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Abstract 

Proper folding of a protein to its native state is critical for the protein to be fully 

functional under biological conditions. Understanding protein folding and protein folding 

evolution within the same structural family are key to understand which processes assist 

or hinder protein folding and how to prevent misfolding. Tm0979 from Thermotoga 

maritima, Mth1491 from Methanobacterium thermoautotrophicum and YchN from 

Escherichia coli belong to the homologous superfamily of YchN-like proteins (SCOP 

and CATH: 3.40.1260.10). The structures of these proteins have been solved as part of 

structural proteomics projects, which consist of solving protein structures on a genome 

wide scale. In solution, Tm0979 forms a homodimer whereas Mth1491 folds as a trimer 

and YchN is a homohexamer. The structures of the individual monomeric subunits of 

these three proteins have high structural similarity, despite very low sequence similarity.  

The biological roles of these proteins are not yet well defined, but seem to be involved in 

catalysis of sulphur redox reactions. This thesis focuses on characterisation of the 

Tm0979 homodimer and the Mth1491 homotrimer, as well as the determination of the 

folding mechanisms of these two proteins. The folding mechanisms of the proteins are 

compared to each other and to the mechanisms of other dimeric and trimeric proteins. 

The evolution and basis of oligomeric structure within the YchN family are analyzed.  

Mutations of Tm0979 and Mth1491 are designed as a basis for future work to investigate 

processes responsible for switches in oligomeric protein quaternary.structure. 
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1 Introduction 

1.1 Relation between protein structure, function and evolution 

Proteins can be classified into different structural classes depending on the arrangement 

of their secondary structure elements according to structural databases and classification 

schemes such as SCOP (Murzin et al.,1995), CATH (Orengo et al.,1997), DALI (Holm et 

al.,1996), 3Dee (Russell et al., 1992) and HOMSTRAD (Mizuguchi et al.,1998). A large 

proportion of genes, up to 90% in eukaryotes, encodes for oligomeric proteins. The 

characteristics of families and superfamilies will be discussed in section 1.1.1, and then 

protein classification will be described by taking CATH classification as a reference in 

section 1.1.2. Finally, evolution of structure related proteins will be discussed in section 1.1.3. 

1.1.1 Structure levels of proteins 

The primary structure of a protein consists of its linear amino acids sequence. Each 

amino acid has a particular propensity to form secondary structure elements, such as α-

helices, β-strands, irregular loops and turns. Upon folding, secondary structure elements are 

formed and there are clearly restraints on the ways in which secondary structures can be 

packed together to achieve optimal packing of hydrophobic residues in the core of the protein, 

which is central to the formation of its tertiary structure. The protein can then oligomerise, 

which represents its quaternary structure. 

1.1.2 Protein structure classification 

For most of the known classification methods, at the lowest level in a structural 

classification, proteins are grouped if they belong to the same class, i.e., if they have similar 

secondary structure compositions and packing (CATH: (Orengo et al.,1997), SCOP: (Murzin 

et al.,1995). There are three major classes: mainly α, mainly β, and α-β. Approximately 25% 

of proteins are mainly α, 25% are mainly β and almost half are α-β proteins (Martin et 
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al.,1998). Each class is divided in different categories where the proteins are classified based 

on the architecture of their structure, i.e. the relative orientations of the secondary structures in 

three-dimension (3D) and the order in which they are connected. Finally, those classes are 

divided into subcategories called families based on the hypothetical or known function of the 

proteins and will be described in more detail in the following sections.     

1.1.3 Families and superfamilies 

Most families include members with different quaternary structure (Orengo et 

al.,2005). However the molecular basis and evolution of quaternary structure are poorly 

understood. During the course of evolution, proteins derived from a common ancestral protein 

can change their sequences and diverge by mutations or substitutions of the residues and also 

by insertions and deletions of residues (indels), giving rise to families of homologous proteins 

(Orengo et al.,2005). Many protein family resources present a hierarchical classification 

whereby very close relatives, for example with high sequence similarity (e.g. >40% sequence 

identity), are grouped together into families. These close relatives frequently share common 

functional properties. More remote homologues that have lower sequence similarity (<30%) 

are grouped together into broader evolutionary families or superfamilies, as is the case for 

Tm0979, Mth1491 and YchN. It is difficult to recognize very divergent relatives by 

comparing their sequences alone, and as for Tm0979, Mth1491 and YchN, the remote 

homologues could only be detected by comparing their structures.  
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1.2 Description of protein-protein interactions 

Most proteins fold as oligomers (79% in Escherichia coli (E. coli)) (Goodsell et 

al.,2000). Oligomers can be split into two categories: homomers are formed by association of 

n identical monomers; heteromers are formed by association of different monomers. 

Principles that govern association are complex. Gaining an understanding of these principles 

may help us to understand why proteins misfold and how proteins’ oligomeric states evolve 

within the same structure family. Based on the characteristics of oligomer interfaces, 

hydrophobic interaction seem to stabilize the interface whereas ionic interactions and 

hydrogen-bonding seems to govern the selectivity of the interface (Chothia et al.,1975). 

Different amino acids in the interface may therefore make differing contributions to binding 

and amino acids not located in the interfaces can also affect binding. Protein-protein 

interfaces can also be characterized by their geometric characteristics (interface size, shape, 

atomic packing, planarity and complementarity) and will be reviewed in the following section 

(Ponstingl et al.,2005). 

1.2.1 Nature of oligomer interfaces 

The structural characteristics of protein-protein interfaces for homomer and 

heteromers have been analyzed in detail by a number of groups (Jones et al.,1995; Jones et 

al.,1996; Goodsell et al.,2000; Nooren et al.,2003; Ponstingl et al.,2005).  Various trends 

have been observed and are outlined below.  Terms for describing interfaces and illustrative 

examples of different types of interfaces are summarized in Table 1.1. 
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Types of protein-protein 
interactions 

Characteristics of the interface: Protein example: 

Symmetry of the interface: 
Isologous  
 
Heterologous  

 
Same surface on both monomer 
 
Different surface used for each 
monomer  

 
Arc repressor, Tm0979 
 
Mth1491 

Necessity of the oligomeric state: 
Obligate (protomers often 
expressed together) 
 
 
Non-obligate  
(perform regulatory role)  

 
Monomers are not found as stable 
on their own in vivo, they need to 
form the oligomer to be stable. 
 
Monomers can exist independently 

 
Arc repressor, human cathepsin D, 
cro repressor 
 
 
Sperm lysin, RhoA-RhoGAP, 
bovine G protein   

Life time of the complex: 
Transient   
 
 
 
 
 
 
 
Permanent  

 
Weak transient: dynamic oligomeric 
equilibrium in solution, interactions 
are continuously  made and broken 
 
Strong transient: require molecular 
trigger to shift the oligomeric 
equilibrium 
 
Very stable complex which only 
exists in its oligomeric form 

 
Tm0979 
 
 
 
Human papillomavirus E2, 
heterotrimeric G protein 
 
 
Mth1491 

 
1.2.1.1 Amino acid populations in interfaces 

Solvation requirements lead to polar and charged functional groups being enriched on 

the exterior of the folded polypeptide whereas aliphatic groups tend to be hidden in the core 

of the fold away from contact with water molecules (Ponstingl et al.,2005). This hydrophobic 

effect is held as principal driving force for protein folding (Kauzmann,1959), (Dill,1990) as 

well as for protein-protein association (Chothia et al.,1975; Argos,1988; Janin et al.,1990; 

Young et al.,1994; Tsai et al.,1997). Interfaces of multimer tend to have a higher fraction of 

their area covered by carbon atoms (implying hydrophobic groups) than the rest of the surface 

(Ponstingl et al.,2005).  Consistent with this, large, predominantly hydrophobic residues, like 

aromatic residues and the aliphatic residues as well as methionine and cysteines, have a 

tendency to occur in the interfaces rather than being in contact with solvent (Ponstingl et 

al.,2005). In contrast, polar, charged and smaller hydrophobic residues generally prefer to 

contact the solvent. Arginine is an exception, where a slight preference for inter-subunit 

contacts can be detected in spite of its positive charge (as seen for Mth1491 interface, section 

Table 1.1: Different types of protein-protein interactions.
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1.4.1.2) (Ponstingl et al.,2005). Moreover, partly accessible residues tend to be more 

hydrophilic than the totally buried ones. Polar or charged residues also occur in interfaces, 

however, where they can make hydrogen bonds. Hydrogen bonds with their predominantly 

polar character and energy of 3-7 kcal.mol-1 are relatively short in range. Therefore, they are 

often held to confer specificity on protein-protein interactions (Ponstingl et al.,2005).  

1.2.1.2 Size and shape 

As a rule of thumb, a fraction of approximately 18% of the surface area of a subunit is 

involved in inter-subunit contacts. The fraction increases, however, with the multiplicity n of 

the subunit in the homomer (Ponstingl et al.,2005), thus it tends to be smaller for dimers and 

greater for trimers, tetramers and hexamers.  

In homo-dimers with their two-fold symmetry, the part of the subunit contact is 

mapped onto itself by a 180° rotation (as seen for Tm0979 dimer, section 1.4.1.2) (Ponstingl 

et al.,2005). Such interfaces are referred to as isologous interfaces (Monod et al.,1965) (Table 

1.1). Molecules with circular symmetry, like all trimers (as seen for Mth1491, section 1.4.1.2) 

(C3) as well as some tetramers (C4) and hexamers (C6), usually have one dominant interface, 

which is made up of two distinct areas on the subunit surface (Ponstingl et al.,2005). Such 

interfaces are referred to as heterologous interfaces (Monod et al.,1965) (Table 1.1). The two 

surface areas cover approximately the same accessible surface area (ASA) of the subunit since 

they participate in one and the same contact (Ponstingl et al.,2005).  

1.2.1.3 Planarity of the interfaces 

The interfaces of protein-protein complexes tend to be flat (Argos,1988; Jones et 

al.,1996). There is a strong dependency of the planarity on the size of the interface (Ponstingl 

et al.,2005). This dependency can be explained by the fact that atoms in small interfaces are 

restrained in their scatter by belonging to the same or neighboring residues whereas in large 

interfaces, this restriction is relaxed, which enables formation of irregular shapes. Moreover, 
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the globularity of the subunit fold might imply that a very extensive interface area can only be 

achieved by increasing the ‘ruggedness’. If one could approximate the two subunits forming 

an interface by two ellipsoids, for example, there would be a certain maximum interface area 

possible without distorting the ellipsoid shape. The only way to increase the contact area 

would be to introduce protrusions compensated by the shape of the respective partner. Apart 

from the contact, the original shape could be still kept (Ponstingl et al.,2005).  Large 

interfaces tend thus to be flatter. 

1.2.2 Comparison between permanent and transient complexes 

Permanent complexes are very stable complexes that can only be detected in their 

oligomeric form whereas transient complexes are in equilibrium between their monomeric 

and oligomeric forms (Table 1.1). Obligate complexes tend to be characterised by unstable 

monomers and therefore only exist in their oligomeric form. In contrast, for non-obligate 

complexes, the monomeric protein is stable enough to survive on its own. In this section, the 

characteristics of the interface of permanent and obligate complexes will be compared with 

those of transient and non obligate complexes.  

Permanent complexes are found to have protein-protein interfaces that are more 

packed but less planar and with less intersubunit hydrogen bonds than nonobligatory 

complexes (Jones et al.,1996). On the other hand, transient complexes contain more 

hydrophilic residues in their interface than permanent complexes (Jones et al.,1996). 

Moreover, strong transient dimers are characterized by larger, less planar and sometimes more 

hydrophobic interfaces, whereas weak homodimers tend to have smaller contact areas 

between protomers and interface are more planar and polar on average (Nooren et al.,2003).  

Comparisons with trends observed for oligomers suggest that Tm0979 oligomeric 

characteristics are consistent with it forming a weak transient complex; experimentally 
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Tm0979 monomers have significant stability in vitro (B Cheyne, G. Meglei, K.A. Vassall, 

P.B. Stathopulos, E.M. Meiering, unpublished results). In constrast, Mth1491 seems more 

likely to be a permanent complex because the trimer interface is larger, more hydrophobic and 

more specific than the Tm0979 dimer interface. Characteristics of these two interfaces will be 

discussed in more detail in section 1.4.1.2. 

1.3 Protein folding  

In order to be fully active, proteins need to fold properly to their 3D native 

conformations. The native state is believed to correspond to the lowest Gibbs free energy state 

of the protein. Based on Anfinsen’s experiments, the native state and the pathway for the 

protein to reach this state are encoded in the amino-acid sequence (Anfinsen,1973). This 

hypothesis is supported by the fact that there is an astronomical number of possible 

conformations that proteins can adopt so it would take too long for the unfolded protein to 

randomly search for its native structure (Levinthal,1968). Therefore, three types of 

mechanisms, have been proposed for protein folding. 1) The framework model consists of the 

formation of secondary structural elements from the unfolded protein independently of 

tertiary structure (Ptitsyn,1973; Kim et al.,1990). Then the formation of the native 

conformation occurs by diffusion of the secondary structure elements until they collide and 

coalesce to give the tertiary structure (Bashford et al.,1988; Karplus et al.,1994). 2) The 

nucleation model postulates that some neighboring residues in the primary sequence would 

form native secondary structure that would act as a nucleus. Native structure would then 

propagate in a stepwise manner and the tertiary structure would form as a necessary 

consequence of the secondary structure (Wetlaufer,1973; Wetlaufer,1990). 3) The 

hydrophobic-collapse model suggests that the protein collapses rapidly around its 

hydrophobic side chains and then rearranges from the restricted conformational space 

occupied by the collapses intermediate (Kuwajima,1989; Ptitsyn,1995). Both framework 
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model and hydrophobic-collapse involve the formation of intermediates upon folding whereas 

the nucleation model involves simultaneous formation of secondary and tertiary structure. The 

role of intermediates in folding is complex and not fully understood; this will be discussed 

further in the following sections (1.4.1, 1.4.2 and 1.4.3). 

1.3.1 Monomeric protein folding 

Early studies on protein folding were focussed on small monomeric proteins which do 

not contain prolines or form disulfide bonds in order to analyze simple mechanisms that 

govern protein folding (Jackson,1998). Many small proteins fold with a 2-state mechanism 

involving the formation of native monomer (N) from unfolded monomer (U), U ↔ N. The 

folding of larger monomeric proteins, however, tends to involve the formation of 

intermediates (I), U ↔ I ↔ N. For monomeric proteins, intermediates tend to act as kinetic 

traps and slow the folding process. However, intermediates may also play a role in helping 

proteins fold, as in the case of larger oligomeric proteins which will be discussed next. 

1.3.2 Dimeric protein folding  

Oligomeric proteins represent approximately 15% of currently known protein structures. 

This percentage is biased, however, by the fact that monomeric proteins are easier to 

crystallize than oligomeric ones. Actually, a survey of E. coli proteins in SWISSPROT 

showed that most of the proteins (79%) folds as oligomers and 38.2% fold as a dimer 

(Goodsell et al.,2000). Moreover, from all oligomeric structures determined to date, more 

than half are dimers. Dimer is therefore the most common oligomeric state and dimeric 

protein folding has recently been investigated by studying, both, small dimeric proteins 

(Wendt et al.,1995), (Bowie et al.,1989; Milla et al.,1994; Zitzewitz et al.,1995; Jana et 

al.,1997; Rosengarth et al.,1999; Satumba et al.,2002; Jia et al.,2005; Maity et al.,2005) 

followed by studies on very large proteins such as chaperones (Doyle et al.,2000). Dimeric 
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proteins are found to fold through various mechanisms that may or may not involve the 

formation of intermediates. The different mechanisms and the role of these intermediates will 

be discussed in the following sections. 

1.3.2.1 Dimer folding via 2 state mechanism 

As observed for monomeric proteins, most small dimeric proteins fold via a 2-state 

mechanism, which consists of the formation of the native dimer directly from the unfolded 

monomers (Zitzewitz et al.,1995), (Topping et al.,2004), (Gloss et al.,2002; Placek et 

al.,2005), (Kim et al.,2000; Kim et al.,2001). The 2-state mechanism involves the formation 

of native dimer (N2) from unfolded monomer (U): 2U ↔ N2. Two-state folding suggests that 

the burial of hydrophobic residues and the cooperative interactions within the dimer upon 

oligomerisation play an important role in the stability of small dimeric proteins and are strong 

enough to drive the folding of these proteins. Some DNA-binding proteins seem to fold 

through a 2-state mechanism as well but in this particular case, folding may be coupled to the 

physiological role of the protein, in vivo, which involves an equilibrium between the 

oligomeric state and the DNA bound state (Jana et al.,1997), (Bowie et al.,1989; Milla et 

al.,1994). This equilibrium suggests that protein concentration in the cell may be regulated by 

this coupling insofar as the protein binds to the DNA when the DNA-binding process is 

required at low protein concentration; otherwise, it is stored as a dimer.  

1.3.2.2 Dimer folding via multiple states  

In contrast, most of the large oligomeric proteins fold through a multiple states 

mechanism, involving the formation of monomeric (I) and/or dimeric intermediate(s) (I2): 2U 

↔ 2I ↔ N2 or 2U ↔ I2 ↔ N2. Intermediates can play complex roles such as helping proteins 

to fold or facilitating aggregation. Some proteins related to misfolding diseases involving 

prion, amyloid formation and protein aggregation are proposed to fold via the formation of 

intermediate(s) which favour protein misfolding (Galani et al.,2002; Zhu et al.,2003), 
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(Svensson et al.,2006). However, other large proteins need the formation of these 

intermediates to fold properly. For example, the very large chaperone SecA is proposed to 

fold through the formation of different intermediates which help this large protein fold into 

the correct native structure and avoid the non-productive pathway that leads to aggregation 

(Doyle et al.,2000). Analogous mechanism is proposed for the large enzyme beta 

Galactosidase whose intermediates are supposed to be the substrates for chaperones 

increasing the efficiency of cellular protein folding (Nichtl et al.,1998).  

To sum up, the role of folding intermediates is not yet well defined and requires 

further study. Intermediates can be monomeric or oligomeric, on or off pathway. The 

structure of these intermediates may play a role in the propensity for aggregate formation or 

proper folding. Characterization of oligomer interface formation may therefore help us to 

understand how a protein folds and if the formation of an intermediate is required or not. 

1.3.3 Trimeric protein folding  

Trimeric proteins represent only a small proportion of oligomeric proteins, 21% in E. 

coli (Goodsell et al.,2000). To date, very few studies have been conducted to investigate 

trimer folding. As for monomer and dimer, some of the first folding studies were performed 

on small proteins. 

1.3.3.1 Trimer folding mechanisms 

One of the earliest trimer folding studies was to investigate the mechanism of a coiled-

coiled trimer (Marti et al.,2004). The designed three stranded coiled-coil, Lpp-56 (trimeric 

coiled-coil) (Bjelic et al.,2006), unfolds with a simple two state mechanism involving 

unfolded monomers (U) and native trimer (N3). Few trimeric proteins have been reported to 

fold via the formation of intermediates. γ-carbonic anhydrase (Simler et al.,2004) is one of the 

rare examples of proteins that fold through the formation of monomer intermediates: 3U ↔ 3I 
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↔ N3. Monomeric, dimeric and trimeric (I3) kinetic intermediates were observed upon 

Bactoriophage T4 fibritin (Guthe et al.,2004) folding and illustrate that folding of trimeric 

protein can be very complex, 3U ↔ 3I ↔ N2 + I ↔ N3. 

1.4 YchN-like proteins 

Tm0979 from Thermotoga maritima (T. maritima), Mth1491 from Methanobacterium 

thermoautotrophicum (M. thermoautotrophicum) and YchN from E. coli belong to the 

homologous superfamily of YchN-like proteins (CATH: 3.40.1260.10, SCOP : superfamily 

dsrEFH-like). Tm0979 belongs to the dsrH family of conserved hypothetical proteins found in 

bacteria and archaea (Pfam 04077, (Bateman et al.,2004); COG 2168 (Tatusov et al.,2001)). 

The dsr locus encodes various proteins involved in sulphur metabolism (Pott et al.,1998). It 

has been shown that mutations in the dsrH gene in the phototrophic bacterium Chromatium 

vinosum completely abolish the ability of cells to oxidize intracellular sulphur; however, the 

molecular function of the protein is not known (Pott et al.,1998). Based on structural and 

sequence analysis, Tm0979 may play a role in intracellular sulphur oxidation (Gaspar et 

al.,2005).  

Mth1491 is a conserved hypothetical protein from Methanobacterium 

thermoautotrophicum (PfamB 4177, COG 1416) (Christendat et al.,2002). Based on PSI-

BLAST analysis, Mth1491 sequence share high sequence similarity with conserved 

hypothetical proteins which contain a “conserved cysteine-containing domain” proposed to 

function as a disulfide bond redox regulator (Christendat et al.,2002). Moreover, these 

proteins all have highly conserved cysteines that align with Cysteine 72 of Mth1491. DsrF, a 

small soluble protein in the metabolic pathway for the oxidation of sulphur in phototrophic 

bacteria, also carries a conserved cysteine-containing domain (Pott et al.,1998). Those 
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observations suggest that Mth1491 may play a role in sulphur oxidation, as proposed for 

Tm0979.  

YchN from E. coli belongs to a family of conserved hypothetical proteins known as 

COG1553 in the National Center for Biotechnology Information (NCBI) database of Clusters 

of Orthologous Groups (Shin et al.,2002). All the members of the COG1553 are assumed to 

have an uncharacterized ancient conserved region involved in intracellular sulphur reduction. 

Moreover, YchN share sequence homology with DsrE protein from Chromatium vinosum, 

and is also another member of the gene cluster dsrABEFHCMK, products of which conduct 

intracellular oxidation of stored sulphur (Pott et al.,1998). Those observations suggest that 

YchN may be involved as well in intracellular sulphur metabolism, as suggested for Tm0979 

and Mth1491. Moreover, the monomers of these three proteins exhibit high structural 

similarity, despite very low sequence homology. Since structure is much better conserved 

than sequence, evolutionary relationships among those three proteins were investigated 

herein. The tertiary and quaternary structure of those proteins will be described in section 

1.4.1 and evolutionary relationships will be discussed in section 1.4.2. 

1.4.1 Description of YchN-like protein fold 

The tertiary structure of Tm0979, Mth1491 and YchN is very similar and consists of a 

central four or five stranded β-sheet flanked by four α-helices (Figure 1.1). As described in 

Figure 1.2, Tm0979, Mth1491 and YchN fold as a homodimer, homotrimer and 

homohexamer.  



13 

 

 

The beta strands are coloured in cyan, alpha helices in red and yellow and the loops and turn in grey. 
Ribbon diagrams were generated using MolMol (Koradi et al.,1996) using PDB accession codes: A:1x9a, 
B:1l1s, C:1jx7.  

 

 

Figure 1.1: Monomer structures of Tm0979 (A), Mth1491 (B) and YchN (C). 

Figure 1.2: Three dimensional structure of Tm0979 dimer (A), Mth1491 trimer (B), YchN hexamer (C).  
A, Each subunit of the Tm0979 homodimer is coloured in different colours (grey, pale green). B. Each
subunit of Mth1491 homotrimer is coloured using different colours (light grey, pale green and light blue).
C. Each subunit of YchN homohexamer is coloured with different colours (light grey, pale green, light 
blue, khaki, pink and coral). Ribbon diagrams were generated using MolMol (Koradi et al.,1996) using 
PDB accession codes: A:1x9a, B:1l1s, C:1jx7. 
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1.4.1.1 Comparison of the monomer structures of Tm0979 and Mth1491 

Superposition of the Tm0979 and Mth1491 monomers, in Figure 1.3, shows the 

structural similarities between these two proteins. Actually, the first four beta strands and the 

four α-helices superpose very well meaning that the structure of the monomer is conserved 

within the YchN-like family (Figure 1.3A). The main differences between the structures of 

these two monomers occur in the length of the amino acid sequence of the proteins which 

results in longer helix-α1 , a second helix-α2, longer β-strands and the formation of a fifth β-

strand for the Mth1491 monomer (Figure 1.3B). In fact, Tm0979 sequence is composed of 89 

amino acids whereas Mth1491 sequence consists of 111 amino acids, which can explain why 

longer secondary structure elements are observed in the Mth1491 monomer. The formation of 

longer elements of secondary structure results in a more structured monomer for Mth1491 

compared to Tm0979 and also a more packed oligomer. Interactions between the monomers 

are discussed in the following section. 



15 

 

 

Figure 1.3: Superposition of Tm0979 and Mth1491 monomers.  
A and B: Different views of the superposition of Tm0979 (green) and Mth1491 (pink) obtained from 
Protein structure comparison service SSM at European Bioinformatics Institute 
(http://www.ebi.ac.uk/msd-srv/ssm), authored by E. Krissinel and K. Henric (Krissinel et al.,2004). C and 
D: Different views of the superposition of Tm0979 (green) and Mth1491 (yellow) obtained from Superpose 
(http://wishart.biology.ualberta.ca/SuperPose/) (Maiti et al.,2004). Ribbon diagrams were generated using 
MolMol (Koradi et al.,1996) using PDB accession codes: 1x9a and 1l1s.   
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1.4.1.2 Comparison of Tm0979, Mth1491 and YchN quaternary structure 

In solution, Tm0979 folds as a dimer whereas Mth1491 forms a trimer and YchN a 

hexamer (Gaspar et al.,2005), (Christendat et al.,2002), (Shin et al.,2002). As mentioned 

above, the quaternary structure of Mth1491 is more packed and structured than that of 

Tm0979. This is illustrated in the difference in the interface composition for both proteins. On 

one hand, the Tm0979 interface is mainly formed by hydrophobic interactions between the 

fourth α-helix of each monomer, and between the fourth α-helix of one monomer and the first 

β-strand of the other monomer (Figure1.4). 

 

Figure 1.4: Tm0979 dimer interactions. 
A. Tm0979 dimer. B. Tm0979 dimer  interaction between the two α4-helices (one blue, the other one red) 
involving Leu79 (magenta), Ile76 (cyan) and Phe75 (green).  C. Tm0979 dimer interaction between α4-
helix of one subunit (Ile76 in magenta and Leu79 orange) and β1-strand of the other one (Leu3 in green 
and Leu5 in cyan). Ribbon diagrams were generated using MolMol (Koradi et al.,1996) using PDB 
accession code: 1x9a. 

On the other hand, the Mth1491 trimer interface consists not only of hydrophobic 

interactions (Figure 1.5A) but also of ionic interactions, such as the salt bridges and hydrogen 

bonding (Figure 1.5B) (Christendat et al.,2002). Therefore, based on interface interaction, 

Mth1491 interface seems to be more specific than Tm0979 one. 

Concerning YchN homohexamer, each homotrimer are stabilised by hydrophobic 

interactions and H-bond interactions mainly (Figure 1.6A). The hexamer is formed by 

association of the two homotrimers and form a dimer of trimer. The interface is mainly 

composed of hydrophobic interactions (Figure 1.6B).  
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Figure 1.5: Mth1491 trimer interactions.  
A, Mth1491 trimer hydrophobic interaction between helix-α1 of one subunit (blue residues: Leu28 and 
Leu32) and helix-α4 of the neighboring subunit (red residues: Val97 and Val101), B, ionic interaction 
between helices-α4  (Arg17 and Glu12 are coloured in black). Ionic interactions also occur between helix-
α1 and helix-α4 involving Arg103 and Asp31. Ribbon diagrams were generated using MolMol (Koradi et 
al.,1996) using PDB accession code: 1l1s. 

 

 

Figure 1.6: YchN trimer and hexamer interactions. 
A, YchN trimer hydrophobic interactions between the helix-α1 of one subunit (blue residues: Leu24, Ala27 
and Leu28) and the helix-α4 of the neighbouring subunit (red residues: Leu101, Ala105 and Leu109). B, 
YchN hexamer hydrophobic interactions. The trimer-trimer interaction on the equatorial interface is 
formed mainly by the inner L1–L1’ and outer L3–L3’ loop interactions. Residues Thr47, Leu50, Ile87, and 
Leu90 of each subunit make a hydrophobic patch with the same residues of a two-fold related subunit that 
seems to mediate stable trimer-trimer interaction. Ribbon diagrams were generated using MolMol 
(Koradi et al.,1996) using PDB accession code: 1jx7.  
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1.4.2  YchN-like proteins hypothetical function and evolution 

As suggested previously (Section 1.4), Tm0979, Mth1491 and YchN may play a role in 

sulfur metabolism. Moreover, as described in the previous section, Tm0979, Mth1491 and 

YchN share high structure similarity. As structure is better conserved than sequence, those 

three proteins probably evolved from a common ancestor. Actually, the gene cluster 

dsrABEFHCMK encodes, among others, three similar proteins dsrE, dsrF, and dsrH which 

have considerable structure homology with TusD, TusC and TusB from E.coli, respectively 

(Numata T, 2006). The TusBCD complex, a sulphur transfer mediator, is a heterohexamer 

composed of a dimer of the heterotrimers (Numata T, 2006). The structure similarity between 

the monomers of Tm0979 and TusB, and between the monomers of Mth1491, YchN and 

TusD suggests that Tm0979, Mth1491 and YchN monomers may form with or without other 

dsr proteins a more complex oligomer, functionally active in vivo. The functions of Tm0979, 

Mth1491 and YchN, however, remain unknown at this time. Therefore, the dimeric state of 

Tm0979 may be a regulatory way to store the inactive protein in vivo, as observed for some 

DNA-binding proteins (Section 1.3.2.1). The TusD monomer shares significant structure 

homology with the monomer of YchN and the monomer of Mth1491. Thus the YchN 

homohexamer may have evolved by differentiation to a more complex fold such as the 

TusBCD heterotrimer, probably due to a change of function or the addition of a new function. 

This heterotrimer may then have dimerised to form a hexameric complex. It should be noted 

that the order of events is not known, but various evolutionary mechanisms may link these 

proteins.  

Evolution of Tm0979, Mth1491 and YchN structure, in particular quaternary structure, 

were investigated by characterizing the mechanism of folding of the Tm0979 dimer and the 

Mth1491 trimer. Those mechanisms were compared to folding mechanisms of other dimers 
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and trimers and are discussed in chapters 4 and 5. In the long term, engineering of Tm0979 

and Mth1491 monomers will be considered in order to investigate the evolutionary pathway 

of YchN fold as well as the mutational process responsible for the switch of the oligomeric 

state. This work will be discussed in more detail in chapter 6 of this thesis.  
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2 Protein expression, purification and preparation 

2.1 Introduction 

Tm0979 is expressed by T. maritima, a hyperthermophilic organism which has a 

optimal growth temperature of 90°C (Adams,1994). On the other hand, Mth1491 is expressed 

by M. thermoautotrophicum, a thermophilic organism whose optimal growth temperature is 

65°C (Smith et al.,1997). Proteins from thermophilic organisms tend to have higher stability 

against thermal denaturation, and this property was exploited in developing the protein 

purification protocol of those two proteins. The expression and purification of Tm0979 were 

previously studied and optimised in our laboratory by Joe Gaspar and Gabriela Meglei, and 

will be described in detail in the section 2.2.1.1 (Gaspar et al.,2005). Mth1491 expression and 

purification protocols were optimised by Christendat et al. (Christendat et al.,2000; 

Christendat et al.,2002). However, the initial purifications of Mth1491 resulted in very low 

yield and aggregation was observed throughout. Therefore, the expression and purification of 

Mth1491 required optimisation, described in section 2.3.  
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2.2 Materials and Methods 

2.2.1 Tm0979 and Mth1491 expression 

The gene sequence for Tm0979 was previously PCR-amplified from T. maritima 

genomic DNA and subcloned immediately after the N-terminal (His)6 tag and the thrombin 

cleavage site (with sequence MGSS(H)6SSGLVPRGSH) of the pET15b vector which 

contains an ampicillin and kanamycin resistance gene (Figure 2.1) (Gaspar et al.,2005). The 

recombinant Mth1491 expressing E. coli cells were obtained from Adelina Yee from the 

University of Toronto and used as described by Christendat and coworkers (Christendat et 

al.,2000). The protein was expressed in strain BL21(GoldλDE3) which contains T7 RNA 

polymerase under control of the β-lac promoter. Addition of isopropyl-β-D-

thiogalactopyranoside (IPTG) induces expression of T7 RNA polymerase by binding the lac 

repressor and causing it to dissociate from the operator DNA so that T7 RNA polymerase can 

initiate the transcription from the T7 promoter, Tm0979 gene or Mth1491 gene. A starter 

culture of transformed BL21-GoldλDE3 cells was grown in 100 mL 2TY medium (1.6% (v/v) 

bacteriotryptone, 1% (v/v) yeast extract, 1% (v/v) sodium chloride (NaCl)) containing 100 

μg/mL ampicillin and 50 μg/mL  kanamycin at 37°C overnight. The starter culture was 

diluted, approximately 100-fold, into 1L of fresh 2TY medium containing 100μg/mL 

ampicillin and 50 μg/mL kanamycin, the following morning, and grown at 37°C to log phase 

(indicated by an optical density measured at 600 nm (OD600) between 0.6-0.7), at which point 

Tm0979 expression was induced with 1 mM IPTG for 4 hours. Cells were then harvested bu 

centrifugation at 65000 g for 15 minutes at 4 °C. The supernatant was discarded and cell 

pellets were stored in 50 mL falcon tubes at-80°C. SDS-PAGE (30%) samples to follow the 

time course of protein expression were prepared by removing a 1 mL aliquot from the culture, 

before and every hour after induction, centrifuging at 14000 rpm for 2 minutes, removing the 
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supernatant and resuspending the pellet in 40 μL of 30% SDS-PAGE sample buffer (Figure 

2.2). 
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Figure 2.1: Circular map of the pET-15b vector (Cat. No. 69661-3). It carries an N-terminal His-Tag 

sequence followed by a thrombin site and three cloning sites. Unique sites are shown on the circle map. 
The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is shown below in 
the zoomed window.  
Figures from Novagen catalogue (http://depts.washington.edu/bakerpg/plasmid_maps/pet15bm.pdf). 
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Figure 2.2: Expression gels (30% SDS) of Tm0979 and Mth1491.  
A. Expression gel of Tm0979. Lines 1, 2, 3 and 4 correspond to the protein content of the cells after 1h, 2h, 
3h and 4h, respectively, after induction. The position of Tm0979 on the gel is shown by the red rectangle. 
B. Expression gel of Mth1491. Line 1 corresponds to the protein content of the cells before induction. 
Lines 2, 3, 5, 6 correspond to the protein content of the cells 1h, 2h, 3h and 4h after induction, respectively. 
Line 4 corresponds to the marker. Line 7 corresponds to pure Mth1491 from previous purification. The 
position of Mth1491 on the gel is shown by the red rectangle. Samples were prepared by taking 50 μL of 
growing cells and diluting them in 50 μL loading buffer. Each sample is then boiled and centrifuged at 
14000 rpm and the supernatant is loaded onto the gel. 
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2.2.2 Tm0979 and Mth1491 protein purification 

All buffers used for Mth1491 purification were degassed at room temperature for 30 

minutes prior to use during the purification. The cell pellets were resuspended in lysis buffer 

(50 mM sodium phosphate (Na2HPO4), 300 mM NaCl, 10 mM imidazole, pH 8). Cell 

suspension was run through an emulsifier (EmulsiFlex-C5 from Avestin) at approximately 

17000 psi to lyse the cells. The resulting suspension was incubated at 60°C for 20 minutes in 

order to denature thermally labile E. coli proteins. More than half of the total protein is 

precipitated by the heat treatment (Figure 2.4 B). The heat-treated suspension was centrifuged 

at 45000 g for 20 minutes at 4°C and the pellet discarded. The supernatant was then loaded 

onto a Ni2+ affinity chromatography column (Qiagen) connected to a liquid chromatography 

system (BioLogic LC, Biorad) and eluted using an imidazole gradient from 20 mM to 500 

mM imidazole in 50 mM Na2HPO4, 300 mM NaCl, pH 8 for Mth1491 purification and from 

20 mM to 1 M imidazole in 50 mM Na2HPO4, 300 mM NaCl, pH 8, for Tm0979 purification. 

Tm0979 and Mth1491 both elute from the column at an imidazole concentration between 

approximately 300 mM and 400 mM, as shown in Figures 2.3A and 2.4A. For Mth1491 

purification, ethylene diamine tetra acetic acid (EDTA) and dithiothreitol (DTT) were placed 

in each collecting tube, prior to Mth1491 elution, to give final concentrations of 1 mM and 10 

mM, respectively, to minimise effect of any metal contamination and disulfide bond 

formation. After fraction collection, glycerol was added to eluted fractions containing 

Mth1491 to a final concentration of 10% (v/v), to stabilize the trimer and prevent aggregation. 

30% SDS gel was prepared to check the protein content of the eluted fractions (Figures 2.3B 

and 2.4B). Samples were prepared by taking 20 μL of eluted fraction and diluting them in 50 

μL loading buffer. Each sample was then boiled and centrifuged at 14000 rpm and the 

supernatant was loaded onto the gel. Fractions containing Tm0979 or Mth1491 were pooled 

and concentrated with an ultrafiltration system (200 mL Amicon cell / Millipore) using 
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membranes with a cut-off of 3 kiloDalton (kDa) (Millipore: YM3 ultrafiltration membranes 

made of regenerated cellulose, diameter: 63.5 mm).  
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Figure 2.3: Ni2+ affinity chromatography column purification of Tm0979.  
A. Elution profile of Tm0979 purification. This is the elution profile from Ni2+ affinity chromatography 
column. The blue line represents the change in absorbance at 280 nm (A280). The red line represents the 
change in conductivity due to increasing concentration of imidazole in solution. The vertical black thick 
lines correspond to the alignment of the elution profile to the 30% SDS gel with time. Tm0979 elutes at 
102-114 minutes, corresponding to 300-400 mM imidazole in 25 mM Na2HPO4, pH 8. B. 30 % SDS-PAGE 
gel showing the purity of Tm0979 during the purification process. From left to right: M: marker, 95, 102, 
107, 112, 120: advancement time of the purification, Wash: composition of the eluent at the washing step, 
Load: composition of the eluent at the loading step, lystate: composition of the lysate after 60°C treatment. 
The imidazole ring of the histidines of Tm0979 His-tag interacts with Ni2+ and makes the proteins bind to 
the column while the lysate is loaded (Load). Then the column is washed to remove all the other proteins 
not bound to the column (Wash) and a gradient of imidazole is applied to the column. There is therefore a 
competition between the rings of the histidines of Tm0979 His-tag and of imidazole to bind Ni2+. The 
conductivity increases with increasing the concentration of imidazole. At 45 mS.cm-1 more imidazole binds 
to the column and the protein can no longer bind and is eluted from the column. 
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Figure 2.4: Ni2+ affinity chromotography column purification of Mth1491. 
A. Elution profile of Mth1491 purification. This is the elution profile from Ni2+ affinity chromatography 
column. The blue line represents the change in absorbance at 280 nm (A280). The red line represents the 
change in conductivity due to increasing concentration of imidazole in solution. The vertical black thick 
lines correspond to the alignment of the elution profile to the 30% SDS gel with time. Tm0979 elutes at 
100-118minutes, corresponding to 300-400 mM imidazole in 25mM Na2HPO4, pH 8. 
B. 30% SDS gel showing the purity of the Mth1491 during the purification process. From left to right: 
Pre60°C: composition of the lysate before the 60°C water bath treatment, Post60°C: composition of the lysate 
after the 60°C water bath treatment, 0, 30, 60, 100, 105, 110, 115, 120: advancement time of the 
purification, Mth: pure Mth1491 from previous purification, M: marker.  
The imidazole ring of the histidines of Mth1491 His-tag interacts with Ni2+ and makes the proteins bind to 
the column while the lysate is loaded (0, 30 minutes). Then the column is washed (60 minutes) to remove 
all the other proteins not bound to the column and a gradient of imidazole is applied to the column. There 
is therefore a competition between the rings of the histidines of Mth1491 His-tag and of imidazole to bind 
Ni2+. The conductivity increases with increasing the concentration of imidazole. At 45 mS.cm-1 more 
imidazole binds to the column and the protein can no longer bind and is eluted from the column (fraction 
100-120). 
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The protein solution was exchanged into NMR buffer (25 mM Na2HPO4, 450 mM 

NaCl, pH 6.5), for Tm0979, and for Mth1491, after experimentation with various buffers into 

the most optimal buffer, to a citrate buffer (20 mM sodium citrate (Na3C6H5O7), 450 mM 

NaCl, 10% (v/v) glycerol, pH 6), by dilution/reconcentration by ultrafiltration. Protein 

concentration was determined by measuring the A280 (Absorbance of the solution at 280 nm) 

and using the experimentally determined extinction coefficient and theoretical molecular 

weight (His-tag included) of 11167.53 M-1.cm-1
 and 12040 g.mol-1, respectively, for Tm0979 

(Gaspar et al.,2005) and 12058 M-1.cm-1
 and 14720 g.mol-1 for Mth1491.  
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2.3 Results and discussion 

2.3.1 Mth1491 purification, optimisation and storage 

Unfortunately, during initial purifications, Mth1491 aggregated during the 

concentration step and this resulted in very low yields of purified protein. Mth1491 is trimeric 

and has two cysteines per monomer (Figure 2.5). In oxidative conditions, these cysteines can 

form improper intermolecular disulfide bonds, which can result in aggregation of the protein. 

Mth1491 is an intracellular protein that functions in a reducing environment where disulfide 

bonds are not formed. Cysteine 72, in particular, is conserved within sequence related proteins 

as well as all of the proteins containing a conserved cysteine-containing domain and is 

thought to play a key role in sulfur oxidation (Christendat et al.,2002) (Section 1.4.2). In the 

case of Mth1491, improper disulfide bonds are made during the concentration step, within 

hours after purification, and drive protein aggregation. This process is enhanced at high 

protein concentration. Preventing aggregation was made possible by changing the conditions 

of Mth1491 purification and storage; the main changes are summarized in Table 1.1.  

 

Figure 2.5: Representation of the six cysteines in Mth1491 trimer. 
Each subunit is coloured in a different colour (yellow, light blue and light grey). Cysteines 70 and 72 are 
coloured in red. Ribbon diagrams were generated using MolMol (Koradi et al.,1996) using PDB accession 
code: 1l1s. 
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Table 2.1: Optimisation of the experimental conditions for stabilizing purified Mth1491. 
Observation  Explanation  Solution  

Initial conditions: 
1. Mth1491 kept in NMR 
buffer. However Mth1491 
aggregates during concentration.  

Buffer does not keep the protein 
in a stable conformation.  

 

Change buffer conditions: 
New buffer used corresponds to the one 

used for the determination of 
Mth1491 structure, i.e., 10 mM 
sodium acetate (CH3COONa), 300 
mM NaCl, 10 mM DTT, pH 5. 

Moreover, 1 M DTT is added into each 
collecting tubes to give a final 
concentration of 10 mM in eluted 
fractions. 

 
2. Mth1491 no longer aggregates 

during the concentration 
step. However, the protein 
aggregates when samples 
are thawed from the  

-80°C freezer.  

Mth1491 is a large protein. 
10% glycerol is 
commonly used to 
stabilise larger protein. 
Also, metals can enhance 
the oxidation of disulfide 
bond. 

Introduce glycerol to a final 
concentration of 10% (v/v) and 
EDTA to a final concentration of 1 
mM in each collected fraction.  In 
addition, all buffers used for 
Mth1491 were degassed before the 
purification. 

The first studies conducted on Mth1491 in our lab were performed using NMR buffer 

and aggregation of the protein was observed under these conditions. Exchange of the protein 

into acetate buffer (10 mM CH3COONa, 300 mM NaCl, 10 mM DTT, pH 5) used by 

Christendat and co-workers for the x-ray crystallographic determination of the Mth1491 

structure results in dissolving the aggregates observed during the concentration process 

(Christendat et al.,2002). The protein was then frozen in liquid nitrogen and stored in a -80°C 

freezer. However, upon thawing of the frozen protein solution, some aggregates were 

observed, even after the protein was centrifuged or filtered with a 0.2 μm or 0.02 μm filter. 

Two parameters were then considered. First, Mth1491 needs to be stored in a long term 

reducing environment. Metal contamination needs as well to be eliminated because metals 

can catalyse disulfide bond formation, in particular, mixed-disulfide derivatives which lead to 

protein aggregation (Stadtman,1990; Kadokura et al.,2003). EDTA and DTT were thus 

introduced in each collecting tube during Mth1491 affinity column purification to give final 

concentrations of 1 mM and 10 mM, respectively. All buffers required for the use or the 

storage of Mth1491 after purification were degassed and contained 10 mM DTT and 1 mM 

EDTA. Secondly, other stabilising agents were added to stabilise the protein for long time 
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storage. As for other large protein, Mth1491 quaternary structure likely requires stabilisation 

in order to prevent the formation of larger oligomers or aggregates (Mallam et al.,2005). After 

the purification was completed, glycerol was therefore introduced in each collecting tubes 

which contain Mth1491 to a final concentration of 10 % (v/v). Glycerol was added as well in 

acetate buffer for storage of Mth1491. 

In summary, Mth1491 is a large trimeric protein containing six cysteines per trimer. 

The protein environment needs therefore to be kept reducing and the native structure needs to 

be stabilised. The buffers used for Mth1491 storage were degassed and contained EDTA, 

DTT and glycerol. By comparing the concentration of the protein before and after storage at -

80°C, Mth1491 no longer aggregates. Having found conditions to stabilize the purified 

protein, much better protein yields were obtained and protein folding experiments could then 

be undertaken. 
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3 Spectroscopic properties of Mth1491 and Tm0979 and 
optimization of Mth1491 refolding 

3.1 Introduction 

Characterising Tm0979 and Mth1491 equilibrium folding involves determining the 

free energy of folding, ΔG, and the m-value related to the protein folding. In order to do this, 

denaturation curves were measured at different protein concentrations and were fit to the 

appropriate model. These curves need to be at equilibrium when fitted in order to obtain 

accurate equilibrium constants, i.e, renaturation curves and denaturation curves at a particular 

protein concentration should superimpose when equilibrium has been reached. Previous 

experiments conducted on Tm0979 showed that the protein unfolds reversibly and 

denaturation curves reach equilibrium after 2 days (Bo Cheyne, Gabriela Meglei & Elizabeth 

Meiering, unpublished data). Therefore, denaturation curves samples were incubated for 2 

days at room temperature before making measurements. Concerning Mth1491, no equilibrium 

curve analysis had been performed previously. In this chapter, the conditions required for 

reversible folding of Mth1491 trimer and the time required for the denaturation and 

renaturation curves to reach equilibrium will be described. 
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3.2 Materials and methods 

3.2.1 Denaturation and renaturation curves sample preparation 

3.2.1.1 Tm0979  

Denaturation curve samples were prepared by 10-fold dilution of a stock solution of 

native Tm0979 into increasing concentrations of guanidinium chloride (GdmCl). Renaturation 

curve samples were prepared by 10-fold dilution of a stock solution of fully unfolded protein, 

incubated in 6 M GdmCl for 15 minutes, into decreasing concentrations of GdmCl. First, 

filtered ultrapure 8 M GdmCl (Sigma) and filtered MilliQ water were aliquoted in 1.5 mL 

Eppendorf tubes using micropipetman according to desired GdmCl concentration. Filtered 

NMR buffer was then introduced by diluting it 10-fold. Stock protein solution was added last 

using a Hamilton syringe (See Appendix A.1: Preparation of Tm0979 denaturation curve 

samples).  

3.2.1.2 Mth1491 

Denaturation curve samples were prepared by 10-fold dilution of a stock solution of 

native Mth1491, incubated in 10mM DTT and 1mM EDTA, into different concentrations of 

GdmCl. Renaturation curves samples were prepared by diluting a stock solution of fully 

unfolded Mth1491, incubated in 6M GdmCl, 10mM DTT, 1mM EDTA for 15 minutes, into 

decreasing concentrations of GdmCl. Filtered and degassed 8 M GdmCl and MilliQ water 

were used to obtain the different denaturant diluted samples, in 1.5 mL Eppendorf tubes, 

ranging from 0 to 6 M GdmCl final concentration. Filtered and degassed buffer was then 

added by diluting it 10-fold. DTT and EDTA were added to each sample to a final 

concentration of 10 mM and 1 mM, respectively, just before adding the protein using a 

Hamilton syringe and by 10-fold dilution of the denatured protein. Samples were kept under 

nitrogen at room temperature for desired equilibrium time (See appendix A.2: Preparation of 

Mth1491 renaturation curve samples).  
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3.2.2 Measurement of denaturation and renaturation curve samples 

Equilibrium denaturation and renaturation curves were monitored by following the 

unfolding and refolding transition spectroscopically. Denaturation and renaturation of 

Tm0979 and Mth1491 were followed by circular dichroism (CD), using a Jasco 715 CD 

spectropolarimeter, at wavelength 215 nm (220 nm) for Tm0979 (Mth1491) and by steady 

state fluorescence, using a FL3-22 SPEX fluorolog, with an excitation wavelength of 280 nm 

(279 nm) and emission wavelength of 332 nm (321 nm) for Tm0979 (Mth1491). A 1 mm 

pathlength cuvette and a 1 cm pathlength 50µL cuvette were used for CD and fluorescence 

spectroscopy measurements, respectively. Samples were incubated in a 25°C water bath for 

15 minutes prior to measurements and cuvettes were thermostatted to 25°C during the whole 

measurement. The change in fluorescence intensity and the change in ellipticity were plotted 

as a function of denaturant concentration for different protein concentrations. All equilibrium 

curves were remeasured over time to evaluate when equilibrium is reached.  
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3.3 Results 

3.3.1 Spectroscopic properties of Tm0979 and Mth1491 

Prior to denaturation curve measurements, the spectroscopic properties of the native 

and unfolded protein were recorded in order to determine the spectral conditions for best 

monitoring unfolding. A fluorescence excitation scan was performed for the native and 

denatured states of both Tm0979 dimer and Mth1491 trimer (data not shown). The maximum 

of emission was reached for an excitation wavelength of 279 and 280 nm for Tm0979 and 

Mth1491, respectively. Therefore, the emission scans were measured using these excitation 

wavelengths. Figure 3.1 shows the CD and fluorescence emission spectra of native and 

unfolded Tm0979. When monitored by CD, the maximum amplitude of signal is observed at 

210 and 212 nm for the native and unfolded protein, respectively. When monitored by 

fluorescence, the maximum of emission is reached at 327 and 332 nm for the native and 

unfolded protein, respectively. The difference between the signal of the native and denatured 

protein is plotted as well and reaches a maximum at 332 and 210 nm when monitored by 

fluorescence and CD, respectively. Fluorescence-monitored denaturation and renaturation 

curves were measured at an emission wavelength of 332 nm in order to have the maximum 

amplitude, and hence sensitivity, for the curves. However, when denaturation curves were 

measured at 210 nm by CD, the signal to noise ratio was very poor and data were very 

scattered due to a high tension value above 600 volts. Therefore, the curves were measured at 

215nm when monitored by CD. For Mth1491 (Figure 3.2), the difference between the native 

and unfolded protein reaches a maximum at 210 and 321 nm when measured by CD and 

fluorescence, respectively. As observed for Tm0979, the data were scattered when measured 

at an emission wavelength 210 nm by CD. Therefore renaturation and denaturation curves 

were recorded at an emission wavelength of 220 and 321 nm by CD and fluorescence 

spectroscopy, respectively. 
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Figure 3.1: Tm0979 CD and fluorescence spectra as function of denaturant concentration. 
 A. The native and unfolded protein scans are plotted in red and blue lines, respectively. The denatured 
protein was incubated in 6 M GdmCl for 15 minutes prior to measuring the spectra. Tm0979 
concentration was 12.5 μM and is expressed as dimer equivalent. The difference between the signal of the 
native and of the unfolded protein is plotted in green. The data recorded at lower wavelengths are not 
plotted because they correspond to high tension above 600volts and are thus not reliable.  B. The 
fluorescence monitored scans were measured at 1.5 μM (dimer equivalent) in different GdmCl 
concentrations: 0M (dark blue line), 1 M (dark green line), 2 M (light green line), 2.4 M (light blue line), 
2.8 M (dark red line), 3.2 M (light red line), 3.6 M (orange line), 4 M (purple line) and 5 M (grey line). All 
the scans were performed at 25°C in NMR buffer. 
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Figure 3.2: Mth1491 CD and fluorescence spectra as function of denaturant concentration. 
A. CD scans of the native and unfolded trimer are plotted in red and blue lines, respectively. The 
difference between the signal of the native and the one of the unfolded protein is plot in green. The data 
recorded at low wavelengths are not plotted because they correspond to high tension above 600 volts and 
are thus not reliable.  B. Fluorescence monitored scans of the native and unfolded protein are plotted in 
red and blue lines, respectively. The difference between the signal of the native and the one of the unfolded 
protein is plot in green.  
All spectra were measured at 25°C and in citrate buffer at pH 6. Mth1491 concentration was 1 μM (trimer 
concentration). The denatured protein was incubated in 6M GdmCl for 15 minutes prior to measuring the 
spectra. 
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3.3.2 Mth1491 reversible folding  

Mth1491 reversibility of GdmCl denaturation was investigated by measuring 

denaturation and renaturation curves prepared in the same buffer condition and at the same 

protein concentration. The curves were incubated for different time periods and measured 

until they were fully superposeable. However, reversibility of Mth1491 was not observed in 

the first studies. After trying different buffers, pH and salt conditions, Mth1491 was finally 

found to unfold reversibily in citrate buffer (20 mM Na3C6H5O7, 450 mM NaCl, 10 mM DTT, 

1 mM EDTA, pH 6). 

Figure 3.3 illustrates the initial attempt to measure a renaturation curve in acetate 

buffer (10 mM CH3COONa, hydrochloric acid (HCl), 450 mM NaCl, 10 mM DTT, 1 mM 

EDTA, pH 5). This buffer was used by Christendat and co-workers to determine the structure 

of Mth1491 by x-ray crystallography (Christendat et al.,2002). Using these conditions, the 

signal of the renatured protein corresponded to approximately 41% of the signal of the native 

protein. This means that the protein does not fully refold and that these conditions do not 

sufficiently favour the formation of the native protein. Sodium sulphate (Na2SO4) is 

commonly used to stabilise proteins. However, stabilising the protein by adding sodium 

sulphate at pH 5 did not result in fully reversible unfolding (Figure 3.4.).  However, upon 

switching the pH from 5 to 6 (Figure 3.5), the signal of the renatured protein reaches the 

signal of the native protein.  
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Figure 3.3: Initial attempt to measure the refolding of Mth1491 in acetate buffer. 
Refolding curves of Mth1491 were monitored by fluorescence after incubation times of 2 days (blue 
diamonds), 4 days (red squares) and 1 week (green triangle). The purple crosses are the signal of the 
native protein, which samples renatured in less than 3 M GdmCl should reach. Tm0979 concentration was 
1.5 μM and is expressed in dimer equivalent. The measurements were made at 25°C in acetate buffer (10 
mM CH3COONa, HCl, 450 mM NaCl, 10 mM DTT, 1 mM EDTA, pH 5). 

 

Figure 3.4: Mth1491 renaturation curve measurement attempt in stabilizing conditions at pH 5. 
 Renaturation (red squares) and denaturation (blue diamonds) curves were measured, after 1 day of 
incubation, at 1 μM (trimer equivalent) in acetate buffer and using 300 mM Na2SO4 as stabilizing agent, at 
25°C. 
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Figure 3.5: Mth1491 reversible folding in acetate buffer at pH 6. 
 Mth1491 renaturation curves were measured after 15 minutes (red squares) and 1 day (green diamonds), 
denaturation curves (blue diamonds) measured after 1 day of incubation.  
Mth1491 concentration was 1μM (trimer equivalent). The measurements were done at 25°C, in acetate 
buffer at pH=6 and using Na2SO4 as stabilizing agent. 
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Reversible folding observed at pH 6 can be explained by considering the pI of 

Mth1491. The theoretical pI of Mth1491 was calculated using the web server Protein 

Calculator v3.3 (http://www.scripps.edu/~cdputnam/protcalc.html) and is 4.74. This pI 

estimate assumes all residues have pKa values that are equivalent to the isolated residues and 

gives a rough value of the experimental pI. At pH = pI, the net charge of a protein is 0 which 

favours aggregation, especially at increased protein concentration. Mth1491 renaturation 

curves are prepared by 10-fold dilution of a stock solution of unfolded protein. Mth1491 was 

incubated for 15minutes in 6 M GdmCl at pH 5 to obtain denatured protein. At pH 5, 10-fold 

concentrated Mth1491 is likely more prone to aggregation and this decreases reversibility of 

unfolding. This is the likely reason why refolding of unfolded monomer does not occur when 

measured at pH 5. At pH 6, Mth1491 overall charge is negative and thus the protein is more 

soluble in water. Refolding of the protein can thus be observed under these conditions.  

3.3.3 Buffer condition optimisation 

3.3.3.1 Buffer system 

Although Mth1491 was found to fold reversibly at pH 6 in acetate buffer (Figure 3.5), 

acetic acid has a pka of 4.76, and so has very low buffering capacity at pH 6. The buffer 

system used for Mth1491 refolding condition should have similar chemical properties and 

structure as sodium acetate/acetic acid buffer system and should have a pKa close to 6. 

Succinic (pKa1=4.16, pKa2=5.61) and citric (pKa1 = 3.14, pKa2 = 4.77 and pKa3 = 6.39) acid 

are polyprotic acids and have one of their pKa values close to 6. Therefore denaturation and 

renaturation curves were prepared at pH 6 using these buffers (Figure 3.5). The main 

difference between the curves measured in citrate buffer and those measured in succinate 

buffer remains in the effect of these buffers on the flatness of the baselines. The baselines of 

the native and unfolded protein need to be well defined in order to fit accurately the curves. 

The equilibrium characteristics of Mth1491 folding were determined based on the fit of those 
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curves, so inaccurate baselines would result in inaccurate fit and thus in poorly defined 

characterisation of the protein folding.  When measured in citrate buffer, the native and 

unfolded baselines of Mth1491 denaturation and renaturation curves were less scattered and 

therefore better defined. Citrate buffer were therefore used to prepare all subsequent 

denaturation and renaturation curves. 

As shown in Figure 3.6, the midpoint of the renaturation curve measured in citrate 

buffer is far from the one of the denaturation curve, meaning that the equilibrium time may be 

long. In order to make this time shorter, the effect of a stabilizing salt on Mth1491 

denaturation curve midpoint and equilibrium time was investigated as described in the next 

section.  

3.3.3.2 Salt effect on midpoint  

Figure 3.7 shows the effect of salt concentration on the denaturation curve midpoint 

for Mth1491. In Na2SO4 (stabilising conditions), the midpoint of Mth1491 denaturation curve 

is higher than in presence of NaCl. Moreover, as the concentration of Na2SO4 increases, the 

midpoint of the denaturation curve increases as well. An increase in the midpoint of the 

denaturation curve is usually characteristic of the stabilisation of the protein as more 

denaturant is required to make the protein unfold. Therefore, the stabilising effect of Na2SO4 

is stronger than the one of NaCl and increases with salt concentration. This is consistent with 

expected relative effects of these salts based on the Hofmeister series. An increase in 

midpoint was also observed when the curves were monitored in 10% glycerol (data not 

shown), another stabilizing agent. The equilibrium time of denaturation curve should be as 

short as possible in order to prevent the formation of irreversible processes such as chemical 

modification and aggregation. The further apart are the denaturation and renaturation curves, 

the longer it will likely take for the curves to reach the equilibrium. 
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Figure 3.6: Mth1491 renaturation and denaturation measured at pH 6 using different buffer system. 
 A. Mth1491 renaturation curves were measured in acetate (10 mM) buffer at pH 6 after 15 minutes (blue 
diamonds) and 1 day (green triangle) of incubation. Mth1491 denaturation curve was measured after 1 
day of incubation. B. Mth1491 renaturation (blue diamonds) and denaturation (red squares) curves of 
Mth1491 measured in citrate buffer (20 mM) after 1 day of incubation at pH 6. C. Mth1491 renaturation 
(blue diamonds) and denaturation (red squares) curves measured in succinate buffer (25mM) at pH 6 
after 1 day of incubation. Samples contained 1 μM (trimer concentration) Mth1491, 10 mM DTT, 1 mM 
EDTA and 300 mM Na2SO4.   
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3.3.3.3  

 Since this difference is increased by these agents, Na2SO4 and glycerol were not used 

for the preparation of subsequent Mth1491 renaturation and denaturation curves. NaCl was 

therefore used as salt at a final concentration of 450mM. 

In summary, Mth1491 folds reversibly at pH 6 in 20 mM citrate buffer with 10 mM 

DTT, 1mM EDTA and 450mM NaCl. 

 

Figure 3.7: Effect of salt on Mth1491 stability.  
Mth1491 denaturation curves measured after 1 day of incubation 20 mM citrate buffer with 300 mM 
Na2SO4 (blue diamonds), 200 mM Na2SO4 (red squares) and 450 mM (green triangle). Samples contained 
1 μM (trimer concentration) Mth1491, 10 mM DTT, 1 mM EDTA and 20 mM sodium citrate at pH 6. 
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3.3.4 Equilibration time for Mth1491 GdmCl curves 

Having explored optimal buffer conditions for maximizing reversibility and 

minimizing time required for equilibration, denaturation and renaturation curves were 

prepared and the equilibration time was investigated further. First, Mth1491 denaturation and 

renaturation curves were measured every day for one week (data not shown). The signal of 

points of Mth1491 renaturation and denaturation curves kept decreasing as the curves were 

remeasured. This decrease was probably caused by aggregation of Mth1491 due to the 

oxidation of the free cysteines (Figure 2.5). In order to avoid aggregation, samples were kept 

under N2 throughout the equilibration time and were discarded after measurements were 

made rather than remeasuring the same solution. Figure 3.8 shows Mth1491 denaturation and 

renaturation curves measured after various equilibration times. The first part of the transition, 

at a concentration of GdmCl lower than 2.5M, seems to reach equilibrium before 14 days of 

incubation. The difference between the equilibration time of the first and second part of the 

transition suggests that Mth1491 folding may not occurs via a simple 2 state mechanism but 

through a more complex mechanism, such as the formation of a trimeric intermediate (Figure 

4.6). The denaturation and renaturation curves are only fully coincident, and hence clearly at 

equilibrium, after 23 days of sample incubation (Figures 3.8 C and D). However, equilibrium 

seems to be reached faster for renaturation curves than for denaturation curves. As shown in 

Figure 3.9, Mth1491 renaturation curves required 4 days of incubation time to reach the 

equilibrium. Therefore, renaturation curves measured at different protein concentration were 

used to further investigate Mth1491 folding mechanism (Chapter 4).  
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Figure 3.8: Reversible equilibrium curves of Mth1491.  
Mth1491 renaturation (red squares) and denaturation (blue diamonds) curves measured by fluorescence 
after incubation time of 14 days (A), 19 days (B), 23 days (C) and by circular dichroism after an 
incubation time of 23 days (D). Samples contained 1 μM (trimer concentration) Mth1491, 20 mM sodium 
citrate, 450mM NaCl, 10mM DTT, and 1mM EDTA, pH 6. 
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Figure 3.9: Equilibrium time for Mth1491 renaturation curve. 
 Mth1491 renaturation curves were measured by fluorescence spectroscopy after 3 (blue diamonds) and 4 
days (red squares) of incubation. Samples contained 3 μM (trimer concentration) Mth1491, 20 mM 
sodium citrate, 450 mM NaCl, 10 mM DTT, and 1 mM EDTA, pH 6. 
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4 Equilibrium studies of Tm0979 and Mth1491 folding 

4.1 Introduction 

4.1.1 Protein folding 

One of the great unsolved problems of science is the prediction of the three 

dimensional structure of a protein from its amino acid sequences: the ‘folding problem’ 

(Fersht,1999). At physiological conditions, proteins undergo reversible transition between 

their native (N) and unfolded (U) states. In its unfolded or denatured state, the protein makes 

many interactions with solvent (water). Upon folding, the protein exchanges those 

noncovalent interactions with others that it makes within itself. Its hydrophobic side chains 

pack with one another and its hydrogen bond donors and acceptors pair with each other to 

form hydrogen-bonded networks, (Fersht,1999). The formation of these interactions makes 

the native state marginally more stable than the unfolded state (Figure 4.1).  

 

Figure 4.1: Reaction coordinate diagram of protein folding. 
N, U and TS‡ are the native and unfolded state.  
∆GU = GU – GN where ∆GU represent the free energy of unfolding GN is the free energy in the native state 
and GU is the free energy in the unfolded state. 
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 In this thesis, the stability of Tm0979 dimer and Mth1491 trimer were investigated by 

denaturant titration monitored by fluorescence spectroscopy and CD (spectroscopic details in 

section 3.2.2.1). The most commonly used denaturants are guanidinium chloride (GdmCl) and 

urea. The effects of these denaturants on protein stability are illustrated in Figure 4.2, and can 

be explained by energetic considerations. Denaturants solubilise all the constituent parts of 

the protein, i.e the polypeptide backbone as well as amino acid side chains (Fersht,1999). The 

free energy of transfer of the side chains and polypeptide backbone from water to solution of 

denaturant is linearly proportional to the concentration of denaturant (Tanford,1968; 

Tanford,1970). As the denatured state is more exposed to solvent than the native state, the 

denatured state is preferentially stabilized by denaturant. The free energy of unfolding at any 

GdmCl concentration ∆GU
GdmCl is expressed by the following equation: 

∆GU
GdmCl = ∆GU – mU[GdmCl]          (4.1) 

where ∆GU
GdmCl, is the free energy of unfolding at a specific GdmCl concentration, ∆GU is the 

free energy of unfolding in water, mU, is a constant of proportionality and is proportional to 

the change in accessible surface area upon unfolding. ∆GU and mU can be determined by 

fitting denaturation curves of a protein to the appropriate folding mechanism.  
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Figure 4.2: Gibbs free energy diagram of native (N), intermediate (I) and unfolded (U) states as a function 
of denaturant concentration. 
As denaturant concentration is increased all states are thought to be stabilized,  in proportion to their 
extent of exposed surface area,  i.e. U is stabilized more than I, which is stabilized more than N, which is 
taken as the reference state here and so shown as having stability not altered by denaturant concentration. 
The figure is taken from (Fersht A, 1999).   
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4.1.2 Spectroscopic probes 

As referred to the Section 4.1.1, the stability of the Tm0979 dimer and the Mth1491 

trimer were investigated by measuring changes in fluorescence and CD signal upon unfolding 

and refolding. Changes in fluorescence in proteins are dominated by changes in tryptophan 

(Trp), tyrosine (Tyr) and/or phenylalanine (Phe) solvent exposure or hydrophobic 

environment whereas changes in CD signals are related to changes in secondary and tertiary 

structure. Figure 4.3 and 4.4 show the position of the Trp, Tyr and Phe in the Tm0979 dimer 

and Mth1491 trimer, respectively. Fluorescence is generally dominated by Trp, which 

typically has higher fluorescence than Phe and Tyr. For both proteins, the Trp residues are 

solvent exposed, however, the Trp residues in Tm0979 are further from the subunit interface 

than the ones in the Mth1491 trimer. Therefore, Tm0979 dimer dissociation would not be 

expected to be characterized by a significant change in fluorescence emission compared to the 

one due to monomer unfolding. However, as shown in Figure 4.4, Trp located on Mth1491 

trimer are relatively close to the trimer interface and changes in Trp emission are more likely 

to occur for both trimer dissociation and monomer unfolding. The observed changes in Trp 

fluorescence will be discussed in more detail in sections 4.3 and 4.4. 
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Figure 4.3: Location of tryptophan, phenylalanine and tyrosine residues in Tm0979 dimer. 
Each of the Tm0979 subunits is coloured in different colour (gold and grey). The Trp residues are 
coloured in green lines, the Tyr in red and the Phe in blue. Ribbon diagrams were generated using 
MolMol (Koradi et al.,1996) using PDB accession code 1x9a. 
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Figure 4.4: Location of tryptophan, phenylalanines and tyrosines residues in Mth1491 trimer.  
A. View from one side of the C3 axis of the trimer. B. View from the opposite side of the C3 axis. Each of 
Mth1491 subunit is coloured in different colour (gold, grey and light blue). The Trp residues are coloured 
in green lines , the Tyr in red and the Phe in blue. Ribbon diagrams were generated using MolMol 
(Koradi et al.,1996) using PDB accession code 1l1s.   
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4.2 Methods 

4.2.1 Denaturation and renaturation curve sample preparation 

See section 3.2.1. 

4.2.2 Measurment of denaturation and renaturation curves 

See section 3.2.2. 

4.2.3 Analysis of the curves 

In order to determine the appropriate models for describing Tm0979 and Mth1491 

unfolding, denaturation and renaturation curves were fit to different models corresponding to 

dimer and trimer dissociation without or with the formation of an intermediate. The dimer and 

trimer unfolding models are summarised in Tables 4.1 and 4.2 and Figures 4.5 and 4.6. 

4.2.3.1 Two-state mechanism 

For a dimeric or trimeric proteins, equilibrium denaturation curves are dependent upon 

protein concentration, as illustrated in Figures 4.5 B and 4.6 A.  Unlike monomeric proteins 

which unfold by a two-state mechanism and have a symmetrical sigmoidal transition that is 

independent of protein concentration (Figure 4.5A), for dimeric proteins the transition is 

slightly asymmetric, being skewed towards lower denaturant concentration.  The shape is 

unchanged with increasing protein concentration; however, as expected for an oligomeric 

system, due to mass action (Le Châtelier’s principle), the midpoint shifts to higher denaturant 

concentration. As protein concentration increases, the ratio of dimer to unfolded monomer 

will increase, in order to satisfy the equilibrium constant. In contrast, for a monomeric 

protein, because the transition does not involve a change in molecularity, the ratio is 

independent of protein concentration. 
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Table 4.1: Dimer equilibrium unfolding mechanisms.  

 
a, Dimer 2-state mechanism: N2, [N2] and fN2are the native dimer, its concentration and its fraction, respectively, U, [U] and fU are the unfolded monomer, its 
concentration and its fraction, ∆GU is the free energy of unfolding, GU and GN2 is the free energy in the unfolded and native state, R is the Gas constant (R= 0.00198 
kcal.K-1.mol-1), T is the temperature (T = 298K), KU is the equilibrium constant of unfolding. b, Dimer 3-state monomer intermediate mechanism: I, [I] and fI are 
the monomer intermediate, its concentration and its fraction; ∆GU1 is the free energy of dissociation of the native dimer to monomeric intermediates, ∆GU2 is the 
free energy of unfolding of the monomer intermediate, GI is the free energy of the monomeric intermediate, KU1 is the equilibrium constant of dissociation and KU2 
equilibrium constant of monomer intermediate unfolding. c, Dimer 3-state dimer intermediate mechanism: I2, [I2] and fI2 are the dimer intermediate, its 
concentration and its fraction; ∆GU1 is the free energy of unfolding of the native dimer to dimeric intermediate, ∆GU2 is the free energy of simultaneous dissociation 
and unfolding of the dimer intermediate, KU1 is the equilibrium constant of native dimer unfolding to dimer intermediate and KU2 equilibrium constant of 
dissociation and unfolding of dimer intermediate. All the concentrations are expressed in dimer equivalent. P, total protein concentration, is expressed as dimer 
equivalent, YN2, YU, YI, YI2, signal of the various states, fN2, fU, fI, fI2, the fraction of each species.   
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Figure 4.5: Simulation of a monomer 2-state, dimer 2-state and dimer 3-state folding. 
A. Simulation of a monomer 2-state folding (∆GU = 7.5 kcal.mol-1, mU = 2.5 kcal.mol-1).  B. Simulation of a 
dimer 2-state folding (∆GU = 15 kcal.mol-1, mU = 3 kcal.mol-1).  C. Simulation of a dimer 3-state with 
monomer intermediate folding (∆GU1 = 11kcal.mol-1, ∆GU2 = 7.5kcal.mol-1, mU1 = 2.7 kcal.mol-1 and mU1 = 2 
kcal.mol-1).  D. Simulation of a dimer 3-state with dimer intermediate folding (∆GU1 = 7 kcal.mol-1, ∆GU2 = 
14 kcal.mol-1, mU1 = 4 kcal.mol-1 and mU1 = 3 kcal.mol-1). 
Signal of the native dimer, intermediate and unfolded protein are fixed to 1, 0.5 and 0, respectively. 
Curves are simulated at protein concentration of 0.5 μM (blue diamonds), 5 μM (red squares), 50 μM 
(green triangles) and 500 μM (purple circles). Protein concentration is expressed in dimer equivalent. 
Simulations calculated using equations of Table 4.1. 
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4.2.3.2 Three-state mechanism 

A 3-state equilibrium denaturation of a dimer or trimer may involve either a 

monomeric, dimeric or trimeric intermediate (Tables 4.1 and 4.2).  In general, an inflection in 

an equilibrium curve is an indication of the population of an intermediate, both for 

monomeric and dimeric proteins (Figures 4.5 and 4.6); however, as a general trend, for 

dimeric (trimeric) proteins a monomeric intermediate is populated more as protein 

concentration is decreased whereas a dimeric (trimeric) intermediate is populated more as 

protein concentration is increased. The increase of the corresponding intermediate can be 

observed by an increase in the inflection in the equilibrium curve as shown in Figures 4.5 C, 

D and 4.6 B, C.  It should be noted, though, that depending on the nature of both transitions, 

for some protein concentrations only the native dimer and unfolded monomer are significantly 

populated and as a result equilibrium transitions will appear two-state. It is important for this 

reason to perform equilibrium curves at a range of protein concentrations in order to define 

the mechanism of unfolding.  Note that when an intermediate is not significantly populated, 

fitting to a 2-state model will give the same overall ΔGU and mU as appropriate 3-state fitting 

when the intermediate is populated; however, in the former case no information is obtained 

for the intermediate.   

Dimer or trimer unfolding without the formation of intermediates are characterised by 

ΔGU and mU (Equation 4.1). On the other hand, models describing dimer or trimer folding via 

the formation of intermediates are characterised by ΔGU1, ΔGU2, mU1 and mU2. If the 

intermediate is a monomer, ΔGU1 is the free energy of dimer dissociation in water which leads 

to the formation of the monomeric intermediate, mU1 is proportional to the change in solvent 

exposed area upon this first step, ΔGU2 is the free energy of monomer intermediate unfolding 

in water and mU2 is proportional to the change solvent exposed area upon this second step.  
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Table 4.2: Trimer equilibrium unfolding mechanisms.  

 
a, Trimer 2-state mechanism: N3, [N3] and fN3are the native trimer, its concentration and its fraction, respectively, U, [U] and fU are the unfolded monomer, its 
concentration and its fraction, ∆GU is the free energy of unfolding, GU and GN3 is the free energy in the unfolded and native state, R is the Gas constant (R= 0.00198 
kcal.K-1.mol-1), T is the temperature (T = 298K), KU is the equilibrium constant of unfolding. b, Trimer 3-state monomer intermediate mechanism: I, [I] and fI are 
the monomer intermediate, its concentration and its fraction; ∆GU1 is the free energy of dissociation of the native trimer to monomeric intermediates, ∆GU2 is the 
free energy of unfolding of the monomer intermediate, GI is the free energy of the monomeric intermediate, KU1 is the equilibrium constant of dissociation and KU2 
equilibrium constant of monomer intermediate unfolding. c, Trimer 3-state trimer intermediate mechanism: I3, [I3] and fI3 are the trimer intermediate, its 
concentration and its fraction; ∆GU1 is the free energy of unfolding of the native trimer to trimer intermediate, ∆GU2 is the free energy of simultaneous dissociation 
and unfolding of the trimer intermediate, KU1 is the equilibrium constant of native trimer unfolding to trimer intermediate and KU2 equilibrium constant of 
dissociation and unfolding of trimer intermediate. P is the total protein concentration. All the concentrations are expressed in trimer equivalent. YN3, YU, YI, YI2, 
signal of the various states, fN3, fU, fI, fI2, the fraction of each species. 
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Figure 4.6: Simulation of  trimer 2-state and trimer 3-state folding. 
 A. Simulation of trimer 2-state folding (∆GU = 30 kcal.mol-1, mU = 6 kcal.mol-1).  B. Simulation of trimer 3-
state with monomer intermediate folding (∆GU1 = 21.5 kcal.mol-1, ∆GU2 = 12 kcal.mol-1, mU1 = 3.5 kcal.mol-1 
and mU1 = 3 kcal.mol-1).  C. Simulation of trimer 3-state with trimer intermediate folding (∆GU1 = 7 
kcal.mol-1, ∆GU2 = 21 kcal.mol-1, mU1 = 4 kcal.mol-1 and mU1 = 3.5 kcal.mol-1). Signal of the native trimer, 
intermediate and unfolded protein are fixed to 1, 0.5 and 0, respectively. Curves are simulated at protein 
concentration of 0.5 μM (blue diamonds), 5 μM (red squares), 50 μM (green triangles) and 500 μM 
(purple circles). Protein concentration is expressed in trimer equivalent. Simulation calculated using 
equations of Table 4.2. 
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If the intermediate is an oligomer (dimer or trimer), ΔGU1 is the free energy of 

formation of the oligomeric intermediate in water, mU1 is proportional the change in solvent 

exposed area associated with this step, ΔGU2 is the free energy of dissociation of the 

oligomeric intermediate and the unfolding of the monomers and mU2 is proportional to the 

change in solvent exposed area associated with this second step. 

4.2.4 Fitting of the curves 

Fitting of the experimental curves was performed using OriginPro7.5 (OriginLab) and 

MATLAB R2007a according to different models (Tables 4.1 and 4.2). First, the denaturation 

or renaturation curves measured at different protein concentration were scaled by aligning the 

native protein and the unfolded protein signals. Then, the folded slope and intercepts (Sf and 

Bf, respectively) were determined by linear regression by selecting the data at low GdmCl 

concentration, i.e. before the transition region, where the measured signal corresponds to the 

native protein signal. The unfolded slope and baseline (Su and Bu, respectively) were 

determined by linear regression by selecting the data at high GdmCl concentration, i.e. after 

the transition region, where the measured signal corresponds to the unfolded protein signal. 

The equilibrium curves were then globally fit by fixing Bu, Su, Bf and Sf to the values 

determined previously by linear regression. The thermodynamic constants were shared and 

allowed to be varied. For the models involving an intermediate, its fluorescence was allowed 

to vary and its slope was fixed to 0.  
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4.3 Results 

4.3.1 Tm0979 unfolding involves formation of a monomeric intermediate 

4.3.1.1 Determination of Tm0979 folding mechanism 

Tm0979 equilibrium chemical denaturation curves monitored by fluorescence 

spectroscopy as well as far UV CD were globally fit to various dimer folding models (Table 

4.1) with two different fitting programs: OriginPro7.5 and MATLAB R2007a. Tm0979 

denaturation curves at various protein concentrations measured by fluorescence and CD were 

initially fit globally (i.e. simultaneously) to the dimer 2-state mechanism, which describes the 

concurrent dissociation and unfolding of native dimer to unfolded monomers: N2 ↔ 2U. 

(Table 4.3, Figures 4.7). ∆GU and mU were shared among the different denaturation curves. 

As shown in Figure 4.7, the dimer 2-state model does not fit the data properly and other 

models need to be considered.  

  ∆GU1 
(kcal.mol-1) 

∆GU2 
(kcal.mol-1)

mU1  
(kcal.mol.M-1)

mU2  
(kcal.mol.M-1)

Signal of the  
intermediate 

Slope of the  
intermediate 

Dimer 2-state  
 
OriginPro 7.5  
Fluorescence 
CD 
 
MATLAB R2007a 
Fluorescence 
CD 

 
 
 
21.53 ± 1.05 
15.42 ± 0.95 
 
 
21.15 ± 1.46 
15.14 ± 1.36 

 
 
 

- 
- 
 
 
- 
- 

 
 
 
4.66 ± 0.34 
3.04 ± 0.31 
 
 
4.53 ± 0.46 
2.93 ± 0.44 

 
 
 
- 
- 
 
 
- 
- 

 
 
 
- 
- 
 
 
- 
- 

 
 
 
- 
- 
 
 
- 
- 

 
Dimer 3-state (I) 
 
MATLAB R2007a 
Fluorescence 
CD 

 
 
 
 
7.2 
7.2 

 
 
 
 
6.2 ± 0.3 
2.8 ± 0.7 

 
 
 
 
0.6 ± 0.2 
0.2  ± 0.3 

 
 
 
 
2.0 ± 0.10 
1.2 ± 0.2 

 
 
 
 
6.46 ± 0.18 x107 
-22.6 ± 2.7 

 
 
 
 
4.3 ± 1.1x106

-6.7 ± 3.2 
For the parameters of the dimer 2-state mechanism, ∆GU1 represents the free energy of unfolding, mU1 is 
characteristic to the change in solvent exposed area upon unfolding. For the dimer 3-state mechanism, 
∆GU1 represents the free energy of dimer dissociation and monomeric intermediate formation, ∆GU2 
represents the free energy of the monomeric intermediate unfolding, mU1 is characteristic to the change in 
solvent exposed area upon dimer dissociation and monomeric intermediate formation and mU2 is 
characteristic to the change in solvent exposed area upon monomeric intermediate unfolding. The signal 
of the intermediate corresponds to the fluorescence and CD signal of the monomeric intermediate based 
on the denaturation curve fit. Note: for dimer-3state fit, ∆GU1was fixed to 7.2 kcal.mol-1 corresponding to 
Kd value for dimer in water as measured by SEC and DLS (Section 4.3.1.2). 

Table 4.3: Thermodynamic parameters from fitting of GdmCl Curves of Tm0979.
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Figure 4.7: OriginPro 7.5 fit of Tm0979 fluorescence- and CD-monitored denaturation curves to dimer 2-
state model.   
A. Tm0979 denaturation curves measured by fluorescence spectroscopy at 0.5 (blue diamonds), 2.5 (red 
squares), 5 (green triangles) and 25 μM (violet crosses) protein.  B. Tm0979 denaturation curves measured 
by circular dichroism at 5 (green triangles) and 25 μM (violet crosses) protein. Tm0979 concentrations are 
given in dimer equivalents.   The lines of best fit are plotted in the same colour as the corresponding fitted 
data. The fitting was performed with OriginPro 7.5 and equations used are those describing the dimer 2-
state folding mechanism (Table 4.1).  Fitted values are summarized in Table 4.3. 
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The curves were then fit to the dimer 3-state model with monomer (I) or dimer (I2) 

intermediate. Dimer 3-state model with dimer intermediate did not fit well the experimental 

denaturation curves. Actually, experimental denaturation curves shift slightly with protein 

concentration at GdmCl concentration lower than 2M, i.e, before the beginning of the 

transition observed by fluorescence or CD. Based on the simulation of 3-state folding, this 

trend is very different from those expected for a dimeric intermediate (Figure 4.5, Table 4.1). 

However, this trend is more likely due to the formation of monomeric intermediate. Actually, 

dimer 3-state mechanism with monomer intermediate well describes the experimental data. 

This mechanism consists of the dissociation of the native dimer to form a monomeric 

intermediate which then unfolds: N2 ↔ 2I ↔ 2U.      

4.3.1.2 Characterisation of the Tm0979 native dimer and monomeric intermediate 

The first step of the mechanism of Tm0979 consists of the dissociation of dimer. 

Tm0979 dimer was previously characterized by size exclusion chromatography (SEC) and 

static light scattering experiments (SLS) (Figures 4.8 and 4.9) and dissociation constant (Kd) 

in absence of denaturant was calculated based on the results of these experiments. Figure 4.8 

shows the results of SEC experiments (KA Vassal, E.M Meiering, unpublished experiments). 

The percentage of dimer was calculated and plotted as a function of protein concentration. 

The Kd determined based on the fit of this plot corresponds to 2.6 ± 0.5 μM. Figure 4.9 shows 

the Debye plot resulting from SLS measurements and corresponds to a Kd of 6 μM. 

Isothermal calorimetry (ITC) experiments were conducted on Tm0979 dimer and results in a 

Kd of 26 ± 10μM. However, due to the high uncertainty of this value, Kd determined by ITC 

was not taken into account. An average value of 5 μM was used as Kd with corresponding 

value of ∆GU1 fixed to 7.2 kcal.mol-1. ∆GU2, mU1 and mU2 were allowed to vary. These 

equilibrium constants were shared among the different denaturation curves.  
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Figure 4.8: Characterisation of Tm0979 dimer by Size exclusion Chromatography (SEC) experiments. 
A. Overlaid Elution profiles of Tm0979 at different concentrations. Various concentrations of Tm0979, 
expressed in the figure as monomer equivalents, were loaded onto a Superdex column. The absorbance 
values for the different elution profiles were normalized to better facilitate comparison. The position of 
elution is represented by Ve/Vo, where Ve is the elution volume of the peak and Vo is the void volume as 
determined by the elution volume of the totally excluded blue dextran. For Tm0979, samples of 
concentrations 0.0219, 0.0875, 0.35 and 1.75 mg/mL, 2mL were injected onto the column. For the higher 
concentration Tm0979 samples, 10 mg/mL, 30 mg/mL and 44 mg/mL, 1mL, 0.8 mL and 0.6 mL  
respectively was injected. All protein samples contained 450 mM NaCl and 25 mM Phosphate at pH 6.5. 
The samples were eluted with buffer containing 450 mM NaCl 25 mM phosphate at pH 6.5 at a flow rate 
of 2 ml/min. The elution positions of the various Tm0979 samples were compared to the standards 
Ovalbumin, beta-lactaglobulin, carbonic anhydrase, trypsin Inhibitor, cytochrome C. The column void 
volume was determined by the elution of the totally excluded solute blue dextran from the column.  B. Kd 
value for Tm0979 as determined by gel filtration chromatography performed at different concentrations. 
The above shows a plot of % dimer vs. concentration in dimer equivalents. The data points represent 
actual data while the curve represents the fit of the data points to equation the following equation: 
%D = ((8[D] + Kd) – (Kd

2 + 16 Kd[D])1/2)/0.08[D], where [D] is the concentration of Tm0979 dimer (with 
column dilution) and Kd is the dissociation constant.  
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By comparing the uncertainty of those values determined by fluorescence and by CD, the 

values were better determined by fluorescence experiment. 

Actually, the amplitude of the transition measured by CD is quite small and the native 

and unfolded baselines were not well defined (Figure 4.10). This leads to less accurate fitted 

values as discussed previously in section 3.3.3.1 and will not be considered in the rest of the 

discussion. Based on the fit of the experimental data measured by fluorescence, ∆GU2 is 6.2 

kcal.mol-1 and ∆GUtotal = ∆GU2 + 2∆GU2 = 19.6 kcal.mol-1.The values of mU1 and mU2 are 0.6 

and 2.01 kcal.mol-1.M-1, respectively, which corresponds to a total mUtotal, munfolding = mU1 + 

2mU2, of 4.6 kcal.mol-1.M-1. mU1 is very small compared to mU2 meaning that more surface 

area per monomer is exposed upon monomer unfolding than upon dimer dissociation. 

Theoretical mU values were calculated using empirical equations (Myers et al.,1995) and are 

summarized in Table 4.4. In fact, Myers and co-workers gathered equilibrium constants 

determined for different proteins, monomeric and oligomeric, and  observed a linear 

Figure 4.9: Debye Plot of Tm0979. KC/R is plot as a function of protein concentration.
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correlation between the number of amino acids of a protein and the solvent exposed area 

(ΔASA) upon its folding (ΔASA = (-907 + 93(number of amino acids per protein)). Moreover, 

they observed a linear correlation between ΔASA and mU determined by equilibrium studies 

conducted for those proteins. Different correlation were observed depending on the denaturant 

used to study the protein unfolding (for GdmCl, mU = 859 + 0.22ΔASA). 

Based on the number of amino acids of Tm0979 dimer and Tm0979 monomer, 

theorical munfolding and mmonomer unfolding were calculated and correspond to 4.2 and 2.4 kcal.mol-

1.M-1 (Table 4.4), respectively and were compared to mUtotal and mU2. Theoretical m values are 

very similar to the ones determined from the curve fitting to the dimer 3-state model.  

Table 4.4: Interface characteristics of Tm0979 and Mth1491. 
Protein Tm0979 Mth1491 
Pdb code 1x9a 1l1s 
Number of amino acids per subunit 87 111 
munfolding (kcal.mol-1.M-1)† 4.2 7.5 
Interface area (Å)* 1077 1438
mdissociation (kcal.mol-1.M-1) ‡ 1.3 1.8 
mmonomer unfolding (kcal.mol-1.M-1) ‡ 2.4 2.9 
% of monomer buried in the 

interface♦ 
20 25 

% polar residues in the interface 
per monomer# 

25 30 

†munfolding calculated based on the following equations (Myers et al.,1995):  
ΔASA = (-907 + 93(number of amino acid of the protein)) 
*Calculation for interface characterisation made using Getarea (http://pauli.utmb.edu/cgi-
bin/get_a_form.tcl):  
Interface area = (2 x surface area of monomer – surface area of dimer)/2 
‡mdissociation and mmonomer unfolding calculated with the following equation (Myers et al.,1995): 
m = 859+0.22 x ΔASA 
ΔASAdissociation = 2 x Interface area 
ΔASAmonomer unfolding = (surface area of unfolded monomer –surface area of monomer) 
Accessible surface area of unfolded monomer were estimated using the following website 
http://roselab.jhu.edu/utils/unfolded.html ♦% monomer buried is the % of surface area buried within the 
interface per monomer and is calculated as follow: %monomer buried = (Interface area) / (surface area of 
monomer) 
#% polar residues is the amount of polar residues buried at the interface per monomer and is calculated as 
follow: % polar residues = (2 x polar surface area of monomer – polar surface area of dimer) / (interface 
area) 
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Actually, mU2 for unfolding of the experimental intermediate (2.01 kcal.mol-1.M-1) (Table 

4.3) is smaller than the predicted value of mmonomer unfolding = 2.6 kcal.mol-1.M-1based on the 

crystal structure (Table 4.4). This also suggests that less buried surface is exposed upon 

monomeric intermediate unfolding than expected, due to the experimental intermediate 

having an expanded structure. An alternative explanation for the relatively low value of mU2 

could be incomplete unfolding of Tm0979 monomeric intermediate due to the presence of 

residual structure in the unfolded monomers.  

Considering the monomeric intermediate fluorescence (6.46 x107) and CD signal       

(-22.6), the values are clearly different from those of the native dimer (fluorescence: 7.3 

x107,CD:  -26.6), but are still closer to native dimer than to unfolded monomer (fluorescence: 

1.5 x107,CD:  -24.3)  (Figure 4.10 and Table 4.3).  

In summary, Tm0979 equilibrium unfolding is not a simple 2-state process. Actually, 

at GdmCl concentration below 3M, an inflection is observed and is more pronounced at lower 

protein concentrations. Moreover, the data are well described by a dimer 3-state mechanism 

and the formation of a monomeric intermediate is confirmed by previous experiments (SEC, 

SLS). The characteristics of this intermediate are discussed further in Section 4.4.     
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Figure 4.10: MATLAB fit of Tm0979 fluorescence and CD denaturation curves to dimer 3-state model  
with monomeric intermediate. 
A. Tm079 denaturation curves measured by fluorescence spectroscopy at 0.5 (blue diamonds), 2.5 (red 
squares), 5 (green triangles) and 25 μM (violet crosses) protein. B. Tm0979 denaturation curves measured 
by CD at 5 (green triangles) and 25 μM (violet crosses) protein. Tm0979 concentration is expressed in 
dimer equivalent. The fit traces are plotted in the same colour as the data fitted. The fitting was 
performed with MATLAB R2007a and equations used are those describing the dimer 3 state folding 
mechanism via the formation of a monomeric intermediate (Table 3.1). Fitted constants are summarized 
in Table 4.3. The fitted values of the denaturant independent fluorescence and CD of the intermediate are 
7.14 ± 0.04x107 and -22.6, respectively.  There are points of inflection at ~ 2.8-3 M GdmCl, indicating 
formation of monomeric intermediate. 
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4.3.2 Mth1491 may fold via the formation of a trimer intermediate 

Mth1491 equilibrium chemical renaturation curves monitored by fluorescence as well 

as CD were globally fit to trimer folding model (Table 4.2) using MATLAB R2007a. 

Limitations in formulation of equations did not allow for data fitting using OriginPro 7.5.  

The Mth1491 renaturation curves were initially globally fit to the trimer 2-state mechanism, 

which consists of the concurrent dissociation and unfolding of native trimer to unfolded 

monomers: N3 ↔ 3U (Table 4.5, Figures 4.11). ∆GU, the Gibbs free energy of unfolding for 

the trimer and mU, the dependence of ∆GU on denaturant concentration, were shared while 

simultaneously fitting the different denaturation curves. As shown in Figure 4.11, the trimer 

2-state model fit the data quite well. However, there is a consistent deviation between the 

experimental data and the lines of best fit for the last part of the transition, for GdmCl 

concentration higher than 2.2M. Actually, the experimental data have a higher fluorescence 

signal than the one predicted by the fit. This deviation from the fit is more pronounced at high 

protein concentration.  

Table 4.5: Thermodynamic parameters from GdmCl Curves of Mth1491. 
  ∆GU1 

(kcal.mol-1) 
∆GU2  
(kcal.mol-1) 

mU1  
(kcal.mol.M-1) 

mU2 
(kcal.mol.M-1) 

Signal of the  
intermediate 

Trimer 2-state  
MATLAB R2007a 
 
Fluorescence 
CD 

 
 
 
45.06 ± 1.10 
37.89 ± 1.57 

 
 

 
- 
- 

 
 
 
13.51 ± 0.50 
10.24 ± 0.68 

 
 
 
- 
- 

 
 
 
- 
- 

 
Trimer 3-state (I3) 
MATLAB R2007a 
 
Fluorescence 
CD 

 
 
 
 
17.18 ± 0.58 
17.21 ± 4.42 

 
 
 
 
26.36 ± 1.29 
25.21 ± 5.59 

 
 
 
 
7.27 ± 0.22 
7.25 ± 1.75 

 
 
 
 
5.45 ± 0.63 
5.02 ± 2.17 

 
 
 
 
4.09 ± 0.17 x107 
-12  

For the parameters of the trimer 2-state mechanism, ∆GU1 represents the free energy of unfolding, mU1 is 
related to the change in solvent exposed area upon unfolding. For the trimer 3-state mechanism, ∆GU1 
represents the free energy of trimer unfolding to a trimeric intermediate, ∆GU2 represents the free energy 
of dissociation and unfolding of the trimeric intermediate to three unfolded monomers, mU1 is 
characteristic to the change in solvent exposed area upon the trimeric intermediate formation from 
Mth1491 native trimer and mU2 is related to the change in solvent exposed area upon the dissociation and 
unfolding of the trimeric intermediate. The signal of the intermediate corresponds to the fluorescence and 
CD signal of the trimeric intermediate based on the fit of the denaturation curves. 
 



71 
 

 

Figure 4.11: MATLAB R2007a fit of Mth1491 fluorescence and CD denaturation curves to a trimer 2-
state model.  
A. Mth1491 renaturation curves were measured by fluorescence spectroscopy at 0.1 μM (blue diamonds), 
0.33 μM (red squares), 1 μM (green triangles), 2 μM (orange circles), 3 μM (violet circles) protein.  B. 
Mth1491 renaturation curves were measured by circular dichroism at 1 μM (green triangles), 2 μM 
(orange circles), 3 μM (violet circles) protein.  Mth1491 concentration is expressed in trimer equivalent. 
The fit traces are plotted in the same colour as the data fitted. The fitting was performed with MATLAB 
R2007a and equations used are those describing the trimer 2-state folding mechanism (Table 4.5).   

 



 
72

 By comparing this observation with the simulation of trimer folding (Table 4.2 and 

Figure 4.6), the inflection observed at GdmCl concentration higher than 2.2M suggests the 

formation of a trimeric intermediate. Another explanation would be that the renaturation 

curves are not quite at equilibrium and that the deviation is due more to an equilibration time 

problem than to the formation of a trimeric intermediate.  

The curves were also fit to the trimer 3-state model with monomer (I) or trimer (I3) 

intermediate. The trimer 3-state model with monomer intermediate fit the data to a 

comparable extent as the trimer 2-state model for the last part of the transition, i.e. there were 

still some systematic deviations between the data and the fits (fits not shown). However, the 

trimer 3-state with trimeric intermediate model fit the whole curves very well. This 

mechanism involves the formation of the trimeric intermediate from the native trimer, and 

subsequent concurrent dissociation and unfolding of the trimeric intermediate to form 

unfolded monomers: N3 ↔ I3 ↔ 3U (Figures 4.12 and Table 4.5). ∆GU1 is the Gibbs free 

energy of unfolding of the native trimer into trimeric intermediate, ∆GU2, the Gibbs free 

energy of trimeric intermediate dissociation and unfolding to form three unfolded monomers, 

mU1 and mU2 are the dependence of ∆GU1 and ∆GU2, respectively, on denaturant concentration. 

The average fitted values of ∆GU1 and ∆GU2  are 17.20 and 25.79  kcal.mol-1, respectively, 

which corresponds to an overall Gibbs free energy of unfolding of 43 kcal.mol-1 (∆GUtotal = 

∆G1 + ∆G2). The average values of mU1 and mU2 are 7.26 and 5.24 kcal.mol-1.M-1, 

corresponding to an overall mUtotal of 12.5 kcal.mol-1.M-1   (munfolding = m1 + m2). This mUtotal 

value is very high compared to the theoretical one based on the empirical equation (7 

kcal.mol-1.M-1). Moreover, the ∆GUtotal is a very high value compared to the overall stability 

of other trimeric protein. Therefore, further experiments are required to confirm the formation 

of a trimeric intermediate, such as cross-linking experiment at different GdmCl concentrations 

and different protein concentrations as discussed in Section 4.4. 
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Figure 4.12: Matlab2007a fit of Mth1491 fluorescence and CD denaturation curves fitted to trimer 3 state 
model (trimeric intermediate). 
A. Mth1491 renaturation curves were measured by fluorescence spectroscopy at 0.1 µM (blue diamonds), 
0.33 µM (red squares), 1 µM (green triangles), 2 µM (orange circles), 3 µM (violet circles). Mth1491 
concentration is expressed in trimer equivalent. The fit traces are plotted in the same colour as the data 
fitted. B. Mth1491 renaturation curves were measured by circular dichroism at 1 µM (green triangles), 2 
µM (orange circles), 3 µM (violet circles). Mth1491 concentration is expressed in trimer equivalent. The fit 
traces are plotted in the same colour as the data fitted. The fitting was performed with MATLAB R2007a 
and equations used are those describing the trimer 3 state folding mechanism via the formation of a 
trimeric intermediate (Table 4.2).  Fitted values are summarized in Table 4.5. 
Intermediate signals: 
Fluorescence: 4.09 ± 0.17 x107 this is really very low i.e. much closer to signal for U than for N3, consistent 
with quite big ∆GUtotal and mU total, also with fluorophore being in the interface. 
CD: -12, this signal is much closer to N3 so the trimeric intermediate still retains most of secondary 
structure, consistent with it still having significant stability. 
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4.4 Discussion 

4.4.1 Tm0979 folding mechanism 

4.4.1.1 Tm0979  monomeric intermediate 

Tm0979 folds from unfolded monomers to native dimer via the formation of 

monomeric intermediate. Formation of the monomeric intermediate is supported by previous 

studies in the lab (SEC, SLS, ITC, G. Meglei, KA Vassal, EM Meiering, unpublished results). 

Those experiments confirmed existence of an equilibrium between dimer and monomer that 

shifted with protein concentration, according to a Kd of ~5μM. These results show that 

Tm0979 has the capacity to form a stable monomer which is consistent with its 3-state folding 

mechanism  

The Gibbs free energy of unfolding of the monomeric intermediate, ∆GU2, is 6.2 

kcal.mol-1, with an mU2 of 2.01 kcal.mol-1 (Table 4.3).   When compared to other monomeric 

protein stabilities (Jackson,1998), the Tm0979 monomer intermediate is quite stable. The 

equilibrium between the native dimer and the monomeric intermediate suggests that the 

monomeric intermediate should be stable enough to be detected in the equilibrium curves and 

that the stability of the monomer may be actually comparable to the stabilities of other 

monomeric proteins. The percentage of buried monomer at the interface is smaller for 

Tm0979 than for dimeric proteins that unfolds via a 2-state mechanism (Figure 4.13 A, 

Appendix A.3: Thermodynamic and kinetic parameters characteristic of chemical induced 

unfolding of dimeric proteins described by a two-state transition). Actually, monomeric 

species of these 2-state dimeric proteins are not stable on their own as the interface area 

exposed to the solvent upon dissociation is bigger; extensive exposure of hydrophobic 

residues to the solvent is highly destabilising.  
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Figure 4.13: Comparison of the percentage of buried monomer surface area buried at the interface for 
Tm0979 and for dimeric proteins that unfold via a 2-state or 3-state mechanism.  
A. % of buried monomer surface at the interface for dimeric proteins that fold via a 2-state mechanism 
plotted as a function of monomer chain length (blue diamonds). B. % of buried monomer at the interface 
for dimeric proteins which fold via a 3-state mechanism plotted as a function of the nature of the 
intermediate (blue diamonds). % buried monomer of Tm0979 % is represented by a red square. I and I2 
represent a monomeric and dimeric intermediate, respectively. % of buried monomer at the interface of 
dimeric proteins is gathered in Appendix 3 and 4.  
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These intermediates are thus not detectable upon unfolding. However, Tm0979 monomer 

is more stable in solution as less buried surface is exposed upon dimer dissociation and 

monomeric intermediate formation and can thus be detected upon unfolding. Moreover, the 

percentage of buried monomer at the dimer interface is similar to the percentage buried at the 

interface of dimeric proteins that unfold via the formation of a monomeric intermediate 

(Figure 4.13 B, Appendix A.4: Thermodynamic and kinetic parameters characteristic of 

chemical induced unfolding of dimeric proteins described by a three-state transition). This 

similarity is consistent with the observation that Tm0979 unfolds through a dimer 3-state 

mechanism with monomer intermediate. 

4.4.2 Mth1491 folding mechanism 

4.4.2.1 Mth1491 folds via a 2-state mechanism or via the formation of a trimeric 
intermediate 

Mth1491 is proposed to fold via a 2-state or 3-state mechanism with a trimer 

intermediate. Further experiments need to be done in order to verify the formation of a 

trimeric intermediate and are discussed in Chapter 6. Whereas folding of many dimeric 

proteins has been analyzed, only a handful of studies have been performed for trimeric 

proteins. It is interesting to compare the results obtained for Mth1491 with those obtained for 

other trimers. The overall stability of Mth1491 is 43 kcal.mol-1 compared to 26 kcal.mol-1 for 

the trimer intermediate. The native trimer is quite stable compared to other studied trimers 

such as Lpp-56 (Bjelic et al.,2006) and SIV trimer (Marti et al.,2004) (ΔGU ~ 20kcal.mol-1), 

which contain 56 and 70 amino acids per monomer, respectively, compared with 111 amino 

acids for Mth1491. However, the stability of Mth1491 trimer intermediate and those trimeric 

proteins are quite similar (∆GU2 = 25.79kcal.mol-1). This suggests that due to its relatively 

larger size, Mth1491 may not be able to fold directly from unfolded monomer to native 

compact trimer.  
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4.4.2.2 Necessity of a trimer intermediate formation for the protein to fold properly 

 The formation of a quite stable trimer intermediate may be a necessary step to 

organise Mth1491 trimeric interface. Each monomer may rearrange its tertiary structure upon 

the second step of the folding mechanism to form the native trimer. The folding mechanism of 

oligomeric proteins tends to involve one or more intermediates upon unfolding as the length 

of their amino acids chain increase and as their oligomeric state increases (Rumfeldt, JA, 

dimer review paper to be published). In vivo, chaperones are often involved in facilitating the 

folding of big complexes. The formation of oligomeric intermediates usually helps the protein 

to fold in its proper native state in vitro, as for large dimeric proteins, such as histones, 

bacterial luciferase, organophosphorus hydrolase and SecA (Doyle et al.,2000) (Appendix 

A.4: Thermodynamic and kinetic parameters characteristic of chemical induced unfolding of 

dimeric proteins described by a three-state transition). Mth1491 proper folding may require 

the formation of a trimeric intermediate to drive the formation of the more complex and stable 

native trimer. 
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5 Kinetic studies of Tm0979 and Mth1491 folding  

5.1 Introduction 

In pioneering studies, Christian Anfinsen showed that the small proteins ribonuclease 

A and staphylococcal nuclease could be reversibly denatured in vitro (Anfinsen,1973). Upon 

removal of denaturant, such as GdmCl, many proteins spontaneously refold to their folded 

native structures after denaturation (Fersht,1999). The amino acid sequences of proteins 

encode the information on how to attain the final folded structure.   

The folding kinetics of monomeric proteins have the potential to be extremely 

complex due to processes such as proline and disulfide isomerization, intra- and inter-

molecular misfolding as well as on and off pathway intermediates.  Oligomer folding can 

involve these phenomena as well as the additional complexity of the protein concentration 

dependent bimolecular association step. For Tm0979 and Mth1491, we can assume that there 

are no complications due to disulfide bond formation since Tm0979 contains no cysteines, 

while Mth1491 has no native disulfide bonds and the folding experiments are performed 

under reducing conditions.   Both proteins contain only transprolines (two prolines per 

monomer for Tm0979 and one proline per monomer for Mth1491); in such cases proline 

isomerization reactions, which are generally much slower than the major folding reaction, can 

be neglected.  Having characterized the reversible equilibrium unfolding of both proteins in 

Chapter 3, in this chapter, the kinetics of folding and unfolding of Tm0979 and Mth1491 

folding are described.  The results can be interpreted in a relatively simple way that takes into 

account protein concentration dependence.    

In the following sections of the introduction, the terminology, equations and observed 

results for the kinetics of folding and unfolding of monomeric, dimeric and trimeric proteins 

are reviewed.  Relevant schemes and equations are summarized in Table 5.1. 
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Table 5.1: kinetic models for monomer, dimer and trimer 2-state folding. 

 

U, N, N2, N3 represent the unfolded protein, native monomer, dimer and trimer, respectively. ku and kf are the rate constant of folding and unfolding, respectively. 
[U], [N], [N2], [N3] are the concentration of unfolded protein, native monomer, native dimer and native trimer at a time t, [U]0, [N]0, [N2]0, [N3]0 are the 
concentration of unfolded protein, native monomer, native dimer and native trimer at t=0  
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5.1.1 Protein folding 

In reversible protein folding, the protein travels back and forth between the native (N) 

and unfolded (U) states over a free energy barrier, the highest point corresponding to the 

transition state (TS‡) as described in an energy diagram (Figure 5.1).  In the transition state, 

noncovalent interactions are in the process of being made and broken making this state very 

unstable and not directly detectable. For two-state folding, the rate of refolding and unfolding 

is proportional to the free energy difference between U and TS‡
 and between N and TS‡, 

respectively. Intermediates may also form; these are generally difficult to trap because of their 

unstable nature, but they may be detected during kinetics studies when intermediates can 

become transiently populated (see section 5.1.3).  

 

Figure 5.1: Reaction coordinate diagram for folding of a monomeric protein.  
A. Two state folding of a monomeric protein. ΔGU is the free energy of unfolding, ΔGU

‡ is the activation 
free energy for unfolding and ΔGf

‡ is the activation free energy for folding. N, U and TS‡ represent the 
native, unfolded monomer and the transition state, respectively. B. Three state folding of a monomeric 
protein. ΔGU1

‡ is the activation free energy for unfolding of the native monomer to a monomeric 
intermediate, ΔGU2

‡ is the free activation energy for unfolding of the monomeric intermediate, ΔGf1
‡ is the 

activation free energy for folding of the native monomer from monomeric intermediate and ΔGf2
‡ is the 

activation free energy for folding of the monomeric intermediate. I, TS1‡ and TS2‡ represent the monomeric 
intermediate, the first and second transition state. 
ΔGU = GU - Gf, ΔGU

‡ = GTS‡ - GN, ΔGf
‡ = GTS‡ - GU 

ΔGU1
‡ = GTS1‡ - GN, ΔGU2

‡ = GTS2‡ - GI, ΔGf1
‡ = GTS1‡ - GI, ΔGf2

‡ = GTS2‡ - GU   
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Characterizing the folding of a protein involves determining the sequence of structural 

conversions, including any populated intermediates, the rates of interconversion of different 

species, and characterization of their structures and energetics (Fersht,1999). 

5.1.2 Kinetic intermediates 

Many small, monomeric proteins fold with simple 2-state kinetics and show wide 

variation in folding rates, from microseconds to seconds (Jackson,1998). The same trend is 

observed for small dimeric proteins whereas larger dimers tend to fold through the formation 

of monomeric or/and dimeric intermediates. The roles of these intermediates remain 

controversial. Kinetic intermediates have been proposed in some cases to help the protein fold 

more efficiently and rapidly. For example, SecA needs molecular chaperones to fold properly, 

in vivo. It has been proposed that SecA requires the formation of monomeric or dimeric 

kinetic intermediate to fold properly in vitro (Doyle et al.,2000). Moreover, recent studies 

performed on archael histones have shown the formation of kinetic intermediates makes the 

protein fold faster (Topping et al.,2004). For this specific case, the role of the kinetic 

intermediate can be explained by the fact that the formation of one or several intermediates 

divides the energy barrier between the unfolded and native protein into several smaller one, 

which may be easier and faster to traverse as illustrated in Figure 5.2.  

 



82 
 

 

Figure 5.2: Reaction coordinate diagram for folding of a dimeric protein. 
A. Two state folding of a dimeric protein. ΔGU is the free energy of unfolding, ΔGU

‡ is the activation free 
energy for unfolding and ΔGf

‡ is the activation free energy for folding. N, U and TS‡ represent the native, 
unfolded monomer and the transition state, respectively. B. Three state folding of a dimeric protein. ΔGU1

‡ 
is the activation free energy for unfolding of the native dimer to intermediate, ΔGU2

‡ is the free activation 
energy for unfolding of the intermediate, ΔGf1

‡ is the activation free energy for folding of the native 
monomer from intermediate and ΔGf2

‡ is the activation free energy for folding of the intermediate. I, I2 
TS1‡ and TS2‡ represent the monomeric or dimeric intermediate, the first and second transition state. 
ΔGU = 2GU - Gf, ΔGU

‡ = GTS‡ - GN, ΔGf
‡ = GTS‡ - 2GU 

ΔGU1
‡ = GTS1‡ - GN, ΔGU2

‡ = GTS2‡ - 2GI or ΔGU2
‡ = GTS2‡ - GI2, ΔGf1

‡ = GTS1‡ - 2GI or ΔGf1
‡ = GTS1‡ - GI2, 

ΔGf2
‡ = GTS2‡ - 2GU  
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5.2 Methods 

5.2.1 Unfolding kinetic measurements of Tm0979 and Mth1491   

Unfolding rates were sufficiently slow that they could be measured by manual mixing 

experiments.  Unfolding was monitored by fluorescence using a Fluorolog-3 (HORIBA; 

JOBIN YVON-SPEX) with excitation and emission wavelengths of  280 and 332 nm, 

respectively,  for Tm0979 and 279 and 321 nm for Mth1491. Unfolding of the native protein 

was performed by diluting  native protein stock solution 10-fold in different concentrations of 

GdmCl buffered with 20 mM citrate (10 mM DTT, 1 mM EDTA) for Mth1491 or 25 mM 

phosphate for Tm0979. Filtered 8 M GdmCl, milliQ water, and 10-fold buffer were used to 

prepare the different solutions of GdmCl, which are referred to as unfolding buffer. 90 μL of 

unfolding buffer was placed in an Eppendorf tube, and then 10 μL of native protein was added 

and mixed by pipetting. The unfolding protein was then introduced into a 50 μL quartz 

cuvette (pathlength of 3 mm) and the unfolding signal was monitored by fluorescence. To 

minimize temperature artifacts, both protein and GdmCl solutions were pre-equilibrated at 

25°C prior to initiation of unfolding. The time required for the mixing before the introduction 

of the protein in the cuvette was measured using a stop-watch and is referred to as dead time 

(average dead time = 12s). Different unfolding buffers were prepared with a concentration of 

GdmCl ranging from 5.6 to 7 M for Mth1491 and from 4 to 6.2 M for Tm0979. At the end of 

each unfolding measurement, the concentration of GdmCl of the protein in the cuvette was 

checked by measuring its refractive index. 

5.2.2 Refolding kinetics measurements 

5.2.2.1 Tm0979 refolding kinetics 

Refolding kinetics at moderate GdmCl concentrations were sufficiently slow that they 

could be measured using manual mixing techniques and monitored by fluorescence using a 

Fluorolog-3 (HORIBA; JOBIN YVON-SPEX) and by CD using a J715 CD 
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spectropolarimeter (Jasco, Easton, MD) (emission at 215 nm), by diluting a stock solution of 

unfolded protein 10-fold in buffer so that the final concentration of buffer is 25 mM 

phosphate. The stock solution of unfolded protein was prepared by incubating native protein 

in 6 M GdmCl for 15 minutes, which is sufficient time for the protein to become very highly 

unfolded (>90%). The unfolded protein was then diluted in a refolding buffer, with final 

GdmCl concentration varying from 1.6 to 3.2 M. As for the unfolding kinetic, 90 μL of 

refolding buffer was placed in an Eppendorf tube, and then 10 μL of denatured protein was 

added and mixed by pipetting. The refolding protein was then placed in a 50 μL quartz 

cuvette (pathlength = 3 mm) (500 μL quartz cuvette with 3 mm pathmength  when recorded 

by CD) and the refolding signal was recorded optically in real time. To minimize temperature 

artifacts, both protein and GdmCl solutions were pre-equilibrated at 25°C prior to initiation of 

unfolding. The dead time was measured using a stop-watch and was on average 12 seconds. 

At the end of each refolding measurement, the concentration of GdmCl of the protein in the 

cuvette was checked by measuring its refractive index. 

At low GdmCl concentration, Tm0979 refolding is too fast to be recorded by manual 

mixing experiment. Accordingly, for 0.6M to 2.04 M GdmCl, refolding of Tm0979 was 

monitored by stopped flow, using an SFM4/Q instrument (Molecular Kinetics, Pullman, WA) 

interfaced to the Fluorolog 3 (Figure 5.3). Temperature was maintained at 25°C using a 

circulating water bath connected to the stopped-flow instrument. 8 M GdmCl buffered in 25 

mM phosphate was loaded in the syringe 2, buffer was loaded in syringe 3 by pumping in the 

solution at 100 μL.s-1. Air bubbles were eliminated by pumping these solutions out at 300 

μL.s-1. Finally, unfolded protein was loaded into syringe 4 by pumping in the solution at 22 

μL.s-1; air bubbles were eliminated from the syringe by pumping out the solution at 66 μL.s-1 

(Figure 5.3). 
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Figure 5.3: SFM-400 diagrams for Stopped-Flow. 
 S1, S2, S3 and S4 are the syringes 1, 2, 3 and 4 respectively. The motors push the desired amount of 
solution out of the corresponding syringe. The mixers mix the solutions out of the syringes before reaching 
the cuvette. 
5.2.2.2 Mth1491refolding kinetics  

Mth1491 refolding was found to be too fast to be monitored by manual mixing 

experiment. Refolding of Mth1491 was therefore measured by stopped-flow, as described for 

Tm0979, from 0.6M to 2.2M GdmCl. All solution were degassed for 30minutes prior to 

loading into syringes and were kept in reducing condition by adding DTT and EDTA so that 

the final concentrations were 10mM and 1mM, respectively. 

5.2.3 Analysis of kinetic folding 

5.2.3.1 Two-state kinetics 

A two-state kinetic mechanism for a monomer involves single exponential unfolding 

and refolding traces at all denaturant concentrations (and are independent of protein 

concentration) (Table 5.1, Equations 5.1 and 5.4).  In contrast, for dimers and trimers, due to 

the change in molecularity associated with the transition, under most conditions the observed 

kinetics are not exponential and are dependent on protein concentration.  In addition, the 

equations for refolding are different from that for unfolding (Table 5.1 Equation 5.2, 5.5 for 

dimer, Equations 5.3, 5.6 for trimers).   
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The folding kinetics of a dimer or trimer 2-state kinetic mechanism are in theory 

always non-exponential (Table 5.1).  Under strongly native conditions (the folded baseline 

region), the kinetics of folding can be described by the Equations 5.3 and 5.4 in Table 5.1 for 

dimer and trimer, respectively.   

A plot of the natural logarithm of the observed unfolding and refolding rate constants 

for a monomer results in a V-shaped profile often referred to as a chevron plot (Fersht 

A,1999).  For a dimer or a trimer, a smooth transition will not be observed for this type of plot 

since the observed rate will not be a simple sum of the unfolding and refolding rate constants 

as it is for monomers. 

5.2.3.2 Three-state kinetics 

A three-state equilibrium mechanism must at least involve a three state kinetic 

mechanism.  Depending on the number and nature of intermediates, as well as the relative 

forward and backward rates controlling each step, the observed unfolding kinetics may be 

single exponential, double exponential, or complex (Nölting,2006).  As a result, a plot of the 

natural logarithm of the observed kinetic rate constants may deviate quite significantly from 

the typical chevron plot observed for monomers and the two-state dimer discussed above.  

  In the case of monomeric intermediate formation, as observed upon equilibrium 

unfolding of Tm0979, at high denaturant concentrations, the apparent rate of unfolding is 

slower than expected based on linear extrapolation of the rates at low denaturant resulting in 

curvature of the unfolding arm of the chevron-like plot.  The curvature is due to the 

association rate playing a part in the observed relaxation time.  

As stated above, the observed folding kinetics depend on the relative forward and 

backward rates of all processes in the reaction.  For a three state mechanism involving a 

monomeric intermediate, if the association rate constant is very fast, all that will be observed 
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is a single exponential according to the rate of monomer folding.  If on the other hand 

monomer refolding is very fast one would see only see a second or third order reaction in case 

of dimer or trimer refolding, respectively.  It is also possible to observe both the first order 

and second order processes. 

5.2.4 Fitting of the kinetic data 

5.2.4.1 Fitting of the unfolding and refolding traces 

Unfolding and refolding kinetics were fit to integrated equations for first, second or 

third order kinetic processes, as appropriate (Table 5.2), using Biokine32 (Biologic) and 

OriginPro7.5 (OriginLab) software.  For processes involving no change in molecularity (e.g. 

monomer folding or unfolding), the time course should follow a simple exponentional, with a 

small linear drift being observed in some cases due to experimental factors such as diffusion 

of reagents or lamp instability. For reaction mechanisms involving intermediates, more than 1 

exponential process may be observed.  Unfolding and refolding kinetic traces could be 

conveniently fit to a single or double exponential equation with a linear drift using Biokine32 

software (Biologic). Refolding kinetic traces were also fit to second order or third order 

equation using OriginPro7.5 (OriginLab) in order to determine if the rate limiting step was 

dimer or trimer association, respectively. 
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Table 5.2: Equations used to fit the refolding and unfolding kinetic traces of Tm0979 and Mth1491. 
  Fitting program Biokine Origin 
Unfolding transition: 
One step process: 
Two steps process: 
 

 
Y = ax + b + cexp(-kut) 
Y = ax + b + c1exp(-ku1t) + c2exp(-ku2t)  

 

Refolding transition: 
No change in molecularity: 
One step process 
Two steps process 
 

Y = ax + b + cexp(-kft) 
Y = ax + b + c1exp(-kf1t) + c2exp(-kf2t) 

 
 

Dimer association 
Trimer association 

Y = YN2 + (YU-YN2)*fU 
Y = YN3 + (YU-YN3)*fU 

Unfolding transition: a, b and c correspond to the change in the unfolded protein signal with time, the 
extrapolated value of the unfolded signal at t=0 and the total amplitude of the unfolding transition, 
respectively. ku is the rate constant of unfolding. If the unfolding occurs in 2 steps, c1 and c2 correspond to 
the amplitude of each step, ku1 and ku2 are the rates of unfolding of the corresponding steps. 
Refolding transition: a, b and c correspond to the change in signal of the native protein with time, the 
extrapolated value of the signal of the native protein at t=0 and the total amplitude of the refolding 
transition. If the refolding occurs in 2 steps, c1 and c2 correspond to the amplitudes of each step, ku1 and 
ku2 are the rates of unfolding of the corresponding steps. YU, YN2 and YN3 are the signals of the unfolded 
monomers, the native dimer and the native trimer, respectively. fU is the fraction of the unfolded 
monomer and it varies with time as described in Appendices 3 and 4. 
 
5.2.4.2 Chevron plot analysis 

Tm0979 observed kinetics correspond to a 2-state monomer folding. A plot of the 

natural logarithm of the observed unfolding and refolding rate constants for a monomer 

results in a V-shaped profile often referred to as a chevron plot. Upon monomer 2-state 

unfolding and refolding, the observed or measured rate constant corresponds to kobs and is the 

sum of the folding and unfolding rates constants (Fersht,1999),(Table 5.1, Equation 5.1, 5.4):  

kobs = ku + kf          (5.7) 

It has been observed experimentally for many small proteins that the logarithm of the 

rate constants of unfolding and folding are linearly proportional to the concentration of 

GdmCl and can be described by the following equations (Tanford C, 1968, Tanford C, 1970): 

lnku = lnkuH2O + mu[GdmCl]         (5.8) 

lnkf = lnkfH2O - mf[GdmCl]         (5.9) 
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where kf and kfH20, are the rate constants of folding in GdmCl and in water, respectively, ku 

and kuH20 are the rate constants of unfolding in GdmCl and in water, respectively, mu and mf 

are the dependence of lnku and lnkf on [GdmCl] and are proportional to the difference in 

accessible surface area between the transition state and the native protein and between the 

unfolded state and the transition state, respectively. 

The natural logarithm of the observed kinetic rate constants of a monomer can be 

plotted together in a chevron plot (Fersht,1999). By rearranging Equations 5.7, 5.8 and 5.9, 

the corresponding kinetic constants can be determined by fitting the chevron plot using the 

following equation: 

lnkobs = ln(kf
H2Oexp(mf[GdmCl]/RT)+ku

H2Oexp(mu[GdmCl]/RT))             (5.10) 

with OriginPro7.5 (OriginLab).  Moreover, equilibrium constants determined in the previous 

chapter (Chapter 4) can be compared with the kinetic constants determined in this chapter. 

Actually, the equilibrium constant of unfolding (KU) can be linked to kf and ku, for 

monomeric and oligomeric protein, by the following equations: 

ΔGU = GN – GU 

         = GN – GTS‡ – (GU - GTS‡) 

         = ΔGU
‡ - ΔGf

‡      

ΔGU = -RTlnKU                    (5.11) 

KU = ku/kf                    (5.12) 

m = mu + mf                    (5.13) 
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where  ΔGU is the free energy of unfolding, ΔGU
‡ is the activation free energy for unfolding, 

ΔGf
‡ is the activation free energy for folding, and GN, GU and GTS‡ are the free energy of the 

native, unfolded protein and the transition state, respectively. 
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5.3 Results 

5.3.1 Tm0979 folding pathway 

5.3.1.1 Unfolding kinetics 

Kinetic unfolding traces monitored by fluorescence are shown for Tm0979 between 4 

and 6.4 M GdmCl in Figure 5.4. The kinetic traces are well fit by a single exponential 

equation. Under highly unfolding conditions, all unfolding reactions are single exponential 

(Table 5.1), and so additional considerations are required to interpret the unfolding results.  

There are two situations that may be envisaged as being likely occur during unfolding.  The 

transition monitored by fluorescence may correspond to the simultaneous dissociation and 

unfolding of the native dimer. Alternatively, it could correspond to unfolding of the native 

dimer to form an intermediate, as observed for the equilibrium data, with the formation of the 

monomeric intermediate or the unfolding of the intermediate being potentially rate 

determining . The amplitudes of the kinetic traces for the unfolding traces correspond to 93% 

of the signal observed by equilibrium curve measurment. This suggests that the transition 

observed by kinetics may not correspond to the entire unfolding transition.  Moreover, the 

fluorescence of the intermediate corresponds to 90% of the one of the native protein, 

approximately. This observation suggests that the rate limiting step observed by kinetics 

measurement is the unfolding of the monomeric intermediate, the dissociation being too fast 

to be observed.   

The natural logarithm of the unfolding rates varies linearly with GdmCl concentration 

(Figure 5.5). The unfolding rate in water corresponds to 7.3x10-4 s-1 with a mu
‡ of 0.53 

kcal.mol-1.K-1. The magnitude of mu
‡  is similar to those observed for unfolding of other 

monomers of similar size (Jackson,1998), and this reinforces the idea that Tm0979 monomer 

unfolding may be the rate limiting step. 
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Figure 5.4: Unfolding kinetics of Tm0979. 
A. Fluorescence-monitored unfolding kinetics of Tm0979 in 4 M GdmCl fit to a single exponential 
equation with a linear drift (equation 5.6 in Table 5.1). Shown inset is the residual of the single 
exponential fit with ku = 3.4x10-2 s-1. B. Fluorescence-monitored unfolding kinetics of Tm0979 in 5 M 
GdmCl fit to a single exponential equation. Shown inset is the residual of the single exponential fit with ku 
= 8.3x10-2 s-1. C. Fluorescence-monitored unfolding kinetics of Tm0979 in 6 M GdmCl fit to a single 
exponential equation. Shown inset are the residuals of the single exponential fit with ku = 1.9x10-1 s-1. 
Residuals indicate the kinetics are well described by a single exponential. Total protein concentration is 
1µM (dimer equivalent). 
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Figure 5.5: Rate constants of unfolding of Tm0979. 
Dependence of the natural logarithm of the observed unfolding rate constant ku-obs on denaturation 
concentration. ku-obs = 7.3x10-4 s-1, mu

‡ = 0.53 kcal.mol-1.K-1. 
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5.3.1.2 Refolding kinetics 

Kinetic refolding traces were monitored by manual mixing fluorescence between 1.4 

and 3.2M GdmCl, by stopped flow fluorescence between 0.6 M and 2.04 M and by manual 

mixing CD between 1.8 and 3.2 M for Tm0979 at 1.5µM (expressed in dimer equivalent). 

The kinetic refolding traces were well fit by a single equation, suggesting that the transition 

observed corresponds to monomer refolding. In order to verify this hypothesis, the kinetic 

refolding traces were also fit to a second order equation describing the simultaneous folding 

and association of monomers to form the native dimer (Table 5.2, Appendix A.5: Kinetic 

model of dimer two-state folding). A systematic deviation between the experimental traces 

and the fit was observed, suggesting that the refolding process observed is not the association 

step. In order to test this further, kinetic refolding traces were monitored at 3µM in order to 

determine the dependencies of the observed refolding rates upon protein concentration. Figure 

5.7 shows the dependence of the natural logarithm of the observed refolding rate constant kf-

obs determined at 1.5 and 3µM with GdmCl concentration. The natural logarithms of the rates 

vary linearly and similarly with GdmCl concentration for stopped-flow and manual mixing 

fluorescence and for manual mixing CD experiments. However, a deviation from linearity is 

observed for the rates measured by stopped-flow fluorescence below 1.08 M and for rates 

measured by manual mixing fluorescence and CD below 2.2 M at both protein concentrations. 

The amplitude of the refolding transitions monitored by manual mixing fluorescence and CD 

at GdmCl concentration below 2.2 M is very small compared to the expected value. Thus, the 

reaction is becoming too fast to measure accurately as most of the reaction is completed in the 

dead time. This results in less accurate refolding rate constants, which can explain why those 

rates do not follow the same trends as the other measured rates.  These slow rates may be 

inaccurate, or may correspond to small amplitude, slow rates due to proline isomerization 

(Fersht,1999) and so  were thus not taken into account for further analysis.   
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The kinetic refolding rate constants measured at 1.5μM do not change significantly 

compared to those measured at 3µM. This again suggests that the observed refolding rate is 

characteristic of a process involving no change in molecularity, which reinforces the 

hypothesis that the transition observed is the monomer folding. As both folding and unfolding 

of  Tm0979 may correspond to a monomer folding process, the dependence of the natural 

logarithm of the observed unfolding and refolding rate constants were plotted and fit together 

as described in the following section.  
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Figure 5.6: Refolding kinetics of Tm0979.  
A. CD-monitored refolding kinetics of Tm0979 in 2.8 M GdmCl fit to a single exponential equation. 
Shown inset are the residuals of the single exponential fit with kf = 3.5x10-2s-1. B. Fluorescence-monitored 
refolding kinetics of Tm0979 in 2.4 M GdmCl fit to a single exponential equation. Shown inset are the 
residuals of the single exponential fit with kf = 4.9x10-2s-1. C. Stop flow fluorescence-monitored refolding 
kinetics of Tm0979 in 0.6 M GdmCl fit to a single exponential equation. Shown inset are the residuals of 
the single exponential fit with kf = 1.7s-1. Residuals indicate the kinetics are well described by a single 
exponential. Total protein concentration is 1.5μM (dimer equivalent).  
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Figure 5.7: Rates of refolding of Tm0979. 
Dependence of the natural logarithm of the observed refolding rate constant kf-obs on denaturation 
concentration measured at 1.5 and 3 μM by stopped-flow fluorescence (1.5 μM: red squares / 3 μM: 
purple circle), manual mixing fluorescence (1.5 μM: blue diamonds / 3 μM: black crosses) and manual 
mixing CD (1.5 μM: red crosses). Total protein concentration expressed in dimer equivalents. 
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5.3.1.3 Chevron plot 

The dependence of the natural logarithm of the observed unfolding and refolding rate 

constants of Tm0979 with GdmCl concentration are plotted in Figure 5.8. The kinetic 

constants determined from the fitting of the chevron plot are summarized in Table 5.3. 

Equilibrium constants were calculated from the kinetic rate constants using Equations 5.11, 

5.12 and 5.13 and compared to the equilibrium values determined in Chapter 4. The ∆GU and 

m values calculated from the kinetic experiments are very similar to the values for monomer 

unfolding, ∆GU2 and mU2, obtained from equilibrium measurements. This observation suggests 

that the monomeric species observed by kinetic studies corresponds to the monomeric 

intermediate observed by stability experiment, and that folding and unfolding of the monomer 

are rate limiting for Tm0979 kinetics.  
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Figure 5.8: Rates of unfolding and refolding of Tm0979 monomer.  
Dependence of the natural logarithm of the observed rate constant kobs = ku +kf on denaturation 
concentration measured in GdmCl concentration ranging from 1.7 to 6.4 M. Refolding and unfolding rate 
constants are plotted as diamonds and squares, respectively. Samples measured in 1.5 μM (dimer 
concentration). 

 

 

Table 5.3: Kinetics and equilibrium folding constants of Tm0979 monomer. 
Kinetic folding rate constants Calculated equilibrium constants Experimental equilibrium constants 
ku = 7x10-4s-1 
kf = 7.6x101mol-1.s-1 

KU = 9.2x10-6mol  
∆GU = 6.9kcal.mol-1 

KU2 = 5x10-6mol  
∆GU2 = 6.2kcal.mol-1 

mu = 0.54kcal.mol-1.M-1 
mf = 1.76kcal.mol-1.M-1 

mU = 2.3kcal.mol-1.M-1  mU2 = 2.01kcal.mol-1.M-1  

Kinetic folding rate constants were determined by fitting the chevron plot to Equation 5.10. Calculated 
equilibrium constant were determined using Equations 5.11, 5.12 and 5.13. Experimental equilibrium 
constants were determined in the previous chapter and are characteristic of the monomer folding. 
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5.3.2 Mth1491 folding pathway 

5.3.2.1 Unfolding kinetics 

Kinetic unfolding traces were monitored by both fluorescence and CD and are shown 

for GdmCl concentration of 5.5, 5.8 and 6.9 M in Figure 5.9. The kinetic traces are well fit by 

a single exponential equation for both optical probes. The natural logarithm of the unfolding 

rates measured by fluorescence and CD varies linearly with GdmCl concentration (Figure 

5.10). The unfolding rate constants in water are 6.45x10-13 and 7.04x10-12 s-1 with 

corresponding mu
‡ values of 2.3 and 2.1 kcal.mol-1.M-1, when measured by fluorescence and 

CD, respectively. The kinetic unfolding rate constants and the corresponding mu
‡ values 

determined by the two probes are very similar, thus the transition observed by fluorescence 

likely corresponds to the one measured by CD.  The amplitude of the kinetic unfolding traces 

measured by fluorescence and CD corresponds to almost all of the expected amplitude based 

on equilibrium curves measured at the same protein concentration. This suggests that the 

unfolding transition observed by both fluorescence and CD may be Mth1491 complete 

unfolding. 

In comparing the experimental mu
‡ for Mth1491 with values of mu

‡ for other 

monomeric proteins, it does not seem that the refolding transition of Mth1491 corresponds to 

that expected for unfolding of a monomeric subunit of the protein. Actually, the mu
‡ 

determined for Mth1491 is considerably larger than would be expected for a monomer of 112 

amino acids (the subunit size for Mth1491) (Jackson,1998).  Comparisons with data for other 

dimeric or trimeric proteins is also consistent with this.  Thus, it seems likely that the 

observed unfolding kinetics for Mth1491 corresponds to trimer or perhaps dimer unfolding.  

In summary, the unfolding transition observed by both fluorescence and CD manual 

mixing experiments seems likely to be the complete unfolding of Mth1491 trimer or perhaps 



 
101

the unfolding of a dimeric or trimeric intermediate. Refolding kinetics were then also 

investigated and are described in the following section.  
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Figure 5.9: Unfolding kinetics of Mth1491.  
A. Fluorescence-monitored unfolding kinetics of Mth1491 in 6.4 M GdmCl fit to a single exponential 
equation. Shown inset are the residuals of the single exponential with ku = 4.9x10-2 s-1 which indicate the 
kinetics are well described by a single exponential. B. Fluorescence-monitored unfolding kinetics of 
Mth1491 in 5.5 M GdmCl fit to a single exponential equation. Shown inset are the residuals of the single 
exponential with ku = 1x10-3 s-1 which indicate the kinetics are well described by a single exponential. C. 
CD-monitored unfolding kinetics of Tm0979 in 5.8 M GdmCl fit to a single exponential equation. Shown 
inset are the residuals of the single exponential fit with ku = 1.9x10-1 s-1. Residuals indicate the kinetics are 
well described by a single exponential. Total protein concentration is 1 µM (trimer equivalent). 
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Figure 5.10: Rates of unfolding of Mth1491.  
Dependence of the natural logarithm of the observed unfolding rate constant ku-obs measured by 
fluorescence (black diamonds) and by CD (red squares) on denaturant concentration. In water, ku-obs = 
6.45x10-13 s-1, mu

‡ = 2.3 kcal.mol-1.K-1for fluorescence measurement,  ku = 7.04x10-12 s-1, mu
‡ = 2.1 kcal.mol-

1.K-1 for CD measurement. 
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5.3.2.2 Refolding kinetics 

 Kinetic refolding traces of Mth1491 were monitored at 1 and 2µM protein by 

stopped flow fluorescence at GdmCl concentration ranging from 0.6 to 2.2 M. The refolding 

traces are well described by a single exponential equation for both protein concentrations, as 

shown in Figure 5.11.  Single exponential refolding kinetics suggest that the observed 

transition corresponds to a process that does not involve a change in molecularity such as 

monomer folding (U → I) or perhaps native trimer formation from a trimeric intermediate (I3 

→ N3). In addition, the kinetic refolding traces were fit to a third order equation, and the fitted 

lines for individual traces passed well through the data points (Table 5.2, Appendix A.6: 

kinetic model of trimer two-state folding). However, the fitted rate constants are inconsistent. 

Thus, the observed kinetics do not appear to correspond to a trimer association reaction. 

 The natural logarithm of the refolding rate constants, obtained from single 

exponential equation fits, varies linearly with GdmCl concentration, as shown in figure 5.12. 

The denaturant dependence is similar for 1 and 2µM protein. The observed kinetic refolding 

rates in water are 6.2 and 0.2 s-1 for 1 and 2 µM trimer, respectively; the mf
‡ values are 1.3 

and 1.1kcal.mol-1.M-1for 1 and 2 µM, respectively. The refolding rate constant of the observed 

process is thus not protein concentration dependent. This observation reinforces the idea that 

the process does not involve a change in molecularity. By comparing monomeric proteins 

(Jackson SE, 1998), the determined mf
‡ is quite close to what would be expected for folding 

of a protein the size of the Mth1491 monomer.  
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Figure 5.11: Refolding kinetics of Mth1491.  
A. Stopped flow fluorescence-monitored refolding kinetics of Mth1491 at 1µM in 0.6 M GdmCl fit to a 
single exponential equation. Shown inset are the residuals of the single exponential with kf-obs = 2.7 s-1, 
which indicates the kinetics are well described by a single exponential. B. Stopped flow fluorescence-
monitored refolding kinetics of Mth1491 at 2 µM in 1.88 M GdmCl fit to a single exponential equation. 
Shown inset are the residuals of the single exponential with kf-obs = 0.58 s-1 which indicate the kinetics are 
well described by a single exponential.  
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Figure 5.12: Rates of refolding of Mth1491. 
Dependence of the natural logarithm of the observed refolding rate constant kf-obs on denaturation 
concentration measured at 1 (black squares) and 2 µM (red crosses) by stopped flow fluorescence. Total 
protein concentration expressed in trimer equivalent. In water, the kinetic refolding rate constant is 6.2 s-1 
and 0.2 s-1 at 1 and 2 µM, respectively, with mf

‡ of 1.1 and 1.3 kcal.mol-1.M-1, respectively. 
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5.4 Discussion 

5.4.1 Tm0979 folding pathway 

The Tm0979 folding pathway was investigated by measuring the unfolding and 

refolding of the dimer by manual mixing fluorescence and CD as well as by stopped flow 

fluorescence. Analysis of the kinetic unfolding and refolding kinetic traces suggests that 

Tm0979 folds through the formation of a monomeric intermediate, which is also observed by 

equilibrium studies. The folding and unfolding of this intermediate is proposed to be the rate 

limiting step of Tm0979 dimer folding, with association and dissociation being too fast to be 

measured. The same folding mechanism was observed for other dimeric proteins, such as 

SOD.  

In addition to the kinetic data that support this mechanism, the results are also 

consistent with the fact that dimerization of Tm0979 is relative weak, and the monomer has 

significant stability. A careful quantitative analysis of the amplitudes and initial and final 

signals in the kinetic experiments would also be useful to validate the proposed mechanism.  

5.4.2 Mth1491 folding pathway 

The Mth1491 folding pathway was investigated by following the unfolding and 

refolding of the trimer by manual mixing fluorescence and CD as well as stopped flow 

fluorescence. Mth1491 folding mechanism is less well defined and may be more complex 

than the one observed for Tm0979. Actually, the unfolding transition of Mth1491 corresponds 

to a 2-state process. The process can then correspond to the fully unfolding of the native 

trimer to unfolded monomer or the unfolding of an intermediate. While observed refolding 

kinetics certainly do not correspond to trimer association, they may be monomer folding or 

another transition involving intermediates that does not involve a change in molecularity.  

Formation of monomeric and oligomeric intermediates was been observed for other trimeric 
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proteins, such as bacteriophage T4 Fibritin (Guthe et al.,2004) (3U ↔ 3I ↔ I2 + I ↔ I3 ↔ 

N3), HIV and SIV gp41 six-helix bundles, 3 stranded coiled-coil (Marti et al.,2004) ( 3U ↔ I2 

+ I ↔ N3), Tumor necrosis factor TNFα (Hlodan et al.,1995) (U ↔ I’ ↔ I’’ ↔ I’’’ ↔I’’’2 ↔ 

I3 ↔ N3), which indicates that the folding of trimer may be very complex. In theses studies, 

the formation of intermediates was proposed to help protein folding. Actually, it seems 

unlikely that unfolded monomers fold and associate simultaneously. Actually, unfolded 

monomers may first fold and then associate to form a kinetic dimer or trimer intermediate. 

The intermediate may then rearrange and form the native trimer.    

Mth1491 folding mechanism is thus more complex than Tm0979 and may involve the 

formation of monomeric and oligomeric intermediates. Double jump experiments may help us 

to understand better the trimer folding. 
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6 Summary and future work 

6.1 Characterization of Tm0979 and Mth1491 folding 

Tm0979 and Mth1491 equilibrium and kinetic folding were investigated by measuring 

their structural transitions by fluorescence spectroscopy and CD. For Tm0979 the mechanism 

for the structural transition is relatively simple and well defined, whereas for Mth1491 the 

mechanism is more complex and less well defined.   

Considerable equilibrium and kinetic data as well as dimer dissociation measurements 

by size exclusion chromatrography and dynamic light scattering indicate that Tm0979 unfolds 

through the formation of a monomeric intermediate. Furthermore, the formation of this 

intermediate is the rate limiting step during folding, the association step being too fast to be 

observed. Some characteristics of this intermediate should be further investigated and 

proposed experiments are described in section 6.1.1. Many other dimeric proteins have also 

been reported to fold via monomeric intermediates, and the results obtained for Tm0979 are in 

line with studies on other proteins.  

In contrast, for Mth1491, equilibrium studies suggest that the protein unfolds through 

a 2-state mechanism or through the formation of a trimeric intermediate. The Mth1491 

folding kinetics are complex and may involve the formation of a monomeric and/or 

oligomeric intermediate(s). The complexity of folding of Mth1491 is not surprising because 

other trimeric proteins were found to exhibit complex kinetics transitions  involving the 

formation of monomeric, dimeric and trimeric intermediates (Guthe et al.,2004). Experiments 

proposed to further define the presence or absence of intermediate on the pathway of 

Mth1491 folding are described in more detail in section 6.1.1-same section as for Tm0979. 
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6.1.1 Further validation of folding mechanisms and intermediate formation 

In fitting of the equilibrium curves, there is still some uncertainty regarding the 

spectral properties and energetics for the intermediates of both Tm0979 and Mth1491.  In 

order to address these uncertainties, it would be useful to further test some other global data 

fitting procedures.  In particular, it would be worth exploring which fitted parameters should 

be restricted (e.g. ΔGU1 for dissociation of Tm0979, based on independent measurements of 

dissocation) or shared (e.g. only mU1, ΔGU2 and mU2, or also fluorescence values of different 

species).   

Global fitting may not be sufficient to definitively define when intermediates are 

populated for Tm0979 and Mth1491.  Additional experiments should be considered to define 

the extent of intermediate formation as a function of GdmCl concentration.  Chemical cross-

linking experiments may be particularly useful in this regard.  For example, crosslinking using 

glutaradehyde, as a function of GdmCl and protein concentration was very useful in defining 

the formation of monomeric intermediate by dimeric human superoxide dismutase as a 

function of GdmCl concentration.  Analogous experiment should be conducted for Tm0979 

and Mth1491.  For Tm0979, this could clarify, for example, whether dimer dissociation is 

complete before the main optically monitored transition, as is suggested by the current fitted 

parameters.  For Mth1491, it will be key to determine if a trimeric or dimeric form of the 

protein persists well into the optically monitored transition, and this would prove the 

formation of an oligomeric intermediate.     

Another possibility to better define equilibrium monomer population is to to perform 

size exclusion chromatography analysis for Tm0979 at different GdmCl concentration. ANS 

binding experiment at different GdmCl concentration may be considered to detect the 

formation of the monomer.  
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Such experiments would address the remaining uncertainties in the global fitting of the 

GdmCl curves regarding monomer formation.   

6.2 YchN-like protein design 

One of the long term goals of research on Tm0979 and Mth1491 is rational design of 

quaternary structure. Accordingly at the start of this thesis mutations were designed to switch 

Tm0979 from dimer to trimer and to switch Mth1491 from trimer to dimer. The rationale for 

these designs is summarized below as a basis for future studies.  Further details of the design 

process and rationale are given in my Chem794 research proposal.  

6.2.1 Evolution of structure and function in protein families  

Different members of protein families often differ in quaternary structure (Orengo et 

al.,2005), however, the evolution of the quaternary structure change and the molecular basis 

for the change are not well understood. Very few studies have addressed the rational design of 

switching quaternary structure. Such studies would provide fundamental tests of and insights 

into the principles governing protein association reactions. With the development of new 

computational tools for designing protein structures and interfaces, the YchN-like family is an 

attractive system for conducting such design experiments. In particular, it may be attractive to 

design Tm0979 to switch from dimer to trimer because the dimer association constant is 

relatively weak (~5 µM) and so may be relatively easy to disrupt, while the trimer association 

may be relatively strong which may facilitate creation of binding.  

As described in Chapter 1, Tm0979, Mth1491 and YchN share high structure similarity 

and are proposed to be involved in catalyzing redox reactions involving sulfur metabolism. As 

is observed in general for different protein families, within this protein family (the YchN-like 

proteins), structure and function appear to be more conserved than sequence  
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It is interesting to consider the possible evolutionary relationships between the YchN-

like proteins. One possibility is that these three proteins evolved from a more ancient and 

simple fold, or they could have evolved from each other with an accompanying switch in 

quaternary structure. Tm0979 is a relatively weak dimer and the dimeric state of the protein 

may correspond to a way to store the protein inactive. As seen for some DNA binding protein, 

Tm0979 may switch its oligomeric state from dimer to a more complex  to be functionally 

active. The functionally active Tm0979 may be a homomer formed by association of Tm0979 

monomers, a homotrimer as is observed for Mth1491 or perhaps a homohexamer as is 

observed for YchN. Possible point mutations that could affect a switch in Tm0979 from dimer 

to trimer were investigated and are described in section 6.2.2. 

Another possibility would be the formation of a heterocomplex by association of 

Tm0979 monomer and other dsr proteins monomers as observed for TusBCD heterohexamer. 

Possible proteins susceptible of binding Tm0979 were investigated and are described in 

section 6.2.3. 

6.2.2 Design of Tm0979 

Sequence alignments of each of Tm0979, Mth1491 and YchN with sequence related 

proteins suggest that residues buried at the interface are more conserved than those located on 

the surface (appendices). This is especially true for residues involved in important interactions 

at the interface, such as Tyr72, Phe75 and Ile76 in helix-α4 of Tm0979 and Arg103, as 

described in Chapter 1, section 4. In order to investigate possible point mutations that could 

bring about a switch in Tm0979 oligomeric state from dimer to trimer, the sequence of 

Tm0979 and Mth1491, Tm0979 and YchN were aligned based on structural alignment.    
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6.2.2.1 Mutation design based on sequence and structure comparison 

Conserved residues of each of the three proteins were determined by using sequence 

alignments of proteins belonging to each corresponding sequence families. Related protein 

sequences were found using Pfam (Bateman et al.,2004) and Psiblast (Altschul et al.,1990) 

servers. The sequences were then aligned using Clustal (Aiyar,2000) and Muscle (Edgar, et 

al., 2004) from EBI/EMBL. The structures of the three proteins were then aligned in order to 

identify similarities between them. The structure alignments (Table 6.1) were determined 

using Dali (Holm et al.,1993) and SSM (Krissinel et al.,2004) servers in addition to a new 

server using a method based on combinatorial extension of an alignment path defined by 

aligned fragment pairs (CE) (Shindyalov et al.,1998). Mutations were designed to destabilize 

the wild-type oligomer and stabilize the redesigned oligomer. The mutations to be made are 

summarized in Figure 6.1 and described further below.   

Table 6.1: Structure alignment of primary sequences for Tm0979, Mth1491 and YchN. 
Secondary structure         β1          α1                  β2    α2               

Tm0979 ----MALVLVKYGTDHPVEKLKIRSAKA---------EDKIVLIQNGVFWA------L--- 

Mth1491 MVDYRVVFHIDED-DESRVLLLISNVRNLMADLESVRIEVVAYSMGVNVL-RRDSEY---- 

YchN --QKIVIVANGAPYGSESLFNSLRLAIALREQESNLDLRLFLMSDAVTAGLRGQKPGEGYN 

  

Secondary structure      α2’         β3    α3       α3’     β4      α4        β5   

Tm0979 -EE-L--ET-----PAKVYAIKDDFLARGYSE--EDSKVPLITYSE--FIDLLEGEEKFIG 

Mth1491 -SG-DV--SELTGQGVRFCACSNTLRASGMDGDDLLEGVDVVSSGVGHIVRRQTEGWAYIRP 

YchN IQQMLEILTAQ---NVPVKLCKTCTDGRGISTLPLIDGVEIGTL--VELAQWTLSADKVLTF  

Secondary elements corresponding to the amino acid sequence are indicated by underlined amino acid for 
α-helices and by underlined and italic amino acid for β-strands. The colours correspond to the 
conservation of the amino acid among the corresponding family: red, hydrophobic residues, pink, basic 
residue, green, small and/or polar residue, blue, acidic residue. 
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Figure 6.1: Proposed designed mutations of the Tm0979 sequence.  
A. Mutations proposed on Tm0979 sequence based on Tm0979 and YchN structure alignment consist of 
the substitutions S21L, Y72L, I76V and G87TF, the insertion of L between A24 and E25.  B. Mutations 
proposed on Tm0979 sequence based on Tm0979 and Mth1491 structure alignment consist of the insertion 
of LMADLESVR between A24 and E25 and the substitutions I74V, L78R and G81RP. 
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Based on the alignment of the Tm0979 and YchN structures, Tm0979 amino acids 

were mutated into residues that should destabilize the actual dimer and favor the formation of 

a new trimer oligomeric interface (Table 6.2). The same approach was used to design a 

mutant based on the alignment of Tm0979 and Mth1491 structure. The proposed mutations 

are summarized in Table 6.3. The secondary and tertiary structures of the mutants were 

predicted and results in a longer helix-α4 and the formation of a fifth β-strand. Quaternary 

structure predictions results in the formation of a mutant trimer with the same interface as the 

native Mth1491 and YchN trimers. 

Tm0979 dimer interface is less complex than Mth1491 trimer interface. Therefore, the 

evolution of YchN like protein would be conducted by studying the effect of mutation on 

Tm0979 sequence, first. Two mutants are proposed based on the comparison between the 

structure and sequence of Tm0979 and YchN monomers and between Tm0979 and Mth1491. 

These two mutants consist of different amino acids insertions and substitutions. The mutant A 

involves single point mutation only whereas the mutant B involves insertion of a piece of 9 

amino acids. The studies of these two mutants would thus allow us to investigate the nature of 

the mutation process responsible of the switch of the oligomeric state.  
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Table 6.2: Proposed mutations on Tm0979 sequence designed to cause a switch of the quaternary 
structure based on Tm0979 and YchN structure alignment. 
YchN hydrophobic 
residues involved in 
trimer stabilization 

Tm0979 residue 
structurally 
aligned to YchN 
ones. 

Proposed 
mutations 

Explanations and consequences. 

L24 S21 S21L Favour the formation of a trimer interface 
A27 A24 No mutation  
L28 Gap in Tm0979 

sequence 
Insertion of 
Leu beside 
A24 

Destabilize dimer interface by changing 
conformation of the first α-helix, favour 
formation of trimer interface 

L101 Y72 Y72L Changes in Tm0979 structure because Y72 
conserved among dsrH family, favour formation 
of trimer interface 

A105 I76 I76A Despite the fact that Ile76 is hydrophobic, I76A 
substitution make the side chain of this residue 
shorter destabilising the dimer and favouring 
formation of trimer interface 

L109 E80 No mutation L78 and L79 in Tm0979 can make hydrophobic 
interactions to stabilize an eventual trimer 
interface by a little distortion of the fourth α-
helix, so no mutation is designed. 

YchN residues 
involved in trimer 
stabilization by H-
bonding 

Tm0979 residue 
structurally aligned 
to YchN ones. 

Proposed 
mutations 

Explanations and consequences. 

T108 L79 L79T Destabilization of Tm0979 dimer interface and 
favouring of the formation of a trimer interface 

K113 K84 No mutation  
T116 G87 G87TF Insertion of the last two amino acid of YchN 

sequence in order to favour the formation of a 
fifth β-strand and consequently the trimer 
interface. 

The color red indicates a hydrophobic residue, pink is a charged residue and green is a small polar 
residue. Residues can be compared using Table 6.1. 
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Table 6.3: Proposed mutations on Tm0979 sequence designed to cause a switch of the quaternary 
structure based on Tm0979 and Mth1491 structure alignment. 

Mth1491 hydrophobic 
residues involved in 
trimer stabilization 

Tm0979 residue 
structurally aligned 
to Mth1491 ones. 

Proposed 
mutations 

Explanations and consequences. 

L28 

L32 

- 

- 

Insertion of the 
last amino acids 
of helix-α1 

Destabilise the dimer interface and favour 
the formation of a trimer interface by 
formation of a longer helix-α1 

    

V97 E74 E74V Favour formation of trimer interface 

V101 I76 I76V Despite the fact that Ile76 is hydrophobic, 
I76V substitution make the side chain of 
this residue shorter destabilising the dimer 
and favouring formation of trimer interface 

Mth1491 residues 
involved in trimer 
stabilization by ionic 
interactions 

Tm0979 residue 
structurally aligned 
to Mth1491ones 

Proposed 
mutations 

Explanations and consequences. 

D31 - Insertion of 
amino acids of 
end of helix-α1 

Destabilization of Tm0979 dimer interface 
and favouring of the formation of a trimer 
interface by the formation of a longer helix-
α1 

R102 L78 L78R Destabilisation of Tm0979 dimer interface 
by introducing a charged residue and 
favouring the formation of a trimer 
interface by specific interaction. 

R112 G87 G87RP Insertion of the last two amino acid of 
YchN sequence in order to favour the 
formation of a fifth β-strand and 
consequently the trimer interface. 

Amino acids bolded are conserved in the corresponding protein family. The color red indicates a 
hydrophobic residue, pink is a charged residue and blue is a negatively charged residue. Residues can be 
compared using Table 6.1. 
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Tm0979 denaturation curves @ 1 µM Stock solution [Tm0979] = 10µM 
V total = 1700 µL 

Stock solution 10x buffer*. pH=6 V protein = 68 µL 
[phosphate] = 250 mM V buffer = 170 µL 
[NaCl] = 4.5 M V water = 1462 µL 
*stored in the -20°C freezer as 1.5mL aliquots

Sample [GdmCl] V GdmCl V protein V buffer V water V total 
1 0 0 40 40 320 400 
2 0.2 10 40 40 310 400 
3 0.4 20 40 40 300 400 
4 0.6 30 40 40 290 400 
5 0.8 40 40 40 280 400 
6 1 50 40 40 270 400 
7 1.2 60 40 40 260 400 
8 1.4 70 40 40 250 400 
9 1.6 80 40 40 240 400 

10 1.8 90 40 40 230 400 
11 2 100 40 40 220 400 
12 2.1 105 40 40 215 400 
13 2.2 110 40 40 210 400 
14 2.3 115 40 40 205 400 
15 2.4 120 40 40 200 400 
16 2.5 125 40 40 195 400 
17 2.6 130 40 40 190 400 
18 2.7 135 40 40 185 400 
19 2.8 140 40 40 180 400 
20 2.9 145 40 40 175 400 
21 3 150 40 40 170 400 
22 3.1 155 40 40 165 400 
23 3.2 160 40 40 160 400 
24 3.3 165 40 40 155 400 
25 3.4 170 40 40 150 400 
26 3.5 175 40 40 145 400 
27 3.6 180 40 40 140 400 
28 3.7 185 40 40 135 400 
29 3.8 190 40 40 130 400 
30 3.9 195 40 40 125 400 
31 4 200 40 40 120 400 
32 4.2 210 40 40 110 400 
33 4.4 220 40 40 100 400 
34 4.6 230 40 40 90 400 
35 4.8 240 40 40 80 400 
36 5 250 40 40 70 400 
37 5.2 260 40 40 60 400 
38 5.4 270 40 40 50 400 
39 5.6 280 40 40 40 400 
40 5.8 290 40 40 30 400 
41 6 300 40 40 20 400 

sum =   6150 1640 1640 6970 16400 
 



Appendix A.2: Preparation of Mth1491 renaturation curve 
samples. 
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Mth1491 renaturation curves @ 1 µM Stock solution [Mth1491] = 10µM 
V total = 1700 µL 

Stock solution 10x buffer*. pH=6 V GdmCl = 1275 µL 
[citrate] = 200 mM V EDTA+DTT = 17 µL 
[NaCl] = 4.5 M V protein = 68 µL 
*stored in the -20°C freezer as 1.5mL aliquots V buffer = 170 µL 
Stock solution EDTA+DTT‡. pH=6 V water = 170 µL 
[EDTA] = 100 mM 
[DTT] = 1 M 
‡prepared using degassed milliQ water and stored in the -20°C freezer as 500uL aliquots 
Sample [GdmCl] V GdmCl (8M) V protein V EDTA+DTT† V 10xbuffer† V water V total 

1 0.6 0 40 4 40 316 400
2 0.8 10 40 4 40 306 400
3 1 20 40 4 40 296 400
4 1.2 30 40 4 40 286 400
5 1.4 40 40 4 40 276 400
6 1.6 50 40 4 40 266 400
7 1.8 60 40 4 40 256 400
8 2 70 40 4 40 246 400
9 2.2 80 40 4 40 236 400

10 2.4 90 40 4 40 226 400
11 2.6 100 40 4 40 216 400
12 2.7 105 40 4 40 211 400
13 2.8 110 40 4 40 206 400
14 2.9 115 40 4 40 201 400
15 3 120 40 4 40 196 400
16 3.1 125 40 4 40 191 400
17 3.2 130 40 4 40 186 400
18 3.3 135 40 4 40 181 400
19 3.4 140 40 4 40 176 400
20 3.5 145 40 4 40 171 400
21 3.6 150 40 4 40 166 400
22 3.7 155 40 4 40 161 400
23 3.8 160 40 4 40 156 400
24 3.9 165 40 4 40 151 400
25 4 170 40 4 40 146 400
26 4.1 175 40 4 40 141 400
27 4.2 180 40 4 40 136 400
28 4.3 185 40 4 40 131 400
29 4.4 190 40 4 40 126 400
30 4.5 195 40 4 40 121 400
31 4.6 200 40 4 40 116 400
32 4.8 210 40 4 40 106 400
33 5 220 40 4 40 96 400
34 5.2 230 40 4 40 86 400
35 5.4 240 40 4 40 76 400
36 5.6 250 40 4 40 66 400
37 5.8 260 40 4 40 56 400
38 6 270 40 4 40 46 400

sum =   5280 1520 152 1520 6728 15200
†EDTA+DTT and 10x buffer added together       
 



Appendix A.3: Thermodynamic and kinetic parameters characteristic of chemical induced unfolding 
of dimeric proteins described by a two-state transition 
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Protein ref Pdb 
Code 

Chain 
length 

 Interface Characteristics denaturant ΔG (H2O) 
(kcal/mol) 

m 
 

 ku(H2O) 
(s-1) 

mu 
(kcal 

kf(H2O) 
(M-1s-1) 

mf 
(kcal 

β 

     IAa

(Ǻ2) 
%MBb %Pc   kcal Mol-1 

M-1 
kinetic 
mechanism 

 mol-1 
M-1) 

 mol-1 
M-1) 

 

α-proteins: 
 
leucine zipper: 

                

LZ(12A16A) (Wendt et al.,1995)  29     Urea 7.7 0.7 N2↔2U 1.3x101 - 4.0x106 - - 

LZ(12A) (Wendt et al.,1995)  29     Urea 9.1 0.9 N2↔I2 
 I2↔2U 

1.3x100 
2.3x100 

- - 
6.2x106 

- - 

GCN4-p1  (Zitzewitz et al.,1995) 2ZTA 33 α 
 

817 25 13 GdmCl 10.2 1.8 N2↔2U 3.3x10-3 0.9 4.2x105 0.9 0.5 

cFos-JunW (Mason et al.,2007)  37     GdmCl 7.7 1.8 N2↔I2 
 I2↔2U 

1.2x100 
- 

1.1 
- 

3.4x100(s-1) 
1.5x106 

0.6 
0.5 

0.4 
- 

4-helix bundle 
                

LFB1 (De Francesco et al.,1991) 1JB6 33 α 
 

1451 26 45 GdmCl 12.0 1.3       

TnC domain 
(LFIL) 

(Monera et al.,1992) 1CTA 34 α 
 

685 23 8 GdmCl 11.0 2.2 
 

      

α2(PRR) 
(artificial) 

(Ho et al.,1987)  35 α 
 

   GdmCl 12.8 1.3       

ROP 
 

(Rosengarth et al.,1999) 1ROP 63 α 
 

1334 31 20 GdmCl 16.9 3.1 N2↔2U 7.1x10-7 0.5 1.8x106 2.6 0.8 

ISSADD: 
                

hFoB  (Topping et al.,2004) 1BFM 67 α - - - GdmCl 
GdmCl* 

5.7* 
10.8 

- 
3.4 

N2→2U 
N2↔2U 

9.0x10-2

3.6x10-3 
1.1 
0.9 

- 
8.1x103 

- 
0.4 

- 
0.3 

hMfB  (Topping et al.,2004) 1A7W 69 α 
 

1619 31 20 GdmCl 14.1 3.8 N2↔2U 9.0x10-4 1.6 3.1x106 1.3 0.4 

hPyA1  (Topping et al.,2004) - 66 α - - - GdmCl 16.1 3.8 N2↔2M 
M←U 

3.6x10-5 1.3 9.0x105

burst 
1.7 0.6 

FIS (Topping et al.,2004) 1ETY 98 α 
 

2270 36 24 Urea 
 
GdmCl 
 

15.2 
 
13.5 

2.9 
 
5.0 

N2↔I2 
I2←2U 
N2↔I2 
I2←2U 

6.8x10-3

- 
2.0x10-2 

- 

0.7 
- 
1.4 
- 

3.3x101(s-1)
>1.0x107 

5.0x100(s-1) 

>1.0x107 

0.6 
- 
0.4 
- 

0.7 
- 
0.5 
- 

TR (Gittelman et al.,1990; 
Gloss et al.,2001) 

3WRP 108 α 
 

2218 29 22 Urea 24.0 3.1  Complex kinetics    

TR [2-66]2 (Gloss et al.,1997; Gloss et
al.,1998; Gloss et al.,1998)

3WRP 
(8-66) 

65 α 
 

1370 26 23 Urea 14.4 
 

2.0 N2↔I2 
 I2←2U 

6.5x10-1

- 
0.2 
- 

4.6x101(s-1)
7.0x108 

0.6 
- 

0.7 
- 
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H2A/H2B (Gloss et al.,2002; Placek 
et al.,2005) 

1AOI 
(C,D) 

119/122 α 
 

2543 26/28 19 Urea 
 

11.8 
 

2.9 N2↔I2 
 I2←2U 

6.0x10-2

- 
0.5 
- 

5.7x100(s-1) 
>1.0x108 

1.1 
- 

 

other: 
                

S100B (Ferguson et al.,2002) 1UWO 91 α 
 

1291 20 20 GdmCl 17.2 3.3       

α/β proteins: 
                

Arc repressor  (Bowie et al.,1989; Milla 
et al.,1994) 

1ARR 53 α/β 
 

1964 37 29 Urea 
GdmCl 

11.0 
11.1 

1.91 
3.27 

N2↔2U 
 

2.0x10-1 
- 

0.4* 
- 

9.0x106 
- 

1.0 
- 

0.7 
- 

CopG (Wales et al.,2004) 2CPG 56 α/β 
 

1583 22 36          

ORF56 (Zeeb et al.,2004) *      GdmCl 19.8 2.3 N2↔2U 1.8x10-7 1.3 7.0x107 2.4 0.6 

λ Cro 
 

(Jana et al.,1997) 5CRO 66 α/β 676 13 27 GdmCl 11.2 5.6*       

λ Cro 
(F58W)  

(Satumba et al.,2002; Jia et
al.,2005; Maity et al.,2005)

1D1L* 61     Urea 
GdmCl 
GdmCl 

11.4 
13.6 
11.0 

1.6 
5.1* 
3.4 

N2↔2M 
  

3.0x10-1

 
- 1.9x104 - - 

Tctex-1  (Talbott et al.,2006) 1YGT 111 α/β 1580 21 30 GdmCl 19.8 5.4       

p13suc1:  
Δ8789 

(Rousseau et al.,2002; 
Rousseau et al.,2004) 

1PUC 112 α/β 2144 25 26 Urea ~20* 3.4 N2↔ I2 
 I2↔2U 

2.5x10-5

- 
0.8 
- 

2.8x100(s-1)
- 

- - 

KSI  (Kim et al.,2000; Kim et 
al.,2001) 

8CHO 125 α/β 1067 15 35 Urea 22.0 4.0 N2← I2 
 I2←2I 
  I←U 

- - 1.7x10-2(s-1) 
5.4x104 
6.0x101 

- - 

TmDHFR 
 

(Dams et al.,1999) 1CZ3 168 α/β 1264 14 23 GdmCl 
 
Urea 

33.9 
 
34.4 

9.3 
 
4.7 

na 4.6x10-12

 

- 

1.3 
 
- 

1.4x10-1(s-1) 
2.0x10-2 
- 

1.0 
0.9 
- 

- 

hGSTA1-1  (Wallace et al.,1998; 
Wallace et al.,1999) 

1PKW 222 α/β 1495 13 25 Urea 26.8 4.2 N2→I2 
 I2→2U 
N2←I2 
I2←2M 
M←U 

6.1x10-1 
2.9x10-5 

0.1 
0.3 

 
 
6.0x10-3(s-1) 

7.6x105 
Burst* 

 
 
0.1 
0.3 

 

pGSTP1-1 (Dirr et al.,1991) 2GSR 
 

207 α/β 1366 13 29 GdmCl 
Urea 

23.3 
27.2 

11.1 
4.6 

      

Sj26GST (Kaplan et al.,1997) 1M9A 218 α/β 1342 12 29 Urea 26.0 4.5       

rTim (Rietveld et al.,1998; Pan 
et al.,2004) 

1R2T 248 α/β 3225 15 14 GdmCl 33.6 39.4* N2→2M 
M←U 

2.8x10-5

 
1.9 
- 

 
1.9x102(s-1) 

- 
12.9 

- 

hTim (Mainfroid et al.,1996)       Urea 19.3 1.7       
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LmTim (Lambeir et al.,2000) 1AMK      GdmCl 19.7 4.4       

HPV-16 E2 (Mok et al.,1996; de Prat-
Gay et al.,2005) 

1ZZF 81 α/β 887 15 22 Urea 11.0 3.1 N2←2M 
N2← I2 
M←U 

9.0x10-3 
5.0x10-1 

0.3 
~0 

2.4x105

2.0x10-1(s-1) 
3.1x101(s-1) 

1.0 
1.0 
0.6 

 

β-proteins: 
                

R67 DHFR* (Reece et al.,1991) - - β - - - GdmCl 13.2 3.5  - - - - - 

Gene V 
protein  

(Liang et al.,1991) 1VQB 87 β 870 13 18 GdmCl 16.3 3.6 N2↔2U 3.0x10-4 0.8 1.1x107 -3.1 0.8 

HIV-1 
protease   

(Grant et al.,1992) 1Z1H 99 β 1874 28 27 Urea 14.2        

SIV-1 
protease  

(Grant et al.,1992) 1TCW 99 β 1760 26 29 Urea 13.3        

S3a (Kretschmar et al.,1999; 
Kretschmar et al.,1999) 

1HDF 102 β 152 3 34 GdmCl 19.4 8.2 na 6.1x10-6 1.1    

neurotrophins: 
                

mNGF (Timm et al.,1992) 1BET 118 β 1411 20 23 GdmCl 19.3 4.8       

hNGF (Timm et al.,1994) 1WWW 
(V,W) 

118 β 1658 21 24 GdmCl 23.0 4.3       

BDNF (Timm et al.,1994)  119 β    GdmCl 26.4 5.3       

NT-3 (Timm et al.,1994) 1B8K 119 β 1293 20 27 GdmCl 22.7 4.5       

NT-4/5 (Timm et al.,1994) 1HCF 
(A,B) 

130 β 1752 21 24 GdmCl 20.8 5.1       

The free energy of unfolding, ∆G, is the energy difference between the unfolded and folded state protein, m value is related to changes in solvent exposure area during unfolding.  ku and kf are the unfolding 
and folding rate respectively. β-value is a measure of the degree of compaction of the transition state, it is calculated as follows mf/(mu+mf) 
a IA= Interface Area per monomer (Ǻ2), calculation for interface characterisation made using Getarea (http://pauli.utmb.edu/cgi-bin/get_a_form.tcl): total interface area per dimer and is calculated as 
follows: Interface area = (2 x surface area of monomer – surface area of dimer)/2. 
b% MB= percent monomer buried, the % of surface area buried within the interface per monomer and is calculated as follow: %monomer buried = (Interface Area) / (surface area of monomer). 
# %P= percent polar, is the amount of polar residues buried at the interface per monomer and is calculated as follow: % polar residues = (2 x polar surface area of monomer – polar surface area of dimer) / 
(interface area).  
na=the kinetic mechanism has not been determined 

 
 
 
 



Appendix A.4: Thermodynamic and kinetic parameters characteristic of chemical induced unfolding 
of dimeric proteins described by a three-state transition 
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Protein  Ref  Pdb 
code 

Chain  
length 

 Interface 
Characteristics 

denatura
nt 

ΔG  
(kcal/mol) 

m  
(kcal 

Kinetic 
Mechanism 

ku (H2O) 
(s-1) 

mu 
(kcal 

kf (H2O) 
(M-1s-1) 

mf 
(kcal 

β 

      Ia

(Ǻ2) 
%M

b 
%Pc   mol-1 

M-1) 
  mol-1 

M-1) 
 mol-1 

M-1) 
 

α-helical 
                 

CA-C  
of HIV-1  
 

N2↔2M 
 M↔U 
N2↔2U 

(Mateu,2002) 1A43 85 α  927 19 34 GdmCl 12.1  
4.5  

21.1 

3.0 
1.8 
6.6 

      

GR-LBD N2↔I2 
  I2↔2U 
N2↔2U 

(Ferguson et 
al.,2002) 

1M2Z 257 α 672 5 48 GdmCl - 
19.5 

- 

- 
2.3 

- 

      

BthTx-1 N2↔2M 
 M↔U 
N2↔2U 

(Ruller et 
al.,2003) 

1QLL 121 α 458 6.3 40 GdmCl 10.1 
7.2 

24.5 

1.4 
1.9 
5.2 

      

α & β   proteins 
                 

LC8 
 

N2↔2M 
 M↔U 
N2↔2U 

(Barbar et 
al.,2001) 

1CMI 85 α/β 293 5.4 44 GdmCl 8.4 
7.5 

23.4 

1.8 
2.0 
5.8 

      

FXI 
a4 C321S 

N2↔2M 
 M↔U 
N2↔2U 

(Riley et 
al.,2007) 

2F83 
(F272-
E362 

91 α/β 898 16 43 GdmCl 9.5 
2.6 

14.7 

1.2 
0.6 
2.4 

      

CRP  N2↔2M 
 M↔U 
N2↔2U 

(Cheng et 
al.,1993; 
Malecki et 
al.,1997) 

1I5Z 209 α/β 1267 11 11 GdmCl 12  
7.2  

26.4 

2.4 
2.5 
7.4 

N2↔2M 
 M↔U 
 

1.2x101 
9.4x10-5  
 

- 
1.4 

- 
1.2x102(s-1) 
 

- 
1.4 

- 
0.5 

DsbC N2↔2M 
 M↔U 
N2↔2U 

(Bjelic et 
al.,2006) 

1EEJ 216 α/β 930 8 31 GdmCl 11.7 
13.9 
39.5 

3.6 
6.0 

15.6 

N2→2M 
na 
na. 

6.8x100 
6.3x10-1  
4x10-2  

- 
- 
- 

- 
4.8x10-1(s-1) 
2.7x10-2 (s-1) 

- 
- 
- 

 

GSTM1-1  
 

N2↔2M 
 M↔U 
N2↔2U 
N2↔2M 
 M↔U 
N2↔2U 

(Hornby et 
al.,2000) 

1GSU 219 α/β 1293 12 38 Urea 
 
 
GdmCl 

10.8 
16.5  
43.8 
9.2  

16.3 
41.8 

1.0 
3.4 
7.8 
2.2 
5.1 

12.4 

      

GSTM2-2  
 

N2↔2M 
 M↔U 
N2↔2U 
N2↔2M 
 M↔U 
N2↔2U 

(Hornby et 
al.,2000) 

1HNB 217 α/β 1697 14 32 Urea 
 
 
GdmCl 
 

12.4 
14.8 
42.0 
9.8  

15.8  
41.4 

1.8 
3.1 
8.0 
3.3 
6.0 

15.3 

      

Procaspase-3  
  

N2↔I2 
  I2↔2M 
  M↔U 
N2↔2U 

(Bose et 
al.,2001) 

- 277 α/β - - - Urea  8.3  
10.5  

3.5 
25.8 

2.8 
0.5 
0.6 
4.5 

      

TyrRS N2↔2M 
 M↔U 
N2↔2U 

(Bose et 
al.,2001) 

4TS1 319 α/β 1642 12 17 Urea 13.8 
13.9 
41.7 

0.9 
2.5 
5.9 
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 M↔U 
N2↔2U 

al.,2002) 3.5 
15.6 

1.2 
7.1 

eAATase N2↔I2 
  I2↔2U 
N2↔2U 

(Deu et 
al.,2007) 

1ASL 396 α/β    Urea 12.0 
24.4 
36.4 

4.8 
3.4 
8.2 

      

Ure2p  
 

N2↔I2 
  I2↔2U 
N2↔2U 

(Galani et 
al.,2002; Zhu et 
al.,2003) 

1G6Y 354 α/β 1602 13 20 GdmCl 8.0 
36.0 
44.0  

4.2 
9.0 

13.2 

 N2↔I2 
  I2↔2M 
 M←U 

10-8- 10-9 
≤8x10-12 
- 

- 
2.8 
 

7x10-2(s-1) 
104- 1011 
burst 

0.5 
- 
- 

 

hPAP N2↔2M 
 M↔U 
N2↔2U 

(Wojciak et 
al.,2003) 

1CVI 354 α/β 1469 9 25 GdmCl 4.2 
6.4 

17.0 

3.4 
2.0 
7.4 

N2↔I2 
  I2↔2M 
 M←U 

2.7x100 
5.4x10-2 

- 

    

SecA  N2↔I2 
  I2↔2U 
N2↔2U 

(Doyle et 
al.,2000) 

2FSF 853 α/β 2768 7.6 30 Urea  8.4  
14.1 
22.5  

4.1 
1.5 
5.6 

N2↔Ia
2 

 Ia
2↔Ib

2 
Ib

2←2Ma 
Ma←Mb 
Mb←U 

2.2x10-2  
~5 
 
 

-  
- 
- 
- 
- 

2.6x10-2 (s-1) 
5.0x100(s-1) 

~3x109 
7.7x100(s-1) 
7.1x103(s-1) 

 
 

- 
- 

knotted proteins                  

YbeA  N2↔2M 
 M↔U 
N2↔2U 

(Mallam et 
al.,2007) 

1NS5 155 α/β 1355 15 29 Urea 
 
 

13.3 
2.8 

18.9 

1.6 
1.5 
4.6 

N2↔2M 
 M↔U 
 

4.3x10−4  
8.1x10−4 

0.6 
0.5 

3.9x104  
1.6x10-1(s-1)  

0.8 
0.8 

0.6 
0.6 

YibK    N2↔2M 
 M↔U 
N2↔2U 

(Mallam et 
al.,2005; 
Mallam et 
al.,2006) 

1J85 160 α/β 1989 22 51 Urea  
 
 

18.9  
6.5  

31.9 

1.8 
1.5 
4.9 

N2↔2Ma 
Ma↔Mb/c 
Mb↔Ub 
Mc↔Uc 

4.9x10-7 
9.0x10-5 
3.0x10-1 
1.5x10-2 

0.7 
0.4 
0.3 
0.3 

1.8x104

7.7x10-2(s-1) 

1.3x102(s-1) 
1.5x101(s-1) 

0.6 
0.5 
0.9 
0.7 

0.5 
0.6 
0.8 
0.7 

α/β-barrels                  

yTIM N2↔2M 
 M↔U 
N2↔2U 

(Najera et 
al.,2003) 

1YPI 247     Urea 16.8 
4.0 

24.7 

       

TcTIM N2↔I2 
  I2↔2M 
  M↔U 
N2↔2U 

(Chanez-
Cardenas et 
al.,2005) 

1TCD 249     GdmCl 1.1 
15.7 
4.2 

25.3 

       

Luciferase αβN↔αβI  
αβI↔αU+βU 
αβN↔αU+βU 

(Clark et 
al.,1997) 

1LUC 355/324 α/β 2202 15 36 Urea  4.5  
19.7 
24.2 

2.38 
3.99 
7.27 

αβN↔αβI 
αβI↔αM+βM 
 αM↔αU 
 βM↔βU 

 
 

- 
- 
- 
- 

2.7x10-4(s-1) 
2.4x103 
2x10-3(s-1) 
6x10-3(s-1) 

- - 

OPH N2↔I2 
 I2↔2U 
N2↔2U 

(Grimsley et 
al.,1997) 

1PTA 362 α/β 1561 11 24 Urea 4.3 
36.1 
40.4 

1.0 
4.3 
5.3 

      

β-proteins: 
                 

dfx N2↔2M 
 M↔U 
N2↔2U 

(Apiyo et 
al.,2001) 

1DFX 125 β 1746 24 69 GdmCl 5.5 
11.8  
34.6 

-       

apoSOD  
 

N2↔2M 
 M↔U 
N2↔2U 

(Svensson et 
al.,2006) 

1HL4 153 β  725 10 20 GdmCl 
 

12.4 
1.8 

16.0  

2.7 
2.8 
7.3 

N2↔2M 
 M↔U 

 

2.4x10-4  
9.5x10-4  

0.1 
0.5 

2x109  
8x10-2(s-1) 

0.8 
1.1 

0.9 
0.7 

bOBP N2↔2M (Mazzini et 1OBP 159 β 2728 25 30 GdmCl - -       
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The free energy of unfolding, ∆G, is the energy difference between the unfolded and folded state protein, m value is related to changes in solvent exposure area during unfolding.  ku and kf 
are the unfolding and folding rate respectively. β-value is a measure of the degree of compaction of the transition state, it is calculated as follows mf/(mu+mf) 
a IA= Interface Area per monomer (Ǻ2), calculation for interface characterisation made using Getarea (http://pauli.utmb.edu/cgi-bin/get_a_form.tcl): total interface area per dimer and is calculated as 
follows: Interface area = (2 x surface area of monomer – surface area of dimer)/2. 
b% MB= percent monomer buried, the % of surface area buried within the interface per monomer and is calculated as follow: %monomer buried = (Interface Area) / (surface area of monomer). 
# %P= percent polar, is the amount of polar residues buried at the interface per monomer and is calculated as follow: % polar residues = (2 x polar surface area of monomer – polar surface area of dimer) / 
(interface area).  
na=the kinetic mechanism has not been determined. 

 

 M↔U 
N2↔2U 

al.,2002) 5.0 
- 

1.9 
- 

βB1-crystallin 
 

N2↔I2 
  I2↔2U 
N2↔2U 

(Mateu,2002) 1OKI 251 β    GdmCl 
 

4.4 
16.0 
20.4 

5.4 
3.2 
8.6 

      

AAO N2↔I2 
  I2↔2U 
N2↔2U 
N2↔I2 
  I2↔2U 
N2↔2U 

(Ferguson et 
al.,2002) 

1AOZ 552 β    Urea 
 
 
GdmCl 
 

3.5 
13.6 
17.1 
3.3 

12.3 
15.6 

1.7 
1.2 
2.9 
3.1 
1.7 
4.8 

      



Appendix A.5: Kinetic model of a dimer 2-state folding. 
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N2, [N2], fN2 represent native dimer, its concentration and its fraction. U, [U], fU represent the unfolded monomer, its concentration and its fraction. ku and kf are 
the rate of unfolding and refolding, respectively. T is time and is expressed in seconds. P is the total concentration and is expressed in dimer equivalent. 



Appendix A.6: Kinetic model of a trimer 2-state folding. 
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N3, [N3] and fN3 represent the native trimer, its concentration and its fraction. U, [U] and fU represent the unfolded monomer, its concentration and its fraction. ku 
and kf are the unfolding and refolding rate, respectively. T is the time and is expressed in second. P is the total concentration and is expressed in trimer equivalent. 




