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Abstract

Wintner asked the following question :

Does there exist an infinite set S of prime numbers such that if n0 < n1 < . . . <
ni < . . . is the sequence of all positive integers composed of the primes in S then

lim
i→∞

(ni+1 − ni) = ∞ ?

In 1973 Tijdeman [38] proved that the answer to the question is yes. In this thesis,
we shall investigate Wintner’s question in more detail.

Tijdeman [38] proved that for each real number θ with 0 < θ < 1 there exists an
infinite set of primes S such that if n0 < n1 < . . . < ni < . . . is the sequence of all
positive integers composed of the primes in S then ni+1−ni > n1−θ

i for i = 0, 1, . . ..

Given such a θ, we shall show that we can find an infinite set S = {p1, p2, . . .} of
primes with p1 < p2 < . . . so that the n-th term pn does not grow too quickly. In
particular, we shall show that

pn < exp

(
c1n

2

θ
log
(c2n

θ

))
where c1, c2 are explicit numbers.

We shall also investigate the following question. We shall look for a function L (x)
which grows quickly and yet for which there is an infinite set of primes S such that
the associated sequence of power products n0 < n1 < n2 < . . . satisfies

ni+1 − ni > L (ni)

for i = 0, 1, . . ..

We define a family of functions

Fk,θ (x) = expk
(
(logk(x))θ

)
where k is an non-negative integer and θ is a real number and logk is k-iterated
logarithms and expk is k-iterated exponentiations. And we prove that for given
non-negative integer k and a real number θ with 0 < θ < 1 there is an infinite set
S (k, θ) of prime numbers such that if n0 < n1 < . . . < ni < . . . is the sequence of
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all positive integers composed of the primes in S (k, θ) then

ni+1 − ni >
ni

Fk,θ (ni)

for i = 0, 1, . . . .

Finally, we shall consider prime pairs (p, q) such that if n0 < n1 < . . . is the sequence
of all positive integers composed of the primes p, q then

ni+1 − ni >
√

ni.

We find all such prime pairs (p, q) with 2 ≤ p < q < e8 by computational work.
Given two such primes p, q we can find an infinite set of primes {p, q, p3, p4, . . .}
such that if n0 < n1 < n2 < . . . is the sequence of all positive integers composed of
the primes then

ni+1 − ni >
√

ni.

for i = 0, 1, . . . .

These results generalize and develop the answer to Wintner’s question due to

Tijdeman.
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Chapter 1

Introduction

Let us define the following set:

Definition Let S be a set of prime numbers. Define

N (S) =

{
x ∈ N

∣∣∣∣ x =
∏
p∈S

pa, a ∈ N ∪ {0}

}
.

We see that N (S) = {n0, n1, . . .} is the set of all positive integers composed of
the primes in S. That means for given set S of prime numbers, we see that for a
positive integer x, x is in N (S) if and only if for any prime number p with p|x, p
is in S.

We have some examples.

Examples

1. If S is the set of all prime numbers thenN (S) is the set of all positive integers.

2. If S = ∅ then N (S) = {1} and this is the only case N (S) is a finite set.

3. If S = {2} then N (S) = {2i|i ∈ N ∪ {0}}

4. If S is the set of all odd prime numbers then N (S) is the set of all positive
odd integers.
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We want to see N (S) from an additive point of view. First, without loss of gener-
ality, we can order the elements of the set

S = {p1 < p2 < . . .} ,

N (S) = {n0 < n1 < n2 < . . .} .

We see that n0 = 1 and n1 = p1 the smallest prime in S. We denote the cardinality
of a set A by |A|.

1.1 When |S| is Finite

In 1898, Størmer [36] proved the following theorem.

Theorem 1.1 (Størmer). Let S be a finite subset of odd primes. Then for ni ∈
N (S)

lim inf
i→∞

(ni+1 − ni) > 2.

This result was improved by Thue [41] in 1908.

Theorem 1.2 (Thue). Let S be a finite set of primes and ni ∈ N (S). Then

lim
i→∞

(ni+1 − ni) = ∞.

Thue derived this theorem from his result on the approximation of algebraic num-
bers by rational numbers.

Størmer proposed the question of determining for a given finite set of prime num-
bers, the pairs (a, a + 1) of consecutive integers such that both a and a + 1 belong
to N (S). He proved [35] that given a finite set S of t primes, there are only finitely
many pairs (a, a + 1) such that both a and a + 1 belong N (S). He used explicit
methods involving Pell’s equations and showed that the number of such pairs is at
most 3t − 2t.

Lehmer [21] generalized this question to that of finding, for a given finite set S of
primes, all pairs (a, a + k) such that a and a + k are in N (S) for k = 1, 2, 4. He
was interested in an efficient way to determine the number of these pairs. Using a
result of Gelfond [15], Cassels [12] gave an explicit upper bound for the size of the
numbers. And he gave necessary and sufficient conditions to determine when both
a and a + k are in N (S). Recently, Jones [18] extended Lehmer’s results to the
case when k is an arbitrary positive integer.

2



In 1918, Pólya [29] proved the same result as Theorem 1.2 with a different approach.
His proof uses an estimate for the sum of the divisors of p− 1 for primes p up to x.
Pólya proved that

Theorem 1.3 (Pólya). If S is any finite subset of primes and ni ∈ N (S) then
ni+1 − ni tends to infinity. Moreover, if |S| ≥ 2 then

lim
i→∞

ni+1

ni

= 1.

From Pólya’s proof, we have information of upper bounds of the sequence of the
quotients ni+1

ni
.

Erdös [13] observed this using the results of Siegel [32] and Mahler [23].

Theorem 1.4 (Erdös). Let S be a finite subset of primes. Let 0 < θ < 1. Then
there is N (θ, S) > 0 such that

ni+1 − ni > nθ
i

for all ni ∈ N (S) with ni > N (θ, S).

But in both Siegel’s and Mahler’s methods N (θ, S) is not effectively computable.

In 1973 and 1974, Tijdeman [38, 39] resolved these problems. He uses Fel’dman’s
estimates [14] for linear forms in the logarithms of algebraic numbers.

Theorem 1.5 (Tijdeman [38]). Let n1 < n2 < ... be the sequence of integers
composed of primes not greater than p. Then there exists an effectively computable
positive number C1 = C (p) such that

ni+1 − ni >
ni

(log ni)
C1

for ni ≥ 3.

In 1974, Tijdeman proved the following theorem by applying estimates for linear
forms in logarithms and using some elementary properties of continued fraction
expressions.

Theorem 1.6 (Tijdeman [39]). Let S = {p1 < p2} and ni ∈ N (S). Then there
exist effectively computable numbers C2 = C (p1, p2) and N = N (p1, p2) such that

ni+1 − ni <
ni

(log ni)
C2
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for ni ≥ N .

Tijdeman proved the following theorem without estimates for linear forms in the
logarithms of algebraic numbers.

Theorem 1.7 (Tijdeman [38]). Let S = {p1 < . . . < pt} be a given set of t prime
numbers and t > 1. Then there are infinitely many pairs x, y in N (S) such that

0 < x− y <
(t log pt)

t · y
(log y)t−1 . (1.1)

Remark We shall include the proof of this theorem for completeness and rewrite
the proof in terms of our notation. The proof may be found in [38, Theorem 2].

Proof. Let S = {p1 < . . . < pt} be given. Let M be a positive integer and consider
a set N (S, M) such that

N (S, M) = {x ∈ N (S) | x = pa1
1 · · · pat

t , 0 ≤ ai ≤ M for i = 1, . . . , t} .

Then,

|N (S, M)| = (M + 1)t . (1.2)

For any x ∈ N (S, M) with x = pa1
1 · · · pat

t

0 ≤ log x = a1 log p1 + · · ·+ at log pt ≤ M · t · log pt. (1.3)

By (1.2) and (1.3) there are x, y ∈ N (S, M) such that y < x and

0 < log x− log y ≤ M · t · log pt

(M + 1)t − 1
. (1.4)

Let x = pa1
1 · · · pat

t and y = pb1
1 · · · pbt

t . We may assume without loss of generality
ai · bi = 0 for i = 1, . . . , t. We have y2 < xy < pMt

t . Therefore, M > 2·log y
t·log pt

.

Substituting this estimate in (1.4) then we see that

log
x

y
= log x− log y <

(t log pt)
t

(2 log y)t−1 . (1.5)

We see that from (1.4) and since t > 1, if M goes to infinity then log x
y

goes to 0.
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Since x
y

> 1 we have

log
x

y
≥ 1

2

(
x

y
− 1

)
(1.6)

for sufficiently large M . We note that N (S) = ∪∞M=1N (S, M). Therefore, by
(1.5),(1.6) and t > 1, if M goes to infinity then we have infinitely many x, y ∈ N (S)
that satisfy (1.1) as required. �

By the above Theorem, we note that the constant C1 = C(p) in Theorem 1.5 cannot
be replaced by a constant smaller than π(p)− 1 where π(x) denotes the number of
primes less than or equal to x.

Theorem 1.8 (Tijdeman [38, 39]). Let S be a finite subset of t prime numbers
and t ≥ 2. Then there are effectively computable numbers C3, C4 and N that only
depend on S such that

ni

(log ni)
C3

< ni+1 − ni <
ni

(log ni)
C4

for ni ∈ N (S) with ni ≥ N .

By Theorem 1.5 and Theorem 1.7 we see that the numbers in Theorem 1.8 satisfy
C3 ≥ t− 1 and C4 ≤ t− 1.

This result is very satisfactory not only because we can deduce all the previous
theorems from Theorem 1.8 but also for finite S we see the difference ni+1 − ni

behaves like ni

(log ni)
C on average.

1.2 Wintner’s Question

What can be said if S is an infinite subset of primes ?

In the review paper [13] Erdös mentioned the following question introduced by
Wintner.

Question (Wintner) Does there exist an infinite sequence of primes p1 < p2 <
. . . such that if n0 < n1 < . . . is the sequence of all positive integers composed of
p’s in the sequence of primes then

lim
i→∞

(ni+1 − ni) = ∞ ?
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And Erdös mentioned that it seems certain that such a sequence exists.

This looks like a natural question after what we know about the sequence of gaps
ni+1−ni in N (S) when S is finite. But, we meditate on what this question means.

In the additive point of view, we can construct the set of all positive integers on
the Peano axioms. In the multiplicative point of view, we can construct the set of
all positive integers by the set of all prime numbers P .

These two aspects of construction for the same set, we ask whether there is some
relation between the successor function in Peano Axioms and the set of all prime
numbers P and in this case we can write N (P ) = N.

In this point, we can say Wintner’s question is a question of finding some relation
between the additive structure and the multiplicative structure of the set of integers
composed of primes from a given set. In other words, we can ask whether there is
an infinite subset S of prime numbers such that for ni ∈ N (S) we can define the
sequence of gaps ni+1 − ni as a successor like function L(ni) and the behavior of
L(ni) is similar to the case |S| is finite.

Just after Baker [8] proved a sharpening of the bounds for linear forms in logarithms,
Tijdeman applied the theorem and proved such an infinite set S of primes exists.

Theorem 1.9 (Tijdeman). Let 0 < θ < 1. Then there is an infinite set S of prime
numbers with

ni+1 − ni > n1−θ
i (1.7)

for all ni ∈ N (S) .

Proof. See [38, Theorem 7]. �

1.3 Motivation

Tijdeman proved that for given 0 < θ < 1, if we have a set of t prime numbers
St = {p1 < . . . < pt} such that ni+1 − ni > n1−θ

i for all ni ∈ N (St) then there is
a prime number pt+1 with pt+1 > pt such that mj+1 − mj > m1−θ

j for all mj ∈
N (St ∪ {pt+1}). And in the last part of his paper [38] he remarked the following
two things. (Here, we have relabeled Theorem and Equation numbers so that they
correspond to the numbering in this thesis.)
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Remarks ([38, Remarks])

1. It follows from the proof of Theorem 1.9 that for every θ with 0 < θ < 1
it is possible effectively to give a sequence T1, T2, . . . such that there exists a
sequence p1 < p2 < . . . with required property and with Tn

2
≤ pn ≤ Tn for all

n = 1, 2, . . ..

2. It follows from Theorem 1.7, there does not exist a constant C such that
Theorem 1.9 is valid if (1.7) is replaced by the inequality

ni+1 − ni >
ni

(log ni)
C

.

3. Remark 1 is discussed in more detail in Section 1.3.2. Remark 2 is discussed
in section 1.3.3.

So, we want to know what a sequence of such Tn could be like. Moreover, for given
θ we want to find a formula T (n, θ) such that there is pn < T (n, θ) with required
property.

And then, we are interested in the lower bounds of the sequence of gaps ni+1 − ni.
We want to find a function L (x) such that there is an infinite set S of primes with

ni+1 − ni > L (ni) .

That means we want to know the behavior of the sequence of gaps ni+1 − ni that
makes it possible for there to exist an infinite subset S of prime numbers that
satisfies Wintner’s question.

1.3.1 Lower bounds for pn

Let S = {p1 < p2 < . . .} be an infinite set of prime numbers such that for all
ni ∈ N (S), ni+1 − ni >

√
ni hold. Then it is not difficult to find a lower bound

for pn in S. Since the pn’s are primes we know that n log n < pn for n sufficiently
large by the prime number theorem. Now we have a non-trivial lower bound for
pn ∈ S.

Proposition 1.1. Let S = {p1 < p2 < . . .} be an infinite set of prime numbers such
that ni+1 − ni >

√
ni hold for all ni ∈ N (S). Then there is a positive number C

such that pn ≥ Cn2 for sufficiently large n.

7



Proof. Consider a set X (a) = {x0 < x1 < . . . < xi < . . .} that is generated by the
following recursive relation :

x0 = a, xi = xi−1 +
√

xi−1

for some a ≥ 4 and i = 1, 2, . . . .

For any set W of real numbers and a real number u we denote

f (W, u) =

∣∣∣∣ {w ∈ W
∣∣ w ≤ u }

∣∣∣∣.
First, it is clear that

log x < f (X (a), x) < x

for sufficiently large x. Since limi→∞ (xi − xi−1) = ∞, we have f (X (a), x) < x.
Since

√
xi < xi for all xi ∈ X (a) we see that xi+1 < 2xi. Hence, for such given

x > 0 there are at least k members in X (a) where k is the largest number satisfying
2k a < x. Therefore log x < f (X (a), x) for sufficiently large x.

Now we are interested in a non-trivial upper bound for f(X (a), x).

The idea for this proof as following:

Step 1 For any set S of prime numbers with required property ni+1 − ni >
√

ni

for all ni ∈ N (S), we observe

f(N (S), x) < f (X (a), x) (1.8)

for sufficiently large x. For any set S of prime numbers, we know S ( N (S) and

f(S, x) < f(N (S), x). (1.9)

Step 2 For given positive real number x, we will claim that that

f (X (4), x) ≤ 3
√

x. (1.10)

Step 3 On the other hand, we suppose a set S of prime numbers such that
f(S, x) ≥ 3

√
x ≥ f (X (4), x) for some x > 0. Then by definition of X (4) there are

8



many such integers ni ∈ N (S) composed of these primes in S that the integers will
be close and cannot satisfy the relation ni+1 − ni >

√
ni.

Therefore, if we produce a non-trivial upper bound for f (X (4), x) then we get a non-
trivial lower bound for pn ∈ S for any set S of prime numbers with ni+1−ni >

√
ni

for all ni ∈ N (S).

This is a brief idea of this proposition.

Before proving (1.10), we observe the following relation.

For any non-negative integer i,

xi ≥


(

i
3

+ 2
)2

if i ≡ 0 (mod 3)(
i−1
3

+ 2
)2

+
(

i−1
3

+ 2
)

if i ≡ 1 (mod 3)(
i−2
3

+ 2
)2

+ 2
(

i−2
3

+ 2
)

if i ≡ 2 (mod 3)

(1.11)

We shall use induction on i. When i = 0 then i = 0 ≡ 0 (mod 3), and as we

assumed that x0 = a = 4 so we have x0 =
(

0
3

+ 2
)2

as required. Now we suppose
that for all i ≤ k − 1 (1.11) hold. When i = k we consider 3 cases.

(Case 1) k ≡ 0 (mod 3) and k > 0 : Then k−1 ≡ 2 (mod 3) and by the inductive
hypothesis xk−3 satisfies the inequality (1.11) so that

xk−1 ≥
(

k − 3

3
+ 2

)2

+ 2

(
k − 3

3
+ 2

)
.

Obviously for positive integer k, xk−1 ≥ 1 and so
√

xk−1 ≥ 1. Therefore, we have

xk = xk−1 +
√

xk−1 ≥
(

k − 3

3
+ 2

)2

+ 2

(
k − 3

3
+ 2

)
+ 1.

And we know that (a + 1)2 = a2 + 2a + 1, so

xk ≥
((

k − 3

3
+ 2

)
+ 1

)2

. (1.12)

And since k ≡ 0 (mod 3), (1.12) is equivalent to

xk ≥
(

k

3
+ 2

)2

as required.

9



(Case 2) k ≡ 1 (mod 3) : Then k − 1 ≡ 0 (mod 3) so we have by inductive

hypothesis xk−1 ≥
(

k−1
3

+ 2
)2

. Therefore,

xk = xk−1 +
√

xk−1 ≥
(

k − 1

3
+ 2

)2

+

(
k − 1

3
+ 2

)
as required.

(Case 3) k ≡ 2 (mod 3) : Then k − 1 ≡ 1 (mod 3) so we have by inductive

hypothesis xk−1 ≥
(

k−1
3

+ 2
)2

+
(

k−1
3

+ 2
)
. We note that

√
xk−1 ≥

(
k−1
3

+ 2
)
.

Therefore,

xk = xk−1 +
√

xk−1 ≥
(

k − 1

3
+ 2

)2

+ 2

(
k − 1

3
+ 2

)
as required.

Therefore, for all 3 cases, we have (1.11).

Now we can show (1.10) that, for given x > 0

f (X (4), x) ≤ 3
√

x.

By (1.11), if k is the greatest number satisfying(
k

3

)2

≤ x

then f (X (4), x) ≤ k and k ≤ 3
√

x.

Suppose that there is a set S of prime numbers such that f(S, x) ≥ 3
√

x and
ni+1 − ni >

√
ni for all ni ∈ N (S). Then we get

f(X (4), x) ≤ 3
√

x ≤ f(S, x) ≤ f(N (S), x).

This contradict to the relations (1.8) and (1.9).

Hence, for all S with required property f(S, x) < 3
√

x. Therefore, for any set S of
prime numbers with required property, we have pn > Cn2. �

We have a non-trivial lower bound Cn2 for pn in S where S satisfies Wintner’s
condition with ni+1 − ni >

√
ni for ni ∈ N (S).
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1.3.2 Upper bounds for pn

Recall from the Remark on page 7, it is possible to find a sequence Tn such that
Tn

2
≤ pn ≤ Tn and pn have the desired property. In this section, we discuss this

sequence Tn in more detail.

Theorem A There are effectively computable positive numbers c1 and c2 such
that for any real number θ with 0 < θ < 1 there exists an infinite set S of prime
numbers p1 < p2 < . . . for which the integers composed of the primes satisfy (1.7)
with 1

2
T (n) ≤ pn ≤ T (n), where

T (n) = exp

(
c1n

2

θ
log
(c2n

θ

))
.

In Theorem A, we give an effectively computable upper number T (n) such that

there is a prime pn in the interval [T (n)
2

, T (n)] for each n = 1, 2, . . . and when the
ni’s are composed of the primes in the sequence p1 < p2 < . . . then the inequality
(1.7) holds. In the proof of our Main Theorem A we apply Waldschmidt’s estimate
for linear forms in the logarithms of algebraic numbers and use nested recursive
induction to construct T (n) as required.

Our objective for Theorem A is the following :

For given 0 < θ < 1, we want to construct a set S = {p1 < p2 < . . .} of prime
numbers such that

1. ni+1 − ni > n1−θ
i for all ni ∈ N (S).

2. For given initial t primes p1 < . . . < pt ∈ S we can find the next prime pt+1

such that pt+1 ≤ T (t + 1).

3. The sequence T (t) is effectively computable in terms of t and grows slowly.

1.3.3 The Sequence of Gaps ni+1 − ni

Now we go back to Tijdeman’s answer to Wintner’s conjecture with an additive
point of view. We ask what make it possible for there to exist a set of primes with
the required property.

11



We investigate the inequality

ni+1 − ni >
ni

F (ni)

where the ni’s are composed of a given set of primes and F (x) < xθ for any θ with
0 < θ < 1. By Theorem 1.7, we can prove the following Proposition.

Proposition 1.2. Let F (x) = (log x)C for any real number C. Then, we cannot
find infinitely many primes S = {p1 < p2 < . . .} such that if ni ∈ N (S) then

ni+1 − ni >
ni

F (ni)
.

Proof. Suppose that there is a real number C and there is an infinite set S of
primes such that

ni+1 − ni >
ni

(log ni)C
(1.13)

for all ni in N (S). By Theorem 1.3, such a C is a positive number.

For the set S = {p1 < p2 < . . .}, we consider a subset of S with initial r primes
Sr = {p1 < . . . < pr} with r > 2 (C + 1). By Theorem 1.7, there are infinitely
many y, x in N (Sr) that satisfy (1.1). Moreover we can choose such x and y with
x > y > exp (rrpr

r). We see that these x, y are in N (S) also. So there is a positive
integer i such that ni = y and ni ∈ N (S). Since, S satisfies Wintner’s condition
with respect to F (a) = (log a)C , and Sr is a subset of S we have

x− y ≥ ni+1 − y >
y

(log y)C
.

Since, x and y satisfy (1.1) we have

y

(log y)C
< x− y <

(r log pr)
r · y

(log y)r−1 .

By our choices of r and x, y we see the above inequality gives us a contradiction as
follows

1 <
(r log pr)

r

(log y)r−1−C
<

rrpr
r

(log y)C+1
<

rrpr
r

(rrpr
r)

C+1
.

�
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So, we want to figure out what conditions on the gaps ni+1 − ni with

lim
i→∞

(ni+1 − ni) = ∞

allow us the possibility of finding an infinite set of primes satisfying Wintner’s
condition.

So, our objective is as follows:

To find a function F (x) which grows as slowly as possible and yet for which there
is an infinite set S of prime numbers such that ni+1 − ni > ni

F (ni)
for ni ∈ N (S).

In Chapter 4, we construct an infinite set S of primes for Wintner’s question with
respect to a family of functions which grow quite slowly. In particular, we prove
the following result.

Theorem B Let θ be a real number with 0 < θ < 1 and k be a positive integer.
For a ≥ expk (1) we define

F (a) = expk
(
(logk a)θ

)
.

There is an infinite set S of primes such that if ni, ni+1 ∈ N (S) then

ni+1 − ni >
ni

F (ni)

where expk denotes the k-th iterated exponentiation and logk denotes the k-th
iterated logarithm.

In order to prove Theorem A and B we shall build on the argument given by
Tijdeman [38] in his solution of Wintner’s problem.

1.3.4 Computation

After finding theoretical upper bounds for pn in Wintner’s question, we want to
find the initial few primes in the question practically. We shall review some related
problems.

In 1974, Tijdeman and Meijer [40] found a relation between the convergents of
the continued fraction of ξ = log p1

log p2
and the exponents in the sequence ni+1

ni
with

ni, ni+1 ∈ N ({p1, p2}). They considered one-sided convergents to ξ = log p1

log p2
as

defined below :

13



Let ξ be an irrational number with the continued fraction expansion [a0, a1, . . .]. The
n-th convergent [a0, . . . , an] to ξ is denoted by An

Bn
. We recall that for n = 0, 1, . . .

An+1 = an+1An + An−1

Bn+1 = an+1Bn + Bn−1

where we define A−1 = 1, A0 = a0, B−1 = 0 and B0 = 1.

Definition. A rational number A
B

is said to be one-sided convergent to ξ =
[a0, a1, . . .] if there is a non-negative integer n such that for the n-th convergent
An

Bn
to ξ and for some j with 1 ≤ j ≤ an+1 we have

A

B
=

jAn + An−1

jBn + Bn−1

.

They showed that

Theorem 1.10 (Tijdeman, Meijer [40]). Let α, β be real numbers with α > β > 1
and such that ξ = log β

log α
is irrational. Let n1 < n2 < . . . be the sequence composed

of α and β i.e., for all i we can express ni = αaiβbi for some non-negative integers
ai, bi. Let

W =

{
ni+1

ni

∣∣∣∣ i = 1, 2, . . . .

}
.

Then W is the set of all products α−kβl and αkβ−l which are greater than 1 and
such that k

`
is a one-sided convergent to ξ.

We note that if β and α are different primes then ξ = log β
log α

is irrational.

In 1982, Stroeker and Tijdeman [37] found all the positive integer solutions a, b of
the inequality ∣∣pa − qb

∣∣ < p
a
2 (1.14)

for all primes p, q with p < q < 20.

They first proved that the linear form

Λ = a log p− b log q

has a value close to zero when a, b is a solution of (1.14). And then they split the
exponents a in (1.14) into three cases : a is “very large”, a is “medium large” and
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a is “small”. These cases correspond approximately to a ≥ 243, 10 < a < 243 and
a ≤ 10.

When they applied the estimate of linear forms in logarithms of p, q, they got a
“very large” bound of M1 = max{a, b} such that if a ≥ M1 then there is no solution
of (1.14). This is because Baker’s theory implies that the linear forms cannot be
close to zero so that there is no solution with “very large” a. In order to solve
(1.14), in the “medium large” of a, they can avoid checking all the a in the range.
For this they investigated the size of the linear forms a log p− b log q. If∣∣∣∣ log p

log q
− b

a

∣∣∣∣ <
1

2a2

then b
a

is a convergent of the continued fraction of log p
log q

. Hence it is suffice to check
only the a’s which are denominators of the convergents of the continued fraction of
log p
log q

. Finally, for “small” values of a they calculate directly. They found that all

solutions of (1.14) have “small” a.

In the 1980’s, de Weger gave computational methods to reduce the upper bounds
for the solution of Diophantine equations. He studied a linear form Λ that is close
to 0 together with a large but explicitly known upper bound for the absolute values
of the coefficients of Λ. And then he showed that there is no solution between the
known bound and the reduced bound he computed. In 1987, de Weger [45] gave a
table with numerical data for the following inequalities :∣∣pa − qb

∣∣ <
(
min{pa, qb}

)δ
(1.15)

for p, q primes such that p < q < 200 and a, b positive integers with a ≥ 2, b ≥ 2
and either δ = 1

2
or δ = 0.9, min{pa, qb} > 1015.

In Chapter 5, we shall investigate the inequality (1.15) where δ = 1
2

by compu-
tational methods because much sharper estimates have been established on linear
forms in logarithms. In addition supercomputers and computer technology have
improved greatly since the 1980’s, and there are computer packages for perform-
ing various number-theoretic calculations. We shall apply the estimates for linear
forms in 2 logarithms by Laurent, Mignotte and Nesterenko [22], follow the ideas
that have been applied in computation by Stroeker and Tijdeman [37] and de Weger
[45], and then use MAPLE for number-theoretic calculation, specifically continued
fraction expansion for a given real number to a certain precision. In this way we
prove the follow result.

Theorem C There are 2086 pairs of prime numbers (p1, p2) with 2 ≤ p1 < p2 <

15



e8 such that

x− y <
√

y

where x, y ∈ N ({p1, p2}) with y < x, gcd (x, y) = 1. And they are listed in the
Table I (page 71).

It follows from the proof of Theorem A that if p1 and p2 are prime numbers with
p1 < p2 and for which ni+1 − ni ≥

√
ni where ni is the i-th term in N ({p1, p2})

then we may extend {p1, p2} to an infinite set S = {p1, p2, . . .} of prime numbers
for which ni+1 − ni ≥

√
ni but with now ni the i-th term in N (S).
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Chapter 2

Preliminaries

2.1 Definitions

We define some terminology we will use in our thesis

Definition Let α be an algebraic number of degree d over Q with conjugates

σ1α, . . . , σdα and minimal polynomial

c0X
d + · · ·+ cd = c0 ·

d∏
i=1

(X − σiα)

where ci’s are integers with c0 > 0.

1. Height (or classical height) H (α) is defined by

H (α) = max {c0, |c1|, . . . , |cd|} .

2. Weil’s absolute logarithmic height h (α) of α is defined by

h (α) =
1

d
·

(
log c0 +

d∑
i=0

log max{1, |σiα|}

)
.
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2.2 Linear Forms in Logarithms

2.2.1 Baker’s Theorems

In the 1960’s, Baker made a major breakthrough in transcendental number theory
in his celebrated series of papers [1, 2, 3, 4].

Theorem 2.1 (Baker). If α1, α2, . . . , αn are non-zero algebraic numbers such that

log α1, . . . , log αn are linearly independent over the field of rational numbers

then 1, log α1, . . . , log αn are linearly independent over the field of all algebraic num-
bers where log denotes the principal branch of the logarithm functions.

Theorem 2.2 (Baker). If α1, α2, . . . , αn, β1, β2, . . . , βn are non-zero algebraic num-
bers and

Λ = β1 log α1 + · · ·+ βn log αn,

where log denotes the principal branch of the logarithm functions then Λ = 0 or Λ
is transcendental.

2.2.2 Trivial Estimate

In the special case that all αi and βi are rational integers we have the following
trivial estimates.

Proposition 2.1. Let a1, . . . , an and b1, . . . , bn are rational integers with the ai

greater than 1. We assume that

ab1
1 · · · abn

n 6= 1.

Then ∣∣ab1
1 · · · abn

n − 1
∣∣ ≥ exp (−nB log A)

where B = max{|b1|, . . . , |bn|} and A = max{a1, . . . , an}.

Proof. We know that the absolute value of a non-zero rational number is at least
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as large as the inverse of a denominator so∣∣ab1
1 · · · abn

n − 1
∣∣ ≥

∏
bi<0

abi
i

≥ exp

(
−

n∑
i=1

|bi| log ai

)
≥ exp (−nB log A) . (2.1)

�

We shall call (2.1) Liouville’s inequality. The dependence in n and A in Liouville’s
inequality is sharp, but the main interest for applications is with the dependence
in B.

2.2.3 Estimates on Linear Forms in Logarithms

Baker gives effective lower bounds for |Λ| in the case Λ 6= 0.

Baker’s work affected a wide range of research, directed both towards improving
his estimates and to applying them to specific arithmetic problems. Many prob-
lems of Diophantine analysis reduce to lower estimates for the absolute values of
the Λ. The bounds are given as functions of the degrees and the heights of these
numbers α1, α2, . . . , αn, β1, β2, . . . , βn. Baker’s general effective estimates led to
significant applications in number theory and opened a new era in the theory of
Diophantine equations. In the 1970’s and 1980’s Baker, Fel’dman, Stark, Wald-
schmidt, Wüstholz and many others gave quantitative estimates for the bounds.
The bounds have been improved in terms of heights and other parameters over the
years.

Let α1, α2, . . . , αn be non-zero algebraic numbers with αi 6= 1 for i = 1, . . . , n. Let
Q (α1, . . . , αn) have degree at most d over Q. Let the heights of αi be H(αi) ≤ Ai

where Ai ≥ 4 for i = 1, . . . n. Put Ω = (log A1) · · · (log An) , Ω′ = (log A1) · · · (log An−1) .
Let β1, β2, . . . , βn be algebraic numbers with the classical heights H(βi) ≤ B where
B ≥ 4 for i = 1, . . . n. Let

Λ = β1 log α1 + · · ·+ βn log αn,

where log denotes the principal branch of the logarithm functions.

In 1977, Baker proved that
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Theorem 2.3 (Baker). If Λ 6= 0 then

|Λ| > (BΩ)−CΩ log Ω′

where C = (16nd)200n. In the special case that if β1, . . . βn are rational integers then
the bracketed factor Ω has been eliminated to yield

|Λ| > B−CΩ log Ω′
.

This bound has been improved in terms of the constants and the factor Ω · log Ω′.

In 1993, Baker and Wüstholtz [11] proved the following Theorem.

Let α1, α2, . . . , αn be non-zero algebraic numbers with αi 6= 1 for i = 1, . . . , n and
Q (α1, . . . , αn) have degree at most d over Q. Let b1, . . . , bn be rational integers,

not all 0 with B = max{|b1|, . . . , |bn|, e
1
d} and Ai = max{H(αi), e} for i = 1, . . . , n.

Let Ω = log A1 · · · log An.

Theorem 2.4 (Baker-Wüstholtz). If Λ 6= 0 then

|Λ| ≥ exp (−C (n, d) Ω log B)

where C(n, d) = (16nd)2n+4.

We see that this estimation is fully explicit with respect to all parameters. More-
over, we note that the factor Ω′ = log A1 · · · log An−1 in Theorem 2.3 has been
removed.

It is conjectured that the product of the logarithms in Ω = log A1 · · · log An may
be replaced by the sum of logarithms.

Conjecture (Lang-Waldschmidt). Let a1, . . . , an be positive rational numbers
and b1, . . . , bn be integers. For j = 1, . . . , n let Bj = max {H(bj), 1}, Aj = H(aj),
B = max {B1, . . . , Bn}, A = max {A1, . . . , An} and Λ = b1 log a1 + · · ·+ bn log an.

Let ε > 0. There exists C (ε) > 0 depending only on ε such that if |Λ| 6= 0 then

|Λ| >
C (ε)n B

(B1 · · ·Bn · A2
1 · · ·A2

n)
1+ε .
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Remark ([20, p.213]). This conjecture is motivated from the uniform distribu-
tion. Suppose that B1, . . . , Bn, A1, . . . , An are sufficiently large. Let S be the set of
numbers

b1 log a1 + · · ·+ bn log an

with H(bj) ≤ Bj and H(aj) ≤ Aj for j = 1, . . . , n. Since bj are integers and aj are
rational numbers for j = 1, . . . , n, S has cardinality at most

(2B1 + 1) · · · (2Bn + 1) · (2A1 + 1)2 · · · (2An + 1)2.

This set S is contained in the interval

[−nB log A, nB log A].

If this set is uniformly distributed in this interval, then the distance from 0 to the
closest non-zero element of S in absolute vale would be

2nB log A

(2B1 + 1) · · · (2Bn + 1) · (2A1 + 1)2 · · · (2An + 1)2
.

This motivates their conjecture.

For Diophantine equations the first application of Baker’s estimates were given
by Baker himself and by Baker and Davenport [6]. In the last forty years very
extensive Diophantine investigations were made by using Baker’s theory on linear
forms in logarithms. For various general classes of equations, theorems regarding
upper bounds for the solutions of the equation have been established. These provide
explicit upper bounds on the solutions.

In many applications only two or three logarithms occur. In these cases bounds
with better constants are available. In 1995, Laurent, Mignotte, and Nesterenko
[22] gave the following estimates for linear forms in two logarithms of algebraic
numbers.

Let α1, α2 be non-zero algebraic numbers and suppose they are multiplicatively
independent. Let Q (α1, α2) have degree at most D over Q. Let Ai > 1 be a real
number satisfying

log Ai ≥ max

{
h (αi) ,

| log αi|
D

,
1

D

}
,

where log denotes the principal branch of logarithm. Further, let b1 and b2 be two
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positive integers. Define

b′ =
b1

D log A2

+
b2

D log A1

and

log B = max

{
log b′,

21

D
,
1

2

}
.

Lemma 2.1 (Laurent, Mignotte, Nesterenko [22]). Let Λ = b2 log α2 − b1 log α1.
Then

|Λ| ≥ exp
(
−30.9D4 (log B)2 log A1 log A2

)
.

In the proof of this Lemma, they applied Laurent’s interpolation determinants and
a refined zero estimate due to Nesterenko. And the constant 30.9 is much smaller
than 270 from the previous estimates due to Mignotte-Waldschmidt [27].

2.2.4 Sharpening Estimates

Baker refined his estimates from [1, 2, 3] and [4] in a new series of papers [7, 8, 9]
generalized and deepened them. His estimate is best possible for both fixed A
and variable B and for fixed B and variable A. He later generalized this result,
obtaining the following theorem.

Theorem 2.5 (Baker [7]). Let a1, a2, . . . , an+1 be non-zero algebraic numbers with
degrees at most d. Suppose that the heights of a1, a2, . . . , an and an+1 are at most An

and A ≥ 2 respectively. There is an effectively computable number C > 0 depending
on n, d and An such that

0 < |b1 log a1 + · · ·+ bn+1 log an+1| < C− log A log B

have no solution in rational integers b1, b2, . . . , bn+1 with absolute values at most
B ≥ 2.

And he established the following generalization.

Theorem 2.6 (Baker [8]). Let a1, a2, . . . , an+1 be non-zero algebraic numbers with
degrees at most d. Suppose that the heights of a1, a2, . . . , an and an+1 are at most
An and A ≥ 2 respectively. There is an effectively computable number C, depending
only on n, d and An such that, for any θ with 0 < θ < 1

2
, the inequalities
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0 < |b1 log a1 + · · ·+ bn+1 log an+1| <

(
θ

Bn+1

)C log A

exp (−θBn) (2.2)

have no solution in rational integers b1, . . . , bn and bn+1 (6= 0) with absolute values
at most Bn and Bn+1, respectively.

Note that, on taking θ = 1
Bn

and assuming that Bn ≤ Bn+1 we obtain the result of
Theorem 2.5.

His generalized sharpening of the bounds for linear forms in logarithms (2.2) has a
particular significance in connection with applications. Specifically, Tijdeman [38]
applied Theorem 2.6 in order to prove Wintner’s conjecture.

Baker’s works generalized Gelfond’s method. In [42], Waldschmidt gave estimates
for linear forms in logarithms based on Schneider’s method. He also gives a lower
bound for linear forms in logarithms of algebraic numbers in integer coefficients with
an explicit constant. Finally, Waldschmidt [43] stated, using an extended method of
Schneider, a completely explicit lower bound when β1, . . . , βn are rational integers.

In our proofs of Theorem A and Theorem B, we applied a Theorem of Waldschmidt,
which is the subject of the next section.

2.2.5 Waldschmidt’s Theorem

For any rational number x we may write x = b
a

with a and b co-prime integers. We
see the height of x to be the maximum of |a| and |b|.

Let a1, . . . , an and an+1 be rational numbers with heights at most A1, . . . , An and
An+1 respectively. We shall suppose that Ai ≥ 4 for i = 1, . . . , n + 1. Next let
b1, . . . , bn and bn+1 be rational integers. Suppose that B and Bn+1 are positive real
numbers with B ≥ |bj| for j = 1, . . . , n and Bn+1 ≥ max (3, |bn+1|). Put

Λ = b1 log a1 + · · ·+ bn log an + bn+1 log an+1,

Ωn = log A1 log A2 · · · log An,

where log denotes the principal branch of the logarithm functions.
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Lemma 2.2 (Waldschmidt [43]). There exists an effectively computable positive
number C such that if Λ 6= 0 then

|Λ| > exp

(
−C (n + 1)4(n+1) Ωn log An+1 log

(
Bn+1 +

B

log An+1

))
.

Remark We shall include in the thesis the proof of Lemma 2.2 given by Stewart
and Tijdeman for completeness. The proof may be found in [34, Lemma 1].

Proof of Lemma 2.2 This follows from the estimates by Waldschmidt [43,
Corollaire 10.1]. He proved this result under the assumption that bn+1 6= 0. If
bn+1 = 0 then we apply the same theorem with bn+1 replaced by bj where j is
the largest integer for which bj 6= 0. Notice that j ≥ 1 since Λ 6= 0. Since

log An+1 log
(
3 + B

log An+1

)
is larger than 1

2
log B, the result follows. �

Remark In Lemmas 2.1 and 2.2, the logarithms are supposed to have their prin-
cipal values, but this is not a restriction, since we shall be concerned exclusively
with positive real numbers.

2.3 Explicit Determination

Baker [5] showed in 1968 how his estimates for linear forms of logarithms of algebraic
numbers can be used to give effective upper bounds for the solutions of the Thue
equation. Then Baker and Davenport [6] introduced a simple but powerful lemma,
the so-called Davenport’s Lemma, that is related to Diophantine approximation.
Applying this lemma they found much smaller upper bounds for the solutions. They
then combined the reduction algorithms and computational techniques to find all
the solutions of certain types of equations practically.

Györy [17] reviewed some classical strategy for solving some classes of Diophantine
equations or inequalities while applying Baker’s theory. The main steps are as
follows.

1. Transform the equation into a purely exponential equation i.e., a Diophan-
tine equation where the unknowns are all in the exponents. Each type of
equation needs a particular kind of transformation. It uses some arguments
from algebraic number theory, theory of recurrence sequences, and geometry
of numbers. This transformation makes it possible to apply Baker’s theory.
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2. Apply Baker’s theory to derive an explicit upper bound for the solutions. In
general, the upper bounds are so large that they cannot be used to determine
all solutions in practice.

3. Reduce the explicit upper bound to a much smaller bound. In this step we
apply theory from Diophantine approximations.

4. Determine all the solutions under the smaller bound from above step, using
some search techniques with computation and specific properties of the initial
equation.

In Chapter 5, we shall apply the above strategy and procedure used by Stroeker,
Tijdeman [37] and de Weger [45] for finding the first two primes p1, p2 so that n0 <
n1 < . . . is the sequence of integers composed of the two primes then ni+1−ni >

√
ni

for all i = 0, 1, . . . .
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Chapter 3

First Main Theorem

In this chapter, we shall show that for a given real number θ with 0 < θ < 1,
we can find an infinite set S = S (θ) = {p1, p2, . . .} of primes with p1 < p2 < . . .
such that n-th term pn in S does not grow too quickly and if ni ∈ N (S) then
ni+1 − ni > ni

1−θ for i = 0, 1, 2, . . . . .

In particular, for a given 0 < θ < 1, we shall find sequence T (n) = T (n, θ) such
that

1. T (n) is effectively computable and grows slowly.

2. We can find the n-th prime pn in S with 1
2
T (n) ≤ pn ≤ T (n).

3. If n0 < n1 < . . . is the sequence of all integers composed of the primes in S
then

ni+1 − ni > n1−θ
i (3.1)

for i = 0, 1, 2, . . . ..

3.1 Lemma

We give an auxiliary lemma due to Pethö and de Weger [28]. This one enables us
to find an upper bound in closed form for some real number x > 1 that is bounded
by a polynomial in log x.
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Lemma 3.1 (Pethö, de Weger [28]). Let u ≥ 0, v > 0, h ≥ 1 and let x be a real
number with x > 1 satisfying

x ≤ u + v (log x)h .

If v >
(

e2

h

)h

then

x < 2h
(
u

1
h + v

1
h log

(
hhv
))h

and if v ≤
(

e2

h

)h

then

x ≤ 2h
(
u

1
h + 2e2

)h

.

Remark We shall include in this thesis the proof of this Lemma for completeness.
The proof may be found in [45, Lemma 2.1]. We can see also [28, Lemma 2.2].

Proof of Lemma 3.1 Because x is bounded above, we may assume that x is the
largest solution of

x = u + v (log x)h .

Since, x
1
h is concave when h ≥ 1 if z1 and z2 are positive real numbers then

(z1 + z2)
1
h ≤ z

1
h
1 + z

1
h
2 ,

hence we have
x

1
h ≤ u

1
h + c · log

(
x

1
h

)
where c = hv

1
h . Define y by

x
1
h = (1 + y) c log c.

If c ≥ e2 then from
log c < log (c log c)

it follows that

ch (log c)h < v
(
log
(
ch (log c)h

))h

,

which implies
x > ch (log c)h .
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Hence y > 0. Now, we see that

(1 + y) c log c = x
1
h ≤ u

1
h + c log (1 + y) + c log c + c log log c

< u
1
h + cy + c log c + c log log c.

Therefore,
yc (log c− 1) < u

1
h + c log log c.

Since, c ≥ e2

x
1
h = c log c + yc log c

< c log c +
log c

log c− 1

(
u

1
h + c log log c

)
< 2

(
u

1
h + c log c

)
as required. If c ≤ e2 then note that x ≤ u +

(
e2

h

)h

(log x)h . So, we may assume

c = e2 in this case. The result follows. �

3.2 Terminology

Definition 3.1. Let F (x) be a function with lim
x→∞

F (x) = ∞. A set S of prime

numbers is said to satisfy Wintner’s condition with respect to F if

(1) S is infinite.

(2) For any ni, ni+1 ∈ N (S), ni+1 − ni > F (ni) .

In this thesis, we reserve p for a prime number, S as a subset of prime numbers
with ordering

S = {p1 < p2 < . . .},

and N (S) as the set of all positive integers composed of primes in S with ordering

N (S) = {n0 < n1 < n2 < . . .}.
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3.3 First Main Theorem

Theorem 3.1. There are effectively computable positive numbers c1 and c2 such
that for any real number θ with 0 < θ < 1 there exists an infinite set S of prime
numbers p1 < p2 < . . . which satisfies Wintner’s question with respect to xθ and all
pn in S we have 1

2
T (n) ≤ pn ≤ T (n) where

T (n) = exp

(
c1n

2

θ
log
(c2n

θ

))
.

Proof. Given 0 < θ < 1. Let c1 = 27 and c2 = 2C where C is the effectively
computable positive number in Lemma 2.2. Put

T (n) = exp

(
c1n

2

θ
log
(c2n

θ

))
(3.2)

for n = 1, 2, . . . . Note that for the given 0 < θ < 1

T (1) < T (2) < . . .

and

2T (n) < T (n + 1) . (3.3)

We will use induction on n to prove our result.

When n = 1. We can take a prime p1 with 1
2
T (1) ≤ p1 ≤ T (1) since Rosser and

Schoenfeld [31] proved that for an integer T with T ≥ 41, the number of primes in
the interval [T

2
, T ] is greater than 3T

10 log T
and we see that T (1) ≥ 41. Let S1 = {p1}.

We know that the ni ∈ N (S1) can be expressed by ni = pi for i = 0, 1, 2, . . . so
that

ni+1 − ni = p1
i+1 − p1

i = p1
i (p1 − 1) > pi

1 ≥
(
pi

1

)1−θ

for i = 0, 1, 2, . . . . Therefore, (3.1) holds for powers of p1.

Now suppose that we have Sn = {p1 < p2 < . . . < pn} satisfying 1
2
T (j) ≤ pj ≤ T (j)

for j = 1, 2, . . . , n and if n0 < n1 < . . . < ni < . . . is the sequence of all positive
integers composed of the primes in Sn then ni+1 − ni > n1−θ

i for i = 0, 1, 2, . . . .

We claim that we can find the next prime pn+1 > pn satisfying 1
2
T (n + 1) ≤ pn+1 ≤

T (n + 1) such that if n0 < . . . < ni < . . . is the sequence of all positive integers
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composed of the primes in Sn ∪ {pn+1} then ni+1 − ni > n1−θ
i for i = 0, 1, 2, . . . .

Put T = T (n+1) for brevity. Consider any prime p with p ∈ [T, T
2
]. Then by (3.3),

pn < p. Suppose that there are y, x ∈ N (Sn ∪ {p}) such that

0 < x− y < y1−θ. (3.4)

Suppose y = 1 and x ≥ p1 then x− y ≥ p1− 1 > 1 holds for any p1 > 2. Therefore,
y > 1. In particular we note that since y is less than x and 0 < θ < 1, we get

y < x < y + y1−θ < 2y. (3.5)

Let y = p1
a1p2

a2 · · · pn
anpa and x = p1

b1p2
b2 · · · pn

bnpb be the prime factorizations
of y and x, respectively. Then we can see that a 6= b, since if a = b then we can
consider y′ = y

pa , x′ = x
pb = x

pa and by (3.4) we get

0 < x− y = pa (x′ − y′) < pa (y′)
1−θ

.

But this contradicts our inductive hypothesis since y′, x′ ∈ N (Sn), hence

x′ − y′ > y′(1−θ).

Therefore, a 6= b.

Put Λ = log x
y

where log denotes the principal branch of logarithm. Then,

Λ =
n∑

j=1

(bj − aj) log pj + (b− a) log p > 0.

Further, by (3.4)

0 < log
x

y
<

x

y
− 1 < y−θ. (3.6)

Furthermore, since aj, bj ≥ 0 and 3 ≤ pj for j = 1, 2, . . . , n so by (3.5) we have

|bj − aj| ≤ max
j=1,...,n

(bj, aj) ≤ max (log x, log y) < log 2y (3.7)

and since a, b ≥ 0, we have

|b− a| ≤ max (b, a) ≤ max

(
log x

log p
,
log y

log p

)
<

log 2y

log p
. (3.8)
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Now we suppose that y ≥ p8. Then log 2y
log p

> 3. Applying Lemma 2.2 with Ai = T (i)

for i = 1, . . . , n, An+1 = p, B = log 2y and Bn+1 = log 2y
log p

to our Λ 6= 0, we see that
there exists an effectively computable constant C such that

Λ > exp

(
−C (n + 1)4(n+1) log T (1) · · · log T (n) log p log

(
4
log 2y

log p

))
.

Then by (3.3), (3.5) and (3.6),

yθ < exp

(
C (n + 1)4(n+1) (log T (n))n log p log

(
4
log 2y

log p

))
.

Now, we take logarithms of both sides and divide by θ log p to get

log y

log p
<

1

θ
C (n + 1)4(n+1) (log T (n))n log

(
4
log 2y

log p

)
. (3.9)

Let

X =
log y

log p
.

Then since y ≥ p8 we obtain from (3.9) that

X < C1 log (8X) ≤ 2C1 log X (3.10)

where C1 = 1
θ
C (n + 1)4(n+1) (log T (n))n.

We apply Lemma 3.1 with u = 0, v = 2C1, h = 1 and x = X > 8 to (3.10) then

X ≤ 2 (2C1 log (2C1)) .

Therefore, we can have

X <
1

2
U (n) (3.11)

where
U (n) = 16C2

1 .

If y < p8 and so X < 8 then we also have that (3.11) holds.

Further, by (3.7) and (3.8), we see
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aj, bj ≤ U (n) log p (3.12)

for j = 1, 2 . . . , n and

a, b ≤ log 2y

log p
≤ 2X ≤ U (n) . (3.13)

Hence, for each prime p ∈ [T
2
, T ], the number of possible pairs (y, x) for which

0 < x − y < y1−θ with y = p1
a1p2

a2 · · · pn
anpa and x = p1

b1p2
b2 · · · pn

bnpb is at
most the number of possible choices of the exponents a1, . . . , an, a, b1, . . . , bn and b.
Moreover, from (3.12) and (3.13) it is at most

(U (n) log T + 1)2n (U (n) + 1)2 < (U (n) + 1)2n+2 (log T )2n . (3.14)

Now, we assume that these exponents a1, . . . , an, a, b1, . . . , bn, b are fixed. Then
by (3.5)

1 <
x

y
= p1

b1−a1p2
b2−a2 · · · pn

bn−anpb−a < 1 + y−θ.

Put K = p1
a1−b1p2

a2−b2 · · · pn
an−bn . Then,

K < pb−a < K
(
1 + y−θ

)
(3.15)

Since, a 6= b, we have 2 cases.

(Case 1) b > a. Then,

K
1

b−a < p < K
1

b−a

(
1 + y−θ

) 1
b−a

< K
1

b−a

(
1 + y−θ

)
Hence, p is contained in a fixed interval of length

K
1

b−a · y−θ

and by (3.15) and p ∈ [T
2
, T ]
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K
1

b−a

(
y−θ
)

< py−θ ≤ Ty−θ.

(Case 2) b < a. Then, by (3.15)

K
1

b−a

(
1 + y−θ

) 1
b−a < p < K

1
b−a . (3.16)

So, p is contained in an interval of length K
1

b−a

(
1−

(
1 + y−θ

) 1
b−a

)
. Moreover, by

(3.16) we see that K
1

b−a < p
(
1 + y−θ

) 1
a−b . Hence, we have

K
1

b−a

(
1−

(
1 + y−θ

) 1
b−a

)
< p

(
1 + y−θ

) 1
a−b

((
1−

(
1 + y−θ

)) 1
b−a

)
= p

((
1 + y−θ

) 1
a−b − 1

)
. (3.17)

Since b < a we have
(
1 + y−θ

) 1
a−b ≤

(
1 + y−θ

)
and then from (3.17)

p
((

1 + y−θ
) 1

a−b − 1
)

≤ py−θ. (3.18)

Since we take p ∈ [T
2
, T ]

py−θ ≤ Ty−θ. (3.19)

That means by (3.17), (3.18) and (3.19), the length of the interval that contains p
is bounded by

K
1

b−a

(
1−

(
1 + y−θ

) 1
b−a

)
< Ty−θ.

In both cases, the number of primes p with fixed exponents a1, . . . , an, a and
b1, . . . , bn, b, for which y, x ∈ N (Sn ∪ {p}) with y = p1

a1p2
a2 · · · pn

anpa and x =
p1

b1p2
b2 · · · pn

bnpb such that 0 < x− y < y1−θ does not exceed Ty−θ. Since, we have
T
2
≤ p ≤ x < 2y, we see that

Ty−θ ≤ T

(
T

4

)−θ

= 4θT 1−θ < 4T 1−θ. (3.20)

That means by (3.14) and (3.20) the total number of possible primes p ∈ [T
2
, T ] for
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which there exist y, x ∈ N (Sn ∪ {p}) with 0 < x− y < y1−θ, is at most,

4T 1−θ
(
(U (n) + 1)2n+2 (log T )2n) .

We want to exclude these primes in the interval [T
2
, T ]. Now we claim that for

T = T (n + 1) we can find the next prime p for which N (Sn ∪ {p}) satisfying (3.1).
For this it is sufficient to show that the number of primes in [T

2
, T ] is larger than

the number of the excluded primes

4T 1−θ
(
(U (n) + 1)2n+2 (log T )2n) .

Recall that the number of primes in [T
2
, T ] at least 3T

10 log T
. Thus we want to show

that for our T = T (n + 1),

4T 1−θ
(
(U (n) + 1)2n+2 (log T )2n) <

3T

10 log T
.

Since 410
3

< 24, 2T (n) < T (n + 1) and U(n) + 1 ≤ 2U(n), it suffices to show that

24 (2U (n))2n+2 (log T )2n+1 < T θ. (3.21)

In the right hand of (3.21), we see that

T (n + 1)θ =

(
c2 (n + 1)

θ

)c1(n+1)2

= RcRθRn (3.22)

where

Rc = c
c1(n+1)2

2

Rθ =

(
1

θ

)c1(n+1)2

Rn = (n + 1)c1(n+1)2 .

We recall that U(n) = 16C2
1 = 16

(
1
θ
C (n + 1)4(n+1) (log T (n))n

)2

.
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For the left side of (3.21), we note that

log T (n) =
c1n

2

θ
log
(c2n

θ

)
<

c1c2n
3

θ2
. (3.23)

When we put c1 = 27 and c2 = 2C where C is the constant in Lemma 2.2 then by
(3.23),

2U (n) ≤ 25 · 1

θ2
· C2 · (n + 1)8(n+1)

(
c1c2n

3

θ2

)2n

≤ 216n+5 ·
(

1

θ

)4n+2

· C2n+2 · (n + 1)8(n+1)+6n . (3.24)

And we know that

log T (n + 1) =
c1 (n + 1)2

θ
log

(
c2 (n + 1)

θ

)
<

c1c2 (n + 1)3

θ2
. (3.25)

Hence the left side of (3.21) satisfies by (3.23), (3.24) and (3.25),

24 (2U (n))2n+2 (log T )2n+1 < LcLθLn (3.26)

where

Lc = (2C)96(n+1)2

Lθ =

(
1

θ

)8(n+1)2

Ln = (n + 1)32(n+1)2 .

We compare (3.22) and (3.26). Since Lc ≤ Rc, Lθ ≤ Rθ and Ln ≤ Rn, hence the
inequality (3.21) holds. Also, we observe that (3.3) holds. Therefore we can find a

prime p > pn in the interval [T (n+1)
2

, T (n + 1)] with the required property and we
put p = pn+1. �

35



Chapter 4

Second Main Theorem

In this chapter, we will consider Wintner’s question with respect to lower bounds
for the sequence of gaps ni+1 − ni. We shall look for a function L (x) which grows
quickly and yet, for which we can still prove that there is an infinite set of primes
S such that the associated sequence of power products n0 < n1 < n2 < . . . satisfies

ni+1 − ni > L (ni) (4.1)

for i = 0, 1, 2, . . ..

Because we already know Theorem 1.7 and Theorem 1.9, we are interested in L (x)
which for any real number C > 0 and any real number θ with 0 < θ < 1 satisfy

n1−θ
i < L (ni) <

ni

(log ni)
C

(4.2)

for ni sufficiently large.

4.1 Basic Properties

Remark First, we observe some basic properties of N (S) for a given set S of
prime numbers.

1. S1 = S2 if and only if N (S1) = N (S2).

2. S1 ⊆ S2 if and only if N (S1) ⊆ N (S2).
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3. If S1 ⊆ S2 and a ∈ N (S1) ∩ N (S2) then there are non-negative integers i, j
with i ≤ j such that a = ni = mj with ni ∈ N (S1), mj ∈ N (S2). Further
we see that ni+1 − ni ≥ mj+1 −mj.

4.2 Nice Functions

In this section, we define a family of functions and investigate some properties of
the functions.

We use the following notation for iterated logarithms and iterated exponentials.

Notation. For any non-negative integer n, we denote n-iterated exponentiation
by

exp0 (x) = x, exp1 (x) = exp (x) = ex, expn+1 (x) = exp (expn (x)) ,

and n-iterated logarithms by

log0 (x) = x, log1 (x) = log (x) , logn+1 (x) = log (logn (x)) .

We note that for any non-negative integer k and for any real number x, expk(x) is
a well defined positive continuous function. And for x ≥ expk(1), logk(x) is a well
defined non-negative continuous function.

Further expk(logk(x)) = logk(expk(x)) = x as expected.

We shall investigate the derivatives of the above functions. For convenience we
denote for a non-negative integer k,

Ek(x) = expk(x)

for a real number x and
Lk(x) = logk(x)

for a real number with x ≥ expk(1).

The following two propositions are simple applications of the chain rule.

Proposition 4.1. For a given positive integer k we have the following :

For any real number x(
Ek(x)

)′
= Ek(x) · Ek−1(x) · · ·E1(x) , (4.3)
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and for any real number x with x ≥ expk(1) we see that

(Lk(x))′ =
1

L0(x) · L1(x) · · ·Lk−1(x)
. (4.4)

Proof. We first show (4.3), the derivative of the iterated exponential function. We
use induction on k. When k = 1, E1(x) = e(x) so (E1(x))

′
= (e(x))′ = e(x) =

E1(x) as required. Suppose for any k ≤ n− 1 (4.3) hold. For k = n, by definition
of En(x) we see En(x) = exp (En−1(x)) and by property of exponential function
and the inductive hypothesis we have

(En(x))′ =
(
exp

(
En−1(x)

))′
=

(
exp

(
En−1(x)

))
·
(
En−1(x)

)′
= En(x) · En−1(x) · · ·E1(x)

as required.

Now, we show (4.4), the derivative of the iterated logarithm function using induction
on k. When k = 1 and x ≥ exp1(1), L1(x) = log(x) so (L1(x))′ = (log(x))′ =
1
x

= 1
L0(x)

as required. Suppose for any k ≤ n− 1 (4.4) hold. Then for k = n and

x ≥ expn(1), by definition of Ln(x) we see Ln(x) = log (Ln−1(x)) and by property
of logarithm function and the inductive hypothesis we have

(Ln (x))′ = (log (Ln−1 (x)))′

=
(Ln−1 (x))′

Ln−1 (x)

= (Ln−1 (x))′ · 1

Ln−1 (x)

=
1

L0 (x) · L1 (x) · · ·Ln−2 (x)
· 1

Ln−1 (x)

as required.

�

Definition 4.1. Let k be a non-negative integer and θ be a real number such that

0 < θ < 1. Let a be a real with a ≥ expk (1). Define

Fk,θ (a) = expk
(
(logk (a))θ

)
.
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For convenience, we define Fk,θ(1) = 1.

Remark

1. If k = 0 then for a ≥ exp0(1) = 1 we have Fk,θ(a) = aθ for any real θ with
0 < θ < 1.

2. If θ = 0 then Fk,θ(a) = expk(1) = C for any non-negative integer k and for a
with a ≥ expk(1).

3. For given non-negative integer k and a real number θ with 0 < θ < 1 we
see that Fk,θ(x) is an increasing function on x ≥ expk(1) since Fk,θ(x) is a
composition function of the increasing functions xθ, logk x and expk(x) on
x ≥ expk(1).

Note. We will consider L (x) in (4.1) and (4.2) as L (x) = x
Fk,θ(x)

for proper ranges

of k and θ.

Now we discuss Wintner’s question regarding the function Fk,θ (x).

Proposition 4.2. Let k be a non-negative integer. If θ = 0 then we cannot find an
infinite set S of primes satisfying

ni+1 − ni >
ni

Fk,θ (ni)

for ni ∈ N (S).

Proof. When θ = 0 for any real number x and for any non-negative integer k, we
have Fk,θ(x) = expk(1). Let C = expk (1) > 0. Suppose we can find an infinite set
S of primes satisfying ni+1 − ni > ni

C
. So ni+1 >

(
1 + 1

C

)
ni. We apply the third

part of the Remark of Section 4.1 then this contradicts Theorem 1.3 which asserts
that, limi→∞

ni+1

ni
= 1. �

Proposition 4.3. Let k be a positive integer. For given 0 < θ < 1,

F0,θ (a) > F1,θ (a) > · · · > Fk,θ (a)

for sufficiently large a.
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Proof. Consider a ≥ expk (1). Let t be a non-negative integer with 0 ≤ t ≤ k − 1.
We compare Ft,θ (a) and Ft+1,θ (a). Up to taking t times logarithms on Ft,θ (a) and

Ft+1,θ (a), we get (logt (a))θ and exp1
((

logt+1 (a)
)θ)

respectively. After taking the

logarithms one more time of both sides we have θ · logt+1(a),
(
logt+1(a)

)θ
and since

0 < θ < 1, there is a positive real number at such that

θ · logt+1(a) >
(
logt+1(a)

)θ
for a > at. Hence for a > max{a0, a1, . . . , at−1} we have

F0,θ (a) > F1,θ (a) > · · · > Fk,θ (a)

as required. �

Proposition 4.4. Let k be a non-negative integer and let θ1 and θ2 be real numbers
with 0 < θ1 < θ2. Then for all real numbers a with a ≥ expk (1)

Fk,θ1 (a) < Fk,θ2 (a) .

Proof. When we take logarithms k times we see that (logk(a))θ1 < (logk(a))θ2 ,
since a ≥ expk (1) and θ1 < θ2. �

Remark For any non-negative integer k we have restricted our attention in Def-
inition 4.1 to Fk,θ (a) with 0 < θ < 1. If θ ≥ 1 then by Proposition 4.4, we see that
Fk,θ (a) > Fk,1 (a) = a. Hence, if we consider ni ∈ N (S) for a given infinite set S
of prime numbers we see that

ni+1 − ni ≥ 1 =
ni

ni

>
ni

Fk,θ (ni)

for any integers ni+1 > ni ≥ expk(1). And, it is obvious for any integers with
ni+1 > ni.

Therefore, we will consider L (x) in (4.2) as L (x) = x
Fk,θ(x)

for any non-negative

integer k and a real number θ with 0 < θ < 1.

Proposition 4.5. For any real θ1, θ2 with 0 < θ1 < 1 and 0 < θ2 < 1 we see that

Fk,θ1 (a) > Fk+1,θ2 (a) (4.5)

for sufficiently large a.
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Proof. After taking logarithms k + 1 times on Fk,θ1 (a) and Fk+1,θ2 (a) we see that

θ1 · logk+1(a) >
(
logk+1(a)

)θ2 .

Since 0 < θ2 < 1, we have the inequality (4.5) for sufficiently large a. �

Remark By Proposition 4.5, for given non-negative integer k and for any 0 <
θi < 1 where i = 1, 2, . . . , k, we have that

F1,θ1(a) > F2,θ2(a) > · · · > Fk,θk
(a)

for sufficiently large a.

Proposition 4.6. For any positive integers k1, k2 and any positive real numbers θ1

and θ2 with 0 < θi < 1 for i = 1, 2, we see that

expk1

((
logk1

(a)
)θ1
)

> expk2

((
logk2+1 a

)θ2
)

(4.6)

for sufficiently large a.

Proof. If k1 = k2 then it is clear by Proposition 4.5. If k1 > k2 then we take
logarithms k2 times on both sides of (4.6). Then we want to show

expk1−k2

((
logk1

(a)
)θ1
)

>
(
logk2+1(a)

)θ2 .

When we take logarithms k1 − k2 times of both sides of the above inequality we
have (

logk1
(a)
)θ1 > C +

(
logk1+1(a)

)
,

which is then for sufficiently large a as required. If k1 < k2 then we take logarithms
k1 times on both sides. Then we want to show(

logk1
(a)
)θ1 > expk2−k1

((
logk2+1(a)

)θ2
)

.

When we take logarithms k2−k1 times on both sides of the above inequality again,
since 0 < θ < 1 we have

C + logk2
(a) >

(
logk2+1(a)

)θ2 ,

which holds for sufficiently large a as required. �
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4.3 Lemmas

We see the following relation. Indeed, it is related to the fact that for any real
numbers a, b if 2 ≤ a ≤ b then a + b ≤ 2b ≤ ab.

Lemma 4.1. Let n be a non-negative integer and let A and B be real numbers with
A, B ≥ expn+1 (2). Then

logn (log A · log B) ≤
(
logn+1(A)

)
·
(
logn+1(B)

)
. (4.7)

Proof. When n = 0 then both sides of (4.7) are equal to log A log B. We use
induction on n ≥ 1. If n = 1, then log (log A · log B) = log2 A + log2 B ≤
log2 A · log2 B since by A, B ≥ expk(2) both log2 A and log2 B are greater than
or equal to 2. Suppose that the statement is true for all n ≤ k − 1. Now we want
to show that it is true for n = k. By the inductive hypothesis and properties of the
log function we see that

logk (log A · log B) = log
(
logk−1 (log A · log B)

)
≤ log (logk A · logk B)

= log (logk A) + log (logk B)

= logk+1 A + logk+1 B

≤ logk+1 A · logk+1 B

since A, B ≥ expk+1 (2) , so we have both logk+1 A and logk+1 B are greater than
or equal to 2. �

Lemma 4.2. Let k be a positive integer and θ be a real number with 0 < θ < 1.
For any real number x ≥ expk(2) we define

f(x) = fk,θ(x) =
expk−1

(
(logk (x))θ

)
log x

. (4.8)

Then f(x) has the following properties.

1. 0 < f(x) < 1 for any x ≥ expk(2).

2. f(x) is a decreasing function on x ≥ expk(2).

3. G(x) = x−f(x) is a decreasing function on x ≥ expk(2).
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4. Let F (x) = 1
G(x)

where G(x) is defined above. Then x
F (x)

is an increasing

function on x ≥ expk(2) and limx→∞
x

F (x)
= ∞.

Remark. We will claim that x
F (x)

is the function L(x) we consider in Wintner’s
question.

Proof. Let a positive integer k and a real number θ with 0 < θ < 1 be given.

1. Let x be a real number with x ≥ expk(2). Then, log(x) > 0 and exp(y) is
positive for any real number y. Therefore f(x) > 0. We can show that

expk−1
(
(logk(x))θ

)
< log(x) (4.9)

since after taking logarithms k− 1 times of both sides of (4.9) we have, since
0 < θ < 1

(logk(x))θ < logk(x).

Therefore f(x) < 1. �

2. We shall show that the derivative of f(x) is negative on x ≥ expk(2). Recall
the notation Ek(x) and Lk(x), then

f(x) = fk,θ(x) =
Ek−1

(
(Lk(x))θ

)
L1(x)

. (4.10)

And, the derivative of f(x) is

(f(x))′ =

(
Ek−1

(
(Lk(x))θ

))′
L1(x)− Ek−1

(
(Lk(x))θ

)
1

L0(x)

(L1(x))2 .(4.11)

But, the denominator of (4.11) is square and so positive, we need to determine
the sign of numerator of (4.11). By the property of exponential function(

Ek−1 (Lk(x))θ
)′

=
(
Ek−1

(
(Lk(x))θ

))
·
(
Ek−2

(
Lk(x)θ

))′
. (4.12)
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Moreover,(
Ek−2

(
(Lk(x))θ

))′
=

(
Ek−2

(
(Lk(x))θ

))
·
(
Ek−3

(
(Lk(x))θ

))′
(
Ek−3

(
(Lk(x))θ

))′
=

(
Ek−3

(
(Lk(x))θ

))
·
(
Ek−4

(
(Lk(x))θ

))′
...(

E1
(
(Lk(x))θ

))′
= E1

(
(Lk(x))θ

)
·
(
(Lk(x))θ

)′
. (4.13)

And, by Proposition 4.1, we have(
(Lk(x))θ

)′
= θ · (Lk(x))θ−1 (Lk(x))′

= θ · (Lk(x))θ−1 1

L0(x)L1(x) · · ·Lk−1(x)
. (4.14)

Therefore, by (4.12), (4.13) and (4.14)

(
Ek−1 (Lk(x))θ

)′
=

(
k−1∏
j=1

Ej
((

Lk(x)θ
)))

· θ · (Lk(x))θ−1 · 1∏k−1
i=0 Li(x)

. (4.15)

Therefore, the numerator of (4.11) is by (4.15)Ek−1
(
(Lk(x))θ

)
L0(x)

 ·

(
E
L
· θ · (Lk(x))θ

Lk(x)
− 1

)
(4.16)

where

E = L1(x) ·
k−2∏
j=1

Ej
(
(Lk(x))θ

)
, (4.17)

L = L1(x) ·
k−1∏
i=2

Li(x) . (4.18)

We claim that for any real number x with x ≥ expk(2), (4.16) is negative.
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First we note that
Ek−1((Lk(x))θ)

L0(x)
is positive for a real x with x ≥ expk(2).

Hence it is sufficient to show that for given real number x ≥ expk(2),(
E
L · θ ·

(Lk(x))θ

Lk(x)
− 1
)

is negative or equivalently E
L · θ ·

(Lk(x))θ

Lk(x)
is less than 1.

Since θ < 1 and (Lk(x))θ

Lk(x)
< 1 we shall show that E

L < 1.

We recall that

E
L

=
Ek−2

(
(Lk(x))θ

)
L2(x)

· · ·
E1
(
(Lk(x))θ

)
Lk−1(x)

.

But for each i for i = 2, . . . , k − 1 we can show that

Ek−i
(
(Lk(x))θ

)
Li(x)

< 1.

Or equivalently we shall show that,

Ek−i
(
(Lk(x))θ

)
< Li(x). (4.19)

The above inequality holds because after taking k−i logarithms on both sides
of (4.19) we have since 0 < θ < 1

(Lk(x))θ < Li+k−i(x) = Lk(x)

as required.

So, we proved our claim that for any x ≥ expk(2) (4.16) is negative so f(x)′

is negative.

Therefore, f(x) is a decreasing function on x ≥ expk(2). �

3. Now we want show that G(x) = x−f(x) is a decreasing function on x ≥ expk(2)
or equivalently, G(x)′ is negative. But we know that G(x) = exp (−f(x) log(x))
and the derivative of G(x) is

(exp (−f(x) log(x)))′ = exp (−f(x) log(x)) · (−f(x) log(x))′

= exp (−f(x) log(x)) ·
(

(−f(x))′ · log x + (−f(x))
1

x

)
. (4.20)
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For any real number x, exp(x) is positive. Hence the sign of (4.20) is deter-
mined by the sign of(

(−f(x))′ · log x + (−f(x))
1

x

)
. (4.21)

To show (4.21) is negative we claim that

f(x) > (−f(x))′ · log x · x. (4.22)

By (4.10) and (4.16) we see that

(− f(x))′ · log x · x = (− f(x))′ · L1(x) · L0(x)

= (−L0(x)) ·

(
Ek−1

(
(Lk(x))θ

))′
L1(x)− Ek−1

(
(Lk(x))θ

)
1

L0(x)

(L1(x))

= −
(
Ek−1

(
(Lk(x))θ

))′
· L0(x)− f(x). (4.23)

By (4.15) and (4.23), to show (4.22) is equivalent to show the following in-
equality

2 f(x) > θ · (Lk(x))θ

Lk(x)
·
E1
(
(Lk(x))θ

)
Lk−1(x)

· · ·
Ek−1

(
Lk(x)θ

)
L1(x)

.

By (4.10), we can divide both sides of the above inequality by f(x) we get

2 > θ · (Lk(x))θ

Lk(x)
·
E1
(
(Lk(x))θ

)
Lk−1(x)

· · ·
Ek−2

(
Lk(x)θ

)
L2(x)

. (4.24)

By (4.19) for i = 1, . . . , k− 1 and 0 < θ < 1, the right hand side of inequality
(4.24) is less than 1. Hence (4.24) holds on x ≥ expk(2). Therefore, x−f(x) is
a decreasing function on x ≥ expk(2) . �

4. Finally, we want to show that x1−f(x) is increasing on x ≥ expk(2). Note that
x1−f(x) = exp ((1− f (x)) log x) , so we see
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(
x1−f(x)

)′
= exp ((1− f(x)) log x) · ((1− f(x)) log x)′ . (4.25)

Since for any real x, exp(x) is positive, for given x with x ≥ expk(2), the sign
of (4.25) is determined by the sign of

(log x− f(x) log x)′ =
1

x
− (f(x))′ log x− f(x)

x

=

(
1− f(x)

x
− (f(x))′ log x

)
. (4.26)

But, the sign of (4.26) is positive on x ≥ expk(2) by the first and second part
of Lemma 4.2 that 0 < f(x) < 1 and f(x)′ < 0.

Finally, we shall show that limx→∞
x

F (x)
= ∞.

For any positive number N , we shall show that for sufficiently large x

x

F (x)
> N

or equivalently that

x > N · F (x) = N · exp (f(x) log x) . (4.27)

But the above inequality holds for sufficiently large x because after taking the
logarithm on both sides of (4.27) we have

log x > log N + f(x) log x = log N + expk−1
(
(logk (x))θ

)
. (4.28)

By taking the logarithms k − 1 time on both sides of (4.28), we see the
inequality holds for sufficiently large x since 0 < θ < 1.

Hence x
F (x)

is an unbounded increasing function and so limx→∞
x

F (x)
= ∞. �

We are ready to prove the main theorem.
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4.4 Second Main Theorem

Theorem 4.1. Let k be a non-negative integer and let θ be a real number with
0 < θ < 1. For a ≥ expk (2), we define

F (a) = expk
(
(logk(a))θ

)
.

Also, we define F (1) = 1. Then we can find a set S of infinitely many primes such
that if ni, ni+1 ∈ N (S) then

ni+1 − ni >
ni

F (ni)
(4.29)

for i = 0, 1, . . ..

Remark n0 = 1 ∈ N (S) for all S so F (1) needs to be defined. We can choose S
such that p1 ≥ expk(2) for any non-negative integer k, so F (x) is well defined for
all ni ∈ N (S).

Proof. For k = 0, this is Theorem 1.9. So we shall suppose that k ≥ 1. For a given
positive integer k and a real θ with 0 < θ < 1, we want to construct a sequence of
primes p1 < p2 < . . . < pn < . . . satisfying (4.29) inductively.

We can take p1 to be the least prime greater than expk (2). Let S1 = {p1}. Then
n0 = 1 and n1 = p1 > expk(2). So n1 − n0 > 1 as required. For all ni ∈ N (S1)
with ni ≥ n1 , F (ni) > 1 and so (4.29) holds since

ni+1 − ni = p1
i+1 − p1

i = p1
i (p1 − 1) > pi

1 >
pi

1

F (pi
1)

.

Now suppose that we have Sn = {p1 < p2 < . . . < pn} satisfying (4.29).

First we note that for x ≥ expk(2),

x

F (x)
= x1−f(x)

where

f(x) =
expk−1

(
(logk x)θ

)
log x

. (4.30)
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Consider any prime p > pn. Suppose that there are x, y ∈ N (Sn ∪ {p}) such that

0 < x− y < y1−f(y), (4.31)

where

f (y) =
expk−1

(
(logk y)θ

)
log y

.

If y < x < p then x, y ∈ N (Sn) and so by the inductive hypothesis x, y satisfies
(4.29). We note that p ≤ x. Moreover, y1−f(y) ≤ y by the first part of Lemma 4.2.
Hence we observe that p < x < y + y1−f(y) < 2y < 2x. Let y = p1

a1p2
a2 · · · pn

anpa

and x = p1
b1p2

b2 · · · pn
bnpb be the prime factorizations of y and x respectively. Then

we can see that a 6= b, since if a = b then we can consider y′ = y
pa , x′ = x

pb = x
pa

so,

0 < x− y = pa (x′ − y′)

< (pay′)
1−f(pay′)

= (pa)1−f(pay′) · (y′)1−f(pay′)
. (4.32)

Moreover, we note that by the third part of Lemma 4.2

(pay′)
−f(pay′)

< (y′)
−f(y′)

.

Hence, in (4.32)

pa (x′ − y′) < pa · (y′)−f(y′) · (y′)
= pa · (y′)1−f(y′)

.

But this contradicts the inductive hypothesis since y′, x′ ∈ N (Sn) so x′ − y′ >
y′(1−f(y′)).

Put Λ = log x
y
. Then

Λ =
n∑

j=1

(bj − aj) log pj + (b− a) log p > 0,
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and by (4.31)

log
x

y
<

x

y
− 1 < y−f(y) (4.33)

where log denotes the principal branch of logarithm.

Furthermore, since aj, bj ≥ 0 for j = 1, . . . , n and y < x < 2y we have,

|bj − aj| ≤ max
j=1,...,n

(bj, aj) ≤ max (log x, log y) < log 2y, (4.34)

for j = 1, 2, ...., n, and since a, b ≥ 0

|b− a| ≤ max (b, a) ≤ max

(
log x

log p
,
log y

log p

)
<

log 2y

log p
. (4.35)

Put X = log y
log p

and assume that X ≥ expk (2).

Then by Lemma 2.2 with Aj = pj for j = 1, . . . , n, An+1 = p, B = log 2y and
Bn+1 = log 2y

log p
, there exists an effectively computable constant C such that by (4.33),

y−f(y) > Λ > exp

(
−C (n + 1)4(n+1) log p1 · · · log pn · log p log

(
4
log 2y

log p

))
.

We will denote by C1, C2, C3, ... positive numbers which depend on n, p1, . . . pn but
do not depend on p. Let C1 = C (n + 1)4(n+1) log p1 · · · log pn. Then, we see that

yf(y) < exp

(
C1 · log p · log

(
4
log 2y

log p

))
.

Now, we take logarithms of both sides and divide by log p.

Then, there is a real number C2, C3 with C2 > 1 and C3 > 1 such that

f (y)
log y

log p
< C2 · log

(
8
log y

log p

)
< C3 · log

(
log y

log p

)
. (4.36)

Then by (4.30) and (4.36),

f (y) X =
expk−1

(
(logk y)θ

)
X log p

X < C3 log X
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We multiply each side by log p and recall the definition of X, then we have

expk−1
((

logk−1 (X log p)
)θ)

< C3 log p log X. (4.37)

We note that X ≥ expk (2). We can take k−1 times logarithms of both sides again
then, since pC3 > pC3

n ≥ expk (2), by (4.37) and Lemma 4.1(
logk−1 X

)θ
<

(
logk−1 (X log p)

)θ
< logk−1 (C3 log p log X)

≤ logk

(
pC3
)
logk X.

Let Z =
(
logk−1 X

)θ
. Then,

Z < logk(p
C3) · log

(
Z

1
θ

)
= logk(p

C3) · 1

θ
· (log Z) .

When we apply Lemma 3.1, with u = 0, h = 1 and v = logk(p
C3) · 1

θ
we have

Z ≤
(

1

θ
· logk

(
pC3
))2

or equivalently

logk−1 X <

(
1

θ
· logk

(
pC3
)) 2

θ

. (4.38)

Let us define

U1 (p) = expk−1

((
1

θ
· logk

(
pC3
)) 2

θ

)
(4.39)

and define

U (p) = max
(
2 expk (2) , 2U1 (p)

)
. (4.40)
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Then, if X ≥ expk (2) then by (4.38) and (4.39) for any p > pn we have

X ≤ 1

2
U (p) .

And, if X < expk (2) then by (4.40) we have

X ≤ 1

2
U (p) .

Therefore, for any X > 0 we have X ≤ 1
2
U (p).

Let T be an integer with T
2

> pn. We recall the result of Rosser and Schoenfeld [31]
that the number of primes in the interval [T

2
, T ] is larger than 3T

10 log T
for T ≥ 41.

For each prime p ∈ [T
2
, T ], we first count the number of integers y, x ∈ N (Sn ∪ {p})

such that 0 < x− y < y1−f(y). We observed in (4.34)

aj, bj ≤ U (T ) log T

for j = 1, 2, . . . , n, and in (4.35)

a, b ≤ log 2y

log p
≤ 2X ≤ U (T ) .

We note that p < x < 2y < y2 and p < T . Therefore, the number of possible
choices of the exponents a1, . . . , an, a, b1, . . . , bn and b is at most

(2 U (T ) log T )2n · (2 U (T ))2 . (4.41)

Now, we assume that all these exponents are fixed. Then, we have

1 <
x

y
= p1

b1−a1p2
b2−a2 · · · pn

bn−anpb−a < 1 + y−f(y).

Put K = p1
a1−b1p2

a2−b2 · · · pn
an−bn . Then,

K < pb−a < K
(
1 + y−f(y)

)
. (4.42)

Since, a 6= b, we have two cases.

(Case 1) b > a. Then,

K
1

b−a < p < K
1

b−a

(
1 + y−f(y)

) 1
b−a < K

1
b−a

(
1 + y−f(y)

)
.
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Hence p is contained in an interval of the length K
1

b−a

(
y−f(y)

)
and by (4.42)

K
1

b−a

(
y−f(y)

)
< p · y−f(y) ≤ T · y−f(y).

(Case 2) b < a. Then, by (4.42)(
1 + y−f(y)

) 1
b−a K

1
b−a < p < K

1
b−a . (4.43)

Hence p is contained in an interval of the length

K
1

b−a

(
1−

(
1 + y−f(y)

) 1
b−a

)
. (4.44)

But,
(
1 + y−f(y)

)
> 0 so by (4.43)

K
1

b−a < p
(
1 + y−f(y)

) 1
a−b (4.45)

and so we get by (4.44) and (4.45)

K
1

b−a

(
1−

(
1 + y−f(y)

) 1
b−a

)
< p ·

(
1 + y−f(y)

) 1
a−b

(
1−

(
1 + y−f(y)

) 1
b−a

)
= p ·

((
1 + y−f(y)

) 1
a−b − 1

)
< p · y−f(y)

≤ T · y−f(y).

Fix the exponents a1, . . . , an, a and b1, . . . bn, b. In both cases, the number of primes
p for which y, x ∈ N (Sn ∪ {p}) have prime factorizations y = p1

a1p2
a2 · · · pn

anpa

and x = p1
b1p2

b2 · · · pn
bnpb and satisfy 0 < x− y < y1−f(y) does not exceed Ty−f(y).

We replace this bound with a bound that does not depend on y. Indeed we claim
that

Ty−f(y) ≤ 4T 1−f(T ). (4.46)

Note that T
2
≤ p < x < 2y and so y > T

4
. Moreover, by Lemma 4.2 we note that,

x−f(x) is a decreasing function and f(x) is a decreasing function and 0 < f(x) < 1.
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Therefore,

T · y−f(y) ≤ T

(
T

4

)−f(T
4 )

≤ T

(
T

4

)−f(T )

≤ T 1−f(T ) · 4f(T )

≤ 4T 1−f(T )

We know that the number of primes in the interval [T
2
, T ] is larger than 3T

10 log T
. On

the other hand we know the number of possible exponents by (4.41) and for each
set of exponents the number of primes p in the interval is at most 1 + 4T 1−f(T ).
Hence it suffices to check the following inequality :(

4T 1−f(T )
)
(2 U (T ))2n+2 (log T )2n ≤ 3T

10 log T
(4.47)

That means for sufficiently large T , we can find a prime that does not have a pair
y, x with x− y ≤ y1−f(y). We see that (4.47) is equivalent to

C4 (2 U (T ))2n+2 (log T )2n+1 ≤ T f(T ).

By (4.30) we want to show, equivalently, that

C5 + C6 · log U (T ) + C7 log2 T < expk−1
(
(logk T )θ

)
. (4.48)

By (4.39) and (4.40), we observe that for sufficiently large T ,

log U (T ) < expk−1
(
(logk T )θ

)
.

And,

log2 T < expk−1
(
(logk T )θ

)
.

Therefore, (4.48) holds for sufficiently large T or equivalently (4.47) holds.
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Therefore we can find a prime p in the interval [T
2
, T ] with the required property

and we put p = pn+1. �

4.5 Further Research

In this section, we report on a question related to Theorem 4.1 which we are not
able to answer. We introduce a family of functions.

Definition 4.2. For a given non-negative integer k and a real number δ with δ > 1,
we put

Gk,δ (a) = expk
((

logk+1 (a)
)δ)

for a ≥ expk+1 (1).

Proposition 4.7. For given δ > 1,

G1,δ (a) < G2,δ (a) < . . . < Gk,δ (a)

for a ≥ expk+1 (1).

Proposition 4.8. For any non-negative integers k1, k2, and for any real θ > 0 and
δ > 1 we have

Fk1,θ (a) > Gk2,δ (a)

for sufficiently large a.

We have no idea whether we can find an infinite set S of primes such that if
n0 < n1 < . . . < ni < . . . is the set of all positive integers composed of the primes
in S then

ni+1 − ni > L(ni)

when we replace our functions L (ni) = ni

Fk,θ(ni)
with functions L (ni) = ni

Gk,δ(ni)

where
Gk,δ (a) = expk

((
logk+1 (a)

)δ)
where δ > 1.

Moreover, we want to find relations between the sequences of functions Gk and Fk.
We have the following question :
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Question What functions H (a) have the following properties :

lim
a→∞

Fk,θ (a)

H (a)
= ∞

and

lim
a→∞

H (a)

Gk,δ (a)
= ∞

for k = 1, 2, · · · ?

Remark. The existence of the function H (a) may be related to tetration that
occurs in the fourth place in the logical progression : addition, multiplication,
exponentiation, tetration. [30]
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Chapter 5

Computation

In this chapter, we shall determine all prime pairs (p1, p2) with 2 ≤ p1 < p2 < e8

such that for all ni ∈ N ({p1, p2})

ni+1 − ni >
√

ni. (5.1)

These prime pairs (p1, p2) can be extended to an infinite sequence of prime numbers
in Wintner’s question with respect to

√
x when we appeal to the proof of Theorem

4.1 with k = 0 and θ = 1
2
.

Remark The largest prime less than e8 is 2971 which is the 429-th prime number.

First we have the following Theorem.

Theorem 5.1. There are 2086 prime pairs (p1, p2) with 2 ≤ p1 < p2 < e8 for which

0 < x− y <
√

y (5.2)

has a solution x, y with x, y ∈ N ({p1, p2}) and gcd (x, y) = 1. We list p1, p2, x, y in
Table I for all the prime pairs (p1, p2) as above except for those with x = p2, y = p1.

Before showing Theorem 5.1, we remark on some assumptions we may make and
about the feasibility of our computation.

Remark A

1. In Theorem 5.1, we consider x, y ∈ N ({p1, p2}) such that gcd (x, y) = 1
without loss of generality. If we have x > y in N ({p1, p2}) satisfying (5.2)
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with gcd (x, y) = d > 1 then x′ = x
d
, y′ = y

d
are also in N ({p1, p2}) and these

x′, y′ satisfy (5.2) since

0 < x′ − y′ =
x− y

d
<

√
y

d
<

√
y

√
d

=
√

y′.

2. Therefore, we can write x, y ∈ N ({p1, p2}) with gcd (x, y) = 1 that satisfy
(5.2) as

x = pa, y = qb

with p, q ∈ {p1, p2} and p 6= q

for some non-negative integers a, b. (5.3)

From now on we reserve the expression (5.3) for x, y ∈ N ({p1, p2}) with
gcd (x, y) = 1.

Remark B We review that the computation for Theorem 5.1 is feasible for some
given range of primes.

1. In computation, we are given a range of primes p1 < p2 < U . This U depends
on computational power : for finding primes and for accurate calculations for
each step in the proof of the theorem, etc.

2. By Theorem 1.4, for given p1 < p2 there are only finitely many x, y ∈
N ({p1, p2}) satisfying (5.2).

3. Moreover, by (3.11) in Theorem 3.1, there is an effectively computable pos-
itive number C (p1, p2) such that if x, y ∈ N ({p1, p2}) satisfy (5.2) then
x < C (p1, p2).

4. The inequality (5.2) suffices to check (5.1). If we find x, y ∈ N ({p1, p2}) sat-
isfying (5.2) then there is non-negative integer i such that ni = y. Moreover,
ni+1 ≤ x since x > y. So,

0 < ni+1 − ni ≤ x− y <
√

y =
√

ni.

Note that, x− y 6= √
y since x, y are integers with gcd(x, y) = 1.

Remark C By Remark B, if for given p1, p2 there is no x, y ∈ N ({p1, p2}) with
gcd (x, y) = 1 that satisfies (5.2) then all ni ∈ N (p1, p2) satisfy (5.1).
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Strategy for the Proof of Theorem 5.1. We consider separately each prime
pair (p1, p2) with 2 ≤ p1 < p2 < e8. Let a and b be positive integers and put
M = max{a, b}. We wish to determine when

|pa
1 − pb

2| <
(
min

{
pa

1, p
b
2

}) 1
2 . (5.4)

We split the search for examples into three ranges for M . The first is for M < 20
and we check this range by a direct search through all possible exponent pairs.
The second range is for 20 ≤ M < 218 and in this range we use properties of the
continued fraction of log p1

log p2
to determine if these are any solutions of (5.4). The third

range is for M ≥ 218 and we prove, see Proposition 5.2, that there are no solutions
in this range. But we should mention that these 3 ranges for M are dependent
on the upper and lower bounds for the primes p1 and p2. In our computation,
2 ≤ p1 < p2 < e8.

We have already used some of the properties we shall discuss in this chapter but at
this time we recall and show them clearly. We can see some similar propositions in
the following sections to those in the work of Stroeker and Tijdeman [37] and the
work of de Weger [45].

5.1 General Upper Bound

Proposition 5.1. Let x, y ∈ N ({p1, p2}) with gcd (x, y) = 1 and expressed by
(5.3). Suppose that x, y satisfy the inequality (5.2). Define Λ1 = log x − log y.
Then

Λ1 <

√
2

pM
1

(5.5)

where M = max{a, b}.

Proof. First note that y > 1 since if y = 1 then 0 < x− y < 1 has no solution. We
also have x < 2y since if x ≥ 2y then x−y ≥ 2y−y = y >

√
y. Let M = max{a, b} .

Since x, y satisfy the inequality (5.2) and 1 < y < x < 2y so we have

0 < Λ1 = log
x

y
<

x

y
− 1 <

1
√

y
<

√
2

x
. (5.6)
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We observe that x ≥ pM
1 . For this we let m = min{a, b} . Recall that we assume

that gcd (x, y) = 1.

1. p1|x then x = pM
1 since x > y and p1 < p2.

2. If p2|x then we consider 2 cases.

(a) If y = pM
1 it is clear since x > y = pM

1 .

(b) If y = pm
1 then x = pM

2 > pM
1 . Therefore x ≥ pM

1 .

Therefore, by (5.6) we obtain

0 < Λ1 <

√
2

pM
1

.

�

Proposition 5.2. Let p1, p2 be given with 2 ≤ p1 < p2 < e8. Let B = 218.

Then there are no x, y ∈ N ({p1, p2}) satisfying (5.2) expressed by (5.3) such that
M = max{a, b} ≥ B.

Proof. Let Λ1 = log x − log y = a log p − b log q > 0. Let b′ = b
log p

+ a
log q

. Since

M = max{a, b} and 2 ≤ p1 < p2 < e8, we have

M

8
≤ b′ ≤ 3M. (5.7)

Then by Lemma 2.1 with D = 1, A1 = p1, A2 = p2 and log B = max
{
log b′, 21

D
, 1

2

}
Λ1 > exp

(
−31 (log B)2 log p1 log p2

)
.

Suppose that x, y satisfy (5.2). Then by (5.5),

exp
(
−31 (log B)2 log p1 log p2

)
< Λ1 <

√
2

pM
1

. (5.8)

By taking logarithms of both sides of (5.8) and multiplying by − 2
log p1

, we have

M − log 2

log p1

< 62 (log B)2 log p2. (5.9)
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We divide into 2 cases.

(Case 1) If log B = 21 then we have that by (5.9)

M < 62 · (21)2 · 8 < 218.

(Case 2) If 21 < log B = log b′ then by (5.7) and (5.9)

3M < 3 · 62 · (log B)2 · 8 + 1 < 3 · 496 · (log 3M )2 + 1.

Hence
3M < C · (log 3M)2

where C = 1489. We apply Lemma 3.1 with u = 0, v = C, h = 2 and x = 3M to
get

M < 218.

But this contradicts the fact (5.7) of that e21 < 3M .

Therefore, we always have the case 1 and M < 218.

That means there is no solution x, y ∈ N ({p1, p2}) satisfying (5.2) expressed by
(5.3) such that M = max{a, b} ≥ 218 = B.

�

Therefore, to find x, y satisfying (5.2) we may suppose that both exponents a and
b are less than B = 218.

5.2 Reduced Number of Calculations

There remains the problem of covering this range M = max{a, b} < B without
a prohibitive amount of computation. We resolve this question by applying some
results from Diophantine approximation.

Proposition 5.3. Let x, y ∈ N ({p1, p2}) be expressed by (5.3) which satisfy (5.2)
such that M = max{a, b} . Then M is the exponent of the smaller prime.

Proof. We recall that x = pa, y = qb and p, q ∈ {p1, p2} with p 6= q. If p = p1 <
p2 = q then since x > y so M = a ≥ b is the exponent of the smaller prime.
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Let q = p1 < p2 = p and suppose that M = a > b. Then x = pa
2 and y = pb

1. But
in this case y < 2y ≤ p1 · pb

1 ≤ pa
1 < pa

2 = x this contradicts our choice of x, y as
x < 2y. Therefore, M = b is the exponent of the smaller prime. �

Now, we want to apply some properties of continued fractions. For this we need to
restrict our search range as follows.

Proposition 5.4. Let x, y be expressed by (5.3) and let M = max{a, b}. Suppose
that pM

1 ≥ 218. Then,

p
M
2

1 > 23M. (5.10)

Proof. Suppose not, then

2
M
2 ≤ p

M
2

1 ≤ 23M.

Hence M ≤ 18. This is a contradiction since we then have

414 ≥ 23M ≥ p
M
2

1 ≥ 29.

�

Remark D We will see in Proposition 5.7 that for a given pair of primes (p1, p2)
with 2 ≤ p1 < p2 < e8, if we want to find x, y ∈ N ({p1, p2}) satisfying (5.2) and
expressed by (5.3) by using properties of the continued fraction of log p1

log p2
then it

suffices to restrict y to y ≥ 218 by Proposition 5.3 and Proposition 5.4.

But we note that if x and y satisfy (5.2) then x < 2y. Therefore we compute
whether x − y <

√
y directly for all x, y ∈ N ({p1, p2}) with y < x < 219. Note

the associated powers a, b satisfy 0 ≤ a, b < 20 and this is the first range for
M = max{a, b}.

If we can not find any x, y ∈ N ({p1, p2}) with 1 < y < x < 219 that satisfy (5.2)
by a direct search through the first range for M then we apply properties of the
continued fraction of log p1

log p2
for finding x, y satisfying (5.2).

We recall some definitions and facts about continued fraction expressions.

Definitions Let α be a real number. We denote by [α] the greatest integer n less
than or equal to α. Let a0 = [α]. If α 6= a0 there is a real number α1 > 1 such that
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α = a0 + 1
α1

. Put a1 = [α1]. Next, if α1 6= a1 then α1 = a1 + 1
α2

and let a2 = [α2].
By repeated application of the above, we produce a sequence of integers a0, a1, . . .,
and a sequence of real numbers α1, α2, . . . . The sequences may be finite.

1. The integers a0, a1, . . . are called the partial quotients of α.

2. If the sequence of integers is finite, say a0, a1, . . . , an

then α is a rational number and

α = a0 +
1

a1 +
1

a2+...
1

an−1 +
1

an

.

This expression is known as a finite continued fraction expansion of α

and we denote α = [a0, a1, . . . , an].

3. If the algorithm does not terminate we write

α = a0 +
1

a1 +
1

a2+...
1

an−1 +
1

an+...

.

and we call this the infinite continued fraction of α and denote

α = [a0, a1, a2, . . .].

4. Let α = [a0, a1, . . . , ak]. We write pn

qn
= [a0, a1, . . . , an] for n = 0, 1, 2, . . . , k

with gcd (pn, qn) = 1 and qn > 0.

The rational number pn

qn
is called the n-th convergent of α.

Let α = [a0, a1, . . .]. We write pn

qn
= [a0, a1, . . . , an] for n = 0, 1, 2, . . .

with gcd (pn, qn) = 1, qn > 0. The rational number pn

qn
is called the n-th

convergent of α.
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We recall some important properties of continued fractions. The proofs of the next
two Propositions may be found in [19].

Proposition 5.5. Let θ = [a0, a1, . . . , an, . . .] and pn

qn
be the n-th convergent of θ.

Then

1

(an+1 + 2) q2
n

<

∣∣∣∣θ − pn

qn

∣∣∣∣ <
1

an+1q2
n

. (5.11)

Proposition 5.6. Let θ be a real number and p
q

be a rational number p
q

satisfying
the following inequality ∣∣∣∣θ − p

q

∣∣∣∣ <
1

2q2
.

Then there is a non-negative integer k such that p
q

is the k-th convergent of θ.

Now we are ready to prove the following Proposition.

Proposition 5.7. Let x, y satisfy (5.2) and be expressed by (5.3). Let M =
max{a, b} and m = min{a, b}.

If p
M
2

1 > 23M then m
M

is a convergent of log p1

log p2
.

Proof. By Proposition 5.3, M is the exponent of the smaller prime p1. We recall
that 2 ≤ p1 < p2. Dividing |Λ1| = |a log p − b log q| = |M log p1 − m log p2| by
M log p2, then by (5.5) we have∣∣∣∣mM − log p1

log p2

∣∣∣∣ ≤

√
2

pM
1

· 1

M log p2

≤
√

2

23M
· 1

M log p2

≤ 1

17M2
(5.12)

<
1

2M2
.

By Proposition 5.6 we can find a non-negative integer k such that m
M

is the k-th

convergent of log p1

log p2
. �

Remark E Recall that M = max{a, b} and m = min{a, b}.
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1. It clearly suffices to make a check of all numbers a, b in the relevant range
20 ≤ M < 218 which are denominators of the convergent of log p1

log p2
. But the

following Propositions ensure us that we only need to compute and check
m, M when m

M
is one of the convergent of log p1

log p2
up to M < 218 = B with

special partial quotients. We shall discuss this in Proposition 5.8.

2. In Proposition 5.4, for given range of primes p1 < p2 < U we have found
some relation between 218, the lower bound of pM

1 in the hypothesis and
23 the coefficient of M in (5.12). This represents a trade off between direct
computation for the small range for M and the probability distribution of the
“large enough” n-th partial quotients of the continued fraction expansion to
check the approximation property. (See Proposition 5.8.) In our case, “large
enough” means greater than or equal to 15.

5.3 Find a Proper Expression

Now, our interest is to find a proper expression of log p1

log p2
. In computation there

are some restrictions to represent irrational numbers. Hence we need to check the
required accuracy before computing. The following remarks and proposition tell us
the relation between the convergents of an irrational number and the convergents
of a close rational number.

Remark F For given 2 primes p1, p2 with 2 ≤ p1 < p2 < e8, let ξ = log p1

log p2
. Then

ξ is irrational number. Let the continued fraction expansion of ξ be given by

ξ = [a0, a1, a2, · · · ],

and let mk

Mk
be the k-th convergent of ξ for k = 0, 1, 2 . . ..

Let x, y satisfy (5.2) and be expressed by (5.3).

1. By Proposition 5.2 and Proposition 5.7, Mk is bounded. So, we need to find
all the convergents mk

Mk
of ξ up to Mk < B = 218. In this case we only need to

consider the continued fraction expansion of ξ up to the k-th step where

k ≤ −1 +
log
(√

5 B + 1
)

log
(

1+
√

5
2

) . (5.13)
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de Weger [45] showed this using the fact that if pn

qn
is the n-th convergent of

a real number, then qn is at least the (n + 1)-th Fibonacci number.

2. Therefore, for finding k-th convergents mk

Mk
up to Mk < B = 218 in (5.13), it

suffices to compute the continued fraction expansion up to the 26-th partial
quotient.

3. For computing, it suffices to find a rational number θ such that for every n
up to 26 the n-th convergent of ξ is exactly the same as that of θ.

The following theorem tells us the required accuracy in order to apply the continued
fraction algorithm while the denominator of the k-th convergent is less than B = 218.

Theorem 5.2. Let ξ = log p1

log p2
and θ be a rational number with |ξ − θ| < ε where

ε = 2−39. Then every convergent pn

qn
of ξ with 20 ≤ qn < 218 is a convergent of θ.

Proof. Let pn

qn
be a convergent of ξ and 20 ≤ qn < 218. Since pM

1 ≥ 218, we see by
Proposition 5.4 and Proposition 5.7∣∣∣∣θ − pn

qn

∣∣∣∣ ≤ |θ − ξ|+
∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ ε +
1

8q2
n

<
1

2q2
n

(5.14)

Therefore, pn

qn
is also a convergent of θ. �

Remark G

1. Therefore, for given ξ = log p1

log p2
, if we represent ξ by a rational number θ with

|ξ − θ| < 2−39 then any convergent mk

Mk
of ξ with k ≤ 26 and Mk ≥ 20 is also

a convergent of θ.

2. Note that if we have two rational numbers θ1, θ2 such that

θ1 < ξ < θ2

and the continued fraction expansions of θ1 and θ2 are the same up to the
k-th partial quotient then ξ also has the same continued fraction expansion
up to k-th partial quotient.

3. When we use Maple, we shall find the continued fraction expansion of ξ up to
the 30-th partial quotient that satisfies the above two conditions we mentioned
in this Remark in order to guarantee the accuracy of our computations.
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5.4 Criteria for Solution

We have already reduced the number of calculations in Section 5.2. For a given
prime pair (p1, p2), we only need to check 26 candidates pairs (M, m) in the whole
“medium” range of 20 ≤ max{a, b} < B = 218. But, in computation the most
time and memory consuming part is exponentiation. So, reducing the number of
exponentiations is one of the critical parts for feasibility.

In our question, for given two prime numbers p, q, we need to compute exponenti-
ations pa, qb where a, b are huge numbers almost up to B = 218. In this section, we
shall discuss the nice criteria for deciding to calculate exponentiation. And this is
the answer to the question we mentioned in Remark E.

Proposition 5.8. Let x, y be expressed by (5.3) and M = max{a, b} and m =
min{a, b}. And suppose that pM

1 ≥ 218. If (x, y) is a solution of (5.2) then there is
a positive integer r with 0 ≤ r ≤ 26 such that

1. m
M

is the r-th convergent of log p1

log p2
.

2. The (r+1)-th partial quotient ar+1 of the continued fraction expansion of log p1

log p2

is greater than or equal to 15.

Proof. By (5.12) of Proposition 5.7 we see∣∣∣∣ log p1

log p2

− m

M

∣∣∣∣ <
1

17M2
. (5.15)

And, by Proposition 5.5,

1

(ar+1 + 2) M2
r

<

∣∣∣∣ log p1

log p2

− mr

Mr

∣∣∣∣ <
1

ar+1M2
r

. (5.16)

By (5.15) and (5.16) we see that ar+1 ≥ 15. �

5.5 Some Remarks on the Program

5.5.1 The Small Range

In the execution of our program we treat all prime pairs (p1, p2) with 2 ≤ p1 < p2 <
e8. For given p1, p2, the aim is to find x, y ∈ N ({p1, p2}) such that
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1. x = pa, y = pb where p, q ∈ {p1, p2}, p 6= q and

2. 0 < x− y <
√

y.

We note that 0 ≤ a, b < 20 cover the “small” range for 1 ≤ max{a, b} < 20. For
each pair (p1, p2) the solutions x, y with a, b in this range are detected by direct
checking for all possible pairs x, y with 1 < y < x < 2y. We generate all positive
integers pa, qb where p, q ∈ {p1, p2}, p 6= q with a, b < 20 and check whether

|pa − qb| <
(
min

{
pa, qb

}) 1
2 .

If we find pa, qb that satisfy the above inequality and a > 1 or b > 1 then write
p1, p2, a, b, max{pa, qb}, min{pa, qb} in Table 1. Hence in Table 1 we have all
solutions x, y ∈ N ({p1, p2}) with gcd(x, y) = 1 that satisfy 0 < x− y <

√
y except

{x, y} = {p1, p2}.

After checking all the range for small M we go “medium” range for M .

5.5.2 The Medium Range

We call the range of exponents 20 ≤ max{a, b} < 218 “medium”. We searched x, y
that satisfy (5.2) and the associated the maximum exponents M are in “medium”
by the strategy from Diophantine Approximations.

We review the algorithm that has been used for finding solutions x, y for given
p1, p2.

Given two prime numbers p1, p2 with 2 ≤ p1 < e8.

Let ξ := log p1

log p2
.

Call continued fraction expansion of ξ up to the 30-th partial quotient and we get

θ = [a0, a1, . . . , a30].

We note that for required accuracy it is enough to find the continued fraction up
to the 30-th partial quotient. The error between log p1

log p2
and computational expressed

number so that

[a0, a1, . . . , a28] < ξ < [a0, a1, . . . , a29].
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And so θ is a proper expression of ξ. Let

mk

Mk

= [a0, a1, . . . , ak] (5.17)

for k = 1, . . . , 30.

Apply Proposition 5.2, we are interested in the case the denominator of the k-th
convergent (5.17) is less than B = 218. We have reduced level with

reducedLevel = max
0≤k≤26

{ k | the k-th denominator Mk < 218}.

For i from 0 to reducedLevel do

If the i-th partial quotient is such that ai+1 ≥ 15.

Then, we set mi

Mi
= [a0, a1, . . . , ai].

Check the inequality (5.2) whether∣∣pMi
1 − pmi

2

∣∣ <
(
min{pMi

1 , pmi
2 }
) 1

2 . (5.18)

If (5.18) is true

then we add p1, p2, p
Mi
1 , pmi

2 to the Table I.

else i := i + 1.

Else i := i + 1.

5.5.3 Computing Environment

We use the package Maple 10 on grayling server (SunFire V20/40z systems with 2
CPUs and 4GB memory) in University of Waterloo. The total time for computing
for the code based on the Appendix B is around 9 days.

5.6 Further Research

We may try to find an initial 3 or more primes in Wintner’s question with respect
to
√

x. In this case we should apply the LLL algorithm [45]. For computational
feasibility, we need sharp estimates of linear forms in n logarithms if we are dealing
with more than 2 primes.
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Finally, we mention a consequence of the abc conjecture. The abc conjecture links
the additive and multiplicative structure of the integers.

Conjecture (Oesterlé-Masser)

Let a, b, and c be non-zero integers and define

G = G(a, b, c) =
∏

p |abc
p a prime

p.

Suppose that a, b, and c are co-prime and that

a + b + c = 0.

For each ε > 0 there is a C(ε) > 0 such that

max{|a|, |b|, |c|} < C(ε) ·G1+ε.

This conjecture is known as the abc conjecture.

Remark For S and for any ni ∈ N (S) we note

(ni+1 − ni) + ni = ni+1.

We observe that Theorem 1.4 an immediate consequence of abc conjecture when
we take θ = 1

1+ε
.
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Appendix A

Table I

In the following table we list the prime pairs (p1, p2) with 2 ≤ p1 < p2 < e8 for
which there is a co-prime pair of integers x, y fromN ({p1, p2}) with 0 < x−y <

√
y.

Note that x = max{pa
1, p

b
2} and y = min

{
pa

1, p
b
2

}
. We also list ALL such integers

x and y and the associated powers a and b of p1 and p2 respectively for which
{x, y} 6= {p1, p2} and 0 < x− y <

√
y EXCEPT x = p2, y = p1.

We should mention that all the solutions are found in the “small” range for M .

p1 p2 a b x y

2 3 2 1 4 3
2 3 3 2 9 8
2 3 5 3 32 27
2 3 8 5 256 243
2 5 2 1 5 4
2 5 7 3 128 125
2 7 3 1 8 7
2 11 7 2 128 121
2 13 4 1 16 13
2 17 4 1 17 16
2 19 4 1 19 16
2 23 9 2 529 512
2 29 5 1 32 29
2 31 5 1 32 31
2 37 5 1 37 32
2 59 6 1 64 59
2 61 6 1 64 61
2 67 6 1 67 64
2 71 6 1 71 64
2 127 7 1 128 127
2 131 7 1 131 128
2 137 7 1 137 128
2 139 7 1 139 128
2 181 15 2 32768 32761
2 241 8 1 256 241
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2 251 8 1 256 251
2 257 8 1 257 256
2 263 8 1 263 256
2 269 8 1 269 256
2 271 8 1 271 256
2 491 9 1 512 491
2 499 9 1 512 499
2 503 9 1 512 503
2 509 9 1 512 509
2 521 9 1 521 512
2 523 9 1 523 512
2 997 10 1 1024 997
2 1009 10 1 1024 1009
2 1013 10 1 1024 1013
2 1019 10 1 1024 1019
2 1021 10 1 1024 1021
2 1031 10 1 1031 1024
2 1033 10 1 1033 1024
2 1039 10 1 1039 1024
2 1049 10 1 1049 1024
2 1051 10 1 1051 1024
2 2011 11 1 2048 2011
2 2017 11 1 2048 2017
2 2027 11 1 2048 2027
2 2029 11 1 2048 2029
2 2039 11 1 2048 2039
2 2053 11 1 2053 2048
2 2063 11 1 2063 2048
2 2069 11 1 2069 2048
2 2081 11 1 2081 2048
2 2083 11 1 2083 2048
2 2087 11 1 2087 2048
2 2089 11 1 2089 2048
3 5 3 2 27 25
3 7 2 1 9 7
3 11 2 1 11 9
3 13 7 3 2197 2187
3 23 3 1 27 23
3 29 3 1 29 27
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3 31 3 1 31 27
3 47 7 2 2209 2187
3 73 4 1 81 73
3 79 4 1 81 79
3 83 4 1 83 81
3 89 4 1 89 81
3 229 5 1 243 229
3 233 5 1 243 233
3 239 5 1 243 239
3 241 5 1 243 241
3 251 5 1 251 243
3 257 5 1 257 243
3 421 11 2 177241 177147
3 709 6 1 729 709
3 719 6 1 729 719
3 727 6 1 729 727
3 733 6 1 733 729
3 739 6 1 739 729
3 743 6 1 743 729
3 751 6 1 751 729
3 2141 7 1 2187 2141
3 2143 7 1 2187 2143
3 2153 7 1 2187 2153
3 2161 7 1 2187 2161
3 2179 7 1 2187 2179
3 2203 7 1 2203 2187
3 2207 7 1 2207 2187
3 2213 7 1 2213 2187
3 2221 7 1 2221 2187
5 11 3 2 125 121
5 23 2 1 25 23
5 29 2 1 29 25
5 127 3 1 127 125
5 131 3 1 131 125
5 601 4 1 625 601
5 607 4 1 625 607
5 613 4 1 625 613
5 617 4 1 625 617
5 619 4 1 625 619
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5 631 4 1 631 625
5 641 4 1 641 625
5 643 4 1 643 625
5 647 4 1 647 625
7 19 3 2 361 343
7 43 2 1 49 43
7 47 2 1 49 47
7 53 2 1 53 49
7 331 3 1 343 331
7 337 3 1 343 337
7 347 3 1 347 343
7 349 3 1 349 343
7 353 3 1 353 343
7 359 3 1 359 343
7 907 7 2 823543 822649
7 2357 4 1 2401 2357
7 2371 4 1 2401 2371
7 2377 4 1 2401 2377
7 2381 4 1 2401 2381
7 2383 4 1 2401 2383
7 2389 4 1 2401 2389
7 2393 4 1 2401 2393
7 2399 4 1 2401 2399
7 2411 4 1 2411 2401
7 2417 4 1 2417 2401
7 2423 4 1 2423 2401
7 2437 4 1 2437 2401
7 2441 4 1 2441 2401
7 2447 4 1 2447 2401

11 113 2 1 121 113
11 127 2 1 127 121
11 131 2 1 131 121
11 401 5 2 161051 160801
11 1297 3 1 1331 1297
11 1301 3 1 1331 1301
11 1303 3 1 1331 1303
11 1307 3 1 1331 1307
11 1319 3 1 1331 1319
11 1321 3 1 1331 1321
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11 1327 3 1 1331 1327
11 1361 3 1 1361 1331
11 1367 3 1 1367 1331
13 47 3 2 2209 2197
13 89 7 4 62748517 62742241
13 157 2 1 169 157
13 163 2 1 169 163
13 167 2 1 169 167
13 173 2 1 173 169
13 179 2 1 179 169
13 181 2 1 181 169
13 2153 3 1 2197 2153
13 2161 3 1 2197 2161
13 2179 3 1 2197 2179
13 2203 3 1 2203 2197
13 2207 3 1 2207 2197
13 2213 3 1 2213 2197
13 2221 3 1 2221 2197
13 2237 3 1 2237 2197
13 2239 3 1 2239 2197
13 2243 3 1 2243 2197
17 277 2 1 289 277
17 281 2 1 289 281
17 283 2 1 289 283
17 293 2 1 293 289
19 83 3 2 6889 6859
19 347 2 1 361 347
19 349 2 1 361 349
19 353 2 1 361 353
19 359 2 1 361 359
19 367 2 1 367 361
19 373 2 1 373 361
19 379 2 1 379 361
23 509 2 1 529 509
23 521 2 1 529 521
23 523 2 1 529 523
23 541 2 1 541 529
23 547 2 1 547 529
29 821 2 1 841 821
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29 823 2 1 841 823
29 827 2 1 841 827
29 829 2 1 841 829
29 839 2 1 841 839
29 853 2 1 853 841
29 857 2 1 857 841
29 859 2 1 859 841
29 863 2 1 863 841
31 173 3 2 29929 29791
31 937 2 1 961 937
31 941 2 1 961 941
31 947 2 1 961 947
31 953 2 1 961 953
31 967 2 1 967 961
31 971 2 1 971 961
31 977 2 1 977 961
31 983 2 1 983 961
31 991 2 1 991 961
37 1361 2 1 1369 1361
37 1367 2 1 1369 1367
37 1373 2 1 1373 1369
37 1381 2 1 1381 1369
37 1399 2 1 1399 1369
41 263 3 2 69169 68921
41 1657 2 1 1681 1657
41 1663 2 1 1681 1663
41 1667 2 1 1681 1667
41 1669 2 1 1681 1669
41 1693 2 1 1693 1681
41 1697 2 1 1697 1681
41 1699 2 1 1699 1681
41 1709 2 1 1709 1681
41 1721 2 1 1721 1681
43 1811 2 1 1849 1811
43 1823 2 1 1849 1823
43 1831 2 1 1849 1831
43 1847 2 1 1849 1847
43 1861 2 1 1861 1849
43 1867 2 1 1867 1849
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43 1871 2 1 1871 1849
43 1873 2 1 1873 1849
43 1877 2 1 1877 1849
43 1879 2 1 1879 1849
43 1889 2 1 1889 1849
47 2179 2 1 2209 2179
47 2203 2 1 2209 2203
47 2207 2 1 2209 2207
47 2213 2 1 2213 2209
47 2221 2 1 2221 2209
47 2237 2 1 2237 2209
47 2239 2 1 2239 2209
47 2243 2 1 2243 2209
47 2251 2 1 2251 2209
53 2767 2 1 2809 2767
53 2777 2 1 2809 2777
53 2789 2 1 2809 2789
53 2791 2 1 2809 2791
53 2797 2 1 2809 2797
53 2801 2 1 2809 2801
53 2803 2 1 2809 2803
53 2819 2 1 2819 2809
53 2833 2 1 2833 2809
53 2837 2 1 2837 2809
53 2843 2 1 2843 2809
53 2851 2 1 2851 2809
53 2857 2 1 2857 2809
53 2861 2 1 2861 2809

113 1201 3 2 1442897 1442401
131 1499 3 2 2248091 2247001
163 2081 3 2 4330747 4330561
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Appendix B1

Maple Code

The following code is based on the Maple Code we used in our computation specially
for the ”Medium” range for M .

> PRIME_1 := given;

> PRIME_2 := given;

> with(numtheory);

> generalLevel := 30;

> veryLarge := 2^(18);

> enoughLarge := 15;

> outputFilefp:= fopen("tabel1.txt", WRITE, TEXT);

> fclose(outputFilefp);

> runFilefp:= fopen("runningReport.txt", WRITE, TEXT);

> fclose(runFilefp);

> p1 := PRIME_1;

> p2 := PRIME_2;

> x := log (p1)/ log (p2);

> BOUND := 0;

> reducedLevel := 0;
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> cf := cfrac(x, generalLevel, ’quotients’);

> print(cf);

> for BB from 1 to generalLevel do # BB

> BOUND := nthdenom(cf, BB);

> if (BOUND > veryLarge ) #BOUND

> then

> printf("This BOUND is too BIG = %d > veryLarge = %d \n",

> BOUND, 2^(18) );

> break; #then

> else reducedLevel := reducedLevel + 1;

> end if; #BOUND

> end do; # BB

> printf("Reduced Level is %d \n", reducedLevel );

> for i from 1 to reducedLevel by 1 do #from nthLevel to reduced

> step by very Large #

> #### NEW PART CRITERIA

> Criteria := cf[i+1] - enoughLarge;

> if (signum(Criteria) > -1)

> then

> printf("%d + 1 the partial quotient %d is

> bigger than 14 ", i, cf[i+1] );

> kk:=p1^(nthdenom(cf, i));

> printf("\n\n p1^nthdemum = %d^(%d) \n = kk = %d \n",p1,
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> nthdenom(cf, i), kk);

> tt:=p2^(nthnumer(cf, i));

> printf("\n\n p2^nthnumer = %d^(%d) \n = tt = %d \n", p2,

> nthnumer(cf, i), tt);

> LL := abs ( kk - tt );

> printf("\n\n LL = abs(kk - tt) \n = %d \n", LL);

> RR := sqrt( min(kk, tt ) );

> printf("\n\n RR = sqrt ( min(kk, tt ) ) \n = %g \n", RR);

> printf("\n\n LL - RR %g \n", LL-RR);

> if ( signum(LL-RR) < 0)

> then

> ouputFilefp:= fopen("tabel1.txt", APPEND, TEXT);

> fprintf(outputFilefp, "p1 = %d a = %d p2 = %d b = %d ",

> p1,nthdenom(cf, i), p2, nthnumer(cf, i));

> fprintf(outputFilefp, " abs(%d - %d) = abs(%d) = %d ", kk, tt,

> abs(kk-tt), LL);

> fprintf(outputFilefp, " sqrt(%d) = %g \n ", min(kk,tt), RR);

> fclose(ouputFilefp);

> end if; # signum(LL - RR) < 0

> end if; #criteria

> end do; #i reducedLevel for n-th denum nth numer
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> runFilefp:= fopen("runningReport.txt", APPEND, TEXT); #betterthan

> binary

> fprintf(runFilefp, "We’ve done check prime pair (%d %d) \n", p1,

> p2);

> fclose(runFilefp);
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Appendix B2

Running Sample

We attach a sample running result for the Maple Code in Appendix B with special
the case p1 = 43 and p2 = 1013.

PRIME 1 := 43

PRIME 2 := 1013

[GIgcd, bigomega, cfrac, cfracpol, cyclotomic, divisors, factorEQ, factorset,
fermat,
imagunit, index, integral basis, invcfrac, invphi, issqrfree, jacobi, kronecker,
λ,
legendre, mcombine, mersenne, migcdex , minkowski , mipolys , mlog , mobius ,
mroot , msqrt , nearestp, nthconver , nthdenom, nthnumer , nthpow , order , pdexpand ,
φ, π, pprimroot , primroot , quadres , rootsunity , safeprime, σ, sq2factor , sum2sqr ,
τ, thue]

generalLevel := 30

veryLarge := 262144

enoughLarge := 15

outputFilefp := 0

runFilefp := 0
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p1 := 43

p2 := 1013

x :=
ln(43)

ln(1013)

BOUND := 0

reducedLevel := 0

cf := [0, 1, 1, 5, 3, 1, 94, 3, 10, 4 , 1, 10, 5, 3, 3, 2, 2, 83, 1, 8, 19, 1, 1,
3, 3, 2, 1, 24, 2, 4, 4,
...]

[0, 1, 1, 5, 3, 1, 94, 3, 10, 4, 1, 10, 5, 3, 3, 2, 2, 83, 1, 8, 19, 1, 1, 3, 3, 2, 1, 24, 2, 4, 4, ...]

BOUND := 1

BOUND := 2

BOUND := 11

BOUND := 35

BOUND := 46
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BOUND := 4359

BOUND := 13123

BOUND := 135589

BOUND := 555479

This BOUND is too BIG = 555479 > veryLarge = 262144

Reduced Level is 8

Criteria := −14

Criteria := −14

Criteria := −10

Criteria := −12

Criteria := −14

Criteria := 79

6 + 1 the partial quotient 94 is bigger than 14
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p1^nthdemum = 43^(4359)

= kk =
1945350546965597461267744209398273250646028240711581661547099348267840
3609808039190805551699238710442124964225107349991785325168154812514416
6295184488546311653873678583979723756599484431149855457616853602364356
6403002633859621041054448265850800949938813711695288000239724941836812
3660459924116117217586380417184745114439582656571416390079931319321085
2118946940700411796928518914321838267987668566375970936959079563825117
2036096342280287183897799809832551747339889090000811108566929704171583
4639545168814200326125370732480615392486228938632406346105795996100592
7171190414679741657515720110103808669882451956620909154369578324665962
0161721367674182154620435227153673702590682680404454503247205341770685
6222295355667980560565418462351020128795752152078126376627555826924426
1222708517738999367683339867381054501851579367864435403528227057806683
8362732223783436159089966551118629512830185880967969999339854067749419
2742095149872550723501668396982787920711589778017485964133738237954276
9770850305734105675555292343346352343366622603512967756748291911918936
1288523964273933744584645809981563221983802067811884579598652362534765
2725092366080614750897778764071878704141828556694878309775008755763907
1190241194883720350664524331251814588670008469145377848952743374682873
1850239979273812374548605097611667549119155255879203019673675620384252
1125405706238020180983318695134031075151558541449805632695220022725749
5365972446683819981099759379675312993750813100795683111978025924480171
3095000179386949706874770089279713924123179774681212504940286170951507
3899744524817140453249121001979422088992751741278481578005652116718728
0450663412516080773405456628884898119953798909153621727818696051097348
6979047298488501764041947002853753530163544004200014854903858077378597
5516699034808932407328533525409864257866513236552317904559302751622744
0037920659057050227565069325524128068692231744705835447349980457004226
3827193986014915603544394308481536591333697871442696957151611615772212
9530765770826862555526447316191270074296179960812385303472828051884308
3731828548405213978432331796932169681455567380347273086662986106557495
4197611034827577116631842010592019636008021717674255065383253643612315
8607604585531173247523951544253310973225940370700024029833279417826975
2349773686142277108337769199299177153694596339793867349054635376504764
9841542263255359672739549739428841880817574977059693809020513999091661
9416626567405629419361001761382153102330803087871806175928005888054632
9512384405722412968558889574389583774491994690500385778779256232839204
8776299804688101277101598569897851246400917457770691076826110872046895
2915875190558690661183581799371265410702292913560307519218337280514548
4575009941521931240271131681418712233145606421769993250627661687394304
3641259616229688242720495831618826808445657233723035736623853836651597
1766798152196859725337598090123258874944629208017935634843354731343783
0350272119354762738075418052956640382229011451340577525153141055761439
7799940334520434434401399769011701416027726523531223657977704639065209
0103222855691168579636236792110855488129174922809419356069936973408999
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8574768412663188853335677626105609260169496113385299594665215352707494
6215877701597275068340974298559267714708108850350014404036124420168552
7600141990314174141702307710503577065505045144379232366982577492784441
4275513953590598534666201323004742834230748946245486735426684730317134
5942918087482140719304745711268694305711895327634808830921655413470207
3815271837335838958248025395509618074629817015759704819883169828434362
7353840692342543236556855847224659840769681840327943630845886549999332
3218230177264120283922500856527562610442959299225811421284575476531505
0239517693829899650006076844660058004393720886619945165643330907756189
9644069469763970457030538857928840121798647201813709410846834431507245
0281936975403995572665986546599776771561316789281208408381338236810545
3585708399209858777032301315285907638015654450148963790769387356347652
0910882020601791025688130073703155820658429767510346543663900796077291
4123501916397365654699121632611221239491979070545576430689636814435175
2218615995114863062685413214020248153997357027425826182075219557017677
7462794120278161250755154269503104394672446705599535532886035479735454
5898626999538506567304957933403121191128056826041685654587514672166002
9263811291600466131689936947576851626828688573895677299587019352723113
3260531432634595799334011189701097047207446678382919274880859241145010
9707541474646032338744605503910500176498273479950871117411091598370055
9412080825080705589692602872190846919177988740398153084698528448706680
3594063949681590402010712476631535104320944324541830860404899682846935
5361243330224402106609727388329433837736752956988424025033617574189913
3282884687754874001279857730103377025012611479728083925826453169314709
9774018989418318014821201386015759998337060341031888494229919931755060
1624101015223423355188893578067594843703863249438300472612941869499722
5898403258639786443267658197147969585587350775433863808233108320905320
6634744460435482007960137725126886948018516884631155312258223406564806
3019139762021274611030451009792656914540873358908882155433072884373511
3389183915371046135793080072359449332766342654493604846963542682893654
2495169863658631400546122421451250200728502387473821128124113793698379
0490284169807180517150822331575759933804124362130910537707078749873154
7638501545415058731278221101716719994484909060636706994867947602943852
3458485318449112296910798134873766124826646953178998187462633922133974
1529651067580120571866580132196143511103127687199443927105583758804087
0415519634660886006965014640502936868521856069941646550786785444573540
4765029442257980424031526772891867316817995305338748436611233135232368
9049915000655607437873031608388287038730143783004663111805227498901088
0379672035191663271841978173892862427108466732933385669710312975252518
3411873970805273536953534259222300297150361178573360499010917127865459
2982133975430159019587660470646143530137965732633655176411215887386215
4530934424608313983194782646059119597290793762218950641607637390114990
6717007695944704311570208989833474006603113559570363052773459889412436
2351775255265471704565586489918530304621175551900989432538332860820929
8325560622929645050607214385733509202298777505741365661296016461601222
9670109426389920021469620046507795331517297667799528074972919765477539
3050960374585486815945176111184468485249894927811860210747133251585671
1542795343088854850947156648906591074124566134939711651532689033768502
6836418330880564915819233828973882889352320351584019471720138857741362
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4792122414871453512612753601389964495104109800459114214336990524462823
0930381778764375116824431400481630924279320168025707852553686643388631
2376147010746933648539813786285013535228641255592181707845698711189247
6565488976655243602134586018342456528813767530258448047354595587303145
1336638056463289622897355191785385391614096155138868256636787064601700
0141503812941842197070800142499710271179777329390984915409145844787275
1545964345010097255477925366134818746798144302260080833284787458198444
5421334061259934014790119256105458838866195510119000239735474017828214
922944552360218939261896240708905066587188974271907

p2^nthnumer = 1013^(2369)

= tt =
1944357226269164679897750981689865790619836834498690045927205930194194
8008369761927153225625067338855917425826409456777525480466840878615794
8234744647925005092520043177122150321513620563436758817162335905092500
3988855692076535654125535357772383253567342237449917330821642626030821
4668211369813031644840803369299466306918594105271579462501176075663174
9756623568933641683761241070059505577274473440454569960042879032674585
9097315961658599308056581714390933969386969788253919289750560553692662
9860731552286200507465919533310946523043712754264253400156170982356211
3754957452457497229240784777453192891715230474506336459974532488100688
3869992013727866848478994351608072823564344906854665062991219426202750
4655870281589947922661402286327987295412576264603649353301608180157125
5110400518200694804287010419771486440836474972057074772649058149030910
6842812382159839682197152071143573729223262794735939322755726805490618
4206032620863604699056855440106987835713557047110538339955384402669812
9471663338242152838045049053651369901731227386098740594170139418934719
4973333222183511194472508622718590915878016208327299518861184619590155
0847570865177762679306648894304425986244040147305895890693593766278477
3659500590806334175729362315585326393463435873615105792395756007702193
9498132039570698601814394971849812055051877972547283356285159664807436
4289329540420410715831292946122537090811701372357781925313248455345494
5577473971589152004761058493671475616048724979282208763253871078059698
0280257082573601602172302089233769167181060696406822271602037549025982
6588422223446349800940005712222258145315923300019469792691220519001147
5646593009463058504342724441662742330160271180912877101677975556996776
4785905836051109152786859015479427247422412453362534180837625091533177
1565776474250193909901268661860570330283218139226604155532247700046709
3755923780504795898898028742526501436595457428832028051987024756083994
7772659399667763037378356771984319921079864117037786622830015569536926
6878808643442427761268826092756490719651278694348555952991191491254455
9166760960467841837481359776423949038662259482407976340722610792872891
1565719984275061092824580175700947102145158612086522348136440760368456
0127370754013809193391168664809643563743602047382522481001778181053651
2623567478671424585950247875829427093059900630313007573775646702101271
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4480710424532678731482857026976034508126458907121338838397680188894583
4302926087315953927239598299603956686028530884138658913790410878079660
2500949778429480979877554474542161536063865051091661162104530398256578
5479438017594941881859347832060067323883991708123122030830297674966424
9209190806391206935653633493845631159926215925688794048300671097926163
8524174617576617273368286498700211049263337697869039290074335481222559
3588912858320405855871005477455372636917515285367659179585766444500472
5238002192338835108860544931816130827398211953375423227443229546969098
3611176012372648028923776491077409560789701844900616900833990252651586
7345463693538736947798484397481919413310752927670901218465259004631981
5447395290512160371380286421700923892617462632360698566285026004376421
5980685769356148334253143998637776278059901989594014896717367601643873
7106428912064314679780270840522829992015709553854973750586195805745076
6836336729113452866711064258302805719741992992555542169489342935946571
6658286646381459507739143101658497108728112745665616334547783571472012
6436970515895937321410522141534656864557827278957511777461773332889151
8444503272383683621825897563272308424120816477460838900412613671623271
0363567480165778264897326345635764038464953792647833788049163000397539
6641790484325926959686257441625143914862597828097946032987746282429181
0239804508483326735163887688047616992455523929716743383867678048622416
1479035179618648465402045331327291222057488553413968832001698374962825
7300290895783347514801826492429116251725779109168198066877102329005541
7574501336689964461268098401743211632095734939637413464767978005924967
6348272127401843415354005227424898137471483343721728084011581318235310
1076798067369207837209103881794065392452369922943237623928552835167304
6202102667172170482844441820542523643958186814477005672205578355201307
5611559480483001426015733339009334100896620779010077646206031029371635
7882238337807058142722294322004209575989024155017718883637617120131282
4457868345449482789860276638165777928288353441189491636023786288094283
3448462369224539470614315831837181927198838115907496607796064508836108
9836127584845558610878820480860040584362236299480689428228457079713280
4842492504294905471298768126132994579297350472341050689440285006893122
6476055803859029767481186885000036645877722474536680607895808233486001
4821336017693610336415347256074952418351448655543544313350932649422885
2848606585576998814941112494047335091348854915063346790578544916864788
9398048703089516406408148795027677548274325449662855482558247425255412
2599031754376752040809928579160322499113149561967703551225489809094511
5939276687088987933908471893731573928160523850279455665106094215810983
9003042335109317433561875016440257577157545515843889470050778413015161
1368034105491092427617493007286263405364769960877130443208701054223036
7014213394736784079289534973266777819164913850208381724069506316869198
0199492622508229064669354624548329381918997339856133519031279277049761
0135528563662768023686693966662317731035604205974268270776939652855996
9222627807429553156314870731486723528484281884523320389974046410259105
2983833138408015421852503183193063224106064628937340297430955917491756
2907310196322809611602618021093106043304564051693397222147965820258782
0815519081118695364846468885414827254912660312659347268503675116685981
5210908311493773527366374815006887221448162936863569012760483637968875
2095806730836134096766698789705832014984130112368123758183381749494555
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4070517955869696847238116783951994070369962686507236099494160139595621
6435025304347001488653568276552675388809319892230803927717606356553954
2433277514636358678797851697331201949407933944894023134195740802301178
4091603554058438698373171515201649072148586004930034996787653941127459
7192608250294354078562006657788036397969967774661277932266622031115515
9400252549439072430443143382603492098931674023236386902907974616587770
9220135435008196299593869832659493682412681077160643544588708746379305
6362953340593755713824447559295345677924552787131192458970242621765629
8109596589909462839526308988337950654624815253822649615312563419776980
4823879820774236873674917655783903516801526693270890289770873611613704
3467317846242676165313689762293323461516390653854802854007907073979336
2770940287551134416650719913350151210976037296180711128798408281495484
2601057406360614289537703998133809315692079952884764912158455718610064
2782453920835487339701483003603993095318276260139553697221533447043934
3458313160946315759591645976212441992088821531507532913036652013934765
0470771669212563360881348785987643535977724009506533514864750579848162
7858022974379748498262931682597897743367726526175074064089887937040326
3555655532331464669875134843890998773641290925066437408391722403171037
9834718528559025186240831372294787817293557274285385258577422994195489
373953799454328657838773111826736919970212908451573

LL = abs(kk - tt)

=
9933206964327813699932277084074600261914062128916156198934180736455601
4382772636523260741713715862075383986978932142598447013139338986218060
4398406213065613536354068575734350858638677130966404545176972718562414
1469417830853869289129080784176963714714742453706694180823158059908992
2485543030855727455770478852788075209885512998369275787552436579102362
3233717667701131672778442623326907131951259214009769162005311505312938
7803806216878758412180954416177779529193017468918188163691504789204778
8136165279998186594511991696688694425161843681529459496250137443813416
2329622222444282749353326506157781672214821145726943950458365652736291
7293539463153061414408755456008790263377735497894402559859155679351566
4250740780326379040161760230328333831758874744770233259476467673006112
3079995383045633963294476095680610151043958073606308791689087757731519
9198416235964768928144799750557836069230862320306765841272622588008536
0625290089460244448129568758000849980327309069476241783538352844640299
1869674919528375102432896949824416353952174142271625781524929842166315
1907420904225501121371872629723061057858594845850607374677429446101877
5215009028520715911298697674527178977884093889824190814149894854297530
7406040773861749351620156664881952065725955302720565569873669806792352
1079397031137727342101257618554940672772833319196633885159555768156836
0761658176094651520257490114939843398571690920237073819715673802549788
4984750946679763387008860038373777020881215134743487241548464204732814
7430968133481047024680000459447569421190782743902333382486219255247311

89



3223013707906523091152897571639436768284412590117853144315977175804804
0704030530222690627321872221557897935277282407446261407204941005722193
1414624373926112550879873743262827411315508374806740662329858454203950
9225605587384974272648635492939275832950973257137490270550515760346281
9968785522543286670405829976266320967743158738073953629557009202316054
5345863471525661660375364972166702538337544049103343215960462352862651
9571273844347942576212234347793546449012664638293504816365606298524565
0675879373721409509720205082206427933078979392967459403753136846042631
8910505525160238072618348910725338628631055877327172468128832438598480
2338315173640541327828794436674094823383233175015488315012367733239726
2062074708525223875213234697500606346957094808597752789886744034935360
8318387226809412566927124528073726911160699383549706228338101970785113
7004800896754921214034617781964163022722037331472621375950099749727011
4346272929319886813350998474222384281296394087246166747258345826263296
8617870931593952422507378377839225169257496475690459958131970804703706
6843841674837255299483055256342507760769878715134709176661825883846050
8353239453139669028451827185011838822687239009539605533262061717450052
3467579092823868494903541634541715281419483553765570380873921511246528
7959598580246164770531583071280475464172546425124074001251843746846739
0961069821147091516415618792308214393096064399606243191508031098530454
4766409816974866029153715297820027169735958603224395124456344332274655
8275651790082082559503704099315955117122904487207897849109690325782594
0826433070405190825336274678329821095941237912846979478477510636209109
4487895329603885607034580364377226923992964950406534499286144234760763
8052612007212749912434522007713457630521518236901974932345568378697617
2273072091390269270582213462457255026362005798704008789011588451219505
9475715862033978942235697340374411540680486772970534598820805810555370
7685649521553364221278322373096505090005382988659194705561568110916990
2732121767649716595295015888958023047280476801098427967235496017926576
4396929381933242362434149024186955803614711278653882968291941023239999
7131853465729148421891566124410119381969569032017817756528591337738165
0342901453219916284935266015488997411586483997405788451360565444192981
6460796206480578641600541706605198355376801130103415042359078050036011
2070625198943157642029135426960059199195105115503260014093504226844562
6098931999476103341248462782576831869464237886184596523194778419813046
7038490281578174900177508171558470396091476023388067610839792678706016
5133279426925798409713934777245100391702129488205098696412018163701851
2346397951598247394209304937702937758259265894578866800044503638188016
3886617314484245826636113989116151390326710239667709498975520347204805
9429461509833418296603094110736985403351327061856635632330646288299812
0690634100563287196953578639151200086085624754226670847947323089019871
4138898004737278657850230504595921360371804701816891826345186567754569
5883207858001183938347460578523398806382680571023952582434418135577118
0081458225606345295255916314984584432218500051502525090914493609340539
9073125307917701943801322544814193853043014448797116826849247670280434
2781021778751863387452360560419336637565646647371352479082524499210375
9702863288016084130525909880824500627348913690330116716725064996479025
0692608466713143789649989072723445907136874705969213874520604052109959
1265715507985093591863034163956574268269251544081431270141050943367631
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7021253261645743982627086866293708609713687872658422074449935496451651
1056565301821834129580025063935091761033980317517122243718301504746374
9705206342620565035450990926715136014288042852231228940363660244562295
6772411504023358767677969029208188095050476176876090928345166486180354
7556061444124934641283649134422027685201561566422669301390970171578415
8737379855055749633503702299964660006271761133866048939011926847470474
6521800410968750582949516807029007205823242416578900316780046422178622
3408712573109602639621111030374677985636355060467049576179385453049600
0005535421906421185457550881096136091957572822992822831103278875589554
1211307642068966651519578849800953698323684751794238507494972634936954
1082698194733411063328186824550237460136706365393536218457494065326309
1540793219664246038613899408683567385040464261495702161528356568966976
8486664582720482999659826696249083410412863425565712933107713115050548
8564607938003407898087733149415807300317877396320422154750850850370439
3308705498752848216111308574705251422077572889156448199834489875309524
3994456503502330082023320454376086331457849090851205068378582969202951
5227058263992741224431073150382056895015286646025296303582442331589105
4251879214487510133445530740155198860964285807221167073077152219173307
1560857961643076451724872124496535927448806683356160026771437119094941
3637846760239764188671228465178306250796739892105954345698318086906718
9155223146179772722389931226875573230394416688213617618154221547983369
1004846378887505055440666805594278359296977292166177122317837620262021
1821273203190959620336880398132841280725042784030855385822429673388329
3243724037608272867274023478216085872402151409429403952309247785669593
6930899114463088383307826810204399103649954526280106241652641453133107
1758157089278425429400421300145367249459987509151343179435733683800865
8663872507262620160064057977418556363721456323347417720364847535372283
4808385620936988078684599018125278120508032159108513192579077469487990
3088126786325856027905222438199731568533771936434248930650550274065586
6155327009088285492878838106710215726382358336149811580510236327255489
90752905890281423123128882168146616976065820334

RR = sqrt ( min(kk, tt ) )

= 1.39440e+3560

LL - RR 9.93321e+7116

Criteria := −12
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Criteria := −5

runFilefp := 1

41
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