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Abstract

We study reducibility for nowhere-zero flows. A reducibility proof typically

consists of showing that some induced subgraphs cannot appear in a minimum

counter-example to some conjecture. We derive algebraic proofs of reducibility.

We define variables which in some sense count the number of nowhere-zero flows

of certain type in a graph and then deduce equalities and inequalities that must

hold for all graphs. We then show how to use these algebraic expressions to prove

reducibility. In our case, these inequalities and equalities are linear. We can thus

use the well developed theory of linear programming to obtain certificates of these

proof.

We make publicly available computer programs we wrote to generate the alge-

braic expressions and obtain the certificates.
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Chapter 1

Introduction

All graphs in this thesis are multigraphs unless stated otherwise.

1.1 Nowhere-zero flows

Definition 1.1.1. An orientation of a graph G is a directed graph (digraph) D

such that the underlying undirected graph of D is G.

We use the notation ~G to mean some orientation of G.

Definition 1.1.2. Let ~G be a digraph and Γ an Abelian group. A Γ-flow on ~G is

a function f : E(G) → Γ such that

∀v ∈ V (G)
∑

e∈δ+
~G
(v)

f(e) =
∑

e∈δ−
~G
(v)

f(e) (1.1)

Here we use the notation + for the operation of the Abelian group Γ, δ+
~G
(v) for

the set of edges with v as its tail and δ−~G(v) for the set of edges with v as its head.

When clear from the context, we will write δ+(v) for δ+
~G
(v) and δ−(v) for δ−~G(v).

From now on, we will use the notation f(S) for a subset S of the edges of G

to mean
∑

e∈S f(e). We write δ(S) for the set of edges between S and V − S. We
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write δ+(S) to mean the arcs from S to V − S and δ−(S) to mean the arcs from

V − S to S.

Definition 1.1.3. A Γ-flow on ~G is a nowhere-zero Γ-flow if

∀e ∈ E(G) f(e) 6= 0

We are interested in knowing when a digraph ~G has a nowhere-zero Γ-flow. First

we prove the following theorem which states that the existence of a nowhere-zero

flow does not depend on the orientation.

Proposition 1.1.4. Let G be an undirected graph and Γ an Abelian group. Let D1

and D2 be two orientations of G. Suppose there is a nowhere-zero Γ-flow f on D1.

Then there is a nowhere-zero Γ-flow f ′ on D2.

Proof. In D2, some of the edges of G in D1 are reversed. We simply reverse the

flow on the reversed edges and keep the flow the same otherwise. Let

f ′(e) = f(e) if D1 and D2 orient e the same way

f ′(e) = −f(e) if D1 and D2 orient e differently

Then f ′ is clearly nowhere-zero as −0 = 0 for all groups. Also, f ′ is a flow

since whenever a term changes sides in Equation (1.1), we change the sign of that

term.

This justifies our notation ~G since in most cases we will only need an arbitrary

but consistent orientation of G.

Also note that the “flow condition” of Equation (1.1) must hold for every edge

cut of G. This can be deduced from Equation (1.1) by summing over all vertices

on one side of the edge cut. Thus we obtain the following statement.
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Proposition 1.1.5. If f is a Γ-flow on ~G and δ(S) is an edge cut of G then

f(δ+(S)) = f(δ−(S)) (1.2)

This proposition says that the flow into S must be equal to the flow out of S.

We will refer to Equation (1.2) as the cut-condition.

Therefore, if G has an edge cut consisting of a single edge e (called a bridge),

Equation (1.2) becomes f(e) = 0. Then ~G cannot have a nowhere-zero Γ-flow (for

any Γ). Therefore, from now on, we will only study graphs without an edge cut

(called bridgeless graphs).

An important result by Tutte in the theory of nowhere-zero flows states that

the existence of a nowhere-zero Γ-flow only depends on the order of Γ rather than

the group itself.

Theorem 1.1.6. [18] Let Γ1 and Γ2 be two Abelian groups with |Γ1| = |Γ2| then ~G

has nowhere-zero Γ1-flow if and only if ~G has a nowhere-zero Γ2-flow

We will not prove this theorem but note that the proof does not give a bijection

between Γ1-flows and Γ2-flows of G.

We can define a notion similar to nowhere-zero flows for undirected graphs.

Definition 1.1.7. An undirected graph G is said to be k-flowable if there exists

a group Γ of order k and an orientation ~G of G such that ~G has a nowhere-zero

Γ-flow.

In light of Proposition 1.1.4 and Theorem 1.1.6, we may replace “there exists”

in the above definition by “for all” (i.e., if such a nowhere-zero flow exists then it

exists for all groups of order k and all orientations of G). Thus, k-flowability is a

property of the undirected graph G.
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1.2 Nowhere-zero flow conjectures

We can now state the most important conjectures in the area of nowhere-zero flows,

Tutte’s nowhere-zero flow conjectures.

Conjecture 1.2.1 (5-flow conjecture). [18] Every bridgeless graph is 5-flowable.

Conjecture 1.2.2 (4-flow conjecture). [20] Every bridgeless graph without a minor

isomorphic to the Petersen graph is 4-flowable.

Figure 1.1: The Petersen graph

Conjecture 1.2.3 (3-flow conjecture). [17] Every 4-edge-connected graph is 3-

flowable.

Theorems have been proven by weakening the conditions in some of the conjec-

tures.

Theorem 1.2.4 (6 flow theorem). [16] Every bridgeless graph is 6-flowable.

Theorem 1.2.5. [5, 6] Every 4-edge connected graph is 4-flowable.

1.3 Nowhere-zero flow and colouring duality

As the following theorem shows, nowhere-zero flows can be viewed as an extension

of colouring for non-planar graphs.
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Theorem 1.3.1. [18] Let G be a plane graph. If G is k-flowable then G∗, the dual

of G, is k-vertex-colourable.

Proof. Choose an arbitrary orientation ~G of G and let f be a nowhere-zero Zk-flow

for that orientation.

We construct the dual ~G∗ of ~G by rotating each (oriented) edge of ~G clockwise

until it is aligned with the (currently) unoriented dual of the edge in G∗.

We may now think of f as a function assigning values to edges of ~G∗. f is not

a flow on ~G∗. However, the dual of an edge cut is a cycle. Therefore, by Equation

(1.2), if we walk around an undirected cycle in G∗, the sum of the f values on

forward edges (edges oriented in the same direction as our walk) is equal to the

sum of the f values on backward edges (edges oriented in the opposite direction).

So for any (undirected) cycle C in G∗, f (on ~G∗) satisfies

∑
e∈C,e is a forward edge

f(e) =
∑

e∈C,e is a backward edge

f(e) (1.3)

We construct a colouring c of the vertices of G∗ by colouring them with elements

of Zk.

Start by colouring an arbitrary initial vertex v by letting c(v) = 0. We now

repeat the following step.

Suppose u is uncoloured and w is coloured. If there is an edge from u to w, set

c(u) = c(w) + f(uw). If there is an edge from w to u, set c(u) = c(w)− f(wu).

We need to show that two adjacent vertices of G∗ are coloured differently.

To do so, we show that if there is an edge from u to w then c(u) = c(w)+f(uw).

Since f(uw) 6= 0 for all arcs uw, adjacent vertices receive different colours.

Suppose c(u) 6= c(w) + f(uw) for some adjacent vertices u and w in G∗. Note

that the procedure for assigning colours chooses an edge at every step (with one

coloured end and one uncoloured end). Furthermore, the chosen edges form a
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(spanning) tree T in G∗ (since all vertices are coloured and we never choose an

edge with two coloured ends).

Note that all edges in T satisfy c(u) = c(w) + f(uw).

Let P = {u, w1, ..., wk, w} be the (unique) path from u to w in T . This path is

not just {u, w} (otherwise c(u) = c(w)+f(uw)). This path together with uw forms

a cycle. We can traverse this cycle by starting at u moving along the path and then

traverse the edge uw backwards. By (1.3), this sum is 0. Since all edges of the path

except uw is a tree edge, the sum is also (c(u)− c(w1))+ (c(w1)− c(w2))+ (c(w2)−

c(w3))+ . . .+(c(wk)− c(w))− f(uw). This telescopes to (c(u)− c(v))− f(uw) = 0

so c(u) = c(v) + f(uw). Contradiction.

As a corollary of the previous theorem, we see that the 4-flow conjecture is a

strengthening of the Four Colour Theorem.

Corollary 1.3.2. Suppose the 4-flow conjecture is true. Then every planar graph

is 4-colourable.

Proof. We show that an arbitrary plane graph G is 4-colourable. The dual G∗

is planar and thus does not contain a Petersen minor (as the Petersen graph is

non-planar). So G∗ is 4-flowable. By Theorem 1.3.1, G is 4-colourable.

1.4 Reducibility

In this section, we will describe what we mean by a “reducibility proof”. The

remainder of this thesis studies different types of reducibility proofs.

We essentially want to build a “smaller” counter-example (to some Nowhere-

Zero Flow Conjecture) from another counter-example. However, we want this con-

struction to be, in some sense, “local” so that we only need to look at and change

a small part of the counter-example.
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We start by showing how we can “break” a flow and a digraph into two “sides”

and how we can form a flow from a flow on each of the “sides”. We then proceed

to “replace” one of these “sides” (with a smaller piece).

From now on, we also omit Γ and simply say “flow” to mean a Γ-flow when

clear from the context. This is since we think of Γ to be some fixed Abelian group.

1.4.1 Combining flows

We start by introducing the notion of “partial flows”.

Definition 1.4.1. Let ~H be a digraph, and E ′ a subset of the edges of H. A partial

Γ-flow on E ′ is a function f : E ′ → Γ such that for all edge cuts δ(S) ⊆ E ′,

f(δ+
~G
(S)) = f(δ−~G(S)).

A partial nowhere-zero Γ-flow on E ′ is a partial Γ-flow on E ′ with f(e) 6= 0 ∀e ∈

E ′.

A partial flow on E ′ simply assigns group values to a subset E ′ of the edges of H

and requires that the cut-condition (Proposition 1.1.5) holds for all cuts contained

in E ′. Note that a partial flow on E(H) is just a flow (of ~H).

We use the notation f |E′ to denote the restriction of the function f to the

domain E ′ (i.e., f |E′ = f on E ′ and f |E′ is undefined elsewhere).

By Proposition 1.1.5, if f is a flow then, for any subset E ′ of the edges, f |E′ is

a partial flow on E ′. More generally, if E ′′ ⊆ E ′ and f is a partial flow on E ′ then

f |E′′ is a partial flow on E ′′.

Now we want to know when we can perform the reverse operation. That is,

start with a partial flow on E ′′ and obtain a partial flow on E ′ ⊇ E ′′ while keeping

the function the same on E ′′.

Definition 1.4.2. 1. If E ′′ ⊆ E ′ then a partial flow g : E ′ → Γ on E ′ extends

f : E ′′ → Γ if g|E′′ = f .

7



2. A partial flow f on E ′′ extends to E ′ if there is a partial flow on E ′ which

extends f .

The same terms for nowhere-zero flows are defined analogously.

Definition 1.4.3. Suppose ~H is a digraph and R = δ+(S) ∪ δ−(S) for some S ⊆

V (H) (i.e., R is all arcs in the undirected cut δ(S)). Then R splits ~H into the two

sides R1 and R2 of the cut R:

1. The side R1 consists of the arcs with both ends in S together with R; and

2. The side R2 consists of the arcs with both ends in V (H) − S together with

R.

(a) (b) (c)

Figure 1.2: Sides of an edge cut: The original graph ~H in (a) with the edge cut

highlighted. The edge sets in (b) and (c) are the two sides of the edge cut

With these definitions in hand, we can now state the main proposition of this

section.

Proposition 1.4.4. Let ~H be a digraph and R an edge cut in ~H with sides R1 and

R2. Then ~H has a nowhere-zero flow if and only if there is a partial nowhere-zero

flow on R which extends to both R1 and R2.

Proof. Suppose ~H has a nowhere-zero flow f . Then f |R is a partial nowhere-zero

flow on R. Obviously, f |R1 extends f |R and is a nowhere-zero flow on R1 and f |R2

extends f |R and is a nowhere-zero flow on R2. So f |R is a partial nowhere-zero flow

on R which extends to both sides.
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Now suppose there is a partial nowhere-zero flow f on R which extends to both

sides. Let f1 be the partial nowhere-zero flow on R1 which extends f and f2 be the

partial nowhere-zero flow on R2 which extends f . Since f1 and f2 agree on R, we

can define a function g which is f1 on R1 and f2 on R2 (i.e., g(e) = f1(e) if e ∈ R1

and g(e) = f2(e) if e ∈ R2). The domain of g is R1 ∪ R2 = E(H) and satisfies the

cut-condition for any cut which is the neighbourhood of a vertex. Therefore g is a

nowhere-zero flow on ~H.

In later sections, we will use the above proposition in the following form.

Corollary 1.4.5. Let ~H be a digraph and R an edge cut in ~H with sides R1 and

R2. Then ~H has no nowhere-zero flow if and only if every partial nowhere-zero flow

on R which extends to R1 does not extend to R2.

1.4.2 Replacement

In this section, we describe the operation of “replacement”. We would like to be

able to replace one side of a cut R in some digraph ~H to obtain a new digraph.

The idea is simple. If we had drawn ~H with R in the middle then we replace

one side by simply erasing everything (arcs and vertices) on one side but leaving

the “half-arcs” of R and draw something else on that side. We now define this

formally. We start by introducing the notion of a “side graph”.

Definition 1.4.6. A side graph (~G, z, R) is a digraph ~G with a marked vertex

z ∈ V (G) and δ(z) is labelled by the set R.

We can obtain side graphs from a digraph and a cut R in the following way.

Definition 1.4.7. Let ~H be a digraph and R = δ+(S) ∪ δ−(S) be a cut in ~H.

Let ~H1 be the graph obtained from ~H by identifying all vertices in S to a marked

vertex z1 and deleting all loops created by the identification. The edges of δ(z1)

are labelled by R using the identity map.
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Let ~H2 be the graph obtained from ~H by identifying all vertices in V (G)−S to

a marked vertex z2 and deleting all loops created by the identification. The edges

of δ(z2) are labelled by R using the identity map.

Then ( ~H1, z1, R) and ( ~H2, z2, R) are the side graphs induced by R (in ~G).

We will also refer to ( ~H1, z1, R) and ( ~H2, z2, R) as the side graphs of R.

(a) (b) (c)

Figure 1.3: Side graphs of an edge cut: The original graph ~H in (a) with the edge

cut highlighted. The graphs in (b) and (c) are the two side graphs of the edge cut

Note that a side of R is a set of edges whereas a side graph of R is a digraph.

The edges of the side graphs of R correspond to the sides of R. Furthermore, the

two notions relate to each other in the following manner.

Remark 1.4.8. Let ~H be a digraph and R a cut of H. Let ~H1, ~H2 be the side

graphs of R.

Then f is a flow of ~H1 if and only if f is a partial flow of ~H on E(H1).

The same statement can be made about partial nowhere-zero flows.

The above remark is simply a restatement of Proposition 1.1.5 for partial flows.

We now want to reverse operation of splitting a digraph into two side graphs.

We call this “gluing”.

Definition 1.4.9. Let ( ~H1, z1, R) and ( ~H2, z2, R) be 2 side graphs. Suppose that

the arcs incident to z1 and the arcs incident to z2 have opposing orientations.

Then we define ~H, the graph obtained by gluing ~H1 and ~H2 as follows. ~H is the

disjoint union of ~H1 − {z1} and ~H2 − {z2} together with an arc v1v2 for every arc

v1z1 in ~H1 and arc z2v2 in ~H1 labelled by the same element in R.

10



We can now define replacement.

Definition 1.4.10. Let ~H be a digraph and R a cut in H which induces side

graphs ~H1 and ~H2. Then the digraph obtained by replacing ~H1 by ~H ′
1 is the digraph

obtained by gluing ~H ′
1 and ~H2.

Figure 1.4: Replacement: The highlighted graph on the left is replaced with a graph

with 4 fewer vertices to obtain the graph on the right

From now on, to simply notation, we will refer to ~G as a side graph and use

z(~G) and R(~G) for the marked vertex and the labelling of edges incident to z(~G)

respectively.

1.4.3 Minimum counter-example

In an effort to prove some of the Nowhere-Zero Flow Conjectures, properties of the

minimum counter-examples were studied [3, 10, 11, 9]. For example

Theorem 1.4.11. [3] A minimum counter-example to the 5-flow conjecture is 3-

regular.

Theorem 1.4.12. A minimum counter-example to the 3-flow conjecture is 5-

regular.

In all these cases, by “minimum”, we mean that the conjecture is true for all

graphs with fewer vertices. We will also use the term smaller graph to mean a graph

with fewer vertices. More formally, we have the following definition.
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Definition 1.4.13. For a class of graphs H and an integer k, a minimum (H, k)-

counter-example is a graph in H that is not k-flowable and has the least number of

vertices.

This thesis focuses on proving that some digraphs cannot appear as induced

subgraphs of the minimum counter-example. This is called reducibility and the

corresponding graphs will be deemed reducible.

Informally, a graph G is “reducible” if G can be replaced in any counter-example

with a smaller graph G′ and the resulting graph is still a counter-example.

Definition 1.4.14. Let H be a class of graphs and ~H the orientations of graphs

in H. A graph G (H, k)-reduces to G′ if whenever ~G appears as a side graph of a

cut R in some graph ~H ∈ ~H, the graph ~H ′ obtained from ~H by replacing ~G with

~G′ is a non-k-flowable graph in ~H.

We say G is (H, k)-reducible if it is (H, k)-reducible to some graph G′ smaller

than G.

Note that replacing ~G by ~G′ can be done by replacing G by G′ in H and keeping

the orientation of ~G and ~G′.

Now suppose that we wish to find a minimum counter-example (a smallest graph

inH which is not k-flowable). If an orientation of such a counter-example contained

~G as a side graph of some cut where G is reducible then we could replace G with

G′ and get a smaller counter-example, which is impossible. Thus, we have the

following.

Remark 1.4.15. If G is (H, k)-reducible then it does not appear as a subgraph in

a minimum (H, k)-counter-example.

We will usually omit the parameters (H, k) when clear from the context (or the

statement holds for all fixed (H, k)).

12



1.4.4 Flow reducibility

In the previous section, we defined reducibility for graphs. We now wish to define

reducibility for a set of flows. We will choose this definition so that if the set of

flows extending to a side graph ~H reduces all flows extending to ~H ′ then ~H reduces

to ~H ′.

Definition 1.4.16. Let H be a class of digraphs. Let SR be the set of all side

graphs (G, z, R) for some graph in H (the edges incident to z are labelled by the

same set R for all graphs).

We say that SR is the set of side graphs (of H containing R). An element of SR

is referred to as a configuration.

Definition 1.4.17. Let SR be the side graphs of H containing R.

Let f be a partial flow on R. Let C be a set of partial flows on R.

We say that C reduces f if, for every ~G ∈ SR such that f extends to ~G, there

exists some partial flow in C that extends to ~G.

In general, we will refer to the concept of having a set of flows reduce another flow

as flow reducibility. We will refer to the reducibility of digraphs as graph reducibility.

The following proposition shows that our definition relates flow reducibility and

graph reducibility in the manner we wanted.

Proposition 1.4.18. Let SR be the side graphs of H containing R.

Let ~G, ~G′ ∈ SR. Let C be the set of partial flows extending to ~G and C ′ the set

of partial flows extending to ~G′.

If ∀f ∈ C ′, C reduces f then ~G reduces to ~G′.

Proof. Suppose ~G appears as a side graph of R in some minimum counter-example

~H ∈ H. Assume that ∀f ∈ C ′, C reduces f . Let ~F be the other side graph of R in

~H. Let ~H ′ be obtained by replacing ~G by ~G′.

13



If H ′ is k-flowable then let f be a nowhere-zero flow on ~H ′. Then f |G′ is a

partial flow on ~G′. Thus f |R ∈ C′ and C reduces f |R. f |F is a flow on ~F so f |R
extends to ~F . By Definition 1.4.17, there exists f ′ ∈ C which extends to ~F . But

by definition of C, f ′ extends to ~G. Thus, by Proposition 1.4.4, f ′ extends to ~H.

Contradiction.

Therefore, H ′ is not k-flowable and ~G reduces to ~G′ as required.

1.5 Algebraic methods

In this section, we illustrate the technique in the previous section which shows that

a graph is reducible. We will use an algebraic approach to prove reducibility.

Definition 1.5.1. Fix a class H of graphs for which we wish to prove graphs in H

are k-flowable. For a side graph ~G and partial nowhere-zero flow f on the set of

edges incident to z(~G), we let K ~G,f denote the number of nowhere-zero flows of ~G

that extend f .

In this thesis, we will deduce equalities and inequalities in terms of some vari-

ables we define that must hold for all digraphs and then use them for flow reducibil-

ity.

To give an idea of the methods that will be used, we now give two examples.

In the first one, we use an equality for flow reducibility. In the second, we use

an inequality for flow reducibility. We will not show how these equalities and

inequalities are obtained as even a simple example would require quite a bit more

theory.

1.5.1 Equalities examples

In this section, we show that the graph G obtained from the 5-cycle by adding a

marked vertex (Fig 1.5(a)) is reducible to the graph ~G′ obtained from the 5-star by

14



adding a marked vertex (Fig 1.5(b)) (for bridgeless graphs and 5-flowability).

e1

e2

e3
e4

e5

e1

e2

e3
e4

e5

z

(b)(a)

z

Figure 1.5: We show that the side graph in (a) is reducible to the side graph in (b).

We have drawn an arbitrary orientation of the edges of both graphs (with the same

orientation on the neighbour of z). The edges incident with the marked vertex z

are labelled e1, . . . , e5

Let H be the class of bridgeless graphs and k = 5. There is only one Abelian

group of order 5, Z5. Let SR be the side graphs of H (for R). Let ~G be the

5-cycle (side graph in Fig 1.5(a)). Note that given a (nowhere-zero) flow f on

~G, we can obtain another (nowhere-zero) flow g by letting g(e) = af(e) for some

a ∈ Z∗
5 = {1, 2, 3, 4}.

Let R = {e1, e2, e3, e4, e5} be the edges incident to the marked vertex in ~G. We

write a partial flow on R as a vector a = (a1, a2, a3, a4, a5).

Note that if (a1, a2, a3, a4, a5) extends to ~G then so does (a5, a1, a2, a3, a4) and

all cyclic permutations of the entries of the vector a.

Let C be the set of partial nowhere-zero flows on R which extend to ~G. Let C ′

be the set of partial nowhere-zero flows on R which extend to the 5-star.

Note that C ′ is the set of all partial nowhere-zero flows on R.

We claim that, up to multiplication by an element of Z∗
5 and cyclic permutation

of the entries, the flows that do not extend to ~G are those shown in Fig 1.6.

If ei has flow ai and the other edge with the same head as e1 has flow x, then,
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Figure 1.6: Flows that do not extend to the oriented 5-cycle with an added marked

vertex ~G (i.e., the complement of C or C ′ − C)

cyclically around the C5, the flows are x, x + a1, x + a1 + a2, x + a1 + a2 + a3,

and x + a1 + a2 + a3 + a4 which we require to be non-zero. We require (of course)

a1 +a2 +a3 +a4 +a5 = 0. From this, the reader can check that, up to multiplication

by an element of Z5, the only flows that do not extend to ~G (which are the flows

that do not have a x satisfying all requirements) are those in Figure 1.6. A general

discussion along these lines is given in Section 5.1.

Suppose the following equation is true for all side graphs ~F ∈ SR (we omit the

index ~F everywhere).
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4K(1,3,1,3,2) + 4K(1,3,3,4,4) + 4K(1,2,4,1,2) + 2K(1,3,2,1,3) + 2K(1,2,3,3,1)

− 2K(1,1,3,1,4) − 2K(1,2,2,4,1) − 4K(1,3,2,3,1) − 2K(1,3,4,3,4)

= K(1,1,1,1,1) + K(1,1,2,4,2) + K(1,2,4,2,1) + K(1,2,1,3,3) + K(1,3,3,1,2) + K(1,3,4,4,3) (1.4)

Suppose that ~G is a side graph of R in ~H for some H ∈ H and H is not 5-

flowable. Let ~F be the other side graph of R in ~H. By Corollary 1.4.5, ~F does

not extend any flow except possibly those in C ′ − C. However, all variables in

the left-hand side in Equation (1.4) are indexed by elements of C. Therefore, for

~F , the left-hand side is 0. Therefore the right-hand side is also 0. Since K~F ,f is

non-negative for any ~F and f and all coefficients on the right-hand side are non-

negative, each term on the right-hand side is non-negative. Therefore all terms on

the right-hand side are equal to 0.

So, by definition of K~F ,f ,
~F does not extend any flow indexed by a variable on

the right-hand side. But all flows in C ′ − C appear as an index on the right-hand

side. Therefore, we have deduced that ~F does not extend any flow in C ′ − C.

So C reduces every flow in C ′ − C (by satisfying the contrapositive of Definition

1.4.17). C trivially reduces every flow in C by definition.

Thus, if H is not 5-flowable, ~F does not extend any nowhere-zero flow on R.

Replacing ~G by the 5-star with a marked vertex does not create any new cuts so

the resulting graph is bridgeless. Therefore, ~G is reducible to the 5-star.

1.5.2 Inequalities example

In this section, we show that the graph G obtained by adding a marked vertex to

the dual of the Birkhoff diamond (Fig 1.7(a)) is reducible to the graph G′ obtained

by adding a marked vertex to the 6-star (Fig 1.7(b)) for bridgeless planar graphs

and 4-flowability.
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Figure 1.7: We show that the dual of the Birkhoff diamond (with an added marked

vertex) in (a) is reducible to the 6-star (with an added marked vertex) in (b). We

have drawn an arbitrary orientation of the edges of both graphs (with the same

orientation on the neighbour of z). The neighbours of the marked vertex z are

labelled e1, . . . , e6.

Let ~G an orientation of G. Let R = {e1, . . . , e6} be the set of edges incident to

the marked vertex.

Let H be the class of planar bridgeless graphs and k = 4. By Theorem 1.1.6,

we may choose any Abelian group of order 4 so we choose it to be Z2
2. Let the 3

non-zero elements of Z2
2 be a,b and c.

Let SR be the side graphs of H (for R). We write a partial flow on R as a vector

a = (a1, a2, a3, a4, a5, a6).

Let C be the set of partial nowhere-zero flows on R which extend to ~G. Let C ′

be the set of partial nowhere-zero flows on R which extend to 6-star.

Note that C ′ is the set of all partial nowhere-zero flows on R.

Note that we may permute the non-zero elements a, b, c to obtain a nowhere-

zero flow from an existing nowhere-zero flow. The reader may check that up to this

permutation, the only nowhere-zero flows on R which do not extend to ~G are those

shown in Fig 1.8.
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Figure 1.8: Flows that do not extend to the Birkhoff diamond dual ~G (i.e., the

complement of C or C ′ − C). We do not draw the marked vertex.

Suppose the following inequality is true for all side graphs ~F ∈ SR (we omit the

index ~F everywhere).

K(a,a,a,a,a,a) + K(a,b,b,a,a,a) + K(a,a,b,a,b,a) + K(a,b,c,b,c,a) + K(a,b,b,c,c,a)

+ K(a,b,a,a,a,b) + K(a,b,c,c,a,b) + K(a,b,c,b,a,c) + K(a,a,a,a,b,b) + K(a,b,c,a,c,b)

+ K(a,b,c,a,b,c) + K(a,b,a,c,c,b) + K(a,b,a,c,b,c) + K(a,a,b,c,b,c) + K(a,a,b,b,c,c)

≤ 22K(a,a,b,b,a,a) + 9K(a,b,a,a,b,a) + 10K(a,a,a,b,b,a) + 7K(a,b,b,b,b,a) + 6K(a,b,c,c,b,a)

+ 9K(a,b,b,c,a,c) + 29K(a,b,b,a,b,b) + 8K(a,b,a,b,c,c) + 17K(a,a,b,b,b,b) + 7K(a,a,b,c,c,b) (1.5)
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Suppose that ~G is a side graph of R in ~H for some H ∈ H and H is not 4-

flowable. Let ~F be the other side graph of R in ~H. By Corollary 1.4.5, ~F does not

extend any flow except possibly those in C ′−C. However, all variables in the right-

hand side in Inequality (1.5) are indexed by elements of C. Therefore, for ~F , the

right-hand side is 0. Therefore the left-hand side is ≤ 0. Since K~F ,f is non-negative

for any ~F and f and all coefficients on the left-hand side are non-negative, each

term on the left-hand side is non-negative. Therefore all terms on the left-hand

side are equal to 0.

So, by definition of K~F ,f ,
~F does not extend any flow indexed by a variable on

the left-hand side. But all flows in C ′−C appear as an index on the left-hand side.

Therefore, we have deduced that ~F does not extend any flow in C ′ − C.

So C reduces every flow in C ′ − C (by satisfying the contrapositive of Definition

1.4.17). C trivially reduces every flow in C by definition.

Thus, if H is not 4-flowable, ~F does not extend any nowhere-zero flow on R.

Replacing ~G by the 6-star with a marked vertex does not create any new cuts so

the resulting graph is bridgeless. Therefore, ~G is reducible to the 6-star.

1.6 Previous work

While many attempts have been made to resolve the Nowhere-Zero Flow conjec-

tures, only few have used algebraic methods. Kochol [10, 11] used such a method to

prove that the girth of a minimum counter-example is at least 9. However, algebraic

approaches have been used to attack the Four Colour Theorem. One such method,

which has received much attention, uses the Birkhoff-Lewis equations [1, 21, 12, 2].

In Chapter 4, we analyse our method in order to compare it to some previous work

on the topic of Nowhere-Zero Flows.
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1.7 Outline

This thesis is organized as follows.

In Chapter 2, we describe how to generate and use equalities similar to Equa-

tion (1.4). In Chapter 3, we describe how to generate and use inequalities similar

to the Inequality (1.5). At the end of each of these chapters, we discuss how we

approach the problem computationally in practice. In Chapter 4, we analyse the

arguments presented in Chapters 2 and 3 in order to compare their strength rel-

ative to one another. In Chapter 5, we describe an attempt to use a theoretical,

non-computational, approach to prove the 5-flow conjecture using the argument

presented in Chapter 2. In Chapter 6, we document the program used for compu-

tations. These programs apply the theory of Chapters 2 and 3.
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Chapter 2

Homogeneous linear equalities

2.1 Overview

This section focuses on how we can use homogeneous linear equalities to obtain

flow reducibility proofs.

Let SR be the side graphs of a class of graphs H with cut R. Let F be the set

of all partial flows on R. Suppose we wish to prove that all digraphs in H have a

nowhere-zero k-flow. As in the previous section, we will omit the parameter Γ in

general and assume that it is a group of order k.

As seen in the example in Section 1.5.1, we will be using equalities relating the

number of flows which are true for all graphs in SR. We remind the reader of the

definition of the variables.

Definition 2.1.1. Let ~G ∈ SR, f ∈ F . Then K ~G,f is the number of flows of ~G

which extend f .

We now define the equalities we will study.

Definition 2.1.2. For each f ∈ F , let yf ∈ R. Then

∑
f∈F

yfK ~G,f = 0
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is an SR-universal linear equation if it holds for all ~G ∈ SR. Here yf is a constant

for all f ∈ F .

In general, SR is clear from the context so we refer to such equations as universal

equations.

We will omit the index ~G in a universal equation since it holds for all graphs.

This section is organized as follows. In Section 2.2, we explain how to derive

universal equations. In Section 2.3, we explain how these universal equations can

be used for flow reducibility. In Section 2.4, we provide some details about compu-

tations made using the theory of universal equations.

For the remainder of this chapter, we will assume that R, SR, H, F and k are

defined as above and will not redefine them for each statement.

2.2 Generating universal equations

2.2.1 Contraction/deletion

For a fixed digraph ~G, we may write the number KG,f of flows extending f ∈ F

(for each f ∈ F) as a vector K ~G. This vector is indexed by the flows f ∈ F and

the fth entry of K ~G is K ~G,f .

We use the notation ~G/e for the graph ~G with the edge e contracted and G− e

for ~G with the edge e deleted.

Theorem 2.2.1 (A variation of Tutte’s contraction/deletion formula). [18, 19]

Suppose e is an edge not in R that is not a loop. Then

∀f ∈ F K ~G,f = K ~G/e,f −K ~G−e,f .

Proof. Let A set of flows of ~G that extend f on R and are non-zero everywhere

except possibly on e. Let B be the set of flows of ~G that extend f on R, are zero
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on e and non-zero everywhere else. Then B ⊆ A and A \ B is the set of nowhere-

zero flows of ~G that extend f . Since |A| = K ~G/e,f and |B| = K ~G−e,f , the result

follows.

Similarly, in the case e is a loop, we have the following.

Theorem 2.2.2. Suppose e is a loop not in R then

∀f ∈ F K ~G,f = (k − 1)K ~G−e,f .

Therefore, we have the following vector equation.

K ~G =

K ~G/e −K ~G−e , if e is not a loop

(k − 1)K ~G−e , if e is a loop

(2.1)

As long as ~G has an edge not in R, we can apply the formula. So we can iterate

and apply the formula to ~G/e and ~G− e until the right-hand side of the equation

contains only graphs whose edges are edges of R.

Note that as we repeatedly expand the right-hand side, we may obtain vectors

indexed by digraphs not in SR. This is not a problem since the vector Equation

(2.1) hold for all digraphs so we can continue expanding.

This implies that the vector K ~G is a linear combination of vectors K ~B where

each ~B is a digraph with only edges of R. Note that removing an isolated vertex

(vertex with no neighbours) from a digraph does not change its vector of flows.

Therefore, we may assume no digraph which appears as an index has an isolated

vertex. Note that all vertices of R are incident to the marked vertex so the resulting

graph ~B is connected. In fact, such a graph can be seen as a partition of the edges

of R where edges are in the same part precisely if they have the same endpoints

(since there are no other edges and all edges are incident to the universal vertex).

Since R is finite, there is only a finite set B of these graphs (which can labelled by

partitions). Therefore, we have shown the following.
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K ~G =
∑
~B∈BR

a ~G, ~BK ~B (2.2)

This is true for all digraphs ~G ∈ SR.

We call the digraphs in BR the basic graphs.

2.2.2 Kochol’s matrix

Let us build the matrix MR of all vectors K ~B, B ∈ BR. We claim that this is a 0-1

matrix. A partial flow f on R extends to ~B precisely if it is a flow on ~B. Such an

extension is unique since ~B has no other edges. Therefore, an entry (MR)f, ~B is 1

when f is a flow on ~B and 0 otherwise.

However, K ~G is a linear combination of the rows of MR if and only if adding K ~G

as a row to MR does not increase its rank. But the rank is also the dimension of

the column space of MR. In other words, if the columns of MR satisfy some linear

equation then so do the entries of K ~G.

But ~G was an arbitrary side graph of a cut R so all side graphs with R(~G) = R

satisfy these equations. Thus, we have shown the following.

Theorem 2.2.3. If ~G ∈ S and y ∈ ker(MR), then∑
f∈F

yfK ~G,f = 0

is a universal equation.

For example, in the case of 4-flow, R is a set of 4 edges and H is the class of

planar graphs, we have the matrix in Fig 2.1. The group chosen here is Z2
2, where

the 3 non-zero elements are a,b and c.

Note that we may permute the non-zero elements a, b, c to obtain a nowhere-zero

flow from an existing nowhere-zero flow. Therefore, we may consider nowhere-zero

25



a

a

a

a

a

a

b

b

a

b

b

a

a

b

a

b

1 1 1 1

1

1

1

10

0 0

0

z

z

z

Figure 2.1: The matrix MR where R is a set of 4 edges

flows only up to this permutation (and the columns of the matrix in Fig 2.1 shows

only partial flows on R up to this permutation).

The matrix in Fig 2.1 has rank 3 so there is exactly one universal equality we

may obtain from it. It is

K1 + K4 = K2 + K3

where Ki denotes the variable indexed by the flow indexing the ith column from the

left. Using just this equality, we can show that the 4-cycle (with an added marked

vertex) shown in Fig 2.2 is reducible (when H is the class of planar graphs).

Let ~G be an orientation of the 4-cycle with an added marked vertex. We show

that ~G extends all flows but the one indexed by the last column by simply exhibiting

a flow in each case (see Fig 2.3).

Now suppose that ~G is a side graph of ~H for a cut R, for some H ∈ H. Let ~F

be the other side graph (of ~H for R). Suppose that H is not 4-flowable. Then by

Corollary 1.4.5, ~F does not extend any nowhere-zero flow on R. So we can replace

~G with the 4-star with an added marked vertex (Fig 2.4) and the resulting digraph

still has no nowhere-zero 4 flow.
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Figure 2.2: The 4-cycle with an added marked vertex G shown in (a) and an

orientation ~G of it in (b).
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Figure 2.3: Some nowhere-zero flows on the 4-cycle (with an added marked vertex).

Clearly, the digraph obtained from the replacement is planar since it can be

obtained by contracting the edges of the cycle (edges in G not in R) and deleting

loops created this way.

Therefore, by definition, the 4-cycle with an added marked vertex is reducible

to the 4-star with an added marked vertex.

2.3 Using universal equations for reducibility

Suppose f is a flow on R and C is a set of flows on R such that Kc = 0 ∀c ∈ C.

Suppose that we know of a set of equalities is universal.
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z

Figure 2.4: The 4-star (with an added marked vertex) which replaces the 4-cycle

Suppose that, as in the example shown in Section 1.5.1, we can deduce a uni-

versal equality of the following form.

∑
c∈C

ycKc =
∑
c/∈C

ycKc (2.3)

where yc ≥ 0 for all c /∈ C. Then the left-hand side sums to 0. Since Kf is non-

negative for all flows f , all terms on the right-hand side are 0 as otherwise, they

would not sum to 0. Thus we have proven that Kc = 0 for every c /∈ C, yc > 0. So

C reduces all flows c such that yc > 0. To prove that Kf = 0, we need to find an

equation of the form (2.3) with yf > 0.

We may state this more formally.

Lemma 2.3.1. Let f be a flow on R and C a set of flows on R.

Suppose there is an universal equation of the form

∑
c∈C

ycKc =
∑
c/∈C

ycKc (2.4)

with the non-negative coefficients yc on the right-hand sideand the coeffcient yf of

Kf is positive then C reduces f . with yc ≥ 0 ∀c /∈ C and yf > 0. Then C reduces f .

We will now show that the converse is also true. We may write a set of universal

equalities in matrix form as Ak = 0. Note that any linear combination of the rows
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of A also gives a valid universal equality. Then, we know that we can prove C

reduces f if and only if there is no solution to the following system.

AK = 0

Kc = 0 ∀c ∈ C

Kf > 0

K ≥ 0

Note that any positive scalar multiple of a solution to the above system is still

solution. So we may normalize and instead require

AK = 0

Kc = 0 ∀c ∈ C

Kf = 1

K ≥ 0

to have no solution. We can rewrite the system in matrix form as


A

IC

ef

K = 0,

K ≥ 0

where ef is the vector which is 1 for the entry f and 0 everywhere else, and IC

is the set of row vectors ec, c ∈ C.

By Farkas’ Lemma [4], the above has no solution if and only if there is a solution

to
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[
AT |IT

C |eT
f

]
d ≥ 0,

df < 0

where df is the coefficient for the equation Kf = 1 and [AT |IT
C |eT

f ] denotes the

matrix formed by putting AT , IT
C and eT

f side-by-side. We can rewrite the above

equation as

ATd1 + IT
C d2 + eT

f d3 ≥ 0

The first term in sum is just a linear combination of the row vectors in A. Recall

that such vectors represent universal equalities. Let y = ATd1.

We can now translate the second and third term into requirements on y. There

is a solution d with df < 0 if and only if there is a y such that yc ≥ 0 ∀c 6∈ C and

yf > 0. This is since given such a y, we can choose entries of d2 large enough to

make the sum non-negative for all c ∈ C and we can choose d3 small enough so

that the non-zero entry of eT
f d3 is smaller than yf in absolute value.

Therefore, we have proven the following.

Theorem 2.3.2. C reduces f (using universal linear equalities) if and only if there

is y in the row space of A such that yc ≥ 0 ∀c /∈ C, yf > 0.

Equivalently,

Theorem 2.3.3. C reduces f (using universal linear equalities) if and only if there

is a universal equality of the form

∑
c∈C

ycKc =
∑
c/∈C

ycKc (2.5)

with yc ≥ 0 ∀c /∈ C and yf > 0
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We will refer to the above theorem as the Farkas Criterion.

As an easy corollary, we get the following condition.

Corollary 2.3.4. C reduces f (using universal linear equalities) if there is a uni-

versal equality of the form

∑
c∈C

ycKc = yfKf (2.6)

with yf > 0.

2.3.1 Kochol’s argument

To prove that the minimum counter-example to the 5-flow conjecture has girth at

least 9, Kochol [10, 11] built the matrix MR presented in Section 2.2 and then

proved and used the following.

Theorem 2.3.5. [10, 11] C reduces f if the column indexed by f in MR is in the

span of the columns indexed by elements of C in MR.

This theorem is equivalent to Corollary 2.3.4 since the coefficients for the linear

combination (for showing the column is in the span of the others) is the same as

the coefficients yc required for the universal equality.

We refer to Theorem 2.3.5 as the Span Criterion.

By comparing Theorem 2.3.3 and Corollary 2.3.4, we see that the Farkas Crite-

rion is at least as strong as the Span Criterion.

The following example shows that the Farkas Criterion is sometimes stronger

than the Span Criterion when used for flow reducibility. However, we do not know

of an example where the Farkas Criterion is stronger than the Span Criterion when

used for graph reducibility.

Let R be the set pendant edges in the digraph in Fig 2.5 and let C be the set of

partial flows on R which extends to the digraph in Fig 2.5.
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Figure 2.5: A digraph. Drawn with pendant edges (without the marked vertex).

We use it to show that the Farkas Criterion is strictly stronger than the Span

Criterion.

Let f be the partial flow on R with values (1, 1, 1, 1, 1, 3, 1, 3) (enumerating

the edges starting at the upper left edge and going clockwise). Then, using a

computer, we can see that C reduces f using the Farkas Criterion but not with the

Span Criterion.

2.4 Computations

In this section, we describe how we used the theory from the previous two sections

to make computations in order to prove reducibility.

We let A be a matrix whose rows form a basis for the kernel of MR. From

Section 2.2, we see that AK = 0 are universal equalities.

Let f be a flow on R and C a set of flows on R. From Theorem 2.3.3, C reduces

f if and only if there is a vector y ∈ ker(M) such that yf > 0 and yc ≥ 0 ∀c /∈ C.

We can verify the existence of such a vector by solving the following LP.
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max yf

My = 0

yc ≥ 0 ∀c /∈ C

yf ≤ 1

(LP1)

We added the constraint yf ≤ 1 to prevent the LP from being unbounded (as

remarked in Section 2.3, positive scalar multiples of a solution are also solutions).

Since setting all yc to be 0 gives a feasible solution, the optimal solution is at

least 0. If the optimal solution is 0, then C does not reduce f , while otherwise the

optimal solution is 1 and C does reduce f .

We can obtain an optimal solution y(f) for each flow f /∈ C (C clearly reduces

any flow in C).

Let ỹ =
∑

f /∈C y(f). The condition yc ≥ 0 ∀c /∈ C forces ỹc to be positive if one

of the y(f)c is positive.

Therefore, the flows f indexing the positive entries of ỹ are exactly the flows

f /∈ C that C reduces. In fact, ỹ is a certificate that those flows are reducible. Given

such a ỹ, we only need to check that M ỹ = 0, ỹc ≥ 0 ∀c /∈ C and ỹf > 0 for any

flow f that we claim C reduces.
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Chapter 3

Homogeneous linear inequalities

In this section, much like the equalities found in the previous section, we will derive

and use inequalities which the number of flows for any side graph (with the same

labels on the edges incident to the marked vertex) must satisfy.

Let SR be the side graphs of a class of graphs H with cut R. Let F be the set

of all partial flows on R. Suppose we wish to prove that all digraphs in H have

a nowhere-zero k-flow. As in the previous section, we will omit the parameter Γ

in general and assume that it is a group of order k. We remind the reader of the

definition of the variables.

Definition 3.0.1. Let ~G ∈ SR, f ∈ F . Then K ~G,f is the number of flows of ~G

which extend f .

We now define the inequalities we will study.

Definition 3.0.2. For each f ∈ F , let yf ∈ R. Then

∑
f∈F

yfK ~G,f ≤ 0

is an SR-universal linear inequality if it holds for all ~G ∈ SR. Here yf depends on

f ∈ F and not on ~G.
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In general, SR is clear from the context so we refer to such inequalities as

universal inequalities.

We will omit the index ~G in an universal inequality since it holds for all graphs.

This chapter is organized as follows. In Section 3.1, we explain how to derive

universal inequalities. In Section 3.2, we explain how these universal inequalities

can be used for flow reducibility. In Section 3.3, we provide some details about

computations made using the theory of universal inequalities.

For the remainder of this section, we will assume that S, H, F , R and k are

defined as above and will not redefine them for each statement.

3.1 Generating universal inequalities

We will only generate universal inequalities in the case where the order of the group

k is 4. At the end, in Section 3.1.7, we briefly explain possible ways of extending

this method for other values of k.

We may choose the group by Theorem 1.1.6, so we choose it to be Z2
2. Let a,b,c

denote the 3 non-zero elements of Z2
2.

First note that, in the case of Z2
2, if f is a flow of ~H, then the same function f

is a flow on any orientation of H. We see this by looking at the construction in the

proof of Proposition 1.1.4 and noting that every element of Z2
2 it its own inverse.

The same argument applies for nowhere-zero flows.

Therefore, we may think of a nowhere-zero flow of ~H as a (non-proper) colouring

of the edges of H (with elements of Z2). In fact, we now prove that these edges

form a “postman set”.

Definition 3.1.1. A postman set S of a graph H is a subset of the edges of H such

that odd degree vertices of H are incident to an odd number of edges in S and even

degree vertices of H are incident to an even number of edges in S.
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Theorem 3.1.2. [3] H is 4-flowable if and only if E(H) can be partitioned into 3

postman sets.

Proof. Choose the group to be Z2
2.

Given 3 postman sets Pa, Pb, Pc which partition E(H), we define f as f(e) = a

if e ∈ Pa, f(e) = b if e ∈ Pb and f(e) = c if e ∈ Pc. f is clearly nowhere-zero. Note

that the sum of an even number of some fixed element of Z2
2 is 0. Thus the sum

of the flow f around a vertex of even degree is 0 (the sum of an even number of

each of the non-zero element of Z2
2). The sum of the flow f around a vertex of odd

degree is the sum of the 3 non-zero elements (since there is an odd number of each

of element in the sum and twice any element is 0). But the sum of the 3 non-zero

elements of Z2
2 is 0. Therefore, f is a nowhere-zero flow.

Given a flow f of ~H, let Pi = {e ∈ E(H)|f(e) = i}. Clearly, Pa, Pb, Pc is a

partition of E(H). We claim that each Pi is a postman set. Suppose not. Without

loss of generality, let v be a vertex incident to the incorrect parity of edges from Pa.

If v is even, then v is incident to an odd number of edges of f . So v is incident

to an odd number of Pb ∪ Pc edges. Without loss of generality, v is incident to an

odd number of Pb edges and an even number of Pc edges. But then the sum of the

flows incident to v is a + b = c 6= 0. Contradiction.

If v is odd, remove some edge in Pa incident to v. The sum of the flows of the

remaining edges can be computed as in the previous paragraphs and so it is either

b or c. But c + a = b 6= 0 and b + a = c 6= 0. Contradiction.

However, in the case of cubic graphs, we do get a proper 3-edge-colouring.

Corollary 3.1.3. Let H be a cubic graph.

H is 4-flowable if and only if H is 3-edge-colourable.

Proof. By Theorem 3.1.2, we only need to show that a partition into 3 postman sets

is a 3-edge-colouring. Since each vertex of H must be incident to an odd number
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of edges in each postman set, each vertex is incident to exactly one edge from each

postman set.

Note that when H is the family of bridgeless cubic graphs, a flow on a side

graph is a 3-edge-colouring which is proper except around the marked vertex. We

can think of this as a 3-edge-colouring by not drawing the marked vertex and letting

the edges incident to the marked vertex be “pendant” (and have an open end).

We may now state the following weakening of the 4-flow conjecture (restricted

to cubic graphs).

Conjecture 3.1.4. [20] Every bridgeless cubic graph without a Petersen minor is

3-edge-colourable.

The proof of this conjecture has been announced by N. Robertson, D. P. Sanders,

P. D. Seymour and R. Thomas with a first part proven in [15].

We present arguments in the next three sections for reducibility with respect

to this conjecture. This allows us to speak of 3-edge-colourings rather than flows.

We will use the terminology developed for flows (such as “sides”, “side graphs” and

“extensions”) for 3-edge-colourings. In those cases, we may simply think of the

3-edge-colouring as a flow on an arbitrary orientation of the edges.

We will present the arguments for general graphs in Section 3.1.5 and see that

the result is essentially the same as for cubic graphs.

3.1.1 Kempe chains

Kempe chains were introduced in one of the first incorrect proofs of the Four Colour

Theorem [8]. We now present this method of proof in the context of nowhere-zero

Z2
2-flows. This is the exactly the argument used in [14] but in the dual graph.

Consider a 3-edge-colouring of some side graph F of an edge cut R of a cubic

graph. We may assume that the edges are coloured with the non-zero elements of
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Z2
2. We think of the edges of F incident to the marked vertex as “pendant edges”

by removing the marked vertex but not the edges incident to it (so they only have

one end). Suppose we remove all edges of some colour, say a, in F (including edges

of R). Then the remaining graph, Fa, is a union of disjoint cycles (since all vertices

in are incident to 2 edges in Fa) and paths ending in edges of R (because of the

pendant edges).

F
2

F
3

F F
1

Figure 3.1: A cubic side graph F (drawn with pendant edges) and for each colour,

the graph obtained by deleting all edges of that colour.

Suppose there is at least one path. We can exchange the colouring of the edges

on a path in Fa (by switching colours b and c). If we exchanged the colours of

the corresponding path in F , we obtain a new 3-edge-colouring of F . This new

colouring differs from the original one in exactly 2 edges of R (those at the ends of

the path).

Note that some edges of R may not appear in Fa (namely those coloured a).

However, the remaining edges of R are joined by paths. In fact, given any 3-edge-

colouring of F , we can delete all edges of colour a to obtain Fa and define a matching

M on the remaining edges of R in Fa.

We can exchange the colours on each path independently of the other paths.

When we make these inversions, the length of the path restricts the colours at

the ends of a path. If the path has an even number of edges, the end edges are

coloured the same. If the path has an even number of edges, the end edges are

coloured differently. In fact, we can mark the edges of the matching with the parity

of the length of the paths to produce what we call a signed matching. Given a 3-
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edge-colouring we can build such a signed matching and call it the signed matching

induced by this 3-edge-colouring (and colour a).

Notice that when we exchange the edges of a path in a 3-edge-colouring, the

resulting 3-edge-colouring and the original 3-edge-colouring induce the same signed

matching.

Definition 3.1.5. We say that a colouring of the edges of R θ-fits a signed matching

M if:

1. edges of R that do not appear in M (as vertices) are coloured θ; all other

edges of R are not coloured θ;

2. edges of R joined by odd edges of M are coloured the same colour; and

3. edges of R joined by even edges of M are coloured differently.

In the current discussion, we have assumed that θ = a. In general, unless we

need to consider multiple colours at the same time, we may assume θ = a.

Since we can independently choose whether to make a colour inversion on each

path, the following holds.

Remark 3.1.6. A 3-edge-colourings of R that θ-fits a matching M extend to a

3-edge-colouring of F if there is a 3-edge-colouring of F that induces M .

We may use the previous remark as follows. Suppose that we are told some

colouring f of edges of R extends to F . Consider the signed matching M induced

by some 3-edge-colouring of F that extends f and colour a. By the remark, each

3-edge-colouring of R that a-fits M extend to F (so we have deduced that many

3-edge-colourings of R extend to F from one colouring of R, f).

However, the power of this argument lies in the fact that we may deduce M

to be one of several signed matching without knowing what F is (and therefore,

without knowing what the 3-edge-colouring which extends f is). We know that M
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is a perfect matching on the edges of R coloured b and c by f . Given a perfect

matching of these edges, we also know what the sign should be (depending on

whether the endpoints are coloured the same or differently by f).

We see an example of this type of argument used in the next section.

This is, in essence, the Kempe chain argument that we will need: the existence

of a 3-edge-colouring induces some signed matching which implies the existence of

other 3-edge-colourings.

3.1.2 An example

We show an example of the argument presented in the previous section. We will

prove that when H is the set of bridgeless cubic graphs, the 4-cycle with an added

marked vertex (Fig 3.2(a)) is reducible. Let G be the 4-cycle with an added marked

vertex.

(a) (b)

G G’

Figure 3.2: G, the 4-cycle with an added marked vertex is show in (a). G′, the

graph we will reduce G to is shown in (b). Both are drawn with pendant edges

(without its marked vertex).

Suppose H ∈ H and H is not 3-edge-colourable. Suppose G appears as a side

graph of some cut R in a graph H and F is the other side graph of R. There is

only one 3-edge-colouring f that G does not extend (see Fig 3.3).
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f

Figure 3.3: The 4-cycle extends all 3-edge-colourings except the last one.

Therefore, F extends only f (or no 3-edge-colouring at all). If F extends f

then, by the previous section, we can find one of the set of paths shown in Fig 3.4.

P
1

P
1P

2

P
1

P
2

P
2

F F F

Figure 3.4: The possible paths for F , the graph on the other side.

Therefore, we can exchange the colours on the path P2 in each case to obtain

one of the 3-edge-colourings in Fig 3.3 on the cut. So F cannot extend f either

(otherwise, it would extend one of the other edge colourings that it is forbidden

to extend). Therefore, F extends no 3-edge-colourings and we can reduce G to

anything. We may choose the graph G′ in Fig 3.2.

41



3.1.3 Consistent sets

Although the previous example suggests that we would need an ad hoc argument

every time, it is actually possible to formalize the definition of a set of 3-edge-

colourings which a Kempe chain argument can reduce.

Suppose we know that some set C of 3-edge-colourings on R does not extend

to F . Suppose that some 3-edge-colouring f on R does extend to F . Then, as

stated in Section 3.1.1, for each colour θ, we can obtain a signed matching M from

an extension of f to F . And thus, all edge colourings of R which θ-fit M should

extend to F so all these edge colourings should not be in C.

In a proof that C reduces f , we could repeatedly apply the argument in the

previous paragraph to obtain a signed matching from a colouring and a colour and

a set of colourings from the signed matching.

Let us think of a sufficient condition for C not to reduce f using a Kempe chain

argument. At the last “step” in the proof, a matching that f θ-fits was obtained

and then used to reduce f . However if such all such matching were “blocked”,

meaning that they cannot be induced by some f ′ throughout the proof then C does

not reduce f . A simple condition for these matchings to be “block” is to have all f ′

which could induce such a matching be themselves “blocked”. But, for colourings,

“blocked” simply means that C does not reduce f ′.

Then we can repeat the requirements on all such f ′ (i.e.: all matchings that. In

doing so, we may obtain a large list of colourings that C must not reduce. But if

none of these colourings is in C then C does not reduce any colourings in this list.

However, it is possible that all colourings extending f (and colour θ) induce the

same signed matching Mθ. In fact, the argument used cannot determine whether a

graph where all colourings extending f and θ induce M exists. Therefore, we only

need one blocked matching per colour θ in order to have C not reduce f (rather than

have all matchings that f θ-fit blocked). Therefore, we have shown the following.

Proposition 3.1.7. Suppose there a set D of 3-edge-colourings such that for every
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f ∈ D and every θ, there is a signed matching M for which every f ′ that θ-fits M

is also in D, then C cannot reduce any edge colouring in D.

We will call such a set D a “consistent set” which we now define more formally.

Definition 3.1.8. A set of edge colourings D is consistent if there is a set of signed

matchings Mθ for each colour θ such that:

1. for each f ∈ D and each θ, f θ-fits some matching Mθ ∈Mθ;

2. if an edge colouring f θ-fits some Mθ ∈Mθ (for some θ) then f ∈ D.

Note that the union of two consistent sets is consistent, since the union of their

sets of signed matching show the union is consistent. Therefore, we can speak of a

maximum consistent set D∗(C) disjoint from C.

We can also show that if some f is not in any consistent set disjoint from C

(equivalently, not in D∗(C)) then C reduces f . This is because, if C does not reduce

f then there must be some side graph which extends f but not C. From such a

side graph, we can obtain the set of edge colourings that it extends and the set of

signed matchings from each of the edge colourings. These sets form a consistent

set. Therefore, f is in this consistent set. Contradiction.

Therefore, we have proven the following theorem throughout this section.

Theorem 3.1.9. [14] C reduces f (using Kempe chains) if and only if f /∈ D∗(C)

3.1.4 Inequalities

We may strengthen the argument in Section 3.1.1 by actually counting the number

of 3-edge-colourings of G which extend a colouring f of the edges of R. We can

also count the number of 3-edge-colourings of G which induce a signed matching

as well.

Let F be a side of an edge cut R of some cubic graph.
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Definition 3.1.10. Let SF,f denote the set of 3-edge-colourings of F which extends

a colouring f of the edges of R. Let KF,f = |SF,f |.

Let TF,M,θ,f denote the set of 3-edge-colourings of F which extends a colouring f

of the edges of R and induce the signed matching M with colour θ. Let mF,M,θ,f =

|TF,M,θ,f |.

To simplify notation, we will no longer write the parameter F for the graph

(and understand that it is always F ). Theorems shall be proven for every graph F .

Note that the definition implies mM,θ,f is only non-zero when f θ-fits M .

We now prove the “numerical equivalent” of statements in Section 3.1.1.

Theorem 3.1.11.

∀f, θ
∑
M

mM,θ,f ≥ Kf

Proof. We will simply show the inclusion Sf ⊆
⋃

M TM,θ,f for every f and every θ.

Let θ and f be fixed. Suppose c ∈ Sf . Then c extends f . Using c, we can build

the signed matching M with colour θ as described in Section 3.1.1. Therefore, by

definition, c ∈ TM,θ,f .

Theorem 3.1.12. Suppose f θ-fits M and f ′ is any colouring of the edges of R.

Then Kf ≥ mM,θ,f ′.

Proof. The case where f ′ does not θ-fit M is trivial as TM,θ,f ′ is empty. So suppose

f ′ is consistent with M .

Thus, by exchanging the colouring on the appropriate paths corresponding to

edges of M , we can obtain a colouring in TM,θ,f ′ from a colouring in TM,θ,f and

vice versa. In fact, this gives a bijection between TM,θ,f ′ and TM,θ,f . But clearly

TM,θ,f ⊆ Sf .

Let mM,θ = maxf ′ mM,θ,f ′ .
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Corollary 3.1.13.

∀f, θ
∑
M

mM,θ ≥ Kf (3.1)

∀f, θ, M s.t. f θ-fits M Kf ≥ mM,θ (3.2)

Proof. (3.1) follows immediately from the fact that mM,θ ≥ mM,θ,f

Fixing f ,θ and M in Theorem 3.1.12 and taking the maximum over all f ′ gives

(3.2)

3.1.5 Non-cubic graphs

In this section, we show that the arguments presented in the previous sections

can also be used non-cubic graphs as well. We will see that the same universal

inequalities can be derived.

We will show that removing all edges of a postman set in a flow (partition into

3 postman sets) still induces a matching amongst the remain edges. We will still

find paths on which we exchange edge colours and these inversions will still be

independent of each other.

We still view a flow on (side) graphs as an edge colouring but it is now a non-

proper 3-edge-colouring for which each colour class is a postman set. We will call

them flows here to avoid repeating this property every time.

Suppose we have such a colouring of a side graph F of some cut R. Then,

since the edges of colour a forms a postman set, we can delete all edges of colour

a to obtain Fa. Then the remaining graph has only vertices of even degree (since

we removed an odd number of edges incident to odd degree vertices and an even

number of edges incident to even degree vertices).

We now prove that we can find paths as we did in Section 3.1.1.

Lemma 3.1.14. Let Fa be an graph with only even degree vertices. Let z be a

vertex in Fa. Then there exist edge-disjoint closed walks in Fa such that every edge
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incident to z is contained in exactly one walk and every walk contains exactly two

edges incident to z.

This is essentially saying that we can find edge-disjoint paths matching the

pendant edges. We will see how to use these paths in the next lemma.

Proof. We proceed by induction on the degree of z. If z had degree 0 then we

choose an empty set of walks.

Suppose the lemma is true for degree d and z has degree d + 2. Start at z

and walk along the graph until we return to z (this can be done as all vertices we

enter through the walk have even degree at least 2). This is a closed walk W which

contains exactly 2 edges incident to z (or we would have stopped earlier). Remove

the edges of W from Fa and note that the resulting graph has only vertices of even

degree. By induction, we may find a set of closed walks as in the lemma. Add W

to this set of walks (it is clearly disjoint) and we obtain a set of closed walks with

the required properties.

The closed walks found by the previous lemma consists only of edges coloured

b and c. Although they do not alternate in edges of colours b and c, we show that

we can still exchange the colours on them.

Lemma 3.1.15. Let f be a flow on a side graph F . Let W be a closed walk

consisting only of edges of flow value b and c. If f ′ is obtained from f by exchanging

the flow values on W , then f ′ is a flow.

Proof. Since W is a closed walk, if v ∈ V (F ) is incident to an even number of edges

with flow b (in f), then v is incident to an even number of flow c. Similarly, if

v ∈ V (F ) is incident to an odd number of edges with edges with flow b, then v is

incident to an odd number of edges with flow c.

Since we are exchanging, this is also true in f ′. Therefore f ′ is a flow as the

parity is conserved.
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Note that, as before, when we make this inversion, if the edges incident to z

were coloured the same, then they are coloured the same after the inversion and if

the edges incident to z were coloured differently, then they are coloured differently

after the inversion.

Therefore, we can define a signed matching induced by a flow f (and colour

a) to be the matching obtained from Lemma 3.1.14 where two edges are matched

together if they are in the same walk and the sign is determined by whether or not

two matched edges are coloured the same in f .

Note that we only needed one signed matching for each flow in the previous

sections. We could obtain more matchings for non-cubic graphs (because there

may be more than one possible choice of walks) but we always obtain at least one

signed matching from each flow.

From this definition we can then use the theory in the previous sections without

any changes.

3.1.6 Planarity

We note that in the case we wish to prove the Four Colour Theorem, we may further

require that the edges of the signed matching do not cross (since a side graph of a

planar graph is planar).

3.1.7 Other k-flows

In this section, we explore possible ways of extending the method of generating

universal inequalities using Kempe chains to other groups.

The main problem which arises with other groups is the inability to find a

matching of the edges of the cut R or even a path on which we can modify the flow.

For example, if we could find a path with both ends in R such that we could

add x to all forward arcs and subtract x to all backwards arcs then making this
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modification would yield a new flow with the flow changed on two edges of R. In

fact, exchanging colours b and c on a path (for Z2
2-flows) corresponds to adding a

on every edge of the path.

When the group is Z2
2, we could view the flows as edge colourings and only

consider the underlying undirected graph G of ~G. For Zk flows, we may consider

d(G) the digraph where each edge of G is replaced with a digon. Then we can

define f ′ on d(G) from a flow f on ~G: if uv is an arc of ~G, then f ′(uv) = f(e);

otherwise, f ′(uv) = −f(e). i.e., define f ′ to be the same as f for all arc in ~G and

define f ′ to be the inverse for all “reverse arcs”.

Then we are simply looking for a directed cycle (or path if we remove the marked

vertex z and consider edges in R as pendant) which contains two arcs in R (from

different edges) and does not contain an arc uv with f ′(uv) = −x.

Unfortunately, for Zk flows in general, there may be directed cuts where all

flows on the cut edges have value x. This prevents the existence of the path we are

looking for.

3.2 Using universal inequalities for reducibility

As in Section 2.3, we will now see how to use universal inequalities to obtain

reducibility arguments.

Suppose f is a flow on R and C is a set of flows on R such that Kc = 0 ∀c ∈ C.

Suppose that we know of a set of inequalities is universal.

Suppose that, as in the example shown in Section 1.5.2, we can deduce an

universal equality of the form

∑
c/∈C

ycKc ≤
∑
c∈C

ycKc, (3.3)

where yc ≥ 0 for all c /∈ C. Then the right-hand side sums to 0. Since Kf is

non-negative for all flows f , all terms on the left-hand side are 0 as otherwise, their
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sum would be greater than 0. Thus we have proven that Kc = 0 for every c /∈ C,

yc > 0. So C reduces all flows c such that yc > 0. To prove that Kf = 0, we need

to find an inequality of the form (3.3) with yf > 0.

We may state this more formally.

Lemma 3.2.1. Let f be a flow on R and C a set of flows on R.

If there is an universal inequality of the form

∑
c/∈C

ycKc ≤
∑
c∈C

ycKc (3.4)

with the non-negative coefficients on the left-hand sideand the coeffcient yf of Kf

is positive then C reduces f .

We now use the argument in Section 2.3 to show that the converse is also true.

We may write a set of universal inequalities in matrix form as Ak ≤ 0. Note that

any non-negative linear combination of the rows of A also gives a valid universal

inequality. Then, we know that we can prove C reduces f if and only if there is no

solution to the following system.

AK ≤ 0

Kc = 0 ∀c ∈ C

K ≥ 0

Kf > 0

We can rewrite this as

AK ≤ 0

−K ≤ 0

Kc ≤ 0 ∀c ∈ C

Kf > 0
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We can again rewrite the system in matrix form as
A

−I

IC

K ≤ 0

efK > 0

where ef is the vector which is 1 for the entry f and 0 everywhere else and IC is

the set of row vectors ec, c ∈ C.

By Farkas’ Lemma [4] (instead of AT y ≥ 0, bT y < 0, we have AT y ≤ 0, bT y > 0),

the above has no solution if and only if there is a solution to

[AT | − I|IC]d = ef

where d ≥ 0. Again we can write this as the sum of 3 vectors and let y = ATd.

y − Id2 + ICd3 = ef

The second vector −Id2 turns the equation into an inequality (since we can

increase the value of d2 if any coordinate is too high.

y + ICd3 ≥ ef

The ICd3 indicates that we have need to choose y so that the inequality is

satisfied for rows not indexed by elements of C.

Thus, we have translated the second and third term into requirement on y.

There is a solution d ≥ 0 if and only if there is a y such that yc ≥ 0 ∀c 6∈ C and

yf ≥ 1. We can normalize this so that we only need yf > 0.

Therefore, we have proven the following.
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Theorem 3.2.2. C reduces f (using universal linear inequalities) if and only if

there is y which is a non-negative linear combination of columns of A such that

yc ≥ 0 ∀c /∈ C, yf > 0.

Equivalently,

Theorem 3.2.3. C reduces f (using universal linear equalities) if and only if there

is a universal inequality of the form

∑
c/∈C

ycKc ≤
∑
c∈C

ycKc (3.5)

with yc ≥ 0 ∀c /∈ C and yf > 0.

We will refer to the above theorem as the Farkas Criterion (for inequalities).

3.3 Computations

In this section, we describe how we used the theory from the previous two sections

to make computations in order to prove reducibility.

When we derived the universal inequalities using Kempe chains in Section 3.1,

we had introduced some auxiliary variables mM,θ.

In practice, we will solve an LP with the auxiliary variables in it but will only

look at the value of the K variables in the solution. In theory, we could also take

the projection and obtain inequalities without the auxiliary variables.

Let CK+Bm ≤ 0 be the set of universal inequalities obtained in Section 3.1 (we

put all variables on one side of the inequality). Let A = [C|B]. So the inequalities

become A
(

K
m

)
≤ 0

Let f be a flow on R and C a set of flows on R. From Theorem 3.2.3, C reduces

f if and only if there is a vector y that is a non-negative linear combination of the

columns of A such that yf > 0 and yc ≥ 0 ∀c /∈ C. Note that this second non-

negativity condition must also hold for indices corresponding to the m variables
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(although they are not indexed by a flow c). So C simply refers to the columns of

C (which are columns of A) indexed by elements of C and c /∈ C refers to all other

columns of A.

We can verify the existence of such a vector by solving the following LP.

max yf

y = Az

z ≥ 0

yc ≥ 0 ∀c /∈ C

yf ≤ 1

(LP2)

We added the constraint yf ≤ 1 to prevent the LP from being unbounded (as

remarked in Section 2.3, positive scalar multiples of a feasible solution are also

solutions).

Since setting all yc to be 0 and z to be 0 gives a feasible solution, the optimal

solution is at least 0. If the optimal solution is 0, then C does not reduce f , while

otherwise the optimal solution is 1 and C does reduce f .

We can obtain an optimal solution y(f) for each flow f /∈ C (C clearly reduces

any flow in C).

Let ỹ =
∑

f /∈C y(f). The condition yc ≥ 0 ∀c /∈ C forces ỹc to be positive if one

of the y(f)c is positive.

We can also keep track of z and let z(f) be the value of the z variables in an

optimal solution when maximizing yf . Let z̃ =
∑

f /∈C z(f). Note that ỹ = Az̃ since

each individual term satisfies the equality.

Therefore, the flows f indexing the positive entries of ỹ are exactly the flows

f /∈ C that C reduces. In fact, (ỹ, z̃) is a certificate that those flows are reducible.

Given (ỹ, z̃), we only need to check that ỹ = Az̃, z̃ ≥ 0, ỹc ≥ 0 ∀c /∈ C and ỹf > 0

for any flow f that we claim C reduces.
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Chapter 4

Argument strength

We presented two different arguments in the last two sections: one with universal

equalities and one with universal inequalities. We can see from the computations

sections that we can simply combine the two sets of restrictions to obtain a stronger

argument. We first derive the “Farkas Criterion” in that case. However, it is not

clear the we obtain a strictly stronger argument. Using the definition of graph

reducibility and flow reducibility, we may quantify the strength of an argument.

Definition 4.0.1. We says that an argument A is stronger than an argument B if

whenever C reduces f using argument B (where R is a cut, f is a partial flow R

and C is a set of partial flows on R), C reduces f using argument A.

We says that an argument A is strictly stronger than an argument B if A is

stronger than B and there is a C and f (where R is a cut, f is a partial flow R and

C is a set of partial flows on R) such that C reduces f using argument A but C does

not reduce f using argument B.

Define stronger and strictly stronger for graph reducibility similarly.
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4.1 Combining equalities and inequalities

In this section, we define an argument which is the combination of the universal

equalities argument and universal inequalities argument.

Suppose we have a set of universal equalities Ak = 0 and a set of universal

inequalities A′K ≤ 0. Not too surprisingly, we will show the following Farkas

Criterion.

Theorem 4.1.1. Let AK = 0 be a set of universal equalities and A′K ≤ 0 a set of

universal inequalities.

C reduces f (using combined equalities and inequalities) if and only if there is a

universal inequality of the form

∑
c∈C

ycKc ≥
∑
c/∈C

ycKc (4.1)

with yc ≥ 0 ∀c /∈ C and yf > 0 which can be obtained from the sum of a linear

combination of the rows of A and a non-negative linear combination of the rows of

A′.

Proof. We can rewrite the equalities as inequalities AK ≤ 0 and −AK ≤ 0. The

theorem now follows by the inequalities version of the theorem (Theorem 3.2.3).

Since we have both A′K ≤ 0 and −A′K ≤ 0, the requirement for a non-negative

combination is removed.

Computationally, we see that the K variables in (LP1) and (LP2) are the same

(with the same interpretation), we may simply combine these constraints to formu-

late a new LP.
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max yf

y = y1 + y2

MTy1 = 0

y2 = A′z

z ≥ 0

(y1)c ≥ 0 ∀c /∈ C

(y2)c ≥ 0 ∀c /∈ C

yf ≤ 1

(LP3)

4.2 Consistent sets and inequalities

In this section, we show that the argument using inequalities derived in Section

3.1.4 has the same strength as the Kempe chain argument (using consistent sets)

developed in Section 3.1.3. For the remainder of this section, we think of a flow f

on R and a set of flows C on R as fixed but arbitrary.

The argument in Section 3.1.4 shows that C reduces f if and only if the following

LP has an optimum of 0.

max Kf∑
M

mM,θ ≥ Kf ∀f, θ

Kf ≥ mM,θ ∀f, θ, M s.t. f θ-fits M

Kc = 0 ∀c ∈ C

(LP4)

We now prove the following theorem which shows that both arguments have the

same strength.

Theorem 4.2.1. f /∈ D∗(C) if and only if the optimum to (LP4) is 0 for f .

Proof. ⇐: We prove the contrapositive.
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Suppose that f ∈ D∗(C). LetM∗
θ be the set of signed matchings in the definition

of a consistent set.

For each c ∈ D∗(C), let Kc = 1. For each Mθ ∈ Mθ, let mMθ,θ = 1. We will

show that this is a feasible solution to the LP.

By condition (1) in the definition of a consistent set, inequalities of the form

(3.1) are satisfied since whenever the right-hand side is 1, the matching which θ-fit

the corresponding edge colouring is set to 1 on the left-hand side.

By condition (2) in the definition of a consistent set, inequalities of the form

(3.2) are satisfied.

This solution has objective value 1. But this contradicts the assumption the

maximum is 0.

⇒: We prove the contrapositive.

Suppose the optimum to (LP4) is unbounded. Then there is a feasible solution

where kf > 0. We build a consistent set by looking at this feasible solution.

• Let D = {f : kf > 0}.

• For each θ, let Mθ = {M : mM,θ > 0}.

Since equations of the form (3.1) are satisfied, condition (1) of Definition 3.1.8

is met.

Since equations of the form (3.2) are satisfied, condition (2) of Definition 3.1.8

is met.

Therefore, f is in the consistent set D.

4.3 General universal equalities

We have derived some equalities in Section 2.2 and some inequalities in Section

3.1. However, there may be more universal linear equalities and inequalities. In the
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case there are more, we may want to know the strength of an argument when we

use all such equalities or all such inequalities. We will refer to these as the general

equalities argument and general inequalities argument. We do not know how to

analyze the strength of these arguments in general.

In this section, we show that there are no other equalities than those found in

Section 2.2.

Theorem 4.3.1. Let MR be Kochol’s matrix. Let

∑
c

ycKc = 0 (4.2)

be a universal equation. Then y ∈ ker(MR).

Proof. Since (4.2) is true for all digraphs ~G, it is true for all basic graphs ~B ∈ BR.

Therefore, by definition, y ∈ ker(MR).

This is not too surprising. We had shown using the contraction/deletion formula

that all equations satisfied by the basic graphs is satisfied by all graphs. Here we

simply noted that an equation satisfied by all graphs is satisfied by all basic graphs.

4.4 Replacing equalities with inequalities

From the proof of Theorem 4.1.1, we see that we can easily replace an equality with

two inequalities so that the constraint on the variables is the same. However, in

this section, we see that, for the purpose of flow reducibility, we may replace the

equalities with even weaker inequalities (so that now the solution space changes).

Given a universal equation, we can move all terms with negative coefficient to

the other side of the equation so that it is of the form.

∑
c∈P

acKc =
∑
c∈N

bcKc (4.3)
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where ac > 0 ∀c ∈ P and bc > 0 ∀c ∈ N . P and N simply denote the coefficients

which were positive and negative. We claim that we may replace such equalities

with the set of inequalities

∀f ∈ N
∑
c∈P

acKc ≥ bfKf

∀f ∈ P afKf ≤
∑
c∈N

bcKc

without losing any strength for flow reducibility. However, whereas we only need

to replace AK = 0 by AK ≤ 0 and AK ≥ 0, now we must make the replacement

for every equation that is a linear combination of the rows of A.

By Theorem 2.3.3, C reduces f if and only if there is an equation of the form

∑
c∈C

ycKc =
∑
c/∈C

ycKc

with yc ≥ 0 ∀c /∈ C and yf > 0. But then the inequality

∑
c∈C

ycKc ≥ yfKf

also suffices to prove C reduces f . Therefore, we can make the replacement we have

suggested without losing any strength in reducibility.

We may deduce the following theorems

Theorem 4.4.1. In the case of 4-flows, H is the class of all bridgeless planar graphs

and the cut R has fewer than 5 edges, the Kempe chain argument is stronger than

the equalities argument.

Proof. We choose the group to be Z2
2 and interpret a flow as a (non-proper) 3-edge-

colouring as in Section 3.1.

We will show that all the inequalities of the form (4.3) can be obtained using a

Kempe chain argument.
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For |R| = 2 and |R| = 3, there is only one partial flow on the edges of R so

there are no non-trivial equalities or inequalities.

For the case |R| = 4, we have seen that the matrix MR is the one shown in

Figure 2.1. There is only one equality since the matrix has rank 3. It is

K1 + K4 = K2 + K3

Thus we would replace it by

K1 + K4 ≥ K2

K1 + K4 ≥ K3

K1 ≤ K2 + K3

K4 ≤ K2 + K3

But they are exactly the (non-trivial) inequalities we obtain from Corollary

3.1.13.

Proposition 4.4.2. In the case of 4-flows, H is the class of all bridgeless graphs

and the cut R has fewer than 6 edges, the Kempe chain argument is stronger than

the equalities argument.

Proof. We choose the group to be Z2
2 and interpret a flow as a (non-proper) 3-edge-

colouring as in Section 3.1.

We will show that all the inequalities of the form (4.3) can be obtained using a

Kempe chain argument.

For |R| = 2 and |R| = 3, there is only one partial flow on the edges of R so

there are no non-trivial equalities or inequalities.

In the case |R| = 4, there are only 4 partial flows up to permutation of the

colour classes. We compute the rank of the matrix MR to be 4. Therefore, only

trivial equalities (which permute the colour classes) exist.

59



It remains to prove the case where |R| = 5. Note that a partial flow on R must

have exactly 3 edges of one colour and 1 edge of each of the other colours (for the

sum to be zero). So there are only 10 partial flows (up to permutation of the colour

classes). We can compute the matrix MR and see that it has rank 10. Therefore,

only trivial equalities (which permute the colour classes) exist.

Thus the following is immediate from the proof of the theorem and the fact that

there is at least one inequality when |R| = 5.

Corollary 4.4.3. In the case of 4-flows where the cut R has 5 edges, the Kempe

chain argument is strictly stronger than the equalities argument.
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Chapter 5

5 flow

We have attempted to resolve a generalized version of a conjecture posed by Kochol

[10]. Namely, we would like to know, in the case of 5-flows and all bridgeless graphs,

if all cycles are reducible. Because of Theorem 1.4.11, we may reduce only cubic

graphs. We start by characterizing the set of flows which extend to a cycle. From

this and Farkas Criterion, we will be able to determine the form of a vector y that

we are looking for in the kernel of Kochol’s matrix MR. We then show how we

could obtain (inductively) some elements of the kernel of MR for arbitrary R.

Kochol[10] had previous shown using the Span Criterion that all cycles of length

at most 8 are reducible. Using programs in Chapter 5, we were able to verify this

and prove that the cycle of length 9 is also reducible. Kochol conjectured that the

Span Condition could be used to prove reducibility of all cycles and thus prove the

5-Flow Conjecture.

However, we note that this conjecture can be answered in the negative.

Theorem 5.0.4. [13] Suppose |R| ≥ 22 and C is the set of partial flows on R which

extends to the cycle of length |R|. Then the dimension of the span of the columns

indexed by elements of C in MR is (strictly) smaller than the rank of MR.

It is therefore immediate that there is at least one column of MR that the

columns indexed by C do not span. So the Span Criterion cannot prove that C
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reduces the partial flow indexing that column.

Corollary 5.0.5. The Span Criterion is not sufficient to prove the 5-flow conjec-

ture.

We do not know if Span Criterion can be used for cycles of length between 10

and 21.

However, the above corollary does not imply that the Farkas Criterion is also

insufficient to prove reducibility of all cycles.

5.1 Cycles

Let G be a cycle of length n. We may orient the edges of a cycle as in Figure 5.1.

a
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a
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a
2

a
4

a
5

a
6

a
7

a
8

a
9

a
10

x

Figure 5.1: An orientation ~G of the edges of a cycle drawn without the marked

vertex.

Let f be a partial flow on R. We may write the values of f as a vector (a1, . . . , an)

as shown in Figure 5.1. Now consider a flow f ′ extending f to ~G. f ′ has some flow

value x on the edge marked x in Figure 5.1. But the vertex with flow a1 and x in

must have the same flow out. Since there is only one edge out, it must have value

x + a1.
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In fact, we may continue this process until we obtain all the values of f ′ (in terms

of x). They are x +
∑j

i=1 ai (where the sum may be empty). Let bj =
∑j

i=1 ai (so

b0 = 0). If f ′ is a nowhere-zero flow, x must take some value in Z5. This happens

if there is a solution to

x + b0 6= 0

x + b1 6= 0

x + b2 6= 0

...

x + bn−1 6= 0

But this system has a solution precisely if the set {bj}n−1
j=0 is missing a number

in Z5. This is since if y is missing, we may let x = −y and similarly, if f ′ is a

nowhere-zero flow with some value x on that edge, then y = −x is missing from

that list of numbers.

So C, the set of partial flows that extend to G, are the flows with {bj}n−1
j=0 missing

at least one number.

For example, the flow (a1, . . . , a6) = (1, 2, 3, 3, 2, 4) has (b0, . . . , b5) = (0, 1, 3, 1, 4, 1)

which is missing the number 2. Thus this flow extends to the cycle of length 6

(show in Fig 5.2). However, the flow (a1, . . . , a6) = (1, 2, 3, 3, 3, 3) has (b0, . . . , b5) =

(0, 1, 3, 1, 4, 2) does not extend (since all 5 numbers appear).

4

x=−2=3

1
4

2

1
3

4

32

4

2

Figure 5.2: A flow extending to the cycle of length 6.
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5.2 Cycle with a contracted edge

Suppose we now contract an edge of G in the previous section to obtain G′. If we

have contracted the edge with weight x + bj then we have effectively removed the

requirement that x + bj is non-zero. By rotation, we may assume that j = n− 1.

Therefore, the partial flows that extend to G′ are those missing at least one

number in {bi}n−2
i=0 .

The flows C ′ that extend to G′ but not to G are those where all numbers appear

in {bi}n−1
i=0 but the number bn−1 appears exactly once (as the (n− 1)th element).

Therefore, if a universal equation of the following form exists for all R, then we

have proven the 5-flow conjecture.

∑
c∈C

ycKc =
∑
c/∈C

ycKc

with yc ≥ 0 ∀c /∈ C and yc > 0 ∀c ∈ C ′ where C is the set of flows with {bi}n−1
i=0

missing at least one number and C ′ is the set of flows with all numbers appearing

in {bi}n−1
i=0 but bn−1 appears only once.

5.3 Generating kernel vectors

In this section, we describe how to obtain “formulae” (as a function of |R|) for

vectors which appear in the kernel of Kochol’s matrix MR.

We will always orient the edges of R away from the marked vertex in this section.

Suppose |R| = n.

Again, we write a partial flow on R as a vector (a1, . . . , an) of values on the

edges of R.

From a vector in the kernel of MR, we can obtain a vector in the kernel of MR′

where R′ is R with 2 added edges. This can be done as follows.
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Theorem 5.3.1. [13] Let R be an edge cut and R′ is R with 2 added edges.

Let y ∈ ker(MR). i.e.,
∑

f yfKf = 0 is a universal equation.

For each column vector indexed by a partial flow f = (a1, . . . , an) on R with

coefficient yf , we replace it with the term yf

∑4
s=1 K(a1,...,an,s,5−s). ie

∑
f

yf

4∑
s=1

K(a1,...,an,s,5−s) = 0

is a universal equation.

We may choose any 2 coordinate to extend on rather than the least two coordi-

nates.

This allows us to start with a vector in the kernel of MR when |R| = 4 and

obtain a vector for each MR′ where |R′| is even.

Unfortunately, we are not able to prove the existence of a kernel vector of the

form described in the previous section.
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Chapter 6

Programs

We have written a set of programs in order to obtain some computational results.

These programs are freely available at www.math.uwaterloo.ca/~z14li/nzf/.

6.1 Required programs

• Python 2.4.3 (free, see www.python.org). May also work with earlier versions.

• GNU Bash 3.1.17 (free, see ftp://ftp.gnu.org/pub/bash/). May also work

with earlier versions.

• GCC 4.0.3 (free, see gcc.gnu.org). May also work with earlier versions or

other C compilers.

• One of either:

– lp solve 5.5 (free, see lpsolve.sourceforge.net/5.5/). Earlier ver-

sions may also work but it needs to understand free variables.

– CPLEX 10
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6.2 Sample run

In this section, we show how we obtain the equality in Section 1.5.1 and the in-

equality in Section 1.5.2.

6.2.1 Inequalities example

We choose the group to be Z2
2 and view all flows as (non-proper) 3-edge-colourings

where each colour class is a postman set (see Theorem 3.1.2).

We assume that the file graphbd contains the following

18

15

12

1 4 7,0 2 9,1 3 11,2 4 12,0 3 5,4 6 13,5 7 14,0 6 8,7 9 15,

1 8 10,9 11 16,2 10 17

12 3,13 5,14 6,15 8,16 10,17 11

This simply encodes the Birkhoff diamond dual with the vertices and edges

labelled as in Fig 6.1. Note that the other end of a pendant edge is labelled but it

is not a vertex.

We start by determining all flows which extend to the Birkhoff diamond dual.

Running python flowextnz22.py graphbd gives the output

[[0, 2, 4, 5], [1, 3], []] ,

[[0, 1, 4, 5], [2, 3], []] ,

[[0, 2, 3, 5], [1, 4], []] ,

[[0, 1, 2, 5], [3, 4], []] ,

[[0, 5], [1, 2, 3, 4], []] ,
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Figure 6.1: The Birkhoff diamond dual encoded by the file graphbd.

[[0, 5], [1, 4], [2, 3]] ,

[[0, 1, 3, 4], [2, 5], []] ,

[[0, 1, 2, 4], [3, 5], []] ,

[[0, 4], [1, 2, 3, 5], []] ,

[[0, 4], [1, 2], [3, 5]] ,

[[0, 3], [1, 2, 4, 5], []] ,

[[0, 3], [1, 2], [4, 5]] ,

[[0, 2], [1, 3, 4, 5], []] ,

[[0, 2], [1, 3], [4, 5]] ,

[[0, 1], [2, 3, 4, 5], []] ,

[[0, 1], [2, 5], [3, 4]] ,

This is the set of flows C.

Flows are given as partitions of the edges of R into 3 sets: the ith set represents

the edges of the ith colour. For example, the first line tells us that the flow where
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edges e1, e3, e5, e6 are coloured 1 and edges e2, e4 are coloured 2 extends to the

Birkhoff diamond dual.

These flows are now also stored in the file listcol in python’s “pickle” format.

We now generate the LP for C by running python matching.py -p -s=6 -nm -c.

The flags tell the program to generate the LP in CPLEX format for the planar case

where |R| = 6 and to use inequalities only (use -l instead of -c here to generate

the LP in lp format (for lp_solve)).

The inequalities in Corollary 3.1.13 can be seen in the file primallp. The first

few lines are

k0-m0<0

k0-m1-m2-m3-m4-m5<0

k0-m1-m2-m3-m4-m5<0

m0-k0<0

m1-k0<0

m2-k0<0

m3-k0<0

m4-k0<0

m5-k0<0

m1-k0<0

m2-k0<0

m3-k0<0

m4-k0<0

m5-k0<0

All inequalities are non-strict (although the < symbol appears instead of ≤).

Note that the variables are indexed by number. To retrieve the corresponding

index in terms of signed matchings, colourings and colours, we may consult the file

varlist. For example, it contains the lines

69



KVARLIST

0 [[0, 1, 2, 3, 4, 5], [], []]

and

MVARLIST

0 [][]

which tells us that the first inequality in primallp is k[[0, 1, 2, 3, 4, 5], [],

[]]<m[][] (the K variable indexed by the colouring where all edges are coloured

1 is bounded by the m variable indexed by the empty matching (and any non-1

colour)).

What we really want is to solve the dual to find an inequality needed to prove

reducibility. So we run ./cplexsolvedual (we would run ./lpssolvedual with

lp_solve here). This creates the file reducible which contains

cy0

cy1

cy5

cy9

cy10

cy11

cy15

cy16

cy18

cy20

cy21

cy24

cy25
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cy29

cy30

This tells us that all the 3-edge-colourings listed above are reducible by C. This

happens to be all the colourings in the complement (see the file ccomplement). We

may obtain a certificate by adding the above constraints to the dual LP. We do

this by running ./cplexcert (this would be ./lpscert in the case we are using

lp_solve).

cy0 1.000000

cy1 1.000000

cy2 -18.000000

cy3 -15.000000

cy4 -3.000000

cy5 1.000000

cy6 -11.000000

cy7 -9.000000

cy8 -5.000000

cy9 1.000000

cy10 1.000000

cy11 1.000000

cy12 -1.000000

cy13 -6.000000

cy14 -7.000000

cy15 1.000000

cy16 1.000000

cy17 -7.000000

cy18 1.000000

cy19 -15.000000

cy20 1.000000
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cy21 1.000000

cy22 -1.000000

cy24 1.000000

cy25 1.000000

cy26 -7.000000

cy28 -5.000000

cy29 1.000000

cy30 1.000000

is the certificate we obtain. This is exactly Equation (1.5). The LP which yield

this solution is now stored in the file duallpcert.

6.2.2 Equalities example

There is only one group of order 5, it is Z5.

We assume that the file graph5cycle contains the following

10

5

5

1 4 5,0 2 6,1 3 7,2 4 8,0 3 9

5 0,6 1,7 2,8 3,9 4

This simply encodes the 5 with the vertices and edges labelled as in Fig 6.2.

Note that the other end of a pendant edge is labelled but it is not a vertex. This

is simply to indicate the direction of the flow (the direction of the other edges need

not be predetermined).

We run the meta-script ./metameta 5ring 5 5 1

The matrix is written to the file lookup. The first few lines are
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Figure 6.2: The 5-cycle encoded by the file graph5cycle.

11213 1 0 0 0 1 1 0 0 1 0 0

21113 1 0 0 0 0 1 1 0 1 0 0

32313 1 0 0 1 0 0 0 1 1 0 0

12113 1 0 0 0 1 0 1 0 1 0 0

23313 1 0 1 1 0 0 0 0 1 0 0

33213 1 0 1 0 0 0 0 1 1 0 0

11222 1 0 0 1 0 0 1 0 1 0 0

21122 1 0 0 0 1 0 0 1 1 0 0

32322 1 0 1 0 0 1 0 0 1 0 0

12122 1 0 1 0 0 1 0 0 1 0 0

This is the transpose of the matrix seen in Section 2.2.2. The first column is

the flow which indexes that particular row. The remain columns are the columns

of the matrix.

The flows extending to the 5 ring are stored in the file gvect. The first few

lines are

11134
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11143

11224

11233

11314

11323

11332

11341

11413

11422

Each line contains one flow on the pendant edges. It is the flow value on

e1, . . . , e5. This is the set C.

The file gbs5ringfe contains

Good: [0]

Good: [1]

Good: [2]

Good: [3]

Good: [4]

which indicates that the 5 ring reduces to any graph that is the 5 ring with one

edge deleted. Looking at badvect, we see that it is empty which indicates that C

reduces all flows and thus the 5-cycle can be reduced to any graph (such as the

5-star we chose in Section 1.5.1).

We can obtain a certificate for reducibility by running ./getcert 5ring. The

following certificate is obtained.

x1 8.000000
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y2 16.000000

x41 8.000000

x65 1.000000

x66 1.000000

x67 1.000000

x68 1.000000

x80 16.000000

y83 16.000000

x87 1.000000

x91 1.000000

y92 16.000000

x95 1.000000

x99 1.000000

x141 1.000000

x145 1.000000

x149 1.000000

x153 1.000000

x158 1.000000

x162 1.000000

y163 8.000000

x166 1.000000

y168 8.000000

x170 1.000000

x175 1.000000

x180 1.000000

x183 1.000000

x188 1.000000

x191 1.000000

x194 8.000000

x196 1.000000
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x199 1.000000

x204 1.000000

Here the coefficient of Ki is xi − yi. We may look up the indices in lookupnum.

After combining terms belonging to the same equivalence class (with respect to

multiplication by elements in Z∗
5), we obtain Equation (1.4).

6.3 Quick Start

6.3.1 Z2
2-flows

Run

python flowextnz22.py graphbd

python matching.py -c

./cplexsolvedual

./cplexcert

6.3.2 Zn-flows

Run

./metameta 113 6 5 4

./getcert 113

6.4 Matching.py

matching.py - Used to generate the primal and dual LP and other related data for

nowhere-zero Z2
2-flows.
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6.4.1 Synopsis

python matching.py [OPTION]

6.4.2 Description

• OPTIONS

-np, –non-planar Allow all graphs and Kempe chains including non-planar

ones. Used for the nowhere-zero 4-flow conjecture.

-p, –planar Default. Allow only planar graph and Kempe chains (so they

cannot cross). Used for the Four Colour Theorem.

-f, –tofiles Default. Write output to various files (see FILES section).

-o, –tostdout Default. Write all output to screen (stdout).

-k, –usechains Default. Use Kempe chain inequalities.

-nk, –nochains Do not use Kempe chain inequalities.

-m, –usematrix Default. Use matrix kernel equalities.

-nm, –nomatrix Do not use matrix kernel equalities.

-r, –readlistcol Default. Read list of colours C from file listcol and set

corresponding variables in the primal and dual LP.

-h, –hardcodedcol Do not read list of colours C from file. Read the list

from the one hardcoded into the program (currently the empty list). Set

the corresponding variables in the primal and dual LP.

-c, –cplexformat Writes the output LPs in CPLEX (lp) format.

-l, –lpformat Default. Writes the output LPs in LP format. Can be used

with lp_solve for example.

-s=SIZE, –size==SIZE Default is 6. Sets the number of edges in the cut

(incident to the marked vertex) to SIZE.
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• FILES

If the program is writing to files (default behaviour) then the following files

are (over)written.

primallp Basic set of constraints for the primal LP.

duallp Basic set of constraints for the dual LP.

primallpsetcols Set k variables with index in C to 0.

duallpsetcols Set cy variables with index in C to be free.

matrices Matrix Mi where i is the ring size. RREF form of the matrix and

row operations performed.

matrixkernel Primal constraints for the vector k to be in span(Mi).

varlist Look-up table for lists of variables (to convert from number to index).

planarparts List of all planar partitions (basic graphs) for this ring size.

ccomplement List of indices not in C.

• VARIABLES INDICES

Ring edges are labelled from 0 to i− 1.

Edge colours are labelled 0, 1 and 2 for the 3 non-zero elements of Z2
2 (i.e.,

0 does not mean the element 0 of Z2
2)

Edge colouring (up to permutation of the colour classes) of the ring are a

list of 3 lists. The p list is the list of edges coloured p. Eg: [[0,1],[2,5],[3,6]]

means that edges 0 and 1 are coloured 0, edges 2 and 5 are coloured 1

and edges 3 and 6 are coloured 2.

0 is always in the first list. The smallest number not appearing in the

first list is always in the second list.

Signed matchings are represented by 2 lists: a list of edges (denoted by

a list of 2 vertices) and a list of signs. The pth element of the first

list has sign corresponding to the pth element of the second list. Eg:
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[[0,3],[1,2]][-1,1] mean the signed matching where 0 is matched to 3 with

sign -1 and 1 is matched to 2 with sign 1.

To avoid enumerating the same matching twice, the smallest number is

always in the first list, the remaining smallest number is always in the

second list, etc.

• VARIABLES

Variables in the various LP files are labelled as follows.

k Indexed by an edge colouring (up to permutation of the colour classes) of

the ring.

m Indexed by a signed matching and a colour.

d Coefficients for inequalities of the form (3.1)

f Coefficients for inequalities of the form (3.2)

6.5 flowextnz22.py

flowextnz22.py - Used to generate list of Z2
2-flows which extend to a cubic graph.

6.5.1 Synopsis

python flowextnz22.py [FILE]

6.5.2 Description

flowextnz22.py reads the graphfile (see Section 6.8 for file specifications) FILE

and outputs all Z2
2-flow which extend to this graph.

Writes the result to standard output as well as the file listcol which is over-

written. listcol stores a list in Python’s “pickle” format.
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6.6 flowextn.py

flowextn.py - Used to generate list of Zn-flows which extend to a graph.

6.6.1 Synopsis

python flowextn.py [FILE] [FLOWFILE] [MODE]

6.6.2 Description

flowextn.py reads the graphfile FILE and the list of flows from FLOWFILE (see

Section 6.8 for file specifications).

If MODE is 0, it outputs all Zn-flow in FLOWFILE which extend to this graph.

If MODE is greater than 0, it tries to delete all combinations of MODE edges

from the graph and outputs the graphs which extend all flows in FLOWFILE.

6.7 metameta

metameta - High level script for Zn-flows.

6.7.1 Synopsis

./metameta [FILE] [SIZE] [FLOW] [DELETE EDGES]

6.7.2 Description

metameta reads from the graphfile graphFILE (eg: ./metameta bd reads from the

file graphbd) which has a cut of size SIZE (number of edges incident to the marked
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vertex) and computes the ZFLOW flows which extend to it and tries to reduce the

graph to a smaller graph by deleting edges. It also tries to see if adding planarity

helps.

6.8 Graph file

The graphs that the programs take as input are stored in “graph files” which are

formatted as follows.

The file consist of 5 lines.

Line 1 contains a single number, the number of vertices in the graph. Here, the

other side of a pendant edge counts as a vertex.

Line 2 contains a single number, the number of non-pendant edges in the graph

(number edges excluding those incident to the marked vertex).

Line 3 contains a single number, the number of vertices in the graph. Here, the

other side of a pendant edge does not counts as a vertex.

Line 4 contains a comma separated list of lists. Each of the list (in the list) is

an adjacency list. Elements (neighbours) in an adjacency list is separated by

spaces. The ith list corresponds to the adjacency list of the ith vertex.

Line 5 contains the pendant edges. The list of edges is comma separated. Each

edge consist of 2 elements (the ends of the edge) which are separated by a

space. The edge is directed from the first element to the second element.
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Chapter 7

Conclusion

We have developed some algebraic methods for proving reducibility in nowhere-

zero flows, analyzed the strength of some of these methods and shown how other

reducibility proofs, namely Kochol’s matrix and Kempe chains, fit into this scheme.

We were able to compare some of these methods with respect to flow reducibility.

In the case where the equalities and inequalities are linear, we haven shown that

these methods can provide a certificate which we can check.

However, many questions remain open.

7.1 Open questions and future work

1. Throughout our analysis, we were not able to obtain a complete proof of k-

flowability (for all bridgeless graphs) for any k. It would we interesting to

know if such a proof exists using these methods. If this was not possible,

we would like to know if it is possible to obtain a “reducibility” type proof

that all bridgeless graphs are k-flowable. We believe that this second task is

possible and that it is only a matter of formulating the 6-Flow Theorem [16]

or the 8-Flow Theorem[7] into an inductive proof and turning that proof by

induction into a reducibility proof.
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2. In Section 3.1.7, we noted some problems which arise when we attempt to

use a Kempe chain argument to generate inequalities for groups of order

k 6= 4. Still, we do not know if such problems actually prevent us from

deriving any inequality in the case k 6= 4. More generally, is it possibly to

obtain inequalities in the case k 6= 4 that cannot be obtained from universal

equalities?

3. In Section 4.3, we have shown that we obtained all equalities using the argu-

ment in Section 2.2. However, we do not have a similar result in the case of

inequalities case. Can we obtain all inequalities from equalities and Kempe

chain arguments?

4. We know that there are cases where the inequalities argument is strictly

stronger than the equalities argument (for example for the case |R| = 5,

k = 4 where the Kernel of the MR matrix is empty. Can we also show that

the equalities argument can prove flow reducibility in some cases where the

inequalities argument would not suffice?

This is equivalent to asking whether the combined inequalities and equali-

ties argument derived in Section 4.1 is strictly stronger than the inequalities

argument alone.

5. Assuming that we could obtain all universal inequalities, is the space of in-

tersection of all these half-planes polyhedral?

6. One possible application of these algebraic methods is toward finding a shorter

proof of the Four Colour Theorem. However, to do so, we need that the com-

bined inequalities and equalities be strictly stronger than inequalities alone

(see Question 3). Section 4.4 suggests that this will not be possible. If we

could prove that inequalities were stronger for cuts of size at most 13, we

would know that the equalities would not be useful for proving the Four

Colour Theorem. This is since the current proof only reduces graphs with

these cut sizes.

83



7. In this thesis, we have obtained homogeneous linear equalities and inequali-

ties which are universal. Are there other types of equalities and inequalities

which are also universal? We would not expect expressions which are non-

homogeneous since it seems easy to multiply the number of flows of a graph

by adding a disjoint component to the graph.
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