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Abstract

This thesis presents a whole-embryo finite element model of neurulation -- the first of
its kind. An advanced, multiscale finite element approach is used to capture the mechanical
interactions that occur across cellular, tissue and whole-embryo scales. Cell-based
simulations are used to construct a system of constitutive equations for embryonic tissue
fabric evolution under different scenarios including bulk deformation, cell annealing,
mitosis, and Lamellipodia effect. Experimental data are used to determine the parameters in
these equations.

Techniques for obtaining images of live embryos, serial sections of fixed embryo fabric
parameters, and material properties of embryonic tissues are used. Also a spatial-temporal
correlation system is introduced to organize and correlate the data and to construct the finite
element model. Biological experiments have been conducted to verify the validity of this
constitutive model.

A full functional finite element analysis package has been written and is used to
conduct computational simulations. A simplified contact algorithm is introduced to address
the element permeability issue.

Computational simulations of different cases have been conducted to investigate
possible causes of neural tube defects. Defect cases including neural plate defect, non-neural
epidermis defect, apical constriction defect, and convergent extension defect are compared
with the case of normal embryonic development. Corresponding biological experiments are
included to support these defect cases. A case with biomechanical feedbacks on non-neural
epidermis is also discussed in detail with biological experiments and computational
simulations. Its comparison with the normal case indicates that the introduction of

biomechanical feedbacks can yield more realistic simulation results.
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A = length of ellipsoid long axis
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F = transformation tensor
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Ixx = moment of inertia given by |, = J‘ X 2dv
vol
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Vol
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Lmin = minimum specified edge length for cell rearrangement algorithm
K = elastic stiffness matrix
n = number of nodesin a cell
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q = therelative strength of the contraction along a cell-cell boundary for a
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S = the time scaling factor
t = time
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Malformation: Birth Defect

Embryonic morphogenesis, the process by which a single cell becomes a multicellular
embryo with structured tissues and specialized organs, involves complex changes of cell
shape and multiple cell rearrangements [Gilbert, 2000; Alberts, et al 1998; Brodland, 2004;
Hardin and Walston, 2004]. This process is one of the three fundamental elements of
developmental biology, along with cell division and differentiation.

Embryonic cells and tissues evidently have their own intrinsic machinery to regulate
these complex events so as to produce a consistent global outcome each time. However,

when anomalies occur in these motions, serious and debilitating birth defects, such as spina

i

backbone (spine) —T T-t-newes

bifida (Figure 1.1), can result.

Figure 1.1. Schematic representation of spina bifida.
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Spina bifida is the most frequently occurring birth defect and it often produces
permanent disabilities. It results from the failure of the neural tube to close properly during
a process called neurulation (Figure 1.2). When this condition occurs, the bones of the spine
(vertebrae) above the open position of the spinal cord remain unfused and open. This can
lead to the protrusion of the spinal cord through the opening. There is currently no cure for
any nerve damage caused by spina bifida. To prevent the nerve from further damage and
infection due to its exposure to the environment, the spinal cord and the nerve are surgically
pushed back into the body and covered with meninges, muscle and skin.

To date, the exact cause of spina bifida remains poorly understood. Scientists have
discovered that folic acid can significantly reduce the incidence of neural tube defects
(NTDs). Indeed, when pregnant mothers take a folate supplement, the incidence of neural
tube defects can be reduced up to 70% [Carter, 2005; Bjorklund and Gordon, 2006]. To seek
the cause of NTDs, a full and fundamental understanding of embryonic neurulation from

the perspectives of both physics and biology is required.

Caudal-cephalic direction

Medio-lateral direction /4

<
<

¥ " Failure of closure of neural tube

\ Notochord

Neural plate
M Neural crest
e Epidermis
Neural fold

\\> Neural tube

Figure 1.2. Schematic representation of embryonic neurulation
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1.2 Fundamental understanding of neurulation

During the development of the vertebrate embryo, ectoderm cells form the epidermis and
nervous system. A portion of the dorsal ectoderm is specified to become neural ectoderm
(neural plate) and this tissue forms the neural tube by a process called neurulation. A
schematic representation of embryonic neurulation is shown in Figure 1.2. The notochord
initiates the formation of the central nervous system (CNS) by signalling the ectoderm germ
layer above it to form the neural plate. The ectoderm above the notochord becomes
significantly thicker and flatter than its neighbouring layer of tissue. During this stage, the
ectoderm cells of the forming neural plate express unique molecular markers [Gilbert, 2000]
and become wedge shaped. This change in cell shape leads to the rolling up of the whole
neural plate and brings the neural folds towards each other. In the meantime, the ectoderm
cells of the neural plate also experience a process called convergent extension [Keller et al.,
2000; Keller, 2005; Keller, 2006] during which the cells intercalate to elongate in the
caudal-cephalic direction and narrow in the medio-lateral direction (Figure 1.2). This
process also contributes to bringing together the neural folds. In the later stage of the rolling
up process, the neural folds finally meet each other, merge, and release molecular markers
which separate the forming neural tube from epidermis. The separated neural tube will later
differentiate into the spinal cord and the brain, which eventually form the central nervous

system.
1.3 Purpose and Motivation

Traditionally, embryological research has focused on identifying the molecular and genetic
aspects of development [Huang and Ingber, 2005; Lecuit and Pilot, 2003; Pilot and Lecuit,
2005; Lee et al., 2007; Krendel and Bonder, 1999], and relatively little effort has been devoted
to understanding the relevant mechanics. From a reductionist point of view, during the past
ten years, genome sequencing and high-throughput measurements have enabled scientists
to collect comprehensive data sets on the underlying molecules. On the other hand, the

abundant data did not advance our understanding of how to put these building blocks
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together to generate collective behaviour such as neurulation. Identifying all the genes and
proteins in a tissue or organism is like listing all the critical parts of a complex machine. The
“user’s guide” which assembles them together to make the machine work, is obviously
missing [kitano, 2002]. Although folate holds much promise to prevent NTDs from
happening, and textbooks have provided many figures and descriptions about neurulation,
these facts do not reveal the mechanism of neurulation, the causes of NTDs, or the
relationship of NTDs to other malformation defects.

The complex tissue motions and cell rearrangements involved in the neurulation
process can only be studied effectively using advanced mechanics and numerical methods.
Recent work [Swartz et al., 2001; Stephanou and Tracqui, 2002; Chen, 2004; Robinson and
Spudich, 2004; Brodland, 2004] has shown that mechanical processes must function in
concert with chemical signal regulation and genetics to produce morphogenetic movements.
The purpose of this research is to develop a systematic understanding of the mechanics of
neurulation that is sufficiently rigorous and detailed so that it will lead to effective new
strategies for reducing the incidence of neural tube defects (NTDs) in humans.

In order to explain the ways in which a computational model could be used, we begin
by presenting a hypothetical physical analogy [Clausi and Brodland, 1993]. If one wanted to
investigate how forces generated by systems of structural proteins might give rise to
reshaping of cells and one had a sufficient budget to do so, one might construct a large-scale
physical model of each of the significant structural elements in the system. To avoid the
effects of gravity on such a system one might submerge it in water and make its components
neutrally buoyant. One might use hydraulic cylinders to represent microtubules,
computer-controlled linear motors to represent microfilaments, systems of dashpots to
represent the cytoplasm [Brodland et al, 2007], magnets to represent cell adhesion systems,
microcontrollers and wires interconnecting these components to represent genes and
signalling pathways, and other electro-mechanical devices to represent other protein

systems.
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If one were investigating mechanical interactions between several cells, one might need
approximately a hundred such physical components. However, if one were investigating
the mechanics of neurulation, tens of thousands of such components might be required.

In a typical simulation, one might position the components in some predefined starting
configuration and on releasing the components and turning on their electromechanical
control systems, observe how they would push and pull on each other and ultimately
reconfigure themselves. If the motions so produced did not match those that occur in real
cells having the initial geometry and morphology of the model, one could infer that the
model is inaccurate. Either the properties of one or more of the structural components are
incorrect or mechanical components are missing in the model. In either case, science is
advanced because deficiencies in our understanding are identified.

If the model behaves the same as corresponding real cells, then one could alter specific
model components so as to investigate how sensitive the pattern of motion is to changes in
specific systems of structural proteins. Such information would be of value in accessing the
degree of the changes that genes or signalling pathways would have to induce to produce a
specified phenotype.

Although physical models have been used in the past to investigate how systems of
forces might drive specific morphogenetic movements, computational models can do the
same thing for much lest cost and without the issues of friction and inertia, which would
eventually plague a physical model.

Computational models have already revolutionized a number of health-related areas,
including drug discovery, orthopaedics, hemodynamics and biomaterials. It is therefore not
surprising that major efforts have been made to apply them to embryo biomechanics [Taber,
1995; Brodland, 2003 and 2004; Chen and Brodland, 2000; Brodland and Chen, 2000] and
these efforts have been meeting ever increasing success due to the convergence of several
critical technologies, including improved computational hardware, software algorithms and
data collection modalities.

In the context of embryo morphogenesis, a suitably constructed computational model

can address the following question: “If one had an embryo of specified geometry and if the
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forces generated by its tissues, cells or structural proteins were known in detail, how would
the cells and tissues in the embryo move?”

Because embryos have significant structure at several different scales — sub-cell, cell,
and tissue — it is appropriate to use a “multi-scale” approach in modeling them. In a
multi-scale approach, separate models are constructed at each of several length scales and
findings made at one are passed to the other.

In the study of embryology, a current approach is to use a cell-level model to relate the
forces generated by sub-cellular structural components to the properties of a sheet of such
cells [Brodland et al, 2006; Brodland and Veldhuis, 2003; Brodland and Wiebe, 2004]. These
cell-level models showed that cellular fabric — as characterized by average cell size, aspect
ratio and orientation —is a key determinant of the forces in an epithelium. They also showed
that complex interactions occur between cellular fabric, in-plane tensions, in-plane
deformations, cell rearrangements, mitosis patterns and lamellipodium action. Known
mechanical effects associated with gene expression are incorporated at this level.

These interactions can be described mathematically using a set of constitutive equations
[Brodland et al, 2006]. These equations use current cellular fabric and the forces generated by
specific sets of sub-cellular structural systems to calculate the in-plane loads that would be
generated. A second group of equations then calculate the rate at which the tissue would
deform if these tensions are not in balance with those applied to the tissue by adjacent
tissues. The third group of equations calculates how the cellular fabric changes with time
due to tissue deformation, cell annealing and other factors.

These equations make possible a tissue or whole-embryo model in which regions of
tissue consisting of many cells are represented by a single finite element. The constitutive
equations just described allow these elements to properly represent the highly nonlinear,
non-continuum properties of the epithelium.

In the present study, Axolotl (Ambystoma mexicanum) embryos are used. Like a number
of other amphibian embryos, they share important geometric similarities with human

embryos and, for this reason, are often used as an animal model for neurulation.
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1.4 What do we expect to learn?

If we put the geometric data and the mechanical property data from biological experiments
into the computational model, we can test different hypotheses and verify our
computational model by comparing the simulation result with the experimental data. By
doing so, we expect to address the following questions:

1. Are the mechanical properties of abnormal tissues different than normal tissues?

Recent advancements in mechanobiology shed light on this question. Some of the
relationships between the mechanical properties in tissue and the cytoskeletal structure in
cells have been identified. In our research, detailed tissue stretching tests need to be
conducted to extract the mechanical property data and compare them with normal tissues.
2. Can tissue behaviours or collective cellular behaviours be described by constitutive

equations?

This is the key to the success of the computational model. Experimental data will play a
critical role in addressing this question. Large amounts of data will be analyzed to derive
suitable constitutive equations. The procedure can also be divided into some small questions
such as, what parameters need to be defined in constitutive equations and how do they
change with the tissue fabric evolution?

3. Can this computational model yield the normal case based on correct initial
configurations and boundary conditions?

If our assumption about biochemical pathways changing the mechanical properties of
tissue is correct, these unbalanced forces in tissue will reshape the tissue and drive the
morphogenesis of the embryo. If the model can produce correct results, then we can increase
our trust in this model. Otherwise missing mechanisms need to be incorporated into the
model.

4. Can this computational model yield abnormal cases, and how sensitive is the model to
these inputs?

This is another crucial question that needs to be addressed. The answer to the question

will tell us how much perturbation needs to be introduced in order to produce a neural tube
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defect. This will drive us to probe the various possible causes of NTDs including cases that
arise from a combination of different causes. The sensitivity analysis of this model will help
us to quantitatively evaluate the damage produced by different potential “causes” of NTDs
and lay a foundation for devising methods to reduce the incidence of NTDs in humans.

5. What is the role of biomechanical feedbacks in the model?

Positive and negative feedbacks have been widely applied in system biology research.
The genetic regulatory network can produce complex results with the help of these two
feedbacks. Since in the discussion above we assume the genetic regulatory network
determines the mechanical properties of tissue, we expect to see some positive feedbacks
and negative feedbacks in our biomechanical model. Experiments and simulations will be
carried out to prove the existence of these biomechanical feedbacks as well as the
importance of them.

This thesis is organized as follows. A literature review dealing with biology background
and computational models of embryonic morphogenesis is presented to provide an
overview of the current research achievements. The computational model framework
section will provide the details about our model including the objectives, underlying theory,
and details of the computer implementation. Then, the results of the computational
simulations will be discussed in detail. In the last section, conclusions and future work will
be presented.

Because this work is built on the previous research work carried out in our lab, it is
appropriate to summarize my contributions:

1. Ran cellular scale simulations to obtain rate constants for the tissue fabric parameters.

2. Modified constitutive equations to incorporate lamellipodium effect and verified the
resulting new constitutive equations.

3. Proposed feature grids and wrote all of the codes for its implementation.

4. Wrote approximately 30% of the visualization software (my part consisted of
approximately 10,000 lines of C++ code).

5. Wrote 20% of the code for the finite element engine (15,000 lines of C++ code).
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6. Collected much of the biological and mechanical property data needed for the
whole-embryo simulations.

7. Probed “necessary” input data and parameters to obtain realistic whole-embryo
simulations.

8. Incorporated biomechanical feedback into the model.
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Chapter 2

Literature Review

In this chapter several topics will be discussed. First, the biological background, such as the
cell cytoskeleton and mechanobiology will be provided. Then there is a review of
morphogenesis research from different perspectives, followed by introductions to current
computational approaches for cellular scale and tissue scale models. Multiscale modeling
techniques, which connect cellular scale and tissue scale models are then discussed. Finally,

the elements used in our model will be presented.

2.1 Biological background

Through reductionist approaches, we can represent neurulation at several different scales
(Figure 2.1). At the tissue scale, differences in mechanical properties of tissues induce the
force imbalances needed to produce tissue motions in the embryo. To reach a force balance
state, the tissues interact with each other mechanically and ultimately complete the
neurulation process. At the cellular scale, cell-cell interactions determine the fabric of the
tissue and in consequence determine the mechanical properties of tissues [Edelman, 1988].
At the sub-cellular scale, the cytoskeleton is responsible for changes in cell shape, alteration
of cell-cell adhesions and cell self-rearrangements [Jamora, 2002]. In the following sections,
we will discuss in detail the neurulation process from these levels. To facilitate

understanding of the relevant biological terms, we begin at the sub-cellular scale.
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Embryo Neurulation

o

Differences in tissue mechanical
Tissue Level properties induce force imbalance
and drive neurulation

) |
Cell-cell interactions determines
Cellular Level the fabric of tissue and in

consequence determines tissue
mechanical properties )

|

Cell cytoskeleton is responsible
for cell shape change and cell-
cell interactions

Subcsllular Level

Figure 2.1. Neurulation mechanisms in different levels
2.1.1 Sub-cellular components

Like most physical structures, including buildings, cells acquire their shape from their

internal “structure”, the cytoskeleton. By rearranging its own components, this dynamic

KHE

(a) Intermediate filaments (b) Microtubules (c) Actin filaments

Figure 2.2. Schematic representation of cellular cytoskeleton [Alberts, 1998].
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structure can maintain cell shape, drive cell motions, and play important roles in
intra-cellular transport and cellular division. The cytoskeleton is built on three types of

protein filaments: intermediate filaments, microtubules, and actin filaments (Figure 2.2).

1. Intermediate filaments

Intermediate filaments are like ropes with many long strands of fibrous protein twisted
together to provide great tensile strength. “Intermediate filaments are the most durable and
toughest of the three types of cytoskeletal filaments” [Alberts, et al., 1998]. A substantial
amount of intermediate filament exists in cells. Its main function is to enable cells to
withstand mechanical stress from its environment. Intermediate filaments are responsible
not only for keeping the cell membranes from breaking but also for maintaining connections
with other cells. The intermediate filaments in adjacent epithelial cells connect indirectly
through the desmosomal junctions [Runswick, 2001] on the circumferential cell membrane.
They form a continuous mesh network throughout the tissue (Figure 2.3). “This mechanical
link strengthens the epithelium and is the basic strategy for the epithelium to obtain

mechanical strength” [Alberts, et al., 1998].

2. Microtubules

Microtubules are long, hollow tubes with structurally distinct ends. The tubulin dimer,
which is the main component of microtubules, can quickly dissemble in one location while
reassembling at another location. Therefore microtubules can remodel themselves
frequently by employing the free tubulin in the cellular cytoplasm.

The centrosome is the major center out of which microtubules in cells grow. With
tubulin subunits, a and B-tubulin alternating along the microtubule length, microtubules
are polarized with a positive end and a negative end as shown in Figure 2.4. Normally
microtubules negative-ends are anchored to the centrosome. The centrosome then controls
the dynamic instability of microtubules in cells including the number of microtubules, their
location and orientation in the cellular cytoplasm for particular purposes. For example,

during mitosis microtubules switch between growing and shrinking more frequently than

12
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they usually do. In addition, microtubules also play a critical role in transporting molecules
and biochemical materials in cells. The transportation speed on the track of a microtubule is

much faster than the diffusion in cytoplasm [Forgdcs, 2005].

Stretching a sheet of
cells with intermediate
filaments

Figure 2.3. Intermediate filaments strengthen animal cells [Alberts, 1998]. If a sheet of epithelial cells
is stretched by external forces, then the network of intermediate filaments and desmosomal junctions
that extends through the sheet develops tension and limits the extent of stretching.

Microtubules J Centrosome

Intracellular
trangportation

Figure 2.4. Microtubules are polarized and possess dynamic instability [Alberts, 1998].
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Microtubules interact with the actin filament network through the jointed protein
complex on the surface of the cell membrane [Ingber, 2005; Nelson et al., 2005; Matthews et
al., 2006]. In a typical situation, microtubules can bear certain compression force generated
by actin filaments. However, when the microtubules cannot sustain this force, they will
disrupt, thereby increasing the substrate traction [Lauffenburger and Wells, 2001]. In this
way, the actin filament bundles, adhesion junctions and microtubules interplay to maintain

a balance of contractibility close to the apical surface [Adams and Nelson, 1998].
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Figure 2.5. Some roles of myosin-I and myosin-II in a eucaryotic cell [Alberts, 1998]. The short tail of
myosin-I molecule contains sites that bind to various components of the cell, including membranes.
This allows the head domain to move a vesicle relative to an actin filaments (A), or an actin filament
and the plasma membrane relative to each other (C). Small filaments composed of myosin-II
molecules can slide actin filaments over each other, thus mediating local shortening of an actin
filament bundles (B).

3. Actin filaments

Actin filaments are thin flexible helical polymers of the protein actin. They are normally
organized into bundles and cross-linked exhibiting complex two dimensional or three
dimensional networks [Gardel et al., 2006; Shin et al., 2004]. Because they are most highly

concentrated in the cortex, which is just beneath the plasma membrane, they have a great
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impact on the cellular movements [Alberts, 1998; Wilt and Hake, 2004]. The contractile
ability of actin bundles owes to their interactive binding with myosin, a mechanism also
adopted in the muscle cells. Myosin-I and myosin-II are the two abundant subfamilies of
myosin. The head domain of myosin-I interacts with actin filament and the tail domain
determines which surrounding cell component should be attached (Figure 2.5). Myosin-II
molecules have two heads and one tail domain. Like myosin-I, their head domain interacts
with actin filaments, while the tail domain only interacts with its peer (Figure 2.5). By sliding
actin filaments in opposite directions, myosin-II generates contractile force in actin filament
bundles, which holds responsibility for deforming, or pulling the membrane into a different
shape. In general, actin filaments play a critical part in mediating cell shape [Vasioukhin et

al., 2000; Vasioukhin and Fuchs, 2001; Pollard, 2003].

2.1.2 Cell-cell interactions

1. Cell-cell adhesion

By definition, biological tissues such as the nervous, muscle, epithelial and connective
tissues are a collection of interconnected cells that perform a similar function within an
organism. Cells tend to stick to other cells by employing specific cell adhesion molecules
(CAMs) on their surfaces [Gumbiner, 1996]. The extracellular matrix, which is secreted by
cells themselves, is also involved in assembling cells to construct biological tissue. A
schematic overview of major adhesive interactions that bind cells to their peers and the
extracellular matrix is shown in Figure 2.6. The apical (upper) surface of these cells is packed
with finger like microvilli that are exposed to the lumen while the basal (bottom) surface
rests on a thin sheet of extracellular matrix (ECM), called basal lamina. The junctions
between cells and ECM can be categorized into these two types: providing mechanical
strength and not providing mechanical strength. The cell-cell adhesion junctions such as
adherens junctions and spot desmosomes are mediated by cell-adhesion molecules (CAMs).
The cell-matrix adhesions junctions such as hemidesmosomes are determined by adhesion
receptors binding to various components of the ECM. These cell adhesion proteins not only

hold cells together to construct biological tissue but also play important roles in cell-cell and
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cell-environment biochemical signalling [Braga, 2000]. The other types of junctions include
tight junctions and gap junctions (Figure 2.6). Tight junctions, lying just under the microvilli,
prevent the leakage of molecules through extra-cellular spaces between cells. Because there
is no significant amount of cytoskeleton components attached to tight junctions, they do not
provide mechanical strength. Unlike tight junctions, gap junctions allow the movement of
molecules and ions through connection channels between the cytosols of adjacent cells.

Therefore gap junctions are responsible for signalling between the cells.
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Figure 2.6. Schematic overview of major adhesive interactions that bind cells to each other and to the
extracellular matrix [Lodish, 2000]. 1. Apical surface 2. basal surface 3. extracelluar matrix(ECM) 4.
cell-cell adhesions 5. cell-matrix adhesions 6. tight junction 7. gap junction 8. adherens junction
9. desmosome 10. hemidesmosome

2. Mechanotransduction and mechanosensation

“Of Aristotle’s five senses, sight, smell and much of taste are initiated by ligands binding to
G-protein-coupled receptors. However, the mechanical sensations of touch and hearing
remain unknown without a clear understanding of their molecular basis” [Kung, 2005]. This
kind of mystery brings great difficulties to biomechanical models predicting the common

behaviours of different type of cells and tissues. Due to these factors, the research on cellular
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scale mechanics has leaned towards biological experiments instead of modeling in recent
years. The new term “mechanobiology” has been gaining more attention due to the huge
improvements in experiment methods and instruments. To date, much less is known about
cellular mechanotransduction -- the conversion of external mechanical forces on living cells
into a biochemical response that changes the gene program and mechanical properties.

As mentioned above, some of the cell-cell adhesion junctions provide mechanical
strength and some do not. Things would be simple if cells were static and their mechanical
properties could be determined by those specific adhesion junctions. The reality is cells are
alive, and they remodel their structure and shape from time to time. Even small perturbation
on the cell membrane may lead to remodelling of cell-matrix and cell-cell contact. There are

two main viewpoints reported on the mechanotransduction in recent studies.

1. Mechanosensitive ion channels and lipids

Many cell membranes are equipped with mechanosensitive (MS) ion channels that
respond to turgor in proportion to the surrounding concentration of water, which means the
MS ion channels act independently of lipid bilayers. However, recent studies have indicated
that lipids are also involved in the gating of MS channels. When the interface between the
lipids bilayer and MS channels is under stress or other externally applied force, the MS
channel protein will change its conformation making a switch between open and closed.
And also by changing the lipids’ shape, the membrane can exert force on the MS ion channel

and open its gate [Chin, 1997].

2. Cytoskeletal tension, integrins, Rho and MS ion channels

This hypothesis puts together cytoskeleton, cell-cell adhesion junctions and MS ion
channels. Its main idea is that the whole cell is the mechanotransducer because it integrates
these local signals with other environmental inputs before eliciting a specific behavioural
response. The cell-cell and cell-matrix adhesion junctions can transfer force to the whole cell
in a short time span. A corresponding experiment was conducted to verify this thought.
Ingber embedded microbeads (4.5 um diameter) on the surface membrane of cultured

capillary endothelial cells using permanent magnetic pulling cytometry. The microbeads are
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coated with a synthetic RGD peptide that binds to integrin receptors. These RGD-beads
ligate an activate integrin receptors, and form focal adhesion. A 3-second force pulse was
applied on these microbeads and results show that the whole cell tends to respond
viscoelastically to mechanical stimuli immediately. Obviously the MS ion channel theory
will not be able to predict this phenomenon because the diffusion of solute or molecular
transportation has a time lag longer than 3 seconds. Ingber [Ingber, 2003 I; Ingber, 2003 II]
uses tensegrity structure to describe the prestress cytoskeletal network in cells [Stamenovic
and Ingber, 2002; Rosenblatt et al., 2006]. Tensegrity structure is a special prestressed
structure. Its stiffness is zero when no prestress is applied in the structure. The prestress can
transfer externally applied force to its whole structure isometrically at a very quick speed
when the prestress in the structure is high. Local integrin-cytoskeleton linkages within
bead-associated focal adhesions exhibit an immediate viscoelastic response due to the
special properties of tensegrity structure.

From a mechanical perspective, the difference between the two opinions about the
mechanism of mechanotransduction is not huge. Both of them can be explained by
prestressed structures and conformation change of MS ion channels. The former one can be
viewed as a prestressed water balloon and the later one can be viewed as a prestress
tensegrity structure. The prestress effect makes the changes of local force spread to global

structure and change the conformation of MS ion channels.

2.1.3 Basic morphogenetic movements

Biological tissue is a collection of interconnected cells that perform a similar function within
an organism. Because of the mechanical property changes in cells, there are a total of eight
basic morphogenetic movements occurring in the developing organism. Figure 2.7 is the
schematic representation of the eight basic morphogenetic movements. Although
morphogenetic movements are categorized in this way, we may not be able to observe the
neat, tidy example of each kind. In a real case these movements occur at the same time and

are coupled together which makes the morphogenesis even more complex.
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Figure 2.7. The eight basic morphogenetic movements in tissue scale [Wilt and Hake, 2004].
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2.2 Morphogenesis research progress

Although our research and this report are focused on embryonic neurulation, this does not
restrict our discussion from general morphogenesis research. Embryonic morphogenesis is
one of the most intriguing events during embryonic development, and has attracted much
attention, especially over the last few decades. Scientists from biology, mechanics, chemistry,
applied math and other research fields are trying to interpret morphogenesis “in their own
words”. In the following section we will track the development and progress of these
research fields and draw a conclusion that an interdisciplinary approach is critical for

morphogenesis research.

2.2.1 Biological perspective

Before molecular biology or biochemistry took the dominating position in the science of
biology, biologists usually described biological phenomena in terms of mechanics. What
they had done was observe the motions of cells and shape changes of the whole-embryo,
and push back the question to the previous stage. It was the immediate cause of those
biological phenomena that they were seeking. Although some attempts have failed, the
mechanical viewpoint, the essence of design, still has value in biological research. However,
appreciation of mechanics and form fell away as the 20th century progressed. The
quintessential experiment, “the one gene one enzyme hypothesis” of Beadle and Tatum
[Beadle and Tatum, 1941], first connected the genotype to phenotype. Henceforward the
mainstream of biology switched to gene and biochemical research [Kirschner et al., 2000].
Molecular biology became a very productive research field. Scientists focused on finding
biochemical pathways and gene expression to "explain" organogenesis and pattern
formation exclusively. However the understanding of how nature builds tissues with
specialized form and function is still missing. The reductionist approaches seem not to have
the final answer. The complexity theorist, Stuart Kauffman tried to study the “emerging
global civilization” in biology by conducting the first computational simulations of a genetic

regulatory network [Kauffman, 1969], which is similar to the famous cellular automa model.
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At the same time, the demands for complexity theory in other research fields such as
computer science, economics and sociology was growing rapidly. These changes drove the
research in biology in a new direction, which can be viewed as a primitive form of system
biology. Application needs and research advancements promoted the research trends into
exploring the global outcome of biology systems. System biology seems to have a promising
future in the upcoming 10 years because “system biology offers an opportunity to study
how the phenotype is generated from the genotype” [Kirschner, 2005]. Although system
biology presents us with high expectations in biology research, it does not provide us with
satisfying solutions in morphogenesis related research or a more precise understanding of
the physical world. We continue to wonder what is missing in the very first place. In seeking
the answer, “there has been a recent resurgence of interest in mechanical forces as
morphogenetic regulators” [Ingber, 2005]. With the advancement of biophysics instruments,
many experiments have been conducted to prove that the mechanical forces, which had
been largely ignored since the rise of molecular biology, play a critical part in embryonic

development [Huang and Ingber, 2005; Ingber 2005; Scott and Stainier, 2003].

2.2.2 Chemical or applied mathematics perspective

A. M. Turing (1921-1954) was one of the foremost thinkers in the morphogenesis research
tield of the 20" century. His famous paper “The Chemical Basis of Morphogenesis” tried to
“demonstrate that systems of mutually reacting and diffusing chemicals could be used to
illustrate the mysterious origin of biological form with a previously formless structure — for
example within a developing embryo” [Sekimura, 2003]. The word “morphogenesis” in that
scenario is more precisely “pattern formation”. Turing believed that morphogens are
capable of diffusing in a tissue without much hindrance. The beautiful diffusion-reaction
equations are used to describe the diffusing movements and become the foundation of
mathematical biology. The instability of the whole system is already embedded into the
equations and dramatically different results can be expected with the introduction of
different stochastic factors. The essence of mathematical biology depends on striving for

“deep” explanations. However, experimental biology is still largely descriptive. The two
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different cultures make it difficult for experimental biologists to recognize the work of
mathematical biologists. With the huge advancements in biophysics and biotechniques, the
situation is becoming more and more promising. Biologists seem to be ready to accept
mathematical biology models in different research areas from molecular biology and
cellular biology to tissue research. A number of models [Sekimura, 2003] with revised mesh
or governing equations have emerged and help people to understand biology problems in a

more quantitative and accurate way.

2.2.3 Mechanical perspective

In the physical or mechanical viewpoint of morphogenesis, D'Arcy Thompson has been the
pioneer in interpreting biology in mechanics. His book On Growth and Form brought the
opinion that “the form of an object is a diagram of forces” [Thompson, 1992], and this is
probably the foundation of relating biology with mechanics. With developments in solid
mechanics and numerical analysis methods, computational mechanical simulations play
important roles in many research fields. The founder of modern biomechanics, Fung, Y.C.
introduced mechanics in biological research and gained great success in applications [Fung,
1981]. The biomechanics in embryonic morphogenesis also attracted many researchers
[Brodland, 2004; Brodland, 2005; Beloussov, 1998; Beloussov, 1998; Beloussov, 2006; Glazier,
1993; Graner, 1992; Munro and Odell, 2002; Odell et al., 1981; Taber, 1995; Taber, 2007; Zone,
1996]. Different mechanical models have been proposed. They have succeeded in a certain
way. These models all proved that mechanical models have the capacity to produce highly
complex geometries given appropriate positive feedbacks and negative feedbacks [Taber,
2007; Shraiman, 2005]. However embryonic morphogenesis is also closely associated with
gene expression and biochemical pathways. Positive and negative feedbacks are apparently
largely controlled through these networks. The accurate input of positive feedbacks and
negative feedbacks becomes very critical. Simulations are delayed due to the lack of
sufficient knowledge as to how genetic regulatory networks function and how to map
biochemical pathways into mechanical pathways. The general finite element method has

gained great success in studying non-biological system, but it lacks accurate descriptions of
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mechanical properties of biological systems. This makes it difficult to conduct simulations
[Taber, 1995].

Many computational models concerning embryonic morphogenesis have been
proposed by scientists from different research fields over past decades. What follows is a
review of current computational models in cellular scale and tissue scale that deal with

embryonic morphogenesis.

2.3 Cellular scale model and tissue scale model

During embryonic development, cells may experience passive shape change, active shape
change, growth, division, and rearrangement. These motions all contribute to embryonic
morphogenesis. In a successful model, all these motion types should be incorporated into
the model in the form of parameters or modules. Although these cell motions or processes
are generally linked, most investigators tend to treat them separately. To simplify the
description of embryonic morphogenesis, the deformation of embryonic epithelia during
morphogenesis is usually categorized into two groups, local shape change and global shape
change [Taber, 1995].

Local shape change describes the epithelia out-of-plane deformation, which includes
invagination, evagination, and folding. Invagination is the process of forming pockets that
sink into a structure (Figure 2.8a). Evagination is the process of forming buds that arise out
of a structure (Figure 2.8b). Folding is the action in which structures bend, touch, and join
(Figure 2.8c). Global shape change represents the epithelia in-plane deformation, which
includes surface area changes and constant area cell rearrangements (Figure 2.9).

To study these shape changes during embryonic morphogenesis, two kinds of
computational models are employed: cellular scale models and tissue scale models. Cellular
scale models involve studying embryonic morphogenesis from the perspective of cell
motions and interactions. In the cellular scale model, details about cells must be described
and provided to run simulations, and cell motions must be tracked during the whole

process.
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In tissue scale models, embryos are divided into finite elements with different
descriptions of mechanical properties. Tissue (element) properties become the focal point
instead of cell motions. Since local shape change usually involves large deformation in a
three dimensional (3D) space, tissue scale models are widely used to study local shape
change.

Our research work focuses on the relationships between cellular scale models and tissue
scale models. So both models will be reviewed here. The literature on computational models
for embryonic morphogenesis is vast. In this report, cell rearrangements (global shape

change) and embryo neurulation (local shape change) will receive more attention.

(a) (b) (©)

Invagination Evagination Folding

Figure 2.8. Invagination, evagination and folding of epithelium [Fristrom 1988].
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Figure 2.9. Cell sorting [Brodland 2004].

2.3.1 Cellular scale model

Hypotheses concerning the driving force of cell rearrangements include the differential
adhesion hypothesis (DAH), differential surface contraction hypothesis (DSCH), specific
CAM-based hypotheses, and Differential Interfacial Tension Hypothesis (DITH) [Brodland,
2002; Brodland, 2004]. Which is the driving force, adhesion or interfacial tension (surface
tension)? Although this is still under debate, recent experiments have suggested that the
interfacial tension might be the critical factor instead of adhesion, contrary to what was
reported in former theoretical models and experiments. When these hypotheses are
implemented into the computational models, all the governing rules are usually described
with the length or the weighted lengths of cell-cell interface.

In essence, the primary difference between the different computational models is the
descriptions of cell shape or structure, while the objectives are almost the same, namely
finding a local state of minimum energy or a configuration of force equilibrium. These

models will be introduced one by one.
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1. Cell-lattice models

Cell-lattice models [Brodland, 2004] are similar to the famous model “cellular automata”. By
using regular squares or hexagonal lattices to describe cell shape [Gordon and Goel et al,
1975; Goel and Campbell et al, 1970; Goel and Rogers, 1978; Rogers and Goel, 1978], this
model saves a lot of computational running time.

The basic idea of this model is to find the lowest free energy state of the system by
exchanging the position of neighbouring cells (Figure 2.10). The possibility of exchanging
the position of two cells is determined by evaluating the energy change of the whole system.
Different implementations may have different evaluation criteria. Some models use
probability decision mechanisms while most of the others use a threshold value policy. If a
probabilistic decision mechanism is used, this approach can be viewed as a Monte Carlo
simulation.

The strength of this model is that it is straightforward to program and has short run
times. Although this model is surprisingly effective in modeling real cell aggregates (Figure
2.11), the behaviour of cell position exchanging in this model is not observed in real embryos,

which prevents this model from reflecting the real process of cell rearrangement.

A Typical Cell

/—Exchanged Cells

¥

(a) (b)

Figure 2.10. Cell Exchange in a Cell Lattice Model [Brodland 2004]. Each cell occupies one square in
the mesh. Different color represents different cell type.
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Figure 2.11. Simulation of cell sorting by cell exchanges [Gordon et al, 1975]. (a) The initial
configuration; (b) An intermediate state; (c) The final state of the system.

2. Centric models

Centric models by Honda [Honda 1978, Honda 1983, Honda 1986] use Dirichlet or Voronoi
tessellations to describe cells in aggregates. In a Dirichlet or Voronoi tessellation, forming
points define the whole system. Each forming point controls one area, and the forming point
is closest to all the points in its area compared with other forming points (Figure 2.12). By
randomly placing forming points in the plane, an initial configuration is generated.

The basic idea of this model is that a forming point will make a certain displacement,
which is determined by complex calculations in each iteration step, to minimize the free
energy of whole system based on cell-cell boundary lengths. In each step, forming point
motion will cause a re-meshing of the whole plane, which means updating the geometry of
the cell aggregate.

This model is effective for describing single cell shapes and simulating cell sorting
(Figure 2.13). The intrinsic drawback of this model is that the cell shape is determined by

Voronoi tessellation rules, which prevent modeling of aggregates with anisotropic cells.
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Forming Point

Figure 2.12. Cell-centric model [Brodland, 2004]. A voronoi tessellation determines the configuration
of cell aggregates. The dark lines represent the current cell aggregate configuration, and the light
lines represent the next cell aggregate configuration.

(b) t=0.361 (c)t=0.671¢ (d) t=0.931

Figure 2.13. Simulation of cell sorting using a cell-centric model [Graner and Sawada 1993]. a) the
initial configuration; b) and c) an intermediate state; d) the final state of the system.

3. Sub-cellular lattice models

Sub-cellular lattice models [Glazier and Graner 1992, Glazier and Graner 1993; Rieu, 1998]
are a substantial enhancement from cellular lattice models. The difference is the number of
squares that are used to describe one cell. In cellular lattice models, each cell only occupies
one square while in sub-cellular lattice models each cell can occupy multiple squares (Figure
2.14). Some constraints for maintaining these squares into one aggregate are introduced in

sub-cellular lattice model.
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One advantage of sub-cellular lattice models over cellular lattice models is the
description of cell shape. With more squares, the description of cell shape in sub-cellular
lattice model is better than cellular lattice model. However, the shape description always has
jagged boundaries. In addition, this approach does not adequately model the mechanical

effects of the cell cytoplasm.

4. Boundary vertex models

Boundary vertex models [Honda 1983, Honda 1986] employ vertices and polygons to
describe cell shape (Figure 2.15). The basic idea of this model is that each vertex moves so as,
to shorten the total length of the cell-cell boundaries. In some models, an algorithm of
weighted boundary length is used [Honda 1983, Honda 1986].

The approach used in this model can be summarized as follows: One cell-cell boundary
is chosen at random in each iteration step (Figure 2.15), node P and Q can move in the
direction of AB and CD respectively. By adjusting the movement of P and Q, the length
AP’+BP’+ P'Q'+Q’'C+Q’D can be minimized.

The approach belongs to the boundary-shortening method. The drawback of these

boundary-shortening methods is that they do not incorporate the mechanical effects of cell

cytoplasm. Thus, an objective time factor is lacking in these models.

7

(a) (b)

Figure 2.14. Sub-cellular lattice model [Brodland 2004]. Each cell occupies an area surrounded by dark
lines. Cell shape changes are implemented by changing the cell type of each site. In (b) the cell type in
the site marked with an asterisk is changed.
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Figure 2.15. Vertex model [Honda 1986]. Cell shape changes are implemented by moving a pair of
vertices P and Q.

5. Finite element models
In a finite element model [Chen and Brodland 2000], polygonal elements realistically model
the geometries of each cell. Material properties can be assigned to each element and they can
be used to model the viscosity of cell cytoplasm. The driving force for cell arrangement in
this model is the interfacial tension on each cell-cell boundary. The objective of this model is
to find the time course of motion. Details about this model will be discussed in Chapter 3, so
only some key points in this model will be introduced here.
1. Each cell is divided into discrete finite elements. (Figure 2.16) Each triangular element
has a rod element on each edge. The rod element will generate constant contracting force in
its longitudinal direction during the whole process.
2. The global effective stiffness (damping) matrix is based only on cell cytoplasm viscosity.
Rod element and triangular element have no contribution to the global stiffness matrix.
3. The viscosity u is introduced in the model to replicate the forces produced by
cytoplasm deformation.
4. A Lagrange multiplier is imposed to keep a volume of each cell constant.

This finite element model can simulate a wide range of cell action phenomena (Figure

2.17). Based on a strict mathematical derivation, this model provides a general way to
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perform computational simulation of cell rearrangements. With the advance in computing
technology, finite element models provide a means to simulate morphogenetic events in

biological systems.

Intermediate

Microfilaments Filaments Cell
Membrane g
Triangular
Element
Microtubules
Rod Element
Cell Adhesion
Molecules Cell MNode
Cytoplasm

(b)z=2 (d)t=215

Figure 2.17. Simulation of cell sorting using finite element model [Brodland 2004]. a) the initial
configuration; b) and c) an intermediate state; d) the final state of the system.
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The comparison of these models is listed shown in Table 2.1.

Table 2.1 Comparison of different models:

Boundary
Cellular Sub-cellular Centric Finite Element
Approach Vertex
lattice models | lattice models models models
models
Arbitrary
Description
Stepped polygon, but Arbitrary Arbitrary
of cell Square
polygons restricted by polygon polygon
shape
Voronoi
Minimize the Mechanical
Minimize the | Minimize the | Minimize the
Objective cell-cell equilibrium
energy energy energy
boundary configuration
Governing Forming
Cell position Cell type Vertex Vertex
rules for point
exchange change movement movement
iteration movement
Description
of cell NO NO NO NO YES
cytoplasm
Real Time
NO NO NO NO YES
relevance
Time cost Low Modest Modest Modest High
6. CompuCell Project

As mentioned in the introduction, the genetic regulation network and morphogen gradient
play a critical role in mediating the cell morphogenesis. Quite a few models exist to
incorporate the genetic regulatory networks and morphogen fields. CompuCell project is
one of them [Izaguirre, 2004]. It is a computational framework for simulation of the
“coupling between genetic regulatory networks and diffusion of morphogens, cell adhesion,
haptotaxis (movement of cells along a gradient of a molecule deposited on a substrate), and

chemotaxis (movement of cells along a gradient of a chemical diffusing in the extracellular
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environment)” [Izaguirre, 2004]. It consists of three main modules: “Cellular Potts model
(CPM) that describe cell and ECM behaviours, a Reaction-Diffusion (RD) module that
describes diffusible morphogens and a combined ordinary differential equations (ODE)
/state model of genetic regulatory networks and differentiation” [Izaguirre, 2004]. Cellular
Potts Model is a generalized cellular automata. It is evolved by updating the cell lattice one
pixel at a time based on a set of probabilistic rules. It is based on the differential adhesion
hypothesis by minimizing the energy of cell-cell surface interaction. One difference that
separates it from most current cell-lattice models is that constraints are imposed by
introducing a Hamiltonian or effective energy function. Divergence from the designated
behaviour will result in an “energy penalty”. The other difference is that CompuCell
provides the option to use continuum models to model cell dynamics. The genetic
regulatory networks in CompuCell are a set of rules for cells that govern their growth,
division, secretion of morphogens, and strength of adhesion. Most of these rules are
concerned with the morphogen density in cells. This mechanism correlates genetic
regulatory networks with the Reaction-Diffusion module and brings more complex
behaviours into the model.

CompucCell is an open-source object-oriented project, and its comprehensive modules
are attracting more attention in recent years with the development of systems biology. The
introduction of genetic regulatory networks into computational models is a great leap
compared with most current models. Thus the marriage of math and biology gives birth to a
new research discipline: system biology. It makes biological study more quantitative and
solid. However, as discussed in the introduction, the driving force behind the model is the
Turing’s Reaction-Diffusion equations. The chemical perspectives in these kinds of
equations can bring complex pattern forming in the system but based on recent research
embryonic pattern forming is largely produced by mechanical force interactions and
deformations. Basically, the positive and negative feedbacks which are brought by
reaction-diffusion equations can be replaced by the rules defined in genetic regulatory
networks. In addition, the Cellular Potts Model has limited capabilities for describing the

moving boundaries in a cell aggregate.
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A large number of computational models for morphogenesis are similar to the
CompucCell project. The Turing’s reaction-diffusion equations are the governing equations
in those models. They only differ in mesh algorithm choice, computational engine and their
target applications. There are a number of other models, that focus on more specific topics
such as Odell’s model [Munro and Odell, 2002a; Munro and Odell, 2002b] which deals with
the emergence of global polarity of convergent extension and Ingber’s model [Huang and
Ingber 2005] which focuses on the mechanical influence of the extracelluar matrix [Discher et
al., 2005; du Roure et al., 2005] on cell proliferation and tumour formation (Figure 2.18). Most
of these models are implemented in the two dimensional (2D) domain. Three dimensional
(3D) models for cell arrangement are still rare, and currently are limited to models from

Honda [Honda et al. 2003] and Viens [Viens and Brodland, 2007] (Figure 2.19).

Figure 2.18. Ingber’s ECM influence model [Huang and Ingber 2005].
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Figure 2.19. Partially dissociated 111-cell finite element mesh [Viens and Brodland, 2007].

2.3.2 Tissue scale Models

Tissue scale models, including finite element models, divide the embryo into elements that
contain tens to hundreds of cells, and they allow the mechanical consequences of various
driving-force hypotheses on tissue and whole-embryo motions to be tested. Some of the
most promising of these hypotheses are presented here.

The apical constriction hypothesis assumes that apical microfilament contraction
(Figure 2.20a) provides crucial driving forces. The apical constriction hypothesis has been
implemented by many researchers [Odell et al., 1981 (Figure 2.21); Oster and Alberch, 1982;
Clausi and Brodland, 1993], and has produced tissue motions that are quite realistic.
Although these models are based on the same driving force, small differences in constitutive
models can produce significant changes in the results. The model of Clausi and Brodland

has provided perhaps the most realistic results (Figure 2.22).
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Figure 2.20. Tissue scale models driving force hypotheses. (a) Apical constriction hypothesis. (b)
The constrained expansion or contraction hypothesis.

The constrained expansion or contraction hypothesis [Odell et al., 1981] assumes that
the cell shape changes are caused by the expansion or contraction of the basement
membrane or extracellular matrix, which is just underneath the cell aggregate (Figure 2.20 b).
Invagination and evagination can be easily simulated with this hypothesis, but biological
evidence to support it is lacking.

The cytoplasm flow hypothesis [Jacobson et al., 1986; Taber, 1995] assumes that the
motile behaviour of epithelial cells is similar to that of mesenchymal cells. Cytoplasm flows
from the basal surface through the lateral sides of the cell to the apical surface, and then
flows back to the basal surface through the median (Figure 2.23). Adhesion molecules join
the current and accumulate at the apical surface, which causes the two cells to stick together.
According to Jacobson, the model can simulate invagination and folding of the neural tube
by setting a different flow rate in each cell. Different flow rates cause shear stresses to exist
between two cells which cause out-of-plane deformation.

Shell models proposed by Hardin and Cheng [Hardin and Cheng, 1986], treat the
embryonic epithelia as a continuum shell. By applying different forces on different locations
and modeling cell rearrangement as fluid-like flow materials, this model has been used to
simulate embryonic gastrulation.

The hypothesis of morphogens interacting with geometry [Cummings, 1989] assumes
the morphogen density changes cause the geometry of the epithelium to change, and the

changing geometry in turn reacts to change the morphogen pattern. This model treats the
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epithelial as a continuum and incorporates positive feedback and negative feedback into the
model to generate complex geometric results.

The hydromechanical hypothesis is proposed by Borkhvardt [Borkhvardt, 2002]. The
process of invagination and evagination is considered to a result of the intracavitary
pressure changes in an autonomous regime. The place with the weakest force of resistance

will bulges out or sags, which results in invagination and evagination (Figure 2.24).

Figure 2.21. Apical constriction model of amphibian neurulation [Odell et al., 1981].
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Figure 2.22. Clausi and Brodland finite element model [Clausi and
Brodland 1993].
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Figure 2.23. Cortical flow of adhesive structures [Jacobson et al., 1986].
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Figure 2.24. A schematic representation of growth and morphogenesis of the entire organism and its
parts in terms of the hydromechanical model [Borkhvardt, 2002]. (a) Initial, state at equal local
pressures; (b) State arisen after the appearance of difference in pressures. The organism is depicted
as a system of closed cavities (designated as circles). The difference in pressure in individual cavities
and outer medium is designated as symbols “++” > “+” > “-”_ The thickness of lines designating
cavity walls corresponds to their resistance.

2.3.3 Challenge for cellular scale models:

In spite of the many advances that have been made, a number of significant challenges for
both type models still remain. Currently, cellular scale models are usually employed to
study global shape changes such as cell rearrangement. However, it would be intellectually
satisfying to model each cell with one element to simulate both local and global shape
change effects during embryonic morphogenesis. To fulfill this objective some challenges
need to be overcome.

1. Most cellular scale models are based on a 2D domain. When they are extended to a
3D domain, more details about cell-cell interactions need to be understood. Because
3D models involve much more complex boundary conditions than 2D models. For
example, the junctions between cells may involve five, six or more cells in three
dimensions. Both geometric description of these conditions and mechanical effects
such as adhesion molecules are necessary.

2. The computational cost increases dramatically if a 3D model is applied. Early stages

of embryos may consist of tens or hundreds of thousands of cells. It is impractical to
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implement a finite element algorithm to simulate each cell with one element without
a great advance in computational power.

With positive and negative feedbacks, a small random error in the initial
configuration affects the final result greatly. A perfect emergence of embryonic
morphogenesis is difficult to simulate before a comprehensive understanding of
embryonic morphogenesis is achieved. For example, a correct neurulation may not
“emerge” without proper cell thickness. And if the cellular-scale model does not
provide sufficient parameters to characterize the cell motions, the “emergence” is

also difficult to occur.

2.3.4 Challenge for tissue scale models:

1.

Most current tissue scale models do not allow for cell rearrangements, and this has a
huge impact on the entire embryonic development. Cell rearrangement may be a
source of positive and negative feedbacks as mentioned in the introduction. It is the
key to a successful mechanical model.

Tissue scale models focus on changes in tissue properties caused by cellular scale
motions. Sufficient and proper parameters must be extracted to describe such
changes. A positive and negative feedback mechanism is embedded in the tissue
properties change.

To input or verify changes in tissue properties with computational simulations,
experimental measurements of mechanical properties of embryonic tissue are
required. Embryonic tissue properties have been found to vary greatly during the
whole process. For instance, the ectoderm tissue in early gastrulation and late
gastrulation yield totally different results in measurements [Glagoleva, 2003; Benko

and Brodland, 2007].
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2.4 Multiscale Modeling

Almost every problem in science and engineering is multiscale in nature. Embryos are made
of multiple tissues, tissues are composed of cells, cells are made up of molecules, and
molecules consist of atoms and electrons. The recent progress in nanomechanics, such as
molecular dynamics and quantum mechanics, enables researchers to study the biological
problems at the DNA scale. However, models such as finite element models, molecular
dynamics, and quantum mechanics alone are sometimes not sufficient to describe the
physical phenomena; the coupling between different scale models becomes the alternative
solution to this kind of problem. For instance, suppose one has a material patch with crack
propagation occurring in a small area; crack propagating involves the breaking of chemical
bonds. This requires a quantum mechanics approach. The atoms close to the crack can be
modeled by a molecular dynamics approach, and a finite element approach is accurate
enough for simulating the rest of the material patch. The result is that it takes three separate
theoretical frameworks to model the mechanics of crack propagation in solid structures that
are in the order of one micron in size. The key point of this kind of coupling of models with
different scales is that these three models have to work or compute at the same time and
send feedback to each other, which researchers refer to a parallel coupling. The critical part
of parallel coupling is how to define the interplay between different models. One has to
make the boundary connection seamless without having energy loss during the
computation.

Another type of multiscale coupling is called serial coupling [Winsberg, 2006]. As
implied in its name, the coupling of three separate theoretical frameworks is implemented
through “parameter passing.” For instance, the results from quantum mechanics can be
compressed into the potential function and passed to molecular dynamics. The
computational results from the molecular dynamics approach can be incorporated into
parameters such as elastic modules or stiffness and passed to the finite element approach.
This type of coupling requires the constitute equations be expressed with limited parameters,

and the extracting of these parameters is not time consuming. The advantage of this method
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is the reduction of computational cost. By using the molecular dynamics approach, one may
spend one month on a computational simulation of a piece of skin tissue. With finite element
model, however, the time cost can be reduced to one day.

Since the problem we focus on is the embryonic morphogenesis which does not involve
much size effect and current computational capacity is limited, the serial multiscale

coupling method becomes a better choice.

2.5 The what, why and how of our model

From the reviews and discussions above it is not difficult for us to draw a conclusion that
there is a strong demand for combining biochemical pathways with mechanical models. The
question for biologists is not only how does gene control makes embryonic morphogenesis
happen, but also when and where does embryonic morphogenesis happen [Huang and
Ingber, 2005]. In contrast, the question for researchers in the mechanical field is how can
biochemical pathways incorporate into a finite element framework.

Another crucial question arises: at which scale should we model an embryo, at the
cellular scale or tissue scale? From a biological perspective, embryos consist of tissues; tissue
consists of cells. Correspondingly from a mechanical perspective, the whole-embryo
mechanics can be decomposed into tissue mechanics and tissue mechanics can be
decomposed into cell mechanics. Many models based on both levels have been proposed to
study embryonic morphogenesis. However, none of them has successfully simulated the
whole process. For a cellular model to make this happen, we are expecting a huge CPU time
cost. Sometimes even a small perturbation will ruin this process. In view of these facts, the
tissue scale model becomes a good candidate for the simulation, as long as we give correct
biomechanical feedbacks in the tissue scale and the tissue model captures the mechanical
motions of cells. This drives us to try the possibility combining tissue mechanics and cell

mechanics together. Setting up a bridge between the cellular scale model and the tissue
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model to capture the interrelationship between cell motions and tissue fabric evolution
might be the correct answer.

This report presents the inception of a whole-embryo finite element model of
neurulation. To capture the mechanical interactions that occur across cellular, tissue and
whole-embryo scales, an advanced, multiscale finite element approach is used. Cell-based
simulations are used to construct a system of constitutive equations for embryonic tissues,
and experimental data are used to determine the parameters in these equations. Images of
live embryos and serial sections of fixed embryos provide the geometric data needed to
complete the whole-embryo model. Biological experiments will also be conducted to verify
the validity of this model. Finally, investigations will be performed using on our model to

determine the mechanical cause of spina bifida.
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Chapter 3

Constitutive Model

To address the challenges associated with cellular scale and tissue scale models, our lab has
developed an open framework for the computational simulation of embryonic
morphogenesis. By bridging the gap between cellular scale and tissue scale models, this
framework intends to probe the relationships between mechanical events (or their genetic
precursors) and embryonic malformations. The structure of this framework is summarized
as follows:
1. Constitutive model: A cell-based constitutive model for embryonic epithelia is devised
to capture the interrelationship between cell motions and tissue fabric evolution.
2. Computational model implementation:
1) Collect data on embryo shape, tissue fabric, epithelial thickness and tissue
mechanical properties.
2) Use a custom spatial-temporal data correlation system (feature grid) to correlate
the experimental spatial-temporal data with the finite element model.
3) Use our computational engine to predict the outcomes of various starting
configurations and active force generation systems.
4) Use advanced pre- and post-processing software to set up and view the finite
element model.

3. Computational simulations: Simulations will be evaluated against experimental data.
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As mentioned in the previous chapter, during embryonic morphogenesis, various
structured monolayers of cells called epithelia undergo both local and global shape changes,
which includes rolling of plates into tubes, stretching, bending of tubes, shearing in the
tissue scale, reshaping, rearranging, and mitosis in the cellular scale. The complex motion of
cells makes combining these motions into one computational model in the cellular scale
difficult. On the other hand, a unified constitutive model is visibly lacking for tissue scale
models.

To set up a robust constitutive model, a thorough understanding of the relationship
between stress and strain during embryonic morphogenesis is required. Analytical studies
and computer simulations have shown [Chen and Brodland, 2000; Brodland et al., 2000;
Brodland et al., 2007] that the stress and strain relationship are greatly affected by the cellular
scale motions such as reshaping, rearranging, and mitosis. This kind of observation also
receives support from experiment results [Brodland and Wiebe, 2004]. To incorporate these
cellular scale motions into a tissue scale model, parameters representing these cellular scale
motions should be extracted from cellular scale computational simulations and experiments.

Obtaining experimental data of mechanical properties of embryo epithelia have been
difficult because of their fragility and the tiny size of the specimens. However, some
properties which cannot be measured in experiments can be obtained in computational
models. Therefore cellular scale computational simulations become an important approach
to study tissue fabric evolution. Although a number of computation models have been
proposed to study the problem, their common drawback is that they do not adequately
model the cell viscosity, which is critical for cell motions. By introducing cell viscosity into
their model, Chen and Brodland have successfully simulated a number of important cell

motions.

3.1 Finite Element Simulation of Cellular Scale Models

Basic components behind the cellular scale model are shown in Figure 3.1 [Chen and

Brodland, 2002] and are listed below.
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Microfilaments — bands of contractile material along the perimeter of the apical end of each
cell and composed predominantly of actin.

Microtubules — long, thin tube-like structures, which are composed of sub-units of the
protein tubulin. They act as a scaffold to determine cell shape.

Intermediate filaments — provide a three dimensional tension network to support the cell
scaffold.

Extra-cellular matrix (ECM) — is a complex structural entity surrounding and supporting
cells.

Basement membrane — is a structure that supports an overlying epithelium and keeps the

epithelial cells organized as a layer.

Cell Microfilament

Membrane Bundle

Cell Adhesion
Nucleus Molecules

A

C_ontrol . (CAMs)
Biochemicals Extracellular

Matrix (ECM)
Basement =/ e
Membrane

Intermediate
Filament (IF)

Microtubule

Figure 3.1. A schematic representation of a piece of epithelium [Chen and Brodland, 2000].
Components of mechanical importance are shown.

In Brodland’s model, some key assumptions can be summarized as follow:

1.  The net driving force in cell-cell interactions is approximated by an interfacial
tension along cell boundaries. The tension is generated by circumferential
microfilament bundles (CMBs), other microfilaments and cell membrane tension.

Forces generated by cell adhesion molecules (CAMs) reduce this contraction.
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2. The cell cytoplasm, including its embedded networks of intermediate filaments, is

considered to be incompressible and is modeled by an effective viscosity z .

Microtubule Cell Cytoplasm

cCMB
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Figure 3.2. The cell and finite element models [Brodland et al., 2007]. (a) A schematic
representation of two cells that are assumed to form part of a generic embryonic epithelium. (b)
A model based on systems of orthogonal dashpots. In the interest of image clarity, only the
dashpots aligned with the long axis of the cell are shown. The second set of dashpots would run
orthogonal to those shown. Truss elements, like those shown in (a), are assumed to act along each
cell-cell interface.

Based on the above assumptions, there are a total of two free material parameters in this

model: a constant tension y along each cell-cell interface and the cell viscosity 4 . To model

these cells in the finite element method, nodes of each cell are connected with each other by
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an orthogonal dashpot system which is along with the principal axes of the cell (Figure 3.2b).

Each dashpot in Figure 3.2b is assigned the same damping coefficient 77, . As a consequence,

the movement of one node will produce the same reaction force on the other nodes
(assuming they are fixed when the movement occurs). This brings simplicity to the stiffness

matrix assembling. And through virtual work principle, 77, can be related to the cell

viscosity u# based on some geometric assumptions [Brodland et al., 2007]. Truss-like
elements are employed to model the interfacial tension along the each side of the cell. To
keep the total cell volume constant, a volume boundary constraint is imposed on each cell.

The system is described by the equation:
Cu+Ku=f, (3.1)

where C is the damping matrix of the system, K is the stiffness matrix of the system, f is the
consultant force vector applied on the system, u is the nodal displacements, and U is its
derivative over time.

Because the tension y is constant, the truss-like elements have no contribution to the global

stiffness of the whole system. Therefore the global stiffness K is zero. By using a forward

difference scheme, this nonlinear equation can be rewritten as follow:

co~c2_Lcau=f
At At

AitC(uqH —u,)=f,, (32)
The volume constraints are incorporated as Lagrange multipliers.

The mechanism by which cells are able to rearrange is shown in Figure 3.3. As the
boundary between cells A and C becomes shorter and shorter it disappears with a
quadruple junction forming. After that, a new boundary is generated between B and D.
Because time steps are discrete in the finite element simulation the topology is assumed to
change directly from Figure 3.3a to Figure 3.3c, when the edge length is less than a specified

value (the critical length). The new-formed edge between B and D is longer than this
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specified short value to avoid the simulation going back and forth between Figure 3.3a and

Figure 3.3c.

A

/“:Ti,!/

C Cc

c

(a) (b) (c)

Figure 3.3. Coding assumptions about cell rearrangement [Chen and Brodland, 2000]. (a) A and C
are moving away from each other. The boundary length becomes shorter and shorter until it is
less than a certain length M. (b) The real situation happening in a real embryo, but in coding
rules, this situation will not happen. If the boundary length is less than M the program will skip
situation (b) and jump to (c). (c) A and C are separated and the new boundary between B and D is
formed. Its length is greater than 1.1M to avoid dead looping.

By conducting a great number of simulations including stretching, compression, simple
shear, and the combination of these effects, the authors found that the instant stress value
depends primarily on the tension along the boundaries of the cells and the orientation of
these boundaries. In the mean time, corresponding experiments [Brodland and Wiebe, 2004]
were conducted to support these hypotheses. In addition, the simulation concerned with the
cell annealing and tissue strain relaxation yielded some valuable observations, revealing
that epithelial aggregates share some fundamental characteristics of plastic deformation
with other materials. When the epithelial tissue undergoes stretching, cell edges rotate to
align with the stretch direction. If the stretch force is less than a certain value, the
deformation will be caused only by cell elongation. When the stretch force is greater than
this value, the cells will choose rearrangements instead of elongation. This property
resembles the yielding of a plastic material. Based on the computational simulations, the

yield point is related to the ratio of the interfacial tension y to the product of the cell

viscosity x and the strain rate &.
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Clearly, based on the computational simulations and experiment observations listed
above, we can conclude that the evolution of the tissue fabric will affect the stress condition
dramatically. Corresponding parameters, which can lend themselves to physical
interpretation, need to be extracted from the cellular scale simulations to describe the fabric
evolution. Tensors have been a good choice for describing tissue fabric in a number of
applications [Rothenburg, 1981; Asipauskas et al., 2003; Latzel et al, 2000; Hohler and Cohen,
2005; Janiaud and Graner, 2005]. For historical reasons, three parameters, cell shape,
orientation and cell edge density, are employed to describe embryonic tissue fabric

evolution for the constitutive equations instead [Brodland, 2004].
3.2 Governing Parameters

Consider a patch of cells, as shown schematically in Figure 3.4. The definition of the density

P of the cells in a specific region of a planar aggregate is:

n
p= n (3.3)

where nis the number of cells in the region and A is its area.

For each cell i in the planar aggregate, a shape factor «xis defined as:

K. = /IL (3.4)

where |, is the minimum principal moments of inertia and |, is the maximum

max

principal moments of inertia. The average cell shape factor, kK is defined as

= %z K (3.5)

Al
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Cell Patch

e
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Figure 3.4. Composite cell [Brodland, 2004].

The cells that contact the boundary of the aggregate are neglected because they have
truncated geometries. To describe the integral shape of the aggregate, a composite cell

(Figure 3.4) can be used to describe the whole patch with its moments of inertia
* 1 s i
I x I )I<x ’
&
* 1 : i
L, ==>1,,, (3.6)
=]

* 1 n 1
Ly =— Z by o
N5z
defined as the average of the centroidal moments and product of the individual cells in the

aggregate. The shape factor of the composite cell is defined as:

|
K= (37)

min

where |, is the minimum principal moments of inertia and | is the maximum

max

principal moments of inertia based on the I, I  jandl, .

As shown in Figure 3.4, the major axis of the composite cell « is defined as:
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217,
a = arctan *—l* (38)

XX yy

Incase |, = I ,y- the angle can be defined uniquely using the equation

T *
7 I, >0
a=10, 11 =0 (3.9)
T *
R I, <0

Although these parameters are used to describe a planar aggregate, an extension to
three-dimensional aggregates is not difficult.

A dimensionless time 7 is used here to replace the real time variable.

r =St (3.10)
s=1P (3.11)
2u0
:ij\/xsm 49+ cos® 6d@ (3.12)
0 K

where 0 is the thickness of the planar aggregate, p is the interface density which is defined

as the sum of the length of all internal cell boundaries plus half of the perimeter of the patch

over the area of the patch, gis a form factor having a typical range between 1.9 and 2.2 for

isotropic aggregates [Brodland and Wiebe, 2004].

So far three parameters, x,« and [ are defined as a robust set of parameters to

describe the fabric of an epithelium. The next step is to relate these parameters to different

cellular scale effects in tissue fabric evolution.

3.3 Bulk Deformation

A deformation tensor F [Malvern, 1969] is employed to map a pair of non co-linear vectors A
and B to corresponding vectors a and b in the new configuration assuming that the

deformation is uniform over the whole sheet (Figure 3.5).
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F = Fll I:12 _ & bl Ai Bl h (3 13)
I:21 I:22 a, b2 A2 Bz '

To map the initial configuration with k=1, =0 and f=0 in Figure 3.5a to
configuration k¥ , @ and f in Figure 3.5b. A tensor G can be used to perform the

transformation.

F 0
G_{cos(oc) —sin(a)} B 614)

"~ |sin(e)  cos(a) 0
xp
The transformation can be considered as a stretching in the coordinate directions to produce

the required xand g followed by a counter clockwise rotation cr .

H=FG
/-’G’f B F
A A A
A a
K= 1, = C‘, ﬁ=1 K, o ﬁ me, anaw, ﬁnaw
> X = X - X

(a) (b) (c)

Figure 3.5. Deformation of the cell patch [Brodland, 2004]. (a) A hypothetical isotropic configuration
with a unit cell density [. (b) New configuration deformed from (a) by G. (c) New configuration

deformed from (a) by H or deformed from (b) by F.

To transform from configuration a to c¢ (Figure 3.5¢c), the tensor H is calculated by the
product:
H=FG (3.15)

Considering how an arbitrary unit vector would deform under H (Figure 3.6),
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cos 7
V(1) :{ , }

sinpy
The unit circle will transform to an ellipse, and the angle between the major axis of the
ellipse and the x-axis is given by:

Mmax = %arCtan(Z(Hn * H12 + H21 * H22 )’ H121 - H122 + H221 - H222) (3-16)

new «p can be given by:
ap = arctan(H 5, €087, + HoySiN7, . H,y cOSn, .+ Hy,Sin Umax) (3.17)

The subscript D means the effect is caused by in-plane deformation

Kp = || H V(nmax )” (318)
||H V(Dax + 71 2)||

Bo = ﬁ (3.19)

Hv (nmax+ni2)

Figure 3.6. Mapping of an arbitrary vector V(77) into HV(77) [Brodland, 2004].
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3.4 Cell Annealing

Cell annealing is the spontaneous rounding of elongated cells. Based on the 3D
computational simulation and theoretical analysis [Brodland and Veldhuis, 2003], the
annealing causes x(t) to decay in an approximately exponential fashion, which can be
represented as
K(t) =1+ (x, —1)e ™ (3.20)
where & is the starting value of &, and ¢ is the time constant of the decay with the value
0.17. On account of implementation in the finite element method, this relationship is
formulated in incremental form:
Axy =¢S(1-x)At (3.21)

The subscript R represents that the effect is caused by cell annealing.
3.5 Mitosis

Mitosis also has an impact on the tissue fabric evolution [Brodland, 2004; Hemerly et al., 2000;
Nechiporuk, 2006]. Usually mitosis orientation is governed by its long axis. The x of two
daughter cells will be closer to 1 (isotropic) than that of their mother cell. The relationship

can be represented as

Kyoon  —1
Axy = WS)MAL K<2
K gividing
K gividi (3.22)
(Kdividing — 2d = )
Ay =y > At, k>2

where K iging iS the shape parameter of the mother cell, Qis the fraction of the current

number of cells that divide per unit time. y is the dimensionless rate factor, which is taken

here to be -2.65. The subscript M is used to denote a mitosis effect. The finite difference

formula for mitosis effect on cell density is written as

AB, = QAL (3.23)
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3.6 Lamellipodia effect

When suitable biochemical conditions are present [Wallingford and Harland, 2002; Ehrlich,
2002], embryonic cells generate oriented protrusions, called lamellipodia. As these
protrusions arise from a cell, they push their way between an immediately adjacent pair of
cells until they contact the next neighboring cell [Gloushankova et al., 1997; Gloushankova et
al., 1998]. When they then contract, they draw the source and next neighboring cells together
[Bailly and Condeelis, 2002]. This action can produce reshaping of tissues and their
constituent cells.

Figure 3.7a shows a typical starting configuration. The cells have an initial average
aspect ratio of x=1.2, and their long axis is parallel to the horizontal axis of the Figure. As the
interfacial tensions, lamellipodia and cell viscosities interact over time, the cells reshape,

even though the edges of the tissue are restrained (Figure 3.7b).

Figure 3.7. Temporal evolution of cellular fabric with Lamellipodia effect.
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The work reported here is focused on investigating the stress-strain characteristics of a
rectangular patch of model tissue in terms of the rate r at which lamellipodia form, the
relative strength g of their contractions and the boundary conditions. To simplify the real
scenario, we assume the fraction of the current number of cells that produce a
lamellipodium per unit dimensionless time is constant and denoted by r. When a
lamellipodia forms, the linear element along the edge where it arises is replaced by a
lamellipodium element that generates a total tension of q-y.

Simulations show that if 7, the rate of lamellipodium generation, is sufficiently small,
the cells basically anneal [Brodland et al., 2006] as shown by the average cell aspect ratio
decay (Figure 3.8). However, as the rate of lamellipodium generation is increased, the cells
elongate more because the tendency towards cell elongation produced by lamellipodia
pulling on their ends is greater than the tendency towards rounding produced by annealing

effect.

= =
ol [op} ~
T T 1

=
N
T

Average Cell Aspect Ratio (k)
w

1.2
1.1 F —— Kappa without L —s— Kappa with L (r=0.005)
1 —+ Kappa with L (r|=0.015) —x— Kappa withI L (r=0.025) .
0 1 2 3 4 5
Time (1)

Figure 3.8. Cell aspect ratio versus dimensionless time.

The dimensionless tensile stress

s="2 (3.24)
7P
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produced in the tissue is shown in Figure 3.9. Parametric studies show that this stress
changes with time primarily because lamellipodia cause the cells to elongate in the direction
of lamellipodium action and that this change in cell shape significantly affects the interfacial
tension-generated stresses [Brodland et al.,, 2006]. The stresses generated directly by the
lamellipodia effect, the difference between the two curves, are rather modest. The
simulations show that while lamellipodia do directly affect the stresses acting in an
epithelium, their primary mode of action is to reshape the cells, thereby changing the
interfacial tension-generated stresses. Because the constitutive equations derived previously
are able to predict changes in cellular fabric, modifications to predict the mechanical effects

of lamellipodium action should be possible.

100 r
@ 80
7
o
2 60 .f'
E —x— ConstraintStress with L (r=0.025)
= 40 4/ —a— ConstituteStress with L (r=0.025)
E —a— ConstituteStress without L
o
Z 20 [rossasssssssss sttt ALLALLAMLALDALLALLADALLEEL
O 1 1 1 1 J
0 1 2 3 4 5

Time (t)

Figure 3.9. Normalized stress versus time.

To derive the expression of lamellipodia effect on tissue fabric evolution, periodic
boundary conditions are employed in this report instead of the rectangular boundary
conditions used in recent studies [Brodland and Veldhuis, 2006]. Two cases including
restrained lateral edges (Figure 3.10b) and unrestrained lateral edges (Figure 3.10c) are

compared here.
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(a) Initial configuration

(b)  Restrained lateral edges

()  Unrestrained lateral edges

Figure 3.10. Simulations of a patch of cells with g=2, S=0.2 and r=0.13. (a) The initial configuration
consists of 301 cells. (b) When the edges of the patch are fixed, the cells elongate and ultimately reach
an aspect ratio of k=1.24. (c) When the edges of the patch are unrestrained, lamellipodia (shown
with wide white lines) cause the patch to narrow to 80% of its original width.
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Restrained lateral edges:

In this case, the geometry of the whole patch can not deform, and the lamellipodia effect acts
along with the annealing effect and reach a balance point of a certain value of x. At this
critical point, & remains constant, therefore we have the following equation:

dr  drp g (3.25)
dr dr

Kp
T

Since we’ve already had the expression for , the tissue fabric change caused by

Ky
T

annealing, we can easily get the expression for , the tissue fabric change caused by

K
T

lamellipodia effect. There is an alternative way to compute the value for from time

dx
series. Plot the change rate of «, d_ , with respect to dimensionless time 7 and extract

T
. . . K, . dx, .
the maximum value around time zero. This value —|, _; is q because x is 1 and
T T
dr, . : : . .
q is zero at that time. Figure 3.11 is the track of x over time 7 . Each curve represents a
T

case with different relative strength 4.

Unrestrained lateral edges:

In this case, the patch of cell can move freely and the simulation results demonstrate that
k of the patch of cells has a small fluctuation around 1 assuming that the initial
configuration is isotropic. Therefore the annealing effect is negligible here. The
lamellipodia effect will be balanced by the bulk deformation shown in Figure 3.10 to keep

Kk approximate to 1. The equation can be expressed as

d d
KL, %y, (3.26)
dr dr
By calculating the ddKD based on the geometric shape change, we are able to plot the track of
T
dx,

dx
q with respect toz . To express —L with 7, g, we have following simulation results.
T
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d
Recent studies show that the % holds a linear relationship with r [Brodland and
T

d
Veldhuis, 2006] and Figure 3.12 indicates that the relationship between dKL and g is also
T

linear except the degree of kinematic restraint in the medio-lateral direction will linearly
modify the curve’s slope. The two curves in Figure 3.12 represent the two limiting cases,

unrestrained lateral edges and restrained lateral edges. By doing linear interpolation we are

dx
able to obtain the L based on the degree of kinematic restraint.
T

dr,

=x-r-(q-15)-e, (3.27)

de

where y is the coefficient calculated from the simulation curve fitting, e is the restraint

index which describe the degree of kinematic restraint in the ML direction. Its incremental
form is written as

Ak =y-r-(q-15)-e-At. (3.28)

By using constraint index e we are able to interpolate between the cases, unrestrained lateral

edges and restrained lateral edges.

19 ¢
1.8
1.7
1.6
15
1.4

13

0.00 10.00 20.00 30.00 40.00 50.00 60.00
Time (1)

Figure 3.11. K versus dimensionless time 7 with different relative strength g.
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Figure 3.12. —& versus relative strength q with different boundary conditions.
T

3.7 Collective Effect on Tissue Fabric Evolution

Combining the deformation, annealing, mitosis and lamellipodia effect together, the three
parameters in the new configuration can be represented as follows:
Ko = Kp T Akg + Ak + Ak

= a, (3.29)

Brew = Po + APy
To relate these parameters to the stresses in planar aggregate, the author [Brodland,
2004] defined the stress in epithelial cell aggregates as the net force per unit length of cutting
plane (Figure 3.13) [Brodland, 2004]. The previous studies [Brodland and Wiebe, 2004;
Brodland and Veldhuis, 2003; Brodland and Veldhuis, 2002; Chen and Brodland, 2000] show

that the interface density is,
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p=MI\/K5in26’+£COSZ 0do (3.30)
T 0 K

where is a form factor that ranges from 1.9 to 2.2 for isotropic aggregates.

The stress in the directions of the long and short axes of the composite cell can be

expressed as follows [Brodland and Wiebe, 2004] (Figure 3.13):

2 2
o= [ 22 9 4o (3.31)

27 sin% @
0 |kcos? O+
K

_pr cos® 0

27K cos’ @
O lxsin?6+
K

0,

do (3.32)
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Figure 3.13. Planar view of a monolayer cell aggregate [Brodland, 2004]. The stress o, and 0O,

(principal stress of the sheet of the aggregate) produced by interfacial tensions } can be determined

by considering the force crossing suitable cross-sections of the aggregate.

Formulas for transforming the two-principle stress into global coordinate system are:

J’_ —

o7 =179 91792 0450, (3.33)
2 2
_I_ —

ol = % 262 _& 262 cos2c, (3.34)
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y _ 01

= %sin 2a (3.35)

Xy —
Then the vector of driving forces is given by
f=f,+f, (3.36)

int
where T, is the vector of external driving force. f,, is the vector of internal driving force
which is caused by the stresses o} ,J;,Z‘Iy. The equation in incremental form can be

rewritten as

Au 1 L
CurC—=—CAu=f=f_+f =f + > f 3.37
At At ext int ext Zﬂ; ( )

int

By using a forward difference scheme, the nonlinear equation can be solved.

The computation diagram is expressed in Figure 3.14.
3.8 Model validation

The constitutive model presented here has combined bulk deformations, annealing, mitosis,
and the lamellipodia effect together to study tissue fabric evolution. The question is whether
the combination of these effects in the constitutive equation is consistent with experimental
data and cellular scale model simulation. Because of the limit in experimental measurements,
there are few experimental data available for model validation. Thus in this part, a set of
cellular scale model computational simulations are conducted to verify the correction. Due
to the fact that mitosis and the lamellipodia effect will not happen at the same time in the
neural plate area, the simulation done here is focused on the combinational effect of two
groups: 1) bulk deformations, annealing and mitosis. 2) Bulk deformation, annealing and the
lamellipodia effect. The discussions in the above section have presented the simulation
results of the combination of cell annealing and the lamellipodia effect as well as the
combination of bulk deformation and the lamellipodia effect. The constitutive equation is
derived from and therefore consistent with those simulations. Figure 3.15a shows the
agreement between cellular scale finite element simulations and constitutive equations.

Figure 3.15b shows that when deformation acts alone (labeled D in Figure 3.15b), cellular
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scale simulations and the constitutive equation are in excellent agreement; when
deformations and annealing are combined together (D+R), the cellular scale simulation has a
larger x than the constitutive equation. This is because the critical length has large impact
on the simulation results. If the critical length is too small, the cell rearrangement is difficult
to occur. When the critical length is chosen to be a large value, the cell rearrangements occur
too often, and they will balance in a non-realistic state. To make the simulation result
consistent with the theory result, a proper critical length is needed. However, it is difficult
and impossible to find a value suitable for every situation. Based on computational results,
we find that the optimal critical value should be 15% of the average length of the cell
aggregate. When the three effects act together (D+R+M), cellular scale simulations and the
constitutive equation match again because the mitosis effect increases the possibility of cell
rearrangements in each time iteration, and makes the simulation result consistent with

theory.
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Figure 3.14. Finite element analysis procedure diagram [Brodland, 2004].
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deformation, mitosis, and annealing (D+R+M) [Brodland, 2004].

Figure 3.15. Model validation
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Chapter 4

Geometric Data

The geometry of an embryo is complex and varies with time. A complete geometric
description, therefore, requires both thickness and shape data for each tissue layer and the
fabric and material properties of each tissue, and development of these characteristics
through time. The four primary steps involved in the collection of this “spatial-temporal
data” are 1. determining embryo shape, 2. defining tissue fabric parameters, 3.

determining embryo layer thickness, and 4. measuring material properties.
4.1 Determining embryo shape

To identify the specific three-dimensional (3D) shape of a live embryo is technically
challenging, and our lab has developed an optical method for extracting 3D geometric
information of live embryo using robotic microscope images taken at several viewing angles
(Figure 4.1a). By establishing point correspondences among these views and employing
suitable reconstruction algorithms [Brodland and Veldhuis 1998, Bootsma, 2005], we can
calculate the spatial positions of a collection of surface points. These points can then be
meshed and used to obtain a surface representation of the embryo (Figure 4.1b). In-plane
tissue motions and strain rates are determined using image processing methods that track

the motion of groups of cells [Brodland and Veldhuis 1998; Bootsma, 2005].
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(@) Schematic diagram

(b) A 3D reconstruction

Figure 4.1. The robotic microscope and a reconstruction made using it.
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4.2 Defining tissue fabric parameters

Tissue fabric varies greatly with the position on the embryo’s epithelium and the time-lapse.
Figure 4.2 demonstrates the images captured by Frogatron from different locations on the
embryo. Tissue fabric parameters are extracted from the embryo’s images using specially
designed image processing software. The customized software [Puddister, 2003; Iles et al.,
2007] uses horizontal and vertical Sobel operators to highlight the boundaries of the cells
and then uses Fourier analysis to transfer the image into the frequency domain (Figure 4.3).
After removing the noises of the images in the frequency domain, we are able to determine

the tissue fabric parameters x,c, and . An interpolation scheme is then used to map

fabric parameters onto the surface mesh.

(©) (d)

Figure 4.2. Representative images of embryonic epithelia [Iles and Brodland, 2007].
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Figure 4.3. An image of a cellular tissue and its corresponding magnitude response image [lles and

Brodland, 2007].
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4.3 Determining the thickness of embryonic epithelium

At the beginning of neurulation, the embryo consists of three layers — the ectoderm, the
mesoderm, and the endoderm. The thicknesses of each of these layers can be obtained from
serial sections (Figure 4.4). For each serial section, the outline of different layers can be
highlighted by customized software or manually. Then by doing registration, we can put all
these serial sections together and merge with the surface reconstruction data. The drawback
of this approach is the embryo must be fixed to obtain the serial section, and therefore no
time lapse is available. The micro Magnetic Resonance Imaging (MRI) could be an ideal
solution for extracting sufficient data without fixing embryos, but the technique has not
provided the geometric data required for the present project. In practice, layer data should

be obtained from several embryos and averaged to improve data quality.

Figure 4.4. A transverse serial section.
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4.4 Measuring material properties

The tissues in an embryo are extremely fragile and, as a result, measurement of material
properties is difficult. To obtain stress-strain data, a small specimen (300 by 500 pm) of tissue
is attached to very thin wires. The specimen is stretched by drawing the wires apart under
computer control (Figure 4.5). Applied force is calculated from measurements of wire
bending, and real-time feedback is used to prevent the strain reduction that would
otherwise arise from the wire deflections. Companion, cellular scale finite simulations are
used to back calculate the yand u values [Wiebe and Brodland, 2005]. Specimens are excised
from different locations on the embryo, including three representative specimens from the
neural plate (Figure 4.6a) and four from the non-neural epidermis area (Figure 4.6b). The
stretching directions include in the medio-lateral direction and the cephalic-caudal

direction.
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Tissue Specimen —

Figure 4.5. Schematic diagram of the tissue tester [Wiebe, 2005]. Cantilever wires are attached to the
embryo using cyanoacrylate glue after which the specimen is excised from the balance of the embryo.
The base of one of the wires is moved laterally under computer control to produce strain in the
specimen, and wire deflection is used to measure the force in the specimen. An overhead camera
system is used to obtain high-magnification images that are tiled together to provide high resolution
images of the specimen and of the wires. Real-time feedback based on the images is used to correct
for strain diminution that would otherwise occur due to wire flexure. Figure is not to scale.
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Figure 4.6. Embryo coordinate system and specimen locations [Wiebe, 2005]. (a) A dorsal view of a
Stage 15 embryo showing the three dorsal locations from which specimens were excised. The
position in which wires would be glued to the specimen is shown for a Dorsal (Cephalic) specimen
that is to be stretched in the medio-lateral direction. The visual texture on the embryo’s surface is
due to pigment variations between cells. The dashed line indicates the approximate demarcation
between the neuroepithelium, which will ultimately form the spinal cord and brain, and the
epidermis, which will form the skin. (b) A lateral view showing four specimen locations, including
one on the ventral surface, where the specimen wraps across to the opposing lateral side.
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Chapter 5

Feature Grid

Geometric data — including geometric shape, fabric parameters and layer thickness — and
material properties are primary data for our current simulations. In future research, more
data such as surface curvature, magnetic field, and morphogen field could be incorporated
to extend the content of the computational model. These data are measured in a 3D
environment over time span; thus the term “spatial-temporal data” will be used to represent
these data in this report.

For a 3D embryonic finite element model, the spatial-temporal data binding with each
node or element will be calculated by averaging the experimental data from different real
embryos. Usually spatial-temporal data measured in experiments are stored with local
parametric coordinates instead of Cartesian coordinates because of the difference in
measurement environment and approaches. The problem is how to correlate each node or
element in the finite element model with the node or element that we have measured in the
experiment? An appropriate framework is required to combine these data in local
parametric coordinate systems into global Cartesian coordinates. The framework should
have the capability of mapping local parametric coordinates into Cartesian coordinates and
mapping between different local parametric coordinates. In our finite element (FE) model an
embryonic surface coordinate system (feature grid) will be employed to correlate the

experimental spatial-temporal data with the finite element model.
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5.1 Parametric Coordinate Systems

To date there has not been a standardized coordinate system for describing the surface of
embryos due to their diversity and complexity. However, when it is applied in practice,
there is no need to describe the entire embryonic surface with one unified parametric
coordinate system because each area on the embryo surface with similar material properties
can have its own parametric coordinate system. During embryonic development, cells in
different areas have totally different mechanical or biological properties. In the finite
element model we surely do not want to model a patch of cells with different mechanical
properties into one element since that will bring about difficulties to finite element analysis.
To avoid that, a region based parametric coordinated system is adopted in our model.
Biologists usually divide embryos into three main regions: the neural plate region, the
neural fold region and the non-neural epidermis region and we adopt the same scheme in

our FE model (Figure 5.1).

neural ectoderm neural plate
neural fold
epidermis
notoplate r
Late gastrula Mid neurula

Figure 5.1. Embryonic region identification.
Although the parametric coordinate systems, which will be discussed in the following
paragraph, are proposed based on Axolotl embryos, they can also be applied to other
species depending on the similarity. The candidates of parametric coordinate system for

the neural plate region are listed as follows (Figure 5.2):
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Figure 5.2. Parametric coordinate systems.
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Figure 5.3. Mapping from parametric coordinate onto the 3D embryo model.

The criteria for choosing an appropriate coordinate system are based on requirements
such as grid description in the finite element model, programming convenience and
interpolation methods. In our FE model the “parabolic” parametric coordinate system is

adopted according to the above factors and our observation of cell motion during Axolotl
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embryonic development. In Figure 5.3a, each cross point has its u, v value. If we map the
parabolic coordinate system onto the 3D embryo model we can get the result shown in
Figure 5.3b. Therefore, each node in parabolic coordinate system will correspond to its peer
in the 3D embryo model. We call the grid on the 3D embryo surface a “feature grid”.

From the perspective of coding, the feature grid is a table maintaining the node
mapping of (1, v) =(x, y, z) which is used to calculate the transformation from (u, v) —(x, y, z)

or (x, y, z) >(u, v).

5.2 Transformation from parametric to Cartesian coordinates (i, v)

—(x, y, 2)

For an arbitrary given (1, v) in a parametric coordinate system, to get its corresponding (x, y,
z) value in a 3D model, a transformation from parametric coordinates to Cartesian
coordinates is required. The interpolation algorithm used here can be linear or a higher

order polynomial.

A
17 Parent Element
n4 n Real Element
n4 (11, 1) n3 (1, 1)
n3
nl
nl(-1,-1) n2 (1, -1) n2
(a) (b)
Figure 5.4. Linear interpolation.
A
n7 "1 Parent Element n777 Real Element
n4 (11, 1) n3 (1, 1)
ng
ng ¢ >

4

LD “hs n2 (1, -1)
(a)

(b)
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Figure 5.5. Quadratic interpolation.

In the case of linear interpolation, shown in Figure 5.4, the weighted value (shape function)

on each node is given as follows:
N, (6 =3 0= 9-1)
(&) = A+ £)A-7) (5.1)
Ny(E) =5 L+ )L+ n)
N,(Em) =3 0=+ )
With the (x, y, z) value of the four nodes, the transformation can be calculated by:
K= 3N, ()
y:ngémM 42)
z= i Ni (5. m)z,
In the case of a higher order interpolation algorithm, we employ the coordinate mapping of

the quadratic element in the finite element method (Figure 5.5). The weighted value (shape

function) on each node is given as follows:

Ny (&7) =3 A=) -7 -1

N, (61) =5 @+ =) -n-1)

N (6m) =3 @+ A+ mE+n-D

Ny (6) =5 -+ (¢ +7-) .
Ny () = @-£2)a-n)

N (61) = @-7)a+ &)

Ny (Em) =2 A-£2)(0+7)

Ny (&) =5 @-7*)a-2)

With the (x, y, z) value of the four nodes, the transformation can be calculated by:
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X:iNi(f’ﬂ)xi
y=Z N, (&,m)y, (5.4)
2= N (£

Linear and higher order polynomial interpolation algorithms are both implemented in our

model depending on situations.

5.3 Transformation from Cartesian to parametric coordinates: (x, y, z)

—(u, v)

Transformation from Cartesian to parametric coordinates is not just a simple reverse of
transformation from parametric to Cartesian, because we cannot obtain (1, v) by only
solving linear equations. To implement the transformation, a gradually approaching
algorithm is adopted. The basic idea of the algorithm [Bootsma, 2003] is to find the four
nodes that embrace the input node and then gradually update the (u, v) to find the closest
node to the input node.

The procedure can be summarized as follows:

1. Find the nearest node C to the input node A. (Figure 5.6a)

2. Find the neighbouring nodes of node C (nl1, n2, n3, n4, n5, n6, n7, n8). These nodes
compose four quadrants shown in Figure 5.6a. For each quadrant the following steps
are performed.

3. Divide the quadrant into four curvilinear quadrants and determine which of these
sub-quadrants contains node A (Figure 5.6b). By comparing the distances between
the center of each sub-quadrant to node A. For example, node B is the center of the
lower-left sub-quadrant that contains node A. The quadrant containing node A
becomes the new quadrant.

4. Repeat step 3 until the distance is less than a specified value.

5. The center of the sub-quadrant containing node A is the coordinate.
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Figure 5.6. Gradually approaching algorithm [Bootsma 2003].

With the function of transformation from Cartesian coordinate systems to parametric
coordinate systems and vice versa, transforming a different parametric coordinate system
can easily be done as long as a reference frame in the Cartesian coordinate system is

provided (Figure 5.7).

Transformation between
different parametric
coordinate systems

Different kinds of Different kinds of
parametric < parametric coordinate

coordinate svstems systems
Transformation Transformation
between parametric \ / between parametric
coordinate systems coordinate systems to
to Cartesian Cartesian coordinate
coordinate system svstem

Reference Frame in
Cartesian
coordinate system

Figure 5.7. Transformation between different coordinate systems.
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il 1o

(a) Neural plate region (b) Neural ridge region

A

(c) Non-neural epidermis region I (d) Non-neural epidermis region II

Figure 5.8. Parametric coordinate systems of different regions on embryo’s surface.

There are a total of four parametric coordinate systems (two types) used to map the
three main regions on the surface of an embryo to the 3D model. For the neural plate region,
a parabolic parametric coordinate system is used (Figure 5.8a). For the neural ridge region a
radiant coordinate system is used (Figure 5.8b). For the neural epidermis region which has a
much bigger area than the neural plate, we divide it in half. For each half, a parabolic
parametric coordinate system is applied (Figure 5.8c and d) to make the size of the grids

similar to those on the neural plate region.
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5.4 Database Inquiry System

Spatial-temporal data from different sources are always based on their own parametric
coordinate systems, which might be different from the parabolic parametric coordinate
system. For instance, the parametric coordinate for electrical fields on embryo surfaces may
be planar rectangular coordinates, different from the “parabolic” parametric coordinates we
used in the 3D model. Suppose we want to obtain the mechanical properties of one node in
the FE model. In one inquiry action for this node, we can only obtain one piece of
spatial-temporal data each time. To obtain another type of spatial-temporal data for the
same node, we need to repeat the inquiry action because their parametric coordinate
systems are different. To reduce the inquiry time, a preprocessing can be applied to convert
the data in different parametric coordinate systems into a uniform parametric coordinate
system based on different regions of the embryo. With a uniform parametric coordinate
system, one inquiry action can provide all the spatial-temporal data for one node.

Two kinds of databases are adopted in our framework; one is the database for the raw
data, which can be used to store the original format of these spatial-temporal data. The other
one is the database for the preprocessed data, which uses the uniform parametric coordinate
system. In the framework, the finite element model will use a “feature grid” to do the data
inquiry and interpolation between the two databases. Their relationships are shown in

Figure 5.9:
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Figure 5.9. Schematic chart for inquiry system.

In these two databases, for each spatial-temporal data type there is one corresponding
table (Table 5.1). Each table has these fields: virtual embryo ID, real embryo ID, region ID, U,
V, and spatial-temporal data value.

The virtual embryo ID represents the reference model of 3D embryo.

The real embryo ID is used to track the real embryo from which the experimental data are
obtained.

The region ID represents the type of region where the spatial temporal data exist.

The (u, v) is the parabolic parametric coordinate value in the database of preprocessed data.

In the raw data database, (4, v) may change to (&, 77) or other symbols.

Spatial-temporal data can be a real number or a vector.
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Table 5.1. Database table

Virtual Embryo ID Real embryo ID Region ID U |V | Spatial-temporal data

1 1 3 2 2 2.44

1 2 4 3 -4 3.55

Thus far, the feature grid framework and database inquiry system compose the input
functionality of our framework. Based on them, a standard inquiry procedure for a given
finite element model can be summarized as follows:

1. Select one node in the model and get its (X, Y, z) value.

2. Use the transformation from the Cartesian coordinate system to the parametric
coordinate system in the feature grid framework to determine the region and
parametric value of this node. (There are a total of four parametric grids on the
embryo’s surface, which correspond to different region.)

3. Determine the virtual embryo ID, the real embryo ID, the region ID, U and V.

4. Inquire the preprocessed database to find the spatial-temporal data corresponding to
these values. (The conversion from the raw database to the preprocessed database is

done before any inquiry action.)
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Chapter 6

Finite Element Model

6.1 Package structure

Like most element method (FEM) packages, our software package can be divided into three

main parts, preprocessing, computational engine and postprocessing (Figure 6.1).

6.1.1 Preprocessing and postprocessing:

Preprocessing and postprocessing are usually involved in dealing with geometric
configurations, assigning mechanical properties, and visualizing of results. Two main
sub-packages are written to serve these functions: ChiChi3D (Figure 6.2) and Zazu (Figure
6.3).

ChiChi3D is a Windows 32 based program which uses the Coin3D library (an open
source OpenGL library) to revise, manipulate and visualize the 3D geometry of the tissue
scale computational simulations.

Zazu is a MFC (Microsoft foundation class) based program, which uses a number of
open source libraries such as image processing and manipulating triangular surface meshes

to deal with the 2D geometry of the cellular scale computational simulations.
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Figure 6.1. Software package.
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Figure 6.3. Graphic user interface of Zazu.
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6.1.2 Computational engine

In Chapter 3, the equilibrium equation of this model is:

Cu+Ku=f, (6.1)
where K is the stiffness matrix of this model, C is the damping coefficient matrix of this
model, and f is the nodal force (equation 3.31). Note that K is zero because there is no elastic
element in this model; thus the equation in the incremental form can be rewritten as

Au 1 Lo
CurC—=—CAu=f=f_ +f =f + > f! 6.2
At At ext int ext Z=l: ( )

int *

By using a forward difference scheme, the non-linear equation can be solved.

To implement this program, custom software called Simba and Simbaprocess are
employed. Simbaprocess is a wrapper that connects the Simba library to the UMFPac library
for solving asymmetric sparse linear systems (http://www.cise.ufl.edu/~davis/).

Simba is a large-strain, large-deformation finite element program written in C++. It
works in conjunction with ChiChi3D and Zazu and provides the graphic user interface (GUI)
for the construction of geometries, boundary conditions (BCs), and material properties. The
features of Simba include:

1. General constraint handling including proportional, edge, and volume constraints.
Other boundary conditions include body forces, angled rollers, distributed loads and
nodal forces, displacements, velocities, and strain rates.

2. Elastic, viscous, visco-elastic (Maxwell and Kevin-Voigt), truss (including
micofilaments), and non-linear elastic materials.

3. 1D, 2D, and 3D elements.

4. Truss, Tri, Pentahedra, and Cell elements (cell elements include neighbouring
changing).

5. Error equations for direct solver.

6. Full simulation control through input text file.

7. New materials, elements, and boundary conditions can easily be integrated into

Simba.
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Element description

Tri Element

Tri elements contain 3 nodes and can exist in XY or XYZ space. All element calculations are
performed in a local XY space. XYZ calculations are obtained by first rotating the element
into the XY plane and then rotating the results back into XYZ space. The input file in XY
space may look like this: "5 Tri EL1 EC257 8 5.4 1.0," meaning that element 5 is a tri element
using material EL1, element control EC2 and connecting nodes 5, 7 and 8 with a thickness of
5.4 and a growth factor of 1.0. Other optional parameters may also be specified such as age,

color, or residual stresses.

Truss Element

Truss elements contain 2 nodes and can exist in X, XY or XYZ space. The input file may look
like this: "5 Truss VI1 5 7 5.4 1.0," meaning that element 5 is a truss element using material
VI1 and connecting nodes 5 and 7 with a cross-sectional area of 5.4 and a growth factor of 1.0.
Other optional parameters may also be specified such as age, colour or residual stresses.

Truss elements currently do not have an element control.

Pentahedra Element

Pentahedra elements contain 6 nodes. The input file may look like this: “5 Penta VIPenta5
ECPenta5 23 4 5 6 7 InitialVolume 49018.6,” meaning that element 5 is a Pentahedra element
using material VIPenta5, element control ECPenta5 and connecting nodes 2, 3, 4, 5, 6 and 7
with an initial volume 49018.6. Each Pentahedra element typically represents a group of 1 to
100 cells. The volume of each Pentahedra element remains constant. Each Pentahedra
element has two Tri elements, one attached on the top and the other one on the bottom
(Figure 6.4). In the above example, one Tri element consists of nodes 2, 3, 4 and the other Tri
element consists of node 4, 5, 6. The volume constraints for Pentahedra element are
implemented by adding an auxiliary node in the center of the Pentahedra element. By
connecting this node to the 6 nodes of the Pentahedra element we obtain 8 tetrahedrons. The

volume of the Pentahedra element is calculated based on these 8 tetrahedrons, and the
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Lagrange multiplier is employed to ensure a constant volume constant. Figure 6.4 illustrates
how elements are employed in the 3D finite element model. The FE model uses a group of
Pentahedra elements to represent one layer of the embryo. So far, we have simulated the
morphogenesis with one layer, but it is not difficult to add more layers to our model with

more Pentahedra elements.

Pentahedral Element

Wrsrleer
SR

Tri Element Truss Element

Figure 6.4. Pentahedral element.

Material description

Material descriptions available in Simba include elastic, viscous, visco-elastic (Maxwell and
Kevin-Voigt), truss (including micofilaments) and non-linear elastic. A supplementary class
(Patch material) is incorporated in the package to represent the tissue fabric parameters such
as ¢, fand x. The Patch material usually works in conjunction with the Tri element. The
shape change of the Tri element affects the tissue fabric, thereby changing the properties of
the Patch material. Corresponding functions for changes in o, f and x over time are

embedded in the Patch material routines.
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Element Control description

Element controls (ECs) contain additional descriptions that usually apply to many elements.
ECs serve to assign a certain material property to one element or a group of elements. Each
element type has a corresponding EC type. The following ECs are supported: ECTri,

ECPenta and ECCell. Truss elements do not have an Element Control class.

Boundary Condition description

There are several supported types of boundary conditions (BCs): Node, Contact, Distributed
Load (DL), Angled Roller, Function, BodyForce, EdgeN, EdgeTN, Volume Constancy, and
Corner. Node and Corner Boundary conditions specify the force, displacement, velocity or
strain rate of a single node. In contrast, Edge, Function, Angled Rollers and Volume
conditions specify a relationship between all nodes that are part of that condition. Body
forces are applied to an element or group of elements and affect the nodes that are connected

to that element or group. DLs apply to an edge and affect all nodes along that edge.

Distributed Load-Type BC Specified Force (F)

YYIVIVIY

Displacement (D),
Velocity (V),
or Strain Rate (S)

Node-Type BC

Specified Force (F),
Dizplacement (D),
Velocity (V),
or Strain Rate (S)

Edge-Type BC Volume Constancy

Type BC

Specified Force (F),
Displacement (D),

Velocity (V), Angled Roller-Type BC
or Strain Rate (S)

Body Force-Type BC

Figure 6.5. Various boundary conditions.
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Description of linear system solving engine

The introduction of the Lagrange multiplier and the implementation of complex boundary
conditions bring asymmetry to the system of simultaneous equations that must be solved
incrementally. The open source package UMFPack (http://www.cise.ufl.edu/~davis/) is
employed to solve the resulting asymmetrical sparse linear systems using an asymmetrical

multiFrontal method.

The detailed steps for conducting 3D and 2D simulations are summarized as follows:
Steps for 3D simulations:

1. Obtain a 3D reconstruction of an Axolotl embryo and open with ChiChi3D.

2. Use “attach feature grid” function of ChiChi3D to assign feature grid to the surface mesh
of the embryo.

3. Extend the nodes on the triangular surface mesh perpendicularly to the surface at a
distance determined by the thickness data stored in the database.

4. Connect the top and bottom triangular surface to generate a Pentahedra element.

5. Assign Patch material to Tri elements on the top and the bottom of Pentadhedra element
and Viscosity material to the Pentahedra element.

6. Set the volume constraint of the Pentahedra element and the volume constraint of the
extracellular fluids contained in the center of the embryo to be constant.

7. Output the finite element model as .txt file which can be edited with a general text
processor.

8. Execute Simbaprocess.exe in Windows console or Linux console with the above output
tile name as an input parameter. Simbaprocess generates the result .txt files for every time

step, and they can be viewed and manipulated with ChiChi3D.

Steps for 2D simulations:
1. Use Zazu to generate a 2D Voronoi mesh with specific size and properties.
2. Output the model as .txt file, and use text processor to modify the boundary conditions

(BCs) and material properties.
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3. Execute Simbaprocess.exe in Windows console or Linux console with the above output
file name as an input parameter. Simbaprocess generates the result .txt files for every time

step and they can be viewed and manipulated with Zazu.
6.2 Contact Algorithm

In our computational simulations of the rolling up of a neural plate strip some elements
would contact others and penetrate one another as the rolling up progresses (Figure 6.6). A

contact correction algorithm is therefore fashioned to address this problem.
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Figure 6.6. Contact problems.

Contact correction algorithms fall into these two categories: Lagrange Multiplier
methods and penalty methods. The first one is a generalized method, which is widely used
as an implementation of constraint conditions in the FEM. In the Lagrange Multiplier
method, the contact constraint means that no penetration happens between two contacting
elements, and this constraint is enforced in each iteration step. The method does not need

any additional parameters to describe the contact problem, and it supports different friction
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conditions. Although the Lagrange Multiplier method can guarantee non-penetration on

every point of the surface of the contact element, it comes at a price. That is the updated

stiffness matrix becomes significantly more complex than the original one. Thus, it is more

difficult to solve.

In the penalty method, a penalty force will be applied to the penetrating node and will

allow the time integration to correct the penetrations. The force is dependent on many

parameters such as surface stiffness.

The procedure of penalty methods can be summarized as follows [Wriggers, 1996]:

1.
2.

3.

Perform the regular FE procedure without considering the contact problem.
Search for global and local contact, calculate of the penetration distance, and then
calculate the corresponding nodal contact force.

Update the nodal displacements and velocities.

To avoid the complexity of stiffness matrix by using Lagrange multiplier and the

difficulties for defining additional parameters to describe the contact problem, we employ a

relatively simple algorithm to implement the contact correction problem.

The basic idea of our algorithm [Wiebe, 2002] is that a backward action will be done if

any penetration is observed. The procedure can be summarized as follow:

1.
2.

Complete the routine FE iteration with a search of penetration at every iteration step.
If a penetration is found (Figure 6.7a), go back to the configuration of the last step
and set up a constraint between the penetration node and the element (Figure 6.7 b)
(the functional constraint is implemented by the Lagrange Multiplier).

Continue the routine FE iteration.

If the node moves to the boundary of the attached element, free the constraint

(Figure 6.7d).

The functional constraint in step 2 can vary. It can allow the nodes to move freely on the

surface or with friction. In our current model, the 3D embryo has only one layer, but in

future work there will be three layers in our model. The friction constraint is intended to

simulate the contact of between the layers.
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(a) (b)
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(©) (d)

Figure 6.7. Schematic of contact algorithm.

In our penetration search, we calculate the cross section of the two elements to
determine the occurrence of contact event happening. We assume that if two elements can
pass through, there will be some penetration elsewhere. Going back to the last time step and
applying functional constraints will reduce the possibility of this permeability issue.

The contact conditions involved in neurulation process is not very severe compared
with those high-speed crashing problems. And most of them occur in the late stage of
embryonic neurulation. Although this algorithm simplifies the contact problem to some
extent, and no contacting forces are generated, according to our model, no elastic element
exists. This simplification functions to avoid the crashing of the program and generate

realistic results (Figure 6.8).
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(a) (b)

Figure 6.8. Comparison of simulation with and without contact algorithm. (a) Without contact
algorithm. (b) With contact algorithm.
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Chapter 7

Computational Simulations

7.1 Reference case for normal Axolotl embryo development

Sets of conditions associated with specific hypotheses were input into the computational
model introduced previously. Due to the complexity of the numerics, a typical run required
nearly a week to complete on a powerful PC, and manual intervention was frequently
required to overcome numerical issues. Thus, the cost of running simulations is quite high.
Many tens of simulations were run in total, and the most instructive and trustworthy are
shown here.

As part of the code validation, the software is used to duplicate previously run
simulations of the transverse aspects of neural tube development [Clausi and Brodland
1993]. The comparison is shown in Figure 7.1. In Clausi’s simulation, the apical contraction
force is simulated by truss elements, while in our recent tests, the contraction force is

determined by tissue fabric evolution.
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Figure 7.1. Comparison of simulations of a transverse strip of tissue. (a) Clausi’s Simulations (b)
tissue scale model computational simulations.

As mentioned in the introduction, the details of the force and mechanical properties of
tissues and cells are very important to the success of our model. The process how we
obtained a whole-embryo simulation of normal neurulation is a rather long story. A great
number of simulations were conducted to determine the mechanical properties “necessary”
to generate the correct embryo geometry. As expected, the model served, in part, to identify
key mechanical features that were not included in our previous understanding of
neurulation.

We first started from Clausi’s model by expanding the simulation of a strip of neural
plate tissue to the simulation of a whole embryo. Initially, values of mechanical properties
such as y and p were adopted from Clausi’s model. In the Clausi model, apical constriction

and axial elongation are sufficient to produce realistic motions that result in neural tube
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closure. However, when these properties are applied to a 3D model, abnormal geometries
result. We thus realized that the transition from 2D simulations to 3D simulations is not as
easy as expected. More details and constraints needed to be incorporated into our model.

As our next step, we explicitly included the volume constraint of the fluid and cells that
form the central portion of the embryo, something that was not necessary in the Clauis
model.

We also recognized from the biological literature that an active convergence-extension
process was occurring in the neural plate [Keller, 2005; Wallingford, 2002]. To this end, we
introduced a lamellipodium-driven convergent-extension effect. Initially, we assumed that
the lamellipodium effect was uniform across the neural plate region, and the result we
obtained was not very satisfying. A more careful examination of the literature showed that
the effect of teratogens varies with the medio-lateral position at which it is applied
[Wallingford, 2002]; the medial tissue seems to be more important to tube closure than
lateral tissue. With this in view, we made the lamellipodium effect decrease linearly from
the midline of the embryo to the lateral edge of the neural plate. Realistic keyhole-shaped
in-plane geometries resulted, but the neural folds did not rise appropriately.

The tissue in the neural fold region is known to have different mechanical properties
than the tissues on each side of it due to Shroom expression effects [Haigo et al., 2005]. To
capture this fact, the y and p values in neural fold region were made different from those in
the neural plate region and the non-neural epidermis region. To facilitate the occurrence of
neural folds we assumed constriction on the basal surface of the tissue in the neural fold
region. Although the gene, Shroom, expressed there is associated with apical constriction
forces applied to the basal surface produce more satisfactory ridges.

A number of numerical challenges numerical challenges arose. For instance, the Penta
element sometimes can not describe the convoluted twisting motions that occur in cell
groups near the neural ridges. A specific constraint is imposed on Pentahedra elements to
prevent excessive element deformation.

This model refinement process led to an improved understanding of the mechanics of

the neurulation process.
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For the whole-embryo simulations, the surface geometry is reconstructed using data
from the Frogatron 3000. The approximate diameter of the embryo is 2200um. To simplify
the modeling and computation, only one ectoderm layer is explicitly represented in the
model and its thickness (30~60pm) profile is determined from serial section data.

A typical whole finite element model consists of 10239 Pentahedra elements, but the
number can be increased or decreased as needed to model specific feature associated with
particular hypotheses. Each Pentahedra element is attached to Tri elements on its top and
bottom surfaces. The tissue fabric parameters are included in the Tri element material. The
whole-embryo model is like a shell containing liquid in its center, and the volume of the
liquid remains constant. The whole-embryo model is divided into three parts which are
shown in the Figure 7.3 with different colors. Yellow represents the neural plate region, the
blue area represents the neural fold region and green means the non-neural epidermis

region.

1. Neural plate region

As described in the introduction, neural tube closure involves apical constriction,
convergent extension (CE), and other mechanisms (Figure 7.2). In current simulations, apical
constriction is modeled by assigning a larger value to y in the top Tri element of the
Pentahedra element than in the bottom Tri element. The microfilament constriction can
cause the top surface area of the cell to constrict. As for convergent extension, cells rearrange
to drive the narrowing of tissue. Additional force will be generated and the Pentahedra
element shape is narrowed in a specific direction while the fabric parameters of the

Pentahedra element remain constant. Further details are provided in later sections.

102



Chapter 7 Computational Simulations

—

—+

Lacking
Shroom

Lacking
PCP signaling

Figure 7.2. Apical constriction and convergent extension facilitate the medial movement of neural
folds [Wallingford, 2005]. A: Bending of the neural plate by apical constriction (blue cells) can
facilitate neural tube closure. Convergence of the midline (gray and black cells) can also contribute to
neural tube closure, by progressively decreasing the distance between the neural folds. B: In the
absence of Shroom, apical constriction fails, as does neural tube closure. C: In the absence of PCP
signaling, convergent extension fails, as does neural tube closure. Experiments now suggest that
apical constriction is primarily involved in rostral neural tube closure, while convergent extension is
more important for caudal neural tube closure.

2. Neural folds region

There are quite a few hypotheses about how neural folds are shaped in this particular
way. One hypothesis attributes it to the pushing of non-neural epidermal tissue [Lawson et
al., 2001], and the other one assumes it to be byproduct of the rolling up of the neural plate
[Odell et al., 1981]. Both mechanisms have been implemented in our model. yis set to zero in
this region and u carries the same value as the one in the neural plate region and the

non-neural epidermis region.

3. Non-neural epidermis
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The common understanding of non-neural epidermis is that these tissue movements are
stretched by narrowing and rolling up of the neural plate. They react passively to the force
generated by neural plate movements. However, recent studies indicate that the non-neural
epidermis may also contribute to the rolling up of the neural plate, and in some cases
[Lawson et al., 2001] it is even the main driving force of neural ridge formation. Based on
these facts and the hyperextension work done by Beloussov [Beloussov, 1990; Beloussov,
2006; Cherdantsev, 2006; Lakirev and Beloussov, 1986], we later introduce biomechanical
feedbacks into the current model so that the convergent extension in the neural plate area
can induce a CE-like behaviour in the non-neural epidermis (Figure 7.3). The comparison in

the later section shows that a more realistic geometry can be obtained.

Figure 7.3. The CE-like behaviour in the non-neural epidermis. The convergent extension direction in
the non-neural epidermis is perpendicular to that in the neural plate area. The large arrows indicate
the extension direction and the small arrows indicate the convergent direction.

Different mechanical properties (u, y) are assigned to the three regions according to
different scenarios. And to simplify the problem, all these regions begin with isotropic fabric
parameters (x=1). The computational simulations for normal embryonic neurulation (the

reference case) are conducted and demonstrated in Figure 7.4 (Table 7.1 case 1). yis 61 nN
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in the neural plate region, 0 in the neural folds region and 9.15 nN in the non-neural
epidermis region. p is 0.016 NN min / um? in all these regions. These values are obtained by
back calculations based on tissue stretching tests [Wiebe and Brodland, 2005]. Convergent
extension and apical constriction are enabled in our simulation. Convergent extension
(lamellipodium effect) are applied to the model by imposing a lamellipodium stress in the
Tri elements. The value in the midline is assumed to be 20 nN /um?2 Images of stage
13,14,15,17 are reported here. The left column is the schematic representation of Axolotl’s
embryonic neurulation process. The right column is its corresponding computational
simulation. The ratio of the length in the caudal-cephalic direction over the length in the
medio-lateral direction is recorded and compared with the real embryo. The ratio changes
from 1 to 1.29 in the real case, and the simulation result moves from 1 to 1.21. The time span
from stage 13 to stage 17 is about 8 hours, and the simulation result is slightly different at 5
hours. The choice of y and u can easily account for this discrepancy. The tissue fabric
evolution is also tracked in our simulation. x from a different area on Axolotl’s embryonic
surface is extracted through image processing software. « in the neural plate area changes
from 1 to 1.05~1.2 in real cases, and the simulation yields the same result. Other quantitative
comparisons are also available. The simulation results show that the change in the neural
plate area and the change in the neural fold’s perimeter are quite close to the real case. In
addition, we measure the stress resultant of embryonic epithelia [Benko and Brodland, 2007]
by cutting a slit on the surface the embryo. However, the data is not quite consistent with
our simulation result. Part of the reason may be the techniques used to make a slit on the
embryo bring errors into the experiment. Another reason could be that unknown genes may
express themselves in the neural plate and change the force of cell microfilaments, which in
turn change the stress in embryonic epithelium. More accurate experiment data and
understanding of gene expression in the neural plate need to be obtained to make the stress

resultant comparison.
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Stage 13

Stage 14

Stage 15

Stage 17
Figure 7.4. Normal development of Axolotl embryo (Table 7.1 case 1).
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7.2 Impact of tissue mechanical property defects on neurulation

To investigate the impact of the mechanical property defects on Axolotl embryo neurulation,
two simple cases, the mechanical property defect on the neural plate (Table 7.1 case 2) and
the mechanical property defect on the non-neural epidermis (Table 7.1 case 3) are conducted
here.

In the first case, we change the neural plate area to 80% of its original size and keep the
fabric parameters and mechanical parameters unchanged: The yis 61 nN in the neural
plate region, 0 in the neural folds region and 9.15 nN in the non-neural epidermis region.
nis 0.016 nN min/pum? in all these regions. The neural plate region in the left column which
is indicated in yellow is 80% of the one in the right column, all shown in Figure 7.5. This
defect in the neural plate region leads to abnormal results. The neural folds do not close
properly, and the cross-section image shows that the neural folds are not attached to the
neural plate which is not consistent with the reference case.

The second case is shown in Figure 7.6. yin the non-neural epidermis is set to be 18.3 nN,
2 times its original amount. The other parameters are not changed. The change leads to an
incomplete closure of the neural plate. The neural folds are separated by a half-width of the
neural plate. This result also leads to the detachment of neural folds from the neural plate.

From the simulations of the two cases, we find that the impact of mechanical property
defects is quite huge, and these defects may as well be the direct cause of neural tube closure
defects. Corresponding experiments on chemically induced mechanical property defects in
the neural plate tissue provide the direct proof of this standpoint [Kakal, 2007]. The injected
chemical material disassembles the microfilaments in cells which can be implemented with
the adjustment of y in simulations. The disassembly of microfilaments leads to the reduction

in surface tension, in turn causing a severe neural tube defect.
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80% Neural plate Area 100% Neural plate Area

Figure 7.5. The mechanical property defect in neural plate region (Table 7.1 case 2).
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Non-neurual epidermis y=30% of neural Plate ~ Non-neurual epidermis y=15% of neural Plate

Figure 7.6. The mechanical property defects in non-neural epidermis region (Table 7.1 case 3).
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7.2 Impact of biochemical mechanism defects on Axolotl neurulation.

Apical constriction

Recent studies [Haigo et al., 2003] have shown that the protein Shroom is sufficient to induce
apical constriction of neural plate cells [Hildebrand, 2005]. And it is also important to note
that apical constriction during neurulation does not occur uniformly throughout the neural
plate. The protein Shroom concentrates in the area of the midline of the neural plate and the
boundary between the neural plate and the neural folds. Because the cells in these regions
have a wedge shape, they are usually called hingepoints. To study the impact of the apical
constriction defect on neurulation, we disable the apical constriction mechanism in our
simulation by setting the y value of the Tri element in those regions to the same value as
those in the non-neural epidermis region (Table 7.1 case 4). The simulation result is
demonstrated in Figure 7.7e (normal case) and 7.7f (Shroom disabled), and Figure 7.7 a, b, c,
d are their corresponding biological experiments. The embryo used in the biological
experiment is Xenopus, a kind of frog like Axolotl. The difference between them is the
embryo size and the development time period. In the experiment, The Xenopus embryo is
injected unilaterally and bilaterally with Xshroom-MO (a deletion mutant to disable Shroom
expression). This change leads to missing hingepoints (the noticeable boundary between
neural plate and neural folders), which in turn cause a severe neural tube defect. The
simulation result (Figure 7.7f) is consistent with the experimental results (Figure 7.7b, 7.7d).
We find in the simulation result that although the embryo exhibits an obvious convergent
extension, the missing hingepoints in the neural plate make it incapable of forming neural

folds and the following complete neural tube closure.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7. Disabling Shroom expression leads to severe neural tube defect. (a) Normal embryo,
anterior view. (b) Bilaterally injected embryo displays a total lack of hingepoints or anterior neural
folds. (c¢) Normal embryo, anterior view. (d) Embryo injected unilaterally with Xshroom-MO. The
hingepoint forms normally on the uninjectedside (arrow) but is missing on the injected (right) side
[Haigo et al., 2003]. (e) The normal embryo neurulation simulation. (f) Simulation result of the
disabling shroom expression on the neural plate (Table 7.1 case 4).
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Convergent extension

It is widely understood that Dishevelled (Xdsh) signaling is required for neural tube closure
as well as Shroom expression [Wallingford and Harland, 2002; Ewald et al., 2004]. The
morphogenetic movement corresponding to Xdsh signaling is convergent extension.
Existing experiment results prove that the defective convergent extension fails to narrow the
midline in the neural plate, and this narrowing is critical to neural tube closure. Figure 7.8
shows the biomechanical contribution of convergent extension to neural tube closure. The
blue line represents the distance narrowed by convergent extension. The red line represents
the distance narrowed by other biochemical mechanisms. The apical constriction
mechanism mentioned above is one of them. Other mechanisms such as the pushing force

exerted by the non-neural epidermis are still under debate.

Early Neurula Mid-Neurula Late Neurula

Distance ~ X +Y
[ —

¥ ¥

control N~ S\ m

X: Neural folds move medially

Distance ~ 0

Y: Conwvergent extension narrows midline

Distance ~ X +Y Distance ~Y

0 DR —
h ' ' ¥
Xddl — — "~ /L 2 U\
X: Neural folds move medially

Y: Defective convergent extension
failz to narrow midline

Figure 7.8. Biomechanical contribution of convergent extension to neural tube closure [Wallingford
and Harland, 2002].

Severe and mild neural defect [Wallingford and Harland, 2002] caused by convergent
extension is illustrated in Figure 7.9. The extent of NTD depends on the amount of Xdd1
mutant injected in the Xenopus embryo. A cup-shape of neural folds is formed around the
neural plate. The constriction in the neural plate region reacts with the non-neural epidermis
tissue to generate this irregular shape. Another typical symptom is the failure of the embryo

to extend in a caudal-cephalic direction. The ratio of the length in the caudal-cephalic
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direction over the length in the medio-lateral direction remains 1 instead of 1.29 in the real
case. A corresponding computational simulation is demonstrated in Figure 7.9c and d (Table
7.1 case 5). Distinctive cup shape neural folds and the failure to extend in the caudal-cephalic

direction are observed in simulation results.

(b)

(d)

(e) (f)

Figure 7.9. Disabling convergent extension leads to severe neural tube defect. (a) Normal embryo. (b)
Large amount of Xdd1 injected embryo displays a cup-shape of neural folds. (c) Normal embryo. (d)
Small amount of Xddl injected embryo displays a cup-shape of neural folds [Wallingford and
Harland, 2002]. (e) The normal embryonic neurulation simulation. (f) Simulation result of the
disabling convergent extension on the neural plate (Table 7.1 case 5).
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The simulations of different defective scenarios discussed above are summarized in the
following table. y and u value are assigned according to this table, and L represents the
lamellipodia effect. Fabric parameters are not included here because the isotropic
configuration is adopted as a starting set up. As mentioned in the “apical constriction”
section, the Shroom density may vary with its location in the neural plate region. The set up
of the y value becomes a bit more complex than the list in the table. A y fields may be

employed in simulations according to requirements.

Table 7.1. Cmparison of different defective scenarios

Cases 1. 2. 3. 4. 5.
Reference Neural Non-neural Apical Convergent
. case plate defect | epidermis | constriction | extension
Regions defect defect defect
top 61 61 61 9.15 61
bottom 9.15 9.15 9.15 9.15 9.15
Neural
U 0.016 0.016 0.016 0.016 0.016
plate
B 0.0085 0.0085 0.0085 0.0085 0.0085
L 20 20 20 20 0
top 0 0 0 0 0
bottom 2 2 2 2 2
Neural
0.016 0.016 0.016 0.016 0.016
folds #
B 0.0085 0.0085 0.0085 0.0085 0.0085
L 0 0 0 0 0
top 9.15 9.15 18.3 9.15 9.15
Non bottom 9.15 9.15 18.3 9.15 9.15
neural )7 0.016 0.016 0.016 0.016 0.016
epidermis
B 0.0085 0.0085 0.0085 0.0085 0.0085
L 0 0 0 0 0

Note: unit for y is nN, unit for p is nN min / pm? and unit for § is pum=2 . L represents the
lamellipodium effect in the midline of neural plate
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7.3 Biomechanical feedbacks

Positive feedbacks and negative feedback are widely recognized in genetic regulatory
networks and some of them have biomechanical counterparts. The studies carried out by
Beloussov have provided insights into the importance of the positive feedbacks and
negative feedbacks in the embryonic developmental morphodynamics. The experiments
[Beloussov, 2006] describe an interesting phenomenon in embryo development. During the
gastrulation stage, stretching a piece of tissue from the blastocoel roof leads to the increase
of tension in this tissue. And the tension tends to be restored to its initial value by cell
deformation and intercalation. When the tension is restored to its initial value, the cell
deformation and intercalation does not stop, and the stress in this piece of tissue may be
reduced to zero, and even to compression stress. Beloussov calls this phenomenon
“hyper-restoration” (HR) and provides some empirical evidences of HR reactions from the

multi-cellular level and the individual cell level [Beloussov, 2006].
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Figure 7.10. Schemes of hyper-restoration responses to the shifts of mechanical stresses from the

initial values denoted by black spots [Beloussov, 2006]. Fine lines indicate the stress in the tissue
generated by external forces, stretching (A) and compression (B) Solid lines represent the stress
restoration process. Note that the solid lines pass initial values and the stress is over restored. The
vertical dashed lines represent lag periods between the stabilization of an external force and the start
of an active response to it. Horizontal axes are stress, and vertical axes are time.
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In Beloussov’s paper, hyper-restoration reactions can be coupled to generate positive
feedbacks such as contraction-extension (CE) feedback. Figure 7.11a is a piece of tissue with
different mechanical properties in the o area and farea. Part a actively contracts, thus part f
is passively stretched. The hyper-restoration reactions happen in part # and the tissue over
extends to give part o compression in the vertical direction. This will drive hyper-extension
to happen in part a. This loop can occur several times and generate the tissue shape as

demonstrated in Figure 7.11c.

A

==
e

Figure 7.11. A scheme of contraction-extension (CE) feedback [Beloussov, 2006].

The hyper-restoration theory and CE feedback example in the gastrulation process
drive us to ponder if there is any evidence showing its existence in the neurulation process.
As mentioned above, the neural tube closure depends on apical constriction, convergent
extension, and other mechanisms [Kiehart et al., 2000]. In Wallingford’s paper, a hypothesis
is proposed concerning non-neural epidermis generating pushing force on neural folds and
contributing to their closure. There are a couple of other experimental results supporting
this hypothesis. Holland argues that the non-neural epidermis is actually neural [Holland,
2005] which indicates that non-neural epidermis is patterned anteriorly and posteriorly by
some mechanisms. Jacobson’s experiments [Burnside and Jacobson, 1968; Jacobson, 1973;

Karfunkel, 1974], excision of ectodermal strips within and outside the neural plate,
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pioneered the research field of morphogenetic movements during neural tube closure in
amphibians. His results indicate that the non-neural epidermis can move towards neural
plate midline even if the tissue between neural folds and non-neural epidermis is excised.
Schoenwolf did experiments similar to Jacobson [Lawson et al., 2001; Brouns et al., 2005], and
the results provide direct evidence that the non-neural epidermis is essential for normal
folding of the neural plate. Our image capturing results of the movements of non-neural
epidermis indicate that there are strong cell intercalations occurring in those areas. In
addition, the Axolotl embryo stress resultant summary in Table 7.2 [Benko and Brodland,
2007] exhibit an abnormal phenomenon, the stress resultant in the cephalic-caudal direction
is larger than the one in the medio-lateral direction. Considering the CE happening in the
neural plate which demonstrates strong anisotropic tendencies of measurements made on
the dorsal aspect regions of stage 13 and 15 embryos, there should be a relaxation for stress
resultant in cephalic-caudal direction in the non-neural epidermis region. Thus an opposite
answer should be obtained. This could be an evidence for a weak CE occurring in
non-neural epidermis regions.

Connecting these clues and experiment results with hyper-restoration theory and CE
feedback, we arrive at the following hypothesis: the convergent extension in the neural plate
may cause a corresponding weak convergent extension in the non-neural epidermis as
demonstrated in Bloussov’s CE feedback example. The direction of the convergent extension
in the non-neural epidermis region is demonstrated in Figure 7.3. To test our hypothesis, we
run the simulations of two cases, with CE feedback and without CE feedback on the
non-neural epidermis. In the simulation, the CE in the neural plate induces the occurring of
CE in the non-neural epidermis. The positive feedback mechanism is implemented by
increasing the effect of CE in the non-neural epidermis with the reduction of the length of
the midline in the non-neural epidermis (the bold line in Figure 7.12a). The simulation
results are illustrated in Figure 7.12. The side view and dorsal view of simulation results in
both cases (Figure 7.12) indicate that the convergent extension in the non-neural epidermis
region is capable of generating more realistic geometry and they can be illustrated as

follows:
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1. The ratio of the length in the caudal-cephalic direction over the length in the

medio-lateral direction is 1.28, which is very close to the real cases (Figure 7.12e).
The curvature of the midline of the non-neural epidermis (the bold line in Figure
7.12a) in the “with CE feedback” case is less than the “without CE feedback” case.
This is more consistent with the real case.
From stage 14 to 16, the length of the midline of the neural plate increases in both
cases while the length reduction of the midline of the non-neural epidermis in the
“with CE feedback” case is larger than the “without CE feedback” case (Figure 7.12a,
b). In real embryonic development, the midline of the non-neural epidermis
experiences a large reduction which cannot be explained by the simulation result of
the case “without CE feedback” (Figure 7.12b and 7.12f). There must be some other
mechanism occurring to reduce the midline length. The simulation result of the case

“with CE feedback” yields a proper shape resembling the real case.

The simulations presented here can have following interpretations:

1.

Apical constriction (Shroom) and convergent extension (Xdsh) have a strong
tendency to produce neural tube closure. Any failure of these two mechanisms may
cause severe NTD. Other mechanisms under research may still be found to affect
neural tube closure; however, from a mechanical perspective, these two mechanisms
seem to be the main contributors to neural tube closure.

Boundary conditions and mechanical properties have a great effect on embryonic
development. Even small perturbations of those factors, which are magnified during
the embryonic development, may cause a severe NTD. These evidences suggest that
the cause of spina bifida may exist in the wrong mechanical properties of embryos
and the wrong boundary value of embryonic environment. The mechanics play an
important role in embryonic development. Comprehensive knowledge database and
strictly monitoring the development of embryonic geometry and mechanical
properties could be a future solution to the prevention of NTD.

Positive and negative feedbacks in the genetic network may have their

biomechanical counterparts [Taber, 2007]. Because neural tube closure and
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embryonic morphogenesis are strongly influenced by mechanics, the mechanical
model provides us with a platform to speculate and propose different biomechanical
feedbacks. This assists scientists to focus on interesting areas and finding the
corresponding biochemical feedbacks. For instance, the fact that the hypothesis of
convergent extension acting in non-neural epidermis makes our simulation results
closer to the real case can inspire scientists to discover if there is any biochemical
pathway related to this mechanical phenomenon.

Biomechanical feedbacks bring complexity into the whole model. The initial defects
in configuration or mechanical properties may be magnified by these feedbacks and
cause severe consequences. Therefore, to capture the essence of embryonic

development, biomechanical feedbacks become extremely important.
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Table 7.2. Stage 13, 15, 17 stress resultant summary (Modified from Bordzilovskaya and Dettlaff,
1979). The arrows represent the direction of stress resultant.

Dorsal Aspect Ventral Aspect
Cephalic
-0.08 mN/m +/-0.13 0.06 mN/m
7 Tests
s ge 9 Tests
4 | 0.36 mN/m £ 3-0.17 mN/m
+-024 | j +-0.15
7 Tests 6 Tests
Caudal
Cephalic .05 mN/m +/-0.32 0.52 mN/m +/-0.03
8 Tests 4 Tests
$ ge . 0.69 mN/m
q 1.48 mN/m +/-0.13
4 +/-0.36
6 Tests 7 Tests
Caudal
Cephalic 1.92 mN/m
P Not Measured +/-0.20
i, 7 Tests
41.22 mN/m
i +/-0.24
6 Tests
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With CE feedback Without CE feedback

Figure 7.12. With and without CE feedback on non-neural epidermis. (a) The side view of “with CE
feedback” simulation at stage 15. (b) The side view of “without CE feedback” simulation at stage 15
(Bold line represents non neural epidermis midline). (c) The cross section of “with CE feedback”
simulation at stage 15. (d) The cross section of “without CE feedback” simulation at stage 15. (e) The
dorsal view of “with CE feedback” simulation at stage 15. (f) The dorsal view of “without CE
feedback” simulation at stage 15. (Large up-down arrows represent the CE direction)
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Chapter 8

Discussions and Future work

The finite element simulation presented here is the first published whole-embryo model of
neurulation. In time, it will be refined, as were its 2D predecessors, so that differences
between the model and real embryos can be eliminated. The process of resolving these
differences is an important scientific task because through it, deficits in understanding can
be identified and relevant new experiments conceived.

The model demonstrates that realistic tissue motions are possible when a suitable
cell-based constitutive equation is used. A key feature of the current constitutive model is
that cells are able to flow past each other in-plane, a characteristic known to be important in
real embryos. In previous (unpublished) attempts to model neurulation in 3D, cells were not
free to rearrange in plane. This deficiency caused the tissues to be excessively stiff, especially
with respect to in-plane shear, and it impeded the complex 3D deformations that must occur
near the ends of the neural plate region. The present constitutive equation also made it
possible for single finite elements to model multiple cells, making whole-embryo models
computationally practical.

Recent experiments have shown that, during development, the fabric of the embryonic
epithelia varies substantially with tissue type, location, and development stage. The
constitutive model used here is able to successfully predict the fabric evolution during in

vitro tests, but additional statistical analysis software must be written before the accuracy of
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those predictions can be assessed in the context of neurulation. Such comparisons, however,
are important to full model validation.

The constitutive model is structured so that, as the biochemical pathways involved in
tissue regulation are identified, their effects can be incorporated into the model. The model
can hence serve as a bridge between gene expression and the morphogenetic movements of
critical developmental events. This important integration of biology and mechanics is
possible because the finite element method provides an open computational framework.

Simulations conducted to date show that tissue motions are highly sensitive to tissue
mechanical properties. This finding suggests that spina bifida and other neural tube defects
might arise through a variety of subtle mechanical means. It also suggests that modest
interventions might be sufficient to prevent neural tube defects. Identifying appropriate
intervention methods is a critical goal for additional research, and the finite element model
presented here holds promise as the means to carry out preliminary evaluations of proposed
interventions.

A hypothesis about a CE feedback occurring in non-neural epidermis has been
discussed in detail with biological experiments and computational simulations. Although it
still need more solid support from biologists, the approach of inferring biochemical positive
feedbacks from their biomechanical counterparts can assist scientists to discover new
mechanisms.

With the comparisons between thousands of simulations and experimental data, the
finite element implementation has proven to be effective and reliable. However, a number of
issues need more attention in future work. The Pentahedral element used in the model
sometimes experienced over-twisted motions, which caused volume constraints to fail. A
more robust replacement needs to be developed. The meshless numerical method for
irregular evolving grids can be a good candidate [Braun and Sambridge, 1995; Sukumar et al.,
1998]. Considering the computation scale, a simplified contact algorithm is employed in this
model. However, as a multilayer model is developed, a more complex contact algorithm
needs to be incorporated into the model to make the computation accurate and reliable.

Tensor representations, which have been proven successful for describing fabric in a
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number of micromechanical applications [Rothenburg, 1981], should be included in the
constitutive model. In addition, more materials can be developed based on the biological

experiments and employed in the future simulations.
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Appendix A
Assembly of the Matrix Equations

In Denis and Brodland’s model, the key assumptions can be summarized as follow:

1.  The net driving force in cell-cell interactions is approximated by an interfacial
tension along each of the cell boundaries. The tension is generated by
circumferential microfilament bundles (CMBs), other microfilaments and cell
membrane tension. Forces generated by cell adhesion molecules (CAMs) reduce
this contraction.

2. The cell cytoplasm, including its embedded networks of intermediate filaments, is

considered to be incompressible and is modeled by an effective viscosity p.
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Node

Dashpot

(b)

Figure A.1. The cell and finite element models [Brodland et al., 2007]. (a) A schematic
representation of two cells that are assumed to form part of a generic embryonic epithelium. (b)
A model based on systems of orthogonal dashpots. In the interest of image clarity, only the
dashpots aligned with the long axis of the cell are shown. The second set of dashpots would run
orthogonal to those shown. Truss elements, like those shown in (a), are assumed to act along each
cell-cell interface.

Based on the above assumptions, there are a total of two free material parameters in this
model: a constant tension y along each cell-cell interface and the cell viscosity p. To model
this viscosity in the finite element method, nodes of each cell are connected with each other
by an orthogonal dashpot system which is along with the principal axes of the cell (Figure
A.1b). The introduction of the orthogonal dashpot system into the model overcomes the
locking challenge that was present in the previous model. In the previous model, cells with n

sides are divided into n triangular elements. The constitutive equation is expressed as,

4 2 2 i
o 2“2, 0 0 0. -
O\ _p 3lu 31“ 3ﬂ Exx
o || |24 Zu <24 0 0 0|4
3 3 3 )
0, :_p_l__g _g ﬂ 0 0 0l &,
Tyy 0 3’” 3'” 3'” é‘xy : (A.1)
0| | o 0 0 0 2u 0 0flg
1o 0 0 0 0 2u 0|z
0 0 0 0 0 2u

If a fluid is incompressible, then &, =¢, + ¢, +¢&, =0. By integration, we are able to

assemble the stiffness matrix based on this constitutive equation. The phenomenon that the
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cytoplasm in a cell can move freely can be modeled by setting Poisson’s ratio to zero in each
triangle element and imposing a volume constrain on each cell. The locking problem arises
because, as the edge of a cell shortens, the stiffness of any triangles adjoining that edge
increases without bound because their strain rates tend to infinity.

To circumvent this problem, each dashpot in Figure A.1b is assigned the same damping
coefficient 7Jx. The dashpots in the orthogonal direction are not shown in the Figure A.1b
and we assume its damping coefficient is 7}x. As a consequence, the movement of one node
will produce the same reaction force on the other nodes (assuming they are fixed when the
movement occurs). This brings simplicity to the stiffness matrix assembling. And through
virtual work principle, 7x and 7), can be related to the cell viscosity p based on some

geometric assumptions [Brodland et al., 2007].

Dashpot

Non-rotating / X

Slider 000
=

Figure A.2. System of Orthogonal Dashpots [Brodland et al., 2007].

To calculate the stiffness of the dashpots for a 3D cell, an ellipsoid is fit to the cell to
determine the orientation of its three principle axes and the length of those axes (Figure A.2).
The products of inertia of the cell are calculated in Cartesian space and then assembled into

a matrix. The matrix is illustrated in Figure A.3.
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Figure A.3. Location of products of inertia in the matrix

The moments of inertia are calculated based on the following equations,

n 2
Ly =DV xAX (A2)
i=1
Ly =1, =DV xAXxAy | (A.3)
i=1
Iy =1, =2V xAXXAZ , (A.4)
i=1
n 2
I, =D VxAy, (A.5)
i=1
I, =1, =D VxAyxAz , (A.6)
i=1
n 2
l,=>VxAz, (A7)
i=1

where V represents the volume of the cell; Ax, Ay, and Az are the x, y and z distances from
the centroid of the tetrahedron (constructed by connecting the triangular sub-faces with the
centroid of the cell) to the centroid of the cell respectively and n is the number of the
tetrahedrons that make up a cell.

Through a great number of computational simulations, an empirical formulation to
relate the eigenvalues of the matrix to the length of the three principle axes of the ellipsoid is

expressed as,
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AxisLength = JM x 6.63 (A.8)
Volume

Then the dashpots along each of the principle axes are formulated by the following

equations:
1 =%, (A.9)
Mg = %, (A.10)
pe = %, (A11)

where the A, B, C represent the length in the three principle axes, n is the number of nodes in
the cell and g is a form factor with the value of 17.7.

Truss-like elements are employed to model the interfacial tension along the each side of
the cell. To keep the total cell volume constant, a volume boundary constraint is imposed on

each cell. The system is described by the equation:

iC(uGI+1 —-u,)=f (A.12)

At d

C=>C* (A.13)

k=1

where m is the number of 3D cell elements in the cell mass, and C* is the damping matrix

of cell element k. The elements in the matrix can be calculated as follows.

o, iz
Cgi,sj :{ g itz (A.14)
ey 1M1=
oy ifi ]
Clizja ={nﬂ8 i i (A.15)
. _
e Wi
Civasiro ={nﬂcc e (A.16)

The damping matrix associated with cytoplasm is updated with each time step.
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