Analysis and Design of Robust Multi-Gb/s
Clock and Data Recovery Circuits

by

David J. Rennie

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

©David J. Rennie 2007
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

David J. Rennie
Abstract

The bandwidth demands of modern computing systems have been continually increasing and the recent focus on parallel processing will only increase the demands placed on data communication circuits. As data rates enter the multi-Gb/s range, serial data communication architectures become attractive as compared to parallel architectures. Serial architectures have long been used in fibre optic systems for long-haul applications, however, in the past decade there has been a trend towards multi-Gb/s backplane interconnects. The integration of clock and data recovery circuits into monolithic integrated circuits is attractive as it improves performance and reduces the system cost, however it also introduces new challenges, one of which is robustness.

In serial data communication systems the CDR circuit is responsible for recovering the data from an incoming data stream. In recent years there has been a great deal of research into integrating CDR circuits into monolithic integrated circuits. Most research has focused on increasing the bandwidth of the circuits, however in order to integrate multi-Gb/s CDR circuits robustness, as well as performance, must be considered.

In this thesis CDR circuits are analyzed with respect to their robustness. The phase detector is a critical block in a CDR circuit and its robustness will play a significant role in determining the overall performance in the presence of process non-idealities. Several phase detector architectures are analyzed to determine the effects of process non-idealities. Static phase offsets are introduced as a figure of merit for phase detectors and a mathematical framework is described to characterize the negative effects of static phase offsets on CDR circuits. Two approaches are taken to improve the robustness of CDR circuits. First, calibration circuits are introduced which correct for static phase offsets in CDR circuits. Secondly, phase detector circuits are introduced which have been designed to optimize both performance and robustness. Several prototype chips which implement these schemes will be described and measured results will be presented. These results show that while CDR circuits are vulnerable to the effects of process non-idealities, there are circuit techniques which can mitigate many of these concerns.
Acknowledgements

A PhD is in many way a solitary endeavor, however it is never completed alone. I am indebted to a great many people, and I thank all those who have helped me complete this journey.

I thank my supervisor Manoj Sachdev for many years of patience, advice and encouragement. This thesis would not have been possible without his guidance and support, and I am deeply grateful.

I have been blessed with many friends who have made the long road a little shorter, providing both much needed help and much needed distractions at just the right times. I can never repay them for all they have contributed to my life, but I can, and do, say a heartfelt thank you.

I have also been greatly blessed with a wonderful family, and I thank them. They have given me unconditional love and unfailing support, put up with my erratic schedule, and only rarely asked when I was going to be finished!

Finally, I give thanks to God, who set my feet upon this path, and was faithful in leading me through; to Him be the glory.

The race is not to the swift
or the battle to the strong,
nor does food come to the wise
or wealth to the brilliant
or favor to the learned;
but time and chance happen to them all.
Ecclesiastes 9:11
Contents

1 Introduction .. 1
 1.1 CMOS Integration of CDR Circuits 2
 1.2 Motivation ... 3
 1.3 Thesis Overview 4

2 Clock and Data Recovery 5
 2.1 Serial Digital Data Communication 5
 2.1.1 Data Modulation 6
 2.1.2 Data Encoding 8
 2.2 Wireline Data Communication 9
 2.2.1 Optical Data Communication Systems 9
 2.2.2 Copper Data Communication Systems 11
 2.3 CDR Circuit Architecture 14
 2.3.1 Phase Detector 15
 2.3.2 Charge Pump 23
 2.3.3 Loop Filter 26
 2.3.4 Voltage Controlled Oscillator 26
 2.4 CML in Multi-Gb/s CDR Circuits 30
 2.4.1 Architecture 31
2.4.2 CDR Circuits Using CML .. 33
2.5 Figures of Merit ... 34
 2.5.1 CDR System Analysis .. 34
 2.5.2 Jitter .. 39
 2.5.3 Frequency Domain FOM 43
 2.5.4 Time-Domain FOM .. 54
2.6 Modelling Binary Phase Detector Based CDR Circuits 56
 2.6.1 Basic Binary Control: Example 57
 2.6.2 Basic Binary Control: Analysis 58
 2.6.3 Second Order CDR Systems 63
2.7 Summary .. 73

3 Robustness Considerations in CDR Circuits 74
 3.1 Robustness .. 74
 3.1.1 Definition of Robustness 76
 3.1.2 Robustness in This Thesis 76
 3.2 Mathematical Analysis of Static Phase Offset 79
 3.2.1 Static Phase Offsets in a Phase Detector 79
 3.2.2 Simulation Results .. 85
 3.3 DFF Analysis ... 86
 3.3.1 Metastability in a DFF 87
 3.3.2 Hogge Phase Detector Gain 89
 3.3.3 Alexander Phase Detector Gain 90
 3.3.4 DFF Phase Detector Gain 92
 3.4 Effect of Non-Idealities on Phase Detectors 93
 3.4.1 Analysis Setup .. 93
 3.4.2 Analysis Results ... 95
4 Calibration Techniques for Robust CDR Circuits

4.1 Calibration in CDR Circuits

4.1.1 Correction of Static Phase Offsets Using Calibration

4.1.2 Linear Phase Detectors in CDR Circuits

4.2 Offline Calibration Architecture

4.2.1 Calibration Algorithm

4.2.2 Implementation

4.2.3 Measured Results

4.3 Online Analog Calibration Architecture

4.3.1 Calibration Architecture

4.3.2 Implementation

4.3.3 Measured Results

4.4 Summary

5 Phase Detector Design for Robust CDR Circuits

5.1 Tri-State DFF Phase Detector

5.1.1 Architecture of Tri-State DFF Phase Detector

5.1.2 Robustness of the Tri-State DFF Phase Detector

5.1.3 Implementation

5.1.4 Measured Results

5.2 Pulsed DFF Binary Phase Detector

5.2.1 Monolithic Second Order Loop Issues

5.2.2 Proportional Path Optimization

5.2.3 Simulation Results

5.2.4 Implementation
List of Tables

2.1 Data rates for SONET/SDH .. 11

3.1 Simulation data for process normalization 93

4.1 Measured calibrated and uncalibrated BER for various data patterns ... 118
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Example of several line codes which could be used for data communication</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Architecture of an optical data communication system</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Architecture of a repeater</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Data communication over a backplane</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Architecture of a backplane data communication system</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Frequency attenuation over an FR4 backplane [1]</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Architecture of a PLL based CDR circuit</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Gain of a binary and linear phase detector</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Architecture of the Hogge phase detector</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>Operation of the Hogge phase detector</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>A CDR circuit with a DFF as the phase detector</td>
<td>19</td>
</tr>
<tr>
<td>2.12</td>
<td>The sampling behavior of an Alexander phase detector</td>
<td>20</td>
</tr>
<tr>
<td>2.13</td>
<td>Architecture of the Alexander phase detector</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>Waveforms of full-rate and half-rate CDR circuits</td>
<td>22</td>
</tr>
<tr>
<td>2.15</td>
<td>Basic architecture of a charge pump</td>
<td>23</td>
</tr>
<tr>
<td>2.16</td>
<td>Current steering charge pump with differential inputs</td>
<td>24</td>
</tr>
<tr>
<td>2.17</td>
<td>Differential implementation of a charge pump</td>
<td>25</td>
</tr>
<tr>
<td>2.18</td>
<td>Second order low pass filter</td>
<td>26</td>
</tr>
<tr>
<td>2.19</td>
<td>Architecture of a CDR circuit with a dual loop structure and an external reference</td>
<td>27</td>
</tr>
</tbody>
</table>
2.20 Architecture of a four stage ring oscillator 28
2.21 (a) Ideal LC-tank (b) LC-tank with parasitics 29
2.22 LC-tank oscillator with NMOS cross-couple pair 30
2.23 CML implementation of a buffer .. 31
2.24 CML implementation of four different logic gates 32
2.25 Frequency domain mathematical model of a CDR circuit 34
2.26 Output waves from a CDR circuit with a capacitor for a loop filter .. 35
2.27 Frequency response of a CDR circuit which has a capacitor as the loop filter ... 36
2.28 Frequency response of a CDR circuit which has a first order loop filter 37
2.29 An illustration of pattern dependant jitter 40
2.30 An illustration of pulse width distortion 41
2.31 The difference between RMS and peak-to-peak jitter measurements [2] 42
2.32 Jitter transfer mask for OC-192 ... 44
2.33 Jitter amplification in a second order loop 46
2.34 Jitter tolerance mask for OC-192 ... 47
2.35 Jitter tolerance using a first order approximation 49
2.36 Relationship between phase noise and jitter 51
2.37 Frequency domain mathematical model of a CDR circuit with noise 52
2.38 Frequency response of a CDR circuit to noise 53
2.39 A CDR architecture where the binary phase detector directly controls the VCO . 58
2.40 Waveforms illustrating the ideal response of the first order loop 59
2.41 Waveforms used to determine the jitter transfer response of the first order loop .. 60
2.42 Waveforms used to determine the jitter tolerance response of the first order loop . 61
2.43 The jitter transfer and jitter tolerance response of the first order loop 63
2.44 Three architectures which increase the order of the first order loop 64
2.45 A second order loop with a capacitor as the loop filter 65
2.46 Waveforms showing the integral response provided by the capacitor 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.47</td>
<td>A second order loop with a first order RC loop filter</td>
<td>67</td>
</tr>
<tr>
<td>2.48</td>
<td>Relationship between jitter tolerance, jitter generation and Δf_{bb}</td>
<td>69</td>
</tr>
<tr>
<td>2.49</td>
<td>Response of two-state and tri-state binary phase detectors</td>
<td>70</td>
</tr>
<tr>
<td>2.50</td>
<td>V/I circuit used by Lee et al.</td>
<td>71</td>
</tr>
<tr>
<td>2.51</td>
<td>Example of a circuit with tri-state frequency control</td>
<td>72</td>
</tr>
<tr>
<td>3.1</td>
<td>Some sources and effects of process variations [3] [4]</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Phase detector performance and robustness goals</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Eye diagram of a CDR circuit when $\Phi_{spo} = 0$</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Eye diagram of a CDR circuit when $\Phi_{spo} \neq 0$</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Maximum allowable RMS jitter in the presence of static phase offsets</td>
<td>82</td>
</tr>
<tr>
<td>3.6</td>
<td>Output BER with respect to J_{rms} and Φ_{spo}</td>
<td>84</td>
</tr>
<tr>
<td>3.7</td>
<td>The effect of a 10ps static phase offset on the BER of a 10Gb/s CDR circuit</td>
<td>84</td>
</tr>
<tr>
<td>3.8</td>
<td>Simulated maximum input jitter vs Φ_{spo} for a 5Gb/s CDR circuit</td>
<td>85</td>
</tr>
<tr>
<td>3.9</td>
<td>Schematic of a CML based DFF with waveforms illustrating its functionality</td>
<td>86</td>
</tr>
<tr>
<td>3.10</td>
<td>Value of the C-Q delay with respect to the input phase error</td>
<td>88</td>
</tr>
<tr>
<td>3.11</td>
<td>The operation of a Hogge phase detector given non-ideal DFFs</td>
<td>89</td>
</tr>
<tr>
<td>3.12</td>
<td>Waveforms for an Alexander phase detector including C-Q delay</td>
<td>91</td>
</tr>
<tr>
<td>3.13</td>
<td>Process variation simulation results for the three phase detectors</td>
<td>96</td>
</tr>
<tr>
<td>3.14</td>
<td>Summary showing the overall effects of process on Φ_{spo}</td>
<td>97</td>
</tr>
<tr>
<td>4.1</td>
<td>Hogge phase detector operation when $\Phi_{spo} = 0$ and when $\Phi_{spo} \neq 0$</td>
<td>102</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of UP and DOWN charge pump currents on Φ_{spo}</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Block diagram of the proposed offline calibration algorithm</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulated output waveforms for standard and symmetric XOR gate</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Schematic of the symmetric XOR gate</td>
<td>111</td>
</tr>
<tr>
<td>4.6</td>
<td>Schematic of modified charge pump</td>
<td>111</td>
</tr>
<tr>
<td>4.7</td>
<td>Delay through the delay line as the input current is varied</td>
<td>113</td>
</tr>
</tbody>
</table>
4.8 Architecture of the DAC circuit used in this design 113
4.9 The output current and error of the DAC as the codes are stepped 114
4.10 Micrograph of the fabricated CDR circuit 116
4.11 Spectrum of the VCO locked to a 5Gb/s PRBS 117
4.12 Measured jitter of the locked oscillator ... 117
4.13 Output clock and data waveforms ... 119
4.14 Block diagram of the online calibration architecture 121
4.15 Simulated waveforms showing the calibration loop locking 122
4.16 Eye diagram showing the clock and data signals before and after calibration 123
4.17 The schematic of a dual edge triggered CML DFF 124
4.18 Simple charge pump for the calibration circuit 125
4.19 Micrograph of the fabricated CDR circuit 126
4.20 5Gb/s clock and data waveforms before and after calibration 127

5.1 Architecture of the tri-state binary phase detector 130
5.2 CDR circuit waveforms given a tri-state binary phase detector 131
5.3 Detailed response of the Alexander phase detector over corners 133
5.4 Detailed response of the tri-state DFF phase detector over corners 133
5.5 Comparison of Tri-state DFF vs Alexander Pulse Widths 134
5.6 Architecture of the modified charge pump 136
5.7 Physical structure of an AMOS varactor 137
5.8 Micrographs of the CDR circuits ... 138
5.9 Frequency spectrum of the recovered clock signal 139
5.10 Jitter histogram of the recovered clock for two data patterns 139
5.11 A CDR circuit with a parasitic capacitor creating a third order response ... 140
5.12 Architecture of a CDR circuit with separate proportional and integral paths ... 141
5.13 Architecture of the proposed phase detector 142
5.14 Ideal waveforms if a capacitor is used as a loop filter .. 143
5.15 A 2nd order loop filter and the waveforms resulting from a current pulse 143
5.16 Relationship between \(t_1 \) and \(t_{\text{pulse}} \) given a 2nd order filter 145
5.17 Matlab plot showing the simulated ideal current pulse characteristic 146
5.18 Jitter transfer for DFF and pulsed DFF phase detectors ... 146
5.19 Jitter transfer for various values of \(J_{\text{in}} \) for both phase detectors 147
5.20 Simulations results showing jitter tolerance for both phase detectors 148
5.21 Simulated gain of the proposed phase detector .. 149
5.22 Schematic of circuit used to generate the current pulse .. 149
5.23 Schematics of both the digital and analog current pulse circuits 151
5.24 The range of simulated current pulses for the RC scheme ... 151
5.25 Simulated eye diagram for both a regular and pulsed DFF phase detector 152
5.26 Micrograph of the proposed pulsed DFF phase detector ... 153
5.27 Simulated and measured VCO frequency ... 154
5.28 Simulated capacitance of AMOS varactors ... 155
5.29 Spectrum of the 15GHz output clock signal ... 156
5.30 Jitter histogram for the output clock for both phase detectors 156
5.31 Output data signal ... 157
5.32 Simulated response of the original Hogge phase detector over corners 159
5.33 Architecture of a modified Hogge phase detector .. 160
5.34 Ideal transfer characteristic for the standard and modified Hogge 161
5.35 Simulated response of the modified Hogge phase detector over corners 162
5.36 Simulated eye diagram before and after calibration ... 163
Serial data communication systems have been used for decades to transmit large quantities of information over a single link. However, over the past ten years there has been a significant shift in the high-speed serial data communication market from optical networks to backplane systems. A decade ago optical systems dominated, focusing on long-haul applications where data is sent vast distances over optical fibre. These systems were very expensive, using optical components and discrete integrated circuits (ICs) such as trans-impedance amplifiers (TIAs), clock and data recovery (CDR) circuits and serializer / deserializer (SERDES) circuits. These circuits were implemented in separate ICs and usually fabricated in non-CMOS processes like GaAs and SiGe. Data communication over backplanes was implemented using wide parallel buses like IDE, PCI and AGP. The data rates of these backplane buses was relatively slow, usually less than 100Mb/s. High-speed interconnects were limited to high-end workstations; for example, Cray developed the HIngh Performance Parallel Interface (HIPPI) bus.

While optical networks have grown over the past ten years, the market for backplane serial interconnects has grown at a much higher rate, such that they now dominate the market for serial data communication. Companies have had 40Gb/s optical devices available for a few years, however an overaggressive previous investment in capacity and advances in technology, such as
wavelength-division multiplexing (WDM), has resulted in most systems not having data rates any
greater than 10Gb/s. Companies have focused on reducing the cost of optical systems through
integration and through a cautious migration to CMOS processes. CMOS processes seem an
attractive option in terms of cost and integration, however the quality required for long-haul
systems is still high enough that many companies have stayed with GaAs and SiGe processes.
There has been some research involving the integration of fibre optics into backplanes in order
to enable optical links over a backplane, however the cost of such systems is orders of magnitude
greater than systems which operate exclusively in the electrical domain. As such this approach
is unlikely to be implemented in the near future.

The growth in backplane serial interconnects has come about due to the increasing core
frequency of microprocessors along with the growth of multi-processor computer systems. As the
core frequency of microprocessors increases they require access to more data. In order to increase
bandwidth the width of a parallel bus can be increased, however at a certain point this becomes
prohibitive and serial I/Os become attractive \cite{5}. Several backplane serial data communication
standards have come to the forefront over the past decade, namely RapidIO, PCI-Express and
FibreChannel. Some of these are aimed more at chip-to-chip communication (i.e. RapidIO and
PCI-Express) while others are aimed more at networking (i.e. Fibrechannel). Generally speaking
wireline standards for the backplane have less stringent performance requirements as compared
to optical communication standards like SONET/SDH.

\subsection{1.1 CMOS Integration of CDR Circuits}

As of 2007, most leading edge CDR circuits are not implemented using standard CMOS technol-
ogy, but rather in less mainstream processes. At present, the leading edge of commercial CDR
circuits have data rates in the range of 10Gb/s to 40Gb/s and are usually fabricated in SiGe,
GaAs or InP processes. While these processes have attractive features, they are more expensive
than CMOS, and lack the ease of integration inherent to CMOS processes. Integration is becom-
Integration of a serial transmitter and receiver into a CMOS chip which contains data processing has the potential to reduce latency, system cost and power consumption while providing the processing cores with the necessary data.

Integration has been the focus of a great deal of research in the past decade. The scaling of CMOS has had a significant effect on CDR circuits, in that it has enabled the integration of CDR circuits operating at multi-Gb/s data rates into monolithic ICs [6]. However, the integration of CDR circuits into a CMOS environment is not a trivial process. While CMOS is an excellent technology for digital circuits, it is less conducive to the implementation of high-speed mixed signal circuits. One reason for this is that CMOS transistors have less gain and a lower operating frequency than their bipolar counterparts. A second problem is that the lossy nature of substrates in CMOS processes allows noise to infiltrate into sensitive circuits. A third problem is that often transistors in CMOS processes are not properly characterized for operation at multi-Gb/s data rates. A fourth problem in the integration of CDR circuits into a monolithic IC is that it requires the CDR circuit to be robust. The robustness of CDR circuits is a topic which has received very little attention, however it is a problem which goes hand-in-hand with integration.

1.2 Motivation

In any high-speed serial data communication systems CDR circuits play a key role. In this thesis the importance of robust CDR circuit design is discussed. This topic is becoming significant both due to the drive to integrate entire systems onto a single die and due to the aggressive scaling of CMOS technology. Integration makes it increasingly important for the circuits to be robust and the increased process variation associated with scaling make robust circuits increasingly difficult to realize. In this thesis the effects of robustness are examined and circuits designed to alleviate
those effects are introduced.

1.3 Thesis Overview

This thesis will first examine CDR circuits from a traditional point of view, then the robustness of CDR circuits will be analyzed and finally methods will be proposed to reduce the sensitivity of CDR circuits to process non-idealities. Chapter 2 provides background information on CDR circuits, examining them at both the architectural and circuit level. Figures of merit used to measure the performance of CDR circuits are discussed and finally mathematical models of CDR circuits are derived. Robustness is an important concept in electrical engineering, however it can mean a number of different things depending on the context. Chapter 3 first defines robustness and then introduces the effects of robustness on CDR circuits. The effects of robustness are examined at both the mathematical level and at a circuit level. Calibration is used in many different areas of circuit design in order to optimize a system. In Chapter 4 a method to calibrate CDR circuits is introduced and two schemes are proposed. The first scheme is an online calibration scheme and the second is an offline calibration scheme. Robustness is certainly an important metric, however the performance of CDR circuits cannot be sacrificed. As such, Chapter 5 proposes three phase detector designs which optimize both the performance and robustness of CDR circuits. Finally Chapter 6 summarizes the thesis, elucidates the major contributions and points to potential future work.
Chapter 2

Clock and Data Recovery

In this chapter a background on wireline data communication is given. First, the different ways of describing data in the electrical domain are described. Next, optical and backplane networks are compared with respect to each other. The CDR circuit is a key part of serial interconnects and it is described in detail. Figures of merit used to characterize the performance of CDR circuits are then introduced. A mathematical model for the CDR circuit is described, and then used to derive equations for various figures of merit. This is done first for the case of a linear phase detector based CDR circuit, but CDR circuits which implement binary phase detectors are also analyzed.

2.1 Serial Digital Data Communication

In modern computing systems data is moved to and from storage devices, memory, processing units, I/O devices and through networks. There are numerous ways for data communication systems to be implemented. Based on the physical medium, data communication can either be wireline or wireless. Data communication can be implemented using a bus or over a single channel. There are also numerous methods of putting digital data into the electrical domain,
which is known as modulation. Data can also be encoded, usually in order to make it easier to receive, or in order to enable error correction.

In this thesis only wireline data communication over a single channel is discussed. The next section describes modulation and encoding, and also explains what kind of data signal is assumed in this thesis.

2.1.1 Data Modulation

While modulation is more commonly associated with wireless data communication it is merely a description of data in the electrical domain. Modulation in the context of wireline data communication is also known as line coding. Examples of a few different line codes are shown in Figure 2.1.

1. **Non-Return-to-Zero**

 Non-return-to-zero (NRZ) is the simplest line code. With NRZ the only possible values of the output signal are ‘0’ or ‘1’, which correspond to the value of the input data for the entire period. While this type of encoding is simple it has two main disadvantages. The
first is that the output data signal has no frequency content at the data rate. This can be understood by thinking of a 10Gb/s data stream. The highest frequency content will happen when the data is equal to 10101010, however this is equivalent to a clock signal of 5GHz. In some ways this is advantageous as the bandwidth requirements are halved, however it makes data synchronization more difficult. The second disadvantage of NRZ encoding is that for long runs of ‘1’ or ‘0’ the output data will be DC. This also makes synchronization difficult as DC signals are blocked by high-pass filtering.

2. **Return-to-Zero**

Return-to-zero (RZ) is known as a bi-polar encoding scheme, and the output signal has three possible levels. The output signal corresponds to the value of the data in that ‘0’ corresponds to a value of -V and ‘1’ corresponds to +V, however, this is only true for half the period. In the second half of the period the data signal is equal to zero. This makes data synchronization much easier as the signal has spectral power at the frequency equal to the data rate. Another benefit of the RZ code is that there are always transitions, which means that the data signal will never be blocked by high-pass filtering with long runs of ‘1’ or ‘0’ (as is the case with NRZ). The significant downside of this line code is that it requires twice the bandwidth of NRZ.

3. **Pulse-Amplitude Modulation**

Finally, pulse-amplitude modulation (PAM) is an example of a multi-level line code. In PAM the output data signal has several possible levels, each of which represents more than one bit. In Figure 2.1 a 4-PAM encoding scheme is shown, with the corresponding four possible output levels. Every two periods the output signal will be at a single value which represents two data bits. This reduces the required bandwidth to one fourth the data rate, however, the complexity of the transmitter and receiver is greatly increased. Also, the division of the output signal into multiple levels increases the required SNR, which in turn negates some of the benefits of the reduced bandwidth.
In spite of its downsides, the simplicity and the reduced bandwidth of the NRZ line code makes it the standard in multi-Gb/s data communication [7]. Recently there has been a lot of research into multi-level line codes [8, 9, 10, 11], however thus far the increased complexity required seems to outweigh the benefits of reduced bandwidth. In this thesis all data signals are assumed to be transmitted using NRZ.

2.1.2 Data Encoding

In wireline systems the data which is being transmitted is often encoded. Encoding is a way of mapping one set of data onto another set of data. The purpose is that the mapped data will have advantages over the original data scheme. One benefit of common encoding schemes is that long strings of ‘1’s or ‘0’s are eliminated. Another benefit is that the encoded data signal can maintain a DC balance, similar to the RZ line code. Encoding the data allows the new data signal to maintain DC balance by guaranteeing that there are an equal number of ‘1’s and ‘0’s. The most common coding scheme is known as 8B/10B. In this scheme every eight bits of data is mapped onto ten bits. These extra two bits are known as the encoding overhead. The 8B/10B code provides the benefits of guaranteed transitions and DC balance described above. Another common scheme is known as 64B/66B. This encoding scheme provides the same benefits as 8B/10B, however with only about 3% overhead, as opposed to 25% overhead for 8B/10B.

In this thesis it is assumed that there is some level of coding (i.e. 8B/10B) in order to maintain DC balance and to provide a minimum number of transitions. Strictly speaking if the phase detector in the CDR circuit is a tri-state phase detector, reasonably long strings of ‘0’s or ‘1’s can be tolerated, however virtually all data communication systems implement some form of encoding.
2.2 Wireline Data Communication

There are two main categories of wireline data communication systems, which are distinguished by their transmission medium. Optical data communication systems transmit data over fibre optic cables, whereas copper systems transmit the data in the electrical domain using a copper medium. CDR circuits are only one component in wireline serial data communication systems, however they play a crucial role in both optical and backplane systems. The work in this thesis is not exclusively applicable to one system or the other, however the robustness considerations are generally more relevant to backplane systems.

2.2.1 Optical Data Communication Systems

Optical data communication systems are designed to carry a large amount of data long distances over optical links. The architecture of an optical system is shown in Figure 2.2. In this figure there are two domains, the electrical domain and the optical domain. The electrical domain can be further divided into a transmitter and a receiver. The transmitter is composed of a PLL and
a serializer (SER). The PLL provides the serializer with a reference clock and the serializer uses it to convert the incoming parallel data into a serial data stream. The receiver is composed of a CDR circuit and a de-serializer. The CDR circuit recovers the data stream by generating a phase aligned clock signal and then using it to ret ime the data. The de-serializer then uses the recovered clock signal to convert the serial data into a set of parallel data signals.

Optical fibre is a low-loss medium which can transmit data over long distances. However, only light can travel over fibre optic cables, hence electrical signals must first be converted into optical signals. An optical diode placed after the transmitter is used to convert the electrical signal into an optical signal. This optical signal travels over an optical fibre until it reaches a receiver. On the receive side, a photo-diode converts the light into an electrical signal. This signal is usually very weak and must be amplified by a TIA. This signal is then sent to the receiver, which recovers the data. While the optical fibre is a low-loss medium, it is not lossless. In order to maintain a minimum signal to noise ratio (SNR), repeaters were traditionally used. In long haul networks where data is sent over hundreds of kilometers, repeaters could be placed every ten kilometers. The architecture of a repeater is shown in Figure 2.3. The repeater converts the optical signal to an electrical signal where the data is recovered and re-timed using a CDR circuit. The data is then converted back into an optical signal and sent out again over the optical fibre. The use of repeaters in optical networks led to some specific CDR circuit requirements which do not exist for backplane systems, specifically jitter amplification. Optical amplifiers may be used instead of repeaters to compensate for loss over the fibre optic cable. An optical amplifier only amplifies the incoming signal, it does not regenerate the data as a repeater does. However, optical amplifiers

![Architecture of a repeater](image-url)
Table 2.1: Data rates for SONET/SDH

<table>
<thead>
<tr>
<th>SONET Name</th>
<th>SDH Name</th>
<th>Line Rate (kb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>STM-0</td>
<td>51,840</td>
</tr>
<tr>
<td>OC-3</td>
<td>STM-1</td>
<td>155,520</td>
</tr>
<tr>
<td>OC-12</td>
<td>STM-4</td>
<td>622,080</td>
</tr>
<tr>
<td>OC-24</td>
<td>STM-8</td>
<td>1,244,160</td>
</tr>
<tr>
<td>OC-48</td>
<td>STM-16</td>
<td>2,488,320</td>
</tr>
<tr>
<td>OC-96</td>
<td>STM-32</td>
<td>4,976,640</td>
</tr>
<tr>
<td>OC-192</td>
<td>STM-64</td>
<td>9,953,280</td>
</tr>
<tr>
<td>OC-768</td>
<td>STM-256</td>
<td>39,813,120</td>
</tr>
</tbody>
</table>

are significantly cheaper and erbium doped fibre amplifiers (EDFAs) have largely made repeaters obsolete.

Most optical data communication systems are designed to conform to the SONET/SDH physical layer standards. SONET and SDH are identical, however SONET is the name for the North American standard whereas SDH is the name for the international standard. Table 2.1 lists the comparable names for SONET and SDH, and gives the associated data rate. The data rate of the SONET OC-192 standard is approximately 10Gb/s and is used throughout this thesis as a reference standard.

2.2.2 Copper Data Communication Systems

While optical systems are vital to long distance data communication, the cost associated with optical components makes them unattractive for data communication over a short distance. For these situations, the data is kept in the electrical domain and is transferred over a copper medium. One of the most common examples of this is in chip-to-chip communications where data is transferred over a backplane. Figure 2.4 shows the scenario where the data is transferred from one line card to another over a backplane.
Modern server systems may be comprised of many line cards interconnected by way of a backplane. In these situations the cost per line card becomes very important, as does the amount of power each line card consumes. The architecture of a generic copper data communication system is shown in Figure 2.5. This block diagram is very similar to that of the optical system, the main differences being the channel and the transmitter / receiver. In the optical system, devices which can convert between the electrical and optical domains are needed, whereas in the copper based system pre-emphasis and equalizer circuits are often used in order to compensate for the lossy channel. As signals cross the copper channel they experience a frequency dependant
attenuation. In order to flatten the overall frequency response, equalizer circuits are designed to perform the inverse transfer function of the channel [13].

At multi-Gb/s data rates, signal integrity on the backplane becomes difficult. Signal attenuation due to the poor dielectric constant of most backplane materials becomes very large. Figure 2.6 illustrates the attenuation over an FR4 backplane for various trace lengths. As can be seen, the attenuation as data rates increase into the multi-Gb/s region is significant. Also, reflections caused by impedance mismatches on the signal path, crosstalk and inter-symbol interference all add noise and reduce the performance. Board designers can mitigate some of these effects with careful layout and better board materials, and circuit designers can mitigate some of these effects using equalization. In recent years there has been a great deal of research into equalization for multi-Gb/s CDR circuits due to the need to compensate for the attenuation of the backplane at these data rates [14] [15].

Figure 2.6: Frequency attenuation over an FR4 backplane [1]
2.3 CDR Circuit Architecture

The function of a CDR circuit is to receive a serial data stream, synchronize an internal clock to the data signal, and then use that clock to retime the data. The output of a CDR circuit is logically identical to the input signal, however the signal-to-noise ratio (SNR) of the output signal is increased. It is possible to build CDR circuits with either open-loop or closed loop architectures, however closed loop architectures dominate in monolithic implementations. One significant problem with open-loop CDR circuits is that they generally require the use of high-Q filters, which cannot be integrated into a CMOS environment [5]. The closed-loop CDR architecture is often referred to as a phase-locking CDR circuit, and its architecture is similar to that of the phase-locked loop (PLL) circuit [16]. The closed-loop CDR circuit is much easier to integrate than the open-loop CDR circuit, and as such in this thesis any reference to a CDR circuit implies the phase-locking CDR circuit topology. The architecture of a PLL based CDR circuit is given in Figure 2.7. The phase detector detects phase errors between the incoming data signal and the internal clock signal and supplies correction information to the charge pump. The charge pump takes the correction information and adds charge to or subtracts charge from the loop filter. The loop filter plays an important role in defining the frequency response of the system. The voltage on the loop filter controls the VCO, and the output of the VCO is sent to
both the phase detector and also to the retiming circuit.

2.3.1 Phase Detector

There are two basic types of phase detectors used in CDR circuits, linear phase detectors and binary phase detectors [17, 18]. These circuits are named based on how they respond to phase errors. A linear phase detector generates correction information which is proportional to the size of the phase error. On the other hand, a binary phase detector applies correction of the same magnitude regardless of how large or small the phase error is. The ideal phase detector gain of linear and binary phase detectors is illustrated in Figure 2.8. The x-axis represents the phase error between the clock and data signals, where \(\Delta \Phi = 0 \) represents the situation where the signals are perfectly aligned. The y-axis represents the output of the phase detectors, which will be discussed next.

Linear Phase Detector

A linear phase detector is also known as a proportional phase detector, as it corrects for phase errors in proportion to their magnitudes. The proportional nature of the phase detector gain leads to low activity on the VCO control voltage when the CDR circuit is in the locked condition,
which in turn leads to good jitter performance [16]. The linear response of this circuit allows for simple formulation of loop equations, which is very helpful for system analysis (this will become more clear later in this chapter). Virtually all linear phase detectors operate in a similar manner to a Hogge phase detector, hence it will be used as the reference linear phase detector [19]. The architecture of the Hogge phase detector is shown in Figure 2.9. The Hogge phase detector generates UP and DOWN pulses which control the charge pump. Figure 2.10 illustrates the logical operation of the Hogge phase detector in two situations: when the CDR circuit is in the ideal locked state and when there is a phase error. When the CDR circuit is perfectly locked the clock and data are synchronized and the UP and DOWN pulses are exactly equal, as can be seen in Figure 2.10a. With UP and DOWN pulses of equal width an equal amount of charge is added to and subtracted from the loop filter. As such the voltage on the loop filter has no net change. Figure 2.10b illustrates the situation where the clock is leading the data. With this phase error, the width of the UP pulse is reduced such that there will be a net loss of charge from the loop filter. This correction will adjust the phase of the VCO so as to correct the phase error.

In the Hogge phase detector the DOWN pulse is generated by performing the logical XOR
over the outputs of the two DFFs, therefore it has a constant width of half a period regardless of the phase error between the clock and data signals. The UP pulse is generated by performing the logical XOR over the input data signal and the output of the first DFF. While the output of the DFF is phase aligned with the clock, the input data signal is not. Therefore it is the UP
pulse which contains the information as to whether the clock is leading or lagging the data and by what amount. The plot in Figure 2.8a shows the ideal relationship between the input phase error and the output correction. The total correction is the difference between the width of the UP and DOWN pulses and hence as the magnitude of the phase error changes, the magnitude of the correction applied changes proportionally.

While linear phase detectors have many attractive features, they tend to be more difficult to successfully implement in CMOS processes. One reason for this is that creating small UP and DOWN pulses is difficult at high data rates. Another reason is that linear phase detectors are more sensitive to process non-idealities than binary phase detectors. For these reasons, the majority of commercial designs use binary phase detectors [20].

Binary Phase Detector

The name of the linear phase detector alludes to its proportional nature and similarly the name of the binary phase detector describes the nature of its correction. In a binary phase detector there are only two states, which correspond to whether the clock is leading or lagging the data. With a binary phase detector no information is generated as to the magnitude of the phase error. There are numerous binary phase detector architectures, however in this section only two will be considered: the simplest and the most common. A very simple binary phase detector is a DFF where the data signal is used to sample the input clock signal. A CDR circuit which uses a DFF as a phase detector is illustrated in Figure 2.11 [16, 21]. The advantages of this phase detector lie primarily in its simplicity, as a single DFF comprises the entire phase detection circuitry. This simplicity means that the circuit is robust and has little sensitivity to process non-idealities, however, the DFF phase detector also has several disadvantages.

One problem with the DFF phase detector is the lack of integrated retiming, requiring the second DFF seen in Figure 2.11. The Hogge phase detector and the Alexander phase detector (which will be discussed next) both have integrated retiming. This is important, as it guarantees
that there is no skew between the retiming clock signal and the phase aligned clock signal, as they are one and the same. A DFF phase detector based CDR circuit needs a separate retiming circuit, and care must be taken to ensure that clock skew is not a problem. A second problem with the DFF phase detector is the fact that it supplies correction information to the charge pump even when there are no data transitions. The phase detector can only determine the phase relationship between the clock and data when there is a data transition. This means that when there are long strings of ‘1’s or ‘0’s, the CDR circuit continues to implement the last known correction. This information may not be correct and this could cause the CDR circuit to lose lock. Many binary phase detectors have a third state during which no information is sent to the charge pump. These phase detectors are known as tri-state or ternary phase detectors. How critical the lack of this third state depends on the system implementation. In many data communication systems the data is encoded such that there are a guaranteed minimum number of transitions, in which case there would be a limited number of repeated ‘1’s or ‘0’s and the absence of a tri-state phase detector would not limit the performance.
The Alexander phase detector is another binary architecture, and it is the one most commonly implemented in multi-Gb/s CDR circuits [22]. This circuit samples the data signal at three points and uses logic to determine whether the data is leading or lagging the clock. Figure 2.12 illustrates the result of sampling in two cases: when the clock leads the data and when the clock lags the data. DFFs are used to acquire the sample points S_0, S_1, S_2, and XOR gates are used to determine the phase error. The architecture of the Alexander phase detector is shown in Figure 2.13. One
important difference between the DFF phase detector and the Alexander phase detector is the tri-state nature of the Alexander phase detector. This means that the Alexander phase detector actually has three logical states, as opposed to two. The three states are: data leading clock, data lagging clock and no transition. The ‘no transition’ state is important, as is means that when there are no transitions in the data, the phase detector will not provide any correction information to the charge pump. This allows the CDR circuit to stay locked, even when there are long strings of ‘0’s or ‘1’s. As mentioned before, another benefit of the Alexander phase detector is the integrated retiming. This can be seen in Figure 2.13 where the output of DFF_2 is taken as the retimed data signal. The primary downside of the Alexander phase detector as compared to the DFF phase detector is its complexity. The Alexander phase detector requires four DFFs and two XOR gates and this the extra logic consumes power and area. The increased complexity also leads to a greater sensitivity to process non-idealities.

Multi-Rate Phase Detector

A derivative phase detector architecture which has been prominently researched over the past several years is the multi-rate phase detector [23, 24, 25, 26]. Both linear and binary multi-rate architectures have been published, and these circuits are usually closely related to their full-rate counterparts. The idea behind these phase detectors is the use of multiple phases of a clock running at a frequency less than the data rate. The linear and binary phase detectors which have been discussed up to this point have a clock signal which is at the same frequency as the data rate. For example a 10Gb/s full-rate CDR circuit will have a VCO operating at 10GHz. A half-rate CDR circuit at the same data rate will have a VCO operating at 5GHz and a quarter-rate CDR circuit will have a VCO operating at 2.5GHz.

In Figure 2.14 the differences between a full-rate and half-rate CDR circuit are illustrated by examining the clock and data waveforms. A half-rate CDR circuit will use at least two phases of the clock. In [23] Savoj and Razavi proposed both a half-rate linear phase detector and a half-rate
Figure 2.14: Waveforms of full-rate and half-rate CDR circuits

The half-rate linear phase detector uses the rising and falling edges of the in-phase clock to generate the proper correction information whereas the half-rate binary phase detector uses both the in-phase and the quadrature phases of the clock signal to generate the correction information. In both these phase detectors the data is retimed by two separate DFFs, one operating on the rising edge of the in-phase clock and the other operating on the falling edge of the in-phase clock. As such, in these systems the data is intrinsically demultiplexed into two separate signals. The numbered bubbles in Figure 2.14 illustrate which data bit corresponds to which output data signal.

The obvious benefit of a multi-rate architecture is the lower frequency of operation, however there are several downsides which must be considered. First, as there architectures use both the in-phase and quadrature clock signals, the clock phases must be very precise. Any mismatch between the in-phase and quadrature clock signals will degrade overall system performance. This could entail the use of an I/Q offset compensation circuit, as is commonly implemented in wireless communication systems [27]. A second problem with multi-rate CDR circuits is the increased complexity of the logic which is required to determine phase error, which can destroys any power savings gained from the lower operating frequency. Also, the greater circuit complexity virtually
guarantees greater noise. Finally, a multi-rate topology places greater requirements on the VCO. This may not seem obvious as the clock frequency is reduced, which would indicate a relaxed design. However, while the frequency of the VCO is lower, the phase noise performance of the VCO must be better, with every halving of the clock signal requiring a 6dBc/Hz improvement in the phase noise. This can be understood by thinking of the reverse case. In a full-rate system, in order to demultiplex the data, the clock signal is divided by two. With an ideal divider, the phase noise of the clock signal will improve by a factor of two (or 6dBc/Hz) [28]. Hence, in order to match the performance of an oscillator running at twice the frequency, the phase noise performance of the half-rate VCO must be higher by a factor of two. As an example, in order to meet SONET OC-192 specification it is generally accepted that a VCO operating at 10GHz should have a phase noise no less than -90dBc/Hz at a 1MHz offset [29]. This means that for a half-rate architecture the 5GHz VCO must have a phase noise no worse than -96dBc/Hz at a 1MHz offset.

2.3.2 Charge Pump

In a CDR circuit the charge pump is responsible for changing the voltage on the low-pass filter by adding or subtracting charge. The charge pump is controlled by the correction information sent
Figure 2.16: Current steering charge pump with differential inputs

to it by the phase detector. The basic architecture of any charge pump is given in Figure 2.15. While the UP signal is active, charge is deposited onto the filter, causing the control voltage to increase. While the DOWN signal is active, charge is removed from the filter, causing the control voltage to decrease.

There are many different charge pump architectures, however most charge pumps in multi-Gb/s CDR circuits are implemented using current steering logic [30]. A current steering implementation allow current to be switched more quickly and accurately than standard CMOS logic implementations. The circuit for a current steering charge pump is shown in Figure 2.16. While a current steering charge pump can operate with non-differential inputs, virtually all multi-Gb/s CDR circuits use differential logic and as such only the implementation with differential inputs is shown.

The charge pump itself can be differential [31]. This is especially useful when ring oscillators are used, as these often have differential tuning [32]. This is different from most LC-tank oscillator architectures which typically have single-ended tuning. A differential filter has several advantages...
as compared to a single-ended filter. First, the effective output voltage range is effectively doubled as compared to a single-ended filter. Secondly, any mismatches between the NMOS and PMOS transistors do not substantially affect the performance of the filter, due to the symmetry between the ‘charge up’ and ‘charge down’ paths. Finally the differential nature of the filter voltage for this architecture offers a significant improvement in noise immunity, especially to any common mode noise on the supply line. There are also some disadvantages to a differential filter. First, any differential charge pump will require a common-mode feedback (CMFB) circuit in order to compensate for offsets caused by charge-pump non-linearities and to ensure the common mode filter voltage remains at the appropriate level. Also, a charge pump with differential outputs may require the loop filter to be duplicated. If the filter is implemented monolithically it will consume more area, and if an external loop filter is used (which is the most common situation) an extra pin and more off-chip components will be required. Hence, while a differential topology is attractive as it leads to lower phase noise [33], most filters are single ended. Figure 2.17 shows a charge pump with differential outputs.
2.3.3 Loop Filter

The loop filter has a great deal of influence on the overall system performance. In controlling the loop filter the designer can alter the location of the poles and zeros of the system, changing the performance [34, 18, 35]. In a CDR circuit which uses a linear phase detector the most common filter used is the second order low pass filter, which is shown in Figure 2.18. The second order filter topology dominates as it is the simplest practical filter implementation [7]. For binary phase detectors there is less unanimity in the filter design, however usually either a simple capacitor or a first order RC filter is used. The effects of the loop filter on the performance of the CDR circuit will be discussed later in this chapter.

2.3.4 Voltage Controlled Oscillator

The output of a voltage controlled oscillator (VCO) is a signal which oscillates at a particular frequency based on a control voltage [36]. The VCO has possibly been researched more than any other analog circuit [37, 32, 38, 39, 40]. There are countless configurations of VCOs and a multitude of applications, from wireless circuits to microprocessors to CDR circuits. A great deal of research has gone into designing VCOs for low-power, large tuning range and low phase noise. The phase noise of a VCO is very important, as phase noise in the frequency domain translates
In a CDR circuit, the tuning range of the VCO determines the data rates which can be locked. Most multi-Gb/s CDR circuits are aimed at a particular data rate (or a small range of data rates) and thus the tuning range of the VCO is primarily used to compensate for process variations. For example, a VCO with a tuning range from 9.953GHz to 10.709GHz can be used in CDR circuits for OC-192 (SONET - 9.953Gb/s) 10GE (Gigabit Ethernet - 10.315Gb/s) and those standards with various forward error correction data rates (10.664Gb/s and 10.709Gb/s). A VCO with a large tuning range is referred to as a high-gain VCO. While this allows for greater flexibility in the input data rate and greater robustness this can have negative consequences, as high-gain VCOs amplify noise on the VCO control line, which leads to poor phase noise performance [41].

In order to optimize the performance, CDR circuits may be implemented in a dual loop structure. In one loop the VCO is operated in a high-gain mode until the VCO is frequency aligned with the incoming data signal or some external reference signal. This is often referred to as coarse tuning. At that point a second loop takes over, with the VCO operating in a low-gain mode. This is commonly known as fine tuning. The sole purpose of this loop is to phase align the
Figure 2.20: Architecture of a four stage ring oscillator

VCO to the incoming data signal; frequency synchronization is assumed. The low-gain loop will improve performance as noise on the control signal will have less effect, however tracking range of the low-gain is limited. This means that if the incoming data signal deviates significantly enough from the initial frequency, the phase detector may go out of lock and have to switch back to the high-gain loop [17]. Figure 2.19 shows the architecture of a CDR circuit which implements a dual loop structure. In this figure the coarse tuning of the VCO is controlled by the loop with the phase frequency detector which synchronizes the frequency of the VCO to the external reference, f_{ref}.

The two most common oscillator topologies used in CDR circuits are ring oscillators and the LC-tank oscillators.

1. **Ring Oscillator**

A ring oscillator consists of a series of controllable delay cells where the output is connected to the input, creating an unstable circuit which oscillates [32]. In order to achieve oscillation the combined phase shift through all delay cells must equal 360°. The architecture of a four-stage differential ring oscillator is shown in Figure 2.20. In this circuit each delay cell must provide a phase shift of only 45°, as the inversion in the feedback path provides the additional 180° phase shift. By varying the control voltage, the delay of each cell can be changed, which changes the frequency of oscillation. The frequency of oscillation of a ring oscillator can be described via the relationship $f_{\text{osc}} = \left(2N \cdot T_{\text{delay}}\right)^{-1}$, where N is the
number of delay elements and T_{delay} is the delay through each delay element. A tutorial describing the design of a ring oscillator can be found in [32].

2. LC-tank Oscillator

An LC-tank oscillator uses the resonance of an LC-tank to achieve oscillation. A capacitor and inductor make up an ideal LC-tank, as shown in Figure 2.21a. Assuming a lossless inductor and capacitor, once energy is introduced to the system it continually cycles without loss at a particular frequency. The transfer function of an LC-tank is given in Equation 2.1.

$$H(\omega) = \frac{LC}{1 - \omega^2 \cdot LC}$$ \hspace{1cm} (2.1)

A quick analysis of the transfer function reveals that at the frequency $\omega = 1/\sqrt{LC}$, the transfer function goes to infinity. This can be understood to mean that for an ideal LC-tank at that particular frequency there is an output, even without an input. Ideal inductors and capacitors do not exist, and the parasitics which are intrinsic to any device in a monolithic system act to damp out oscillations in the tank. The primary source of these parasitics are resistances in the inductor and capacitor, which are usually be modelled as series resistances. These series resistances can be converted to parallel resistances using the relationship $R_p = Q^2 \cdot R_s$ [42], where Q represents the device’s quality factor. Figure 2.21b shows an LC-tank with R_p representing the lumped parasitic resistances. In Figure 2.21b there is another
component, labelled $-\frac{1}{g_m}$. This component represents a negative transconductance which must be added to the circuit to compensate for the parasitic resistance. In order for the LC-tank to sustain oscillations, this transconductance must be large to overcome the tank’s parasitic resistances, as such $g_m > \frac{1}{R_p}$. In the monolithic CMOS implementation of an LC-tank oscillator the transconductance is generated by a cross-coupled differential pair. One common topology for an LC-tank oscillator is shown in Figure 2.22. In this topology the negative transconductance is generated by the cross-coupled NMOS differential pair. Frequency tuning is usually achieved using MOS transistor configured as voltage controlled capacitors [43].

2.4 CML in Multi-Gb/s CDR Circuits

CML is a high-speed current steering logic family which is the CMOS equivalent to the emitter-coupled logic (ECL) family used in bipolar technologies. This logic family is also known as
source-coupled logic (SCL) and current steering logic [44, 45, 46]. Multi-Gb/s CDR circuits implemented in CMOS technology have generally exclusively used CML as opposed to static CMOS logic. In this section the CML logic family is briefly described and its use in CDR circuits is discussed.

2.4.1 Architecture

The architecture of a CML buffer is shown in Figure 2.23. The input voltage ($V_{in+} - V_{in-}$) steers the bias current between transistors Q_1 and Q_2. The voltage drop across the resistors creates the output voltage swing, which means that the voltage swing in CML circuits is not full swing, but rather is from V_{dd} to $V_{dd} - (I_{bias} \times R)$ [47]. The basic idea of current steering can be expanded upon to create more complicated gates. This is accomplished by way of stacking current steering differential pairs. The number of levels of current steering in the circuit determines the complexity of logic. For example, a two input XOR gate requires two levels of current steering. The CML

![Figure 2.23: CML implementation of a buffer](image-url)
implementation of four different logic gates is given in Figure 2.24. There are many excellent papers available which detail the design of CML gates [48].
2.4.2 CDR Circuits Using CML

The CDR circuits in this thesis are all implemented using CML, however the basic concepts are applicable to any logic family. Scaling has enhanced the performance of standard CMOS processes to the point where it is possible to implement multi-Gb/s CDR circuits in logic families other than CML, such as static CMOS. While modern CMOS processes may provide sufficient bandwidth there are still difficulties to implementing multi-Gb/s CDR circuits using logic styles other than CML, and there are several distinct benefits to using CML.

The first and most significant benefit of using CML is that it enables higher performance than any other logic family. This is obviously important in the design of high-speed interconnects in order to achieve the highest data rates [49] [50]. A second important benefit is that the differential property of CML provides excellent common mode noise immunity [20]. The differential signals are always taken with respect to each other, and thus noise affecting both signals is cancelled out. Single-ended are far more susceptible to noise on the supply and ground rails [51]. Thirdly, single-ended logic like static and dynamic CMOS inject a lot of noise into the substrate, which is quite undesirable near sensitive analog circuits, particularly the VCO [16]. As CML has a constant current draw there is very noise injection into the substrate. Fourthly, as will be seen later in the chapter, duty-cycle distortion (or pulse-width distortion) is a source of jitter in CDR circuits. With CML the crossing points of the differential signals are more important than the risetime or falltime, however for static CMOS circuits unequal rise and falltimes will lead to duty cycle distortion. For static CMOS circuits operating at very high frequencies it can be difficult to achieve the necessary precision in matching the rise and falltimes and the resulting duty-cycle distortion will degrade the performance. Finally, the differential nature of CML also means that the inverse of a signal is always available and that signal is phase aligned with the original signal. In a single ended design an inverter would have to be used to generate the inverse, and the inverse signal will have a phase offset with respect to the original signal. One drawback to CML circuits is their constant current draw, and a CDR circuit implemented using static or dynamic logic would
consume significantly less power than a CML implementation. A second drawback to using CML is that the resulting design will consume more area than a non-CML design.

2.5 Figures of Merit

In order to characterize the performance of a system, figures of merit (FOM) are defined. In data communication systems two classes of FOM are used: time domain and frequency domain. Time domain FOM are the most important characteristics of backplane systems, whereas frequency domain FOM are more important in optical systems. Time domain FOM include peak-to-peak jitter, root mean squared (RMS) jitter, jitter generation and bit error rate (BER). Frequency domain FOM include jitter tolerance, jitter transfer and VCO phase noise.

2.5.1 CDR System Analysis

In order to understand the different FOM, a CDR circuit is mathematically modelled. The analysis is performed on a CDR circuit which uses a linear phase detector, as opposed to a binary phase detector. The reason for this is that a linear phase detector allows for a straightforward system analysis. While there have been several attempts at analyzing CDR circuits based on binary phase detectors the non-linearity of the binary phase detector makes it difficult [18]. Some of the research into binary phase detector based CDR circuits will be detailed later in this chapter however an analysis of linear phase detector based CDR circuits will allow the concepts behind
the various FOM to emerge successfully. The architecture of a CDR circuit is shown in Figure 2.25, including the transfer functions for each block. This CDR circuit is very similar to a PLL and the corresponding analysis is also very similar to that of a PLL [35, 52]. The input of the system \(\Phi_{in} \) represents the input phase and \(\Phi_{out} \) represents the phase of the VCO signal. The output of the phase detector is linearly proportional to the input phase error \(\Phi_{error} \) multiplied by a factor of \(K_{df} \). Here, \(K_{df} \) represents the average data transition density, and it is a term which is used to compensate for the fact that there is not a data transition every period. For an alternating data pattern (10101010...) \(K_{DF} = 1 \) and for a random bit sequence \(K_{DF} = 0.5 \) [53]. The charge pump gain is simply denoted \(I_{CP} \), which is the value of the charge pump current. The VCO is a phase integrator, hence it has a \(\frac{1}{s} \) term. The \(K_{VCO} \) term describes the gain of the VCO, which represents how much the VCO’s output phase changes with for a given change in input voltage. The low-pass filter is normally implemented as a second order filter (as described in Section 2.3.3), however to simplify the analysis it is initially assumed that the filter is simply a capacitor, \(C_1 \). The response of a CDR circuit with a capacitor for a loop filter is shown in Figure 2.26. If the output filter voltage is approximated as a continuous wave with the slope shown in the figure, the relationship between the filter voltage and a phase error, \(\Phi_{error} \) can be defined, as is shown in Equation 2.2.
Figure 2.27: Frequency response of a CDR circuit which has a capacitor as the loop filter

\[
\frac{V_{\text{filter}}(s)}{\Phi_{\text{error}}(s)} = \frac{K_{DF} \cdot I_{CP}}{2\pi} \cdot \frac{1}{s} \tag{2.2}
\]

As the relationship between the filter voltage and the output phase is simply defined as \(\frac{K_{VCO}}{s}\), the open loop transfer function of the CDR circuit which describes the relationship between the input and output phase can be defined as in Equation 2.3.

\[
G_{OL1}(s) = \frac{\Phi_{\text{out}}(s)}{\Phi_{\text{in}}(s)} = \frac{K_{DF} \cdot I_{CP}}{2\pi} \cdot \frac{1}{sC_1} \cdot \frac{K_{VCO}}{s} \tag{2.3}
\]

This leads to the simple formulation of the closed loop transfer function, which is shown in Equation 2.4.

\[
G_{CL1}(s) = \frac{G_{OL1}(s)}{1 + G_{OL1}(s)} = \frac{\Phi_{\text{out}}(s)}{\Phi_{\text{in}}(s)} = \frac{K_{DF} \cdot I_{CP} \cdot K_{VCO}}{2\pi C_1} \cdot \frac{1}{s^2 + \frac{K_{DF} \cdot I_{CP} \cdot K_{VCO}}{2\pi C_1}} \tag{2.4}
\]
A return to the open-loop transfer function given in Equation 2.3 reveals a significant problem which is due to using simply a capacitor as a loop filter. The open loop transfer function has two poles as the origin, which will give the frequency response shown in Figure 2.27. As can be seen, the loop will be unstable as there is no phase margin. In order to compensate for this a resistor is added to the loop filter. This results in the open loop transfer function shown in Equation 2.5.

\[
G_{ol2}(s) = \frac{\Phi_{out}(s)}{\Phi_{in}(s)} = \frac{K_{df} \cdot I_{cp} \cdot K_{VCO} \cdot R \cdot \left(s + \frac{1}{RC_1}\right)}{2\pi s^2} \quad (2.5)
\]

The transfer function shows that the resistor has added a zero to the system. The frequency response of the open loop gain of the CDR circuit with the first order filter is shown in Figure 2.28. As can be seen the zero stabilizes the system as the phase margin is now equal to 90°. As before the closed loop response of the CDR circuit is calculated and the result is shown in Equation 2.6.
Clock and Data Recovery

\[G_{\text{CL2}}(s) = \frac{\Phi_{\text{out}}(s)}{\Phi_{\text{in}}(s)} = \frac{\frac{K_{\text{df}} \cdot I_{\text{cp}} \cdot K_{\text{vco}}}{2\pi} \cdot \left(s + \frac{1}{R C_1} \right)}{s^2 + s \cdot \frac{K_{\text{df}} \cdot I_{\text{cp}} \cdot K_{\text{vco}}}{2\pi} + \frac{K_{\text{df}} \cdot I_{\text{cp}} \cdot K_{\text{vco}}}{2\pi C_1}} \]

(2.6)

As this transfer function is a standard second order loop response it can be written in terms of the natural frequency \((\omega_n) \) and the damping ratio \((\zeta) \).

\[G_{\text{CL2}}(s) = \frac{s 2\zeta \omega_n + \omega_n^2}{s^2 + s 2\zeta \omega_n + \omega_n^2} \]

(2.7)

where:

\[\omega_n = \sqrt{\frac{K_{\text{df}} \cdot I_{\text{cp}} \cdot K_{\text{vco}}}{2\pi \cdot C_1}} \quad \text{and} \quad \zeta = R \frac{1}{2} \sqrt{\frac{K_{\text{df}} \cdot I_{\text{cp}} \cdot C_1 \cdot K_{\text{vco}}}{2\pi}} \]

As mentioned previously these results assume a first order filter whereas a second order filter is normally used. A first order filter proves insufficient due to the glitches on the filter voltage that results due to the voltage drop across the resistor when the charge pump current turns on and off. These glitches will cause a significant amount of noise and negatively affect the performance of the CDR circuit. As such, a second capacitor, \(C_2 \), is added in order to smooth out these glitches. This capacitor will give the third order loop response shown in Equation 2.8.

\[G_{\text{CL3}}(s) = \frac{1 + s R C_1}{\frac{2\pi}{K_{\text{df}} \cdot I_{\text{cp}} \cdot K_{\text{vco}}} \cdot \left[s^3 R C_1 C_2 + s^2 (C_1 + C_2) \right] + s R C_1 + 1} \]

(2.8)

This equation is not as simple as the second order system, however it does more accurately describe the system. The addition of the second capacitor suppresses the glitches, however the corresponding addition of a third pole can cause stability issues as the phase margin will be degraded. However, if capacitor \(C_2 \) is at least an order of magnitude smaller than capacitor \(C_1 \) the closed loop frequency response of the loop will be approximately the same as that of the second order system [7]. Because of this, the second order loop approximation will be used later in the chapter to help describe tradeoffs involved in frequency domain FOM.

It is important to emphasize that this analysis is only valid for CDR circuits which implement
linear phase detectors. Binary phase detector circuits are intrinsically non-linear, and hence the system analysis is different. The modelling of binary phase detector based CDR circuits is presented in Section 2.6.

2.5.2 Jitter

Jitter is defined as the difference in time between an ideal event time and the actual event time. In a CDR circuit the events of interest are the zero-crossing points of the differential clock and data signals. While the concept of jitter is relatively simple, it can be defined in many different ways. Instantaneous jitter is determined by measuring the difference in time for a singular event, as described in Equation 2.9.

\[j[n] = t_\text{E}[n]_{\text{ideal}} - t_\text{E}[n]_{\text{actual}} \]

(2.9)

In this equation \(j[n] \) is the jitter at \(n \)th transition and \(t_\text{E}[n] \) is the time of the \(n \)th event. While jitter is technically the non-ideality of a singular event, it is most often treated in a statistical manner. The difference in the zero-crossing points of the clock and data signals of a CDR circuit are measured over a period of time, and calculations are made with respect to both the magnitude and the spread. While the exact nature of jitter can at times be difficult to determine, jitter is broadly separated into two categories: random jitter and deterministic jitter.

Random Jitter

Random jitter describes timing variations which do not have deterministic causes. Random jitter is characterized using Gaussian distribution statistics. As random jitter has a Gaussian distribution, there is theoretically no limit to its magnitude. Thermal noise is the primary cause of random jitter, however other causes include flicker noise and process variations. Random jitter is always present, and a circuit designer has little ability to control thermal noise sources. The exact sources of random jitter in a circuit are difficult to pinpoint. In CDR circuits there are both
intentional and parasitic resistances all of which generates thermal noise. The noise voltage of a resistor is defined as $v_{\text{noise}} = 4KTR\Delta f$ [36]. Flicker noise is another source of random jitter in circuits. Devices fabricated in CMOS processes suffer from flicker noise much more than devices fabricated in bipolar processes. As random jitter is statistical in nature, there is no discrete value which can completely encapsulate it. Random jitter is typically reported as a root-mean-squared (RMS) value. An RMS measurement must be used, as theoretically random jitter has no maximum value. As random jitter is a statistical calculation, the accuracy depends on the number of measurements which are taken.

Deterministic Jitter

Deterministic jitter describes timing variations which do not have a Gaussian distribution. Unlike random jitter, deterministic jitter has specific and identifiable causes. Also unlike random jitter, the magnitude of deterministic jitter is bounded. The sources of deterministic jitter include crosstalk, electromagnetic interference, and simultaneous switching outputs. Deterministic jitter cannot be analyzed using Gaussian statistics and as its amplitude is finite it is commonly reported as a measurement of the maximum jitter which occurs. This measurement is referred to as peak-to-peak jitter. Deterministic jitter can be separated into three kinds: Pattern Dependant Jitter, Pulse Width Distortion and Bounded Uncorrelated Jitter.
1. **Pattern Dependant Jitter**

Pattern dependant jitter is jitter which is caused by limitations in component and system bandwidth. Pattern dependant jitter is also known as data dependant jitter or inter-symbol interference. While the system bandwidth is ideally perfectly flat, this is never the case. The incoming data stream contains many different frequency components and the system response to the different frequency components will be different. This is most commonly observed as an attenuation of the high frequency components. For example, when there is an incoming bit sequence with a long sequence of ones or zeros followed by several transitions, the magnitude of the data signal during those transitions will be attenuated, which can cause timing errors. This situation is illustrated in Figure 2.29.

2. **Pulse Width Distortion**

Pulse width distortion results from differences in the rise time and fall time of the data signal. Pulse width distortion is also called duty cycle distortion. The unequal rise and fall times leads to a difference in the width of a pulse representing logic ‘1’ and the width of a pulse representing logic ‘0’ with respect to $V_{dd}/2$. Figure 2.30 illustrates the problem of pulse width distortion. If the signals in Figure 2.30 were taken single-endedly (as would be the case in a static CMOS implementation) pulse width distortion would cause problems.
as there would no longer be an edge of the clock at the centre of the data eye. The use of
differential logic (i.e. CML) largely solves the problem of pulse width distortion, as with
differential logic the two differential signals are referenced with respect to each other. The
primary concern in differential circuits is the zero crossing points of the signals, not their
shape.

3. Bounded Uncorrelated Jitter

Bounded uncorrelated jitter refers to jitter which is bounded in amplitude, yet uncorrelated
to the data pattern. It is often sinusoidal in nature and caused by interference from signals
sources either internal or external to the system [54]. The interference can be caused by
way of capacitive coupling, inductive coupling or electromagnetic interference.

Eye Diagram Jitter Representation

The different effects of random and deterministic jitter can be identified using an eye diagram.
An eye diagram is generated by repeatedly sampling a data signal at a regular interval and
superimposing the results. As jitter adds variation to the zero-crossing point of the data signal, the eye opening will shrink. The different effects are illustrated in Figure 2.31. J_{RMS} is the RMS jitter on the signal due to random noise, however, the overall RMS jitter for the signal is given simply as J_{RMS} and is dependant on both random and deterministic jitter. J_{pp} is a measure of the amount of peak-to-peak jitter on the signal due only to deterministic noise. J_{pp} is the value of peak-to-peak jitter with both deterministic and random jitter taken into account. Figure 2.31 clearly shows that jitter shrinks the opening of the data eye. The shrinking of the data eye means that it is more likely that the incoming data signal will be incorrectly sampled, which reduces the performance of the system. From Figure 2.31 it is clear that both the RMS and peak-to-peak measures of jitter are important for system characterization. On their own each can give valuable insight to the circuit behavior, however they must be viewed together in order to get a proper understanding of system performance.

2.5.3 Frequency Domain FOM

Frequency domain FOM describe the frequency response of the CDR circuit. From the analysis in Section 2.5.1 it is clear that the system response is different for different input noise frequencies. Jitter tolerance, jitter transfer and VCO phase noise are three frequency domain FOM which are used to characterize a CDR circuit. OC-192 is a SONET standard for 10Gb/s data communication which is often used in optical data communication systems [55]. The different FOM will be described using the specifications for OC-192 CDR circuits as examples.

Jitter Transfer

Jitter transfer is the attenuation of jitter from the input to the output. Given this description it can be seen that the transfer function in Equation 2.7 is the same as the jitter transfer relationship of a linear phase detector based CDR circuit. A concern in optical networks which jitter transfer is used to identify is jitter amplification. In an optical data communication system a signal may
travel for great distances and go through many repeaters. If jitter at a particular frequency is amplified at each repeater, the magnitude of the jitter will eventually cause the system to fail. For an OC-192 system the maximum jitter amplification which is acceptable is 0.1dB, and the jitter transfer function has a -3dB frequency of 8MHz. The OC-192 jitter transfer mask is shown in Figure 2.32.

Using Equation 2.7 the bandwidth of the jitter transfer for a CDR circuit can be calculated. To calculate the -3dB bandwidth the gain of the closed loop transfer function is made equal to \(\frac{1}{\sqrt{2}} \).

\[
|G_{\text{TRANS}}| = \frac{1}{\sqrt{2}} = \frac{4\xi^2 \omega_n^2 \omega_{-3dB}^2 + \omega_n^4}{(\omega_{-3dB}^2 + \omega_n^2)^2 + 4\xi^2 \omega_n^2 \omega_{-3dB}^2} \tag{2.10}
\]

Equation 2.10 can be solved in terms of \(\omega_{-3dB} \) to get the jitter transfer bandwidth.

\[
\omega_{-3dB}^4 - 2\omega_n^2 \omega_{-3dB}^2 + \omega_n^2 + 4\xi^2 \omega_n^2 \omega_{-3dB}^2 = 8\xi^2 \omega_n^2 \omega_{-3dB}^2 + 2\omega_n^4 \tag{2.11}
\]

\[
\omega_{-3dB}^4 - 2\omega_n^2 \omega_{-3dB}^2 (1 + 2\xi^2) + \omega_n^4 = 0 \tag{2.12}
\]
\[\omega^2_{-3dB} = \omega_n^2 \left[(1 + 2\zeta^2) \pm \sqrt{(1 + 2\zeta^2)^2 + 1} \right] \] \hspace{1cm} (2.13)

If an assumption is made that \(2\zeta^2 \gg 1 \) then Equation 2.13 can be simplified as is shown below.

\[\omega^2_{-3dB} = \omega_n^2 [2\zeta^2 + 2\zeta^2] \implies \omega_{-3dB} = 2\zeta \omega_n \] \hspace{1cm} (2.14)

Substituting for \(\zeta \) and \(\omega_n \) allows the jitter transfer bandwidth to be written in terms of the original parameters.

\[\omega_{-3dB} = \frac{K_{DF} I_{CP} K_{VCO} R}{2\pi} \] \hspace{1cm} (2.15)

Equation 2.15 indicates that the jitter transfer bandwidth is independent of the capacitor \(C_1 \). This is based upon the assumption that \(\zeta \) is large. A large value of \(\zeta \) is important for stability, and moreover implies a large value of \(C_1 \). For wireline data communication the jitter transfer bandwidth is specified to be quite small. Reducing the value of the resistor by a factor of \(N \) will reduce the bandwidth by the corresponding amount, however in order to maintain the value of \(\zeta \) the value of the capacitor must then be increased by a factor of \(N^2 \). If the assumption that \(\zeta \) is large is maintained, Equation 2.7 can be simplified to the form shown in Equation 2.16. This result shows that the jitter transfer can be approximated by a first order response, and by observation it can be seen that the bandwidth is equal to that determined in Equation 2.15.

\[G_{\text{trans}}(s) \approx \frac{2\zeta \omega_n}{s + 2\zeta \omega_n} = \frac{K_{DF} I_{CP} K_{VCO} R}{2\pi} \frac{\omega_n}{s + \frac{K_{DF} I_{CP} K_{VCO} R}{2\pi}} \] \hspace{1cm} (2.16)

The results from the jitter transfer analysis can be used to examine jitter amplification. The poles and zeros of second order loop can be derived from Equation 2.7.

\[\omega_z = -\frac{\omega_n}{2\zeta}, \quad \omega_{p1,2} = \omega_n \cdot \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right) \]
These pole and zero locations illustrate that there is no way to avoid jitter amplification, as both of the poles are greater than the zero. A plot of the magnitude of the frequency response showing the frequency range in the neighborhood of ω_{-3dB} is shown in Figure 2.33.

The maximum value by which the jitter transfer gain can exceed 0dB is specified by standards. As mentioned previously the OC-192 standard specifies that the amount of jitter amplification must not exceed 0.1dB. Using this value and the straight line bode plot approximation an expression for jitter amplification can be derived. While the straight-line approximation is not strictly accurate when poles and zeros are close to one another, using it can provide a first order equation for jitter amplification, which is given in Equation 2.17 [7].

$$J_p = \frac{\omega_p}{\omega_z} \approx \frac{1}{4\zeta^2}$$ (2.17)

Equation 2.17 can be used to relate the value of jitter amplification to the original circuit parameters, as shown in Equation 2.18

$$20 \log J_p \approx \frac{2.172}{\zeta^2} = \frac{8.686}{R^2 I_{cp} C_1 K_{VCO} K_{DF}}$$ (2.18)
Here a similar situation as with the jitter transfer bandwidth emerges. Reducing the value of the resistor by a factor of \(N\) will reduce the bandwidth, however in order to keep the jitter amplification at the required level the value of the capacitor must then be increased by a factor of \(N^2\). Optimal loop filter design in order to eliminate jitter amplification does not simply involve increasing the damping ratio. An analysis must be performed in order to choose correct values for the capacitance ratio and the damping ratio, in order to satisfy the jitter amplification specifications of the standard [34].

Jitter Tolerance

Jitter tolerance is the maximum magnitude of jitter which can be present in the input signal with the output signal still meeting design specification. Jitter tolerance is a frequency dependant definition and a mask test is used to determine whether or not a system passes. The jitter tolerance mask for SONET OC-192 is shown in Figure 2.34. This figure shows that the CDR circuit must be able to track jitter frequencies under 2.4kHz with a magnitude up to 15UI. UI stands for unit interval, which is the period of the data. The data rate for OC-192 is 10Gb/s,
therefore the unit interval is 100ps. This means an OC-192 compliant CDR circuit must be able
to track a data stream with up to 1.5ns of peak-to-peak jitter at 2.4kHz. After 2.4kHz the mask
drops by two orders of magnitude in two discrete steps. At jitter frequencies greater than 4MHz
the CDR circuit must track only so long as the jitter magnitude is less than 0.15UI, or 15ps
peak-to-peak.

The maximum phase error which can be tolerated in any situation is equal to half the period,
or \(\frac{1}{2} UI \). This is expressed mathematically in Equation 2.19.

\[
\Phi_{in} - \Phi_{out} < \frac{1}{2} UI
\]

(2.19)

The previous section derived the equation for jitter transfer, which is the relationship between
the input and output jitter, \(\Phi_{out} \). This relationship can be used to rewrite Equation 2.19.

\[
\Phi_{in} \left(1 - \frac{\Phi_{out}}{\Phi_{in}}\right) < \frac{1}{2} UI
\]

(2.20)

\[
\Phi_{in} (1 - G_{jtrans}(s)) < \frac{1}{2} UI
\]

(2.21)

\[
\Phi_{in} < \frac{0.5UI}{1 - G_{jtrans}(s)}
\]

(2.22)

Equation 2.22 describes a relationship where the input jitter \(\Phi_{in} \) must be less than the expression
on the right hand side. The maximum magnitude of input jitter which a system can accept is
the definition of jitter tolerance, and hence an expression for jitter tolerance can be written, as
in Equation 2.23.

\[
G_{jtol}(s) = \frac{0.5UI}{1 - G_{jtrans}(s)}
\]

(2.23)
Figure 2.35: Jitter tolerance using a first order approximation

Using the simplified first order jitter transfer equation given in Equation 2.16 allows for the first order jitter tolerance equation to be derived.

\[
G_{JTOL}(s) = \frac{0.5UI}{1 - \frac{2\zeta\omega_n}{s + 2\zeta\omega_n}} = \frac{1}{2} \cdot \frac{s + 2\zeta\omega_n}{s} \tag{2.25}
\]

Figure 2.35 illustrates the simplified first order jitter tolerance response described by Equation 2.25. As can be seen the jitter tolerance corner frequency is equal to that of the jitter transfer. For input jitter frequencies greater than \(\omega = 2\zeta\omega_n\), the jitter tolerance is constant, however as the input jitter frequency drops to less than \(\omega = 2\zeta\omega_n\), the CDR circuit can track increasing large input jitter magnitudes.

As with the jitter transfer derivation, simplifications have been made in order to illustrate the basic system response. Obviously these simplifications trade accuracy for illustrative simplicity. With a second order loop filter, the actual system response will be third order and more complex than what has been presented here. While these closed loop equations will be complex, it is still
far easier to analyze the system response in the frequency domain, as opposed to running lengthy time-domain simulations.

Jitter Tolerance and Jitter Transfer create some obvious design constraints for a CDR circuit. An OC-192 system is again used to illustrate this point. The OC-192 jitter tolerance mask shows that the system must track jitter of reasonably large magnitudes less than 4MHz. As a PLL tracks jitter at frequencies less than its loop bandwidth, the loop bandwidth of an OC-192 CDR circuit must be greater than 4MHz. The jitter transfer mask shows that input jitter with magnitude greater than 8MHz must be significantly attenuated. As a PLL attenuates jitter at frequencies greater than its loop bandwidth, the bandwidth must be less than 8MHz. For this reason most CDR circuits for OC-192 application have a system bandwidth of approximately 6MHz.

Phase Noise

Jitter has already been discussed, and while jitter is a time domain characterization, phase noise in the frequency domain analog of jitter [38]. Figure 2.36 illustrates the frequency domain representation of phase noise and the effect on the zero-crossing points in the time domain. In Figure 2.36a there is only a single frequency component, and this correlates to a time domain signal with no uncertainty in the zero-crossing point. However, the frequency spectrum in Figure 2.36b has energy at frequency components other than the centre frequency, which is referred to as phase noise. The effect of these undesired frequency components in the time domain is to cause non-idealities in the zero-crossing points, as shown in Figure 2.36b. Phase noise is typically measured in dBc/Hz at a particular offset from the carrier. This measure refers to the amount of spectral power in a 1-Hz bandwidth (measured in dB) at a particular frequency offset from the carrier, relative to the total power of the carrier. The larger the phase noise the more spectral power is in non-desired frequencies and hence the jitter will be large.
CDR Circuit Noise Analysis

In this section equations based on the ones previously derived are used to analyze the performance of a CDR circuit in the presence of noise. While there are many potential sources of noise in a monolithic environment, the dominant sources are assumed to be noise in the input signal and the phase noise of the VCO. The study of phase noise in voltage controlled oscillators has been the subject of many papers and theses [32, 56, 57]. Generally speaking the phase noise requirements of VCOs in CDR circuits is less than that of wireless circuits, however a high quality VCO is always desirable. The importance of the VCO phase noise also depends on the application; long haul optical systems usually will requires lower phase noise than a backplane system.

Figure 2.37 shows the CDR system with noise sources at the input (Φ_{jitter}) and at the output of the VCO (Φ_{P_N}). Using Figure 2.37 transfer functions can be derived for the two noise sources,
Φ_{jitter} and Φ_{PN}. For the noise due to the input jitter, Φ_{jitter}, the transfer function will simply be identical to the jitter transfer function previously derived. Equation 2.26 gives the transfer function of the output noise with respect to the input noise.

\[H_1(s) = \frac{\Phi_{out}(s)}{\Phi_{jitter}(s)} = \frac{K_{DF} I_{CP} K_{VCO} R}{2\pi C_1} \cdot \frac{s + \frac{1}{RC_1}}{s} \] (2.26)

Equation 2.27 gives the transfer function of the output noise with respect to the VCO noise. In order to simplify the relationship the single ‘s’ term in the denominator is assumed to be small in comparison to the ‘s 2ζω_n’ term and the simplified relationship between the phase noise and the output phase is given in Equation 2.28. Substituting the component parameters in for ζ and ω_n leads to the relationship in Equation 2.29.

\[\frac{\Phi_{out}(s)}{\Phi_{PN}(s)} = \frac{1}{1 + G_o(s)} = \frac{s}{s + 2\zeta \omega_n \cdot \left(s + \frac{1}{RC_1}\right)} \] (2.27)

\[\approx \frac{1}{2\zeta \omega_n \cdot \frac{s}{s + \frac{1}{RC_1}}} \] (2.28)

\[= \frac{K_{DF} I_{CP} K_{VCO} R}{2\pi} \cdot \frac{s}{s + \frac{2}{RC_1}} \] (2.29)

These equations can be used to gain a valuable insight into the system behavior of a CDR circuit. It has already been shown that the jitter transfer, and hence \(\frac{\Phi_{out}(s)}{\Phi_{jitter}(s)} \) has the characteristics of a low-pass filter, and from Equation 2.29 it can be seen that the transfer function of the VCO’s phase noise to the output phase is a high-pass filter. In Figure 2.38a, the phase noise the
VCO is plotted along with the input noise, which is assumed to be white. In Figure 2.38b the two transfer functions given in Equations 2.26 and 2.29 are plotted. Figure 2.38c combines these and shows the system response as the solid line. Here, the ideal situation has been assumed, which means that the system bandwidth is at the point where the magnitude of the VCO phase noise is equal to the magnitude of the input noise. At frequencies less than ω_{bw}, the magnitude of the input noise is less than the noise of the VCO. Figure 2.38c shows that for $\omega < \omega_{bw}$ the input data will pass through, however the VCO phase noise will be attenuated. At frequencies greater than ω_{bw} the noise from the VCO is less than the input noise. Again referring to Figure 2.38c it can be seen that for for $\omega > \omega_{bw}$ the input noise is attenuated, while the VCO noise passes through.
2.5.4 Time-Domain FOM

Jitter measurements are the primary criterion used to characterize the performance of a CDR circuit in the time domain. Four FOM which are used to characterize the amount of jitter in a CDR circuit are RMS jitter, peak-to-peak jitter, jitter generation and bit error rate (BER). While RMS jitter, peak-to-peak jitter and jitter generation are distinct measurements of jitter, BER is used to provide a clear measure of system performance.

Root Mean Squared Jitter

The root mean squared (RMS) jitter of a signal is calculated and provides a measure of the average amount of jitter in a signal. RMS jitter can be calculated using the equations, given in Equations 2.30 and 2.31.

\[
\mu_j = \frac{1}{N} \sum_{n=1}^{N} j[n] \quad (2.30)
\]

\[
J_{\text{RMS}} = \sigma_j = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (j[n] - \mu_j)^2} \quad (2.31)
\]

In these equations \(\mu_j\) represents the mean jitter value, \(N\) is the number of jitter samples used and \(\sigma_j\) is the RMS value of the jitter.

Peak-to-Peak Jitter

While RMS jitter provides a measure of the average jitter on a signal, the peak-to-peak measurement provides the worst case value for the jitter which is seen on a signal over a given sample set. Peak-to-peak jitter is calculated using Equation 2.32.

\[
J_{\text{p-p}} = \max(j[n]) - \min(j[n]) \quad (2.32)
\]
The size of the sample set is important, as it must be large enough to give an accurate peak-to-peak jitter measurement.

Jitter Generation

Jitter generation is an important FOM in any CDR circuit. While it is often reported bundled together with jitter transfer and jitter tolerance, it is in fact a time domain FOM. Jitter generation is the magnitude of jitter at the output of the CDR given an ideal input. For an OC-192 system the maximum amount of jitter generation is specified to be 10\(\text{ps}\) peak-to-peak and 1\(\text{ps}\) RMS. In order to meet jitter generation specifications it is very important that the VCO control voltage does not wander in the absence of data transitions [58]. Due to this reason if a non-tri-stated phase detector is used it may be difficult to meet the desired jitter generation performance.

Bit Error Rate

The function of a CDR circuit is to recover a stream of data, therefore the most important FOM is how well it does that. The probability of making an error by incorrectly identifying a data bit is known as the bit error rate (BER). Every serial data communication standard has specifications regarding acceptable BER. For example, if a standard specifies a BER < \(10^{-9}\), this means that the circuit must have less than one error for every billion bits transmitted. As the data is retimed at the centre of the data eye, the BER of a CDR circuit is fundamentally linked to the jitter (as observed in the analysis of Figure 2.31). However it is difficult to get an accurate analytic relationship between the two. In [59] an equation is presented which attempts to quantify the relationship between jitter and BER. Equation 2.33 relates the RMS and peak-to-peak jitter using \(\alpha\). Equation 2.34 then relates \(\alpha\) to the bit error rate using the complementary error function.

\[
J_{p-p} = \alpha \times J_{\text{RMS}} \tag{2.33}
\]

\[
BER = \frac{1}{2} \text{erfc} \left(\sqrt{2} \times \alpha \right) \tag{2.34}
\]
While these equations provide a glimpse at an analytic relationship between jitter and BER, there is no equation which can precisely predict BER. For this reason it is best for BER to be measured, as opposed to calculated. Machines which measure the BER of CDR circuits are known as Bit Error Rate Testers (BERTs). Another method of measuring BER is done by some modern oscilloscopes, which have software packages to analyze the jitter in an incoming data stream. The jitter can be divided into its various components (i.e. random and deterministic) and the BER can be estimated.

2.6 Modelling Binary Phase Detector Based CDR Circuits

The CDR analysis presented so far in this chapter has assumed a linear phase detector is used. The use of a linear phase detector allows an analysis using classical loop theory in the derivation of FOM such as jitter tolerance and jitter transfer. This section discusses some of the challenges involved in analyzing a CDR circuit which uses a binary phase detector. The fundamental issue which prevents a proper closed form analytic expression is the non-linear nature of the binary phase detector. While the output of a linear phase detector is proportional to the magnitude of the input phase error, the output of a binary phase detector is either UP or DOWN, regardless of the input phase error. Traditional control theory is based on an assumption that every component in the system either is linear, or can be linearized. This issue cannot be fully circumvented and as such the analysis of binary phase detector based CDR circuits will never be as graceful as linear phase detector based CDR circuits. However, in recent years several interesting papers have been written which provide good models to better understand and optimize the performance of binary phase detector based CDR circuits.

This section does not aim to provide a comprehensive mathematical analysis of a binary phase detector based CDR circuit, rather the goal is to provide an intuitive understanding of the functionality of the system and then summarize some of the efforts which have been made toward analyzing these systems. The math presented mostly follows the approach taken by Lee et al.
2.6.1 Basic Binary Control: Example

In order to illustrate the behavior of a loop with binary control an example is presented. Imagine two cars travelling around a circular track. The first car is travelling at a non-constant velocity somewhere between 90km/h and 110km/h. The velocity of the first car is always changing, however it is changing in a continuous manner. The goal of the second car is to maintain a position as close to the first car as possible. In order to do this the second car must match both the speed of the first car and its position on the track. This example is analogous to a CDR circuit. The first car represents an incoming data stream and the second car represents the output of the VCO. The speed of the first car represents the data rate of the input signal and the the position of the first car represents the phase.

If the second car is controlled in a linear manner its velocity will be increased or decreased depending on how far away it is from the first car. As the cars get closer and closer the rate of acceleration or deceleration decreases until the cars are perfectly synchronized. If the velocity of the first car changes this will result in the positions of the cars no longer being synchronized. The second car will accelerate or decelerate in a proportional manner in order to re-synchronize the position.

If the second car is controlled in a binary manner the functionality will be quite different, however the end result will be quite similar in that the positions of the two cars can still be synchronized. For the case of binary control the second car can only travel at one of two velocities, 80km/h or 120km/h. The velocity of the second car depends only on whether the position of the first car is ahead of it or behind it on the track. The velocity of the second car will never equal that of the first car and as such the position of the second car will never perfectly synchronize with that of the first car. The second car will continuously be speeding past and then falling behind the first car. However, if the velocity of the second car can switch fast enough, its position
Figure 2.39: A CDR architecture where the binary phase detector directly controls the VCO can accurately match that of the first car.

Figure 2.39 illustrates a CDR circuit with a very basic bang-bang control. The output of the phase detector will either be high or low, which will correspond to one of two VCO frequencies. The VCO will switch between these two frequencies in order to match the output phase with the input phase.

2.6.2 Basic Binary Control: Analysis

Several authors have presented analyzes of CDR circuits which implement binary phase detectors, notably Walker and Lee et al. [18, 60], however there have also been valuable contributions by Ramezani and Salama, Wang et al. and Greshishev [58, 61, 62]. In their analyzes all authors other than Lee et al. assume that the binary phase detector is ideal. In [60] Lee et al. the non-ideal response of the phase detector due to metastability in the DFF is discussed, however the frequency response is almost solely dependant on the proportional response of the phase detector. As such in the formulation of expressions for jitter tolerance and jitter transfer the phase detector can be assumed to be ideal.

Figure 2.40 illustrates the theoretical operation of this circuit. In this figure the input signal is ideal, with no jitter. Even so, the difference between Φ_{in} and Φ_{out} never goes to zero as Φ_{out} will always move back and forth across the zero phase error point. There are only two possible frequencies and as the VCO is a phase integrator, the output phase changes in a linear manner. In [60] Lee et al. formulate the equations for jitter tolerance and jitter transfer for a
Figure 2.40: Waveforms illustrating the ideal response of the first order loop

binary phase detector based CDR circuit which has a second order loop, however the framework is very similar for the case of the first order loop and the following equations are based largely on that work. Jitter transfer describes the response of the CDR circuit to input jitter of the form, $\Phi_{in} = \Phi_{in,p} \cdot \cos(\omega_{\Phi}t)$. For low input jitter magnitude and frequency the loop can track, however as the magnitude and/or frequency increase at a certain point the loop is no longer able to track.

Figure 2.41 illustrates the response of the first order loop when the input jitter magnitude is high. In this case the loop is not able to perfectly track the input jitter, but instead begins to attenuate it. As before there are only two VCO frequencies and as such the output phase changes in a linear manner. The maximum magnitude of the output phase occurs after one quarter of the input jitter period, or $\frac{T}{4}$. The resulting magnitude of the output phase is given in Equation 2.35.

$$\Phi_{out,p} = \frac{\Delta f_{bb} T}{4} = \frac{\pi \Delta f_{bb}}{2 \omega_{\Phi}}$$ \hspace{1cm} (2.35)

$$|G_{JTRANS}| = \left| \frac{\Phi_{out,p}}{\Phi_{in,p}} \right| = \frac{\pi \Delta f_{bb}}{2 \omega_{\Phi} \Phi_{in,p}}$$ \hspace{1cm} (2.36)

Equation 2.36 illustrates the first order response of loop, in terms of the input jitter frequency,
The corner frequency occurs when the loop begins to track the input jitter properly, which will result in \(|\Phi_{\text{out},p}/\Phi_{\text{in},p}| \approx 1 \). Using this identity yields an expression for the jitter transfer corner frequency, which is given in Equation 2.37.

\[
\omega_{\text{3dB}} = \frac{\pi \Delta f_{bb}}{2 \Phi_{\text{in},p}}
\]

Equation 2.38 can be reworked as in Equations 2.39 to 2.41.
Figure 2.42: Waveforms used to determine the jitter tolerance response of the first order loop

\[
\cos(\delta) = \frac{\pi \Delta f_{bb}}{2 \omega_\Phi \Phi_{in,p}} \tag{2.39}
\]

\[
\cos^2(\delta) = 1 - \sin^2(\delta) = \frac{\Delta f_{bb}^2 \pi^2}{4 \omega_\Phi^2 \Phi_{in,p}^2} \tag{2.40}
\]

\[
\sin^2(\delta) = 1 + \frac{\Delta f_{bb}^2 \pi^2}{4 \omega_\Phi^2 \Phi_{in,p}^2} \tag{2.41}
\]

Dividing Equation 2.40 by Equation 2.41 results in an expression for \(\tan(\delta)\), which is given in in Equation 2.43.

\[
\frac{\sin^2(\delta)}{\cos^2(\delta)} = \tan^2(\delta) = \frac{1 + \frac{\Delta f_{bb}^2 \pi^2}{4 \omega_\Phi^2 \Phi_{in,p}^2}}{\frac{\Delta f_{bb}^2 \pi^2}{4 \omega_\Phi^2 \Phi_{in,p}^2}} \tag{2.42}
\]

\[
\tan(\delta) = \sqrt{4 \omega_\Phi^2 \Phi_{in,p}^2 + \Delta f_{bb}^2 \pi^2} \tag{2.43}
\]

The maximum phase error \((\Delta \Phi_{max})\) is difficult to calculate, however it is very close to the phase
error at $t = \frac{T}{4}$. As such, an assumption is made that $\Delta \Phi_{\text{max}} \approx \Delta \Phi_{t=T/4}$ [60]. The jitter tolerance is defined where $\Delta \Phi_{\text{max}} = \pi$, and as such Equation 2.44 provides an expression when the maximum phase error is equal to π.

$$\Delta \Phi_{\text{max}} \approx \Delta \Phi_{t=T/4} = \left| \Phi_{in,p} \cos \left(\frac{\pi}{2} + \delta \right) \right| = |\Phi_{in,p} \sin(\delta)| = \pi$$

(2.44)

Rewriting Equation 2.39 and using that in Equation 2.44 allows an expression for $\Delta \Phi_{\text{max}}$ which is independent of δ. Deriving an expression for the maximum input jitter magnitude which can be tolerated will give the expression for jitter tolerance. With some manipulation an expression for the jitter tolerance in terms of the input jitter frequency and the Δf_{bb} is given in Equation 2.46.

$$\Delta \Phi_{\text{max}} = \frac{\Delta f_{bb} \pi}{2 \omega_\Phi} \cdot \frac{\sin(\delta)}{\cos(\delta)} = \frac{\pi \Delta f_{bb}}{2 \omega_\Phi} \cdot \tan(\delta)$$

(2.45)

$$|G_{\text{J Tol}}| = \Phi_{in,p} = \sqrt{\frac{4 \pi^2 \omega_\Phi^2 - \Delta f_{bb}^2 \pi^2}{2 \omega_\Phi}}$$

(2.46)

$$|G_{\text{J Tol}}| = \Phi_{in,p} = \pi \sqrt{1 + \frac{\Delta f_{bb}^2}{4 \omega_\Phi^2}}$$

(2.47)

Equation 2.47 again illustrates the first order response of the loop. For very high input jitter frequencies the maximum magnitude of input jitter is equal to π, however as the input jitter frequency decreases the loop begins to be able to handle large magnitudes, increasing at a rate of 20dB/dec. The corner frequency will occur when Equation 2.47 is equal to $\sqrt{2}\pi$. This in turn allows the calculation of the corner frequency, as shown in Equation 2.48.

$$|G_{\text{J Tol}}| = \sqrt{2}\pi = \pi \sqrt{1 + \frac{\Delta f_{bb}^2}{4 \omega_\Phi^2}} \Rightarrow \omega_{\text{bw}} = \frac{\Delta f_{bb}}{2}$$

(2.48)
Figure 2.43: The jitter transfer and jitter tolerance response of the first order loop

Figure 2.43 illustrates the frequency response of the simple first order binary phase detector. By changing the value of Δf_{bb} a designer can alter the system response in order to achieve the desired performance.

2.6.3 Second Order CDR Systems

There are several ways to improve the performance of binary phase detector based CDR circuit beyond that of the first order system, all of which involve increasing the order of the loop. The first order binary phase detector based CDR circuit is a very simple circuit, and it is remarkable effective, however one problem it has is that the VCO frequencies (f_{high} and f_{low}) are fixed. This can be a problem if process variations shift the frequency of the VCO off the designed centre point. The Δf_{bb} can be designed very large in order to compensate for process variations, however this has implications in terms of the performance of the CDR circuit. Making the loop second order allows the loop to track the frequency as well as the phase.

Three methods to increase the order of the loop are shown in Figure 2.44. The first method involves adding a charge pump and capacitor between the phase detector and the VCO, as shown in Figure 2.44a. This method changes the proportional response of the control to an integral
Figure 2.44: Three architectures which increase the order of the first order loop response. A second method involves the addition of a charge pump and an RC filter, as shown in Figure 2.44b. This method results in both an integral response and a proportional response. A third method involves the addition of a charge pump and a conventional second order filter, as shown in Figure 2.44c. This method results in a third order system, which can cause problems. Third order system will not be discussed, however an analysis is presented in [62].
Loop Filter: Capacitor

The simplest method of increasing the order of a first order binary phase detector based CDR circuit is to add a charge pump and a capacitor. This changes the proportional response of the CDR circuit to an integral response. The result is that the frequency of the VCO is not switched between discrete values, but rather increases and decreases in a continuous manner as charge is added to and subtracted from the capacitor. This system and the associated waveforms are given in Figure 2.45. The operation of the loop sounds similar to that of a system which includes a linear phase detector, however the phase detector is still binary, and hence no matter the magnitude of the phase error the frequency will change at the same rate of $K_{vco} \cdot \frac{I_{cp}}{C}$. This response leads to the output phase of the VCO changing in a parabolic manner, which in turn leads to a jitter transfer and jitter tolerance response which are second order. Figure 2.46 illustrates the loop operation effect of of an integral response on the output phase.

The analysis of this system is very similar to that of the first order system presented above, the only difference being that instead of the phase changing in a linear manner it changes in a parabolic manner. This requires a slightly more complicated derivation of the phase, however the steps are essentially the same. Lee et al. provides the framework for this analysis, and extending from this work one can easily calculate the equations for jitter tolerance and jitter transfer, and
Figure 2.46: Waveforms showing the integral response provided by the capacitor from those the associated bandwidths [60]. The equation for jitter transfer is given in Equation 2.49 and solving for \(\frac{\Phi_{\text{out},p}}{\Phi_{\text{in},p}} \) = 1 gives the associated bandwidth, given in Equation 2.50. As in Section 2.6.1 solving for \(\Phi_{\text{in}} - \Phi_{\text{out}} = \pi \) gives the equation for jitter tolerance, which is given in Equation 2.51. The corner frequency of jitter tolerance can be found by solving for \(|G_{\text{JTOT}}| = \sqrt{2}\pi\), and this is given in Equation 2.52.

\[
|G_{\text{TRANS}}| = \left| \frac{\Phi_{\text{out},p}}{\Phi_{\text{in},p}} \right| = \frac{K_{\text{VCO}}I_{\text{CP}}\pi^2}{4C \cdot \omega^2 \cdot \Phi_{\text{in},p}} \quad (2.49)
\]

\[
\omega_{\text{BW}} = \frac{\pi}{2} \sqrt{\frac{K_{\text{VCO}}I_{\text{CP}}}{\sqrt{2} \cdot C \cdot \Phi_{\text{in},p}}} \quad (2.50)
\]

\[
|G_{\text{JTOT}}| = 1.26 \cdot \frac{K_{\text{VCO}}I_{\text{CP}}\pi^2}{4C \cdot \omega^2} \quad (2.51)
\]

\[
\omega_{\text{BW}} = 0.4 \pi \sqrt{\frac{K_{\text{VCO}}I_{\text{CP}}}{\sqrt{2} \cdot C}} \quad (2.52)
\]
Loop Filter: RC Filter

The most common way of increasing the order of the simple binary phase detector based CDR circuit is to add a charge pump and a first order RC filter. This creates a loop which has both a proportional and an integral response. The proportional response is due to the voltage drop across the resistor when as the charge pump switches between charging and discharging whereas the integral response is due to the charging and discharging of the capacitor. In order to achieve good stability the capacitor in the first order filter is generally quite large, which means that except for the cases of very low frequency jitter the proportional response will determine the response of the circuit. As such the proportional response will be largely responsible for the jitter tolerance and jitter transfer characteristic of the CDR circuit, which means that those FOM will have a first order response [18]. The integral response is still important, as it is responsible for frequency tracking and low frequency jitter tolerance [60], however it will be ignored for the derivation of jitter transfer and jitter tolerance.

Section 2.6.2 describes the analysis of the a first order loop, which is controlled by the parameter Δf_{bb}. Given the assumption that the frequency response is solely dependant on the proportional response of the loop the first order analysis is immediately transferrable, the only difference being that now Δf_{bb} is explicitly defined as $\Delta f_{bb} = K_{vco} \cdot I_{cp} \cdot R$. The resulting equation
for jitter transfer is given in Equation 2.53 and the associated bandwidth is given in Equation 2.54. The equation for jitter tolerance is given in Equation 2.55 and the associated bandwidth is given in Equation 2.56.

\[
|G_{\text{TRANS}}| = \left| \frac{\Phi_{\text{out},p}}{\Phi_{\text{in},p}} \right| = \frac{\pi K_{\text{VCO}} I_{\text{CP}} R}{2 \omega_{\Phi} \Phi_{\text{in},p}}
\]

\[
\omega_{\text{BW}} = \frac{\pi K_{\text{VCO}} I_{\text{CP}} R}{2 \Phi_{\text{in},p}}
\]

\[
|G_{\text{TOL}}| = \pi \sqrt{1 + \frac{K_{\text{VCO}} I_{\text{CP}}^2 R^2}{4 \omega_{\Phi}^2}}
\]

\[
\omega_{\text{BW}} = \sqrt{\frac{K_{\text{VCO}} I_{\text{CP}} R}{2}}
\]

Jitter Generation

In a CDR circuit jitter can be caused by numerous sources, including power supply noise, VCO phase noise and substrate noise. As such, while jitter generation is an important figure of merit it is difficult to formulate an equation which precisely describes it. In [18] Walker formulates an equation for jitter generation by describing the phase detector as a noise source and calculating the output noise. The analysis is quite detailed and deals with several regions of operation which depend on the magnitude of the input jitter and the loop stability. The resulting equation for jitter generation is given in Equation 2.57, where \(\Phi_{bb} \) is equal to the magnitude of the loop phase step and thus proportional to \(\Delta f_{bb} \).

\[
J_{\text{gen}} \approx 0.79 \cdot \sqrt{\Phi_{bb} \cdot J_{\text{in}}}
\]

Walker’s analysis in [18] is the most detailed, however there are other equations which are used for jitter generation. In [58] Greshishchev gives an equation which describes the jitter generation...
Figure 2.48: Relationship between jitter tolerance, jitter generation and Δf_{bb}

as proportional to the loop delay ($t_{loopdelay}$) and the proportional response of the loop (Δf_{bb}), as shown in Equation 2.58.

$$J_{gen} \approx t_{loopdelay} \cdot \Delta f_{bb}$$ \hspace{1cm} (2.58)

Regardless of the exact relationship between Δf_{bb} and J_{gen} the relationship between jitter generation and jitter tolerance is easily understood. Looking back to the car analogy in Section 2.6.1 it is clear that if the velocity of the first car exceeds the maximum velocity of the second car, the second car cannot properly track it. This is analogous to the relationship between input jitter frequency (ω) and Δf_{bb}. The value of Δf_{bb} sets an upper bound on the magnitude of input jitter which can be tolerated. However, the proportional response cannot simply be increased to allow tracking of arbitrarily high input jitter magnitudes. As described in Equation 2.57, increasing the value of Δf_{bb} will result in a higher output jitter.

Figure 2.48 shows a graphical representation of these equations and the associated tradeoff between jitter generation and jitter tolerance. This figure illustrates that the value of Δf_{bb} must be set high enough in order to meet the jitter tolerance specification, however it must not be set
too high as that will result in the failure of the jitter generation specification.

Tri-state Phase Detectors

So far in this section is has been assumed that the binary phase detector used is a pure binary phase detector, such as a DFF binary phase detector. However, many standards require the system to operate even with input data sequences which contains long intervals with no data transitions. As such, most systems do not implement a pure binary phase detector, but rather use a tri-stated circuit, most commonly the Alexander phase detector. The difference in the resulting output waveforms for these two phase detectors given a CDR architecture with a charge pump and first order filter is shown in Figure 2.49. The difference is handled differently by different authors. Walker suggests increasing Δf_{bb} in order to compensate for the degradation in the jitter tolerance caused by the lower data density [18]. In a similar manner to Walker, Greshishchev uses a gain term DF (referred to in this thesis as K_{df}), which describes the data density. This variable allows the designer to compensate for the fact that the correction is not being continuously applied as a reduced data density will require other design parameters to be modified in order to compensate for the reduced Δf_{bb} [58]. Ramezani and Salama takes a different tact and calculates the phase change due to the proportional and integral branches separately, however Ramezani and Salama primarily discusses locking behavior as opposed to the frequency

![Figure 2.49: Response of two-state and tri-state binary phase detectors](image-url)
Lee et al. does not specifically address this issue, but rather sidesteps it with the use of a low-speed V/I converter as opposed to a charge pump [60]. According to Lee et al., the V/I converter is preferable to a charge pump as it senses the average output of the phase detector, as opposed to being driven by high-speed pulses. The V/I converter has the effect of bringing the system response back to that of a pure binary phase detector. The schematic of the V/I converter used by Lee et al. shown in Figure 2.50 [63] (While this is not the same paper or even the same author, this circuit is from the same research group and is used in several other papers and as such it is virtually certain that the same V/I circuit is used by Lee et al.). While this circuit allows the designer to avoid the effects of the phase detector pulses on the filter voltage, other difficulties are created. First, with this circuit the designer has no control over the charge pump current. The charge pump current allows the designer to tune the characteristics of the CDR circuit during testing, and as such this scheme loses that flexibility. Also, as the current is dependant on the absolute voltage levels at the output of the XOR gates, any common-mode offset between these signals will result in a systematic offset, which will impact performance.

For an architecture which has a proportional response, the use of a tri-state phase detector requires a small modification to the control of the VCO. Using a tri-state phase detector means that there are three states and as such the proportional path must also have three states. The
Figure 2.51: Example of a circuit with tri-state frequency control

third state, which occurs in the absence of any data transitions, must not result in either the UP or DOWN state (which correspond to the frequencies F_{high} and F_{low}) but rather to the midpoint [53]. As such the proportional path must be able to output a third frequency, located at the midpoint of F_{high} and F_{low}. For a ring oscillator this can be a simple circuit, one example of which is shown in Figure 2.51. In this circuit the tri-state state will occur when the UP voltage equals the DOWN voltage which results in the VCO’s proportional current being equal to half of $I_{\text{bias,bb}}$.

Notes

It should be noted that as of this point in time there is no comprehensive analysis of binary phase detector based CDR circuits which is generally accepted. While numerous authors have formulated useful and innovative models they are different from each other and this creates some confusion. Some authors focus more on the time domain response and derive relationship based on that, whereas others focus on the frequency domain response. For example, the analysis in this thesis has ignored the concept of stability, which was derived by Walker [18] and used by both Wang et al. and Ramezani and Salama [62, 61]. The stability of the loop relates the proportional
and integral responses and is defined as $\xi = \frac{\Delta \Phi_{\text{proportional}}}{\Delta \Phi_{\text{integral}}}$. Stability plays an important role in Walker’s analysis, however it is not used at all in the analysis performed by Lee et al.. This thesis can only provided an overview of some of the research in this area and someone studying CDR circuit analysis would be wise to go back to the original papers to get a complete understanding of the work which has been done.

2.7 Summary

This chapter presented a background on wireline data communication circuits. Wireline data communication systems can be implemented over optical fibre or over a backplane, however for both systems the CDR circuit is very important. The individual blocks which compose a CDR circuit were detailed and a mathematical model for the CDR circuit was introduced. Various FOM are used to characterize the performance of CDR circuits, and both frequency domain and time domain FOM were described. It was shown that for linear phase detector based CDR circuits classic loop theory can be used to formulate equations for many of the FOM. For binary phase detector based CDR circuits it is more difficult to formulate similar equations, however one method of formulating these expressions was presented. Also, the effects of noise on CDR circuits were examined and the relationship with the system bandwidth was illustrated.
Chapter 3

Robustness Considerations in CDR Circuits

The word robustness means different things in different fields of study, so it is important to first define the term. Even when an IC has been properly designed there will be discrepancies between the simulated results and the measured results. The ability of a circuit to operate properly, in spite of the silicon not matching the idealities of simulation, is the fundamental idea of robustness in the context of circuit design. While robust circuit design has been heavily researched in the areas of memory and logic circuits, the robustness of CDR circuits has not been studied. In this chapter the specific effects of process non-idealities on CDR circuits are analyzed at both the circuit level and the system level.

3.1 Robustness

The scaling of CMOS is a critical factor in the advance of computing systems. CMOS processes scale to smaller geometries approximately every one-and-a-half to two years [64]. The number of transistors in ICs has correspondingly increased, as has their frequency of operation. Highly scaled
Robustness Considerations in CDR Circuits

Figure 3.1: Some sources and effects of process variations [3] [4]

geometries enable the integration of multi-Gb/s CDR circuits in monolithic circuits, however they also create challenges. One of the most significant challenges is that the aggressive scaling of CMOS processes to maximize performance has increased the process variability [65] [66] [67]. The effects of process variations has thusfar primarily been studied in the context of digital circuits and memories, however these variations also negatively affect the performance of CDR circuits.

The graphs on the left and right in Figure 3.1 are from [3] and [4] respectively. The graph on the left in Figure 3.1 illustrates the fact that in recent years the scaling of CMOS has caused the variability to increase. Taking L_{eff} as an example it can be seen that the percentage variation was over 30% in 2000 when the paper was written and the variability was expected to continuously increase. The graph on the right in Figure 3.1 illustrates the effect of this variability on a circuit. A current mirror with a desired 10:1 ration is simulated in 130nm, 90nm and 65nm CMOS processes and the results show that the for the scaled transistors the variability in the actual current ratio is significantly higher.

Process variations are an important part of the reason why robust design is needed, however there are also other sources of non-idealities including: temperature variations, threshold voltage shifts, random transistor mismatches and the inadequacy of current transistor models. Transistor
model limitations become more problematic with circuits operating at multi-GHz frequencies, as often devices are inadequately characterized at these frequencies. All of these issues have the effect of creating gaps between the simulation environment and silicon results.

Scaled CMOS processes have enabled the integration of more and more processing power onto a single die. This large amount of processing power requires an equally large amount of data, making high bandwidth data communication circuits desirable. As such, scaling gives the ability to create multi-Gb/s interconnects, integration supplies the impetus to do so and process non-idealities makes robust design of those interconnects increasing difficult.

3.1.1 Definition of Robustness

There is no single definition of robustness, nor is there a singular scale by which it can be judged. In the most basic sense robustness refers to strength and endurance. In the context of circuit design this is used to identify those circuits which continue to operate under conditions where other circuits fail. In circuit design any comparison of robustness must use a reference. Hence circuit X cannot technically be defined as ‘robust’, rather circuit X can only be defined as ‘robust compared to circuit Y’, or ‘robust with respect to some predefined standard’. Robustness is essentially the same as manufacturability. The design must work reliably in different environments and it must work over a long period of time.

3.1.2 Robustness in This Thesis

As there is no singular metric by which robustness can be measured, enhancements in robustness can be difficult to quantify analytically, especially in a design environment. Most research into CDR circuits is aimed at enhancing performance. This allows for easily quantifiable results, as there are detailed FOM which can be used. Section 2.5 describes various FOM used to quantify the performance of CDR circuits. Robustness is not a very easy FOM to measure in a university environment. In a university there is limited access to the kind of proprietary
information semiconductor foundries use to calculate yield. When chips are fabricated in the university environment, only a few chips are available to be tested, which doesn’t allow for any analysis of yield. While this does pose some problems for a thesis based around ‘robust design’, the approach taken here is to look at circuits from an architectural point of view, and analyze their sensitivities with respect to reference circuits.

In this thesis the overarching goal is to optimize CDR circuits for both performance and robustness. In order to achieve a more robust interconnect reducing the data rate is always an option which will work. However, the result of reducing the data rate is that performance is not optimized and the design is not taking full advantage of the process. In such a situation multiple links may be required to get the desired bandwidth, which would increase area, power, design complexity and system cost.

Much of this thesis focuses on the phase detector as the circuit where robustness can be affected. It will be shown later that with respect to the two basic types of phase detectors, linear and binary, there are very different robustness and performance characteristics. Linear phase detectors ideally give better performance however are more sensitive to process non-idealities. Conversely, binary phase detectors have theoretically lower performance, however are less sensitive to process non-idealities. As such, there are two approaches to robustness taken in this thesis.
First calibration techniques will be introduced to improve the robustness of linear phase detectors while maintaining their performance. Secondly circuits will be introduced which improve the performance of binary phase detectors, while maintaining their robustness. Figure 3.2 illustrates these goals, using jitter as a simple performance metric. The grey area describes the region of possible output jitter magnitudes, with the black bar representing the mean. Figure 3.2a shows that the mean jitter for a linear phase detector based CDR circuit is lower than that of a binary phase detector based CDR circuit, however the variability of the linear circuit is much larger. Figure 3.2b illustrates that the goal of this thesis is not to sacrifice performance for robustness, but rather to improve the robustness of linear phase detectors by reducing the variability while maintaining the performance and to maintain the robustness of binary phase detectors while improving their performance.

Calibration

As will be seen later in this chapter, the response of a phase detector can experience significant shifts due to process non-idealities. In Chapter 4 calibration circuits will be introduced in order to compensate for these variations and return the performance of the phase detector to its desired location. While the use of calibration is common in many analog circuits, it has found limited use in wireline circuits, in part as it is difficult to use calibration with circuits operating at multi-Gb/s frequencies.

Novel Phase Detector Circuits

The calibration circuits which will be described in Chapter 4 introduce additional circuitry which surrounded the phase detector designed to compensate for variations. In Chapter 5 phase detector circuits will be introduced which are designed to be robust and improve performance over the standard design. Both linear and binary phase detector circuits are proposed and analyzed with respect to both performance and robustness.
3.2 Mathematical Analysis of Static Phase Offset

In an ideal CDR circuit the clock and data signals will be perfectly aligned when the system is in the locked condition. However, in reality the clock and data signals will often lock in a non-ideal state where there is a phase difference between them. This is known as a static phase offset. A static phase offset is a significant problem in a CDR circuit because it results in the incoming data no longer being sampled at the centre of the data eye [17]. In this section the effect of a static phase offset on the performance of a CDR circuit is analyzed mathematically. A static phase offset will affect any phase detector architecture in a similar manner and the mathematical results presented in this section will hold regardless of the phase detector architecture used.

3.2.1 Static Phase Offsets in a Phase Detector

As described in Section 2.5.4 the probability of a CDR circuit making an error by incorrectly sampling the data is known as BER. Every CDR circuit will have a BER which is caused by jitter. As described in Section 2.5.2, jitter can be divided into two categories: random and deterministic. While random jitter can be approximated by a Gaussian distribution [68] deterministic jitter has many different potential sources. While there are many sources of deterministic jitter, their effects on a data communication system are similar, hence they are usually considered collectively. Unlike random jitter, deterministic jitter is bounded, and its effect is to shrink the data eye by a finite amount. As deterministic jitter is bounded, it is less significant as compared to random jitter and will only further reduce the ability of the CDR circuit to tolerate static phase offsets. For that reason, and in order to simplify the mathematical analysis, deterministic jitter is ignored. Figure 3.3 shows an eye diagram illustrating the random jitter in the system. The dot in the centre of the data eye represents the ideal sampling point. The multiple traces in the transition of the clock signal illustrate the uncertainty due to noise. The bottom curve represents the probability density function (PDF) of the clock transition point. The probability of a sampling error is illustrated by the blackened area under the PDF curve which is beyond the next data transition.
In this analysis the transition point of the clock has a Gaussian distribution, hence the probability of a sampling error (P_e) can be written mathematically as the probability that the clock transition occurs either before the leading data transition, or after the trailing data transition [59], as in Equation 3.1.

$$P_e = \frac{1}{2} P\left(t_{\text{trans}} > \frac{T}{2}\right) + \frac{1}{2} P\left(t_{\text{trans}} < -\frac{T}{2}\right) \quad (3.1)$$

The PDF of a Gaussian distribution is given in Equation 3.2.

$$f(t) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(t-m)^2}{2\sigma^2}} \quad (3.2)$$

In Equation 3.2 ‘σ’ represents the standard deviation and ‘m’ represents the mean. In a CDR circuit the standard deviation corresponds to the random jitter (J_{RMS}) and the mean corresponds to the deviation of the clock transition from the ideal sampling point. Given an ideal system where the sampling point is exactly at the centre of the data eye then the probability of $t_{\text{trans}} > \frac{T}{2}$ is equal to the probability that $t_{\text{trans}} < -\frac{T}{2}$. This can be written as:
Robustness Considerations in CDR Circuits

Figure 3.4: Eye diagram of a CDR circuit when $\Phi_{spo} \neq 0$

\[P\left(t_{\text{trans}}>\frac{T}{2}\right) = P\left(t_{\text{trans}}<-\frac{T}{2}\right) \]

(3.3)

Integrating the area under the PDF which lies beyond $\pm\frac{T}{2}$ will give the probability of an error, as shown in Equation 3.4.

\[P_e = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)dt = \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-\frac{(t-m)^2}{2\sigma^2}} dt \]

(3.4)

The integral in Equation 3.4 cannot be solved directly, however the Q-function can be used to simplify the analysis. It is also important to note that the probability of an error is equal to the BER. Using the Q-function and Equation 3.4, Equation 3.1 can be re-written as:

\[P_e = BER = Q\left(\frac{T}{J_{\text{RMS}}}\right) \]

(3.5)

A static phase offset in a CDR circuit moves the sampling point away from the centre of the data eye. In a mathematical analysis this has the effect of moving the mean of the Gaussian distribution by the amount of the static phase offset. Therefore the BER of a CDR circuit with
a static phase offset equal to Φ_{spo} can be expressed as:

$$
P_e = BER = \frac{1}{2} Q \left(\frac{T}{2} - \Phi_{\text{spo}} \right) \frac{1}{J_{\text{RMS}}} + \frac{1}{2} Q \left(\frac{T}{2} + \Phi_{\text{spo}} \right) \frac{1}{J_{\text{RMS}}}$$

(3.6)

The BER rate will, for any significant Φ_{spo}, be dominated by either the first or second term in Equation 3.6. The eye diagram for a CDR circuit with a static phase offset is illustrated in Figure 3.4. Here the zero crossing point of the sampling clock is offset by Φ_{spo}. Again the probability of an error is illustrated by the blackened area under the Gaussian curve. The blackened area, and therefore the error probability, is greater for the case where $\Phi_{\text{spo}} \neq 0$.

Using Equation 3.6 CDR circuits operating at data rates of 2.5Gb/s, 5Gb/s and 10Gb/s are analyzed. Matlab is used in order to calculate the maximum magnitude of RMS jitter that a CDR circuit with a given Φ_{spo} can tolerate. The CDR circuit is considered to fail if its BER exceeds 10^{-12}. The results of this analysis are given in Figure 3.5. It is important to point out
that these results represent theoretical maximums, and should not be considered as indicative
of actual circuit performance. They are, however, useful for observing trends and tradeoffs. In
Figure 3.5 the area under the curves represents the region where the CDR circuit has a BER less
than 10^{-12}. The slopes of these lines are identical, indicating that Equation 3.6 can be re-written
in a form which is independent of the data rate. Dividing the numerator and denominator of
Equation 3.6 by the period, T, results in an equation for BER which is independent of the data
rate. The result is expressed in Equation 3.7, where the Φ_{spo} and J_{rms} are expressed in terms of
the unit interval (UI), which is the period of the data rate.

$$
P_e = BER = \frac{1}{2} Q \left(\frac{\frac{1}{2} - \Phi_{spo}(UI)}{J_{rms}(UI)} \right) + \frac{1}{2} Q \left(\frac{\frac{1}{2} + \Phi_{spo}(UI)}{J_{rms}(UI)} \right) \quad (3.7)$$

As an example, the case where the static phase offset increases from zero to a quarter of the
period is analyzed using Equation 3.7. In this situation the first term in Equation 3.7 dominates
and its numerator will be halved, decreasing from $\frac{1}{2}$ to $\frac{1}{4}$. The effect of this is that in order to
keep the same BER the J_{rms} budget must also be halved. This can be seen in Figure 3.5, with
the maximum allowable J_{rms} for the 10Gb/s CDR circuit decreasing from 10ps to 5ps as the Φ_{spo}
increases from 0ps to 25ps.

In Figure 3.6 Equation 3.7 is plotted to demonstrate the effect of static phase offsets on the
BER. In Figure 3.6 the five different curves represent the BER values for various static phase
offsets, from zero to 0.25UI. This figure demonstrates that even relatively small static phase
offsets can significantly increase the BER of a CDR circuit. As an example, Figure 3.7 shows the
resulting BER for a 10Gb/s CDR circuit when a static phase offset of 10ps is introduced. The
lower curve in the figure represents the BER for the ideal case where there is no static phase offset
and the upper curve represents the BER for the case where there is a 10ps static phase offset. If
the CDR circuit had an RMS jitter of 10ps and the desired BER was 10^{-10} it can be seen that
the ideal system meets the design specification with a BER of approximately 10^{-12}. However,
the introduction of a 10ps static phase offset increases the BER by four orders of magnitude, to approximately 10^{-8} resulting in the desired performance not being met. In this example a 10Gb/s CDR circuit is used, and for such a system an RMS jitter of 10ps is unrealistically high. However, again it is noted that these results represent theoretical maximums, and the negative effects of static phase offsets will become significant with much less RMS jitter in real CDR circuits.
Figure 3.8: Simulated maximum input jitter vs Φ_{spo} for a 5GB/s CDR circuit

3.2.2 Simulation Results

In order to verify the analysis a 5Gb/s CDR circuit was modelled using Matlab. The model had a variable static phase offset and the amount of jitter could also be varied. Extensive simulations were performed to determine the maximum amount of input jitter which could be tolerated for a given static phase offset. These simulations are challenging, as a statistically accurate measure of BER requires a very long simulation time. For a 5Gb/s CDR circuit it is simply not practical to run a time-domain simulation for more than a few tens of microseconds, given the small timestep required. As such, the BER values which were targeted were 10^{-3} and 10^{-4}, which correspond to one error every 0.2µs and one error every 2µs. In order to get results which were statistically meaningful the simulation times were an order of magnitude greater than the associated BER. Also, the simulations were repeated numerous times and the results averaged. Figure 3.8 shows both simulation results and also the theoretical values calculated from Equation 3.6. It can be seen that as the static phase offset increases the maximum jitter which can be tolerated steadily decreases. The simulation results are not identical to the calculated values,
and this is not surprising, as the BERs calculated from Equation 3.6 are theoretical maximums. While the Matlab model is ideal, there will inevitably be errors due to the finite accuracy of any simulation. The important aspect of Figure 3.8 is that the trends of the simulated BER curves accurately track the theoretical values. This indicates the accuracy of the mathematical analysis and re-enforces the negative effects of static phase offsets.

3.3 DFF Analysis

The DFF is the fundamental building block of virtually every phase detector. The DFF is also used to re-time the data signal. A CML DFF is composed of two latches, as shown in Figure 3.9. The associated waveforms are also shown, along with the modes of the two latches. As can be seen, each latch is either in sample mode or hold mode. Transistors \(M_3 \) and \(M_4 \) comprise the sampling circuit and transistors \(M_5 \) and \(M_6 \) comprise the hold circuit. When latch A is in sampling mode, latch B is in hold mode, and visa versa. The clock signal controls which mode a latch is in by steering the bias current via transistors \(M_1 \) and \(M_2 \). When the clock is high transistors \(M_{3a} \) and \(M_{4a} \) in latch A sample the incoming data signal onto \(V_{AQ} \). In latch B the
output signal V_{BQ} is not dependant on the changing V_{AQ} as the bias current is going through transistors M_{5b} and M_{6b} which form a regenerative cross-couple inverter pair. When the clock signal transitions to low latch A holds the signal and latch B samples the signal V_{AQ} onto the output signal V_{BQ}.

Ideally as soon as the clock switches and a latch enters its ‘sampling’ mode, the output will instantaneously switch. In reality this is not the case, but rather there is a latency which is known as the C-Q delay of the DFF. The C-Q delay is defined as the time it takes from the clock transition until the output signal is defined. The C-Q itself is not constant, but is a function of the input phase error [69]. Figure 3.9 shows the clock and data signals in their ideal condition, however as the phase error between the clock and data signal becomes large the situation arises where the data signal is transitioning at the same time as the clock signal. This creates a condition known as metastability.

3.3.1 Metastability in a DFF

Metastability in a DFF occurs when the clock and data signal transition at approximately the same time. In Figure 3.9 it can be seen that in order to sample properly all of the bias current should be flowing through transistor M_1 and the input data signal should be large. A large input data signal combined with the gain of transistors M_3 and M_4 allows the output signal to be quickly resolved. However, due to finite rise and fall times when the clock signal is near its transition point current will not be completely switched. This will reduce the gain of the sampling differential pair M_3 and M_4 and also begin to activate the hold circuit of M_5 and M_6. If the data signal is transitioning at the same time its reduced swing will make it even more difficult for the sampling pair M_3 and M_4 to properly sample it. The metastability of a DFF will affects the C-Q delay of the circuit in that the output signal will take more time to fully resolve [70].

The C-Q delay of the DFF is not static, but rather depends on the phase relationship between the incoming clock and data signals. In order to examine this effect a CML DFF is simulated.
Figure 3.10: Value of the C-Q delay with respect to the input phase error

in a 180nm CMOS process. The DFF is designed to operate in a 5GB/s CDR circuit, and as such the clock is 5GHz clock and the data has a period of 200ps. The input phase error is varied over the complete range of possible phase errors. The C-Q delay of the DFF is also be affected by process corners. As such, in order to illustrate the effects of process variations the DFF is simulated over both process and resistance corners. Figure 3.10 illustrates the effects of phase error and process on the C-Q delay of the DFF. As can be seen the C-Q delay of the DFF varies significantly. Region 1 illustrates the situation where the data changes soon after the clock has transitioned. As the clock has transitioned the change in the data signal should have no effect on the output of the DFF, however due to the metastability the data can be passed even when it is not supposed to be. This is why in Region 1 the C-Q delay for some of the curves drops to negative values. Region 2 illustrates the desired situation where there is plenty of setup time and hold time between the clock signal and the data signal. In this region the C-Q delay of the flip-flop is relatively constant. Region 3 illustrates the situation where the data changes just
before the clock changes. In this case the output signal should ideally transition the same way as in region 2. However, the metastability of the DFF results in an increase in the C-Q delay, to the point where the output data signal does not resolve until beyond the next transition of the clock. This is why in Region 3 the C-Q delay for some of the curves rises rapidly beyond the top edge of the figure.

3.3.2 Hogge Phase Detector Gain

Using the timing diagram in Figure 3.11 transition times of the signals in the Hogge phase detector can be mathematically described. The signals in Figure 3.11 differ from the ideal waveforms shown in Figure 2.10 in that the C-Q delays of the DFFs are included. Simple expressions can be written to express the timing of the waveforms, and these are given below.
Robustness Considerations in CDR Circuits

\[\text{data} = \Phi_{\text{error}} \]
\[Q_1 = \frac{T}{2} + t_{cq1} \]
\[Q_2 = T + t_{cq2} \]
\[t_{\text{delay}} = t_{cq1,\text{nominal}} [\text{constant}] \]

\[
\begin{align*}
UP_{\text{pulsewidth}} &= Q_1 - \text{data} - t_{\text{delay}} \\
&= \frac{T}{2} + t_{cq1} - t_{\text{delay}} - \Phi_{\text{error}} \\
DN_{\text{pulsewidth}} &= Q_2 - Q_1 \\
&= \frac{T}{2} + t_{cq2} - t_{cq1}
\end{align*}
\]

These equations illustrate that if the delay element matches the C-Q delay of \textit{DFF}$_1$ the pulse width of \textit{UP} will simply equal \(\frac{T}{2} \) - error, which is ideal. However, the delay of the delay element is constant, whereas the C-Q delay of a DFF is a function of the setup time, and hence the C-Q delay of \textit{DFF}$_1$ is a function of the input phase error. The \textit{DOWN} relationship illustrates that the \textit{DOWN} pulse width will equal \(T/2 \) when the C-Q delays of the two DFFs match, which only happens for ideal DFFs where \(t_{CQ} = 0 \). Serious problems arise when the C-Q delay of \textit{DFF}$_1$ increases to the point where the setup time of \textit{DFF}$_2$ is violated. At this point \textit{DFF}$_2$ enters metastability and its output is no longer valid.

3.3.3 Alexander Phase Detector Gain

As with the Hogge phase detector, the waveforms for the Alexander phase detector are analyzed, including the effects of the C-Q delay. The waveforms will be different depending on whether the clock is leading or lagging the data, and both cases are shown in Figure 3.12. One weakness of the Alexander phase detector can be seen by examining the timing of its output waveforms. The following expressions describe the pulse widths of the \textit{UP} and \textit{DOWN} signal in the situation where the clock lags the data.
Robustness Considerations in CDR Circuits

Figure 3.12: Waveforms for an Alexander phase detector including C-Q delay

Clock lagging data:

\[
\begin{align*}
\text{data} & = -\Phi_{\text{error}} \\
Q_1 & = \frac{T}{2} + t_{\text{cq1}} \\
Q_2 & = \frac{3T}{2} + t_{\text{cq2}} \\
Q_3 & = t_{\text{cq3}} \\
Q_4 & = \frac{T}{2} + t_{\text{cq4}}
\end{align*}
\]

\[
\begin{align*}
UP_{\text{pulsewidth}} & = Q_4 - Q_1 = \frac{T}{2} + t_{\text{cq4}} - \frac{T}{2} - t_{\text{cq1}} \\
& = t_{\text{cq4}} - t_{\text{cq1}} \\
DN_{\text{pulsewidth}} & = Q_4 - Q_2 = \frac{T}{2} + t_{\text{cq4}} - \frac{3T}{2} - t_{\text{cq2}} \\
& = T + t_{\text{cq4}} - t_{\text{cq2}}
\end{align*}
\]
Clock leading data:

\[
\begin{align*}
\text{data} &= +\Phi_{\text{error}} \\
Q_1 &= \frac{T}{2} + t_{cq1} \\
Q_2 &= \frac{3T}{2} + t_{cq2} \\
Q_3 &= T + t_{cq3} \\
Q_4 &= \frac{3T}{2} + t_{cq4}
\end{align*}
\]

\[
\begin{align*}
UP_{\text{pulsewidth}} &= Q_4 - Q_1 = \frac{3T}{2} + t_{cq4} - \frac{T}{2} - t_{cq1} \\
&= T + t_{cq4} - t_{cq1} \\
DN_{\text{pulsewidth}} &= Q_4 - Q_2 = \frac{3T}{2} + t_{cq4} - \frac{3T}{2} - t_{cq2} \\
&= t_{cq4} - t_{cq2}
\end{align*}
\]

The relationships above illustrate that in order to get an ideal response, the C-Q delays of all the DFFs to be identical. This is a problem as the C-Q delay of a DFF is a function of the setup time. As long as the CDR circuit is near the locked condition the setup time of \(DFF_1\) and \(DFF_2\) will be reasonably large and hence their C-Q delays will not vary by a large amount. They can be defined as operating in region 2, as labelled on Figure 3.9. The problem is that when the input phase error is very small, \(DFF_3\) is sampling the data at the same time that the data is changing. In this situation it is very difficult for \(DFF_3\) to accurately sample the data signal, as it has virtually no setup time and as such the C-Q will vary significantly. This is represented in Figure 3.9 as regions 1 and 3. The varying C-Q delay can cause the output of \(DFF_3\) to infringe on the setup time of \(DFF_4\). Both the UP and DOWN signals depend on \(DFF_4\) and hence an incorrect output of \(DFF_4\) results in the phase detector giving an incorrect response.

3.3.4 DFF Phase Detector Gain

A DFF phase detector is operated exclusively in the metastable region, as the clock signal should ideally be switching at the exact time as the clock signal. This would appear to pose a problem for the DFF phase detector, however the C-Q delay of a DFF phase detector is of little importance. The output of the DFF is not fed into any other timing block, hence the latency associated with the C-Q delay will not significantly affect the performance. The process variations will cause some problems relating to the ability of the DFF phase detector to resolve phase errors, and
Table 3.1: Simulation data for process normalization

<table>
<thead>
<tr>
<th>CMOS process</th>
<th>Frequency (GHz)</th>
<th>Rise Time (ps)</th>
<th>Fall Time (ps)</th>
<th>Frequency ratio</th>
<th>Data Rate (Gb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180nm</td>
<td>0.769</td>
<td>47.88</td>
<td>47.96</td>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>130nm</td>
<td>1.21</td>
<td>30.20</td>
<td>30.19</td>
<td>1.57</td>
<td>8</td>
</tr>
<tr>
<td>90nm</td>
<td>1.92</td>
<td>18.88</td>
<td>18.77</td>
<td>2.49</td>
<td>12.5</td>
</tr>
</tbody>
</table>

this will be examined for the DFF phase detector and the other two phase detectors, in the next section.

3.4 Effect of Non-Idealities on Phase Detectors

The simulations in the previous section illustrated the effects of process variation on a CML DFF in the presence of process variations. In this section the robustness of CML based phase detectors is analyzed with respect to the scaling of CMOS processes. Three phase detectors are analyzed over corners in three standard CMOS processes: 180nm, 130nm and 90nm. The purpose of this section is to highlight trends in the robustness of CDR circuits as technology scales.

3.4.1 Analysis Setup

It is difficult to accurately compare different circuits over different process technologies. In order to properly compare the results a reference circuit is used to normalize the simulation results from the different processes. The reference circuit chosen is a 19-stage balanced CMOS ring oscillator with minimum width NMOS transistors. Ring oscillators are commonly used to provide a simple metric of process performance [71]. The reference circuit is simulated in three standard CMOS processes, 180nm, 130nm and 90nm, and the results are summarized in Table 3.1. These results are used to determine appropriate data rates for the CDR circuits in each process.
For the 180nm process the data rate chosen was 5Gb/s. While CDR circuits operating at higher data rates in 180nm processes have been reported [20, 72, 73], they either used half-rate phase detectors or binary phase detectors. All phase detectors in this work are full-rate phase detectors. This especially stresses the Hogge architecture, which must generate small, accurate pulses and hence requires a large bandwidth. In this work phase detectors are analyzed at relatively aggressive data rates in order to illuminate their weakness and point out where problems are likely to surface. 5Gb/s is an aggressive data rate for this 180nm process and based on this data rate and the information in Table 3.1 the data rates for the other processes are determined. The data rates used are 8Gb/s for the 130nm process and 12.5Gb/s for the 90nm process.

In order to determine the robustness of these phase detectors, their transfer characteristics are analyzed. The transfer characteristic is the output of the phase detector for a specific phase offset between the input clock and data signals. The ideal transfer characteristics for linear and binary phase detectors was previously shown in Figure 2.8. While it is impossible for any system to realize the ideal response the deviations from the ideal take specific forms. One such form is a static phase offset, the detrimental effects of which were previously derived in Section 3.2. As was shown, a static phase offset the clock and data signals align incorrectly which results in the data being sampled at a non-ideal point, resulting in an increased BER. Therefore, static phase offsets are the FOM used to compare the different phase detectors in this section.

In order to simulate the transfer characteristic of the phase detectors clock and data signals with controlled phase errors are generated. Ideal clock and data signals are used, however the rise and fall time of the signals correspond to realistic rise and fall times for the particular technology. All bias voltages are ideal, in order to isolate the analysis to only the phase detectors. For all simulations an identical data pattern was used, in order to make the results consistent. Verilog-A models were used to measure the widths of the UP and DOWN pulses and log the data, which was then gathered and analyzed.
3.4.2 Analysis Results

In each process the phase detectors were subjected to three basic process corners: slow-slow (SS), typical-typical (TT) and fast-fast (FF). All of the circuits are implemented using CML, which means that there are only NMOS transistors present, and hence the slow-fast (SF) and fast-slow (FS) corners are redundant. The implementation of circuits using CML was previously described in Chapter 2. The resistive pull-ups in CML circuits can be implemented using polysilicon or MOS resistors. Using MOS resistors results in large capacitive loading compared to polysilicon resistors (especially if symmetric loads are used [74]) and this notably reduces the overall bandwidth of the system [7]. As such, in this work polysilicon resistors are used. However, the use of polysilicon resistors makes the circuit sensitive to polysilicon variations and in order to stress this characteristic of CML circuits each phase detector is also simulated with \(\pm 20\% \) resistor variations at each process corner. It must be emphasized that these results were obtained for specific processes. As such, different flavors of processes from different foundries will give different results, even for the same process node. This analysis does not claim to precisely match results from another process, but rather the results are meant to illustrate the trends encountered when scaling CML phase detectors. It is also important to realize that this work only analyzes the response of the phase detectors. Process variations will negatively affect the other block of the CDR circuit, further degrading the overall system response. The effect of process variations on these blocks is not discussed in this section.

Figure 3.13 shows the response of the DFF, Alexander and Hogge phase detector at all process corners and for all three technologies. For all simulations the results have been normalized to clarify the analysis. For the simulations involving the Alexander and Hogge phase detectors the pulse widths of the output UP and DOWN signals were divided by their expected widths. For example, the ideal UP or DOWN pulse width for a 5Gb/s Alexander phase detector is 200ps and therefore the simulated width is divided by 200ps to normalize the data. For the Alexander and Hogge phase detectors the output is presented as ‘UP width - DOWN width’, which represents
Figure 3.13: Process variation simulation results for the three phase detectors
In order to extract the trends from the simulations data the variation in the static phase offset is determined. The variation in the static phase offsets for the different process corners can easily be seen in Figure 3.13. The total variation in static phase offset for each phase detector in each technology is summarized in Figure 3.14. For all three phase detectors the variation in the static phase offset increases as the process scales. It is interesting to note that the actual magnitude of the variation in static phase offset reduces. For example, in the case of the Hogge phase detector in the 90nm process there are fifty degrees of variation at a data rate of 12.5Gb/s, thus there is a total variation of 11ps. For the Hogge phase detector in the 180nm process there are thirty-six degrees of variation at a data rate of 5Gb/s, hence there is a total static phase offset variation of 20ps. However the data rate increases faster than the variations decrease, leading to a larger relative variation. The reduction in the magnitude of the variations is primarily due
to the increased gain of the transistors and the faster rise and fall time of the signals, both of which cause the differential pairs in the CML circuits to switch faster which in turn improves the performance of the DFFs.

The weaknesses of the Alexander and Hogge phase detectors are largely based on having back-to-back DFFs clocked on opposite edges of the clock. The variations in the C-Q delay of the first DFF as the input phase error changes can make it difficult for the second DFF to accurately sample the data. While the response of the linear Hogge phase detector is attractive, the Hogge phase detector’s sensitivity to process variations poses a significant problem. The Alexander phase detector is regarded as an easier circuit to integrate [20], however while it is less sensitive than the Hogge phase detector it too shows sensitivity to process variations. The simplicity of the DFF binary phase detector allows it to be far more robust over corners. This phase detector varies approximately 5° as the process scales, from 17° in 180nm to 23° in 90nm. In the 90nm process the DFF binary phase detector has 55% less variation than the Hogge and 40% less variation than the Alexander. While these simulations show the DFF binary phase detector to be more robust, this must be balanced against the weaknesses in the architecture, most significantly that it is not tri-stated and that it requires a separate re-timing circuit. The results of these simulations demonstrate that as CMOS processes scale it is becoming more difficult to design robust CML phase detectors. This is significant as high-speed serial links are becoming prevalent and it is precisely in scaled geometries that one would want to integrate multi-Gb/s CDR circuits and CML is the logic family which enables the highest data rates. In order to accommodate process variations less aggressive data rates could be used or else novel circuit approaches must be taken.

3.5 Summary

In this chapter the concept of robustness has been examined as it applies to CDR circuits. Whenever a circuit is fabricated there are deviations from the ideal behavior due to non-idealities which include process variations, temperature variations, voltage fluctuations and inaccurate
transistor models. The DFF is the building block for all phase detectors and it was analyzed with respect to process variations. The analysis showed a variation in the C-Q delay, which in turn was shown to affect the timing of the different phase detectors. One affect of this is a static phase offset in the phase detector. Static phase offsets were shown to have a considerable negative effect on the BER performance of a CDR circuit and a mathematical model was created to quantify those effects. Finally, an analysis of the robustness of CML based phase detectors with respect the scaling of CMOS processes was presented. Three phase detectors were analyzed over corners in three standard CMOS technologies: 180nm, 130nm and 90nm. Simulation results show that the total variation of static phase offsets increases with scaling for each of the phase detectors. The DFF binary phase detector has a definite advantage over the Alexander and Hogge architectures in terms of robustness, however it has some performance limitations. Both the Alexander and Hogge phase detectors experience significant and increasing variations in the static phase offset as CMOS processes scale.
Calibration Techniques for Robust CDR Circuits

Calibration is often used to improve the performance of analog circuits. While there are not extensive publications relating to the use of calibration in data communication systems, there are some examples of previous research. In [27] calibration is used to compensate for any shifts in the desired centre frequency of a ring oscillator caused by processing variations. The authors used a digital calibration circuit to control the high gain loop of the VCO, allowing the main loop of the PLL to have a low gain to improve noise performance. In recent years there have been several papers illustrating the use of calibration in equalizers [13, 75]. For example, in [13] a least-mean-square (LMS) algorithm is implemented in digital CMOS and is used to configure the equalizer. Anytime a designer uses calibration the goal is automatically configure the system in order to optimize the performance.
4.1 Calibration in CDR Circuits

In this chapter two types of calibration algorithms are presented, namely offline and online calibration. Offline calibration (also called background calibration) operates in a secondary mode, separate from the normal operation of the circuit. One example of this would be a circuit which runs a calibration algorithm at startup. Once the calibration is complete normal operation begins, and the calibration circuit is inactive. Online calibration (also called foreground calibration) is a second type of calibration which operates continually, rather than at discrete intervals. Integrated circuits can deviate from their design specifications not just once due to manufacturing non-idealities, but continuously due to environmental conditions like temperature, and also due to changes that occur over time. Online calibration operates continuously and therefore these occurrences can be compensated for as they happen whereas an offline calibration circuit would need to be periodically enabled in order to compensate for such effects. However, offline calibration algorithms have two significant advantages. First, offline calibration circuitry is turned off during normal operation of the CDR circuit, and hence has no effect on the performance during normal operation; online calibration circuitry will inevitably add some degree of noise to the circuit. The second advantage of offline calibration, which will be seen later in the chapter, is that there are situations where it is able to get a circuit to function even when the uncalibrated circuit is not functional.

4.1.1 Correction of Static Phase Offsets Using Calibration

This section describes how a calibration circuit can be used to correct for static phase offsets in phase detectors. The Hogge phase detector circuit is specifically used in the analysis, however the calibration algorithm is valid for any phase detector. There are many factors which may cause the Hogge phase detector to deviate from the ideal behavior described in Section 2.3.1. Figure 4.1a illustrates the ideal behavior of the Hogge phase detector, along with a plot showing the corresponding phase detector gain. The timing analysis of the phase detectors in Section
3.3.2 gave a framework for this. For example, the delay block illustrated in Figure 2.10 must accurately match the C-Q delay of DFF_1 and the C-Q delays of DFF_1 and DFF_2 must match. Any inequality will cause the widths of the UP and DOWN pulses to become imbalanced, which in turn will cause a static phase offset. This situation is shown in Figure 4.1b, with the corresponding phase detector response illustrating the resulting static phase error, Φ_{spo}. The fact that linear phase detectors operate by balancing UP and DOWN pulse widths makes them more sensitive to process variations and other non-idealities. The analysis in Section 3.4 illustrated the sensitivity to process variations and the equations in Section 3.2 described the performance degradation which occurs due to static phase offsets.
One way to correct for static phase offsets is by changing the value of the UP and DOWN currents in the charge pump. A linear phase detector affected by a static phase offset can be described in the following manner: when the clock and data inputs are perfectly synchronized the DOWN pulse is assumed to have an ideal width of $\frac{T}{2}$ but the UP pulse has a width of $\frac{T}{2} + \Phi_{spo}$. Under these conditions the amount of charge added by the charge pump should be equal to the amount of charge subtracted by the charge pump. The amount of charge the charge pump adds or subtracts is equal to:

$$\Delta q = I \times \Delta t$$

(4.1)

In the given situation the charge added by the UP pulse must be equal to the charge subtracted by the DOWN pulse, therefore:

$$\Delta q_{up} = \Delta q_{down}$$

(4.2)

Substituting Equation 4.1 into Equation 4.2 leads to the following relationship:

$$I_{up} \cdot \left(\frac{T}{2} + \Phi_{spo}\right) = I_{down} \cdot \frac{T}{2}$$

(4.3)

Rearranging Equation 4.3 leads to the relationship between I_{up} and I_{down} shown in Equation 4.4. This equation defines the UP/DOWN charge pump current ratio which will compensate for a static phase offset.

$$\frac{I_{up}}{I_{down}} = \frac{1}{1 + \frac{\Phi_{spo}(UI)}{T}} = \frac{1}{1 + \Phi_{spo}(UI)}$$

(4.4)

Figure 4.2 illustrates the normalized UP and DOWN charge pump currents resulting from Equa-
Figure 4.2: The effect of UP and DOWN charge pump currents on Φ_{spo}

As an example, using this figure it can be seen that for a 5Gb/s CDR circuit with a -20ps static phase offset (0.1UI), the UP current will need to be 25% larger than the DOWN current. For the same circuit with a +20ps static phase offset the UP current will need to be 17% smaller than the DOWN current. This example and the figure both illustrate that when the UP pulse is smaller than the DOWN pulse the magnitude of the change in the charge pump current is larger than when the UP pulse is larger than the DOWN pulse.

While this section has described a method to correct for static phase offsets specifically in a linear phase detector, the algorithm can be used for any phase detector. As was shown in Section 3.4.2, while the Hogge phase detector is most severely impacted by process variations, the Alexander phase detector also suffers significant variations in its static phase offset. In this section it has been assumed that the charge pump is ideal. In reality any mismatches between the charge pump’s UP and DOWN current paths is a problem, as such a mismatch will cause a static phase offset. With this calibration scheme, as long as the static phase offset can be detected any mismatches in the charge pump current will also be compensated for.
4.1.2 Linear Phase Detectors in CDR Circuits

In recent years the majority of papers on the subject of CDR circuits have used binary phase detectors, due in part to their superior robustness. Numerous papers refer to the ‘ease of integration’ of binary phase detector compared to linear phase detectors, and this ‘ease of integration’ relates to the robustness. However, in this chapter the specific goals of the calibration circuits are to correct for static phase offsets in linear phase detectors. These techniques could be applied also to binary phase detectors, however as described in Section 3.4 linear phase detectors are more prone to having static phase offsets. A justifiable question arises, “Why bother with linear phase detectors at all? If binary phase detectors are so much easier to integrate, why not simply use them exclusively?” In fact, there are several significant advantages to using a linear phase detector. First, a CDR circuit which uses a linear phase detector will have lower in-lock jitter. For a binary phase detector the magnitude of phase error correction applied is constant regardless of the magnitude of the input phase error. However, the fact that with a linear phase detector the magnitude of correction is proportional to the phase error means that in the locked state the VCO control voltage will have little activity, which translates to low in-lock jitter [72]. This makes it easier to accurately predict the frequency domain performance which is important for systems aimed at standards which require a specific frequency domain performance. Secondly, a CDR circuit using a linear phase detector has a jitter-transfer bandwidth which is independent of the amplitude of the input jitter [76]. Thirdly, a linear phase detector is intrinsically tri-stated, which is important to meeting jitter generation specifications. Finally, as was seen in Sections 2.5.1 and 2.5.3, a CDR circuit which uses a linear phase detector can be analyzed using well understood classic loop theory. This is especially important in the design of SONET systems, where the frequency response must be well characterized [33]. Section 2.6 described a method to find a closed form analysis of CDR circuits using binary phase detectors, however this solution is not nearly as graceful as the solution for linear phase detector based CDR circuits and different authors get different results depending on their approach and the assumptions they make.
4.2 Offline Calibration Architecture

In this section a digital calibration technique is used to tune a 5Gb/s CDR circuit in order to compensate for non-idealities. As seen in Section 3.4.2, process non-idealities can cause large shifts in the static phase offset of the Hogge phase detector. It was also mathematically shown in Section 3.2 that static phase offsets in a phase detector will reduce the BER of a CDR circuit. As such, the calibration circuit in this section is designed to sense and compensate for static phase offsets in a CDR circuit.

4.2.1 Calibration Algorithm

The calibration circuit proposed in this section is designed to sense static phase offsets in a CDR circuit and tune the charge pump currents such that when the calibration locks, the clock and data are properly aligned. The architecture of the proposed CDR circuit with the calibration circuitry is shown in Figure 4.3. The shaded areas, labelled Mode 1 and Mode 2, represent the two phases of the calibration algorithm. The purpose of Mode 1 is to generate a data signal that is phase aligned to the clock signal. The purpose of Mode 2 is to set the charge pump currents so as to eliminate any static phase offset.

It should be emphasized that this calibration algorithm is non-continuous, meaning that it does not operate on live data. Varying parameters such as temperature and voltage fluctuations could change the circuit and require updating the calibration after a certain period of time. As this calibration algorithm is controlled internally, calibration could be programmed to run at certain time intervals, or when there is no incoming data.

Mode 1

Mode 1 is the first phase of the calibration algorithm. At the end of this phase an internal data signal will have been generated which is phase aligned with the clock signal. Mode 1 begins with the calibration control circuit disconnecting the external data signal via MUX M_2. During Mode
1 the voltage on the low-pass filter is set to a DC voltage, so as to stabilize the VCO. The DC voltage used is the mid-point of the charge-pump output range. A data signal is generated by dividing the clock signal by two, creating a simple alternating data pattern. While an alternating data pattern does not represent a realistic data pattern, this technique could be extended to incorporate a pseudo-random bit sequence (PRBS) generator. This would create a more realistic data pattern at the expense of complexity, area and power. The creation of the data signal from the clock signal guarantees that it will be frequency aligned with the clock, however there will be a finite phase offset between them due to the delay in the divide-by-two circuit. In order to compensate for this phase offset, the clock signal from the VCO is sent through a programmable delay line, which is controlled by the calibration logic (L_1). The delay is varied until the binary phase detector PD_1 determines that the delayed clock signal and created data signal are phase
aligned. It is important to recognize that PD_1 is not directly calibrating the linear phase detector, rather it is used to compensate for the fixed delay in the divide-by-two circuit. As a binary phase detector is much less sensitive to non-idealities than a linear phase detector, PD_1 can accurately determine the point where the clock and generated data signals are synchronized. Finding this point is made easier as the delay in the programmable delay line is changed in discrete steps. This is accomplished by the control logic changing the control current of the delay line via the 5-bit digital to analog converter (DAC), D_1. In order to accurately match the path of the generated data signal with the input data signal, MUX M_1 is used to emulate the delay through MUX M_2. Once the clock and data signals are phase aligned, the first phase of the calibration algorithm is over and the calibration logic activates the second phase of calibration, Mode 2.

Mode 2

In Mode 2 the external data signal remains disconnected, the voltage on the low-pass filter is no longer set to a DC value and the phase aligned clock and data signals which were generated in Mode 1 are sent to the linear Hogge phase detector, PD_2. In the case where PD_2 has no static phase offset and has phase aligned data and clock signals, an equal amount of charge should be added to and subtracted from the low-pass filter. In Mode 2 the charge pump currents are varied so as to ensure that this condition is met. First, the DOWN current in the charge pump is set to a reference value via a control signal from calibration logic (L_2) while the UP current is set to the lowest value. This results in a significant net subtraction in charge from the low-pass filter after every data transition. As such, the voltage on the low-pass filter will be reduced until it is at the most negative end of the charge-pump output voltage range. Next, the calibration logic gradually increases the UP current in the charge pump using the 5-bit DAC, D_2. The comparator observes the voltage on the low-pass filter to determine the point when an equal amount of charge is added and subtracted. The UP current is varied in finite steps and the comparator is biased at the centre of the charge pump output range. Once the comparator switches, the UP current
is set and the calibration algorithm is complete.

Calibrated Operation

Once Mode 2 is complete, the calibration control circuit connects the external data to the CDR circuit via MUX M_2 and normal operation is resumed. The values of the UP and DOWN currents are set as determined in Mode 2 of the calibration algorithm. In normal operation, the calibration circuitry is not active and the CDR circuit operates without any interaction with the calibration circuit.

4.2.2 Implementation

In order to test the proposed architecture a complete CDR circuit using the offline calibration circuit was designed. The architecture of the CDR circuit including the calibration circuitry was previously shown in Figure 4.3. All the high-speed blocks in the CDR circuit are implemented using CML which, as described in Section 2.4, gives them excellent noise immunity and their current steering nature allows for greater performance than any other logic family. While the CDR circuit is implemented using CML, much of the calibration circuitry operates at a much lower frequency and hence it is implemented using static CMOS. The only circuits in the calibration algorithm implemented in CML are the delay line, the divide by two circuit, and the binary phase detector. In this section the various blocks which make up the proposed CDR circuit are detailed, divided into those which make up the main CDR circuit and those which are part of the calibration circuit.

Primary CDR Circuit

1. **Phase Detector**

 The phase detector used in the main CDR circuit is a Hogge phase detector, the architecture of which was previously described in Section 2.3.1. The most critical gates in the Hogge
Figure 4.4: Simulated output waveforms for standard and symmetric XOR gate

phase detector are the XOR gates. These gates must accurately generate UP and DOWN pulses in order for the CDR circuit to operate correctly. To ensure the best performance a symmetric XOR circuit should be used [16]. In a traditional CML XOR gate the two inputs are located at different bias points. This leads to an unequal switching threshold for the zero and one states, as can be seen in Figure 4.4a. Placing two traditional CML XOR gates in parallel with their inputs switched and the outputs shorted results in an XOR gate which is symmetric with respect to the switching threshold and which also has a higher bandwidth. The schematic for the symmetric XOR gate is shown in Figure 4.5. Figure 4.5 also shows the logical configuration of the circuit with the XOR gates representing traditional CML XOR gates. The resulting output waveform of the symmetric XOR gate is shown in Figure 4.4b. The penalty for the symmetric XOR gate is larger area and higher power, however as the XOR gate is the most critical gate in the phase detector this is an acceptable tradeoff.

2. Charge Pump

The charge pump implements the correction information supplied to it by the phase detector. The Hogge phase detector provides differential UP and DOWN pulses which the charge
Figure 4.5: Schematic of the symmetric XOR gate

Figure 4.6: Schematic of modified charge pump

pump uses to either add charge to or subtract charge from the loop filter. The schematic of the charge pump is shown in Figure 4.6. In order to implement the calibration algorithm the charge pump circuit requires separate biases for the current mirrors which control the
UP and DOWN currents. These currents are controlled by the calibration circuit. The DOWN bias current is set to a reference level, while the control circuit changes the UP bias current using a DAC.

3. VCO
The 5GHz VCO is implemented as a four stage CML ring oscillator. A ring oscillator was chosen as this architecture is most easily integrated into a complex CMOS IC. While the phase noise of a ring oscillator is poor in comparison to resonant tank oscillators, the purpose of this work is to compare the performance of the calibrated CDR circuit with the performance of the uncalibrated CDR circuit, hence using the ring oscillator is acceptable. The delay cells are implemented as self-biased Maneatis style circuits [32]. The frequency of the oscillator is 5GHz, which is close to the operational limit of ring oscillators in this 180nm process [37], hence great care was taken in the design and layout to ensure the best performance possible. The VCO was designed to have a coarse tuning range of 1GHz centered around 5GHz and a fine tuning range of approximately 200MHz.

Calibration Circuits

1. Delay Line
The delay line is implemented using a series of CML buffers. The calibration logic sets the delay by changing the bias current of the buffers. A replica bias sets the PMOS load bias voltage to ensure that the voltage swing remains the same [74]. The current is set using a five bit current DAC, which gives thirty-two finite delay settings. The delay line was designed so that the delayed clock and generated data signal would be synchronized at the centre of the delay-lines range. Figure 4.7 shows the simulated delay through the delay line for a given current.

2. DAC
A digital to analog converter is used at two different points during the calibration algorithm.
In Mode 1 a DAC is used to set the delay in the programmable delay line and in Mode 2 a DAC is used to set the UP bias current in the charge pump. The DACs are identical five bit binary-weighted DACs whose architecture is illustrated in Figure 4.8 [52]. The switches are controlled by the calibration logic to change the output current. A separate bias voltage can be used to add an offset (I_{add}) to the current set by the DAC. The output current
of the DAC is mirrored and becomes the bias current for either the programmable delay line or the charge pump DOWN current. The simulated performance of the DAC circuits is shown in Figure 4.9. This figure shows that the output of the DAC does not precisely match the ideal response, however for this system the accuracy of this circuit is sufficient.

3. Phase Detector

Mode 1 of the calibration algorithm utilizes a binary phase detector in order to determine when the clock and generated data signals are aligned. In this situation the phase error being detected is a fixed phase error, which is caused by the delay through the divide-by-two circuit. This is different from the normal CDR operation, where the data signal has continually varying phase with respect to the VCO. As the phase error is constant, a binary phase detector and a programmable delay line are adequate to synchronize the clock and the generated data signals. A DFF configured with the data and clock inputs interchanged functions as a simple binary phase detector. However, as the generated data
signal has an alternating pattern there is a guaranteed transition every period, therefore a latch configured such that the data signal latches the clock signal is sufficient, further simplifying the design.

4. Comparator
A comparator is used in Mode 2 to determine the correct UP current. The comparator is implemented as a simple open loop opamp. The resolution of a comparator with this architecture is limited to the input offset voltage of the opamp [52]. In this implementation the changes in the UP current are finite and are integrated over a significant period of time. The result is a change in the voltage on the loop filter which is large enough to negate the impact of any offset voltage errors. A more complex implementation of this calibration algorithm would require a more complex comparator, however for this implementation the chosen comparator can accurately determine the point where the voltage on the loop filter passes the centre of the charge pump output range. The centre of the charge pump output range is determined via a bias circuit which finds the maximum and minimum charge pump output and divides them.

5. Logic
The calibration algorithm is controlled by three state machines. The first state machine activates the various phases of calibration, the second state machine controls the delay line and the final state machine sets the UP bias current. These state machines are implemented using static CMOS. The calibration algorithm operates at a much lower frequency than the data rate, hence they these circuits do not have stringent performance requirements and using static CMOS minimizes power consumption and area.

4.2.3 Measured Results
The calibrated CDR circuit was implemented in a 180nm standard CMOS process with six metal layers. The total die area is 1mm2 with the CDR circuit and calibration circuit taking up ap-
proximately $0.36\,mm^2$. The total area of the calibration circuitry is approximately $0.12\,mm^2$. A micrograph of the die is shown in Figure 4.10. To test the CDR circuit the die was wirebonded directly to a PCB substrate. The complete system including input and output buffers consumes 230mW from a 1.8V supply at room temperature. The input and output buffers consume approximately 100mW. Once the calibration operation is complete, the CMOS based calibration circuitry is not active, and hence consumes no power.
Before the CDR circuit was tested, the VCO was measured. The coarse tuning range of the VCO is 4.4GHz - 5.3GHz and the fine tuning provides a 200MHz range. The coarse tuning of
Table 4.1: Measured calibrated and uncalibrated BER for various data patterns

<table>
<thead>
<tr>
<th>Data pattern</th>
<th>Calibrated</th>
<th>Uncalibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>101010...</td>
<td>$< 10^{-13}$</td>
<td>1.25×10^{-5}</td>
</tr>
<tr>
<td>PRBS 2^{7}-1</td>
<td>$< 10^{-13}$</td>
<td>4.6×10^{-2}</td>
</tr>
<tr>
<td>PRBS 2^{9}-1</td>
<td>1.50×10^{-10}</td>
<td>N/A</td>
</tr>
<tr>
<td>PRBS 2^{11}-1</td>
<td>2.50×10^{-10}</td>
<td>N/A</td>
</tr>
<tr>
<td>PRBS 2^{15}-1</td>
<td>1.65×10^{-8}</td>
<td>N/A</td>
</tr>
<tr>
<td>PRBS 2^{23}-1</td>
<td>2.70×10^{-8}</td>
<td>N/A</td>
</tr>
<tr>
<td>PRBS 2^{31}-1</td>
<td>4.0×10^{-7}</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The VCO is controlled off-chip. At 5GHz the measured phase noise of the VCO is -75.8dBc/Hz at a 1MHz offset. The spectrum of the locked oscillator is shown in Figure 4.11. The VCO consumes 12mA from a 1.8V supply, excluding buffers. The CDR circuit was tested at 5Gb/s using a BERT. The circuit is able to recover data in both calibrated and uncalibrated modes, however uncalibrated functionality is limited to simple data patterns and the BER is poor. After calibration, the performance of the CDR circuit improves significantly. Table 1 shows the performance figures for data patterns of increasing complexity, from alternating data (10101) to a PRBS of $2^{31} - 1$. With a PRBS of $2^{7} - 1$ at 5Gb/s, the uncalibrated CDR circuit had a BER of 4.6×10^{-2}. Once the CDR circuit was calibrated the BER improved to less than 10^{-13}. The uncalibrated CDR circuit was not able to lock to any data pattern more complex than $2^{7} - 1$, however once calibrated it was able to lock to a PRBS of up to $2^{31} - 1$. With a PRBS of of $2^{31} - 1$ the CDR circuit had a BER of 4.0×10^{-7}. The measured RMS jitter of the recovered clock with a PRBS of $2^{31} - 1$ is 6.04ps. The jitter histogram of the recovered clock signal is shown in Figure 4.12. The corresponding plot of the output clock and data signals is shown in Figure 4.13.

This CDR circuit was designed using transistor models characterized for digital designs. Later access to RF transistor models indicated that the digital models overestimated the performance
at multi-GHz frequencies. The resulting significant decrease in bandwidth helps explain the poor performance of the uncalibrated CDR circuit, however it also highlights the benefits of this calibration algorithm. In any design there can be non-idealities which result in performance degradation, however this work has demonstrated a calibration circuit which can correct for serious errors.
4.3 Online Analog Calibration Architecture

The previous section described an offline calibration architecture. In this section an online calibration architecture is introduced which is also designed to correct for static phase offsets by controlling the charge pump currents. As before a linear phase detector is used to demonstrate the algorithm, however the calibration circuit itself can be used with any phase detector circuit. An online calibration algorithm has advantages over an offline calibration algorithm in that it can dynamically compensate for effects such as temperature variations and voltage fluctuations, keeping the CDR circuit continually optimized.

4.3.1 Calibration Architecture

The online calibration architecture proposed in this section rests on two premises. The first premise of this architecture is that a simple DFF binary phase detector is much more robust than a linear phase detector. The analysis presented in Section 3.4 demonstrates that this is a justifiable premise which is important in this circuit as a DFF binary phase detector is used to determine when the incoming clock and data signal are synchronized. The second premise of this architecture is that the uncalibrated CDR circuit is able to lock to the incoming data signal. It was shown that the offline calibration architecture was able to recover functionality in cases where the uncalibrated CDR circuit was non-functional.

The architecture of the proposed CDR circuit is shown in Figure 4.14. The proposed online calibration circuit begins to function once the CDR circuit has locked to the incoming data signal. It is assumed that the linear phase detector causes the CDR circuit to lock with some undefined static phase offset. As such, at this point the CDR circuit is locked and operating properly, however the clock and data signals are not optimally aligned. The DFF binary phase detector sees this non-ideal alignment and applies continual correction to correct this. While the calibration circuit is active, the magnitude of correction supplied by the calibration charge pump is low and the operation is slow in comparison with the phase correction loop. The output of
the calibration charge pump is used to change the UP bias current in the main charge pump. Once the DFF binary phase detector sees the clock and data signals as synchronized, they are considered synchronized, and at this point the secondary loop will slowly move back and forth across the zero phase error point of the DFF binary phase detector. It is important that the main loop and the calibration loop interact as little as possible. If the loops end up fighting with one another it could create an unstable system. By making the calibration loop very slow in comparison to the phase detection loop it appears ‘DC’ to the phase tracking loop.

This operation of the calibration circuit can be seen in Figure 4.15. In these simulations the phase detector and calibration circuit use transistor models, however the VCO is implemented using a Verilog-A model. This is helpful as a 20µs simulation is extremely long in relation to the 5Gb/s data rate, and using Verilog-A models helps to speed up the simulations. The upper frame in Figure 4.15 shows the voltage on the main loop filter and the lower frame shows the
Figure 4.15: Simulated waveforms showing the calibration loop locking calibration filter voltage and the associated reference voltage. The CDR circuit locks within a few hundred nanoseconds, however it takes the calibration loop approximately 4µs to lock. From this point on the calibration control voltage slowly moves back and forth across its stable value. Figure 4.15 also shows that the magnitude of the noise on the VCO filter voltage decreases once the calibration circuit has stabilized. This indicates a tighter lock, which corresponds to less jitter. Figure 4.16 shows a zoomed region of the corresponding clock signal eye diagrams for both the uncalibrated and calibrated condition. The uncalibrated eye has an 11.8ps static phase offset and a peak-to-peak jitter of 2.82ps. The calibration circuit has essentially eliminated the static phase, reducing it to less than 1ps. The peak-to-peak jitter of the calibrated CDR circuit was also reduced, dropping to 1.2ps. These peak-to-peak jitter values are very small, however this is a simulation environment and also the VCO is modelled using Verilog-A hence the noise is only due to the phase detector and charge pump circuits. These factors mean that the output jitter seen in the simulated eye diagrams is much smaller that what would be seen in reality.
4.3.2 Implementation

In order to test the proposed architecture a complete CDR circuit using the online calibration circuit was designed. The block diagram of the CDR circuit was previously shown in Figure 4.14. This architecture is far less complicated as compared with the offline calibration architecture which has benefits in terms of area and power. In this section the various circuits which make up this design are detailed.

Phase Detectors

The main phase detector is a linear Hogge phase detector. This is the identical circuit which was used in the previous design which used offline calibration and as such it will not be further discussed here. The phase detector used in the calibration circuit is a CML DFF, however it is implemented as a dual-edge triggered DFF. It is important that the DFF is a dual-edge triggered
DFF as if a regular DFF is used correction information will only be generated on one edge of data transitions. Using a dual edge triggered DFF doubles the number of times the phase error between clock and data signal is determined. The schematic of a dual edge triggered CML DFF is shown in Figure 4.17. Latch A observes the clock while data is high and holds the sample on the falling edge of data. Latch B observes the clock while data is low and holds the sample on the rising edge of data. As such, while the data signal is high the multiplexor outputs the sample from latch B and while the data is low the multiplexor outputs the sample from latch A. The cost of a dual edge triggered DFF as compared to the standard DFF is 50% greater area and power.

Charge Pump

Figure 4.17 illustrates that the output of the dual edge triggered CML DFF is a single UP/DOWN signal. This means that the charge pump used in the previous design cannot be used as it required differential UP and DOWN signals. As such a simple CML charge pump is used, the schematic of which is shown in Figure 4.18. The charge pump in the main phase detection loop is identical to that implemented in the CDR which had offline calibration. This circuit (shown in Figure 4.6) is a CML charge pump with differential inputs and only differs from the standard circuit (shown
in Figure 2.16) in that it has separate UP and DOWN bias currents.

Loop Filter and VCO

A large off-chip capacitor is used as the loop filter for the calibration. A large capacitor ensures that the calibration loop is very slow, and as such will not interfere with normal operation of the CDR circuit. As can be seen in Figure 4.14 the voltage on the capacitor is used to set the UP current in the phase tracking loop’s charge pump. A low-gain differential pair compares the calibration voltage with respect to a reference signal and steers the correct amount of UP current into the main charge pump.

The voltage controlled oscillator in this design was implemented as a three stage ring oscillator. As with the offline calibration circuit, the delay cells are implemented as self-biased circuits [74]. The VCO was designed to have a coarse tuning range from 5 - 6GHz and a fine tuning range of approximately 200MHz. This VCO was a different design than what was used in the chip with offline calibration, however again the 5GHz data rate is aggressive for this process and care was taken in the design and layout to ensure that the circuit would be able to operate at the desired frequency.
4.3.3 Measured Results

The CDR circuit with online calibration was implemented in a 180nm standard CMOS process with six metal layers. The total die area is 0.8mm \times 0.8mm, with the CDR circuit and calibration circuit taking up approximately 0.4mm2. The total area of the calibration circuitry is approximately 0.01mm2, which shows that this calibration architecture has a negligibly small
area penalty. A micrograph of the die is shown in Figure 4.19. To test the CDR circuit the die was wirebonded directly to a PCB substrate. The complete system including input and output buffers consumed 305mW from a 1.8V supply at room temperature. Without the input and output buffers the CDR circuit consumes approximately 200mW. The calibration circuit consumes a constant amount of power, which is approximately 15mW.

Before the CDR circuit was tested, the VCO was measured. The coarse tuning range of the VCO was measured to be 4.2GHz - 6.1GHz and the fine tuning provides a 200MHz range. As with the offline calibration circuit the coarse tuning of the VCO is controlled off-chip. At 5GHz the measured phase noise of the oscillator is -71.2dBc/Hz at a 1MHz offset. The VCO consumes 20mA from a 1.8V supply, excluding buffers. A BERT was used to test the CDR circuit at 5Gb/s. The CDR circuit was only able to lock to a PRBS of $2^7 - 1$. For any data pattern more complex than this the CDR circuit is unable to lock. This illustrates a weakness in online calibration in that the CDR circuit must lock initially in order for the calibration circuit to be useful. With a
PRBS of $2^7 - 1$ at 5Gb/s the BER in both uncalibrated and calibrated modes was identical, at $< 10^{-13}$. However, the calibration circuit was able to improve the measured jitter for an input PRBS of $2^7 - 1$. The measured jitter on the uncalibrated clock for an input PRBS of $2^7 - 1$ at 5Gb/s was 12.9ps RMS and 78ps peak-to-peak, whereas the calibration circuit reduced the measured jitter to 4.92ps RMS and 28ps peak-to-peak.

The inability of the CDR circuit to lock to any data pattern more complex than $2^7 - 1$ was disappointing and highlights a weakness of online calibration. It is possible that had the CDR circuit been able to lock to more complex data patterns the calibration circuit could have improved the BER, as was the case for the offline calibration design. However, for a PRBS of $2^7 - 1$ at 5Gb/s this calibration circuit was able to reduce the jitter by over 60%, which demonstrates its effectiveness.

4.4 Summary

This chapter described techniques to improve the robustness of CDR circuit using calibration. Section 3.4 showed that process variations have a significant effect on the static phase offset of CDR circuit, and in this chapter a method was presented which corrects for static phase offsets by modulating the UP and DOWN currents in the charge pump. Two calibration circuits were proposed, one offline and the other online. These were implemented in CDR circuits which were fabricated in a 180nm standard CMOS process. For the CDR circuit with offline calibration, with a PRBS of $2^7 - 1$ at 5Gb/s the calibration circuit improved the measured BER of the CDR circuit from 4.6×10^{-2} to less than 10^{-13}. For the CDR circuit with online calibration for PRBS of $2^7 - 1$ at 5Gb/s the calibration circuit improved the measured RMS jitter from 12.9ps to 4.92ps.

While online and offline calibration have been treated separately in this chapter, it would be possible to design a circuit which implements both an offline calibration circuit and an online calibration circuit. This would take advantage of the benefits of both schemes, at the expense of design complexity, area and power.
Chapter 5

Phase Detector Design for Robust CDR Circuits

In this chapter new phase detector circuits are introduced with the intent to optimize both performance and robustness. As described in Section 3.4, the DFF binary phase detector is a robust circuit, however if suffers from limitations as a phase detector. The Alexander phase detector is a very popular phase detector circuit, however it was shown in Section 3.4 that it is more vulnerable to process non-idealities compared to the DFF phase detector. In this chapter a phase detector circuit based around the DFF phase detector creates a characteristic which is identical to the Alexander phase detector, however with the robustness of the DFF phase detector. Also, a second phase detector circuit based around the DFF phase detector is introduced which changes the charge pump current in order to improve the performance over the regular DFF phase detector. Finally, a simple modification to the linear Hogge phase detector is described which significantly improves the circuit’s robustness.
5.1 Tri-State DFF Phase Detector

The Alexander phase detector is the most common phase detector architecture for CDR circuits. As seen in Section 3.4 the robustness performance of the Alexander phase detector is superior to the Hogge phase detector, however it is still sensitive to process variations, and this sensitivity increases as CMOS processes scales. The DFF phase detector was shown to be the most robust, however one weakness of this circuit is that it is not tri-stated. In this section a new phase detector is proposed based on the DFF phase detector which has a phase error response similar to that of the Alexander phase detector. An analysis of the Alexander phase detector and the proposed phase detector is performed in order to compare their respective robustness.

5.1.1 Architecture of Tri-State DFF Phase Detector

The architecture of the proposed phase detector is based around the DFF phase detector circuit. Additional circuits are added in order to gain an overall response equal to that of the Alexander phase detector. The architecture of the proposed circuit is given in Figure 5.1. The premise of a tri-state phase detector is that correction information is only sent to the charge pump after...
Figure 5.2: CDR circuit waveforms given a tri-state binary phase detector

there is a data transition. The phase detection in this circuit is performed by \(DFF_1 \), which acts as a binary phase detector. The output signal of \(DFF_1 \) is either high or low, which corresponds to whether the clock is leading or lagging the data. As the output of \(DFF_1 \) is always either high or low, \(DFF_1 \) on its own is not a tri-stated phase detector. A separate circuit composed of two back to back DFFs, \((DFF_2 \text{ and } DFF_3) \) and an XOR gate performs dual function of data retiming and creation of a reference pulse. In the proposed circuit the generated reference pulse is used to enable the operation of the charge pump, making this a tri-stated phase detector. The reference pulse is created by performing the logical XOR across the output of two back-to-back DFFs. These DFF clock the data on the same edge of the clock and thus the reference pulse will have a constant width of one period of the clock. The proposed phase detector essentially acts as two distinct circuits, a phase detection circuit and a retiming circuit. The operation of the binary phase detector is described using waveforms in Figure 5.2. As can be seen, the voltage on the low-pass filter only changes after a data transition.

The key benefit of the modified phase detector is that the phase detection circuit has only
one stage, thereby avoiding any interaction between blocks and eliminating the need for precise timing. The simplicity of this phase detector brings benefits in robustness. The proposed phase detector also has power and area benefits as compared to the Alexander phase detector, as it requires one less DFF and one less XOR.

5.1.2 Robustness of the Tri-State DFF Phase Detector

In order to compare the robustness of the proposed phase detector a similar analysis to Section 3.4 is done. An Alexander phase detector and a tri-state DFF phase detector were designed in a 180nm standard CMOS process targeting a data rate of 5Gb/s. Input clock and data signals were generated with specific phase offsets and the phase detector response was analyzed. The test clock and data signals used representative rise and fall times in order to accurately mimic realistic input signals. In order to test the robustness, corner simulations were performed using both standard process corners (SS, TT and FF) and resistor variations (±20%) at each corner. In order to measure the widths of the UP and DOWN pulses Verilog-A models were generated which capture and log the data as the input phase offset is varied. Simulations were performed in order to examine the phase detector response over the complete input phase offset range. The results of the robustness analysis on the Alexander phase detector are given in Figure 5.3 and the results of the robustness analysis on the tri-state DFF phase detector are given in Figure 5.4. The total variation in the zero-crossing point of the phase detector gain for the tri-state binary phase detector is approximately 7.1ps with is approximately 50% of the simulated variations of the Alexander phase detector, which were 13.9ps.

Another characteristic of the proposed phase detector which is examined relates to the reference pulse. Up until this point the reference pulse was assumed to have a constant width, regardless of the input phase error. While this is mostly true, large phase errors will put the first re-timing flip-flop into the region of meta-stability and the pulse width will no longer be constant. However, this situation also affects the Alexander phase detector. In Figure 5.5 the
Figure 5.3: Detailed response of the Alexander phase detector over corners

Figure 5.4: Detailed response of the tri-state DFF phase detector over corners

response of the Alexander phase detector is compared to the overall response of the DFF tri-state phase detector, with the pulse width taken into account. The width of the reference pulse is combined with the output of the phase detector to create the overall response. As can be seen, the responses of the two phase detector are very similar. The error is plotted at the bottom of Figure 5.5 describing the deviation from the ideal binary phase detector response. The average error for
the DFF tri-state phase detector is 5.06%, which is slightly less than the average error for the Alexander phase detector, which is 6.4%. This shows that the tri-state DFF phase detector can match the response of the Alexander phase detector, however with reduced sensitivity to process variations, making it more easily integrated into a monolithic IC.

5.1.3 Implementation

In order to test the proposed phase detector circuit a complete CDR circuit was designed in a 180nm standard CMOS process. Before taping out the chip, the functionality of the CDR circuit was verified using back-annotated simulations. As this circuit operates at 5GHz, circuit layout becomes very important. Parasitic resistors and capacitors can reduce the bandwidth of the system, and improper layout can provide paths for noise to infiltrate sensitive circuits. Appropriate layout techniques were employed so as to reduce the high-frequency effects. This section details the individual blocks which make up the implemented CDR circuit.
Reference Pulse

All blocks in the proposed CDR circuits were implemented using current mode logic. In current mode logic, multiple levels of current steering are required for the implementation of the XOR gate. This can be problematic, especially if the output of the XOR gate is a short pulse, as bandwidth limitations come into effect. In virtually all phase detectors the XOR gate plays a critical role. For example, in Alexander phase detectors and Hogge phase detectors, XOR gates are used to generate UP and DOWN pulses. The Hogge phase detector has a higher dependance on the XOR gate due to the need to properly balance the UP and DOWN pulses, however XOR gates are also important in the Alexander phase detector. In the proposed phase detector, the XOR gate does not play such a critical role. The purpose of the XOR gate is to produce the constant-width reference pulse. If the bandwidth of the XOR gate is less than expected or the gate is affected by process variations, the width of the reference pulse may vary. However, the CDR operation will only be marginally affected since the amount of correction applied by the charge pump will be equal, regardless if it is a charge up or charge down correction. Furthermore, the magnitude of the charge pump current may be changed in order to compensate for the altered width of the reference pulse.

Charge Pump

As the charge pump is activated only if there is a data transition, the proposed phase detector has a tri-state. In order to make use of the reference signal the charge pump circuit must be modified. The schematic of the modified charge pump is given in Figure 5.6. As can be seen, the reference pulse steers the charge pump current in such a way to only enable the bias current in either the ‘add charge’ path or the ‘subtract charge’ path. The reference pulse will operate at a higher frequency than the UP/DN signal and hence it is kept close to the output. Correction only occurs when the reference pulse goes high, as that is only time when the charge pump current is connected to the loop filter.
LC-tank VCO

The VCO was implemented as an LC-tank oscillator. The LC-tank oscillator was described in Section 2.3.4 and the exact topology used is the same as that shown in Figure 2.22. In this topology cross-coupled NMOS transistors provide the negative g_m and varactors provide the variable capacitance needed to tune the frequency. In this implementation accumulation-mode MOS (AMOS) varactors were used, as they provide a monotonic tuning characteristic, a reasonably large tuning range and a high quality factor [43]. The structure of an AMOS varactor, shown in Figure 5.7 is essentially an NMOS which is created inside an N-well [77]. The source and drain are shorted together and connected to control voltage which varies the capacitance, and the gate is connected to the node of the VCO where the oscillations are occurring. The control voltage can vary the size of the depletion region under the gate, which in turn varies the capacitance.
5.1.4 Measured Results

The CDR circuit was implemented in a 180nm six metal layer standard CMOS process. Figure 5.8 shows the micrograph of the fabricated CDR circuit. The total area of the CDR circuit is 0.8mm × 0.4mm. The binary phase detector and charge pump required an area of only 450µm × 300µm. The CDR circuit consumes 150mA from a 1.8V supply, including the output and output buffers. Without the buffers the circuit consumes less than 100mA. Based on simulations, a CDR circuit which implemented an Alexander phase detector would have consumed approximately 40% more power than this design.

A layout error in the data output buffer resulted in an inability to measure the output data stream, making BER and jitter tolerance measurements impossible. However, measurements on the clock signal were still able to be performed. The coarse tuning range of the VCO was measured to be from 4.85GHz to 6.3GHz, approximately 50% greater than what was designed and the fine tuning range was almost 400MHz. The phase noise of the unlocked VCO was measured to be -96dBc/Hz at a 1MHz offset. The CDR circuit was able to successfully lock to a PRBS of $2^{31} - 1$ at data rates from 5-6.25Gb/s. Figure 5.9 shows the frequency spectrum of the recovered
clock signal given a PRBS of $2^{31} - 1$ at 6.25Gb/s. The phase noise of the recovered clock signal was measured to be -85dBc/Hz at a 5kHz offset. The measured jitter on the recovered clock for an input PRBS of 6.25Gb/s was 1.7ps RMS and 11ps peak-to-peak, as shown in Figure 5.10a. If the data pattern is changed to an alternating data pattern (101010...) the measured RMS and peak-peak jitter reduce to 230fs and 1.7ps respectively, as shown in Figure 5.10b. The data rate of 6.25Gb/s is 25% higher that what the circuit was designed for. The simplicity of the proposed phase detector has been shown to have benefits in terms of robustness, however the same simplicity also provides a high degree of scalability.
Figure 5.9: Frequency spectrum of the recovered clock signal

Figure 5.10: Jitter histogram of the recovered clock for two data patterns

a) PRBS $2^{31}-1$

b) alternating data pattern (101010...)
5.2 Pulsed DFF Binary Phase Detector

In this section the basic operation of a binary phase detector is analyzed and a new circuit is proposed. As with the tri-stated DFF phase detector, the DFF is used as a phase detector. The phase detector analysis in Section 3.4 illustrated the robustness of this circuit and in this section a modification is proposed which improves the performance. In order to characterize the performance benefits, the proposed circuit is compared with a standard DFF phase detector using various FOM such as jitter tolerance, jitter generation and jitter tolerance. Finally, a silicon implementation of a CDR circuit using the proposed phase detector is described and measured results are given.

5.2.1 Monolithic Second Order Loop Issues

As shown in Section 2.6, a binary phase detector can be effectively used in a CDR circuit. The use of a first order RC filter is an attractive architecture as it allows the designer to have control over both the proportional and integral branches of the loop. However, this architecture requires the use of a first order RC filter and this is difficult in an integrated environment. The parasitic capacitance on the chip, the pad and and the PCB add a secondary capacitance in parallel with the RC filter. This turns the first order filter into a second order filter, which in turn turns the loop in a third order loop. This situation is illustrated in Figure 5.11.

In [62] Wang et al. analyze the negative repercussions of a second order loop turning into a third order loop. Even when the parasitic capacitor is several orders of magnitude lower than the
loop capacitor, the frequency response of the CDR circuit deteriorates. As such, it is desirable to find a way to control the proportional and integral branches of the response without increasing the order of the loop. Wang et al. proposed one such architecture in [62] where the output of the bang-bang phase detector directly modulates a varactor in a LC-tank oscillator. A ring oscillator could also be used, whereby the output of the phase detector directly modulated a bias current of the VCO. Separating the paths will not eliminate the parasitic capacitances, however the integral path filter will consist of simply one loop capacitor and any parasitic capacitances will be absorbed into it. As the parasitic capacitances will be orders of magnitude less than the loop capacitor, the overall effect will be negligible. Figure 5.12 illustrates the basic architecture whereby both proportional and integral paths exist separately.

5.2.2 Proportional Path Optimization

The previous section described some of the difficulties involved in implementing a binary phase detector based CDR circuit which has only a second order loop. The importance of separate proportional and integral paths was described and a simple method of accomplishing this was described. In this section the goal is to expand upon this idea in order to improve the performance of the CDR circuit.

One problem with the use of binary phase detectors is the excessive jitter they generate. The non-linear behavior means that the frequency of the VCO never stabilizes. The output frequency
of the VCO is constantly switching in discrete steps. This discrete frequency switching results in phase noise, which correlates to higher jitter. In this section a circuit is introduced which softens the hard non-linearity of the binary response. The concept is that instead of instantly switching, the shape of the proportional switching is controlled via a current pulse. When the output of the binary phase detector transitions, the proposed phase detector injects a current pulse. Figure 5.13 shows the architecture of a CDR circuit where the charge pump current is not fixed, but rather a function of the phase detector output. This architecture implements a second order filter, however the loop response remains second order.

In order to describe the operation of the circuit the current pulse is assumed to be an ideal square pulse. In order to obtain a response similar to the simple second order loop which has a first order RC loop filter, the second order loop filter in the proposed circuit must be properly designed. If the proposed CDR circuit used a capacitor for the loop filter, the changes in the output voltage would simply be a function of the $q = C \times V$ relationship. This results in Equation 5.1 which describes the resulting frequency step per period, Δf_{bb}.

$$\Delta f_{bb} = \frac{I_{cp}}{C} \cdot K_{VCO}$$ (5.1)
Given a simple capacitor the step in the filter voltage due to a current pulse is simply proportional to the difference in the current I_a vs I_b. The resulting waveforms for this type of architecture are shown in Figure 5.14. As can be seen, the change in the capacitor voltage is quite small and therefore the proportional response of the loop is also small.

The use of a second order filter along with the current pulse provides the desired separate integral and proportional paths, however the filter design is more complicated. Figure 5.15 shows the schematic of a second order filter and the ideal related currents in the presence of a current pulse. As can be seen there is both an integral and a proportional response, however the proportional response is not discontinuous, rather it has a slope. The waveforms in Figure
5.15 illustrate the ideal waveforms, however in order for the response to approximate this, the filter must be properly designed. The width of the current pulse should be equal to t_1, given in Equation 5.2. This will result in the proportional and integral frequency steps as given in Equation 5.3.

$$t_1 = -RC_2 \cdot \ln \left(1 - \frac{2}{I_2 t_1 + 1} \right)$$ \hspace{1cm} (5.2)$$

$$\Delta f_{bb, \text{proportional}} = \frac{I_1}{C_2} \cdot K_{VCO} \quad \Delta f_{bb, \text{integral}} = \frac{I_2}{C_1 + C_2} \cdot K_{VCO}$$ \hspace{1cm} (5.3)$$

If this time constant t_1 is less than the duration of the pulse there will be a droop on the filter voltage. If t_1 is exactly equal to t_{pulse} there will be no droop and the voltage increase after the pulse will be almost linear. If t_1 is greater than t_{pulse} there will not be a droop, however the step in the output voltage (and hence the Δf_{bb}) will be larger than desired, and the filter response will be more exponential than linear. These three situations are illustrated in Figure 5.16. While these equations seem to present some rather strict constraints on the filter, ultimately as long as the filter design is relatively close to the ideal it will provide the desired response.

A CDR circuit implementing the proposed architecture was simulated in Matlab and was shown to have improved performance as compared to hard switching. It was also found that the proportional response of the phase detector can be further optimized by changing the shape of the current pulse. So far the current pulse has been an ideal square wave, however there is no reason why it must be so. To obtain the best performance extensive Matlab simulations were run in order to determine the optimal shape of the current pulse. The results of the simulation are shown in Figure 5.17. In Figure 5.17 the x-axis represents the number of clock periods the pulse is active for and the y-axis represents the ratio of the pulse current to the normal value of the current. The figure shows that the optimal shape of the current pulse as determined by Matlab simulations was a large initial current which decayed over several period until it reached the final value. These results illustrate that the shape of the current pulse does have an effect on
Phase Detector Design for Robust CDR Circuits

Figure 5.16: Relationship between t_1 and t_{pulse} given a 2nd order filter

the performance of the CDR circuit. Optimizing the shape of the pulse does not affect the filter design, even though the equations were derived assuming a square current pulse. If t_1 is used as the pulse width, I_1 as the maximum current, and I_2 as the minimum current Equations 5.2 and 5.3 still hold. This architecture is referred to as the pulsed DFF phase detector.

5.2.3 Simulation Results

In order to illustrate the benefits of the proposed phase detector simulations were performed in order to compare it against other standard architectures. Verilog-A models of all blocks were created and the proposed phase detector was compared against a standard DFF with an RC filter providing the proportional and integral paths. In these simulations the filter was ideal and the effects of the parasitic capacitance were ignored.

Jitter transfer is a common FOM used to examine the tracking performance of CDR circuits.
Phase Detector Design for Robust CDR Circuits

Figure 5.17: Matlab plot showing the simulated ideal current pulse characteristic

Figure 5.18: Jitter transfer for DFF and pulsed DFF phase detectors

Figure 5.18 shows the jitter transfer for both a regular DFF phase detector and the proposed pulse DFF phase detector. For these simulation the magnitude of the input jitter was 25ps and the data rate was 10Gb/s. As can be seen, the pulsed DFF phase detector tracks the low frequency jitter better than the standard DFF based phase detector, without affecting the jitter transfer.
Figure 5.19: Jitter transfer for various values of J_{in} for both phase detectors

bandwidth. The derivations in Section 2.6 showed that the jitter transfer bandwidth for binary phase detectors is dependant on the magnitude of the input jitter. Figure 5.19 illustrates the effect on the jitter transfer responses of the two phase detectors as the input jitter magnitude is varied from 5ps to 35ps. As can be seen, for all input jitter magnitudes the novel phase detector circuit keeps a tighter lock, resulting in a lower jitter transfer gain at low frequencies, however, the jitter transfer bandwidths of the two circuits are approximately the same.

Next, the jitter tolerance of the pulsed phase detector was examined. Cadence simulations were performed on both the standard DFF and the pulsed DFF phase detector and the resulting jitter tolerance of both circuits is shown in Figure 5.20. For input jitter frequencies which are low, the jitter tolerance response depends more on the integral response of the phase detector and hence the pulsed DFF phase detector is of little benefit as the current pulse only affects the proportional response. As such, the jitter tolerance of the pulsed DFF phase detector matches that of the standard DFF phase detector at lower input jitter frequencies. However, as the input jitter frequency increases, the response of the proportional path dominates and the optimization of the pulsed DFF phase detector’s proportional response becomes significant.
5.2.4 Implementation

In order to verify the performance benefits of the proposed phase detector, a complete CDR circuit designed in a 130nm standard CMOS process. The proposed CDR circuit was designed to operate at approximately 10Gb/s in order to compare the performance against standards such as OC-192 and 10GB Ethernet. The CDR circuit was designed so that the pulsed DFF and standard DFF responses could be compared against one another.

Phase Detector and Charge Pump

The phase detection in the pulsed DFF phase detector is performed by a CML DFF. The DFF was implemented as a dual-edge triggered CML DFF, which was previously described in Section 4.3.2. The simulated gain of the CML DFF is given in Figure 5.21. The input to the charge pump is a single differential UP/DOWN signal and as such the charge pump is implemented as previously shown in Figure 4.18. The only difference from the common charge pump is that in this design the charge pump current is not constant, but rather is controlled by the pulse.
Two methods were developed to generate the current pulse. The first method is similar to a current DAC whereas the second method is an analog method which uses an RC circuit to generate circuit.

Pulse Generator

Two methods were developed to generate the current pulse. The first method is similar to a current DAC whereas the second method is an analog method which uses an RC circuit to
generate the current pulse. Each design is able to generate a current pulse, however each has advantages and drawbacks. Both of these schemes rely at least partially on a circuit which generate a sequence of pulses. The block diagram of this circuit and the waveforms it generates are shown in Figure 5.22.

The circuit contained in the shaded area labelled ‘1’ generates the pulse V_A and it is always active. The circuit contained in the shaded area labelled ‘2’ generates pulses V_B through V_F and this is only activated in the digital current DAC scheme. The widths of pulses V_A through V_E are equal to the delay through the variable delay line ΔT. The delay in the delay line is created via a sequence of current starved inverters, and the magnitude of delay is controlled externally. The digital current DAC scheme uses all of the pulses which are generated. The pulses V_A through V_E are used to turn on switches which connect the charge pump bias current to five different bias currents which are controlled externally. The pulse V_F is used to enable a switch to set the normal current, after the current pulse has completed. By setting these bias voltage the shape of the current pulse can be arbitrarily defined. One could extend this technique to add more pulses and create a more detailed current pulse, at the expense of design complexity, power, area and noise. However, the Matlab simulations showed no benefit in controlling the current pulse beyond a certain point. The schematic of the digital current DAC scheme is shown in Figure 5.23a.

The the analog RC scheme uses only the first pulse, V_A, and while this scheme is enabled the circuits which generate the pulses V_B through V_F are disconnected. The pulse V_A turns on a PMOS transistor which sets the charge pump current to I_B, which is the maximum value of the current pulse. Once V_A returns to zero the charge pump’s bias voltage returns to V_B at a rate determined by the RC circuit created by the capacitor and the resistance through the NMOS transistor. The voltage V_{bias} is used to set the resistance of the NMOS transistor. The schematic of the analog RC scheme is shown in Figure 5.23b. The range of simulated pulses generated by the analog RC scheme is shown in Figure 5.24.
LC-tank VCO

The VCO was implemented using an LC-tank oscillator. The architecture of the LC-tank oscillator used in this design has been previously described in Section 2.3.4. The varactors were implemented using AMOS varactors, which were previously discussed in Section 5.1.3. While ac-
cumulation mode varactors are not usually a part of standard CMOS technology kits, this process included detailed models for the devices. The VCO was designed to have a centre frequency of approximately 10.5GHz, a coarse tuning range of approximately 2.5GHz and a fine tuning range of 400MHz.

Back-Annotated Simulations

Once the design and layout of the CDR circuit was completed, parasitics were back annotated and simulation were performed with a random input data sequence. Both the regular DFF phase detector and the proposed pulsed DFF phase detector were simulated and the resulting eye diagrams are shown in Figure 5.25. As can be seen the simulated peak to peak jitter of the standard DFF phase detector is 8.55ps, whereas the simulated peak to peak jitter for the pulsed DFF phase detector is only 3.11ps.
5.2.5 Measured Results

A CDR circuit using the pulsed-DFF phase detector was designed and fabricated in a 130nm standard CMOS process. The total die area was 0.8mm \times 0.625mm, including pads. The micrograph of the fabricated chip is given in Figure 5.26. Excluding the inductor, the active area of the entire CDR circuit is only 0.3mm \times 0.2mm.

While the CDR circuit was designed to operate at 10Gb/s, silicon results of the oscillator differed significantly from the back-annotated simulations. Figure 5.27 shows the measured and simulated frequency results from the LC-tank VCO. As can be seen the VCO is oscillating at a significantly higher frequency than expected. The midpoint of the measured coarse frequency
tuning range is approximately 4GHz, or 40%, higher than the designed centre frequency. As described in Section 2.3.4, the frequency of an LC-tank oscillator is defined as \(f_0 = \frac{1}{\sqrt{LC}} \). This means that the combination of \(LC \) must have deviated from the desired value by almost 90%. The inductor was chosen using measured data from a foundry datasheet and is largely defined by the geometry. As such, it is likely the varactors which caused the increase in frequency. AC simulation performed before tapeout indicated that there was a drop in capacitance as the frequency increased. The results of these simulations are shown in Figure 5.28. While the simulations indicate a slight drop in the capacitance at 10GHz, it is certainly not of the magnitude indicated from the measured results. It is also interesting to note that the measured fine frequency tuning closely matches the simulated fine frequency range, however the measured coarse tuning range is significantly less. This is curious as the coarse tuning varactors are exactly the same as the fine tuning varactors, they are simply a larger array of the same device. As such, it is not clear
why the fine tuning varactors seem to respond as expected, while the coarse tuning varactors do not. It is still likely that the varactors are the cause of the increased frequency, however the issue is as yet unresolved.

Despite the fact the CDR circuit was operating at a data rate which was 50% greater than what it was designed for, it was able to lock to a 15Gb/s PRBS. Figure 5.29 shows the spectrum of the clock when the CDR circuit was locked to a PRBS of $2^{31} - 1$. The CDR circuit was able to lock to data rates from 14Gb/s to 15.5Gb/s, with an input PRBS of $2^{31} - 1$. By turning off the pulse generating circuit, the phase detector could operate as a regular DFF phase detector. This allowed a comparison between the standard DFF phase detector and the pulsed DFF phase detector. Figure 5.30 shows the jitter on the clock for both the regular DFF phase detector and the pulsed DFF phase detector for an input 15Gb/s PRBS of $2^{31} - 1$. As can be seen, the measured jitter for the regular DFF phase detector is $J_{pp} = 12.2ps$ and $J_{RMS} = 1.72ps$, while the pulsed DFF phase detector improved the jitter to $J_{pp} = 3.3ps$ and $J_{RMS} = 0.42ps$. For the pulsed DFF measurements the analog RC method of generating the pulse was used. The digital DAC
scheme relies on the propagation of multiple high-speed signals, and these ended up coupling into the CDR circuit, resulting in significant performance degradation.

While the CDR circuit was able to lock to the incoming data sequence, unfortunately the
data retiming circuit was unable to properly retime the data and the data output was corrupted. This is not all that surprising giving that the data rate is 50% higher than what the circuit was designed for. As such it was not possible to measure BER and other figures of merit. The output data waveform when the CDR circuit is locked to a PRBS of $2^{31} - 1$ is given in Figure 5.31.
5.3 Bandwidth Enhanced Linear Phase Detector

Most recent implementations of multi-Gb/s CDR circuits have used binary phase detectors, however Section 4.1.2 provided a justification for the use of linear phase detectors. The Hogge phase detector is the most common linear phase detector architecture however it is difficult to successfully implement in standard CMOS processes. As was shown in Section 3.4, the process variations associated with the aggressive scaling of CMOS processes can cause significant problems for this circuit. In Section 3.4.2 it was shown that the Hogge phase detector demonstrates significant variations in its static phase offset over process corners. In this section a simple circuit modification is proposed to improve the robustness of the Hogge phase detector.

5.3.1 Robustness in the Hogge Phase Detector

The robustness analysis of the standard Hogge phase detector has already been performed, and the detailed simulations results for the 8Gb/s CDR circuit implemented in a 130nm CMOS process are shown in Figure 5.32a. As can be seen, the response is linear for small input phase errors, however for significant errors the phase detector cannot operate properly and the response deviates significantly from the ideal. In order to get the overall system response the UP pulse width is subtracted from the DOWN pulse width, which is shown in Figure 5.32b. Figure 5.32c shows the expanded response in the region of the zero crossing point, and this shows the significant variation in the static phase offset of the phase detector over corners. The relationships derived in Section 3.2 illustrate that static phase offsets degrade the performance of a CDR circuit, and hence while the ideal behavior of the linear phase detector is attractive it is desirable to use a circuit with less sensitivity to process variations.

One interesting result which emerges from Figure 5.32 is that the variation in the width of the DOWN pulse are more significant than the variations in the UP pulse width. It is primarily the variations in the DOWN pulse width which has led to the variations in the zero crossing point of the response of the phase detector. The reason for this is that in the Hogge phase detector
the back-to-back DFFs are clocked on opposite edges of the clock. This means that DFF_2 has at most $\frac{T}{2}$ to sample the output of DFF_1. The C-Q delay of DFF_1 reduces this, and variations in the C-Q delay of DFF_1 can cause the setup time of DFF_2 to be violated.
5.3.2 Modified Hogge Phase Detector

In this section a simple modification to the Hogge phase detector in proposed in order to improve the response of the DOWN pulse and alleviate this problem. There have been previous efforts to improve the Hogge phase detector. In [72] a half-rate Hogge phase detector is introduced and [78] introduces a tri-wave Hogge phase detector. These circuits improve the performance, however all have the same weakness of back-to-back DFFs clocked on opposite edges of the clock. The proposed phase detector helps to alleviate this problem by stretching the DOWN pulse. The architecture and functional waveforms of the original and the proposed phase detector are shown in Figure 5.33. The only difference from the standard Hogge phase detector is that DFF$_2$ is clocked on the same edge of the clock as DFF$_1$. By simply clocking DFF$_2$ half a period later the setup time of DFF$_2$ is lengthened by half a period. This can be seen on the waveforms, where for
Figure 5.34: Ideal transfer characteristic for the standard and modified Hogge

the proposed circuit Q2 is delayed by \(T/2 \) which in turn widens DOWN by \(T/2 \). Therefore the DOWN reference pulse for the proposed circuit is double the width compared to the original Hogge phase detector. The resulting ideal transfer characteristic for the original and modified Hogge phase detectors are shown in Figure 5.34. The total amount of charge added to or subtracted from the loop filter is simply a function of the bias current and the pulse width. The DOWN pulse for the proposed phase detector is twice as large, and hence the current should be halved in order that the overall response be equal to that of the original Hogge phase detector.

In order to compare the modified phase detector to the original circuit, simulations are performed as in Section 3.4 so as to determine the effect of process corners on the transfer characteristic of the phase detector. The same corners were used and the results of the simulations are shown in Figure 5.35. These results closely match the ideal response in Figure 5.34 for small input phase errors, however as with the original Hogge phase detector the response breaks down for large input phase errors. By subtracting the UP and DOWN pulse widths the overall phase detector response can be determined, and this is shown in Figure 5.35. There isn’t a large difference in the linear range between the two phase detectors, however the total variation in the
5.3.3 Charge Pump Currents

In order to use the proposed phase detector, a charge pump which has separate controls for the UP and DOWN paths must be used. The DOWN path performs in a near-ideal manner, however
UP path must go through a current mirror which can attenuate the signal due to bandwidth limitations. This means that a larger UP pulse than in the ideal case is required to compensate for the attenuation in the UP path, which manifests itself as a static phase offset. This problem is present in the original Hogge phase detector however the proposed modification exacerbates the problem as the width of the UP pulse is now half the width of the DOWN pulse.

In order to observe the effect of this the CDR circuit is simulated using Verilog-A models for all blocks other than the phase detector and charge pump. Figure 5.36a gives the resulting eye diagram, which shows a 21.97ps static phase offset. This is a large error which will limit the performance of the CDR circuit. The DOWN bias current in the charge pump should theoretically be half that of the UP bias current. However, simulations show that the required UP bias current is closer to three times that of the DOWN bias current, and this ratio varies over process corners. In order to compensate for this, the calibration circuit described in Section 4.3 was implemented. As can be seen in Figure 5.36b, the calibration circuit is capable of properly adjusting the charge pump currents in order to eliminate the static phase offset.
5.4 Summary

This chapter has proposed phase detectors which were designed with the goal of optimizing both performance and robustness. Two binary phase detector were presented which used the simple, robust DFF phase detector. The goal of these phase detectors was to address the performance limitations of CDR circuits which use the DFF phase detector while maintaining the inherent robustness. A novel tri-state DFF phase detector was proposed and was shown to have an identical response to the Alexander phase detector. However, at a data rate of 5Gb/s the variation in the static phase offset over corners for the proposed circuit was only 7.1ps, as compared with 13.9ps for the Alexander phase detector. A CDR circuit implementing this phase detector was designed and fabricated in a 180nm standard CMOS process. Given a $2^{31} - 1$ PRBS at 6.25Gb/s the measured RMS and peak-to-peak jitter of the CDR circuit were 1.7ps and 11ps. The second binary phase detector improved the performance of the simple DFF phase detector by shaping the charge pump current. A CDR circuit implementing this phase detector was designed and fabricated in a 130nm standard CMOS process. Given an input 15Gb/s PRBS of $2^{31} - 1$ the measured RMS jitter for the pulsed DFF phase detector (compared with the standard DFF phase detector) improved from 12.2ps to 3.3ps. Linear phase detectors were also considered, with the goal of improving robustness rather than performance. A simple change to the Hogge phase detector was proposed which drastically reduces the overall variation in the static phase offset. Corner simulations of the original and modified phase detectors in a 130nm process at a data rate of 8Gb/s show that the modified Hogge phase detector reduces the variation of the static phase offset from 45° to 5°.
Chapter 6

Conclusions

The bandwidth of interconnects is becoming an increasingly important factor in modern computing systems and has led to a trend towards the use of serial interconnects. The integration of these interconnects into monolithic ICs provides benefits, especially in terms of system cost. The scaling of CMOS processes has enabled this integration, however the increasing variability associated with scaled processes means that robust design of integrated CDR circuits is becoming increasingly difficult.

In Chapter 2 a background on wireline data communication was provided. Both optical and backplane systems were described, as were corresponding differentiators. The purpose and operation of the CDR circuit was introduced and the individual circuits which comprise a CDR circuit were detailed. Various figures of merit used to characterize the performance of CDR circuits in both the frequency domain and the time domain were described. Mathematical models of a CDR circuit were formulated for both the case of a linear phase detector and the case of a binary phase detector. Using these models, mathematical expressions were derived for several of the figures of merit.

In Chapter 3 the concepts of robustness as it applies to CDR circuits was defined. Various causes of process non-idealities were identified and the static phase offset was introduced as a
measure of robustness for CDR circuits. A mathematical expression was derived which quantified the relationship between static phase offsets and BER. A CML DFF circuit was analyzed to determine its response over process corners and subsequently three standard phase detector circuits were analyzed over process corners in order to compare their robustness. The analysis showed that the robustness of all phase detectors degraded as the process scaled, however certain circuits showed advantages in terms of robustness.

Chapter 3 defined the concept of circuit robustness, and Chapter 4 introduces the idea of enhancing the robustness of CDR circuits via calibration. A calibration scheme was proposed which involved using the charge pump currents to compensate for static phase offsets. Two calibration circuits, one offline and one online, were designed and implemented in a 180nm standard CMOS process. The measured results from these designs showed that by using calibration circuits to correct for static phase offsets, the performance of a CDR circuit can be improved.

The use of calibration circuits to compensate for the effects of process variation is valuable, however it would be preferable to use circuits which did not suffer those effects. Chapter 5 examined ways to optimize CDR circuits for performance and robustness by creating novel phase detector circuits. Three circuits were proposed, two binary and one linear. The two binary circuits were implemented in CDR circuits which were fabricated in 180nm and 130nm standard CMOS processes. Simulated results from two designs demonstrated an increase in performance without sacrificing robustness. Finally a modification to the linear Hogge phase detector was proposed which significantly improved the robustness while maintaining the desired performance.

6.1 Major Contributions

In this thesis the robust design of multi-Gb/s CDR circuits has been examined. In particular, the effects of process non-idealities on CDR circuits have been analyzed and new robust phase detector circuits have been proposed with the goal of optimizing both performance and robustness. The major contributions of this thesis are as follows:
1. **Focus on Manufacturability**

Virtually all published research into CDR circuits is aimed at maximizing performance. Due to scaling, integrated high-speed serial interconnects are becoming increasingly necessary, and as such their robustness is a significant concern. Several common phase detectors were analyzed to examine the effect of process non-idealities on CDR circuits. Simulations demonstrated that the robustness of all phase detectors deteriorates with scaling. The results show that the Hogge has the highest sensitivity to process variations and that the DFF phase detector has the least. In addition, a new mathematical model was developed to quantify the effects of static phase offsets on the BER performance of CDR circuits.

2. **CDR Circuit Calibration**

The effects of process variability can negatively affect the performance of a CDR circuit in a variety of ways, including the creation of static phase offsets. Static phase offsets have a significant negative effect on CDR circuits and in order to compensate for them an approach was proposed which changes the charge pump current in order to properly align the clock and data signals. Two calibration circuits were implemented, one offline and the other online, both of which sense and compensate for static phase offsets. With a PRBS of $2^7 - 1$ the offline calibration circuit improved the measured BER of the a CDR circuit from 4.6×10^{-2} to less than 10^{-13}.

3. **Robust Phase Detectors**

There have been a multitude of phase detector circuits presented in literature, however none of them have been designed with robustness as an explicit criteria. In this thesis three phase detectors circuits were proposed where robustness was a significant design consideration. Both linear and binary phase detector circuits were proposed, and all demonstrated an improvement in either robustness or performance without degrading the other. As compared to a standard DFF phase detector, the pulsed DFF phase detector improved the measured peak-to-peak jitter for a 15Gb/s PRBS of $2^{31} - 1$ from 12.2ps to 3.3ps.

6.2 Future Work

The integration of CDR circuits into monolithic CMOS ICs is relatively recent and it presents many opportunities for future work. This thesis has shown that in spite of the challenges associated with scaling there are ways to improve current CDR performance, especially in the context of robustness. It is the hope of the author that the work presented here will be useful in addressing some of the future challenges. There are several areas where the research presented in this thesis could be continued and extended.

1. Design of Low-Power CMOS CDR Circuits
 Aggressive process scaling allows multi-Gb/s CDR circuits to be implemented in logic family other than CML. While the use of static CMOS is attractive in terms of power and area considerations, more research is needed to determine if issues such as noise can be compensated for in the context of integration into monolithic ICs. It is also possible that a hybrid CML - static CMOS approach would be optimal.

2. Use of Calibration in CDR Circuits
 Calibration provides a way to maintain performance while improving the robustness. More research into calibrated CDR circuits could improve other aspects of the design. Also, several of the proposed techniques could be implemented in parallel. For example, offline and online calibration circuits could both be included in a single CDR circuit.

3. Multiple Interconnect Integration
 The integration of many CDR circuits onto a single die brings new challenges. With multiple CDR circuits on a single die, issues such as VCO pulling, area limitation and distributed architectures should all be considered. Finally, design for test will be very important as individually testing multiple interconnects could be cost prohibitive.
Bibliography

