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ABSTRACT 

The ability to measure the physiological demands and air requirements during simulated 

firefighting tasks while wearing full personal protective ensemble (PPE) and positive pressure 

self-contained breathing apparatus (SCBA) has been a difficult process based on undeveloped 

technology. The capability of integrating a portable Cosmed K4b2 breath by breath gas 

collection system with a standard SCBA has permitted a novel approach to investigate 

metabolic demands and ventilatory requirements while breathing through the same system that 

would be used in an actual fire scene. The purpose of this study was to determine the 

physiological demands and air requirements during three large structure firefighting scenarios: 

(1) maximal high rise stair climb, (2) 5th floor high rise scenario, and (3) subway system 

scenario. The hypotheses were that (a) the 5th floor high rise scenario would be the most 

physically demanding and that (b) the years of service as a firefighter would result in decreased 

total air consumption during the three scenarios. Thirty-three male and three female healthy 

firefighters performed each of the three tasks at an equivalent pace similar to what would be 

expected at a fire scene. Scenario (1) consisted of stair climbing until consuming 55% of a 

typical SCBA air cylinder and then descending to a safe exit. Scenario (2) comprised a 5 floor 

stair climb, hose drag and room search, forcible entry, victim rescue drag, and 5 floor descent. 

Scenario (3) involved a stair descent, tunnel walk, portable ladder walk, ladder setup, victim 

rescue drag, tunnel walk, and stair ascent. Average maximum floors climbed for scenario (1) 

and mean completion times for scenarios (2) and (3) were 20 ± 2.5 floors, 5 min 3 s ± 57 s, and 

12 min 5 s ± 1 min 10 s, respectively. Mean VO2 during each of the scenarios were 3168 ± 878 

ml/min, 2947 ± 461 ml/min, 2217 ± 371 ml/min, corresponding to a relative VO2 of 35.5 ± 9.1 

ml/kg/min, 33.1 ± 4.6 ml/kg/min, and 25.2 ± 4.6 ml/kg/min. In relation to the peak treadmill 
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oxygen uptake, the three scenarios revealed that firefighters were working at 70 ± 10%, 65 ± 

10%, and 49 ± 8% of VO2peak, respectively. Average heart rate values for the three scenarios 

were 170 ± 13 bpm, 160 ± 14 bpm, and 139 ± 17 bpm, corresponding to 88 ± 4%, 88 ± 6%, 

and 76 ± 7% of HRpeak, respectively. These results indicate that the most physiologically 

demanding scenario was the maximal stair climb, followed by the 5th floor high rise and 

subway system scenarios. Respiratory exchange ratio was consistently greater than 1.0 during 

the maximal stair climb and 5th floor high rise scenarios indicating that a considerable amount 

of energy was derived from anaerobic metabolism. With regards to the air requirements for 

each of the scenarios, total air consumption revealed averaged values of 74.9 ± 6%, 48.0 ± 

7.0%, and 59.9 ±5.6%, of the air in a typical 30-min cylinder, respectively. These data also 

revealed that increasing age of the firefighter as well as increasing years of experience as a 

firefighter result in significant correlations with greater air consumption to complete the given 

task (p < 0.05). Contrary to the hypotheses, the maximal stair climb scenario appeared to be the 

most physically demanding while increased years of service as a firefighter resulted in greater 

air consumption. Furthermore, it appears that firefighters who are able to produce more power 

per kg of body mass have greater performance times and more efficient air consumption. These 

data are instrumental in quantifying the physiological demands and air requirements during 

simulated firefighting tasks while breathing on a positive pressure SCBA. 
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1.0 INTRODUCTION 

1.1 Rationale 

The physical nature and cardiovascular strain during firefighting has been well documented 

leading to many recommendations for minimum requirements of aerobic power (Barnard & 

Duncan, 1975; Gledhill & Jamnik, 1992; Lemon & Hermiston, 1977b). However, the safety of 

the firefighter and his/her ultimate lifeline is determined by the volume of air remaining in the 

air cylinder. In North America, more than 100 firefighters lose their lives each year while on 

duty, with approximately 84% of structure related fatalities occurring from asphyxia and 

smoke inhalation (Hodous, Pizatella, Braddee, & Castillo, 2004). Inside a burning structure, 

the firefighters’ only line of defense between themselves and the extreme environmental 

conditions is wearing the personal protective ensemble (PPE), consisting of bunker pants, 

jacket, flash hood, gloves, boots, and helmet, as well as a self-contained breathing apparatus 

(SCBA). The ability to perform efficiently during fire suppression relies on the amount of air 

contained within the SCBA cylinder. Most fire departments operate on ’30 minute’ air 

cylinders with a maximum pressure of 4,500 psi containing approximately 1240 l of air; 

however, with an absolute quantity of air contained within each cylinder, a firefighter’s 

physiological characteristics will determine the maximum amount of time he/she will be able 

to work while breathing through a single SCBA tank.  

 The primary challenge revolves around the fact that the SCBA was developed for single 

dwelling use. Structural fires occurring in high rises, large department stores, or in a subway 

system pose a significant challenge to firefighters. The origin of the fire may be a sizeable 

distance from the entrance to the fire scene and could result in the firefighters consuming a 

large proportion of their SCBA cylinder before reaching the fire. The small amount of air that 
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remains would not be sufficient to perform critical firefighting tasks while maintaining 

adequate air supply to allow for safe evacuation from the fire scene. The ability to manage air 

supply with respect to controlling the amount of time in the hazardous area is known as “air 

management” (National Fire Protection Association, 2006). 

Currently, the modern SCBA is equipped with a digital heads up display (HUD) that 

allows the firefighter to monitor the amount of time remaining on their SCBA cylinder based 

on the current rate of air consumption. The main problem with this technology is that fire 

suppression tasks are not steady-state with work intensities changing very quickly and, thus, 

drastically altering the rate of air consumption. The second safety device installed in every 

SCBA is the low-air alarm, which is programmed to sound an audible alarm when there is 25% 

of air remaining in the cylinder. With the standard ‘30 minute’ air cylinder, the 25% low-air 

alarm theoretically comprises 7.5 minutes of breathable air supply remaining (Bernzweig, 

2004). As every firefighter is different in terms of body size, muscular strength, and aerobic 

conditioning, this reported 7.5 minutes of remaining air supply when the low-air alarm sounds 

might be a significant overestimate of the actual time remaining for an individual. The biggest 

problem exists with the implementation of the National Institute of Occupational Safety and 

Health (NIOSH) mandate to establish an upper limit of 25% for the audible low-air alarm in 

1960 (Bernzweig, 2004). Prior to this time, the strategy in fire suppression was to limit 

offensive firefighting, where as today vigorous offensive firefighting is common place 

(Bernzweig, 2004). The proposed formula for optimal and efficient air management is 

(Bernzweig, 2004): 

SCBA Air Volume =  

Work Period + Exit Time + Margin of Error for Self-Rescue 
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Based on this formula and with the current low-air alarm standard of 25%, firefighters would 

be required to utilize the other 75% of their air supply during the ‘work period’ and ‘exit time’. 

Scientific research has not been performed to determine the physiological demands and 

air requirements during simulated high rise, large department store, and subway system 

structural fires. As a firefighter dives deeper into a fire suppression task and further away from 

breathable atmospheric air, the ability to manage the remaining air supply becomes 

increasingly important. With structural fires accounting for 31% of all fires (Fabio, Ta, 

Strotmeyer, Li, & Schmidt, 2002) and 16% of all fire related deaths (Hodous et al., 2004), a 

further understanding of air management in large structures is critical. 

 Previous research has not been able to capture breath by breath measurements while 

individuals wear full PPE and SCBA during fire suppression simulation scenarios. In order to 

monitor the air requirements and physiological demands, the Cosmed K4b2 breath by breath 

gas collection system has been integrated into the Mine Safety Appliances (MSA) firefighter 

mask worn by the Toronto Fire Services.   
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1.2 Objectives 

(1) Determine the maximum vertical distance firefighters can climb in a high rise 

structure while consuming 55% of air from a typical ‘30 minute’ air cylinder 

allowing for a safe exit. 

(2) Determine the air requirements while performing critical firefighting tasks on a 

single floor in a high rise structure. 

(3) Determine the air requirements of performing critical firefighting tasks in a subway 

system. 

 

1.3 Hypotheses 

(1) The 5th floor high rise scenario would be the most physically demanding of the three 

scenarios based on the variety of simulated firefighting tasks involved comprising 

upper and lower body work. 

(2) Years of service as a firefighter would produce more efficient techniques to 

complete simulated firefighting tasks and result in decreased total air consumption 

during the three scenarios. 

 4



2.0 REVIEW OF SCIENTIFIC LITERATURE 

2.1 Line of duty injuries and casualties in firefighting 

Firefighting requires wearing personal protective equipment and a self contained breathing 

apparatus, adding additional physiological strain in order to complete already demanding 

physical tasks. Excluding the tragic events at the World Trade Center on September 11th, 2001, 

data from the United States Fire Administration (USFA) reveals between the years of 1977 and 

2005, an average of 113 firefighters were killed per year while on-duty (United States Fire 

Administration, 2006). Between 1998 and 2001, of the 410 total firefighter fatalities, 42% of 

deaths occurred due to myocardial infarctions (Hodous et al., 2004). Structural fires account 

for approximately 31% of all fire situations (Fabio et al., 2002) and comprise 16% of all deaths 

(Hodous et al., 2004). According to reports prepared for the USFA, between 1979 and 2002, 

75% of fatalities in structural fires occurred at non-residential structures (Brassell & Evands, 

2003). However, in the period from 1994 to 2002, this percentage decreased to 49% (Brassell 

et al., 2003).  

Death due to smoke inhalation/asphyxia accounts for approximately 17% of all 

firefighter fatalities and 84% of structure related fatalities (Hodous et al., 2004). Injuries are 

also a large area of concern when it comes to firefighter safety and workers compensation 

costs. In one year alone (1999), over 45,000 firefighters were injured at a fire scene, with 85% 

of these injuries occurring while fighting structural fires (United States Fire Administration, 

2002). Research analyzing various injuries at structural fires between 1993 and 1997 suggests 

that the most common type of injury involves contact or exposure to the fire, which includes 

smoke inhalation, accounting for 31% of all injuries (Fabio et al., 2002). The average per-claim 

worker’s compensation cost for a firefighter sustaining an on-duty injury has been reported 
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around $5,000, with smoke inhalation/asphyxiation costing approximately $1,080 (Walton, 

Conrad, Furner, & Samo, 2003). Firefighters are required to work under extreme physical 

conditions for sustained periods of time while relying on a finite amount of air within the air 

cylinder of the SCBA. With fires being unpredictable and unruly, risk of injury or fatality from 

smoke inhalation/asphyxia will always be of grave concern.    

The type of structure appears to be an important indicator of the associated risk to 

firefighters at a fire scene. A thorough analysis of the National Fire Incident Reporting System 

Database (NFIRS), setup by the USFA, revealed an increased odds for injury in structures with 

a higher total number of stories (3 stories or more) (Fabio et al., 2002). Additionally, increased 

odds for injury were found when the origin of the fire was either below ground level or 10 to 

49 feet above ground. The authors concluded that the increased response required at high rise 

fires compared to residential dwelling fires, primarily due to the transportation of equipment, 

places additional physical and mental stresses on firefighters that may have an effect on 

decision making processes.  

 

2.2 Physiological Demands of Firefighting 

  The ability to quantify the physiological demands of critical firefighting tasks has 

evolved tremendously over the past four decades. Evaluating these demands requires the 

capability to measure the primary indicators of physical demand: heart rate (HR) and oxygen 

consumption (VO2). Furthermore, other physiological characteristics have been determined to 

be predominantly required for firefighting tasks including increased levels of muscular strength 

and endurance, aerobic and anaerobic power, as well as motor abilities, such as: agility, manual 

dexterity, balance, and flexibility (Gledhill et al., 1992). 
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  Initially, measuring HR responses during live firefighting to predict oxygen 

consumption or using the Douglas bag method during fire simulation scenarios were the safest 

and most practical indicators of the physical demands placed upon firefighters. Studies have 

shown that within the first minute following a fire alarm, firefighters can increase their heart 

rate between 47 bpm to 61 bpm from a resting level (Barnard et al., 1975; Kuorinka & 

Korhonen, 1981). Furthermore, Barnard et al. (1975) indicated that in response to two 

subsequent fires, one firefighter had a heart rate recorded above 160 bpm for 90 mins, 

including a 15 min period with an extremely high heart rate of 188 bpm. The authors 

concluded that in almost all fire scenarios, the firefighters heart rates were elevated between 

175 bpm and 195 bpm within the first 3 to 5 minutes of the fire.  

 Lemon and Hermiston (1977b) conducted one of the original studies examining the 

energy cost of simulated critical firefighting tasks through expired gas analysis. Incumbent 

firefighters completed the four most strenuous firefighting tasks (aerial ladder climb, victim 

rescue, hose drag, ladder raise), as determined by firefighters and administration personnel, 

while wearing a Douglas bag in order to determine the physiological requirements of these 

tasks. Despite performing these tasks in a controlled environment that eliminates external 

stresses such as heat and emotional stress, the data still indicated that the firefighters were 

working between 60% and 80% of their treadmill VO2peak, with an average oxygen uptake of 

approximately 2.2 L/min for the four tasks. In addition, average heart rate during the four tasks 

corresponded to the firefighters working at 72% of peak heart rate. The authors concluded that 

those firefighters with a VO2peak greater than 40 ml/kg/min might be able to supply a greater 

percentage of their total oxygen cost aerobically. Although this research was fundamental in 

establishing the ground work in regards to evaluating the physical demands of firefighting, the 
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authors highlight the potential limitations of utilizing the Douglas bag method in collecting 

expired gases during a non steady-state work environment.  

 Following the work by Lemon and Hermiston (1977b), Kilbom (1980) attempted to 

further quantify the physiological demands of firefighting. He reported that firefighting 

requires an oxygen uptake of 1.9 l/min, with a suggested VO2peak of 2.8 – 3.0 l/min. The author 

concluded that due to the apparent age-induced decline in maximal aerobic power, pre-

employment examinations should call for firefighter recruits to have a minimum VO2peak of 3.6 

l/min.   

Davis, Dotson, and Santa Maria (1982) reported that firefighters should have a fitness 

level of 14 METS (49 ml/kg/min) in order to meet their occupation’s job requirements, while 

the minimum level should be 12 METS (42 ml/kg/min). Average heart rate during 5 simulated 

firefighting tasks (ladder extension, standpipe hose carry, hose pull, rescue, forcible entry) was 

169 bpm (92% of HRpeak), while the peak heart rate attained was 179 bpm (97% of HRpeak). 

Differences in heart rate data from this study and that obtained by Lemon et al. (1977b) might 

be due to variations in protocol. It appears that Lemon et al. (1977b) had subjects participate in 

the four tasks separately, where as Davis et al. (1982) had individuals participate in a 

sequential five event circuit. In relating the simulated tasks with physical performance 

measures in the Davis et al. (1982) study, the variables which were determined to be major 

predictors of physical work capacity based on their canonical loading values were: maximal 

treadmill heart rate (L = 0.70), maximal treadmill grade (L = 0.47), submaximal oxygen pulse 

(L = 0.57), push-ups (L = 0.64), sit-ups (L = 0.62), chin-ups (L = 0.61), standing long jump (L 

= 0.41), age (L = 0.61), and perfect body fat (L = -0.44).  
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Sothmann et al. (1990) studied 20 incumbent firefighters while monitoring heart rate, 

oxygen consumption, and inspired ventilation during simulated firefighting tasks and found the 

subject group had an average VO2peak of 39.9 ml/kg/min. This group of firefighters worked at 

76% of VO2peak (30.3 ml/kg/min) during the simulated tasks with an inspired ventilation of 46.7 

L/min, and reached a mean heart rate of 173 bpm. The authors concluded that based on the 

current data, firefighters require a minimum VO2peak of 33.5 ml/kg/min in order to attain 

performance requirements. In addition to these findings, the authors studied an additional 32 

firefighters in order to validate the proposed minimum VO2peak value, and found that those 

individuals with a VO2peak between 33.5 – 51.0 ml/kg/min had a much greater probability of 

completing the simulated firefighting protocol under the allotted completion time compared to 

those firefighters with a VO2peak between 26.0 – 33.49 ml/kg/min. 

Due to the obvious safety concerns and technical limitations in studying actual fire 

emergencies, researchers have used heart rate measurements to predict oxygen consumption 

during fire suppression. In order to achieve this extrapolation, Saupe, Sothmann, and Jasenof 

(1991) developed a regression equation to predict oxygen uptake by measuring heart rate in the 

field and determining VO2peak from a maximal treadmill test to volitional fatigue:  

Corrected VO2 = -11.37 + 1.09 (Treadmill VO2 ml/kg/min) 

Sothmann, Saupe, Jasenof, and Blaney (1992) utilized this equation in order to examine 

the heart rate and predicted oxygen uptake responses of 10 firefighters during actual 

emergencies. During the live fire emergencies, the firefighters were working at an average 

heart rate of 157 bpm (88% of HRpeak), which corresponded to a mean VO2 of 25.6 ml/kg/min 

(63% of VO2peak). This data further emphasized the previous recommendations for a minimum 
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VO2peak ranging from 33.5 to 42.0 ml/kg/min, which the authors concluded appears to be 

appropriate in relation to studying actual emergencies.   

With many recommendations for a minimum VO2peak for firefighter applicants reported, 

Gledhill et al. (1992) conducted a task analysis to detail the specific tasks conducted by 

incumbent firefighters. The aim was to evaluate the physical abilities related to these tasks, 

determine those tasks identified as physically demanding, and determine the physiological 

requirements to complete these tasks. Based on this analysis the most demanding tasks (10% of 

the tasks evaluated) required a mean VO2 of 41.5 ml/kg/min, whereas 90% of the other tasks 

evaluated required a mean VO2 of 23 ml/kg/min. The authors determined that working at an 

oxygen uptake of 41.5 ml/kg/min was approximately 85% of the subjects average VO2peak, 

which has been suggested that activity of this intensity be limited to 10 minutes (Astrand & 

Rodahl, 1986). Therefore, based on the extensive task analysis and physiological 

measurements, they recommended that recruit firefighters have a minimum VO2peak of 45 

ml/kg/min.  

A recent investigation by Holmér and Gavhed (2007) quantified the ventilatory 

demands of a 22 min, 11 task simulated fire scenario while wearing full PPE, SCBA, and a 

portable gas collection system. However, the full face mask of the SCBA was replaced by a 

low resistance half-mask that was not connected to the air cylinder of the SCBA. The portable 

gas collection system utilized measured and reported expired ventilation, oxygen, and carbon 

dioxide values every 10 seconds. The data indicated that firefighters exhibited an average 

oxygen consumption of 2.75 l/min (33.9 ml/kg/min) with an expired ventilation value of 82 

l/min (BTPS) and mean heart rate of 168 bpm. The most demanding activity (2 – 3 min 

duration) within the scenario was the “tower” exercise in which the firefighters had to ascend 
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three flights of stairs and then descend four flights of stairs to an underground floor. This 

specific task required an average oxygen uptake of 3.55 l/min (43.8 ml/kg/min) with a mean 

expired ventilation of 102 l/min (BTPS) and average heart rate of 179 bpm. The authors 

indicated that for similar type of work there is high degree of individual differences in energy 

requirements, and that the individual must make the final determination in balancing the 

physical work load with their own physical work capacity (Holmer & Gavhed, 2007).  

These previous studies have been very beneficial in determining average oxygen 

consumption during simulated firefighting tasks, but there are limitations when applying these 

minimum requirements to the general recruit population. The majority of the studies suggesting 

a minimum VO2peak value analyzed average maximal oxygen consumption from relatively 

small sample sizes of all male subjects. As well, controlling the work rate of critical 

firefighting tasks does not come without major difficulty. The individual’s self determined 

working pace may result in various work rates and energy expenditures during simulated 

firefighting tasks. In the 21st century, there are considerably more female recruits being hired 

than a decade ago, and further research may prove that gender differences occur 

physiologically in order to complete the same task. 

 Despite the considerable focus on increased heart rate and oxygen consumption during 

actual and simulated firefighting scenarios, work performance during these tasks requires a 

large amount of anaerobic energy expenditure (Davis & Dotson, 1987). Using VO2 as a 

measure of energy cost requires the assumption that the majority of energy is being supplied 

through aerobic sources (Lemon et al., 1977b). However, in most firefighting tasks, anaerobic 

metabolism is a major contributor possibly accounting for more than 50% of the energy 

required (Lemon et al., 1977b). Of the four firefighting tasks (aerial ladder climb, victim 
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rescue, hose drag, ladder raise) examined by Lemon et al. (1977b), average respiratory 

exchange ratio values (RER) ranged from 0.97 to 1.07, possibly indicating a high anaerobic 

component. Furthermore, Gledhill et al. (1992) collected blood samples five minutes following 

completion of a series of firefighting tasks and revealed that peak lactate concentrations were 

in the range of 6 to 13 mmol/L.  

Although there have been numerous simulation scenarios conducted by various 

researchers over the past three decades, it appears that the most physically demanding of all the 

activities is the victim search and rescue (Holmer et al., 2007; Romet & Frim, 1987). 

Participation in this activity alone has been reported to result in elevated heart rates averaging 

approximately 153 bpm.  

 

2.3 Implications and responses to wearing Personal Protective Equipment 

 The physically demanding nature of the firefighting occupation is further enhanced due 

to the personal protective ensemble (PPE) that must be worn to protect against the extremely 

high external temperatures. Studies have reported that ambient temperatures during firefighting 

can range from 38°C to 93.3°C (Faff & Tutak, 1989; Smith, Petruzzello, Kramer, & Misner, 

1996) and may even exceed 200°C (Baker, Grice, Roby, & Matthews, 2000). Teitlebaum and 

Goldman (1972) described that when wearing multiple clothing layers compared to wearing 

the equivalent weight on a belt required an increased energy cost while walking on a treadmill. 

PPE worn by firefighters is not only effective in preventing heat from the external environment 

penetrating the clothing, but also creates a microenvironment within the PPE prohibiting the 

heat generated by the firefighter from escaping (Cheung, McLellan, & Tenaglia, 2000; Faff et 

al., 1989; Holmer, Kuklane, & Gao, 2006; White & Hodous, 1988). In an unclothed exercise 
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situation, thermal energy regulation between the human and ambient environment is 

accomplished directly across the skin (Cheung et al., 2000). With the addition of protective 

clothing, the microenvironment formed directly above the surface of the skin establishes the 

new environmental layer between the body and the environment (Cheung et al., 2000).  

In order to determine the physiological response of wearing PPE during exercise, Baker 

et al. (2000) walked subjects at a moderate workload of 7 km/h on a treadmill and found that 

the addition of wearing PPE in a thermoneutral ambient environment resulted in an increased 

heart rate response of 25 bpm when compared to the same intensity while wearing a regular 

sports ensemble (171 bpm vs. 146 bpm, respectively). A significant increase in VO2 at this 

exercise intensity was observed while wearing the PPE resulting in a workload of 

approximately 74% of VO2peak compared to 66% in the sports ensemble (39.9 ml/kg/min 

vs.36.1 ml/kg/min, respectively). These data indicate that performing routine exercise in PPE 

adds an increased workload on the firefighter in terms of higher oxygen consumption and heart 

rate.   

 An important factor in firefighter safety is the rise in core temperature from heat stress 

during firefighting tasks, especially throughout the recovery period. Even during rest periods or 

passive cooling recovery (sitting in front of a fan), core and tympanic temperature continues to 

increase in the range of 0.25°C to 0.9°C  following consecutive bouts of exercise (Carter, 

Banister, & Morrison, 1999; Faff et al., 1989; Ftaiti, Duflot, Nicol, & Grelot, 2001; Holmer et 

al., 2006; Selkirk & McLellan, 2004). Smith et al. (1996) reported that firefighters performing 

two 8 min tasks (advancing hose, chopping a wood block) while in a live fire scenario resulted 

in near maximal heart rates at the end of the 16 min protocol (182.3 bpm) with a mean 

tympanic temperature of 40.1°C and blood lactate level of 3.8 mmol/L. 
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 Holmér et al. (2006) found that when walking at a lower intensity (5 km/h) on a 

treadmill wearing full PPE including the weight of an SCBA, metabolic energy production was 

increased by 37% compared to working at the same intensity in under garments. The authors 

concluded that the most important factor resulting in heat stress is metabolic heat production 

produced by physical work, and not slight variations in the heat transfer properties of the PPE. 

This is in line with previous work by O'Connell, Thomas, Cady, and Karwasky (1986), who 

reported a 35% increase in oxygen consumption with the addition of PPE, SCBA, and 

equipment while walking for 5 minutes on a stepmill ergometer at 60 steps/min.  

 

2.4 Implications of using a Self-Contained Breathing Apparatus 

Respiratory protective devices are commonly used when there is an inability to prevent 

exposure from contaminated atmospheres. Respiratory protective devices are usually classified 

as (i) filtering (air-purifying) devices, (ii) air line (supplied-air) apparatus, and (iii) self-

contained breathing apparatus (SCBA) (Louhevaara, 1984). The use of an SCBA is limited to 

tasks that require near maximal or maximal effort, as is the case in the firefighting service 

(Louhevaara, 1984). SCBA’s are classified as “demand” or “pressure-demand” respirators with 

their ability to reduce the inspired resistance and create an additional protection factor to 

external toxins by maintaining the positive pressure within the face mask (Raven, Bradley, 

Rohm-Young, McCLure, & Skaggs, 1982).  

Many previous studies over the past three decades have examined the use of an SCBA 

during incremental maximal exercise and steady-state submaximal exercise using a treadmill or 

bicycle ergometer. In all studies, the added weight of the SCBA resulted in increased heart 

rates during each submaximal exercise intensity ranging from 6 bpm to 20 bpm (Louhevaara, 
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Smolander, Korhonen, & Tuomi, 1986; Louhevaara, Smolander, Tuomi, Korhonen, & 

Jaakkola, 1985; Louhevaara, Tuomi, Korhonen, & Jaakkola, 1984; Wilson et al., 1989). These 

investigations analyzed early SCBA models and found that during light and moderate 

submaximal exercise, expired ventilation was decreased when compared to control trials 

without wearing an SCBA, whereas oxygen consumption was increased during the same work 

intensity (Louhevaara et al., 1986; Louhevaara et al., 1985; Louhevaara et al., 1984; Wilson et 

al., 1989). During heavy exercise, expired minute ventilation was increased by 8.1 l/min – 10.1 

l/min, along with an increase in oxygen consumption of 0.54 l/min – 0.8 l/min (Louhevaara et 

al., 1986; Louhevaara et al., 1985; Louhevaara et al., 1984). Throughout all exercise intensities, 

tidal volume was decreased while wearing the SCBA when compared to the control trial 

(Louhevaara et al., 1985).The authors indicated that the additional increase in ventilation while 

wearing the SCBA during heavy exercise was due to shorter inspiratory and expiratory times 

with a subsequent increase in breathing frequency (Louhevaara et al., 1985). They suggested 

that the observed changes in breathing pattern might be due to the prevention of free and 

efficient thoracic motion caused by the shoulder harness of the heavy SCBA (Louhevaara et 

al., 1985).  

However, Wilson et al. (1989) found at heavy and maximal exercise, expired 

ventilation was not significantly changed, whereas oxygen uptake continued to produce a 

significant increase when compared to the no SCBA control condition. Contrary to the work by 

Louhevaara et al. (1985), Wilson et al. (1989) reported that breathing frequency while wearing 

an SCBA was decreased when compared to no SCBA. Furthermore, this finding was offset by 

a significantly greater tidal volume in the SCBA condition, thereby maintaining expired 

ventilation levels at maximal exercise. The authors concluded that the significantly greater 

 15



peak expired pressure in the SCBA condition, accompanied by a significantly decreased peak 

expired flow, suggests an increased work of breathing while wearing an SCBA during exercise. 

The differences in the data seen by Louhevaara et al. (1985) and Wilson et al. (1989) might be 

due to the different exercise protocols utilized by both groups. Louhevaara et al. (1985) applied 

a steady-state exercise protocol of five minute stages with subjects exercising at 25%, 40%, 

and 57% of their individual maximal oxygen consumption, where as Wilson et al. (1989) 

implemented a treadmill ramp protocol increasing grade 0.5% every 12 seconds until the 

subject reached volitional fatigue. These differences in methodology might explain the 

variation in the results from a steady-state exercise protocol and a ramped maximal exercise 

test. 

 Raven, Davis, Shafter, and Linnebur (1977) and Manning and Griggs (1983) have 

shown that work performance time decreases by approximately 20% while wearing an SCBA. 

In addition, Wilson et al. (1989) found that subjects wearing an SCBA took approximately one 

minute longer to reach the same absolute work rate when compared to not wearing an SCBA. 

Based on the results of Louhevaara et al. (1986), the authors determined that in order to operate 

efficiently while wearing an SCBA in situations lasting 20 – 30 min, an individual must have a 

VO2peak of at least 3.5 l/min. To further this conclusion, they suggested that regular short 

pauses of approximately 30 seconds are necessary between work phases because wearing an 

SCBA has a small impact on gas exchange and breathing pattern during recovery. Despite the 

apparent negative effects of respirator wear on performance time, it appears that individuals 

with a high aerobic power (> 50 ml/kg/min) are able to supersede the effect of the SCBA on 

performance time (Eves, Jones, & Petersen, 2005; Louhevaara et al., 1986; Wilson et al., 

1989). 
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 Although research examining the specific use of the SCBA is vital, for the firefighting 

industry research including the wearing of both SCBA and PPE is important. Davis and Santa 

Maria (1975) found that when firefighters wore their PPE (helmet, coat, boots) and SCBA 

while walking on a treadmill, their physiological measurements of heart rate and oxygen 

consumption were increased by 33% compared to an equivalent work rate wearing only 

exercise clothing. 

Twenty years later, Louhevaara, Ilmarinen, Greifahn, Kunemund, and Makinen (1995) 

found that performing a graded maximal exercise test while wearing the SCBA and PPE 

resulted in a 25% decrease in work performance time when compared to not wearing either 

piece of equipment. This decrease in maximal power output was attributed to the extra mass of 

the SCBA and PPE. At maximal exercise, expired ventilation, absolute oxygen consumption, 

heart rate, and the respiratory exchange ratio showed no significant differences. Based on 

individual characteristics of the participants, the authors concluded that subjects with a high 

anaerobic capacity are more efficient in terms of work performance while wearing heavy PPE 

and SCBA. However, even though the SCBA and PPE were used, the full standard issued face 

mask was not worn by any of the individuals and might be the cause for no statistical 

differences in gas exchange variables.  

  Since the initial research examining the physiological responses while wearing the 

SCBA, many modifications have been made by manufacturers to increase the protection and 

safety of wearing the device. Recently, Dreger, Jones, and Petersen (2006) examined the use of 

a current SCBA model and PPE on maximal oxygen uptake. The results indicated that 

maximal oxygen consumption was reduced by approximately 17%. This reduction in VO2peak 
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was significantly related to a decrease in peak ventilation, which was attributed to a reduced 

tidal volume, while breathing frequency was unchanged at peak exercise. 

 In addition to these findings, Eves et al. (2005) investigated the effects of wearing the 

SCBA, as well as each of the individual components of the system, without wearing full PPE 

(wearing only the PPE jacket). After completing four maximal graded exercise tests, the results 

showed that wearing only the SCBA pack and harness system while breathing through a low-

resistance two-way valve reduced maximal oxygen uptake by approximately 5%, where as 

wearing the entire SCBA system or just the SCBA regulator both reduced VO2peak by 

approximately 15%. These results differed from the work done by Louhevaara et al. (1985) in 

that at submaximal levels, Eves et al. (2005) found that ventilation was unchanged. This 

difference may be the result of a more advanced, remodeled SCBA from the previous model 

used in research two decades earlier. The authors suggested that wearing the SCBA reduces 

maximal oxygen uptake by limiting expired ventilation, but this response was secondary to the 

reduction caused by the increased expiratory breathing resistance of the SCBA regulator. They 

further concluded that during incremental exercise, expiratory flow rate and ventilation appear 

to be sufficient while wearing the SCBA below a minute ventilation of 110 l/min. Therefore, 

the SCBA used in this study does not appear to have a significant effect on normal firefighting 

operations, based on the assumption that a ventilation of 90 l/min is sufficient for most 

firefighting tasks (Eves et al., 2005). 
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3.0 METHODS 

3.1 Subjects 

35 male and 3 female fire fighters between the ages of 30 and 53 were recruited from the 

Toronto Fire Service as volunteers to take part in this study. Informed written consent was 

obtained prior to commencing any phase of the project. 

 

3.2 Physiological Measurements 

 In order to obtain a physiological profile of each of the firefighters, all participants had 

their peak aerobic power (VO2peak) evaluated using an incremental treadmill exercise to 

exhaustion on a Quinton treadmill (Quinton, Bothwell, WA), followed by an evaluation of 

muscular strength and endurance (Donovan & McConnell, 1999). The maximal exercise 

protocol consisted of a four minute warm-up at 3 miles/hour, followed by increases of 1 

mile/hour every two minutes until a speed of 6 miles/hour is reached, and then increasing the 

grade by 2% every two minutes until volitional fatigue. 

Breath by breath gas exchange measurements and heart rate were evaluated during the 

incremental treadmill tests using the Cosmed K4b2 portable system (Cosmed, Rome, Italy). 

The K4b2 is a telemetric gas collection system that consists of a portable unit (170 x 55 x 100 

mm, 475 g), fixed onto a chest harness worn by the subject and connected to a battery pack 

(170 x 48 x 90 mm, 330 g) that is fixed to the harness and strapped onto the individual’s back. 

A heart rate telemetry receiver is connected to the portable unit and receives data transmitted 

by a Polar heart rate monitor (Polar Electro Canada, Lachine, QC) strapped around the chest of 

the subject. Gas volumes and flows are measured using a flowmeter with a bi-directional 

digital turbine and opto-electric reader capable of measuring volumes in the range of 0 – 300 
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l/min. The opto-electric reader is comprised of three diodes that are capable of detecting the 

turn of the turbine. The O2 analyzer is a gas filter correlation thermostated analyzer capable of 

measuring gas concentrations in the range of 7 – 24% with an accuracy of 0.02%. The CO2 

analyzer is a non-dispersive infrared thermostated analyzer capable of measuring gas 

concentrations ranging from 0 – 8% with an accuracy of 0.01%. Expired gases are transferred 

to the gas analyzers through a semi-permeable Nafion capillary tube that removes humidity in 

the expired air. The soft, flexible facemask (Hans Rudolph, Kansas City, MO) covers the 

individual’s mouth and nose and is fastened to a bonnet on the subject’s head. For these tests, 

the K4b2 was harnessed on the participants with data being transmitted through a telemetry 

system to a personal computer in order to visualize the data in real-time. Following the test, 

complete data sets were downloaded directly from the portable K4b2 unit to the personal 

computer. Prior to each test, the flowmeter was calibrated using a 3.0 litre syringe, while the 

O2 and CO2 analyzers were calibrated using a two point calibration of room air and a certified 

medical gas tank (~ 16.00% O2 and 5.00% CO2). 

Muscular strength measures were obtained using a predictive one-repetition maximum 

(1-RM) formula, as previously described (Kraemer & Fry, 2006): 

Predicted 1-RM = Load Lifted / (1 – 0.025 * reps) 

Prior to each of the predicted 1-RM strength tests, participants completed a five repetition 

warm-up using an approximately 40% load of their 1-RM (Kraemer et al., 2006). Following a 

one minute rest period (Armstrong, Brubaker, Whaley, & Otto, 2006; Kraemer et al., 2006), a 

load was determined that would fatigue the participant under ten repetitions. Following the 

predictive 1-RM test, a three to five minute rest period was implemented before proceeding to 

the next predictive 1-RM test. The muscular strength tests that were utilized (in order of testing 
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protocol) were maximal handgrip using a hand dynamometer (Takei Co. Ltd., Tokyo, Japan), 

the flat bench press using a 20 kg Olympic bar, seated 45° incline leg press, military shoulder 

press using a 20 kg Olympic bar, and standing bicep curls using a 7 kg bent curl bar. As 

muscular strength and endurance play an important role in the physical demands of fire 

suppression, using more dynamic free-weight exercises represents a more “job-specific” testing 

model than the standard fitness test (push-ups, sit-ups, pull-ups, body weight, standing long 

jump) (Rhea, Alvar, & Gray, 2004). 

Muscular endurance was evaluated for upper and lower body using the flat bench press 

and seated 45° incline leg press. To determine upper body endurance, a flat bench press 

utilizing an absolute load of 30 kg was lifted to a cadence of 60 beats/min, which corresponds 

to 30 repetitions/min. The absolute load of 30 kg was selected in order to guard against any 

inability of the subjects in lifting a heavier weight. For lower body endurance, a seated 45° 

incline leg press was utilized with participants lifting an absolute load of 123 kg at a cadence of 

50 repetitions/min. For both muscular endurance tests, participants were required to lift the 

load until no further repetitions could completed or there was an inability to maintain cadence.   

 

3.3 Cosmed K4b2 and SCBA Integration 

 In order to collect breath by breath gas exchange variables while subjects were wearing 

the full SCBA system, the Cosmed K4b2 was carefully integrated into the SCBA without 

altering any of the positive pressure properties. Modifications to the SCBA face mask were 

made by creating an elbow to connect to the expiration port of the mask, allowing for a three 

inch tube to be connected to the elbow and protruding to the right of the mask. The flowmeter 

of the K4b2 system was connected to the distal end of the three inch tube. Sampling expired 
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gases was accomplished by installing a rubber tube through the voice box into the nose cup of 

the SCBA mask, with the distal end exposed external to the mask. The Nafion sampling tube 

from the K4b2 system was mounted into the rubber hose allowing for expired gas 

concentrations to be determined. 
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Figure 1:  Front view of the modifications made to the MSA SCBA facemask to integrate the 
Cosmed K4b2system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: Side view of the modifications made to the MSA SCBA facemask to integrate the 
Cosmed K4b2system. 
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3.4 High Rise Protocol 

 The two high rise scenarios were conducted on the same day approximately two hours 

apart, with the order of the tasks being randomized for each subject. The maximal stair climb 

scenario was implemented to determine the total number of flights that each subject is able to 

climb and safely exit before their SCBA low air alarm sounds at 25% of air remaining. Each 

fire fighter wore full PPE (bunker pants, jacket, flash hood, gloves, and helmet) that weighed 

approximately 9.2 kg, and the integrated SCBA and Cosmed k4b2 system. Prior to the test, 

subjects stood for two minutes with full SCBA and PPE worn while breathing room air in 

order to collect resting data. Following the test, one minute of recovery data was collected. 

Firefighters were requested to ascend flights of stairs in a stairwell, while carrying an 

additional 18 kg high rise pack (comprised of two rolled up sections of 38 mm hose), until 

depleting ~55% of the air in their cylinder, at which time they were instructed to remove the 

high rise pack, turn around and descend in order to achieve a safe exit (Figure 3).  Performance 

time was recorded for each flight during the maximal stair climb scenario and it was 

determined that a firefighter had completed a given flight when both feet were on the landing 

of the next flight. The height of each flight was measured and in accordance with the 

performance time results, velocity and work rate were calculated for each flight of the entire 

scenario. Velocity was calculated from the formula:  

height of the flight (m) / time to complete flight (sec) 

In order to calculate work rate, kinetic and potential energy was calculated for each flight 

climbed using the formulas: 
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Kinetic Energy = 1/2mv2, 

where m = body mass + PPE+SCBA 

v = velocity 

Potential Energy = mgh, 

where m = body mass + PPE + SCBA 

g = gravitational constant 9.81 m/s2

h = height of flight 

Total work was calculated by adding the kinetic and potential energies, then dividing by the 

time it took to complete the given flight of stairs was used to calculate work rate in Watts: 

(Kinetic Energy + Potential Energy) / Time to complete flight 

 Determination of the turn around pressure is described in the Discussion section 5.1.  

The next task was utilized to determine the physiological characteristics and ventilatory 

demands while performing a combination of critical fire fighting tasks. Prior to the testing 

protocol, subjects stood for two minutes while wearing full SCBA and PPE and breathing 

room air in order to collect resting data. Following the test, one minute of recovery data was 

collected. Each fire fighter wore full PPE and integrated SCBA and Cosmed k4b2 system for 

the entire duration of this task. Firefighters were requested to ascend five flights of stairs while 

carrying an additional 18 kg high rise pack (comprised of two rolled up sections of 38 mm 

hose) (Figure 3). When arriving at the fifth floor, the firefighter dropped the high rise pack and 

crawled on hands and knees down the hall advancing a 38mm hose a distance of 18.3 m 

(Figure 4). At various intervals during the hose advance, each firefighter completed three 

separate room searches simulating a scan for a victim (Figure 5). After completing the room 

searches and hose advance, the firefighter carried out a forcible entry simulation of breaching a 
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door (force plate resistance set at 700 – 800 psi) (Figure 6) and then rescued a 75 kg 

mannequin a distance of 22.9 m back to the stairwell (Figure 7) and descended five flights of 

stairs.  

For both of the high rise scenarios, firefighters were requested to perform the tasks at 

an equivalent rate that would be required at an actual fire scene. 
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Figure 3: Maximal stair climb and first task of the 5th floor high rise scenario while wearing 
full PPE and SCBA and carrying the 18 kg high rise pack. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  
Figure 4: Hose pull task during the 5th floor high rise scenario. 
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Figure 5: Room search task during the 5th floor high rise scenario. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6: Forcible entry task during the 5th floor high rise scenario. 
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Figure 7: Victim rescue drag task during the 5th floor high rise scenario. 
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Figure 8: Schematic of the 5th floor high rise scenario. Each firefighter entered the floor by 
the stairwell, searched one room on the left and two rooms on the right with a concurrent 38 
mm hose drag. The firefighter on his/her hands and knees is completing the final portion of the 
hose drag ending at the red mark. The mannequin for the victim rescue drag is found in the 3rd 
room on the right. 
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3.5 Subway System Scenario 

This scenario comprised critical firefighting tasks that simulate the typical requirements 

for an individual firefighter at a subway system fire scene. Each firefighter wore full PPE and 

integrated SCBA and Cosmed k4b2 system. Prior to the test, subjects stood for two minutes 

while wearing full SCBA and PPE and breathing room air in order to collect resting data. 

Following the test, one minute of recovery data was collected while continuing to breathe 

through the SCBA regulator. Two firefighters (firefighter A and firefighter B), working 

together as a team, picked up a 22 kg high rise pack (comprised of two 38 mm hose bundles, 

hose nozzle, and tool) and descend 22 stairs in order to reach a subway platform, walk a 

distance of approximately 30.5 m to the entrance of the subway tunnel, walk 152.4 m to 

specialized ladder, pick up the specialized ladder hanging track side, walk an additional 100.6 

m toward a subway car, remove their high rise packs and attach the ladder in order to mount 

the subway car, perform a 54.9 m search through two subway cars, the firefighter A rescued a 

75 kg mannequin a distance of 27.4 m back through the first subway car while firefighter B 

acted as a guide to avoid potential obstacles, following completion of rescuing the mannequin 

from the first subway car firefighter B rescued the 75 kg mannequin 27.4 m through the second 

subway car while firefighter A acted as his/her guide, after completing the rescue drag the 

firefighters descended the subway car and walked a distance of approximately 283.5 m back to 

the base of the stairwell, and ascended 22 stairs in order to exit the fire scene. Firefighters were 

requested to perform the tasks at an equivalent rate that would be required at an actual fire 

scene. 
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Figure 9: Schematic of the stair climb task and start/finish position for the subway system 
scenario. 
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Figure 10: Schematic of the walk from the bottom of the stair climb to the track level for the 
subway system scenario. 
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Figure 11: Schematic of the track level and pathway walked by each firefighter for the subway 
system scenario. 
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Figure 12: The ladder carry task for the subway system scenario. The length of the tunnel is 
indicative of the tunnel walk completed prior to picking up the ladder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: The ladder setup task for the subway system scenario. 
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Figure 14: The victim rescue drag for the subway system scenario. Firefighter A is dragging 
the victim while Firefighter B acts as a guide to help avoid any potential obstacles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Final stair ascent at the completion of the subway system scenario. 
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3.6 Mechanical Calibration 

In order to determine the validity of the modifications made to the SCBA facemask 

when integrating it into the Cosmed K4b2 breath by breath gas collection system, a mechanical 

calibrator developed by the University of Waterloo and Vacumed (CA) was used. The 

mechanical calibrator is comprised of two 3 litre syringes, one containing inspired gases while 

the other contains a certified medical gas (~ 16% O2 and 5% CO2) that will act as the expired 

gas. A schematic of the mechanical calibrator can be found in Figure 16. The mechanical 

calibrator works using a motorized piston that is capable of drawing air into the system and 

pushing air out of the system. The system can be adjusted to allow for different tidal volumes, 

as well as manipulated to set various flow rates. During inspiration, air is inspired through the 

device under test (DUT) into the inspiration syringe; at the same time, air is drawn in from the 

known medical gas contained in the Douglas bag and flows into the expiration syringe. Once 

inspiration has been completed, the commencement of expiration results in the air contained in 

the inspiration syringe being pushed out through a separate tube and into room air while the 

known medical gas contained in the expiration syringe is passed through the DUT. One-way 

valves are placed in both the expiration and inspiration tubes in order to prevent any 

contamination of gases within the system. Furthermore, a three-way valve is placed at the front 

of the calibrator to deter inspired gases from flowing into the expiration syringe, and vice 

versa.  

A variety of flow rates were chosen at a tidal volume of 3.0 L to verify that the 

modifications made to the SCBA facemask still obtained valid results. Due to complications 

with back pressures and one-way valve failures when the full SCBA facemask was attached to 

the mechanical calibrator, only the 3 inch elbow and connected turbine were attached to the 
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calibration system. Three elbows were constructed to be utilized during the simulation testing; 

therefore, all three elbows were tested using the mechanical calibrator to determine their 

validity. Thirty second data sets were collected at flow rates of 15, 22.5, 30, 37.5, 45, 52.5, 60, 

67.5, 75, 82.5, and 90 l/min. These flow rates were chosen based on the range that would be 

observed during simulated firefighting tasks. Data sets were then averaged over 30 seconds to 

obtain one set of values for each variable. Data collected from the integrated SCBA Cosmed 

K4b2 system were compared against predicted values determined from the mechanical 

calibrator. Predicted values were calculated based on the tidal volume, flow rate, and ambient 

environment (temperature, barometric pressure, and humidity). For expired gases, it was 

assumed that the temperature of the known medical gas was equivalent to that of room air and 

the humidity was dry at 0%.  

VO2 values were also determined by calibrating the flow turbine at 15, 22.5, and 30 

l/min and collecting 30 second data sets at each flow rate using the same procedure described 

above. Data from the mechanical calibration procedure can be found in Appendix A.  

It should be noted that these calibration techniques were only preliminary to determine 

the usability of the integrated SCBA Cosmed K4b2 system. Further calibrations to establish the 

reliability and validity of the system will be forthcoming following completion of this thesis.  
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Figure 16: Schematic of the mechanical calibrator. Arrows represent the air flow through the 
system and subsequently out to the device under test (DUT). 
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3.7 Statistical Analysis 

 Physiological measures that were collected during each of the firefighting scenarios 

include minute ventilation (VE), oxygen consumption (VO2), carbon dioxide production 

(VCO2), respiratory exchange ratio (RER), and heart rate (HR). All data were smoothed over 5 

breaths. VO2 and heart rate values were expressed relative to their maximal values as 

determined by the maximal incremental treadmill test. Average values were calculated for each 

of the individual components of the scenario, as well as for the entire scenario as a whole. For 

the 5th floor high rise scenario, the hose drag and room search data were averaged from the 

beginning of the second hose drag to the completion of the final hose drag. 

 During each of the protocols, performance times were recorded for every component of 

the scenario. As well, SCBA tank pressures were recorded using MSA Accountability 

Software (Mine Safety Appliance, Pittsburgh, PA) to determine total air consumption 

throughout each scenario.  

 Average values for the entire scenario, as well as for individual components were 

calculated and linear regressions were run between the physical fitness testing measures and 

physiological variables from the scenario. Furthermore, the total amount of air consumption 

was determined and simple regressions were run between the physical fitness testing measures 

and gas exchange variables collected throughout each of the scenarios. Significance level for 

all statistical analyses was set at p < 0.05.  

 Average values for VE (l/min), VO2 (ml/kg/min), and HR (bpm) were tested for 

differences between the three scenarios using an One-way repeated measures ANOVA, 
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followed by a Bonferonni post-hoc test, in order to determine which scenario was the most 

physically demanding.  
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4.0 RESULTS 

4.1 Firefighter Characteristics 

38 participants were recruited to take part in this study; however, two withdrew from this study 

and are not included in the analysis. The remaining 36 firefighters were comprised of 33 males 

and 3 females. The mean anthropometric characteristics are summarized in Table 1. Due to the 

small number of female subjects in this study, data were analyzed using a combined group 

including both male and female subjects. The average anthropometric characteristics for the 

combined group for age was 40.7 ± 6.5 years (range 30 to 53 years), 12.3 ± 8.5 years of service 

as a firefighter (range 0.5 to 30 years), height of 178.3 ± 6.4 cm (range 164 to 196.5 cm), body 

mass of 87.5 ± 12.2 kg (range 60.2 to 111.2 kg), BMI of 27.5 ± 3.4 kg/m2 (range 20.8 to 34.6 

kg/m2), and body fat% of 18.8 ± 3.7% (range 8.7 to 26.5%).  

 

Table 1:  Anthropometric values for males, females, and combined groups.  
 

 Males 

(n = 33) 

Females 

(n = 3) 

Combined 

(n = 36) 

Age (years) 41.5 ± 6.5 31.7 ± 1.5 40.7 ± 6.5 

Height (cm) 179.2 ± 5.9 168.7 ± 4.2 178.3 ± 6.4 

Body Mass (kg) 89.0 ± 11.4 71.3 ± 9.8 87.5± 12.2 

Body Mass Index (kg/m2) 27.7 ± 3.4 25.0 ± 2.4 27.5 ± 3.4 

Body Fat % 18.8 ± 3.7 18.7 ± 2.6 18.8 ± 3.7 

Values are mean ± S.D. 
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4.2 Physical Fitness Tests 

 One female subject was unable to complete the physical fitness tests due to scheduling 

restrictions, thus, only two females are included in this portion of the analysis. Furthermore, 

one male subject’s VO2peak data could not be obtained due to injury at the time of the physical 

fitness testing; therefore 32 males were used in this analysis. Due to technical difficulties with 

the polar band heart rate system, 28 participants’ peak heart rates were recorded during the 

incremental treadmill test. 

 Absolute (ml/min) and relative (ml/kg/min) VO2peak, VCO2, RER, and HR values for 

male and female firefighters are presented in Table 2, while muscular strength and endurance 

measures are summarized in Table 3. The treadmill VO2peak value was 4470 ± 696 ml/min, 

corresponding to 51.4 ± 6.5 ml/kg/min. Muscular strength tests revealed an average maximal 

handgrip strength of 57 ± 7 kg, bench press of 96 ± 27 kg, shoulder press of 67 ± 15 kg, biceps 

curls of 51 ± 8 kg, combined total upper body strength of 213 ± 46 kg, and leg press strength of 

352 ± 70 kg. Average muscular endurance repetitions to fatigue values were 42.4 ± 14.0 for 

upper body endurance and 52.8 ± 34.9 for lower body endurance.  
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Table 2: Treadmill VO2peak, VCO2, RER, and HR values 
 Males 

(n = 32) 
Females 
(n = 2) 

Combined 
(n = 34) 

VO2peak(ml/min) 4535 ± 644 3425 ± 901 4470 ± 696 

VO2peak (ml/kg/min) 51.6 ± 6.8 48.9 ± 3.5 51.4 ± 6.5 

VCO2 (ml/min) 4489 ± 592 3913 ± 85 4455 ± 590 

RER 0.99 ± 0.08 1.18 ± 0.29 1.01 ± 0.10 

HRpeak (bpm) 183 ± 9 186 ± 9 184 ± 9 

 Values are mean ± S.D. 
 
 
 
Table 3: Average Muscular Strength and Endurance Values 

 Males Females Combined 
(n = 32) (n = 2) (n = 34) 

 Muscular Strength (kg) 

Handgrip 58 ± 6 39 ± 2 57 ± 7 

Bench Press 96 ± 27 84 ± 37 96 ± 27 

Shoulder Press 68 ± 15 67 ± 15 67 ± 15 

Biceps Curls 51 ± 7 39 ± 10 51 ± 8 

Leg Press 355 ± 70 311 ± 75 352 ± 70 

Total Upper Body 215 ± 45 174 ± 108 213 ± 46 kg 

 Muscular Endurance (reps) 

Upper Body 42.6 ± 14.2 38.5 ± 10.6 42.4 ± 14.0 

Lower Body 48.9 ± 30.1 114.0 ± 65.1 

Values are mean ± S.D. 

52.8 ± 34.9 
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4.3 High Rise Maximal Stair Climb Scenario 

 For this scenario, 3 data sets could not be analyzed due to equipment errors during 

collection, resulting in 33 firefighters being incorporated into this portion of the analysis. 

Maximal stair climb following a predetermined air consumption based on a given cylinder 

pressure resulted in an average of 20 ± 2.5 floors climbed (range 14.5 to 23 floors), with the 

average duration of the ascent portion of the climb lasting 6 min 31 s ± 1 min 5 s. Including the 

descent segment of the task, the mean total completion time for the entire task was 10 min 23 s 

± 1 min 26s. The age of the firefighter correlated significantly with maximal number of stairs 

climbed (r = -0.30, p < 0.05) (Figure 17). Firefighter’s body mass (r = -0.46, p < 0.05) (Figure 

18), body mass index (r = -0.42, p < 0.05), and body fat percentage (r = -0.44, p < 0.05) 

showed individual correlations with the maximum number of stairs climbed. Relative VO2peak 

revealed a significant correlation with the maximum number of stairs climbed (r = 0.52, p < 

0.05) (Figure 19). Upper body strength measures of bench press (r = -0.39, p < 0.05), shoulder 

press (r = -0.37, p < 0.05), and total upper body strength (r = -0.38, p < 0.05) (Figure 20) also 

revealed significant relationships with the maximum number of stairs climbed.  

A complete summary for VE, VO2, VCO2, RER, and HR during each flight of the 

ascent portion of the stair climb can be found in Appendix B. Mean VE during the ascent 

portion of the stair climb scenario was 86.3 ± 16.7 l/min (range 57 to 114 l/min) (Figures 21 

and 22), while the average during the final flight climbed was 100 ± 14.7 l/min (range 70.9 to 

128.3 l/min). Mean absolute VO2 during the stair climb was 3168 ± 878 ml/min (range 2015 to 

4249 ml/min) (Figures 23 and 24), with a relative VO2 of 35.5 ± 9.1 ml/kg/min (range 23.8 to 

42.6 ml/kg/min) (Figures 25 and 26) corresponding to 70 ± 10% (range 53 to 85%) of VO2peak 

(Figures 27 and 28). Average absolute VO2 during the final flight completed of the ascent 
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portion of the scenario was 3460 ± 633 ml/min (range 2138 to 4594 ml/min), with a relative 

VO2 of 38.6 ± 6.4 ml/kg/min (range 20.78 to 48.26 ml/kg/min) corresponding to 76 ± 10% of 

VO2peak. Mean VCO2 for the stair climb was 3373 ± 1110 ml/min (range 2118 to 4267 ml/min) 

(Figure 24), while during the last flight climbed the average was 3698 ± 740 ml/min (range 

2308 to 5001 ml/min). Average relative VO2 during the stair climb ascent showed a significant 

correlation with the maximum number of floors climbed (r = 0.53, p < 0.05) (Figure 29). 

Furthermore, relative VO2 during the last flight completed correlated significantly with the 

maximum number of floors climbed (r = 0.59, p < 0.05) (Figure 30). Mean respiratory 

exchange ratio (RER) during the ascent portion of the stair climb was 1.05 ± 0.15 (range 0.86 

to 1.29) (Figure 31), whereas during the final flight climbed the average RER value was 1.07 ± 

0.09 (range 0.89 to 1.31), indicating a considerable anaerobic component during the task. 

Average heart rate for the entire stair climb ascent was 162 ± 11 bpm (range 138 to 185 bpm) 

(Figures 32 and 33) corresponding to 88 ± 4% of HRpeak, and for the final flight climbed was 

170 ± 13 bpm (range 144 to 200 bpm) corresponding to 93 ± 3% of HRpeak. Average velocity 

during the stair climb was 0.19 ± 0.05 m/s (Figure 34), while during the final floor climbed the 

mean velocity was 0.15 ± 0.05 m/s. Mean velocity during the final floor climbed showed a 

significant correlation with the maximum number of stairs climbed (r = 0.47, p < 0.05) (Figure 

35), as well as the total amount of time to climb the first 14 floors (r = -0.45, p < 0.05) (Figure 

36), Average power during the ascent portion of the stair climb scenario was 237.7 ± 72.9 W, 

while the mean power during the final floor climbed was 238.8 ± 38.1 W.   
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Figure 17: Relationship between age of the firefighters and the maximum number of floors 
climbed (r = -0.30, p < 0.05). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 18: Relationship between body mass of the firefighters and the maximum number of 
floors climbed (r = -0.46, p < 0.05). 
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Figure 19: Relationship between VO2peak and the maximum number of floors climbed  
(r = 0.52, p < 0.05). 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 20: Relationship between total upper body strength and the maximum number of floors 
climbed (r = -0.38, p < 0.05). 

Maximum Floors Climbed

13 14 15 16 17 18 19 20 21 22 23

V
O

2p
ea

k 
(m

l/k
g/

m
in

)

30

40

50

60

70

Maximum Floors Climbed

13 14 15 16 17 18 19 20 21 22 23

To
ta

l U
pp

er
 B

od
y 

St
re

ng
th

 (k
g)

200

300

400

500

600

700

800 Male 
Female 

 48



0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

V
E 

(l/
m

in
)

20

40

60

80

100

120

140

Floor

01234567891011121314151617181920212223

V
E  (l/m

in)

20

40

60

80

100

120

140

Ascent Descent

Figure 21: Individual VE (l/min) for each firefighter during the maximal stair climb scenario.  
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Figure 22: Average VE (l/min) per floor during the maximal stair climb scenario.  
Values are mean ± S.E.M. 
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Figure 23: Absolute VO2 (ml/min) per floor during the maximal stair climb scenario. 
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Figure 24: Average VO2 (ml/min) per floor during the maximal stair climb scenario. 
Values are mean ± S.E.M. 
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Figure 25: Relative VO2 (ml/kg/min) for each firefighter during the maximal stair climb 
scenario. 
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Figure 26: Average VO2 (ml/kg/min) during the maximal stair climb scenario. 
Values are mean ± S.E.M. 
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Figure 27:  Individual ratios of VO2 during the maximal stair climb to VO2peak for each 
firefighter. 
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Figure 28: Average ratio of VO2 during the maximal stair climb scenario to VO2peak. 
Values are mean ± S.E.M. 
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Figure 29: Relationship between average VO2 (ml/kg/min) during the maximal stair climb task 
and the maximum number of floors climbed (r = 0.53, p < 0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30: Relationship between VO2 (ml/kg/min) during the last flight climbed and the 
maximum number of floors climbed (r = 0.59, p < 0.05).
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Figure 31: Average respiratory exchange ratio (RER) for each floor during the maximal stair 
climb. Values are mean ± S.E.M. 
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Figure 32: Individual heart rate (bpm) for each firefighter during the maximal stair climb 
scenario. 
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Figure 33:  Average heart rate per floor during the maximal stair climb scenario. 
Values are mean ± S.E.M. 
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Figure 34: Average velocity per floor during the maximal stair climb scenario. 
Values are mean ± S.E.M. 
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Figure 35: Relationship between velocity during the final flight climbed and the maximum 
number of floors climbed (r = 0.47, p < 0.05). 

 
Figure 36: Relationship between the total time to climb 14 floors and the maximum number of 
floors climbed (r =-0.45, p < 0.05). 
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A summary of the air management measurements are listed in Table 4. Average starting 

pressure in the air cylinders was 4295 ±  204 psi (range 3870 to 4590 psi), while the mean 

pressures at the turn-around point (following consumption of 2365 psi from the air cylinder) 

and at the completion of the task were 1937 ± 201 psi (range 1505 to 2215 psi) and 1085 ± 291 

psi (range 610 to 1750 psi), respectively. The average amount of air consumed during the 

entire maximal stair climb task was 74.9 ± 6.0% (range 61.6 to 84.3%) of the total air 

contained in the cylinder. Furthermore, 17 of the 36 firefighters participating in this task 

consumed more than 75% of their air cylinder during the maximal stair climb, indicating that 

their 25% low-air alarm sounded before completing the task. Total air consumption (based on 

the individual starting and finishing pressures for each firefighter) during the maximal stair 

climb scenario revealed a significant relationship with the average expired ventilation during 

the task (r = 0.53, p < 0.05) (Figure 37). Furthermore, firefighters’ age (r = 0.41, p < 0.05) 

(Figure 38) and years of service as a firefighter (r = 0.40, p < 0.05) (Figure 39) showed a 

significant correlation with air consumption during the maximal stair climb task. 
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Figure 37: Relationship between average VE and percentage of total air consumed during the 
maximal stair climb task (r = 0.53, p < 0.05). 
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Figure 38: Relationship between firefighters’ age and percentage of total air consumed during 
the maximal stair climb task (r = 0.41, p < 0.05). 
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Figure 39: Relationship between years of service as a firefighter and percentage of total air 
consumed during the maximal stair climb task (r = 0.40, p < 0.05). 
 
 
 
 
 
Table 4: Summary of the air cylinder pressure and total consumption during the maximal stair 
climb scenario. 

 Pressure 

(psi) 

Cylinder Consumption  

(%) 

Start of Task 4295 ± 204 0.0 

55 % Air Consumption 1937 ± 201 55.0 ± 2.9 

End of Task 1085 ± 291 74.9 ± 6.0 

Values are mean ± S.D. 
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4.4 5th Floor High Rise Scenario 

 The gas exchange data from 3 subjects for this scenario could not be analyzed due to 

technical difficulties during data collection; therefore 33 firefighters are incorporated into this 

portion of the analysis. Average duration for this scenario was 5 min 3 s ± 57 s. Mean expired 

ventilation during the entire scenario was 88.9 ± 14.4 l/min (range 60.5 to 116.3 l/min) 

(Figures 40 and 41). Average absolute VO2 during the 5th floor high rise scenario was 2947 ± 

461 ml/min (range 2157 to 4012 ml/min) (Figures 42 and 43), corresponding to a relative VO2 

of 33.1 ± 4.6 ml/kg/min (range 22.4 to 40.6 ml/kg/min) (Figures 44 and 45). Average oxygen 

consumption during this scenario corresponded to 65 ± 10% of VO2peak (range 45 to 84% of 

VO2peak) (Figures 46 and 47). Mean VCO2 during the task was 3337 ± 547 ml/min (range 2139 

to 4372 ml/min) (Figure 43), while the average respiratory exchange ratio (RER) during the 

entire scenario was 1.13 ± 0.12 (range 0.93 to 1.36) (Figure 48). The respiratory exchange ratio 

was consistently above 1.0 throughout most of this scenario suggesting an increased 

contribution from anaerobic metabolism. Mean heart rate during the 5th floor high rise scenario 

was 160 ± 14 bpm (range 127 to 187 bpm), corresponding to 88 ± 6% of HRpeak (range 80 to 

101% of HRpeak) (Figures 49 and 50). A complete summary for time, VE, absolute (ml/min) 

and relative (ml/kg/min) VO2, RER, and HR for individual tasks during the 5th floor high rise 

task can be found in Table 5. 
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Table 5: Summary for time, VE, absolute and relative VO2, RER, and HR for individual tasks 
during the 5th floor high rise scenario.  

Task Time 
(s) 

VE

(L/min) 
VO2

(ml/min) 
VO2

(ml/kg/min) 
%VO2peak VCO2

(ml/min) 
RER HR 

(bpm) 
%HRpeak

5 Floor 
Stair 

Ascent 
71.3 
± 9.6 

59.2 
± 10.8 

2462 
± 319 

27.7 
± 3.5 

55 
± 9 

2209 
± 332 

0.90 
± 0.09 

143 
± 16 

79 
± 7 

Hose 
Drag 
and 

Room 
Search 

128.4 
± 40.0 

91.9 
± 15.4 

2834 
± 447 

31.9 
± 4.4 

63 
± 9 

3385 
± 587 

1.19 
± 0.13 

160 
± 13 

88 
± 6 

 
Forcible 

Entry 
11.6 
± 3.7 

86.4 
± 14.6 

2876 
± 510 

32.3 
± 5.0 

63 
± 10 

3247 
± 557 

1.14 
± 0.12 

161 
± 14 

88 
± 6 

 
Rescue 
Drag 

38.0 
± 7.5 

91.3 
± 12.4 

3174 
± 476 

35.7 
± 5.0 

70 
± 10 

3320 
± 493 

1.05 
± 0.09 

165 
± 12 

91 
± 5 

 
5 Floor 
Stair 

Descent 
54.1 

± 11.3 
90.4 

± 14.8 
3098 
± 543 

34.8 
± 5.6 

68 
± 12 

3463 
± 607 

1.13 
± 0.11 

163 
± 14 

89 
± 6 

Values are Mean ± S.D. 
Note: Values for the 5 Floor Stair Ascent, Forcible Entry, Rescue Drag, and 5 Floor Stair 
Descent are averaged over the entire duration of the task. 
Hose Drag and Room Search average values do not include the first room search and hose 
drag. 
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Figure 40: Individual VE for each task during the 5th floor high rise scenario. 

Baseline

Stairs ascent

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Forcible Entry

Rescue Drag

Stairs descent

V
O

2 
(m

l/m
in

)

1000

2000

3000

4000
VO2
VCO2

 

Baseline

Stairs ascent

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Forcible Entry

Rescue Drag

Stairs descent

V
E (l

/m
in

)

0

20

40

60

80

100

120

140

 
 
 

Baseline

Stairs ascent

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Room Search

Hose Drag

Forcible Entry

Rescue Drag

Stairs descent

V
E 

(l/
m

in
)

20

40

60

80

100

120

 
 
Figure 41: Average VE for each task during the 5th floor high rise scenario. 
Values are mean ± S.E.M. 
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Figure 42: Absolute VO2 (ml/min) for each task during the 5th floor high rise scenario. 
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Figure 43: Average VO2 (ml/min) and VCO2 (ml/min) for each task during the 5th floor high 
rise scenario. 
Values are mean ± S.E.M. 
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Figure 44: Relative VO2 (ml/kg/min) values for each task during the 5th floor high rise 
scenario. 
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Figure 45: Average VO2 (ml/kg/min) values for each task during the 5th floor high rise 
scenario. Values are mean ± S.E.M. 
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Figure 46: Individual average ratio of VO2 during the 5th floor high rise scenario to VO2peak 
values for each task. 
 
 

igure 47: Average ratio of VO2 during the 5th floor high rise scenario to VO2peak values for 
each task. Values are mean ± S.E.M. 
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Figure 48: Average RER values for each task during the 5th floor high rise scenario. 
Values are mean ± S.E.M. 
 
 

Figure 49: Individual heart rate values for each task during the 5th floor high rise scenario. 
Values are mean ± S.E.M. 
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Figure 50: Average heart rate values for each task during the 5th floor high rise scenario. 
Values are mean ± S.E.M. 

  

Average air cylinder pressure at the start of the 5th floor high rise scenario was 4169 ± 

254 psi (range 3670 to 4690 psi), while at the completion of the scenario it was 2171 ± 357 psi 

(range 1320 to 3020 psi). Mean air consumption from the total contained in the air cylinder 

during the 5th floor high rise scenario was 48.0 ± 7.0% (range 33.9 to 67.6%). None of the 

firefighters consumed greater than 75% of their air cylinder during this task, thus, their 25% 

low-air alarm was never activated. Firefighters’ age (r = 0.61, p < 0.05) (Figure 51) and years 

of service as a firefighter (r = 0.47, p < 0.05) (Figure 52) revealed significant relationships with 

total air consumption. Furthermore, body mass (r = 0.36, p < 0.05) (Figure 53) and average 

relative VO2 during the 5th floor high rise scenario (r = -0.48, p < 0.05) (Figure 54) showed 

significant correlations with total air consumption.  
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Figure 51: Rela
high rise task (r = 0.61, p < 0.05)

tionship between firefighters’ age and air consumption during the 5th floor 
. 

 

 
Figure 52:  Relationship between years of service as a firefighter and air consumption during 
the 5th floor high rise scenario (r = 0.47, p < 0.05). 
 

Male 
Female 

Male 
Female 

Air Consumption (%)

30 35 40 45 50 55 60 65 70

A
ge

 (y
ea

rs
)

25

30

35

40

45

50

55

Male 
Female 

Air Consumption (%)

30 35 40 45 50 55 60 65 70

Y
ea

rs
 o

f S
er

vi
ce

0

30

5

10

15

20

25

35

 68



 
Figure 53: Relationship between body mass and air consumption during the 5th floor high rise 

igure 54: Relationship between VO2 (ml/kg/min) during the 5th floor high rise scenario and 

scenario (r = 0.36, p < 0.05). 
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4.5 Subway System Scenario 
 

Data sets from 3 subjects were unable to be analyzed due to technical difficulties with 

gas collection analysis during the tests resulting in 33 firefighters being incorporated into this 

portion of the analysis. Mean completion time for this scenario was 12 min 5s ± 1 min 10 s. 

Average expired ventilation during the entire scenario was 55.5 ± 10.0 l/min (range 44.4 to 

79.8 l/min) (Figures 55 and 56). Mean VO2 during the subway scenario was 2217 ± 371 

ml/min (range 1445 to 3048 ml/min) (Figures 57 and 58) and 25.2 ± 4.6 ml/kg/min (range 17.9 

to 33.4 ml/kg/min) (Figures 59 and 60), corresponding to 49 ± 8% of VO2peak (range 39 to 68% 

of VO2peak) (Figures 61 and 62). Average VCO2 during the subway scenario was 2102 ± 412 

ml/min (range 1466 to 2933 ml/min) (Figure 58), while mean respiratory exchange ratio was 

) (Figure 63). Average he

39 ± 17 bpm (range 102 to 167 bpm) (Figures 64 and 65), corresponding to 76 ± 7% of HRpeak 

0.95 ± 0.09 (range 0.70 to 1.06 art rate during the entire scenario was 

1

(66 to 91 % of HRpeak). A complete summary for time, VE, absolute (ml/min) and relative 

(ml/kg/min) VO2, RER, and HR for individual tasks during the subway scenario can be found 

in Table 6. 
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Figure 55: Individual VE for each task during the subway scenario. 

 
 

 

Figure 56:  Average VE for each task during the subway scenario. 
Values are mean ± S.E.M. 
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Figure 57: Individual VO2 (ml/min) for each task during the subway scenario. 

igure 58: Average VO2 (ml/min) and VCO2 (ml/min) for each task during the subway 
enario. Values are mean ± S.E.M. 
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Figure 59: Individual VO2 (ml/kg/min) for each task during the subway scenario. 

igure 60: Average VO2 (ml/kg/min) for each task during the subway scenario. 
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Figure 61: Individual ratio of VO2 during the subway scenario to VO2peak for each task. 

f VO2 during the subway scenario to VO2peak for each task. 
alues are mean ± S.E.M. 
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Figure 62:  Average ratio o
V
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xFigure 63: Average respiratory e change ratio (RER) for each task during the subway 
scenario. Values are mean ± S.E.M. 
 

Figure 64: Individual heart rate (bpm) for each task during the subway scenario. 
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Figure 65: Average heart rate (bpm) for each task during the subway scenario. 
Values are mean ± S.E.M. 
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Table 6: Summary for VE, absolute and relative VO2, VCO2, RER, and HR for each task during 
the subway system scenario. 

Task Time 

(s) 

VE

(l/min) 

VO2

(ml/min) 

VO2

(ml/kg/min) 

%VO2peak 

 

VCO2

(ml/min) 

RER HR 

(bpm) 

%HRpeak

Baseline 

125 

± 3 

17.6 

± 4.2 

552 

± 114 

6.3 

± 1.4 

12 

± 2.6 

541 

± 147 

0.98 

± 0.12 

99 

± 15 

54 

± 7 

Stair 
Descent 

14 

± 4 

27.1 

± 5.9 

909 

± 173 

10.3 

± 2.0 

20 

± 4.5 

862 

± 172 

0.96 

± 0.13 

108 

± 15 

60 

± 7 

Tunnel 
Walk 

182 

± 19 

45.4 

± 8.0 

2018 

± 321 

23.0 

± 4.4 

44 

± 8 

1699 

± 317 

0.85 

± 0.08 

130 

± 16 

72 

± 7 

Ladder 
Walk 

85 

± 19 

55.6 

± 9.7 

2366 

± 350 

26.9 

± 4.5 

52 

± 8 

2128 

± 377 

0.90 

± 0.08 

139 

± 18 

76 

± 8 

Setup 
Ladder 

76 

± 16 

55.5 

± 10.1 

2111 

± 314 

24.0 

± 4.2 

47 

± 8 

2044 

± 374 

0.97 

± 0.08 

141 

± 18 

78 

± 7 

51 56.6 2303 26.2 51 2155 0.93 137 

18 

76 

± 7 

A Rescue 

45 

± 30 

66.5 

± 12.5 

2441 

± 518 

28.2 

± 6.1 

54 

± 10 

2359 

± 556 

0.96 

± 0.07 

163 

± 13 

83 

± 22 

Firefighter 
B Guide 

51 

± 12 

53.0 

± 6.3 

2127 

± 193 

24.0 

± 3.3 

47 

± 7 

1934 

± 187 

0.91 

± 0.08 

137 

± 20 

76 

± 8 

Firefighter 
A Guide 

42 

± 39 

75.1 

± 10.4 

2778 

± 456 

32.1 

± 5.7 

62 

± 9 

2939 

± 528 

1.06 

± 0.08 

154 

± 13 

79 

± 20 

Firefighter 
B Rescue 

35 

± 9 

64.7 

± 6.6 

2468 

± 371 

27.2 

± 4.3 

54 

± 9 

2280 

± 238 

0.93 

± 0.09 

152 

± 14 

84 

± 6 

Tunnel 1 
Walk 

79 

± 8 

64.6 

± 11.1 

2563 

± 452 

29.0 

± 4.9 

56 

± 8 

2672 

± 505 

1.04 

± 0.12 

146 

± 17 

80 

± 6 

Tunnel 2 
Walk 

142 

± 15 

56.8 

± 10.3 

2275 

± 379 

25.8 

± 4.4 

50 

± 8 

2236 

± 423 

0.98 

± 0.09 

135 

± 17 

74 

± 7 

Stair Ascent 

13 

± 3 

63.3 

± 10.5 

2705 

± 438 

30.7 

± 5.2 

60 

± 10 

2449 

± 460 

0.90 

± 0.07 

146 

± 18 

80 

± 6 

Subway Car 
Search ± 6 ± 10.8 ± 359 ± 4.3 ± 8 ± 412 ± 0.08 ± 

Firefighter 

Values are Mean ± S.D. 
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Average air cylinder pressure at the start of the subway scenario was 4256 ± 202 psi 

(ra 00 t 0 p  whil he com ion o ari ir er su

1704 ± 245 psi (range 1180 to 2170 psi). Mean air consumption during the entire subway 

scenario was 59.9 ± 5.6% (range 49.4 to 72.8%). No 

greater than 75% of their air cy eaning that none of the fi s 

were activated. Firefighters’ a  0.54 0.05) (F re 66) ear erv as a 

firefighter (r = 0.56, p < 0.05) (Fi total air 

con  fro  a ind ng th ay sce o. Fir ers  m r = 0 , 

p < 0.05) (Figure 68), body m dex (r 4, p < 0.05), and body fat percent (r = 0.45, p < 

ed nifi indi l relat ips with  total nsu on g th

subway scenario. Relativ

V /m r , p ) (Fi 0) during the subway scenario revealed 

nd ual lat ith to  consum  from r cy r. M  exp  

v dur  the ay rio re  a sign ant relationship with the total air

consum  the air cylinde

 pa  a e sc s in t f their sical ds fi

d  in tive  during the scenarios were seen between the m al stair clim

and both the 5 or ubw enari  well as ween th floor and subway 

sce (p < . can rence eart rat re ob  b  axim

 s ay rio ell as  floor ubw na  . Sim  

re shown with VE between the maximal stair climb and subway 

scenario, as well as the 5th floor and subway scenario (p < 0.05) (Table 7).  

nge 35 o 456 si), e at t plet f the scen o the a cylind  pres re was 

firefighter had a total air consumption of 

linder m refighters’ 25% low-air alarm

ge (r = , p < igu  and y s of s ice 

gure 67) revealed a significant relationship with the 

sumed m the ir cyl er duri e subw nari efight ’ body ass ( .61

ass in  = 0.5

0.05) reveal  sig cant vidua ionsh  the  air co mpti durin e 

e VO2peak (ml/kg/min) (r = -0.48, p < 0.05) (Figure 69) and average 

O2 (ml/kg in) ( = -0.38  < 0.05 gure 7

significant i ivid  corre ions w tal air ed  the ai linde ean ired

entilation 

ption from

ing  subw  scena vealed ific  

r (r = 0.57, p < 0.05) (Figure 71). 

Com ring ll thre enario erms o  phy deman , signi cant 

ifferences rela  VO2 axim b 

th flo  and s ay sc os, as  bet  the 5

nario 0.05) Signifi t diffe s in h e we served etween the m al 

high rise and ubw  scena , as w  the 5th  and s ay sce rio (p < 0.05) ilar

significant differences we
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Scenario V  (l/min) VO  (ml/kg/min) HR (bpm) 

Based on the linear regressions with total air consumption and years of service as a 

firefighter, two groups were established based on the median years of service of 10 years 

(range 0.5 to 30 years). Running a One-way ANOVA for total air consumption by years of

service, significant differences were shown for each of the three scenarios (Table 8).  

 

Table 7: Average values for VE, relative VO2, and HR for each of the scenarios 
E 2

Maximal Stair Climb 86.3 ± 16.7 a 35.5 ± 9.1 a 162 ± 11 a

5th Floor High Rise 88.9 ± 14.4 a 33.1 ± 4.6 b 160 ± 14 a

Subway 55.5 ± 10.0 b 25.2 ± 4.6 c 139 ± 17 b

Mean ± S.D.  
Values in a column not sharing the same letter are significantly different. p <

 
 
Table 8: Average air consumption for each of the scenarios grouped by years of service as a 
firefighter 

Years of Service Maximal Stair Climb
(%) 

5th Floor High Rise 
(%) 

Subway 

 0.05. 

(%) 

0 – 10 years 72.5 ± 6.1† 45.0 ± 6.4† 56.9 ± 4.3†

> 11 years 77.8 ± 4.6 51.8 ± 6.0 64.2 ± 4.2 

 Mean ± S.D.  
† - Significant difference from > 11 years group. p < 0.05.
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Figure 66: Relationship between firefighters’ age and total air consumption from the air 
cylinder du . 
 

 
Figure 67: Relationship between years of service as a firefighter and total air consumption 
from the air cylinder during the subway scenario (r = 0.56, p < 0.05). 
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Male 
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Figure 68: Relationship between body mass and total air consumption from the air cylinder 
during the subway scenario (r = 0.61, p < 0.05). 

 
Figure 69: Relationship between relative VO2peak (ml/kg/min) and total air consumption from 
the air cylinder during the subway scenario (r = -0.48, p < 0.05). 
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Figure 70: Relationship between average VO2 (ml/kg/min) during the subway scenario and 
total air consumption from the air cylinder (r = -0.38, p < 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

igure 71: Relationship between VE during the subway scenario and total air consumption F
from the air cylinder (r = 0.57, p < 0.05). 
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5.0 DISCUSSION 

5.1 Summary of Main Findings 

he first objective of this study was to integrate the Cosmed K4b2 breath by breath gas 

collection system into a standard SCBA. Based on the data collected (Figures 72 and 73), the 

integration was successful and the modified gas collection system was functional to use in the 

mulated firefighting tasks field setting. 

The data quantify the physical demand imposed on firefighters during three large 

ructure firefighting scenarios. Relative VO2 during the maximal stair climb scenario was 

ignificantly greater than both the 5th floor high rise and subway scenarios. This suggests that 

 

laced on the firefighter compared to the other two scenarios. These results are similar to the 

ata reported by O’Connell, Thomas, Cady and Karwasky (1986) during five minutes of 

onstant work rate stair climbing. Furthermore, it appears that the victim drag and rescue is the 

ngle most demanding task during the 5th floor high rise and subway scenarios, which has 

mer et al., 2007). 

 Although it has been suggested (Holmer et al., 2007) and hypothesized that increased 

ears of service as a firefighter would most likely relate to greater efficiency in air 

onsumption in order to complete a particular task, the data show that as years of service 

crease firefighters appear to consume more air while completing a given task. Furthermore, 

creased relative VO2 during the scenario results in a more efficient use of the firefighter’s air 

improved performance and thus, decreased air consumption to complete a given task.  

 

T

si

st

s

climbing stairs while consuming 2365 psi from an air cylinder results in an physical demand

p

d

c

si

been suggested in previous research (Hol

y

c

in

in

cylinder. This suggests that those firefighters capable of producing more power per kg have 
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5.2 Determination of the Turn-around Pressure for the Maximal Stair Climb Scenario 

 In order to standardize performance during the maximal stair climb scenario, each 

firefighter was given a specific turn-around pressure for his/her individual air cylinder 

corresponding to a total air consumption of approximately 55%. Setting the level of air 

consumption for the turn-around point at 55% was determined through discussions with 

training officers and District Chiefs of the Toronto Fire Service as a level that would most 

likely result in a total air consumption of approximately 75% over the entire duration of the 

scenario. Due to the nature of refilling the SCBA air cylinder, the theoretical starting pressure 

for each cylinder is 4500 psi; however, various procedures can be used for the refilling process 

resulting in a wide range of starting pressures. The actual volume of air to be consumed was 

determined by calculating the starting pressure of a typical air cylinder and then computing the 

turn-around pressure following consumption of 55% from the air cylinder. After examination 

of the air cylinders that were to be used for the maximal stair climb scenario, starting pressures 

were observed from 3870 to 4590 psi with an average value of 4295 psi. Therefore, the starting 

pressure of a typical air cylinder was assumed to be 4300 psi resulting in a standardized turn-

around air consumption of 2365 psi for each firefighter. Using this procedure meant that 

individuals who had lower starting pressures would consume their predetermined volume of air 

and be closer to the 25% low-air alarm at the turn-around point.  

 

5.3 Firefighter Characteristics and Physical Fitness Tests 

The study population included 33 male and 3 female firefighters from the Toronto Fire 

Service with an average age of 40.7 years. According to departmental statistics from 2006, the 

average age of all ranks in the Toronto Fire Service was 43.5 years, while the mean age for the 
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ran ur 

efighter 

, 

7a); 

as 

s 

f 55 

the shoulder press and biceps 

curls are above the recommendations by Doolittle, with none of the firefighters below the 

reco below the suggested standard 

for bice

k of firefighter was 41.5 years (Toronto Fire Service, 2006). These values indicate that o

study population was representative of the age range in the Toronto Fire Service. 

  Previously, it has been suggested that the physiological characteristics of the fir

population are similar to that of the of the North American sedentary population  (Davis

Dotson, & Santa Maria, 1982; Horowitz & Montgomery, 1993; Lemon & Hermiston, 197

however, the higher VO2peak values reported in this study are in line with a recent study 

involving the Toronto Fire Service (McLellan & Selkirk, 2004; Selkirk et al., 2004), as well 

additional research in this field (Donovan et al., 1999; Lusa, Louhevaara, Smolander, 

Kivimaki, & Korhonen, 1993). Although it has been suggested that VO2peak is the primary 

factor in determining firefighting performance (Davis et al., 1987; Gledhill et al., 1992; Lemon 

et al., 1977b), it has become increasingly apparent that firefighting stresses all aspects of 

physical fitness (Rhea et al., 2004). 

  Anthropometric characteristics measured in this study were similar to those previously 

reported for the firefighting population (Lemon et al., 1977a). In terms of muscular strength, 

specifically the military press and biceps curls, Doolittle (1979) recommended that firefighter

should be able to lift a minimum of 43 kg for the military press with a desirable standard o

kg, while the minimum standard for biceps curls was 46 kg with a desirable standard of 55 kg. 

In relation to the current study, the mean strength values for both 

mmended minimum standard for shoulder press and only 3 

ps curls. In terms of the firefighter population’s overall physiological profile compared 

to the Canadian population, it has been reported that firefighters have higher body mass, body 

mass index, and greater muscular endurance (Horowitz et al., 1993).  
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5.4 High Rise Maximal Stair Climb Scenario 

 The primary goal of this study was to quantify the physiological demands and air 

requirements during firefighting tasks in large structures while wearing full PPE and SCB

Although it is well understood that wearing full firefighting equipment places an additional 

energy demand on the firefighter, these previous studies did not incorporate breathing th

the positive pressure SCBA mask (Donovan et al., 1999; Hooper, Crawford, & Thomas, 2001; 

Louhevaara, Ilmarinen, Griefahn, Kunemund, & Makinen, 1995). The facemask was e

carried along side the firefighter or was modified to disconnect the positive pressure 

capabilities of the system in order to incorporate a flow monitoring device. Previous research 

that has kept the positive pressure characteristics of the SCBA system intact examined the

effects of the SCBA on ventilatory f

A. 

rough 

ither 

 

unction and maximal oxygen uptake using a motorized 

adm

r to 

 

take for most 

tre ill or electronically braked cycle ergometer, but not during simulated firefighting tasks 

(Butcher, Jones, Eves, & Petersen, 2006; Dreger, Jones, & Petersen, 2006; Eves et al., 2005; 

Petersen, Dreger, Williams, & McGarvey, 2000). 

 The maximal stair climb scenario was representative of a potential task given to 

firefighters in a high rise structure in order to ventilate the stairwell or climbing to the level of 

the fire if the stairwell has been compromised with smoke making the use of SCBA breathing a 

necessity. Mean absolute VO2 during the scenario was 3168 ± 878 ml/min, which is simila

the oxygen uptake reported by O’Connell, Thomas, Cady, and Karwasky (1986), who 

examined simulated stair climbing for 5 minutes at a rate of 60 steps per minute. Although the 

average duration of the maximal stair climb scenario was 1 min 31 s longer than the protocol of

O’Connell et al. (1986), by the 5th minute of the stair climb, oxygen up

 86



firefighters had already reached a relatively constant level. Therefore, the additional minute 

and e caused an additional increase in oxygen 

ge of 

n 

t 

 

. 

omplete 7 firefighting tasks, while 

bing 

at a 

r their 

 a half of stair climbing does not appear to hav

uptake. Mean relative VO2 in this scenario was 35.5 ± 9.1 ml/kg/min, which fits in the ran

previous research examining the energy cost of simulated firefighting. These studies have 

reported the relative VO2 for firefighting tasks to be 30.5 ml/kg/min and up to 41.5 ml/kg/mi

for the most demanding tasks (Gledhill et al., 1992; Lemon et al., 1977b; Sothmann et al., 

1991; Sothmann et al., 1990). However, interpreting and comparing these results must be taken 

with caution as differences in gas exchange equipment, firefighting task protocol, participan

characteristics, and performance instructions vary between studies. 

 In relation to the maximal treadmill test, mean VO2 during the maximal stair climb 

scenario corresponded to 70 ± 10% of VO2peak. This value is within the range reported by 

Lemon and Hermiston (1977b), who suggested that firefighters commonly work between 60

and 80 % of their VO2peak. Furthermore, Sothmann, Saupe, Jasenof, and Blaney (1992) found 

that the predicted VO2 for fire suppression tasks was 63% of VO2peak. As well, Sothmann et al

(1990) reported an average of 76 % of VO2peak to c

O’Connell, Thomas, Cady, and Karwasky (1986) determined that 5 minutes of stair clim

required 80 % of VO2peak. One limitation of using VO2 in order to measure energy expenditure 

is the underlying assumption that all energy is being derived aerobically. However, during the 

maximal stair climb scenario the mean respiratory exchange ratio was 1.05 ± 0.15. The 

respiratory exchange ratio greater than 1.0 throughout most of this scenario indicates th

sizeable amount of energy was derived through anaerobic metabolism. Examining the 

respiratory exchange ratio throughout the entire duration of this scenario reveals an average 

baseline value of 0.90. During baseline data collection, firefighters were asked to wea
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SCBA mask while breathing through room air with many reporting that they experienced som

difficulty inspiring through the small air port. This configuration is not what the firefighters a

accustomed to and might have resulted in increased anxiety corresponding to a situation of 

hyperventilation, thus, increasing VCO

e 

re 

 

. 

vis et al., 1982; Gilman & 

s 

80% 

= -

, p 

sociated 

 

2 and RER. Previous research has identified that 

wearing a facemask can be associated with claustrophobia and a sensation of increased anxiety

(Johnson, Dooly, Blanchard, & Brown, 1995; Morgan & Raven, 1985; Wilson et al., 1989)

 Mean heart rate for the entire maximal stair climb scenario was 162 ± 11 bpm, 

corresponding to 88 ± 4% of HRpeak. These values are comparable with previous research 

examining the heart rate response in simulated firefighting tasks (Da

Davis, 1993; Sothmann, Saupe, Jasenof, & Blaney, 1992). Furthermore, Manning and Grigg

(1983) reported that within the first minute of a firefighting task, heart rate increases 70 to 

of HRpeak and then plateaus between 90 to 100% of HRpeak until the firefighting activity is 

completed. The high heart rate levels during firefighting tasks are a response to the 

cardiovascular strain, anxiety (Kuorinka et al., 1981), and the increased weight of wearing the 

personal protective equipment (Louhevaara et al., 1985; Louhevaara et al., 1984). 

 The average maximum number of floors climbed by the firefighters before consuming 

2365 psi from the air cylinder was 20 ± 2.5 floors. Significant correlations with the maximum 

number of floors climbed was observed for age of the firefighter (r = -0.30, p < 0.05), body 

mass (r = -0.30, p < 0.05), body mass index (r = -0.42, p < 0.05), body fat percentage (r 

0.44, p < 0.05), relative VO2peak (r = 0.52, p < 0.05), and total upper body strength (r = -0.38

< 0.05). Based on these findings, it appears that increased body mass, which is often as

with decreased relative VO2peak and increased upper body strength, may hinder a firefighter’s

ability to climb a considerable number of floors. Furthermore, velocity during the final floor 
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climbed (r = 0.45, p < 0.05) and the completion time to climb 14 floors (the minimum level 

that all firefighters were able to achieve) (r = -0.46, p < 0.05) suggests that individuals who are 

capable of maintaining a consistent velocity throughout the stair climb with a corresponding

increased performance time to climb 14 flights are capable of climbing a larger number o

flights.  

 The second important objective of this study was to examine the total air consumption

 

f 

 

om th eation 

e 

ario, 

 25% low-

ld be in and 

r. 

l 

fr e SCBA air cylinder during the three scenarios. Although technology and the cr

of portable breath by breath gas collection systems have allowed researchers to examine th

physiological aspects of firefighting in greater detail, at a fire scene the firefighter and incident 

commander must rely on the pressure information provided by the SCBA’s heads-up-display. 

During the maximal stair climb scenario, the mean air consumption from the SCBA air 

cylinder was 74. 9 ± 6.0%. Furthermore, of the 36 firefighters who participated in this scen

17 consumed greater than 75% of their air cylinder. This resulted in activation of the

air alarm during the scenario. This information is of critical importance because the purpose of 

the final 25% of air in the cylinder is for emergency situations. All firefighters shou

safely exit the fire scene at or before consuming 75% of their air cylinder in order to maintain 

the remaining 25% in case of an emergency scenario. Significant correlations were found with 

VE (r = 0.53, p < 0.05), age of the firefighter (r = 0.41, p < 0.05), and years of service as a 

firefighter (r = 0.40, p < 0.05) when compared to the total air consumed from the air cylinde

This suggests that even though firefighters with more experience might be expected to perform 

these tasks more efficiently, it appears that with increasing age firefighters are not able to 

effectively utilize their air consumption and require a greater amount of air from their air 

cylinder in order to complete a given task. Taken together, these data suggest that the maxima
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stair climb scenario is a physically demanding firefighting task and that if firefighters are 

required to stair climb while consuming approximately 55% of their air cylinder, this will not 

allow them adequate air supply to conduct any further tasks and still be able to evacuate the 

building with a safe volume of air remaining. 

 

5.5

as 

g 

 160 

5th 

 5th Floor High Rise Scenario 

The 5th floor high rise scenario was indicative of the type of tasks that would be 

required for fire suppression and victim rescue at a fire scene in the event that the stairwell w

filled with smoke. Mean absolute VO2 during this scenario was 2947 ± 461 ml/min, with an 

average relative VO2 of 33.1 ± 4.6 ml/kg/min, corresponding to 65 ± 10% of VO2peak. These 

values are within the range previously reported in the literature for the energy cost durin

simulated firefighting tasks (Lemon et al., 1977b; Sothmann et al., 1991; Sothmann et al., 

1992). Sothmann et al. (1992) evaluated the heart rate response of firefighters during actual 

emergencies in order to estimate relative VO2 values during fire suppression and found that 

firefighters were working at 63 % of their VO2peak. This would appear to confirm that the 

simulated tasks implemented in this study are representative in terms of cardiovascular strain. 

Furthermore, each firefighter was asked to rate the scenario in terms of the nature of the tasks 

and the physical demand placed on the firefighter in relation to an actual emergency. 

Firefighters reported an average rating of 7.9 ± 1.0 out of maximum score of 10, further 

suggesting that the simulated firefighting tasks were representative of actual activities. Similar 

to the high rise maximal stair climb scenario, average heart rate for the entire scenario was

± 14 bpm, corresponding to 88 ± 6% of HRpeak. The observed heart rate values during the 

floor high rise scenario are similar to results previously reported and discussed earlier (Davis et 
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al., 1982; Gilman et al., 1993; Manning & Griggs, 1983; Sothmann et al., 1992). Romet an

Frim (1987) and Holmer et al. (2007) reported that the victim search and rescue appears to be 

the most important and physically demanding firefighting task. The results of the 5

d 

h 

ysiological responses during the victim rescue 

rag for this scenario revealed a mean absolute and relative VO2 of 3174 ± 476 ml/min and 

35. o 70 ± 10% of VO2peak. Mean respiratory exchange ratio 

for the 

ull, 

al stair 

f these 

th floor hig

rise scenario are similar to this finding. The ph

d

7 ± 5.0 ml/kg/min, corresponding t

victim rescue drag was 1.05 ± 0.09, with an average heart rate of 165 ± 12, 

corresponding to 91 ± 5% of HRpeak. This suggests that during fire suppression the 

responsibility of the firefighter to rescue a fallen victim will undoubtedly result in greater 

physical demand imposed on the body. 

 Mean respiratory exchange ratio throughout the entire scenario was 1.13 ± 0.12. 

Comparable to the high rise maximal stair climb scenario, RER values were consistently 

greater than 1.0 during the 5th floor high rise scenario indicating a considerable contribution 

from anaerobic metabolism. The higher RER values seen in this scenario compared to the 

maximal stair climb could be due to the increased upper body work required for the hose p

room search, forcible entry, and victim rescue drag. The addition of upper body work would 

require increased metabolic demand and also result in more production of lactic acid and 

therefore, greater CO2 production. The high VCO2 values observed in both the maxim

climb scenario and 5th floor high rise scenario are indicative of the anaerobic challenge o

tasks as well as a result of the physiological demands imposed while wearing the SCBA and 

PPE. The increased weight of the personal protective equipment and SCBA could result in 

greater activation of smaller muscle groups, including postural muscles to stabilize the upper 

body, causing an increase in production of metabolic waste products. 
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In terms of air management for this scenario, total air consumption from the volume 

contained in the air cylinder was 48.0 ± 7.0%. None of the 36 firefighters had their 25% low-

air alarm activated, indicating that the duration (5 min 3 s ± 57 s) and physical nature of the 

tasks allowed them to consume an efficient amount of air and be able to evacuate the simulate

fire scene with the recommended amount of air remaining in the cylinder. Significant 

correlations with total air consumption were found for the age of the firefighter (r = 0.61, p < 

0.05) and years of service as a firefighter (r = 0.47, p < 0.05). Similar to the maxima

climb scenario, it appears that although the firefighters who have been on the job fo

period of time would be expected to be more efficient at successfully completing the tasks,

increasing age results in greater consum

d 

l stair 

r a longer 

 

ption of air in order to complete a simulated 

e 

ir 

f 

ient 

b 

 

firefighting scenario. Furthermore, firefighters’ body mass (r = 0.36, p < 0.05) and relativ

VO2 during the scenario (r = -0.48, p < 0.05) revealed significant relationships with total a

consumption. These data suggest that firefighters with increased body mass are not capable o

providing more power per kg during the simulated firefighting tasks, thus, decreasing effic

air consumption throughout the scenario. 

Based on the physiological demands and air management results, the maximal stair 

climb scenario appears to be a greater cardiovascular challenge than the 5th floor high rise 

scenario. This could be due to the higher work rate maintained throughout the entire stair clim

scenario, whereas in the 5th floor scenario the total mass of the firefighters’ body, PPE, and 

SCBA was not required to be lifted a vertical distance. This situation would result in increased

metabolic demand to the lower body muscles. 
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 5.6

 

e of the 

e subway car, which comprised an average of 9 min 

43 s ± 5

 

te 

mposed to both firefighters during the victim 

scue drag was similar. A difference is seen between firefighter A and B in the guide walk, 

r effects from the rescue would have resulted in the higher VE, absolute and 

 Subway System Scenario 

 The subway scenario was representative of the duration and type of tasks firefighters 

would be responsible to complete in conducting fire suppression and victim rescue, including

the potential walking distance required underground in a subway tunnel. Immediately 

following the scenario, firefighters were asked to rate the scenario in terms of the natur

tasks and the physical demand placed on the firefighter in relation to an actual emergency. 

Firefighters reported an average rating of 7.7 ± 1.4 out of maximum score of 10, further 

suggesting that the simulated firefighting tasks were representative of actual activities. In 

comparison to the other two scenarios, the duration of the subway scenario was longer 

requiring an average completion time of 12 min 5s ± 1 min 10 s. Mean absolute VO2 during 

this scenario was 2217 ± 371 ml/min, with a relative VO2 of 25.2 ± 4.6 ml/kg/min 

corresponding to 49 ± 8% of VO2peak. These values are below those previously reported, 

including the range suggested by Lemon and Hermiston (1977b) between 60 and 80 % of 

VO2peak. The decreased cardiovascular challenge observed could be due to the majority of this 

scenario involving walking to and from th

3 s of total walking time. Therefore, approximately 81% of this entire scenario 

involved walking with almost no elevation changes that would require an increased energy

demand as seen with stair climbing.  

 Due to the nature of this scenario where two firefighters worked in tandem to comple

the simulated tasks, firefighter A completed the victim rescue drag prior to firefighter B. The 

results show that the cardiovascular challenge i

re

where carry-ove
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re tive VOla e responses. Although these values are greater during the 

1987), 

nt) 

he 

eased 

he fire 

 

plained 

greater than 75% of their air cylinder, meaning that the 

o. 

2, VCO2, and heart rat

guide walk for firefighter A possibly due to carry-over effects, it appears that the most 

demanding tasks are the victim rescue drag and stair climb at the end of the scenario. These 

results are comparable to those reported by Holmer et al. (2007) and Romet and Frim (

who suggested that the victim search and rescue is the most physically demanding firefighting 

task. Of major importance is the finding that the final task of the subway scenario (stair asce

reveals an increased physical demand. Although this scenario is the least challenging of t

three scenarios employed, it is important to note that the addition of heat stress due to incr

ambient temperatures, decreased visibility, and increased anxiety would increase the 

cardiovascular challenge and cause the final stair ascent to potentially be more demanding. 

Therefore, firefighters should be aware that, unlike the high rise scenarios, exiting t

scene at a subway scenario will require an increased metabolic demand and this should be

taken into account when managing their air during fire suppression.  

 In terms of air management for this scenario, mean air consumption was 59.9 ± 5.6% 

from the air cylinder. Despite the decreased physiological demand when compared to the 5th 

floor high rise scenario, total air consumption was almost 12% greater, which can be ex

by the increased completion time during the subway scenario. Furthermore, none of the 

firefighters had total air consumption 

25% low-air alarm was never activated during this scenario. Similar to both of the high rise 

scenarios, it appears that increasing age and years of service results in greater total air 

consumption to complete the tasks. Additionally, increased body mass often associated with 

decreased relative VO2peak appears to result in greater air consumption during subway scenari

Average relative VO2 during this scenario revealed a significant correlation with total air 
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consumption suggesting that a higher relative VO2 produces more power per kg (total 

combined mass of the body and firefighting equipment) resulting in better performance 

(Holmer et al. (2007), subsequently relating to more efficient air consumption.  

 For all three scenarios, the results indicate that there are large individual differences in 

the energy requirements in order to complete similar type of work. When requested to perform 

the tasks at an equivalent pace that would be required at an actual fire scene, it appears that 

each firefighter will determine his/her optimal balance between the physical demand require

for the task and his/her own physical capacity (Holmer et al., 2007). 

 

d 
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6.0 LIMITATIONS 

A primary limitation of this study, which is often seen when studying the firefighting 

population, is mainly highly fit individuals will volunteer as participants. The lower end of the 

rs 

n of heat stress and 

psychological factors associated with poor visibility and anxiety could influence the 

physiological responses of the firefighters while completing the various tasks. Due to generic 

sizing of the SCBA facemasks and differing facial structures of each firefighter, maintaining a 

perfect fit at all times with no possible air leaks is difficult to ensure. An additional limitation 

is that each firefighter was instructed to complete the scenarios at a pace equivalent to what 

they would work at during an actual fire emergency. Since work rate and pace could not be 

controlled for, differences in completion times for a given task are observed and may make 

interpreting physiological responses more difficult. 

 Future research should focus on attempting to recruit a representative participant 

population including the less physically fit firefighters. This would result in a greater overall 

understanding of the physiological demands and air requirements in large structure firefighting. 

In addition, imposing additional stressors to the testing protocol, such as a complete blackout 

of the visibility through the SCBA facemask and implementing entanglement boxes for the 

firefighters to navigate through would increase the possible psychological feeling of anxiety. 

Eventually, being able to modify the integrated SCBA Cosmed K4b2 system so that it still 

spectrum in terms of physical fitness is not regularly represented in the participants 

volunteering for research studies. Furthermore, due to modifications with the SCBA equipment 

for testing purposes and the importance of maintaining a safe testing environment, firefighte

were not subjected to regular fire scene conditions involving increased ambient temperatures, 

poor visibility, and potentially greater feelings of anxiety. The additio
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meets all safety requirements would be extremely beneficial and could possibly allow for 

curate breath by breath gas collection during live simulated fires. This would allow a more ac

depiction of an actual fire scene including stressors placed on the body by the ambient 

environment. 
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7.0 CONCLUSIONS 

The integration of the SCBA facemask with the Cosmed K4b2 breath by breath gas collection 

system was an essential component in the process of examining the physiological dema

during simulat

nds 

ed large structure firefighting tasks. The results of this study are fundamental in 

uantifying the physiological demands and ventilatory requirements during high rise and 

subway system fire scenarios in order to establish principles for air management while 

breathing through the SCBA air cylinder. The data indicate that the task of stair climbing to the 

point of consuming 55% of a typical air cylinder can be considered one of the most demanding 

firefighting tasks. Based on these findings, caution must be taken by incident commanders at a 

fire scene when having to deploy firefighters a considerable distance up a smoke filled 

stairwell with the intention to perform various fire suppression and victim rescue tasks. 

Although the 5th floor high rise and subway system scenarios did not require the same volume 

of air consumption, the data are instrumental in quantifying the air requirements during these 

firefighting tasks. It appears that increasing age requires a larger air consumption to complete a 

given task, and that increased body mass also results in greater air requirements. Furthermore, 

the ability to produce more power per given kg of total body mass, including firefighting 

equipment, seems to produce better performance times and more efficient air management. 

However, the safety of all firefighters is of major importance and individuals should be aware 

of their own air management to make sure they obtain a safe exit from the fire scene.   

q
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8.0 RECOMMENDATIONS 

 

uld 

 could 

 

 can e 

implemented to improve the ability of achieving a safe exit for all firefighters.  

• The current data demonstrated that a ‘30’ minute air cylinder did not allow for 20-

minutes of work inside a fire scene for the average firefighter. Rather, the results 

showed that even in simulated scenarios where the external environment was 

This study has quantified the air requirements during simulated firefighting tasks in large high-

rise and subway structures. The results can provide the basis for modifying work cycles and

adjusting air management procedures while fighting large structural fires. The data indicate 

that during a maximal stair climb task where a firefighter might be required to consume 

approximately 55% of his/her air cylinder, nearly half of the firefighters in this study wo

have activated their 25% low-air alarm during the descent phase increasing the potential of 

serious injury and possibly death. The current observations allow for advancement of basic 

recommendations that could be implemented to improve firefighter safety in high-rise and 

subway emergencies. 

• To compensate for any potential emergency situations, air cylinder refill stations

be set up on various floors to make sure that firefighters do not have to travel the entire 

distance of the stairwell with little air remaining in order to safely exit the fire scene. 

This would allow firefighters who have consumed a large quantity of their cylinder 

during the ascent portion of the climb to descend a smaller number of flights in order to

refill or exchange air cylinders. 

• The creation of specialized units might provide additional safety precautions. 

Specialized task forces with firefighters who are in good physical fitness and 

specifically trained to complete particular tasks, such as a maximal stair climb,  b
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controlled, physically demanding tasks in high-rise structures required an average air 

h 

ve 

limb 

 

 of 

der might be appropriate if a large vertical distance must be climbed to 

consumption of 50% from the cylinder within a six-minute period. 

• Underground fire scenes appear to be a separate entity compared to residential and hig

rise scenarios. Incident commanders should take into account that firefighters who ha

just completed potentially strenuous work tasks underground will be required to c

stairs and/or a ladder to exit these types of scenes safely. The energy requirement and

air use during stair climbing is high and this could put firefighters in a compromised 

situation if their air supply has been depleted. Similar to the high rise 

recommendations, implementing a cylinder refill or exchange station near the bottom

the stairs or lad

accomplish a safe exit. 
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APPEN

 

erved between the Cosmed measured values and the 

predict

iddle flow rates up to 90 l/min, with percent errors ranging from 0.5% 

to 6%. f 

the measured VO2 values using the integrated SCBA Cosmed system, percent error values 

ranged  

 ranged in percent error from -4.30% to 0.29%. Although the ventilation error is 

large at certain flow ra

 in 

Figure 73 represent the measured SCBA Cosmed values, whereas the values in bold depict the 

percent error between the SCBA Cosmed system and the predicted values from the mechanical 

calibrator. Predicted values are shown in the top portion of the spreadsheet, with ambient 

environment characteristics and dead space manually inputted.  

DIX A 

Results from the mechanical calibration procedure are shown in Figure 72. At very low 

ventilations, a large percent error was obs

ed calibrator values, ranging from 11% to 16%. Expired ventilation values were 

reasonable through the m

After calibrating the flow turbine at 15, 22.5, and 30 l/min to determine the accuracy o

from -1.77% to 2.36%. As well, VCO2 was compared between measured and predicted

values and

tes, it appears that VO2 and VCO2 values measured by the integrated 

SCBA Cosmed system are within a reasonable range (Figure 73). Values highlighted in teal
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Figure 72: Determination of the SCBA Cosmed integrated system comparing the measured 
minute ventilation with the predicted minute ventilation from the mechanical calibrator. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 73: Spreadsheet for determination of percent error between measured SCBA Cosmed 
variables and predicted values from the mechanical calibrator. 
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APPENDIX B 
Table 9: Summary for VE, absolute and relative VO2, VCO2, RER, HR, Velocity, and Power for 
each flight during the maximal stair climb scenario. 
Floor VE

(L/min) 
VO2 

 
(ml/min) 

VO2 
(ml/kg/min) 

% 
VO2peak

VCO2  
(ml/min) 

RER HR  
(bpm) 

Velocity 
(m/s) 

Power 
(W) 

BL 14.7 
 ± 4.5 

495  
± 193 

5.5  
± 1.3 

11  
± 3 

446 
 ± 135 

0.90 
 ± 0.11 

100 
 ± 17 N/A N/A 

1 29.4 
 ± 9.5 

1020  
± 267 

11.4  
± 3.0 

23  
± 7 

932  
± 268 

0.91  
± 0.12 

119  
± 15 

0.31 
 ± 0.05 

377.7  
± 71.8 

2 41.2 
 ± 12.6  

1579  
± 371 

17.5  
± 3.4 

36  
± 8 

1348  
± 345 

0.86  
± 0.12 

135  
± 15 

0.26 
 ± 0.04 

321.8 
 ± 57.2  

3 52.9  
± 13.6 

2493  
± 466 

27.7  
± 4.3 

55  
± 11 

1912 
 ± 416 

0.77  
± 0.07 

150 
 ± 14 

0.25  
± 0.03 

307.7 
 ± 51.5 

4 67.4  
± 14.4 

3087  
± 473 

34.4  
± 4.0 

68  
± 10 

2629  
± 483 

0.85 
 ± 0.08 

156 
 ± 12 

0.22 
 ± 0.03 

274.6 
 ± 47.4 

5 78.0 ± 
15.1 

3303  
± 494 

36.8  
± 3.9 

73  
± 9 

3175 
 ± 499 

0.96  
± 0.09 

159 
 ± 11 

0.22  
± 0.03 

274.1 
 ± 56.2 

6 85.5  
± 16.3 ± 541 ± 4.1 ± 9 ± 535 ± 0.10  ± 11 ± 0.05  ± 6

7 91.6  
± 17.2 

3409  
± 570 

37.9  
± 4.4 

75  
± 8 

3795 
 ± 608 

1.12  
± 0.10 

162 
 ± 10 

0.19  
± 0.03 

233.
 ± 

3390  37.7  74 3545  1.05  162 0.20  249.6 
4.5 
4 

52.5 

3470 40.0  76 3776 1.09  167  0.17 209.0 
5 

 0.07 ± 13  ± 0.03  ± 25.6 
23 95.5 

 ± 15.7 
3459  
± 648 

43.4  
± 4.4 

79 
 ± 8 

3777 
 ± 839 

1.09  
± 0.08 

178  
± 12 

0.17 
 ± 0.04 

186.9 
 ± 49.5 

8 93.4  
± 17.5 

3382  
± 571 

37.6  
± 4.5 

74  
± 7 

3866  
± 677 

1.15  
± 0.12 

163 
 ± 9 

0.19  
± 0.04 

229.7 
 ± 62.3 

9 94.3  
± 16.9 

3387  
± 572 

37.6  
± 4.5 

74  
± 8 

3884 
 ± 697 

1.15  
± 0.12 

164  
± 9 

0.19  
± 0.03 

229.5 
 ± 49.2 

10 95.0  
± 17.3 

3405  
± 606 

37.8  
± 5.2 

74  
± 9 

3891  
± 738 

1.15  
± 0.12 

165 
 ± 10 

0.18 
 ± 0.04 

217.3 
 ± 57.8 

11 95.1  
± 16.5 

3417  
± 590 

38.1  
± 5.3 

75  
± 8 

3865  
± 708 

1.13  
± 0.12 

165 
 ± 10 

0.18  
± 0.03 

216.3 
 ± 45.7 

12 94.5  
± 16.7 

3403  
± 637 

37.9  
± 6.0 

74  
± 9 

3827  
± 751 

1.13  
± 0.12 

166 
 ± 10 

0.17  
± 0.04 

206.6  
± 57.4 

13 95.8  
± 15.9 

3457  
± 619 

38.5  
± 5.8 

76  
± 9 

3841 
 ± 740 

1.11  
± 0.12 

166 
 ± 9 

0.18  
± 0.04 

220.3 
 ± 46.9 

14 96.4  
± 16.4 

3469  
± 649 

38.7  
± 6.1 

76  
± 10 

3832 
 ± 784 

1.11  
± 0.11 

166 
 ± 10 

0.17  
± 0.04 

205.4 
 ± 53.5 

15 97.9  
± 15.9 

3489  
± 653 

38.8  
± 5.9 

76 
 ± 9 

3842  
± 793 

1.10  
± 0.11 

167 
 ± 10 

0.16 
 ± 0.05 

201.6 
 ± 58.0 

16 97.5  
± 16.7 

3523  
± 636 

39.3 
 ± 5.5 

77 
 ± 11 

3860 
 ± 768 

1.10  
± 0.11 

167 
 ± 10 

0.17 
 ± 0.04 

206.2 
 ± 47.6 

17 97.6  
± 17.8 

3517  
± 697 

39.7  
± 6.2 

77 
 ± 12 

3851 
 ± 812 

1.10  
± 0.11 

167 
 ± 10 

0.15 
 ± 0.05 

185.5  
± 61.9 

18 96.2  
± 17.6 

3506 
 ± 687 

39.9  
± 5.9 

77 
 ± 10 

3829 
 ± 821 

1.09  
± 0.11 

167 
 ± 11 

0.16 
 ± 0.05 

200.3 
 ± 65.5 

19 98.3  
± 17.3 

3531  
± 713 

40.0  
± 6.0 

78 
 ± 11 

3821  
± 860 

1.08  
± 0.11 

166 
 ± 11 

0.17 
 ± 0.04 

205.8  
± 53.8 

20 97.7  
± 17.7 

3538 
 ± 723 

40.0  
± 6.2 

76 
 ± 10 

3817  
± 834 

1.08 
 ± 0.10 

167 
 ± 12 

0.16  
± 0.05 

192.9 
 ± 62.6 

21 96.0  
± 16.5  ± 692 ± 6.4  ± 10  ± 818 ± 0.10 ± 13  ± 0.03  ± 44.

22 96.4  
± 15.0 

3517  
± 617 

42.4  
± 5.1 

78 
 ± 8 

3790 
 ± 773 

1.07  
±

173  0.19 216.4 

Note: BL = Baseline 
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