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Abstract

Straight or curved planar pantographic columns are an integral part of the three-
dimensional deployable structures made of scissor-like elements. It is shown that, under
the assumption of linear behaviour, the stiffness characteristics of such straight columns
can be derived analytically. Equivalent bending and axial stiffnesses for uniform
pantographic columns are obtained by equating their displacements to those of uniform
solid columns. The behaviour of pantographic structures in bending is found to be very
similar to that of conventional structures. Under axial load, the geometric non-linearity
caused by the finite rotations of bars in the scissor-like elements must be taken into
account. The system of non-linear equations describing the structural response in this case
is solved numerically. The buckling analyses for local snap-through and global column-
like types of instability are performed. The analytical procedures developed for the

structures made of identical scissor-like elements are modified for non-uniform columns.

The behaviour of three-dimensional triangular and square columns in bending is
considered. The analytical procedure includes the force method of analysis for a single
prismatic pantographic unit and the displacement method of analysis for the whole
structure. The derived expressions indicate that deflections of a spatial column consist of
primary and local parts. The primary part can be obtained by superposition of the
equivalent bending stiffnesses of the planar columns forming the sides of the spatial
structure. The contribution of each side depends on its orientation with respect to the
plane of bending. The local part of the solution originates from the support conditions at
the bottom of the column. The similarities and differences in the behaviours of

pantographic and solid columns are discussed.
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Chapter 1

Introduction

1.1 Foreword

Deployable structures have attracted growing attention from engineers, architects and
researchers in recent years. This is clearly demonstrated by the two International
Conferences on Mobile and Rapidly Assembled Structures - MARAS 91, held in
Southampton, UK, and MARAS 96, held in Seville, Spain, as well as by the Increasing
number of publications on this subject found in the literature. The term *“deployable” may
often be substituted with the words “expandable”, “foldable”, “retractable” and so on. The
main property of the objects described by these terms is that such systems can assume
configurations in space with envelopes of essentially different volumes. Sometimes, if one
thinks of an ideal structure, it is even possible to say that the dimensions of these
configurations are different. We frequently use the advantages of deployable structures in
everyday life without giving, in most cases, too much thought to the ideas built into them.
Some examples showing the range of applications of these structures are the following.
Folding road maps, umbrellas, pull-out radio aerials, clothes drying racks and foldable lawn
furniture are familiar to everybody. More structural applications are: pneumatic domes,

expandable arches, domes and aircraft hangars, field hospitals, storage buildings, temporary
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housing, protective coverings for curing concrete on construction sites, and many others.
Examoples in the aerospace industry are: communication booms, space cranes and platforms,

large reflectors, mesh antennas and supporting structures for them.

The choice of deployable structures in most of these cases is determined by such
properties as extreme compactness during transportation and storage (the space needed is
practically equal to the volume of material used), relative ease of erection and the possibility

of repetitive use.

A retrospective view of deployable devices and structures throughout the human
history, from the hunter chair to large span domes, has been given by Escrig (1996). The
concept of foldable structures has been considered by engineers for some period of time
already. Zuk and Clark (1970) listed and described a number of projects dealing with “self-
erecting” structures. The authors discussed them mostly from the architectural point of
view, without going into the detailed procedure of their analysis and design. As the current
literature shows both the geometric and the mechanical analysis of such systems, as well as

their design, are usually quite non-trivial tasks.

1.2 Deployable Structures in the Literature

1.2.1 Categories of Deployable Structures

The term “fabric architecture” encompasses rapidly assembled structures of two types:
pneumatic structures and tents. The former include single-layer systems, in which the
entire enclosed space is pressurized (Renner, 1996), and double-layer systems, which are
assembled of inflatable flat or curved modules (Guidetti, 1996). Tents are often used to

cover large areas for shows and exhibitions (Mollaert, 1996; Westbury, 1996). The two
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important aspects in the design of such structures are fabric patterning and final surface

stabilization.

Continuous deployable structures are usually the assemblies of triangular or
quadrilateral plates connected at the comners or along the edges. These plates can form
flat or curved surfaces, often used as solar cell arrays or antennas. Fig. 1.1 shows the
folding sequence of the planar deployable structure suggested by Miura (1993).
According to his concept, a plane subdivided into parallelograms can be folded
simultaneously in two orthogonal directions through “the developable double corrugation
surface”. This folding principle is used for deploying membrane solar cell arrays of
spacecraft in orbit. Guest and Pellegrino (1994) investigated triangulated cylinders
foldable to a compact stack of plates (Fig. 1.2). Vertices of the triangles are located on
the cylindrical surface and connected by straight lines, which are the sides of the
triangles, and form linear hinges between them. The problem was formulated from the

geometrical point of view and the phases of the folding process were studied.

Deployable tubular booms of circular cross-section are made of one or two strips
of thin metal, having the shape of a circular arch in the deployed configuration. In the
stored state these strips are flattened and coiled on a drum (Pellegrino, 1995). Telescopic
booms also have a tubular, but much stiffer cross-section (Becchi and Dell’ Amico, 1989).
In addition to aerospace applications, their more down to earth uses include spyglass,

pull-out pointers and radio aerials.

A very broad category of deployable trusses and frames includes a number of
different systems. They can be divided into groups according to the type of elements,
number of degrees of freedom during deployment, stressed or stress-free folded or
deployed configurations etc. Two examples of structures that are stress-free in the

deployed configuration, but have deformed members when stored, are shown in Fig. 1.3.
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Figure 1.1: Folding a plate to “the developable double corrugation surface”
(Miura, 1993).

Figure 1.2: Folding sequence of a triangulated cylinder (Guest and Pellegrino, 1994a).
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The first is a coilable mast by Miura (1993). The three coilable continuous longerons can
be deformed to helical form and stowed into a coil when the structure is compressed in
the direction of its axis. The second column, although not exactly a truss, by Hegedus
(1993), consists of rigid plane elements and elastic bars (dashed lines in the figure).
Under increasing axial load the bars elongate until, after the snap-through buckling of all
units, the structure becomes practically flat. Both columns accumulate strain energy
during the process of folding and release it during the unfolding. Another example of a
system with the elements stressed in the folded state, presented by Fanning and Hollaway
(1993), is shown in Fig. 1.4. This is a deployable antenna with “energy loaded joints”. In
the stowed configuration the compressed spring exerts a force on the sliding collar which,

in turn, generates a moment about the link pin causing the joint to deploy.

Deployable trusses with multiple degrees of freedom during deployment are
widely represented in the literature. Such trusses have a significant number of variable-
length bars and are said to be massively actuated. Usually they are deployed one module at
atime. In many cases these trusses are statically determinate, which ensures that no stress is
created due to arbitrary changes in elemental lengths. If a truss is statically indeterminate,
then it remains stress free if the vector of elemental length increments, also called static
control, is a linear combination of the columns of the structural compatibility matrix, as was
stated and proved by Ramesh et al. (1991). Hence, changing the configuration of the system

under the condition of zero internal forces becomes a more complicated probiem.

Mikulas et al. (1992) presented a two-dimensional truss consisting of N bays as
shown in Fig. 1.5. The authors considered three approaches for achieving variable
geometry of the truss by replacing different members with actuators. The number of
actuators per bay, the amount of actuating required to deploy the truss and the flexibility of

producing different types of deformations were used as factors to choose the design.



CHAPTER I. INTRODUCTION

ZONE

LONGERON

TRANSITION COILED

ZONE

INTEGRATED
RADIAL
SPACER

! _DIAGONAL
L~ WIRE

STAND-UP ZONE

Uk Qate Unk Py
(=] [=)
Sl/anq Coltar
Tube Fings
Partially Deployed Joint
Slowed Joint
A& T TN
Deployed Joint
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Three-dimensional modules of deployable trusses can be of cubic, tetrahedral,
octahedral and other polyhedral configurations. Generation of the basic three-
dimensional units was studied by Natori et al. (1986), and Chew and Kumar (1993).
Graph theory was employed for this purpose by Warmnaar and Chew (1990), and Warmnaar
(1992). Fig. 1.6 shows two alternatives for placing actuators in a deployable truss made of
octahedral units. A variety of possibilities for changing the shape of the structure by using
some or all actuators raises the issues of control and adaptability. These problems were
addressed by Ramesh et al. (1989 and 1991), Miura and Furuya (1988), Miura (1989),
Furuya and Isomichi (1992), Wada et al. (1989), Wada (1990) and other researchers.

Sliding joints are sometimes used to activate the process of deployment (folding)
instead of variable-length members. Examples of cubic and hexagonal modules with
such joints are shown in Fig. 1.7. The first module (Fig. 1.7a) has rigid bars for all
members. However, if some members are known to be subjected only to axial tension or
if the system can be prestressed to ensure only tensile axial forces in such members, these
elements can be cables (Fig. 1.7b). The deployed hexagonal unit in Fig. 1.7¢c includes
articulated members with intermediate hinges for the elements which are cables in the

partially folded hexagonal unit in the same figure.

The number of degrees of freedom during deployment of the above structures is
equal to the number of devices that vary certain geometric parameters of the system.
There exists another class of deployable structures which, although highly articulated, are
essentially one degree of freedom mechanisms during deployment. These so-called

“pantographic structures” are described in the next Section.
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Figure 1.5: Three alternatives for placing actuators into a plane deployable truss
(Mikulas et al., 1992).

Figure 1.6: Two layouts of variable-length members in a deployable truss
made of octahedral units (Miura and Furuya, 1988).
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Figure 1.7: Three-dimensional deployable modules with sliding nodes: (a) by
Takamatsu and Onoda (1991), (b) by Onoda (1988), (c) by Onoda et al. (1996).
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1.2.2 Pantographic Structures

The dictionary defines the word “pantograph” [from Greek “panto” - all and “graph” -
draw] as “an instrument for copying images on a predetermined scale consisting of four
light ngid bars jointed in parallelogram form” (Webster’s ..., 1981). Another commonly
known use of pantographs is to carry electric current to a train from overhead wires.
Inventors have extensively utilized the concept of pantograph in creating more
complicated copying devices, extendible booms (McCollum, 1975; Hardin, 1978:
Zanardo, 1985; Clevett et al., 1986), exhibition displays (Nodskov and Thelander, 1986:
Sorenson and Gerberding, 1994; Wichman, 1992) etc. The sketches of some of these
inventions are shown in Figs 1.8 to 1.12. Mechanical engineers use pantographs to create
robotic manipulators (Fig. 1.13) and joints of walking machines (Yang and Lin, 1985;
Ichikawa et al., 1990; Funabashi et al., 1991; Shahinpoor, 1993; Oral, 1996). Aerospace

applications of the pantographs are illustrated in Figs 1.14 and 1.15.

The basic element of pantographic deployable structures is a two-dimensional
pantographic unit, also called scissor-like element (SLE). The unit consists of two beam
elements, with hinges at the ends, which are connected to each other at their intermediate
points by a pivot allowing their relative rotation. The first introduction of such elements
into structural applications is attributed to a spanish architect Emilio Perez Pinero
(Makowski, 1966; Belda, 1996; Escrig, 1996). While still a student, he presented his
model of a “Spatial Reticular Structure” at the UIA Congress in London in 1961 (Pinero,
1961 and 1962). Several stages of the unfolding process of this model are shown in Fig.
1.16. The structure was composed of rigid bars and flexible wire cables. Some of the
cables were permanently fixed at both ends and served to terminate the deployment
process. Others were fixed at one end only and had to be hooked to the structure in order
to stabilize it after deployment. The members of the structure were stress-free in folded
and deployed configurations, as well as during deployment (except for the stresses due to

self-weight and possible prestress).
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Figure 1.9: Expandable portable bridge (Clevett et al., 1986).

It
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Figure 1.11: Extensible arm by Zanardo (1985).
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Figure 1.13: Pantograph type robot arm (Ichikawa et al., 1990).
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APQLLO TELESCOPE MOUNT (ATM)
SOLAR CELL ARRAY
{4 WINGS}

Figure 1.14: Skylab spacecraft with Apollo Telescope Mount solar cell array —
four pantographic wings (Rauschenbach, 1980).
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Figure 1.15: Magnetic field satellite with pantographic magnetometer boom
(Smola et al., 1980).
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Pinero’s designs of flat and curved deployable coverings inspired other architects
and engineers to follow his track. In 1976, T. Zeigler patented a “Collapsible Self-
Supporting Structure” (Fig. 1.17). This structure consisted of SLEs arranged into a part of a
spherical dome. The self-supporting feature of the deployed configuration of this system
originated from the geometry of the elements, which was chosen in such way that during
deployment most bars became bent and some of them buckled. To avoid excessive stresses
in the members some pivotal connections and SLEs had to be omitted in the otherwise
triangulated dome. Later Zeigler tried to overcome this problem by introducing clips and
sliding connections instead of pivots in some scissor-like elements (Zeigler, 1977 and

1984).

Clarke (1984) further developed Zeigler’s idea and presented a deployable, 5 metre
diameter, triangulated, hemispherical dome (Fig. 1.18) with triangular cells consisting of
three SLEs called *“Trissors”. He showed that the dome had only two states of geometric fit
- compact and deployed. The geometric non-fit in all partially unfolded positions was
compensated by bending of the relatively flexible struts, resulting in a snap-through action
after which the structure adopted its final deployed shape. Frames of this kind are folded by
applying a sufficiently strong pull at certain points resulting in a reverse snap-through.

Then the structure can be easily folded back to a compact bundle.

The next step in the same direction was made by Krishnapillai (1992) who
generalized the concept of self-stabilization for three-dimensional pantographic units and
found a number of configurations satisfying the requirement of zero stress in folded and
deployed forms (Fig. 1.19). Krishnapillai’s pantographic units are regular polygons having
radial, in addition to circumferential, SLEs. In circumferential SLEs the bars have the same
length, whereas the difference in the lengths of the bars in the radial SLEs produces the
desired snap-through effect during deployment and folding. Units of different polygonal

shapes can be used to form flat slabs, as well as single- and double-curved structures.
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Figure 1.17: Zeigler’s “Collapsible Self-Supporting Structure” (1976).
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Figure 1.18: Compact and deployed configurations of a hemispherical dome
and top view of a “Trissor” (Clarke, 1984).

Figure 1.19: Hexagonal self-locking pantographic unit by Krishnapillai (1992).
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At present, three major research centres, conducting extensive studies in the field
of pantographic deployable structures, can be named. These are the School of
Architecture at the University of Seville, Spain, the Departments of Architecture and
Civil Engineering at MIT, USA, and the Department of Engineering at Cambridge
University, UK. Dr F. Escrig, who heads the research on deployable structures in the first
of these places, outlined a number of possible ways to generate three-dimensional straight
and curved columns (Fig. 1.20), slabs and domes from the two-dimensional strings of
SLEs (Escrig, 1984 and 1985). In addition to three-dimensional pantographic modules
with the sides formed by two-dimensional SLEs, he also employed the arrangements
where all bars are the diagonals of triangular or square prisms (Fig. 1.21). The latter unit
type was used by Valcarcel et al. (1991) to develop spatial structures with incorporated
fabric covers. The questions of generating the geometry of pantographic structures and
performing their analysis are also addressed by the group in Seville (Escrig and Valcarcel,
1986 and 1991; Valcarcel et al., 1992; Morales et al., 1996: Sanchez et al., 1996). The
systems they study are stress-free during deployment and therefore require additional
members or locking devices to be stable in the final configuration. The perspective view
of a swimming pool cover, designed at the School of Architecture and built in Seville, is

shown in Fig. 1.22.

C. Gantes, in his PhD thesis at MIT, developed quantitative design principles for
the structures made of Krishnapillai’s units. He derived the geometric constraints that
must be satisfied in order to achieve stable and stress-free states of such systems
composed of prismatic and trapezoidal modules in both the deployed and collapsed
configurations. A number of small- and medium-scale physical models were constructed
and tested. Gantes also performed the numerical analyses of his structures by the finite
element method, incorporating the discrete joint size and friction at the pivotal
connections. He found that the behaviour of the deployed structures is characterized by
small displacements and therefore can be considered linear. The analysis of the structural

behaviour during deployment required large displacement formulation and incremental
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Figure 1.20: Straight and curved pantographic columns with square cross-sections
(Escrig, 1984).

Figure 1.22: Deployable swimming pool cover in Seville, Spain (Sanchez et al., 1996).
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loading to trace the load-displacement dependence beyond the limit point state
corresponding to the snap-through of a structure to and from its deployed configuration.
Such time and resource consuming analyses for multi-unit systems can be avoided since it
was shown that their critical deployment quantities could be obtained from the respective
quantities of a single unit. The results of Dr Gantes’ work are described in a number of

publications (Gantes, 1993 and 1996; Gantes et al., 1989, 1991, 1993 and 1994).

The Laboratory of Deployable Structures at Cambridge University, UK, is led by
Dr S. Pellegrino. The research on deployable structures there is conducted in relation to
their use in the aerospace industry. The deployment and prestressing of the pantographic
structures by means of active and passive cables is one of the directions of study there.
The three types of pantographic columns, which have been investigated analytically and
through tests by Kwan and Pellegrino (1991 and 1994), Kwan et al. (1993) and You and
Pellegrino (1996b), are shown in Fig. 1.23 where the cables can also be seen. The first
structure is composed of two planar pantographic columns connected by another set of
horizontal SLEs. This column folds into a compact bundle of bars. The second
triangular column consists of prismatic triangular modules. In the folded configuration it
has the form of a short triangular prism. The third column is made of octahedral units
with diagonals. A set of passive cables joining pairs of points on the pantographic
backbone is used to terminate the process of deployment which is driven by one or more
active cables. After the columns are deployed, a state of prestress is created by further
shortening the active cables. The two goals achieved by prestressing are the increase of
the stiffness of the structures and the removal of the joint backlash. Besides these
columns, the cable-stiffened pantographic ring structure for deployable mesh reflector
was studied by You and Pellegrino (1997a). The range of applications of pantographic
structures is widely broadened by the introduction of the SLE with angulated rods
proposed by Hoberman (1990). Systems made of such elements (Fig. 1.24) constitute
another research subject at the Laboratory (You and Pellegrino, 1996 and 1997b).
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Figure 1.23: Schematic views of three types of deployable columns by Kwan et al.
(1993); dashed lines are active cables, dashed-dotted lines are passive cables.

Figure 1.24: Single- and double-layer circular foldable bar structures with SLEs
with angulated rods (You and Pellegrino, 1997b).
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1.3 Research Motivation

Despite the completed and extensive ongoing research on pantographic assemblages
outlined in the previous Section, there are still many questions about the structural
behaviour of this relatively new class of deployable systems that wait to be answered and
insights into their structural properties and response that remain to be gained. Perhaps
one of the simplest representatives of this class is a two-dimensional pantographic
column composed of several SLEs placed along a straight line and properly stabilized.
The study of such a column may play the same role in understanding the behaviour of
more complicated pantographic systems (three-dimensional columns, arches, slabs and
domes) as the study of the conventional beam element does for analogous solid or

reticulated structures.

In this thesis, the problem of finding the stiffness characteristics of two-
dimensional pantographic columns in their deployed configurations will be addressed.
An attempt will be made to answer the question of when the non-linear behaviour of
these structures must be taken into account. Consequently, the problem of buckling
analysis may become topical. The structural properties of two-dimensional columns can
be related to, and used to obtain, the corresponding parameters for three-dimensional
columns composed of three (middle column in Fig. 1.23) or four (first column in Fig.

1.20) planar structures.

Structural analysis formulations for pantographic systems have been developed by
Escrig and Valcarcel (1986), Valcarcel et al. (1991), Shan (1992), Kwan and Pellegrino
(1994), and Kaveh and Davaran (1996). Usually, this problem is approached from the
point of view of a computerized matrix method. The stiffness or flexibility matrices are
derived for the macro-elements which are either a single three-node bar in an SLE or a
full scissor-like element. Some degrees of freedom are condensed in order to reduce the

size of the final system of equations. Special care is taken with cable elements.
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Gantes et al. (1994a) used an equivalent continuum model for deflection analysis
of flat deployable slabs under lateral load. All radial and side SLEs of the square
prismatic pantographic modules were substituted with equivalent uniform beam elements.
The reticulated structure thus obtained was substituted with the equivalent continuous
plate. The stiffness properties of the beam elements were defined by equating their
deflections to those of the corresponding SLEs when both elements were subjected to the
same loading. However, the support conditions of the loaded SLEs in this derivation
resulted in the second order bending of bars only. In other words, if the axial
deformations of bars are neglected, the structure becomes infinitely rigid. This, of course,

is not the case for a separate pantographic column.

Although the results of numerical analyses are invaluable, it seems interesting and
worthwhile to attempt, at least for cases of linear behaviour, the derivation of closed form
analytical expressions for certain overall properties of deployable pantographic columns.
These properties can then be compared with those of solid columns. Such comparison
may indicate how much of the engineering intuition developed in the course of analysis of
conventional structures can be applied to pantographic systems. Points of conceptual

differences may also become more transparent by this approach.

The following Chapter contains the analysis of planar pantographic columns.
Linear behaviour under moment, lateral and axial loadings is considered. It also includes
problems of the non-linear response of the columns subjected to axial load, local and
global buckling and a Section on non-uniform columns. Chapter 3 is devoted to the
analysis of three-dimensional columns. Chapter 4 contains general conclusions and

outlines some directions of future research.
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Planar Columns

2.1 Introduction

The basic unit of pantographic structures is a scissor-like element (SLE) formed of two
beams, with hinges at the ends, connected at their intermediate points by a shear resisting
pivot. If the bars in the SLE are of the same length and the pivot connection is at the
midpoint of the bars, the pivot also becomes the centre of symmetry of the SLE. Placed
along a straight line, several such SLEs form a uniform pantographic column. When the
two bottom nodes of the column are hinged to the ground, the two-dimensional structure
becomes geometrically stable in its plane and statically determinate. In this Chapter the
behaviour of this column under different loads is investigated, and its stiffness
characteristics are related to those of a uniform solid column. The parameters of the
deployable column, as shown in Fig. 2.1, are: the half-length of the bars - a, their bending
stiffness - EI, their axial stiffness - EA, the degree of deployment for the undeformed
column - ¥, the number of pantographic units in the column - n and the undeformed length
of the column - L = n2asiny. The equivalent solid column would have the same length L,

with bending and axial stiffnesses (EI). and (EA)., respectively.
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We first consider linear behaviour of the structure subjected to several types of
load applied at the top of the column, namely, lateral force, moment and axial compressive
force. Under the assumptions of linearity and small displacements, internal forces can be
found from the conditions of equilibrium for the undeformed column. The overall stiffness
characteristics of the deployable column are derived from comparison of its response to

the loads with that of a solid uniform column.

The relative rotation of bars in the column allowed by the end hinges and pivots
gives rise to the phenomenon of geometric non-linearity, which greatly affects the
behaviour of the axially loaded structure. This introduces the possibility of a local loss of
stability - snap-through buckling of the top pantographic unit. If the pantographic column
is restrained to improve its axial stiffness, another type of instability comes into view -
overall column-type buckling. Finally, the behaviour of non-uniform tapered pantographic

columns is investigated.

2.2 Linear Behaviour

2.2.1 Bending of a Uniform Column

2.2.1.1 Tip Displacements

Forces acting on a typical pantographic unit (unit number i) in the column subjected to a
lateral force are shown in Fig. 2.2. The distribution of these forces along the deployable
column resembles that of stresses along the solid column under the same loading: constant
horizontal and linearly growing vertical forces correspond to constant shear and growing

normal stresses, respectively. Bars in the pantographic units are beam elements and are
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Figure 2.1: Uniform pantographic and solid columns with
equivalent overall stiffness characteristics.
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Figure 2.2: Pantographic column under lateral load
and forces applied to a typical unit.
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subject to bending and axial deformations. Axial forces are constant between the end of a
bar and the pivot:

(2i-1)sin*y -1
2cosy

N.c =-Ngc =—§cosy+(i—l)PtanysinY =P

] (2.1)
P 2i-sin"y+1
Npe =—=Ng =—cosy +iPtanysiny = P( 1-bsiny+
2 2cosy
Bending moments are zero at the end of a bar and grow linearly to the pivot:
M, =§asiny +(i—1)P tan yacosy =?(2i—l)siny 2.2)

Knowing the internal forces and moments one can employ an energy method, e.g.
Castigliano’s second theorem, to calculate the horizontal displacement of the top of the
column, h, (subscript p stands for pantographic), due to the lateral force. The
contribution of the i-th unit can be written as the sum of the terms corresponding to axial
(h") and bending (h"%) deformations of bars in the unit. The total horizontal tip
displacement is the sum of the contributions of all units:

= °( 9 (Nidx 9 Midx
hp=2(hi+h?)=2(§fﬁ+§ 2EI) (2.3)

t=1 i=1
After using the expressions for axial forces and moments from eqs 2.1 and 2.2, applying
integration technique described in Appendix A and differentiating, we obtain the terms

from eq. 2.3 in the following form:

2a [((Zi—l)sinzy—ljz+((2i—l)sinly+l)2}_ Pa (2i—1)*sin®y +1

h? =P=

EA 2cosy 2cosy " EA cos®y 2.4)
4 Pa a2a Pa’ I,

h? =——(Q2i-Dsiny===(2i—1)siny = —(2i —1)*sin?

k= 2( ) v232( )siny 3EI( ) Y

In the process of calculating the sum of unit contributions for i from 1 to n, the following

expression needs to be evaluated (eq. B.5):

n R ] . n n 2 3
2(2i—1)-=42i-—42i+21=4“(“+1)6( “J’l)—4“(“:l)+n=4;1 —% (2.5)
i=l i=l t={ A

i=l
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For sufficiently large n the second term on the right side of eq. 2.5 can be neglected; for n
= 5 it will make difference of only one per cent. The summed axial and bending parts of

the total horizontal displacement of the top of the pantographic column due to lateral

loading are:
2 —n’sin*y +n -
ih“—Pa i(?.l—l)'Sln y+1 Pa 3 R Pain3sm Y
~ ' EAYG cos’y EA  cos’y febges © FA 3 cosly
> Pa’ Pa’ 4
h’ = 2i—1)*sin*y = ——n’sin’
; ' 3}312( y Y 3EI 3 Y
(2.6)

The term n in the numerator of the first of eqs 2.6 can be disregarded under the condition
that the degree of deployment is not too small; however, a very small sin'y would make

this assumption inaccurate. Finally, the resulting displacement is:

4 ., [tan®y a’
h, =P—an’sin’ +— 2.7
p=rgn A Y( EA 3131) D

The first term in the brackets corresponds to the axial deformations of the bars, while the

second term corresponds to the bending deformations. The well-known formula for the

deflection of a solid cantilever of uniform cross-section and the same height as the

pantographic column, loaded at the tip with the lateral force is:
PL’ _ P(n2asiny)’ _p n*8a’sin’y

h, = = 2.8)
3(EI), 3(ED), 3(ED),

To obtain the equivalent bending stiffness of the pantographic column we equate the right

sides of eqs 2.7 and 2.8 and express (EI). through other parameters. After simplifications:

2a’si
(ED), = —a—T1o (2.9)
tan’y a’
EA 3EI

This bending stiffness does not depend on the number of units in the column, in the same
manner as the bending stiffness of the solid column is only a characteristic of the cross-
section, not of the length of the structure. It can be seen from the last equation that as the

degree of deployment becomes close to a right angle the first term in the denominator
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grows to infinity and the equivalent bending stiffness vanishes. This reflects the fact that
at Y = 90° the structure becomes geometrically unstable and, therefore, has zero bending
stiffness. On the other hand, for moderate degrees of deployment, one could expect that
deflections of the pantographic column would be primarily due to bending deformations of
bars in the units, i.e. for finite tany, we may consider EA to be infinite and neglect the first
term in the denominator of eq. 2.9 in comparison with the second term. To show which
parameter controls the situation here, we divide numerator and denominator by the second

term of the denominator:

(EI), = 6Elsiny _ 613".151ny _ 6EI§1ny ’ (2.10)
Etanzy-i-l ) antver 32 Y4
*EA ) YT e

where r = (/A)"* is the radius of gyration of the cross-section of bars in the pantographic
units and A = a/t is a parameter similar to the slendemess ratio of the bars. Thus, if the
bars are slender enough and y is not very close to the right angle the denominator of eq.
2.10 is approximately equal to one, i.e.

(EI), =6Elsiny (2.11)

Let us once again list the assumptions that allowed us to arrive at the simple
expression of eq. 2.11 for the equivalent bending stiffness of a uniform pantographic
column:

- linear behaviour of the column under lateral load and small displacements

- sufficiently large number of pantographic units in the column

- degree of deployment is not too close to that of completely folded or completely
deployed configurations

- axial deformations of bars in the pantographic units are negligible in comparison with

bending deformations.

Another loading that could be used to determine the equivalent overall bending

stiffness of the pantographic column is the moment applied at the top of the structure (Fig.
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2.3). The moment is represented by two vertical forces (one upward and the other
downward) applied to the two top nodes of the column. Again, the distribution of the
internal forces along the column is similar to that of stresses in the uniform solid column
subjected to the same load - constant along the structure. Axial forces in the bars of the i-

th unit and the moment at its pivot are:

siny = Mtany

N..=N_.. =
AC DC
2acosy 2a

=-Ngc =N

M. =

acosy=-—
2acosy 2

The angle of rotation of the top of the column can be calculated:

2y, d tan’y a n(tan’y  a’
= 4 b )= M +M =M-— + — 2.13
® g.((p' % ) 2[ aEA 3EI) a [ EA 3EIJ ( )

1=l
and compared with that for the solid column:

_ ML =Mn.’Zasiny (2.14)
(ED), (ED), -

®.

Equating the right sides of eqs 2.13 and 2.14 yields the same expression for the equivalent
stiffness as in eqs 2.9 and 2.10. Note that in this case we did not need the assumption
about the large number of units in the column and did not impose any restrictions on the

degree of deployment.

Fig. 2.4 presents the plots of the ratio of the equivalent bending stiffness from eq.
2.10 to the bending stiffness of bars in the pantographic units for four different values of
the slenderness parameter A. To see what the numerical values of this parameter might be,
we can take as an example a bar of length a = 50 cm with a solid circular cross-section of
diameter d = 4 cm. The slenderness parameter A = 50. The second example is a member
of the same length but with a thin-walled tubular cross-section of the same diameter. In
this case A = 35. Fig. 2.5 presents the plots of the ratio of the equivalent bending stiffness
from eq. 2.10 to the equivalent bending stiffness of the column with bars in the units being

infinitely rigid axially (eq. 2.11). The curves correspond to the same four values of A. It
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Figure 2.3: Pantographic column under moment load and
forces applied to a typical unit.
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Figure 2.4: Plots of non-dimensional equivalent bending stiffness versus the

degree of deployment for different values of bar slendemness.
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can be seen that for a slenderness parameter greater than 30 the equivalent bending
stiffness is very close to that for A — <o as long as the degree of deployment y is not
greater than 80°. This range of y was, of course, already ruled out during the equivalent

stiffness derivation above.

2.2.1.2 Deflections along the Column

The equivalent bending stiffness was derived from equality of the displacements of the
pantographic and solid columns at a particular point. What happens to the rest of the
structure? Is the shape of the deflected deployable column different from the elastic curve
of a cantilever? Let us see how the unit interfaces move horizontally when the
pantographic column is subjected to a lateral force. The internal force distribution for the
column loaded at the top is available from Fig. 2.2 and eqs 2.1 and 2.2. To find the
horizontal deflection of the bottom nodes of the k-th unit, we need to apply a unit virtual

force at this level (Fig. 2.6). The virtual bending moments at the pivots are:

aSINY G—k)=1], i=(k+1)...n (2.15)

¢ 2
Using the principle of virtual work and neglecting axial deformations of bars in the
pantographic units, the horizontal displacement at distance (n-k)2asiny from the bottom
can be found as:

n m. 0 2 .
h, = de: E(zi_l)sirwﬁ_asmy
<) TE &0 23 2

[(Qi-1)-2k]-4=
; (2.16)

Pa TR )
=——=sin" 2i-1)" -2k(2i-1
3E Yigil[( ) -2kQ2i-1)]
The sum in the last equation can be rewritten as:

Zn’,[---]=§:,[---]—g[---] (2.17)

i=k+l
Each of the sums on the right side of eq. 2.17 can be evaluated using egs 2.5, B.2 and the

following:
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Figure 2.5: Plots of ratio of equivalent bending stiffness and that for column
with axially rigid bars versus the degree of deployment for different values of
bar slendemness.
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Figure 2.6: Pantographic column under virtual lateral unit load
and forces applied to a typical unit below the load.
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Z(o,_l) 721 20D g (2.18)

With eqs 2.5, 2.17 and 2.18 the expression for hy (eq. 2.16) can be transformed into:

3 n
h, =%gn2y{2[(zi -1)* —2kQi- D]~ f‘,[(zi ~1)* - 2k(2i —1)]} =
i=l i=1

3 3 3 3
E—sinzy{[i—ﬁ—zmz}—[d’; -5—21(’]} LU y{4n® - 6kn* +2k° -n+k}

3EI 3 9EI
(2.19)

Keeping, in the parentheses, only terms of the third degree (assuming a sufficiently large

number of units):

3 ) 3

h, = gpiEIsin2 Y(4n’ -6kn* +2k*) = "9121 sin® y(n -k)*(2n + k) (2.20)

The deflected shape of a cantilever of uniform cross-section loaded with concentrated

lateral force at the tip (Fig. 2.7) is a cubic polynomial:

PL} [ x)" X
= 3-21,
Y 6(51)( )[ L]

where the origin of the x-axis is at the clamped end. The assumption of zero axial

(2.21)

deformations of bars in the pantographic column used in the derivation of eq. 2.20
corresponds directly to the assumption from the beam theory about zero shear
deformations in the solid column which is implied in eq. 2.21. Substituting in eq. 2.21 the
expression for the bending stiffness from eq. 2.11, the length in terms of the parameters of

the deployable column and x = (n-k)2asiny, we obtain:

P(n2asiny)’ ( (n—k)2asiny )’[, (n-k)2asiny
y(k) = 6 - k Py 3- s =
(6Elsiny) n2asiny n2asiny (2.22)
3
291:; sin® y(n —k)*(2n +k)

The right sides of eqs 2.20 and 2.22 are exactly the same. This means that under our
assumptions the deployable column in bending behaves very much like a solid column with

the appropriate bending stiffness.



35
CHAPTER 2. PLANAR COLUMNS

Figure 2.7: Uniform cantilever under lateral load.

2.2.2 Compression of a Uniform Column

The third loading to be considered is the axial force. Forces acting on a typical
pantographic unit of the column subjected to this load are shown in Fig. 2.8. Here one
may observe something distinct from the two previous cases. The horizontal forces
applied to the unit grow linearly from top to bottom of the column; consequently, the
internal axial forces and bending moments in the bars also are increasing linear functions of
the unit number. This is quite different from the stress distribution in a solid column under
axial loading, where the stress state is uniaxial and uniform throughout the column.
Strictly speaking, there is the possibility of a two-dimensional stress state in the solid
column also, for example, when the support conditions at the base are such that they
prevent transverse expansion of the column. However, this effect is local and is present

only in a small portion of the structure.

There are several ways to give the reader a feel for the increasing horizontal forces
at unit interfaces of the pantographic column. One way is to remove the horizontal
constraint at one of the hinge nodes at the bottom of unit number k and apply the

corresponding equal and opposite horizontal reactive forces (Fig. 2.92). Then we
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introduce a virtual displacement A, in the direction of the removed constraint as shown in
the figure. The k upper units of the column fold a little, and the vertical displacement A,
of the top nodes, where load P is applied, will be proportional to the number of units k.
The total virtual work done by P and T, must be equal to zero:

PA,-TA =0 —> T, = P%~ k for constant Pand A,.

1
Thus, the more units there are above a certain pair of nodes at the unit interface the
greater the horizontal forces at this level. Another way to look at the structure is to
recognize that the top unit is a three-hinge frame supported by the rest of the column. It is
easy to see that vertical loads on this three-hinge frame cause horizontal reactions, inward
horizontal forces, in addition to vertical ones (Fig. 2.9b). Then the unit second from the
top is loaded with the outward horizontal forces in addition to vertical ones. Its horizontal

reactions are greater and so on.

Now let us calculate the vertical deflection of the top of the column. Axial forces
and pivotal bending moments in the bars are:

(2i-1)cos*y —1
2siny

N, =Ny = -g-siny +(i-1)Pcotycosy =P

_P(?_i—l)cos:y +1
2siny

Npe =Nge = ‘(gsiny +iPcotycosy) =

M. = gacos‘{ +(i~1)Pcotyasiny = ?(ﬁ —-1cosy

- -~

The deflection is calculated in a similar manner as those before and under similar

assumptions about the number of units and the restriction on the degree of deployment:

a &( Pa (2i~1D*cos*y +1 Pa® .. ., |,

- a b)_ _1)2 2

vp-g‘(vi +vi)-§(EA Ty +3EI i -1)* cos®Y |~
4, (2.24)

pa FRCOS Y+ L5
3 +———n’cos’y

EA  sin’y 3EI 3
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Figure 2.8: Pantographic column under axial load and forces
applied to a typical unit.
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Figure 2.9: Increasing horizontal forces at unit interfaces
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If cosy is not very small, i.e. y is not very close to the right angle, the constant n in the
numerator of the first term in the last equation can be neglected in comparison with the

value of 4/3 n’cos’y:

4 5 5 (cot*y a’
v_=P—an”cos” +— 2.25
P 3 Y( EA 3EI) )

Note that the expression for the vertical deflection (eq. 2.25) looks exactly the same as
that for horizontal deflection (eq. 2.7), only siny is replaced by cosy and vice versa. The

vertical deflection of a compressed uniform solid member is:

PL _ P(n2asiny)

v = (2.26)
° (EA),  (EA),

To obtain the equivalent axial stiffness we equate the right sides of the last two equations

and express (EA). through other parameters:

(BA), =y 1 SBlny 1 _
2n-cos"y cot"y +_‘L 2a’n"cos” Y 3cc)t'y +1
EA  3EI A (2.27)
_ 18K sinytan®y
L- 3cot"y+l
l-

If the bars are slender and their axial deformations can be neglected:

9Elsiny _I8EI yan®y (2.28)

(EA)Q = 22 ) -
2a’n“cos”y L°

The equivalent axial stiffness of a pantographic column is inversely proportional to the
square of column length. This means that, for constant degree of deployment, the more
identical units are stacked on one another the softer the structure becomes axially. This
result is the consequence of varying internal forces in the pantographic column under axial
loading. Fig. 2.10 presents the plot of non-dimensional equivalent axial stiffness
(EA). L*EI calculated using eq. 2.27 versus the degree of deployment. For the scale of
this plot there is practically no difference among the curves corresponding to the values of
A from 10 and up. This plot can be used for comparing the axial stiffness of columns of

the same length and different degrees of deployment. Note that for constant length and
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degree of deployment, the equivalent axial stiffness does not depend on the number of
units in the column. Non-dimensionalizing the equivalent axial stiffness as in Fig. 2.11,
(EA). n*a’/El, shows the change in the axial stiffness of a particular column during the

process of deployment.

Typical results for the overall bending and axial stiffnesses of pantographic
columns are summarized in Fig. 2.12. It can be seen that, under the set of assumptions
listed on p. 29, the stiffness properties of the columns with the same length are functions
of the degree of deployment only. The fact that the first two columns in the figure have
the same stiffnesses contradicts the intuitive feel that a member with greater overall width
has greater bending stiffness. Such indifference of the stiffness to the width of a
pantographic column is the direct consequence of the assumption of negligible axial

deformations of bars in SLEs.

Eq. 2.28 indicates that the overall axial stiffness of a pantographic column depends
on the length of the structure, which is quite different from the case of a uniform solid
column. One may suspect that axial deformations (changes of unit heights), constant
along the solid column, may vary along the deployable structure. To obtain the change of
height of a pantographic unit, with undeformed height of 2asiny, we first find the vertical
displacement of the bottom nodes of unit number k. A vertical unit virtual load applied at
this level, along with the corresponding forces acting on a pantographic unit between this
level and the bottom of the column, are shown in Fig. 2.13. The virtual bending moments

at the pivots are:

me = ac;’SY 2G-k)-1], i=(k+D..n (2.29)

Neglecting axial deformations of bars in the pantographic units, we obtain the following

axial shortening of the lower (n-k) units of the axially loaded column:
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Figure 2.10: Plot of non-dimensional equivalent axial stiffness for pantographic
columns of constant length versus the degree of deployment.
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Figure 2.11: Plot of non-dimensional equivalent axial stiffness of a particular
pantographic column during deployment.
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Figure 2.12: Overall equivalent stiffnesses of pantographic columns of the same length,
with different numbers of units and degrees of deployment.
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Figure 2.13: Pantographic column under virtual axial unit load
and forces applied to a typical unit below the load.
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v, = EZI:J.M]‘;IH' dx = Pa’ cos*y i[(zi -1)° =2kQi-1)]=

3EI £
o : i=k+l (230)
=-a—cosly[4n3 -6kn* + 2k’ —n+k]

9EI

The top nodes of unit k move down by:
— P;a'} 2 3 _ _ 2 o) —_1\3 _ _ b
Ve = ——cos’ y[4n’ —6(k - )n* +2(k - 1)’ —n +(k-1)] (231)
9EI

The vertical deformation of unit k is found as:
ey ==V PACOT Yy paon-g] (2:32)

2asiny  6Elsiny “
If the number of units in the column is increased infinitely, these deformations along the
column become a continuous strain function of the distance from the ground x =

(n-k)2asiny :

£ (x) =E‘LS;Y-£(2—1) (2.33)
12EIsin"y L L

This function is plotted in Fig. 2.14 together with the constant strain which a solid column
with axial stiffness equal to the corresponding equivalent axial stiffness would exhibit.
Comparing the internal force and deformation distributions along the deployable
pantographic column one may notice that they have opposite tendencies from top to
bottom. While internal forces grow from top to bottom, making the bottom pantographic
unit the most heavily loaded, vertical deformations of units are maximum at the top and
minimum at the bottom. This happens because there are two parts in the height change of
a unit. One is due to the bending of bars and the second is due to the increase of the
distance between the bottom nodes of each unit except for the lowest one, which has its
bottom nodes hinged to the ground. Let us find out how the distances between nodes at

the unit interfaces change along the column length under axial load.

A pantographic column subjected to two horizontal virtual unit forces applied at
the bottom nodes of unit k and forces acting on a typical pantographic unit located below

that level are shown in Fig. 2.15. The virtual bending moments at the pivots are:
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Figure 2.14: Vertical deformation distributions for pantographic and
equivalent solid columns.
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Figure 2.15: Pantographic column subjected to virtual horizontal unit forces
and forces applied to a typical unit below the load.
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m. =asiny , for units below the load. 2.34)

Due to the axial load at the top of the column, nodes at the interface between k and (k+1)

units move apart by:

& M;m, 2Pa’ . 3 2Pa’
Ak=;.[ I%dex: siny cosY 2(21—1)=

i n®—k* 2.35
3EL 2 3EL siny cosY( ) (2.35)

Dividing the last equation by the original distance between the nodes, we obtain the

horizontal “strain” at the same level:

A Pa’ 2 s
g = L= siny(n® -k~ 2.36
“ 2acosy 3EI v( ) ( )
This may again be transformed into a continuous function of the distance from the ground:
€"(x) = —&,——1(2 —i) (2.37)
12Elsiny L L

It can be seen that function in eq. 2.37 differs from that in eq. 2.33 only by the factor of
tan’y. This means that the greater part of the vertical unit deformations comes from a

change of the unit base length, which is associated with the rotations of its bars.

In the light of the last derivations one note must be made about the assumption of
linearity under which the behaviour of the pantographic columns was investigated so far.
This assumption for the pantographic column in bending (under moment or lateral loads)
is valid to the same extent as it would be for a solid column with the equivalent bending
stiffness. In the case of axial loading, however, the proportionality between the vertical
and horizontal “strains” in the deformed column suggests that finite rotations of bars in
SLEs may considerably change the configuration of the structure and the internal force
distribution. The phenomenon of geometric non-linearity in axially loaded pantographic

columns is considered in Section 3 of this Chapter.
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2.3 Non-Linear Behaviour under Axial Load

2.3.1 Source of Geometric Non-Linearity

It may be noticed that the equivalent axial stiffness of a deployable column (eq. 2.28)
depends on the square of its length. If the number of units in the column is doubled, and
the size of the bars in the units and the degree of deployment are kept the same, the new
column, which is twice as long as the original one, would have the equivalent axial
stiffness of one quarter of the original, and when subjected to the same axial load would
exhibit a deflection eight times greater than the original. This can be explained by the fact
that the main portion of the vertical deformation of the structure comes not directly from
bending of bars in the units, but from the unit becoming more flat the closer to the top it is
located. The schematic deformed shape of an axially loaded column is shown in Fig. 2.16.
[t can be expected that changes in the degrees of deployment of the upper units affect the
internal force distribution in the column. Hence the geometric non-linearity becomes
obvious. Let us look more closely at the mechanism of the pantographic column

deformation under axial load.

When the column deforms, the top nodes of its bottom unit move down and apart
due to bending of bars in the unit. Since the bottom nodes are hinged to the ground, the
distance between them, i.e. the base of the bottom unit, as well as the degree of
deployment of this unit, remain constant (b, = b, Y, = Y). The distance between its top
nodes, i.e. the base of the unit number n-1, b,.;, increases, while the degree of deployment,
Yu-1, decreases, and the configuration of the latter unit “before bending” becomes different
from the original. Then, due to bending of the bars in unit number n-1, the base of the unit
above it, b,.2, becomes even greater and so on. This effect builds up from the bottom of
the column to the top, and the higher the location of the unit the flatter it becomes. The
internal force distribution in the column, therefore, becomes quite different from that

found for its undeformed shape.
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A note must be made about the sense of geometric non-linearity in this problem.
The bending of bars in pantographic units is still regarded as linear and the corresponding
deformations as small. The source of non-linearity is the finite relative rotations of bars at

the pivotal hinges and at the hinges between the units.

2.3.2 Non-Linear Analysis

Three configurations of the i-th unit together with the forces acting on it are shown in Fig.

2.17. The configurations are: initial - in the undeformed column, intermediate - “after

P72 P/2

Figure 2.16: Source of geometric non-linearity under axial loading -
schematic shape of the deformed column.
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rotation” caused by deformation of the part of the column below the unit, and final - “after
rotation and bending”. Under the assumption stated at the end of the last section, the
forces are applied to and the equilibrium conditions must be satisfied for the unit “after
rotation”. The vertical forces applied to the nodes of the unit are known and equal to the
load on the column, whereas the horizontal forces at the bottom of the unit, T;, base of the
unit, b;, and the degree of deployment, y;, are to be found for all units in the structure.
From the condition of moment equilibrium about the pivot for each bar in the unit “after

rotation™:

T

- asiny, +§acosyi —T, asiny, +§acosyi =0, 1=L2,...,n (2.38)

the relation between horizontal forces applied to the bottom and top nodes can be
obtained:

T, =Pcoty, +T,_,, i=12,...,n, (2.39)
where Tp = 0 - no horizontal forces are applied to the top nodes of the column. To find
the relative horizontal displacement of the top nodes of the unit when the bars bend, two
horizontal opposite unit forces may be applied to the top nodes of the unit “after rotation™.
From the principle of virtual work:

. —b, JL’;%’L(E -Pcoty,), i=L2...n, (2.40)
where b, = b - base of the bottom unit is fixed. This defines the degree of deployment of
the unit above the one currently considered:

a*sin’y,

2T, -Pcoty,;), i=L2,...,n, 241
3e - @T Yi) (241)

b;.
cosy,, = 2‘—a‘ =cosY, +

where v, =Y - the degree of deployment of the bottom unit is constant. The system of eqs
2.39 and 2.41 together with the boundary conditions can be solved iteratively for T; and ¥;
in the following manner. We start from the original configuration of the undeformed
column, so that all y; are the same and equal to the initial degree of deployment y. Using
eqs 2.39, for i changing from 1 to n (i.e. moving from top to bottom), all T; are calculated.

These forces are equal to those obtained from linear analysis. With these forces we use
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Figure 2.17: Configurations of the i-th pantographic unit in a non-linear column:
initial - dashed line, “after rotation” - thin solid line and final - thick solid line.
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Figure 2.18: Bending deformations of bars in a pantographic unit.
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eqs 2.41, for i changing from n to 1 (i.e. moving from bottom to top), to calculate new ;.
For the new unit configurations the new forces are found, and so on, until the required
accuracy is reached. These back and forth (or rather down and up) iterations are required
because of the fact that the boundary conditions for forces and deformations are given at
the opposite ends of the column. For the next step in load level, instead of starting again
with the undeformed column shape, the final deployment angles from the previous load

level can be used as the initial approximation to speed up the convergence.

After the analysis for the given load level is complete, the vertical deformation of
the column can be found. The total vertical deflection of the top of the column, AL, is the
sum of the height changes of all units in the column, Ali. In turn, AL may be split in two
parts: Al'i - due to rotations of bars in an i-th unit and AP, - due to bending of bars (Figs
2.17 and 2.18). Therefore, the total deflection can be written as the sum of the rotational
and bending components:

AL=Y AL =Y (Al + AP )= Y AIF + Y AIF = AL +AL° (2.42)
1=1 1=l i=l i=l

The change of the height of an i-th unit may be expressed in terms of the available degrees

of deployment:

Al = Alf + A} =2a(siny -siny,) +a(cosy,_, —cosy, )coty, (2.43)

Fig. 2.19 shows the load-deflection curves for a deployable column consisting of
ten units, with the initial degree of deployment y = 45°. The dotted line corresponds to
the change of length of the column contributed only by bending deformations of the bars,
the dashed line represents shortening due only to rotations, and the solid line gives the
actual resulting deflection. It can be seen that deflection due to rotations is an order of
magnitude greater than that due to bending. It should be noted, however, that separation
of deformations and deflections into the rotational and bending parts (eq. 2.42), although

having clear physical sense for a single unit (eq. 2.43), is somewhat artificial for the whole
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structure. In the column, the rotational part of the vertical deformation of a particular unit

is the result of both rotational and bending deformations of the units below it.

Linear and non-linear equilibrium paths for two axially loaded pantographic
columns consisting of ten units with degrees of deployment of 45° and 60° are shown in
Fig. 2.20. The straight linear equilibrium paths, with the slopes given by the equivalent
axial stiffness from eq. 2.28,

-

PL-

=185inytanzy% (2.44)

are tangents to the non-linear ones at the origin. As the compressive axial load increases,
the non-linear paths indicate softening of the structure which ultimately leads to a limit-
point instability. The procedure for tracing the non-linear equilibrium path to its maximum

and into the descending part is described in the next Section.
2.3.3 Local Snap-Through Buckling

As the compressive axial load grows the overall axial stiffness of the pantographic column
diminishes and at some load level it vanishes (Figs 2.19 and 2.20). This can be thought of
as a local buckling phenomenon happening at the top pantographic unit. This unit behaves
somewhat similar to the von Mises truss, having finite support stiffness in the horizontal
direction (Fig. 2.21). If the top nodes of this unit could slip through the bottom nodes
with the forces still applied to the top nodes, the unit would snap through, invert and
become stretched rather than compressed. In fact, after this, the axial stiffness of the
column would increase, because now the top nodes of the second unit would be subjected,
in addition to vertical compressive forces, to two horizontal forces tending to bring them
together. In reality, only part of this snap-through would happen, since the top nodes of
the first unit cannot go lower than its bottom nodes. The top unit would become
practically flat and “lock” the column. We now describe how the complete equilibrium

path between zero load and “locked” configurations can be traced.
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Figure 2.19: Load-deflection curves for axially loaded non-linear deployable
column (n = 10, y = 45°).
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Figure 2.20: Linear and non-linear equilibrium paths for axially loaded
pantographic columns (n = 10).
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The graph in Fig. 2.19 was obtained from the “load-controlled” approach, i.e. the
starting point of the analysis was the prescription of the load. Now the “displacement-
controlled” approach will be employed. The distance between the bottom nodes of the
top unit, by, or its degree of deployment, vy, = cos"(b1/2a), becomes the independent
parameter. The degrees of deployment for the rest of the units (except for the bottom
one) and the load are to be found. Under the condition of Ty = O, eq. 2.39 can be
transformed into:

T, = le:cotyj , 1=L2,...,n (2.45)
j=1

If T, from the last equation is substituted in eq. 2.41, the axial force at unit number i can

be expressed through the degrees of deployment of units from 1 to i:

P 3EI COSY,., ~COsY,

i = 2 .2 i
a“sin-y,
v 22coty1—cotyi
i=t

1=2,...,n (2.46)

’

For an initially assumed distribution of y;, we generally have all P; different. The goal is to
obtain the correct distribution of degrees of deployment, with y, = y and y, equal to the
prescribed value, so that the axial forces in all units are the same. This is achieved in a
way similar to the moment distribution method of frame analysis. Taking two adjacent
units i-1 and i, we let y;.; change until P;., equals P;. Then the same procedure is applied to
units i and i+1, which, of course, will make P; different from P,,, but equal to Pi..
Nevertheless, we proceed to the bottom of the column, and after the first pass is finished,
the maximum difference among P; is smaller. These top to bottom iterations are repeated
until the maximum difference is smaller than a specified tolerance. Once all degrees of
deployment are known, the vertical deflection of the column can be calculated from eqs

2.42 and 2.43.

Fig. 2.22 shows the load-deflection curves for three columns of the same degree of
deployment (y = 45°), but different numbers of units. It can be seen that for relatively

small values of the load, the three columns have practically the same relative deflections,
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Figure 2.21: Von Mises truss with finite support stiffness in the horizontal direction.
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Figure 2.22: Load-deflection curves for columns of the same degree of deployment
(Y = 45°) but different numbers of units.
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Figure 2.23: Snap-through buckling load versus the number of units
under constant degree of deployment (y = 45°).

which could be expected on the basis of the expression for the linear equivalent stiffness.
The value of the snap-through buckling load and the corresponding deformation, however,
slightly increase for greater number of units. This trend is shown in Fig. 2.23, from which
the ultimate value of buckling load for an infinitely growing number of units can be

predicted.

2.3.4 Restrained columns

The axial stiffness of the pantographic column could be greatly improved by the
introduction of just one additional constraint, for example, a link between the top nodes.
Although the structure becomes statically indeterminate, one may notice that as long as
the number of the units in the column is even, the horizontal line of symmetry passes

through the two nodes in the midheight of the column (Fig. 2.24a). Due to the symmetry



55
CHAPTER 2. PLANAR COLUMNS

of loading there are no horizontal forces at the interface of the two units adjacent to the
symmetry line. This means that each half of the column behaves as if it were a separate

axially loaded structure and can be analyzed as outlined above.

The case of an odd number of units in the column (Fig. 2.24b) is slightly different,
but still possible to deal with. Due to symmetry, the horizontal forces applied to the top
and bottom nodes of the central unit are the same. From the moment equilibrium of bars
in the unit:

T, = gcotyk, where k= HTH (2.47)

This condition is then used in the analysis of the upper or lower portion of the rest of the

column instead of Ty = 0.

The initial amount of stiffening brought by the constraint at small load values is
readily seen from the expression of linear equivalent axial stiffness (EA). (eq. 2.28).
Instead of the column of length L, we now have two columns of length L/2, each of them
having axial stiffness four times greater than the original. The non-linear load-deflection
curves for the statically determinate column with ten units and the same column with the
link between the top nodes are shown in Fig. 2.25 (y = 45°). The curve for the

unrestrained column is the one from Fig. 2.22 for n = 10, whereas the curve for the

factor of four to account for the presence of two such columns, one on top of the other.
This figure indicates that the snap-through load for the restrained column is approximately
four times greater than that for the unrestrained one. At the snap-through load level for
the unrestrained column, the deformation of the restrained column is approximately ten

percent of that of the unrestrained column.

When the additional constraint is put between the top nodes of the column, it

produces a column with the initial equivalent axial stiffness four times greater than the
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k=(n+1)/2

P2 ‘ $P/ 2

Ty— --—T,
- X <_Tk

(a) (b)

Figure 2.24: Restrained columns with even (a) and odd (b) number of units.
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Figure 2.25: Load-deflection curves for the unrestrained column and the column
with rigid link between the top nodes (n = 10, y = 45°).
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original. The question may be asked: is this the best result one link can give? If the link is
placed at the distance L, from the top of the column, then the whole column is subdivided
into three parts: one above the link, and the two halves of the portion of the column
between the link and the ground. From linear analysis, the part of the column above the
link yields a vertical deformation equal to:

PL,_ _PL

= , where B=18EIsinytan* 248

1

The rest of the column of length (L - L,) is four times stiffer than a separate structure of
this length but without an upper restraint:

_P@-L)_P@L-L)

.= (2.49)
- (EA),, 4B

The total vertical deflection is the sum of eqs 2.48 and 2.49:

AL=AL, +AL, =£3-[4L3, +(L-L,)’] (2.50)

The minimum AL in eq. 2.50 corresponds to L, = L/3, which gives an equivalent axial
stiffness nine times greater than that of the unrestrained column. By introduction of the
link at this location the whole column is subdivided into three roughly equal statically
determinate parts (exactly equal if the total number of units is a multiple of three). This
result is easily explained by thinking of these three parts as sequentially connected springs.
The stiffness coefficient of a spring, which is a characteristic of the whole spring, is
different from the axial stiffness, which is a characteristic of a cross-section. The stiffness
coefficient of an unrestrained column of length L is B/L>. The stiffness coefficient of the
assembly, which equals the inverse of the sum of the inverses of the individual spring
coefficients, is always less than the least of the coefficients. Making the three parts of the
column equal we maximize the smallest of their stiffness coefficients, thus making the

coefficient of the assembly B/[3(1/3)*] = 9B/L>.
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2.4 Column-Type Buckling

The increase of the axial stiffness of the deployable column, caused by a link between the
pair of nodes at a unit interface, brings about another type of instability, namely, the
overall column-type buckling. For the purpose of buckling analysis, a composite model

column is introduced.
2.4.1 Parameters of the Composite Model Column

We model the pantographic column as another structure that is stiffnesswise equivalent.
The composite column shown in Fig. 2.26¢ consists of straight elements with infinite
bending and finite axial stiffnesses. They are successively hinged to each other and to the
base with rotational springs resisting relative rotations at hinges. The original length of
each element in the composite model is equal to the height of the corresponding
undeformed SLE in the deployable column. SLEs and elements in both columns are
numbered from top to bottom. The parameters of each element - [, o, B; - are its length,
the stiffness coefficient of the rotational spring at its bottom and its axial stiffness
coefficient, respectively. The equivalent bending and axial stiffnesses of such a structure,
(EI). and (EA). (index ‘“c” stands for “composite™), obtained in the same manner as those
for the pantographic column, i.e. by equating the displacements of the composite model
and a uniform solid column, are:

L (EA), = — . where L=Y1 (2.51)
i=l

1/a, Y118, i=
i=1

We start by defining the parameters of the composite column on the basis of a
linear analysis of the pantographic structure. If all elements of the model have the same

length, which corresponds to all SLEs in the uniform pantographic column having the
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same height, and all rotational springs have the same stiffness, which corresponds to

uniform equivalent bending stiffness along the pantographic column, then:

_3E
a

[ =2asiny, ¢ (2.52)

The axial stiffness coefficient of each element can be obtained from egs. 2.30 and 2.31 as

the ratio of the load and vertical deformation of the unit:

B, = P___3H L (2.53)

Vo=V, a‘cos’y [2n -2i% +2n-|]

2.4.2 Procedure of Buckling Analysis

A composite column, with all dimensions and stiffness parameters specified, subjected to
axial compressive force P applied at the top, is shown in Fig 2.27. The potential energy of
this system in a buckled configuration, V, equals the difference between the strain energy
of the axially compressed elements and deformed rotational springs, U, and the work done

by the load, W:

9

V=U-W= i[a‘ ©; =0...)° + B‘f;}—P zn: [l; 1-cosB,)+9d, cosB,] (2.54)
i=1 =~ i=l

where 6; is the rotation of the i-th element (6,., = 0), and & = P cos 6, /B; is the elemental
compressive deformation. Substituting §; into eq. 2.54 and using the series expansion

cos6; = 1 - 8,2 for small 6 yield:

v:ég[cxi (8, =6,,)* +(P* /B, —PL )8} -P* /B, ] (2.55)

The stiffness matrix of the structure is obtained by differentiating eq. 2.55 two

times with respect to the angles:
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Figure 2.26: Pantographic (a), equivalent solid (b) and composite (c) columns.

Figure 2.27: Initial and buckled configurations of the composite mode! column.
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8'\2/ =a, -P(l, -P/B,), 8'\2/ =a,_, +o, -P(, -P/B,), for i=2,...,n,
90; 20: )
, X (2.56)
OV o, ifj-i=l; 2V 0. otherwise
.0, T Feoe, '

Hence, the stiffness matrix is tri-diagonal with the entries on the main diagonal being
quadratic functions of the load.

The vanishing of the determinant of the stiffness matrix gives the buckling load P,
which leads to a non-linear eigenvalue problem. One possible way to solve this problem is
to employ a very robust algorithm suggested by Wittrick and Williams (1971) - the
combination of bisection and sign counting. However, in assigning the parameters of the
composite model the results of the linear analysis of a pantographic column under axial
load were used (eq. 2.53), whereas the behaviour of the column subjected to such load is
non-linear as was shown in Section 2.3. Although the stiffnesses of the rotational springs
only depend on the bending stiffness and length of the bars in the SLEs and do not depend
on their current degrees of deployment (eq. 2.52), the axial stiffness coefficients of the
elements of the model corresponding to the non-linear pantographic column are non-linear

functions of the load.

It may be noticed that the expressions in brackets in the load-dependent entries of
the stiffness matrix (eq. 2.56), [; - P/B;, are the lengths of the elements of the composite
model at the current load level. This leads to the following conclusion. The composite
column with axially soft elements buckles at the same load as the column with axially rigid
elements if the lengths of the rigid elements are the same as the lengths of the soft
elements at the point of buckling. Since the current lengths of the elements can be
obtained for any load by means of the non-linear analysis (eq. 2.43), we can find the
critical force for the composite column with such elements considering them axially rigid.
In this case the problem of finding the buckling load becomes a generalized linear

eigenvalue problem. If this critical force is greater than the current load on the column the
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structure is still stable. Then the load on the column is increased, new element lengths and
new critical force are found. At some point, the load on the column and the critical force

for the deformed structure will be equal. This load level is critical.

2.4.3 Results of Buckling A nalyses

Fig. 2.28 shows the results of buckling analyses for columns of constant length and the same
bending stiffness of bars in the pantographic units. All columns are restrained with a rigid link
between the two top nodes. The three curves correspond to columns consisting of 10, 20 and
30 units, while the initial degree of deployment varies along each curve. The trend along each
curve represents the change of the initial configuration from that of the first column in Fig. 2.12
to that of the third column in the same figure. Two points on different curves but with the
same horizontal coordinate correspond to a change of the initial configuration from that of the
first column to that of the second column in the same figure. For all values of the number of
units (10, 20 or 30), snap-through occurs before overall buckling if the degree of deployment is
less than 58°. For a constant degree of deployment the critical load grows as the number of
units in the column increases. The reason for this is that with the greater number of units the
effect of geometric non-linearity becomes more pronounced and the column shortens more
(becomes more “stocky’”) before it buckles. For a column with constant length and number of
units but varying degree of deployment there are two tendencies. As y grows, the column
becomes stiffer axially which reduces the buckling load. At the same time, since the bar length
(2a) decreases, the bending stiffness increases and this contributes to the increase of the
buckling load. It can be seen from the graph, that the former trend prevails at first and for
some degree of deployment the buckling load reaches its minimum. After that the second trend

overcomes the first and the buckling load slightly increases.

The buckling load versus the degree of deployment for a column consisting of 20 units
is shown in Fig. 2.29. At each stage of deployment the length of the column is different since

the size of the bars in the units is kept constant. Again, until y reaches 58° snap-through occurs
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Figure 2.28: Buckling load for restrained pantographic columns of the same length
and different number of units versus the degree of deployment.
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Figure 2.29: Buckling load for restrained pantographic column
versus the degree of deployment (n = 20).
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before column-type buckling. As the column deploys, its length and axial stiffness increase

lowering the value of the buckling load in spite of the increasing bending stiffness.

2.5 Non-Uniform (Tapered) Columns

In this Section pantographic columns with the pivot connection in some or all SLEs
shifted from the midpoint of bars (Fig. 2.30) will be examined. Such a shift immediately
produces bars of different lengths in different units. As in the uniform column, the parts of
the bars in the adjacent SLEs form rhombuses, only now these rhombuses are generally
not equal. We will consider linear and non-linear behaviour of such non-uniform columns
under different loads, deriving, where possible, the overall stiffness characteristics of these
structures and comparing them with those of uniform columns. As before, the bars in all
pantographic units are assumed to have the same bending stiffness EI; the contribution of
axial deformations of bars to the overall deflections of the structure is assumed to be

negligible compared to that of bending.

2.5.1 Linear Behaviour

2.5.1.1 Moment Loading

First we examine the linear behaviour of a non-uniform pantographic column. The first
case of loading is a moment applied at the top of the column (Fig. 2.30). A typical
pantographic unit (unit number i), together with forces acting on it, is also shown in Fig.
2.30. The structure under consideration is statically determinate, and therefore the forces
acting at the interfaces of pantographic units can be obtained by considering the
equilibrium of bars in each unit starting from the top of the column and moving down unit

by unit. Alternatively, forces at a particular unit interface can be deduced from the
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equilibrium of the part of the column above this level. For example, we can consider the
equilibrium of the top portion of the column including the i-th unit. In general, there can
be both vertical and horizontal force components acting at each of the two bottom nodes
of the i-th unit. Since the structure is symmetrical and the moment load is anti-
symmetrical, the vertical forces at the two nodes must have the same magnitude and
opposite directions, and the two horizontal forces must have the same magnitude and
direction. The value of the vertical forces is found from the moment equilibrium, about
any point on the horizontal line connecting the two nodes, of all forces applied to the
portion of the column above this line. This gives the vertical force value equal to M/b; =
M/(2aicosy). The only way to satisfy the force equilibrium in the horizontal direction is to

have both horizontal forces equal to zero.

The bending moments in the bars of the pantographic units are zero at the end
hinges and increase linearly to the maximum value at the pivots. The maximum moment
value is independent of the bar length and pivot location and equals M/2. Knowing the
internal force distribution one can employ the principle of virtual work to find the rotation
of the top of the column due to the applied moment. Applying a unit virtual moment at

the top of the column and equating the external and internal virtual work we obtain:

Ma, 21 Ma, M L
=— —+ =iz 2.57
Z‘( 2 2 37) 61512( -t ¥ 6EIsmy (2.37)

where the internal virtual work on the right is the sum of contributions of all n units. A

uniform solid column of the same length subjected to the same load would produce the
rotation ML/(EI),, where the familiar notation (EI). is the equivalent bending stiffness of
the solid column. Equating the two rotations yields the expression for the equivalent
bending stiffness of the non-uniform pantographic column:

(EI), = 6ElIsiny (2.58)

The last expression is exactly the same as that obtained for a uniform pantographic

column. This shows that the equivalent bending stiffness of a pantographic column
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depends only on the bending stiffness of bars in the SLEs and on the degree of

deployment.
2.5.1.2 Lateral Force Loading

The pantographic column subjected to the lateral force applied at the top and a typical
pantographic unit with forces acting on it are shown in Fig. 2.31. The horizontal forces
acting at unit interfaces must ensure horizontal force equilibrium, hence they are the same

throughout the column, and the vertical forces are responsible for moment equilibrium:
Vb, =PL, =PY [, =Psinyy (a;, +a,), (2.59)
j=1 j=l

where L; is the length of the part of the column above the bottom level of the i-th SLE.

The pivotal bending moments in the bars of the unit are:

b, P P . i P :
M, =V, —'—;aismy =¢)-smy[2(aj_l ~f-aj)—ai:l=5(Li —a;siny) (2.60)

P
2 pn

r4 - —

The horizontal deflection of the top of the column due to the lateral load is found as:

1 & Mia_ 2M, M.a 2M, P L] ) N
Ll (Mpa 2 M, Mya 2 M, ) L _a L 261
mg,( 2 3P ' 2 3 P) 6EIsinyZ[(' asinyyL] @6

< < i=I

Comparing the last equation with that for the deflection of a uniform solid column,
PL’/3(EI)., we obtain the following expression for the equivalent bending stiffness of the
deployable column:

3 .
(EI), = L1 L siny (2.62)

X[ —a;siny)’s]

i=l

It can easily be shown that this expression simplifies to that of eq. 2.58 if the column is

uniform and the number of units is sufficiently large.

Let us now consider the special case of a non-uniform pantographic column, in

which the symmetric shape of the column is enveloped by two straight lines with opposite
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bi-l = Zai-[ cosy
—

Figure 2.30: Non-uniform pantographic column under moment load
and forces applied to a typical unit.
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Figure 2.31: Non-uniform pantographic column under lateral load
and forces applied to a typical unit.



68
CHAPTER 2. PLANAR COLUMNS

slopes. In this case, all units of the column are inscribed in similar trapezoids (with the
bars in the units being the diagonals of the trapezoids). For each bar in the column, the
pivot divides it into two parts whose lengths are in the ratio m = a; /a.,. Two such
columns are shown in Fig. 2.33 for values of m less and greater than one on the left and on
the right sides of the graph, respectively. Three additional parameters which, together
with m, define the geometry of the structure, are the total length of the column, L, the
number of SLEs, n, and the degree of deployment, y. The lengths of bars in the units and
the locations of the pivots are found as follows. The total column length can be written in
terms of the bar lengths (in calculating the sum we use the fact that a;, i = 0,....n, form a

geometric progression):

L= ili = sinYEn:(a;-l +ai)= Sinan:ai_l(l-f- m)=a,siny(l+ m)iﬁ =
= = i=l i=l ao

. . (2.63)
=a siny(l+m)) m'™" =a,siny(l+m) m —1
i=l -
From eq. 2.63, a and then a; can be expressed through L, n, Yy and m:
2, = ‘L m-—1 . a —a,m' = _L (m-1)m (2.64)
siny (m+l)(mu —l) siny (m+1)(mu —1)
Extending the resulting expression of eq. 2.63 for L; (note that L = L,) we get:
L, =a siny(l+m)Ptop ™=l g (2.65)
m-1 m"® -1
i _ i 2 i 1
L-asiny=L @=L p_(m-bm’ _ L 2m'-(m+]) (2.66)
m” —1 (m+l)(m°—l) m® -1 m+l
With eq. 2.64, the undeformed height of an i-th unit becomes:
L = (a,, +a,)siny = g {m=Dm’ (2.67)

(m“ - l)rn
Now all the values under the summation sign in the denominator of eq. 2.62 are expressed
in terms of the four basic parameters. With the use of egs 2.66 and 2.67, the denominator

of eq. 2.62 becomes:
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(m® —L ;;:I(: 1)1)2 m ; m'[2m’ - (m + l)]- (2.68)

Expanding the expression under the summation sign in the last equation and using:

a i kn -1
iZ}(m“) =m" (2.69)

we can rewrite eq. 2.68 in the following form:

3 _ 3n __ 2o . a _
L(:n ) - |i4m3m3 1—4(m+1)m2m2 +(m+1P°mZ IJ=
(m®-1)(m+1)*m m” -1 m- -1 m -1

2.70
_ 3(m—l)z(ml+m+1)+4m(m“m—1)(m"_m) (2.70)

(m+1)*(m® - 1)2(m2 +m+1)

Using the last result in eq. 2.62 we obtain the equivalent bending stiffness expression for

the tapered pantographic column:

1 (m+1)(m - 1)"(m* +m +1) } 2.71)

(ED). = 6EIsinY’l5 (m=1)*(m* +m+1)+ 4m(m"m'-1)(mn - m)

The change in the equivalent bending stiffness due to tapering is given by the bracketed

term in the last equation.
2.5.1.3 Axial loading

The pantographic column subjected to axial load and a typical SLE with forces acting on it
are shown in Fig. 2.32. From the condition of vertical equilibrdum, the vertical forces
acting at all unit interfaces are the same and equal to the load. The horizontal forces
acting at the bottom nodes of an i-th SLE are found by application of the principle of

virtual work to the portion of the column above this level:

T, =£coty Lfi (2.72)
2 a;siny

The pivotal bending moments in the bars of the unit are:
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. P P .
M, =Tiaismy—zaicosy =-2—coty(Li -a;siny) (2.73)

This expression for moment is similar to that from the case of lateral loading (eq. 2.60)
except for the factor coty, which will appear squared in the expression for vertical

deflection:

Pcot’y _
6EIsmyZ[(L a,siny)'L | (2.74)

Equating the above deflection to that of the equivalent solid column, PL/(EA)., we obtain
the following equivalent axial stiffness:
6ELsin® yL

cos’ yg[(Li —a, siny)zli]

(EA), = (2.75)

For the linearly tapered column, using the transformations of eqs 2.63 through

2.70 we obtain:

18EIsin’y i (m+l):(m“ —l)z(m2 +m+ l)
L*cos’y |3 (m—l)z(m2 +m+l)+4m(m°m—l)(m“ —m)

(EA), = (2.76)

One may notice that both the equivalent bending and the equivalent axial
stiffnesses of the tapered column (eqs 2.71 and 2.76) differ from the corresponding
characteristics of the uniform column (egs. 2.11 and 2.28) by the same factor:

1 (m+1)*(m® —l)z(m2 +m+1)

3 (m—1)2(mz Tma 1)+4m(m"m —1)(m" —m) (2.77)

Fig. 2.33 shows the plot of the deflection ratio of tapered and uniform
pantographic columns (solid line for linear behaviour) versus the value of m. This ratio is
the inverse of k from eq. 2.77. For m less than one the top of the column is wider than the
bottom, and deflections are greater than those of the uniform column. Ultimately, as m

approaches  zero, the deflection values reach that for a single bar, with the slope equal to
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Figure 2.32: Non-uniform pantographic column under axial load and
forces applied to a typical unit.
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Figure 2.33: Relative deflections of linear (lateral and axial loads) and non-linear
(axial load only) tapered pantographic columns versus the degree of tapering.
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the degree of deployment, clamped at the ground level. For m greater than one, the

column is more narrow at the top, and deflections decrease as m grows.

Let us look at what happens when m goes to infinity. The deflections of the
tapered column approach zero, i.e. we get an infinitely stiff structure. What is the physical
meaning of this? In a tapered column with a large value of m, the lower portion of the
bottom unit would constitute the most of the structure’s length regardless of the number
of units in the column. As m grows, quite soon the pantographic column is transformed
essentially into a two member truss. Since the assumption of zero axial deformation of
bars in pantographic units was used in the problem formulation, this truss is, of course,

infinitely rigid.

2.5.2 Non-Linear Behaviour; Axial Loading

The source of geometric non-linearity in the behaviour of a uniform pantographic column
under axial loading was described in detail in Section 2.3.1. In the case of a non-uniform
column the origin of this phenomenon is the same: it is caused by the finite rotations of
bars in a unit due to the deformations of the part of the column below it. The internal
forces are to be found for a deformed configuration of the structure, when the degrees of
deployment for all units are different. A typical unit from the axially loaded non-linear
deployable column is shown in Fig. 2.34. The degree of deployment of this unit after
rotation of bars and the horizontal forces applied to the nodes are unknown. The change
in the unit height consists of the part due to rotation of bars caused by change in the unit
base (the distance between the bottom nodes) and the part due to bending of bars, which
further multiplies the effect of the bar rotations for the units above. Eqs 2.39 and 2.41

modified for the non-uniform column system:
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T, =T, qia +£cotyi(l +3i‘—‘J
a 2 a

i i

, 1=1,2,..,n, (2.78)

22 +a) )(T +BcotY )
i-1 2 i

COSY,, =cosy, +sin’y,

Yx—l Yl Yl 3EI
together with the boundary conditions, To = 0 and ¥y, = v, after being solved iteratively,
yield the forces and deformations in the non-linear column with the prescribed accuracy.

The possibility of a snap-through buckling of the top unit is also present here.

The dashed line in the plot of Fig. 2.33 shows the deflection ratio versus the
degree of tapering for non-linear columns at a load level of 90% of the snap-through load
for the uniform column. Qualitatively, this dependence is similar to that for the linear case
(solid line) with marginal gain in stiffness for the values of m between 0.6 and 1. Again,
for large values of m, the internal forces become primarily axial ones in the lower portion

of the bottom unit, and deflection approaches zero.

Fig. 2.35 shows the m-dependence of the snap-through buckling axial load and the
corresponding deflection of tapered columns relative to those of a uniform column. For m
less than one (column is wider at the top), both the buckling load and the deflection grow
as m decreases. For m greater than one (column is wider at the bottom), the snap-through
load reaches its minimum at m = 1.8. The trend for snap-through deflection resembles

that seen in Fig. 2.33 for large values of m.

2.6 Conclusions

The behaviour of a uniform pantographic column subjected to lateral, moment and axial
loadings is considered in this Chapter. Assuming linear behaviour, the deflection for each
load type is obtained as a function of the geometric parameters of the structure and the

stiffness parameters of its components. The overall bending and axial stiffnesses of the
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Figure 2.34: Three configurations of pantographic unit in non-uniform
non-linear column under axial loading: initial - dashed line,
“after rotation” - thin solid line, final - thick solid line.
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Figure 2.35: Relative snap-through load and deflection of tapered non-linear
column subjected to axial load versus the degree of tapering.
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deployable column are derived by equating its deflections to those of a uniform solid
column of the same length. It is found that under certain assumptions the behaviour of the
pantographic column in bending resembles very closely that of the solid column.
However, under axial load, the distribution of internal forces and deformations along the
deployable structure differs qualitatively from the distribution of stresses and strains in its

solid counterpart.

The resuits of linear analyses of pantographic deployable columns under axial load
suggest that, even for small bending deformations of bars in pantographic units, finite
rotations of bars about the pivotal connections in the units and hinges at unit interfaces
cause the phenomenon of geometric non-linearity to play a significant part in the column
behaviour. For the purpose of non-linear analysis, the equilibrium equations are written
for each unit in its intermediate configuration and supplemented with the compatibility
equations and boundary conditions for forces and deformations. This highly non-linear
system of equations is solved iteratively for a specified value of the load. The results of
the non-linear analyses show that the bulk of the unit height change, and therefore bulk of
the overall vertical deformation of a column, indeed comes from the rotations of bars in
the units, not from their bending. The equilibrium paths for axially loaded columns,
obtained by the “load-controlled” approach, reveal the possibility of stability loss in the
form of snap-through buckling of the top unit. To trace both the ascending and the

descending parts of the equilibrium path a “displacement-controlled™ approach is used.

Columns with an additional constraint between the two nodes at a particular unit
interface are also considered. It is shown that the analysis of a restrained column comes
down to analyzing the various parts of the structure by the above procedures, with slight
modifications depending on the number of pantographic units (even or odd) between the
link and the ground. The constraint location that yields the greatest increase of the axial

stiffness is found to be at one third of the column length from the top.
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The procedure for calculating the buckling load of a uniform pantographic column is
presented. This procedure incorporates the effect of geometric non-linearity exhibited by the
column under axial loading. For stability analysis the pantographic structure is substituted by a
stiffnesswise equivalent composite model having fewer degrees of freedom. The parameters of
the model are determined on the basis of the deformed configuration of the original structure.
Orthogonality of rotations and vertical deformations of the elements of the composite column

at the point of buckling is employed in calculating the buckling load.

The columns analyzed for the buckling load are restrained, i.e. a rigid link is introduced
between the top nodes. This does not affect the procedure, but it increases the axial stiffness
and postpones the phenomenon of the local snap through buckling. For constant height and
degree of deployment, the buckling load increases with the number of units in the column. For
constant height and number of units, it is found that for a certain degree of deployment the
buckling load is minimized. When the number of units and dimensions of the bars are constant

the buckling load decreases as the column deploys.

The behaviour of non-uniform pantographic columns under moment, lateral and
axial loads is also considered. Closed form expressions for equivalent bending and axial
stiffnesses are obtained for linearly behaving columns whose shapes are tapered uniformly.
The corresponding non-linear results for axially loaded tapered columns are obtained
numerically. The results indicate that in the practical range of the degree of tapering the
stiffness properties of the pantographic column are not very sensitive to changes in the

value of this parameter.



Chapter 3

Three-Dimensional Columns

3.1 Introduction

In the previous Chapter a planar pantographic column was analyzed for different load
conditions. However, structures in our three-dimensional world are usually also three-
dimensional. This Chapter discusses the behaviour of spatial pantographic columns. The
columns considered here have square and triangular “cross-sections”. A column consists
of a number of three-dimensional pantographic units, stacked on top of each other (Fig.
3.1). The sides of a unit are identical SLEs with a pivot connection at the midpoint of the
bars. Hence, the top view (““cross-section™) of the unit and of the column is a square or an
equilateral triangle. The ends of the bars are assumed to be connected through spherical
hinges that allow free relative rotations about three axes. The pivot connections between
the bars in SLEs are revolute joints allowing free relative rotation of the bars only in the
plane of SLEs. The bottom nodes of the column are hinged to the ground. The bending
stiffness of the bars is taken the same in plane and out of plane of the SLEs, and axial
deformations of the bars are neglected. As before, the length of each bar is denoted by 2a,
its bending stiffness is EI, the degree of deployment is given by angle y between the axis of

the bar and the horizontal plane, and the total number of units in the column is n.
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The analysis of the response of the columns to the load is limited to their linear
behaviour in this Chapter. It can be expected that the stiffness characteristics of three-
dimensional columns are very closely related to those of planar columns. Because of the
four-fold symmetry of square columns and the three-fold symmetry of triangular columns
under the axial load equally distributed between the top nodes of a column, their linear
response is the direct superposition of that of the four, or three, two-dimensional columns
which form the sides of the spatial structure. In bending, however, the manner in which
the planar columns contribute to the response of the structure is not quite obvious. The
cases presented here are: square and triangular columns in bending and square columns
subjected to lateral load. Remarks on some possible arrangements of three-dimensional

columns into deployable slabs are given in a separate Section.

3.2 Pantographic Column of Square Cross-Section

under Moment Load

In this Section, a three-dimensional pantographic deployable column with square cross-
section and subjected to a moment load at the top is considered (Fig. 3.1). The moment
load is represented by two force couples applied to the top nodes of the column. The goal
is to obtain the overall equivalent bending stiffness of the structure, i.e. the bending
stiffness of a solid column of the same length which would exhibit the same displacement
under the same loading. This characteristic was derived for a two-dimensional

pantographic column in the previous Chapter and was found to be 6EIsiny.
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Figure 3.1: Three-dimensional pantographic column of square cross-section
subjected to moment loading.
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3.2.1 Analysis of a Single Unit by the Force Method

3.2.1.1 Load and Support Conditions, Symmetry Considerations

We start by considering a single three-dimensional square pantographic unit taken out of
the column subjected to moment load (Fig. 3.2). The portion of the column above this
unit transfers the load applied to the top of the structure to the top nodes of the unit by
means of forces applied to the four top nodes of the unit. Each of these forces has, in
general, three components parallel to the coordinate axes. The unit, as well as the whole
structure and the load, has certain symmetry properties that can be utilized in the analysis
to reduce the number of unknowns. The vertical plane of bending (xOz) is the plane of
symmetry and the vertical plane perpendicular to it (yOz) is the plane of anti-symmetry
(skew-symmetry). Now, instead of twelve unknown forces acting on the top nodes of the

unit there are only three.

The four vertical forces all have the same magnitude. The two vertical forces
acting on the front nodes are both upward in this case, and the two vertical forces acting
on the rear nodes are downward. The opposites of these four forces, applied to the
bottom nodes of the portion of the column above the unit, are the only forces that could
resist the external moment applied at the top of the column. Therefore their values must
be M/4acosy each as shown in Fig. 3.2a. Hence, the vertical forces at all unit interfaces

are the same as those at the top of the column.

The x-components of all four forces must have the same magnitude and direction
due to the two-fold symmetry described above. Then, their opposites applied to the upper
portion of the column should sum up to a horizontal force in the x-direction which is not

balanced by anything else. The only way to avoid this violation of force equilibrium in the



81
CHAPTER 3. THREE-DIMENSIONAL COLUMNS
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Figure 3.2: Single three-dimensional square pantographic unit from the column
subjected to moment loading (a) under vertical (b) and horizontal (c) forces
applied at the top nodes and the bottom node supports with finite stiffness in

horizontal direction.
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x-direction is to have each of these four forces equal to zero. Hence, there are no

horizontal forces in the x-direction at any unit interface.

The y-components of the forces at the nodes again all have the same magnitude,
and their directions must be as shown in Fig. 3.2a up to the sign of all of them. The value

of T, however, is unknown at the moment.

The unit is supported by the portion of the column below it. The bottom nodes of
the unit cannot be considered hinged to a rigid foundation (except for the lowest unit in
the column) since the lower portion of the column provides only finite resistance. To
account for this, we support the bottom nodes of the unit with four horizontal springs of
equal but yet unknown stiffness k in the direction perpendicular to the plane of bending (in
the y-direction). After the analysis of the unit with springs is done, all possible situations
can be obtained by varying the spring stiffnesses between zero and infinity. Strictly
speaking, the stiffness of the supports in the vertical direction is also finite. However, the
vertical reactions are known for all units and are the same as the external forces at the top
of the column, and the vertical displacements of the two front nodes are the same as, but
opposite to, the vertical displacements of the two rear nodes. Therefore, the finite vertical
stiffness of the supports would only produce a rigid body motion of the unit. Thus,
making the supports rigid in the vertical direction we simply eliminate this displacement
component and do not affect the state of internal forces in the bars of the unit. A similar
argument can be applied for the supports in the direction parallel to the plane of bending

(in the x-direction).

Since the behaviour of the pantographic column is assumed to be linear, we can
consider separately the effects of vertical and horizontal forces applied to the unit (Fig.

3.2b and c), and superimpose the internal forces in the bars of the unit afterwards.



83
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

3.2.1.2 Primary Structure, Compatibility Equations

A square pantographic unit includes eight bars. In three dimensional space each of these
bars has six degrees of freedom as a rigid body. Therefore, there are a total of 48 degrees
of freedom for eight unconstrained bars “floating” in space. Each spherical hinge
connection between two bars as well as each hinge support eliminates three degrees of
freedom. There are eight such connections and four such supports; the number of
constraints introduced is 36. Four pivot connections (revolute joints) in scissor-like
elements impose five constraints each. The total number of constraints is, therefore, 56.

The pantographic unitis 56 - 48 = 8 times statically indeterminate.

It is relatively easy to analyze a two-dimensional SLE if the forces applied to its
nodes are known. The four sides of the three-dimensional square pantographic unit are
such two-dimensional elements. The two SLEs perpendicular to the plane of bending will
be called “front and rear faces™; the two SLEs parallel to the plane of bending will be
called “left and right sides”. We will cut these four SLEs apart at the top nodes of the unit
and use the procedure of the force method to find the forces acting at the cuts (Fig. 3.3).
The four cuts at the hinges introduce twelve translational releases in the eight times
indeterminate structure.  Therefore, the primary structure must be four times
underconstrained. The four degrees of freedom introduced are the rotations of the four
planar SLEs about the axes through their bottom nodes. Thus, we are going to use a
geometrically unstable primary structure in the force method of analysis of the
pantographic unit, which is somewhat unconventional but still possible with carefully

chosen redundant forces.

The twelve unknown force components corresponding to the releases are reduced
to three unknowns in this twice symmetrical system. The unknown forces are denoted by
X1, X2 and Xx; in the directions of the z-, y- and x-axes, respectively. The symmetry of the

problem allows us to make one more conclusion at this point. It can be seen from Fig.
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Figure 3.3: Unknown forces at SLE connections of three-dimensional square unit
with two-fold symmetry: symmetric about xOz plane and anti-symmetric about
yOz plane; (x; = 0).

3.3, that for the equilibrium of the front and rear faces of the unit the unknown X3 has to
be zero. Hence, only two unknowns x; and x, are left, and they can be found from the
compatibility equations of the force method:

d,x, +8,,x,+A, =0

3.1
3,x, +8,x, +A, =0 G-

Fig. 3.4 shows the internal forces in the separated SLEs and the supporting springs
due to the two unknowns. Only the front face and right side SLEs are shown. The
flexibility coefficients of the force method can be found through the principle of virtual

work. The bending moment diagrams along the bars are triangular, with zeros at the bar
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Figure 3.4: Internal forces in the primary structure of a single three-dimensional
square pantographic unit due to x; = I (a) and x, = 1 (b).
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ends and maxima at the pivots. These maximum moments are shown in Fig. 3.4. For such
moment functions, the virtual work of bending moments on bending deformations can be
readily calculated as described in Appendix A. The virtual work due to spring forces and

spring deformations must also be included.

The total relative vertical displacement of the cut hinges due to x; = 1:

2 3 2 2

5., =—1-acosyazacosy-4~4+2coty"cow 4= 16a’cos”y +16 c?s’ Y (3.2)

EI 2 3 k 3EI k sin-y
The total relative horizontal displacement of the cut hinges due to x, = 1:

1 (asinya2 a-a? 8a’ . s

= — 4.4+ 9.4 | =—_ -
J., EI( 5 3asmY 4-2+ 3 3a 4 -) 3EI(1+sm Y) (3.3)
The cross-coefficients are:
2 Isi
5,,=8,,=—lacos¥a:asiny-4~2=—8a siny cosy (.4)
T EI 2 3 3EI

3.2.1.3 Moment Loading of a Single Unit (Vertical Forces)

The first external load applied to the unit are the four vertical forces corresponding to the
moment loading. The internal forces in the primary structure are shown in Fig. 3.5. Since
in the original unit the external forces are applied at the nodes which are cut, we are free
to apply the forces to either side of the cuts in the primary structure. This would affect the
values of x; and x», but would change neither the final bending moments in the bars nor
the spring forces. In this analysis it was chosen to load the side SLEs of the primary

structure of the unit and leave the faces unstressed.

The load coefficients, i.e. the displacements in the primary structure in the
direction of unknown forces due to the external load, are:

__1lacosya2M

4.9=_2Ma’cosy

1 , 4,=0 3.5)
EI 2 34 3EI
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The compatibility equations now become:

3 El k sin®y 3EI : 3 ElI

_8a3sinycosyx 8a’
3El ' 3E

(16a3coszy+16 coszy) _8a35inycosyx _2Ma’cosy
1 =
, (3.6)

(1+sin*y)x, =0

from which x, and x» are found:
M Ksinzy(1+sin3y)
' 4acosy Ksin®y (2+sinzy)+2 (1+sinzy)

X
3.7)

*

_M Ksin’ y
* 4aKsin®y(2+sin®y)+2(L+sin’y)

where K = k a%/(3 EI) is the non-dimensional spring stiffness. The bending moments at the
pivots of the bars in the front face are:

M Ksin®y

4 Ksin’y (2+sin”y)+2(1+sin’y

Mg =mpx, +m,.x, = ) (bottom tension), (3.8)

the in-plane bending moments at the pivots of the bars in the side are:

M Ksin®y +2 (1+sin’y)

— - - —— (front tension), (3.9)
4 Ksin®y (2+sin*y)+2(1+sin’y)

in _ —
Mrs = Mg, +mlrsxl -

the out-of-plane bending moments at the pivots of the bars in the side are:

M Ksin’y
4 KSin:Y(2+Sin2Y)+2(l+Sin2Y) (310)

out __ _
Mrs - mlrsxl -

The force in the right front spring is:

t=t1X1=M — Ksin*'{(11+sin'y) —— (tension) @(3.11)
2a Ksin’y (2+sin®y)+2 (1 +sin’y)

From the last six equations it is shown that when the bottom nodes of the unit are
hinged to the ground, i.e. the springs are infinitely rigid, the values of the unknown forces

become:
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= itsny o, M _ sy (3.12)
4acosy 2+sin”y © 4a 2+sin7y

and the bending moments and spring force are:

M‘r"s':M l —, M;N=M_51L,
4 2+sin’y 4 2+sin”y

. (3.13)
M _M 1 ‘= M  1l+sin”y
T 4 2+sin’y’ 2asiny 2+sin’y

If the bottom nodes are not supported in the horizontal direction, i.e. the spring
stiffness is zero, both x, and x. are equal to zero as well as bending moments in the face
bars, out-of-plane bending moments in the side bars and the spring forces. The load is
therefore entirely resisted by the in-plane bending of the sides, with the pivotal moments in
their bars equal to M/4. The bars in the SLEs of the faces rotate about the pivots without

bending to fit the new location of the nodes.

3.2.1.4 Unit Loaded with Two Self-Balanced Horizontal Couples

The next case of loading of a single pantographic unit consists of the four

horizontal forces shown in Figs 3.2c and 3.6. The load coefficients in this case are:

7 3
A =Lacory 4=8Tcory, a,=L2T22, ,,_8Ta (3.14)
k k " EI 2 3 3EI
The compatibility equations with the corresponding right sides:
16 a’cos®y +1§cosl Y), _8a’sinycosy <. 8T cosy
3 EI k sin®y )" 3EI 2 k siny
(3.15)
8a’sinycosy 8a’ . s 8Ta’
- . (1+sm Y)x2 =-
3EI 3EI 3EI

yield the following expressions for the unknowns:
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Figure 3.5: Internal forces in the primary structure of a single three-dimensional square

antographic unit due to vertical forces corresponding to moment loading.
p grap p g g

front face right side
T
—>
T mgs = Ta
- /(out of plane)

Mo = T
(compression)

k4
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(tension)

Figure 3.6: Internal forces in the primary structure of a single three-dimensional square
pantographic unit due to horizontal forces corresponding to moment loading.



90
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

siny Ksin®y +(1+sin®y)

X =—TcosY KsinzY(2+Si"2Y)+2(l+sm2Y) 3.16)
K2sin’y+(2+sin’y) §

2 =-1 Ksin®y (2+sin®y)+2 (1+sin®y)

For these values of x; and x» the pivotal bending moments and the spring force can be

found:
M, =Tasiny —— K%:m" Y+l —— (bottom tension) 3.17)
Ksin®y (2+sin®y)+2 (1+sin’y)
_ _ Ksin®y + (1 +sin’y) _
M =Tasiny — (front tension) (3.18)

Ksin®y (2+sinzy)+2 (1+sin’y)

Ksin®y +1

M =T asin® - - - (3.19)
Y Ksin®y (2 +sin’y)+2(1+sin’y)
S 3
t=T —— Ksiny —(tension) (3.20)
Ksm'y(2+sm'y)+2(1+sm'y)
When K goes to infinity (rigid supports instead of springs):
2
ooy 2T (3.21)
2+siny - 2+sin”y
My =5l Ma = TR e T2y o Tinty g )
2+sin"y 2+sin”y 2+sin"y 2+sin"y
and if K is zero (no support in horizontal direction):
o) s 2
l=—TtanY1 x‘l=—T ~+SI.n 1Y (323)
2 - 2(1+sm'y)
M, = T asiny M =Iisiﬂ, ow _ lAsin”y (=0 (3.24)

2l+sin’y)’ " 2 " 2l+sin’y)’
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3.2.2 Constrained Pantographic Unit

3.2.2.1 External Loading

Knowing the internal force distribution in the pantographic unit one can find the
horizontal displacements of its top nodes in both load cases studied in the previous two
Sections. A virtual unit load can be applied to the primary structure. This virtual load will
be four unit forces in the directions of T in Fig. 3.6. The total horizontal displacement of
the four top nodes due to the loading of Fig. 3.2b is (the first term is the part of the virtual
work due to out-of-plane bending of bars in the side SLEs, the second term is the virtual
work due to deformation of the springs):

1M Ksin’y

h =M ila.4.2+
Y EI 4 Ksin®y (2+sin’y)+2(1+sin®y) 2 3

Ksiny(l +sin°
M Y( Y) l-l'4= (3.25)

2a Ksin®y (2+sin®y)+2(1+sin’y) k

2Msiny a’ Ksin®y+1+sin°y
a  3ElKsin®y (2+sin*y)+2(1+sin’y)

The total horizontal displacement caused by the four horizontal forces in Fig. 3.2c is:
Ksin*y +1

2
KsinzY(2+sinzy)+7(1+sm y) a-4-2+

1 ,
h; =—Tasin"
TTE Y

> > 4
Ksin y 1-4 = (3.26)

TKsinzy(2+sin3y)+2(1+sin2y)k' -

a’ 2Ksin*y +2+sin’y
3EI Ksin®y (2+sin*y)+2 (1 +sin’y)

4 Tsin’y

Now it is possible to find the horizontal forces (Fig. 3.2c) that are needed to eliminate the
horizontal displacements of the top nodes of the unit caused by the vertical forces (Fig.
3.2b):

M_ Reiny+lesin v (3.27)
2asiny 2Ksin“y+2+sin”y

h;=-hy — T=-
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If the bottom nodes of the unit are hinged to the foundation (rigid supports in the

horizontal direction instead of springs):

M
4 asiny

T=- (3.28)

The latter situation represents a unit with all nodes restricted against horizontal
movement and subjected to the four vertical forces corresponding to the moment loading
(Fig. 3.7a). In this case, because of symmetry, the horizontal reactions of the bottom
supports are expected to be of the same value as the horizontal forces applied to the top
nodes, which can be verified by combining the expressions for t from eqs 3.13 and 3.22:
oM I+sin’y M sin®y _

2asiny 2+sin*y dasiny 2+sin’y 4asiny

(tension in the right front "spring")

(3.29)
The pivotal bending moments in a such unit can also be obtained from eqs 3.13 and 3.22.
All moments are equal to zero, therefore there are only axial forces in the bars of SLEs of

the constrained pantographic unit under moment loading.
3.2.2.2 Stiffness in the Direction of Constraints

The stiffness of the unit in Fig. 3.7a in the direction of horizontal constraints can be
found from eq. 3.26. If K goes to infinity, then for unit displacement of each of the top

nodes we have:

3

a 2s1f1"y N T=3E;:12+_SH:-Y
3El 2+sin”y a~ 2sin”y

1=T (3.30)

The pivotal bending moments as well as the reactions at the bottom nodes in this case can

be found from eqgs 3.22 and 3.30:
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(®)

Figure 3.7: Constrained pantographic unit (a) and primary structure
of the column (b) for the analysis by the displacement method.
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M,=T am'nY =3]§I2+?":-Y am.nY = 3EI (bottom tension)
2+sin"y a° 2sin”y 2+sin’y  2a’siny
. i 2 +sin° i
M2 =7 230Y _JEl2*sin’y asiny _ 3Bl g0 iension) (3.31)
2+sin"y a’ 2sin“y 2+sin°y 2a’siny
.2 ) -2 -2
M =T asin”y _3I§I-+sm Yy asin"y _ 3EI

2+sin’*y  a’ 2sin’y 2+sin’y 2a’
siny _ 3El 2+siny sin’y
2+sin"y  a’

El . . .
T (direction opposite to T)

t=T . . -
2sin"y 2+sin"y 2a

3.2.3 Analysis of the Column by the Displacement Method

3.2.3.1 Stiffness Matrix and Load Vector

The pantographic unit that has been considered so far can now be used in the displacement
analysis of the whole column. The constrained primary structure of the pantographic
column used in the displacement method is shown in Fig. 3.7b. The constraints against
horizontal displacements are introduced at the top of the structure and at each unit
interface. The four links at each level are considered as one constraint since the relative
values and directions of the displacements they prevent are known from the symmetry
conditions. The total number of constraints and unknown displacements is equal to the
number of units in the column, n, and they are numbered from the top to the bottom of the
column. The positive directions of the displacements y; and the reactions in the constraints
are as shown in Fig. 3.7b. To solve the system of equilibrium equations

Ky+P=0 (3.32)

we need to obtain the stiffness matrix K and the load vector P.

The entries of the stiffness matrix k;; are the reactions in the constraint number i
due to unit displacement number j. Since the four links at a particular level are treated as a

single constraint, the value of k;; is equal to the sum of the four forces in the links. As is
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often the case for the structures with one dimension much larger than the other two, the
stiffness matrix in this problem is narrow banded. In fact, it is tri-diagonal, because the
displacement of any constraint causes reactions only at the two neighbouring ones. From
eq. 3.30, the reaction at the constraint at the top of the column due to its unit

displacement is

7 4+¢in?
k, = 6? ~¥sny (3.33)
a sin”y

The reactions at the rest of the constraints, due to their own unit displacements, are twice
this value because the resistance at the unit interfaces is provided by the two units above
and below the displaced constraint:

_12EI 2+sin*y

ii 3

— i=2,...,n (3.34)
a sin”y

k

The entries of the stiffness matrix located off the main diagonal are found from eq. 3.31:

_6EI

k. = ,
a3

t)

li-j|=1 (3.35)

The entries in the load vector, which are the reactions in the constraints due to the
external load, are found from eqs 3.28 and 3.29. In the constrained structure subjected to
moment loading all pantographic units behave identically as shown in Fig. 3.7a. The

reaction in the first constraint at the top of the structure is:

M
Py =—— (3.36)
asiny
The reactions in the rest of the constraints are twice this value:
2M ;
pi =- . ] l=21”-9n (3.37)
asiny

With the entries of the stiffness matrix and the load vector from eqs 3.33 through

3.37, eq. 3.32 becomes:
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12El 2+sin’y

a

3

sin®y |

asiny
2M
asiny

2M

[ 6 EI 2+sin’y _6EI
a’  sin’y a’
_6EI 12EI 2+sin’y 6 El
a’ a’  sin’y a’
_6EI
=3 a3
Using the following notations:
2 2 3 2
A="+_SI?Y, B = M a” _ Mz% ’
sin”y asiny 6 EI 6 Elsiny
system of equations 3.38 can be rewritten in a more compact form:
A -1 0 ] (B i
-1 2A -1 2B
y =
-1 2A -1 2B
| 0 -1 2A] | 2B |

asiny |
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(3.38)

(3.39)

(3.40)

If the modified stiffness matrix and right-side vector are denoted K., and P, respectively,

system 3.40 becomes:
K,y=P,

3.2.3.2 Solution of the System of Equilibrium Equations

3.2.3.2.1 Uniform Solution

(3.41)

Upon inspection of system 3.40, one may notice that it would be very easy to solve if it

was just a little different. Namely, if there was A instead of 2A in the lower right corner

of matrix K, and B instead of 2B for the last entry of vector Py, then the system would

look like:



97
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

A -1 0 B
-1 2A -1 2B
y=|-|, (3.42)
-1 2A -1| |2B
0 -1 A] |B]

and the almost obvious solution vector would have all entries the same and equal to:

. B _Ma’siny

V=g T (T b (3.43)

We will call this solution “uniform”, hence the superscript. Also, the matrix and the right-
side vector in eq. 3.42 will be called K, and P_, respectively. Let us discuss the physical

meaning of system 3.42, the displacement vector y* and the internal forces corresponding

to them.

Suppose we had a column with the bottom nodes supported by rollers, not by
hinges, in the direction perpendicular to the plane of bending (Fig. 3.8). Then at the
beginning of the procedure of the displacement method we would put the horizontal
constraints at the top of the structure, at each unit interface and at the bottom. The
stiffness coefficient of the bottom constraint and the reaction in this constraint due to the
external load on the restrained primary structure would be exactly the same as those for
the top constraint. The last of the equilibrium equations would be similar to the first. Of
course, the number of unknown displacements would increase by one, so would the
dimensions of the stiffness matrix and the load vector, but this is not of great importance
because in all previous derivations we operated with an arbitrary dimension of the
problem. The resulting system of equations would look exactly as eq. 3.42, the solution
of which (eq. 3.43) we already found. Thus, we had the solution, and we were able to

formulate the structural problem corresponding to it.

The internal forces acting in the bars of pantographic units of such a deformed

column can be found from eqs 3.31 and 3.43. The pivotal bending moments in the bars
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Figure 3.8: Uniformly bent pantographic column - bottom nodes are free
to move in the horizontal direction normal to the plane of bending.

due to the external load on the constrained primary structure are zero. These moments

due to the displacement of the top nodes y; are:

3EI M a?. Sil'lY - & Min—plane & Mom-of-pl.mc

My =— .
 2a’siny 12EI 8 " 8

*

=M?sinY (3.44)

For the same displacement of the bottom nodes of the unit, y?,, because of the mirror

symmetry of the top and bottom nodal displacements about the horizontal plane through
the pivots of four SLEs, the pivotal bending moments have the same magnitudes, but the
moments in the face bars and out-of-plane moments in the sides are opposite to those in
eq. 3.44, and therefore sum up to zero. For the same reason of symmetry, the in-plane

moments in the bars of side SLEs due to y;' and y;,, actin the same direction, making the

resulting bending moment equal to M/4. One may notice that all units in the pantographic
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column, which is “unconstrained” at the bottom and subjected to moment load, behave in
exactly the same manner as a single unit which has supports at the bottom nodes with zero

stiffness in the direction normal to the plane of bending (Section 3.2.1.3).

This result indicates the following. In a square cross-section pantographic column
in bending, when its bottom nodes are free to move in the direction perpendicular to the
plane of bending, the extemal load is distributed equally between the two-dimensional
columns that form the sides of the three-dimensional column parallel to the plane of
bending. The two sides perpendicular to the plane of bending are free of stress. The
equivalent bending stiffness of the three-dimensional column therefore is twice the
equivalent bending stiffness of one of its sides in the plane of this side: 2(6Elsiny) =
12Elsiny. This is true for the case when the plane of bending is parallel to a pair of the

sides of the square cross-section.

The above conclusion can also be justified intuitively if we try to distribute the load
among the two-dimensional pantographic columns, that form the sides of the three-
dimensional structure in Fig. 3.8, and consider them separately. Again, the sides parallel
to the plane of bending have a certain stiffness against the moment load. The two sides
perpendicular to the plane of bending (which we called front and rear faces) would have to
resist tension (front face) and compression (rear face). However, if the bottom nodes of a
two-dimensional pantographic column are supported by rollers in the plane of the column,
such plane structure is essentially a mechanism with regard to axial loading and offers no
resistance to it. Moreover, when the sides parallel to the plane of bending deform, the
distances between the front nodes of all SLEs in these sides increase and the distances
between the rear nodes decrease by the same amount. The faces will readily comply with
these displacements by opening (front face) or closing (rear face) all SLEs in them without

inducing any deformations (bending or axial) in the bars.
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3.2.3.2.2 Local Solution

Now, let us remind the reader that the solution obtained and discussed in the previous
section is not the complete solution of the original system 3.40, but only satisfies the
system 3.42. We will call the difference between the actual solution vector y and the

uniform solution y* the “local” solution y*; the meaning of the name will become clear
shortly. Similar differences for the matrix and the right-side vector are denoted by K
and PX°, respectively:

y=y"+y*., K,=K!+K"*, P_=P+P* (3.45)
Eq. 3.41 may now be written in the following form:

(K& + K& ) (y" +y* ) =P, + P2 (3.46)
Partially expanding the left side of the last equation we obtain:

K.y +Ko y" +K, y* =P2 + P (3.47)
The first terms on the left and right sides of eq. 3.47 constitute eq. 3.42 and can be taken

out. Eq. 3.47 becomes:

K2 y* +K, y* =P ,or

[0 0 0] A -1 0 0
0 0 O -1 2A -1 0
y* + yos =|... (3.48)
0 0O -1 2A -1 0
0 0 Aj | 0 -1 2A] | B

Since vector y" is already known (eq. 3.43), the first term on the left of eq. 3.48 can be

moved to the right:

A -1 0 ] [0 ]
-1 2A -1 0
ye© = (3.49)
-1 2A -1 0
K -1 2A] | -B/(A-1)]
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The question now is what structural problem is described by the last system. The
matrix on the left side is the same as the one in the original equation (eqs 3.40 and 3.41),
therefore the structure is the original pantographic column with the bottom nodes hinged
to the ground. The right vector consists of zeros except for the last entry, therefore the
external load only causes a reaction in the lowest constraint (the constraint between the
first and second units from the bottom of the column - units number n and n-1). Such

external load may be represented by four horizontal forces as shown in Fig. 3.9.

Since all but the last entries of the right side vector are equal to zero, we can try to

loc

eliminate the unknowns y!* from the system starting from the first equation and
proceeding down. Using the first equation we express the first component of the vector

through the second:

Figure 3.9: Pantographic column subjected to local load -
two self-balanced horizontal couples.
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loc
oc _ Y2 .
¥ == (3.50)

then using this result in the second equation we express the second component through

the third:

loc

y-

—T—+2Ayy -y =0 - = Y (3.51)
A 2A-—
A
and after the next step:
oC oC 0C 0C 1 le7ed -
- 7Yy +2Ay -y =0 -y = v (3.52)
2A-— 2A — ]
A 24—+
A

the pattern becomes clear. As soon as it is recognized, the relation between any two
successive components of the yet unknown solution vector can be written in the following
form:

loc
i+l

1 or Ci =F (353)

2A —--.-

y*©=C,y where C, =

2A -

One may notice that the first expression for C; in eq. 3.53 is a type of continued fraction.
[t was shown by Olds (1963), that such a continued fraction is convergent for i going to
infinity as long as we can find the limit. Suppose that the limit exists, then for large i it can
be assumed that C; = C;;. Using this condition in the last expression of eq. 3.53 and

dropping the subscript we obtain:

1
2A-C

The only condition for the existence of this limit is that the absolute value of A must be

- C¥-2AC+1=0 — C=A+JA>-1 (3.54)

greater than one, which is guaranteed, since the lowest value A can take is three (eq.
3.39). It can be seen from egs 3.50 through 3.52 that in this case the relevant root is the
one with a minus in front of the square root. The value of C, therefore, is a positive
number less than unity. If the expression for A from eq. 3.39 is substituted into the last

equation, the expression for C in terms of degree of deployment is obtained:
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(,/1+sin2y -1)1

C=A-JA’-1= —
sin”y

(3.55)

and plotted in Fig. 3.10.

The existence, far enough from the top of the vector, of a practically constant
proportionality between the neighbouring vector entries, means that when, in the process
of eliminating unknowns, we arrive at the last equation with the non-zero right side, the

last two entries of the solution vector are related by y', =C y*, and the value of yoeis

readily obtained:

B B
Cy® $ Ay =Dy e 3.56
Yo Yo TTAC] Yo (A-1)(2A-C) (3.26)

To get an idea of how long the column should be (or rather how many
pantographic units it should have) for C; to settle down to C, let us consider for example a
column with degree of deployment equal to 45°. Then A is equal to 5, and as i grows C,
approaches C which is equal to 0.10102. The first several values of C; are:

C =02, C,=010204, C,=0.10103, C,=0.10102, ... (3.57)
The difference between the exact C. and C is only one per cent, therefore even for a

column consisting of only three units eq. 3.56 is valid.

The expression for y'* in terms of the parameters of the structure and the load may

be obtained by combining eqs 3.39, 3.55 and 3.56:

ylocz_BA—w/Al—l= Ma® ((——l+sin2Y-1)2 (3.58)

; A-1 12 Elsiny

The rest of the solution vector entries can be found one by one using eq. 3.53. For the
most part of the column, where C; equals C, these entries form a decreasing geometric
progression. For the above example of Yy = 45° their values decrease very rapidly. Thus it

is safe to say that units only a few unit heights above the load would feel practically



104
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

nothing. This is the reason why we called this solution “local”. This result is reminiscent
of Saint Venant’s principle. The load shown in Fig. 3.9 consists of four self-equilibrated
forces applied locally; therefore it is statically equivalent to a zero load. According to the
principle, such loading affects the stress distribution only in its local neighbourhood,
leaving the stresses in the rest of the structure practically unchanged. In our case, the
local solution will introduce noticeable changes in the internal force distribution only in the
pantographic unit at the bottom of the column and in one or two units above it. In the rest
of the units the uniform solution found before will solely describe the column response to

the load.

The greatest pivotal bending moments corresponding to the local solution alone

occur in the bars of the lowest unit. They are found from eqs 3.31 and 3.58

-

M, =—2EL _Ma’ (,/1+sin1y—1)2= M (,/1+sin1y—1)'

~2a‘siny 12 Elsiny 8sin’y

Mo =M (w/1+sin2y—l)1 (3.59)

8sin”y
Mz = M (Tsnty - 1)
8siny

For y = 45° these moments constitute approximately five per cent of the pivotal moments

in the bars of side SLEs from the uniform solution.

3.2.3.2.3 Superposition of Uniform and Local Solutions

The general expression for an element of the final solution vector y is the sum of the

corresponding entries from uniform y* and local y'* solution vectors (eqs 3.43 and 3.56):

] B Cn-i
= P-{- loc Cn-l — 1_ . 1 = 1’”" 360
Hi =YY, A—l( 2A—C) l " (3.60)
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The bending moments in the bars of pantographic unit number i are defined by y; and .1,
with ya. = 0. The in-plane moments in the bars of side SLEs in terms of these

displacements are (eqs 3.31, 3.39 and 3.60):

me, =3B (4 M)-M[ (IL)C-_J i=1L...n-1

*! 2a’siny 22A-C)C |’ (3.61)
M:nz%—E.]:YnzM[l— = :l
2a°siny 8 2A-C

If a unit virtual moment is applied to the primary structure of the column, obtained by
separating the four planar columns, in such way that the moment is equally divided
between the left and right sides, then the pivotal bending moments in all side SLEs are 1/4.
The total rotation of the top column can be calculated as:

a2l Ma 1 1 1+C &
M S 42=""Jpn-=—- c* 3.62
EIZ [“ 2 220A-C) 2(2A- C)cZ } (3.62)

The first term in brackets in the last equation corresponds to the uniform solution. As was
pointed out before, the equivalent bending stiffness, calculated on the basis of this part of
the resulting rotation, is twice that of the side planar columns. The sum in the last term of
eq. 3.62 is practically constant for n greater than three. Therefore the second, third and
fourth terms do not depend on the number of units in the column. If A is expressed
through C from eq. 3.54, eq. 3.62 can be simplified to the form:

Mali 1 1+CJ

GEIL" 2 1-C

(3.63)
Comparison of the value of the second term in brackets in the last equation (Fig. 3.11)
with the number of units in the column gives a good indication of the overall stiffening

effect of the hinge supports at the bottom of the column.

For columns with a sufficiently large number of units the local effect near the
bottom of the column can be neglected and the uniform solution alone can be used to
describe the behaviour of the structure. The equivalent bending stiffness of a three-

dimensional column of square cross-section therefore equals 12EIsiny.
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0.15

0.1

0.05

Figure 3.10: Proportionality coefficient between the neighbouring entries of the local
solution vector for a square pantographic column versus the degree of deployment.

¢'(6EI/Ma)

0.7

0.65

0.6

0.55

0.5

Figure 3.11: Local part of the tip rotation of a square pantographic column
subjected to moment load versus degree of deployment (compare with n).
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The reason for the relatively small difference between the column behaviour
described by the uniform solution alone and the sum of the uniform and local solutions
becomes more apparent once the stiffness characteristics of a two-dimensional
pantographic column are known. If a solid column of hollow square section is subjected
to bending, its sides parallel to the plane of bending would be bent in their plane, and the
sides perpendicular to the plane of bending would primarily be stretched and compressed,
thus contributing their axial stiffness to the bending stiffness of the column. The two-
dimensional pantographic column, while having a fixed equivalent bending stiffness, (EI).
= 6ElIsiny, similar to a solid column, has an equivalent axial stiffness which is inversely
proportional to the squared length, (EA). = 18EIsinytan®y/L’, for sufficiently large number
of units. Therefore, for a long column, the contribution of the stretched and compressed

faces to the overall bending stiffness ultimately becomes negligible.

3.3 Pantographic Column of Triangular Cross-Section

under Moment Load

The subject of this Section is a pantographic column consisting of three-dimensional
triangular pantographic units and subjected to a moment load applied at the top. Each
unit is composed of three identical two-dimensional SLEs forming a prism with the base of
an equilateral triangle which is regarded as the “cross-section” of the column. The plane
of bending is perpendicular to one of the sides of the three-dimensional column. This side
is called “rear face” of the column, or a single pantographic unit, and the other two sides
are called “left side” and “right side™ of the cross-section as shown in Fig. 3.12. The plane
of bending is at the same time the plane of symmetry of the system. The moment load is
represented by three statically equivalent vertical forces applied at the top nodes of the

column.
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Figure 3.12: Three-dimensional pantographic column of equilateral triangular
cross-section subjected to moment loading.
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The analysis will be similar to that employed in the case of the pantographic
column with square cross-section. The main steps are the following:
1) use the force method to analyze a single pantographic unit, with the bottom nodes
hinged to the ground, subjected to moment load;
2) use the force method to analyze the same unit subjected to horizontal forces similar to
the horizontal reactions at the bottom nodes from 1) applied to the top nodes of the unit;
3) using the results of 1) and 2) compose a basic element (a constrained unit) for a
displacement method of analysis of the pantographic column subjected to moment load:;
4) use the displacement method to analyze the column subjected to moment load, and

separate the solution into uniform and local parts.

3.3.1 Analysis of a Single Triangular Unit by the Force Method

3.3.1.1 Statical Determinacy, Primary Structure and Redundant Forces

Consider a single triangular pantographic unit with bottom nodes hinged to the ground.
This unit includes six bars which have the total of 36 degrees of freedom. Six hinge
connections, three pivotal connections and three hinge supports introduce the total of 42
constraints. The triangular pantographic unit is therefore 42 - 36 = 6 times statically

indeterminate.

The primary structure of the pantographic unit is obtained by releasing the
translational constraints at the three top hinges (Fig. 3.13), i.e. nine constraints are
released in a six times statically indeterminate structure. Therefore, the primary structure
is three times underconstrained. The three degrees of freedom introduced are the
rotations of the three plane SLEs about the axis through their bottom nodes. The
redundant forces, at each of the three points where the constraints are released, are shown

in Fig. 3.13. The three force components, x;, x, and x3, at the two top nodes of the rear
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face must be the same because of symmetry. Equal and opposite forces are applied to the
rear top nodes of the left and right sides. It can be clearly seen that the only possibility for
the rear face not to exercise its degree of freedom is to have x; equal to zero. Component
X; can be resisted by all three SLEs through bending of bars in the planes of SLEs.
However, component x, while acting in the plane of the rear face, creates out-of-plane
action for the left and right sides. To ensure equilibrium of these sides opposite forces in
the y-direction must be applied at their front top nodes. The action-reaction pairs in the x-

and z-directions are absent at this location since it lies on the symmetry plane.
3.3.1.2 Flexibility Coefficients; Compatibility Equations

Since there are only two unknown redundant forces, x; and x» in Fig. 3.13, there will be
two equations of compatibility in the force method. similar to the case of the pantographic
column with square cross-section:
3,,x, +8,.x,+4, =0

81X, +8%,+4,=0 G.69
The primary structure subjected to x; equal to one is shown in Fig. 3.14. The left side
SLE is not shown since it is symmetrical with the right side. The pivotal bending moments
in the bars and the reactions at the bottom nodes of SLEs are indicated in the figure. This
redundant force causes only in-plane bending in all SLEs of the pantographic unit. The

total work done by all x; = 1 forces equals the total corresponding displacement:

l 3 2
8“ =—-—.aLsYagaCOSY.(4+2.2)=§ﬂ._Y

EI 2 3 3El (3:69
Two views of the primary structure loaded with x, = 1 are shown in Fig. 3.15. While
there is only in-plane bending of the rear face SLE, the bars in the left and right sides are
bent both in- and out-of-plane of these SLEs. The total displacement corresponding to

this load is the sum of three terms:
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Z X1 X1
! W 1o
9—))’ X —X2
X
X1 Xi
T Vol ® T ol "
XL rear face .
X X2 o
- right side
left side =

Figure 3.13: Unknown forces at SLE connections of a three-dimensional
triangular unit symmetrical about xOz plane (x5 = 0).

rear face right side
x =1 x =1 x1=1
‘ no bending T
due to x;

/ (rear tension)
mg=acosy___ —>
(top tension)

— - coty

2 coty © 2coty
Tl T1 - ‘1
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Figure 3.14: Internal forces in the primary structure of a three-dimensional
triangular pantographic unit due to x; = 1.
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rear face right side
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=2l xe=1 /.60
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(b) - 3d view

Figure 3.15: Intenal forces in the primary structure of a three-dimensional
triangular pantographic unit due to x> = 1.
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8ﬂ=i Mg aSlnY 4+
=~ EI 2 3

asiny a 2asin
Yya:z Y 4.2+
2 23 2

3.66
:{); fa-4-2J=zas(l+Sin2Y) oo

a2vy3
23 2 EI
The cross-coefficients only include terms associated with the in-plane bending of bars in all

three sides:

2 2a’si
8,, =8, =_1_(__a CO:Y a:z ga siny - 44 2E0572 CO:Y a ;%smy ) =22 S”}!I{COSY (3.67)

3.3.1.3 Moment Loading

The moment load is represented by three vertical forces applied to the top nodes of the
unit as shown in Fig. 3.12a. The primary structure subjected to this load is shown in Fig.
3.16 together with the pivotal bending moments and reactions. By arbitrary choice the
forces are applied to the top nodes of the side SLEs and the rear face is left unstressed.
The displacements at the releases corresponding to x, and x» are found using the values of
bending moments in Figs 3.14, 3.15 and 3.16:

l acosya 2 M 2Ma’ 2Ma“cosy
A =-— — ‘2-2== , A, =0 3.68
' El 2 323 ~3J3EL : (368)

The compatibility equations become:

8a’cos’y 2a’sinycosy 2Ma’cosy
Tt X, =

3El EI : 3J3 EI (3.69)

2a’sinycosy 2a’ - .
+——(1+sin" ,=0
EI ' EI ( Vs
which yield the following expressions for x; and xa:
M (1+sin?

X = ( Y) Msiny (3.70)

J3acosy (4+sin’y)’ 2= V3a(4+sin’y)
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Figure 3.16: Internal forces in the primary structure of a three-dimensional

triangular pantographic unit due to moment loading.
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The resulting pivotal bending moments and horizontal reactions at the bottom nodes of the

rear face and the right side SLEs are shown in Fig. 3.17. If the sums of all horizontal

reactions at each bottom node (Fig. 3.18a) are found, there will be three equal horizontal

forces at 120° to each other (Fig. 3.18b). This self-equilibrated force pattern will be used

in the next analysis as an external load applied to the top nodes of the unit.

3.3.1.4 Self-Balanced Load in Horizontal Plane

The three equal horizontal forces applied at the top nodes of the unit are shown in Fig.

3.19. The force that acts at the node lying in the plane of symmetry can be represented as

the sum of two equal forces acting in the directions normal to the planes of the side SLEs.

Then the situation becomes very similar to that of the unit from the pantographic column

with square cross-section, which was also subjected to two self-equilibrated horizontal
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rear face

M
/ﬁ(4+sinzy)

(top tension)

-

M  2+sin’y
J3 asiny 4 +sin’y

right side
in-plane bending out-of-plane bending
M
V3 (4 +sin*® y)
(front tension) \ Msiny
[ 2(4 +sin’ y)
M L, T
V3(4 +sin*y) :
(front tension) \
il Msiny
M _2+siny 2a(4 +sin®y)

2J3 asiny 4 +sin’y

Figure 3.17: Pivotal bending moments and horizontal reactions at bottom nodes
of three-dimensional triangular pantographic unit under moment load.
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M 2+sin’y
/2 3asiny 4 +sin’y
/60°
-~ >
30N M 2+siny

JV3asiny 4 +sin’y

\ P

Msiny
2a(4 +sin® y)

M 2+sin’y
2J3 asiny 4 +sin’y

(a) - reactions in, and perpendicular to, the planes of two-dimensional side SLEs

M l+sin’y
asiny 4 +sin’y

(b) - resultant reactions at the bottom nodes

Figure 3.18: Horizontal reactions at bottom nodes of triangular pantographic unit
under moment load.
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couples. With this load arrangement, the primary structure will only experience out-of-
plane bending of the side SLEs (Fig. 3.20). The free terms in the equations of

compatibility for this load case are:

2
=0, a,=-LT22233, . 4B, (3.71)
- EI 2 32 3 EI
and the equations themselves become:
3 2 2 a3 ¢
8a’cos yxl+-a smycosqu -0
3EI EI -
s . '3 (3.72)
2a’sinycosy 2a . A _ 3
i X, + B (1+sm y)x:——?’ETa
with the solution:
oy [R
X, =— “‘55"‘,7, T, x. =L3,T (3.73)
cosy (4+sm'y) - 3(4+sin'y)

Figs 3.21 and 3.22 show the final pivotal bending moments and horizontal reactions at the
bottom nodes of the unit. Interestingly, the reaction forces have the same direction as the

applied load.

3.3.2 Constrained Triangular Unit

3.3.2.1 Reactions and Internal Bending Moments due to External
Moment Load

A single triangular pantographic unit has been considered for two load cases: moment load
and self-balanced horizontal load. In both cases there are certain horizontal displacements
of the top nodes in the directions of the horizontal forces shown in Fig. 3.19. Let us find
the total (generalized) displacement corresponding to this generalized load due to the
moment applied to the unit. The final bending moments in the bars of the pantographic
unit due to moment loading are shown in Fig. 3.17. The virtual horizontal unit forces are

applied in the same manner as those in Fig. 3.19. Moreover, they can be applied to the
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T/j6‘()}T

Figure 3.19: Horizontal forces applied to the top nodes of triangular unit (top view).

rear face
right side
in-plane bending out-of-plane bending
T \ \ T
/Ta

T T

Figure 3.20: Primary structure of triangular unit loaded with horizontal forces
at the top nodes.
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rear face

2siny

/\/5(4+sinly)Ta

(top tension)

- —
4 T
V3 (4 +sin” Y)
right side
in-plane bending out-of-plane bending
2siny
Ta
V3 (4 +sin? Y)
(front tension)
4siny Ta +
V3 (4 +sin? Y)
(front tension)
_v;

Figure 3.21: Pivotal bending moments and horizontal reactions at bottom nodes
of triangular unit subjected to horizontal forces at the top nodes.
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2
g /«/?(4+sin2 y)T
\ ' ¥ o
\307\ 4 T

V3(4+sin’y)
sin® y
4+sin’y
f30‘\ "
| 2 g
ﬁ(4 +sin” Y)

(a) - reactions in, and perpendicular to, the planes of two-dimensional side SLEs

2-sin’y
4+sin’y

(b) - resultant reactions at the bottom nodes

Figure 3.22: Horizontal reactions at the bottom nodes of triangular pantographic
unit subjected to horizontal forces at the top nodes.

120



121
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

primary structure so that they only cause out-of-plane bending in the side SLEs (Fig.
3.20). Although the final bending moments for such load on the statically indeterminate
unit are already available (Fig 3.21), the application of the virtual load to the primary

structure will considerably simplify calculation of the displacement:

hy = SnY 232, . ,__4Masiny (3.74)
¥ EI2(4+sin’y)23 3EI(4+sin’y)

The same displacement due to the three horizontal forces T in Fig. 3.19 can be
obtained by calculating the “product” of the moment diagrams from Figs 3.20 and 3.21:
.2 3 .2
_LTasm YiZa 5 __8Ta’sin"y

Jasin'y 4.2 = _ 3.75
T El4+sin’y23 3EI(4+sin’y) G-73)

If the horizontal translational constraints are introduced at the top nodes of the
unit instead of forces, the reactions at these constraints in the case of moment load would

be such that the sum of displacements from eqs 3.74 and 3.75 equals zero:

2o 3 i
hy, +hy = 4Ma S.m:Y + 8Ta 51r.1 ’y -0, (3.76)
’ 3H(4+51n'y) 3EI(4+sm’y)

which yields the reactions in the constraints:

M
2asiny

T=- 3.77)

Superposition of the reaction forces at the bottom nodes from Fig. 3.18b and
3.22b (with T from eq. 3.77 substituted in the latter) gives these reactions in the
constrained unit under the moment load (Fig. 3.23a). The reactions at the bottom nodes
are the same as those in the constraints at the top nodes (eq. 3.77), which could be
expected since the constrained unit (Fig. 3.23a) is symmetric about the horizontal plane
through the pivots of its SLEs. After similar superposition is performed for the pivotal

bending moments, we obtain zero bending in all bars of the constrained unit.
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3.3.2.2 Reactions and Bending Moments due to Unit Constraint

Displacement

To find the stiffness of the triangular pantographic unit in the direction of the generalized
horizontal constraint, the deflection hr in eq. 3.75 is assigned the value of one. The forces

T that cause such a deflection are:

_ 3EI(4+sin’y)

he=l =

(3.78)

8a’sin’y
The bending moments and the reactions at the bottom nodes corresponding to the unit
horizontal displacement of the top nodes are obtained from Figs 3.21 and 3.22 when T

from the last equation is substituted into the moment and force expressions.

3.3.3 Analysis of the Triangular Column by the Displacement Method

3.3.3.1 Stiffness Matrix and Load Vector

The constrained primary structure of the triangular pantographic column subjected to
moment load is shown in Fig. 3.23b. The three horizontal links constituting a single
constraint are placed at the top of the column and at each unit interface. The assumed
positive directions of the horizontal nodal displacements are also shown in the figure. The
entries of the stiffness matrix and the load vector in the system of equilibrium equations:

Ky+P=0 3.79)
are readily obtained from eqs 3.77 and 3.78. The reactions in the constraint at the top of

the column due its unit displacement and the external moment are:

_ 3EI(4+sin’y) md p =M
= =-

(3.80)

11 N ’
2asiny

8a’sin’y
respectively. The reactions in the rest of the constraints due to the same factors are twice

as much:
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M
M 23 acosy \
V3acosy

M
2asiny
(all horizontal forces)

(b)

Figure 3.23: Constrained triangular pantographic unit subjected to moment load (a) and
primary structure of the column for the analysis by the displacement method (b).
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k.. = , and p;, =-— M 1=2,...,n (3.81)

The entries of the stiffness matrix above and below the main diagonal, i.e. the reactions in

a constraint due to unit displacement of the adjacent one, are:

3EI(2-sin’y)
= . i-jl=1 82
swanty |1 (3.82)

ij

Now, the system of equilibrium equations can be written in the following form:

(A 1 0 B
1 2A 1 2B
y=|--| or Kpy=P,, (3.83)
1 2A 1 2B
| 0 1 2A] | 2B |
where Ky, and Py, are the modified stiffness matrix and right side vector:
3 .2 3 aim 2
- 8a sm'yw K, P, =- 8a sm.y’ (3.84)
3EI(2-sin"y) 3EI(2-sin’y)
and
A=4+sm°y B = 4Ma“siny (3.85)

2-sin’y’  3EIsiny(2-sin’y)

3.3.3.2 Solution of the System

In solving the system of equations 3.83 we will, as in the case of the column with a square
cross-section, separate the solution into two parts - uniform and local - but it will be done
in a slightly different way which has a more transparent physical meaning. Under the
assumption of linear behaviour, the response of the column, with the bottom nodes hinged
to the ground, to the moment load can be obtained as the superposition of two effects.
First, the horizontal constraint at the bottom nodes is released (Fig. 3.24) and the

behaviour of such a column subjected to the same moment load is considered. In this
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case, the bottom nodes will have a certain displacement in the direction of the constraint.
In fact, this displacement will be the outcome of the solution of the system of equations of
the displacement method for this structure. To return to the original situation, we will
apply the three horizontal unit forces to the bottom nodes (Fig. 3.25) and find the
corresponding displacement. Next, the latter solution will be scaled to make this
displacement equal and opposite to that from the moment loading. After that, the
superposition of the solution for the moment load and the scaled solution for the

horizontal load at the bottom nodes will describe the behaviour of the original system.

3.3.3.2.1 Uniform Solution

The column in Fig. 3.24, that has its bottom nodes free to move in the horizontal plane,
requires one additional constraint at the ground level. The size of the system of equations

increases by one and the system becomes:

(A 1 0] [ B ]
I 2A 1 2B
y'=|--| or K; y"=P: (3.86)
1 2A 1 2B
K 1 A] | B ]
The vector y" satisfying this system has all entries the same and equal to:
2 24

yr=_B __2Matsiny ., L (3.87)

“A+l 9EH
For a particular pantographic unit the horizontal displacement of its top nodes and that of
its bottom nodes reflect the symmetrical effects about the horizontal plane through the
pivots of the three SLEs in this unit. These effects cancel each other’s contribution to the
in-plane bending of the rear face SLE and to the out-of-plane bending of the side SLEs.
The in-plane bending moments in the side SLEs are additive and can be found from Fig.
3.21 and egs 3.78 and 3.87:
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My/1+sin?y

T=1,
24/3siny \'%

Figure 3.25: Triangular pantographic column subjected to self-balanced local load.
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4asiny 3EI(4+sin’Y)2Ma’siny
\/3_(4+sin2y) 8a’sin’y 9 EI

3 = l/EM (3.88)
2 6

3.3.3.2.2 Local Solution

The pantographic column with the bottom nodes free to move the in horizontal plane and
subjected to horizontal forces (each equal to one) is shown in Fig. 3.25. The system of

equilibrium equations for this structure and loading is:

(A 1 0] [0
1 2A 1 0
o< =|---| or K%y =P, (3.89)
1 2A 1 0
K 1 A] | D
3 sl
where D =(-1) 8asin’y and the bar indicates the fact that the column is

3EI(2-sin’y)
subjected to unit forces. Starting from the first equation, we can express an arbitrary

component of the solution vector through the next one as:
y=C, ¥, i=L..n (3.90)

From equation number (i + 1 ):

1
2A +C,

<loc 1 = —loc
e = Y:tcz'—‘cm y;+2 - C., =

Yin ——2A+Ci (391)

Recognizing in the recursive formula of eq. 3.91 a continued fraction and assuming that it
converges for growing i, one can try to calculate the limit for C;:

C=- L — C?+2AC+1=0 » C=-A+vJA%*-1 (3.92)
2A+C

The only condition for the existence of C is that A be greater than one, which is always

satisfied since the lowest possible value of A is two (eq. 3.85). Having established the
relationship between the elements of the solution vector ¥/ =C¥ye (i=1..n) far

enough from the top of the column, from the last equation of system 3.89 we obtain:
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3 .2
—loc D D _ 4a’sin"y (3.93)

CVmi tAY ;i =-1 > ¥ = = - s
' ' ' A+C JA'-1  3V3EI.1+sin’y

The rest of §,° form a decreasing geometric series as i changes from n to one. How fast

this series decreases for columns with different degrees of deployment can be seen from

Fig. 3.26 that shows the plot of C(y) dependence.

The magnitude of the horizontal forces required to bring the bottom nodes of the
column back to their original position, after they have moved by the amount from eq. 24

due to the moment load, can now be found:

2Ma’siny  4a’sin’y To0 — T=M 1+sin’y
9EI 3J3 EL y1+sin’y 2+/3 asiny

in the direction shown in Fig. 3.25. The local solution vector corresponding to this load is

(3.94)

a multiple of that obtained for the unit forces:
Yy =Ty, i=1...n+1, (3.95)
with the last entry of this vector, ¥, of course, being equal to the displacement opposite

o+l ?

to that from eq. 3.87.

3.3.3.2.3 Superposition of Uniform and Local Solutions

The sum of uniform, y", and local, y'*, solution vectors yields the resulting displacement

vector, y, for original column in bending:

[} oc o+i-i B a+l-i 2Ma25in‘y o+l-i :
Vi =Yl Ay € = (1m0 ) = 2 (1) i = Len+ 1 (3.96)

The in-plane pivotal bending moment in the bar connecting the bottom front node
with the top right rear node of the right side SLE in unit number i, can be found from Fig.
3.21 and eq. 3.78:
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1 _ 2asinY 3EI(4+SIH2Y)
= \/5(4+sinzy) 8a’sin’y
_ BEL 2Ma’siny
4a’siny 9 EI

(Yi +2 ¥, ) =
(3.97)

[1 -C* 4 2(1 - C“""“”)] = gMP -(2+C)c™]

Similarly, the moment in the bar connecting the top front node with the bottom right rear

node is:
M2 = 1£§’M[3 -(2c+1)c™] (3.98)

If the primary structure of the triangular column is obtained by separating three planar
pantographic columns and subjected to unit virtual moment load, distributed equally
between left and right sides, then the pivotal bending moments in all SLEs of the side
columns are equal to +/3/6 (Fig. 3.16). Using such virtual moments and the real moments
from egs 3.97 and 3.98, one can calculate the tip rotation of the three-dimensional column

due to moment load:

n Mml' an”n Minz. a2 2 > i
(pzéz( rs. i ??4' rs.i :ﬁ]_2_2=~Ma[n_l+Czcn—':| (3.99)
1=1

2 36 9 ElI

< < sl

The sum in the last equation can be considered independent of n even for a relatively small

number of units in the column. Therefore the expression for rotation becomes:

2
_..Malil_1 1 1+C] (3.100)

The last equation is almost identical with eq. 3.63 which describes the tip rotation for a
square pantographic column. The first term in brackets corresponds to the rotation given
by uniform solution, which applies to the column with unconstrained bottom nodes. The
second term reflects the stiffening contribution of the bottom constraint (Fig. 3.27) and

has exactly the same form for square and triangular columns.

As in the case of the square pantographic column, for the triangular column in pure
bending the uniform solution describes the behaviour of most of the structure, and the

effects of the support conditions are confined to one or two pantographic units near the
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Figure 3.26: Proportionality coefficient between the neighbouring entries of the local
solution vector for a triangular column versus the degree of deployment.

¢'“(9El/2Ma)

0.4
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Figure 3.27: Local part of the tip rotation of a triangular pantographic column
subjected to moment load versus the degree of deployment (compare with n).
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base. The overall bending stiffness of the column is obtained by equating its end rotation
to that of a solid column of the same length. If the number of pantographic units in the
column is large, the second term in eq. 3.100 can be neglected:

2Man_ ML
9 EI (ED

, where L =2asinyn —
¢ (3.101)

(EI), =9EIsiny =%(6 Elsiny)

Thus, the equivalent bending stiffness of a triangular column is 1.5 times that of a single
planar column which forms the sides of the three-dimensional structure. The implications

of this result will be discussed in the next Section.

3.4 Bending of Three-Dimensional Columns in Arbitrary Plane

So far three-dimensional pantographic columns of square and triangular cross-sections
subjected to bending in the plane perpendicular to one or two of their sides were analyzed.
These sides are planar pantographic columns which, linked together, form the three-
dimensional structures. The plane of bending was also the symmetry plane for these
systems. The logical question, that should be asked after the previous analyses, is how
these columns would respond if the direction of the plane of bending were arbitrary. In
this Section we consider this question. Only the uniform parts of the solutions from

Sections 3.2 and 3.3 are taken into account.

One could expect that pantographic columns with the units made of identical SLEs
would have cross-sectional properties for arbitrarily oriented sets of perpendicular axes
similar to those of the solid columns having the cross-sections with high degree of
symmetry. We will perform the derivation of the stiffness of pantographic columns for the
bending in arbitrary direction, to emphasize the differences and similarities between

pantographic and solid structures.
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(a) - 3d view

Figure 3.28: Bending of a square pantographic column in an arbitrary plane.
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rear face

o \*]
r .
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right side
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M cosat M sina
—} - --— — {— + - - —¥— . - =
! i J
o— —0 o —0

(b) - top view

Figure 3.28: Bending of a square pantographic column in an arbitrary plane (cont.)

Let us consider a square pantographic column subjected to bending in a plane of
arbitrary orientation. The moment applied to the column shown in Fig. 3.28 acts in a
plane at angle o to one of the symmetry planes of the structure. The vector of the
moment load can be represented as a sum of two moment vectors acting in the two planes
orthogonal to the two pairs of parallel sides of the column. In this case, each of the two

moment loads represents the situation of a square pantographic column bent in one of its
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symmetry planes. Under the assumption of linear behaviour, the internal forces for these
loads can be superimposed and will yield the internal forces acting in the column under the

original moment load.

If the contribution of the local solution caused by the support conditions at the
bottom of the column is neglected, the pivotal bending moments in the bars of the front

and rear faces, and the left and right sides can be written as:

M = %cosa (3.102)

M .
{xes=751na’ % S

Each of the two orthogonal moment load components causes bending moments only in the
two opposite sides of the square cross-section and leaves the other pair of sides free of
stress. Thus, the superposition of the moments from eq. 3.102 immediately gives the

internal forces in the pantographic column due to the original loading.

To find the rotation of the top of the column caused by moment M, one can use
the same distribution of internal forces but now due to the virtual load M = 1:
2 M a?2 _Man

1 (M . a2l. 21
=—| —sintt—— —sina+—cost —— —cosx |4-2n=
EI\ 4 234 4 234 6 EI

(3.103)

The equivalent bending stiffness of the column is found by equating the rotation in eq.

3.103 to that of the equivalent solid column of the same length:

Man ML .
= , where L=2asinyn —
6 EI (EI), (3.104)

(EI), =12 Elsiny = 2 (6 EIsiny)

The equivalent bending stiffness in the case of arbitrary orientation of the moment
load (eq. 3.104) is the same as the stiffness found in the case when the direction of
bending coincides with one of the planes of symmetry of the structure. This is one more
situation in which the behaviour of pantographic columns can be related to that of their

solid counterparts. Let us take a closer look at the bending stiffness of a solid column
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with a tubular square cross-section (Fig. 3.29a). Each of the four solid plates forming the
sides of this column can be related to the corresponding planar pantographic column in the
deployable structure. The bending stiffness of such a plate in its own plane is Eb’v/12,
whereas the bending stiffness of the planar pantograph in its plane is 6EIsiny. The bending
stiffnesses of both the thin solid plate and the pantograph out of their planes can be taken
equal to zero. The qualitative difference between the two lies in their axial stiffnesses,

which is Ebt for the plate but can be effectively ignored for the long pantograph.

The moment of inertia of a thin plate about an axis x’-x” through its midpoint and
at angle a to its principal axis x-x (Fig. 3.29b) is the same as the moment inertia about the
axis x’-x” of the plate with thickness t/cosa and width bcosa (axis x’-x” is the principal axis

for the latter plate):

3 3
o) t/ (07 , .
[i!““ = (beos )17 cosx _ %cos' o= If"‘" CoSs™ ¢t (3.105)

The bending stiffness of the solid tubular column consists of two parts. One part is
contributed by the in-plane bending stiffness of each side about its own principal axis
multiplied by the squared cosine of the angle between the plane of this side and the plane
of bending. The other part is due to the axial stiffness of each side multiplied by the

squared distance between the centre of gravity of this side and the neutral axis:

-

EI . =2EI*™ cos® o + 2EIP*° cos*(m — ot) + 2EA""“°(§cosaJ +
. , (3.106)

2EA P““[gcos(n - a)) - 2EIP®° + 2EA P2 % =EI,
It can be seen from the last equation that the bending stiffness of the square tubular cross-
section is the same about any axis through the centre of the square, which is a known
result for shapes with more than two axes of symmetry. Moreover, the relative

contributions of bending stiffnesses of the plates in their planes and their axial stiffnesses

also stay constant as the plane of bending rotates. The result shown in eq. 3.104 reveals a
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Figure 3.29: Bending of a solid tubular square cross-section (a) and thin plate (b)
in an arbitrary plane.
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similar situation in the case of square pantographic column. Its equivalent bending
stiffness is the same for any direction of bending and equals twice the value of the
equivalent bending stiffness of a single planar pantographic column in its own plane. This
suggests that the same formula can be applied to calculate the bending stiffness of the
planar column for bending about an arbitrary axis as that on the right side of eq. 3.105; i.e.
the equivalent bending stiffness 6Elsiny has to be multiplied by the squared cosine of the

angle between the plane of the two-dimensional column and the plane of bending.

Let us see if the last conclusion is valid for the triangular column. The equivalent
bending stiffness for such a column in the situation when the plane of bending is

perpendicular to one of the sides of the triangle was found in the last Section and equals

l.S(EI)S'“““'. Based on the last conclusion one can calculate this stiffness by adding the

contributions of the three sides of the triangle, one of which is perpendicular to the plane

of bending and the other two form the angles of 30° with this plane (Fig. 3.30a):
(EI), = (EI)?™™ cos® 90°+2(EI)?™ cos* 30°= %(131)5“‘“r (3.107)

If the plane of bending is parallel to one of the sides, the other two sides form the angles

of 60° with this plane (Fig. 3.30b):
(EI), = (EI)?™™* cos® 0°+2(EI)?™™ cos” 60°= %(EI)EL‘“‘“ (3.108)

And finally, for arbitrary orientation of the plane of bending (Fig. 3.30c):
(ED), = (EI)?™™ cos® a + (EI)?™™* cos® (ot — 60°) + (EI)P™* cos® (ot + 60°) =
(ELPeo [cos2 o+ (cosocos60°+sinatsin 60°)° + (cos otcos 60°-sin cusin 60°)° ] = (3.109)

(EI)'e’lm[cos2 a+Lcos? o+ Ssin® a+Lcos? o+ Ssin’ a] - E(EI)EIM
2 2 4 4 2

The bending stiffness of a triangular column is therefore also independent of orientation of

the plane of bending.
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- plane of bending

plane of bending

(a) (b)

Y

plane of bending

(©)

Figure 3.30: Bending of a triangular column: in the plane normal to one of the sides (a),
in the plane parallel to one of the sides (b), in an arbitrary plane (c).
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The general expression for calculating the equivalent bending stiffness of

pantographic columns can be written in the following form:

k
(EI), = Y (ED? cos’ a, , (3.110)
i=l

where k is the number of sides in the column cross-section. The similarity between solid
columns with hollow cross-section and pantographic columns lies in the fact that the
contribution of each side of the cross-section due to its own bending stiffness to the
stiffness of the whole section is calculated in the same fashion. In the solid columns,
however, the bending stiffness of a side, as well as its axial stiffness, is an integral effect of
the axial stiffness of the fibres. Each fibre contributes axial stiffness regardless of its
location: it can be located in a side of the column which undergoes only bending, in a side
which experiences only axial deformation (tension or compression), or in a side subjected
to a combination of the two. The farther a particular fibre (and the side of the cross-
section it belongs to) is from the neutral axis the higher its contribution to overall bending
stiffness will be. In pantographic columns, where the axial stiffness of the sides is
negligible, the distance between the side and the neutral axis does not matter. In fact, the
concept of a neutral axis hardly has meaning in this type of structures. The contribution of
each side of the pantographic column to the overall stiffness depends only on the

orientation of the side with respect to the plane of bending.

3.5 Pantographic Column Subjected to Lateral Load

The next system to be considered is the three-dimensional pantographic column of square
cross-section subjected to a horizontal lateral load (Fig. 3.31). The load acts in the
direction parallel to two sides of the cross-section. Therefore all symmetry considerations
discussed for the same column in bending are valid. The stiffness matrix of this structure

was derived earlier. Hence, only the new load vector has to be derived.
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(a) - 3d view
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(b) - top view

Figure 3.31: Three-dimensional pantographic column of square
cross-section subjected to lateral loading.
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3.5.1 Analysis of a Single Square Unit by the Force Method

The top nodes of a single square pantographic unit are subjected to four horizontal forces,
similar to those applied at the top of the column in Fig. 3.31. The bottom nodes of the
unit are hinged to the ground. The primary structure and the redundant forces are the
same as those shown in Fig. 3.3 with only this difference, that the springs at the bottom
nodes are infinitely rigid. The flexibility coefficients from eqs 3.2 to 3.4 can be used
without the terms containing k in the denominator. The primary structure subjected to the
external lateral load is shown in Fig. 3.32 - the forces are applied to the side SLEs only.
The load coefficients:

2Pa’si
A =-——2S8Y2 27 Gny.4.2=-2Pasinycosy -, 3.111)
ElL 2 34 3EI :

and the compatibility equations:

16a’coszyx _8a’sinycosyx _2Pa’sinycosy
3EI ‘ 3El : 3EI
3 . 8 a3 (3.112)
_8a’sinycosy X, a (l+sinzy)x, -0
3EI 3EI B

yield the following expressions for the redundant forces:

X, =B siny 1+51-n:y ’ X, =§ sm. y G.113)
4 cosy 2+sin"y © 4 2+sin"y

The pivotal bending moments and horizontal reactions at the bottom nodes normal
to the plane of bending are shown in Fig. 3.33. The total horizontal displacement of the
top nodes in the same direction can be found based on these moments and those caused by
horizontal virtual unit forces applied to the primary structure as shown in Fig. 3.6 (T = 1):

: 3 im 2
1 Pa siny a2 _4_2_2Pa sin“y

P El 4 2+siny 23 ° 3EI 2+sin’y

3.114)

If the top nodes are constrained from such horizontal displacement, the reactions in the

constraints can be obtained by superimposing the effects given by egs 3.26 and 3.114:



CHAPTER 3. THREE-DIMENSIONAL COLUMNS

front face right side

P/4
/ (Pasiny)/4
/ (front tension)
v Pl

P/4

N
(P tany)/2

Figure 3.32: Pivotal moments and reactions for the primary structure of a square
pantographic unit subjected to lateral load.

hy=-h, — T=—§ (3.115)

The reactions at the bottom nodes, found from eq. 3.22, eq. 3.115 and Fig. 3.33, have the
same direction and magnitude. There is no bending in the bars of the constrained unit

under the lateral load.

3.5.2 Load Vector for the Displacement Method Analysis of

Square Column

To avoid the local effects near the bottom of the column because of the support conditions
there, we will first analyze the structure shown in Fig. 3.34a with the bottom nodes free to
move in the direction normal to the plane of bending. Therefore, a constraint against such

a displacement has to be placed at this level as well as at every unit interface and the top of
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front face

front right bottom node

Pa siny
/ 4 2+sin’y
(bottom tension) y

- ——»—————"‘/__——)

P l+sin’y
2 2+sin’y

P
4

right side

in-plane bending out-of-plane bending

Pa siny _—
4 2+sin’y
(front tension)

Figure 3.33: Pivotal moments and horizontal reactions (normal to the plane of bending)
at bottom nodes of a square pantographic unit subjected to lateral load.
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the column to obtain the primary structure of the displacement method (Fig. 3.34b). The
entries of the load vector are the reactions in (n+1) constraints of the primary structure
due to lateral load; these entries are the sums of reactions in the four links at each level
since these four links constitute a single constraint. A typical square pantographic unit,
unit number i, from the constrained column subjected to lateral load is shown in Fig. 3.35.
The contribution of this unit to the constraint reactions at its top and bottom nodes is the
superposition of the constraint forces due to lateral load P applied to this unit (eq. 3.115)
and the constraint forces due to moment M; = P 2a siny (i-1) at the top of this unit (Fig.

3.7a). The first and last entries of the load vector P are:

p, =-P, p“,=[—§—§(n—l):,-4=—P(2n—l) (3.116)

The constraints at unit interfaces serve for the units above and below each interface.

Hence the intermediate entries of the load vector are:

P, =[-§-—§(i—2)—%-g(i -1)]-4: —4P(i-1), i=2,...,n (3.117)

The system of (n+1) equilibrium equations can now be written:

[6EI 2+sin’y 6 EI ]

3 .2 T3 0 i 7
a sin”y a P
2 +sin?
_61:_’.1 12:31 ..+.51£1 Y _6}:3.1 y=| 4Pi-1)
a a sin®y a

0 _6El 6EI2+sin’y | [P(2n-1)]

i a’ a’ sin’y |

(3.118)
If each equation in the above system is divided by 6El/a’ throughout and the following
notations are introduced:

- 2 3
_2+siny o Pa (3.119)

A » P
sin?y 6 EI

the system becomes
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(a)

(b)

Figure 3.34: Pantographic column with the bottom nodes free in the direction
normal to the plane of bending subjected to lateral load (@), its primary structure
of the displacement method (b).
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. Jasi i —
M, =P_asmy(1 l)=—122tany(i-l)

4acosy 4acosy

Figure 3.35: Pantographic unit number i from the constrained column
under lateral load and reactions in horizontal constraints.

A -l 0 B
-1 2A -1 |y=|4Bi-1)| or K’y=P, (3.120)
0 -1 A| |B@n-1)]

3.5.3 Linear and Local Solutions

Matrix K, is the same as that used to find the uniform solution in the case of
square column in bending (eq. 3.42). Let us inspect the right side vector to see whether
its pattern suggests any particular form of solution. In the main portion of the right side

vector, for i = 2,...,n, every two successive entries differ by the constant 4B. If it can be
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assumed that the entries of the solution vector also have a similar pattern of linear growth,
ey =y + A, then the i-th equation of the system can be written as:
—Y5 24y — Y =4Bi-1) o —(y{" -4,)+2Ay" —(y +4,) =4B(i - 1)

_ . 3.2 (3.121)
yilmz28(1 1)=Pa sin Y(i—l), i=l...n+l
A-1 6 EI

>

The last expression of eq. 3.121 must hold for all elements of the solution vector including
the first and the last, otherwise the equations number two and n of system 3.120 would

not be satisfied. The first and the last entries of the right-side vector which comply with

this solution vector can now be found by substitution of y;* and y:* in the first equation,

and y* and y™ in the last equation of system 3.120:

2 :
A-0--22 _p pAtl_jw
A-l A-l (3.122)
—ZB(n—l)+A2B[(n+l)—1]=B(2n—1)+BA+1=p':n+l
A-l A-1 A-1 '
System 3.120 can now be written in the following form:
- -
BA+l
A-1
0
Ky (y° +y*)=P" +P*, where P =P_-P¥"= (3.123)
0
_BA+1
L A-1]
If the “local” right-side vector is separated into two parts:
BA+1 0
A-1
P2 =Pri4Po2=| 0 [+ o , (3.124)
_BA+1
L 0 1L A-1]




148
CHAPTER 3. THREE-DIMENSIONAL COLUMNS

the two local solutions can be obtained in the manner described in Section 3.2.3.2.2 and
superimposed to form vector y*. The first of these solution vectors has the first element

equal to:

yx = B A“, where C=A-vA’-1 <1 (3.125)
A-C A-1

and the rest of the entries down the vector quickly diminish. The second of the local

solution vectors has its last element equal to:
B A+l

yn«l S

A-C A-1

(3.126)

and the rest of the entries up the vector also quickly approach zero. Hence, for a
sufficiently large number of pantographic units in the column, the resulting local solution

vector will have zeros in much of its middle portion, with a few non-zero elements near

the top and bottom. The general expression for an element of vector y** is

oc oc - n+l-i B A+l 1
y© =y CT 4y Ch = (c

A-CA-1

The total horizontal displacement of the bottom nodes of the column is the sum of the last

T -cr) (3.127)

entries of the linear and local solution vectors:

2B B A+l B (7 _A+1)

- 3.128
A1 A-CA-1 A-IU" ( )

lin loc __
y:qu + yn+l -

If the bottom nodes are hinged to the ground, then the value —(yﬁ‘jl +y:,°fl) is the last

entry of an additional y™ vector corresponding to the local horizontal support reaction
load, at the ground level, which would bring these nodes to their original position (Fig.
3.36). Again, this additional solution is localized and affects mostly the internal forces in
the bottom unit. Nevertheless, we will include this displacement in the final displacement
vector, whose typical element can be now written as:

. B(i-1) B A+l .
= yle + loc +y™P — + i l_Cn+l i) _
Y, =Yy Y AT TA T A Cl )

__B (2n— A+1)C“”“= B [7(1—1)+ A+lC 2nC‘”"i]
A-1" A-C A— A-C

(3.129)

From eq. 3.54 and eq. 3.119 one can obtain:
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Figure 3.36: Local self-balanced load compensating horizontal displacement
of the bottom nodes.

A+l 1+C B Pa’sin’y
=——— and =
A-C 1-C A-1 12 EI

, respectively (3.130)

The pivotal bending moments in the plane of the side SLEs can be found in the same

fashion as was done in eq. 3.61. Using eqs 3.129 and 3.130 we obtain:

. _ 3EH
T i+ ir =
! 2a‘siny(y Yin)
_Pasiny SlnY,:2(i—l)+——1+CCi'[ —2nC i+ X E —2nC“"] (3.131)
8 1-C 1-C

_Pa ;“‘Y |:2(Zi -1)+ —((:g))c C' -2n(l +C)C“"}

To find the horizontal displacement of the top of the column, a unit virtual lateral

load can be applied to the primary structure obtained by completely separating the four
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planar pantographic columns forming faces and sides of the three-dimensional structure.
The unit force, distributed in halves between the left and right sides, produces the in-plane
pivotal bending moments in the side SLEs equal to (a siny)(2i-1)/4. The horizontal

displacement is, therefore:

3,1 M ;a2asiny
h:Z— (7 1)42:'
2 >4 (1 C) (3.132)
Pasmy 2(%i + 1+ C)C™ |21 -1
e ;[( HgeC T (i

The first term under the summation sign in the last equation corresponds to the deflection

given by the linear solution alone:

w Palsin®y &, . 2Pa’sinly( n)
hit = — = 1 2i-1)y ==———{n’—— 3.133
6 EI é(l ) 9Bl \" 3 (3.133)

This displacement is half of that of a planar column subjected to the same lateral load,
which indicates the familiar fact that the stiffness of the square pantographic column is
twice as much as that of the planar one. The reduction of the deflection due to the other
two terms in eq. 3.132 is:

3 ain2 n ] 1 : 3 il
RN LIS 1 of PRVTNIG S I CLAS MICTE (PSRN L Lid 3

12EI 44 (1-0) 12 EI
(3.134)

o ot oy oot 20O & (1+C)
.[4n(1+c)§lc ~ange0)F v - 20 C); 2D S

The sums in the first and third terms in brackets in eq. 3.134 are calculated through the

formulae of eqs B.13 and B.10; the sums in the second and fourth terms are those of

standard geometric progressions:

F4n(l+C{ L _c I—C,)—Zn(1+C)ll_cc:: -

3 sin? 1I-C ~(1-C)?
ah=_Palsin’y (1-C) 1 (3.135)
12 EI (1+c) I-(1+n- nC)C“+(l+C)'1—C“

<0y a-oy (1-C) 1-C |

If all terms containing C" in the last equation are neglected (recall: C is small, n is large)

and the coefficient in front of the brackets is made the same as that in eq. 3.133:
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3 -2 2 3
ap o _Pa’sin y{4n31+c_2n(l+C) _(1+C) }z

12 EI 1-C 1-Cc/ \1-C

) (3.136)
__2Pa’sin’y _3_nzl+C_§n(l+C)'_§(l+C)3
9EI |2 1-C 4 (1-c) sli-C

The ratio of Ah from eq. 3.136 and h™ from eq. 3.133 is plotted in Fig. 3.37 versus degree
of deployment for two columns consisting of five and ten units. Even for the column with
five units the difference for the ratios calculated with Ah from eq. 3.135 and 3.136 cannot
be seen on the scale of this graph. The linear solution, proportional to n’, becomes more
and more predominant as the number of units in the column increases. The important part
of the sum of all local solutions Ah is, of course, the term of order n° which also can be
seen in the graphs of Fig. 3.37. This term is present here due to the hinge supports at the
bottom of the column. Comparing this result and those from egs. 3.63 and 3.100, one can
conclude that such support conditions introduce a displacement reduction one power of n
smaller than the displacement given by the dominant solution, i.e. the uniform solution in
the case of pure bending and the linear solution in the case of lateral load. If the bottom
nodes were free to move in the direction normal to the plane of bending, the highest
power of n in Ah would be one - resulting from in-plane bending of bars in the face SLEs
and out-of-plane bending of bars in the side SLEs. These bending moments are uniform
along most of the column because of the constant difference between the successive

elements of the linear solution vector.

3.5.4 Triangular Column Subjected to Lateral Load

Observing eqs. 3.63 and 3.100 and noticing that the displacement reduction due to the
support conditions has exactly the same form for square and triangular columns in pure
bending, one may expect such a sameness of form in the case of lateral load. Scaling egs.
3.133 and 3.136 to transform the equivalent bending stiffness from 12EIsiny for square

column to 9EIsiny for triangular column, we therefore write, without further proof:
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Figure 3.37: Stiffening of a square pantographic column under lateral load
compared to two separate planar columns versus the degree of deployment.
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} a2 2 3
h=hio 4 Ap=3F2 Sin’Y [ns_ﬂ]_ inzﬁ_zn(ﬁ) _2(1:2) (3.137)
27 EI 4 2 1-C 4 \1-C 8\1-C
where C is given by eq. 3.92. The ratio of the two terms in the figure brackets in eq.

3.137 is plotted in Fig. 3.38 forn = 5.

Fortunately, there exists a reference that allows a check on this result. A five-unit
triangular pantographic column (Fig. 3.39a) was analyzed and tested by You and
Pellegrino (1996b). Although the subject of the paper is a cable-stiffened deployable
structure, some results for the column without prestressing are also provided. Fig. 3.39b
reproduces the response of the column (deflections of one of the top nodes) to the lateral
load equally divided among the three top nodes and acting in the direction parallel to the

plane of symmetry of the system.

The experimental model had the following parameters. The bars were made of
Aluminum alloy with Young’s modulus 69 GPa, they all had a circular tubular cross-
section with inside and outside radii 3.86 mm and 4.77 mm, respectively. The length of
each bar was 400 mm, and therefore the length of the column at y = 45° was 1.410 m.
With this information the equivalent bending stiffness of the column can be readily
calculated: (EI). = 103-10° N/mm®. The deflection of the equivalent cantilever is h =
PL3/3(EI)e = 8.9 P, which yields deflection in millimeters if the load is in Newtons. If the
support conditions at the bottom nodes are assumed to be similar to hinges, this deflection
has to be reduced by approximately one fifth (Fig. 3.38): h = 7.15 P. For P equal to 4 N,
the deflection is 28.6 mm, compared to roughly 25 mm that can be read from the diagram
in Fig. 3.39b. The reason for the calculated deflection being higher than that of the model
may be attributed to the type of connections between the bar ends in the model. These
connections were revolute, not spherical, joints which introduce torsion in the bars and
therefore additional stiffness. The question of whether the active cable contributes to the

stiffness of the structure without prestress is also open.
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Figure 3.38: Ratio of the deflections from all local and linear solutions for a triangular
pantographic column under lateral load (n = 5) versus the degree of deployment.

(a) (b)
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o

Figure 3.39: Triangular mast - n =5, y = 45° (a); displacement components
of joint 18 due to load P in the y-direction (b) (You and Pellegrino, 1996b).
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3.6 Pantographic Slabs

Most of the pantographic slabs seen in the literature have a layout similar to that shown in
Fig. 3.40a (the planes of all two-dimensional SLEs are made opaque to unload the figure).
They consist of two sets of planar pantographic beams running in orthogonal directions.
The planes of all two-dimensional columns are perpendicular to the “midsurface” of the
slab. Another way to imagine how such slabs are formed is to take a number of three-
dimensional identical square pantographic units made of four vertical SLEs each, such as
those analyzed in the previous Sections, and put them on a horizontal plane side by side,
with common faces shared between adjoining units. When folded, every unit, as well as
the whole slab, becomes a one-dimensional segment of length 2a, which is the length of
bars in all two-dimensional SLEs. This, of course, is true in the ideal case when bars have
only length and no thickness, and joints are points with zero size. The other extreme state
of such slabs is a completely unfolded two-dimensional configuration - the rectangle
2amX2an, where m and n are the numbers of square units in the two directions in the plane
of the slab (m =n = 3 in Fig. 3.40a). The deployed three-dimensional configuration of the
structure lies between these two extremes. The bending stiffness of such slabs is the same
in both directions of the two families of planar beams and is defined by the bending
stiffness of a single two-dimensional pantographic beam in its own plane. The advantage
of these structures, being a compact bundle in the folded state, is therefore paired with a

relatively low bending stiffness of their working configuration.

Another possibility for creating a deployable pantographic slab is illustrated in Fig.
3.40b. The slab can be formed from a number of single units put side by side, but now
each unit has two SLEs horizontal and the other two - vertical. Thinking in terms of
planar pantographic columns, one can say that there are three sets of them: columns in one
set lie in planes perpendicular to the “midsurface” of the slab; columns in the other two
sets are parallel to the “midsurface” and form the top and bottom “skins™ of the slab.

Finally, the same result is obtained if a number of three-dimensional columns considered
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before are laid horizontally side by side. One extreme configuration of such an
arrangement is obtained if each unit is folded into a two-dimensional square. The
structure, therefore, becomes a rectangle 2ax2am, where m is the number of three-
dimensional columns put together to form the slab (m = 3 in Fig. 3.40b). The almost
folded configuration of the slab is shown in Fig. 3.40b. In the completely unfolded state,
the slab becomes a straight line of length 2an, where n is the number of square units in
each column (n = 3 in Fig. 3.40b). It can be seen that this type of pantographic slab looses

in the compactness of the folded configuration to the one described earlier.

The behaviour of a slab of the second type under certain loads is qualitatively
different from that of the first type and even from the behaviour of a separate three-
dimensional pantographic column. A long slab bent in the short direction is shown in Fig.
3.41. If one were to estimate the bending stiffness of this structure, the first impulse
would probably be to relate this characteristic to that of a single three-dimensional
column, which is a function of the equivalent bending stiffness of the planar columns
parallel to the plane of bending. The latter stiffness, in turn, is proportional to the bending

stiffness of bars in the SLEs.

It is a known fact that, due to the Poisson’s effect, the stiffness of a one-way solid
slab is greater than that of a number of separate beams of the same thickness. A similar
but much more crucial effect is present here. If a long slab is subjected to a load causing
one-way bending, the vertical sections of such a slab, if they are located far enough away
from the edges, are in a state of plane strain. In the long pantographic slab the vertical
planes through the interfaces of the three-dimensional columns that form the slab can be
considered planes of symmetry of the system, if these planes have large enough portions of
the structure on both sides (Fig. 3.41). Joints lying in such a plane will not have any
displacements in the direction normal to it. A typical three-dimensional pantographic
column in the middle portion of the long deployable slab is confined between the two

vertical symmetry planes. The rest of the slab prevents displacements of the nodes of this
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column in the direction normal to the plane of bending. The column, therefore, behaves as
the constrained structure from Fig. 3.7b. The bars in such a column do not experience any
bending. For pure moment load there are only axial forces in the bars of the SLEs
perpendicular to the plane of bending. For a transverse load the corresponding bending
moment will also induce axial forces in these bars, and shear will be resisted by the axial
forces in the bars of the vertical SLEs. Thus, the moment bearing function is shifted from
bending of bars in the SLEs parallel to the plane of bending (in a separate column) to axial
action of bars in the SLEs perpendicular to the plane of bending (if the column is a part of
a slab assembly). The bending stiffness of the slab is therefore greatly increased since it is

defined by the axial rather than bending stiffness of the bars.

The above reasoning can also be applied to pantographic slabs made of three-

dimensional columns with triangular cross-section (Fig. 3.42).

. 3.7 Conclusions

In this Chapter three-dimensional pantographic columns subjected to two types of load are
considered. Columns with both square and triangular cross-sections subjected to moment
load are analyzed first. The column with a square cross-section subjected to lateral load is
then investigated, and the results are extended to the column with triangular cross-section.
The common procedure starts from the analysis of the basic three-dimensional
pantographic unit by the force method. Square and triangular units are both statically
indeterminate structures for which the primary structure is obtained by separating the two-
dimensional SLEs that form the sides of a unit. The symmetry properties of the structure
and its loading are extensively utilized to reduce the number of unknowns. The outcome
of the single unit analysis allows one to arrive at the displacement method formulation for

the whole column.
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symmetry planes of the | f
“plane strain™ problem

Figure 3.41: Long pantographic slab in bending.
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Figure 3.42: Pantographic slab formed by triangular columns.
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The primary structure of the column for the displacement method is obtained by
preventing relative horizontal displacements of nodes at unit interfaces. It is noted that the
external load does not cause any bending in the bars of the constrained primary structure.
The narrow-banded stiffness matrix and the load vector are obtained for each particular
structure and loading. An analytical solution of the system of equilibrium equations is
obtained in each case. This solution consists of two parts: the primary solution, which
describes the behaviour of the most of the column, and the local solution, which is caused
by the end conditions at the top and the bottom of the column and is confined to a few
units near the corresponding ends of the structure. The influence of the local part of the
solution on the overall behaviour of the column becomes small compared to that of the
primary part, as the number of units in the structure increases. If the number of units in
the column is constant and the degree of deployment increases, e.g. when a particular
column deploys, the relative stiffening due to the local part of the solution increases,

although the order of magnitude of this stiffening stays the same.

The displacement vector, obtained by superposition of the above solutions, is used
to calculate the internal bending moments in the loaded column, which in turn are used to
derive the expressions for the displacements corresponding to a particular type of loading.
On the basis of these displacements the equivalent bending stiffness of a three-dimensional
column is obtained. When the local effects are neglected, this characteristic is closely
related to the equivalent bending stiffness of the planar pantographic column derived in the
previous Chapter. It is shown that the contribution of each side of the three-dimensional
column to the overall bending stiffness equals the bending stiffness of this side multiplied

by the squared cosine of the angle between the plane of the side and the plane of bending.

Local effects due to support conditions at the bottom of the column - bottom
nodes hinged to the ground - are found to introduce subtractive terms in the expressions
for displacements. The highest order of magnitude of these terms is one power of the

number of units in the column smaller than that of the term given by the primary part of
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the solution. Therefore, for columns with a relatively small number of units, the

contribution of the local solution to the deflections and stiffness should be taken into

account.



Chapter 4

Closure

4.1 Summary of the Results

1. The equivalent bending stiffness of a two-dimensional uniform pantographic column in

its own plane, when the axial deformations of bars are taken into account, is found to be

2a’si
(ED), = % » where a is the half-length of the bars in the scissor-like elements,
an
— +
EA  3EI

EA and EI are the axial and bending stiffnesses of the bars, respectively, y is the degree of

deployment - the angle between the axis of a bar and the ground. The expression for the

same stiffness when axial deformations of the bars are neglected is (EI), = 6EIsiny .

2. The equivalent axial stiffness of a planar uniform pantographic column, if the axial

i l
325111Y1 3 — , where
2n“cos”y cot“ y +_z§‘_
EA  3EI

deformations of the bars are accounted for, is (EA), =

162
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n is the number of SLEs in the column. If the axial deformations of the bars are neglected,

9EIsiny _ 18EI sin’y

2.2 2

(EA) = 2 - 2
° 2a’n’cos’y L? cos’y

, where L = 2 ansiny - the length of the column.

3. The equivalent stiffnesses of a planar, uniformly tapered column are:

. 3
(EI) =k 6Elsiny and (EA), =k 18_’EI_su where k is a function of the degree of
L° cos”y
tapering m - the size ratio of the two neighbouring SLEs:
1 (m+1)*(m® —l)z(mz +m+1)

=-3_(m—1)2(m2 +m+1)+4m(m*m - 1m” - m)’

4. Geometric non-linearity, due to finite rotations of bars allowed by the pivotal
connections, exhibited by pantographic columns under axial loading leads to a limit-point
type of instability. The snap-through of the top SLE occurs at large (more than 30%)

overall vertical deformations of the columns.

5. The introduction of a constraint against the relative horizontal displacement of the two
top nodes of a column gives an axial stiffness four times greater than the original. The
location of such constraint that yields the maximum stiffness increase (nine times) is at one

third of the column length from the top.

6. Constrained columns are more rigid axially, and may buckle globally. The transition
from the local snap-through (at lower degrees of deployment) to the global column-type
buckling (at higher degrees of deployment) for the columns with the constraint between

the top nodes occurs at a degree of deployment of 58°.
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7. The equivalent bending stiffness of a three-dimensional pantographic column can be

phnar nos® ot , where k is the

el [

k
calculated using the following expression: (EI), = Z(EI)

=1
number of planar pantographic columns forming the sides of the three-dimensional

planar

structure, each having the equivalent bending stiffness (EI)0i"" found as shown in 1, and

0 is the angle between the plane of a particular two-dimensional column and the plane of

bending.

8. The rotation of the top of a three-dimensional column subjected to a moment load is

o
¢=M"(E;Y[n—%i+g:| , where (EI). is found as shown in 7; C=—-A +vA% -1
[

in2 2 +sin?
and Azm for a triangular column; C=A -vA? -1 and A=—-_—Sl,n—Y— for a
2-sin"y sin” y

square column.

9. The lateral deflection of the top of a three-dimensional column subjected to a lateral

force  equally  distributed among the top nodes is given by

3 -3 2 3
hopla sin’y [ns_ﬂ]_g, nziﬁ_n(iﬁ) _(Lﬂ) ; the
3 (EI), 4 21-C 21-C 21-C

parameters in this expression are the same as those in 8.

4.2 Concluding Remarks

Straight or curved planar pantographic columns are an integral part of three-dimensional
deployable structures made of scissor-like elements. Understanding the behaviour of these

columns is important in developing the necessary structural “feel” by designers of this
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class of systems. In this thesis, straight planar and spatial pantographic columns subjected

to bending and axial load are studied.

The closed form analytical expressions for the equivalent bending and axial
stiffnesses of the uniform planar columns are obtained by comparing the response of the
pantographic structure with that of a uniform solid column. These expressions become
fairly compact under the following assumptions about the behaviour of the deployable
columns. The response is assumed to be linear, axial deformations of bars in the SLEs are
neglected, the number of SLEs in the column is large, and the degree of deployment is not
very close to zero or the right angle. It is found that the internal force distribution and the
deflections of pantographic columns subjected to bending in their plane (caused by the
moment or lateral force loadings) are very similar to those of the conventional uniform

beam.

The equivalent bending stiffness, which corresponds to the cross-sectional bending
stiffness of the solid column, is a function of the degree of deployment and the bending
stiffness of bars only. This parameter depends neither on the number of units in the
column nor on the bar lengths. This fact has an important consequence. In conventional
structural analysis a member having wider cross-section is usually associated with higher
bending stiffness. A pantographic column with fewer SLEs (but still sufficiently many of
them to satisfy one of the above assumptions) can be much wider then the column of the
same length and degree of deployment but with more SLEs. Yet these two structures
have the same lateral deflections. As long as two pantographic columns are made of bars
with the same cross-sectional properties and have the same degree of deployment, their

equivalent bending stiffnesses are the same.

The following paragraphs describe the important role played by the pivotal
connections between the two bars forming an SLE in the behaviour of the pantographic

columns subjected to axial load. In bending, however, the freedom of relative rotation of
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bars about the pivots is of no importance. This rotation, being a symmetrical displacement
in a symmetrical structure subjected to an anti-symmetrical load (moment or lateral force),
is equal to zero. In fact, the bars in the SLEs could be rigidly connected at their

intersections and this would not change the behaviour of the column in bending.

The distribution of internal forces in the pantographic column subjected to axial
load differs qualitatively from that in the solid column subjected to the same load. The
internal bending moments and axial forces grow from the top of the column to the bottom,
but the vertical deformations of SLEs have the opposite trend. The equivalent axial
stiffness for different columns of constant height again depends only on the bending
stiffness of bars and the degree of deployment. However, for columns made of the same
bars and having the same degree of deployment but different heights, the longer the
column the softer its “cross-section” becomes. The reason for this lies in the mechanism
of the axial deformation of the pantographic column. The change of height of each SLE
includes two components. One of them is due to the bending of bars of a particular
scissor-like element. The other is due to the deformation of the portion of the column
below this SLE. The latter deformation causes the bottom nodes of the SLE to move
apart, which causes relative rotation of the bars allowed by the pivotal connection.
Therefore, even if the column is axially loaded at some level (not at the top), the part of
the column below the load will be deformed and stressed, but the part of the column above

the load, although stress-free, will also change its configuration.

The finite rotations of bars in the pantographic column under axial load make
linear analysis applicable only for small loads. The procedure for non-linear analysis
accounting for the changes in the degree of deployment in the SLEs along the column was
developed. The equilibrium paths obtained by the “load-controlled” approach indicated
softening of the structure under increasing load. The “displacement-controlled” approach
allowed the column response to be traced up to and beyond the limit point on the

equilibrium path. It was found that this limit point is closely related to the snap-through
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buckling of the top SLE. If a rigid horizontal link is placed between the two nodes at a
particular SLE interface, it increases the axial stiffness of the structure and postpones the
local snap-through buckling, but makes the structure more susceptible to the overall
column-type buckling. A stiffness-equivalent analytical model with fewer degrees of
freedom is introduced for the purpose of the global buckling analysis. The obtained
buckling loads depend on the bending as well as the axial stiffness distributions along the

deformed columns.

Three-dimensional triangular and square pantographic columns in bending were
studied. The force method was used to analyze single units of these types of columns.
The results of these analyses were employed in the displacement method formulation for a
full structure. Closed form analytical solutions of the resulting systems of equilibrium
equations were obtained by taking advantage of certain properties of the stiffness matrices
and load vectors. The typical solution consists of primary and local parts, the latter
originating from the support conditions at the bottom of the column. The relative negative
contribution of the local part of the solution to column deflections diminishes as the
number of units in the column increases. The overall bending stiffness of a three-
dimensional column is closely related to the bending stiffness of the planar columns that
form the sides of the spatial structure. The contribution of the planar column of a
particular side to the overall bending stiffness depends on the orientation of that side with
respect to the plane of bending. This is similar to the way the solid walls of a hollow
cross-section contribute their own bending stiffnesses to the stiffness of the whole cross-
section. That part of the overall bending stiffness which is due to the axial stiffness of the
planar columns (important for solid walls) has a secondary effect in pantographic
structures and is included in the local solution. It was shown that deployable columns
with square and equilateral-triangular cross-sections have the same stiffness for bending in

any direction.
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4.2 Directions of Future Research

In this Section we list some aspects of the structural behaviour of pantographic columns
that were not addressed in this thesis and require further investigation. Possible

applications of the results obtained are also outlined.

In calculating the deflections of the deployable colurnns, in both linear and non-
linear analyses, the influence of the elemental axial forces on the bar bending stiffness was
not taken into account. This effect may considerably soften the bottom portion of the

column where the axial forces are the highest in the cases of lateral and axial loadings.

In the case of a three-dimensional column subjected to axial load the linear
stiffness of the column is the direct sum of the axial stiffnesses of the sides. If the non-
linear behaviour of such a column is considered, there exists another type of instability in
addition to the snap-through buckling of the SLEs in the top unit. This instability is also
of the local snap-through nature and corresponds to a “folding out” of the top three-
dimensional pantographic unit. To capture this phenomenon, the equilibrium equations

must be written for the units in their final configurations - “after rotation and bending”.

The joints connecting the bar ends in spatial pantographic structures usually
include additional hub element with slots and pins. These are revolute rather than
spherical joints which may introduce torsion in the bars. Columns with such connections

are more statically indeterminate and stiffer than the columns analyzed in this thesis.

It would be interesting to see whether the behaviour of curved pantographic beams
and arches can be predicted on the basis of the stiffness characteristics obtained for planar
and spatial straight columns. The general description of the idea of the pantographic slabs

in which bending of bars is eliminated also requires further detailed development.



Appendix A

Integration Rule

When the principle of virtual work is used to find displacements in frames, the procedure
involves the calculation of the internal virtual work done by internal virtual forces on real

deformations. This work is expressed in the form of the following integral:

LV.W.= ZIM(("éIm MO m, () 4 | (A1)

where M;(x) and m;(x) are the functions of real and virtual bending moments in a frame
member number i, L; and (EI); are the length and the bending stiffness of the member, and
the summation is done for all bars in the structure. For a straight bar with constant
bending stiffness the calculation of such an integral can be simplified, mostly due to the
fact that, since the virtual load is usually a set of concentrated moments or forces, the
virtual bending moment diagram is a set of straight lines. This means that any bar in the
structure can be divided into a number of parts for which the virtual bending moment,

my(x), is a linear function.

The problem now becomes:

I=[f(x)g(x)dx , (A.2)
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where f(x) is a general function of x, g(x) is a linear function of x, a and b are the limits of
integration, i.e. (b-a) is the length of the bar or its segment (Fig. A.1). If the origin of the
coordinate system is chosen at the point where the straight line of function g(x) crosses
the horizontal axis, then this function becomes simply g(x) = k x. Substitution of such

linear function in the integral in eq. A.2 yields:

b b
[=[feokxde=k [x f(x)dx =k Ag X, =Ar kXpop = Ap 8(Xpoy) (A.3)

The following steps were performed in eq. A.3. When constant k is factored out of the
integral, the remaining expression constitutes the first moment of the area below function
f(x) about the y-axis. If the area and the location of the centre of gravity of this shape are
known, the first moment can be written as the product of the area, A¢, and the distance
between the vertical axis and the centre of gravity, x,,, instead of the integral. However,
constant k multiplied by this coordinate yields the value of function g(x) at this point.

Therefore, the rule:

The integral from a to b of the product of two functions, one of which is a general
function and the other is a linear function, equals the area under the first function
between a and b multiplied by the value of the second function at the location of the

centre of gravity of that area.

In Russian textbooks this rule is called Vereshchagin's method for integration; the
legend says that the technique was introduced in 1925 by a student of Moscow Railway

Institute A. K. Vereshchagin.

The above derivation may be regarded as the geometrical sense of the rule. The
physical sense can also be readily provided. If one thinks of function f(x) as weight
distribution along a rigid bar running from a to b, then the integral in eq. A.2 may be seen
as the work done by gravity field when the displacement of such a bar is described by

function g(x). In this case, instead of integration, the total weight of the bar (area A() can
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be multiplied by the displacement of its centre of gravity (g(x, g)), Which corresponds to
the final result of eq. A.3.

In cases when both functions under the integral (eq. A.2) are linear the rule has
commutative property. In such cases it is immaterial whether the area under the first
diagram be multiplied by the ordinate of the second diagram or the area under the second
diagram be multiplied by the ordinate of the first diagram. In this thesis the bending
moment diagrams, the product of which has to be integrated, are always linear; moreover,
they are triangles with zero and maximum values at the same locations (hinged ends of the
bars in SLEs and their pivots, respectively). The integral under the sum in eq. A.1 for
such moment diagrams can be expressed in terms of the real and virtual pivotal moments,
M; and my, and the distance between the end of the bar and its pivot, a:

a

= (A4)
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Figure A.1: Integration of the product of a general and a linear functions.
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Summation Formulae

B.1 Standard Sums

Since pantographic columns, the subject of this thesis, are repetitive structures, many
derivations contain sums of terms which need to be calculated over all pantographic units
in a column. Sometimes these series are arithmetic or geometric progressions, for which
well known analytical expressions are available. A simple arithmetic progression has the
following expressions for its i-th term and the sum of the first n terms:

a, +a, n(n—l)d

5 =na, + , (B.1)

a,=a, +(@{-1)d, S, =Zai =n
i=l

-

where d = a,-a; is the difference between the two successive terms. This arithmetic
progression is an arithmetic progression of the first order. An example of such a

progression is the series of natural numbers, for which:

, &. n(n+l)
.= = = = o)
a, =i (therefore d=1), S, Zx 5 (B.2)

i=l ot
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The series of squares of natural numbers is an arithmetic progression of the second
order. One of the possible ways to obtain the sum of the first n terms of this series is
shown below (Hall and Knight, 1932):
n’=(n-1)’ =n’-(n® -3n* +3n -1)=3n* -3n +1

(n-1)’-(n-2)° =3(n-1)*-3(n-1)+1

(B.3)
2°-1’=3(2)’-3-2+1
P-0°=3(1)0-3-1+1
Adding the right and left sides of n equations in B.3 results in:
n’=3)i*-3Yi+n, (B.4)
i=l i=l
from which, with the use of eq. B.2, the sum of squares can be expressed as:
n , 2 3 2
Zi_z n“+3n"+n_n(n+1)(2n+1) (B.5)

it 6 6

The general forms of the i-th term and the sum of a geometric progression are:

a, =a q", §, = zn:ai = ia,q"l =a,(l+q+...+q“")= a, ll——qq" , (B.6)
i=1 =l

where q = a;.1/a; is the ratio between the two successive terms. If the absolute value of q
is less than one and the number of terms in the sum is sufficiently large, the numerator on

the right side of eq. B.6 is very close to unity.
B.2  Arithmetico-Geometric Series

In this Section the formulae for the sums of two series are derived. These sums are
required in the process of calculating the deflection of a three-dimensional pantographic
column under lateral load. The first sum has the form:

S, =>.,iq' =q+2q* +3q*+...4nq" , B.7)

i=l
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which is similar to a geometric progression, but has each term multiplied by its number.
We factor q out of the sum and split each term into the part corresponding to the term of
the standard geometric progression and the remaining part:

=q(l+q+q+q*+2q° +q’ +3q’+..+4q" " +(n—-1)q"") (B.8)
The sum of the powers of q from zero to (n-1) is given by eq. B.6. The sum of the rest of

the terms is S,.;, so we add and subtract the last term of the original series:

=q(l—q +Sn_l+nq“—nq“)=q(l_q +Sn—nq") (B.9)
l-q I-q
All terms containing S, are grouped on the left side, which gives the following expression
for the sum:
— n o+l 1-(1 _ a
Sn=q1 (n+1)q 2+nq —q ( +n rzlq)q (B.10)
(1-q) (1-q)

For an absolute value of q less than one and an infinite number of terms the exponential

decrease of q" overcomes linearly growing n and the sum becomes:

S, = 0 _qq): (B.11)

The second sum to be calculated is:
S, =2,iq"" =q"" +2q" 7 +3q" +..+(n—1)g+n (B.12)
1=1

Proceeding along the same lines as in the previous derivation we obtain the final

expression for the sum:

n 1-q°
a = -q 3 (B.13)
I-q “(1-q)
which, for [q|<1 and n — oo, becomes:
S, = — (B.14)

l-q
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