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ABSTRACT

A numerical model to simulate the behaviour of idealized rounded granular materials
in conditions of static equilibrium using assemblies of ellipsoid-shaped particles is devel-
oped. The model is based on the discrete element method (DEM) which simulates the state
of an assembly of particles through tracing the motion of constitutive particles and their
interactions at contact points.

The development of the model for ellipsoids consisted mainly of implementing an in-
ter-ellipsoid contact detection algorithm to detect and calculate characteristics of contacts
between ellipsoids. The algorithm was implemented in an existing discrete element pro-
gram for spheres (TRUBAL).

A modified program TRUBAL was utilized to perform constant pressure deviatoric
compression tests on a 1000 ellipsoids’ assembly. The results of these tests showed that
the characterization of anisotropy by symmetric and deviatoric second-order tensors ap-
plies to assemblies of ellipsoids. However, the provision for an additional fourth-order
anisotropy tensor can become necessary in some cases (for example, to describe anisotro-
py in average tangential contact forces).

A Stress-Force-Fabric relationship between the macroscopic stress tensor and
anisotropies in contact forces and in fabric was derived for ellipsoids. Particle shape has
an increasingly higher effect on the relationship as deformation progresses. A form of
force-fabric joint anisotropy contribution, usually negligibly small in two dimensions, was

found to play an important role in shaping the stress behaviour.
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Rotations of ellipsoids were analyzed from a statistico-geometrical perspective and
found to influence the (contact formation/disintegration)-related anisotropy. Ellipsoids
have a tendency to create more contacts around their flat areas than any other area. They
use their rotational ability to maintain a near-constant distribution of contacts around their

surfaces irrespective of the stress and deformation levels.
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NOMENCLATURE

a = Ellipsoid major semi-axis
an, = Contribution of ellipse rotations to the magnitude of contact normal orienta-

tion anisotropy

aj = Second-order tensor of contact normal orientation anisotropy

ay = Second-order tensor of average normal contact force anisotropy

aj; = Second-order tensor of average tangential contact force anisotropy
a; = Second-order tensor of average branch vector length anisotropy

ay = Second-order tensor of average normal branch vector anisotropy
ay = Second-order tensor of average tangential branch vector anisotropy
ag = Second-order tensor of ellipsoid long-axis orientation anisotropy
azt = Second-order tensor of local contact vector orientation anisotropy



as = Shear stress ratio

as = Contribution of contact normal anisotropy to the shear stress ratio

a; = Contribution of average branch vector anisotropy to the shear stress ratio

al = Contribution of average contact force anisotropy to shear stress ratio

az = Joint contribution of contact normal and average branch vector anisotropies to

the shear stress ratio

ay = Joint contribution of contact normal and average contact force anisotropies to
the shear stress ratio

a¥ = Joint contribution of average branch vector and average contact force
anisotropies to the shear stress ratio

az/ = Joint contribution of contact normal, average branch vector, and average con-
tact force anisotropies to the shear stress ratio

A(B) = Prolate spheroid surface area (comprised between azimuth angles 0 and )

A7(B)  =Normalized prolate spheroid surface areas = 4 (B)/A4,(x)

b = Ellipsoid intermediate semi-axis
biju = Fourth-order anisotropy tensor
c = Contact point

= Cohesion (Chapter 3)

= Ellipsoid minor semi-axis
Cg = Ellipse circumference
C, = Pencil of two ellipsoid surfaces

D,,D, = Constants (Chapter 2)

XXX11



D; (i-24 =Invariants of the discriminant matrix O (Chapter 4)
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= Ratio of mean stress to spherical stress

= Elemental length
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= Average normal contact force

= Average tangential contact force component
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= Average radial tangential contact force
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VA = Average normal contact force over all individual contacts
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F, = Resultant force vector component

E = Normal contact force
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I = Intersection of two ellipsoid surfaces
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= Normal contact stiffness coefficient

= Shear contact stiffness coefficient

= Contact vector length

= Assembly average contact vector length
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= Unit vector

= Unit vector in global coordinates

= Unit vector in local coordinates

= Unit vector normal to a contact plane at a location ¢
= Unit vector normal representative of an orientation group g

= Radial unit vector



n' = Unit local contact vector

ns = Unit vector along an ellipsoid long-axis

|Ans| = Orientation class magnitude

o = Ellipsoid discriminant matrix

Q. = Ellipsoid sub-discriminant matrix

rek = Position vector of a contact point ¢ on the surface of a particle £

r = Ellipsoid geometric mean radius = Sphere’s radius of equal ellipsoid volume
P = Ellipse arithmetic mean radius = (minor semi-axis + major semi-axis)?2

R; = Fabric tensor (Chapter 2)

= Ellipsoid orientation matrix (Chapter 3)

Rg: = Rotation matrix associated with Euler angle ©F

Rops = Rotation matrix associated with Euler angle ®f

Ry = Rotation matrix associated with Euler angle V&

Sy = Standard deviation of the particle coordination number histogram

34 = Relative standard deviation = (standard deviation) / (mean value)

52 = Sign of anisotropy tensor scalar products

S = Ellipsoid/Ellipse local contact vector orientation probability density function
Sg = Ellipsoid/Ellipse long-axis orientation probability density function

So: = Probability density function of the random variable 07

So:.£ = Joint probability density function of the pair of random variables (67, 6%)
t =Time

At = Time-step



£ = Component of the unit vector along the tangential branch vector
r = Boundary vector traction
T. =13 = Invariants of the sub-discriminant matrix Q,

AU, AU¢ = Increment of displacement vector component

AU = Increment of normal displacement

AU? = Increment of shear displacement vector component

V = Assembly volume

V, = Volume of solid

Vv, = Relative velocity at inter-particle contact

v, = Average particle volume

X; = Particle centre position vector component

X; = Particle centre velocity vector component

X = Particle centre acceleration vector component

Ax; = Increment of particle centre position vector component
xP = Position vector component at a boundary contact point 3
X = Uni-line vector position

. ¢ = Transposed uni-column vector position.

z° = Branch vector at a contact ¢

z" = Normal branch vector

z} = Tangential branch vector component

z; = Average branch vector component

z; = Component of the average branch vector deviator
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z" = Average normal branch vector

z! = Average tangential branch vector component

z° = Assembly average branch vector length

o = Damping coefficient (linear motion)

o = Damping coefficient (rotational motion)

a = Polar angle in spherical coordinates

of = Polar angle of local contact vector in spherical coordinates

B = Azimuth angle in spherical coordinates

g = Azimuth angle of local contact vector in spherical coordinates
™ = Constant tensor of order (m) (Chapter 6, Appendix B)

Y.Y»Yss = Average coordination number (current, initial, and steady-state, respectively)

S, = Kronecker delta tensor

0" = Inter-particle normal overlap distance

€ = Strain tensor

€, = Strain rate tensor

€iji = Alternating tensor (to calculate vector cross products)

€. €5, €5 = Axial strain (current, initial, and steady-state, respectively)

€, = Volumetric strain
£, = Volumetric strain rate
¢ = Angle of internal friction

= Parametric curve variable (Chapter 4)

o g = Euler angle (Chapter 7)
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= Angle of inter-particle friction

= Coefficient of interparticle friction

P, P» Pss = Packing density (current, initial, and steady-state, respectively)
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T

= Assembly stress tensor

= Spherical stress tensor

= Contribution of contact normal anisotropy to the stress tensor

= Contribution of average branch vector anisotropy to the stress tensor

= Contribution of average contact force anisotropy to the stress tensor

= Joint contribution of contact normal and average branch vector anisotropies to
the stress tensor

= Joint contribution of contact normal and average contact force anisotropies to
the stress tensor

= Joint contribution of average branch vector and average contact force
anisotropies to the stress tensor

= Joint contribution of contact normal, average branch vector, and average con-
tact force anisotropies to the stress tensor

= Boundary stress tensor

= Mean stress

= Initial mean stress

= Shear stress

= Confining stress

= Permutation of indices (Chapter 2, Chapter 8)



nij

= Particle angular velocity

= Particle rotation (Chapter 3)

= Parametric curve variable (Chapter 4)

= Euler angle

= Ellipse major-axis orientation angle

= Contact normal orientation angle in global coordinates (Ellipses)
= Contact normal orientation angle in local coordinates (Ellipses)
= Deviation angle between contact normal and contact vector directions
= Increment of rotation matrix

= Euler angle (Chapter 7)

= Angle between the contact normal and branch vectors

= Constant used in the definition of shear stress

= Constant second-order tensor

= A non-dimensional variable
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CHAPTER I: INTRODUCTION

1.1 General Background

This study relates to numerical simulations of the mechanical behaviour of rounded
granular materials.

From a phenomenological point of view, granular materals exhibit a complex me-
chanical behaviour which involves dilation and/or contraction, and sensitivity of strength
and deformation properties to applied confining stress. These characteristics are the result
of the discontinuous structure possessed by these materials; therefore, a microscopic de-
scription of granular materials is the fundamental one. Considered from the microscopic
viewpoint, granular materials consist of mutually contacting solid particles contained

within the liquid and/or gaseous phase.
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The complex mechanical behaviour of granular materials is a reflection of their struc-
ture, i.e., essentially that of the state of motion of the individual particles and their mutual
interaction. The existence of contacts between neighbouring particles restricts their free-
dom of motion, thereby determining the strength and deformation properties of a granular
material.

Several microscopic factors contribute to the macroscopic behaviour of granular ma-
terials. In the case of cohesionless granular materials such as sands, these factors are: the
size, shape, texture (smoothness/roughness) and strength of individual particles; the nature
of the interaction between the various phases; the state of the geometrical arrangement of
the assemblage of grains, called fabric; and the nature of the applied external load. In the
case of bonded systems, the number and strength of the contact bonds (themselves a con-
sequence of the previous factors) must be added to the list. All of these factors are incor-
porated into the concept of microstructure.

In order to model and to understand the behaviour of granular materials from a micro-
scopic point of view, it is necessary to account for all of these factors. It is sometimes dif-
ficult, if not impossible, to distinguish between their effects, as they usually influence each
other.

It is important to distinguish between two types of properties reflecting: (1) micro-
scopic composition, i.e., grain size, shape, texture, hardness of the solid phase as well as
content of other phases such as gas and/or water; (2) macroscopic state parameters such as
stress, strain, average number of contacts per particle and other volume averages that are

needed for the description of constitutive behaviour from a microscopic point of view.
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While the determination of microscopic composition is relatively easy to perform in
the laboratory, the determination of state quantities is virtually impossible. It would neces-
sitate sample destruction and tedious microscopic measurements at contact points between
particles. It also must take into account the state of the granular material being studied,
and this prerequisite calls for experiments on undisturbed samples. This has been an obsta-
cle that has slowed the progress of development of micromechanics theories of granular
materials, up until the time that numerical simulations were introduced. Simulations are
typically based on the discrete element method (DEM).

The discrete element method is a numerical procedure that was developed for the sim-
ulation of dynamic systems containing discontinuous solid elements in interaction with
each other through inter-element contact forces. The method was successfully applied to
model the mechanical behaviour of soils idealized by assemblies of particles having well-
defined geometrical shapes and certain assigned physical properties.

Since the pioneering work by Cundall and Strack (1979a, b), the method became pro-
gressively a standard tool in the research area of micromechanics of soils, replacing older
popular methods based on physical experiments (such as those using photo-elastic materi-
als). The wide success of DEM relates mainly to its ability to observe in great detail the
micromechanical aspects of granular assemblies and to allow for the examination of mi-
croscopic mechanisms that are not easily accessible in physical experiments.

Numerical simulations solve the problem of having to disturb the original state of a
sample in the laboratory by reconstructing numerically the original assumed state of the

sample before disturbance. Numerical simulations also provide complete information
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about the sample without having to interrupt the test. Moreover, numerical simulations
present the advantage of being very flexible; for example, successive states can be saved
and tests repeated from any of these states. Completely different new paths of loading/un-
loading can be applied to these saved states. Very critical and sensitive parameters can be
isolated and studied easily, which is sometimes impossible to do using physical experi-
ments. The most important feature of numerical simulations is that the mechanisms of de-
formation and all macro-descriptions of the mechanical behaviour of granular systems can
be determined with precision. This offers a unique opportunity to investigate macroscopic
to microscopic relationships during the micromechanical constitutive modeling of granu-

lar materials.

1.2 Research Topic

The most significant feature of granular materials is that their deformation is brought
about by mutual sliding of interlocked regions comprised of several particles. Each region
moves and behaves as one rigid block. This behaviour contrasts very much with the de-
scription of materials as continuous media, where the deformation involves the contribu-
tion of each and every material point in the continuum. For this reason, the state of
granular materials may vary within comparatively narrow limits, so that a number of de-
formation mechanisms (including various changes of the nature, shape and size of these
interlocked conglomerates or clusters) can progressively come into play within the con-
ventional engineering range of stresses. Another structural effect is rotation of particles

which is typical of discontinuous media and especially of granular materials. The effect of
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rotation on the mechanical behaviour of a strained system of particles increases propor-
tionally to the degree of elongation of particle shapes. For ideally spherical particles how-
ever, rotation is not a factor that affects the overall behaviour of the system of particles.
One must often, therefore, expect a difference between the behaviour of granular materials
with isometric grains (whose dimensions in three mutually perpendicular directions are
approximately the same) and that of granular materials with elongated particles.

In the past, most of the work in micromechanics of granular materials was related to
numerical simulations of plane assemblies of disks. This choice was dictated by the rela-
tive simplicity of the model, because the objectives at that time were to comprehend the
complex mechanisms of deformation of granular materials from a microscopic point of
view (e.g., Cundall, Drescher and Strack, 1982; Cundall and Strack, 1983). Assemblies of
circular particles were satisfactory for this purpose, as they exhibit most of the qualitative
properties of granular materials (such as strain softening, volume increase, transition to a
steady state at large strains). On the other hand, their strength is low and their deformation
properties are quantitatively far too different from real sands. Simulations of three-dimen-
sional assemblies of spheres were the next step in the development of numerical simula-
tions. These assemblies gave more realistic, but still not entirely satisfactory, results
regarding strength.

The primary reason for the discrepancies between simulated assemblies of circular
particles in two and three dimensions and real materials can be attributed to the simplistic
representation of particle shape. Indeed, numerical simulations performed with plane as-

semblies of polygons and ellipses have shown more realistic trends in relation to the me-
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chanical behaviour of real sands (e.g., Rothenburg and Bathurst, 1992, 1993, Ting ef al.,
1993; Mirghasemi, 1994).

Not only is the mobilized strength comparable with that of a typical sand, but also the
initial conditions of particle packing for a dense sand can be more easily replicated with
non-circular-shaped particles than with circular particles. It is well known that the behav-
iour of an assembly of particles greatly depends on the initial conditions of packing and
contact density. Usually, the more densely packed the assembly volume is, and the higher
the number of contacts present within it, the stronger its material resistance to an applied
deviatoric stress tensor.

All previous research studies conducted with non-circular shaped particles pointed
out clearly the ability of non-circular particles to be compacted in highly dense structures,
and to rotate rather than simply roll as spheres tend to do. Because of particle rotation, as-
semblies of non-spherical particles will resist deviatoric loads without softening over a
larger strain range as compared to assemblies of spherical particles. This is the result of
the mobilization of a specific form of anisotropy in particle orientation.

In relation to the state of contacts that can be observed inside assemblies of non-
spherical particles, several studies using numerical simulations of polygon-shaped parti-
cles (e.g., Mirghasemi, 1994) showed that the average number of contacts per particle is
usually comparable to that of disks; however, higher densities can be achieved with poly-
gons than with disks. The difficulty of working with polvgons in two dimensions and
polyhedra in three dimensions resides in having to deal with several types of contacts be-

tween particles: face-to-face, face-to-edge, face-to-corner, edge-to-edge, and edge-to-cor-
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ner. For some of these contact types, the contact normal vector is not uniquely defined,
and this limits the use of such models to a special class of problems characterized by small
deformations and a predictable evolution of the contact normal direction. An example is
the simulation of joints between blocks of rock. Large-scale deformations, however, are
more difficult to simulate with these shapes.

An alternative to the polyhedra is the triaxial ellipsoid shape. The triaxial ellipsoid is
characterized by a unique continuous outward normal vector on its surface. In the general
case, it is a quadric surface which can be fully defined by three angles of orientation, two
aspect ratios, and an average length measure.

Several early studies in the field of sedimentary petrology, concerning methods of
characterizing the shape of granules that make up soils, suggested that the triaxial ellipsoid
can approximate fairly well the gross shape of rounded granules (e.g., Krumbein, 1941;
Aschenbrenner, 1956). Next to spheres, the triaxial ellipsoid is also the simplest geometri-
cal shape, and is also flexible enough to model a wide range of shapes that can vary from
rod-like, to equi-dimensional, to blade, and disk-like geometries.

These considerations, added to the fact that planar systems of non-circular particles
do not replicate well the volumetric behaviour of real three-dimensional systems, motivat-
ed the work with ellipscidal particles to study the behaviour of dense rounded granular
systems.

An existing three-dimensional discrete element model of spheres called TRUBAL,
originally developed by Cundall and Strack (1979c), Strack and Cundall (1984), was mod-

ified to accommodate the new particle shape. The modified version of the program was
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used to produce the results reported in this study.

1.3 Objectives

The objectives of this study are multi-fold:

1. Develop a three-dimensional discrete element model to simulate the behaviour
of assemblies of ellipsoids by modifying the existing discrete model TRUBAL
for spheres. This task consisted mainly of impiementing and validating an in-
ter-ellipsoid contact detection scheme and modifying the equations of the me-
chanics of rigid spheres to rigid ellipsoids, as well as implementing new
procedures of data extraction to interpret the results within the framework of
the objectives set for this study.

2. Conduct a series of constant mean pressure deviatoric compression tests on as-
semblies of ellipsoids of different sizes (27, 125, and 1000 particles) and dif-
ferent confining pressures, with an optimal shape of particles (corresponding to
optimal initial conditions of particle packing and contact densities) and an in-
herent anisotropy. These tests were intended to study the effects of assembly
size, particle shape, inherent anisotropy, and confining pressure on the macro-
mechanical and micro-mechanical behaviour of assemblies of ellipsoids.

3. Derive a Stress-Force-Fabric relationship for ellipsoids by including the direct
effect of shape into the equations of the average stress tensor for particulate
systems, and to validate the derived equation using results of the above numer-

ical tests on the larger-sized sample of ellipsoids.



CHAPTER I: INTRODUCTION

4. Interpret the derived relationship from the perspective of expressing the mobi-
lized matenial shear strength in terms of contributions due to microscopic de-
velopment of anisotropy throughout the course of deformation, and also to
evaluate the effects of inherent anisotropy and particle shape on the mobilized
shear strength.

5. Conduct statistics on contacts and particles using parameters describing specific
shape-related anisotropies in particle orientation and contact occurrence
around the surface of an ellipsoid, and to use these statistics to examine the hy-
pothesis that the creation of contacts around a particle is mainly controlled by
its shape.

6. Develop a model for estimating the effect of shape on the magnitude of anisot-

ropy in contact normal orientations, in two and three dimensions.

1.4 Organization of the Thesis

The thesis is organized as follows:

In Chapter 1, a general background on granular materials and numerical simulations
by the discrete element method is given. An outline of the topic and objectives of research
is also presented.

In Chapter 2, the approach of microscopic characterization of the behaviour of a gran-
ular material is discussed. A new method of space partitioning for the grouping of contacts
according to the direction of their contact normals is established and compared to the clas-

sical partitioning of the space by a single set of spherical coordinates. Finally, a study of
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the influence of fourth order terms of Fourier series approximations of microscopic distri-
butions is presented, based on results of numerical simulations with assemblies of ellip-
soids.

In Chapter 3, the discrete element method for ellipsoids and its implementation in the
modified program TRUBAL are presented. The data structures and features of the modi-
fied program are listed and discussed. The algorithm to generate samples of ellipsoids
from assemblies of spheres is also discussed.

In Chapter 4, the inter-ellipsoid contact detection scheme and the flow chart of the al-
gorithm of contact calculation are presented. A validation of the program by simple tests
and a comparison with a well established, two-dimensional, inter-ellipse contact detection
algorithm on a sample of nearly 3000 contacts are reported.

In Chapter 5, results of particle growth tests and (p=constant) deviatoric compression
tests with ellipsoids are presented and analyzed from the microscopic and macroscopic
points of view. Influences of assembly size, particle shape, and applied confining pressure
are emphasized during the discussion of results.

In Chapter 6, the Stress-Force-Fabric relationship for ellipsoids is derived and veri-
fied numerically. Based on the Stress-Force-Fabric relationship, an explicit equation relat-
ing the mobilized material shear strength to microscopic contributions (due to
development in anisotropy) is also derived. This relationship is used to measure the impact
of particle shape, inherent anisotropy, and the different aspects of load-induced micro-
structrual anisotropies on the shearing capacity of assemblies of ellipsoids.

In Chapter 7, an attempt is undertaken to interrelate different fabric anisotropies,

10
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namely, anisotropies in contact normal orientations, particles orientations, and local con-
tact vector orientations. Predictions of the two-dimensional model are discussed.

In Chapter 8, a summary of the objectives and achievements of this study are listed.
Recommendations for future research are also suggested.

The references are listed in alphabetical order of author’s name.

Three Appendices are added as follows:

In Appendix A, the method of partitioning the space of orientations (unit sphere) by
near uniform class sizes is presented.

In Appendix B, the method implemented in the modified program TRUBAL to solve
the inter-ellipsoid intersection equation is presented.

Finally, in Appendix C, a method of deriving analytical expressions of useful 3D-in-
tegrals involving any arbitrary number of products of unit vector components in spherical

coordinates is suggested.

3
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CHAPTER II: MICROSCOPIC
CHARACTERIZATION OF
GRANULAR MATERIAL
BEHAVIOUR

2.1 Load Transfer in Granular Materials

The first experiments involving collections of particles under external load attempted
to observe the transfer of forces from the boundaries of the sample to chains of contacts
responsible for keeping the assembly stable. The early physical experiments used the pho-
toelasticity technique to visualize and measure the magnitude of the forces transmitted at
contact points (e.g., Dantu, 1957; De Josselin De Jong and Verruijt,1969).

The results of these studies showed that under anisotropic load conditions (unequal
forces applied at the boundaries of the sample) the response of the assembly was anisotro-
pic.

The contacts with an orientation sub-parallel to the major direction of load carried the

12
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largest proportion of the transferred load while the contacts with an orientation sub-paral-
lel to the minor direction of load carried the smallest proportion. In the same effort to op-
pose the anisotropic applied load, the contacts with normal vectors sub-parallel to the
major direction of load (load-carrying contacts) were mainly preserved in number while
the number of lateral contacts facing the minor load-direction steadily decreased with
strain.

The described qualitative features of load transfer in granular materials can be well il-
lustrated by reference to an experiment on an assembly of photo-elastic disks by De Josse-
lin De Jong and Verruijt (1969), shown in Figure 2+1a. The pattern of line segments in the
figure represents orientations and magnitudes of interparticle forces in an assembly of
disks confined by rectangular platens.

The assembly is under a deviatoric boundary load. The thickness of lines is propor-
tional to the magnitude of contact forces. Higher forces can be identified by contacts ori-
ented towards the direction of maximum boundary load. To emphasize this bias, Figure
2+1b and Figure 2+ 1c illustrate groups of vertical and horizontal load-bearing contacts rep-
resented by lines connecting the centroids of particles. The difference between the num-
bers of vertical and horizontal contacts is a measure of geometrical anisotropy.

The fact that vertical and horizontal contacts also carry forces of distinctly different
magnitudes illustrates an important link between microscopic geometry and characteris-

tics of load transfer.

13
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Figure 221 Biaxial compression test on an assembly of photo-elastic disks (after
De Josselin De Jong and Verruijt, 1969)

(a) Distribution of contact forces
(b) Vertical contacts
(c) Horizontal contacts
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Although the forces acting at contacts with similar orientations vary in a seemingly
random manner, average forces over such groups are constrained by conditions of static
equilibrium and fabric characteristics. As such, the parameters describing the anisotropy

in the average contact forces and contact orientations can be related to the boundary loads.

2.2 Static Equilibrium and the Average Stress Tensor

An average stress tensor for particulate systems can be defined from considerations of
static equilibrium of an assembly of randomly shaped particles subjected to a uniform set
of boundary tractions T® on its surface as shown in Figure 2+2. The tractions are assumed
to apply to a continuous membrane and therefore derivable from a continuous boundary

stress tensor GJ .

From equations of static equilibrium of the interface between the applied external
load and the recipient boundary particles of this load, it can be shown that the boundary
stress tensor G can be related to the forces and vectors at contact points B between the
boundary and adjacent particles of the assembly (Figure 2¢2).

The relationship proposed by Rothenburg (1980), based on the average stress tensor

of continuum mechanics can, be written as:

1
cf = I-/Zj}‘x}" (2 1)

pe S
where xP and fP are the position and force vectors at boundary contact points B, respec-

tively; and V'is the assembly volume.
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2m,

Figure 222 Elements of definition of the stress tensor for a granular system
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A more convenient form of this relationship which makes no explicit reference to the
shape of the studied volume can be obtained by noting that for an assembly in static equi-

librium, the following relationship is satisfied between boundary and internal forces:

2 S = A 22

pes ceV
where /¢ and f¢ are the position and force vectors at particle-to-particle contact points (c),

respectively; therefore:
=1 c
of = 52/l (23)

The relationship (2¢ 3) was derived under different forms many times by researchers
using different approaches (e.g., Weber, 1966; Dantu, 1968; Rothenburg, 1980; Christof-
fersen ez al., 1981; amongst others).

It can be shown that (2¢ 3) holds inside the assembly as well, and as such could be

used to define the average stress tensor for granular materials in static equilibrium.

2.2.1 Symmetry of the Average Stress Tensor

For an arbitrary particle, p, shown in Figure 2+2, static equilibrium translates into the

following system of vectorial equations:

TF=0

cer 2+ 4)

SEQF =0

cep

where the moment equation is written with respect to the center of the particle. The mo-

ment equations about any two arbitrary distinct points, O, and O,, are equivalent be-

17
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cause:

2(030—0-‘0) QFf = O,_02® Z_f‘ =0 (2+ 5)

cep cep

Written in a component form, the moment equilibrium equations become:

Z eulcfi = 0 i=1,3 (2¢ 6)

cep
where €, is the 3" order alternating tensor for calculating cross products of vectors as:
1 if (ijk) even
ey —1 if (ijk) odd (2-7)
0 if repeated indices occur
Even permutations of the triplet (ijk) are (123), (231), and (312). Odd permutations
are (132), (213) and (321).

Summing up the relationships in (2¢ 6) over all particles p in the system:

Z eulsfi =0 i=1,3 (2+8)

ceV
Elimination of €, from the above equation results in the first component moment

equation being re-expressed as:

> fils = Y fils (2-9)
ceV celV
Similarly, for any pair of indices (i, j):
1 Z fele = ! Z Fle (2¢ 10)
Vce v ! Vce v !
Or:
G, = O @ 11)

i8
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The defined stress tensor has all of the properties of the Cauchy stress tensor defined
for continua, for statistically homogeneous infinite systems of particles (Rothenburg and

Selvadurai, 1981).

2.3 Microscopic Characteristics of Granular Assemblies

During shear deformations, cohesionless granular materials exhibit continuous chang-
es in the evolution of interparticle forces and internal geometry. In particular, shear defor-
mations lead to changes in magnitudes and distribution of interparticle forces.
Simultaneously, there are changes in the number of load-carrying contacts and the distri-
bution of their normal orientations.

Both the number of contacts and their orientations are essential indicators of the state
of the fabric and should be monitored to measure their evolution during deformation. This

is done by determining some characteristic parameters.

2.3.1 The Coordination Number

The particle coordination number refers to the number of contacts a particle shares
with neighbouring particles. In the example shown in Figure 2+3, the central particle 4 has

a coordination number, v, = 4.

19
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(v4=4)

Contact Normal Vector

Tangent Contact Plane

Figure 223 Definition of the particle coordination number, the contact normal
vector, and the contact vector
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The assembly coordination number is the average number of contacts per particle, it
is therefore equal to the ratio:

Y=5 (2+ 12)

M is the total number of contacts in the assembly (twice the number of physical con-
tacts); N is the total number of particles in the assembly.

Results from numerous investigations show that the assembly coordination number is
strongly correlated to common measures of particle packing such as the assembly density
or void ratio (Smith et al., 1929; Oda, 1977).

The mechanical behaviour of an assembly of particles largely depends on the initial
number of contacts in the assembly. In general, an assembly with a high coordination

number is more stable and less mobile than an assembly with a low average coordination
number.

2.3.1.1 The Average Contact Density

The average contact density is defined by the ratio of the total number of contacts, M,

to the volume, ¥, of the assembly of particles:

m, = AI_;[ {2+ 13)
Parameters m, and y are related through the packing density p = V,/V and the aver-

age particle volume v, = V,/N as:

m, =

<3

(2 14)
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where V| is the volume of solids in the assembly.
The packing density p and the void ratio e are related by p = 1/(1 + e). Therefore,

the average contact density can be expressed in terms of the void ratio as:

Y

m, = m (2+ 16)

The contact density or the coordination number are limited descriptors of the state of
packing as they carry no information on orientation of interparticle contacts, shape or size
of particles.

Considering that intergranular forces are strongly dependent upon the orientation of
contacts, a complete description of load transfer in granular assemblies requires informa-
tion on the distribution of contact orientations. The unit vector normal to the tangent con-
tact plane at the contact point characterizes the contact orientation (Figure 2¢3).

Another important fabric element used to characterize the particle size and shape at a

particular contact point is the contact vector or the contact branch vector (Figure 23).

2.3.2 Contact Normal Orientations

The load-induced anisotropy in contact normal orientations is not confined to the
maximum and minimum load directions, but affects all directions of the space.

A convenient means of illustrating a possible bias in the contact normal orientation
distribution is by plotting the histogram of the proportion of contacts with normals falling
inside a series of adjacent orientation classes that partition the full orientation space (rep-

resented by the unit sphere).
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2.3.2.1 Spherical Partitioning of the Orientation Space

The unit sphere is partitioned into a finite number of group orientations to accommo-
date the finite number of contacts in the assembly. The most-common partitioning of the
orientation space utilizes meridian and polar curves in spherical coordinates with refer-
ence to a single coordinate system. Spherical coordinates provide the easiest way to per-
form the partition and the classification of contacts into their parent classes. A group of
orientations (g) in this system of coordinates is characterized by an average orientation in
terms of a unit vector #¢, and a class amplitude |Ans| .

Since the unit vector n# is defined by the pair of angles (a2, B#), the partition is often
made with respect to these angles, and constant angle intervals are selected; for example,
Aa. = AB = 10° (Figure 2-4a). This simple choice of angle intervals results in the parti-
tion pattern displayed in Figure 2+4b.

This simple and convenient partitioning, however, suffers from a serious drawback.
The overall class amplitude (solid angles) of the partition class |[An#| is not constant, but
varies with the position of the group. Therefore, during the grouping process, the large
classes are likely to contain more contacts than they would if the partition was spatially
uniform.

On the other hand, the smaller classes will contain fewer contacts. Since the averag-
ing of contact force and contact vector components over a class of orientation is affected
by the number of contacts, the importance of having equal size classes before grouping

contacts in classes is appreciated.

23



CHAPTER II: MICROSCOPIC CHARACTERIZATION OF GRANULAR MATERIAL BEHAVIOUR

(a)

(b)

T On [~ oo o

(c)

1.0
0.9
0.8

0.6
0.5
0.4

Normalized Patch Area

0.1
0

Polar

¥y

|dn|=sinBdBda |n§ = cosB
ng = sinasinf

|An3'=_‘-g|d'l| ng = cosasinf

1

ag H
Aa

Patch Number

4 § 6 7 8 9

0.7 |

0.3 ¢
0.2 |

10 20 30 40 S0 60
Azimuth Angle (o)

70 80 90
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The spherical partitioning with constant A and A is definitely not a good choice
since the range of variation of the class amplitudes is too large to allow an equitable con-
tact grouping process. The plot of |An%|/AaAB versus B in Figure 2+4c illustrates this
variation.

Analytically, |An#| is expressed as:
|Ang} = L sinBdBda = [cos(Bg-éiE)-cos(BhATB)]Aa (2 16)

If AB is small, then:
|Ans|/(AaAB) = sin(p2). (20 17)
The spherical partitioning is therefore characterized by large class amplitudes near

B2 = 90°, and very small class amplitudes towards ¢ = 0°.

2.3.2.2 Near Uniform Partitioning of the Orientation Space

In order to reduce the large scatter of orientation class sizes, a special partitioning was
developed which gives nearly constant class amplitudes throughout the orientation space.
The technique uses the classical partitioning of the unit sphere with polars and meridians,
but combines all three sets of spherical coordinates (xyz), (yzx) and (zxy) at once.

The method of partitioning is illustrated with reference to a region extending over 1/8
of the unit sphere, as shown in Figure 2+5a. The partition of this region is performed three
times. At each time, the meridians originating from one pole intersect the meridians from
another pole, generating, in the process, the partition of one third of the region with rectan-

gular patches.
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Figure 25 Nearly uniform partitioning of the unit sphere
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The third of the region (equal to 1/24 of the total surface area) is called “basic re-
gion”. It is partitioned into N x N patches, where N is the number of class intervals in
[0, ©/4] . In the example shown in Figure 2-5a, the partitioning is performed with N = 3.

The remaining sphere’s partition is executed in a manner similar to that of the basic
region and can be obtained using the symmetries of the sphere. Therefore, by using this
method, only 1/24 of the total sphere surface is effectively partitioned. The final result is
shown in Figure 25b.

The distribution of patch areas in the basic region was computed for several values of
the interval subdivision number N. Values of N = 3 and N = 4 provided the best parti-
tions with regard to uniformity of class sizes.

The plot in Figure 2+5c illustrates the variation in the normalized patch area for a
3 x 3 basic region. As can be seen, the distribution is nearly uniform.

The near uniform partitioning obtained for ¥ = 4 is used for histogram generation
throughout this thesis. With this choice, the three-dimensional space is covered by
24*(4*4) = 384 classes of orientation.

Considering that the number of physical contacts in a dense 1000 ellipsoid assembly
ranges between 3000 (near steady-state of deformation) and 6000 (densest possible state),
the average number of contacts per class will vary between 15 and 30. This range of num-
bers of contacts per class is low; however, it is still satisfactory for calculating meaningful
averages over groups of contacts.

The details of the technique and the method of locating and calculating class sizes, as

well as assigning contact normals to their parent classes, are described in Appendix A.
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The procedure of contact normal assignment in the near uniform partitioning was im-
plemented in the modified computer simulator TRUBAL to produce the plots of spatial

histograms presented throughout the study.

2.3.2.3 Contact Normal Orientation Distribution Function

Once the grouping is performed, the proportion of contacts in each group, AM?/M, is
calculated.

In order to eliminate the effect of class amplitude, a density of a probability type func-
tion is defined as:

AMz

E(n2) = M]_An8|

{2+ 18)

If there is any bias in contact normal proportions, it will show on the plot of the func-
tion £(n). The idea of representing the fabric of large systems of particles with a continu-
ous density of probability type function was first introduced by Horne (1965).

Figure 2+6 illustrates three typical profiles of E(n) showing isotropic, moderately
anisotropic, and strongly anisotropic distributions. If the distribution is isotropic, its shape
is close to spherical. With increasing anisotropy, the shape mutates to a “peanut” shape.

For a very large system of particles, the number of contacts is very large, and the par-
titioning of the orientation space in classes can be made finer and finer. The refinement
can extend up to a limit where the number of contacts per class is still reasonably large for
performing adequate averaging over contacts in the class.

As the classes of orientation become smaller, the class representatives become closer,

and E(n) tends to be continuous.
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Figure 2«6 Typical shapes of the contact normal orientation distribution
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In the limiting case of an infinitely large number of particles, any orientation in the
space will be shared by many contacts and E(#) is continuous. However, actual systems
are finite and moderately large, so that only a continuous approximation of the actual dis-
crete E(n) can be calculated to model the true distribution of contact normal orientations.
The modeling of complex distributions with simple continuous models helps eliminate
secondary effects, and emphasizes major trends in these distributions.

Equation (2¢ 18) can be written as:

AM?2 = ME(n®)|Ans| {2+ 19)

By summing up the above expression over all groups of contact normals, the follow-
ing identity is obtained:

ZE(nZ)IAnSI =1 (2- 20)
4

For an infinite system E(n) is continuous and the discrete sum is an integral over the

unit sphere:

LE(n)dn =1 (2-21)

E(n) can be represented by an infinite Fourier series of even order terms because of
its symmetry (E(-n) = E(n)). It is generally sufficient to limit the expansion to the sec-
ond-order terms to obtain a good approximation of numerically observed distributions.
But, there are cases where a fourth-order term is not totally negligible and must be taken
into account.

For most of the of physical experiments and numerical simulations performed with

moderately large specimens, including those reported in this study, a good approximation
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of the contact orientation distribution is provided by the second-order Fourier series:

1
E(n) = —(1 +a’n.n.
( ) 47t(1 iy ¥ ]) (. )

ay=a; a;=0

If all orientations of the space are filled by the same number of contacts, the distribu-
tion is uniform and isotropic. In this case, E(n) = 1/4n and a; = 0. If on the other
hand, the classes are disproportional and exhibit favored contact normal orientations, the
distribution is anisotropic, and aj; # 0 . For this reason, aj, is called tensor of anisotropy.

Isotropic distributions are usually encountered in assemblies under isotropic load con-
ditions. Anisotropic distributions characterize either a state of initially anisotropic assem-
blies, due, for instance, to some depositional history (inkerent anisotropy), or initially
isotropic materials which became anisotropic to accommodate an applied anisotropic load

(induced anisotropy).

2.3.2.4 The Fabric Tensor

Information about the principal directions and magnitude of anisotropy in contact
normal orientations are obtained from the tensor of anisotropy a; . This tensor must be de-
viatoric, i.e., af; = 0, because by writing £(n) in the form expressed in (2¢ 22), the term
aj;n;n; represents a deviation from the isotropic state.

The tensor aj; is symmetric, i.e., aj = a;. This is a consequence of the symmetry of
another second-order tensor called the fabric tensor; defined by the following discrete

sum:
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R, = lannf (2+23)
Mce v
The fabric tensor was first introduced by Satake (1978) as a measure of changes in the
fabric of granular materials. This parameter emerges naturally as a measure of stress in an
assembly of particles characterized only by an induced anisotropy in contact normal orien-
tations.
For simplicity, all contact forces are assumed to be constant in magnitude (this hap-
pens for example if the system of particles undergoes an isotropic hydrostatic pressure).
They are assumed to act on smooth mono-size spheres of radius /° (no shear components).

In this case, contact vectors and contact normal vectors are colinear:

;= onf
fi=F 2020
I = b
The stress tensor in (2¢ 3) simplifies to:
o, = @Z nenf (2+ 25)
V ceV
Or:
G, = ml°fR, (2+ 26)

Note that, in the general case, the stress tensor is not directly proportional to R, but
depends on other tensorial quantities representing anisotropies in contact forces and in

contact vectors.
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2.3.2.5 Measurement of Anisotropy in Contact Normal Orientations

The model of E(n) in (2¢ 22) is strictly valid for infinite systems of particles, but it
can be used to approximate finite systems.

By multiplying the left and right hand sides of (2+ 18) by ngn# (for the nine possible
combinations of pair of indices (4, ) ), nine new equations for the group (g) are obtained
as:

AMzngng = ME(n#)ngng|Ans| (2-27)

By summing the last expression over all groups in the assembly:

ZAMsnfnf = MZE(ns)n,snflAnxl (2- 28)
4 4

By definition of an orientation group:

AMeEnsng = Zn,—‘nf {2+ 29)

ceg

Therefore:

D AMzngng = "> ninf = > ning (2 30)

4 g c€g ceV
The comparison of equations (2¢ 23), (2¢ 28), and (2+ 30) yields:
R, = ZE(nS)nfanAnSI (2+31)
g

For an infinite assembly of particles, the discrete sum in (2¢ 31) is replaced by a con-

tinuous integral over the unit sphere, thus:

R, = LE(n)n,-n,dn (2¢32)

Finally, by substituting the model expression of E(n) in (2¢ 22) and integration:
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, = 15p
a; = >R 2+33)

where R;; = R,;-§,/3 stands for the deviator of the fabric tensor.

Based on the above relationship, the symmetry of a;; is a consequence of the symme-
try of R;;. The relationship is also valuable for estimating the components of the tensor of
anisotropy a;; for finite systems such as those used in numerical simulations, where R
can be measured by knowing the full state of contacts.

A similar relationship was used by Bathurst (1985) for model estimation of contact

normal orientation distribution for numerically simulated plane systems of disks.

2.4 Distribution of Average Contact Forces

Two rigid particles, 4 and B, in contact at some point, c, are shown in Figure 2¢7.
Two forces with equal magnitudes and opposite directions are generated at the contact
point. If n is the contact normal unit vector exterior to particle A4, and f is the vector force
representing the action of particle 4 on particle B, then —n is the unit vector exterior to
particle B and —f represents the action of particle B on particle 4. To the pair of contact
normals (n, —n) is associated the pair of contact forces (f, —f).

The following symmetries can be derived from the above association:

fi=n) = ~f(n)

S'(=n) = (-f)(-n;) = f(n) 2+ 34)
Si(=n) = —fi-(=n) = ~(f~f'n;) = —fi(n) i=1,3
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Figure 227 Normal and tangential contact force components
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where fn; and f} (i=1, 3) are the normal and tangential components of the contact force

vector, respectively:

(2-36)

{f' = Sl
fi=fi-fn  i=1,3

The above symmetries at individual contacts are transmitted to averages over groups

of contacts of similar orientation.

The distribution of average normal contact forces /(1) must be symmetric, thus it
can be described by a truncated Fourier series of even orders. The expansion up to the sec-

ond-order term can be written as:

(2+ 36)

{f*(n) = P(1+agnn,)

az=a; a; =0

The distribution of average tangential force components f‘(n) (odd) can be ap-

proached by a truncated Fourier series of odd orders such as:

{f,’(n) = f(aln,—ayn.nin;)  i=1,3 (2+37)

a;=aj, a;=0

These models were first formulated based on purely physical considerations by Roth-
enburg (1980). They have been validated later by means of numerical simulations
(Bathurst and Rothenburg, 1988; Rothenburg and Bathurst, 1993; Chantawarangul, 1993).

The meaning of # stems from its expression as:

F= %t I. Fi(n)dn (2¢38)
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J° represents the normal contact force average over groups of orientation when these
groups are given an equal weight. £ is different from the genuine assembly average nor-
mal contact force f2 = (Zf¢)/ V. They become equal if the contact normal orientation dis-

tribution is isotropic.

2.4.1 The Average Normal Contact Force Tensor

By analogy to the fabric tensor, an average normal contact force tensor, F7;, can be

defined as:
l —
Fj = o Zg f*(n#)nn|Ang| 2+ 39)

The average normal contact force tensor can be related to the micromechanical defini-
tion of the stress tensor itself.

Consider an ideal assembly of mono-size smooth spheres of radius /2. The assembly
is loaded by a homogeneous applied stress in such a way not to disturb the distribution of
contact normals existing in the assembly before loading. Another possibility is that con-
tacts in the assembly be cemented (case of bonded particles). If initially the fabric is iso-

tropic, then the average stress tensor reduces to:

lo
oy = 52 Jfanins (2+ 40)

ceV

After grouping in contact classes, the following expression is obtained:

8

G 4n

Or:
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G, = mJl°Fm" (2°42)
The relationship in (2- 42) reveals the physical meaning of the average normal contact
force tensor as a measure of the contribution of the anisotropy in average normal contact

forces to the stress tensor.

The continuous expression of F? for large systems is:
Fp=L [, F(mynndn (2 43)
7 4nde !

By substituting (2 36) into (2¢ 43) and integrating, the following expression is ob-
tained:

b= QQ (2° 44)
2 p
where F' = Fii - (P/3)5,.
By virtue of its definition as a discrete sum, F} can be calculated for finite assemblies
of particles and used to approximate the normal force anisotropy tensor a;} through the re-

lationship in (2¢ 44). The same relationship proves the symmetry and the deviatoric nature

of ay.

2.4.2 The Average Tangential Contact Force Tensor

The same ideal assembly of spheres used before is considered again. The particle sur-
faces are assumed to be rough enough to develop shear forces at contact points with other
particles. The contact force vector is decomposed as the sum of a normal and tangential

components as:

= fim+ft, (2- 45)
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Consequently, the stress tensor is decomposed as:

o, = %—,Z fengns + i—/z fenfs (2+ 46)

ceV ceV
The contribution of tangential contact forces to the stress tensor is:

=£

ol 2> ey (2 47)

Or, after grouping into classes of orientation:
ol = 'Z—'PZf—,'(ns)anAnSI (2¢48)

T 4
Thus:
G = mJl°F} (22 49)
where:

F = le—tgf—,-’(nS)nflAnsl (2¢ 50)

F}; is called the average tangential contact force tensor. The expression in (2 49) il-
lustrates well its physical meaning.
For large systems of particles, F7; can be calculated by a continuous integral over the

unit sphere as:
F: = —1 J. j?(n)ndn (2= 51)
Y 4’ !

Substituting of the expression in (2¢ 37) into (2¢ 51) and integrating yields the average

tangential contact force anisotropy tensor a; in terms of F; as:
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t

ay = st (2+62)
f

This relationship is the basis for extracting components of the anisotropy tensor a;
from simulated data.
F}; is deviatoric because of the orthogonality between the tangential force and the

corresponding normal vector, expressed as:

Fi = #L Sfi(n)ndn= 0 (2 63)

2.4.2.1 Symmetry of the Tangential Stress Tensor
If the symmetry of the tangential part of the stress tensor in (2 47) is proven, then the
symmetry of F?, will be implied by the relationship in (2 49).

By referring to equations (2+ 46) and (2+ 47), the tangential component of the stress

tensor is:
o = C0;—0Oj} (2¢ 64)
where:
. epe
on = I_/; ‘;ff,n,- n (2- 56)

o} is symmetric, therefore, of;, being the difference of two symmetric tensors, is
symmetric.

In the general case of non-spherical particles, the expression of the normal part of the
stress tensor cannot be reduced to the simple symmetric form in (2 55) because the con-

tact vector and contact normal vector are not colinear. It is possible to decompose the con-
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tact vector /¢ into a normal component /$n; and a tangential component /5, , and write the

normal part of the stress tensor as:

of = p S filintn + 5" fentle, -0

ceV ceV

The skew symmetric part of the tensor 6} can be simplified as follows:

1
Ci—Ci = I—,Zfﬁ(nﬂ:j—nflg,-) (2 67)

ceV

The quantities (n7l¢, — nfl¢,) (for i =) represent the components of the cross product
of the contact normal vector and the contact vector. If the two vectors are colinear, the
cross product is zero and the normal stress tensor is symmetric. If they are not colinear, the
overall sum might not vanish. However, in the case of the tested assemblies of ellipsoids
used as a model for this study, the angle between the contact vector and contact normal
vector remain very small in average, throughout the test. The overall sum is also expected
to remain negligible. The normal stress tensor in this case is practically symmetric, and so
are the tangential stress tensor and the average tangential contact force tensor F, .

Finally, because of the relationship in (2¢ 52), the symmetry and the deviatoric prop-
erties of the average tangential contact force tensor F; are passed on to the average tan-
gential contact force anisotropy tensor aj;. The latter is also calculated from the former

(directly measurable from simulation data)
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2.5 Influence of Fourth-Order Terms on the Quality of
Approximation by Fourier Series

The study of the influence of higher order terms on the quality of the approximation
was motivated by the observed differences between measured and approximated distribu-
tions using second-order Fourier series from results of simulation using ellipsoids. These
differences can be major ones, especially for the particular case of average tangential con-
tact force distributions. Improved approximations can be achieved by adding fourth-order
terms to the expansion by Fourier series.

The effects of higher order terms on the approximation of the various observed distri-
butions are illustrated for a simulated assembly comprising a 1000 ellipsoids. The assem-
bly was tested from an initial hydrostatic state of stress by increasing the applied vertical
stress while maintaining the mean pressure constant. All illustrations on subsequent fig-

ures correspond to a state of the assembly at about 20% axial deformation.

2.5.1 Fourth-Order Fourier Series Approximation of Contact Normal
Orientation Distribution

The fourth-order model for the contact normal orientation distribution is as follows:

1
E(n) = —(1 +ainn,+ b, nnn
( ) 475( 1i 5 k! '] Itnl) (2'58)

irj = ajrl bi’jkl = b;(ljkl)

The fourth-order anisotropy tensor 4}, is assumed to be symmetric with respect to all
permutations ©t of indices (ijk/).

The procedure to extract the components of this fourth-order tensor from observed
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data on simulated samples of particles resembles the one used to extract second-order
anisotropy tensors.

First, the difference between the actual density of probability function E(n) and the
second-order approximation is evaluated over all groups of contact normal orientation.

The difference can be modeled by the purely deviatoric fourth-order term as follows:

AE(n) = 4-l’n(bi’jklninjnknl)

(2- 69)
b = by
The second and fourth-order fabric tensors are defined as:
AR, = ZAE(nf)nfnf
£ (2 60)
ARijkl = ZAE(ng)nxgnan”f
£
and for infinite systems:
AR, = _[ AE(n)nndn
{ " (2+ 81)

ARy, = LAE(n)n,-njn,,n,dn

Substituting of AE(n) in (2¢ 59) into (2¢ 61), integrating and rearranging, lead to the

following expression of the fourth-order anisotropy tensor:

Ty = ;AR},“—(S.AR')[,-,,,,, (2+62)
where (6.AR');;:y is the symmetric part of the fourth-order tensor obtained as the dual
product of second-order tensors, §,; and AR, ie.,

(B-AR)yjen = % { 0;AR,+0,AR;;+0,, AR, +3,AR;;
+ aiIAR}k+8jkAR;'I }

(2= 63)
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where AR;; and AR}, are deviatoric tensors defined by:

ARy = ARy- 1—15(8,-, u+t 0,0, +08,0,)

The procedure was applied to produce the fourth-order approximation of the contact
normal orientation distribution for the 1000 ellipsoid assembly as described earlier (Figure
2-8a).

The plots show a noticeable improvement of the approximation from the second-or-
der model to the fourth one. In addition to the change in shape of the calculated distribu-
tions, a slight rotation of the major principal direction of anisotropy is introduced by the

fourth term.

2.5.2 Fourth-Order Fourier Series Approximation of Average Normal
Contact Force Distribution

Similarly to the contact normal orientation distribution, the average normal contact
force distribution can be represented by a fourth-order truncated Fourier expansion of
even order terms. The difference between the actual distribution and the second-order
model can be described by a fully symmetric fourth-order anisotropy tensor as:

{Af'(n) = f’(b?jkl n;n;n.n;) (2¢ 85)

bZ’kl = b;( ijkl)

where ®t can be any permutation of indices (ijkl).
The extraction of the fourth-order tensor components from simulation data follows

the same procedure described for contact normals.
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Figure 228 Measured and approximated distributions
(a) Contact normal orientation

(b) Average normal contact force
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Measurable second and fourth-order normal contact force tensors are defined and re-

lated to the components of the fourth-order anisotropy tensor. They are defined by:

l -—
AFr = 4—ﬂ:gA.]"'(néf)n;"n}?

I _ (2- 66)
,-’;-H = E;Af’(ng)n}gnfnﬁnf
For large systems, they are continuous integrals:
AF" = 1 I Af'(n)n,—n dn
Y 4qmla !
(2+ 67)

1 —_
Tk = HLAf' (n)n;n,n.nidn

The result of the substitution of the model approximation of Aj—"(n) in (2¢ 65) into (2¢
67), integration and rearrangement, is an expression of the fourth-order tensor similar in
form to (2¢ 62) for the contact normal orientation distribution, where AR;; is replaced by
AFZIP, AR,y by AF7,[f, and, by by biu -

Figure 2-8b shows the two approximations of the average normal contact force distri-

bution by second and fourth-order series. The improvement is noticeable but not dramatic.

2.5.3 Fourth-Order Fourier Series Approximation of Average
Tangential Contact Force Distribution

The extension of the second-order model for tangential forces is not as straightfor-
ward as in the case of contact normals and average normal contact forces. The reason is
that the second-order approximation for tangential forces is not merely due to any truncat-
ed Fourier series expansion, but one that has special geometrical and physical properties.

Nevertheless, a possible extension of the model could be:
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{ﬁ(n) = Pasn-aymmn) + afitn)  i=1,3 -

a;, =a, a =0

where:

{ Afi(n) = .F (bi'ju nngy - bfyningmingn;)  i=1,3 2+ 69)

b = bryen
The extended model complies with the geometrical properties of tangential forces:
skew-symmetry, ],-’(—n) = —ﬁ(n); orthogonality with the normmal contact vector,
f-,?ni = 0; and a zero average value over groups of orientation, J' j'(n) = 0.
The anisotropy tensor b}, can be calculated from simulation data as follows:

First, average tangential contact force tensors are defined for finite systems as:

e = | 7
AF; = 4—K;Aj}"(mf)n}f

1 (2-70)
AFYy, = rzAﬂ("x)nfnf”f
T 8
They are extended to infinite systems as:
AF = 4‘l'n_[. Afi(n)n,dn
2-7)

1 -
AF%y, = 21_1:-[" Afi(n)nn.ndn

After substituting of the model approximation in (2¢ 69) into (2¢ 71) and integrating,

the following expression of the fourth-order anisotropy tensor by, is obtained:

47



CHAPTER II: MICROSCOPIC CHARACTERIZATION OF GRANULAR MATERIAL BEHAVIOUR

t = QAF:!H_‘_E(S AFE1+5_EAF}I+5 AF&J
2 “ e

ijikl _F’ 3| O ﬁ i~
2-72)
-3_5(8,,,”;"'+a,,“f"*+8,,‘35ﬂ

The application of the method to the state of tangential forces in the numerical sample
of ellipsoids produced the fourth-order model approximation shown in Figure 2+9.

As can be seen, a dramatic correction is provided by the fourth term; this must be bet-
ter understood and interpreted physically.

Tangential forces play a major role in failure mechanisms that take place in granular
materials. Phenomenological models predicts that failure propagates along a certain plane
of maximum shear. From the micromechanical point of view, the failure plane(s) should
be parallel to the orientation of space characterized by the highest average tangential con-
tact force.

The three-dimensional plots of the average tangential contact force distribution are
not suited to recognize some of the changes introduced by higher order terms. For this rea-
son it was decided to transfer the plots into the plane.

By integrating the average tangential contact force radially over the full range of polar
angles o, i.e., [0,27], a plane distribution can be obtained which is more suitable to il-

lustrate the changes introduced by the fourth term.
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2.5.4 The Average Radial Tangential Contact Force Distribution
The radial tangential force at an individual contact is defined as shown in Figure
2-10a. For an arbitrary group of contacts of normal vector n#, the radial component of the

average tangential contact force is given by the following dot product:
f(n8) = finr = f'cosas + fisinas @2-73)

where the radial unit vector n” has components: (0, cosa?, sinaf).

The average radial tangential contact force for a finite system is defined by:
= _ 1
S/ (B®) = ﬁgﬂ(a& B#)Aa (2 74)
For an infinite system, it is defined by a continuous integral as:
F®y =L [ A, B)der (2+76)
’ 2xdo

To measure the impact of the second and fourth-order 3D-models for average tangen-
tial contact forces on the 2D-distribution of average radial tangential contact forces, these
are calculated in the two cases and compared to numerically measured distributions inside

simulated assemblies of ellipsoids.

2.5.4.1 Approximation of the Average Radial Tangential Contact Force Distribution
Substitution of (2¢ 73) into (2* 75) results in the average radial tangential contact

force becoming approximated (in the case of a finite system) by a continuous integral as:

fB®= %J:n(/—'z‘(a, B)cosa + f2(ct, B)sina)da {2+ 76)
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(a) [ ng=cospe
{ n§=cosafsinp#
| nf=sinafsin B8
(nr=0
{ ny=cosa®
| nl=sinas
f; = (f.n’)n”
(b)
S(B)/f° (measured) /(B)/f (calculated) from: (B)/f°(calculated) from:
2% order model for f*(n) 4" order model for f1(n)
) -
f3(B)/f° (measured)
l\%?lmh::n\ '/

(B )/ (calculated) from:
4"‘ order model for f*(n)

‘ WAL
Lalculated) from.
2% order nlodel for f'(n)

Figure 2010 2-D Average radial tangential contact force distribution
(a) Definition of the radial force

(b) Measured and calculated distributions (in separate graphs)
(c) Mlustration of the change in maximum direction
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Substitution of the second-order approximation model in (2¢ 68) into the above inte-

gral and integration yields:

@ = 3at,(sinp + sin3pB) @

f, 8

The fourth-order approximation model in (2¢ 68) and (2¢ 69), yields:

@ = —2aj, (sinB+sin3B)
I3 (2+78)

+3(D\-D;)sin B+ (3D,-D,)sin3B+3(D,+D,)sin 5B

where;

4 ¢ t [ 4 (2. 79)
DZ bll22 + bl‘.’lZ + b|221 - bzzn

{Dl = biy3 + bl + bhia — bl

The validity of the obtained expressions is limited to the case of an axisymmetric load
pattern (e.g., 0,>0,=0;) such that the generated contact force distributions are also axi-
symmetric.

The results are illustrated by plots of the different distributions (measured and calcu-
lated) in polar coordinates in Figure 2¢10b and Figure 2+10c.

The fourth-order term seems to affect both the size of the distribution and the direc-
tion of the maximum average radial tangential contact force. Note that the shift in the
maximum direction could hardly be identified by comparison of the 3D-histograms in Fig-
ure 29

The expression in (2¢ 78) shows that the fourth-order term is not a mere higher order

term involving (sinSP) alone, as would be expected at first, but it also includes lower or-
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der terms such as (sinf8) and (sin3pB).

The correction affecting the coefficients of the lower order terms (sinf) and
(sin38) is responsible for the adjustment of the distribution size to the actual size of the
measured distribution (Figure 2+10b). On the other hand, the shift in the direction of the

maximum average radial tangential contact force is due to the higher order term (sin5p)

(Figure 2+10c).

2.6 Average Stress Tensor for Infinite Systems

The definition of the stress tensor as a discrete sum over individual contacts in a large
system of particles does not exhibit the biases in contact force and contact normal distribu-
tions. These will naturally emerge once spacial variables in the stress equation are aver-

aged over contacts in a same group of orientation (g) as:

c, = ZZﬁlf/V (2 80)

g ceg
If f&, 1? , and f—lf define averages over contacts in an arbitrary group (g) of: the con-

tact force, the average contact vector, and the average dual product of the two, respective-

ly; then:

F = (Y fo/AMs

ceg

BB = O In/AME (2+ 81)

ceg

[t = (Zﬁlf)/AMs

ceg

where AM? is the number of contacts within the group.

Therefore:
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G, = ZAMx(f,»_Ifl 12 (2- 82)
g

Now by assuming that the distribution of average contact forces f& and the distribu-
tion of average contact vectors i,;f are statistically independent, i.e., (f/,)¢ = f-gfl}z , then the

stress equation can be re-written as:

o, = ZAMs(ZRI?/ 12) (2- 83)
4

The assumption of independence of the average contact force and the average contact
vector distributions has always been supported by simulations in two dimensions, using
various particle shapes (such as disks, ellipses, polygons), and in three dimensions (using
spheres). The simulations with ellipsoids also support the assumption.

Substituting of the expression of AM# in terms of the density function E(n#) in (2¢

19) into the above equation gives:

oy = m,> fRISE(n®)|Ans| (20 84)
g

As the assembly of particles increases in size and the distribution of contact normals
becomes denser, smaller size orientation classes are considered for the conceptual group-
ing. At the limiting case of an infinite assembly of particles, any unit vector # is a class
representative.

Rothenburg (1980) shows that the sum defining the stress tensor can then be extended

to a continuous integral over the unit sphere as.
o, = m,[ f(m)l(n)E(n)dn (2-85)

where m, is the contact density for an infinite system, i.e.,

54



CHAPTER II: MICROSCOPIC CHARACTERIZATION OF GRANULAR MATERIAL BEHAVIOUR
m, = lim—= (2¢ 88)

To develop further the obtained stress equation, the models for the distributions of the
average contact force fi(n), contact vector 7,(n), and contact normal orientation E(n),
must be substituted into (2¢ 85) and the result integrated. The shape of the average contact
vector distribution has not been determined yet. Its determination and approximation is
discussed in Chapter 6 when analyzing the stress-anisotropy relationship for simulated as-

semblies of ellipsoids.

2.7 Conclusions

In this chapter, the general microscopic approach to characterize the mechanical be-
haviour of assemblies of cohesionless particles, based on the pioneering work of Rothen-
burg (1980), was reviewed. Several additional elements in relation to assemblies of
ellipsoids were introduced:

1. A new method of space partitioning was utilized for classifying contacts with
regard to their contact normal orientation. The method is based on a more uni-
form size of orientation classes instead of the disproportionate class sizes
generated by the regular partitioning with a single set of spherical coordinates.

2. The second-order approximation of spatial distributions with truncated Fourier
series was extended to include a fourth-order component represented by a

fourth-order fully symmetric tensor of anisotropy.
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3. The application of the fourth-order Fourier series expansion to approximate dis-
tributions of the contact normal orientation and average normal contact force
showed a slight improvement in comparison with the second-order approxima-
tion. A significant improvement, however, was obtained for the distribution of
average tangential contact force. This improvement was transferred into the
plane by comparison between measured and calculated average radial tangen-
tial contact forces (by second and fourth-order approximations). It appeared
that both the size of the distribution and orientation of maximum average tan-

gential contact force are corrected by the fourth-order term.
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CHAPTERIII: THE DISCRETE ELEMENT METHOD
AND THE MODIFIED PROGRAM
TRUBAL

3.1 Introduction

Discrete Element Models is a term describing the family of models that simulate the
behaviour of a collection of dynamic solid elements interacting with each other through
inter-element forces. The Discrete Element Method (DEM) is one of the various numeri-
cal techniques used to update the position of elements when displaced as a response to
some applied external stress or strain increment.

The method was first applied in the field of Rock Mechanics under the name of Dis-
crete/Distinct Block Method (DBM) to simulate the progressive failure of rock slopes
consisting of two-dimensional rigid blocks (Cundall, 1971). It was then modified to simu-

late the mechanical behaviour of granular materials using two-dimensional assemblies of
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disks (Strack and Cundall, 1978, Cundall and Strack, 1979a, b, c). The method was coded
in a Fortran program called BALL.

A three-dimensional version of BALL, named TRUBAL, was developed by the au-
thors of BALL (Cundall and Strack, 1979¢c; Strack and Cundall, 1984). The 3-D program
TRUBAL models the mechanical behaviour of assemblies of spheres.

The structure of TRUBAL resembles that of BALL. However, the program TRUBAL
substitutes the original rigid boundaries used in BALL with periodic boundaries, where
opposite faces of a sample are numerically connected. Linear and Hertzian contact laws
are available to model contact interactions. A stress servo-mechanism is implemented in
the program, allowing a variety of stress loading paths to be applied, such as, a true triaxial
test with a constant Lode parameter, a conventional triaxial test at constant mean pressure,
and many more; a 2-D mode is available to test planar assemblies of disks, for example, to
replicate a plane stress or strain condition. Details and discussion of these various features
can be found in Cundall (1987, 1988).

The program TRUBAL was extended to allow micromechanical data to be extracted
(Chantawarangul, 1993), and was modified again here to be used for an ellipsoidal shape
of particles. The major challenge encountered in the latter task was the implementation of
a robust scheme for inter-particle contact detection. Since the mechanics of solid non-
spherical objects are different from ideal spheres, the mechanical routine that performs
motion and force calculations was also re-written for the new shape of particles.

In its current state, all features of the original TRUBAL can be used with the new

shape except the Hertzian-contact law and the 2-D mode. The Hertzian contact law was
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studied before and showed to yield results which are similar to those obtained using the
linear contact law (e.g., Chantawarangul, 1993; Mirghasemi 1994). For the 2-D mode,
two-dimensional codes with elliptical particles exist and were extensively and successful-
ly used to analyze the peculiar behaviour of plane systems (e.g., Rothenburg and Bathurst,

1992).

3.2 The Discrete Element Method for Ellipsoids

As mentioned earlier, DEM updates the state of an assemblage of dynamic solid parti-
cles undergoing an external deformation. In TRUBAL it is simulated by applying to the
volume of the sample a homogeneous strain rate tensor. Since the process is dynamic,
TRUBAL uses a time domain algorithm to perform the repositioning of the particles at
each increment of time. First, the equations of motion of each particle are solved.
TRUBAL employs an explicit time, finite-difference technique to discretize and integrate
Newton’s equations of motion. The contact displacements are obtained by integrating the
relative velocity vectors between pairs of contacting particles, and are used to compute the
new contact forces according to the adopted law of contact force-displacement. Finally,
the new contact forces are input into the equations of motion to reposition the particles for
the next time step. The procedure is called “mechanical cycle”, or “cycle”, and is repeated
at each increment of time until the end of the simulation. The loop of mechanical calcula-

tions (cycle) is illustrated in Figure 3¢1.
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LAW OF MOTION CONTACT LAW

DISPLACEMENTS

Figure 3+1 Cycle of mechanical calculations used in DEM
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The implementation of DEM in the modified version of TRUBAL for ellipsoids dif-
fers in a number of aspects from the one originally used for spheres (Cundal and Strack,
1979c). A degree of complexity is added due to the difference in shape from ideal spheres
for which some simplifications exist. The motion and force calculations are particularly

changed as a consequence of the change in shape (e.g., Hart er al. 1988).

3.2.1 Contact Force Calculation

Let A and B denote two ellipsoids in contact with each other at some location point C.
Let n be the normal vector to the tangent contact plane as illustrated in Figure 3+2.

If both the translational and the rotational velocities of the two particles are known
from integration of equations of motion at a previous time-step, the contact velocity, de-
fined as the velocity of particle B relative to particle 4 at the contact location C, is calcu-
lated as:

V, = [ +€,08C,—B)] - % + £,0/(C,- 4] (3+1)

where A and B are the position vectors, and, X* and x? are the translation velocity vec-
tors of the centroids of particles 4 and B, respectively; ®/ and o/ are the corresponding
angular velocity vectors; and €;; is a third rank permutation tensor used to express the

cross product of spatial vectors.
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I Tangent Contact Plane

A

Figure 32 Two ellipsoids in contact
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The contact displacement increment vector is calculated as:
AU; = VAt 32)
It can be resolved into normal and shear components along the plane of contact. The
normal displacement is given by:
AU = AUn, @33)
The shear displacement increment vector is calculated as:
AU = AU,-AUrn, (3-4)
The contact displacement increments are used to calculate the elastic contact force in-
crements through a linear contact force-displacement model as illustrated in Figure 3¢3a.
The normal contact force increment, taking compressive forces to be positive, is giv-
en by:
AF" = K, AU (3-6)
The shear contact force increment is given by:
AF; = -KAU; (3-8)
where K, and K, are the normal and shear contact stiffnesses, respectively.

The total normal and shear contact force vectors are updated as:

{F” « Fn+ AF~
@7)

F « Fs + AF:
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(a)

Overlap Distance

(b)

Fe F?
A ¢ .k\ A
A /\
Kn A" = ZAU" K‘
A, = D AU,
=>4, (8,) > A,

Figure 3.3 Linear contact model
(a) Particle-to-particle interaction
(b) Normal and shear contact force-displacement laws
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The normal contact force can be calculated directly from the value of the normal
overlap distance at a contact point between numerical particles, 8,, (Figure 3+3a). This
method is easier to implement for ellipsoids and was used in preference to the incremental
method. The linear contact model can be expressed as:

Fr=K\5, (3-8)

Once the normal and shear contact forces are updated, they are adjusted according to
the contact constitutive relations plotted in Figure 3<3b.

At present, TRUBAL employs a Coulomb friction law with no tensile strength. The
maximum shear force is calculated by:

Fie = c+Frtand, (3-9)
where c is the contact cohesion, and ¢, is the inter-particle friction angle.

When updating the shear contact force vector, the incremental rotation of the contact
normal vector 7 must be taken into account. The vector representing the existing shear
force in global coordinates F* must be rotated prior to adding to it the increment of shear
contact force. The following correction applies:

Ff  (F; —€u&imaf;n3n,) (3+ 10)
where n°¢ is the contact normal vector at the previous time-step (Figure 3+4). The sym-
bol, « , means “replaced by”.

If the absolute value of the shear force F* = (F$F?)'/? is greater than F%,, , the shear

force is reduced to this maximum value:

F! e F{(—I'j'_',;ﬂ) (3 11)
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old
n

Tangent Contact
Plane

Sq (rotated) = F:, +dQ ® F3,

Id
2 tn  @nQFs,

[F:u]: (rotated) = [F3,], - eijkekmn[FgldLn:rldnn

Figure 3»+4 Incremental rotation of the shear contact force
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The total contact force vector representing the action of particle 4 on particle B can be
calculated, in global coordinates, as:
F¢ = Frnf + F? (3 12)
where n° is the unit contact normal vector exterior to particle 4.
The body force of a particle is equal to the vectorial sum of the contact forces acting
at the surface of the particle. The body moment vector is the vectorial sum of the moments

of contact forces calculated with respect to the particle’s centroid; therefore,

For A:
FA e Ft-F¢
(3 13)
M2« M? —€,(C,-A)F;
For B:
FB « FB + Fr¢
3+ 14)
M? « M? +8ijk(cj —Bj)Ff

3.3 Motion Update

Newton’s equations of a rigid body motion are used to describe the motion of parti-
cles inside a strained assembly. They consist of a set of equations representing the transla-
tional particle centroid and rotational motion.

The centroid translational motion is described in the global coordinates by:

. . _F,
EtoX = =+g, (3¢ 18)
m

where X denotes the acceleration vector of the particle centroid; a, is a viscous (mass-
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proportional) damping constant for translational motion; F is the total force acting on the
particle’s centroid (i.e., the sum of all contact forces acting on the particle); m is the parti-
cle’s mass; and g is the gravity acceleration vector.

The undamped rigid body rotation is described by:

Lo+ (-h)e0, = M,
Izd)2+(11 -I;)OJ|CO3 =M, {3+ 16)

[3033+([2‘[|)(°2®| M3

The above equations are known as Euler’s equations of rigid body rotation. They are
referred to the principal axes of inertia of the particle; &, is the angular acceleration vec-
tor; @; is the angular velocity vector; M is the torque vector or the body moment vector;
and /, are the principal moments of inertia of the rigid body.

For an assembly of particles evolving between quasi-static states, the particle rota-
tional velocities are such that the quadratic terms ©,®, can be neglected and therefore
eliminated from the expression of Euler’s equations in (3¢ 16). The simplified system of
equations becomes linear and can be referred to the global coordinates by a simple matrix
transformation from the local particle principal axes to the global coordinate axes.

Without this simplification, the system of equations can still be treated by using an
elaborated explicit finite-difference discretization, but the numerical integration takes
more calculation steps to update particle positions. A comparison between the results of
solving the simplified and full equations showed that no substantial gain in the quality of
the results is obtained by solving the full equations. Therefore, in order to save in calcula-

tion time, the simplified equations are solved by the modified program TRUBAL.
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Relative to the global axes, the simplified Euler’s equations can be written in the fol-
lowing tensorial form:
Lo, = M, (3« 17)
The inertia tensor /[, is calculated from its expression in the principal axes of inertia
I} as:

[u = Rl klRJl (3- 18)

where /7 for an ellipsoid of mass m and principal radii (a > 5 > ¢) is given by:
br+c2 0 0
Iy = gm 0 a*+c: 0 (3¢ 19)

0 0 a*+b?

and where R, is the orientation matrix of the ellipsoid defined in global coordinates by:

=

oy

i

QN 8
—“th T =

QN 0
120, NN~ N

Q
Wiy W i

oQ

)

(3¢ 20)

)
)

Here, -, €/, and €° are unit vectors in the direction of the long, intermediate, and
short axes of the ellipsoid, respectively. The set of vectors (e, ¢/, e°) with the centre of
the ellipsoid define the local coordinate system (Figure 3¢5).

To complete the formulation of the equations of rotational motion solved by the pro-
gram, a viscous damping term, similar to that considered for translational motion, is added

to the simplified Euler’s equations in global coordinates:
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Figure 35 Orientation of an ellipsoid
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0;+ oz, = I}'M, (32 21)

where /;;' denote the inverse of the inertia tensor in global coordinates, and o, is a rota-

tional damping constant coefficient.

3.3.1 Damping

In order to model a quasi-static process using a dynamic method such as DEM, it is
necessary to provide some means to absorb the excess kinetic energy within the system.

A viscous damping (represented by the pair (a;, az)) is added into the equations of
motion to achieve convergence to a steady-state equilibrium in the system.

The type of viscous damping used can be physically represented by a dashpot con-
necting the particle’s center mass to a fixed frame of reference. It acts on the absolute ve-
locity of the particle through an artificial body force which resists its motion. The
combined effect of individual particle dampings on the system is similar to that of an as-
sembly fully immersed in a viscous fluid.

Damping in granular materials is a real phenomenon. It is the global response of the
combined effect of all mechanisms of energy dissipation present in the system. These
mechanisms are complex and difficult to model, especially for discontinuous systems.
Therefore, instead of representing the phenomenon in its complexity, simplified methods
are used to account for the global damping response. Artificial damping is used for this
purpose.

The program TRUBAL uses a “mass-proportional” damping, called “Rayleigh”

damping. The damping coefficients (multipliers of velocities) for the translational and ro-
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tational motions are proportional to the mass, m, and moment of inertia, [/], of the parti-

cle, respectively:

cL=om
[Cal = aell] G

The choice of the proportionality coefficients a, and oy is a source of difficulty be-
cause the optimum damping depends on the dominant modes of oscillation of the system.
The latter are dependent on the size and shape of the particles and on instantaneous mate-
nial properties. Another difficulty comes from the discontinuous nature of the system. In
fact there is no unique way of choosing o; and a for a complex system of several hun-
dreds of particles in the general case. However, the uncertainty in the range of values can
be minimized by a category of damping calculations methods called “adaptive damping
schemes™. They are algorithms which allow selection of the damping coefficients to satis-
fy some criteria set in advance. The latter could be, for example, to enforce a constant dis-
sipation rate of kinetic energy by damping at all times (Cundall, 1982), or to enforce an
optimum condition of convergence and a stable finite-difference integration (Bardet and
Proubet, 1991). In the latter case, the scheme was applied to a biaxial test performed with
planar disks and the damping coefficient was plotted versus the simulation time. The
curve of variation shows very pronounced oscillations from the beginning to the end of the
test, indicating that there is no unique value of the damping coefficient for the entire test.

Unfortunately, the current version of program TRUBAL is not provided with an
adaptive damping scheme. The damping coefficients are set in advance as constant input

parameters.
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3.3.2 Numerical Stability

Numerical instability is a potential problem in the explicit time, finite-difference pro-
cedure used in TRUBAL. The source of instability is the integration time-step; if it is
greater than a critical time-step, the scheme is unstable and the results of the simulation
are unreliable.

Methods of analysis of numerical instability exist and can be used to assess the criti-
cal time-step in cases where the discretized differential equation is simple.

The method can be applied, for example, to analyze the translational motion of a par-
ticle having a single contact with another particle. Each component of the system of differ-
ential equations describing the particle motion represents the motion of an equivalent
single-degree-of-freedom mass-spring system.

The numerical stability analysis of such an equation shows that the critical time-step

is related to the mass m and the stiffness & of the spring as follows:

’m
At = 2 — Je

A particle usually has more than a single contact, and there are many particles in the
assemblage, therefore a global critical time-step for the entire assemblage should combine

the lightest particle with the stiffest contact in the system:

m .
A, = 2 [—=Z 30 24
S . Gr2h

Further reduction of the critical time-step is necessary to take into account the fact

that the apparent stiffness acting on a particle increases as it becomes surrounded by other
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particles. The critical time-step is multiplied in the program by a factor between 0.01 and
0.5, depending on the problem and shape of particles. For ellipsoids, values of the multi-

plying factor as low as 0.01 are commonly used to avoid instability.

3.3.3 Numerical Integration

A finite-difference procedure is used to integrate the equations of motion. To numeri-
cally discretize the equations, the velocity and acceleration vectors at time ¢ are functions
of the velocity vectors at mid-time intervals, t-At/2 , and, +A#/2 .

For the velocities:

Y PR .
x'l = i(x'l Al/2+xlg+Atf2.)

(3-25)
m" = %(m’l-A!fZ + m,_ﬁ'AlQ)
For the accelerations:
- 1 . .
x,f = ___(xlh'Alf.’_xl-Al’/?.)
At '
: (3- 26)
(D.' = —(® A2 _ m'r-m/z)
At

Substituting these expressions into the equations of motion and solving for the veloc-

ities at time f+A¢/2 results in the following expressions:

ffre = Aukten s (R0/m + 21808, o
minmfz = (AR(D,-"A”Z +1,;'(‘)A/IJ(’)A1)BR
where:
A[_ BL = l—a,_AI/Z (l +aLAt/2)_l (3-28)
Az Be|  |1-caBt2 (1 + apAt/2)”
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The increments of translation and rotation are obtained as:

Ax, = xfamAt
{ ’ @3- 29)
AD; = oAt
The position and orientation of a particle are updated as:
[ xi = x{+Ax,
{ t+A0 — t (3. 30)
R = R+ AR,
where:
AR,'J' = Ae,kR;] Qe 31)
and:
|— 0 Ae3 _Ae‘_,
Aeif = —AO; 0 Ael (3-32)
A6, -A8, O

AR, is the change in the orientation matrix that follows the increment of rotation rep-
resented by the skew-matrix AO i
After the motion update is completed, the force sum, F, and the moment sum, M, of

each particle are reset to zero at the end of each cycle.

3.4 Modified Program TRUBAL

TRUBAL is organized as shown in Figure 3+6. A set-up routine is executed at the be-
ginning to open all files and initialize all parameters. The program reads the execution
commands from an instruction file called “trb.dat”. The commands are ordered in a se-

quential manner and interpreted through the central input routine.
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Figure 36 Organization of program TRUBAL
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The program ends if all instructions are executed or an error is detected that causes
the program to stop. The execution commands are of three types: Pre-processing, Process-

ing, and Post-processing.

3.4.1 Pre-Processing

The pre-processing consists of the following tasks:

1. Input particle and contact properties. A particle’s type identifies a group of par-
ticles having the same size and density. A contact type identifies the physical
properties of contacts between particles’ types. Examples of contact properties
are the normal and shear stiffnesses, the coefficient of inter-particle friction
and cohesion. TRUBAL accommodates up to 25 particle types and 25 contact
types.

Input test parameters and options. Test parameters are: viscous damping, frac-
tion of critical time-step, grid strain rate, servo-mechanism and shape transfor-
mation parameters (to generate ellipsoids from spheres).

Test options are: 2-D mode (spheres only), Hertzian contact law (spheres
only), servo-mechanism mode, and particle shape.

2. Generate an initial assembly of particles within a rectangular cell of a specified
size. Two methods are possible:

a. Use the random generator facility available to generate an initial

assembly of non-overlapping spheres; then, invoke a “growth”
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scheme to transform the assembly of spheres into an assembly of
ellipsoids.

b. Use the “create” command to place the particles in specific loca-
tions in the cell. The command can be equally used to create

spheres or ellipsoids.

3.4.2 Processing

The processing consists of repeating the cycle of mechanical calculations according
to the instructions in the input data file. As shown in Figure 37, the calculation of particle
motions and particle-to-particle interactions is processed through the subroutine “CY-
CLE” which invokes two main subroutines: “MOTION™, which updates particle position
and orientation, and “FORD”, which computes interparticle contact forces.

The extraction of micromechanical parameters is processed in the subroutine “CY-
CLE” through a series of subroutines which initialize the micro-parameters (subroutine
“MICROINT”), accumulate groups of contact normals and micro-variables (subroutine
“MICROEXT™), and calculate group averages for micro-variable histograms (subroutine
“MICROAVG”).

Finally, extract model approximations of measured distributions of the average mi-
croscopic variables (subroutine “MICROPAR™). The servo-control is processed in sub-

routine “RUNSRV™, called from the main subroutine “CYCLE”.
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MICROEXT |

7

RUNSRV

MICROAVG

MICROPAR

9

Command
Routine




CHAPTER III: THE DISCRETE ELEMENT METHOD AND THE MODIFIED PROGRAM TRUBAL

The subroutines to extract data for histogram plots (originally using a single spherical
partitioning of the orientation space) can now accommodate the near-uniform partitioning
algorithm described in Appendix A. Additional data are extracted such as the fourth-order
Fourier’s approximations of measured distributions and numerous other statistics on con-

tacts and particles.

3.4.3 Post-Processing

The post-processing includes the printout of results and saving of particular states of

the assembly for further processing.

3.4.4 Data Structures

The data structures of the original TRUBAL are shown in Figure 38. The data struc-
tures of the modified TRUBAL are almost the same ones used in the original version.

Minor changes involve modifying the main array to allocate additional space for new
variables necessary to update ellipsoid motion as well as detecting and calculating inter-
ellipsoid contacts.

All data are stored in a single array A(T) which is partitioned into sub-arrays contain-
ing information about the particles, boxes, and the linked list for box entries and contacts.
This partition is shown in Figure 38a.

The variables M, M;, and M; are set to fixed values at the start of a new problem,
after the user has declared how many particles and boxes are required. Variables M: and
M, are also set at the beginning of a test run, but they can change as the user creates more

particles or as the requirements for box entries and contacts change during the test.
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3.4.4.1 Group of Particle Data

A group of 38 words is allocated to describe a single ellipsoid within the partition,
M, to M3}, as shown in Figure 3+8b. This group consists of data, in a global Cartesian co-
ordinate system, for centroid position and velocity vectors, rotation vector, angular veloc-
ity vector, vector force sums, vector moment sums, and a pointer to the particle properties
arrays. Originally, a sphere required only 29 words to describe it. Nine additional words
are allocated in the modified data structures to store the nine components of the ellipsoid

orientation matrix.

3.4.4.2 Group of Contact Data

A group of seven words is used to describe a contact between two spheres. It consists
of data for the tangential contact force vector, the normal contact force, the addresses of
the two particles forming the contact, and the pointer to the next contact in the linked list
of contacts that map into a given box (Figure 3+8b). The contact normal and contact vec-

tors are stored for ellipsoids in nine additional words.

3.4.5 Identification of Neighbours

In DEM, particles are allowed complete freedom to interact with each other. An effi-
cient scheme is needed to identify possible candidates for contact with a given particle. It
is computationally prohibitive to check all possible pairs of particles. The method devised
in TRUBAL confines the search to pairs that are in contact or close enough to be in con-

tact in a later time during the simulation.
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3.4.5.1 Boxing Scheme

The rectangular cell containing the assembly of particles is divided into smaller 3-D
cells (boxes). A rectangular “envelope space” is assigned to each particle and mapped into
the box or boxes it occupies (Figure 3+9a). Two particles are considered to be neighbours
and checked for contact if they are both mapped into at least one common box (Figure

3+9b).

3.4.5.2 Envelope Space

The envelope space around a particle is defined by a rectangular box containing the
particle with sides parallel to the directions of the frame of reference. For a sphere, it is a
cube of a length equal to the sum of the sphere’s diameter and a fixed length TOL (as tol-
erance) to ensure that all potential candidates are examined for possible contact.

For an ellipsoid, the envelope space is taken around a fictitious sphere at the ellip-
soid’s centre with a radius equal to the ellipsoid’s major semi-axis (Figure 3+9a). The en-
velope space defined as such is larger than the optimal envelope (containing the ellipsoid
in the closest possible geometry) but the choice made is convenient because:

1. The existing mapping scheme used for spheres is not altered.

2. The mapping scheme might generate more neighbours to be checked for con-
tact, compared to a mapping scheme based on the choice of the optimal enve-
lope of ellipsoids. However, the inter-particle detection scheme discussed in
the next chapter is provided with an algorithm that eliminates empty contacts

before processing the contact detection routine.
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Figure 39 Mapping scheme for ellipsoids
(a) Envelope space
(b) Boxing scheme (2-D view)
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3. The determination of the optimal envelope vertices necessitate a relatively ex-

pensive computational effort by comparison to the first choice.

3.4.6 Periodic Space Algorithm

A generated assembly is automatically confined within parallelepipedic boundaries
with a numerical connection between their opposite faces. Two aspects define this numer-
ical connection (periodicity) of the space solution:

Geometrically:

1. The particles that move out of the cell through a particular face re-enter the cell
from the opposite face. A particle that “protrudes” a boundary face is consid-
ered to be outside the cell if its centroid is located outside the cell.

2. If a particle “protrudes” the sample boundaries through one or several faces but
remains inside the cell, then the program creates “virtual images”, identical to
the original particle, at the opposite faces. These images can physically interact
with other particles as if the original particle was present in several locations at
the same time.

Numerically:

1. The height x?}, the length x2, and the width x4 of the cell are updated after each

increment of strain as:

xP « (x? +&,xPAl) (3-33)
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2. For every particle, an increment of displacement due to the strain rate of the pe-
riodic space is added to the increment of displacement due to the velocity of
the particle as:

Ax{™) = Ax{™) + €, x At (32 34)
where x is the particle’s position vector.

3. The relative velocity of two particles in contact (used to calculate the contact
force) is the sum of the real relative velocity and a component due to the peri-
odic deformation:

xje) = greab + ¢z (3-35)

where z is the vector joining the centroids of particles in contact (branch vec-
tor).
By virtue of this type of numerical connection, the effect of physical boundaries on

the final solution is eliminated.

3.4.7 Stress Servo-Control

The program TRUBAL accommodates simple stress loading paths including constant
stress components, constant 3-D mean stress (o,,+0.,+03;)/3, constant 2-D mean stress
(o11+702,)/2, constant angle of major principal stress in a ring shear test, and any physi-
cally reasonable combination of these.

A stress variable is controlled and maintained to a certain level through the control of
the applied strain increment.

The stress control model is the same for all stress paths. It is explained in the follow-
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ing section for the particular category of tests used in this study where the samples are

strained to simulate a deviatoric compression with a constant 3D-mean stress.

3.4.8 Deviatoric Compression at Constant Mean Pressure

The compression is obtained by imposing an initial negative strain rate in the direc-
tion of the compression (axial), and smaller positive strain rates on lateral faces.

The servo-mechanism controls the mean pressure by adjusting the strain rate compo-
nents in such a way as to keep the value of the difference between the specified and mea-
sured mean stresses as close to zero as possible. The following model is implemented to

control the mean pressure:

é,.]. <~ él'j + @(p(mﬂ) _p(med)) (3< 36)

where €, is the applied strain rate tensor, and gain is a user-defined parameter represent-
ing the “gain” of the servo-mechanism. The mean pressure is calculated from the compo-

nents of the measured stress tensor, 6,;, as: p = ou/3.

3.4.9 Particle “Growth” and Assembly Generation

The option of generating an initial “gas” of non-overlapping ellipsoids and compact-
ing it to a desired packing density before testing was dismissed for two reasons: (1) It ne-
cessitates a special procedure to place the ellipsoids in non-overiapping locations within
the cell; (2) The results of the compaction are not easy to control.

Controlling the initial packing density is not as important as controlling the initial co-

ordination number. Through the compaction of a “gas” of particles, it is only possible to
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control the pressure, and perhaps the packing density, but not the coordination number.

An alternative to this procedure of assembly generation is to create the assembly of
ellipsoids from a compacted assembly of spheres by changing the shape of spheres incre-
mentally over many calculation cycles. This method was successfully employed to gener-
ate very dense assemblies of plane ellipses (Rothenburg and Bathurst, 1992).

At each cycle, the dimensions of the particle radii in three mutually perpendicular di-
rections are incremented, some positively and some negatively, to preserve the volume of
the particle constant. The process continues until the targeted shape is reached. The rate
and direction of “growth” are set by the user. The rate of “growth” is specified in terms of
a number of calculation cycles to achieve a certain particle eccentricity. The following op-
tions are executed in parallel: (1) maintain the mean pressure constant, (2) set the inter-
particle friction to zero in order to ease particles’ interlocking, (3) “relax” the system be-
tween successive increments of particle shape transformations to control inertia forces and

regain static equilibrium.

3.4.9.1 “Growth” Scheme with Constant Particle Volume

The size and shape of an ellipsoid are fully determined by its principal radi,
azb>c.

To emphasize the shape in particular, two aspect ratios representing the elongation

and flamess of the ellipsoid can be defined as:

(3-37)

elr = a/b
flr = b/c
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where, elr, is the elongation ratio, and, flr, is the flatness ratio.
A suitable parameter to describe the size of an ellipsoid is the geometric mean radius

equal to the radius of a sphere of equal volume to that of the ellipsoid, i.e.:
r = 3abc (3+38)

The set of variables (elr, flr,r) is equivalent to the set of principal semi-axes

(a, b, c) . The two sets are related through the following identities:

a=rflr'elr??
b=aelr (3+ 39)
c=bflr

The set of variables (elr, flr, r) is more convenient for implementing the constant
volume shape transformation algorithm.

Initially, the aspect ratios are setto elr = 1 and flr = 1 (spheres). Between two suc-
cessive cycles of the particle shape transformation, » and n + 1, the particle shape is
modified only by incrementing the elongation and flatness ratios.

In order to preserve the volume of the particle constant, the geometric mean radius

must be kept unchanged (equal to the radius of the initial spherical shape); therefore:

el = elr™ + delr
firf»+ 1 = flem + 6flr {3+ 40)
’_'('l) = ’_-(0)
where (Selr, 5flr) are the increments of elongation and flatness ratios, respectively.

For the simulations performed for the study, only the elongation ratio is changed dur-

ing the shape transformation to generate the simplest shape (oblate spheroids) instead of a
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more-general ellipsoid shape. One reason for this choice is that the effect of particle shape
on the mechanical behaviour of granular systems is still a new subject of study for numer-
ical simulations of granular materials. Starting with simple ellipsoid shapes is a first step
that should precede the investigation of more-complex shapes. Another reason is that pro-
late spheroids are three-dimensional analogues of plane-ellipses, for which some micro-
mechanical studies have been already published, and can be used for comparison between
the two-dimensional and three-dimensional cases.

With this choice, the size and shape of ellipsoids are fully determined by the pair of
parameters (elr, 7).

Similar equivalent parameters to define ellipsoids with a single aspect ratio are:

{e = (@a-b)/(a+b) et

F=(a+b)/2
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CHAPTER IV: INTER-ELLIPSOID CONTACT
DETECTION ALGORITHM

4.1 Introduction

Real particles of sand are nearly rigid except at the compliant contact points with oth-
er particles where they can deform under the action of contact forces. The numerical parti-
cles also deform at contact locations but without changing shape. The particle deformation
is taken into account by allowing the contacting particles to cross each other near the con-
tact points. The amount of overlap is a measure of contact deformation. It is usually a very
small fraction of the average particle diameter.

In order to calculate the overlap distance at the contact between two arbitrary ellip-
soids, the region of overlap shared by the two ellipsoids must be determined. The equation

of such a region is the equation of intersection of the ellipsoid surfaces. The approximated
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region of overlap is used not only to calculate the extent of overlap but also to calculate
some basic characteristics of a contact such as the normal vector and the contact vectors.

The problem of intersection of two spheres is straightforward (Figure 4¢1). Two
spheres are in contact if the distance between their centroids, S, and S, is less than the
sum of their respective radii, r, and r,, ie, $\S;<r, +r;.

The contact normal and contact vectors are parallel to the segment joining the cen-
troids [S,S.], and the normal overlap distance is equal to 8" = r, +r; - 8,85, . The solu-
tion is simple because the radius of curvature at any point of the surface of a sphere is
equal to the radius of the sphere.

However, an arbitrary ellipsoid is characterized at each point on its surface by a pair
of radii of curvatures depending on the location of the point. Also, the contacts inside an
assembly of particles can involve two ellipsoids of arbitrary sizes, orientations and posi-
tions in the space. These two aspects of the problem enhance the relative complexity of
solving the intersection equation in the general case.

The method developed to solve the problem of intersection for ellipsoids aims at only
calculating the contact characteristics that are required to implement the contact force-dis-
placement law. The knowledge of the exact shape of the overlap area is not necessary and

an accurate approximation is sufficient for this purpose.
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Tangent Contact Piane

(a)

(b)

Figure 41 A pair of overlapping particles
(a) Spheres
(b) Ellipsoids
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The inter-ellipsoid contact detection problem is divided into two sub-problems.

1. To test for overlap between the considered ellipsoids for contact. Knowing in
advance whether or not two ellipsoids intersect each other determines if the
second step should be undertaken. Considering that most of the contact list
consists of pairs of particles that have relatively close positions but have empty
intersections, the savings in computational effort provided by the test for over-
lap can be appreciable.

2. To calculate the contact characteristics if the test for overlap is positive. The de-
termination of the contact characteristics is based on solving the intersection

equation.

4.2 Test for Overlap

An intersection between two ellipsoid surfaces is an intersection between two quadric
surfaces. In addition to these two surfaces, there is an infinite set of quadrics which also
contains that intersection. If only one member of this infinite set is empty, then the inter-
section is empty. Otherwise, it can be assumed that the intersection is full. This summariz-
es the principle used to test for overlap between ellipsoids. Subsequent developments are
concerned with explaining the principle in more detail and showing how this principle can

be implemented in a computer code.
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4.2.1 Quadric Surface Equation

The surface of an ellipsoid is a special quadric surface. The general equation of a
quadric surface in Cartesian coordinates is:

Ax*+By*+(Cz*+2Dxy+2Eyz+2Fzx+2Gx+2Hy+2Jz+K = 0 @4-9)

A matrix form of the same equation known as the discriminant form of the quadric

surface is:
X0X" =0 42)
where:
ADFG
- |DBEH “3)
FECJ
GHJK

Q is called the discriminant matrix of the quadric surface. X=[x y > 1] is the uni-
line vector position. X7 is the transposed uni-column vector position.
Another important parameter used to classify quadric surfaces is the sub-discrimi-
nant, ), defined as the upper-left (3x3) sub-matrix of the discriminant matrix Q:
ADF

0. |DBE 4
FEC
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4.2.2 Classification of a Quadric Surface

As shown in the diagram of Figure 4+2, a quadric surface whose generic equation in
an arbitrary set of axes is known can automatically be classified as a particular surface
type (e.g., ellipsoid, hyperboloid, etc.).

It is sufficient for recognizing a quadric surface type that the signs taken by a few of
the invariants of its discriminant and/or sub-discriminant matrices be known. These in-
variants are referred to in the diagram of Figure 42 as D, , ., 4, for the discriminant ma-
trix Q,and T, (-, 3 forthe sub-discriminant matrix Q, .

Each combination of these signs characterizes a particular surface type. It does not
matter in which set of axes the generic equation is expressed since the classification is
only based on frame invariant quantities.

For example, a quadric surface which satisfies the series of inequalities: T;>0,
T,<0, T, T;>0 and D; <0 is an ellipsoid. Here, T,, T, and T, are the first, the second,
and the third invariants of the sub-discriminant Q,, respectively, and D, is the determi-
nant of the discriminant Q.

There also exist three particular combinations of the signs of invariants T, ., ;, and
D, -24 characterizing empty surfaces. They are termed “INVALID” in the diagram of

Figure 4¢2.

4.2.3 Basic Concept

Let A and B denote two ellipsoids with a non-empty intersection: /=4 "B # &, and

let O, and Q5 be their respective discriminant matrices.
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By definition, a point X in the intersection satisfies the generic equations of both 4

and B, therefore:

(4= 5)

XQA/XT =0
{/_YQBXI =0

The following equation (obtained by linear combination of the above equations) is
also satisfied for any point in the intersection, /, and any arbitrary number, £
X(Q.+/0s)X" = 0 “-8)
Equation (4+ 6) defines a family of new quadric surface C, having Q, + fQ; as a dis-
criminant matrix. All points in the intersection satisfy the generic equation of C,, there-
fore:

IcC, @7

4.2.3.1 Principle of the Overlap Test
If it is possible to classify all C; according to their types as given by the diagram in
Figure 42, then:
i If a particular value of fis found for which the quadric surface C, is empty,
then, according to (4 7) the intersection, /, is empty and the ellipsoids, 4 and
B, do not overlap one another.
ii. If no such a quadric is found, it will be assumed that the ellipsoids share a com-
mon non-empty intersection.
An apparent difficulty arises when the following question is posed: How can an infi-

nite family of quadric surfaces (C,) be scanned in search for a particular value of f which
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may or may not exist? The answer to this problem is briefly described in the following

section.

4.2.4 Scan of Quadrics C,

The type of a quadric C, depends only on the signs taken by its invariants T,(f) and
D;(/) . These are polynomial expressions of the variable, f, with the highest degree of four
obtained for D.(f). It is well known that the number of real roots of a polynomial never
exceeds its degree; therefore, the total number of real roots of' all invariants combined nev-

er exceeds:

lap+ 20+ 3a)+ 20, + 30, + 40, = 14 (4-8)

It is also known that polynomials do not change signs between real roots. This means
that for example, T,(f) will change the sign two times at the most, T,(f) three times, etc.
Therefore, it is sufficient to search for an “INVALID” case for values of / at the middle
between two successive roots after these have been sorted in order of increasing values. In
the worst case, 14+2 (one before the first root and one after the last root)=16 checks are
necessary. Practically, there are many fewer distinct real roots and not all invariants are in-
volved in the classification, so that the number of checks is much less than sixteen. Gener-
ally, these are exhausted only if the intersection is not empty. Empty intersections on the

other hand, are quickly detected.
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4.3 Calculation of Contact Parameters

The calculation of the contact parameters is based on the solution of the intersection
between two ellipsoids’ surfaces. Only the trace of the intersection on the surface of one of
the two ellipsoids is required. Let it be ellipsoid 4; then, the following notations will be
used:

- The surface-to-surface (4-B) intersection is denoted by /

- The trace of the intersection, /, on the surface of ellipsoid, 4, is denoted by /.

4.3.1 Principle

As shown in Figure 4¢3, the parametric representation of an ellipsoid by the pair of
variables (0, ¢) can be interpreted geometrically as follows:

The curves corresponding to 6 = constant (called 6-curves) scan the surface of the
ellipsoid longitudinally from one pole to the opposite one, similar to meridians for
spheres. On the other hand, the ¢-curves are mutually parallel and cross the 6-curves .

Any pair of ©-curves and any pair of ¢-curves intersect in four points, thereby delim-
iting a curvilinear parallelogram on the surface of an ellipsoid. Any region of the surface
of the ellipsoid can be geometrically bounded by two pairs of appropriately chosen
6-curves and ¢-curves. Using this concept, the trace of the contact of two ellipsoids on
the surface of one of them can be approximated by such curves.

In order to calculate these curves, it is necessary to represent one of the ellipsoids’
surfaces by a system of parametric equations using the pair of variables (8, ¢); for exam-

ple, ellipsoid 4 and ellipsoid B may be represented by a regular algebraic equation.
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X = r} cosO sind
y = ry sin@ sind
zZ =r; cosd

’ $-curve o=x 6-curve

,[_—) X 0=3x/2

Figure 43 (0, ¢) parametrization of the surface of an ellipsoid
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The ellipsoid-to-ellipsoid intersection can be decomposed into two types of curve-to-
surface intersections: (8-curve )-to-surface and (¢-curve )-to-surface intersections. These
are simpler to determine than the original surface-to-surface intersection because they
only involve one varying parameter.

The basic idea of the contact detection algorithm is to approximate the contact by
solving a minimum number of curve-to-surface intersections, and then to use the obtained
approximation to determine the characteristics of the contact.

The solution of curve-to-surface type equations is explained in Appendix B.

4.3.2 First Approximation of the Contact

A first region containing the trace of the contact on the surface of ellipsoid 4, i.e., /,,
is obtained analytically from the solution of the intersection of a circular cone originating
from the centroid of ellipsoid A with the surface of ellipsoid A. The cone is chosen so that
its intersection with A contains /, .

To find the first set of parametric curves, a circular cone, C, is intersected with ellip-
soid, A, as shown in Figure 44b. The intersection C-4 contains the trace /,.

The base of the cone is selected to be the intersection of the smallest spheres circum-
scribing the ellipsoids S, and S; (Figure 4+4a). As such, the cone must contain the trace
I, since [ is part of the S, -S; intersection. Now, /,, being inside the cone, C, and on the

surface of, 4, must belong to their intersection, i.e., , cCNA.
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(a)
(S,4-Sg) Intersection

(b)

Trace of Cone-Ellipsoid
Intersection

Initial
Contact
Approximation

Figure 44 Surface intersections
(a) Sphere-sphere intersection
(b) Cone-ellipsoid intersection
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If a set of four parametric curves can be determined which circumscribes the trace of
(ellipsoid A-cone C) intersection, this same set also circumscribes the trace /,. In this

manner a first approximation to the solution is found.

4.3.3 Refinement of First Approximation

The direct way to improve this first approximation is by refining it. If the refinement
is to be done incrementally, then the procedure would be practically useless since it would
take an unacceptable amount of time to execute. A quick alternative is used as follows:

Let, 6{, 04, ¢!, and ¢}, be the set of parameters characterizing the first region of
contact, and let O be the middle value between 0{ and 6. By solving the (8-curve) -to-
ellipsoid, B, intersection, a new pair of ¢ ’s is obtained. This pair is closer to the real inter-
section boundary (Figure 4-5).

Note that the (8-curve)-to-ellipsoid, B, intersection is almost always full because the
initial region happens to be centered about the contact. Exceptions can be encountered for
excessively small contacts between very eccentric and randomly oriented ellipsoids. In
simulations the particle eccentricities are moderate and this situation is never encountered.

However, if this is the case, another middle value between 0} and 6, or between 6
and 64, is tried, and so on, until a full intersection is found.

Let ¢f and ¢£ be the new pairand ¢ their arithmetic mean. Once more by solving the
(¢-curve) -to-B intersection, the final pair (8{, 6f) is obtained (Figure 4¢5). This last in-
tersection is always full.

The flow chart of the algorithm is given in Figure 4¢6.
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Initial
Contact
Approximation

P——
P ——

Figure 45 Contact approximation by curves with one constant parameter
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Loop to find first intersec.

m k=1l,n=1

A0 = (8: -81)/4

overlsp

N

iY
solve Cone-E2 intersec.
gct 64 8: ¢} &}

solve (§curve)-E2 intersec.
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Y 12041 lsolve (Bcurve)E2 intersee.
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get ¢f ¢f \
>| solve (6wn=)-£2' 8 EXIT
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J Search Sequence
calculate contact 0 6 0
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L { ] | _J k=1
Ll b 1L de=2

Figure 48 Flow chart of the inter-ellipsoid contact detection algorithm
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4.3.4 Efficiency

As seen, the contact is calculated by solving only two curves-to-surface intersections,
which is the minimum possible number to characterize a contact by the method of curves.
The initial set of curves is obtained from an analytical solution developed for the el-

lipsoid-cone intersection problem and does not involve any curve-to-surface equation.

4.3.5 Calculation of Contact Characteristics

The final set of curves is used to calculate the contact normal vector, the interpenetra-

tion in the contact normal direction, the reference contact point, and the contact vectors.

4.3.5.1 Contact Normal Vector
The 61, 61, ¢{ and ¢{, curves intersect at four points C, -, s, on the surface of el-
lipsoid, 4, as illustrated in Figure 4¢7a. It can be shown that these points are co-planar.
Points C, (-, 4 define a unique plane interpreted as the tangent plane of contact. The

normal to this plane defines the contact normal direction.

4.3.5.2 Interpenetration

Let Cs denote the centroid of the four points C, ., ,,. The line passing through C,
and parallel to the direction of the contact normal intersects the ellipsoids in two points
each, P, and P,, for ellipsoid 4, and, Q, and Q,, for ellipsoid B (Figure 4+7b).

The interpenetration 3" (calculated in the direction of the contact normal) is defined
by the shortest distance between, P, (-2 and Q, ¢-1, as:

5 = min |P,Q)] .

107



CHAPTER IV: INTER-ELLIPSOID CONTACT DETECTION ALGORITHM

(a) Contact
Location
of c, €
¢{ CG C
[ of of
o] of
(b)

~Contact Normial
" Direction

c. - Contact = - . LA T e
© VectorforB e

Figure 47 Determination of characteristics of contact
(a) Contact normal direction

(b) Normal overlap distance and reference contact point
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4.3.5.3 Reference Contact Point
A reference contact point, denoted by c, is calculated as the midpoint between the
closest pair of points, (P,, O,) .In Figure 47b, the reference contact point is at half the dis-

tance between P, and Q, .

4.4 Tests of the Contact Detection Scheme

The performance of the numerical simulator depends on the performance of the inter-
particle contact detection algorithm. Therefore, the results of numerical simulations are
the real test of the performance of the inter-particle contact detection scheme. However,
the results of numerical simulations only indirectly attest to the quality of the contact-de-
tection algorithm. For a direct illustration, simple and direct contact situations are ana-

lyzed and a comparison with a two-dimensional scheme for ellipses is presented.

4.4.1 Simple Tests

The tests consist of displacing two particles, initially in contact, apart from each other
and tracing the evolution of the contact overlap distance during the separation. Also, the
two particles, initially separated, can be brought into contact, and the evolution of the par-
ticle overlap distance or any other parameter can be observed. A first indicator of a consis-
tent contact detection scheme is that if the separation is “smooth” (incremental), similar to
the way it takes place in simulations of large assemblies, the curve of variation of any con-
tact parameter should also be “smooth”. The second indicator relates to the shape of the

curve of variation when special relative displacements are applied. If the particles are ini-
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tially in contact, they can be separated by displacing the particles in three special direc-
tions:

1. Parallel to the direction of the initial contact normal (normal displacement),

2. Parallel to the contact plane (tangential displacement),

3. Relative rotation of the particles.

In the three displacement cases, the normal overlap distance is a specific type of func-
tion of the relative displacement as illustrated in Figure 4+8.

The curve profiles should be:

L Linear for rotation and normal displacement (Figure 48a, b) and,
ii. Parabolic for tangential displacement (Figure 4+8c).

The contact detection was tested on three types of contacts (1, 2 and 3) where the par-
ticles were displaced relative to each other following the above special directions. The re-
sults of inter-particle normal overlap distance versus the magnitude of displacement are
shown in Figure 4+9.

As seen, the theoretical profiles are replicated numerically. Moreover, in the case of
“contact 2”, the theoretical slope of the linear profile is shown to be “-45°”. This value is

also obtained numerically.
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(a) /\FiYosition
Initial Position
. . . B _oB
. - Consider triangle IBO then: ST(B0) 3gg-

S LSO
Consider triangle [FO then: sin(0,0p) sind

in(06;-0)
Therefore:[B=IF OB 3M%9)
cretore:IB OF sin(6;-8¢)
For a small overlap, angles (6; - 8) and (6;- 6¢) are also small,
Thus: sin(®; - 8)=(8; - 8), sir(®; - 65)=(6; - 6pand OB =OF
Let IF=8; and BF=3(8) be the final and current overlap depths,
respectively, then, BF=IF-IB.

5.0
Therefore: | 5(8) =5;. [l-ﬁ]

(b) - 8 is a linear function of rotation.

BF=IF-IB, therefore:{5(An)=8;-An

& is a linear function of normal displacement,
with slope = -1.

(c)
di=ri+rrz and =r;+ry-z
thus, 8=§;+z-z

but, z=(zi2+At2) 12

Therefore 8(At)=8i+zi-(z,-2+Atz)”2

8 is a parabolic function of tangential
displacement.

Figure 48 Effect of relative particle displacement on normal overlap distance
(a) Rotation

(b) Normal displacement
(c) Tangential displacement
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Figure 49 Evolution of the normal overlap distance with relative particle

displacement
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4.4.2 Comparison with a Contact Detection Algorithm for Ellipses

Another test of the ellipsoid contact detection algorithm is to compare its results with
those of a completely different, well established scheme, on a given contact situation. The
reference scheme used for comparison is a 2-D scheme developed for ellipses (Rothen-
burg and Bathurst, 1991). A list of 2794 contacts inside a sample comprised of 1000 el-
lipses, was input to the ellipsoid contact detection routine and the results compared with
what the 2-D scheme originally produced. The comparison between the two schemes is il-
lustrated on an arbitrary selected cluster of particles as shown in Figure 4¢10.

It should be mentioned that the chosen sample was in its densest state before shearing
where the average coordination number is the highest, and the likelihood of having the
widest range of contact situations is a maximum.

It is also important to know that in 2-D, the contact problem between two ellipses is
represented by a single fourth degree algebraic equation. Therefore, no approximation is
involved in computing the inter-ellipse depth of overlap. The only error made is inherent
to the numerical method used to solve the fourth degree algebraic equation representing
the intersection equation and the use of floating points operations. The latter was mini-
mized by using double precision variables.

It can therefore be stated that the reference to such a scheme is close to a reference to

an exact method of calculation.
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Typical Cluster
Contact List Inside the Cluster

Ellipsel Ellipse2 Original Overlap Calculated Overlap
(Reference 2D-scheme) (Ellipsoid 3D-scheme)

82 737 .4900774360E-01 .4901578000E-01
81 737 .2741995268E-01 .2744216500E-01
737 921 .7798041403E-01 .7811386000E-01
737 1002 .7038669288E-01 .7030864000E-01
83 737 .5845873966E-03 .5249049300E-03
84 737 .7066919655E~-01 .7070573000E-01
737 1031 .2205942385E-01 .2211644100E-01
81 82 .1070524007E+00 .1070834900E+00
81 1002 .5603915453E-01 .5612176000E-01
82 921 .8908383548E~-01 .8918934000E-01
83 84 .1386999488E+00 .1388084900E+00
83 1002 ,7853911817E-01 .7885681000E-01
84 1031 .9451217204E~-01 .9477636000E-01
921 1031 .8038467169E-01 .8045673000E-01

Figure 4-10 [llustration of a comparison of results between the 3D-inter-ellipsoids
contact algorithm and a reference 2D-inter-ellipse contact scheme
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A comparison based on the overlap distance shows that both schemes give very simi-
lar results. To quantify the difference between the two methods, an average relative error

was calculated over all contacts as:

Err = gl - semw)sies) w10

where M=2794 is the total number of contacts; 5 and 5 denote the calculated
and the original overlap distances, respectively.
The average relative error Err was found to be less than 0.41%, which means that

overlap distances are identical up to the third decimal place.

4.5 Conclusions

The series of direct tests conducted with the developed three-dimensional inter-ellip-
soid contact detection scheme illustrate well the reliability of the algorithm in calculating
contacts. However, the results of numerical tests with large samples of ellipsoids are the
final real test of the scheme. A test with an assembly comprised of thousand ellipsoids
usually takes several million cycles to bring the assembly to the beginning of the steady
state. In each cycle, a minimum of three thousand and a maximum of six thousand effec-
tive contacts are detected. The contact list is much larger due to the close vicinity of some
particles that are not in contact but are still examined for contact. Therefore, the scheme is
confronted with a large, almost continuous, spectrum of contact situations.

As shown in Chapter 5, coordination numbers of twelve and more are computed for

very dense assemblies of ellipsoids. These coordination numbers are obtained from a pro-
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gressive particle shape transformation where the assembly is kept in static equilibrium at
constant mean pressure, and where the geometry of particles and contact situations are

continuously changing.
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CHAPTER V: RESULTS OF SIMULATION WITH
ASSEMBLIES OF ELLIPSOIDS

5.1 Introduction

A complete test with ellipsoids comprises two separate phases: (1) generation of the

ellipsoid sample; (2) an appropriate mechanical test.

3.1.1 Generated Samples of Ellipsoids

As mentioned before, the generated ellipsoids are prolate spheroids. They are useful
for comparison between results in two and three dimensions. The following common pa-

rameter is used to define the eccentricity for both cases:

_ (major-axis) — (minor-axis)

€ > n o T
(major-axis) + (minor-axis)

(5= 1)

A special method was used to generate the assemblies of ellipsoids for the “p=con-
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stant” tests described in this chapter:

L Before compaction, an assembly of spheres was generated inside a box at spec-
ified locations such that no two spheres touched each other. The spheres had
equal sizes and were placed in the nodes of a simple cubic packing structure. In
this manner a slight isotropic compaction should create six contacts for each
sphere.

ii. The particle shape transformation started from this state of the assembly of
spheres (Figure 5¢1). At the same time that the particle shape was progressive-
ly changed from spherical to ellipsoidal, isotropic compression was main-
tained. This situation lasted for only 1% of particle eccentricity increase. The
compression was then stopped and the assembly of changing ellipsoids
evolved at constant mean pressure. The inter-particle friction was initially set
to zero so that the contact density could increase by a mechanism of particle in-
terlocking.

Three sample sizes (27, 125 and 1000 ellipsoids) and values of ellipsoid eccentricity

varying between e = 0 and e = 0.22, were generated by this procedure.

S.1.2 Test Program

The small and medium assemblies were useful for preliminary testing of the simula-
tor. They were quicker to test than the 1000 ellipsoid assembly, and provided important
indications about the selection of the test parameters and results that might be expected for

large assemblies.
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GC

Simple Cubic Structure

Sample Inside a Compacted
1000 Sphere Assembly

Figure 51 Structure of assemblies of spheres used in particle shape
transformation
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They were also employed to observe the assembly size effect on the mechanical be-
haviour by comparison with large assemblies.

The 1000 ellipsoid assembly has an acceptable size for examining its microscopic be-
haviour during shear deformation.

One aspect of interest to the study is the effect of confining pressure on the mechani-
cal behaviour of assemblies of ellipsoids. Five large samples were generated with five dif-

ferent confining pressures (from 10e+06 to 100e+06 units) to study this parameter.

5.1.3 Physical and Numerical Units

The program TRUBAL can accommodate any consistent set of physical units, but
these must be converted to numerical units in such a way that the particle sizes are be-
tween 10 and SO numerical units. It is essential for the efficiency of computations that the
particle sizes be in this range of values (Cundall, 1978). Subsequently, all dimensional
variables are given in TRUBAL numerical units.

Prior to presenting and discussing the results of (p=constant) tests, a few aspects of
the compaction and particle shape transformation simulations are examined in the follow-

ing two sections.

5.2 Compaction
During compaction, the periodic space (a box enclosing the particles) is homoge-
neously and isotropically strained. The particles move with the outer boundaries until col-

lision between particles occur. Then, the particles acquire velocities relative to each other.
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The motion of a particle becomes dependent not only on the imposed external strain but
also on the sum of contact forces acting on its surface.

Soon after the sample is pressured, the average coordination number rises from zero
to six. The structure of the assembly of spheres and the type of compaction (hydrostatic
compression) allow this significant change in the value of the coordination number. The
structure of the assembly becomes more rigid as all particles approach a stable equilibrium
state. Any further increase in the assembly coordination number can only be the result of

increased elastic deformation at the compliant contact points between particles.

3.3 Particle Shape Transformation

The particle shape transformation is performed over many calculation cycles. The re-
quired number of cycles to increase the eccentricity by one per cent defines the rate of
transformation. If it is too fast, the quasi-static equilibrium condition is quickly lost due to
difficulty in controlling the velocity of smooth particles. It is essential to keep the assem-
bly in static equilibrium in order to create a dense packing of ellipsoids with a high contact
density at all stages of the transformation. For this reason, intermittent periods of assem-
bly “relaxation” are set where the excess kinetic energy can be dissipated.

The assembly is “relaxed” after each percent of particle eccentricity increase. Table
5¢1 shows the applied “growth” rates and the “relaxation time” shares for the different
transformations carried out with the three sample sizes. As can be seen, the ‘relaxation” of
the assembly consumes the major part of the transformation. This indicates the difficulty

of controlling inertial forces for smooth particles, even at constant mean pressure.
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Assembly size 27 125 1000
“Growth” rate

No. cycles per (%) of ecc. 1000 1000 1000
“Relaxation” Time 83% 93% 95%
Mean pressure (o) Te+6 47e+6 100e+6

Table 541 Parameters of particle shape transformation

5.3.1 System of Smooth Non-Spherical Particles in Static Equilibrium

The particle shape transformation is performed with the objective of generating the
densest possible packing before the deviatoric compression tests. This is achieved by set-
ting the friction angle to zero and controlling the static equilibrium of the changing assem-
bly. Then, the particles are stimulated to create more contacts in order to preserve their
static equilibrium condition. Theoretically, the average coordination number of such an
assembly must be equal to twelve.

A contact force vector acting upon a smooth particle must be normal to the surface of
that particle (Figure 5+2a). On the other hand, a contact force vector acting upon a friction-
al particle can be oriented anywhere within the cone of friction delimited by the inter-par-
ticle friction angle (Figure 5+2b).

More contacts on the surface of a particle are required to satisfy the former constraint
by comparison to the latter one, because the range of possibilities for the contact force ori-
entation are infinite if the particle is frictional, while the contact force vector acting upon a

smooth particle can only be normal to the particle surface (a single possibility).
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(a)

(b)

Tangent
Contact Plane

Friction

£ = (fnne+ f;
If| < tang,|fenf|

($.#0) :>{

Figure 52 Illustration of contact force orientation for a smooth and a frictional
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If a system comprising NV smooth particles in static equilibrium is considered, then the
force and moment equilibrium equations must be satisfied simultaneously for each parti-

cle:

k=0 j=1,3

cek (62)
(@), =0 j=1,3

cek

where f~* and r~* are the force and position vectors at a contact point c on the surface of
a particle £, respectively.

This means that for the entire assembly a total of 6V equations must be satisfied.

If the particles are perfectly smooth, the contact force f# and the contact normal vec-
tor n° must be colinear and this translates into three constraints on contact forces as fol-
lows:

ff®nc), =0 Jj=1.3 (5 3)

It can be shown that only two of the three constraints are independent; therefore, if M
is the total number of contacts (twice the number of physical contacts), the number of con-
straints is equal to 2(M/2) = M. Thus, the total number of equations to be satisfied sums
upto 6N+ M.

On another hand, there are 3(A/2) contact force components f to solve for, assum-
ing that the contact location position and orientation vectors, r° and n¢ are known.

The principle of static determinancy states that the number of equations must be at
least equal to the number of unknowns for the system to be in static equilibrium, i.e.,

6N+M = 3M/2.
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If the condition of static equilibrium is approached for each particle, the expected co-
ordination number should tend to the theoretical value, y = M/N = 12. A coordination

number of this order belongs only to dense systems of particles.

5.3.2 Evolution of the Average Coordination Number

The major difficulty encountered during particle shape transformation was to enforce
a quasi-static equilibrium condition for all levels of the changing ellipsoid eccentricity. In
spite of devoting more than 93% of the total time to sample relaxation (case of the 1000
ellipsoid assembly) the quasi-static equilibrium still could not be maintained beyond a cer-
tain level of eccentricity, thatis e =0.2.

Figure 5+3a shows the variation of the ratio of the average inertial force to the average
contact force with varying eccentricity. The inertial force fraction, initially relatively low
for this type of process where particles are perfectly smooth, rapidly increases after an ec-
centricity of about 0.15 (1000 ellipsoid assembly).

The assembly coordination number begins decaying at that same eccentricity as
shown in Figure 5+3b. The “optimum eccentricity” is defined as the eccentricity at which
the assembly coordination number is maximum. It is eq@p) = 0.15 for 3D-ellipsoids.
Rothenburg and Bathurst (1991) generated assemblies of plane ellipses by the method of
particle shape growth. The obtained optimum eccentricity for 2D-ellipses was
€y = 0.2.

It has also been observed that the trend of evolution of the coordination number for

3D-ellipsoids bears some similarities with the two-dimensional case.
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Figure 53 Behaviour of assemblies of ellipsoids during particle shape

transformation

(a) Average inertial force fraction; (b) Average coordination number
(c) Packing fraction; (d) Average overlap distance fraction

(e) Angle of shearing resistance
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The maximum coordination number reached exceeds the theoretical limit of twelve
(Ymx = 12.5). This is due to the applied compression during the first percent of eccentrici-
ty increase where the confining pressure was increased by an order of magnitude from
o° = 10et+6 to 6 = 100e+6 units. The coordination number increased under both the
effect of particle shape change and increased linear elastic compression at the compliant

contact points between particles.

§.3.2.1 Effect of the Mean Pressure on the Coordination Number

In order to generate samples with lower mean pressures, the value o€ = 100e+6 was
decreased gradually to the initial lower value 6° = 10e+6, for the sample of ellipsoids at
eccentricity e = 0.175. As a result, the value of the average coordination number

dropped from v,,, = 12.5 to y = 9.5 (Figure 53b).

5.3.3 Evolution of the Packing Fraction

Due to the applied compression and the change in particle shape, the packing fraction
increased from 0.55 up to 0.81 during the first percent of eccentricity increase (Figure
5¢3c). The change in shape that followed only slightly improved the state of packing
where the maximum value reached was 0.84. The maximum value corresponds to the op-
timum eccentricity defined earlier. The comparison with the two-dimensional case reveals
large differences in packing fractions between the two cases (0.84 for 3D-ellipsoids versus

0.90 for 2D-ellipses). Plane ellipses seem to pack more closely than 3D-ellipsoids.
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5.3.4 Evolution of the Average Normal Contact Force Magnitude

The average normal contact force is similar to the interparticle overlap fraction plot-
ted in Figure 5¢3d. These two parameters are proportional. This is implied by the assumed
linear contact force-displacement law implemented in the program TRUBAL for ellip-
soids.

After a linear rise explained by the applied compression, an unpredictable moderate
decline takes place for varying particle eccentricity at constant mean pressure. A mini-
mum value is reached around the optimum eccentricity before the average normal force

increases again.

5.3.5 Shear Strength

The plot of sinp = (o,-63)/(c,+0;) with varying eccentricity is shown in Figure
5+3e where o,, o; are the major and minor principal stresses, respectively. The values
taken by the sine of the shearing resistance angle are very low (less than 0.04). This is con-
sistent with the conditions of the test where the boundary normal stresses were kept con-

stant and equal and the inter-particle friction set to zero.

5.3.6 Evolution of Fabric And Contact Forces

The change in fabric and in the contact force distribution is illustrated for the 1000 el-
lipsoid assembly in Figure S4.

Four items are represented: (1) the sample’s geometric configuration; (2) the histo-
gram of the particle coordination number; (3) the histogram of the contact normal orienta-

tion distribution; and (4) the histogram of the average normal contact force distribution.
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The average tangential contact force distribution is zero for assemblies of smooth par-
ticles (absence of shear contact forces).

As can be seen, the initial distribution of contact normals is highly anisotropic and is
characterized by contacts which are concentrated exclusively in to the three principal di-
rections of strain (simple cubic structure).

The organized structure rapidly breaks (within the first half percent of eccentricity in-
crease) and contacts are formed in all directions of the space. The obtained contact normal

orientation and average normal contact force distributions become almost isotropic.

5.3.7 Evolution of the Distribution of Particle Coordination Number

As can be observed from Figure 54, the histograms of particle coordination number
are all of Gaussian type. A measure of the scatter around the mean value of a Gaussian
type distribution is provided by the standard deviation s, .

The relative standard deviation, s; = s,/7, expresses the scatter of the distribution
relative to the arithmetic mean. Figure 5+5a displays the curve of variation of the standard
deviation with varying eccentricity for the changing 1000 ellipsoid assembly. During the
initial compression the scatter around the mean coordination number increases linearly. It
then decreases once the particle shape is changed at constant mean pressure. A minimum
value is reached around the optimal eccentricity.

Up to an eccentricity of about e = 0.2, the standard deviation does not exceed 1.5.
This value must be compared with the initial value of 0.67 characterizing a structured fab-

ric where the coordination number is distributed almost uniformly among particles.
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To take into account the increasing character of the average coordination number, the
relative standard deviation gives a better picture of how the distribution of particle coordi-
nation numbers evolves around its increasing mean value. The relative standard deviation
is plotted in Figure 5¢5b. The values range between 10% and 18% of the mean value. This
indicates that the generated samples at all shapes are fairly relatively uniform. Samples
characterized by eccentricities between e = .05 and e = .17, are even relatively more
uniform than the initial sample.

The release in mean pressure is a factor of fabric disruption much higher than the pro-
gressive change in particle shape; but the effect it produces on the particle coordination
number distribution remains limited. The relative standard deviation is only increased by

less than 8% from its initial value.

5.3.8 Evolution of Anisotropy

In order to assess quantitatively the evolution of anisotropy during particle shape
transformation, the variation of some global measure of anisotropy is plotted with varying
eccentricity. The average normal contact force anisotropy and three aspects of fabric
anisotropy (i.e., particle orientation, contact normal orientation, and branch vector length)
are plotted with varying eccentricity, shown in Figure 5+5b.

For each measure of anisotropy, a dramatic drop is observed in the initial high anisot-
ropy (due to the simple cubic structure of initial sample of spheres) to different levels, de-

pending on the particular type of anisotropy.
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For instance, while the anisotropy in the contact vector distribution seems totally
overcome, a small residual anisotropy persists for the remaining aspects of fabric and also
in average normal contact force anisotropy. This residual anisotropy results from initially
setting the direction of ellipsoids’ major axis growth to be horizontal. The rotation of ellip-
soids that took place after could not totally eliminate this trend, and this explains the re-
maining residual anisotropy. This also indicates that by setting the initial direction of
growth to different constant angles, it is possible to simulate inherent anisotropy in parti-
cles’ orientation, such as the one occurring due to the natural phenomenon of gravitational

deposition of sediments (or particles pouring in the laboratory).

5.3.9 Summary of Shape Transformation Results

From the results of particle “growth” simulations, the following observations can be
made:

i. The range of obtained assembly coordination numbers by the “particle growth”
model are in agreement with theoretical values. This indicates that the simula-
tion program, in general, behaved as expected, and that the contact detection
scheme, in particular, detected and calculated all contacts (3000 to 6000 at ev-
ery cycle).

ii. The shape transformation method is effective in generating relatively dense sys-
tems of ellipsoids at relatively low eccentricities. The difficulty in maintaining
the condition of quasi-static equilibrium of smooth particles at high eccentrici-

ties limit the applicability of the method to only low eccentricities.
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ii. The generated assemblies of ellipsoids are fairly isotropic with respect to the
fabric and contact forces. Considering that the initial simple cubic structure
was highly anisotropic, the residual anisotropies that persisted throughout the

simulatioz. are relatively minor.

5.4 Constant Mean Stress Compression Tests

Deviatoric compression may be started from any arbitrarily saved state of the sample
during the course of particle shape transformation.

For the series of tests performed with the simulator and presented here, the initial con-
ditions and parameters of the tests are shown in Table 5¢2.

The smaller samples (27, 125) were sheared mainly to test the simulator. They were
also used to compare their behaviour with the behaviour of larger samples to assess the in-
fluence of assembly size.

The 1000 ellipsoid sample has a reasonable size that allows the use of averaging tech-
niques to study micromechanical aspects, as well as the macroscopic behaviour of these
assemblies. The effect of particle shape and applied confining pressure on either behav-

iour are subsequently emphasized.

5.4.1 Stress-Strain Behaviour

The macroscopic behaviour is commonly represented by plots of the stress-strain and
volume change curves. These are shown in Figure S¢7 for the 1000 ellipsoid sample under

different confining pressures.
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Table 5.2

Test No. 1 3 4a 4b 4c 4d 4e
g | Mol 27 125 | 1000 | 1000 | 1000 | 1000 | 1000
g Mean Radius (r) 100 | 100 [ 100 | 100 | 100 | 100 | 100
Ece. (o= 22 176 | 176 | .11 176 | 176 | 176 | .176
Elong Ratio (ar=2) | .7 i .8 7 7 7 i
3 | S Se+10 | Se+10 | S5e+10 | Se+10 | Se+10 | Se+10 | 5e+10
g- Ratio of Tang. to Norm.
& | Contact Stiffnesses 10 | 10 1.0 1.0 1.0 1.0 1.0
= (K—k/kn)
§ . .
3 ‘:,,‘fﬁf;“;‘,‘,':m“) 5 s s 5 5 5 5
SminRate ¢y, Y3 |-le-3 0|.le-4 0|-le4 O|-le4 O|-le-4 0|-le-4 0| -le-4 O
‘2Yn |.5e-3 0 5e-4 0|.5e-4 0|.Se-4 0].5e-4 0[.5e-4 O .5e-4 0
, 3731 |.5€-3 0| Se-4 0|.Se-4 Of.5e-4 0|.5e-4 0|.5¢-4 O 5e-4 0
g Time-Step (A1) 4.73e-4| 4.73¢-4 |4.73e-4 |4.73e-4 [4.73e-4 |4.73e-4 | 4.73e-4
-9
B | servo-Gain le5 | le5 | le-5 | les5 | te-5 | le-5 | les
Dumping Coet(Z) | 60 | 60 | 60 | 60 | 60 | 60 60
Mean Pressure (o) | 7e+6 | 47e+6 | 100e+6 | 70e+6 | S0e+6 | 30e+6 | 10e+6
2 | mitial Ave. Normal
3 | comaFore (@) | 1-156¥97.15¢4911.3¢+109.91e+9(7.39¢+9/4.81+9| 1.93e+9
3
E | Initial Ave.
2 | Coontivaon No.(9) 1052 | 11.21 | 1244 | 11.70 | 11.46 | 1092 | 9.50
g Initial Porosity 262 | 218 | .144 | 180 | 205 | 235 | .268
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The shear stress ratio-axial strain curves show all aspects that can be observed experi-
mentally on densely packed samples of sand (Figure 5+7a). These include the transition to
a maximum value of the internal friction angle and strain softening. Four particular states
are singled out on the plots of test 4d:

A. Before deviatoric loading,

B. at the start of plastic yielding,

C. at the peak friction angle, and,

D. at the start of constant volume deformation (steady state).

The last three states mark transitions between macroscopically distinct types of be-
haviour, and are used later as reference states when describing the evolution of microscop-
ic parameters.

The effect of confining pressure is also faithfully replicated, where the mobilization
of the maximum friction angle is delayed with increasing confining stress (Figure S+8c).
Globally, the shear strength decreases with the confining stress, and at large strain the
curves seem to converge towards a single curve (steady state).

The similarity between the numerical and experimental curves includes also the range
of values of shear capacity of these materials. The measured maximum angles of shearing
resistance are plotted in Figure 5+8a for different confining pressures. Values between 39
and 43.5 degrees were obtained, which are considered to be typical friction angles for

dense sands.
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5.4.2 Volumetric Strain Behaviour

The dilatancy behaviour is represented in Figure 5+7b. For the type of tests carried
out, where the confining pressure is kept constant, no contraction takes place. The charac-
teristics of the behaviour of a densely packed sand are also clearly replicated. A typical
trend of evolution characteristic of a slow increase to a maximum dilation rate, followed
by a regular decrease in dilation rates towards a stationary value (state of constant vol-
ume), can be observed.

The curves corresponding to different confining pressures show that at any state of
applied deformation, the volumetric strain decreases with increasing confining stress. This
supports the intuitive idea that the higher the confining pressure, the more restricted is the
motion of the particles and the assembly volume expands less.

It can also be remarked that the curves seem to preserve different levels of global vol-
ume change and do not converge towards a single curve, as was the case for friction an-
gles. This is consistent with the well established fact that the limiting void ratio depends
on the confining pressure (Been and Jefferies, 1985). Eliadorani (1992) obtained similar
results with numerically simulated assemblies of plane ellipses.

The measured maximum dilation rates are plotted in Figure 5°8b. They seem to de-
crease with increasing confining pressure. This applies not only to the state of maximum
dilation rate but includes all states of deformation as described in Figure S5¢7b.

The axial strain at the state of maximum dilation rate is plotted against the confining
pressure in Figure 5¢7d. Similarly to the maximum friction angle, the occurrence of the

maximum dilation rate is delayed by the increasing confining stress.
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From the comparison of states of occurrence of maximum friction angle and dilation
rate in Figure 5-8e, it was observed that the peak of the shear stress ratio is attained well
before the peak dilation rate, except for the highest confining stress value where there is
coincidence.

Finally, a comparison between results of the current simulations and those conducted
with plane ellipses at different eccentricities (Rothenburg and Bathurst, 1992) and data for
Ham River sand presented by Bishop (1971) is shown in Figure 5¢9. The figure displays
the results in a diagram of peak friction angle versus the peak dilation rate.

As can be seen, both plane ellipses and 3-D ellipsoids give peak friction angles com-
parable to the Ham River Sand, but only assemblies of ellipsoids replicate peak dilation
rates of the same order as those of the Ham River sand.

Plane systems produced maximum rates of dilation between 0.8 and 1.9, depending
on the particle shape. Three-dimensional systems of ellipsoids at a single eccentricity
e = 0.176 and several confining pressures had peak dilation rates between 0.35 and 1.1,

while the Ham River sand is characterized by values ranging between 0 and 0.78.

5.4.3 Packing Density Behaviour

The plot of this parameter for different confining pressures is shown in Figure 5¢10a.
As expected, the initial value as well as the steady state value are all dependent on the con-
fining stress. Note that the packing density p and void ratio e are related by

p=1/(1+e).
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The global effect of the confining pressure on the rate of change of the packing densi-

ty can be measured by the average rate of change ;i?p over the full range of applied axial

a

deformation. The quantity :?p can be related to the difference (p, — p,,) between the ini-

tial state and the steady state as:

o _ 1 E“"[‘—ie]dea = Pi~Pss (5 4)

de, €' —€;J€; Ldg, € — €2

The plot in Figure 5+10b displays the variation of (p, - p,,) with varying confining
pressure. The steep regression line indicates that a strong correlation exists between these
two parameters.

Note that steady state was taken to be at 20.5% axial deformation. This is the largest
axial deformation shared by all tests, but it is understood that the start of steady state de-

pends on the confining pressure and is not the same for all tests.

5.4.4 Average Coordination Number Behaviour

The average coordination number in Figure S¢11a displays a trend of evolution which
is typical of deviatoric tests. The steady decrease of this parameter is due to the overall
loss of contacts (mainly in the lateral directions).

The number of contacts that are lost are only partially replaced by new contacts, so
that the rate of creation is well below the rate of contact loss, at least until the strain soften-
ing begins; then the two rates start getting closer and become balanced at the steady-state.
At the beginning of the steady-state the net number of contacts in the assembly tends to a

constant value.
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From the histogram plots of the particle coordination number in Figure 511a, it is ob-
served that the contacts at the post-peak states remain distributed in similar or at least
close proportions around their arithmetic means, compared to those after the peak state.
This trend is confirmed by the plot of the standard deviation of average coordination num-
ber in Figure 5¢11b. This parameter experiences no significant change during shear defor-
mation. It is also not sensitive to changes in applied confining stress.

An initial delay in contact loss is observed for large confining pressures (Figure
5+11b). The effect of shape is believed to be responsible for this phenomenon. It acts on
the component of displacement contributed by rotations to oppose the effort of separation
of two particles in contact. The schematics in Figure 5¢11e illustrate this idea. Under the
same separation effort, Af, a pair of spheres in contact will separate before a pair of ellip-
soids initially having the same overlap distance. In reality and in simulations, each particle
is in contact with many particles. The contacts have different orientations and the breaking
of contacts involves many factors at the same time, but, for lateral contacts, which consti-
tute the major proportion of lost contacts, the effort of separation is lateral and the simple

model shown is an acceptable approximation of the simulated reality.

5.4.4.1 Effect of Confining Pressure

It is observed that the initial delay in contact loss is not present for the smallest con-
fining pressure (curves 1) in Figure 5¢11b.

The rate of change of the coordination number, plotted in Figure 5¢11c, shows a sen-

sitivity to the applied confining pressure within the first 5% axial deformation. For the
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large part of the deformation process, however, the curves of variations of these rates are
hardly distinguishable. This means that the influence of the confining pressure is observ-
able for the range of deformation before strain softening begins. Beyond this state, the
sample would have dilated enough to allow its particles to move freely within their imme-
diate surrounding without major restriction imposed by the overall mean pressure (espe-
cially in the lateral directions to the applied maximum-load).

The difference (¥;—7..) is plotted against the confining pressure as shown in Figure
5¢11d. The regression line to fit the data shows a very poor correlation between these two
parameters (very low slope angle). This result indicate that the influence of the confining
pressure on the coordination number rate is globally insignificant, although its influence

on the pre-peak states is recognized.

5.4.5 Average Normal Contact Force Behaviour

The average state of normal contact forces can be described by the average normal
contact force magnitude, /2, over groups of contact normal orientations, as shown by plots
in Figure 5+12a. The influence of confining pressure on initial and steady state values of P
is clearly observable on these plots. Moreover, Figure 5¢12b shows a strong correlation

between the average rate of change of  and the applied confining stress.
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5.4.6 Effect of Assembly Size

The effect of assembly size on the macro-mechanical behaviour can be visualized by
comparison between samples of different sizes but initially having properties that are sim-
ilar or at least close enough to be comparable. Two pairs of samples are considered:

i The 125 ellipsoid assembly tested at a confining pressure of 47E+6 units (Test
3) and the 1000 ellipsoid assembly tested at a confining pressure of S0E+6
units (Test 4c). These two tests are characterized by initial coordinations num-
bers of 11.21 and 11.46, initial porosities of 21.8% and 20.5%, and initial mag-
nitudes of average intergranular normal forces of 7.15e+09 and 7.39¢+9 units,
respectively.

ii. The 27 ellipsoid sample tested at a confining pressure of 7E+6 units (Test 1),
and the 1000 ellipsoid sample tested at a confining pressure of 10E+7 (Test
4e). In this case, the samples have initial coordination numbers of 10.52 and
9.50, initial porosities of 26.2% and 26.8%, and initial magnitudes of average
intergranular normal forces of 1.15e+9 and 1.93e+9, respectively.

The comparison between the first pair of samples is illustrated in Figure 5¢13a. The
striking closeness of the stress-strain curves, the dilatancy curves, and the evolution of the
average coordination numbers and packing densities of the two samples indicates that the
assembly size has a minor effect on the behaviour of the assemblies.

The comparison between the second pair of samples is illustrated in Figure 5+13b. In
this case the difference in behaviour is relatively significant. The initial coordination num-

bers are different by more than one unit, which is substantial for this kind of parameter.
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This comparison reinforces the idea that the assembly size has no effect on the macro-
mechanical behaviour and that the coordination number is a major factor in pre-determin-

ing the behaviour of sheared assemblies of particles.

5.4.7 Evolution of Micrestructure and Contact Forces

A qualitative illustration of the load transfer in simulated assemblies of ellipsoids is
provided in Figure 5¢14. The plots are shown for the assembly of particles tested at a con-
fining pressure ¢ = 30e+6 (Test 4d) which is in the medium lower range of used values.

The contact force magnitudes are proportional to the thickness of the lines connecting
particles in contact. Three groups of contact orientations are represented (i.e., in x, y and
z-directions) at four particular states of deformations (A, B, C and D) as defined earlier
and shown on the figure. Anisotropy will be most apparent on the chosen contact orienta-
tions (which are also principal directions of stress) because of the co-axiality of the stress
and most of the induced anisotropy tensors.

Initially, the magnitudes of contact forces are mainly uniformly distributed among the
three groups of contacts. These groups are also comprised of close but unequal numbers of

contacts due to the existing initial anisotropy in contact orientations (Figure 5¢15a).

5.4.7.1 Development of Contact Normal Orientations Anisotropy
As the test progresses, however, the number of contacts in the three directions de-
creases following the overall decline in the number of contacts. The rate of change is

much slower for (x)-contacts than (y) and (z)-contacts (Figure S5¢15a).
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Figure 514 Induced anisotropy in contact normal orientations and normal contact
forces (Test 4d)
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Figure 515 Vertical and horizontal contacts (Test 4d)
(a) Number of contacts versus axial strain
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The bias that is created as a result, initially relatively small, increases with shear de-
formation to a maximum value before gradually decreasing to a stable value. It is seen on
Figure 5+15a that the decrease in the degree of induced anisotropy (calculated as a differ-
ence between the number of (x)-contacts and (y) or (z)-contacts) takes place after the peak
of shearing resistance (state C).

Figure 5+15b shows the variation of the fraction of contacts oriented in the principal
directions of stress during shear deformation. The contact fraction is defined by the ratio
of the number of contacts in the particular orientation group to the total number of con-
tacts in the assembly. Here, the contact fraction in the maximum load direction never
drops below its initial level while the contact fractions in lateral directions steadily de-

crease and stabilize at large strain.

5.4.7.2 Development of Average Contact Force Anisotropy

The other visible form of anisotropy is related to the magnitude of contact forces. The
maximum-load oriented contacts carry forces that are increasingly higher, as shown in
Figure Se15c. This is also noticeable from the increase in the thickness of the lines repre-
senting the contact force magnitudes up to the state of peak friction angle (state C). At the
same time, the contact forces carried by lateral contacts (once at the same level of magni-
tude as the contact forces in the maximum-load direction) decrease dramatically, creating
a major bias in the spatial distribution of contact force magnitudes.

The increase in contact force magnitudes carried by sub-axial contacts observed up to

the peak state (state C) is caused by the overall decline in the number of contacts and the
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need for the system to accommodate the excess load (once carried by contacts which are
now lost). The excess load is distributed to the fewer remaining and newly formed con-

tacts in the direction of compressive strain.

5.4.8 Anisotropy Behaviour

The induced anisotropy in fabric and in contact force magnitudes is the micromechan-
ical response of the system of particles to the applied load. In Chapter 2, tensorial quanti-
ties were defined to measure this anisotropy by approximating the directional variations of
the corresponding microscopic parameter (e.g., contact normal orientation/contact vector
length/contact force vector components) using truncated Fourier series expansions.

It has been seen that in some cases the approximation of these spacial distributions by
second-order Fourier series was sufficient. In some other cases (the average tangential
force, for example) fourth-order terms in the series were required to achieve a reasonable
approximation.

Because of the mathematical difficulty in handling the fourth-order tensors used to
express the fourth-order terms in the series expansion, the second-order anisotropy tensors
alone are considered for quantifying anisotropy. They are subsequently used to trace quan-
titatively the above described development of anisotropy in simulated assemblies of ellip-

soids during shear deformation.

5.4.8.1 Anisotropy in Contact Normal Orientations
The measured and calculated histograms of the contact normal orientation distribu-

tions are plotted at the four states, A, B, C and D, of the test 4d as shown in Figure 5-16a.
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Figure 5+16 Evolution of anisotropy in contact normal orientations during shear

deformation (Test 4d)
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The development of anisotropy is indicated by the change in the shape of these distri-
butions: From spherical (isotropic state A) to ellipsoidal (moderately anisotropic state B)
to a “peanut” shape (states C and D). The degree of anisotropy of a “peanut” shape can be
judged by reference to an isotropic distribution (unit sphere) in the principal directions of
anisotropy where anisotropy is most apparent. Hence, it can be seen that the distribution of
the state C is more anisotropic than that of state D. One possible measure of magnitude of
anisotropy is (aj — aj;)/(a; + aj;) (Biarez and Wiendieck, 1963). A more-accurate mea-
sure that integrates all directions at once is by means of the second invariant of the anisot-
ropy tensor a’ = Jaja.

The evolution of the magnitude of anisotropy in contact normal orientations, a’, is
plotted in Figure 5¢16b. The observed profiles show the same type of variation recorded
by other simulation results, in two dimensions using disks and ellipses, and three dimen-
sions using spheres. For instance, the curve of variation for disks and spheres was shown
to be well approximated by a hyperbola or an exponential function. The hyperbolic trend
is replicated in the case of ellipsoids, with few differences from the spherical case. A delay
in the anisotropy increase takes place at the very beginning of the test for relatively large
confining stresses.

In the case of assemblies of spheres, the contact disruption is not delayed by rotations
of the particles, as in the case of ellipsoids. A similar delay was observed on the profiles of
the average coordination number. The second difference is a strain softening phenomenon
that takes place after the peak value.

The evolution trends of a” are microscopically related to the process of creation and
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destruction of contacts during shear deformation. The increase of a” to a peak value then
the decreasing convergence towards a steady value at large strain shows that the potential
of anisotropy development is constrained by deformation.

When the applied deformation can be accommodated with a zero net number of creat-
ed and disintegrated contacts, the value of the parameter a” stays constant (steady state of
deformation). The steady state value seems to be sensitive to the level of applied confining
pressure. Similar trends were observed in two-dimensional systems of numerical ellipses

(Eliadorani, 1992).

5.4.8.2 Anisotropy in Average Normal Contact Forces

The magnitude of anisotropy in the average normal contact force, a”, is plotted in
Figure 5¢17. It has characteristics of behaviour similar to the macroscopic stress-strain be-
haviour: for example, an initial increase to a maximum value, followed by strain softening
and a transition to a constant value at large strain. The steady state value of a” appears to
be independent of the confining stress, this is similar to the angle of shearing resistance at
steady state. The state of deformation at the peak value of a" is also relatively close to that
of the peak of angle of shearing resistance (curve 2).

The initial development of a" obeys the tendency of the system of particles to distrib-
ute the transferred load in the form of high magnitude forces at contacts oriented in the
maximum load direction along sub-vertical chains of particles, while minor load direc-
tions sustain lower magnitude forces. The magnitude of contact forces in the assembly

keeps accumulating until inter-particle slip occurs.
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Figure 517 Evolution of anisotropy in average normal contact forces during shear
deformation (Test 4d)
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The slip leads to re-adjustments of the structure (increase in a”) and the formation of
interlocked regions in the form of compact clusters of particles which can move as rigid
blocks in the direction of interlock (maximum compressive strain direction). Initially and
up to the peak of internal friction angle, these regions will sustain high magnitude forces
(increase in a”).

Under the effect of dilation and the lack of sufficient lateral support, the number of in-
terlocked regions start diminishing gradually (decrease in a") and stabilizes when the in-
duced deformation can be accommodated by simple relative movement of the remaining

blocks at a few slip contacts.

5.4.8.3 Anisotropy in Average Tangential Contact Forces

The magnitude of anisotropy in the average tangential contact force, a* features a rel-
atively rapid rise (depending on the applied confining stress) to a maximum value, fol-
lowed by a slow decline and convergence to a constant value, which seems to be unique
for all applied confining pressures (Figure 5¢18). The general behaviour is related to the
number of contacts where slip occurs. It was observed that slip takes place primarily at
contacts that represent end points of interlocked regions. As the number of contacts de-
creases, particles’ rotational freedom is increased and tangential forces are slowly re-

leased.
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shear deformation (Test 4d)
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5.4.8.4 Comparison of Anisotropies at their Peak States and the Influence of
Confining Pressure

The magnitudes of anisotropies, a’, a", and a* for several confining pressures are
plotted in a diagram of peak value versus applied axial strain, as shown in Figure 5¢19.
Both the maximum values and the corresponding axial strains can be compared on this di-
agram. The comparison can be made with reference to the maximum shear stress ratio, a,,
which is plotted on the same diagram. This is because a,, a’, a", and a* are linked
through a functional relationship termed “Stress-Force-Fabric™ relationship.

For the case of disks in conditions of static equilibrium, where all anisotropy tensors
are coaxial with the stress tensor, and magnitudes of anisotropy are small, Rothenburg

(1980) has shown that the relationship takes the simple form:
_ 1
a, = i(a’ +a+a') (5+ 8)

The relationship in three dimensions is essentially the same as in two dimensions, ex-
cept that a few corrections and terms must be added in the right hand side of the relation-
ship in order to take into account the change in the dimensionality of space and in the
shape of particles, as discussed in Chapter 6.

According to the relationship (5¢ 5), the macroscopic shear stress ratio is mobilized as
a result of microscopic development in fabric and force anisotropies during shear defor-
mation. The mobilized shear capacity is defined by the half sum of magnitudes of anisot-

ropy, @', a”, and a‘.
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The magnitude of maximum a” and its state of occurrence are the closest to a,. How-
ever, the maximum values of a" are always higher than those of a,, and their states of oc-
currence always takes place after the peak of a, .

In terms of magnitudes of maximum anisotropy, a’ is the second closest parameter to
a,, followed by a’ in third position. This holds except for the large confining pressures
(point 4) where the two parameters (a” and a‘) are comparable.

Maximum a” values are attained well after the peak of a,; those of a* are attained

well before the peak of a, .

Effect of Confining Pressure
From observation of trends of evolution of these parameters, it can be concluded that
they are all dependent on the confining pressure. This dependence is the strongest for the

fabric anisotropy a’, characterized by the steepest regression line.

5.4.8.5 Anisotropy in Average Branch Lengths

The evolution of this form of anisotropy is illustrated in Figure 520. The magnitude
of anisotropy, a°, increases linearly with axial deformation. It exhibits little sensitivity to
the level of applied confining pressure (Figure 5¢20b).

The development of a* is a direct effect of particle shape and is much influenced by
the ellipsoid orientations. At large strains, ellipsoidal particles have their major axis pre-

dominantly horizontal.
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Figure 520 Evolution of anisotropy in average branch vector lengths during shear
deformation (Test 4d)
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Judging from the ellipsoidal shape of the distribution at state D, longer branch lengths
characterize contacts in the horizontal direction and shorter branch lengths characterize
contacts in the vertical direction.

This is consistent with the schematics in Figure 5¢21b showing branch vector lengths
of vertical and horizontal contacts between horizontally oriented particles. The branch
vector for the vertical contact should always be shorter than the branch vector length for
the horizontal contact. But, on average over all contacts in an assembly of ellipsoids, the
branch vector length is essentially constant and its value does not depend on the applied
confining pressure (Figure 5¢21a).

Finally, it is observed that the average branch vector length z° is always higher than
the geometric mean diameter 2r defined as the diameter of a sphere having the volume of
the mono-size ellipsoid particle. For mono-size assemblies of spheres there is always
equality of these two parameters, which indicates another aspect of the particle shape ef-

fect.
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5.5 Conclusions

From the results of the shape transformation procedure, it can be concluded that this
method of assembly generation is an effective way of achieving initial samples of ellip-
soids of high contact density before deviatoric testing. The shape of ellipsoids is certainly
responsible for achieving coordination numbers of eleven and more when conditions of
static equilibrium are maintained during the growth simulation process. Such values of co-
ordination number cannot be numerically attained with randomly packed assemblies of
spheres.

It has been observed that a change in the ellipsoids’ aspect ratio, be it as small as
e = 0.05, could trigger a mechanism of particle interlock and elevate the average coordi-
nation number from six or seven to values of ten and over. Further increase in the aspect
ratio leads to values of the coordination number of twelve and slightly above under high
confining pressure. There seems to be an optimal eccentricity for which the average coor-
dination number is a maximum around e = 0.16 . The packing density evidences a similar
rise in value and reaches its maximum around the optimal eccentricity.

The anisotropies in all aspects of fabric and contact force components, initially very
high because of the regularly packed structure of initial spheres, drop to relatively low val-
ues, but are not totally eliminated.

The shear deformation at constant mean pressure revealed characteristics of behav-
iour that are similar to real granular materials. The mobilized shear strength and dilation
rates of simulated assemblies were seen to match typical values for dense sands.

The microscopic analysis revealed many aspects that were observed in physical tests
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and numerical simulations in two and three dimensions. For example, Similarities include:
L Shapes of the spatial distributions of the different microscopic parameters.
ii. Profiles of anisotropy development during shear deformation.
The effect of confining pressure is observed to affect both the microscopic and the
macroscopic behaviour.
The effect of particle shape is present in all aspects of the behaviour of assemblies of
ellipsoids. It not only influences initial parameters such as the coordination number or
packing density, but it also contributes indirectly to all forms of anisotropy and also direct-

ly to the anisotropy in contact vector lengths and orientations.
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CHAPTER VI: THE STRESS-FORCE-FABRIC
RELATIONSHIP FOR ELLIPSOIDS

6.1 Introduction

The Stress-Force-Fabric relationship (S-F-F) is a term used for the explicitly formu-
lated relationship between the components of the stress tensor and anisotropy tensors rep-
resenting the global microscopic response of a system of particles subjected to a
homogenous load pattern (for example, loading patterns used in conventional soil me-
chanics).

In this chapter, the S-F-F is formulated for ellipsoids and verified using results of nu-
merical simulations. The relationship is tensorial in nature and is not easy to interpret in
terms of such engineering parameters such as shear strength, dilatancy, etc. For this rea-

son, a direct equation relating the shear stress ratio (measure of shear strength) to compo-
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nents of anisotropy is preferable. This task can be very tedious, even under the simplest
applied loading paths, as shown later. However, a great deal of information can be gained
from deriving such a relationship, especially to better understand the shape effect on shear

strength and other aspects of pressure sensitivity of assemblies of ellipsoids.

6.2 The Average Stress Tensor

The stress tensor has been previously expressed in terms of contact vectors as:

Cy = %,Zﬁ I (6 1)

cev
where the sum is taken over all contacts, c, in the assembly volume V.
Subsequent analytical developments utilize the particular formulation of the average
stress tensor in terms of branch vectors.
By definition, the branch vector connects the centroids of two particles in contact. Re-
ferring to Figure 6¢1, the branch vector z¢ = A_B is related to the contact vector,
If = AC, relative to particle 4, and, I§ = BC, relative to particle B, as z© = I§-If.

A physical contact contributes two individual contacts (one for each particle), thus:

1
Gy = I_/dgy(ﬁi s ) (- 2)
The term between brackets can be further transformed as follows:

_ 1
fls; + fuli; = Fly-FlG = g = s(Rzf; vz @)

Therefore:
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Figure 6+1 Contact vectors, branch vectors, and contact normal vectors
(a) Spheres
(b) Ellipsoids
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1
Sy = 5 2, hizg +fizh) (6-4)

ceV

G, = %,kaf 6 5)

For infinite systems of particles, the average stress tensor assumes the following con-

tinuous form:
o, = %m[ ' f(n)z,(n)E(n)dn (8-6)

The meaning of the variables in the right hand side are the same as those discussed in
Chapter 2 for infinite systems. The only new variable introduced here is the average
branch vector z,(n).

In micromechanics research related to disks and spheres, treatment of the average
branch vector is almost trivial due to its coincidence with the contact normal (Figure
6+la):

z(n) = z°n @7

For non-spherical particles, treatment of the average branch vector is a major issue

and this vector must essentially be treated similarly to the average contact force vector.

6.3 Distribution of Average Branch Vectors

The branch vector is generally not coincident with the contact normal direction (Fig-
ure 6+1b). Similarly to the contact force vector, the branch vector is decomposed into a

normal component (associated with the size of particles in contact) and a tangential com-
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ponent (describing the shape of particles at the vicinity of the contact) as:

= t o
z; = z'nf + zf (6-8)
where:
z" = z¢ng = Z°cosy*
! = o€ N C H c ( 9,
— ——— —1 C
zj = zf-2"nf = z°sInyY°Lf

The unit vector £ = z/z* is parallel to the tangent branch vector z*; z¢ is the modulus

of the vector z°; z* is the modulus of the vector z¢; and y* is the angle between z¢ and n°.

The average branch vector calculated over a group of contacts of similar orientation is
given by:

z(n) = z"(n)n; + zi(n) (6+ 10)

In finite assemblies of particles, the averages are discrete sums over contacts falling

in the class of orientation represented by the unit vector n :

_ - (6 11)
zj(n) = zr—z'nf = [ Z(zf—z"nf) ]/AM(,,,

ce (m

where AM ,, is the number of contacts in the class of orientation n .
For infinite systems, the discrete average for orientation classes should be replaced by
continuous functions of the orientation vector. Appropriate approximations of these func-

tions can be established using spherical harmonics or Fourier series.
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6.3.1 Distribution of Average Normal Branch Vectors

Similar to the average normal contact force, the average normal branch vector is an
even function of orientation, i.e., z"(n) = z"(-n), and as such it can be represented by a
truncated Fourier series of even order terms. Results of numerical simulations show that

the measured distributions are accurately approximated by second-order Fourier series:

z_"(n) = z—"{l +aynn} (6= 12)
As an illustration, a measured distribution of normal branch vectors and its model ap-
proximation are shown in Figure 6-2a. The model seems to fit the numerical data very

well. No additional higher terms are required in this case.

6.3.2 Distribution of Average Tangential Branch Vectors
The average tangential branch vector is geometrically similar to the average tangen-
tial contact force vector:
i. Its average over groups of orientation is zero, i.e., J‘. zi(n)dn = 0,
ii. the distribution function is odd, i.e., z/(—n) = —z!(n), and,
iii. itis orthogonal to the orientation group unit vector, i.e., zn, =0
These properties suggest that a similar model used to approximate the average tan-
gential contact force distribution applies to the distribution of average tangential branch

vectors. i.e., the second-order model:
zi(n) = z°[ajn;— (afmen)n;] (6 13)
Or, the fourth-order model:

ZT.'(”) = z° [afjnj —(agnn)n, + bfjkln,nk”l ~ (Blpmantiin )0, (8 14)
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Figure 6.2 Measured and approximated distributions of average normal and
tangential branch vectors
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The plots in Figure 6¢2b show that the above models provide poor quality approxima-
tions of data. Two assumptions are possible:

(1) The above models are really not suited to represent average branch vectors, per-
haps because the branch vectors and contact forces are physically different parameters, al-
though they share some geometrical similarities of a type outlined earlier, and also
because the above models are strictly applicable to the type of tangential forces that are
found in bonded elastic systems of spheres.

(2) The other possibility, which is most likely, is that the approximations are not com-
puted properly, given the very small anisotropy that develops in average tangential branch
vectors. In the example illustrated in Figure 6+2b, the tangential distributions are magni-
fied by a factor of 20 to be comparable in size to the normal distributions in Figure 6+2a.
The approximations are based on the calculated coefficient of anisotropy a}, . Given the
conditions of the performed simulation tests with ellipsoids, the tensor should remain co-
axial with the principal directions of stress, which means that the directions x, y, and z
must be principal directions for this tensor. As a result, the components af, , ai;, and aj,
should only represent fluctuations around the mean value zero. In the case of the average
tangential forces this is what is actually observed, and the approximations are fairly accu-
rate, but for average tangential branch vectors, the fluctuations are often of the same mag-
nitude as the principal values of the tensor, which results in distorted and inaccurate
approximations. Nonetheless, the tensor aj; contains valuable information as to the level
of anisotropy induced by the directional variation of tangential branch vectors and pro-

vides meaningful correction to the stresses calculated from the S-F-F relationship. For all
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these reasons, the second-order model for tangential branch vectors is maintained and

used directly to develop the S-F-F fabric relationship for ellipsoids.

6.4 The S-F-F Relationship for Infinite Systems of Ellipsoids

The objective here is to develop the S-F-F relationship in (6 6) in terms of the anisot-
ropy tensors used to express the distributions of the microscopic parameters in the rela-
tionship.

A direct way of achieving this is by substituting the model equations of the distribu-
tions in the right hand side of the relationship and integration of the obtained full expres-
sion. In the process of integration, the quantities which originally represented specific
physical parameters will become mixed with each other in product terms and cannot be
easily regrouped after integration. This is in addition to the difficulties of integration,
which are substantial in this case. An alternative solution is to restrict the decomposition
of the full expression to terms which will preserve a clear physical interpretation once the
integration is performed. This is achieved by writing each distribution function as a sum of
a term associated with a state of perfect isotropy (a spherical term) supplemented by an-

other term representing the deviation from this isotropic state (a deviatoric term), i.e.,

2 = L

12(n) = z°n;+ z}(n), j=1.3 (8- 16)

Jn) =pn+f(n), i=1.3

+ E*(n)

\

Second-order Fourier series approximations of the deviatoric terms will be used as
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follows:

E(n) = ajnn;/ax
z/(n) = z° (af,n,—(ay,—aznnn)y, j=1.3 (8- 16)
£ (n) = Pakn—ap - aipmany, i=1.3

The S-F-F relationship in (6° 6) can now be re-written as:
C; = %va LPn; + £ (n)][z°n; + 2,-’():)][4—1-1t + E‘(n)]dn (6+17)
and decomposed as:
o, = ojtoj +oi +tof +tof +tof +of +oF (6¢ 18)
where:
% 1
oy = %m,, L [fn,-][z"n,-][4—1-t:]dn
o =im.[ [Frllzn](E (n)]dn

o3, = Y[ Pl 1 e

K

=1 r zonil L
= im[ 7" (zn][ = |dn -
of = sm,[ [Prllz m]IE (n))dn
of = im.f, U (m)[zn][E"(n)]dn
of = im [ Iz @] an
off = sm.[ U (mIZ;(WIE"(n))dn
The tensor o9 is spherical and corresponds to a fully isotropic state when all anisot-

ropy tensors are equal to zero.

The tensors o7, , 67 , and of are deviatoric and represent contributions of the indi-

179



CHAPTER VI: THE STRESS-FORCE-FABRIC RELATIONSHIP FOR ELLIPSOIDS

vidual anisotropies taken separately. Each contribution is calculated as if the correspond-
ing anisotropy is the only one present in the system, the two other parameters being
perfectly isotropic.

Tensors of , 6 , and 67 are defined by pair products of anisotropy-related quan-
tities.

Finally, the tensor 6/ is defined by a product of all anisotropy-related quantities.

Each component of the stress tensor partition corresponds to an ideal situation which
is rarely encountered in simulations or in reality, but by virtue of this relationship, the
complex simulated or real situation can always be analyzed by reference to this simplistic
situation. For this reason, the S-F-F relationship is formulated through the expression of
the stress tensor partition components in terms of second-order anisotropy tensors.

The idea of calculating the stress tensor as an additive partition of components with a
particular relation to the different types of anisotropy present in a granular mass is very
popular in the micromechanical research. Many similar stress partitions can be found in
the literature (e.g., Mehrabadi et. al., 1982; Cundall and Strack, 1983; Thornton and Bar-
nes, 1986; Rothenburg and Dusseault, 1987; amongst others). The method of partition fol-
lowed here is identical to that of Rothenburg and Dusseault (1987) developed for the case
of assemblies of spheres. The above partition can be viewed as a generalization to include
the ellipsoidal shape of particles.

The results of integration are greatly simplified by adopting the following definitions:

180



CHAPTER VI: THE STRESS-FORCE-FABRIC RELATIONSHIP FOR ELLIPSOIDS

_ mP(z°/2)
3
ay = ay—aj

ay = aj-aj;

3
(2) = 2 )
B = J-. n.ndn 20

_ 15
B = o= jnnin,nm,dn

— 105
BiBe = SB[ mnmnnndn

945
B¥pars = 72 f nnnann.nn.dn

The stress o° is interpreted as the mean stress for a perfectly isotropic system. This
interpretation is directly implied by the result of integration of the first stress partition
component G} .

The second-order tensors a4 and a/ represent distances between normal and tan-
gential anisotropy tensors associated with a common microscopic parameter (in this case,
the average branch vector and the average contact force, respectively).

The B tensors are integrals over the unit sphere of elementary products of the unit
vector components n,. They vanish if the number of products is odd and assume positive
integer values if the number of products is even.

Substitution of expressions of £°(n), z'(n) and /£ (n) in (6 16) into the system of

stress components in (6* 19) and integration (using definitions in (6 20)) yields:
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=GB

o’ =°°B(4)a'
ij ? k1% kl

oy -?{B et Biiati}
o =%"{B Pali+Bidaty)

G,’; =2 35 {7Bxkpqa’ a E+Buklpq akAI:} {8+ 21)
_—{76(4) pq 1k+Buk)lpq ak{}
c -4 -
of =35 35Bajal+7B( apial+ 1B, ar,atf+ B, atiatf)

o-';zf 105{ IOSB p):a’ at a +3B]kpqr:arrxapA;a +3 B:k prxa’ at a [

+B{Venanasiaif}
The determination of the B tensors is straightforward and involves products of the
Kronecker delta tensor 8. It is explained in Appendix B.
Referring to the results of Appendix B, the stress components can be calculated solely

in terms of the anisotropy tensors and the Kronecker delta tensor as:

o3 = 0%
r = 20° r
2 o
o
of = % ta ia.-',- )
(6+22)
Q
oF = 20 {7a T + 2al:a; 4 + 2a5* -'k"'afza?faij}
G
of = 2° S Uaal +2ajay + 2ai{al, + ajaffd,;}

cf = 305' { %S-a;,,a,-‘k + 7a5al + 1a5alf

+2aiafy + 2a¥afy + affaffs,; }

The component o7 of the stress tensor involves third-order products of small quanti-
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ties. It is usually negligibly small and is omitted from the above system of stress contribu-

tions.

6.4.1 Verification of the S-F-F Relationship

The validity of the S-F-F relationship can be verified using the results of numerical
simulations with assemblies of ellipsoids. A direct verification involves the comparison of
measured and calculated principal components of the stress tensor (from S-F-F). An indi-
rect verification is by comparison of the measured and predicted shear stress ratios.

The shear capacity is usually measured by the peak of the shear stress ratio. This mac-

roscopic parameter is defined by the ratio of the shear stress to the normal stress, i.e.,

Cu’3

a = &

GCn

where A is some constant which depends on the definition of the shear stress. Here

A = 3/2 is chosen to match the commonly used definition of the shear stress as
G, = G, —0O; (in the case of axisymmetric triaxial tests, 6, = o;).

Both verifications are shown in Figure 6¢3 to Figure 6+6.

A close agreement is observed between the measured and calculated principal stresses

in general. At large strains, however, the agreement seems to slightly deteriorate, most re-

markably for the minor and intermediate stresses. This is probably due to the increasingly

important part contributed by the fourth-order anisotropy tensors in average tangential

contact force and branch vector distributions at large strains.
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Figure 6.3 Verification of the S-F-F relationship (major principal stress)
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These have not been included in the derivation of the S-F-F relationship. An equally
good agreement is observed between the measured and calculated shear stress ratios.

The results of simulation tests with ellipsoids can only validate the derived tensorial
S-F-F relationship in the particular case of the axisymmetric triaxial test. However, a fair-
ly close S-F-F relationship was derived for spheres and has been validated in a more gen-
eral system of applied stresses, that is, the true triaxial test (Chantawarangul, 1993).

It should be mentioned also that the presence of different levels of initial anisotropy
within the assemblies of ellipsoids before deviatoric loading shows that the validity of the

derived S-F-F relationship is not restricted to a particular state of initial anisotropy.

6.4.2 Analysis of Microscopic Contributions to the Average Stress
Tensor

Now that the S-F-F relationship is validated, it is possible to proceed with analyzing
the contributions to the stress tensor based on the decomposition of (6¢ 22).

Similarly to the S-F-F relationship verification, the analysis of the microscopic contri-
butions can be performed by reference to the individual components of the stress tensor or
by reference to the shear stress ratio. The first option is immediately available because of
the tensorial form of the S-F-F relationship. The second option, however, requires that a
direct relationship between the shear stress ratio and microscopic anisotropies be avail-
able. The derivation of such a relationship necessitates that some assumptions be made
and therefore will be delayed for later.

The evolution of the normalized average stress components, 6., /6™, c,,/65™, and

G.. /657, and the normalized mean stress, 6,/05™°, with varying axial strain are shown in
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Figure 67 through Figure 610, respectively, for a single confining pressure
(o° = 10e+6). The normalized seven microscopic contributions making up the macro-
scopic stress tensor, Le., 6,=q° t o +of tof +oF +o7 + o, are superposed
on the same plots. From these plots, the following observations can be made:

i Figure 67 to Figure 6°9 show that the contributions made by individual and
combined microscopic anisotropies to the average stress tensor are quite differ-
ent. The anisotropy in force magnitudes and the anisotropy in contact normal
orientations (curves 4 and 2, respectively) prevail over other forms of anisotro-
py in shaping the stress behaviour during shear deformation of assemblies of
ellipsoids. The contribution made by the anisotropy in branch vectors (curves
3) is small but increases in absolute value with deformations; for the major part
of the test it contributes negatively to the stress tensor. The combined effects of
individual anisotropies are consistent with individual contributions. Indeed, the
stress contribution 6} (curves 6) associated with the two largest individual
contributors to the stress tensor (6, and o4 ) dominates the stress contributions
o} and o associated with smaller individual contributors (curves 5 and 6, re-
spectively).

ii. From the comparison of Figure 68 and Figure 69, it is observed that all com-
ponents of the decomposition are axisymmetric tensors. They are also co-axial

with the average stress tensor.
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ii. From the evolution of the normalized mean stress in Figure 6210, it is observed
as expected that the microscopic tensors G/;, o7, and of; (representing indi-
vidual anisotropies) are deviatoric (curves 2, 3, and 4, respectively). On the
other hand, the tensors 67, 67, and G are not deviatoric (curves S, 6, and 7,
respectively). In fact, the tensor o}/ (curves 6), which has the second largest
mean stress, is responsible for keeping the overall mean stress constant by op-
posing the decline of the spherical tensor o . This is clearly observable from
the trends of curves 1 and 6 (Figure 610).

iv. It is seen that the spherical tensor 6° = m fz°/6 decreases to a minimum val-
ue then increases at very low rate, while the mean pressure associated with
of/ simply behaves in the opposite sense. The decline in the spherical tensor
results from the continuous rise in average normal contact force magnitude f°
and decline in the average contact density m,, while the average branch length

z° is staying almost constant.

6.4.3 Specific Effects Related to Particle Shape

The development of anisotropy in branch vector lengths is the direct manifestation of
the effect of particle shape. Particle shape is also indirectly responsible of anisotropy de-
velopment in contact normal onentations and average contact forces.

This form of anisotropy was seen to grow with shear deformation (curves 3 in the
above plots).

Another plot that helps visualize the direct effect of particle shape on the macro-re-
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sponse is generated by comparing the average stress tensor (calculated using the stress-
force-fabric relationship) in the genuine case to the case where the branch vector length
anisotropy tensor is eliminated from the S-F-F relationship.

The results are shown in Figure 6+11 where the principal comporents of stress and the
sine of the angle of internal friction (according to a Mohr-Coulomb failure criterion) are
plotted with varying applied axial strain (for a single confining stress).

As can be seen, the effect of shape is more significant at large strains. The assembly’s
geometry is more open to changes at large strains and particles can move with greater
freedom in lateral directions. Inter-particle rotations are also more developed and this cre-
ates larger deviation angles between branch vectors and contact normals for contacts in
the lateral direction, by comparison with those in the direction of maximum load. Since a
larger deviation angle means a shorter branch length, the bias in angles of deviations is
manifested in a bias in average branch lengths, and this explains the observed develop-

ment of this form of anisotropy.

6.5 Microscopic Anisotropy and its Relation to Shear Strength

From an engineering point of view, the analysis of microscopic contributions to the
shear capacity is more valuable than individual stresses. For this reason much emphasis
has been put on deriving a relationship between material strength and microscopic
anisotropies by researchers in the area of micromechanics of soil (e.g., Oda, 1972; Roth-

enburg and Dusseault, 1987; Rothenburg and Bathurst, 1989; amongst others).
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The complexity of such a relationship increases with the complexity of the applied
stress path and more importantly with the dimensionality of the problem.

The derivation proposed here makes use of a very simple stress path, the axisymmet-
ric triaxial stress regime. The absence of stress rotations simplifies the intricacies of hav-
ing to work with changing principal stress spaces and enables an exact analytical

derivation of the shear stress ratio-anisotropy relationship for ellipsoids.

6.5.1 Shear Stress Ratio Equation

The “Shear Stress Ratio-Anisotropy” relationship is obtained by substituting into the
definition of the shear stress ratio the expressions of the shear and normal stresses derived
from the S-F-F relationship.

The calculation of the shear stress Jm is particularly challenging: (1) It involves
the calculation of the stress tensor deviator 6, ; (2) It involves the product of each deviator
stress component by itself. A stress component consists of the sum of 13 separate terms as
can be seen from (6+ 22). A full decomposition of the product 6,6} will result in 169
terms of which the square root must be taken. As such, the relationship obtained will be
complex in its formulation and of little interest.

Useful information regarding the part of contribution of the different individual
anisotropies to the material shear strength requires a simplification of the equation, using

appropriate assumptions which can be verified numerically.

6.5.1.1 Normal Stress

The calculation of the normal stress from (6+ 22) is straightforward and the result is:

197



CHAPTER VI: THE STRESS-FORCE-FABRIC RELATIONSHIP FOR ELLIPSOIDS

G, = 0° {1+2Z(ajay + aja; + ayaj + 1.5a5al) } (62 24)

6.5.1.2 Shear Stress
The stress tensor deviator components must be calculated prior to calculating the

shear stress. They are expressed in a simple form as:

5
20°
35

' 3 3
Oy [a]+a;+ 5a,~',- +ay;+ Ea,-‘,-]

+ [7a,(f"+4a,[j’5‘f]
(¢ 25)
2¢° ’
+ 55 [7aff+aalror]

207 (33
+S— [;a,(}"+7a§;(“"+7a,(}Af)"+4a,l}A‘XAm]

35

where the following notations were used:

- aff! denote the symmetric part of a tensor, Le., affl = %(a;; +az).

- af’ is the deviatoric part of a tensor: @’ = aX— ==5,,.

- ai is a tensor product as: a? = aiay;.

Under the assumption of coaxiality of the tensorial parameters in the right hand side

of (6 25), the following observations are essential to simplify the shear stress expression.

“Cauchy-Shwartz” Type of Identity Between Proportional Second-Order Tensors

If two tensors @i and a, are proportional then,

lajay| = JajajJayay (626)

Or:

azal = sijazaz Janal (6+27)
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where s¥ denotes the sign taken by the left hand sign of the equation, i.e.,
sz = sgn(aja;) (6 28)
The provision for a parameter to fix the sign is necessary because of the nature of the
tensors encountered in simulations. The proportionality can be direct or inverse depending

on the sense of co-axiality of two tensors relative to each other.

Square of the Sum of Proportional Tensors
Equation (6 27) implies the following result which is relevant to the shear stress cal-
culation: the square of the sum of two proportional tensors (a scalar quantity) is equal to

the square of the sum of their respective moduli affected by appropriate signs. i.e.,

(a5 +ap)a; +ay) = (Jajaj + sefayat)’ ©:29)
Therefore:
Jaz +ax)(a; +ay) = | Jazas + sy Jaas) (6+30)

The relationship (6 30) can be extended to the sum of three proportional tensors as:

J@i+ay+ ayy = |Jajas + sejmay + sijajail  wesn

And, to the sum of any number N of proportional tensors (a}}, a2, .. .a;¥) as:

Ja@g+ap+ . +ap? = Japay + safagay + .+ s fapay| e
By denoting the modulus of an arbitrary second-order tensor a; by a* = Jataz,

equation (6 32) can be re-written as:

Jag +az+_ +ap) = |au+shas + .+ sha™| (6+33)

If the 13 tensors involved in the expression of the deviatoric stress tensor in (6° 25)
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are proportional, then the relationship (6+ 33) can be applied to calculate the shear stress
as:
o,=./io;,-o;,=./io°{ %(a' + s¥a¥ + 1.55Fa* + sra” + 1.5s'a’)
+ 3_25; (750 @lrY+45iranl glranT)
+ % (TSUrI gUr 44 5(rANT gLrANT) (6 34)

+ % (17.55¢) grer+7 5(82)) g(082)Y

+ % (7 SUBNTY gUANTY 44 §[(A2)ANT gl(AzXANTY }

Again, the symbols (', [ ]) in the above equation are used to indicate a deviatoric and
a symmetric part of a tensor, respectively.

For instance, al"4:) stands for the modulus of the deviatoric part of the symmetric
part of a tensor obtained as the product of a;; and a3*. Therefore, a7 is a concise nota-
tion bearing the necessary information to retrieve the variable it corresponds to. For exam-

ple, a7 can be retrieved as:

alrnaar = W (6+ 35)
where:
a'[jr(Az)T = %(a{kaff +ajyay) - ‘LI;?I:SU (6+ 36)
The sign affixed to a'"=¥  je., si* is also written in a way that indicates its mean-
ing. According to the general definition in (6+ 28):
siranl = sgn (al.'ja,[j'(dz)l') (6+37)

Note that all the signs are calculated with reference to the fabric anisotropy tensor a;;

(first term in the S-F-F relationship). However, any other basic anisotropy tensor could as
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well be the reference tensor, and the signs would change accordingly.

Proof of the Proportionality of Tensorial Quantities in the Shear Stress Equation

So far, it has been established that if the assumption of proportionality of the tensors
forming the right hand side of the stress tensor deviator equation in (6+ 25) is valid, then
the “Shear Stress-Anisotropy” equation in (6* 34) applies and could be used to formulate
the shear stress ratio in terms of anisotropies. The legitimacy of such an assumption is cer-
tainly restricted to particular conditions of anisotropy development. In the next and fol-
lowing sections a proof is given that the assumption is legitimate if the five basic
anisotropy tensors af;, aj}, aj;, ay, and a},, are all axisymmetric and co-axial. These con-
ditions are fulfilled under special stress loading paths, such as the constant mean pressure
axisymmetric triaxial tests performed with assemblies of ellipsoids. The results of numer-
ical simulations will be used to verify numerically the validity of axisymmetry and co-ax-
iality.

Before proceeding with the verification of the assumption of axisymmetry and coaxi-
ality, a basic issue is to prove that coaxiality and axisymmetry lead to proportionality of all
the 13 tensor components in the right hand side of (6¢ 25). If each pair of tensors is to be
checked, the number of checks will be relatively large (13*(13-1)/2). Instead, the propor-
tionality will be established with reference to a constant deviatoric axisymmetric tensor.

The 13 terms in the right hand side of equation (6¢ 25) consist of deviatoric tensors of

two types:
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1. Basic anisotropy tensors, ajj, a}, a;, ay and aj; (assumed to be axisymmetric
and coaxial)

2. Products of the form a{’ or al»T, where the tensors a7 and a; are either basic
anisotropy tensors or any of the additional tensors a3* or a¥ obtained by dif-

ference of basic tensors.

Basic Anisotropy Tensors

Any second-order basic anisotropy tensor can be written in its principal directions as:

a 0 0
@;1 = 10a; 0 (8- 38)
0 0 ay

The tensor is axisymmetric, therefore aj = aj, (assuming the axial symmetry

around the first direction which is the direction of loading). It is also deviatoric, therefore:

a; = amm, (6« 39)
where:
1 O 0
Msl = 10-12 0 (8- 40)
0 0 -1

According to (6+ 39), all the basic anisotropy tensors are proportional to the reference
constant axisymmetric and deviatoric tensor 1,;. As a consequence, the two tensors a3’

and a) are also proportional to 1.

Products of Basic Anisotropy Tensors

To examine the case of tensor products of type a{’, the tensors a and a, are re-
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ferred to their common principal axes. Therefore, according to (6 39):
aiy = apat; = aiafMaM (6+41)
Thus:
a?’ = afaf(Many) (6 42)
The calculation of the deviatoric part of the square tensor (matrix) () from the
definition of n,; in (6° 40) shows that:
(Many) = n,72 (6-43)
Therefore:
af®’ = afat(n;,/2) (8 44)
Any tensor of the form a{?” is proportional to n;;.

Similarly, the proportionality of tensors of the form a»" and n,, can be established.

Verification of Axisymmetry and Coaxiality For Basic Tensors

The plots in Figure 612 display the principal components of the five basic anisotropy
tensors for a single confining pressure (similar plots are obtained for other confining pres-
sures). The axisymmetry is implied in these plots where the intermediate and minor princi-
pal coefficients evolve almost identically.

The axisymmetry of these tensors was also implied before by plots of the components

of the stress tensor decomposition in Figure 67 through Figure 6+10.
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The Shear Stress Ratio Equation
In order to obtain a consistent “Shear Stress Ratio-Anisotropy” equation with the as-
sumptio.n of proportionality of basic anisotropy tensors, the expression of the normal

stress equation in (6 24) should be re-written using this assumption. The result is:
D, = 0,/0° = 1 + Z(sta’'a’ + s}a'a" + sja*a" + 15sia*a’) (- 46)

where signs are determined according to the general equation (6 27).
Finally, the ratio of the shear stress in (6* 34) to the normal stress in (6* 45) provides
the definitive form of the “Shear Stress Ratio-Anisotropy” equation as:
a, = ,f}_,{ %(a’ +sva’ + 1.58%a* + sta” + 1.55'a’)
+ 325_ (7541 Qe +4511ANT glra)Ty
+ % (T4 qlery 44 SIrANT g(HANT)

(6- 46)
+ % ( ]7_58£R)'a(ﬂY+7S$I(A:)Ya(l(Az))')

+ % (TSUANT GUANTT 44 SLAXANT Gl(AXAT ) § /

2
{1+ B(s;'a'a" + sfa’a” + s;a‘a” + 1.5sia%a’) }

The validity of the above equation can be verified by comparing the values of the
shear stress ratio calculated from its basic definition via the component form of the S-F-F
relationship to the values computed from the above relationship. The two methods of cal-
culation are summarized in the plots of Figure 6+13, which show that two methods are

identical.
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Figure 6-12 Verification of coaxiality and axisymmetry of anisotropy tensors
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6.5.2 Anisotropy Contributions to the Material Shear Strength

In the plots of the average stress tensor decomposition, contributions of anisotropy to
the stress behaviour has been assessed qualitatively. The concern in this section is to pro-
vide a qualitative and a quantitative assessment of anisotropy contributions to the material

shear strength of assemblies of ellipsoids.

For more clarity and consistency with the notations used for the decomposition of the

average stress tensor, the shear stress equation in (6= 46) is re-written as:

a =aztast(astaz)+(as+as)+as+af+ad @40
where:
a =90
a; = JAdan/D,
JA @syay/D,

—t—
Q

a<

Il

a; = A (dasstan) /D,
{as = Jadsran /D,
A 2aussian) /D,

az = JL[Z (IsiatrI+asientgiranty) /D,

(6 48)

Q
Q™
I

af = [3_1’3 (TSUrYqurr+4sir N qlranty /D

af = Jk {Z (1755075001 gy

+TSWANTT GUANTY 44 [AXANT gl(B2XANTYy / D

and where D, = ¢,/c° is the normalized normal stress given by (6¢ 45).
The plots in Figure 6+14 and Figure 6+15 depict the above decomposition for all stag-

es of deformation of the initial sample of 1000 ellipsoids tested at the constant confining

pressure o° = 10e+6.
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a, 1: Calculated from the “S-F-F” Relationship (Components Form)
2: Calculated from the “Shear Stress Ratio”™ Equation
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A general observation about the trends of the different anisotropy contributions in
Figure 614 is that they are in agreement with those observed earlier with the components
of the average stress decomposition.

A qualitative resemblance exists between a; (curve 2), a2 (curve 4a), a’ (curve 4b),
aZ (curve 6), and the overall shear stress ratio. They are all characterized by an initial in-
crease (at different slopes) to a maximum value, followed by a decrease to a stable value
near steady-state. This decrease is initiated at different axial strains and with different
rates for different anisotropies.

Among all shear stress ratio components, a2 (curve 4a) displays the closest trend to
the overall stress ratio, which indicates the dominance of this form of anisotropy over oth-
er forms of anisotropy.

The plots of percent contributions to the shear strength in Figure 6¢15 show that be-
ginning at an early stage of the test, a2 dominates the other forms of anisotropy by provid-
ing the largest contribution to the sample’s shear resistance (curve 4a). After a sudden
drop at the very beginning, a2 quickly increases within the first few percent of axial de-
formation to a level which will be only slightly increased by the end of the test (from 41%
up to 45% of shearing resistance). On the other hand, a§ (curve 4b) attains its peak contri-
bution soon after deformation is applied and then decreases until strain softening begins,
where it stabilizes to a value of about 18% of the total material shearing resistance.

The role of fabric anisotropy is dominated by the anisotropy in contact normal orien-
tations (curve 2). a; abruptly decreases at the beginning and then immediately begins in-

creasing, but at a slower rate than a3 .
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The range of values of the contribution, a5, varies from 15% at the beginning of de-

formation to 38% near steady-state.

6.5.2.1 Another Illustration of the Direct Effect of Particle Shape

A useful illustration of the direct effect of particle shape is by the plot of the evolution
during shear deformation of ay +af +aF/2 +a¥/2. This quantity represents the total
contribution of particle shape-related components of anisotropy in average branch vectors,
ay and a?, and their shares in the joint effects with other anisotropies, aZ/2 and a¥/2, to
the mobilized material shear strength (Figure 6°16).

It is seen that the shape effect contributes positively (before the peak-state) then nega-
tively to the mobilized shear strength. This contribution varies linearly with axial strain.
At a very large strain, it can total up to -12% of the total shear strength. At the peak-state,
however, its contribution is negligibly small. The change in the sense of contribution that
takes place some time before the peak of internal friction marks the end of the initial

anisotropy’s effect on the behaviour of the assembly of particles (Figure 6+16).

6.5.3 Sense of Anisotropy Contributions to the Material Shear Strength
In order to trace the evolution of the sense of contributions of each term during defor-
mation, signs of first order basic contributions were plotted with varying applied axial

strain for four confining stresses (Figure 6+17).

6.5.3.1 Individual Contributions of a} and a};

The signs of the @} and a}; contributions are plotted in Figure 6°17a, b, respectively.
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As can be seen, their contribution to the material shear strength is always positive,

ie,s'= + andsf = + .

6.5.3.2 Individual Contributions of a} and g

The signs of a; and a} contributions are plotted in Figure 6¢17c, d, respectively.
They have negative contributions to the shear strength (for the larger part of the test). The
continuous positive sign during the first percents of axial strain is attributed to the pres-
ence in the system of an initial anisotropy. At large axial strains, constant signs prevail as:

sy= - and st = - .

6.5.3.3 Sense of Coaxiality of the Differential Anisotropy Tensor a}*

The differential average branch vector anisotropy tensor a4* has a changing coaxiali-
ty depending on the applied confining pressure (Figure 6+17e).

For the lowest pressure 6 = 10e+6, the sign s2* changes from positive to negative
at an axial strain of about 7.5%. The sign stays predominantly negative until the end. For
higher confining pressures, the sign s2¢ is always predominantly negative, s2* = - |

This result means that for larger confining stresses the normal average branch vector
aj; always dominates the tangential component aj, whereas for the lowest confining
stress the dominance is shared. The plot of magnitudes of ay and af in Figure 6+18a

shows this effect.

214



CHAPTER VI: THE STRESS-FORCE-FABRIC RELATIONSHIP FOR ELLIPSOIDS

A8 ¢
A6}
d47

v
ay

—a

x
U

4
S HISWBENE
4

A

20 25 30 35

10
Axial Strain (%)

(7.} 3

18

A2

o¢ = 50x10° ]

04}
.02 0 § NN NN 4
% s 10 15 20 25 30 35

A8
A6}
Jd4T
Jd2F

-SBRE5

o¢ = 30x10°]

4
S NISVIBNY
<

15 25 30

0 S5 10 20 35
18t = 70x10°
A6} 1
A4}

A2t -

d0¢ 1

08

06 |

04t

02 ¢ 5 10158 20 3”81
0

25 30 35

Figure 6-18 Effect of the confining pressure on the difference between anisotropies
in normal and tangential average branch vectors

215



CHAPTER VI: THE STRESS-FORCE-FABRIC RELATIONSHIP FOR ELLIPSOIDS

6.5.3.4 Joint Contribution of a;; and aj;

The joint contribution of aj; and the pair (g}, a;) to the material shear strength is
embodied in terms having the signs: s/, and s{"4=)¥ . These signs are dependent on indi-
vidual anisotropies and can be predicted from the basic signs in Figure 6+17 by a simple
product of basic signs.

At large strains, s¢7’ = - and sI4F = — |

6.5.3.5 Joint Contribution of a;; and &/

The terms representing the joint contribution of aj; and (aj}, a;) to the material shear
strength have the signs: s{"7, and s{"o"

At large strains: s¢7 = + and sl = + |

Note that the sign s% representing the sense of coaxiality of the difference between

a} and a};, is always positive, because aj} largely dominates aj; .

6.5.3.6 Joint Contribution of a; and a/
Finally, the second-order contribution due to the pairs (ay}, a;; ) and (a}}, a}; ) consists
of four terms signed by: s{™7 | s(A2) | sUANTY apd s{aXAN)

At large strains; s/ = - | s = _ UMY = _ apd sl@ent = -

6.5.3.7 Shear Stress Ratio Equation at Large Strains

At large strains, the shear stress ratio equation becomes:
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a; = A{}@-a'-15a +a"+15a")
% (7a + 4qlraa)ry
+2 (70" + 4ql Nty (6 49)
_ 3_2S (17.5a%) + 718 4 7qUANTY + 44ql(8:KANT)y }/
{1+ lis(—a’a" +a'a"- a‘a"— 1.5a'a' )}

At large strains, the contact normal orientation anisotropy, aj, the average normal
and tangential contact forces anisotropies, a} and a), respectively, and their products
contribute positively to the material shear strength. The average normal and tangential
branch vector anisotropies, a; and a; respectively, and their products with the above
anisotropies, have negative contributions at large strains. These results agree with plots in
Figure 614 and Figure 6-15.

In fact, the relationship in (6 49) is valid from before the state of peak friction angle.
It is believed that if the sample was initially isotropic, the relationship would hold for the

full range of applied shear deformations.

6.6 Conclusions

In this chapter, the Stress-Force-Fabric relationship was developed for ellipsoids by
including the direct visible effect of shape characterized by components of anisotropy in
average normal and tangential branch vector.

The particle shape factor was modeled by normal and tangential components of aver-
age branch vector anisotropy. It has been seen that it represents a minor but decisive con-

tribution to the material shear strength. It helps to close the gap between theoretical and
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measured stress-strain curves, especially at large strains.
The average stress tensor was decomposed as a sum of contributions due to the indi-

vidual microscopic anisotropies and their combined effects as:

o,=0y o +of +tof +tof +of +tof (6° 50)
| } | | | ' :
Tetal p‘-u a;, a; a, aea a,’,}:aﬂ aad,

Isotropy only  only oealy
where the tensor a;; stands for the pair of components (a}, a;), and af; stands for the pair
of components (af, al).
The relationship was validated numerically on simulated assemblies of ellipsoids in
the pure deviatoric triaxial test (absence of stress rotations).
The following observations on the evolution of the decomposition during shear defor-
mation were made:

1. All tensor contributions are symmetric and co-axial with the original average

stress tensor.

2. The spherical tensor 62 = m f(z°/ 6)5,, is not constant but experiences a de-
crease to a minimum value, then gradually increases and stabilizes at large
strains. This behaviour was seen to be the product of an ever increasing aver-
age normal contact force £ and an ever decreasing average contact density m, .

3. Tensors o}, 6f;, and o, behave similarly to the total stress. Tensors o}, 6,
are deviatoric, but not f. The latter has a mean value which behaves in the
opposite sense to the spherical tensor in order to keep the mean total stress con-

stant as prescribed by the test. These three tensors total more than 90% of the

average stress tensor.
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4. Tensors o}, o7, o vary linearly with deformation. Tensors 677, 6 are not
deviatoric; however, they are small and can be neglected. The tensor o} is de-
viatoric and its negative contribution to the total stress increases with shear de-
formation.

A direct expression of the mobilized shear strength as a sum of individual and com-

bined anisotropy contributions was formulated by assuming co-axiality and axisymmetry

as:
a, = a;+(as+ai)+(as+al)+ai+af+ay (6 51)
\.V.J \qﬂ
a; al

The relationship was verified by results of simulation. It yielded concepts already
known from earlier research concerning details of anisotropy development and interac-
tions between fabric and average contact force anisotropies, and also conceming levels of
microscopic contributions to the mobilized shear strength during shear deformation. A
summary of findings is as follows:

1. All terms in the above decomposition can be grouped into two classes of behav-
iour:

a. Behaviors resembling the total shear stress ratio’s behaviour with

an increase to a maximum value followed by a gradual decrease

towards a steady level. Positive contributions a5, a2, at, and

aZ belong to this class.
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b. Linear decreasing variations with the applied axial strain. Post-
peak negative contributions ay, at, a7, and a¥ belong to this
class.

2. The rates of mobilization of the first class of anisotropies to their maximum in-
tensities are very much different. The contribution 4%, is the fastest to mobilize
(within the first few percent of axial deformation) followed by aZ, then ay .
The mobilization of maximum a7 takes place before the peak of the shear
stress ratio a, . The two mobilizations are very close, however, but not simulta-
neous because of influences due to a‘, and a;.

3. The average contact force anisotropy contribution a4 = (a2 +af) comprises
the largest proportion of the mobilized shear stress ratio. At the peak of internal
friction, a2 accounts for about 41% and a! for about 18% of a,. At large
strains, they account for 45% and 18%, respectively (Table 6°1).

4. The contact normal orientation anisotropy contribution a; increases very grad-
ually to its peak value from 28% (at peak-state) to 38% (at steady-state). The
combined contribution a7 has the same level (13%) at peak-state and steady-
state (Table 6-1).

5. Among the first class of contributions, a7 is the parameter that features the
largest variation (10%) between the peak-state and steady-state. An additional
4% comes from the increase in a2 . This is in excess of the 100% total contri-

bution and must be eliminated. The second class of parameters, i.e., a?, ag,
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aZ, and aZ provides the necessary balance by contributing negatively to the

mobilized shear strength.

Term a; lal = (ar+at)| af |ai = @y+ai)| a7 a¥
State @ | a ay 1 a
Peak-State | 28% 59% 13% 0% 0% | 0%
41% | 18% 0% | 0%
Steady-State | 38% 63% 13% 975%  |-1.75% | -2.5%
45% | 18% 6% |-3.75%

Table 6«1  Percent contributions of microscopic anisotropies to the mobilized
material shear strength
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CHAPTER VII: STATISTICAL AND GEOMETRICAL
ANALYSIS OF CONTACTS

7.1 Introduction

In this chapter, a statistical analysis of contacts is carried out using the data collected
from the simulation results with assemblies of ellipsoids. The description of contact nor-
mals and contact vectors by statistical distributions was the subject of thorough discussion
in connection with the analysis of the Stress-Force-Fabric relationship in the previous
chapters. Herein, other aspects of the contacts which did not receive much attention before
are looked upon. The principal parameters employed for performing statistics on contacts
are: the pair of contact vectors associated with a physical contact, the contact normal ori-
entation and the particle orientation.

The objectives of this chapter are twofold:
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1. To study the effect of shape on the distribution of contacts around a particle sur-
face.

2. To estimate the effect of shape on the anisotropy in contact normal orientations.

7.2 Distribution of Local Contact Vector Orientations

The contact normal vector is not sufficient to describe the fabric of irregular-shaped
particles. Appropriate information about the size and shape of particles in the vicinity of
contact with other particles must be included in the description of fabric and this is provid-
ed by the contact vector. Through the study of this parameter the direct effect of particle
shape and size can be analyzed. For mono-size assemblies of ellipsoids, the effect of size
is not present and the particle shape alone can be studied. One simple aspect of possible
investigation is whether or not an elongated particle has a preferred area on its surface to
form contacts with other particles (regardless of its position and orientation in the sample
volume space)? More specifically, what is the probability of occurrence of a contact at a
given point on the surface of an ellipsoid, if all biases due to position and orientation of the
particle are eliminated?

The distribution of densities of probability of contact occurrence can be approximated
from the measured histogram distribution of the contact vector orientation (i.e., in local el-
lipsoid principal axes). Examples of measured histograms of the local contact vector dis-
tribution are plotted in Figure 7¢1a. Four states of deformation are represented, as well as

a second-order Fourier approximation of the first histogram distribution:
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S(n’) = 4%(1 +agtnin)) 71

cvl = yovLl evl —
a*=a*, agt=20

The tensor a** is a measure of the anisotropy in contact distribution around the sur-
face of a particle. The plot of the magnitude of ag* (for four confining pressures) during
the entire range of applied strain (Figure 7+1b) shows that the change in the initial anisot-
ropy with varying applied strain is very small. The local contact vector orientation is sta-
tistically independent from particle orientation and coordination number (which undergo
considerable change during the course of the test). The variation with the confining pres-
sure is also insignificant considering the wide range of tested confining pressures. These
results suggest that the probability of distribution of contacts around a particle is only de-
pendent on the shape of the particle. One type of dependence, obtained during the particle
growth simulations, is illustrated in Figure 7+1c. The anisotropy in the contact distribution
around a particle seems to increase with the elongation aspect ratio in a rather linear fash-
ion. For sub-spherical shapes, however, a profile in “U” is observed, where the anisotropy
is almost equal to zero for a particular value of the aspect ratio (/b = 1.07). The ques-
tion is whether or not the existence of such a particular value of the aspect ratio is a con-
stant property or is simply an effect of the simulation test conditions? Most likely, the
observed phenomenon is related to the highly anisotropic fabric of the initial sample of

spheres before the growth process started.
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Figure 7+1  Anisotropy in local contact vector orientations
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(b) Variation with applied strain, and confining pressure
(c) Variation with particle shape
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The initial sample before compaction was packed in cubic-centered structure with
only three possible directions of contacts (one vertical and two horizontals). After com-
paction, the contact normal orientation distribution was highly anisotropic, as can be seen
from the histogram plot in Figure 7+ 1c. The absence of randomness in contact distribution
(even if is biased) explains that the initial distribution of contact occurrence around
spheres be anisotropic. The “U” shape corresponds to the destruction of the initially highly
organized structure of spheres that immediately followed the incremental change of parti-
cle shape. The randomness of fabric being retrieved, the major principal value af** had to

drop to zero to reflect only the shape of particles.

7.2.1 Density and Distribution Functions of Local Contact Probability

The transition from densities to cumulative probabilities over finite regions requires
integrating the density of probability function over the region of interest. Let it be an arbi-
trary region characterized, in spherical coordinates, by the pair of polar angles (a!, atf)
and the pair of azimuth angles (B!, B4), then:

I al
Prob(af <o’ <o, i <p'<Bf) = [ [7S(a, B)sinpaadh @2
1 1

Element of Area
on the Unit Sphere

The same probability can be decomposed as:

Prob(ai < a’' <o, Bi <B'<Bf) = Fi(ai, Bi) - Fi(ai, B2) _—
—Fi(aj, Bi) + Fi(ai, B1)

where:

Fi(e!,B) = [7'[¥'Si(a, B)sinBdoap -4
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Therefore, all probabilities can be expressed in terms of the single distribution of
probability function Fi(a’, B’). This function represents, in this case, the probability of
finding a contact in an arbitrary region delimited by two unit vectors n{(0, 0) (x-axis) and
ni(a', BYy.

The properties of the distribution function are:

i It varies between 0 and 1.
ii. Ifintegrated over the whole space it should yield the certainty probability, i.e.,
FQ2n,n) =1 (7 6)
ii. The function is ever increasing. This is because positive probabilities are cumu-
lated.

Before calculating the distribution function, F,(c, B), the density of probability func-
tion S,(c, B) must be calculated first. In the system of principal directions of the tensor
ag*, the equation (7- 1) can be re-written as:

S(a,B) = %t{l +aptcos?B + (afftcos*a + agF sin*a)sin?B } (- 6)
where the components of the unit vector n = (cosP, cosasinf, sinasinB) in terms of
(a, B) were substituted in (7¢ 1).

For the performed tests with assemblies of prolate spheroids, the deviatoric anisotro-

py tensor a3 is axisymmetric, thus:
cvl — evl — 1 cvl
angr- = ap- = —"i'al @7)

Substituting of the above identities into (7« 6) yields:
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SAB) = f=[1+a*cosB - (bar*)sin'B] a9

The obtained density of probability function is independent from the polar angle a
(i-e., axisymmetric). Its variation with the azimuth angle B is shown in Figure 7+2a (for a
wide range of values of parameter af ). Results of simulations, however, give values of
af** within the interval [0.5, 0.8], as shown by the plot in Figure 7+2a.

Uncoupling variables a and B in equation (7+ 4) results in:

Fya',B) = [;/da[7 S(B)sinBap -9)
Or:
1By = XGB! .
Fa, B) = 5=-G(B) @ 10)
where:
G(B) = [¢'2nS,(B)sinBap @1

The distribution function Fi(at’, BY) is linear with respect to the polar angle a’, im-
plying that for a fixed azimuth angle B’ the probability of observing a contact in a given
polar position is uniform.

By assigning to o’ the value of its full range of variation 27t in equation (7¢ 10), the
function G,(B’) can be equated to:

G(B) = F(2x, B) - 12)
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Figure 72 Contact probability calculations

(a) Density of probability function
(b) Cumulative probabilities
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As such, the function G,(B) represents the probability of observing a contact in a po-
sition described by an azimuth angle between 0 and 8, and a polar angle a anywhere be-
tween 0 and 2.

From its definition in (7« 11), the function G,(B) can also be interpreted as the proba-
bility distribution of the random variable B associated with the density of probability

function 2nS,(B)sin P . Integration of the right hand side of (7+ 11) yields:
G(B) = 3[1-(1 - Sart)cosP — ({art)cos*B] -1

Curves of variation of the function G,(B) are displayed in Figure 7-2b, for the range
of values of af* experienced during simulations of assemblies of ellipsoids at various

confining pressures (Figure 7+2a).

7.2.2 Probability Distribution of Contact Vector Lengths

A third interpretation of the function G,(B) can be obtained in relation to the determi-
nation of the contact vector length probability distribution for assemblies of prolate sphe-
roids.

A contact with a position (o, B) on the surface of an ellipsoid of semi-axes

(a 2z b 2c) has a vector length:

cos? B . cos3a , si n2 0 4
1 —_ / + 2 + . 14
(a,B) =1 J — + sin Bl 5 - I 7 14)

For prolate spheroids: & = c; therefore the above expression simplifies to:

2 12
I(B) = 1/,\/“::23 + 51;23 @ 15)
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The above function in not one-to-one. Each admissible length, /, is associated with
two azimuth angles: 0 < <n/2 and - B (calculated by inverting (7 15)).
The probability that a contact be characterized by a vector length between two limits
5L(B,) <1,(B,), where ®/2 2B, 2B, 20, is calculated as:
Prob(/, <I< L) = [GAB1) - G(B:)] + [G(r - B2) -Gt - B1)] @-16)
It can be verified that:
G(r-B) = 1-G«(B) @ 17)
Therefore:

Prob (/i /< h) = 2[G(B:\) — G(B,)] (- 18)

7.2.3 Application to Predicting Proportions of Contact Vector Lengths

In order to prove the veracity of relationship (7 18), a selected grouping of contacts
was based on contact vector lengths. The full range of contact vector lengths [b, a] is di-
vided into three intervals. A given contact necessarily falls in one of six groups corre-
sponding to a combination of two of the three intervals of lengths.

Statistics of contacts falling in each group were extracted from results of numerical
simulations. The same statistics can be estimated based on the relationship (7+ 18), and
compared to the measured values.

In the following sub-section, the method of estimation of statistics of contacts and

comparison with simulated data are presented.
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7.2.3.1 Grouping of Contacts

The contact groups are illustrated in Figure 7+3. Given the symmetries of the ellipsoid
geometry, it is sufficient to define the contact position by reference to the portion of the
surface covering (%) of the volume of the ellipsoid. Moreover, for prolate spheroids, all
meridians have the same length and curvature. Therefore, the local contact position can be
described by reference to a single meridian (a quarter of an ellipse).

The contact vector length can vary between the minor semi-axis, & = c, and the ma-
jor semi-axis a. As mentioned before, the interval of variation [5, a] is partitioned into
three sub-intervals:

L Contact vectors within the range of short lengths [b, b+(a-5)/3] . This category
of contact vectors will be referred to by the letter “s” (as short).

ii. Contact vectors within the intermediate range [b+(a-b)/3, b+2(a-b)/3] la-
belled by the letter “/” (as intermediate).

iii. Contact vectors within the long range [5+2(a-5)/3, a]. The letter “/” (as long)
is used for this group.

Lok BN Y 3
!

The groups of contacts are the six possible combinations: “s-s”, “s-i", “s-I”, “i-i", “i-
. “l-I’. For instance, a contact of type “s-" combines a short contact vector length from
one particle and an intermediate contact vector length from the other particle.

Let f. = M, /M be the fraction of contact vectors of type (x), and let
fery = M, /M be the fraction of contacts of type (x-y) where M is the total number

of physical contacts in the assembly of particles.

232



CHAPTER VII: STATISTICAL AND GEOMETRICAL ANALYSIS OF CONTACTS

()

(b)

Figure 7.3 Contact groups of given vector lengths
(a) Definition
(b) Nlustration
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Based on the relationship (7+ 18), a distribution of probability function for contact
vector lengths can be defined as:

H(l) = Prob (I<l-<a) = 2[G/(B)-G(0)] = 2G(B) @-19)

The plot of the distribution function is shown in Figure 74a.

The relationship between the vector length and azimuth angle is illustrated by the plot
of Figure 7+4b.

By reference to Figure 7+4a, the fraction of contact vector types are estimated as:

Jsr = H(b)-H(b + (a~b)/3)
Jin = H(b+(a-b)/3)-H(b+2(a-b)/3) 7+ 20)
Joy = H(b+2(a-5b)/3)-Hya)

The fraction of small, intermediate and long contact vectors are calculated to be, 54%,
27%, and 19%, respectively. It can be verified that these fractions are similar to the pro-
portions of the surface areas of the prolate spheroid shape covered by the small, intermedi-
ate and long contact vectors, respectively.

The fraction of contact types are calculated from the former estimates as:

{fm s @-21)
e = oSy (x2Y)

The above relationships are derived from probability calculations. The presence of the
coefficient 2 in rectangular fractions ((s-i), (s-/), (i-)) is explained by the possibility that

the two particles can be interchanged.
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Figure 7+4c illustrates the comparison between measured and calculated contact vec-
tor fractions. Figure 7+4d illustrates the comparison between measured and calculated con-
tact type fractions. The comparison is illustrated for a single confining pressure; however,
a similar close agreement between the theoretical and measured fractions holds for other

confining pressures.

7.2.4 Relationship Between Local Contact Probabilities and Particle
Surface Areas

The concern in this section is to examine the veracity of the assumption of a possible
relationship of proportionality between the probability of contact occurrence over a region
on the surface of an ellipsoid and the area of that region. The verification is carried out for
particular regions shown in Figure 7+5a, i.e., those characterized in spherical coordinates
by (0<a<2m,0<B <B).

If the assumption is valid, then the area of the region of a prolate spheroid delimited
by the azimuth angles 0 and B, denoted by 4,(B), should be, for some value of the param-
eter aft, proportional to the distribution function G,(B).

In order to obtain a normalized area distribution, the coefficient of proportionality
must be 1/4,(w), where 4,() is the total prolate spheroid surface area.

Therefore, the proposed relationship can be written as:

Gi(B)=A4(B)/A((r) 7 22)
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Figure 7.5 Illustration of a comparison between calculated distributions of local
contact probabilities and ellipsoid surface areas
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7.2.4.1 Calculation of the Distribution of Normalized Particle Surface Areas

The areas A,(B) can be calculated analytically as:

AB) = T ¢sin" (©) + EVT-ET) 72
where:
¢ - LTE

and where /(B) is the contact vector length given by (7 15), and € = JZZ———b—z/ aisa
measure of particle eccentricity.

The result of comparison is shown in Figure 7+5b (for the particular aspect ratio
a = 0.7b). Figure 7+5b displays the curves of variation of the normalized surface area
A7) = A(B)/A,(rn), and the function G,(B) (for values of the parameter af** at the two
ends of the range of values [0.5, 0.8]). As can be seen, the assumption expressed in the re-
lationship (7 22) is fairly accurate for the range of values of af* experienced in simula-
tions. The relationship (7¢ 22) can be used to estimate the distribution of local contact
vector lengths when the measured distribution is not available. The error on the estimated
parameter ai*“ is expected to vary between 0 and 0.3 (i.e., the difference between the

maximum and minimum values 0.8 and 0.5, respectively).

7.3 Distribution of Particle Orientations

The test results reveal that the initial random particle orientation is affected by the ap-

plied load. An increased number of particles become oriented with their major axis per-
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pendicular to the direction of loading. Several plots indicate this tendency: (1) from the
visual comparison of ellipsoids’ major axes orientations between the initial state of the as-
sembly and the beginning of the steady state as illustrated in Figure 7+6; (2) from the his-
togram distribution of ellipsoids’ long axes at these two states (Figure 7-7a). The initial
fairly isotropic distribution (circular shape) evolves to a shape in the form of a “donut” at
a large strain. The “donut” is sitting on the plane perpendicular to the direction of loading
(vertical), which indicates that the dominant ellipsoid orientation inside the assembly is
sub-horizontal.

From a physical point of view, those ellipsoids initially having vertical or sub-vertical
long-axis orientation will develop larger moments near their long axis (larger arm), and
smaller moments at the other contact locations (smaller arm). The moment imbalance and
the search for stability causes the ellipsoids to rotate their long axis to a position normal to

the maximum load direction.

7.3.1 Evolution of Anisotropy in Particle Orientations During Shear
Deformation

The distribution of long-axes’ orientations can be approximated by a truncated Fouri-
er series function as:

1
Sg(nf) = E(l +agngng) 702

—_— E —
at=af, af =0

The tensor af represents the deformation-induced anisotropy in ellipsoid orienta-

tions. Its magnitude a® increases with increasing axial strain (Figure 7+7b).
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Figure 7.6 Geometry of a strained assembly (initially and at a large strain)
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Figure 7.7 Tllustration of induced anisotropy in ellipsoids’ orientations
(a) Histogram distributions (initially and at a large strain)
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It is observed that the initial anisotropy is essentially not altered but reinforced by
shear deformation. It is interesting to note that this form of anisotropy is not mobilized un-
til after the sample undergoes more than 3% applied axial strain (irrespective of the value
of the applied confining stress). This corresponds to the state of the assembly where rota-
tions start developing. Subsequently, the magnitude of anisotropy aF is characterized by a
hyperbolic type of increase, and convergence to a steady state of anisotropy at large

strains.

7.4 Relationship Between Anisotropies in Contact Normal
Orientation and Particle Orientation

It is difficult to uncouple and study separately the mechanisms of development in
contact normal orientations and particle orientations, because these two mechanisms are
associated with the same physical process, which is the creation and destruction of con-
tacts. The interaction between the two mechanisms was illustrated previously when study-
ing the effect of rotation on contact creation/destruction involving ellipsoidal particles.

This section is dedicated to a more-detailed treatment of a relationship between the

two forms of anisotropy.

7.4.1 Relationship in Two Dimensions
A functional relationship exists between the contact normal orientation in the global
coordinates 6%, the local contact vector orientation B/, and the particle orientation, 6%.

The relationship is simple for disks in two dimensions and can be written as:

8z = p'+6° @~ 26)
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It is geometrically associated with the situation depicted in Figure 7+8a.
For ellipses in 2D, the effect of shape must be included in the relationship which takes

the new form:

02 = AO'+ B!+ 6° 7+ 27)
where A0/ is called the deviation angle and measures the deviation of the contact normal
from the local contact vector orientation as shown in Figure 7-8b. With the convention

that the counterclockwise angles be counted positively, the deviation angle can be calcu-

lated in terms the particle semi-axes and the local contact vector orientation as follows:

. 3n
A8! if 0<P'<E or n<picit
AB'(B) = V=3 "2 -2
-AB! if not
where:
cos’p’ | sin’B’
2 2
AB! = cos| —2 b - 29)
st’B’ . sin?p’
at b*

It can be seen thatif @ = b, then the relationship (7- 29) yields A8’ = 0 (case of cir-
cular particles).
The plot of the deviation angle AO’ with varying azimuth angle B’ is shown in Figure

7+9.
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Figure 78 Relationship between orientations of the contact normal vector, the
local contact vector, and the particle long-axis

(a) Disk
(b) Ellipse

244



CHAPTER VII: STATISTICAL AND GEOMETRICAL ANALYSIS OF CONTACTS

b=07a

¥ ) g E— T T T T

315 | o7 = g(B") = p'+A0! 7

270 | - .

Contact Normal Direction .
AB!

B

135

(87)(), A8y

8

45
0
-4 5 ' s - A Vs A i '
0 45 9 135 180 225 270 315 360

(BH

Figure 7+ Variations of the deviation angle (between contact normal and contact
vector) with varying contact position
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The relationship in (7¢ 27) defines a continuous random variable 62 as a sum of a
continuous random variable, 6%, and, a function of a continuous random variable, g(B",
Le.:

0z = g(B) +6° @+ 30)
where the subscript “G” is used for the global set of coordinates.

The function g(B’) is defined by:

g(B") = B'+ A0/(B") [ 31)

It represents the orientation of the contact normal vector in the ellipse local set of
principal axes. This angle is denoted by 87 in Figure 7+9; therefore:

0r = g(B) (7+32)
where the subscript “L” is used for the local set of ellipse coordinates.

It is possible to derive the density of probability of a random variable defined in terms
of other known random variables if certain conditions are fulfilled. In the case of the rela-
tionship (7+ 30), the only necessary condition is that the function g(B‘) be monotonic (i.e.,
increasing or decreasing) and differentiable over the interval of variation of the random
variable B/, [0, 2x] . If not, the interval must be divided into sub-intervals where the func-
tion is locally monotonic and differentiable. The plot of the function 87 = g(B’) is shown
in Figure 7-8c. The function is increasing and differentiable, which means that the func-
tion is one-to-one, and that the inverse function B! = g~'(0}) exists and is increasing and
differentiable. It can be shown that under these conditions, the resulting density of proba-

bility of the local contact normal orientation 87 = g(f’) is given by:
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Sep(®) = X (g ©)1-5"(®)) 759

where S, is the density of probability of the random variable .

The derivation of relationship (7« 33) follows a simple logic of probability calcula-
tions. A brief outline of this logic is as follows:

Let Fg,(0) be the probability distribution function of the random variable

07 = g(B", then by definition:

Fez(e) = Prob{67 <0} = Prob{g(p’) <0}

= Prob{B'<g'(6)} 7 34)
= Fp(g'(6))

The second identity in the above chain of identities is possible because the function
g7'(B") is increasing. The relationship (7 33) is the direct result of differentiating the last
identity in (7° 34).

Now that the density of probability of the random variable function g(f<) is deter-
mined, the density of probability of the sum, 82 = g(B°) + 8%, can be calculated by fol-
lowing a similar logic to that used for deriving the density of probability of g(3<). The

result is as follows:

S0s(8) = [¢"Sop £(4, 8 ~u)au @ 35)
where Sy, 1 is the joint density of probability of the pair of random variables (87, 6%) . Un-
fortunately, it was not possible to calculate an accurate approximation of the joint proba-

bility based on measured data, because this would require that the crossed classes of

orientations of the pair (67, 0%) contain a minimum number of observations to adequately
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represent the class. It has been seen previously that the 1000 particle assemblies in three
dimensions can barely support histogram calculations of single random variables since the
number of observations per class is just large enough to calculate meaningful averages of
these variables (on average between 15 to 30 observations per class for contact variables
such as 07 and only 5 observations per class for particle variables such as 6%). Crossed
classes would contain even fewer observations than single classes. In two dimensions,
there are no reports of the joint distribution data available that could be used to develop
the relationship in (7« 35). Nonetheless, at this stage of the relationship, the proof of a
functional equation relating tensors of anisotropies in contact normal orientations, particle
orientations and local contact orientations has been established.

One way to pursue further the development of the relationship is to assume that the
distribution of contact vector orientations is statistically independent from the distribution
of particle orientations. This means that the joint density of probability will degenerate to

the product of the marginal densities and the relationship (7 35) to:

S (8) = [1Sep(u)Se(8 — u)du 7+ 38)

where S;; is the probability density function of 6.

Substituting of (7 33) in the above equation results in:
_ =4
Sen(8) = [ 218" ()]-SAg™ (u))Sx(® — u)du 7-37)

By operating the variable change, v = g~'(«), the above equation can be re-written
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Sen(®) = E"S:(V)Se(e -g(v))av - 38)

Provided that the probability density functions S,(B) and Sz(6%) be known in two di-
mensions, the relationship between tensors of anisotropy can now be derived from inte-
grating the right hand side of the above equation.

The near constancy of the local contact vector distribution shape observed during
simulations, concemn a virtual particle representing some “average” particle behaviour
with respect to the local contact vector distribution. However, the environment surround-
ing specific particles is different from one location to another and this is easy to under-
stand. For instance, if the distribution of contacts is initially uniformly distributed in the
sample space (isotropic distribution), heterogeneity will soon affect this distribution ow-
ing to the disintegration of contacts in the lateral directions. By assuming the above statis-
tical independence while extending the average behaviour to all particles, it is implicitly
assumed that the process of contact formation and destruction (which is the main mecha-
nism of anisotropy development) is at a stage where homogeneity of contact distribution is
still a reasonable assumption. This assumption holds in the smaller range of axial defor-
mation.

In order to be able to work with the assumption of independence over the full range of
applied deformation, it is necessary to distinguish between two types of contributions to
iile anisotropy that develops in contact normal orientations: (1) due to ellipsoids’ rota-
tions; and (2) due to other factors. Therefore, the total distribution of contact normal orien-

tation distribution must be split into two terms as follows:
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So5®) = %tn + @' c082(6 — 6,)]
1 7+ 39)
+ 5=1(@ — ) c0s2(8 - 0,)]

According to the assumption of statistical independence, only the term of “rotations”
is considered.

Published results of numerical simulations with ellipses in two dimensions (e.g.,
Bathurst & Rothenburg, 1992; Rothenburg and Bathurst, 1992) show that a “peanut”
shape was observed for the distribution of particle orientation, S¢, during these simula-
tions. There are no data available for the distribution of the local contact vector orienta-
tion, but there are strong indications that the shape of S, will also be a “peanut” (at least by
analogy with the 3D case, for example); therefore, the following assumption should be
plausible:

S:(6%) = 511':” + afcos2(0F — 65)]
7+ 40)
SKBY = 511 +a*cos2(B'~ B,))
where 6F and B, are major directions of anisotropy in particle orientations and local con-
tact vector orientations, respectively.

Substituting the above equations into (7+ 38), and integrating results in:

= l E L
Se&(e) 5m { 1 +af((c, + a*tc,)cos26) .

+at(s, +a*ts,)sin26 }

where:
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¢ = ﬁ [t* cos[2(g(v) + 09

€2 = 5[ 00s2(v - Bo) cos[2(g(¥) +0)]av
3 7+ 42)

5 = %{ ["sin[2(g(v) + 65)]av

s, = ﬁ [2x cos2(v - B)sin[2(g(v) + 8 |av

The relationship in (7« 41) should be compared with the usual peanut shape of the
contact normal orientation distribution:

=1 , _ .
S%(B) = 2ﬂ:[l +arcos2(0-6,)] (7 43)

where a” and 6, are the coefficient and major direction of anisotropy, respectively.
The comparison of relationships (7« 41) and (7- 43) suggests that the anisotropy coef-

ficient a” and the direction of anisotropy 6, are given as:

Aa = a5 (e, +avtc))? + (s, + a™ts,)

c0s20, = (¢, +a™tc;))/ (e + a¥ic,) + (s, + a2 @44

sin20, = (s, + a”s,)/ J(c; + a™tc,)? + (s, + a®ts,)?

7.4.1.1 Assemblies of Ellipses in the Biaxial Test

Assemblies of ellipses in the biaxial test are usually characterized by typical direc-
tions of anisotropy, as has been observed many times by numerical simulations (e.g.,
Rothenburg and Bathurst, 1992). The following values are observed for the contact nor-

mal orientation and particle orientation distributions:
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0, =

0
7+ 45)

r =2 i

2

For the direction of anisotropy of the local contact vector orientation distribution, the
analogy with the three-dimensional case suggests that B, = 0. With these particular val-

ues of anisotropy directions the coefficients c, (;-, ,, and s, (-, ) become equal to:

¢ = —%tﬁ“cos[Zg(v)]dv

= _1 ;=
¢ = —5- L‘) cos2vcos[2g(v)]dv
¥ : 7+ 46)
5 = —ﬁﬁ sin[2g(v)]av

- _1 px .
| s; = —51-:-’: cos2vsin[2g(v)]av

The integrals defining the coefficients c, .-, ,, and s, -, ,, were numerically integrat-
ed for varying ellipse aspect ratio. The results are plotted in Figure 7+10a. As can be seen,
the s, -1,y coefficients are always equal to zero and ¢, (.-, are always different from ze-
ro. The coefficient ¢, , which is always positive, increases with increasing aspect ratio, and
the coefficient c,, which is always negative, decreases in absolute value with increasing
aspect ratio.

For a given aspect ratio, an arbitrary coefficient corresponds to the area of the domain
delimited by the integral function curve defining the coefficient and the coordinate axes

(Figure 7-10b).
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As a result of having 5, = 5, = 0, the general relationship in (7 44) can be simpli-
fied as follows:
at. = aflc, + a*tc,
cos20, = (¢, +atc,)/|c, + a*tc, (7+47)
sin20, = 0

According to the above result, the contribution of rotations to the fabric anisotropy
ak« is proportional to the degree of anisotropy in particle orientations af . The coefficient
of proportionality is linearly dependent on parameter a**L .

As already mentioned, no data are available in two dimensions for this parameter, but
it is possible to estimate it from the assumption (proven to be fairly accurate in 3D) that
the density of probability of finding a contact at a certain location on the circumference of
an ellipse is proportional to the elemental length around that location (Figure 7+11a). The

assumption can be written as follows:
S(Bdp = Z a-a0
E

where C; is the ellipse circumference.
The elemental length ds can be calculated in terms of B! as illustrated in Figure

7+11a. The result is:

ds = ldBcosA6’ 7+ 49)
Therefore:
i
SiBH = I°°Z,Ae - 5)
E
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Figure 7211 Contribution of rotations to the anisotropy in contact normal
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Substituting of / from (7+ 15), and A©’ from (7 29), into the above equation results

in the density of probability of local contact vectors being approximated by:

cos?f! + sin?f’

1 [ Ta  TF
SABN = — (7 61)
=z, (cosB, sin’B ’
a? b?

The coefficient of anisotropy a~ should be such that the actual distribution
Si(BY) = {1 +a~tcos2P'}/2xn be as close as possible to the above approximation. Two
methods are available to estimate g*- :

1. Calculate g=** as:
ast EZJ:"S,‘(B)cOSZBdB 7+ 62)

2. Calculate a=* by the Least Squares method. The minimization of the squares’

sum, Z(S:(B,) - Si(B))*, yields:

N N
at=-3 cos2B,(1 - 2nS;(B))/ Y, cos?2B, 769

=1
where S; denotes the approximation of the actual S, density function; S; is
given by the right hand side of equation (7¢ 51); (B,); - ,.» is an arbitrary subdi-

vision of the interval [0, 2x].
The approximation S; and predicted density functions, based on the above methods,

are plotted in Figure 7+11b.

The values calculated by the Least Squares method were substituted into relationship
(7+ 47) to calculate the ratio ag,, /a® for varying ellipse aspect ratios. The results are pre-

sented in the plot of Figure 7-11c.
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As can be seen, the contribution of rotations to fabric anisotropy increases with parti-
cle eccentricity. This is consistent with the fact that the moment of inertia around the cen-
tre mass of an ellipse increases with eccentricity and therefore two ellipses 4 and B with
the same masses but different eccentricities, say, (a/b), > (a/b)s will rotate by angles
AB, > AB; under the same applied moment, which shows that rotation increases with par-
ticle eccentricity and so does the fabric anisotropy related to rotations. Figure 7+11c shows
also that the quantity ¢, + @=*Lc, is always positive. This implies that the relationship (7«

47) can be simplified as follows:

7 64)

at, = af(c, +atc,)
6%

which shows that the direction of anisotropy in contact normal orientations (vertical
direction) is accurately predicted.

The relationship illustrated in Figure 7¢11c is based on the assumption that the local
environment of each particle remains homogeneous during the deformation process. It is
quite conceivable that at large strains, when a reaches its limit, the assumption will break
down and particle rotations will no longer be able to compensate for the tendency to con-

tact disintegration.

7.4.2 Relationship in Three Dimensions

For ellipsoids in 3D, the relationship between the contact normal orientation (in glo-
bal coordinates), the ellipsoid orientation, and the local contact vector orientation is more

complex than in 2D. An ellipsoid in 3D is characterized by two additional degree of free
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motion and the definition of a particle orientation involves at least three angles (for exam-
ple, Euler’s angles illustrated in Figure 7-12). Euler’s angles are defined by three rotation
angles such that after the third rotation the global set of axes and the local set of ellipsoid
axes are the same.

If the three Euler’s angles are denoted by @F, ®F, and ¥¢, and the corresponding ro-
tations are represented by matrices Rg:, Ry, and Ry., respectively, then the components
of the unit contact normal vector in local coordinates, [n]*, and those in global coordi-

nates, [#]°, would be related as follows:
[r]° = R o5, R o8 R _gey(n] @ 88)
The components of the unit contact normal vector in local coordinates [n#]¢ can be ex-

pressed only in terms of the pair of angles defining the local contact vector orientation

(a!, B’) and the ellipsoid semi-axes (a > b >¢) as:

sin2f3! (- 68)

(7] = |cosa'sinB! /52| 7
sina’sin B’/ c?

cosP!/a? J

cos’f! (cosza’ . sinza‘)
at b* ct
Substitution of the right hand side of equation (7+ 56) and expressions of matrices
Rg:, Rg:, and Ry, given in Figure 7+12, into the relationship (7¢ 55) results in an expres-
sion of the unit contact normal vector components in global coordinates [#]° in terms of

the five random variables: @F, ®f, W& a’, and B’.
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Contact Point
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Rotation Around X}'):
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R@E = |0 cos®Ff sindF
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Rotation Around Y}!):
cos®f 0 sin®F

Rge = 0 1 0
—-sin®f 0 cosOFf
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Rye = |0 cosWE sin'¥®
0 —sin'PZ cos'¥E

Figure 7412 Definition of an ellipsoid’s orientation in terms of Euler’s angles
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In view of the complexity of the above equations, an analytical relationship between
the probability density functions of the random vector [#]¢ and variables characterizing
the ellipsoid orientation (®%, ®#, and ‘P¥) and the local contact location (a’, B!) seems
to be difficult to derive.

Even in the case of prolate spheroids, where the number of independent parameters is
reduced, the task of relating probabilities analytically can be very tedious and is not pur-

sued further.

7.5 Conclusions

In this chapter, the effect of shape was analyzed in connection with parameters de-
scribing the load-induced fabric anisotropy during shear deformation of simulated assem-
blies of ellipsoids. The findings are summarized below.

i. The average distribution of contact location on the surface of an ellipsoid is af-
fected by the shape of the particle and seems to be uniquely dependent on this
parameter. These distributions were used to predict the proportions of contacts
characterized by vector lengths in the short, intermediate and long ranges and
compared to measured proportions. The prediction matched the observation
and more than 50% of contacts were found to be located in the short range of
vector lengths. It seems that the stability of an elongated particle is conditioned

by the creation of contacts near its flat surface areas.
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i. The anisotropy in particle orientations was also observed to be biased by the
shape of particles, especially at large strains where the orientation of ellipsoid
long axes is predominantly horizontal.

ii. A model to estimate the influence of shape on the contact normal orientation
anisotropy was developed for plane ellipses. The model predicts that the frac-
tion of contribution to the contact normal orientation anisotropy, ag.., is pro-
portional to the degree of anisotropy in particle orientations a®. The
coefficient of proportionality ag, /af is linearly dependent on the degree of
anisotropy in local contact vector orientation a“*~. For a given state of the as-
sembly of particles, the contribution a}, /a® increases with increasing ellipse
eccentricity: from zero (for disks) to one (for needles). The model in three di-
mensions is analytically complex because of the presence of many random

variables in highly non-linear expressions.
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CHAPTER VIII: CONCLUSIONS AND
RECOMMENDATIONS

8.1 General

The purpose of this study was to develop a three-dimensional discrete element model
to simulate the mechanical behaviour of dry systems of granules of non-spherical shapes.
This work was motivated by the observation that spheres have a tendency to roll and to
lock up at low coordination numbers, unlike real dense sands, and could not replicate
some of the aspects of the behaviour of actual systems of non-spherical particles, especial-
ly those related to particle shape effects. These effects are not negligible, as proved by this
3D study and by previous studies in two and three dimensions (Konishi et al., 1982, 1983;
Oda et al., 1983; Rothenburg and Bathurst, 1992, 1993; Mirghasemi, 1994; amongst oth-

ers). The ellipsoidal shape of particles was the best candidate for constructing the new

262



CHAPTER VIII: CONCLUSIONS AND RECOMMENDATIONS

model as it has many features advantageous to developing such a model: uniformity, con-
tinuous outward normals, elongated and flat shape, and a simple mathematical representa-
tion in space. The major challenge was the implementation of a reliable inter-ellipsoid
contact detection scheme that would not fail in detecting any contact, irrespective of parti-
cles’ relative positions, dimensions and orientations, but would involve a reasonable com-
putational effort.

The modeling of granular materials by the method of discrete elements methods has
uncountable qualities of flexibility, generality, easy access to any microscopic data of any
kind, and so on. However, it suffers from the fact that it involves an intense effort of com-
puter calculation. The state of an assembly in the course of deformation needs to be updat-
ed at every time-step. The time-step is not fully controlled by the user of the model, but by
considerations of stability of the explicit finite difference scheme used to update positions
of particles after undergoing incremental motions. The time-step can be very small and
conducting tests with a relatively large-sized sample up to the beginning of steady-state of
deformation can require millions of cycles (this was the case with ellipsoids).

The computational cost at every cycle is dependent on the robustness of the contact
detection scheme, the size of the sample, and the density of contacts within the assembly
of particles. The simulations reported here were intended to replicate the mechanical be-
haviour of dense sands. A reasonable size of the assembly of particles that allows a mean-
ingful representation of average microscopic parameters, based on statistics of contacts
and particles, should be of the order of several hundreds. One thousand particles was se-

lected as the size of the main assembly to be used for the analysis of results. Initial assem-
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bly coordination numbers were set to their maximum (on average twelve contacts per
particle) by a special method of sample preparation. At the densest state of the assembly of
particles, the program must compute at each cycle 6000 physical contacts, and near
steady-state, 3000 contacts. A lower limit of contacts calculated for a typical test is,
7e+6*3000 = 21e+9 contacts; the upper limit is double this number. It was therefore of
primary importance to construct a detection scheme of high efficiency, once the method of
solving the ellipsoid-to-ellipsoid intersection problem was selected.

This task and the treatment of the mechanics of ellipsoidal rigid bodies were success-
fully implemented in an existing discrete element program (TRUBAL) originally de-
signed to work with spherical particles. All results of simulation reported in this study
were obtained with the modified program TRUBAL for ellipsoids.

The other objective was to utilize the numerical model to shed some light on the pecu-
liar aspects of the behaviour of assemblies of ellipsoids, and, in particular, those related to
the pressure sensitivity of granular systems and influence of particle shape. A simpie
shape was selected where only the elongation aspect ratio was different than one (prolate
spheroids), allowing in the meantime for creation of analogues of two-dimensional el-
lipses for comparison of results between the two cases. The effect of gradation on the me-
chanical behaviour was also eliminated from interfering with the shape effect by testing
mono-size assemblies of prolate spheroids.

Both effects have been examined from the macroscopic and microscopic point of
view throughout this thesis.

The conclusions that can be drawn from this study are summarized below. Recom-
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mendations for future research are suggested at the end of the Chapter.

8.2 Microscopic Description of Granular Material Behaviour

The approach proposed by Rothenburg (1980) to represent spatial variations of mi-
croscopic variables using approximations by truncated Fourier series proved well adapted
to the case of ellipsoids. However, departures from the second-order approximations were
observed, especially for the average tangential contact force distribution. The correction
by an additional fourth-order anisotropy tensor-related term was sufficient to adjust the
second-order Fourier approximation to simulated data. The differences between observed
and approximated second-order Fourier distributions of average normal and tangential

contact forces were represented by:

’AE(”) = 4in(b{jkl nnnn;)

Af'(”) =f_8(b'i'jkl nnn.n)

1A (n) = j_b(b,-‘,,,, mngn - blymnnin,n)  i=1,3 (8- 1)
b = brgijuny
b'i}u = b':':(qu)

. bi'jkl = b:':(.ju)

where b7, bly,, and bf,,, describe fully symmetric fourth-order anisotropy tensors;
denotes an arbitrary permutation of indices (ijkl); f° is the normal contact force magnitude
average, taken over groups of contact normal orientation (not over individual contacts);
and 2 is the unit contact normal vector.

Methods of estimation of these tensors from simulated data were proposed based on

derived tensorial relationships between the fourth-order anisotropy tensors &7, b7, and
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b, and well-defined second and fourth-order tensors that can be estimated from a finite
number of contacts. They are termed fabric tensors (AR;;, AR,,;), average normal contact
force tensors (AF7, AF7,,), and average tangential contact force tensors (AFY, AFY,),

respectively. They are defined for finite systems of particles as discrete sums:

1 1
ARij = A_/[Z ninf
Fabric Tensors 4 . cev
AR,y = = nfnfngng
) " Mcez v 7R
4 l —
AFr = —N" A (n®)ngns|Ans
Average Normal / 41!:? \f!(nf)ngng|And| -
< {J
Contact Force Tensors ny = ‘;LZ AF(nE)nEngngnglAns]
\ TC p
r 1 -
AF,' = — Af; nnslAns
Average Tangential J 41':; f (n%) JI |
<
Contact Force Tensors 1 -
i = gz LA (n)ngngnf| Ant
\ T P

Here, M is the total number of contacts; V is the assembly volume; n# is the unit con-
tact normal vector of the group of orientations (g); and |An#| is the size of this group.

The fourth-order tensor &{,;, in particular, reflects the departure in the tangential con-
tact force behaviour from the assumed second-order model, which was previously found
to be accurate for bonded systems of spheres. Such departures exist even for the latter sys-
tems but they are not as dramatic as revealed in the case of systems made of cohesionless
non-circular shaped particles where large-scale local deformations can take place.

The 3D-plots of the average tangential contact force distribution were transferred to
the plane in order to better visualize the effect of the fourth-order term in the approxima-

tion of these distributions. It was observed that both the size of the distribution and the di-
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rection of maximum average tangential contact force were adjusted by the fourth term to
match actual data.

A new method of decomposition of the space in classes of orientation was proposed
and used for 3D-histogram plots of different microscopic variables. The method generates
nearly equal size classes instead of the very much scattered class sizes obtained by the
classical space partitioning with a single set of spherical coordinates. The biases induced
by differences in class sizes when calculating averages over groups of contacts are elimi-
nated by this method.

The link that exists between the macroscopic behaviour and microscopic behaviour
was also discussed from the particular perspective of expressing the average stress tensor
(for discrete systems) in terms of microscopic parameters representing different anisotro-
pies (whether pre-existing and/or developed as a response to the applied load). These
anisotropies concern primarily biases in the spatial distributions of contact normal orienta-
tions, contact vector length and orientations, and components of contact forces. The equa-
tion of the stress tensor as a discrete sum of microscopic quantities for finite systems
expresses this link directly, comprehensively, and without approximation. The equation
simply translates the condition of equilibrium inside the system of particles. For large sys-
tems, the spectrum of possible orientations of the unit contact normal vector tends to cover
the three-dimensional space. As a result, the discrete sum can be extended to a continuous
integral over the unit sphere (three-dimensional space), and the discontinuous distribu-
tions to continuous functions. The relative simplicity of the continuous integral opens

prospects of further development of the relationship, once the continuous distributions can
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be given precise mathematical descriptions.

8.3 Inter-Ellipsoid Contact Detection Algorithm

A series of direct tests conducted with the developed three-dimensional inter-ellipsoid
contact detection scheme was used to validate the scheme. In particular, a comparison
with a two-dimensional scheme for plane ellipses, based on a sample comprising of 1000
ellipses and nearly 3000 contacts, showed that the differences in estimated overlap dis-
tances by the two schemes are only detectable at the third decimal.

Coordination numbers of twelve and more were computed for dense assemblies of
smooth ellipsoids in static equilibrium. These coordination numbers resulted from a pro-
gressive shape transformation process where the assembly evolved under a constant mean
pressure. The obtained assembly coordination numbers matched perfectly the predictions
made based on theoretical grounds. This result can be regarded as another validation of the

inter-ellipsoid contact detection scheme.

8.4 Results of Particle Growth

Results of the shape transformation procedure demonstrate that this is an effective
way of generating samples of ellipsoids of high contact density. The shape of ellipsoids is
certainly responsible for achieving coordination numbers of eleven and more, when condi-
tions of static equilibrium can be enforced throughout the growth simulation process. Such

values of coordination number cannot be numerically attained with randomly packed as-

semblies of spheres.
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It was also revealed that a small increase in aspect ratio of prolate spheroids, even as
small as 5%, is enough to generate a jump in the coordination number from six or seven to
over ten contacts per particle on average. This trend was observed in two-dimensional as-
semblies of ellipses in similar conditions of growth.

There seems to be an optimal aspect ratio of about 1: 1.4 at which the average packing
density and coordination number of the growing assembly of prolate spheroids are the
largest. The same phenomenon was observed in two dimensions with an optimal aspect ra-
tio which is close to the three-dimensional value. Similarities between the 2D and 3D cas-
es concern also the variations of initial coordination number and packing density with

eccentricity (Rothenburg and Bathurst, 1992).

8.5 Behaviour of Assemblies of Ellipsoids in the Deviatoric
Compression Test at Constant Mean Pressure

A series of deviatoric compression tests at constant mean pressure has been per-
formed with the numerical ellipsoidal model using assemblies of mono-size prolate sphe-
roids of three sizes (27, 125, 1000). The larger assembly was tested at five different
confining pressures to investigate the effect of confining pressure.

The results of the simulations are summarized below.

8.5.1 Macroscopic Behaviour

The constant mean pressure deviatoric compression of assemblies of mono-size pro-
late spheroids revealed characteristics of behaviour that are similar to real granular materi-

als, both qualitatively and quantitatively. The mobilized shear strength of simulated
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assemblies are comparable to those of dense sands (internal friction angles between 39
and 43 degrees). Maximum dilation rates are also in the range of experimentally observed
values for typical dense sands.

The influence of the confining pressure on the macroscopic behaviour of assemblies
of ellipsoids is in accordance with what is already known from experimental and previous
numerical simulations results. The most characteristic features of the pressure sensitivity
of dense granular materials were observed such as:

1. Decrease in peak friction angle with increasing confining pressure.

2. Increase in the axial strain at peak friction angle with increasing confining pres-
sure.

3. Decrease in peak dilation rate with increasing confining pressure.

4. Increase in the axial strain at peak dilation rate with increasing confining pres-
sure.

5. It was observed that the peak internal friction angle and the peak of dilation rate
do not take place at the same axial deformation. The former always precedes
the latter.

In relation to the steady-state of deformation:

6. The ultimate internal friction angle, ¢.,, is independent of confining pressure
and initial conditions.

7. The steady-state void ratio, e.,, is a function of the confining pressure.
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8.5.2 Microscopic Behaviour

The microscopic analysis of assemblies of ellipsoids revealed similar aspects to those
observed in physical tests and numerical simulations in two and three dimensions. These
aspects concern primarily the load transfer and mechanisms of anisotropy development in
fabric and contact force magnitudes, the three-dimensional shapes of the distributions of
the different microscopic parameters, and the curves of variation of magnitudes of anisot-
ropy, during shear deformation.

The shape effect was observed to affect the initial curvatures of variations during
shear deformation of the assembly coordination number and magnitude of contact normal
orientation anisotropy. An initial flat curvature in both cases was observed, and was inter-
preted as a delay in contact disintegration due to the elongated shape of ellipsoids. This
delay is contributed to by the component of rotation of elongated ellipsoids in contact.
This component acts against the effort of separation of ellipsoids in contact. However, the
delay was not observed for very low confining pressures. This observation suggests that
the phenomenon cannot take place under a very low confining pressure. For spherical par-
ticles, however, this component of rotation is zero, and the decrease in the average coordi-
nation number follows immediately the application of deformation to the sample of
particles.

The following observations were made in relation to the microscopic manifestation of
the pressure sensitivity of assemblies of ellipsoids:

1. The average change of the assembly coordination number during shear defor-

mation (proportional to the difference between initial and steady-state values
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of assembly coordination number) is not sensitive to the applied confining
pressure. However, the initial rate of change of the assembly coordination
number is sensitive to the applied confining pressure. This sensitivity quickly
diminishes as shear deformation develops and particles become able to move

more freely within their immediate surroundings.

2. The standard deviation of the particle coordination number distribution under-

3.

4.

goes minor changes both with respect to shear deformation as well as with re-
spect to confining pressure.

The magnitude of the average normal contact force and its rate of change de-
pend on confining pressure.

Degrees of anisotropy in contact normal orientation, average normal contact
force, and average tangential contact force, develop with different initial rates
depending on the applied confining pressure. The effect of confining pressure
propagates until the steady-state of deformation is reached, where the curves
corresponding to a parameter and different values of confining pressure tend

towards a single constant limit.

5. More specifically, it has been observed that the initial rates of development of

all above forms of anisotropy decrease with increasing confining pressure. The
peak anisotropy values, however, decreased sharply for the anisotropy in con-
tact normals, and very moderately increased for average normal and tangential

contact force anisotropies, with increasing confining pressure.
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8.6 Average Stress Tensor Decomposition

A general Stress-Force-Fabric relationship was developed for ellipsoids by including
the direct effect of shape embodied in the spatial anisotropies in average normal and tan-

gential branch vectors, a}} and aj, respectively. The relationship can be written in a de-

composed form where the components of the decomposition have clear physical

interpretations in terms of microscopic anisotropies:

o,=0jtco], tof tof tof +tof +of (83)
U | | | | |

|
Total Pull @) a; a, a,&a aka, aaal
Isotropy only only only

where the tensor aj; stands for the pair of components (a}, af), and af; stands for the pair
of components (af, ay;).

The tensors in the decomposition are expressed in terms of tensors of anisotropies as

below:
o = 6%,
_ 20°
e
. _ 20° 3
A A S
_ 20° 3
(8:4)
rz—zoo r ~t r oAz Az yr r oAz
Gy = §{7aikajk+2aikajk +2aiaj + apafid,)
rf = 20° r ~t r 4 Afr r 44
of = Sz ajal, +2ajai/ + 2afaj, + ajaifs,;}
:j‘—zco 35 . L+ 1a%at + 7a% A[
Si = 3% { S G T a5y T 7a5a;
+2aiya)/ + 2aifafy + afiaffd,; )
where:
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G° = mf’z—" 76
ay = aj-a; (8+6)
ay = ay-a
and where m, is the average contact density; 2 and z° are the group averages of the nor-
mal contact force magnitude and contact branch vector length, respectively.

The relationship was validated using results of simulation tests with samples of ellip-
soids in the axisymmetric triaxial compression tests at constant mean pressure.

A direct expression of the macroscopic mobilized shear strength as a sum of micro-
scopic individual and joint anisotropy contributions, similar in form to the average stress
decomposition, was derived from the tensorial Stress-Force-Fabric relationship. Assump-
tions of co-axiality and axisymmetry of the individual second-order anisotropy tensors
were essential to the derivation.

The result expressed in terms of shear stress ratio, defined as the ratio of the shear

stress, ¢‘ = ./36},0;,-/ 2, to the normal stress, 6" = ¢,./3, i.e., a, = 6°/6" can be writ-

ten as:
a, = a5 +(ay +ag) +(az+as) +ag +af +ay @9
- -/ - o’/
a; al

In the absence of initial anisotropy, the microscopic contributions in the right hand
side of the above equation have constant signs (either positive or negative) throughout the
course of deformation. However, in the presence of inherent anisotropy, the signs of these
contributions become constant only after the effect of initial anisotropy is eliminated by

deformation. It usually takes a small amount of applied axial strain before these signs sta-
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bilize. For instance, at large strains, the shear strength decomposition terms and corre-

sponding percents of contribution to the total shear strength are given as below:

a; = Jfi2(Gan/D, (38%)

[as = -2 (¢a"y/D, (6%)

a,{a; = -2 [3(15a%)]/ D, (-3.75%)

o {a{; = JS2(an /D, (45%)
a; = f2iasah)/D, (18%) @7

az = -2 [% (Ta"+aal" a1y /D, (-1.75%)

al = 2 [% (7at’+4qlnenty/p, (13%)

al = -2 {% [17.5a7 +7g48=) (-2.5%)

+7a AN +4qBXANY ]y / D
where:

D,=1+ %(—a’a" +a’a"+a'a" + 1.5a%a’) (8 8)

Quantities of type a* are magnitudes of basic anisotropy tensors as, a* = ./a_:;F,, . The
quantities appearing in the joint anisotropy contributions in (8¢ 7) and having expressions
of the type, @’ or al®T, denote magnitudes of anisotropy products of basic anisotropy
tensors. The symbols, ' and [ ], in superscript, denote deviatoric and symmetric parts of a
tensor, respectively. For instance, al"4! stands for the modulus of the deviatoric part of
the symmetric part of a tensor obtained as the product of aj; and aj*. The quantity, al"a=r

can be retrieved as below:

aqtrasr = [a'[Jr(AI)l’aE’.’(AZ)]' (8¢ 9)

where:
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alrés)r = 1o - Az 4 Az 7 a‘lakAlzs

Y = s(apay +ai akj)—T ij {8+ 10)
Symmetric Spherical
part part

The relationship was validated numerically. Some concepts already known from ear-
lier research (concemning details of anisotropy development and levels of microscopic
contributions to shear strength) were proved true for the three-dimensional system of el-
lipsoids. However, there are new findings which concern the particle shape effect on the
mobilized shear strength and the behaviour and level of contribution to the mobilized
shear strength of the component of joint anisotropy a7

1. The shape factor modeled by the quantity, a3 + ai + a5*/2 + a¥/2, was seen to
represent a minor but decisive element of contribution to the material shear
strength. It helps to close the gap between theoretical and measured stress-
strain curves, especially at large strain. Its negative contribution grows linearly
with increasing axial deformation, and can total up to 12% of the total mobi-
lized shear strength at large strains.

2. The tensor o, representing the joint contribution of anisotropies in contact
normal orientation and average contact forces, has the second largest mean
stress after the spherical tensor o . It is responsible for keeping the overall
mean stress constant by opposing the decline of the spherical tensor 67 . The

positive contribution, a3, accounts for 13% of the total mobilized shear

strength.
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8.7 Effect of Particle Shape on Fabric Anisotropy

The effect of shape was analyzed in connection with parameters describing the defor-
mation-induced anisotropy in particle orientations during shear deformation, represented
by a second-order anisotropy tensor a%, and also based on the measured distribution of
contact occurrence around an “average ellipsoid”. This distribution assumes in three-di-
mensions a “peanut” shape that exhibits a form of anisotropy represented by a second-or-
der tensor a3 . The findings are summarized as follows:

1. The average distribution of contact locations on the surface of an average ellip-
soid is affected only by the particle shape.

2. This distribution of contact location on the surface of an average ellipsoid was
successfully used to predict the proportions of contacts characterized by vector
lengths in the short (s), intermediate (i), and long (/) ranges. The definition of
these ranges stemmed from a regular sub-division of the full range of possible
lengths in three equal intervals. Proportions of pairs of particles sharing con-
tacts of an (s-s), (s-i), (s-0), (i-), (i-l), or (I-]) type of contact could also be pre-
dicted only based on the value of the tensor a5 .

3. It has been observed that for an aspect ratio of particles of 1:1.43 more than
50% of contacts are located in the short range of vector lengths. It seems that
the stability of an elongated particle is conditioned by the creation of contacts
near its flat surface areas, even in the absence of gravity. Hence, an elongated
particle uses its ability to rotate by adjusting its orientation as to keep a larger

proportion of contacts near its flat areas. In the long term, this creates consider-
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able anisotropy (increase in the magnitude of tensor af), especially at large
strains, where the orientation of ellipsoids’ long axes becomes predominantly
horizontal.

4. A probabilistic model to estimate the influence of shape on the contact normal
orientation anisotropy, represented by the second anisotropy tensor aj;, was
developed for plane ellipses. The model, in three dimensions, is analytically
complex because of the interference of many random variables in highly non-
linear expressions. These expressions are analytically intractable, and perhaps
a numerical model would be more appropriate to use for predicting the shape
effect on the anisotropy of contact normal orientations.

5. The two-dimensional model predicts that the shape contribution to the contact
normal orientation anisotropy, measured by some fraction a7, of the total
anisotropy a’, is proportional to the degree of anisotropy in particle orienta-
tions a*. The coefficient of proportionality ag./af is a linear expression of
the degree of anisotropy in local contact vector orientation g~ .

6. For a given state of the assembly of particles, the contribution ag,, /af increases
with particle eccentricity from zero (for disks) to one (for needles). This means
that the rotation of disks has no ability to create new contacts or to break exist-
ing contacts, and therefore has a zero contribution to the fabric anisotropy a’.
The more a particle shape departs from a circular shape, the more its contribu-
tion to this form of anisotropy increases. However, this contribution is always

limited by the ability of the assembly to develop anisotropy in particle orienta-
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tion a®. It is only a fraction of this form of anisotropy. The model predicts that
if the aspect ratio of ellipses is very large (needles), then most of the developed
anisotropy in particle orientation will be mobilized to contribute to the anisot-

ropy in contact normal orientations a’.

8.8 Recommendations for Future Research

In order to complete the understanding of the behaviour of granular assemblies of par-
ticles, a relationship between an average strain tensor, defined for particulate systems, and
mechanisms of contact displacements, must be developed. This is the missing link in the
chain of macroscopic-to-microscopic relationships established up to date to model the be-

haviour of granular materials.

8.8.1 The Average Strain Tensor

The first step towards this objective has been already undertaken by defining a strain
tensor for granular assemblies that has the same properties as the continuum mechanics
strain tensor. A procedure similar to the one used to define the stress tensor from continu-
um mechanics was employed to define such a strain tensor. The strain tensor for two-di-
mensional systems of arbitrarily shaped particles can be defined as an area average of
individual contact contributions.

Kruyt and Rothenburg (1996) proposed to write the average strain tensor of plane sys-

tems as:

€y = %ZAU,»‘};,‘ (8¢ 11)
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where 4 is the area of the planar assembly (Figure 8+1a); AU? is the relative displacement
vector of the pair of particles defining the contact c; and izf is the counter-clockwise rotat-
ed contact vector between polygonal units (Figure 8 1b).

Figure 8+1a shows a set of polygons covering the entire assembly. The set is obtained
by connecting the centroids of particles in contact. As can be seen from the figure, no
polygon can be divided into two or more sub-polygons. The polygon system, and the re-
sulting average strain tensor definition, are both unique.

As seen in Figure 8+1b, the definition of vectors k° depends on the polygon shapes;
therefore, the calculation of the strain tensor must be preceded by the identification of the
set of polygons with the property of indivisibility mentioned above. This constitutes a
drawback in the definition of the strain tensor, especially in the three-dimensional case
where the procedure of identification of the set of “indivisible” polyhedra requires a spe-
cial identification algorithm.

The extension of the strain tensor to three-dimensional systems is as foliows:
= LS auehs
gy = ’_’Zc: chj (8 12)

The relative contact displacement during an increment of time A7 is calculated as:

AU, = VAt (8 13)
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P, > (AU k%) :
P, - (AU=% k%) rf = (et +rP 4P+ rE 4 pF)

where:
AU = Ug - Us

AUe? = Us - Ug
r{—rs = kol — k5!

Figure 81 Elements of definition of the strain tensor for a plane granular system
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where V; denote the components of the velocity vector at the contact point c. They are
given by:
V,=[xF+ eijkij(Ck -B)]-[xt+ eijkmjA(Ck -4,)] (8- 14)

where A and B are the position vectors, and, X* and X are the translation velocity vec-
tors of the centroids of particles, 4 and B, respectively; o/ and @? are the corresponding
angular velocity vectors; C is the position vector of the contact point c; and €, is a third-
rank permutation tensor used to express the cross product of spatial vectors.

The issue of partitioning a well-defined strain tensor for three-dimensional systems
amongst various contributing deformational mechanisms will answer many questions
about the interpretation of fourth anisotropy related terms in the approximation of spatial
distributions of tangential contact forces for example and many more.

This subject is certainly a rich prospect for new ideas to further develop the microme-

chanical theories.
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APPENDIX A: NEARLY-UNIFORM PARTITIONING
OF THE ORIENTATION SPACE

A.1 Notation
The polar and azimuth angles relative to the three systems of Cartesian coordinates

(xyz), (yzx) and (zxy), are denoted as follows:

Coordinate System Polar Angle Azimuth Angle
(xyz) Qy; B:
(yzx) ox B,
(zxy) ey B
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A.2 Position of a Patch
By reference to the discretized portion of the unit sphere (basic region) displayed in

Figure A-1, the position of a patch is defined by the intersection of a pair of meridians
originating from the “x” pole (i.e., a,, and a,, + Aa) and a pair of meridians originating
from the “y” pole (i.e., a,, and a,, + Aa ), where the increment of polar angle Aa. is con-
stant and equal to n/4/N, and where N defines the number of meridians to discretize an

interval of length /4 . Therefore, the patch is completely determined by the pair of polar

angles (o, o).

Basic Region

y o ' (N=13) ay,

Figure As1 Nearly uniform partitioning of the basic region

A.3 Size of a Patch

Again, referring to the plot in Figure A-1, a patch consists of four nodes. Each node

must satisfy the intersection equation of two meridians:
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Xpode = COSP, = sina,.sinf, ()
Ynoae = €OSQL,,sinf, = cosP, ®) (As 1)
Znode = SinQ,.sinB, = cosa,sinf, ()

In the above system of equations, only two equations are independent. This is because
the node (located on the unit sphere) must satisfy the sphere’s generic equation
XiodetViodeTZ20de = 1.

If the polar angles a,, and a... are assumed to be known, then the system of equations
(Ae 1) need to be solved for B, and B, .

Multiplying equation (A* 1)(b) by cosa.,,, squaring the result, and adding it to the
squared (A~ 1)(c) equation, results in a new equation where the parameter B, can be iso-

lated as:

. cosa
sinf}, = = (A*2)

Jeosta, cos*a, + sina,,

By substituting of the above equation into (A* I1)(b), the angle B, is solved for as:

COSCL,,COSL,,

(A=3)

cosB, = =
JJcos?a,, cos?aL,. + sinZaL,,

The Cartesian and spherical coordinates of the nodes are now fully determined.

A.3.1 Calculation of a Patch Area

The area of a patch (class amplitude) is calculated by the double integral of elementa-

ry areas in spherical coordinates as:

+Aa BE+AR £ +Aa SEHAR |
IAn‘|=j‘: j': sinB,dB,da...= j: i j‘: sinB,dB.da,;. (a-4)
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Either expressions can be used (relative to (xyz) or (yzx), respectively). If the first in-

tegral is employed to calculate the class magnitude, then:
+Aa
|Ang| = r" (cosBg—cos(Bs + AB,))da,. (A 5)
af,

By substituting of the expression of cos B, in (Ae 3) into the above equation, the class

amplitude is calculated as:

|Ang| = Jog (@&, a& + Act) =y |, 4a(0th, OF + Aat) (A 8)

where:

Ji(x,, x,)= J-‘- COSXCOSA ——dy &7
= Jcostxcos?A + sinZA

The integral in (A* 7) can be calculated analytically and the result is:

Ji(x1, x;) = asin(cosAsinx,) — asin(cosAsinx,) (A+8)

A.4 Grouping Process

Assigning a unit vector to a parent class consists of two steps:

1. Identify the basic region containing the vector (among the 24 regions covering

the unit sphere).

2. Determine the class containing the unit vector within the identified basic region.
Generally, the unit vector is specified in terms of its Cartesian coordinates in the de-

fault coordinate system ((x,, y., z,), for example).
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A.4.1 Assignment into a Basic Region
In order to locate the basic region containing the unit vector, it is essential to label all

regions differently. The labelling uses two indices:

1. One index, /,, to characterize the pole to which the region is attached. The in-

dex, i,, takes values from 1 to 3.

2. One index, /., to characterize the (1/8) of the unit sphere on which the region is
located. The index i, takes values from 1 to 8.

Hence, the total number of basic regions is 3 x 8 =24.

A4.1.1 Finding i,
The index, i,, characterizes the appropriate Cartesian coordinates to be used, or the

pole associated with a particular region. It is determined as shown in the table below:

Inequality Coordinate System Index i,
X, 2max(y,, z,) (xyz) 1
Ya2max(z,, x,) (yzx) 2
z, 2max(x,,y,) (zxy) 3

A.4.1.2 Finding i.
Based on the value of i/, , the Cartesian components of the unit vector must be re-or-
dered to match the new coordinate system (given in the above table). Re-ordering is only

required if i, 1 . For example, if i, = 1, then, /. is determined as follows:
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Inequalities Index i, Inequalities Index i,
x,20,y,20,2,20 1 x,<0,y,20,2z,20 5

x,20,y,20,z,<0

x,<0,y,20,2z,<0

x,20,y,<0,2,20

L ]

x,20,y,<0,2,<0 x,<0,y,<0,2z,<0

6
x,£0,y,<0,2z,20 7
8

A.4.2 Assignment into a Patch (Class of Orientation)
Once the pair of indices (i,, i.) is determined, the basic region is identified and the

assignment of the unit vector into its parent patch can be completed as follows:

1. The pair of polar angles (a7, af) of the unit vector with respect to the appropri-
ate spherical coordinate systems is calculated. The choice of which polar an-

gles to calculate depends on the index i/, :

i a, a,
1 Ay o P
2 ®y: gy
3 Ay Olzx

2. Determine the patch in which the pair (af, af) falls. This exercise is similar to

assigning a contact normal vector in spherical coordinates.
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APPENDIX B: INTERSECTION OF TWO
ELLIPSOIDS

B.1 General Equation of Intersection of Two Ellipsoids
Since the characterization of the contact area will involve mainly ellipsoid 4, it is

convenient to express its generic equation in a parametric form written in its own frame of
reference as:

x = acosBsing
y = bsinBsind (@8-1)
z = ccosd

where a > b > ¢ are the ellipsoid principal radii, and, (6, ¢), are the surface parame-
ters. (6, ¢) are different from the polar and azimuth angles in spherical coordinates. They

effectively degenerate to polar and azimuth angles for spheres only. The angle 8 varies
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from 0 to 2x, and the angle ¢ varies from O to «.

The equation of ellipsoid, B, is written in an algebraic form (relative to principal axes
of ellipsoid, 4) as:

XO0pX" =0 (82)

where (5 is the discriminant matrix of ellipsoid B.

Hence, the intersection equation can be expressed locally (in ellipsoid 4 principal ax-
es) as:

acosOsind

05 bsinBsind| _ 0

ccos
1

[acosesind) bsinBsing ccosd 1] (B-3)

B.2 Curve-to-Surface Equation

The general equation of intersection (B* 3) is quadratic with respect to the cosine and
sine functions of © and ¢ .

If one of the two variables can be set to a fixed value, for example, (6 = const), then
the intersection equation is only solved for ¢ . Geometrically, this corresponds to finding
the intersection of the (6 = const) -curve on the surface of the ellipsoid 4 (the curve join-
ing all the points having (0 = const) as their first parameter) and the surface of ellipsoid
B. Thus, the two-variable surface-to-surface intersection equation is transformed to a sin-
gle-variable, curve-to-surface intersection equation. Similarly, the value of ¢ can be set to

be constant, and the resulting equation solved for 6 .
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B.3 Method of Solution

If @ is the varying parameter and ¢ is set to a fixed value, the (¢ -curve)-surface
equation is quadratic with respect to cos® and sin0, with an expression that has a form
similar to:

a, cos*0 + a,sin?*0 + 2a;cosOsin6

. B8-4)
+2a,c0s0 + 2a5sin@+a, = 0

where a; are constant coefficients depending on the geometry of ellipsoids 4 and B.

cosO and sin® are related to the single variable w = tan(6/2) as follows:

{cose = (1 -w?)/(1 +w?) e

sin@ = 2w/(1 +w?)

By substituting the above relationships into (B 4) and rearranging, a fourth-degree
algebraic equation is obtained. After solving for, w, the original parameter, 0, can be re-

covered from (Be 5).
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APPENDIX C: CALCULATION OF INTEGRALS

J' nn,.n; dn
n

Integrals over the unit sphere of the form, I n;n; .n;, dn, where n; are arbitrary unit
vectors, are often needed in tensor calculations. The Stress-Force-Fabric relationship (S-
F-F) is one application where these integrals are required. These integrals can be ex-
pressed as sums and products of the Kronecker delta tensor 5,,. However, a comprehen-
sive general formula is impossible to write for an arbitrary order. Instead a procedure is

shown that can be utilized to retrieve the formula once the order of the integral is known.

For convenience, the integrals are normalized to define tensorial quantities that can

only assume integer values. These are defined as:

(2m). - (2m+ l)! n. ) o
B Gl Ln,‘n,z..n,hdn c 1
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The tensor 2™, is directly related to the tensor of lower order B{im:2) . Hence, a

T8y g

sequence can be established that will bridge B{¥™, with all successive lower orders until

g dyg

reaching the lowest order 2 for which the tensor is known B(» = 5.

To illustrate the method, the case of the S-F-F relationship is considered where the

following tensors are required:

2) = 3
B = = I nndn
15

BiE = = nnnm,dn

105 €2
Biipe = =) nen,n.dn
— 945
B:(ﬁ:)lpqrx = 4 nnnkn,npnqn,n,dn
The sequence is as follows:
B = 3,
BG = 5, B + duBi P +8,B
4) +§. B4

B.(ﬂ)lpq = aiijq*‘au ,(14)‘1'*'5:1 j(kpq+8'PBlkq aquJkp (€3

6 (6
81] Bilpqrs'*’aik 1(16p)qr:+811 ;(kp)qrx+8ip Bjk)qr.r

Buklpqrx ’
+8:qB]k prs + aer kipqs + 8::81& pqr

To determine the expression of the 62 order tensor for example, two successive sub-
stitutions are needed. The final form of the tensor in terms of the Kronecker delta tensor

can be written as follows:
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Bipg = ajj(8k1894+8kp5Iq+6k451p)+8ik(5118p4+81p81q+81981p)
+0,1(860pq+0;,01+8,,0:5)+8:,(8;:01,16,8,,+8;,0,) (Co#)
+8iq(ajt51p+8j[8kp+8jy6kl)

The same can be done with the eighth order tensor B(),.,, , and any other higher order

tensor.

294



REFERENCES

REFERENCES

Aschenbrenner, B. C., (1956), A New Method of Expressing Particle Sphericity, J. Sedi-
ment. Petrol., 26, 15-31.

Bardet, J.P., and Proubet, J. (1991), Adaptive Dynamic Relaxation for Statics of Granular
Matenials, Computers and Structures, 39, 3/4, 221-229

Bathurst, R.J. (198S), A Study of Stress and Anisotropy in Idealized Granular Assemblies,
Ph.D. Dissertation, Department of Civil Engineering, Queen’s University, King-
ston, Ontario, 219 pp.

Bathurst, R J., and Rothenburg, L. (1988), Micromechanical Aspects of Isotropic Granular
Assemblies with Linear Contact Interactions, .J. Appl. Mech., ASME, 58§, 3, 17-23

Bathurst, R.J., and Rothenburg, L. (1990), Observation on Stress-Force-Fabric Relation-

ships in Idealized Granular Materials, Mechanics of Materials, 9, 1, 65-80.

295



REFERENCES

Bathurst, R.J., and Rothenburg, L. (1992), Investigation of Anisotropic Assemblies of
Plane Elliptical Particles, Numerical Models in Geomechanics, Pande & Pietruszc-
zak (eds.), Balkema, Rotterdam, 47-54.

Been, K., and Jefferies, M.G. (1985), A State Parameter for Sands, Géotechnique, 35, 2,
99-112.

Biarez, J., and Wiendieck, K. (1963), La Comparaison Qualitative Entre L’ Anisotropie
Meécanique et L’ Anisotropie de Structure des Milieux Pulvérulents, Comptes Ren-
dus de L’ Academie des Sciences, 256, 1217-1220.

Bishop, A. W. (1971), Shear Strength Parameters for Undisturbed and Remolded Soil
Specimens, Proc. Roscoe Memorial Symp., Cambridge University, 3-58

Chantawarangul, K. (1993), Numerical Simulations of Three-Dimensional Granular As-
semblies. Ph.D. Dissertation, Department of Civil Engineering, University of Wa-
terloo Ontario, 219 pp.

Christoffersen, J., Mehrabadi, M.M. and Nemat-Nasser, S. (1981), A Micromechanical
Description of Granular Material Behaviour, J. Appl. Mech., ASME, 48, 339-344.

Cundall, P.A. (1971), A Computer Model For Simulating Progressive, Large-Scale Move-
ments in Biocky Rock Systems, Proc. Symp. Soc. Rock Mech., Nancy, 2, Paper 8,
12 pp.

Cundall, P.A. (1978), BALL - A Computer Program to Mode! Granular Media Using the
Distinct Element Method, Technical Note TN-LN-13, Advance Technology
Group, Dames and Moore, London, 74 pp.

Cundall, P.A. (1982) Adaptive Density-Scaling for Time-Explicit Calculations, Proc. of

296



REFERENCES

IV International Conference on Numerical Methods in Geomechanics, 1, 23-26

Cundall, P.A. (1987), Distinct Element Models of Rock and Soil Structure, Analytical and
Computational Methods in Engineering Rock Mechanics, E.T. Brown (eds.), Allen
and Unwin, London, 129-163.

Cundall, P.A. (1988), Computer Simulations of Dense Sphere Assemblies, Micromechan-
ics of Granular Materials, M. Satake and J.T. Jenkins (eds.), Elsevier, Amsterdam,
113-123.

Cundall, P.A. and Strack, O.D.L. (1979a), A Discrete Numerical Model for Granular As-
semblies, Géotechnique, 29, 1, 47-65.

Cundall, P.A. and Strack, O.D.L. (1979b), The Development of Constitutive Laws for Soil
Using the Discrete Element Method, Proc. 3" Int. Conf. Numerical Methods in
Geomechanics, Aachen, W. Witke (eds.), 1, 289-298.

Cundall, P.A. and Strack, O.D.L. (1979c), The Discrete Element Method as a Tool for Re-
search in Granular Media, Part II, Report to National Science Foundation, De-
partment of Civil and Mineral Engineering, University of Minesota, Minneapolis,
Minnesota, 204 pp.

Cundall, P.A., Drescher, A. and Strack, 0.D.L. (1982), Numerical Experiments on Granu-
lar Assemblies: Measurement and Observations, Proc. [IUTAM Conf. on Deforma-
tion and Failure of Granular Materials, Delft, P.A. Vermeer and H.J. Luger (eds.),
Balkema, Rotterdam, 355-370.

Cundall, P.A. and Strack, O.D.L. (1983), Modeling of Microscopic Mechanisms in Gran-

ular Materials, Mechanics of Granular Materials: New Model and Constitutive Re-

297



REFERENCES

lations, J.T. Jenkins and M. Satake (eds.), Elsevier, Amsterdam, 137-149.

Cundall, P.A_, Jenkins, J.T and Ishibashi, I. (1989), Evolution of Elastic Moduli in a De-
forming Granular Assembly, Powders and Grains, J. Biarez and R. Gourvés
(eds.), Balkema, Rotterdam, 319-322.

Dantu, P. (1957), Contribution 4 L’Etude Mécanique et Géometrique des Milieux Pul-
vérulents, Proc. 4 Int. Conf. Soil Mech. Found. Eng., London, 1, 144-148.

Dantu, P. (1968), Etude Statistique des Forces Intergranulaires dans un Milieu Pulvéru-
lent, Géotechnique, 18, 1, 50-55.

De Josselin de Jong, G., and Veruijt, A. (1969), Etude Photo-Elastique d’un Empilement
de Disques, Cahiers du Groupe Frangais de Rhéologie, 2, 1, 73-86.

Eliadorani, A.A. (1992), A Study of Steady-State Deformation of Granular Media by Nu-
merical Simulation of Plane Elliptical Particles, M.A.Sc. Thesis, Department of
Civil Engineering, University of Waterloo Ontario, 112 pp.

Hart, R,, Cundall, P.A. and Lemos, J. (1988), Formulation of a Three-Dimensional Dis-
tinct Element Model- Part II: Mechanical Calculations for Motion and Interaction
of a System Composed of Many Poiyhedral Blocks, Int. J. Rock Mech. Min. Sci. &
Geomech. Abstr., 25, 3, 117-125.

Home, M.R. (1965), The Behaviour of an Assembly of Rotund Rigid Cohesionless Parti-
cles, I and II, Proc. Roy. Soc., London, Series A, 286, 62-97.

Konishi, J.,, Oda, M. and Nemat-Nasser, S. (1982), Inherent Anisotropy and Shear
Strength of Assembly of Oval Cross-Sectional Rods, Deformation and Failure of

Granular Materials, P.A. Vermeer and H.J. Luger (eds.), Balkema Publishers,

298



REFERENCES

403-412.

Konishi, J., Oda, M. and Nemat-Nasser, S. (1983), Induced Anisotropy in Assemblies of
Oval Cross-Sectional Rods in Biaxial Compression, Mechanics of Granular Mate-
rials: New Models and Constitutive Relations, J.T. Jenkins and M. Satake, Elsevier
Science Publishers B. V., 31-39.

Krumbein, W. C. (1941), Measurement and Geological Significance of Shape and Round-
ness of Sedimentary Particles, J. Sediment. Petrol., 11, 2, 64-72.

Kruyt, N.P. and Rothenburg, L. (1996) Micromechanical Definition of the Strain Tensor
for Granular Materials, J. Appl. Mech., 63, 3, 706-711.

Levin, J.Z. (1979), Mathematical Models for Determining the Intersections of Quadric
Surfaces, Computer Graphics and Image Processing, 2, 11, 73-87.

Mehrabadi, M.M., Nemat-Nasser, S. and Oda, M. (1982), On Statistical Description of
Stress and Fabric in Granular Materials, /nt. J. Num. Meth. Geomech., 6, 35-108.

Mirghasemi (1994), Numerical Simulation of Angular Particle Assemblies and Applica-
tion to Rockfill Dams, Ph.D. Dissertation, Department of Civil Engineering, Uni-
versity of Waterloo Ontario, 178 pp.

Mindlin, R.D. and Deresiewicz, H. (1953) Elastic Spheres in Contact Under Varying Ob-
lique Forces, J. Appl. Mech., ASME, 21, 327-344.

Oda, M. (1972) The Mechanism of Fabric Changes During Compressional Deformation
of Sands, Soils and Foundations, 12, 2, 1-18

Oda, M. (1977), Co-ordination Number and Its Relation to Shear Strength of Granular

Materials, Soils and Foundations, 17, 2, 29-42.

299



REFERENCES

Oda, M., Nemat-Nasser, S., and Konishi, J. (1983), Experimental Micromechanical Eval-
uation of The Strength of Granular Materials: Effects of Particle Rolling, Mechan-
ics of Granular Materials: New Models and Constitutive Relations, J. T. Jenkins
and M. Satake (eds.), Elsevier, Amsterdam, 21-30.

Rothenburg, L. (1980), Micromechanics of Idealized Granular Systems, Ph.D. Disserta-
tion, Department of Civil Engineering, Carleton University, Ottawa, Ontario, 332
PP

Rothenburg, L. and Selvadurai, AP.S. (1981), A Micromechanical Definition of The
Cauchy Stress Tensor for Particulate Media, Proc. Int. Symp. Mechanical Behav-
iour of Structured Media, Ottawa, A P.S. Selvadurai (eds.), Part B, 469-486.

Rothenburg, L. and Dusseault, M.B. (1987), Application of a New Constitutive Model for
Granular Materials to Qil Sands, Progress Report to Alberta Oil Sands Technolo-
gy and Research Authority, Department of Civil Engineering, University of Wa-
terloo Ontario, 144 pp.

Rothenburg, L. and Bathurst, R. J. (1989), Analytical Study of Induced Anisotropy in Ide-
alized Granular Materials, Géotechnique, 39, 4, 601-614.

Rothenburg, L. and Bathurst, R.J. (1991), Numerical Simulation of Idealized Granular As-
semblies with Plane Elliptical Particles, Computers and Geotechnics, 11, 315-329.

Rothenburg, L. and Bathurst, R.J. (1992), Micromechanical Features of Granular Assem-
blies with Planar Elliptical Particles, Géotechnique, 42, 1, 79-95.

Rothenburg, L. and Bathurst, R.J. (1993), Influence of Particle Eccentricity on Microme-

chanical Behavior of Granular Materials, Mechanics of Materials, 16, 1-2, 141-



REFERENCES

152.

Satake, M. (1978), Constitution of Mechanics of Granular Materials through the Graph
Theory, Proc. U.S.-Jap. Seminar on Continuum-Mechanical and Statistical Ap-
proaches in the Mechanics of Granular Materials, Tokyo, 47-62.

Smith, W.O., Foote, P.D., and Busang, P.F. (1929), Packing of Homogeneous Spheres,
Phys. Rev., 34, 1271-1274.

Strack, O.D.L. and Cundall, P.A. (1978), The Discrete Element Method as a Tool for Re-
search in Granular Media, Part I, Report to National Science Foundation, Depart-
ment of Civil and Mineral Engineering, University of Minesota, Minneapolis,
Minesota, 97 pp.

Strack, O.D.L. and Cundall, P.A. (1984), Fundamental Studies of Fabric in Granular Ma-
terials, Interim Report to National Science Foundation, Department of Civil and
Mineral Engineering, University of Minesota, Minneapolis, Minesota, 53 pp.

Thomton, C. and Bames, D.J. (1986), Computer Simulated Deformation of Compact
Granular Assemblies, Acta Mechanica, 64, 1, 45-61.

Ting, J. M., Khwaja, M., Meachum, L.R., and Rowell, J.D. (1993), An Ellipse-Based Dis-
crete Element Model for Granular Materials, /nt. J. Num. Meth. Geomech, 17, 603-
623

Weber, J. (1966), Recherche Concernant les Contraintes Intergranulaires dans les Milieux
Pulvérulents, Bull. de Liaison des Ponts et Chaussées, 20,3.1-3.20.

Zhang, Y. and Cundall, P.A. (1986), Numerical Simulation of Slow Deformation, Proc.

10 U.S. Nat. Cong. Appl. Mech., Austin, 347-349.

301



/%@ o ©
,,,\..v,a,Q /ﬁ\@\ \\ 7 //
QO .,\.,,\««_ v //\\ V/ \\\ ///\ A._A.A%
%\\\ . Y 4 E3EE //@\ SRS
Q N7 &
wﬂ_w
2 ddaa  _, i |
IAWN_A_.._I...V._ K E EERERT M"_== .m % M__mm_mm 5
2 ol =l o N
=l =] 5 N
S0 = = = C
D=
A\
R, \/\// \\\Aa/%/
%%VVV\ ux/\// N ¥:
= A b%.v%w.,,, ,m.y\ Y ly \.////V .
WA “o i
o\ 7 RS





