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where 
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The closed loop transfer function has two poles and stability analysis is quite similar to 

type-I. However, Figure 3-10 demonstrates that increasing the open loop gain (K) (3-27) 

increases the phase margin and system moves toward more stability [4]. 
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Figure 3-10: Open loop transfer function with different loop gains. 
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Figure 3-11: Close loop Bode diagram with different loop gains. 
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Figure 3-12: Step response to close loop system with different loop gains. 

 

The compensation method (adding a zero) suffers from a critical draw back. Since the 

charge pump drives the series combination of resistor and capacitor, each time a current is 

injected into the loop filter; the control voltage experiences a large jump. Even in lock 

condition there could be an injected current, as a result of mismatch between up and down 

current sources and clock feed through.  A second capacitor (CE) in parallel to the RC 

network should be added to the loop to suppress the initial step. Now the loop filter is 2nd 
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order, yielding a 3rd order PLL-based CDR. If CE is about one-tenth of CCP, the closed-

loop time frequency remain relatively unchanged [2]. 

The error transfer function can be derived as 

 22

2

2
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nn
E ss

ssH
ωξω ++

=  (3-33) 
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Figure 3-13: Bode diagrams for error transfer function. 

 

Bode diagram of the error transfer function (Figure 3-13) shows the high frequency noise 

(jitter) from the VCO can travel to the output. Figure 3-14 conceptually summarizes the 

response of PLL based CDR to input jitter and VCO jitter. Depending on the application 
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one or both sources may be significant, requiring an optimum choice of the loop band 

width. 
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Figure 3-14: Filtering the input jitter and VCO jitter.  

 

3.3 Hybrid CDR 

The hybrid CDR employs the binary phase detector and analog loop filter to recover the 

synchronous clock with input data. The hybrid CDR can be categorized based on the 

number of the integrator in the loop as follows. 
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3.3.1 First order hybrid CDR 

The 1st order hybrid CDR employs the binary (Bang-Bang) phase detector. The binary 

phase detector is able to provide only early or later phase information. This non-linearity in 

the loop structure leads to an oscillatory steady-state and rendering the circuit un-

analyzable with standard linear PLL theory [5]. 

The block diagram and linear model of a 1st-order hybrid CDR are shown in Figure 3-15 

and Figure 3-16, respectively. 

 

Figure 3-15: The first order hybrid CDR. 

 

Figure 3-16: Phase linear model of the 1st order hybrid CDR. 
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According to [5] and [6], the θn is defined as the difference between the data phase θd and 

the VCO phase θV. The frequency of the incoming data differs from the VCO center 

frequency by fδ . The phase detector is binary phase detector therefore 

 )]([ nen tsign θε =  (3-34) 

then the VCO frequency is given by 

 bbnnomVCO fff ε+=  (3-35) 

where fbb is frequency variation range of the VCO and typically is around 0.1% of fnom. 

The loop time domain equation can be derived as 

 )]()([)()( 1 nVndbbnVnV ttsigntt θθθθθ −+=+   (3-36) 

and the lock range is  

 bbbb fff +≤≤− δ  (3-37) 

Meanwhile, the peak-to-peak jitter is given by 

 
nom

bb
PP f

f
J π4=  (3-38) 

Equation 3-35 is a starting point for designing the CDR.  

Figure 3-17 depicts simulink simulation results showing the locking range and jitter in lock 

condition. CDR is in locking range and generates relatively small jitter at the output around 

time interval of 150 to 250. However, when the input frequency passes the upper limit 



Chapter 3:  Page:66  Analysis of CDR Circuit 

 

   

(1.0005 GHz) the CDR is not able to lock to the frequency and results in output jitter 

growth. 
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Figure 3-17: Simulink simulation of 1st order hybrid CDR. 

 

3.3.2 Second-order hybrid CDR 

The first-order hybrid CDR has only one degree of freedom. All the parameters are 

controlled by one parameter, fbb. To overcome this problem, employing a second control 

loop to dynamically adjust the nominal VCO frequency is suggested. 
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The schematic of a second-order hybrid CDR is shown in Figure 3-18 [5] and 

corresponding phase model block diagram is shown in Figure 3-19. 

 

Figure 3-18: Block diagram of the 2nd-order hybrid CDR [6]. 

 

 

Figure 3-19: phase model for 2nd-order hybrid CDR. 
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The loop equation can be derived as 

 ⎥
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 )]()([ nVndn ttsign θθε −=  (3-40) 

By adding second path to system, now the VCO frequency is a function of two paths: 

integral path and bang-bang (proportional) path. The second integral makes the system 

vulnerable to oscillate. Walker in [5] introduced a stability factor for the system as ξ. 
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If ξ is greater than 1, the proportional and integral path can be considered non-interacting 

as long as system is not in slew rate limiting.  If ξ is less than 1, the proportional path does 

not stabilize the system and large low frequency oscillation may occur [7]. 
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Chapter 4 

Power Reduction Strategies 

4.1 Introduction 

Advances in technology and the introduction of high-speed processors have increased the 

demand for fast, compact and commercial methods for transferring large amounts of data.  

 

Figure 4-1: power vs. performance over years [1]. 
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Meanwhile, the higher data rate dictates higher power consumption, while thermal and 

battery-life requirements are demanding lower power consumption.  

Figure 4-1 shows the power density and performance over the years.  The figure indicates 

power density (Max power per cm2) grows exponentially. However, according to Figure 

4-2, cooling cost is considerable as power is increasing. As described in Section 1.5, CDR is 

a power hungry device. In this chapter, the two proposed methods for power reduction in 

CDR are discussed.  

 

Figure 4-2: Cooling cost vs. power dissipation [2]. 

 

4.2 Static CMOS Logic vs. CML 

Almost all high-speed CMOS CDRs are based on current-mode logic (CML) topology. 

When operating in the high-speed switching domain, the performance of conventional full 

swing CMOS degrades and causes the functional failure at high speeds. 
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Meanwhile, by migrating to the CML we need to dissipate huge amount of power to reach 

Gbps functional bit rates. Furthermore, CML inherently has smaller SNR compared to the 

conventional CMOS due to the small noise margin of CMLs. Advances in technology and 

CMOS scaling in recent years enables high-speed operation of conventional CMOS 

circuits. Employing standard CMOS circuit to construct a high-speed clock and data 

recovery circuit has some pros and cons. 

Power consumption reduction can be achieved due to naturally low power consumption of 

standard CMOS circuits. However, standard CMOS circuit operates at full swing signal 

regime. Full swing operation in mixed-mode circuit results in a high substrate noise, which 

is not a problem in CML due to the constant current switching. 

On the other hand, the input data needs to have high swing to be able to be detected by 

standard CMOS sampler. 

To overcome these two dilemmas two strategies have been proposed: 

1) Low input swing data standard CMOS sampler 

2) Low substrate noise ring VCO 

These two strategies are discussed in following and experimental results are presented in 

Chapter 5.   
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4.3 Low Input Swing Data Sampler 

Static memories use positive feedback to create a bi-stable circuit, a circuit having two 

stable states that represent 0 and 1. The basic idea is shown in Figure 4-3, which shows two 

inverters connected in cascade along with a voltage-transfer characteristic typical of such a 

circuit, shown in Figure 4-4 [5]. 

 

Figure 4-3: Basic bi-stable circuit. 

 

Figure 4-4: bi-stable circuit voltage transfer characteristic.  

 

 



Chapter 4:  Page:74  Power Reduction Strategies 

 

   

4.3.1 Normal D- Flip Flop  

Normal master-slave D-flip flop (NDFF) can be implemented by two latches. Figure 4-5 

shows the NDFF block diagram (For simplicity the single-ended block diagram is shown). 

SM1, SM2, SS1 and SS2 are the switches and Inv1 to Inv4 are the inverter cells. 

 

 

Figure 4-5: Block diagram of master slave D-Flip-Flop. 

 

Figure 4-6 shows schematic diagram, all the switches are minimum size and for inverters 
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4-7, where Min PW is the minimum pulse width. C2Q F and C2Q R stand for clock-to-Q 

(output) delay in falling and rising edge of output, respectively. 
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Figure 4-6: Schematic diagram of master-slave D-Flip-Flop. 
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Figure 4-7: NDFF parameters vs. input data swing. 
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4.3.2 Switched D- Flip Flop  

Figure 4-4 shows only three possible operation points (A, B, and C) for a latch cell. This 

circuit has only two stable points, and point C owing to gain of more than 1 is meta-stable 

operation point. Assume that latch is biased at point C. A small swing of input data can be 

detected by this latch. At the meta-stability point, C, input voltage and output voltage are 

equal. To bias and keep the latch at meta-stability operation, input and output can be 

connected together. Figure 4-8 shows the block diagram of proposed switched DFF 

(SDFF) (For simplicity the single-ended block diagram is shown). 

 

Figure 4-8: Single-ended SDFF block diagram. 

 

As it is shown in Figure 4-9, before sampling the data by master latch, switch SR is closed 

for short period of the time (300 ps) and it makes master biased in meta-stability point. At 
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the time of sampling, switch SR will be open and master latch continues normal sampling 

procedure. Figure 4-10 shows the block diagram of a differential switched D-flip flop. 

Sampling EvaluationClock

Reset pulse 

Time  

Figure 4-9: Reset pulse timing wave form in the respect to clock 

 

 

Figure 4-10: Differential SDFF block diagram. 

 

Schematic diagram of differential-ended SDFF is shown in Figure 4-11. Transistor sizing is 

the same as in NDFF. Figure 4-12 shows SDFF parameters vs. data input-swing. 
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Figure 4-11: Schematic diagram of master-slave SDFF. 
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Figure 4-12: SDFF parameters vs. input data swing. 
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4.3.3 Switched-Buffered D-Flip Flop 

To decrease the capacitance of the switches and improve the performance of the SDFF in 

low swing operation, we can insert a buffer between the master and the slave. These 

buffers can boost up the speed of the DFF in low swing operation. However, in high swing 

due to the delay of the inverters, performance will degrade. Figure 4-13 shows the block 

diagram of Switched-Buffered D-flip flop (SBDFF). SBDFF parameters are shown in 

Figure 4-14 in different input swing levels. 

 

 

Figure 4-13: SBDFF block diagram. 
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Figure 4-14: SBDFF Parameter vs. Input Swing. 

4.3.4 Comparison 

Based on the simulation result, the minimum data swing for NDFF is around 150mVp. 

However, the SDFF is able to operate with only 15mVp swing. The speed of operation of 

the NDFF is almost the same as the SDFF with a high swing, but due to switching 

between the meta-stability point and one of the stable points in each period SDFF 

dissipates more power.  In the situation when the data swing is 150mVp and the clock 

operates at 1 GHz, the NDFF dissipates 221µW and the SDFF dissipates 321µW. The 

comparison between the delay (Setup time + Clock to output) of these DFFs vs. input 

swing is shown in Figure 4-15. 



Chapter 4:  Page:81  Power Reduction Strategies 

 

   

0 200 400 600 800 1000 1200 1400 1600 1800
100

200

300

400

500

600

700

800

900

1000

Input swing peak-to-peak [mV]

[p
s]

Setup time + C2Q

 

 
Normal
switched
Switched Bufferd

 

Figure 4-15: Delay comparison. 

4.4 Low substrate noise VCO 

4.4.1 Substrate Noise   

 Any switching node can couple noise into the substrate. The finite resistivity of the 

substrate allows that noise to be transmitted to the neighboring blocks. For instance in a 

transistor, the drain voltage changes, it induces some currents into the substrate, as is 

illustrated in Figure 4-16.  These spurious currents injected into the substrate travel 

through the bulk reaching various depths and are collected by low-resistivity pick-ups. 
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These current paths are determined according to the relative position of the noise injector, 

substrate doping and location of other contacts.  

 

Figure 4-16: Substrate noise propagation. 

 

In mixed-signal circuits, complex and noisy digital circuits are integrated on the same 

substrate with sensitive analog circuits. In these circuits, the digital part switches fast and 

induces noise currents to the substrate which are picked up by analog parts and change the 

operation and functionality of these parts (Figure 4-17). For example, suppose that we have 

a DSP block which is switching very fast in the vicinity of a broadband receiver. We can 

observe that there are some unwanted frequency components with considerable magnitude 

in the receiver spectrum due to substrate noise degrading the performance. Now the 

challenge in mixed signal design is to reduce the effect of substrate noise on analog blocks. 
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Substrate coupling in mixed-signal IC’s has been identified as a major problem due to the 

technology trend to integrate as many circuits as possible on the same die, or in other 

words, system-on-chip (SOC) approach. 

 

Figure 4-17: Substrate noise in mixed-signal circuits. 

 

4.4.2 Substrate Noise in VCO 

High-speed digital circuits such as microprocessors and memories use a phase locking 

system at the board-chip interface to keep in check timing skews between the on-chip 

clock and the system clock. Fabricated phase-locked loops (PLL) sharing the same 

substrate as the digital circuits have been affected by substrate noise [3]. 
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Figure 4-18:  (a) Single-Ended ring oscillator, (b) Differential ring oscillator. 

 

The substrate noise manifests itself as jitter at the output of the PLL, primarily through 

various mechanisms in the voltage-controlled oscillator. The author in [4]  investigated the 

noise sensitivity of single-ended ring oscillators and differential ring oscillators (Figure 

4-18) in [4]. Figure 4-19 shows cycle jitter and cycle-to-cycle jitter of (a) the single-ended 

ring oscillator and (b) the differential ring oscillator. The figures show that the single-ended 

ring oscillator has higher jitter in comparison with the differential ring oscillator. 

Also, shown in Figure 4-20 is the jitter of three-stage and six-stage oscillators designed for 

a frequency of 500MHz with similar tail current and voltage swings. We observe that the 

minimum values of cycle jitter and cycle-to-cycle jitter are smaller in a three-stage topology. 

This is because for the three-stage oscillator, the reduction of the oscillation frequency to 

the desired value is obtained by means of the fixed load capacitance rather than by the 

voltage-dependent capacitances of the transistors. Hence, a smaller fraction of the total 

load capacitance is subject to variations with substrate noise [4]. 
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Figure 4-19: Cycle jitter and cycle-to-cycle jitter of (a) the single-ended ring oscillator and (b) the 
differential ring oscillator [4]. 

 

Figure 4-20: Jitter of the three-stage and the six-stage of the differential ring oscillator [5]. 

 



Chapter 4:  Page:86  Power Reduction Strategies 

 

   

4.4.3 Low Substrate Noise Ring Oscillator 

As mentioned in section 4.4.2, a differential ring oscillator has better phase noise compared 

to a single-ended ring oscillator due to better common-mode rejection ratio; and constant 

switching current. On the other hand, single-ended ring oscillator has better power 

consumption compared to the differential one. 

The conventional single-ended ring oscillator consists of odd number of delay cells in a 

row (Figure 4-21). Each delay cell has separate voltage-controlled current source (VCCS). 

Consequently, different amount of current results in different delay, which results in 

frequency variation over the different control voltages. 

 

Figure 4-21: Conventional single ended ring VCO. 

 

A close look at conventional single-ended ring VCO architecture reveals that each cell has 

separate current source and the current source will be switching on and off with the 
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frequency of the VCO. This switching activity is the major source of substrate noise for 

VCO. As delay cell is a part of VCO, none of physical level blocking techniques [6] can be 

used to mitigate the substrate noise. 

Using one current source shared between delay cells has been proposed to reduce the 

effect of the switching on delay cells (VCO). Figure 4-22 shows the architecture for the 

novel low substrate noise single ended VCO. 

 

Figure 4-22: Architecture for proposed VCO. 

 

The new VCO has only one shared VCCS. The VCCS is always ON and it is not switching 

in this architecture as each delay cell needs power (current source) only during switching 

time. Figure 4-23-(a) shows the voltage wave form (one transition) at the output of a 

inverter chain with three inverters. Figure 4-23-(b) shows the short circuit current for each 

inverter which results in substrate noise. As shown in Figure 4-23-(b) each inverter (delay 
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Cell) dissipates current at different timing. The proposed low substrate noise circuit shares 

one current source for all delay cells and provides constant current during operation of the 

VCO. At Figure 4-23-(c) wave form (1), depicts the over lap waveforms and summation of 

the current is shown in wave form (2). Current source sharing technique results in constant 

current discharging to ground through the VCCS and reduction in substrate noise. 
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Figure 4-23: Voltage and Current waveforms for a single ended VCO 

 

Measuring substrate noise is not a trivial task. Our approach to monitor the substrate noise 

is to measure the ground voltage variation and jitter at the output of the oscillator. As 

discussed in section 4.2, substrate noise manifests itself as jitter at the output of VCO. 

Figure 4-24 and Figure 4-25 show the schematic for conventional and proposed single 

ended ring oscillator, respectively.  
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Figure 4-24: Schematic for conventional ring VCO. 

 

Figure 4-25: The schematic of proposed ring VCO. 
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To have right simulation condition, the test bench includes the bond wire model to 

observe the effect of switching current on power/ ground voltage variation. The test bench 

has been shown in Figure 4-26. Simulation results shows 50% reduction on ground 

variation and peak-to-peak jitter in 5GHz frequency of operation (Figure 4-27). 

 

Figure 4-26: Test bench schematic. 

 

Figure 4-27: Eye-diagrams for conventional and proposed VCOs. 
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Chapter 5 

Low Power CDR 

5.1 Introduction 

In Chapter 2, different CDR architectures were discussed and different types of phase 

detector were explained. Various analog and hybrid CDR systems were examined along 

with their system level simulation in Chapter 3. Furthermore, loop dynamics and their 

associated parameters were analyzed. In Chapter 4, two techniques have been proposed to 

realize the low power, high speed CDR circuit. In this chapter, the circuit design, 

simulation and physical implementation of two CDR chips are presented. A 2 Gbps CDR 

in 0.18µm CMOS technology process and a 5 Gbps CDR in 90nm CMOS technology 

process are implemented. This chapter concludes with measurement results. 
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5.2 The 2 Gbps Low-Power CDR Implementation 

The CDR block diagram of a PLL-based CDR is shown in Figure 5-1. The CDR is 

designed in a 0.18µm CMOS technology process, using single 1.8V supply voltage. 

The following section explains the design of each block. 

 

Figure 5-1: Block diagram for the PLL based CDR. 

5.2.1 Phase Detector 

The Alexander phase detector architecture has been selected to design the phase detector. 

Shown in Figure 5-2, the Alexander phase detector consists of four D-Flip-Flops and two 

XORs. Since the input data is low swing, sampling the data with the conventional static 

DFF is not feasible. Thus, SDFFs are used to sample the low swing input data (as 

explained in Chapter 4). Since the output of the SDFF is full-swing, the conventional DFF 

can be used to resample the data (The second set of flip-flops). Figure 5-3 shows the 

schematic for switched DFF. Device sizes are listed in Table 5-1. The SDFF is a master-

slave DFF and consists of two latches. The layout is shown in Figure 5-4. 
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Figure 5-2: Alexander phase detector. 

 

 

Figure 5-3: SDFF Schematic. 
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Table 5-1: Transistor sizing for SDFF 

M1, M2, M4, M5, M6, 
M7, M8, M9, M10 5µm/0.180µm 

M3, M4 3µm/0.180µm 

M11, M13, M15, M17 3.3µm/0.180µm 

M12, M14, M16,M18 1µm/0.180µm 

M19, M21 0.850µm/0.180µm 

M20, M22 0.500µm/0.180µm 

 

 

Figure 5-4: SDFF Layout. 
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The XOR schematic is shown in Figure 5-5. Figure 5-6 shows the simulation results. The 

XOR generates complementary outputs which can be used by differential charge pump. 

 

Figure 5-5: Schematic for XOR. 
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Figure 5-6: Inputs and output wave forms of the XOR block. 



Chapter 5:  Page:97  Low Power CDR 

 

   

 

Figure 5-7:  XOR layout. 
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Figure 5-8: Phase Detector input/output wave forms. 
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The layout for the XOR block is depicted in Figure 5-7. The phase detector output signals 

(Figure 5-8) show the functionality of the phase detector based on the early or late clock 

input. The phase detector characteristic graph is illustrated in Figure 5-9. 
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Figure 5-9: Phase Detector characteristic graph. 

 

5.2.2 Charge Pump 

A charge pump is needed to convert the early/late pulses to appropriate current signals. 

The current signals are passed to the loop filter and generate the VCO control voltage 

(Chapter 3). Figure 5-10 shows the schematic of the charge pump.  
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Figure 5-10: Schematic of the charge pump. 

 

Transistor M7 takes the input current from an off-chip supply. The input current gets 

mirrored at M8 and M9. The output current is given by 

 UpDownout III −=  (5-1) 

where 

 )( ~DownDownDown VVkI −=  (5-2) 

 )( ~UpUpUp VVkI −=  (5-3) 

The constant k, in both equations (5-2 and 5-3) could be assumed equal (disregarding 

parasitic and mismatches). Therefore:  
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 )]()[( ~~ UpDownUpDownout VVVVkI −−−=  (5-4) 

It should be noticed that the digital output signals from the phase detector are pseudo- 

complementary and the common noise is not canceled out by phase detector. The layout 

for the charge pump block is depicted in Figure 5-11. 

 

Figure 5-11: The layout for charge-pump block. 

 

5.2.3 Voltage Controlled Oscillator 

The VCO takes the filtered controlled voltage from the charge-pump and loop filter and 

creates the square wave signal. The frequency of the output is proportion to the input 

control voltage. The schematic of a single-ended low substrate noise VCO (Section 4.4) is 

shown in Figure 5-12.  
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Figure 5-12: Schematic of the VCO. 

 

The ring oscillator has two separate current bias paths. Transistors M8 to M11 are current 

supplier for the ring oscillator. I_Coarse gets buffered and amplified then provides a fixed 

amount of current for biasing the ring. The bias is constant and used to set and tune the 

free running frequency of the VCO. Providing the I_Coarse from the external off-chip 

source makes center frequency of the VCO tunable and independent of process variations. 

The second path is fine tune path, consist of M1-M7. This path controls the frequency of 

the VCO. Depending on the V_Filter voltage, part of I_Fine will be mirrored to the ring.  
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The output frequency of the VCO is given by 

 CVCOCVCO VKff +=  (5-5) 

where fc is free running frequency of the VCO and can be tuned by I_Corase. KVCO is 

constant factor of the VCO and Vc is control voltage. KVCO can be tuned by adjusting 

I_Fine. 

The frequency variation over control voltage is shown in Figure 5-13, where I_fine is 

350µA and I_Corase is set to 250µA. 
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Figure 5-13: VCO tuning characteristic. 

 

The VCO layout is shown in Figure 5-14.  
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Figure 5-14: Layout of the VCO. 

5.2.4 Pulse Generator 

As discussed in chapter 4, the SDFF requires reset pulses to operate. An extra block, pulse 

generator, is designed to generate the reset pulses from the different phases of the VCO 

outputs. The clock and reset pulses are also buffered in this block. The pulse generator is 

implemented in static CMOS logic. The schematic diagram of the pulse generator is shown 

in Figure 5-15. Layout for pulse generator block and buffers are illustrated in Figure 5-16. 

The generated reset pulses can be seen in Figure 5-17. The reset generator block can be 

turned off using enable pins. When the block is disabled, the reset pulses stay at low logic. 

Therefore, the SDFFs operate as NDFF. This option facilitates the comparison of the low 

swing CDR to the normal CDR.   
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Figure 5-15: Reset pulse generator. 

 

Figure 5-16: Pulse generator and buffers layout. 
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Figure 5-17: Reset pulse wave forms. 

5.2.5 Measurement Result 

The complete CDR using an external loop filter has been fabricated in the TSMC 180nm 

CMOS technology. The total area of chip is around 0.02mm2 and the total power 

dissipation excluding output drivers is around 4mW from a 1.8V supply voltage. The die 

micrograph is shown in Figure 5-18.  The summary of the CDR performance is given in 

Table 5-2. 
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Table 5-2: 2Gbps CDR parameter 

Process 180nm CMOS, TSMC

Data rate 2Gbps 

Partial rate Full rate 

Input swing 100mV 

Peak-to-Peak Jitter 52ps 

RMS Jitter 6.2ps 

Total power 4mW 

Phase detector power 2mW 

Core Area (Ex. Pads) 0.02 mm2

 

 

Figure 5-18: Die photograph. 
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A test bench was setup to measure the CDR’s performance. The die was directly bond 

wired to the high frequency PCB (shown in Figure 5-19). The second PCB has been used 

to generate the required bias voltages.  

 

Figure 5-19:  PCB board. 

 

The peak-to-peak jitter and bit-error-rate (BER) for PRBS 223-1 have been measured for 

different data input swing and shown in Figure 5-20 and Figure 5-21. The minimum 

detectable data swing was 60mVp with the jitter of 59ps and BER of 1.7E-12. However, by 

increasing the input data swing jitter and BER both will decrease. When input swing 

reaches 100mVp, the CDR operates with the peak-to-peak jitter of 52ps. The eye diagram 

for input swing of 100mV is show in Figure 5-22. The measured RMS jitter is 6.2ps.  
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Figure 5-21: Peak-to-Peak jitter vs. input data swing. 
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Figure 5-20:  BER vs. input data swing. 

 

60 

SDFF
58 

 

48 

50 

52 

54 

56 
P-P Jitter [ps] 

500 900 70 60 80 90 130 140 300100 110 120

Input Swing [mVp]

NDFF



Chapter 5:  Page:109  Low Power CDR 

 

   

 

Figure 5-22: Output eye diagram. 

 

If the reset pulses disconnected from the SDFF, then the SDFF will operate as NDFF. In 

the reset-pulse-off mode, the CDR is able to lock in with a 300mVp input swing with the 

peak-to-peak jitter of 59ps. When the reset pulses are ON (even in high swing operation), 

the output jitter is less as compared to the conventional CDR. This improvement is 

achieved due to the delay reduction of the SDFF at high swing operation. Setup time 

violation of the CDR results in a nonlinearity at the phase detector characteristic. The 
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nonlinearity is a function of meta-stability of the D-Flip Flops (wrong sampling of the 

CDR). As SDFF has less setup time and delay compared to NDFF, jitter and BER are 

improved. 

5.3 The 5 Gbps Low Power CDR Implementation 

The second version of the low power CDR was implemented in 90nm CMOS technology. 

The architecture of the CDR is almost the same as the first version, except a modification 

on phase detector. 

5.3.1 Alexander Phase Detector 

The Alexander phase detector in the 0.18µm version (Section 5.2.1) had been designed 

using two SDFFs followed by two NDFFs. More investigation revealed that the first set of 

DFFs might result in low-swing output. The low swing output appears in the input of the 

second set of the DFFs. Consequently, the NDFFs sample the wrong data and result in 

degrading the BER of the CDR. The new version of the Alexander phase detector consist 

of four SDFFs. Having the SDFFs in the second row is beneficial for unlocked condition 

to avoid wrong sampling and results in a better BER. Figure 5-23 shows the schematic of 

the modified Alexander phase detector and the corresponding layout is illustrated in Figure 

5-24. 
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Figure 5-23: Alexander phase detector.  

 

 

Figure 5-24: Alexander phase detector layout in 90nm. 
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The phase characteristic of the modified phase detector (Figure 5-25) has smaller linear 

region as compared to a normal one when the input signal has 50mVpp swing. 
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Figure 5-25: 5Gbps binary phase detector characteristic. 

 

5.3.2 Measurement Result 

The complete CDR fabricated in the ST Microelectronic 90nm CMOS technology. The 

supply voltage is 1V. The die micrograph is shown in Figure 5-26. 
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Figure 5-26: 5Gbps CDR die photograph. 

 

Table 5-3 shows the measurement results of the CDR and extracted parameters.  

Table 5-3: 5Gbps CDR parameter 

Process 90 nm CMOS, ST 

Data rate 5Gbps 

Partial rate Full rate 

Input swing 70mVpp 
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Peak-to-Peak Jitter  21ps 

RMS Jitter 2.5 ps 

Total power 1.7 mW 

Phase detector power 0.57 mW 

Core Area (Ex. Pads) 0.01 mm2

 

A test bench was setup to measure the CDR’s performance. The die was directly bond 

wired to the high frequency PCB (shown in Figure 5-27). The second PCB has been used 

to generate the required bias voltages.  

 

Figure 5-27:  PCB board. 

 



Chapter 5:  Page:115  Low Power CDR 

 

   

The peak-to-peak jitter and bit-error-rate (BER) for PRBS 223-1 have been measured for 

different data input swing and shown in Figure 5-28 . The minimum detectable data swing 

was 15mVp with the jitter of 30ps and BER of 1.1E-12. However, by increasing the input 

data swing jitter and BER both will decrease. When input swing reaches 35mVp, the CDR 

operates with the peak-to-peak jitter of 21ps. The eye diagram for input swing of 35mVp is 

show in Figure 5-29. The measured RMS jitter is 2.5ps.  
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Figure 5-28:  RMS Jitter and BER vs. input data swing. 



Chapter 5:  Page:116  Low Power CDR 

 

   

 

Figure 5-29: Output eye diagram. 

 

By turning off the reset pulse generator, the CDR is able to lock in with a 150mVp input 

swing with the peak-to-peak jitter of 31ps(Figure 5-28). 
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Chapter 6 

Conclusion 

6.1 Conclusion 

Serial link communications are widely used in today’s data communication. CMOS 

technology enables more integrity, less power, and lower cost as compared to other 

technologies such as SiGe. The CMOS implementation of high speed CMOS data 

transceivers requires high power dissipations. Advances in technology and CMOS scaling 

in recent years enable the high speed operation of conventional CMOS circuits. Employing 

standard full swing CMOS circuits to construct a high speed clock and data recovery is 

beneficial when the low input swing is detectable by standard CMOS sampler. A novel D-

Flip Flop (SDFF) has been proposed in standard CMOS to sample the low input swing 

data. The SDFF dissipates less power compare to the low swing current mode logic DFF. 

As full swing operation results in more substrate noise, a low substrate noise single ended 

ring oscillator has been proposed. Single-ended architecture of the proposed VCO results 
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in low power dissipation. However, it generates less substrate noise in comparison with 

conventional single-ended VCOs. Two separate CDRs are implemented by employing the 

SDFF and the low substrate noise VCO. The CDRs are able to detect a low input swing 

data. Figure 6-1 shows the reported power dissipation for different transceivers over the 

years. The best power performance has been reported by Rambus Incorporated.   

 

 

Figure 6-1: Power to data rate ratio over years [1]. 

 

Rambus’s key to power reduction is the low-swing voltage mode signaling instead of the 

current mode signaling. Table 6-1 summarizes the Rambus receiver parameters compared 

to the proposed 90nm CDR.  
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Table 6-1: Rambus receiver and 90nm proposed CDR parameters 

  Rambus (Receiver)[1] This Work 

Signal Reduced Voltage (170mVpp) Reduced Voltage (70mVpp) 

Data Rate 2 X 3.125Gbps 5Gbps 

Rate Half-Rate Full-Rate 

Process 90nm 90nm 

Supply 1V and 2.5V 1V 

Output Swing 600mV 1V 

CDR Power 2.8mW(450µW/Gbps) 1.7mW (340µW/Gbps) 

Jitter PP=14.4ps, RMS=1.27ps  

(PRBS 2^15-1) 

PP=21ps, RMS =2.5ps 

(PRBS2^23-1) 

BER < 1x10-15 @ 210mVppd 8x10-13 @ 70mVppd 

Pre-Amp 2-stage, 6 dB gain, 560µW None 

 

The proposed 90nm CDR operates at 5Gbps full data rate and dissipates 340µW/Gbps 

compared to Rambus’s transceiver which consumes 450µW/Gbps and operates at half-

data rate. In addition, Rambus receiver employs a Pre-Amp with the gain of 10dB and 

power dissipation of 560µW.   

6.2 Future Work 

 

A higher data rate, such as 10 Gbps, can be achieved through mapping the design from 

CMOS 90nm technology to CMOS 65nm. Fractional-rate clock and data recovery circuit 

architecture, such as half-rate bang-bang, can be implemented using Switched-DFF to 

design high data rate CDRs. Jitter performance improvement can be attained by dissipating 
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more power in the VCO block and implementing the VCO in a differential architecture. 

The proposed CDRs employ the off-chip analog loop filter. However, the on-chip analog 

loop filter implementation requires larger silicon area. The new line of research targets the 

substitution of analog filters by digital filters [2]. The state-of-the-art CDR benefits from 

automatic calibration techniques to compensate for process variation. The proposed CDRs 

have manual calibration at this stage.  
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