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ABSTRACT 
 
 
A large portion of an airport property is occupied by runways and taxiways, which must 

be kept in excellent condition to ensure the safety of the airplanes, and the people on 

board.  Any free objects on the airfield can cause damage to aircraft and are a possible 

danger to both the airplanes and the passengers.  However, deterioration of the concrete 

airfield can be a major hazard and the presence of de-icing and anti-icing fluids may 

accelerate degradation.   

 
The focus of this project was the evaluation and assessment of aircraft de-icing and anti-

icing fluids on the deterioration of airfield concrete.  These fluids are used to remove and 

prevent snow and ice formation on aircraft by lowering the freezing temperature of water.  

The primary component in both fluids is ethylene glycol, while additives, which are 

proprietary and unknown, are mixed in to control various properties. Very little research 

has been done regarding the effect of the de-icer and anti-icers on the concrete 

deterioration.  The aim of this study was to gain a better understanding of its influence on 

the deterioration of airfield concrete through a series of mechanical and electro-chemical 

tests, as well as microscopic and elemental analysis.    

 
Based on the comparative experiments and analyses performed using water, ethylene 

glycol, de-icer, and anti-icer, it appears that de-icing fluids do not prematurely cause 

concrete deterioration.  In addition, experimental procedures in this study utilized the de-

icing fluids as a concentrate, which are unrealistic conditions on an airfield, where 

dilution occurs from the addition of water and the presence of snow and ice.  There was 

precipitate formation in all cases of cement paste exposure to de-icing fluid, however, 

which indicates that reactions are occurring and should be investigated further to 

determine the long term effects on concrete.  With respect to the scope of this study, it 

was determined that the use of de-icers and anti-icers cause no significant detrimental 

effects on concrete mechanical properties and durability. 
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CHAPTER 1 - INTRODUCTION 
 
1.1  The Airfield 

 
Aircraft play a major role as a part of the global transportation infrastructure, transporting 

hundreds of thousands of people everyday worldwide.  Each year, over 30 million 

passengers travel through Toronto’s Lester B. Pearson International Airport alone 

[GTAA, 2006].  With such a high volume of people and a great domestic and 

international impact, maintenance at the airport is a critical and continuous process.    

 
A large portion of an airport’s land is occupied by runways and taxiways, which allow 

the airplanes to move around, take off and land.  The airfield must be kept in excellent 

condition to ensure the safety of the airplanes, as well as the people on board, at all times.  

When the airplane engines are running, the jet engine area will easily intake any loose 

objects in its path, which could subsequently cause significant damage, as seen in 

Figure 1.1. Considering the size of the airfield at major international airports, 

maintenance is no small feat and inspection is required numerous times a day.  Any free 

objects on the airfield could cause problems and would be a possible threat to airplanes 

and its passengers.  These unwanted loose objects are formally referred to as foreign 

object debris (FOD) and are dealt with very seriously at all airports [FODNews].   

    
  (a)       (b) 
Figure 1.1  (a) Jet engine turbine blade damages [FODNews]; (b) Example of a cargo box 
being a large FOD hazard [Unusual Aviation Pictures]. 
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FOD can range in size from nuts and bolts to large luggage carts.  The term even includes 

wildlife and people on the airfield.  Anything that is out of place on an airfield and can 

cause damage to the engine or flight control mechanisms is considered FOD.  In addition 

to the passenger injuries and plane damage, potentially caused by FOD, a great deal of 

money can be lost in terms of flight delays, minor repairs, and lost productivity.  An 

estimated 4 billion dollars is spent annually because of FOD, with the majority of it spent 

on engine repairs [FODNews].   

 
The best prevention for FOD-related problems is by addressing the sources and 

minimizing, or eliminating, the cause of debris on airfields.  In the case of litter and tools, 

the maintenance crews should be educated in recognizing the importance of identifying 

and removing potential hazards when working on the field.  For wildlife control, several 

airports employ predatory birds, dogs, or visual and auditory deterrents to discourage 

wild animals from approaching the airfield.  There is another source of FOD, however, 

that is present as a potential hazard over the entire airfield and is much more difficult to 

predict and control.  It is the airfield itself, which can be a major contributor if it 

deteriorates and yields loose pieces of concrete. 

 
 
1.2  Airfield Structural Defects 

 
Airfields are typically constructed of asphaltic concrete, portland cement concrete (PCC), 

or a combination of both [Transport Canada Civil Aviation].  The type of pavement used 

determines the type of deterioration that will typically be found.  Deterioration of the 

concrete can be a major source of the FOD found on runways and taxiways. As seen in 

Figure 1.2, there are several structural defects that can plague PCC airfields.   
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           (a)         (b)         (c) 

                         
   (d)         (e) 
Figure 1.2  Common structural defects found in PCC airfields: (a) slab cracking, (b) 
corner cracking, (c) edge cracking (d) scaling/spalling, and (e) stepping [Transport 
Canada Civil Aviation]. 
 

All these defects can eventually result in loose pieces of concrete and popouts, which can 

pose a danger to the aircraft.  In addition to the physical impact and load caused by the 

immense weight of the airplanes when at rest and upon landing, they could also be caused 

by a variety of chemical reasons.  For example, the use of large amounts of de-icing and 

anti-icing chemicals used at airports located in cold regions may play a part in 

accelerating the deterioration of the airfield. 

 
 
1.3  Lester B. Pearson International Airport 

 
Lester B. Pearson International Airport is situated in Toronto, Ontario, Canada and is one 

of the top 30 busiest international airports. Pearson International Airport saw thirty-one 

million passengers travel through in 2006, a number that is steadily growing each year.  It 

is currently operated by the Greater Toronto Airports Authority (GTAA), which oversees 

the operations, management, and development for improving services to meet the 

growing needs of the region.  Sustainability and the environment are important factors, 

however, and the GTAA has been able to keep them in consideration throughout the 

growth of Pearson Airport [GTAA, 2006]. 
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A key example of the GTAA’s progress in environmental consciousness is the 

construction of the Central De-icing Facility (CDF), which was built to reduce the 

environmental impact of aircraft de-icing operations at the airport.  There have been 

numerous studies that have examined the harmful impact of glycol-based aircraft de-icing 

fluids on the environment, particularly on aquatic life and vegetation in the vicinity of 

airports.  The purpose of the CDF is to minimize the negative effects on the surrounding 

environment by containing as much of the aircraft de-icing fluids as possible.  This is 

achieved by building the entire facility on a special liner, which limits the spread of de-

icing fluids through the soil system, and running a vast collection system under the entire 

de-icing pad, which is capable of storing over 12 million litres of spent de-icing fluid.  

The CDF was in place and ready for its first de-icing season during the 1997/1998 winter 

season.  There was one operational bay, which could accommodate 2 small planes or 1 

large plane.  It was further expanded over the next two years with the addition of five 

bays, allowing for simultaneous de-icing of 12 small planes or 6 large planes. More 

recently, for the 2006/2007 season, an on-site recovery facility was launched to recycle 

the collected de-icing fluid waste for processing into a product that could be sold to a 

secondary market, such as the auto industry [GTAA, 2003; GTAA Winter Operations, 

2007]. 

 
 
1.4  CDF De-icing Operations 

 
The de-icing season at the GTAA Pearson International Airport runs from October to 

April.  During these months, de-icing operations commence when it is deemed necessary, 

based on up-to-the-minute weather conditions.  Canadian Federal government regulations 

state that aircraft must be de-iced when the probability of ice formation is high because 

they are not allowed to take-off with ice on their wings [City of Toronto, 2002].  

Consequently, de-icing operations play an extremely critical role in ensuring passenger 

safety for the airport industry in cold climates.   

 
There are currently 24 de-icing trucks and 4 glycol recovery vehicles, some of which can 

be seen in Figure 1.3 below.  One de-icing truck is positioned on each side of the airplane 
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and the controller applies the de-icing fluids, which will remove any snow and ice 

accumulated on the airplane surface. 

 

   
   (a)      (b) 

Figure 1.3  a) A de-icing truck with its de-icing arm fully extended and b) a glycol 
recovery truck. 
 

At Toronto’s Pearson International Airport alone, a large amount of de-icing fluid is 

spent to treat aircraft each winter.  In order to give an indication of just how much fluid 

could be spent each year, 2004-2005 de-icing statistics were obtained.  With 14, 229 

airplanes de-iced during that season, 5.729 million litres of Type I de-icing fluid and 

1.472 million litres of Type IV anti-icing fluid were used.   This amounted to a total of 

7.201 million litres of fluid used at the Toronto Pearson Airport alone. It is clear that, 

globally, extraordinary amounts of de-icing fluids are used each year [Forbes].  

 
Much of the de-icing fluid falls onto the concrete pad beneath the airplane; therefore, 

glycol recovery trucks are sent out to collect any of the waste fluid.  Depending on de-

icing demands put upon the CDF, glycol recovery trucks may have to wait several turns 

before getting a chance to collect fluid on the ground.  Ideally, a recovery truck would be 

sent out immediately after every airplane de-icing operation because the collected fluid 
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would be less contaminated.  In reality, however, this is not possible, as up to 500 

airplanes could require de-icing in one day, limiting the time available for recovery trucks 

to collect the spent fluid.  Thus, as a result of de-icing operations, the concrete pad at the 

CDF is exposed to a great deal of de-icing fluid every winter.   

 
 
1.5  Objectives 

 
Deterioration of airfield concrete can be a hidden FOD hazard since concrete is present 

over the entire airfield, making it hard to recognize as a risk.  In addition, literature 

searches have uncovered many studies regarding the adverse impact of aircraft de-icing 

fluids on the environment, but very little regarding the effects of aircraft de-icers on 

concrete.  Therefore, as a preventative measure, the aim of this research project was to 

determine whether aircraft de-icers are potentially accelerating concrete degradation. This 

was accomplished by conducting a series of mechanical tests followed by microscopic 

and elemental analyses. 
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CHAPTER 2 - LITERATURE REVIEW 
 
 
2.1  Ordinary Portland Cement 

 
Ordinary Portland Cement (OPC) is produced in a rotating kiln by combining limestone, 

which yields calcium oxide, and clays, which yield silicon oxide, aluminum oxide, and 

iron oxide.  Various compounds form as the temperature rises from 50°C to 1450°C and 

the raw materials begin to react with each other.  The resulting clinker is composed of 

four major components, which, in order of formation, are dicalcium silicate (C2S)1, 

tricalcium aluminate (C3A), tetracalcium aluminoferrite (C4AF), and tricalcium silicate 

(C3S).  Gypsum (CaSO4⋅2H2O) is then added to the clinker and the mixture is ground to 

produce OPC.  

 
The four components in OPC have several different functions during hydration, each 

affecting the cement properties in various ways.  C2S and C3S both hydrate, according to 

Equation 2.1 and 2.2, to form calcium hydroxide (CH) and calcium silicate hydrate      

(C-S-H), which gives good strength and bonding properties. 

 
2 C3S + 6 H → 3 C-S-H + 3 CH    (2.1) 
2 C2S + 4 H → C-S-H + CH     (2.2) 

 
The C3S hydrates rapidly, giving early strength within the first week, while the C2S 

hydrates at a steady slow rate over a much longer period of time, on the order of months.  

The heat of hydration of C3S is also double that of C2S, at 500J/g versus 250J/g.  

However, both components contribute equally to the overall long-term strength of the 

cement paste [Bogue and Lerch,  1934]. 

   
The CH component comprises 18% of the C2S and 40% of the C3S total hydration 

product and buffers the pH of the cement to approximately 12.5 as it saturates the liquid 

present.  This is generally desireable because many concrete structures will incorporate 

                                                
1 This particular shorthand notation is very commonly used in the cement and concrete industry, 
where C represents CaO, S represents SiO2, A represents Al2O3, F represents Fe2O3, 

! 

S  represents 
SO4, and H represents H2O. 
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embedded steel reinforcing bars.  A high pH, like that found in concrete, provides a 

passive protective environment against corrosion. The C-S-H component is often referred 

to as a rigid gel because of its porosity, poor crystallinity, and undefined structure. Initial 

set refers to the start of rapid C3S hydration that occurs after CH and C-S-H begin to 

crystallize.   As hydration proceeds, C-S-H forms around cement particles and 

progressively fills in the spaces in between adjacent particles.  The hydrated cement 

product occupies more than double the volume of the original cement particles before 

hydration, although less volume than that of the separate anhydrous cement and the water 

components.  Stiffening of the cement paste occurs as C-S-H coats cement particles and 

contacts C-S-H forming on adjacent particles.  Final set refers to the peak of C3S 

hydration before the reaction starts to slow down.  Gel pores, which are interstitial spaces 

formed between C-S-H particles, and capillary pores, which are formed from areas of 

residual unused water, are present throughout the C-S-H gel structure. Consequently, the 

water-to-cement ratio and the degree of hydration have a large effect on the resulting 

concrete microstructure.   

 
C3A hydrates rapidly upon contact with water to produce calcium aluminate hydrate     

(C-A-H), which contributes to rapid setting conditions, known as flash set.  This results 

in the consumption of water, producing a stiff cement paste with very little strength, and 

is also accompanied by high heat evolution.  C3A is, generally, an undesirable by-product 

of clinker production.  Gypsum is added to cement to control the hydration and avoid 

flash set by reacting to produce ettringite (C6AS3H32), which coats the C3A particles and 

retards further hydration.  Although ettringite formation is expansive, it is harmless if it 

occurs while concrete is still plastic.  Any unconsumed C3A remaining after gypsum 

consumption will react with present ettringite and water to revert to a stable 

monosulphoaluminate (C3A⋅ CaSO4⋅H12), which is normal.  The formation of ettringite 

and monosulphoaluminate contribute slightly to early stiffening, but play insignificant 

roles in overall long-term strength of the cement paste.  If there is future exposure to 

sulphates during the cement paste’s lifetime, monosulphoaluminate will revert back to 

ettringite, which can then cause detrimental expansion in already hardened cement paste 

and is referred to as sulphate attack.  On the other hand, too much gypsum addition can 
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also be detrimental by extending the formation time of ettringite past the final set time of 

the cement paste, resulting in cracking of hardened paste.   

 
C4AF is another by-product of clinker formation and reacts in a similar manner to C3A, 

but at a slower rate and with lower heat evolution.  It does not contribute a great deal to 

cement paste strength.   

 
 
2.2  Aircraft De-icing and Anti-icing Fluids 

 
The two main fluids that are typically used at the airport for aircraft de-icing operations 

are designated Type I aircraft deicing fluid (ADF/de-icer) and Type IV aircraft anti-icing 

fluid (AAF/anti-icer).  The de-icer is always applied during de-icing operations and is 

used to remove any snow, or ice, that has already collected on the aircraft surface.  On 

site, the as-received de-icer concentrate is diluted with water to 38% or 48% 

concentration, based on weather conditions, before application.  The anti-icer is 

subsequently used on aircraft, when necessary, to prevent ice from forming on the 

surfaces again.  It is applied at full concentration and its application depends on the 

temperature, weather conditions, and the estimated time delay between the deicing 

operation and take-off. 

 
The de-icer and anti-icer used for all experiments were supplied by the Greater Toronto 

Airports Authority (GTAA) Central Deicing Facility (CDF).  Both of the fluids are 

currently purchased from The DOW Chemical Company as concentrates and the de-icer 

is diluted, on site, to appropriate concentrations.     

 
The primary constituents, ethylene glycol and water, are present in different quantities 

within de-icer and anti-icer fluids.  Proprietary additives are also present in small 

amounts, but no information could be obtained regarding composition. A breakdown of 

the constituents in both fluids can be found in Table 2.1, according to information sheets 

provided [The Dow Chemical Company, 2002].  
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Table 2.1  Dow Chemical Company de-icer and anti-icer composition breakdown. 
Type Ethylene Glycol Water Additives 
De-icer Type I 92% 7.5% 0.5% 
Anti-icer Type IV 64% 35% ≤ 1% 
 
 
2.2.1  Ethylene Glycol 
 

Ethylene glycol, C2O2H6, is an organic chemical belonging to the glycol family and is 

characterized by two hydroxyl groups.  It is a colourless, odourless, and viscous liquid 

with a density of 1.1132 g/cm3 and is commonly used as a freezing point depressant, such 

as an anti-freeze in automobile cooling systems.  The freezing point of ethylene glycol is 

–12.9oC, but it forms a eutectic mixture with water, resulting in lower freezing points at 

various concentrations.  A phase diagram of water and ethylene glycol, shown in 

Figure 2.1, shows that the eutectic occurs at approximately 57% ethylene glycol and 43% 

water, corresponding with the lowest stable freezing temperature of approximately -50oC.  

The dashed line portion of the curve represents the meta-stable freezing curve of the 

system at those locations.  Above the solid line curve, there will be a liquid mixture of 

water and ethylene glycol, while at temperatures below the eutectic, there will be a solid 

mixture of water and ethylene glycol.  The regions in between these two yield varying 

ratios of the two constituents in a solid-liquid state. 

 
Ethylene glycol is readily miscible in water because hydrogen bonding that naturally 

occurs between ethylene glycol molecules is similar to those formed between water 

molecules, as shown in Figure 2.2.  Consequently, ethylene glycol molecules and water 

molecules bond easily when mixed together and ethylene glycol has been found to absorb 

up to 200% its weight in water when placed in 100% relative humidity conditions [Health 

Canada, 2000]. 
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Figure 2.1  Ethylene glycol and water phase diagram [Cordray, 1996]. 
 

 
Figure 2.2  Ethylene glycol molecules interacting with water molecules [Kao, 2005]. 
 
 



 12 

The toxicity of ethylene glycol has made de-icing practices at airports a major concern, 

since much of the de-icer and anti-icer falls on the airfield and could eventually drain into 

stormwater sewers.  Health Canada studies have found that the highest release of ethylene 

glycol to the land environment comes from de-icing operations at airports [Health 

Canada, 2000].  Many, including Toronto’s Lester B. Pearson International Airport, have 

responded by constructing dedicated de-icing pads, which are areas used specifically for 

de-icing purposes and, often, have built-in recovery systems to contain as much of the 

excess de-icing fluid as possible.  It is illegal to re-use the recovered de-icing fluid to de-

ice aircraft; however it can be sold to industries for use in less critical applications such 

as the production of automobile anti-icing fluid.    

 
 
2.2.2  Additives 
 

The additives in de-icer and anti-icer are part of a package, referred to in the industry as 

an Ad-Pack.  These are used to control various chemical and mechanical properties of the 

product being manufactured.  There are various Ad-Packs available for different 

applications, but the one needed for aircraft deicers has been found to contain surfactants, 

corrosion inhibitors, pH modifiers, fire retardants, and dyes [Corsi, 2006; EPA, 2000].  

The dye is used as a visual indicator to easily distinguish between the two types of fluids.  

DOW Chemical Company identifies its products by using orange for Type I deicer and 

green for Type IV anti-icer [The Dow Chemical Company, 2002].  A thickener is also 

added to the anti-icer formulation to increase holdover time, which is the length of time 

that the fluid will be effective for preventing ice formation.  De-icer typically has a 

holdover time of approximately 15 minutes, while anti-icer has a holdover time of 30 to 

80 minutes.  There is a large variability in the anti-icer holdover time because it is greatly 

affected by the weather conditions at the time of application.  The chemicals used in the 

Ad-Pack are proprietary.  Formulations were not released by DOW Chemical Company 

for this research project [MacKinnon, 2005].   

 
Very few studies have been conducted regarding the effects of these de-icing and anti-

icing fluids on concrete, although many studies have investigated their effects on the 
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environment and, in particular, aquatic life in airport vicinities [Corsi, 2006; EPA, 2000; 

Gray, 2002].  The components that have been repeatedly identified in many of the 

different studies are likely to be present in the fluids used at the GTAA De-icing Facility 

as well.  These include tolyltrizaoles as corrosion inhibitors, nonylphenol ethoxylates as 

surfactants, and polymer-based emulsions or carrageenan for thickeners.  

 
In one study [Van Dam, 2006], the effects of aircraft de-icers on concrete at nine airports 

throughout North America that have dedicated de-icing facilities, such as the one at the 

GTAA, were studied.  Visual inspections were done on-site and concrete cores were 

taken from each de-icing pad for petrographic analyses.  He concluded that microbial and 

chemical concrete deterioration could not be directly attributed to the use of aircraft de-

icers.  The predominant causes of distress found in the concrete cores were related to 

workmanship regarding consolidation, finishing, and curing performance at the time of 

concrete placement.  Inconsistencies in air void systems, resulting in inadequacies in 

certain regions, also contributed to concrete deterioration.   

 
In another study [Rogers, Sullivan, Bremnar, 1999], the performance of two concrete 

pavement joint sealants was examined.  In particular, the effects of temperature and the 

effects of water and ethylene glycol immersion were evaluated.  It was concluded that 

ethylene glycol, in fact, decreased the glass transition temperature of the tested joint 

sealants, which is, in fact, desirable for low-temperature applications such as an airport 

de-icing facility during the de-icing season. 

 
 
2.3  Freeze-Thaw Damage 

 
2.3.1  General 
 

Freeze-thaw damage is a major concrete durability problem in climates where the 

temperature fluctuates about freezing conditions.  According to Environment Canada 

statistics, Pearson International Airport experienced an average of 75.3 freezing and 

thawing cycles between 1960 and 1989 [Ho, 2005].  Damage primarily appears as pop-

outs, which are conical fragments of surface concrete, scaling, internal cracking, and D-
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cracking, which is a type of cracking commonly found near expansion joints and edges.  

Expansion of surface aggregates or fracture within aggregates result in pop-outs, while 

expansion of cement paste near the surface results in scaling or spalling.   Excessive 

tensile forces within the concrete microstructure will cause internal cracking, while D-

cracking originates at the bottom of concrete slabs, where aggregates can easily become 

saturated from water accumulation and undergo expansion upon freezing and thawing.  

Due to greater moisture availability and an un-restrained concrete boundary condition, 

this type of cracking appears parallel to expansion joints and edges.   

 
At cold climate airports, repeated freezing and thawing is a major concern due to the 

application of de-icing fluids, which depress the freezing point of water, causing freeze-

thaw conditions for the concrete in, what otherwise would have been, constant freezing 

conditions.  The presence of de-icers also increases moisture availability at the concrete 

surface, resulting in greater saturation.  Thus, the use of de-icers may physically enhance 

concrete damage by increasing the number of freeze-thaw cycles that an area 

experiences, which is more detrimental than having a condition where the concrete 

remains frozen [West, 2005].   

 
 
2.3.2  Internal Cracking 
  

The dilation mechanism leading to freeze-thaw damage has been a long debated topic 

with many proposed theories [Powers and Helmuth, 1953; Powers, 1955].  Three main 

internal freeze-thaw mechanisms that have been proposed are hydraulic pressure, ice 

accretion, and osmotic pressure.  In all cases, however, damage occurs when pressure 

exerted within the microstructure is great enough to exceed the tensile strength of the 

cement paste. 

 
The most commonly accepted freeze-thaw damage model is that of hydraulic pressure.  

Initially, water is present in gel pores and capillary pores of the cement paste 

microstructure but, as water freezes into ice, it expands 9% in volume.  In theory, the 

critical saturation level of the cement paste is 91.7% [Powers, 1955], since the volume 

increase can be accommodated by unfilled pore space.  Realistically, pore water is not 
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distributed evenly within concrete, causing critical saturation to occur locally and 

decreasing the overall critical saturation level. As ice forms within capillary pores, any 

unfrozen water must redistribute itself to adjacent pores or air voids to accommodate the 

volume expansion.  Otherwise, pressure within the pore cavity may exceed the tensile 

strength of the cement paste and cause cracking [Powers and Helmuth, 1953]. 

 
Osmotic pressure is another proposed cause of internal pressure generation [Powers, 

1955].  As pore water freezes, the concentration of metal hydroxides in the surrounding 

unfrozen water increases because ice can only form from nearly pure water.  This causes 

osmotic pressure because there is an increase in metal hydroxides near the ice-liquid 

interface and the resulting concentration gradient causes more water to be drawn into the 

pore in order to restore equilibrium. As the liquid surrounding the ice becomes diluted, 

more ice forms and the cycle continues [Powers, 1955]. 

 
Ice formation within the concrete pore structure can also occur due to ice accretion, 

which is also referred to as capillary ice growth.  As ice begins to form within a cavity, 

there is a change in energy equilibrium between the ice inside the cavity and the liquid in 

the surrounding paste.  Air voids are rarely filled to capacity, while capillaries can be, 

thus capillary ice is likely to experience greater pressure during the expansion of freezing 

ice.  Consequently, the free energy of capillary ice is greater than that of air void ice 

[Powers and Helmuth, 1953]. Likewise, the free energy of gel pore water is greater than 

that of capillary ice, thus, gel pore water cannot freeze until it relocates to a capillary pore 

or air void. At the same temperature, the free energy of gel pore water is greater than that 

of ice in the capillaries and air voids because gel pores offer a much smaller space. As a 

result, the water in gel pores has a tendency to move towards cavities in order to reduce 

its energy potential, contributing to the growth of ice crystals [Powers and 

Helmuth, 1953]. 

 
For the osmotic pressure and ice accretion theories, the cause of cracking is not due to 

physical growth of ice crystals, but, rather, the movement of water into spaces 

surrounding ice crystals.  Consequently, a swelling effect occurs on the cavity wall, 

placing it under pressures that could be great enough to cause damage. 
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In all cases, when gel pore water tries to redistribute to other locations, such as capillary 

pores or air voids, its movement through the cement paste generates pressures that may 

cause cracking.  The presence of an adequate air-entrainment system, however, has a 

great impact on the behaviour of concrete under freeze-thaw conditions by providing 

convenient spaces for excess water. 

 
It is likely that a combination of various freeze-thaw mechanisms leads to frost damage, 

as not one single theory can account for the behaviour of concrete under different 

freezing conditions [Pigeon, 1994; Powers, 1955].  

 
Freezing and thawing is particularly damaging when air voids are not given sufficient 

drying time after thawing to empty themselves.  Realistically, there will always be 

residual water within air voids and, if water is present to saturate the concrete, less space 

would be available to accommodate the ice upon freezing as the air void gradually 

accumulates more water [West, 2005]. 

 
 
2.3.3  Scaling 
 

Scaling is the gradual removal of cement paste near the concrete surface and can range 

from “light severity”, in which there is no exposure of coarse aggregates, to “very 

severe”, in which there is loss of aggregates and mortar to a depth greater than 22 mm 

[ACI 201.2R-01].  When depth loss is greater than the maximum aggregate size, it can be 

classified as spalling [Transport Canada Civil Aviation, 2005]. 

 
Various sources found that scaling occurs only in the presence of road de-icers 

[Korhonen, 2002; Valenza and Scherer, 2006] and there is a pessimum concentration, 

after which the scaling effect decreases with increasing concentration.  For example, the 

scaling versus sodium chloride solution concentration, shown in Figure 2.3, indicates that 

the pessimum concentration occurs at approximately 3%.  It was found that, regardless of 

the solute, the pessimum concentration occurs at approximately 3 % because of the effect 
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of the solute on the strength of ice formed at varying concentrations [Valenza and 

Scherer, 2006].   

 

 
Figure 2.3  Effect of varying NaCl solution concentration on concrete scaling [Verbeck 
and Klieger, 1957]. 
 
 
2.3.4  Air Entrainment and Air-Entraining Admixtures 
 

The most important chemical admixture for freeze-thaw durability of concrete is air-

entraining admixture (AEA), which functions to stabilize air voids that form within the 

paste during mixing.  Since it is mixing action that creates air voids throughout the paste, 

adequate mixing time is an important function of the effectiveness of an air void system. 

 
AEA molecules, which are often hydrocarbon-based are hydrophobic at one end and 

hydrophilic at the other end.  Because of the molecule’s polarity, the hydrocarbon chains 

will arrange themselves into a low-energy configuration, which reduces the surface 

tension within the paste, as shown in Figure 2.4.  Air voids also become well-distributed 

within the paste due to the repulsive forces between the polarized admixture molecules, 

providing space to accommodate for extra water during freezing conditions.    
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  (a)      (b) 

Figure 2.4  (a) typical hydro-carbon AEA molecule; (b) low energy AEA configuration of 
AEA molecules.[West, 2006] 
 
 
Experimental studies have shown that many factors can influence the behaviour of 

cement paste upon exposure to freezing temperatures.  However, the entrained air content 

of the paste has, by far, the greatest impact on the durability of concrete exposed to 

freeze-thaw action [Powers, 1955; Pigeon, 1994].  In fact, properly air-entrained concrete 

should not experience any internal cracking due to freeze-thaw damage [Pigeon, 1994].  

The air void system should allow protection by providing space into which water can 

diffuse as ice forms and expands within capillary pores.   

 
In addition to the existence of a good air-entrainment system, the air void spacing and 

rate of freezing are important parameters that affect concrete freeze-thaw behaviour 

[Powers, 1955].  Concrete with a total air content composed of primarily several large air 

voids would not provide the same frost resistance as concrete with numerous small air 

voids.  This is because the distance that water would have to travel in order to reach the 

air void, referred to as the void spacing factor.  Pressure on the paste increases 

approximately in proportion to the square of the distance to the void, so the spacing factor 

greatly influences the effectiveness of the air void system in controlling expansion within 

the concrete microstructure.  There is a certain distance away from an air void at which 

the pressure equals the tensile strength of the paste.  The area bounded by this distance 

can be visualized as a protective shell within which the pressure can never be great 

enough to cause damage.  Thus, if air voids are sufficiently close together to have 
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overlapping protective shells, the likelihood of damage by hydraulic pressure generation 

can be eliminated [Powers and Helmuth, 1953]. 

 
Air void spacing also greatly affects the pressures generated by diffusion of water 

through the cement microstructure.  As the temperature decreases, the free energy of 

water within the system increases within the gel pores and, to a lesser extent, the capillary 

pores.  Thus, gel pore water tries to diffuse to the nearest air voids and capillary pores to 

restore equilibrium.  Unless an air void is completely full of ice, its free energy will 

remain constant, even when gel pore water diffuses into it.  On the other hand, the free 

energy level of capillary pore ice will increase when gel water diffuses to it because it is 

likely near capacity and will experience increasing pressure as the ice crystal grows 

larger.  The distance of the gel pore to the nearest air void affects the pressure 

experienced by capillary pores because during the time it takes for gel water to diffuse to 

an air void, thus decreasing the free energy in the gel water, the capillary pore ice will be 

receiving freezable gel water.  This will occur as long as the free energy level of the gel 

water is greater than that of the capillary ice, causing increasing pressure within the 

capillary pore.  Thus, if the distance between the gel pore and an air void is small, the 

amount of freezable water received by the capillary pore will be minor and unlikely to 

cause critical expansion [Powers and Helmuth, 1955]. 

 
The rate at which freezing occurs is an important variable because there are opposing 

forces acting within the cement paste as the temperature decreases and water freezes: 

contraction and expansion.  Contraction occurs as water escapes from gel pores, whether 

from diffusion to air voids and capillary pores or from evaporation.  Expansion occurs 

because of hydraulic pressure generation and capillary ice growth.  The freezing rate 

influences the rate at which both of these processes occur since it affects the driving force 

behind them.  Diffusion occurs gradually, as temperature decreases, and can still occur 

when temperature is held constant because it is a slow process that lags the driving 

temperature potential.  On the other hand, expansion occurs rapidly when hydraulic 

pressure or capillary ice growth is present.  These two opposing forces are present as the 

concrete experiences freeze-thaw cycling and place the paste under strains that may 

eventually lead to damage [Powers and Helmuth, 1955].  No studies have been found 
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regarding the effect of ethylene glycol on these particular processes.  As a result, the 

present work aims to investigate and address this gap in information. 

 
 
2.4  Alkali-Aggregate Reaction   

 
Alkali-aggregate reaction (AAR) is a chemical attack that can result in the development 

of distress cracks on concrete surfaces [Rogers et al, 2000].  There are two types of 

reactions: alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR).  Both involve 

interactions between metal hydroxides and reactive aggregates, leading to the formation 

of expansive reaction products that, consequently, put pressure on the surrounding paste 

and cause cracking and deterioration. 

 
Although no studies have been found concerning the effect of aircraft de-icing agents on 

the occurrence of AAR or the AAR mechanism, studies have been done regarding the 

effect of road de-icers on AAR [Diamond et al., 2006].  Potassium acetate, which is 

commonly used as an airfield de-icer, was found to instigate ASR by causing the concrete 

pH to jump from pH 11 to pH 15.  This highly alkaline environment appeared to induce 

ASR in ASR-susceptible aggregates during laboratory testing.     

 
Since crack formation due to AAR would result in greater ingress of substances into the 

de-icing pad and likely lead to FOD concerns, it was concluded that the effect of de-icing 

fluids on AAR should also be investigated in the present study.   

 
 
2.4.1  Alkali-Silica Reactions 
 

There are two requirements that must be satisfied for ASR to occur in concrete.  First of 

all, the reactants must be present.  One reactant is the alkali, which comes in the form of 

sodium or potassium hydroxides, which form during the hydration of portland cement.  

The second reactant is reactive silica, present in the aggregates.  The other requirement is 

the presence of moisture, providing a relative humidity greater than 85% in the concrete 

structure [Sarkar, 2004].  The water is usually already present due to the concrete pore 

solution.  When the reactants and ideal condition are met, the ASR process can take 
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place.  As with most chemical reactions, it will continue until either one, or all, of the 

reactants is depleted [Tobin, 1995]. 

 
The deterioration mechanism caused by ASR can be divided into two steps.  The first 

step is the formation of the ASR gel, which is an alkali-silica reaction product, at the 

aggregate-cement interface.  The second step is the absorption of water by the ASR gel, 

causing it to swell and put expansive forces in the structure.  The presence of ASR gel 

within the concrete structure is, in fact, normal and acceptable.  It is detrimental only 

when it is generated in large quantities and causes expansive forces great enough to 

disrupt the concrete. The expansion often results in macro-cracking at the concrete 

surface, which can lead to FOD concerns at airports. 

 
The type of aggregate present in the concrete is a significant factor in determining 

whether ASR will occur or not.  If reactive silica is not present in the aggregate, then 

ASR will not occur.  Aggregates can be classified into one of three types: crystalline, 

crypto-crystalline, and amorphous.  Crystalline silica (quartz) is non-reactive because it is 

well-ordered, while amorphous silica is highly reactive because of its disorganized 

structure, allowing easy infiltration by the alkali ions, as shown in Figure 2.5.  The 

crypto-crystalline silica, which is very finely crystalline, has also been found to be 

reactive as well, but to a lesser degree because it is crystalline with a more open 

structure [Sarkar,  2004; Bazant, 2000]. 
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(a)                                                (b)  

Figure 2.5  (a) crystalline structure  (b) amorphous structure [Sarkar, 2004]. 
 
 
2.4.1.1  ASR Gel Formation 
 

The formation of the silica gel is dependent on the diffusion of hydroxyl ions to the 

aggregates, causing the dissolution of silica.  There is usually a thin layer of dissolved 

silica around the aggregate present, but further hydroxylation will occur if reactive 

aggregates are present.  With the case of crystalline silica, the process is so slow that it is 

negligible, but the reaction with amorphous or crypto-crystalline silica occurs at a much 

faster rate [Bazant, 2000].  The dissolution of silica is, therefore, the controlling factor for 

latency time, which is the response time between initial exposure to the reactants and the 

first appearance of an effect [Ulm, 2000].   

 
The presence of alkalis in the concrete is primarily due to the cement hydration process.  

Potassium and sodium are initially found in unhydrated phases in the cement paste as 

potassium oxide, K2O, and sodium oxide, Na2O.  During cement hydration, the oxides 

dissolve to yield K+, Na+, and OH- ions in the pore solution.  Calcium hydroxide, 

Ca(OH)2, is also present after cement hydration and dissolves to yield Ca+ and OH- ions, 

but at lower concentrations because of its limited solubility [Bazant, 2000]. 
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The water molecule enters the silica structure and modifies it according to the following 

chemical reaction [Bazant, 2000]: 

Si-O-Si + H2O  Si-OH + OH-Si      (2.3) 
 
The resulting structure is composed of silanol bonds, which further react with hydroxyl 

ions [Bazant, 2000]: 

Si-OH + OH–  SiO– + H2O                   (2.4) 
 
A gel substance forms around the aggregate as this process continues.  The ASR gel is a 

weakly-bonded cross-linked alkali-silica network with interstitial water molecules 

dispersed throughout it[Jones, 1988].  In order to attain equilibrium, the negatively 

charged gel attracts positive ions, which include alkalis in the pore solution such as Na+
, 

K+, and Ca2+.  The Ca2+ will be absorbed preferentially if it is in high concentration within 

the pore solution.  The reaction will result in the formation of preferred C-S-H, which is a 

rigid and non-reactive constituent. However, if the pore solution has a low concentration 

of Ca2+ ions, which is more likely to be the case because of its poor solubility, the Na+ and 

K+ ions are absorbed, which produce a more viscous gel that will absorb more 

water [Bazant, 2000]. 

 
As mentioned before, the main source of the alkalis for the ASR reaction to occur comes 

from the cement itself.  The total alkali content, given as a sodium oxide equivelent, is 

given by [Tobin, 1995]: 

 
Total alkali content = (% Na2O) + 0.658 (% K2O)   (2.5) 

 
The total alkali content is normally below 1% of the cement weight and a limit of 0.6% is 

generally used as a maximum alkali content for ASR damage prevention.  However, 

using this limit will not guarantee that ASR damage will not occur since other factors 

must be considered such as the size of the cementing materials and the admixtures 

used.[Tobin, 1995] 

 
Furthermore, there are external sources that may contribute to higher alkali 

concentrations.  Some pozzolanic materials, such as fly ash, contain alkalis although they 
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are used quite often as a replacement cementing material.  Therefore, the total amount of 

alkalis in the concrete should include all alkali sources. 

 
The temperature of the concrete is a major factor in the formation of ASR gel.  As the 

temperature increases, the reaction rate increases, which is the case for most reactions.  

This leads to greater amounts of ASR gel produced around the aggregates.  The 

temperature also has an effect on the equilibrium between the silica in the aggregates and 

the alkali in the pore solution, thus affecting the amount, but also the composition of the 

gel produced [Jones, 1988]. 

 
The permeability and dimensions of the aggregate are major factors in ASR gel 

formation.  The surface area of the aggregate is the dominating factor when its 

permeability is low.  This is because the reaction will mainly occur on the outer surface 

of the aggregate.  Therefore, as the size of the aggregate increases, the surface area 

decreases and less gel will be produced.  On the other hand, if its permeability is high, the 

reaction will be able to occur within the aggregate, as well as on the surface.  This 

implies that the aggregate’s volume would be a dominating factor in this 

case [Jones, 1988].   

 
 
2.4.1.2  ASR Gel Expansion 
 

The expansion of ASR gel can be broken down into two steps:  hydration of the gel 

causing swelling and diffusion of the gel from the reaction site.  The rate at which these 

processes occur determines the likelihood of the gel causing distress to the concrete.  The 

expansion of the gel gives the characteristic time of the process, that is the time it takes 

for the system to undergo a critical change [Ulm, 2000]. 

 
As the gel absorbs water, it swells and occupies a greater volume.  The gel has been 

found to absorb between 200 to 400% its weight in water in saturated atmosphere.  The 

gel will initially occupy empty space provided by the interconnecting pore structure 

within the cement paste.  Pressure will gradually be exerted on the surrounding paste as 

the available pores fill up with the gel.  The aggregate size and surrounding cement 
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porosity has a direct effect on the amount of gel that will fill interfacial pores, which will 

not cause expansion, and the rate of gel diffusion into the cement paste, causing concrete 

expansion [Suwito et al., 2002].  Cracking occurs as a result of the gel pressure while 

crack propagation acts to decrease the gel pressure within the concrete [Moranville-

Regourd, 1997].   

 
Hydration is a function of the amount of water present at the reaction site.  If there is 

sufficient water, the hydration process will be carried out relatively easily.  However, if 

there is little water present, it implies that there would be a higher concentration of Na+, 

K+, and OH- in the solution, causing the formation of the gel products to increase in 

production [Jones, 1988].  It can be seen that the water plays a considerable role in both 

the formation and expansion processes.  It is the transport mechanism for reaction 

products and it is necessary for silica dissolution to occur in the first place [Ulm, 2000].  

 
The gel structure plays an important part in the amount of swelling that occurs. As 

previously mentioned, temperature is a variable that can change the composition of the 

gel.  The gel structure, in turn, affects the amount of water it attracts, controlling the 

amount of swelling and, thus, the pressure generated [Jones, 1988].     

 
 
2.4.1.3  Crack Formation 
 

Courtier [Courtier, 1990] suggests the concept of dividing the concrete depth into three 

zones to discuss the mechanics of surface crack formation due to ASR.  The zones are 

classified as zone three for the concrete far enough from the surface that it is not 

influenced by surface conditions, while zone one refers to the topmost layer up to a depth 

of approximately 20 mm.  Figure 2.6 shows the expansion and cracking mechanisms 

affecting each zone. 
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Figure 2.6  ASR crack zones: (a) expansion mechanism; (b) cracking mechanism 
[Courtier, 1990]. 
 

Reactions occurring in zone three, also known as the central zone, will be dependent 

upon the amount of reactants, including water, present at those locations.  When the ASR 

gel expands, micro-cracks will form in the weakest directions, which are presumed to 

exist randomly because of the heterogeneity of concrete.  Reaction processes will initiate 

easily with existing water, but will eventually slow down since transport of the necessary 

reactants, such as water, will be limited somewhat by the distance away from the surface.    

             
Reactions in zone two will proceed at a faster rate than in zone three because of its 

proximity to the surface and, thus, greater availability of water.  In terms of cracking 
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initiation and propagation, micro-cracks are more likely to form perpendicular to the 

concrete surface because there is less constraint in that direction.   

 
Zone one experiences very different conditions since it is at the concrete surface.  It is 

greatly affected by exterior conditions as well as variations due to the curing process.  For 

horizontal surfaces, the concrete near the surface is usually more porous than the interior 

concrete due to bleeding during the curing process.  This allows for easier transport of the 

reactants to reactive aggregates.  As curing continues, the concrete may also experience 

drying shrinkage, which is caused by loss of moisture. Drying progresses inward from the 

concrete surface, creating non-uniform drying conditions.  The expansion caused by ASR 

will cause the concrete to expand upward, normal to the surface, because of the lack of 

restraint.  The porosity will accommodate the ASR gel to a greater extent than in the 

previous zones, thus relieving the expansive forces, but porosity also decreases the 

strength of the structure and increases the availability of reactants, as mentioned before.   

 
The combination of these different reactions and crack mechanisms in the different zones 

creates a strain gradient over the depth of the concrete.  Zone three experiences greater 

cracking, and thus expansion, in the longitudinal and transverse directions.  Zone one 

experiences drying shrinkage and expansion, primarily in the direction normal to the 

surface.  The differential expansion throughout the concrete is largely the cause of macro-

crack formation on the concrete surface.  

 
 
2.4.2  Alkali-Carbonate Reactions 
 

Alkali-carbonate reactions refer to those that occur when dolomitic limestone aggregates 

are exposed to alkali solutions.  The hydroxides may come from external sources, but 

often originate from the cement as dissolved ions within the cement pore solution.   

 
Dolomite is calcium magnesium carbonate, CaMg(CO3)2, and can be found in rocks in 

certain regions.  It is originally deposited as calcium carbonate (calcite) or aragonite, 

which is a different form of calcite, but turns into dolomite through exposure to 

magnesium sources, such as magnesium-rich ground water or warm ocean environments.  
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This process is known as dolomitization, but, through ACR attack, the reverse process of 

dedolomitization can occur, reverting dolomite back into calcium carbonate.   

 
In Canada, dolomitic limestone can be found at the Pittsburg quarry near Kingston, 

Ontario.  This particular aggregate is composed of large dolomite crystals within a fine-

grained calcite and clay matrix [Hadley, 1961; Rogers et al., 2000].  There are also small 

amounts of silica within the aggregates, but its role in causing deleterious expansion has 

been dismissed in one report [Hadley, 1961] and acknowledged in another [Katayama, 

2004].   

 
The dedolomitization reaction of ACR-reactive aggregates occurs according to: 
 

CaMg(CO3)2 + 2 MOH → CaCO3 + MCO3 + Mg(OH)2  (2.6) 
 
where MOH is a metal hydroxide, most often NaOH or KOH, which is readily available 

in pore solution.  The reaction between dolomite in aggregates and a metal hydroxide 

results in the formation of calcium carbonate, metal carbonate, and brucite (Mg(OH)2).   

 
The metal carbonates produced will further react with Ca(OH)2 in a secondary process: 

 
M2CO3 + Ca(OH)2 →2 MOH + CaCO3   (2.7) 

 
This reaction regenerates the MOH in the solution, providing more alkali for 

dedolomitization to occur.  Thus, it is a self-sustaining process that continues until either 

one of the dedolomitization reactants is expended.   

 
There are differences of opinion regarding the expansion mechanisms of ACR that result 

in concrete deterioration. However, the greatest amount of expansion appears to occur 

when there are approximately equal amounts of calcite and dolomite content in the 

aggregate, as shown in Figure 2.7 [Hadley, 1961; Rogers et al., 2000].   
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Figure 2.7  Rate of dedolomitization versus percent dolomite in carbonate fraction 
[Hadley, 1961]. 
 

One theory [Hadley, 1961] states that crystallization of brucite causes expansion.  In 

addition, dedolomitization exposes clay surfaces that absorb water and swell, causing 

expansive pressure on the surrounding paste. 

 
Another theory [Katayama, 2004] states that the dedolomitization process causes 

insignificant expansion itself, but leads to the exposure of crypto-crystalline silica within 

the aggregate.  Upon exposure to alkalis, the silica reacts in the same manner as ASR-

reactive aggregates, producing ASR gel, which subsequently absorbs water, swells, and 

causes expansive pressure on its surroundings. Thus, cracking is due to ASR reactions 

following the initial ACR reactions, although it is a combination of dedolomitization and 

ASR that produces expansion within concrete [Katayama, 2004]. This theory has been 

corroborated by others [Lopez, 2006; Lu et al., 2006] who found ASR expansion 

occurring in alkali-carbonate reactive aggregates as well.  Lopez investigated the effect of 

various aggregates on ACR, while Lu investigated the effect of various type of metal 

alkali solutions.  The presence of clay and chert were found to be related to ASR activity 

of the carbonate aggregates and aggregate porosity was potentially found to increase 

expansion activity, if any ACR or ASR was to occur, although it does not cause reactivity 
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on its own [Lopez, 2006].  In comparing metal alkali solutions involved in ACR 

reactions, NaOH was found to cause more severe reactions than KOH, but both solutions 

resulted in the formation of ASR gel product. An LiOH solution, which was also tested, 

was found to cause a very weak attack on ACR aggregates and did not produce ASR gel 

as with the other two solutions.   
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CHAPTER 3 - EXPERIMENTAL PROCEDURE 
 
 
3.1  General 

 
A series of experiments was conducted in order to investigate the effects of aircraft de-

icing fluids on airfield concrete.  The following mechanical and chemical tests were used 

to examine the different ways that de-icing fluids could interact with, and possibly affect, 

the integrity of the concrete.   

 
1.   Steel reinforcing bar corrosion test to determine the corrosivity of de-icing fluids. 

2.   Submerged cement paste test to examine the possible reactions between cement paste 

and de-icing fluids. 

3.   Rapid freeze-thaw test to expose concrete prisms to freeze-thaw conditions under the 

additional constant exposure to the de-icing fluids. 

4.   Four point bending test to observe the combined effects of freeze-thaw cycling and 

simultaneous exposure to de-icing fluids on the rupture strength of the concrete prisms. 

5.   Cylinder compression test to examine the effects of constant de-icing fluid exposure 

on compressive strength. 

6.   Accelerated mortar bar expansion test to investigate the behaviour of carbonate-

reactive aggregates in concrete when under constant exposure to de-icing fluids. 

7.   Copper and steel plate exposure tests to study the reactivity of the two metals with de-

icing fluids when uncontaminated, as well as when contaminated with cement paste. 

8.  Raman spectroscopy and environmental scanning electron microscopy (ESEM), 

combined with energy dispersive x-ray spectroscopy (EDS), to obtain micrographs and 

elemental analysis of various cement and concrete surfaces, as well as precipitates 

formed in the fluids. 

9.   Thermo-gravimetric analysis (TGA) of precipitates to observe differences between 

various fluid and specimen reaction products. 

10.   X-ray diffraction (XRD) to determine the chemical compounds of crystalline 

substances in the precipitates. 
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3.2  Concrete and Cement Paste Mixture Designs 

 
Unless otherwise stated, concrete specimens for the following experiments were created 

using a mix design formulated to meet the GTAA airfield concrete specifications:  

 

Table 3.1  GTAA airfield concrete specifications. 
Cement Type Portland cement type 10 

Cement Content 300 to 328 kg/m3 of concrete mix 

Minimum  28-day Compressive Strength 35 MPa 

Air Content 4 to 6 % immediately after discharge 

Maximum water to cement ratio 0.45 by mass 

Chemical Admixture Use 

Only when workability cannot be achieved 

by proportioning of cement, water, 

aggregates, and air-entraining admixture 

 
 
3.3  Steel Reinforcing Bar Corrosion Test 

 
Objective :  
 
The purpose of this test is to determine whether aircraft de-icer and anti-icer are corrosive 

to steel reinforcing bars, which may be present near, or around, the de-icing pad.  An 

example of this would be dowels used at slab joints. 

 
Specimens: 
 
As-received carbon steel reinforcing bars (rebars) were used for this test without any 

prior cleaning or pickling techniques, in order to provide a good representation of rebar 

conditions in the field.  Twelve 10M (metric designation for ribbed bar with a 100 mm2 

cross-sectional area) rebar specimens were cut to lengths of approximately 180 mm. A 

wire was attached to one end of the bar by drilling a hole into one end of each rebar and 

then soldering the wire in place. The two ends of the rebar, flanking an 80 mm length in 

the centre, were epoxy-coated to create a known exposure area on the rebar.  This area 

was used to calculate a corrosion current density, based upon a measured corrosion 
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current and the exposed surface area.  Layers of masking tape were used to protect the 

exposure area, while three coats of epoxy, applied at one-day intervals, were applied to 

ensure complete coverage.  These rebars served as the working electrode of the corrosion 

cell.  Graphite bars were also outfitted with one wire each to serve as a counter electrode 

for the corrosion cell. 

 
Test Setup: 
 
Three rebars were tested for each of the following test fluids: type I de-icer, type IV anti-

icer, ethylene glycol, and water as a control.  Thus, each corrosion cell container 

consisted of three steel rebars, as the working electrodes, one graphite bar, as a counter 

electrode, and a saturated calomel electrode (SCE) was used as a reference electrode. 

 
All three working electrodes were inserted into the container through holes drilled 

through the plastic container lid.  They were subsequently hot glued to the lid to hold 

them in place and prevent them from shifting around and touching the bottom of the 

container.  The layout of the corrosion cell positioned the three reinforcement bars at 

equal distances away from the centre of the lid, which was the location of the reference 

electrode during measurement testing. The counter electrode was placed away from the 

working electrodes, but at an equal distance away from the reference electrode.  The 

corrosion cell setup can be seen in Figure 3.1. 

 

 
Figure 3.1  Water corrosion cell with white-wired working electrodes and a black-wired 
counter electrode.  
 

bar 3 
bar 2 

bar 1 
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A potentiostatic linear polarization resistance technique (LPR) was used to examine the 

corrosion activity of each of the reinforcement bars.  Measurements were taken upon 

initial submersion into the test fluids and subsequent measurements were taken at random 

intervals.  The corrosion cells were monitored until nearly steady state behaviour was 

observed, which resulted in four measurements.   

 
Measurement Technique: 
 
Determination of the linear polarization resistance is used to determine the corrosion 

activity of a system based on the linear region of a polarization curve between ±20 mV 

away from a material’s open circuit potential.  Within this region, corrosion current can 

be related to polarization resistance through the Stern Geary equation [Stern and 

Geary, 1957], as follows: 

 

! 

Rp =
B

icorr
=
"E( )
"i( )

"E#0

     (3.1) 

 
where Rp is the polarization resistance, B is a proportionality constant, icorr is the 

corrosion current, ∆ E is the applied voltage range, and ∆ i is the corresponding response 

current range. 

 
The polarisation resistance, Rp, can be determined if ∆ E and ∆ i are known. The ∆ E 

value used for this experiment was 0.04 V, representing an applied square wave voltage 

of -20 mV and +20 mV.  The corresponding ∆ i value is determined by monitoring the 

steady state current response to the applied voltage.  This yields a Rp value, which can 

then be used to determine icorr, assuming a B value for the particular system.  For 

corrosion of black steel in a concrete environment, appropriate B values for active and 

passive systems were found to be 0.026 V and 0.052 V, respectively [Andrade and 

Gonzales, 1978].  The states of the systems in this experiment were unknown, therefore, a 

B value of 0.052 V was taken to assume passivity.  The major aim of this test was to 

make a distinction between passive and active corrosion, thus absolute values were not a 

necessity. 
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This corrosion monitoring technique is based on several system assumptions in order to 

determine corrosion current.  One major assumption is that of general corrosion 

behaviour, where corrosion is uniform over a given surface area.  Another is negligible 

solution resistance, since a high solution resistance would alter any measurements.  

Lastly, the B value for the given working electrode material must be known or reasonably 

estimated.   

 
These assumptions were assumed to be valid for this experiment for several reasons.  

General corrosion behaviour was expected to occur because exposure of the black steel to 

the fluid was uniform over the entire exposed area.  In addition, if the corrosion were 

found to be localized, rather than uniform, the actual corroded area could be reasonably 

estimated through visual inspection and used to calculate a more accurate corrosion 

density.  The solution resistance was assumed to be negligible for these four fluids and 

the accuracy of the B value used for this experiment was assumed to be fairly 

inconsequential, since the results were evaluated relative to one another in this 

comparison test.   

 
 
3.4  Submerged Cement Paste Test 

 
Objective: 
 
The purpose of the test was to observe the possible interactions occurring between 

cement paste and de-icing fluids. 

 
Specimens: 
 
Cement paste cylinders, batched with Type 10 cement and a water to cement ratio of 

0.45, had been cast in 1998 and kept continuously moist in a humidity room.  These 

50mm Ø x 200 mm cylinders were cut perpendicular to the axes to yield three cylindrical 

disks of approximate equal size.  The curved sides were epoxy-coated to create a 1-D 

flow condition through the disk, while the flat sides were ground to create a relatively 

even penetration surface.   
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Test Setup: 
 
The cement paste specimens were placed in separate small plastic containers with the 

ground side facing the bottom of the container, as shown in Figure 3.2.  Nylon tubing was 

used to support the specimens and provide access to the bottom surface of the specimen, 

allowing free fluid movement beneath the disks.  Five different fluids were tested:  100% 

ethylene glycol, 38% ethylene glycol mixed with water, 48% ethylene glycol mixed with 

water, de-icing fluid, and anti-icing fluid.  The fluids were used to half-fill two containers 

each, in order to fully submerge one ground end of the specimen while leaving the 

opposite ground end exposed to air.   

 

 
Figure 3.2.  Setup of a 50mm Ø x 200 mm cement paste specimen in a container for the 
submersion test. 
 
 
Analysis Technique: 
 
The specimens were periodically visually inspected to note any changes in the 

appearance of the fluid or cement paste specimens.  Photographs were taken to record 

any changes and precipitates from any reactions were collected for further testing.  The 

cement paste surfaces and cross-sectional profiles were examined by environmental 

scanning electron microscopy (ESEM) and elemental analysis using energy dispersive x-

ray spectrometry (EDS).  Thermal gravimetric analysis (TGA) was used, along with 

ESEM and EDS, on dried precipitates that were collected from the containers.   
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3.5  Rapid Freeze-Thaw Test 

 
Objective: 
 
The objective of this test was to determine if exposure to the de-icing fluids had any 

impact on the ability of concrete to withstand repeated freezing and thawing.  The test 

equipment simulates freeze-thaw cycling that concrete may experience during its service 

life.  Cycling was conducted at an accelerated rate in order to subject the specimens to a 

large number of cycles in a relatively short period of time.   

 
Standards: 
 
The Test for Resistance of Concrete to Rapid Freezing and Thawing [ASTM C 666] was 

used as a guideline for setup conditions and test requirements.  Changes were made to 

accommodate the use of several test fluids, rather than just water.  The ASTM test is 

normally used to assess and compare the behaviour of various concrete types under 

freeze-thaw conditions, with water as the freeze-thaw fluid.  In this modified test, the 

concrete type was kept as a control while the freeze-thaw fluid surrounding the concrete 

prisms was varied.   

 
The Test for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies 

of Concrete Specimens [ASTM C 215] was used to obtain a resonant frequency for each 

specimen at regular intervals throughout the ASTM C 666 test duration. 

 
Specimens: 
 
The concrete prisms for the freeze-thaw test were prepared in two batches, designated as 

A and B.  This was due to the size of the in-house concrete mixer, which was large 

enough to batch concrete for approximately 10 specimens and additional test cylinders. 

The concrete mixture designs used for the prisms can be found in Table 3.2. 
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Table 3.2.  Concrete mixture designs for the freeze-thaw prisms. 
Amount Component Batch A Batch B 

Cement 320 kg/m3 
Coarse Aggregate (20mm maximum) 902 kg/m3 
Fine Aggregate (sand) 602 kg/m3 
Water 139 kg/m3 
Air Entraining Agent 130 ml/m3 260 ml/m3 
 
 
With two batches, the aim was to keep all parameters the same in order to produce 

concrete prisms of consistent composition.  However, the air entraining agent was 

doubled for batch B because air content readings from batch A, at 3.2%, fell short of the 

concrete specifications given by the GTAA for airfield concrete, shown in Table 3.1, 

which was 4% to 6%.  Doubling of the air-entraining agent yielded an air content of 5% 

for batch B. 

 
Curing of the prisms followed the regime stated in ASTM C 666.  For this regime, the 

prisms were de-moulded one day after casting and stored in a saturated Ca(OH)2 bath at 

room temperature for two weeks.  They were then moved quickly from the bath to 

individual containers within the freeze-thaw chamber, which was set at a thaw 

temperature between -1ºC and 2ºC.  Water was poured into the containers during this 

initial period, in order to bring the temperature of all the specimens to the same thawing 

temperature for initial resonant frequency testing.   

 
When the pilot specimen (described below) reached thawing temperature, the prisms 

were removed from the freeze-thaw cabinet, one at a time, to obtain initial resonant 

frequency values.  These values were used to represent the prism in its preliminary 

condition, before any freeze-thaw action or fluid effects had occurred.  The prisms were 

also weighed using a scale with a resolution of 0.1 g before being returned to the freeze-

thaw cabinet, in order to keep track of any mass loss related to freeze-thaw damage.  

Immediately after these measurements, the prisms were returned to their individual 

stainless steel containers for placement within the freeze-thaw chamber for cycle 

commencement. 
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Test Setup: 
 
The freeze-thaw equipment used for this test, manufactured by Humboldt Mfg. Ltd, can 

hold seventeen test specimens and one pilot specimen, as shown in Figure 3.3.  The pilot 

specimen is required by the equipment to control the temperature cycling and to obtain 

continuous temperature readings.   

Figure 3.3  Interior of the freeze-thaw chamber, with specimens and test fluids in place. 
 
 
The specimens were placed within individual stainless steel containers that ensured 

between 1mm and 3mm of fluid on all sides when the prism was placed correctly within 

the container.  In addition, a clearance was achieved at the bottom surface of the 

container by resting the prism on top of a brass shims placed in the container.  This was 

also done to prevent the heat-exchange media, such as the heating elements and the 

refrigeration plate, from transferring energy directly to the specimen surface through the 

steel containers, thus subjecting the specimens to significantly non-uniform temperature 

conditions.   

 
The temperature was cycled between +4°C and –18°C, which is the stated temperature 

range in ASTM C 666.  It was noted that, as seen in Figure 2.1, the four test fluids freeze 

at different temperatures.  Water would undergo freezing and thawing over the 

temperature range and ethylene glycol would undergo freezing and thawing with a 

freezing temperature of -12.9°C.  On the other hand, the de-icer and anti-icer would not 

undergo any freezing within the cycle temperature range since their freezing temperatures 

of –approximately 29°C and -45°C, respectively, are well below -18°C.  All specimens 

pilot specimen 
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would experience some degree of freeze-thaw damage, however, because all prisms were 

saturated in lime water upon placement in the freeze-thaw chamber.   

 
Each cycle had to be completed within 2 to 5 hours to meet the ASTM standard 

requirements. This was regulated by the pilot specimen, which housed a thermometer 

bulb and a temperature cycle bulb, as seen in Figure 3.4.  The temperature cycle bulb is 

used to measure the temperature within the freeze-thaw machine, which then feeds into a 

temperature controller that turns the heating and refrigeration elements on and off.  The 

thermometer bulb was connected to a temperature recorder, which plotted the real-time 

temperature readings on a graph.  The pilot specimen was constructed with the same 

dimensions as the test prisms, however it was cast in a mould with specially-designed 

stainless steel rods, which resulted in cavities at both ends of the prism.  The two bulbs 

were placed in the cavities and then sealed with putty to prevent any fluid from entering 

the cavity.   

 

   
             (a)      (b) 
 
Figure 3.4  (a) 

! 

7""3 4"  Ø cycle control bulb and (b) 

! 

3""1 4" Ø temperature bulb. 
 

Determination of the test fluid to be placed within the pilot specimen container was 

conducted using a dummy specimen.  The cycling operation was conducted with each the 

four fluids used, in turn, as the working fluid in the pilot container. The temperature plots 

for the four fluids were compared to see which fluid produced the slowest cycle time.  In 

this case, the specimen in water took the longest time to complete one cycle, thus water 

was chosen to be the pilot container medium to ensure that all test prisms had sufficient 

time to reach the two extreme temperature requirements.   

 
The specimens were placed in a random order within the freeze-thaw machine, which 

was changed after every non-destructive testing period.  This eliminated any bias caused 

by temperature gradients within the equipment that were uncontrollable.  According to 

ASTM standards, prisms must be measured at intervals of no more than 36 cycles, thus 
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prisms were measured at 30 cycle intervals for this test.  This included weight 

measurements, to gauge mass loss, and resonant frequency measurements, to determine a 

durability factor for the prism. 

 
Freeze-thaw cycling always started and ended at the thawing temperature measurement 

for consistency, which is especially important for the highly temperature-dependent 

resonant frequency testing.  The specimens were maintained within that temperature 

range by keeping them in the freeze-thaw chamber.  Specimens were removed from the 

chamber, one by one, just prior to being tested. Upon removal from the stainless steel 

container, the prism was quickly rinsed under cold water to wipe away any fluid residue 

or spalled concrete.   

 
The resonant frequency testing was always performed first to try to minimize the effects 

of any temperature change upon removal from the chamber.   The weight measurement 

was taken immediately after resonant frequency testing was completed for each 

specimen. 

 
Analysis Technique: 
 
The fundamental frequency was obtained for each concrete prism using the standard Test 

for Fundamental Transverse Resonant Frequency of Concrete Specimens [ASTM C 215].  

There are two methods listed in the standard that can be used: impact resonance method 

and forced resonance method.  The equipment used in the lab is the Erudite MKIV by 

CNS Farnell Limited, which uses the forced resonance method, as shown in Figure 3.5.  

The driving force is created by an electromechanical input device, which can be 

controlled to oscillate at a set frequency or sweep through a range of frequencies.  The 

driver is placed at the centre of the prism to cause resonance in its transverse mode.  The 

output frequency is then acquired through a sensor that is placed at either end of the 

prism.  It is lightweight so it does not interfere with the oscillation of the prism.  
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Figure 3.5  Transverse mode resonant frequency setup. 
 

The Erudite MKIV was programmed to sweep through a range of frequencies in order to 

pinpoint the fundamental frequency.  The range of the frequency sweep is very important 

in determining the correct fundamental frequency.  When a prism is set in motion by an 

electromechanical driver, it will have one major peak and several lesser peaks at other 

frequencies.  The frequency sweep must pass through the major peak in order to locate 

the true fundamental frequency, otherwise it may identify a lesser peak as the 

fundamental frequency.  There are guidelines that suggest frequency ranges for prisms of 

certain dimensions.  However, in this case, the correct frequency range was verified using 

an oscilloscope to monitor the Lissajous curve produced by the input and output 

frequency [Kramarczyk et al., 1999]. 

 
The Lissajous curve uses the known input frequency of the driver as the x-axis value and 

the measured output frequency from the sensor as the y-axis value.  The pattern produced 

by the combination of the two values allows a distinction to be made whether the 

resonant frequency peak was located or whether a lesser peak was found.    

 
When the concrete prism resonates at its resonant frequency, the output frequency 

detected by the sensor is equivalent to the input frequency supplied by the driver.  

Graphically, the Lissajous curve for this particular situation appears as a circle. 

Therefore, if the correct frequency range is selected for the equipment, a circle will 

appear on the display at the moment it sweeps through the resonant frequency of the 
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prism.  Otherwise, if the frequency range selected only sweeps through a lesser peak, a 

distinct Lissajous curve will be produced, but not a circle.   

 
The ASTM standard recommends that resonant frequency testing ceases for a particular 

prism when its relative dynamic modulus value falls below 60% of its initial modulus.  

Otherwise, testing is continued for 300 cycles.  Resonant frequency measurements were 

used to calculate a relative dynamic modulus, Pc, for each prism [ASTM C 666]: 
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where nc is the resonant frequency after c cycles and n0 is the resonant frequency at 

0 cycles.  A durability factor, DF, is then calculated to account for the number of freeze-

thaw cycles that a prism is exposed to relative to the total number of freeze-thaw cycles at 

test termination: 
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where PN is the relative dynamic modulus at N cycles, N is the number of cycles at which 

freeze-thaw exposure is discontinued, and M is the number of cycles at which the test is 

terminated.   

 
 
3.6  Four Point Bending Test 

 
Objective:   
 
The purpose of this test was to determine any influence of the simultaneous exposure to 

de-icing fluids and 300 freezing and thawing cycles on the rupture strength of concrete.  

A four-point bending test, following ASTM C 78, was used because it is particularly 

influenced by surface conditions, which would be affected the greatest by the given 

exposure conditions. 

 
Specimens: 
 
The tests were conducted on the same prisms that were previously used in the rapid 

freeze-thaw test and experienced 300 freeze-thaw cycles. Of the four specimens for each 
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fluid, two were taken for the four-point bending test: one from batch A and one from 

batch B.   This was done to obtain a representative sample set of the test specimens 

available and, possibly, examine the effects of air content on mechanical strength. 

 
In total, eight specimens were removed from the freeze-thaw chamber for the four-point 

bending test.  In addition, two control specimens were tested in order to give a 

comparative standard.  The control specimens were extra concrete prisms that were cast 

at the same time as batch B for the freeze-thaw specimens, cured in the same Ca(OH)2 

solution bath as the prisms from the freeze-thaw test, but remained in the bath at room 

temperature for a total period of five months.  Afterwards, they were removed from the 

bath and left to cure in air for an additional five months. 

 
Test Setup: 
 
An upper and lower fixture was attached to a MTS 810 Universal Testing Machine to 

create a four-point bending condition. The lower fixture has two supports for the 

specimen to rest on while the upper fixture is used to apply the load at two central 

loading points.  It can be used to determine the rupture strength of a concrete prism.  This 

setup can be seen in Figure 3.6.  The loading rate used was 7 kN/min and loading was 

applied until failure. 

 
Figure 3.6  Four-point bending test setup. 
 

The prism should fracture in the mid-section between the two upper loading points, 

between which the bending moment is a maximum and remains constant.  If a prism 
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fractures at a location greater than 5% of the length outside of the mid-section, results 

from that test should be discarded [ASTM C 78].  

 
Bending stress for each prism was calculated using the flexural formula: 
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     (3.4) 

 
where σ is the bending stress experienced by the prism, F is the applied load, L is the 

length of the prism, w is the width of the prism, and h is the height of the prism.   

 
In this study, L was 400 mm, w was 100 mm, and h was 75 mm.  The maximum bending 

stress, σmax, on the prism occurs on the top and bottom surface of the prism in the loading 

setup shown in Figure 3.6.  The prism will fail due to the maximum tensile bending 

stress, which occurs on the bottom surface and is responsible for causing fracture.  Thus, 

in order to calculate the rupture strengths, F was taken to be the maximum load at 

fracture measured for each prism. 

 
 
3.7  Compression Test 

 
Objective:   
 
The objective of this test was to determine the effect of the de-icing agents on the early 

strength development of concrete.  Standard concrete cylinders were subject to a 

compression test to gauge the strength.   

 
Specimens: 
 
Twenty-four concrete cylinders were batched using the same mix design as that of batch 

B from the rapid freeze-thaw test, shown in Table 3.2.  The cylinders were 10 mm Ø by 

200 mm in length.   

 
The cylinders were wet-cured by placing damp burlap on top of the specimens.  A plastic 

tarp was placed on top of the burlap to delay water evaporation, and the burlap was kept 

wet for three days.  The cylinders were then de-moulded and placed in the humidity room 
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for an extra three days of curing.  Afterwards, they were removed from the humidity 

room and placed in ambient air to dry for twelve days.  This was done to encourage 

absorption upon being submerged in the test fluids. 

 
Test Setup: 
 
On the eighteenth day after casting, the cylinders were submerged in the test fluids: 

water, ethylene glycol, de-icer, and anti-icer.  Eight 10 L containers were used to hold 

three specimens each, for a total of 6 specimens in each test fluid.  The cylinders 

remained submerged for ten days. 

 

Twenty-eight days after casting, the cylinders were prepared for compression testing.  

They were removed from the fluid containers and both ends were leveled using an end 

grinder to obtain flat, parallel surfaces.  They were tested in a Forney compression 

machine to determine the maximum compressive forces required to cause fracture. 

 
 
3.8  Accelerated Expansion Test of Concrete Prisms 

 
Objective: 
 
The objective of the Accelerated Expansion Test was to determine the effects of different 

fluids on the expansion of Pittsburg aggregate, which is known to be highly alkali-

carbonate reactive. The procedure followed is the LS-626 from Ministry of 

Transportation of Ontario (MTO) for the Detection of Alkali-Reactive Coarse Aggregate 

by Accelerated Expansion of Concrete Prisms [MTO LS 626], which is based on the 

ASTM C 1260 test for Alkali Reactivity of Aggregates and an ACR Accelerated Test 

Method.  

 
Specimens: 
 
The concrete prisms required for this test were made using a specific mixture design and 

procedure, as follows, to yield four expansion prisms, which were 40 mm x 40 mm x 

285 mm:  
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- 2 kg of cement paste mixed according to ASTM C 305 [ASTM C 305] 
- 2 kg of coarse aggregate added afterwards and mixed by hand until well coated, allowed  
   to sit for 30 seconds, and then mixed for an additional 10 seconds 
 
 
Pittsburg aggregate was sieved to obtain coarse aggregates, ranging in size from 4.75 mm 

to 9.5 mm maximum diameter.  They were then submerged in a water bath for one day to 

prepare them for the required aggregate condition.  On casting day, the aggregates were 

removed from the water bath and spread evenly to obtain saturated surface dry 

conditions.  The concrete specimens prepared for this test consisted of only cement paste 

and coarse aggregate, in order to eliminate any effects from other variables such as sand 

or replacement cementitious material.  The cement paste, with a water to cement ratio of 

0.3, was prepared according to ASTM C 305 standards, which are as follows: 

 
- place all mixing water in bowl 

- add cement to bowl and let sit for 30 seconds 

- turn on mixer on slow speed for 30 seconds 

- stop mixing for 15 seconds and scrape any side residue into bowl 

- turn on mixer on medium speed for 1 minute 

 
This was followed by the addition of coarse aggregate, which was mixed in by hand 

using a large spatula.  The concrete was immediately cast into moulds, as shown in 

Figure 3.7(a), which are specially designed to place gauge studs on both ends of the 

prism, as required.  The gauge studs are used for taking length measurements of the 

prisms using a CT-384D digital length comparator by ELE International, shown in 

Figure 3.7(b), which can measure 254 mm length prisms accurate to 0.002 mm.  
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   (a)         (b) 
Figure 3.7.  Equipment used during the expansion test: (a)two-gang expansion test 
concrete mould with embedded gauge studs and (b) digital length comparator. 

 

 

The concrete prisms were placed in a humidity room for 24±2 hours to cure before being 

removed from the moulds.  They were then put into pre-heated lidded containers of tap 

water at 80°C and placed in an oven for an extra 24 hours to cure.   

 
After the two-day curing period in the humidity room and the oven, the concrete prisms 

were placed in their respective test fluids to initiate the experiment. The fluids used for 

this test were ethylene glycol, de-icer, anti-icer, and a 1M NaOH solution, as a control set 

by the test standard.  The presence of control specimens ensures that the experimental 

method is correct and that the aggregates are indeed expansive.  The fluids in all the 

containers were pre-heated to 80°C in order to minimize the temperature change 

experienced by the prisms when being moved from the water to the test fluid. 

 
Due to the availability of only two two-gang expansion test specimen moulds, the eight 

specimens needed for the expansion test were batched and cast on two consecutive days.  

The second set of four prisms was batched and cast on the same day that the first set was 

removed from the humidity room and de-moulded.  In order to account for any changes 

in batching operation between the two sets, the four prisms per set were distributed 
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evenly across all containers.  Thus, each fluid container held a specimen from set one and 

a specimen from set two.  Consequently, any procedures outlined for this test were 

performed for set one and set two, but one day apart.   

 
Test Setup: 
 
Tight temperature tolerances were required for the oven because a change in temperature 

could cause significant differences in the behaviour of the concrete specimens.  Thus, the 

oven had to be able to maintain a temperature of 80°C with no more than a ±2°C 

variance.  In addition to the built-in oven temperature gauge, another gauge was used 

with the sensor located at the centre of the oven.  Thermocouples were also placed in 

each of the specimen containers to monitor individual fluid temperatures and ensure that 

location in the oven or test fluid properties did not cause any large fluctuations from the 

required 80°C temperature. 

 
All specimens were placed on thin copper piping to raise them off the bottom surface of 

the container and were completely submerged in their respective test fluids.  This allowed 

the test fluids to surround the concrete prisms on all surfaces.   

 
The first sets of measurements were taken after an initial 24 hour period of specimens in 

the test fluids.  The containers were taken out of the oven, one at a time, for testing and 

were returned to the oven within 5 minutes of removal.  Specimens were removed from 

the container, one at a time, for measurement testing, which was completed within 

15 ± 5 seconds.  Each specimen was gently patted to remove excess fluid before being 

placed in the length comparator for measurement readings.  Subsequent measurements 

were taken at one-week intervals and stopped when results displayed satisfactory 

distinctions among test fluids, resulting in a 5 week testing period.  
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3.9  Copper and Steel Exposure Test  

 
Objective: 
 
This test was conducted as a result of observations noted from the Accelerated Expansion 

Test of Concrete Specimens [Section 3.8], which involved copper being in contact with 

the test fluids and the concrete.  Gravimetry was used to determine the effects of de-icing 

fluids on copper and steel in a neutral environment, as well as in a high pH environment.  

 
Specimens: 
 
Test specimens used were 5/64” copper plates and 1/16” steel plates, approximately 

25 mm x 25 mm in area.  Three specimens of each metal were exposed to each of the four 

test fluids for a total of 12 specimens of each metal.  

 
The ASTM G1-03 [ASTM G1-03] procedure of chemical cleaning procedures for 

removal of corrosion products was used to clean the copper and steel specimens before 

weighing and exposure as follows: 

 
• A solution of 500 mL of hydrochloric acid (HCl, sp gr 1.19) plus reagent water to 

make 1000 mL was used to remove copper corrosion products.   The copper 

plates were left in the solution for approximately 3 minutes. 

 
• The steel plates were placed in a solution consisting of 1000 mL of hydrochloric 

acid (HCl, sp gr 1.19), 20 g antimony trioxide (Sb2O3), and 50 g stannous chloride 

(SnCl2) for approximately 20 minutes to remove steel corrosion products. 

 
• The solutions were stirred periodically during immersion of the specimens.  Upon 

removal, the plates were rinsed in water, patted dry, and then left to air dry before 

being weighed. 

 
Test Setup: 
 
Four plastic containers were filled with each of the following fluids: ethylene glycol, de-

icer, anti-icer, and water, as a control.  Three copper plate specimens were then 
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completely submerged in the fluid in random positions.  The same setup was used for the 

steel specimens.   

 
The specimens remained submerged in fluid for the duration of the test period, which 

lasted 5 weeks.  They were taken out after one week, two weeks, and five weeks for 

observations, including a visual inspection of surfaces and weight measurements to 

record any material weight loss.  Upon removal from the fluid, they were rinsed in water 

and dried to remove any fluid films or debris before cleaning.    

 
The subsequent test using the same steel and copper specimens used the same test setup 

as before, except with the addition of small cement paste pieces.  Approximately 8 g of 

cement paste were placed into each container and scattered randomly.  The same 

procedure for removal, inspection, and cleaning of surfaces was used.   

 
 
3.10 Raman Spectroscopy 

 
Objective:  
 
The purpose of this analysis is to examine the compositions of de-icer and anti-icer used 

at the GTAA.  In addition, comparisons of the two fluids will be made with respect to 

pure ethylene glycol, which is the primary constituent in both fluids.   

 
Specimens:  
 
No modification or sample preparation was used for testing as-received aircraft de-icer 

and anti-icer fluids.  Pure ethylene glycol fluid was also tested in order to produce a 

relative baseline for the two aircraft fluids, upon which any variations in composition 

would produce additional peaks on the Raman spectra.  

 
Analysis Technique:  
 
Raman spectroscopy is an analysis tool that is useful in determining material 

composition.  It is based on the Raman effect, which is the elastic and inelastic scattering 

of photons when a monochromatic laser irradiates a given material.  Raman spectroscopy 
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is useful because sample preparation is easy and materials can be examined through glass 

or quartz cells if an inert environment is required [Skoog, 1998].  Moreover, the Raman 

effect occurs in gases, aqueous solutions, and crystals [Andrews, 1981], thus having an 

advantage over other techniques, such as SEM and XRD, which require much stricter 

conditions.  

 
When a monochromatic laser irradiates a sample material, two different types of photon 

scattering can occur: Rayleigh or Raman.  The majority of photons will scatter at the 

same wavelength as the incident photons, which is referred to as Rayleigh scattering, or 

elastic scattering.  A small fraction of photons will scatter at wavelengths that are 

different than those of the incident photons, due to interactions with molecules of the 

given material, which is referred to as Raman scattering.  Raman scattering can be further 

classified as Stokes or anti-Stokes scattering, in which the scattered photon leaves with 

less energy or more energy than the incident photon, respectively [Skoog, 1998]. 

 
The resulting Raman spectrum is shown as a plot of intensity versus wavelength 

difference.  The wavelength difference is zero for Rayleigh scattering and, since the 

majority of scattering occurs in this manner, it is visible as the largest peak on any Raman 

spectrum.  On the other hand, Raman scattering produces various shifted peaks on a 

spectrum and each molecule yields a distinctive set of peaks.  The location of peaks 

remains the same, irrespective of the type of laser excitation employed [Skoog, 1998], 

because the wavelength shift is dependent on the thermal energy change required by the 

atoms of a molecule to change vibration modes [Andrews, 1981].  Substance 

identification is possible with the use of Raman spectral databases, which have been 

compiled by various universities and laboratories.  

 
 
3.11  ESEM/EDS Analysis 

 
Objective: 
 
The purpose of performing ESEM was to obtain micrographs of precipitates and cement 

paste from the various tests, such as the submerged cement paste test (Section 3.4) and 
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the compression test (Section 3.7).  EDS analysis was then performed to acquire 

elemental information of various points and areas on the specimens. 

 
Specimens: 
 
The particular specimens analysed under ESEM were cement paste specimens and 

precipitates from the submerged cement paste test, namely those in ethylene glycol, de-

icer, and anti-icer containers.  In addition, precipitate was collected from the de-icer 

container used in the accelerated expansion test of concrete prisms (Section 3.8).  This 

particular precipitate was analysed due to formation of precipitate not previously 

observed in the submerged cement paste test.  

 
Cement paste specimens and precipitates were placed in the chamber without any 

specimen preparation.  However, the precipitates, which were in solution, were placed on 

a flat surface and experienced drying during de-pressurization within the chamber.  The 

precipitates remained on the surface, allowing microscopy and elemental analysis to be 

carried out.   

 
Analysis Technique: 
 
An environmental scanning electron microscope (ESEM) is an electron beam-based 

imaging tool that is useful for situations in which a scanning electron microscope (SEM) 

would be impractical or unsuitable.   

 
With an ESEM, there is greater flexibility for specimen testing because several 

requirements for an SEM limit the type of specimens that can be analysed.  Instead of a 

high vacuum within the chamber, the specimen chamber can be at pressures as high as 

10 torr while the electron gun chamber is maintained at a pressure of approximately      

10-6 torr, made possible by a differential pumping system.  The gaseous environment used 

in the sample chamber is water vapour, which eliminates sample preparation and greatly 

reduces the drying effects caused in a SEM chamber.  This was noted by Mouret  

[Mouret, 1999], who analyzed the same cement paste specimen under SEM and ESEM.  

Microcracks were visible in images taken using SEM, but not present in images taken 

using ESEM.  This indicates that the drying preparation employed, which involved 
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placement within an evaporator and a high vacuum chamber, created microcrack artifacts 

throughout the cement paste and gaps between aggregates and their surrounding 

paste [Mouret, 1999].  The gaseous environment also acts as a conductor and signal 

amplifier, thus eliminating the need to coat specimens.  The water vapour is able to 

effectively neutralize the negative charge build-up of electrons because of positive ions 

provided by the gas [Danilatos, 1994]. 

 
The ESEM is able to detect the same main electrons and x-rays that a SEM is able to 

detect and a detector for Energy Dispersive Spectroscopy (EDS) can be installed, which 

performs semi-quantitative elemental analysis.  X-rays are emitted when an outer shell 

electron moves to occupy a vacancy in an inner shell position as a result of an inner shell 

electron being knocked out of position by an incident electron.  X-rays are characteristic 

to a particular atom and an electron’s x-ray possesses an energy that is dependent on the 

distance that the electron traveled to fill a void.  As a result, they can be used to identify 

elements and yield quantitative results.  Each atom will have a several characteristic 

peaks corresponding to various electron shell transitions.   

 
One limitation to element identification using EDS is its inability to accurately quantify 

low atomic number elements below Na, such as C, N and O, because they produce low 

energy peaks that are not reliable for analysis.  At the low energy range, the peaks 

produced by these elements are likely to be concealed by the weaker x-ray peaks 

produced by higher atomic number elements, such as Fe, Cu, and Z.  [Ramcholan, 2006; 

Gabriel, 1985] 

 
 
3.12  Thermo-Gravimetric Analysis 

 
Objective: 
 
The purpose of thermo-gravimetric analysis (TGA) was to identify the compounds 

present in precipitates formed during the Submerged Cement Paste Test (Section 3.4). 
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Specimens: 
 
There were four precipitates collected from the following solutions: 38% ethylene glycol 

mixed with water, 48% ethylene glycol mixed with water, 100% ethylene glycol, and 

anti-icer.  The precipitates were placed in an oven at 80°C for drying.  They were then 

crushed into a fine powder for placement within the TGA specimen holder.   

 
Analysis Technique: 
 
TGA is a technique that is used to identify material compositions by monitoring mass 

change with respect to increasing temperature.  This is based on phase changes occurring 

at specific temperatures for certain compounds, which causes a mass change in the 

sample. As temperature increases, substances may either lose weight or gain weight due 

to several reasons.  They may experience drying, decomposing, liberation of gases, and 

other physical or chemical reactions.  In the majority of cases, processes will result in 

mass loss, rather than weight gain.   

 
The equipment used to perform a TGA analysis should be stable and isolated from the 

external environment because the arm balance, which holds the specimen, is highly 

sensitive.  Even the material to be tested should be ground into a fine powder in order to 

get a level distribution of material within the crucible.  This is to avoid any sudden 

weight changes caused by physical movement of material shifting locations rather than 

phase changes.   

 
Helium gas is used within the specimen chamber to provide an inert environment, which 

prevents any unwanted reactions from occurring.  Different environmental factors can 

cause peak temperatures to vary between different samples, but TGA of cement 

components has been examined by many researchers [Castelotte, 2004; Perruchot, 2006;  

Williams, 2003; Ye, 2007] and the temperatures of major peaks have been roughly 

agreed upon and fall within the temperature ranges shown in Table 3.3.   
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Table 3.3  Thermogravimetric analysis of major cement components. 
Temperature Component Reaction 
80°C - 250°C C-S-H dehydration 
120°C - 400°C ettringite dehydration 
450°C - 500°C Ca(OH)2 dehydroxylation 
600°C - 900°C CaCO3 decarbonation 
 
 
Different environmental factors can cause peak temperatures to vary between different 

samples.  In addition, analysis of the resulting TGA plots is also operator-dependent, 

which can introduce greater variation between peak temperatures found in different 

literature. 

 
One major problem encountered in TGA analysis of cement is the carbonation of calcium 

hydroxide.  This process occurs rapidly in air, thus, samples can be sealed in a CO2-free 

environment to minimize air exposure.  Otherwise, carbonation will cause calcium 

hydroxide to convert to calcium carbonate, affecting the resulting analysis plot.  

Consequently, it may be very difficult to determine the original calcium hydroxide 

content apart from the calcium carbonate content. 

 
 
3.13  X-Ray Diffraction 
 

Objective: 
 
X-ray diffraction analysis was used to identify crystalline phases by examining the 

diffraction pattern that occurs when an x-ray beam interacts with a specimen.  It was used 

to analyse precipitates collected from the Submerged Cement Paste Test (Section 3.4) 

and from the Accelerated Expansion Test of Concrete Prisms (Section 3.8).    

 
Specimens: 
 
Precipitate from cement paste submerged in ethylene glycol and precipitate from cement 

paste submerged in anti-icer were collected for analysis.  Precipitate from the de-icer 

container in the accelerated expansion test was also collected.  All specimens, which 

were initially collected from solution, were placed in an oven at 80°C for three days to 
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dry.  They were then crushed into fine powder, which is required for XRD testing.  They 

were each placed in a specimen holder, leveled, and patted down to ensure that the 

powder surface was level with the holder surface. 

 
A Rigaku diffractometer was used at 50 kV, 40 mA, and 2 kW, with a Cu x-ray tube that 

emits a 0.3 mm Ø beam.  The detector is phosphorus, with a crystal-to-detector distance 

of 120 mm.  Three images were scanned, traveling through three different ranges of 

angles between 0° and 90°.   

 
Analysis Technique:   
 
When incident x-rays encounter a crystalline material, each x-ray may interact with 

parallel atomic planes, as shown in Figure 3.8. 

 

 
Figure 3.8  Diffraction of two x-rays by parallel planes of a crystal [Scintag]. 
 
 
X-rays that are initially in phase before interacting with the material may stay in phase, 

producing constructive interference, or may become out of phase, producing destructive 

interference.  Two x-rays produce constructive interference when Bragg’s Law is 

satisfied:  

! 

n" = 2d sin#       (3.5) 
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The order of reflection, n, represents the number of whole wavelengths between the two 

x-rays with wavelength, λ.  The distance between two parallel atomic planes of the 

crystal is represented by d and the angle of incidence, also known as Bragg’s angle, is 

represented by θ.   

 
An XRD diffraction pattern displays intensity versus 2θ and constructive interference 

appears as vertical lines at the particular 2θ position.  A greater line intensity represents 

stronger constructive interference.  Each crystalline material produces a distinctive 

diffraction pattern and a mixture of crystalline materials will produce a pattern that is a 

superposition of each unique diffraction pattern.  The patterns are compiled by the Joint 

Committee for Powder Diffraction Standards (JCPDS) [The International Centre for 

Diffraction Data].  A common means of identifying each particular substance by its three 

strongest lines is known as the Hanawalt method, named after J.D. Hanawalt, who first 

devised the system of compiling and classifying diffraction patterns to serve as a 

reference for identification [Hanawalt, 1938].     



 59 

CHAPTER 4 - RESULTS & DISCUSSION  
 
 
4.1  Steel Reinforcing Bar Corrosion Test 

 
Corrosion testing was carried out over a 3-week time period, with measurements being 

taken immediately upon exposure and after 5, 7, and 28 days.  The results are shown in 

Figure 4.1 below.   

 
 
Figure 4.1  Corrosion results for steel reinforcement bars submerged in various fluids. 
 

Initial measurements show that steel corrodes immediately upon submersion in water, 

with an initial corrosion current density of 0.043 A/m2.  Corrosion rate was then 

calculated using Faraday’s Law: 

 

! 

CR =
i
corr

" t " A

# " n " F
     (4.1) 

where icorr is the corrosion current density in A/cm2, t is time in seconds, A is the gram 

atomic weight, ρ is the material density in g/cm3, n is the valency, and F is Faraday’s 

constant (96, 500C/eq.).  To convert this to a corrosion rate in µm/year, this value should 
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be multiplied by 3153.6.  Using this equation, the corrosion rate of steel in water was 

found to be approximately 50 µm/year.  As exposure time elapsed, the corrosion current 

density decreased, probably due to a combination of a lack of oxygen at the tested 

submerged steel region and a build-up of corrosion products at the surface.   

 
The plots of corrosion current density for steel immersed in de-icer and anti-icer show 

that there was very little corrosion activity.  This was expected because these fluids 

would have a corrosion inhibitor as a part of the Ad-Pack, though it is uncertain whether 

the corrosion inhibitors are added for steel protection, or as aluminum protection.  

Nevertheless, after only 5 days, measurements became steady at a negligible corrosion 

rate of approximately 0.6 µm/year, with a corrosion current density of approximately 

5x10-4 A/m2.     

 
A plot for corrosion rates in ethylene glycol was not obtainable due to its low 

conductivity.  Although there may have been corrosion activity, the rebar could not be 

polarized since the ethylene glycol does not allow easy electron flow within the system.  

However, corrosion of steel in ethylene glycol does not appear to be a problem based on 

visual inspection of the rebars in the ethylene glycol container.  

 
 
4.2  Rapid Freeze-Thaw Test 

 
Two concrete batches were required to produce the prisms for the freeze-thaw test, and, 

as described in Section 3.5, there was a difference in air content due to the doubling of 

air-entraining admixture for the second batch.  Recalling that the air content was 3.2% for 

batch A and 5.0% for batch B, this led to a variance in 28-day compression strength tests.  

Batch A cylinders had compressive strengths of 49.2 MPa ± 0.3% and batch B cylinders 

had compressive strengths of 38.9 MPa ± 4%.  The compression strengths of batch A 

cylinders were approximately 10 MPa greater than those of batch B, which was expected 

due to the lower air content.  However, both batches met the GTAA concrete 

specifications of a 35 MPa average minimum compressive strength and all prisms were 

valid for use in the rapid freeze-thaw test.   
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Throughout the duration of the test, none of the specimens fell below the modulus limit, 

thus all prisms were put through 300 cycles. Weight measurements were taken with a 

scale that had a resolution of 0.1 g.  Prisms from batch A weighed more than prisms from 

batch B.  This is expected because batch B had a higher air content, which resulted in 

lower density concrete.  There was one specimen in each batch that was noticeably 

outside their respective weight ranges, at initial weights of 7675 g for batch A and 7790 g 

for batch B.   When these two specimens were removed from the average specimen 

weight calculations, batch A had an average weight of 7821 g ± 1.2%, while batch B had 

an average weight of 7693 g ± 1%.  This shows a weight difference of 1.7% between 

batch A and batch B, which corresponds well with the air content measured during 

batching.  Average percentage change in mass values for each set of prisms are shown in 

Figure 4.2. 

 
Figure 4.2  Average change in mass versus number of freeze-thaw cycles. 
 

The changes in weight after each 30-cycle interval were not significant for any of the 

prism sets.  Prisms in ethylene glycol remained at consistent weights throughout most of 

the test period, with an overall 0.08% increase.  Meanwhile, prisms in water and de-icer 

displayed noticeable decreases in weight.  The prisms in de-icer steadily decreased from 
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7783 g to 7753 g over 300 cycles, which is a 0.38% drop, while prisms in water were not 

as great and as steady in their overall decline from 7717 g to 7707 g, which is a 0.12% 

drop in weight.  Anti-icer prisms gained 0.20% in weight, going from 7711 g to 7726 g.    

 
The measurements for the specimens in water were likely the least accurate of the four 

because of the temperature at which the measurements were taken.  Ethylene glycol and 

aircraft fluids remain liquid for the majority, if not all, of the cycle temperature range due 

to their low freezing points, but the prisms in water actually experience freezing and 

thawing behaviour.  The fluctuations in the first half of the entire test duration may have 

been due to opposing processes of a gradual filling of the air void system with water, 

causing an increase in weight, versus surface scaling, causing a decrease in weight.  It 

was noted that at every 30-cycle interval, when the specimens were removed for testing, 

there was considerable concrete debris within the water containers.  This was not 

observed in the containers filled with the other three test fluids.  Although there was 

much debris, there were no visible signs of cracking on any of the prisms in water.  From 

210 cycles onward, however, they showed a steady decline in mass, suggesting that the 

mass loss due to scaling became the primary factor in weight change.   

 
The steady weight decline of prisms in de-icer is surprising because there was no visible 

debris found within the housing containers.  One explanation for this would be the 

leaching of cement paste components by the de-icing fluid, which would not be 

noticeable when removing the prisms from the container.   

 
Overall, the weight gains and losses of the prisms were insignificant when considering 

the weight of the prisms, with a maximum change of 0.40%.   

 
The durability factors for all specimens are shown in Figure 4.3.  
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Figure 4.3  Freeze-thaw prism durability factors over 300 cycles. 
 
 
Figure 4.3 shows that the prisms in water and anti-icer initially had a significant decrease 

in durability factor after the first 30-cycle interval and then both remained fairly constant 

throughout the rest of the test duration at approximately 96%.  On the other hand, the 

prisms in ethylene glycol and de-icer slightly decreased in durability factor after the first 

30 cycles, but had steadily increasing durability factors thereafter.  The prisms in de-icer 

had the greatest increase in durability factor, jumping from 98.8% of the original value 

after 30 cycles to a final durability of 105%.    

 
When the prisms are first submerged in their respective fluids, it takes time for 

permeation of the fluid into the concrete to occur because, up to the test commencement, 

all prisms were submerged in saturated calcium hydroxide solution.  As a result, the pores 

within the prism would have been filled with solution already and required time for fluid 

exchange to occur.   
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After the very first interval, the drop in durability can be attributed to the formation of 

microcracks within the concrete due to the 30 freeze-thaw cycles.  The very first freeze-

thaw exposure interval would cause the most damage because all capillary and gel pores 

are likely filled and the trapped water, upon freezing conditions, would have nowhere to 

escape to.  Subsequent freeze-thaw intervals did not cause a major change in the prisms 

submerged in water and anti-icer.  After the creation of a microcrack network within the 

prisms by the first interval, subsequent microcracks caused by further freeze-thaw action 

may possibly be negligible, which may be the case for the water specimens.  For the anti-

icer specimens, however, another explanation for the steady durability behaviour after the 

initial drop may be the formation of reaction products within the prism.  The durability 

factor is based on the disruption of ultrasonic waves, signifying cracks.  If cracks are 

filled with reaction products, it may have offset the decrease in durability caused by the 

creation of microcracks within the anti-icer prisms.  The formation of reaction products 

may have occurred with the specimens in ethylene glycol and de-icer, which displayed an 

increase in durability.  

 
In order to check if the change in durability factor was due to mass loss or to mechanical 

properties, a theoretical resonant frequency was calculated as well, based on mass change 

alone.  The resonant frequency of an object is a function of mass and stiffness, which is, 

in turn, a function of geometry and the object’s mechanical properties.  A prism’s 

geometry consists of length, L, and moment of inertia, I, while its elastic mechanical 

properties consist of elastic modulus, E, and Poisson’s ratio, ν.  The geometry of the 

prism does not change significantly during freeze-thaw testing, thus the resonant 

frequency can be thought of as a function of mass and mechanical properties.   

 
A change in resonant frequency due to mass change can be found with the following 

equation when the prism is set up in the arrangement used for the ASTM C 215 test for 

fundamental transverse resonant frequency [ASTM C 215]: 
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Where (fr)o is initial resonant frequency, mo is initial mass, mr is current mass, and fr is 

frequency after a mass change from mo to mr.  This equation was used to calculate a 

theoretical resonant frequency for the prisms at each 30-cycle interval based on the 

measured weights, which was in turn used to calculate a durability factor for each prism.  

A comparison of the calculated versus measured values can be seen in Figure 4.4. 

 
Figure 4.4   Average mass-based and average measured durability factors. 
 
 
The solid lines, representing the theoretical mass-based durability factors, stay near the 

initial durability factor of 100.  The measured durability factors, represented by the 

dashed lines, deviate from the initial value of 100, indicating that changes in concrete 

microstructure were likely the reason for the bulk change in durability factors.  This 

confirms the explanation given earlier concerning the creation of microcracks and/or 

reaction products within the prisms.   
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Photographs of the test specimens surfaces after 300 cycles are shown in Figure 4.5.   
 

   
(a)      (b) 
 

   
  (c)      (d) 
 

   
  (e)      (f) 
Figure 4.5  Surface conditions of freeze-thaw prisms submerged in (a) & (b) water, (c) 
ethylene glycol, (d) de-icer, (e) and (f) anti-icer. 
 

It is clearly seen in Figure 4.5(a) and (b) that freeze-thaw deterioration occurred for the 

prisms submerged in water.  There was severe scaling of the prism surface, which 

resulted in the aforementioned debris found within the containers after every interval.  
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This was expected since the specimens in water experienced freezing and thawing over 

the temperature range of 4°C and -18°C.  The absence of scaling on specimens placed in 

de-icer and anti-icer are due to the fact that these fluids did not undergo freezing within 

the range of 4°C and -18°C.  Ethylene glycol, with a freezing temperature of -12.9°C, 

experienced freezing, however it did not affect the surface of the prisms submerged in it. 

Ethylene glycol and de-icer appeared to have no surface effects on the concrete prisms, as 

shown in Figure 4.5(c) and (d), other than a pinkish discolouration of the prism surfaces 

in de-icer.  Anti-icer had the most interesting effect on the concrete prisms, as seen in 

Figure 4.5(e) and (f).  A bluish gel precipitate formed on the prisms, which was washed 

away after each interval, but remained within voids on the surface.  Further analysis of 

the gel was conducted, and is discussed in following sections.  In addition to the gel 

formation, a grid-like pattern was found on the surfaces of two of the four specimens.  No 

explanation could be found for this appearance.   

 
Despite the differences, the most significant overall result from the freeze-thaw test is the 

fact that all specimens remained well above the 60% minimum durability factor limit.  

Overall, with a spread of only 10% between the worst and the best specimens, the 

deterioration caused by freeze-thaw cycling can be considered insignificant when 

comparing the effects of submerging the prisms in various fluids during testing.  Further 

testing to determine the microscopic differences between sets was considered 

unnecessary in the scope of research.  

 
 
4.3  Four-Point Bending Test of Freeze-Thaw Prisms 

 
Two specimens of each set from the freeze-thaw test were subjected to a four-point 

bending test, illustrated in Figure 4.6. Prisms that were cast at the same time as the 

freeze- thaw prisms, but were not exposed to freeze-thaw conditions, were used as 

controls.  
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Figure 4.6  Prism after failure under four-point bending conditions. 
 
 
The results for all rupture strengths calculated from Equation 3.4 (Section 3.6) are given 

below in Figure 4.7. 

 
Figure 4.7  Four-point bending rupture strength results for the freeze-thaw specimens. 
 
 
Note that, in all cases, type A specimens failed at higher bending stresses than their 

respective type B specimens.  This was due to a lower air content of 3.5% for batch A 
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compared with 5% for batch B.  These results clearly show that as air content increases, 

strength decreases, which is in agreement with 28-day compression strength results for 

freeze-thaw prisms without freeze-thaw exposure given previously in Section 4.2. 

 
Predictably, the control prisms, which did not have any freeze-thaw exposure, withstood 

the highest bending stresses before failure.  Even though both control prisms were from 

batch B, they had maximum bending stresses greater than 5 MPa.  If control prisms from 

batch A had been available for rupture testing as well, it is likely that they would have 

displayed an even greater maximum bending stress than these from batch B.   

   
Of the freeze-thaw prisms, those exposed to water were the weakest, failing at the lowest 

bending stresses, while prisms exposed to ethylene glycol were the best, failing at the 

highest bending stresses.  Prisms in de-icer were second-best and then prisms in anti-icer 

performed almost as poorly as the prisms in water.   

 
These results correlate very well with the results from the freeze-thaw test.  Prisms in 

water were expected to fail at the lowest bending stresses because the surfaces showed 

many signs of deterioration and the prisms also had the lowest durability factors.  The 

durability factors for prisms in the anti-icer were more or less equal to those in water, and 

the four-point bending test results showed very similar results again.   

 
Although the prisms in de-icer had higher durability factors than prisms in ethylene 

glycol, the four-point bending test results showed that prisms in ethylene glycol 

withstood higher maximum bending stresses than those in de-icer.  At first glance, this 

appears to be contradictory, but recalling that the prisms in de-icer displayed a steady 

weight decline throughout the course of the freeze-thaw test, these results may also 

correlate quite well.  It would seem that a decrease in prism weight would result from 

removal of concrete components, thus decreasing the overall strength of the prism.  In 

addition, it was noted that there may have been formation of de-icer precipitation within 

the prism microstructure.  While that would affect the resonant frequency measurements 

used to calculate durability factors, it would have little effect on the strength of the prism 

under four-point bending because the de-icer precipitation is likely a filler within the 
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microstructure, but not bonded well with its surroundings.  Thus, it may not be effective 

at increasing the maximum bending stress at which the prism would fracture.  

 
Overall, the results show that ethylene glycol and de-icer had little effect on the strength 

of the prisms, even after 300 freeze-thaw cycles and constant exposure to the fluids.  

Exposure to anti-icing fluid was no worse than exposure to water, which produced 

concrete specimens with the lowest maximum bending stresses.   

 
 
4.4  Compression Test 

 
The measured maximum applied forces required to cause fracture were used to calculate 

cylinder compression strengths, given in Table 4.1.  

 
Table 4.1  28-day compression strengths for the compression test. 

Type Compressive Strength (MPa) 
Water 14.2 ± 1.0 

Ethylene Glycol 17.6 ± 1.2 
De-icer 16.0 ± 1.1 

Anti-icer 14.8 ± 0.5 
 
 
The values for all cylinders are low for 28-day compression strengths, with average 

values for each set ranging from 14.2±1.0 MPa to 17.6±1.2 MPa.  This can be explained 

by the concrete air content, which was measured as 11% at time of casting.  For every 1% 

increase in entrained air content, there is a reduction of 3% to 5% in compression strength 

[West, 2005].  By comparison, cylinders that were cast using the same mixture design 

during the freeze-thaw specimen batching had an air content of 3% for batch A and 5% 

for batch B.  The mix design used during batching was chosen to match batch B, 

however, a change in air-entraining agent fluid resulted in the increased air content.  

Average values for each batch, A and B, were 49.2±0.2 MPa and 38.9±1.5 MPa, 

respectively.  Batch A values are greater than batch B values because of the 1.5% air 

content difference.  As stated previously, the air content of the compression test cylinders 

was 11%, which is 6% greater than those used in the freeze-thaw test concrete.  It is 

estimated that, with a 5% decrease in strength for every 1% increase in air, the 



 71 

compression strengths should be approximately 30% lower than batch B compression 

strengths, at approximately 21 MPa.  It can be seen in Table 4.1 that the strengths are all 

well below 21 MPa, with specimens in ethylene glycol averaging 17.6±1.2 MPa and 

specimens in water averaging 14.2±1.0 MPa. Consequently, it appears that there are 

further decreases in strength that can be attributed to a combination of several other 

factors.  

 
It was also noted that the data in Table 4.1 were obtained in April 2007, while those for 

batch A and batch B of the freeze-thaw cylinders were obtained in April 2006.  Both tests 

were carried out on the same Fornay compression machine, but in July 2007, it was 

determined that the Fornay had not been calibrated properly, thus displaying applied 

force values that were much lower than the actual applied forces.  Consequently, the 

extremely low 28-day compression strength results for the exposed cylinders can partially 

be explained by the equipment calibration error.  However, compression testing was 

conducted to compare the effect of the various fluids on cylinder strengths, hence, 

absolute values are not as critical in this particular application.  

 
Additional possible contributions to the low compression strengths are likely due to the 

curing regime and submergence in test fluids.  The freeze-thaw cylinders were cured in 

saturated Ca(OH)2 solution for two weeks and then cured in a humidity room for two 

weeks.  The saturated Ca(OH)2 solution prevents leaching of calcium hydroxide from the 

concrete and the additional two weeks in the humidity room reduces the probability of 

any drying shrinkage cracking occurring before compression testing.  On the other hand, 

the 28 days before compression testing of cylinders for this compression test consisted of 

1 day of wet-burlap curing, 5 days of humidity room wet curing after de-moulding, 12 

days of air curing, and then 10 days of complete immersion in test fluids.  The 12 days of 

air curing would allow the cylinders to dry to some extent, thus possibly allowing drying 

shrinkage to occur, but also to encourage the absorbance of fluid upon immersion in 

fluids [Cement Association of Canada, 2007].  The continuous exposure to test fluids up 

to the time of testing could affect compression strength performance because, under these 

conditions, components can easily leach out of the cement paste, as discussed in 
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Section 4.8 to 4.10 below.  As shown in Figure 4.8, these results correlate very well with 

freeze-thaw durability results. 
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Figure 4.8  Plot of compressive strengths versus 4-point bending rupture strengths.  
 

Water appears to encourage leaching of cement components from the concrete cylinders.  

The water in the containers was initially clear before the cylinders were placed inside, but 

was very cloudy by the time of cylinder removal.  This was most likely caused by 

leaching of calcium hydroxide.  

 
Results for specimens exposed to anti-icer in the freeze-thaw test, 4-point bending test, 

and compression test were very similar to those in water.  This may be explained by the 

anti-icer component ratio of 64% ethylene glycol and 35% water.  The amount of water 

in the anti-icer appears to be enough to cause similar behaviour in concrete specimens 

placed in water, such as leaching and freeze-thaw deterioration.   
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De-icer, on the other hand, contains 92% ethylene glycol and only 7.5% water.  As a 

result, it yields concrete test results more similar to those placed in 100% ethylene glycol.  

The low percentage of water may still cause some leaching of calcium hydroxide, but not 

enough to affect its performance in mechanical tests.   

 
The cylinders in ethylene glycol had the highest compression strengths, which is to be 

expected if the damage is proportional to water content.  As ethylene glycol has zero 

water content and has a viscosity greater than that of water, it is likely that it does not 

leach out calcium hydroxide to the same extent.  It is also hypothesized that there may be 

a solvent exchange occurring between ethylene glycol and water in the prisms.  Ethylene 

glycol is highly miscible in water due to similar hydrogen bonding between like-

molecules.  As a result, it is possible that ethylene glycol molecules may be replacing 

water molecules within the prism, thus decreasing the water content and, consequently, 

the water to cement ratio.  Since the prisms were only 18 days old when they were 

immersed in the fluids, hydration would not have been complete, especially with 12 days 

of air curing of the 18 days.  If solvent exchange occurred, it would have effectively 

decreased the water-to-cement ratio for the prisms submerged in ethylene glycol, 

resulting in higher strength concrete.  Since the ethylene glycol content of de-icer is 92% 

as well, the same theory may explain why the cylinders in de-icer had compression 

strengths that were similar to those in ethylene glycol.   

  
 
4.5  Accelerated Expansion Test of Concrete Prisms 

 
Test temperatures, which had to be tightly regulated at 80°C with a ±2°C variance, were 

measured using thermocouples placed within each of the four specimen containers, 

consisting of ethylene glycol, de-icer, anti-icer, and a 1 M NaOH solution as a control.  
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Figure 4.9  Thermocouple temperatures from each of the four test containers. 
 
 
During steady state operation, all temperature values were well within the lower and 

upper limit of 78°C and 82°C, respectively, as denoted by the horizontal solid lines 

shown in Figure 4.9.  The consistent dips in temperature for the specimen thermocouples 

occurred when the oven was opened for removal of concrete specimens for weekly 

expansion measurements.  There are two dips per week because, as mentioned in Section 

3.8, two batches of concrete prisms had to be cast a day apart, due to the availability of 

the moulds.  One prism from each batch was placed in a test container for a total of two 

specimens per test fluid. Consequently, testing for batch A and batch B occurred one day 

apart as well, requiring the oven to be opened two days per week.  If this had any effect 

on expansion behaviour, at least it was consistent for all the prisms and the effect can be 

considered insignificant when comparing the behaviour of the prisms in different media. 

 
Expansion measurements were taken each week for a total of five weeks.  The results are 

shown in Figure 4.10.   
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Figure 4.10  Accelerated expansion test results for concrete prisms in various media. 
 
 
The horizontal dashed line in Figure 4.10 represents the expansion limit of 0.1%, set by 

the Standard for this test [Ministry of Transportation of Ontario].  It states that, for 

aggregates quarried from Gull River & Bobcaygeon Formations of South and East 

Ontario, in which the Pittsburg quarry lies, expansion must be less than 0.1% after 14 

days of exposure in order to considered innocuous with respect to deleterious alkali-

aggregate reactions. 

 
After just one week, expansions of control prisms in the NaOH solution were greater than 

those in the other three test fluids.  After 21 days, the control prisms hit the MTO 

expansion limit, indicating that the aggregates are indeed alkali-reactive.  Although it 

surpassed the 14-day time limit for expansion, it quickly reached the expansion limit 

seven days later and continued to expand at a constant rate until test termination with a 

final average expansion of 0.162%.  Both control prisms correlated well with each other. 

 
Results for prisms in ethylene glycol, de-icer, and anti-icer show relatively innocuous 

expansive behaviour for the entire 5-week test duration, with average expansions of 

0.032%, 0.019%, and 0.032%, respectively.  Results for both batches were also quite 
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similar, except in the case of prisms in de-icer.  This is insignificant, however, because 

both prisms experienced the smallest expansions of all test specimens.   

 
Visual inspections of the prisms afterward show the harmful nature of alkali-aggregate 

reaction within concrete prisms exposed to NaOH solution.  As shown in Figure 4.11, 

there are visible cracks at various places along the length of the control prisms.  On the 

other hand, prisms in ethylene glycol, de-icer, and anti-icer did not have any visible 

deterioration on the surface, which is expected since overall expansions were very low.   

 

 
          
Figure 4.11  Expansion of alkali-reactive aggregates in concrete placed in NaOH solution 
causes visible cracking. 
 

 
Other observations were noted regarding fluid appearance throughout the test period.  

After only one week, fluid consistencies and colours changed, as can be seen in 

Figure 4.12.   

 

40mm 
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   (a)      (b) 

   
   (c)      (d) 
 
Figure 4.12  Various fluid changes were noted after one week exposure: (a) Ethylene 
glycol fluid became yellow-ish; (b) de-icer fluid turned a deep wine red colour; (c) and 
(d) anti-icer fluid appeared to separate into two layers. 
 

The ethylene glycol changed slightly in appearance, from clear to yellow-tinged.  After 

five weeks, a fine white precipitate could be seen at the bottom of the container.  The de-

icer changed drastically in colour from a bright orange to a deep red.  Interestingly 

enough, a small amount of blue precipitate, similar to that found in anti-icer containers, 

was found in the de-icing fluid container.  It was also found coating the copper wire.  The 

anti-icer showed the most interesting change in appearance, separating into a less viscous 

liquid on top and a blue gel precipitate on the bottom. 

 
Changes were also seen on the copper wires that were used to raise the concrete prisms 

off the bottom of the container.  The most notable difference was the change in 

appearance of the copper placed in the de-icer container, which acquired a dark coating 

that appeared to be copper oxide.   
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4.6  Copper and Steel Exposure Test 

 
As a result of the observations noted in the accelerated mortar bar expansion test, 

additional tests were performed concurrently to examine the effect of temperature of the 

fluids and of the fluids on copper corrosion.  The effect of temperature on de-icer and 

anti-icer on copper was evaluated first.  Figure 4.13 shows the fluids after being placed in 

the same test oven for one week. 

 
The color and consistency of the fluids did not noticeably change from exposure to 

elevated temperatures.  Recall also that de-icer is applied to aircraft at temperatures of up 

to 80°C, which implies that it should not undergo any ch.anges when brought up to 

elevated temperatures in that range.   

 
Following these tests, a small copper plate was placed in containers with each of the 

fluids, as well as another container with ethylene glycol. After a one week period, they 

were removed and the fluids appeared as shown in Figure 4.14. 

 

The ethylene glycol and anti-icer fluids do not appear to have changed a great deal from 

the addition of copper.  The de-icer, however, appears to have darkened to a more reddish 

colour, although not to the same extent as the de-icer fluid in the accelerated mortar bar 

test container.  This indicates that the precipitates and changes initially found in the 

mortar bar containers require the presence of concrete to occur and that they are likely 

due to an interaction between cement paste and the affected components.  Precipitate 

samples were kept for further elemental analysis.    

 
Gravimetric testing was conducted on new samples, in which copper and steel plate 

specimens were kept submerged in the four test fluids, ethylene glycol, de-icer, anti-icer, 

and water, for a period of 5 weeks.  Weight measurements were taken before exposure 

and after  7 days , 14 days, and 35 days.   
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  (a)     (b)                 (c)        (d) 
 
Figure 4.13  Appearance of fluids: (a) de-icer as-received, (b) de-icer after 80°C 
exposure, (c) anti-icer after 80°C exposure, (d) anti-icer as-received. 
 

 
           (a)        (b)           (c) 
Figure 4.14  Appearance of fluids and copper after one week at 80°C: (a) ethylene glycol, 
(b) de-icer, and (c) anti-icer. 

 
 
The specimens were visually inspected in solution before they were removed for 

corrosion cleaning and weighing.  There did not appear to have been any reaction 

between the metals and their respective fluids, except in the case of steel in water.  This 

was expected since steel shows corrosive behaviour almost immediately upon contact 

with water, as shown in the steel reinforcing bar corrosion test (Section 3.3).  Gravimetric 

testing revealed minor weight losses for all copper and steel specimens after each 1-week 

interval. Respective steel and corrosion inhibitor solutions (Section 3.9) were used to 

clean the specimens before weighing and changes in weight due to exposure to the fluids 

are shown in Figure 4.15 for steel and Figure 4.16 for copper.   

 
Corrosion was negligible for steel in ethylene glycol, de-icer, and anti-icer, but was 

significant for steel in water.  The average corrosion rate of the steel specimens in water 
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Figure 4.15  Accumulative mass loss of steel in test fluids. 
 
 

 
Figure 4.16  Accumulative mass loss of copper in test fluids. 
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was 77 µm/year, while the lowest average corrosion rate occurred for steel in ethylene 

glycol at 5 µm/year.  The average corrosion rates of steel in de-icer and anti-icer were 

9 µm/year and 15 µm/year, respectively.  These results are in accordance with visual 

indications of corrosion observed on the steel before cleaning. 

 
It is clear from Figure 4.16 that negligible corrosion occurred to copper in any of the test 

fluids.  Mass losses of copper specimens were less than their respective steel 

counterparts.  The average corrosion rate of copper in water was 6 µm/year, which is 

double that of copper in ethylene glycol and de-icers, but still insignificant.  The average 

corrosion rate of copper in anti-icer was 2 µm/year.   

 
The next stage of testing the corrosivity of steel and copper in test fluids involved using 

the same setup as before, except with the addition of small pieces of concrete in the 

containers. The percentage mass loss for steel and copper placed in fluids with cement 

paste are shown in Figure 4.17 and Figure 4.18, respectively.   

 
The behaviour of one of the steel specimens in water was peculiar, as it experienced a 

0.20% mass loss after the first week, while the other two specimens only experienced a 

0.015% mass loss.  This was likely caused by the uncontrolled placements of specimens 

in the container, leading to different fluid exposure conditions for each specimen. 

Subsequently, the mass loss rates for the following weeks were consistent with those of 

the other two specimens.  The average corrosion rate for steel in water was 86 µm/year, 

although omitting the outlier results in an average corrosion rate of 71 µm/year, which is 

approximately the same as without the cement paste.  The average corrosion rates for 

steel in ethylene glycol, de-icer and anti-icer were negligible again, at 9 µm/year, 

16 µm/year, and 11 µm/year, respectively. 

 
The average corrosion rates were low for copper in all fluids with cement paste, with a 

rate of 15 µm/year for copper in water and 4 µm/year for copper in ethylene glycol, de-

icer, and anti-icer.  This is double the corrosion rate of copper in fluids without cement 

paste, but is still negligible.  The slight increase in corrosion rate is likely due to a 

decreased stability of copper oxide in a higher pH environment provided by cement paste. 
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Figure 4.17  Accumulative mass loss of steel in fluids with cement paste. 
 

 
Figure 4.18  Accumulative mass loss of copper in fluids with cement paste.  
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4.7  Results & Discussion : Raman Spectroscopy 

 
Raman spectroscopy was used to analyse de-icer and anti-icer fluid to obtain spectra that 

would be useful in comparing or identifying contrasting components between the two.  

Ethylene glycol was also analysed, in order to provide a baseline spectrum for the two 

fluids since it is the primary constituent in both fluids.  The results for all three fluids are 

shown in Figure 4.19 below. 

 
Figure 4.19  Raman spectra for ethylene glycol, de-icer, and anti-icer. 
 
 
Ethylene glycol, represented by the darkest line, produced Raman peaks that are present 

in the de-icer and anti-icer.  The peaks are shown at different intensities, which can be 

directly related to concentration [Skoog, 1998].  The de-icer spectrum shows consistently 

higher peaks than the anti-icer spectrum, which agrees well with the actual concentration 

of ethylene glycol in each of the fluids.  The de-icer is composed of 92% ethylene glycol, 

while the anti-icer is composed of only 64%.   

 
One common feature found in both de-icing fluids, indicated by the dash-dot circle in 

Figure 4.19 between approximately 3300 cm-1 and 3700 cm -1.  The ethylene glycol 
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spectrum has a single peak in that range, however, the de-icer and anti-icer spectra have 

two overlapping peaks.  The spectrum for water has a double peak that starts at 

approximately 3000 cm-1 and ends at 3700 cm-1 [Chaplin], similar to the double peak seen 

in de-icing fluid spectra and corresponding well with the de-icer and anti-icer 

compositions since water is the secondary constituent at 7.5 % and 35 %, respectively.  

 
Aside from the water peak and the different intensities, the de-icer spectrum does not 

differ greatly from the ethylene glycol spectrum.  However, the anti-icer spectrum 

displays several small peaks, indicated by the dotted circles in Figure 4.19, that are not 

present in either the ethylene glycol or the de-icer spectra.  These peaks have not been 

identified, but these results also correlate well with compositional information for the de-

icer and anti-icer fluids.  According to the DOW Chemical Company information sheets, 

the de-icer contains 0.5 % additives, while the anti-icer contains ≤ 1 % additives.  The 

presence of a greater quantity of additional components in the anti-icer formulation is 

responsible for the extra compounds detected by Raman spectroscopy.   

 
 
4.8  ESEM / EDS Analysis 

 
ESEM and EDS analysis was performed on several specimens from the Submerged 

Cement Paste Test (Section 3.4) and Accelerated Expansion Test of Concrete Prisms 

(Section 3.8).  Micrographs were obtained and elemental analysis was performed to 

identify the effects of exposure of cement paste and concrete to various environments.   

 
 
4.8.1  Cement Paste in Ethylene Glycol 
 
A fine white precipitate was observed inside the container housing cement paste 

submerged in ethylene glycol.  EDS analysis was performed on the dried precipitate, 

shown in Figure 4.20.   
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Figure 4.20  EDS analysis of precipitates formed from cement paste submerged in 
ethylene glycol. 
 
 
It can clearly be seen that the major element present in the precipitate is calcium.  This 

suggests that Ca(OH)2 and/or CaCO3, in which the C, H, and O would not be detectable 

by EDS, were likely leached out by ethylene glycol.  There are only very small amounts 

of Al and Si, thus leaching of C3A, C2S, and C3S may have also occurred, but to a lower 

extent. 

 
 
4.8.2  Cement Paste in De-Icer 
 
Because of the formation of adhered precipitate, the exposed surface of the cement paste 

was analyzed, as shown in Figure 4.21. 

 
Figure 4.21  Micrograph and EDS analysis of exposed surface of cement paste in de-icer.  
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The EDS analysis shows the presence of Ca, P and K as the major constituents of the 

residue found on the exposed surface of cement paste in de-icer.  The Ca content of 40% 

is likely due to leaching of Ca(OH)2 and/or CaCO3. The Na and K contents are high, at 

5% and 20%, respectively.  This may be due to leaching of the metal hydroxides, KOH 

and NaOH, which are present in the cement paste pore solution.  The high P content 

cannot be explained by leaching of any cement paste constituent and, thus, likely exists as 

an element of a proprietary de-icer constituent. 

 
The cement paste disk was removed from the de-icer and fractured in order to examine 

the interior paste, shown in Figure 4.22, away from the exposed surface.  This was done 

to observe how the elemental analysis changed at a distance away from the exposed 

surface.   

 

 
Figure 4.22  Micrograph of interior paste away from exposed surface of cement paste 
submerged in de-icer. 

crack 
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(a) 

 
(b) 

 
Figure 4.23  EDS analyses corresponding to Figure 4.22: (a) box 1 analysis at the crack 
and (b) box 2 analysis away from the crack. 
 
 
It is interesting to note the differences in composition at two different locations from the 

same micrograph, as in Figure 4.23.  A crack is visible, running along the left side of the 

micrograph.  Box 1, corresponding to Figure 4.23(a), is located at the cracked section, 

while Box 2, corresponding to Figure 4.23(b), is located away from the cracked section. 

Figure 4.23(a) shows a higher P content, with a P value of 12%, than in Figure 4.23(b), 

with a P value of 7%.  This suggests that the P may be present due to exterior conditions 

and is entering the cement paste through cracks, especially since there was a high P 

content of 26%, shown in Figure 4.21, in the adhered precipitates.  Similar observations 
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can be made for K and Na, which were high in concentration in the precipitate adhered to 

the exposed surface.  Figure 4.23(b) shows a higher Na and K content, with values of 6% 

each, than Figure 4.23(a), with values of 2% and 1%, respectively.  This indicates that Na 

and K may be leaching out of the cement paste and corresponds with the high Na and K 

concentrations found in the precipitate analysis in Figure 4.21. 

 
 
4.8.3  Cement Paste in Anti-Icer 
 
Gel-like precipitates were collected from the containers holding cement paste in anti-icer.  

They were placed on a flat surface while still moist and allowed to dehydrate within the 

ESEM chamber, resulting in globular formations.  The EDS analysis is shown in 

Figure 4.24. 

 
Figure 4.24  EDS analysis of precipitate from cement paste in anti-icer.  
 
 
The major constituents consistently identified in the gel were Ca at 65%, Na at 20%, and 

K at 15%.  This implies that Ca components, such as CaOH and CaCO3, as well as Na 

and K components, NaOH and KOH, reacted with the anti-icer to form these precipitates.  

This is somewhat similar to results for the de-icer precipitate, however the Na content is 

approximately 15% higher and the P content is almost non-existent in the anti-icer 

precipitate.   

 



 89 

4.8.4  Concrete in De-icer with Copper 
 
A precipitate was found in the container holding concrete specimens in de-icer during the 

Accelerated Expansion Test of Concrete Prisms (Section 3.8).  This precipitate was not 

observed in the submerged specimen test discussed above, therefore, EDS analysis was 

taken on collected samples and is shown in Figure 4.25. 

 
Figure 4.25  EDS analysis of precipitates collected from accelerated expansion test for 
concrete prisms in de-icer. 
 
 
Copper was the major precipitate component, clearly indicating that there was a reaction 

between the copper tubing and the de-icer during the duration of the accelerated 

expansion test, which lasted 5 weeks at 80°C.  The P content, at approximately 20%, was 

fairly high, which is consistent with the EDS analysis for the adhered precipitates formed 

on the submerged cement paste discussed earlier and reinforces the speculation of the 

existence of P as an element of a de-icer component.  The Na and K contents were also 

high, at approximately 15% and 8%, respectively, indicating NaOH and KOH leaching 

from the cement paste.   

 
 
4.9  Thermo-gravimetric Analysis 

 
Precipitates were formed in all solutions with cement paste.  The greatest amount of 

precipitate was produced by the cement paste in anti-icer fluid. Samples were collected 

after sixteen months each of fluid exposure and dried in an oven at 85°C to dry before 
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being crushed into a fine powder.  Thermo-gravimetric analysis was conducted on dried 

samples of precipitates in order to determine the composition of the products. 

 
Two samples were tested for each type of powder in order to check for consistency.  A 

third sample would have been analysed if test results were not comparable between the 

first two analyses.  Results for four different types of precipitates are shown in 

Figure 4.26. 

 
Figure 4.26  Thermogravimetric plots for four types of precipitates. 
 
 
A major peak occurs at approximately 700°C in all four specimen plots and can be 

attributed to the decarbonation of calcium carbonate.  Calcium carbonate is likely to be 

present in the powder samples because the specimens were exposed to ambient air at all 

times throughout the test period.  In addition, immersion in solutions would provide a 

moist environment for carbonation of the cement paste surfaces to readily occur.  The 

presence of calcium carbonate also indicates that calcium hydroxide may have been 

leached out of the cement paste by the fluids, which subsequently carbonated upon 

exposure to air. 
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The TGA plots for precipitates formed in ethylene glycol-based fluids show a few minor 

peaks and a slightly larger minor peak at approximately 100°C, which is most likely 

related to dehydration of various hydrates.  The plot for precipitate from the anti-icer 

container, however, shows two additional major peaks at 310°C and 430°C.  The broad 

peak starting at 430°C is likely related to dehydration of calcium hydroxide while the 

peak at 310°C does not correspond well to any cement paste components, indicating that 

it may be a component of the anti-icer solution. 

 

4.10  X-Ray Diffraction 

 
Two precipitates from the submerged cement paste test (Section 3.4), which were those 

from cement paste in ethylene glycol and anti-icer, were collected for XRD analysis.   In 

addition, precipitate from the de-icer container of the accelerated expansion test of 

concrete prisms (Section 3.8) was collected. Prior to performing the XRD analysis, it was 

uncertain whether it was possible to obtain results for these precipitates since their 

structure was unknown, but all three specimens produced graphs with well-defined peaks, 

which are shown in Figure 4.27 to Figure 4.29. 

 
The two compounds identified in the precipitate collected from cement paste submerged 

in ethylene glycol were calcium carbonate and vaterite, which is a polymorph of calcium 

carbonate.  When vaterite is exposed to water, it converts to either calcite, at low 

temperatures, or aragonite, at temperatures above 60°C [WebMineral, 2007].  The XRD 

results are consistent with TGA results, in which calcium carbonate was the primary 

constituent found in the precipitate.   
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Figure 4.27  XRD analysis of precipitates from cement paste in ethylene glycol. 
 

 
Figure 4.28  XRD analysis of precipitates from cement paste in anti-icer. 
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Three compounds were identified in the precipitate collected from cement paste 

submerged in anti-icer: calcium carbonate, calcium silicate, and tetramethyl ammonium 

sulphate.  The occurrence of calcium carbonate is consistent with that found in the TGA 

results, as well.  The TGA peak for C-S-H occurs between 80°C and 250°C, which is 

noticeable as a very gradual slope.  The TGA peaks for tetramethyl ammonium sulphate 

occur at 263K and 462K [Malchus and Jansen, 1998], which represent the two, 

previously unknown, large peaks present on the TGA curve obtained for the same 

precipitates.   

 

 
Figure 4.29  XRD analysis of precipitates from expansion test concrete in de-icer. 
 
 
Three compounds were also identified in the precipitate collected from the de-icer 

container used in the accelerated expansion test: synthetic natrosilite, natrite, and 

synthetic dolerophanite.  Natrite is an anhydrous sodium carbonate that is soluble in 

water.  Natrosilite and natrite are associated with sodalite, which is a sodium aluminum 

silicate chloride.  It can be light to dark blue, which corresponds to the color of the 
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collected precipitate.  Sodalite, itself, is associated with calcium carbonate, which may 

explain its presence in the precipitate.  It has been found to occur in great abundance at 

the Princess quarry in Bancroft, Ontario, which is near the Pittsburg quarry where the 

alkali-carbonate-reactive rocks for the expansion test were obtained [mindat.org].  Unlike 

the analyses for ethylene glycol precipitate and anti-icer precipitate, calcium carbonate 

was not detected.  This seems to indicate that the de-icer may have reacted more strongly 

with the Pittsburg aggregate, rather than with the cement paste.   
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CHAPTER 5 - CONCLUSIONS 
 
 
The following conclusions, pertaining to the effects of de-icing agents on a variety of 

issues, are based on the results obtained from mechanical, microscopic, and analytical 

tests.   

 
1. De-icer and anti-icer did not instigate or accelerate corrosion of steel at high room 

temperature or at an elevated temperature of 80°C.  In the presence of cement 

paste, which effectively changes the pH environment, there was still insignificant 

steel corrosion activity in both fluids.  The same was found for copper in similar 

conditions, however, a precipitate formed during the accelerated mortar bar 

expansion test in the de-icer container.  XRD analysis determined that reactions 

occurred between the copper, de-icer, and the alkali-carbonate-reactive 

aggregates.   

 
2. It is well-known that freezing and thawing conditions can mechanically 

deteriorate concrete after repeated cycling.  However, freezing and thawing of 

concrete in the presence of the de-icers appeared to cause insignificant concrete 

deterioration when the concrete is adequately air-entrained, which should be the 

case for concrete structures that are expected to be subject to freeze-thaw 

conditions.  In addition, there was a great deal of surface scaling on prisms subject 

to freezing and thawing in the presence of water, while no surface scaling was 

observed on prisms in the presence of ethylene glycol, de-icer, and anti-icer.  

Subsequent mechanical testing, consisting of a four-point bending test of the 

freeze-thaw prisms and a compression test on cylinders submerged in de-icing 

fluids, showed that de-icing fluid exposure has minor effects on rupture strength 

and compression strength.  The specimens exposed to de-icers performed the 

same, or better, than those exposed to water.  The results from both mechanical 

tests correlated very well with each other.  In all three tests, the results for 

ethylene glycol and de-icer were similar, while those for water and anti-icer were 

alike, which relates well with the compositions of each of the de-icing fluids.   
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3. Another major cause of concrete deterioration are alkali-aggregate reactions, 

which causes detrimental expansion and leads to surface microcracks, thus 

facilitating the ingress of harmful chemicals and water.  Concrete prisms were 

subject to an accelerated expansion test, incorporating known reactive aggregates, 

and the results show that negligible expansion occurs in the presence of de-icing 

fluids.  

 
4. Overall, the above test results showed that de-icer and anti-icer had very little 

impact on the mechanical behaviour of concrete and the electro-chemical 

behaviour of steel and copper.  However, precipitates were formed in the tests 

involving cement paste and concrete exposure to de-icing fluids.  The precipitates 

did not have a detrimental effect on concrete mechanical properties over the 

period of the tests. 

 
5. Microscopic and elemental analyses conducted using ESEM, EDS, XRD, and 

TGA on the various precipitates from the submerged cement paste test and the 

accelerated expansion test on concrete prisms,  determined that the main 

component leached out from cement paste in ethylene glycol and anti-icer was 

calcium carbonate.  In the case of cement paste in de-icer, calcium carbonate was 

likely leached out, but there were also high concentrations of sodium and 

potassium in the precipitate.  These could have been leached from the cement 

paste pore solution or present as a constituent of the de-icer itself.  XRD analysis 

of precipitate from the de-icer container of the accelerated expansion test suggest 

that de-icer reacts with alkali-carbonate-reactive aggregates to a greater extent 

than with cement paste, as no calcium carbonate was detected by XRD.   

 
6. It is concluded that de-icer and anti-icer do not have any significant unfavourable 

effects on concrete mechanical properties and durability.  It should be noted that 

the tests performed in this study utilized de-icing fluids at undiluted 

concentrations and that specimens were under constant exposure.  These do not 

realistically portray exposure conditions on the de-icing pad.  During operations, 
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de-icer is applied at diluted concentrations and, while anti-icer is applied at full 

concentration, dilution naturally occurs upon application due to the snow and ice 

on the aircraft and on the pad.  Moreover, trucks sweep the ground periodically to 

collect any fluids, which further reduces the exposure of concrete to de-icing 

fluids.  At minimal exposure, the effect of de-icers on concrete durability should 

be much less than that observed during testing.   On the other hand, the existence 

of precipitates and subsequent elemental analyses performed on them indicate that 

reactions do occur between cement paste and the de-icers.  In the short term, these 

reactions did not appear to have a significant effect on concrete stability, however, 

the long term effects of de-icer exposure are unknown. 
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CHAPTER 6 - RECOMMENDATIONS 
 
 
Based on the experiments and analyses performed over the course of this study, it is 

concluded that de-icer and anti-icer do not appreciably cause premature concrete 

deterioration.  Nevertheless, there are still many facets to be explored concerning the 

influence of de-icing fluids on concrete.  Several areas that were investigated could be 

explored further and some issues were not investigated at all, but should be considered 

for future work. 

 
The most conspicuous finding that requires further investigation is reactions that result in 

the formation of precipitates in all cases of cement paste exposure to de-icing fluids.  

Although several techniques were used to determine precipitate compositions, the 

reactions responsible for their appearance have not been determined.  Even though they 

were not found to significantly cause damage to concrete, they should be considered.   A 

better understanding of precipitate compositions would be useful in determining their 

possible long-term effects on concrete properties. 

 
Cylinder compression testing could be very dependent on many factors, including 

concrete mixture design, curing time, de-icer exposure time, and drying time.  The 

comparative results obtained during this particular study were only valid for the specific 

curing method used.  It may be worthwhile to examine if similar trends can be observed 

at a variety of the above parameters.   

 
De-icer was used as a concentrate during all experiments, but, in practice, it is diluted to 

38% or 48% concentrations mixed with water.  In view of the fact that water had the most 

negative impact in all mechanical tests, the effect of diluted de-icer solutions should be 

conducted.  Presently, the results from de-icer exposure were similar to those from 

ethylene glycol exposure, which are sensible considering that the concentrated de-icer is 

composed of 92% ethylene glycol.  The results of the same experiments tested using 

diluted solutions of de-icer may be significantly different than the results of the 

concentrate. 
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Concrete cores were removed from the GTAA CDF de-icing pad, but were not analysed 

during the course of the study.  Petrographic analyses may be performed to examine the 

type of damage typically found on the de-icing pad.  If concrete signs of distress can be 

identified, the mechanisms of concrete deterioration can be limited and identified, as 

well. 
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