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ABSTRACT 
 
Pure-breeding, early-flowering lines of flax, derived from treatment of germinating seeds with 5-

azacytdine in 1990, flower 7-13 days before controls, have fewer leaves, are shorter, and have 

hypomethylated total DNA, relative to control lines.  This thesis examines the changes in DNA 

methylation levels in the cotyledons and shoot tips of early-flowering Royal flax lines (i.e. RE1 and 

RE2) and their control (RC) to determine the changes from 24 days to the onset of flowering 

(approximately 34 days in RE1 and RE2, and 52 days in RC).  It also examines the question of whether 

DNA is methylated in the chloroplast genome of flax.  Finally, the thesis looks at the differences in 

transcript abundance of the flowering genes LEAFY and TERMINAL FLOWER1 in RC and RE2.  

Methylation levels in RE1 and RE2 were found to be lower than in RC from 24 days of age to the onset 

of flowering and the levels of all three lines increase with tissue age and/or differentiation.  In addition, 

buds of RE2 were hypomethylated relative to RC.  If plants were placed in the dark prior to DNA 

extraction, hypomethylation was not seen in the total DNA of RE2.  The chloroplast DNA of flax was 

found to be methylated, and RE2 chloroplast DNA was hypomethylated relative to RC.  Differences in 

transcript levels of LFY were seen in RC and RE2 shoot tips, where a higher accumulation of transcript 

seen in RE2 compared to RC may be related to its earlier flowering time.  In leaves, there was no 

significant difference in the transcript abundance of LFY between RC and RE2.  TFL1 was detected in 

genomic DNA of RC and RE2; it was not detected in the cDNA of the two lines.  In summary, 

compared to RC, hypomethylation was seen in the total DNA of RE2 plants grown under regular light 

conditions and the methylation levels in the all lines increased with age in shoot tips, cotyledons, and 

leaves.  The chloroplast DNA of RE2 was also hypomethylated relative to that of RC.  RE2 

accumulated LFY transcript in shoot tips at flowering, which was not the case in RC.  Although these 

ideas cannot be linked at this time, they are all likely related to the early-flowering phenotype. 
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INTRODUCTION 

1.1 The Flax Lines 

1.1.1 Induction of the Early-Flowering Flax Lines 

The early-flowering lines of flax were derived in 1990 by a one-time treatment of germinating 

seedlings with 5-azacytidine (azaC; Fieldes 1994), which is a known DNA demethylating agent (Jones 

1984).  Two early-flowering lines (E1 and E2) were produced from each of:  i) Royal (R), which is an 

oilseed cultivar, ii) the genotroph Large (L), derived by Durrant from the fiber cultivar Stormont Cirrus 

(Durrant 1971), and iii) the fiber cultivar Mandarin (M).  Four of these lines (LE1, LE2, RE1, and RE2) 

have been grown for eight to ten generations past the original treated generation.  Because flax is an 

inbreeding species, self-pollination of the early-flowering plants (detected in the first generation after 

treatment) produced lines that were pure-breeding for early-flowering characteristics by the third 

generation after the treated generation (Fieldes and Amyot 1999). 

Of the six early-flowering lines, those derived from Royal (i.e. RE1 and RE2) are the focus of 

this study.  For comparative purposes, there are occasional references to the early-flowering L lines.  

The control line for RE1 and RE2, denoted RC, came from untreated Royal plants that were grown 

alongside the early-flowering lines throughout the generations. 

1.1.2 Morphological and Developmental Characteristics of the Flax Lines 
 

In comparison to their respective control lines, at maturity the early-flowering lines are shorter, 

have fewer leaves, and flower 7-13 days earlier (Table 1; Fieldes and Harvey 2004).  The rates of 

growth and development of the early-flowering lines are relatively normal until the last (third) stage of 

vegetative development, which is accelerated in the early-flowering lines (Fieldes and Harvey 2004).  

The early-flowering characteristics vary among the early-flowering lines as well, for example, the RE2 

phenotype is more pronounced than that of RE1.  
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Table 1:  Differences in Morphology and Development of the Early Flowering and Control Lines 
of Flax 
 
For the L lines, means for morphological characteristics (Amyot 1997) are from full-grown plants from 

1996 greenhouse populations (LC: n=39, LE1 and LE2: n=20).  For the R lines, all means are from 

mature greenhouse populations grown in 2005 (n=4).  Means for methylation levels (Fieldes et al. 

2005) are from 4-day-old seedlings grown in the growth chamber in 2004 (Controls: n=4, early-

flowering lines: n=2). 
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Parameter: Plant line: Comparisons c:  

 

 RC RE1 RE2 C-E1 C-E2 

Flowering age (days) 54.4 46.1 45.1 40.2** 51.1** 

Mainstem height (cm) a 73.46 41.24 35.89 516.56** 698.39** 

Leaf number 94.5 48.6 41.1 433.1** 602.0** 

Methylation level (%) b 14.13 12.50 13.18 14.47** 3.60ns 

 LC LE1 LE2 C-E1 C-E2 

Flowering age (days) 52.0 46.6 42.0 296.2** 901.4** 

Mainstem height (cm) a 102.3 84.7 61.1 296.5** 1620.9** 

Leaf number 108.0 70.8 53.3 696.1** 1504.2** 

Methylation level (%) b  14.36 13.45 12.53 6.30* 12.90** 

** is significant at P< 0.01; * is significant at P<0.05; ns is not significant at P=0.05. 
a Main stem height is a measure from the cotyledons to the tip of the plant. 
b While all other parameters are for plants at maturity, methylation level is for 4-day-old 
seedlings (DNA sampled from cotyledons and emerging shoot tips). 
c Values are F1/9 for all L parameters and F1/12 for all R parameters, with the exception of 
methylation level comparisons, which are F1/8. 
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 Methylation levels of total DNA are significantly decreased in the early-flowering lines when 

compared to control lines (Fieldes et al. 2005).  In the tissues examined, approximately 14 percent of 

total cytosine, or 2.7 percent of total nucleotides, are methylated in flax (Fieldes et al. 2005).  On 

average, the early-flowering flax lines have 6.2 percent less methylation in terminal clusters at 14 days 

of age, and 9.7 percent less methylation in four-day-old cotyledons and emerging shoot tips than 

corresponding control plants (Fieldes et al. 2005).  This demethylation of the genome occurred because 

the azo-group of azaC that was used in the original treatment of the germinating seedlings is attached to 

the fifth carbon of the azacytidine.  When the azacytidine incorporates into the DNA backbone during 

DNA replication, it prevents a methyl group from being added.  Genetic crosses between early-

flowering lines and their respective controls suggest that hypomethylation of the early-flowering lines 

co-segregates with the early-flowering phenotype (Fieldes et al. 2005).  Hypomethylation is passed 

from generation to generation, suggesting that this epigenetic trait is responsible for the early-flowering 

characteristics and, thus, that the hypomethylation is not random and is related, in some way, to 

flowering time (Fieldes et al. 2005).  Further, in flax seedlings, the methylation levels of the DNA 

increase with development (Figure 1; Fieldes unpublished). 

1.1.3 Genetic Control of Early-Flowering in Flax 

Segregation patterns seen in the progeny of outcrosses between the E1 lines of L, R, and M, and 

their respective controls suggest that changes in a minimum of three genes are required to produce the 

early-flowering phenotype.  The genetic model suggests that there is one genetic locus called Short 

(SH), one called early flowering (EF) and a third, called A (Fieldes and Amyot 1999).  The locus A 

must be homozygous recessive in order for the traits controlled by the other two loci, and thus the early-

flowering phenotype, to be seen.  The early-flowering alleles of both SH and EF are dominant or co-

dominant, and they interact with each other to give variability in the early-flowering phenotype among 

the progeny in segregating generations of the outcrosses (Amyot 1997; Fieldes and Amyot 1999).    
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Figure 1: Change in Methylation Levels in Young Shoot Tips and Cotyledons of Flax 

Significant differences in methylation levels in the combined shoot tip and cotyledon samples of the 

two early-flowering R lines, RE1 and RE2, and their control line, RC, from 3 to 9 days from sowing 

[F1/10=29.9*] (Fieldes unpublished).  The average standard error of the means (n=2), based on the error 

mean square, was 0.35. 
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According to the working concept of the role of DNA methylation in flowering of flax 

(developed in the Fieldes’ lab), all three of the early-flowering loci must be demethylated in order for 

the transition from vegetative growth to flowering to occur in flax.  In the early-flowering lines, the 

induced demethylation from the azaC treatment is thought to have caused the three loci to be 

demethylated and therefore, these plants only need to reach a critical level of a floral stimulus in order 

to flower (Amyot 1997; Fieldes and Harvey 2004).   In contrast, the transition to flowering takes longer 

in the control lines, since all three loci must become demethylated (naturally) before any response to 

cues from a floral stimulus can occur (Amyot 1997; Fieldes and Harvey 2004).   

1.2 Cytosine Methylation (mC) 

1.2.1 Global DNA and Histone Methylation 

DNA methylation in plants acts as a defence against transposons, in addition to its role in 

regulating gene expression (reviewed in Chan, Henderson, and Jacobsen 2005).  It is thought to be the 

most common post-replication modification in higher eukaryotes (reviewed in Li, Hall, and Holmes-

Davis 2002).  Most of the methylation in plants occurs at CpNpG triplets (reviewed in Chan, 

Henderson, and Jacobsen 2005), but 60-90 percent of all CpG pairs are also methylated, and the CpG 

doublets that are not methylated are generally found in the CpG islands of promoter regions (Ng and 

Bird 1999).   DNA methylation is much more common in plants than animals, with up to 30 percent of 

cytosines being methylated in some plant species (Fasman 1976; reviewed in Adams 1990; Richards 

1997).   In plants especially, cytosine methylation may have a role in genome stabilization (Matassi et 

al. 1992).  Although DNA methylation changes occur throughout plant development (Ruiz-Garcia, 

Cervera, and Martinez-Zapater 2005), permanent (epigenetic) changes can pass on lasting effects to 

progeny.  Evidence for methylation changes with development in flax was seen in a study of cotyledons 

and emerging shoot tips from three to nine days of age, which showed increases in the DNA 
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methylation levels of RC, RE1, and RE2 over age and/or tissue development (Figure 1; Fieldes 

unpublished).   

The methyltransferases, which are a group of proteins that regulate DNA methylation, are found 

in four forms in Arabidopsis, differing in arrangement of regulatory and methyltransferase domains.  Of 

the four classes of transferases, two classes are responsible for de novo methylation, one is responsible 

for non-CpG methylation, where all three of these classes are thought to be directed by siRNA, and the 

other class has an unknown function (reviewed in Chan, Henderson, and Jacobsen 2005).  Further, 

glycosylase enzymes can act to demethylate the genome by splicing the DNA at methylated sites and 

replacing methylated cytosine residues with non-methylated residues during DNA repair (reviewed in 

Chan, Henderson, and Jacobsen 2005).  As previously mentioned, azaC can be used to induce 

demethylation of DNA (Jones 1984).  After the removal of azaC in some plant species, such as tobacco, 

the genome will be re-methylated by a group of the de novo methyltransferases (Klaas et al. 1989).   In 

other cases, such as rice and flax (Sano et al. 1990; Fieldes 1994), treatment with azaC can produce 

effects that are passed on to the progeny of treated plants.   

Work on the locus DECREASE IN DNA METHYLATION 1 (DDM1) in Arabidopsis has shown 

that other proteins must also be necessary for methylation to occur.  Although mutations at the DDM1 

locus do not prevent the in vitro methylation at CpG and CpNpG locations by methyltransferases, 

DDM1 is required in vivo for methylation, where the protein is thought to mediate interactions between 

the methyltransferase and the DNA (Kakutani, Jeddeloh, and Richards 1995).  DDM1 encodes a 

SWI2/SNF2-like (switch/sucrose non-fermenting) protein that modifies the nucleosomes of chromatin 

and makes DNA more accessible to methyltransferases (Jeddeloh, Stokes, and Richards 1999); 

therefore, ddm1 mutants have less methylation because their chromatin is more tightly packed 

(reviewed in Li, Hall, and Holmes-Davis 2002).   

Methylation can also occur in histones, thereby modifying the structure of the chromatin and, 

thus, affecting gene expression.  There is a complicated relationship between DNA methylation and 

histone methylation, where changes in histone methylation relate to changes in DNA methylation and 
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gene expression (He, Doyle, and Amasino 2004).  Further, changes in histone acetylation are related to 

changes in DNA methylation and gene transcription (He, Doyle, and Amasino 2004).  Specifically, 

DNA methylation and the rate of genome transcription tend to be inversely related; regions of the 

genome that have low transcriptional activity have higher levels of methylation than highly transcribed 

areas (reviewed in Boyes and Bird 1991).    

Arabidopsis shows phenotypic changes when the methylation levels in the genome are altered.  

When the DNA methylation level is decreased, plants with reduced apical dominance, smaller stature, 

different leaf shape and size, decreased fertility and/or a change in flowering time are produced 

(Finnegan, Peacock, and Dennis 1996).  The effects vary depending on the cultivar (Genger et al. 

2003).  A recent study on the short day (SD) plant Perilla frutescens var. crispa (wild basil) showed 

that the direct effects of azaC treatments induced demethylation of the genomic DNA and caused 

flowering under long day (LD) conditions, but no other phenotypic differences (Kondo et al. 2006).   

The phenotypic changes resulting from changes in methylation may be due to demethylation within 

promoter elements of the flowering genes, or transcription factors regulating them, or because of the 

changes in the structure of the chromatin surrounding certain flowering genes (Finnegan, Peacock, and 

Dennis 1996).   

1.2.2 Organellar DNA Methylation 
 

Variable results have been obtained for levels of cytosine methylation in the chloroplast of 

several species.  In liverwort, (Marchantia paleacea var. diptera), it was determined that 0.2 percent of 

the chloroplast DNA is methylated, compared to 17 percent of the total genomic DNA, using HPLC 

and restriction enzyme techniques (Takio, Satoh, and Satoh 1994).  Conversely, no chloroplast DNA 

methylation was detected by HPLC and restriction enzymes in Lycopersicon esculentum (tomato) 

leaves (Marano and Carrillo 1991), even though restriction digest studies had previously suggested that 

methylation is present in tomato leaf and fruit chloroplasts (Ngernprasirtsiri, Kobayashi, and Akazawa 

1988a).   

 9



 

Methylation of chloroplast DNA has also been reported in Chlamydomonas (HPLC study; 

Burton, Grabowy, and Sager 1979), Pisum sativum (HPLC and restriction enzyme studies; Ohta et al. 

1991), and the bundle sheaths of maize (restriction enzyme study; Ngernprasirtsiri et al. 1989).  On the 

contrary, the absence of methylation has been reported in the chloroplast DNA of tobacco (Kovarik et 

al. 2000), and Arabidopsis (Godager et al. 1998).  It should be noted, however, that these studies were 

done using restriction enzymes, which are now thought to be less reliable measures of chloroplast DNA 

methylation than HPLC studies (Godager et al. 1998; Fojtova, Kovarik, and Matyasek 2001).   

DNA methylation levels vary between organelles as well.  For example, in pea, there is more 

methylation in chloroplast DNA than amyloplast DNA (Ohta et al. 1991). Chloroplast DNA from Acer 

pseudoplatanus (sycamore) is not methylated (HPLC study), while amyloplast DNA contains cystosine 

methylation (Ngernprasirtsiri, Kobayashi, and Akazawa 1988b).  Similarly, chloroplasts in leaves and 

seedlings of maize have no DNA methylation, while all non-photosynthetic plastids in maize have 

DNA methylation (restriction enzyme study, Gauly and Kossel 1989).  This suggests that the 

methylation acts to suppress gene transcription in some, but not all, of the plastids and may be involved 

in conversion of plastid types (Kobayashi, Ngernprasirtsiri, and Akazawa 1990).   

1.3 Phase Change: the Transition Between Growth Stages  

The vegetative and reproductive growth stages are separated spatially and temporally (Lawson 

and Poethig 1995), and are controlled by the shoot apical meristem (SAM).  This area, at the tip of the 

plant stem, produces undifferentiated cells, which later form all of the above ground plant parts.  The 

inner (central) apex forms initials, while the outer SAM cells form organ primordia (reviewed in Evans 

and Barton 1997).  From embryonic development, and throughout plant growth, the SAM will form 

initials, thus maintaining the developmental flexibility of the plant (Ma 1998).  In tobacco, signals from 

the root maintain vegetative growth in seedlings but as plants age, the vegetative meristem responds to 

stimuli that promote flowering at the proper time (McDaniel 1996).  The growth and shape of the SAM 
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differs among plant species (Evans and Barton 1997), but all are regulated by signals from external 

sources (Colasanti and Sundaresan 2000).   

The vegetative growth of a plant is divided into juvenile and adult stages (Lawson and Poethig 

1995).  In the juvenile phase, leaf, stem, and axillary buds are formed, and in the adult stage, the SAM 

gains reproductive competence (Poethig 1990).  Although SAM activity changes from the juvenile to 

adult phase, leaves are produced in both phases.  However, different substances are sometimes 

produced in the vegetative tissue.  For example, anthocyanin is only produced during the juvenile 

vegetative growth of ivy, and the leaves produced in this stage are less photosynthetic than the leaves 

produced during the adult stage (reviewed in Lawson and Poethig 1995).  During both vegetative and 

reproductive development, organs are first initiated, and then identified, by switching on and off 

different genes, and finally, they produce their secondary components (Lawson and Poethig 1995).  

Reproductive growth occurs when the SAM gains competence to form sepals and petals, followed by 

stamens and pistils (Poethig 1990).   

The genes that are involved in the floral initiation processes are referred to as FLIP genes.  FLIP 

genes tend to up-regulate each other and work with the SAM to promote flowering.  Thus far, in 

Arabidopsis, five FLIP genes have been identified: LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER 

(CAL), APETALA2 (AP2), and UNUSUAL FLORAL ORGANS (UFO) (reviewed in Pidkowich, Kenz, 

and Haughn 1999).  If the FLIP genes did not interact with the SAM, embryonic expression (i.e. the 

juvenile vegetative state of expression) would always occur because the plants would never become 

competent to flower (Pidkowich, Kenz, and Haughn 1999).  The relationship between FLIP genes and 

the SAM needed for floral competence may be as simple as two genes producing the right amount of 

product at the same time.   

The transition from one growth stage to another is called a phase change.  It is regulated by 

independent and/or co-ordinated pathways of genes and other factors (Bernier et al. 1993; Lawson and 

Poethig 1995; reviewed in Henderson and Dean 2004).  Independent regulation allows for greater 

plasticity for development, based on environmental changes.  Pathways to flowering in plants are 
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redundant; if they were not organized in this way, a single mutation at any flowering gene would cause 

a loss of flowering in the plant. Generally, however, a mutation in a single flowering gene causes a 

change in floral morphology or a change in the time of flowering.  Two of the most important 

environmental factors affecting flowering are photoperiod (i.e. day/night length) and temperature.  

Because so many different factors can affect flowering, some signalling pathways span the entire plant 

and involve substances found throughout the plant.   

1.3.1 How Phase Change Occurs 

The change from vegetative to floral growth is probably controlled by the balance of promoters 

and inhibitors in the SAM and is possibly induced when both reach a threshold level at the same time 

(Murfet 1985).  Three different ideas have been suggested to explain this phase change.  The earliest is 

the nutrient diversion hypothesis, which states that floral induction occurs because of a change in the 

relationship between products of the source and the sink.  That is, plants are induced to flower when 

larger amounts of certain products are sent to the SAM (Sachs and Hackett 1983).   

The second theory of phase change is the florigen/anti-florigen concept, where florigen promotes 

flowering and anti-florigen inhibits it.  The promoters and inhibitors of flowering may be a combination 

of molecules and/or hormones (Bernier 1988).  They may vary in combination among plant species.  It 

is thought that these signals are produced in the leaves and are mobile, being sent to the SAM via the 

phloem (Bernier 1988).  For many years, the precise nature of the compounds involved remained 

elusive.  Recently, it was suggested that the mRNA of the floral pathway integrator FLOWERING 

LOCUS T (FT) might be florigen, and travel from the leaves to trigger flowering in the meristem 

(Huang et al. 2005).  More recently, it has been suggested that it is the FT protein, and not the mRNA, 

in Arabidopsis (or its homologue Hd3a in rice) that is the florigen molecule (Corbesier et al. 2007; 

Tamaki et al. 2007; reviewed in Pennisi 2007).  It has also recently been shown that phytochrome B in 

the mesophyll has a suppressive effect on FT in the cotyledons of Arabidopsis (Endo et al. 2005), which 

does not prove that it is the anti-florigen, but does emphasize the complexity of the system.  For 
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example, genes affecting FT expression, such as TERMINAL FLOWER 2 (TFL2), will also likely play a 

role in the florigen/anti-florigen system (Kotake et al. 2003). 

The third hypothesis regarding the promotion of flowering is that it is regulated by multifactorial 

control.  This suggests that phytohormones are the main reason for the occurrence, and timing, of 

flowering (Bernier, Kinet, and Sachs 1981; reviewed in Bernier 1988), but that other factors, such as 

assimilate levels, are involved (Bernier et al. 1993).  Although phytohormones are thought to be 

involved in floral induction, differences in genetics and growing conditions will make different 

phytohormones act as limiting factors for floral induction in different species.  This theory incorporates 

the floral meristem identity genes, which switch the fate of the SAM from vegetative to reproductive 

growth, and the organ identity genes, which direct the formation of the reproductive organs (Bernier et 

al. 1993).     

1.3.2 Flowering Pathway Studies in Model Plant Species 

Two plant species in which flowering pathways have been extensively studied are Pisum sativum 

(pea), and Arabidopsis.  In both species, photoperiod is important; both are LD plants (Bernier et al. 

1993; Weller et al. 1997) and, therefore, they require a number of shortened dark periods between 

daylight in order for flowering to be induced.  Important flowering time genes in pea include Late 

Flowering (LF), Early initiating (E) and High response (HR; Weller et al. 1997).  Interactions between 

LF and E suggest a single flowering pathway is present in pea.  In Arabidopsis, however, there are more 

flowering pathways that have been suggested (reviewed in Levy and Dean 1998; Figure 2).   

There appear to be approximately 80 different genes involved in flowering in Arabidopsis, most 

relating directly, or indirectly, to LEAFY (LFY) (Huala and Sussex 1992; reviewed in Levy and Dean 

1998; reviewed in Araki 2001; reviewed in Ratcliffe and Riechmann 2002; Figure 2).  In many cases, 

mutations of LFY have been found to change the type, or shape, of the inflorescence formed.  For 

example, lfy mutants produce plants with elongated internodes and variable metamers in Arabidopsis 

(Schultz and Haughn 1991).  LFY plays a central role in flowering time in Arabidopsis.  It controls  
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Figure 2: Flowering Pathways and Classes of Genes in Arabidopsis. 

The diagram specifies the four classes of flowering genes as well as other factors that affect flowering.  

Examples of the genes from each class that are mentioned in this document are indicated.  Any genes 

that are not included in boxes are flowering time genes. 

Arrows denote positive regulatory effects of genes (either those genes listed or others in the pathway) 

and flat lines represent inhibitory effects of genes on those functioning downstream. 

(Adapted from Henderson and Dean 2004; Anthony 2006). 
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floral identity and integrates signals from the flowering time pathways (Koornneef et al. 1998; 

Pidkowich, Kenz, and Haughn 1999; reviewed in Henderson and Dean 2001).   

It has been shown that DNA methylation is somehow related to flowering time in plants.  For 

example, in the Landsberg erecta and Columbia ecotypes of Arabidopsis, ddm1 mutant plants and 

transgenic antisense METHYLTRANSFERASE1 (MET1) plants have a reduction in DNA methylation 

levels and both lines have altered flowering times, as well as other phenotypic abnormalities (reviewed 

in Richards 1997).  The hypomethylation is thought to occur in the meristem, since DNA replication 

and cell division are required (Burn et al. 1993), and may be passed to subsequent generations, as it is 

in rice (Sano et al. 1990) and in flax (Fieldes et al. 2005).  In these cases, it has been proposed that a 

gene critical to flowering time must be demethylated and, thus, have altered expression before 

flowering can occur (Burn et al. 1993; Fieldes and Harvey 2004).  Therefore, treated plants will flower 

earlier than normal, but in untreated plants, methylation levels are also likely to decrease closer to 

flowering as the “critical gene(s)” become demethylated in order to signal that the time has come for 

flowering.    

Specifically, Arabidopsis has two flowering time genes that have been shown to be affected, 

directly or indirectly, by methylation.  Altered methylation at the VERNALIZATION2 (VRN2) locus is 

thought to regulate expression of FLOWERING LOCUS C (FLC), leading to a decrease in expression, 

which, in turn, causes early flowering in vernalization-sensitive ecotypes of Arabidopsis (Finnegan, 

Peacock, and Dennis 2000; Genger et al. 2003).  Conversely, a direct demethylation effect at the FWA 

locus causes a delay in flowering time in the Landsberg erecta and Columbia ecotypes of Arabidopsis 

(Genger et al. 2003). 

1.4 Genes Involved in Flowering 

 There are many genes involved in the control of flowering.  These genes interact with each 

other, with hormones, and with the environment (Figure 2).  They are divided into four functional  
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classes.  First, there are the flowering time genes, which are involved in the timing of phase transition 

from vegetative growth to the onset of flowering.  Second, there are the floral integrator genes, which 

integrate the information from all of the other factors related to flowering time.  They are controlled, 

essentially, by flowering time genes, and encode proteins that activate the floral meristem identity 

genes (reviewed in Henderson and Dean 2004).  The third class of flowering genes is the floral 

meristem identity genes, which determine what the meristem will form.  If the floral meristem identity 

genes mutate, then the time of flowering does not change but other tissues such as leaves or leaf-like 

tissue replace the flowers (Poethig 1990).  The final class of flowering genes is the floral identity, or 

floral homeotic genes.  There are three sub-classes of floral identity genes, A, B, and C, which are 

classified based on which floral organs they are involved in developing and how they interact with each 

other (Parcy et al. 1998). 

1.4.1 LEAFY 
 

One gene that plays a critical role in the flowering time of many species is LFY, also known as 

FLORICAULA (FLO) in some species, such as snapdragon (Antirrhinum majus) where it was first 

reported.  It is a unique transcriptional regulator classified as both a floral integrator, and a floral 

meristem identity gene (Henderson and Dean 2004).  There is considered to be a threshold level of LFY 

transcript necessary in order for Arabidopsis to make the transition from vegetative to reproductive 

growth (Blazquez et al. 1997; Hempel et al. 1997).  In addition, LFY is involved in floral patterning by 

regulating genes in all three of the A, B and C classes of floral identity genes.  It affects sepal, petal, 

stamen and carpel development; this role of LFY is separate from its role in floral meristem identity, 

where it works in the initial floral primordia development (Parcy et al. 1998).   

Flowering genes can be classified as those that respond to LFY activity, and those that affect LFY 

transcription, while some do both (Nilsson et al. 1998).  There are other factors, however, that may also 

affect LFY and its proteins’ function (Figure 2).  For example, in Arabidopsis, gibberellin-deficiency in 
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LD species causes a reduction of LFY expression, and in SD species, it prevents LFY expression 

entirely (Blazquez et al. 1998).   

Although the reproductive function of LFY/FLO is conserved among species, the developmental 

function is not (Kelly, Bonnlander, and Meeks-Wagner 1995; Hofer et al. 1997; Mouradov et al. 1998).  

In both Arabidopsis and Antirrhinum, a loss-of-function mutation in the gene (i.e. LFY or FLO) will 

cause indeterminant secondary shoots to form, as opposed to flowers (Weigel et al. 1992; Coen et al. 

1990).  In rice, the homologue to LFY is RFL.  When RFL was put into Arabidopsis, the transgenic 

plants flowered early, but did not develop normally (Chujo et al. 2003).  However, when the RFL gene 

is attached to a LFY promoter and put into an Arabidopsis lfy mutant, the gene was able to rescue, 

partially, the mutant so there must be some similarities between the two, even though RFL is somewhat 

divergent in function from LFY (Chujo et al. 2003).   

Woody plant species also have LFY homologues.  For example, Pinus radiata (pine) has the gene 

NEEDLY, and Populus trichocarpa (poplar) has PTLF.  If over expressed, PTLF causes phenotypic 

changes after several years, and, thus, it can be concluded that negative regulation of PTLF only occurs 

at young ages (Rottmann et al. 2000).  Interestingly, when LFY was placed into transgenic poplar trees 

and over expressed, development was altered, but the expected early flowering phenotype was not seen 

(Rottmann et al. 2000). 

In Malus sylvestris L. var domestica, (apple), there is a homologue of LFY and FLO, called AFL 

that is expressed in both vegetative and reproductive organs (Kotoda et al. 2000).  Other studies on 

citrus fruits from the family Rosaceae (subfamily Maloideae) have shown that, of the six fruits studied, 

all have two homologues of LFY, with the highest level of sequence conservation being at the C-

terminus (Esumi, Tao, and Yonermori 2005).  Further, Citrus sinensis (Washington navel orange) has a 

LFY homologue called csLFY. 

In Arabidopsis, LFY is expressed during vegetative growth, and its expression increases with 

floral induction (Nilsson et al. 1998).  This is not the case with the Impatiens balsamia homologue 

FLO, where the gene is transcribed constitutively in both vegetative tissue and the floral meristem 
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(Pouteau et al. 1997).  Both AFL in apple (Kotoda et al. 2000), and NEEDLY in pine (Mouradov et al. 

1998) have similar expression patterns to LFY in Arabidopsis, and, while PTLF is expressed in the 

young leaves of poplar, it is much more strongly expressed in inflorescences (Rottmann et al. 2000).  In 

oranges, csLFY is only expressed in reproductive tissues (Pillitteri, Lovatt, and Walling 2004). 

The relationships among flowering genes are very complicated.  Some genes will act as 

inhibitors for certain genes while stimulating others and these effects will cause diverse downstream 

effects.  LFY, for example, has many downstream targets such as AP1, APETALA3 (AP3) and 

AGAMOUS (AG) (Parcy et al. 1998; Busch, Bomblies, and Wiegel 1999; Wagner, Sablowski, and 

Meyerowitz 1999; Lamb et al. 2002).  The interlinking of these genes is mediated by other genes.  For 

example, AGAMOUS-LIKE 24 (AGL24) acts upstream of LFY to mediate cross talk between FT, SOC1, 

and LFY in Arabidopsis (Yu et al. 2002).   

1.4.2 TERMINAL FLOWER 1 

Another gene important to the flowering process in Arabidopsis is TERMINAL FLOWER 1 

(TFL1).  This flowering time gene affects LFY by inhibiting LFY’s function in the inflorescence 

meristem (Shannon and Meeks-Wagner 1993; Koornneef et al. 1998), specifically in the initiation of 

the floral primordia (Alvarez, Guli, and Smyth 1992).  TFL1 encodes a protein that is similar to the 

mammalian phosphatidylethanolamine-binding protein (PBP) (Bradley et al. 1997; Ohshima et al. 

1997).  The TFL1 homologue CEN (in Antirrhinum) is thought to interact with phospholipids or GTP-

binding proteins on cell membranes to mediate floral signaling, preventing the signal from reaching the 

meristem, and it is possible that TFL1 acts similarly because the binding sites between TFL1 and CEN 

are highly conserved (Ohshima et al. 1997).   

The down-regulation of TFL1 expression in the shoot meristem occurs before strong expression 

of LFY and AP1 and thus, if high levels of TFL1 transcript are present, there could be repression of LFY 

and AP1 expression, resulting in a later flowering time for the plant (Ratcliffe, Bradley, and Coen 

1999).  In Arabidopsis, the activity of TFL1 allows indeterminate floral meristems to form, whereas tfl1 
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mutants are determinant (Alvarez, Guli, and Smyth 1992), and are committed to flowering early 

(Shannon and Meeks-Wagner 1991; Bradley et al. 1997).   

Although not many detailed studies have been conducted on TFL1, homologues to this gene have 

been found in other plants, such as Impatiens balsama, pea, oranges, Antirrhinum (CENTRORADIALIS; 

CEN), and tomato (SELF-PRUNING; SP), as well as in some fruit species, including six Maloideae 

species.  In grapes (Vitis vinifera L.), the SAM produces floral and vegetative primordia at regular 

intervals (Boss, Sreekantan, and Thomas 2006), which is different from the activity of the SAM in 

many other plants, including Arabidopsis (Bradley et al. 1997).  Expression patterns of the TFL1 

homologue in grape, called VvTFL1, are similar to SP (in tomato) in that transcripts are seen in the 

outer cells and primordia of the meristem until the bud opens (Boss, Sreekantan, and Thomas 2006).  

However, in Arabidopsis (Bradley et al. 1997), and tobacco (Amaya, Ratcliffe, and Bradley 1999), 

expression of TFL1 (and homologues) is restricted to the central core of the SAM.  Transcripts of TFL1 

are also present in the vegetative tissue of Arabidopsis where they work to suppress the development of 

the inflorescence (Bradley et al. 1997); expression is relatively weak until after commitment to 

flowering (Bradley et al. 1997).   

TFL1 expression is thought to be involved in two separate pathways, one where LFY is 

concerned, and the other incorporating AP1 and AP2 (Shannon and Meeks-Wagner 1993).  As with 

LFY, TFL1 has an inhibitory effect on AP1 and AP2; however, this may be indirect (Shannon and 

Meeks-Wagner 1993).  Although expression patterns of TFL1 differ among plant species, in all cases it 

is an inhibitor of LFY and a repressor of floral development. 

1.4.3 Other Important Flowering Genes 
 

The CONSTANS (CO) gene, which acts immediately up-stream of the proposed florigen 

molecule FT in Arabidopsis, is a flowering time gene.  It has also been found in Brassica napus, and in 

the SD plant Pharbitis nil (Morning glory) where it is called PnCO.  This gene is regulated by 

photoperiod but its circadian rhythm is unlike that of most of its CO homologues in that its rhythm 
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ensures that PnCO mRNA is accumulated after a long night, thereby stimulating flowering (Liu et al. 

2001).  In contrast, Arabidopsis is a LD plant and therefore accumulates CO transcripts following a 

long day period (Liu et al. 2001).  This displays the evolution of CO as well as its importance in 

mediation of floral induction in photoperiod-dependent plant species.   

FLOWERING LOCUS C (FLC) is highly conserved among plant species.  This flowering time 

gene encodes a MADS-BOX, dosage-dependent protein that is a repressor of the downstream floral 

inhibitor SUPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) (Sheldon et al. 2000; Tadege et al. 

2001) that is indirectly controlled by methylation.  In B. napus, there are five FLC-like gene sequences 

(Tadege et al. 2001).  If constructs of any of these five Brassica genes are put into the Arabidopsis 

Landsberg erecta genotype, there is a significant delay in flowering, and vice-versa (Tadege et al. 

2001).   

1.5 Study Objectives 
 

This study is divided into three sections: an HPLC developmental profile of DNA methylation 

levels, a chloroplast DNA methylation study, and an analysis of gene expression of two flowering 

genes.  In the HPLC study, the three R lines (i.e. RC, RE1 and RE2) were used to compare total DNA 

methylation levels, examining changes with time, and development, from 24 days of age to the onset of 

flowering.  This was done using the same extraction and HPLC methods that had been used previously 

for the same lines, from three to nine days of age (Fieldes unpublished; Figure 1).  Therefore, a nearly 

completed developmental profile of total DNA methylation changes with development was obtained for 

the R lines.  The hypotheses for this study were based on information about methylation levels that had 

already been determined for younger plants.  They were that methylation levels would increase with 

tissue age and/or differentiation, and that throughout development the early-flowering R lines would 

remain hypomethylated relative to the control line.   

Studies whereby chloroplast DNA methylation levels were measured in various plant species 

have produced inconsistent results.  Therefore, the second part of this study was designed to determine, 
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first, if chloroplast DNA of flax is methylated and second, whether chloroplast DNA of an early-

flowering line is hypomethylated relative to the control line, as seen in total flax DNA.  If the flax 

chloroplast DNA was found to be methylated, the hypothesis was that methylation differences between 

the early-flowering line (RE2) and control line (RC) would be similar to the trend observed for the total 

DNA; i.e. the chloroplast DNA of the early-flowering line would be hypomethylated relative to the 

chloroplast DNA of the control line. 

The third, and final, part of the study was an analysis of gene expression.  These experiments 

were designed to compare the levels of LFY and TFL1 transcripts in and between the control and early-

flowering plant lines, RC and RE2.  The hypotheses for this portion of the study revolve around the 

functions of the TFL1 and LFY genes in Arabidopsis and the relationship between the two (i.e. TFL1 is 

an inhibitor of LFY).  It was hypothesized that TFL1 would be expressed in the shoot apex prior to 

flowering, when LFY is not expressed, and that after the onset of flowering, the expression pattern 

would be reversed.  In addition, it was expected that the expression of the two genes in the early 

flowering and control lines would differ; the early-flowering lines should have either a greater 

accumulation of the LFY transcript in their tissues (vegetative and reproductive), or a lower 

accumulation of the TFL1 transcript, in comparison to the control lines. 

This thesis is organized into chapters, based on the three sections of the study.  Each chapter 

contains the materials and methods, results, and a brief discussion of the findings from the experiments, 

followed by all of the figures and tables for the chapter.  A more detailed discussion encompassing all 

three studies can be found in the final chapter. 
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2 DEVELOPMENTAL PROFILE OF METHYLATION LEVELS:  THE HPLC 
STUDY 

 
Previous research done in the Fieldes’ lab has suggested that there are increases in methylation 

levels in early flowering and control lines of flax during early development (Fieldes unpublished).  This 

work was done using the early-flowering R lines, and the control, RC.  The current study, presented 

here, was performed in order to complete the developmental profile of methylation in the R lines of 

flax, looking at changes in DNA methylation levels in the cotyledons and shoot tips from 24 days of 

age to the onset of flowering.   

2.1 Materials and Methods 

2.1.1 DNA Methylation Levels from 24 days to the Onset of Flowering and Cotyledon 
Senescence 

 
During the summer of 2005, plants from all three R lines (i.e. RC, RE1, and RE2) were grown in 

the greenhouse at Wilfrid Laurier University for this experiment.  The RE2 line used was previously 

referred to as RE2’, because it was the second E2 line derived from one of the original azaC treated R 

plants.  The first RE2 line reverted in the third generation after treatment (Fieldes et al. 2005).  The new 

derivative of RE2 is referred to here simply as RE2 and has been pure-breeding for eight generations 

beyond the treatment generation (Fieldes et al. 2005).   

For all of the lines (RC, RE1, and RE2), plants were grown, six per pot, to 24 days of age to the 

onset of flowering, in 5 inch diameter round pots filled with Vermiculite® (Premier Horticulture Inc., 

PA).  These plants were supplied with tap water, as needed.  At seven-day intervals after planting, the 

plants were given an inorganic nutrient solution modified from that of Murashige and Skoog (1962; 

Appendix A).  Seeds were sown on the same day (April 29th, 2005), which gave staggered sampling 

dates.  All sampling was done in duplicate.  

Shoot tips (i.e. all tissue above the first visible internode at the top of the mainstem) from all 

three lines were sampled on days 24, 27, 31 and 34.  Sampling of the RC line continued through days 
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38, 41, 45, 48, and 52 (i.e. sampling stopped at the onset of flowering in all lines).  For all three lines, 

cotyledons were sampled on days 24, 31, 38 and 52, at which time most cotyledons had visual signs of 

senescence.  The fresh weight of the harvested tissue was taken, the tissue was ground in liquid 

nitrogen, and it was quickly transferred into a 1.5 mL eppendorf tube.  DNA was extracted from these 

samples using the Qiagen® (Mississauga, ON) DNeasy minikit protocol (Appendix B) and hydrolyzed 

using a modification (Appendix C) of a method previously described by Matassi et al. (1992).  The final 

volume of all samples after hydrolysis was 299 µL. 

2.1.2 Shoot Tip Experiment 

To test the importance of similarity in the size of the shoot tip used for DNA extraction, shoot 

tips were excised from 14-day-old plants and divided into an upper and lower segment.  Plants for this 

portion of the study were planted, 10 plants per replicate (2 replicates of RC and RE2) in labelled 3.75-

inch square pots, containing Vermiculite®, and germinated in an 8/16 h dark/light cycle and a 

temperature ranging from approximately 16 ºC to 25 ºC.  Pots were covered with acetate sheets to retain 

humidity, and were given de-ionized water for germination.  On the third day after planting, the acetate 

sheets were removed and the seedlings were moved to a growth chamber, where they were supplied 

with light from eight 40-watt cool white fluorescent tubes in a similar 8/16 h dark/light cycle with a 

temperature range of 16 ºC-25 ºC and humidity varying from 20 to 35 percent.  These plants were 

supplied with nutrient solution (Appendix A) on day seven.  At 14 days of age, shoot tips were removed 

for sampling, as previously described (2.1.1).  For the upper shoot tip portion, 100 mg of leaf tissue was 

used, and 150 mg were used for lower shoot tip portions (combined weight from all 10 plants); the 

leaves in each portion were counted.  DNA was extracted from this material and samples were 

hydrolyzed (Appendix B and Appendix C), giving a final sample volume of 299 µL.   

 24



 

2.1.3 Flower Bud Experiment 

For the bud study, 10 plants per replicate (two) of both RC and RE2 were grown in the growth 

chamber in the same way as those described above.  They were given nutrient solution every seven 

days beginning at day seven.  For the extraction of bud DNA, buds were classified into three groups 

(small, medium, and large) based on length and width measurements of the buds, as well as general 

appearance of the buds (i.e. colour, etc.).  Pictures were taken of the buds (Figure 3), and the procedures 

for extraction and hydrolysis of DNA, used above, were followed (Appendix B and Appendix C).  Buds 

were not sampled at any specific plant age; they were sampled when plants had enough buds of all 

specific sizes available.  The RE2 plants were approximately 47 days old (mean flowering age of 43 

days in the growth chamber), and the RC plants were approximately 83 days old (mean flowering age 

of 62 days in the growth chamber). 

2.1.4 HPLC Analysis 

After DNA hydrolysis and centrifugation (7500 x g for 30 minutes), 50 µL of the supernatant of 

each sample was automatically injected by a Varian® Prostar 410 autosampler into a Varian® Prostar 

230 HPLC.   The samples were run on a 150 x 4.6 mm Supelcosil C-18S (with a LC-18C Supelguard 

pre-column, held at 30 °C) with an elution procedure (solutions at pH 4.0; Appendix D) that was 

modified from that of Matassi et al. (1992), as described in Fieldes et al. (2005).  Nucleoside peaks 

were detected by a Varian® Prostar 350 UV-Vis Detector.  The absorbance wavelength used was 260 

nm, except during the elution of 5-methylcytidine peak, which was measured at 280 nm for a two-

minute period (Fieldes et al. 2005).  Areas of the chromatogram peaks, calculated by computer software 

(Star® Chromatography), were used, in combination with the appropriate extinction coefficients, to 

provide an estimate of the concentration of each nucleoside (in µM).   These concentrations were then 

used to determine percentages of methylated cytidine (corresponding to the percentage of methylated 

cytosine) in the DNA samples, as well as the DNA concentration (per 10 plants, and per 100 mg of 
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fresh weight tissue).  Each DNA sample was run twice on the HPLC column and averages were used 

for data analysis.  Analyses of variance (ANOVAs) and orthogonal comparisons were used to 

determine the statistical differences among plant lines, the effects of plant age, and any interactions.  

For each parameter, the average standard errors for the means shown in the figures were derived from 

the error mean squares of the corresponding ANOVA. 

2.2 Results 

2.2.1 Comparisons of DNA Methylation Levels  

 In the shoot tips, the methylation levels increased significantly [F1/11=9.15*] from day 24 to day 

34 (Figure 4a; Table 2a).  Previous work had determined that there are three vegetative growth phases 

in these flax lines, called the early- , mid-, and late-vegetative phases (Fieldes and Harvey 2004).  The 

increase in DNA methylation seen, here, began approximately at the transition between the mid- and 

late-vegetative growth stages.  Non-orthogonal comparisons showed that the methylation value of RE2 

was significantly [F1/11=7.24*] lower than that of RC at 24 and 27 days of age, however, this was not 

the case [F1/11 <1.0] with RE1. 

Methylation levels also increased significantly [F1/14=30.9**] in the cotyledons from day 24 to 52 

(Figure 5a; Table 2b) and the hypomethylation of the early-flowering lines was only seen at the first 

three sampling ages [F1/14=6.06**].   

2.2.2 Comparisons of Other DNA and Tissue Characteristics 

In the shoot tips, linear increases were seen in the tissue weight [F1/11= 34.5**], DNA 

concentration (µM) per 10 shoot tips [F1/11= 23.3**], and DNA concentration (µM) per mg fresh weight 

[F1/11= 103**] (Figure 4b-d; Table 2a) with increasing age.  The increase in DNA concentration per unit 

fresh weight did not continue in the RC line after sampling ended in the early-flowering lines (i.e. after 
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the transition from mid- to late- vegetative growth), however, the increases in the other above 

parameters did continue.   

In the cotyledons, there were no significant differences between the early flowering and control 

lines for any of the parameters, except methylation levels, as previously discussed (2.2.1; Figure 5b-d; 

Table 2b).  Yellowing and abscission of the cotyledons had begun in all lines by day 52.  The data for 

DNA concentrations obtained on day 52 were anomalous and were not included in the analyses. 

2.2.3 Cytosine Methylation Differences in Divided Shoot Tips 

It was somewhat surprising that as the plants aged, the shoot tips did not retain the 

hypomethylation in RE2 seen in the other tissues.  The increases in tissue weight and DNA 

concentration per tip in older tissues suggested that the size of the tip was a possible explanation.  To 

test this possibility, the upper and lower regions of tips from 14 day-old plants were examined.  In all 

three lines, the upper shoot tip regions were hypomethylated, relative to the lower regions [F1/5= 9.86*].  

The early-flowering lines had a lower methylation value in both regions of the shoot tips than the RC 

line [F1/5= 11.62*] (Figure 6a; Table 3a).  In all three of the R lines, a higher DNA concentration (µM 

per 10 seedlings [F1/5=25.4**] and µM per 100 mg fresh weight [F1/5=33.6**]) was seen in the upper 

region of the shoot tips versus the lower region (Figure 6b; Table 3a).   

2.2.4 Cytosine Methylation Levels in Flower Buds 

Although methylation levels in the shoot tips of all three lines became similar as flowering 

approached (Figure 4a), hypomethylation was seen in RE2 flower buds [F1/5= 7.40*] compared to the 

buds of RC (Figure 6c; Table 3b).  There was no significant difference in methylation levels of the buds 

relating to size (therefore age) [F1/5 <1.0].  The differences in the bud sizes (Table 3b) can be seen in 

Figure 3.  There was no significant [F1/5=3.84ns] difference in DNA recovered (µM per 10 buds) in the 

different sized buds; however, there was a significant [F1/5=65.72**] linear decrease in DNA recovery 

(µM per 100 mg tissue) as bud size increased (Figure 6d; Table 3b). 
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2.3 Conclusions 

From the data presented in this chapter, it appears that the methylation levels in both early-

flowering and control lines are increasing with tissue development.  This was seen in the cotyledons 

and shoot tips.  In support of this observation, there is less DNA methylation in the upper portions of 

shoot tips, where the primordia are younger, than in the lower portion of the shoot tips.  In the 

cotyledons, the methylation differences between the early-flowering lines and RC are seen until 

cotyledon senescence.  In the shoot tips, the differences are seen until the onset of flowering.  

Nevertheless, RE2 buds are hypomethylated, relative to RC, suggesting that hypomethylation of RE2 is 

maintained in the meristematic regions to be passed onto progeny.   

High levels of DNA recovery at younger ages in shoot tips and cotyledons are likely related to 

cell division.  Further, this could be related to cells becoming polyploid.  When the DNA recovery is no 

longer increasing, the cells are likely to be fully differentiated (i.e. in the cotyledons).  In cotyledons, 

the increase in DNA recovery would cease when the cotyledons are no longer growing by cell division 

and could be making the transition from growth to senescence.  The buds do not show a difference in 

the DNA recovery with increasing size (i.e. per bud).  However, they do show a decrease in DNA 

recovery per unit weight, which may be because small buds are differentiated to the same degree as 

large buds and the size difference is due, mainly, to cell expansion in the flower buds as floral organs 

expand. 

In must be considered that the changes in the physical state of the tissue being extracted were 

unlikely to be causing changes in DNA recovery in the shoot tips because the recovery levels are 

increasing with age.  However, in the cotyledons, the decrease in DNA recovery with age could 

potentially be related to continuing development of cell walls and increases in secondary metabolites.
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Figure 3: Differences in Bud Sizes of RC and RE2 Flower Buds 

Photographs of the different bud sizes (in all pictures: left to right are large, medium, small) for two 

replicates of both RC and RE2.  Pictures were taken separately, as sampling occurred on different days.  

The differences in size are based on length, width, and colour.
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Figure 4: Characteristics of Shoot Tips from 24 days of Growth to Flowering in R Lines 
 
a) Linear increase in cytosine methylation from day 24 to day 34 (SE= 0.70).  b) Linear increases in 

fresh weight (mg per 10 shoot tips) (SE= 61).  c) Linear increase in DNA recovered (µM per 10 shoot 

tips) (SE= 9.1).  d) Linear increase in DNA recovered per unit weight (µM per 10 shoot tips/mg per 10 

shoot tips) (SE= 3.7).  Data plotted are means (n=2). 
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Figure 5: Characteristics of Cotyledons from 24 to 52 days of Growth in R Lines 
 
Significant differences in control and early-flowering lines and between early-flowering lines were seen 

in all parameters: a) Linear increase in cytosine methylation from day 24 to day 52 with differences 

among plant lines from 24 to 38 days of age (SE= 1.43).  b) Quadratic change in fresh weight (mg per 

10 pairs; SE= 57).  c) Quadratic change in DNA recovered (µM per 10 pairs; SE= 0.97) d) No 

significant change in DNA recovered per unit weight (µM per mg) over development (SE= 0.225).  

Data plotted are means (n=2). 
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Figure 6: DNA Methylation Levels and DNA Recovery for Shoot Tip Regions and Flower Buds 

a)  Significant hypomethylation in the upper regions of all lines, as well as in the early-flowering lines, 

compared to RC (SE=0.38).  b) Significantly higher concentration of DNA recovered (µM per 100 mg 

tissue) in the upper shoot tip regions when compared to the lower shoot tip regions (SE=4.24).  

c) Significant difference in DNA methylation levels between RC and RE2 was seen, but there was no 

differences in methylation levels with bud size (SE= 0.48).  d) Significant linear decrease in DNA 

recovery (µM per 100 mg tissue) with increased bud size (SE= 1.52).  Data plotted are means (n=2). 
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Table 2:  Means and F-values from the ANOVAs for Data from Shoot Tips and Cotyledons 
 
a) Shoot tip means (n=8) are from days 24 to 34, with sampling twice per week, while b) cotyledon 

means (n=10) are from days 24 to 52, sampling once per week.  DNA/unit tissue and DNA/unit weight 

analyses did not include day 52 data (means are n=8).   No significant interactions were seen between 

sampling ages and plant lines (not shown).   
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Parameter Plant Line Comparisons 

 Lines Ages  

 RC RE1 RE2 C-E E1-E2 Linear Quadratic 

a)     Shoot tips: F1/11 values 

Tissue weight a 340 382 304 <1.0 3.18ns 34.5** <1.0 

DNA (µM)/unit 
tissue*10 

46 44 42 <1.0 <1.0 103** 1.45ns 

DNA (µM)/unit 
weight*100 

12.64 10.53 11.89 <1.0 <1.0 23.3** <1.0 

mC level (%) 11.82 11.64 11.05 1.20 1.51ns 9.15* 3.34ns 

b)     Cotyledons: F1/14 values b

Tissue weight a 625 837 607 9.54** 40.1** <1.0 6.82* 

DNA (µM)/unit 
tissue*10 

7.2 4.64 3.13 46.6** 7.18* 1.67ns 23.4* 

DNA (µM)/unit 
weight*100 

1.14 0.58 0.55 16.07** <1.0 <1.0 4.33ns 

mC level (%) 19.42 18.66 17.43 3.45 ns 2.26ns 30.9** <1.0 

** is significant at P< 0.01; * is significant at P<0.05; ns is not significant at P=0.05. 
a Tissue weight is per 10 unit tissue (i.e. mg per 10 shoot tips, 10 pairs of cotyledons, or 10 buds). 
b Values are F1/11 for DNA/unit tissue and DNA/unit weight because 52 day data points were excluded 
from analysis. 
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Table 3:  Means and F-values from the ANOVAs for Data from Divided Shoot Tips and Flower 
Buds 
 
a) Means for the lines (n=2) for upper and lower stem regions b) Bud means (n=6) are from three 

different sizes of buds, small, medium and large.  No significant interactions were seen between 

sampling ages and plant lines (not shown). 
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Parameter Region Plant Line Comparisons 

    Lines Region 

 

 RC RE1 RE2 C-E E1-E2 Region 

a)     Shoot tips: F1/5 values 

Tissue weight a Upper 120.9 74.5 89.7 13.91* <1.0 28.2** 

 Lower 184.9 137.9 136.7    

DNA (µM)/unit tissue*10 Upper 39.1 23.0 26.1 22.0** <1.0 25.4** 

 Lower 23.5 14.8 14.6    

DNA (µM)/unit weight*100 Upper 33.8 30.9 29.3 <1.0 <1.0 33.6** 

 Lower 12.0 10.8 10.7    

mC level (%) Upper 12.98 12.53 12.16 11.62* <1.0 9.86* 

 Lower 13.76 12.60 13.25    

Parameter Plant Line Comparisons 

Lines Bud size 
 

RC RE2 

 C-E Linear Quadratic 

b)     Flower buds: F1/5 values 

Tissue weight a  12.91 13.62 <1.0 128.10** 1.32ns 

DNA (µM)/unit 
tissue*10 

19.35 17.00 <1.0 3.84ns 1.09ns 

DNA (µM)/unit 
weight*100 

21.82 20.30 3.57ns 65.71** <1.0 

mC level (%) 15.56 14.58 7.40* <1.0 <1.0 

** is significant at P< 0.01; * is significant at P<0.05; ns is not significant at P=0.05. 
a Tissue weight is per unit tissue (i.e. mg per upper, or lower, segment of shoot tip or flower bud).
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3  CHLOROPLAST DNA METHYLATION STUDY 

The focus of the chloroplast DNA methylation study was to examine the primary question of 

whether there is cytosine methylation in the chloroplast DNA of flax and, if so, whether RE2 is 

hypomethylated relative to RC, as was previously seen in total DNA.  Starch levels in the leaves were 

also examined in an attempt to determine optimal chloroplast isolation conditions.  In addition, the 

possibility of contamination of the chloroplast DNA by nuclear and mitochondrial DNA was examined.  

Results of these experiments led to subsequent work which was done in order to examine methylation 

levels in total DNA of leaves from different segments of the stem, methylation levels in green tissue 

(i.e. shoot tips, cotyledons, and leaves) grown in different light conditions, and the fresh and dry 

weights of green tissue grown under different light conditions. 

3.1 Materials and Methods 

3.1.1 Comparison of Chloroplast and Total DNA 

In the chloroplast methylation study, 60 plants per replicate (two) of both RC and RE2 were 

planted (12 seeds per pot) and grown in the same manner as the plants used for the division of the tip 

material and bud DNA, as described above (2.1).  Alongside these plants, 5-10 plants per replicate, per 

line, were grown in the same conditions for total DNA extracts (where total DNA refers to all DNA 

extracted from the plant, including nuclear, mitochondrial, and chloroplast DNA).  At seven and 

fourteen days after planting, all of the plants were supplied with nutrient solution (Appendix A).  In this 

part of the study, the plants used for chloroplast isolation and for total DNA extractions were kept in the 

dark for variable amounts of time immediately prior to chloroplast isolation and/or DNA extraction, in 

order to reduce starch content (Coates and Cullis 1982).  The times in the dark were 16 h, 29 h, 42 h,  

55 h, and 68 h.   At the appropriate time before extraction, the plants were placed in the dark, with 

increased humidity (100 percent vs. 25 to 35 percent as in regular light conditions) but the same 

temperature conditions.  DNA was extracted from the plants at 21 days of age.    

 41



 

Shoot tips, cotyledons, and leaves from each of the two lines were collected and weighed before 

the chloroplast isolation.  Chloroplasts were isolated using a modification of the protocol (Appendix E 

and Appendix F) described by Smith et al. (2002).  Immediately following the chloroplast isolation, 

DNA was extracted and hydrolyzed from the chloroplast samples, and from the plants grown for total 

DNA.  HPLC analysis was done on the chloroplast and total DNA samples, using the method outlined 

previously (2.1).  The statistical analyses that were done to compare the chloroplast DNA methylation 

to the total DNA methylation, the methylation levels of the two lines, and the methylation levels of 

plants left in the dark for different lengths of time, were performed as described earlier (2.1).   

3.1.2 Starch Levels in 21 day old Leaves 

Starch levels were examined qualitatively to determine if the amount of starch in the leaves 

decreased due to the dark treatment, and to determine the optimal time in the dark for chloroplast 

isolation.  The plants used for this were grown after the main experiment, but under the same 

conditions, including the range of dark intervals.  Whole leaves were taken from the plants, at 21 days 

of age, and stained with iodine-potassium iodide (0.3 g I2 and 1.0 g KI in 100 mL H2O; as described in 

Schneider and Phillips 1981).  The leaves were not cleared to remove pigments before staining. 

3.1.3 Contamination of Chloroplast DNA by Nuclear and Mitochondrial DNA 

To test the chloroplast DNA samples for contamination by mitochondrial and/or nuclear DNA, 

two replicates of RC and RE2 plants (five plants per replicate) were grown for DNA isolation, using the 

techniques and growing procedures as described above (2.1).  Total DNA and chloroplast DNA were 

extracted, after a 42 h period in the dark, when the plants were 21 days old.  When the DNA was 

extracted, instead of using Tris as an elution buffer in the final step, the AE buffer supplied in the 

DNeasy® kit was used (see Appendix B).  Primers were needed in order to compare the levels of 

mitochondrial and nuclear DNA in total and chloroplast DNA samples by semi-quantitative PCR on 

genomic DNA.  The primers for a portion of the mitochondrial gene Maturase R (matR) of Linum 
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arboretum (AY674533; sense- CCGCTCGGGTCGAGGCTGCC and antisense- 

CCCCAGCTCTATCAGCAGACC) were used to amplify the total DNA and the chloroplast DNA 

samples to check for mitochondrial DNA contamination in the chloroplast DNA samples (24 cycles of: 

95°C for 30 s., 63°C for 1.5 min., 72°C for 1.5 min.).  The template DNA for the PCR was diluted to a 

plant-to-plant ratio of 1:1 (chloroplast samples vs. total samples).  Similarly, primers for a portion of the 

nuclear gene actin (AY857865; sense- GGTGGTGGCTCCCCCGGAG and antisense- 

CAAAGCAGCCAATCCCCCC) were designed for PCR of total and chloroplast DNA (31 cycles of: 

95°C for 30 s., 67°C for 1.5 min., 72°C for 1 min.); however, in this case, the plant-to-plant ratio for the 

sources of DNA used as PCR template was (chloroplast:total) 60:1.  

For both the mitochondrial and nuclear genes, the optimal number of PCR cycles was determined 

before the study was started, making this a semi-quantitative genomic DNA study.  The gels were two 

percent agarose, run in 0.5X Tris-borate EDTA (TBE) buffer at 110V for 1.5 h using a PowerPac Basic 

power supply (BioRad, Mississauga, ON).  They were run in a MiniCell EC370M (E-C Apparatus Co., 

Florida).  The gels were stained in 0.5 µg/mL ethidium bromide (EtBr) for 15 minutes.  Pictures of the 

gels were taken using the GelDocXR® Photosystem (BioRad) and band intensity was calculated using 

QuantityOne® software.  Comparisons of band intensity between the total and chloroplast samples for 

each line (and each replicate) were done using Quantity One® software in order to determine the 

percentages of mitochondrial and nuclear DNA contamination in the chloroplast samples.  The average 

band intensity for each DNA type was used to calculate the percentage ratio of amount of amplified 

material in the chloroplast DNA samples to the total DNA samples (i.e. cp/tot *100 for each of the two 

lines and two replicates).  All four sample pairs (i.e. RC and RE2, replicates II and I) were then 

averaged for the final percentage contamination. 

3.1.4 Subsequent Cytosine Methylation and Plant Weight Studies 

After the main comparisons of the chloroplast and total DNA were completed, three subsequent 

methylation level studies were performed.  The first was to determine the methylation differences 
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between RC and RE2 leaves sampled from the entire stem and from plants grown under regular light 

conditions.  For this experiment, plants from both lines (two replicates) were grown to 21 days of age, 

in regular light conditions, as described previously (2.1).  The plant stems were then divided into three 

equal sections, based on leaf number, and the DNA from the top, middle, and bottom leaves (relating to 

leaf location on the stem) was extracted, hydrolyzed and run on HPLC for analysis, using methods 

previously described (2.1).  Secondly, a similar study was done, at 22 days of age, using plants grown 

under regular light conditions, as well as plants that had been grown in the dark for 42 h prior to DNA 

extraction.  Thirdly, DNA methylation levels were examined using RC and RE2 (two replicates) plants, 

grown to 21 days, and extracting the total DNA from all plants grown in regular light conditions and 

from the same tissues from plants grown for 42 h in the dark before DNA extraction.  This was also 

done using methods previously described (2.1).   

Because of the possibility that both fresh and dry plant weight changed with time spent in the 

dark, plants of both the RC and RE2 lines grown in: i) regular light conditions, ii) for 42 h in the dark 

before DNA extraction, and iii) for 68 h in the dark before extraction, were used to determine how fresh 

and dry weight measurements were affected by the time in the dark.  All green tissues were removed 

from the stems at 22 days of age, weighed, placed into oven-dried envelopes at 35 °C for seven days, 

and re-weighed.  Data were converted into a percentage of dry to fresh weight.  All data sets were 

analyzed statistically by ANOVA and orthogonal comparisons.  The average standard errors for means, 

given in the figure legends, were derived from the error mean square values of the appropriate analyses. 

3.2 Results 

3.2.1 Comparisons of Cytosine Methylation and DNA Recovery in Total and 
Chloroplast Samples 

 
The chloroplast DNA contained methylated cytosines and there was a significant [F1/9= 8.63*] 

difference between the lines in the level of chloroplast DNA methylation; the RE2 chloroplast DNA 

was hypomethylated relative to RC (Figure 7a; Table 4).  Unexpectedly, the level of methylation in 
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total DNA from dark grown plants was not significantly different in RC and RE2 [F1/9<1.0ns].  This 

lack of hypomethylation in the total DNA from the green tissues of dark-grown RE2 plants was in 

contrast to the hypomethylation seen previously in the shoot tips (Figure 4a) and cotyledons of plants 

grown in regular light conditions (Figure 5a).   

There was a significant [F1/9= 11.21**] linear decrease in the DNA recovery (per 100 mg of 

tissue), in the total DNA samples of the plants grown alongside those for chloroplast isolation, as the 

time in the dark increased (Figure 7b).  There was no significant [F1/9= 4.17ns] trend in the recovery of 

DNA (per 100 mg of tissue) from the isolated chloroplasts (Figure 7c; Table 4).   

3.2.2 Levels of Starch in Leaves 

Leaves were stained to examine the starch levels in both lines after the various times in the dark, 

however pigments were not removed before the qualitative staining was done.  The results (Figure 8) 

showed that leaves from dark-grown plants contained reduced starch levels, but that the length of time 

in the dark did not have any marked effect on the starch content.  There was no gradient in starch 

content evident from leaves of plants grown in regular light conditions to leaves of plants placed in the 

dark for 68 h prior to staining. 

3.2.3 Chloroplast DNA Contamination by Nuclear and Mitochondrial DNA 

Using a semi-quantitative PCR approach on genomic DNA and by comparing band intensities 

of the amplified products in the total and chloroplast samples, it was determined that there was 

approximately ten percent mitochondrial contamination (Figure 9) and three percent nuclear 

contamination (Figure 10) in the chloroplast samples. 

3.2.4 Levels of Cytosine Methylation in Leaves 

The lack of hypomethylation in the total DNA of RE2 vs. RC in the green tissues of dark grown 

plants was of interest because this result had not been seen previously under regular light conditions.  

However, previous studies had only examined methylation levels in shoot tips and cotyledons, but not 
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the leaves down the stems of the flax plants.  Since the leaves of plants grown in the light had not been 

previously examined, one possibility was that the hypomethylation of RE2 was not seen in the leaves of 

light grown plants, explaining the similarities in methylation between RC and RE2 for green tissue 

studies.  Total DNA extracted from leaves at three separate stem positions of light grown plants 

revealed an overall significant [F1/4=24.27**] methylation difference between RC and RE2, and 

between leaf samples taken from the three stem positions [quadratic; F1/4 =18.86*] (Figure 11a; Table 

5).  The methylation level was higher in the bottom leaves than in the top leaves but the increase 

occurred predominantly in RC and, thus, the hypomethylation of RE2 occurred exclusively in the 

bottom leaves.   

The next question was whether this stem location difference also occurred in dark grown plants.  

Looking at leaves from the three regions of the stem in RC and RE2 in normal light conditions, as well 

as 42 h in the dark prior to DNA extraction, there was no difference [F1/11=3.98ns] between RC and 

RE2, however there was a significant [F1/11=4.90*] interaction between the light conditions and the 

stem position.  While a quadratic relationship of the leaf samples at different stem positions was not 

seen in this second study, there was a significant [F1/11=34.79**] linear relationship for the leaves at 

different stem positions (Figure 11b; Table 5).  Again, methylation levels were higher in leaves from 

the bottom of the stem and the hypomethylation of RE2 was more pronounced in these leaves. 

3.2.5 Levels of Cytosine Methylation in Green Tissue of Plants Grown in Regular Light 
vs. 42 h Dark Conditions 
 

While the methylation levels in the total DNA samples from plants grown in the dark alongside 

those used for chloroplast isolation had not shown significant differences between RC and RE2 (Figure 

7a), unexpectedly, the total DNA from regular light grown and 42 h dark-grown plants showed a 

significant difference [F1/3=14.85*] in methylation level between RC and RE2 (Figure 11c).  The 

methylation level for the regular light grown plants was lower than that for the dark grown plants 

[F1/3=18.09*]; however there was no interaction between the plant lines and the light conditions. 
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3.2.6 Plant Weight Analysis:  Fresh and Dry Weights 

To take into account the possible effect of growing plants in the dark on plant weight, the fresh 

and dry weights of plants that had been grown: i) in normal light conditions, ii) for 42 h in the dark 

prior to weight measurements, and iii) for 68 h in the dark prior to weight measurements, were 

compared.  When the ratios of dry weight:fresh weight were analyzed (Figure 12a), it was found that 

there was a significant [F1/5=19.84**] increase in the ratio between 42 h and 68 h.  There was no 

significant [F1/5=1.62ns] difference between RC and RE2 in the dry:fresh weight ratio, nor were there 

any significant interactions.  There was a significant [F1/5= 17.88**] linear decrease in fresh weight 

across the three conditions (Figure 12b) and a significant [F1/5=19.03**] decrease in dry weight after 

42 h in the dark (Figure 12c), with a significant [F1/5= 7.69*] difference between RC and RE2 for fresh 

weight, but not dry weight [F1/5= 5.71ns]. 

3.3 Conclusions 

In this study, it was found that there was a substantial amount of DNA methylation in the 

chloroplast genome of both RC and RE2, and that RE2 has chloroplast DNA that is hypomethylated 

relative to RC.  Interestingly, there was no significant difference in the methylation level between the 

total DNA in RC and RE2 plants grown under dark conditions.  Previous studies have suggested that 

DNA of shoot tips and cotyledons of RE2 is hypomethylated at 21 days (the time of this study) relative 

to RC.  The current study showed that leaves could also have hypomethylated DNA in RE2 compared 

to RC but that this is more likely to be seen in leaves from the bottom of the stem than leaves at the top.  

Thus, the similarity in the total DNA methylation between the two lines in the dark grown plants is 

probably a function of time in the dark on the shoot tips and cotyledons.  The additional experiments 

partially explained the overall effects of dark on methylation levels seen in the data from the main 

chloroplast experiment.  Nevertheless, results from these experiments did not attempt to explain why 

there were marked differences seen across the different times in the dark (Figure 7a). 
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Further, while there was no linear decrease in the recovery of chloroplast DNA over time in the 

dark, there was a decrease in the total DNA recovery.  Because both fresh and dry weight also decrease 

with increasing time in the dark, it seems probable that plant growth stalled when the plants were 

placed in the dark.  Hence, the plants with longer periods in the dark were effectively younger.  

However, the chloroplast and total DNA samples were subjected to the same dark treatments and, 

therefore, they should display similar trends in DNA recovery.  The fact that there was no linear 

decrease in chloroplast DNA recovery from plants grown under similar conditions as those used for 

total DNA, suggests that starch content was a factor in chloroplast isolation.  It is possible that shorter 

times in the dark were not sufficient to reduce starch content for optimal chloroplast isolation.  That is, 

shorter times in the dark would have a loss in chloroplast DNA recovery due to chloroplasts rupturing, 

which would counteract the fact that a shorter time in the dark leads to plants that are effectively older 

and would potentially have more DNA recovery. 
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Figure 7: Methylation Levels and DNA Recovery for Chloroplast and Total DNA Samples 
 
a) The DNA methylation level was lower in RE2 than in RC in the chloroplast (cp) DNA, but not in the 

total DNA (SE= 0.65).  b) There was a linear decrease in DNA recovery (µM) per 100 mg of tissue in 

RC and RE2 total DNA (SE= 1.33).  c) The time in the dark had no significant effect on the DNA 

recovered (µM) per 100 mg for RC and RE2 chloroplast DNA (SE= 0.10).  Data plotted are means 

(n=2).
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Figure 8: Starch Levels in Leaves Sampled after Various Times in the Dark 

Qualitative results of starch levels in the leaves of both RC and RE2 at all times in the dark.  Leaves 

were taken from various locations down the stem.  Both lines, and both replicates, have been displayed. 
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Figure 9: Analysis of Chloroplast DNA Contamination by Mitochondrial DNA 
 
The pictures show three PCR runs (with matR primers) on two replicates of chloroplast and total DNA 

from both RC and RE2 grown for 42 h in the dark prior to DNA extraction.   

Note:  The DNA was diluted so that the ratio of chloroplast:total is 1:1. 

tot= total DNA; cp= chloroplast DNA 
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Figure 10: Analysis of Chloroplast DNA Contamination by Nuclear DNA 

The pictures show three PCR runs (with actin primers) on two replicates of chloroplast and total DNA 

from both RC and RE2 grown for 42 h in the dark prior to DNA extraction.   

Note:  The DNA samples were not diluted so the ratio of chloroplast:total is 60:1. 

tot= total DNA; cp= chloroplast DNA 
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Figure 11: Comparisons of Methylation Levels for Leaf and Total Green Tissue DNA 

a) Difference in cytosine methylation between the RC and RE2 in leaves and in leaf location of plants 

grown in regular light conditions (SE=0.28).  b) Significant difference in methylation level between the 

top and the bottom leaves of RC and RE2, and, as a result, no significant difference between RC and 

RE2 in regular light and 42 h dark growing conditions (SE=0.45).  c) For green tissues from stems of 

22-day-old plants, the methylation level in total DNA from plants grown in regular light conditions, 

compared to 42 h in the dark prior to extraction there was a significant difference in methylation levels 

between the two growing conditions, as well as between the two lines (SE=0.11).  Data plotted are 

means (n=2). 
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Figure 12: Comparisons of Weight for Light and Dark Grown Tissue 

a) Ratios of dry weight as a percentage of fresh weight showed no significant difference between RC 

and RE2; however, there was a significant difference between the three times, relating to the highly 

significant difference between the ratios of 42h and 68h dark-grown plants (SE=0.36).  b) Linear 

relationship of fresh weight (mg) and growing condition, with a significant difference between RC and 

RE2 (SE= 0.02).  c) Linear relationship of dry weight and growing condition in RC and RE2, however 

there was no significant difference between the two lines for this parameter (SE= 0.002).  Data plotted 

are means (n=2). 
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Table 4:  Means and F-values from the ANOVAs for Data from the Chloroplast and Total DNA 
Experiment 
 
Means for chloroplast and total DNA (n=10) are from green tissue samples (combined shoot tips, 

leaves, and cotyledons) harvested after 16, 29, 42, 55, and 68 h in the dark prior to chloroplast isolation 

and DNA extraction from 21-day-old plants.  
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Parameter Plant Line Comparison 

   Lines Times in the Dark 

 

 RC RE2 C-E Linear Quadratic Cubic 

Chloroplast DNA: F1/9 values 

Tissue weight a 141.92 117.64 5.41* <1.0 4.62ns 4.11ns 

DNA (µM)/unit 

tissue*10 

4.50 4.07 1.74ns 1.67ns 1.01ns 4.17ns 

DNA (µM)/unit 

weight*100 

0.38 0.30 7.44* 5.41* <1.0 10.67** 

mC level (%) 14.67 13.28 8.63* <1.0 <1.0 5.79* 

Total DNA: F1/9 values 

Tissue weight a 152.25 119.07 3.15ns 1.91ns <1.0 <1.0 

DNA (µM)/unit 

tissue*10 

118.97 85.87 <1.0 11.21** <1.0 <1.0 

DNA (µM)/unit 

weight*100 

8.14 7.37 6.19* 13.55** <1.0 <1.0 

mC level (%) 14.90 14.67 <1.0 <1.0 3.04ns <1.0 

** is significant at P< 0.01; * is significant at P<0.05; ns is not significant at P=0.05. 
a Tissue weight is per unit tissue (i.e. mg per plant, or segment of plant). 
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Table 5:  Means and F-values from the ANOVAs for Data from Leaves at Different Stem Regions 

Means for leaf DNA samples from plants grown under regular light conditions (n=6), and from plants 

grown under regular light compared to 42 h dark conditions (n=12).  Leaves were sampled from the top, 

middle, and bottom portions of the stem.  Significant interactions were detected. 
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Parameter Plant Line Comparison 

   Lines Location Interaction 

  
 RC RE2 C-E Linear Quadratic Linear x Line 

Leaf DNA for Regular Light Conditions: F1/4 values 

Tissue weight a 101.13 80.18 6.18ns 8.57* 35.42** <1.0 

DNA (µM)/unit 

tissue*10 

9.13 7.62 4.53ns 281.80** 169.31** 7.42ns 

DNA (µM)/unit 

weight*100 

74.83 53.94 8.38* 89.89** 13.81* 6.28ns 

mC level (%) 15.14 14.44 24.27** 121.26** 18.86* 7.96* 

   Lines Location Light Cond. Interaction 

  
 RC RE2 C-E Linear Light-Dark Linear x Line 

Leaf DNA from Regular Light and 42h 

Dark Conditions: 

F1/11 values 

Tissue weight a 69.60 45.69 8.72* 10.58** 4.48ns <1.0 

DNA (µM)/unit 

tissue*10 

66.45 43.38 8.12* 23.99** 11.54** 1.57ns 

DNA (µM)/unit 

weight*100 b

116.45 104.59 <1.0 116.92** 7.11* 1.65ns 

mC level (%) 13.91 13.39 3.98ns 34.79** 1.39ns 4.90* 

** is significant at P< 0.01; * is significant at P<0.05; ns is not significant at P=0.05. 
a Tissue weight is per unit tissue (i.e. mg per segment of plant).  
b Also displayed a quadratic difference between the lines [F1/11=9.75**].

 65



 

4 ANALYSIS OF GENE EXPRESSION 

This study was a semi-quantitative analysis of mRNA transcript abundance for the floral 

integrator/floral meristem gene LFY and its inhibitor, TFL1, during development in RC and RE2.  The 

approach taken was to use shoot tips and leaves, sampled over the developmental period from 7 days of 

age to the onset of flowering.  The hypothesis was that the early-flowering line RE2 would have either 

an increased amount of LFY transcript in its tissues, compared to RC, or a decreased amount of TFL1 

transcript, when compared to RC.  Although the original plan involved using actin as an experimental 

control to ensure accurate loading and concentration of RNA, systematic changes in actin transcript 

levels during development and differences in actin transcript levels between RC and RE2 that were seen 

made this impossible.   

4.1 Materials and Methods 

4.1.1 Preliminary Work:  Degenerate Primer Design 

In designing the primers to be used in the semi-quantitative study, genomic DNA sequences were 

used.  This DNA came from either shoot tips or leaves of plants grown in the growth chamber, as 

described previously (2.1).  The age of plants at extraction was variable.  DNA was extracted using the 

Qiagen DNeasy® Mini Kit (Appendix B).  All primers used in this experiment, both degenerate and 

specific were from Invitrogen, Canada (Hamilton, ON).  The location of the primers in DNA sequences 

took into account the presence of introns in the DNA sequences and allowed for an EPIC (exon priming 

intron crossing) approach to PCR.   

When this study began (October 2005), there were 42 species reported to have LFY, or a LFY 

homologues in their genome, however, only three had published genomic sequences.  These genomic 

sequences (Figure 13) were compared to mRNA sequences (in order to avoid primers being located in 

introns) and they were used to design degenerate primers for LFY.  The code for degenerate primers is 

given in Appendix G.  Although many primer sets were tested (see Appendix Ha), one set, sense-
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AARKCTGGDGGAAGYTACAT and antisense-AGYTTBGTWGGMACRTACC (shown in green on 

Figure 13), was used to design specific primers (PCR program: 95 °C for 3 min., 35 cycles of: 95 °C for 

30 s., 51 °C for 1.5 min., 72 °C for 1 min., and a final extension of 72 °C for 10 min.).   

For primers to amplify a segment of the TFL1 gene, only one genomic DNA sequence was 

available (from Citrus sinensis), however, an alignment of other TFL1 mRNA and cDNA sequences 

was done to find coding region similarities between TFL1 homologues (Figure 14).  All of the primers 

that were designed based on these sequences were unsuccessful (see Appendix Hb).  Thus, the 

degenerate primers, sense-AATGGCCATGAGCTCTTTCCTTC and anti-sense-

CTYCTGGCAGCRGTYTCKCKCTG, reported by Amaya, Ratcliffe, and Bradley (1999) were used.  

These successfully amplified bands by PCR (35 cycles of 95 °C for 30 s., 63 °C for 1.5 min., 72 °C for 

1.5 min.; final extension of 72 °C for 10 min.).   

In testing the degenerate primers, PCR products were examined using gel electrophoresis, and all 

of the gels were agarose run in Tris-borate-EDTA (TBE) buffer (0.5 X) using a PowerPac Basic power 

supply (BioRad, Mississauga, ON).  The mini (10 cm x 7 cm) cell used was a MiniCell EC370M (E-C 

Apparatus Co., Florida) while the large gel rig (15 cm x 20 cm) was a DNA Sub-Cell GT (BioRad).  

For gels run to examine the products of degenerate primers, the voltage range was from 110 V to      

120 V.  The time that the gel ran, varying from 0.75 h to 2 h, depended on the size of the gel (MiniCell 

or Sub-Cell GT), and the percentage of agarose being used.  Percentages of gels ranged from 1.0-2.0, 

depending on the size of the band being examined.  Gels were stained in 0.5 µg/mL EtBr solution for 

30 min.  Gel pictures were taken using the GelDocXR® Photosystem (BioRad).   

4.1.2 Designing Specific Primers 

The promising band amplified using the degenerate LFY primers was excised from the gel using 

the QIAquick® Spin kit from Qiagen (Appendix I) and sent to Mobix (McMaster University, Hamilton, 

ON) for sequencing.  It was approximately 100 base pairs long.  In the case of TFL1, three bands of 

interest were amplified using the degenerate primers.  All were approximately 1.5 kilobase pairs in size 
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and the high concentration of DNA required for sequencing these bands could not be obtained by gel 

extraction.  As an alternate approach, the TOPO TA Cloning Kit (Invitrogen; Appendix Ja) was used in 

an attempt to clone the three bands produced with the degenerate TFL1 primers.  Plasmids were isolated 

using PureLink Quick Plasmid MiniPrep Kit (Invitrogen; Appendix Jb) and sequenced (Mobix, 

McMaster, Hamilton ON) using the M13 primers provided with the MiniPrep kit.   

The sequences obtained for the various PCR products were entered into the BLAST program of 

the NCBI website (http://www.ncbi.nlm.nih.gov/), and compared with known sequences.  A cut-off 

value of e-10 was used to evaluate homology.  The LFY band provided a value of 3e-27 when compared to 

the LFY homologue from Lotus corniculatus var. japonicus (Bird’s foot trefoil; AY770393).  From this 

sequence, specific LFY primers were obtained using the OligoPerfect® custom primer design tool from 

Invitrogen (sense, CTCCTACGTTCTCCCCTCTTTCCTTGA, and anti-sense, 

AGGCACTACGTGCATTGCTACGCG).  They amplified a band of approximately 100 base pairs    

(95 °C for 3 min., 35 cycles of: 95 °C for 30 s., 67 °C for 1.5 min., 72 °C for 1 min., and a final 

extension of 72 °C for 10 min.), using genomic DNA from RC or RE2.   

A homology of 5e-12 was found between one of the TFL1 sequences and CEN, which is the TFL1 

homologue in Antirrhinum (AJ251994).  Specific TFL1 primers, to be used for the semi-quantitative 

study, were designed from this sequence using the OligoPerfect® program (Invitrogen) (sense-

GGTTGAAGTTCTTGGTGGTGA and anti-sense-CGGCATCTCATAGCTCAACC).   

The specific primers for actin, which was meant to be used as the positive loading control in this 

experiment, came directly from the published Linum usitatissimum actin sequence (AY857865, see 

3.1.3).   The band amplified by the actin primers (approximately 300 base pairs in flax cDNA) was 

extracted (Appendix I) and sent to Mobix for sequencing to verify that it was actin (the agreement of 

the sequence to AY857865 was 7e-98).   
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4.1.3 Semi-Quantitative Analyses of Transcript Levels 

RNA was extracted from the shoot tips of the main stem, and from the top four leaves just below 

the shoot tip, of plants grown under the growth chamber conditions described in section 2.1.  This was 

done, in replicate, every seven days from day seven until day 35 for RE2 and day 56 for RC.  These 

final sampling ages are thought to coincide with the onset of flowering.  In the growth chamber, the 

average flowering age (first anthesis) in RE2 is 43 days, and in RC, it is 62 days.  The Qiagen RNeasy® 

Mini Kit (Appendix K) was used to extract RNA.  RNA concentration was determined using a Cary-

UV Vis spectrophotometer.  This was done using readings for diluted volumes of RNA (to a volume of 

1 mL) in BrandTech X-treme Range UV semi-micro cuvettes (Ultident, QC).  Each concentration was 

estimated twice at 260 nm readings correcting for background (at 320 nm).  Concentrations were only 

deemed accurate if the 260 nm was in the range of 0.1-1.0.  If the readings were not in this range, 

samples were concentrated, or further diluted, until readings were in the indicated range. 

First strand cDNA synthesis was done, using 2 µg of RNA template, with the Qiagen 

Omniscript® Reverse Transcriptase kit (Appendix L).  RT-PCR was done with the Qiagen 

HotStarTaq® kit using the MJ Mini® thermal cycler (BioRad).   For actin and LFY, the PCR program 

was:  95 °C 15 min., 25 cycles (actin) or 31 cycles (LFY) of: 95 °C for 30 s., 67 °C for 1.5min., 72 °C 

for 1 min.; final extension of 72 °C for 10 min.  For TLF1, the PCR cycle was:  95 °C 15 min., 41 

cycles of: 95 °C for 30 s., 58 °C for 1.5 min., 72 °C for 1.5 min.; final extension of 72 °C for 10 min.  

The number of cycles used for each gene was determined using linear standardization of cycles 

(Appendix M; TFL1 not included), in triplicate.  All experimental samples were also run in triplicate.  

Actin standards were run to correspond with both LFY and TFL1.  The PCR products of the two 

flowering genes were run on separate gels; however, each was run on a gel along with their 

corresponding actin samples.   

The gels used to examine the PCR products were 2.0 percent agarose, run for 2 h (unless 

otherwise specified in figure legend).  They were run at 110 V using the Sub-Cell GT.  For the 
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transcript level study, gels were run using two combs, with either LFY or TFL1 in the top wells, and the 

corresponding actin samples in the bottom wells.  Gels were stained in 1 µg/mL EtBr for 30 min., with 

a 10 min. wash in 0.5 X TBE.  Band intensity was determined using pictures taken with the 

GelDocXR® system (BioRad) and QuantityOne® software.  The intensities were used for analysis as 

described in 3.1.3. 

Statistical analyses were done on the averages of the three runs using ANOVAs and Orthogonal 

comparisons.  The standard errors (SE) shown are for means (n=2) and were derived from the error 

terms of the corresponding ANOVAs.  The ANOVAs examined the developmental changes in RC over 

seven (leaf) or eight (shoot tip) ages, in RE2 over four (leaf) or five (shoot tip) ages, and compared the 

developmental change in RC and RE2 over four (leaf) or five (shoot tip) ages.  

4.2 Results 

4.2.1 LFY and Actin Transcript Levels in Shoot Tips 
 

In the RE2 line, there was a significant [F1/4=13.89*] quadratic increase of LFY transcript level in 

the shoot tips as the onset of flowering approached, while this was not the case [F1/7=1.11ns] in RC 

(Figure 15a and Figure 16).  As a result, there was a significant [F1/9=26.74**] increase in the amount 

of LFY transcript accumulated in the shoot tips of RE2, compared to RC.  These results are for 

comparisons made between plants of the same age.  However, if the results are shifted, so that the 

accelerated developmental scale of RE2 is compensated for, then the same conclusions can be drawn 

(Figure 15b).  It is important to note that, as the plants aged, there was a significant [F1/7=6.45*] linear 

increase in the level of actin transcript in the shoot tips of RC, but not in RE2 [F1/3<1.0].  Thus, actin 

could not be used as a standard for this LFY shoot tip data (Figure 15c and Figure 17). 

4.2.2 LFY and Actin Transcript Levels in Leaves 

Comparing the transcript levels of LFY in the top four leaves just below the shoot tip of RC and 

RE2, there was no significant [F1/7=5.04ns] difference between the two lines from 14-35 days (Figure 
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15d and Figure 18).  In addition, there was no significant [F1/3<1.0] change in the level of transcript in 

the leaves of RE2 during development; however, in RC, there was a highly significant [F1/6=14.32**] 

linear decrease in LFY transcript from 14-56 days of age (Figure 15d).  There was a significantly 

[F1/7=23.69**] higher level of actin transcript in the leaves of RC compared to RE2 in the leaves and 

(Figure 15e and Figure 19); thus, actin could not be used as a loading standard for the leaves because 

comparisons could not be made between the two lines.  

4.2.3 Searching for TFL1:  Genomic versus cDNA 

While the specific primers determined for the TFL1 gene amplified a region of genomic DNA 

from RC, RE2 and also from LC (Figure 20a), these primers did not produce any bands using the 

cDNA of RC or RE2 for either shoot tips or leaves of various ages (from 7-35 days in RE2 and 7-56 

days in RC).  DNA smears did appear in each of the lanes, at approximately 100 base pairs (Figure 

20b), negative controls (i.e. PCR runs with no cDNA template) run for different numbers of PCR 

cycles, from 35-55, demonstrated that the DNA at 100bp in each PCR lane was an artefact (Figure 20c).    

4.3 Conclusions 

The data from the shoot tips showed that there was an increase in the LFY transcript level in RE2 

as flowering approached, while in RC, there was no substantial increase in transcript level.  Thus, at the 

onset of flowering, the level LFY transcript in RE2 was considerably higher than the level in RC.  In the 

leaves, there was a constant low baseline level of LFY expression.  Clear differences in actin transcript 

level between RC and RE2 leaves, as well as the increasing transcript abundance in RC during 

development in the shoot tips, meant that actin could not be used as the standard in this experiment.  

Since it had been expected that actin would be expressed at similar levels in both lines, at all ages, the 

differences in actin transcript levels were intrinsically interesting and may indicate altered expression of 

at least some housekeeping genes.  
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TFL1 transcripts were not detected in leaves or shoot tips, at any age; however, the gene was 

clearly present in genomic DNA from LC, RC and RE2.  This suggests that TFL1 is not being 

expressed in flax; however, more detailed and specific studies would have to be done in order to 

confirm this result.  Further, if TFL1 is not expressed in flax, other studies need to be conducted in 

order to determine the regulators of LFY.
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Figure 13: Alignment of Genomic LFY Sequences for the Determination of Primers 

The three genomic LFY sequences used to design primers for use in flax.  From top to bottom, these 

are: Citrus sinensis (AY338976), Titanotrichum oldhamii (AY526319), and Chrysanthemum 

lavendulifolium (AY672542).  Included on the diagram are the locations of: introns (black), coding 

regions (blue), and the degenerate primers used (green).
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Figure 14: Alignment of mRNA TFL1 Sequences for Determination of Primers 
 
The three mRNA TFL1 sequences used to design primers for use in this study were (from top to 

bottom): Metrosideros excelsa (AY170872), Citrus sinensis (AY344244), and Lolium perenne 

(AF316419).   
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Figure 15: Comparison of Transcript Levels in the Shoot Tips and Leaves of RC and RE2 
 
a) Transcript levels plotted against plant age, comparing RC and RE2 (SE=7.0).  b) Comparison of RC 

and RE2 LFY transcript levels on a developmental scale (i.e. RE2 points have been shifted so that they 

are aligned with the time of flowering in RC).  c) Differences in the transcript level for actin during 

shoot tip development in RC and RE2, with an increase in actin transcription in RC but not RE2 

(SE=14.4).  d) Decrease in the transcript level of LFY during leaf development in RC but not in RE2 

(SE=1.83).  e) Increase in the transcript level of actin in the leaves of RC compared to those of RE2 

(SE=7.09).  Data plotted are means (n=2). 
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Figure 16: LFY Transcript Levels in Shoot Tips 

The three gels on the left are replicate I, whereas the three gels on the right are replicate II.  The primers 

used were those described above (4.1.2).  The gels were all loaded in the same order, as described on 

the top left gel.  All gels were run as described in section 4.1.3, with the exception of the top left gel, 

which was only run for 1 hour.   
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 Figure 17: Actin Transcript Levels in Shoot Tips 

The three gels on the left are replicate I, whereas the three gels on the right are replicate II.  The primers 

used were those described above (4.1.2).  The gels were all loaded in the same order, as described on 

the top left gel (with one exception, noted on the middle gel of replicate I).  All gels were run following 

the protocol described in 4.1.3, with the exception of the top left gel, which was only run for 1 hour.   
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Figure 18: LFY Transcript Levels in Leaves 

The three gels on the left are replicate I, whereas the three gels on the right are replicate II.  The primers 

used were those described above (4.1.2).  The gels were all loaded in the same order, as described on 

the top left gel. 
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Figure 19: Actin Transcript Levels in Leaves 

The three gels on the left are replicate I, whereas the three gels on the right are replicate II.  The primers 

used were those described above (4.1.2).  The gels were all loaded in the same order, as described on 

the top left gel. 
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Figure 20: TFL1 in Genomic DNA and cDNA 

a) Products of specific TFL1 primers (see section 4.1.2) in the genomic DNA of different lines of flax.  

b) Specific TFL1 primers run on cDNA, with a blank.  c) Only water as a template, at different numbers 

of PCR cycles, ranging from 35-55.   
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5 DISCUSSION 

5.1 Amounts of DNA Recovered Relate to Tissue Differentiation and Cotyledon 
Senescence  

 
Estimates of tissue weight, DNA recovery per plant, and DNA recovery per tissue weight 

provide insights into the physiological and/or developmental status of the flax plants.  In the shoot tips 

of flax, there were increases in DNA recovery and sample weight per 10 shoot tips from early 

vegetative growth to the onset of flowering (Figure 4b-d).  This suggests that there were more leaves in 

the older shoot tips, or that the leaves in the older tips were larger.  Interestingly, the quadratic changes 

in DNA recovery and fresh weight with development in cotyledon samples (Figure 5c) from the same 

plants suggest that there is a point in cotyledon growth in flax where cell division ceases.  The timing of 

this point (between 32 and 38 days) coincides with the transition from mid- to late-vegetative growth, 

which was established using other parameters (Fieldes and Harvey 2004).  In flax, cotyledons are the 

first tissues that emerge from the soil (i.e. it is an epigeal plant) and, therefore they are photosynthetic 

tissue.  Over time, the structure of the cotyledons may be changing (i.e. cell wall development) which, 

at later ages could be leading to a decrease in DNA recovery due to difficulty mechanically extracting it 

from the tissue.  This is not the case in the shoot tips, where DNA recovery is increasing with age.       

As expected, plant growth stalled when the plants were placed in the dark, resulting in lower 

fresh weights and less DNA recovery with greater effects on plants that had longer periods in the dark 

(plants kept in the dark would, essentially, only be 18 days-of-age; Figure 7b), and resulted in a linear 

decrease in fresh weight and a quadratic change in dry weight with time in the dark (Figure 12b-c).  

Conversely, there did not appear to be a relationship between DNA recovery and time spent in the dark 

for the chloroplast samples (Figure 7c).  The reason for putting the plants in the dark was to decrease 

the starch content of the leaf tissue to an optimal level for chloroplast isolation because past studies on 

flax chloroplast have suggested that dark treatment is required prior to chloroplast isolation (Coates and 

Cullis 1982).  Therefore, even though the leaves stained for starch did not show marked trends of 
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changing starch content with time in the dark (Figure 8), it is possible that there was a decrease in 

starch content with time in the dark, which resulted in increased chloroplast recovery (hence, 

chloroplast DNA recovery at 68 h vs. 16 h), and that the stalled plant growth at 68 h vs. 16 h offset this 

so that no change in DNA recovery was seen in the chloroplast samples with time in the dark.   

5.2 Cytosine Methylation Levels Increase with Plant Age 

In the total DNA samples of flax, cytosine methylation in the shoot tips (Figure 4a), cotyledons 

(Figure 5a) and leaves (Figure 11a-b) was found to increase with age and/or tissue development in both 

early flowering and control lines.  Increases of this type have been reported in other plants, such as in 

Arabidopsis (Ruiz-Garcia, Cervera, and Martinez-Zapater 2005), and in the SAM of Prunus persica L. 

Batsch (peach; Bitonti et al. 2002).  Further, in all three flax tissue types grown under regular light 

conditions, total DNA from RE2 was hypomethylated relative to RC.   

In the shoot tips (Figure 4a), the hypomethylation of RE2 continued until close to the onset of 

flowering (34 days) when it became similar to the DNA methylation seen in RC at the same age.  

However, this comparison was made between samples of DNA extracted from plants of the same age.  

If the methylation levels in the shoot tips of early-flowering and control lines were compared on the 

same developmental scale (i.e. developmentally, 31 and 34 days of age in the early-flowering lines 

compared approximately to 45 and 52 days of age in RC), the early-flowering lines would show 

consistent hypomethylation in shoot tips, for all of the ages that have been examined (except for RE1 at 

24 days).  Strengthening this argument is the fact that DNA methylation levels in the flower buds are 

higher than the levels in the shoot tips at the onset of flowering but the DNA from the buds of RE2 is 

hypomethylated relative to RC (Figure 6c).  Thus, although the methylation level of RE2 is increasing 

with age in the shoot tip, the meristematic cells are probably retaining the hypomethylation to be passed 

from generation to generation. 

As the cotyledons begin to senesce, the methylation levels increase and the levels of RE2 and 

RE1 become like those of RC (Figure 5a).  With senescence, the similarities in methylation levels 

 90



 

between the cotyledons of early-flowering and control lines may relate to the fact that methylation 

functions to regulate the sequence of events that take place during senescence (reviewed in Chan, 

Henderson, and Jacobsen 2005).  Other DNA characteristics (i.e. tissue weight, DNA recovery; Figure 

5b-d) suggest that senescence of the cotyledons has begun before 52 days.  It has been shown that 

internal cues for senescence in plant tissues occur before visual symptoms, and that DNA fragmentation 

is part of this process (Caccia et al. 2001).  Thus, the cotyledons may begin to senesce as early as day 

30 but the yellowing and abscission may only occur later (approximately day 52 in all three lines).  

Therefore, the increases in methylation levels may be related to the protection of DNA from 

degradation.   

 The patchwork of HPLC studies provided developmental profiles of DNA methylation changes 

in flax cotyledons and shoot tips.  When earlier data on methylation levels in seedlings (from 3-14 days 

of age, Fieldes unpublished) is combined with the work presented here, it can be seen that there is an 

increase in DNA methylation levels in both cotyledons and shoot tips over the entire vegetative growth 

of the plants (Figure 21).  Subsequently, similar results have also been obtained for the two early-

flowering L lines (LE1 and LE2) and their control, LC (Fieldes unpublished).  Measurements of DNA 

methylation during the early part (3-24 days) of development in RE2 remain to be completed; however, 

hypomethylation in both RE1 and RE2 has been seen in shoot tip and cotyledon samples at young ages 

(Figure 1). 

In the work reported here, the total DNA samples from plants subjected to dark treatments that 

were grown alongside those used for chloroplast DNA methylation studies did not show a difference in 

methylation between RC and RE2 (Figure 7a).  However, all three tissue types examined (i.e. shoot 

tips, cotyledons and leaves from various stem locations) showed methylation levels that were lower in 

RE2 than RC when the plants were grown under normal growth conditions (Figure 4a, Figure 5a, and 

Figure 11a-b).  Therefore, it seems likely that the dark has an effect on the methylation levels in the 

nuclear DNA of flax.  Strengthening this argument, there was a significant difference in the methylation 

levels seen in DNA extracted from green tissues of plants grown under regular light conditions versus 
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Figure 21: Developmental Profiles for Methylation Levels in the R Lines of Flax 

a) In the cotyledons, the methylation level increased from day 3 to day 5, and from day 8 to day 14 in 

RC and RE1 (Fieldes unpublished).  There was also a linear increase from day 24 to day 52 in all three 

lines.  b) In the shoot tips, there was a linear increase in methylation level from day 24 to day 34 in all 

three lines, but no significant change in methylation between days 8 and 14 in RC and RE1 (Fieldes 

unpublished).   

Note:  Shifts from early- to mid- vegetative phase (e/m) and mid- to late- vegetative phase (m/l) are 

indicated.  The mean flowering ages for these greenhouse grown plants were at 45 days for RE1 and 

RE2, and 56 days for RC and have been indicated. 
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from plants grown in the dark for 42 h before DNA extraction, where the leaves from dark grown plants 

had higher methylation levels than those grown in regular light conditions (Figure 11c).   

The changes in DNA methylation levels in total DNA extracts from plants grown for different 

times in the dark lead to questions about how regular light conditions affect the methylation levels in 

plants.  It is possible that even the eight hours of dark in a regular light/dark cycles changes the 

methylation level of RE2 and/or RC.  Comparing methylation levels of plants kept in the dark to those 

grown in regular light conditions, the effects of the dark treatment seem to cause an increase in RE2 

DNA methylation, as opposed to a decrease in RC DNA methylation values.  The increased 

methylation of RE2 DNA from plants kept in the dark may be related to gene regulation, or may be a 

potential stress response mechanism induced by the dark conditions.   

In all of the HPLC studies presented here, it is important to take into account the fact that there 

may be day-to-day variation in the samples.  It was not always possible to design the experiments so 

that DNA from all samples was extracted on the same day.  Thus, there may be some variability in the 

samples related to differences in extraction days.  However, day-to-day variability cannot explain the 

statistically significant trends that are seen in the data points, such as linear and quadratic effects. 

5.3 Cytosine Methylation Detected in the Chloroplast DNA of Flax 

In this study, it was found that the chloroplast DNA of flax is methylated, and, in contrast to the 

total DNA (from plants grown alongside the chloroplast DNA samples), the chloroplast DNA of RE2 

was significantly hypomethylated relative to that of RC.  This difference was seen in all of the different 

times in the dark, including the most extreme, 68 h period in the dark prior to chloroplast isolation.  The 

hypomethylation of RE2 could be related to different effects of photoperiodism on RC and RE2 (see 5.4 

for further discussion).   

Previous work on chloroplasts in tobacco, pea, maize, and Medicago truncatula suggests that 

chloroplast DNA is degraded as the leaves age, especially in maize (Shaver, Oldenburg, and Bendich 

2006).  When the chloroplast DNA recovery was compared to total DNA recovery, per 10 plants or per 
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100 mg, (Table 4) as a percentage, the percentages were similar in RC and RE2.  Hence at 21 days, 

RE2 chloroplasts are not aging faster than RC chloroplasts, even though there are potential differences 

in nuclear gene expression.   

No methyltransferase genes have been detected in chloroplast genomes.  Further, when the 

sequences of the nuclear-encoded methyltransferases of Arabidopsis were tested for prediction of 

targeting into the chloroplasts (i.e. using the Xpasi® website), results were negative.  However, in 

Chlamydomonas, it has been predicted that the methyltransferase crMET1 is transferred into 

chloroplasts (Nishiyama et al. 2002) and in this species, the chloroplast DNA is known to be 

methylated (Burton, Grabowy, and Sager 1979).  Thus, it is possible that plant species with methylated 

chloroplast DNA have nuclear-encoded methyltransferases that are translocated to the chloroplast but 

that their identities have not yet been elucidated. 

Interestingly, the hypomethylated state of the chloroplast DNA in early-flowering lines of flax 

indicates that the azaC treatment applied to germinating seeds not only affected the nuclear DNA of 

flax, but also the chloroplast DNA.  Thus, it is possible that mitochondrial DNA was also affected and 

that RE2 mitochondrial DNA is also hypomethylated compared to that of RC.  While chloroplast 

inheritance in plants can be uni- or bi- parental, mitochondrial DNA is usually transmitted maternally 

(Fairbanks and Anderson 1999).  For total DNA, the general trend is that the hypomethylation and early 

flowering characteristics co-segregate in the segregating generations of outcrosses, with no indication 

of uni-parental inheritance (Fieldes et al. 2005).  Thus, if one or both of the chloroplast and 

mitochondrial genomes are uni-parental, the genes that they carry are probably not affecting flowering 

time.  However, if the inheritance of the chloroplast genome is bi-parental, then some of the chloroplast 

genes may be involved in flowering time.  In which case, cytoplasmic segregation and recombination 

could explain the rare anomalous plants (i.e. those which are hypomethylated but do not have the early-

flowering phenotype) that have been noted in segregating generations of outcrosses (Fieldes et al. 

2005).    
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5.4 Circadian Rhythm and its Effects on Gene Expression and Flowering Time 

Plants that respond to day length in order to flower have a circadian rhythm of responsiveness to 

the changes in length of day/night periods.  Flax is a LD quantitative (or facultative) plant, meaning that 

long days are not essential for flowering but their presence will speed up the process (Thomas, Carre, 

and Jackson 2006).  While SD plants are generally governed by how much dark the plant receives, LD 

plants, such as flax and Arabidopsis, are regulated by how much light they are subjected to as well as 

the composition of the light, especially in the later part of the day (Thomas, Carre, and Jackson 2006).  

With respect to flowering, perception of day length is done by the leaves, and signals are then sent to 

the SAM for floral evocation.  In some species, once flowering has been initiated, appropriate day 

length is no longer necessary, but in others, the appropriate day length must continue until the floral 

meristem has developed, at least partially, into floral organs (Thomas, Carre, and Jackson 2006).   

In Arabidopsis, six percent of transcribed genes are regulated by circadian rhythm (Harmer et al. 

2000), including the flowering pathway genes CO, FT and GIGANTEA (GI).  The function of CO is 

upstream of that of FT in Arabidopsis and, after a short night, there is an accumulation of CO mRNA, 

which stimulates FT expression (Thomas, Carre, and Jackson 2006).  It is likely that FT is present in the 

flax genome, because one of the bands excised and sequenced in the effort to locate TFL1 in flax was 

found to be partially homologous, albeit at a low level (e-value:  1e-6), to FT. 

There have been no reported studies linking methylation to CO or FT; however, if present in flax, 

it is possible for these genes to be affected by the hypomethylation of RE2, which could affect 

flowering time.  If as many as six percent of genes in the transcriptome are controlled by circadian 

rhythm, the demethylation of RE2, which is thought to have been induced randomly by the azaC 

treatment, could have affected circadian rhythm genes, either in the nuclear or chloroplast genome, that 

affect flowering time.   

In its role as a floral integrator in Arabidopsis, LFY is thought to be involved in integrating 

signals from multiple flowering pathways, including the photoperiod pathway.  This pathway includes 

 96



 

CO, for which transcription and abundance of mRNA are regulated by circadian rhythm.  Thus, LFY is 

indirectly affected by circadian rhythm.  If light conditions become irregular, the time of flowering 

becomes regulated by the level of CO transcript accumulated in the light conditions (Thomas, Carre, 

and Jackson 2006).  It has been suggested that CO regulates a plant’s ability to flower, based on 

responses to the floral-meristem identity genes, but it is thought to affect LFY indirectly via TFL1 

(Simon, Igeno, and Coupland 1996).  However, even if TFL1 is not transcribed in flax, as may be the 

case, it is possible that CO could still affect floral competence mediated by LD light conditions. 

Because phytochromes are related to light detection, if their effects are altered, regulation via 

photoperiod in the plant will be altered as well.  Generally, plants that cannot create functional 

phytochromes (i.e. they cannot synthesize the chromophores of the phytochromes) will flower earlier 

than control plants (Montgomery et al. 1999, 2001; Sawers et al. 2002).  Similarly, the expression of the 

phytochrome genes, PHYTOCHROME A and PHYTOCHROME B, changes over the course of the day 

(Toth et al. 2001) and thus could lead to differences in flowering time.  PHYB is also known to be an 

inhibitor of FT production (Endo et al. 2005) and, since FT is, perhaps, the florigen molecule, PHYB is 

likely to be a key regulator of flowering time.   

As mentioned previously, the dark treatment had an apparently greater effect on methylation 

levels in the total DNA of RE2 than RC.  Therefore, it is possible that, even over the course of a regular 

day, the circadian cycle of RE2 causes changes in photosynthetic capacity and energy usage at a 

different rate (likely faster) than in RC.  It has been previously shown that in some other lines of flax 

(RE2 was not included in the study), the control and early-flowering lines respond differently to their 

growing conditions, especially light conditions (Fieldes and Harvey 2004).  It is possible that RE2 is 

using light more effectively, or storing materials that are needed for flowering at a faster rate than RC.  

Because flax is a qualitative LD plant, it is possible that early-flowering plants are working more 

efficiently than RC at harnessing light energy while it is available.   

In the chloroplast genome, the genes psbA and psbD encode the chlorophyll binding proteins, D1 

and D2 respectively, which are part of the reaction system for photosystem II (Thum et al. 2001a).  
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These genes are differentially expressed, based on differences in light activation (Klein and Mullet 

1990; Chun et al. 2001; Gamble and Mullet, 1989; Sexton, Christopher, and Mullet 1990).  The psbD 

gene has three different promoters, one of which, the light-responsive promoter (psbD-LRP), is 

transcribed by the plastid-encoded RNA polymerase (PEP) (Thum et al. 2001b).  In order for psbD to 

be transcribed, a number of nuclear-encoded transcription factors must be bound, including nuclear-

encoded AGF and PGTF, the second of which governs the activity of psbD-LRP in response to light 

and dark cycling (Kim, Christopher, and Mullet 1999), thus implying that psbD functions under 

circadian rhythm (Nakahira et al. 1998; Thum et al. 2001b).   

Because methylation of the chloroplast DNA of flax has not been studied previously, and 

because very little research has been done on the chloroplast genome in flax it is only possible to 

speculate what relationships and interactions exist between genes (nuclear or chloroplast) and 

methylation levels, based on work done in other plants, be it LD or SD species.  Although in Hordeum 

vulgare L. (barley), no differences in DNA methylation of the chloroplast were seen between 5 and 8 

day-old seedlings (Krupinska 1992), this does not exclude the possibility of differences in methylation 

level at the psbD promoter region in early flowering and control lines of flax.  This could explain, at 

least partly, differences in flowering time between the two lines of flax.  It has also been shown that 

phosphorylation of specific protein kinases and protein phosphatases in the nucleus and cytoplasm of 

Triticum aestivum (wheat) is responsible for transcriptional changes in psbD (Christopher et al. 1997).  

It is possible that differences in methylation levels in the nuclear DNA of RE2 and RC, specifically at 

sites affecting the transcription factors regulating psbD, are affecting the circadian rhythmic cycling of 

D2 (the protein encoded by psbD), thereby affecting flowering time in flax. 

Although Langdale, Taylor, and Nelson (1991) were unable to identify differentially methylated 

regions of the RbcL (Rubisco large sub-unit) gene in the chloroplast of maize leaves, it would not be 

unrealistic to suggest that there is a difference in methylation (and therefore expression) of this gene in 

the chloroplast of flax.  The up-regulation of RbcL in RE2 would potentially allow it to make better use 

of light energy for photosynthesis and flowering purposes.  Further, this consideration needs to be made 
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for the Rubisco small sub-unit (RbcS), which would likely be transcribed at a similar level, however it 

is a nuclear-encoded gene. 

5.5 Differences in LFY Transcript Levels:  RC vs. RE2 

Studies of transgenic Arabidopsis plants have suggested that a minimum threshold level of LFY 

transcript must be present in order for the plants to flower (Blazquez et al. 1997).  This situation could 

also occur in flax.  RE2 plants appear to be reaching this threshold level sooner than RC plants, which 

may contribute to the early-flowering phenotype.  From the data presented here (Figure 15a), however, 

it appears that if there is a minimum level of LFY transcript required, RE2 may far exceed it (i.e. there 

is much more transcript accumulation in this line than in RC).  Levels of LFY transcript in excess of the 

minimum threshold appear to cause, simply, early flowering, with no further effects (Blazquez et al. 

1997).  It has been suggested that younger vegetative tissue would require a higher threshold of LFY 

transcript in order to flower, as younger plants are otherwise less competent to flower (Molinero-

Rosales et al. 1999).  This theory would do well in explaining the significantly higher levels of LFY 

transcript in RE2 compared to RC.  Further, because there is no real linear increase in the level of LFY 

transcript in RC over time (Figure 15a), it is possible that because the late vegetative phase of growth is 

prolonged in RC, the concentration of LFY transcript does not have to increase to as high of a level as it 

does in RE2.  From 38-48 days in RC, there was no observed increase in DNA recovery per shoot tip or 

per unit fresh weight (Figure 4c-d), suggesting that the SAM is prepared for the transition from 

vegetative to reproductive growth at this time and is waiting for cues to flower, possibly waiting for the 

level of LFY transcript to increase to a minimum threshold.  Methylation levels are not increasing at this 

point in RC either (Figure 4a), further indicating that the plants are involved in a “waiting period”. 

Blazquez et al. (1997) also determined that there is up-regulation of LFY transcript in leaf 

primordia, not just floral primordia.  This may be why there are low levels of LFY transcript in the four 

leaves immediately below the shoot tip (Figure 15d and Figure 18) of flax, as well as in the young shoot 

tips (Figure 15a and Figure 16).  The transcripts are regulated at a constitutively low level, keeping the 

 99



 

shoot tips from forming flowers too early, and preventing the shoot apices from becoming flowers.  

Blazquez et al. (1997) show that there is no real need for regulation of expression of LFY in advanced 

leaf primordia because, once the leaves are initiated, LFY expression will not cause them to flower.  

This could explain why there is a decrease in LFY transcription in the leaves of RC over time.  The 

same decrease in LFY transcription in leaves over time is not seen in RE2 because the decrease is in the 

late vegetative phase of RC and this phase is truncated in RE2 (Fieldes and Harvey, 2004).  

Interestingly, it has also been shown in Arabidopsis that plants that over-express LFY and under-express 

TFL1 have accelerated progression through the later stages of rosette growth (i.e. later vegetative 

stages) and therefore, flower earlier than wild-type plants (Steynen, Boloski, and Schultz 2001). 

While it is tempting to suggest that LFY could be one of the genes in the genetic model proposed 

for the early flowering phenotype of flax (Amyot 1999; Fieldes and Amyot 1999a), more direct 

relationships between methylation and LFY transcript accumulation would have to be established before 

making this claim.     

5.6 Lack of TFL1 Transcript Accumulation in Flax 

Although TFL1 was shown to be present in the genomic DNA of three different lines of flax (i.e. 

RC, RE2 and LC) (Figure 20a), transcripts were not detected in the cDNA of RC or RE2 at various 

ages, in various tissues, with these primers (Figure 20b-c).  Since finding a set of degenerate primers, as 

well as specific primers, proved very difficult for this gene, and because the primers work in genomic 

DNA to produce a band of the expected size, it is tempting to suggest that TFL1 is not transcribed in 

flax.  However, because TFL1 is not expressed in vegetative tissues of all species (Bradley et al. 1997), 

its transcripts may not be present in flax leaves.  The absence of TFL1 transcripts in the young shoot 

tips is more difficult to explain.  One possibility is that other factors are regulating the expression of 

LFY.  Alternatively, TFL1 could be transcribed at very low levels, or with a very high turnover rate.  It 

is also possible, however, that the expression patterns of TFL1 are quite limited (Bradley et al. 1997; 
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Amaya, Ratcliffe, and Bradley 1999; Boss, Sreekantan, and Thomas 2006), and that a PCR study is not 

the optimal method of finding TFL1 transcripts. 

5.7 Differences in Actin Transcript Levels: RC vs. RE2 

It is apparent, from the attempt to use the actin gene as a standard in the LFY transcript study, 

that the levels of actin are not the same in the leaves of RC and RE2 and that they change during 

development in RC shoot tips (Figure 15c and Figure 17).  In the shoot tips of RC, actin transcript 

levels may increase during the prolonged third vegetative phase because in this phase there is a higher 

proportion of leaf tissue in the older versus the younger shoot tips. 

Studies on levels of the actin binding protein profilin (PFN) in Arabidposis, found that plants 

which under-express the protein had a decreased height, number of leaves, and flowering time 

(Ramachandran et al. 2000).  In more primitive species (i.e. yeast and amoeba), altered expression of 

PFN has been shown to alter actin cytoskeleton arrangements (Balasubramanian et al. 1994; Finkel et 

al. 1994).  However, in Arabidopsis, no differences in cytoskeleton arrangement were found between 

plants with wild-type levels of PFN and those with lower PFN levels (Ramachandran et al. 2000).  It 

would be interesting to look for differences in PFN levels between RC and RE2 lines and see if, like 

more primitive species, differences in the expression levels of this protein relate to differences in actin 

cytoskeletal arrangements, perhaps to the point of differences in mRNA transcript levels in the plants. 

Over-expression of the actin-depolymerizing factor (ADF) in Arabidopsis reduced the formation 

of actin cables in some tissues with no significant change in flowering time, while the under-expression 

of ADF produced plants with delayed flowering time and increased actin cables (Dong et al. 2000).  It 

has been suggested that, because of actins’ involvement in intracellular signalling via cytoplasmic 

streaming and plasmodesmata (McLean, Hempel, and Zambryski 1997), a reduction in the expression 

of ADF, as well as other actin binding proteins, may be necessary for flowering to occur (Dong et al. 

2000).  In the case of flax, the decrease in actin expression in RE2 tissue was seen most predominantly 

in the leaves.  However, if a florigen protein (i.e. FT) moves from other areas in the plant to the 
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meristem, actin binding protein levels may need to be decreased throughout RE2 in order for this to 

occur more efficiently.   

5.8 Searching the Flax Genome:  Genomic vs. cDNA 

While it may have been simpler, and more efficient, to carry out the gene hunt for LFY and TFL1 

using cDNA, there were reasons for initially using genomic DNA.  Had the project worked as it 

expected, it would have been much faster to use genomic DNA instead of cDNA.  In fact, it took a very 

short time to determine the primers for LFY.  Because TFL1 is not as well documented in plants as LFY, 

the location of its expression in flax was not certain.  In fact, evidence from this study suggests that 

while the gene is found in the flax genome (Figure 20a), it is not being expressed in either leaves or 

shoot tips (Figure 20b-c). It had been anticipated that TFL1 would be found at moderately low levels in 

leaves, to counteract LFY expression.  In shoot tips, it was assumed that TFL1 would be present at high 

levels in young shoots, and that there would be a decrease in its expression with the onset of flowering.  

Although the results reported here suggest that it is not being expressed, more primer sets, or another 

method of detection, would need to be used to fully confirm whether TFL1 is expressed in flax leaves 

and shoots or not. 

5.9 Methylation Levels and Transcript Levels:  Cause and Effect 

It is tempting to suggest that the differences in methylation levels and transcript levels of LFY in 

RC versus RE2 are directly related but this statement would be inappropriate at this time.  Although 

both are likely related to the early flowering of RE2, it would only be speculative to suggest that the 

hypomethylation of RE2 is causing the increased levels of LFY transcript in RE2.   

In Arabidopsis, methylation is known to directly affect FWA expression (Genger et al. 2003), and 

to indirectly affect FLC expression, both of which then affect the time of flowering (Finnegan, Peacock, 

and Dennis 2000; Genger et al. 2003).  Further, FLC is known to be an inhibitor of floral pathway 

integrators, the class of genes that includes LFY (Figure 2; Henderson and Dean 2004).  Thus, it is 
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possible that methylation affects the expression of LFY by a number of indirect pathways.  For 

example: i) the methylation affecting FLC could be indirectly affecting LFY transcription, and ii) the 

hypomethylation of RE2 could affect genes controlling circadian rhythm, including those in the 

photoperiod pathway, such as CO (Figure 2).  If this is the case, the changes in the photoperiod pathway 

could be causing the changes in LFY transcript levels, because this pathway has a direct affect on floral 

pathway integrators (Henderson and Dean 2004).   

The chloroplast genomes of RC and RE2 have substantial levels of DNA methylation, and 

because the chloroplast genome of RE2 is significantly hypomethylated, relative to RC, it is possible 

that this methylation is somehow related to the early flowering phenotype of RE2.  Further research 

needs to be done on the genes in the flowering time pathways in flax, as well as on the effects of 

methylation on all flowering time genes, in order to determine whether the demethylation of RE2 is 

related, either directly or indirectly, to the increased amount of LFY transcript in RE2 shoot tips. 

5.10 Future Research 

It would be interesting to examine DNA methylation levels over the course of the day (i.e. with 

photoperiodism), especially because dark treatments appear to alter the total DNA methylation levels in 

flax.  It is likely that RE2 remains constantly hypomethylated relative to RC in the chloroplast DNA, 

but it seems plausible that at night and early in the morning nuclear DNA methylation levels are similar 

in early flowering and control lines.  In the chloroplast, it is possible that the differences in DNA 

methylation are related to gene expression, leading to differences in protein levels, where there could be 

a higher accumulation of photosynthetic proteins (such as RbcL) in RE2, relative to RC.  It would also 

be interesting to examine the accumulation of D2 (the protein encoded by psbD) in RE2 and RC, as 

psbD is transcribed based on circadian rhythm, and to relate this to flowering time.  Because there are 

high levels of DNA methylation in the chloroplast genomes of RC and RE2, it would be interesting to 

consider the mechanisms that methylate this DNA, that is, the possible presence of methyltransferases 

in the chloroplasts of flax, and how they arrive there.   
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In order to look at the inheritance of methylation levels from generation to generation, an 

immunohistochemical approach could be used to examine methylation levels more precisely in shoot 

tips and to study methylation at the central core of the SAM in order to see if RE2 is always 

hypomethylated in the meristematic tissue. 

Although TFL1 is an inhibitor of LFY, because, as mentioned earlier (1.4.2), it has a very precise 

expression in the SAM, it was probably not the most suitable choice for this PCR-based semi-

quantitative study.  With the primers for TLF1 that gave the band in the genomic DNA of RC and RE2, 

probes for TFL1 could be produced and used to detect the mRNA of TFL1.  More specifically, these 

probes could be used to study the expression of TFL1 in the SAM, with the necessary precision.   

Actin, which was to serve as a standard in the transcript level experiment proved interesting 

because the transcript abundance differed between the two lines studied.  It would be interesting to see 

which other seemingly constitutively expressed structural (or other) genes are being transcribed at an 

altered rate in RE2.  A parameter of this kind might be useful in determining the exact time at which the 

switch from vegetative to reproductive growth is occurring in early-flowering lines of flax.  However, 

the question remains as to what structural gene could be used as a standard for a semi-quantitative 

study.  Ribosomal subunit genes are being considered. 

The work presented here is beneficial in understanding some of the details of flowering time in 

flax, although there is still a wealth of information to obtain.  It has also opened new avenues for flax 

research in the field of chloroplast development/metabolism in early flowering versus control lines.  

With continued research, it is possible that methylation will be found to be a common thread that links 

together many of the developmental differences between RC and RE2.   

 104



 

REFERENCES 

Adams, R. L. P. 1990. DNA methylation: the effect of minor bases on DNA-protein interactions.  
Biochem. J. 265: 309-320. 

 
Alvarez, J., C. L. Guli, X.-H. Yu, and D. R. Smyth. 1992. terminal flower : A gene affecting  

inflorescence development in Arabidopsis thaliana. Plant J. 2: 103-116. 
 

Amaya, I., O. J. Ratcliffe, and D. J. Bradley. 1999. Expression of CENTRORADIALIS (CEN) and  
CEN-like genes in tobacco reveals a conserved mechanism controlling change in diverse  
species. Plant Cell. 11: 1405-1417. 

 
Amyot, L. M. 1997. Characterization of 5-azacytidine-induced early-flowering lines in flax. MSc 
 Thesis. University of Waterloo. 
 
Anthony, R. C. 2006. Signal transduction regulating floral development. In: The Molecular Biology  

and Biotechnology of Flowering. 2nd ed. Ed. B. R. Jordan, UK: Biddles Ltd. 50-78.  
 
Araki, T. 2001. Transition from vegetative to reproductive phase. Curr. Op. Plant Biol. 4: 63-68. 
 
Balasubramanian, M. K., B. R. Hirani, J. D. Burke, and K. L. Gould. 1994. The Schizosaccharomyces 

pombe cdc3+ gene encodes a profiling essential for cytokinesis. J. Cell Biol. 125: 1289-1301. 
 
Bernier, G. 1988. The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant  

Mol. Biol. 39: 175-219. 
 
Bernier, G., J. M. Kinet, and R. M. Sachs. 1981. The Physiology of Flowering. Boca Raton: CRC  

Press. v. 2. 
 
Bernier, G., A. Havelange, C. Houssa, A. Petitjean, and P. Lejeune. 1993. Physiological signals that  
 induce flowering. Plant Cell. 5: 1147-1155. 
 
Bitonti, M. B., R. Cozza, A. Chiappetta, D. Giannino, M. R. Castiglione, W. Dewitte, D. Mariotti, H. 

Van Onckelen, and A. M. Innocenti. 2002. Distinct nuclear organization, DNA methylation 
pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical 
meristems in peach (Prunus persica (L.) Batsch). J. Exp. Bot. 53: 1047-1054. 

 
Blazquez, M. A., L. N. Soowal, I. Lee, and D. Weigel. 1997. LEAFY expression and flower initiation in 

Arabidopsis. Development. 124: 3835-3844. 
 
Blazquez, M. A., R. Green, O. Nilsson, M. R. Sussman, and D. Weigel. 1998. Gibberellins promote 

flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell. 10: 791-800. 
 
Boss, P. K., L. Sreekantan, and M. R. Thomas. 2006. A grapevine TFL1 homologue can delay 

flowering and alter floral development when overexpressed in heterologous species. Functional 
Plant Biol. 33: 31-41. 

 
Boyes, J., and A. Bird. 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG  
 binding protein. Cell. 64: 1123-1134.  
 

 105



 

Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter, and E. Coen. 1997. Inflorescence commitment and 
architecture in Arabidopsis. Science. 275: 80-83. 

 
Burn, J. E., D. J. Bagnall, J. D. Metzger, E. S. Dennis, and W. J. Peacock. 1993. DNA methylation,  
 vernalization and the initiation of flowering. Proc. Natl. Acad. Sci USA. 90: 287-291. 
 
Burton, W. G., C. T. Grabowy, and R. Sager. 1979. Role of methylation in the modification and 

restriction of chloroplast DNA in Chlamydomonas. Proc. Natl. Acad. Sci. USA. 76: 1390-1394. 
 
Busch, M. A., K. Bomblies, and D. Weigel. 1999. Activation of a floral homeotic gene in Arabidopsis.  
 Science. 285: 585-587. 
 
Caccia, R., M. Delledonne, A. Levine, C. De Pace, and A. Mazzucato. 2001. Apoptosis-like DNA  

fragmentation in leaves and floral organs precedes their developmental senescence. Plant  
Biosystems. 135: 183-190. 

 
Chan, S. W. L., I. R. Henderson, and S. E. Jacobsen. 2005. Gardening the genome: DNA methylation in 

Arabidopsis thaliana. Nature Rev. Gen. 6: 351-360. 
 
Christopher, D. A., L. Xinli, M. Kim, and J. E. Mullet. 1997. Involvement of protein kinase and  
 extraplastidic serine/threonine protein phosphatases in signaling pathways regulating plastid  

transcription and the psbD blue light-responsive promoter in barley. Plant Physiol. 113: 1273-
1282. 

 
Chujo, A., Z. Zhang, H. Kishino, K. Shimamoto, and J. Kyozuka. 2003. Partial conservation of LFY  
 function between rice and Arabidopsis. Plant Cell Physiol. 44: 1311-1319. 
 
Chun, L., A. Kawakami, and A. Christopher. 2001. Phytochrome A mediates blue light and UV-A-

dependent chloroplast gene transcription in green leaves. Plant Physiol. 125: 1957-1966. 
 
Coates, D., and C. A. Cullis. 1982. The chloroplast DNAs of flax genotrophs. Plant Mol. Biol. 1: 183-

189. 
 
Coen, E. S., J. M. Romero, S. Doyle, R. Elliott, G. Murphy, and R. Carpenter. 1990. floricaula: A  
 homeotic gene required for flower development in Antirrhinum majus. Cell. 63: 1311-1322. 
 
Colasanti, J., and V. Sundaresan. 2000. ‘Florigen’ enters the molecular age: long-distance signals that  
 cause plants to flower. Trends Biol. Sci. 25: 236-240. 
 
Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. 

Turnball, and G. Coupland. 2007. FT protein movement contributes to long-distance signaling in 
floral induction of Arabidopsis. Science. 316: 1030-1033. 

 
Dong, C. H., G. X. Zia, Y. Hong, S. Ramachandran, B. Kost, and N. H. Chua. 2001. ADF proteins are 

involved in the control of flowering and regulate F-actin organization, cell expansion, and  
 organ growth in Arabidopsis. Plant Cell. 13: 1333-1346. 
 
Durrant, A. 1971. Induction and growth of flax genotrophs. Heredity. 27: 277-298. 
 
 
 

 106



 

Endo, M., S. Nakamura, T. Araki, N. Mochizuki, and A. Nagatani. 2005. Phytochrome B in the  
 mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in  Arabidopsis 

vascular bundles. Plant Cell. 17: 1941-1952. 
 
Esumi, T., R. Tao, and K. Yonemori. 2005. Isolation of LEAFY and TERMINAL FLOWER 1 

homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex. Plant  
 Reprod. 17: 277-287. 
 
Evans, M. M. S., and M. K. Barton. 1997. Genetics of angiosperm shoot apical meristem development.  
 Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 673-701. 
 
Fairbanks, D. J. and W. R. Anderson. 1999. Genetics: The Continuity of Life. Toronto: Brooks/Cole  
 Publishing Co. 570-571. 
 
Fasman, G. D. ed. 1976. Handbook of Biochemistry and Molecular Biology. USA: CRC Press. V. 2. 

258-261. 
 
Fieldes, M. A. 1994. Heritable effects of 5-azacytidine treatments on the growth and development of  
 flax (Linum usitatissimum) genotrophs and genotypes. Genome. 37: 1-11.  
 
Fieldes, M. A., and L. M. Amyot. 1999. Epigenetic control of early flowering in flax lines induced by 

5-azacytidine applied to germinating seed. J. Heredity. 90: 199-206. 
 
Fieldes, M. A., and C. G. Harvey. 2004. Differences in developmental programming and node number 

at flowering in the 5-azacytidine-induced early flowering flax lines and their controls. Int. J. 
Plant Sci. 165: 695-706. 

 
Fieldes, M. A., S. M. Schaeffer, M. J. Krech, and J. C. L. Brown. 2005. DNA hypomethylation in 5-

azacytidine induced, early-flowering lines of flax. Theor. Appl. Genet. 111: 136-149. 
 
Finkel, T., J. A. Theriot, K. R. Dise, G. F. Tomaselli, and P. J. Goldschmidt-Clermont. 1994. Dynamic 

actin structure stabilized by profiling. Proc. Natl. Acad. Sci. 91: 1510-1514. 
 
Finnegan, E. J., W. J. Peacock, and E. S. Dennis. 1996. Reduced DNA methylation in Arabidopsis 

thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA 93: 8449-8454. 
 
Finnegan, E. J., W. J. Peacock, and E. S. Dennis. 2000. DNA methylation, a key regulator of plant 

development and other processes. Curr. Op. Gen. Dev. 10: 217-223. 
 
Fojtova, M., A. Kovarik, and R. Matyasek. 2001. Cytosine methylation of plastid genome in higher 

plants. Fact or artefact? Plant Sci. 160: 585-593. 
 
Gamble, P. E., and J. E. Mullet. 1989. Blue light regulates the accumulation of two psbD-psbC 

transcripts in barley chloroplasts. EMBO J. 8: 2785-2794. 
 
Gauly, A., and H. Kossel. 1989. Evidence for tissue-specific cytosine-methylation of plastid DNA from  
 Zea mays. Curr. Genet. 15: 371-376. 
 
Genger, R. K., W. J. Peacock, E. S. Dennis, and E. J. Finnegan. 2003. Opposing effects of reduced 

DNA methylation on flowering time in Arabidopsis thaliana. Planta. 216: 461-466. 
 

 107



 

Godager, L. H., T. J. Meza, B. Borud, K. S. Jakobsen, and R. B. Aalen. 1998. EcoRII is an unreliable 
enzyme for studies of CpNpG methylation in Arabidopsis thaliana. Plant Mol. Biol. Rep. 16: 19-
32. 

 
Harmer, S. L., J. B. Hogenesch, M. Straume, H. S. Chang, B. Han, T. Zhu, X. Wang, J. A. Kreps, and 

S. A. Kay. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian 
clock. Science. 290: 2110-2113. 

 
He,Y., M. R. Doyle, and R. M. Amasino. 2004. PAF1-complex-mediated histone methylation of  
 FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual  
 habit in Arabidopsis. Genes Dev. 18: 2774-2884. 
 
Hempel , F. D., D. Weigel, M. A. Mandel, G. Ditta, P. C. Zambryski, L. J. Feldman, and M. F. 

Yanofsky. 1997. Floral determination and expression of floral regulatory genes in Arabidopsis. 
Development. 124: 3845-3853. 

 
Henderson, I. R., and C. Dean. 2004. Control of Arabidopsis flowering: the chill before the bloom. 

Development. 131: 3829-3838. 
 
Hofer, J., L. Turner, R. Hellens, M. Ambrose, P. Matthews, A. Michael, and N. Ellis. 1997. 

UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7: 581–587. 
 
Huala, E., and I. M. Sussex. 1992. LEAFY interacts with floral homeotic genes to regulate Arabidopsis  
 floral development. Plant Cell. 4: 901-913. 
 
Huang, T., H. Bohlenium, S. Eriksson, F. Parcy, and O. Nilsson. 2005. The mRNA of the Arabidopsis 

gene FT moves from leaf to shoot apex and induces flowering. Science. 309: 1694-1696. 
 
Jeddeloh, J. A., T. L. Stokes, and E. J. Richards. 1999. Maintenance of genomic methylation requires a 

SWI2-SNF2-like protein. Nat. Gen. 22: 94-97. 
 
Jones, J. A. Gene activation by 5-azacytidine. In: DNA methylation: biochemistry and biological  
 significance. Eds. A. Razin, H. Cedar, and A.D. Riggs. 1984. New York: Springer-Verlag.  
 165-185. 
 
Kakutani, T., J. Jeddeloh, and E. J. Richards. 1995. Characterization of an Arabidopsis thaliana DNA 

hypomethylation mutant. Nucleic Acid Res. 23: 130-137. 
 
Kelly, A. J., M. B. Bonnlander, and D. R. Meeks-Wagner. 1995. NFL, the tobacco homolog of 

FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral  
 meristems. Plant Cell. 7: 225-234. 
 
Kim, M., D. A. Christopher, and J. E. Mullet. 1999. ADP-dependent phosphorylation regulates 

association of a DNA-binding complex with the barley chloroplast psbD blue-light-responsive 
promoter. Plant Physiol. 119: 663-670. 

 
Klaas, M., C. J. Manorama, D. N. Crowell, and R. M. Amasino. 1989. Rapid induction of genomic  
 demethylation and T-DNA gene expression in plant cells by 5-azacytosine derivatives. Plant  
 Mol. Biol. 12: 413-423. 
 

 108



 

Klein, R. R., and J. E. Mullet. 1990. Light-induced transcription of chloroplast genes. J.Biol. Chem. 
265: 1895-1902. 

 
Kobayashi, H., J. Ngernprasirtsiri, and T. Akazawa. 1990. Transcriptional regulation and DNA  
 methylation in plastids during transitional conversion of chloroplasts to chromoplasts. EMBO J.  
 9: 307-313. 
 
Kondo, H., H. Ozaki, K. Itoh, A. Kato, and K. Takeno. 2006. Flowering induced by 5-azacytidine, a 

DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant.  
 127: 130-137. 
 
Koornneef, M., C. Alonso-Blanco, A. J. M. Peeters, and W. Soppe. 1998. Genetic control of flowering  
 time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370. 
 
Kotake, T., S. Takada, K. Nakahigashi, M. Ohto, and K. Goto. 2003. Arabidopsis TERMINAL  
 FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both  FLOWERING 

LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol. 44: 
555-564. 

 
Kotoda, N., M. Wada, S. Komori, S. Kidou, K. Abe, T. Masuda, and J. Soejima. 2000. Expression 

pattern of homologues of floral meristem identity genes LFY and AP1 during flower development 
in apple. J. Amer. Soc. Hort. Sci. 125: 398-403. 

 
Kovarik, A., B. Koukalova, K. Y. Lim, R. Matyasek, C. P. Lichtenstein, A. R. Leitch, and M. Bezdek. 

2000. Comparitive analysis of DNA methylation in tobacco heterochromatic sequences. Chrom. 
Res. 8: 527-541. 

 
Krupinska, K. 1992. Transcriptional control of plastid gene expression during development of primary  
 foliage leaves of barley grown under a daily light-dark regime. Planta. 186: 294-303. 
 
Lamb, R. S., T. A. Hill, Q. K.-G. Tan, and V. F. Irish. 2002. Regulation of APETALA3 floral homeotic 

gene expression by meristem identity genes. Development 129: 2079-2086. 
 
Langdale, J. A., W. C. Taylor, and T. Nelson. 1991. Cell-specific accumulation of maize 

phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site > 3kb  
 upstream of the gene. Mol. Gen. Genet. 225: 49-55. 
 
Lawson, E. J. R., and R. S. Poethig. 1995. Shoot development in plants: time for a change. Trends 

Genet. 11: 263-268. 
 
Levy, Y. Y., and C. Dean. 1998. The transition to flowering. Plant Cell. 10: 1973-1989. 
 
Li, G., T. C. Hall, and R. Holmes-Davis. 2002. Plant chromatin: development and gene control. 

BioEssays 24: 234-243. 
 
Liu, J., J. Yu, L. McIntosh, H. Kende, and J. A. D. Zeevaart. 2001. Isolation of a CONSTANS ortholog 

from Pharbitis nil and its role in flowering. Plant Physiol. 125: 1821-1830. 
 
Ma, H. 1998. To be, or not to be, a flower- control of floral meristem identity. Trends Genet. 14: 26- 
 32. 
 

 109



 

Marano, M. R., and N. Carrillo. 1991. Chromoplast formation during tomato fruit ripening. No 
evidence for plastid DNA methylation. Plant Mol. Biol. 16: 11-19. 

 
Matassi, G., R. Melis, K. C. Kuo, G. Macaya, C. W. Gehrke, and G. Bernardi. 1992. Large-scale 

methylation patterns in the nuclear genomes of plants. Gene. 122: 239-245. 
 
McDaniel, C. N. 1996. Developmental physiology of floral initiation in Nicotiana tabacum L. J. Exp.  
 Bot. 47: 465-475. 
 
McLean, B. G., F. D. Hempel, and P. C. Zambryski. 1997. Plant intercellular communication via  
 plasmodesmata. Plant Cell. 9: 1043-1054. 
 
Molinero-Rosales, N., M. Jamilena, S. Zurita, P. Gomez, J. Capel, and R. Lozano. 1999. FALSIFLORA, 

the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem 
identity. Plant J. 20: 685-693. 

 
Montgomery, B. L., K. C. Yeh, M. W. Crepeau, and J. C. Lagarias. 1999. Modification of distinct 

aspects of photo-morphogenesis via targeted expression of mammalian biliverdin reductase in 
transgenic Arabidopsis plants. Plant Physiol. 121: 629-639. 

 
Montgomery, B. L., K. A. Franklin, M. J. Terry, B. Thomas, S. D. Jackson, M. W. Crepeau, and J. C.  
 Lagarias. 2001. Biliverdin reductase-induced phytochrome chromophore deficiency in  
 transgenic tobacco. Plant Physiol. 125: 266-277. 
 
Mouradov, A., T. Glassick, B. Hamdorf, L. Murphy, B. Fowler, S. Marla, and R. D. Teasdale. 1998. 

NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both 
reproductive and vegetative meristems. Proc. Natl. Acad. Sci. USA. 95: 6537-6542.  

 
Murashige, T., F. and Skoog. 1962. A revised medium for rapid growth and bio-assay with tobacco 

tissue cultures. Physiol. Plant. 15: 473-497. 
 
Murfet, I. C. 1985. CRC Handbook of Flowering. Ed. A. H. Halvey. Boca Raton: CRC Press. v. 4.  
 97-126. 
 
Nakahira, Y., K. Baba, A. Yoneda, T. Shiina, and Y. Toyoshima. 1998. Circadian-regulated  
 transcription of the psbD light-responsive promoter in wheat chloroplasts. Plant Physiol. 118:  
 1079-1088. 
 
Ng, H. H., and A. Bird. 1999. DNA methylation and chromatin modification. Curr. Op. Gen. Dev. 9:  
 158-163. 
 
Ngernprasirtsiri, J., H. Kobayashi, and T. Akazawa. 1988a. DNA methylation occurred around lowly  
 expressed genes of plastid DNA during tomato fruit development. Plant Physiol. 88: 16-20. 
 
Ngernprasirtsiri, J., H. Kobayashi, and T. Akazawa. 1988b. DNA methylation as a mechanism of  
 transcriptional regulation in nonphotosynthetic plastids in plant cells. Proc. Natl. Acad. Sci.  
 USA. 85: 4750-4754. 
 
Ngernprasirtsiri, J., R. Chollet, H. Kobayashi, T. Sugiyama, and T. Akazawa. 1989. DNA methylation 

and the differential expression of C4 photosynthesis genes in mesophyll and bundle sheath cells 
of greening maize leaves. J. Biol. Chem. 264: 8241-8248. 

 110



 

Nilsson, O., I. Lee, M. A. Blazquez, and D. Weigel. 1998. Flowering-time genes modulate the response 
 to LEAFY activity. Gen. Soc. Amer. 150: 403-410. 

 
Nishiyama, R., M. Ito, Y. Yamaguchi, N. Koizumi, and H. Sano. 2002. A chloroplast-resident DNA 

methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas 
maternal gametes. Proc. Natl. Acad. Sci. 99: 5925-5930. 

 
Ohshima, S., M. Murata, W. Sakamoto, Y. Ogura, and F. Motoyoshi. 1997. Cloning and molecular  
 analysis of the Arabidopsis gene TERMINAL FLOWER 1. Mol. Gen. Genet. 254: 186-194. 
 
Ohta, N., N. Sato, S. Kawano, and T. Kuroiwa. 1991. Methylation of DNA in the chloroplasts and 

amyloplasts of the pea, Pisum sativum. Plant Sci. 78: 33-42. 
 
Parcy, F., O. Nilsson, M. A. Busch, I. Lee, and D. Weigel. 1998. A Genetic framework for floral  
 patterning. Nature. 395: 561-566. 
 
Pennisi, E. 2007. Long-sought plant flowering signal unmasked, again. Science. 316: 350-351. 
  
Pidkowich, M., J. Kenz, and G. Haughn. 1999. The making of a flower: control of floral meristem  
 identity in Arabidopsis. Trends Plant Sci. 4: 64-70. 
 
Pillitteri, L. J., C. J. Lovatt, and L. L. Walling. 2004. Isolation and characterization of LEAFY and  
 APETALA1 homologues from Citrus sinensis L. Osbeck ‘Washington’. J. Amer.Soc. Hort.  
 Sci. 129: 846-856. 
 
Poethig, R. S. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science. 250:  
 923-930. 
 
Pouteau, S., D. Nicholls, F. Tooke, E. Coen, and N. Battey. 1997. The induction and maintenance of  
 flowering in Impatiens. Development. 124: 3343-3351. 
 
Ramachandran, S., H. E. M. Christensen, Y. Ishimaru, C. H. Dong, W. Chao-Ming, A. L. Cleary, and 

N.-H. Chua. 2000. Profilin plays a role in cell elongation, cell shape maintenance, and flowering 
in Arabidopsis. Plant Physiol. 124: 1637-1647. 

 
Ratcliffe, O. J., D. J. Bradley, and E. S. Coen. 1999. Separation of shoot and floral identity in 

Arabidopsis. Development. 126: 1109-1120. 
 
Ratcliffe, O. J., and J. L. Riechmann. 2002. Arabidopsis transcription factors and the regulation of  
 flowering time: A genomic perspective. Curr. Issues Mol. Biol. 4: 77-91. 
 
Richards, E. J. 1997. DNA methylation and plant development. Trends Genet. 13: 319-323. 
 
Rottmann, W. H., R. Meilan, L. A. Sheppard, A. M. Brunner, J. S. Skinner, C. Ma, S. Cheng, L. 

Jouanin, G. Pilate, and S. H. Strauss. 2000. Diverse effects of overexpression of LEAFY and 
PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and 
Arabidopsis. Plant J. 22: 235-245.  

 
Ruiz-Garcia, L., M. T. Cervera, and J. M. Martinez-Zapater. 2005. DNA methylation increases 

throughout Arabidopsis development. Planta. 222: 301-306. 
 

 111



 

Sano, H., I. Kamada, S. Youssefian, M. Katsumi, and H. Wabiko. 1990. A single treatment of rice  
 seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic  
 DNA. Mol. Gen. Genet. 220: 441-447. 
  
Sachs, R. M., W. P. and Hackett. 1983. Source sink relationships and flowering. In Beltsville Symposia 

in Agriculture Research. 6. Strategies of Plant Reproduction. Ed. W. J. Meudt. Totowa, NJ:  
 Allanheld, Osmun Publishing. 263-272. 
 
Sawers, R. J. H., P. J. Linley, P. R. Farmer, N. P. Hanley, D. E. Costich, M. J. Terry, and T. P. Brutnell, 

2002. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol. 130: 155-
163. 

 
Schneider, H., and R. L. Phillips. 1981. Staining Procedures. 4th ed. Ed. George Clark. Toronto: 

Williams and Wilkins. 362. 
 
Schultz, E. A., and G. W. Haughn. 1991. LEAFY, a homeotic gene that regulates inflorescence 

development in Arabidopsis. Plant Cell. 3: 771-781. 
 
Sexton, T. B., D. A. Christopher, and J. E. Mullet. 1990. Light-induced switch in barley psbD-psbC  
 promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J. 9:  
 4485-4494. 
 
Shannon, S., and D. R. Meeks-Wagner. 1991. A mutation in the Arabidopsis TFL1 gene affects  
 inflorescence meristem development. Plant Cell. 3: 877-892.  
 
Shannon, S., and D. R. Meeks-Wagner. 1993. Genetic interactions that regulate inflorescence 

development in Arabidopsis. Plant Cell. 5: 639-655. 
 
Shaver, J. M., D. J. Oldenburg, and A. J. Bendich. 2006. Changes in chloroplast DNA during  
 development in tobacco, Medicago truncatula, pea, and maize. Planta. 224: 72-82. 
 
Sheldon, C. C., D. T. Rouse, E. J. Finnegan, W. J. Peacock, and E. S. Dennis. 2000. The molecular 

basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. 
97: 3753-3758. 

 
Simon, R., M. I. Igeno, and G. Coupland. 1996. Activation of floral meristem identity genes in  
 Arabidopsis. Nature. 384: 59-62. 
 
Smith, M. D., L. Fitzpatrick, K. Keegstra, and D. J. Schnell. 2002. In vitro analysis of chloroplast  
 protein import. In: Current Protocols in Cell Biology. Eds. M. D. J. S. Bonifacino, J. Lippincott-

Schwartz, J. B. Harford, and K. M. Yamada. New York: John Wiley & Sons. 11.16.1- 11.16.21. 
 
Steynen, Q. J., D. A. Bolokoski, and E. A. Schultz. 2001. Alteration in flowering time causes 

accelerated or decelerated progression through Arabidopsis vegetative phases. Can. J. Bot. 79: 
657-665. 

 
Tadege, M., C. C. Sheldon, C. A. Helliwell, P. Stoutjesdijk, E. S. Dennis, and W. J. Peacock. 2001.  
 Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28: 545-553. 
 

 112



 

Takio, S., Y. Satoh, and T. Satoh. 1994. Occurrence of DNA methylation in chloroplasts of the 
suspension cultured cells from a liverwort, Marchantia paleacea var. dipera. Plant Physiol. 143: 
173-177. 

 
Tamaki, S., S. Matsuo, H. L. Wong, S. Yokoi, and K. Shimamoto. 2007. Hd3a protein is a mobile 

flowering signal in rice. Science. 316: 1033-1036. 
 
Thomas, B., I. Carre, and S. Jackson. 2006. Photoperiodism and flowering. In The Molecular  
 Biology and Biotechnology of Flowering. 2nd ed. Ed. B. R. Jordan. UK: Biddles Ltd. 1-20. 
 
Thum, K. E., M. Kim, D. A. Christopher, and J. E. Mullet. 2001a. Cryptochrome 1, chryptochrome 2,  
 and phytochrome A co-activate the chloroplast psbD blue-light responsive promoter. Plant  
 Cell. 13: 2747-2780. 
 
Thum, K. E., M. Kim, D. T. Morishige, C. Eibl, H. U. Koop, and J. E. Mullet. 2001b. Analysis of 

barely chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant 
Mol. Biol. 47: 353-366.  

 
Toth, R., E. Kevei, A. Hall, A. J. Millar, F. Nagy, and L. Kozma-Bognar. 2001. Circadian clock-

regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 
127: 1607-1616. 

 
Wagner, D., R. W. M. Sablowski, and E. M. Meyerowitz. 1999. Transcriptional activation of 

APETALA1 by LEAFY. Science. 285: 582-584. 
 
Weigel, D., J. Alvarez, D. R. Smyth, M. F. Yanofsky, and E. M. Meyerowitz. 1992. LEAFY controls  
 floral meristem identity in Arabidopsis. Cell. 69: 843-859.  
 
Weller, J. L., J. B. Reid, S. A. Taylor, and I. C. Murfet. 1997. The genetic control of flowering in pea.  
 Trends Plant Sci. 2: 412-418.  
 
Yu, H., Y. Xu, E. L. Tan, and P. P. Kumar. 2002. AGAMOUS-LIKE 24, a dosage-dependent mediator 

of the flowering signals. Proc. Natl. Acad. Sci. 99: 16336-16341. 

 113



 

APPENDIX A: Murashige and Skoog Nutrient Solution 
(Modified from: Murashige and Skoog, 1962) 
 
The nutrient solution was made by mixing stock solutions of specific chemicals, listed below, with 
deionized water: 
 
Solution  Ingredients (per L) 
 
A   82.50 g NH4NO3
 
B   95.00 g KNO3
 
C1   1.24 g H3BO3
 
C2   0.166 g KI 
   0.05 g NaMoO4·2H2O 
   0.005 g CoCl2·6H2O 
 
D   88.00 g CaCl2·2H2O 
 
E1   74.00 g MgSO4·7H2O 
   3.38 g MnSO4·H2O 
   1.72 g ZnSO4·7H2O 
 
E2   0.005 g CuSO4·5H2O 
 
F*   8.25 g Na2EDTA·2H2O 
   5.57 g FeSO4·7H2O 
 
*Note:  The FeSO4·7H2O was dissolved in 200 mL of water and heated to 80 ºC and the 
Na2EDTA·2H2O was then added and dissolved at this temperature and the volume brought up, with 
deionized water, to 1 L.    
 
For experiments grown in the greenhouse (i.e. as opposed to the growth chamber), 100 mL of each of 
solution C1, D, E1 and F, and 200 mL of each of A, B, C2 and E2 were put into a 20 L carboy and water 
(tap) was added to make a total volume of 20 L.  Each tray (approximately 30 plants) received 750 mL 
of nutrient solution each week, while smaller trays (approximately 20 plants) received 500 mL each 
week.  For plants grown in the growth chamber to more than 7 days, nutrient solution was given each 
week; the volumes used were calculated based on the number of plants per tray being grown. 
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APPENDIX B: Protocol for Extraction of DNA 
(Derived from DNeasy® Plant Mini Kit manual from Qiagen) 
 
1. Approximately 200 mg of plant tissue (per sample) was ground in liquid nitrogen using a 

mortar and pestle and rapidly transferred into a 1.5 mL eppenedorf tube. 
2. 400 µL of buffer AP1 and 4 µL RNase A were added to the samples. 
3. Samples were vortexed vigorously and allowed to stand 10 min. at room temperature. 
4. Samples were incubated for 15 min. at 65 ºC, mixing by vortexing, to lyse the cells, every 5 

min. 
5. 130 µL of Buffer AP2 were added to each sample; the samples were mixed by vortexing and 

incubated in an ice bath for 5 min. 
6. Samples were centrifuged for 5 min. at 8000 g. 
7. Liquid lysate was put onto QIAshredder spin columns and centrifuged at 8000 g for two min. 
8. The samples were transferred to new eppendorf tubes at 675 µL of Buffer AP3/E was added.  

Mixing of lysate and buffer was done by pipetting. 
9. 650 µL of the mixture was put into a DNeasy mini spin column and centrifuged for 1 min. at 

6000 g. 
10. The flow-through was discarded and step 9 was repeated with the rest of the sample. 
11. A new collection tube was used and 500 µL of Buffer AW was added to the DNeasy column 

and centrifuged for 1 minute at 6000 g.  Waste was discarded. 
12. 500 µL of Buffer AW was again added to the DNeasy column but this was centrifuged for 2 

min. at maximum speed to dry the membrane. 
13. The columns were transferred to new collection tubes. 
14. 100 µL of preheated 10mM Tris* was pipette onto the membrane.   
15. The columns were incubated at 65 ºC* for 5 min. before centrifugation at 6000 g for 1 min. 
16. Steps 14 and 15 were repeated and the new eluate was added to that already stored in the 

eppendorfs. 
 
Note:  The asterisks (*) indicated procedure used for DNA that was then hydrolyzed for HPLC analysis.  
For DNA used in PCR/electrophoresis procedures, Buffer AE was used in place of 10 mM Tris and the 
incubation period was carried out at room temperature, not 65 ºC, as suggested in the DNeasy® Plant 
Mini Kit manual. 
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APPENDIX C: Protocol for DNA Hydrolysis for HPLC Analysis 
 
1. DNA was extracted (see Appendix B and its footnote). 
2. Immediately following the extraction, 2 µL of 0.1M HCl were added to each sample and they 

were boiled for two minutes and placed immediately into an ice bath for five minutes.  The rest 
of the procedure was carried out on ice. 

3. 30 µL of 8.3X S1 nuclease incubation buffer (0.27 M NaAc, 0.42 M NaCl, 2.7 mM ZnSO4, pH 
4.5 at room temperature), 2 µL of 0.1M HCl and 15 µL (240U) of S1 nuclease (Roche) were 
added to each sample. 

4. Samples were incubated for 17 h at 37 ºC. 
5. 28 µL of 0.67 M Tris, 10 µL of 1.0N NaOH and 12 µL of alkaline phosphatase (Sigma) were 

added to the samples. 
6. Samples were incubated for three more h at 37 ºC. 
7. Samples were stored at 4 ºC until HPLC analysis. 
8. Immediately preceding HPLC, samples were centrifuged at 7500 g for 30 min. 
9. 125 µL (i.e. enough for two HPLC runs) of the supernatant were then transferred to glass 

inserts in septa vials to be used for sample injection into the HPLC system. 
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APPENDIX D: Recipes for HPLC Solutions 
 
1. 13.6 g potassium phosphate monobasic were put into a 2 L volumetric flask and made up with 

MilliQ water (to give 0.05 M).   
2. Water and potassium phosphate were mixed until the potassium phosphate was completely 

dissolved. 
3. For solution A:  Into a separate flask, 25 mL of 100% ethanol were made up to 1 L with the 

potassium phosphate solution.  The flask was covered and inverted to mix. 
4. For solution B:  Separately, 200 mL of 100 % ethanol were topped up in a 1 L volumetric flask, 

covered, and inverted to mix. 
5. Solutions A and B were both stored in amber bottles and pH was corrected to 4.0 by addition of 

1.0 M H3PO4. 
6. For solution C:  150 mL of 100% ethanol were put into an Erlenmeyer flask with 100 mL 

MilliQ water, covered, and inverted to mix. 
7. All three solutions were water-suction-filtered through a 0.45 µm Millipore filter. 
8. Solutions were stored at 4 ºC until needed and kept no more than two days before use (to ensure 

proper pH). 
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APPENDIX E: Protocol for Chloroplast Isolation 
(Derived from Smith et al. 2002) 
 
1. Continuous Percoll® gradients (2 per sample) were created by spinning 12.5 mL of Percoll® 

and 12.5 mL of water at 39 000 g for 30 min. with slow deceleration. 
2. Sixty flax plants per sample per line (both RC and RE2) at 21 days of age were used, and all 

green tissue (i.e. leaves, shoot tip and cotyledons) was harvested. 
3. Tissue was homogenized in approximately 200 mL of cold 1 X GB using a PowerGen700® 

homogenizer (Fisher Scientific). 
4. The homogenate was filtered through two layers of Miracloth® into pre-chilled 500 mL 

centrifuge bottles and spun for 8 min. at 1000 g at 4 ºC 
5. Supernatant was discarded and the pellet was re-suspended in 8 mL of fresh 1 X GB. 
6. The re-suspended material was divided evenly between the two-Percoll® gradients (4 mL per 

gradient).   
7. Gradients were spun in the centrifuge at 8000 g at 4 ºC for 15 min. in a swinging bucket rotor 

with slow acceleration and deceleration. 
8. Broken chloroplasts, and the entire Percoll® gradient above the intact chloroplasts, were 

aspirated off. 
9. The intact chloroplasts were collected and HS buffer was added to a volume of approximately 

50 mL. 
10. Chloroplasts were centrifuged for 6 min. at 1000 g at 4 ºC. 
11. Supernatant was discarded and the pellet was re-suspended in 300 µL of HS buffer. 
12. The chloroplasts and HS buffer were transferred into a micro centrifuge tube and the volume 

was estimated. 
13. For chlorophyll concentration calculations, 10 µL of chloroplast and 990 µL of 80 % acetone 

were combined in a microcentrifuge tube.  In a separate tube, a blank of 990 µL of 80 % 
acetone and 10 µL of HS buffer were combined. 

14. Tubes were vortexed and then centrifuged for 1 min. at 8000 g. 
15. The absorbance was measured by spectrophotometry at 652 nm (twice and averaged), and the 

concentration of chlorophyll was calculated in mg/mL ([CP] =A652*(1000/10)/36). 
16. DNA from chloroplast samples was extracted using the same protocol as total DNA. 
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APPENDIX F: Recipes for Chloroplast Isolation 
(Derived from Smith et al. 2002) 
 
2 X Grinding Buffer 
30 mL 1 M Hepes-KOH pH 7.5 
2.4 mL 0.5 M EDTA pH 8.0 
6 mL 1 M MnCl2

300 µL 2 M MgCl2

36.07 g Sorbitol 
pH to 7.5 (with 1 M KOH) 
Adjust volume to 300 mL with MilliQ water 
(Final concentrations:  100 mM Hepes, 4 mM EDTA, 20 mM MnCl2, 2 mM MgCl2, 660 mM Sorbitol) 
 
1 X Grinding Buffer 
125 mL 2 X grinding buffer 
4.95 g ascorbic acid 
0.625 g BSA (do NOT mix on a stir plate) 
Adjust volume to 250 mL with MilliQ water 
(Final concentrations:  50 mM Hepes, 2 mM EDTA, 10 mM MnCl2, 1 mM MgCl2, 330 mM Sorbitol, 
100 mM ascorbic acid, 2.5x10-3  % BSA) 
 
HS Buffer 
10 mL 1 M Hepes-KOH pH 7.5 
12.02 g Sorbitol 
pH to 7.5 (with 1 M KOH) 
Adjust volume to 200 mL with MilliQ water 
(Final concentrations:  50 mM Hepes, 330 mM Sorbitol) 
 
Note:  2 X grinding buffer and HS buffer were made beforehand and stored at 4 ºC; however, both the 1 
X grinding buffer and the Percoll® gradients were made immediately prior to the experiment. 
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APPENDIX G: Code of Degenerate Bases 
(Obtained from www.invitrogen.com) 
 
Base Code 
A, C, G V 
A, C, G, T N 
A, T, G D 
T, C, G B 
A, T, C H 
A, T W 
C, G S 
T, G K 
A, C M 
C, T Y 
A, G R 
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APPENDIX H: Primer Sets used for Gene Search 
 

Appendix Ha: LFY primers 

Primer 
Combinations Sequence Direction 

Melting 
Temperature 
(°C) 

1 AGYTTBGTWGGMACRTACC Reverse 53.00 
1 AARKCTGGDGGAAGYTACAT Forward 56.00 
1 GCYTGTCTCCAWGMNCCMAC Reverse 64.00 
2 CGCGTTGCACTGTCTGGTC Forward 64.00 
2 GGGAAGGTACATAAACAAGCC Reverse 58.00 
3 GARYTBGATGABATGATGA Forward 49.00 
4 GGDGAAAGKTATGGHATYAARGC Forward 62.00 
3,4 TTNCCHCCHGCMACYTCHCC Reverse 69.00 
3,4 CTTDGTDGGRYAYTTYTCHCC Reverse 59.00 
5 GGDGARGTKGCDCGDGCNAA Forward 70.00 
6 GGDGARGRTRYCCHACHAAG Forward 61.00 
5,6 GCYTGTCTCCAWGMNCCMAC Reverse 64.00 
7 CCTACGTTCTCCCCTCTTTCC Forward 64.83 
8 CGTTCTCCCCTCTTTCCTTG Forward 64.82 
7,8 CGTGCATTGCTACGCGT Reverse 64.87 
9 CTCCTACGTTCTCCCCTCTTTCCTTGA Forward 68.52 
9 AGGCACTACGTGCATTGCTACGCG Reverse 71.95 
10 CTCCTACGTTCTCCCCTCTTTCCTTGA Forward 68.52 
10 AGGCACTACGTGCATTGCTACGCG Reverse 71.09 
 
Note:  Numbers correspond to the combinations in which the primers were tried.  For example, the 
reverse primer notated “3,4” was used with both of the forward primers, numbers 3, and 4.  
Alternatively, forward primer 9 was only tried with reverse primer 9.  These primers were found by:  a) 
design from the published sequences for the gene in question, and b) from the OligoPerfect function 
from Invitrogen.  All primers were ordered from Invitrogen, Canada (Hamilton, ON) and follow the 
degenerate code of Invitrogen (see Appendix G). 
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Appendix Hb: TFL1 primers 

Primer 
Combinations Sequence Direction 

Melting 
Temperature 
(°C) 

1 AATGGCCATGAGCTCTTTCCTTC Forward 68.28 
1 AACGYCTKCKRGCGGCRGTTTC Reverse 71.00 
2 GGATTTGATCAAGTATGAATGATGAA Forward 60.00 
2 TGGCTCCCGATATGTCATT Reverse 59.00 
3 GAGTSRTWGGWGAWGT Forward 47.00 
4 CAAGTYTNCAAYGGACA Forward 49.00 
5 AGATCMTTCTTYACWYTGGT Forward 52.00 
3,4,5 ACCARWGTRAAGAAKGATCT Reverse 52.00 
3,4,5 GGAYATYWGYRAHRAT Reverse 43.00 
6,7 AATGGCCATGAGCTCTTTCCTTC Forward 64.96 
6 TGKATCCCTATGYTYGGCCTTGG Reverse 67.87 
7 CTYCTGGCAGCRGTYTCKCKCTG Reverse 69.64 
8 AARCADGTDWVDAAYGGDCAYGA Forward 63.91 
9 ATGAYDGAYCCDGAYGTDCC Forward 61.06 
8 TTRAARAADACDGCDGCDAC Reverse 58.89 
9 AADACRWADCKRTGDATDCC Reverse 55.87 
10 GGTGGTGATCTCAGGTCCTT Forward 58.96 
10 CGGCATCTCATAGCTCAACC Reverse 60.77 

   
Note:  Numbers correspond to the combinations in which the primers were tried.  For example, the 
reverse primers notated “3,4,5” were used with all three of the forward primers, numbers 3, 4, and 5.  
Alternatively, forward primer 1 was only tried with reverse primer 1.  These primers were found by:  a) 
design from the published sequences for the gene in question, b) from the OligoPerfect function from 
Invitrogen, and c) from published papers (set 1 was from Esumi, Tao, and Yonermori 2005, sets 6 and 7 
were from Amaya, Ratcliffe, and Bradley 1999, and sets 8 and 9 were from Boss, Sreekantan, and 
Thomas 2006).  All primers were ordered from Invitrogen, Canada (Hamilton, ON) and follow the 
degenerate code of Invitrogen (see Appendix G). 
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APPENDIX I: Band Extraction Procedure 
(Derived from the QIAquick® Spin Handbook from Qiagen) 
 
1. The DNA band of interest was excised from the gel with a clean, sharp razor blade. 
2. Gel slices were weighed in a 1.5 mL eppendorf tube and 3 times the volume of the gel weight 

of buffer QG was added (where 100 µL buffer = 100 mg gel). 
3. The gel and buffer were incubated at 50 ºC until the gel had dissolved, while samples were 

vortexed every three min. 
4. Isopropanol was added to gel in the same volume of the gel (i.e. 100 µL isopropanol = 100 mg 

gel). 
5. The solution was pipetted into a QIAquick spin column and centrifuged at 15 690 g for 1 min. 

to bind DNA to the filter. 
6. Liquid waste was discarded from the collection tube. 
7. 0.5 mL Buffer QG was added to the column and centrifuged at 15 690 g for 1 min. to remove 

all agarose traces.  Flow-through was discarded. 
8. DNA was washed by addition of 0.75 µL of Buffer PE (with ethanol) to column, followed by 

centrifugation at 15 690 g.  The liquid waste and collection tube were discarded. 
9. The QIAquick column was put into a new collection tube. 
10. 30 µL molecular grade water was added to centre of the QIAquick filter and allowed to stand 

for 1 min. 
11. The column was centrifuged for 1 min. at 15 690 g. 
12. Samples were stored in 1.5 mL eppendorf tubes at –20 ºC. 
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APPENDIX J: Bacterial Cloning Procedure and Plasmid Mini Prep 
 
Appendix Ja: Bacterial Cloning Procedure 
(Derived from the Invitrogen TOPO TA Cloning Kit Procedure) 
 

1. 4 µL fresh PCR product, 1 µL salt solution and 1 µL TOPO® vector were combined into a 
1.5 mL eppendorf, mixed and incubated for 30 min. at room temperature. 

2. 2 µL of mixture from step 1 was added to a vial of OneShot® Chemically Competent 
TOP10 E. coli and gently mixed. 

3. The tube was incubated on ice for 30 min. 
4. Cells were heat-shocked for 20 s. at 42 °C to stop the reaction and they were immediately 

transferred to ice. 
5. 250 µL of room temperature S.O.C. medium was added. 
6. Samples were placed on a horizontal shaker at 200 rpm at 37 °C for 1 h. 
7. 25 µL, 100 µL and 150 µL (or remaining) cells were spread onto 50 µg/mL kanamycin 

plates and incubated overnight at 37 °C. 
8. Six colonies were cultured overnight in 3 mL of LB containing 50 µg/mL kanamycin. 

 

Appendix Jb: Plasmid Mini Prep 
(Derived from the Invitrogen PureLink Quick Plasmid MiniPrep Kit Procedure) 
 

1. Samples of overnight culture from Appendix Ja were centrifuged (all 3 mL) and all 
medium was removed from the cell pellet. 

2. Pellets were resuspended in 250 µL of solution R3 with RNase A. 
3. 250 µL solution L7 were added and mixed by inverting the tube. 
4. Samples were incubated at room temperature for 5 min. 
5. 350 µL of buffer N4 were added and solutions were mixed by inversion until 

homogeneous. 
6. Samples were centrifuge at 12 000 x g for 10 min. at room temperature and supernatant 

was loaded into a spin column. 
7. Columns were centrifuge at 12 000 g for 1 min. and flow through was discarded. 
8. 500 µL W10 (ethanol added) was added and samples were incubated for 1 min. at room 

temperature. 
9. Samples were centrifuged at 12 000 g for 1 min. and flow through was discarded.   
10. 700 µL W9 buffer (with ethanol) were added and tubes were centrifuged at 12 000 g for 1 

min.   
11. Flow through was discarded and samples were centrifuged for an additional minute at      

12 000 g. 
12. Spin columns were placed into a clean 1.5 mL Recovery Tube and 75 µL of preheated (65-

70 °C) TE buffer was added. 
13. Samples were incubated at room temperature for 1 min. and centrifuged at 12 000 g for 2 

min.   
14. The purified DNA was stored at -80 °C for future use. 
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APPENDIX K: Procedure for Extraction of RNA 
(Derived from the RNeasy® Mini Handbook from Qiagen) 
 
1. Approximately 100 mg of flax plant material were ground in liquid nitrogen using a mortar and 

pestle and placed quickly into a pre-chilled 1.5 mL eppendorf tube to avoid thawing of the plant 
material. 

2. 450 µL of the Buffer RLT/B-meracaptoethanol (10:1) solution were added. 
3. Sample material was pipet into the QIAshredder spin column in a collection tube and 

centrifuged for 2 min. at 8000 g. 
4. The supernatant was put into a new eppendorf tube and 225 µL 100 % ethanol were added and 

mixed by pipetting. 
5. The sample was moved into an RNeasy mini column in a collection tube and centrifuged for 15 

s. at 8000 g. 
6. Flow-through was discarded. 
7. 700 µL of Buffer RW1 was put onto the RNeasy column, centrifuged for 15 s. at 8000 g, and 

then discarded. 
8. The RNeasy column was put into a new collection tube and 500 µL of Buffer RPE was pipette 

onto it. 
9. The column was centrifuged for 15 s. at 8000 g to wash the column and the flow-through was 

discarded. 
10. 500 µL of Buffer RPE were again put onto the column and centrifuged at 8000 g, but for two 

minutes. 
11. The column was once again transferred to a new collection tube and centrifuged for 1 min. at 

8000 g to thoroughly remove all remaining Buffer RPE and completely dry the membrane. 
12. The column was moved to a new collection tube and 30-50 µL of molecular grade water were 

pipette onto the membrane. 
13. The material was centrifuged for 1 min. at 8000 g and the flow-through was transferred to a 1.5 

mL eppendorf tube for storage at –80 ºC until use. 
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APPENDIX L: RT-PCR Procedure 
(Derived from the Omniscript® Reverse Transcriptase Handbook from Qiagen) 
 

1. All required solutions (i.e. oligo-dT, 10 X buffer, RT, dNTP mix, and water) were thawed 
at room temperature, briefly vortexed and stored on ice.  RNA was thawed on ice. 

2. RNase inhibitor (Promega) was diluted to a concentration of 10 units/uL using 1 X Buffer 
(diluted from the 10 X buffer supplied) and mixed by briefly vortexing. 

3. Combined into a 1.5 mL eppendorf tube was 2 µL 10 X buffer, 2 µL dNTP mix, 2 µL oligo-
dT (Invitrogen), 1 µL (RNase inhibitor), and 1 µL Omniscript Reverse Transcriptase.  Also 
added were 2 ng RNA (volume determined by spectrophotometer reading).  The volume 
was topped to 20 µL with DNA/RNA-free water. 

4. The tube was briefly centrifuged to collect residual liquids. 
5. The tube was incubated at 37 °C for 1 h. 
6. cDNA was stored at -80 °C until further required. 
7. Samples were run using HotStartTaq® provided by Qiagen.

 126



 

APPENDIX M: Determining the Optimal Number of PCR cycles for LFY and Actin 
 
These graphs represent three PCR runs using different tissue (leaf or shoot tip) at different ages (7, 56, 
and one age between) to find the optimal cycle number for each gene.  Graph a) is the result of the actin 
linear range (optimal cycle no.: 25), and b) is the result of the LFY linear range (optimal cycle no.: 31). 
 

Linear Range of Actin with cDNA

0

10

20

30

40

50

22 24 26 28 30 32 34 36 38 40

Number of cycles

V
ol

um
e 

(in
te

ns
ity

 x
 m

m
2 )

Linear Range of LFY  w ith cDNA

0

20

40

60

80

100

20 22 24 26 28 30 32 34 36 38 40

Number of cycles

V
ol

um
e 

(in
te

ns
ity

 x
 m

m
2 )

a b

 
 

 127


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	The Flax Lines
	Induction of the Early-Flowering Flax Lines
	Morphological and Developmental Characteristics of the Flax 
	Genetic Control of Early-Flowering in Flax

	Cytosine Methylation (mC)
	Global DNA and Histone Methylation
	Organellar DNA Methylation

	Phase Change: the Transition Between Growth Stages
	How Phase Change Occurs
	Flowering Pathway Studies in Model Plant Species

	Genes Involved in Flowering
	LEAFY
	TERMINAL FLOWER 1
	Other Important Flowering Genes

	Study Objectives

	DEVELOPMENTAL PROFILE OF METHYLATION LEVELS:  THE HPLC STUDY
	Materials and Methods
	DNA Methylation Levels from 24 days to the Onset of Flowerin
	Shoot Tip Experiment
	Flower Bud Experiment
	HPLC Analysis

	Results
	Comparisons of DNA Methylation Levels
	Comparisons of Other DNA and Tissue Characteristics
	Cytosine Methylation Differences in Divided Shoot Tips
	Cytosine Methylation Levels in Flower Buds

	Conclusions

	CHLOROPLAST DNA METHYLATION STUDY
	Materials and Methods
	Comparison of Chloroplast and Total DNA
	Starch Levels in 21 day old Leaves
	Contamination of Chloroplast DNA by Nuclear and Mitochondria
	Subsequent Cytosine Methylation and Plant Weight Studies

	Results
	Comparisons of Cytosine Methylation and DNA Recovery in Tota
	Levels of Starch in Leaves
	Chloroplast DNA Contamination by Nuclear and Mitochondrial D
	Levels of Cytosine Methylation in Leaves
	Levels of Cytosine Methylation in Green Tissue of Plants Gro
	Plant Weight Analysis:  Fresh and Dry Weights

	Conclusions

	ANALYSIS OF GENE EXPRESSION
	Materials and Methods
	Preliminary Work:  Degenerate Primer Design
	Designing Specific Primers
	Semi-Quantitative Analyses of Transcript Levels

	Results
	LFY and Actin Transcript Levels in Shoot Tips
	LFY and Actin Transcript Levels in Leaves
	Searching for TFL1:  Genomic versus cDNA

	Conclusions

	DISCUSSION
	Amounts of DNA Recovered Relate to Tissue Differentiation an
	Cytosine Methylation Levels Increase with Plant Age
	Cytosine Methylation Detected in the Chloroplast DNA of Flax
	Circadian Rhythm and its Effects on Gene Expression and Flow
	Differences in LFY Transcript Levels:  RC vs. RE2
	Lack of TFL1 Transcript Accumulation in Flax
	Differences in Actin Transcript Levels: RC vs. RE2
	Searching the Flax Genome:  Genomic vs. cDNA
	Methylation Levels and Transcript Levels:  Cause and Effect
	Future Research

	REFERENCES
	APPENDIX A: Murashige and Skoog Nutrient Solution
	APPENDIX B: Protocol for Extraction of DNA
	APPENDIX C: Protocol for DNA Hydrolysis for HPLC Analysis
	APPENDIX D: Recipes for HPLC Solutions
	APPENDIX E: Protocol for Chloroplast Isolation
	APPENDIX F: Recipes for Chloroplast Isolation
	APPENDIX G: Code of Degenerate Bases
	APPENDIX H: Primer Sets used for Gene Search
	APPENDIX I: Band Extraction Procedure
	APPENDIX K: Procedure for Extraction of RNA
	APPENDIX L: RT-PCR Procedure
	APPENDIX M: Determining the Optimal Number of PCR cycles for

