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Abstract

The use of photons as qubits is a promising implementation for quantum com-
putation. The inability of photons to interact, especially with the environment,
makes them an ideal physical candidate. However, this also makes them a
difficult system to perform two qubit gates on. Recent breakthroughs in pho-
tonic quantum computing have shown methods around the requirement of di-
rect photon-photon interaction. In this thesis we study three recently discovered
schemes for optical quantum computation.

We first investigate the so called linear optical quantum computing (LOQC)
scheme, exploring a method to improve the original proposal by constructing a
photon-number QND detector that succeeds with a high probability. In doing
this we present a new type of LOQC teleporter, one that can detect the presence
of a single photon in an arbitrary polarisation state when the input state is a
sum of vacuum and multi-photon terms. This new type of teleporter is an
improvement on the original scheme in that the entangled states required can
be made offline with fewer entangling operations.

We next investigate the so called quantum bus (qubus) scheme for photonic
quantum computing. We show a scheme to measure the party of n qubit states
by using a single qubus mode, controlled rotations and displacements. This
allows for the syndrome measurements of any stabilizer quantum error correcting
code. We extend these results to a fault tolerant scheme to measure an arbitrary
Pauli operator of weight n, incorporating so called single bit teleportations. We
investigate the construction of a Toffoli gate by using a single qubus mode,
controlled rotations and displacements that works with a success probability of
at least 25%. We also investigate the use of single bit teleportations to construct
a universal set of gates on coherent state type logic and in the construction of
cluster states.

We finally investigate the optical Zeno gate, a gate that uses the Zeno effect
in the form of two photon absorbers to induce a csign. We model realistic
two photon absorption and include realistic single photon loss for this gate,
examining the use of encoding to overcome the single photon loss, showing that
our results are competitive with the leading equivalent LOQC scheme.
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Chapter 1

Introduction

The use of quantum systems for computation was first proposed by Benioff
in [1] and Feynman in [2] and further developed in [3, 4, 5, 6, 7, 8, 9, 10].
Recently, quantum information processing (QIP) has taken off as a research
area. QIP promises to solve some problems that have no known efficient classical
algorithms. For example, Shor has shown in [11] that a quantum computer could
factor a number that is the product of two prime numbers exponentially faster
than any known classical algorithm. In [12, 13] Grover showed a quantum search
algorithm that could search an unsorted list quadraticly faster than any known
classical algorithm. QIP also offers the possibility of simulating other quantum
systems efficiently [2, 14, 15], a task with no known efficient classical equivalent.

Before any quantum system can be used for QIP, a full analysis of the propa-
gation of errors in the system must be made and a method to recover from these
errors within an acceptable corruption threshold found. This entails encoding
the quantum data with quantum error correction (QEC) codes [16, 17, 18, 19, 20]
and leads to a theory of fault tolerance for QIP [21, 22, 23, 24, 25, 26].

Before such a sophisticated theory can be implemented on a physical system,
a basic quantum system must first be found. The question of which physical
system is best suited to perform scalable quantum computations is still very
much open. For a physical system to be a suitable candidate for scalable QIP,
the following set of five criteria must be first be met [27] :

1. The physical system must have well characterised qubits.

2. We must have the ability to initialise the state of the qubits to a simple
fiducial state, such as |000 . . .〉.

3. A “universal” set of quantum gates such as generic one qubit gates and a
two qubit gate must be implementable.

4. The physical system must have a qubit-specific measurement capability.
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5. The physical qubits must have long relevant decoherence times, much
longer than the gate operation time.

One of the earliest proposals for the physical implementation of a quantum
computer involved using a strong cross Kerr non-linearity to facilitate photon
interaction [28, 29]. From this a cnot gate could be constructed [30], a gate
when combined with arbitrary single qubit rotations is universal for quantum
computation, provided the size of the non-linearity was on the order of π. The
size of this non-linearity is the key reason why this scheme is unrealistic, as it
is many orders of magnitude greater than what can currently be made. Even
with the advancement of experimental ingenuity, it is unlikely that we will see
such a large cross Kerr non-linearity in the foreseeable future.

The fact that photons do no interact directly is the major obstacle for using
single photons for QIP. Without a direct interaction, two qubit gates are not
possible. However, photons do exhibit other characteristics that make them
ideal candidates for QIP. Photons decohere slowly, an ideal trait for quantum
computing. Photons also travel well, one reason why they are so widely used
for communication. Another advantage is that photons can be experimented
with at room temperature. Provided we can overcome the interaction problem,
there would just be technical obstacles to be overcome, such as mode matching
and single photon production and detection.

Recently, it was shown by Knill et al. [31] that a Kerr non-linearity was not
required to mediate an interaction between photons. The non-linearity required
to make photons interact could be present in the form of single photon detectors
and previously prepared entangled ancilla states. This scheme, called linear op-
tics quantum computing (LOQC), required single photon sources, linear optical
elements such as beam splitters and phase shifters and photon number detectors
with the ability to distinguish between 0, 1 and 2 photons. By teleporting qubits
through the gate [32], a cnot could be performed with success probability that
asymptotically approached 1.

Performing a two qubit gate now becomes a state preparation problem, some-
thing that can be done offline and need not have a perfect success probability.
In [31] Knill et al. also showed a method to probabilistically perform a csign (lo-
cally equivalent to a cnot) between photonic qubits with a success probability
of 1/16, requiring two single photon ancilla states. In the bigger picture, these
probabilistic csign gates will be applied between the pre-prepared entangled
ancilla states.

Whilst the LOQC proposal by Knill et al. [31] is asymptotically scalable, the
number of resources required to perform an experimental are staggering. For
a two qubit gate to work with a success probability of 99.99%, 10000 photons
would be required on 108 beam splitters in a square array. This number of
photons could be reduced with the use of QEC [33], since the teleportations
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using the pre-prepared entangled states fail in a very particular way. When the
teleportations fail, Z-measurement errors are induced on the photonic logic [33].
With a parity encoding these errors can be corrected.

Since the seminal work by Knill et al. on LOQC, research into optical
quantum computing has essential split into three, not necessarily disjointed,
branches.

The first branch concerns directly improving the LOQC model, such as sim-
plifications and improvements to the probabilistic csign, as shown by Pittman et
al. [34] and Ralph et al. [35]. In [34], a cnot was shown to succeed 1/4 of the
time. However, this cnot required the use of a Bell state ancilla. In [35], a sim-
plified cnot in the coincidence basis was shown that succeeded with a success
probability of 1/20. Further simplifications shown in [36] and [37], where the use
of photon-number QND detectors were necessary, led to experimental verifica-
tion. In [38, 39], Knill worked towards optimising the probabilistic csign gate,
as have Scheel and Lütkenhaus in [40] and Eisert in [41]. Another direct im-
provement for LOQC would be through more general and efficient QEC codes,
such as the work by Knill et al. [33] and Silva et al. [42]. Hayes et al. [43] have
shown that the parity encoding introduced in [31] can be generalised to use an
incremental parity encoding, leading to a reduction in the necessary resources
for computation.

The second branch moves away from the circuit model of quantum compu-
tation, instead concentrating on the cluster state model by Raussendorf [44].
Yoran and Reznik [45] used a variation of the cluster state model to show that
the number of resources for LOQC could be reduced by two orders of magni-
tude. Nielsen showed [46] that with the standard KLM csign gate and ideas
from cluster state computation, the number of photons required per two qubit
operation could be reduced by another order of magnitude. Later, it was shown
by Browne and Rudolph [47] that this number could be reduced by another
order of magnitude with the use of so called fusion gates. More recently, Ralph
et. al. [48] have shown that the number of photons required per two qubit gate
can be reduced even more by using incremental encoding.

The third branch involves the investigation of different forms of non-linearity
to induce photon interaction. Nemoto and Munro [49] build on the idea of using
a cross Kerr non-linearity to construct a near deterministic cnot gate, circum-
venting the need for a large cross Kerr non-linearity by using weak Kerr non-
linearities in conjunction with large coherent bus modes. Franson et al. [50]
have shown that a cnot between photonic qubits is possible using the Zeno
effect in the form of two photon absorbers. In this scheme, two photon absorp-
tion are used to eliminate any photonic terms outside the logical Hilbert while
a simple beam splitter type of interaction takes place.

In this thesis we will investigate the first and third branch extensively and
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briefly touch on the second.
We investigate direct improvements to the LOQC model by exploring the

possibility of constructing photon-number QND detectors with near perfect suc-
cess probability. This leads to investigating possible improvements to the orig-
inal LOQC asymptotic teleporter.

We investigate two areas of the weak non-linearity model. We first exam-
ine the benefits of coherent beam displacements in this model, investigating
the measurement of arbitrary stabilizer codes and the construction of entan-
gling three qubit gates. We next examine the use of teleportations in the weak
non-linearity scheme, investigating a fault tolerant measurement of arbitrary
stabilizer codes, the possibility of efficient computation performed on coherent
state logic and the production of cluster states.

We investigate the optical Zeno gate by modelling realistic two photon ab-
sorption and include realistic single photon loss. We examine the use of encoding
to overcome the realistic single photon loss and compare our results with the
leading equivalent LOQC scheme.

1.1 Outline of the dissertation

In Chapter 2 we introduce important background results that are built upon
in this thesis. We give a brief overview of quantum optics in Section 2.1, we
describe the original proposal for photonic quantum gates in Section 2.2, in
Section 2.3 we define a definition for fidelity used in this thesis, we give a brief
overview of progress made towards quantum gates with linear optics prior to the
LOQC scheme in Section 2.4, we summarise the LOQC proposal in Section 2.5
and the quantum error correction scheme used to recover from teleportation
failure in Section 2.6, in Section 2.7 we give a brief overview of improvements
and simplifications to the LOQC proposal, we describe the quantum bus scheme
for optical quantum gates in Section 2.8 and conclude the chapter in Section 2.9
by describing the optical Zeno gate.

In Chapter 3 we search for a high success probability LOQC photon number
QND detector, describing the details for such a gate in Section 3.1 and describing
an important application for such a gate in Section 3.2.

In Chapter 4 we investigate the use of displacements in qubus computation.
In Section 4.1 we describe a method to measure the parity of n qubits and in
Section 4.2 we propose a Toffoli gate.

In Chapter 5 we investigate the use of single qubit teleportations in qubus
computation. In Section 5.1 we describe a fault tolerant method to measure
the parity of n qubits, in Section 5.2 we provide a detailed analysis of qubus
single qubit teleportations, in Section 5.3 we describe a method to perform a
universal set of gates on coherent state type qubits and in Section 5.4 we provide
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a method to construct large cluster states.
in Chapter 6 we perform a full analysis of the optical Zeno effect optical gate.

In Section 6.1 we describe an analytical solution for the density matrix when
we have a continuous interaction between the qubits and realistic, continuous
two photon absorption and single photon loss, in Section 6.2 we describe an
analytical solution when the continuous interaction is replaced by a linear array
of beam splitters, in Section 6.3 we measure the effect single photon loss has
on the csign gate, in Sections 6.4 and 6.5 we encode against the single photon
loss and in Section 6.6 we compare our encoded optical Zeno gate against the
equivalent leading LOQC gate.

In Chapter 7 we summarise the results from this thesis.

1.2 Additional information for the examiners of

this thesis

Chapter 2 is intended as a summary of the important background results that
are built upon in this thesis. None of the results in this Chapter are claimed
to be original. They are all known results taken from the literature. Sec-
tions 2.1, 2.2, 2.4, 2.5 and 2.6 are loosely based on the LOQC review paper
written by C.R. Myers and R. Laflamme [51].

Section 4.1 from Chapter 4 and Section 5.1 from Chapter 5 are based on the
Physical Review A article [52] written with M. Silva, K. Nemoto and W.J. Munro.

Chapter 4 is a result of discussions with M. Silva and W.J. Munro. I am the
sole contributor to the details in this chapter. A paper concerning Section 4.2
is currently being written by C.R. Myers.

Chapter 5 is a result of discussions with M. Silva, K. Nemoto and W.J. Munro.
C.R. Myers and M. Silva had an equal contribution to the results in this Chapter.
A paper concerning Sections 5.2–5.4 is currently being written by C.R. Myers
and M. Silva.

The results presented in Chapter 6 are based on the Physical Review A
article [53] written with A. Gilchrist. C.R. Myers and A. Gilchrist had an equal
contribution to the results in this Chapter.

The results presented in Chapter 3 are a result of discussions between C.R. My-
ers and J.P. Dowling. I am the sole contributor to the results in this chapter.
A paper concerning this chapter is currently being written by C.R. Myers and
J.P. Dowling.
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Chapter 2

Background

In this chapter we describe important background results that are built upon in
this thesis. We begin with a brief overview of quantum optics, concentrating on
techniques that will be used in this thesis. Next we briefly describe the origi-
nal photonic quantum gate proposal based on strong Kerr cross non-linearities.
After this we describe the fidelity measures that will be used in this thesis. We
follow this with a description of progress made towards quantum gates with
linear optics prior to the LOQC scheme. Next we summarise the LOQC scheme
and the quantum error correction scheme used to recover from teleportation
failure. This is followed by a brief overview of improvements and simplifications
to the LOQC proposal. We then summarise the quantum bus scheme for imple-
menting quantum gates on photons, emphasising results that will be extending
in later chapters. Finally we summarise the optical Zeno gate.

2.1 Quantum Optics

2.1.1 Classical Electromagnetic Field

When we deal with electromagnetic waves classically we look for solutions to
the source free Maxwell equations [54], resulting in the electric field E(r, t) wave
equation

∇2E(r, t)− 1
c2
∂2

∂t2
E(r, t) = 0. (2.1)

The solutions have a plus and minus frequency part [55, 56] :

E(r, t) = i
∑

k

(
~ωk

2

) 1
2 [
akuk(r)e−iωkt − a∗ku

∗
k(r)eiωkt

]
. (2.2)

The ak are dimensionless (complex) amplitudes and uk(r) are orthogonal mode
functions, usually plane wave mode functions: uk(r) = ê(λ)

√
V

exp(ik · r), where
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V is the volume and ê(λ) is defined as the unit polarisation vector satisfying
k · ê(λ) = 0 and ê(λ).ê(λ′) = δλ,λ′ [57].

The energy of a classical electromagnetic field is given by [56]

H =
1
2

∫
V

(ε0E2 +
B2

µ0
)dr =

∑
k

(
~ωk

2

)
aka

∗
k, (2.3)

where ε0 = 8.854 × 10−12F · m−1 is the permittivity of vacuum and µ0 =
4π × 10−7N ·A−2 is the permeability of vacuum such that ε0µ0 = 1

c2 .

2.1.2 Quantise

We quantise the electromagnetic field by turning the coefficients ak into opera-
tors and imposing the commutation relations:[

âi, â
†
j

]
= δi,j (2.4)[

âi, âj

]
=

[
â†i , â

†
j

]
= 0.

In terms of these operators the energy is given by

Ĥ =
∑

k

~ωk

(
â†kâk +

1
2
)
. (2.5)

If we let

â =
1√
2

(√mω

~
x̂+ i

1√
m~ω

p̂
)
, (2.6)

where x̂ and p̂ are the usual position and momentum operators,

〈x|p̂|ψ〉 = −i~ d

dx
〈x|ψ〉 (2.7)

〈x|x̂|ψ〉 = x〈x|ψ〉.

The energy of the electromagnetic field becomes

Ĥ =
p̂2

2m
+

1
2
mω2x̂2, (2.8)

where ω =
√
k/m. This is the Hamiltonian for a harmonic oscillator.

The eigenstates of Ĥ, called Fock states, are labelled |n〉. We define the
number operator n̂ as n̂ = â†â having eigenvalue n:

n̂|n〉 = â†â|n〉 = n|n〉. (2.9)

The effect of â on |n〉 can be seen by finding the number of photons in â|n〉:

n̂
(
â|n〉

)
= â†â2|n〉 =

(
ââ†â− â

)
|n〉 =

(
n− 1

)
â|n〉.

So â|n〉 is a Fock state with n − 1 photons. We define this to be A|n− 1〉 for
A ∈ R and n ≥ 1. In a similar way we can show that â†|n〉 is a Fock state
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with n + 1 photons, B|n+ 1〉. A and B can be worked out using the fact that
〈n|n̂|n〉 = n:

〈n|n̂|n〉 = 〈n|â†â|n〉 = A〈n|â†|n− 1〉

= 〈n− 1|A2|n− 1〉 = A2 = n

〈n|n̂|n〉 = 〈n|â†â|n〉 = 〈n|ââ† − 1|n− 1〉

= B2 − 1 = n.

We call â an annihilation operator and â† a creation operator:

â†|n〉 =
√
n+ 1|n+ 1〉 (2.10)

â|n〉 =
√
n|n− 1〉. (2.11)

For n = 0, we define â|0〉 = 0, this represents vacuum fluctuations: Ĥ|0〉 =
1
2~ω|0〉 vacuum fluctuation energy of the lowest eigenstate of the Hamiltonian.

The Fock states form an orthonormal set:

〈n|m〉 = δnm

∞∑
n=0

|n〉〈n| = 1l.

Each Fock state may be built up from creation operators:

|n〉 =

(
â†
)n

√
n!
|0〉. (2.12)

The matrix form of the annihilation operator can be seen by using the identity
operator twice:

â = 1lâ1l =
∞∑

n=0

|n〉〈n|â
∞∑

m=0

|m〉〈m|

=
∞∑

n=0

√
n+ 1|n〉〈n+ 1|.

In matrix form:

â =


0

√
1 0 0 · · ·

0 0
√

2 0 · · ·
0 0 0

√
3 · · ·

...
...

...
...

. . .

 .

It should be noted that we only consider monochromatic photonic modes
in this thesis. To consider all modes associated with each photon we could use
the techniques presented in [58]. In the case that we consider each photon to
have a finite frequency width we would include frequency filters in front of each
photon source and each photon detector. An analysis of frequency effects in
linear optics quantum computing has been shown by Rohde et al. [59].
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2.1.3 Minimum Uncertainty States

The Heisenberg Uncertainty Principle: for two non-commuting observables Â
and B̂, the uncertainty in each is given by the relation:

∆Â∆B̂ ≥ 1
2
|〈
[
Â, B̂

]
〉|

where (∆Â)2 = 〈Â2〉 − 〈Â〉2.
For example, consider the case when Â = x̂ and B̂ = p̂. The uncertainty

principle becomes the well known result: ∆x̂∆p̂ ≥ ~
2 .

In Eqn. 2.6 we wrote â in terms of x̂ and p̂. It is often more convenient to
write the annihilation operator as a linear combination of the two Hermitian
operators:

X̂1 = â+ â† (2.13)

X̂2 = −i
(
â− â†

)
where X̂1 (similarly to x̂ from before) corresponds to the in-phase component
of the electric field amplitude of the spatial-temporal mode and X̂2 (similar to
p̂ from before) corresponds to the out-of-phase component.

This gives the commutation relation
[
X̂1, X̂2

]
= 2i and the Heisenberg un-

certainty relation

∆X̂1∆X̂2 ≥ 1. (2.14)

Minimum uncertainty states are states that correspond to an equality in
Eqn. (2.14). Two important minimum uncertainty states are coherent states
and squeezed states, described in the next two sections.

2.1.4 Coherent States

A coherent state |α〉 is a minimum uncertainty state defined as the eigenstate
of an annihilation operator:

â|α〉 = α|α〉. (2.15)

Alternatively, we can define a coherent state with the displacement operator
D(α):

|α〉 = D(α)|0〉 (2.16)

where

D(α) = exp(αâ† − α∗â). (2.17)

We can use the Campbell-Baker-Hausdorff operator identity [60]:

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂]
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for
[
Â,
[
Â, B̂

]]
=
[
B̂,
[
Â, B̂

]]
= 0 to rewrite the displacement operator:

exp(αâ† − α∗â) = exp
(
−|α|

2

2

)
exp(αâ†) exp(−α∗â). (2.18)

We can then rewrite the coherent state as

|α〉 = exp
(
−|α|

2

2

)
exp(αâ†)|0〉 = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n〉. (2.19)

Working out ∆X̂1∆X̂2 for a coherent state we find ∆X̂1 = ∆X̂2 = 1, show-
ing that coherent states are minimum uncertainty states, since ∆X̂1∆X̂2 = 1.

Coherent states are not orthogonal since

〈β|α〉 = exp
(
−1

2
(
|α|2 + |β|2

)
+ αβ∗

)
(2.20)

|〈β|α〉|2 = exp
(
−|α− β|2

)
(2.21)

and as such form an over complete set∫
|α〉〈α|d2α = π. (2.22)

By writing α = reiθ we know that d2α = rdrdθ. Using this and Eqn. 2.19 we
can explicitly prove Eqn. 2.22 [55]. The inverse of the displacement operator
D−1(α) is given by

D†(α) = D−1(α) = D(−α). (2.23)

Using the identity [61]

eξBAe−ξB = A+ ξ [B,A] +
ξ2

2!
[B, [B,A]] +

ξ3

3!
[B, [B, [B,A]]] + · · · , (2.24)

we can see how the displacement operator displaces annihilation and creation
operators:

D†(α)âD(α) = â+ α (2.25)

D†(α)â†D(α) = â† + α∗.

The displacement of a coherent state |α〉 by β results in a phase factor

D(β)D(α) = exp
(
iIm(βα∗)

)
D(α+ β). (2.26)

2.1.5 Linear Optics

Linear optical components are passive devices used to interfere optical states
with each other. We will use them extensively in this thesis so we will describe
them here.
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An optical component is said to be linear if its output modes b̂†j are a linear
combination of its input modes â†j :

b̂†j =
∑

k

Mjkâ
†
k.

Linear optical components are made up of phase shifters and beam splitters.
A phase shifter, shown in Fig. 2.1 (i), is defined by the transformation U(Pφ) :
|n〉 → einφ|n〉. That is,

(
â†l
)n|0〉 → einφ

(
â†l
)n|0〉. The Hamiltonian for a phase

shifter is given by the number operator:

ÛPS = eiφĤ = eiφn̂ = eiφâ†â. (2.27)

Using this we see that eiφâ†â|n〉 = einφ|n〉. The phase operator takes a coherent
state |α〉 to |eiφα〉:

eiφn̂|α〉 = eiφâ†â
∞∑

n=0

(iα)n

√
n!
|n〉 =

∞∑
n=0

(iα)n

√
n!
eiφâ†â|n〉

=
∞∑

n=0

(iα)n

√
n!
eiφn|n〉

=
∞∑

n=0

(iαeiφ)n

√
n!

|n〉

= |eiφα〉. (2.28)

φ(i)

(ii) θ φ,

einφ nn

1

2 2

1

Figure 2.1: (i) Phase shifter φ. (ii) Beam splitter described by θ and φ. The reflectivity is

given by cos2(θ).

A possible Hamiltonian for the beam splitter shown in Fig. 2.1 (ii) is given
by

Ĥ = ε
(
eiϑâ†1â2 + e−iϑâ1â

†
2

)
. (2.29)
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The corresponding unitary transformation is

ÛBS = exp
(
iθ
(
eiϑâ†1â2 + e−iϑâ1â

†
2

))
, (2.30)

where modes 1 and 2 are being acted upon by the beam splitter and θ = εt, t
being measured in units of ~.

A beam splitter takes the two mode state |ψ〉12 to ÛBS|ψ〉12. Any photonic
state can be written as a polynomial function of creation and annihilation op-
erators acting on the vacuum: |ψ〉12 = f(â†1, â

†
2, â1, â2)|vac〉12. We can always

use Eqn. 2.4 and generalisations [61, 62] such as:[
âi, (â

†
j)n
]

= δijn(â†i )n−1 (2.31)[
â†i , (âj)n

]
= −δijn(âi)n−1

to write the function f(â†1, â
†
2, â1, â2) with the creation operators to the left of

the annihilation operators, something called normal ordering, and use the fact
that â|0〉 = 0 to obtain a function that only depends on the creation operators:
|ψ〉12 = f̃(â†1, â

†
2)|vac〉12. The beam splitter now takes |ψ〉12 to

ÛBSf̃(â†1, â
†
2)|vac〉12 = ÛBSf̃(â†1, â

†
2)Û†

BSÛBS|vac〉12
= f̃(ÛBSâ

†
1Û

†
BS, ÛBSâ

†
2Û

†
BS)|vac〉12, (2.32)

since Û |vac〉 = |vac〉 for any unitary Û and f̃(â†1, â
†
2) is a polynomial function of

creation operators.
Using Eqn. 2.24 ÛBSâ

†
1Û

†
BS and ÛBSâ

†
2Û

†
BS can be expanded as:

ÛBSâ
†
1Û

†
BS = â†1 + iθe−iϑâ†2 −

1
2!
θ2â†1 −

1
3!
iθ3e−iϑâ†2 +

1
4!
θ4â†1 +

1
5!
iθ5e−iϑâ†2 + · · ·

ÛBSâ
†
2Û

†
BS = â†2 + iθeiϑâ†1 −

1
2!
θ2â†2 −

1
3!
iθ3eiϑâ†1 +

1
4!
θ4â†2 +

1
5!
iθ5eiϑâ†1 + · · ·

Comparing this with the Maclaurin series for cos(x) and sin(x)

cos(x) = 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 · · · (2.33)

sin(x) = x− 1
3!
x3 +

1
3!
x3 − 1

7!
x7 · · · (2.34)

we see that

ÛBSâ
†
1Û

†
BS = cos(θ)â†1 + e−iφ sin(θ)â†2 (2.35)

ÛBSâ
†
2Û

†
BS = −eiφ sin(θ)â†1 + cos(θ)â†2

where we have set φ = ϑ− π
2 . We can summarise this by saying that the creation

operators â†1 and â†2 are transformed by a beam splitter to give Λ~a, where

Λ =

(
cos(θ) −eiφ sin(θ)

e−iφ sin(θ) cos(θ)

)
(2.36)
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and

~a =

(
â†1′

â†2′

)
(2.37)

Consider the state |mn〉12 incident on a beam splitter. The output would
look like:

|mn〉12 =

(
â†1
)m

√
m!

(
â†2
)n

√
n!
|00〉

→ 1√
m!

(∑
i′

Λi′1â
†
i′

)m 1√
n!

(∑
j′

Λj′2â
†
j′

)n

|00〉 (2.38)

=
1√
m!n!

(
â†1′ cos(θ) + â†2′e

−iφ sin(θ)
)m(

−â†1′e
iφ sin(θ) + â†2′ cos(θ)

)n

|00〉

where we have used the notation |00〉 for the two mode vacuum state |vac〉12.
For example:

|10〉 → cos(θ)|10〉+ e−iφ sin(θ)|01〉

|01〉 → −eiφ sin(θ)|10〉+ cos(θ)|01〉

|11〉 → −
√

2eiφ cos(θ) sin(θ)|20〉+ (cos2(θ)− sin2(θ))|11〉+
√

2e−iφ cos(θ) sin(θ)|02〉

|20〉 → cos2(θ)|20〉+
√

2e−iφ cos(θ) sin(θ)|11〉+ e−2iφ sin2(θ)|02〉

|02〉 → e2iφ sin2(θ)|20〉 −
√

2eiφ cos(θ) sin(θ)|11〉+ cos2(θ)|02〉.

Polarisation

In the solution to the source free Maxwell equation in Eqn. 2.2 a polarisation
vector ê(λ) was defined. This polarisation degree of freedom for photons has the
two dimensional basis {|H〉, |V 〉}, corresponding to horizontally and vertically
polarised photons. In the 45 degree basis we have |F 〉 = 1√

2

(
|H〉+|V 〉

)
and |S〉 =

1√
2

(
|V 〉−|H〉

)
. Alternatively |H〉 = 1√

2

(
|F 〉−|S〉

)
and |V 〉 = 1√

2

(
|F 〉+|S〉

)
. The

polarisation equivalent to linear optical elements are polarisers and polarising
beam splitters (PBS), shown in Fig. 2.2.

A polariser is able to implement any single qubit operation on the qubit
α|H〉a + β|V 〉a. That is, the polariser in Fig. 2.2 (i) takes α|H〉a + β|V 〉a to
α
(
cos(θ)|H〉+ e−iφ sin(θ)|V 〉

)
b

+ β
(
−eiφ sin(θ)|H〉+ cos(θ)|V 〉

)
b
, where |α2|+

|β|2 = 1.
Polarising beam splitters reflect or transmit photons depending on their

polarisation. In Fig. 2.2 (ii) the HV -PBS reflects |V 〉 and transmits |H〉. For
example, the state

c0|H〉c|H〉d + c1|H〉c|V 〉d + c2|V 〉c|H〉d + c3|V 〉c|V 〉d
→ c0|H〉f |H〉e + c1|H〉f |V 〉f + c2|V 〉e|H〉e + c3|V 〉e|V 〉f

where
∑3

i=0 |ci|2 = 1.
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(iii)

(i)

(ii)

a b

c

d

e

f

g j

i

h

Figure 2.2: (i) Polariser. (ii) HV -Polarising Beam Splitter (PBS) that reflects |V 〉 and

transmits |H〉. (iii) FS-PBS that reflects |S〉 and transmits |F 〉.

In Fig. 2.2 (iii) the FS-PBS reflects |S〉 and transmits |F 〉. For example,
the state

c0|F 〉g|F 〉h + c1|F 〉g|S〉h + c2|S〉g|F 〉h + c3|S〉g|S〉h
→ c0|F 〉j |F 〉i + c1|F 〉j |S〉j + c2|S〉i|F 〉i + c3|S〉i|S〉j .

2.1.6 Homodyne Measurement

A homodyne measurements of a state corresponds to a projection of that state
along a straight line in phase space. Physically this corresponds to mixing our
optical state on a beam splitter with a strong coherent beam of equal frequency,
called a local oscillator, and then detecting the count rate difference. Consider
applying a homodyne detection to the state in mode a of Fig. 2.3.

In mode b we have the local oscillator in the state |βeiφ〉, β, φ ∈ R, where
φ is the phase of the local oscillator. What we observe at the output is the
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d

b

a

c

θ ,

π

2

Figure 2.3: Beam splitter of reflectivity
√
η = cos(θ).

difference in count between modes c and d [55]: 〈ĉ†ĉ〉 − 〈d̂†d̂〉.
If we let

√
η = cos(θ) and φ = π

2 for the beam splitter in Fig. 2.3 we have

ĉ† =
√
ηâ† − i

√
1− ηb̂†

d̂† = −i
√

1− ηâ† +
√
ηb̂†.

We work out the count rates to be:

ĉ†ĉ =
(√
ηâ† − i

√
1− ηb̂†

)(√
ηâ+ i

√
1− ηb̂

)
= ηâ†â+ (1− η)b̂†b̂− i

√
(1− η)η

(
b̂†â− b̂â†

)
d̂†d̂ =

(√
ηb̂† − i

√
1− ηâ†

)(√
ηb̂+ i

√
1− ηâ

)
= ηb̂†b̂+ (1− η)â†â− i

√
(1− η)η

(
b̂â† − b̂†â

)
.

The operator b̂ is the annihilation operator for the coherent state |βeiφ〉

〈b̂〉 = e−|β|
2
〈0|eβe−iφb̂b̂eβeiφb̂†

|0〉

remembering that β ∈ R. Using Eqn. 2.31 we have:

b̂
∞∑

n=0

(
βeiφb̂†

)n
n!

|0〉 =
∞∑

n=0

((
βeiφb̂†

)n
b̂

n!
+
n
(
βeiφ

)n(b̂†)n−1

n!

)
|0〉

=
∞∑

n=0

n
(
βeiφ

)n(b̂†)n−1

n!
|0〉.

So

〈b̂〉 = e−|β|
2
〈0|eβeiφb̂

∞∑
n=0

(
βeiφ

)n(b̂†)n−1

(n− 1)!
|0〉

= e−|β|
2
〈0|eβeiφb̂

∞∑
m=0

βeiφ
(
βeiφ

)m(b̂†)m

m!
|0〉

= βeiφ, (2.39)
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where m = n− 1 and 〈βeiφ|βeiφ〉 = 1. Similarly 〈b̂†〉 = βe−φ and 〈b̂†b̂〉 = β2.
With the above we can work out 〈ĉ†ĉ〉 − 〈d̂†d̂〉

〈ĉ†ĉ〉 − 〈d̂†d̂〉 =
(
2η − 1

)
〈â†â〉+

(
1− 2η

)
β2 − 2i

√
(1− η)η

(
βe−iφ〈â〉 − βeiφ〈â†〉

)
.

For a 50/50 beam splitter η = 1
2 and if we let φ = θ − π

2 we have

〈ĉ†ĉ〉 − 〈d̂†d̂〉 = β
(
e−iθ〈â〉+ eiθ〈â†〉

)
. (2.40)

That is, when we homodyne detect we measure the operator

x̂(φ) = β
(
e−iφâ+ eiφâ†

)
. (2.41)

For a homodyne measurement of the position quadrature X̂1 = â + â† we
choose φ = 0 and for a homodyne measurement of the momentum quadrature
X̂2 = −iâ+ iâ† we choose φ = π

2 .
With homodyne detection we can infer the unknown phase of a coherent

state |eiθα〉. If we want to homodyne detect the state |eiθα〉 input into mode
a in Fig. 2.3, where α, θ ∈ R, we measure x̂(φ) = eiφĉ + e−iφĉ† on the probe
beam |eiφβ〉:

〈x̂(φ)〉 = 〈α∗e−iθ|eiφĉ+ e−iφĉ†|αeiθ〉

= αeiδ + α∗e−iδ, (2.42)

where we have used the results from Eqn. (2.39) and δ = φ + θ. If we expand
this we have:

〈x̂(φ)〉 = Re[α] + iIm[α]
)(

cos δ + i sin δ
)

+
(

Re[α]− iIm[α]
)(

cos δ − i sin δ

= 2Re[α] cos δ − Im[α] sin δ. (2.43)

For a homodyne measurement of the position X̂1 = â + â† we have φ = 0 in
Eqn. (2.41). For a homodyne measurement of the momentum X̂2 = −iâ + iâ†

we have φ = π
2 in Eqn. (2.41).

〈X̂1〉 = 2α cos(θ) (2.44)

〈X̂2〉 = 2α cos(θ − π

2
) = 2α sin(θ). (2.45)

Provided we knew α in advance, we can induce what the phase θ was from the
average result of the homodyne detection.

Alternatively, we could obtain the results in Eqns. 2.44 and 2.45 by directly
finding the corresponding projection of |α〉. That is, to find the results of a
homodyne measurement in the x−quadrature, we want to find 〈x|α〉. To find
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an analytical expression for 〈x|α〉 we need to solve the ODE resulting from
〈x|â|α〉:

〈x|â|α〉 = α〈x|α〉

= 〈x| i√
2~ωm

p̂+

√
k

2~ω
x̂|α〉

=
( i√

2~ωm
(−i)~ d

dx
+

√
k

2~ω
x
)
〈x|α〉

=
1√
2~ω

( ~√
m

d

dx
+
√
kx
)
〈x|α〉 (2.46)

where we have used Eqns. 2.6 and 2.7. We know that ω =
√

k
m and we let

η =
√

km
~ , so η = ωm

~ and η = k
ω~( 1√

2η
d

dx
+
√
η

2
x
)
〈x|α〉 = α〈x|α〉. (2.47)

From here we need to solve an ODE, as done in [57], to get

〈x|α〉 =
( η
π

) 1
4 exp

(
−
(
Im(α)

)2 − η

2
(
x− α

√
2
η

)2)
. (2.48)

Since we want X̂ = â+ â† we choose η = 1
2 [63]. That is, from Eqn. 2.6 we

have â+ â† =
√

2mω
~ x̂ =

√
2ηx̂. We now have

〈x|α〉 =
(
2π
)− 1

4 exp
(
−
(
Im(α)

)2 − 1
4
(
x− 2α

)2)
. (2.49)

If α ∈ R we have 〈x|α〉 = f(x, α) where

f(x, α) =
(
2π
)− 1

4 exp
(
−1

4
(
x− 2α

)2)
. (2.50)

Also, we can calculate 〈x|eiθα〉

〈x|eiθα〉 =
(
2π
)− 1

4 exp
(
−α2 sin2 θ − 1

4
(
x− 2α cos(θ)− 2iα sin(θ)

)2)
=
(
2π
)− 1

4 exp
(
−1

4
(
x− 2α cos(θ)

)2 + ixα sin(θ)− 2iα2 sin(θ) cos(θ)
)

= f(x, α cos(θ)) exp
(
iα sin(θ)

(
x− 2α cos(θ)

))
= f(x, α cos(θ)) exp

(
iφ(x)

)
(2.51)

where

φ(x) = α sin(θ)
(
x− 2α cos(θ)

)
. (2.52)

We see that this gives us the result found in Eqn. 2.44, since this is a Gaussian
function with mean 2α cos(θ) and a standard deviation of 1, a requirement for
coherent states.
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2.1.7 Master Equations and Photon Absorption

We define the density matrix to be an ensemble average of pure states:

ρ =
∑

a

pa|ψa〉〈ψa| (2.53)

with the following properties:

Tr [ρ] = 1

ρ2 = ρ for pure ρ

ρ† = ρ

Tr
[
ρ2
]
≤ 1.

A master equation is an operator ordinary differential equation (ODE) that
governs the evolution of a density matrix ρ. Given a closed system evolving
under the interaction Hamiltonian ĤI , the master equation is given by the
Liouvill-von Neumann equation, a generalisation of the Schrödinger equation
and the Heisenberg equation of motion [64]

dρ

dt
= −i

[
ĤI , ρ

]
(2.54)

where we measure t in units of ~.
When we consider a quantum optical system that is not closed, the evolution

of the system is governed by the Lindblad master equation [65, 66, 64]:

dρ

dt
= ρ̇ = −i

[
ĤI , ρ

]
+

1
2

∑
k

γk

(
2ÂkρÂ

†
k − Â†kÂkρ− ρÂ†kÂk

)
(2.55)

where γk ≥ 0 and the operators Âk are arbitrary linear operators, given in terms
of annihilation and creation operators. For example, when k = 1 and A1 = ân

we have a master equation describing n photon absorption and when k = 1 and
A1 =

(
â†
)n we have a master equation describing n photon emission [66]. When

using the Lindblad master equation we must assume the system-environment
coupling satisfies the Born-Markov approximation [67, 57]. That is, we must
assume (i) the system and environment are initially uncorrelated; (ii) the system
and environment only weakly interact; (iii) the size of the environment is large
and is not significantly affected by the system; (iv) the correlations between the
system and environment decay sufficiently rapidly such that the environment
has no memory.

If we want to consider the case of just single photon absorption on our
system, with no interaction Hamiltonian, we set ĤI = 0, k = 1 and A1 = â in
Eqn. 2.55 to get

ρ̇ =
γ1

2
(
2âρâ† − â†âρ− ρâ†â

)
. (2.56)
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This will be considered equivalent to single photon loss throughout this thesis.
The solution for this is given by [68]

ρ(t) = exp
((
Ĵ + L̂

)
t
)
ρ(0) (2.57)

where

Ĵρ = γ1âρâ
†

L̂ρ = −γ1

2
(
â†âρ+ ρâ†â

)
.

When there is a limited number of photons in the system being considered,
we may not need to use the solution in Eqn. 2.57 explicitly, we may be able to
solve the system of first order ODE’s. Consider the single photon loss master
equation in Eqn. 2.56 when we have the initial state |n〉. Since we can lose at
most one photon, we only need to look at the terms |n〉〈n|, |n− 1〉〈n|, |n〉〈n− 1|
and |n− 1〉〈n− 1|:

ρ̇n,n =
γ1

2
(2(n+ 1)ρn+1,n+1 − 2nρn,n)

= −γ1nρn,n

ρ̇n−1,n =
γ1

2

(
2
√
n(n+ 1)ρn,n+1 − (2n− 1)ρn−1,n

)
= −γ1

2
(2n− 1)ρn−1,n (2.58)

ρ̇n−1,n−1 =
γ2

2
(2nρn,n − 2(n− 1)ρn−1,n−1)

where ρi,j = 〈i|ρ|j〉, ρj,i = ρ†i,j and ρn+i,j = 0,∀i > 0 since we start with the
state |n〉〈n|. Solving the coupled ODE’s in Eqn. 2.58 gives

ρn,n(t) = e−nγ1tρn,n(0)

ρn−1,n(t) = e−
1
2 (2n−1)γ1tρn−1,n(0) (2.59)

ρn−1,n−1(t) = e−(n−1)γ1tρn−1,n−1(0) + ne−nγ1t
(
eγ1t − 1

)
ρn,n(0).

The initial state |n〉〈n| will evolve to

|n〉〈n| → ne−nγ1t
(
eγ1t − 1

)
|n− 1〉〈n− 1|+ e−nγ1t|n〉〈n|.

For the case n = 1 this is

|1〉〈1| →
(
1− e−γ1t

)
|0〉〈0|+ e−γ1t|1〉〈1|. (2.60)

If we want to consider the case of just two photon absorption on our system,
with no interaction Hamiltonian, we set ĤI = 0, k = 1 and A1 = â2 in Eqn. 2.55
to get

ρ̇ =
γ2

2

(
2â2ρ

(
â†
)2 − (â†)2 â2ρ− ρ

(
â†
)2
â2
)
. (2.61)
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The general solution to this master equation was initially found in two steps.
First a solution for the on-diagonal elements for the density matrix was found [65,
69], followed by a solution for the off-diagonal elements [70, 71]. The general

density matrix, denoted ψn(µ, τ) =
√

(n+µ)!
n! 〈n|ρ(τ)|n+ µ〉, after time τ = γ2t,

is given by

ψn(µ, τ) =
∞∑

k=n
(k−n even)

(−1)k/2−n/22nΓ(k/2 + n/2 + σ)
n!Γ(σ)Γ(k/2− n/2 + 1)

Aσ
ke

−λkτ , σ 6= 0

ψn(1, τ) =
∞∑

k=n
(k−n even)

(−1)k/2−n/22n−1kΓ(k/2 + n/2)
n!Γ(k/2− n/2 + 1)

Bke
−k2τ , (2.62)

where

Aσ
k =

(k + σ)Γ(σ)
2k
√
π

∞∑
m=k

(m−k even)

m!Γ(m/2− k/2 + 1/2)
(m− k)!Γ(m/2 + k/2 + σ + 1)

ψm(µ, 0), σ 6= 0,

Bk =
∞∑

m=k
(m−k even)

m!
2m−σ(k)(m/2 + k/2)!(m/2− k/2)!

ψm(1, 0),

σ = (µ− 1)/2, λk = k(k + µ− 1) + µ(µ− 1)/2 and δ(k) =

{
1 if k > 0
0 if k = 0

Once again, when there is a limited number of photons in the system being
considered, we may not need to solve the two photon absorption master equation
with Eqn. 2.62 explicitly, we may be able to solve the system of first order ODE’s.
Consider the two photon absorption master equation in Eqn. 2.61 when we have
the initial state |n〉. Since we can only lose two photons, we only need to look
at the terms |n〉〈n|, |n− 2〉〈n|, |n〉〈n− 2| and |n− 2〉〈n− 2|:

ρ̇n,n =
γ2

2
(2(n+ 2)(n+ 1)ρn+2,n+2 − 2n(n− 1)ρn,n)

= −γ2n(n− 1)ρn,n

ρ̇n−2,n =
γ2

2

(
2
√

(n+ 2)(n+ 1)n(n− 1)ρn,n+2 − (n2 − 3n+ 3)ρn−2,n

)
= −γ2

2
(n2 − 3n+ 3)ρn−2,n (2.63)

ρ̇n−2,n−2 =
γ2

2
(2n(n− 1)ρn,n − 2(n− 2)(n− 3)ρn−2,n−2)

where ρi,j = 〈i|ρ|j〉, ρj,i = ρ†i,j and ρn+i,j = 0,∀i > 0 since we start with the
state |n〉〈n|. Solving the coupled ODE’s in Eqn. 2.63 gives

ρn,n(t) = e−n(n−1)γ2tρn,n(0)

ρn−2,n(t) = e−
1
2 (n2−3n+3)γ2tρn−2,n(0) (2.64)

ρn−2,n−2(t) = e−(n−2)(n−3)γ2t

(
ρn−2,n−2(0) +

n(n− 1)
4n− 6

(
1− e−2(2n−3)γ2t

)
ρn,n(0)

)
.
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The initial state |n〉〈n| will evolve to

|n〉〈n| → n(n− 1)e−(n−2)(n−3)γ2t

4n− 6

(
1− e−2(2n−3)γ2t

)
|n− 2〉〈n− 2|+ e−n(n−1)γ2t|n〉〈n|.

For the case n = 2 this is

|2〉〈2| →
(
1− e−2γ2t

)
|0〉〈0|+ e−2γ2t|2〉〈2|. (2.65)

2.2 Non-Linear Optical Computing

In this section we describe the first proposal to implement a universal multi-
qubit gate with optics [29, 28].

2.2.1 Quantum Optical Fredkin Gate

The first proposal for quantum computation was the quantum optical Fredkin
gate [29, 28]. The gate was constructed with single photon optics using the Kerr
Effect. A Fredkin gate is a three qubit gate that acts as a controlled swap. The
truth table is given in Table 2.1. In this scheme, logical 0 corresponds to the
vacuum mode |0〉 and logical 1 is the single photon Fock state |1〉.

ci ai bi co ao bo

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 2.1: The logic for a Fredkin gate. Here subscript i refers to the input qubits, o refers

to the output qubits and c is the control qubit.

The optical Kerr effect is defined by a material with an intensity dependent
refractive index, that is, a nonlinear crystal that has an index of refraction n

proportional to the total intensity I: n = n0 + n2E
2 = n0 + n2I, where n0 is

the normal refractive index and n2 is the correction term necessary for Kerr
materials [72].

The Kerr Hamiltonian is of the form

HI = −~χâ†1â1â
†
2â2 (2.66)
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where χ is a coupling constant which depends upon the third-order non-linear
susceptibility for the optical Kerr effect and â1 and â2 are the annihilation modes
for the input light.

The optical setup for the Fredkin gate first proposed in [28] is shown below
in Fig. 2.4. In this setup we have a Mach-Zehnder interferometer with a Kerr
media in either arm. In the top arm the Kerr media has the control beam
incident on it. In the bottom arm the Kerr media only has photons incident
from mode b, mode d is always the vacuum state. This bottom arm Kerr media
is included so that the optical length for photons in both modes a and b is equal.
The beam splitter on the left side, BS1, has θ = π

4 , φ = 0 and the beam splitter

o

,
0 ◦

45 ◦

,

45 ◦

π ◦

BS1

BS2

bi

ai

ci

di

ao

bo

co

Figure 2.4: The original quantum Fredkin gate [28].

on the right hand side, BS2, has θ = π
4 , φ = π. The effect of the Kerr media is

to act the unitary operator U = exp
(
−i t

~HI

)
= exp

(
iεâ†âĉ†ĉ

)
in the top arm

and U = exp
(
iεb̂†b̂d̂†d̂

)
in the bottom arm, where ε = tχ

~ and t is the length of
time photons spend inside the Kerr media.
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For example, consider the input state |cab, d〉 = |010, 0〉

|010, 0〉 → 1√
2

(
|010, 0〉+ |001, 0〉

)
→ 1√

2
eiεĉ†ĉâ†âeiεb̂†b̂d̂†d̂

(
|010, 0〉+ |001, 0〉

)
=

1√
2

(
eiεĉ†ĉâ†â|010, 0〉+ eiεb̂†b̂d̂†d̂|001, 0〉

)
=

1√
2

(
|010, 0〉+ |001, 0〉

)
→ |010, 0〉

where mode d is always in the vacuum mode |0〉 and remember that eiφn̂|m〉 =
eimφ|m〉.

Next consider the input |101, 0〉

|101, 0〉 → 1√
2

(
|101, 0〉 − |110, 0〉

)
→ 1√

2

(
−eiεĉ†ĉâ†â|110, 0〉+ eiεb̂†b̂d̂†d̂|101, 0〉

)
→ 1√

2

(
−eiε|110, 0〉+ |101, 0〉

)
→ 1

2
(
−eiε|110, 0〉+ eiε|101, 0〉+ |101, 0〉+ |110, 0〉

)
.

If we choose ε = π this gives |110, 0〉. With this choice of ε we can show that all
the logic gates are as in the Fredkin gate logic table.

There are two major problems with this scheme: (1) it is difficult to achieve
the high nonlinearities, especially those required for ε = π phase change; (2)
at high nonlinearities the crystal exhibits other detrimental affects, such as
absorption.

The technique from the scheme presented in Fig. 2.4 can be used to induce
a cnot between optical qubits, as shown in [30].

2.3 Process Fidelity

The fidelity between the two density matrices ρ and σ is given by [73]

F (ρ, σ) =
(

Tr[
√√

ρσ
√
ρ ]
)2

. (2.67)

This fidelity definition is symmetric: F (ρ, σ) = F (σ, ρ)
When ρ is pure, ρ = |ψ〉〈ψ|, the fidelity is equal to the overlap between |ψ〉

and σ:

F (ρ, σ) = 〈ψ|σ|ψ〉, (2.68)

where we have used the fact that ρ2 = ρ for pure ρ.
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To quantify gate performance for an imperfect quantum gate, in general a
quantum operation E(ρ), with respect to the ideal quantum gate U , we use the
process fidelity Fp. A general quantum operation E(ρ) on the Hilbert space H
of dimension d is isomorphic to density matrices in H⊗H [74] via

ρE = I ⊗ E(|φ〉〈φ|), (2.69)

where |φ〉 is a maximally entangled state
∑

j |j〉|j〉/
√
d in H⊗H. The process

fidelity is then the fidelity between this process density matrix and the one
associated with the ideal gate U

Fp =F (ρE , ρU ). (2.70)

That is, the process fidelity is the overlap between sending half of a maximally
entangled state through the imperfect quantum gate E (Fig. 2.5 (a)) and sending
half of a maximally entangled state through the imperfect quantum gate U

(Fig. 2.5 (b)).

E

φ } ρE

(a)

φ }
(b)

ρU

U

Figure 2.5: Half a maximally entangled state |φ〉 goes through a general quantum operation

E(ρ) in part (a) and through the ideal quantum gate in part (b).

The process fidelity is linearly related to the average gate fidelity F̄ , via
Fp = (F̄ d+ 1)/(d+ 1), where d is the dimension of the system [75, 73].
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2.4 Previous Progress with Linear Optics

We saw in Section 2.2.1 that to induce photon interaction we required cross Kerr
non-linearities on the order of π. We know we cannot build a deterministic two
qubit gate between photons with linear optics alone since Lütkenhaus et al. have
shown that Bell state measurements with linear optics can work at best 50% of
the time [76]. In this section we give the details of some of the prior progress
that was made with linear optics for optical QIP before the work by Knill et
al. in [31].

2.4.1 Decomposition of unitaries

Reck et al. showed that we can break any unitary into a set of linear optical com-
ponents [77]. The unitary transformation considered is acting on the creation
operators.

A unitary operator U of dimension N can be decomposed into N
2 (N − 1)

beam splitters as follows:

U =
(
TN,N−1 · TN,N−2 · TN,N−3 · · ·TN,1 · TN−1,N−2 · TN−1,N−3 · · ·T2,1D

)−1

(2.71)

where Tp,q is the N dimensional identity with the {p, q} elements replaced with
the beam splitter matrix (2.36) and D is an N ×N matrix with phases on the
diagonal.

The general linear optical network for a unitary matrix U is a triangular
array of beam splitters and phase shifters, shown in Fig. 2.6.

N

(N − 1)

2

1

N − 2

1

N

N − 1

Mirror

Figure 2.6: General linear optical network for a unitary matrix U .

As an example, we can break the following unitary into a linear optical
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circuit:

U =


1−

√
2 1√√

2

√
3√
2
− 2

1√√
2

1
2

1
2 −

1√
2√

3√
2
− 2 1

2 −
1√
2

√
2− 1

2

 .

Here we have a unitary matrix with N=3, so we can say that

U =
(
T3,2 · T3,1 · T2,1 ·D

)−1

= D† · T †2,1 · T
†
3,1 · T

†
3,2.

We find that

T3,2 =

 1 0 0
0 cos θ1 e−iφ1 sin θ1
0 −eiφ1 sin θ1 cos θ1



T3,1 =

 cos θ2 0 e−iφ2 sin θ2
0 1 0

−eiφ2 sin θ2 0 cos θ2



T2,1 =

 cos θ3 e−iφ3 sin θ3 0
−eiφ3 sin θ3 cos θ3 0

0 0 1


and

D =

 eiφ4 0 0
0 eiφ5 0
0 0 eiφ6

 .

With the solution: θ1 = 12.8o, φ1 = π, θ2 = 20.4o, φ2 = 0, θ3 = 63.8, φ3 = 0,
φ4 = 180, φ5 = 0, φ6 = 0.

2.4.2 Optical Simulation of Quantum Logic

In [78], Cerf et al. proposed a scheme for quantum logic with only linear optical
devices and a single photon. To simulate n qubits a single photon is put into
a superposition of 2n different paths. The position of the photon corresponds
to the logical n-qubit state. For example, consider the n = 3 case. We require
the photon to be in a superposition of 8 paths, which we write as an 8 × 1
column vector. The logical state |000〉L corresponds to the photon in path 1,
|1000000〉T , whereas the logical state |110〉L corresponds to the photon in path
7, |0000010〉T .
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A
√

NOT gate is given by a beam splitter with θ = π
4 and φ = −π

2 , where

√
NOT =

1√
2

(
1 i

i 1

)

|0〉q = |01〉 → 1√
2

(
i|10〉+ |01〉

)
|1〉q = |10〉 → 1√

2

(
|10〉+ i|01〉

)
.

Three simple gate implementations proposed by Cerf et al. are given in Fig.
2.7. With these, a universal set of gates is possible.

H

X

X

(c)(b)(a)

0 0 0

1 1 1

0 0 0

1 1 1

−

π

2

−

π

2

Figure 2.7: A Hadamard, a cnot and a reverse cnot .

To implement a Hadamard gate we use a θ = π
4 , φ = −π

2 beam splitter and
two −π

2 phase shifters, as in part (a) of Fig. 2.7:

|0〉q = |01〉 → −i|01〉 → − i√
2

(
|01〉+ i|10〉

)
→ −i√

2

(
|01〉+ i(−i)|10〉

)
=
−i√

2

(
|01〉+ |10〉

)
|1〉q = |10〉 → |10〉 → 1√

2

(
i|01〉+ |10〉

)
→ 1√

2

(
i|01〉+−i|10〉

)
=

i√
2

(
|01〉 − |10〉

)
.

To implement a cnot we encode a qubit in position and polarisation. The
location is the control and the polarisation the target. For the control: |0〉q =
|01〉, |1〉q = |10〉. For the target: |0〉q = |H〉, |1〉q = |V 〉. The circuit for this is
a polarisation rotator on the upper arm, as in part (b) of Fig. 2.7. If a photon
is present in the top arm, its polarisation will be flipped:(

α|01〉+ β|10〉
)
⊗
(
γ|H〉+ δ|V 〉

)
→ αγ|01〉|H〉+ αδ|01〉|V 〉+ βγ|10〉|V 〉+ βδ|10〉|H〉
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To implement a reverse cnot we simply need a polarising beam splitter
(PBS), where horizontal is reflected. As before, the location is the control and
the polarisation the target. This is in part (c) of Fig. 2.7:(

α|01〉+ β|10〉
)
⊗
(
γ|H〉+ δ|V 〉

)
→ αγ|01〉|H〉+ αδ|10〉|V 〉+ βγ|10〉|H〉+ βδ|01〉|V 〉

The problem with this scheme is that n qubits requires 2n paths which in
turn requires 2n − 1 beam splitters to setup. This is not efficiently scalable.
With one qubit encoded in polarisation we still need 2n−1 optical paths.

2.5 Linear Optics Quantum Computing

It is not known whether we can efficiently simulate an ideal quantum computer
with linear optics alone. A scheme has been suggested by Cerf et al. [78],
described in Section 2.4.2, that requires an exponential amount of resources. In
this section we present the so called linear optics quantum computing (LOQC)
scheme from [31]. We show that beam splitters, phase shifters, single photon
sources and detectors can efficiently simulate an ideal quantum computer. By
efficiently simulate we mean to use a polynomial amount of resources. It is
when we allow for detections and feed forward that we can efficiently simulate a
quantum computer. The basic resources that are necessary for LOQC are linear
optics, as described in Section 2.1.5, single photon sources and photon detectors
that can distinguish between 0, 1 and 2 photons.

2.5.1 Qubits in LOQC

In LOQC we encode qubits with dual rail logic. That is, logic that is encoded
using the physical location of a photon. Logical 0 is given by |0〉q = |01〉ab

and logical 1 by |1〉q = |10〉ab, where mode a is one spatial mode and mode b
another.

Polarisation is an equivalent encoding of optical qubits: |0〉q = |H〉, |1〉q =
|V 〉. We can change the representation of the qubit from polarisation to dual
rail using a polarising rotator and a polarising beam splitter as can be seen
below in Fig. 2.8.
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α H + β V

{{
α H + β V

a

b

α 01 ab + β 10 ab

Figure 2.8: Transforming from dual rail to polarisation encoding.

2.5.2 Qubit Operations

For a physical system to be a viable candidate for quantum computation, we
need a universal set of gates, as stated in point 3 of DiVincenzo’s five criteria
[27], seen in Chapter 1. Arbitrary single qubit gates and the cnot operation is
one such universal set [10].

Single qubit operations are easily performed using linear optical elements,
shown in the next section. Since it it quite difficult to induce photon interaction,
two qubit operations are considerably more difficult. In Section 2.5.4 we show
a probabilistic two qubit gate with the use of single photon ancillas and photon
detection. The required non-linearity is in the form of measurement. Since it
is probabilistic, this two qubit gate is not sufficient for quantum computation.
We can build an asymptotically deterministic two qubit gate with the use of
quantum teleportation. The resources for this teleported gate can be reduced
with the use of quantum error correction, as will be shown in Section 2.6. Once
the error rate is below the required threshold we can use the accuracy threshold
theorem [79].

2.5.3 Single qubit gates

All single qubit gates can be implemented with just beam splitters and phase
shifters. To see this, note that any single qubit unitary, U , can be decomposed
into rotations about the Z and Y axis in the Bloch sphere as follows [79]:

U = eiαRz(β)Ry(γ)Rz(δ) (2.72)

where Rz(θ) = e−i θ
2 σz and Ry(φ) = e−i φ

2 σy . For example,
Rx(ϑ) = Rz(π

2 )Ry(−ϑ)Rz(−π
2 ). If we can show how to make arbitrary rotations

about the Z and Y axis we can perform any arbitrary single qubit operation.
Rotations about the Z axis can simply be performed using a phase shifter

on the top mode of a dual rail qubit. This can be seen by looking at how the
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φ

Figure 2.9: Performs a rotation of φ about the Z axis: RZ(φ).

state α|0〉q + β|1〉q is transformed by Fig. 2.9, up to irrelevant global phases:

α|0〉q + β|1〉q = α|01〉+ β|10〉

→ α|01〉+ βeiφ|10〉

= eiφ/2(e−iφ/2α|0〉q + eiφ/2β|1〉q)

= eiφ/2e−iφσz/2(α|0〉q + β|1〉q)

= eiφ/2RZ(φ)(α|0〉q + β|1〉q).

Rotations of −2θ about the Y axis require a beam splitter of angle θ and φ = 0,
up to irrelevant global phases. This can be seen by looking at how the state
α|0〉q + β|1〉q is transformed by Fig. 2.10.

θ φ,

Figure 2.10: Performs a rotation of −2θ about the Y axis: RY (−2θ) when φ = 0.

α|0〉q + β|1〉q = α|01〉+ β|10〉

→ α
(
cos(θ)|01〉 − sin(θ)|10〉

)
+ β

(
cos(θ)|10〉+ sin(θ)|01〉

)
= cos(θ)

(
α|01〉+ β|10〉

)
− sin(θ)

(
α|10〉 − β|01〉

)
= eiθYq

(
α|0〉q + β|1〉q

)
= RY (−2θ)

(
α|0〉q + β|1〉q

)
.

2.5.4 Two qubit gates

In this section we address the question of how to make a two qubit gate with
just linear optics, single photon ancillas and photo-detection. Since both the
Pauli X and Pauli Z matrices have the same eigenvalues, using the spectral
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decomposition theorem [79] we know that X = UZU†, for some unitary U .
In this case U is the Hadamard matrix H, defined below. This means the
cnot gate and csign gate are equivalent, as shown in Fig. 2.11. In this section
we will consider the construction of a csign gate. The cnot gate is defined
as |x〉L|y〉L → |x〉L|y ⊕ xmod 2〉L and the csign gate is defined as |x〉L|y〉L →
eiπx·y|x〉L|y〉L, for x, y ∈ {0, 1}. In terms of matrices, the cnot, or controlled-X
gate is defined by

Ucnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.73)

the csign, or controlled-Z gate is defined by

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.74)

and the Hadamard is defined by

H =
1√
2

(
1 1
1 −1

)
(2.75)

=

XH ZH

Figure 2.11: The equivalence between the cnot and csign gate. The double lines here

represent dual rail qubits.

To perform a probabilistic csign gate we need the so called non-linear sign
shift (NS−1) transformation:

|ψ〉 = α|0〉+ β|1〉+ γ|2〉 → α|0〉+ β|1〉 − γ|2〉. (2.76)

Nonlinear sign shift gate

As the above transformation is non-linear, that is since the transformation is
non-linear in the action of the creation operators, we cannot use linear optics
alone. With the use of one single photon ancilla and one vacuum ancilla mode,
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,

φ4

φ1θ1 ,

,θ2 φ2

θ3 φ3

1

2

3
0

1 R2

R3

ψ

= NS
−1

Figure 2.12: The NS−1 gate. Here θ1 = 22.5◦, φ1 = 0◦, θ2 = 65.5302◦, φ2 = 0◦, θ3 =

−22.5◦, φ3 = 0◦ and φ4 = 180◦. The NS−1 transformation takes place when R2 = 1 and

R3 = 0. This occurs with a probability of 1/4.

along with photon detection, we can perform this transformation, shown in
Fig. 2.12. The input state is given by

(
α|0〉1 + β|1〉1 + γ|2〉1

)
⊗ |1〉2 ⊗ |0〉3.

The action of this circuit is to apply the following unitary matrix on the
input modes:

U

 â†1
â†2
â†3

 =


1−

√
2 1√√

2

√
3√
2
− 2

1√√
2

1
2

1
2 −

1√
2√

3√
2
− 2 1

2 −
1√
2

√
2− 1

2


 â†1

â†2
â†3

 .

Notice that beam splitter array for U shown in Fig. 2.12 is different to the array
predicted in Section 2.4.1. This is due to the fact that we can break any unitary
into two different types of beam splitter arrays, a V array, as shown in Fig. 2.6,
or a Λ array, as in Fig. 2.12

When we measure a single photon in mode 2 of Fig. 2.12 and vacuum in mode
3, we have the state α|0〉1 + β|1〉1 − γ|2〉1 output in mode 1. The probability of
measuring a single photon in mode 2 and vacuum in mode 3 is 1

4 .

Controlled Sign gate

The NS−1 gate is an essential ingredient for the probabilistic csign, since it
both provides a way for the state of the system to return to the dual rail basis
and applies the necessary phase shift for an entangling gate to be made, as
shown by Knill et al. [31]. With the use of two NS−1 gates we can make a
csign gate, as seen in the Fig. 2.13.

Say we start with the input state |Q1〉 = α|0〉q + β|1〉q = α|01〉12 + β|10〉12
in modes 1 and 2 and |Q2〉 = γ|0〉q + δ|1〉q = γ|01〉34 + δ|10〉34 in modes 3 and

33



NS−1

,−45◦0◦,45◦ 0◦

NS−1

1

2

3

4

Q1

Q2

(i) (ii) (iii)

Figure 2.13: A probabilistic csign gate. The probability of success is 1
16

. Qubit 1 |Q〉1 is

incident on modes 1 and 2 and qubit 2 |Q〉2 is incident on modes 3 and 4.

4. After the first beam splitter, (i) in Fig. 2.13, the state |Q1〉|Q2〉 becomes:

→ αγ|0101〉 − αδ√
2
|1100〉+

αδ√
2
|0110〉+

βγ√
2
|1001〉

+
βγ√

2
|0011〉 − βδ√

2
|2000〉+

βδ√
2
|0020〉.

After the two NS−1 gates, (ii) in Fig. 2.13, we have

→ αγ|0101〉 − αδ√
2
|1100〉+

αδ√
2
|0110〉+

βγ√
2
|1001〉

+
βγ√

2
|0011〉+

βδ√
2
|2000〉 − βδ√

2
|0020〉.

After the final beam splitter, (iii) in Fig. 2.13, we have

→ αγ|0101〉+ αδ|0110〉+ βγ|1001〉 − βδ|1010〉

= αγ|00〉q + αδ|01〉q + βγ|10〉q − βδ|11〉q.

This gate works with a probability of 1
16 . That is, there is a probability of 1

16

that we will measure the ancilla state |10〉 in both NS−1 gates. It is important to
notice that when the result of the measurement of the ancilla state is other than
|10〉, the gate fails but we know that this failure has occurred. An interesting
point worth mentioning is that during the gate, between points (i) and (iii) in
Fig. 2.13, the state of the system has terms outside the qubit Hilbert space.

The state
1
2

(
|0101〉+ |0110〉+ |1001〉 − |1010〉

)
(2.77)

is the first building block to performing a csign on photonic qubits with prob-
ability arbitrarily close to 1.
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Teleporting qubits through a gate

In Fig. 2.13 we have a probabilistic csign . This is not enough to allow scal-
able quantum computation. The probabilistic csign gate will be used as an
entangled state production stage.

To perform a two qubit gate we can teleport [80] the qubits through the
gate, as first shown by Gottesman and Chuang [32].

Say we have two arbitrary qubits |ψ1〉q and |ψ2〉q that we want to perform
a csign on. We could teleport both these qubits and then apply a csign on
them, as seen in the Fig. 2.14.

ψ1 q

ψ2 q

B00 q

B00 q

Z

X Z

ZX

B

B

Figure 2.14: An application a csign between qubits |ψ1〉q and |ψ2〉q . The dashed-dotted box

is the state preparation area. In this case just the Bell states |B00〉 = (|0101〉+ |1010〉) /
√

2

need to be prepared.

Since csign is its own inverse, we can add two csign ’s to Fig. 2.14 as seen
in Fig. 2.15.

ψ1 q

ψ2 q

B00 q

B00 q

Z

X Z

ZX

B

B

ZZ

Figure 2.15: An application a csign between qubits |ψ1〉q and |ψ2〉q .

We now have a csign inside the dashed-dotted box, the state preparation
area. To see how the correction gates are transformed by the csign gates outside
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the box we use the following identities:

csign
(
σx ⊗ 1l

)
csign = σx ⊗ σz

csign
(

1l⊗ σx

)
csign = σz ⊗ σx

csign
(
σz ⊗ 1l

)
csign = σz ⊗ 1l

csign
(

1l⊗ σz

)
csign = 1l⊗ σz.

Applying these identities gives the circuit shown in Fig. 2.16:

ψ1 q

ψ2 q

B00 q

B00 q

X Z

ZX

B

B

Z

X

X

Figure 2.16: An application a csign between qubits |ψ1〉q and |ψ2〉q .

The problem of performing a csign has now been turned into a state prepa-
ration problem. We can apply the csign gate in Fig. 2.13 probabilistically
offline. Once we know we have a successful csign preparation state (Eqn. 2.77),
we can proceed and teleport the information qubits, as in Fig. 2.16. This way
we do not corrupt the quantum information. The next step is to show how we
perform teleportation with linear optics.

Basic Teleportation with linear optics

It was shown by Lutkenhaus et al. [76] that we cannot distinguish the four Bell
states with linear optics alone. With a single beam splitter the best we can do
is distinguish the Bell states with a success probability of 1/2. Below we show
how this can be used for a basic teleportation, followed by how to generalise to
a teleportation with a success probability that asymptotically approaches 1.

Consider teleporting the state (α|01〉+ β|10〉)12. We only need to look at
teleporting the first mode of this state, shown in Fig. 2.17.

First the entangled resource state 1√
2

(
|01〉34 + |10〉34

)
is made in part (i) of

Fig. 2.17. After the second beam splitter in part (ii) of Fig. 2.17 we have:

→ 1
2

(√
2α|0101〉 − α|1100〉+ α|0110〉+ β|1001〉+ β|0011〉 − β|2000〉+ β|0020〉

)
. (2.78)
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,45◦ 0◦

,45◦ 0◦

3

4
0

1

1

2

R1

R2

C1

(i) (ii) (iii) (iv)

Figure 2.17: Telelportation with linear optics. The teleported qubit appears in modes 2

and 4. The entangled state production is shown in the dotted-dashed box.

If the detectors in part (iii) of Fig. 2.17 measure a total of 1 photon (R1 +R2 =
1), we can recover the original information in modes 4 and 2:

R1 = 0, R2 = 1 :
1
2
(
α|01〉+ β|10〉

)
R1 = 1, R2 = 0 :

1
2
(
−α|01〉+ β|10〉

)
.

In the case that we measure R1 = 1, R2 = 0 we need to perform a phase shift
correction gate C1, shown in part (iv) of Fig. 2.17. The probability of successful
teleportation is 1/4 + 1/4 = 1/2. If the detectors measure 0 or 2 photons, the
teleportation fails by collapsing the state into |0〉 or |1〉. This is equivalent to
projecting the qubit in the Z basis, as will be explained in the next section.
This occurs with a probability of 1/2.

The teleported csign

We now have the necessary pieces for a teleported csign gate. We combine the
state preparation from Fig. 2.13 with the basic teleportation protocol given in
Fig. 2.17 to get the teleported csign circuit shown in Fig. 2.18. The success
probability for the state production is 1/16, as for Fig. 2.13, however this state
preparation is performed offline. The success probability for this csign gate is
1/2× 1/2 = 1/4, given that the dashed-dotted box makes the state 1

2

(
|1010〉+

|1001〉−|0110〉+|0101〉
)
5687

. We know we had a successful csign whenR1+R5 =
1 and R7 +R3 = 1, as in Fig. 2.17.
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Figure 2.18: Teleported csign gate. The Grey state preparation box contains Fig. 2.13.

Increasing the success probability for teleportaton

We now show how to increase the success probability for teleportation with
linear optics asymptotically close to 1. By increasing the complexity of the
grey state production box in Fig. 2.18 we increase the teleportation success
probability. Eqn. 2.77 can be generalised by increasing the number of entangled
photons and modes:

|tn〉 =
1√
n+ 1

n∑
j=0

(
|1〉⊗j |0〉⊗(n−j)|0〉⊗j |1〉⊗(n−j)

)
12···2n

(2.79)

In the logical basis this is

|tn〉q =
1√
n+ 1

n∑
j=0

|0〉⊗j
q |1〉⊗(n−j)

q . (2.80)
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For example, the states |t1〉, |t2〉, |t3〉 and |t4〉 are given by

|t1〉 =
1√
2

(|0〉+ |1〉)q

=
1√
2

(|01〉+ |10〉)12

|t2〉 =
1√
3

(|11〉+ |01〉+ |00〉)q

=
1√
3

(|0011〉+ |1010〉+ |1100〉)1234

|t3〉 =
1
2

(|111〉+ |011〉+ |001〉+ |000〉)q

=
1
2

(|000111〉+ |100011〉+ |110001〉+ |111000〉)123456

|t4〉 =
1√
5

(|1111〉+ |0111〉+ |0011〉+ |0001〉+ |0000〉)q

=
1√
5

(|00001111〉+ |10000111〉+ |11000011〉+ |01110001〉+ |11110000〉)12345678

where the kth qubit when written in terms of logical qubits is encoded in modes
n+ k and n.

When we use this preparation state for teleportation the success probability
scales as 1 − 1

n+1 = n
n+1 . In order to use the |tn〉 states in the place of the

dashed-dotted box in Fig. 2.17, we need a generalised beam splitter. We use
the n + 1 point Fourier transform, also called an n + 1-splitter, denoted F̂n+1.
The matrix elements of F̂n+1 are given by

u
(
F̂n+1

)
kl

=
exp

(
i 2πkl

n+1

)
√
n+ 1

(2.81)

where k, l ∈ {0, · · · , n}. Such a general beam splitter can be constructed from
an array of beam splitters [77], as shown in Section 2.4.1.

When using the n+1 point Fourier transform we only teleport mode 0 of the
state (α|01〉+ β|10〉)0a, as was the case for the basic teleportation in Fig. 2.17.
As in part (iii) of Fig. 2.17, we measure all the outputs of the n+1 point Fourier
transform, modes 0 through to n, as shown in Fig. 2.19.

If we detect k photons and 0 < k < n+ 1, then we know the qubit has been
teleported to mode n+k. In this case we know that modes n+1, n+2, · · · , n+k−
2, n+k−1 are in the vacuum state |0〉 and modes n+k+1, n+k+2, · · · , 2n−1, 2n
are in the single photon state |1〉. A phase correction on the (n + k)th qubit
will be necessary, depicted as Ci in Fig. 2.19. This phase correction is unknown
until after we detect modes 0–n. If we measure either 0 or n + 1 photons the
teleportation has failed.

For example, consider the n = 2 case:

|t2〉 =
1√
3

(|0011〉+ |1010〉+ |1100〉)1234
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State Preparation

tn =
1

√

n + 1

n

j=0

1 ⊗j 0 ⊗(n−j) 0 ⊗j 1 ⊗(n−j)

12···2n

Figure 2.19: Teleportation with |tn〉. The dashed-dotted box produces |tn〉. The probability

of success is n
n+1

.

and

u(F3) =

 1 1 1
1 e

2πi
3 e−

2πi
3

1 e−
2πi
3 e

2πi
3

 .

When F3 is applied to the incident modes 0, 1 and 2, the modes are trans-
formed as:

â†0 →
1√
3

(
â†0 + â†1 + â†2

)
â†1 →

1√
3

(
â†0 + e

2πi
3 â†1 + e−

2πi
3 â†2

)
â†2 →

1√
3

(
â†0 + e−

2πi
3 â†1 + e

2πi
3 â†2

)
.

Once we apply the 3 point Fourier transform to the mode 0 of state (α|01〉+ β|10〉)0a

and modes 1 and 2 of |t2〉, as in Fig. 2.20, we have 19 measurement outcomes:
R0, R1, R2 = 000, 001, 010, 100, 011, 101, 110, 002, 020, 200, 012, 021, 201, 102,
120, 210, 300, 030 and 003. Only measurements with a total photon number
between 0 and n+ 1 = 3 result in a successful teleportation. In this case a total
of 1 or 2 photons. The relevant measurement outcomes are given in the Ta-
ble 2.2 along with the output mode number. We can see what phase correction
C3 or C4 is needed after detection. The following identities are necessary when
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F̂3

Figure 2.20: Teleportation with |t2〉. The dashed-dotted box produces |t2〉. The probability

of success of this teleportation is 2/3.

calculating this: ei 2
3 π + e−i 2

3 π = −1, ei 4
3 π + e−i 4

3 π = −1, ei 2
3 π + 1 = ei π

3 and
e−i 2

3 π + 1 = e−i π
3 .

The total probability for successful teleportation is 3
(

1
9

)
+ 3
(

2
27

)
+ 3
(

1
27

)
=

2
3 . This corresponds to n

n+1 with n=2. As in the basic teleportation case,
successful teleportation is heralded, a failed teleportation projects the quantum
information into the Z basis, as will be explained in the next section.

Measurement Output Mode Probability
|100〉 1

3

(
α|0〉+ β|1〉

)
3 1

9

|010〉 1
3

(
e

2πi
3 α|0〉+ β|1〉

)
3 1

9

|001〉 1
3

(
e−

2πi
3 α|0〉+ β|1〉

)
3 1

9

|200〉
√

2
3
√

3

(
α|0〉+ β|1〉

)
4 2

27

|020〉
√

2
3
√

3

(
α|0〉+ e

2πi
3 β|1〉

)
4 2

27

|002〉
√

2
3
√

3

(
α|0〉+ e−

2πi
3 β|1〉

)
4 2

27

|110〉 1
3
√

3

(
−α|0〉+ e

iπ
3 β|1〉

)
4 1

27

|101〉 1
3
√

3

(
−α|0〉+ e−

iπ
3 β|1〉

)
4 1

27

|011〉 1
3
√

3

(
−α|0〉 − β|1〉

)
4 1

27

Table 2.2: The telelported states when using |t2〉 as an entanglement resource.

To understand why teleportation with the n+1 point Fourier transform fails
with a probability of 1/(n+ 1), we need to take a closer look at |tn〉 in terms of
physical dual rail qubits. When we expand the sum in Eqn. 2.79 we see that the

first term is always of the form |
n︷ ︸︸ ︷

00 · · · 0 11 · · · 1︸ ︷︷ ︸
n

〉12···2n and the last term is always

of the form |
n︷ ︸︸ ︷

11 · · · 1 00 · · · 0︸ ︷︷ ︸
n

〉12···2n. Since we teleport the state (α|01〉+ β|10〉)0a,
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we need to consider the case :

(α|01〉+ β|10〉)0a

1√
n+ 1

(|00 · · · 011 · · · 1〉+ |11 · · · 100 · · · 0〉)12···2n (2.82)

Since modes 0–n are incident on the generalised beam splitter, we know that
one measurement outcome will be the n+ 1 photon case and another outcome
will the 0 photon case. Both of these possibilities indicate a failed teleportation,
since measuring n+ 1 photons leaves the qubit in the state β|0〉 and measuring
0 photons leaves the qubit in the state α|1〉. The probability for both of these
is
(
|α|2 + |β|2

)
/(n + 1) = 1/(n + 1), since |α|2 + |β|2 = 1. None of the other

terms in the sum in Eqn. 2.79 corrupt the quantum information in this way.
With this in mind, one might be tempted to use the state

|tn〉 −

| n︷ ︸︸ ︷
00 · · · 0 11 · · · 1︸ ︷︷ ︸

n

〉+ |
n︷ ︸︸ ︷

11 · · · 1 00 · · · 0︸ ︷︷ ︸
n

〉


12···2n

(2.83)

for teleportation. However, both |00 · · · 011 · · · 1〉 and |11 · · · 100 · · · 0〉 combine
with the adjacent terms in the sum in Eqn. 2.82 to produce a successful tele-
portation. By taking these two terms from the entangled resource state, we are
making the new first and last term in Eqn. 2.83 corrupt the quantum informa-
tion. The probability for this would now be 1/(n − 1), worse than what we
calculated originally.

A possible construction of |tn〉 was described in [81, 82], suggesting the use
of a controlled beam splitter. In [81] it was suggested that such a controlled
beam splitter could be constructed with the use of a controlled phase gate
(|x〉|y〉 → eixyφ|x〉|y〉) with phases other than φ = π. In [82], a controlled phase
gate with φ = π/2 was used to construct |t2〉. Taking this as the basis for the
proposed controlled beam splitter gate, it would succeed with a probability of
(0.18082)2 ≈ 0.0327. The algorithm given in [81] to make |tn〉 used n controlled
beam splitters and n csign gates. The state |tn〉 would then be produced with
a success probability of

PKLM
|tn〉 =

(
0.0327× 1

16

)n

≈ (0.00204)n
. (2.84)

In [43] Hayes et al. use so called elimination circuits to produce |tn〉. An
elimination circuit succeeds with a probability of 12/441 ≈ 0.0272 and n − 1
elimination circuits are required to produce |tn〉, giving a total success proba-
bility of

PHayes
|tn〉 = (0.0272)n−1

. (2.85)

In [83] Franson et al. propose a scheme that requires n− 1 cnot gates. The
cnot gates can either be modifications of a single photon probabilistic csign,
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such as that shown in Fig. 2.13, or the 1/4 cnot gate proposed in [34], to be
described in Section 2.7.1. The probability of success for producing |tn〉 is then

PFranson
|tn〉 =

(
1
4

)n−1

. (2.86)

We next describe a scheme for constructing |tn〉 that is ultimately equivalent
to that proposed by Fransons et al. in [83].

Constructing |tn〉

Here we describe a scheme using controlled beam splitters to produce |tn〉. The
controlled beam splitter used is a modification to the suggestions from [81, 82].
As suggested in [81], we use a controlled phase gate (|x〉|y〉 → eixyφ|x〉|y〉) with
φ = π/2 to construct controlled beam splitter gate, shown in Fig. 2.21.

1

2

3

4

Q1

Q2 , 90
◦

45
◦

, 0
◦

−45
◦

, 0
◦

, 90
◦

NSi

NSi

−

π

4

θ◦ −θ◦

Figure 2.21: A probabilistic controlled beam splitter gate. The probability of success is

(0.18082)2 ≈ 0.0327. Here θ = 1
2

arccos
“√

2a2 − 1
”
. Qubit 1 |Q〉1 is incident on modes 1 and

2 and qubit 2 |Q〉2 is incident on modes 3 and 4. The controlled φ = π/2 phase gate is shown

in the red dashed-dotted box.

This induces the transformation |x〉q|y〉q
C-BS−−−→ |x〉q (UBS)x |y〉q where

UBS =

(
e−iφBSa −

√
1− a2

√
1− a2 eiφBSa

)
, (2.87)

a =

√
1 + cos2(2θ)√

2
(2.88)

and

φBS = arctan (cos (2θ)) = arctan
(√

2a2 − 1
)
. (2.89)

In terms of dual rail qubits this circuits induces the transformation:

(α|01〉+ β|10〉)12 (γ|01〉+ δ|10〉)34 → α|01〉12 (γ|01〉+ δ|10〉)34 (2.90)

+
1√
2
β|10〉12

(
γ
(
e−iφBSa|01〉+

√
1− a2|10〉

)
34

+ δ
(
−
√

1− a2|01〉+ eiφBSa|10〉
)

34

)
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and in terms of logical qubits this transformation is:

(α|0〉q + β|1〉q) (γ|0〉q + δ|1〉q) → α|0〉q (γ|0〉q + β|1〉q) (2.91)

+ β|1〉q
(
γ
(
e−iφBSa|0〉q +

√
1− a2|1〉q

)
+ δ

(
−
√

1− a2|0〉q + eiφBSa|1〉q
))

.

The NSi gate required for the controlled beam splitter was described in [31]
and is defined by the transformation α|0〉 + β|1〉 + γ|2〉 → α|0〉 + β|1〉 + iγ|2〉.
It can be implemented using Fig. 2.12, choosing θ1 = 36.53◦, φ1 = 88.24◦,
θ2 = 62.25◦, φ2 = −66.52◦, θ3 = −36.53◦, φ3 = −11.25◦ and φ4 = 102.24◦. The
NSi gate succeeds with a probability of 0.18082. The controlled beam splitter
gate in Fig. 2.21 therefore succeeds with a probability of (0.18082)2 ≈ 0.0327.

In order to construct |tn〉q from the state |0〉⊗n
q we need n − 1 controlled

beam splitter gates. The first step is to apply a beam splitter to the first qubit:

|
n︷ ︸︸ ︷

00 · · · 0〉q → a1|0
n−1︷ ︸︸ ︷

00 · · · 0〉q +
√

1− a2
1|1

n−1︷ ︸︸ ︷
00 · · · 0〉q

We next perform a controlled beam splitter between modes 1 and 2

→ a1|0
n−1︷ ︸︸ ︷

00 · · · 0〉q + e−iφ2

√
1− a2

1a2|10

n−2︷ ︸︸ ︷
00 · · · 0〉q +

√
1− a2

1

√
1− a2

2|11

n−2︷ ︸︸ ︷
00 · · · 0〉q

followed by a controlled beam splitter between modes 2 and 3, and continue in
this manner until we perform a controlled beam splitter between modes n − 1
and n. In total this is n− 1 controlled beam splitters. The resulting state is

a1|00 · · · 0〉q + e−iφ2

√
1− a2

1a2|100 · · · 0〉q + e−iφ3

√
1− a2

1

√
1− a2

2a3|1100 · · · 0〉q

+ · · ·+ e−iφn

√
1− a2

1

√
1− a2

2 · · ·
√

1− a2
n−1an|11 · · · 10〉q

+
√

1− a2
1

√
1− a2

2 · · ·
√

1− a2
n|11 · · · 1〉q

If we choose a1 = 1/
√
n+ 1, a2 = 1/

√
n, a3 = 1/

√
n− 1, · · · , an = 1/

√
2 we

obtain |tn〉. We can correct for the phases by applying n phase gates: a phase
gate with φ = φ2 to qubit 1, a phase gate with φ = φ3 − φ2 to qubit 2, a phase
gate with φ = φ4−φ3 to qubit 3, · · · , a phase gate with φ = φn−φn−1 to qubit
n− 1 and a phase gate with φ = φn to qubit n.

Constructing |tn〉 in this way succeeds with a probability of:

P|tn〉 = (0.0327)n−1
. (2.92)

Even though this success probability decreases exponentially with the size of
|tn〉, it is an improvement on both the scheme by Knill et al. [81] (Eqn. 2.84)
and the scheme by Hayes et al. [43] (Eqn. 2.85). We can improve this success
probability by using the optimised controlled φ = π/2 phase gate described by
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Knill in [39] that succeeds with a probability of 1/19.37 ≈ 0.0516, in the place
of the red dashed-dotted box in Fig. 2.21:

P|tn〉 = (0.0516)n−1
. (2.93)

We would require two cnot gates [79] to induce the controlled beam splitter
in Fig. 2.21 since Eqn. 2.87 does not have eigenvalues of ±1. However, notice
that we only use the first column of Eqn. 2.87 to construct |tn〉. That is, we
only apply the controlled beam splitter to the states |00〉q, |01〉q and |10〉q, never
|11〉q. Therefore, the beam splitter matrix in Eqn. 2.94 can be used in the place
of Eqn. 2.87 to construct |tn〉:

UBS’ =

(
a e−iφBS

√
1− a2

eiφBS
√

1− a2 −a

)
. (2.94)

Since UBS’ has eigenvalues of ±1 we can transform it into the Pauli X matrix:

UBS’ = V XV †,

where

V =

 e−i
φBS

2 cos
(

arcsin(a)
2

)
e−i

φBS
2 sin

(
arcsin(a)

2

)
−ei

φBS
2 sin

(
arcsin(a)

2

)
ei

φBS
2 cos

(
arcsin(a)

2

)  .

A controlled-BS’ gate can therefore be made from a CNOT as seen in Fig. 2.22.
The single qubit operators V can easily be made with beam splitters. This

=

BS’V V
†

X

Figure 2.22: The equivalence between the CNOT and a controlled-BS’ gate.

allows the success probability for constructing |tn〉 to be improved to

P|tn〉 = (0.0741)n−1 (2.95)

when we use the 2/27 cnot gate [39], the best known cnot construction to
date, to be described in Section 2.7.5. This success probability was calculated
assuming a resource of single photons. If we instead allow a for a resource of
Bell states, we can use the cnot by Pittman et al. from [34], to be described in
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Section 2.7.1, in the place of the 2/27 cnot. This lead to a success probability
of

P|tn〉′ =
(

1
4

)n−1

(2.96)

which is the same as the scheme by Franson et al. [83] (Eqn. 2.86).

Increasing the Probability for the csign

Since we now have a way of performing near deterministic teleportation with the
entangled ancilla state |tn〉 and n+1 Fourier transform F̂n+1, we should be able
to use two of these teleportation circuits to apply a csign near deterministically,
as in Fig. 2.16. For this we need to apply a csign between the two |tn〉 states
during state preparation. However, since we do not know which mode will
contain the teleported state until after we detect the n + 1 modes from the
generalised beam splitter, we must apply a csign between all potential output
modes. There are n possible modes that the quantum information could be
teleported into, modes n + 1, · · · , 2n, as can be seen in Fig. 2.19. This means
the entangled production stage will require a csign to be applied between all
n qubits for each |tn〉 state, that is, we need to apply n2 csign gates at the
state preparation stage. After the application of the n2 csign gates to the state
|tn〉|tn〉 we have

|CSn〉 =
1

n+ 1

n∑
i,j=0

(−1)(n−1)(n−j)|1〉⊗i|0〉⊗(n−i)|0〉⊗i|1〉⊗(n−i)|1〉⊗j |0〉⊗(n−j)|0〉⊗j |1〉⊗(n−j)

or in the logical basis

|CSn〉q =
1

n+ 1

n∑
i,j=0

(−1)(n−1)(n−j)|0〉⊗i
q |1〉⊗(n−i)

q |0〉⊗j
q |1〉⊗(n−j)

q . (2.97)

For example,

|cs1〉q =
1
2
(
|0〉|0〉+ |0〉|1〉+ |1〉|0〉 − |1〉|1〉

)
q

|cs2〉q =
1
3
(
|00〉|00〉+ |00〉|01〉+ |00〉|11〉+ |01〉|00〉 − |01〉|01〉+ |01〉|11〉

+ |11〉|00〉+ |11〉|01〉+ |11〉|11〉
)
q
.

If we construct |csn〉 from single photons, the success probability is just that
for producing two |tn〉 states multiplied by (1/16)n2

. In [83], when n � 1,
Franson et al. use a more sophisticated technique than just applying a cnot

between all possible output modes, only requiring an additional 4n cnot gates.
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2.6 Quantum Error Correction in LOQC

2.6.1 Improving LOQC: beyond state preparation

In the last section we showed that scalable quantum computing was possible with
linear optical elements, single photon sources and photo-detection. The problem
of making a two qubit gate with probability of success arbitrarily close to one
was transferred to a state preparation problem. By using generalised entangled
states of the form |tn〉, the probability of success scaled as n

n+1 . However,
states of the form |tn〉 are complicated to make. To date the best schemes need
resources that are exponential in n [81, 83, 43]. Instead, we may ask ourselves
if we can incorporate quantum error correction into the LOQC proposal. Is it
possible to correct for the incorrect measurements in the basic linear optical
teleportation in Fig. 2.17? Can we use quantum error correction along with
smaller |tn〉 states to increase the probability of successful gates giving scalable
quantum computing? These questions have been addressed by Knill et al. in [33]
and elaborated by Knill in [84].

To answer these questions we first need to know what errors are inflicted
on the quantum information when an incorrect measurement is made in the
teleportation in Fig. 2.17.

In the previous section we went through this basic teleportation with linear
optics and showed that if we want to teleport the state α|01〉+ β|10〉 using the
entanglement resource state 1√

2

(
|01〉+ |10〉

)
, we need to measure 1 and only 1

photon at the photo-detection stage (Fig. 2.17 (iii)). The probability of success
was 1

2 . What happens when we measure 0 or 2 photons?
In section 2.5.4 we saw that our input state α|01〉 + β|10〉 was transformed

to Eqn. 2.78 in Fig. 2.17 (ii). If the detectors measure a total of 1 photon
(R1 +R2 = 1) we recover the original information:

R1 = 0, R2 = 1 :
1
2
(
α|01〉+ β|10〉

)
R0 = 1, R1 = 1 :

1
2
(
−α0|01〉+ α1|10〉

)
.

If the detectors measure a total of 0 or 2 photons (R1 + R2 = 0 mod 2) we
have:

R1 = 0, R2 = 0 :
1√
2
α0|11〉

R0 = 2, R1 = 0 : − 1√
2
α1|00〉

R1 = 0, R2 = 2 :
1√
2
α1|00〉.

Note that when we measure 0 or 2 photons we have measured our qubit, collaps-
ing our quantum information. This means we are free to add a single photon,
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or vacuum mode. When we measure 0 photons, we obtain the state |01〉 = |0〉q
and when we measure 2 photons, we obtain |10〉 = |1〉q. When we measure 0 or
2 photons we effectively measure our information qubit in the Z-basis. When
we consider teleportation with the generalised entangled states |tn〉, the errors
resulting from measuring 0 or n+ 1 photons are also Z-projection errors on the
quantum information.

With this knowledge we should be able to use quantum error correction to
encoded our quantum data and then correct when the teleportation fails, i.e.
when the measurement result is either 0 or 2 photons in Fig. 2.17 or 0 or n+ 1
photons in Fig. 2.19. This means we need to find a quantum error correcting
(QEC) code that can deal with a projection in the Z basis, where we know which
qubit was projected. In the next Section we will define what a quantum error
correcting code is and give the details for a code that can deal with Z-projection
errors.

2.6.2 Quantum Error Correcting Codes

We can encode our quantum information with code words to protect against
errors. Classically, when the error model is given by independent bit flips (X),
this can be done via the repetition code: 0 → 000 and 1 → 111.

When we generalise the classical theory to the quantum case, we also have
to worry about phase errors (Z operators and the combination of bit flip and
phase errors: Y operators). A necessary and sufficient condition [20, 85] for a
code with basis code words {|ψ〉} to correct for the set of errors {E} is

〈ψi|E†
aEb|ψj〉 = Cabδij (2.98)

where |ψi〉, |ψj〉 ∈ {|ψ〉} and Ea, Eb ∈ {E}.
If we have errors of the form E1 = 1

2

(
1l + Z

)
, E2 = 1

2

(
1l − Z

)
, our qubit

|ψ〉 = α|0〉q + β|1〉q becomes:

E1|ψ〉 = α|0〉q
E2|ψ〉 = β|1〉q.

We have measured our qubit in the Z-basis. We can encode to correct for this
error using the parity encoding:

|0〉 =
1√
2

(
|00〉q + |11〉q

)
(2.99)

|1〉 =
1√
2

(
|01〉q + |10〉q

)
. (2.100)
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If we measure the first mode of our encoded qubit in the Z-basis we have

1√
2

(
α|00〉q + α|11〉q + β|01〉q + β|10〉q

)
=

1√
2
{|0〉q

(
α|0〉q + β|1〉q

)
}+

1√
2
|1〉q

(
α|1〉q + β|0〉q

)
}

and we see that if we measure mode 1 to be a |0〉q, we get our original information
qubit back and if we measure mode 1 to be a |1〉q, we can get our original
information qubit back once we apply a bit flip. Now we need to check that this
code satisfies condition 2.98 for the errors E1 and E2. We assume the errors are
on the 1st qubit, so E1 = 1

2

(
1l + Z

)
⊗ 1l and E2 = 1

2

(
1l− Z

)
⊗ 1l:

〈0|E†
11l|0〉 = 1

2 〈0|E†
21l|0〉 = 1

2 〈0|E†
1E2|0〉 = 0 〈0|E†

2E1|0〉 = 0
〈0|E†

11l|1〉 = 0 〈0|E†
21l|1〉 = 0 〈0|E†

1E2|1〉 = 0 〈0|E†
2E1|1〉 = 0

〈1|E†
11l|0〉 = 0 〈1|E†

21l|0〉 = 0 〈1|E†
1E2|0〉 = 0 〈1|E†

2E1|0〉 = 0
〈1|E†

11l|1〉 = 1
2 〈1|E†

21l|1〉 = 1
2 〈1|E†

1E2|1〉 = 0 〈1|E†
2E1|1〉 = 0

Table 2.3: Testing condition 2.98 for the errors E1 and E2.

But this does not tell us how to correct for the errors E1 and E2, only that
correction is possible.

2.6.3 Z-measurement QEC Code

How can we correct for the Z-measurement errors E1 and E2? There is a
formalism called the stabilizer formalism [19, 86] that gives us a way to do
this. A stabilizer is defined by a set of operators for an n qubit system whose
common eigenvectors define a 2k-dimensional subspace (the code). That is,
the stabilizer is defined as the set of operators {Mi} that leave the code word
space {|ψj〉} invariant: Mi|ψj〉 = |ψj〉, ∀i, j. The operators Mi are formed
by tensor products of Pauli operators. We have the two code words: |0〉 =
1√
2

(
|00〉q + |11〉q

)
and |1〉 = 1√

2

(
|01〉q + |10〉q

)
. These are stabilized by the two

operators 1l⊗ 1l and X ⊗X.
For a stabilizer code we can detect all errors that are either in the stabilizer

or anti-commute with any member of the stabilizer group. If we have the QEC
code with code words |ψj〉 where Mi is an element of the stabilizer S and E is an
error such that {Mi, E} = 0, then MiE|ψj〉 = −EMi|ψj〉 = −E|ψj〉 [86]. We
see that E|ψj〉 is an eigenstate of Mi, measuring Mi will tell us if E has occurred.
By measuring all the stabilizer generators we identify the error syndrome with
this method.

If a QEC code can correct for errors E and F , then it can also correct for
the error aE + bF [86]. From the form of E1 and E2 we need only consider
correcting the error Z⊗1l. More generally, when we consider correcting for a Z-
measurement error on either qubit of the code words in Eqns. 2.99 and 2.100, we
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need to consider the errors Z⊗1l and 1l⊗Z. Both Z⊗1l and 1l⊗Z anti-commute
with X ⊗X.

The operator X ⊗X has the matrix form:

X ⊗X =

(
0 1
1 0

)
⊗

(
0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


and has eigenvectors:

|XX 10
00
〉 =

(
±|00〉q + |11〉q

)
/
√

2

|XX 11
01
〉 =

(
±|01〉q + |10〉q

)
/
√

2

with the following eigenvalues:

(X ⊗X) |XX00〉 = −|XX00〉

(X ⊗X) |XX01〉 = −|XX01〉

(X ⊗X) |XX10〉 = +|XX10〉

(X ⊗X) |XX11〉 = +|XX11〉.

For example, consider the first qubit of our encoded state |ψ〉 = α|0〉+β|1〉 =
1√
2

(
α|00〉q + α|11〉q + β|01〉q + β|10〉q

)
is measured in the Z-basis:

|ψ〉 → 1√
2
|0〉q

(
α|0〉q + β|1〉q

)
or

1√
2
|1〉q

(
α|1〉q + β|0〉q

)
.

What if we measure the first qubit in the +Z eigenstate |0〉q? |ψ〉 becomes:

1
2
(
α|XX10〉 − α|XX00〉+ β|XX11〉 − β|XX01〉

)
.

If we measure X ⊗X and get +1 we have: 1
2
√

2

(
α|00〉q + α|11〉q + β|01〉q +

β|10〉q
)
, our original encoded state. If we measure X ⊗X and get −1 we have:

1
2
√

2

(
α|00〉q−α|11〉q +β|01〉q−β|10〉q

)
, and we need to perform the Z operation

on the first qubit to get back our original encoded state.
Now what if we measure the first qubit in the −Z eigenstate |1〉q? The state

|ψ〉 becomes:

1
2
(
α|XX00〉+ α|XX10〉+ β|XX01〉+ β|XX11〉

)
.

If we measure X ⊗ X and get +1 we have: 1
2
√

2

(
α|00〉q + α|11〉q + β|01〉q +

β|10〉q
)
, our original encoded state. If we measure X ⊗ X and get −1 we

have: 1
2
√

2

(
−α|00〉q + α|11〉q − β|01〉q + β|10〉q

)
, and we need to perform the Z

operation on the first qubit to get back our original encoded state (leaving us
with an overall phase factor). This is summarised in Fig. 2.23(a).
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ψ XX

Z

Figure 2.23: Quantum error correction for Z-measurement errors by measuring the stabilizer

XX.

2.7 Further developments in LOQC

Since the seminal work by Knill et al. [31] many theoretical and practical
advances have been made to improve the LOQC protocol. In this section we
introduce some of the important theoretical advances that will been built upon
in this thesis and that serve as starting points for many of the directions LOQC
research is currently taking.

2.7.1 Pittman Bell state CNOT

In [34] Pittman et al. constructed a cnot gate using linear optics, a Bell state
ancilla and single photon detection that succeeded with a probability of 1/4.
This success probability is four times the success probability for the correspond-
ing gate by Knill et al. in [31] (Fig. 2.13). Since this is a probabilistic gate it is
not suitable for scalable quantum computation. The Pittman Bell state cnot

is shown in Fig. 2.24. Working in the polarisation basis, the input state is given
by(
α1|H2′H3′〉+ α2|H2′V3′〉+ α3|V2′H3′〉+ α4|V2′V3′〉

)
⊗ 1√

2

(
|HaHb〉+ |VaVb〉

)
(2.101)

where the control is incident on mode 2′ and the target is incident on mode 3′.
Notice that each detector can detect a maximum of two photons. The cnot

is successfully applied when we detect one photon in both mode c and d. We
detect mode c in the F/S basis and mode d in the H/V basis. The four possible
detection outcomes that indicate a successful cnot are |FcHd〉, |FcVd〉, |ScHd〉
and |ScVd〉. The corresponding output state for each of these detections is:

1
4
|FcHd〉

(
α1|H2H3〉+ α2|H2V3〉+ α3|V2V3〉+ α4|V2H3〉

)
1
4
|FcVd〉

(
α1|H2V3〉+ α2|H2H3〉+ α3|V2H3〉+ α4|V2V3〉

)
1
4
|ScHd〉

(
−α1|H2H3〉 − α2|H2V3〉+ α3|V2V3〉+ α4|V2H3〉

)
1
4
|ScVd〉

(
−α1|H2V3〉 − α2|H2H3〉+ α3|V2H3〉+ α4|V2V3〉

)
.
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Control

Figure 2.24: The Pittman et al. Bell state cnot [34]. Succeeds with a probability of 1/4

provided we detect one photon in both mode c and d. Detection of mode c is in the F/S basis

and detection of mode d is in the H/V basis.

When we detect |FcHd〉 no correction is necessary. When we detect |FcVd〉 we
need to apply a polariser to mode 3 such that H → V and V → H. When
we detect |ScHd〉 we need to apply a π phase shift to the horizontal photons in
mode 2. When we detect |ScVd〉 we need to flip the polarisation in mode 3 and
apply the π phase shifter to the horizontal photons in mode 2.

2.7.2 Pittman destructive CNOT

In [36] Pittman et al. constructed a simplified version of their Bell state cnot

gate [34]. This simplified cnot also succeed with a probability of 1/4 and
only required one single photon ancilla in the state (|H〉+ |V 〉) /

√
2. However,

when the ancilla detection indicates a successful cnot application the output
control and target mode also contain terms not in the qubit basis. The number
of photons in both the control and target modes needs to be measured. This
cnot gate is destructive in that we must measure the quantum information
in order to know the gate worked. The Pittman destructive cnot is shown in
Fig. 2.25. Working in the polarisation basis, the input state is given by(

α1|Hc′Ht′〉+ α2|Hc′Vt′〉+ α3|Vc′Ht′〉+ α4|Vc′Vt′〉
)
⊗ 1√

2

(
|HA′〉+ |VA′〉

)
(2.102)

where the control is incident on mode c′ and the target is incident on mode t′.
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Figure 2.25: The Pittman et al. destructive cnot [36]. Succeeds with a probability of 1/4

provided we detect one photon in mode A and both mode c and t contain only one photon.

Mode A is detected in the H/V basis.

Detecting one photon in mode A in the H/V basis gives the output state:

|HA〉

(
1√
8

(α1|Hc,Ht〉+ α2|Hc, Vt〉+ α3|Vc, Vt〉+ α4|Vc,Ht〉) (2.103)

+
1
8

(α4 − α3)
(
|0, 2Ht〉+ |0, 2Vt〉 −

√
2|0,HtVt〉

)
+

1√
8

(α1 − α2)|HcVc, 0〉

)

+ |VA〉

(
1√
8

(α1|Hc, Vt〉+ α2|Hc,Ht〉+ α3|Vc,Ht〉+ α4|Vc, Vt〉)

+
1
8

(α4 + α3)|0, 2Vt〉+
1
8

(α4 − α3)
(√

2|0,HtVt〉 − |0, 2Ht〉
)

+
1√
8

(α2 − α1)|HcVc, 0〉

)
.

If we could measure the presence of one photon in both mode c and t non-
destrictively, the ouput state would be:

1
2
√

2
|HA〉

(
α1|HcHt〉+ α2|HcVt〉+ α3|VcVt〉+ α4|VcHt〉

)
+ 1

2
√

2
|VA〉

(
α1|HcVt〉+ α2|HcHt〉+ α3|VcHt〉+ α4|VcVt〉

)
.

When we detect |VA〉 we need to apply a polariser to mode t such that H → V

and V → H.
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2.7.3 Ralph Coincidence CNOT

In [35] Ralph et al. simplify the probabilistic csign in Fig. 2.13 by removing
the lower two beam splitters from each NS−1 gate (Fig. 2.12), reducing the
number of nested interferometers, leading to the more experimentally feasible
circuit shown in Fig. 2.26. The beam splitters corresponding to θ1, π and θ4, π

in Fig. 2.26 correspond to Hadamard gates, making this a cnot instead of the
csign shown in Fig. 2.13. The success probability is reduced to (3−

√
2)2/49 ≈

0.0513, however this gate works in the coincidence basis, a major advantage for
experiments.

Consider the input state

(α|10〉+ β|01〉)12 (γ|10〉+ δ|01〉)34 |0011〉5678

with the control incident on modes 2 and 1 and the target incident on modes 4
and 3. After the coincidence, shown in the dashed-dotted box in Fig. 2.26, we
have(

3−
√

2
)

14

(
αγ
(
|1100〉 − |1010〉+

√
2|1001〉

)
+ αδ

(
|1100〉 − |1010〉 −

√
2|1001〉

)
+ βγ

(
|0020〉 − |0200〉+ |0101〉+ |0011〉

)
+ βδ

(
|0020〉 − |0200〉 − |0101〉 − |0011〉

))
15′6′4′

.

Notice at this point we have terms outside the dual rail qubit basis, as was the
case between points (ii) and (iii) in Fig. 2.13. After the final two beam splitters
our output is(

3−
√

2
)

7
(αγ|1010〉+ αδ|1001〉+ βγ|0101〉+ βδ|0110〉)15′′6′′4′′ .

We see a cnot has been implemented with a probability of (3 −
√

2)2/49 ≈
0.0513.

2.7.4 Ralph Destructive CNOT

The probabilistic csign gate in Fig. 2.26 was simplified further by Ralph et
al. in [37] by eliminating the need for single photon ancilla, the simplified gate
only needing two vacuum ancilla modes, as shown in Fig. 2.27. The success
probability for this gate is 1/9 ≈ 0.11, an improvement on both the original
scheme in [31], shown in Fig. 2.13, and the scheme in [35], shown in Fig. 2.26.
However, as in the Pittman destructive cnot gate [36] described in Section 2.7.2,
this gate is destructive, requiring the photon number to be measured on the
output control and target modes.

Consider the input state

(α|01〉+ β|10〉)12 (γ|01〉+ δ|10〉)34 |00〉56
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Figure 2.26: Simplified probabilistic cnot gate shown by Ralph et al. in [35]. Here θ1 =

θ2 = θ3 = θ4 = π/4, θ5 = θ6 = arccos

„q
3−

√
2

7

«
and θ7 = θ8 = arcsin

“p
5− 3

√
2

”
. The

gate succeeds with a probability of (3−
√

2)2/49 ≈ 0.0513. The dashed-dotted box indicates

a coincidence measurement.

with the control incident on modes 1 and 2 and the target incident on modes 3
and 4. After we measure |00〉5′6′ we have

1
3

(
αγ
(
|0101〉 − |0011〉+

√
2 (|0020〉 − |0200〉)

)
+ βγ

(
|1010〉 − |1100〉

)
+ αδ

(
|0110〉+ |0011〉+

√
2 (|0002〉+ |0200〉)

)
+ βδ

(
|1001〉+ |1100〉

))
1′2′3′4′

.

To see how a photon number measurement on the output control and target
modes leads to a cnot we transform this state from the dual rail basis to
polarisation using the right hand side of Fig. 2.8, giving

1
3

(
αγ
(
|H〉|H〉 − |0〉|HV 〉+

√
2 (|0〉|2V 〉 − |2H〉|0〉)

)
+ βγ

(
|V 〉|V 〉 − |HV 〉|0〉

)
(2.104)

+ αδ
(
|H〉|V 〉+ |0〉|HV 〉+

√
2 (|0〉|2H〉+ |2H〉|0〉)

)
+ βδ

(
|V 〉|H〉+ |HV 〉|0〉

))
C,T

where C and T correspond to control and target, respectively. If we were able
to measure the presence of one photon with out destroying the quantum infor-
mation in both the control and target modes we would have

1
3

(αγ|H〉|H〉+ αδ|H〉|V 〉+ βγ|V 〉|V 〉+ βδ|V 〉|H〉)CT .

We see a cnot has been implemented with a probability of 1/9 ≈ 0.11.
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Figure 2.27: Destructive cnot gate shown by Ralph et al. in [37]. Here θ1 = θ2 = θ5 =

arccos
“

1√
3

”
and θ3 = θ4 = π/4. The gate succeeds with a probability of 1/9 ≈ 0.11 provided

we can measure the number of photons in the control and target without destroying the

quantum information.

2.7.5 Bounds on Success Probabilities

The methods described to produce the off-line entangled states |CSn〉 necessary
for scalable computation with linear optics succeed with a probability that de-
creases exponentially in the size of the state to be produced, as described at the
end of Section 2.5.4. These success probabilities depend solely on the probabil-
ity of success for the probabilistic csign , whether the csign being used is the
one originally proposed by Knill et al. [31], described in Fig. 2.13, or one of
the more recent schemes described in Sections 2.7.1–2.7.4. For this reason it is
important that the csign probability of success is optimised. This can be done
in two ways.

First we can optimise the NS−1 gate thereby improving the success proba-
bility of Fig. 2.13. To date no improvements in the NS−1 shown in Fig. 2.12
have been found. Knill [38] has shown that the upper bound for any NS−1 gate
with one ancilla mode is 1/2. Scheel et al. [40] conjecture that the upper bound
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for the NS−1 gate is 1/4, regardless of the dimensionality of the ancilla space.
Eisert has proven this 1/4 bound using convex optimization in [41].

Second, we can directly optimise the probabilistic csign gate without break-
ing it into NS−1 gates. To date the best probabilistic csign gate using single
photon ancilla is that proposed by Knill [39] which succeeds with a probabil-
ity of 2/27 ≈ 0.074 and is shown in Fig. 2.28. Knill has also shown [38] that
the probabilistic csign gate has an upper bound of 3/4 when using two ancilla
modes, each with a maximum of one photon per mode.

,θ1 0

,θ1 0

, 0

,θ2 0

1

π

1

1

π

1

−θ1

1

2

3
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5

6

3

5

6

1

Figure 2.28: A csign gate with success probability 2/27 ≈ 0.074 [39]. Here θ1 =

arccos
“

1√
3

”
and θ2 = 1

2
arccos

“√
6

3

”
.

Consider the input state

(α|01〉+ β|10〉)12 (γ|01〉+ δ|10〉)34 |11〉56

with the control incident on modes 1 and 2 and the target incident on modes 3
and 4. After we detect |11〉5′6′ we have the output:

1
3

√
2
3

(αγ|0101〉+ αδ|0110〉+ βγ|1001〉 − βδ|1010〉)1′23′4 .

We see a csign has been implemented with a probability of 2/27 ≈ 0.074.

2.7.6 Efficient Parity Encoding

In [87], Gilchrist et al. show a generalisation of the parity quantum error cor-
rection code described in Eqns. 2.99 and 2.100 in Section 2.6.2, providing a
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more efficient LOQC two qubit gate. The encoding is based on the incremental
encoding in [43]. Qubits are encoded with even and odd parity states:

|0〉(n) =
1√
2

(
|+〉⊗n + |−〉⊗n

)
(2.105)

|1〉(n) =
1√
2

(
|+〉⊗n − |−〉⊗n

)
where the physical qubits are defined as |0〉(1) = |0〉 = |H〉, |1〉(1) = |1〉 = |V 〉
and |±〉 = (|0〉 ± |1〉) /

√
2. We see that |0〉(n)

(
|1〉(n)

)
is just the superposition

of all possible even (odd) parity states. Notice that we can write these encoded
qubits in terms of the next lower level of encoding:

|0〉(n) =
1√
2

(
|0〉(n−1)|0〉+ |1〉(n−1)|1〉

)
(2.106)

|1〉(n) =
1√
2

(
|0〉(n−1)|1〉+ |1〉(n−1)|0〉

)
.

One possible universal set of gates is give by {Xθ, Zπ
2
,cnot}. The Xθ gate

is easily achieved by applying the rotation to any one of the physical qubits.
Incidentally, the Pauli Z gate is easily performed on this logic by simply applying
a Z operation to each of the physical qubits. The Zπ

2
and cnot gate need the so

called fusion gates from [47]. The Zπ
2

and cnot gates are shown in Fig. 2.29 [87].

The action of the fusion gates fI and fII are shown in Figs. 2.30 and 2.31,
respectively.

We can see the action of the fI fusion gate by considering what happens
when the the following state is incident on Fig. 2.30:

|ψ〉f =
(
α|0〉(n) + β|1〉(n)

)
|0〉(m) (2.107)

=
1
2

(
|0〉(n−1) (α|0〉+ β|1〉) |0〉(m−1)|0〉+ |0〉(n−1) (α|0〉+ β|1〉) |1〉(m−1)|1〉

+ |1〉(n−1) (α|1〉+ β|0〉) |0〉(m−1)|0〉+ |1〉(n−1) (α|1〉+ β|0〉) |1〉(m−1)|1〉
)

where |α|2 + |β|2 = 1 and we have used Eqn. 2.106. We can do this by finding
out what fI does to c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉:

(c0|HH〉+ c1|HV 〉+ c2|V H〉+ c3|V V 〉)ab

→ 1√
2

(
c0|HcFe〉 − c0|HcSf 〉+

√
2c1|HcVc〉+ c2|2Fe〉 − c2|2Sf 〉+ c3|VcFc〉+ c3|VcSf 〉

)
=

1√
2

(
|Fe〉(c0|Hc〉+ c3|Vc〉) + |Sf 〉(−c0|Hc〉+ c3|Vc〉) +

√
2c1|HcVc〉+ c2|2Fe〉+ c2|2Sf 〉

)
where we have used the polarisation definitions given in Section 2.1.5. If we
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Figure 2.29: (a) Applies a Zπ
2

to a qubit encoded via Eqn. 2.105. (b) Performs a cnot

between qubits encoded via Eqn. 2.105 [87]. In each case the parity measurement is conditional

on the outcome of the fII gate.

apply this to |ψ〉f in Eqn. 2.107 we find after we detect one photon in Fig. 2.30

|ψ〉f →
1

2
√

2

(
α
(
±|0〉(n−1)|0〉(m−1)|0〉+ |1〉(n−1)|1〉(m−1)|1〉

)
(2.108)

+ β
(
|0〉(n−1)|1〉(m−1)|1〉 ± |1〉(n−1)|0〉(m−1)|0〉

))
where the ± depends on a detection in mode e or f and can be corrected with
a Z gate. The probability for detecting one photon in Fig. 2.30 is 1/2. If we
were to detect two photons in Fig. 2.30, Eqn. 2.107 would become:

|ψ〉f → ± 1
2
√

2

(
α|1〉(n−1) + β|0〉(n−1)

)
|0〉(m−1) (2.109)

where once gain the ± is a result of which mode the photons are detected in.
The probability for detecting two photons in Fig. 2.30 is 1/4. If we were to
detect zero photons in Fig. 2.30, Eqn. 2.107 would become:

|ψ〉f →
1
2

(
α|0〉(n−1) + β|1〉(n−1)

)
|1〉(m−1)|ς〉 (2.110)

where the state |ς〉 has both a horizontally and vertically polarised photon in
the same mode, a state outside the logical Hilbert space. The probability for
detecting zero photons in Fig. 2.30 is 1/4.
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Figure 2.30: Type I fusion gate.

Notice that when we detect the incorrect photon number, that is, zero or
two photons, the logical qubit is not destroyed, the level of encoding is reduced
by one. We can either re-encode to the original level, or perform the the gate
operation can on this new level. This is the so called incremental encoding. The
probability for a successful measurement outcome for the fI gate is 1

2 . The fI

fusion gate can be used to build up resource states such as |0〉(m), as described
in [87].

We can see the action of the fII fusion gate by considering what happens
when |ψ〉f in Eqn. 2.107 is incident on Fig. 2.31. We can do this by finding out
what fII does to c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉:

(c0|HH〉+ c1|HV 〉+ c2|V H〉+ c3|V V 〉)ab

→ 1
2
(
c0|FgFe〉 − c0|ShFe〉 − c0|FgSf 〉+ c0|ShSf 〉+

√
2c1|2Fg〉 −

√
2c1|2Sh〉

+
√

2c2|2Fe〉 −
√

2c2|2Sf 〉+ c3|FgFe〉+ c3|ShFe〉+ c3|FgSf 〉+ c3|ShSf 〉
)

=
1
2
(
(c0 + c3) (|FeFg〉+ |SfSh〉) + (c3 − c0) (|FeSh〉+ |SfFg〉)

+
√

2 (c1|2Fg〉 − c1|2Sh〉+ c2|2Fe〉 − c2|2Sf 〉)
)
.

If we apply this to |ψ〉f in Eqn. 2.107 we find after we detect one photon output
from each PBS in Fig. 2.31

|ψ〉f →
1

2
√

2

(
α|0〉(n+m−1) + β|1〉(n+m−1)

)
(2.111)

where we need to apply the Pauli Z gate when we we detect |1001〉efgh and
|0110〉efgh in Fig. 2.31. The probability for detecting one photon in each mode
in Fig. 2.31 is 1/2. If we were to detect two photons in mode g or h in Fig.
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2.31, Eqn. 2.107 would become:

|ψ〉f → ± 1
2
√

2

(
α|0〉(n−1) + β|1〉(n−1)

)
|1〉(m−1). (2.112)

The probability for detecting two photons in mode g or h Fig. 2.31 is 1/4. If
we were to detect two photons in mode e or f in Fig. 2.31, Eqn. 2.107 would
become:

|ψ〉f → ± 1
2
√

2

(
α|1〉(n−1) + β|0〉(n−1)

)
γ|0〉(m−1) (2.113)

where once gain the ± is a result of which mode the photons are detected in.
The probability for detecting two photons in mode e or f Fig. 2.31 is 1/4.

= fII

g

hb

a

d

c

f

e

Figure 2.31: Type II fusion gate.

Once again notice that when we detect the incorrect photon number, that
is, two photons in one mode, the logical qubits are not destroyed, the level
of encoding is reduced by one. The probability for a successful measurement
outcome for the fII gate is 1

2 . The fII fusion gate can also be used to build up
resource states such as |0〉(m), as described in [87].

Using Eqns. 2.111–2.113 we can see how the Zπ
2

gate works in Fig. 2.29(a).
If we start with the state |ψ〉f in Eqn. 2.107 with m = n + 1 and detect one
photon output from each PBS for fII we have

|0〉(n−1)
(
ei π

4 α|0〉(n) + e−i π
4 β|1〉(n)

)
+ |1〉(n−1)

(
ei π

4 β|0〉(n) + e−i π
4 α|1〉(n)

)
up to a Z correction. In this case we perform a parity measurement on the rest
of the input qubit modes, resulting in a Zπ

2
.

If we detect two photons output from each PBS for fII we have

±e−i π
4

(
α|0〉(n−1) + β|1〉(n−1)

)
|1〉(n) or ± ei π

4

(
α|1〉(n−1) + β|0〉(n−1)

)
|0〉(n).

The probability for this unsuccessful Zπ
2

is 1/2. We can either re-encode or
attempt the Zπ

2
gate on α|0〉(n−1) + β|1〉(n−1). If we continue attempting the
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Zπ
2

gate on qubit as the level of encoding is reduce, the probability of success
for the Zπ

2
gate is

PZ π
2

= 1−
(

1
2

)n

. (2.114)

Using Eqns. 2.108–2.113 we can see how the cnot gate works in Fig. 2.29(b).
If we start with the state |ψ〉f

(
γ|0〉(n) + δ|1〉(n)

)
, with m = n and detect one

photon output from each PBS for fII we have

|0〉n−1
(
αγ|0〉(n−1)|0〉(n−1) + αδ|0〉(n−1)|1〉(n−1) + βγ|0〉(n−1)|1〉(n−1) + βδ|1〉(n−1)|0〉(n−1)

)
+ |1〉n−1

(
αγ|1〉(n−1)|1〉(n−1) + αδ|1〉(n−1)|0〉(n−1) + βγ|0〉(n−1)|0〉(n−1) + βδ|0〉(n−1)|1〉(n−1)

)
up to a Z correction. In this case we perform a parity measurement on the rest
of the control qubit modes, resulting in a cnot . The probability that both the
fI and the fII gate fail is 3/4. As mentioned above, when these gates fail the
qubit has its parity encoding reduced by one. When we continue attempting
the cnot on the reduced encoding, the probability of success is given by

Pcnot = 1−
(

3
4

)n

. (2.115)

We compare the probability of success for the cnot described in Eqn. 2.115
with that described in Section 2.5, remembering that the success probability

scaled as
(

n
n+1

)2

when we use |tn〉 states for teleportation. This comparison is
shown in Fig. 2.32. Notice that after n = 2, the proposal in [87] has a higher
success probability for a given n than the original LOQC proposal in [31].
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Figure 2.32: The probability of success for a probabilistic csign gate as the number of

photons n is increased. The Red curve represents the model from [87] whereas the Green

curve represents the model from [31]. Part (b) shows the success probability for small n.

2.7.7 Non Destructive Measurements with Linear Optics

Photon number QND detector

In [88] Kok et al. show a method to detect the presence of a single photon in
an optical state without destroying the photon’s polarisation information using
linear optics and projective measurements. This type of measurement is termed
a quantum nondemolition (QND) measurement [89, 90] since the backaction
action of the measurement only affects unwanted observables, such as the photon
number of ancilla modes in this case.

The scheme proposed by Kok et al. to detect the presence of a single photon
in the state

|ψin〉 = b0|0〉a + b1
(
α|H〉+ β|V 〉

)
a

+ b2
(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
a

(2.116)

without destroying the polarisation encoding, where |α|2 + |β|2 = |µ|2 + |χ|2 +
|ν|2 = |b0|2 + |b1|2 + |b2|2 = 1, is shown in Fig. 2.33. Here |2H〉a represents two
horizontal photons in mode a and |HV 〉a represents a horizontal and vertical
photon both in mode a. There are four ancilla modes in the state |V HV H〉cdef .
When we detect modes c′1 and d′1, there are a maximum of 4 photons in the sys-
tem. This means there are 15 possible measurement outcomes. If we condition
on a coincidence in modes c′1 and d′1 there are again a maximum of 4 photons in
the system when we measure modes c′2 and d′2, since the ancilla modes c2 and
d2 are input into to the system after we measure modes c′1 and d′1. Given that

63



we detect a coincidences in modes c′1 and d′1 and in modes c′2 and d′2 we have

b1 cos2
(

1
2

arccos
(
−1

3

))
sin4

(
1
2

arccos
(
−1

3

))
(α|H〉+ β|V 〉)a′ (2.117)

=
4
27
b1 (α|H〉+ β|V 〉)a′ .

Notice that the probability of success 16|b1|2/729 is dependent on b1. In the
case that b1 = 1 and b0 = b2 = 0, the probability of success is 16/729 ≈ 0.0219.

,
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Figure 2.33: Photon number QND detector [88]. Detects the presence of a single photon in

an arbitrary polarisation state from the state |ψin〉 = b0|0〉a + b1
`
α|H〉+β|V 〉

´
a

+ b2
`
µ|2H〉+

χ|HV 〉+ ν|2V 〉
´
a
. When θ = π

4
and θ1 = θ2 = − 1

2
arccos

`
1
3

´
, the success probability for this

circuit is (4/27)2 ≈ 0.0219. There is an ancilla photon in the state |V 〉 in modes c1 and c2,

and an ancilla photon in the state |H〉 in modes d1 and d2. Mode b has a vacuum input. The

polariser transforms H to V and vice versa.

An alternate scheme was also proposed by Kok et al. in [88] to detect the
presence of a single photon in Eqn.(2.116) when b2 = 0, by using teleportation
with the use of a polarisation-entangled state from a parametric down converter

|ΨPDC〉 = (1− ε2)|0〉+
ε√
2

(|H〉|V 〉 − |V 〉|H〉) +O(ε2). (2.118)
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If we consider this scheme in terms of dual rail encoding, the circuit to detect
the presence of a single photon in either mode a or b in the state

|Ψ1〉 = b0|00〉ab + b1
(
α|10〉+ β|01〉

)
ab

+ b2
(
µ|20〉+ χ|11〉+ ν|01〉

)
ab

(2.119)

with b2 = 0 is shown in Fig. 2.34. The corresponding dual rail state for the
parametric down converter is given by

|ΨPDC〉 = (1− ε2)|0000〉cdef +
ε√
2

(|1001〉 − |0110〉)cdef +O(ε2). (2.120)

, 0
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4
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Figure 2.34: Photon number QND detector [88]. Detects the presence of a single photon

in either mode a or b in the state |Ψ1〉 = b0|00〉ab + b1
`
α|10〉+ β|01〉

´
ab

. The ancilla state is

(1− ε2)|0000〉cdef + ε√
2

(|1001〉 − |0110〉)cdef . Success is indicated with a detection of either

|1001〉ghij , |0110〉ghij , |1100〉ghij or |0011〉ghij . The total probability of success is ε2|b1|2/2.

There are four detection outcomes that indicate success:

− εb1

2
√

2
(α|10〉+ β|01〉)ef |1001〉ghij

εb1

2
√

2
(α|10〉+ β|01〉)ef |0110〉ghij

εb1

2
√

2
(α|10〉 − β|01〉)ef |1100〉ghij

εb1

2
√

2
(−α|10〉+ β|01〉)ef |0011〉ghij .

The total probability of success is ε2|b1|2/2. If we consider b2 6= 0 in Eqn.2.119,
the fidelity for the output from Fig. 2.34 becomes vanishing small once |b2|2 �
ε2|b1|2 [88].
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Polarisation QND detector

In [91] Pryde et al. show a method to indirectly detect the polarisation of a
photon by using ancilla photons. This scheme is shown in Fig. 2.35. In the case
that we ignore the top beam splitter in Fig. 2.35, that is, set θ2 = π/2, the state

(α|H〉+ β|V 〉)s

(√
3

2
|H〉+

1
2
|V 〉

)
m

(2.121)

is transformed to

α√
3

(
|0, 2V 〉 − |2H, 0〉+

1√
2
|H,H〉+

1√
2
|0,HV 〉

)
c,e

+
β√
2

(|HV, 0〉+ |V, V 〉)c,e .

When we detect one photon in either mode eH or eV we have

α√
6
|H〉c|H〉e

β√
2
|V 〉c|V 〉e.

We see we have measured the polarisation of the photon initially incident in
mode s non-destructively. The probability of success in this case is dependent
on the input state and is given by

(
|α|2 + 3|β|2

)
/6. If we were to set the

top beam splitter to θ2 = arccos
(√

2
3

)
the success probability can be made

independent of the input state. In this case the state

(α|H〉+ β|V 〉)s

(√
3

2
|H〉+

1
2
|V 〉

)
m

|0〉a (2.122)

is transformed to

α√
3

(
|0, 2V, 0〉 − |2H, 0, 0〉+

1√
2
|H,H, 0〉+

1√
2
|0,HV, 0〉

)
c,e,b

+
β√
3

(
1√
2
|H,V, 0〉+ |H, 0, V 〉+ |0, V, V 〉

)
c,e,b

.

When we detect vacuum in mode b and one photon in either mode eH or eV we
have

α√
6
|H〉c|H〉e|0〉b

β√
6
|V 〉c|V 〉e|0〉b.

The probability of success in this case is
(
|α|2 + |β|2

)
/6 = 1/6, independent of

the input state.
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Figure 2.35: A polarisation QND detector [91]. We set θ1 = arccos
“

1√
3

”
. When θ2 = π/2

the device succeeds with a probability |α|2/6 + |β|2/2 if we detect 1 photon in either mode

eH or eV . When θ2 = arccos
“q

2
3

”
the device succeeds with a probability of 1/6 if we detect

vacuum in mode b and 1 photon in either mode eH or eV . The QND device is enclosed

in the dashed-dotted box. The polariser here transforms dH to 1√
2

(dH + dV ) and dV to
1√
2

(−dH + dV ).

2.8 Quantum Bus Computation

In [49, 92] Nemoto et al. build on the idea of using a cross Kerr non-linearity [29,
28], described in Section 2.2, to construct a near deterministic cnot gate.
Nemoto et al. circumvent the need for a large cross Kerr non-linearity by using
weak Kerr non-linearities in conjunction with large coherent bus modes. The
weak Kerr non-linearities induce a phase shift on the coherent bus mode that
is dependent on the logical state of the polarisation qubits. This phase shift is
measured via homodyne detection, thus inducing a cnot for a sufficiently large
bus mode α and non-linearity θ: αθ � 1. The relatively low number of photon
interactions and optical components makes this scheme particularly attractive.
This model of computation is named quantum bus, or “qubus” computation [93].

It is unlikely that Kerr materials will be used to induce the nonlinearities
required for qubus computation since the phase shift θ predicted for Kerr media
is on the order of 10−18radians [94, 88]. One promising area is electromagnet-
ically induced transparency [95, 96, 97]. It has been suggested a θ as large as
10−2radians could be obtained experimentally [63].

An advantage the qubus scheme has over LOQC is that it is deterministic,
given the right scaling for α and θ. This scaling for qubus computation is the
source of the necessary non-linearity required to induce photon-photon interac-
tion. This is in contrast to LOQC, which requires projective measurements in
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conjunction with offline entangled state production. This scaling is also a disad-
vantage for qubus computation since it makes the scheme heavily dependent on
experimental progress in making large nonlinearities. Another possible draw-
back to the qubus scheme was shown by Shapiro et al. [98] when considering a
continuous-time multi-mode model for the nonlinear medium inside an optical
fibre, resulting in phase noise terms.

2.8.1 Controlled rotations

In Section 2.1.5 we described the effect a phase shifter has on a coherent state,
transforming |α〉 to |eiφα〉. In phase space this corresponds to a rotation by the
angle φ. We can use this fact to induce a controlled rotation on a coherent state.
In optics we can use the cross Kerr non-linearity, described by the Hamiltonian
in Eqn. 2.66, to induce a controlled rotation. If the state

(
c0|0〉 + c1|1〉

)
1
|α〉2

evolves according to Eqn. 2.66, we obtain the state c0|0〉1|α〉2 + c1|1〉1|eiθα〉2
when θ = χt. In general, the state

(
c0|0〉 + cn|n〉

)
1
|α〉2 evolves to c0|0〉1|α〉2 +

cn|n〉1|einθα〉2. The qubit states are left unaffected by this transformation and
the coherent probe beam is conditionally rotated.

2.8.2 Parity Gate

In [49] Nemoto and Munro used controlled rotations to construct a parity gate
on polarisation logic, shown in Fig. 2.36.

X Xθ −θα

b

a H

H

V

V

Figure 2.36: Qubus polarisation parity gate.

Consider the following state incident on Fig. 2.36

(c0|HH〉+ c1|HV 〉+ c2|V H〉+ c3|V V 〉)ab |α〉 (2.123)

where |α〉 is a large coherent bus mode and |H〉 ≡ |0〉 and |V 〉 ≡ |1〉. After the
two controlled rotations we have

(c0|HH〉+ c3|V V 〉)ab |α〉+ c1|HV 〉ab|e−iθα〉+ c2|V H〉ab|eiθα〉. (2.124)

The phase space representation of this is shown in Fig. 2.37.
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Figure 2.37: Phase space representation for the polarisation parity gate in Fig. 2.36.

To distinguish the parity, we homodyne detect the probe beam in the x−direction.
In Section 2.1.6, we noted that 〈x|eiθα〉 = f(x, α cos(θ))eiφ(x) for α, θ ∈ R, where

f(x, α) =
(
2π
)− 1

4 exp
(
−1

4
(
x− 2α

)2)
φ(x) = α sin(θ)

(
x− 2α cos(θ)

)
.

Since we are detecting in the x−direction, the states |eiθα〉 and |e−iθα〉 are indis-
tinguishable up to a phase factor: 〈x|e±iθα〉 = f(x, α cos(θ))e±iφ(x). Eqn. 2.37
becomes:(
c0|HH〉+ c3|V V 〉

)
f(x, α) +

(
e−iφ(x)c1|HV 〉+ eiφ(x)c2|V H〉

)
f(x, α cos(θ)).

(2.125)

The peak separation is given by Xd = 2α(1− cos(θ)) and the mid-point (cross
over point between the Gaussian curves f(x, α cos(θ)) and f(x, α)) is X0 =
2α cos(θ) + 1

2

(
2α−2α cos(θ)

)
= α(1 + cos(θ)) as can be seen below in Fig. 2.38.

We can expand Xd using Eqn. 2.33: Xd = 2α[1−1+ 1
2!θ

2− 1
4!θ

4 + · · · ] ≈ αθ2,
for small θ. Provided

Xd ≈ αθ2 � 1, (2.126)

the overlap between the two curves in Fig. 2.38 is small. In the case that
X > X0, Eqn. 2.125 approximately becomes

c0|HH〉ab + c3d1|V V 〉ab

and in the case that X < X0 Eqn. 2.125 approximately becomes

c1e
−iφ(X)|HV 〉ab + c2e

iφ(X)|V H〉ab.
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Figure 2.38: Plot showing f(X,α) and f(X,α cos(θ)).

Feed-forward can be used to give the state c1|HV 〉+ c2|V H〉 when X < X0, for
example, by applying a phase shifter on horizontal photons in mode b. We see
that Fig. 2.36 acts as a parity gate. With two parity gates we can distinguish all
four Bell states, which is the basis for the cnot Nemoto and Munro construct
in [49], described in Section 2.8.4.

2.8.3 Probability of Error

We calculate the probability of Fig. 2.36 incorrectly identifying the parity as
the overlap between f(x, α) and f(x, α cos(θ)):

Perr =
∫ ∞

X0

f2(x, α cos(θ))dx+
∫ X0

−∞
f2(x, α)dx

=
1√
2π

(∫ ∞

X0

exp
(
−1

2
(
x− 2α cos(θ)

)2)
dx+

∫ X0

−∞
exp
(
−1

2
(
x− 2α

)2)
dx

)

=
1√
π

(∫ ∞

Xd
2
√

2

e−y2
dy +

∫ − Xd
2
√

2

−∞
e−y2

dy

)
where y = 1√

2

(
x− 2α cos(θ)

)
for the left hand integral and y = 1√

2

(
x− 2α

)
for

the right. Since ∫ z

−∞
e−t2dt = −

∫ −z

∞
e−x2

dx =
∫ ∞

−z

e−x2
dx,

the probability of error becomes

Perr =
2√
π

∫ ∞

Xd
2
√

2

e−y2
dy = Erfc

[
Xd

2
√

2

]
(2.127)

≈ Erfc
[
αθ2√

8

]
.
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2.8.4 Single Photon Ancilla CNOT

Using two parity gates a cnot can be constructed [49], as shown in Fig. 2.39.
This cnot is based on the Pittman destructive cnot [36], described in Sec-
tion 2.7.2. We effectively replace each PBS in the Pittman destructive cnot

(Fig. 2.25) with a parity gate.

X Xθ −θα

a

θ −θα

t

c

1
√

2
( H + V ) φ(X1) φ(X2)

V

H

C2

C1

X X

Figure 2.39: cnot gate acting on polarisation logic using two of the parity gates from

Fig. 2.36 [49]. This cnot is based on the Pittman Bell state cnot [34]. The correction gate

C1 is either 1l of X and C2 is either X or 1l.

Consider the state

(c0|H〉+ c1|V 〉)c ⊗
1√
2

(|H〉+ |V 〉)a ⊗ (d0|H〉+ d1|V 〉)t

incident on Fig. 2.39. The single photon ancilla can be produced from a coherent
state and controlled rotations [92]. After the first parity gate we have

(c0|HH〉+ c1|V V 〉)ca ⊗ (d0|H〉+ d1|V 〉)t

=
1
2

(
c0d0 (|HFF 〉 − |HFS〉 − |HSF 〉+ |HSS〉)

+ c0d1 (|HFF 〉+ |HFS〉 − |HSF 〉 − |HSS〉)

+ c1d0 (|V FF 〉 − |V FS〉+ |V SF 〉 − |V SS〉)

+ c1d1 (|V FF 〉+ |V FS〉+ |V SF 〉+ |V SS〉)
)

cat

where we have assumed we detect X1 > X0 in the first homodyne detection and
F and S represent 45 degree polarisation states, as defined in Section 2.1.5.

After the second homodyne detection, if we measure X2 > X0 we have

1
2

(
c0d0|HFF 〉+ c0d0|HSS〉+ c0d1|HFF 〉 − c0d1|HSS〉

+ c1d0|V FF 〉 − c1d0|V SS〉+ c1d1|V FF 〉+ c1d1|V SS〉
)

cat

otherwise, if we measure X2 < X0 we have

1
2

(
eiφ(X2)

(
−c0d0|H〉+ c0d1|H〉 − c1d0|V 〉+ c1d1|V 〉

)
|FS〉

+ e−iφ(X2)
(
−c0d0|H〉 − c0d1|H〉+ c1d0|V 〉+ c1d1|V 〉

)
|SF 〉

)
cat
.

71



In the case that X2 > X0, when we detect mode a to be |H〉 the output
state is

1
2

(c0d0|HH〉+ c0d1|HV 〉+ c1d0|V V 〉+ c1d1|V H〉)ct

and when we detect mode a to be |V 〉 we have

1
2

(c0d0|HV 〉+ c0d1|HH〉+ c1d0|V H〉+ c1d1|V V 〉)ct

and require C2 = X.
In the case that X2 < X0, we must correct for the phase factors e±iφ(X2).

When we detect mode a to be |H〉 the output state is

1
2

(c0d0|HH〉+ c0d1|HV 〉 − c1d0|V V 〉 − c1d1|V H〉)ct

and require C1 = Z. When we detect mode a to be |V 〉 we have

1
2

(−c0d0|HV 〉 − c0d1|HH〉+ c1d0|V H〉+ c1d1|V V 〉)ct

and require C1 = Z and C2 = X.

2.8.5 Bell State Ancilla CNOT

An alternative cnot can also be constructed [92] using two parity gates that
is based on the Pittman Bell state [34], described in Section 2.7.1. As in the
previous section, this cnot replaces each PBS in the Pittman scheme (Fig. 2.24)
with a parity gate, as shown in Fig. 2.40.

Consider the state

(β0|HH〉+ β1|HV 〉+ β2|V H〉+ β3|V V 〉)ct ⊗
1√
2

(|HH〉+ |V V 〉)ba

incident on Fig. 2.40. We first consider the top parity gate. In the case that we
homodyne detect X1 > X0 we have

1
2

(
|F 〉c (β0|HHH〉+ β1|HHV 〉+ β2|V V H〉+ β3|V V V 〉)bat

+ |S〉c (−β0|HHH〉 − β1|HHV 〉+ β2|V V H〉+ β3|V V V 〉)bat

)
.

When we measure |F 〉c no correction is necessary. When we measure |Sc〉 we
require C1 to transform |H〉b → −|H〉b.

In the case that we homodyne detect X1 < X0 we have

1
2

(
|F 〉c (β0|V V H〉+ β1|V V V 〉+ β2|HHH〉+ β3|HHV 〉)bat

+ |S〉c (−β0|V V H〉 − β1|V V V 〉+ β2|HHH〉+ β3|HHV 〉)bat

)
.

When we measure |F 〉c we require C1 to flip the polarisation on mode b. When
we measure |Sc〉 we require C1 flip the polarisation on mode b and to transform
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X Xθ −θα
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φ(X1)

X Xθ −θα

φ(X2)

V

H
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F

b

1
√

2
( HH + V V )

ba

C1

C2

Figure 2.40: cnot gate acting on polarisation logic using two of the parity gates from

Fig. 2.36 [92]. This cnot is based on the Pittman Bell state cnot [34]. The correction gate

C1 and C2 apply the gates X and Z as needed.

|H〉b → −|H〉b. In both these cases, if we also flip the polarisation on mode a,
we have the state (β0|HHH〉+ β1|HHV 〉+ β2|V V H〉+ β3|V V V 〉) bat, as for
the X1 > X0 case. Even though this is not necessary for Fig. 2.40 to function
as a cnot , for the sake of simplicity we assume the top parity gate produces
the state

1
2

(β0|HHH〉+ β1|HHV 〉+ β2|V V H〉+ β3|V V V 〉) bat

=
1
4

((
(β0 + β1) |H〉b + (β2 + β3) |V 〉b

)
|FF 〉at

+
(
− (β0 + β1) |H〉b + (β2 + β3) |V 〉b

)
|FS〉at

+
(

(−β0 + β1) |H〉b + (−β2 + β3) |V 〉b
)
|SF 〉at

+
(

(β0 − β1) |H〉b + (−β2 + β3) |V 〉b
)
|SS〉at

)
.

When we homodyne detect after the bottom parity gate in Fig. 2.40, we
have

1
2
|H〉t

(
β0|HH〉+ β1|HV 〉+ β2|V V 〉+ β3|V H〉

)
ba

+
1
2
|V 〉t

(
β0|HV 〉+ β1|HH〉+ β2|V H〉+ β3|V V 〉

)
ba

for X2 > X0. If we measure |V 〉t we require C2 to flip polarisation on mode a.
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When X2 < X0, we have

1
2
|H〉t

(
β0|HH〉 − β1|HV 〉+ β2|V V 〉 − β3|V H〉

)
ba

+
1
2
|V 〉t

(
−β0|HV 〉+ β1|HH〉 − β2|V H〉+ β3|V V 〉

)
ba
.

If we measure |H〉t we need to apply the transformations |V 〉b → −|V 〉b and
|V 〉a → −|V 〉a. If we measure |V 〉t we require C2 to flip the polarisation on
mode a and to apply the transformations |V 〉b → −|V 〉b and |V 〉a → −|V 〉a.

2.8.6 Displacements

In Sections 2.8.4 and 2.8.5 two qubus cnot constructions were presented that
were based on the parity gate from Fig. 2.36. The operation of this parity gate
can be improved by allowing the use of displacements on the coherent probe
beam.

Displacements of a state can easily be implemented by mixing the state with
a large coherent state on a weak beam splitter, the size of the coherent state
amplitude and beam splitter reflectivity deciding the displacement [55]. For
example, consider displacing the state f

(
â†, â

)
|vac〉, where f() is a polynomial

function of â† and â that can be written in normal ordered form, as described
in Section 2.1.5: f̃

(
â†
)
|vac〉 =

∑n
j=0 cj

(
â†
)j |vac〉. From Eqn. 2.25 we know

that

D(γ)f̃(â†) =
n∑

j=0

cj
(
â† − γ∗

)j
D(γ). (2.128)

If we instead consider a θ, φ = π beam splitter with f̃
(
â†
)
|vac〉 and |β〉 incident

we have

f̃(â†)|vac〉 ⊗ |β〉 → f̃
(

cos(θ)â† − sin(θ)b̂†
)
e−

|β|2
2 eβ(sin(θ)â†+cos(θ)b̂†)|vac〉

=
n∑

j=0

cj

j∑
l=0

[(
j

l

)(
â† cos(θ)

)l
(− sin(θ))j−l

D(β sin(θ))
]

(2.129)

⊗

[
D(β cos(θ))

j−l∑
m=0

(
j − l

m

)(
b̂†
)m

(β∗ cos(θ))j−l−m

]
|vac〉

where we have used the binomial theorem: (x+ a)n =
∑n

k=0

(
n
k

)
xkan−k for n a

positive integer. We assume that sin(θ) � 1 and |β| � 1 such that sin(θ)β ≈ γ.
For instance, we could choose sin(θ) ≈ 1/|γ|2 and β ≈ |γ|2γ. In the case that
γ � 1, the term sinp(θ)β ≈ 0 for p > 1. Eqn. 2.129 then becomes

≈

 n∑
j=0

cj
(
â† − β∗ sin(θ)

)j
D(β sin(θ))|vac〉

⊗ |β cos(θ)〉 (2.130)
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where cosj(θ) ≈
√

1− 1
|γ|4 ≈ 1− 1

2|γ|4 ≈ 1. Eqn. 2.130 is equivalent to Eqn. 2.128

when γ = β sin(θ).

Homodyne Detection

One possible improvement that can be made on the parity gate in Fig. 2.36 is
to displace the coherent bus mode in between controlled rotations, as shown in
Fig. 2.41 [93].

X Xθ −θα

b

a

D(β) θ −θ

Figure 2.41: An alternative parity gate [93]. If we choose β = −2α cos(θ) the parity gate

operates with negligible error provided αθ2 � 1/2.

Consider the state(
β0|HH〉+ β1|HV 〉+ β2|V H〉+ β3|V V 〉

)
ab
|α〉

incident on Fig. 2.41. After the first two controlled rotations we have(
β0|HH〉+ β3|V V 〉

)
ab
|α〉+ β1|HV 〉ab|e−iθα〉+ β2|V H〉ab|eiθα〉.

We now displacement the probe beam with β = −2α cos(θ). Using Eqn. 2.26
we find:

D (−2α cos(θ)) |α〉 = |α
(
1− 2 cos(θ)

)
〉

D (−2α cos(θ)) |e±iθα〉 = e±2iα2 cos(θ) sin(θ)|α
(
e±iθ − 2 cos(θ)

)
〉

= e±2iα2 cos(θ) sin(θ)|−e∓iθα〉.

After the displacement, we have:(
β0|HH〉+ β3|V V 〉

)
|α
(
1− 2 cos(θ)

)
〉+ β1e

−2iα2 cos(θ) sin(θ)|HV 〉|−eiθα〉

+ β2e
2iα2 cos(θ) sin(θ)|V H〉|−e−iθα〉

where we have assumed α ∈ R. After the final two controlled rotations in Fig.
2.41 we have:(

β0|HH〉+ β3|V V 〉
)
|α
(
1− 2 cos(θ)

)
〉

+
(
β1e

−2iα2 cos(θ) sin(θ)|HV 〉+ β2e
2iα2 cos(θ) sin(θ)|V H〉

)
|−α〉.
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The phases e±2iα2 cos(θ) sin(θ) can be corrected once we homodyne detect the
probe beam. After we homodyne detect we have(
β0|HH〉+ β3|V V 〉

)
f(x, α(1− 2 cos(θ))) +

(
β1|HV 〉+ β2|V H〉

)
f(x,−α)

where f(x, β) is as defined in Eqn. 2.50. The peak separation between f(x,−α)
and f(x, α(1 − 2 cos(θ))) is given by Xd = 4α(1 − cos(θ)) and the midpoint
is X0 = −2α cos(θ). For these two parity Bell states to be distinguishable we
require Xd ≈ 2αθ2 � 1, for small θ. That is,

αθ2 � 1
2

(2.131)

which is a factor of two improvement on the scaling in Eqn. 2.126. The proba-
bility of error can be calculated out to be

Perr =
∫ ∞

X0

f2(x,−α)dx+
∫ X0

−∞
f2(x, α(1− 2 cos(θ))dx = Erfc

[
Xd

2
√

2

]
(2.132)

≈ Erfc
[
αθ2√

2

]
.

This is an improvement on Eqn. 2.127 since Erfc [x] → 1 as x→ 0.

Photon Number Detection

Another improvement that can be made on the parity gate in Fig. 2.36 is to
displace the coherent bus mode prior to measurement [92, 93], so we can per-
form a photon number detection instead of a homodyne detection. This allows
the scaling of α and θ in Eqn. 2.126 to be improved by more than the constant
factor shown in Eqn. 2.131. This is shown in Fig. 2.42. The photon number de-
tection can be made with a photon number QND detector made from controlled
rotations [99, 92].

θ −θα

b

a

D(−α)

Figure 2.42: An alternative parity gate [92, 93]. The parity gate operates with an error � 1

provided αθ � 1.
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As with the parity gate in Fig. 2.36, after the two controlled rotations we
have

(c0|HH〉+ c3|V V 〉)ab |α〉+ c1|HV 〉ab|e−iθα〉+ c2|V H〉ab|eiθα〉.

After we displace the coherent probe beam we have(
c0|HH〉ab + c3|V V 〉ab

)
|0〉+ ei|α|2 sin(θ)c1|HV 〉ab|α(e−iθ − 1)〉

+ e−i|α|2 sin(θ)c2|V H〉ab|α(eiθ − 1)〉.

The phase space representation of this is shown in Fig. 2.43.

e
−iθ

α

α

e
iθ

α

α e
−iθ

− 1

0

α e
iθ
− 1

α 2 (1 − cos(θ))

D(−α)

Figure 2.43: Phase space representation for the polarisation parity gate with a photon

number detection in Fig. 2.42.

The phases e±i|α|2 sin(θ) can easily be taken care of after we measure the
probe beam. The mean photon number in the state |α(e±iθ − 1)〉 is given by

np = |α(e±iθ − 1)|2 = 2α2
(
1− cos(θ)

)
≈ α2θ2 (2.133)

for small θ. To distinguish the np = 0 case from the np > 0 case we require

αθ � 1 (2.134)

which is a quadratic improvement compared to Eqn. 2.126. This scaling is
thought to be near optimal [92]. After we perform a photon number detection
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on the probe beam in Fig. 2.42 we have

c0|HH〉ab + c3|V V 〉ab for np = 0 (2.135)

c1e
iφ(np)|HV 〉ab + c2e

−iφ(np)|V H〉ab for np > 0.

The phases ±φ(np) result from the fact that 〈n|α〉 = e−
|α|2

2 αn
√

n!
. When consid-

ering the states |α(e±iθ − 1)〉 we have

〈n|α
(
e±iθ − 1

)
〉 = e−

np
2

(
α(e±iθ − 1)

)n
√
n!

= e−
np
2
αn

√
n!
e±i nθ

2 (±2i)n sinn

(
θ

2

)
= e−

np
2

(2α)n

√
n!

sinn

(
θ

2

)
e±i n

2 (θ+π). (2.136)

The resulting phase φ(np) is then given by

φ(np) =
np

2
(
θ + π

)
≈ np

π

2
(2.137)

for small θ, since α2θ3 ≈ 0. The output from Fig. 2.42 is then given by

c0|HH〉ab + c3|V V 〉ab for np = 0 (2.138)

(i)np (c1|HV 〉ab + (−1)np c2|V H〉ab) for np > 0.

The phase (−1)np can be corrected for with feed forward phase shifters. Note
however that bucket detectors could not be used for the np > 0 case since that
would result in the maximally mixed state [93](
c1|HV 〉+ c2|V H〉

)(
c∗1〈HV |+ c∗2〈V H|

)
+
(
c1|HV 〉 − c2|V H〉

)(
c∗1〈HV | − c∗2〈V H|

)
.

2.8.7 QEC with Qubus Computation

In [100] Yamaguchi et al. described a method to measure the stabilizers for
the 3-qubit bit-flip code with qubus type parity gates. The 3-qubit bit-flip
code is defined by the stabilizers ZZI and IZZ and is encoded by the code
words |0̄〉 = |000〉, |1̄〉 = |111〉. By measuring both stabilizers we can determine
whether there was a bit flip error on either qubit 1,2 or 3 and the location of
the error. In terms of parity gates, we can measure the Pauli operator ZZI by
measuring the parity of qubits 1 and 2 and we can measure the Pauli operator
IZZ by measuring the parity of qubits 2 and 3. This is shown in Fig. 2.44(c).

Note, in Fig. 2.44(a) we have depicted the parity gate without spatially sepa-
rating the polarisation of the photonic qubits. This is a notational shortcut that
will be used throughout this thesis. We assume that only vertically polarised
photons induce a controlled rotation. It is also worth noting that controlled
rotations may also be applied to physical qubits other than photons [93].

The state incident on Fig. 2.44(c) is |ψin〉 =
(
c0|000〉 + c1|111〉

)
abc
|α〉|α〉.

There are four cases to consider: no error, |ψin〉; an error on qubit 1, XII|ψin〉;
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θ −θα

b

a

Gate

Parity

“p”

“p”

Or
(b)

(a)

(c)

=

=
“p”

X X

D(−α)

Gate

Parity

Gate

Parity

“p2”

“p1”

Figure 2.44: (a) Qubus parity gate. (b) How the probe beam is measured, allowing for

either the parity gate in Fig. 2.36 or the parity gate in Fig. 2.42. (c) Two parity gates

combined to measure the Pauli operators ZZI and IZZ [100].

an error on qubit 2, IXI|ψin〉; an error on qubit 3, IIX|ψin〉. Directly before
we measure the probe beams in Fig. 2.44(c) we have the four cases:

|ψin〉 =
(
c0|000〉+ c1|111〉

)
|α〉|α〉 →

(
c0|000〉+ c1|111〉

)
|α〉|α〉 (2.139)

IIX|ψin〉 =
(
c0|001〉+ c1|110〉

)
|α〉|α〉 → c0|001〉|α〉|eiθα〉+ c1|110〉|α〉|e−iθα〉

IXI|ψin〉 =
(
c0|010〉+ c1|101〉

)
|α〉|α〉 → c0|010〉|e−iθα〉|e−iθα〉+ c1|101〉|eiθα〉|eiθα〉

XII|ψin〉 =
(
c0|100〉+ c1|011〉

)
|α〉|α〉 →

(
c0|100〉|eiθα〉+ c1|011〉|e−iθα〉

)
|α〉.

Once we measure the probe beams, the location of the bit flip error will be
known.

We can simplify Fig. 2.44(c) such that we only need one probe beam [100],
as shown in Fig. 2.45.

Fig. 2.45 measures the stabilizers ZZI and IZZ, provided θ1 + θ2 + θ3 = 0.
Consider the four cases from Eqn. 2.139 when we let θ1 = θ, θ2 = 2θ and
θ3 = −3θ.(

c0|000〉+ c1|111〉
)
abc
|α〉 → c0|000〉abc|α〉+ c1|111〉abc|α〉 (2.140)(

c0|001〉+ c1|110〉
)
abc
|α〉 → c0|001〉abc|e−3iθα〉+ c1|110〉abc|e3iθα〉(

c0|010〉+ c1|101〉
)
abc
|α〉 → c0|010〉abc|e2iθα〉+ c1|101〉abc|e−2iθα〉(

c0|100〉+ c1|011〉
)
abc
|α〉 → c0|100〉abc|eiθα〉+ c1|011〉abc|e−iθα〉.
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α

b

a

“p”θ1 θ2 θ3

c

Figure 2.45: Simplified version of Fig. 2.44(c) to measure the parity of three qubits [100].

When we measure the probe state to be |e±imθα〉, where m ∈ {0, 1, 2, 3}, we
know whether there was no error (m = 0) or whether qubit m had a bit flip.

Similar methods can be applied to measure the stabilizer operators for Shor’s
9-qubit code. The natural question that arises is: can we use techniques similar
to those above to measure the syndromes for an arbitrary stabilizer code? This
question will be addressed in Chapters 4 and 5.
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2.9 Zeno gate

In [50, 101] Franson et al. proposed an optical csign gate using the evanescent
coupling of photonic qubits in a dual core optical fibre. Unwanted two photon
terms are produced during the coupling and are suppressed by the quantum
Zeno effect [102]. This scheme is particularly attractive when compared to
LOQC since there is no need for ancilla photons or high efficiency detectors.
The non-linearity required for the photon-photon interaction takes the form of
two photon absorbers used to frequently measuring the qubits, that is, induce
the quantum Zeno effect, to suppress the two photon terms.

The interaction Hamiltonian governing the evanescent coupling is given by

ĤI = ε(â†1â2 + â1â
†
2) (2.141)

where âj is the annihilation operator for core j, j ∈ {1, 2}. This is just the
beam splitter Hamiltonian given in Eqn. 2.29 in Section 2.1.5 with θ = εt and
ϑ = 0 (φ = −π/2 in Eqn. 2.36).

The basis states used in this scheme are |0〉L = |vac〉 = |0〉 and |1〉L =
â†|vac〉 = |1〉, where the states on the right are Fock states. Under this interac-
tion Hamiltonian after a time t the basis states evolve to:

|00〉 → |00〉

|01〉 → cos(εt)|01〉 − i sin(εt)|10〉

|10〉 → cos(εt)|10〉 − i sin(εt)|01〉 (2.142)

|11〉 → cos(2εt)|11〉 − i√
2

sin(2εt)
(
|20〉+ |02〉

)
.

Notice that there is no choice of interaction time such that the two photon terms
disappear and we have an entangling two qubit gate. That is, we can choose
2εt = nπ with n = 0, 1, 2, · · · to eliminate the two photon terms, however,
for each choice of n, we have our original state up to local phase shifts. For
example, consider the n = 1 case. We see that |01〉 → −i|10〉, |10〉 → −i|01〉
and |11〉 → −|11〉. If the |11〉 term was unchanged we would have an entangling
gate.

Instead of letting the system evolve under HI for some time εt = nπ/2,
consider breaking the evolution into N increments, each one evolving the system
for a time εt = nπ/2N and in between each of these evolution increments
absorbing the two photon terms.

The states |01〉 and |10〉 evolve to

|01〉 → (U1)N |01〉 (2.143)

|10〉 → (U1)N |10〉
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where U1 is the interaction Hamiltonian HI in the {|01〉, |10〉} basis:

U1 =

(
cos(εt) −i sin(εt)
−i sin(εt) cos(εt)

)
(2.144)

and

(U1)N =

(
cos(Nεt) −i sin(Nεt)
−i sin(Nεt) cos(Nεt)

)
.

Choosing n = 1, εt = π
2N , we have

|01〉 → −i|10〉 (2.145)

|10〉 → −i|01〉.

The state |11〉 evolves to

|11〉 →
(
|11〉〈11|U2

)N |11〉 (2.146)

where U2 is the interaction Hamiltonian HI in the {|11〉, |20〉, |02〉} basis:

U2 =

 cos(2εt) − i√
2

sin(2εt) − i√
2

sin(2εt)

− i√
2

sin(2εt) 1
2

(
1 + cos(2εt)

)
1
2

(
cos(2εt)− 1

)
− i√

2
sin(2εt) 1

2

(
cos(2εt)− 1

)
1
2

(
1 + cos(2εt)

)
 (2.147)

and

(
|11〉〈11|U2

)N

=

 cosN (2εt) − i√
2

sin(2εt) cosN−1(2εt) − i√
2

sin(2εt) cosN−1(2εt)

0 0 0
0 0 0

 .

Again setting n = 1, εt = π
2N , we have

|11〉 → cosN (
π

N
)|11〉. (2.148)

Taking the limit N →∞ we have

|11〉 → lim
N→∞

cosN (
π

N
)|11〉 = |11〉. (2.149)

For the choice of n = 1, εt = π
2N , we have induced the gate

S =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

 . (2.150)

This S gate can be used to make a csign . If we have a π/2 phase shift on each
qubit before the application of S and swap the outputs afterwards we have a
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csign . This can be seen in Eqn. 2.151 and Fig. 2.46

swap · S · (P ⊗ P ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.151)

where

swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.152)

and

P =

(
1 0
0 i

)
. (2.153)

In terms of photons a swap operation is easy to perform.

Z

=S

P

P

Figure 2.46: The equivalence between the csign and S gate.
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Chapter 3

High Probability LOQC

photon number QND

Detectors

In Section 2.5.4 we described the original scheme to implement a probabilis-
tic csign gate [31] that succeeded with a probability of 1/16 ≈ 0.0625. The
purpose of this gate was to construct the |CSn〉 state necessary for a near de-
terministic csign between optical qubits, allowing for scalable optical quantum
computation. In Sections 2.7.1 and 2.7.3 we described two of the first modifica-
tions to this probabilistic csign gate, with one proposal using entangled ancilla
to increase the success probability [34] and the other allowing for detections in
the coincidence basis to simplify the csign, leading to a more experimentally
feasible gate [35]. In Section 2.7.5 the best bounds to date were described for
the probabilistic csign using only single photon ancilla. The best probabilistic
csign yet proposed succeeds with a probability of 2/27 ≈ 0.074 [39].

When we allow for destructive gates, that is gates that allow terms output in
the control and target modes outside the logical dual rail basis, the success prob-
ability increases above that of the 2/27 gate, as described in Sections 2.7.2 [36]
and 2.7.4 [37]. These gates alone cannot be used to construct the |CSn〉 states.
However, if we had a near deterministic photon number QND detector, these
gates could be used. In fact, near deterministic photon number QND detec-
tors would facilitate the search for other destructive gates with higher success
probabilities.

In Section 2.7.7 we saw the Kok et al. construction [88] of a photon number
QND detector using linear optics, single photon ancilla and projective measure-
ments. This scheme, shown in Fig. 2.33, detected the presence of a single photon
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in the state

|ψin〉 = b0|0〉a + b1
(
α|H〉+ β|V 〉

)
a

+ b2
(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
a

(3.1)

without destroying the polarisation information, succeeding with a probability
of approximately 2%. To see that a QND circuit such as Fig. 2.33 could be used
to correct the proposals in Sections 2.7.2 and 2.7.4, notice that Eqn. 3.1 is equiv-
alent to each mode in Eqns. 2.103 and. 2.104. While the Kok et al. construction
was an elegant proof of principle that such a QND detector could be made with
an interferometer, such a low success probability renders the scheme imprac-
tical. This leads to the aim of this chapter, to construct a near deterministic
photon number QND detector.

Other proposals would also benefit from a near deterministic photon number
QND detector. For example, the optical Zeno gate proposed by Franson et
al. in [50], used extensively in Chapter 6, requires the use of a two photon
absorber. In the continuous interaction case in Chapter 6 this two photon
absorption is considered to be doped into the optical fibre. In the beam splitter
case, an interferometric near deterministic photon number QND detector could
be used. Another example is the scheme by Spedalieri [103] to exploit the
Zeno effect to beat loss in LOQC. In this scheme the transformation b0|0〉 +
b1 (α|H〉+ β|V 〉) → α|H〉+ β|V 〉 is necessary. This could be achieved with the
teleportation scheme from [88], shown in Fig. 2.34, however this only succeeds
with a probability of 1/2. A near deterministic photon number QND detector
could induce this transformation.

3.1 The Search for an Improved LOQC QND

detector

An mentioned above, the aim of this chapter is to find an LOQC circuit that
induces the transformation

b0|0〉+ b1
(
α|H〉+ β|V 〉

)
+ b2

(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
→ α|H〉+ β|V 〉

(3.2)

with a high success probability.
The first question to ask is whether we can modify Fig. 2.33 to increase the

success probability above 2%. One might at first think adding an additional
ancilla photon in the state (|H〉+ |V 〉) /

√
2 in mode b might help. However,

on closer analysis we see that this would just result in a horizontally polarised
photon in the lower half of Fig. 2.33 and a vertically polarised photon in the
upper half of Fig. 2.33, neither of which would interfere with the ancilla modes
or the photons in the state |ψin〉. Another possible way the success probability
might be improved is by using additional ancilla photons in modes p and q, as
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well as an additional coincidence measurement, as shown in Fig. 3.1. In this case
the transformation in Eqn. 3.2 is induced, however the probability of success is
reduced to (4/27)3 ≈ 0.00325. This raises the question of what can been gained
by using additional photons.
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H
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0
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Figure 3.1: An attempt to improve the success probability of the Kok et al. [88] photon

number QND detector in Fig. 2.33. Detects the presence of a single photon in an arbitrary

polarisation state from the state |ψin〉 = b0|0〉a + b1
`
α|H〉 + β|V 〉

´
a

+ b2
`
µ|2H〉 + χ|HV 〉 +

ν|2V 〉
´
a
. When θ = π

4
and θ1 = θ2 = θ3 = − 1

2
arccos

`
1
3

´
, the success probability for this

circuit is (4/27)3 ≈ 0.00325. There is an ancilla photon in the state |V 〉 in modes c1, c2 and

c3, and an ancilla photon in the state |H〉 in modes d1, d2 and d3. Mode b has a vacuum

input. The polariser transforms H to V and vice versa.

If we had the state

|ψin〉 =b0|0〉+ b1
(
α|H〉+ β|V 〉

)
+ b2

(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
+ b3

(
λ1|3H〉+ λ2|2H,V 〉+ λ3|2V,H〉+ λ4|3V 〉

)
(3.3)

where
∑4

i=1 |λi|2 = 1, we can use a modified version of Fig. 3.1 to eliminate all
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but the b1 term. If we apply Fig. 2.33 to Eqn. 3.3 we have the state

4b1
(
α|H〉+ β|V 〉

)
/27 + b3

(
λ′1|3H〉+ λ′2|2H,V 〉+ λ′3|2V,H〉+ λ′4|3V 〉

)
(3.4)

Now if we apply Fig. 3.1 with θ = π
4 and θ1 = π/4, θ2 = 1

2 arccos
(

1
9

)
and

θ3 = π/4 we have

4
27

cos2(θ1) cos2(θ2) cos2(θ3) sin(θ1) sin(θ2) sin(θ3)b1
(
α|H〉+ β|V 〉

)
(3.5)

=
(

4
27

)(
5

108

)
b1
(
α|H〉+ β|V 〉

)
. (3.6)

We see that we can induce the transformation

b0|0〉+ b1
(
α|H〉+ β|V 〉

)
+ b2

(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
+ b3

(
λ1|3H〉+ λ2|2H,V 〉+ λ3|2V,H〉+ λ4|3V 〉

)
→ α|H〉+ β|V 〉.

This can be generalised to states with any number of photons in arbitrary po-
larisations:

b0|0〉+ b1
(
α|H〉+ β|V 〉

)
+ b2

(
µ|2H〉+ χ|HV 〉+ ν|2V 〉

)
+

N∑
n=3

bn

n+1∑
j=1

η
(n)
j |(n− j)H, jV 〉

(3.7)

where
∑n+1

j=1 |η
(n)
j |2 = 1. Using Fig. 2.33, we first eliminate the vacuum and two

photon terms, giving the state

4b1
(
α|H〉+ β|V 〉

)
/27 +

N∑
n=3

bn

n+1∑
j=1

η
′(n)
j |(n− j)H, jV 〉. (3.8)

Notice that the higher photon number cases corresponding to bn do not con-
tribute to any other photon number case bn′ (for n 6= n′), as can be seen by
looking at how Fig. 3.2 transforms the general state |nV,mH〉fe ≡ |n,m〉fe

|n,m〉fe → (3.9)

(−1)n−2 sinn+m−2(θi) cos2(θi)

(√
n (m+ 1)

(
(n+ 1)

2
cos2(θi)− 1

)
|n− 1,m+ 1〉hg

+
√
m (n+ 1)

(
(m+ 1)

2
cos2(θi)− 1

)
|n+ 1,m− 1〉hg

)

where we have used the fact that only the states |20〉 and |02〉 incident on the
θ = π/4 beam splitter allow for a coincidence at c′i and d

′

i [104].
We then apply the circuit in Fig. 3.3 N − 2 times, increasing the number of

ancilla photons by two each time, starting with 6 ancilla photons as in Fig. 3.1
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Figure 3.2: The transformation of the state |n,m〉fe in a generalised Kok et al. [88] photon

number QND detector. A coincidence measurement in modes c′i and d
′
i induces transforma-

tion 3.9. Here θ = π
4

and there is an ancilla photon in the state |V 〉 in modes ci and an ancilla

photon in the state |H〉 in modes di. The polariser transforms H to V and vice versa.

and ending with 2N ancilla photons. The final state is

4
27
b1

N∏
n=3

n∏
i=1

cos2
(
θ
(n)
i

)
sin
(
θ
(n)
i

)
(α|H〉+ β|V 〉) . (3.10)

We analytically calculated possible beam splitter reflectivities for the N = 3,
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Figure 3.3: Detects the presence of a single photon in an arbitrary polarisation state from

the state |ψin〉 = b1
`
α|H〉+β|V 〉

´
a

+ bN
PN

j=0 ηj |(N − j)H, jV 〉a. There is an ancilla photon

in the state |V 〉 in modes c1, c2, · · · , cN , and an ancilla photon in the state |H〉 in modes

d1, d2, · · · , dN . Mode b has a vacuum input. The polariser transforms H to V and vice versa.

N = 4 and N = 5 case using Eqn. 3.9:

θ
(3)
1 = θ

(3)
3 =

π

4
, θ

(3)
2 =

1
2

arccos
(

1
9

)
;

3∏
i=1

cos2(θ(3)i ) sin(θ(3)i ) =
5

108

θ
(4)
1 = θ

(4)
3 = θ

(4)
4 = arccos

(√
2
5

)
, θ

(4)
2 =

π

4
;

4∏
i=1

cos2(θ(4)i ) sin(θ(4)i ) =
6

625

√
6
5

θ
(5)
1 = arccos

(
1√
3

)
, θ

(5)
2 = arccos

(√
2
5

)
, θ

(5)
3 = θ

(5)
5 =

π

4
, θ

(4)
1 = arccos

(
1
3

)
;

5∏
i=1

cos2(θ(5)i ) sin(θ(5)i ) =
1

405
√

5
.

When N = 3 the success probability is 4.7 × 10−5, when N = 4 the success
probability is 5.2×10−9 and when N = 5 the success probability is 6.3×10−12.
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It is clear that these success probabilities are too low to be of any practical use.
Even in the best case scenario, that is, when cos2

(
θ
(n)
i

)
sin
(
θ
(n)
i

)
is maximised

at θ(n)
i = − arccos

(
1
3

)
, which does not work as a general solution, the probability

of success scales as 3.3× 10−3, 4.8× 10−4 and 7.1× 10−5 for the N = 3, N = 4
and N = 5 cases, respectively.

It is evident that using single photon ancilla cannot increase the success
probability of the transformation in Eqn. 3.2. We have shown above that addi-
tional single photon ancilla can generalise the transformation, but at this point
we only need a QND photon number detector that works on states contain-
ing up to two photons. The next step is to consider the use of entanglement,
motivated by the near deterministic LOQC teleporter from [31], described in
Section 2.5.4. With no apparent way to add entanglement to Fig. 2.33 we in-
vestigate the LOQC teleporter as a potential near deterministic QND photon
number detector.

3.1.1 Entanglement as a Resource

A photon number QND detector based on teleportation was shown in [88] that
succeeded with a probability of 1/2, as described in Section 2.7.7. We considered
the desired transformation to be in the dual rail basis, so Eqn. 3.2 becomes

|Ψ1〉 = b0|00〉ab + b1
(
α|10〉+ β|01〉

)
ab

+ b2
(
µ|20〉+ χ|11〉+ ν|02〉

)
ab

→ α|10〉+ β|01〉. (3.11)

This scheme, shown in Fig. 2.34, used the output of a parametric down converter
|ΨPDC〉 as a resource. Since this resource state had a vacuum term, the two
photon terms in transformation 3.11 could not be eliminated. If we instead just
consider the resource state

1√
2

(|1001〉 − |0110〉)cdef , (3.12)

as shown in Fig. 3.4, we can perform the transformation in Eqn. 3.11 with a
success probability of 1/2.

Since Fig. 3.4 is a teleportation circuit, one might at first think that we
can directly use the near deterministic LOQC teleporter from [31] as a near
deterministic photon number QND detector. However, notice that the n

n+1

LOQC teleporter, shown in Fig. 2.19 of Section 2.7.7, will not function as a
photon number QND detector. If the state b0|00〉0a + b1

(
α|10〉 + β|01〉

)
0a

+
b2
(
µ|20〉 + χ|11〉 + ν|02〉

)
0a

was incident on modes 0 and a we would have
the vacuum term |00〉0a and the two photon terms |02〉0a and |11〉0a in the
output, since only mode 0 of the input state is teleported. We can eliminate
the remaining two photon terms using three more LOQC teleporters, one to
eliminate the |02〉0a and two to eliminate the |11〉0a term after the use of a
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Figure 3.4: Photon number QND detector [88]. Detects the presence of a single photon in

either mode a or b in the state |Ψ1〉 = b0|00〉ab + b1
`
α|10〉 + β|01〉

´
ab

+ b2
`
µ|20〉 + χ|11〉 +

ν|02〉
´
ab

. Success is indicated with a detection of either |1001〉ghij , |0110〉ghij , |1100〉ghij or

|0011〉ghij . The total probability of success is |b1|2/2.

θ = π/4, φ = 0 beam splitter, the effect of the beam splitter needing to be
reversed on the state α|01〉0a + β|10〉0a after the application of the four LOQC
teleporters. However, there is no way to eliminate the vacuum term b0|00〉oa

with LOQC teleporters alone.
On a closer analysis of Fig. 3.4 we notice that both modes of |Ψ1〉 are tele-

ported. However, as described above, we cannot simply use two general LOQC
teleporters on each mode of the state |Ψ1〉 since the output will still have the
vacuum term b0|00〉 and two photon term b2|11〉. Notice that the entangled
state used in Fig 3.4, shown in Eqn. 3.12, is not equivalent to either |t1〉 ⊗ |t1〉
or |t2〉. In order to construct a near deterministic photon number QND detec-
tor we propose a generalisation of Fig. 3.4, using an as yet unknown entangled
state to teleport both modes of the state |Ψ1〉 simultaneously. To ensure the
output from our proposed photon number QND detector are in either the state
|01〉 or |10〉, we impose two restrictions. First, we deviate from the generalised
LOQC teleporter in [31] and dictate before hand which modes will contain the
teleported state. We do this by only leaving two modes of our entangled state
unmeasured, as opposed to the n modes left unmeasured in Fig. 2.19. Second,
the last two modes of the entangled must be either |01〉 or |10〉, so the none of
the states |00〉, |20〉, |02〉 or |11〉 can be output. With this in mind, we now need
to find the form of the entangled states that will induce the transformation in
Eqn. 3.11, as well as increase the probability of success as we increase the num-
ber of modes in the entangled state. We limit the entangled state considered to
states with 2n modes and n photons, such that each mode has a maximum of
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one photon, a similar restriction to that for the |tn〉 states.
We first investigate entangled states that are one level more complex than

those considered in Eqn. 3.12, that is, six modes states that have three photons.
This is shown in Fig. 3.5. We need to search for the entangled state incident on
modes 1–6 that induces 3.11. We considering a superposition of all possible six
mode states containing three photons, with a maximum of one photon in each
mode and only those states in which modes 5 and 6 are either |01〉56 or |10〉56.
This is a superposition of twelve states:(
χ0|110001〉+ χ1|110010〉+ χ2|101001〉+ χ3|101010〉+ χ4|100101〉+ χ5|100110〉

+ χ6|011001〉+ χ7|011010〉+ χ8|010101〉+ χ9|010110〉+ χ10|001101〉+ χ11|001110〉
)

where the modes are labelled 1 through to 6 and
∑11

i=0 |χi|2 = 1.

b

a

c2

c1

F̂3

F̂3

State Preparation

1
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1
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2

44
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3 3

Ψ1

Figure 3.5: Photon Number QND detector with linear optics using two tri-splitters. The

success probability is 2|b1|2/3.

Measuring a total of three photons ensures the b0 and b2 terms in |Ψ1〉
are eliminated. Out of the 56 possible three photon measurements on modes
a′, b′, 1′, 2′, 3′ and 4′, 36 lead to successful teleportation, given that only χ0 =
χ3 = χ10 = 1 and all other χi = 0. That is, one possible entangled state incident
on modes 1–6 that induces the transformation in Eqn. 3.11 is

1√
3

((|110001〉+ |101010〉+ |001101〉)123456 (3.13)

The 36 measurements that perform a successful photon number QND measure-
ment are shown in Table 3.1.
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|110100〉 |100110〉 |010110〉 |200100〉 |002100〉 |010200〉
|110010〉 |100101〉 |010101〉 |200010〉 |002010〉 |010020〉
|110001〉 |100011〉 |010011〉 |200001〉 |002001〉 |010002〉
|101100〉 |011100〉 |001110〉 |020100〉 |100200〉 |001200〉
|101010〉 |011010〉 |001101〉 |020010〉 |100020〉 |001020〉
|101001〉 |011001〉 |001011〉 |020001〉 |100002〉 |001002〉

Table 3.1: The detections on modes b′, 1′, 2′, a′, 3′, 4′ that lead to a successful photon number

QND measurement for the circuit in Fig. 3.5

Given the entangled state in Eqn. 3.13 and only accepting an output in modes
5 and 6 when we detect a measurement from Table 3.1, Fig. 3.5 succeeds as a
photon number QND detector with a probability of 2|b1|2/3, an improvement
on |b1|2/2 probability found in [88] (Fig. 3.4).

Notice that only the measurement outcomes that detect at least one photon
from both tri-splitters in Fig. 3.5 lead to success. Detecting either 0 or 3 photons
from either tri-splitter results in failure. The necessary corrections c1 and c2 in
Fig. 3.5 are simply the phase shifters with φ = ±2π/3. We can always choose
either c1 or c2 to be the identity. A swap correction may also be necessary.
Alternatively we can just relabel the modes of the output qubit.

We repeat the above analysis for both the 8 mode and 10 mode entangled
state case, shown in Fig. 3.6 for n = 4 and n = 5, respectively. For the n = 4
case we consider a superposition of 2 ×

(
6
3

)
= 40 states incident on modes 1–8

of Fig. 3.6. Provided we detect at least one photon from each 4-splitter, that is,
out of the 330 possible 4 photon detections, we only allow the 260 that have at
least one photon from each 4-splitter, the entangled state

1
2

(|11100010〉+ |10011010〉+ |00011101〉+ |11010001〉) , (3.14)

induces a photon number QND detector with a probability of 3|b1|2/4, where
we label the modes 1 through to 8. The necessary corrections in this case are
phase shifters with φ = π,±π/2.

For the n = 5 case we consider a superposition of 2×
(
8
4

)
= 140 states incident

on modes 1–10 of Fig. 3.6. Provided we detect at least one photon from each
5-splitter, that is, out of the 2002 possible 5 photon detections, we only allow
the 1750 that have at least one photon from each 5-splitter, the entangled state

1√
5

(|0000111101〉+ |1000111010〉+ |1100110001〉+ |1110100010〉+ |1111000001〉) ,

(3.15)

induces a photon number QND detector with a probability of 4|b1|2/5, where
we label the modes 1 through to 10. The necessary corrections in this case are
phase shifters with φ = ±2π/5,±4π/5.
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Figure 3.6: Photon Number QND detector with linear optics using two n-splitters. The

success probability is |b1|2
`

n−1
n

´
.

We see from the three cases considered above that the probability of suc-
cess for our photon number QND detector increases as the number of modes
and photons in our entangled resource increases. To find what the necessary
entangled state looks like for the general n case, we could attempt to use a state
made up of a superposition of 2×

(
2n−2
n−1

)
states and then search for which am-

plitudes in the superposition can be set to zero. However, from the three cases
considered we recognise a pattern that leads to the general entangled state of n
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photons in 2n modes, given as the superposition of n states in Eqn. 3.16.

|QNDtn〉 =
1√
n

(
|

n−1︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

n−1︷ ︸︸ ︷
11 · · · 1〉n,n+1,··· ,2n−2|01〉2n−1,2n

+|1
n−2︷ ︸︸ ︷

00 · · · 0〉1,2,··· ,n−1|
n−2︷ ︸︸ ︷

11 · · · 1 0〉n,n+,1··· ,2n−2|10〉2n−1,2n

+|11

n−3︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

n−3︷ ︸︸ ︷
11 · · · 1 00〉n,n+,1··· ,2n−2|01〉2n−1,2n (3.16)

...

+|
n−3︷ ︸︸ ︷

11 · · · 1 00〉1,2,··· ,n−1|11

n−3︷ ︸︸ ︷
00 · · · 0〉n,n+,1··· ,2n−2|An−2〉2n−1,2n

+|
n−2︷ ︸︸ ︷

11 · · · 1 0〉1,2,··· ,n−1|1
n−2︷ ︸︸ ︷

00 · · · 0〉n,n+,1··· ,2n−2|An−1〉2n−1,2n

+|
n−1︷ ︸︸ ︷

11 · · · 1〉1,2,··· ,n−1|
n−1︷ ︸︸ ︷

00 · · · 0〉n,n+,1··· ,2n−2|An〉2n−1,2n

)
,

where |An−2〉 = |10〉, |An−1〉 = |01〉, |An〉 = |10〉 for n even and |An−2〉 =
|01〉, |An−1〉 = |10〉, |An〉 = |01〉 for n odd. This state induces a photon number
QND measurement with a success probability that scales as |b1|2

(
n−1

n

)
, pro-

vided we only detect a total of n photons and ignore the detection outcomes
in which we detect either 0 or n photons from either n-splitter. The necessary
corrections c1 and c2 in Fig. 3.6 are simply the phase shifters φ = m (2π/n),
where m ∈ {1, 2, · · · , n − 1}. We can always choose either c1 or c2 to be the
identity. A swap correction may also be necessary. Alternatively we can just
relabel the modes of the output qubit.

It is worth mentioning that the photon number QND detector in Fig. 3.6
also functions for a state |Ψ1〉 that has any number of photons in arbitrary
polarisation state, such as the dual rail equivalent of Eqn. 3.7:

b0|0, 0〉+ b1
(
α|1, 0〉+ β|0, 1〉

)
+ b2

(
µ|2, 0〉+ χ|1, 1〉+ ν|0, 2〉

)
+

N∑
n=3

bn

n+1∑
j=1

η
(n)
j |(n− j), j〉

(3.17)

where
∑n+1

j=1 |η
(n)
j |2 = 1 and

∑N
k=0 |bk|2 = 1. This is due to the fact that the

entangled resource state in Eqn. 3.16 dictates that the output from the teleporter
is either |01〉2n−1,2n or |10〉2n−1,2n.

It is clear that when Eqn. 3.16 is incident on modes 1–2n of Fig. 3.6, the
vacuum (b0) and two photon (b2) terms in |Ψ1〉 are eliminated, since the output
modes of the device, modes 2n− 1 and 2n in Fig. 3.6, can only be in the states
|01〉2n−1,2n and/or |10〉2n−1,2n. However, it is not clear that Eqn. 3.16 induces
the transformation in Eqn. 3.11 with a probability that scales as |b1|2

(
n−1

n

)
.

96



We explain this using a similar technique to that used when explaining how the
states |tn〉 perform teleportation with a success probability of n

n+1 , described in
Section 2.5.4.

Consider the case

b1
(
α|10〉+ β|01〉

)
ab

(3.18)

⊗

(
|
n−m−1︷ ︸︸ ︷
11 · · · 1

m︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

m︷ ︸︸ ︷
11 · · · 1

n−m−1︷ ︸︸ ︷
00 · · · 0〉n,n+,1··· ,2n−2|An−m〉2n−1,2n

)

where m = 1, · · · , n− 2. In order to show how this term teleports α|10〉+β|01〉
we also need to consider the terms directly before and after this one in the
entangled resource in Eqn. 3.16:

b1
(
α|10〉+ β|01〉

)
ab

(3.19)

⊗

(
|
n−m−2︷ ︸︸ ︷
11 · · · 1

m+1︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

m+1︷ ︸︸ ︷
11 · · · 1

n−m−2︷ ︸︸ ︷
00 · · · 0〉n,n+,1··· ,2n−2|An−m−1〉2n−1,2n

+|
n−m−1︷ ︸︸ ︷
11 · · · 1

m︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

m︷ ︸︸ ︷
11 · · · 1

n−m−1︷ ︸︸ ︷
00 · · · 0〉n,n+,1··· ,2n−2|An−m〉2n−1,2n

+|11 · · · 1︸ ︷︷ ︸
n−m

00 · · · 0︸ ︷︷ ︸
m−1

〉1,2,··· ,n−1|11 · · · 1︸ ︷︷ ︸
m−1

00 · · · 0︸ ︷︷ ︸
n−m

〉n,n+,1··· ,2n−2|An−m+1〉2n−1,2n

)

where if n and m have the same parity then |An−m−1〉 = |01〉, |An−m〉 =
|10〉, |An−m+1〉 = |01〉 and if n and m have different parity then |An−m−1〉 =
|10〉, |An−m〉 = |01〉, |An−m+1〉 = |10〉. Expanding this we have

= α|0
n−m−2︷ ︸︸ ︷
11 · · · 1

m+1︷ ︸︸ ︷
00 · · · 0〉b,1,2,··· ,n−1|1

m+1︷ ︸︸ ︷
11 · · · 1

n−m−2︷ ︸︸ ︷
00 · · · 0〉a,n,n+,1··· ,2n−2|An−m−1〉2n−1,2n

+α|0
n−m−1︷ ︸︸ ︷
11 · · · 1

m︷ ︸︸ ︷
00 · · · 0〉b,1,2,··· ,n−1|1

m︷ ︸︸ ︷
11 · · · 1

n−m−1︷ ︸︸ ︷
00 · · · 0〉a,n,n+,1··· ,2n−2|An−m〉2n−1,2n

+α|0 11 · · · 1︸ ︷︷ ︸
n−m

00 · · · 0︸ ︷︷ ︸
m−1

〉b,1,2,··· ,n−1|1 11 · · · 1︸ ︷︷ ︸
m−1

00 · · · 0︸ ︷︷ ︸
n−m

〉a,n,n+,1··· ,2n−2|An−m+1〉2n−1,2n

+β|1
n−m−2︷ ︸︸ ︷
11 · · · 1

m+1︷ ︸︸ ︷
00 · · · 0〉b,1,2,··· ,n−1|0

m+1︷ ︸︸ ︷
11 · · · 1

n−m−2︷ ︸︸ ︷
00 · · · 0〉a,n,n+,1··· ,2n−2|An−m−1〉2n−1,2n

+β|1
n−m−1︷ ︸︸ ︷
11 · · · 1

m︷ ︸︸ ︷
00 · · · 0〉b,1,2,··· ,n−1|0

m︷ ︸︸ ︷
11 · · · 1

n−m−1︷ ︸︸ ︷
00 · · · 0〉a,n,n+,1··· ,2n−2|An−m〉2n−1,2n

+β|1 11 · · · 1︸ ︷︷ ︸
n−m

00 · · · 0︸ ︷︷ ︸
m−1

〉b,1,2,··· ,n−1|0 11 · · · 1︸ ︷︷ ︸
m−1

00 · · · 0︸ ︷︷ ︸
n−m

〉a,n,n+,1··· ,2n−2|An−m+1〉2n−1,2n

We see that there are two states, shown in blue, that have n −m and m + 1
photons incident on the top and bottom n-splitters in Fig. 3.6, respectively.
However the states incident on each n-splitter are not identical, the modes have
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been shifted by one, that is, one of the blue states incident on the top n-splitter
is of the form

|
p︷ ︸︸ ︷

11 · · · 1
n−p︷ ︸︸ ︷

00 · · · 0〉b,1,2,··· ,n−1 (3.20)

whereas the other is of the form

|0 11 · · · 1︸ ︷︷ ︸
p

00 · · · 0︸ ︷︷ ︸
n−1−p

〉b,1,2,··· ,n−1 (3.21)

where p = n−m here. We need to show that the amplitude for each of the states
resulting from the state in Eqn. 3.20 incident on an n-splitter is the same as
the amplitude for the corresponding states resulting from the state in Eqn. 3.21
incident on an n-splitter. We can do this by recalling the definition of a n-
splitter from Eqn. 2.81 in Section 2.5.4. The output from an n-splitter with
Eqn. 3.20 incident is given by

p∏
l=1

n−1∑
j=0

F̂jlâ
†
j

 =
p∏

l=1

n−1∑
j=0

1√
n
ei 2π

n lj â†j

 (3.22)

and the output from an n-splitter with Eqn. 3.20 incident is given by

p+1∏
l=2

n−1∑
j=0

F̂jlâ
†
j

 =
p∏

k=1

n−1∑
j=0

1√
n
ei 2π

n (k+1)j â†j

 (3.23)

=
p∏

k=1

n−1∑
j=0

1√
n
ei 2π

n kjei 2π
n j â†j


where in this case mode b would take the place of mode 0. If we apply a phase
shift of e−i 2π

n j to each mode j of the output of the n-spliter, â†j → e−i 2π
n j â†j ,

when Eqn. 3.23 is incident, then we can see that the amplitude for each state
in Eqn. 3.22 is the same as the corresponding state from Eqn. 3.23. That is,
the amplitude for each state in the output from an n-splitter cannot be altered
by phase shifters, only the relative phases can be affected. If we do not apply
these phase shifters, the teleported state resulting from measuring the output
of the n-splitter with Eqns. 3.20 and 3.21 incident will either be of the form
α|10〉+ eiϕβ|01〉 or α|01〉+ eiϕβ|10〉. This same reasoning is also true when we
have n−m− 1 and m+ 1 photons incident on the top and bottom n-splitters
in Fig. 3.6, respectively, shown in red in Eqn. 3.19.

Now that we have shown how Eqn. 3.16 teleports the b1 state from |Ψ1〉
using Fig. 3.6, we need to show how it fails, and what the probability of failure
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is. For this we need to consider the case

b1
(
α|10〉+ β|01〉

)
ab

(3.24)

⊗

(
|

n−1︷ ︸︸ ︷
00 · · · 0〉1,2,··· ,n−1|

n−1︷ ︸︸ ︷
11 · · · 1〉n,n+1,··· ,2n−2|01〉2n−1,2n

+|
n−1︷ ︸︸ ︷

11 · · · 1〉1,2,··· ,n−1|
n−1︷ ︸︸ ︷

00 · · · 0〉n,n+,1··· ,2n−2|An〉2n−1,2n

)
/
√
n

= b1

(
α|0

n−1︷ ︸︸ ︷
00 · · · 0〉b,1,2,··· ,n−1|

n︷ ︸︸ ︷
11 · · · 1〉a,n,n+1,··· ,2n−2|01〉2n−1,2n

+α|0
n−1︷ ︸︸ ︷

11 · · · 1〉b,1,2,··· ,n−1|1
n−1︷ ︸︸ ︷

00 · · · 0〉a,n,n+,1··· ,2n−2|An〉2n−1,2n (3.25)

+β|1
n−1︷ ︸︸ ︷

00 · · · 0〉b,1,2,··· ,n−1|0
n−1︷ ︸︸ ︷

11 · · · 1〉a,n,n+1,··· ,2n−2|01〉2n−1,2n

+β|
n︷ ︸︸ ︷

11 · · · 1〉b,1,2,··· ,n−1|0
n−1︷ ︸︸ ︷

00 · · · 0〉a,n,n+,1··· ,2n−2|An〉2n−1,2n

)
/
√
n

We see that when we have n photons incident on the bottom n-splitter in
Fig. 3.6, shown in green above, the teleported state is α|01〉2n−1,2n. This occurs
with a probability of |b1|2|α|2/n. When we have n photons incident on the top
n-splitter in Fig. 3.6, shown in cyan above, the teleported state is β|An〉2n−1,2n,
where |An〉 = |10〉 for n even and |An〉 = |01〉 for n odd. This occurs with a
probability of |b1|2|β|2/n. The total probability of measuring either n photons
from the top n-splitter in Fig. 3.6 or n photons from the bottom n-splitter is
|b1|2

(
|α|2 + |β|2

)
/n = |b1|2/n. Therefore, the probability of success for Fig. 3.6

acting as a photon number QND detector is |b1|2 − |b1|2
n = |b1|2

(
n−1

n

)
.

Notice that the probability of success resembles that for the near determinis-
tic teleportation in [31]. The entangled resource we require for a photon number
QND detector closely resembles the |tn〉 states from [31]. We can see this ex-
plicitly when we write the state in Eqn. 3.16 in terms logical qubits, using the
definition in Section 2.5.1. We label the first qubit in Eqn. 3.16 as mode 1 and
2n−2, the second as mode and 2n−3 and so on until the (n−1)th qubit which
is labelled as modes n− 1 and n. The nth qubit is labelled as modes 2n− 1 and
2n. The n = 3 case in Eqn. 3.13 becomes

1√
3

((|000〉+ |101〉+ |110〉)q , (3.26)

the n = 4 case in Eqn. 3.14 becomes

1
2

(|0000〉+ |1001〉+ |1100〉+ |1111〉)q , (3.27)
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and the n = 5 case in Eqn. 3.15 becomes

1√
5

(|00000〉+ |10001〉+ |11000〉+ |11101〉+ |11110〉)q . (3.28)

In general the entangled resource in Eqn. 3.16 becomes

|QNDtn〉q =
1√
n

n−1∑
j=0

|1〉⊗(n−1−j)
q |0〉⊗j

q |(1 + (n− 1− j) mod 2) mod 2〉q. (3.29)

The nth mode in Eqn. 3.29, |(1 + (n− 1− j) mod 2) mod 2〉q, is effectively
the parity of the number times 1 appears in the first n − 1 modes. From this
we see that we can make |QNDtn〉 from |tn−1〉q ⊗ |0〉q by applying n− 1 cnot

gates between each of the first n− 1 qubits and the nth qubit. That is, we need
to apply a cnot between the 1st and nth qubit, the 2nd and nth qubit, · · · , the
(n− 2)th and nth qubit and between the (n− 1)th and nth qubit.

3.2 An Improved LOQC teleporter

In Fig. 3.6 we described a photon number QND detector that succeeded with
a probability of |b1|2

(
n−1

n

)
, provided the state |Ψ1〉 from Eqn. 3.11 is incident

on modes a and b. If we set b0 = b2 = 0 and b1 = 1, Fig. 3.6 becomes a
teleporter. When we compare this teleporter with that proposed by Knill et
al. [31], shown in Fig. 2.19, we notice two differences. First, we teleport both
modes of our quantum states. When we teleport with the n photon entangled
resource state |QNDtn〉, the probability of success is the same as when the
LOQC teleporter uses the n− 1 photon entangled state |tn−1〉. By teleporting
both modes of our quantum state we have reduced the success probability of
teleportation by a factor of n2−1

n2 . Second, since we only leave two modes of our
entangled resource state |QNDtn〉 unmeasured, we dictate the modes in which
the teleported state will appear. This has important consequences when we
consider applying a near deterministic csign to optical qubits.

In Fig. 3.7 we show the teleportation of two optical qubits using the resource
states |QNDtn〉, after which we apply a csign . Since the correction gates
c1, c2, c3 and c4 are always phase shifters of the form φ = m (2π/n), where
m ∈ {1, 2, · · · , n− 1}, we can commute the csign gate through these:

UCZ ·

[(
1 0
0 eiφ1

)
⊗

(
1 0
0 eiφ2

)]
· UCZ =

(
1 0
0 eiφ1

)
⊗

(
1 0
0 eiφ2

)

This leads to Fig. 3.8.
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Figure 3.7: Applying a csign after two teleportations, each with the entangled resource

state |QNDtn〉. The csign gate is shown in the red dashed box.

Fig. 3.8 applies a csign gate to optical qubits with a success probability
that asymptotically approaches 1. If we compare this to the teleported gate
proposed in [31], we notice that our entangled resource state requires only one
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Figure 3.8: Commuting the csign through two teleportations such that it now acts on the

entangled resources state |QNDtn〉 ⊗ |QNDtn〉.

application of a probabilistic csign gate as opposed to the n2 probabilistic csign

applications necessary in [31]. This is also an improvement of the scheme by
Franson et al. [83] that required an additional 4n probabilistic csign gates to
be applied to the teleporter entangled states.

When we use two copies of |QNDtn+1〉, the csign shown in Fig. 3.8 suc-
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ceeds with a probability of
(

n
n+1

)2

. In this case, to produce the one copy of
|QNDtn+1〉 we require n−1 probabilistic cnot gates to produce |tn〉 in addition
to n probabilistic cnot gates to entangle the two states |tn〉q⊗|0〉q. To produce
the entangled resource state shown in the grey box in Fig. 3.8 therefore requires
2 (n− 1 + n) + 1 = 4n− 1 probabilistic cnot gates. This leads to the following
probability of success for producing |QNDcsn〉:

P|QNDcsn〉 = (p1)4n−1 (3.30)

where either p1 = 0.0741 when we consider using the 2/27 single photon proba-
bilistic cnot from [39], described in Section 2.7.5, or p1 = 1/4 when we consider
using the 1/4 Bell state probabilistic cnot from [34], described in Section 2.7.1.
When we compare this with the scheme from Franson et al. [83], given by

P
Franson(1)
|csn〉 = (p1)n2+2n−2

, (3.31)

P
Franson(2)
|csn〉 = (p1)6n−2 forn� 1,

we find that Fig. 3.8 requires n2− 2n− 1 less probabilistic cnot gates for small
n and 2n − 1 less probabilistic cnot gates when n � 1. Using Fig. 3.8 to
perform near deterministic two qubit operations of optical qubits allows for a
quadratic reduction in resources when n ≥ 3 for small n and a linear reduction
in resources when n� 1.

It is unlikely that entangled states of large numbers of photons will be used to
construct LOQC two qubit gates due to the vast number of resources required,
the experimental challenge in making such large entangled states and since
we can use small n entangled states in conjunction with concatenated error
correction [33] to produce a scalable two qubit gate. The csign gate presented
in Fig. 3.8 suffers from the same errors as the original LOQC csign, as discussed
in the next Section.

3.2.1 QEC

When we considered Eqn. 3.24 incident on Fig. 3.6 we saw that the error re-
sulting from measuring n photons from the bottom n-splitter in Fig. 3.6 was
α|10〉 + β|01〉 → α|01〉 and the error resulting from measuring n photons from
the top n-splitter in Fig. 3.6 was either α|10〉+ β|01〉 → β|01〉 when n was odd
or α|10〉+ β|01〉 → β|10〉 when n was even.

In the case that n is even, this error is identical to the Z-measurement error
resulting from the LOQC teleportation in Fig. 2.19 and can be corrected by
using the party code in Eqns. 2.99 and 2.100.

In the case that n is odd, it appears that this is not the case, the error
would not satisfy the condition in Eqn. 2.98 given the code words in Eqns. 2.99
and 2.100. However, if we incorporate a swap correction on the output modes
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when n is odd and we measure n photons from the top n-splitter in Fig. 3.6,
the error is identical to the Z-measurement error.
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Chapter 4

Qubus Computation:

Displacements

In Section 2.8 we described an alternative scheme to the origin proposal [28] to
use Kerr non-linearites for the construction of quantum gates. This alternate
scheme incorporated weak Kerr non-linearites in conjunction with a strong co-
herent quantum bus mode to induce a cnot on photonic qubits [49, 92]. The
weak non-linearities effectively induced a controlled rotation on the bus mode
dependent on the polarisation of the photonic qubit. The two cnot gates de-
scribed in Sections 2.8.4 and 2.8.5 were based on the parity gate in Fig. 2.36.
In Section 2.8.6 we described two methods by which the parity gate in Fig. 2.36
could be improved by displacing the probe beam. We build on the results from
Section 2.8.6 in this Chapter, investigating other possible uses for displacements
in qubus computation.

In Section 4.1 we address the question raised at the end of Section 2.8.7:
whether we can use techniques similar to those in Section 2.8.7 to measure the
syndromes for an arbitrary stabilizer code. Since the quantum gates proposed
in [49, 92] allow for a universal set of gates, we know that in principle we
can measure the syndrome for any stabilizer, using standard techniques [21].
However, we wish to investigate the possibility of directly using qubus gates to
measure the syndromes of any stabilizer code without the need to break the
problem into the standard array of cnot gates. This will involve first showing
how the syndromes for the 7-qubit code can be measured directly with a single
coherent probe beam, controlled rotations and displacements, generalising this
scheme to any stabilizer code.

The next question addressed in this Chapter is whether we can construct a
Toffoli gate directly with qubus gates, once again avoiding the need to break
the problem into the standard array of cnot gates. In Section 4.2 we show
a method that uses controlled rotations and displacements to induce a Toffoli
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gate on photonic qubits that succeeds 50% of the time.

4.1 Measuring Stabilizers with Displacements

4.1.1 The 7-qubit Code

We begin by investigating the [[7, 1, 3]] stabilizer code [105]. This code can
correct a single arbitrary quantum error in any of the 7 qubits, and it has been
used extensively in studies of fault-tolerance in quantum computers due to the
fact that it allows for simple constructions of fault-tolerant encoded gates [26].
The stabilizer generators for the 7-qubit code are given in Table 4.1.

M1 X X X X I I I

M2 X X I I X X I

M3 X I X I X I X

M4 Z Z Z Z I I I

M5 Z Z I I Z Z I

M6 Z I Z I Z I Z

Table 4.1: The stabilizer generators for the 7-qubit code [105].

The codewords are given by

|0̄〉 =
1

2
√

2
(|0000000〉+ |1111000〉+ |1100110〉+ |1010101〉

+|0011110〉+ |0101101〉+ |0110011〉+ |1001011〉) (4.1)

|1̄〉 =
1

2
√

2
(|0000111〉+ |1111111〉+ |1100001〉+ |1010010〉

+|0011001〉+ |0101010〉+ |0110100〉+ |1001100〉) .

In order to detect both the location and type of error that has corrupted
a single qubit in the state c0|0̄〉 + c1|1̄〉, we must measure the six multi-qubit
Pauli operators M1, · · · ,M6. By measuring M1, M2 and M3 the location of
any Z error is given and by measuring M4, M5 and M6 the location of any bit
flip error is given. Consider the measurement of M4, that is, consider detecting
the presence of a bit flip error on one of the first four qubits in c0|0̄〉 + c1|1̄〉.
Notice that this entails simply measuring the parity of the first four qubits, an
even parity indicating no bit flip and an odd parity indicating a one bit flip
error. This same rationale is true for the measurement of M5 and M6. That is,
measurement of M5 is equivalent to measuring the parity on qubits 1,2,5 and 6
and measurement of M6 is equivalent to measuring the parity on qubits 1,3,5
and 7. This is also true for the measurement of M1, M2 and M3, since we can
simply change the basis with Hadamard gates.
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For an arbitrary stabilizer code, various multi-qubit Pauli operators must
be measured, each of which is always equivalent to the measurement of only
the parity of a subset of qubits. We can see this by considering the arbitrary
stabilizer Mi that is comprised of just Z operators. By definition, we know that
Mi|ψ̄〉 = |ψ̄〉. For this to be true, we know that the qubits in the codewords
that correspond to the location of the Z operators in Mi must have an even
parity. For Mi to detect the error E, E must anti-commute with Mi: MiE|ψ̄〉 =
−EMi|ψ̄〉 = −E|ψ̄〉, as described in Section 2.6.3. This means, once the error
E has corrupted |ψ̄〉, the parity of the qubits in the codewords that correspond
to the location of the Z operators in Mi must now have an odd parity.

When Mi is comprised of both X and Z operators, we simply conjugate
Mi with Hadamard operators in the location of the X operators: Mi → M̃i =
H̃MiH̃. Once again, by definition of Mi, we know that M̃iH̃|ψ̄〉 = H̃|ψ̄〉, since
Mi|ψ̄〉 = H̃H̃MiH̃H̃|ψ̄〉 = H̃H̃|ψ̄〉 = |ψ̄〉. This means the parity of the qubits
in H̃|ψ̄〉 that correspond to the location of the Z operators in M̃i must have
an even parity. To detect an error E we again use the fact that E must anti-
commute with Mi: M̃i

(
H̃EH̃

)
H̃|ψ̄〉 = −

(
H̃EH̃

)
H̃|ψ̄〉. This means, once the

error E has corrupted |ψ̄〉, the parity of the qubits in the H̃|ψ̄〉 that correspond
to the location of the Z operators in M̃i must now have an odd parity.

4.1.2 Single Coherent Probe Beam

As described above, the measurement of M4 for the 7-qubit code is equivalent to
measuring the parity of the first 4 qubits in c0|0̄〉+ c1|1̄〉. Ideally we would want
to do this with just one coherent probe beam, four controlled rotations and a
single probe detection, following a direct analogy with the circuit depicted in
Fig. 2.44(a). However this is not possible. The best we can do is have some even
states go to |α〉 and the rest go to |αe±2iθ〉 while the odd states go to |αe±iθ〉.
The circuit that performs this is shown in Fig. 4.1(a). In phase space we have
five points consisting of three for the even states (|α〉, |αe±2iθ〉) and two for the
odd states (|αe±iθ〉), as can be seen in Fig. 4.1(b). If we were to homodyne
detect the probe beam at this stage, we would partially decode our encoded
state c0|0̄〉+ c1|1̄〉 since we can distinguish the state |α〉 from |αe±2iθ〉.

We now need to determine what operations must be done before we measure
the probe beam so that we only distinguish states of different parity on the first
four qubits, and nothing more. It turns out that either homodyne or photon
number detection can be used, depending on the operations applied before the
measurement.
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b
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θθ −θ −θ
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= CR4

e
−iθ

α

α

e
iθ

α

e
−2iθ

α

e
2iθ

α

(a) (b)

Figure 4.1: (a) First attempt at using controlled rotations to measure the parity of four

qubits with a single probe beam. CR = controlled rotation. (b) Phase space representation

of probe beam after part (a). The red and yellow circles correspond even states and the blue

circles correspond to odd states.

4.1.3 Photon number detection

Parity measurement for 4 qubits

In order for a photon number detection of the probe beam to only distinguish
odd from even parity states, we require the yellow and red circles in Fig. 4.1(b)
to be equidistant from the origin situated on a circle and the blue circles to be
also be equidistant from the origin situated on a different, concentric circle. If
we incorporate displacements in conjunction with applications of Fig. 4.1(a), we
can take the five cirlces in phase space to just three. This is shown in Fig. 4.2(a).

α

(b)

CR4 CR4 CR4

D(β1) D(β2)

(a)

2α (1 − cos(2θ) + cos(3θ)) 2α cos(θ)

2α cos(2θ)

Figure 4.2: (a) Controlled rotations and displacements used to transform the 5 circles in

Fig. 4.1(b) to just three. (b) Phase representation of the probe beam.
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To understand how to calculate the necessary displacements to transform
Fig. 4.1(b) to Fig. 4.2(b), we consider the five possible cases. For instance, con-
sider the five states |0000〉, |1111〉, |1000〉, |0111〉, |0100〉 incident on Fig. 4.2(a).
We begin with three applications of Fig. 4.1(a) and a displacement in between
each:

|1000〉 : |α〉 CR4−−−→ |eiθα〉 D(β1)−−−−→ |α
(
eiθ +B1

)
〉 CR4−−−→ |eiθα

(
eiθ +B1

)
〉

D(β2)−−−−→ |α
(
eiθ
(
eiθ +B1

)
+B2

)
〉 CR4−−−→ |α

(
eiθ
(
eiθ
(
eiθ +B1

)
+B2

))
〉

|0111〉 : |α〉 CR4−−−→ |e−iθα〉 D(β1)−−−−→ |α
(
e−iθ +B1

)
〉 CR4−−−→ |e−iθα

(
e−iθ +B1

)
〉

D(β2)−−−−→ |α
(
e−iθ

(
e−iθ +B1

)
+B2

)
〉 CR4−−−→ |α

(
e−iθ

(
e−iθ

(
e−iθ +B1

)
+B2

))
〉

|1010〉 : |α〉 CR4−−−→ |e2iθα〉 D(β1)−−−−→ |α
(
e2iθ +B1

)
〉 CR4−−−→ |e2iθα

(
e2iθ +B1

)
〉

D(β2)−−−−→ |α
(
e2iθ

(
e2iθ +B1

)
+B2

)
〉 CR4−−−→ |α

(
e2iθ

(
e2iθ

(
e2iθ +B1

)
+B2

))
〉

|0101〉 : |α〉 CR4−−−→ |e−2iθα〉 D(β1)−−−−→ |α
(
e−2iθ +B1

)
〉 CR4−−−→ |e−2iθα

(
e−2iθ +B1

)
〉

D(β2)−−−−→ |α
(
e−2iθ

(
e−2iθ +B1

)
+B2

)
〉 CR4−−−→ |α

(
e−2iθ

(
e−2iθ

(
e−2iθ +B1

)
+B2

))
〉

|1001〉 : |α〉 CR4−−−→ |α〉 D(β1)−−−−→ |α (1 +B1)〉 CR4−−−→ |α (1 +B1)〉
D(β2)−−−−→ |α (1 +B1 +B2)〉 CR4−−−→ |α (1 +B1 +B2)〉

where β1 = αB1, β2 = αB2 and we have ignored the phases associated with
the displacements (Eqn. 2.26) for now. We see that the real part of the state
resulting from transforming |1000〉 is identical to the real part for |0111〉 and
the imaginary part for |1000〉 is negative the imaginary part for |0111〉. This
is also true for |1010〉 and |0101〉. If we simply set the imaginary part of each
resulting state to 0, we have two simultaneous equations that need to be solved.
Solving for B1 and B2 gives

B1 = −4 cos2
(
θ

2

)
(2 cos(θ)− 1) (4.2)

B2 = 1 + 2 cos(θ) + 2 cos(3θ)

As can be seen in Fig. 4.2(b), the three points in phase space are given by

|1000〉 : |α〉 → |2α cos(2θ)〉

|0111〉 : |α〉 → |2α cos(2θ)〉

|1010〉 : |α〉 → |2α (1− cos(2θ) + cos(2θ))〉

|0101〉 : |α〉 → |2α (1− cos(2θ) + cos(2θ))〉

|1001〉 : |α〉 → |2α cos(θ)〉.

If we now displace the probe beam by D(α(cos(2θ) − cos(3θ) − cos(θ) −
1), as in Fig. 4.3(a), the phase space representation, shown in Fig. 4.3(b),
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is such that the even parity states can be distinguished from the odd parity
states with a photon number detection of the probe beam. That is, |odd〉 →
|−4α sin2(θ/2)(2 sin2(θ) + cos(θ))〉 and |even〉 → |±2α sin2(θ)(2 cos(θ)− 1)〉

α

(b)

CR4 CR4 CR4

D(β3)D(β1) D(β2)

(a)

−2α sin2(θ) (2 cos(θ) − 1) 2α sin2(θ) (2 cos(θ) − 1)

−4α sin2
θ

2
2 sin2(θ) + cos(θ)

Figure 4.3: (a) Controlled rotations and displacements used to measure the parity of

four qubits, provided D(β1) = D(−4α cos2(θ/2)
`
2 cos(θ) − 1

´
), D(β2) = D(α

`
1 + 2 cos(θ) +

2 cos(3θ)
´
), D(β3) = D(α(cos(2θ) − cos(3θ) − cos(θ) − 1) and we perform a photon number

detection on the probe beam. (b) Phase representation of the probe beam before detection.

Phase correction

The phases associated with the displacements (Eqn. 2.26) can easily be taken
care of after the photon number measurement with appropriate phase shifters
on each mode for the odd and even state case. In the case that we detect an
even state we know that(

|even1〉+ c6|1010〉+ c7|0101〉
)
|α〉 → |even1〉|2α sin2(θ)(2 cos(θ)− 1)〉

(4.3)

+
(
eiφ1c6|1010〉+ e−iφ1c7|0101〉

)
|−2α sin2(θ)(2 cos(θ)− 1)〉
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where |even1〉 = c0|0000〉+ c1|1111〉+ c2|1100〉+ c3|1001〉+ c4|0110〉+ c5|0011〉
and φ1 = α2

(
2 sin(θ) + sin(2θ) + 2 sin(3θ) + 3 sin(4θ) + sin(6θ)

)
. We can easily

correct for these phases after the photon number measurement by having a
phase shift of e−iφ1/2 on modes 1 and 3 and a phase shift of eiφ1/2 on modes 2
and 4. For the even state case, when we perform a photon number detection on
the probe there may be an additional phase of −1 when the number of photons
detected is odd, as described in Section 2.8.6. When we measure an odd number
of photons we have

|even1〉 − c6|1010〉 − c7|0101〉 (4.4)

which can be corrected with a phase shift of e−iπ/2 on modes 1 and 3 and a
phase shift of eiπ/2 on modes 2 and 4.

In the case that we detect an odd state we know that(
|odd1〉+ |odd2〉

)
|α〉 →

(
eiφ2 |odd1〉+ e−iφ2 |odd2〉

)
|ᾱ〉 (4.5)

where ᾱ = −4α sin2(θ/2)(2 sin2(θ) + cos(θ)), |odd1〉 = c0|0001〉 + c1|0100〉 +
c2|0111〉 + c3|1101〉, |odd2〉 = c4|0010〉 + c5|1000〉 + c6|1011〉 + c7|1110〉 and
φ2 = 2α2

(
sin(θ)− sin(2θ)− sin(3θ)− sin(6θ)/2

)
. We can easily correct for these

phases after the photon number measurement by having a phase shift of eiφ2 on
modes 1 and 3 and a phase shift of e−iφ2 on modes 2 and 4.

Scaling

For a photon number measurement of the probe beam to distinguish the odd
from even states we require

(
2α sin2(θ) (2 cos(θ)− 1)

)2 − (2α sin2

(
θ

2

)
(1 + cos(θ)− cos(2θ))

)2

= 16α2 sin4

(
θ

2

)
(2 cos(3θ) + 2 cos(2θ)− 1) � 1.

For small θ we can expand cos() and sin() as in Eqns. 2.33 and 2.34 to give

αθ2 � 1√
3
. (4.6)

Parity measurement of n qubits

We can use a similar method to Fig. 4.3(a) to measure the parity for a state of
any size. If we have n qubits then the probe beam can at best be transformed
to n + 1 points in phase space using n controlled rotations in the θ,−θ, θ,−θ
pattern for the controlled rotations, shown in Fig. 4.4. We can see this by
considering the n = 4 example in Fig. 4.1(b). We know the 16 possible 4 qubit
states |x1, x2, x3, x4〉, where x1, x2, x3, x4 ∈ {0, 1}, take the probe beam to 5
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possible circles in phase space. When we consider n = 5, the 32 possible 5 qubit
states are given by |x1, x2, x3, x4〉 ⊗ |0〉 and |x1, x2, x3, x4〉 ⊗ |1〉. The states
|x1, x2, x3, x4〉 ⊗ |0〉 take the probe beam to the circles shown in Fig. 4.1(b).
Since the fifth controlled rotation is +θ, the states |x1, x2, x3, x4〉 ⊗ |1〉 also
take the probe beam to the circles shown in Fig. 4.1(b), as well as the circle
|e3iθα〉. That is, when n = 5, we have 6 circles in phase space. As n increases
by 1, we can use the same reasoning to see that the number of circles in phase
space also increases by 1. When n is even, the circles in phase space are given by
|e±i n

2 α〉, |e±i( n
2−1)α〉, · · · , |e±iθα〉, |α〉. When n is odd, the circles in phase space

are given by |ei n+1
2 α〉, |e±i n−1

2 α〉, |e±i( n−1
2 −1)α〉, · · · , |e±iθα〉, |α〉. The parity of

the state incident on Fig. 4.4 is the same as the final probe beam’s exponent.
Using displacements and a photon number detector we are able to measure the
parity.

α θθ −θ −θ

= CRn

· · ·

·
·
·

(−1)n

θ (−1)n+1
θ

·
·
·

·
·
·

Figure 4.4: The application of n controlled rotations (CRn) on one probe beam to create

n+ 1 circles in phase space.

To only distinguish the odd and even parity states we need a sufficient num-
ber of displacements in conjunction with CRn circuits to take the n+ 1 circles
in phase space to just three. When n is even, we need to set the imaginary
component of n

2 probe states to 0.
In the case that n

2 is also even, we need to set the real component of the n
4

probe beams corresponding to odd states equal, requiring n
4 − 1 equations. We

also need to set the real component for the n
4 probe beams corresponding to even

states equal, also requiring n
4 −1 equations. This is a total of n−2 simultaneous

equations that need to be solved. We therefore require n− 2 displacements.
In the case that n

2 is odd, we need to set the real component of the 1
2 (n

2 + 1)
probe beams corresponding to odd states equal, requiring 1

2 (n
2 + 1) − 1 equa-

tions. We also need to set the real component for the 1
2 (n

2 − 1) probe beams
corresponding to even states equal, also requiring 1

2 (n
2 − 1)− 1 equations. This

is a total of n− 2 simultaneous equations that need to be solved. We therefore
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require n− 2 displacements.
When n is odd, we need to set the imaginary component of n−1

2 + 1 probe
states to 0. When setting the real components to each other, the odd n case is
identical to the even case with n→ n+1. We therefore require n+1

2 −2+ n−1
2 +

1 = n− 1 displacements.
To be able to distinguish the parity of an n qubit state with a single photon

number measurement of the strong coherent probe beam we require n − 1 dis-
placements and n2−n controlled rotations when n is even and n displacements
and n2 controlled rotations. The additional displacement is to set the circles in
phase space for each parity equidistant from the origin.

Phase correction for the parity measurement of n qubits

When we measure the parity of n qubits by performing a photon number de-
tection of the probe beam, the phases associated with the displacements can be
corrected by using n phase shifters. This is apparent when we use the fact that
θ is small.

In order to measure the parity of an n qubit state we must find the displace-
ments A1, A2, · · · , Am that satisfy

αe−iϕ(β)

(
eiβθ

(
· · · eiβθ

(
eiβθ

(
eiβθ(eiβθ +A1) +A2

)
+A3

)
· · ·+Am−1

)
+Am

)
= γβ

(4.7)

where m = n − 1, β ∈
{

0,±1,±2, · · · ,±
(

n
2 − 1

)
,±n

2

}
for n even and m = n,

β ∈
{

0,±1,±2, · · · ,±
(

n−1
2 − 1

)
,±n−1

2 ,±n+1
2

}
for n odd. From the symmetry

of the phase space representation of the probe beam after the initial application
of CRn, we can assume the displacements αA1, αA2, · · · , αAm ∈ R. This also
dictates the form of γβ . When β is odd, γβ = γ. When β is even, γ0 = γ′ and
γβ = −γ′ for β 6= 0, where γ, γ′ ∈ R. We find the overall phase ϕ(β) due to the
displacements using Eqn. 2.26:

ϕ(β) = α2
m−1∑
k=1

Ak

k∑
j=1

sin(jβθ)Ak−1 (4.8)

where A0 = 1l. In the case that θ � 1 and mβ � 1
θ , we can expand sin(jβθ) ≈

jβθ using Eqn. 2.34:

ϕ(β) ≈ α2
m−1∑
k=1

Ak

k∑
j=1

jβθAk−1 = α2βθ
m−1∑
k=1

Ak

k∑
j=1

jAk−1 = βφ (4.9)

where φ = α2θ
∑m−1

k=1 Ak

∑k
j=1 jAk−1 is independent of β.
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To see how we can correct for the phases ϕ(β) we need to first look at what
the n qubit state looks like after the initial application of Fig. 4.4:∑

β

|state(β)〉|eiβθα〉 (4.10)

where |state(β)〉 is the sum of n qubit states with the same probe beam af-
ter Fig. 4.4. For example, when n = 5, |state(2)〉 = c1|10100〉 + c2|10001〉 +
c3|00101〉+ c4|10111〉+ c5|11101〉, for arbitrary c1, c2, c3, c4, c5. When n is even,
the sum is either over the even or the odd elements of

{
0,±1,±2, · · · ,±

(
n
2 − 1

)
,±n

2

}
.

When n is odd, the sum is either over the even or the odd elements of {0 ,
±1,±2, · · · , ±

(
n−1

2 − 1
)
, ±n−1

2 , ±n+1
2

}
.

After the application of m CRn circuits and m displacements, Eqn. 4.10
becomes ∑

β 6=0

e−iβφ|state(β)〉|−γ′〉+ |state(0)〉|γ′〉 (4.11)

or ∑
β

e−iβφ|state(β)〉|γ〉, (4.12)

depending on the parity of our n qubit state. To correct for the phases ϕ(β) ≈
βφ we simply apply phases shifters φ to the odd numbered modes and −φ to
the even numbered modes.

For the even state case, there will also be a −1 phase factor when the probe
beam detection results in an odd number of photons. Unfortunately this phase
factor cannot be corrected for in general, so when the probe beam detection
indicates the parity of our n qubits was even, half of the time we will pick up a
-1 phase factor on some of the even terms which cannot necessarily be corrected.

Scaling for the parity measurement of n qubits

We can solve Eqn. 4.7 analytically for the cases m = 5 and m = 7.
To measure the parity of either 5 or 6 qubits, the displacements required in

Fig. 4.4 with n = 5 or 6 are given by

A1 = −1
2

(1 + 4 cos(θ) + 2 cos(3θ) + 2 cos(5θ)) sec(2θ) (4.13)

A2 = 4 cos2(
θ

2
) (1 + 2 cos(θ)) (−3 + 6 cos(θ)− 4 cos(2θ) + 2 cos(3θ))

A3 = − (1 + 2 cos(θ) + 4 cos(2θ) + 2 cos(3θ) + 2 cos(4θ) + 2 cos(6θ))

A4 = (1− 2 cos(θ) + 2 cos(2θ)) (1 + 2 cos(θ) + 2 cos(2θ) + 2 cos(3θ))

A5 =
1
2

(1 + cos(θ)) sec(θ)
7∑

n=0

cn cos(nθ)
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where c0 = 1, c1 = 1, c2 = −5, c3 = 2, c4 = 0, c5 = 2, c6 = −3 and c7 = 1.
This takes probe beam for the even parity states to

|±α (2− cos(θ)− cos(2θ)− cos(3θ) + 2 cos(5θ)− cos(6θ))〉 (4.14)

and the probe beam for the odd parity states to

|−α (1 + cos(θ)− 5 cos(2θ) + cos(3θ) + 2 cos(5θ)− cos(6θ) + sec(2θ))〉. (4.15)

To be able to distinguish the parity of 5 or 6 qubits with a photon number
detection of the probe beam we require

αθ4 � 1√
11
. (4.16)

To measure the parity of either 7 or 8 qubits, the displacements required in
Fig. 4.4 with n = 7 or 8 are given by

A1 = −
2 cos2

(
θ
2

)
sec(3θ)

1 + 2 cos(θ)

7∑
n=0

cn cos(nθ)

A2 =
1

1− 2 cos(θ) + 2 cos(2θ)

9∑
n=0

cn cos(nθ)

A3 = −2
9∑

n=0

cn cos(nθ)

A4 =
1

1 + 2 cos(θ)

11∑
n=0

cn cos(nθ) (4.17)

A5 = − sec(θ)
10∑

n=0

cn cos(nθ)

A6 = 1 + 2 cos(θ) + 2 cos(3θ) + 2 cos(5θ) + 2 cos(7θ)

A7 =
−1

2 (1 + cos(2θ)− cos(3θ) + cos(4θ) + cos(6θ))

16∑
n=0

cn cos(nθ)

where the coefficients for Eqn. 4.17 are given in Table 4.2. This takes probe
beam for the even parity states to

|±1024α cos4
(
θ

2

)
sin6

(
θ

2

)
(1− 2 cos(θ) + cos(2θ)− 2 cos(3θ)− cos(5θ))〉

(4.18)

and the probe beam for the odd parity states to

|
32α (1 + 2 cos(θ))2 sin6

(
θ
2

)
1 + cos(2θ)− cos(3θ) + cos(4θ) + cos(6θ)

10∑
n=0

cn cos(nθ)〉 (4.19)
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A1 A2 A3 A4 A5 A7

c0 -1 1 1 9 2 2
c1 6 4 3 20 3 9
c2 -2 2 3 16 4 -6
c3 4 6 3 16 4 -3
c4 -2 0 3 14 3 -4
c5 4 6 2 14 3 6
c6 0 -2 2 12 2 2
c7 2 4 1 10 2 6
c8 0 0 1 6 1 -5
c9 0 2 1 4 1 1
c10 0 0 0 2 1 -4
c11 0 0 0 2 0 3
c12 0 0 0 0 0 2
c13 0 0 0 0 0 0
c14 0 0 0 0 0 0
c15 0 0 0 0 0 -2
c16 0 0 0 0 0 1

Table 4.2: The coefficients for Eqn. 4.17.

where the coefficients for the odd probe beam are c0 = −2, c1 = −2, c2 =
−1, c3 = 0, c4 = 1, c5 = c6 = 0, c7 = 1, c8 = 0, c9 = 1 and c10 = 1.

To be able to distinguish the parity of 7 or 8 qubits with a photon number
detection of the probe beam we require

αθ6 � 1√
2223

. (4.20)

From Eqns. 4.6, 4.16 and 4.20, we expect the the scaling of α and θ to be
αθm−1 � · · · to be able to distinguish the parity of n qubits, where m = n− 1
for odd n and m = n − 2 for even n, with the photon number detection of a
single coherent probe beam. We can verify this numerically.

4.1.4 Arbitrary detection

The method presented in the previous Section required a number discriminating
photo-detector. However, when the detection of the probe beam indicated the
measurement of an odd number of photons, a phase factor of −1 is be introduced
that cannot necessarily be corrected. For the reason we generalise the results
from Section 4.1.3 such that the probe beam states for both the even parity and
odd parity states each correspond to a separate, single circle in phase space. In
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this way we can perform a photon number or homodyne detection on the probe
beam without any additional phases being introduced, provided we can correct
for the phase associated with the displacements, which will be discussed later
in this Section.

Parity measurement for 4 qubits

We again consider the n = 4 example. As in the previous section, after apply-
ing Fig. 4.1(a), we have five circles in phase space. To use homodyne detec-
tion to distinguish the parity we will again take advantage of the symmetry in
Fig. 4.1(b). We want |α〉 and |αe±2iθ〉 to become one circle in phase space cen-
tred at the origin and |αe±iθ〉 to become another circle on the x-axis |αR〉, where
R ∈ R. To induce this transformation we will require five displacements, since
we need to solve five simultaneous equations, in conjunction with 6 applications
of Fig. 4.1(a), as shown in Fig. 4.5.

α

CR4 CR4 CR4 CR4 CR4 CR4

D(αA5)D(αA2) D(αA3)D(αA1) D(αA4)

Figure 4.5: Controlled rotations and displacements used to measure the parity of four qubits

when we perform a homodyne detection on the probe beam. The displacements are given in

Eqn. 4.23.

The equations to be solved are:

αeiβθ

(
eiβθ

(
eiβθ

(
eiβθ

(
eiβθ(eiβθ +A1) +A2

)
+A3

)
+A4

)
+A5

)
= δβ

(4.21)

where δ0,±2 = 0, δ±1 = αR and due to the symmetry of Fig. 4.1(b) we can as-
sume the displacements αA1, αB2, αC3, αD4 and αE5 are real. We can simplify
Eqn. 4.21:

e4iβθA1 + e3iβθA2 + e2iβθA3 + eiβθA4 +A5 = e−iβθδβ − e5iβθ. (4.22)
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Solving for A1, A2, A3, A4 and A5 in Eqn. 4.22 gives:

A1 =
− csc4

(
θ
2

)
16 + 32 cos(θ)

5∑
n=0

cn cos(nθ)

A2 =
csc4

(
θ
2

)
8 + 16 cos(θ)

6∑
n=0

cn cos(nθ)

A3 =
cos(θ) csc4

(
θ
2

)
8

4∑
n=0

cn cos(nθ) (4.23)

A4 =
− csc4

(
θ
2

)
8 + 16 cos(θ)

5∑
n=0

cn cos(nθ)

A5 =
csc4

(
θ
2

)
16 + 32 cos(θ)

3∑
n=0

cn cos(nθ)

where the coefficients for Eqn. 4.23 are given in Table 4.3.

A1 A2 A3 A4 A5

c0 R− 2 R+ 2 −R R+ 1 R+ 2
c1 2(2−R) −(R+ 3) 2 −2(R+ 1) −2(R+ 3)
c2 2(R− 1) R+ 3 2(R− 2) R+ 1 2(R+ 3)
c3 2 −3 2(3−R) −(2R+ 1) −2(R+ 1)
c4 −4 R+ 2 −2 R+ 2 0
c5 2 −2 0 −(R+ 1) 0
c6 0 1 0 0 0

Table 4.3: The coefficients for Eqn. 4.23.

In the limit of small θ, these displacements become:

αA1 ≈ −
αR

3θ4

αA2 ≈
4αR
3θ4

αA3 ≈ −
2αR
θ4

(4.24)

αA4 ≈
4αR
3θ4

αA5 ≈ −
αR

3θ4
.

Eqn. 4.24 shows that we are free to choose the distance between the origin and
αR to be arbitrarily large, at the expense of using arbitrarily large displace-
ments. We also see that the displacements are on the order of θ−4.

The phases associated with the displacements can easily be taken care of
with 4 phase shifters after the homodyne measurement, as described in the
previous section.
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Parity measurement for n qubits

We can also use the above method to distinguish the parity of any given state
of n qubits using Fig. 4.4 in conjunction with displacements. As in the photo-
detection case in the previous section, we need to consider the case of odd and
even n separately.

If n is even, we have n
2 points above and below the x-axis. Due to this

symmetry, we need n
2 simultaneous equations to set the imaginary components

of these probe beam states to 0.
In the case that n

2 is also even, we need to set the real component of the
n
4 probe beams corresponding to odd states to αR and we need to set the real
component for the n

4 + 1 probe beams corresponding to even states to 0. This
is a total of n+ 1 simultaneous equations that need to be solved. We therefore
require n+ 1 displacements.

In the case that n
2 is odd, we need to set the real component of the 1

2 (n
2 + 1)

probe beams corresponding to odd states to αR and we need to set the real
component for the 1

2 (n
2 − 1) + 1 probe beams corresponding to even states to

0. This is a total of n + 1 simultaneous equations that need to be solved. We
therefore require n+ 1 displacements.

If n is odd, we need to set the imaginary component of n−1
2 +1 probe states to

0. When setting the real components to either 0 or αR, the odd n case is identical
to the even case with n→ n+1. We therefore require n−1

2 +1+ n+1
2 +1 = n+2

displacements.
When n is even we require n(n+ 2) controlled rotations and when n is odd

we require n(n+ 3) controlled rotations.
As an example, we analytically find the displacements necessary to measure

the parity of 5 or 6 qubits. This involves solving an extended version of Eqn. 4.21
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with seven displacements. Solving for these seven displacements gives:

A1 =
csc6

(
θ
2

)
32 (1 + 2 cos(θ))2 (1 + 2 cos(θ) + 2 cos(2θ))

10∑
n=0

cn cos(nθ)

A2 =
− csc6

(
θ
2

)
32 (3 + 6 cos(θ) + 4 cos(2θ) + 2 cos(3θ))

11∑
n=0

cn cos(nθ)

A3 =
(2 cos(θ)− 1) csc6

(
θ
2

)
32 (1 + 2 cos(θ))

9∑
n=0

cn cos(nθ)

A4 =
− (2 cos(θ)− 1) csc6

(
θ
2

)
32 (1 + 2 cos(θ))2

10∑
n=0

cn cos(nθ) (4.25)

A5 =
csc6

(
θ
2

)
32 (1 + 2 cos(θ))

10∑
n=0

cn cos(nθ)

A6 =
csc6

(
θ
2

)
32 (3 + 6 cos(θ) + 4 cos(2θ) + 2 cos(3θ))

11∑
n=0

cn cos(nθ)

A7 =
csc6

(
θ
2

)
32 (1 + 2 cos(θ))2 (1 + 2 cos(θ) + 2 cos(2θ))

10∑
n=0

cn cos(nθ)

where the coefficients for Eqn. 4.25 are given in Table 4.4.

A1 A2 A3 A4 A5 A6 A7

c0 2(R+ 1) R− 7 −(2R+ 3) 2−R −7(R+ 1) 3(1−R) −(4R+ 3)

c1 −(4R+ 5) 2(7−R) 3R+ 5 2R− 5 13(R+ 1) 7R− 5 2(4R+ 3)

c2 4R+ 5 R− 14 −(3R+ 4) 5− 3R −(12R+ 13) 4− 7R −(8R+ 7)

c3 −4(R+ 1) 6(2−R) 4(R+ 1) R− 4 11R+ 15 2(3R− 2) 7R+ 6

c4 2R+ 3 2(R− 5) −4(R+ 1) 3− 2R −5(2R+ 3) 4(1−R) −3(2R+ 1)

c5 −(2R+ 3) 2(5−R) 2R+ 3 R− 3 4(2R+ 3) 5R− 3 5R+ 3

c6 2(R+ 2) R− 9 −2(R+ 1) 2(2−R) −(7R+ 9) 2− 5R −(5R+ 3)

c7 −(R+ 2) 7− 2R 2R+ 3 R− 2 6R+ 7 4R− 3 3R+ 1

c8 1 2R− 5 −(R+ 3) 1−R −(5R+ 4) 3− 2R −2R

c9 −2 4−R 1 R− 2 3R+ 1 2R− 1 2R

c10 1 −3 0 1−R −R −2R −R
c11 0 1 0 0 0 R 0

Table 4.4: The coefficients for Eqn. 4.25.
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In the limit of small θ, these displacements become:

αA1 ≈ −
2αR
45θ6

αB1 ≈
4αR
15θ6

αC1 ≈ −
2αR
3θ6

αD1 ≈
8αR
9θ6

(4.26)

αE1 ≈ −
2αR
3θ6

αF1 ≈
4αR
15θ6

αG1 ≈ −
22αR
45θ6

.

Eqn. 4.26 shows that we are free to choose the distance between the origin and
αR to be arbitrarily large, at the expense of using displacements that are on
the order of θ−2 larger than the displacements in the n = 4 case.

We expect the displacements for the parity measurement of n qubits with a
single homodyne detection to scale as θ−n when n is even and as θ−(n+1) when
n is odd. We can verify this numerically.

As with the n = 4 case, the phases associated with the displacements for the
general n qubit case can easily be taken care of with n phase shifters after the
homodyne measurement, as described in the previous section.
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4.2 Constructing a Three Qubit Gate with Dis-

placements

In this Section we investigate the construction of a three qubit gate with the
use of a single coherent probe beam, controlled rotations and displacements.
Specifically, we investigate the construction of a Toffoli gate.

The standard arbitrary three qubit state is given by:

c0|000〉+ c1|001〉+ c2|010〉+ c3|100〉+ c4|011〉+ c5|101〉+ c6|110〉+ c7|111〉
(4.27)

where
∑7

i=0 |ci|2 = 1. If we apply a Toffoli gate to this state it becomes

c0|000〉+ c1|001〉+ c2|010〉+ c3|100〉+ c4|011〉+ c5|101〉+ c6|111〉+ c7|110〉.
(4.28)

Consider applying a Hadamard gate to qubit 3 of Eqn. 4.27, as shown in
Eqn. 4.29. If we could distinguish the red from the green terms, without ob-
taining any quantum information, we would have a three qubit entangling gate.

1√
2

(
c0
(
|000〉+ |001〉

)
+ c1

(
|000〉−|001〉

)
+ c2

(
|010〉+ |011〉

)
+ c3

(
|100〉+ |101〉

)
+ c4

(
|010〉−|011〉

)
+ c5

(
|100〉−|101〉

)
+ c6

(
|110〉+ |111〉

)
+ c7

(
|110〉−|111〉

))
.

(4.29)

By distinguishing the red from green terms is Eqn. 4.29, we have effectively
induced a controlled-controlled-(iY ) gate on Eqn. 4.27. In the case that we
pick out the red terms, we need to make a Z correction on qubit 3. While this
gate is not locally equivalent to a Toffoli gate, it is just as powerful, in terms
of universal quantum computing. We could use a controlled phase gate with
φ = π/2 on qubits 1 and 2 to convert this gate into a Toffoli gate.

4.2.1 Three Qubit Gate with Controlled Rotations

Ideally, a single coherent probe beam and controlled rotations would be suffi-
cient to distinguish the red from green terms in Eqn. 4.29. To investigate this
possibility we consider the state(
c0|000〉+ c1|001〉+ c2|010〉+ c3|100〉+ c4|011〉+ c5|101〉+ c6|110〉+ c7|111〉

)
|α〉

(4.30)

incident on Fig 4.6.
At point (ii), after the first three controlled rotations, we have

c0|000〉|α〉+ c1|001〉|αein3θ〉+ c2|010〉|αein2θ〉+ c3|100〉|αein1θ〉+ c4|011〉|αei(n2+n3)θ〉

+ c5|101〉|αei(n1+n3)θ〉+ c6|110〉|αei(n1+n2)θ〉+ c7|111〉|αei(n1+n2+n3)θ〉.
(4.31)
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H

n1θ n2θ n3θ n4θ n5θ n6θ

=
CR6H

(iii)(i) (ii)

Figure 4.6: First attempt to construct a three qubit gate using a single probe beam and

controlled rotations.

At point (iii), after the final three controlled rotations, we have

1√
2

(
c0
(
|000〉|α〉+ |001〉|αein6θ〉

)
+ c1

(
|000〉|αein3θ〉−|001〉|αei(n3+n6)θ〉

)
+ c2

(
|010〉|αei(n2+n5)θ〉+ |011〉|αei(n2+n5+n6)θ〉

)
(4.32)

+ c3
(
|100〉|αei(n1+n4)θ〉+ |101〉|αei(n1+n4+n6)θ〉

)
+ c4

(
|010〉|αei(n2+n3+n5)θ〉−|011〉|αei(n2+n3+n5+n6)θ〉

)
+ c5

(
|100〉|αei(n1+n3+n4)θ〉−|101〉|αei(n1+n3+n4+n6)θ〉

)
+ c6

(
|110〉|αei(n1+n2+n4+n5)θ〉+ |111〉|αei(n1+n2+n4+n5+n6)θ〉

)
+ c7

(
|110〉|αei(n1+n2+n3+n4+n5)θ〉−|111〉|αei(n1+n2+n3+n4+n5+n6)θ〉

))
. (4.33)

To distinguish the red from green terms in Eqn. 4.33 by performing a homodyne
detection on the probe beam, we would require the probe beam states for the
red terms to each be centred along a straight line in phase space and the probe
beam states for the green terms to be centred along a different, parallel line.
To distinguish the red from green terms in Eqn. 4.33 by performing a photon
number detection on the probe beam, we would require the probe beam states
for the red terms to each be centred along a circle centred at the origin and the
probe beam states for the green terms to be centred along a concentric circle to
the red state probe beam states. However, there is no choice for n1, n2, n3, n5, n5

and n6 that would allow the red terms to be distinguished from the green terms
by either photon number detection or homodyne detection of the probe beam.

4.2.2 Success Probability

Motivated by the results on measuring the parity of n qubit with just a single
probe beam, controlled rotations and displacements, presented in Section 4.1, we
investigate the use of displacements in conjunction with controlled rotations to
distinguish the red from green terms in Eqn. 4.33. When we use displacements
and controlled rotations, the maximum success probability of inducing our three
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qubit gate is 1/2.
At point (iii) in Fig. 4.6 our probe beam is in one of the sixteen possible

states |αeinjθ〉, where nj ∈ {0, n6, n3 + n6, · · · , n1 + n2 + n3 + n4 + n5 + n6}.
To pick out both the red and green terms in Eqn. 4.33, we assume the probe
beam states for the red terms are taken to the set of states R1 and the probe
beam states for the green terms are taken to the set of states R2. R1 and R2

could either be sets of states along parallel lines or concentric circles in phase
space. The first step in distinguishing the red and green states is to displace
the probe mode in Eqn. 4.33 by some amount α(A1 + iB1), and then apply
three controlled rotations to the probe beam, conditioned to each qubit, such
that each displaced probe beam state picks up the corresponding phase eiχjθ,
as shown in Fig. 4.7. Our new probe beams would look like:

|αeiχjθ
(
einjθ +A1 + iB1

)
〉 (4.34)

CR6H

D(β1) n7θ n8θ n9θ

Figure 4.7: The first step in distinguishing the red from green terms in Eqn. 4.33. Here

β1 = α(A1 + iB1) and CR6H is given in Fig. 4.6.

Since we require each probe beam state in Eqn. 4.33 to move to a particular
point in phase space, we will need to solve 16 simultaneous equations. We
therefore require sixteen variables to solve for, in this case the variable take the
form of 16 displacements, as shown in figure 4.8. The equations to be solved
are:

αeiχjθ
(
· · · eiχjθ

(
eiχjθ

(
einjθ +A1 + iB1

)
+A2 + iB2

)
· · ·+A16 + iB16

)
= Rj

(4.35)

where Rj is an element of either R1 or R2.
Since this is a linear problem, we need to invert a 32 × 32 matrix with

elements only dependent on eiχjθ, independent of the initial positions of the
probe beams, αeinjθ. This is not possible if we want to pick out both the red
and green terms since eiχjθ for one of the red terms is equal to eiχjθ for at least
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CR6H

D(β1) n7θ n8θ n9θ n7θ n8θ n9θD(β2) n7θ n8θ n9θD(β16)
· · ·

· · ·

· · ·

· · ·

Figure 4.8: An attempt to distinguish the red from green terms in Eqn. 4.33. Here β1 =

α(A1 + iB1), β2 = α(A2 + iB2), · · · , β16 = α(A16 + iB16)

one of the green terms. The matrix to be inverted would be singular, half of
the rows would be repeated. That is, the rows corresponding to c0|000〉 would
be identical to the rows corresponding to c1|000〉, and so on. We can therefore
either pick out the red terms or the green terms in Eqn. 4.33, not both, thus
our success probability is 1/2.

We now want to find what combination of controlled rotations and displace-
ments will allow us to pick out only the red terms from Eqn. 4.33. The number
of displacements we require will depend on what type of detection we wish to
perform on the probe beam and what controlled rotations are applied between
the displacements. After we have initiated the probe beam with Fig. 4.6 and
applied the first displacement, we have three possible choices for the following
controlled rotations. We can either apply one, two or three controlled rotations.

4.2.3 Displacements with 1 Controlled Rotation

If we condition the controlled rotation between displacements on the first qubit
in Eqn. 4.33, we have two cases to consider: |0〉 and |1〉. If we want to use only
this qubit to pick out the red terms, we will need to choose n1, n2, n3, n4, n5 and
n6 in Eqn. 4.33 such that the probe beams for the states c1|001〉, c2|010〉 and
c4|011〉 all go to |α〉 and the probe beams for the states c3|100〉, c5|101〉, c6|111〉
and c7|110〉 go to |αeipθ〉, for some p.

First we consider the c1, c2 and c4 terms:

n3 + n6 = 0

n2 + n5 = 0 (4.36)

n2 + n3 + n5 + n6 = 0

which gives n3 = −n6 and n2 = −n5.
Next, we consider the c3, c5, c6 and c7 terms:

n1 + n4 = p

n1 + n3 + n4 + n6 = p

n1 + n2 + n4 + n5 + n6 = p (4.37)

n1 + n2 + n3 + n4 + n5 = p.
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Solving these in conjunction with Eqn. 4.36 gives n2 = n3 = n5 = n6 = 0 and
n1 +n4 = p. With this solution it is not possible to pick the red terms from the
green terms with displacements and controlled rotations, as Eqn. 4.33 would
become

1√
2

(
c0
(
|000〉|α〉+ |001〉|α〉

)
+ c1

(
|000〉|α〉−|001〉|α〉

)
+ c2

(
|010〉|α〉+ |011〉|α〉

)
+ c3

(
|100〉|αeipθ〉+ |101〉|αeipθ〉

)
+ c4

(
|010〉|α〉−|011〉|α〉

)
+ c5

(
|100〉|αeipθ〉−|101〉|αeipθ〉

)
+ c6

(
|110〉|αeipθ〉+ |111〉|αeipθ〉

)
+ c7

(
|110〉|αeipθ〉−|111〉|αeipθ〉

))
. (4.38)

If we were to ignore Eqn. 4.37, we would be able to move the red term probe
beams to five points in phase space. With this solution it is not possible to pick
the red terms from the green terms with displacements and controlled rotations,
as Eqn. 4.33 would become

1√
2

(
c0
(
|000〉|α〉+ |001〉|αe−in3θ〉

)
+ c1

(
|000〉|αein3θ〉−|001〉|α〉

)
+ c2

(
|010〉|α〉+ |011〉|αe−in3θ〉

)
+ c3

(
|100〉|αei(n1+n4)θ〉+ |101〉|αei(n1−n3+n4)θ〉

)
+ c4

(
|010〉|αein3θ〉−|011〉|α〉

)
+ c5

(
|100〉|αei(n1+n3+n4)θ〉−|101〉|αei(n1+n4)θ〉

)
+ c6

(
|110〉|αei(n1+n4)θ〉+ |111〉|αei(n1−n3+n4)θ〉

)
+ c7

(
|110〉|αei(n1+n3+n4)θ〉−|111〉|αei(n1+n4)θ〉

))
. (4.39)

The reason some of the red terms will always be indistinguishable from some
of the green terms in both Eqn. 4.38 and Eqn. 4.39, no matter how many
displacements and controlled rotations we apply, is because at least one of green
terms with the first qubit in the state |x〉, where x ∈ {0, 1}, has the same probe
beam as at least one of the red terms with the first qubit in the state |x〉. Since
we are only using controlled rotations between displacements condition on this
first qubit, there is no way to distinguish these green and red terms, leading to
gate failure.

4.2.4 Displacements with 2 Controlled Rotations

If we condition the controlled rotations between displacements on the first two
qubits in Eqn. 4.33, we have four cases to consider: |00〉, |01〉, |10〉 and |11〉. We
will need to choose n1, n2, n3, n4, n5 and n6 such that the probe beams for the
states c0|000〉 and c1|001〉 go to |α〉, the probe beams for the states c2|011〉 and
c4|010〉 go to |αeiaθ〉, the probe beams for the states c3|100〉 and c5|101〉 go to
|αeibθ〉 and the probe beams for the states c6|111〉 and c7|110〉 go to |αeicθ〉, for
some a, b and c.

First we consider the c1 term:

n3 + n6 = 0 → n3 = −n6 (4.40)
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Next, we consider the c2 and c4 terms:

n2 + n5 = a (4.41)

n2 + n3 + n5 + n6 = a

which gives n2 = a− n5. Next, we consider the c3 and c5 terms:

n1 + n4 = b (4.42)

n1 + n3 + n4 + n6 = b

which gives n1 = b− n4. Finally, we consider the c6 and c7 terms:

n1 + n2 + n4 + n5 + n6 = c (4.43)

n1 + n2 + n3 + n4 + n5 = c

which gives n6 = 0. With these solutions it is not possible to pick out the red
from the green terms in Eqn. 4.33, as can be seen below in Eqn. 4.44:

1√
2

(
c0
(
|000〉|α〉+ |001〉|α〉

)
+ c1

(
|000〉|α〉−|001〉|α〉

)
+ c2

(
|010〉|αeiaθ〉+ |011〉|αeiaθ〉

)
+ c3

(
|100〉|αeibθ〉+ |101〉|αeibθ〉

)
+ c4

(
|010〉|αeiaθ〉−|011〉|αeiaθ〉

)
+ c5

(
|100〉|αeibθ〉−|101〉|αeibθ〉

)
+ c6

(
|110〉|αei(a+b)θ〉+ |111〉|αei(a+b)θ〉

)
+ c7

(
|110〉|αei(a+b)θ〉−|111〉|αei(a+b)θ〉

))
. (4.44)

This is due to the fact that at least one of the green terms with the first two
qubits in the state |xy〉, where x, y ∈ {0, 1}, has a the same probe beam as
at least one of the red terms with the first two qubits in the state |xy〉. If we
ignore Eqn. 4.43 we would be able to pick out the red from the green terms
in Eqn. 4.33. That is, we could add displacements and additional controlled
rotations such that the red c0, c1, c2, c3, c4, c5 and c6 terms all go to one circle
in phase space, and the red c7 term goes to another circle. Provided these two
circles are distinct from all the green term probe beam states, we would be able
to use homodyne detection or photon number detection on the probe beam to
pick out the red terms. Ignoring Eqn. 4.43 takes Eqn. 4.33 to Eqn. 4.45:

1√
2

(
c0
(
|000〉|α〉+ |001〉|αein6θ〉

)
+ c1

(
|000〉|αe−in6θ〉−|001〉|α〉

)
(4.45)

+ c2
(
|010〉|αeiaθ〉+ |011〉|αei(a+n6)θ〉

)
+ c3

(
|100〉|αeibθ〉+ |101〉|αei(b+n6)θ〉

)
+ c4

(
|010〉|αei(a−n6)θ〉−|011〉|αeiaθ〉

)
+ c5

(
|100〉|αei(b−n6)θ〉−|101〉|αeibθ〉

)
+ c6

(
|110〉|αei(a+b)θ〉+ |111〉|αei(a+b+n6)θ〉

)
+ c7

(
|110〉|αei(a+b−n6)θ〉−|111〉|αei(a+b)θ〉

))
.

Transforming the probe beam for the red c0, c1, c2, c3, c4, c5 and c6 states to
the common point α(R1 + iR2) requires solving 4 simultaneous equations. We
therefore need four displacements, as shown in Fig. 4.9.
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CR6H

D(β1) n7θ n8θ n7θ n8θD(β2) n7θ n8θD(β3) n7θ n8θD(β4)

Figure 4.9: Picks out the red terms in Eqn. 4.45. Here β1 = α(A1 + iB1), β2 = α(A2 + iB2),

β3 = α(A3 + iB3) and β4 = α(A4 + iB4).

Displacements

The 4 (complex) equations we need to solve are

αeiχjθ
(
eiχjθ

(
eiχjθ

(
eiχjθ

(
einjθ +A1 + iB1

)
+A2 + iB2

)
(4.46)

+A3 + iB3

)
+A4 + iB4

)
= α

(
R1 + iR2

)
where nj ∈ {0, a, b, a + b + n6}, χj ∈ {0, n8, n7, n7 + n8} and Ak, Bk ∈ R for
k = 1, 2, 3, 4. Breaking Eqn. 4.46 into real and imaginary parts gives the 8
equations:

A4 cos(χjθ) +A3 cos(2χjθ) +A2 cos(3χjθ) +A1 cos(4χjθ)−B4 sin(χjθ)−B3 sin(2χjθ)

−B2 sin(3χjθ)−B1 sin(4χjθ) = R1 − cos
(
(nj + 4χj)θ

)
(4.47)

A4 sin(χjθ) +A3 sin(2χjθ) +A2 sin(3χjθ) +A1 sin(4χjθ) +B4 cos(χjθ) +B3 cos(2χjθ)

+B2 cos(3χjθ) +B1 cos(4χjθ) = R2 − sin
(
(nj + 4χj)θ

)
. (4.48)

Solving Eqns. 4.47 and 4.48 for A1, B1, A2, B2, A3, B3, A4, B4 gives:

A1 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
4 (cos (n7θ)− cos (n8θ))

((
− sin (n7θ) + sin (n8θ) + sin ((b+ n7 − n8) θ)

− sin ((a− n7 + n8) θ)
)

sin
(
θ

2
(n7 + n8)

)
− sin

(
θ

2
(n7 − n8)

)
sin ((a+ b+ n6 + n7 + n8) θ)

)
(4.49)

B1 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
8 (cos (n7θ)− cos (n8θ))

(
sin
(
θ

2
(2b+ n7 − 3n8)

)
− sin

((
b+

3n7

2
− n8

2

)
θ

)
+ sin

((
a+ b+ n6 +

3n7

2
+
n8

2

)
θ

)
− sin

(
θ

2
(2a− 3n7 + n8)

)
− sin

(
θ

2
(3n7 + n8)

)
+ sin

((
a− n7

2
+

3n8

2

)
θ

)
− sin

((
a+ b+ n6 +

n7

2
+

3n8

2

)
θ

)
+ sin

(
θ

2
(n7 + 3n8)

))
(4.50)
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A2 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
4 (cos (n7θ)− cos (n8θ))

(
sin
(
θ

2
(n7 + n8)

)(
− sin ((b+ n7) θ)− sin ((b+ 2n7) θ)

+ sin ((n7 − n8) θ)− sin ((b+ n7 − n8) θ) + sin ((a+ n8) θ) + sin ((a− n7 + n8) θ)

+ sin ((a+ 2n8) θ)
)

+ sin
(
θ

2
(n7 − n8)

)(
sin ((a+ b+ n6 + n7 + n8) θ)

+ sin ((a+ b+ n6 + 2n7 + n8) θ) + sin ((a+ b+ n6 + n7 + 2n8) θ)
))

(4.51)

B2 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
2 (cos (n7θ)− cos (n8θ))

(
1
4

sin
(
θ

2
(n7 − 3n8)

)
+ cos

(
n8θ

2

)
cos
(
θ

2
(2a+ b+ n6 + n7 + 4n8)

)
sin
(
θ

2
(b+ n6)

)
− 1

4
sin
(
θ

2
(2b+ n7 − 3n8)

)
+

1
2

sin
(
θ

2
(n7 − n8)

)
− 1

4
sin
(
θ

2
(2b+ n7 − n8)

)
+

1
4

sin
(
θ

2
(3n7 − n8)

)
+

1
2

cos
(
n7θ

2

)(
sin
((
a− n7 +

n8

2

)
θ
)

+ sin
((
b+ 2n7 +

n8

2

)
θ
)

− sin
((
a+ b+ n6 + 2n7 +

n8

2

)
θ
)))

(4.52)

A3 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
4 (cos (n7θ)− cos (n8θ))

(
sin
(
θ

2
(n7 + n8)

)(
sin ((b+ n7) θ) + sin ((b+ 2n7) θ)

+ sin ((n7 − n8) θ)− sin ((a+ n8) θ) + sin ((b+ 2n7 + n8) θ)− sin ((a+ 2n8) θ)

− sin ((a+ n7 + 2n8) θ)
)
− sin

(
θ

2
(n7 − n8)

)(
sin ((a+ b+ n6 + 2n7 + n8) θ)

+ sin ((a+ b+ n6 + n7 + 2n8) θ) + sin ((a+ b+ n6 + 2 (n7 + n8)) θ)
))

(4.53)
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B3 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
8 (cos (n7θ)− cos (n8θ))

(
cos
((

a+ b+
5n7

2
+

3n8

2

)
θ

)
sin (n6θ)

− 4 cos
(
n7θ

2

)
cos
(
θ

2
(2a+ b+ n6 + 2n7 + 5n8)

)
sin
(
θ

2
(b+ n6)

)
− sin

(
θ

2
(n7 − 3n8)

)
− 2 sin

(
θ

2
(n7 − n8)

)
+ sin

(
θ

2
(2b+ n7 − n8)

)
− sin

(
θ

2
(3n7 − n8)

)
+ sin

((
b+

3n7

2
− n8

2

)
θ

)
− 2 cos

(
n8θ

2

)(
sin
((
a− n7

2
+ n8

)
θ
)

+ sin
((

b+
5n7

2
+ n8

)
θ

))
+ cos (n6θ) sin

((
a+ b+

5n7

2
+

3n8

2

)
θ

)
+ sin

((
a+ b+ n6 +

5n7

2
+
n8

2

)
θ

))
(4.54)

A4 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
4 (cos (n7θ)− cos (n8θ))

(
sin
(
θ

2
(n7 + n8)

)
(− sin (n7θ) + sin (n8θ)

− sin ((b+ 2n7 + n8) θ) + sin ((a+ n7 + 2n8) θ))

+ sin
(
θ

2
(n7 − n8)

)
sin ((a+ b+ n6 + 2 (n7 + n8)) θ)

)
(4.55)

B4 =
csc
(

n7θ
2

)
csc
(

n8θ
2

)
8 (cos (n7θ)− cos (n8θ))

(
2 cos

(
θ

2
(a+ n7 + 3n8)

)
sin
(
aθ

2

)
+ sin

(
θ

2
(3n7 + n8)

)
− sin

(
θ

2
(2b+ 3n7 + n8)

)
+ sin

((
b+

5n7

2
+

3n8

2

)
θ

)
− sin

((
a+ b+ n6 +

5n7

2
+

3n8

2

)
θ

)
− sin

((
a+

3n7

2
+

5n8

2

)
θ

)
+ sin

((
a+ b+ n6 +

3n7

2
+

5n8

2

)
θ

))
(4.56)

where without loss of generality we have set R1 = R2 = 0. With these displace-
ments Fig. 4.9 transforms Eqn. 4.45 to Eqn. 4.57.

1√
2

(
c0
(
|000〉|0〉+ |001〉|α(ein6θ − 1)〉

)
+ c1

(
|000〉|α(e−in6θ − 1)〉−|001〉|0〉

)
+ c2

(
|010〉|0〉+ |011〉|α(ein6θ − 1)ei(a+4n8)θ〉

)
+ c3

(
|100〉|0〉+ |101〉|α(ein6θ − 1)ei(b+4n7)θ〉

)
+ c4

(
|010〉|α(e−in6θ − 1)ei(a+n8)θ〉−|011〉|0〉

)
+ c5

(
|100〉|α(e−in6θ − 1)ei(b+4n7)θ〉−|101〉|0〉

)
+ c6

(
|110〉|α(1− ein6θ)ei(a+b+4n7+4n8)θ〉+ |111〉|0〉

)
(4.57)

+ c7
(
|110〉|−2iα sin(n6θ)ei(a+b+4n7+4n8)θ)〉−|111〉|α(1− ein6θ)ei(a+b+4n7+4n8)θ〉

))
.
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Homodyne Detection

If we set a = −4n8 and b = −4n7, Eqn. 4.57 becomes

1√
2

(
c0
(
|000〉|0〉+ |001〉|α(ein6θ − 1)〉

)
+ c1

(
|000〉|α(e−in6θ − 1)〉−|001〉|0〉

)
+ c2

(
|010〉|0〉+ |011〉|α(ein6θ − 1)〉

)
+ c3

(
|100〉|0〉+ |101〉|α(ein6θ − 1)〉

)
+ c4

(
|010〉|α(e−in6θ − 1)〉−|011〉|0〉

)
+ c5

(
|100〉|α(e−in6θ − 1)〉−|101〉|0〉

)
(4.58)

+ c6
(
|110〉|α(1− ein6θ)〉+ |111〉|0〉

)
+ c7

(
|110〉|−2iα sin(n6θ)〉−|111〉|α(1− ein6θ)〉

))
.

We see that the probe beam states for each of the red terms in Eqn. 4.58 is
along the imaginary axis. We can homodyne detect the probe beam along the
x-axis to pick out the red terms. Ideally the green term probe beams would be
far from the red probe beams |0〉 and |−2iα sin(n6θ)〉.

When we homodyne detect along the x-direction there are five states that
need to be considered: |0〉, |−2iα sin(n6θ)〉, |α(ein6θ − 1)〉, |α(e−in6θ − 1)〉 and
|α(1− ein6θ)〉. Using Eqn. 2.51 we project onto 〈x|:

〈x|0〉 = f(x, 0)

〈x| − 2iα sin(n6θ)〉 = eiφ1(x)f(x, 0) (4.59)

〈x|α(ein6θ − 1)〉 = eiφ2(x)f(x, α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2))

〈x|α(e−in6θ − 1)〉 = eiφ3(x)f(x, α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2)))

〈x|α(1− ein6θ)〉 = eiφ4(x)f(x, α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2)))

where φ1(x) = −2αx sin(n6θ) and we have used the fact that

ein6θ − 1 =
√

(cos(n6θ)− 1)2 + sin2(n6θ) exp
(
i arctan

(
sin(n6θ)

cos(n6θ)− 1

))
cos
(

arctan
(

sin(n6θ)
cos(n6θ)− 1

))
= sin

(
n6θ

2

)
.

The green term probe beam phases eiφj(x) for j = 2, 3, 4 are not important and
can be ignored.

In order to use homodyne detection of the probe beam to pick out the
red terms in Eqn. 4.58, we require the peaks from the curves f(x, 0) and

f(x, α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2))) to be far apart:

2α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2)) � 1. (4.60)

Assuming θ is small we use Eqns. 2.33 and 2.34 to approximate cos(n6θ) ≈
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1− n2
6θ

2/2 and sin(n6θ) ≈ n6θ − n3
6θ

3/6, giving

α
√

(1− n2
6θ

2/2− 1)2 + n2
6θ

2n6θ � 1

αθ2 � 1
n2

6

. (4.61)

The is the same scaling as the parity gate from [49]. The free parameter n6 can
be chosen to decrease the probability of error. The larger n6 is, the further the

distance between the peaks f(x, 0) and f(x, α
√

(cos(n6θ)− 1)2 + sin2(n6θ) sin(n6θ/2)))
becomes.

Photon Number Detection

If we displace the probe beam in Eqn. 4.58 such that |0〉 and |−2iα sin(n6θ)〉
are equidistant from the x axis, we can apply a photon number detection to the
probe beam to pick out the red terms. The necessary displacement is D(β) =
D(iα sin(n6θ)). As with the homodyne detection case, we need to consider the
five probe beam states:

|0〉 → |iα sin(n6θ)〉

|−2iα sin(n6θ)〉 → |−iα sin(n6θ)〉 (4.62)

|α(ein6θ − 1)〉 → |α
(
cos(n6θ)− 1 + 2i sin(n6θ)

)
〉

|α(e−in6θ − 1)〉 → |α(cos(n6θ)− 1)〉

|α(1− ein6θ)〉 → |α(1− cos(n6θ))〉.

In order to use photon number detection of the probe beam to pick out the red
terms in Eqn. 4.58, we require the number of photons in the states
|α
(
cos(n6θ)− 1 + 2i sin(n6θ)

)
〉, |α(cos(n6θ)− 1)〉 and |α(1− cos(n6θ))〉 to be

different to the number of photons in the states |±iα sin(n6θ)〉. Assuming θ is
small we use Eqns. 2.33 and 2.34 to find:

α2 sin2(n6θ) ≈ α2
(
n2

6θ
2 − n4

6θ
4/3
)

α2
(
(cos(n2θ)− 1)2 + 4 sin2(n6θ)

)
≈ α2

(
4n2

6θ
2 − 13n4

6θ
4/12

)
α2
(
cos(n6θ)− 1

)2 ≈ α2n4
6θ

4/4 (4.63)

α2
(
1− cos(n6θ)

)2 ≈ α2n4
6θ

4/4.

If we assume θ4 ≈ 0, we require a photon number detection of the probe beam
that can distinguish between 0, α2n2

6θ
2 and 4α2n2

6θ
2 photons. Since we expect

a photon number detector to easily distinguish between 0 and n photons, for
n > 1, we require the difference in the photon numbers α2n2

6θ
2 and 4α2n2

6θ
2 to

be large:

3α2n2
6θ

2 � 1

αθ � 1√
3n6

. (4.64)
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The is the same scaling as the parity gate from [92, 93]. The free parameter n6

can be chosen to decrease the probability of error. The larger n6 is, the greater
the difference between the photon numbers α2n2

6θ
2 and 4α2n2

6θ
2 becomes.

Phase Correction

After we measure the probe probe beam in Fig. 4.9 we have effectively induced
the transformation of Eqn. 4.27 into the red terms in Eqn. 4.58. If we homodyne
detect we will have the phase eiφ1(x) on the state c7|110〉 that we will need to
correct for. There is no phase shift associated with displacing the probe beam by
D(iα sin(n6θ)) before we apply a photon number detection to the probe beam,
since Im [(iα sin(n6θ)) (2iα sin(n6θ))] = 0. Regardless of which measurement
process we apply to the probe beam, we need to first deal with the phase shifts
associated with the displacements α (A1 + iB1) , α (A2 + iB2) , α (A3 + iB3) and
α (A4 + iB4).

After we measure the probe beam in Fig. 4.9, the output state is given by
(after the application of IIZ):

eiϕ1(c0|000〉+ c1|001〉) + eiϕ2(c2|010〉+ c4|011〉) + eiϕ3(c3|100〉+ c5|101〉)

− eiϕ4c6|111〉+ eiϕ5c7|110〉. (4.65)

We can correct for ϕ1, ϕ2, ϕ3 without knowing their form by applying the phase
shifters

|1〉1 → ei(ϕ1−ϕ3)|1〉1
|1〉2 → ei(ϕ1−ϕ2)|1〉2 (4.66)

(4.67)

on qubits 1 and 2. Eqn. 4.65 becomes

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ei(ϕ4+ϕ1−ϕ2−ϕ3)c6|111〉+ ei(ϕ5+ϕ1−ϕ2−ϕ3)c7|110〉. (4.68)

To correct for the phase shifts on the c6 and c7 term we need to find the form
of ϕ4 and ϕ5. Using Eqn. 2.26 we can find the form of ϕj from Eqn. 4.46.

ϕj = f1 (χjθ) cos(njθ) + f2 (χjθ) sin(njθ) + f3 (χjθ) (4.69)
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where

f1(χjθ) = α2 (B1 +B2 cos(χjθ) +B3 cos(2χjθ) +B4 cos(3χjθ)−A2 sin(χjθ)

−A3 sin(2χjθ)−A4 sin(3χjθ))

f2(χjθ) = −α2 (A1 +A2 cos(χjθ) +A3 cos(2χjθ) +A4 cos(3χjθ) +B2 sin(χjθ)

+B3 sin(2χjθ) +B4 sin(3χjθ)) (4.70)

f3(χjθ) = α2 ((−B1A2 +A1B2 −B2A3 +A2B3 −B3A4 +A3B4) cos(χjθ)

+ (−B1A3 +A1B3 −B2A4 +A2B4) cos(2χjθ) + (−B1A4 +A1B4) cos(3χjθ)

− (A2(A1 +A3) +B2(B1 +B3) +A3A4 +B3B4) sin(χjθ)

−(A1A3 +B1B3 +A2A4 +B2B4) sin(2χjθ)− (A1A4 +B1B4) sin(3χjθ)) .

Notice that the functions f1(), f2() and f3() are independent njθ, the controlled
rotations applied in Fig. 4.6. When we consider the form of ϕ4 we know that
nj = n6 − 4(n7 + n8) and χj = n7 + n8. When we consider the form of ϕ5 we
know that nj = − (n6 + 4(n7 + n8)) and χj = n7 + n8.

ϕ4 = f1 ((n7 + n8)θ) cos((n6 − 4(n7 + n8))θ) (4.71)

+ f2 ((n7 + n8)θ) sin((n6 − 4(n7 + n8))θ) + f3 ((n7 + n8)θ)

ϕ5 = f1 ((n7 + n8)θ) cos(−(n6 + 4(n7 + n8))θ)

+ f2 ((n7 + n8)θ) sin(−(n6 + 4(n7 + n8))θ) + f3 ((n7 + n8)θ) .

We can therefore write ϕ4 and ϕ5 as:

ϕ4 = f4 + f5 (4.72)

ϕ5 = f4 − f5

where

f4 = f1 ((n7 + n8)θ) cos(−4(n7 + n8)θ) cos(n6θ) + f2 ((n7 + n8)θ) sin(−4(n7 + n8)θ) cos(n6θ)

+ f3 ((n7 + n8)θ)

f5 = f2 ((n7 + n8)θ) cos(−4(n7 + n8)θ) sin(n6θ)− f1 ((n7 + n8)θ) sin(−4(n7 + n8)θ) sin(n6θ).

Eqn. 4.68 becomes

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ei(f4+f5+ϕ1−ϕ2−ϕ3)c6|111〉+ ei(f4−f5+ϕ1−ϕ2−ϕ3)c7|110〉.
(4.73)

If we replace CR6H in Fig. 4.9 with Fig. 4.10, we can correct for the f5 phase
term in Eqn. 4.73. That is, if we use Fig. 4.10 instead of Fig. 4.6, the initial
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state in Eqn. 4.45 becomes

1√
2

(
c0
(
|000〉|α〉+ e−iφ|001〉|αein6θ〉

)
+ c1

(
eiφ|000〉|αe−in6θ〉−|001〉|α〉

)
(4.74)

+ c2
(
|010〉|αeiaθ〉+ e−iφ|011〉|αei(a+n6)θ〉

)
+ c3

(
|100〉|αeibθ〉+ e−iφ|101〉|αei(b+n6)θ〉

)
+ c4

(
eiφ|010〉|αei(a−n6)θ〉−|011〉|αeiaθ〉

)
+ c5

(
eiφ|100〉|αei(b−n6)θ〉−|101〉|αeibθ〉

)
+ c6

(
|110〉|αei(a+b)θ〉+ e−iφ|111〉|αei(a+b+n6)θ〉

)
+ c7

(
eiφ|110〉|αei(a+b−n6)θ〉−|111〉|αei(a+b)θ〉

))
and the final state before probe beam detection in Eqn. 4.58 becomes

1√
2

(
c0
(
|000〉|0〉+ e−iφ|001〉|α(ein6θ − 1)〉

)
+ c1

(
eiφ|000〉|α(e−in6θ − 1)〉−|001〉|0〉

)
+ c2

(
|010〉|0〉+ e−iφ|011〉|α(ein6θ − 1)〉

)
+ c3

(
|100〉|0〉+ e−iφ|101〉|α(ein6θ − 1)〉

)
+ c4

(
eiφ|010〉|α(e−in6θ − 1)〉−|011〉|0〉

)
+ c5

(
eiφ|100〉|α(e−in6θ − 1)〉−|101〉|0〉

)
(4.75)

+ c6
(
|110〉|α(1− ein6θ)〉+ e−iφ|111〉|0〉

)
+ c7

(
eiφ|110〉|−2iα sin(n6θ)〉−|111〉|α(1− ein6θ)〉

))
.

After we detect the probe beam, we now have

eiϕ1(c0|000〉+ c1|001〉) + eiϕ2(c2|010〉+ c4|011〉) + eiϕ3(c3|100〉+ c5|101〉)

− ei(ϕ4−φ)c6|111〉+ ei(ϕ5+φ)c7|110〉. (4.76)

Once we correct for the phases ϕ1, ϕ2 and ϕ3, we have

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

+ eiφ̃ (−c6|111〉+ c7|110〉) . (4.77)

where we have set φ in Fig. 4.10 to f5 and φ̃ = f4 + ϕ1 − ϕ2 − ϕ3.

H

n1θ n2θ n3θ n4θ n5θ n6θ

=
CR6H

e
−iφ

e
iφ

Figure 4.10: Probe beam preparation for our three qubit gate similar to Fig. 4.6 but with

the phase shifters ±φ. When φ = f5 this can be used for phase correction.

If we consider transforming Eqn. 4.27 to Eqn. 4.77, we see that we have a
controlled-controlled-(iY ) gate as well as a controlled phase gate (with phase
φ̃) on qubits 1 and 2. While at first, this phase (φ̃) appears to be a hinderance
that needs to be corrected with a controlled phase gate on qubits 1 and 2, we
can in fact use it to convert this three qubit gate into a Toffoli gate.
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If we expand φ̃ using Eqns. 2.33 and 2.34 we find

φ̃ ≈ n6

n7n8 (n7 + n8)
α2

θ
. (4.78)

Since we require either αθ2 � 1
n2

6
or αθ � 1√

3n6
, we know that the quantity in

Eqn. 4.78 is � 1. Given that we will know what α and θ are before we attempt
the three qubit gate, we can set n6, n7 and n8 such that

n6

n7n8 (n7 + n8)
α2

θ
= p

π

2
(4.79)

where p is a positive integer not equal to 0. Eqn. 4.77 would then becomes

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ic6|111〉+ ic7|110〉 (4.80)

which is locally equivalent to the Toffoli gate.
We now need to consider the phase shifts resulting from the probe beam

measurement. When we homodyne detect the probe beam, Eqn. 4.80 becomes

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ic6|111〉+ ieiφ1(x)c7|110〉. (4.81)

Unfortunately, we cannot correct for this phase with just single qubit phase
shifters. To transform Eqn. 4.81 into Eqn. 4.80 we would require a controlled
phase gate. However, even without this controlled phase shift correction gate,
a three qubit gate that transforms Eqn. 4.27 into 4.81 is as powerful in terms
of entangling power, as a Toffoli gate.

When we perform a photon number detection on the probe beam, Eqn. 4.80
becomes

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ic6|111〉+ ic7|110〉 (4.82)

or

c0|000〉+ c1|001〉+ c2|010〉+ c4|011〉+ c3|100〉+ c5|101〉

− ic6|111〉 − ic7|110〉 (4.83)

depending on whether we measured an even number of photons (Eqn. 4.82) or
an odd number (Eqn. 4.83). The gate we induce is therefore the Toffoli gate
1/4 of the time and the controlled-controlled-(iY ) gate 1/4 of the tim, where
the controlled-controlled-(iY ) gate is as powerful in terms of entangling power,
as a Toffoli gate.

If we just concentrate on the Toffoli gate, we find that our successful probabil-
ity of 25% is an improvement on the two leading LOQC Toffoli scheme [106, 107].
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The coincidence basis Toffoli gate proposed in [106] succeeds with a probability
of 0.75/%. However, this gate is destructive, as with the cnot gates in Sec-
tions 2.7.2 and 2.7.3, since we need to measure the output qubits to detect the
presence of a single photon. The Toffoli gate proposed in [107] succeeds with a
probability of 1/64.

4.2.5 Displacements with 3 Controlled Rotations

In the last Section we showed that we could pick out the red terms in Eqn. 4.33
using either homodyne detection, provided αθ2 � 1/n2

6, or photon number
detection, provided αθ � 1√

3n6
. After we prepared the probe beam state using

Fig. 4.6, we used displacements and additional controlled rotations conditioned
on just the first two qubits to transform the probe beam states for the red terms
in Eqn. 4.33 to just two, distinct states. If we instead use displacements and
additional controlled rotations conditioned on all three qubits, we can transform
the probe beam states for the red terms in Eqn. 4.33 to just one state. In this
Section we investigate whether increasing the number of displacements improves
the scaling in Eqn. 4.61 and 4.64.

Since we wish to transform each red term probe beam in Eqn. 4.33 to
the state α (R1 +R2), we need to consider eight displacements, as shown in
Fig. 4.11. We use Fig. 4.6 to prepare the probe beam state as in Eqn. 4.45,
where n2 + n5 = a and n1 + n4 = b.

CR6H

D(β1) n7θ n8θ n9θ n7θ n8θ n9θD(β2) n7θ n8θ n9θ· · ·

· · ·

· · ·

· · ·

D(β8)

Figure 4.11: Picks out the red terms in Eqn. 4.33. Here βk = α(Ak + iBk), where k =

1, 2, · · · , 8 and Ak, Bk ∈ R.

Without loss of generality we set R1 = R2 = 0. The 8 (complex) equations
we need to solve are

αeiχjθ
(
eiχjθ

(
eiχjθ

(
eiχjθ

(
eiχjθ

(
eiχjθ

(
eiχjθ

(
eiχjθ

(
einjθ +A1 + iB1

)
+A2 + iB2

)
+A3 + iB3

)
+A4 + iB4

)
+A5 + iA5

)
+A6 + iA6

)
+A7 + iA7

)
+A8 + iA8

)
= 0

(4.84)

where nj ∈ {0, a, b, a+ b+ n6, a+ b− n6} and χj ∈ {0, n7, n8, n9, n7 + n8, n7 +
n9, n8 + n9, n7 + n8 + n9}. Breaking Eqn. 4.84 into real and imaginary parts
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gives the 16 equations:

A8 cos(χjθ) +A7 cos(2χjθ) +A6 cos(3χjθ) +A5 cos(4χjθ) +A4 cos(5χjθ)

+A3 cos(6χjθ) +A2 cos(7χjθ) +A1 cos(8χjθ) (4.85)

−B8 sin(χjθ)−B7 sin(2χjθ)−B6 sin(3χjθ)−B5 sin(4χjθ)−B4 sin(5χjθ)

−B3 sin(6χjθ)−B2 sin(7χjθ)−B1 sin(8χjθ) = − cos
(
(nj + 8χj)θ

)
A8 sin(χjθ) +A7 sin(2χjθ) +A6 sin(3χjθ) +A5 sin(4χjθ) +A4 sin(5χjθ)

+A3 sin(6χjθ) +A2 sin(7χjθ) +A1 sin(8χjθ) (4.86)

+B8 cos(χjθ) +B7 cos(2χjθ) +B6 cos(3χjθ) +B5 cos(4χjθ) +B4 cos(5χjθ)

+B3 cos(6χjθ) +B2 cos(7χjθ) +B1 cos(8χjθ) = − sin
(
(nj + 8χj)θ

)
.

To solve for the 8 displacements requires the inversion of a non-sparse 16 × 16
matrix. We investigate the solution to Eqns. 4.85 and 4.86 numerically. When
we homodyne detect the probe beam the scaling is of the form αθ2 � 1, as in
Eqn. 4.61 and when perform a photon number measurement on the probe beam
the scaling is of the form αθ � 1, as in Eqn. 4.64.

When we use Fig. 4.11 to pick out the red terms from Eqn. 4.33 it is not
clear that the phases associated with the displacements α(Ak + iBk), where
k = 1, 2, · · · , 8, can be corrected with only single qubit phase shifters.

4.2.6 Multi-qubit Gate

We can generalise the idea of picking out the red terms from Eqn. 4.29 to
picking out the red terms from a state with m qubits. Since it is not clear how
to correct the phases associated with the displacments in Section 4.2.5, we base
our m qubit gate on Section 4.2.4.

For example, consider the 4 qubit case. We can prepare the state(
c0|0000〉+ c1|0001〉+ c2|0010〉+ c3|0100〉+ c4|1000〉+ c5|0011〉+ c6|0101〉+ c7|1001〉

+ c8|0110〉+ c9|1010〉+ c10|1100〉+ c11|0111〉+ c12|1011〉+ c13|1101〉+ c14|1110〉

+ c15|1111〉
)
|α〉 (4.87)

in an analogous way to Fig. 4.10, shown in Fig. 4.12. Here
∑15

i=0 |ci|2 = 1.
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Figure 4.12: Probe beam preparation for a 4 qubit gate.

Fig. 4.12 takes Eqn. 4.87 to

1√
2

(
c0
(
|0000〉|α〉+ |0001〉|αein8θ〉

)
+ c1

(
|0000〉|αe−in8θ〉−|0001〉|α〉

)
+ c2

(
|0010〉|αeicθ〉+ |0011〉|αei(c+n8)θ〉

)
(4.88)

+ c3
(
|0100〉|αeibθ〉+ |0101〉|αei(b+n8)θ〉

)
+ c4

(
|1000〉|αeiaθ〉+ |1001〉|αei(a+n8)θ〉

)
+ c5

(
|0010〉|αei(c−n8)θ〉−|0011〉|αeicθ〉

)
+ c6

(
|0100〉|αei(b−n8)θ〉−|0101〉|αeibθ〉

)
+ c7

(
|1000〉|αei(a−n8)θ〉−|1001〉|αeiaθ〉

)
+ c8

(
|0110〉|αei(b+c)θ〉+ |0111〉|αei(b+c+n8)θ〉

)
+ c9

(
|1010〉|αei(a+c)θ〉+ |1011〉|αei(a+c+n8)θ〉

)
+ c10

(
|1100〉|αei(a+b)θ〉+ |1101〉|αei(a+b+n8)θ〉

)
+ c11

(
|0110〉|αei(b+c−n8)θ〉−|0111〉|αei(b+c)θ〉

)
+ c12

(
|1010〉|αei(a+c−n8)θ〉−|1011〉|αei(a+c)θ〉

)
+ c13

(
|1100〉|αei(a+b−n8)θ〉−|1101〉|αei(a+b)θ〉

)
+ c14

(
|1110〉|αei((a+b+c)θ〉+ |1111〉|αei(a+b+c+n8)θ〉

)
+ c15

(
|1110〉|αei(a+b+c−n8)θ〉−|1111〉|αei(a+b+c)θ〉

))
where we have set n1 + n5 = a, n2 + n6 = b and n3 + n7 = c. We see that
this is analogous to Eqn. 4.45. That is, we see that each of the red terms
with the first three qubits equal to |xyz〉, where x, y, x ∈ {0, 1}, has the same
probe beam, with the exception of the c14|111〉 and c15|1110〉 terms. Once
we add displacements and additional controlled rotations conditioned on the
first three qubits, we can take each of the probe beam states for the red terms
c0, · · · , c14 to α (R1 + iR2) and the red term c15|1110〉 probe beam to another
point, distinct from the probe beam states for each of the green terms. We
would require 8 displacements to pick out the red terms in Eqn 4.88. As in
Section 4.2.4, when perform a photon number detection on the probe beam, the
phases associated with the displacements can be set such that the four qubit
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gate we induce is a controlled-controlled-controlled-X gate a 1/4 of the time
and controlled-controlled-controlled-iY 1/4 of the time.

To apply an m qubit gate we would need to prepare the probe beam with
2m controlled rotations, as shown in Fig. 4.13. To pick out the red terms from
the resulting state, we would require 2m−1 displacements and (m − 1)2m−1

additional controlled rotations, as shown in Fig. 4.14. This would require solving
2m simultaneous equations. If we perform a photon number detection on the
coherent probe beam we can always correct the phases associated with the
displacements, as in Section 4.2.4.

The m qubit gate proposed in Fig. 4.14 succeeds as an m-qubit Toffoli with
a probability of 25% and as an m-qubit controlled iY with a probability of 25%.
Since this success probability is constant it is an improvement on [106], which

succeeds with a probability of
(

1

1+2
1
m

)2m

, and [107], which succeeds with a

probability of 1
(p1)

2n−3 , where p1 is the success probability of a probabilistic cnot

gate. However, the resources required for both [106] and [107] scale linearly,
whereas the resources for the Toffoli gate in Fig. 4.14 scale exponentially with
the number of qubits.

n1θ n2θ

=

e
−iφ

e
iφ

·
·
·

·
·
·

H

·
·
·

·
·
·

· · · · · ·
nmθ nm+2θ n2mθnm+1θ

CRmH

Figure 4.13: Probe beam preparation for an m qubit gate.
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n(2m+1)θ n(3m−1)θn(2m+2)θ· · · · · ·

· · ·

· · ·

n(2m+1)θ n(3m−1)θn(2m+2)θ · · ·

·
·
·

D(β(2m−1))

Figure 4.14: Picks out the red terms for an m qubit state. Here βk = α(Ak + iBk), where

k = 1, 2, · · · , 2m−1 and Ak, Bk ∈ R.

140



Chapter 5

Qubus Computation: Single

Bit Teleportations

In Chapter 4 we described extensions to the qubus computation scheme that
were centred around applying displacements to a single coherent quantum bus
mode. In this Chapter we build on the ideas from Section 2.8.6 by consider-
ing multiple probe modes, concentrating on the use of teleportations in qubus
computation.

As discussed in Section 2.5.4, we can teleport [80] an unknown qubit with
two classical bits and a maximally entangled Bell state shared between the
sender and receiver. Teleportation was used extensively in Section 2.5.4 when
a two qubit gate using only linear optics with single photon sources and photon
detection was described, teleporting the qubits through the gate [32]. Telepor-
tations have also been shown to be useful for fault tolerance. In [108], Zhou et
al. extended the significance of teleportation by showing how so called single
bit teleportations could be used to construct fault tolerant encoded operations.
In this Chapter we investigate the use of single bit teleportations for qubus
computation.

In Section 5.1 we extend the results presented in Section 4.1 by showing a
fault tolerant method of measuring the syndromes for any stabilizer code. We
use single bit teleportations to transfer between two different forms of quantum
logic, allowing for a linear saving in resources compared to a general cnot

construction. This scheme exploits the fact that entanglement is easy to create
with coherent cat states, such as |α〉 + |αeiθ〉, and single qubit operations are
easily performed on polarisation logic.

The relative ease with which we can transfer between different forms of
quantum logic prompts the next point addressed in this chapter: whether we
can perform a universal set of gates on qubus by using single qubit teleportation
gates. In Section 5.3 we show that a coherent state computation scheme using
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single qubit teleportation gates is the most efficient to date.
A question that naturally arises when looking at single bit teleportations for

qubus computation is whether large entangled states, such as cluster states [44,
46, 47], could be produced efficiently. In Section 5.4 we show how we can ef-
ficiently construct large cluster states using single bit teleportations. In both
Section 5.3 and 5.4 we analyse a non-ideal choice of system parameters and pro-
pose a method to boost the gate performance under such a choice of parameters.

5.1 Fault Tolerant Stabilizer Measurement with

Controlled Rotations

In Section 4.1 we described a scheme to measure the syndromes of any stabilizer
code by measuring the parity of n qubits. This scheme involved only one coher-
ent probe beam coupled to our encoded state via controlled rotations. While
only using one probe beam has practical advantages, it does not allow for a
fault tolerant measurement of stabilizer syndromes. Since this coherent probe
beam is coupled to more than one of the physical qubits, there is the possibility
that a single error on the probe beam could cause a number of errors on the
physical qubits that is greater than the number of errors the code can correct.
For example, the probe beam may suffer a photon loss error [109] during one of
the controlled rotations. This single error could then propagate to many phase
errors on the physical qubits.

To find a fault tolerant method to measure the syndromes for any sta-
bilizer code using qubus computation we use the scheme first proposed by
Shor [21], shown in Fig. 5.1. This scheme incorporates Greenberger-Horne-
Zeilinger (GHZ) ancilla states (|0〉⊗n + |1〉⊗n) /

√
2 with cnot and Hadamard

gates to fault tolerantly measure the generators of any stabilizer group. A single
error on any one of the ancilla modes leads to at most one error on our encoded
state. Fig. 5.1 shows the measurement of the Pauli operator ZZZZ, which as
mentioned in Section 4.1.1, is equivalent to measuring the parity of the four
qubits.
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Figure 5.1: Measures the parity of four qubits [21].

To measure the stabilizer group generators of a QEC code with controlled ro-
tations fault tolerantly, we modify the fault tolerant circuit proposed by Shor [21]
by replacing the ancilla GHZ state with a coherent cat state

(
|α〉⊗n + |αeiθ〉⊗n

)
/
√

2.
Since the ancilla modes are now coherent probe beams, we also need to modify
the Hadamard and cnot gates as well as the Z basis qubit measurements.

In Fig. 5.2 we show Fig. 5.1 modified to measure the parity of four qubits
with controlled rotations fault tolerantly. We have replaced the cnot gates with
controlled rotations. It is worth noting that the substitution of a cnot gate with
a single controlled rotation is only valid here since the probe beam is measured
immediately after the controlled rotation. We have replaced the Hadamard
gates with gates that induce a Hadamard transformation on |α〉, |αeiθ〉 logic.
That is:

H̃|α〉 =
1√
2

(
|α〉+ |αeiθ〉

)
(5.1)

H̃|αeiθ〉 =
1√
2

(
|α〉 − |αeiθ〉

)
.

To measure the parity of the 4 qubits in Fig. 5.2 we need to distinguish between
|α〉 and |αe±iθ〉, labelled as a Z̃. We can use homodyne detection on the probe
beam, in which case we would require αθ2 � 1, or we can displace by D(−α)
and perform a photon number detection on the probe beam, in which case we
would require αθ � 1. In either case, we can only distinguish between |α〉 and
|αe±iθ〉, |αe±iθ〉 are indistinguishable. This type of measurement is essential to
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Figure 5.2: A modified version on Fig. 5.1 to measure the parity of four qubits with controlled

rotations fault tolerantly.

detect the parity.
As in Section 4.1, when measuring the ZZZZ syndrome for the [[7, 1, 3]]

stabilizer code [105], an even parity measurement indicates no error and an odd
parity measurement indicates the presence of a single X error. We have two
cases to consider:

c0|0000〉+ c1|1100〉+ c2|0011〉+ c3|1001〉+ c4|0110〉+ c5|1010〉+ c6|0101〉+ c7|1111〉
(5.2)

d0|1000〉+ d1|0100〉+ d2|0010〉+ d3|0001〉+ d4|0111〉+ d5|1011〉+ d6|1101〉+ d7|1110〉
(5.3)

where c0, · · · , c15 and d0, · · · , d15 are arbitrary. After the application of the H̃
operations in Fig. 5.2, the probe beams become

1√
2

(
|α, α, α, α〉+ |α, α, αeiθ, αeiθ〉+ |αeiθ, αeiθ, α, α〉+ |αeiθ, α, α, αeiθ〉

+ |α, αeiθ, αeiθ, α〉+ |αeiθ, α, αeiθ, α〉+ |α, αeiθ, α, αeiθ〉+ |αeiθ, αeiθ, αeiθ, αeiθ〉
)
.

(5.4)

Each of the even states in Eqn. 5.2 leaves the probe beam in Eqn. 5.4 unal-
tered as far as the Z measurement is concerned. However, there will be phase
shifts associated with measuring the probe beams via homodyne or photon
number detection. We can identify these phase shifts by considering each of the
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states in Eqn. 5.2 separately, as shown in Table 5.1, where the probe beam after
the controlled rotations is of the form:

1√
2

(
|α, α, α, α〉+ |α, α, αeg1iθ, αeg2iθ〉+ |αeg3iθ, αeg4iθ, α, α〉+ |αeg5iθ, α, α, αeg6iθ〉

+ |α, αeg7iθ, αeg8iθ, α〉+ |αeg9iθ, α, αeg10iθ, α〉+ |α, αeg11iθ, α, αeg12iθ〉

+ |αeg13iθ, αeg14iθ, αeg15iθ, αeg16iθ〉
)
. (5.5)

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16

c0 + + + + + + + + + + + + + + + +

c1 + + - - - + - + - + - + - - + +

c2 - - + + + - + - + - + - + + - -

c3 + - - + - - + + - + + - - + + -

c4 - + + - + + - - + - - + + - - +

c5 - + - + - + + - - - + + - + - +

c6 + - + - + - - + + + - - + - + -

c7 - - - - - - - - - - - - - - - -

Table 5.1: Shows the effect each of the even states in Eqn. 5.2, represented by the coefficients

c0, · · · , c7, has on the ancilla probe beams after the controlled rotations in Fig 5.2. The

coefficients g1, · · · , g16 refer to the sign on the induced coherent state phase in Eqn. 5.5.

As is evident from Eqn. 5.5, there will be 8 possible measurement outcomes
when there is no error on our code block in Fig. 5.2. When we homodyne
detect along the x-direction an outcome with x > x0 indicates |α〉 and an
outcome with x < x0 indicates |αe±iθ〉, where x0 = α (1 + cos(θ)). The 8
possible measurements with the associated phases for homodyne detection are
given by
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|α, α, α, α〉 : c0|0000〉+ c1|1100〉+ c2|0011〉+ c3|1001〉+ c4|0110〉+ c5|1010〉

+ c6|0101〉+ c7|1111〉 (5.6)

|α, α, αe±iθ, αe±iθ〉 : e2iφ(x) (c0|0000〉+ c1|1100〉) + e−2iφ(x) (c2|0011〉+ c7|1111〉)

+ c3|1001〉+ c4|0110〉+ c5|1010〉+ c6|0101〉

|αe±iθ, αe±iθ, α, α〉 : e2iφ(x) (c0|0000〉+ c2|0011〉) + e−2iφ(x) (c1|1100〉+ c7|1111〉)

+ c3|1001〉+ c4|0110〉+ c5|1010〉+ c6|0101〉

|αe±iθ, α, α, αe±iθ〉 : e2iφ(x) (c0|0000〉+ c4|0110〉) + e−2iφ(x) (c3|1001〉+ c7|1111〉)

+ c1|1100〉+ c2|0011〉+ c5|1010〉+ c6|0101〉

|α, αe±iθ, αe±iθ, α〉 : e2iφ(x) (c0|0000〉+ c3|1001〉) + e−2iφ(x) (c4|0110〉+ c7|1111〉)

+ c1|1100〉+ c2|0011〉+ c5|1010〉+ c6|0101〉

|αe±iθ, α, αe±iθ, α〉 : e2iφ(x) (c0|0000〉+ c6|0101〉) + e−2iφ(x) (c5|1010〉+ c7|1111〉)

+ c1|1100〉+ c2|0011〉+ c3|1001〉+ c4|0110〉

|α, αe±iθ, α, αe±iθ〉 : e2iφ(x) (c0|0000〉+ c5|1010〉) + e−2iφ(x) (c6|0101〉+ c7|1111〉)

+ c1|1100〉+ c2|0011〉+ c3|1001〉+ c4|0110〉

|αe±iθ, αe±iθ, αe±iθ, αe±iθ〉 : e4iφ(x)c0|0000〉+ c1|1100〉+ c2|0011〉+ c3|1001〉+ c4|0110〉

+ c5|1010〉+ c6|0101〉+ e−4iφ(x)c7|1111〉

where φ(x) = α sin(θ)
(
x− 2α cos(θ)

)
.

Each of the odd states in Eqn. 5.3 leaves the probe beam in Eqn. 5.4 in the
form:

1√
2

(
|αeh1iθ, α, α, α〉+ |α, αeh2iθ, α, α〉+ |α, α, αeh3iθ, α〉+ |α, α, α, αeh4iθ〉

+ |α, αeh5iθ, αeh6iθ, αeh7iθ〉+ |αeh8iθ, α, αeh9iθ, αeh10iθ〉+ |αeh11iθ, αeh12iθ, α, αeh13iθ〉

+ |αeh14iθ, αeh15iθ, αeh16iθ, α〉
)
, (5.7)

which, as far as the Z measurement is concerned, is identical for each of the
odd states. The phase shifts associated with measuring the probe beams via
homodyne or photon number detection can be identified by considering each of
the states in Eqn. 5.3 separately, as shown in Table 5.2.

When there is a single X error on our code block in Fig. 5.2, there will be 8
possible measurement outcomes, each of which can be obtained from Eqn. 5.7.
The 8 possible measurements with the associated phases for homodyne detection
are given by
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h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

d0 - + + + + + + - + + - + + - + +

d1 + - + + - + + + + + + - + + - +

d2 + + - + + - + + - + + + + + + -

d3 + + + - + + - + + - + + - + + +

d4 + - - - - - - + - - + - - + - -

d5 - + - - + - - - - - - + - - + -

d6 - - + - - + - - + - - - - - - +

d7 - - - + - - + - - + - - + - - -

Table 5.2: Shows the effect each of the odd states in Eqn. 5.3, represented by the coefficients

d0, · · · , d7, has on the ancilla probe beams after the controlled rotations in Fig 5.2. The

coefficients h1, · · · , h16 refer to the sign on the induced coherent state phase in Eqn. 5.7.

|αe±iθ, α, α, α〉 : e−iφ(x) (d0|1000〉+ d5|1011〉+ d6|1101〉+ d7|1110〉)
(5.8)

+ eiφ(x) (d1|0100〉+ d2|0010〉+ d3|0001〉+ d4|0111〉)

|α, αe±iθ, α, α〉 : e−iφ(x) (d1|0100〉+ d4|0111〉+ d6|1101〉+ d7|1110〉)

+ eiφ(x) (d0|1000〉+ d2|0010〉+ d3|0001〉+ d5|1011〉)

|α, α, αe±iθ, α〉 : e−iφ(x) (d2|0010〉+ d4|0111〉+ d5|1011〉+ d7|1110〉)

+ eiφ(x) (d0|1000〉+ d1|0100〉+ d3|0001〉+ d6|1101〉)

|α, α, α, αe±iθ〉 : e−iφ(x) (d3|0001〉+ d4|0111〉+ d5|1011〉+ d7|1110〉)

+ eiφ(x) (d0|1000〉+ d1|0100〉+ d2|0010〉+ d7|1110〉)

|αe±iθ, α, e±iθαe±iθ, α〉 : e−iφ(x) (d4|0111〉+ d5|1011〉+ d6|1101〉) + e−3iφ(x)d7|1110〉

+ eiφ(x) (d0|1000〉+ d1|0100〉+ d2|0010〉) + e3iφ(x)d3|0001〉

|αe±iθ, αe±iθ, α, αe±iθ〉 : e−iφ(x) (d4|0111〉+ d5|1011〉+ d7|1110〉) + e−3iφ(x)d6|1101〉

+ eiφ(x) (d0|1000〉+ d1|0100〉+ d3|0001〉) + e3iφ(x)d2|0010〉

|αe±iθ, α, αe±iθ, αe±iθ〉 : e−iφ(x) (d4|0111〉+ d6|1101〉+ d7|1110〉) + e−3iφ(x)d5|1011〉

+ eiφ(x) (d0|1000〉+ d2|0010〉+ d3|0001〉) + e3iφ(x)d1|0100〉

|α, αe±iθ, αe±iθ, αe±iθ〉 : e−iφ(x) (d5|1011〉+ d6|1101〉+ d7|1110〉) + e−3iφ(x)d4|0111〉

+ eiφ(x) (d1|0100〉+ d2|0010〉+ d3|0001〉) + e3iφ(x)d0|1000〉.

The phases in Eqns. 5.6 and 5.8 can be corrected by applying the phase shifter
e2iφ(x) to each mode in the code block corresponding to a homodyne measure-
ment with x < x0.

When the coherent probe beam is displaced by D(−α) and a photon number
detection is performed, there will be phases associated with measuring an odd
number of photons, as described in Section 2.8.6. We can perform a similar
analysis to Eqns. 5.6 and 5.8 to show that the −1 phase factor can be corrected
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by applying the phase shifter eiπ to each mode in the code block corresponding
to the detection of an odd number of photons.

We can extend the party measurement of 4 qubits in Fig. 5.2 to the parity
measurement of n qubits by using the coherent probe beam

(
|α〉⊗n + |αeiθ〉⊗n

)
/
√

2
in conjunction with n H̃ gates, n controlled rotations and n Z̃ measurements. As
we described in Section 4.1.1, this provides a method to measure the syndromes
for any stabilizer code.

Before we can claim that the generalisation of Fig. 5.2 can measure the
parity of n qubits we need to provide a method of preparing the ancilla state(
|α〉⊗n + |αeiθ〉⊗n

)
/
√

2 and a method to induce the gate H̃ on |α〉, |αeiθ〉 logic.

5.1.1 Ancilla State Preparation

Consider the circuit shown in Fig. 5.3

θ
√

nα

0 + 1
√

2

Figure 5.3: Circuit to construct |
√
nα〉 ± |eiθ√nα〉. The polariser transforms |0〉 →

(|0〉+ |1〉/
√

2 and |1〉 → (−|0〉+ |1〉/
√

2.

After we detect the polarisation in the H/V basis we have the state |
√
nα〉±

|eiθ
√
nα〉. If this state is incident on an n-port symmetric beam splitter, where

the other n− 1 input ports are the vacuum, the output is the cat state(
|α〉⊗n ± |αeiθ〉⊗n

)
/
√

2 [110, 111].
The −1 phase factor resulting from measuring |0〉 in Fig. 5.3 would ideally

be corrected before we use the n port beam splitter. However, applying a Pauli
Z gate on |α〉, |αeiθ〉 logic such that Z̃|α〉 = |α〉 and Z̃|αeiθ〉 = −|αeiθ〉, is
difficult. We can avoid explicitly applying Z̃ by keeping track of this necessary
correction, which is called the Pauli frame [112, 113], compensating for it in
subsequent measurements.

In order for the generalisation of the scheme presented Fig. 5.2 to be truly
fault tolerant we need to verify that our cat state output from the n port beam
splitter is error free using techniques outlined in [25], as discussed in [52].

5.1.2 Hadamard Gates on |α〉, |αeiθ〉 Logic

We can construct the H̃ gate defined in Eqn. 5.1 by using single bit telepor-
tations [108]. In Fig. 5.4 we show two teleportation schemes using controlled
rotations.
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In Fig. 5.4(a) we teleport from polarisation logic to |α〉, |αeiθ〉 logic. Directly
before the X basis measurement on the polarisation qubit we have

|+〉
(
c0|α〉+ c1|αeiθ〉

)
+ |−〉

(
c0|α〉 − c1|αeiθ〉

)
. (5.9)

If we measure |−〉 we need to perform a Z̃ correction, as with the ancilla cat
state preparation.

In Fig. 5.4(b) we teleport from |α〉, |αeiθ〉 logic into polarisation. Directly
before the Z̃ measurement on the probe beam we have

1√
2

(c0|0〉+ c1|1〉) |α〉+
1√
2

(
c0|1〉|αe−iθ〉+ c1|0〉|αeiθ〉

)
. (5.10)

After we measure the probe beam we need to perform an X correction when we
either homodyne detect x < x0 or measure a number of photons greater than
0. This X correction is easily performed on polarisation logic.

θ Z

X

α

−θ Z

X0 + 1
√

2

(a)

(b)

c0 0 + c1 1

c0 α + c1 αe
iθ

Figure 5.4: One bit teleportations [108] using controlled rotations. (a) Teleports from

polarisation logic to |α〉, |αeiθ〉 logic. (b) Teleports from |α〉, |αeiθ〉 logic to polarisation.

To perform the H̃ gates in Fig. 5.2 we first teleport each probe beam into
polarisation logic using Fig 5.4(b). We perform the Hadamard gate on the po-
larisation qubits and then teleport back to the |α〉, |αeiθ〉 logic using Fig 5.4(a).
We do not need to perform the Z̃ corrections since we use the Pauli frame.

5.1.3 Resource Comparison

The resources required to measure a weight n Pauli operator are 3n+1 controlled
rotations, n+1 ancillary photons, 2n Z̃ measurements and n+1 photon number
measurements.

If we were to directly implement Shor’s circuit in Fig. 5.1 with the qubus
cnot gate described in Section 2.8.4 [49], we would require 4(2n−1) controlled
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rotations, 2(2n−1) Z̃ measurements, 2n−1 ancillary photons and 2n−1 photon
number measurements to measure a weight n Pauli operator. This is due to
the fact that each qubus cnot requires 4 controlled rotations, 1 single photon
ancilla, 1 single photon measurement and 2 Z̃ measurements. And we require
n− 1 cnot gates to construct the GHZ state in addition to the n required for
the parity measurement.

By using coherent cat states in the place of the GHZ states in Shor’s fault
tolerant scheme we find we require 5(n− 1) fewer controlled rotations, 2(n− 1)
fewer Z̃ measurements, n− 2 fewer ancillary photons and n− 2 photon number
measurements. This is a linear saving in resources, which is significant for
physical implementations.

5.2 Single bit teleportations

In this Section we analyse the performance of the single bit teleportations in
Fig. 5.4 under non-ideal values of α and θ. We quantify the performance by
calculating the process fidelity, described in Section 2.3. These results will be
the basis for the fidelity calculations in Section 5.3 when we construct a universal
set of gates on |α〉, |αeiθ〉 logic and in Section 5.4 when construct cluster states
using single bit teleportations.

When we calculate the process fidelity for Fig. 5.4(a) we consider the first
mode of the maximally entangled state (|00〉+ |11〉) /

√
2 incident on the polar-

isation mode. This state becomes

|ψ±〉 =
1√
2

(
|0, α〉 ± |1, αeiθ〉

)
(5.11)

where the ± depends on the polarisation x−basis measurement outcome. Even
when the values of α and θ are such that either αθ2 6� 1 or αθ 6� 1, the process
fidelity is 1.

When we calculate the process fidelity for Fig. 5.4(b) we at first consider the
first mode of the state

(
|α, α〉+ |αeiθ, αeiθ〉

)
/
√

2 incident on the probe beam
mode. However, since

|〈α|αeiθ〉|2 = e−2|α|2(cos(θ)−1) ≈ e−|α|
2θ2

for small θ, (5.12)

when αθ 6� 1,
(
|α, α〉+ |αeiθ, αeiθ〉

)
/
√

2 is not a maximally entangled state.
For this reason we instead consider the first mode of the state(

|α, 0〉+ |αeiθ, 1〉
)
/
√

2 (5.13)

incident on the probe beam mode in Fig. 5.4(b). Eqn. 5.13 is also not a
maximally entangled state, but it is as close as we can get when we assume
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|〈α|αeiθ〉|2 6≈ 0. Ideally, we would expect the output to be the maximally en-
tangled state (|00〉+ |11〉) /

√
2. When we do not place any restrictions on α

and θ, the state output from Fig. 5.4(b) is the unnormalised state

|ψ1〉 =
f(x, α)

2
(|00〉+ |11〉) +

f(x, α cos(θ))
2

(
eiφ(x)|01〉+ e−iφ(x)|10〉

)
, (5.14)

where f(x, β) and φ(x) are as defined in Eqns. 2.51 and 2.52, respectively,
and we assume Z̃ is a homodyne measurement. When we measure x > x0 =
α (1 + cos(θ)) no correction is necessary, when we measure x < x0, we apply
a phase shifter e−iφ(x) to mode 1 followed by a polarisation bit flip. The nor-
malised output, averaged over all x outcomes is given by

ρ1 =
∫ ∞

x0

|ψ1〉〈ψ1|dx+
∫ x0

−∞

(
U1 ⊗ 1l

)
|ψ1〉〈ψ1|

(
U†

1 ⊗ 1l
)
dx (5.15)

where U1 corresponds to the single qubit corrections necessary when we mea-
sure x < x0. In the case that αθ2 � 1 this would simply be that state
(|00〉+ |11〉) /

√
2. Given that∫ ∞

x0

(f(x, α))2 dx =
∫ x0

−∞
(f(x, α cos(θ)))2 dx =

1
2

Erfc
[
− xd

2
√

2

]
∫ ∞

x0

(f(x, α cos(θ)))2 dx =
∫ x0

−∞
(f(x, α))2 dx =

1
2

Erfc
[
xd

2
√

2

]
(5.16)

where xd = 2α(1 − cos(θ)) ≈ αθ2 for small θ, the process fidelity is calculated
to be

F1(xd) =
1
2

(
1 + Erf

[
xd

2
√

2

])
. (5.17)

This process fidelity is shown in Fig. 5.5. When xd approaches 0 the output from
our single bit teleportation circuit in Fig. 5.4(b) is the maximally mixed state,
indicated in Fig. 5.5 by the process fidelity of 1/2. As xd increases, the distance
between the peaks for the curves f(x, α) and f(x, α cos(θ)) increases, leading to
more efficient homodyne detection and a process fidelity that approaches 1.

5.2.1 Post-selected teleportation

To deal with the xd 6� 1 case, we can post-select the homodyne measurement
result to increase the process fidelity, at the expense of reducing the success
probability. This involves ignoring homodyne measurement outcomes that are
close to x0. That is, we only allow homodyne measurement outcomes that are
greater than x0 +y or less than x0−y. The normalised output from Fig. 5.4(b),
given that the first mode of Eqn. 5.13 is incident on the probe beam mode, is
given by

ρ2 =
ρ′2

Tr [ρ′2]
(5.18)
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Figure 5.5: Process fidelity F1(xd) for the single bit teleportation in Fig. 5.4(b) as a function

of xd.

where

ρ′2 =
∫ ∞

x0+y

|ψ1〉〈ψ1|dx+
∫ x0−y

−∞

(
U1 ⊗ 1l

)
|ψ1〉〈ψ1|

(
U†

1 ⊗ 1l
)
dx. (5.19)

Given that∫ ∞

x0+y

(f(x, α))2 dx =
∫ x0−y

−∞
(f(x, α cos(θ)))2 dx =

1
2

Erfc
[

2y − xd

2
√

2

]
∫ ∞

x0+y

(f(x, α cos(θ)))2 dx =
∫ x0−y

−∞
(f(x, α))2 dx =

1
2

Erfc
[

2y + xd

2
√

2

]
, (5.20)

the probability of success and conditional process fidelity are calculated to be

P2(xd, y) =
1
2

(
Erfc

[
2y − xd

2
√

2

]
+ Erfc

[
2y + xd

2
√

2

])
(5.21)

F2(xd, y) =
Erfc

[
2y−xd

2
√

2

]
Erfc

[
2y−xd

2
√

2

]
+ Erfc

[
2y+xd

2
√

2

] .
In the case that y = 0, P2(xd, 0) = 1 and F2(xd, 0) = F1(xd). In Fig. 5.6
we show a range contour lines for F2(xd, y) and P2(xd, y). For example, when
xd = 2 and y = 0.4, we have a process fidelity of 0.9 and success probability of
0.8.

We consider the limit of y →∞ for both P2(xd, y) and F2(xd, y):

lim
y→∞

P2(xd, y) = 0 (5.22)

lim
y→∞

F2(xd, y) =
1

1 +
Erfc

h
2y+xd
2
√

2

i
Erfc

h
2y−x

2
√

2

i
= 1
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where

lim
y→∞

Erfc [y ± x] = 0 (5.23)

lim
y→∞

Erfc [y + x]
Erfc [y − x]

= 0

for x > 0. This is as expected since when we ignore an increasing range of
homodyne outcomes, no matter how low xd has become, we will eventually
start accepting homodyne results from the tails of the Gaussian curves f(x, α)
and f(x, α cos(θ)). In the limit of y →∞ we effectively ignore all measurement
results, leading to a 0 success probability.
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Figure 5.6: Contour lines for the process fidelity F2(xd, y) (in red) and the success proba-

bility P2(xd, y) (in blue) for the post-selected single bit teleportation in Fig. 5.4(b).
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5.3 Universal Computation with Qubus Logic

In [114, 111, 110] a scheme to implement a universal set of gates on coherent
state logic defined by |0〉L = |−α′〉 and |1〉L = |α′〉 was shown. This scheme
used partial Bell state measurements and a resource of cat states. To perform a
universal set of gates a total of 16 ancilla cat states are necessary. When α′ ≥ 2,
the qubits |−α′〉 and |α′〉 are approximately orthogonal since |〈α′| − α′〉|2 =
e−4α′2 ≤ 10−6.

Using the single bit teleportations in Fig. 5.4 we can implement a universal
set of gates on what we term qubus logic, defined by |0〉L = |α〉 and |1〉L =
|αe±iθ〉, where as mentioned previously, the measurement Z̃ cannot distinguish
|αeiθ〉 from |αe−iθ〉. Qubits defined in this way are approximately orthogonal
provided αθ � 1, since |〈α|eiθα〉|2 = e−2|α|2(cos θ−1) ≈ e−|α|

2θ2
, for small θ. If

αθ ≥ 3.4, then |〈α|eiθα〉|2 ≤ 10−6. Qubus qubits are equivalent to coherent
state qubits since a displacement and a phase shifter can convert between the
two types of logic. That is, an arbitrary qubit d0|α〉+ d1|αeiθ〉 can be displaced
by D(−α cos

(
θ
2

)
ei θ

2 ) to give

d0|α
(
1− ei θ

2 cos(θ/2)
)
〉+ d1e

i
2 α2 sin(θ)|α

(
eiθ − ei θ

2 cos(θ/2)
)
〉. (5.24)

We know from Section 2.1.5 that a phase shifter takes |α〉 to |eiφα〉, so we can ap-
ply the phase shifter e

i
2 (π−θ) to Eqn. 5.24 to get d0|α sin

(
θ
2

)
〉+d1e

i
2 α2 sin(θ)|−α sin

(
θ
2

)
〉.

To transform qubus encoding into coherent state encoding we require α′ =
α sin

(
θ
2

)
≈ αθ/2, for small θ. The e

i
2 α2 sin(θ) phase factor can be taken care of

once we use a single bit teleportation, as will be explained in the next Section.
If α′ ≥ 2 then we require αθ ≥ 4, which is already satisfied by the orthogonality
condition: αθ � 1.

We compare the qubus encoding scheme with the coherent state encoding
scheme by counting the number of controlled rotations we require per gate.
This is fair comparison since the cat state ancillas required in the coherent state
scheme, (|−α′〉+ |α′〉)/

√
2, can be constructed using Fig. 5.4(a) with c0 = c1 =

1/
√

2 and α′ = α
√

(1− cos(θ))/2 ≈ αθ/2. We therefore consider the 16 ancilla
cat states required in [111] for a universal set of gates to be equivalent to 16
controlled rotations.

As mentioned in Section 2.5.2, a universal set of gates comprises of all single
qubit rotations and an entangling gate, such as the csign gate. In the next
Section we will describe a method to perform any single qubit gate on qubus
qubits. In Section 5.3.2 we describe a method to perform a csign on qubus
qubits.
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5.3.1 Single Qubit Gates

We can perform an arbitrary single qubit unitary U to the qubit d0|α〉+d1|αeiθ〉
by first teleporting the from qubus logic into polarisation, applying the unitary
U to the polarisation qubit and then teleporting back to qubus logic, as shown
in Fig. 5.7. When we perform the second single bit teleportation we will need to
correct for a Z̃ qubus logic error half of the time. This can be delayed until we
teleport to polarisation logic for the next single qubit operation. If it happens
that this single qubit rotation is the last step of an algorithm, we know that this
Z̃ error will not effect the outcome of a homodyne measurement, so in this case
this correction can be ignored. To perform an arbitrary single qubit unitary we
have only use two controlled rotations.

−θ Z

X0 + 1
√

2

d0 α + d1 αe
iθ

U X

θα

Figure 5.7: Applies an arbitrary single qubit unitary to the qubit d0|α〉+ d1|αeiθ〉.

As in [111], to perform a bit flip we can simply apply the phase shifter e−iθ

to convert d0|α〉+ d1|αeiθ〉 to d0|αe−iθ〉+ d1|α〉.
In case that xd 6� 1, only the first teleportation in Fig. 5.7 is affected, so

we can quantify the gate performance as in Section 5.2, increasing the process
fidelity via post-selection as in Section 5.2.1.

5.3.2 Two Qubit Gates

We can perform a csign gate between the qubus qubits d0|α〉 + d1|αeiθ〉 and
h0|α〉+ h1|αeiθ〉 by first teleporting them onto the entangled polarisation state
1
2 (|00〉+ |01〉+ |10〉 − |11〉) = (1l⊗H) (|00〉+ |11〉) /

√
2 and then teleporting

back into qubus logic. This is shown in Fig. 5.8. Directly before we measure
the polarisation qubits in the x−basis we have

1
2
|++〉

(
c0h0|α, α〉+ c0h1|α, αeiθ〉+ c1h0|αeiθ, α〉 − c1h1|αeiθ, αeiθ〉

)
(5.25)

+
1
2
|+−〉

(
c0h0|α, α〉 − c0h1|α, αeiθ〉+ c1h0|αeiθ, α〉+ c1h1|αeiθ, αeiθ〉

)
+

1
2
|−+〉

(
c0h0|α, α〉+ c0h1|α, αeiθ〉 − c1h0|αeiθ, α〉+ c1h1|αeiθ, αeiθ〉

)
+

1
2
|−−〉

(
c0h0|α, α〉 − c0h1|α, αeiθ〉 − c1h0|αeiθ, α〉 − c1h1|αeiθ, αeiθ〉

)
.
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As in the single qubit unitary case, we may need to perform a Z̃ corrections to
the resulting qubus state depending on the polarisation measurement outcome,
however this can be delayed until the next time we teleport into polarisation.

The entangled polarisation resource state (|00〉+ |11〉) /
√

2 can be constructed
by first constructing the state

(
|α, α〉+ |αeiθ, αeiθ〉

)
/
√

2, as in Section 5.1.1,
then teleporting each mode using Fig. 5.4(b) into polarisation. This process
requires three controlled rotations.

To apply a csign gate to qubus qubits we have used a total seven controlled
rotations.

−θ Z

X

d0 α + d1 αe
iθ

X

θα

h0 α + h1 αe
iθ

1

2
( 00 + 01 + 10 − 11 )

X

−θ Z

X

α θ

{

Figure 5.8: Applies a csign gate between the qubits d0|α〉+ d1|αeiθ〉 and h0|α〉+ h1|αeiθ〉.

We quantify the effect the condition xd 6� 1 has on Fig. 5.8 by considering
the first two modes of the state

1
2
(
|α, α〉|00〉+ |α, αeiθ〉|01〉+ |α, eiθα〉|10〉+ |αeiθ, αeiθ〉|11〉

)
(5.26)

incident on the left hand probe beam modes. Since the condition xd 6� 1 only
affects the homodyne detections, we only need to consider teleporting the first
two modes of Eqn. 5.26 onto the polarisation state 1

2 (|00〉+ |01〉+ |10〉 − |11〉).
This is given by

|ψ3〉 =
1
4

{
f(x, α)f(x′, α) (|00〉|00〉+ |01〉|01〉+ |10〉|10〉 − |11〉|11〉) (5.27)

+ f(x, α)f(x′, α cos(θ))
(
e−iφ(x′) (|01〉|00〉 − |11〉|10〉) + eiφ(x′) (|00〉|01〉+ |10〉|11〉)

)
+ f(x, α cos(θ))f(x′, α)

(
e−iφ(x) (|10〉|00〉 − |11〉|01〉) + eiφ(x) (|00〉|10〉+ |01〉|11〉)

)
+ f(x, α cos(θ))f(x′, α cos(θ))

(
ei(φ(x)+φ(x′))|00〉|11〉+ ei(φ(x)−φ(x′))|01〉|10〉

+ei(φ(x′)−φ(x))|10〉|01〉 − e−i(φ(x)+φ(x′))|11〉|00〉
)}

where x and x′ correspond to outcomes of the top and bottom homodyne detec-
tions in Fig. 5.8. Since there are two homodyne detections we need to consider
the four cases: (i) x > x0 and x′ > x0 with no correction; (ii) x > x0 and
x′ < x0 with the correction U2 = 1l ⊗ Z2φ(x′)X; (iii) x < x0 and x′ > x0 with
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the correction U3 = Z2φ(x)X ⊗ 1l; (iv) x < x0 and x′ < x0 with the correction
U4 = Z2φ(x)X ⊗ Z2φ(x′)X. The normalised output is given by

ρ3 =
∫ ∞

x0

∫ ∞

x0

|ψ3〉〈ψ3|dxdx′ +
∫ ∞

x0

∫ x0

−∞
(1l⊗ U2) |ψ3〉〈ψ3|

(
1l⊗ U†

2

)
dxdx′

+
∫ x0

−∞

∫ ∞

x0

(1l⊗ U3) |ψ3〉〈ψ3|
(

1l⊗ U†
3

)
dxdx′ (5.28)

+
∫ x0

−∞

∫ x0

−∞
(1l⊗ U4) |ψ3〉〈ψ3|

(
1l⊗ U†

4

)
dxdx′.

When xd � 1 we expect Eqn. 5.26 to be transformed to

1
2

(|00〉|00〉+ |01〉|01〉+ |10〉|10〉 − |11〉|11〉) . (5.29)

Using Eqns. 5.28, 5.29 and 5.16 we calculate the process fidelity to be

F3 =
1
4
(
1 + Erf

[
xd

2
√

2

])2
. (5.30)

This process fidelity is shown in Fig. 5.9. To improve this process fidelity we can
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Figure 5.9: Process fidelity F3(xd) for the csign gate in Fig. 5.8 as a function of xd.

post-select the homodyne detections, as in Section 5.2.1. When we only allow
homodyne outcomes greater than x0 + y or less than x− − y, the normalised
output becomes

ρ4 =
ρ′4

Tr [ρ′4]
(5.31)

where

ρ′4 =
∫ ∞

x0+y

∫ ∞

x0+y

|ψ3〉〈ψ3|dxdx′ +
∫ ∞

x0+y

∫ x0−y

−∞
(1l⊗ U2) |ψ3〉〈ψ3|

(
1l⊗ U†

2

)
dxdx′

+
∫ x0−y

−∞

∫ ∞

x0+y

(1l⊗ U3) |ψ3〉〈ψ3|
(

1l⊗ U†
3

)
dxdx′ (5.32)

+
∫ x0−y

−∞

∫ x0−y

−∞
(1l⊗ U4) |ψ3〉〈ψ3|

(
1l⊗ U†

4

)
dxdx′.
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Using Eqn. 5.20 we calculate the probability of success and conditional process
fidelity to be

P4(xd, y) =
1
4

(
Erfc

[
2y − xd

2
√

2

]
+ Erfc

[
2y + xd

2
√

2

])2

(5.33)

F4(xd, y) =

 Erfc
[

2y−xd

2
√

2

]
Erfc

[
2y−xd

2
√

2

]
+ Erfc

[
2y+xd

2
√

2

]
2

.

In Fig. 5.10 we show a range contour lines for F4(xd, y) and P4(xd, y). For
example, when xd = 2.6 and y = 0.35, we have a process fidelity of 0.9 and
success probability of 0.8.

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

3

xd

y

0.1

0.25

0.5

0.8

0.99

0.9

0.99

0.999

0.9999

Figure 5.10: Contour lines for the process fidelity F4(xd, y) (in cyan) and the success

probability P4(xd, y) (in magenta) for the post-selected csign gate Fig. 5.8.
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5.3.3 Comparison

To perform a csign gate on qubus qubits we required seven controlled rotations,
three for the entanglement production and four for the gate operation. To
perform an arbitrary single qubit gate we required two controlled rotations. We
therefore need nine controlled rotations to perform an entangling two qubit gate
and an arbitrary single qubit rotation. This is in contrast to the sixteen ancilla
cat states required for the coherent state model in [114, 111, 110], requiring
eight for a csign and eight for an arbitrary single qubit gate.

5.4 Cluster state generation

In this Section we describe a method to produce cluster states [44]. We begin
by generalising the ancilla preparation state from Section 5.1.1 to prepare arbi-
trarily large polarisation GHZ states. Since GHZ states are locally equivalent
to star cluster states [115, 116], we can join these GHZ states using the cnot

gates from [49, 92], or the probabilistic fusion gates from [47], to produce cluster
states that would allow universal quantum computation.

At first glance we can simply produce GHZ states of arbitrary size using
controlled rotations and only one coherent probe beam, as shown in Fig. 5.11.
This is similar to the scheme by Jin et al. [117].

X Xα − 2
n−1

− 1 θ2
n−2

θθ 4θ 8θ2θ

· · ·

·
·
·

Figure 5.11: Produces an n qubit GHZ state.

If we have n copies of (|0〉 + |1〉)/
√

2 incident on Fig. 5.11, we see that
directly before we homodyne detect the probe beam, we have 2n−1 circles in
phase space. Homodyne detection will give 2n−1 outcomes, each needing one
or more bit flip corrections to produce the GHZ state (|0〉⊗n + |1〉⊗n)/

√
2. The

problem with this scheme is that it requires an exponential number of controlled
rotations. As n increases, the size of the required controlled rotations also
increases exponentially. For small n this is not an issue, however, if we consider
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θ ≈ 0.01, once n reaches 10 we would require controlled rotations, such as 2n−3θ,
on the order of π.

5.4.1 GHZ state production

In Section 5.1.1 we described a scheme to produce the state
(
|α〉⊗n + |αeiθ〉⊗n

)
/
√

2
using a single controlled rotation, a single photon ancilla in the state (|0〉+ |1〉) /

√
2

and the coherent state |
√
nα〉. If we now teleport each of the n modes using

Fig. 5.4(b), we obtain the state (|0〉⊗n + |1〉⊗n) /
√

2. We can think of this
process as transforming the state (|0〉+ |1〉) /

√
2 → (|0〉⊗n + |1〉⊗n) /

√
2. The

resources we have used to produce this n qubit GHZ state are n+ 1 controlled
rotations, n+1 single photon ancilla states, 1 photon detection and n homodyne
detections.

We quantify the effect the condition xd 6� 1 has on producing an n qubit
GHZ state by using the first mode of the maximally entangled state (|00〉+ |11〉) /

√
2

in conjunction with |
√
nα〉 to produce the state

(
|0〉⊗(n+1) + |1〉⊗(n+1)

)
/
√

2.
Given that the state output from the n single bit teleporters is a generalisation
of Eqn. 5.27, we calculate the process fidelity to be

F5(xd) =
1
2n

(
1 + Erf

[
xd

2
√

2

])n

. (5.34)

In Fig. 5.12 we show the process fidelity for the construction of GHZ states
of various sizes. Notice that as n increases, the process fidelity for a set xd

decreases. As the size of the GHZ state we wish to construct increases, the
condition xd 6� 1 takes a larger toll on the state production.
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Figure 5.12: Process fidelity F5(xd) for the construction of GHZ states. In red we show

F5(xd) for n = 3, in green we show F5(xd) for n = 6 and in blue we show F5(xd) for n = 9.

In a similar way to Eqn. 5.33, we can increase the process fidelity by post
selecting the homodyne measurements. We calculate the probability of success
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and conditional process fidelity to be

P6(xd, y) =
1
2n

(
Erfc

[
2y − xd

2
√

2

]
+ Erfc

[
2y + xd

2
√

2

])n

(5.35)

F6(xd, y) =

 Erfc
[

2y−xd

2
√

2

]
Erfc

[
2y−xd

2
√

2

]
+ Erfc

[
2y+xd

2
√

2

]
n

.

In Figs. 5.13 and 5.14 we show a range of contour lines for F6(xd, y) and P6(xd, y)
for the n = 3 and n = 9 cases, respectively. Notice that as we increase n, the
conditional process fidelity contours shift to the right, indicating the need for
higher xd values. As n increases, the success probability contours move to
the bottom right, indicating a reduction in success probability. This is due to
the fact that the negative effect post-selection has on the success probability
increases with n.
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Figure 5.13: Contour lines for the process fidelity F6(xd, y) (in green) and the success

probability P6(xd, y) (in yellow) for the post-selected construction of
`
|0〉⊗3 + |1〉⊗3

´
/
√

2.
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Figure 5.14: Contour lines for the process fidelity F6(xd, y) (in cyan) and the success

probability P6(xd, y) (in blue) for the post-selected construction of
`
|0〉⊗9 + |1〉⊗9

´
/
√

2.

The trend of the condition xd 6� 1 taking a larger toll on more complex
operations is shown in Fig. 5.15, where we show the process fidelity for the
single qubit teleportation in Fig. 5.4(b), the two qubit qubus gate in Fig. 5.8
and the n = 3 and n = 9 GHZ construction cases.
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Figure 5.15: (a) Process fidelity F1(xd) for the single bit teleportation in Fig. 5.4(b); (b)

Process fidelity F3(xd) for the qubus csign in Fig. 5.8; (c) Process fidelity F5(xd) for the

producing the GHZ state
`
|0〉⊗3 + |1〉⊗3

´
/
√

2; (d) Process fidelity F5(xd) for the producing

the GHZ state
`
|0〉⊗9 + |1〉⊗9

´
/
√

2

Fig. 5.16 shows that as the complexity of the system we consider increases,
we require higher values for xd. The success probability also suffers as the
complexity increases, since we require more post-selection for more complex
systems, leading to a negative impact on the success probability.
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Figure 5.16: Contour lines for a conditional process fidelity of 0.9 (solid lines) and a success

probability of 0.8 (dashed lines). The post-selected single bit teleportation in Fig. 5.4(b)

is shown in red, the post-selected qubus csign gate in Fig. 5.8 is shown in green, the

post-selected
`
|0〉⊗3 + |1〉⊗3

´
/
√

2 state production is shown in blue and the post-selected`
|0〉⊗9 + |1〉⊗9

´
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2 state production is shown in cyan.
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Chapter 6

Optical Quantum Zeno

Gate

In Section 2.9 we saw the Franson et al. proposal [50, 101] of how an evanescent
coupling of photonic qubits in a dual core optical fibre could be used to construct
an all optical csign. Unwanted two photon terms were a result of this evanescent
coupling and could be suppressed via the quantum Zeno effect [102]. This
involved breaking the optical fibre intoN segments and absorbing the two photon
terms in between each segment. As N approached ∞ we obtained a csign, up
to local phase gates and a swap operation, both easily performed on optical
qubits. The two photon absorption supplied the necessary non-linearity for the
optical qubits to interact.

The method by which we absorbed the two photon terms in Section 2.9 was
an ideal, artificial approach. We saw in Eqn. 2.146 that we manually eliminated
the two photon terms in between coupling segments. In a realistic model of this
gate, the two photon absorption must be modelled with the methods presented
in Section 2.1.7, that is, using a master equations similar to that in Eqn. 2.61.
This is the first aim of this Chapter, to model the optical Zeno gate presented
in [50, 101] with realistic two photon absorption.

In such a realistic scenario, single photon loss will be the dominant form of
decoherence [50, 101], something that cannot be ignored. As a naive example,
consider the state |11〉 incident on the optical Zeno gate in Section 2.9. After an
application of the interaction Hamiltonian in Eqn. 2.141 for a time t, this state
becomes a superpostition of |11〉, |20〉 and |02〉, as seen in Eqn. 2.142. If we
were to lose a single photon from either mode, we would have a density matrix
that now had terms such as |01〉〈01|, |10〉〈10| and |00〉〈00|. This means the the
basis state |11〉 could now be confused with the basis states |00〉, |01〉 or |10〉.
This adds to the first aim of this Chapter: to model the Zeno gate in [50, 101]
with both realistic two photon absorption and single photon loss. In [101] it was
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suggested that the two photon absorption could be made four to five orders of
magnitude greater than the single photon loss. Using this we want to examine
how close a realistic model for the optical Zeno gate is to an ideal csign. To
realistically model single photon loss we use a master equation similar to Eqn.
2.56 in Section 2.1.7. To measure the closeness we will use the process fidelity,
introduced in Section 2.3.

We model the optical Zeno gate with realistic two photon absorption and
single photon loss in two ways. First, to model continuous two photon and sin-
gle photon loss we solve a master equation containing terms for the evanescent
coupling, the two photon absorption and the single photon loss. This method
involves solving a set of coupled ordinary differential equations (ODEs). Sec-
ond, we break the system into N evanescently coupled segments. In between
each segment we model the single photon loss and two photon absorption via a
master equation. The coupled segments are modelled as weakly reflecting beam
splitters. To solve for the output of the N ′th beam splitter we need to solve a
set of recurrence equations along with the coupled ODEs from the first method.
This second approach is the more experimentally feasible method, being similar
to work done be Kwiat et al. [118].

The second aim of this Chapter is to show that the optical Zeno gate can
still succeed with a high fidelity once single photon loss is introduced. We do
this by encoding the optical qubits in two levels [48]. First, each qubit will
be encoded with the generalised parity code described in Section 2.7.6. Next,
these encoded parity qubits will be redundantly encoded. We will show that by
encoding out qubits in such a way we can indeed overcome the effects of single
photon loss such that our resource usage is much less than that required for an
equivalent LOQC scheme shown in [87].

6.1 Continuous Two Photon Absorption and Sin-

gle Photon Loss

In this Section we consider the Franson et al. [50, 101] optical Zeno csign gate
with realistic, continuous two photon absorption and single photon loss.

In Section 2.9 we showed the Franson et al. [50, 101] scheme to perform a
csign on the arbitrary two qubit state c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉, where
|c0|2 + |c1|2 + |c2|2 + |c3|2 = 1, |0〉 = |vac〉 and |1〉 = â†|vac〉. This gate acted
on single rail logic [119, 120], as opposed to the dual rail logic described in
Section 2.5.1. Since the desired gate is a csign and not a cnot, we could
equally well have applied it to modes 1 and 3 of the arbitrary two qubit dual
rail state c0|0101〉+ c1|0110〉+ c2|1001〉+ c3|1010〉. In this way we see that the
optical Zeno csign gate in [50, 101] can work on either single or dual rail logic.

The device we consider in this Section is shown in Fig. 6.1. Here we consider
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dual rail logic in the form of polarisation: |0〉L = |H〉 and |1〉L = |V 〉. If we
have the state c0|HH〉+ c1|HV 〉+ c2|V H〉+ c3|V V 〉 incident on Fig. 6.1, only
the state |V V 〉 will obtain a phase shift since this is the only state that has two
photons inside the interaction medium.

γ1γ2

γ1γ2

t

π

2

π

2

H

H

V

V

Figure 6.1: Key parameters of the system. The gate between the qubits is created by an

interaction between the vertical polarisation modes inside the device. The modes interact

with a strength ε, for a time t. While passing through the medium the modes undergo single

photon loss and two photon absorption with the rates γ1 and γ2, respectively. The whole

gate forms a dual-rail csign gate for polarisation encoded qubits while the region inside the

dashed box forms a single-rail encoded csign gate.

As in Section 2.9, we consider the evanescent coupling Hamiltonian

ĤI = ε(â†1â2 + â1â
†
2) (6.1)

where â1 (â2) is the annihilation operator for the top (bottom) mode in Fig.
6.1. This is just the beam splitter Hamiltonian given in Eqn. 2.29 in Section
2.1.5 with θ = εt and ϑ = 0 (φ = −π/2 in Eqn. 2.36).

Incorporating continuous two-photon absorption and single photon loss as
in Section 2.1.7 gives the master equation:

dρ

dt
= i

[
ρ, ĤI

]
+

2∑
j=1

γ
(j)
1

2
(2âjρâ

†
j − â†j âjρ− ρâ†j âj) +

2∑
j=1

γ
(j)
2

2
(2â2

jρâ
†2
j − â†2j â

2
jρ− ρâ†2j â

2
j )

= iε
(
ρâ†1â2 + ρâ†2â1 − â†1â2ρ− â†2â1ρ

)
+

2∑
j=1

γ
(j)
1

2
(2âjρâ

†
j − â†j âjρ− ρâ†j âj) (6.2)

+
2∑

j=1

γ
(j)
2

2
(2â2

jρâ
†2
j − â†2j â

2
jρ− ρâ†2j â

2
j )

where ρ ≡ ρ(t) is the density matrix at time t, γ(j)
2 describes the two photon

absorption in core j and γ
(j)
1 describes the single photon loss in core j. By

describing single photon loss and two photon absorption in this way we must
ensure that the Born-Markov approximation holds for our system. Single pho-
tons can be lost at any point in our system, and as such we expect single photon
loss to have a negligible effect on the state of the environment. Since single pho-
tons are scattered in any direction we do not expect the environment to have
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any memory of single photon loss events. If we could somehow arrange for
the environment to keep track of where and when single photons were lost we
could correct for this decoherence. We consider two photons to be absorbed by
a continuum of three level atoms as in [50], where the three energy levels are
such that a single photon cannot be absorbed. When two photons are absorbed
the atoms decay sufficiently rapidly such that the environment has no memory.
The photons resulting from this decay have a different frequency to our qubit
photons.

We simplify the system by assuming the two photon absorption in mode 1 is
equal to that in mode 2, similarly for the single photon loss: γ(1)

2 = γ
(2)
2 = γ2 and

γ
(1)
1 = γ

(2)
1 = γ1. We also parameterise the system by rescaling the interaction

time as t = τ/γ1 and introduce the scaled interaction strength κ = ε/γ1 and
ratio of two-photon absorption to single-photon loss γ = γ2/γ1. This gives the
master equation:

dρ

dτ
= iκ

(
ρâ†1â2 + ρâ†2â1 − â†1â2ρ− â†2â1ρ

)
+

1
2

2∑
j=1

(2âjρâ
†
j − â†j âjρ− ρâ†j âj) (6.3)

+
γ

2

2∑
j=1

(2â2
jρâ

†2
j − â†2j â

2
jρ− ρâ†2j â

2
j ).

In order to model a csign we set κτ = εt = π/2, as in Section 2.9. Our system
is now described by only two parameters: τ and γ.

Solving for a general ρ in Eqn. 6.3 is a difficult task. As mentioned in
Section 2.1.7, the general solutions for both the on- and off-diagaonal density
matrix elements for either the single photon loss master equation (κ = 0 and
γ

(1)
2 = γ

(2)
2 = 0 in Eqn. 6.2) or the two photon absorption master equation

(κ = 0 and γ(1)
1 = γ

(2)
1 = 0 in Eqn. 6.2) are well known. A general solution to a

master equation with both single photon loss and two photon absorption (κ = 0
in Eqn. 6.3) is not known. In [121, 66, 122], a solution for the diagonal density
matrix elements for such a master equation was shown. We could use this in
combination with [70, 71] to find both the on- and off-diagonal density matrix
elements for the single photon loss and two photon absorption master equation.
However, even with this we would not be able to solve Eqn. 6.3 directly since
we need κ non-zero. Since the maximum number of photons in the system at
any one time is two, we do not need to find a general solution to Eqn. 6.3. We
can instead write down the thirty six couple ODEs and solve for these.

We start with the state

c0|HH〉+ c1|HV 〉+ c2|V H〉+ c3|V V 〉

=
(
c0|1001〉+ c1|1010〉+ c2|0101〉+ c3|0110〉

)
1234

(6.4)

where only modes 2 and 3 goes through the interaction region in Fig. 6.1.
Since the interaction Hamiltonian in Eqn. 6.1 can transform the state |11〉 to
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superposition of the state |11〉, |02〉 and |20〉, as seen in Eqn. 2.142 in Section 2.9,
we know the set of all possible states found inside the interaction region is
B ∈ {|00〉, |01〉, |10〉, |11〉, |02〉, |20〉}. The density matrix inside the interaction
medium is therefore:

ρ =
∑

ij,kl∈B
dijkl|ij〉〈kl|. (6.5)

We can write an ODE for each element of the density matrix by using the fact
that

〈mn|ρ̇|pq〉 = ḋmnpq (6.6)

〈mn|ρ|pq〉 = dmnpq.

Applying these to Eqn. 6.3 we have the following thirty six coupled ODEs:

ḋmnpq =iκ
(√

(p+1)qdmn(p+1)(q−1) +
√
p(q+1)dmn(p−1)(q+1) −

√
m(n+1)d(m−1)(n+1)pq

−
√

(m+1)nd(m+1)(n−1)pq

)
+
√

(m+1)(p+1)d(m+1)n(p+1)q +
√

(n+1)(q+1)dm(n+1)p(q+1)

+ γ
(√

(m+1)(m+2)(p+1)(p+2)d(m+2)n(p+2)q +
√

(n+1)(n+2)(q+1)(q+2)dm(n+2)p(q+2)

)
− 1

2
(
m+ p+ n+ q + γ[m(m− 1) + p(p− 1) + n(n− 1) + q(q − 1)]

)
dmnpq

(6.7)

where we have used Eqns. 2.4, 2.9 2.10 and 2.11 from Section 2.1.2 along with

â2|n〉 =
√
n(n− 1)|n− 2〉

(â†)2|n〉 =
√

(n+ 1)(n+ 2)|n+ 2〉 (6.8)

(â†)2â2|n〉 = n(n− 1)|n〉

â2(â†)2|n〉 = (n+ 1)(n+ 2)|n〉.

Using the fact that ρ = ρ† we can reduce the number of couple ODEs in Eqn.
6.7 to just twenty one. If we define the 21× 1 vector

~ρ =



d0000

d0001

...
d2002

d2020


we can rewrite Eqn. 6.7 as

~̇ρ(t) = M~ρ (6.9)

and solve by diagonalising the 21× 21 matrix M :

~ρ(t) = exp(Mt)~ρ(0) = P exp(Dt)P−1~ρ(0) (6.10)
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where M = PDP−1, P is the matrix of eigenvectors for M , D is diagonal matrix
made up of the eigenvectors for M and

ρ(0) =
∑

ij,kl∈B
cijkl|ij〉〈kl| (6.11)

~ρ(0) =



c0000

c0001
...

c2002

c2020

 .

Finding the solution in Eqn. 6.10 is relatively straightforward numerically, how-
ever it is a daunting task analytically, since we need to invert the 21×21 matrix
P . For this reason we instead break Eqn. 6.7 into subsystems and solve each
separately.

For the case m+ n = 2 and p+ q = 2 in Eqn. 6.7 we have

ḋ1111 = −2d1111 + i
√

2κ
(
d1102 + d1120 − d0211 − d2011

)
ḋ0211 = −(2 + γ)d0211 + i

√
2κ
(
d0202 + d0220 − d1111

)
ḋ0202 = −2(1 + γ)d0202 + i

√
2κ
(
d0211 − d1102

)
(6.12)

ḋ2011 = −(2 + γ)d2011 + i
√

2κ
(
d2002 + d2020 − d1111

)
ḋ2002 = −2(1 + γ)d2002 + i

√
2κ
(
d2011 − d1102

)
ḋ2020 = −2(1 + γ)d2020 + i

√
2κ
(
d2011 − id1120

)
.

Notice that the ODE ḋ1111 has the term d1102, which is not being solved ex-
plicitly. To get around this problem we break each density matrix element up
into real and imaginary parts: dmnpg = Re(dmnpg) + i Im(dmnpg). In this way
we can write d1102 = Re(d0211)− i Im(d0211). Similarly for the terms d1120 and
d0220. We can solve Eqn. 6.12 using the method described in Eqn. 6.10 but
now the matrix of eigenvectors to be inverted is only a 6×6 matrix and is easily
inverted analytically.

For the case m+ n = 1 and p+ q = 2 in Eqn. 6.7 we have

ḋ0111 = −3
2
d0111 + iκ

(√
2d0102 +

√
2d0120 − d1011

)
ḋ0102 = −

(
3
2

+ γ

)
d0102 + iκ

(√
2d0111 − d1002

)
ḋ0120 = −

(
3
2

+ γ

)
d0120 + iκ

(√
2d0111 − d1020

)
(6.13)

ḋ1011 = −3
2
d1011 + iκ

(√
2d1002 +

√
2d1020 − d0111

)
ḋ1002 = −

(
3
2

+ γ

)
d1002 + iκ

(√
2d1011 − d0102

)
ḋ1020 = −

(
3
2

+ γ

)
d1020 + iκ

(√
2d1011 − d0120

)
.
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We can solve the coupled ODEs in Eqn. 6.13 in a similar way to the solution
for Eqn. 6.12.

For the case m+ n = 1 and p+ q = 1 in Eqn. 6.7 we have

˙d0101 = d1111 + 2d0202 − d0101 + iκ
(
d0110 − d1001

)
ḋ1001 = −d1001 +

√
2d1102 +

√
2d2011 + iκ

(
d1010 − d0101

)
(6.14)

ḋ1010 = −d1010 + d1111 + 2d2020 + iκ
(
d1001 − d0110

)
,

for the case m+ n = 0 and p+ q = 2 in Eqn. 6.7 we have

ḋ0002 = i
√

2κd0011 − (1 + γ)d0002

ḋ0020 = i
√

2κd0011 − (1 + γ)d0020 (6.15)

ḋ0011 = −d0011 + i
√

2κ
(
d0002 + d0020

)
,

for the case m+ n = 0 and p+ q = 1 in Eqn. 6.7 we have

ḋ0001 = −1
2
d0001 +

√
2d0102 + d1011 + iκd0010 (6.16)

ḋ0010 = −1
2
d0010 + d0111 +

√
2d1020 + iκd0001,

and for the case m+ n = 0 and p+ q = 0 in Eqn. 6.7 we have

ḋ0000 = d0101 + d1010 + 2γ
(
d0202 + d2020

)
. (6.17)

Notice that the ODEs in Eqns. 6.14–6.17 are not homogeneous. We need to use
the general method of diagonalisation [123] to solve these given the solutions to
Eqns 6.12 and 6.13.

6.2 Beam Splitters with Continuous Two Pho-

ton Absorption and Single Photon Loss

In this Section we model the Franson et al. [50, 101] optical Zeno csign gate
as a linear array of partially transmitting beam splitters with continuous two
photon absorption and single photon loss after each beam splitter. The results
presented in this Section are similar to those in [124]. We solve for the output
of the N ′th beamsplitter and loss/absorption combination by solving a set of
recurrence equations along with Eqn. 6.7 with κ = 0.

First we show how we can directly model a csign gate as a linear array
of partially transmitting beam splitters with the two photon terms manually
eliminated after each beam splitter.

6.2.1 Manual Two Photon Absorption

If we have a linear array of N beam splitters, as in Fig. 6.2, and we manually
eliminate the two photon terms after each beam splitter, the middle two modes
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of Eqn. 6.4:

|ψ〉input = c0|00〉+ c1|01〉+ c2|10〉+ c3|11〉 (6.18)

where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1, become:

|ψ〉input →
1
N

(
c0|00〉+ c1

(
cos(Nθ)|01〉 − eiφ sin(Nθ)|10〉

)
+ c2

(
cos(Nθ)|10〉+ e−iφ sin(Nθ)|01〉

)
+ c3 cosN (2θ)|11〉

)
(6.19)

where

N =
√
|c0|2 +

(
1 + cos(φ) sin(2Nθ)

)
|c1|2 +

(
1− cos(φ) sin(2Nθ)

)
|c2|2 + cos2N (2θ) |c3|2

and we have used the description of a beam beam splitter given in Section 2.1.5.
Since we want a csign gate, we first choose Nθ = mπ, where m = 1, 2, 3, · · · .
This takes |01〉 → cos(mπ)|01〉 and |10〉 → cos(mπ)|10〉. If we choose m even
we have

|ψ〉input →
1
N

(
c0|00〉+ c1|01〉+ c2|10〉+ c3 cosN

(
2mπ
N

)
|11〉

)
. (6.20)

· · ·
Π̂

Π̂

Π̂

Π̂

Π̂

Π̂

Figure 6.2: A linear array of N partially transmitting beam splitters, each followed by a

manually elimination of any two photon terms. This performs a csign on single rail logic.

The projector Π̂ = |0〉〈0|+ |1〉〈1|.

We need cosN
(

2mπ
N

)
= −1. Using the fact that cos(θ) = − cos(π − θ) we

have

cosN

(
2mπ
N

)
= (−1)N cosN

(
π
(

1− 2
m

N

))
. (6.21)

If we choose N odd we have

|ψ〉input →
1
N

(
c0|00〉+ c1|01〉+ c2|10〉 − c3 cosN

(
π
(

1− 2
m

N

))
|11〉

)
(6.22)

where N = 1, 3, 5, · · · and m = 2, 4, 6, · · · . We want cosN
(
π
(
1− 2m

N

))
≈ 1.

This is true if m
N ≈ 1

2 . If we choose N = 2m − 1, we find that as m increases,
our gate more closely resembles a csign:

|ψ〉input →
1
N

(
c0|00〉+ c1|01〉+ c2|10〉 − c3 cos2m−1

(
π

2m− 1

)
|11〉

)
(6.23)
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where m = 2, 4, 6, · · · and

N =

√
1 + |c3|2

(
cos4m−2

(
π

2m− 1

)
− 1
)
. (6.24)

For m large enough this state becomes

c0|00〉+ c1|01〉+ c2|10〉 − c3|11〉 (6.25)

since

lim
m→∞

cos2m−1

(
π

2m− 1

)
= 1.

6.2.2 Continuous Two Photon Absorption and Single Pho-

ton Loss

To realistically model a csign gate with a linear array of beam splitters we
need to consider continuous two photon absorption after each beam splitter in
Fig. 6.2, as in Fig. 6.3.

γ1γ2

γ1γ2

γ1γ2

γ1γ2

γ1γ2

γ1γ2

· · ·

H

H

V

V

Figure 6.3: A linear array of N partially transmitting beam splitters, each followed by a

realistic continuous two photon absorption and single photon loss. The whole gate forms a

dual-rail csign gate for polarisation encoded qubits while the region inside the dashed box

forms a single-rail encoded csign gate.

As with Section 6.1, single photon loss will be a dominant decoherence pro-
cess in such a system. We model the continuous two photon absorption and
single photon loss via the master equation 6.7 with κ = 0. In such a case the
twenty one coupled ODEs in Eqns. 6.12–6.17 are easily solved and are given
below:
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For the case κ = 0, m+ n = 2 and p+ q = 2 in Eqn. 6.7 we have

d1111(T ) = e−2T c1111

d0211(T ) = e−(2+γ)T c0211

d0202(T ) = e−2(1+γ)T c0202 (6.26)

d2011(T ) = e−(2+γ)T c2011

d2002(T ) = e−2(1+γ)T c2002

d2020(T ) = e−2(1+γ)T c2020.

For the case κ = 0, m+ n = 1 and p+ q = 2 in Eqn. 6.7 we have

d0111(T ) = e−
3
2 T c0111

d0102(T ) = e−( 3
2+2γ)T c0102

d0120(T ) = e−( 3
2+2γ)T c0120 (6.27)

d1011(T ) = e−
3
2 T c1011

d1002(T ) = e−( 3
2+2γ)T c1002

d1020(T ) = e−( 3
2+2γ)T c1020.

For the case κ = 0, m+ n = 1 and p+ q = 1 in Eqn. 6.7 we have

d0101(T ) = e−T c0101 + e−2T (eT − 1)c1111 +
2e−2(1+γ)T (e(1+2γ)T − 1)

1 + 2γ
c0202

d1001(T ) = e−T c1001 +

√
2
(
e−T − e−(2+γ)T )

1 + γ
(c1102 + c2011) (6.28)

d1010(T ) = e−T c1010 + e−2T (eT − 1)c1111 +
2e−2(1+γ)T (e(1+2γ)T − 1)

1 + 2γ
c2020.

For the case κ = 0, m+ n = 0 and p+ q = 2 in Eqn. 6.7 we have

d0002(T ) = e−(1+γ)T c0002

d0020(T ) = e−(1+γ)T c0020 (6.29)

d0011(T ) = e−T c0011.

For the case κ = 0, m+ n = 0 and p+ q = 1 in Eqn. 6.7 we have

d0001(T ) = e−
1
2 T c0001 + e−

1
2 T (1− e−T )c1011 −

√
2e−

1
2 T (e−(1+γ)T − 1)

1 + γ
c0102 (6.30)

d0010(T ) = e−
1
2 T c0010 + e−

1
2 T (1− e−T )c0111 −

√
2e−

1
2 T (e−(1+γ)T − 1)

1 + γ
c1020.

For the case κ = 0, m+ n = 0 and p+ q = 0 in Eqn. 6.7 we have

d0000(T ) = c0000 + (1− e−T ) (c0101 + c1010) + e−2T (eT − 1)2c1111 (6.31)

+
2γ(1− e−2(1+γ)T ) + (1− 2e−T + e−2(1+γ)T )

1 + 2γ
(c0202 + c2020)
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where as in Section 6.1 we set T = γ1t, γ = γ2
γ1

and the initial density matrix
is given by in Eqn. 6.11. Since we want to induce a csign on the state |ψ〉input

given in Eqn. 6.18, we set N = 2m− 1, for even m, as in Section 6.2.1.
We start with the state |ψ〉input given in Eqn. 6.18 incident on the first beam

splitter in Fig. 6.3. The output of this beam splitter is the initial density matrix
for the first continuous two photon absorption and single photon loss process.
The density matrix resulting from Eqns. 6.26–6.31 is now the incident state
for the second beam splitter. We continue in the manner for N beam splitters.
We now need to solve for the output of the N ′th beam splitter/absorption/loss
combination. Since we will want to compare the csign gate implemented in
this Section with that in Section 6.1, the time the two photon absorption and
single photon loss act on the two systems must be equal. For this reason we set
T = τ

2m−1 , where τ is the scaled total time the photons spend in the interaction
medium in Fig. 6.3.

We solve for the output of the N ’th beam splitter/absoprtion/loss combina-
tion by solving a set of recurrence equations. To find an analytical solution we
must break the density matrix ρ into the six sub-blocks:



d
(N)
0000 d

(N)
0001 d

(N)
0010 d

(N)
0011 d

(N)
0020 d

(N)
0002

d
(N)
0100 d

(N)
0101 d

(N)
0110 d

(N)
0111 d

(N)
0120 d

(N)
0102

d
(N)
1000 d

(N)
1001 d

(N)
1010 d

(N)
1011 d

(N)
1020 d

(N)
1002

d
(N)
1100 d

(N)
1101 d

(N)
1110 d

(N)
1111 d

(N)
1120 d

(N)
1102

d
(N)
2000 d

(N)
2001 d

(N)
2010 d

(N)
2011 d

(N)
2020 d

(N)
2002

d
(N)
0200 d

(N)
0201 d

(N)
0210 d

(N)
0211 d

(N)
0220 d

(N)
0202


. (6.32)

To solve for the terms in each sub-block we use Eqn, 2.36 in conjunction with
Eqns. 6.26–6.31. There will be two types of solution here, those coming from
the homogeneous ODEs in Eqns. 6.26, 6.27 and 6.29 and those coming from the
non-homogeneous Eqns. 6.28, 6.30 and 6.31. That is, the red, green and cyan
density matrix sub-blocks only depend on terms within their own initial density
matrix sub-block. However, the blue, yellow and magenta density matrix sub-
blocks depend on terms within their own initial density matrix sub-block and
on terms from other initial density matrix sub-blocks.

The Red sub-block in Eqn. 6.32

For the two photon absorption and single photon loss given in Eqn. 6.26, we
consider the density matrix block with the elements corresponding to |11〉〈11|,
|11〉〈02|, |11〉〈20|, |02〉〈11|, |02〉〈02|, |02〉〈20|, |20〉〈11|, |20〉〈02| and |20〉〈20|. Our
initial state is given by |ψ〉input in Eqn. 6.18 and is pure. After a beam splitter,
|ψ〉input becomes the pure state:

|ψ〉input → c′0|00〉+ c′1|01〉+ c′2|10〉+ c′3|11〉+ c′4|20〉+ c′5|02〉. (6.33)
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After two photon absorption and single photon loss, the two photon terms in
this state become |c′3|2 c′3c

′∗
4 c′3c

′∗
5

c′4c
′∗
3 |c′4|2 c′4c

′∗
5

c′5c
′∗
3 c′5c

′∗
4 |c′5|2

→

 |c′3|2e−2T c′3c
′∗
4 e

−(2+γ)T c′3c
′∗
5 e

−(2+γ)T

c′4c
′∗
3 e

−(2+γ)T |c′4|2e−2(1+γ)T c′4c
′∗
5 e

−2(1+γ)T

c′5c
′∗
3 e

−(2+γ)T c′5c
′∗
4 e

−2(1+γ)T |c′5|2e−2(1+γ)T

(6.34)

where we have used Eqn. 6.26. The state on the right hand side is just the
pure state c′3e

−T |11〉 + c′4e
−(1+γ)T |20〉 + c′5e

−(1+γ)T |02〉. If we were now to
put this state through another beam splitter followed by two photon loss and
single photon absorption we would obtain a similar pure state. We can there-
fore write down what this density matrix sub-block looks like after N beam
splitter/absorption/loss combinations:

ρ
(m+n=2, p+q=2)
(N) =

 d
(N)
1111 d

(N)
1120 d

(N)
1102

d
(N)
2011 d

(N)
2020 d

(N)
2002

d
(N)
0211 d

(N)
0220 d

(N)
0202



= V1 ·

 d
(N−1)
1111 d

(N−1)
1120 d

(N−1)
1102

d
(N−1)
2011 d

(N−1)
2020 d

(N−1)
2002

d
(N−1)
0211 d

(N−1)
0220 d

(N−1)
0202

 · V †
1 (6.35)

= (V1)N ·

 |c3|2 c3c
∗
4 c3c

∗
5

c4c
∗
3 |c4|2 c4c

∗
5

c5c
∗
3 c5c

∗
4 |c5|2

 ·
(
V †

1

)N

= (V1)N
(
c3|11〉+ c4|20〉+ c5|02〉

)(
c∗3〈11|+ c∗4〈20|+ c∗5〈02|

)(
V †

1

)N

where

V1 =

 e−T cos(2θ) 1√
2
e−T sin(2θ) − 1√

2
e−T sin(2θ)

− 1√
2
e−(1+γ)T sin(2θ) e−(1+γ)T cos2(θ) e−(1+γ)T sin2(θ)

1√
2
e−(1+γ)T sin(2θ) e−(1+γ)T sin2(θ) e−(1+γ)T cos2(θ)

 .

V1 is easily diagonalisable. In the case that c4 = c5 = 0 for |ψ〉input, as in Eqn.
6.18, we can expand Eqn. 6.35 given V1 to find:

d
(N)
2020 = d

(N)
0202

d
(N)
2002 = d

(N)
0220 (6.36)

d
(N)
1120 = d

(N)
2011 = −d(N)

1102 = −d(N)
0211.

The Green sub-block in Eqn. 6.32

This case is similar to the previous case since we start with a pure state |ψ〉input

and the transformations in Eqns. 2.36 and 6.27 leave the state pure. In Eqn.
6.33 we saw that |ψ〉input goes to c′0|00〉+c′1|01〉+c′2|10〉+c′3|11〉+c′4|20〉+c′5|02〉
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after a beam splitter. We want to consider the green sub-block in Eqn. 6.32 for
this state: (

c′3|11〉+ c′4|20〉+ c′5|02〉
)(
c
′∗
1 〈01|+ c

′∗
2 〈10|

)
. (6.37)

Using Eqn. 6.27, after two photon absorption and single photon loss this be-
comes  c′3c

′∗
1 e

− 3
2T c′3c

′∗
2 e

− 3
2T

c′4c
′∗
1 e

−( 3
2+2γ)T c′4c

′∗
2 e

−( 3
2+2γ)T

c′5c
′∗
1 e

−( 3
2+2γ)T c′5c

′∗
2 e

−( 3
2+2γ)T

 (6.38)

which is equal to(
c′3e

−T |11〉+ c′4e
−(1+γ)T |20〉+ c′5e

−(1+γ)T |02〉
)(
c
′∗
1 e

− 1
2T 〈01|+ c

′∗
2 e

− 1
2T 〈10|

)
. (6.39)

If we put this sub-block through another beam splitter followed by two photon
loss and single photon absorption we would obtain a similar result. We can
therefore write down what this density matrix sub-block looks like after N

beam splitter/absorption/loss combinations:

ρ
(m+n=2, p+q=1)
(N) =

 d
(N)
1101 d

(N)
1110

d
(N)
2001 d

(N)
2010

d
(N)
0201 d

(N)
0210



= V2 ·

 d
(N−1)
1101 d

(N−1)
1110

d
(N−1)
2001 d

(N−1)
2010

d
(N−1)
0201 d

(N−1)
0210

 · V †
3 (6.40)

= (V2)N ·

 c3c
∗
1 c3c

∗
2

c4c
∗
1 c4c

∗
2

c5c
∗
1 c5c

∗
2

 ·
(
V †

3

)N

= (V2)N
(
c3|11〉+ c4|20〉+ c5|02〉

)(
c∗1〈01|+ c∗2〈10|

)(
V †

3

)N

where

V2 = V1 (6.41)

V3 =

(
e−

1
2T cos(θ) e−

1
2T sin(θ)

−e− 1
2T sin(θ) e−

1
2T cos(θ)

)

and V2 and V3 are easily diagonalisable. In the case that c4 = c5 = 0 for |ψ〉input,
as Eqn. 6.18, we can expand Eqn. 6.40 given V1 and V3 to find

d
(N)
2001 = −d(N)

0201

d
(N)
2010 = −d(N)

0210. (6.42)
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If the initial state |ψ〉input was not pure, given instead by general initial
density matrix ρ(0) in Eqn. 6.11, we would have to solve this case by solving
the recurrence equation

d
(N)
1101

d
(N)
1110

d
(N)
2001

d
(N)
2010

d
(N)
0201

d
(N)
0210


= (W )N



c1101

d1110

c2001

c2010

c0201

c0210


(6.43)

where

W =



EAB EAC 1√
2
EDB 1√

2
EDC − 1√

2
EDB − 1√

2
EDC

EAC EAB 1√
2
EDC 1√

2
EDB − 1√

2
EDC − 1√

2
EDB

− 1√
2
FDB − 1√

2
FDC FB3 FB2C FC2B FC3

− 1√
2
FDC − 1√

2
FDB FB2C FB3 FC3 FC2B

1√
2
FDB 1√

2
FDC FC2B FC2C FB3 FB2C

1√
2
FDC 1√

2
FDB FC2C FC2B FB2C FB3


,

A = cos(2θ), B = cos(θ), C = sin(θ), D = sin(2θ), E = e−
3
2T and F = e−( 3

2+γ)T .
This would involve diagonalising the 6 × 6 matrix W , the resulting 6’th order
polynomial having no known analytical solutions. For this reason, we require
the initial state |ψ〉input to be pure.

The Cyan sub-block in Eqn. 6.32

As with the previous two cases, if we start with the pure state |ψinput〉, the
transformations in Eqns. 2.36 and 6.29 leave this state pure. In this case we
want to consider the cyan sub-block in Eqn. 6.32. The corresponding terms we
need to consider from Eqn. 6.33 for |ψ〉input after a beam splitter are:(

c′3|11〉+ c′4|20〉+ c′5|02〉
)
c
′∗
0 〈00|. (6.44)

After two photon absorption and single photon loss this sub-block becomes(
c′3e

−T |11〉+ c′4e
−(1+γ)T |20〉+ c′5e

−(1+γ)T |02〉
)
c
′∗
0 〈00|. (6.45)
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We can write the sub-block after N beam splitter/absoprtion/loss combinations
as

ρ
(m+n=2, p+q=0)
(N) =

 d
(N)
1100

d
(N)
2000

d
(N)
0200

 = V4 ·

 d
(N−1)
1100

d
(N−1)
2000

d
(N−1)
0200

 (6.46)

= (V4)N ·

 c3c
∗
0

c4c
∗
0

c5c
∗
0


= (V4)N

(
c3|11〉+ c4|20〉+ c5|02〉

)
c∗0〈00|

where V4 = V1. In the case that c4 = c5 = 0 for |ψ〉input, as in Eqn. 6.18, we
have

ρ
(m+n=2, p+q=0)
(N) = c3c

∗
0 (V4)N |11〉〈00|.

The Blue sub-block in Eqn. 6.32

In this case the fact that our initial state is pure does not help solve for the gen-
eral form of the blue sub-block in Eqn. 6.32 afterN beam splitter/absortpion/loss
combinations. We need to use a more general recurrence relation than that used
in the previous cases. To formulate this general recurrence relation we will ex-
press the blue density matrix sub-block after N beam splitter/absortpion/loss
combinations in terms of density matrix sub-blocks after N − 1 beam split-
ter/absortpion/loss combinations.

We denote the blue density matrix sub-block afterN beam splitter/absortpion/loss
combinations by: 

d
(N)
0101

d
(N)
0110

d
(N)
1001

d
(N)
1010

 . (6.47)

If we examine Eqn. 6.28, we see that d(N)
0101, d(N)

0110, d(N)
1001 and d(N)

1010 depend on both
c0101, c0110, c1001, c1010 and c1111, c1120, c1102, c2011, c2020, c2002, c0211, c0220, c0202,
where we use that fact that d0110(T ) = d1001(T )∗. That is, the red and blue
sub-blocks of the density matrix directly after the N ’th beam splitter, shown as
point (i) in fig. 6.4, contribute the the blue density matrix sub-block after the
N ’th two photon absorption/single photon loss.

We can express this abstractly as ~d(N) = U ~d(N−1) + ~v(N), where ~v(N) in
this case is comprised of the red sub-block terms after N − 1 beam split-
ters/absoprttion/loss combinations and one additional beam splitter. If we
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γ1γ2

γ1γ2

γ1γ2

γ1γ2

· · ·

(N − 2) (N − 1) (N)(i)

Figure 6.4: The (N-2)’th, (N-1)’th and (N)’th beam splitter/absoprtion/loss combination.

At (i) there have been N beam splitters and only N − 1 single photon losses and two photon

absorption processes.

continue with the recurrence equation we see that

~d(N) = U ~d(N−1) + ~v(N) = (U)N ~d(0) +
N∑

i=1

(U)N−i
~v(i−1). (6.48)

For the case of ~d(N) equal to Eqn. 6.47 we have
d
(N)
0101

d
(N)
0110

d
(N)
1001

d
(N)
1010

 = (V5)N ·


|c1|2

c1c
∗
2

c2c
∗
1

|c2|2

+
N∑

i=1

(V5)N−i · ~v(i−1)
blu (6.49)

where ~d(0) = (c1|01〉+ c2|10〉) (c∗1〈01|+ c∗2〈10|) and

V5 =


e−T cos2(θ) 1

2e
−T sin(2θ) 1

2e
−T sin(2θ) e−T sin2(θ)

− 1
2e
−T sin(2θ) e−T cos2(θ) −e−T sin2(θ) 1

2e
−T sin(2θ)

− 1
2e
−T sin(2θ) −e−T sin2(θ) e−T cos2(θ) 1

2e
−T sin(2θ)

e−T sin2(θ) − 1
2e
−T sin(2θ) − 1

2e
−T sin(2θ) e−T cos2(θ)

 .

V5 is easily diagonalisable. The vector ~v(n)
blu is obtained from Eqns.2.36 and 6.26:

~v
(n)
blu =


A1

A2

A3

A4

 (6.50)
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where

A1 =
2e−2(1+γ)T (e(1+2γ)T − 1)

1 + 2γ

(
cos4(θ)d(n)

0202 + sin4(θ)d(n)
2020 +

1
2

sin2(2θ)d(n)
1111

+
1√
2

sin(2θ) sin2(θ)
(
d
(n)
1120 + d

(n)
2011

)
+

1√
2

sin(2θ) cos2(θ)
(
d
(n)
1102 + d

(n)
0211

)
+

1
4

sin2(2θ)
(
d
(n)
2002 + d

(n)
0220

))
+ e−2T (eT − 1)

(
cos2(2θ)d(n)

1111 +
1√
8

sin(4θ)
(
d
(n)
1120

+ d
(n)
2011 − d

(n)
1102 − d

(n)
0211

)
+

1
2

sin2(2θ)
(
d
(n)
0202 + d

(n)
2020 − d

(n)
0220 − d

(n)
2002

))
,

A2 =

√
2
(
e−T − e−(2+γ)T )

1 + γ

(
cos2(θ)

(
d
(n)
1120 + d

(n)
0211

)
− sin2(θ)

(
d
(n)
1102 + d

(n)
2011

)
+

1√
2

sin(2θ)
(
d
(n)
2020 − d

(n)
0202

))
,

A3 =

√
2
(
e−T − e−(2+γ)T )

1 + γ

(
cos2(θ)

(
d
(n)
1102 + d

(n)
2011

)
− sin2(θ)

(
d
(n)
1120 + d

(n)
0211

)
+

1√
2

sin(2θ)
(
d
(n)
2020 − d

(n)
0202

))
,

and

A4 =
2e−2(1+γ)T (e(1+2γ)T − 1)

1 + 2γ

(
1
2

sin2(2θ)d(n)
1111 + cos4(θ)d(n)

2020 + sin4(θ)d(n)
0202

− 1√
2

sin(2θ) sin2(θ)
(
d
(n)
1102 + d

(n)
0211

)
− 1√

2
cos2(θ) sin(2θ)

(
d
(n)
2011 + d

(n)
1120

)
+

1
4

sin2(2θ)
(
d
(n)
2002 + d

(n)
0220

))
+ e−2T (eT − 1)

(
cos2(2θ)d(n)

1111 +
1√
8

sin(4θ)
(
d
(n)
1120

+ d
(n)
2011 − d

(n)
1102 − d

(n)
0211

)
+

1
2

sin2(2θ)
(
d
(n)
0202 + d

(n)
2020 − d

(n)
0220 − d

(n)
2002

))
.

In the case that c4 = c5 = 0 for |ψ〉input, as Eqn. 6.18, we can use Eqn. 6.36
to simplify ~v(n)

blu :

A1 =
2e−2(1+γ)T (e(1+2γ)T − 1)

1 + 2γ

((
cos4(θ) + sin4(θ)

)
d
(n)
2020 +

1
2

sin2(2θ)d(n)
1111

+
1
2

sin2(2θ)d(n)
2002

)
+ e−2T (eT − 1)

(
cos2(2θ)d(n)

1111 +
√

2 sin(4θ)d(n)
1120

+ sin2(2θ)
(
d
(n)
2020 − d

(n)
2002

))
,

A2 =0,

A3 =0

and

A4 =A1.
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With this simplification we can generate an analytical expression for the sum
in Eqn. 6.49.

The Yellow sub-block in Eqn. 6.32

We use the recurrence equation in Eqn. 6.48 to solve for the yellow sub-block
in Eqn. 6.32.

We find [
d
(N)
0100

d
(N)
1000

]
= (V6)N ·

[
c1c

∗
0

c2c
∗
0

]
+

N∑
i=1

(V6)N−i · ~v(i−1)
yel (6.51)

where ~d(0) = (c1|01〉+ c2|10〉) c∗0〈00|, V6 = V3 (Eqn. 6.41) and

~v
(n)
yel =

[
A5

A6

]
(6.52)

where

A5 =
√

2e−
1
2T (1− e−(1+γ)T )

1 + γ

(
cos3(θ)d(n)

0201 + sin3(θ)d(n)
2010

+ sin2(θ) cos(θ)
(
d
(n)
2001 +

√
2d(n)

1110

)
+ cos2(θ) sin(θ)

(
d
(n)
0210 +

√
2d(n)

1101

))
+ e−

1
2T (1− e−T )

(
cos(2θ)

(
cos(θ)d(n)

1110 − sin(θ)d(n)
1101

)
+

1√
2

sin(2θ)
(

cos(θ)
(
d
(n)
2010 − d

(n)
0210

)
+ sin(θ)

(
d
(n)
0201 − d

(n)
2001

)))
and

A6 =
√

2e−
1
2T (1− e−(1+γ)T )

1 + γ

(
cos3(θ)d(n)

2010 − sin3(θ)d(n)
0201

− cos2(θ) sin(θ)
(
d
(n)
2001 +

√
2d(n)

1110

)
+ sin2(θ) cos(θ)

(
d
(n)
0210 +

√
2d(n)

1101

))
+ e−

1
2T (1− e−T )

(
cos(2θ)

(
sin(θ)d(n)

1110 + cos(θ)d(n)
1101

)
+

1√
2

sin(2θ)
(

sin(θ)
(
d
(n)
2010 − d

(n)
0210

)
+ cos(θ)

(
d
(n)
2001 − d

(n)
0201

)))
.

In the case that c4 = c5 = 0 for |ψ〉input, as Eqn. 6.18, we can use Eqn. 6.42 to
simplify ~v(n)

yel :

A5 =
√

2e−
1
2T (1− e−(1+γ)T )

1 + γ

(
cos(2θ)

(
cos(θ)d(n)

0201 − sin(θ)d(n)
2010

)
+

1√
2

sin(2θ)
(

sin(θ)d(n)
1110 + cos(θ)d(n)

1101

)
+ e−

1
2T (1− e−T )

(
cos(2θ)

(
cos(θ)d(n)

1110 − sin(θ)d(n)
1101

)
+
√

2 sin(2θ)
(

cos(θ)d(n)
2010 + sin(θ)d(n)

0201

))
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and

A6 =
√

2e−
1
2T (1− e−(1+γ)T )

1 + γ

(
cos(2θ)

(
cos(θ)d(n)

2010 + sin(θ)d(n)
0201

)
+

1√
2

sin(2θ)
(

sin(θ)d(n)
1101 − cos(θ)d(n)

1110

)
+ e−

1
2T (1− e−T )

(
cos(2θ)

(
cos(θ)d(n)

1101 + sin(θ)d(n)
1110

)
+
√

2 sin(2θ)
(

cos(θ)d(n)
0201 + sin(θ)d(n)

2010

))
.

With this simplification we can generate an analytical expression for the sum
in Eqn. 6.51.

The Magenta sub-block in Eqn. 6.32

We use the recurrence equation in Eqn. 6.48 to solve for the magenta sub-block
in Eqn. 6.32. In this case U = 1l in Eqn. 6.48:

d
(N)
0000 = c0c

∗
0 +

N∑
i=1

v(i−1)
mag (6.53)

where

v(n)
mag =(1− e−T )

(
d
(n)
1010 + d

(n)
0101

)
+ (1− e−T )2

(
cos2(2θ)d(n)

1111

+
1√
8

sin(4θ)
(
d
(n)
2011 + d

(n)
1120 − d

(n)
0211 − d

(n)
1102

)
+

1
2

sin2(2θ)
(
d
(n)
0202 + d

(n)
2020 − d

(n)
0220 − d

(n)
2002

))
+

2γ(1− e−2(1+γ)T ) + (1− 2e−T + e−2(1+γ)T )
1 + 2γ

(
sin2(2θ)d(n)

1111

+
1
4

(
3 + cos(4θ)

)(
d
(n)
0202 + d

(n)
2020

)
+

1√
8

sin(4θ)
(
d
(n)
1102 + d

(n)
0211 − d

(n)
2011 − d

(n)
1120

)
+

1
2

sin2(2θ)
(
d
(n)
0220 + d

(n)
2002

))
.

In the case that c4 = c5 = 0 for |ψ〉input, as Eqn. 6.18, we can use Eqn. 6.36 to
simplify v(n)

mag:

v(n)
mag =(1− e−T )

(
d
(n)
1010 + d

(n)
0101

)
+ (1− e−T )2

(
cos2(2θ)d(n)

1111 +
√

2 sin(4θ)d(n)
1120

+ sin2(2θ)
(
d
(n)
2020 − d

(n)
2002

))
+

2γ(1− e−2(1+γ)T ) + (1− 2e−T + e−2(1+γ)T )
1 + 2γ

(
sin2(2θ)d(n)

1111

+
1
2

(
3 + cos(4θ)

)
d
(n)
2020 −

√
2 sin(4θ)d(n)

1120 + sin2(2θ)d(n)
2002

)
.
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With this simplification we can generate an analytical expression for the sum due
to the d(n)

1111, d
(n)
2020, d

(n)
1120, d

(n)
2002 terms and the double sum due to the d(n)

1010, d
(n)
0101

terms in Eqn. 6.53.

6.3 Process Fidelity

We now have two realistic models for the optical Zeno csign gate proposed
by Franson et al. in [50, 101]. We can either solve equations 6.12–6.17 to find
density matrix ρcont(t) at any time t within the interaction region in Fig. 6.1, or
we can solve the recurrence equations 6.35–6.53 to find the density matrix ρbs(t)
after N beam spitter/absorption/loss combinations in Fig. 6.3, given there is
continuous two photon absorption and single photon loss for a time t/N after
each beam splitter.

We now want to quantify what effect realistic two photon absorption and
single photon loss has on the csign gate operation. We do this by measuring
the closeness of our density matrix ρ(t) to the density matrix resulting from an
ideal csign gate. We use the process fidelity for this, as described in Section
2.3.

For a single rail csign, consider applying a csign to modes 3 and 4 of |ψSR〉,
where

|ψSR〉 =
1
2

1∑
a,b=0

|ab〉 ⊗ |ab〉 =
1
2

(|00〉|00〉+ |01〉|01〉+ |10〉|10〉+ |11〉|11〉)1234 (6.54)

or in terms of an input density matrix this is equivalent to

ρSR =
1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ |ab〉〈cd|. (6.55)

The output will be

ρ
(CZ)
SR =

1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ UCZ|ab〉〈cd|U†
CZ

=
1
4

1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| (6.56)

where UCZ is the unitary associated with a csign, given in Eqn. 2.74
Next, consider modes 3 and 4 of Eqn. 6.55 incident on Fig. 6.1 or 6.3. The

output will be

ρ
(E)
SR =

1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ E (|ab〉〈cd|) (6.57)

where E describes the action of Fig. 6.1 or 6.3 on modes 3 and 4 of the state
|ψSR〉.
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To calculate the process fidelity we work out the fidelity between ρCZ and
ρE , given the fact that ρ(CZ)

SR is pure:

F (SR)
pro = Tr

[
ρ
(CZ)
SR · ρ(E)

SR

]
=

1
16

Tr

 1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| ·
1∑

m,n,p,q=0

|mn〉〈pq| ⊗ E (|mn〉〈pq|)


=

1
16

Tr

 1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| · E (|ab〉〈cd|)

 (6.58)

where we have used 〈a|b〉 = δab. If we were to perform a single rail csign, we
would need arbitrary single qubits rotations which are quite difficult to perform,
at best requiring applications of the csign [120].

For a dual rail csign, consider applying a csign to modes 5,6,7 and 8 of
|ψDR〉, where

|ψDR〉 =
1
2

(|00〉L|00〉L + |01〉L|01〉L + |10〉L|10〉L + |11〉L|11〉L)

=
1
2

(|0101〉|0101〉+ |0110〉|0110〉+ |1001〉|1001〉+ |1010〉|1010〉)12345678

=
1
2

1∑
a,b=0

|aābb̄〉 ⊗ |aābb̄〉 (6.59)

and ā = (a + 1) mod 2. Since a dual rail csign is equivalent to a single rail
csign, this is equivalent to applying the single rail csign to modes 5 and 7 of
|ψDR〉.

In terms of an input density matrix, |ψDR〉 is equivalent to

ρDR =
1
4

1∑
a,b,c,d=0

|aābb̄〉〈cc̄dd̄| ⊗ |aābb̄〉〈cc̄dd̄|

=
1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd| (6.60)

where we have reordered the modes in the second line. The output of the ideal
csign will be

ρ
(CZ)
DR =

1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ |ab〉〈cd| ⊗ UCZ|ab〉〈cd|U†
CZ ⊗ |ab〉〈cd|

=
1
4

1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd|. (6.61)

Next, consider the third sub-system of ρDR in Eqn. 6.60 incident on either
Fig. 6.1 or 6.3. The output will be

ρ
(E)
DR =

1
4

1∑
a,b,c,d=0

|ab〉〈cd| ⊗ |ab〉〈cd| ⊗ E (|ab〉〈cd|)⊗ |ab〉〈cd| (6.62)
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where E describes the action of Fig. 6.1 or 6.3 on modes 5 and 7 of the state
|ψDR〉.

To calculate the process fidelity we work out the fidelity between ρCZ and
ρE , given the fact that ρ(CZ)

DR is pure:

F (DR)
pro = Tr

[
ρ
(CZ)
DR · ρ(E)

DR

]
=

1
16

Tr
[ 1∑

a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd| ⊗ |ab〉〈cd|

·
1∑

m,n,p,q=0

|mn〉〈pq| ⊗ |mn〉〈pq| ⊗ E (|mn〉〈pq|)⊗ |mn〉〈pq|
]

=
1
16

Tr

 1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| · E (|ab〉〈cd|)

 . (6.63)

We see that the process fidelity for the single rail case, F (SR)
pro in Eqn. 6.58, is

equal to the process fidelity for the dual rail case, F (DR)
pro in Eqn. 6.63.

We calculate an analytical expression for the process fidelity F (SR)
pro and plot

it in Figs. 6.5–6.10 for both the continuous interaction case in Section 6.1 and
the beam splitter case in Section 6.2.

If we consider the continuous interaction from Section 6.1 alone, we see the
relationship of the process fidelity with τ for various γ values in Fig. 6.5.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Fp

τ

Figure 6.5: The process fidelity for the continuous interaction case, as solved for in Section

6.1. The Red curve represents γ = 10, the Green curve represents γ = 100, the Blue curve

represents γ = 1000, the Cyan curve represents γ = 10000 and the Magenta curve represents

γ = 100000.

If we consider the beam splitter case from Section 6.2 alone, we see the
relationship of the process fidelity with τ for a varying number of beam splitters
for constant γ in Fig. 6.6.
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Fp

τ

Figure 6.6: The process fidelity for the beam splitter case, as solved for in Section 6.2. Here

γ was set to 500. The Red curve represents 7 beam splitters, the Green curve represents

11 beam splitters, the Blue curve represents 19 beam splitters, the Cyan curve represents 39

beam splitters and the Magenta curve represents 199 beam splitters.

Now, we consider the beam splitter case again but instead we vary γ with
the number of beam splitters kept constant, as shown in Fig. 6.7

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Fp

τ

Figure 6.7: The process fidelity for the beam splitter case, as solved for in Section 6.2. Here

we consider the 19 beam splitter case. The Red curve represents γ = 10, the Green curve

represents γ = 100, the Blue curve represents γ = 1000, the Cyan curve represents γ = 10000

and the Magenta curve represents γ = 100000.

To compare the continuous interaction case to the beam splitter case we
plot the process fidelity for both cases together in Fig. 6.8. Notice that for
the γ = 20 case, the continuous interaction and beam splitter case are almost
identical. As the γ increases, the continuous interaction case peaks to a higher
fidelity than the beam splitter case and drops off at a slower rate.
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Fp

τ

Figure 6.8: The process fidelity for both the continuous interaction and the beam splitter

case. The continuous interaction case is given by the solid curves and the 19 beam splitter case

is given by the dashed curves. The Red curve represents γ = 20, the Green curve represents

γ = 100 and the Blue curve represents γ = 500.

Notice that for each case in Figs. 6.5–6.8, the fidelity peaked for some
τ = τopt value. Also notice that this peak never reached unity. We can explain
the presence of the optimal τopt by considering the two extremes.

If the interaction time is too short, then there has been insufficient two
photon absorption for the gate to operate as a csign Consider the case that
the gate does nothing to the input state given in Eqn. 6.55. If we calculate the
process fidelity between ρSR and the ideal csign density matrix ρ(CZ)

SR given in
Eqn. 6.56, we find

Fpro = Tr
[
ρ
(CZ)
SR · ρSR

]
=

1
16

Tr

 1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| ·
1∑

m,n,p,q=0

|mn〉〈pq| ⊗ |mn〉〈pq|


=

1
16

1∑
a,b,c,d=0

(−1)ab+cd =
1
4
. (6.64)

This is the τ → 0 limit in each of the graphs in Figs. 6.5–6.9.
If the interaction time is too long, then single photon loss starts to dominate.

That is, if single photon loss dominates then we expect the state ρ(E)
SR in Eqn.

6.57 to eventually become 1
4

∑1
a,b,c,d=0 |ab〉〈cd| ⊗ |00〉〈00|. If we calculate the

fidelity of this state with respect to the ideal csign density matrix ρ
(CZ)
SR , we

find

Fpro =
1
16

Tr

 1∑
a,b,c,d=0

(−1)ab+cd |ab〉〈cd| ⊗ |ab〉〈cd| ·
1∑

m,n,p,q=0

|mn〉〈pq| ⊗ |00〉〈00|


=

1
16
. (6.65)
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The fidelity for each of the graphs in Figs. 6.5–6.8 approaches 1
16 as τ → ∞.

This can be seen explicitly in Fig. 6.9.

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

Fp

τ

Figure 6.9: The long τ limit process fidelity for both the continuous interaction and the

beam splitter case, as in Fig. 6.8. The continuous interaction case is given by the solid curves

and the 19 beam splitter case is given by the dashed curves. The Red curve represents γ = 20,

the Green curve represents γ = 100 and the Blue curve represents γ = 500. The solid Black

line corresponds to Fp = 1
16

.

Since too short an interaction corresponds to insufficient two photon absorp-
tion, and too long an interaction time corresponds to single photon loss domi-
nation, it follows that there is a peak in the process fidelity for some τ = τopt.
That is, there will be a peak when there has been enough two photon absorption
for a csign gate to be created and when single photon loss has not begun to
dominate. In Fig. 6.10 we show how the optimised (τ = τopt) process fidelity
scales with γ for both the continuous interaction and beam splitter case. Even
at high γ values the process fidelity cannot reach unity because of the pres-
ence of singe photon loss. As the number of beam splitters increases the peak
process fidelity becomes closer to the continuous interaction case. The beam
splitter fidelity is always less than the continuous case since the beam splitter
case only approximates a csign gate. Only in the limit of a large number of
beam splitters does the beam splitter case resemble a csign, as described in
Section 6.2.1.
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Figure 6.10: The scaling of the process fidelity with γ for τ = τopt (separate optimisation

for each point shown). The Black line represents the continuous interaction case, the Red

line represents the 19 beam splitter case and the Green line represents the 7 beam splitter

case.

6.3.1 Comparing the beam splitter case to the ideal beam

splitter case

When we consider the beam splitter case in Fig. 6.6, 6.7 and 6.8, we worked out
the process fidelity with respect to the ideal csign, as shown in Eqns. 6.58 and
6.63. However, as shown in Section 6.2.1, the ideal beam splitter case is only a
csign for a large number of beam splitters. We can further analyse the beam
splitter case by measuring the closeness of our density matrix ρbs(t) worked out
in Eqns. 6.35–6.53 to the ideal beam splitter case given in Eqn. 6.23.

We work out the process fidelity for the single rail case, since we know the
single rail case is equivalent to the dual rail case:

F (SR:BS)
pro = Tr

[
ρ
(BS)
SR · ρ(E)

SR

]
=

1
16

Tr

[
ρ
(BS)
SR ·

1∑
m,n,p,q=0

|mn〉〈pq| ⊗ E (|mn〉〈pq|)

]
(6.66)

where ρ(BS)
SR = |ψ(BS)

SR 〉〈ψ(BS)
SR | and |ψ(BS)

SR 〉 is the ideal beam splitter output state
in Eqn. 6.23 given the maximally entangle input state in Eqn. 6.54:

|ψ(BS)
SR 〉 =

1
N

(
|00〉|00〉+ |01〉|01〉+ |10〉|10〉 − cos2m−1

(
− π

2m− 1

)
|11〉|11〉

)
(6.67)

where m = 2, 4, 6, · · · and

N =

√
1 +

1
4

(
cos4m−2

(
− π

2m− 1

)
− 1
)
. (6.68)

We calculate an analytical expression for the process fidelity F (SR:BS)
pro and plot

it in Figs. 6.11–6.15.
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In Fig. 6.11 we see the relationship between the process fidelity and τ for
various γ values with the number of beam splitters set at 99. Notice that as
γ increases, the peak process fidelity increases. The peak fidelity is always less
than unity due to the presence of single photon loss.
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Figure 6.11: The process fidelity for comparison with the ideal beam splitter case. Here

we consider the 99 beam splitter case. The Red curve represents γ = 10, the Green curve

represents γ = 100, the Blue curve represents γ = 1000, the Cyan curve represents γ = 10000

and the Magenta curve represents γ = 100000.

In Fig. 6.11 the process fidelity approaches 1
16 as τ → ∞, shown explicitly

in Fig. 6.12. To show this we perform a similar calculation to that in Eqn. 6.65.
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Figure 6.12: The long τ limit process fidelity for the beam splitter case, as in Fig. 6.11.

Here we consider the 99 beam splitter case. The Red curve represents γ = 10, the Green curve

represents γ = 100, the Blue curve represents γ = 1000, the Cyan curve represents γ = 10000

and the Magenta curve represents γ = 100000. The solid Black line corresponds to Fp = 1
16

.
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In Fig. 6.13 we see the relationship between the process fidelity and τ for
a varying number of beam splitters, with γ = 500. The peak fidelity increases
as the number of beam splitters increases. Notice that this case is different to
that in Fig. 6.6, in that the curves for different numbers of beam splitters cross.
Also notice that none of the process fidelity curves approach 1

4 as τ → 0. As
τ → 0, the output of our gate will be close to the input ρSR given in Eqn. 6.55.
If we work out the process fidelity between this state and ρ

(BS)
SR given in Eqn.

6.67, we find

Fpro = Tr
[
ρ
(BS)
SR · ρSR

]
=

(
cosN

(
π
N

)
− 3
)2

4
(
3 + cos2N

(
π
N

)) . (6.69)

This shows that in the case that τ = 0, the lower the number of beam splitters,
the closer the output state is to ρ(BS)

SR . This is shown in Fig. 6.14. For example,
for the 7 beam splitter case in Fig. 6.13, we see that the process fidelity for
τ = 0 is 0.5, which is confirmed in Fig. 6.14. However, the 11 beam splitter
case has a process fidelity of 0.41 for τ = 0. For a low number of beam splitters,
the peak process fidelity is limited since there is insufficient interaction.
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Figure 6.13: The process fidelity for comparison with the ideal beam splitter case. Here we

consider the γ = 500. The Red curve represents 7 beam splitters, the Green curve represents 11

beam splitters, the Blue curve represents 19 beam splitters, and the Magenta curve represents

199 beam splitters.

In Fig. 6.15 we show how the optimised (τ = τopt) process fidelity scales
with γ for this beam splitter comparison case. This figure emphasises the point
made above, that lower beam splitter numbers are desired for smaller γ values.
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Figure 6.14: The process fidelity for τ = 0 given in Eqn. 6.69 as we increase the number of

beam splitters N .
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Figure 6.15: The scaling of the process fidelity with γ with τ = τopt (separate optimisation

for each point shown) for comparison with the ideal beam splitter case. The Red line represents

7 beam splitters, the Green line represents 19 beam splitters and the Blue line represents 99

beam splitters.

6.4 Encoding against Loss

In Section 2.7.6 we described a general parity encoding technique that was used
in [87] to construct a LOQC cnot that was more efficient that the original
scheme in [31]. In [48] Ralph et al. used this parity encoding in conjunction
with redundancy encoding to protect optical qubits against single photon loss,
constructing a loss tolerant quantum memory. Such codes have already been
demonstrated experimentally [125]. In this section we use the same parity and
redundancy encoding as in [48] to recover from loss in both Fig. 6.1 and 6.3.

As described in Eqn. 2.105 in Section 2.7.6, the parity state |0〉(n) is the
superposition of all possible even states of length n and the parity state |1〉(n)
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is the superposition of all possible odd states of length n:

|0〉(n) =
1√
2

(
|+〉⊗n + |−〉⊗n

)
(6.70)

|1〉(n) =
1√
2

(
|+〉⊗n − |−〉⊗n

)
.

Adding redundancy to the encoding, a general encoded qubit is given by:

α|0〉L + β|1〉L = α|0〉(n)|0〉(n) · · ·+ β|1〉(n)|1〉(n) · · · (6.71)

For the task at hand, two levels of parity encoding is sufficient. An encoded
qubit is given by:

α|0〉L + β|1〉L = α|0〉(2)|0〉(2) · · ·+ β|1〉(2)|1〉(2) · · · (6.72)

As a concrete example, consider only two levels of redundancy for the qubits
|Ψ〉1 and |Ψ〉2:

|Ψ〉1 = α|0〉(2)|0〉(2) + β|1〉(2)|1〉(2) (6.73)

|Ψ〉2 = γ|0〉(2)|0〉(2) + δ|1〉(2)|1〉(2)

|Ψ〉1|Ψ〉2 = αγ|0000〉+ αδ|0011〉+ βγ|1100〉+ βδ|1111〉 (6.74)

= αγ|0〉 (|0000〉+ |0011〉+ |1100〉+ |1111〉)1234 |0〉

+ αδ|0〉 (|0001〉+ |0010〉+ |1101〉+ |1110〉)1234 |1〉

+ βγ|1〉 (|0100〉+ |0111〉+ |1000〉+ |1011〉)1234 |0〉

+ βδ|1〉 (|0101〉+ |0110〉+ |1001〉+ |1010〉)1234 |1〉

where |0〉 = |0〉(2) and |1〉 = |1〉(2). After we perform a a csign between modes
2 and 3 we have

|Ψ〉1|Ψ〉2 → αγ|0〉 (|0000〉+ |0011〉+ |1100〉 − |1111〉)1234 |0〉 (6.75)

+ αδ|0〉 (|0001〉+ |0010〉+ |1101〉 − |1110〉)1234 |1〉

+ βγ|1〉 (|0100〉 − |0111〉+ |1000〉+ |1011〉)1234 |0〉

+ βδ|1〉 (|0101〉 − |0110〉+ |1001〉+ |1010〉)1234 |1〉.

This encoded state can recover from single photon loss on either mode 2 or
3. It can also recover from single photon loss on both modes 2 and 3. First,
consider the no loss case.

No Loss

If we detect modes 2 and 3 in the ± basis we have

→ αγ|0〉 (A1|00〉+A2|01〉+A3|10〉+A4|11〉)14 |0〉

+ αδ|0〉 (A1|01〉+A2|00〉+A3|11〉+A4|10〉)14 |1〉

+ βγ|1〉 (B1|00〉+B2|01〉+B3|10〉+B4|11〉)14 |0〉

+ βδ|1〉 (B1|01〉+B2|00〉+B3|11〉+B4|10〉)14 |1〉
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where the coefficients A1, A2, A3, A4, B1, B2, B3 and B4 are given in Table. 6.1.

A1 A2 A3 A4 B1 B2 B3 B4

|++〉23 1 1 1 -1 1 -1 1 1
|+−〉23 1 -1 1 1 1 1 1 -1
|−+〉23 1 1 -1 1 -1 1 1 1
|−−〉23 1 -1 -1 -1 -1 -1 1 -1

Table 6.1: The results for the no loss case after we measure qubits 2 and 3 in the ± basis.

If we now detect modes 1 and 4 in the computational basis we have

→ C1αγ|00〉+ C2αδ|01〉+ C3βγ|10〉+ C4βδ|11〉

where the coefficients C1, C2, C3 and C4 are given in Table 6.2.

C1 C2 C3 C4

|++〉23 |00〉14 1 1 1 -1
|01〉14 1 1 -1 1
|10〉14 1 -1 1 1
|11〉14 -1 1 1 1

|+−〉23 |00〉14 1 -1 1 1
|01〉14 -1 1 1 1
|10〉14 1 1 1 -1
|11〉14 1 1 -1 1

|−+〉23 |00〉14 1 1 -1 1
|01〉14 1 1 1 -1
|10〉14 -1 1 1 1
|11〉14 1 -1 1 1

|−−〉23 |00〉14 1 -1 -1 -1
|01〉14 -1 1 -1 -1
|10〉14 -1 -1 1 -1
|11〉14 -1 -1 -1 1

Table 6.2: The results for the no loss case after we measure qubits 2 and 3 in the ± basis

and qubits 1 and 4 in the computational basis.

In Table 6.2 we see that there is only ever a single −1 in each row, up to a
global phase factor. Each case is a csign gate, up to Z corrections. The csign

operation in this case is summarised in Fig. 6.16 with A = Z.
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Figure 6.16: To perform an encoded csign: (i) a pair of qubits goes through the nonlinear

csign and the photons may be lost in the interaction. We consider either Fig. 6.1 or 6.3

to be inside the Red box. (ii) Detect qubits 2 and 3 in the |±〉 (X) basis, giving α and

β, respectively. (iii-a) If measurements indicated that no photons were lost, measure the

remaining parity qubits in the computational (A = Z) basis. The csign has been successfully

performed. (iii-b) If measurements indicated loss, measure the remaining parity qubits in

the |±〉 (A = X) basis to disantangle and attempt gate on the next redundantly encoded

qubits. (iv) Depending on the measurement results phase corrections may need to be applied

to remaining qubits. Note the double line indicates classical information.

Lose one photon

Next, consider the case that we lose a photon in mode 2 in Eqns. 6.74 and 6.75,
|Ψ〉1|Ψ〉2 becomes |Ω1〉〈Ω1|+ |Ω2〉〈Ω2|, where

|Ω1〉 =αγ|0〉
(
|0φ00〉+ |0φ11〉

)
1234

|0〉+ αδ|0〉
(
|0φ01〉+ |0φ10〉

)
1234

|1〉 (6.76)

+ βγ|1〉
(
|1φ00〉+ |1φ11〉

)
1234

|0〉+ βδ|1〉
(
|1φ01〉+ |1φ10〉

)
1234

|1〉,

|Ω2〉 =αγ|0〉
(
|1φ00〉+D1|1φ11〉

)
1234

|0〉+ αδ|0〉
(
|1φ01〉+D1|1φ10〉

)
1234

|1〉

+ βγ|1〉
(
|0φ00〉+D1|0φ11〉

)
1234

|0〉+ βδ|1〉
(
|0φ01〉+D1|0φ10〉

)
1234

|1〉,

|φ〉 = |vac〉, D1 = 1 if loss occurred before the application of the csign and
D1 = −1 if it occurred after. We model the loss via Eqn. 2.60 in Section 2.1.7
with t→∞. In the case that t 6→ ∞, as will be considered later in this section,
the mixed state resulting will have both vacuum and the initial state terms.

If we detect mode 3 in the ± basis we have 1
2 |Ω3〉〈Ω3|+ 1

2 |Ω4〉〈Ω4|, where

|Ω3〉 = α
(
γ|00〉+ E1δ|01〉

)(
|00〉+ E1|01〉

)
14

+ β
(
γ|10〉+ E1δ|11〉

)(
|10〉+ E1|11〉

)
14
,

|Ω4〉 = α
(
γ|00〉+ E2δ|01〉

)(
|10〉+ E2|11〉

)
14

+ β
(
γ|10〉+ E2δ|11〉

)(
|00〉+ E2|01〉

)
14
,

E2 = D1E1, E1 = 1 when we measure |+〉3 and E1 = −1 when we measure
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|−〉3. If we now detect modes 1 and 4 in the ± basis, we have

1
2
√

2

(
F1αγ|00〉+ F2αδ|01〉+ F3βγ|10〉+ F4βδ|11〉

)
(6.77)

where the coefficients F1, F2, F3 and F4 are given in Table 6.3.

F1 F2 F3 F4

D1=1 |+ + +〉134
√

2
√

2
√

2
√

2
|+ +−〉134 0 0 0 0
|−+ +〉134

√
2

√
2 -

√
2 -

√
2

|−+−〉134 0 0 0 0
|+−+〉134 0 0 0 0
|+−−〉134

√
2

√
2

√
2

√
2

|− −+〉134 0 0 0 0
|− − −〉134

√
2

√
2 -

√
2 -

√
2

D1 = −1 |+ + +〉134 1 1 1 1
|+ +−〉134 1 1 1 1
|−+ +〉134 1 1 -1 -1
|−+−〉134 1 1 -1 -1
|+−+〉134 1 1 1 1
|+−−〉134 1 1 1 1
|− −+〉134 1 1 -1 -1
|− − −〉134 1 1 -1 -1

Table 6.3: The results for loss on mode 2, after we measure qubits 1, 3 and 4 in the ± basis.

We see that we have lost a level of redundancy. This is summarised in
Fig. 6.16 with both modes 1 and 4 detected in the X basis (A = X).

Lose two photons

Next, consider the case that we lose a photon from both mode 2 and 3 in
Eqn. 6.74 and 6.75, |Ψ〉1|Ψ〉2 becomes |Ω5〉〈Ω5|+ |Ω6〉〈Ω6|+ |Ω7〉〈Ω7|+ |Ω8〉〈Ω8|,
where

|Ω5〉 = αγ|00〉|00〉14 + αδ|01〉|01〉14 + βγ|10〉|10〉14 + βδ|11〉|11〉14,

|Ω6〉 = αγ|00〉|01〉14 + αδ|01〉|00〉14 + βγ|10〉|11〉14 + βδ|11〉|10〉14,

|Ω7〉 = αγ|00〉|10〉14 + αδ|01〉|11〉14 + βγ|10〉|00〉14 + βδ|11〉|01〉14,

|Ω8〉 = αγ|00〉|11〉14 + αδ|01〉|10〉14 + βγ|10〉|01〉14 + βδ|11〉|00〉14.

This is independent of whether a loss occurred before or after the csign

If we now detect modes 1 and 4 in the ± basis we have
1
2

(
αγ|00〉+G1αδ|01〉+G2βγ|10〉+G3βδ|11〉

)
(6.78)
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where the coefficients G1, G2 and G3 are given in Table 6.4.

G1 G2 G3

|++〉14 1 1 1
|+−〉14 -1 1 -1
|−+〉14 1 -1 -1
|−−〉14 -1 -1 1

Table 6.4: The results for loss on modes 2 and 3, after we measure qubits 1 and 4 in the ±
basis.

This is summarised in Fig. 6.16 with both modes 1 and 4 detected in the X
basis (A = X).

6.4.1 Process Fidelity

As mentioned in the previous Section, since we are dealing with photon loss
from a single mode, we encode our qubits with n = 2 in Eqn. 6.71. The number
of redundancy levels is set to q. Similar to Eqns. 6.73 and 6.74, our encoded
state looks like

|ψenc〉in = η00|0〉⊗q|0〉⊗q + η01|0〉⊗q|1〉⊗q + η10|1〉⊗q|0〉⊗q + η11|1〉⊗q|1〉⊗q

(6.79)

=
1
2
|η00〉

(
|00〉+ |11〉

)
12

(
|00〉+ |11〉

)
34

+
1
2
|η01〉

(
|00〉+ |11〉

)
12

(
|01〉+ |10〉

)
34

+
1
2
|η10〉

(
|01〉+ |10〉

)
12

(
|00〉+ |11〉

)
34

+
1
2
|η11〉

(
|01〉+ |10〉

)
12

(
|01〉+ |10〉

)
34

= |χ00〉|00〉23 + |χ01〉|01〉23 + |χ10〉|10〉23 + |χ11〉|11〉23

where |0〉 = |0〉(2), |1〉 = |1〉(2),
∑1

ij=0 |ηij |2 = 1,

|ηab〉 = ηab|a〉⊗(q−1)|b〉⊗(q−1) (6.80)

with a, b ∈ {0, 1} and

|χab〉 =
1
2

1∑
m,n=0

|ηmn〉Xa ⊗Xb|mn〉14. (6.81)
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For example, |χ00〉 = 1
2

(
|η00〉|00〉14+|η01〉|01〉14+|η10〉|10〉14+|η11〉|11〉14

)
. The

input state incident on Fig. 6.16 now looks like

|ψenc〉in =
1∑

a,b=0

|χab〉|ab〉23 (6.82)

ρin =
1∑

a,b,c,d=0

|χab〉〈χcd| ⊗ |ab〉〈cd|

where modes 2 and 3 are incident on the csign in Fig. 6.16. At the point in
between (i) and (ii) in Fig. 6.16 we can write the density matrix in a similar
way to Eqn. 6.62:

ρout =
1∑

a,b,c,d=0

|χab〉〈χcd| ⊗ |ab〉〈cd| ⊗ E (|ab〉〈cd|) (6.83)

where we have written modes 2 and 3 in the dual rail basis.
Next, we need to measure modes 2 and 3 in the ± basis to detect for loss. If

we measure |vac〉 we measure qubits 1 and 4 in the ± basis to obtain a state with
one less redundancy level then attempt a csign on the next redundantly encoded
photon. If we detect no loss, we measure modes 1 and 4 in the computational
basis. To calculate the process fidelity we just consider the case when we detect
no loss.

After detecting modes 2 and 3 in the ± basis Eqn. 6.83 becomes

ραβ
out =

1∑
a,b,c,d=0

|χab〉〈χcd| ⊗ Tr
[
Mαβ

(
|ab〉〈cd| ⊗ E (|ab〉〈cd|)

)]
(6.84)

where

Mαβ = Zα ⊗ Zβ |+ +〉〈+ + |Zα ⊗ Zβ ,

M± = |±〉〈±| = 1
2 (|0〉〈0| ± |0〉〈1| ± |1〉〈0|+ |1〉〈1|), α, β ∈ {0, 1} and we have

used the fact that MαβMαβ = Mαβ . We know that Zα|s〉 = (−1)αs|s〉 and
|+ +〉〈+ + | = 1

4

∑1
stuv=0 |st〉〈uv| so we can rewrite Mαβ as

Mαβ =
1
4

1∑
stuv=0

Zα ⊗ Zβ |st〉〈uv|Zα ⊗ Zβ (6.85)

=
1
4

1∑
stuv=0

(−1)α(s+u)+β(t+v) |st〉〈uv|

=
1
4

1∑
stuv=0

(−1)α(s+u)+β(t+v) |st〉〈uv| ⊗ |st〉〈uv|
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where we have written Mαβ in the dual rail basis in the last line. ραβ
out becomes

ραβ
out =

1
4

1∑
a,b,c,d=0

(−1)α(a+c)+β(b+d) |χab〉〈χcd|〈ab|E (|ab〉〈cd|) |cd〉. (6.86)

Since we are only considering the case when we detect no photon loss, we detect
modes 1 and 4 in |χab〉 in the computational basis. Using Eqn. 6.81, ραβ

out becomes

ραβγδ
out =

1
16

1∑
a,b,c,d,
m,n,p,q =0

(−1)α(a+c)+β(b+d) |ηab〉〈ηcd|Tr
[
|γδ〉〈γδ|Xa ⊗Xb|mn〉〈pq|Xc ⊗Xd

]
× 〈ab|E (|ab〉〈cd|) |cd〉 (6.87)

where γ, δ ∈ {0, 1}. We use the fact that Xa|m〉 = |m⊕ a〉, where the addition
⊕ is modulo 2: a ⊕ b = (a + b) mod 2. So 〈γδ|Xa ⊗ Xb|mn〉 = δγ⊕a,mδδ⊕b,n.
ραβγδ
out becomes

ραβγδ
out =

1
16

1∑
a,b,c,d=0

(−1)α(a+c)+β(b+d) |ηγ⊕a,δ⊕b〉〈ηγ⊕c,δ⊕d|〈ab|E (|ab〉〈cd|) |cd〉.

(6.88)

Note, at this stage, one might think that both X and Z corrections are necessary
for each detection outcome. However, if we examine the form of |ηab〉 in Eqn.
6.80 we see that only Z corrections are necessary, as was shown in Table 6.2
and Fig. 6.16.

We want to work out the process fidelity, so the input state |ψenc〉in in
Eqn. 6.79 will have η00 = η01 = η10 = η11 = 1

2 and q → 2q. That is, instead of
|ηab〉 we will use

|η̃ab〉 =
1
2

(
|a〉(2)

)⊗(q−1) (
|a〉(2)

)⊗(q) (
|b〉(2)

)⊗(q−1) (
|b〉(2)

)⊗(q)

. (6.89)

We can apply corrections to ραβγδ
out due to the computational basis and ± basis

measurements. In this case we use X corrections even though only Z corrections
are necessary.

ρout =
1
16

1∑
a,b,c,d=0

(
Zα ⊗ Zβ

) (
Xγ ⊗Xδ

)
|η̃γ⊕a,δ⊕b〉〈η̃γ⊕c,δ⊕d|

(
Xγ ⊗Xδ

) (
Zα ⊗ Zβ

)
× (−1)α(a+c)+β(b+d) 〈ab|E (|ab〉〈cd|) |cd〉

=
1
16

1∑
a,b,c,d=0

(
(−1)α(a+c)+β(b+d)

)2

|η̃ab〉〈η̃cd|〈ab|E (|ab〉〈cd|) |cd〉

=
1
16

1∑
a,b,c,d=0

〈ab|E (|ab〉〈cd|) |cd〉|η̃ab〉〈η̃cd| (6.90)

where we can easily apply the X and Z corrections to the redundant parity
encoding as described in Section 2.7.6. Since we are only considering the case
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when we detect no photon loss, the density matrix ρout is not normalised. The
trace gives the probability of no loss on one redundancy level of encoding, that
is, the probability of measuring + or − at point (ii) in Fig. 6.16:

Pav = Tr [ρout] =
1
64

1∑
ab=0

〈ab|E (|ab〉〈ab|) |ab〉.

Notice that neither ρout nor Pav is dependent on the measurement outcomes
α, β, γ, δ. Since there are sixteen possible measurement outcomes, the total
success probability is given by

Pav =
1
4

1∑
a,b=0

〈ab|E (|ab〉〈ab|) |ab〉. (6.91)

The probability of failure on m redundancy levels of encoding is (1− Pav)m.
The normalised output density matrix is

ρout =
1
4

∑
a,b,c,d〈ab|E (|ab〉〈cd|) |cd〉|η̃ab〉〈η̃cd|∑

a,b〈ab|E (|ab〉〈ab|) |ab〉
. (6.92)

To work out the process fidelity we note that an ideal csign transforms the
state in Eqn. 6.79, using |η̃ab〉 instead of |ηab〉, to

|ψCSign〉 =
1∑

a,b=0

(−1)ab |η̃ab〉. (6.93)

We work out the process fidelity to be

F enc
pro =

1
4

∑
a,b,c,d (−1)ab+cd 〈ab|E (|ab〉〈cd|) |cd〉∑

a,b〈ab|E (|ab〉〈ab|) |ab〉
. (6.94)

Along with the success probability Pav, we can also work out a worst case
success probability by considering just the state |V V 〉 incident on Fig. 6.1 or
Fig. 6.3. This is the only state that allows a loss of one photon in both modes.
The worst case success probability is given by

Pwt = Tr
[
|11〉〈11|E (|11〉〈11|)

]
= 〈11|E (|11〉〈11|) |11〉. (6.95)

We calculate analytical expressions for the process fidelity F enc
pro , the success

probability Pav and the worst case success probability Pwt and plot them in
Figs. 6.17–6.29 for both the continuous interaction case in Section 6.1 and the
beam splitter case in Section 6.2.

In Figs. 6.17 and 6.18 we show the improvements one level of parity encoding
has over the no encoding case of Figs. 6.5 and 6.7, respectively.
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Figure 6.17: The process fidelity F enc
pro for the continuous interaction case for one level of

parity encoding (solid lines) and no encoding (dashed lines), as in Fig. 6.5. The Red curves

represent γ = 20, the Green curves represent γ = 100 and the Blue curves represent γ = 500.
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Figure 6.18: The process fidelity F enc
pro for the case case for one level of parity encoding

(solid lines) and no encoding (dashed lines), as in Fig. 6.7. Here we consider the 19 beam

splitter case. The Red curves represent γ = 20, the Green curves represent γ = 100 and the

Blue curves represent γ = 500.

In both Figs. 6.17 and 6.18, the process fidelity with encoding is considerably
higher than the no encoding case. Notice however that when we do include
encoding, the process fidelity peaks at some optimal τ value and then drops
off. This is contrary to what we would expect. In Fig. 6.19 we show the peak
process fidelity for each of the cases shown in Fig. 6.17 and 6.18. This figure
clearly shows the advantage in using encoding.
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Figure 6.19: The scaling of the process fidelity with γ for τ = τopt (separate optimisation

for each point shown). The Black lines represent the continuous interaction case, the Red

lines represent the 19 beam splitter case and the Green lines represent the 7 beam splitter

case. In part (a) the case in Fig. 6.10 is shown. In part (b), the encoded case is considered.

In Figs. 6.20–6.23 we show the probability Pav and worst case probability
Pwt for both the continuous interaction case (Fig. 6.20) and the beam splitter
case (Fig. 6.21). Notice that for each case Pwt is less than Pav, as expected.
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Figure 6.20: The process fidelity F enc
pro for the continuous interaction case for one level of

parity encoding (solid lines), Pav (dashed line) and Pwt (dashed-dotted line). The Red curves

represent γ = 20, the Green curves represent γ = 100 and the Blue curves represent γ = 500.
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Figure 6.21: The process fidelity F enc
pro for the beam splitter case for one level of parity

encoding (solid lines), Pav (dashed line) and Pwt (dashed-dotted line). Here we consider the

19 beam splitter case. The Red curves represent γ = 20, the Green curves represent γ = 100

and the Blue curves represent γ = 500.

As τ increases, both the encoded process fidelity and Pav approach 1/4,
and Pwt approaches 0, as seen in Fig. 6.22 for the continuous interaction case
and Fig. 6.23 for the beam splitter case. When we expand the sum for Pav in
Eqn. 6.91 we see that Pav = 1

4

(
〈00|E(|00〉〈00|)|00〉+〈01|E(|01〉〈01|)|01〉+〈10|E(|10〉〈10|)|10〉

+〈11|E(|11〉〈11|)|11〉
)

, and as shown in Eqn. 6.65 in Section 6.3, as τ → ∞,
that is, as the single photon loss begins to dominate, E(|ab〉〈ab|) → |00〉〈00| =
|vac〉〈vac|, for a, b ∈ {0, 1}. This fact explains why F enc

pro drops off as τ increases,
as can be seen when we expand the sum in Eqn. 6.94 for F enc

pro .
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Figure 6.22: The process fidelity F enc
pro for the continuous interaction case for one level of

parity encoding (solid lines), Pav (dashed line) and Pwt (dashed-dotted line) as in Fig. 6.20

for long τ . The Red curves represent γ = 20, the Green curves represent γ = 100 and the

Blue curves represent γ = 500.

204



2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

τ

F
p

P
w

t
P

a
v

/
/

Figure 6.23: The process fidelity F enc
pro for the beam splitter case for one level of parity

encoding (solid lines), Pav (dashed line) and Pwt (dashed-dotted line), as in Fig. 6.21 for long

τ . Here we consider the 19 beam splitter case. The Red curves represent γ = 20, the Green

curves represent γ = 100 and the Blue curves represent γ = 500.

For the small τ case we see that both Pav and Pwt dip, as shown in Fig.
6.24 for the continuous interaction case and Fig. 6.25 for the beam splitter case.
Before the dip, both Pav and Pwt approach 1 as τ → 0. This is expected, since
insufficient time for the two photon absorption to act results in the identity, as
shown in Eqn. 6.64 in Section 6.3. If we look at the form of both Pav and Pwt

in Eqn. 6.91 and 6.95, respectively, we see that for E = 1l, both are equal to 1.
The dip shown for Pav in Figs. 6.24 and 6.25 is approximately 3/4. As

γ decreases, Pav dips further below 3/4. The dip shown for Pwt in Figs. 6.24
and 6.25 is 0. If we explicitly calculate the form of Pav and Pwt for the continuous
interaction case we see that

〈00|E
(
|00〉〈00|

)
|00〉 = 1

〈01|E
(
|01〉〈01|

)
|01〉 = e−τ (6.96)

〈10|E
(
|10〉〈10|

)
|10〉 = e−τ

〈11|E
(
|11〉〈11|

)
|11〉 = A11

where

A11 = A−3e−(2+γ)τ
(
A(A2 + 2π2) cosh(A) + γτA2 sinh(A)− 2Aπ2

)
and

A =
√
γ2τ2 − 4π2.

If we explicitly calculate the form of Pav and Pwt for the beam splitter case we
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see that

〈00|E
(
|00〉〈00|

)
|00〉 = 1

〈01|E
(
|01〉〈01|

)
|01〉 = e−(2m−1)τ (6.97)

〈10|E
(
|10〉〈10|

)
|10〉 = e−(2m−1)τ

〈11|E
(
|11〉〈11|

)
|11〉 = B11

where

B11 = 21−4m

{
B1(1 + e2γτ ) cos

(
4mπ

2m− 1

)
+ eγτ

(
√

2BB2(eγτ − 1) cos
(

2mπ
2m− 1

)

+ 2B1 cosh(γτ)− 4
(

2B2m+1
− B2m+1

+ sin2

(
2mπ

2m− 1

)
+B1

))}
(B+B−B)−2

and

B = e−γτ

√
1− 6eγτ + e2γτ + (1 + eγτ )2 cos

(
4mπ

2m− 1

)
B± = e−τ

(
(1 + e−γτ ) cos

(
2mπ

2m− 1

)
± B√

2

)
B1 = B2

−B
4m
+ +B4m

− B2
+

B2 = B2
−B

4m
+ −B4m

− B2
+.

We expect Pwt = 〈11|E
(
|11〉〈11|

)
|11〉 to dip to 0. As τ → 0 our gate takes

|11〉 to |11〉. After the two photon absorption has had enough time to act,
we expect our gate to take |11〉 to −|11〉. This means, somewhere in between,
the amplitude for |11〉 will be 0. This is confirmed by looking at A11 and B11

numerically, each go to 0 for a particular small τ . This, in conjunction with
the fact that 〈01|E

(
|01〉〈01|

)
|01〉 ≈ 1 and 〈10|E

(
|10〉〈10|

)
|10〉 ≈ 1 for small τ ,

explains why Pav dips to 3/4 in Figs. 6.24 and 6.25.
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Figure 6.24: Pav and Pwt as in Fig. 6.20 for short τ . The Red curve shows Pav for γ = 200,

the Blue curves shows Pav for γ = 500 and the Magenta curve shows Pav for γ = 1000. The

Green curve shows Pwt for γ = 200, the Cyan curve shows Pwt for γ = 500 and the Yellow

curve shows Pwt for γ = 1000. The Black line shows probability equal to 3/4.
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Figure 6.25: Pav and Pwt as in Fig. 6.21 for short τ . The Red curve shows Pav for γ = 200,

the Blue curves shows Pav for γ = 500 and the Magenta curve shows Pav for γ = 1000. The

Green curve shows Pwt for γ = 200, the Cyan curve shows Pwt for γ = 500 and the Yellow

curve shows Pwt for γ = 1000. The Black line shows probability equal to 3/4.
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In Fig. 6.26 we compare Pav and Pwt for the continuous interaction case with
Pav and Pwt for the beam splitter case. As we increase γ, we need more beam
splitters to approach the continuous interaction case. This is also true for F enc

pro ,
as shown in Fig. 6.27.
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Figure 6.26: Pav and Pwt for both the continuous interaction (solid lines) and 19 beam

splitter case (dashed lines). The Red curve shows Pav for γ = 20, the Blue curves shows Pav

for γ = 100 and the Magenta curve shows Pav for γ = 500. The Green curve shows Pwt for

γ = 20, the Cyan curve shows Pwt for γ = 100 and the Black curve shows Pwt for γ = 500.
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Figure 6.27: F enc
pro for both the continuous interaction (solid lines) and 19 beam splitter case

(dashed lines). The Red curves represent γ = 20, the Green curves represent γ = 100 and the

Blue curves represent γ = 500.

208



In Fig. 6.28 we see how the beam splitter case approaches the continuous
interaction case as we increasing the number of beam splitters by looking at
F enc

pro , Pav and Pwt.
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Figure 6.28: The process fidelity F enc
pro for one level of parity encoding (solid lines), Pav

(dashed line) and Pwt (dashed-dotted line). Here we consider the γ = 500 case. The Red

curves represent 7 beam splitters, the Green curves represent 11 beam splitters, the Blue curves

represent 19 beam splitters, the Cyan curves represent 39 beam splitters and the Black curves

represent the continuous interaction case.

In Fig. 6.29 we show the peak process fidelity for one level of encoding with
the corresponding Pav and Pwt. At γ values of approximately 1000, the peak
process fidelity is above 99%.
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Figure 6.29: The scaling of the process fidelity F enc
pro with γ for τ = τopt is shown in part

(a) (separate optimisation for each point shown). In parts (b) and (c) the corresponding Pav

and Pwt are shown, respectively. The Black lines represent the continuous interaction case,

the Red lines represent the 19 beam splitter case and the Green lines represent the 7 beam

splitter case.
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6.5 Balanced Solution

The fact that the process fidelity in the previous section drops off after some
optimal τ value can be rectified by including loss in both modes of the dual rail
qubits in Figs. 6.1 and 6.3, not just within the interaction region, as shown in
Figs. 6.30 and 6.31. That is, consider the state c00|HH〉+c01|HV 〉+c10|V H〉+
c11|V V 〉 incident on Fig. 6.1 or 6.3. The amplitude of |HH〉 is independent of
τ , however the amplitudes for |HV 〉, |V H〉 and |V V 〉 approach 0 as τ → ∞,
with |V V 〉 dropping off the fastest. This results in our output density matrix
having a relatively large |HH〉〈HH| term. If we include loss in the horizontal
modes, each term in the output density matrix will fall off at the same rate, thus
increasing the process fidelity as τ increases. Including loss in the horizontal
mode will result in the success probability decreasing at a faster rate.

Since the photons in the horizontal modes in Fig. 6.1 and 6.3 never interact
with any other photons, there is only ever 0 or 1 photon in these modes. Given
that the initial density matrix for one of the horizontal modes is c00(t)|0〉〈0| +
c01(t)|0〉〈1|+c10(t)|1〉〈0|+c11(t)|1〉〈1|, where c00 +c11 = 1, we can work out what
the density matrix looks like after a time t with single photon loss of strength
γ1 by using Eqn. 2.59 in Section 2.1.7 with n set to 1:

ρ(t) =
(
c00 + c11

(
1− e−γ1t

))
|0〉〈0|+ e−γ1t/2 (c01|0〉〈1|+ c10|1〉〈0|) + c11e

−γ1t. (6.98)

In terms of a quantum operation EH this is:

EH (|a〉〈b|) = κ
(1)
ab |a〉〈b|+ κ

(2)
ab |a− 1〉〈b− 1| (6.99)

where κ
(1)
00 = 1, κ(1)

01 = κ
(1)
10 = e−τ/2, κ(1)

11 = e−τ , κ(2)
00 = κ

(2)
01 = κ

(2)
10 = 0,

κ
(2)
11 = 1 − e−τ and we have re-scaled t as before: t = τ/γ1. Applying this to

two horizontally polarised modes gives:

EH (|ab〉〈cd|) =
(
κ(1)

ac |a〉〈c|+ κ(2)
ac |a− 1〉〈c− 1|

)
⊗
(
κ

(1)
bd |b〉〈d|+ κ

(2)
bd |b− 1〉〈d− 1|

)
= κ(1)

ac κ
(1)
bd |a, b〉〈c, d|+ κ(1)

ac κ
(2)
bd |a, b− 1〉〈c, d− 1| (6.100)

+ κ(2)
ac κ

(1)
bd |a− 1, b〉〈c− 1, d|+ κ(2)

ac κ
(2)
bd |a− 1, b− 1〉〈c− 1, d− 1|.
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Figure 6.30: Incorporating loss on the horizontal modes in Fig. 6.1 to balance the system.
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Figure 6.31: Incorporating loss on the horizontal modes in Fig. 6.3 to balance the system.

With this in mind, the output density matrix in Eqn. 6.83 can be modified
to include single photon loss on the horizontal modes:

ρout =
1∑

a,b,c,d=0

|χab〉〈χcd| ⊗ EH

(
|ab〉〈cd|

)
⊗ E (|ab〉〈cd|) . (6.101)

This is the output density matrix for both Fig. 6.30 and Fig. 6.31.
We can expand this using Eqn. 6.100

ρout =
1∑

a,b,c,d=0

|χab〉〈χcd| ⊗ κ
(1)
ac κ

(1)

bd
|ab〉〈cd| ⊗ E (|ab〉〈cd|) (6.102)

+
1∑

a,c=0

|χa0〉〈χc0| ⊗ κ
(1)
ac κ

(2)
11 |a0〉〈c0| ⊗ E (|a0〉〈c0|)

+
1∑

b,d=0

|χ0b〉〈χ0d| ⊗ κ
(2)
11 κ

(1)

bd
|0b〉〈0d| ⊗ E (|0b〉〈0d|)

+ |χ00〉〈χ00| ⊗
(
κ

(2)
11

)2

|00〉〈00| ⊗ E (|00〉〈00|) .

211



After detecting modes 2 and 3 in the ± basis Eqn. 6.101 becomes

ραβ
out =

1∑
a,b,c,d=0

|χab〉〈χcd| ⊗ Tr
[
Mαβ

(
EH

(
|ab〉〈cd|

)
⊗ E (|ab〉〈cd|)

)]
(6.103)

=
1
4

1∑
a,b,c,d,
s,t,u,v =0

(−1)α(s+u)β(t+v) |χab〉〈χcd|〈uv|EH

(
|ab〉〈cd|

)
|st〉

× 〈uv|E (|ab〉〈cd|) |st〉

=
1
4

1∑
s,t,u,v=0

(−1)α(s+u)β(t+v) 〈uvuv|ρout|stst〉

where Mαβ is given in Eqn. 6.85. Using Eqn. 6.102 we find

ραβ
out =

1
4

1∑
a,b,c,d=0

(−1)α(a+c)β(b+d) |χab〉〈χcd|κ(1)
ac κ

(1)

bd
〈ab|E (|ab〉〈cd|) |cd〉, (6.104)

since |stst〉, |uvuv〉 ∈ {|0011〉, |0110〉, |1001〉, |1100〉} and E transforms terms to
a sum of terms with equal or lower photon number. For instance, consider

〈uvuv|
1∑

a,c=0

|a0〉〈c0| ⊗ E (|a0〉〈c0|) |stst〉

= 〈uvuv||10〉〈10| ⊗ E (|00〉〈00|) + |10〉〈00| ⊗ E (|00〉〈10|)

+ |00〉〈10| ⊗ E (|10〉〈00|) + |00〉〈00| ⊗ E (|10〉〈10|) |stst〉

= 0

where E (|00〉〈00|) = |00〉〈00|, E (|10〉〈00|) is a sum of the terms |00〉〈00|, |10〉〈00|
and |01〉〈00|, E (|00〉〈10|) is a sum of the terms |00〉〈00|, |00〉〈10| and |00〉〈01| and
E (|10〉〈10|) is a sum of the terms |00〉〈00|, |10〉〈00|, |01〉〈00|, |00〉〈10|, |00〉〈01|,
|01〉〈01|, |01〉〈10|, |10〉〈01| and |10〉〈10|. This is true for all possible 〈uvuv| and
|stst〉.

Notice that ραβ
out shown in Eqn. 6.104 is equivalent to ραβ

out in Eqn. 6.86 up to
the the factor κ(1)

ac κ
(1)

bd
. This mean we can proceed with the computation basis

measurement of modes 1 and 4 and the calculation of the process fidelity and
probability of success as before by just including the factor κ(1)

ac κ
(1)

bd
.

The new probability of success will be

PB
av =

1
4

1∑
a,b=0

κ
(1)
aa κ

(1)

bb
〈ab|E (|ab〉〈ab|) |ab〉, (6.105)

the normalised output density matrix, after the ± and computation basis mea-
surements is given by

ρB
out =

1
4

∑
a,b,c,d κ

(1)
ac κ

(1)

bd
〈ab|E (|ab〉〈cd|) |cd〉|η̃ab〉〈η̃cd|∑

a,b κ
(1)
aa κ

(1)

bb
〈ab|E (|ab〉〈ab|) |ab〉

(6.106)
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and the process fidelity is given by

FB
pro =

1
4

∑
a,b,c,d (−1)ab+cd

κ
(1)
ac κ

(1)

bd
〈ab|E (|ab〉〈cd|) |cd〉∑

a,b κ
(1)
aa κ

(1)

bb
〈ab|E (|ab〉〈ab|) |ab〉

. (6.107)

We calculate analytical expressions for the process fidelity FB
pro and the suc-

cess probability PB
avand plot them in Figs. 6.32–6.44 for both the continuous

interaction case in Section 6.1 and the beam splitter case in Section 6.2.
In Figs. 6.32 and 6.33 we compare the balanced encoded results in Eqns. 6.105

and 6.107 with the unbalanced encoded results in Eqns. 6.91 and 6.94 and the
unencoded result in Eqn. 6.63 for both the continuous interaction and the beam
splitter case. In both cases, once we include loss in the horizontal mode, the
process fidelity increases with τ , not dropping off after some optimal τ . As a
consequence, the success probability falls off faster than the unbalanced encoded
case.
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Figure 6.32: The process fidelity Fpro (solid lines) and probability of success Pav (dashed

lines) for the continuous interaction case. Here we consider the γ = 100 case. The Red curve

represents the no encoding case of Section 6.3, the Green curves represent the encoding case

of Section 6.4.1 and the Blue curves represent the encoding case with single photon loss in

the horizontal mode from Eqns. 6.105 and 6.107.

In Figs. 6.34 and 6.35 the process fidelity FB
pro and success probability PB

av

are shown for increasing γ. As we would expect, for a given τ the process
fidelity increases with γ. The success probability dips to approximately 3/4 as
in the unbalanced encoded case shown in Figs. 6.24 and 6.25. As τ increases
the success probability also approaches 1/4.
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Figure 6.33: The process fidelity Fpro (solid lines) and probability of success Pav (dashed

lines) for the beam splitter case. Here we consider the 19 beam splitter, γ = 100 case. The

Red curve represents the no encoding case of Section 6.3, the Green curves represent the

encoding case of Section 6.4.1 and the Blue curves represent the encoding case with single

photon loss in the horizontal mode from Eqns. 6.105 and 6.107.
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Figure 6.34: The process fidelity FB
pro (solid lines) and probability of success PB

av (dashed

lines) for the continuous interaction case with single photon loss in the horizontal mode. The

Red curves represent γ = 20, the Green curves represent γ = 100 and the Blue curves represent

γ = 500.

In Figs. 6.36 and 6.37 we show how the continuous interaction case compares
to a particular number beam splitter case as we vary γ. As we increase γ, we
need more beam splitters to approach the continuous interaction case.
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Figure 6.35: The process fidelity FB
pro (solid lines) and probability of success PB

av (dashed

lines) for the beam splitter case with single photon loss in the horizontal mode. Here we

consider the 19 beam splitter case. The Red curves represent γ = 20, the Green curves

represent γ = 100 and the Blue curves represent γ = 500.
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Figure 6.36: The process fidelity FB
pro for both the continuous interaction case (solid lines)

and the beam splitter case (dashed lines). Here we consider the 15 beam splitter case. The

Red curves represent γ = 20, the Green curves represent γ = 50 and the Blue curves represent

γ = 100.

In Fig. 6.38 we compare the continuous interaction case with the beam split-
ter case for a particular γ. As we increase the number of beam splitters, the
beam splitter process fidelity approaches the continuous interaction case faster
than the probability of success.
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Figure 6.37: The probability of success PB
av for both the continuous interaction case (solid

lines) and the beam splitter case (dashed lines). Here we consider the 15 beam splitter case.

The Red curves represent γ = 20, the Green curves represent γ = 50 and the Blue curves

represent γ = 100.
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Figure 6.38: The process fidelity FB
pro and success probability PB

av for both the continuous

interaction case (solid lines) and the beam splitter case (dashed lines). Here we consider the

γ = 500 case. The Red curves represent 7 beam splitters, the Green curves represent 11 beam

splitters, the Blue curves represent 19 beam splitters, the Cyan curves represent 39 beam

splitters and the Black curves represent the continuous interaction case.

In Figs. 6.39 and 6.40 we show the scaling of the process fidelity FB
pro and

success probability PB
av with γ for the continuous interaction case. We find the

values of γ and τ for which the success probability is 25%, 50% and 64% and
calculate the corresponding process fidelity, shown as part (a) in Fig. 6.39. In
a similar way, we find the values of γ and τ for which the process fidelity is
99.9% and calculate the corresponding success probability, shown as part (b)
in Fig. 6.39. Notice that a process fidelity of 99.9% is attainable for all γ,
although some γ values result in a success probability of approximately 0. The
success probability reaches a peak value after it dips to 3/4, as can be seen when
γ = 500 in Figs 6.34 and 6.35. If there is insufficient two photon absorption,
the the peak in success probability is not directly visible, such is the case for
γ . 250. The peak success probability in these cases can be found by looking
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at the first and second derivative, with respect to τ . In part (c) in Fig. 6.39,
we show the maximum success probability and corresponding process fidelity
for γ > 250. Notice that the success probability curves from parts (b) and (c)
converge for large γ. This is magnified in Fig. 6.40.
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Figure 6.39: The scaling of the process fidelity FB
pro and success probability PB

av with γ

for the continuous interaction case (separate optimisation for each point shown). Part (a)

shows FB
pro for PB

av = 25% (Blue), PB
av = 50% (Cyan) and PB

av = 64% (Magenta). Part (b)

shows PB
av for FB

pro = 99.9%. Part (c) shows maximum success probability PB
av in Red and

the corresponding process fidelity FB
pro in Yellow.
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Figure 6.40: The scaling of the process fidelity FB
pro and success probability PB

av with γ for

the continuous interaction case (separate optimisation for each point shown). Here we show

parts (b) and (c) of Fig. 6.39 magnified. In Green we have PB
av for FB

pro = 99.9%. In Red we

have the maximum success probability PB
av and in Yellow we have the corresponding process

fidelity FB
pro.

In part (b) of Fig. 6.39 we showed the success probability for the continuous
interaction case, given that the process fidelity was 99.9%. We could have
instead considered any process fidelity arbitrarily close to 1. This is not true for
the beam splitters case. Depending on the number of beam splitters considered,
the process fidelity reaches a maximum, not necessarily equal 1. This is shown
in Fig. 6.41. Notice that a process fidelity above 99% is only possible if the
number of beam splitters is ≥ 23, and a process fidelity above 99.9% is only
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possible if the number of beam splitters is ≥ 67. The results in the figure are
independent of γ. That is, for a given value of γ, the process fidelity will reach
the maximum predicted in Fig. 6.41 for some τ value. If we increase the value
of γ, the value of τ at which the process fidelity first reaches its maximum will
decrease.
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Figure 6.41: In part (a) we show the maximum process fidelity FB
pro for a given number of

beam splitters (separate optimisation for each point shown). In part (b) we magnify part (a)

showing when the process fidelity reaches 99% in Greens and when the process fidelity reaches

99.9% in Blue.

The maximum process fidelity for a given number of beam splitters shown
in Fig. 6.41 corresponds to the peak process fidelity for the unbalanced encoded
beam splitter case in Fig. 6.29(a).

In Fig. 6.42 we find the values of γ and τ for which the process fidelity is
99.9% and calculate the corresponding success probability for both the contin-
uous interaction and beam splitter case.
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Figure 6.42: The success probability PB
av for FB

pro = 99.9% with the continuous interaction

case in Green, the 67 beam splitter case in Red and the 79 beam splitter case in Blue (separate

optimisation for each point shown).

In Fig. 6.43 we find the values of γ and τ for which the success probability
is 25%, 50% and 64%, respectively, and calculate the corresponding process
fidelity, for both the continuous interaction and beam splitter case. Notice that
for each of these cases, the process fidelity for the beam splitter case reaches the
maximum predicted in Fig. 6.41.
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Figure 6.43: The process fidelity FB
pro for PB

av = 25% (part (a)), PB
av = 50% (part (b)) and

PB
av = 64% (part (c)) The continuous interaction case is shown in Green, the 7 beam splitter

case is shown in Red and the 11 beam splitter case is shown in Blue (separate optimisation

for each point shown).
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In Fig. 6.44 we show how the maximum success probability for the con-
tinuous interaction case compares with the beam splitters case along with the
corresponding process fidelities.
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Figure 6.44: The scaling of the process fidelity FB
pro and success probability PB

av with γ

for both the continuous interaction and beam splitter case (separate optimisation for each

point shown). In part (a) we have the maximum success probability PB
av for the continuous

interaction case in Green, the 7 beam splitter case in Red, the 11 beam splitter case in Blue,

the 27 beam splitter case in Cyan and the 39 beam splitter case in Magenta. In part (b) we

have the corresponding process fidelity FB
pro for each case.

6.6 LOQC Comparison

In order to gauge the amount of resources our encoded optical Zeno csign gate
consumes, we compare our gate with a competing LOQC scheme. The gate
suggested by Gilchrist et al. in [87], described in Section 2.7.6, uses the same
parity encoding presented in Section 6.4 to increase the probability of success
above that of the original LOQC scheme [31], as shown in Fig. 2.32.

We compare the two gates by looking at the average number of photons
consumed during the gates operation, n̄. To do this, we assume that each gate
operates above a total failure probability P0, below which the gate destroys the
quantum information. We impose the restriction that the two qubit gate must
work with process fidelity of at least 99.9%. For the encoded Zeno gate, this
will have implications on what values both P0 and n̄ can take. Since there is
no inherent variable controlling the process fidelity for the LOQC scheme, we
assume that the linear optics, entangled ancilla and photon detectors are all
such that Fp ≥ 99.9%.

The probability of failure for the LOQC cnot gate in Fig. 2.29(b) is P (L)
0 =

(3/4)n/2, where we assume n/2 photons are present in both the control and
target qubits. This is equivalent to n/2 = log

(
P

(L)
0

)
/ log (3/4). Since each

fusion gate in Fig. 2.29(b) operates with a success probability of 1/2, the two
fusion gate system operates with a success probability of 1/4. We therefore
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expect 12 photons to be consumed by the two fusion gates, 4 from each of the
control, target and ancilla qubits. A parity measurement is made on the control
qubit, consuming another n/2 − 4 photons. For the LOQC gate we find the
average number of photons consumed to be

n̄L = 12 +
n

2
− 4 = 8 +

n

2
= 8 +

log
(
P

(L)
0

)
log (3/4)

. (6.108)

For the Zeno gate, each csign attempt shown in Fig. 6.16 consumes 4 pho-
tons. If we take the probability of success to be Pav, the average number of
photons consumed by the Zeno gate is

n̄Z =
4
Pav

. (6.109)

As mentioned in Section 6.4.1, the probability of failure on m redundancy levels
of encoding is

P
(Z)
0 = (1− Pav)m

. (6.110)

If we combine Eqns. 6.109 and 6.110 we have

n̄Z =
4

1−
(
P

(Z)
0

) 1
m

. (6.111)

In Fig. 6.45 we plot both n̄L and n̄Z as a function of P0. For P0 . 10−1 the
Zeno scheme always consumes less resources than the LOQC scheme.

5

10

15

20

25

30

35

40

10
−1

10
−2

10
−3

10
−4

10
−5

1

P0

n̄

Figure 6.45: The scaling of the average number of photons consumed per gate (n̄) with the

probability of total failure (P0). The Black line shows n̄L. The Red, Green, Blue, Magenta

and Cyan lines show n̄Z with 8, 4, 3, 2, and 1 levels of redundancy, respectively.

For the Zeno gate, both the process fidelity and success probability are gov-
erned by γ and τ . For the unbalanced encoded case in Section 6.4.1 we need to
find τopt for a particular γ that gives the target process fidelity of 99.9%. In this
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way we find the success probability Pav, dictating n̄Z and P
(Z)
0 via Eqns. 6.109

and 6.110. For the continuous interaction case, only γ values greater than 4825
give the target fidelity. This is shown in parts (b)–(f) of Fig. 6.46. In Fig. 6.41
we noted that at least 67 beam splitters were necessary for Fp ≥ 99.9% in the
balanced case. This is also true for the unbalanced encoded case. In Fig. 6.47 we
compare the continuous interaction and beam splitter cases for the unbalanced
Zeno gate.

For the balanced case in Section 6.5 we need to find the smallest τ such that
the target fidelity is met, for a given γ. This gives the success probability Pav

which once again dictates n̄Z and P
(Z)
0 . In the continuous interaction case, for

any given γ there is always a τ for which Fp ≥ 99.9%, as noted in part (b) of
Fig. 6.39. If the number of beam splitters is at least 67 this is also the case,
as shown in Fig. 6.41. For a particular level of redundancy, the points (P0, n̄)
will always be on the same curves as in Fig. 6.45. The value of γ and whether
we are considering the continuous interaction or beam splitter case will govern
where on these curves each point is located. This is shown in parts (g)–(k) of
Fig. 6.46 and in Fig. 6.48 for the continuous interaction case and in Figs. 6.49
and 6.50 for the beam splitter case.
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Figure 6.46: The scaling of the average number of photons consumed per gate operation

(n̄) with the probability of total failure (P0), for a target fidelity of Fp = 99.9%. The solid

Black line in part (a) shows the LOQC case. The dashed Black line shows the unbalanced

Zeno gate with γ = 4825 and the dashed Red line shows the balanced Zeno gate, both for

the continuous interaction case. Point (b) shows the unbalanced case with no redundancy

encoding, points (c)–(f) show the unbalanced case with 1–4 levels of redundancy encoding.

Points (g)–(k) show the balanced case with 4 levels of redundancy encoding, for γ equal to

5000, 2500, 1000, 500, 250, respectively.

In Fig. 6.46 we show how n̄ scales with P0 for both the unbalanced and
balanced continuous interaction case, given a target fidelity of Fp = 99.9%.
For the unbalanced case, given that γ = 4825, we can reduce the total failure
probability by increasing the number of levels of redundant encoding, without
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increasing n̄. For the balanced case we see that by increasing γ, we can reduce
both the total failure probability and the average number of photons consumed
per gate operation. With 4 levels of redundancy encoding, the γ = 250 case is
close to using as many resources as the LOQC scheme.

In Fig. 6.47 we examine the beam splitter case for the unbalanced Zeno gate.
As mentioned above, we need at least 67 beam splitters for the target fidelity to
be reached. If we consider this minimum number of beam spliiters, we require
γ ≥ 64000 for the target fidelity to be reached. We show this in the lower part of
Fig. 6.47. Notice that as we increase the number of beam splitters we approach
the continuous interaction case. If we reduce γ by an order of magnitude, we
would need to increase the number of beam splitters to 135 for the target fidelity
to be reached. This is shown in the upper part of Fig. 6.47. As in Fig. 6.46,
we can reduce the total failure probability by increasing the number of levels of
redundant encoding. Notice that as γ increases the spread between the beam
splitter continuous interaction cases decreases.
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Figure 6.47: The scaling of the average number of photons consumed per gate operation (n̄)

with the probability of total failure (P0), for a target fidelity of Fp = 99.9%, for the unbalanced

Zeno gate. The lower four lines show the γ = 64000 case with the continuous interaction case

shown in Black, the 67 beam splitter case shown in Blue, the 71 beam splitter case shown in

Green and the 79 beam splitter case shown in Red. The upper four lines show the γ = 6400

case with the continuous interaction case shown in Black, the 135 beam splitter case shown

in Blue, the 147 beam splitter case shown in Green and the 159 beam splitter case shown

in Red. Points (a) and (j) show no redundancy encoding. Points (b)–(e) show 1–4 levels of

redundancy encoding and points (f)–(i) show 4–1 levels of redundancy encoding.

In Fig. 6.48 we examine the continuous interaction case for the balanced
Zeno gate, showing how the number of levels of redundant encoding improves
the total failure probability for a given γ. We see that when we have only 1
level of redundancy encoding, for γ = 250, the Zeno gate uses more resources
than the LOQC scheme.

In Figs. 6.49 and 6.50 we examine the beam splitter case for the balanced
Zeno gate. As we decrease the number of beam splitters, we move from left to

224



4

6

8

10

12

14

n̄

10
−1

10
−2

10
−3

10
−4

10
−5

1

P0

Figure 6.48: The scaling of the average number of photons consumed per gate operation

(n̄) with the probability of total failure (P0), for a target fidelity of Fp = 99.9%, for the

continuous interaction balanced Zeno gate. The solid Black line shows the LOQC case. The

dashed Black line shows the unbalanced Zeno gate with γ = 4825. The dashed Magenta,

Blue, Green and Red lines show the balanced Zeno gate with 1, 2, 3 and 4 levels of redundancy

encoding, respectively. Each of these lines shows the points corresponding to γ=5000, 2500,

1000, 500 and 250, from left to right.

right along the curves in Fig. 6.45, for a given γ. This can be seen in Fig. 6.49 for
the case of 4 levels of redundancy encoding. Notice that for the 67 and 79 beam
splitter case, when γ = 250, we use more resources than the LOQC scheme.
In Fig. 6.50 we show how the beam splitter case compares to the continuous
interaction case when we have 4, 3, 2, and 1 level of redundancy encoding. As we
would expect, for each specific case, that is, for either the continuous interaction
case or a given number of beam splitters, and a particular γ, n̄ is constant as
we increase the level of redundancy of encoding, with P0 decreasing. When we
have 4, 3, 2, or 1 level of redundancy encoding in Fig. 6.50, both the 67 and 79
beam splitter case use more resources when γ = 250.
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Figure 6.49: The scaling of the average number of photons consumed per gate operation

(n̄) with the probability of total failure (P0), for a target fidelity of Fp = 99.9%, for both

the continuous interaction and beam splitter balanced Zeno gate with 4 levels of redundancy

encoding. The solid Black line in part (a) shows the LOQC case. The Blue points represent

the continuous interaction case, the Magenta points represent the 79 beam splitter case and

the Cyan points represent the 67 beam splitter case. γ = 5000 for points (b)–(d), γ = 2500

for points (e)–(g), γ = 1000 for points (h)–(j), γ = 500 for points (k)–(m) and γ = 250 for

points (n)–(p).

In Fig. 6.51 we investigate how the number of beam splitters changes the
point at which the balanced Zeno gate and the LOQC scheme use the same
number of resources. We consider 4 levels of redundancy encoding. As the
number of beam splitters decreases, the value of γ at which the resource usage
for the two schemes is equal increases. This is shown explicitly in Fig. 6.52.

In Fig. 6.52 we pick out the values of γ for which the balanced Zeno scheme
and the LOQC scheme consume the same resources. For a given number of
beam splitters, if γ is less than that shown on each curve, then the LOQC
scheme uses less resources, if it is greater, the balanced Zeno gate uses less
resources. As the the number of beam splitters is increased, we approach the
continuous interaction (CI) case, shown on the right. We consider 8, 4, 3, 2 and
1 level of redundancy encoding. As we would expect, as the level of encoding
increases for a given number of beam splitters, the value of γ for which the two
schemes use the same number of resources decreases. The values of n̄ and P0

for which the resource consumption is the same for both schemes is shown in
Table 6.5, for each levels of redundancy encoding.
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Figure 6.50: The scaling of the average number of photons consumed per gate operation

(n̄) with the probability of total failure (P0), for a target fidelity of Fp = 99.9%, for both

the continuous interaction and beam splitter balanced Zeno gate. The solid Black line in

part (a) shows the LOQC case. The Blue points represent the continuous interaction case,

the Magenta points represent the 79 beam splitter case and the Cyan points represent the

67 beam splitter case. The Black, Green, Red and Yellow curves correspond to 4, 3, 2, and

1 level of redundancy encoding, respectively. On each curve the three left points show the

γ = 5000 case and the three right points show the γ = 250 case.

No. levels of redundancy P0 n̄

1 0.412 11.17
2 0.304 12.22
3 0.234 13.13
4 0.184 13.94
8 0.084 16.65

Table 6.5: P0 and n̄ when the balanced Zeno gate and LOQC scheme consume the same

resources.
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Figure 6.51: The scaling of the average number of photons consumed per gate operation (n̄)

with both the probability of total failure (P0) and the number of beam splitters, for a target

fidelity of Fp = 99.9%. Here we consider 4 levels of redundancy encoding in the balanced Zeno

gate. We consider 10 different beam splitter cases, ranging from the 67 beam splitter case

through to the 103 beam splitter case, increasing by increments of 4 beam splitters. Parallel

to the “No. of BS” axis we plot lines of constant γ, starting with γ = 250 at point (a) and

increasing by 50 until γ = 900. Points (b) and (c) show the curves with γ = 500 and 750,

respectively. The Cyan plane shows the LOQC case.
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Figure 6.52: The relationship between the number of beam splitters and γ when the re-

sources consumed by the balanced Zeno gate is equal to that consumed by the LOQC scheme.

The Green, Blue, Cyan, Magenta and Yellow curves show 8, 4, 3, 2 and 1 level of redundancy

encoding, respectively. We consider 44 different beam splitter cases, ranging from the 67

beam splitter case through to the 239 beam splitter case, increasing by increments of 4 beam

splitters. The continuous interaction (CI) case is shown on the right for each redundancy

level.
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Chapter 7

Summary of Results

In this thesis we presented results from three areas of photonic quantum com-
puting.

First, we presented a photon-number QND detector with a success prob-
ability that asymptotically approaches 1. This photon-number QND detector
detects the presence of a single photon in an arbitrary polarisation state when
the input state is a sum of vacuum and multi-photon terms. For the success
probability to asymptotically approach 1, we use the entangled resources states
|QNDtn〉, similar to the |tn〉 states. The circuit for this photon-number QND
detector is a new type of optical teleporter. When we compare our optical tele-
porter with the original LOQC teleporter [31], given a success probability of(

n
n+1

)2

, our teleporter requires n2−2n−1 less entangling operations in general
and 2n− 1 less entangling operations when n is small [83].

Second, we presented results centred around qubus computation [49, 93].
We show a scheme to measure the party of n qubit states. When n is even
we require one coherent probe beam, n + 1 optical displacements and n(n +
2) controlled rotations. When n is odd we require one coherent probe beam,
n + 2 optical displacements and n(n + 3) controlled rotations. In each case
we need to measure the probe beam, either by performing a photon number
or homodyne detection. We extended these results, showing a fault tolerant
method to measure the parity of n qubits. This scheme required 3n+1 controlled
rotations, n + 1 ancillary photons, 2n probe beam measurements and n + 1
photon number measurements. A direct breakdown of the Shor fault tolerant
circuit [21] into cnot gates would require 4(2n−1) controlled rotations, 2(2n−1)
probe beam measurements, 2n− 1 ancillary photons and 2n− 1 photon number
measurements.

We constructed a three qubit gate that functions as a Toffoli gate 25% of
the time and as a controlled-controlled-iY gate 25% of the time. This three
qubit gate required one quantum bus probe beam, 14 controlled rotations, 4
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optical displacements and a photon number detection of the probe beam. We
extended this three qubit to an m qubit gate that functions as an m-qubit Toffoli
gate 25% of the time and as an m-qubit controlled iY gate 25%. However, the
resources scale exponentially with m, requiring one probe beam, 2m + (m −
1)2m−1 controlled rotations, 2m−1 optical displacements and a photon number
detection of the probe beam.

We used single bit teleportations [108] to construct a universal set of gates
on qubus logical states, similar to the coherent logic states in [111]. This scheme
required 2 controlled rotations to perform arbitrary single qubit gate and 7 con-
trolled rotations to perform a csign gate. This is in contrast to the 8 controlled
rotations required for a csign and 8 controlled rotations required for an arbi-
trary single qubit gate in [111]. We also used single teleportations to construct
n qubit polarisation GHZ states, states that can be used to construct cluster
states. To construct an n qubit polarisation GHZ states we required n+ 1 con-
trolled rotations, n + 1 single photon ancilla state, 1 photon number detection
and n homodyne detections. For both qubus logical gates and GHZ production
we showed a method of boosting the fidelity by post-selection.

Third, we presented results centred around the Franson et al. optical Zeno
gate [50]. We modelled realistic two photon absorption and included realistic
single photon loss for this gate, showing that the fidelity of the gate is severely
effected by single photons loss. We show that we can increase the fidelity by
encoding against single photon loss, using a generalised parity code and using
redundancy encoding [87, 48]. We show that by encoding our qubits in such a
way, we overcome the effects of single photon loss such that our resource usage
is much less than that required for an equivalent LOQC scheme [87].
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