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Abstract

In this thesis, we introduce the intersperse coloring problem, which is a gen-
eralized version of the hypergraph coloring problem. In the intersperse coloring
problem, we seek a coloring that assigns at least ℓ different colors to each hyper-
edge of the input hypergraph, where ℓ is an input parameter of the problem.

We show that the notion of intersperse coloring unifies several well-known col-
oring problems, in addition to the conventional graph and hypergraph coloring
problems, such as the strong coloring of hypergraphs, the star coloring problem,
the problem of proper coloring of graph powers, the acyclic coloring problem, and
the frugal coloring problem.

We also provide a number of upper and lower bounds on the intersperse coloring
problem on hypergraphs in the general case. The nice thing about our general
bounds is that they can be applied to all the coloring problems that are special
cases of the intersperse coloring problem.

In this thesis, we also propose a new model for graph and hypergraph prop-
erty testing, called the symmetric model. The symmetric model is the first model
that can be used for developing property testing algorithms for non-uniform hyper-
graphs. We also prove that there exist graph properties that have efficient property
testers in the symmetric model but do not have any efficient property tester in
previously-known property testing models.
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Chapter 1

Introduction

One of the reasons that the graph coloring problem has become one of the most
interesting and popular combinatorial problems is its power to model other prob-
lems of different kinds. This means that, in many cases, solving other problems
reduces to solving special cases of the graph coloring problem. For instance, the
graph coloring problem can be used in scheduling, frequency assignment, register
allocation, printed circuit board testing, pattern matching, and analysis of biologi-
cal and archaeological data [78]. Our goal in this thesis is to generalize the graph
coloring problem so that it can be used to model a wider range of problems.

Intuitively, the graph coloring problem is the problem of finding a color assign-
ment for vertices of a given graph such that every edge of the graph is colored
by two different colors (or simply is bicolored). Such a coloring is called a proper
coloring. We want to find a proper coloring that uses the minimum number of
colors. This minimum, for a graph A, is denoted by χ(A). A more general problem
is the hypergraph coloring problem; hypergraphs, also known as set systems, are like
graphs except that edges of a hypergraph, which are called hyperedges, can have
more than two vertices. Again, in the hypergraph coloring problem we want to find
a proper coloring, which is a color assignment for vertices of a given hypergraph
such that every hyperedge is colored with at least two different colors. In the inter-
sperse coloring problem, the generalized problem that we propose, we extend the
condition of being bicolored to being colored by at least ℓ colors, where ℓ is a part
of the input. If a hyperedge has a vertices, where a < ℓ, we want it to be colored
with a different colors, since it cannot get more than a colors. Such a coloring is
called an ℓ-intersperse coloring and the minimum number of colors required in an
ℓ-intersperse coloring of a hypergraph N is denoted by χℓ(N). Figure 1.1 illustrates
a 3-intersperse coloring of a hypergraph N . In Figure 1.1, the hypergraph N has
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Figure 1.1: An example of an intersperse coloring where ℓ = 3.

three hyperedges of sizes two, three, and five. Since the coloring, with colors 1, 2,
and 3, shown in Figure 1.1 assigns three different colors to hyperedges E1 and E3

and two different colors to E2, it is a 3-intersperse coloring.

In this thesis, in addition to studying the intersperse coloring problem on gen-
eral hypergraphs, we also consider this problem on special families of hypergraphs.
Copy hypergraphs, which are first defined in this thesis, are hypergraphs that are
constructed based on a graph A and a family of graphs B: the B-copy hypergraph of
A consists of the vertex set of A and a hyperedge for the vertices of every subgraph
A′ of A that is isomorphic to a graph in B, where by isomorphic we mean A′ can
be made identical to a graph in B by renaming the vertices of A′. For example,
in Figure 1.2, the {C3, C4}-copy hypergraph of A has three hyperedges, because A
has two subgraphs that are isomorphic to C3 and one subgraph that is isomorphic
to C4, where Ci is a cycle of length i.

For simplicity, we denote the problem of finding an ℓ-intersperse coloring for
the B-copy hypergraph of A with minimum number of colors by SC(A,B, ℓ), where
SC stands for Subgraph Coloring. There are several coloring problems that can be
viewed as special cases of SC(A,B, ℓ), and thus the intersperse coloring problem.
Therefore, this thesis opens a new line of research by unifying several coloring
problems. Below, we list a number of coloring problems that can be viewed as
special cases of the intersperse coloring problem.

Perhaps, beside the graph and hypergraph coloring problems, the most straight-
forward special case of intersperse coloring is the strong hypergraph coloring prob-
lem [3], which is the problem of finding a coloring of vertices of a given hypergraph
such that every two vertices that are in the same hyperedge get different colors.
Hence, it can be viewed as an instance of the intersperse coloring problem in which
ℓ is the size of the largest hyperedge.

2
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Figure 1.2: Part (b) illustrates the {C3, C4}-copy hypergraph of the graph in part
(a).

Agnarsson and Halldórsson introduced the strong hypergraph coloring problem
and developed online algorithms for this problem [3]. Also, they proved that every
hypergraph N with m hyperedges can be strongly colored by at most r

√
m colors,

where r is the size of the largest hyperedge in N .

A special case of the intersperse coloring problem of copy hypergraphs is the
problem of P k-coloring of graphs, where P is a family of graphs, i.e. a graph
property, and k is an integer [21, 47]: in the P k-coloring problem one seeks a
vertex coloring of the given graph such that the subgraph induced by each color
class has graph property P . Brown and Corneil considered P k-coloring of graphs
for the case in which P is the set of all graphs that have no induced subgraph
isomorphic to any graph in B. In other words, they want to find a vertex coloring
of the input graph with k colors such that the subgraph induced by any color class
does not have any subgraph isomorphic to a graph in B. Therefore, the above-
mentioned problem is equivalent to finding a 2-intersperse k-coloring of the B-copy
hypergraph of the input graph, i.e. SC(A,B, 2).

Star coloring [38] is another example: in star coloring, first introduced by Fertin,
Raspaud, and Reed [38], we need to find a proper coloring of a given graph A such
that no path of length three in A is bicolored. Thus, the star coloring problem
is equivalent to SC(A, {P1, P3} , 3), where Pi is a path of length i. Fertin et al.
used χs(A) to denote the minimum number of colors required for this purpose and
they called it the star chromatic number of A. Fertin et al. found the exact value
of χs(A) for trees, cycles, complete bipartite graphs, and 2-dimensional grids [38].
Also, they provided bounds for star chromatic numbers for some other families of
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graphs.

The main technique for obtaining lower bounds in the work of Fertin et al. [38]
is bounding the number of edges in the graph induced by any pair of colors. It
can be observed that the graph induced by any pair of colors should be a forest,
because

1. a cycle of length three cannot be properly colored with two colors, and

2. a cycle of length more than three has a path of length three, and thus, by the
star coloring condition, cannot be properly colored with two colors.

Thus, the graph induced by any pair of colors cannot have many edges. Using
this observation, they bound χs(A) from below. In Chapter 4, we generalize this
method to obtain a lower bound for the intersperse chromatic number of copy
hypergraphs. Fertin et al. also used a probabilistic method for proving an upper
bound on the star chromatic number of bounded degree graphs. Hence, because of
the probabilistic nature of the proof, their theorem is not constructive, i.e. they do
not give a polynomial-time algorithm for finding the coloring itself. Also, Wood [84]
investigated the star chromatic number of subdivisions of a general graph A: the
subdivision of a graph is obtained by replacing each edge with a path of length two.

As another example, we consider proper coloring of the ith powers of graphs: the
ith power of a graph A, denoted by Ai, has the same vertex set and for each u and
v an edge between u and v is in Ai if and only if the distance between u and v in A
is at most i. There are many papers on coloring graph powers [1, 2, 10, 66, 68, 82].
Coloring the ith powers of graphs is similar, but not equivalent, to a special case
of SC(A,B, ℓ) where B = {Pi} and ℓ = i+ 1, because if we color the ith power of
a graph properly, then every pair of vertices at distance at most i in the original
graph is assigned two different colors. In particular, every pair of vertices on a
path of length i in A is assigned two different colors in any proper coloring of Ai.
Hence, if c is a proper coloring of Ai, then c assigns i + 1 different colors to the
vertices of any path of length i in A. Thus, χi+1(N) is at most χ(Ai), where N
is the {Pi}-copy hypergraph of A. However we can not say that χ(Ai) is always
equal to χi+1(N). The reason is that dist(u, v) ≤ i does not necessarily imply that
u and v are contained in a path of length i. They may be in a shorter path. A
counterexample is illustrated in Figure 1.3. A3 is a complete graph and cannot be
colored with fewer than six colors, but the four-coloring of A illustrated in Figure 1.3
assigns four colors to any path of length three, and hence, the P3-copy hypergraph
of A, N , has a 4-intersperse coloring with four colors. The problem of coloring
the ith power of A is equivalent to SC(A, {P1, P2, . . . , Pi} , i+ 1), because if there

4
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Figure 1.3: On the left a 4-intersperse coloring for the P3-copy hypergraph of A is
shown. The graph on the right is the third power of A.

is an edge between u and v in Ai, then u and v are in a path of length k, where
1 ≤ k ≤ i, in A, and hence, a solution for SC(A, {P1, P2, . . . , Pi} , i+ 1) will assign
two different colors to u and v.

We start looking at previous results on the problem of coloring graph powers by
considering a result of Alon and Mohar [10]. Alon and Mohar have shown that for
graphs A with girth less than seven, χ(A2) can be as large as (1+o(1))∆2(A), where
the girth of A is the length of shortest cycle in A, and ∆(A) is the maximum number
of edges that share a single vertex in A. They have also shown that for graphs with

girth at least 3k + 1 the value of χ(Ak) is θ( ∆2(A)
log ∆(A)

) [10]. The complicated part of

their result is obtaining the lower bound for χ(A2). For this purpose, they use a
probabilistic argument to show that there exists a graph A with large girth and low
degree such that A2 contains no independent set of size Ω( n

∆2(A)
log ∆(A)). Since

in any proper coloring the set of vertices with the same color forms an independent

set, the chromatic number of A2 must be Ω( ∆2(A)
log ∆(A)

).

For planar graphs, Agnarsson and Halldórsson have proved that χ(Ak) is
O(∆⌊k/2⌋(A)). They have also proposed a 2-approximation scheme for finding χ(A2)
where A is a planar graph [2]. They introduce a technique called the contraction
technique to solve the problem of coloring squares of planar graphs. Contracting an
edge in A, intuitively, is the process of putting the two ends of the edge E ∈ E(A)
on each other to make them one vertex; the resulting graph is denoted by A/E.
Therefore, after one edge contraction the number of vertices of the graph decreases
by one. By contracting an edge in a planar graph we will obtain another planar
graph. In the method of Agnarsson et al. [2] they find two neighbors u ∈ V (A)
and v ∈ V (A) such that their contraction does not increase the maximum degree
of the graph, and then they solve the problem for the smaller graph A/ {u, v}.

5



Such an edge always exists in maximal planar graphs with ∆ ≥ 11; a maximal
planar graph is a planar graph A such that no edge can be added to A without
violating the planarity. For planar graphs that are not maximal, they find a maxi-
mal supergraph and use the technique on the supergraph. We refer the interested
reader to the paper by Agnarsson and Halldórsson [2] for more details. Molloy
and Salavatipour improved this result and obtained a 5/3-approximation scheme
for finding the chromatic number of the square of a planar graph [68].

Our fifth example is the problem of acyclic coloring [45]; acyclic coloring of a
graph A is a proper coloring of A such that the subgraph induced by any two color
classes is acyclic. In other words, any cycle of A gets at least three different colors.
The minimum number of colors needed in an acyclic coloring of a graph is called
its acyclic chromatic number. Hence, the acyclic coloring problem is equivalent to
SC(A,B, 3), where B =

{
P2, C3, C4, . . . , C|V (A)|

}
and Ci is a cycle of length i.

Acyclic coloring has been largely studied since 1973 and the acyclic chromatic
number of several families of graphs such as planar graphs [20], d-dimensional
grids [36], graphs of maximum degree three [45], and graphs of maximum degree
four [23] has been determined. For general graphs, Fertin and Raspaud showed
that there is a polynomial-time algorithm that, for any given graph A, can find an
acyclic coloring of A with at most ∆(A)(∆(A)−1)

2
colors [37].

The problem of frugal coloring [50] can be viewed as a special case of SC(A,B, ℓ);
a β-frugal coloring of a given graph is a proper coloring such that at most β neigh-
bors of each vertex are of the same color. Frugal coloring is useful in total coloring,
in which the goal is to find a color assignment to vertices and edges of a graph so
that adjacent vertices, edges that have a vertex in common, and an edge and its two
end-vertices have different colors. Also, frugal coloring is used in channel-allocation
schemes in multi-channel multi-radio wireless networks [51, 71].

To see the relation between the frugal coloring problem and the intersperse
coloring problem, note that a frugal coloring of A assigns at least three colors to
any subgraph of A isomorphic to Sβ+1, where Sβ+1 is the star graph on β+2 vertices,
shown in Figure 1.4. Also, any proper coloring that assigns at least three colors to
any subgraph of A isomorphic to Sβ+1 is a frugal coloring of A. Consequently, the
problem of finding a β-frugal coloring with the minimum number of colors for A is
equivalent to SC(A, {P1, Sβ+1} , 3).

For general graphs, Hind et al. proved that any graph A has an O(log5 ∆(A))-
frugal coloring with ∆(A) + 1 colors and one such coloring can be found in polyno-
mial time [51]. Pemmaraju and Srinivasan improved this result and showed that A

has an O( log2 ∆(A)
log log∆(A)

)-frugal coloring with ∆(A) + 1 colors [71]. For a triangle-free

6
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Figure 1.4: A star graph on β + 2 vertices.

graph A, Pemmaraju and Srivinasan proved that A has an O(log2 ∆(A))-frugal

coloring with O( ∆(A)
log∆(A)

) colors [71].

Probably, the most important contributions of this thesis are introducing the
intersperse coloring problem on general hypergraphs and on copy hypergraphs. As
mentioned above, the intersperse coloring problem on copy hypergraphs has several
well-known coloring problems as its special cases. Thus, the problem we define in
this thesis unifies many coloring problems. In this thesis, our main goal is to obtain
results that work for all instances of the intersperse coloring problem. However,
we also consider two special cases in Subsection 4.2.2 and Chapter 5. The precise
problem definition and related terminology are presented in Chapter 2.

In addition to introducing the above-mentioned problems, our other contribu-
tion is to provide a number of general upper and lower bounds on the intersperse
coloring problem on hypergraphs and copy hypergraphs. Our general bounds can
be applied to any coloring problem that is a special case of the intersperse coloring
problem. For example, Theorem 3.1.2, which works for any instance of the inter-
sperse coloring problem, gives a better upper bound for the strong coloring problem
than the upper bound of r

√
m by Agnarsson and Halldórsson in the special case of

hypergraphs that have few large hyperedges. In Chapter 3 we will show how our
result can be applied to the strong coloring problem in more detail. To prove the
main theorem of Chapter 3, we use probabilistic methods and give an existential
proof for an upper bound on the minimum number of colors needed in an intersperse
coloring of a general hypergraph. We show that this theorem “almost” matches the
known results on proper graph and hypergraph coloring. Then, we derandomize
our method and give a polynomial-time algorithm to find such a coloring.

Chapter 4 is devoted to studying the intersperse coloring problem of copy hyper-
graphs. We obtain upper bounds and a lower bound for general copy hypergraphs.

7



Then, as a special case of our problem, we investigate SC(A, {P2} , 2), where A is
a graph. For this case, we investigate the property testing framework, and propose
a revised model, called the symmetric model. We prove that checking whether a
graph has a path of length two as an induced subgraph can be done with constant
number of queries.

In Chapter 5 we study the proper hypergraph coloring problem for a special
family of hypergraphs, called “geometric hypergraphs”, introduced by Smorodin-
sky [76]. We obtain the first non-trivial bounds for a conjecture proposed by
Smorodinsky [76] regarding the chromatic number of a family of geometric hy-
pergraphs.

Finally, in Chapter 6 we briefly summarize our results and propose a number of
open questions.

8



Chapter 2

Preliminaries

In this chapter, we introduce the basic notation, definitions, and terminology needed
for reading this thesis.

2.1 Hypergraphs

Hypergraph theory is an important area in discrete mathematics and computer
science; a pair N = (V, E) is called a hypergraph where V is a finite set and E ⊆ 2V

is a family of subsets of V . The rank of a hypergraph N is r if the largest set E ∈ E
is of size r. We call N a k-uniform hypergraph if every set E ∈ E is of size k. Also,
a hypergraph N is called uniform if it is k-uniform for some integer k. A 2-uniform
hypergraph is called a graph. Each element in V (resp. E) is called a vertex (resp.
a hyperedge).

Throughout this thesis, all hyperedges are of size more than one. We call a
hyperedge of size two an edge. We use V (N) and E(N) to denote the set of vertices
and the set of edges of hypergraph N . For every vertex v ∈ V , the degree of v
is defined as the number of hyperedges that include v, and is denoted by dN(v).
Also, we use δ(N) and ∆(N) to denote the minimum degree and the maximum
degree among the vertices of N . A family of hypergraphs is called bounded degree
if there exists an integer k such that ∆(N) is at most k for any hypergraph N in
that family.

Hypergraphs are one of the most general structures on a set. A hypergraph N
can also induce some substructures on a subset of V (N). The following are the
definitions of two kinds of substructures of a hypergraph.

9



Definition 2.1.1. Suppose N = (V, E) and N ′ = (V ′, E ′) are two hypergraphs
(graphs). Then, N ′ is called a subhypergraph (subgraph) of N if V ′ ⊆ V and E ′ ⊆ E .

Definition 2.1.2. Suppose N = (V, E) is a hypergraph. If U is a subset of V ,
then (U, {E ∩ U : E ∈ E , |E ∩ U | > 1}) is called the hypergraph induced by U and
is denoted by N [U ]. Also, the hypergraph strictly induced by U is defined as
(U, {E : E ∈ E , E ⊆ U}) and is denoted by NJUK.

For more information on hypergraphs we refer the reader to a book by Berge
on this topic [18].

There are numerous problems that can be considered on hypergraphs. The
next section is devoted to defining the hypergraph problems that we consider in
this thesis.

2.2 Problem Definition

In this thesis, we study the problem of finding proper colorings for hypergraphs.

Definition 2.2.1. A vertex coloring (or simply a coloring) of N with k colors
is a mapping c from V (N) to {1, 2, · · · , k}. If all vertices of a hyperedge of N
are assigned to the same number, then that hyperedge is said to be monocolored.
Moreover, a hyperedge whose nodes have exactly two colors is called bicolored.

Definition 2.2.2. A coloring c of a hypergraph N is a proper vertex coloring (or
simply a proper coloring) if there is no monocolored hyperedge in N . We call N
k-colorable if it has a proper coloring with k colors. The minimum value of k for
which N is k-colorable is called the chromatic number of N and is denoted by χ(N).
Furthermore, for any coloring c of N , we say the hyperedge E ∈ E(N) is properly
colored if E is not monocolored.

Note that any proper coloring c of N with k colors partitions V (N) into k
disjoint sets C1, C2, . . . , Ck, where Ci is the set of vertices of N that are colored
with i. We call C1, C2, . . . , Ck the color classes of c. Since c is a proper coloring of
N , there is no hyperedge E ∈ E(N) such that E ⊆ Ci for some 1 ≤ i ≤ k. Subsets
of V (N) with this property are called independent sets; more precisely, a subset
U of V (N) is an independent set if and only if there is no hyperedge E ∈ E(N)
such that E ⊆ U . Thus, c can be viewed as a partitioning of V (N) into k disjoint
independent sets.

10



One method for proving a hypergraph N is k-colorable is to show that the
minimum degree of all its strictly induced hypergraphs are at most k − 1. We
call such a hypergraph a (k − 1)-degenerate hypergraph. Using a simple proof by
induction, one can prove that a (k − 1)-degenerate hypergraph is k-colorable [83].

Lemma 2.2.3. ([83]) Every (k − 1)-degenerate hypergraph is k-colorable.

Proof. If there is no vertex in the hypergraph, it is obviously k-colorable; otherwise,
the hypergraph has a vertex v with degree at most k − 1. We eliminate v and
hyperedges containing it, color the smaller hypergraph with k colors, then add v
and hyperedges containing v, and assign a color from {1, 2, . . . , k} to v such that
all hyperedges containing v have at least two different colors. It is possible because
there are at most k − 1 hyperedges containing v.

The method of coloring the vertices that was used in the proof of Lemma 2.2.3
is called the greedy coloring algorithm. We will generalize the greedy coloring algo-
rithm in Chapter 4. The following is a direct result of Lemma 2.2.3 [83].

Corollary 2.2.4. ([83]) For every hypergraph N , we have χ(N) ≤ ∆(N) + 1.

Proof. For every U ⊆ V (N), the maximum degree of NJUK is at most ∆(N).
Therefore, N is ∆(N)-degenerate, and hence, according to Lemma 2.2.3, N is
∆(N) + 1 colorable.

In this thesis, we propose a generalized version of Definition 2.2.2:

Definition 2.2.5. A coloring c of a hypergraph N = (V, E) is an ℓ-intersperse
coloring if every hyperedge E ∈ E is ℓ-full colored, that is, E is assigned at least
min {ℓ, |E|} different colors. We call N ℓ-intersperse k-colorable if it has an ℓ-
intersperse coloring with k colors. The minimum value of k for which N is ℓ-
intersperse k-colorable is denoted by χℓ(N) and is called the ℓ-intersperse chromatic
number of N .

Note that the problem of finding an ℓ-intersperse coloring is a generalization of
the problem of finding a proper coloring because χ(N) = χ2(N). We define the
intersperse coloring problem as the problem of finding an ℓ-intersperse coloring for
N , when N and ℓ are input parameters, that uses χℓ(N) colors. In the rest of this
chapter we discuss different ways of attacking this problem.
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2.3 Classes of Hypergraphs

As will be discussed in more detail in Chapter 3, finding an ℓ-intersperse coloring for
a given hypergraph N that uses as few colors as possible is hard from the algorithmic
point of view. Thus, it is natural to consider special families of hypergraphs. We
have already defined two families of hypergraphs: bounded-degree hypergraphs and
uniform hypergraphs. In this section we define more families of hypergraphs that
will be examined in this thesis. However, we first, briefly, define a number of classes
of graphs that will be used. For more details on the following definitions please refer
to a standard textbook on graphs, such as the one by West [83].

Before we list a number of hypergraph families, we define the following two
graph families, that will be used many times through out this thesis.

An n-vertex graph A is a complete graph, denoted by Kn, if {u, v} ∈ E(A) for all
distinct vertices u, v ∈ V (A). Moreover, a complete subgraph of a graph is called a
clique.

An n-vertex cycle, denoted by Cn, is an n-vertex graph A that has n edges
E(A) = {{v1, v2} , {v2, v3} , . . . , {vn, v1}}, where {v1, v2, . . . , vn} is the set of vertices
of A. A graph A has a cycle if it has a subgraph isomorphic to a cycle.

2.3.1 Acyclic Hypergraphs

Probably one of the simplest families of graphs is the family of acyclic graphs
defined below:

Definition 2.3.1. An acyclic graph is a graph that has no cycles. A tree is a
connected acyclic graph.

The following is a well-known property of acyclic graphs [83].

Observation 2.3.2. Every acyclic graph with at least one edge has a degree-one
vertex.

Since every subgraph of an acyclic graph is again an acyclic graph, we can
repeatedly remove a degree-one vertex and the edge containing it from an acyclic
graph until we are left with a graph with no edges. On the other hand, if a
graph has a cycle, then the edges of the cycle will never be removed if we remove
only degree-one vertices. Hence, another characterization of acyclic graphs is the
following.

12



Observation 2.3.3. A graph A is acyclic if and only if after removing degree-one
vertices from A, until no more degree-one vertex removal is possible, A has no edges.

Kuper [61] used the characterization of acyclic graphs stated in Observation 2.3.3
to define acyclic hypergraphs:

Definition 2.3.4. ([16]) A vertex v of a hypergraph N is called an isolated vertex
if it is in only one hyperedge. The Graham reduction of N is obtained by doing the
following steps, in any order, until it is no longer possible:

1. Delete an isolated vertex v ∈ V (N).

2. If E1 ⊆ E2 for two hyperedges E1, E2 ∈ E(N), delete E1.

Finally, N is called an acyclic hypergraph if its Graham reduction has at most one
hyperedge.

Note that, if N is a graph, isolated vertices are exactly leaves of the graph. Note
that the Graham reduction of a hypergraph is unique, because

1. an isolated vertex will remain an isolated vertex, and

2. if E1 ⊆ E2, then E1 will remain a subset of E2 until we remove E1.

Examples of an acyclic hypergraph and a non-acyclic hypergraph are shown in
Figure 2.1. The hypergraph N in Figure 2.1 is acyclic because we can remove
vertices and hyperedges in the order 〈v3, v2, E1, v1, E2, v4, E3〉. Acyclic hypergraphs
have many other definitions that are equivalent to Definition 2.3.4 [17]. They play
an important role in the design of database schemes [16, 17, 64, 65].

Acyclic graphs are known to be 2-colorable [83]. This can be generalized to
uniform acyclic hypergraphs.

Theorem 2.3.5. Suppose N is an r-uniform acyclic hypergraph and 1 ≤ ℓ ≤ r is
an integer. Then, there is an ℓ-intersperse ℓ-coloring for N .

Proof. We use induction on the number of hyperedges plus the number of vertices:
if N has at most one hyperedge, then the theorem is trivial.

Assume that the theorem is true for all uniform acyclic hypergraphs whose
number of vertices plus the number hyperedges is at most k, where k ≥ 1. Also,
suppose that N is an r-uniform acyclic hypergraph and |V (N)| + |E(N)| = k + 1.

13
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(b)

Figure 2.1: The hypergraph N on the left is an example of an acyclic hypergraph,
while the hypergraph O on the right is not acyclic.

If there is a hyperedge E1 ∈ E(N) that is a subset of another hyperedge, we can
remove E1 and we are done by induction. Otherwise, since N is acyclic, we know
that by removing all isolated vertices of N we will find a hyperedge E that is a
subset of another hyperedge F of N . Therefore, all vertices of E − F are isolated
vertices. The hypergraph N ′ = (V (N)−(E−F ), E(N)−{E}) is r-uniform, acyclic,
and has |V (N ′)| + |E(N ′)| ≤ k. Thus, N ′ has an ℓ-intersperse ℓ-coloring c. Since
the vertices of E − F do not appear in any hyperedge in E(N) − {E} and so, no
matter how we alter the color of vertices of E − F , c will remain an ℓ-intersperse
coloring for N ′. Since N is r-uniform, |E − F | = |F − E|; thus, we can assume
u1, u2, . . . , ud and v1, v2, . . . , vd are the vertices of E − F and F − E respectively,
where d = |E − F | = |F − E|. We define a new coloring c′ which is equal to c on
every vertex of N except the vertices in E − F . For the vertices in E − F we set
c′(ui) = c(vi). Consequently, c′ will be an ℓ-intersperse coloring for N ′, and the set
of colors assigned to E by c′ will be exactly the set of colors assigned to F . This
means that c′ is an ℓ-intersperse ℓ-coloring for N .

The special case in which N is 2-uniform and ℓ = 2 is the above-mentioned
2-colorability property of acyclic graphs.

2.3.2 Neighborhood Hypergraphs

In this section, we consider a family of hypergraphs that is used to model the
“neighborhood relations” in graphs. In general, a hypergraph can be used to rep-
resent certain substructures of a given graph: for each subset of the vertices of the
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Figure 2.2: A graph A with its neighborhood hypergraph N .

input graph that has a specified structure or property, we build a hyperedge. The
following is a detailed example.

Definition 2.3.6. Suppose A = (V, E) is a graph and v ∈ V is a vertex of A. The
neighborhood of v, denoted by ΓA(v), is the set of all vertices that have an edge
to v, i.e. ΓA(v) = {u ∈ V : {u, v} ∈ E}. The closed neighborhood of v, denoted
by Γ+

A(v), is defined as ΓA(v) ∪ {v}. The neighborhood hypergraph of A is the
hypergraph N = (V, E ′) with vertices V and hyperedges E ′ = {Γ+

A(v) : v ∈ V }.

Figure 2.2 illustrates a graph together with its neighborhood hypergraph.

Definition 2.3.6, or concepts similar to Definition 2.3.6, are considered by differ-
ent researchers. To the best of our knowledge, the above definition was introduced
by Chastel et al. for the first time [24]. They studied the problem of coloring hyper-
edges of a given neighborhood hypergraph. We refer the reader to their paper [24]
for more details.

As another example, see the paper by Fomin et al. [39]. Fomin et al. used neigh-
borhood hypergraphs to develop an algorithm for finding the “domatic number”,
which is defined below, of the input graph [40, 39].

Definition 2.3.7. Suppose that A = (V, E) is a graph. A dominating set in A is
a subset D of V such that every vertex v ∈ V −D has a neighbor in D. In other
words, for every vertex v ∈ V , D ∩ Γ+

A(v) is not empty.

The domatic number of A is the maximum number k such that V can be parti-
tioned into k disjoint dominating sets.
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By an easy argument, we show that finding the domatic number of a graph A
is a special case of the problem of computing χℓ(N), where ℓ is an integer and N is
a neighborhood hypergraph. Assume that the neighborhood hypergraph of A is k-
intersperse k-colorable, where k ≤ δ(A)+ 1. Then, each color class is a dominating
set in A. Therefore, the domatic number of A is at least k. On the other hand, if
the domatic number of A is at least k, then there exists a partitioning of V (A) into
k disjoint dominating sets D1, D2, . . . , Dk. Therefore, if we assign the vertices of Di

to the ith color, each closed neighborhood Γ+
A(v) will have at least one color from

each of the k color classes, for every v ∈ V (A). Thus, the neighborhood hypergraph
of A is k-intersperse k-colorable. So, we have the following property.

Observation 2.3.8. The domatic number of a graph A is at least k if and only if
k ≤ δ(A)+1 and the neighborhood hypergraph of A is k-intersperse k-colorable.

One can generalize the concept of neighborhood and obtain the following defi-
nition.

Definition 2.3.9. Suppose A = (V, E) is a graph and u and v are two distinct ver-
tices of A. A path of length n between u and v is a sequence of vertices a0, a1, . . . , an

such that a0 = u, an = v, ai 6= aj if i 6= j, and for all 0 ≤ i < n {ai, ai+1} ∈ E .
The distance between u and v in A is n if there is a path of length n between u
and v and there is no path of length less than n between them. We denote the
distance between u and v in A by dist(u, v). The neighborhood of radius r of v,
denoted by ΓA(v, r), is the set of all vertices of distance at most r to v. The closed
neighborhood of radius r of v, denoted by Γ+

A(v, r), is defined as ΓA(v, r) ∪ {v}.
The neighborhood hypergraph of radius r of A is the hypergraph N = (v, E ′) with
vertices v and hyperedges E ′ = {Γ+

A(v, r) : v ∈ V }.

A similar generalization of a dominating set of a graph A leads to the concept of
r-distance dominating sets: an r-distance dominating set is a subset D of V (A) such
that Γ+

A(v, r)∩D is not empty, for every v ∈ V (A) [49]. Naturally, the r-distance
domatic number of a graph A can be defined as the maximum number k such that
A has k disjoint r-distance dominating sets. Finding distance dominating sets and
the distance domatic number of graph have applications in networks [35], facility
location problems [74], and other areas. We refer the reader to work by Simjour [74]
for more details on the problems related to the distance domatic number problem.

Analogous to Observation 2.3.8, it can be shown that finding the r-distance
domatic number of a graph is a special case of finding the maximum number of
colors k such that the neighborhood hypergraph of radius r of the input graph has
a k-intersperse k-coloring.
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Figure 2.3: Two graphs A and B, and the B-copy hypergraph of A, N .

2.3.3 Copy Hypergraphs

In this subsection, we introduce another family of hypergraphs which are similar to
neighborhood hypergraphs in the sense that they both represent certain substruc-
tures of a graph. For a given graph A, we can build a hypergraph in this way: we
look at every subset U of V (A) and we add U as a hyperedge if A[U ] has a subset
of a “special shape”. In order to define what we mean by a “special shape” we need
the following definition.

Definition 2.3.10. Suppose that N and O are two hypergraphs. An isomorphism
between N and O is a bijection c : V (N) 7→ V (O) such that E ∈ E(N) if and
only if {c(u) : u ∈ E} ∈ E(O). N and O are called isomorphic if there exists an
isomorphism between N and O.

Intuitively, two hypergraphs (graphs) are isomorphic if we can obtain one of
them from the other one just by renaming its vertices.

Definition 2.3.11. The B-copy hypergraph of A, where A is a graph and B is
a connected graph, is the hypergraph with vertices V (A) and hyperedges E =
{U ⊆ V (A) : B is isomorphic to a spanning subgraph of A[U ]}. Similarly, the B-
induced copy hypergraph of A is the hypergraph with vertices V (A) and hyperedges
E = {U ⊆ V (A) : B is isomorphic to A[U ]}.

So, intuitively, the B-copy hypergraph of A has a hyperedge for every subgraph
of A that has a copy of B in it.

Figure 2.3 shows an example of a copy hypergraph.
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The following is a generalization of Definition 2.3.11.

Definition 2.3.12. The B-copy hypergraph of A, where A is a graph and B is a
family of connected graphs, is the hypergraph with vertices V (A) and hyperedges
E = {U ⊆ V (A) : ∃B ∈ B such that B is isomorphic to a spanning subgraph
of A[U ]}. Similarly, the B-induced copy hypergraph of A is the hypergraph with
vertices V (A) and hyperedges E = {U ⊆ V (A) : ∃B ∈ B such that B is isomorphic
to A[U ]}.

So, if B contains only one graph B, the B-copy hypergraph of A is equal to
the B-copy hypergraph of A. The same argument is true for B-induced-copy hy-
pergraph and B-induced-copy hypergraph. Thus, from now on, we only consider
Definition 2.3.12.

Note that if the input contains A and B, and not the copy hypergraph itself,
there exists no polynomial-time algorithm for computing the B-copy hypergraph
or the B-induced-copy hypergraph of A, unless P = NP. If B consists of only
one graph, the above-mentioned problem is known as the subgraph isomorphism
problem [42]. Hence, the NP-hardness of the subgraph isomorphism problem [42]
is also valid for the problem of computing the B-copy hypergraph or the B-induced
copy hypergraph of A. In particular, note that the {Pn−1}-copy hypergraph of an
n-vertex graph A, where Pn−1 is a path of length n− 1, has one hyperedge of size
n if and only if there is a path in A that goes through all the vertices of A. This
problem is known as the Hamiltonian Path Problem and is NP-complete [42]. Also,
the {Km}-induced-copy hypergraph of an n-vertex graph A, where Km is a complete
graph with m vertices, has at least one hyperedge if and only if A has a clique of
size m. This problem is known as the Clique Problem and is NP-complete [42].

Therefore, when we are talking about finding an algorithm for a problem on a (an
induced) copy hypergraph N , it is important that the input is the full representation
of N , or A and B on which N is constructed. We call the latter representation the
base representation of N . Moreover, we call (A,B) a base of N .

We will look at the above-mentioned issue, together with the problem of finding
intersperse colorings for copy hypergraphs, in Chapter 4.

2.3.4 Geometric Hypergraphs

Another family of hypergraphs that we are going to study in this thesis is one
introduced by Smorodinsky [76]:
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Figure 2.4: Part (a) shows a set of 2-dimensional boxes; part (b) illustrates the
corresponding geometric hypergraph.

Definition 2.3.13. Suppose R is a set of k-dimensional regions, where by a k-
dimensional region we mean a subset of R

k. The (geometric) hypergraph induced
by R is defined as the hypergraph NR = (R, E) where E consists of exactly those
subsets S of R for which there exists a point that is in every region in S and no

region in R− S. In other words, E =
{

S ⊆ R :
⋂

R∈S R−
⋃

R6∈S R 6= ∅
}

.

Note that, the geometric hypergraph reduced by R can be also obtained in the
following way: we can draw the Venn diagram of R and take all subsets that are
represented in the Venn diagram as hyperedges. Also, the geometric hypergraph
induced by R, NR = (R, E), is different from the more familiar concept “intersec-
tion graph of R”, which is a graph AR = (R, E ′), where {R1, R2} ∈ E ′ if and only
if {R1, R2} ⊆ E for some E ∈ E .

More restricted families of hypergraphs can be obtained by restricting the set
of regions. A k-dimensional region B is called a k-dimensional box if there exist k
ranges [l1, r1], [l2, r2], . . . , [lk, rk], where li, ri ∈ R, such that B = {(x1, x2, . . . , xk) :
∀1 ≤ i ≤ d xi ∈ [li, ri]}. Moreover, we call li (resp. ri) the left value (resp. the
right value) of the ith range of B. Figure 2.4 illustrates an example of a geometric
hypergraph induced by 2-dimensional boxes. In this example, {R1, R2} forms a
hyperedge, because there is an area that is shared by only R1 and R2. Similarly,
{R1, R2, R3} forms a hyperedge, because there is an area that is shared by only R1,
R2, and R3.

As will be explained in more detail in subsection 5.1, we reduce the problem of
coloring the hypergraphs induced by axis-parallel boxes to a combinatorial prob-
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lem based on permutations. The following definition deals with sets that can be
constructed from permutations in a special way. Suppose we have a set of permuta-
tions {P1, P2, . . . , Pk} on V . Some subsets of V can be obtained by cutting off some
elements from the head of these permutations. For example, if P1 = 〈1, 3, 2, 4, 5〉
and P2 = 〈4, 2, 1, 5, 3〉, we can obtain {2, 5} by eliminating the first two elements
of P1 and the first element of P2.

Definition 2.3.14. Suppose V is a set and P = {P1, P2, . . . , Pk} is a set of k
permutations on V . Then, U ⊆ V is called P-constructible if and only if there exist
k cut-off points a1, a2, . . . , ak (0 ≤ ai ≤ |V |) such that if we eliminate the first a1

elements of P1 from V , the first a2 elements of P2 from V , . . ., and the first ak

elements of Pk from V , the set of remaining elements will be U .

As another example, if V = {v1, v2, . . . , vn} and P consists of only one permuta-
tion P1 = 〈v1, v2, . . . , vn〉, then the set of all P-constructible sets is {V, {v2, . . . , vn} ,
{v3, . . . , vn} , . . . , {vn} , ∅}. If we add P2 = 〈vn, vn−1, . . . , v1〉 to P, then, in addi-
tion to the empty set, every set {vi, vi+1, . . . , vj}, 1 ≤ i ≤ j ≤ n will be P-
constructible because we can eliminate {v1, v2, . . . , vi−1} using P1 and then elimi-
nate {vn, vn−1, . . . , vj+1} using P2. It is easy to see that these are all the possible
P-constructible sets.

A simple way to check if a set U ⊆ V is P-constructible is to search for an
element o that is not in U but in each permutation one of the elements of U is
before o. If there exists such an element, then U is not P-constructible, since we
have to eliminate at least one element from U to be able to eliminate o. Otherwise,
U is P-constructible, because for any element o 6∈ U there is a permutation in
which o is before all the elements of U , and hence, o can be eliminated using this
permutation.

Observation 2.3.15. U ⊆ V is a P-constructible set, where V is a set and P =
〈P1, P2, . . . , Pk〉 is a set of permutations on V , if and only if there is no element
o ∈ V −U such that in each permutation P ∈ P one of the elements of U is before
o. We call such an o an obstacle to U .

Proof. Recall that if U is P-constructible, then there is a set of k cut-off points
a1, a2, . . . , ak such that if we eliminate the first ai elements of Pi for each i, the set
of remaining elements will be U . Therefore, for every o ∈ V − U there exists an i
such that o is in the first ai elements of Pi. Also, no element of U is in the first
ai elements of Pi; otherwise, U would not be the set of remaining elements. Thus,
there is no element o ∈ V − U such that in each permutation P ∈ P one of the
elements of U is before o.
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On the other hand, if there is no element o ∈ V−U such that in each permutation
P ∈ P one of the elements of U is before o, then for every element o ∈ V − U ,
there are integers io and bo such that o is in the both position of Pio and all the
elements of U are after the aith position. Therefore, if we set the k cut-off points
as ai = max {bo : o ∈ V − U and io = i} (if io 6= i for all o ∈ V − U , we can set ai

to zero), the set of remaining elements will be U . Thus, U is P-constructible.

In most cases, we only care about size-two P-constructible sets. We can store
size-two P-constructible sets in a graph: the vertices of the graph are the elements
in V and the edges are P-constructible sets of size two. A more precise definition
is the following.

Definition 2.3.16. We call a graph A a k-permutation-constructible graph (or a k-
PC graph) if there exists a set of k permutations P on V (A) such that {u, v} ∈ E(A)
if and only if {u, v} is P-constructible. We call G the graph constructed on P.

In this thesis, if P is a permutation on V , P is a set of permutations on V , and
U ⊆ V , we use P [U ] to denote the permutation on U induced by P , i.e. x ∈ U is
before y ∈ U in P [U ] if and only if x is before y in P . We also use P[U ] to denote
{P [U ] : P ∈ P}.

2.4 Approaches

We will see in Chapter 3 that, unless P = NP, there is no polynomial-time al-
gorithm for finding an ℓ-intersperse coloring for a given hypergraph that uses as
few colors as possible. In most cases, this remains true if we restrict the input
hypergraph to be from a specific family of hypergraphs. However, there exist other
alternatives to attack an NP-hard problem. One may find a fast algorithm, though
exponential time, for an NP-hard problem. We may also consider polynomial-time
algorithms that can find an answer close enough to the correct answer of the prob-
lem, or that can find the correct answer with high probability. Another way to
deal with these problems is to separate the “hard” part of the input instance and
find an algorithm with fast running time ignoring the portion of the running time
corresponding to the “hard” part of the input. We may change our complexity
measure and try to find algorithms that have fast running times on the majority of
input instances, according to some distribution among the input instances.

In this section, we introduce different approaches that we use.
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2.4.1 Approximation Algorithms

In many situations, we face algorithmic problems in which the goal is to minimize
or maximize a function, not just to decide whether the input is a “Yes” instance
or a “No” instance. For example, the goal of the intersperse coloring problem is to
find an ℓ-intersperse coloring for a given hypergraph that minimizes the number of
colors. This kind of problem is called an optimization problem [81]. The following
is a more precise definition.

Definition 2.4.1. A maximization problem (minimization problem) Π is a triple
(I,Λ, f) in which I is the set of input instances, the function Λ maps every input
instance to a set of possible solutions, and the function f maps every pair of (I, S),
where I ∈ I is an input instance and S ∈ Λ(I) is a solution to I, to a real number.
The goal of a maximization problem (minimization problem) is to find a solution
SI for a given input instance I ∈ I such that f(I, SI) is maximized (minimized)
over all pairs (I, S), for all S ∈ Λ(I). The value of f(I, SI) is denoted by OPTΠ(I).

An optimization problem is either a maximization problem or a minimization
problem.

When finding an algorithm for computing the exact optimal solution of an
optimization problem is hard, it is reasonable to seek an algorithm that returns an
“almost” optimal solution.

Definition 2.4.2. An approximation algorithm for an optimization problem Π =
(I,Λ, f) is a deterministic polynomial-time algorithm A that for every input I ∈ I
A(I) ∈ Λ(I). The approximation ratio of A is

α(n) =







maxI∈I,|I|=n
OPTΠ(I)
f(I,A(I))

if Π is a maximization problem

maxI∈I,|I|=n
f(I,A(I))
OPTΠ(I)

if Π is a minimization problem

·

A is a β(n)-approximation for Π if the approximation ratio of A is at most β(n),
for all integers n.

Finding approximation algorithms for proper coloring of hypergraphs has been
extensively studied [8, 25, 46, 52, 54, 59]. Alon et al. developed an approxima-

tion algorithm with ratio O(n1− 1
r log1− 1

r n) for proper coloring of 2-colorable hy-
pergraphs, where r is the rank of the hypergraph [8]. Note that even checking if a
given hypergraph is 2-colorable is NP-complete [63].
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As for uniform hypergraphs, the latest result is due to Krivelevich and Su-

dakov [59] who developed an approximation algorithm with ratio O(n(log log n)2

log2 n
) for

coloring uniform hypergraphs. Their approach is based on Alon et al.’s generalized
degree reduction technique.

There are also hardness results for approximation algorithms. Krivelevich and
Sudakov extended the well-known inapproximability result on graph coloring [48]
and proved the chromatic number of uniform hypergraphs cannot be approximated
within ratio O(n1−ε), for any ε > 0, unless NP ⊆ ZPP [59], where

ZPP = RP ∩ coRP ,

RP is the class of languages L that can be decided by a polynomial-time proba-
bilistic algorithm A such that A accepts any x ∈ L with probability at least
1
2

and rejects any x 6∈ L with probability 1, and

coRP is the class of languages L such that L ∈ RP .

Also Khot proved that there exists a constant c such that no polynomial-time
algorithm can color a p-colorable 4-uniform hypergraph with O(logcp n) colors, for
any integer p ≥ 7 [54].

In this thesis, we examine approximation algorithms for the intersperse coloring
problem in different hypergraph classes.

2.4.2 Property Testing Algorithms

It is interesting that a number of complicated combinatorial problems can be solved
efficiently when we allow a small probability of error and we require an approxi-
mately correct answer instead of a strictly correct answer. Among the computation
models motivated by the above fact is the property testing model introduced by
Rubinfeld and Sudan [72]. The following is the intuitive definition of property
testing suggested by Goldreich et al. [43]:

Property testing is the study of the following class of problems: given or-
acle access to a function f , we want to probabilistically find out whether
f has a specific property P or it is far from any function that has prop-
erty P .
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This definition is not precise. For example, no method for measuring the distance
between two objects is mentioned. We give a more precise definition later in this
section.

Testing graph properties is a special case of property testing in which the func-
tion f “represents” a graph and the property P is a graph property [43]; a (hy-
per)graph property is simply a set of (hyper)graphs. There are four models for
testing graph properties: the adjacency matrix model [43], the bounded degree in-
cidence list model [44], the unbounded degree incidence list model [70], and the
mixed model [53]. These models differ in the way they define how f “represents”
a graph and how the distance between two graphs is computed. The first model is
suitable for dense graphs, the second and third models are suitable for non-dense
graphs, and the fourth model, which is a combination of the first and the third
models, is suitable for both dense and non-dense graphs. However, all these models
are non-symmetric in the sense that they allow the tester algorithm to “probe” only
vertices, not edges. In fact, some hardness results in the area of graph property
testing are based on this non-symmetry of models.

In this thesis, we generalize the mixed model of Kaufman et al. [53] in a natural
way and propose a symmetric model, suitable for both dense and non-dense graphs,
that allows the tester algorithm to probe vertices and edges. We show that the
symmetric model is more powerful than the mixed model by proving that there
exists a graph property P such that P has a tester algorithm in the symmetric
model that runs in time O(poly(1/ε)), but there is a lower bound of Ω(n1/2) for
the running time of any tester algorithm for P in the mixed model; where n is the
number of vertices of the input graph, and ε is the error bound and is given as a
part of the input. For exact definitions of the terms, refer to Definition 2.4.5.

Another contribution of the symmetric model is the function it uses for com-
puting the distance between two graphs. The advantage of this distance function is
that it can be applied to non-uniform hypergraphs. Moreover, for graphs and uni-
form hypergraphs, it is equivalent to the distance function used in the unbounded
degree incidence list model [70] and in the mixed model [53].

As mentioned above, one of the main differences among different property test-
ing models is the way they define the distance function between two graphs. In
this work, our distance function is a generalization of the one proposed by Parnas
and Ron [70]. They proposed the following distance function between two graphs
N = (V1, E1) and O = (V2, E2):

PRDist(N,O) =
minimum number of edge insertions/deletions needed to convert N to O

|E1|
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Note that PRDist(N,O) is not necessarily equal to PRDist(O,N), and PRDist(N,O)
can be greater than one. Also, to avoid redundant technicalities, we assume that
V1 = V2; for graphs with different vertex sets, we define PRDist(N,O) = ∞. Al-
though the above definition of PRDist works well for graphs, it is not suitable for
non-uniform hypergraphs, because, in the above definition, inserting a size-two hy-
peredge has the same cost as inserting an edge of size n. The following formula is
better because it assigns different weights to different insertions and deletions.

∑

E∈E1△E2

|E|
∑

E∈E1

|E|
(2.1)

where E1△E2 is the symmetric difference between E1 and E2, defined in the following
way:

E1△E2 = (E1 − E2) ∪ (E2 − E1).
Thus, E1△E2 is exactly the set of edges needed to be inserted or deleted to convert
E1 to E2. Note that, due to the definition of PRDist(N,O), PRDist(N,O) is the
minimum number of edge insertions and deletions needed to convert N to O, divided
by the number of edges of N . Therefore,

PRDist(N,O) =
|(E(N)− E(O)) ∪ (E(O)− E(N))|

|E(N)| =
|E(N)△E(O)|
|E(N)| .

Distance function 2.1 still has another drawback: it only considers insertions
and deletions of edges. A more general approach could allow inserting vertices into
edges and deleting vertices from edges, too. Therefore, we take |E1△E2| as the
cost of converting a hyperedge E1 to another hyperedge E2. To formalize the cost
of converting a set of hyperedges E1 to another set of hyperedges E2, we consider
all possible transformations from E1 to E2; a transformation from E1 to E2 is a
relation T ⊆ {E1 ∪ {∅}}× {E2 ∪ {∅}} such that for any E ∈ E1 there is exactly one
pair (E,X) ∈ T and for any E ∈ E2 there is exactly one pair (X,E) ∈ T . Thus,
(E1, E2) ∈ T means that the hyperedge E1 should be converted to the hyperedge
E2. Also, (E1, ∅) ∈ T (or (∅, E2) ∈ T ) means that E1 should be completely deleted
(or E2 should be completely inserted). Then, the cost of converting E1 to E2,
denoted by ψ(E1, E2), is defined to be the minimum of

∑

(E1,E2)∈T |E1△E2| over all
transformations T from E1 to E2. Now, we define our distance function between
two hypergraphs N and O as

SymDist(N,O) =
ψ(E(N), E(O))

∑

E∈E(N)

|E|
.
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For example, if E(N) = {{v1, v2, v3} , {v2, v4}} and E(O) = {{v1, v2, v4} , {v1, v5}},
then SymDist(N,O) = 4

5
, because the optimum transformation is {({v1, v2, v3} , {v1, v5}),

({v2, v4} , {v1, v2, v4})}. Note that SymDist is not a symmetric function. The name
stands for the distance function of the symmetric model.

We generalize the notation of distance functions, PRDist and SymDist, to mea-
sure the distance between a hypergraph and a property:

Definition 2.4.3. IfN is a hypergraph and P is a property, then we use SymDist(N,P )
(resp. PRDist(N,P )) to denote minO∈P SymDist(N,O) (resp. minO∈P PRDist(N,O)).

The following lemma shows that our distance function behaves similarly to
PRDist on graphs.

Lemma 2.4.4. If N = (V, EN) and O = (V, EO) are two 2-uniform hypergraphs,
then PRDist(N,O)/2 ≤ SymDist(N,O) ≤ PRDist(N,O).

Proof. Recall that

PRDist(N,O) =
|EN△EO|
|EN |

.

Consider the transformation T from EN to EO that includes (E1, E2) if E1 = E2,
(E1, ∅) if E1 ∈ EN −EO, and (∅, E2) if E2 ∈ EO −EN . Clearly, ψ(EN , EO) is at most

∑

(E1,E2)∈T

|E1△E2| =
∑

E1∈EN−EO

2 +
∑

E2∈EO−EN

2 = 2 · |EN△EO|.

Hence,

SymDist(N,O) ≤ 2 · |EN△EO|
∑

E∈EN

2
=
|EN△EO|
|EN |

= PRDist(N,O).

On the other hand, suppose that T ∗ is the transformation from EN to EO that
minimizes

∑

(E1,E2)∈T |E1△E2|, i.e. ψ(EN , EO) =
∑

(E1,E2)∈T ∗ |E1△E2|. From the

definition of transformation, we know that T ∗ has at least (|EN | + |EO|)/2 pairs.
Suppose that T ∗ has exactly k pairs (E1, E2) such that E1 = E2. Then, T ∗ has at
least (|EN | + |EO|)/2 − k pairs (E1, E2) such that E1 6= E2. Because each one of
E1 and E2 is either a size-two set or the empty set, if E1 6= E2 then |E1△E2| ≥ 2.
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Therefore, considering the fact that k ≤ |EN ∩ EO|, we have

ψ (EN , EO) ≥ (
|EN |+ |EO|

2
− k)× 2

= |EN ∪ EO|+ |EN ∩ EO| − 2k

≥ |EN ∪ EO| − |EN ∩ EO|
= |EN△EO|.

Thus,

SymDist(N,O) =
ψ(EN , EO)
∑

E∈EN
|E|

≥ |EN△EO|
2|EN |

=
PRDist(N,O)

2
.

We say that a hypergraph N is ε-far from a property P if SymDist(N,P ) > ε;
otherwise, we call N ε-close to P .

Definition 2.4.5. Suppose P is a hypergraph property and C is a class of hyper-
graphs. Then, a hypergraph property tester for P on C in the symmetric model is
a probabilistic algorithm A such that for any hypergraph N = (V, E) ∈ C and any
ordering of V , on input parameters |V |, |E|, and 0 < ε ≤ 1

1. If N ∈ P , A accepts with probability at least 2/3.

2. If N is ε-far from P , A accepts with probability at most 1/3.

Moreover, A is allowed to submit queries of the following forms, for U ⊆ V , v ∈ V ,
and E ∈ E :

1. “Does E contain U?”.

2. “How many edges contain v?”.

3. “How many vertices does E have?”.

4. “What is the ith edge that contains v?”.
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5. “What is the ith vertex of E?”.

The number of queries submitted by the algorithm is called the query complexity
of the algorithm.

Note that in the above definition, the number 1/3 (2/3) does not have any special
property; it can be replaced by any constant less (more) than 1/2. Therefore, in
our model, which will be referred to as the symmetric model, a hypergraph property
tester can submit queries about edges, i.e. query types 3 and 5, called edge queries,
as well as queries about vertices.

The followings are the definitions of existing property testing models. In all the
following definitions, P is a graph property and C is a class of graphs.

Definition 2.4.6. ([43]) A graph property tester for P on C in the adjacency matrix
model is a probabilistic algorithm A such that for any graph A = (V, E) ∈ C, on
input parameters |V | and 0 < ε ≤ 1

1. If A ∈ P , A accepts with probability at least 2/3.

2. If at least εn2 edge modifications are need to convert A to a graph in P , A
accepts with probability at most 1/3.

Moreover, A is allowed to submit queries of the form “Is {u, v} ∈ E?”, for u, v ∈ V .

Definition 2.4.7. ([44]) A graph property tester for P on C in the bounded degree
incidence list model is a probabilistic algorithm A such that for any graph A =
(V, E) ∈ C with maximum degree d and any ordering of V , on input parameters
|V |, d, and 0 < ε ≤ 1

1. If A ∈ P , A accepts with probability at least 2/3.

2. If at least εdn edge modifications are need to convert A to a graph in P , A
accepts with probability at most 1/3.

Moreover, A is allowed to submit queries of the form “What is the ith neighbor of
u?”, for u ∈ V .

Definition 2.4.8. ([70]) A graph property tester for P on C in the unbounded-
degree incidence list model is a probabilistic algorithm A such that for any graph
A = (V, E) ∈ C and any ordering of V , on input parameters |V | and 0 < ε ≤ 1
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1. If A ∈ P , A accepts with probability at least 2/3.

2. If at least ε|E| edge modifications are need to convert A to a graph in P , A
accepts with probability at most 1/3.

Moreover, A is allowed to submit queries of the following forms, for v ∈ V :

1. “How many edges contain v?”.

2. “What is the ith neighbor of v?”.

Definition 2.4.9. ([53]) A graph property tester for P on C in the mixed model is a
probabilistic algorithm A such that for any graph A = (V, E) ∈ C and any ordering
of V , on input parameters |V | and 0 < ε ≤ 1

1. If A ∈ P , A accepts with probability at least 2/3.

2. If at least ε|E| edge modifications are need to convert A to a graph in P , A
accepts with probability at most 1/3.

Moreover, A is allowed to submit queries of the following forms, for u, v ∈ V :

1. “How many edges contain v?”.

2. “What is the ith neighbor of v?”.

3. “Is u connected to v?”.

To give better intuition about the symmetric model, we use the bipartite in-
cidence structure of hypergraphs [75], which is analogous to the incidence list of
classical graphs: the bipartite incidence structure of a hypergraph N = (V, E) con-
sists of |V |+ |E| lists such that each vertex and hyperedge points to a distinct list.
Additionally,

1. The list corresponding to a vertex v ∈ V has dN(v) members. The ith member
is a pointer to the list corresponding to the ith hyperedge that contains v.

2. The list corresponding to a hyperedge E ∈ E has |E| members. The ith
member is a pointer to the list corresponding to the ith vertex of E.
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Therefore, in the symmetric model, we allow the tester to submit queries about the
adjacency matrix (query type 1) and the bipartite incidence structure of the input
hypergraph (query types 2 to 5). Note that in the bipartite incidence structure,
we assumed that an arbitrary order among the vertices and the hyperedges exists.
Thus, the symmetric model is a natural generalization of the mixed model in which
the tester is allowed to submit queries about the adjacency matrix and the incidence
list of the input graph.
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Chapter 3

General Hypergraphs

In this chapter we obtain results for hypergraphs in general. We obtain two types of
results: upper bounds and approximation algorithms. In Section 3.1, we find a num-
ber of general upper bounds for the ℓ-intersperse chromatic number of hypergraphs,
for any integer ℓ ≥ 2. Then, in Section 3.2, we develop a simple approximation
algorithm that colors any q-colorable hypergraph with O( n

lgn
) colors in polynomial

time, for any constant q.

3.1 Upper Bounds

The most general results of this thesis, about the ℓ-intersperse coloring of hyper-
graphs, are presented in this section. We put no limitation on hypergraphs or the
value of ℓ. Naturally, the results are not so strong in the sense that it is possible
to find better results if we put restrictions on hypergraphs or the value of ℓ.

The next theorem uses a probabilistic argument to prove a general upper bound
on the ℓ-intersperse chromatic number of hypergraphs. Later, in Theorem 3.1.5,
we will derandomize Theorem 3.1.2 and present a constructive version. We need
the following notation in Theorem 3.1.2 and Theorem 3.1.5.

Definition 3.1.1. Suppose 0 ≤ α, δ ≤ 1 are real numbers and n is an integer.
Then, p

(α)
n,δ denotes the probability that we observe more than δn − δ heads when

we toss a biased coin n times, where the probability of tossing a head is α in each
single step.

Theorem 3.1.2. Suppose N = (V, E) is a hypergraph and ℓ ≥ 2 is an integer.
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Then, for every integer c ≥ 1,

χℓ(N) ≤ c + c
∑

E∈E

min{|E|,ℓ}−1
∑

i=1

p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

,

where p
(α)
n,δ is defined in Definition 3.1.1.

Proof. We use a probabilistic proof. For each vertex of N , we choose a random
color uniformly from {1, 2, . . . , c}. At this phase, some hyperedges may not be ℓ-
full colored. We call such hyperedges bad hyperedges. We will recolor some vertices
such that at the end there will be no bad hyperedge. Let βE = 1

min{|E|,ℓ}−1
. Instead

of focusing on bad hyperedges, we consider any hyperedge E ∈ E that has more
than βE(|E| − 1) vertices with the same color b for some 1 ≤ b ≤ c. Note that if
a hyperedge E ∈ E has at most βE(|E| − 1) vertices with the same color, then E
has at least min {|E|, ℓ} different colors, because the number of different colors is
at least

|E|
βE(|E| − 1)

=
(min {|E|, ℓ} − 1)|E|

|E| − 1

=
(|E| − 1) min {|E|, ℓ} − (|E| −min {|E|, ℓ})

|E| − 1

= min {|E|, ℓ} − |E| −min {|E|, ℓ}
|E| − 1

> min {|E|, ℓ} − 1.

Since the number of different colors of E is an integer, it is at least min {|E|, ℓ}.
Thus, all bad hyperedges have more than βE(|E| − 1) vertices with the same color.
Consequently, it is enough to make sure that any hyperedge E ∈ E that has more
than βE(|E| − 1) vertices with the same color gets at least min {|E|, ℓ} different
colors.

In the next phase, we fix the coloring of the hyperedges that have more than
βE(|E| − 1) vertices of the same color. For a hyperedge E ∈ E and a color b ∈
{1, 2, . . . , c}, let CE,b be the set of vertices of E with color b. If CE,b has more than

βE(|E| − 1) vertices, we partition CE,b into
⌈

|CE,b|
βE(|E|−1)

⌉

disjoint subsets of sizes at

most βE(|E|−1) and assign a different unused color to each of the first
⌈

|CE,b|
βE(|E|−1)

⌉

−
1 subsets. Clearly, after doing the above-mentioned recoloring procedure for all
hyperedges and all colors, there will be no bad hyperedge.
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To estimate the number of new colors we use the following method. For a
hyperedge E ∈ E , a color 1 ≤ b ≤ c, and a real number 0 ≤ δ ≤ 1, we set the
random variable XE,b,δ to one if E has more than δ(|E| − 1) vertices of color b;
otherwise, we set XE,b,δ to zero. The number of new colors is exactly the sum of
⌈

|CE,b|
βE(|E|−1)

⌉

− 1 over all hyperedges E ∈ E and colors 1 ≤ b ≤ c such that CE,b has

more than βE(|E| − 1) vertices. However, if |CE,b| > βE(|E| − 1), then XE,b,iβE
= 1

for all 1 ≤ i ≤
⌈

|CE,b|
βE(|E|−1)

⌉

− 1 and XE,b,iβE
= 0 for all i >

⌈
|CE,b|

βE(|E|−1)

⌉

− 1. Hence,

we have
⌈

|CE,b|
βE(|E|−1)

⌉

− 1 =
∑min{|E|,b}−1

i=1 XE,b,iβE
. Therefore,

Number of new colors =
∑

E∈E

∑

b s.t. |CE,b|>βE(|E|−1)

(⌈ |CE,b|
βE(|E| − 1)

⌉

− 1

)

=
∑

E∈E

c∑

b=1

min{|E|,ℓ}−1
∑

i=1

XE,b,iβE
.

Since Pr[XE,b1,δ = 1] = Pr[XE,b2,δ = 1] for all 1 ≤ b1, b2 ≤ c, we can simplify the

above formula to c
∑

E∈E
∑min{|E|,ℓ}−1

i=1 XE,1,iβE
. So, the expected number of new

colors is

c
∑

E∈E

min{|E|,ℓ}−1
∑

i=1

Pr[XE,1,iβE
= 1] = c

∑

E∈E

min{|E|,ℓ}−1
∑

i=1

p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

(3.1)

because XE,1,iβE
is one if and only if more than i

min{|E|,ℓ}−1
(|E| − 1) vertices of E

are colored with 1, and we know that each vertex is colored with 1 with proba-

bility 1
c
, by Definition 3.1.1. Thus, XE,1,iβE

is one with probability p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

.

As 3.1 is the expected number of new colors, there exists a coloring in the first
phase for which the number of new colors in the second phase does not exceed

c
∑

E∈E
∑min{|E|,ℓ}−1

i=1 p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

. Hence, the total number of colors will be at

most c+ c
∑

E∈E
∑min{|E|,ℓ}−1

i=1 p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

.

The following corollary will help us understand the impact of Theorem 3.1.2
better.

Corollary 3.1.3. Suppose A is a graph. Then, χ(A) ≤
⌈

2
√

|E(A)|
⌉

.
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Proof. Since a graph is a 2-uniform hypergraph, we can use Theorem 3.1.2 and set
|E| = 2 for all hyperedges and ℓ = 2. Then, for all c ≥ 1 we have

χ(A) ≤ c + c
∑

E∈E(A)

p
( 1

c
)

2,1 .

Therefore, p
( 1

c
)

2,1 = 1
c2

and so χ(A) ≤ c + |E(A)|
c

. We set c =
⌈√

|E(A)|
⌉

and the

corollary follows immediately:

χ(A) ≤
⌈√

|E(A)|
⌉

+
|E(A)|

⌈√

|E(A)|
⌉ ≤

⌈

2
√

|E(A)|
⌉

Corollary 3.1.3 does not give a new result. For example, consider the following
simpler argument: for a proper coloring of A with χ(A) colors and any two colors
1 ≤ i < j ≤ χ(A) there is an edge in A whose ends are colored with i and j;
otherwise, we could color A with χ(A) − 1 colors by merging the color class i
with the color class j. Therefore, A has at least 1

2
χ(A)(χ(A) − 1) edges, which

means χ(A) ≤ 1
2

+
√

1
4

+ 2|E(A)|. On the other hand, this upper bound cannot

be improved substantially in terms of the number of edges, because the chromatic

number of a graph A can be as large as 1
2
+
√

1
4

+ 2|E(A)| if A is a complete graph.

The following corollary is more general than Corollary 3.1.3. It gives an upper
bound on the chromatic number of uniform hypergraphs based on the number of
hyperedges.

Corollary 3.1.4. Suppose N is an r-uniform hypergraph. Then,

χ(N) ≤
⌈

2|E(N)| 1r
⌉

.

Proof. We set ℓ = 2 and |E| = r for all hyperedges in Theorem 3.1.2. Thus, we
have

χ(N) ≤ c+ c
∑

E∈E(N)

p
( 1

c
)

r,1

= c+ c|E(N)|p( 1
c
)

r,1 .
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Thus, p
( 1

c
)

r,1 = 1
cr and χ(N) ≤ c + |E(N)|

cr−1 . We set c =
⌈

|E(N)| 1r
⌉

and the corollary

follows immediately:

χ(N) ≤
⌈

|E(N)| 1r
⌉

+
|E(N)|

⌈

|E(N)| 1r
⌉r−1 ≤

⌈

2|E(N)| 1r
⌉

Again, Corollary 3.1.4 does not give a new result. Kostochka et al. proved a
stronger theorem [57]: they showed that the chromatic number of an r-uniform
hypergraph N is at most

γ · |E(N)| 1r
(ln |E(N)|)

1
r−1

,

where γ is a constant. The also proved that their bound is tight up to a constant
factor. However, they used a complicated probabilistic method and did not mention
whether their method can be turned into a deterministic polynomial-time algorithm

for finding a proper coloring with at most c · |E(N)| 1r
(ln |E(N)|)

1
r−1

colors.

For the strong coloring problem the upper bound obtained by Agnarsson and
Halldórsson is r

√

|E(N)|, where r is the rank of N [3]. However, Theorem 3.1.2
gives a better bound if N has few hyperedges with size close to r. For example,
suppose N has x hyperedges of size r and all the other hyperedges are of size two.
A strong coloring of N is equivalent to an intersperse coloring of N if we set ℓ = r.
Then, using Theorem 3.1.2 we can say that N can be colored with at most

c+ c
∑

E∈E

min{|E|,r}−1
∑

i=1

p
( 1

c
)

|E|, i
min{|E|,r}−1

colors, where c is any integer. Here,
∑min{|E|,r}−1

i=1 p
( 1

c
)

|E|, i
min{|E|,r}−1

is 1
c2

if |E| = 2 and

is
r∑

i=2

(i− 1)

(
r

i

)(
1

c

)i(

1− 1

c

)r−i

≤ (r − 1)
r∑

i=2

(
r

i

)(
1

c

)i(

1− 1

c

)r−i

≤ r − 1

if |E| = r. So, if we set c =
√

|E(N)|−x
xr−x+1

, we get the upper bound of

|E(N)| − x
√

|E(N)|−x
xr−x+1

+

√

|E(N)| − x
xr − x+ 1

· (xr − x+ 1) ≤ 2
√

(|E(N)| − x)(xr − x+ 1),
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which is better than r
√

|E(N)| if x ≤ r
4
.

Below, we prove that Theorem 3.1.2 can be derandomized.

Theorem 3.1.5. There exists a polynomial-time algorithm that, for a given hyper-
graph N = (V, E) and given integers ℓ ≥ 1 and c ≥ 1, computes an ℓ-intersperse
coloring with at most

c+ c
∑

E∈E

min{|E|,ℓ}−1
∑

i=1

p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

colors.

Proof. We use the method of conditional expectations [31, 11], which is a general
method for derandomization, to derandomize the method explained in the proof of
Theorem 3.1.2.

The main idea behind the method of conditional expectations is the follow-
ing: suppose that after a sequence of random choices the expected value of a goal
function is E. Then, in many cases, it is possible to replace the random choices
by polynomial-time deterministic choices such that the expected value of the goal
function after the ith choice, assuming that the remaining choices will be made ran-
domly, does not exceed E. We show that this method can be successfully applied
to Theorem 3.1.2.

Our deterministic algorithm has two phases, analogous to the phases of the ran-
domized algorithm described in the proof of Theorem 3.1.2. We only derandomize
the first phase, as the second phase is already deterministic. For the first phase,
instead of randomly selecting the color of each vertex, we fix an arbitrary order,
and color the vertices in a deterministic way so that the number of new colors in
the second phase is at most

c
∑

E∈E
∑min{|E|,ℓ}−1

i=1 p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

. (3.2)

Suppose 〈v1, v2, . . . , vn〉 is an arbitrary order on V , where n = |V |. We set the
color of v1 to ℓ1 = 1. Suppose we have colored v1, v2, . . . , vt with colors ℓ1, ℓ2, . . . , ℓt,
other vertices are not colored, and we are about to color vt+1. For every hyperedge
E ∈ E and color 1 ≤ b ≤ c, we use f(E, b | ℓ1, ℓ2, . . . , ℓt) to denote the number
of vertices of E that are colored with b given that the colors of v1, v2, . . . , vt are
ℓ1, ℓ2, . . . , ℓt and other vertices are not colored. Again, let XE,b,δ be the event
that the hyperedge E ∈ E has more than δ(|E| − 1) vertices with color b, and
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Pr[XE,b,δ = 1 | ℓ1, ℓ2, . . . , ℓt] be the probability that XE,b,δ = 1 when v1, v2, . . . , vt

are colored with ℓ1, ℓ2, . . . , ℓt and the color of other vertices are chosen independently
and uniformly from {1, 2, . . . , c}. Then,

Pr[XE,b,δ = 1 | ℓ1, . . . , ℓt] =







1 if δ(|E| − 1)− f(E, b | ℓ1, . . . , ℓt) < 0

if δ(|E| − 1)− f(E, b | ℓ1, . . . , ℓt) ≥
0 |E − {v1, . . . , vt} |

if |E − {v1, . . . , vt} | = 1
1
c

and
δ(|E| − 1)− f(E, b | ℓ1, . . . , ℓt) = 0, and

p
( 1

c
)

|E−{v1,...,vt}|,δ′ otherwise

where δ′ = δ(|E|−1)−f(E,b|ℓ1,ℓ2,...,ℓt)
|E−{v1,v2,...,vt}|−1

. There are four cases:

1. In the first case of the above equation, where δ(|E|−1)−f(E, b | ℓ1, ℓ2, . . . , ℓt) <
0, the hyperedge E has more than δ(|E| − 1) vertices of color b among the
first t vertices. So, no matter how the colors of the other vertices are chosen
XE,b,δ is always one.

2. In the second case, where δ(|E|−1)−f(E, b | ℓ1, ℓ2, . . . , ℓt) ≥ |E−{v1, v2, . . . , vt} |
only f(E, b | ℓ1, ℓ2, . . . , ℓt) vertices of E, that are among the first t vertices,
are colored with b and even if all the remaining vertices are colored with b,
XE,b,δ will be zero.

3. In the third case, where E has only one uncolored vertex and it has δ(|E|−1)
vertices with color b, XE,b,δ will be one if and only if the only uncolored vertex
will be assigned to b. Thus the probability that XE,b,δ = 1 is 1

c
.

4. Finally, where 0 ≤ δ(|E| − 1)− f(E, b | ℓ1, ℓ2, . . . , ℓt) < |E − {v1, v2, . . . , vt} |
and E has more than one uncolored vertex, XE,b,δ is one if and only if more
than δ(|E| − 1) − f(E, b | ℓ1, ℓ2, . . . , ℓt) = δ′(|E − {v1, v2, . . . , vt} | − 1) un-
colored vertices of E are colored with b in the process of randomly coloring

vt+1, vt+2, . . . , vn. Therefore, the conditional probability is p
( 1

c
)

|E−{v1,v2,...,vt}|,δ′ .

After coloring the first t vertices, the expected number of new colors in the second
phase of the algorithm is g(ℓ1, ℓ2, . . . , ℓt), where:

g(ℓ1, ℓ2, . . . , ℓm) =
∑

E∈E

c∑

b=1

min{|E|,ℓ}−1
∑

i=1

Pr[XE,b,iβE
= 1 | ℓ1, ℓ2, . . . , ℓm], (3.3)
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Algorithm 1 Finds an ℓ-intersperse coloring for N = (V, E).
Requirement: c ≥ 1.
{Phase One:}

1: ℓ1 = 1.
2: for t = 2 to |V | do

3: ℓt = 1.
4: for b = 2 to c do

5: if g(ℓ1, . . . , ℓt−1, ℓ) < g(ℓ1, . . . , ℓt−1, ℓt) then

6: ℓt = b.
7: end if

8: end for{at this point, ℓt is the color that minimizes g(ℓ1, . . . , ℓt−1, ℓt)}
9: end for

10: tentatively assign ℓi as the color of vi for all 1 ≤ i ≤ |V |.
{Phase Two:}

11: for all E ∈ E do

12: for b = 1 to c do

13: CE,b = set of vertices of E with color b.
14: if |CE,b| > βE(|E| − 1) then

15: partition CE,b into
⌈

|CE,b|
βE(|E|−1)

⌉

disjoint sets with sizes at most βE(|E|−1).

16: assign a different color to each of the first
⌈

|CE,b|
βE(|E|−1)

⌉

− 1 subsets.

17: end if

18: end for

19: end for

and 1 ≤ m ≤ n is an integer and βE = 1
min{|E|,ℓ}−1

.

We assign a color 1 ≤ ℓt+1 ≤ c to vt+1 that minimizes g(ℓ1, ℓ2, . . . , ℓt, ℓt+1). This
can be done in polynomial time if we can evaluate g(ℓ1, ℓ2, . . . , ℓt, ℓt+1) in polynomial
time. Note that

p
(α)
n,δ =

n∑

j=⌊δ(n−1)⌋+1

(
n

j

)

αj(1− α)n−j. (3.4)

Since the value of
(

n
j

)
can be computed in time O(n3) using simple dynamic pro-

gramming [27], p
(α)
n,δ can be computed in polynomial time, using (3.4). Therefore,

we can compute the conditional probabilities in Equation 3.3 in polynomial time.
Hence, we can evaluate g(ℓ1, ℓ2, . . . , ℓt, ℓt+1) in polynomial time, too.

The deterministic algorithm for finding an ℓ-intersperse coloring of N is shown
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in Algorithm 1. After coloring all n vertices, g(ℓ1, ℓ2, . . . , ℓn) is exactly the num-
ber of new colors in the second phase. Also, for all 2 ≤ t ≤ n, ℓt minimizes
g(ℓ1, ℓ2, . . . , ℓt−1, ℓt), as is shown in lines 3 to 8. Since g(ℓ1, ℓ2, . . . , ℓt−1) is the
expected number of new colors after coloring the first t − 1 vertices, it is the av-
erage of g(ℓ1, ℓ2, . . . , ℓt−1, 1), g(ℓ1, ℓ2, . . . , ℓt−1, 2), . . ., g(ℓ1, ℓ2, . . . , ℓt−1, c), and thus,
g(ℓ1, ℓ2, . . . , ℓt−1) ≥ g(ℓ1, ℓ2, . . . , ℓt−1, ℓt). Consequently, g(ℓ1) ≥ g(ℓ1, ℓ2) ≥ . . . ≥
g(ℓ1, ℓ2, . . . , ℓn). Thus, in the second phase, i.e. lines 11 to 19, the number of new
colors, g(ℓ1, ℓ2, . . . , ℓn), is at most g(ℓ1 = 1). On the other hand, g(1) is the expected
number of new colors in the second phase when all vertices are colored randomly.

Therefore, g(1) is equal to Formula 3.2 which is c
∑

E∈E
∑min{|E|,ℓ}−1

i=1 p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

.

Hence, the total number of colors at the end of the second phase of the algorithm
is at most

c+ g(ℓ1, ℓ2, . . . , ℓn) ≤ c+ g(1) = c+ c
∑

E∈E

min{|E|,ℓ}−1
∑

i=1

p
( 1

c
)

|E|, i
min{|E|,ℓ}−1

.

Similar to the greedy coloring algorithm for proper coloring of graphs [83], there
is a simple greedy algorithm that finds an ℓ-intersperse coloring for hypergraphs of
low degree.

Theorem 3.1.6. There exists a polynomial time algorithm that, for a given hyper-
graph N = (V, E) and given integer ℓ ≥ 1, computes an ℓ-intersperse coloring with
at most

max
v∈V

{
∑

E∈E s.t. v∈E

(min {|E|, ℓ} − 1)

}

+ 1

colors.

Proof. Suppose P = 〈v1, v2, . . . , v|V |〉 is an arbitrary permutation of the vertices of
N . We color the vertices of N in |V | steps; in the ith step we color vi. Moreover,
we assign the colors in a way that the following invariant holds at each step, for all
hyperedges E ∈ E :

colorsi(E) + uncoloredi(E) ≥ min {|E|, ℓ} (3.5)

where 1 ≤ i ≤ |V |, and colorsi(E) and uncoloredi(E) are the number of different
colors assigned to the vertices of E and the number of uncolored vertices of E after
the ith step, respectively. Clearly, if the above invariant holds after the final step
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for all hyperedges, then the coloring is a valid ℓ-intersperse coloring, because all
the vertices are colored and thus any hyperedge E ∈ E has at least min {|E|, ℓ}
different colors.

In addition to preserving Inequality 3.5, we choose the color of each vertex from
{1, 2, . . . , k}, where

k = max
v∈V

{
∑

E∈E s.t. v∈E

(min {|E|, ℓ} − 1)

}

+ 1.

We color v1 with 1. This does not violate Inequality 3.5 for any hyperedge E ∈ E ,
because if v1 is in E, then colors1(E) is one and uncolored1(E) is |E| − 1, and
thus, their sum is |E| ≥ min {|E|, ℓ}; otherwise, if v1 is not in E, then the values
of colors1(E) and uncolored1(E) will be zero and |E|, respectively, and thus, their
sum is again |E| ≥ min {|E|, ℓ}.

Suppose that the first i vertices of P are assigned to colors from {1, 2, . . . , k}
and Inequality 3.5 holds for all hyperedges. To assign a color to vi+1, we consider
all hyperedges F = {E1, E2, . . . , Ej} that contain vi+1. Note that colorsi+1(E) =
colorsi(E) and uncoloredi+1(E) = uncoloredi(E) for hyperedges E outside F . Thus,
it is enough to prove that at least one color from {1, 2, . . . , k} can be assigned to
vi+1 such that colorsi+1(E) + uncoloredi+1(E) ≥ min {|E|, ℓ} for all E ∈ F . If for
a hyperedge E ∈ F we have colorsi(E) + uncoloredi(E) > min {|E|, ℓ}, then, no
matter how we color vi+1, Inequality 3.5 will hold for E after step (i+1). However,
if colorsi(E) + uncoloredi(E) = min {|E|, ℓ}, we have to assign a color to vi+1 that
is not used in E before the (i + 1)th step. Since colorsi(E) ≤ min {|E|, ℓ} − 1,
at most

∑

E∈F(min {|E|, ℓ} − 1) colors from {1, 2, . . . , k} cannot be selected as the
color of vi+1. Consequently, because k >

∑

E∈F(min {|E|, ℓ} − 1), there is at least
one color from {1, 2, . . . , k} that can be assigned to vi+1 such that Inequality 3.5
holds after the (i+ 1)th step.

We can simplify the upper bound of Theorem 3.1.6 in terms of the maximum
degree of the input hypergraph.

Corollary 3.1.7. There exists a polynomial time algorithm that, for a given hy-
pergraph N = (V, E) and given integer ℓ ≥ 1, computes an ℓ-intersperse coloring
with at most ℓ∆(N)−∆(N) + 1 colors.
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Proof. We use Theorem 3.1.6:

max
v∈V

{
∑

E∈E s.t. v∈E

(min {|E|, ℓ} − 1)

}

+ 1 ≤ max
v∈V

{
∑

E∈E s.t. v∈E

(ℓ− 1)

}

+ 1

= ℓ∆(N)−∆(N) + 1.

However, if we want to obtain an upper bound on the intersperse chromatic num-
ber of hypergraphs as a function of maximum degree, we can do better than Corol-
lary 3.1.7 in many cases, using a more sophisticated method. In Theorem 3.1.10,
we use the Lovász Local Lemma [30] (or simply the Local Lemma) to obtain an
upper bound on the intersperse chromatic number of hypergraphs. A drawback
of the Local Lemma, and hence Theorem 3.1.10, is that it is not constructive, i.e.
it does not give a polynomial-time deterministic, or even probabilistic, algorithm
to find a coloring with the specified number of colors. Below, we state the Local
Lemma in a general form:

Theorem 3.1.8. The Local Lemma, Asymmetric Case. Suppose that A =
{A1, A2, . . . , An} is a set of events and Γ(Ai) ⊆ A is the set of events that are not
mutually independent of Ai, for all 1 ≤ i ≤ n. Moreover, suppose there are n real
numbers x1, x2, . . . , xn ∈ [0, 1) such that

Pr[Ai] ≤ xi

∏

Aj∈Γ(Ai)

(1− xj)

for all 1 ≤ i ≤ n. Then

Pr[A1 ∧A2 ∧ . . . ∧ An] > 0.

A simple special case of the Local Lemma is the following:

Corollary 3.1.9. Simple Asymmetric Case [67]. Let A and Γ : A 7→ 2A be
the same as in Theorem 3.1.8. Then, if

Pr[Ai] ≤
1

8
and

∑

Aj∈Γ(Ai)

Pr[Aj ] ≤
1

4

for all 1 ≤ i ≤ n, we have

Pr[A1 ∧A2 ∧ . . . ∧ An] > 0.
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We use Corollary 3.1.9 to prove the following theorem.

Theorem 3.1.10. Suppose ℓ ≥ 1 is an integer and N = (V, E) is a hypergraph
with hyperedges of size at least ℓ. Suppose further that each hyperedge in E has
non-empty intersection with at most f(i) hyperedges of size i, and f(i) > 0. Then,
N has an ℓ-intersperse coloring with

⌊

max
ℓ≤i≤|V |

{

2(ℓ− 1)
(
4eℓ−1f(i)

) 1
i−ℓ+1

}⌋

+ 1

colors.

Proof. We color each vertex of N with a random color picked uniformly from
{1, 2, . . . , k}, where

k =

⌊

max
ℓ≤i≤|V |

{

2(ℓ− 1)
(
4eℓ−1f(i)

) 1
i−ℓ+1

}⌋

+ 1.

We use the simple asymmetric case of the Local Lemma to prove that with proba-
bility greater than zero this coloring is a valid ℓ-intersperse coloring. Let AE denote
the event that fewer than ℓ different colors are assigned to the vertices of E.

To bound Pr[AE ] from above, we note that there are
(

k
ℓ−1

)
ways of choosing

ℓ− 1 colors and at most (ℓ− 1)|E| different ways of assigning the chosen colors to
the vertices of E. Hence,

Pr[AE] ≤
(

k

ℓ− 1

)(
ℓ− 1

k

)|E|
.

Since
(

a
b

)
≤ (ae

b
)b for any two integers 1 ≤ b ≤ a,

Pr[AE] ≤
(

ke

ℓ− 1

)ℓ−1(
ℓ− 1

k

)|E|
= eℓ−1

(
ℓ− 1

k

)|E|−ℓ+1

.

We denote the right-hand side of the above inequality by g(|E|), where

g(i) = eℓ−1

(
ℓ− 1

k

)i−ℓ+1

Since AE is independent of AF if E ∩ F = ∅, Γ(AE) can be defined as the set of
events corresponding to hyperedges that have non-empty intersection with E.
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If we prove that g(i) ≤ 1
8
, for ℓ ≤ i ≤ |V |, and

∑|V |
i=ℓ f(i)g(i) ≤ 1

4
, then we can

use Corollary 3.1.9 to complete the proof, because

∑

AF∈Γ(AE)

Pr[AF ] ≤
|V |
∑

h=ℓ

∑

AF∈Γ(AE) and |F |=h

Pr[AF ]

≤
|V |
∑

h=ℓ

∑

AF∈Γ(AE) and |F |=h

g(h)

≤
|V |
∑

h=ℓ

f(h)g(h).

Thus, it is enough to consider the following two steps:

1. Proving that g(i) ≤ 1
8
: since f(ℓ) ≥ 1, we know that k ≥ 8eℓ−1(ℓ − 1).

Therefore,

g(i) = eℓ−1

(
ℓ− 1

k

)i−ℓ+1

≤ eℓ−1

(
ℓ− 1

8eℓ−1(ℓ− 1)

)i−ℓ+1

≤ 1

8

2. Proving that
∑|V |

i=ℓ f(i)g(i) ≤ 1
4
:

|V |
∑

i=ℓ

f(i)g(i) =

|V |
∑

i=ℓ

f(i)eℓ−1

(
ℓ− 1

k

)i−ℓ+1

≤
|V |
∑

i=ℓ

f(i)eℓ−1

(

ℓ− 1

2(ℓ− 1) (4eℓ−1f(i))
1

i−ℓ+1

)i−ℓ+1

=

|V |
∑

i=ℓ

2ℓ−i−3

<
1

4

∞∑

j=1

2−j

=
1

4

The following is a simple corollary of Theorem 3.1.10.
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Corollary 3.1.11. Suppose c ≥ 0 is a constant, ℓ ≥ 1 is an integer, and N =
(V, E) is a hypergraph with hyperedges of size at least ℓ. If each hyperedge in E
intersects with at most 2ci hyperedges of size i, then

χℓ(N) ≤
⌊
8(ℓ− 1)eℓ−12cℓ

⌋
+ 1.

Proof. It suffices to replace f(i) with 2ci in Theorem 3.1.10.

⌊

max
ℓ≤i≤|V |

{

2(ℓ− 1)
(
4eℓ−12ci

) 1
i−ℓ+1

}⌋

+ 1 ≤
⌊
8(ℓ− 1)eℓ−12cℓ

⌋
+ 1.

It is worth mentioning that some effort has been made to derandomize the Local
Lemma [15, 67, 28, 73]. These methods derandomize the Local Lemma if a number
of additional stronger conditions hold. Both Beck’s method [15], which is the first
constructive version of the Local Lemma, and Molly and Reed’s method [67] assume
that the outcome of each event Ai is determined by a set of independent random
trials Ti ⊆ {t1, t2, . . . , tm}. This assumption holds in our case: in Theorem 3.1.10,
the outcome of each event AE is determined by the color of the vertices of E, and
the color of each vertex is chosen uniformly from a domain set. But both methods
assume that the domain of each random trial tj has a constant size, which is not
true in our case: the domain of each random trial in Theorem 3.1.10 is of size k,
which can depend on n.

Czumaj and Scheideler [28] and Salavatipour [73] generalized Beck’s method.
However, they assume that the domain of each random trial has logarithmic size,
which, again, is not true in our case. Therefore, a stronger constructive version of
the Local Lemma is required to derandomize Theorem 3.1.10.

Although the results of this section give good upper bounds for some hyper-
graphs, like bounded degree hypergraphs or hypergraphs with few hyperedges, they
do not guarantee any approximation ratio. In the next section, we develop a sim-
ple approximation algorithm for the problem of proper coloring of non-uniform
hypergraphs.

3.2 Approximation Algorithms

Approximation algorithms for graphs and hypergraphs are studied extensively in
the literature. One active area of research is to find approximation algorithms for
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coloring q-colorable hypergraphs, where q is a constant. Finding a proper color-
ing for a given hypergraph with a small number of colors is hard even if we know
that the given hypergraph is q-colorable: Guruswami et al. [46] showed that there
is no polynomial-time algorithm to color a 2-colorable 4-uniform n-vertex hyper-
graph with Ω( log log n

log log log n
) colors unless NP⊆DTIME(nO(log log n)). Khot [54] proved a

stronger result: for any integer q ≥ 7 there is a constant c such that it is not possible
to color a q-colorable 4-uniform n-vertex hypergraph with (log n)cq colors, unless

NP⊆DTIME(2(lg n)O(1)
). He also proved that it is NP-hard to color a 3-colorable

3-uniform hypergraph with a constant number of colors [55].

On the other hand, there are a number of positive results on approximate color-
ing of q-colorable hypergraphs. Krivelevich et al. [58] developed a polynomial-time

algorithm to color a 2-colorable 3-uniform n-vertex hypergraph with O(n
1
5 ) col-

ors. Also, Alon et al. [8] proved that a 2-colorable n-vertex hypergraph can be

colored in polynomial time with O(n1− 1
r log1− 1

r n) colors, where r is the rank of the
hypergraph.

Note that in the case that the hypergraph is not uniform and can have hyper-
edges of any size (the rank of the hypergraph can be as big as n), none of the
above-mentioned results give a meaningful approximation ratio. The following the-
orem gives a method to approximately coloring a q-colorable n-vertex hypergraph
of any rank.

Theorem 3.2.1. For any constant q, there is a polynomial-time algorithm to color
an n-vertex hypergraph N = (V, E) with O( n

lg n
) colors, if χ(N) ≤ q.

Proof. We know that the vertices of H can be colored with at most q colors such
that every hyperedge has at least two different colors. In other words, V can be
partitioned into at most q disjoint independent sets. Consequently, every subset
U ⊆ V can be partitioned into at most q disjoint independent sets. If the size of U
is at most (q + 1) lgn, then this partitioning can be found in polynomial time by
exhaustive search, because there are at most q|U | ≤ 2(q+1) lg q lg n = n(q+1) lg q ways of
partitioning U into at most q disjoint subsets.

The algorithm is shown in Figure 2. The algorithm first partitions V into n
disjoint subsets of size one. This partitioning is denoted by C0. Note that Ci is
always a partitioning of V into disjoint independent sets. Also, in lines 3 to 8,
at the ith iteration, the algorithm checks if the partitioning Ci−1 contains q + 1
elements C1, C2, . . . , Cq+1 such that

∑q+1
j=1 |Cj| ≤ (q + 1) lgn. There are two cases:

1. For every q + 1 elements C1, C2, . . . , Cq+1 ∈ Ci−1,
∑q+1

j=1 |Cj| > (q + 1) lgn: in
this case, at most q elements of Ci−1 have sizes less than lg n. Thus, because
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Algorithm 2 Finds a proper coloring for a q-colorable hypergraph N = (V, E).
1: Set C0 = {{v1} , {v2} , . . . , {vn}}, where n is the size of V and vi is the ith vertex

of V .
2: i← 1.
3: while ∃C1, C2, . . . , Cq+1 ∈ Ci−1 such that

∑q+1
j=1 |Cj| ≤ (q + 1) lgn do

4: U ← ∪q+1
j=1Cj.

5: partition U into q disjoint independent sets D1, D2, . . . , Dq.
6: Ci = (Ci−1 − {C1, C2, . . . , Cq+1}) ∪ {D1, D2, . . . , Dq}.
7: i← i+ 1.
8: end while

9: output Ci−1.

∑

C∈Ci−1
|C| = n, Ci−1 has at most n

lg n
+ q elements: at most n

lg n
elements of

size at least lg n, and at most q elements of size less than lg n. Hence, the
algorithm has found a partitioning of V into at most n

lg n
+q independent sets.

The algorithm terminates at this point.

2. There are q + 1 elements C1, C2, . . . , Cq+1 ∈ Ci−1 such that
∑q+1

j=1 |Cj| ≤
(q + 1) lg n: in this case, the algorithm partitions ∪q+1

j=1Cj into q indepen-

dent sets D1, D2, . . . , Dq in time O(n(q+1) lg q). Then, Ci is built by removing
C1, C2, . . . , Cq+1 from Ci−1 and adding the new q independent setsD1, D2, . . . , Dq.

Note that, in the second case, Ci has one element less than Ci−1. Therefore,
after at most n − q iterations, the condition of the first case will be satisfied and
the algorithm will output an O( n

lg n
)-coloring of N .

In fact, Theorem 3.2.1 proves a slightly stronger result:

Theorem 3.2.2. For any constant q and any n-vertex hypergraph N , there is an
algorithm with running-time O(n(q+1) lg q+2) that either finds a coloring of N with
n

lg n
+ q colors, or proves that N is not q-colorable.

3.3 Concluding Remarks

We obtained a number of upper bounds for the intersperse coloring problem on
general hypergraphs. The technique used in the proof of the main theorem of this
chapter, Theorem 3.1.2, was a probabilistic one. We also developed a polynomial-
time algorithm based on Theorem 3.1.2. For the special case in which we are seeking
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a 2-intersperse coloring (i.e. a proper coloring) for an r-uniform hypergraph N , our

algorithm uses only 2
⌈

|E(N)| 1r
⌉

colors. To the best of our knowledge, this is the

first deterministic polynomial-time algorithm that achieves the above-mentioned
bound for the proper coloring problem on r-uniform hypergraphs.

Also, we developed a simple O( n
lgn

)-approximation algorithm for the proper
coloring problem on c-colorable general hypergraphs, for any constant c. Before
this work, all known results in this area relied on the assumption that the input
hypergraphs have a constant rank. On the other hand, we could not generalize our
approximation algorithm for the ℓ-intersperse coloring problem.
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Chapter 4

Copy Hypergraphs

In this chapter we study the intersperse coloring problem in the family of (induced)
copy hypergraphs. As mentioned in Subsection 2.3.3, if N is a B(-induced)-copy
hypergraph of A, where A is a graph and B is a family of connected graphs, N can
be presented to an algorithm in two ways: in the full representation in which N
itself is given as the input, and in the base representation of N in which a base of
N is given as the input.

In this chapter, we first compare the above-mentioned two representations of
(induced) copy hypergraphs and argue that the base representation is more inter-
esting to study. Then, in Section 4.2 we study the problem of intersperse coloring
of copy hypergraphs when the input is in the base representation. We briefly review
previous work on similar graph coloring problems, obtain upper bounds and lower
bounds for the intersperse chromatic number, and as a special case of our problem,
we develop a property testing algorithm for P2-freeness.

4.1 Full Representation vs Base Representation

In this subsection, we show that the class of (induced) copy hypergraphs is very
similar to the class of general hypergraphs. In particular, we prove that if we are able
to solve the problem of computing the ℓ-intersperse chromatic number of N , where
N is any copy hypergraph, then we can compute the ℓ-intersperse chromatic number
of any hypergraph with an additive error of at most O(

√

lg | {|E| : E ∈ E(N)} |).
Note that this error is at most O(

√

lg |V (N)|) in the general case, and is a constant
number if N is uniform.
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The same claim is true for the case in which a base representation of N , (A,B),
is given as the input; however, we can consider more restricted subproblems, such
as the case in which only A is a part of the input and B is fixed. For some classes of
graphs B, this subproblem has a nice interpretation in graph theory. We will give
some examples in Section 4.2.

Theorem 4.1.1. For any hypergraph N and any integer ℓ ≥ 1, there exist a graph
A and a family of connected graphs B such that

χℓ+t(O)− t ≤ χℓ(N) ≤ χℓ+t(O),

where O is the B-copy hypergraph of A, t = 5 + 2
⌈√

1
4

+ 2 lg |X|+ 1
2

⌉

, and X is

the set of sizes of the hyperedges of N ; i.e. X = {|E| : E ∈ E(N)}. Furthermore,
A and B can be constructed in polynomial time.

Proof. The idea of the proof is to build A and B such that the following properties
hold.

1. Hypergraphs N and O have the same number of hyperedges.

2. V (N) ⊆ V (O).

3. There exists a bijection b from E(N) to E(O) such that for all hyperedges
EN ∈ E(N)

(a) EN ⊆ b(EN ),

(b) |b(EN )| = |EN |+ t, and

(c) the t vertices in b(EN )−EN are not in any other hyperedge of O.

If we can build A and B such that the above-mentioned properties hold, then it
is easy to see that χℓ+t(O)− t ≤ χℓ(N) ≤ χℓ+t(O):

χℓ(N) ≤ χℓ+t(O): Suppose c : V (O) 7→ {1, 2, . . . , k} is a valid (ℓ + t)-intersperse
coloring of O. Then, c assigns at least min {|EO|, ℓ+ t} different colors to
any hyperedge EO ∈ E(O). Therefore, c assigns at least min {|EO| − t, ℓ} =
min {|b−1(EO)|, ℓ} different colors to b−1(EO). Since b is a bijection, we can
conclude that c assigns at least min {|EN |, ℓ} different colors to any hyperedge
EN in E(N).
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vEN ,1

vEN ,2vEN ,3

vEN ,4

vEN ,5

vEN ,6vEN ,t−1

vEN ,t

. . .

path of length t−7
︷ ︸︸ ︷

Figure 4.1: The gadget that is added to the hypergraph N for each hyperedge
EN ∈ E(N).

χℓ(N) ≥ χℓ+t(O) − t: Suppose c : V (N) 7→ {1, 2, . . . , k} is a valid ℓ-intersperse
coloring of N . Then, consider the coloring c′ that assigns c(v) to any vertex
v ∈ ∪EN∈E(N)EN , and assigns k + 1, k + 2, . . ., k + t, in an arbitrary order,
to the t vertices in b(EN ) − EN , for any EN ∈ E(N). For any hyperedge
EO ∈ E(O), c′ assigns min {|b−1(EO)|, ℓ} = min {|EO| − t, ℓ} different colors
to b−1(EO), because c′(v) = c(v) for all vertices in b−1(EO). Also, c′ assigns t
different colors to EO−b−1(EO). Therefore, c′ is a valid ℓ-intersperse coloring
of O with k + t colors.

Now we construct A and B. We take the vertices of N as the initial set of
vertices of A. Then, for each hyperedge EN ∈ E(N), we add a t-vertex graph AEN

,
with vertex set V (AEN

) = {vEN ,1, vEN ,2, . . . , vEN ,t} and edges that are shown in
Figure 4.1, to A. In addition to the edges that are shown in Figure 4.1, we add

an edge between vEN ,2i+4 and vEN ,2j+4, for any 1 ≤ i < j ≤
⌈√

1
4

+ 2 lg |X|+ 1
2

⌉

,

if and only if the ψ|X|(i, j)th bit of the binary representation of φN(|EN |) is one,
where ψ and φ are the following:

ψ|X|: This is an arbitrary bijection from the set of all pairs

Z(|X|) :=

{

(i, j) : i, j ∈ N, 1 ≤ i < j ≤
⌈√

1

4
+ 2 lg |X|+ 1

2

⌉}

to {1, 2, . . . , |Z(|X|)|}. Here, we abuse the notation a bit and use ψ|X|(i, j)
instead of ψ|X|((i, j)).
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vEN ,1

vEN ,2vEN ,3

vEN ,4

vEN ,5

vEN ,6vEN ,7vEN ,8vEN ,9vEN ,10

vEN ,11

|EN | = 2
(a)

vEN ,1

vEN ,2vEN ,3

vEN ,4

vEN ,5

vEN ,6vEN ,7vEN ,8vEN ,9vEN ,10

vEN ,11

|EN | = 4
(b)

vEN ,1

vEN ,2vEN ,3

vEN ,4

vEN ,5

vEN ,6vEN ,7vEN ,8vEN ,9vEN ,10

vEN ,11

|EN | = 5
(c)

vEN ,1

vEN ,2vEN ,3

vEN ,4

vEN ,5

vEN ,6vEN ,7vEN ,8vEN ,9vEN ,10

vEN ,11

|EN | = 9
(d)

Figure 4.2: If X = {2, 4, 5, 9}, then AEN
would be of the above graphs, depending

on |EN |.

φN(x): This is a function that returns i− 1 if x is the ith smallest element of the
set X. Therefore, φN(x) is between zero and |X| − 1, inclusive.

Moreover, we connect vEN ,1 to all vertices in EN . It is worth to mention that
⌈√

1
4

+ 2 lg |X|+ 1
2

⌉

is the smallest value a such that
(

a
2

)
≥ lg |X|. For example, if

N has hyperedges of sizes 2, 4, 5, and 9, then AEN
, for a hyperedge EN ∈ E(N),

would be one of the graphs shown in Figure 4.2, depending on the size of EN . In
Figure 4.2, we used the following bijection:

ψ4(1, 2) = 1 ψ4(2, 3) = 2 ψ4(1, 3) = 3

We will show the graphs constructed above have properties 1 and 2 of Lemma 4.1.2.
The process of constructing AEN

’s may seem complicated, however, in fact, any
polynomial-time construction that has the above-mentioned two properties and
uses few vertices can be used in our proof. Below, we prove that our construction
has both properties.
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Lemma 4.1.2. If the graphs AEN
are constructed in the above-described method,

then,

1. For each E
(1)
N , E

(2)
N ∈ E(N), A

E
(1)
N

is isomorphic to A
E

(2)
N

if and only if E
(1)
N

and E
(2)
N are of the same size.

2. For each E − N ∈ E(N), AEN
is not isomorphic to any subgraph A′ of A,

unless A′ = AE′
N

for some hyperedge E ′
N ∈ E(N).

Proof.

1. For any E
(1)
N , E

(2)
N ∈ E(N):

(a) If A
E

(1)
N

is isomorphic to A
E

(2)
N

, then v
E

(1)
N

,4
should be mapped to v

E
(2)
N

,4
,

as these are the only degree one vertices. This forces v
E

(1)
N

,1
, v

E
(1)
N

,2
, and

v
E

(1)
N

,3
to be mapped to v

E
(2)
N

,1
, v

E
(2)
N

,2
, and v

E
(2)
N

,3
, respectively. Hence,

v
E

(1)
N

,i
is forced to be mapped to v

E
(2)
N

,i
for all 1 ≤ i ≤ t. Therefore, there

is an edge between v
E

(1)
N

,2i+4
and v

E
(1)
N

,2j+4
if and only if there is an edge

between v
E

(2)
N

,2i+4
and v

E
(2)
N

,2j+4
, for all 1 ≤ i < j ≤

⌈√
1
4

+ 2 lg |X|+ 1
2

⌉

.

Thus, the ψ|X|(i, j)th bit of the binary representation of φN(|E(1)
N |) is one

if and only if the ψ(i, j)th bit of the binary representation of φN(|E(2)
N |)

is one. Consequently, φN(|E(1)
N |) = φN(|E(2)

N |), and hence, |E(1)
N | = |E

(2)
N |.

(b) If |E(1)
N | = |E(2)

N |, then it is easy to verify that the bijection that maps
v

E
(1)
N

,i
to v

E
(2)
N

,i
, for all 1 ≤ i ≤ t, is an isomorphism between A

E
(1)
N

and

A
E

(2)
N

.

2. For any EN ∈ E(N), if AEN
is isomorphic to a subgraph A′ of A, then V (A′)

should include vE′
N

,1, vE′
N

,2, and vE′
N

,3, where E ′
N is a hyperedge in E(N),

and vEN ,1, vEN ,2, and vEN ,3 should be mapped to vE′
N

,1, vE′
N

,2, and vE′
N

,3,
respectively, because of the following observation.

Observation 4.1.3. Our construction of A has the following two properties:

(a) If a vertex v ∈ V (A) is in a triangle (i.e. a cycle of length three), then
v ∈ V (AEN

) for some EN ∈ E(N).

(b) For any EN ∈ E(N), AEN
has only one triangle with a degree-one neigh-

bor, which is the triangle with vertices {vEN ,1, vEN ,2, vEN ,3}.
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Proof.

(a) Suppose v ∈ V (A) is not in any V (AEN
). Then, v can be connected only

to
{

v
E

(1)
N

,1
, v

E
(2)
N

,1
, . . . , v

E
(k)
N

,1

}

, where k is an integer and Ei
N ∈ E(N), for

1 ≤ i ≤ k. Since there is no edge between v
E

(i)
N

,1
and v

E
(j)
N

,1
, for any

1 ≤ i < j ≤ k, in our construction, v cannot be in any triangle.

(b) This is trivial, because, for any EN ∈ E(N), the only degree-one vertex
in AEN

is vEN ,4.

Similar to the argument of part (a), we can prove that vEN ,i is forced to be
mapped to vE′

N
,i, for all 1 ≤ i ≤ t. Therefore, A′ = AE′

N
.

Note that all steps of our construction can be done in polynomial time.

Next, we construct B. For any e ∈ X, we add a graph Be to B. Be is a graph
on t+ e vertices {ve,1, ve,2, . . . , ve,t} ∪ {ue,1, ue,2, . . . , ue,e}, such that,

1. there is no edge between ue,i and ue,j for any 1 ≤ i < j ≤ e,

2. ve,1 is connected to ue,i for all 1 ≤ i ≤ e, and

3. there is an edge between ve,i and ve,j if and only if there is an edge between
vEN ,i and vEN ,j for a hyperedge EN ∈ E(N) of size e. Note that only the size

of EN is important here, because, for all hyperedges E
(1)
N , E

(2)
N ∈ E(N) of the

same size and all 1 ≤ i < j ≤ t, the existence of an edge between v
E

(1)
N

,i
and

v
E

(1)
N

,j
depends on ψ|X|(i, j) and φN(|E(1)

N |). Similarly, the existence of an edge

between v
E

(2)
N

,i
and v

E
(2)
N

,j
depends on ψ|X|(i, j) and φN(|E(1)

N |). Therefore,

there is an edge between v
E

(1)
N

,i
and v

E
(1)
N

,j
if and only if there is an edge

between v
E

(2)
N

,i
and v

E
(2)
N

,j
.

Note that our construction for B can be completed in polynomial time.

For an example, see Figure 4.3. In Figure 4.3 part (a), the hypergraph N has
two hyperedges, of sizes two and three. Hence, X = {2, 3}, and Z(|X|) = Z(2) =
{(1, 2)}. The only possible bijection ψ2 from {(1, 2)} to {1} is ψ2(1, 2) = 1. Also,
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v1 v2

v3

v4

E1

E2

N

(a)

vE1,1

vE1,2

vE1,3

vE1,4vE1,5vE1,6

vE1,7

vE1,8 vE1,9

vE2,1

vE2,2vE2,3

vE2,4

vE2,5

vE2,6vE2,7vE2,8

vE2,9

v1 v2

v3

v4

A

(b)

v3,1

v3,2v3,3

v3,4

v3,5

v3,6v3,7v3,8

v3,9

v2,1

v2,2v2,3

v2,4

v2,5

v2,6v2,7v2,8

v2,9

u3,1 u3,2 u3,3 u2,1 u2,2

B3 B2

B
(c)

Figure 4.3: An example of constructing A and B from a hypergraph N .

φN(2) = 0 and φN(3) = 1, because 2 and 3 are the first and the second smallest
elements of X. Using this information, A would be the graph shown in part (b) of
Figure 4.3. Also, B will have two graphs B2 and B3 (one for each element of X)
that are shown in part (c) of Figure 4.3.

The third property of Be implies the following observation.

Observation 4.1.4. The subgraph of Be induced by {ve,1, ve,2, . . . , ve,t} is isomor-
phic to AEN

for any EN of size e.
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To finish the proof, we show the following three properties hold if O is the B-
copy hypergraph of A. These are the three properties, mentioned at the first of this
proof, that are sufficient for proving

χℓ+t(O)− t ≤ χℓ(N) ≤ χℓ+2(O).

1. V (N) ⊆ V (A) = V (O).

2. By Observation 4.1.4, Be[{ve,1, ve,2, . . . , ve,t}] is isomorphic to AEN
for any

EN of size e. Also, the second property of Lemma 4.1.2 implies that the
only subgraphs of A that are isomorphic to Be[{ve,1, ve,2, . . . , ve,t}] are AEN

’s
for all EN ∈ E(N) of size e. Thus, if a subgraph A′ of A is isomorphic
to Be its set of vertices, V (A′), should include V (AEN

) for some hyperedge
EN ∈ E(N) of size e. Since vEN ,1 is connected only to the vertices of E in
A, V (A′) = EN ∪ V (AEN

). Therefore, the number of subsets U ⊆ V (A) for
which there exists a subgraph A′ with V (A′) = U such that A′ is isomorphic
to Be, is at most the number of subsets U ⊆ V (A) of the form EN ∪V (AEN

),
where EN ∈ E(N) is of size e. Also, the number of hyperedges of O is equal
to the number of subsets U ⊆ V (A) for which there exists a subgraph A′ of
A with V (A′) = U such that A′ is isomorphic to at least one Be ∈ B. Hence,
the number of hyperedges of O is at most |E(N)|.
On the other hand, for any EN ∈ E(N), A[EN ∪ V (AEN

)] is isomorphic to
Be due to Observation 4.1.4 and the fact that ve,1 is connected to ue,i for all
1 ≤ i ≤ e. Consequently the number of hyperedges of O is equal to |E(N)|.

3. The bijection b : E(N) 7→ E(O) defined as b(EN ) = EN ∪ V (AEN
) has the

following properties.

(a) It is trivial by the definition of b that EN ⊆ b(EN ) for all EN ∈ E(N).

(b) By the definition of b, |b(EN )| = |EN ∪ V (AEN
)|. Hence, |b(EN)| =

|EN | + |V (AEN
)| = |EN | + t, because AEN

is a t-vertex graph for any
hyperedge E ∈ E(N).

(c) The vertices in b(EN ) − EN = V (AEN
) are not in any other hyperedge

of O, because all hyperedges EO of O are of the form E ′
N ∪ V (AE′

N
) for

some E ′ ∈ E(N), and thus V (AEN
) ∩ EO = V (AEN

) ∩ (E ′
N ∪ V (AE′

N
)),

which is empty, unless EN = E ′
N .
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It is easy to see that the proof of Theorem 4.1.1 works for induced copy hy-
pergraphs without any change, because, in our construction, the graphs in B are
isomorphic only to induced subgraphs of A. Thus, we also have the following the-
orem.

Theorem 4.1.5. For any hypergraph N and any integer ℓ ≥ 1, there exist a graph
A and a family of connected graphs B such that

χℓ+t(O)− t ≤ χℓ(N) ≤ χℓ+t(O),

where O is the B-induced-copy hypergraph of A, t = 5+2
⌈√

1
4

+ 2 lg |X|+ 1
2

⌉

, and

X = {|E| : E ∈ E(N)}. Furthermore, A and B can be constructed in polynomial
time.

4.2 Studying the Base Representation

The problem of finding an ℓ-intersperse coloring for a (an induced) copy hypergraph
where the hypergraph is given by its base representation can be viewed in a more
natural way: for a given graph A and family of connected graphs B, we want to find
a coloring of vertices of A such that every (induced) subgraph ofA that is isomorphic
to a graph B ∈ B gets at least min {|V (B)|, ℓ} different colors. Moreover, we want
to minimize the number of colors. We denote this problem by SC(A,B, ℓ), and for
the induced version we denote the problem by ISC(A,B, ℓ). Here SC stands for
Subgraph Coloring. In Chapter 1 we listed a number of graph coloring problem
variants that can be formulated as a special case of SC(A,B, ℓ).

In the next subsection, we obtain general results for SC(A,B, ℓ).

4.2.1 General Results

In this section, we first try to apply the general results of Chapter 3 to copy hy-
pergraphs. Theorem 3.1.5 cannot be of much use here, since there is no efficient
algorithm to count the number of induced subgraphs of A isomorphic to a graph in
B in the general case.

We apply Corollary 3.1.7 to get a general upper bound on the ℓ-intersperse
chromatic number of copy hypergraphs.
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Corollary 4.2.1. There exists a solution for SC(A,B, ℓ), where A is a graph and
B is a finite family of connected graphs and 1 ≤ ℓ ≤ minB∈B |V (B)| is an integer,
that uses at most

(ℓ− 1) ·∑B∈B
(
|V (B)| ·∆(A)|V (B)|−1

)
+ 1

colors.

Proof. Let N be the B-copy hypergraph of A.

Observation 4.2.2. The maximum degree of N is at most the maximum number
of subgraphs of A that are isomorphic to a graph in B and share a single vertex
v ∈ V (A).

Proof. Each hyperedge of N corresponds to at least one subgraph of A that is
isomorphic to a graph in B. Thus, the number of hyperedges of N that contain v
is at most the number of subgraphs of A that are isomorphic to a graph in B and
share a single vertex v ∈ V (N).

Suppose v is a vertex in V (A) and c is a one-to-one mapping from V (B) to a
subset of V (A) that preserves the edges, where B ∈ B. Moreover, suppose one
vertex of V (B), say x, is mapped to v by c. This can be done in at most |V (B)|
different ways. Since c maps any neighbor of x, say y, to a neighbor of v, c(y)
can have at most ∆(A) values for each mapping. After fixing the value of c(y),
we can again argue that any neighbor of y should be mapped to a neighbor of
c(y) and this can be done in at most ∆(A) ways. Therefore, since B is connected,
after mapping x to v, other vertices of B can be mapped to vertices of A in at
most ∆(A)|V (B)|−1 ways. Hence, there are at most |V (B)| · ∆(A)|V (B)|−1 different
one-to-one edge-preserving mappings from V (B) to a subset of V (A) that contains
v. Thus, we have the following observation.

Observation 4.2.3. A has at most |V (B)| ·∆(A)|V (B)−1| subgraphs isomorphic to
B that contain v.

Observation 4.2.2 and Observation 4.2.3 imply that v is in at most
∑

B∈B |V (B)|·
∆(A)|V (B)|−1 hyperedges of N . Therefore,

∆(N) ≤
∑

B∈B
|V (B)| ·∆(A)|V (B)|−1.

Using Corollary 3.1.7 we can conclude that

χℓ(N) ≤ (ℓ− 1) ·
∑

B∈B

(
|V (B)| ·∆(A)|V (B)|−1

)
+ 1.
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Note that Corollary 4.2.1 is not constructive, asN cannot be constructed from A
and B in polynomial time and thus we cannot simply execute the greedy algorithm
on N . In some cases, where ℓ is small, Corollary 3.1.11 gives a better upper bound.

Corollary 4.2.4. Suppose A is a graph, B is a finite family of connected graphs,
and 1 ≤ ℓ ≤ minB∈B |V (B)| is an integer. Then, there exists a solution for
SC(A,B, ℓ) that uses at most

⌊

2(ℓ− 1) max
ℓ≤i≤|V (A)|

{(
cibi∆(A)i−1

) 1
i−ℓ+1

}⌋

+ 1

colors, where c = 4eℓ−1 maxB∈B |V (B)| and bi = | {B : B ∈ B, |V (B)| = i} |.

Proof. Using Observation 4.2.3, we know that each vertex v ∈ V (A) is in at most
i∆(A)i−1 subgraphs of A that are isomorphic to B ∈ B, where i = |V (B)|. Since
there are bi graphs of size i in B, we conclude that v is in at most ibi∆(A)i−1

subgraphs of A that are isomorphic to a size i graph in B. Hence, if N is the
B-copy hypergraph of A, v is in at most ibi∆(A)i−1 hyperedges of N of size i.
Also, the set of sizes of hyperedges of N is a subset of {|B| : B ∈ B}. Thus, any
hyperedge of N is of size at most maxB∈B |V (B)|. Consequently, any hyperedge of
N intersects at most

f(i) = ibi∆(A)i−1 max
B∈B
|V (B)|

other hyperedges of size i. Thus, we can use Theorem 3.1.10 and conclude that

χℓ(N) ≤
⌊

max
ℓ≤i≤|V (A)|

{

2(ℓ− 1)

(

4eℓ−1ibi∆(A)i−1 max
B∈B
|V (B)|

) 1
i−ℓ+1

}⌋

+ 1

=

⌊

2(ℓ− 1) max
ℓ≤i≤|V (A)|

{(
cibi∆(A)i−1

) 1
i−ℓ+1

}⌋

+ 1.

Below, we give two examples. In the first example, the upper bound of Corol-
lary 4.2.1 is less than the upper bound of Corollary 4.2.4. In the second example,
Corollary 4.2.4 gives a better upper bound than Corollary 4.2.1.
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Example 4.2.5. Suppose A is an arbitrary graph and B consists of a number of
x-vertex graphs, where x > 1 is an integer. Let y = |B| and N be the B-copy
hypergraph of A. Then, using Corollary 4.2.1 we have

χx(N) ≤ (x− 1)
∑

B∈B
(x∆(A)x−1) + 1

= y(x− 1)x∆(A)x−1 + 1.

However, using Corollary 4.2.4 we will get the following upper bound:

χx(N) ≤ 2(x− 1) max
x≤i≤|V (A)|

{(
cibi∆(A)i−1

) 1
i−x+1

}

+ 1

= 2(x− 1)
(
cxy∆(A)x−1

)
+ 1,

where c = 4ex−1x. Thus,

χx(N) ≤ 2(x− 1)
(
cxy∆(A)x−1

)
+ 1

= 8ex−1y(x− 1)x2∆(A)x−1 + 1.

Therefore, Corollary 4.2.1 gives a better upper bound in this example.

Example 4.2.6. Similar to Example 4.2.5, suppose A is an arbitrary graph and B
consists of a number of x-vertex graphs, where x > 1 is an integer. Let y = |B| and
N be the B-copy hypergraph of A.

Then, using Corollary 4.2.1 we have

χ2(N) ≤
∑

B∈B
(x∆(A)x−1) + 1

= yx∆(A)x−1 + 1.

However, using Corollary 4.2.4 we will get the following upper bound:

χ2(N) ≤ 2 max
2≤i≤|V (A)|

{(
cibi∆(A)i−1

) 1
i−1

}

+ 1

= 2 (cxy)
1

x−1 ∆(A) + 1,

where c = 4ex. The last equality is due to the fact that bi is y if i = x and is 0
otherwise. Thus,

χ2(N) ≤ 2 (cxy)
1

x−1 ∆(A) + 1

= 2
(
4ex2y

) 1
x−1 ∆(A) + 1.
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Because every term in 2 (4ex2y)
1

x−1 ∆(A)+ 1 is less than yx∆(A)x−1 +1 except the
constants, Corollary 4.2.4 gives a better upper bound in this example if we set x to
an integer greater than 6.

As was stated in Corollary 2.2.4, the greedy coloring algorithm can properly
color any hypergraph A with at most ∆(A) + 1 colors. Also, any proper coloring
of A is a solution for SC(A,B, 2), for any family of connected graphs B that have
at least two vertices, because a proper coloring of A assigns at least two different
colors to any connected subgraph of A. However, for some families of connected
graphs, Corollary 4.2.1 and Corollary 4.2.4 give upper bounds bigger than ∆(A)+1.
So, for the case of proper coloring we use a result of Lovász to improve our upper
bound.

The following lemma is originally due to Lovász [62].

Lemma 4.2.7. (Lovász [62]) There is a polynomial-time algorithm that can partition
the set of vertices of any input graph A = (V, E) into k disjoint sets V1, V2, . . . , Vk,
where k is an integer 1 ≤ k ≤ |V |, such that

1.
⋃k

i=1 Vi = V , and

2. for all 1 ≤ i ≤ k, ∆(A[Vi]) ≤
⌊

∆(A)
k

⌋

, where ∆(A[Vi]) is the maximum degree

in the induced subgraph A[Vi].

Corollary 4.2.8. For any graph A and any finite family of connected graphs B,
there is a proper coloring of the B-copy hypergraph of A that uses at most

⌊
∆(A)

minB∈B ∆(B)
+ 1

⌋

colors. Furthermore, this coloring can be found in polynomial time.

Proof. We use Lemma 4.2.7 to find k =
⌊

∆(A)
minB∈B ∆(B)

+ 1
⌋

disjoint sets V1, V2, . . . , Vk

with the properties stated in Lemma 4.2.7. Then, we assign the vertices of Vi to
the ith color. The maximum degree of A[Vi] is at most

⌊
∆(A)

k

⌋

=






∆(A)
⌊

∆(A)
minB∈B ∆(B)

+ 1
⌋






<

⌊

∆(A)
∆(A)

minB∈B ∆(B)

⌋

= min
B∈B

∆(B),
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for all 1 ≤ i ≤ k. Thus, A[Vi] cannot have any subgraph isomorphic to any graph
in B. Therefore, our coloring does not assign the same color to the vertices of a
subgraph B of A that is isomorphic to a graph in B; otherwise, if all the vertices of
B are colored with the ith color, B would be a subgraph of A[Vi], which contradicts
the fact that A[Vi] does not have any subgraph isomorphic to any graph in B.

The upper bound of Corollary 4.2.8 is always better than the upper bounds
obtained by Corollary 4.2.1 and Corollary 4.2.4 if ℓ = 2.

For obtaining lower bounds, we use a generalization of the method used by
Fertin et al. [38]. They used a simple counting argument to find lower bounds
on the acyclic chromatic number and the star chromatic number of graphs. The
central part of their proof is the fact that any induced subgraph A[U ] of a graph
A that does not have a 3-vertex cycle or a 4-vertex path is acyclic, and hence, has
at most |U | − 1 edges. However, we cannot use this argument for our purpose. In
Theorem 4.2.11, we combine the counting method of Fertin et al. [38] with a result
in extremal graph theory by Ajtai et al. [4] to obtain a lower bound for SC(A,B, ℓ),
where B consists of only trees.

We first explain the result of Ajtai et al. [4] that is used in Theorem 4.2.11. Con-
sider the following problem: for a given family of graphs B, what is the maximum
number of edges that an n-vertex graph A can have if A does not have any sub-
graph isomorphic to a graph in B? This problem is called a Turán-type problem,
because Turán was the first who investigated a problem of the above-mentioned
form. This problem has received extensive attention in the graph theory litera-
ture [4, 9, 19, 22, 26, 33, 32, 41, 79]. One of the first results in this area is due
to the paper of Turán [79], in which he proved that if B = {Kp}, where Kp is a

complete p-vertex graph, then A cannot have more than (1 − 1
p−1

)n2

2
edges. For

trees, Erdös and Sós proposed the following conjecture [33].

Conjecture 4.2.9. (Erdös and Sós [33]) Every n-vertex graph with more than
(k−1)n

2
edges contains all (k + 1)-vertex trees as subgraphs.

Conjecture 4.2.9 is known to be true for a number of special families of graphs [29],
but is open in the general case. Using Szemerédi’s Regularity Lemma [56, 77], Ajtai
et al. [4] proved the following approximation version of Conjecture 4.2.9.

Theorem 4.2.10. (Ajtai et al. [4]) For every ε > 0 there exists a threshold k0 such

that any n-vertex graph with more than (1+ε)kn
2

edges, where k ≥ k0, contains all
(k + 1)-vertex trees as subgraphs.

We use Theorem 4.2.10 to prove the following theorem.

61



Theorem 4.2.11. For every ε > 0, there exists a threshold k0 such that the follow-
ing holds: for any graph A, finite family of trees B, and an integer ℓ, if all trees
B ∈ B have more than k0 vertices, then there is no solution for SC(A,B, ℓ) with
fewer than

maxB∈B
2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| + 1

colors.

Proof. We choose k0 so that it satisfies Theorem 4.2.10. Suppose c is a solution
for SC(A,B, ℓ) with color classes V1, V2, . . . , Vk, m1 is the number of monocolored
edges of A, m2 = |E(A)| −m1 is the number of bicolored edges of A, and B ∈ B
is a tree. Then, since c should assign at least ℓ′ = min {|V (B)|, ℓ} different colors
to each subgraph of A that is isomorphic to B, the subgraph of A induced by
Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1

cannot have any subgraph isomorphic to B, for any 1 ≤
a1 < a2 < . . . < aℓ′−1 ≤ k. Therefore, A[Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1

] has at most

(1+ε)(|V (B)|−1)·
Pℓ′−1

i=1 |Vai
|

2
edges due to Theorem 4.2.10. Hence,

∑

1≤a1<a2<...<aℓ′−1≤k

|E(A[Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1
])|

≤
∑

1≤a1<a2<...<aℓ′−1≤k

(1 + ε)(|V (B)| − 1) ·∑ℓ′−1
i=1 |Vai

|
2

=
(1 + ε)(|V (B)| − 1)

2

k∑

i=1

(
k − 1

ℓ′ − 2

)

|Vi|

=
(1 + ε)(|V (B)| − 1)

2

(
k − 1

ℓ′ − 2

)

|V (A)|.

On the other hand, each monocolored edge is counted
(

k−1
ℓ′−2

)
times and each

bicolored edge is counted
(

k−2
ℓ′−3

)
times in

∑

1≤a1<a2<...<aℓ′−1≤k |E(A[Va1 ∪ Va2 ∪ . . . ∪
Vaℓ′−1

])|, because a monocolored edge with color s will be an edge of A[Va1 ∪ Va2 ∪
. . . ∪ Vaℓ′−1

], where 1 ≤ a1 < a2 < . . . < aℓ′−1 ≤ k, if and only if ai = s, for some

1 ≤ i ≤ ℓ′ − 1. Hence, the values of a1, a2, . . . , aℓ′−1 can be chosen in
(

k−1
ℓ′−2

)
ways.

Similarly, a bicolored edge with colors s1 < s2 is an edge of A[Va1∪Va2∪ . . .∪Vaℓ′−1
],

where 1 ≤ a1 < a2 < . . . < aℓ′−3 ≤ k, if and only if ai = s1 and aj = s2, for some
1 ≤ i < j ≤ ℓ′ − 1. Hence, the values of a1, a2, . . . , aℓ′−1 can be chosen in

(
k−2
ℓ′−3

)
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ways. Thus,
(
k − 1

ℓ′ − 2

)

m1 +

(
k − 2

ℓ′ − 3

)

m2 =
∑

1≤a1<a2<...<aℓ′−1≤k

|E(A[Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1
])|

≤
(
k − 1

ℓ′ − 2

)
(1 + ε)(|V (B)| − 1)|V (A)|

2
.

Consequently,

(1 + ε)(|V (B)| − 1)|V (A)|
2

≥ m1 +

(
k−2
ℓ′−3

)

(
k−1
ℓ′−2

)m2

= m1 +

(k−2)!
(ℓ′−3)!(k−ℓ′+1)!

(k−1)!
(ℓ′−2)!(k−ℓ′+1)!

m2

= m1 +
ℓ′ − 2

k − 1
m2,

and therefore,

k ≥ m2(ℓ
′ − 2)

(1+ε)(|V (B)|−1)|V (A)|
2

−m1

+ 1.

If we assume that |E(A)| ≥ (1+ǫ)(|V (B)|−1)|V (A)|
2

, we will have 0 ≤ m1 ≤ 1
2
. There-

fore, the right hand side of the above inequality will be minimized if m1 = 0
and m2 = |E(A)|. Therefore, there is no solution for SC(A,B, ℓ) with fewer

than 2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| + 1 colors. If |E(A)| < (1+ǫ)(|V (B)|−1)|V (A)|

2
, the right

hand side is not minimized for m1 = 0. However, in the above-mentioned case,
2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| + 1 ≤ min {V (B), ℓ} − 1. Therefore, for any graph A, there is

no solution for SC(A,B, ℓ) with fewer than 2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| + 1 colors.

Since this argument is true for any B ∈ B, we conclude that there is no solution
for SC(A,B, ℓ) with fewer than

maxB∈B
2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| + 1

colors.

We can rephrase the above bound in terms of the average degree of A: for
any graph A, finite family of trees B, and an integer ℓ, there is no solution for
SC(A,B, ℓ) with fewer than

maxB∈B
min{|V (B)|,ℓ}−2
(1+ε)(|V (B)|−1)

· d(A) + 1
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colors, where d(A) =
P

v∈V (A) d(v)

|V (A)| is the average degree of A.

Note that if we assume Conjecture 4.2.9 is true, the method of Theorem 4.2.11
gives the following result, because Conjecture 4.2.9 is equivalent to Theorem 4.2.10
if we replace (1 + ε)k with k − 1 and set k0 to zero.

Corollary 4.2.12. If Conjecture 4.2.9 is true, then the following holds: for any
graph A, finite family of trees B, and an integer ℓ, there is no solution for SC(A,B, ℓ)
with fewer than

maxB∈B
min{|V (B)|,ℓ}−2

|V (B)|−2
· d(A) + 1

colors.

It is simple to see that Conjecture 4.2.9 is true if we replace (k−1)n
2

with kn −
1 [56]. Thus, we also have the following corollary.

Corollary 4.2.13. For any graph A, finite family of trees B, and an integer ℓ,
there is no solution for SC(A,B, ℓ) with fewer than

maxB∈B
min{|V (B)|,ℓ}−2

|V (B)| · d(A) + 2

colors.

Proof. The proof is similar to the proof of Theorem 4.2.11; only the following
inequalities will be changed.

∑

1≤a1<a2<...<aℓ′−1≤k

|E(A[Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1
])|

≤
∑

1≤a1<a2<...<aℓ′−1≤k

|V (B)| ·
(

ℓ′−1∑

i=1

|Vai
|
)

− 1

<

(

|V (B)|
k∑

i=1

(
k − 1

ℓ′ − 2

)

|Vi|
)

=

(
k − 1

ℓ′ − 2

)

· |V (B)| · |V (A)|

Also, we will have
(
k − 1

ℓ′ − 2

)

m1 +

(
k − 2

ℓ′ − 3

)

m2 =
∑

1≤a1<a2<...<aℓ′−1≤k

|E(A[Va1 ∪ Va2 ∪ . . . ∪ Vaℓ′−1
])|

<

(
k − 1

ℓ′ − 2

)

· |V (B)| · |V (A)|
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and hence

m1 +
ℓ′ − 2

k − 1
m2 < |V (B)| · |V (A)|.

Therefore,

k >
m2(ℓ

′ − 2)

|V (B)| · |V (A)| −m1

+ 1.

Again, the right hand side of the above inequality will be minimized if we set m1 = 0
and m2 = |E(A)|. So, there is no solution for SC(A,B, ℓ) with fewer than

maxB∈B
min{|V (B)|,ℓ}−2

|V (B)| · d(A) + 2

colors.

4.2.2 Property Testing

In this subsection, we present a property testing algorithm for the following decision
problem:

Input: A graph A.

Question: Is it the case that A has no induced subgraph isomorphic to P2?

In other words, the question is to find whether the P2-copy hypergraph of A is
empty or not.

This is a special case of the well-known problem of testing B-freeness, which
is the problem of deciding whether the input graph has an induced subgraph iso-
morphic to a graph B or not. This problem is a well-studied problem in classical
complexity theory [13], parameterized algorithms [12], property testing [6], and
many other areas. Alon et al. [6] and Alon [5] have proved that for any graph B
there is a graph property tester for testing B-freeness using a constant number of
queries in the adjacency matrix model. However, the adjacency matrix model is
not a suitable model for testing B-freeness if the input graph is not dense, i.e. has
o(n2) edges, where n is the number of vertices. In the adjacency matrix model,
any non-dense graph is ε-close to B-freeness; that is, because the input graph has
o(n2) < εn2 edges, one can make the input graph a B-free graph by removing
at most εn2 edges. For non-dense graphs, we may consider the mixed model or
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the symmetric model. However, we prove there is no graph property tester for
B-freeness in the mixed model with query complexity o(n1/2), even for the case in
which A is a path of length two. Recall that a query in the mixed model can be
one of the following, where u and v are vertices:

1. “Is there an edge between u and v?”.

2. “How many edges contain v?”.

3. “What is the ith neighbor of v?”.

Also, recall that the only difference between the mixed model and the symmetric
model in graphs is that in the symmetric model we are able to submit an addi-
tional query of the form “what are the two end-vertices of E?”, where E is an
edge. The following observation gives a characterization of P2-free graphs. This
characterization will be used many times in the rest of this chapter.

Observation 4.2.14. The class of P2-free graphs, which are graphs that do not
have any path of length two as a subgraph, is exactly the family of graphs that are
disjoint unions of cliques.

Proof. Consider shortest paths between every pair of vertices in the same connected
component. If one of the shortest paths has length greater than one, then the graph
has a P2 as an induced subgraph.

On the other hand, if the graph is disjoint union of cliques, it does not contain
P2 as an induced subgraph.

Theorem 4.2.15. Every tester algorithm for P2-freeness has to submit at least
Ω(n1/2) queries in the mixed model.

Proof. The key part of the proof is to construct, for every possible value of 0 < ε <
1, a subgraph on O(

√
n) vertices that is ε-far from being P2-free (other vertices of

the graph are isolated vertices). Once we do so, the proof is complete. Since the
above-mentioned subgraph, which we call B, has O(

√
n) vertices, if we put B at a

random location in an empty n-vertex graph A, i.e. an n-vertex graph without any
edges, then a single query involves a vertex of B with probability less than 1

c
√

n
,

where c is a constant. Therefore, a single query will not touch B with probability
at least 1− 1

c
√

n
. Hence, with probability at least (1− 1

c
√

n
)q > 1

2
, where q ∈ o(√n) is

the number of queries, the tester algorithm will not touch any vertex of B, i.e. the
tester algorithm will not submit any query that involves a vertex of B. Therefore,

66



the algorithm cannot distinguish between A and an empty graph. However, an
empty graph is a P2-free graph while the constructed graph is ε-far from being
P2-free.

Lemma 4.2.16. More than n edges need to be inserted or deleted to makeK√
n+1,

√
n+1

P2-free, whereKa,b is the graph with vertex set X∪Y , edge set {{x, y} : x ∈ X, y ∈ Y },
|X| = a, and |Y | = b.

Proof. Suppose that we can make K√
n+1,

√
n+1 P2-free by m edge modifications.

Furthermore, the graph obtained after these edge modifications is the disjoint union
of k cliques, say with sets of vertices C1, C2, . . . , Ck = X ∪ Y , where X and Y are
sets of vertices such that (X ∪ Y, E = {{x, y} : x ∈ X, y ∈ Y }) = K√

n+1,
√

n+1. For
all i = 1, 2, . . . , k we define Xi = Ci ∩X and Yi = Ci ∩ Y .

In order to transform (X∪Y, E) to a graph that is the disjoint union of k cliques,
say with sets of vertices C1, C2, . . . , Ck, we need to delete every edge {u, v} such
that u ∈ Ci, v ∈ Cj, and i 6= j. Also, we must add {u, v} if for some i = 1, 2, . . . , k
u ∈ Ci, v ∈ Ci, and {u, v} 6∈ E . Therefore,

m = the number of edge deletions + the number of edge insertions

= | {{u, v} : u ∈ Xi, v ∈ Yj, i 6= j} |+ | {{u, v} : u, v ∈ Xi or u, v ∈ Yi} |

= ((
√
n+ 1)2 −

k∑

i=1

(|Xi| · |Yi|)) +

(
k∑

i=1

|Xi|(|Xi| − 1)

2
+

k∑

i=1

|Yi|(|Yi| − 1)

2

)

= (
√
n+ 1)2 + 2 ·

(
k∑

i=1

|Xi|2
4

+
k∑

i=1

|Yi|2
4
−

k∑

i=1

(|Xi| · |Yi|)
2

)

−
k∑

i=1

|Xi|
2
−

k∑

i=1

|Yi|
2

= (
√
n+ 1)2 + 2

k∑

i=1

( |Xi|
2
− |Yi|

2

)2

− 1

2
(

k∑

i=1

|Xi|+
k∑

i=1

|Yi|)

≥ n+ 2
√
n+ 1− 1

2
(|X|+ |Y |)

= n+
√
n

> n

Lemma 4.2.16 shows that more than n edge modifications are needed to convert
K√

n+1,
√

n+1 to a P2-free graph. On the other hand, K√
n+1,

√
n+1 has only (

√
n+1)2 =

n + 2
√
n + 1 edges. Thus, K√

n+1,
√

n+1 is n
n+2

√
n+1

-far from P2-freeness. Now, for
any value of 0 < ε < 1, we can choose n large enough so that n

n+2
√

n+1
≥ ε. Then,

67



K√
n+1,

√
n+1 would be ε-far from P2-freeness. Since no algorithm can distinguish

between the input graph and an empty graph with probability at least 1
2

if it
submits o(

√
n) queries, and the input graph is ε-far from P2-freeness, every tester

algorithm for P2-freeness has to submit at least Ω(
√
n) queries.

Now, we consider the special case of B-freeness, in which B = P2, and we
develop a tester algorithm with query complexity O(poly(1/ε)) in the symmetric
model, for this special case.

In the rest of this section we will use the properties of P2-free graphs that will
be mentioned in Observation 4.2.17. In Observation 4.2.17, we use ΓC({u0, u1}) to
denote the common neighbors of u0 and u1.

Observation 4.2.17. If A is P2-free, then every edge {u0, u1} of A has the follow-
ing properties:

1. d(u0) = d(u1).

2. |ΓC({u0, u1})|+ 1 = d(u0).

Proof. The proof is simple:

1. d(u0) = d(u1): The connected component that contains {u0, u1} is a clique,
and thus, d(u0) + 1 = d(u1) + 1 = |C|, where C is the set of vertices of the
connected component containing {u0, u1}.

2. |ΓC({u0, u1})|+ 1 = d(u0): The number of common neighbors of u0 and u1 is
equal to |C| − 2. Thus, |ΓC({u0, u1})|+ 2 = d(u0) + 1 = |C|.

We can prove the converse of Observation 4.2.17: if all edges of a graph have
the above-mentioned properties, then the graph is P2-free.

Lemma 4.2.18. If all edges of A satisfy properties 1 and 2 of Observation 4.2.17,
then A is P2-free.
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Proof. Property 1 and Property 2 ensure that, for any edge {u0, u1} of A, if u1 is
connected to a vertex v, then u0 is connected to v, too.

Assume that A has an induced subgraph isomorphic to P2. Let u0, u1, and u2

be the vertices of the subgraph of A that is isomorphic to P2, and let u0 and u2 be
the two ends of the path. Then, {u0, u1} is an edge of A, but u1 is connected to u2

and u0 is not connected to u2, which is a contradiction. Thus, A cannot have an
induced subgraph isomorphic to P2.

Next, we develop a tester algorithm for P2-freeness with query complexity
O(poly(1/ε)). We use two high-level queries in our algorithm:

1. The first high-level query type is to choose a random edge {u0, u1} ∈ E . This
is equivalent to choosing a random number 1 ≤ i ≤ |E| and then submitting
two queries: “what are the first and second vertices of the ith edge?”.

2. The next high-level query type is to perform a random walk of length k from u.
This can be done by submitting 4k queries in the symmetric model, because
by asking the degree of v, choosing a random number 1 ≤ i ≤ d(v), asking
for the ith edge that contains v, and finally asking the first and the second
vertices of that edge, we can move to a random neighbor of v.

Shown in Algorithm 3, the tester, is relatively simple: it picks a number of
random edges in line 2; for each random edge E, it picks a number of random walks
W of length two starting from one end of E in line 8. Then, the tester checks
if all the vertices of E and W have the same degree and are connected to each
other. Note that this is true in any P2-free graph, because, by Observation 4.2.14,
any walk that is started in a clique cannot go outside the clique and hence all the
vertices of E and W have the same degree and are connected to each other. If this
condition is false for at least one E and one W , then the tester rejects, because it
has found evidence that the input graph is not P2-free; otherwise, since the tester
does not find any evidence that the input graph is not P2-free, the tester accepts
the input graph.

Before giving intuition about the correctness of our tester algorithm, we compute
its running time. Constants t1 and t2 of the algorithm will be set later in this section.
Algorithm 3 looks at t1 random edges of A in line 2. In line 8, for each random
edge {u0, u1}, it picks 2t2 random neighbors of a vertex. Also, it asks the degree
of at most 2t2 vertices in line 9. In addition to these queries, it submits at most
4t2 queries of the form “does E contain {u, v}?” for each random edge in line 12.
Therefore, the above algorithm uses at most O(t1 · t2) queries overall.
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Algorithm 3 P2-Freeness-Tester

Requirement: A = (V, E), ε
1: for i←1 to t1 do

2: choose a random edge {u0, u1} ∈ E
3: if d(u0) 6= d(u1) then

4: return false

5: end if

6: for j ← 1 to t2 do

7: r = random number chosen uniformly from {0, 1}
8: P = random walk of length 2 starting from ur

9: if there exists a vertex v in P s.t. d(v) 6= d(ur) then

10: return false

11: end if

12: if there exists a vertex v in P s.t. {u0, v} 6∈ E or {u1, v} 6∈ E then

13: return false

14: end if

15: end for

16: end for

17: return true

We first give intuition about the proof and then the formal proof will be pre-
sented. The goal is to check the properties mentioned in Observation 4.2.17. A
tester algorithm could randomly pick an edge and check if it has the properties
of Observation 4.2.17. However, checking the second property is expensive: it re-
quires that the algorithm probes all the neighbors of u0 and u1. To overcome this
problem, our algorithm checks a number of random neighbors of u0 and u1. If the
algorithm finds a neighbor of u0 that is not a neighbor of u1, or vice versa, then
the algorithm rejects. Thus, if the portion of the neighbors of u0 that are not in
ΓC({u0, u1}) is high enough, then with high probability the algorithm will find one
of those neighbors and reject. For simplicity, we use the notation Γ+

C({u0, u1}) to
denote ΓC({u0, u1}) ∪ {u0, u1}.

Definition 4.2.19. We call {u0, u1} a bad edge if

1. d(u0) 6= d(u1) or

2. |ΓC({u0, u1})| + 2 = |Γ+
C({u0, u1})| < (1 − α) · (d(u0) + 1), where the value

of 0 < α < 1
16

will be set later. Note that we could use d(u1) instead of d(u0),
because if the first condition does not hold d(u0) = d(u1).
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Figure 4.4: A bad edge, good edge, and difficult edge is shown in parts (a), (b),
and (c), respectively.

Hence, a bad edge is an edge that violates properties 1 and 2, and this violation
can be checked with high probability. An example of a bad edge is shown in
Figure 4.4. The edge {u0, u1} is a bad edge in part (a) of Figure 4.4, because u0 has
more than α(d(u0) + 1) neighbors outside Γ+

C({u0, u1}). Hence, intuitively, if A is
not P2-free and Algorithm 3 picks a bad edge in line 2, then with high probability
the algorithm will reject. Lemma 4.2.22 deals with this case and presents a more
precise analysis.

On the other hand, we should prove that if the tester algorithm accepts an
input graph A, then A is close to P2-freeness, i.e. we can convert A to a P2-free
graph by removing or adding at most ε|E| edges. Our method of converting A to a
P2-free graph is to repeatedly pick an edge {u0, u1} from A and make Γ+

C({u0, u1})
a clique by connecting any two vertices from Γ+

C({u0, u1}) that are not connected
and removing any edge that is between a vertex in Γ+

C({u0, u1}) and a vertex
outside Γ+

C({u0, u1}). We have to be careful in selecting {u0, u1} so that the
method does not require more than ε|E| edge modifications. This means that
vertices in Γ+

C({u0, u1}) should have few neighbors outside and many neighbors
inside Γ+

C({u0, u1}). Thus, we require that {u0, u1} should not be a bad edge and
should have few neighbors that have more than γ · (d(u0) + 1) neighbors outside
Γ+

C({u0, u1}). In the following definition, we precisely specify the properties of the
edges that we select.

Definition 4.2.20. Suppose {u0, u1} is an edge, {u0, u1} is not a bad edge, and v
is a vertex. Then, v ∈ ΓC({u0, u1}) is called a bad neighbor of {u0, u1} if

1. d(v) 6= d(u0) or
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2. v has more than γ · (d(u0) + 1) neighbors outside Γ+
C({u0, u1}).

We call {u0, u1} a good edge if the following three properties hold:

1. d(u0) = d(u1),

2. |Γ+
C({u0, u1})| ≥ (1− α) · (d(u0) + 1), and

3. the number of bad neighbors of {u0, u1} is at most β · (d(u0) + 1), where the
value of 0 < β < 1

16
will be set later.

Note that it does not matter if we use d(u1) instead of d(u0) in the second
property of the definition of good edges, because the first property states that
d(u0) = d(u1). Also, note that the definitions of bad neighbors and good edges
depend on the values of γ and α which will be set later. In a P2-free graph all edges
are good edges, for any values of 0 ≤ α, γ ≤ 1. An example of a good edge is shown
in Figure 4.4. In part (b), {u0, u1} is a good edge because all three conditions of
Definition 4.2.20 hold.

There is still one more case that should be investigated and that is the case in
which A has neither many bad edges nor many good edges. Therefore, with high
probability our tester algorithm will not find a bad edge and thus will accept A,
while, since there are not enough good edges in A, we cannot prove that A is ε-close
to P2-freeness.

Definition 4.2.21. We call any edge that is not a bad edge or a good edge a
difficult edge. Equivalently, an edge {u0, u1} is a difficult edge if and only if the
following three properties hold:

1. d(u0) = d(u1),

2. |Γ+
C({u0, u1})| ≥ (1− α) · (d(u0) + 1), and

3. the number of bad neighbors of {u0, u1} is more than β · (d(u0) + 1).

The first two properties indicate that {u0, u1} is not a bad edge, and the third
property is for eliminating good edges. An example of a difficult edge is shown in
Figure 4.4. In part (c), {u0, u1} is a difficult edge because it has too many bad
neighbors.

In the situation that the numbers of bad edges and good edges are both small,
the number of difficult edges is high; thus, with high probability, our tester algo-
rithm will pick a difficult edge in line 2. In Lemma 4.2.23, we prove that if a difficult
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edge is picked by the tester, the tester will reject A with high probability. Hence,
either the tester rejects A or we are able to prove that A is ε-close to P2-freeness.

Now we formally prove our claims.

Lemma 4.2.22. If the edge that is picked by the algorithm in line 2 is a bad edge,
then with probability at least 1− (1− α)t2 the algorithm will reject.

Proof. If d(u0) 6= d(u1), then the algorithm will reject with probability 1 in line 3.
Otherwise, in each iteration of the second for loop, with probability at least α
a vertex outside Γ+

C({u0, u1}) will be chosen as the second vertex of P and the
algorithm will reject in line 12. Therefore, with probability at least 1 − (1 − α)t2

our tester algorithm will reject in the second for loop.

Lemma 4.2.23. If the edge that is picked by the algorithm in line 2 is a difficult
edge, then with probability at least 1− (1− β · γ)t2 the algorithm will reject.

Proof. Again we compute the probability of rejecting the input in each iteration of
the second for loop. We denote this probability by preject. Suppose that we denote
the three vertices of P by v0, v1, and v2 such that v0 is either equal to u0 or equal
to u1, v1 is adjacent to v0, and v2 is adjacent to v1. The following is a lower bound
for preject.

preject ≥ Pr[v1 6∈ ΓC({u0, u1})] +

Pr[v1 ∈ Γ+
C({u0, u1}) and (d(v1) 6= d(u0) or v2 6∈ Γ+

C({u0, u1}))]

= 1− |Γ
+

C({u0, u1})|
d(u0)

+

|Γ+
C({u0, u1})|
d(u0)

· Pr[d(v1) 6= d(u0) or v2 6∈ Γ+
C({u0, u1})|v1 ∈ Γ+

C({u0, u1})]

≥ Pr[d(v1) 6= d(u0) or v2 6∈ Γ+
C({u0, u1})|v1 ∈ Γ+

C({u0, u1})]
The term in the first inequality is because if v1 is not in Γ+

C({u0, u1}), then the
tester will reject in line 12. Also, if v1 ∈ Γ+

C({u0, u1}) but its degree is not equal
to d(u0) or it is not in Γ+

C({u0, u1}), then, again, the tester will reject either in
line 9 or line 12.

Since {u0, u1} is a difficult edge, we know that if v1 ∈ Γ+
C({u0, u1}), then v1 is

a bad neighbor of {u0, u1} with probability at least β. Therefore, with probability
at least β either d(v1) 6= d(u0) or v1 has at least γ · (d(v1) + 1) neighbors outside
Γ+

C({u0, u1}). This shows that

Pr[d(v1) 6= d(u0) or v2 6∈ Γ+
C({u0, u1})|v1 ∈ Γ+

C({u0, u1})] ≥ β · γ,
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because v2 is a random neighbor of v1. Thus, preject ≥ β · γ. Hence, the algorithm
will reject with probability at least 1− (1− β · γ)t2 in the second for loop.

Therefore, if the edge that is picked by the tester algorithm is not a good edge,
the tester algorithm will reject with probability at least

c = min
{
1− (1− α)t2 , 1− (1− β · γ)t2

}
.

This leads us to the following theorem.

Theorem 4.2.24. If the number of good edges of A is less than (1 − λ) ·m, then
with probability at least 1− (1− λ · c)t1 the tester algorithm rejects.

Proof. In each iteration of the first for loop, the algorithm picks a bad edge or
a difficult edge with probability at least λ. Therefore, by Lemma 4.2.22 and
Lemma 4.2.23, the algorithm will reject with probability at least λ · c in each
iteration of the first for loop. Thus, the algorithm will reject with probability at
least 1− (1− λ · c)t1 .

It remains to prove that if the number of good edges of A is large enough, then
A is ε-close to a P2-free graph.

Theorem 4.2.25. If the number of good edges of A is more than (1− λ) ·m, then

it is (λ
2

+
5α+5β+ (α+β)2

(1−2α−2β)2

1−8(α+β)+(α+β)2
)-close to P2-freeness.

Proof. We use Algorithm 4 to convert A to a P2-free graph using fewer than (λ
2

+

5α+5β+ (α+β)2

(1−2α−2β)2

1−7α−7β
) · 2m edge deletions and edge insertions.

We first explain intuitively how Algorithm 4 works. This algorithm has three
main phases.

In the first phase, that is from line 1 to line 15, the algorithm finds a set of good
edges {u1, v1} , {u2, v2} , . . . , {uk, vk}, where k is the final value of i. Also, Ci will
be the set of non-bad neighbors of {ui, vi}, because bad neighbors of {ui, vi} are
removed in line 6.

Observation 4.2.26. For all 1 ≤ i ≤ k, the following holds: any vertex that is in
Γ+

C({ui, vi}) but is not in Ci is a bad neighbor of {ui, vi}, and vice versa.
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Also, at the ith iteration, in line 8, the algorithm will toss out any good edge
that is a non-bad neighbor of {ui, vi}. Moreover, in line 12, the algorithm will toss
out any good edge whose non-bad neighbors share a vertex with non-bad neighbors
of {ui, vi}. Hence, if a vertex w is in Γ+

C({ui, vi}) and Γ+
C({uj, vj}), then w

is a bad neighbor of {ui, vi}, {uj, vj}, or both. In other words, Γ+
C({ui, vi}) and

Γ+
C({uj, vj}) are “almost” disjoint, because the number of bad neighbors of a good

edge is bounded, by Definition 4.2.20. More precisely, Ci and Cj are completely
disjoint, where Cx is Γ+

C({ux, vx}) without bad neighbors of {ux, vx}, for any 1 ≤
x ≤ k. Therefore,

Observation 4.2.27. For all 1 ≤ i < j ≤ k, Ci is disjoint from Cj.

In the next phase, from line 16 to line 20, any edge that is not completely inside
Ci for at least one 1 ≤ i ≤ k is removed from A. Hence, A will be the union of
A[Ci]’s after line 20. Moreover, since Ci’s are mutually disjoint, A[Ci]’s are also
mutually disjoint, i.e. do not have any vertices or edges in common.

In the final phase, from line 21 to line 25, the algorithm makes every A[Ci]
a clique by adding edges inside each A[Ci] if necessary. Therefore, at the end of
the algorithm, A will be the union of disjoint cliques. This is formally proved in
Lemma 4.2.28.
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Algorithm 4 Make-P2-Free

Requirement: A = (V, E)
1: good = {e : e is a good edge}
2: i = 0
3: while good 6= ∅ do

4: i = i+ 1
5: select an arbitrary edge {u, v} from good
6: Ci = Γ+

C({u, v})− {bad neighbors of {u, v}}
7: for all {u′, v′} ∈ good do

8: if u′ ∈ Ci or v′ ∈ Ci then

9: good = good − {{u′, v′}}
10: end if

11: if ∃w ∈ Γ+
C({u′, v′}) ∩ Ci s.t. w is not a bad neighbor of {u′, v′} then

12: good = good − {{u′, v′}}
13: end if

14: end for

15: end while

{removing edges between cliques}
16: for {u, v} ∈ E do

17: if 6 ∃i s.t. u ∈ Ci and v ∈ Ci then

18: E = E − {{u, v}}
19: end if

20: end for

{inserting edges inside cliques}
21: for all u, v ∈ V s.t. {u, v} 6∈ E do

22: if ∃i s.t. u ∈ Ci and v ∈ Ci then

23: E = E ∪ {{u, v}}
24: end if

25: end for

26: return A

Lemma 4.2.28. The output of Make-P2-Free is a P2-free graph.

Proof. Assuming that k is the last value of i in line 4; we prove that the above
algorithm transforms the input graph into the union of disjoint cliques with vertex
sets C1, C2, . . . , Ck.

Because in lines 21–25 every pair of vertices that are in one Ci are connected
together, each Ci is a clique in the output graph. Also, in lines 16–20 the algorithm
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makes sure that there is no other edge in the graph. Thus, the output graph is the
union of cliques with vertex sets C1, C2, . . . , Ck and some single vertices.

On the other hand, using Observation 4.2.27, we know that each Ci is disjoint
from all Cj’s where 1 ≤ j < i. Note that lines 11–12 are necessary, because if we
do not remove {u′, v′} from the set good due to w, then {u′, v′} might be picked by
the algorithm in line 5 later in the mth iteration (m > i), and since w ∈ Ci ∪ Cm,
Ci and Cm would not be disjoint.

Considering the above two facts, we can conclude that the output graph is the
union of disjoint cliques.

Now, we calculate the number of edge deletions and edge insertions performed
by Make-P2-Free. In order to do this, we divide these modifications into the
following groups:

1. R: The set of edges {u, v} deleted in lines 16–20 such that neither u nor v is
in a Ci.

2. Di (1 ≤ i ≤ k): The set of edges deleted in lines 16–20 such that one end is
in Ci and the other end either is in Cj where j > i or is not in any Cj.

3. Ii (1 ≤ i ≤ k): The set of edges inserted in lines 21–25 such that both ends
are in Ci.

Clearly, the number of edge modifications performed by the algorithm is exactly
|R|+∑k

i=1 |Di|+
∑k

i=1 |Ii|.
From now on, we set α = γ. Also, assume {ui, vi} is the edge picked by the

algorithm in line 5 in its ith iteration. Because {ui, vi} is a good edge and any
vertex in Ci is not a bad neighbor, we know that d(v) = d(ui) for all v ∈ Ci. Thus,
we can use di to denote the degree of vertices in Ci plus one. In the ideal situation,
where the input graph is the union of a number of cliques, Ci would be a clique and
di would be exactly |Ci|. However, in a graph that is close to P2-freeness, di can be
larger that |Ci|, because there may be some vertices outside Ci that are connected
to the vertices inside Ci, like bad neighbors of {ui, vi}.

Lemma 4.2.29. There are at most (α+ β)d2
i edges with exactly one end in Ci.

Proof. Since {ui, vi} is a good edge, ui and vi have at most αdi neighbors outside
Γ+

C({ui, vi}) due to the second property of good edges in Definition 4.2.20. Also,
the number of bad neighbors of {ui, vi} is at most βdi. Therefore, there are at most
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Figure 4.5: Neighbors of {ui, vi} that are not in Ci.

βdi vertices that are in Γ+
C({ui, vi}) but not in Ci, according to Observation 4.2.26.

For example, in Figure 4.5, the vertices that are in Γ(ui) but not in Ci are {c2} ∪
{b1, b2, . . . , bz2}, where we know that z2 is at most α(di + 1).

Observation 4.2.30. ui and vi have at most (α + β)di neighbors outside Ci.

For a vertex v ∈ Ci − {ui, vi}, we know that v has at most γdi = αdi neighbors
outside Γ+

C({ui, vi}), because v is not a bad neighbor of {ui, vi} (see Observa-
tion 4.2.26 and the second property of bad neighbors in Definition 4.2.20). Again,
because there are at most βdi vertices that are in Γ+

C({ui, vi}) but not in Ci, we
have the following observation:

Observation 4.2.31. Any vertex in Ci − {ui, vi} has at most (α + β)di neighbors
outside Ci.

Since, due to Observation 4.2.30 and Observation 4.2.31, every vertex in Ci has
at most (α + β)di neighbors outside Ci, there are at most |Ci|(α + β)di vertices
outside Ci that are neighbors to a vertex in Ci. Hence, there are at most |Ci|(α+β)di

edges with exactly one end in Ci. As we mentioned before, |Ci| ≤ di. Hence, we
can conclude that there are at most (α+β)d2

i edges with exactly one end in Ci.

Corollary 4.2.32. The size of Di is not greater than (α + β)d2
i .

Proof. Di is a subset of all edges that have exactly one end in Ci, and the size of the
latter set is at most (α+β)d2

i , by Lemma 4.2.29. Consequently, |Di| ≤ (α+β)d2
i .
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Lemma 4.2.33. The size of Ii is not greater than 3
2
(α + β)d2

i .

Proof. Lemma 4.2.29 proves that there are at most (α + β)d2
i edges leaving Ci.

Also, because the degree of all vertices in Ci is di, we know that there are at least
1
2
|Ci|di − (α + β)d2

i edges inside Ci.

On the other hand, from Observation 4.2.30, we know that ui has at most
(α+β)di neighbors outside Ci. Therefore, at least (1−α−β)di neighbors of ui are
in Ci, which proves |Ci| ≥ (1− α− β)di. Hence, we can conclude that there are at
least (1

2
− 3

2
(α+ β))d2

i edges in Ci. Thus, the number of edges that will be inserted
in lines 21–25 is at most 3

2
(α + β)d2

i .

Lemma 4.2.34. The size of R is not greater than

λm+

(
(α+ β)2

2(1− 2α− β)2

) k∑

i=1

d2
i .

Proof. Suppose that {u, v} ∈ R. Then, either {u, v} is not a good edge, or there
exists a vertex w ∈ Γ+

C({u, v}) such that w is not a bad neighbor of {u, v} and
w ∈ Ci for some i. Otherwise, {u, v} would be picked by the algorithm in line 5.
Let Rg be the subset of all good edges of R. Since, due to the assumption of
Theorem 4.2.25, the number of good edges is more than (1− λ)m, the number of
edges that are not good is at most λm. Hence, |R| ≤ λm + |Rg|. Therefore, by
bounding the size of Rg from above we will obtain an upper bound on the size of
R.

The key observation to bound |Rg| is that because for every edge {u, v} ∈ Rg

there is a vertex w{u,v} ∈ Γ+
C({u, v}) and a number i{u,v} such that w{u,v} is not a

bad neighbor of {u, v} and w{u,v} ∈ Ci{u,v}
, both u and v have a lot of neighbors in

Ci{u,v}
. To see this, we consider the following facts:

1. d(u) = d(v) = d(w{u,v}) = di{u,v}
− 1: Because {u, v} is a good edge (see

the first property of good edges in Definition 4.2.20), and w{u,v} is not a bad
neighbor of {u, v} (see the first property of bad neighbors in Definition 4.2.20),
we have d(u) = d(v) = d(w{u,v}). Also, since w{u,v} is in Ci{u,v}

, d(w{u,v}) =
di{u,v}

− 1.

2. w{u,v} has at least (1 − α)di{u,v}
neighbors in Γ+

C({u, v}): Because w{u,v} is
not a bad neighbor of {u, v}, it has at most γ(d(u) + 1) = αdi{u,v}

neighbors
outside Γ+

C({u, v}).
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3. w{u,v} has at least (1 − α − β)di{u,v}
neighbors in Ci{u,v}

: This fact follows
directly from Observation 4.2.31.

Observation 4.2.35. For any {u, v} ∈ Rg, both u and v are in Ti{u,v}
, where Ti is

the set of vertices in V (A)− Ci that have at least (1− 2α− β)di neighbors in Ci.

Proof. Suppose S1 is the set of neighbors of w{u,v} in Γ+
C({u, v}) and S2 is the set of

neighbors of w{u,v} in Ci{u,v}
. It is enough to prove that |S1∩S2| ≥ (1−2α−β)di{u,v}

.
Since all the vertices in S1 ∪ S2 are neighbors of w{u,v}, |S1 ∪ S2| ≤ d(w{u,v}), and
by the first fact we have

|S1 ∪ S2| ≤ d(w{u,v}) < di{u,v}
. (4.1)

Also, the second and third facts give us the following lower bounds on the size of
S1 and S2.

|S1| ≥ (1− α)di{u,v}
(4.2)

|S2| ≥ (1− α− β)di{u,v}
(4.3)

Since |S1 ∩ S2| = |S1|+ |S2| − |S1 ∪ S2|, we can use inequalities 4.1, 4.2, and 4.3 to
find a lower bound on the sizes of S1 ∩ S2.

|S1 ∩ S2| ≥ (1− α)di{u,v}
+ (1− α− β)di{u,v}

− di{u,v}

= (1− 2α− β)di{u,v}

On the other hand, due to Observation 4.2.30 and Observation 4.2.31, every
vertex in Ci has at most (α + β)di neighbors outside Ci. Therefore, we have the
following.

|Ti| ≤
|Ci| · (α+ β)di

(1− 2α− β)di
≤ α + β

1− 2α− β |Ci| ≤
α + β

1− 2α− βdi.

For an edge {u, v} ∈ Rg with i{u,v} = i, we proved in Observation 4.2.35 that both

u and v are in Ti. Thus, there are at most
(|Ti|

2

)
≤ 1

2
|Ti|2 edges {u, v} ∈ Rg with

i{u,v} = i. Hence, for every 1 ≤ i ≤ k, there are at most

1

2

(
α + β

1− 2α− β di

)2

=
(α + β)2

2(1− 2α− β)2
d2

i
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edges {u, v} ∈ Rg such that i{u,v} = i. Since 1 ≤ i{u,v} ≤ k for any edge {u, v} ∈ Rg,

|Rg| ≤
k∑

i=1

(
(α + β)2

2(1− 2α− β)2
d2

i

)

.

Using Corollary 4.2.32, Lemma 4.2.33, and Lemma 4.2.34, we can conclude that
the number of edge modifications, ξ, is

ξ = |R|+
k∑

i=1

|Di|+
k∑

i=1

|Ii| ≤ λm+

(
5

2
α +

5

2
β +

(α + β)2

2(1− 2α− β)2

) k∑

i=1

d2
i .

Since by ξ edge modifications A is transformed to a P2-free graph, PRDist(A,P2−freeness)
is at most ξ/m, due to Definition 2.4.3. Also, due to Lemma 2.4.4, SymDist(A,P2−freeness)
is at least PRDist(A,P2−freeness)/2. Therefore, A is ξ

2m
-close to P2-freeness. Also,

we have
ξ

2m
≤ λ

2
+

1

4

(

5α + 5β +
(α + β)2

(1− 2α− β)2

)∑k
i=1 d

2
i

m
.

Furthermore, |Ci| ≥ 2 since {ui, vi} ⊆ Ci. Therefore, because the number of
edges of the modified graph is at most m +

∑k
i=1 |Ii|, the modified graph is the

union of k cliques C1, C2, . . ., Ck, and |Ci| ≥ 2 we have

m+
k∑

i=1

|Ii| ≥
k∑

i=1

|Ci|(|Ci| − 1)

2

≥
k∑

i=1

1

4
|Ci|2

≥
k∑

i=1

1

4
(1− α− β)2d2

i .

Therefore, we obtain a lower bound on m:

m ≥ 1

4
(1− α− β)2

k∑

i=1

d2
i −

3

2
(α + β)

k∑

i=1

d2
i

=
1

4
(1− 2(α + β) + (α + β)2 − 6(α+ β))

k∑

i=1

d2
i

=
1

4
(1− 8(α + β) + (α + β)2)

k∑

i=1

d2
i .
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Consequently,

∑k
i=1 d

2
i

m
≤ 4

1− 8(α + β) + (α + β)2
.

Note that, 1− 8(α+ β) + (α+ β)2 and 1− 2α− 2β are both non-negative becuase

α, β ≤ 1
16

by definition. Thus, A is (λ
2

+
5α+5β+ (α+β)2

(1−2α−2β)2

1−8(α+β)+(α+β)2
)-close to P2-freeness.

Now, we need to set the values of α, β, γ, λ, t1 and t2 such that they depend
only on ε. If we choose appropriate values, we can prove the following theorem.

Theorem 4.2.36. There is a graph property tester for P2-freeness that uses O( 1
ε3 )

queries, for 0 < ε ≤ 1.

Proof. We set λ = ε, α = β = γ = ε/224, t1 = 4/ε, and t2 = 2242/ε2. Then, for
every graph A:

1. If A is P2-free, then the algorithm will accept with probability one, because
the algorithm rejects only if it finds an induced P2.

2. If A is ε-far from P2-freeness, then the number of good edges of A cannot

exceed (1− ε)m; otherwise, using Theorem 4.2.25, A is ( ε
2
+

10α+ 4α2

(1−4α)2

1−16α+4α2 )-close
to P2-freeness. But, for 0 ≤ ε ≤ 1,

ε
2

+
10α+ 4α2

(1−4α)2

1−16α+4α2 ≤ ε
2

+
10α+ 4α

(1−4α)2

1−16α+4α2 ≤ ε
2

+
10α

(1−4α)2
+ 4α

(1−4α)2

(1−16α)

≤ ε
2

+ 14α
(1−16α)(1−4α)2

≤ ε
2

+
ε
16

(1− ε
14

)(1− ε
56

)2
≤ ε

2
+

ε
16

1
2
·( 1

2)
2 = ε.

Because the number of good edges of A is at most (1 − ε)m, we can use
Theorem 4.2.24, which states the algorithm will reject with probability at least

1 − (1 − ε · c) 4
ε where c = min

{

1− (1− ε
224

)
2242

ε2 , 1− (1− ε2

2242 )
2242

ε2

}

. Since

c ≥ 1/2, with probability at least 1−(1− ε
2
)

4
ε = 1−((1− ε

2
)

2
ε )2 ≥ 1−e−2 ≥ 2/3

the algorithm will reject.
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4.3 Concluding Remarks

In this chapter, we obtained several upper bounds on the intersperse chromatic
number of copy hypergraphs. We also obtained a general lower bound. However,
our main focus in obtaining upper and lower bounds was on copy hypergraphs in
the general case. For example, Theorem 4.2.11 gives a general lower bound that
works for any finite family of trees and any ℓ > 2. Therefore, it may be possible to
optimize the lower bound for more restricted cases.

We also developed a property tester for the problem of checking P2-freeness. Our
tester can check if a graph is P2-free or is ε-far from being P2-free using O(poly(1

ε
))

queries. Since the tester algorithm works for both dense and sparse graphs, it shows
the power of our proposed property testing model over previously existing property
testing models.
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Chapter 5

Geometric Hypergraphs Induced

by Axis-Parallel Boxes

In this chapter, we consider the proper coloring of geometric hypergraphs induced
by axis-parallel k-dimensional boxes. Smorodinsky obtained an upper bound of
O(lgn) for the case that k = 2 [76]. However, finding an upper bound better than
n remained open in his work. He proposed the following conjecture:

Conjecture 5.0.1. (Smorodinsky [76]) The chromatic number of a hypergraph
induced by k-dimensional axis-parallel boxes is at most O(lgk−1 n).

In this chapter, we find an o(n) upper bound for all values of k > 2; in particular,
we find an O(lg3 n) upper bound for the case that k = 3 and O(n1−21−k

lgk n) upper
bound for other values of k. There is still a big gap between our bounds and
Smorodinsky’s conjecture.

In order to achieve the mentioned results, we reduce the problem of properly
coloring k-dimensional axis-parallel boxes to a purely combinatorial problem, which
is the problem of properly coloring k-PC graphs, defined in Definition 2.3.16. Then,
we bound the chromatic number of k-PC graphs.

5.1 Reduction to k-PC Graphs

Studying the properties of k-PC graphs has its own theoretical interest. Also, we
will show the chromatic number of k-PC graphs is closely related to the chromatic
number of geometric hypergraphs induced by axis-parallel boxes.
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Theorem 5.1.1. Suppose B is a set of n k-dimensional boxes. Then, we have the
following inequality.

χ(NB) ≤ (⌊lg n⌋+ 1)k ·min
{

mcn(2k, n), (mcn(k, n))2k
}

,

where mcn(k, n) is the maximum chromatic number of any n-vertex k-PC graph.

Proof. We reduce the problem of coloring k-dimensional boxes to the problem of
coloring k-dimensional boxes such that all the boxes share a single point. Then, we
bound the chromatic number of any hypergraph induced by k-dimensional boxes
that share a single point.

Lemma 5.1.3 breaks down the problem into the above-mentioned easier problem.
Intuitively, Lemma 5.1.3 shows that there exists a set of points P and an assignment
of the boxes in B to the points in P such that if a coloring is given for each set of
boxes that are assigned to a single point, then the given colorings can be combined
to obtain a global coloring by increasing the number of colors by a small factor.

Definition 5.1.2. Suppose f : P 7→ {1, 2, . . . , m} is a coloring for P , where P is a
set of points in R

k such that P∩B 6= ∅ for any B ∈ B. We call f a (B, P,m)-coloring
if it has the following two properties:

1. For every box B ∈ B, exactly one point p in P ∩B is colored by fB, where fB

is the minimum of f among all points in P ∩ B. We say that B is assigned
to p.

2. If B1 ∈ B and B2 ∈ B intersect, then either B1 and B2 are assigned to the
same point or fB1 6= fB2 .

Figure 5.1 illustrates an example of a (B, P, 3)-coloring in which P = {p1, p2, p3, p4}
and a B is a set of 2-dimensional boxes. There are six boxes B1, B2, . . ., B6 in
Figure 5.1, and four points p1, p2, p3, and p4. The color of each point pi is written
below pi in the figure. Also, the first condition of Definition 5.1.2 holds, because
B1 and B2 are assigned to p1, B3 and B4 are assigned to p3, B5 is assigned to p4,
and B6 is assigned to p2. It can be checked that the second condition holds, too;
here we only check two cases. B2 and B3 intersect and fB2 6= fB3 , because fB2 = 2
and fB3 = 1. So the condition is not violated. Also, the condition holds for the
intersecting boxes B3 and B4, too: they are both assigned to p3. We leave to the
reader the verification that the second condition holds for other pairs of intersecting
boxes.
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B1

B2

B3

B4 B5

B6

p1

p2

p3 p4

2

3

1 2

Figure 5.1: A set of points and a coloring that satisfies Properties 1-3.

In the example of Figure 5.1, we could not color p2 with 1; otherwise, the second
condition of Definition 5.1.2 would not hold for B2 and B3. Because of the first
condition, we could not color p2 with 2: if we color p2 with 2, then there are two
points in B2 that are colored with fB2 .

Lemma 5.1.3. There exists a set of points P and a (B, P, g(n, k))-coloring such that
P ∩B 6= ∅ for all B ∈ B and g(n, k) = (⌊lg n⌋+ 1)k).

Proof. We use induction on k+ n: in the base case, where k+ n = 1, B consists of
only one 0-dimensional box B, because if n = 0 the lemma becomes trivial. Since
a 0-dimensional box is a point, P = {B} with the coloring f(B) = 1 has both
properties of Definition 5.1.2.

Now, we assume B is a set of n k-dimensional boxes. For each (k−1)-dimensional
hyperplane Q orthogonal to the first axis, we partition B into three sets: BQ =
{B : B ∩Q 6= ∅}, Bℓ

Q = {B : B is completely in the left halfspace of Q}, and
Br

Q = {B : B is completely in the right halfspace of Q}. Note that a hyperplane
Q orthogonal to an axis e can be represented by e = e(Q), where e(Q) ∈ R is a
constant. Let Q∗ be a (k − 1)-dimensional hyperplane orthogonal to the first axis
such that |Bℓ

Q∗| ≤
⌊

n
2

⌋
and |Br

Q∗| ≤
⌊

n
2

⌋
. For example, in Figure 5.2, the dotted

line can be Q∗. Below, we show that such a hyperplane always exists. If we move
Q from −∞ to +∞ we will have the following two properties.

1. At −∞, |BQ|+ |Bℓ
Q| = 0.

2. At +∞, |BQ|+ |Bℓ
Q| = n.
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B1

B2

B3

B4 B5

B6

p1

p2

p3 p4

1

3

1 1

Q∗

3

5

1 3

Figure 5.2: At most half of the boxes are completely in the left (right) of Q∗.

We say that a hyperplane Q1 orthogonal to e is left of a hyperplane Q2 orthogonal
to e if e(Q1) < e(Q2). Let Q∗ be the left-most hyperplane for which |BQ∗|+ |Bℓ

Q∗| >
⌊

n
2

⌋
. Since |BQ| + |Bℓ

Q| ≤
⌊

n
2

⌋
for all hyperplanes left of Q∗, |Bℓ

Q∗| ≤
⌊

n
2

⌋
. Also,

since |Br
Q∗| = n− (|BQ∗|+ |Bℓ

Q∗|), |Br
Q∗| ≤

⌊
n
2

⌋
.

As the intersection of a k-dimensional box with a (k−1)-dimensional hyperplane
is a (k − 1)-dimensional box, the image of BQ∗ on Q∗, i.e. {B ∩Q∗ : B ∈ BQ∗}, is
a set of at most n (k − 1)-dimensional boxes. Thus, there exists a set of points
PQ∗ and a coloring fQ∗ which is a (image(BQ∗ , Q∗), PQ∗ , g(n, k−1))-coloring, where
image(BQ, Q) is the image of BQ on Q, i.e. image(BQ, Q) = {B ∩Q : B ∈ BQ}.
Since two boxes B1, B2 ∈ BQ∗ intersect if and only if B1∩Q∗ and B2∩Q∗ intersect,
fQ∗ is also a (BQ∗ , PQ∗, g(n, k− 1))-coloring. In Figure 5.2, BQ∗ = {B3, B4}, PQ∗ =
{p3}, and fQ∗(p3) = 1.

Also, due to the induction hypothesis, there is a set of points P ℓ
Q∗ and a coloring

f ℓ
Q∗ which is a (Bℓ

Q∗ , P ℓ
Q∗, g(n

2
, k))-coloring. Similarly, there is a set of points P r

Q∗

and a coloring f r
Q∗ which is a (Br

Q∗ , P r
Q∗ , g(n

2
, k))-coloring. In Figure 5.2, we have

Bℓ
Q∗ = {B1, B2, B6}, P ℓ

Q∗ = {p1, p2}, f ℓ
Q∗(p1) = 1, and f ℓ

Q∗(p2) = 3. For the right
halfspace of Q∗, we have Br

Q∗ = {B5}, P r
Q∗ = {p4}, and f r

Q∗(p4) = 1.

We define P = PQ∗ ∪ P ℓ
Q∗ ∪ P r

Q∗ . It is clear that P ∩ B 6= ∅ for all B ∈ B. We
verify that the coloring

f(p) =







fQ∗(p) p ∈ PQ∗

gQ∗(n, k) + f ℓ
Q∗(p) p ∈ P ℓ

Q∗

gQ∗(n, k) + f r
Q∗(p) p ∈ P r

Q∗

is a (B, P, g(n, k))-coloring:
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1. For every box B ∈ B, if B is completely in the left halfspace of Q∗ (completely
in the right halfspace of Q∗), then B ∩ P = B ∩ P ℓ

Q∗ (B ∩ P = B ∩ P r
Q∗) and

thus exactly one point in B ∩ P is colored by fB. Otherwise, if B ∩Q∗ 6= ∅,
since the colors of all points p ∈ P ℓ

Q∗ ∪P r
Q∗ are greater than gQ∗(n, k) and the

color of all points p ∈ PQ∗ are at most gQ∗(n, k), again exactly one point in
B ∩ P is colored by fB.

2. If B1 ∈ B and B2 ∈ B intersect and are not assigned to the same point,
then either both B1 and B2 are in BQ∗ , Bℓ

Q∗ , or Br
Q∗ , or one of them is in

BQ∗ and the other one is in Bℓ
Q∗ ∪ Br

Q∗ . In the former case, fB1 6= fB2 by
the induction hypothesis applied to the smaller problem. In the latter case,
without loss of generality we assume B1 ∈ BQ∗ . Then, since fB1 ≤ gQ∗(n, k)
and fB2 > gQ∗(n, k), fB1 is not equal to fB2 .

Also, f(p) is at most g(n, k−1)+g(n
2
, k) = (⌊lg n⌋+1)(k−1) +⌊lg n⌋k ≤ g(n, k).

The idea of the rest of the proof is as follows. Suppose P is a set of points such
that P∩B 6= ∅ for all B ∈ B and and f is a (B, P, g(n, k))-coloring. In Lemma 5.1.4,
we prove there exists a proper coloring fp : {B ∈ B : B is assigned to p } 7→
{

1, 2, . . . ,min
{

mcn(2k, n),mcn2k

(k, n)
}}

of the hypergraph induced by boxes as-

signed to p. Then, g : B 7→ {1, 2, . . . , (⌊lg n⌋+ 1)k·min
{

mcn(2k, n),mcn2k

(k, n)
}

},
defined below, is a proper coloring for NB:

g(B) = (f(p)− 1)(min
{

mcn(2k, n),mcn2k

(k, n)
}

) + fp(B), (5.1)

where p ∈ P is the point to which B is assigned. To prove that g is a proper coloring
for NB, consider a point q ∈ ∪B∈BB. By definition, q will induce a hyperedge
E = {B ∈ B : q ∈ B}. If all boxes B ∈ E are assigned to a single point p in P ,
then E is a hyperedge in the hypergraph induced by boxes assigned to p. Hence,
since it is a proper coloring, fp assigns at least two different colors to the elements
of E. Consequently, g assigns at least two different colors to the elements of E,
because if fp(B1) 6= fp(B2), then g(B1) 6= g(B2) due to Equation 5.1 and the

fact that 1 ≤ fp(B) ≤ min
{

mcn(2k, n),mcn2k

(k, n)
}

. Otherwise, if there exist

B1, B2 ∈ E such that B1 is assigned to p1 and B2 is assigned to p2, Property 2 of
Definition 5.1.2 tells us that f(p1) 6= f(p2). Therefore, g(B1) 6= g(B2) due to the
definition of g in Equation 5.1. Hence, g assigns at least two different colors to
every hyperedge of NB; therefore, g is a proper coloring.
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Lemma 5.1.4. The hypergraph induced by boxes assigned to a single point p ∈ P

can be properly colored by at most min
{

mcn(2k, n),mcn2k

(k, n)
}

colors.

Proof. Suppose Bp is the set of boxes in B assigned to p, and, for simplicity, we
use Np to denote NBp

. For all 1 ≤ i ≤ k we use P r
i to denote the permutation on

Bp in which B1 ∈ Bp is before B2 ∈ Bp if the right value of the ith range of B1 is
less than the right value of the ith range of B2. Similarly, for all 1 ≤ i ≤ k we use
P ℓ

i to denote the permutation on Bp in which B1 ∈ Bp is before B2 ∈ Bp if the left
value of the ith range of B1 is greater than the left value of the ith range of B2.
In the next paragraph, we will prove that for every hyperedge E of Np there exist
x1, x2, . . . , xk, where xi ∈ {ℓ, r}, such that E is {P x1

1 , P x2
2 , . . . , P xk

k }-constructible,
and hence, any proper coloring of the graph constructed on {P x1

1 , P x2
2 , . . . , P xk

k } also
assigns at least two different colors to E. Therefore, a coloring that is proper for all
Gx1,x2,...,xk

’s, where Gx1,x2,...,xk
is the graph constructed on {P x1

1 , P x2
2 , . . . , P xk

k }, is a
proper coloring for Np. Because each xi gets exactly two values, we have exactly 2k

graphsGx1,x2,...,xk
, and since theGx1,x2,...,xk

’s are k-PC graphs, a proper coloring with

at most mcn2k

(k, n) colors exists that is proper for all 2k k-PC graphs Gx1,x2,...,xk
; we

just color each k-PC graph separately and compute the final color of a vertex as the
2k-tuple that consists of its colors in the 2k k-PC graphs. Also, a proper coloring for
the graph constructed on

{
P r

1 , P
ℓ
1 , P

r
2 , P

ℓ
2 , . . . , P

r
k , P

ℓ
k

}
is proper for all Gx1,x2,...,xk

’s,
because {P x1

1 , P x2
2 , . . . , P xk

k } ⊆
{
P r

1 , P
ℓ
1 , P

r
2 , P

ℓ
2 , . . . , P

r
k , P

ℓ
k

}
, for all values of xi ∈

{ℓ, r}. Thus a proper coloring with at most min
{

mcn(2k, n),mcn2k

(k, n)
}

exists

for Np.

To show that for every hyperedge E of Np there exist x1, x2, . . . , xk, xi ∈ {ℓ, r},
such that E is {P x1

1 , P x2
2 , . . . , P xk

k }-constructible, consider q ∈ R
k such that E =

{B ∈ Bp : q ∈ B}. For every 1 ≤ i ≤ k, if the ith coordinate of q is greater than
the ith coordinate of p, we set yi = r, otherwise, we set yi = ℓ. Therefore, for
every 1 ≤ i ≤ k, there exists a number 0 ≤ ai ≤ k such that all the first ai boxes
in P yi

i do not contain q and all the others contain q, because P yi

i is the sorted list
of boxes based on their left values of their ith ranges if the ith coordinate of q is
less than the ith coordinate of p; otherwise, P yi

i is the sorted list of boxes based
on their right values of their ith ranges. Hence, due to Definition 2.3.14, E is
{P y1

1 , P y2
2 , . . . , P yk

k }-constructible using ai’s as the cut-off points.

Theorem 5.1.1 showed that the chromatic number of k-PC graphs can be used
as a upper bound on the chromatic number of NB, where B is a set of k-dimensional
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axis-parallel boxes and NB is the hypergraph induced by B. In the following the-
orem, we show how we can obtain a lower bound on the chromatic number of NB
based on the chromatic number of k-PC graphs.

Theorem 5.1.5. There exists an n-vertex hypergraph N induced by k-dimensional
boxes such that χ(N) ≥ mcn(k, n), where mcn(k, n) is the maximum chromatic
number of any n-vertex k-PC graph.

Proof. The proof is quite simple: suppose P = {P1, P2, . . . , Pk} is any set of per-
mutations on a set V of size n. Without loss of generality, we can assume V =
{1, 2, . . . , n}. We construct a set of n k-dimensional boxes B = {B1, B2, . . . , Bn}
such thatBi is a box with one end in the origin and the opposite end in (P−1

1 [i], P−1
2 [i],

. . . , P−1
k [i]), where P−1

j [i] is the location of i in Pj . More precisely,

Bi = {(x1, x2, . . . , xk) : ∀1 ≤ j ≤ k xi ∈ [0, P−1
j [i]]}. Then, it is easy to verify

that the chromatic number of the hypergraph induced by B, denoted by N , is at
least the chromatic number of the k-PC graph constructed on P: we only consider
hyperedges of size two in N . We prove that the set of size-two hyperedges of N are
exactly the set of size-two P-constructible sets.

Suppose {a, b} ∈ E(N). Then, by Observation 2.3.15, it is enough to show
that there is no obstacle to {a, b}: for the sake of contradiction, assume c ∈
{1, 2, . . . , n} − {a, b} is an obstacle to {a, b}. Since {a, b} ∈ E(N), there is a
point p = (p1, p2, . . . , pk) in R

k that is in Ba ∩ Bb, but not in any other Bi. In
particular, p 6∈ Bc = {(x1, x2, . . . , xk) : ∀1 ≤ j ≤ k xi ∈ [0, P−1

j [c]]}. Hence, there

exists 1 ≤ j ≤ k such that pj 6∈ [0, P−1
j [c]], and thus, pj > P−1

j [c]. On the other

hand, since p ∈ Ba ∩ Bb, pj ∈ [0, P−1
j [a]] ∩ [0, P−1

j [b]], and thus, pj ≤ P−1
j [a] and

pj ≤ P−1
j [b]. Therefore, neither a nor b is before c in Pj, contradicting with c being

an obstacle to {a, b}.
In fact, the chromatic number of N is exactly the chromatic number of the k-PC

graph constructed on P, because for any hyperedge E of size more than two in N
there is another hyperedge E ′ in N of size two such that E ′ ⊆ E.

5.2 Small k’s

We prove that for 1 ≤ k ≤ 3, every k-PC graph can be properly colored with a
constant number of colors. One of the tools we use to prove the above-mentioned
statement is the following lemma in which we show that any subgraph of a k-PC
graph can be converted to a k-PC graph by adding some edges (without adding
vertices).

90



Lemma 5.2.1. Suppose A is a k-PC graph and B is an n-vertex subgraph of A.
Then, B is a subgraph of an n-vertex k-PC graph. In particular, B is a subgraph of
the graph constructed on P[V (B)], where P is the set of k permutations on which
A is constructed.

Proof. Suppose B has an edge {u, v} that is not an edge of the graph constructed
on P[V (B)]. Due to Definition 2.3.16, {u, v} is not P[V (B)]-constructible. Thus,
due to Observation 2.3.15, there exists a vertex w that is an obstacle to {u, v}
in P[V (B)]. However, this means that w is an obstacle to {u, v} in P. Therefore,
{u, v} is not an edge of A, which contradicts the fact that B is a subgraph of A.

Note that B is not necessarily a k-PC graph itself; for example, if A is any k-PC
graph that is not a clique and B is an independent set of A of size n > 1, then B
is a subgraph of an n-vertex k-PC graph, but is not a k-PC graph itself.

Now, we prove that the chromatic numbers of 1-PC, 2-PC, and 3-PC graphs
are each bounded by a constant.

Theorem 5.2.2. If k ≤ 3, the chromatic number of any k-PC graph is bounded by
a constant. In particular, 1-PC graphs and 2-PC graphs are 2-colorable and 3-PC
graphs are 7-colorable.

Proof. We first consider the cases where k = 1 or k = 2. A 1-PC graph A has
exactly one edge, because, if P1 is the permutation on which A is constructed, there
is only one way of choosing a1 in Definition 2.3.14 such that U has two elements.

If A is a 2-PC graph, A is 1-degenerate, i.e. A is a tree. To see this, assume that
B is an arbitrary n-vertex subgraph of A. Lemma 5.2.1 says that B is a subgraph
of an n-vertex 2-PC graph C. Suppose {P1, P2} is the set of permutations on which
C is constructed. By Definition 2.3.16 every edge U of C is {P1, P2}-constructible.
In Definition 2.3.14 a1 can be between 0 and n−2, since if a1 is greater than n−2,
then U would have fewer than two elements. Also, once we chose a1, there is only
one way of choosing a2 such that U has two elements. Therefore, we have at most
n − 1 ways of choosing a1 and a2 such that U has two elements. Since B is a
subgraph of C and C has at most n − 1 edges, B has at most n − 1 edges too.
Therefore, B must have a vertex with degree at most one, which proves that A is
1-degenerate. Therefore, A is 2-colorable.

The more sophisticated case is needed when k = 3. We prove that every 3-
PC graph A is 6-degenerate. Assume that B is an arbitrary n-vertex subgraph
of A. Using Lemma 5.2.1 we can say B is a subgraph of an n-vertex 3-PC graph
C = (V, E). It is enough to prove C has a vertex with degree at most six.
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For the sake of contradiction, assume every vertex of C has at least seven
neighbors. Also, suppose {P1, P2, P3} is the set of permutations on which C is
constructed. For every vertex v ∈ V , let N−

i (v) be the set of all neighbors of v that
are before v in Pi. Similarly, let N+

i (v) be the set of all neighbors of v that are after
v in Pi. Let u1, u2, and u3 be the first neighbors of v in P1, P2, and P3; note that
u1, u2 and u3 are not necessarily distinct. Since v has more than four neighbors, it
has a neighbor w which is not in {u1, u2, u3}. Because {v, w} ∈ E does not have any
obstacle, every neighbor of v, other than w, appears before both v and w in at least
one of the permutations. Similarly, since {v, u1} ∈ E does not have any obstacle,
w appears before both v and u1 in at least one of the permutations. Therefore,
every neighbor of v appears in at least one N−

i (v). Suppose that w ∈ N−
x (v), where

1 ≤ x ≤ 3. Since {v, ux} ∈ E does not have any obstacle, and w is after ux in Px,
w appears before both ux and v in at least one of the permutations other than Px.
Thus, w is in at least two N−

i (v)s. This argument holds for every neighbor w of v
that is not in {u1, u2, u3}; i.e. every neighbor of v which is not in {u1, u2, u3} is in
at least two N−

i (v)s. Hence,

3∑

i=1

|N−
i (v)| ≥ 2d(v)− 3⇒

3∑

i=1

|N+
i (v)| = 3d(v)−

3∑

i=1

|N−
i (v)| ≤ d(v) + 3

⇒ 3|E| =
3∑

i=1

∑

v∈V

|N+
i (v)| =

∑

v∈V

3∑

i=1

|N+
i (v)| ≤

∑

v∈V

(d(v) + 3) = 2|E|+ 3n⇒ |E| ≤ 3n.

However, since every vertex in v has at least seven neighbors, we know |E| ≥ 7
2
n.

For k-PC graphs with k ≥ 4, we cannot provide a bound as strong as above.
However, we will prove that the chromatic number of all k-PC graphs is inO(n1−λ(k)),
where λ is a function depending only on k.

5.3 A General Upper Bound

All results in Smorodinsky’s paper [76] are obtained using the following technique:
either he proves that the graph family is d-degenerate for some d, or he reduces the
problem to finding the chromatic number of a family of d-degenerate graphs. We
applied the same technique to find upper bounds for the chromatic number of k-PC
graphs, when k is less than four. However, it seems unlikely that this technique can
be used for larger values of k, because, as is shown in Figure 5.3, there are 4-PC
graphs with large minimum degree.

92



vn+1 vn+2 v2n

v1 v2 vn

. . .

. . .

P4 = 〈n+ 1, . . . , 2n, 1, . . . , n〉
P3 = 〈2n, . . . , n+ 1, n, . . . , 1〉
P2 = 〈n, . . . , 1, 2n, . . . , n+ 1〉
P1 = 〈1, . . . , n, n+ 1, . . . , 2n〉

Figure 5.3: A 2n-vertex 4-PC graph with minimum degree n.

To bound the chromatic number of k-PC graphs, we execute two steps: first
we prove each k-PC graph has an independent set of size O(nλ(k)), where λ is a
function of k. Then, we conclude that the chromatic number of k-PC graphs is at
most O(n1−λ(k)).

In order to find a large independent set in k-PC graphs, we use a generalization
of a theorem by Erdös and Szekeres [34]. Erdös and Szekeres proved that every
sequence of n2 + 1 integers either has a non-decreasing subsequence of length n+ 1
or has a non-increasing subsequence of length n + 1. A non-decreasing or non-
increasing sequence is called a monotonic sequence. In unpublished work N. G.
de Bruijn generalized their result to sequences of k-tuples of numbers [60]. His
generalization is stated in the following theorem. More details about De Bruijn’s
Theorem and other generalizations of Erdös and Szekeres’ theorem can be found in
papers by Kruskal [60] and Odlyzko et al. [69].

Theorem 5.3.1. (De Bruijn [60]) Every sequence of n2k

+ 1 k-tuples of integers
has a subsequence S of length n + 1 such that the sequence of the ith elements of
k-tuples in S is monotonic for every 1 ≤ i ≤ k. Furthermore, n2k

+1 is the smallest
number that has this property.

Using De Bruijn’s Theorem, we can easily find a lower bound on the size of a
maximum independent set of k-PC graphs. Let αPC(k, n) be the maximum number
such that every n-vertex k-PC graph has an independent set of size αPC(k, n). In

the following lemma, we prove that αPC(k, n) ∈ Ω(n
1

2k−1 ).

Lemma 5.3.2. Every n-vertex k-PC graph has an independent set of size⌊
1
2
(n− 1)

1

2k−1

⌋

+ 1.

Proof. Suppose A is an n-vertex k-PC graph with vertices {v1, v2, . . . , vn}. We de-
note the set of k permutations on which A is constructed by P = {P1, . . . , Pk}.
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Clearly, we can rename the vertices so that we have P1 = 〈v1, v2, . . . , vn〉. We will
prove there exists a fairly large integer 1 ≤ m ≤ n and a set of integers 1 ≤ a1 <
a2 < . . . < am ≤ n such that, for every 1 ≤ i ≤ k, Pi[{a1, a2, . . . , am}] is either

〈va1 , va2 , . . . , vam
〉 or 〈vam

, vam−1 , . . . , va1〉. Then, we proveG
[{

va1 , va3 , . . . , va2⌈m
2 ⌉−1

}]

is an independent set.

We build a sequence S = 〈s1, s2, . . . , sn〉 of (k − 1)-tuples in the following way:
the ith element of S is si = (ei,2, ei,3, . . . , ei,k), where ei,j is the number of elements
before vi in Pj . According to De Bruijn’s Theorem, and because S has n tuples,

S has a subsequence of m =
⌊

(n− 1)
1

2k−1

⌋

+ 1 tuples 〈sa1 , sa2, . . . , sam
〉 such that

〈ea1,j, ea2,j, . . . , eam,j〉 is monotonic for every 2 ≤ j ≤ k. As a result, for every
1 ≤ x < y ≤

⌈
m
2

⌉
and every 2 ≤ j ≤ k, va2x

is between va2x−1 and va2y−1 in Pj .
Also, since a2x−1 < a2x < a2y−1, we know that va2x

is between va2x−1 and va2y−1 in
P1. Hence, va2x

is an obstacle to
{
va2x−1 , va2y−1

}
. Hence, for every 1 ≤ x < y ≤

⌈
m
2

⌉
,

{
va2x−1 , va2y−1

}
is not P-constructible, due to Definition 2.3.14. Consequently, for

every 1 ≤ x < y ≤
⌈

m
2

⌉
, A does not have an edge between va2x−1 and va2y−1 , due

to Definition 2.3.16. So,
{

va1 , va3 , . . . , va2⌈m
2 ⌉−1

}

induces an independent set of size
⌈

m
2

⌉
=
⌊

1
2
(n− 1)

1

2k−1

⌋

+ 1 in A.

We can use the fact that k-PC graphs have large independent sets to develop a
greedy algorithm to color a k-PC graph.

Corollary 5.3.3. For all n-vertex k-PC graphs A, χ(A) ∈ O(n1− 1

2k−1 ).

Proof. According to Lemma 5.3.2, A has an independent set of size at least⌊
1
2
(n− 1)

1

2k−1

⌋

+1. We color the vertices of this independent set with color one and

remove them from A, obtaining a smaller graph A1 with n1 < n−
⌊

1
2
(n− 1)

1

2k−1

⌋

−1

vertices. Due to Lemma 5.2.1, A1 is a subgraph of an n1-vertex k-PC graph. There-

fore, A1 also has an independent set of size at least
⌊

1
2
(n1 − 1)

1

2k−1

⌋

+1. We continue

to color every independent set found in this way, until the vertices of A has been
partitioned into c independent sets I1, I2, . . . , Ic.

To bound the number of independent sets obtained above, we consider the
minimum number t such that

∑t
i=1 |Ii| > n

2
− 1. For each 1 ≤ i ≤ t, we have

|Ii| ≥
⌊

1
2
(n

2
)

1

2k−1

⌋

+ 1. Therefore, t(
⌊

1
2
(n

2
)

1

2k−1

⌋

+ 1) ≤ ∑t
i=1 |Ii| ≤ n and thus

t ≤ n/(
⌊

1
2
(n

2
)

1

2k−1

⌋

+ 1) ≤ 21+ 1

2k−1 n1− 1

2k−1 . Let f(k, n) be the maximum number
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of independent sets obtained by the above greedy algorithm on an n-vertex k-PC
graph. Clearly, χ(A) ≤ c ≤ f(k, n). Also, since the above argument shows that

after removing vertices of the first 21+ 1

2k−1 n1− 1

2k−1 independent sets at most
⌊

n
2

⌋
+1

vertices remain in the graph, we have the following recursive inequality for n ≥ 4

f(k, n) ≤ 21+ 1

2k−1 n1− 1

2k−1 + f
(

k,
⌊n

2

⌋

+ 1
)

≤ 21+ 1

2k−1 n1− 1

2k−1 + f

(

k,
3

4
n

)

.

By solving the above inequality with the base case f(k, 1) = 1, f(k, 2) = 2, and
f(k, 3) = 3 we can conclude

f(k, n) ≤ 21+ 1

2k−1 n1− 1

2k−1

(

1 +

(
3

4

)1− 1

2k−1

+

(
3

4

)2(1− 1

2k−1 )
+ . . .

)

=
21+ 1

2k−1

1−
(

3
4

)1− 1

2k−1

n1− 1

2k−1 .

5.4 Concluding Remarks

Since the size of the maximum clique of a graph is a lower bound on its chromatic
number, it seems natural to ask how large the cliques of a k-PC graph can be.
Using Lemma 5.3.2 it is simple to find an upper bound on the maximum clique size
of k-PC graphs.

Lemma 5.4.1. A k-PC graph does not have a clique of size 22k−1
+ 1.

Proof. Due to Lemma 5.2.1, if a k-PC graph has a clique of size 22k−1
+ 1, then

K22k−1+1 is also a k-PC graph. Hence, it is enough to prove that K22k−1+1 cannot
be a k-PC graph.

Suppose A is a complete graph on 22k−1
+ 1 vertices and A is a k-PC graph.

According to Lemma 5.3.2, A has an independent set of size at least
⌊

1
2
(22k−1

)
1

2k−1

⌋

+

1 = 2, which is a contradiction.

In the proof of Lemma 5.3.2, instead of proving there exist three vertices x,
y, and z such that y is an obstacle to {x, z} we proved something stronger: we
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proved there exist three vertices x, y, and z such that Pi[{x, y, z}] is always of
the form 〈x, y, z〉 or 〈z, y, x〉. However, being an obstacle to {x, z} means y never
appears before both x and z, i.e. Pi[{x, y, z}] is always of the form 〈x, y, z〉, 〈x, z, y〉,
〈z, y, x〉, or 〈z, x, y〉, where Pi[{x, y, z}] is the permutation on {x, y, z} imposed by
Pi. By considering this fact, we may obtain a better upper bound on the clique
size of k-PC graphs.

We can rephrase De Bruijn’s Theorem in different words. A sequence S avoids
a permutation 〈p1, p2, . . . , pt〉 of {1, 2, . . . , t} if S has no subsequence 〈s1, s2, . . . , st〉
such that si < sj if and only if pi < pj. The permutation 〈p1, p2, . . . , pt〉 is called
a pattern. One can generalize the above definition for sequences of k-tuples: a
sequence S of k-tuples avoids a permutation P if the sequence of the ith elements
of k-tuples in S avoids P , for every 1 ≤ i ≤ k. So, De Bruin’s Theorem states that
every sequence of n2k

+ 1 k-tuples of integers has a subsequence S of length n + 1
such that S avoids 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉, and 〈3, 1, 2〉 for every 1 ≤ i ≤ k. We
refer the reader to the papers on sequences that avoid a given pattern [14, 7] or a
given set of patterns [80] for more details.

The case that we are interested in has not been previously studied. Suppose
f〈2,1,3〉,〈2,3,1〉(n, k) is the smallest number such that every sequence of f〈2,1,3〉,〈2,3,1〉(n, k)
k-tuples of integers has a subsequence of length n+1 avoiding 〈2, 1, 3〉 and 〈2, 3, 1〉.
We want to investigate how much smaller f〈2,1,3〉,〈2,3,1〉(n, k) is than n2k

+ 1.

f〈2,1,3〉,〈2,3,1〉(n, k) may be smaller than n2k

+ 1, because any monotonic sequence
avoids 〈2, 1, 3〉 and 〈2, 3, 1〉, but the reverse is not true. For example, 〈8, 7, 1, 6, 5, 2, 4, 3〉
is not ascending nor is descending, but avoids 〈2, 1, 3〉 and 〈2, 3, 1〉.

In the following lemma, we prove if a sequence avoids 〈2, 3, 1〉 and 〈2, 1, 3〉, then
it has a large monotonic subsequence. This helps us to prove that f〈2,1,3〉,〈2,3,1〉(n, k)

is not much smaller than n2k

, and thus, we can conclude that refining De Bruijn’s
Theorem for our purpose cannot lead to a significantly better bound.

Lemma 5.4.2. If P is a permutation of length at least 2n+1 and P avoids 〈2, 1, 3〉
and 〈2, 3, 1〉, then P has a monotonic subsequence of length at least n+ 1.

Proof. Suppose P = 〈p1, p2, . . . , p2n+1〉 is a permutation, and P avoids 〈2, 1, 3〉 and
〈2, 3, 1〉. Then, M = {pi : ∀j > i pj > pi} is a subset of {1, 2, . . . , 2n+ 1} and
P [M ] is an increasing subsequence of P . If M has more than n elements, then the
lemma holds for P . Otherwise, assume that M has a ≤ n elements. We denote the
ith element of P [M ] by mi. For example, in Figure 5.4, a = 3 and M = {p4, p7, p9}.
Hence, m1 = p4, m2 = p7, and m3 = p9.

Elements of M divide P into a segments S1, S2, . . . , Sa; more precisely, we define
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i

pi

m1

m2

m3

︷ ︸︸ ︷

︷ ︸︸ ︷

︷︸︸︷

S1

S2

S3

Figure 5.4: A permutation that avoids 〈2, 1, 3〉 and 〈2, 3, 1〉.

Si = {pj : pj is before mi and after mi−1 in P} for all 2 ≤ i ≤ a, and we denote the
set of all elements of P that are before m1 in P by S1. Note that ma = p2n+1 and
thus there is no element after ma in P . The way we chose elements of M ensures
that no number in Si is less than mi. Otherwise, suppose an element of Si is less
than mi. Also, suppose that s is the last element of Si that is less than mi. The
fact that all the elements between s and mi are at least mi, together with the fact
that mi is less than all the elements of P after mi implies that s is less than all the
elements of P after s. This means that s is in M , which is a contradiction.

Now we build a decreasing sequence of size n + 1. Each Si induces a de-
creasing subsequence in P because if px appears before py in P [Si] and px < py,
then P [{px, py, mi}] is a 〈2, 3, 1〉-pattern. For example, in Figure 5.4, if p1 < p3,
P [{p1, p3, m1}] would be a 〈2, 3, 1〉-pattern. On the other hand, for any 1 ≤ i <
j ≤ a the last element of P [Si] is greater than the first element of P [Sj], as oth-
erwise these two elements together with mi induce a 〈2, 1, 3〉-pattern in P . There-
fore, P [∪a

i=1Si] is a decreasing subsequence of P . Note that, M ∪ (∪a
i=1Si) =

{1, 2, . . . , 2n+ 1} and |M | ≤ n. Hence, | ∪a
i=1 Si| ≥ n+ 1.

Using Lemma 5.4.2 it is easy to prove that f〈2,1,3〉,〈2,3,1〉(n, k) is close to n2k

.

Corollary 5.4.3. For all integers n and k we have f〈2,1,3〉,〈2,3,1〉(n, k) ≥
(⌊

n
2k

⌋)2k

+
1.

Proof. We use the tightness of De Bruijn’s bound: we know there exists a sequence
of n2k

k-tuples that have no subsequence S of length n+ 1 such that the sequence
of the ith elements of k-tuples in S is monotonic for every 1 ≤ i ≤ k.
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Suppose, for the sake of contradiction, that f〈2,1,3〉,〈2,3,1〉(n, k) ≤
(⌊

n
2k

⌋)2k

. Then,

every sequence of n2k

k-tuples has a subsequence S1 of length 2kn+1 such that the
sequence of the ith elements of k-tuples in S1 avoids 〈2, 1, 3〉 and 〈2, 3, 1〉 (for every
1 ≤ i ≤ k). According to Lemma 5.4.2, S1 has a subsequence S2 of length 2k−1n+1
such that, say, the sequence of the first elements of k-tuples in S2 is monotonic.
Similarly, S2 has a subsequence S3 of length 2k−2n + 1 such that the sequences of,
say, the first and second elements of k-tuples in S3 are both monotonic, and so on.
Finally we end up with a subsequence Sk+1 of length n+ 1 such that the sequence
of the ith elements of k-tuples in Sk+1 is monotonic for all 1 ≤ i ≤ k, which is a
contradiction.

In fact, using a probabilistic argument we can prove there exists a k-PC graph
that has a clique of size Ω(1.2247k).

Lemma 5.4.4. K⌊0.4952·1.2247k⌋−1 is a k-PC graph.

Proof. Suppose P is a set of k random permutations P1, P2, . . ., Pk on V =
{v1, v2, . . . , vn}. We use Ex,y,z to denote the event that vz is an obstacle to {vx, vy}
for every three mutually nonidentical vertices vx, vy, and vz. Since each permuta-
tion is chosen randomly, independent of the other permutations, the probability of
Ex,y,z occurring is (2

3
)k, because with probability 2

3
z is before one of x or y in each

permutation. Because there are
(

n
3

)
events Ex,y,z, the probability of at least one of

these events occurring is at most
(

n
3

)
(2

3
)k. Therefore, if

(
n
3

)
(2

3
)k < 1, we can con-

clude there exists a set of k permutations P∗ on V such that the graph constructed
on P∗ is a clique.

The above argument gives us a lower bound of Ω((3
2
)

k
3 ≈ 1.1447k). However,

we can improve it using the Lovász Local Lemma [30]. The following is known as
the symmetric case of Theorem 3.1.8.

Lemma 5.4.5. The Local Lemma, Symmetric Case [30]. Suppose A1, A2, . . .,
and An are random events such that for every 1 ≤ i ≤ n Ai occurs with probability
at most p and Ai is mutually independent of all but at most d other events. Then,
if ep(d+ 1) ≤ 1, the probability that none of Ai’s occurs is more than zero.

The key point is that Ex1,y1,z1 is not dependent on Ex2,y2,z2 if {x1, y1, z1} and
{x2, y2, z2} are disjoint. Therefore, each event Ex1,y1,z1 is dependent on at most
3n + 3

(
n
2

)
other events: 3n events Ex2,y2,z2 such that {x1, y1, z1} ∩ {x2, y2, z2} = 2

and 3
(

n
2

)
events Ex2,y2,z2 such that {x1, y1, z1}∩{x2, y2, z2} = 2. Hence, if e(2

3
)k(3n+

3
(

n
2

)
+ 1) is less than one, the probability that none of the events occurs is more

than zero. Thus, if n =
⌊
0.4952 · 1.2247k

⌋
−1, e(2

3
)k(3n+3

(
n
2

)
+1) will be less than
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one, and therefore, there exists a set of k permutations P∗ on V = {v1, v2, . . . , vn}
such that the graph constructed on P∗ is a clique.

Note that, Lemma 5.4.4 proves there exist k-PC graphs whose chromatic num-
bers are at least

⌊
0.4952 · 1.2247k

⌋
− 1. By combining this fact with Theorem 5.1.5

we can prove that the chromatic number of a hypergraph induced by n k-dimensional
axis-parallel boxes can be as large as Ω(1.2247k), which is exponential with respect
to k.
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Chapter 6

Conclusion

We generalized the hypergraph coloring problem and introduced the intersperse
coloring problem. We showed that many coloring problems such as strong coloring
of hypergraphs, the star coloring problem, the problem of proper coloring of graph
powers, the acyclic coloring problem, and the frugal coloring problem are special
cases of the intersperse coloring problem.

In Theorem 3.1.2, using a probabilistic method, we obtained an upper bound of

c+ c
∑

E∈E(N)

∑min{|E|,ℓ}−1
i=1 p

( 1
c
)

|E|, i
min{|E|,ℓ}−1

for hypergraphs in the general case, where N is a hypergraph, c > 0 is any con-
stant integer, and p

(α)
n,δ is defined in Notation 3.1.1. Then, we used the method of

conditional expectations to develop the deterministic version of Theorem 3.1.2 in
Theorem 3.1.5. This result works for all coloring problems that can be viewed as
special cases of the intersperse coloring problem. For example, Theorem 3.1.5 gives
a polynomial-time deterministic algorithm for properly coloring r-uniform hyper-
graphs with m edges using at most O(m

1
r ) colors. If we apply Theorem 3.1.5 to the

strong coloring problem of hypergraphs with few large hyperedges, we get a better
upper bound than the one in Agnarsson and Halldórsson’s [3] work. Agnarsson
and Halldórsson’s bound for a hypergraph N of rank r is r

√

|E(N)|, which is inde-
pendent of the number of large hyperedges. This is a good bound for the general
case; however, in an example in Chapter 3 we showed that if the number of large
hyperedges is much less than the number of small hyperedges, the above-mentioned
bound is not efficient. We proved that if only x hyperedges of N are of size r and
the other hyperedges are of size two, then the strong chromatic number is at most
√

(|E(N)| − x)(xr − x+ 1).
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We also obtained two upper bounds, one constructive and one existential, as
functions of vertex degrees of the input hypergraph. In Theorem 3.1.6, we proved
that there is a polynomial-time algorithm that finds an ℓ-intersperse coloring of

a hypergraph N with at most maxv∈V (N)

{
∑

E∈E(N) s.t. v∈E(min {|E|, ℓ} − 1)
}

+ 1

colors. The existential bound, which was proven in Theorem 3.1.10 with the help

of the local lemma, is
⌊

maxℓ≤i≤|V (N)|

{

2(ℓ− 1)
(
4eℓ−1f(i)

) 1
i−ℓ+1

}⌋

+1, where f(i) is

the maximum number of hyperedges of size i intersecting with a single hyperedge.

We considered two special families of hypergraphs: copy hypergraphs and geo-
metric hypergraphs induced by d-dimensional boxes. Copy hypergraphs are intro-
duced in this thesis for the first time and we showed that the intersperse coloring
problem on copy hypergraphs is an interesting problem, because it covers many
other coloring problems. We obtained two upper bounds for SC(A,B, ℓ), where A
is a graph, B is a finite family of graphs, and ℓ ≥ 2 is an integer. The first upper
bound is (ℓ − 1) ·∑B∈B

(
|V (B)| ·∆(A)|V (B)|−1

)
+ 1 and the second upper bound

is
⌊

2(ℓ− 1) maxℓ≤i≤|V (A)|

{

(cibi∆(A)i−1)
1

i−ℓ+1

}⌋

+ 1. In the second bound it is as-

sumed that ℓ ≤ minB∈B |V (B)|. For the case that ℓ = 2 we obtained a third upper
bound that is stronger than the previous two upper bounds for some instances. Also,
in Theorem 4.2.11, we obtained a lower bound for the case that ℓ can be any num-
ber, but B is a family of trees. The lower bound is maxB∈B

2|E(A)|(min{|V (B)|,ℓ}−2)
(1+ε)(|V (B)|−1)|V (A)| +1,

which is true for any value of ε > 0 if all trees in B are large enough.

In this thesis, we also proposed a new model for graph and hypergraph prop-
erty testing, called the symmetric model. The symmetric model is the first model
that can be used for developing property testing algorithms for non-uniform hy-
pergraphs. We proved that there are a number of graph properties, in particular
P2-freeness, that have efficient property testers in the symmetric model but do
not have any efficient property tester in previously-known property testing models.
Note that the problem of checking whether a given graph G is P2-free is equivalent
to the problem of checking whether ISC(G, {P2} , 2) = 1. So, it is a special case of
the intersperse coloring problem on induced copy hypergraphs.

Future Work

In Chapter 3 we proposed a simple O( n
lg n

)-approximation algorithm for properly
coloring c-colorable hypergraphs, for any integer c. However, it is not clear if the
simple method used can be generalized to work for the intersperse coloring prob-
lem. Thus, finding an O( n

lg n
)-approximation algorithm for the intersperse coloring
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problem on c-colorable hypergraphs remains open.

Open Problem 6.1. Is there an O( n
lg n

)-approximation algorithm for the ℓ-intersperse
coloring problem on c-colorable non-uniform hypergraphs, for any constant c?

The above discussion was regarding general hypergraphs. As a special family of
hypergraphs, one can consider the class of neighborhood hypergraphs. Neighbor-
hood hypergraphs, introduced by Chastel et al. [24], and neighborhood hypergraphs
of radius r, first introduced in this thesis, are interesting to study from the inter-
sperse coloring problem point of view, because, as mentioned in Chapter 2, several
facility location problems can be modelled in this way.

Another area that may be a fruitful direction for future work is studying the
property testing algorithm under the symmetric model, defined in this thesis. As
mentioned above, we proposed a property tester for P2-freeness in the symmetric
model that uses a constant number of queries, independent of the size of the input
graph. However, it is not clear for what connected graphs B we can test B-freeness.
In particular, the following problem remains open:

Open Problem 6.2. Does there exist a property testing algorithm for B-freeness
using only O(poly(1

ε
)) queries, for every connected graph B?

For geometric hypergraphs, we considered the proper coloring problem only on
geometric hypergraphs induced by axis-parallel boxes. Naturally, one can think
about the intersperse coloring problem on geometric hypergraphs. However, the
problem still has room for more work, even in the proper coloring context. For
example, we reduced the proper coloring of geometric hypergraphs induced by axes-
parallel boxes to the coloring of k-PC graphs. But, the best upper bound for the
chromatic number of k-PC graphs we could find was of the form O(n1−f(k)), where
f is a decreasing function of k, for k ≥ 4. Hence, another open problem is the
following:

Open Problem 6.3. Is it true that, for any constant integer number k ≥ 4 and
real number ε > 0, the chromatic number of k-PC graphs is in o(nε)?

Since the intersperse coloring problem is a broad problem, there are lots of
related topics that are not covered in this thesis and are left as future areas of
study. This thesis should be mostly viewed as an introduction to the intersperse
coloring problem and why it is interesting.
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