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Abstract

The dawn of quantum technology unveils a plethora of new possibilities and challenges in
the world of information technology, one of which is the quest for secure information trans-
mission. A breakthrough in classical algorithm or the development of a quantum computer
could threaten the security of messages encoded using public key cryptosystems based on
one-way function such as RSA. Quantum key distribution (QKD) offers an unconditionally
secure alternative to such schemes, even in the advent of a quantum computer, as it does
not rely on mathematical or technological assumptions, but rather on the universality of
the laws of quantum mechanics.

Physical concepts associated with quantum mechanics, like the uncertainty principle
or entanglement, paved the way to the first successful security proof for QKD. Ever since,
further development in security proofs for QKD has been remarkable. But the connection
between entanglement distillation and the uncertainty principle has remained hidden under
a pile of mathematical burden. Our main goal is to dig the physics out of the new ad-
vances in security proofs for QKD. By introducing an alternative definition of private state,
which elaborates the ideas of Mayers and Koashi, we explain how the security of all QKD
protocols follows from an entropic uncertainty principle. We show explicitly how privacy
amplification protocol can be reduced to a private state distillation protocol constructed
from our observations about the uncertainty principle. We also derive a generic security
proof for one-way permutation-invariant QKD protocols. Considering collective attack, we
achieve the same secret key generation rate as the Devetak-Winter’s bound. Generalizing
an observation from Kraus, Branciard and Renner, we have provided an improved version
of the secret key generation rates by considering a different symmetrization. In certain
situations, we argue that Azuma’s inequality can simplify the security proof considerably,
and we explain the implication, on the security level, of reducing a QKD protocol to an
entanglement or a more general private state distillation protocol.

In a different direction, we introduce a QKD protocol with multiple-photon encoding
that can be implemented without a shared reference frame. We prove the unconditional
security of this protocol, and discuss some features of the efficiency of multiple-photon
QKD schemes in general.
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Chapter 1

Motivations

1.1 Quantum Revolution

Information technologies like radio, television, telephone, computer and internet have
shaped modern civilizations. With the exception of some pioneer works, the theory of
computation was, until very recently, restricted to information encoded in classical states
and where processing could be described by classical mechanics. On the other hand, the
laws of quantum mechanics allow a more general class of physical states and operations,
and open the doors to a more general theory of information. The basic reason why quan-
tum mechanics was not included at first in information theory (information theory was
discovered after quantum mechanics) was that quantum states are very sensitive to ther-
mal noise and are very difficult to manipulate. Most researchers simply thought that
controlling quantum states was a crazy idea and were not interested in a more general
theory of information. But, recent advances in quantum optics and nanotechnology have
brought in a different perspective. The devices used for computation are becoming smaller
and smaller every year, and quantum effects in these devices will soon be dominant. A
small quantum structure can now be controlled very well, and quantum correlation ob-
served between photons has been proved to be very robust when communicating over
many kilometers.

Quantum information is the study of the new possibilities offered by quantum tech-
nologies. It has been discovered that some quantum algorithms, like the Grover search
algorithm [74], can outperform the best known classical algorithms essential in some cru-
cial day-to-day applications. Quantum mechanics can also be used in cryptography to
obtain a higher level of security, which was not possible classically.

A large part of the research is to try and investigate other possible applications, im-
prove our control of larger and more complex quantum structures and obtain a better
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understanding of quantum mechanics. In the following text, we present some of our con-
tributions to the field of quantum cryptography. For a clearer comprehension of these
contributions, we begin our explanation with a brief introduction to one-time pad and the
field of contemporary cryptography followed by a history of quantum key distribution.
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1.2 Modern Cryptography

1.2.1 One-time Pad and Perfect Security

An ideal cryptographic system sould not allow eavesdroppers to obtain any information
whatsoever about the message, whatever resources they may have. Claude Shannon [167]
proved that it is necessary and sufficient to use a random and perfectly secure key of the
same length as that of the compressed version of the message to be able to make it perfectly
information-theoretic secure.

Here is an illustration on how to obtain such perfect information-theoretic security using
a one-time pad, followed by a discussion on the difficulties in fulfilling the requirements for
such a high level of security.

Consider two parties - Alice and Bob. Bob asks Alice if the Holy Grail is hidden
either in the sanctuary of Montserrat, the Rosslyn Chapel, the spring at Glastonbury
Tor, Jeruzalem, the Louvre, the Vatican, the White House or elsewhere. Before sending
her answer, Alice could compress her message in a three bit string (a1, a2, a3) such that
“the sanctuary of Montserrat” corresponds to 000, “the Rosslyn Chapel” to 001, etc. The
compression algorithm is assumed to be known by Bob, and any third party. To obtain a
perfect information-theoric security, Alice uses a random secret key composed of three bit
(s1, s2, s3) that she shares with Bob. This secret key is also known as a one-time pad. She
sends the following three bit string to Bob:

(a1, a2, a3)
⊕

(s1, s2, s3) = (a1

⊕
s1, a2

⊕
s2, a3

⊕
s3) (1.1)

where addition modulo 2 is implicitly understood. If it is intercepted, then the eaves-
dropper would not be able to gain any information about the original message, and only
someone with the one time pad could recover the original message using a simple transfor-
mation:

(a1

⊕
s1, a2

⊕
s2, a3

⊕
s3)
⊕

(s1, s2, s3) = (a1, a2, a3) (1.2)

followed by the decompression algorithm.
Perfect security in the above protocol is achieved if and only if the one-time pad is

perfectly random and secret. Surprisingly, the randomness of the one time pad is not a
trivial issue. Programs that generate random numbers on a computer follow algorithms
and, in theory, are predictable. Flipping a coin to generate random bits is arguably very
unpredictable, but also very inefficient. Nevertheless, those who are fastidious will remark
that the flip process respects the laws of classical mechanics, which are also deterministic.
In fact, the randomness of a key generated by any classical process is associated with the
complexity of the physical system from which the numbers are extracted. Someone who
is able to obtain a better and more detailed description of the physical ensemble could

3



predict the outcome of the supposedly random process. For practical purposes, this notion
of randomness may be more than enough, but it is interesting to note that the basic laws of
quantum mechanics suggest that pure randomness could be achieved experimentally. By
the uncertainty principle, the outcomes of a simple experiment, like measuring the circular
polarization of a photon that was initially linearly polarized, are perfectly random up to
the noise and apparatus imperfection. Assuming that the noise is independent from one
outcome to another, it is possible, using error correction, to extract with high probability
some perfectly random bits. Without some strict restriction on the dependence of the noise
on different outcomes, it is impossible to obtain perfect randomness as shown in [51, 52].
Consequently, while the randomness obtained by a classical protocol lies in the complexity
of a mathematical problem or a physical system, in the case of a quantum measurement
it is based on the solidity of the laws of quantum mechanics and some assumptions about
the noise’s model. As we will see, there exists a similar relation between the secrecy of a
one-time pad obtained from a classical and a quantum protocol.

To ensure the secrecy of the key, Alice and Bob could have met ulteriorly and agreed
upon a random key. This might turn out to be very impractical, especially if Alice and
Bob want to secretly communicate a message, which is larger than what they had initially
expected. Note that they cannot reuse the same key with a different message without
compromising the security of the key since, by adding the two encoded messages together,
an eavesdropper would obtain a juxtaposition of the two original messages which is in most
cases easy to decode. By the way, this is why this key is called a one-time pad. Alice and
Bob would then be in serious trouble since they cannot create or extend an information-
theoretic secret key using an insecure classical channel like a phone line, internet, Fedex,
etc. See Appendix A.2 for more about that statement.

1.2.2 “Classical” Cryptography

Public-key distribution was invented to overcome the problem of distributing a secret key
through an insecure channel. Its security is based on the use of a one-way function, i.e. a
function easy to compute, but hard to invert. Following a specific public-key distribution
protocol, Alice picks two keys randomly. She keeps one of them private and she broadcasts
the other publicly. Assuming that he can authenticate the message sent by Alice (for
example by knowing her web address or using a trusted third party), Bob uses the public
key to encode his message and sends it to Alice through the insecure channel. With her
private key, Alice can easily decrypt Bob’s message. The security of this protocol lies on the
assumption that any eavesdropper cannot efficiently (i.e. within an acceptable computation
time) decode the message without the private key. As a classic example, RSA is a public-
key distribution scheme for which the decoding is equivalent to factorizing a product of
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two large primes. If one of the primes is known, the other one can be efficiently calculated.
However, no known classical algorithm can efficiently factorize arbitrary large numbers
and current technology does not give us enough computational power to break RSA, even
in many lifetimes. Other examples of public-key distribution protocol include the elliptic
curve cryptography which is broadly used on the internet. Note that its security is based on
the complexity of a mathematical problem other than factorization. Nonetheless, quantum
computer can break elliptic crypto-systems efficiently using essentially ShorÕs algorithm
for the discrete logarithm problem.

Public-key cryptography is also called asymmetric cryptography. There also exists
symmetric cryptography in which Alice and Bob pre-share a secret key used to encrypt
and decrypt a message. In fact, the protocol described above, involving the one-time
pad, is an example of symmetric cryptography. As mentioned earlier, up to equivalent
operations, it is the only symmetric cryptographic protocol that can achieve information-
theoretic security. The security of symmetric cryptographic protocols that use a secret
key smaller than the compressed message is given assuming that Eve (the eavesdropper)
cannot efficiently solve some mathematical protocol, or that she is restricted in the kind
of operations she can perform or the resources available to her. For example, there exist
symmetric cryptographic protocols that are secure against an adversary that has a bounded
storage capacity [48].

1.2.3 Shaky Ground

One thing particular to one-way functions is that no one really knows if they exist or not.
The proof of existence of one-way functions would solve one of the most important open
questions in computer science: NP 6= P (i.e. not every decision problem for which the
solution can be checked in polynomial time can actually be solved in polynomial time, and
vice-versa). The difficulties encountered in solving this question have considerably reduced
the hope of proving definitively the security of public-key distribution. However, it does
not prevent most mathematicians from believing in the existence of a one-way function.

A problem like factoring is considered hard since no one has found an efficient classical
algorithm for it even after tremendous efforts put in by the whole mathematics community.
On the other hand, we can not rule out the minute possibility that someone could break
RSA or elliptic curve cryptography tomorrow using a laptop bought at Future Shop. In a
way, the security of cryptographic protocol based on mathematical complexity is a matter
of faith more than an objective statement. It is normal to question that faith, especially
in light of the new advances in quantum information.

Today, all computers available on the market follow computation rules described by
classical mechanics. However, more general computation operations can be performed.
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In theory, we could exploit all operations and states allowed by quantum mechanics. A
device which such power is called a quantum computer. In 1994, Shor found an algorithm
[172] to efficiently factorize large number using a quantum computer, although no one
has found an efficient classical algorithm. It has been proven that a scalable quantum
computer could perform some operations faster than the optimal strategy performed on
a classical computer of similar size, but those speedups were not sufficient to show that
quantum computers could solve efficiently (i.e. in polynomial time) some problems that
are not efficiently solvable on a classical computer. Nevertheless, Shor’s discovery suggests
that it is most likely that such problems exist.

One of the main difficulties of building a quantum computer is to make it scalable,
meaning that the register of the quantum computer could be extended while keeping the
noise level in the devices below some threshold, as determined by the theory of quantum
fault-tolerance [4, 98, 102, 146]. It turns out that presently no one knows how to build a
scalable quantum computer. In fact, the security of RSA is based on the extra assumption
that no one will be able to build a large quantum computer.

An issue arising with the development of quantum information is to find which crypto-
graphic protocols based on computational complexity can stand up to a quantum computer.
Finding a function (called quantum one-way function) easy to compute on a classical com-
puter and hard to invert on a quantum computer would imply that there exists a standard
one-way function and NP 6= P . In the probable case that no one succeeds in proving the
existence of quantum one-way function and thus of standard one-way function, the math-
ematical community could propose some likely quantum one-way functions. The security
of the cryptographic protocols will be directly proportional to the community’s efforts to
invert the quantum one-way functions, to which these protocols are reduced. This can
be a good motivation for the study of algorithmic complexity in the context of quantum
information.

One problem with cryptographic protocols based either on quantum or classical com-
plexity assumptions is that if algorithmic and/or technological advancements allow the
protocol to be broken, then someone with a recording of the past communications could
decrypt the old messages. If someone wants to keep a communication secret for more than
20 or 40 years, then he could used a pre-shared one-time pad as described in the previous
section or use a protocol based on a one-way function that he believes won’t be broken
during that whole time. In the next section, a third alternative, that does not depend on
algorithmic complexity, has been presented. It is called quantum key distribution (QKD).
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1.3 The Appeal of QKD

So far, we have discussed cryptography algorithms that can be described classically. More
than ten years before Shor’s discovery, Wiesner, Bennett and Brassard proposed protocols
that could perform cryptographic tasks that are impossible classically by exploiting fea-
tures from quantum mechanics. For example, information-theoretic secure key distribution
through an authenticated channel is possible if Alice sends quantum states to Bob instead
of restricting herself to classical communication. The concept of distributing a key using
quantum protocols is called quantum key distribution (QKD). QKD is part of the wider
field of quantum cryptography that includes the study of secrecy and privacy in all quan-
tum protocols. It includes secret sharing, zero-knowledge proofs, quantum coin tossing,
etc. The focus of our research is QKD.

Assuming that the channels are authenticated, the security of QKD relies on the de-
pendability of the laws of quantum mechanics and not on the unproven complexity of a
mathematical problem. QKD has the advantage of being robust against the advent of
quantum computing and it could be useful to use it in combination with other standard
cryptographic protocols to increase the security in the sense discussed earlier. However, one
can argue that by not responding to the threats of side-channels or the man-in-the-middle
attack, QKD does not strengthen the weaker security aspects of contemporary cryptogra-
phy. QKD does not solve the problem of authentication of channels, which prevents an
eavesdropper from impersonating one of the parties.

However, it is possible to unconditionally authenticate a channel by using a relatively
small pre-shared key [35]. Therefore, QKD is a good method to extend a pre-shared secret
key, something that cannot be done classically. There also exist authentication protocols
that do not require a pre-shared secret key. However, their security is based on some
computational assumptions. Suppose that QKD was combined with such authentication
protocols. Then, if Eve is able to break the authentication protocol before the end of the
QKD scheme, she can impersonate the receiver and obtain the secret message. However,
if the duration of the QKD protocol is kept within a certain length in which Eve cannot
break the authentication protocol, then the security of the distributed key is not threatened
by the possibility that Eve may break the protocol in the future. This makes a clear
contrast with the security of protocols discussed in the previous section, since the message
might be decrypted later by using more time and the new technological and algorithmic
developments. Another extraordinary feature of QKD is that, in standard conditions, it
is possible to recycle the key used for authentication [116, 81] without compromising the
information-theoretic security of the protocol —an issue referred to as the composability
of the authentication scheme.

QKD was received with a lot of skepticism, and Bennett and Brassard had difficulties
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publishing their seminal paper on the subject. At the time, it was judged very unlikely
that QKD could ever be implemented with good results. The experimental progress in the
last few years has been encouraging, and the prospect of building good quantum memories
and quantum repeaters has kept alive the hope of implementing reliable and fast long
distance QKD. Nevertheless, critics point out that extra costs and poorer performance of
QKD as compared to the key-distribution methods based on (quantum) one-way function
might outbalance the advantages it provides.

Even considering the importance of private communication in our society, many believe
that it is unlikely that QKD will replace public-key cryptography on a large scale since
the improvement in security it could provide does not seem to be cost effective. Picking
the right cryptography method for everyday applications is mostly a question of cost
versus saving. Cryptography is used more as a deterrent to pirates and thieves than as
an absolute technique for preventing crimes. For example, learning how to crack a DVD
and spending time copying it is not worth the effort for most people. It is much simpler to
buy it at the store. Thus, it might be worthwhile to upgrade the cryptographic protocol
that encrypts the DVD, but only if the costs related to the changes are lower than the
benefits engendered. The same is true for QKD. It is a question of whether installing a
large scale QKD network would be worth the investment. Critics of QKD argue that it
will be more cost effective to choose the key-distribution schemes that depend on more
complex (quantum) one-way functions, but the only way to verify this is to do more
theoretical and experimental research on QKD. The discovery and experiments on QKD
are very recent, and we anticipate that new technologies and discoveries will improve its
performance considerably. Even if QKD, or some form of it, would not be suitable for a
large network, it could still be used for point-to-point communication like, for example,
making a private link between the White House and the Pentagon.

For some, these arguments justify the efforts and time spent on developing QKD. There
are other motivations. Looking back, QKD did not become famous because of the hope of
cryptographers to improve the security of some useful protocols, but through the physics
community because of the work of Ekert who independently discovered QKD and remarked
that its security is related to the violation of Bell’s inequality[55].

Physicists were attracted to quantum cryptography since it provided practical ways to
describe and observe some important differences between quantum and classical mechanics.
With the rest of quantum information, it provides a convenient tool to comprehend, teach
and investigate the subtleties of quantum mechanics. As it is explained in this thesis, QKD
is directly related to the uncertainty principle and to the production of private states,
a generalization of the maximally entangled state. Investigating QKD is like analyzing
entanglement distillation with constraints. The importance of these studies is underlined

8



by the central role that uncertainty principles and entanglement plays in more complex
quantum protocols and in quantum information in general.
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1.4 QKD Experiments

In order to give the complete picture, we provide a brief overview of the experiments related
to QKD. QKD was first implemented in 1989 by [16]. It exploited the polarization states
of photons traveling in free space for a distance no longer than 30 cm. Loud electric sparks
could be heard by anyone in the room, revealing full information about the quantum states
emitted by the device. From then on, much improvement has been recorded. Although
polarization encoding is suitable for free-space transmission of photons, a birefringence
effect in optical fiber combined with thermal fluctuation causes random rotation of the
polarization states of photon traveling through the fiber. This makes polarization encoding
not the most favored encoding for QKD through optical fiber. In 1992, Bennett proposed
a QKD scheme which encoded quantum information in the phase between two states of
a photon corresponding to two different time bins [15]. The encoding and decoding is
performed using a Mach-Zehnder interferometer for each operation. This protocol lead to
some very good implementations of QKD, that can be used even over 100 km [63, 70].

The components used for phase-encoding QKD, like phase modulators, are polarization
dependent. This implies that if the random polarization transformation in the fiber is not
compensated, the performance of the QKD protocol will suffer greatly. An ingenious way
to deal with this was proposed by [129] and implemented for QKD by [133, 178]. It consists
of using a Faraday mirror such that photons can travel back and forth in the fiber so that
the random polarization rotation can be effectively cancelled. An extra advantage of this
scheme is that it is robust against phase instability of the interferometer (see [69] for
details).

In the above set-ups, the most popular method to produce an approximation of single
photons is to use faint laser pulses. The intensity of the pulses is so low that, on an
average, they possess less than one photon each. However, a significant fraction of the
pulses will contain two or more photons. Each of the photons contains a copy of the
quantum states that Alice would have liked to send to Bob. Eve could simply take one of
those copies to gain, about Alice’s state, as much information as Bob. Therefore, a multi-
photon pulse considerably threatens the security of QKD. To deal with this problem, some
used entangled pairs of photons generated by parametric down-conversion [112], and used
a measurement on one of the photons to determine the presence of a sister photon sent
through the channel. There are also other methods to produce better single-photon pulses.
But all those methods, including the one involving entangled pairs of photons generated
by parametric down-conversion, have so far provided significantly less non-empty pulses
than if a faint laser was used.

A famous technique to restrict the possible eavesdropping attacks on multiple-photon
pulses is by using decoy states [88]. Some extra — and relatively simple — operations allow
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Alice and Bob to make upper bound on the number of multiple-photon pulses that Eve
has exploited, and generally considerably improve the key generation of the QKD protocol.
Many long distance and fast QKD experiments have been performed using this method
[190, 157, 141].

Other QKD schemes have been proposed for the simplicity of their set-up and their
high raw key generation rates. For example, continuous-variable QKD using homodyne
or heterodyne detection has been particularly popular [125]. New protocols that are not
invariant under permutation, exploit the phase between photon pulses and are more robust
against the photon splitting attack than conventional QKD protocols [179, 177]. For a more
complete review of the different experiments related to QKD, we suggest [69, 126, 123].
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1.5 Security Proofs

1.5.1 Types of Security Proofs for QKD

There are two main reasons for doubting QKD. First, because of the difficulties and related
costs of implementing it as explained above, and second, because of the lack of trustworthy
security proofs. An answer to the first concern was given in the previous section; the second
needs more explanation. If QKD is to replace conventional cryptography, we need to make
sure that it really does provide better security. Here is an overview of some of the huge
progress of the last few years to obtain decent security proof for QKD.

One of the most cited principles to explain the difference between quantum and stan-
dard cryptography is the non-cloning theorem. Contrary to the fact that classical commu-
nication can be copied faithfully, it is impossible to obtain a perfect copy of an arbitrary
quantum state. Generally, trying to extract information from an arbitrary state will per-
turb it. If Eve tries to eavesdrop on judiciously chosen quantum states sent between Alice
and Bob, then she will necessarily add noise to them so that she can be detected. This
argument is quite loose and does not constitute a proof, but it explains intuitively how
QKD could be secure and that the amount of information that Eve could have obtained
must be an increasing function of the noise she induced. To be on the safe side, the worst
case scenario is usually assumed when analyzing the security of QKD. Therefore, it is con-
sidered that all or most of the experimental noises are caused by Eve since she could have
replaced imperfect devices by better ones. For example, it is generally assumed that Eve
can replace a standard optic fiber by a loss and birefringence-free channel.

A great advancement in the development of security proof for QKD was the discovery of
privacy amplification [19], a classical protocol which allows Alice and Bob to get rid of Eve’s
information on a string of bits they share, by sacrificing a number of bits that approximately
equal the amount of information that Eve had on the string (see appendix B.1 for some
more details about privacy amplification). It is therefore sufficient to prove security to be
able to find (as a function of the noise in the channel) a bound on Eve’s information on
the raw key Alice and Bob obtained from the QKD protocol.

Without any assumption of restriction on Eve’s access to Alice and Bob’s laboratories,
it is impossible to make a security proof. In general, it is supposed that Alice and Bob’s
labs are isolated, meaning that nothing else leaves the labs besides the state that Alice
intended to send to Bob. However, this assumption is very strong, and in reality, Eve could
make a trojan-horse attack by using some light or beam to scan Alice and Bob’s lab. In
theory, any standard cryptographic protocol could also be threatened by such an attack,
but QKD is especially sensitive to it. It is believed that the amount of information that
Eve can extract from such an attack can be limited by some common sense arguments [67],
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but more theoretical and experimental work will be needed on this important and sensitive
subject. Another common assumption is that Alice and Bob’s devices work in an ideal
way. Considering imperfect devices is one of the greatest complications of security proof
and many (including [73, 105, 2]) have put forth proposals that consider various general
cases of imperfect devices.

Instead of considering an all powerful Eve, the problem of finding a security proof can
be simplified by restricting operations that Eve could perform. We present different types
of attacks considered on a QKD protocol where Alice sent to Bob a series of independent
and identical mixed states1, but their unconditional security proof are still open). For a
collective attack, Eve uses one ancilla of some any dimension for each of the independent
mixed state sent by Alice. On each of the sent states, Eve will independently apply the
same operation on each state with his associated ancilla. However, at the end of the
protocol, Eve can do any quantum measurement simultaneously on all her ancillas. The
individual attack (also called incoherent attack) is similar to the collective case except that
at the end of the protocol, Eve must do similar and independent measurement on the
ancillas. Another interesting restriction is to suppose that the ancillas used by Eve are
classical, meaning that she can’t store quantum information and wait until the end of the
protocol. There are good practical motivations to study weaker attacks, since it is believed
that any real eavesdropper should be limited in the kind of quantum operations that he
can performed or in the size of the quantum storage he has access to.

The joint attack is the strongest possible attack that Eve can perform, assuming she
can’t access or control Alice and Bob’s devices. Eve can perform any quantum operation
simultaneously on all the sent quantum states and on some extra ancillas. At the end of the
QKD protocol, after Alice and Bob had declared everything they had to, she can make any
quantum measurement on her ancillas. In spite of the controversy around the use of the
following word, security proof against joint attack are often qualified as unconditional — a
word borrowed from the computer science community. Most of this thesis will be focusing
on unconditional security proofs assuming Alice and Bob’s devices function perfectly and
are isolated from Eve, but occasionally, there will be a need to refer to weaker kinds of
attacks.

To claim that a proof is unconditionally secure, no matter what, is absurd. There is
always some assumption behind an allegation of security. QKD assumes that the laws of
quantum mechanics are universal i.e. Eve cannot do operations or possess states that are
not allowed by quantum mechanics. Such an assumption might be surprising, especially
after what happened to classical mechanics less than a century ago. We should expect
the existence of some unknown physical theory that could threaten the security of QKD.

1Some proposed QKD protocols do not have this property (see [89] for an example
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Interestingly, some work has been done to prove the security of the protocol despite the
failure of the laws of quantum mechanics. These security proofs are based on some weaker
conditions such as non-signaling or restriction on non-local correlations. Therefore, even
if quantum mechanics is not the most general physical law, their might still be ways to
do information-theoretic secure key distribution. The charm of quantum mechanics lies
in its robustness. Many efforts have been made without success in demonstrating non-
quantum effects. One important advantage of assuming quantum mechanics rather than
some weaker condition is that, as far as we know, it provides higher secret key rates.

Resuming the two previous sections, the level of security of QKD protocols depends on
how confident Alice and Bob are about Eve’s limits. It also depends on how much Alice and
Bob can trust their own devices not to reveal extra information to Eve by some side-channel
that they were not aware of. Further improvement in the control and understanding of the
inner mechanics of the devices used will increase trust in the QKD schemes. Analogously
to the security of cryptography schemes based on algorithmic complexity, the security of
QKD depends on the quantity of unsuccessful efforts made in breaking it. It is necessary
to ensure that Eve cannot gain more information, than we thought she could, by trying
to control or influence Alice and Bob’s devices, or by using some special attack like the
trojan-horse attack. Two important differences with contemporary cryptography is that
QKD depends only on physical assumptions, and that its security is not threaten by future
technological developments.2

1.5.2 Overview of Proofs of Security Against Joint Attack

When Bennett and Brassard proposed the first QKD protocol [17], called BB84, they did
not have a security proof for their protocol. However, they believed that the security
would follow from the uncertainty principle which implies that the value of a classical
bit that is encoded in either of the two conjugated basis {|0〉, |1〉} or {|+〉, |−〉} where
|+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) cannot be guessed with certainty. This

is the same uncertainty principle that prevents the angular momentum of a spin−1
2 to

be measured simultaneously in two orthogonal directions. More than ten years later,
using a different uncertainty principle for entropy and mutual information, Mayers [130]
gave the first rigorous unconditional security proof for BB84 (assuming Alice and Bob’s
devices work properly and are isolated from Eve). He observed that there was a tradeoff
between the information that Bob can obtain from states that are encoded in a basis
{|0〉, |1〉} ({|+〉, |−〉}), and the information that Eve obtains from the states encoded in
the conjugated basis {|+〉, |−〉} ({|0〉, |1〉}). Soon after, a different proof [22] was published
using a similar idea. The proofs were however very mathematically oriented. Remark that

2An interesting discussion about this subject can be found on Michael Nielson’s blog.
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Mayers’ proof was greatly simplified in [49, 107, 104] by using arguments from security
proof based on entanglement distillation.

Reducing BB84 to some entanglement distillation protocol (EDP) [20] for proving its
security was proposed by [120, 173]. EDP is a protocol in which Alice and Bob, represented
by the system A and B respectively, use local operations and classical communication
(LOCC) to produce several approximate copies of the maximally entangled state

|Φd〉AB :=
1√
d

d−1∑
k=0

|k〉A|k〉B =
1√
d

d−1∑
x=0

|x̃〉A|d̃− x̃〉B (1.3)

for dimensions d and where {|x̃〉 | 1 6 x 6 d−1} is a conjugated basis to {|z〉 | 1 6 z 6 d−1}
as defined in Appendix A.6. To understand intuitively why this reduction from QKD to
EPD is sufficient to obtain security, let us assume that Alice and Bob share |Φd〉AB. If they
measure respectively their register in the computational basis, they will obtain a uniformly
random correlated dit. However, we can invoke an uncertainty principle [127] to show that
Eve’s cannot have any information about their outcome.

Consider any state ρ. Let H(Γ) be the Shannon entropy of the outcomes of the mea-
surement of the observable Γ on ρ. Then

H(Z) +H(X) > log2 d (1.4)

where Z and X are non-degenerate observable with eigenvectors in the computational
and a conjugated basis, respectively. Suppose that Bob, instead of measuring in the
computational basis, measures in the conjugated basis, then he would be able to predict
with certainty Alice’s measurement outcome in the conjugated basis since |Φd〉AB. In that
case, by the uncertainty principle, the outcome of the measurement of the observable Z on
Alice’s state will be uniformly-distributed. Since Eve cannot differentiate the case where
Bob measured in the conjugated or in the computational basis, then she cannot have any
information about the outcome of the measurement of the observable Z on Alice’s state
even if Bob measures in the computational basis.

After Shor and Preskill proved the security of BB84 using this reduction to a EDP, the
method was generalized to other QKD protocols [118, 180, 27, 181, 150] and to include
two-way communication [72].

Meanwhile, there are several other proposed methods for proving security of QKD
against joint attack. A general proof for permutation invariant protocols was first given
in [41]. In [153, 110], it was shown that pre-processing (a classical operation on the
raw key that is performed before error correction) can improve the secret key-generation
rate of QKD protocols. For a specific pre-processing procedure and one-way classical
communication, Devetak-Winter found the ”optimal” asymptotic secret key-generation
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rate against collective attack [50]. In his Ph.D. thesis [152], Renner proved the exponential
quantum de Finetti theorem — which can be used to reduce joint attack to collective
attack for permutation invariant protocol — and gave a security proof including finite
size effect. It implies that the secret key generation rates obtained by Devetak-Winter for
collective attack are also valid against joint attack.3 The success of those security proofs
went beyond the ones based on either the uncertainty principle or entanglement distillation.
Principally, higher key generation rates were obtained, but the proofs were usually much
more mathematical and were less intuitive. Some believed at the time that proofs based
on those physical principles would not be able to capture all the subtleties required to
optimize the secret key generation rate. As we will see in the next section, although not
all QKD protocols can be interpreted as entanglement distillation, every QKD protocol
must correspond to a private states distillation protocol.

1.5.3 Private States

By definition, a uniformly-distributed key of dimension d shared by Alice and Bob is
independent of Eve if and only if it can be written as

(
1
d

d−1∑
k=0

|k〉A〈k| ⊗ |k〉B〈k|

)
⊗ ρE (1.5)

for any ρE , where the index E means that the state is in Eve’s possession. A private state
is defined as any pure state of the form

|ψ〉ABSE =
1√
d

d−1∑
k=0

|k〉A|k〉BV (k)
S |ξ〉SE = UABS |Φ〉AB|ξ〉SE , (1.6)

for arbitrary unitaries V (k)
S restricted to the system S and some state |ξ〉SE . The new

system S is out of reach of Eve and could be under the control (or not) of Alice and Bob.
It is called the shield, since it protects the state shared by Alice and Bob from being
correlated with Eve. UABS :=

∑d−1
k=0 |k, k〉AB〈k, k| ⊗ V (k) is called the twisting operator,

where |k, k〉AB := |k〉A|k〉B. In [86], it was shown that any uniformly-distributed secret key
can be obtained from a private state, and any private state can give a uniformly-distributed
secret key. We review this proof in Section 2.1. A private state is a generalization of the
maximally entangled state given by Equation 1.3. Since the goal of QKD is to produce a
uniformly-distributed secret key, we conclude that every QKD protocol must correspond
to a private state distillation protocol where the private states have the form given by
Equation 1.6.

3Remark that it was previously shown that collective attack was as strong as joint attack in the case of

BB84 [22].
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1.5.4 Definition of Security

Consider the interpretation of QKD as private state distillation. The resulting ideal state
would be a perfect private state, but QKD protocol does not give such a perfect state.
Instead, an approximation of a private state is obtained. The question is how good is that
approximation. There are several ways of measuring the distance between quantum states,
and the definition and strength of security will depend on the one that is chosen.

A good definition of security would allow the key generated by the QKD protocol to
be used with any other protocol, such that the security of the combination of the protocols
is guaranteed. In that case, the security is said to be a universal composable [21]. This
turns out to be a very important issue, since many previous proofs for QKD were using a
definition of security that was not a universal composable. Security was often claimed by
showing that Eve’s mutual information was exponentially small with respect to the size of
the quantum communication. In [108], it was shown that even if Eve’s mutual information
was exponentially small, she could still get one bit of information in certain circumstances.

A good definition of security would be that Alice and Bob’s quantum state would be
indistinguishable from a private state with a probability that is exponentially close to 1

2

in relation to some security parameter s. The parameter s should be easy to increase and
could be, for instance, the size in qubits of quantum communication between Alice and
Bob. A polynomial number of protocols respecting such a definition of security could then
be combined without worrying about the security of the whole protocol.

According to a famous result called the Helstrom’s Theorem [82], the probability of
distinguishing between the two quantum states ρ0 and ρ1 is bounded by 1

2 + 1
4Tr[|ρ0− ρ1].

It motivated the following definition of security[154, 21, 108]:

Definition: A random variable V on V is called an ε-secure key with respect to E if

Tr[ρV E − ρ′W ⊗ ρ′E ] 6 2ε, (1.7)

for some ρ′E and where ρ′W :=
∑

v∈V
1
|V| |v〉〈v| is the completely mixed state.

If Alice, Bob, the shield and Eve share a state ρABSE such that

Tr[|ρABSE − ψABSE |] 6 2ε (1.8)

for some private state ψABES given by Equation 1.6, then the key obtained by Alice and
Bob by measuring their register in the computational basis will be ε-secure. It follows from
the fact that the trace distance cannot increase under the action of a completely positive
trace preserving (CPTP) map, like the partial trace.
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Suppose n is the size in qubits of the quantum communication between Alice and Bob.
We say that a secret key generation rate τ is achievable by a QKD protocol, if there exist a
series of private states |ψ(n)〉ABSE such that Tr[|ρ(n)

ABES − |ψ(n)〉ABSE〈ψ(n)||] 6 2εn, where
εn → 0 and 0 →∞. The rate of convergence is irrelevant in the asymptotical case, but is
of prime importance when a finite key (i.e. finite n) is considered. As we will see, different
methods for proving security of QKD provided different rates of convergence. Therefore,
for finite QKD, some methods can be preferable to others. The rate τ of key generation is
given by 1

n log2 [dim[TrBSE [|ψ(n)〉ABSE〈ψn|]] → τ .
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1.6 Contributions

Alternative ways of doing security proofs can be useful. For example, inspired by entan-
glement distillation, [169] showed that degenerate quantum error correction code could be
used to improve the key generation rate. In [105], entropic uncertainty principle was used
to prove the security of BB84 implemented with threshold detectors (i.e. detectors that do
not differentiate the number of received photons). It is one of the only security proofs that
take into account this feature. It is important since there are no efficient photon-counting
detectors.

It is known that any secure QKD protocol can be understood as a private state dis-
tillation protocol - a straight generalization of the entanglement distillation protocol. For
example, [151] described pre-processing as a private-state distillation protocol. We also
saw that many proofs were based on an uncertainty principle. A legitimate question is
whether it is restrictive to use the uncertainty principle to prove the security of QKD
protocols in general. In Chapter 2, we provide an answer by proving that all private states
can be interpreted as an instance of the uncertainty principle. Inspired by the work of
[104], we give a new definition, related to the uncertainty principle, for a private state.
It implies that some entropic uncertainty principle is behind any security proof for QKD.
We use this observation to build from [173, 104] more intuitive proofs of various famous
theorems regarding privacy amplification. Our method is based on a modified version of
the HSW theorem [80, 83, 164] based on two-universal families of hashing functions.

In Chapter 3, we give a generic security proof for permutation-invariant QKD protocols
by reducing it to a private state distillation protocol. Our proof of security is based on
[150], but treats several new aspects. In [109], it was shown that a different symmetrization4

allowed higher key generation rate in the case of a specific protocol (SARG04 [160]). We
prove a similar result in a more general setting and explain how and why such improvement
is observed.

Another improvement compared to other generic proofs [41, 153, 110, 152] is the use
of Azuma’s inequality [7] to simplify the analysis of estimation of parameters in certain
situations [27]. In our proof, we emphasize the difference between reducing the QKD
protocol to an entanglement distillation protocol or considering a more general private state
distillation protocol, and give the different secret key generations rates that correspond to
each of those scenarios. Sometimes, in order to achieve some secret key generation rates,
it is enough to use the Azuma’s inequality for parameter estimation. As far as we know,
some higher rates can only be achieved by using the quantum de Finetti theorem. We
explain some differences between those two cases.

4By symmetrization, we do not refer to extra operations that Alice and Bob must perform, but a trick

to simplify the security analysis by exploiting some extra symmetries of the protocol.
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Most of the proposed QKD protocols require that Alice and Bob share some reference
frame. Without it, the error rates in Alice and Bob’s shared raw keys will exceed the
threshold under which the protocol is known to be secure. In Chapter 4, we explore the
possibility of performing quantum key distribution without a reference frame by exploiting
noiseless subsystems. We analyze in details the performance and the security of a four-
photon QKD protocol [24]. For this task, the framework of the security proof given in
Chapter 3 is not sufficient since Bob’s measurement cannot be restricted to the encoded
space of the state sent by Alice, as it is assumed there. Our results apply to other rotational
invariant QKD protocols – specifically to the three-photon protocol proposed in [24] and
the two-photon protocol proposed in [25].
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Chapter 2

Private States and the Uncertainty

Principle

2.1 Backgroung: Private States and Secret Key

We first review the statement that any uniform secret key can be obtained from a pri-
vate state [86]. Suppose we have a secret ket (i.e. suppose that ρABE is of the form of
Equation 1.5). Consider a purification

|ψ〉ABES =
1√
d

∑
k

|kk〉AB|ξk〉ES . (2.1)

for some orthonormal states |ξk〉ES . Using Theorem 11 and the fact that TrS [|ξk〉ES〈ξk|] =
TrS [|ξk′〉ES〈ξk

′ |] for all k, k′, then we obtain that there exist |ξ〉ES and unitaries V (k)
S such

that

|ξk〉ES = V
(k)
B |ξ〉ES (2.2)

for all k. Therefore, |ψ〉ABES is a private state as defined by Equation 1.6. Conversely,
it is easy to see that if Alice and Bob measure a state of the form of Equation 1.6 in the
computational basis, then after tracing the system S, they obtain a state ρABE of the form
of Equation 1.5. The same argument can be used to prove the following:

Theorem 1 The pure state ψABES is a private state iff there exist orthonormal bases
{|k〉A | 0 6 k 6 d− 1} and {|k〉B | 0 6 k 6 d− 1} such that

AB〈k, k′|TrES [ψABES ]|k, k′〉AB =
1
d
δk,k′ (uniform) (2.3)

TrABS [ψABES ] =AB 〈k, k|TrS [ψABES ]|k, k〉AB (independence)

for all 1 6 k, k′ 6 d, where |k, k′〉AB = |k〉A|k′〉B.
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2.2 Dual Interpretation of Private State

Inspired by [104], we propose in [148] an alternative definition for a private state. Keeping
in mind that a private state is a state of the form given by Equation 1.6, we define

|x̃〉 =
Zx√
d

d−1∑
k=0

|k〉 (2.4)

where Z is the generalized Pauli operator in d-dimension (i.e. Z|k〉 = e
2kπi

d |k〉) [71]. A
different characterization of private states is obtained from considering a hypothetical
measurement by Alice in the x̃-basis. Then one has

Theorem 2 A pure state |ψ〉ABSE is a private state if and only if

AB〈k, k′|TrES [|ψ〉ABSE〈ψ|]|k, k′〉AB =
1
d
δk,k′ , (2.5)

for all k and k′, and

σx
′
BS σ

x
BS = 0 (2.6)

for all x′ 6= x, where σxBS = dA〈x̃|TrE [|ψ〉ABSE〈ψ|]|x̃〉A.

Proof.
Suppose that |ψ〉ABSE is a private state. Condition 2.5 follows immediately from the

definition of a private state (Equation 1.6). We now try to derive Condition 2.6. Consider

A〈x̃|ψ〉ABES =
1
d

d−1∑
k′=0

A〈k′|Z†x
A

∑
k

|k, k〉ABV (k)
S |ξ〉SE (2.7)

=
1
d

d−1∑
k′=0

A〈k′|Z†x
B

d−1∑
k=0

|k, k〉ABV (k)
S |ξ〉SE (2.8)

=
1
d
Z†x
B

d−1∑
k=0

|k〉BV (k)
S |ξ〉SE . (2.9)

So

A〈x̃|ψ〉ABES =
1
d
Z†x
B UABS

d−1∑
k=0

|k〉B|ξ〉SE (2.10)

=
1
d
UABSZ

†x
B

d−1∑
k=0

|k〉B|ξ〉SE (2.11)

=
1√
d
UABS |d̃− x̃〉B|ξ〉SE (2.12)
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where UABS =
∑d−1

k=0 |k, k〉AB〈k, k| ⊗ V
(k)
S . The states |x̃〉B are understood to be

|x̃ mod |B|〉B.

In this case, |B| = d. Let ξS := TrE [|ξ〉SE〈ξ|], so

σxBS = dA〈x̃|TrE [ψABES ]|x̃〉A (2.13)

= UABS(|d̃− x̃〉B〈d̃− x̃| ⊗ ξS)U †
ABS (2.14)

Therefore σx
′
BS σ

x
BS = 0 for all x′ 6= x, which is Condition 2.6. Now, we prove the

converse by invoking the following uncertainty principle [127]. Consider any state ρ. Let
H(Γ) be the Shannon entropy of the outcomes of the measurement of the observable Γ on
ρ. Then

H(Z) +H(X) > log2 d (2.15)

where X is an non-degenerate observable with eigenvectors given by the |x̃〉 for all x.
Suppose that Alice, Bob and the shield share some state ρABS for which |A| = d, and
that there exists a measurement MX

BS on ρBS that determines with certainty the outcome
of the measurement of the observable X on the state ρA. From the above uncertainty
relation and conditional on performing MX

BS , the outcome of a measurement of Z on
ρA must be uniformly-distributed (i.e. H(Z) = d) from Eve’s perspective. Therefore,
MX

BS had be performed, then Eve cannot obtain any information about the outcome
of Alice’s Z-measurement. Since Eve cannot distinguish between the cases where MX

BS

has been performed or not, Eve will still be unable to gain any information about the
outcome of Alice’s Z-measurement even if Bob makes the measurement on ρB that gives
him full information about Alice’s outcome in the Z basis. Consequently, Eve’s state
cannot dependent on |k, k〉AB and we obtain Condition 2.4.

Theorem 2 is a generalization of a similar theorem found in [148]. The difference is that
in [148], only the d = 2 case was considered. Theorem 2 implies that a pure state is a private
state if and only if Alice and Bob’s measurements in the computational basis are perfectly
correlated (and otherwise uniformly-distributed), and if Bob, with the use of the shield
(S), is able to guess without errors the outcome of Alice’s hypothetical measurement in the
x̃-basis. A physical interpretation of the previous statement is that if Bob has the capacity
to obtain full information about the outcome of Alice’s measurement in a complementary
basis (i.e. the x̃-basis), then Eve does not have any information about Alice’s measurement
in the computational basis. As we saw in the proof of Theorem 2, this trade-off between
Bob and Eve’s information is a manifestation of the uncertainty principle given in [127].1.

1We could also have shown that it follows from an uncertainty principle relating mutual information

[77].
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2.3 Private State Distillation and Privacy Amplification

2.3.1 With Symmetrization

Let σABE be a state shared by Alice, Bob and Eve. What is the maximal amount of
ε-secure key that can be generated from σABE or equivalently, what is the largest state
that can be created from σABE using LOCC such that it is 2ε close in trace distance to a
private state? The answer is not known in general, but there are some interesting related
results that can be very useful in analyzing the security of standard QKD protocols.

Suppose that Alice and Bob’s systems are decomposable in n +m equivalent subsys-
tems A1, ..., An+m and B1, ..., Bn+m of dimension d, and that σABE is invariant under any
joint permutation of those subsystems. By the quantum de Finetti theorem ([152]), the
state of the n first subsystems is close to a form (σA1B1E1)

⊗n, for some state σA1B1E1 and
where m can be very small compared to n. Here, we are neglecting the extra complica-
tions encountered by using the quantum de Finetti theorem, and leave them for a future
publication [149].

Suppose that Alice’s state is classical and uniformly-distributed:

σA1B1E1 =
1
d

d−1∑
k1=d

|k1〉A1〈k1| ⊗ |φ(k1)〉B1E1〈φ(k)|

for some states |φk1〉B1E1 . Devetak and Winter [50] proved the following theorem:

Theorem 3 ([50]) Suppose that Alice, Bob and Eve share the state

(
1
d

d−1∑
k1=d

|k1〉A1〈k1| ⊗ |φ(k1)〉B1E1〈φ(k1)|)⊗n, (2.16)

then there exists a one-way classical communication scheme to extract

n[I(K1:B1)− I(K1:E1)] (2.17)

bits that are εn-secure where εn → 0 exponentially for n → ∞ and K1 is the classical
variable associated to Alice’s key.

In the above theorem, the function I is the quantum mutual information defined in
appendix A.4. nI(K1:B1) represents the maximal rate of error-free key obtained using
one-way error correction. However, to achieve this rate, sometimes a complicated mea-
surement like the one described in the proof of the HSW theorem (see appendix B.2) must
be performed. For simplicity, suppose that Bob performs a measurement in a fixed basis.
In that case, the rate of achievable error-free key is (d − H(eXj1 )) 6 I(K1 : B1) where
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eXj1 is the error rates in Bob’s measurement. After information reconciliation is done, the
eavesdropper might have information about the key shared by Alice and Bob. This infor-
mation is bounded by nI(K1:E1). Using privacy amplification (see appendix B.1), Alice
and Bob can reduce this information to zero by sacrificing a number of bits proportional
to the amount of information that Eve has on the key.

Instead of applying the quantum de Finetti theorem before information reconciliation,
suppose that we apply it after. Alice and Bob will share a state that is close (how close
depends on the efficiency of the error correction) in trace distance to a state of the form

(
1
d

d−1∑
k1=0

|k1, k1〉A1B1〈k1, k1| ⊗ σ
(k1)
E1

)⊗n. (2.18)

It follows from [154, 50] that

Theorem 4 There exists a privacy amplification scheme to extract n[log2 d − I(K1:E1)]
secret bits from

(
1
d

d−1∑
k1=0

|k1, k1〉A1B1〈k1, k1| ⊗ σ
(k1)
E1

)⊗n, (2.19)

for n→∞. Moreover, this is the maximum possible rate.

In Appendix B.3, we prove an alternative version of this theorem:

Theorem 5 There exists a privacy amplification scheme to extract n[I(X1:B1S1)] secret
bits from

(
1
d

d−1∑
k1=0

|k1, k1〉A1B1〈k1, k1| ⊗ σ
(k1)
E1

)⊗n, (2.20)

for n → ∞, X :=
∑d−1

x1=0 e
−2πix1

d |x̃1〉〈x̃1|, and |x̃1〉 is defined by Equation 2.4. The shield
S is the extra system required to purify the above state. Moreover, this is the maximum
possible rate.

Our proof in Appendix B.3 is based on a modified version of the HSW -theorem given
in Appendix B.2. Even if it does not explicitly refer to the uncertainty principle as in
Section 2.2, it is intimately related to it. From our dual definition of a private state,
we found that a perfect private state is a state for which there exist a measurement on
BS that can predict the measurement on A in the conjugated and in the computational
bases. From this observation, it is obvious to conjuncture that an approximate private
state is a state for which there exists a measurement on BS that can predict with high
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probability the measurement on A in the conjugated and in computation bases. We prove
this statement in Appendix B.3 and use it to prove Theorem 5.

Not very surprisingly, Theorem 4 and 5 are equivalent to each other. To see this, con-
sider any state of the form 1

d

∑d−1
k1=0 |k1, k1〉A1B1〈k1, k1|⊗σ(k1)

E1
. Take one of its purifications:

|ψ〉A1B1S1E1 =
1√
d

d−1∑
k1=0

|k1, k1〉A1B1 |φ(k1)〉S1E1 (2.21)

for some pure states |φ(k)〉S1E1 . We can write

|ψ〉A1B1S1E1 =
1
d

d−1∑
x1=0

|x̃1〉A1Z
−x1
B1

d−1∑
k1=0

|k1〉B1 |φ(k1)〉S1E1 . (2.22)

Define

ρA1B1S1E1 := |ψ〉A1B1S1E1〈ψ|, (2.23)

σ̄S1B1 := TrE1 [
1
d

d−1∑
k1,k2=0

|k1〉B1 |φ(k1)〉S1E1〈φ(k2)| B1〈k2|], (2.24)

σ
(x1)
S1B1

:= Z−x1
B1

σ̄B1S1Z
x1
B1
, (2.25)

and

ρ
(k1)
E1

:= TrS1 [|φ(k1)〉S1E1〈φ(k1)|]. (2.26)

Since all the σ(x1)
B1S1

are related by unitaries to σ̄S1B1 , they share the same eigenvalues

which implies that S(σ(x1)
B1S1

) = S(σ̄S1B1) for all x1. One of the consequences of the Schmidt
Decomposition is that ρE1 and σ̄S1B1 have the same eigenvalues. So S(ρB1S1) = S(ρA1E1).
Therefore,

I(X1 : B1S1) = S(ρB1S1)−
1
d

d−1∑
x1=0

S(σ(x1)
B1S1

) (2.27)

= S(ρA1E1)− S(σ̄S1B1) (2.28)

= S(
1
d

d−1∑
k1=0

|k1〉A〈k1| ⊗ ρ
(k1)
E1

)− S(ρE1) (2.29)

= log2 d+
1
d

d−1∑
k1=0

S(ρ(k1)
E1

)− S(ρE1) (2.30)

= log2 d− I(K1 : E1). (2.31)

Consequently, Theorem 4 and 5 are equivalent.
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2.3.2 Without Symmetrization

In the case where Alice, Bob and Eve don’t share a state of the symmetric form given by
Equation 2.18, we have the following theorem:

Theorem 6 There exists a privacy amplification scheme to extract a (2−
η
2
+ 1

2 )-secure key
of size

n log2 d− log2 (|| 1
dn

dn∑
x=1

σ
(x)
BS ||∞)− log2 (

dn∑
x=1

Rank[σ(x)
BS ])− η (2.32)

secret bits from

1
dn

dn∑
k=1

|k, k〉AB〈k, k| ⊗ ρ
(k)
E , (2.33)

where η
log2 d

is an integer, σ(x)
BS = dA〈x̃|TrE [|ψ〉ABSE〈ψ|]|x̃〉A, |ψ〉ABSE is a purification of

the above state and || · ||∞ is the infinite norm.

This theorem can be showed by applying the comment at the end of Appendix B.2
about the n = 1 case to the proof given in appendix B.3 (using Equation B.43).

We now prove an well-known version of Theorem 6. Rewrite

|ψ〉ABSE =
1√
dn

dn∑
k=1

|k, k〉AB|φ(k)〉SE (2.34)

for some pure states |φ(k)〉SE . So

|ψ〉ABSE =
1
dn

dn∑
x=1

|x̃〉AZ−x
B

dn∑
k=1

|k〉B|φ(k)〉SE . (2.35)

Define

ρABSE := |ψ〉ABSE〈ψ|, (2.36)

σ̄SB := TrE [
1
dn

dn∑
k,k′=1

|k〉B|φ(k)〉SE〈φ(k′)| B〈k′|], (2.37)

and

ρ
(k)
E := TrS [|φ(k)〉SE〈φ(k)|]. (2.38)
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So

Rank[σ(x)
BS ] = Rank[Z−x1

B1
σ̄BSZ

x
B] (2.39)

= Rank[σ̄BS ] (2.40)

= Rank[ρE ] (2.41)

(2.42)

where in the last step, we implicitly used the Schmidt decomposition. The Schmidt de-
composition also imply that

|| 1
dn

dn∑
x=1

σ
(x)
BS ||∞ = || 1

dn

dn∑
k=1

|k〉A〈k| ⊗ ρ
(k)
E ||∞ (2.43)

(2.44)

Therefore, we have provided an alternative proof of:

Theorem 7 : There exists a privacy amplification scheme to extract a (2−
η
2
+ 1

2 )-secure
key of size

S∞(
1
dn

dn∑
k=1

|k〉A〈k| ⊗ ρ
(k)
E )− S0(ρE)− η (2.45)

secret bits from

1
dn

dn∑
k=1

|k, k〉AB〈k, k| ⊗ ρ
(k)
E , (2.46)

where η
log2 d

is an integer.

where S0(ρ) := log2 (Rank[ρ]) and S∞(ρ) := − log2 ||ρ||∞. A better version of Theorem 7
was proved in [154] (i.e. the key is (2−

η
2
−2)-secure instead of (2−

η
2
+ 1

2 )-secure and S2

replace S∞ in the key generation rate). The reason why someone might be interested
by such results is that it might be useful to analyze the security of QKD protocols that
do not have permutation symmetry. In [152] a more optimal formula in term of smooth
min-entropy for privacy amplification was derived.

28



2.4 Summary of the Chapter

2.4.1 Summary

In this Chapter, we have given a new interpretation of private states highlighting a funda-
mental relation between any security proofs for QKD and the entropic uncertainty prin-
ciple. We use the framework of the security proof by Koashi [104] — which combines
and generalizes the proofs of security of Mayers and Shor-Preskill [130, 173] based on the
uncertainty principle and entanglement distillation, respectively — to prove some famous
theorems about privacy amplification (Theorem 4 and 7). One of our important contri-
butions was to include the concept of Shield in the framework of [104]. Another was to
prove and exploit a generalized version of the HSW theorem involving two-universal family
of hashing function. Contrarily to [104], our analysis in Chapter 2 is not restricted to a
specific QKD protocol and the dimension of the state considered can be arbitrary — i.e.
not only a power of 2.

Neglecting information-reconciliation, we gave a proof of Devetak-Winter secret key
generation rate for n copies of a classical-classical-quantum states [50] (we assume that
Alice and Bob start with an identical and uniformly distributed key). The main difference
between the two proofs is that we used a random linear code instead of random codewords,
which simplifies certain steps. As a direct consequence of using our method, we obtain a
weaker version of the theorem about privacy amplification given by Renner and Koenig
[154]. Remark that we gave the secret key generation rates in function of the state of the
Shield.

2.4.2 Connections to Other Results

The main results of this Chapter were initially given in [148]. Soon after, Koashi submitted
a paper about the role of complementarity in QKD [106]. By introducing an extra channel,
he showed that if there exist two measurements on the system B that could predict the
outcome of Alice’s measurement in the computational and conjugated bases with some
small error probability, then the state shared by Alice and Bob would be very close to
a secret key (if the channel is quantum) or a maximally entangled state (if the channel
is classical). Noting that the extra channel is directly related to the concept of Shield,
Koashi’s theorem could help us to considerably simplify our proofs of Theorem 4 and 7.
Furthermore, instead of only considering privacy amplification, we can use his theorem
to include information-reconciliation and prove the complete theorem of Devetak-Winter
about secret key generation rate using a symmetrized state. These results will be explained
in detail in a future publication [149].
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Chapter 3

Generic Proof of Security for

Permutation Invariant QKD

Protocols

In Chapter 2, we showed how to extract a secret key from a state ρABE shared by Alice, Bob
and Eve. To obtain a secret key, we assume implicitly that Alice and Bob knew the exact
form of ρABE . We are now interested in knowing how Alice and Bob can learn the form
of ρABE . We consider permutation-invariant QKD protocols that have the nice feature of
being easy to implement experimentally. Our final result is a complete proof against joint
attack for a large number of QKD protocols that are invariant under permutations.

We first review some important QKD protocols in Section 3.1. In Section 3.2, we
present a general prepared-and-measured QKD protocol that we want to prove as secure.
This protocol includes the examples given in Section 3.1. In Section 3.3, we introduce
an entanglement-based QKD protocol, which our general prepared-and-measured QKD
scheme can we be reduced to. We also show how symmetry can be exploited to simplify
the form of the state shared by Alice, Bob and Eve. In Section 3.4, we cover information
reconciliation. In particular, we explain how dit error correction can be used to build a
Shield that can improve the secure key generation rate of the QKD protocol. In Section 3.5,
we describes two methods for parameter’s estimation and we explain the difference in the
rates obtained. One of the methods is based on the Azuma’s inequality, which achieves
a higher security level for the same key length, and the other on the quantum de Finetti
theorem, which achieve higher rate.1

1In this thesis, we do not consider all the details related to reducing joint attack to collective attack by

using the quantum de Finetti theorem. Instead of applying the quantum de Finetti theorem, we simply

assume that the state is in the symmetrized form (i.e. ρ⊗n
ABE). When this happens, we effectively give a
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3.1 Examples of Prepared-and-Measured QKD Protocols

3.1.1 The BB84 protocol and the Six-State Protocol

The first QKD protocol was constructed by Bennett and Brassard [17] (BB84), and used
four different single-qubit quantum states. Alice picks at random a n-bits string. For each
bit, she randomly selects a basis among the two conjugates bases {|0〉, |1〉} and {|+〉, |−〉},
encodes her bit accordingly, and sends it to Bob. We use the notation |±〉 = (|0〉±|1〉)/

√
2.

The qubits could be encoded in photon polarization, |0〉 and |1〉 could correspond to hor-
izontal and vertical polarization states, and |±〉 to polarization at ±45 degree angle. For
each qubit received, Bob randomly chooses one of the two conjugate bases, in which he
measures the qubit. Then, Alice announces the encodings publicly, and Alice and Bob dis-
card the qubits which were prepared and measured in different bases. The leftover bits are
used to build the secret key. If the eavesdropper (Eve) tries to get any information about
the quantum states sent by Alice, she will inevitably perturb the states with some signif-
icant probability and induce errors in the key. Alice and Bob can use standard classical
error correction to get rid of the errors in the key. This step is called information recon-
ciliation. Then, Alice and Bob use privacy amplification, as described in Appendix B.1 to
erase Eve’s information about the key.

The Six-State protocol [33] is identical to BB84, except that Alice and Bob choose
randomly between three mutually unbiased bases instead of two, and keep the result only
if they correspond to the same basis.

3.1.2 Bennett 1992

The B92 QKD protocol [15] requires only two quantum states. Alice encodes her bits
using any two non-orthogonal states |ψ1〉 and |ψ2〉. Bob makes a positive operator-valued
measurement (POVM) of the qubit described by

{α|ψ1〉〈ψ1|, α|ψ2〉〈ψ2|,1− α|ψ1〉〈ψ1| − α|ψ2〉〈ψ2|} (3.1)

where |ψ1〉 and |ψ2〉 are orthogonal to |ψ1〉 and |ψ2〉, respectively, and α = 1
1+|〈ψ1|ψ2〉| .

The outcome |ψ1〉 indicates to Bob that the state sent by Alice was |ψ2〉, the outcome
|ψ2〉 indicates |ψ1〉, and the other outcome is inconclusive so the associated key bits are
discarded. The value of α is chosen to minimize the probability of getting an inconclusive

security proof against collective attack instead of joint attack. The additional details required to consider

the most general case are quite straightforward, but cumbersome. We will add them in a future publication

including all the results of this Chapter. Remark that when the Azuma’s inequality is used instead of the

quantum de Finetti theorem, the security analysis given here is against joint attack.
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result. As in BB84, any attempt by Eve to gain information about the encoded key bit
will perturb the quantum state and induce errors with some finite probability [18].

The unconditional security of B92 was demonstrated in [180]. The main inconveniece
of B92, as compared to BB84, is its low tolerance to noise. To establish a secure key, Alice
and Bob must evaluate the rate of bit and phase error induced by Eve. This turns out to
be easier to perform with the highly symmetric setting of BB84 than with the asymmetric
B92 protocol. Another reason for B92’s low tolerance to error is the possibility for Eve to
perform unambiguous discrimination of the encoded key bit [37], which is impossible in the
BB84 setting since Alice’s encoding is chosen at random. Thus, Eve can replace the com-
munication channel by a perfect noiseless channel, perform the measurement Equation 3.1
on a random subset of Alice’s encoded bits, discard the inconclusive results and retransmit
the conclusive qubits to Bob. The overall effect of this intervention would simulate a lossy
channel, so by tuning her measurement rate, Eve could be confounded with natural noise.
This attack considerably lowers the security threshold of B92 [182] when there are photon
losses.

3.1.3 Phoenix, Barnett, and Chefles 2000

A modification of the B92 protocol was proposed by Phoenix, Barnett, and Chefles (PBC00)
to overcome the low qubit loss tolerance and enhance the phase error rate estimation [145].
The solution was to reduce the inherent asymmetries of B92 by adding a third state |ψ3〉.
In this new three state QKD protocol, Alice first randomly chooses two out of the three
states {|ψ1〉, |ψ2〉, |ψ3〉} and encodes her key bit on those states as in B92. When Bob
receives a qubit, he performs the POVM

{α|ψ1〉〈ψ1|, β|ψ2〉〈ψ2|, γ|ψ3〉〈ψ3|,Γ} (3.2)

where α, β and γ are real positive numbers chosen to optimize the POVM performance and
Γ = 1− α|ψ1〉〈ψ1| − β|ψ2〉〈ψ2| − γ|ψ3〉〈ψ3|. Alice then announces the encodings publicly.
Given this information, some of Bob’s measurement outcomes will be conclusive, yielding
a key bit, and some will be inconclusive and get discarded.

An interesting version of this protocol occurs when the three states |ψ1〉, |ψ2〉 and |ψ3〉
form an equilateral triangle in the X-Z plane of the Bloch sphere. This is the symmetric
trine spherical code. In this case, Bob’s POVM reduces to

MPBC00 = {2
3
|ψ1〉〈ψ1|,

2
3
|ψ2〉〈ψ2|,

2
3
|ψ3〉〈ψ3|} (3.3)

and Γ = 0. Henceforth, “PBC00” will refer to this specific version of the three state
protocol. In [147], Renes demonstrated how the rate of conclusive results can be used to
estimate the error rates so that no test bits are required (ebit = 1−2I

1−I , ephase = 5
4ebit where
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I is the rate of inconclusive results among the received qubits). This technique could also
apply to our robust four-photon protocol, but for simplicity, we will assume that a random
sample of test bits is used to estimate the error rates.

In [27], we give a security proof of PBC00 independently of the channel’s qubit loss
rate. To compare the security level of BB84, B92, and BPC00 in the absence of qubit
loss, we can model Eve’s intervention by a depolarizing channel that transforms ρ into
(1− p)ρ+ p

3

∑
a=x,y,z σaρσa, the Pauli operators are defined as

σx =
1
2

(
0 1
1 0

)
, σy =

1
2

(
0 −i
i 0

)
, σz =

1
2

(
1 0
0 −1

)
.

Excluding pre-processing and considering one-way entanglement distillation, the protocols
B92, PBC00, B84 and the six-state protocol are secure up to p ≈ 3.4% [180], p ≈ 11.6% [27],
p ≈ 16.5% [173] and p ≈ 19.1% [118], respectively.
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3.2 A General Prepared-and-Measured QKD protocol

We will prove the security of the following prepared-and-measured2 protocol:

1. Consider some Hilbert spaceHd of dimension d. Alice and Bob pre-agree on d linearly
independent states |ψi〉 for 0 6 i 6 d − 1 and a series of unitary transformations,
U (i) : Hd → Hd for 1 6 i 6 `. We assume that the states are related by |ψi〉 =
(Xi)†|ψ0〉, where X is the generalized Pauli-operator defined in Appendix A.6, and
Xi is the ith power of X. Each unitary transformation is associated to a change of
basis.

2. Alice randomly picks one of the d states |ψi〉 and one of the transformations U (ja)

and sends U (ja)|ψi〉 to Bob. She repeats those operations n′ times.

3. Upon reception of each of the n′ quantum states, Bob picks at random one of the
transformation U (jb) and measures the state with the POVM

{αU (jb)|ψ⊥1 〉〈ψ⊥1 |U (jb)†, ..., αU (jb)|ψ⊥d 〉〈ψ⊥d |U (jb)†,1−
d−1∑
i=0

αU (jb)|ψ⊥i 〉〈ψ⊥i |U (jb)†}

where α is the maximal positive number such that

d−1∑
i=0

αU (jb)|ψ⊥i 〉〈ψ⊥j |U (jb)† 6 1. (3.4)

The state |ψ⊥
ī
〉 is defined as the unique state in Hd that is orthogonal to |ψj〉 for all

j 6= i.

4. Alice and Bob publicly declare which transformation they used, and discard the
results associated to cases where they used different bases. They also discard results
that are inconclusive (i.e when Bob measures 1 −

∑d−1
i=0 αU

(jb)|ψ⊥i 〉〈ψ⊥i |U (jb)†). We
define n as the number of not discarded results.

This protocol includes BB84, B92, the six-state protocol, PBC00 and a many more pro-
tocols. In BB84, Alice chose between two states |0〉 and |1〉, and between two transforma-
tions 1 and H. In PBC00, Alice chose between two states 1

2 |+〉+
√

3
2 |−〉 and 1

2 |+〉−
√

3
2 |−〉,

and between three rotations that correspond to 0, 2
3π and 4

3π rotations around the Y -axis
(see [27] for details).

2By definition, in a prepared-and-measured QKD protocol, Alice sends to Bob n′ quantum states,

where the ith quantum state |ψi〉 is randomly chosen from ` different pure states that follow a probability

distribution pj (i.e.
P`

j=1 pj = 1). Upon reception of the quantum states, Bob measures them immediately.
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We could have generalized the above protocol by supposing that Alice could have
different sets of states — the states being related by a power of X within each set —
and that for each of those sets, Alice and Bob could associate a different set of random
transformations which do not have to be uniformly distributed. Alice and Bob could then
have the choice of extracting the key from only one (or some) set of states and use the
others to probe the channel. The protocol studied in [64] is an example where there are
two different sets of states {|0〉, |1〉} and {|+〉}, and that one of the sets is used to probe
the channel. Our proof method could be extended to include these cases.
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3.3 State Preparation

3.3.1 Entanglement based QKD protocol

Our first step is to give an entanglement based QKD protocol to which the protocol given
in subsection 3.2 can be reduced.3 Actually, we will consider a more general entangle-
ment based QKD protocol that could reduce to other interesting prepared-and-measured
schemes. Define the filtering operator

F = β
d−1∑
i=0

|i〉〈ψi| (3.5)

such that β is the maximal positive number such that F †F 6 1 and the states |ψi〉 are
defined in Subsection 3.2. It is easy to see that F †F is diagonal in the basis given by the
eigenvalues of X. In fact,

[F,X] = 0. (3.6)

We also suppose that Alice and Bob pre-agree on a set of unitary operators U (i)
A and

V
(j)
B for 1 6 i 6 ` and1 6 j 6 κ, and on a specific subset W of {(i, j)|1 ≤ i ≤ k, 1 ≤ i ≤ l)}.

The protocol goes as follows, Alice creates n+m pairs of maximally entangled states
|Φ〉 = 1√

d

∑d−1
k=0 |k, k〉. She sends the second qudits of each pair to Bob. On each pair, Alice

and Bob perform at random one of the operators U (i)
A and V

(j)
B followed by the filtering

operations F and F †, respectively. Since F is not unitary, some of the pairs will be lost.
Alice and Bob publicly declare which of the operators they have chosen for each pair. They
discard the pairs for which (i, j) /∈W . Then, the normalized state of the n remaining pairs
is:

(FA1 ⊗ F TB1
)⊗n

N

∑
x,y : (xi,yj)∈W

U
(x)
A ⊗ V

(y)
B (1⊗ Ê)|Φ〉⊗nA1B1

|x, y〉R (3.7)

where x, y ∈ {0, ..., d−1}⊗n, Eve’s super-operator is represented by Ê, N is a normalization
factor, U (x)

A := U
(x1)
A1

⊗ ...⊗ U
(xn)
An

and V (y)
B := V

(y1)
B1

⊗ ...⊗ V
(yn)
Bn

. The system R is public.
However, the super-operator Ê is independent of the system R.

Afterwards, Alice and Bob perform quantum error correction using two commuting
linear codes — also known as CSS-code [34, 175]— to correct dit and phase errors. Finally,
Alice and Bob can extract the secret key by measuring the observable Z.

3In this thesis, we have not explained in detail how the reduction can be done since it follows straight-

forwardly from observations in [173] — Eve cannot differentiate the cases whether Alice is entangled (or

not) with the state she sends to Bob and whether Bob delays (or not) his measurement —combined with

arguments from Appendix B.3 about random linear hashing functions.
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3.3.2 Exploiting A Symmetry

In theory, there exists a larger space such that Eve’s operation is unitary over that space.
In the worst situation, Eve possesses that whole larger space and we can assume that Alice,
Bob and Eve share the pure state

|ψ〉ABRE =
(FA1 ⊗ F TB1

)⊗n

N

∑
x,y : (xi,yj)∈W

U
(x)
A ⊗ U

(y)
B (1⊗ EBE)|Φ〉⊗nA1B1

|0〉E |x, y〉R. (3.8)

We can rewrite the above state in a different basis:

|ψ〉ABRE =
∑

µ,ν∈{0,...,d−1}⊗n

√
pµν1⊗Xµ

AZ
ν
B|Φ〉AB|φµν〉ER (3.9)

where
|φµν〉ER =

1
Nµ,ν

AB〈Φ|(1A ⊗ Z†ν
B X

†µ
B )|Ψ〉ABER (3.10)

and
pµν = Tr[AB〈Φ|1A ⊗ Z†ν

B X
†µ
B |ψ〉ABRE〈ψ|1⊗Xµ

AZ
ν
B|Φ〉AB] (3.11)

for some normalization factors 1
Nµ,ν

, Zν = Zν1⊗ ...⊗Zνn and Xµ = Xµ1⊗ ...⊗Xµn . Recall
that X and Z are the generalized Pauli operators defined in Appendix A.6. We now use an
idea proposed by [153] about the symmetry of the protocol to prove the following Lemma:

Lemma 1 Without lost of generality,

ER〈φµ′ν′ |φµν〉ER ∝ δν′ν . (3.12)

Proof. Consider an extended version of our prepared-and-measured protocol presented
in Subsection 3.3. Suppose that before information reconciliation and privacy amplifica-
tion, Alice and Bob agree publicly on some random transformation Xω

A ⊗ X−ω
B and flip

accordingly the dits of their raw key

|c, c〉AB → Xω
A ⊗X−ω

B |c, c〉AB (3.13)

Note that the extra operation is classical and could easily be performed by Alice and Bob.
On a first look, Alice and Bob will not share an identical key after that operation, but a
simple relabeling of Bob’s state will correct that situation.

The corresponding entanglement-based protocol is modified as follows. On each pair,
|φ〉AB, Alice and Bob apply randomly one of the transformationXωFU (i) andX−ωF TV (j),
respectively, and discard the pair if (i, j) /∈W . Since [F,X] = 0, then we obtainXωFU (i) =
FXωU (i) and X−ωF TV (j) = F TX−ωV (j). Equation 3.8 becomes

|ψ〉ABRE = F
∑

ω,x,y : (xi,yj)∈W

Xω
AU

(x)
A ⊗X−ω

B U
(y)
B (1⊗ EBE)|Φ〉⊗nA1B1

|0〉E |x, y, ω〉R
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where F :=
(FA1

⊗FT
B1

)⊗n

N .
Therefore,

Xω
A ⊗X−ω

B |ψ〉ABRE = TR(ω)|ψ〉ABRE (3.14)

where TR is the translation operator such that TR(ω′)|x, y, ω〉R = |x, y, ω − ω′〉R.
We can calculate that

ER〈φµ′ν′ |φµν〉ER = 〈φµ′ν′ |TR(−ω)TR(ω)|φµν〉ER (3.15)

=
1

Nµνµ′ν′
ABER〈Ψ|TR(−ω)(1A ⊗Xµ′

B Z
ν′
B )(|Φ〉A1B1〈Φ|)⊗n(1A ⊗ Z†ν

B X
†µ
B )TR(ω)|Ψ〉ABER

=
1

Nµνµ′ν′
ABER〈Ψ|X−ω

A ⊗Xω+µ′

B Zν
′
B )(|Φ〉A1B1〈Φ|)⊗nXω

A ⊗ Z†ν
B X

†µ+ω
B |Ψ〉ABER

= (e
2πi
d )ω·(ν−ν

′)
ER〈φµ′ν′ |φµν〉ER (3.16)

where Nµνµ′ν′ := NµνNµ′ν′ . In the last step, we used the relation ZX = e
2πi
d XZ. Since

the above equation is true for all ω, then we conclude

ER〈φµ′ν′ |φµν〉ER ∝ δν′ν . (3.17)
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3.4 Information Reconciliation: Forging a Shield

We now consider dit error correction. For this purpose, Alice and Bob choose a family of
classical error correction codes. As explained in Appendix A.7, each one-way deterministic
classical error correction code is associated4 to a projector

PC :=
∑
c∈C

|c〉〈c|. (3.18)

where C is a set of codewords. We restrict our attention to a family of error correction
codes which respects

∑
C pCP

C = 1, where pC is the probability distribution of the codes.
Alice performs on her system the measurement corresponding to the POVM {pCP (C)}.
She declares publicly her outcome Ca. Then, using extra ancillas in a new system B′, Bob
can apply the unitary recovery operation R(Ca)

BB′ as described in Appendix A.7.
The recovery operation depends on the model of noise that we want to correct. If

the model of noise is unknown, we cannot determine which recovery operation should be
applied. One of the methods to determine the noise model is to take at random a subset
of the pairs of qudits and use them as test dits. Suppose that Alice and Bob measure m
random pairs of qudits in the Z basis and declare to each other their results, they just
made a measurement of the dit error rates etestµ=i for 0 6 i 6 d − 1 in the test dits.5 Since
test dits were chosen at random, then etestµ=i should be an exponential reliable estimation of
the dit error rate eµ=i in the remaining dits.6 So it would be sufficient to find a code that
is able to correct all error patterns that are compatible with our measurement.

It is often sufficient to guess what the error rate will be and to apply accordingly an
error correction code that is easy to implement and afterwards, verify that the errors have
really been corrected. Here is how to efficiently check if the error has really been eradicated.
Suppose that Alice and Bob each possess a string of n dits sa and sb. They want to verify
with an exponential reliability whether sa = sb or not. They pick a random ` by n matrix
M with entries {0, 1, ..., d − 1}. They both compute Msa and Msb and declare publicly

4Every one-way deterministic classical error correction code is defined by a set C of codewords and a

recovery function r(C). There are many different error correction codes with the same set C of codewords

each of those being associated to a different recovery function. To simplify our formula, we will suppose

that there is only one recovery function associated to each set C (i.e. Alice and Bob always use the same

recovery function for a specific set of codewords.). However, the generalization is straightforward and do

not modify any of our conclusions.
5The dit error rates eµ=i for 0 6 i 6 d−1 are a direct generalization of the bit error rate. The error rate

associated with etest
µ=i is a rate of event where Alice and Bob’s paired dits are |k〉 and |k + i〉, respectively,

for any 0 6 k 6 d− 1.
6Suppose that etot

µ=i are the dit error rates in n pairs, then (n−m)eµ=i+me
test
µ=i = netot

µ=i and eµ=i−etest
µ=i =

n
n−m

(etot
µ=i − etest

µ=i). As a consequence of the large deviation theorem, Pr[|etest
µ=i − etot

µ=i| > δ]) < e−
mδ2

2 .

Therefore, Pr[|etest
µ=i − eµ=i| > δ]) < e

− mn2δ2

2(n−m)2 .
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their result. If sa 6= sb, then Pr[Msa = Msb] = 1
d` . The number of dits spent for this

test is ` (Alice and Bob simply discard a different pair for each row. Each pair must be
associated to a non-zero entry in the corresponding row.).

After the bit error correction, the resulting state is

√
dn

|Ca|
P

(Ca)
A ⊗R

(Ca)
BB′ |ψ〉ABRE |0〉B′ (3.19)

which is — or can be verified to be — close in trace distance to a state of the form:√
dn

|Ca|
∑

ν∈{0,...,d−1}⊗n

√
pνP

(Ca)
A ⊗ ZνB|Φ〉⊗nA1B1

∑
µ∈{0,...,d−1}⊗n

pµ|ν |µ〉B′ |φµν〉ER

(3.20)

where pν =
∑

µ pµν and pµ|ν is the probability of bit error pattern µ conditional to the phase
error pattern ν. We use the fact that the recovery operation stores with high probability
the bit error pattern in the system B′ (see Appendix A.7). Using Lemma 1 and taking the
partial trace over the systems E and R, we obtain

ρABB′ =
dn

|Ca|
∑
ν

pνZ
ν
BP

(Ca)
A (|Φ〉A1B1〈Φ|)⊗nP

(Ca)
A Z−ν

B ⊗ σ
(ν)
B′ (3.21)

where σ(ν)
B′ :=

∑
µ,µ′

√
pµ|νpµ′|ν ER〈φµ′,ν |φµ,ν〉ER|µ〉B′〈µ|. The system B′ can be used as a

Shield (see Section 1.5.3). This system B′ might help Bob to improve the rate of phase error
correction which corresponds, in our case, to privacy amplification. Note that in Chapter 2,
we did not have this equivalence between phase error correction and privacy amplification
since the orthogonality of the eavesdropper given by Lemma 1 was not necessarily satisfied.

40



3.5 Privacy Amplification: Different Rates

The efficiency of phase error correction depends on the method used for evaluating the
model of the phase noise. This model is described by some parameters that we need to
estimate. We will investigate two methods for parameter’s estimation. The first involve
Azuma’s inequality and the second, the quantum de Finetti theorem. As we will see,
higher key rates are achievable using the quantum de Finetti theorem, but using Azuma’s
inequality simplify considerably the proof and improve — as far as we know — the security
level of the protocol. The key ingredient to achieve higher rate will be to exploited the
Shield that we constructed from the dit error correction in Section 3.4.

3.5.1 Parameter’s Estimation Using Azuma’s Inequaltiy

Until now, we have always written the state of all the pairs together. Recalling Equa-
tion C.2, let us consider the state of any one pair shared by Alice and Bob:

ρAiBi =
(FAi ⊗ F TBi

)
N0

∑
(x1,y1)∈W

U
(x1)
Ai

⊗ V
(y1)
Bi

Ê
(i)
Bi

[|Φ〉AiBi〈Φ|]U
(x1)†
Ai

⊗ V
(y1)†
Bi

(3.22)

for some normalization factor N0. The super-operator Ê(1)
B1

depends on which pair we are
looking at. It also depends on any measurement’s outcome obtained from other pairs.

Their are several types of errors. Each of them corresponds to a probability:

p(i)
µν = AiBi〈Φ|1Ai ⊗X−µ

Bi
Z−ν
Bi
ρAiBi1Ai ⊗ ZνBi

Xµ
Bi
|Φ〉AiBi (3.23)

where µ, ν ∈ {0, ..., d− 1}. Note that those probabilities are not independent (for different
i). Define

p(i)
µ :=

∑
ν

p(i)
µν (3.24)

and
p(i)
ν :=

∑
µ

p(i)
µν . (3.25)

Consider the Kraus representation

Ê
(i)
Bi

(ρ) =
∑
j

E
(i)
j ρE

(i)†
j (3.26)

where
∑

j E
(i)†
j E

(i)
j 6 1.

Define

ρ
(j)
A1B1

=
(FA1 ⊗ F TB1

)
N0

∑
(x1,y1)∈W

U
(x1)
A1

⊗ V
(y1)
B1

E
(i)
j [|Φ〉A1Bi1〈Φ|]E

(i)†
j U

(x1)†
A1

⊗ V
(y1)†
B1

(3.27)
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so that
ρA1B1 =

∑
j

ρ
(j)
A1B1

. (3.28)

We can then define

p(i,j)
µν = AiBi〈Φ|1Ai ⊗X−µ

Bi
Z−ν
Bi
ρ
(j)
AiBi

1Ai ⊗ ZνBi
Xµ
Bi
|Φ〉AiBi , (3.29)

p(i,j)
µ :=

∑
ν

p(i,j)
µν (3.30)

and
p(i,j)
ν :=

∑
µ

p(i,j)
µν . (3.31)

By direct calculation, for any value of the matrix E(j), it is often possible to find an
upper bound for p(i,j)

ν which is some linear functions of the p(i,j)
µ ’s. For example, in BB84,

p
(i,j)
ν=1 = p

(i,j)
µ=1. In the six-state-protocol, p(i,j)

µ=1,ν=0 = p
(i,j)
µ=1,ν=1 = p

(i,j)
µ=0,ν=1. In the PBC00

protocol, p(i,j)
ν=1 = 5

4p
(i,j)
µ=1 [27]. When determining such a bound is impossible (like in the

case of B92), another method is necessary.
By linearity, if there is a (linear) relation between the p(i,j)’s that is independent of the

form of the matrix E(i), then this relation must also be true for the p(i)’s. Now we need
to translate those relations between probabilities to relations between observed error rate.

If the error probabilities in different pairs were independent, then it would follow from
the theory of large deviations that the error rates, if measured, would asymptotically follow
those relations. Since the error probabilities between different pairs are not independent,
we need another mathematical tool which is the Azuma’s inequality. Consider the following
definition:

Suppose we have a series of events F0, F1, .... Let X0, X1, ... be random variables. The
sequence is a martingale iff the expectation of Xi+1 conditional to events Fi, Fi−1, ...F0 is
equal to Xi for all i.

Consider the case of N coin tosses, where the probability of getting heads for each
coin may be correlated in some way. Consider a series of events F0, F1, .... Let hi be the
number of heads from the events Fi, Fi−1, ...F0. Let Xi be hi −

∑i
j=1 p

(j) where p(j) is
the probability of obtaining a head on the jth coin conditional to events Fj−1, Fj−2, ...F0.
The expectation of Xi+1 conditional to events Fi, Fi−1, ...F0 is hi −

∑i
j=1 p

(j) plus the
expectation of obtaining a head on the i + 1 coin, minus p(i+1). Since the expectation
of obtaining a head on the i + 1 coin minus p(i+1) is zero, the sequence X0, X1, ... is a
martingale.

Theorem 8 Special Case of Azuma’s Inequality [7]: Let X0, X1, ... be a martingale se-
quence such that for each k, |Xk −Xk−1| ≤ 1. Then, for all N ≥ 0 and any λ ≥ 0,

Pr[|XN −X0| ≥ λ|] ≤ 2e−
λ2

2N .
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Suppose that we measure, in the basis defined by 1Ai ⊗ ZνBi
Xµ
Bi
|Φ〉AiBi for 0 6 µ, ν 6

d− 1, exactly n−m pairs one after the other, in a specific order. Let p(i | 1,...,i−1)
µν be the

probability to obtain the outcome 1Ai ⊗ ZνBi
Xµ
Bi
|Φ〉AiBi on the ith pair conditional to all

our previous measurement. By the Azuma’s inequality, we have that

Pr[| 1
n

n−m∑
i=1

p(i | 1,...,i−1)
µν − eµν | ≥ λ| ≤ 2e−

nλ2

2 .

where (n−m)eµν is the number of times the measurement outcome 1Ai ⊗ZνBi
Xµ
Bi
|Φ〉AiBi

has occurred.
Consequently, suppose that we derived linear relations between the p(i)

µν , then it trans-
lates to identical exponentially reliable relations between the error rates eµν . At this stage,
we should have a exponentially reliable upper bound eν↑ for the phase error rates in term
of the measured dits error rates in the test dits.

We note that although Alice and Bob only have a upper bound for the phase error
rates, then could have in theory used the test dits to measure with exponential reliability
the exact phase error rates (which would be smaller than eν↑). Using random linear codes
(see [20, 118] or Appendix B.2), it is straightforward to show using the theory of types
that Alice and Bob could have corrected the phase error rates with exponentially high
probability. This imply that they can achieve a secret key generation rate corresponding
to the Hashing bound [20]:

log2d−H(eµ)−H(eν↑|µ). (3.32)

The entropy of the phase error rates are conditional to the µ since, as we saw earlier,
µ is obtained from the dit error correction and can be used to find a better phase error
correction code.
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3.6 How to Improve the Key Generation Rate

In the previous section, we gave a method to estimate the phase errors from dit error
rates, and how we could achieve a key generation rate corresponding to what is called the
Hashing bound. However, we didn’t use the Shield that we constructed in Section 3.4,
and in light of the results we obtained in Chapter 2, we know that using the Shield might
improve our rate.

In this section, instead of using the Azuma’s inequality to find a direct relation between
dit and phase error rate, we use the quantum de Finetti theroem to transform the noise
model to one that is independent and identically-distributed. We will skip the mathe-
matical complication involved with the introduction of the quantum de Finetti theorem,
and simply assume that it gives quantum states that are independent and identically-
distributed.

Applying the quantum de Finetti theorem to the Equation 3.21 and discarding some
complications, we obtain

ρABB′ = d
dn

|Ca|
P

(Ca)
A (

d−1∑
ν=0

pνZ
ν
B1
|Φ〉A1B1〈Φ|Z−ν

B1
⊗ σ

(ν)
B′1

)⊗nP (Ca)
A (3.33)

where σ(ν)
B′ :=

∑d−1
µ,µ′=0

√
pµ|νpµ′|ν E1R1〈φµ′,ν |φµ,ν〉E1R1 |µ〉B′〈µ| and the states |φ〉 are rede-

fine consequently. By Theorem 5, the rate of secret key that be extracted is

log2 d−H(eµ)− I(ν : BS). (3.34)

As a simple exercise, the reader can verify that this rate is equivalent — in our case — to

log2 d−H(eµ)−H(eν) + I(ν : σ(ν)
B′1

). (3.35)

where eµ = pµ, eν = pν and we suppose that log2 |Ca| → n log2 d − nH(pµ) as n → ∞.
Since a measurement of σ(ν)

B′1
in the computational basis give the dit error pattern, then the

key generation rate given by the Formula 3.34 (and consequently also Formula 3.35) must
be equal or bigger than the rate given by the Formula 3.32. For example, Formula 3.35
improve the rate of the SAGR04 protocol (this improvement was first found by [109]).
Another example is PBC00. Using Formula 3.32, the highest tolerable noise rate in a
depolarization channel given in Section 3.1.3 is p = 11.6% versus p = 13.4% if we use
Formula 3.35.
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3.7 Summary of the Chapter

3.7.1 Summary

In this Chapter, one of our contributions was to combine and generalize the results given
in [173, 24, 150, 104, 151] in order to obtain a generic security for permutation-invariant
QKD protocol against joint attack. Our final result is very similar to [41, 153], except that
we didn’t consider post-processing — which could have been done by using arguments
from [151] — and that we introduced the Azuma’s inequality to considerably simplify the
proof. Our proof has the conceptual advantage of being directly related to entanglement
distillation. The secret key generation rates that we derived using this method are related
to the entanglement distillation rate given by the Hashing bound (see Equation 3.32).

A second contribution was to explain how we could improve the known secret key
for some important QKD protocols by constructing a Shield from dit error correction
(see Equation 3.35). With a different method, this improvement was already shown for
SAGR04 [109], but we showed how such improvement could be observed on other QKD
protocols.

3.7.2 Connections to Other Results and useful comments

We conclude the Chapter with a few important comments. First, there exists another
security proof for QKD that exploits the structure of private states [85]. However, the
problem that they solve is very different to ours, and they do not consider the same
scenario as ours. For a fixed twisting operator of the form U⊗n

BS , they show how to estimate
the phase errors in the untwisted state (U⊗n

twist)
†ρABSU

⊗n
twist where ρABS is shared between

Alice, Bob and the Shield. One of the main differences with their approach is that we
don’t restrict our twisting operator to the form U⊗n

BS and that our twisting operator is not
fixed, but it does depend on Alice and Bob’s state. Contrarily to our work, the phase error
estimation that is considered in [85] could necessitate quantum operations that are to hard
to implement.

As mentioned earlier, our results can be seen as an extension of [104]. As explained in
[105], the method given in [104] leads to a security proof for QKD with uncharacterized
detectors. However, the arguments in [105] apply only if Alice performs some measurements
in the conjugated basis as it happens — virtually — in BB84. In our generalization of
[104], we lose the feature where Alice makes a measurement in the conjugated basis. For
this reason, our analysis does not apply, in general, to uncharacterized detectors. It would
be very interesting to find a method, which allows uncharacterized detectors, to adapt our
framework to.

From the analysis of this chapter, in the case where Azuma’s inequality is used for
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parameter estimation, the security level — the upper bound of the trace distance between
Alice and Bob’s state with a private state — scales as e−αn for some positive constant α.
This agrees with the result reported in [161]. The author has also calculated the scaling of
the security level in the case where the quantum de Finetti theorem was used, considering
all the extra complications that were ignored in this thesis. From his calculation, the
security level scales as e−β

√
n and he found that for practical implementation of QKD, this

difference could be considerable. However, the author does not claim that his calculation
of the security level (in the case where the quantum de Finetti theorem is used) is optimal,
but in fact suggests that it be investigated further.
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Chapter 4

QKD Without Reference Frame

4.1 Background

Many QKD protocols has been proposed, and each different implementation of the proto-
cols has a different set of advantages and disadvantages. Some are more sensitive to some
type of noise or eavesdropping attacks, others have some important physical limitation.
With the technological advances, it is difficult, if not impossible, to foresee which QKD
protocol combined with which physical implementation will be the best. The most studied
QKD protocols so far are legitimately the ones that involve single photon encoding and
measurement, since they are far easier to conceive experimentally. However, multi-photon
encodings could have there own set of advantages. There exists channels for which there
is no protocol using a single photon encoding that can generate a secret key. On the other
hand, by exploiting the decoherence-free subspace of the noise, there are multi-photon
schemes that can succeed in generating a secret key. Depending on the situation, encod-
ing could be used to improve considerably the performance of QKD in a channel with a
memory.

One of the common problems in implementing QKD protocols in a non-control en-
vironment is dealing with thermal and tension fluctuations in the optical fiber. Those
fluctuations induce some random rotation of the polarization of the photons traveling
through the fiber. For this reason, a phase-encoding is often preferred to polarization-
based encoding for implementation of QKD through optical fiber. However, since devices
used for phase-encoding QKD are polarization dependent, compensating for the rotation
is a vital issue for the performance of the schemes. In some experiments (for examples
[128, 63]), they had to calibrate their apparatus every few seconds. A good solution to this
problem was provided by reflecting the photon using a Faraday mirror so that they travel
back-and-forth in the optical fiber [133, 178]. We provide, here, an alternative solution
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by using mutli-photon polarization encoding. In a typical present situation, there is no
doubt that single photon QKD schemes are easier to implement. However, in the future,
it may not necessarily still be so. It is easy to imagine situations where two-way quantum
communication could be a huge burden — imagine a QKD protocol between two moving
objects, say a satellite and a spaceship. This does not mean that some multi-photon QKD
protocol will necessarily be better than single photon QKD protocols in any practical sit-
uation, but it is certainly worthwhile to study multi-photon QKD protocols to be able to
know to which extent they could be useful. It is always interesting to find some practical
application to entanglement, even if it is not obvious that it compensates the difficulties
in manipulating it.

In the next sections, we study the properties and the unconditional security of one
specific mutli-photon QKD protocol made to be robust against collective noise[24], hoping
that our analysis might help to study other more complicated cases. We also consider
several new variations of those protocols. Interactions between photons are generally hard
to perform, and the use of multiple photon states accentuate the sensitivity of the pro-
tocol to channel losses. However, allowing ourself to use not too futuristic technologies
(i.e. two-photon source on demand, quantum memories and entanglement-swapping), we
demonstrate that these problems could be reduced or avoided by using judicious encodings
and technics related to quantum teleportation.

We will first describe the rotationally invariant four-photon protocol introduced in [24].
We show in section Sec. 4.3 how variations of the protocol allow further improvements by
making the schemes more efficient against channel losses. In Sec. 4.4, we demonstrate the
security of the four-photon protocol. We remark that some of our arguments could also
apply to other multi-photon schemes, especially the rotational invariant ones [25].
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4.2 Robust Four-Photon QKD Protocol

Consider the problem of performing QKD when Alice and Bob do not share a reference
frame. This could happen for example when they communicate through optical fiber,
which randomly rotates the polarization of photon states. An other possibility would be
that Bob is a satellite in orbit, or on a boat floating on the tumultuous ocean. This
challenge can be met by encoding the information in rotationally invariant states, that
span the decoherence free subspace (DFS) of the collective rotation operation. The singlet
state |Ψ−〉 = (|01〉 − |10〉)/

√
2 has the property of being invariant under bilateral rotation

of the two qubits, and therefore spans a one-dimensional DFS of the collective rotation.
For the purpose of encoding an arbitrary qubit state however, one dimension is insufficient.
It takes at least four qubits to yield a two dimensional DFS. (Three qubits are enough to
generate a full qubit algebra via the noiseless subsystem method.) A possible choice of
orthogonal basis for this subspace is [93]

|0̂〉 =
1√
2
(|a〉 − |b〉) (4.1a)

|1̂〉 =
1√
6
(2|c〉 − |a〉 − |b〉) (4.1b)

where

|a〉 =
1√
2
(|0101〉+ |1010〉)

|b〉 =
1√
2
(|0110〉+ |1001〉)

|c〉 =
1√
2
(|0011〉+ |1100〉).

Theoretically, these states could be use to implement any of the aforementioned QKD
protocols by preparing and measuring encoded qubits restricted to the DFS. Some efforts
in this direction have been done using photon-polarization states [29].

Nevertheless, preparing encoded states and performing encoded operations can some-
times be a very difficult task. To implement BB84 for example, at least one of the four en-
coded states would necessitate four-photon entanglement, so would be difficult to produce
efficiently. Similarly, the encoded measurements would require some interaction between
all four-photons. Hence, our motivation in [24] was to find a scheme which is adapted to
the DFS structure, thus circumventing the difficult challenges of encoded preparation and
measurements. It turns out that the encoded version of PBC00 (see Section 3.1.3) fulfills
these requirements.

Consider the following three quantum states that are obtained by permuting the qubits
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of two singlet states [24]:

|ψ3〉 =

|ψ2〉 =

|ψ1〉 =

= 1√
2
(|a〉 − |c〉)

= 1√
2
(|c〉 − |b〉)

= 1√
2
(|a〉 − |b〉)

t t t tt t t tt t t t
(4.2)

In the above diagram, linked circles represent two qubits in the singlet state |Ψ−〉. The
qubits are assumed to be distinguishable, e.g. from their temporal ordering. Such states
can be created e.g. using parametric down conversion. The states |ψ1〉, |ψ2〉 and |ψ3〉 are
obviously rotationally invariant, and therefore lie inside the DFS. Using the notation of
Equation 4.1, they can be re-written as |0̂〉, 1

2 |0̂〉 +
√

3
2 |1̂〉 and 1

2 |0̂〉 −
√

3
2 |1̂〉, respectively.

These are the three states required to implement the PBC00 protocol, so encoded state
preparation requires only two-qubit entanglement.

The other ingredient required to implement PBC00 is the POVM MPBC00 describe
by Equation 3.3. This measurement also involves four-photon entangled states, and is
therefore technologically very challenging. However, instead of performing this complicated
measurement, suppose that Bob measures each of the four qubits in the “computational”
basis {|0〉, |1〉}, i.e.

Mcomp = {|v〉〈v| for v = 0000, 0001, 0010, ..., 1111}. (4.3)

Under the assumption that the state of the qubits received by Bob lies in the DFS, then
Mcomp surprisingly reduces to MPBC00. Indeed,

Pdfs|v〉 =


1√
3
|ψ1〉 if v = 0011 or 1100

1√
3
|ψ2〉 if v = 0101 or 1010

1√
3
|ψ3〉 if v = 0110 or 1001

0 else

(4.4)

where Pdfs = |0̂〉〈0̂|+ |1̂〉〈1̂| is the projection operator onto the DFS of the collective noise.
Notice that when the state is indeed in the DFS, the measurement outcome should always
indicate a balanced number of 0’s and 1’s.

Thus, if Bob could verify that the qubits he received are indeed encoded in the DFS,
or at least estimate the rate of states that fall outside the DFS, then single qubit mea-
surements and two-qubit entangled source would be sufficient to implement a rotationally-
invariant encoded version of PBC00. However, a projection in the DFS might be difficult
to implement experimentally. In the absence of such a projection, Eve could use the com-
plementary space of the DFS to control the measurement outcomes obtain by Bob. A very
simple and efficient eavesdropping attack would consist in performing the measurement
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MPBC00 — whose elements have support outside the DFS —, and sending an exact copy
of the result to Bob. By doing so, Eve could always predict Bob’s measurement outcome
and would get full information about the key without being detected.

To counter this attack, Bob can apply a random collective rotation U⊗4 to all four
qubits before performing the measurement Mcomp (U is chosen randomly according to the
uniform Haar measure on SU(2)). This is equivalent to choosing a random polarization
basis in which to measure all four photon.1 The random rotation U⊗4 has no effect on the
states encoded in the DFS as they are rotationally invariant by construction. However,
as a consequence of the random rotation U⊗4, any state outside the DFS will result in an
invalid measurement outcome with good probability, i.e. an outcome with an unbalanced
number of 0’s and 1’s. Hence, by performing the polarization measurement in a random
basis, Bob will be able to estimate the rate at which Eve encodes information outside the
DFS. In Sec. 4.4, we will demonstrate that this simple scheme is unconditionally secure.

1Moreover, instead of choosing a basis at random over the entire Bloch sphere, Bob can simply choose

among an σx, σy, or σz measurement, which has obvious practical advantages [142].
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4.3 Variation of the robust four-photon protocol with higher

transmission rate

4.3.1 Transmission rate η2

Alice prepares n pairs of photons in singlet states. She applies a random permutation
to the photons and sends all of them to Bob. (We assume here that the photons are
distinguishable by their temporal ordering.) Bob measures the polarization of all n photons
in a randomly selected basis. Then, he publicly announces to Alice which photons were
received, i.e. which of his detectors clicked. For n > 2/η2, the probability that two pairs
of photons have actually made it to destination will approach unity. Among the photons
that were detected by Bob, Alice picks two pairs of photons that originally formed singlet
states. (In the case where less than two pairs are detected by Bob, they discard the data
and resume.) She then publicly announces the set of four photons that contain these two
pairs.

At this stage, Alice and Bob have a simulation of the robust four-photon protocol.
Observe that there are three possible arrangements of the order of these photons, corre-
sponding to the diagrams of Eq. (4.2). Alice selects two of these three possible arrange-
ments, one of which is corresponding to the actual arrangement. She announces these
two arrangements publicly, the first one encoding the key bit 0, while the second encoding
the key bit 1. In the light of this information and his measurement outcomes, Bob can
discriminate between the two arrangements with some finite probability, and generate a
key bit, exactly as he did in the four-photon protocol, i.e. via Eq. (4.4). The transmission
rate of this protocol is thus of order η2.

Notice that Bob performs his measurements before learning from Alice which set of
four photons contain entangled pairs, which might appear to be a major departure from
the original protocol where there were only four photons to start with. Similarly, in the
original protocol, Alice announces the two possible photon arrangements before sending
them to Bob, while here she only makes the announcement after the photon are measured
by Bob. The crucial point is that the order in which these steps are performed has no
effect whatsoever on the outcome of the measurements, so the two protocols are equivalent,
except that that the choice of photon that composed a four-photon state is dependent on
the eavesdropper action. In the subsection 4.4.3, we show that it does not affect the
security of the protocol.
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4.3.2 Transmission rate η

To reach a transmission rate η, Alice must have the ability to store quantum information
and to perform Bell measurements. She must first create n qubits in singlet states, and
send one qubit of each pair to Bob. The qubit that she keeps will never be transmitted to
Bob, so it does not need to be encoded in a photon. The n singlet could for example consist
of photon-atom pairs, which can be prepared using quantum electrodynamic cavities; the
photon gets sent to Bob, and the atom remains in Alice’s cavity. This would greatly
simplify Alice’s storage requirement.

Bob measures all photons in a randomly selected polarization basis. He then announces
publicly which detectors have recorded a photon; there should be roughly nη of them. Alice
then discards all atoms whose photon partner was not properly detected by Bob. Alice
randomly pairs up the remaining atoms, and performs a Bell measurement on each pair.
She keeps only those pairs of atoms whose measurement outcome corresponds to the singlet
state. The effect of this measurement is to transfer the correlations to the photon partners
of the atoms; a procedure known as entanglement swapping [191]. Alice announces publicly
a set of four photons whose atom partners yielded the singlet measurement outcome. When
n > 4/η, the probability that at least two pairs of atoms yield this outcome approaches
unity. If there are less than two such pairs, they resume the protocol.

At this stage, Alice and Bob have a simulation of the four photon protocol. They
proceed as in the previous section. Again, the temporal order of some of the steps of
the protocol has been modifies, but without affecting the outcome of the protocol. The
transmission rate of this protocol is of order η.
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4.4 Security of the robust four-photon QKD protocol

Following the method described in Chapter 3, the PBC00 protocol can be shown secure
by reducing it to a EDP.2 In that case, the phase and bit error rate are related by ephase ≈
5
4ebit.

Since the robust four-photon protocol is an encoded version of PBC00, it also reduces
to an (encoded) EDP. Thus, to establish its security, all we need to show is that i) Bob
can verify that the received state lies in the code subspace (the DFS) and ii) Alice and
Bob can estimate the rate of (encoded) bit and phase error. The next two subsections
demonstrates how this is accomplished.

4.4.1 Projection onto the DFS

The effect of Bob’s random collective rotation U⊗4 to all four qubits — which in practice
is equivalent to performing the polarization measurements in a random basis — is to
transform the received state ρ into

E(ρ) =
1
N

∫
U⊗4ρ(U †)⊗4dU (4.5)

where dU is the uniform Haar measure over SU(2) and N =
∫
dU . This map is often

referred to as the twirling operation. We know from representation theory, and in particular
from the angular momentum composition theory, that this transformation breaks up the
Hilbert space according to the irreducible representations (irrep) of SU(2). In this case,
the 16-dimensional Hilbert space H of four qubits can be decomposed as

H = (H0)
⊗2 ⊕ (H1)

⊗3 ⊕H2 (4.6)

= C2 ⊗H0 ⊕ C3 ⊗H1 ⊕ C⊗H2 (4.7)

where Hj corresponds to the space of total angular momentum j and has dimension 2j+1.
Equation (4.7) thus indicates that the spin-0 irrep is 2-fold degenerate, the spin-1 irrep is
3-fold degenerate, and the spin-2 irrep is non-degenerate. A convenient basis choice for H
is thus |j,m, µ〉 where j labels the irrep; m corresponds to the total angular momentum
along the z axis, so it takes the values −j,−j + 1, . . . , j and labels the basis states in
each irrep Hj ; and µ is a degeneracy index, labeling basis states in the Cdj sectors. The
label µ can be chosen to represent the different symmetries of the state under the possible
permutation of the four qubits.

Define the projectors Pj =
∑

m,µ |jmµ〉〈jmµ| that project onto the subspaces with
fixed value of j. The effect of the map E on a state ρ can be described as follows. First,

2Based on the analysis given in Subsection 3.6, it is possible to improve the secure key rate the PBC00

protocol. We simplify our proof by putting aside those extra considerations.
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ρ gets completely “decohered” in the j sector, i.e. ρ →
∑

j PjρPj . Then, each Hj sector
(cf. Eq. (4.7)) is put into a maximally mixed state. Formally, the overall process can be
written

E(ρ) = ρ0 ⊕ ρ1 ⊗
1lH1

3
⊕ ρ2 ⊗

1lH2

5
(4.8)

where ρj = TrCdj (PjρPj), or in terms of matrix elements,

[E(ρ)]jmµ,j′m′µ′ = δjj′δmm′

j∑
m=−j

ρjmµ,jmµ′ . (4.9)

The DFS corresponds to the zero angular momentum subspace, so it encodes on the
C2 sector of Eq. (4.7). We will thus write PDFS = P0 for the projector onto the DFS and
P⊥

DFS = P1 + P2 for the projector onto its orthogonal complement. As expected, when
the state is initially in the DFS, i.e. when PDFSρPDFS = ρ, then the map E has no effect
as can be seen from Eq. (4.8). Moreover, observe that [E(ρ), Pj ] = 0 for all j. As a
consequence, whether or not Bob performs the measurement {PDFS, P

⊥
DFS} will not affect

the measurement outcomes of his subsequent photon measurements.
Indeed, one can think of E(ρ) of Eq. (4.8) as a statistical mixture of states that lie in

a space with a fixed value of j. In other words, there are no coherent superpositions of
different j values, only statistical mixtures. Thus, a measurement of {Pj} would reveal the
value of j, without modifying the state otherwise.

The security of the robust four-photon QKD protocol then follows from a variation of
Theorem 6 of [73] about tagging.3 Essentially, we can pessimistically assume that every
time the state lays outside the DFS, Eve has complete information about the associated
key bit. Thus, it is possible to generate a secure key using this protocol at the rate

S = pconc

[
pDFS

pconc
− h(ebit)−

pDFS

pconc
h(eDFS

phase)
]

(4.10)

where ebit is the bit error rate over all conclusive results, eDFS
phase is the phase error rate of

states in the DFS, and pDFS is the fraction of states that lie in the DFS. (In [73], projectors
onto single and multi-photon states played the role of projectors onto and outside the DFS
respectively. The derivation is otherwise identical.) This result holds independently of

3The tagging argument can be understood in terms of the Shield. In our situation, it is explained

as follow. If we prove that there exists a system S that is not accessible to Eve, but that contains full

information about which state received by Bob is projected inside or outside the encoding space, then Bob’s

could have use the information in that system S to correct the phase error (see Chapter 3). Therefore,

for the purpose of phase error correction, Bob could correct the phase errors separately on the qubits

that correspond to a projection inside or outside the DFS. Assuming the worst case where the phase error

probability on the results that where projected outside the DFS is 1
2
, then we obtain directly Equation C.5.
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Bob’s practical ability to distinguish stated inside and outside the DFS, as long as he can
estimate pDFS and eDFS

phase. We will demonstrate how this can be done shortly.
As a consequence of this result, the key ingredient required to reduce the robust four-

photon protocol to the provably secure PBC00 — verifying that the state is actually in the
DFS — does not need to be performed. After applying the random rotation to the qubits
— which effectively projects the state randomly onto or outside the DFS — all Bob needs
to do is to estimate the fraction pDFS of states that lie inside the DFS and their phase
error rate eDFS

phase.

4.4.2 Estimating pDFS and eDFS
phase

First, observe that for each value of j, only the states withm = 0 yield a valid measurement
outcome, i.e. one with a balanced number of 0’s and 1’s (see Equation. 4.4). The DFS is
associated with the j = 0 subspace in which all states have m = 0, so states in the DFS
always yield valid outcomes. The states outside the DFS however can take different values
of m. In the j = 1 subspace, m takes the values −1, 0, 1. Moreover, the effect of E is
to completely mix all three of these states, so they occur with the same probability. We
conclude that if ρ had support on the j = 1 subspace, it would yield an invalid outcome
with probability 2/3. Similarly, a state ρ with support on the j = 2 subspace, it would
yield an invalid outcome with probability 4/5.

Let km be the number of Bob’s results associated to the space span by {|jmµ〉 | ∀µ, j}.
For examples, km=2 is the number of Bob’s results that are associated to state |1111〉 and
km=1 is the number of of Bob’s results that are associated to either one of the following
states: |1110〉, |1101〉, |1011〉 and |0111〉. Results that are associated to m 6= 0 are always
invalid. The results that are that are associated to m = 0 may or may not be conclusive.
Let kconc be the number of conclusive (i.e valid) results. Then pconc = kconc

n where n is
the total number of four-photon states sent by Alice. If losses in the channel are neglected
then n =

∑2
m=−2 kconc.

If Bob records km=1 and km=2 of invalid measurement outcomes corresponding to states
with m = 1 and 2, he estimates that asymptotically, 3(km=1 − km=2) and 5km=2 states
where projected outside the decoherence-free subspace into the subspace corresponding to
j = 1 and j = 2, respectively.4 Alice and Bob discard the qubits that yielded invalid
outcomes, so these are not counted as conclusive. Thus an unrecognizable km=1 remain-
ing results should correspond to states outside the DFS. This information is enough to
determine a lower bound on the fraction of states inside the DFS: pDFS ≥

kconc− 2
3
km=1

n .
To estimate eDFS

bit , we can again be pessimistic and assume that all bit errors are results
that correspond to a projection into the DFS. This sets eDFS

bit = ebit where ebit is evaluated

4Asymptotically, we should have km = k−m.
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from the test bits (that are selected among the valid measurement outcomes). When the
states are in the DFS, the protocol amounts to an encoded version of PBC00, so the
relation eDFS

phase = 5
4e

DFS
bit derived in [27] gives us all the required quantities.

We will now demonstrate with a specific example that our two pessimistic assumptions
— that a fraction 1/3 of the states outside the DFS and associated to m = 0 yield valid
measurement results and that all bit flip errors occur in the DFS — are actually tight.
Suppose Eve performs a measurement in the computational basis Mcomp. Upon mea-
surement outcomes 0011 or 1100, she send Bob the state |1, 0, 1〉 = 1√

2
(|0011〉 − |1100〉),

sends |1, 0, 2〉 = 1√
2
(|0101〉 − |1010〉) for outcomes 0101 or 1010, and finally |1, 0, 3〉 =

1√
2
(|0110〉 − |1001〉) for 0110 or 1001. As the notation indicates, these three states corre-

spond to the three degenerate m = 0 states of the j = 1 irrep, so they have no support
on the DFS which has j = 0. The effect of Bob’s random rotation will be to take each
of these |1, 0, µ〉 into an equal mixture of |1,m, µ〉 for m = −1, 0, 1. With probability 1/3,
this state will yield a valid measurement outcome.

When Bob’s measurement outcome is valid, then it will always agree with the one
found by Eve. This is due to the fact that the map E does not affect the µ sector, i.e. E
preserve the symmetries of the states under qubit permutation. In other words, the only
valid measurement outcome that Bob can get are those with a non-zero overlap with the
m = 0 state of a given irrep. Since Eve prepares the states in a known irrep (as indicated
by the label µ), she can predict Bob’s measurement outcome. Thus, Eve has complete
information about all valid measurement outcomes, and does not induce any error. Thus,
all bit errors must be associated with states in the DFS, so eDFS

bit = ebit. This complete the
security proof of the robust four-photon QKD protocol.

4.4.3 Security of robust protocols with transmission rate η and η2

One may worry that the modified versions of the robust four-photon QKD with higher
transmission rate might allow new strategies and give extra power to Eve since the selection
of the four photons, each composed of qubits, is dependent on her attack. In this subsection,
we explain why that is not the case and why the same equation for the lower bound on
secret key generation applies to all versions of the robust four-photon QKD protocol.

Consider the entanglement-based version of the robust four-photon QKD protocol.
Alice initially prepares 4n maximally entangled pairs 1√

2
(|00〉 + |11〉). She then uses

entanglement-swapping on her part of the pairs to encoded states for the protocol (Equa-
tion 4.2). Then she can wait for Bob to declare which qubits he received, or did not
receive, before performing the entanglement-swapping. In the standard version of the pro-
tocol, entanglement-swapping is done within blocks of four consecutive pairs. However,
Alice could instead have discarded all the qubits associated with losses in the channel,
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regrouped the remaining pairs in fours and performed the entanglement-swapping within
those groups. The version of the robust four-photon protocol with transmission η reduces
to this second version of the entanglement based protocol. Even if the encoding space was
chosen after Bob’s declaration, we can still use the upper bound for the bit and phase
error rates in the encoded space along with the estimate of how many qubits have been
projected outside the encoded space, which we derived in Subection 4.4.2. Therefore, the
secret key generation rate is still given by Equation C.5. A similar argument can be used
to prove the security of robust four-photon protocol with transmission η2.
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Chapter 5

Conclusion

5.1 Results

The equivalence between security proof based on the uncertainty principle and private
state distillation follows from Theorem 2, which was strongly inspired by [130, 105]. In
[86], it was proved that every QKD protocol could be reduced to a private state distillation
protocol. When new security proofs [154, 50, 153, 152], not based on distillation arguments,
improved the known lower bound for secure key rates, we wanted to find the private state
distillation protocols that correspond to those higher key rates. We therefore constructed
the quantum operations needed by Alice and Bob to perform the corresponding private
state distillation protocol and obtained an alternative proof of a major result about privacy
amplification (Theorem 7 [154, 152]). Our method is a direct generalization of [173, 105],
which are also based on the use of two commuting linear error correction codes, also known
as CSS codes [34, 175]. The main difference being that we exploit a modified version of
the HSW theorem involving a family of two-universal hashing function. Our proof of
Theorem 7 might not be simpler than the ones of [154, 152], but it is arguably more
physical and intuitive.

On the other hand, as explained in Chapter 3, our method does provide a much simpler
security proof for prepared-and-measured QKD protocols. One of the consequences of this
simplification is that we were able to easily generalize an observation by [109] to improve
the secret key generation rate of certain protocols. To achieve this highest key rate, we
used the quantum de Finetti theorem. For lower key rate, we can use instead the Azuma’s
inequality for parameter’s estimation. Considering finite QKD, the level of security is
affected by the version of the proof that is used and it might be worthwhile to avoid the
quantum de Finetti theorem when possible.

In Chapter 4, we introduced a QKD protocol using decoherence-free subspace. The
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main advantage of this protocol is that even though the encoding is done using multi-
photon, it requires only single-photon measurement. It turns out that the measurements
are not restricted to the encoding space, which implies that standard security proofs do
not apply to the protocol. Using a tagging argument [73], we derive the security of the
protocol. Although multi-photon QKD protocols are, in general, more affected by loss in
the channel than single-photon ones, we observe that this problem can be circumvented in
some interesting situations. We note that although this analysis was constructed for the
robust four-photon protocol, it can be adapted for security proofs of other QKD protocols
as well, particularly in situations in which Bob’s measurement is not restricted to Alice’s
encoding space. For example, the robust three and two state protocols discussed in [24]
and [25] could be shown secure using the method we have developed.
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5.2 Open Questions

• Renner’s bound for the security level using the quantum de Finetti theorem is not
necessarily tight. There might be ways to achieve the highest key rate with a better
security level.

• One of the huge successes of the security proof, based either on entanglement dis-
tillation or the uncertainty principle, is that it can tackle the problem of imperfect
devices. We did a direct generalization of those proof methods. Is it possible to use
our new tools to improve the known results relating to security proof of QKD with
imperfect devices? In this thesis, we are not considering a particular case of imperfect
devices. However, we have developed a framework of security proof where the con-
cept of Shield is central. The next step would be to use the Shield to represent some
imperfection in the devices. We have strong reason to believe that it is possible to
use our results about parameter’s estimation and how to build an extra Shield from
dit error correction, to improve some known security proofs with imperfect devices.

• We don’t know if single-photon protocol can achieve the channel capacity even by
including two-way classical communication. Consider a depolarization channel such
that (1−p)ρ+ p

3

∑
a=x,y,z σaρσa. We know that there exists a single-photon protocol

(the six-state protocol) that can achieve a positive secret key generation rate up
to p = 0.414 [36]. We also know that the depolarization channel can be used for
entanglement distillation up to p = 0.5 [20]. One well-known open question is if
there exists a single-photon prepared-and-measured protocol that allows positive
rate at higher p. A related question would be if there is a multi-photon prepared-
and-measured protocol that allows positive rate for p > 0.414, and if it can be
implemented experimentally.
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Appendix A

Supplemental Information

A.1 Shannon Entropy and Classical Mutual Information

In a seminal paper on the theory of information [166], Shannon proposed a function to
quantity information. Consider the problem of transmitting a string s̄ built from n symbols
represented by the alphabet Γ. It is assumed that the letters µ ∈ Γ follow the probability
distribution pµ and the different symbols in the string are identical and independently
distributed. Shannon showed that the function H(Γ) :=

∑
µ∈Γ pµ log2 pµ is asymptotically

the maximum compression bit rate of the message. The term assymptotic refers to the limit
n→∞. Shannon entropy of the whole string is defined as H(s̄) := H(Γ1,Γ2, ...,Γn) where
Γi is the variable corresponding to picking the ith symbol of the string s̄ . The function
H was already well known in thermodynamics and statistical mechanics, but Shannon’s
innovation was to show that it was a measure of information. His result implies that the
average amount of bits required to store the information of a string s̄ is H(s̄).

We can define the Shannon entropy of any variable X with probability distribution px
to be

H(X) :=
∑
x

px log2 px. (A.1)

Consider another variable Y with probability distribution py. The variable (X,Y )
respects the joint probability distribution px,y. The conditional variable X|Y represents
the outcome X given Y and follows the probability distribution px|y. The Shannon entropy
has the following important relation:

H(X,Y ) = H(X) +H(Y |X). (A.2)

Remark that X and Y are independent if and only if H(X|Y ) = H(X) (which is
equivalent to H(Y |X) = H(Y )). In general, conditioning will never increase the Shannon
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entropy so that H(X|Y ) 6 H(X). Under a transformation described by f(X), the entropy
is also decreasing meaning that there is always equal or more information in the variable
X than in f(X). We therefore have that

H(f(X)) 6 H(X). (A.3)

Another useful quantity is the mutual information

I(X,Y ) := H(X) +H(Y )−H(X,Y ). (A.4)

It corresponds to the average amount of information that can be obtained about the
variable X from another variable Y. It can be shown that

H(X,Y ) := H(X) +H(Y )−H(X,Y ) > 0 (A.5)

Derivation of those properties and many more details about the Shannon entropy can
be found in many great textbooks. Here is a suggested one [46].
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A.2 Impossibility of Secret Key Distribution Using Classical

Communication

The Shannon entropy can also be interpreted as a measure of uncertainty. Suppose that
Alice and Bob share a string s̄. From Eve’s point of view, the values of that string follow
some probability distribution that depends on Eve’s a-priori information about that string.
The Shannon entropy quantities the average amount of extra information that Eve would
obtain by accessing the string s̄. In other words, the Shannon entropy quantifies Eve’s
a-priori uncertainty about the string s̄.

Consider the problem of distributing a one-time pad using classical communication. In
light of the introduction to the Shannon entropy, one-time-pad is defined as a shared string
of n-bits s̄ between Alice and Bob such that H(s̄) from Eve’s perspective is maximal (i.e.
H(s̄) = n). The impossibility of distributing a one-time pad is an immediate consequence
of the following theorem.

Theorem 9 Alice and Bob cannot increase the Shannon entropy of their shared classical
register using classical communication.

Proof. Suppose that Alice and Bob share some string s̄ of bits and that the Shannon
entropy of s̄ is H(s̄) from Eve’s perspective. In complete generality, suppose that after n
rounds of two-way classical communication, Alice and Bob compute the string x̄ = f(s̄,M)
where M is the message that Alice and Bob sent to each other and f is an arbitrary
function. Eve can have a copy of M , so that the entropy of x̄ from her perspective is
H(x̄|M). Using Eq. A.2, A.3 and A.5, we obtain

H(x̄|M) = H(f(s̄,M)|M) (A.6)

6 H(s̄,M |M) (A.7)

= H(s̄,M)−H(M) (A.8)

6 H(s̄) (A.9)

This theorem has stronger consequences than just preventing the distribution of a per-
fect one-time pad (i.e. when H(s̄) = n). Suppose that we are interested in distributing a
key that respects some slightly weaker security conditions. For example, someone might
want to obtain a key from which Eve has absolutely no information with very high proba-
bility, but she may have some or full information on the key with a very small probability.
In this case, Alice and Bob must still increase the Shannon entropy of their shared register,
which is impossible using classical communication by theorem 9.
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Please note that Theorem 9 will fail if Alice and Bob are allowed to use quantum
communication. QKD is one counter-example where Alice and Bob are able to increase
the entropy of their shared register. One of the obvious reasons why the steps of the proof
are not valid in the quantum case is that the quantum non-cloning theorem prevents Eve
from making a copy of the message. Another intuitive argument on why the proof fails
is that there exist pure quantum states that Alice and Bob could share, such that, even
if Eve knew perfectly well what that state was, she would have no knowledge about the
outcome of Alice and Bob’s local measurements on that state. The state |Φd〉 given by
Equation 1.3 is such an example.
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A.3 Schmidt Decomposition and Purification

A very useful tool in quantum information is the Schmidt decomposition:

Theorem 10 Suppose |ψ〉AB is a pure state of a composite finite system, AB. Then there
exist orthonormal states |i〉A for system A, and orthonormal states |i〉B for system B such
that

|ψ〉AB =
∑
i

λi|i〉A|i〉B. (A.10)

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1.

A proof of this theorem can be found in [138]. We now use it to prove another theorem.
Consider a quantum state ρA restricted to the finite Hilbert space of the system A. A
purification of the state ρA is any pure state |ψ〉AB such that TrB[|ψ〉AB〈ψ|] = ρA for some
system B.

Theorem 11 Suppose that we have two purifications |ψ〉AB and |ψ′〉AB of the states ρA,
those purifications are related by some unitary UB which is restricted to the system B:

|ψ′〉AB = UB|ψ〉AB (A.11)

Proof. Using the Schmidt decomposition theorem, we know that there exist the orthonor-
mal states |µi〉A and |µi〉B such that

|ψ〉AB =
∑
i

λi|µi〉A|µi〉B. (A.12)

for some coefficient λi > 0. Since

TrB[|ψ〉AB〈ψ|] = ρA = TrB[|ψ′〉AB〈ψ′|], (A.13)

then

TrB[|ψ′〉AB〈ψ′|] =
∑
i

λ2
i |µi〉A〈µi|. (A.14)

Since |ψ′〉AB is pure, then

|ψ′〉AB =
∑
i

√
λi|µi〉A|µ′i〉B (A.15)

where
√
λi|µ′i〉B :=A 〈µi|ψ′〉AB. However, using the cycling property of trace,
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√
λiλjB〈µ

′
j |µ′i〉B =

√
λiλjTrB[|ψ′〉AB〈ψ′|µj〉A〈µi|] (A.16)

=
√
λiλjδi,j . (A.17)

Until now, |µ′i〉B was well defined only if λi 6= 0. Note that {|µ′i〉B | λi 6= 0} is a set of
orthonormal vectors that can be extended to an orthonormal basis {|µ′i〉B | 0 6 i 6 |B|−1}
of the system B. |B| means the dimension of the finite system B. Consider also an
orthonormal basis {|µi〉B | 0 6 i 6 |B| − 1} that extends the set of orthonormal vectors
{|µi〉B} used for the Schmidt decomposition of the state |ψ〉AB. Define UB =

∑
i |µ′i〉B〈µi|.

Then,

|ψ′〉AB = UB|ψ〉AB (A.18)
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A.4 Von-Neumann Entropy and Quantum Mutual Informa-

tion

We are looking for a function that quantifies the information of a quantum state ρ. Since
this function cannot depend on a choice of basis, then it must depend only on the eigen-
values λi of ρ. Thus, a direct generalization of the Shannon Entropy for quantum state
can be given by

S(ρ) :=
∑
i

λi log2 λi. (A.19)

It is called the Von-Neumann Entropy. To support this choice as a measure of informa-
tion, it was shown [92, 162] that n copies of the quantum state ρ could be compressed with
high fidelity (see Appendix A.5) into nH(ρ) qubits. The quantum mutual information is
defined in analogy to the classical case. Consider a quantum state ρAB:

I(A:B) := S(ρA) + S(ρB)− S(ρAB). (A.20)

Suppose that the state in system A is classical (meaning that it can be written as
ρA =

∑
k pk|k〉A〈k| for some non-negative real number pk such

∑
k pk = 1). In that case,

ρAB is a classical-quantum state (i.e ρAB =
∑

k pk|k〉A〈k| ⊗ ρ
(k)
B for some ρ(k)

B ) and

I(A:B) = I(K:B) (A.21)

= H(pk) + S(ρB)− S(
∑
k

pk|k〉A〈k| ⊗ ρ
(k)
B ) (A.22)

= S(ρB)−
∑
k

pkS(ρ(k)
B ). (A.23)

Holevo showed that if Alice and Bob share a cq-state ρAB =
∑

k pk|k〉A〈k|⊗ρ
(k)
B , where

Alice’s state is represented by the random variable K, and if Bob performs any quantum
measurement on his part of the state with outcome Y , then

I(X : Y ) 6 S(ρB)−
∑
k

pkS(ρ(k)
B ). (A.24)

This is known as the Holevo’s bound. It can be achieved in certain non-trivial situations,
as implied by the HSW theorem:

Theorem 12 ([83, 164, 50]) Suppose that Alice and Bob share n copies of
d−1∑
k=0

pk|k〉A〈k| ⊗ ρ
(k)
B . (A.25)

If Alice measures k and randomly picks a subset X ∈ {0, 1, ..., d−1}n such that k ∈ X and
|X| ∼= nS(ρB) − n

∑
k pkS(ρ(k)

B ) then there exists a measurement that Bob, given X, can
perform to predict k with a probability εn → 0 exponentially as n→∞.

68



A.5 Fidelity

In this section, we introduce another measure of distance between two quantum states ρ
and σ. The fidelity F is defined as

F (ρ, σ) := Tr[
√√

ρσ
√
ρ]. (A.26)

Suppose that σ is a pure state (i.e. σ = |ψ〉〈ψ|), then

F (ρ, |ψ〉) :=
√
〈ψ|ρ|ψ〉. (A.27)

In contrast to the trace distance, F is not a metric. Here is a theorem [138] that
connects the trace distance to the fidelity:

Theorem 13 Consider any two density matrices ρ and σ, then

1
2
Tr|ρ− σ| 6

√
1− F (ρ, σ)2. (A.28)

Here is another very important result in quantum information involving the fidelity
and purification, the Uhlmann’s theorem:

Theorem 14 [138] Consider the density matrices ρ and σ in a quantum system Q. In-
troduce a second system R which is a copy of Q. Then

F (ρ, σ) = max{|ψ〉,|φ〉}|〈ψ|φ〉| (A.29)

where the maximization is over all purifications |ψ〉 of ρ and |φ〉 of σ into RQ.

69



A.6 Generalized Pauli Operator

In this section, we define the operator X and Z in a d-dimensional space [71]. Consider
an orthonormal computational basis |k〉 for 0 6 k 6 d− 1. Define

Z :=
d−1∑
k=0

e
2πki

d |k〉〈k| (A.30)

and a complementary orthonormal basis

|x̃〉 :=
d−1∑
k=0

Zx|k〉. (A.31)

Remark that Z|x̃〉 = |x̃+ 1̃〉, where sum modulo d is implicitly understood. Define

X :=
d−1∑
x=0

e
−2πxi

d |x̃〉〈x̃|. (A.32)

Then

|k〉 :=
d−1∑
x=0

|x̃〉〈x̃|k〉 (A.33)

=
1√
d

d−1∑
x=0

(
d−1∑
k′=0

〈k′|Z†x|k〉)|x̃〉 (A.34)

=
1√
d

d−1∑
x=0

e−
2πxki

d |x̃〉 (A.35)

=
1√
d

d−1∑
x=0

Xk|x̃〉. (A.36)

Therefore, X|k〉 = |k + 1〉.
Since ZX|k〉 = e

2πi(k+1)
d |k + 1〉 = e

2πi
d XZ|k〉, then

ZX = e
2πi
d XZ. (A.37)
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A.7 Overview of Classical Error Correction

In this thesis, we are interested in classical error correction codes that are deterministic
and require only one-way communication from Alice to Bob. In that case, we can describe
the classical error correction procedure as follow.

Suppose that Alice want to send one classical message of size dm to Bob through a
memoryless noisy classical channel ξ : {0, ..., d−1} → {0, ..., d−1} where ξ is a probabilistic
function. Alice can encode her message using a function g : {0, ..., d − 1}m → C where
C ⊆ {0, ..., d− 1}n (i.e. C is composed of n-dit strings), n > m and |C| = dm. The choice
of the set C of codewords, with the recovery function, define the error correction code.
Bob will receive ξ(g(c)), and will use the recovery function r(C) : {0, ..., d−1}n → C. With
high probability, r(C)(ξ(g(c))) = c. The codes used in Appendix B.2 that are based on
two-universal family of Hashing functions are examples of one-way classical error correction
code.

Now we will see how classical error correction can be used to purify entangled state.
Define

|Φj1〉A1B1 =
Xj1
B√
d

d−1∑
k=0

|k, k〉A1B1 (A.38)

where X is defined in Appendix A.6. Suppose that Alice and Bob share n noisy copies of
the maximally entangled state:

(
d−1∑
j1=0

pj1 |Φj1〉A1B1〈Φj1 |)⊗n. (A.39)

for some probability distribution pj1 . Define the superoperator

ξB(·) =
∑

j∈{0,1}n

pjX
j
B ·X

j
B, (A.40)

where pj = pj1 ...pjn , Xj = Xj1 ⊗ ... ⊗Xjn and 1 is the identity operator. Alice and Bob
share

ξB(ρ(0)
AB). (A.41)

where ρ
(0)
AB = (|Φ0〉A1B1〈Φ0|)⊗n. Let P (C)

A be the projection into the codewords on a
classical error correction code:

P
(C)
A =

∑
c∈C

|c〉A〈c| (A.42)
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where |c〉A = |c1〉A1 ...|cn〉An . Since P (C)
A ρ

(0)
ABP

(C)
A = P

(C)
B ρ

(0)
ABP

(C)
B , then

P
(C)
A ξB(ρ(0)

AB)P (C)
A = ξB(P (C)

B ρ
(0)
ABP

(C)
B ) (A.43)

By the definition of error correction code, there exists an recovery operator R(C) and a
system B′, such that

Tr|TrB′ [R
(C)
BB′ξB(P (C)

B ρ
(0)
AB ⊗ |0〉B′〈0|)R

(C)†
BB′ ]−

1
dn

∑
c∈C

|c, c〉AB〈c, c|| 6 dm−nεC (A.44)

where εC is the probability of failure of the classical error correction code averaged over
all the codewords in C. The recovery operation is an operator that follows the relation
R

(c)
BB′ |x〉B|0〉B′ = |r(C)(x)〉B|x− r(C)(x)〉B′ for all x ∈ {0, ..., d− 1}n.

72



Appendix B

Privacy Amplification and Private

State Distillation

B.1 Two-Universal Family of Hashing Functions and Pri-

vacy amplification

A two-universal family of hashing functions is defined as a distribution of functions f :
X → T that respect

Pr[f(x) = f(x′)] ≤ 1
|T |

(B.1)

for any distinct x, x′ ∈ X. It was proved that any two-universal family of hashing functions
could be used for privacy amplification [154, 153, 152]. Privacy amplification proceeds as
follows: if Alice and Bob share some uniformly-distributed error-free key k on which Eve
possesses some information, then Alice and Bob can agree publicly on a random function f
picked from a distribution of two-universal family of hashing functions and compute f(k).
If |T | is chosen small enough depending on the amount of correlation Eve could have with
the key, then the new key f(k) is secure in the sense that ∃ρE such that

Tr[
∑
k

|f(k)〉AB〈f(k)| ⊗ ρ
(k)
E −

∑
k

|f(k)〉AB〈f(k)| ⊗ ρE ] 6 2ε|X| (B.2)

for some very small ε and where |f(k)〉AB := |f(k), f(k)〉AB. If f(k) is uniformly-distributed,
then we obtain the definition of security given in section 1.5.4. Suppose that X =
{0, 1, ..., d − 1}n and T = {0, 1, ..., d − 1}m where m < n, here are two examples of two-
universal family of hashing functions for which each f is uniformly-distributed:

1. The uniform distrubtion of all the functions f : X → T such that there is exactly
dn−m values of k such that f(k) = c, for all c ∈ T .
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2. Consider all m by n matrices M of rank m, with entries {0, 1, ..., d − 1}. Associate
each M to a function fM (k) = Mk, where the multiplication and sum are modulo d.
The uniform distribution of those functions is two-universal.

The proof that the first example is a two-universal family of hashing functions is trivial.
To see that the second example is also two-universal, consider two strings k and k′ of n
dits such that k 6= k′. Pick a random n dits string s(1) (with the restriction that s(1) is
not the zero string). The probability that s(1) · k = s(1) · k′ is exactly 1

d . Pick another
string s(2), randomly over all strings that are linearly independent of the previous string
s(1). Suppose that s(1) · k 6= s(1) · k′ then the probability that s(2) · k = s(2) · k′ is smaller
than 1

d . By strong induction, we can prove that if s(i) · k 6= s(i) · k′ for 1 6 i 6 ` and if
s(`+1) is picked randomly over all strings that are linearly independent of the strings s(i)

for 1 6 i 6 `, then the probability that s(`+1) · k = s(`+1) · k′ is smaller than 1
d . Therefore,

consider the matrix M where the ith row is s(i) for 1 6 i 6 m. Then the probability that
Mk = Mk′ is smaller than 1

dm = 1
|T | . This concludes our sketch of the proof.
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B.2 HSW theorem for Two-Universal Family of Hashing

Functions

In this section, we generalize the HSW theorem. In [83, 164], they prove Theorem 12 using
random code. We establish the same result using other possible codes that are related
to the two-universal family of hashing functions. A relation between the following results
and privacy amplification is given in appendix B.3 for some specific two-universal family
of hashing functions.

Consider the following scenario. Let pi be some probability distribution and σi some
normalized density matrices for i ∈ {0, 1, ..., d− 1}. Suppose Alice and Bob initially share
the state ∑

x∈{0,1,...,d−1}n

p̂x|x〉A〈x| ⊗ σ̂xB (B.3)

where σ̂x = σx1 ⊗σx2 ⊗ ...⊗σxn and p̂x = Πn
i=1pxi for 1 ≤ xi ≤ d. Let σ̂ := (

∑d−1
i=0 piσi)

⊗n.
Alice measures her share of the state in the computational basis. With probability higher
than 1 − ε, the measurement result v is typical (i.e. v is typical iff 2−nH(pi)−nδ ≤ pv ≤
2−nH(pi)+nδ) where ε = e−

nδ2

2 . This follows directly form the law of large numbers.
Let Q and Qx be the projection into the typical subspace of σ̂ and σ̂x, respectively. It

follows that (see [83, 46] for details):

Tr[σ̂(I −Q)] 6 ε, (B.4)

Tr[σ̂x(I −Qx)] 6 ε, (B.5)

Tr[Qσ̂Qσ̂] 6 ||Qσ̂Q||∞Tr[σ̂] = ||Qσ̂Q||∞, (B.6)

Qx 6 2n
P

i piS(σi)+nδσ̂x, (B.7)

∑
x typical

σ̂x 6 2nH(pi)+nδσ̂ (B.8)

and

||Qσ̂Q||∞ 6 2−S(σ̂)+nδ. (B.9)

where ||M ||∞ is the infinite norm, and it is equal to the maximal eigenvalue of M . The
next step consists of Alice randomly picking a function f from a distribution that is two-
universal. The definition of a two-universal family of hashing functions is given by a
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distribution of functions f : X → T that respect Pr[f(x) = f(x′)] ≤ 1
|T | for any distinct

x, x′ ∈ X. She sends f(v) to Bob through the public channel. Bob applies the pretty good
measurement defined by Eq. 11 in [83] on his part of the quantum state. This measurement
depends on a set of code words. In our case, the code words are all the typical strings x
such that f(x) = f(v). In general, the number of code words is not fixed.

A bound for the average error probability is given by Eq. 17 of [83]. Assuming v is
typical, a similar formula for the conditional error probability — but without averaging
over v— can be derived using exactly the same arguments as Holevo:

Per(v) ≤ 3Tr[σ̂v(I −Q)] + Tr[σ̂v(I −Qv)] (B.10)

+
∑

x:x 6=v,f(x)=f(v)

Tr[Qσ̂vQQx]

where the sum is made only over typical strings since those are our code words. In the
unlikely case where v is not typical, we use Per(v) = 1.

Suppose that v is typical, and using Equation B.5:

Per(v) ≤ 3Tr[σ̂v(I −Q)] + ε

+
∑

x:f(x)=f(v)

Tr[Qσ̂vQQx].

We are however interested by the average error probability:

〈Per(v)〉v,f ≤ 3Tr[σ̂(I −Q)] + 2ε

+〈
∑

x:f(x)=f(v)

Tr[Qσ̂vQQx]〉v,f

where an extra ε appear since the probability of v to be non-typical is less then ε. The
sum over x is always restricted x typical. The average over v is made over all v, typical
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and not typical. Using Equation B.4:

〈Per(v)〉v,f ≤ 5ε+ 〈
∑

x:f(x)=f(v)

Tr[Qσ̂vQQx]〉v,f

= 5ε+ 〈
∑

x typical

Pr[f(x) = f(v)]Tr[Qσ̂vQQx]〉v

≤ 5ε+
1
|T |

〈
∑

x typical

Tr[Qσ̂vQQx]〉v

= 5ε+
1
|T |

∑
x typical

Tr[Qσ̂QQx]

≤ 5ε+
2n

P
i piS(σi)+nδ

|T |
∑

x typical

Tr[Qσ̂Qσ̂x]

≤ 5ε+
2nH(pi)+n

P
i piS(σi)+2nδ

|T |
Tr[Qσ̂Qσ̂]

≤ 5ε+
2nH(pi)+n

P
i piS(σi)+2nδ

|T |
||Qσ̂Q||∞

≤ 5ε+
2nH(pi)−nS(σ̂)+n

P
i piS(σi)+3nδ

|T |

where we used Equations B.6, B.7, B.8 and B.9. The average error probability is
exponentially small if

|T | ≥ 2nH(pi)−nS(σ̂)+n
P

i piS(σi)+3nδ (B.11)

= 2nH(pi)−nI(X1:B1S1)+3nδ. (B.12)

Remark that in Chapter 2, we are interested in the case where variable x is uniformly-
distributed. Remark also that instead of sharing n copies of a state, we could suppose that
Alice and Bob have only one copy (take n = 1 in the above derivation). In that case, we
would have found that

〈Per(v)〉v,f ≤ 1
|T |
∑
x

Tr[σ̂Qx] (B.13)

≤ 1
|T |
∑
x

||σ̂||∞Tr[Qx] (B.14)

=
2n log2 d−nS(σ̂)+n

P
i piS(σi)

|T |
(B.15)

=
2n log2 d−nI(X1:B1S1)

|T |
(B.16)
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where Qx is the projector into the support of σ̂x. An alternative way of writing Equa-
tion B.14 is

〈Per(v)〉v,f ≤ 1
|T |
∑
x

||σ̂||∞Tr[Qx] (B.17)

=
∑

x 2S0(σ̂x)−S∞(σ̂)

|T |
. (B.18)

In the last step, we used the definition of the Rényi entropy [154] (i.e. S0(ρ) :=
log2[Rank(ρ)] and S∞(ρ) := − log2[maxi(λi)] where λi are the eigenvalues of ρ).
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B.3 Proof of Theorem 5

Consider a purification of the state given in Equation 2.20:

|ψ〉ABTSE = |ψ〉⊗nA1B1T1S1E1
, (B.19)

where

|ψ〉A1B1T1S1E1 =
1√
d

d−1∑
k1=0

|k1〉A1 |k1〉B1 |0〉T1 |φ(k1)〉S1E1 . (B.20)

The system T contains extra ancillas initialized to the zero state. We can write

|ψ〉A1B1T1S1E1 =
1
d

d∑
x1=0

|x̃1〉A1Z
−x1
B1

d∑
k1=0

|k1〉B1 |0〉T1 |φ(k1)〉S1E1 . (B.21)

where the basis |x̃〉 is defined by Equation 2.4. Z is the generalized pauli operator with
eigenvectors {|k〉} for 0 6 k 6 d − 1. Note that Z−x1 = Zd−x1 . Alice and Bob agree on
a random linear function f of rank m (i.e. for each f , there exists a m by n matrix M

of rank m such that fM (k) = Mk for all k; see the second example in appendix B.1 for
more details). For each M , there exists n by n−m matrices M⊥ of rank n−m such that
MM⊥ = 0. Alice chooses at random one such matrix M⊥. Note that, after averaging over
all f , the distribution of functions

g(x̃) := (M⊥)†x̃ (B.22)

is two-universal.
The following measurements are not actually done by Alice and Bob in the real privacy

amplification protocol. However, we assume that they actually performed them, and at the
end of the section, we will explain why those extra operations are not necessary. Suppose
that Alice measures the observables XM⊥

1j ⊗ ... ⊗XM⊥
ij ⊗ ... ⊗XM⊥

nj for 1 6 j 6 n where
X :=

∑d−1
x1=0 e

−2πix1
d |x̃1〉〈x̃1|. This is similar to measuring g(x̃). Suppose that Alice sends

her outcome cA to Bob. By the modified HSW theorem for two-universal family of Hashing
function that we proved in appendix B.2, we obtain that Bob can guess x̃ with a probability
of error

Per 6 dm2−nI(X1:B1S1) + 3nδ. (B.23)

Since any POVM can be extended to an unitary on a larger space (i.e. in this case, we
extend the space with the system T ), ∃ an unitary WBTS such that

1
dm+n

2

∑
x s.t. g(ex)=cA

TrTSE [ B〈x̃|WBTSZ
−x
B (

d−1∑
k1=0

|k1〉B1 |0〉T1 |φ(k1)〉S1E1)
⊗n] ≥ 1− Per

(B.24)
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where the sum is over the x ∈ {0, 1, ..., d− 1}n outcomes that are compatible with Alice’s
announcement cA, and Z−x = Z−x1 ⊗ ...⊗ Z−xn (Z is the generalized pauli operator on a
space of dimension d with eigenkets |k〉 for 0 6 k 6 d− 1).

Define

PAB :=
∑

k∈{0,...,d−1}n

|k, k〉AB〈k, k| (B.25)

=
∑

x∈{0,...,d−1}n

|x̃,−x̃〉AB〈x̃,−x̃|, (B.26)

so

PABWBSTPAB =
∑

x∈{0,...,d−1}n

|x̃,−x̃〉AB〈x̃,−x̃| ⊗ V
(x)
ST (B.27)

where the V (x)
ST =B 〈−x̃|WBST |−x̃〉B are not necessarily unitary. However,W †

BSTPABWBST

is a projector. Therefore,

PABW
†
BSTPABWBSTPAB (B.28)

must be diagonal. It implies that V (x)†
ST V

(x)
ST is diagonal (and 6 1) for every x. Similarly,

V
(x)
ST V

(x)†
ST is diagonal (and 6 1) for every x. Define S1,x and S2,x as the smallest space

that support V (x)†
ST V

(x)
ST and V (x)

ST V
(x)†
ST , respectively. Therefore, we can write

V
(x)
ST =

∑
i

α
(x)
i |i〉S2,x S1,x〈i| (B.29)

for some complex number α(x)
i , and orthonormal states {|i〉S1,x} and {|i〉S2,x} that depend

on x. Let S⊥j,x be the space orthogonal to Sj,x such that S⊥j,x
⋃
Sj,x = ST . By counting the

dimensions, it is easy to see that there exists an invertible transformation Q(x)
ST : S⊥1,x → S⊥2,x

such thatQ(x)†
ST Q

(x)
ST = 1S1,x . Let R(x)

ST : S1,x → S2,x such that R(x)
ST =

∑
i
α

(x)
i

|α(x)
i |
|i〉S2,x S1,x〈i|−

V
(x)
ST . Consequently, V̂ (x)

ST := V
(x)
ST +R

(x)
ST +Q

(x)
ST is unitary.

Define

|Φ〉AB :=
1√
dm

∑
x s.t. g(ex)=cA

|x̃,−x̃〉AB (B.30)

and

|φ〉STE :=AB 〈Φ|
∑

x∈{0,...,d−1}n

|x̃,−x̃〉AB〈x̃,−x̃| ⊗ V̂
(x)
ST |ψ〉ABSTE . (B.31)

Our next step is to find a bound on Tr[|φ〉STE〈φ|]:
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Lemma 2

Tr[|φ〉STE〈φ|] > 1− Per (B.32)

Proof.

Tr[|φ〉STE〈φ|] =
1
dm

∑
x s.t. g(ex)=cA

Tr[B〈−x̃|V̂ (x)
ST Z

−x
B |ψx〉BSTE〈ψx|ZxBV̂

(x)†
ST |−x̃〉B]

(B.33)

where |ψx〉BSTE := ZxB A〈x̃|ψ〉ABSTE .

Tr[|φ〉STE〈φ|] =
1
dm

∑
x s.t. g(ex)=cA

Tr[V̂ (x)
ST |ψx,0〉STE〈ψx,0|V̂

(x)†
ST ] (B.34)

where |ψx,0〉STE :=B 〈0̃|ψx〉BSTE is not normalized. Using the facts that

Tr[Q(x)
ST |ψx,0〉STE〈ψx,0|Q

(x)†
ST ] = Tr[|ψx,0〉STE〈ψx,0|Q(x)†

ST Q
(x)
ST ] > 0, (B.35)

Tr[Q(x)
ST |ψx,0〉STE〈ψx,0|(V

(x)
ST +R

(x)
ST )†ST ] = Tr[|ψx,0〉STE〈ψx,0|(V (x)

ST +R
(x)
ST )†STQ

(x)
ST ] = 0

(B.36)

and

Tr[(V (x)
ST +R

(x)
ST )|ψx,0〉STE〈ψx,0|Q(x)†

ST ] = Tr[|ψx,0〉STE〈ψx,0|Q(x)†
ST (V (x)

ST +R
(x)
ST )] = 0,

(B.37)

we obtain

Tr[|φ〉STE〈φ|] >
1
dm

∑
x s.t. g(ex)=cA

Tr[(V (x)
ST +R

(x)
ST )|ψx,0〉STE〈ψx,0|(V (x)

ST +R
(x)
ST )†]

(B.38)

Since the R(x)†
ST V

(x)
ST and V (x)†

ST R
(x)
ST are diagonal with real non-negative entries, then

Tr[V (x)
ST |ψx,0〉STE〈ψx,0|R

(x)†
ST ] = Tr[|ψx,0〉STE〈ψx,0|R(x)†

ST V
(x)
ST ] > 0, (B.39)

and

Tr[R(x)
ST |ψx,0〉STE〈ψx,0|V

(x)†
ST ] = Tr[|ψx,0〉STE〈ψx,0|V (x)†

ST R
(x)
ST ] > 0. (B.40)
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Therefore,

Tr[|φ〉STE〈φ|] >
1
dm

∑
x s.t. g(ex)=cA

Tr[V (x)
ST |ψx,0〉STE〈ψx,0|V

(x)†].

(B.41)

We conclude by observing that

1
dm

∑
x s.t. g(ex)=cA

Tr[V (x)
ST |ψ〉STE〈ψ|V

(x)†]

=
1
dm

∑
x s.t. g(ex)=cA

Tr[B〈−x̃|WBSTZ
−x
B |ψ〉BSTE〈ψ|ZxBW

†
BST |−x̃〉B]

> (1− Per) (B.42)

where we used Equation B.24.
Define

ρ := TrSTE [ŴABST |ψ〉ABSTE〈ψ|Ŵ †
ABST ]

where

ŴABST :=
∑

x∈{0,...,d−1}n

|x̃,−x̃〉AB〈x̃,−x̃| ⊗ V̂
(x)
ST .

By the Uhlmann’s Theorem 14, F (ρ, |Φ〉AB〈Φ|) = max{|ψ′〉,|φ′〉}|〈ψ′|φ′〉| where |ψ′〉 is a
purification of ρ and |φ′〉 is a purification of |Φ〉AB. Since all purifications of a state are
related by unitaries (Theorem 11) and that the Fidelity is invariant under unitaries (i.e.
F (UρU †, UσU †) = F (ρ, σ) for any unitary U [138]), then we might as well fix |ψ′〉 and
maximize over |φ′〉 only.

Consider F (|Φ〉AB, ρ) and fix |ψ′〉 := ŴBST |ψ〉ABSTE . By the Uhlmann’s theorem 14,
F (ρ, |Φ〉AB〈Φ|) = max{|φ′〉}|〈ψ′|φ′〉|. Since |Φ〉AB is a pure state, then the maximum is
obtained at |φ′max〉 = |Φ〉AB|u〉STE for some pure state |u〉STE . Since each V̂ (x)

ST is unitary
over its domain, it is therefore possible to extend them to unitaries V̂ ′(x)

ST over larger
domains, say the combined system ST . Define

Ŵ ′
ABST :=

∑
x∈{0,...,d−1}n

|x̃,−x̃〉AB〈x̃,−x̃| ⊗ V̂
′(x)
ST

so that

Tr[|Ŵ ′†
ABST |Φ〉AB|u〉STE〈u| AB〈Φ|Ŵ

′
ABST − |ψ〉ABSTE〈ψ||]

= Tr[||Φ〉AB|u〉STE〈u| AB〈Φ| − Ŵ ′
ABST |ψ〉ABSTE〈ψ|Ŵ

′†
ABST |]

= Tr[||Φ〉AB|u〉STE〈u| AB〈Φ| − ŴABST |ψ〉ABSTE〈ψ|Ŵ †
ABST |].
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where we used the fact that the trace distance is invariant under the action of a joint
unitary. Using Theorem 13,

Tr[||Φ〉AB|u〉STE〈u| AB〈Φ| − ŴABST |ψ〉ABSTE〈ψ|Ŵ †
ABST |]

6 2
√

1− F (|Φ〉AB|u〉STE , ŴBST |ψ〉ABSTE)2

6 2
√

1− F (|Φ〉AB, ρ)2

= 2
√

1− Tr[|φ〉STE〈φ|]

6 2
√
Per. (B.43)

Remark that Ŵ ′†
BST |Φ〉AB|u〉STE is a private state. Therefore, it is possible to extract an

√
Per-secure key from |ψ〉ABSTE . From Equation B.23,

Per 6 dm2−nI(X1:B1S1)+3nδ. (B.44)

for some arbitrary factor δ. Pick m = dnI(X1:B1S1)−4nδ
log2 d

e so that

Per 6 2−nδ+1. (B.45)

For n → ∞, Per → 0 exponential fast. We just showed how to achieve the secret key
rate of nI(X1 : B1S1) bits. The fact that this rate is optimal follows from the Holevo’s
bound (Theorem A.24). If a higher rate was achievable, Alice and Bob would be able to
distill with exponential reliability a private state associated to a secret key larger then
nI(X1 : B1S1). From theorem 2, it would imply that Bob could distinguish between more
then nI(X1 : B1S1) different states with exponential reliability. By the HSW -theorem, it
would allow Alice to transmit more than nI(X1 : B1S1) bits of information to Bob. This
is impossible as a direct consequence of the Holevo’s bound.

In the actual privacy amplification protocol, Alice and Bob computes f(k) and this give
them the secret key. Alice won’t perform any measurement in the X-bases. Computing
f(k) is the same as measuring the observables ZMi1 ⊗ ...⊗ZMij ⊗ ...⊗ZMin for 1 6 i 6 m.
Any observable that commute with those, as XM⊥

1j ⊗ ...⊗XM⊥
ij ⊗ ...⊗XM⊥

nj for 1 6 j 6 n

for 1 6 i 6 n −m, will not perturb the state |f(k)〉 or change any information about it.
Supposing Alice performs the measurements in the X-bases and she sent her results to Bob
through an insecure channel, the extra information g(x̃) that Eve could obtain could only
help her. In practice, Alice does not have to perform the measurements in the X-bases
and send g(x̃) to Bob since those operations do not affect the value of f(k) and could not
decrease Eve’s information about it. This argument is identical to the one given in [173]
to explain why phase error correction does not have to be performed to obtain a secure
key. A similar observation explains why we can allow Bob to use the shield S to guess
Alice’s state |x̃〉: Eve does not have more information about f(k) supposing that Bob does
or does not have access to the shield.
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Appendix C

Other Results Relevant to QKD

Until now, we have presented — with some extra material—most of the results given in
[24, 27, 148]. In this appendix, we present more work completed while I was a Ph.D
student. The first two papers are about the proposal and the physical implementation of
a two-photon QKD protocol that do not required a reference frame. Most of the results
given in Chapter 4 can be adapted to this protocol and an overview of the unconditional
security proof was given in the second paper. In the third paper, we discuss and analyze
in details for some QKD protocols the rather obvious fact that if Alice and Bob can be
confident that all or a fraction of the noise in the detector is not caused by an eavesdropper,
then they can achieve a much higher secret key rate and longer distances.

C.1 Robust Quantum Communication Using A Polarization-

Entangled Photon Pair

J.-C. Boileau, R. Laflamme, M. Laforest, C. R. Myers
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Abstract: Noise and imperfection of realistic devices are major obstacles for implementing quan-

tum cryptography. In particular, birefringence in optical fibres leads to decoherence of qubits

encoded in photon polarization. We show how to overcome this problem by doing single qubit

quantum communication without a shared spatial reference frame and precise timing. Quantum

information will be encoded in pairs of photons using “tag” operations which corresponds to the

time delay of one of the polarization modes. This method is robust against the phase instability of

the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in

the ideal no photon loss case as they are only necessary to label the different encoded qubits.

Quantum mechanics allows the distribution of cryptographic keys whose security is
based on the laws of physics instead of the difficulty of solving mathematical problems
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[189, 17]. Turning this idea into practical technologies brings exciting challenges. The first
prototype for quantum cryptography was built more than ten years ago over a distance
of 30 cm in free space [16] and used the photons’ polarization as qubits of information.
Since, many quantum key distribution (QKD) experiments have been realized through air
and optic fibres [69]. One of the obstacles to improve the fibre based prototypes is the
birefringence effects due to geometric asymmetries and tension fluctuations which are a
major impediment for polarization based-coding experiments [66]. When the coherence
time of the photon is large compared to the delay caused by polarization mode dispersion,
the birefringence can be represented by a time dependent unitary transformation U(t) that
acts on the polarization space. The time dependance comes from the mechanical variations
in the fibre over time and its rate varies with the environmental conditions.

A possible solution to this problem is the application of active feedback [63]. Tomog-
raphy on some predetermined polarization states could be used to approximate U for a
certain time interval [90, 158]. By applying his approximation of U † before his measure-
ments, Bob (the receiver) could recover the states sent by Alice (the sender). However,
this technique is practical only if the rate of change of U is relatively low. For this rea-
son, the most successful QKD experiments were not based on polarization coding, such as
the phase based experiment proposed by Bennett et al. using unbalanced interferometer
[15, 185, 87]. However, a good control of the polarization modes is necessary to obtain a
better visibility since some components like phase modulators are polarization dependent
and the temperature of the interferometers must be stabilized since very small fluctuations
between the two arms cause phase shifts that corrupt the quantum states.

Another very important example of a successful QKD protocol is the Plug-and-Play set-
up [133, 178]. Using a Faraday mirror [129], the photons sent by Bob are reflected back in
the fibre by Alice, who in turn encodes information in their phase. By travelling back in the
fibre, the birefringence is reversed and, as it can be shown, the polarization state received
by Bob are orthogonal to the original one. Since Bob controls the polarization state of
the photon, he can make use of a polarized beamsplitter which increases the interference
visibility. Although the Plug-and-Play set-up has very interesting characteristics, it is not
compatible with a non-Poissonian source which could get rid of the multi-photons per
pulse problem. Another disadvantage is that the use of two-way quantum cryptography
is more vulnerable to a certain kind of eavesdropping strategy: the Trojan attack. An
eavesdropper (i.e. Eve) could send photons in Alice’s lab, catch them after they were
reflected by the Faraday mirror and get some information about Alice’s set-up without
being detected.

To circumvent the threat of the Trojan attack and the instability of the interferometers,
Walton et al. [187] proposed a one-way protocol based on decoherence free-subspaces in
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which each qubit is encoded in the time and phase of a pair of photons. In this Letter, we
propose a new way to protect qubits encoded in polarization states of a photon pair from
birefringence effects in optical fibre.

The idea is to take advantage of the fact that birefringence can be well approximated by
a collective error model as long as the photons travel inside a time window small compared
to the variation of the birefringence. Thus, if the effect of birefringence on one photon is
U(t), on n photons it is U(t)⊗n. This latter operator can be interpreted as a rotation of
the reference frame axis and our protocol reduces to the problem of developing a strategy
to do quantum communication without a shared reference frame.

In a recent paper [10], Bartlett et al. showed it should be possible to “communicate with
perfect fidelity without a shared reference frame at a rate that asymptotically approaches
one encoded qubit per transmitted qubit.” In particular, they proposed a method to encode
a qubit using four photons in a decoherence-free-subspace of the collective noise model.
However this required having full control of the states of qubits. This is out of reach of
today’s technology. More recently, two realistic QKD protocols that do not require any
shared reference frame have been proposed [24]. These protocols do not require a general
state of a qubit but only a set of non-orthogonal states. It encodes qubits in both three
and four photon states, which makes the protocol more sensitive to photon loss. For
these reasons, we will describe a two photon protocol robust against phase instability of
the interferometer without the need for a shared spatial reference frame or synchronized
clocks. If we neglect dispersion and discard relativistic situations then we are close to
having no need for a shared reference frame at all.1

To explain our protocol we need to introduce the “tag” operation Ti which delay the
photons in the state |i〉 by a specific amount of time. Experimentally it can be implemented
using a polarized beamsplitter to separate polarization modes in arms of different length
before recombination in the same optical path.

Suppose Alice inputs a two-photon state of the form α|HV 〉+ β|V H〉 where H and V
correspond to the horizontal and vertical polarization state of a photon. The time delay
between the two photons ∆tp, must be fixed by Alice and known by Bob. It must be
large enough such that Bob’s apparatus can differentiate between the two photons and
that “tag” operation will never change their order of arrival. If Alice applies the “tag”
operation TV on the initial state then she will have α|HVT 〉+ β|VTH〉, where subscript T
denotes the delay. Suppose some collective noise U⊗2 (that includes a change of reference
frame) is applied to this state when it travels to Bob and suppose also that Bob applies the
“tag” operation TH′ when he receives it. Up to a global phase, the state is then mapped

1For reasons we will explain later, Bob needs to know the relative rate of time flow in Alice’s reference

frame.
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to

α

2
(|H ′

TV
′
T 〉 − |V ′H ′

TT 〉+ δ1(|H ′
TV

′
T 〉+ |V ′H ′

TT 〉)

+δ2(|H ′
TH

′
TT 〉+ |V ′V ′

T 〉) + δ3(|H ′
TH

′
TT 〉 − |V ′V ′

T 〉))

+
β

2
(|V ′

TH
′
T 〉 − |H ′

TT 1′〉+ δ1(|V ′
TH

′
T 〉+ |H ′

TT 1′〉) (C.1)

+δ2(|H ′
TTH

′
T 〉+ |V ′

TV
′〉) + δ3(|H ′

TTH
′
T 〉 − |V ′

TV
′〉))

where |H ′〉 and |V ′〉 notation is used since the state is now defined in Bob’s reference
frame. We used the fact that the anti-symmetric state |Ψ−〉 = 1√

2
(|HV 〉 − |V H〉) is

invariant under collective noise and that |Ψ+〉 = 1√
2
(|HV 〉 + |V H〉) will be mapped to a

superposition of the triplet Bell states for which the δ’s represent the relative weights and
phases and follow the equality ||δ1||2 + ||δ2||2 + ||δ3||2 = 1. For later convenience, we define
|Φ±〉 = 1√

2
(|HH〉 ± |V V 〉) and we will drop the apostrophe notation for simplicity.

The last operation is to project onto the states subspace in which the photons are
separated in time by exactly ∆tp, i.e. both have been subjected to one tag operation.
This operation does not require synchronized clocks, since Bob just needs to compare the
arrival time of both photons. If the interval of time between a pair of photons is not ∆tp,
then he discards these qubits, which happens 1−|| (1+δ1)

2 ||2 of the time if we neglect photon
loss. Otherwise, Bob will obtain Alice’s initial state α|HTVT 〉 + β|VTHT 〉 with certainty.
As it could have been showed using simple calculations, the final result is independent of
the phase coherence instability between both arms of the interferometer in a way similar
to the qubits encoded in the Walton et al. protocol [187].

To check if the communication is efficient, || (1+δ1)
2 ||2 must be estimated. If the collec-

tive noise is averaged uniformly2 over all possible values of U(t)⊗2, then 〈|| (1+δ1)
2 ||2〉 = 1

3 ,
which means Bob will obtain Alice’s state with a probability of 1

3 . Yet, this result sup-
poses that the unitary matrix U will average uniformly over all possible values during the
communication time. To make the protocol independent of the environment, Bob could
apply a random unitary matrix B⊗2 on the photon polarization states just before making
his “tag” operation3.

An improved version of the scheme exploiting some partial knowledge of the shared
reference frame to modify the transformation B to approximate the transformation U †(t)

2We assume that the randomness of the birefringence is such that the distribution of U over a large

amount of time is uniform. The Haar measure over the space of unitary matrices is then used to calculate

the average 〈〈ψ|T †1U⊗2T1|ψ〉〉 which equals 1
3

independently of |ψ〉. Consequently, 〈|| (1+δ1)
2

||2〉 = 1
3
.

3The distribution of the operator B should correspond to the normalized Haar measure. Experimentally,

B could be implemented with Pockels cells the same way as Franson and Jacobs in their 1995 experiment

[63].
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Figure C.1: After receiving the two photons and applying his “tag” operation, Bob can use this circuit

to measure the qubit α|HV 〉 + β|V H〉 in any basis by adjusting the gate M with a success probability of

at least 1
8
. We refer to the text for more details.

would increased the ratio of useful encoded qubits. Depending on the efficiency of the
active feedback mechanism and the rate of change of U(t), the ratio could converge to 1.

To measure the qubit in a particular basis, Bob could use a normal symmetric beam-
splitter and consider the result when each photon goes through a different branch, as shown
in figure C.1. Define p such that p = 0 if the first photon goes through branch b1 and
1 if it is the second photon. Remark that the two photons arrive at the beamsplitter at
different times and that Bob can differentiate them. At the end of branch b1, Bob mea-
sures in his diagonal {|+〉, |−〉} polarization basis. Define k such that k = 0 if the outcome
is |+〉 and 1 if it is |−〉. The photon on the other branch b2 must then be in the state
XpZk(α|H〉+ β|V 〉) where X and Z are the corresponding Pauli operators. Using Pockels
cells (M) on the second branch and a polarized beam splitter, Bob can measure the qubit
in any specific basis with a chance of success reduced by a factor of at most 8, since at the
very least the measurement is successful when each photon exits from a different branch
and p=k=0. Measurement in some bases will be successful more often than others.

We have described a technique to encode a robust qubit against collective noise and
to measure it in any basis. We now show how this could be useful for a realistic QKD
implementation. First, we describe the well known QKD protocol BB84 [17]. This protocol
uses a set of four quantum states consisting of two maximally conjugate basis states |0〉, |1〉
and |±〉 = 1√

2
(|0〉 ± |1〉). Alice randomly chooses which basis she will use to encode qubits

to send Bob, who, upon arrival of a qubit, also chooses at random in which of the two
basis he will perform a measurement. After repeating the protocol for a string of random
bits, they publicly share what basis they used for each qubit. The bits for which they have
used the same basis is used to build the sifted key. Since Eve has no prior knowledge of
which basis Alice and Bob will use, any attempt of eavesdropping will disturb the states
and induce errors in the sifted key with high probability. A portion of the sifted key is
used to detect possible eavesdropping. If the error rate is lower than some given threshold,
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the left over bits will be transformed to the final secret key by using error correction and
privacy amplification [130, 173].

To implement a protocol similar to BB84, Alice needs to encode the states |HVT 〉,
|VTH〉, 1√

2
(|HVT 〉+ |VTH〉) and 1√

2
(|HVT 〉 − |VTH〉) using parametric down conversions,

filters and polarized beamsplitters as shown in figure C.2. We have to note that the
measurement procedure described earlier works only if the state received by Bob after
post-selection was of the form γ1|HV 〉 + γ2|V H〉 where γi ∈ C respecting a normalizing
condition. This condition may no longer be true if sources of noise other than collective
noise are considered or if we suppose that Eve altered the state sent to Bob. In the
latter case, Bob’s state after post-selection would look like γ1|HV 〉+ γ2|V H〉+ γ3|V V 〉+
γ4|HH〉. To implement the provenly secure BB84 protocol, Bob must be able to project
that state into the subspace in which Alice has encoded her space i.e. the space spanned
by |HV 〉 and |V H〉. If Bob wants to measure in the computational basis ({|V H〉, |HV 〉}),
then immediately after his “tag” operation he simply needs to measure the |H〉 or |V 〉
polarization of each photon. In this case, he will also distinguish and be able to discard
the states |HH〉 and |V V 〉. The measurement in the diagonal basis |Ψ±〉 is not as straight
forward. Suppose Bob applies an extra Hadamard gate on both photons before measuring
the polarization states. If γ3 = γ4 = 0, then he measures |Ψ+〉 if both photons have the
same polarization and |Ψ−〉 if they have different polarization. In general, γ3 = γ4 6= 0, but
the uniformly distributed random rotation B performed by Bob (unknown to Eve) when he
received the state will destroy any phase coherence between the states γ1|HV 〉+ γ2|V H〉,
|HH〉 and |V V 〉 from Eve’s perspective. Intuitively, this means if Eve used the space
spanned by {|V V 〉, |HH〉} it would be the same as if she randomly sent one of |Ψ−〉
or |Ψ+〉 to Bob, giving her no advantage. The complexity of the QKD security proof
which includes coherentattacks restrains our argument, but the authors conjuncture that
our protocol is unconditionally secure with the same error threshold as BB84. As a last
remark, we note that only the qubits that have survived the post-selection are used to
build the sifted key to estimate the error rate and construct the final secret key.

Earlier we discussed the possibility of using a feedback mechanism to increase the
success rate of the post-selection. It could also be used in the QKD implementation
discussion above, but Bob must be careful with whatever mechanism he uses since he must
ensure the phase coherence between the three states γ1|HV 〉+γ2|V H〉, |HH〉 and |V V 〉 be
lost from Eve’s perspective. A final random phase gate would be enough since it does not
affect the success probability of the post selection, but will destroy the coherence between
these states.

The advantages of our protocol over the Plug -and-Play one are that this protocol is
one-way, so there is no need to be as worried with the Trojan attack. Moreover, it does not

89



Figure C.2: Implementation of a modified version of BB84 protocol based on qubits robust against

collective noise. Quantum states are generated through parametric down converters (PDC) supplemented

by filters (F) and phase shifter (P). Alice and Bob do their “tag” operation using polarized beamsplitters

(PBS). The B operator is randomized uniformly or determined by using a smart feedback mechanism. Bob

measure the state in the computational or the diagonal basis depending if he applied the identity (x = 0)

or the Hadamard gate (x = 1).

require interferometer stability like in the Walton et al. protocol (by using decoherence-
free subspace). Although our protocol has similarities to the latter protocol, it is distinct
for the following reasons:

First, synchronized clocks are necessary in our protocol only to label the different pho-
ton pairs. In the Walton et al. protocol, Bob must be able to distinguish between photons
that have been delayed once, twice and not at all. Our protocol just needs to compare the
delay between the two photons and not their particular time of arrival. Consequently, it re-
quires a much smaller order of timing precision. For example, parametric down-conversion
sources with long pulse length no longer induce errors caused by uncertainty in the emission
time since both photons are always created simultaneously. Remark that if the number of
events in which simultaneous dark counts on different detectors occur is negligible, extra
timing precision would not help Alice and Bob to reduce the noise caused by the detector’s
dark counts and is therefore not necessary to our protocol.

Second, in the Walton et al. protocol, there is a 1
4 chance, independent of the birefrin-

gence, that the photons will be measured in the phase basis and a 3
4 chance of measuring

in the time basis. However, the optimal efficiency for the ideal implementation of BB84
is a probability of measurement equal to 1

2 in each basis. For this reason, Walton et al.
indicate that the intrinsic efficiency of their scheme was 1

4 . In the case where B is chosen
from a uniform distribution, our protocol would have an intrinsic efficiency ratio of 1

6 since
only a third of the photon pairs is not discarded. However, depending on the feedback
mechanism, the intrinsic efficiency ratio could be higher than 1

6 , up to 1
2 .

Third, the final state Bob uses is encoded in polarization, not in time and phase. A
good control of the polarization states allows Bob to get ride of the noise caused by the
polarization dependance of some experimental components, like phase modulators.
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In this paper, we have given a realistic robust scheme to do single qubit communication
using two-photon states per encoded qubit. This technique goes around the problem of
birefringence in optical fibre, the requirement of high precision synchronized timing and
also the interferometer phase coherence instability. The protocol could be slightly modified
to exploit partial information about a spatial reference frame to increase the bit rate by
using active feedback. We also explained how to implement a slightly modified version of
BB84 using the previously mentioned methods.

We would like to conclude with some problems that could make an experimental im-
plementation of our schemes more difficult. Depolarization could be a serious distance
limitation for our protocol, forcing us to use sources with longer coherence times [69].
To prevent chromatic dispersion from affecting the time delays between the photons, the
average wavelength of the photons should be chosen according to the zero chromatic dis-
persion of the optical fiber [69, 176, 62]. Finally, since our protocol encoded each qubit
with two photons, attenuation and detector’s inefficiencies have a more significant affect
on its efficiency compared to one-photon protocols. Nevertheless our proposal is in reach
of experimental implementation and provides an elegant solution to the problem of bire-
fringence in optical fibres.

We wish to thank Konrad Banaszek, Joseph Emerson, Simon Leblond and Rob Spekkens
for helpful discussions that inspired this work. J.C.B., M.L., R.L. acknowledge support
NSERC and R.L. from ARDA.
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2 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L
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Abstract: We present an experimental realization of a robust quantum communication scheme

[Phys. Rev. Lett. 93, 0220501 (2004)] using pairs of photon entangled in polarization and time.

The scheme overcomes errors due to collective rotation of the polarization modes (for example,

birefringence in optical fiber or misalignment), is insensitive to phase’s fluctuation of the interfer-

ometer and does not require precise timing. No shared reference frame is required except from the

need to label the different photons. We use this scheme to implement a robust variation of the
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Bennett-Brassard 1984 quantum key distribution protocol (BB84) over 1km of optical fiber. We

conclude by discussing and solving the unconditional security of our protocol.

Quantum cryptography [17], whose security is based on the fundamental principles of
quantum mechanics, is a fast expanding field of quantum information both theoretically
and experimentally [69]. Recently, many quantum key distribution (QKD) experiments
have been realized through optical fiber and free space using weak-coherent source or
entangled photon pairs. The maximum distances of free space QKD using weak-coherent
source and entangled photons are 23.4km by Kurtsiefer et al. [111] and 13km by Peng
et al. [140], respectively. Their aim was to try to validate the feasibility of quantum
communication with satellites. Despite some security flaws, fiber-based QKD over 100km
has been achieved [70].

Polarization and phase-time are most common coding methods to implement QKD.
Although polarization can be suitable for free space QKD, it is generally not suitable for
fiber-based QKD because of the time and wavelength dependences of birefringence which
will depolarize the photons. Experimentally, active feedback or self-compensation could be
applied to solve these problems [63], but it is efficient only when the thermal and mechanical
fluctuations are rather slow. A popular alternative to polarization coding is phase-time
coding using unbalanced interferometers [15, 87, 183]. However, phase-time coding can
be very sensitive to the phase’s fluctuations between the two arms of the interferometers
and requires thermal stability. Some ingenious tricks like two-way communication [133,
178] are insensitive to phase’s fluctuation, but have themselves disadvantages like being
incompatible with perfect single photon sources and being sensitive to backscattering light.

To overcome the problems mentioned above, Walton et al. proposed a scheme based
on decoherence-free subspace (DFS) which required encoding qubits using phase and time
entanglement between two photons [187]. Then Boileau et al. [25] proposed a variation
of that protocol that use a combination of time bins and polarization modes for coding.
These schemes are insensitive to phase’s fluctuations of the interferometer and robust
against collective rotation induced by birefringence or misalignment. In single photon
QKD protocol, a precisely synchronized clock is necessary to reduce the time window to
minimize the contribution of dark counts. However, it is not the case for coding schemes
using photon pairs, because the photons simultaneously originating from the pair can
provide precise time references for each other. The fact that no synchronized clock is
necessary could be useful if the arrival time of photon fluctuates.

The obvious disadvantages of two photon schemes are that they are much more sensitive
to photon loss and seem more inefficient than the single photon schemes. However, it would
be possible to reduce the qubit losses to a level comparable to single photon schemes by
using post-selection, entanglement swapping and quantum memory devices [26]. As a step
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Figure C.3: Experiment setup for robust QKD. A 400 mW Argon-ion laser beam (Ar+) of 351 nm passes

through a 2 mm beta-barium-borate (BBO) crystal and produces polarization-entangled photon pairs of

702 nm. POC1-POC4 are four Pockel cells; BS1 and BS2 are beam-splitters; PBS1-PBS6 are six polarized

beam-splitters; FC1 and FC2 are two fiber couplers; HWP1 and HWP2 are two half-wave plates (HWP);

a HWP inserting between two quarter-wave plates (QWP) constitutes a polarization rotator (PR); IF is a

interference filter; D1-D4 are four single photon detectors.

forward in that direction, we implemented a variation of the BB84 protocol based on the
robust scheme of Boileau et al. [25], and realized an efficient quantum communication
without any shared reference frame.

Our experimental scheme is illustrated in Fig. C.3. On Alice’s side, polarization-
entangled photon pairs are generated via type-II spontaneous parametric down-conversion
(SPDC) [112]. The two photons of each pair are labelled by passing two arms with 1.8m
length difference. In the long arm, two Pockel cells (POC1 and POC2), driven by high volt-
age pulse generators gated with random number signal, are used to produce the four states
similar to that of BB84: |HV 〉+ |V H〉, |HV 〉 − |V H〉, |HV 〉+ i|V H〉 and |HV 〉 − i|V H〉,
where H and V stand for horizontal and vertical polarization mode, respectively.

The two entangled photons can be combined into the same path in the beam-splitter
BS1 with a probability of 1/4. Afterward, the vertically polarized photons are firstly
tagged with a delay T in an unbalanced interferometer composed of two polarizing beam-
splitters (PBS1 and PBS2) with a 1.2m difference between the two pathes’ length. The
POC3 is added to perform a random collective rotation of polarization before the photons
are collected into the fiber coupler (FC1). Then, the photons are sent to Bob directly or
through a 1 km single mode optical fiber. A polarization rotator (PR) is used to simulate
the collective rotation noise. On Bob’s side, the received horizontally polarized photons
are tagged with the same delay T . To make the two timing tags exactly the same, a
right-angled prism (Delay in Fig. C.3) is used to adjust the path length precisely.

Using notation introduced in Ref. [25] and supposing that the initial state was of the
form α|HV 〉+ β|V H〉, the resulting state can be written as:

((δ1 + 1)/2)(α|H ′
TV

′
T 〉+ β|V ′

TH
′
T 〉) + ((δ1 − 1)/2)(α|V ′H ′

TT 〉+ β|H ′
TTV

′〉)

+((δ2 + δ3)/2)(α|H ′
TH

′
TT 〉+ β|H ′

TTH
′
T 〉) + ((δ2 − δ3)/2)(α|V ′V ′

T 〉+ β|V ′
TV

′〉),
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where |H ′〉 and |V ′〉 represent Bob’s polarization basis frame which can be different from
Alice’s one. The subscripts T and TT mean that the photon has been tagged once and
twice, respectively. The δj ’s are parameters that depend directly on the collective rotation
of the polarization mode. They satisfy the following relation: ||δ1||2 + ||δ2||2 + ||δ3||2 = 1
. Giving the arrival time of the photons, the final state is projected to the original state
with a probability ps = || δ1+1

2 ||2. The ps could be anything between 0 and 1. To make ps
independent of the environment or any misalignment of the reference frame, Alice or Bob
could apply a random unitary transformation B⊗2 between the two tagging operations.
If B is chosen from the uniform distribution over U(2), then ps is in average equal to 1

3

whatever is the collective rotation. Because it’s difficult to realize random transformation
B over the whole U(2) space experimentally, we simplify the experimental set-up by using
only one POC (POC3 in Fig. C.3). Making it do nothing half of the time, and a bit-flip
operation otherwise, ps could also average to a non-zero value, 1

4 6 ps 6 1
2 .

The received photons are split at BS2. The two half-wave plates HWP1 and HWP2 are
set such that they performs as Hadamard gates on the polarization. By switching POC4
such that it do nothing or act as a QWP at 90◦, we can select a random measurement
basis (either {|H ′

TV
′
T 〉+ |V ′

TH
′
T 〉, |H ′

TV
′
T 〉 − |V ′

TH
′
T 〉} or the {|H ′

TV
′
T 〉+ i|V ′

TH
′
T 〉, |H ′

TV
′
T 〉 −

i|V ′
TH

′
T 〉}). By post-selecting the cases where each of two photons exit from different

outputs of BS2 and their arrival time difference is 6ns (which is related to the 1.8m time
label), the states are differentiated according to their polarization (the same or different)
[25]. The detection events within the 3ns coincident time window are recorded to generate
quantum key bits.

For the measurement to succeed, it is crucial to observe two photons interference after
the timing tags. It requires to match accurately the difference of the path’s lengths of
the two interferometers by adjusting the prism on Bob’s side (see Fig. C.3). The curve in
Fig. C.4 shows an interference fringe with a visibility of above 95%. The fact that inter-
ference is observed over a large length interval (of about one hundred micrometers) clearly
implies that the interference is robust against the phase instability of the interferometers
as claimed in Ref. [187, 25].

In order to demonstrate the robustness of the protocol in principle, we first use a
4m optical fiber to implement the QKD protocol. Approximately 12, 000Hz polarization-
entangled pairs are detected behind a interference filter (IF) of 1.6nm FWHM. The en-
tangled photon pairs are transferred to one of the four states randomly and sent to Bob.
Due to the photon losses in the BSs and the fiber connecters, only a maximum of 140Hz
coincidences can be registered on Bob’s side after calibrating the PR. We then rotate the
angle of the first QWP of the PR to simulate the degree of collective rotation noise. In the
experiment, five settings are selected for particular angles of the QWP. The first setting
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Figure C.4: Interference pattern observed for the state |H ′
TV

′
T 〉 − |V ′TH ′

T 〉 after applying a Hadamard

gate on each photon and by measuring the coincident counts. The zero delay position corresponds to the

maximum interference visibility.

corresponds to the case where there is no collective rotation and coincidence is maximal.
The last setting corresponds to a collective bit-flip. The other settings are chosen via
rotating the angle of QWP with equal intervals between the best and the worst settings.
We investigated the change of error rates and coincidences under these conditions with or
without random rotation implemented by POC3.

As shown in Fig. C.5, the coincidence without random rotation is very dependent of
the collective noise. When the angle of rotation increases, the coincidence decreases to a
minimum while the error rate increases close to 50%. As predicted, using random rotation
makes the coincidence and the error rates much less dependent on the collective noise. We
later show that the all the error rates obtained with the random rotations are suitable for
secured QKD.

We also constructed a practical QKD system over 1km single mode fiber, whose atten-
uation for each photon at 702 nm is 4.8 db/km. Due to the photon loss in the fiber and
an additional fiber connecter, the maximal coincidence detected in Bob’s side dramatically
drops to 1.4 Hz. We measured the error rates under the same collective noise settings
as used in the experiment with short fiber. The results of the experiment are shown in
Fig. C.6. Due to the photon loss, the QBER observed in the experiment is a bit higher
than the cases with short fiber, but is still well below the lower bound for secure key
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Figure C.5: Quantum bit error rates (QBER) measured under different collective rotations and with a

4m single mode fiber. The first collective rotation correspond to the identity and the fifth, to a bit-flip.

The angles in between are chosen has described in the text. The QBER of each states was measured in 20

minutes without (a) or with random rotations (b). The average QBER over all states with and without

the random rotations are compared in (c). In (d), we give the normalized coincidence counts in function

of the angle of the collective rotation with or without random rotations.

distribution.
In fact, the error rates are mostly come from the imperfection of state preparation

and accidental coincidence. The 2000 Hz single count rate of each detector and the 3ns
coincidence window lead to an accidental coincidence of 0.024Hz. When the collective
noise changes, the accidental coincidence will induce an error rate from 1.7% to 50% when
no random rotation is applied. However, with the help of random rotation it will only
cause an error rate varied from 3.4% to 6.8%, which is much more independent of the
collective noise. The imperfect state source will also cause an error rate of 4% . The
average error rate is observed to be 10.2%± 0.3% (see Fig. C.6-c). The following security
proof will show that our experimental method can successfully distribute quantum key
over a practical collective noise channel without shared reference frame.

It should be noted that our experimental measurements are not exactly the same as
the ones required by the standard BB84 protocol. However, if Bob was able to do a
projection into the space S spans by |H ′V ′

T 〉 and |V ′
TH

′〉, then both measurements would
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Figure C.6: QBER measured under different collective rotations (as in Fig. C.5) and with a 1km single

mode fiber. The QBER of each states was measured in 3 hours without (a) or with random rotations (b).

The average QBER over all states with and without the random rotations are compared in (c). In (d), we

give the normalized coincidence counts in function of the angle of the collective rotation with or without

random rotations.

be identical. Instead of doing this projection directly, suppose that, just before his tag
operation, Bob apply on the polarization modes of the photon pairs a random phase shift

Mφ =

(
1 0
0 eiφ

)⊗2

with φ chosen between 0, π
2 , π or 3π

2 .

Because of the post-selection, the only states that we need to consider are the ones
of the form a1|H ′V ′

T 〉 + a2|V ′
TH

′〉 + a3|H ′H ′〉 + a4|V ′
TV

′
T 〉 for some complex numbers ai.

Consider the density matrix ρ of an arbitrary mixture of these states. Simple calculations
show that the elements of ρ′ =

∑
φ=0,π

2
,π, 3π

2
MφρMφ that corresponds to |V ′

TV
′
T 〉〈H ′V ′

T |,
|H ′H ′〉〈H ′V ′

T |,|V ′
TV

′
T 〉〈V ′

TH
′|, |H ′H ′〉〈V ′

TH
′| and their transposes vanish. In other word,

sometime the state is projected into or outside S. In the first case, the measurement reduce
to one of the two von Neumann measurement used in the standard BB84. In the other case,
the state may be projected outside S and the measurement fails. If Alice and Bob were
able to know exactly which pairs were projected inside or outside S then they could reject
those pairs that correspond to the wrong projection and could perform the standard BB84
protocol with the remaining pairs. However, they don’t have this information. Instead,
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they can measure with a good accuracy the ratio of the states that are projected inside S,
which we refer to as pS . This can be achieved by selecting a random sample of photon’s
pairs on which the measurement corresponding to {|H ′

TH
′
T 〉, |H ′

TV
′
T 〉, |V ′

TH
′
T 〉, |V ′

TV
′
T 〉} is

applied immediately after the tagging operation, and by counting the results corresponding
to either |H ′

TV
′
T 〉 or |V ′

TH
′
T 〉. If that sample is large enough, the measured ratio of states

projected inside and outside S will be very close to pS . Remark that the number of pairs
required for the measurement of pS is asymptotically negligible.

To obtain a secure key, it is necessary and sufficient to bound Eve information about
the key after bit error correction since privacy amplification [19, 154] can be used to reduce
asymptotically that information to zero with a key’s lost proportional to Eve’s information.
For the qubits projected outside S, Alice and Bob assume the worst case scenario and
suppose that Eve has full information about the results corresponding to these states. For
the qubits projected inside S, Shor and Preskill’s proof [173] bound Eve’s information after
bit error correction by H(esx) where H is the Shannon entropy, and esx is the bit error rate
restricted to the states projected inside S. Consequently, the secret key generation rate is
at least

ps −H(ex)− psH(esx) (C.2)

of the conclusive results, where H(ex) is the fraction of results lost asymptotically because
of the bit error correction. ex and esx are the bit error rate over all conclusive results and
over the conclusive results that were projected inside S, respectively. A conclusive result is
defined as any measurement that give a bit to the key before error correction and privacy
amplification.

Consequently, to be able to obtain a secret key, Alice and Bob simply need an upper
bound for esx, ex being measured directly by using a sample of test bits and ps, by the
procedure outline above. esx can be estimate from the equation

ex = pse
s
x + (1− ps)es̄x, (C.3)

where es̄x is the error rate of the conclusive results corresponding to states projected outside
S. However, es̄x = 1

2 asymptotically. This is a consequence of Bob’s random choice of
φ for Mφ and the fact that the coefficients of the density matrix ρ′ corresponding to
|V ′
TV

′
T 〉〈H ′H ′| and |H ′H ′〉〈V ′

TV
′
T | are zeros.

Therefore, in order to obtain a secret key Alice and Bob simply need to get a lower
bound for pS , and an upper bound for ex. In the experiment, we measured pS using the
method explained above. In the case with 4m fibre, pS is measured to be 97% and in the
case with 1km fibre pS is 91%. In our experiment with random rotations, the observed
ex’s (see Figs. C.5 and C.6) are sufficient to guarantee secure key distribution.
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Any coherent attack from an eavesdropper was considered in our security analysis.
However, we assumed perfect state preparation and measurements, and that Eve’s has no
access whatsoever to Alice and Bob’s lab. For a more realistic security analysis, consider-
ations as the ones treated in Ref. [73, 67] would be necessary.

In summary, we have realized one of the first efficient quantum communication proto-
cols without shared spatial and reference frame including no time reference, except to label
the qubits. It could be useful for free-space transmission in the case where the receiver and
the sender are moving relative to each other. It could also be useful to avoid birefringence
effect in optical fiber and would be a possible solution to the phase instability of interferom-
eters. Our experiment is a first step toward more efficient robust quantum communication
since it is only an example of a series of more complex quantum communication schemes
exploiting decoherence-free subsystem of the collective-noise and time tags [9]. We also
showed the unconditional security of a robust quantum key distribution protocol based
of BB84. We conclude with the remarks that technological advances of entangled photon
sources and quantum memories would greatly enhance our results, there exist other in-
teresting alternatives to quantum communication without alignment [174] and some other
experiments exploiting the decoherence-free subspace of the collective-noise [29].

This work was supported by the CAS, the NNSFC, the NSERC and the PCSIRT. This
work was also supported by the Alexander von Humboldt Foundation, the Marie Curie
Excellence Grant of the EU and the government of Ontario.

C.3 Higher Security Thresholds for Quantum Key Distribu-

tion by Improved Analysis of Dark Counts
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Abstract: We discuss the potential of quantum key distribution (QKD) for long distance com-

munication by proposing a new analysis of the errors caused by dark counts. We give sufficient

conditions for a considerable improvement of the key generation rates and the security thresholds of

well-known QKD protocols such as Bennett-Brassard 1984, Phoenix-Barnett-Chefles 2000, and the

six-state protocol. This analysis is applicable to other QKD protocols like Bennett 1992. We ex-

amine two scenarios: a sender using a perfect single-photon source and a sender using a Poissonian

source.

The goal of quantum key distribution (QKD) is to extend a shared secret key for use
as a one-time pad to encode classical messages. The advantage of QKD is that its security
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is based on the laws of quantum mechanics and not on the unproven complexity of a
mathematical problem as in classical cryptography. These last few years, many encouraging
experiments demonstrated QKD, some spanning more than a hundred kilometers through
optical fibers [70, 96]. The main source of errors is usually due to dark counts from the
detectors. A dark count is when a detector fires independently (or in the absence) of a
qubit state encoded by the sender, Alice. If qubit losses are considerable, then the receiver,
Bob, will receive many empty pulses, and dark counts from his detectors will induce a high
error rate.

In this paper, for simplicity, we refer specifically only to four different QKD proto-
cols: Bennett 1992 (B92), Phoenix-Barnett-Chefles 2000 (PBC00), Bennett-Brassard 1984
(BB84), and the six-state protocol, which are two, three, four, and six state protocols,
respectively [15, 145, 17, 33]. In B92, Alice encodes random bits using two non-orthogonal
states, say |ψ1〉 and |ψ2〉, and sends them to Bob. He makes the measurement corre-
sponding to the Positive Operator-Valued Measure (POVM) {α|ψ1〉〈ψ1|, α|ψ2〉〈ψ2|,1 −
α|ψ1〉〈ψ1| − α|ψ2〉〈ψ2|}, where |ψj〉 is orthogonal to |ψj〉 and α equals 1

1+|〈ψ1|ψ2〉| . Bob’s
measurement either determines which state Alice did not send (from which Bob can deduce
the encoded bit) or is inconclusive. PBC00 is similar to B92 but uses three non-orthogonal
states, say |ψ1〉, |ψ2〉 and |ψ3〉, that form an equilateral triangle in the X-Z plane of the
Bloch sphere. She encodes her random bits using random bases from either {|ψ1〉, |ψ2〉},
{|ψ2〉, |ψ3〉}, or {|ψ3〉, |ψ1〉}. Bob performs the POVM {2

3 |ψ1〉〈ψ1|, 2
3 |ψ2〉〈ψ2|, 2

3 |ψ3〉〈ψ3|}.
After Bob measures all of the qubits, Alice declares publicly which basis she used for each.
By deduction, Bob can sometimes retrieve Alice’s state. Alice and Bob discard the other
results. It can be shown that, neglecting the qubit losses, the rate of conclusive results is

1
2−ex

where ex is the bit error rate. A conclusive result corresponds to any pair of qubits
not discarded by Alice and Bob.

To implement BB84, Alice encodes a random bit in either {|0〉, |1〉} or its conjugate
basis {|+〉, |−〉}. For each qubit, Bob randomly measures in one of these bases. They
only keep results for which they used the same basis. The six-state protocol is identical
to BB84 except that Alice and Bob choose from three different bases: {|0〉, |1〉},{|+〉, |−〉},
and { 1√

2
(|0〉 + i|1〉), 1√

2
(|0〉 − i|1〉)}. We can modify BB84 and the six-state protocol by

choosing bases with non-equal probabilities, increasing the chance of agreement [121]. The
rate of results for which identical bases are used converges asymptotically to 1. Below, we
calculate the key generation rates of BB84 and the six-state protocol using this asymptotic
result.

Mayers [130] produced the first unconditional security proof of BB84. Shor and Preskill
proposed a simpler proof based on ideas from Lo and Chau [173, 120]. Their security
proof has been generalized to other protocols including B92, PBC00, and the six-state
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protocol [180, 182, 27, 118, 150]. We improve the secret key generation rate of these QKD
protocols by proposing a slight modification of these proofs. Our main idea is based on
a variation of a theorem proved in Ref. [73]. We assume that an eavesdropper, Eve, can
perform any attack consistent with quantum mechanics, but cannot get any information
about Alice’s or Bob’s labs or control their apparatus. We discuss later how realistic these
assumptions are and how it is possible to slightly relax them. We study two cases: one
where Alice’s source can create a single photon on demand, and another where it follows a
Poisson distribution. For simplicity, we give details only about Shor and Preskill’s security
proof of BB84 and not other protocols.

At the end of this paper, we compare the updated error rate thresholds and key gen-
eration rates of BB84, PBC00, and the six-state protocol with previous results. The same
arguments could improve other QKD protocols, including B92. However, B92’s phase es-
timation bound depends on qubit losses in the channel and the number of inconclusive
results, complicating the analysis. Since our goal is to describe a general technique to
improve security thresholds, we only treat the simpler cases as examples.

The Shor and Preskill proof first shows the security of an entanglement distillation
protocol (EDP) for QKD, and subsequently reduces the EDP to BB84. For convenience,
we define |Φ±〉 = 1√

2
(|0〉|0〉 ± |1〉|1〉) and |Ψ±〉 = 1√

2
(|0〉|1〉 ± |1〉|0〉).

The structure of the EDP that can be reduced to BB84 in Shor and Preskill’s
proof is as follows:
1. Alice creates n pairs of the form |Φ+〉 and sends the second half of each pair to Bob
after randomly applying the identity or the Hadamard gate on it.
2. After Bob confirms that he has received all of Alice’s states, Alice publicly declares
the random rotation that she used on each qubit. Bob undoes the transformations on the
corresponding qubits.
3. With no eavesdropping or channel noise, Alice and Bob will share n perfect pairs of
the form |Φ+〉. They can now measure their qubits in the same basis to share a secret
key. However, noise and eavesdropping induce errors. If the bit and the phase error rates
are low enough, then error correction can be applied to obtain m perfect pairs of the form
|Φ+〉 where m 6 n.
4. Alice and Bob can estimate the bit error rate by comparing bit measurements from
a sample of pairs, called test bits. A bit (or X) error on a pair occurs when Alice and
Bob share either |Ψ+〉 or |Ψ−〉. A phase (or Z) error corresponds to |Φ−〉 or |Ψ−〉. A Y
error corresponds to |Φ−〉 or |Ψ+〉. Y error estimation could provide information about
the correlation between bit and phase errors. Because Alice randomly applies the identity
or Hadamard gate, it can be shown that the bit error rate, ex, and the phase error rate,
ez, are approximately equal, independent of channel noise and Eve’s strategy. In BB84,
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Alice and Bob have no information about Y errors.
5. Depending on the bit error rate measured on the test bits, Alice and Bob apply error
correction on the other pairs. If we suppose one-way error correction using CSS codes [34,
175], a lower bound for generation rate m

n for the perfect pairs is given asymptotically by

S = pc[1−H(ex, ez)] (C.4)

where H is the Shannon entropy (H(ex, ez) = H(ex) + H(ez|ex) is the entropy of the
bit-phase error pattern) and pc is the rate of conclusive results. For simplicity, we assume
that the proportion of test bits is negligible. �

Shor and Preskill showed that this EDP, and thus BB84, were unconditionally secure
with a key generation rate given by Eq. C.4. Since H(ex) is asymptotically the fraction
of bits sacrificed for bit error correction, it implies that H(ez|ex) is an upper bound on
the fraction of information that Eve has about the key after bit error correction. A conse-
quence is that privacy amplification, as introduced in Ref. [19], can be used to simplify the
post-processing of the QKD protocol. As shown in Ref. [154], privacy amplification can
generate a secret key by sacrificing a number of bits asymptotically proportional to Eve’s
information.

The reduction of the EDP to BB84 assumes that Alice uses a source which emits a single
photon on demand. In a more realistic situation, Alice’s source would emit a photon pulse
following a Poisson distribution. Unfortunately, when Alice sends two or more photons
containing the same quantum information at the same time, Eve can measure one to gain
information about the key without detection. Accounting for this attack (but assuming
Eve has no information about the random phase of the signal emitted by a coherent
light source), a more general equation of the secret key generation rate, combining results
from Ref. [73] and Ref. [118], and using the improvement suggested in Ref. [119], is given
asymptotically by

S = pc[ω0 + ω1 −H(ex)− ω1H(e1z|ex)] (C.5)

where ω1 is the fraction of the conclusive results corresponding to single-photon pulses,
ω0 is the fraction of the conclusive results corresponding to empty pulses (the presence
of background noise, for example), and e1x (e1z) is the bit (phase) error rate restricted to
conclusive results from single-photon pulses. ex (ez) is still the bit (phase) error rate over
all conclusive results. If Alice has a source that emits a single photon on demand, then
ω0 = 0, ω1 = 1, e1j = ej for j ∈ {x, y, z}, and S = pc[1−H(ex, ez)] as expected.

To prove Eq. C.5, it was argued that since Alice and Bob want an identical key and
cannot differentiate multi-photon from single-photon pulses, they must correct all bit er-
rors, asymptotically losing a fraction H(ex) of the results in the process. To apply privacy
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amplification on the remaining bits and obtain a secret key, Alice and Bob must upper
bound Eve’s information. If we assume that the phase of the signal is random4, there is
no coherence between states with different photon numbers. Thus, we can categorize each
bit of the resulting key as being associated with an empty, single-, or multi-photon pulse.
Assuming the worst case, Eve has full information about the results associated with multi-
photon pulses. On the other hand, she has no information about Alice’s bits corresponding
to empty pulses. By the Shor-Preskill’s arguments discussed earlier, the fraction of infor-
mation that Eve could extract from the results corresponding to single-photon pulses is
upper bounded by H(e1z|ex). Consequently, Eve’s information about Alice’s remaining key
is upper bounded by (1− ω0 − ω1) + ω1H(e1z|ex). After privacy amplification, Eve has no
information about Alice’s key. The same is true of Bob’s key since it is identical to Alice’s.
Therefore, the secret key generation rate is given by Eq. C.5.

Similarly, since Shor-Preskill’s proof can be adapted to B92, PBC00 and the six-state
protocol [180, 182, 27, 118], these protocols can be shown unconditionally secure with a
key generation rate given by Eq. C.5.

The above argument does not differentiate between a single photon emitted by Alice
that is successfully measured by Bob and a single photon that is lost in the channel (or
taken by Eve) followed by a dark count measured by Bob. However, these cases may be
analyzed separately. Consider the following four types of conclusive results.

1. Successful measurement of a qubit state (physically corresponding to a photon re-
ceived from the channel) that originated from a single-photon pulse. Note that the
qubit state could have been manipulated by Eve.

2. Successful measurement of a qubit state that originated from a multi-photon pulse.

3. Empty pulses from Alice followed by a successful measurement of a qubit state by
Bob (ie. Eve may send a qubit state to Bob even if Alice emits nothing).

4. Dark count events: Bob doesn’t receive a qubit state, but one of his detectors fires.

The dark count events are independent of Alice’s or Eve’s actions. We define pempc , psqc ,
and pmqc as the rate of conclusive results corresponding to qubit states, received by Bob,
associated with empty pulses, single-photon pulses, and multi-photon pulses, respectively.
We define pdkc as the rate of conclusive results associated with dark counts. Note that

pc = pempc + psqc + pmqc + pdkc . (C.6)
4Recently, it was shown the Eve could use extra information about the phase of the signal to her

advantage [124], though the extent is unknown.
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We remark that the background noise has two different contributions: intrinsic and ex-
trinsic. The intrinsic contribution is caused by elements from Bob’s lab while the extrinsic
contribution is from external sources. The sun and backscattering light in two-way QKD
are examples of external sources of background noise. Based on our assumptions, Eve
may control the external sources of background noise, but not the ones inside Bob’s lab.
Following our previous definitions, the only contribution to pdkc is intrinsic. Any external
sources will contribute to pempc , psqc , and pmqc since they correspond to Bob receiving a
qubit state from the channel. For convenience, in this paper, dark counts always refer to
the intrinsic contribution of background noise. We assume for simplicity that dark counts
are independent of other measurement results.

We now explain how it is possible to achieve a better bound for the secret key generation
rate than Eq. C.5. As before, a fraction H(ex) of the results are lost due to bit error
correction. Assuming again that the phase of the signal is random from Eve’s perspective,
each bit of the resulting key corresponds to one of the four types of conclusive results
described above. From previous arguments, Eve has a fraction H(esqz |ex) of information
about conclusive results from Category 1 and, in the worst case scenario, full information
about those from Category 2. esqx and esqz are defined as the bit and phase error rates on
the conclusive results restricted to Category 1. When Alice emits an empty pulse and it is
followed by a successful measurement of a qubit state by Bob, we assume that the qubit
state was created by Eve. A conservative assumption is that Eve has full information about
Bob’s results from Category 3.5 Supposing dark count rates are the same in all detectors
and independent of Eve and other measurement results, Bob’s results from Category 4 are
completely random and Eve has no information about them6. Consequently, the fraction

5In the case of B92, it is easy to show that this assumption is necessary, but it might be too strict for

other protocols like PBC00, BB84, and the six-state protocol.
6For simplicity, we suppose that the dark count rates are uniform over all detectors and that they are

independent of other measurement results. If dark count rates differ from detectors, we suggest two options.

In one, Bob uses a random transformation to switch the role of the detectors in the measurement. For

example, in BB84, Bob could apply, at random, an extra Y operation on the received qubits to switch the

role of the detectors when measuring in the {|0〉, |1〉} and {|+〉, |−〉} bases. A second option is to bound

Eve’s information from an estimate of the probability that a detector fires relative to the others in the

case of a dark count. Assuming dark counts are independent of other measurement results, in BB84 and

the six-state protocol, with only two detectors, Eve’s information is bounded by 1 −H(q) where q is the

probability that the first detector fires in the case of a dark count. It is interesting to note that if Eve has

some control over the probability q and could change it from one dark count event to another, then, by

entropic concavity, Eve’s information is bounded by 1−H(qave
worst), where qave

worst is the worst estimate of the

average of q. Determining the value of qave
worst can be very hard, but it is related to the level of confidence

that Alice and Bob have on their ability to counter or detect Eve if she tries to change the properties of

the detectors. Similarly, if dark counts are correlated to other measurement results, we can upper bound

Eve’s information with restrictions on the correlations.
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of information that Eve has on Bob’s key after bit error correction is upper bounded by
1
pc

(pempc + pmqc + psqc H(esqz |ex)). Therefore, the secret key generation rate is lower bounded
by

Sb = psqc + pdkc − pcH(ex)− psqc H(esqz |ex). (C.7)

We emphasize that it is not necessary for Alice and Bob to know which events correspond
to each class of conclusive results.

In the derivation of Eq. C.7, we bounded Eve’s information about Bob’s key. However,
we could have instead bounded Eve’s information about Alice’s key. In this case, Eve has
no information about the bit chosen by Alice when she sends a vacuum states. But she
could have some information about Alice’s portion of the key corresponding to dark counts
(unless Alice sent an empty pulse). Using similar arguments, we obtain

Sa = psqc + pcω0 − pcH(ex)− psqc H(esqz |ex). (C.8)

Combining Eq. C.7 and Eq. C.8, we obtain a new lower bound for the secret key
generation rate,

S = max[Sa, Sb]. (C.9)

Remark that the concavity of entropy and ω1e
1
z = psq

pc e
sq
z + (ω1 − psq

pc )edkz imply that
ω1H(e1z|ex)) > psq

pc H(esqz |ex)+(ω1−psq

pc )H(edkz |ex). We can rewrite this as ω1(1−H(e1z|ex)) 6
psq

pc (1−H(esqz |ex)), since it can be argued that edkz = 1
2 . Therefore, the secret key genera-

tion rate given by Eq. C.8 (and Eq. C.9) is always greater than or equal to the one given
by Eq. C.5.

To evaluate Eq. C.9, Alice and Bob must be able to determine all quantities involved
in it. For this purpose, we study two different situations: Alice has a source that emits a
single photon on demand or one that follows a Poisson distribution.

In both situations, ex is estimated from test bits, and pdkc can be calculated from the
predetermined dark count probability C of the detectors and the number of empty pulses
not associated with dark counts that Bob receives. If C is not fixed, Bob might block
his detection units randomly and estimate pdkc from these results. For this to be true, it
is important that Eve is not allowed to reduce the dark count probability without being
detected. But is this a valid assumption? In practice, Eve could try to cool down the
detectors or send bright pulses to disable them at will. Furthermore, there might be some
uncertainty in the measurement of pdkc , even in the absence of an eavesdropper. Since a
dark count could be interpreted as Eve sending a random state to Bob, we remark that
lower bounds for C and pdkc are sufficient to obtain a better key generation rate using
Eq. C.9. Establishing a high level of confidence on a lower bound for pdkc seems very hard
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in practice. However, it might be possible through experimental research and tests on
reducing dark count rates of detectors.

If Alice has a source that emits single photons, ω0 = 0 and pmqc = 0, then Eq. C.9
reduces to Eq. C.7 and ex = 1

pc
(psqc e

sq
x + pdkc e

dk
x ), where edkx is the bit error rate over

conclusive events associated with dark counts. edkx = 1
2 which implies that Bob can estimate

esqx from the value of ex measured on test bits. H(esqz |ex) = H(esqz |esqx ) can be evaluated
depending on the protocol used. It can easily be shown that, for the six-state protocol,
esqx = esqy = esqz [118]. For BB84, esqx = esqz and 0 6 esqy 6 2esqx [173]. For PBC00, it was
shown that esqz = 5

4e
sq
x and 1

4e
sq
x 6 esqy 6 9

4e
sq
x [27].

In the absence of errors due to dark counts, pdkc = 0. By solving S(ex) = 0, we find that
the bit error rate threshold is 12.6% for the six-state protocol, 11.0% for BB84, and 9.81%
for PBC00. If we now suppose that esqx is fixed, then the bit error rate threshold increases
as shown in Tab. C.1. Note that the bit error rate threshold depends on the contribution
of errors not associated to dark counts.

Table C.1: Bit error rate thresholds for BB84, PBC00, and the six-state protocol using a
single-photon source and assuming fixed values of esqx , which is the bit error rate of the
results not associated with dark counts.

esqx = 0 esqx = 0.01 esqx = 0.1

PBC00 50% 43% -

BB84 50% 44% 13%

Six-State Protocol 50% 46% 19%

Tab. C.1 reflects the potential of a special analysis for dark counts. For any of the
previous QKD protocols, if the errors are only caused by dark counts (esqx = 0), then
the bit error rate threshold is 1

2 , which implies there is no bound on the distance for
communication. However, we must keep in mind that this result is derived using many
special conditions. In practice, esqx is non-zero and, since there is decoherence in the
channel and extrinsic sources of background noise, esqx usually increases with the distance
of communication. We also assumed that Alice and Bob perfectly know the dark counts
rates of their detectors, that they are the same for all detectors, that they are independent
of other measurements, and that Eve cannot lower them. However, even if one or more of
these assumptions are not respected, it is still possible to slightly modify Eq. C.9, as we
explained earlier, and obtain an improvement over Eq. C.5.

In Fig. C.7, we observe that the new method of calculating the key generation rate, us-
ing Eq. C.9, improves the achievable distance for PBC00, BB84, and the six-state protocol
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assuming a single-photon source. For simplicity, we suppose that the dark count probabil-
ity, C, is the same for all detectors and that esqx is fixed and independent of distance. We
assume no qubit losses at l = 0, where l is the length of the channel, and neglect events
when two different detectors fire simultaneously. Under these conditions, for BB84 and the
six-state protocol, psqc ≈ η and pdkc ≈ 2C(1− η), where η = e−Al is the probability that a
photon successfully travels through the channel and A is the attenuation in the fiber. For
PBC00, psqc ≈ 1

2−ex
η and pdkc ≈ 2C(1 − η). Note that, since pdk

c
pc

is always equal or higher
in PBC00 than for BB84 or the six-state protocol, PBC00’s maximum achievable distance
is lower for the same bit error rate.

We now consider the case where Alice uses a source that follows a Poisson distribution
(pmqc 6= 0). We only provide the result for BB84, but our arguments are valid for other
QKD protocols, including B92, PBC00, and the six-state protocol.

Decoy states [88] could be used to evaluate psqc and esqx precisely. Ref. [188, 122]
explain how Alice could randomly vary the average photon number, µ, of her source to
obtain, from statistics, precise estimates of the rate of conclusive results associated with
single-photon pulses, pcω, and the corresponding bit error rate, e1x. psqc and esqx can be
easily derived from the following two relations: pcω = psqc + 2Ce−µ̄µ̄(1 − η) and e1x =
e−µ̄µ̄(ηesqx + 2C(1− η)edkx )/(pcω), where µ̄ is the global average photon number. Fig. C.8
shows that the decoy state method can also be improved by using Eq. C.9.
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Figure C.7: Semi-log graph of the key generation rate of PBC00, BB84, and the six-state protocol as a

function of distance, l, for esq
x = 0.01 and C = 10−6 calculated using the old method (Eq. C.5) and the

new one (Eq. C.9) assuming a perfect single-photon source (pmq
c = 0).
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If we don’t use decoy states, a worst case estimate of psqc and esqx is possible. However,
Eq. C.9 provides only a small improvement since, without decoy states, multi-photon pulses
are usually a much more important limiting factor than dark counts.

In this paper, we showed that a high confidence in the stability of the dark counts of
the detectors against the possible attack of an eavesdropper implies a significant increase
of the robustness of most QKD protocols against dark counts, one of most important
contributors of noise in quantum communication. We studied particularly the cases of
PBC00, BB84 and the six-state protocol. We explained how to get an improvement of
the secret key generation rate and of the achievable distance in some non-ideal situations,
including when Alice uses a Poissonian photon source, when Alice and Bob know only a
lower bound for the dark count rates of their detectors, and when the dark count rates are
not uniform over the detectors. Further improvements to the secret key generation rate
might come from using two-way error correction [72] and by artificially adding some errors
in the key [110].

Our results benefitted from discussions with Daniel Gottesman and Hoi-Kwong Lo,
whose contributions are greatly appreciated. We thank Nicolas Gisin who proposed using
reverse reconciliation. We also thank Tony Anderson for his assistance. J.-C.B. and R.L.
acknowledge support from the Government of Ontario, J.B. and R.L. from NSERC, and
R.L. from CIAR, MITACS and ARDA.
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Figure C.8: Semi-log graph of the key generation rate of BB84 as a function of distance, l, for esq
x = 0.01

and C = 10−6 assuming a Poissonian source and combined with the decoy state method with µ̄ = 0.5. We

compare the key generation rates calculated using Eq. C.5 and Eq. C.9.
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Appendix D

Some Results Related to NMR

Quantum Information Processing

In this appendix, we present two papers for which I have done related work.

D.1 Experimental Implementation of Discrete Time Quan-

tum Random Walk on an NMR Quantum Information

Processor

C.A. Ryan, M. Laforest, J.-C. Boileau, and R. Laflamme
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Abstract: We present an experimental implementation of the coined discrete time quantum walk

on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information

processor (QIP). Contrary to its classical counterpart, we observe complete interference after certain

steps and a periodicity in the evolution. Complete state tomography has been performed for each

of the eight steps making a full period. The results have extremely high fidelity with the expected

states and show clearly the effects of quantum interference in the walk. We also show and discuss

the importance of choosing a molecule with a natural Hamiltonian well suited to NMR QIP by

implementing the same algorithm on a second molecule. Finally, we show experimentally that

decoherence after each step makes the statistics of the quantum walk tend to that of the classical

random walk.
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D.1.1 Introduction

The idea of exploiting the quantum mechanical behaviour of a device to gain power in
simulating quantum systems was first introduced by Richard Feynman [60]. The field of
quantum computing has since grown enormously with the discovery of two algorithmic
pillars: Shor’s factoring algorithm [171] and Grover’s search algorithm [75]. Both of these
demonstrate a clear speed-up over their classical counterparts. Following in this path,
many other quantum algorithms have been developed that provide a speed-up [97, 168,
56]. A more recent addition to the family of quantum algorithms which demonstrate an
exponential speed-up, are those based on the quantum random walk - the quantum version
of the successful classical random walk [39].

There is however, a need to explore more than the simple computational properties of
the algorithms. They must also be experimentally tested in real devices and their relative
ease of implementation compared and considered. In particular, in QIP devices where
we are controlling the natural Hamiltonian, it is important to choose a system where the
Hamiltonian is amenable to automatic and systematic control. This can be explored by
implementing the same algorithm in different molecules and contrasting the performance.
Although many different implementation schemes have been proposed for the quantum
random walk algorithm, using for example trapped ions [186], an optical lattice [53], cavity
QED [159], or an optical cavity [99], these have not been tested. The only experimental
test of a quantum walk is the continuous time version of a quantum walk on a square using
a two qubit nuclear magnetic resonance (NMR) quantum information processor (QIP)
[54]. This work showed the contrast between a classical and quantum random walk and
showed the influence of entanglement on the probability distribution of the quantum walk.
Here, we present an experimental proof of principle experiment of a discrete time quantum
walk on a square. The effects of decoherence on the quantum random walk has been
investigated by several authors and indeed, it may offer some benefits [94, 32]. Therefore,
we also explored the quantum to classical transition of our walk under the addition of
decoherence to the coin. Furthermore, we compared and contrasted two different control
schemes and molecules by implementing the algorithm on two molecules.

D.1.2 Quantum Random Walks

In the development of deterministic classical randomized algorithms, the methods of Markov
chains and random walks have played a fundamental role [132]. These algorithms can be
divided into two categories: continuous time random walks when the walker has a prob-
ability per unit time to make a move; and, discrete time random walks where the walker
moves at defined time-steps. Since these processes are stochastic, it is not surprising that
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they have quantum counterparts. The quantum versions however, show remarkable differ-
ences with their classical analogues. The continuous time quantum walk (CTQW)[59] has
been shown to provide an exponential speed-up in propagation through a graph [40, 39].
The discrete time quantum walk (DTQW) [5] plays an important role in the speed up of
a quantum algorithm design for spatial searching [170, 1, 6].

One step of a classical discrete time random walk on a circle with n nodes, denoted
by {0, . . . , n − 1}, is performed by repetition of the following two steps: (1) the walker
first flips a coin and then (2) moves either clockwise or counterclockwise depending on the
outcome of the coin toss.

If we perform a quantum mechanical treatment of the situation, we can label the
nodes with a mutually orthonormal set of state vectors {|i〉}n−1

i=0 . The coined DTQW on
the circle can be seen as “quantumly” flipping a coin degree of freedom using a unitary
operation and then coherently moving the walker position degree of freedom clockwise, or
counterclockwise, conditioned on the state of the coin [3]. For a Hadamard walk, the coin
flipping operation is simply the Hadamard gate described by the matrix,

Ĥ =
1√
2

(
1 1
1 −1

)
.

Now, the conditional shift operator is defined as

Ŝ|H〉|i〉 = |H〉|i	 1〉

Ŝ|T 〉|i〉 = |T 〉|i⊕ 1〉,

where ⊕ and 	 are understood to be addition and subtraction modulo n and |H〉 and |T 〉
describe the two basis states of the coin. Therefore, if the walker is in position |i〉, he will
move clockwise to the position |i	 1〉 if the coin in the state |H〉, or counterclockwise to
|i⊕ 1〉 if the coin in the state |T 〉. We can write this operator as

Ŝ =
n−1∑
i=0

(|H〉〈H|H ⊗ |i	 1〉〈i	 1|i+ |T 〉〈T |T ⊗ |i⊕ 1〉〈i⊕ 1|i) .

Then, one step of the DTQW is defined as applying the operator

Ŵ = Ŝ(Ĥ ⊗ 1l).

On a circle, this type of algorithm shows destructive interference effects and a proba-
bility distribution that is periodic in time. The contrasting dynamics for the classical and
quantum random walks are shown in Fig. D.1. As opposed to the classical walk where
the probability is always spread out, the quantum walk has steps where the probability
amplitudes interfere such that all the probability comes back to one node. Furthermore,
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this walk is periodic in that after eight steps, the corresponding propagator is equal to the
identity and the system comes back to its original state.

In our experimental setup we have three qubits available, which allows one qubit to
describe the coin state and two for the position state. Thus, we have n = 4, and we are
performing a discrete quantum walk on a square. The shift operator defined in Eq. D.1
would require a complicated quantum circuit involving a Toffoli gate. We can simplify
the circuit required by using a shifting operator that moves the walker along a direction
vector, i.e. horizontally or vertically (this also is analogous to the random walk on the
hypercube [131]). Therefore, if we label the corners of the square as shown in Fig D.2, the
shift operator on the three qubit register becomes,

Ŝ = P̂HX̂
2 + P̂T X̂

3

= (P̂HX̂2 + P̂T )(P̂T X̂3 + P̂H)

= (X̂1Cnot1,2X̂1)Cnot1,3,

with X denoting the standard σx Pauli matrix, PH/T are the projectors on the two coin
states, and the superscript indicates on which of the qubits the action is performed. Here,
it is understood that the first qubit represents the coin and the second and third, the
position register. The resulting probabilities for each step are shown in Table D.1.

Classical Quantum

Corner 0 1 2 3 0 1 2 3

Step 0 1 — — — 1 — — —

Step 1 — 0.5 — 0.5 — 0.5 — 0.5

Step 2 0.5 — 0.5 — 0.5 — 0.5 —

Step 3 — 0.5 — 0.5 — — — 1

Step 4 0.5 — 0.5 — — — 1 —

Step 5 — 0.5 — 0.5 — 0.5 — 0.5

Step 6 0.5 — 0.5 — 0.5 — 0.5 —

Step 7 — 0.5 — 0.5 — 1 — —

Step 8 0.5 — 0.5 — 1 — — —

Table D.1: Probability to be in each of the corner states as denoted in Fig. D.2. While in
the classical random walk the probability always remains spread out between two corners,
in the quantum random walk all the probability returns to one corner at certain time steps.
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D.1.3 Liquid state NMR quantum information processing

The basic principles

A liquid state NMR QIP consists of an ensemble of roughly 1020 identical molecules dis-
solved in a liquid solvent. Due to the fast tumbling motion of the molecules, they are
essentially decoupled from each other; ideally all the molecules have the same evolution.
We can think of the quantum register made of qubits that correspond to the spin 1

2 nuclei
within each molecule. The sample is placed in a strong homogeneous magnetic field which
provides the quantization axis and causes the spins to precess around the axis of the field.
It is possible to implement single qubit gates using radio-frequency (r.f.) pulses resonant
with the precession frequency, which can effect a rotation about any axis orthogonal to
the axis of the external field. Two qubit gates are effected through the coupling from the
natural Hamiltonian, which produces a controlled phase gate[113].

If the molecule used contains n distinguishable nuclei and the magnetic field is aligned
along the z-axis, then the system Hamiltonian is approximated by,

Ĥ = π
n∑
i=1

νiẐi +
π

2

∑
i>j

JijẐi ⊗ Ẑj ,

where νi is the Larmor frequency of spin i in Hz, Jij is the coupling strength between
spin i and j in Hz and Z in the conventional Pauli operator σz. The interaction part of
the Hamiltonian can be approximated to the above Ising form (weak coupling regime or
secular approximation) only if the difference between any two nuclei Larmor frequencies
is much greater than the coupling between the nuclei. We can also turn off the coupling
between any two spins as needed by applying refocussing r.f. pulses.

Implementing dephasing in NMR

We can apply a controllable amount of decoherence to selected spins using gradient tech-
niques in NMR. Consider only one nucleus with state ρ and suppose we work in the rotating
frame of that spin. On a NMR spectrometer, it is possible to apply a gradient to the exter-
nal magnetic field. During the time that the gradient is applied, the spins will precess at
different frequencies depending on their position in the sample. The state of the ensemble
will then be given by an average over the observable sample,

ρ′ =
1
2a

∫ a

−a
e−i(α

′γtz/2)Ẑρei(α
′γtz/2)Ẑdz,

where 2a is the length of the sample, t is the interval of time the gradient is being applied
and α′ = α/~ and γ = ν/Bz, the gyro-magnetic ratio of the nucleus. If we compute the
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integral, it can be shown that,

ρ′ = (1− p)ρ+ pZρZ,

p =
1
2

(
1− 1

α′γta
sin (α′γta)

)
,

which is the exact form of a z-dephasing decoherence. The amount of dephasing can
be controlled by the strength and time of the gradient pulse. Particular spins can be
protected from the applied decoherence by applying a 180 degree rotation and applying
a second gradient of the same strength and time. This second gradient will reverse the
dephasing of the rotated spins and double it on the spins that were not rotated.

D.1.4 The experiment

We implemented the quantum walk algorithm on two molecules: trans-crotonic acid and
trichloroethylne (TCE). This allowed us to compare the quality of two different methods
of control and the merits of the two molecules.

Implementation on crotonic acid

The seven qubit molecule trans-crotonic acid (four carbons, two hydrogens and one methyl
group) has been used in experimental demonstrations of quantum algorithms, such as
quantum error correction [100, 28], and quantum simulations[135]. In this experiment,
we used the carbon back-bone of labeled trans-crotonic acid in a solution of deuterated
acetone. The hydrogen nuclei were decoupled using standard heteronuclear decoupling
techniques[165]. We used C3 as the coin and C2 and C4 as the position register (see
Fig. D.3). C1 was used as a labeling spin to ease the creation of the initial state. On a
Bruker DRX Avance 600 NMR spectrometer, the molecule has the Hamiltonian parameters
shown in Fig. D.3.

Since our system is homonuclear, the control of individual qubits is achieved through
soft gaussian-like r.f. pulses at the Larmor frequency of the target nucleus. The length of
the soft pulses is of the order of the inverse of the smallest chemical shift difference with
the other nuclei. In our experiment the length of the selective pulses on C1 and C2,C3,C4

were 192µs and 704µs respectively.

Initial state preparation The experiment required the initial state

ρin = ∗ ⊗ |000〉〈000|000 = ∗(1l + Ẑ)(1l + Ẑ)(1l + Ẑ).

We created the labeled pseudo-pure state Z000 (using the notation C1C2C3C4) following
the spatial averaging technique elaborated in [101].
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Pulse sequence implementation The unitary of one step of the DTQW from Eq D.1
was translated to a sequence of pulses and coupling gates as shown in Fig. D.4. Although
many pulse sequences are possible through the use of commutation rules, this particular one
was designed to be the most efficient due to the cancellations possible during multiple step
sequences. Moreover, the ZZ gates are achieved simultaneously, which shortens the overall
pulse sequence, thus reducing decoherence effects. Commutation rules were also used to
cancel pulses between the final step and the readout pulses. Since the coupling constants
between C2 and C3 is slightly lower then that between C3 and C4, the simultaneous π/2
couplings have been achieve by first letting those three qubits evolve freely until the coupling
between C3 and C4 reach π/2. Thereafter, C4 is refocus during the interval needed to C2

and C3 to terminates there coupling. The ideal pulse sequence of rotations and couplings
was then input into a pulse sequence compiler which numerically optimized the timing and
phases of the pulses. The compiler pre-simulates the selective r.f. pulses using an efficient
pair-wise simulation and then decomposes the simulated unitary into phase and coupling
errors sandwiching the ideal selective pulse. These errors can then be taken into account
by the refocussing scheme and phase of the pulses, so that the overall unitary is as close
to the desired one as possible.

Since we are concerned with the final state of only three qubits in this experiment,
complete state tomography is still feasible. On a three qubit system in NMR, only seven
different readout pulses are required to rotate each term of the density matrix into ob-
servable simple single coherences 1. And, since we were operating on a homonuclear
system, observing the signal from all spins in one experiment was possible, with some
post-processing to adjust for the correct phase of each individual rotating frame. The
coupling between the labeling spin C1 and the other three qubits is resolvable and so the
presence of the labeling spin does not interfere with the tomography of C2, C3 and C4.

Experimental results For the state tomography each of the peaks in the spectra were
fitted using absorption and dispersion Lorenzian peaks. The full density matrix was then
reconstructed by appropriately summing up the corresponding Pauli terms. Where two
experiments gave values for the same density matrix terms, the values were simply aver-
aged. As we observed only C2, C3 and C4, the term ZIII could not be determined. A
suitable amount of that term was subsequently added to the density matrix so as to make
the initial state as close to Z000 as possible. This amount was then kept constant for the
density matrix reconstruction in subsequent experiments.

To quantify the success of our experiments, we computed the fidelity of the experimental
density matrix to both the ideal and simulated results. In NMR, all states are nearly

1Readout pulses yII,IIy,IIx,yyI,Ixx,yyy,xxx are sufficient
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completely mixed and the fidelity measure introduced in [61] is appropriate. We can
compare one density matrix to another using the following formula,

FA,B =
Tr(ρAρB)√

Tr((ρA)2)
√

(Tr((ρB)2)
.

We made two comparisons. Firstly we compare the experimentally determined density
matrix to the theoretically expected result. The theoretical result is achieved by multiply-
ing the ideal initial state by the ideal propagator. To investigate how well we understand
our control of the system, we also compare the fidelity of the results from a simulation of
the experiment to the theoretical result.

Experimental Simulated

Step0 98± 5 —

Step1 97± 5 98

Step2 98± 5 98

Step3 92± 5 98

Step4 99± 5 98

Step5 94± 5 97

Step6 96± 5 97

Step7 96± 5 97

Step8 87± 4 97

Table D.2: Fidelities (in percent) of experimental and simulated results. The first column
gives the fidelity of experimental density matrix determined from the tomography, with
respect to the theoretical expected density matrix. The second column gives the fidelity
of the simulation results. Errors are estimated from the fitting procedure. Note that since
computer simulation of the spatial averaging that occurs during the pseudo-pure prepa-
ration is difficult and inaccurate, the initial state for the simulation was the experimental
pseudo-pure state determined from the tomography. The fluctuations observed in the fi-
delity come from uncertainties in the fit and instabilities in the spectrometer over the
course of the experiment.

The fidelities of simulated and experimental results are compared in Table D.10 and
Fig. D.5-a give a sample of the fully reconstructed density matrix for C2, C3 and C4. The
loss of fidelity in our experiment, over and above that of the simulated control errors is
explained from three sources which are not taken into account by the simulation. We have
losses from T2 relaxation. Although our pulse sequence is short compared with the T2
relaxation times, during the quantum walk algorithm, the state is often in high coherences,
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which decay much faster than the simple T2 time. Inhomogeneities in the strong magnetic
field also cause extra relaxation and dephasing. Further losses come from inhomogeneities
of the r.f. field used to implement rotations and pulse angle mis-calibration.

Addition of decoherence on the coin In a subsequent experiment, we added dephas-
ing decoherence to the entire qubit register using the technique described in section D.1.3.
We expect the behaviour of the quantum walk should converge to the classical walk as the
decoherence becomes complete after each step. To demonstrate this claim experimentally,
we implemented the quantum random walk for four steps, adding decoherence of a certain
strength between each step of the walk. The differences between quantum and classical
walk is manifested in the different probabilities of being in each of the corners after each
step. The results are shown in table D.3 for gradient strengths corresponding to no, partial
and full decoherence.

Quantum Walk with Decoherence
None Partial Full

Corner 0 1 2 3 0 1 2 3 0 1 2 3

Step 0 100 0 4 −2 100 0 4 −2 100 0 4 −2
Step 1 2 57 −1 43 2 58 −2 44 0 59 −2 45
Step 2 57 1 44 −1 50 7 40 5 51 4 460 1
Step 3 7 14 3 78 2 14 1 84 −1 53 −3 53
Step 4 15 −1 84 3 19 1 78 4 50 0 53 −1

Table D.3: Classical versus estimate of quantum probability to be in each corner of the
square for one through four steps (c.f. Table D.1). The quantum results were obtained for
gradient strengths corresponding to no, partial and full decoherence. The experimental
results were obtained by reconstructing the density matrix using the same fitting software
used before and then applying the position measurement projectors to the reconstructed
density matrix.

The divergence between the classical and quantum walk shows most clearly in steps
three and four. Whether the walk is classical or quantum, steps one and two yield the same
measurement probabilities for the position (however the quantum version with decoherence
will have coherent superposition states). Analyzing the data from step 3 and 4, one can see
that the quantum interference present so clearly in the quantum walk with no decoherence,
is less obvious as the amount of decoherence increases. Instead of the probability all
collecting in one corner it remains spread out between two opposite corners - the same as
in the classical walk. This can also be seen in Fig. D.5-b by the reduction of the off-diagonal
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terms of the density matrix as the decoherence become stronger.
The probabilities even with zero gradient strength do not correspond perfectly to the

ideal quantum walk. We believe these errors come from two sources. Because the gradient
does not commute with any pulses we were not able to use commutation rules to reduce
the number of pulses during multiple step experiments. Furthermore, gradient methods
are hampered by diffusion and multiple gradients may lead to a return of signal that was
“erased” by a previous gradient.

Comparison with the TCE molecule

For comparison purposes and to show the importance of choosing a molecule with good
characteristics in liquid state NMR quantum information processing, we show our results
from our initial attempt to implement the quantum walk on the molecule tri-chloroethylene
(TCE) - a molecule with which we have much less control due to the presence of strong
coupling. The molecule has been used for some initial demonstrations of quantum algo-
rithms [45]. A diagram of the molecule and the parameters of its Hamiltonian are shown
in Fig. D.6.

Pseudo-pure state preparation Since the TCE molecule contains only three qubits,
we are unable to create the labeled pseudo-pure state that we used in the crotonic acid
experiments. Instead, we chose to use temporal averaging and add three separate experi-
ments to achieve the initial state |000〉. The three different initial states we used are,

ρ1 = Ẑ ⊗ (1l + Ẑ)⊗ (1l + Ẑ)

ρ2 = 1l⊗ Ẑ ⊗ (1l + Ẑ)

ρ3 = 1l⊗ 1l⊗ (1l + Ẑ)

If we add the results of these three experiments, it is equivalent to having performed
the algorithm on the initial state

ρin = ρ1 + ρ2 + ρ3

= (1l + Z)⊗ (1l + Z)⊗ (1l + Z)

= |000〉〈000|000

Since there is only one hydrogen nucleus in the molecule, we can use broadband hard
pulses to control it. One useful property of the TCE molecule in a 600Mhz spectrometer,
is that the J-coupling between the two carbons is almost exactly 10.5 times smaller than
the difference in chemical shift (∆ν). Therefore, during the time for a π

2 ẐẐ coupling gate
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between the two carbons (∆t = 1
2JC1C2

), the relative chemical shift evolution of C2 with

respect to C1 will be θ = 2π∆ν∆t = π∆ν
JC1C2

= −10.5π = −π/2 mod2π. Therefore, in the
reference frame rotating at the Larmor frequency of C1, every time there is a π/2 coupling
between the carbons, an extra R−π/2

z is naturally performed on C2.
The chemical shift difference between the two carbons is small and the coupling between

them large, so selective pulses were impossible to achieve using the same technique of
gaussian-shaped pulses used in the crotonic acid experiments. These pulses would be very
long (roughly 5 ms) and the large coupling errors that would occur during the pulse would
be difficult to refocus. Instead, it was possible to perform selective pulses using hard
pulses and the chemical shift evolution. To illustrate the technique, we demonstrate how
to perform a selective π

2 rotation of C2. If we use a reference frame rotating at the Larmor
frequency of C1, then, during a time τ = 1

4∆ν , the spin C1 will not precess while C2 will
undergo a rotation of −π/2 around the z-axis. Since, 1

4∆ν is much less than the coupling
time 1

2JC1C2
, we can ignore the coupling between the two carbons and refocus only the

hydrogen. Using this selective z-rotation combined with hard pulses which rotate the two
carbons together, we can perform a π

2 rotation with phase φ on only C2 as follows:

(Rπ/2φ−π/2 ⊗ R
π/2
φ−π/2)(1l⊗R−π/2

z )(Rπ/2φ+π/2 ⊗R
π/2
φ+π/2)

= 1l⊗R
π/2
φ−π/2R

−π/2
z R

π/2
φ+π/2

= 1l⊗R
π/2
φ

Similar pulse sequences can be derived to perform a π rotation on C2 and selective
pulses on C1. Because of the different form of selective pulses used, the pulse sequences were
written and optimized by hand. This required a different pulse sequence implementation
of the quantum walk unitary which avoided as much as possible selective pulses and z-
rotations where possible. The one z-rotation used, is a natural outcome of the C1 − C2

coupling gate as described above. This alternative pulse sequence is shown in Fig. D.7.

Experimental Results Fidelity results, similar to those calculated for the crotonic acid
experiments are shown in Table D.4 and a sample of reconstructed density matrices can
be sen in Fig. D.5-c. Clearly this experiment was not as successful as the implementation
on the crotonic acid molecule. There are two main reasons for this loss of fidelity. Firstly,
the chemical shift difference between the two carbons is very small. Because of this, the
secular approximation no longer holds and thus the coupling between the two carbon spins
can no longer be approximated by the Ising form ZC1 ⊗ZC2 . Indeed, it has to take all the
strong coupling terms into account, i.e ~SC1 · ~SC2 = XC1 ⊗XC2 + YC1 ⊗ YC2 + ZC1 ⊗ ZC2 .

Unfortunately, this strong coupling renders our ideal ZZ gates much less precise. Every
coupling gate performed added XX and YY error terms which we could not refocus. This
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Experimental Simulated

Step 0 98± 6 —

Step 1 85± 5 96

Step 2 82± 4 94

Step 3 70± 4 93

Step 4 80± 4 90

Step 5 76± 4 89

Step 6 65± 4 86

Step 7 53± 4 84

Step 8 43± 4 83

Table D.4: Experimental and simulated fidelities (in percent) for the implementation of 8
steps of the DTQW on the molecule TCE. Again, simulation of the pseudo-pure state was
not performed.

coupling also caused problems during our selective carbon rotations. Although the coupling
is small, there is an unrefocusable coupling of πJC1C2

4∆ν ≈ 4.27◦. Our only way to minimize
these errors was to optimize the delay times analytically and from numerical simulations.
However, these did not correspond well to the experimentally determined optimal values.
This point also clearly demonstrates the second reason for the less satisfactory results on
TCE. We were unable to use the numerical optimization of the pulse sequence compiler used
for crotonic acid. The compiler provides a systematic and reliable way to produce pulse
sequences which implement unitaries with high fidelity and is clearly superior to writing
and optimizing pulse sequences by hand. These experiments also showed the limits of our
simulator. For the crotonic acid experiments, where only soft pulses were used, the r.f.
power applied changed slowly and the simulator was faithful to what r.f. power the spins
were experiencing. In TCE, where control was achieved only through short hard pulses,
other effects such as phase transients enter and the spins might experience an r.f. field much
different from the ideal square pulse simulated. To fully understand the issues surrounding
hard pulse control a much more detailed study of the probe response must be undertaken.
This underlines a key point: control of a more complex and strongly coupled system could
be obtained through sophisticated control techniques such as strongly modulating pulses
[61] ; however, it seems prudent to invest the effort in a wise choice of molecule.
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D.1.5 Conclusion

We have presented the first experimental implementation of a coined discrete time quantum
walk. It showed a clear difference with the classical coined quantum walk, since the DTQW
possesses destructive interference and periodicity in its evolution. A proof of principle like
this lays down the path to more elaborate experiments using discrete quantum walks, such
as the database search, walks on hypercube or N-nodes circle or a more profound study
of the effect of decoherence on the walk. This paper also demonstrates the importance of
choosing a natural Hamiltonian well suited to automated control in the context of quantum
information processing.
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D.2 Using error correction to determine the noise model

M. Laforest, D. Simon, J.-C. Boileau, J. Baugh, M. J. Ditty and R. Laflamme
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Abstract: Quantum error correcting codes have been shown to have the ability of making quan-
tum information resilient against noise. Here we show that we can use quantum error correcting
codes as diagnostics to characterise noise. The experiment is based on a three-bit quantum error
correcting code carried out on a three-qubit nuclear magnetic resonance (NMR) quantum infor-
mation processor. Utilizing both engineered and natural noise, the degree of correlations present
in the noise affecting a two-qubit subsystem was determined. We measured a correlation factor
of c = 0.5 ± 0.2 using the error correction protocol, and c = 0.3 ± 0.2 using a standard NMR
technique based on coherence pathway selection. Although the error correction method demands
precise control, the results demonstrate that the required precision is achievable in the liquid-state
NMR setting.

D.2.1 Introduction

The idea of using quantum mechanical systems as information processing devices was
proposed more than two decades ago [60], and yet, experimental realization of such devices
remains a challenge. Ultimately, all physical realizations are faced with the presence of
decoherence, or noise, caused by uncontrollable interactions with the environment [192].

To prevent the loss of coherence in the quantum mechanical processor, the theory
of quantum error correction (QEC) has been developed [172, 175, 20]. QEC works by
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encoding the state of a system lying in a certain Hilbert space into a state in a larger
Hilbert space. The encoding is designed to make possible the recovery of the original
information after noise has acted on the overall system, through decoding and syndrome
measurement, as long as the the noise level falls below a certain threshold [102, 103].
Many quantum error correction codes (QECC) have been developed for specific classes of
noise models. For example, there are codes that can correct arbitrary single qubit errors
[172, 175, 20, 115] but fail to correct multi-qubit errors. This work shows how this failure
can be used to extract information about the noise of the system.

Most QECC are developed for independent, or uncorrelated, error models, meaning
that the errors happening on one qubit are assumed to be independent of the errors on
other qubits. Clearly, knowing whether or not there exist correlations in the noise model
plays an important role in choosing the best QECC for a given system.

The noise model can be determined exactly by performing process tomography [42, 144].
However, the number of experiments required for complete tomography grows exponen-
tially in the number of qubits. Often, process tomography is not needed and important
(but partial) information about the noise can be extracted from fewer experiments. Here,
we demonstrate the use of a three-qubit QECC to extract the two-qubit noise correlation
factor under a transverse relaxation process in nuclear magnetic resonance (NMR) (e.g.
T2 relaxation).

Transverse relaxation is the main source of decoherence in liquid state NMR. NMR
was used to perform the first experimental implementation of QEC [45], where it was
shown that the three-qubit QECC could correct single-qubit phase flip errors caused by
T2 relaxation. Here, we will first briefly review the fundamentals of NMR, then model the
noise present in such systems and show how noise correlations can affect the fidelity of
the QEC protocol. We will describe a series of natural and engineered noise experiments
for determining the two-spin noise correlations present for the 13C subsystem of acetyl
chloride (dissolved in deuterated chloroform). The experimental results are in agreement
with those obtained using the standard NMR technique of coherence selection. In light
of the exquisite sensitivity of these experiments to control imperfections, the results also
demonstrate the high degree of precision attainable in controlling nuclear spins in liquid
state NMR.

The results demonstrate that QEC can not only be used for correcting the effects of
decoherence, but can also help to characterize the nature of those errors. Moreover, as QEC
is a requirement for scalable quantum information processing (QIP), this methodology is
universal for probing noise correlations in physical systems suitable for QIP.

122



D.2.2 NMR quantum computing

Liquid state nuclear magnetic resonance has proven to be a useful system for experimentally
benchmarking small-scale quantum information processing devices [114, 139, 45, 101, 134].
A NMR quantum information processor consists of an ensemble containing of order 1020

molecules with spin-1
2 nuclei dissolved in a liquid solvent. Placed in a strong homogeneous

magnetic field, nuclear spins precess about the direction of the field, defined convention-
ally as the z-axis. The rate at which the spins precess is the Larmor frequency, and nuclei
with distinct Larmor (resonance) frequencies can be mapped to qubits. In the liquid
state, picosecond-scale rotation and translation of the molecules causes spins on separate
molecules to effectively decouple on the NMR timescale. Therefore, to a very good approx-
imation, all molecules of the same type experience identical environments and the Hilbert
space of the nuclear spin ensemble can be taken as that of a single molecule. Moreover,
the rotational degree of freedom causes the internal dipolar interaction between the spins
on each molecule to vanish. At thermal equilibrium, the Boltzmann distribution gives a
slight excess of spins pointing along the +z direction, so that an average magnetization is
present along +z.

Control of the qubits is achieved by a radio-frequency (RF) Hamiltonian in which the
frequency, phase and duration of the RF can be controlled externally. Single-qubit rota-
tions are performed using RF pulses resonant with the Larmor frequency of the targeted
qubit. By varying the RF duration and phase, rotations of arbitrary angle can be gener-
ated about any axis in the xy-plane. Two-qubit operations additionally use the natural
coupling terms present in the internal Hamiltonian, which will be elaborated below.

D.2.3 Hamiltonian and noise model

The nuclear spin Hamiltonian in liquid-state NMR is composed of two types of terms, one
corresponding to the single-spin Zeeman interaction (the term leading to precession) and
bilinear terms corresponding to the scalar spin-spin coupling (J-coupling). For a molecule
with N spin-1/2 nuclei, the weak coupling Hamiltonian is given by

Ĥ =
1
2

N∑
i=1

2πνiẐi +
π

2

∑
i<j

JijẐiẐj

where νi are the Larmor frequencies, Jij is the coupling strength between spins i and j,
and Ẑi is the z Pauli matrix for spin i. Note that when the condition |νi − νj | >> Jij/2
does not hold (strong coupling regime), the scalar coupling operator takes the more general
form ~σi · ~σj = X̂iX̂j + ŶiŶj + ẐiẐj .

Despite the motional averaging that occurs in the liquid state, the ẐẐ part of the
intermolecular dipolar Hamiltonian is capable of creating relaxation, while the X̂X̂ +
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Ŷ Ŷ part still averages to zero due to the weak coupling approximation[117]. This ẐẐ
interaction couples with the molecular motion and give rise to rapidly fluctuating local
magnetic field, which effectively presents itself as a variation of the Larmor frequencies.
This process is known as transversal relaxation.

Consider a single spin qubit surrounded by an environment E consisting of N other
spins -1

2 . The dipolar coupling between the qubit and its environment is described by the
unitary evolution

Û =
∏
j∈E

e−ibjẐẐj

where bj is the interaction strength between the qubit and the jth spin of the environment
for a certain amount of time.

The global system can be assumed to initially be in the state

ρglob = ρini ⊗ ρE

where ρini represents the initial state of the qubit and ρE is the state of the environment.
After the interaction with its environment, the final state of the qubit will be given by
partial tracing the environment system. Moreover, the interaction strengths have a certain
distribution of value q(~b), so that the state affected by the noise have the form

ρf =
∫
d~bq(~b)

∑
a∈{0,1}N

〈a|ρE |a〉e−iξaẐρinieiξaẐ ,

where we have defined ξa =
∑

m bm(−1)am , am being the mth digit of a. In room temper-
ature liquid state NMR, the deviation of the state of the environment from the completely
mixed state is negligible, so that 〈a|ρE |a〉 = 1/N . Because the environment is isotropic,
the distribution q(~b) is a symmetric function of the bj ’s. Therefore, the summation over a
in Eq. D.1 can be absorbed in a new distribution of ~b and by letting a = 0⊗N .

The final state is then represented by

ρf =
∫
dαp(α)e−iαẐρinieiαẐ

where α =
∑

m bm and p(α) is the distribution of α which takes into account the new
distribution of the bj ’s. The interaction of the qubit with the environment causes an inco-
herent averaging of z rotations, which is equivalent to a variation of the Larmor frequency
of the qubit. In liquid state NMR, N is a large number and the central limit theorem
indicates that α has a gaussian distribution. For a M qubit system, this model generalizes
to

ρf =
∫
d~αp(~α)e−i~α·

~̂
Zρinie

i~α· ~̂Z
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where ~α = (α1, . . . , αM ), ~̂Z = (Ẑ1, . . . , ẐM ) and p(~α) is the multivariate gaussian distribu-
tion [184]

p(~α) =
1√

(2π)M |Σ̂|
e−

1
2
~αT ·Σ̂−1·~α.

Σ̂ is the covariant matrix, or the correlation matrix, which takes the form

Σ̂ii = 〈α2
i 〉

= σ2
i

Σ̂ij = cij
√
σiσj

where σ2
i is the variance of αi. cij is the correlation factor between αi and αj , which has

value

cij =
〈αiαj〉√
〈α2

i 〉〈α2
j 〉
.

From the Cauchy-Schwarz inequality, 0 ≤ cij ≤ 1. For a single qubit, such a noise model
will affect the state as

|k〉〈k|l → e
−σ2

2
(1−δkl)|k〉〈k|l

From empirical results of transverse relaxation in NMR, the state of a single spin decays
in time as

|k〉〈k|l → e−(1−δkl)γ2t|k〉〈k|l

where 1/γ2 = T2 is the relaxation time constant. The variance of the distribution of the
interaction strength of a qubit with its environment can thus be related to its relaxation
time constant by

σ2 = 2γ2t.

For two qubits, the noise correlation factor will affect the decay of their mutual state
as follow:

|km〉〈km|ln → e−(1−δkl)γ
(1)
2 t−(1−δmn)γ

(2)
2 t−2c12tηklηmn

q
γ
(2)
2 γ

(2)
2

×|km〉〈km|ln,

where ηij = 1
2((−1)i−(−1)j). If correlations in the noise affecting two qubits is present, the

transverse relaxation will be faster for a two spin double quantum coherence (e.g. |00〉〈00|11
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and |11〉〈11|00) and slower for a two spin zero quantum coherence (e.g. |01〉〈01|10 and
|10〉〈10|01).

The correlation in the noise on two qubits can be understood through distinguishability.
If two nuclei precess at the same Larmor frequency, they are magnetically equivalent
and thus see the same environment. The two spins will interact identically with the
environment, thus yielding a correlation factor of 1. Two spins of different nuclear specie
are distinguishable and the environment will act differently on each of them. No correlation
is expected the respective noise i.e. c12 = 0. If we consider two nuclei of the same
species with slightly different Larmor frequency, they are distinguishable enough to perform
independent control, but they are chemically “near indistinguishable”. The effect of the
environment is thus partially correlated, i.e 0 < c12 < 1.

D.2.4 Engineering the noise for two qubits

By explicitly expanding Eq. D.1 for two qubits, the noise model takes a discrete Kraus
form,

ρf =
∑
i

piÛiρiniÛ
†
i

where the unitary Kraus operators Ûi and their coefficients pi are given in Table D.5. One
can thus engineer the noise on two qubits with a series of six separate experiments, each
of them implementing a different Kraus operator, and then adding the results with the
corresponding coefficient. This Kraus decomposition demonstrates that the transversal

Ûi pi

1l 1
4

(
1 + e−γ

(1)
2 t + e−γ

(2)
2 t + e−γ

(1)
2 t−γ(2)

2 t−2c12t

q
γ
(1)
2 γ

(2)
2

)
Ẑ1

1
4

(
1− e−γ

(1)
2 t + e−γ

(2)
2 t − e−γ

(1)
2 t−γ(2)

2 t−2c12t

q
γ
(1)
2 γ

(2)
2

)
Ẑ2

1
4

(
1 + e−γ

(1)
2 t − e−γ

(2)
2 t − e−γ

(1)
2 t−γ(2)

2 t−2c12t

q
γ
(1)
2 γ

(2)
2

)
Ẑ1Z2

1
4

(
1− e−γ

(1)
2 t − e−γ

(2)
2 t + e−γ

(1)
2 t−γ(2)

2 t−2c12t

q
γ
(1)
2 γ

(2)
2

)
e−i

π
4
(Ẑ1+Ẑ2) 1

2e
−γ(1)

2 t−γ(2)
2 t sinh(2c12t

√
γ

(1)
2 γ

(2)
2 )

ei
π
4
(Ẑ1+Ẑ2) 1

2e
−γ(1)

2 t−γ(2)
2 t sinh(2c12t

√
γ

(1)
2 γ

(2)
2 )

Table D.5: Kraus decomposition for the correlated noise on two qubits

relaxation in NMR is equivalent to a phase flip error, where the qubits undergo a phase
flip given by the operator in the first column of Table D.5 with a probability given by the
second column.
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D.2.5 Determining the correlation factor

This subsection will explain how the noise correlation factor between two spins can be
extracted using standard NMR techniques and how quantum error correction can be used
to achieve similar results. The details and results of the experimental implementation,
as well as a summary of the advantages of this new technique will then conclude this
subsection.

NMR techniques

In NMR, measurement of transversal relaxation times (T2’s) is a standard techniques and
is implemented through single coherence decay and spin echo [78]. The same technique is
applicable to double coherences to extract the noise correlation factor between two spins.
Consider the following pulse sequence:

τ

2
→ π1π2 →

τ

2
.

where τ is a certain time delay and πi correspond to a π pulse on nuclei i around any axis
in the xy-plane. They are used to refocus the field inhomogeneities via spin echo. If we
apply such a pulse sequence to a state of the form

ρini = |00〉〈00|11,

which can be created using standard NMR techniques of coherence selection such as phase
cycling [23] or field gradients, the noise model developed earlier predicts that the amplitude
of such a state should decay as

|00〉〈00|11 → e−γ
(1)
2 t−γ(2)

2 t−2c12t

q
γ
(1)
2 γ

(2)
2 |00〉〈00|11.

In NMR, only single coherence state can be detected. A final π
2 pulse is thus needed on

one of the spin to detect such a state. By repeating the experiment for various value of
τ , one obtain a decay curve. Once the values of T2 are measured using single coherence
decay experiments, it is possible to deduce the value of c12 .

Three qubit quantum error correction code

The three qubit quantum error correction code [45] can protect one qubit of information
|ψ〉 against single qubit errors about one Pauli axis. The quantum circuit for this code can
be found in Fig. D.8. If errors happen during the noise period, it can be shown that this
code corrects any single qubit phase error, i.e. errors of the form Ẑ1, Ẑ2 or Ẑ3, but fails at
correcting multiple phase errors, i.e. Ẑ1Ẑ2, Ẑ1Ẑ3, Ẑ2Ẑ3 and Ẑ1Ẑ2Ẑ3.
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As seen above, the natural noise present in NMR consists of a phase flip. A valid
measure to quantify the effect of the noise on the system is to consider the fidelity of
entanglement FE [163], which corresponds to averaging the state-correlation for the density
matrix states X̂, Ŷ and Ẑ. In other words, the state-correlation fÂ for an initial state Â
consist on the amount of polarization in the output relative to the input. The fidelity of
entanglement is then given by

FE =
1
4
(1 + fX̂ + fŶ + fẐ).

If the decoherence is caused solely by the transversal relaxation, the fidelity of entanglement
over time of such a protocol is given by

FE =
1
4

[
2 + e−γ

(1)
2 t + e−γ

(2)
2 t + e−γ

(3)
2 t

−e−γ
(1)
2 t−γ(2)

2 t−γ(3)
2 t cosh(2c12t

√
γ

(1)
2 γ

(2)
2 )
]
,

where it has been assumed that the noise affecting qubit 3 was uncorrelated with the other
qubits (because qubit 3 is represented by a separate nuclear species in our experiment).
The correlation factor can be extracted from the deviation of the fidelity from unity, due
to the failure of the code.

As demonstrated in Sec. D.2.4, it is possible to engineer the correlated noise on two
spins using six different experiments. If we want to engineer the noise for a third uncor-
related qubit, it is done with twelve experiments, using the union of two sets of Kraus
operators/coefficients given by

{Û ′
k, p

′
k} = {Û1,2

i , (1− q)p1,2
i }

⋃
{Û1,2

j Ẑ3, qp
1,2
j }

for k = 1 . . . 12 and i, j = 1 . . . 6 and where q = 1
2(1− eγ

(3)
2 t) corresponds to the probability

of the uncorrelated qubit to undergo a phase flip and Û1,2
i and p1,2

i are the correlated noise
Kraus operators/coefficients given in Table D.5.

Therefore, we can implement the QECC using those twelve noise operators and obtain
the fidelity decay for various value of c12 and t .

The experiment

The theory laid down in the previous subsection assumed that the system is composed of
two noise correlated qubits and one uncorrelated qubit. As seen in subsection D.2.3, such
a system can be found in a molecule containing two spins of the same species with different
Larmor frequency and one of a different kind. For this experiment, we have chosen the
13C-labeled acetyl chloride dissolved in deuterated chloroform and used a 700 MHz Bruker
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Avance NMR spectrometer with dual inverse cryoprobe. The structure, chemical shifts
and J-coupling strengths of the molecule are given in Fig. D.9. For this molecule, the
assumption of weak coupling used throughout subsection D.2.3 is fulfilled due to the large
chemical shift difference between the two carbons.

The T2’s for each nuclei have been determined using a series of spin echo experiments
for various delays and their values are given in Table D.6. To implement the quantum
error correction code on this molecule, the circuit in Fig. D.8 was first converted into
gates implementable in NMR, which consist of single qubit rotations about any axis in the
xy-plane or around the z-axis, and J-coupling evolutions. A J-coupling of length τ = 1

2J

is locally equivalent to a C-NOT. Moreover, the z-rotations can be done instantaneously
by changing the phase of subsequent pulses. This ideal NMR pulse sequence was then
fed into a homemade compiler which estimates the first order phase and coupling errors
during the pulses and then tracks the phase of the subsequent pulses and optimize the
refocusing scheme and J-coupling delays to minimize overall coupling errors [101]. Spatial
averaging [101] was used to initialized the states |00〉〈00|0012 ⊗X3, |00〉〈00|0012 ⊗ Y3 and
|00〉〈00|0012 ⊗ Z3, from the thermal state of a liquid state NMR system.

The quantum error correction code was first implemented using engineered errors in
twelve experiments. The purpose of analyzing engineered noise is to be able to generate dif-
ferent fidelity of entanglement decay curves corresponding to different value of correlation
factors. It is done by adding each experiments weighted by the corresponding coefficient
given in Table D.5. Once a fidelity decay curve is obtained for the natural noise, it is
possible to extract the correlation factor by comparing to which engineered noise fidelity
decay curve the natural noise curve correspond to.

The natural noise fidelity decay curve was obtained by implementing the identity map
during the noise section of Fig. D.8. To perform this implementation the spins could not be
simply decoupled from one another using multiple π pulses (e.g. the Hadamard refocusing
scheme [91]). Under such a refocusing scheme for a time t, the double coherence terms in
a density matrix spend as much time in zero quantum coherence as in double quantum

Nucleus T1 T2

M 4.0± 0.1 1.2± 0.1

C1 7.9± 0.4 2.1± 0.1

C2 15.2± 0.8 0.24± 0.03

Table D.6: T1 and T2 values for the acetyl chloride. It can be seen that for the maximal
duration of the experiment (∼ 300ms), the effect caused by T1 relaxation can be neglected.
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coherence. Therefore, from Eq. D.1, the correlation factor term in the exponential decay
cancel and do not affect the decay of the double coherence term.

If we let the natural noise act on the system for a period τ = n
JC1C2

, n ∈ N, the overall
evolution is an identity and the terms of the density matrix containing a double coherence
for the two carbons have remained in double coherence during the entire delay. The field
inhomogeneities can be refocused by applying simultaneous π pulses on the carbons which
leaves the J-coupling evolution untouched.

The fidelities of our experiments have been extracted by fitting every peak of the NMR
spectra using Lorentzian shape curves. The resulting values can be seen in Fig. D.10, where
the curves for the fidelity of entanglement for engineered noise are shown for correlation
factors of 0, 0.5 and 1. Ten values of the fidelity decay obtained by applying natural noise
are shown, from which we extracted a correlation factor of c12 = 0.5± 0.2.

This experiment needs a high degree of precision, since within the time interval used to
implement natural noise (from 0 to 320 ms), the maximum difference between the c12 = 0
and c12 = 1 curves is 3%. Integrating the square of the noise of a spectrum over a region
corresponding to the width of a signal peak estimates the signal to noise ratio to be of the
order of 1%. Therefore, the fluctuation of the measured fidelities due to the noise explains
the large uncertainty on the measured correlation factor.

Using the usual NMR technique of double coherence decay, the noise correlation factor
between C1 and C2 was determinded to be c12 = 0.3±0.2. The interval using QECC agrees
with the value obtained using the traditional double-quantum coherence decay technique,
to within experimental error.

Discussion

By comparing the above two techniques to extract the noise correlation factor between two
spins, one could argue that the QECC technique is much more involved then the standard
NMR technique, while yielding to the same conclusion. The goal of the present experiment
was to demonstrate that the use of QEC to probe the noise present in a system is feasible
and that the control necessary to get the error information is achievable. From there, it
is possible to generalize this technique to any physical system with more complex noise
model. If the noise contains not only phase errors, but also bit errors and/or a combination
of the two, the same technique could be applied using more complex QECC, such as the
five qubit code [115].

Other technical advantages arise from the signal detection. Using the NMR technique,
there is an doubly exponential decay in the signal amplitude for a double coherence decay
(see Eq. D.1). From the nature of the QECC technique, the signal decays slower, thus
allowing better statistics and analysis. If the system under analysis contains three spins
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of the same type, there would be a possibility of three different correlation factors c12, c23
and c13. Using standard NMR technique, three different experiments with different initial
states would be needed to extract those three values. Using the QECC technique, only
the noise portion of the pulse sequence would need adjustment by changing the refocusing
scheme in order to refocus the unwanted correlation,e.g. a π pulse on qubit 1 would cancel
the correlation c12 and c13 for the reasons explained earlier.

Finally, this technique could be used to validate our assumption that the noise is
effectively gaussian. In the case where the system contained three noise correlated spins,
our gaussian assumption ensures that the noise is only pairwise correlated, i.e. c123 = 0.
If it is so, a triple coherence decay curve should be described using only the T2 values and
the pairwise correlation factors. This curve can be obtain using the NMR technique of
triple coherence decay, but would yield a curve that decays triply exponentially. On the
other hand, a curve affected by a triple correlation factor could be obtained by the same
QECC pulse sequence by letting all the noise correlations act during the noise part of the
pulse sequence. In the case where that curve would not be described properly using only
the pairwise correlations, it would be an indication of the failure of the noise model.

D.2.6 Conclusion

In this work, we have demonstrated that QEC can be used to probe a physical system
and extract partial, but important information about the noise model without having to
perform full quantum process tomography. The technique was implemented successfully
in a liquid-state NMR quantum information processor, but is applicable to any QIP device
in which standard quantum error correction can be carried out.
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Figure D.1: Comparison of the dynamics of the classical (left) and quantum (right) random
walk on a square for three steps. H or T represents the state of the coin and the number,
the position of the walker at one of the four nodes of the square. p is the probability of
each classical state and A is the probability amplitude for the quantum state. Part (a)
for each step is the coin flip and part (b) the movement around the square. In both cases
the walker starts at node 0 with the coin in the heads state. After one step he has a fifty
percent probability of being at either of nodes 1 or 3. Then, in the second step he goes
to either 0 or 2 with fifty percent probability. In the third step however, the two types of
walk diverge. The classical walk continues to oscillate and the probability remains spread
out. In the quantum walk on the other hand, the probabilities interfere and cancel out
leaving all the probability in one corner after three steps.
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Figure D.2: Logical labeling of the nodes on which we implemented the DTQW. With this
labeling, flipping the first qubit corresponds to a horizontal move and flipping the second
qubit, a vertical move.

C 1 C 2

C 3

C 4

C1 −2546

C2 40.5 −21873

C3 1.5 69.9 −18498

C4 7.1 1.4 72.4 −25322

C1 C2 C3 C4

Figure D.3: Molecular structure of trans-crotonic acid and its Hamiltonian parameters.
The chemical shifts are given as the diagonal elements and the coupling strength (Hz) by
the off-diagonal elements. Note that since the darkly shaded unlabeled nuclei are oxygen
whose natural abundance of 16O with 0 spin is close to 100 %. Therefore, the two oxygen
nuclei do not couple with the rest of the molecule and can be ignored. Lightly shaded
unlabeled nuclei are hydrogen which were decoupled during the experiment.
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Figure D.4: NMR pulse sequence representing one step of DTQW. The notation Rθi means
a rotation of an angle θ around the axis i. Refocussing pulses are not shown. Since each
nucleus is tracked in its own rotating frame, rotations about the z-axis are implemented
instantaneously through a change of reference frame.
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a)

b)

c)

Figure D.5: Real part of the reconstructed density matrix for a) Step 0, 4 and 8 of the
quantum walk on the crotonic acid. b) Step 3 with no, partial and full decoherence on the
crotonic acid and c) Step 0, 4 and 8 on the TCE.
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C1

C2

H

Figure D.6: Diagram of 13C labeled TCE. The chemical shifts and couplings are given in
the table. Note that since the chlorine nuclei (unlabeled) have a spin of 3

2 , they have an
electric quadrupole moment which causes them to decohere quickly and they have a very
small coupling to the rest of the molecule which we can ignore in the natural Hamiltonian
of the molecule.
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Figure D.7: Circuit used to implement one step of the DTQW on the TCE. The z-rotation
on C2 occurs naturally during the coupling with C1. Note also that the refocusing pulses
are not shown in this pulse sequence.
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Figure D.8: The quantum circuit of the three qubit quantum error correction code. The
two qubit gates are C-NOTs and the three qubit gate is a Toffoli gate.
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Figure D.9: The 13C-labeled acetyl chloride molecule. The diagonal elements of the table
gives the chemical shift (difference in Larmor frequency) for each nucleus with respect to
a reference frequency (700.13 MHz for the hydrogens and 176.05 MHz for the carbons).
The three hydrogens forming the methyl group are indistinguishable and form a spin-1

2

and 3
2 subspace. The spin-1

2 subspace was selected using a three-step pulse sequence and
“crusher” field gradients [44].
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Figure D.10: Experimental results. The lines correspond to the fidelity decay for noise
correlation factors of 0, 0.5 and 1 as a function of time simulated from the measured T2’s
and the experimental fidelities obtained by implementing engineered noise. The points are
the fidelities when the system is affected by natural noise for a various amount of time.
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Appendix E

Another Result Related to

Quantum Reference Frame

The following is an unpublished paper about covariant maps under spacial rotation.

E.1 Quantum Reference Frames and the Classification of

Rotationally-Invariant Maps

J.-C. Boileau1,2, L. Sheridan2, M. Martin2, and S. D. Bartlett3

1. Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
2. Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5,

Canada.
3. School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia

Abstract: We give a convenient representation for any map which is covariant with respect to
an irreducible representation of SU(2), and use this representation to analyze the evolution of a
quantum directional reference frame when it is exploited as a resource for performing quantum
operations. We introduce the moments of a quantum reference frame, which serve as a complete
description of its properties as a frame, and investigate how many times a quantum directional
reference frame represented by a spin-j system can be used to perform a certain quantum operation
with a given probability of success. We provide a considerable generalization of previous results on
degradation of reference frame, from which follows a classification of the dynamics of spin-j system
under the repeated action of any covariant map with respect to SU(2).

E.1.1 Introduction

Quantum operations, such as the application of a unitary rotation on a qubit or a projective
measurement in some basis, require some form of reference frame. In most descriptions of
quantum experiments, this reference frame is considered to be classical and therefore can
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be treated as non-dynamical and used repeatedly without disturbance. The situation is
quite different for a quantum reference frame – measurements and interactions can cause
an unknown disturbance on the quantum frame and, consequently, it can reduce the ability
of that system to serve as a reference frame in subsequent uses [68, 8, 13, 143, 12].

Consider, for example, an apparatus implementing a unitary rotation operation on a
qubit. For concreteness, we consider this qubit to be spin-1/2 system; however, it could
equally well be the polarization state of a single photon, a two-level atom, etc. A standard
apparatus uses a classical directional reference frame to define the axis about which the
rotation occurs. Now suppose that due to miniaturization, space constraints, or to improve
the speed of the operation, the system that serves as the reference direction is not accurately
described classically, but instead requires a quantum treatment using a Hilbert space of
finite size. The quantum operation describing the unitary rotation is then an operation
conditional on the state of the quantum reference frame. Two effects will occur as a result
of the quantum nature of the reference frame. First, this conditional operation will not
be identical to the classical case due to the inherent uncertainty in the direction of the
quantum reference frame. Second, upon use, the state of the quantum reference frame may
experience an unknown disturbance, essentially due to entanglement induced between the
reference frame and system as a result of the interaction.

We now formally define the scenario that we are considering. Let ρ(0) be the initial
state of the quantum reference frame. Let σ⊗n be the state of a reservoir composed of
n ordered subsystems on which we will sequentially perform operations using the same
quantum reference frame. Using the first subsystem, we apply a quantum operation χ on
the joint system ρ(0) ⊗ σ1. We require that the map χ is rotationally invariant, meaning
that it is independent of any specific direction in space. Formally, a map χ is rotationally
invariant if and only if χ[R(Ω)(·)R(Ω)†] = R(Ω)χ(·)R(Ω)† for any rotation Ω ∈ SO(3) (or
more generally SU(2) if half-integral spins are considered) of the joint system. (Here, R is
the unitary representation of the rotation group SO(3) on the joint system.) Subsequent
to the operation, the reduced state of quantum reference frame is ρ(1) = Trr1 [χ(ρ(0)⊗σ1)],
where Trri denotes the partial trace over the ith subsystem of the reservoir. The first
subsystem of the reservoir is then discarded, and the same operation is performed on the
second subsystem, but using the updated quantum reference frame ρ(1). We repeat these
steps with the following subsystems of the reservoir, always using the updated quantum
reference frame. The state of the quantum reference frame after the ith step is recursively
ρ(i+1) = Trri [χ(ρ(i)⊗ σi)]. By discarding the previous subsystems of the reservoir at every
step, we assume that the reservoir cannot be used to increase our knowledge about the
quantum reference frame.

We wish to define a measure of the quality of the quantum reference frame, and to
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study how it decreases with the number of times the reference frame is used. Defining the
quality of a quantum reference can be quite arbitrary and depends on the interests of the
experimentalist and on the task at hand. In this paper, we use the term quality function
for any function F that is meant to quantify the ability of the reference frame to perform
a particular task. We will set general conditions on such functions, and analyze how such
functions evolve with the number of uses of the quantum reference frame. We will also
analyze the longevity of the quantum reference frame, that is, the number of times it can
be used to perform a certain task before its quality falls below a certain threshold.

As in [13, 143], a quantum directional reference frame could be used to measure whether
a series of spin-1

2 particles are parallel or anti-parallel to some classical arrow. (See Fig-
ure E.1.) However, there are a myriad of other possible cases, including measuring the
angular momentum of a series of spin-j′ systems with j′ > 1

2 , or using the quantum refer-
ence spin to indicate an axis about which a unitary rotation operation is performed.

Figure E.1: The scenario studied by Bartlett et al. [13]. The quantum reference spin is
used to measure the direction of a series of spin-1

2 particles in the completely mixed state
by means of a projection onto the J − 1

2 or J + 1
2 subspaces.

In this paper, we generalize the results of Refs. [13, 143] in three different ways.
First, we consider performing operations on a reservoir of qudits (quantum systems with
d-dimensional Hilbert spaces) instead of restricting to the case of qubits (d = 2) as
in [13, 143]. Second, we consider all possible rotationally-invariant quantum operations
on the reference frame and the system, while the analyses in [13, 143] were restricted
to very particular kind of interaction (specifically, interactions describing measurements).
Note that this joint quantum operation could be a measurement, a conditional unitary, or
any other completely-positive map, provided that it is rotationally invariant. Third, we
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generalize the concept of the quality function, and place general conditions on its form
and evolution. In [13, 143], only a particular kind of quality function was considered – one
which was based on the average probability of a correct measurement given a known spin
direction – while now we are interested in any possible quality function.

The paper is organized as follows. In Section E.1.2, we introduce a set of parameters
for describing a quantum reference frame, which we call moments, and demonstrate that
any quality function must depend only on these moments. We then present the key re-
sult, Theorem 15, which provides a classification of all rotationally-invariant maps. We
give some recursive equations describing the evolution of the moments (Theorem 16). In
Section E.1.3, we discuss the longevity of a quantum reference frame for a general quality
function under the repetitive application of a rotationally-invariant map, by analyzing the
dependance of the evolution of its moments. Section E.1.4 is dedicated to a pair of exam-
ples intended to illustrate the power of the techniques developed in the earlier sections of
the paper. We explore the specific cases of measuring spin-1 particles relative to a quan-
tum reference frame, as well as the use of a reference frame to perform Pauli operations
on qubits. We conclude with some general comments in Section E.1.5.

E.1.2 Moments and Fidelity Functions

A classical reference frame is a local convention for describing the state of a system. A
quantum reference frame is a quantum system that carries information about a classical
reference frame. We define a quantum directional reference system as one which is corre-
lated with a classical direction in space represented by the vector n̂. The quantum system
that indicates the direction of our reference axis is taken to be a spin-j system, which has
dimension d = 2j + 1. As in [143], we consider an arbitrary initial state ρ(0)

j (n̂) for the
spin-j quantum directional reference frame. (That is, the quantum reference frame trans-
forms under rotations according to the spin-j representation.) If we additionally assume
that the initial quantum reference frame depends only on the vector n̂, we deduce a sym-
metry condition: if Rj(Ω) is the spin-j unitary representation of the rotation Ω ∈ SU(2)
that transforms n̂ to n̂′, then Rj(Ω)ρ(0)

j (n̂)Rj(Ω)−1 = ρ
(0)
j (n̂′). That is, the set of possible

initial states {ρ(0)
j (n̂)} is in one-to-one correspondence with the set of directions n̂.

Because a vector n̂ has an invariance group – the group of rotations about this axis –
the symmetry condition implies that the state of the quantum directional reference frame is
also invariant under rotations about the n̂-axis. This in turn ensures that ρ(0)

j (n̂) commutes

with the angular momentum operator Jn̂ in the n̂-direction, and thus ρ(0)
j (n̂) is diagonal

in the basis of eigenstates of Jn̂.
We now consider how the state of the quantum reference frame is updated through

its use in repeated rotationally-invariant operations χ which act on both the frame and
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the reservoir. We assume as in [13] that the reservoir initiates in a state that is invariant
under rotations. (The completely mixed state is one example of such a state, but there
exist other non-trivial states).1 The assumptions that the initial state of the reservoir and
the joint quantum operation are spatially invariant imply that the map ξ used to update
the state of the quantum directional reference frame, ρ(i+1)

j = ξ(ρ(i)
j ) = Trri [χ(ρ(i)

j ⊗ σi)],
is also rotationally invariant. We denote the restricted map ξ on the quantum directional
reference the disturbance map. It describes the back-action on the reference which occurs
as a result of the interaction.

LetRn̂(θ) be the rotation by an angle θ around the vector n̂. Suppose that a rotationally-
invariant map ξ is applied to density matrix ρj that is diagonal in a basis given by the
eigenvectors of Jn̂. Because

Rn̂(θ)ξ(ρj)R−1
n̂ (θ) = ξ(Rn̂(θ)ρjR−1

n̂ (θ)) = ξ(ρj), (E.1)

then ξ(ρj) is also diagonal in the basis given by the eigenvectors of Jn̂. As a result, the evo-
lution of the quantum reference frame under the repeated application of the rotationally-
invariant map ξ can be described by 2j+1 equations, one for each of the eigenvalues of ρj .
A different set of parameters that are equivalent to the eigenvalues is the set of moments
given by

{Tr[ρjJ `n̂] | 1 6 ` 6 2j}. (E.2)

Note that only 2j moments are necessary because the sum of the eigenvalues must be
one. The use of moments instead of eigenvalues will greatly simplify the analysis of the
evolution of the quantum reference frame.

The main motivation for studying the moments of the quantum reference frame is that
any quality function F will depends only on these moments. Consequently, the behavior
of the different moments will determine the behavior of the different quality functions. To
see why F depends only on the moments given by equation E.2, we first remark that any
reasonable form of F depends only on the state of the quantum reference, but that it must
respect the relation F (ρj) = F (Rj(Ω)ρjRj(Ω)−1) for all rotations Ω ∈ SU(2) and state
ρj diagonal in the basis composed of the eigenvectors of Jn̂. In other words, the quality
measure should not be biased such that it favors a quantum reference frame that is pointed
in any particular direction relative to some external frame. All directions must be equally
valid. Therefore, F does not depend on the direction of n̂, but only on the eigenvalues or

1Note that, in [143], they considered the case where the qubits could also be partially or fully polarized,

implying that there was some initial correlation between the systems to be measured and the quantum

reference frame. Generalizing their results to maps χ that do not preserve angular momentum and to

reservoirs that are not polarized in the direction of the quantum reference or only composed of spin- 1
2

particles is challenging problem. We hope that the framework we provide here will be useful in extending

our results to this general situation.
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the moments of ρj . Note that the set of moments with respect to the direction n̂ can be
written as a function of the moments with respect to any other direction — this is simply
a change of basis.

Recall that ρ(k)
j as the state of the quantum reference frame after the kth joint operation

with a subsystem of the reservoir, and ρ
(0)
j as the initial state of the quantum reference

frame. By our previous arguments, for a given state σ⊗n of the reservoir and joint quantum
operation χ, the moments of ρ(k)

j must be explicit linear functions of the moments of ρ(k−1)
j .

These results lead us to the general recursion relation,

Tr[ρ(k)
j J `n̂] =

2j∑
i=0

A
(`)
i Tr[ρ(k−1)

j J in̂], (E.3)

where A(`)
i are real coefficients.

We now present a theorem which provides a classification of the different rotationally-
invariant maps, and constitutes the primary result of this paper. First, some notation. Let
Jk for k = x, y, z be the angular momentum operators for some arbitrary Cartesian frame.
On a spin-j system, define the map

ζ(ρj) =
1

j(j + 1)

∑
k∈{x,y,z}

JkρjJk, (E.4)

for ρj a density matrix of the spin-j system. Let ζ◦n denote the n-fold composition of ζ
for n > 0, and define ζ◦0(ρj) = ρj .

Theorem 15 Any map ξ which is invariant with respect to a spin-j irreducible represen-
tation of SU(2) has the form

ξ(ρj) =
2j∑
n=0

qnζ
◦n(ρj), (E.5)

where {qn} are real coefficients.

The proof is provided in Appendix E.1.7.
Theorem 15 allows us an immediate simplification by restricting the number of coeffi-

cients A(`)
i of equation (E.3) that are required to calculate the evolution of the reference

state. The following theorem limits the number of coefficients (A(`)
i ) which determine the

evolution of the Jn̂-moments of a spin-j under the action of a general invariant channel,
and can be very useful to study the behavior of moments with low degree:

Theorem 16 If ` is even, then

Tr[ρ(k)
j J `n̂] =

`/2∑
i=0

A
(`)
2i Tr[ρ(k−1)

j J2i
n̂ ] (E.6)
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and if ` is odd, then

Tr[ρ(k)
j J `n̂] =

(`+1)/2∑
i=1

A
(`)
2i−1Tr[ρ(k−1)

j J2k−1
n̂ ]. (E.7)

Proof. We first define the z-axis so that it is parallel to the vector n̂ which describes
our classical directional reference frame. Consider any rotationally-invariant map ξ. By
Theorem 15, we can write ξ(ρj) =

∑2j
k=0 qkζ

◦k(ρj) where the coefficients qk are real numbers
and ζ is given by equation (E.4). Therefore,

Tr[ξ(ρj)J `z ] = Tr[ρjξ(J `z)] =
2j∑
n=0

qnTr[ρjζ◦n(J `z)]. (E.8)

To prove our theorem, it is sufficient to show that ζ◦n(J `z) is a polynomial in Jz of degree
`, but where all the powers have the same parity as `. Define λ = j(j + 1) and define the
function

G(`) ≡ i

λ
(JxJ `−1

z Jy − JyJ
`−1
z Jx). (E.9)

Using the commutation relations [Ja, Jb] = iεa,b,cJc, we can show that

ζ(J `z) = ζ(J `−1
z )Jz +G(`), (E.10)

and

G(`) = G(`− 1)Jz + ζ(J `−2
z )− J `z

λ
. (E.11)

By induction, it is easy to prove using those relations that ζ(J `z) is a polynomial in Jz of
degree ` where all the powers have the same parity as `. Using the fact that if ζ◦n(J `z) =∑`

s=0 bsJ
s
z for some complex bs, then ζ◦n+1(J `z) = ζ(

∑
s bsJ

s
z ) =

∑
s bsζ(J

s
z ) and we can

prove by induction that ζ◦n(J `z) is a polynomial in Jz of degree ` where all the powers have
same the parity as `. This concludes our proof.

E.1.3 Longevity of a Quantum Reference Frame

Suppose we have a microscopic device for performing an operation or measurement on a
quantum spin using a quantum reference frame. Ultimately, after many uses, the quantum
reference frame will need to be reinitialized. However, we wish to make as many uses of
it as possible before performing this reinitialization, without allowing the accuracy to fall
below some allowed threshold. To define this accuracy we will pick some quality function
that is suited to our particular purpose. Recall that any quality function F will depend
only on the moments of the Jn̂ operator.
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As in [13, 143], we are interested in the scaling, with respect to Hilbert space dimension,
of how many times a quantum reference frame can be used before the value of its quality
function falls below a certain threshold. We refer to this property as the longevity of a
quantum reference frame. There are three important features of our analysis to highlight.
First, whereas the work of [13, 143] restricts attention to one particular quality function,
we will investigate the behavior of arbitrary functions satisfying the invariance relation
described in Sec. E.1.2. Because we consider any such function, the longevity of the
reference frame can be arbitrary. However, we are able to prove some general statements
about the decay of the moments, and relationships amongst them, and these results can
then be used to infer the behavior of any particular quality function. Second, rather than
considering only a particular state of the reference frame (in [13, 143], they considered
the state ρ(0)

j = |j, j〉n̂〈j, j| because it was optimal for the task at hand), we consider an

arbitrary state. As such, the initial state ρ(0)
j of the quantum reference frame, as specified

by its moments, can depend on j in a quite arbitrary way. Finally, we consider arbitrary
rotationally-invariant joint quantum operations χ. In [13, 143], χ was chosen to describe
a particular measurement that was optimal for some task. The resulting disturbance map
that they considered is

ξ(ρj) = (
1
2

+
1

2(2j + 1)2
)ρj +

2j(j + 1)
(2j + 1)2

ζ(ρj) , (E.12)

where ζ(ρj) is given by equation (E.4). Such covariant map was analyzed in [155]. In [13],
it was shown that the number of times a reference frame can be used before its quality
function (which in their case depends only of the first moment) falls below a certain
threshold value scales by a factor j2.

In the following, we prove a general theorem about the longevity of quantum reference
frames. We start with Theorem 15, which states that any rotationally-invariant disturbance
map can be written as ξ =

∑2j
n=0 qnζ

◦n. However, as we now show, if the range and values
of the coefficients qn can depend on j arbitrarily, it is impossible to make any general
statements about the longevity. We identify some natural assumptions for the coefficients,
which then allow us to present a general theorem.

First, in general, the number of parameters qn describing a map increases with j; i.e.,
there are 2j + 1 parameters which can be significant to the evolution. As an example,
consider the complete depolarization map χ(ρj ⊗ σ) = 1

2j+1I2j+1⊗ 1
2I1/2. It is straightfor-

ward to show that, for this map, all parameters qn for 0 ≤ n ≤ 2j are nonzero. However,
inspired by an argument in [143], consider a rotationally-invariant map χ(ρj ⊗ σ) that
conserves angular momentum in the n̂ direction, meaning that χ(Jn̂) = Jn̂ where Jn̂ is the
total angular momentum operator in the n̂ direction. The change of angular momentum
of the quantum reference frame caused by such a disturbance map ξ cannot be higher
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than the change in angular momentum of the subsystem σ, which is in turn bounded by
the subsystem’s dimension d. Given that the map ζ(·) = 1

λ

∑
k=x,y,z Jk(·)Jk cannot lower

or increase the angular momentum in any direction by more then one unit, the distur-
bance map’s coefficients therefore satisfy qn = 0 for all n > d, where d is the dimension of
each subsystem σ of the reservoir. Thus, if a rotationally-invariant map conserves angular
momentum, then we can bound the number of non-zero coefficients qn in a way that is
independent of j.

Second, if the parameters qn can depend on j arbitrarily, then we would not be able
to conclude anything about the longevity of the quantum reference frame. To understand
this, consider the example

χ(ρj ⊗ σ) = αjρj ⊗ σ + (1− αj)
j+k∑

k=|j−k|

Πj+k(ρj ⊗ σ)Πj+k, (E.13)

where Πj+k is a projection into the subspace of total angular momentum j + k. This map
conserves the total angular momentum of the joint system. The dependence of αj on j

will determine directly the rate of the decay of the moments in function of j. Because
the dependence of αj can be arbitrary, then the rate of the decay of the moments can
also be an arbitrary function of j. We conclude that, in order to make a statement about
the longevity of the quantum reference frame, we need to assume more than a bound
on the number of the qn parameters or that the rotationally-invariant map χ conserves
angular momentum in the direction of n̂. For the following theorem, we assume that each
coefficient qn converges to a constant when j →∞. We also need to make an assumption
about the rate of convergence: suppose that each qn can be written as a quotient of two
polynomial in j, such that the degree of the denominator is at least the degree of the
numerator (i.e., qn 6 O(1)). Finally, we assume that the state ρ(0)

j has the propriety that

Tr[ρ(0)
j J `n̂] = O(j`). A sufficient condition for this to be true is that there exists a β > 0

independent of j such that n̂〈j, j|ρ
(0)
j |j, j〉n̂ > β. (We note that these assumptions are

motivated by examples, which we explore in the following section.)

Theorem 17 (Longevity) Consider a quantum reference frame, realised as a spin-j sys-
tem with initial state ρ(0)

j , which is used for performing a rotationally-invariant joint oper-
ation χ. If this operation induces a disturbance map ξ =

∑2j
n=0 qn(j)ζ

◦n that satisfies the
following assumptions:

1. there exists some nmax such that qn = 0 for all n > nmax ,

2. qn 6 O(1) ,

3. Tr[ρ(0)
j J `n̂] = O(j`) ,
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then the number of times that such a quantum reference frame can be used before its `th

moment falls below a certain threshold value scales as j2.

Proof. Noting that the Jk operators are self-adjoint and using the cyclic propriety of the
trace, the map ζ has the property that

Tr[ζ(ρ)J `n̂] = Tr[ρ ζ(J `n̂)]. (E.14)

Therefore the moments of angular momentum in the n̂ direction after the map ξj has been
applied to the reference state ρ(k)

j can be expressed as

Tr[ρ(k+1)
j J `n̂] =

2j∑
n=0

qnTr[ρ(k)
j ζ◦n(J `n̂)] (E.15)

Using the commutation relations, the factor ζ◦n(J `n̂) can be expanded as a polynomial
in Jn̂ of degree `. Define λ = j(j + 1). Using a proof by induction on equation (E.10)
and observing that

∑
k∈{x,y,z} JkJn̂Jk = (λ − 1)Jn̂, it is easy to show that the coefficient

of the leading term will be A(`)
` =

∑nmax
n=0 [qn(1 − O( 1

λ))] = 1 − O
(

1
λ

)
where we used the

normalization condition
∑
qn = 1, the assumption that each qn is O(1) and the fact that

qn = 0 for n > 2j. The coefficients of the non-vanishing lower terms will be A(`)
i = O(1)

for i < `.
This reasoning about the constants A(i)

k is sufficient to characterize the rate of change
of the moments with repeat application of the map. To demonstrate this, let ` = 1. We
want to find the minimum value of t such that Tr[ρ(t)

j Jn̂] < c, for some constant c. Using
equation (E.7), we need to solve

c = Tr[ρ(0)
j Jn̂]

(
1−O

(
1
λ

))tc
. (E.16)

Therefore,
tc = O

(
j2
)
. (E.17)

To generalize to higher moment, observe that Tr[ρ(0)
j J in̂] 6 O(ji) for i < `. Recall that we

assumed that Tr[ρ(0)
j J `n̂] = O(j`). Using equation (E.7), the facts that A(`)

` = 1 − O
(

1
λ

)
and A(`)

i = O(1) for i < `, we can extend our result to higher odd moments by using strong
induction. In other word, we can show that the minimum value of t such that Tr[ρ(t)

j J
`
n̂] < c

for proper chosen initial state ρ(0)
j is O(j2). For even moments, a similar approach using

equation (E.6) can be used to obtain an identical conclusion.
Note that in the case were the assumptions of Theorem 17 fail, but there is a specific

dependance on j of the map χ and the state ρ(0)
j , equations (E.6) and (E.7) may still be

useful tools to study the longevity on quantum reference frame.

147



E.1.4 Examples

Measuring Spin-1 Systems

As an example, consider the measurement of spin systems relative to a directional refer-
ence frame. This problem was investigated in [13, 143] for the case of spin-1/2 systems.
Specifically, suppose that the reservoir consists of spin-s systems which are initially in the
completely mixed state. The quantum reference direction is a spin-j system with j > s,
aligned with some classical direction n̂. The goal is to measure each spin to determine its
component µ along the vector n̂ by performing a joint measurement on both the system
from the reservoir and the reference system. The optimal rotationally-invariant joint op-
eration for this task [11] is a POVM given by the projectors {Πj+µ|µ ∈ {−s, . . . , s}} where
Πj+µ corresponds to a projection onto the subspace where the total angular momentum of
the reference spin with the measured spin is j+µ. Define the fidelity Fs as the probability
that, when the reference is used to measure a system in a known state |s, µ〉n̂ by means
of the above POVM on the joint system the result it returns is correct, assuming that all
values of µ are equiprobable.

Consider briefly the case of s = 1/2, as in [13, 143]. The fidelity function can be
expressed in terms of the first moment of the reference frame after being used k times, as

F
(k)
1
2

= Tr(ξ◦k(ρ(0)
j )) = Tr

1
2

∑
µ∈{−1

2 ,
1
2}

Πj+µ(ρj ⊗ |µ〉〈µ|)

 =
1
2

+
1

2j + 1
Tr[ξ(ρ(k)

j )Jz] .

(E.18)
Using Theorem 16 and a simple calculation to evaluate A(1)

1 , as defined in equation (E.7),
we find the fidelity in terms of the original value of the first moment to be

F
(k)
1
2

=
1
2

+
Tr[ρ(0)

j Jn̂]
2j + 1

(
1− 2

(2j + 1)2

)k
. (E.19)

Note that the fidelity function in this case depends only on the first moment.
We now generalize to the case where we wish to measure the angular momentum of a

spin-1 particle along some direction using a quantum direction reference frame. (Larger
spins can be handled by similar means.) First, we determine an expression for the fidelity
in terms of the moments:

F
(k)
1 = Tr

[
1
3

∑
µ

Πj+µ(ρ
(k)
j ⊗ |µ〉〈µ|)

]
. (E.20)

where µ ∈ {−1, 0, 1}. Consider the disturbance map ξ as described in Section E.1.2:

ξ(ρ(k)
j ) =

1
3

∑
µ′′,µ′,µ

〈µ′′|Πj+µ′ |µ〉 ρ
(k)
j 〈µ|Πj+µ′ |µ′′〉. (E.21)
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Explicit expressions for the reduced operators on the reference system 〈µ′′|Πj+µ′ |µ〉 can be
found from the Clebsch-Gordon coefficients. The expression for the fidelity in terms of j
and the moments is

F
(k)
1 =

1
6

+

[
(2j + 1)2 − 2

]
6j(j + 1)(2j + 1)

Tr[ρ(k)
j Jz] +

1
2j(j + 1)

Tr[ρ(k)
j J2

z ]. (E.22)

Note that the fidelity in this case depends on the second moment as well as the first. Using
Theorem 16, we have:

Tr[ξ(ρ(k)
j )Jz] = A

(1)
1 Tr[ρ(k)

j Jz], (E.23)

Tr[ξ(ρ(k)
j )J2

z ] = A
(2)
0 +A

(2)
2 Tr[ρ(k)

j J2
z ]. (E.24)

Substituting some particular values of ρj (i.e., ρj = |j,m〉n̂〈j,m| for m = j, j−1) and
solving the system of equations, we obtain:

A
(1)
1 =

3j4 + 6j3 − j2 − 4j + 2
3j2(j + 1)2

= 1− 4
3j2

+O

(
1
j3

)
, (E.25)

A
(2)
0 =

2
(
8j4 + 16j3 − 8j − 3

)
3j(j + 1)(2j + 1)2

=
4
3
− 5

3j2
+O

(
1
j3

)
, (E.26)

A
(2)
2 =

4j6 + 12j5 − 3j4 − 26j3 + j2 + 16j + 6
j2(j + 1)2(2j + 1)2

= 1− 4
j2

+O

(
1
j3

)
. (E.27)

(The series apply as j →∞.) In terms of these constants, the fidelity evolves with k, the
number of applications of the map corresponding to the measurement of the z projection
of the spin-1 system, as:

F
(k)
1 =

1

6
+

ˆ
(2j + 1)2 − 2

˜
6j(j + 1)(2J + 1)

“
A

(1)
1

”k

Tr[ρ
(0)
j Jz] +

1

2j(j + 1)

0B@A(2)
0

1−
“
A

(2)
2

”k

1−A
(2)
2

+
“
A

(2)
2

”k

Tr[ρ
(0)
j J2

z ]

1CA .

(E.28)

Because the assumptions given in Section E.1.3 are satisfied, the longevity of the quan-
tum reference frame must scale as O(j2). This result is easily verified numerically. See
Fig. E.2.

Implementing a Pauli Operator on a Qubit

The quantum reference frame can also be used to define an axis for the purpose of im-
plementing some desired unitary gate. Having only one axis, we are restricted to the set
of gates corresponding to rotations about this axis. Suppose, for example, we want to
implement a Pauli Z operation on a qubit,

Z =

(
1 0
0 −1

)
, (E.29)
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Figure E.2: A plot of the longevity, as defined in Section E.1.3, against the reference
system size j for the scenario described in Example A (points converging to the solid line
of gradient 2), and Example B, Method 1 (points converging to the solid line of gradient
1), Method 2 (circles converging to the dashed line of gradient 1), and Method 3 (grey
circles converging to grey dot-dashed line of gradient 2). The points are found numerically.
The gradients of the lines in A and B(3) are 2, indicating longevity scaling as O(j2), and
the gradients of the lines in B(1) and B(2) are 1, indicating a scaling of O(j).

using a quantum reference direction ρj in the form of a spin-j system to define the z-axis.
To do this, we must implement a rotationally-invariant operation on the combined refer-
ence and system. Unlike the measurement considered in previous examples, in this case
we wish to implement a unitary operation on the system that is conditional on the state
of the quantum reference direction. In the language of quantum information, we want to
perform a unitary rotation about a direction programmed by the state of the reference
frame. However, that because the size of the reference frame is bounded and the number
of programmed operations (possible directions) is continuous, then the impossibility of a
“programmable quantum gate” [137] ensures that an ideal such conditional unitary cannot
exist. It is possible to approximate it, as we now show.

Method 1:
Consider the following operation, to be performed on the joint state of a quantum reference
frame ρj and a single qubit σ. First, define an covariant measurement on the spin-j
reference frame described by the POVM

{Λ(Ω) = (2j + 1)R(Ω)|e〉〈e|R(Ω)† , Ω ∈ SU(2)} , (E.30)
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where |e〉 is a normalized state of a spin-j system. The measurement effects of this POVM
satisfy the normalization condition ∫

Ω
dµΩΛ(Ω) = Ij , (E.31)

where Ij is the identity on the spin-j Hilbert space and dµΩ represents the Haar measure
over SU(2). This measurement is performed on the quantum reference frame state ρj , and
then conditional upon obtaining the outcome Ω, the operation Z(Ω) = R(Ω)ZR−1(Ω) is
applied to the system. If we subsequently discard the information about the measurement
result Λ, then the effective joint map

χ(ρj ⊗ σ) =
∫

Ω
dµΩ

√
Λ(Ω)⊗ Z(Ω)(ρj ⊗ σ)

√
Λ(Ω)⊗ Z(Ω)† , (E.32)

is clearly invariant. (Although the covariant measurement makes use of an external refer-
ence frame, the resulting map χ is independent of this choice of frame.) The net operation
on the system σ is given by the map

τ(σ) =
∫

Ω
dµΩTrj [Λ(Ω)ρj ]Z(Ω)σZ−1(Ω) . (E.33)

Note that this operation τ is also rotationally invariant; although the measurement and
subsequent unitary appear to require an external spatial reference frame, the net opera-
tion is invariant under changes of this frame. Also, because the operation is constructed
explicitly from a POVM measurement and a unitary operation conditional on this classical
result, followed by tracing out the state of the reference frame, it is necessarily completely
positive and trace preserving (CPTP). (This fact is also clear by observation: the term
Trj [Λ(Ω)ρj ] is a normalized probability distribution weighting possible unitaries Z(Ω),
and thus the map τ is a valid unital CPTP map.)

This expression for τ explicitly gives a Kraus decomposition of this map (albeit with a
continuous number of Kraus operators), τ(σ) =

∫
Ω dµΩE(Ω)σE(Ω)†, where

E(Ω) =
√

Trj [Λ(Ω)ρj ]Z(Ω) , (E.34)

are Kraus operators satisfying
∫
Ω dµΩE(Ω)†E(Ω) = I. The ability of this operation to

approximate the Z operation on the system is defined using the gate fidelity [84, 30, 136, 58]
given by

Fgate(Z, τ) ≡
∫
Ω dµΩ

∣∣Tr[E(Ω)†Z]
∣∣2 + d

d2 + d
(E.35)

where d (the dimension of the system on which the gate is applied) is 2 in our case.
Suppose that quantum directional reference frame ρj is aligned with the z-axis. Then

ρj is a mixture of states |j,m〉z for −j 6 m 6 j. To simplify our calculation, assume that
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ρj = |j,m〉z〈j,m| (i.e., we consider only a pure state, but at the end, we can generalize
for any mixed state). The state |e〉 that defines the POVM could be any state, but for
simplicity we consider only the case where |e〉 = |j, j〉z. In this case, the rotationally-
invariant operation on the combined reference and system is

τ(σ, ρj) = (2j + 1)
∫

Ω
dµΩ

∣∣
z〈j,m|R(Ω)|j, j〉z

∣∣2Z(Ω)σZ−1(Ω) . (E.36)

The Kraus operators are then given by

E(Ω) =
√

(2j + 1)
∣∣
z〈j,m|R(Ω)|j, j〉z

∣∣Z(Ω) . (E.37)

We can parameterize

R(Ω) = eiα

(
eiφ cos θ eiψ sin θ
−e−iψ sin θ e−iφ cos θ

)
(E.38)

where 0 ≤ α, ψ, φ ≤ 2π and 0 ≤ θ ≤ π
2 . The rotation R(Ω) can be rewritten using Euler

angles:
R(Ω) = eiαRz(−φ− ψ)Ry(−2θ)Rz(ψ − φ), (E.39)

where Rk(β) is a clockwise rotation of angle β around the k-axis. It follows that

Tr[R(Ω)ZR†(Ω)Z] = Tr[Ry(−2θ)ZRy(2θ)Z] = 2 cos 2θ. (E.40)

From [156], we have that

z〈j,m|R(Ω)|j, j〉z = e−iα−im(φ+ψ)−ij(φ−ψ)

√(
2j

j +m

)
(cos θ)j+m(− sin θ)j−m. (E.41)

Therefore,

|Tr[E(Ω)†Z]|2 = (2j + 1)
(

2j
j +m

)
(cos θ)2j+2m(sin θ)2j−2m

∣∣Tr[Ry(−2θ)ZRy(2θ)Z]
∣∣2

= 4(2j + 1)
(

2j
j +m

)
(cos θ)2j+2m(sin θ)2j−2m(cos 2θ)2, (E.42)

where, in the first step, we used the cyclic propriety of the trace. The Haar measure in
these coordinates is dΩ(U(2)) = (2π)−32 sin θ cos θdθdαdφdψ. It follows that

Fgate(Z, τ) =
1
3

+
2(j + 1 + 2m2)
3(j + 1)(2j + 3)

(E.43)

which is a function of the second moment of the z projection of the reference frame. The
result easily generalize to the case where ρj to is a mixture of pure state of the form |j,m〉z:

Fgate(Z, τ) =
1
3

+
2(j + 1 + 2Tr[ρjJ2

z ])
3(j + 1)(2j + 3)

. (E.44)
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This example is a case where the fidelity evolves with the expectation value of the second
moment, despite the fact that the reservoir is composed of spin-1

2 particles. Also note
that in this particular case the fidelity does not depend on any odd moments because the
operation depends only on the axis defined by n̂, but not on the direction along this axis.

We now consider how the quantum reference frame degrades with repeated use in
performing this operation. We assume that the qubit systems (the reservoir) on which we
apply the approximate phase gate are all in the completely mixed state 1

2I 1
2
. With each

application, the reference frame evolves according to the invariant map ξ(ρj) = Trsχ(ρj ⊗
1
2I 1

2
), where Trs is the partial trace of the qubit system on which we apply the approximate

phase gate. To calculate how the second moment evolves as a function of the number of
times the quantum reference frame has been used to perform the approximate phase gate,
we can use Theorem 16:

Tr[ξ(ρj)J2
z ] = A

(2)
0 +A

(2)
2 Tr[ρjJ2

z ]. (E.45)

To find the values of the coefficients A(2)
0 and A(2)

2 , we consider two possible initial states of
the quantum reference frame. First, suppose that ρj = 1

2j+1Ij , which yields ξ(ρj) = 1
2j+1Ij .

This evolution gives
j(j + 1)

3
= A

(2)
0 +A

(2)
2

j(j + 1)
3

. (E.46)

Second, using ρj = |j, j〉z〈j, j|, we obtain a second equation:

j(1 + j(3 + j + 2j2))
(1 + j)(3 + 2j)

= A
(2)
0 +A

(2)
2 j2. (E.47)

Solving those equations, we obtain

A
(2)
0 = j − 2j

2j + 3
= j − 1 +

3
2j
− 9

4j2
+O

(
1
j3

)
, (E.48)

and
A

(2)
2 = 1− 3(2j + 1)

(2j + 3)(j + 1)
= 1− 3

j
+O

(
1
j3

)
. (E.49)

From the above equations, we can deduce that the longevity of the quantum reference
frame is O(j) by noting that the fidelity after k repetitions of the gate is

F
(k)
gate(Z, τ) =

1
3

+
2

3(j + 1)(2j + 3)

j + 1 + 2A(2)
0

1−
(
A

(2)
2

)k
1−A

(2)
2

+ 2
(
A

(2)
2

)k
Tr[ρ(0)

j J2
z ]

 .

(E.50)
From the equations (E.48) and (E.49) we have that A(2)

0 goes as O(j) and A(2)
2 goes as O(1).

Looking at equation (E.50) we see that fidelity must go as O(1
j ) and therefore longevity

goes as O(j). This is also seen in the numerical work shown in Figure E.2. This result
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appears to be in contradiction with Theorem 17. However, this contradiction is resolved
by the fact that one of the assumptions of the theorem is not fulfilled. Indeed, even if
the map χ is rotationally invariant, it does not conserve the total angular momentum.
In particular, note that 〈j,m|zξj(|j, j〉z〈j, j|)|j,m〉 > 0 for all m in the range −j, . . . , j.
Because ζ◦2j(|j, j〉z〈j, j|) is the only map of the form ζ◦n(|j, j〉z〈j, j|) for 0 < n < 2j + 1
that has support in the state |j,−j〉z〈j,−j|, then q2j > 0. Therefore, there is no bound
nmax independent of j such qn = 0 for all n > nmax.

Method 2:
We now investigate an alternate method for approximating a Pauli Z operation using a

quantum reference frame. Consider the filtering operation [74]

Γ = (2j + 1)
∫

Ω
dµΩRj(Ω)⊗R1/2(Ω)

[
|j, j〉z〈j, j| ⊗ Z

]
Rj(Ω)−1 ⊗R1/2(Ω)−1. (E.51)

Observing that in spin notation

Z = |12 ,
1
2〉z〈

1
2 ,

1
2 | − |

1
2 ,−

1
2〉z〈

1
2 ,−

1
2 |, (E.52)

we can replace the operator Z in equation (E.51) with this expression and using the
Clebsch-Gordon coefficients we can express the part of equation (E.51) that is in the
square brackets as a joint system with total angular momentum having support on the
j − 1

2 and j + 1
2 subspaces. Γ is spatially-covariant and we can use Schur’s lemma to note

that it will be block-diagonal in the irreps j + 1
2 and j − 1

2 . Thus, we can rewrite it as

Γ = (2j + 1)

Z
Ω

dµΩRj+1/2(Ω)
h
|j + 1

2
, j + 1

2
〉z〈j + 1

2
, j + 1

2
| − 1

2j+1
|j + 1

2
, j − 1

2
〉z〈j + 1

2
, j − 1

2
|
i
R−1

j+1/2(Ω)

− (2j + 1)

Z
Ω

dµΩRj−1/2(Ω)
h

2j
2j+1

|j − 1
2
, j − 1

2
〉z〈j − 1

2
, j − 1

2
|
i
Rj−1/2(Ω)−1 (E.53)

= (2j + 1)
“

1
2j+2

(1− 1
2j+1

)Ij+1/2 − 1
2j

2j
2j+1

Ij−1/2

”
, (E.54)

which simplifies to

Γ = (
2j

2j + 2
Ij+1/2 − Ij−1/2). (E.55)

We can define
χj(ρj ⊗ σ) = Γ(ρj ⊗ σ)Γ†, (E.56)

where Πj+k is a projection into the subspace of total angular momentum j + k. However,
this map is not trace preserving, nor does it conserve angular momentum. As in method
1, let ρj = |j,m〉z〈j,m|. In that case, we have Kraus operators of the form

Em′ = z〈j,m′|Γ|j,m〉z (E.57)

and, using the appropriate Clebsch Gordon coefficients, we arrive at an expression for
fidelity of the form

Fgate =
1
3

+
2
3

(
1

j + 1

)2

m2, (E.58)
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which goes to 1 in the limit j → ∞, for the case m = j. For a general state ρj (which
must be diagonal in the basis {|j,m〉z | − j 6 m 6 j}), we obtain

Fgate =
1
3

+
2
3

(
1

j + 1

)2

Tr[ρjJ2
z ]. (E.59)

By Theorem 16, even though the map is not trace preserving, we have:

Tr[ξ(ρj)J2
z ] = A

(2)
0 +A

(2)
2 Tr[ρjJ2

z ], (E.60)

and, by the same method as in the previous subsection, we have for this map

A
(2)
0 =

j

(j + 1)
= 1− 1

j
+

1
j2

+O

(
1
j3

)
, (E.61)

A
(2)
2 =

j

(j + 1)

(
1− 3

j(j + 1)

)
= 1− 1

j
− 2
j2

+O

(
1
j3

)
, (E.62)

where the series expansions are appropriate in the limit j →∞.
Again we find the scaling of longevity with j to be O(j). (See Figure E.2.) However,

the longevity is consistently higher than by using Method 1.

Method 3:
We might ask about performing an operation similar to the previous case, but in which
trace is preserved on the map. Such a map could be realized through a coupling between
the spins of the form:

H = w

(
J
( 1

2)
x J (j)

x + J
( 1

2)
y J (j)

y + J
( 1

2)
z J (j)

z

)
=
w

2
J 2 − ω

2

(
j(j + 1) +

3
4

)
1 (E.63)

where w is some constant, the operator J( 1
2)

x = X is the Jx operator on a spin-half system
and the operator J 2 =

(
j + 1

2

) (
j + 3

2

)
Πj+ 1

2
+
(
j − 1

2

) (
j + 1

2

)
Πj− 1

2
is the total angular

momentum operator on the joint system of the reference and the spin-half system. There-
fore, the unitary associated with this Hamiltonian is U = ei

w
2

(J 2−(j2+j+ 3
4
)1)t. Choosing

t = 2π
w(2j+1) gives the appropriate phase shift of the spin-half system relative to the spin-j

reference system.
It could also be phrased in the language of the previous subsection if — up to a global

phase — we set
Γ = U ∼= (Ij+1/2 − Ij−1/2). (E.64)

The quality function for this map is

Fgate =
1
3

+
2
3

(
2

2j + 1

)2

Tr[ρjJ2
z ], (E.65)
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which, when Tr[ρjJ2
z ] = j2, also tends to 1 in the limit j →∞.

We have for this map

A
(2)
0 = 1− 1

(2j + 1)2
= 1− 1

4j2
+O

(
1
j3

)
, (E.66)

A
(2)
2 = 1− 12

(2j + 1)2
= 1− 3

j2
+O

(
1
j3

)
, (E.67)

where, again, the series expansions are appropriate in the limit j → ∞. Observe that in
this case these parameters lack any terms in 1

j .
Now we find the scaling of longevity with j to be O(j2), as depicted in Figure E.2.

Figure E.3 compares the fidelities for the three methods for constant j. These last three
examples demonstrate the importance of choosing the gate carefully to match the objectives
of the given task.

Figure E.3: A plot of the fidelity with number of repetitions, n, for j = 8 for the three
methods, B(1) (dot-dashed line), B(2) (dashed line), and B(3) (solid line). This behavior
of this value of j is representative.

E.1.5 Conclusion

This study has explored the physically relevant question of how a quantum directional
reference frame state evolves under the action of maps invariant with respect to rotations
in space. We generalize the concept of quality of a quantum directional reference frame
introduced by [13]. We argue the quality of a reference frame must be represented by
a function that depends only on the eigenvalues of the quantum reference frame or an
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equivalent set of parameters called the moments. We give recursive equations (Theorem 16)
for how the moments evolve with the number of uses of the quantum reference frame. We
derive sufficient some conditions (Theorem 17) for the longevity of a quantum reference
frame to scale by a factor proportional to square the dimension of the quantum reference
frame. Finally, we applied our results to different examples such as the use of a quantum
directional reference frame to measure a spin-1 particle or to implement an Pauli operator
on a qubit. The tools that we developed can be use to compare different methods to perform
some operation using a quantum reference frame as we showed in our last example.

To prove Theorem 16, we use Theorem 15 which implies that maps invariant with
respect to SU(2) can be written in a polynomial form as a function of the Lie algebra
generators. It would be interesting to investigate if a similar theorem could be applied
to other Lie groups. Also, we assume in this analysis that the state of the reservoir is
invariant under rotations. However, in the most general physical situation, the reservoir
can be polarized. Building on the work done in [143], it would be interesting to investigate
how our theorem can be generalized to the case where the above symmetry is broken.

E.1.6 Acknowledgments

We wish to acknowledge the contribution of Terry Rudolph to show that the coefficients
qi’s in Theorem 15 are real. We also thank Giacomo Mauro D’Ariano, Joseph Emerson,
Michael Keyl, David Kribs, David Poulin and Peter Turner for helpful discussions. J.-
C.B and M.L. are supported by NSERC, and L.S. by the Mike and Ophelia Lazaridis
Fellowship. S.D.B. acknowledges the support of the Australian Research Council.

E.1.7 Appendix: Proof of Theorem 1

Here, we provide a proof of Theorem 15, inspired by ideas from [95, 47]. First, because
the group SO(3) of space rotations and the group SU(2) of unitary transformation are
locally isomorphic up to a phase, then the spatial covariance condition can be replaced by
covariance with respect to SU(2).

Let ρj be a density operator on the Hilbert space of a spin-j system. Consider the map

ζ(ρj) =
1
λ

(JxρJx + JyρJy + JzρJz), (E.68)

where λ = j(j + 1), and Jx, Jy and Jz are the angular momentum operators in the x, y
and z directions for some arbitrary Cartesian frame. First, we notice that

ζ(Ij) =
1
λ

3∑
i=1

J†i Ji =
1
λ
J2 = Ij , (E.69)

where J is the total angular momentum operator.
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Lemma 3 The map ζ is invariant with respect to the spin-j irreducible representation Rj
of SU(2).

Proof. If Rj is the d = 2j + 1 dimensional irreducible representation (irrep) of the group
SU(2) generated by {Jx, Jy, Jz}, then it can be expressed in the form

Rn̂(θ) = e−iθn̂·
~J , ~J = (Jx, Jy, Jz), (E.70)

for some angle θ and unit vector n̂. By the symmetry of ζ with respect to the (arbitrary)
choice of axes, if we prove that

Rz(θ)−1ζ(Rz(θ)ρjRz(θ)−1)Rz(θ) = ζ(ρj), ∀ θ ∈ [0, 2π), (E.71)

for any rotations around the z-axis only, then (E.71) with any rotations follows immedi-
ately. Such rotations will map

Jx → cos θJx + sin θJy (E.72)

Jy → − sin θJx + cos θJy, (E.73)

and it can be readily computed that ζ is invariant with respect to z rotations. Therefore,

Rj(Ω)−1ζ(Rj(Ω)ρjRj(Ω)−1)Rj(Ω) = ζ(ρj) ∀ Ω ∈ SU(2). (E.74)

The map ζ is therefore invariant.
Because a composition of invariant maps is also invariant, then any map of the form

ξ(ρ) = q0ρ+
2j∑
k=1

qkζ
◦k(ρ), (E.75)

where the values qi are real numbers and ζ◦k = ζ ◦ ζ ◦ . . . ◦ ζ, is also invariant with respect
to SU(2). It remains to show that any invariant map with respect to SU(2) can be written
on the form (E.75).

To prove that every invariant map can be written as above, we use the Liouville rep-
resentation of a superoperator [79]. Upon representing a d× d density matrix ρ into a d2

long column vector |ρ〉〉 by stacking the columns of the density matrix, the action of any
superoperator ξ can be represented as a d2 × d2 matrix K(ξ), such that

|ξ(ρ)〉〉 = K(ξ)|ρ〉〉. (E.76)

This representation is necessarily basis dependent. If a given process has Kraus operators
{Ek}, the Liouville representation takes the form

K(ξ) =
∑
k

E∗
k ⊗ Ek (E.77)

where ∗ represents the complex conjugate with respect to the chosen basis.
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Lemma 4 The Liouville representation of any map that is invariant with respect to SU(2)
has the form

K(ξ) =
2j∑
k=0

ckΠk, (E.78)

where ck ∈ C and Πk is the projector into the 2k+1 dimensional subspace of total angular
momentum k.

Proof. The condition on a map to be invariant can thus be expressed as

(R∗
j (Ω)⊗Rj(Ω))K(ξ) = K(ξ)(R∗

j (Ω)⊗Rj(Ω)), ∀ Ω ∈ SU(2), (E.79)

so the condition on the operators in this new representation is that K(ξ) must commute
with R∗

j ⊗Rj . If the group SU(2) is represented in the {|j,m〉z} basis (i.e. the eigenstate
of Jz), we have the relation R∗

j (Ω) = e−iπJyR(Ω)eiπJy , which implies

(Rj(Ω)⊗Rj(Ω))(eiπJy ⊗ I)K(ξ)(e−iπJy ⊗ I) = (eiπJy ⊗ I)K(ξ)(e−iπJy ⊗ I)(Rj(Ω)⊗Rj(Ω)) ∀ Ω ∈ SU(2).

(E.80)

We note that (Rj(Ω) ⊗ Rj(Ω)) is the collective representation of SU(2) on two spin-j
systems. A Clebsch-Gordon decomposition gives us the irrep of the group of all collective
rotations G(Rj ⊗Rj) which take the form

G(Rj ⊗Rj)(Ω) '
2j⊕
k=0

Rk(Ω), ∀ Ω ∈ SU(2), (E.81)

where “'” denotes “unitarily equivalent” and Rk is the spin-k irrep of SU(2) which has
multiplicity one.

Because we require K(ξ) to commute with Rj(Ω)⊗Rj(Ω) for any Ω ∈ SU(2), it must
then commute with all irreps of G(Rj ⊗Rj). By Schur’s lemma, we have that

K(ξ) '
2j⊕
k=0

ckIk =
2j∑
k=0

ckΠk, (E.82)

where ck ∈ C, Ik is the 2k + 1 dimensional identity operator, and Πk is the projector into
the 2k + 1 dimensional subspace of total angular momentum k.

There are 2j + 1 independent projectors forming K(ξ). To characterize every possible
invariant mapping, we will thus also require 2j + 1 independent operators.

Lemma 5 The matrices (
∑

i J
∗
i ⊗ Ji)k for 0 6 k 6 2j are linearly independent and form

a complete basis to represent any invariant map of the form (E.78).
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Proof. If we rewrite equation (E.75) in the Liouville representation, the map becomes

K(ξ) =
n∑
k=0

qk
λk

 ∑
i∈{x,y,z}

J∗i ⊗ Ji

k

. (E.83)

The hermitian matrices (
∑

i J
∗
i ⊗ Ji)k are diagonal in the same basis, and the eigenvalues

of (
∑

i J
∗
i ⊗ Ji)k are νkl , where νl is an eigenvalue of

∑
i J

∗
i ⊗ Ji.

To find all of the eigenvalues {νl}, expand the total angular momentum

J 2 =
∑
i

(Ji ⊗ I + I ⊗ Ji)
2 (E.84)

to get a new expression for
∑

i Ji ⊗ Ji:∑
i

Ji ⊗ Ji =
1
2
(
∑
i

(Ji ⊗ I + I ⊗ Ji)2 −
∑
i

J2
i ⊗ I − I ⊗

∑
i

J2
i )

=
1
2
(J 2 − J2 ⊗ I − I ⊗ J2)

=
1
2
(J 2 − 2j(j + 1)I) (E.85)

With the relation
∑

i J
∗
i ⊗ Ji = −e−iπJy ⊗ I (

∑
i Ji ⊗ Ji) eiπJy ⊗ I, we thus have that∑

i J
∗
i ⊗ Ji and

∑
i Ji ⊗ Ji will have the same eigenvalues up to a negative sign.

From equation (E.85), we find that

νl = −1
2

(l(l + 1)− 2j(j + 1)) , (E.86)

where l(l+1) is the eigenvalue resulting from the vector addition of the two spin-J systems,
which implies that l can range from 0 to 2j and has multiplicity 2l + 1. There is 2j + 1
different values of l, so there is 2j+1 different eigenvalues. By the fundamental theorem of
algebra, this implies that there exist no polynomial of degree 2j that has the eigenvalues
{vl} as roots. This implies the matrices (

∑
i J

∗
i ⊗ Ji)k for 0 6 k 6 2j are linearly indepen-

dent. By counting the number free parameters, we proved that the operators (
∑

i J
∗
i ⊗Ji)k

form a complete basis to represent any map represented by equation (E.78).
Finally, to show that the equation (E.75) is a representation of all possible invariant

maps on a spin-j system, we need to show that the qi’s are real. First, note that

ξ(ρj) =
1
2λ

(2JzρjJz + J+ρjJ
†
+ + J−ρjJ

†
−), (E.87)

where J± = Jx ± iJy. Also, from equation (E.87), the only contribution to

n̂〈j,−j|ξ(|j, j〉n̂n̂〈j, j|)|j,−j〉n̂ (E.88)
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is from q2jζ
◦2j(|j, j〉n̂n̂〈j, j|). Actually,

n̂〈j,−j|ξ(|j, j〉n̂n̂〈j, j|)|j,−j〉n̂ = q2j n̂〈j,−j|ζ◦2j(|j, j〉n̂n̂〈j, j|)|j,−j〉n̂. (E.89)

Because ξ(ρj) must be positive, then q2j is a non-negative real number. The contributions
to

n̂〈j,−j + 1|ξ(|j, j〉n̂n̂〈j, j|)|j,−j + 1〉n̂ (E.90)

are from
q2jζ

◦2j(|j, j〉n̂n̂〈j, j|) (E.91)

and
q2j−1ζ

◦2j−1(|j, j〉n̂n̂〈j, j|). (E.92)

Since ξ(ρj) is positive and q2j is real, then q2j−1 must also be real. Note that q2j−1 could
be negative. By induction, it is easy to show that all the coefficients qi must be real.
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