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Abstract 

 
An experimental and modeling investigation of nitroxide-mediated radical polymerization 

(NMRP) of styrene using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as controller is 

presented. The objective was to examine the effect of temperature, controller to initiator molar 

ratio, and initiation mode on conversion, molecular weight and polydispersity development, 

and also to generate a source of reliable experimental data for parameter estimation and further 

model validation purposes. 

 
Polymerizations with a bimolecular initiator (Benzoyl Peroxide; BPO) were carried out at 120 

and 130°C, with TEMPO/BPO molar ratios of 0.9 to 1.5. The effects of temperature and 

TEMPO/BPO ratio on polydispersity, molecular weight averages and conversion (rate) were 

studied. Results indicate that increasing temperature increases the rate of polymerization while 

the decrease in molecular weights is only slight. It was also observed that increasing the ratio 

of TEMPO/BPO decreased both the rate of polymerization and molecular weights.  

 
To investigate the contribution of thermal self-initiation in NMRP of styrene, thermal NMRP 

of styrene with TEMPO in the absence of initiator was carried out at 120 and 130°C. The 

results were compared with regular thermal polymerization of styrene and NMRP of styrene in 

the presence of BPO. It was observed that although the thermal polymerization of styrene can 

be controlled to some extent in the presence of TEMPO to provide lower polydispersity 

polystyrene, the polymerization was never as controlled as that obtained by a BPO initiated 

NMRP. Additional experiments were conducted with a unimolecular initiator and compared to 

the corresponding bimolecular system with the same level of nitroxide at 120°C, to gain 

additional insight on the advantages and disadvantages of each system.  

 
In addition, the importance of diffusion-controlled (DC) effects on the bimolecular NMRP of 

styrene was assessed experimentally by creating conditions where DC effects may be present 

from the outset. The results were corroborated by mathematical modeling and it was concluded 

that DC-effects are weak in the NMRP of styrene, even in the presence of “worst case 

scenario” conditions created. 
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Finally, a mathematical (mechanistic) model based on a detailed reaction mechanism for 

bimolecular NMRP of styrene was presented and the predicted profiles of monomer 

conversion, molecular weight averages and polydispersity were compared with experimental 

data. Comparisons suggest that the present understanding of the reaction system is still 

inconclusive, either because of inaccuracy in values of kinetic rate constants used or because of 

some possible side reactions taking place in the polymerization system that are not included in 

the model. This was somewhat surprising, given that papers on controlled radical 

polymerization, and NMRP in particular, have clearly dominated the scientific polymer 

literature in the last fifteen years or so. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

Acknowledgements 

 
Keep “Ithaka” always in mind 

Arriving there is what you’re destined for 

But don’t hurry the journey at all 

Better if it lasts for years, 

So you’re old by the time you reach the island, 

Wealthy with all you’ve gained on the way...                                                               
                    
From “Ithaka” by Constantine P. Cavafy 

 

I entered the University of Waterloo to get a degree, but what I gained is not only a degree but 

experience, knowledge, friendship and hopefully wisdom. A lot of people helped me and 

supported me to reach my goal; I would like to acknowledge their contributions and offer my 

gratitude. 

 
First, a special thanks to my supervisor, Professor Alexander Penlidis, for his invaluable 

guidance and support in both my academic and personal life. I believe I have been extremely 

lucky to have him as my mentor. I consider him not only as a supervisor but also as a father 

figure who guided me and helped me to adapt myself to the new environment and the culture 

of Canada. Many thanks also goes to Professor Neil McManus for his help and support and 

also for sharing his vast laboratory experience with me. I have learned a lot from our many 

discussions.  I would also like to express my appreciation to Professor Eduardo Vivaldo-Lima 

of UNAM, Mexico, for his generosity of patience in answering my many questions.  

 
My sincere gratitude goes out to my old lab mates, Dr. Matthew Scorah and Ramin Khesareh 

for their patience with me and for training me in the lab; and Joy Cheng for her constant 

encouragement. Many thanks to my friends, Nafiseh Dadgostar, Paula Kruger, Alejandro 

Salinger, Milen Pavlov, Julia Kraus and in particular Dr. Jeremy Barbay, who supported me 

along the way with good humor and love. 

 
I am extremely grateful for the support of my family. I would like to thank my brothers for 

their financial and moral support. Special thanks to my dear sister, Azadeh Nabifar, and her 



 vi

husband, Hossien Shahkarami, without whose generosity and determination I wouldn’t be able 

to come to Canada. Finally, and most importantly, I would like to thank the dearest person in 

my life, my mom, for dedicating her life to us and being both a mother and a father to our 

family. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii

TABLE OF CONTENTS 
 
 
Abstract....................................................................................................................................... iii 
Acknowledgements.......................................................................................................................v 
List of Figures..............................................................................................................................ix 
List of Tables .............................................................................................................................xiv 
 
CHAPTER 1 – INTRODUCTION...............................................................................................1 
 
CHAPTER 2 – LITERATURE BACKGROUND .......................................................................4 

2.1  Controlled Radical Polymerization (CRP) ........................................................................4 
2.1.1 Basic Requirements .....................................................................................................5 
2.1.2 Typical Features...........................................................................................................7 
2.1.3 Comparison with Regular Free Radical Polymerization (FRP).................................10 
2.1.4 Approaches towards Controlled Radical Polymerization..........................................15 
2.1.5 Overview of Materials Made by CRP Methods.........................................................18 
2.1.6 Material Applications ................................................................................................19 

2.2  Nitroxide-Mediated Radical Polymerization (NMRP) ....................................................20 
2.2.1 Background and Historical Perspective.....................................................................20 
2.2.2 Types of Initiators in Nitroxide-Mediated Radical Polymerization ..........................24 

2.2.2.1 Bimolecular Initiator...........................................................................................24 
2.2.2.2 Unimolecular Initiator.........................................................................................24 

2.2.3 Kinetics Features........................................................................................................25 
2.2.3.1 Persistent Radical Effect (PRE)..........................................................................26 
2.2.3.2 Descriptive Equations .........................................................................................27 

2.2.4 Applications and Future Perspective .........................................................................30 
2.2.4.1 Development of New Nitroxides ........................................................................30 
2.2.4.2 Manufacturing Issues..........................................................................................32 

2.3 References.........................................................................................................................34 
 
CHAPTER 3 – EXPERIMENTAL METHODS ........................................................................41 

3.1  Reagent Purification ........................................................................................................41 
3.2  Polymer Synthesis............................................................................................................41 
3.3  Polymer Characterization ................................................................................................41 

3.3.1 Gravimetry .................................................................................................................41 
3.3.2 Size Exclusion Chromatography ...............................................................................42 

3.4  References........................................................................................................................43 
 
CHAPTER 4 – RESULTS AND DISCUSSION........................................................................44 

4.1  Design and Summary of Experiments .............................................................................44 
4.2  Typical Styrene Reaction Profiles in NMRP...................................................................46 
4.3  Bimolecular NMRP .........................................................................................................49 

4.3.1 Effect of [TEMPO]/[BPO] Ratio ...............................................................................51 
4.3.2 Effect of Temperature ................................................................................................69 

 



 viii

4.4  Contribution of Thermal Self-Initiation of Styrene .........................................................76 
4.4.1 Polymerization of Styrene .........................................................................................77 
4.4.2 Polymerization of Styrene with TEMPO...................................................................80 

4.5  Unimolecular NMRP .......................................................................................................93 
4.5.1 Comparison with Bimolecular Mode.........................................................................95 
4.5.2 Comparison with Thermal Self-initiation of Styrene ................................................99 

4.6  Other Aspects.................................................................................................................100 
4.6.1 Side Reactions..........................................................................................................100 
4.6.2 Significance of Gel Effect........................................................................................102 

4.7  References......................................................................................................................106 
 
CHAPTER 5 – MATHEMATICAL MODELING ..................................................................110 

5.1  Reaction Scheme and General Considerations ..............................................................111 
5.2  Overall Mass (Molar) Balances and Moment Equations...............................................114 
5.3  Comparison of Simulated Profiles and Experimental Data ...........................................117 
5.4 References.......................................................................................................................127 

 
CHAPTER 6 – CONCLUSIONS AND RECOMMENDATIONS..........................................129 

6.1  Concluding Remarks .....................................................................................................129 
6.2  Recommendations for Future Work ..............................................................................133 
6.3 References.......................................................................................................................135 

 
APPENDIX A – TABLES OF RAW DATA ...........................................................................137 
 
APPENDIX B – COMPLEMENTARY FIGURES .................................................................150 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

LIST OF FIGURES 

 
Figure 2.1 Areas contributing to development of CRP ............................................................... 5 
Figure 2.2 A general CRP equilibrium between dormant and active species.............................. 6 
Figure 2.3 First order kinetic plot for controlled radical polymerization .................................... 8 
Figure 2.4 Molecular weight outcomes from an ideal controlled radical polymerization (LRP) 8 
Figure 2.5 Size exclusion chromatographs of polystyrene samples. Curve A: polystyrene made 
by regular radical polymerization (PDI = 2), Curve B: a SEC 'standard' polystyrene made by 
anionic polymerization (PDI = 1.1), Curve C: polystyrene made by NMRP (PDI = 1.1) .......... 9 
Figure 2.6 General polymer chain structure from controlled radical polymerizations [4].......... 10 
Figure 2.7 General structures for chain transfer agents used in RAFT polymerizations. Y = 
activating/stabilizing group of thiocarbonyl, R = radical leaving group ................................... 18 
Figure 2.8 Examples of the variety of polymer structures made by CRP techniques [4] ........... 18 
Figure 2.9 Reversible activation, deactivation reaction in NMRP ............................................ 20 
Figure 2.10 Georges' approach to NMRP using bimolecular initiation..................................... 22 
Figure 2.11 Unimolecular initiation approach in NMRP .......................................................... 25 
Figure 2.12  Concentration of active radicals (R), stable radicals (X), dormant species (R-X), 
polymer chains (P) and monomer (M) vs. time for a controlled radical polymerization initiated 
by homolysis of an initiator (R-X)[44] ........................................................................................ 27 
Figure 2.13 Structure of TEMPO-based nitroxides in NMRP................................................... 31 
Figure 2.14 Structures of DTBN and DEPN ............................................................................. 31 
Figure 2.15 Structure of piperidinyl-N-oxyl radical (1) and corresponding alkoxyamines (2, 3)
................................................................................................................................................... 32 
Figure 4.1 Monomer conversion vs. time for NMRP of styrene at 120°C and R = 
[TEMPO]/[BPO] = 1.1 (Run #2 ) .............................................................................................. 47 
Figure 4.2 First order rate plot for NMRP of styrene at 120°C and R= [TEMPO]/[BPO] = 1.1
................................................................................................................................................... 47 
Figure 4.3 Average molecular weights and polydispersity vs. conversion for NMRP of styrene 
at 120°C and R= [TEMPO]/[BPO] = 1.1................................................................................... 48 
Figure 4.4 Bimolecular NMRP of styrene in the presence of TEMPO and BPO...................... 50 
Figure 4.6 Simulated concentrations of: living radicals (a), dead polymer (b), and dormant 
radicals (c) vs. conversion for [TEMPO]/[BPO] = 0.9 and 1.1 at T = 120°C ........................... 52 
Figure 4.7 Effect of [TEMPO]/[BPO] ratio (R), on weight average molecular weights in 
NMRP of styrene at 120°C ........................................................................................................ 54 
Figure 4.8 Effect of [TEMPO]/[BPO] ratio on number average molecular weights in NMRP of 
styrene at 120°C......................................................................................................................... 54 
Figure 4.9 Effect of [TEMPO]/[BPO] ratio on polydispersity in NMRP of styrene at 120°C.. 55 
Figure 4.10 Effect of [TEMPO]/[BPO] ratio (R), on rate of polymerization in NMRP of styrene 
at 120°C ..................................................................................................................................... 56 



 x

Figure 4.11 Simulated concentrations of: free TEMPO (a), living radicals (b), and dormant 
radicals (c) vs. conversion for [TEMPO]/[BPO] = 1.1 and 1.5 at T = 120°C ........................... 57 
Figure 4.12 Effect of [TEMPO]/[BPO] ratio on number average molecular weights in NMRP 
of styrene at 120°C .................................................................................................................... 58 
Figure 4.13 Effect of [TEMPO]/[BPO] ratio on weight average molecular weights in NMRP of 
styrene at 120°C......................................................................................................................... 59 
Figure 4.14 Effect of [TEMPO]/[BPO] ratio on polydispersity in NMRP of styrene at 120°C 59 
Figure 4.15 Effect of [TEMPO]/ [BPO] ratio on polymerization rate at 120°C ....................... 60 
Figure 4.16 Effect of [TEMPO]/ [BPO] ratio on number average molecular weight at 120° C61 
Figure 4.17 Effect of [TEMPO]/ [BPO] ratio on weight average molecular weight at 120° C 61 
Figure 4.18 Effect of [TEMPO]/ [BPO] ratio on polydispersity, PDI, at 120° C ..................... 62 
Figure 4.19 Effect of [TEMPO]/ [BPO] ratio on polymerization rate at 130°C ....................... 63 
Figure 4.20 Effect of [TEMPO]/ [BPO] ratio on number average molecular weight at 130° C64 
Figure 4.21 Effect of [TEMPO]/ [BPO] ratio on weight average molecular weight at 130° C 64 
Figure 4.22 Effect of [TEMPO]/ [BPO] ratio on polydispersity, PDI, at 130° C ..................... 65 
Figure 4.23 Semilog plot of conversion with polymerization time (a), Polydispersity plotted as 
a function of conversion (b), Polymer molecular weights (Mn and Mw) versus conversion (c, 
d) for bulk polymerization of styrene with [TEMPO]/[BPO] = 1.1 and 1.3,  T= 125°C [6, 8].... 66 
Figure 4.24 Polydispersity as a function of the [TEMPO]/[BPO] ratio for NMRP of styrene: a) 
after 5 hrs at 135°C [2], b) at 50% conversion at 120°C, c) at 50% conversion at 130°C.......... 67 
Figure 4.25 Effect of temperature on rate of polymerization at a) [TEMPO]/ [BPO] = 0.9 b) 
[TEMPO]/ [BPO] = 1.1 ............................................................................................................. 69 
Figure 4.26 Effect of temperature on rate of polymerization at [TEMPO]/ [BPO] = 1.1 [8] ..... 70 
Figure 4.27 Effect of temperature on a) number average molecular weight and b) weight 
average molecular weight at [TEMPO]/ [BPO] = 0.9 ............................................................... 70 
Figure 4.28 Effect of temperature on a) number average molecular weight and b) weight 
average molecular weight at [TEMPO]/ [BPO] = 1.1 ............................................................... 71 
Figure 4.29 Effect of temperature on RLPAC at [TEMPO]/ [BPO] = 0.9 ................................ 72 
Figure 4.30 Effect of temperature on RLPAC at [TEMPO]/ [BPO] = 1.1 ................................ 72 
Figure 4.31 Effect of temperature on polydispersity at a) [TEMPO]/ [BPO] = 0.9 and b) 
[TEMPO]/ [BPO] = 1.1 ............................................................................................................. 73 
Figure 4.32 Effect of temperature on polydispersity at [TEMPO]/ [BPO] = 1.1 [6] .................. 74 
Figure 4.33 Thermal self-initiation of styrene ........................................................................... 77 
Figure 4.34 Monomer conversion vs. time for thermal self-initiation of styrene at T = 120 and 
130°C ......................................................................................................................................... 78 
Figure 4.35 Average molecular weights and polydispersity vs. conversion for thermal self-
initiation of styrene at a) T = 130°C, b) T = 120°C................................................................... 79 
Figure 4.36 Main kinetic scheme for thermal polymerization of styrene with TEMPO[30]....... 83 
Figure 4.37 Monomer conversion vs. time for: a) thermal polymerization of styrene in the 
presence of TEMPO with [TEMPO]0 = 0.0396 M b) thermal styrene, at 130°C...................... 84 



 xi

Figure 4.38 Average molecular weights and polydispersity vs. conversion for thermal 
polymerization of styrene in the presence of TEMPO at 130°C and [TEMPO]0 = 0.0396 M .. 86 
Figure 4.39 Comparison of SEC Chromatograms for a) Styrene thermal polymerization b) 
Styrene thermal polymerization in the presence of TEMPO, at 50% conversion and 130°C ... 87 
Figure 4.40 Degenerative transfer process for bulk polymerization of styrene in presence of 
TEMPO [27] ................................................................................................................................ 88 
Figure 4.41 Comparison between thermal NMRP and NMRP with [TEMPO]/[BPO] = 1.1 at 
130°C and [TEMPO]0 = 0.0396 M............................................................................................ 89 
Figure 4.42 Comparison of SEC Chromatograms for a) thermal NMRP b) NMRP with BPO, at 
50% conversion and 130°C ....................................................................................................... 90 
Figure 4.43 Effect of temperature on nitroxide-mediated thermal polymerization of styrene, 
[TEMPO]0 = 0.0396 M .............................................................................................................. 91 
Figure 4.44 SEC Chromatographs for the polymerization of styrene at 120 °C in the presence 
of PS-TEMPO adduct: a) the precursor adduct; b) the product after 3hrs c) 8hrs d) 60hrs ...... 94 
Figure 4.45 Comparison of conversion vs. time plots for the polymerization of styrene at 120 
°C using the unimolecular initiator (▲) and a bimolecular system [TEMPO]/[BPO] = 1.1 (○)
................................................................................................................................................... 95 
Figure 4.46 Comparison of the number average molecular weights (a) and weight average 
molecular weights (b) for unimolecular and bimolecular initiators .......................................... 97 
Figure 4.47 Comparison of polydispersity vs. conversion for bimolecular and unimolecular 
initiating systems ....................................................................................................................... 97 
Figure 4.48 First order kinetic plots for unimolecular NMRP (■), bimolecular NMRP (○) and 
thermal self-self initiation of styrene (Δ)................................................................................... 99 
Figure 4.49 Decomposition of dormant species (alkoxyamine) in NMRP of styrene [39] ....... 100 
Figure 4.50 Promoted dissociation of benzoyl peroxide by TEMPO in the presence of styrene 
[35] ............................................................................................................................................. 101 
Figure 4.51 Effect of addition of prepolymer (5%) on rate of polymerization and number 
average molecular weights in NMRP of styrene at 130 °C, TEMPO/BPO = 1.1 and [BPO]0 = 
0.036 M.................................................................................................................................... 105 
Figure 4.52 Comparison of experimental data and model predictions of conversion versus time 
for NMRP of styrene at 120 °C, TEMPO/BPO = 1.1 and [BPO]0 = 0.0192 M, 45% prepolymer 
with Mn = 17,400 ..................................................................................................................... 105 
Figure 5.1 Comparison of experimental data and model predictions of conversion vs. time, at 
120 °C and [TEMPO]/[BPO] = 1.1 ......................................................................................... 118 
Figure 5.2 Comparison of experimental data and model predictions of number average 
molecular weight vs. conversion, at 120 °C and [TEMPO]/[BPO] = 1.1 ............................... 119 
Figure 5.3 Comparison of experimental data and model predictions of polydispersity vs. 
conversion, at 120 °C and [TEMPO]/[BPO] = 1.1.................................................................. 119 
Figure 5.4 a)  Simulated concentration of nitroxyl radicals vs. conversion, b) Simulated 
concentrations of dead, dormant and living radicals vs. conversion, for NMRP of styrene at 
120 and [TEMPO]/[BPO] =1.1................................................................................................ 121 



 xii

Figure 5.5 Effect of [TEMPO]/[BPO] ratio on polymerization rate at 120 °C; comparison of 
experimental data and model predictions ................................................................................ 122 
Figure 5.6 Effect of [TEMPO]/[BPO] ratio on number average molecular weight at 120 °C; 
comparison of experimental data and model predictions ........................................................ 122 
Figure 5.7 Effect of [TEMPO]/[BPO] ratio on polydispersity at 120 °C; comparison of 
experimental data and model predictions ................................................................................ 124 
Figure 5.8 Effect of [TEMPO]/[BPO] on simulated profiles of a) Nitroxyl radical, b) Living 
species, c) Dormant Species, and d) Dead species for NMRP of styrene at 120°C ................ 126 
Figure 6.1 %conversion, molecular weights and polydisprsity versus TEMPO/BPO ratio after 
10 hrs; T = 120°C .................................................................................................................... 131 
Figure 6.2 Molecular weights, polydispersity and time versus TEMPO/BPO ratio at 50% 
conversion; T = 120°C............................................................................................................. 132 
Figure B.1 Effect of decreasing TEMPO/BPO ratio on first order plot in NMRP of styrene at 
120°C ....................................................................................................................................... 150 
Figure B.2 Monomer conversion vs. time for NMRP of styrene at 120°C and [TEMPO]/[BPO] 
= 0.9 (Run #1).......................................................................................................................... 150 
Figure B.3 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 0.9 . 151 
Figure B.4 Average molecular weights and polydispersity vs. conversion for NMRP of styrene 
at 120°C and [TEMPO]/[BPO] = 0.9 ...................................................................................... 151 
Figure B.5 Effect of increasing TEMPO/BPO ratio on first order plot in NMRP of styrene at 
120°C. ...................................................................................................................................... 152 
Figure B.6 Monomer conversion vs. time for NMRP of styrene at 120°C and [TEMPO]/[BPO] 
= 1.5 (Run #4).......................................................................................................................... 152 
Figure B.7 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.5 . 153 
Figure B.8 Average molecular weights and polydispersity vs. conversion for NMRP of styrene 
at 120°C and [TEMPO]/[BPO] = 1.5 ...................................................................................... 153 
Figure B.9 Effect of [TEMPO]/[BPO] ratio on first order plot in NMRP of styrene at 120°C
................................................................................................................................................. 154 
Figure B.10 Monomer conversion vs. time for NMRP of styrene at 120°C and 
[TEMPO]/[BPO] = 1.2 (Run #3) ............................................................................................. 154 
Figure B.11 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.2 155 
Figure B.12 Average molecular weights and polydispersity vs. conversion for NMRP of 
styrene at 120°C and [TEMPO]/[BPO] = 1.2.......................................................................... 155 
Figure B.13 Monomer conversion vs. time for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 0.9 (Run #8) ............................................................................................. 156 
Figure B.14 Average molecular weights and polydispersity vs. conversion for NMRP of 
styrene at 130°C and [TEMPO]/[BPO] = 0.9.......................................................................... 156 
Figure B.15 Monomer conversion vs. time for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 1.1 (Run #9) ............................................................................................. 157 
Figure B.16 Average molecular weights and polydispersity vs. conversion for NMRP of 
styrene at 130°C and [TEMPO]/[BPO] = 1.1.......................................................................... 157 



 xiii

Figure B.17 Monomer conversion vs. time for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 1.3 (Run #10) ........................................................................................... 158 
Figure B.18 Average molecular weights vs. conversion for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 1.3 ............................................................................................................ 158 
Figure B.19 Polydispersity vs. conversion for NMRP of styrene at 130°C and [TEMPO]/[BPO] 
= 1.3 ......................................................................................................................................... 159 
Figure B.20 Polydispersity as a function of the TEMPO/BPO ratio for NMRP of styrene a) 
after 10 hrs, .............................................................................................................................. 159 
b) after 20hrs at 120°C............................................................................................................. 159 
Figure B.21 Polydispersity as a function of the TEMPO/BPO ratio for NMRP of styrene a) 
after 8 hrs, ................................................................................................................................ 160 
b) after 30hrs at 130°C............................................................................................................. 160 
Figure B.22 Monomer conversion vs. time for thermal polymerization of styrene in the 
presence of TEMPO at 120°C and [TEMPO]0 = 0.0396 M (compared to experimental work 
from Saldivar-Guerra et al. [30]) ............................................................................................. 160 
Figure B.23 Average molecular weights and polydispersity vs. conversion for thermal 
polymerization of styrene in the presence of TEMPO at 120°C and [TEMPO]0 = 0.0396 M 161 
Figure B.24 Monomer conversion vs. time for: a) thermal polymerization of styrene in the 
presence of TEMPO with [TEMPO]0 = 0.0396 M b) thermal styrene, at 120°C.................... 161 
Figure B.25 Comparison of SEC Chromatograms for a) Styrene thermal polymerization b) 
Styrene thermal polymerization in the presence of TEMPO, at 35% conversion and 120°C . 162 
Figure B.26 Rate of polymerization presented as fist order plot; comparison between thermal 
NMRP and NMRP with [TEMPO]/[BPO] = 1.1 at 120°C and [TEMPO]0 = 0.0396 M......... 162 
Figure B.27 Number average molecular weights (a) and polydispersities (b) vs. conversion; 
Comparison between thermal NMRP and NMRP with [TEMPO]/[BPO] = 1.1 at 120°C and 
[TEMPO]0 = 0.0396 M ............................................................................................................ 163 
Figure B.28 Effect of [TEMPO]/[BPO] ratio on polymerization rate at 130 °C; comparison of 
experimental data and model predictions ................................................................................ 163 
Figure B.29 Effect of [TEMPO]/[BPO] ratio on number average molecular weight at 130 °C; 
comparison of experimental data and model predictions ........................................................ 164 
Figure B.30 Effect of [TEMPO]/[BPO] ratio on polydispersity at 130 °C; comparison of 
experimental data and model predictions ................................................................................ 164 
 
 
 
 
 
 
 
 
 



 xiv

LIST OF TABLES 

 
Table 2.1 Comparison between FRP and CRP...........................................................................14 
Table 2.2 Some ATRP system components................................................................................16 
Table 2.3 Significant contributions to NMRP ............................................................................23 
Table 2.4 Manufacturing issues in NMRP..................................................................................33 
Table 4.1 Summary of experimental runs...................................................................................45 
Table 5.1 Pioneering papers on modeling of NMRP................................................................110 
Table 5.2 General mechanism for NMRP kinetics [8] ...............................................................112 
Table 5.3 Kinetic rate constants for the monomolecular and bimolecular NMRP processes 
(T [K] and R [cal mol-1 K-1]) [12] ...............................................................................................113 
Table 5.4 Physical properties....................................................................................................114 
Table A.1 Raw Data for Experiment #1 ...................................................................................137 
Table A.2 GPC replicates for Experiment #1 ...........................................................................137 
Table A.3 Raw Data for Experiment #2 ...................................................................................138 
Table A.4 Replicate Run for Experiment #2 ............................................................................138 
Table A.5 Raw data for Experiment # 3 ...................................................................................139 
Table A.6 GPC replicates for Experiment #3 ...........................................................................139 
Table A.7 Raw data for Experiment # 4 ...................................................................................140 
Table A.8 GPC replicates for Experiment #4 ...........................................................................140 
Table A.9 Raw data for complementary run for Experiment # 4 .............................................140 
Table A.10 Raw data for Experiment # 5 .................................................................................141 
Table A.11 Raw data for Experiment # 6 .................................................................................142 
Table A.12 GPC replicates for Experiment #6 .........................................................................142 
Table A.13 Replicate Run for Experiment #6 ..........................................................................142 
Table A.14 Raw data for Experiment # 7 .................................................................................143 
Table A.15 Replicate Run for Experiment #7 ..........................................................................143 
Table A.16 Raw data for Experiment #8 ..................................................................................144 
Table A.17 GPC replicates for Experiment #8 .........................................................................144 
Table A.18 Raw data for Experiment #9 ..................................................................................145 
Table A.19 Replicate Run for Experiment #9 ..........................................................................145 
Table A.20 Raw data for Experiment #10 ................................................................................146 
Table A.21 GPC replicates for Experiment #10 .......................................................................146 
Table A.22 Replicate Run for Experiment #10 ........................................................................146 
Table A.23 Raw data for Experiment #11 ................................................................................147 
Table A.24 Raw data for Experiment #12 ................................................................................148 
Table A.25 GPC replicates for Experiment #12 .......................................................................148 
Table A.26 Replicate Run for Experiment #12 ........................................................................148 



 1

CHAPTER 1 – INTRODUCTION 

 
Controlled radical polymerization (CRP) is one of the most rapidly developing areas of 

polymer science. The versatility, synthetic ease and the ability to produce novel polymer 

structures (block and gradient copolymers; star, comb, and hyperbranched architectures) are 

perhaps the main reasons for the increased academic (and potentially industrial) interest. 

 
Nitroxide-mediated radical polymerization (NMRP) is one of the three currently most popular 

approaches towards controlled radical polymerization. Polymeric materials synthesized by 

NMRP can be used as coatings, adhesives, surfactants, dispersants, lubricants, gels, additives 

and thermoplastic elastomers, as well as materials for biomedical applications. Recently, it has 

been reported that block copolymers synthesized by NMRP are finding their first industrial use 

as dispersants in the area of pigments (See Table 2.1 in Chapter 2). 

 
The literature on NMRP is extensive and growing. The polymer chemistry and other 

kinetic/mechanistic aspects of NMRP are nowadays considered relatively well understood. 

Detailed kinetic models that describe polymerization rate and molecular weight development 

are available in the literature. However, it is somewhat surprising that although NMRP is 

considered relatively well understood, there are still no detailed/reliable experimental studies, 

conducted over a range of reaction conditions, to validate/support mathematical models.  

 
In this work, our attention has concentrated on the NMRP of styrene using 2,2,6,6-tetramethyl-

1-piperidinyloxy (TEMPO) as controller. The objectives were to: 
 
• Investigate the effect of different polymerization conditions such as different temperatures 

(120, 130 °C), different controller to initiator molar ratios, and different initiating systems 

(bimolecular, unimolecular and thermally initiated), on conversion (rate), molecular 

weights and polydispersity. 
 
• Generate a source of reliable experimental data for validation and improvement of a 

mechanistic mathematical model. This mathematical model, with the enhanced 

experimental information included via updated parameter values, will subsequently guide 
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mechanistic model-based non-linear experimental design schemes, which can further shed 

light on the most uncertain parts of our process understanding. 

 
In Chapter 2, a brief review of the nature of controlled radical polymerization (CRP) is given 

including basic requirements, typical features, materials that can be made through this method 

and their applications. Furthermore, CRP is compared with regular free radical polymerization 

and the mechanisms of different variants of CRP are described briefly. In subsequent sections, 

nitroxide-mediated radical polymerization (NMRP) is discussed in more detail and a brief 

historical perspective, kinetic features and applications of NMRP are presented.  In addition, 

different initiating mechanisms in NMRP are described.  

  
The experimental techniques used to study nitroxide-mediated radical polymerization of 

styrene are described in Chapter 3 and the methods employed in characterizing the polymer 

samples are briefly discussed. 

 
In Chapter 4, results from the experimental part are presented and discussed. The experimental 

plan is summarized in Table 4.1 and typical profiles for nitroxide-mediated radical 

polymerization of styrene are presented. The performance of bimolecular NMRP is evaluated 

based on rate of polymerization, molecular weight and polydispersity values under different 

operating conditions (different controller to initiator ratio, and different polymerization 

temperature). The contribution of thermal self-initiation in NMRP of styrene is examined next; 

the results are further compared to regular thermal polymerization of styrene and the cases with 

added initiator (bimolecular and unimolecular). The performance of unimolecular NMRP is 

subsequently examined and further compared with the bimolecular counterpart. Finally, several 

important aspects of NMRP, occurrence of side reactions and importance of diffusion- 

controlled (DC) effects are discussed. 

 
The reaction scheme, general considerations, overall mass balances and moment equations for 

the development of a mechanistic mathematical model for NMRP of styrene are given in 

Chapter 5. In addition, the mathematical model is validated with the experimental data 

described in Chapter 4. The analysis in Chapter 5 relies heavily on the mechanistic model 
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development efforts of Vivaldo-Lima’s group (and subsequent efforts from Lona’s group; for 

detailed referencing of these efforts see Chapter 5).  

 
Concluding remarks are made in Chapter 6 along with a presentation of interesting extensions 

to this work. The thesis includes two appendices. Appendix A contains tables of the raw data 

used for the figures of Chapter 4, whereas Appendix B contains complementary figures that 

were kept out of the main text for the sake of brevity. Each chapter has its own reference 

section and all symbols used in the text are explained upon first use.  
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CHAPTER 2 – LITERATURE BACKGROUND 

 
2.1  Controlled Radical Polymerization (CRP) 

 
In order to improve the performance of polymeric materials and broaden their application 

ranges, synthesis of polymers with controlled composition/molecular architecture (and for 

some specific applications, narrow molecular weight distribution) has become an attractive 

area in polymer research.  

 
Well defined polymers with precisely controlled structures are accessible by ionic living 

polymerization (anionic and cationic). However, ionic polymerizations have several practical 

disadvantages. Growing carbonium ion or carbonions are extremely reactive toward traces of 

oxygen, water, or carbon dioxide. Therefore, the polymerization system should be essentially 

devoid of these impurities. Even when the concentration of these impurities is at levels of parts 

per million, they can affect the polymerization. Therefore, these systems require great care in 

purification and drying of solvent and monomers, and in handling the initiator solution. The 

polymerization temperature is another disadvantage for living ionic polymerizations. High 

reaction temperatures are not suitable and the optimum temperature range is very low (varying 

from -20 to -78 °C) [1]. Another limitation is due to the incompatibility of the growing 

polymer chain-end (anion or cation) with numerous functional groups and certain monomer 

families [2].  

 
Regular free radical polymerization, on the other hand, can be applied to polymerization of 

many monomers under relatively mild reaction conditions (compared to ionic polymerization). 

For instance, polymerization can be performed in water (e.g., emulsion or other aqueous 

polymerizations), and in the presence of trace amounts of impurities (e.g., oxygen, additives). 

In addition, polymerization can be conducted over a wide temperature range (-80 to 250 °C). 

The main drawback of regular free radical systems is that they have not been able to offer the 

same degree of control over polymer structure and functionality as do ionic systems. For 

example, polydispersities (a measure of the width of the molecular weight distribution) are 
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usually higher, and chain end-groups are determined by random events in regular free radical 

polymerization in comparison to what can be achieved through ionic polymerizations. 

By retaining the advantages of regular radical polymerization and adopting concepts from ionic 

polymerization, controlled radical polymerization can produce materials with a well-defined 

microstructure (molecular architecture) and low polydispersity under mild conditions with 

minimal requirements for purification of monomer or solvent (Figure 2.1). In addition, the 

emergence of controlled radical polymerization techniques offers a route to synthesize new 

high-value products for specialty applications like block and graft copolymers which are 

(almost) inaccessible via regular free radical polymerization. 

 

 

 

 

 

 

 

 

Figure 2.1 Areas contributing to development of CRP 

 
2.1.1 Basic Requirements  

 
Controlled radical polymerization is a family of promising techniques for the synthesis of 

macromolecules with well-defined molecular weight, low polydispersities (often close to 

unity) and various architectures under mild conditions from 20 to 140°C, with minimal 

requirements for purification of monomers and solvents. A common feature of the variants of 

CRP is the existence of an equilibrium between active free radicals and dormant species [3]. 

The exchange between active radicals and dormant species allows slow but simultaneous 

growth of all chains while keeping the concentration of radicals low enough to minimize 

termination. 

 
The core reaction in CRP systems is shown in Figure 2.2. The dormant species (Rn –X) 

undergoes homolytic bond breakage, either by heating or by a more complex process of 
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activation by some added reagent, to produce one active and one stable free radical (See Eq. 

2.1). ka and kd are activation and deactivation rate constants, respectively. The active radical 

(Rn•) propagates in the presence of monomer (M) (See Eq. 2.2). The corresponding 

propagating radical can either be deactivated by the stable radical (X•) or terminate with other 

growing radicals (See Eq. 2.3).  

 

                                                                                                        (2.1) 

 

 
 

 
(2.2) 

 
 
 (2.3) 

 

Figure 2.2 A general CRP equilibrium between dormant and active species 

 
In order to achieve controlled conditions, the following three prerequisites should be satisfied: 

 
1. Fast and quantitative initiation compared to propagation.  

2. Small contribution of chain breaking reactions like termination and transfer reactions. 

3. Fast exchange between active and dormant species. 

 
The initiator should decompose at once or in a very short time period so that all propagating 

radicals grow for the same time interval (“lifetime”), therefore yielding polymer chains that are 

virtually of the same chain length. This means that the chains would have the same degree of 

polymerization (DP), and thus their distribution will have a low polydispersity. This is what 

happens during a living ionic polymerization since ions do not react with each other. However, 

in typical radical systems, the rate of radical-radical termination is high. In other words, radical 

lifetimes are short, and polymer chains are born, grow and die within approximately 1s; during 

these time-frames it is not possible to gain low polydispersity and desirable chain end 

functionality.  
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In order to use radical intermediates in a living type of polymerization it is necessary to keep 

the concentration of growing chains ( chains that have the potential to grow, therefore 

including both  active and dormant species) at an appropriate level, somewhere around 10-4 to 

10-1M, while keeping the active radical concentration low, preferably less than 10-8 M [4]. As a 

result, the rate of bimolecular termination will be drastically reduced (rate of termination= kt 

[R•] 2, where kt is an overall termination rate constant and [R•] is the total (active) radical 

concentration). The common approach to achieve this is to cap the end of each active radical 

with a non-radical moiety (stable radical) that can easily be removed to yield back a radical 

(See Eq. 2.1). Ideally, the majority of chains at any given moment are in the dormant stage 

(capped by the stable radical). A small concentration (~ 10-7 to 10-9M) may have a propagating 

radical located at the chain end (in active state). Furthermore, the stable radical is labile enough 

to allow the dormant chains to become active, and the same stable radical is able to react with 

an active chain to render it dormant. In this way, a fast equilibrium is established between 

dormant and active chains, with the capping group mediating the concentration of each chain 

type (See Eq. 2.1). The identity of the stable radical X• is critical to the success of controlled 

radical procedures. Ideal stable free radicals do not react with each other, and do not initiate 

polymerization. 

 
The use of a capping group itself is not sufficient to gain low polydispersity. The exchange 

between dormant and active species (the equilibrium reaction) must not only favor the dormant 

species but also be fast [5]. In other words, the stable radical must leave and rejoin the active 

radical at a rate that is fast enough to allow only a few propagation steps in each activation 

cycle. If both activation and deactivation are fast relative to propagation, then the polymer 

radicals will grow in an incremental fashion, and if all the chains are initiated at the same time 

the resulting chains should have low polydispersities. Thus, exchange dynamics are very 

important in attaining control over molecular weights and polydispersities. 

 
2.1.2 Typical Features 

 
The ideal CRP is achieved if all chains are initiated immediately at the start of polymerization 

and if termination and other side reactions are negligible. This ideal system has the following 

features: 
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• Linear kinetic plot in semi-logarithmic coordinates (ln [M]0/ [M] vs. time) for an 

isothermal batch reactor ( [M]0 :concentration of monomer at time 0; [M]: concentration of 

monomer at time t). With instantaneous initiation and no termination, the total radical 

concentration remains constant during polymerization, and this results in a linear trend in ln 

[M]0/ [M] vs. time, as shown in Figure 2.3. Curvature indicates deviation from the ideal 

situation caused by slow initiation, loss of radicals by termination, or other side reactions. 

 

  

 

 

 

 

 

 

Figure 2.3 First order kinetic plot for controlled radical polymerization  

 
• Average molecular weights increase linearly with conversion which is quite different from 

regular radical polymerization (FRP) in which high molecular weights are produced right 

from the outset (See Figure 2.4). Ideally, controlled systems lead to polymers with degrees 

of polymerization (DP: number of monomer repeat units in a chain) predetermined by the 

ratio of the concentration of consumed monomer to the introduced initiator (DPn = Δ[M]/ 

[I]0) . 

 
 

 

 

 

 

 

 

 

Figure 2.4 Molecular weight outcomes from an ideal controlled radical polymerization (LRP) 
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• Polydispersity (PDI), the ratio of the weight average to number average molecular weight 

(Mw/Mn), for an ideal CRP system follows the features of a Poisson distribution, such that 

PDI = DPw/DPn = (1+1/DPn) [3]. For real CRP systems, PDI is hopefully less than 1.5 (the 

lowest limit for a conventional radical polymerization).  

 
Figure 2.5 (drawn from our experimental work) shows an example of size exclusion 

chromatography (SEC) data of polystyrene made by nitroxide-mediated radical 

polymerization (NMRP) (Curve C) compared to polystyrene made by anionic 

polymerization (Curve B) and regular radical polymerization (Curve A). Clearly the 

polystyrene made by NMRP has a much narrower molecular weight distribution (MWD), 

and hence lower polydispersity, than the sample made by regular radical polymerization. 

The polydispersity of the NMRP sample is very close to the one made by anionic 

polymerization (chromatography “standard”). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Size exclusion chromatographs of polystyrene samples. Curve A: polystyrene made by regular radical 
polymerization (PDI = 2), Curve B: a SEC 'standard' polystyrene made by anionic polymerization (PDI = 1.1), 

Curve C: polystyrene made by NMRP (PDI = 1.1) 

 
• CRP polymerizations have the ability to produce polymers with functional end-groups, 

either at the initiator end (In) or the terminal end (X) (Figure 2.6). Y can be any substituent 

like phenyl, chloride, etc. Also, functionality can be potentially placed in other key 
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segments of the polymer chain. Chemical functionality plays a large role in the polymer’s 

final properties and adds flexibility for post-polymerization/modification reactions to be 

performed (e.g., cross-linking or curing). Functional end-groups on polymers produced 

using CRP may be used to grow a second polymer chain from it, thereby producing block 

copolymers [4]. 

 
 
 

 
 
 
 
 

Figure 2.6 General polymer chain structure from controlled radical polymerizations [4] 

 
2.1.3 Comparison with Regular Free Radical Polymerization (FRP) 

 
Since controlled radical polymerization involves the elementary radical reactions found in 

regular free radical polymerization (FRP), it is necessary to grasp the underlying mechanisms 

of FRP first, in order to be able to understand the CRP mechanism and compare the two 

systems together.  

 
FRP consists (at a minimum) of three main steps: initiation, propagation and termination, in 

addition to a fourth step, chain transfer (to a small molecule) [6]. The first step is initiation 

which is composed of two processes: generation of primary radicals (R•in) and reaction of these 

radicals with monomer to produce radicals of chain length unity (R•1) ( See Eq. 2.4). Typical 

initiators (peroxides, azo compounds, etc.) are used at concentrations between 0.01-1 mol %.  

 
The next step is propagation, the repeated addition of the alkene monomer molecules to the 

radical species (R•r) (See Eq. 2.5). Each propagation (chain growth) reaction results in a 

polymer chain that is one repeat unit longer. Thus the propagation reaction is repeated over and 

over, and the chain grows longer and longer. The propagation rate constant is considered to be 

chain length independent, with typical values of kp ≈ 103±1M-1s-1. 
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At some point, the propagating polymer radical stops growing and terminates. Termination 

with the annihilation of the radical centers occurs by a bimolecular reaction between two 

radicals. Two radicals can terminate either by coupling (ktc) or disproportionation (ktd) with 

rate constant kt >107 M-1s-1 (See Eq. 2.6). Rate coefficients of termination are chain length and 

conversion dependent.  

                                                                                              

                        

                                                                                                     Initiation                             (2.4)      

 

 

   

  

                                  

                                                                                                     Propagation                        (2.5) 

                                                                                                            

 

 
                                                                                                             

  

                                                                                                      Termination                       (2.6)      

 

 
  

                        

                                                                                                      Chain transfer                    (2.7)              

 
 
Chain transfer (to a small molecule) is a reaction in which growth of a radical is stopped via 

abstraction of a labile hydrogen atom from a small molecule T (See Eq. 2.7). It results in the 

radical centre being transferred to another molecule (e.g. monomer, solvent, chain transfer 

agent), the radical itself becomes a dead polymer molecule, and thus growth is stopped. 

However, because the radical is transferred to another molecule that can further re-initiate and 
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subsequently propagate, the overall radical concentration is not reduced and therefore chain 

transfer is not formally a chain terminating reaction as Eq. 2.6.  

In regular radical polymerization, a key point to note is that all four main steps (initiation, 

propagation, termination and transfer) occur concurrently. In particular, initiation is required 

throughout the polymerization in order to maintain a relatively constant (steady state) radical 

concentration, since radical species are always terminating. The total time it takes for a chain 

to be initiated, propagate, and then terminate is of the order of seconds. The time taken to 

consume all of the monomer normally ranges from minutes to many hours. Thus, to react all of 

the monomer one must continually supply new radicals to the reaction. This is achieved by 

choosing an initiator that decomposes into radicals throughout the reaction. 

 
This has a number of consequences. Firstly, high molecular weight materials form very early 

on in the reaction. However, chains that are produced early in the reaction are likely to have a 

different degree of polymerization compared with those produced later in the reaction because 

of the variation in reactant concentrations and rate constants. This means that the molecular 

weight distribution (MWD) of the final polymer will contain a wide range of DPs. The normal 

measure of the width of the MWD, the polydispersity (PDI), is the ratio of the weight average 

to number average molecular weight (Mw/Mn). In a regular free radical polymerization, it can 

be shown that the minimum PDI that can be obtained is 1.5 [6]. In most cases, however, the 

polydispersity is greater than this, often being in the range of 2 to 3, or even higher. 

 
Another consequence of continuous initiation and termination is almost no control over chain 

end-groups. For example, one end-group may be an initiator fragment that comes from initiator 

decomposition; another could be an unsaturated vinyl group (double bond) due to termination 

through disproportionation. During the radical life time (1s) it is very hard to add a special 

terminating agent to produce end functional polymers. Thus producing polymers with 

controlled architecture is constrained. 

CRP closely resembles regular free radical systems. The basic underlying mechanism is the 

same, yet there are some distinct differences. The concept of exchange between active and 

dormant species (See Eq. 2.1) has provided a convenient tool for controlled radical 

polymerizations to produce materials with low polydispersity and controlled structure. Table 
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2.1 compares some of the key characteristics of regular and controlled free radical 

polymerization. 

 



 14

Table 2.1 Comparison between FRP and CRP 

Characteristics 
Regular Radical 

Polymerization (FRP) 

Controlled Radical 

Polymerization (CRP) 

Initiation/ 

radical generation 

slow and fast (depending on the 

half- life of the chosen initiator) 

preferably fast (initiator 

decomposes at once or in a very 

short period of time) 

Propagation fast (monomer is added every ~ 

1ms) 

slow (monomer is added every ~ 

1min) 

Transfer reactions present negligible 

Termination >99% of chains are essentially dead portion of irreversibly terminated 

chains <10% 

Activation/deactivation 

reaction 

absent most important reaction that 

differentiates CRP from FRP 

Radical lifetime < 1s >1hr 

Rate of polymerization fast (% conversion per hour ~ 

10-20 %) 

slow (% conversion per hour ~ 

1-2 %) 

Polydispersity >>> 1.5 ~ 1.1 - 1.3 

Molecular weights (MW) ∗ ≈ 100,000 -300,000 gr/mol ≈ 30,000 gr/mol 

Diffusional effects for kt significant negligible 

Diffusional effects for kp & f can become significant at high 

conversion (Tg effects) 

negligible 

Concentration of growing 

chains 

10-7 – 10-9 M 10-4 – 10-1 M 

Degree of control over 

molecular architecture 

weak good 

Share in overall market 

(as of 2007) 

> 70% negligible 

Industrial applications 

(as of 2007) 

Wide/ diverse slowly appearing ∗∗ 

Availability early 1900’s till now early to mid 80’s till now 

∗ These are typical molecular weights that can be achieved; of course higher MWs can be obtained in emulsion polymerization and lower MW 

can be produced in the presence of transfer agents. 

∗∗ There is a report showing that Ciba Specialty Chemicals have started commercializing acrylic block copolymers produced via CRP [7]. 
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2.1.4 Approaches towards Controlled Radical Polymerization 

 
There are several approaches to controlled radical polymerization. All of these approaches 

employ some sort of dynamic equilibrium between growing free radicals and various types of 

dormant species. The exchange process is at the very core of the CRP methods and can be 

approached in several ways depending on the structure of the dormant and deactivating 

species, the presence of a catalyst and the particular chemistry and mechanism of the exchange.  

 
Currently three methods appear to be most efficient and may lead to commercial applications: 
 
• Atom Transfer Radical Polymerization (ATRP) 

• Nitroxide-Mediated Radical Polymerization (NMRP) 

• Reversible Addition-Fragmentation Transfer (RAFT) 

 
Since 1995 (the year of the independent discoveries of ATRP by Matyjaszeweski et al. [8] and 

Sawamoto et al. [9]) the technical literature on ATRP has been growing very rapidly. Radical 

generation in ATRP involves an organic halide undergoing a reversible redox process 

catalyzed by a transition metal compound such as cuprous halide [10]. Eq. 2.8 shows the 

general mechanism of ATRP system catalyzed with copper bromide (CuBr (L)). The system 

consists of an initiator that has an easily transferable halide atom (R–Br) and a catalyst. The 

catalyst (or activator) is a lower oxidation state metal halide (CuBr (L)) with a suitable ligand 

(L). Polymerization starts when the halide atom transfers from the initiator to the catalyst to 

form a free radical (R•) and a higher oxidation state metal halide CuBr2 (L) (deactivator). This 

step is called activation or forward reaction. The deactivation step or backward reaction pushes 

the reaction to form the dormant species (R–Br). 

 
                                                                                                                                    
                                                                                                                                                (2.8) 

  

Usually alkyl halides with substituents on the α-carbon such as aryl, carbonyl or allyl groups 

are used as initiators in ATRP. The carbon halide bond must be relatively weak so that the 

halogen atom can be easily transferred between the dormant species and the catalyst. Most of 
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the ATRP initiators use either chlorides or bromides, but some investigations have used iodine 

as the halogen atom in the initiator. 

 
Compared to conventional free radical polymerization, the new and key component in ATRP is 

the catalyst. Suitable ligands should complex with a metal halide to form the ATRP catalyst. 

The metal halide should have at least two oxidation states and should have good affinity 

toward halogen atoms. Systems using Cu, Ru, Ni, Pd, and Fe transition metals in conjunction 

with suitable ligands have been used as catalysts. Table 2.2 shows some ATRP initiators, metal 

halides and ligands [11]. 

                     
Table 2.2 Some ATRP system components 

            Initiators                                Metal                                   Ligand 

                                                            halide 

                                                                          CuCl                                          

 

                                                                      

 
 

  CuBr 

                                                                                                           

 
                                                                                                                       

  

  

 
 
 
 

 
Nitroxide-mediated radical polymerization (NMRP) is one of the earliest reported methods of 

CRP. Eq. 2.9 shows the general mechanism of NMRP, where X represents the nitroxide group, 

R–X is the dormant species, R• is the polymer radical, ka is the activation rate constant 

(forward reaction), and kd is the deactivation rate constant (reverse reaction, according to 
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typically used CRP terminology). At low temperatures (e.g., 40-60°C), the dormant species is 

stable and therefore the nitroxide group behaves as an inhibitor [12]. However, at elevated 

temperatures (e.g., 100-140°C), the dormant chain may undergo homolytic cleavage 

(dissociation), leading to a polymer radical and nitroxide group [13]. The polymer radical can 

grow, terminate or couple with the nitroxide group again to form the dormant species. The 

mechanism and kinetics of NMRP will be discussed in more detail in section 2.2. 

 

                                                                                                                                                (2.9) 

 

 
Control of radical polymerization with the addition of thiocarbonylthio compounds that serve 

as reversible addition fragmentation (chain) transfer (RAFT) agents was first reported in the 

mid 1990’s [14]. Contrary to ATRP and NMRP that control chain growth by reversible 

termination, RAFT polymerization controls chain growth through reversible chain transfer 

(See Eq. 2.10) 

  

                                                                                                                                               (2.10)  

 

Eq. 2.10 involves the reaction of polymeric radical species ( •
mR , •

nR ) that reversibly transfer 

the capping group (or the chain transfer agent; Z) back and forth to each other.  Kexch is the 

equilibrium rate constant. The structures of RmZ and RnZ are essentially identical, except that 

the number of monomer repeat units present (n and m, respectively) may be different.  A 

RAFT polymerization involves a conventional radical initiator (peroxide or AIBN), and a 

chain transfer agent (Z) which is a compound containing a dithioester, dithiocarbamate, 

trithiocarbonate or xanthate moiety (See Figure 2.7). The key to the success of RAFT 

polymerizations lies in the high reactivity of the thiocarbonyl group towards propagating 

radicals. 

 
It is worth mentioning here that a recent addition to the CRP family has been organotellurium-

mediated radical polymerization, or TERP [15]. TERP is able to polymerize monomers such as 

styrene, acrylates, and methacrylates. Again, as was mentioned before, ATRP, NMRP and 
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RAFT are the three most promising and popular techniques so far to produce the first 

commercial materials with controlled structures. 

 
Figure 2.7 General structures for chain transfer agents used in RAFT polymerizations. Y = activating/stabilizing 

group of thiocarbonyl, R = radical leaving group 

 
2.1.5 Overview of Materials Made by CRP Methods 

 
A brief overview of the types of polymer microstructures that have been produced using CRP 

methods is given in Figure 2.8. 
 

 

Figure 2.8 Examples of the variety of polymer structures made by CRP techniques [4] 

 
These types of structures are the real driving force behind the development and use of CRP 

methods. Although these general materials can be made through other polymerization 

mechanisms, ionic polymerizations in particular, the CRP methods provide an avenue to 

utilizing a large range of vinyl monomers under relatively moderate conditions. Therefore a 

variety of polymer compositions, functionalities, and architectures can be achieved through 

CRP.  
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2.1.6 Material Applications 

 
Materials developed via CRP are gradually finding commercial applications. A few examples 

are highlighted below.  

 
The first CRP-based products are acrylic block copolymers, commercialized in 2005 through 

Ciba Specialty Chemicals, which offer superior rheological performance and improved 

stabilization of pigment dispersions in coating applications [7, 16]. These block copolymers 

were synthesized through NMRP using n-butylacrylate, dimethylaminoethyl acrylate and 

styrene as monomers. 

 
RohMax Oil Additives have described commercially feasible and economically acceptable 

conditions for ATRP preparation of additives based on long chain poly (alkyl methacrylates) 

that are suitable for use as components of lubricating oils [17]. 

 
Dionex used ATRP to nanoengineer the stationary phase of chromatographic columns. This 

gave rise to a high-resolution, immobilized metal affinity chromatography (IMAC) column 

capable of peptide and protein enrichment. This was accomplished by grafting a hydrophilic 

layer from the particle surface, reacting the polymer graft with chelating groups, and then 

inducing chain collapse by introducing Cu ions for intramolecular coordination crosslinking to 

form tethered metal-polymer composite nanoparticles. The tethered nanocomposite particles 

interact with the eluants, causing separation of proteins that differ by only one methyl 

substituent [18]. 

 
Other potential applications include microelectronics, soft lithography, optoelectronics, 

specialty membranes, sensors and components for microfluidics. Well-defined polymers 

prepared by CRP are very well suited for biomedical applications such as components of tissue 

and bone engineering, controlled drug release and drug targeting, antimicrobial surfaces, 

steering enzyme activity, and many others [19]. 
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2.2  Nitroxide-Mediated Radical Polymerization (NMRP) 

 

2.2.1 Background and Historical Perspective 

 
Nitroxide-mediated radical polymerization (NMRP) is one of the three most popular 

approaches towards controlled radical polymerization (CRP). The success of this approach can 

be related to the ability of stable nitroxide free radicals, such as TEMPO, to react with the 

carbon-centered free radical of the growing polymer chain end in a thermally reversible 

process (See Figure 2.9). This dramatically lowers the concentration of free radicals in the 

polymerization system and, coupled with the inability of the nitroxide free radicals to initiate 

new chain growth, leads to controlled polymerization. These features have been exploited in 

the preparation of low polydispersity random, block, and graft copolymers as well as star and 

hyperbranched systems. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 Reversible activation, deactivation reaction in NMRP 
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NMRP has its roots in radical-trapping work of Rizzardo et al., dating back to the early 1980s. 

In their initial work [12, 20], they demonstrated that at low temperatures (40-60°C), nitroxides 

such as 2, 2, 6, 6-tetramethylpiperidinyloxy (TEMPO) (2) react at near diffusion controlled 

rates with carbon-centered free radicals (1). The resulting alkoxyamine derivatives (3) were 

essentially stable at these temperatures and did not participate in the reaction further, thus 

acting as radical traps (See Figure 2.9).  

 
The same workers applied a similar concept, albeit at increased temperatures (80-100°C), to 

the synthesis of low molecular weight oligomers, primarily with acrylates and nitroxides such 

as TEMPO [21]. The polymerization led to the production of poorly defined materials with 

uncontrolled molecular weights and high polydispersities. Despite these drawbacks, their work 

did provide the background information for subsequent studies. 

 
Later in 1993, via a report by the group of Georges at XEROX [13], describing the preparation 

of low polydispersity polystyrene with controlled structure, the area of nitroxide-mediated 

radical polymerization really took off. The key feature of this work was the realization that, 

while nitroxides are polymerization inhibitors at low temperatures, at elevated temperatures 

they may act as polymerization mediators, not inhibitors.  

 
Georges et al. [13] showed that increasing the temperature to values higher than 100°C and 

conducting the polymerizations using the stable free radical TEMPO in the presence of 

Benzoyl Peroxide (BPO) as initiator, can lead to the production of polystyrenes with lower 

polydispersities (compared to the typical values of ~ 2 for regular free radical polymerization). 

In addition, molecular weights of the corresponding polystyrenes increase in a linear fashion as 

a function of monomer conversion.   

 
In these systems, the BPO would initiate polymerization in a normal fashion; however, the 

polymer radicals would react quickly with TEMPO, forming polymeric alkoxyamines. The C–

O bond is weak enough to reversibly dissociate at temperatures greater than 100°C, thus 

establishing the activation-deactivation equilibrium between dormant and active chains (See 

Figure 2.10).  
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Figure 2.10 Georges' approach to NMRP using bimolecular initiation 

 

Following this observation by Georges et al., a number of other groups embarked on studies of 

the chemistry, and kinetics of nitroxide-mediated radical polymerization. Table 2.3 cites some 

of the important contributions.  
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Table 2.3 Significant contributions to NMRP  

Group Institution Year∗ Main studies Notes 

Georges 

XEROX 

Research Centre, 

Canada 

1993 

- Kinetics and fundamentals of bimolecular 
initiation of styrene with BPO and TEMPO 
(role of excess nitroxide [22], role of thermal 
initiation [23, 24], mechanism and kinetics [25 
- 27], rate enhancement in NMRP [28, 29]) 

 
- NMRP in aqueous phase (emulsion, 
miniemulsion, etc.) [30] 
 

- First group to introduce the 
concept of NMRP for producing 
low polydispersity polystyrenes 
 
- Bimolecular approach 

Matyjaszewski 
Carnegie Mellon 

University, U.S.A 
1994 

- Mechanism, fundamentals and practical 
aspects  [19, 31 - 33] 
 
- Synthesis of well defined materials like block 
and graft copolymers [34, 35] 
 

- Kinetics 

Fukuda 

Institute for 

Chemical 

Research, Kyoto 

University, Japan 

1996 

- Fundamental kinetic aspects , model  
simulations for NMRP [36 - 39] 

 
- Determination of kinetic rate constants in 
NMRP by gel permeation chromatography [40 
- 42] 

 
- Copolymerization of styrene and divinyl-
biphenyl [43] 
 

 
- Mainly using unimolecular 
initiators as mediators 
 

- Kinetics 

Fischer 

Physical 

Chemistry 

Institute, Zurich 

University, 

Switzerland 

1997 

- Introducing the concepts of persistent radical 
effect in NMRP [44, 45] 
 
- Defining criteria for livingness and control in 
NMRP (rate constants required for optimizing 
the process) [46]  
 
- Design and synthesis of β-phosphorus 
nitroxides and alkoxyamines to be used instead 
of TEMPO nitroxide [47] 
 
- Kinetic investigations on cross-reaction 
between carbon-centered and nitroxide radicals 
[48, 49] 
 

- Chemistry & kinetics 

Hawker 

IBM Almaden 

Research Centre, 

U.S.A 

1996 

- Development of variety of TEMPO-based 
unimolecular initiators to examine the effect of 
structural variation on the efficiency and 
usefulness of these derivatives as unimolecular 
initiators [50] 

 
- Examining the effect of acylating agents as 
rate-accelerating additives [51] 
 
- Design of tailor-made nitroxides to improve 
their performance in NMRP processes [52] 
 
- Synthesis of complex macromolecular 
architectures like star, hyperbranched and 
dendritic polymers as well as block and graft 
copolymers [53 - 56] 
 

- Chemistry 

∗ The year that the specific group published their first paper on controlled radical polymerization. 
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2.2.2 Types of Initiators in Nitroxide-Mediated Radical Polymerization 

 

2.2.2.1 Bimolecular Initiator 

 
In NMRP, two initiating approaches can be used. In the first, TEMPO or another nitroxide 

radical along with a primary free radical initiator such as BPO or AIBN are used as the 

initiation system. This approach is called bimolecular initiation, first used by Georges et al. 

[13] (See Figure 2.10). In this method, initiator (BPO or AIBN) decomposes to primary 

radicals of high reactivity which initiate the polymerization of monomer. The TEMPO radical 

then makes a labile bond (C–O) with the radical chain, leading to the formation of 

alkoxyamines in situ. As mentioned before, the C–O bond is weak enough to reversibly 

dissociate at temperatures greater than 100°C, thus establishing the activation-deactivation 

equilibrium between dormant and active chains. 

 
2.2.2.2 Unimolecular Initiator 

 
The second approach uses a single molecule initiator (unimolecular) that, on dissociation, 

generates two radicals. One of them should be of high reactivity, which will initiate the 

polymerization, while the second one should be a low reactivity, stable radical. The structure 

of these initiators is usually based on the alkoxyamine functionality. The C–O bond of the 

small-molecule alkoxyamine derivative is thermolytically unstable and decomposes on heating 

to give an initiating radical as well as the stable radical (See Figure 2.11). Following initiation 

the polymerization would proceed as described previously for the bimolecular case. This 

approach was first used by Matyjaszewski group [33] and Fukuda et al. [57] almost at the same 

time. 

 
The advantage of the unimolecular approach is that the structure of the polymers prepared can 

be controlled to a much greater extent. Since the unimolecular initiator contains the initiating 

radical and nitroxide radical in the correct (1:1) stoichiometry, the number of initiating sites 

per polymerization is known. As a result, the molecular weight can be more accurately 

controlled. 
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Figure 2.11 Unimolecular initiation approach in NMRP 

 

2.2.3 Kinetics Features 

 
Here, the fundamental kinetic features of nitroxide-mediated radical polymerization (NMRP) 

will be discussed. The aim is to describe the concentration of reactants and rate of 

polymerization as a function of time. What is discussed here is a simplified version for basic 

understanding, whereas more detailed calculations will be presented in Chapter 5 

(mathematical modeling).  
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2.2.3.1 Persistent Radical Effect (PRE)  

 
Here we consider the system including only the initiating adduct R–X and monomer at time t = 

0 (See Eq. 2.11). When polymerization is started by allowing R – X to dissociate, the same 

number of R• and X• is produced per unit time, and the concentrations of [R•] and [X•] will 

increase linearly with time.  As [R•] and [X•] increase to a certain level, bimolecular 

termination between active radicals (R•) and the reaction between R• and X• will become 

significant. Since the termination of R• results in a decrease of [R•] relative to [X•], [X•] will 

steadily increase, and therefore the reaction between R• and X• will become more and more 

important, thus leading back to the formation of R—X. This eventually leads to a balance 

between the rate of deactivation, kda [R•][X•], and that of activation, kd[R–X] (quasi-

equilibrium will hold).  

 

(2.11)                         

 

 

On the other hand, while the quasi-equilibrium holds, [R•] must be a decreasing function of t, 

since termination continues to occur. This means that [R•], which increases linearly with t at 

the onset of polymerization, will at some point start to decrease, thus going through a 

maximum. This was termed the persistent radical effect (PRE), which is nowadays widely 

accepted in describing the kinetics of ATRP and NMRP. The model was originally developed 

by Fischer [44, 45]. Figure 2.12 illustrates the changes in concentration of each species 

involved in Eq.2.11.      
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Figure 2.12  Concentration of active radicals (R), stable radicals (X), dormant species (R-X), polymer chains (P) 
and monomer (M) vs. time for a controlled radical polymerization initiated by homolysis of an initiator (R-X)[44]  

 

2.2.3.2 Descriptive Equations 

 
In the following, we consider systems where:  

 
1) The quasi-equilibrium is reached so fast that the main body of polymerization occurs in 

the time range of quasi-equilibrium and the pre-equilibrium stage has no significant 

effect on the polymerization kinetics. 

2) The cumulative number of dead chains by termination and initiated chains by initiation 

are sufficiently small compared with the number of dormant chains. 

3) The initiation rate (Ri) is constant. 

4) All possible reactions other than those indicated in what follows have been neglected.  

5) All the rate constants are assumed to be independent of chain length. 

 
The analysis below will follow the developments in [45, 58, 59]. Translating the above 

statements into equations, we have the following two differential equations: 
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Sum of Eqs. 2.12 and 2.13 gives 
 
 

(2.14) 
 
 
The quasi-equilibrium (      ≈ 0) with negligible fraction of dead chains is represented by 

Eq. 2.15, where I0 = [R–X]0.  

 
(2.15) 

 
 

(2.16) 
 
 
Since it usually holds that ][R• << ][X• , we may neglect             as compared with  in 

Eq. 2.14, which, with Eq. 2.15 gives 

 

 (2.17) 

 

Eq. 2.17 can be solved to provide radical concentrations and subsequently the rate of 

polymerization. However, only some special cases will be discussed below. 

 
Stationary-state systems (systems with Ri >>0) 

 
When Ri is sufficiently large, the stationary state (  =  = 0) is reached at an 

early stage of polymerization and we obtain 
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3][X•

(2.21) 

 

  

(2.22) 

 

 
Power-law systems (systems with Ri = 0) 

 
When Ri is zero, Eq. 2.14 becomes 

 

(2.23) 

 

Using Eq. 2.15 and substituting for ][R• with a function of ][X•  gives 

 
(2.24) 

 
This is solved to yield 

 
(2.25) 

 
From Eq. 2.15,  is equal to                  and that is <<         , so we obtain further:   
 
 

(2.26) 

 
 

(2.27) 

 

 
The monomer consumption rate, ][M][Rkdtd[M] p •=− , is integrated using the above 

equations to finally yield, 
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Thus, the monomer consumption index [M])[M](ln 0 is two-third order in t, in contrast to the 

first-order dependence of the stationary system (See Eq. 2.22). 

 

2.2.4 Applications and Future Perspective 

 

2.2.4.1 Development of New Nitroxides 

 
Initially, TEMPO was used as the only stable nitroxide in NMRP but the use of TEMPO has 

several drawbacks. One of the most critical limitations of TEMPO-mediated NMRP is the 

incompatibility with many monomer families; TEMPO is mainly useful for NMRP of styrene 

and styrene derivatives. Another limitation of the TEMPO system is the high strength of the C-

O bond in the TEMPO polymer adduct. Due to this, the decomposition rate is slow; hence, the 

time required to complete the polymerization is around 24-72 hrs, 10 to 20 times more than 

that of regular free radical polymerization. In addition, TEMPO-mediated NMRP needs 

elevated polymerization temperatures (120- 145 °C).  

 
To overcome these deficiencies it was apparent that changes in the structure of the nitroxide 

were needed. Unlike the initiating radical, which is involved only at the beginning of the 

polymerization, the mediating radical is involved in numerous reversible activation and 

deactivation steps and so changes in its structure would be expected to have a substantial effect 

on the polymerization.  

 
Initial efforts to develop new nitroxides were centered on TEMPO based derivatives. 

Keoshkerian et al. [60] were able to polymerize acrylates at 145-155 °C in the presence of 4-

oxo-TEMPO (1) as the mediating nitroxide. Figure 2.13 shows some of these alternative 

TEMPO-based nitroxides employed in NMRP. While this was a significant improvement when 

compared to TEMPO, polydispersities were between 1.4 and 1.67 and the living nature of the 

polymerization was questionable.  

 
In addition, other nitroxides like ditertiary butyl nitroxide (DTBN) were used as trapping 

agents, which had no structural resemblance to TEMPO. The optimum temperature range for 

NMRP mediated by DTBN (See Figure 2.14) is 90-100 °C, which is lower than that of 
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N

O

O  

TEMPO-mediated NMRP [61]. Benoit et al. [62] have introduced a new nitroxide radical, N-

tert-butyl-1-deithylphosphono-2,2-dimethylpropyl nitroxide (DEPN; also known as SG-1) (See 

Figure 2.14). In this nitroxide, an electron-withdrawing dialkyloxy phosphonyl is reported to 

be more efficient than TEMPO in the NMRP of styrene. DEPN allows faster polymerization 

than TEMPO mediated polymerization. Moreover, it opens the door to controlled radical 

polymerization of other monomers like acrylates, acrylamides, and acrylonitriles. Extensive 

research has been conducted on DEPN by different research groups [63 - 69].  
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Figure 2.13 Structure of TEMPO-based nitroxides in NMRP 

 
 
 
 
 
 
 
 
 

Figure 2.14 Structures of DTBN and DEPN 
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Design and synthesis of new nitroxides is an ongoing and dynamic research area.  A list of 

nitroxides that have been used as mediators in NMRP can be found in the paper by Hawker et 

al. [73]. The most recent report on this subject is the paper by Mannan et al. [74] which reports 

controlled radical polymerization of styrene mediated by a piperidinyl-N-oxyl radical having 

bulkier substituents (See Figure 2.15) than in TEMPO. This report is a new addition to their 

previous work on cyclic nitroxides having spiro structures [75]. 

 
  
  

 

 

 

 

                          

                            1                                            2                                      3 

Figure 2.15 Structure of piperidinyl-N-oxyl radical (1) and corresponding alkoxyamines (2, 3) 

 
2.2.4.2 Manufacturing Issues 

 
Controlled radical polymerizations allow the production of well-defined polymeric materials 

with controlled microstructure (architecture). The future for CRP seems very bright, and it is 

anticipated that many new products will be introduced to the market within the next several 

years [76]. Despite the heightened academic interest in the last 10-15 years or so and although 

the industrial production of materials made by CRP is expanding, it is corresponding to only ~ 

10% of all the materials prepared by regular radical polymerization [19]. There are still 

remaining issues to be resolved to make the production of materials created by CRP 

comparable to the manufacturing scales in regular radical polymerization. Some of the most 

important concerns in manufacturing of polymers through NMRP are discussed in Table 2.4 

along with some remarks and remedies suggested.  
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Table 2.4 Manufacturing issues in NMRP  

Issues Remarks 

Slow polymerization rates  Adding organic acids and their derivatives [28, 29, 51, 77] 
 Using a combination of two initiators with different  

     half-lives [57, 78] 
 
 Addition of shots of initiator in a semibatch system [79] 

 
Polymerization limited to 
styrenic monomers 

 Using nitroxides other than TEMPO or alkoxyamines based on 
other nitroxides [73, 80 - 82] 

 
Low molecular weights  Sometimes production of low molecular weight polymers is 

desirable [83] 
 
 If not, the problem can be remedied by working in 

heterogeneous media or possibly using  multifunctional initiators
 

Inefficient, commercially 
infeasible mediating agents 
(nitroxides/ alkoxyamines) 

 Mediating agents used in research are not suitable for industrial 
production either because of low efficiency or complicated 
synthesis steps 

 
 Search for new mediating agents necessary 

 
Working in heterogeneous 
media 

 It is industrially appealing to conduct nitroxide-mediated 
polymerizations in heterogeneous media such as emulsion, 
miniemulsion, dispersion, suspension, etc. 

 
 NMRP systems using TEMPO or its derivatives require high 

temperatures (higher than the boiling point of water), so higher 
pressure reaction setups are required 

 
 Change the mediating nitroxide (use nitroxides that are 

compatible with water and function at lower temperatures 
(<100°C) 

 
Narrow polydispersities  Range of desirable polydispersities depends on the application 

of the polymer produced; narrow polydispersity polymers are 
desirable for special applications while polymers with broad 
distributions are easier to process 

 
Cost   There is always a trade-off between cost and value-added 

product benefits; even if the cost of extra specialty chemicals 
(nitroxides, other agents) is higher than the regular recipes, if the 
product benefits (and hence, profits) due to improvements in 
quality are significant, then the process is acceptable even if it 
looked very expensive initially 
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CHAPTER 3 – EXPERIMENTAL METHODS 

 
3.1  Reagent Purification 

 
Monomer (styrene, Aldrich Canada Ltd.) was washed three times with a 10 w/v % sodium 

hydroxide solution, washed three times with distilled water, dried over calcium chloride and 

distilled under vacuum. Solvents such as ethanol, dichloromethane, and acetone used during 

the course of the experiment and both BPO and TEMPO were used as received from suppliers 

(ATOFINA Chemicals, and Aldrich, respectively) without further purification. For more 

detailed discussions see the ampoule polymerization manual [1]. 

 
3.2  Polymer Synthesis  

 
Polymerizations were completed in borosilicate glass ampoules (capacity ~ 4 mL). Reagents 

were weighed, mixed and pipetted into ampoules. Ampoules were then degassed by several 

vacuum-freeze-thaw cycles, sealed under vacuum with a gas/oxygen torch and then immersed 

in a silicone oil bath having a temperature control of ±0.1 °C. Ampoules were removed at 

selected time intervals to ensure a well-defined conversion versus time plot. Once removed 

from the bath, the ampoules were placed in liquid nitrogen to stop the polymerization. 

Ampoules were then thawed, weighed, and opened. The contents were dissolved in 

dichloromethane, and poured into a flask containing ethanol to precipitate the polymer. The 

polymer samples were air-dried to remove the solvent and vacuum-dried for three days at 

approximately 60°C until a constant weight was reached [2].  

 
3.3  Polymer Characterization  

 

3.3.1 Gravimetry 

 
Conversion levels were determined by gravimetry. Gravimetry involves comparing the weight 

of isolated polymer to the weight of the monomer initially added in the ampoule as shown 

below: 
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(3.1) 

 

                                                                                                                                     
When that PS-TEMPO (polystyrene capped with TEMPO) was used as initiator, the mass of 

initiator was subtracted from the amount of polymer produced.  

 
3.3.2 Size Exclusion Chromatography 

 
Size exclusion chromatography (SEC), also referred to as gel permeation chromatography 

(GPC), is the most popular and convenient method for determining average molecular weights 

and molecular weight distribution (MWD) of a polymer. As its name implies, SEC works on 

the principle of size exclusion. A very low concentration of polymer solution is passed through 

a column of porous particles. The molecules that are large cannot enter the pores of the 

packing and as such, they elute faster. Smaller molecules that can penetrate or diffuse into the 

pores are retained in the column and elute at a later time. Thus a sample is fractionated by 

molecular hydrodynamic volume and the resulting profile describes the molecular weight 

distribution. A concentration detector (e.g., differential refractometer (RI) or UV detector) is 

placed downstream of the columns to measure the polymer concentration of each fraction as a 

function of time. The actual method for determining molecular weight averages and the MWD 

depends upon the presence of any accompanying detectors. For comprehensive information on 

SEC refer to” Size Exclusion Chromatography” by Mori and Barth [3]. 

 
In this study, two SEC setups were employed in the characterization of polymer samples. Both 

systems were maintained at 30 °C with tetrahydrofuran as the mobile phase flowing at a rate of 

1.0 mL/min. The first set up consisted of a Waters solvent delivery system and autosampler 

followed by Viscotek’s quad detector equipped with a UV detector, low- and right-angle laser 

light scattering detectors (LALLS/RALLS), differential refractometer (RI) and viscometer in 

series. One PLgel 10 μm guard column (50×7.5mm, Polymer Laboratories Ltd.) and three HR- 

5E columns (300 ×  7.5 mm, Waters) were used with the detectors. The laser operated at 670 

nm and the light-scattering intensity was measured at 7° (LALLS) and 90° (RALLS) [4]. Data 

analysis for this system was performed using OmniSEC version 3.0 (Viscotek). 

100
ampouleinmonomerofmassinitial

polymerofmass%conversion ×=
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In order to check the reproducibility of the molecular weight analysis, independent replicate 

injections were carried out with a different SEC/GPC setup. The second setup consisted of a 

Waters size exclusion chromatograph equipped with a multi-angle laser light scattering 

(MALLS) detector (DAWN DSP, Wyatt Technology Corp.) followed by a refractive index 

(RI) detector (2410 RI, Waters) in series. This SEC was equipped with one PLgel 10 μm guard 

column (50 ×7.5 mm) and three PLgel 10 μm MIXED-B columns (300 ×  7.5 mm) (Polymer 

Laboratories Ltd.).The DAWN DSP laser operated at 633 nm and the light-scattering intensity 

was measured at 18 angles between 14 and 152°. Molecular weights were determined using 

Astra version 4.7 software (Wyatt Technology Corp.). 

 
The polymer was dissolved in THF to obtain concentrations of ~0.2 wt% and the injection 

volume varied between 100 and 200 μL [5]. Prior to injection, polymer solutions were filtered 

through a 0.45 μm filter to remove any insoluble gels, if present. The second virial coefficient 

for the light-scattering equation was assumed to be negligible as very low concentrations of 

polymer were employed. The specific refractive index increment (dn/dc) value of 0.185mL/g 

was used in the light scattering analysis for polystyrene (PS).  
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CHAPTER 4 – RESULTS AND DISCUSSION 

 
4.1  Design and Summary of Experiments 

 
In order to maximize the information content and be able to draw valid conclusions from 

experimental work, it is crucial to have a reasonable experimental design.  Thus, it was 

important to run experiments over a range of operating conditions, which include: the full 

conversion range, at least two different temperatures, and several [TEMPO]/[BPO] molar 

ratios. 

 
The details of experiments conducted are summarized in Table 4.1. It had been shown in the 

literature that in order to have TEMPO act efficiently as a mediator, the polymerization 

temperature should be sufficiently high, at least 115 °C [1].  Therefore, experiments were 

carried out at two different temperatures (120, 130 °C). 

 
The molar ratio of TEMPO to BPO affects both the reaction rate and the polydispersity. It has 

been shown in the literature that typical [TEMPO]/[BPO] ratios are from about 0.5 to 2  [1, 2] 

.It has also been found that in order to maintain the characteristics of controlled 

polymerization, the [TEMPO]/[BPO] ratio cannot drop below 0.5. On the other hand, excess 

amounts of nitroxide in the system will slow down the polymerization rate to impractical 

values. These observations motivated our studies, to explore the influence of [TEMPO]/[BPO] 

ratio on polymerization rate and molecular weights and thus, find a region in which we have 

optimal conditions with respect to productivity (rate) and quality (molecular weights). A series 

of styrene polymerizations were performed varying the TEMPO to BPO ratio from 0.9 to 1.5 

and the results are shown in section 4.3.1.  It can be seen in the third column of Table 4.1 that 

the initial initiator concentration (benzoyl peroxide; BPO) was kept constant for runs 1-4 and 

8-10, at 0.036 M (1 wt% with respect to monomer), while TEMPO concentration was changed 

to give different TEMPO/BPO molar ratios. 

 
To investigate the contribution of thermal self-initiation of styrene in NMRP, runs were 

performed in the absence of initiator (BPO) at both temperatures (runs 6, 12). As a control, 



 45

thermal (self) initiation of styrene in the absence of both nitroxide and initiator was performed 

at both temperatures (runs 5, 11). The results are discussed in section 4.4. 

Finally, an additional run (run # 7) was conducted in the presence of a unimolecular initiator. It 

was instructive to compare the unimolecular initiation with the corresponding bimolecular 

initiating systems. The results are presented in section 4.5.  

 
It is important to make sure that the experimental data obtained are reliable and error in each 

section of the experiment is at a minimum. To do so, individual ampoule replicates were taken 

out of the oil bath at specific times to check the sampling error. In addition, in order to check 

the reproducibility of data, completely independent replicates were conducted for runs 2, 7, 9, 

10 and 12. Reliability of molecular weight measurements was checked by running GPC 

replicates at different times. In addition, during GPC analysis, two independent injections were 

done for every sample. Molecular weight values plotted in subsequent figures are averages 

from these two injections. Tables A.1 to A.26 in Appendix A cite the raw data for monomer 

conversion, average molecular weights and polydispersity for the figures used in this chapter.  

 
Table 4.1 Summary of experimental runs 
Experiment 

# 
Temperature 

(°C) 
[BPO]0 

M 
[TEMPO] 

/ [BPO] 
 

Remarks 
 

1 0.036 0.9  

2 0.036 1.1 + Replicate 

3 0.036 1.2  

4 0.036 1.5  

5 Nil - Thermal (self) initiation of 
styrene 

6 Nil - Styrene with TEMPO only 

7 

120 

Nil - Styrene with unimolecular 
initiator 

+ Replicate 
8 0.036 0.9  

9 0.036 1.1 + Replicate 

10 0.036 1.3 + Replicate 

11 Nil - Thermal (self) initiation of 
styrene 

12 

130 

Nil - Styrene with TEMPO only  
+ Replicate 
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4.2  Typical Styrene Reaction Profiles in NMRP 

 
Styrene polymerizations in the presence of TEMPO and a conventional initiator (bimolecular 

NMRP) have been studied for a number of years. Georges et al. [1] initiated these 

investigations and have since produced many studies examining specific aspects of NMRP 

(See Table 2.3). However, despite the numerous studies carried out, the existing experimental 

studies are still limited, conducted over a narrow range of reaction conditions that can not 

reliably be used as a base for comprehensive kinetic modeling studies. 

 
Figure 4.1 shows conversion vs. time for nitroxide-mediated radical polymerization (NMRP) 

of styrene at 120°C with TEMPO to BPO molar ratio of 1.1:1 (R = [TEMPO] / [BPO] = 1.1). 

The data are quite distinct from those seen for regular free radical polymerization of styrene at 

these temperatures, the most obvious feature being that the reaction rate is relatively slow. In 

typical free radical polymerization of styrene, complete conversion is essentially achieved after 

5 hrs [3], whereas for the NMRP reaction, due to the presence of TEMPO as the mediator, only 

about 30% conversion was achieved in that time.  

 
An independent replicate run was conducted to obtain an idea of the reproducibility of our 

data. It can be seen that data from the two experiments agree very well and the standard error 

in conversion measurements is ~ 1.5%, showing good reproducibility. For detailed error 

measurements see Table A.27 in Appendix A. 

 
Figure 4.2 shows a linear relationship between logarithmic monomer concentration and time 

which is characteristic of a living system (the slope in the first order kinetic plot is the product 

of rate constant of propagation and the concentration of growing radicals, [R•]; linear kinetic 

plots indicate a rather constant value of [R•]). It is observed that the living behavior seems to 

be gradually lost after about 20 hrs (corresponding to about 75% monomer conversion in 

Figure 4.1). After that time, there is some tailing off in rate as the monomer is depleted. As 

discussed in subsection 2.1.2, radicals are lost in termination reactions at higher conversions. 

Since [R•] drops, the rate of deactivation dominates over propagation and the discrepancy from 

linearity is observed. This behavior again is quite different from the regular free radical 
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polymerization in which acceleration in rate at some point in the low or intermediate 

conversion ranges is observed that is related to diffusional effects in the reaction.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.1 Monomer conversion vs. time for NMRP of styrene at 120°C and R = [TEMPO]/[BPO] = 1.1  
(Run #2 ) 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 First order rate plot for NMRP of styrene at 120°C and R= [TEMPO]/[BPO] = 1.1 
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Average molecular weight data, Mn and Mw, are shown in Figure 4.3. A linear relationship 

with conversion is observed up to about 80% monomer conversion, which serves as another 

indicator of living/controlled behavior of the polymerization system. This behavior is again 

quite different from regular radical polymerization, in which the molecular weights of the 

polymer are independent of conversion. Polydispersities (PDI) vs. conversion are illustrated in 

Figure 4.3 as well. As can be seen the polydispersity values vary in the range of 1.05 to 1.2, 

which is well below the typical values for regular free radical polymerization (~2, and above). 

Run # 2, NMRP of styrene at 120°C with TEMPO to BPO molar ratio of 1.1:1, will act as the 

base case for TEMPO/BPO ratio comparisons at 120°C in the next section (4.3.1) 

  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 

 

 

Figure 4.3 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 120°C and 

 R= [TEMPO]/[BPO] = 1.1 
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4.3  Bimolecular NMRP 

 
Figure 4.4 shows the basic steps during the bimolecular nitroxide-mediated radical 

polymerization of styrene in the presence of TEMPO as the nitroxide radical and benzoyl 

peroxide (BPO) as the radical initiator (see section 2.2.2.1). The first step is thermal 

decomposition of BPO into benzoyloxy primary radicals with high reactivity (1), which initiate 

the polymerization of styrene by attacking the carbon- carbon double bond (2). Radicals with 

chain length unity will then propagate (3) until they are trapped by TEMPO radicals.  The 

TEMPO radical makes a labile bond (C–O) with the radical chain, leading to the formation of 

alkoxyamines in situ. As it was mentioned in section 2.2.2.1, the C–O bond is relatively weak 

at temperatures greater than 100 °C so it reversibly dissociates, establishing the activation-

deactivation equilibrium between dormant and active chains (4). 

 
As mentioned in Chapter 2, the core reaction in NMRP is the equilibrium between active and 

dormant species. [TEMPO]/ [BPO] ratio and temperature are the factors which influence the 

equilibrium. [BPO] dictates the concentration of active radicals early in the reaction while 

TEMPO influences the concentration of dormant species; so obviously [TEMPO]/ [BPO] ratio 

is a leading factor in guiding the equilibrium. Ximenes et al. [4] and Bonilla et al. [5] cite the 

rate constants, ka and kd, as functions of temperature; as a result, temperature is the main factor 

influencing the equilibrium by affecting the individual rate constants for the equilibrium 

reaction. Effects of [TEMPO]/[BPO] ratio and temperature on molecular weights and 

polymerization rate are discussed in section 4.3.1 and 4.3.2, respectively. 
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Figure 4.4 Bimolecular NMRP of styrene in the presence of TEMPO and BPO 
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4.3.1 Effect of [TEMPO]/[BPO] Ratio 

 
Figure 4.5 shows the effect of decreasing the [TEMPO]/[BPO] ratio (R), on rate of 

polymerization, illustrated as ln [M]0/[M] vs. time. As can be seen, decreasing the ratio from 

1.1 (our base case) to 0.9, increases the rate of polymerization. Figure 4.6a shows that 

decreasing the ratio results in higher initial concentration of living radicals. Since the TEMPO 

concentration is lower at [TEMPO]/[BPO] = 0.9, free radicals cannot all be trapped by 

TEMPO leading to a decrease in dormant radical concentration in comparison to ratio 1.1 (See 

Figure 4.6c). Propagation occurs mainly as in the regular radical polymerization for R = 0.9, 

resulting in an increase in dead polymer concentration compared to R = 1.1 (See Figure 4.6b). 

So far, we have established that for R = 0.9, relative to R = 1.1, the dead polymer concentration 

(Figure 4.6b) is higher, the dormant radical concentration (Figure 4.6c) is lower, and the living 

radical concentration (Figure 4.6a) is much higher initially. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.5 Effect of decreasing [TEMPO]/[BPO] ratio (R), on rate of polymerization in NMRP of styrene at 
120°C 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                        b) 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 Simulated concentrations of: living radicals (a), dead polymer (b), and dormant radicals (c) vs. 
conversion for [TEMPO]/[BPO] = 0.9 and 1.1 at T = 120°C 
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Let’s now digress a bit and refer to Chapter 5, Eq. 5.26 (the same arguments will hold for Eq. 

5.25). It is evident from Eq. 5.26 that if we show that the numerator of the equation is higher 

for R = 0.9, then we would expect that the weight average molecular weight for R = 0.9 should 

be higher (than R = 1.1). Careful scrutiny of Eq. 5.26 (along with Figure 4.6) shows that the 

terms that dominate should be δ2 and μ2. From Eq. 5.21, δ2 for R = 0.9 will be higher (than for 

R = 1.1), since the term ka[δ2] is subtracted, and [δ2] is smaller number for R = 0.9 (See again 

Figure 4.6c). In an analogous way, based on Eq. 5.24, μ2 for R = 0.9 will have the tendency to 

be similar or higher (at least initially, due to larger [λ] values; See Figure 4.6a). Hence, the 

weight average molecular weight (and similarly, the number average molecular weight) will be 

higher for R = 0.9 than R = 1.1.  

 
This is exactly what we have observed experimentally: both weight and number average 

molecular weights are higher at [TEMPO]/[BPO] = 0.9, as shown in Figures 4.7 and 4.8, 

respectively. Both number and weight average molecular weights increase linearly at 

[TEMPO]/[BPO] = 0.9, showing that polymerization is still controlled at this condition after 

the initial reaction period. Selective GPC replicates were carried out to check the accuracy of 

molecular weight measurements at low and high conversions. As can be seen, the results are 

relatively reproducible. However, it seems that the error in GPC measurements is lower at 

higher molecular weights. The corresponding conversion vs. time plot is shown in Figure B.1 

in Appendix B. 
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Figure 4.7 Effect of [TEMPO]/[BPO] ratio (R), on weight average molecular weights in NMRP of styrene at 
120°C 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Effect of [TEMPO]/[BPO] ratio on number average molecular weights in NMRP of styrene at 120°C 
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Reducing the [TEMPO]/[BPO] ratio increases the polydispersity at equivalent conversions, for 

example, from 1.12 at TEMPO/BPO = 1.1 to 1.35 at R = 0.9 at ≈ 40% conversion (see Figure 

4.9). Due to the decrease in TEMPO concentration fed to the system and occurrence of “non” 

controlled polymerization in the initial reaction period, more growing polymer radicals are 

produced, thus more termination occurs at the same conversion level and a relatively larger 

fraction of polystyrene (PS) is produced by uncontrolled polymerization (See again Figures 

4.6a and 4.6b). However, as conversion increases, polydispersity values become almost 

identical. For example around 90% conversion, polydispersities are 1.14 and 1.13 for 

TEMPO/BPO 1.1:1 and 0.9:1, respectively. The reason is that as polymerization proceeds and 

most polymer molecules are formed by the controlled process (after the initial phase), the 

fraction of PS produced by uncontrolled process drops and hence over time the cumulative PDI 

decreases. Since the dormant polymer dominates (See Figure 4.6c), eventually PDI values 

become almost identical for both values of R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Effect of [TEMPO]/[BPO] ratio on polydispersity in NMRP of styrene at 120°C 

 
The individual plots for monomer conversion versus time, average molecular weights and 

polydispersity versus conversion for NMRP of styrene at 120°C and [TEMPO]/ [BPO] = 0.9 

can be found in Figures B.2 to B. 4 in Appendix B. 
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Figure 4.10 shows the effect of increasing [TEMPO]/ [BPO] ratio on rate of polymerization, 

shown as conversion vs. time. Increasing the initial TEMPO concentration decreases the rate of 

polymerization dramatically. After 10hrs, monomer conversion was around 20% for 

[TEMPO]/[BPO] = 1.5 while it was 50% for [TEMPO]/[BPO] = 1.1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Effect of [TEMPO]/[BPO] ratio (R), on rate of polymerization in NMRP of styrene at 120°C 
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proceeds but with a slower rate in comparison to ratio R = 1.1 due to the higher concentration 

of dormant radicals present (See Figure 4.11c). The corresponding first order plot is shown in 

Figure B.5 in Appendix B. 
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Figure 4.11 Simulated concentrations of: free 
TEMPO (a), living radicals (b), and dormant radicals 
(c) vs. conversion for [TEMPO]/[BPO] = 1.1 and 1.5 

at T = 120°C 
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Figures 4.12 and 4.13 show the corresponding profiles for number and weight average 

molecular weights, respectively. It is observed that slightly lower average molecular weights 

(Mw and Mn), are obtained when the [TEMPO]/ [BPO] ratio is increased (the explanation is the 

same as discussed earlier for Figures 4.7 and 4.8 for ratios 0.9 and 1.1). As expected for any 

CRP process, molecular weights increase linearly with conversion (the linear increase of 

molecular weights with conversion indicates that the proportion of chains that are self-initiated 

and terminated is low). Again selective independent GPC replicates for ratio 1.5 show good 

reproducibility of average molecular weight measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Effect of [TEMPO]/[BPO] ratio on number average molecular weights in NMRP of styrene at 120°C 
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molecular weights and polydispersity versus conversion for NMRP of styrene at 120°C and 

[TEMPO]/ [BPO] = 1.5 can be found in Figures B.6 to B.8 in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.13 Effect of [TEMPO]/[BPO] ratio on weight average molecular weights in NMRP of styrene at 120°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.14 Effect of [TEMPO]/[BPO] ratio on polydispersity in NMRP of styrene at 120°C 
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Figures 4.15 through 4.18 show the full picture of the effect of [TEMPO]/ [BPO] molar ratio 

on polymerization rate (expressed as conversion versus time), corresponding profiles for 

number and weight average molecular weights and polydispersity (PDI) vs. conversion at 

120°C. As expected, the larger the ratio (the more TEMPO in the recipe), the slower the 

polymerization proceeds (See Figure 4.15). Polymerization rates are quite similar for 

TEMPO/BPO = 1.1 and 1.2. Figures 4.16 and 4.17 show number and weight average 

molecular weights, Mn and Mw. These values, as expected for any CRP process, increase 

linearly with conversion. It can also be observed that higher values of these averages are 

obtained as the [TEMPO]/[BPO] ratio decreases. The differences are smaller at low conversion 

levels but differentiation is clear as conversion level increases. Figure 4.18 shows that the PDI 

values do not show much difference for various ratios. Very low values, between 1.07 and 1.2, 

are obtained. The corresponding first order plot can be found in Figure B.9 in Appendix B. 

Individual plots for monomer conversion versus time, average molecular weights and 

polydispersity versus conversion for NMRP of styrene at 120°C and [TEMPO]/ [BPO] = 1.2 

are also available in Appendix B (Figures B.10 to B.12). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15 Effect of [TEMPO]/ [BPO] ratio on polymerization rate at 120°C 
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Figure 4.16 Effect of [TEMPO]/ [BPO] ratio on number average molecular weight at 120° C 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.17 Effect of [TEMPO]/ [BPO] ratio on weight average molecular weight at 120° C 
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Figure 4.18 Effect of [TEMPO]/ [BPO] ratio on polydispersity, PDI, at 120° C 

 
The experimental data for conversion vs. time, Mn and Mw vs. conversion, and PDI vs. 

conversion for the NMRP of styrene at 130°C and [TEMPO] / [BPO] = 0.9, 1.1 and 1.3 are 

shown in Figures 4.19 to 4.22. The general trends are similar to the ones observed at 120°C, 

accounting of course for the temperature effect. However, the effect of [TEMPO]/[BPO] ratio 

on polymerization rate and molecular weights at 130°C is not as pronounced as it is at 120°C. 

We tried to explain the more pronounced effect of R on rate and molecular weights by 

considering the following group: 

 

                                                                                                                                                 (4.1) 

 
Nomenclature in Eq. 4.1 is the same as in Section 2.2.3.2. Q in Eq. 4.1 is the expression that 

describes the rate of polymerization (under certain special conditions to be discussed below) 

for NMRP. 

 
We plotted Q versus both time and conversion for different values of R at the two different 
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130 °C, then we would be able to explain the experimental observation that the effect of R at 

130 °C is not as pronounced as it is at 120 °C. However, the modeling analysis showed either 

no significant differences or larger differences at 130 °C (opposite to our statement based on 

our experimental results). At this point, one speculation that we could put forward would be 

that maybe there was more experimental error at 120 °C, which made the experimental curves 

at 120 °C look more dispersed than at 130 °C. However, a careful analysis of experimental 

error (based on all data collected at 120 °C and 130 °C and their replicates, as cited in 

Appendix A) showed that the errors at the two temperatures were comparable (in fact, if 

anything, the error was slightly smaller at 120 °C than at 130 °C; for example, for conversion, 

we established an error of 0.02 at 120 °C vs. 0.03 at 130 °C). A second possible speculation is 

related to the derivation of Q in Eq. 4.1 above. Eq. 4.1 assumes that (d[X•]/ dt) is close to zero 

(a common assumption to simplify kinetic model equations; see also subsection 2.2.3.2). 

However, as discussed in detail in Saldivar-Guerra et al. [7], (d[X•]/ dt) should never be 

completely neglected. If neglected during the analysis, considerable error may be introduced 

and hence large changes may be observed in the predicted course of polymerization. This may 

explain why the Q-group of Eq. 4.1 was not able to explain the experimentally observed 

differences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Effect of [TEMPO]/ [BPO] ratio on polymerization rate at 130°C 
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Figure 4.20 Effect of [TEMPO]/ [BPO] ratio on number average molecular weight at 130° C 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Effect of [TEMPO]/ [BPO] ratio on weight average molecular weight at 130° C 

 

The individual plots for monomer conversion versus time, average molecular weights and 

polydispersity versus conversion for NMRP of styrene at 130°C and [TEMPO]/ [BPO] = 0.9, 

1.1 and 1.3 are shown in Figures B.13 to B.19 in Appendix B. 
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Figure 4.22 Effect of [TEMPO]/ [BPO] ratio on polydispersity, PDI, at 130° C 
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They had captured the linear trend of rate of polymerization with time and also shown that as 

[TEMPO]/[BPO] increased from 1.1 to 1.3, rate of polymerization decreased (Figure 4.23a). 

However, their study only captured the first 8hrs of the experiment and low to medium 

conversions (up to 33% and 50% for [TEMPO]/[BPO] = 1.3 and 1.1, respectively). They had 

shown that molecular weights increase linearly with conversion and slightly higher values are 

obtained at [TEMPO]/[BPO] = 1.1 (Figures 4.23c, d). Polydispersity values were higher at 

[TEMPO]/[BPO] = 1.1 and that is in agreement with our studies that as [TEMPO]/[BPO] ratio 

increases, lower polydispersities are obtained (Figure 4.23b).  
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(Figure 4.24a). As can be seen, the minimum value is around ratio 1.2, which is in agreement 

with our studies at 120 and 130°C (See Figure 4.24b, c). The polydispersity versus 

[TEMPO]/[BPO] ratio plots for different conditions (after 10hrs and 20hrs for styrene 

polymerization at 120°C, and after 8hrs and 30hrs for styrene polymerization at 130°C) are 

shown is Figures B.20 and B.21 (Appendix B).  The general trends are the same, namely, the 

optimal operating range to achieve the lowest polydispersity is around [TEMPO]/ [BPO] = 1.1-

1.2. 
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Figure 4.23 Semilog plot of conversion with polymerization time (a), Polydispersity plotted as a function of 
conversion (b), Polymer molecular weights (Mn and Mw) versus conversion (c, d) for bulk polymerization of 

styrene with [TEMPO]/[BPO] = 1.1 and 1.3,  T= 125°C [6, 8] 
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Figure 4.24 Polydispersity as a function of the [TEMPO]/[BPO] ratio for NMRP of styrene: a) after 5 hrs at  

135°C [2], b) at 50% conversion at 120°C, c) at 50% conversion at 130°C 
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Butte et al. [9] have presented the effect of [TEMPO]/[AIBN] ratio on rate of polymerization, 

for NMRP of styrene at 125°C and [TEMPO]/[AIBN] = 1.1, 1.3, and 1.5, as part of their 

kinetic studies on “living” free radical polymerization. Although they have used a different 

initiator (2,2'-Azobisisobutyronitrile; AIBN) from our study, the trends observed are similar. 

As the TEMPO/AIBN ratio increases from 1.1 to 1.5, polymerization rate decreases.  They 

have also captured the induction period for ratio 1.5, which is around 1 hr at their conditions. 

 
Effect of nitroxide/ initiator ratio is an important factor in NMRP systems. Several other 

groups have also investigated the effect of this variable on polymerization rate and molecular 

weights in different systems. Wang et al. [10] have conducted a series of styrene 

polymerizations in a semi batch reactor with various  nitroxide to initiator ratios, using 

Luperox 7M75 as initiator and 4-hydroxy-TEMPO as nitroxide. They illustrated that better 

control of the molecular weight distribution can be achieved by increasing the amount of 

nitroxide used. This benefit unfortunately comes at the expense of a significantly reduced rate.  

 
Styrene polymerization experiments were also carried out by Cuatepotzo-Diaz et al. [11] in 

bulk at 100 and 120°C with BPO or AIBN as initiators and diphenyl-azabutane type nitroxides 

as mediators. Different nitroxide/ initiator ratios (1.5, 1.65, 1.7, 1.75, and 1.8) were evaluated 

at 100°C and the results showed that variation in ratio produces a large difference in the kinetic 

plots and controlled behavior of the system. The corresponding molecular weights and 

polydispersity plots illustrated that the process with nitroxide/ initiator ratio 1.75 leads to the 

optimum results, having a Mn vs. conversion curve closest to the controlled polymerization and 

polydispersity values around 1.4.  

 
Effect of nitroxide/ initiator ratio has also been investigated in NMRP of monomers other than 

styrene [12 - 14]. According to the kinetics of NMRP, the success of systems controlled by 

nitroxides depends on the activation and deactivation rate constants (ka, kd) and on the 

concentrations of active, dormant and nitroxide radicals which are influenced by the nitroxide 

and propagating radical structures, and nitroxide/ initiator ratio, respectively. 
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4.3.2 Effect of Temperature 

 
Figure 4.25 shows the effect of temperature on polymerization rate as indicated by conversion 

vs. time, for [TEMPO]/ [BPO] = 0.9 and 1.1. As expected, polymerization proceeds faster at 

130°C than at 120°C.  The effect of temperature is more pronounced at [TEMPO]/ [BPO] = 1.1 

(Figure 4.25b).  

 
Veregin et al. have illustrated the effect of temperature on rate of polymerization in NMRP of 

styrene at [TEMPO]/[BPO] = 1.1 [8]. In Figure 4.26 data from this group are plotted with the 

experimental data from our lab. The curves are in good agreement with each other; as 

temperature increases from 115 to 135 °C, the polymerization rate increases. It can be seen 

here that the experimental data from Veregin et al. is only capturing the first 8hrs of the 

experiment while our data (Figure 4.25) covers the whole conversion range (up to 72 hrs). 

 

a)                                                                               b) 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 Effect of temperature on rate of polymerization at a) [TEMPO]/ [BPO] = 0.9 b) [TEMPO]/ [BPO] = 
1.1 

 
Figure 4.27 shows profiles for number and weight average molecular weights at 

[TEMPO]/[BPO] = 0.9. A slight reduction in the values of Mn and Mw, with respect to the 

profile obtained at 120°C, is observed at 130° C. In conventional free radical polymerization 

molecular weight decreases due to the increased rate of bimolecular termination when 
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temperature increases, which dominates over the increase of propagation rate. In any CRP 

process, the  effect   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Effect of temperature on rate of polymerization at [TEMPO]/ [BPO] = 1.1 [8] 
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Figure 4.27 Effect of temperature on a) number average molecular weight and b) weight average molecular 
weight at [TEMPO]/ [BPO] = 0.9 
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significant. That is the reason why there is not a significant change in molecular weight vs. 

conversion curve when temperature increases from 120°C to 130°C. Figure 4.28 shows the 

corresponding plots for [TEMPO]/[BPO] = 1.1. The general trends are reasonable and similar 

to the ones observed at [TEMPO]/ [BPO] = 0.9. However, the effect of temperature is more 

prominent at [TEMPO]/[BPO] = 0.9. 

 

a)  b)  

 

 

 

 

 

 

 

 

Figure 4.28 Effect of temperature on a) number average molecular weight and b) weight average molecular 
weight at [TEMPO]/ [BPO] = 1.1 

 

This can be explained based on the polymerization degree (run length; see also Wang et al. 

[10]). As shown in Eq. 4.2, Run Length per Activation Cycle (RLPAC) is calculated as the 

ratio of propagation rate over deactivation rate (nomenclature in Eq. 4.2 is the same as 

described in section 2.2.3.2). 

 
 

(4. 2) 
 
 
Figure 4.29, illustrates RLPAC at R = 0.9 for two different temperatures. Comparing this 

figure with its counterpart at R = 1.1 (Figure 4.30) shows that the effect of temperature on 

RLPAC is more pronounced at R = 0.9. According to Wang et al. [10], RLPAC represents the 
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almost the same for both cases). This could be the explanation for a more pronounced 

temperature effect at R = 0.9 (contrast again Figures 4.27 and 4.28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 Effect of temperature on RLPAC at [TEMPO]/ [BPO] = 0.9 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 Effect of temperature on RLPAC at [TEMPO]/ [BPO] = 1.1 
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Figure 4.31 shows the effects of temperature on polydispersity for [TEMPO]/[BPO] = 0.9 and 

1.1. Although slightly higher polydispersity values are obtained at lower temperature (120°), in 

general the effect of temperature is not prominent on polydispersity values.  

 
 

a) b) 

 

 

 

 

 

 

 

 

 

Figure 4.31 Effect of temperature on polydispersity at a) [TEMPO]/ [BPO] = 0.9 and b) [TEMPO]/ [BPO] = 1.1 

 

Veregin et al. have conducted experiments for [TEMPO]/ [BPO] = 1.1 at 115, 125 and 135°C 

[6]. In Figure 4.32 the polydispersity data from this group is plotted vs. conversion in the same 

plot with the experimental data from our lab. It can be seen that the experimental data obtained 

from Veregin et al. show higher polydispersity values in comparison to our experimental data. 

The reason could be related to the different polymerization and/or measurement methods used. 

It has been shown that using different polymerization methods can affect polymerization rate, 

molecular weights and polydispersity experimental data [15]. Veregin et al. had used a round 

three necked flask under argon or nitrogen blanket, and had withdrawn samples with a pipette 

[16] while in our lab polymerization had been carried out in ampoules (See Chapter 3; polymer 

synthesis). Studies have shown that faster polymerization rates, lower molecular weights and 

more scattered polydispersity values are obtained using Schlenk techniques for polymerization 

(which is very similar to the method used by Georges et al.) in comparison to ampoule 

polymerization [15].   
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Figure 4.32 Effect of temperature on polydispersity at [TEMPO]/ [BPO] = 1.1 [6] 

 

Becer et al. [14] have used automated parallel synthesizers to optimize the polymerization 

temperature and nitroxide concentration in homopolymerization of styrene and tert-butyl 

acrylate. Their objective has been to improve the control over the polymerization while 

reasonable polymerization rates were retained. They have used a (SG-1)-based alkoxyamine 

initiator (MAMA) at 90, 100, 110, 115, 120, 125, and 130 °C. Higher polymerization rates 

were achieved for styrene with the elevated reaction temperatures. The semilogarithmic first 

order kinetic plots for polymerization of styrene at different temperatures illustrated linear first 

order behavior for all polymerization temperatures. The number average molecular weights 

were generally close to each other at temperatures between 110-125 °C while these values 

were lower for the polymerizations at 90 and 100°C. Although increasing the reaction 

temperature will increase the rate of polymerization, however this increase should be provided 

without loss of control over the polymerization. They showed that in the case of 

polymerization of styrene with MMA at 130°C, the molecular weights were not increasing in a 

controlled fashion and polydispersity values higher than 1.4 were obtained. They indicated that 

the loss of control is most likely due to a combination of increase in termination reactions and 

self initiation of styrene. 
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Sciannamea et al. [17] have investigated the effect of temperature in polymerization of styrene 

in the presence of C-phenyl-N-tert-butylnitrone (PBN) and 2,2- azobis(isobutyronitrile) 

(AIBN). The polymerizations had been carried out at 90, 100, 110 and 120 °C with PBN/AIBN 

= 2. The semilogarithmic first order kinetic plots at different temperatures illustrated linear first 

order behavior except at 90°C in which the monomer consumption is not ideally linear along 

the polymerization time. In their experiments effect of temperature on number average 

molecular weights is not pronounced; the same linear evolution of molecular weight with 

conversion is observed whatever the temperature (of course within experimental error).   

 
Effect of temperature on NMRP of monomers other than styrene has also been investigated by 

different groups. For instance, Ding et al. have examined the influence of temperature on the 

NMRP of 3-vinylpyridine (3VP) using TEMPO as mediating nitroxide and BPO as initiator  at 

110, 125 and 138 °C [12]. They have shown that a decrease in temperature induces a decrease 

in the slope of the plot of ln ([M]0/ [M]) versus time. Plots of Mn versus conversion are straight 

lines, therefore it can be inferred that the polymerization of 3VP is controlled.  
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4.4  Contribution of Thermal Self-Initiation of Styrene 

 
Since nitroxide-mediated radical polymerization (NMRP) of styrene is typically conducted at 

temperatures higher than 100°C, the contribution of thermal self-initiation to the outcome of 

the polymerization process is of considerable interest. 

 
Georges et al. [16] had reported experimental work showing that thermal self-initiation of 

styrene is suppressed in the presence of nitroxide radicals and benzoic acid (BA; a byproduct 

of the reaction between TEMPO and the BPO initiator). They demonstrated that in the 

presence of BA, thermal self-initiation should not be a concern for the NMRP of styrene if the 

reaction is completed in less than about 15hrs. Subsequently, the same group conducted 1H 

NMR analysis of low molecular weight resins initiated by BPO in the presence of TEMPO, 

and the results showed a one to one ratio between benzoyloxy-initiating fragments on one end 

and nitroxide fragments on the other [18]. The outcome implied that the majority of chains 

were initiated by the initiator species and are not produced as a result of thermal self-initiation.  

 
By contrast, other researchers reported that the thermal initiation plays a key role in 

maintaining a reasonable polymerization rate in NMRP systems. Fukuda et al. [19] have 

conducted  bulk polymerization of styrene at 125°C in the presence of a PS-TEMPO adduct 

and predicted that the polymerization rate of the NMRP system is independent of the adduct 

concentration, and equal to the polymerization rate of the adduct-free system, i.e., the rate of 

thermal self-initiation of styrene. Almost at the same time, Fischer [20], Greszta et al. [21], and 

Devonport et al. [22] confirmed that the propagation rate of styrene is independent of the 

concentration of PS-TEMPO adduct and it rather closely follows the rates observed in pure 

thermal self-polymerization of styrene.  

 
It is apparent from above that the role of thermal initiation in NMRP systems has been a rather 

controversial issue. To clarify this matter, thermal self-initiation of styrene has been carried out 

at our operating temperatures (See section 4.4.1) and the results have been compared to NMRP 

of styrene in the presence of TEMPO (See section 4.4.2) and also to NMRP of styrene with 

both unimolecular and bimolecular initiators (See section 4.5.2).  
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4.4.1 Polymerization of Styrene 

 
The thermal self-initiation of styrene has been studied extensively and is generally accepted to 

occur according to the Mayo mechanism [23] outlined in Figure 4.33. As proposed by Mayo, 

the thermal initiation of styrene involves a reversible reaction between two styrene molecules 

to form a Diels-Alder adduct (D), followed by reaction of D with a styrene molecule to form 

two benzylic radicals, •
1M  and •

2M , that can add monomer to initiate polymerization. k1 (L.mol-

1. s-1) is the rate coefficient for dimerization; k-1 (s-1) is the rate coefficient for dimer 

decomposition, and ki (L.mol-1.s-1) is the thermal initiation rate coefficient. Hui et al. [24] have 

shown that the rate of polymerization in thermal self-initiation of styrene is proportional to the 

third power of monomer concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Thermal self-initiation of styrene 

 
Since styrene self-initiation plays an important role in NMRP of styrene it was worthwhile to 
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added initiator (BPO) or nitroxide mediating agent (TEMPO). Figure 4.34 shows conversion 

versus time plots. As can be seen conversion reaches ≈ 40% after 3 hrs at 130°C while it takes 

4.5 hrs at 120°C. These results are consistent with the literature. Gao et al. [25] cite 

experimental data that show that monomer conversion for styrene thermal self-initiation 
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reaches 40% conversion after 5 hrs at 120°C; also, conversion reaches 94% after 30 hrs while 

our conversion reached 92% in the experiment at 120°C. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 Monomer conversion vs. time for thermal self-initiation of styrene at T = 120 and 130°C 

 
It can be seen in Figure 4.35 that molecular weights and polydispersities stay relatively 

constant with conversion, as observed in previous studies [24, 25]. Number average molecular 

weights are in the range of ≈ 200,000- 300,000 at 130°C while these values are higher at 

120°C. Weight average molecular weights are in the order of 400,000 at 130°C while these 

values reach up to 500,000 at 120°C. Polydispersity values for both temperatures are between 

1.6 - 1.8 at low to medium conversions while these values are around 2.2 at near 100% 

conversion.  
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styrene. Further comparisons between styrene self-initiation and styrene NMRP are discussed 

in the following subsection.  

                     a) 
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Figure 4.35 Average molecular weights and polydispersity vs. conversion for thermal self-initiation of styrene at 
a) T = 130°C, b) T = 120°C 
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4.4.2 Polymerization of Styrene with TEMPO 

 
As discussed in the previous section, styrene-based monomers at elevated temperatures exhibit 

thermal self-initiation. Significant formation of thermally initiated radicals is undesirable and is 

one main source for deviations from ideal controlled polymerization when bimolecular or 

unimolecular initiating systems are employed in NMRP. However, the presence of thermal 

self-initiation is important because it continuously generates radicals to compensate for the loss 

of radicals due to termination reactions, and thereby helps maintain a reasonable reaction rate.  

In addition, radicals produced through styrene self-initiation could be captured by added 

nitroxides to give “in situ” unimolecular initiators. So the question arises: would it be possible 

to conduct “controlled” free radical polymerization in the absence of added initiating systems, 

relying only on added nitroxide radicals to mediate the polymerization? 

 
Preliminary work in thermal self-initiation of styrene in the presence of TEMPO has been 

reported almost simultaneously by Georges et al. [16] and Matyjaszewski et al. [26, 27]. 

Different results were obtained, with one group reporting polydispersities of 2 – 2.5 [16] , 

while under similar conditions the other group obtained polymers with polydispersities in the 

range of 1.2 – 1.3 [26, 27]. Subsequently, Devonport et al. [22] revisited the thermal initiation 

of styrene in the presence of TEMPO at 125°C. They showed that low polydispersities and 

controlled molecular weights can be achieved under these conditions, although the degree of 

control was not as great as for unimolecular or bimolecular initiating systems.  

 
In 1999, Boutevin et al. [28] conducted a detailed kinetic study on thermal polymerization of 

styrene with TEMPO at 120°C. They confirmed that controlled molecular weights and low 

polydispersities were obtained; however, they demonstrated that at the end of polymerization, 

the concentration of macromolecular chains (here, “macromolecular chains” includes the 

dormant and living radicals) is higher than the free TEMPO concentration and as a main 

consequence not all macromolecular chains are controlled by nitroxide radicals, and hence 

polymerization is not controlled. They also showed that the rate of radical formation is 

proportional to the initial TEMPO concentration. 
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Pan et al. [29] have studied thermal self-initiation of styrene in the presence of TEMPO in 

miniemulsion and compared it to the corresponding bulk systems.  The length of the induction 

period was found to increase linearly with increasing TEMPO concentration. Nearly identical 

relationships between the length of the induction periods and the initial TEMPO concentrations 

were found for the miniemulsion and corresponding bulk systems. Faster initial polymerization 

rates after the induction period were found in bulk polymerizations than in the subsequent 

miniemulsion polymerizations. This difference was explained to result from different thermal 

initiation efficiencies in different media.  

 
More recently, Saldivar-Guerra et al. [30] conducted thermal polymerization of styrene with 

TEMPO at 120-125°C and moderate TEMPO concentrations (0.02-0.08M). They discussed the 

reaction mechanism in detail in thermal NMRP of styrene in the presence of different 

concentrations of TEMPO. Their mathematical simulations show that from the induction 

period to the polymerization regime, there is an abrupt change in the dominant mechanism for 

generating radicals, mainly due to the sudden decrease in the nitroxide radicals and the relative 

magnitude of the relevant kinetic rate constants.  

 
In this work, thermal self-initiation of styrene was conducted in the presence of TEMPO at 120 

and 130°C (Table 4.1, runs #6, 12). Typical trends for polymerization rate, molecular weights 

and polydispersity are shown. The results are further compared with regular thermal 

polymerization of styrene and bimolecular NMRP at the same conditions. Finally, the effect of 

temperature on polymerization rate, induction period, molecular weights and polydispersity is 

discussed.  

 
Figure 4.36 shows the kinetic scheme for thermal polymerization of styrene with TEMPO 

suggested by Saldivar-Guerra et al. [30]. As discussed in the previous subsection, the 

spontaneous generation of radicals from styrene involves an initial Diels-Alder reaction 

between two molecules of styrene. This gives the Mayo adduct (1), which undergoes a 

homolysis reaction with another molecule of styrene to give radicals (2, 3). Under normal 

thermal polymerization conditions, 2 and 3 would initiate uncontrolled polymerization, leading 

to high molecular weight and high polydispersity polystyrene as shown in previous studies and 

also in Figure 4.35. In the presence of nitroxides however, the opportunity exists to control this 
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thermal polymerization by either reaction of 2 and 3 with TEMPO to give the alkoxyamines 4 

and 5 or direct reaction between Mayo adduct (1) and TEMPO to form initiating radical (2) 

and hydroxylamine (6). The initiating radical (2) is further trapped by TEMPO to yield 4.  

 
Another reaction that can produce radicals and consume TEMPO is addition of either 

hydroxylamine (6) or TEMPO to styrene to give radical product 7, which can further react with 

another TEMPO radical to yield a bis-TEMPO adduct, 8. However, Devonport et al. [22] and 

Saldivar-Guerra et al. [30] have shown that under typical polymerization conditions, the 

concentration of TEMPO is low and therefore the formation of 8 would be expected to be less 

favored, thus 4 and 5 are considered as major products in styrene thermal self-initiation in the 

presence of TEMPO. Of course, other reactions like propagation, reversible capping of 

growing radicals by TEMPO, and irreversible termination can also be present in these systems 

(See Figure 4.36) 

 
In Figure 4.37, case a shows conversion vs. time for thermal self-initiation of styrene in the 

presence of TEMPO at 130°C. The initial TEMPO concentration was chosen to be 0.0396M, 

the same as the concentration levels used earlier in the base case run of TEMPO/BPO = 1.1, in 

order to establish a good comparative basis (comparisons will be presented later in this 

subsection). Independent replicates were carried out to check for reproducibility; as can be 

seen there is good agreement between individual replicates (see triangular points vs. circles of 

case a). The reaction rate is significantly low (after 64hrs the monomer conversion was 85%). 

This behavior is dramatically different from that observed for thermal polymerization of 

styrene (see curve b of Figure 4.37). As can be seen, adding TEMPO to the system decreases 

the polymerization rate dramatically; the rate of styrene thermal polymerization is five times 

faster in the absence of TEMPO nitroxide. As discussed earlier (see comments on Figure 4.36), 

the polymerization mechanism for thermal NMRP is no longer controlled by the thermal 

radical generation but is dominated instead by the nitroxide equilibrium and that can be the 

reason for the dramatic difference observed in Figure 4.37 between cases a and b.  
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Figure 4.36 Main kinetic scheme for thermal polymerization of styrene with TEMPO[30] 

C  

n

 

O  N
O

N

n

 

+ k d

k a

C  

n

 

C  

n

 

+
k t

Dead Polymer

CH   
CH   

C  

n

 

O  N O

N

O  N

CH   

O NH

O  N

O
N

O
N

O
N

O  N

O

N

C  

n

 

O
N

C  

+
k -1

k dim

+

+

+

+

+

1

2
3

4 5

+

2

+

6

+

7

+

4

+

8



 84

There is an apparent induction period observed for thermal NMRP (See Figure 4.37, case a), 

which lasts around 3.5 hrs at these conditions. As also observed by other researchers [22, 27 - 

30], styrene/ TEMPO polymerization mixtures show a definite incubation period, during which 

polymer formation could not be detected. The reason for this observed behavior is that the 

radicals generated spontaneously by thermal self-initiation of styrene are trapped by TEMPO 

in the initial stages of the reaction to give “in situ” generated unimolecular initiators. In the 

presence of excess TEMPO, these initiators do not lead to significant amounts of 

polymerization and an induction period is observed. However, when the excess TEMPO is 

consumed, and a sufficiently large concentration of radicals is formed, polymerization can 

proceed further (but at a significantly lower rate overall). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 Monomer conversion vs. time for: a) thermal polymerization of styrene in the presence of TEMPO 
with [TEMPO]0 = 0.0396 M b) thermal styrene, at 130°C 

 

It has been shown experimentally by Matyjaszewski et al. [26] and Devonport et al. [22] that 

the length of this incubation time depends on the amount of TEMPO present in the 

polymerization mixture, with  increasing amounts of TEMPO leading to longer incubation 

times. The simulation work by Saldivar-Guerra et al. [30] confirms these results. Saldivar-

Guerra et al. [30] showed that this induction period, tind, is proportional to initial TEMPO 
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(4.3)                         

 

kdim is the kinetic rate constant for dimerization which is 2.51× 104 exp[-93,500/(RT)] L.mol-

1.s-1 (R is the universal gas constant in J mol-1 K-1; T is temperature in K) [30]. The value of tind 

calculated from Eq 4.3 is around 4 hrs at 130°C, which is close to the induction period 

observed experimentally (t ≈ 3.5 hrs).  

 
Figure B.22 in Appendix B illustrates the corresponding conversion versus time plot for 

thermal NMRP at 120°C and [TEMPO]0 = 0.0396 M. In order to check once more the 

precision of our experimental data, the experimental data from Saldival-Guerra et al. [30] with 

different initial TEMPO concentrations (but at the same temperature) are plotted in Figure 

B.22 and as can be seen there is good agreement between the two laboratories. 

 
Figure 4.38 shows the average molecular weights and polydispersity vs. conversion for thermal 

self-initiation of styrene in the presence of TEMPO at 130°C. It can be seen that both weight 

and number average molecular weights increase in a linear fashion until 20-30% conversion 

but deviate from linearity after that stage, with number average molecular weights reaching a 

plateau at higher conversions.  Comparing this figure with Figure 4.35 (average molecular 

weights for thermal styrene), one can see the effect of TEMPO on molecular weights. As can 

be seen, adding TEMPO in the system decreases the molecular weights dramatically. In 

addition, molecular weights behave in a controlled manner (up to 20-30% conversion) in the 

presence of TEMPO. 

 
Various groups in the literature like Matyjaszewski et al. [26] and Devonport et al. [22] had 

previously shown that number average molecular weights increase in an almost linear fashion 

with conversion through the whole conversion range. On the contrary, Boutevin et al. [28] had 

shown that the Mn dependence versus conversion is not linear for conversions higher than 40-

50%. Our observations disagree with those of the former groups and are closer to those of the 

latter. 

 
Figure 4.38 also shows polydispersity values for thermal NMRP that are lower than 1.4. Again, 

by comparing with Figure 4.35a (polydispersity for regular thermal polymerization) it can be 

)]M[(2k]•N[=t 2
0dim0ind
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concluded that preparation of polymers with relatively low polydispersities is possible with 

styrene thermal polymerization in the presence of TEMPO.  However, polydispersities are not 

as low as the ones observed in bimolecular NMRP (See Figure 4.41c) and an increase of this 

factor with conversion can be noticed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 Average molecular weights and polydispersity vs. conversion for thermal polymerization of styrene 
in the presence of TEMPO at 130°C and [TEMPO]0 = 0.0396 M 

 
As explained previously in Chapter 2, the ideal controlled radical polymerization with a linear 

relationship between the average molecular weights and conversion, and low polydispersity 

values, is achievable only under a fast initiation step. In purely thermal NMRP however, the 

initiation of chains is slow, with more chains being formed near the start of reaction because 

the concentration of monomer is higher at the start of reaction. According to Zhu [31], at a low 

initiation rate, radicals born earlier experience much longer periods of chain growing than the 

later-born radicals and thus have higher molecular weights. In particular, those radicals born at 

the final stage of polymerization form short-chain oligomers that dramatically increase the 

polydispersity. This statement can be confirmed by Figure 4.39, which illustrates size 

exclusion chromatographs for regular thermal polymerization and thermal NMRP at 50% 

conversion. As can be observed, there is a pronounced tailing at lower molecular weights for 

thermal NMRP (case b). This low molecular weight tail is believed to be due to polymer 
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chains formed by continued thermally initiated polymerization throughout the complete 

reaction period, as well as minor amounts of termination products [16, 22]. In general, Figure 

4.39 shows that there is certainly a significant reduction in polydispersity for thermal 

polymerization with TEMPO, compared to regular thermal styrene polymerization (case a).  

 
 

 

 

 

 

 

 

 

 

Figure 4.39 Comparison of SEC Chromatograms for a) Styrene thermal polymerization b) Styrene thermal 
polymerization in the presence of TEMPO, at 50% conversion and 130°C 

 
Increase of polydispersity values with conversion for thermal NMRP has also been reported in 

the literature [27, 28]. According to Matyjaszewski et al. [27], this result could be due to the 

competition between degeneration transfer and bimolecular termination reaction as shown in 

Figure 4.40. Li et al. [32] and Ding et al. [12] have linked the increase of polydispersity with 

conversion to side reactions and particularly to the irreversible decomposition of the terminal 

C-TEMPO bond, which inevitably occur through the polymerization, reducing the efficiency 

of TEMPO and thus broadening the molecular weight distribution. 

 
Figure B.23 in Appendix B has two plots that show the corresponding average molecular 

weights and polydispersity vs. conversion for thermal self-initiation of styrene in the presence 

of TEMPO at 120°C. The general trends are the same as the ones at 130°C (See Figure 4.38). 

Molecular weights increase linearly with conversion only up to 30%. Polydispersity values 

increase with conversion and values lower than 1.4 are obtained. A comparison between rates 

of polymerization for thermal NMRP and regular thermal polymerization of styrene at a 

different temperature (120°C) are shown in Figure B.24. The results are the same as in Figure 

4.37; rate of polymerization is dramatically decreased in the presence of TEMPO. Figure B.25 
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in Appendix B shows the size exclusion chromatographs for regular thermal polymerization 

and thermal NMRP at 50% conversion at 120°C. As in 130°C, there is certainly a significant 

reduction in polydispersity for thermal polymerization with TEMPO. The presence of a 

pronounced tailing at lower molecular weights for thermal NMRP is also observed at 120°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40 Degenerative transfer process for bulk polymerization of styrene in presence of TEMPO [27] 

 
Figure 4.41 compares the polymerization rates, molecular weights and polydispersities for 

thermal NMRP in the absence of initiator  with NMRP of styrene with [TEMPO]/[BPO] = 1.1. 

As can be seen, the rate of polymerization is dramatically slower in the absence of initiator. 

Number average molecular weights are comparable up to 40% conversion, whereas after that 

point there is a plateau for thermal NMRP while molecular weights increase linearly for 

NMRP with BPO. Figure 4.41c compares polydispersity values; as can be seen, polydispersity 

values decrease with conversion for NMRP with BPO, approaching values around 1.2, while 

PDI values increase with conversion for thermal NMRP.  As explained before, this is due to 

the slower rate of polymerization in thermal NMRP. Our results are not in agreement with 

Devonport et al. [22], who stated that the rate of polymerization in nitroxide-mediated thermal 

polymerization of styrene will eventually be the same as the rate for normal nitroxide-mediated 

polymerizations after the incubation period, and  controlled molecular weights and low 
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polydispersities can be prepared in the absence of initiator by only the thermal polymerization 

of styrene in the presence of TEMPO.  

a)         b) 
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Figure 4.41 Comparison between thermal NMRP and NMRP with [TEMPO]/[BPO] = 1.1 at 130°C and 
[TEMPO]0 = 0.0396 M 

 
Comparisons between thermal NMRP in the absence of initiator (BPO) with NMRP of styrene 

with [TEMPO]/[BPO] = 1.1 at a different temperature (120°C) can be found in Figures B.26 

and B.27 in Appendix B. The general trends are the same as 130°C; namely, rate of 

polymerization is slower in thermal NMRP in comparison to bimolecular NMRP with R = 1.1, 

molecular weights are comparable but not at higher conversions and the trends for 

polydispersity values are identical to the ones at 130°C. 
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Figure 4.42 compares the corresponding SEC chromatograms. As can be seen, NMRP of 

styrene in the presence of BPO has a narrower distribution compared to thermal NMRP 

polymerization which is again related to the slower initiation rate for thermal polymerization as 

discussed in detail before. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.42 Comparison of SEC Chromatograms for a) thermal NMRP b) NMRP with BPO, at 50% conversion 
and 130°C 

 
Figure 4.43 illustrates the effect of polymerization temperature on rate, molecular weights and 

polydispersity. At higher temperature, 130°C, an increase in polymerization rate was observed, 

as clearly seen from Figure 4.43 a and b (one may argue that there are also signs of a certain 

curvature in the kinetic plot, Figure 4.43 b, around 30hrs (corresponding to ~ 65% conversion), 

which might indicate variations in the number of growing radicals). It is worth noticing that the 

induction period decreases at higher temperature. According to Eq. 4.3, the length of the 

induction period is inversely proportional to the kinetic rate constant for dimerization (kdim) 

and kdim increases with temperature. As a result the induction period decreases as temperature 

increases. 

 
The effect of temperature on molecular weights and polydispersity is not pronounced and the 

data from both runs seem like replicates. The molecular weights deviate from linearity quite 

early in the reaction (around 20% conversion). This is contrary to what is reported by  

Matyjaszewski et al. [26] and Devonport et al. [22] for the temperature range 110-140°C. 

However, given that their collected samples were fewer than ours and, in addition, their 
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[TEMPO]0 = 0.1 M was much higher than ours, it is difficult to speculate further as to what 

might have caused the difference. 

 
a)    b) 

 

 

 

 

 

 

 

 

c)                       d) 
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Figure 4.43 Effect of temperature on nitroxide-mediated thermal polymerization of styrene, [TEMPO]0 = 0.0396 
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Finally, it should be pointed out that although the thermal polymerization of styrene can be 

controlled to some extent in the presence of TEMPO to provide narrower polydispersity 

polymer, the results are never as controlled as those that are obtained by a BPO initiated 

NMRP. As discussed before, this is due to the nature of the thermal initiation phenomenon 

itself. Thermal initiation relies on the presence of monomer and thus it is a continuous process 

during the entire course of polymerization as long as residual monomer molecules exist in the 

system. This is equivalent to a slow initiation rate in the presence of a chemical initiator. 

Polymer chains are born at different times. The early-born chains are long, whereas the late-

born chains are short and that causes a broad molecular weight distribution and subsequently 

deviation from controlled polymerization. 
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4.5  Unimolecular NMRP 

 
As discussed in section 2.2.2, NMRP systems can be initiated in two different ways. 

Conventional radical initiators like BPO or AIBN can be used in the presence of persistent 

radicals (like TEMPO), as discussed earlier. Alternatively, dormant species can be prepared in 

advance and used as initiators (unimolecular initiators). The structure of these species is based 

on the alkoxyamine functionality generated at the chain end during NMRP. The thermally 

unstable C-O bond decomposes upon heating to give the initiating species. A variety of 

different unimolecular initiators can be employed in NMRP which may be synthesized through 

different procedures. 

 
There are different opinions about which initiating system is superior. Some researchers 

believe that the unimolecular approach is simpler because many of the complex reactions 

related to initiator decomposition and side reactions between initiator and nitroxide are 

avoided. In addition these initiating systems can provide perfect balance between nitroxide and 

polymeric chains leading to greater control and elimination of any induction periods. Other 

researchers, on the other hand, argue that although the unimolecular approach offers greater 

control, bimolecular systems are most likely to be used by industry because of the simple one-

step production procedure.  

 
Although there are many studies on bimolecular and unimolecular modes separately, there are 

few works [10, 21, 33] that have compared the two approaches at the same operating 

conditions. We decided to conduct an experiment (run# 7) with the unimolecular initiator 

produced based on a procedure suggested by Fukuda et al. [19] and compare it to the 

corresponding bimolecular system with the same level of nitroxide to get an insight on the 

advantages and disadvantages of each system (See section 4.5.1). 

 
Preparation of Polystyrene (PS)-TEMPO Adduct: A mixture of freshly distilled styrene, BPO 

(6.1× 10-2 M), and TEMPO (7.3 × 10-2 M) were charged in ampoules, degassed with several 

freeze-thaw cycles and sealed off under vacuum. To ensure complete decomposition of BPO, 

the mixture was preheated for 3.5 hrs at 95 °C, where no appreciable polymerization 

proceeded. Then the system was heated at 125 °C for 4 hrs and the polymer was recovered as a 
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precipitate from a large excess of ethanol, purified by reprecipitation with a methylene chloride 

(Solvent)/ethanol (non solvent) system, filtered and thoroughly dried (conversion: 16.4%). By 

GPC analysis, this polymer was found to have a Mn of 3,650 and a polydispersity of 1.075. 

This polymer has a TEMPO molecule capping the active chain end and will be termed as PS-

TEMPO adduct. The subsequent polymerization was carried out in the same way as described 

in Chapter 3, using the PS-TEMPO adduct as the unimolecular initiator without any extra 

addition of TEMPO. 

 
Figure 4.44 shows the SEC chromatographs of the PS-TEMPO adduct (a) and the 

corresponding polystyrenes obtained after heating a mixture of adduct and styrene at 120 °C 

for 3 hrs (b), 8 hrs (c) and 60 hrs (d). As can be seen, the polydispersity remains low while the 

molecular weights increase as indicated by reduction in average elution time. 

 

Figure 4.44 SEC Chromatographs for the polymerization of styrene at 120 °C in the presence of PS-TEMPO 
adduct: a) the precursor adduct; b) the product after 3hrs c) 8hrs d) 60hrs 

 
Several researchers [19 - 22] have reported that the rate of polymerization of styrene in NMRP 

is independent of the initiation approach and is equal to the rate of the thermal self-initiation of 

styrene. To examine this issue, rates of polymerization for the bimolecular and unimolecular 

cases are compared to the thermal self-initiation of styrene (See section 4.5.2). 
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4.5.1 Comparison with Bimolecular Mode 

 
Figure 4.45 compares conversion vs. time plots for styrene polymerization with the 

unimolecular initiator and the corresponding bimolecular initiating system with TEMPO/BPO 

= 1.1 and [BPO]0 = 0.036M at 120 °C. As can be seen, initially both systems display similar 

polymerization rates. However, at higher conversions, > 65%, the polymerization with the 

bimolecular system is noticeably faster than with the unimolecular system. In order to check 

the possibility of experimental error effects at higher conversions, independent replicates for 

the unimolecular case were carried out. As can be seen the deviation in rates is not due to 

experimental error.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.45 Comparison of conversion vs. time plots for the polymerization of styrene at 120 °C using the 
unimolecular initiator (▲) and a bimolecular system [TEMPO]/[BPO] = 1.1 (○)  

 
A couple of points of speculation to explain this discrepancy in rate of polymerization in 

Figure 4.45 at x> 65%: a) free monomer concentration is lower in unimolecular case compared 

to bimolecular. The reason is that in the unimolecular case a portion of the initial mixture 

volume is occupied by the unimolecular initiator so the amount of monomer present is less 

(considering the same volume as in the bimolecular case), b) the unimolecular case has a 

higher level of “free/active” TEMPO, (hence, a slower overall rate) compared to bimolecular 
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initiator since some of the TEMPO is lost due to side reactions between BPO and TEMPO in 

the bimolecular case (as will be discussed further in subsection 4.6.1). 

 
The corresponding number and weight average molecular weights increase in an 

approximately linear fashion with conversion for both initiating systems (See Figure 4.46). 

However, the molecular weights for bimolecular initiator are higher. A plausible explanation 

for this deviation may be a loss of TEMPO in the bimolecular approach because of 

participation in “promoted dissociation” of BPO, proposed by Moad et al. [34] and further 

clarified by Georges et al. [35] and Cunningham et al. [10, 36]. Georges et al. [35] suggested 

that as much as 50% of TEMPO may be lost in a reaction system consisting of TEMPO, BPO 

and styrene, at 70 °C. That loss of TEMPO was reported to be less important at higher 

temperatures (Georges et al. [35] concluded that the promoted dissociation of BPO is important 

at temperatures lower than 80 °C). However, during the preparation and handling of the 

ampoules in bimolecular initiation, the reaction stock solutions are maintained at ambient 

temperatures for significant periods, and that may account for a significant loss in TEMPO 

concentration and hence, overall, a lower initiator efficiency. A lower TEMPO level causes the 

bimolecular system to act more like regular radical polymerization and produce higher 

molecular weights than observed for the unimolecular approach. More detailed discussion 

including the side reactions between TEMPO and BPO will be presented in the next section. 

 
Modeling work by our group [37] and Cunningham et al. [10] has been carried out to take into 

account the “promoted dissociation” effect. Running the simulations with a reduced effective 

concentration of TEMPO significantly increased the average molecular weights for given 

monomer conversion levels. The best agreement was obtained when a loss in TEMPO of 30 - 

40% was assumed.  

 
Figure 4.47 illustrates that low polydispersities (1.1-1.2) are maintained throughout the 

polymerization for both systems. However, as can be seen, the polydispersities obtained from 

the bimolecular approach are higher (and more so initially) than the ones for the unimolecular 

system at the same conversion levels.  
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Figure 4.46 Comparison of the number average molecular weights (a) and weight average molecular weights (b) 
for unimolecular and bimolecular initiators 

 
 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.47 Comparison of polydispersity vs. conversion for bimolecular and unimolecular initiating systems 

 
From these results, it can be concluded that unimolecular initiators allow the preparation of 

macromolecules with greater control over molecular weights and polydispersity than the 

corresponding bimolecular systems. This general behavior can be rationalized by an 

examination of the initial steps in both processes. For the bimolecular system, the initial step is 

decomposition of the benzoyl peroxide followed by reaction of the radicals with styrene 

monomer and subsequent trapping of these species with TEMPO. As discussed above, these 

series of reactions are complicated by a variety of side reactions which may eventually lead to 
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lower initiator efficiency and loss of TEMPO. This results in slightly higher polydispersities 

and a lower degree of control over molecular weights. In contrast, this inefficient initiating step 

does not occur with the unimolecular initiators since the TEMPO adducts are preformed. 

Therefore the polymerizations occur effectively with a higher TEMPO level and lower 

amounts of undesirable side products, giving rise to more accurate control over molecular 

weights and lower polydispersities. 

 
Although at first glance unimolecular initiation seems like the best approach to produce 

controlled polystyrenes, it may not be so. The unimolecular approach is complicated because 

of a lack of efficient synthetic procedures for initiator (adduct) preparation, procedures which 

often result in low yields and a wide range of byproducts. Our attempts to produce different 

batches of PS-TEMPO initiator from the same concentrations of BPO and TEMPO have 

resulted in products with very different molecular weights. This is a good indication that more 

detailed studies on producing unimolecular initiators are required to find the optimum synthetic 

procedures to produce adducts with low molecular weights and good yields for practical 

applications.  
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4.5.2 Comparison with Thermal Self-initiation of Styrene 

 
Figure 4.48 compares the polymerization rates for both unimolecular and bimolecular styrene 

NMRP with styrene self-initiation at 120 °C. As can be seen, polymerization rates are identical 

at the first 10-15 hrs but after that they deviate from each other and thermal self-initiation 

exhibits the highest rate. This would confirm literature observations (see [19 - 22]) in that in 

the early stages (up to 65% conversion) the rates of unimolecular, bimolecular and styrene self-

initiation are the same. However, our experimental data show that these rates are not the same 

over the whole conversion range (as claimed previously in the literature). The reason here 

might be that the data reported in the literature cover only the first 10 to 15 hrs of the plots 

while our experimental data has been collected for up to 60 hrs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.48 First order kinetic plots for unimolecular NMRP (■), bimolecular NMRP (○) and thermal self-self 
initiation of styrene (Δ) 
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4.6  Other Aspects 

 

4.6.1 Side Reactions 

 
From the discussion up to this point, it is clear that nitroxide-mediated radical polymerization 

(NMRP) has attracted an enormous amount of attention, creating high expectations that these 

polymerizations will provide many new structurally controlled materials for future high 

performance applications. But in order to use these polymerizations wisely it is necessary to 

understand the detailed mechanism of each step in the polymerization in order to define the 

capabilities and limitations of the process. Therefore it is important to be aware of side 

reactions taking place in these systems.  

 
As discussed in chapter 2, the core reaction in NMRP is the reversible activation/ deactivation 

reaction, causing a large fraction of the polymer chains to exist in the dormant state, 

suppressing radical termination rate and giving the system its controlled characteristics. 

However, there are some side reactions occurring in these systems that affect the overall 

livingness of NMRP processes. For instance, one of the reactions is, despite its low probability, 

termination which leads to formation of dead polymer and accumulation of released stable 

radicals. Another reaction in NMRP of styrene is the thermal initiation of monomer following 

the Mayo process as discussed in section 4.4. These reactions are responsible for broadening of 

the molecular weight distribution.  

 
In addition, as reported by different groups [32, 38 - 40], decomposition of the dormant species 

(alkoxyamine) is another side reaction occurring in NMRP (See Figure 4.49). The 

decomposition of alkoxyamine happens through the abstraction of the β-proton of the polymer 

radical by the nitroxyl, producing terminally unsaturated polymer and hydroxylamine which 

can further act as a transfer agent.  

 

 

 

 

Figure 4.49 Decomposition of dormant species (alkoxyamine) in NMRP of styrene [39] 
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Another side reaction that takes place is the reaction between TEMPO and BPO or “promoted 

dissociation” of BPO, proposed by Moad et al. [34] and further clarified by Georges et al. [35] 

and Cunningham et al. [36]. As discussed by Georges et al. [35], formation of the benzoyloxy 

radical can occur either by the thermal or promoted dissociation of BPO. They showed that at 

temperatures below 80 °C the promoted dissociation is the dominant reaction while at higher 

temperatures the thermal dissociation mechanism plays a larger role. The promoted 

dissociation begins with a one-electron transfer from TEMPO to BPO to give an 

oxoammonium cation, a carboxylate anion and a benzoyloxy radical. As can be seen in Figure 

4.50, the oxoammonium and carboxylate ions react to give a short lived intermediate which 

reacts further with BPO to give a five membered nitrone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.50 Promoted dissociation of benzoyl peroxide by TEMPO in the presence of styrene [35] 

 
The side reaction between BPO and TEMPO affects both TEMPO concentration and BPO 

efficiency factor, since it consumes quantities of both. Georges et al. [35] suggested that as 

much as 50% of  TEMPO may be lost in these reactions at 70 °C. Although our experiments 

were carried out at higher temperatures (120, 130 °C), during the preparation and handling of 

the ampoules, the reaction stock solutions were maintained at room temperature for significant 

periods, and that would allow the occurrence of these side reactions.  
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Cunningham et al. [36] have shown that they can obtain better agreement between their 

mathematical model and experimental data if they reduce the TEMPO concentration to 40% of 

its experimental value and change initiator efficiency from 0.5 to 0.28.  

 
4.6.2 Significance of Gel Effect 

 
Diffusion effects are important in regular free radical polymerization systems and they lead to 

a pronounced acceleration in the rate of polymerization. Diffusion controlled effects are due to 

a significant reduction of termination and propagation rate coefficients and initiator efficiency, 

resulting from increased viscosity of the reaction medium. Since concentration of radicals is 

established by balancing rates of initiation and termination, a relative drop in the latter rate 

increases the concentration of radicals and accelerates the propagation (and hence the overall 

polymerization) rate. Since polymerization is highly exothermic, temperature may increase, 

further enhancing overall rate and that may result in a polymerization runaway. 

 
The degree of diffusion-controlled effects (DC effects) is questionable and rather controversial 

in nitroxide-mediated radical polymerizations. Several groups have assumed that DC effects 

are significant and speculated that it is because of DC effects that the living character of the 

system is lost at higher conversions, where the system exhibits regular radical polymerization 

features (the nonlinearity in plots of average molecular weights vs. conversion and increase in 

polydispersity values). Other groups have considered these effects to be negligible due to the 

lower molecular weight ranges and low radical concentrations typical of NMRP. 

 
Saban et al. [41] have suggested that since initiation and termination are controlled, nitroxide- 

mediated polymerizations should not exhibit a gel effect. They have shown that even when the 

polymerization is performed at relatively high reaction rates, by adding camphorsulfonic acid 

(CSA), no gel effect is evident. Subsequently, these results have been confirmed by Greszta et 

al. [21]. Recently, Cunningham et al. [36] have performed simulations both without 

considering DC effects and also using a simple empirical equation, with  the termination rate 

coefficient (kt) dependent on the weight fraction of polymer in the reaction system. Their 

simulations showed that including the gel effect for styrene leads to a slight overestimation of 

the reaction rate, and an underestimation of the number average molecular weight, Mn. Based 
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on these results they concluded that there was no large improvement in model predictions by 

using a gel effect correlation.  

 
Other groups, like Butte et al. [9] and Zhang et al. [42], have proposed that if the polymer 

chains are long and polymer mass in the reactor is sufficiently high, the gel effect can affect 

polymerization behavior and they have considered an empirical correlation for kt in their model  

if the number average chain length of the polymer is above 150. Roa-Luna et al. [43] have 

considered diffusion-controlled effects in their model not only for termination rate constant (kt) 

but also for propagation, activation and deactivation rate constants. However, they concluded 

that although the inclusion of overall DC-effects into the kinetic model improved the 

performance of the model by slightly reducing the deviations obtained from experimental data 

of polymerization rate and molecular weight in NMRP of styrene, it did not seem to justify 

adding an extra four (free-volume) parameters in the model.  

 
As can be understood from above, the effect of diffusion-controlled reactions on NMRP 

processes is still not clear and it has not been studied and understood as systematically as in 

standard free radical polymerization. In most of the cases, researchers have developed a 

mathematical model and have included diffusion limitations mainly for the termination rate 

constant (kt) whenever there has been a mismatch between experimental data and model 

predictions. 

 
In order to clarify the issue, it was decided to look at a “worst case scenario”, creating 

conditions where radicals are exposed to higher viscosities from the outset of reaction, in order 

to “mimic” DC effects. Size exclusion chromatography (SEC) polystyrene standards or 

preformed nitroxyl-capped polystyrenes (prepolymer) were added to a typical recipe for the 

bimolecular NMRP of styrene and the effect of their presence on polymerization rate and 

molecular weights was investigated. The study was carried out with varying concentrations of 

prepolymer (5% - 45%) of molecular weights ranging from 5,000 – 1,000,000 and at two 

temperatures (120 °C – 130 °C) [37].  

 
Results were compared with modeling simulations using the Predici® commercial software, 

considering DC effects and the presence of prepolymer (either as inert “solvent” or as 
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monomolecular controller of high molecular weight). All the kinetic rate constants used in the 

calculations presented in this study can be found later in Chapter 5 (Mathematical modeling), 

along with more details on the mathematical model.  

 
Figure 4.51 shows a typical result for profiles of conversion vs. time and number average 

molecular weight. As can be seen, profiles of styrene NMRP at the presence of prepolymers 

with molecular weights ranging from 188,000 to 1,210,000 practically overlap with the plot of 

NMRP of styrene without any prepolymer (within experimental error). 

 
Figure 4.52 shows the modeling simulations considering DC effects and no DC effects. As can 

be seen there is no big difference between the two profiles and the simulated profile without 

DC effects in facet is closer to the experimental data.  

 
Overall, based on the investigations so far, DC effects seem to be insignificant. It is likely that 

the low importance of DC effects in NMRP is related to the relatively short molecules (as 

compared to the chain lengths typical of regular radical polymerization), as well as to the 

typical operating temperatures being well above the Tg of resulting polymer. This result may 

have significant benefits for industrial scale bulk polymerization of styrene where not only 

would the concern of runaway reactions be minimized but also less expensive reactors of 

simpler design could be used. 
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Figure 4.51 Effect of addition of prepolymer (5%) on rate of polymerization and number average molecular 
weights in NMRP of styrene at 130 °C, TEMPO/BPO = 1.1 and [BPO]0 = 0.036 M 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.52 Comparison of experimental data and model predictions of conversion versus time for NMRP of 
styrene at 120 °C, TEMPO/BPO = 1.1 and [BPO]0 = 0.0192 M, 45% prepolymer with Mn = 17,400 
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CHAPTER 5 – MATHEMATICAL MODELING 

 
This chapter focuses on the mathematical modeling of nitroxide-mediated radical 

polymerization of styrene. Table 5.1 lists some of the pioneering and important papers on this 

subject. In our work, a detailed kinetic mechanism for the NMRP of styrene is considered and 

the corresponding mathematical model, based on the method of moments, is derived. The 

result is a system of ordinary differential equations (ODE’s), which was tested against 

experimental data. The model includes several side reactions which have been found to be 

relevant for the detailed explanation of molecular weight development (MWD) features of the 

polymer formed. Parameter sensitivity analysis is carried out to obtain a better understanding 

of the controlling reactions. By simple manipulation of the ODE’s initial conditions and tuning 

of the model by turning on/off the appropriate kinetic steps, via their corresponding kinetic rate 

constants, the model presented here is capable of representing bimolecular and unimolecular 

NMRP techniques. 

 
Table 5.1 Pioneering papers on modeling of NMRP  

Authors Year of 

Publication 

Method of Solution and Comments 

Johnson et al. [1] 1990 Numerical solution of all balance equations 

Greszta et al. [2] 1996 Predici 

Zhu [3] 1999 Method of moments 

Butte et al. [4] 1999 Method of moments and an empirical expression for diffusion-

controlled termination 

Fukuda et al. [5] 2000 Simplified model including thermal initiation and steady state 

hypothesis  

He et al. [6] 2000 Monte Carlo simulation 

Faliks et al. [7] 2001 Minimizing reaction time by maintaining constant PDI using optimal 

control technique 

Bonilla et al. [8] 2002 Method of moments; detailed mechanism of reaction 

Zhang et al. [9] 2002 Method of moments 

Tobita [10] 2006 Monte Carlo simulation 

Saldivar- Guerra [11] 2006 An analysis of the applicability and limitations of quasi-steady state 

(QSS) and quasi steady equilibrium (QSE); Sensitivity analysis 
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5.1  Reaction Scheme and General Considerations 

 
A kinetic model based on a detailed reaction mechanism for the nitroxide-mediated radical 

polymerization (NMRP) of styrene is presented. The reaction mechanism used as the basis for 

the derivation of the model is the one proposed by Bonilla et al. [8] and is summarized in Table 

5.2. The mechanism includes the following reactions: chemical initiation, reversible nitroxyl 

ether decomposition (for the monomolecular process), monomer dimerization, thermal self-

initiation, propagation, reversible monomeric and polymeric alkoxyamine formation 

(production of dormant species), alkoxyamine decomposition, rate enhancement, transfer to 

monomer and dimer, as well as conventional termination.  

 
As discussed in subsection 4.6.2, diffusion-controlled (DC) effects do not influence the NMRP 

systems in any significant fashion, so they are not considered in the model and all rate 

constants are assumed to be independent of chain length. Table 5.3 cites the kinetic rate 

constants used which are presented as Arrhenius functions of activation energies and 

temperature [12] (Reference [12] also shows an extensive parametric sensitivity analysis). 

 
The physical properties of the monomer (styrene, sty), polymer and initiator (BPO) used in the 

calculations are listed in Table 5.4. The model development and results obtained in the 

remainder of this chapter rely heavily on the work of Vivaldo-Lima et al. [8] and their 

simulation efforts [8, 12, 13]. 
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Table 5.2 General mechanism for NMRP kinetics [8] 

 
Description Step 

Chemical initiation 2 •⎯⎯→dk
inI R  

Nitroxyl ether decomposition 2

2

⎯⎯⎯→
• •←⎯⎯ +

ka

dE in xkNO R NO  

Mayo dimerization dim+ ⎯⎯→kM M D  

Thermal initiation i • •+ ⎯⎯→ +akM D D M  

First propagation (primary radicals) 
1

• •+ ⎯⎯→pk
inR M R  

First propagation (monomeric radicals) 
1

• •+ ⎯⎯→pkM M R  

First propagation (dimeric radicals) 
1

• •+ ⎯⎯→pkD M R  

Propagation 
1

• •
++ ⎯⎯→pk

r rR M R  

Dormant living exchange (monomeric alkoxyamine) ←⎯⎯
• •+ ⎯⎯→

ka

dax xkM NO MNO  

Dormant living exchange (polymeric alkoxyamine) ←⎯⎯
• •+ ⎯⎯→

ka

dar x r xkR NO R NO  

Alkoxyamine decomposition ⎯⎯⎯→ +decompk
x xMNO M HNO  

Rate enhancement reaction 3• •+ ⎯⎯→ +hk
x xD NO D HNO  

Termination by combination • •
++ ⎯⎯→tck

r s r sR R P  

Termination by disproportionation • •+ ⎯⎯→ +tdk
r s r sR R P P  

Transfer to monomer • •+ ⎯⎯→ +fMk
r rR M P M  

Transfer to dimer • •+ ⎯⎯→ +fDk
r rR D P D  
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Table 5.3 Kinetic rate constants for the monomolecular and bimolecular NMRP processes  
(T [K] and R [cal mol-1 K-1]) [12] 
 

Variable Unit Bimolecular  Monomolecular  

kd(BPO)  s-1 15 300001.7 10 exp⎛ ⎞× −⎜ ⎟
⎝ ⎠RT

 - 

f0   0.54-0.55 a) - 

kdim  L mol-1 s-1 16185.1188.97 exp
RT

⎛ ⎞−⎜ ⎟
⎝ ⎠

 16185.1188.97 exp
RT

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

kia  L mol-1 s-1 12 36598.556.359 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 12 36598.556.359 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kp0  L mol-1 s-1 7 7769.174.266 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 7 7769.174.266 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kt0 L mol-1 s-1 10 3081.842.002 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 10 3081.842.002 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

ktd/kt0   0.0 0.0 

kfM  L mol-1 s-1 6 133729.376 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 6 133729.376 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kfD  L mol-1 s-1 50 50 

ka2  s-1 0.0 13 296832.0 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kd2 L mol-1 s-1 0.0 9 37225.03 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kda  L mol-1 s-1 9 37225.03 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 9 37225.03 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

ka  s-1 13 296832.0 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 13 296832.0 10 exp
RT

⎛ ⎞× −⎜ ⎟
⎝ ⎠

 

kdecomp  s-1 14 36639.65.7 10 exp⎛ ⎞× −⎜ ⎟
⎝ ⎠RT

 14 36639.65.7 10 exp⎛ ⎞× −⎜ ⎟
⎝ ⎠RT

 

kh3      L mol-1 s-1 0.001 0.001 

a) Initiator efficiency (f) range depending on the reaction temperature.  
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Table 5.4 Physical properties 

Property Unit Value 

ρM kg L –1 ( )0.9193 0.000665 273.15T− −  

ρP kg L –1 ( )0.9926 0.000265 273.15T− −  

MWM g mol-1 104.12 

MWinit g mol-1 242.23 

TgM K 185.0 

TgP K 378.0 

 
 
5.2  Overall Mass (Molar) Balances and Moment Equations 

 
Based on the reaction mechanism shown in Table 5.2, the mass balance equations are given by 

Equation 5.1 to 5.12 for a batch reactor.  

 

                        

(5.1) 

 

 

(5.2) 
 
                                                            

                       

                                                                                                                            (5.3) 

 
 

                                                                                                            (5.4) 

 

 
                                                                                                               (5.5) 

[ ] [ ] [ ][ ] [ ]( )
[ ] [ ] [ ]

2
dim ia p in

p fM decomp x

d M
2k M k M D k M D M R

dt
k M R k M R k MNO

• • •

• •

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − +⎣ ⎦ ⎣ ⎦

[ ] [ ]d

d I
k I

dt
= −

[ ] [ ] [ ]in
d p in a 2 E d2 x in

d R
2fk I k M R k NO k NO R

dt

•
• • •

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ]E
a 2 E d2 x in

d NO
k NO k NO R

dt
• •⎡ ⎤ ⎡ ⎤= − + ⎣ ⎦ ⎣ ⎦

[ ][ ] [ ] [ ] [ ]ia p da x a x fM

d M
k M D k M M k NO M k MNO k M R

dt

•
• • • •

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦



 115

 

(5.6)                         

                        

 

(5.7) 
                                               

 
                        

(5.8) 

 
 

  
(5.9) 

 
    

(5.10) 

 

 
                                                                               (5.11) 

 

 

                        
(5.12) 

 

 
The rates of initiator decomposition and monomer and nitroxyl ether consumption are given in 

Eqs. 5.1 to 5.3. Eqs. 5.4 to 5.7 are the corresponding rate equations for monomeric, primary, 

dimeric, and stable nitroxyl radicals, respectively. The mass balances for hydroxylamine 

species, monomeric and polymeric alkoxyamines (dormant species) are given by Eqs. 5.8 to 

5.10. Eqs. 5.11 and 5.12 present the mass balances for polymeric radicals and dead polymer 

species, respectively. 

 
In order to follow the molecular weight development, in terms of number and weight averages, 

the method of moments is used. There are three polymer populations in this system: “living” 

[ ] [ ]

[ ] [ ]

x
h3 x da x a r x

da x a x d2 x in a2 E

d NO
k D NO k NO R k R NO

dt
k NO M k MNO k NO R k NO

•
• • •

• • • •

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤⎡ ⎤=− − +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤− + − +⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

[ ] [ ] [ ]x
da x a x decomp x

d MNO
k NO M k MNO k MNO

dt
• •⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ]x
h 3 x decomp x

d HNO
k NO D k MNO

dt
•⎡ ⎤= + +⎣ ⎦

[ ][ ] [ ] [ ] [ ]ia p h3 x fD

d D
k M D k M D k NO D k D R

dt

•
• • •

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ] [ ] 2

fM fD t

d P
k R M k R D k R

dt
• • •⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ]x
da x a x

d RNO
k NO R k RNO

dt
• •⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

[ ]( )
[ ] [ ] [ ]

2
p in tc td

da x a r x fM fD

d R
k M M D R (k k )( R )

dt
k NO R k R NO k R M k R D

•
• • • •

• • • •

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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polymer radicals, dead polymer molecules, and dormant species. The moments for “living” 

radical, dormant and dead species are defined in Eqs. 5.13 to 5.15.  

 
                         (5.13) 

 

                            (5.14)                         

 

                        (5.15) 

 

Once the mass balance equations for polymer molecules of the three types and for all lengths 

are derived, based on the reaction mechanism of Table 5.2, the application of the method of 

moments produces Eqs. 5.16 to 5.18 for moments zero, one and two, respectively, of living 

polymer radicals; Eqs. 5.19 to 5.21 for the respective moments of dormant polymer, and Eqs. 

5.22 to 5.24 for the moments of the dead polymer. 

 

 

                                                                                                                            (5.16) 

 

 

 

                                                                                                             (5.17) 

 

 

 

                                                                                                                                           (5.18) 

 

 

                                                         (5.19) 

 
 

                                                        (5.20) 

 

rr
i

i Rr=λ ∑

xrr
i

i ONRr=δ ∑

rr
i

i Pr=μ ∑

[ ]( ) [ ]

[ ][ ] [ ][ ] [ ] [ ]

20
p in t 0

fM 0 fD 0 da x 0 a 0

d( ) k M M D R k
dt
k M k D k NO k

• • •

•

λ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + − λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− λ − λ − λ + δ⎣ ⎦

[ ]( ) [ ][ ]

[ ][ ] [ ][ ] [ ][ ] [ ] [ ]

1
p in p 0

t 0 1 fM 1 fD 1 da x 1 a 1

d( ) k M M D R k M
dt
k k M k D k NO k

• • •

•

λ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤− λ λ − λ − λ − λ + δ⎣ ⎦

[ ] [ ] [ ][ ]

[ ] [ ] [ ]( ) [ ][ ] [ ][ ]

2
da x 2 a 2 t 0 2

p in 0 1 fM 2 fD 2

d ( ) k N O k k
dt
k M M D R 2 k M k D

•

• • •

λ ⎡ ⎤= − λ + δ − λ λ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + λ + λ − λ − λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ]0
da x 0 a 0

d( ) k NO k
dt

•δ ⎡ ⎤= + λ − δ⎣ ⎦

[ ] [ ]1
da x 1 a 1

d( ) k NO k
dt

•δ ⎡ ⎤= + λ − δ⎣ ⎦
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                                                    (5.21) 

 

                                                                                             (5.22) 

 

                                                                                                              (5.23) 

 

                                                                                                                 (5.24) 

 
 
Finally calculation of the number and weight average molecular weights, based on the 

moments of the polymer populations, is carried out using Eqs. 5.25 and 5.26. 

 
 

                                               (5.25) 

 

 
                                               (5.26) 

 

 

In order to avoid numerical problems due to the possible stiffness of the system of differential 

equations, the 21 ordinary differential equations that describe the kinetic behavior and the 

molecular weight development were transformed into dimensionless differential equations [8]. 

 

5.3  Comparison of Simulated Profiles and Experimental Data 

 
Figure 5.1 shows a comparison of experimental data and model predictions for conversion 

versus time at 120 °C and [TEMPO]/[BPO] = 1.1. As can be seen, the agreement between 

model predictions obtained and experimental data is very good up to 50% monomer 

conversion, but the model overestimates the polymerization rate at high conversions, and the 

maximum conversion achieved at the polymerization conditions. The model predicts 90% 

conversion at about 20 hrs, and total conversion at about 50 hrs, whereas the experimental data 

reach 90% monomer conversion at around 40hr, and the conversion does not go beyond 93%.  

[ ] [ ]2
da x 2 a 2

d( ) k NO k
dt

•δ ⎡ ⎤= + λ − δ⎣ ⎦
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d 1 k k k M k D
dt 2
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( ) [ ][ ] [ ][ ] [ ][ ] [ ][ ]1
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k k k M k D

dt
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1 1 1
M

0 0 0

Mn MW
⎛ ⎞μ +λ + δ

= ⎜ ⎟μ +λ + δ⎝ ⎠

2 2 2
M

1 1 1
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= ⎜ ⎟μ + λ + δ⎝ ⎠
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Figure 5.1 Comparison of experimental data and model predictions of conversion vs. time, at 120 °C and 
[TEMPO]/[BPO] = 1.1 

 
Figure 5.2 shows the corresponding plot of number average molecular weight versus 

conversion. The model predictions capture the linear trend in average molecular weight but 

underestimate the experimental data. It was first speculated that this may be caused by  the 

transfer to monomer reaction in the reaction mechanism being considered in the mathematical 

model, or possibly by inaccurate estimates of some of the kinetic rate constants involved in the 

reaction mechanism [13]. More recently, we have come to the conclusion that possible side 

reactions, such as the “promoted dissociation” of BPO, which decrease the effective 

concentration of TEMPO, could also be responsible for these discrepancies [14]. (See also 

sections 4.5.1 and 4.6.1) 

 
The model predicted profile of PDI vs. conversion shown in Figure 5.3 agrees well with the 

experimental data, which lie on the average PDI most of the time. The calculated profile 

predicts high PDIs (higher than 5) at the beginning of the polymerization, decreasing to lower 

than 2 at about 10% monomer conversion, and remaining fairly constant around 1.1 and 1.2, 

showing a very slight increase at very high conversions. 
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Figure 5.2 Comparison of experimental data and model predictions of number average molecular weight vs. 
conversion, at 120 °C and [TEMPO]/[BPO] = 1.1 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.3 Comparison of experimental data and model predictions of polydispersity vs. conversion, at 120 °C 
and [TEMPO]/[BPO] = 1.1 
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The model is capable of simulating the intermediate species like nitroxyl radicals, dead, 

dormant and living species. This is extremely useful, as it offers additional insight in the 

polymerization behavior, and can be used in formulating viable explanations for the behavior 

of many variables. It is observed in Figure 5.4a that there is a significant amount of nitroxyl 

radicals at the very beginning of the polymerization, which are immediately consumed by the 

free radicals released by the initiator, to generate dormant species (Figure 5.4b). At the 

beginning of the polymerization, the concentration of living radicals increases at a rate 

proportional to the consumption of nitroxyl radicals. As can be seen in Figure 5.4a, once the 

equilibrium has been established, the concentration of nitroxyl radicals is stabilized, but it is 

later increased again (at conversions higher than 0.8) due to the long-term effect of bimolecular 

radical termination that leads to increasing dead polymer formation. This is accompanied by a 

slight decrease of living radicals (which is converted to dead polymer) and release of nitroxyl 

radicals that increase their concentration towards the end of the reaction (See Figures 5.4a and 

5.4b at conversion levels higher than 0.8). It is also interesting to see in Figure 5.4b that the 

concentration of dead polymer grows very quickly at the beginning of the reaction, due to the 

rapid increase in the concentration of living radicals. The rapid growth of living radicals and 

dead polymer stops shortly after the beginning of the reaction and the concentrations of both 

species enter a region of much slower, but still closely correlated, rate of change (See the two 

curves after 45% conversion). 

 
Experimental data and simulated profiles at [TEMPO]/[BPO] ratios of 0.9, 1.1, 1.2 and 1.5 are 

shown in Figure 5.5. As expected, the larger the ratio (the more TEMPO fed to the recipe), the 

slower the polymerization will proceed. Both the experimental data and predicted profiles 

show that trend. However, the effect is much more pronounced in the experimental data than 

the predictions of the model. The model predicts a crossover of curves, with the limiting 

conversion reaching higher values as the [TEMPO]/[BPO] ratio is increased. That crossover of 

curves is not captured with the experimental data, but that may be explained by the fact that the 

experimental error seems to be higher than the sensitivity needed in the high conversion region 

to observe that effect. Model predictions also capture the induction time for [TEMPO]/[BPO] = 

1.5 which lasts about 2.5 h at those conditions. 
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Figure 5.6 shows the corresponding profiles to Figure 5.5 for number average molecular 

weight development. It is observed that higher values of the number average molecular weight, 

Mn, are obtained when the [TEMPO]/[BPO] ratio is decreased, namely, when the 

polymerization rate is increased. The model captures nicely this behavior, but all the profiles 

lie lower than the experimental data, as noted previously (Figure 5.2).  
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Figure 5.4 a)  Simulated concentration of nitroxyl radicals vs. conversion, b) Simulated concentrations of dead, 
dormant and living radicals vs. conversion, for NMRP of styrene at 120 and [TEMPO]/[BPO] =1.1 
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Figure 5.5 Effect of [TEMPO]/[BPO] ratio on polymerization rate at 120 °C; comparison of experimental data 

and model predictions 

 
 

 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 5.6 Effect of [TEMPO]/[BPO] ratio on number average molecular weight at 120 °C; comparison of 
experimental data and model predictions 
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Figure 5.7 shows a comparison of model simulations against experimental data of PDI vs. 

conversion at 120 °C and the same [TEMPO]/[BPO] ratios analyzed in Figures 5.5 and 5.6 for 

polymerization rate and Mn development, respectively. The predicted profiles at 

[TEMPO]/[BPO] = 0.9 and 1.1 show that very high PDIs are predicted at very low 

conversions, with higher PDIs from the reaction where [TEMPO]/[BPO] = 0.9. The predicted 

profiles at [TEMPO]/[BPO] = 1.2 and 1.5 show that the maximum on PDI is significantly 

reduced, but shifted towards higher conversion values, as the ratio increases, although the 

profile at [TEMPO]/[BPO] =1.5 shows slightly higher PDIs than the profile at 

[TEMPO]/[BPO] = 1.2. Many samples were taken during the very low conversion range in the 

experiments at [TEMPO]/[BPO] = 1.5. It is interesting to see that the new experimental data of 

frequently measured PDI’s in the early stages of reaction did show very high values of PDI, 

which in a sense confirmed early model predictions by [8, 15, 16] and also our model 

predictions herein. However, although the model results arguably capture experimental trends 

in PDI, the qualitative agreement is not always good at all ratios. For instance, those measured 

PDIs at [TEMPO]/[BPO] = 1.5 in the early stages of the polymerization, do not agree with the 

predicted profile at that ratio, which showed a maximum PDI of 1.93 at 11% monomer 

conversion, whereas the experimental maximum of PDI = 7.95 was obtained at 0.8% (less than 

one percent) monomer conversion. The corresponding conversion, molecular weights and 

polydispersity profiles for the other temperature (130 °C) can be found in Figures B.28 to B.30 

in Appendix B. The general trends are the same as the ones observed at 120°C.  

 
Figure 5.8 shows the simulated profiles for nitroxyl radicals, living species, dormant species, 

and dead species versus conversion for different [TEMPO]/[BPO] ratios at 120°C. As can be 

seen in Figure 5.8a there is more free TEMPO present in the system for higher 

[TEMPO]/[BPO] ratios at the beginning of the reaction but as the reaction proceeds and the 

equilibrium is established  the level of free TEMPO is almost the same for all the ratios.  
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Figure 5.7 Effect of [TEMPO]/[BPO] ratio on polydispersity at 120 °C; comparison of experimental data and 
model predictions 

 
Figure 5.8b shows the corresponding living radical concentrations. As expected the highest 

concentration belongs to ratio 0.9 at the beginning of the reaction. Since there is less TEMPO 

present, the system acts like a less controlled polymerization and there is a high concentration 

of free radicals present in the systems which results in more bimolecular termination and an 

increase in the concentration of dead polymer molecules, as can be seen in Figure 5.8d.   

However, as the reaction proceeds and the equilibrium is established, the highest living radical 

concentration belongs to ratio 1.5. The reason for this behavior can be explained by Eqs. 5.27 

and 5.28. The value of the kinetic rate constant (K) should be the same for all the ratios. As 

expected, an increase in the initial concentration of nitroxyl radicals increases the 

concentration of dormant species (Figure 5.8c); the concentration of free TEMPO radicals are 

almost the same for all the ratios (Figure 5.8a) so according to Eq. 5.28 concentration of living 

radicals should increase for higher ratios to keep K constant. 
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Figure 5.8d shows the dead polymer concentration for all ratios. As can be seen, the highest 

concentration belongs to ratio 0.9 since there is less TEMPO present in the system, fewer 

radicals are capped by TEMPO and more termination occurs. The dead polymer concentrations 

for ratios 1.1, 1.2 and 1.5 are almost zero at the beginning of the reaction but as the reactions 

proceed and the concentrations of radicals increase (See Figure 5.8b), termination reactions 

become significant and dead polymer concentrations start to increase (gradually) for ratios 1.1, 

1.2 and 1.5 as well (of course these concentrations are still lower than the dead polymer 

concentration for ratio 0.9). The highest profile belongs to ratio 1.5 since the concentration of 

living radicals for this case is higher as shown in Figure 5.8b. 

 
The predictions obtained with the model of NMRP of styrene overestimate the polymerization 

rate at high conversions, and although they usually provide satisfactory predictions of 

polydispersity vs. time, they underestimate the average molecular weights. Although 

predictions from the mathematical model are not in good quantitative agreement with 

experimental data, overall they capture the general polymerization trends. This, combined with 

the fact that with the model one has access to profiles and thus behavior of many important 

“intermediate” species (variables), which otherwise are not readily apparent (For instance, see 

the discussion around Figure 5.8), make the model a very versatile and flexible tool that 

contributes tremendously in further process understanding and comprehension of important 

nonlinear interactions (inter-relationships, 2- and 3- factor effects) between the main 

polymerization variables. 

 
Comparisons suggest that some of the kinetic rate constants reported in the literature are 

inaccurate and they are not reliable enough for predictive purposes. In addition, the 

discrepancies between the mathematical model and experimental data can be related to some 

possible side reactions not included in the model that affect the concentration of different 

species in the reaction. It seems that our understanding of the underlying mechanism and 

possible side reactions occurring in these systems is still incomplete, despite the extensive 

literature studies and claims on the subject. 
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a) 
 
 
 
 
 
 
 
 
 
 
 

 
 

 b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c)      d) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Effect of [TEMPO]/[BPO] on simulated profiles of a) Nitroxyl radical, b) Living species, c) Dormant 
Species, and d) Dead species for NMRP of styrene at 120°C  
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CHAPTER 6 – CONCLUSIONS AND RECOMMENDATIONS 

 
6.1  Concluding Remarks 

 
Nitroxide-mediated radical polymerization (NMRP) of styrene using 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO) as controller was investigated over a range of operating conditions, 

namely, different temperatures, different controller to initiator molar ratios, and different 

initiating systems. The experimental work showed that increasing temperature increases the 

rate of polymerization while slightly decreasing molecular weight averages. It was also 

observed that increasing the ratio of controller to initiator decreases both the rate of 

polymerization and molecular weights. Our observations have confirmed that thermal self-

initiation of styrene plays an important role in NMRP of styrene by maintaining the 

polymerization rate by constant production of radicals. However, it has been shown that 

thermal self-initiation alone is not enough to produce narrow polydispersity materials in 

NMRP and presence of another initiating source is necessary to obtain a controlled 

polymerization. Comparisons between unimolecular and bimolecular initiating systems 

showed that although unimolecular initiators allow the preparation of macromolecules with 

greater control over molecular weights and polydispersity than the corresponding bimolecular 

systems, they may not be a practical approach because of a lack of efficient synthetic 

procedures for preparation. This is the first time that experimental data for NMRP of styrene at 

various operating conditions were collected over the full conversion range, and different 

initiating systems were contrasted at comparable conditions including polymerization rates, 

molecular weights and polydispersities. In addition, this is also the first time that polydispersity 

data were collected systematically even at the early stages of conversion, thus giving a full 

picture and at the same time confirming (unsubstantiated so far) mathematical model 

predictions. 

 
One can look at Figures 6.1 and 6.2 as an attempt to give a “bird’s eye-view” of our 

experimental observations, complementary to Figures 4.24 and B.20/B.21. These summary 

snapshots (shown in Figure 6.1 and 6.2 for 120°C) can give a useful overview of the process 

data if one is interested in, say, an optimization problem. One can easily establish from the 
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above mentioned summary figures a “corridor of operation” for the process in question, in 

addition to a summary of the sensitivity of the process (process outputs and hence properties) 

to specific important factors (inputs). For instance, if polydispersity (PDI) were the sole 

variable in an optimization performance index, and one were interested in minimizing PDI, 

then a figure such as Figure 4.24 would suggest choosing a range for R values between 1.1-1.2. 

Figures 6.1 and 6.2 would allow one to consider additional variables in a multi-objective 

optimization framework (Figure 6.1 shows different measurements corresponding to a 

polymerization duration of 10hrs; Figure 6.2 shows measured properties corresponding to 50% 

conversion). For instance, if one would like to minimize time to reach 50% conversion at 

120°C, at the same time keeping PDI at low values and, say, achieving an average molecular 

weight target of not more than 20,000, then Figure 6.2 would guide one to pick a value of R ~ 

1. In this way, one can easily appreciate opposite trends and make practical compromises. 

 
The simulations obtained from the kinetic model were subsequently compared against the 

experimental data. The evaluations suggest that the disagreement observed can be explained in 

terms of the potential inaccuracy of some of the kinetic rate constants in the model, or possible 

side reactions that take place in the experiment but are not taken into account in the kinetic 

model. In addition, the experimental investigations confirmed (using a “worst case scenario” 

approach) that diffusion-controlled effects are insignificant in nitroxide-mediated radical 

polymerization of styrene and these results were corroborated by the corresponding modeling 

work. It is worth mentioning that this has been the first time that the absence of diffusion-

controlled effects has been supported by experimental work. 

 
Although a considerable amount of experimental work has already been conducted on the 

kinetics of nitroxide-mediated polymerizations (and an extensive body of literature exists), 

there is still a lot that can be done to improve the understanding of the polymerization system 

and bring it closer to industrial production.  
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Figure 6.1 %conversion, molecular weights and polydisprsity versus TEMPO/BPO ratio after 10 hrs; T = 120°C 
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Figure 6.2 Molecular weights, polydispersity and time versus TEMPO/BPO ratio at 50% conversion; T = 120°C 
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6.2  Recommendations for Future Work 

 
• Different Initiators 

 
The main drawback of nitroxide-mediated radical polymerization is that the polymerization 

rate is slow [1]. Several attempts have been made to find ways to increase the rate without any 

significant increase in polydispersity; namely, adding organic acids [2 - 4], using a 

combination of two initiators with different half-lives [5, 6], and different regimes of addition 

of initiator in a semi-batch reactor [7]. Another interesting approach would be using a multi-

functional initiator. Previous work carried out in our group [8, 9] showed that using a 

tetrafunctional initiator (JWEB50) in the free radical polymerization of styrene increases the 

rate of polymerization when compared to the monofunctional counterpart while maintaining 

the molecular weight averages. Selective experiments could be done to investigate the 

performance of JWEB50, as a tetrafunctional initiator, in NMRP of styrene. It will be 

interesting to investigate whether a tetrafunctional initiator could increase the rate of 

polymerization and form any branching while maintaining low polydispersity. In order to be 

able to compare the tetra vs. monofunctional initiator, a monofunctional initiator with the same 

decomposing characteristics, like tert-butylperoxy-2-ethylhexyl carbonate (TBEC), should be 

used.  Therefore, it is necessary to carry out NMRP of styrene in the presence of TBEC at the 

same operating conditions in order to have a sound comparative basis with JWEB50. 

 
• Different Controllers 

 
As discussed in Chapter 2, due to the relatively high strength of the C-O bond in the TEMPO 

polymer adduct, TEMPO-mediated NMRP needs long reaction times and high polymerization 

temperatures. To overcome this deficiency, changes in the structure of the nitroxide are 

agreeable. In our lab we have access to a recently developed nitroxide by CIBA Chemicals, a 

PP-based nitroxide (NOR) with the trade name Irgatec CR76 [10]. Selective runs could be 

planned to examine the effect of this new nitroxide in NMRP of styrene and compare it to 

TEMPO-mediated NMRP and see if the new nitroxide can offer any improvements. 
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• NMRP at Elevated Temperatures 

 
Nitroxide-mediated polymerization is normally conducted in the temperature range of 110 - 

140 °C. It is worth trying NMRP at elevated temperature (150 - 220°C) to see if the controlled 

nature of polymerization is maintained at higher temperatures or not. It is worth adding that it 

is industrially appealing to conduct NMRP at higher temperatures since elevated temperatures 

promise faster polymerization rates and easier heat transfer with the cooling system. 

 
• Potential of Crosslinking in CRP 

 
Crosslinked polymers (polymer networks) are very important in medicine, biotechnology, 

agriculture, and other areas.  The synthesis, characterization and modeling of polymer 

networks by controlled radical polymerization processes are research areas where few reports 

are available in the literature [11]. It is an interesting area of research to examine the NMRP 

polymerization of styrene (sty, well studied under controlled polymerization conditions) with a 

common crosslinker, divinyl benzene (DVB) (largely unstudied) at elevated temperatures 

(higher than 100 °C). The crosslinked copolymer of sty-DVB is used for chromatographic 

applications and as a precursor for ion-exchange resins. It is also a system studied under 

regular radical polymerization conditions, hence an excellent system for fundamental 

comparisons between NMRP and regular crosslinking (network) polymerizations.  

 
• Bayesian Design of Experiments in CRP 

 
Bayesian design is a relatively new experimental design methodology which has many 

advantages over other conventional designs. This approach incorporates the prior knowledge 

about the process into the design to predict the “best” set of experiments in a sequential 

fashion. Bayesian design allows for the use of a nonlinear (fully mechanistic) model and has 

the flexibility to change the levels of the factors with relative ease. The Bayesian experimental 

design technique can be exploited in nitroxide-mediate polymerization of styrene to determine 

the relative importance of different operating factors and also to detect the “best” operating 

condition. In addition, this approach can further shed light on the most uncertain parts of our 

process understanding, and hence identify the least reliable (less well known) parameter values 
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(e.g., uncertain values of kinetic rate constants), thus guiding further sensitivity analysis studies 

focusing on key uncertain parameters (for representative cases, see [12 - 14]) 
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APPENDIX A – TABLES OF RAW DATA 

 
Table A.1 Raw Data for Experiment #1 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.5 0.237 0.27 10,213 10.21 16,747 16.75 1.64 
1 0.289 0.34 12,318 12.32 17,713 17.71 1.44 

1.25 0.326 0.39 11,775 11.78 17,817 17.82 1.51 
1.5 0.350 0.43 13,976 13.98 19,648 19.65 1.41 
2 0.389 0.49 14,973 14.97 19,731 19.73 1.32 
2 0.389 0.49 14,446 14.45 19,488 19.49 1.35 

2.53 0.435 0.57 16,517 16.52 21,556 21.56 1.31 
3 0.466 0.63 16,517 16.52 22,064 22.06 1.25 
4 0.538 0.77 19,597 19.60 23,493 23.49 1.20 
5 0.595 0.90 20,842 20.84 24,888 24.89 1.19 
5 0.600 0.92 21,075 21.08 25,052 25.05 1.19 

10 0.787 1.55 27,551 27.55 31,074 31.07 1.13 
15 0.853 1.92 29,541 29.54 33,571 33.57 1.14 
20 0.891 2.22 31,696 31.70 35,383 35.38 1.12 
20 0.886 2.17 31,168 31.17 35,112 35.11 1.13 
34 0.919 2.52 31,360 31.36 35,364 35.36 1.13 
50 0.937 2.77 31,547 31.55 35,887 35.89 1.14 
70 0.944 2.88 32,598 32.60 36,669 36.67 1.13 

 

 
 
 
Table A.2 GPC replicates for Experiment #1 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.5 0.237 12,766 13 19,273 19 1.51 
34 0.919 32,315 32 36,924 37 1.14 
70 0.944 33,010 33 36,530 37 1.125 
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Table A.3 Raw Data for Experiment #2 

 
Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 

2 0.153 0.166 4,990 4.99 6,084 6.08 1.219 
3 0.238 0.272 7,256 7.26 8,595 8.60 1.184 
6 0.384 0.485 12,056 12.06 13,509 13.51 1.121 
9 0.536 0.767 17,412 17.41 19,286 19.29 1.108 

14 0.688 1.166 20,613 20.61 23,223 23.22 1.127 
24 0.802 1.618 24,450 24.45 27,537 27.54 1.126 
40 0.893 2.239 24,857 24.86 28,516 28.52 1.147 
9 0.555 0.810 17,358 17.36 19,166 19.17 1.104 

 
 
Table A.4 Replicate Run for Experiment #2 

Time (hr) Conversion ln[M]0/[M] 
1 0.037 0.037 
2 0.108 0.114 
3 0.225 0.255 
4 0.269 0.314 
6 0.392 0.497 
9 0.535 0.765 

14 0.659 1.077 
19 0.779 1.511 
24 0.801 1.617 
29 0.848 1.882 
40 0.894 2.242 
50 0.898 2.282 
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Table A.5 Raw data for Experiment # 3 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
1.00 0.0091 0.009 1,016 1.02 3,139 3.14 3.143 
1.33 0.0154 0.016 1,480 1.48 2,556 2.56 1.727 
1.67 0.0122 0.012 1,906 1.91 2,272 2.27 1.195 
2.00 0.0330 0.034 2,134 2.13 2,363 2.36 1.108 
2.33 0.0544 0.056 2,192 2.19 2,543 2.54 1.160 
2.33 0.0551 0.057 2,291 2.29 2,630 2.63 1.148 
2.67 0.1157 0.123 4,060 4.06 4,636 4.64 1.142 
3.00 0.0913 0.096 3,460 3.46 3,967 3.97 1.147 
3.33 0.1059 0.112 3,986 3.99 4,591 4.59 1.152 
3.67 0.1818 0.201 6,598 6.60 7,300 7.30 1.107 
4.00 0.2077 0.233 7,230 7.23 8,013 8.01 1.109 
5.00 0.2117 0.238 7,842 7.84 8,583 8.58 1.095 
6.00 0.3356 0.409 11,661 11.66 12,533 12.53 1.075 
8.00 0.3780 0.475 14,691 14.69 14,691 14.69 1.081 

10.00 0.4886 0.671 17,046 17.05 18,156 18.16 1.066 
14.00 0.6301 0.995 21,125 21.12 23,105 23.11 1.094 
14.00 0.6588 1.075 22,212 22.21 23,755 23.75 1.070 
18.00 0.7435 1.361 24,236 24.24 26,326 26.33 1.086 
22.00 0.7988 1.603 26,789 26.79 28,553 28.55 1.066 
26.00 0.8314 1.780 27,800 27.80 30,274 30.27 1.089 
40.00 0.8930 2.235 29,193 29.19 31,104 31.10 1.066 
49.00 0.9023 2.326 29,355 29.35 31,884 31.88 1.086 
72.00 0.9192 2.516 29,358 29.36 32,458 32.46 1.108 

 
 
 
 
Table A.6 GPC replicates for Experiment #3 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
3.67 0.1818 6,771 6.77 7,637 7.64 1.128 

22.00 0.7988 27,955 27.95 30,001 30.00 1.073 
72.00 0.9192 31580 31.58 33480 33.48 1.06 
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Table A.7 Raw data for Experiment # 4 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.5 0.008 0.008 903 0.90 7,180 7.18 7.95 
1 0.010 0.010 683 0.68 3,845 3.84 5.66 

1.25 0.009 0.010 638 0.64 2,505 2.51 3.93 
1.5 0.011 0.011 621 0.62 1,909 1.91 3.07 
2 0.013 0.013 681 0.68 2,922 2.92 4.35 

2.5 0.014 0.014 701 0.70 1,439 1.44 2.05 
3 0.021 0.021 1,228 1.23 2,506 2.51 2.04 
4 0.042 0.043 2,380 2.38 2,536 2.54 1.07 
5 0.064 0.067 2,567 2.57 2,712 2.71 1.06 
5 0.065 0.067 2,731 2.73 2,865 2.87 1.05 

10 0.209 0.235 6,551 6.55 7,024 7.02 1.07 
10 0.205 0.230 6,309 6.31 6,891 6.89 1.09 
20 0.520 0.734 14,583 14.58 15,786 15.79 1.08 
20 0.520 0.734 14,564 14.56 15,800 15.80 1.09 
50 0.866 2.012 22,480 22.48 24,767 24.77 1.10 

 
 
 
Table A.8 GPC replicates for Experiment #4 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
10 0.205 6,415 6.41 7,118 7.12 1.11 
20 0.520 14,949 14.95 16,445 16.44 1.10 
50 0.866 24,250 24.25 25,650 25.65 1.06 

 

 
 
 
Table A.9 Raw data for complementary run for Experiment # 4 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
6.03 0.105 0.111 3,071 3.07 3,472 3.47 1.131 
15 0.399 0.509 11,908 11.91 12,826 12.83 1.077 
15 0.398 0.508 11,883 11.88 12,769 12.77 1.075 
30 0.742 1.355 20,926 20.93 22,536 22.54 1.077 

40.05 0.830 1.772 22,355 22.35 24,327 24.33 1.089 
40.05 0.817 1.696 21,806 21.81 24,356 24.36 1.117 
50.05 0.861 1.971 22,748 22.75 25,487 25.49 1.121 
63.03 0.881 2.129 23,569 23.57 26,264 26.26 1.114 
70.15 0.891 2.221 23,775 23.78 26,398 26.40 1.111 
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Table A.10 Raw data for Experiment # 5 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.5333333 0.039 0.04 286,851 287 465,880 466 1.62 
1.0166667 0.083 0.09 288,336 288 473,958 474 1.64 
3.0666667 0.239 0.27 284,934 285 456,397 456 1.63 
5.0333333 0.383 0.48 230,296 230 407,497 407 1.82 

7 0.503 0.70 214,231 214 389,499 389 1.84 
25 0.899 2.30 292,809 293 524,209 524 1.79 

15.05 0.821 1.72 304,528 305 522,056 522 1.71 
30.2 0.915 2.47 197,689 198 428,858 429 2.21 
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Table A.11 Raw data for Experiment # 6 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.52 0.000 0.000 - - - - - 
3.03 0.001 0.001 - - - - - 
7.03 0.021 0.021 - - - - - 

10.95 0.079 0.083 3,907 3.91 4,212 4.21 1.078 
15.08 0.147 0.159 6,387 6.39 6,912 6.91 1.082 
15.08 0.148 0.160 6,587 6.59 7,053 7.05 1.071 
20.00 0.223 0.252 9,414 9.41 9,968 9.97 1.059 
25.00 0.300 0.357 10,702 10.70 12,051 12.05 1.127 
30.22 0.363 0.451 11,249 11.25 13,401 13.40 1.191 
50.00 0.577 0.861 14,719 14.72 18,149 18.15 1.233 

 
 
 
 
Table A.12 GPC replicates for Experiment #6 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
10.95 0.0794  3,987 3.99 4,280 4.28 1.069 
25.00  0.3001  11,090 11.09 12,180 12.18 1.109 
30.22  0.363 10,427 10.43 13,383 13.38 1.186 
50.00  0.5774  14,146 14.15 18,081 18.08 1.268 

 
 
 
Table A.13 Replicate Run for Experiment #6 

Time (hr) Conversion ln[M]0/[M] 
20.02 0.241 0.276 
30.15 0.366 0.456 
39.96 0.494 0.682 
49.95 0.559 0.818 
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Table A.14 Raw data for Experiment # 7 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.55 0.052 0.054 955 0.96 1,031 1.03 1.08 
1.00 0.094 0.099 1,751 1.75 1,956 1.96 1.12 
3.03 0.231 0.263 5,000 5.00 5,368 5.37 1.07 
6.05 0.354 0.438 8,423 8.42 8,818 8.82 1.05 
8.03 0.502 0.697 9,486 9.49 10,048 10.05 1.06 

24.73 0.735 1.329 13,567 13.57 14,522 14.52 1.07 
15.00 0.648 1.044 12,053 12.05 12,828 12.83 1.06 
20.07 0.705 1.221 12,884 12.88 13,847 13.85 1.07 
20.07 0.707 1.229 12,598 12.60 13,809 13.81 1.10 
40.50 0.795 1.586 14,747 14.75 15,743 15.74 1.07 
30.12 0.758 1.418 14,161 14.16 15,157 15.16 1.07 
60.12 0.831 1.775 13,913 13.91 15,850 15.85 1.14 
50.22 0.822 1.724 13,854 13.85 15,706 15.71 1.13 

 
 
 
 
Table A.15 Replicate Run for Experiment #7 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
5 0.376 0.471 7,910 7.91 8,310 8.31 1.05 

7.27 0.465 0.626 9,869 9.87 10,243 10.24 1.04 
10.07 0.556 0.812 11,048 11.05 11,914 11.91 1.08 
24.45 0.722 1.281 14,030 14.03 15,110 15.11 1.08 

20 0.696 1.190 14,131 14.13 14,673 14.67 1.04 
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Table A.16 Raw data for Experiment #8 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.52 0.281 0.33 9,734 9.73 13,785 13.78 1.42 

1 0.346 0.42 12,083 12.08 15,198 15.20 1.26 
1.5 0.444 0.59 14,821 14.82 18,037 18.04 1.22 
2 0.489 0.67 17,021 17.02 20,014 20.01 1.18 
3 0.587 0.88 19,429 19.43 22,972 22.97 1.18 
3 0.601 0.92 21,077 21.08 23,939 23.94 1.14 
4 0.656 1.07 22,369 22.37 25,560 25.56 1.14 

4.95 0.705 1.22 23,159 23.16 26,637 26.64 1.15 
8 0.802 1.62 26,872 26.87 30,078 30.08 1.12 
8 0.834 1.80 29,191 29.19 32,279 32.28 1.11 

10.1 0.852 1.91 29,870 29.87 33,450 33.45 1.12 
10.1 0.870 2.04 29,366 29.37 33,425 33.43 1.14 

24.05 0.901 2.31 29,110 29.11 33,689 33.69 1.16 
24.05 0.916 2.48 30,070 30.07 35,236 35.24 1.17 

15 0.876 2.09 27,908 27.91 33,082 33.08 1.19 
15 0.876 2.08 27,894 27.89 33,333 33.33 1.20 

30.02 0.908 2.39 27,185 27.18 33,108 33.11 1.22 
50 0.929 2.65 28,263 28.26 33,972 33.97 1.20 
50 0.930 2.67 29,565 29.56 34,791 34.79 1.18 

 
 
Table A.17 GPC replicates for Experiment #8 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
1 0.346 12,064 12.06 15,202 15.20 1.260 
3 0.587 20,141 20.14 23,175 23.18 1.151 
8 0.802 26,395 26.39 29,872 29.87 1.132 
8 0.802 26,564 26.56 29,772 29.77 1.121 

30.02 0.908 27,906 27.91 33,165 33.17 1.189 
50 0.929 27,767 27.77 33,327 33.33 1.201 
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Table A.18 Raw data for Experiment #9 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.50 0.129 0.14 3,492 3.49 5,146 5.15 1.47 
1.00 0.158 0.17 5,168 5.17 6,058 6.06 1.17 
1.25 0.203 0.23 6,759 6.76 7,651 7.65 1.13 
1.50 0.274 0.32 8,845 8.84 9,861 9.86 1.12 
2.00 0.350 0.43 10,552 10.55 11,856 11.86 1.12 
2.00 0.276 0.32 9,129 9.13 9,960 9.96 1.09 
2.50 0.402 0.51 12,389 12.39 13,711 13.71 1.11 
3.00 0.423 0.55 13,623 13.62 14,846 14.85 1.09 
4.17 0.508 0.71 18,071 18.07 19,138 19.14 1.06 
5.00 0.598 0.91 19,194 19.19 20,698 20.70 1.08 
5.00 0.591 0.89 18,816 18.82 20,372 20.37 1.08 

10.18 0.799 1.61 25,798 25.80 27,902 27.90 1.08 
15.08 0.850 1.90 26,120 26.12 28,604 28.60 1.10 
19.23 0.877 2.10 26,105 26.11 28,733 28.73 1.10 
20.27 0.897 2.28 26,503 26.50 30,256 30.26 1.14 
20.27 0.888 2.19 28,284 28.28 30,868 30.87 1.09 
21.72 0.896 2.27 28,447 28.45 30,921 30.92 1.09 
23.15 0.894 2.24 27,656 27.66 30,827 30.83 1.12 
29.98 0.913 2.44 27,573 27.57 31,231 31.23 1.13 
50.00 0.924 2.58 28,251 28.25 31,709 31.71 1.12 
71.93 0.934 2.72 29,715 29.72 32,374 32.37 1.09 

 
 
 
 
Table A.19 Replicate Run for Experiment #9 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
2 0.331 0.40 8,293 8.29 10,669 10.67 1.29 
4 0.532 0.76 12,765 12.77 16,765 16.77 1.31 
7 0.711 1.24 17,158 17.16 22,038 22.04 1.28 

10 0.778 1.51 19,016 19.02 23,989 23.99 1.26 
13 0.823 1.73 22,359 22.36 25,149 25.15 1.13 
16 0.857 1.95 21,950 21.95 26,255 26.26 1.20 
22 0.880 2.12 21,058 21.06 26,519 26.52 1.26 
28 0.900 2.31 22,917 22.92 26,485 26.49 1.16 
34 0.909 2.40 23,120 23.12 26,863 26.86 1.16 
40 0.912 2.43 23,050 23.05 27,356 27.36 1.19 
50 0.917 2.49 25,255 25.26 28,010 28.01 1.11 
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Table A.20 Raw data for Experiment #10 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
1 0.027 0.028 1,147 1.15 2,105 2.11 1.84 
2 0.084 0.088 3,404 3.40 3,768 3.77 1.11 
3 0.162 0.177 6,440 6.44 6,955 6.96 1.08 
4 0.246 0.282 9,016 9.02 9,844 9.84 1.09 
5 0.323 0.390 12,650 12.65 13,473 13.47 1.07 

5(rep) 0.335 0.407 12,120 12.12 13,120 13.12 1.08 
6 0.432 0.566 15,528 15.53 16,489 16.49 1.06 
7 0.490 0.673 18,040 18.04 19,164 19.16 1.06 
8 0.566 0.834 19,269 19.27 20,992 20.99 1.09 

8(rep) 0.543 0.782 19,345 19.35 20,990 20.99 1.09 
9 0.622 0.972 21,106 21.11 22,990 22.99 1.09  

Table A.21 GPC replicates for Experiment #10 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
4 0.24606 8939 8.94 9948 9.95 1.113 
8 0.56561 19850 19.85 20820 20.82 1.0895 
9 0.62151 22950 22.95 24150 24.15 1.089 

 
Table A.22 Replicate Run for Experiment #10 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.5 0.021 0.02 748 0.75 2,254 2.25 3.01 
1 0.034 0.03 1,839 1.84 2,398 2.40 1.30 

1.25 0.034 0.03 2,134 2.13 2,585 2.59 1.21 
2.72 0.148 0.16 5,227 5.23 5,646 5.65 1.08 
3.58 0.252 0.29 8,070 8.07 8,675 8.67 1.07 
5.5 0.405 0.52 12,638 12.64 13,702 13.70 1.08 
6.5 0.468 0.63 15,032 15.03 16,210 16.21 1.08 
8 0.579 0.87 17,723 17.72 19,348 19.35 1.09 

15.2 0.783 1.53 23,749 23.75 26,336 26.34 1.11 
15.2 0.779 1.51 23,218 23.22 26,173 26.17 1.13 

18.03 0.810 1.66 24,728 24.73 27,825 27.82 1.13 
18.03 0.823 1.73 25,243 25.24 27,941 27.94 1.11 

20 0.841 1.84 26,258 26.26 28,730 28.73 1.09 
22 0.857 1.95 25,200 25.20 28,085 28.08 1.11 
22 0.862 1.98 24,711 24.71 27,080 27.08 1.10 
25 0.872 2.06 25,150 25.15 28,406 28.41 1.13 
25 0.875 2.08 24,503 24.50 27,438 27.44 1.12 

25.52 0.869 2.03 26,163 26.16 29,408 29.41 1.12 
25.52 0.881 2.13 25,762 25.76 28,409 28.41 1.10 

30 0.891 2.22 26,185 26.19 29,573 29.57 1.13 
41.47 0.913 2.44 25,548 25.55 29,581 29.58 1.16 
48.05 0.914 2.45 24844.5 24.84 28073.5 28.07 1.13 
66.03 0.921 2.54 25820 25.82 30511.5 30.51 1.1815 
72.5 0.928 2.63 24937.5 24.94 28818.5 28.82 1.156 
72.5 0.926 2.61 26386 26.39 30032 30.03 1.1385 
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Table A.23 Raw data for Experiment #11 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.52 0.0842 0.09 272,253 272 429,501 430 1.58 

1 0.1528 0.17 256,074 256 414,973 415 1.62 
2 0.3060 0.37 269,070 269 418,732 419 1.56 
3 0.4326 0.57 261,392 261 418,071 418 1.60 
4 0.5485 0.80 268,870 269 430,085 430 1.60 

4.95 0.6356 1.01 269,974 270 439,320 439 1.63 
8 0.8119 1.67 265,242 265 444,381 444 1.68 
8 0.8170 1.70 261,322 261 446,825 447 1.71 

10.1 0.8776 2.10 261,030 261 450,401 450 1.73 
24.05 0.9520 3.04 255,473 255 450,312 450 1.77 

15 0.9228 2.56 272,768 273 457,930 458 1.68 
30.02 0.9620 3.27 170,026 170 354,440 354 2.09 

20 0.9488 2.97 216,777 217 426,575 427 1.97 
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Table A.24 Raw data for Experiment #12 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
0.50 0.001 0.001 - - - - - 
2.03 0.007 0.007 - - - - - 
2.03 0.007 0.007 - - - - - 
3.18 0.017 0.017 751 0.75 869 0.87 1.16 
4.58 0.069 0.072 3,543 3.54 3,805 3.81 1.07 
5.50 0.105 0.111 4,927 4.93 5,302 5.30 1.08 
5.50 0.107 0.113 5,030 5.03 5,401 5.40 1.07 
8.00 0.203 0.226 8,074 8.07 8,889 8.89 1.10 

12.32 0.343 0.420 11,071 11.07 13,037 13.04 1.18 
12.32 0.339 0.414 11,140 11.14 13,003 13.00 1.17 
15.00 0.412 0.531 12,145 12.14 14,811 14.81 1.22 
15.00 0.406 0.521 12,065 12.06 14,667 14.67 1.22 
20.00 0.510 0.714 13,326 13.33 16,842 16.84 1.26 
20.00 0.516 0.727 13,676 13.68 16,987 16.99 1.24 
25.08 0.601 0.919 13,827 13.83 18,195 18.19 1.32 
30.05 0.666 1.095 13,042 13.04 18,287 18.29 1.40 
30.05 0.677 1.130 14,352 14.35 19,427 19.43 1.36 
45.07 0.750 1.388 14,538 14.54 20,027 20.03 1.38 

 
Table A.25 GPC replicates for Experiment #12 

Time (hr) Conversion Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
5.5 0.107 5,027 5.03 5,390 5.39 1.07 
15 0.412 13,475 13.48 16,886 16.89 1.26 
20 0.510 13,694 13.69 15,429 15.43 1.14 

25.083333 0.601 13,422 13.42 19,474 19.47 1.45 
30.05 0.666 13,965 13.96 18,865 18.87 1.35 

45.066667 0.750 14,283 14.28 18,925 18.93 1.33 

 
Table A.26 Replicate Run for Experiment #12 

Time (hr) Conversion ln[M]0/[M] Mn - (Daltons) Mn*10-3 Mw - (Daltons) Mw*10-3 Mw / Mn (PDI) 
5.00 0.081 0.085 3,971 3.97 4,284 4.28 1.08 

10.02 0.264 0.306 8,760 8.76 10,364 10.36 1.18 
15.00 0.412 0.531 12,538 12.54 14,841 14.84 1.18 
20.02 0.537 0.769 13,738 13.74 17,138 17.14 1.25 
25.00 0.608 0.936 15,031 15.03 18,423 18.42 1.23 
31.17 0.691 1.174 14,182 14.18 19,434 19.43 1.37 
40.00 0.749 1.384 14,992 14.99 20,446 20.45 1.36 
40.00 0.746 1.371 12,055 12.06 19,171 19.17 1.59 
45.55 0.781 1.517 13,476 13.48 19,921 19.92 1.48 
49.52 0.788 1.551 13,549 13.55 20,010 20.01 1.48 
49.52 0.798 1.599 14,105 14.11 20,243 20.24 1.44 
64.00 0.846 1.873 14,290 14.29 20,705 20.71 1.45 
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Table A.27 Typical Standard Error in Conversion Measurements ∗ 

Time (hr) 2 3 6 9 14 24 40 
Conversion 0.1531 0.1076 0.2383 0.2247 0.3842 0.3917 0.5356 0.5369 0.6883 0.6593 0.8010 0.8014 0.8935 0.8938 
Variance 1.035E-03 9.287E-05 2.782E-05 8.192E-07 4.210E-04 7.722E-08 5.035E-08 
Pooled Variance 2.254E-04 
Standard Error 1.501E-02 

 
∗ Based on run # 2 (See Table A.3 and A.4) 
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APPENDIX B – COMPLEMENTARY FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure B.1 Effect of decreasing TEMPO/BPO ratio on first order plot in NMRP of styrene at 120°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.2 Monomer conversion vs. time for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 0.9 (Run #1) 
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Figure B.3 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 0.9 

 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

Figure B.4 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 120°C and 
[TEMPO]/[BPO] = 0.9 
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Figure B.5 Effect of increasing TEMPO/BPO ratio on first order plot in NMRP of styrene at 120°C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure B.6 Monomer conversion vs. time for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.5 (Run #4) 
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Figure B.7 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.5 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.8 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 120°C and 
[TEMPO]/[BPO] = 1.5 
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Figure B.9 Effect of [TEMPO]/[BPO] ratio on first order plot in NMRP of styrene at 120°C  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure B.10 Monomer conversion vs. time for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.2 (Run #3) 
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Figure B.11 First order rate plot for NMRP of styrene at 120°C and [TEMPO]/[BPO] = 1.2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.12 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 120°C and 
[TEMPO]/[BPO] = 1.2 
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Figure B.13 Monomer conversion vs. time for NMRP of styrene at 130°C and [TEMPO]/[BPO] = 0.9 (Run #8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.14 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 0.9 
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Figure B.15 Monomer conversion vs. time for NMRP of styrene at 130°C and [TEMPO]/[BPO] = 1.1 (Run #9) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.16 Average molecular weights and polydispersity vs. conversion for NMRP of styrene at 130°C and 
[TEMPO]/[BPO] = 1.1 
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Figure B.17 Monomer conversion vs. time for NMRP of styrene at 130°C and [TEMPO]/[BPO] = 1.3 (Run #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.18 Average molecular weights vs. conversion for NMRP of styrene at 130°C and [TEMPO]/[BPO] = 1.3 
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Figure B.19 Polydispersity vs. conversion for NMRP of styrene at 130°C and [TEMPO]/[BPO] = 1.3 

 

 
 
 
 
a)        b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.20 Polydispersity as a function of the TEMPO/BPO ratio for NMRP of styrene a) after 10 hrs,  

b) after 20hrs at 120°C 
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a)            b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.21 Polydispersity as a function of the TEMPO/BPO ratio for NMRP of styrene a) after 8 hrs,  

b) after 30hrs at 130°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure B.22 Monomer conversion vs. time for thermal polymerization of styrene in the presence of TEMPO at 
120°C and [TEMPO]0 = 0.0396 M (compared to experimental work from Saldivar-Guerra et al. [30]) 
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Figure B.23 Average molecular weights and polydispersity vs. conversion for thermal polymerization of styrene in 

the presence of TEMPO at 120°C and [TEMPO]0 = 0.0396 M 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.24 Monomer conversion vs. time for: a) thermal polymerization of styrene in the presence of TEMPO with 

[TEMPO]0 = 0.0396 M b) thermal styrene, at 120°C 
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Figure B.25 Comparison of SEC Chromatograms for a) Styrene thermal polymerization b) Styrene thermal 
polymerization in the presence of TEMPO, at 35% conversion and 120°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.26 Rate of polymerization presented as fist order plot; comparison between thermal NMRP and NMRP 
with [TEMPO]/[BPO] = 1.1 at 120°C and [TEMPO]0 = 0.0396 M 
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a)                                                                       b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.27 Number average molecular weights (a) and polydispersities (b) vs. conversion; Comparison between 
thermal NMRP and NMRP with [TEMPO]/[BPO] = 1.1 at 120°C and [TEMPO]0 = 0.0396 M 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.28 Effect of [TEMPO]/[BPO] ratio on polymerization rate at 130 °C; comparison of experimental data and 

model predictions 
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Figure B.29 Effect of [TEMPO]/[BPO] ratio on number average molecular weight at 130 °C; comparison of 
experimental data and model predictions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B.30 Effect of [TEMPO]/[BPO] ratio on polydispersity at 130 °C; comparison of experimental data 

and model predictions 
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