Techniques for Quantum Computing

State Generation, Discrete Logarithms in Elliptic Curve Groups,

Reliable Global Control Schemes and Algorithmic Cooling

by

Phillip R. Kaye

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2007

©Phillip R. Kaye, 2007



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Phillip R. Kaye

i



Abstract

This thesis is about techniques for quantum computing. A common theme throughout
this work is the examination of how quantum algorithms and protocols might be imple-
mented in practice. I explore this question at the level of algorithmic details and computer
architecture, and not at the level of specific physical systems for performing quantum

computation.

The first problem I consider is the generation of quantum states. Many results in quantum
information theory require the generation of specific quantum states, such as Bell states.
Some states can be efficiently created using standard quantum computational primitives
such as preparing a qubit in the state |0) and applying a sequence of quantum gates (from
a finite set). For example, a Bell state can be prepared from the state |0)|0) using a
Hadamard gate and a controlled-NOT gate. However, many states cannot be efficiently

created. Chapter 1 of this thesis focusses on the generation of quantum states.

In Chapter 2, I explore implementations of Shor’s quantum algorithm for computing dis-
crete logarithms. This algorithm is particularly significant because it threatens to un-
dermine the security of widely used elliptic curve cryptosystems. I give a strategy for
implementing Shor’s algorithm for finding discrete logarithms in groups of points on ellip-

tic curves over fields of characteristic 2.

Chapter 3 is about globally controlled arrays, which is a paradigm for implementing quan-
tum computers that may prove to be more feasible in practice than the quantum circuit
model. I explore strategies for implementing error correction in such global control models,
so that they might be implemented more robustly. I also cast the various global control
schemes that have appeared in the literature into a unified framework so that their prop-
erties can be studied somewhat independently of the differences in low-level details. Using
this framework, I consider the main challenges and obstacles to implementing quantum

computing fault tolerantly using globally controlled arrays.

Finally, in Chapter 4, I consider algorithmic cooling—a technique that is potentially impor-
tant for making quantum computation using nuclear magnetic resonance (NMR) feasible.
Given the constraints imposed by the NMR approach to quantum computing, the most

likely cooling algorithms to be practicable are those based on simple reversible polarization

il



(RPC) operations acting locally on small numbers of bits. Algorithms using 2- and 3-bit
RPC operations have appeared in the literature, and these are the algorithms I consider
in Chapter 4. Specifically, I show that the RPC operation used in all these algorithms is
essentially a majority-vote of 3 bits, and prove the optimality of the best such algorithm (in
a restricted setting). I go on to derive some theoretical bounds on the performance of these
algorithms under some specific assumptions about errors. These bounds are independent

of implementation details and low-level algorithmic details.

v



Acknowledgements

I am indebted to my supervisor, Professor Michele Mosca, for his guidance, support and
interest in my work. I would also like to thank Prof. Raymond Laflamme, Christof Zalka,
Donny Cheung, Carlos Perez, Alastair Kay, Mark Saaltink and Lawrence loannou for
the many useful conversations that have been important to the development of the work
presented in this thesis. I also wish to thank my wife Janine for her love and support

during my years as a graduate student.

The work presented in this thesis has been supported by MITACS (Mathematics of In-
formation Technology and Complex Systems), NSERC (National Science and Engineering
Research Council), CSE (Communications Security Establishment), CFI (Canadian Foun-
dation for Innovation), ORDCF (Ontario Research and Development Challenge Fund), and
PREA (Premier’s Research Excellence Awards).



Contents

Preface

1

2

Quantum circuits for generating quantum states

1.1 Background . . . . . . . . ..

1.2 Generating the phase factors . . . . . . . . . ... .. ... L.

1.3 Generating the state with real nonnegative amplitudes . . . . . . . . . ..
1.3.1 The algorithm . . . . . .. ... ... o
1.3.2 Implementing the UJ‘I’ ..........................

1.4 An example: symmetric states . . . . . . .. ...

1.5 Precision . . . . . . .o
1.5.1 Precision in the generation of [U) . . . . . . . ... ... ... ...
1.5.2  Precision in the generation of phases . . . . ... .. ... .. ...

1.6 Conclusions . . . . . . . .

Discrete logarithms for elliptic curve groups

2.1 Background . . . .. ...
2.1.1 Shor’s algorithm . . . . .. ... ...
2.1.2  Circuits for modular arithmetic . . . . . ... ... ... ... ...

2.1.3  The elliptic curve group operation . . . . . . . . . .. ... .. ...

X

N=TES S TN

11
12
12
16
17



2.2 Elliptic curves over GF(2™) . . . . . . .. 21
2.3 Representations of the group elements . . . . . . ... ... ... .. ... 23
2.4  The discrete-logarithm problem . . . . . .. .. ... ... ... ...... 24
2.5 Decomposing the group operation . . . . . . . . ... ... L. 25
2.6 The extended Euclidean algorithm for polynomials . . . . . .. . ... .. 27
2.7 Naive implementation of the extended EEA . . . . . ... ... ... ... 31
2.7.1 Implementing some tools . . . . . . . .. ... 32
2.7.2 Longdivision . . . . .. ... 37
2.8 The problem of synchronization . . . . . . . . ... .. ... ... ... .. 38
2.9 An optimized implementation . . . . . . ... ... ... L. 40
2.9.1 The implementation . . . . . . ... ... oL 40
2.9.2 Space complexity . . . . ..o 46
2.10 Conclusions and future work . . . . . . . .. ... 47
Globally controlled quantum arrays 48
3.1 Background . . . . ... 48
3.1.1  Quantum cellular automata and globally controlled arrays . . . . . 48
3.1.2  Between quantum circuits and simple spin chains . . . . . . .. .. 50
3.2 The basic GCA model . . . . . . ... 51
3.2.1 The language SPA . . . . . . . . .. 52
3.2.2 Implementations of SPA for some example architectures . . . . . . . 55
3.2.3 Implementation on lattices with a distinguished site . . . . . . . .. 66
3.2.4 SPA programs to simulate quantum circuits . . . . . . . ... .. .. 68
3.2.5  GCA, QCA, and error correction . . . . . . . . .. ... ... .... 72
3.3 Two approaches to error correction for GCA . . . . . . .. ... 74
3.4 Implementation-level error correction . . . . . . ... ... ... ... ... 76



3.4.1 Dissipative pulses—removing unwanted entropy . . . .. .. .. ..
3.4.2 A bit-flip code for a GCA memory . . . . . ...
3.4.3 A 9-qubit code for a GCA memory . . . . . ...
3.4.4 A 1-dimensional implementation of the 9-qubit code . . . . . . . ..
3.4.5 Scaling the 9-qubit code . . . . . . ... ..o
3.4.6  From a robust GCA memory to a robust implementation of SPA. . .
3.4.7 A general construction for implementation-level codes on lattices . .
3.5 GCA models with parallelism . . . . . . . ... ... ... ... ... ....
3.5.1 The language MPA(k) . . . . . . . ...
3.5.2  An approach to implementing MPA(k) . . . . . . .. ... ... ...
3.6 Data-level error correction . . . . . .. ... Lo
3.6.1 The general approach . . . . . . .. ... ... L0
3.6.2 Example: the Steane code . . . . . . .. ... L.
3.6.3 Code-concatenation requires more sophisticated parallelism . . . . .
3.7 Unresolved problems . . . . . . . . ... ...

3.8 Conclusions and future work . . . . . . . . . .. ...

Cooling algorithms based on the 3-bit majority

4.1 Background . . . . . . ...

4.2 Architecture . . . . . ..

4.3 The reversible polarization compression step . . . . . . .. ... ... ...
4.3.1 The 2-bit RPCstep . . . . . . . . . ..
4.3.2 The 3-bit RPCstep . . . . . . . . ..
4.3.3 Equivalence between the 2BC and 3BC operations . . . . . . . . ..

4.4 Efficiency . . . ...

4.4.1 The simple recursive algorithm . . . . . . .. .. ... ... .. ..

xi

103
103
104
106
106
108



4.4.2 Algorithms using a heat bath . . . . . .. .. ... ... .. .... 120

4.4.3 Accounting for the heat bath as a computational resource . . . . . . 124

4.5 Accounting for errors in an analysis of cooling . . . . . ... ... .. ... 125
4.6 The symmetric bit-flip channel . . . . . . . . ..o 126
4.6.1 3BC followed by a symmetric bit-flip error . . . . . . . . . ... .. 127
4.6.2 Symmetric bit-flip errors during application of 3BBC . . . . . . . .. 128

4.7 Debiasing errors . . . . . .. ..o 130
4.7.1 3BC followed by a debiasing error . . . . . . . .. .. ... ... 132
4.7.2 Debiasing errors during application of 3BC . . . . . . .. . ... .. 134

4.8 More general algorithms based on 3BC . . . . ... ... ... .. ... .. 135
4.9 Conclusions and other considerations . . . . . . . ... ... ... ... .. 136
A Proofs of correctness for sequences in Section 3.2.2.2 138

B Implementing switching stations for the architecture of Section 3.2.2.2 143

xii



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5

A circuit to generate |U) . . . ... 8
A circuit to generate |[W) . . .. ... o 9
A circuit implementing U ;I’ ........................... 10
A circuit for computing the Hamming weight . . . . . . . .. ... ... .. 12
A circuit to compute the degree of A€ GF(2™) . . .. ... ... ... .. 33
A circuit to compute |k) <« |[k+1) . . .. ..o oo 34
The quantum SWAP gate . . . . . . . . . . . .. ... 36
A cyclic left shift gate . . . . . . ... 36
A circuit for |0)]s) < [0 << s)|s) . ... 37
Desynchronization example . . . . . . . . . . ... L 39
The positions of A, B, a,b for register sharing . . . . . . ... .. ... ... 43
Example of long division by hand . . . . .. . ... ... ... .. ..... 44
Example of optimized implementation of long division . . . . . . . . .. .. 45
A fragment of a circuit to be simulated by SPA . . . . .. .. ... 69
A circuit equivalent to Figure 3.1 . . . . . . .. ... ... 69
The circuit in Figure 3.2 rewritten with no gates acting in parallel . . . . . 70
A nearest-neighbour version of the circuit shown in Figure 3.3 . . . . . .. 70
A construction for implementing a distance-4 ¢CNOT gate . . . . . . .. .. 70

xiii



3.6 Some optimizations applied to the circuit constructed in Figure 3.4 . . . . 72

3.7 A nearest-neighbour encoding circuit for the three-qubit code . . . . . . . . 79
3.8 A quantum circuit performing encoding for the Shor code . . . . . . . . .. 83
3.9 A circuit for performing encoding for the Steane code . . . . . . . . .. .. 104
3.10 A circuit for performing error correction for the Steane code . . . . . . .. 105

4.1 A circuit for the 3BC step using CNOT gates and generalized Toffoli gates . 117
4.2 An alternative circuit for the coolingstep . . . . . . . . . .. ... ... .. 118

4.3 The majority circuit with relevant error positions shown . . . . . . . . .. 129

Xiv



Preface

Quantum computing as a discipline is still largely confined to theoretical activities in
computer science aimed at finding new algorithms and protocols, and to experimental
work seeking to identify and learn about the physical systems that might be plausible
candidates for implementation of large-scale quantum computers. Not as much attention
has been paid to the low-level design and optimization of algorithm implementations and

quantum computer architecture. It is in these areas that I have directed my efforts.

There are a few general threads of research directed at low-level algorithmic implementa-
tion of quantum computing. One is the design and optimization of detailed sequences of
quantum gates for implementing algorithms and protocols in the quantum circuit model.
Quantum algorithms and protocols are often expressed in the circuit model at a high level,
using black boxes to represent circuits for performing subroutines (e.g. arithmetic or group
operations), using particular initial states that may have to be prepared ahead of time by
an algorithmic technique, or using particular measurements that may require implement-
ing some basis change. Physical implementation of an algorithm or protocol in a quantum
computer will require a more complete specification of a sequence of quantum gates drawn
from a (universal) finite set. Another thread of research is the design and study of the
computational models we use to discover and articulate algorithms and protocols. An
important goal is to develop models that are more likely to map naturally to a winning
technology for implementing quantum computing machines. A third area of research is the
design of detailed strategies for implementing techniques of quantum error correction and
fault tolerance, so that the computing models can be made more robust against errors.

This thesis contains elements of all three of the above activities.



I (with my co-author) gave the first detailed scheme for implementing quantum circuits
for generating arbitrary quantum states, supposing we are provided a reasonably compact
(classical) description of the desired states [KM02]. We show in detail how an important
class of states (the symmetric states) can be created by our method. This work is the
subject of Chapter 1.

Shor’s algorithm is particularly interesting because of its ability to compromise real-world
cryptographic systems. The computational bottleneck in an implementation of Shor’s al-
gorithm is the exponentiation step (either modular exponentiation, or exponentiation of
some other group operation). An understanding of the exact complexity of implementing
these operations is required for cryptographers to prepare for the post-quantum era, so
that existing cryptosystems can be strengthened or replaced. Detailed circuits for modu-
lar exponentiation (needed for compromising the RSA and Diffie-Hellman protocols) are
known, as is an implementation of the group operation for elliptic curves over prime fields
(needed for compromising elliptic curve cryptosystems based on these fields). However,
many real-world cryptosystems are based on elliptic curves over binary fields. I gave the
first detailed reversible implementation of the group operation for these curves [Kaye05].
Such an implementation would be required for a quantum computer running Shor’s al-
gorithm to compromise the real-world cryptosystems based on elliptic curves over binary

fields. This work is presented in Chapter 2.

The difficulties associated with realizing the quantum circuit model in a physical system
have motivated the search for alternative quantum computing paradigms. One such ap-
proach has removed the requirement for the system to provide full local control over the
qubits on which we are computing. Proposals for “globally controlled arrays” of qubits
hold the potential to be more easily implemented (for example by nuclear magnetic reso-
nance) than the circuit model. The proposals for globally controlled arrays differ in their
details, but above a certain level of abstraction are organized in essentially the same way.
In Chapter 3, I present a unified framework for studying these schemes. Globally controlled
arrays are known to support universal quantum computation, but the question of whether
they can support fault-tolerant quantum computation has not been adequately resolved.
I discuss the main obstacles to fault tolerance for globally controlled arrays, suggest some

approaches, and point out some of the shortcomings of existing proposals.



One of the challenges of quantum computing with NMR is the difficulty in obtaining a
pure initial state. One approach to resolving this problem has been the development of
techniques for algorithmic cooling. Because algorithmic cooling is likely to be useful for con-
strained systems like globally controlled arrays, it is important to find cooling algorithms
that can be realistically implemented on these architectures. The cooling algorithms that
have been proposed as practical candidates for quantum computation have been based on
a reversible polarization compression (RPC) step involving either two or three qubits. In
Chapter 4, I show that the RPC operation used in all these algorithms is essentially a
majority-vote of 3 bits, and prove the optimality of the best such algorithm (where “best”
is defined in terms of a specific characterization of the performance of cooling algorithms)
in a restricted setting. I go on to derive some theoretical bounds on the performance of
these algorithms under some specific assumptions about errors. These bounds are inde-
pendent of implementation details and low-level algorithmic details. At the time of writing

this thesis, this work on algorithmic cooling has been selected for publication [Kaye07].



Chapter 1

Quantum circuits for generating

quantum states

1.1 Background

Many results in quantum information theory require the generation of specific quantum
states, such as Bell states, or the implementation of specific quantum measurements, such
as a von Neumann measurement in a Fourier-transformed basis. Some states and measure-
ments can be efficiently implemented using standard quantum computational primitives
such as preparing a qubit in the state |0) and applying a sequence of quantum gates (from
a finite set). A Bell state can be prepared from the state |0)|0) using a Hadamard gate
and a controlled-NOT gate. A von Neumann measurement in the Fourier basis can be ef-
ficiently realized by applying an inverse quantum Fourier transform and performing a von
Neumann measurement in the standard computational basis. However, many states and
basis changes cannot be efficiently realized, and for those that can, it is not always clear
how. For example, in [HMP+98] an improved frequency standard experiment is presented
that requires the preparation of specific symmetric states. In this chapter I describe a
general algorithm for preparing quantum states for which we have a reasonably compact
(classical) description. One example for which this algorithm is efficient is the preparation
of the symmetric states required by [HMP+98].



1.2. GENERATING THE PHASE FACTORS )

Suppose we want to generate [V) =37 130 aze*™=|x), where a, are nonnegative reals
and 7, are real numbers in [0,1). If we can first generate |¥) = > «,|x), then using
methods described in Section 1.2 we can introduce phase factors to estimate |¥) arbitrarily
well. I begin in Section 1.2 by showing how to generate the phase factors, as we will also
need this technique in Section 1.3 where I show how to generate a state that is a good
approximation of [U) = > . 0zlz). In Section 1.4 T will give an example implementation
of the state-generation algorithm, and in Section 1.5 I will examine the issues associated

with finite precision.

1.2 Generating the phase factors

Let us begin by reviewing the procedure of [CEMMO8]| for generating arbitrary interference
patterns. If we have first created the state |U) = > zefo1yn Qz|T), this procedure will enable

us to generate the state |¥) = > ageqo1yne®™ 7" |x).

The goal is to implement a circuit that performs
|z) = e ) (1.1)

for each basis state |z), where v, are real numbers in [0, 1). Here we will assume that each

— dz

Yz = 5% for some m-bit integer 4.

We suppose the phases are encoded in an operator ADD;, that has the following effect
ADDj : [z)]y) — |)|y + 4> mod 2). (1.2)

We assume that we are provided with a compact description of the phases 7., and that this
allows us to construct an efficient circuit for ADD; that will add the appropriate values of
7. to the second register, controlled on the state |x) in the first register. The addition can

be performed using standard reversible arithmetic circuits (e.g. [VBE95]).

We will make use of an m-bit auxiliary register, initially in the state |1). We then apply

the inverse quantum Fourier transform, QFT;&, to obtain the state

—2mi
Sy

\/% Z_ e Y). (1.3)



6 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

Claim 1.2.1 For each basis state |r), 0 < x < 2" — 1, the state |v)QFT5|1) is an

eigenstate of ADD5, with eigenvalue e*™=.

Proof:

ADDj; (J2)QF Tyt [1)) = ADDs|z) ( Ze’%ly ) (1.4)

2m_1
1 —27i
= — ADDs|z)e2™ Y|y) (1.5)
V/2m -
2m
= E ]x ez y\y + 4, mod 2™) (1.6)

\/Q_m
_ (63%1” ) ( ) i be 2 Y|y mod 27 (L.7)

=0

e 2 ) QF Ty [1). O (1.8)

So applying ADD; to |z) (QFT ]1}) and associating the eigenvalue (which is a global

phase factor in this case) with the first register results in the state
™ |z) (QFTom|1)) . (1.9)
By applying ADD; to |¥) = 3 a,|z) (QFT5m[1)) we therefore get
Z a,e”™ | z) (QF Tyt |1)) (1.10)
=|¥) (QF ;1)) (1.11)

and, tracing out the first register, we have generated |¥).

In Section 1.3 we will need to use an operator
St lw)l) = [w)e? D) (1.12)

where the second register is a single qubit. This operator S, can be implemented using
the procedure described above, by taking 7, = (—1)*w and implementing ADD5 so that it

is conditioned on the state |w) as well as on the state |z).



1.3. GENERATING THE STATE WITH REAL NONNEGATIVE AMPLITUDES 7

1.3 Generating the state with real nonnegative am-

plitudes

Ignoring for now the issues associated with precision, I present the basic technique for
generating the state |¥) = > zefoayn Qz|7). The approach will be to implement a series
of n controlled-rotations, with the state of the k" rotation controlled by the state of the

previous k — 1 qubits for k£ > 0.

1.3.1 The algorithm

We begin by extending the definition of a, to x € {0,1}7 for 1 < j < n. Suppose we
had a copy of |¥) and we measured the leftmost j qubits in the computational basis. Let
Qigyz,..z; De the nonnegative real number so that ailx%%, equals the probability that the
measurement result is x5 ...2;. Then (azlmnxj_lzj /oz:,ﬁl,mm%._l)2 gives the conditional
probability that a measurement of the first j qubits would yield z; in the j™ qubit, given
that it yielded z2y...x;_; in the first j — 1 qubits. For 2 < j < n, define a controlled

rotation U; by

Uy Qg xo..25_ Apizg...25_
) ) .. 2y} 0) s [ dlas) - Jay) (—“0|o> ; —“1|1>) )

T1T2...T5—1 Oéxlwg...x]',1

Define UyY to be the single-qubit (uncontrolled) rotation that performs
Uy
10) — (v]0) + aq]1)). (1.14)

The algorithm for generating the n-qubit state |\if> is a sequence of n such rotations, as

shown in Figure 1.1.

The following claim shows that the circuit of Figure 1.1 generates [)).

Claim 1.3.1 After the operation U;p in Figure 1.1, the state of the first j qubits is

Z arlmg..mj |$1I2 o Ij>~ (115)

z122...2;€{0,1}7



8 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

‘I, —q ——o o e — -
|0) Uy Uy
0 —— " Hug
o) IS+ S )
|0) e -

Figure 1.1: A circuit to generate |¥).

Proof: The proof is by induction on k. The claim is clearly true for the first

rotation by definition of U. Suppose we have generated the state

Z a$1$2...mj|x1x2 e x]>

z1x2...w;€{0,1}7

and we apply U ;Ijrl as in Figure 1.1. Then we have

Ul > CumaTiTa . 2)]0) (1.16)

z1x2..2;€{0,1}

= ) O, (Ulmizs . 2)[0)) (1.17)

z122..0;€{0,1}

= Y o) (SR Sy ) ()

(6] . 6% .
1112...xj€{0,1}j T122...T5 T122...75

= Z (Q$1$2_._x].0|$1l’2 e .Z’J>|O> + Oé$1$2._.xj1|l’1l’2 e l']>|1>) (]_]_9)

z1x2...w;€{0,1}7

= Z Cayzg.wjajor | D172 - - TjTjq1). [ (1.20)

z122..2;€{0,1}+1

Putting the circuit to generate |\TJ> together with the phase generation procedure described

in Section 1.2, the circuit in Figure 1.2 generates the desired state |¥).



1.3. GENERATING THE STATE WITH REAL NONNEGATIVE AMPLITUDES 9

0) —— U P
Uy
0 .
. Uy,
0 R
10) ADD;
n qubits
1) { : QFT;;!
m qubits

Figure 1.2: A circuit to generate |¥).

1.3.2 Implementing the U;I’

v)

In this section I show how to implement the U ;Z’ rotations. Assume that we have access to a

quantum register |¥) that encodes some “classical” description of the state |¥). The state

|¥) must contain enough information to allow the probabilities a? (or a related quantity,

such as the w; defined below) to be efficiently computed. We also use an ancillary register

initialized to the state |0). For each 1 < j < n, assume we can efficiently implement the

operators V;‘I’ defined as follows:

£4

@O .. [2y2) o [@)foydla) .. o),

where w; satisfies

2
(6% .
cos?(27w;) = <—x1'"%10) .

aarl...zj,l

Using the method described in Section 1.2 we can implement the operator

Syt |lw)|z) — |w)62m(_1)z“|x).

Assume we also have access to the 1-qubit gate

v=il)

(1.21)

(1.22)

(1.23)

(1.24)



10 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

With these components, a circuit implementing U ;1/ is shown in Figure 1.3

W) ] - [W)
|0> —— *|wj> —— |0>
-1
) —{ V3" (V") e
[2) — |2)
|2 -1) — |z 1)
[0)

Qzy..zj_10 Ogy.aj_q1
. S . w Qyawj_q ‘0>+ Quy.wj_y ‘0>

Figure 1.3: A circuit implementing U;I’.

We can verify that the above circuit has the desired effect by following the state through

each step of the circuit:

[0)[0) (|1 .. 2,-1)[0)) (1.25)
S8 ) (fo - ay1)]0)) (1.26)

8 ) (m ) (J0) + |1>>) (1.27)

V2
5 |0 ;) (|x1 xj_1>% (e*™10) +e—2mf|1>)) (1.28)
LT A0 (|a;1 £y (679 4+ e72m0) [0) + (27 — e=27) |1>)) (1.20)
lV—>|\TJ>\w]) (]ml x]_1>% ((e°™7 4 e72™3) |0) — i (e¥™7 — e7 2™ \1))) (1.30)
=) |w;) (|z1 ... 2j_1) (cos(2mw;)|0) + sin(27mw;)[1))) (1.31)
&@HO) (|1 ... 2j-1) (cos(2mw;)|0) + sin(27w;)[1))) (1.32)
=) |0)U" (|1 - .. 2-1)]0)) . (1.33)

The above algorithm works for a general family of states with classical descriptions |¥).

If we are only interested in producing a specific state |¥), the circuit can be simplified by



1.4. AN EXAMPLE: SYMMETRIC STATES 11

removing the register containing |¥) and simplifying each VJ‘I’ to work only for that specific
W),

Note that the overall efficiency of our algorithm depends on how efficiently we can imple-
ment the V}‘I’; in other words, how efficiently we can compute the conditional probabilities
(Oéxl...zj_lo/axl...zj_l)2- In the next section I give an example for which this is easy: the

symmetric states.

1.4 An example: symmetric states

In this section I describe an example of a family of states for which we can efficiently im-
plement the state generation algorithm described above. These are the symmetric states.
The symmetric state |S,.) is defined to be an equally-weighted superposition of the compu-
tational basis states |z) that have Hamming weight H(z) = r (H(x) is the number of bits
of z that equal 1). That is,

80 = —— 3 Ja. (1.34)
(7) H@=r

al‘ X 5 2 .
The conditional probability <1—J’11> is

Olaclmxj_l

T—H<$1$2...l’j,1)
n—j+1

(1.35)

for 1 < j < mn. These values can be computed using standard reversible circuits for
arithmetic operations (e.g. [VBEO95]) and using a circuit for computing the Hamming
weight H(zyzo...2;-1). A circuit for the Hamming weight was given in [KMO1] and is

reproduced in Figure 1.4.

We will see a detailed implementation of the controlled-increment (+1) gates in Section

2.7.1.
We have ) )
(aﬂ?l...m]‘_lo) — 1 . (Oéacl...a:j_ll) (136)
aa:l...acj_1 O-/xl...a:j_l



12 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

|z1) |z1)

|z2) e |z2)

|37.3> Tt \?3>

w5-1) S 1)
0)
\O) +1 } H(ziza...25-1)
0) | +1 +1

[log, j — 1] qubits

Figure 1.4: A circuit for computing the Hamming weight H(z1z2 ... 2j_1).

and using standard methods for arithmetic operations we can efficiently compute the w;

satisfying

2
cos?(27w;) = <M> . (1.37)

0511...333',1

Another example for which we can efficiently implement the V;‘I’ is for more general sym-

metric pure states
> BilS;) (1.38)
§=0

where we are given the (3; values (as required in [HMP+98]).

1.5 Precision

1.5.1 Precision in the generation of |¥)

We want to implement the algorithm described in Section 1.3 to generate a state |¥)
that is a good approximation of the state |¥). One measure of the quality of such an

approximation is the fidelity between the states.



1.5. PRECISION 13

The classical fidelity between two probability distributions {p,} and {g.} is defined by
F(ps, qz) Z V Pz (1.39)

The classical fidelity is the inner product between vectors on the unit sphere with com-
ponents /p, and ,/q,. The classical fidelity between identical probability distributions is
1.

The quantum fidelity between two general quantum states p and o is defined to be

=

F(p,o) =Tr\/p2opz. (1.40)

The fidelity is a nonnegative number that equals 1 when p = 0. So we want to estimate
| W) with fidelity close to 1. For [¥) = 3" a,|z) and |¥) = 3" &,|z), which are pure states

having nonnegative real amplitudes, the fidelity is

F(|0), ¥ (Zfﬂw x|> <Z&%\x><x\) <Za§!w><x|> (1.41)
\/Zaw x| (1.42)
= ad, (1.43)

= (|¥) (1.44)
(1.45)

which equals the classical fidelity between the probability distributions that would result

from measurements of the states in the {|x)}-basis.

Suppose we can estimate the state |¥) by a state |¥) satisfying

Gy — | < — (1.46)

ER2Z



14 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

for each = and for some € > 0. Then we have
3 a —al < Z \/827 (1.47)
j{:( — ay) EE:»VEE (1.48)
Za —Zamax < Zam (1.49)

\I/\IJ >1-— ax— 1.50
(¥]9) Z N (1.50)

>1—¢ (1.51)

where the last inequality follows from the Cauchy-Schwartz inequality which says

) o

So (1.46) is sufficient to estimate |¥) with fidelity at least 1 — . Suppose we compute the
&, with k bits of precision so that |a, — a,| < 27% for each x. Then (1.46) is satisfied if

we choose k so that

9
V2"

= —k < log, (\/%) (1.54)
= k > log, <\/€2_n> .

27k <

(1.53)

(1.55)

We can reformulate the precision requirement in terms of the conditional probability ampli-
tudes (ammmx].flxj/amlm,,,xjfl) that are computed by the VJ‘I’ This will tell us how many
qubits we must use for the register into which |w;) is computed (as described in Section
1.3.2).

For2<j<nlet P, = (Oéa;m.‘.zj /ozmmmx]._l), and let P, = a,. Then each coefficient «,
for z € {0,1}" is



1.5. PRECISION 15

If the VJ‘I’ produces estimates pj of the conditional probability amplitudes F;, then the

state generation algorithm produces a state with amplitudes
Gy =2 P (1.57)

(this follows from the proof of Claim 1.3.1).
We can rewrite (1.46) in terms of the P; and P;, as follows:

~ €
1L, P; > 11; P; — \/? (1.58)
We want to know how precisely we should compute each f)] in order that (1.58) is satisfied.

Suppose j = 2 and our estimates of P; satisfy

P —P <0 (1.59)
Py — Py < 4. (1.60)
Then
PP, < PP+ (151 + 152) + 62 (1.61)
< PPy + 26 + 67 (1.62)
< PPy+36 (1.63)

since a < 1. So if we form the product by recursively taking the P; (and pj) in pairs, then

we get
gomng < (1.64)
—_— 2n .
3
= S m. (165)

Suppose we use m bits to compute the P; (i.e. suppose we use m qubits for |w;)) so that

0 < 27™, Then taking
on log, 3
m > log, <L> (1.66)
€

will be sufficient.



16 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

1.5.2 Precision in the generation of phases

Recall in Section 1.2 we used an m-qubit ancillary register to introduce phases of the form
2%. In this section we investigate how large m should be if we want to generate the phases
with some desired fidelity 1 —e. Suppose we have generated the state |¥) = 3 a,|z) with
perfect fidelity. The goal is to generate the phases to create the state |¥) = Y «a,e*™|z).
We use the procedure in Section 1.2 to generate the state |¥) = > a,e*™¥|z) where
Ve = ;—:; We desire the fidelity between the states to be greater than 1 — . That is, we
want

FY, |0 = <x1;|xif>( >1-e. (1.67)

We have |¥, —7,| < 3 for all z, and >~ a2 = 1. Then

‘ \I/’\If ‘ — 2Ty 27|'Z'Y:z: (168)
> Re <Z a2 27 (Y —Ya ) (169)
=3 a2Re (20 ) (1.70)
= Zai cos (2 (x — Va)) (1.71)
= Zaicos 27 Y2 — Val) (1.72)

2m
2
> 1.
%, o, COS (Qm) (1.73)

— cos @—Z) . (1.74)

So to estimate |¥) with a fidelity at least 1 — e, when generating the phases we should take

o fos (Y], 0



1.6. CONCLUSIONS 17

1.6 Conclusions

In this chapter I have described a general algorithm that will efficiently generate any
desired quantum state |¥) for which we have a compact description; that is, for which
we can efficiently implement the VJ‘I’ I have analyzed the precision requirements for the
algorithm to generate the state with a desired fidelity. For the specific example of the

symmetric states I have given efficient circuits for implementing the V]‘I’



Chapter 2

Discrete logarithms for elliptic curve

groups

2.1 Background

2.1.1 Shor’s algorithm

A very significant potential application of quantum computers lies in their ability to ef-
ficiently solve the problems of finding orders of elements in finite Abelian groups and
of finding discrete logarithms over these groups. It is this ability that makes quantum
computers capable, in principle, of undermining the security of public-key cryptographic
systems that are widely used by industry and government to protect sensitive information.
There are no known classical algorithms for solving the order-finding or discrete-logarithm
problems in polynomial time. In 1994, Peter Shor [Sho94] described a quantum algorithm

that solves both problems in polynomial time.

A key ingredient in the quantum algorithms for finding orders and discrete logarithms is
a circuit for exponentiation. For example, the order-finding algorithm works by applying
an inverse quantum Fourier transform to the state ) |z)|a®) where a is a fixed group
element. This state is typically created by first using a quantum Fourier transform to

create a superposition ) _|z) in the first register. Then the desired state is created by

18



2.1. BACKGROUND 19

applying a controlled exponentiation circuit c-U that computes a” into the second register

conditioned on the value x in the first register.

For factoring and discrete logarithms of integers, this exponentiation is done for the inte-
gers modulo a prime. For discrete logarithms over groups of points on elliptic curves, this
exponentiation is done relative to the elliptic curve group operation. There has been sig-
nificant interest in designing efficient quantum circuits to perform these operations. There
has also been interest in finding optimized versions of these circuits, since the construction

of medium- or large-scale quantum computers is an enormous technological challenge.

In the next section, I will review prior work on quantum circuits for modular arithmetic.
In the following section, I will review a method for implementing the group operation for
elliptic curve groups over fields of prime characteristic. The remainder of the chapter will

describe my own work extending this to curves over fields of characteristic 2.

2.1.2 Circuits for modular arithmetic

To implement Shor’s factoring algorithm we must first generate the state ) |z)|a”) where
a is a fixed (known in advance) element of Z} (that is, the multiplicative group of integers
modulo N) and then apply the inverse quantum Fourier transform to this state. For the
integer-discrete-logarithm algorithm we want to generate the state 3 [x)|y)[b"a”). These
states can be created if we have quantum circuits for doing modular arithmetic. Reversible
circuits for one-parameter modular integer multiplication (i.e. multiplication of a variable
parameter by a fixed constant) appeared in [VBE95]. The first circuit discussed in that
paper is a “plain adder” (also called a “ripple-carry adder”) that implements |a)|b) —
la)|a + b) (we might refer to this as two-parameter in-place addition). An adder mod N
is implemented by first adding a and b using the plain adder, and then checking whether
a + b is bigger than N. If it is, N is subtracted from the result, achieving the modular
reduction. This approach to modular addition requires about n ancillary bits (where n
is the number of bits of the modulus) to keep track of the carries, and a flag to indicate
whether modular reduction is required. The modular adder is used as a building block for
a controlled modular multiplication circuit in [VBE95], that computes |z)|0) +— |z)|ax)

conditioned on the state of some control qubit being |1) (these expressions are understood



20 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

to be mod N). Note that this implements modular integer multiplication by a fized factor
a, which is effectively hard-wired into the multiplication circuit. I will refer to this type
of multiplication as one-parameter out-of-place multiplication. Note that given the out-of-
place multiplication circuit M we can construct an in-place version M,, so long as we can
classically precompute the inverse of the fixed value a. The in-place version makes use of
a reusable ancillary qubit in the state |0), as follows:

210 5 ) az) SV, ) o) o). (2.1)

The controlled modular multiplication circuit is used as a building block for a one-parameter
modular exponentiation circuit that performs |z)|0) — |z)|a® mod N). A number of op-
timizations and improvements can be made to the circuits presented in [VBE95], some of
which are mentioned in that paper and some of which appeared later (e.g. [ME99], [PP05],

[Dra00]). The optimizations are summarized in [Bea03].

2.1.3 The elliptic curve group operation

The security of elliptic curve cryptography is based on the difficulty of solving the discrete-
logarithm problem for groups of points on elliptic curves. Shor’s algorithm can be employed
to solve this problem efficiently, but it requires an efficient implementation of the elliptic

curve group operation (so that the group exponentiation can be implemented).

Prior to [PZ03], none of the work on reversible implementations of arithmetic for quantum
computers explicitly addressed the problem of reversibly performing two-parameter in-place

multiplication
[2)|y) = |z} |zy) (2.2)

(without generating additional junk). Indeed, for Shor’s algorithms for finding orders
and discrete logarithms for integers, there is no need for such an implementation (the one-
parameter versions described above are sufficient). To implement Shor’s discrete-logarithm
algorithm for elliptic curve groups, we need to be able to compute the group operation, and
again a one-parameter implementation of this suffices. The problem is that to compute the

elliptic curve group operation itself requires performing multiplications of the underlying



2.2. ELLIPTIC CURVES OVER GF(2M) 21

field elements (integers mod p for curves over GF(p), or binary polynomials for curves
over GF(2™)), and we have to be able to do this for two variable parameters without
generating additional junk. So to implement the elliptic curve group operation requires an
implementation of the two-parameter in-place multiplication. This can be done if we have
a reversible method for computing inverses, since we can then use a two-parameter out-of-
place multiplication circuit! to multiply by the inverse of one of the operands to uncompute
it. Proos and Zalka described how to reversibly compute the inverses of integers mod p
using the extended Fuclidean algorithm [PZ03]. This allows the implementation of the
discrete-logarithm algorithm for elliptic curves over the fields GF(p). In this Chapter, I
extend the work of [PZ03] to implement the group operation for elliptic curves over GF(2™).

2.2 Elliptic curves over GF(2™)

Many real-world elliptic curve cryptosystems are based on elliptic curves over the binary
fields GF(2™) [FIPS]. It is therefore important to examine implementations of the discrete-
logarithm algorithm for elliptic curve groups over these binary fields. In this direction, I
will first show how to decompose the group operation into a series of smaller, individually
reversible, steps. Some of these steps will involve divisions of elements in the binary field
GF(2™). To solve this problem, I will give an efficient implementation of the extended

Euclidean algorithm for polynomials.

An elliptic curve over a field F is the set of points (x,y) € F? satisfying
y: + azy + asy = 2 + asx? + ayx + as, (2.3)

subject to some additional conditions on the constants aq,...,a; € F, together with a
‘point at infinity’, denoted 0. For the particular case of curves over the finite fields

GF(2™), the defining equation and additional conditions simplify as follows.

Case 1: ay # 0 (non-supersingular curves)
a%a4+(z§

Using the change of variables (z,y) — <a%m + &2, ajy + T), and the fact that
1

!The circuit in [VBE95] for |z)|0) — |x)|az) can be adapted to give a circuit for |z)|y)|0) — |z)|y)|xy).



22 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

the field has characteristic 2, the defining formula simplifies to

vV rry=a+ax®+b , b#O0. (2.4)

Case 2: a; = 0 (supersingular curves)
Using the change of variables (z,y) — (x + az,y), and the fact that the field has

characteristic 2, the defining formula simplifies to
V+ey=a4+ar+b , c#0. (2.5)

An elliptic curve over GF(2™) is the set of points (z,y) € GF(2™) x GF(2™) that satisfy
one of the above two formulae, together with the point at infinity O. A particular curve
of one of the above types is specified by giving values to the constants a,b (and ¢ in the
case of a supersingular curve). The set of points on a given elliptic curve forms a group
with identity element O, under the following operation of addition. Let P = (x,y) and
R = («a, ), where P # R, be two distinct points on a curve over GF(2™). The point
P+ R = (2/,y') is defined as follows (my choice of labels for the curve points here is made

to be consistent with the context in which I use them later).

Case 1: non-supersingular curves

O if(a,p) = (z,x+
PR if (o, 3) = (z, 2 +y) 2.6)
(z',y')  otherwise,

where o' =X+ +z+at+a , y=ANo+2)+a" +y (2.7)
A:yiﬁ. (2.8)
T+«

Case 2: supersingular curves

O if (@)= (r.y+
PR~ if (a,8) = (z,y +¢) (2.9)
(',y")  otherwise,

where o' =X +zr4+a , ¥y =ANz+2)+y+c (2.10)
Y+
+

@

A= (2.11)

8
Q .



2.3. REPRESENTATIONS OF THE GROUP ELEMENTS 23

Note that the parameter A is guaranteed to exist, since GF(2™) has characteristic 2 and
a = —z = zx is handled separately in the first case (for both supersingular and non-

supersingular curves).

A more detailed treatment of elliptic curves and all of the above formulae can be found in
Chapter 3 of [HMVO03].

2.3 Representations of the group elements

A representation of the points on an elliptic curve must begin with a representation of the
underlying field elements. The elements in a finite field of order 2™ can be represented
by polynomials with binary coefficients (that is, polynomials in Zs[z]). We need a notion
of congruence between polynomials. Suppose g(z) and f(x) are two polynomials, and the
degree of f is m. Then dividing g(z) by f(x) (by the usual long division of polynomials)

yields a unique quotient ¢(x) and remainder r(x) satisfying

9(x) = q(z)f(z) +r(z) (2.12)

where the degree of r(x) is strictly less than m. The remainder polynomial r(z) is referred

to as “g(z) reduced modulo f(z)”, sometimes written g mod f.

We also need a notion analogous to primality for integers. This is given by the following

definition.

Definition 2.3.1 A polynomial f(x) € Zs[z] is said to be irreducible if there do not exist
polynomials fi(x), fo(x) € Zs|x] such that

f(@) = fi(z) fa(2) (2.13)
where deg(f1) > 0 and deg(f2) > 0.
The field GF(2™) can be represented by the set of binary polynomials of degree at most

m — 1, with addition and multiplication defined as the usual operations on polynomials,

followed by reduction modulo an irreducible binary polynomial of degree m.



24 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

In a computer (or quantum computer) register, the polynomials of degree at most m—1 can
be represented by binary strings of length m, with each element in the string representing

the value of one of the coefficients of the polynomial.

The points on an elliptic curve over GF(2™) can be represented by the corresponding or-
dered pairs (z,y) of elements over GF(2™). We also need a representation of the point
at infinity O. One possibility is to use an ordered pair (z,y) that is not on the curve.
An implementation of the group operation would have to be tailored accordingly. For
implementing the discrete-logarithm algorithm, however, we can simplify the group op-
eration by ignoring the cases P = R, P = O and R = O. The target register for the
controlled-exponentiation operations in Shor’s algorithms is usually specified as starting
in the state |1) (the group identity). For discrete logarithms over elliptic curve groups,
this translates to the point at infinity |O). However, the algorithm will also work if we
initialize this register to a random group element 2. The control registers will contain
superpositions of all 2™ group elements. So each time the controlled group operation is
performed in the discrete-logarithm algorithm, about 2/2™ elements in superposition will
be of the unsupported type (i.e. addition of inverses of points, and point doubling will both
be implemented incorrectly). Since we only perform m controlled group exponentiations,
only an exponentially small number of elements in the superposition will be corrupted, and

so the fidelity loss will be exponentially small.

2.4 The discrete-logarithm problem

Let G be a cyclic group, and let a be a generator for G. The discrete-logarithm problem
with respect to the base a is the following. Given a group element b € G, find the unique
integer d € [0, |G| — 1] such that b = a?. The first step in Shor’s quantum algorithm for

solving the discrete-logarithm problem is to create the state

|2)|y)|a"b"). (2.14)

2This is most easily seen by analyzing the second register in terms of the eigenbasis of the operator

performing the group operation (see [CEMMO8]).



2.5. DECOMPOSING THE GROUP OPERATION 25

One way to create this state is to implement a circuit that performs

D [@m)10) = o)y} la*b) (2.15)

where = and y are integers in the range [0, ..., |G| — 1], and a,b are fixed elements in the
group G. A circuit for performing this operation can be built from circuits for performing
the group operation?® as

|s) — |sa) (2.16)

and

1s) = |sb). (2.17)

Consider an elliptic curve FE and let P be a point on E. Consider the cyclic subgroup
of the elliptic curve group generated by P. We are interested in solving the discrete-
logarithm problem for this subgroup. The group operation is written additively, so the
discrete-logarithm problem is the following. Given a point () in the subgroup generated
by P, find the unique integer d € [0,...,order(P) — 1] such that ) = dP. Then, for the

discrete-logarithm algorithm it suffices to be able to implement
S) = |S+A) S,A€ F and A is fixed and classically known. (2.18)

Writing S = (z,y) and A = («, 3), we want to implement the elliptic curve group operation

|(z,9)) = [(z,y) + (a, 8)). (2.19)

2.5 Decomposing the group operation

I will now show how to decompose the group operation for curves over GF(2™) into a
sequence of individually reversible steps. I use the notation = +— y to refer to a (not
necessarily invertible) map transforming the value z to the value y. This map represents a

(not necessarily reversible) computation. I will write z < y to refer to an invertible map

3(Circuits for the group operation can be extended to perform exponentiation in the same way that

modular multiplication circuits are extended to give modular exponentiation circuits.



26 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

transforming = to y (i.e. such that there exists an inverse mapping from y to x). This

invertible map represents a computation that is reversible.

For a fixed elliptic curve point («, 3), define (2',y) = (z,y)+(a, 5). We want to decompose
the operation

|(z,9)) = (). (2.20)
For simplicity, in the following I will write the expressions without the Dirac ket symbols.

We will need to use the following identities, both of which are easily verified using the
fact that the parameters are all in a field of characteristic 2, so that +1 = —1 (note the
following identities do not hold in general, but do hold for the binary fields GF(2™)).

Identity 2.5.1

/ /
A:yiﬁ:x:y, (2.21)
x « X (6%

Identity 2.5.2

A_y+6 Y+t p

(2.22)
T+« ¥+«
Case 1: non-supersingular curves
The group operation is decomposed as
Yy o rt+ayt+f o r+a, = zi—g — 7 +a, = ;/,fi/
= ' ta,d+y = 2y - 2y (2.23)

The second step in the above decomposition is a division of the form A, B < A, B/A,
and the fourth step is a multiplication of the form A, B < A, BA. Both of these are
field operations performed on two parameters, in-place (that is, one of the operands is
effectively uncomputed in the process). In the third step we use the group operation
formula 2/ = A 4+ X\ + 2 + o + a, and simplify using the fact that the field has
characteristic 2. This third step requires the squaring of A. In the third step I also
rewrite the expression for A using Identity 2.5.1. The only other operations we require

are additions.



2.6. THE EXTENDED EUCLIDEAN ALGORITHM FOR POLYNOMIALS 27

Case 2: supersingular curves

The group operation is decomposed as

Ty o r+ayt+pf — x+a,/\:£—§ — x’—i—a,)\:y:,r—fj
— 4o,y +c+0 « 2y. (2.24)

As in the non-supersingular case, the second step in the above decomposition is a
division, and the fourth step is a multiplication, where both are of the two-parameter,
in-place type. The other steps involve only additions, and one squaring. In the third
step I have used Identity 2.5.2.

In both the supersingular and non-supersingular case, computing the group operation
requires a method for reversibly performing in-place multiplication (division) of two para-
meters (that is, one of the operands is uncomputed so that no additional junk is generated).
Consider the division operation. It can be decomposed into the following four reversible
steps:

x,y<i>1/x,y<i>1/x,y,y/xLw,y,y/xfn—_lm:,O,y/x. (2.25)

The letters over the arrows are m for standard out-of-place polynomial multiplication, and
E for “Euclid’s algorithm” to compute inverses of field elements (polynomials in GF(2™)).
We know how to implement the out-of-place multiplication in GF(2™) (using 2m qubits)
by [BBF03]. It remains to show how to implement the extended Euclidean algorithm for

polynomials to compute inverses in GF(2™).

2.6 The extended Euclidean algorithm for polynomi-

als

Suppose A(z) and B(z) are two binary polynomials in the variable z, of degrees less
than m (ie. A, B € GF(2™)). Suppose A and B are not both 0, and are such that
deg(A) < deg(B). The greatest common divisor of A and B, denoted gcd(A, B), is the
binary polynomial of highest degree that divides both A and B. The classical Euclidean
algorithm for finding gcd (A, B) is based on the fact that ged(A, B) = ged(B—CA, A), for all



28 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

binary polynomials C'. If we divide B by A (by standard long division of polynomials), we
obtain a quotient polynomial ¢(z) and a remainder polynomial r(z) satisfying B = qA+r,
and deg(r) < deg(A). By the fact observed above, we have gcd(A, B) = ged(r, A). The
classical Euclidean algorithm for polynomials makes this replacement repeatedly until one
of the arguments is 0. If we set 1 = A and r; = B, the Euclidean algorithm performs the

following sequence of divisions:

ro = qir1 + T, 0 < deg(ry) < deg(r)
r1 = @ary + T3, 0 < deg(rs) < deg(rs)
Tm—2 = @m-1Tm—1 + T'm; 0< deg(rm) < deg(rm_l)
Tm—1 = qmTm + 0. (2.26)

We then have the sequence of equalities:
ged(rg, 1) = ged(ry, ro) = ... = ged(rpm_1, rm) = ged(ry, 0). (2.27)

At this point we have the result, since ged(r,,,0) = r,,. The algorithm is guaranteed
to terminate, since the degree of one of the arguments strictly decreases in each step.
Moreover, the algorithm is efficient because the number of iterations is bounded by the
degree of A (which is at most m).

Recall that the ged of two integers a, b can always be written as a linear combination of a
and b having integral coefficients. The same is true for the ged of two polynomials A, B.
That is, there exist polynomials k, k" in GF(2™) such that

ged(A, B) = kA + K'B. (2.28)

The extended Euclidean algorithm for polynomials (EEA) is the same as the Euclidean
algorithm for polynomials except that it also keeps track of the ‘coefficient’ polynomials

k, k" above. It does so through the following recurrences.

1 ifj=0
kji=140 ifj=1 (2.29)
kjo—qjakj1 ifj>2



2.6. THE EXTENDED EUCLIDEAN ALGORITHM FOR POLYNOMIALS 29

and
0 if =0
Ki={1 ifj=1 (2.30)
Ko —qjakjo1 ifj>2.

Claim 2.6.1 For 0 < j < m we have r; = kjro + k'jr1, where the r;’s are defined as in
the Euclidean algorithm for polynomials, and the k; and the k'; are defined by the above

recurrences.

Proof: The proof is by induction on j. The claim is clearly true for 5 = 0
and 7 = 1. Now consider j > 2 and suppose the claim is true for all smaller

values of 7. Then we have

rj=Tj—2 = ¢j-1Tj-1 (2.31)
= (kj_gro + k;_er) — -1 (k:j_lro + k’;_lrl) ( )
= (kj—o — gjrkj1) ro + (Kj_y — qj—1k)j_1) 1 (2.33)
= kjro+ K. O (2.34)

Since ro = A and r = B, and since r,, = gcd(A, B), the values k,,, and k!, generated by

the above recurrence are the coefficients in (2.28).

For reference, I write the extended Euclidean algorithm for polynomials in pseudo-code
below. The notation x « y is intended to mean that we assign the value of y to the

variable named z.



30 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

EXTENDED EUCLIDEAN ALGORITHM FOR POLYNOMIALS

A0<—A
B()<—B

r— Ao — qBo
while » > 0 do
temp— k'o — qk’
kog—FK
k' «—temp
temp— ko — qk
ko «— k
k «— temp
Ay By
By —r
3
r«— Ao —qBo

return(r, k, k')

Inverses in GF(2™) can be computed using the extended Euclidean algorithm for polyno-
mials, as follows. Suppose f(z) is an irreducible polynomial of degree m, and let C'(2) be a
binary polynomial of degree at most m — 1. Then ged(C, f) = 1, and the extended Euclid-
ean algorithm for polynomials finds binary polynomials k£ and &’ such that kC' + k' f = 1.
But this means that kC' = 1(mod f), and so k = C~!(mod f). The coefficient &' of f is
not needed for the inversion of C'; and so we only need to record the coefficient k of C'

throughout the algorithm.



2.7. NAIVE IMPLEMENTATION OF THE EXTENDED EEA 31

2.7 Naive implementation of the extended EEA

Let us now turn our attention to reversible implementations of the extended Euclidean
algorithm for polynomials for computing the inverse of an element C'. The implementations
will maintain two ordered pairs (a, A) and (b, B), where A and B record the sequence of
remainders in the EEA, and a and b record the updated coefficient of C' for each of the past
two iterations of the algorithm. We call these ordered pairs Fuclidean pairs. The algorithm
begins with (a, A) = (1,C), and (b, B) = (0, f) (where f is an irreducible polynomial of
degree m). Note that deg(C) < m —1 < m = deg(f). We will always store the Euclidean
pair with the smaller-degree polynomial in the second coordinate first. That is, we store

the Euclidean pairs in the order
(a, A), (b, B) (2.35)

where deg(A) < deg(B). We then want to perform long division of B by A, obtaining
a quotient polynomial ¢ and a remainder polynomial r satisfying B = ¢A —r = qA+r
(the second equality follows since the field is binary), where ¢ is the quotient polynomial
of B/A, which we denote as ¢ = | B/A]. We will then replace B by r = B 4 ¢A, and b
by b+ qa. Since deg(r) < deg(A), after the above replacement we will have to interchange
the Euclidean pairs to maintain the ordering so that the pair with the smaller-degree
polynomial in the second coordinate appears first. So one iteration of the algorithm can

be written as
(a, A), (b, B),0 — (b+ qa, B+ qA), (a, A),q  where q = [B/A]. (2.36)

At the beginning of the Euclidean algorithm, we start with a = 1,b = 0,A = C,B = f,
and so deg(A) < deg(B) and deg(a) > deg(b). It is easy to see that this condition is

preserved in every iteration of the algorithm. This implies that we will have m =0. So

¢ = V’ i an . (2.37)

we can write

a
So, while ¢ is computed from the second coordinates of the Euclidean pairs (a, A), (b, B), it
can be uncomputed from the first coordinates of the modified Euclidean pairs (b+ ga, B +

qA), (a, A). Thus each iteration of the Euclidean algorithm is individually reversible, and



32 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

can be written as
(a,A),(b,B) < (b+qa,B+qA),(a, A) where ¢ = | B/A]. (2.38)
This is decomposed into the following three individually reversible steps:

A,B,0 « A, B+qA,q
a,b,q < a+qb,b,0

SWAP

where “SWAP” refers to the operation of switching the two Euclidean pairs. Since deg(b) <

deg(a + gb), the second operation above is simply the reverse of the first operation.

To perform the division A, B,0 < A, B 4+ ¢qA,q we can use long division of the binary
polynomial B by A. To implement this long division, the basic idea is to shift A all the
way to the left (i.e. we shift A left by m —deg(A)—1 bits). Then we start shifting A to the
right one bit at a time, each time conditionally doing a subtraction. For the binary field
GF(2™) this is simplified by virtue of the fact that subtraction is the same as addition, and
is achieved by a bitwise XOR operation. This bitwise XOR can be implemented quantumly
using CNOT gates, and no ancillary qubits. (Furthermore, these CNOT gates could in
principle be performed in parallel, allowing us to do addition in a single step.) Note that
in our long divisions we are doing more work than necessary. Often the degree of B will
be less than m — 1, and so it would not be necessary to shift A all the way to the left (we
could just shift it so the most significant bits of A and B line up). For simplicity, in the
naive implementation we do not take advantage of this fact, but will do so when we look

at an optimized implementation.

2.7.1 Implementing some tools

The long division will require some subroutines, which I will show how to implement in
this section. I will show how to implement some basic operations that I will then need
to apply conditioned on the value(s) of some other qubit(s). We need to consider the
overhead required in making the controlled versions of these operations. Fortunately, by

[BBC+95], given a circuit implementing a unitary operation U, we can construct a circuit



2.7. NAIVE IMPLEMENTATION OF THE EXTENDED EEA 33

for performing a controlled-U (that is, U conditioned on a control qubit being in state |1))
with no additional ancillary qubits, and a small overhead in running time. Further, we can
implement U conditioned on any desired pattern of states of several control qubits (e.g.
U may be applied only when a three-qubit control register is in the state [101)) with no

additional ancillary qubits, and a small overhead in running time.

For the long division, we will need to compute the degree of A. The circuit shown in Figure
2.1 accomplishes this. The (—1) gate decrements the integer value encoded (in binary) in
the register. Each of the hollow circles in the figure denotes a 0-control (that is, the (—1)
operation is applied if all those control qubits are |0)). To uncompute the degree, we can

simply run the circuit shown in Figure 2.1 backwards.

‘Amfl> Q ) coe
e 3 3 —
: : T A
4y) —O——
| 4)
m—1) .- [ | [y [deg(a)

Figure 2.1: A circuit to compute the degree of A € GF(2™).

The circuit in Figure 2.1 uses a sequence of m decrementing (-1) gates, each of which is
controlled by the values of some of the qubits of |A). These decrementing gates update
the value of deg(A), being computed into a [logy(m — 1)]-qubit register. In Figure 2.2,
we show how to implement an incrementing (+1) gate using only one additional ancillary

qubit.
The ancillary qubit becomes the most-significant bit of the result. If we only apply the

incrementing circuit to integers in the range [0,...,m — 2|, we know that the ancillary
qubit will always be |0) at the output. Decrementing is accomplished by running this
circuit backwards, with the ancillary qubit initially set to |0). As long as we apply the
decrementing circuit to integers in the range [1...m — 1|, we know that the ancillary qubit

will always be |1) at the output. So we can reset the ancillary qubit to |0) with a NOT gate



34 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS
[ko) ® cee N
[Fe1) i % oo
[k2) cee
% fog (m—1)1-2) . L
k108, (m—1)1-1) ai

1) —@ ® ® cee J

Figure 2.2: A circuit to compute |k) < |k + 1).

> |k+1)

after each decrement gate, and reuse that ancillary qubit for the next decrement gate. The
degree of A € GF(2™) can be computed using [log,(m — 1)] + 1 qubits (a [logy(m — 1)]-
qubit register into which the result is computed and stored, and 1 ancillary qubit shared

by the decrementing gates)



2.7. NAIVE IMPLEMENTATION OF THE EXTENDED EEA 35

Aside: an addition circuit

The incrementing circuit (Figure 2.2) can be used to implement a reversible addition circuit
that uses fewer ancillary bits than the circuits reviewed in Section 2.1.2. First the incrementing

circuit is modified so that the ancillary qubit is reset to |1) at the end, as shown below.

by — —
by —
by —— - o %

b+ 1 (mod 2") —

: inc,
by—2 —— —

bn—1

b 2N
1 1 ® &1

Then an addition circuit makes use of controlled-incrementing circuits. The controlled incre-
menting circuit performs the incrementing operation conditioned on a control qubit being in

the state 1. The addition circuit is shown below.

a0 @
o v @
n- ———au

by —]
lf‘ I ] i E— a+ b(mod 2")
b,,:,, . inc, '

1 inc,_j— 1 —

1 — — ... — e —1

By carefully counting the depth of each of the general controlled-NOT operations in the

controlled-incy, circuit, we find

1 ifk=0
|c-inck| = < 10 iftk=2
262+ k—5if k> 3.

Note that in the above calculation, I assumed that the controlled-incj, operations will be in the
context of a circuit having at leats 2k bits in total, so the requirement of the implementation
in [BBC+95] is satisfied. This is true for the addition circuit. For n > 3, the total depth of

the addition circuit is .

2 3 25
Z |c-incg| = =n® + Sn? — =n + 8.
pt 3 2 6




36 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

We also need to implement shifts of our quantum registers. For our purpose it will suffice
to implement a cyclic shift. We will make use of the quantum SWAP gate, which can be

implemented using 3 CNOT gates and no ancillary qubits, as shown in Figure 2.3.

N N T
Figure 2.3: The quantum SWAP gate.

A left cyclic shift gate which shifts the state of an n-qubit register to the left cyclically by
one qubit is implemented using n — 1 SWAP gates, and no ancillary qubits, as shown in

Figure 2.4.

<1

Figure 2.4: A cyclic left shift gate. (The upper qubits in the circuit correspond to those on the
left side of the register.)

A left shift of s qubits can be implemented by concatenating s single-qubit left shifts
together. Note that right shifts can be performed in an analogous manner. We will also
need to implement a shift conditioned on the value contained in a quantum register. That

is, a quantum implementation of the operation
0)|s) < |0 < s)|s). (2.39)

The controlled shift operation above is implemented by the circuit shown in Figure 2.5,

where k denotes the number of bits in the binary representation of s.



2.7. NAIVE IMPLEMENTATION OF THE EXTENDED EEA 37

|6) { Tl e e T T < :} 10 < s)

Figure 2.5: A circuit for [0)|s) < |0 < s)|s). Here k = logy s, and < 2* is implemented by a
sequence of 2F (< 1) gates (shown previously).

2.7.2 Long division

Now that we can compute the degrees of polynomials in GF(2™), and perform shifts of

quantum registers, we can state an algorithm to reversibly compute the long division
A, B,0 < A, B+qA,q (2.40)

(note the algorithm requires deg(A) < deg(B)).

Long Division (B divided by A)
(0) Initialize ¢ = 0.
(1) Compute deg(A).
(2) Compute i =m — deg(A) — 1.
(3) Shift A left by m — deg(A) — 1 positions.
(4) While i > 0 do

(4.1) If Bjidega)y = 1, then set ¢; = 1 and replace B with
B A.
(4.2) Shift A to the right one bit.

(4.3) i «—i—1.

(5) Uncompute deg(A).




38 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

At the end of the long division, the register originally containing B will contain r = ¢A+ B.
Also, the auxiliary counter ¢ will be zeroed, and so can be reused. The conditional setting
of ¢; = 1 in step (4.1) can be accomplished by a CNOT gate, with |B;}dega)) as the control
qubit and |g;) as the target qubit. The operation |A, B) < |A, A® B) can be accomplished
by CNOT gates between the corresponding qubits of A and B. This operation is applied
conditioned on ¢; = 1, and is implemented by using Toffoli gates in place of the cNOT
gates, with |¢;) as the additional control qubit.

2.8 The problem of synchronization

Classically, if properly implemented, the extended Euclidean algorithm takes time O(m?)
[MvOV97]. To achieve this, one has to take advantage of the fact that the quotient in
the O(m) divisions is usually small, thus we have to use a division algorithm that takes
time proportional to the number of subtractions that are needed. In such an efficient
implementation, the time each division step takes depends on the input to the algorithm,
and so also the time at which we reach the i*" step will depend on the input. We want to
apply the Euclidean algorithm to a superposition of different inputs and thus we have to
“desynchronize” these parallel calculations so that different inputs in superposition can be

executing different iterations of the algorithm at any given time?*.

This synchronization problem can be dealt with by applying a general technique of de-
synchronization [PZ03]. 1 explain desynchronization by way of an example. Suppose a
computation C' consists of some sequence of three simple reversible operations o, 0, and
03 (and no other operations). The time taken to perform each of the operations oy, 09, 03 is
independent of the input. This means that on a superposition of inputs, the time required

to perform the operation o; (for example) is the same for all elements in the superposition.

The quantum computation C' is some sequence of the operations 0, 0o and o3, in any
order, possibly with repetitions. For example, C' applied to the input basis state |x) might
consist of 0; applied 4 times, followed by 0, applied 1 time, followed by o3 applied 2 times,

4To see this, one needs not think in quantum terms; it is enough to think about reversible computation.



2.8. THE PROBLEM OF SYNCHRONIZATION 39

followed by o, applied 1 time, followed by o, applied 3 times. That is,
Clz) = 020205 01 0303 02 01010101|T). (2.41)

The synchronization problem is that for another input basis state |2’) (in a superposition
of inputs), the sequence of operations might be different. For example, on |2') the same
computation C' might consist of o applied 1 time, followed by 05 applied 4 times, followed

by o3 applied 1 time, followed by o; applied 3 times. That is,
Cla') = 010101 03 02020205 01]7"). (2.42)

The idea of desynchronization is to have all the computation paths in the superposition
cycle through the 3 operations repeatedly, each time allowing the computation to either
apply the operation once, or not apply it (wait for the next operation). The cycle is
repeated enough times that sufficiently many of the computations in superposition have
finished. For the computation C' above applied to the two input basis states |z) and |z'),
this is illustrated in Figure 2.6. In the figure, the operation being applied at each step is

indicated by an x in the corresponding box.

time

|z) —> —» Clz)
o) —> — o)
01 02 03 01 O2 03 01 02 03 01 O2 03 01 O2 O3 01 Oz O3 01 O2 O3 01 O2 O3

cycle cycle
Figure 2.6: Desynchronization example.

I now describe more explicitly how to implement desynchronization. There must be a way
for the computation to tell when a series of 0;’s is finished and the next one should begin.
We want to do this reversibly, so there must be a way to tell both when an o; is the first
in a series, and when it is last in a series. In each o; we can include a sequence of gates
that flips a flag qubit f if o; is the first in a sequence, and another mechanism that flips f
if 0; is the last in a sequence. We also make use of a small “counter” register ¢ to control
which operation is scheduled to be applied at the current step. Thus we have a triple z, f, ¢
where = stands for the actual data. We initialize both f and ¢ to 1 to signify that the



40 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

first operation will be the first in a sequence of 0, operations. The physical quantum gate

sequence that we apply is
. ac o} ac oy ac 0y ac oy ac oy ac oy ac o) |x) (2.43)

where the o] are the o; conditioned on i = ¢ and ac stands for “advance counter”. These

operations act as follows on the triple:

o, fi=c, x f,c « o)x), [ first & last, c
ac: =z, f,c < z, f, (c+ f) mod 3

where o} does nothing if ¢ # ¢, the symbol “@” means XOR, and (¢ + f) mod 3 is taken
from {1,2,3}. In the middle of a sequence of o} operations, the flag f is 0, and so the
counter doesn’t advance. The last in a sequence of o operations will set f = 1 and the
counter will advance in the next ac step. The first operation of the next series resets f to

0, so that this series can progress.

Although desynchronization can be applied to the individual steps in each iteration of
the algorithm, the computations in the superposition will in general finish the extended
Euclidean algorithm after different numbers of iterations. For those that finish earlier than
others, we cannot simply have them halt and wait for the others to finish (this would
result in an implementation that is not reversible). To ensure reversibility, those elements
in superposition that finish earlier can increment a small counter at each time step until the

other elements in superposition finish. I will call this small counter the “halting counter”.

I do not describe in detail how to apply desynchronization to the naive implementation,
but instead proceed with a better optimized implementation that will make use of desyn-

chronization.

2.9 An optimized implementation

2.9.1 The implementation

The starting point for an optimized implementation is the observation that the degrees of

the polynomials being divided decrease steadily during the extended Euclidean algorithm



2.9. AN OPTIMIZED IMPLEMENTATION 41

for polynomials. In the naive implementation, by shifting A all the way to the left for all the
long divisions, we were doing more work than necessary. The optimized implementation
will make use of “adaptive” long divisions, whose behaviour is conditioned on the sizes of

the arguments.

The other main observation underlying the optimized implementation is that in the naive
implementation we were using much more space than necessary to store the Euclidean pairs.
In the naive implementation we used a separate m-qubit register for each of A, B,a,b. It

turns out that this is twice as much space as is necessary.

Claim 2.9.1 At every stage of the extended Euclidean algorithm for polynomials we have
deg(aB) =

Proof: Initially we have aB = f and so deg(aB) = m, so the claim is true at
the first iteration. Each iteration transforms
a—ada =b+qa
B — B = A.
So we have
deg(a’B’) = deg((b+ qa)A)
= deg(qaA) (since deg(qa) > deg(a) > deg(bh))
= deg(q) + deg(a) + deg(A)
= deg(B) — deg(A) + deg(a) + deg(A)
= deg(aB)
=m

and so the claim is true after each iteration. O

We have the following corollary.

Corollary 2.9.1 At every stage of the extended Euclidean algorithm for polynomials we
have
deg(a) +deg(A) <m and deg(b) + deg(B) < m. (2.44)



42 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

Proof: Since deg(A) < deg(B) we have
deg(a) + deg(A) = deg(aA) < deg(aB) = m. (2.45)
Similarly, since deg(a) > deg(b) we have

deg(b) + deg(B) = deg(bB) < deg(aB) =m. O (2.46)

By the corollary, we see that a single m-qubit register will be sufficient to store both a
and A, and a second m-qubit register is sufficient to store both b and B. Thus A and
a can share a single m-qubit register, and b and B can share a second m-qubit register.
This reduces the total space to store A, B,a,b from 4m to 2m. The problem with this
approach is that the relative sizes of a and A change from one iteration to the next, and
thus so does the boundary between A and a within the single m-qubit register (similarly
for b and B). Further, at any iteration, this boundary may be different between elements
in superposition. So we need a way to calculate the position of this boundary for each

iteration.

First, observe that the boundary between A and a can be at the same position as the
boundary between B and b, in any iteration (since deg(A) < deg(B)). Second, notice that
the boundary can be easily determined if we know the degrees of A, B,a,b. It will turn
out to be convenient to store A and a in a single register in opposing directions. That is,
the most significant bit of A is at one end of the register, and the most significant bit of a
is at the extreme other end of the register. Between A and a the register will be padded
with zeros. Similarly for B and b. The situation for register sharing is illustrated in Figure
2.7.

From Figure 2.7 it can be seen that the boundary for register-sharing can be determined
from deg(a) or from deg(B). Our strategy will be to store the degree of each of A, B,a,b
at each step, and use either deg(a) or deg(B) (depending on what operation we are per-
forming) to determine the boundary. For convenience, we will keep track of the degrees of

all of A, B,a and b, requiring 4 separate [log, m]-qubit registers.

As before, we focus on implementing the long division

A, B,0 < A, B+ qA,q. (2.47)



2.9. AN OPTIMIZED IMPLEMENTATION 43

b

O A ,
B '

1
Lowest order bit Highest order bit (always 1)

Figure 2.7: The positions of A, B, a,b for register sharing.

The long division algorithm is modified slightly as a result of the new strategy for storing
A and B. Note that we do not need to initially shift A all the way towards the high-
order end, since the most significant bits of A and B are already in the same position.
Instead of shifting A one bit at a time towards the low-order end at each step, we shift
B one bit at a time towards the high-order end. At each stage, a new bit of ¢ is first
read-out from the high-order bit of B. Then, controlled on the new bit of ¢ (equivalently
the high-order bit of B), B is XORed with A (this is the conditional subtraction). Then B
is shifted towards the high-order end by 1 bit, and the value of deg(B) is decremented by
1. Note that no significant bits of B are lost in the shift, because after the conditional XORr
operation, we know the high-order bit of B will be 0. After the long division is complete,
the remaining operation is to shift off any leading (high-order) zeros in the final value of B,
and decrement the value of deg(B) accordingly. This is done so that the most significant
bits of A and B are in corresponding positions for the next iteration. The operations o,

and o0, for implementing the long division are as follows:

01: (a) The high-order bit of B becomes the next bit of ¢ (starting at the high-order
bit of ¢ and working down).

(b) Conditioned on the new bit of ¢, B is replaced with B & A.
(c) B is shifted towards the high-order end by 1 bit, and deg(B) is decremented by
1.

09: B is shifted towards the high-order end by 1 bit, and deg(B) is decremented by 1.

The first in a sequence of o operations is recognized by the condition ¢ = 0. The last

in a sequence of o; operations is recognized by deg(A) = deg(B). When performing the



44 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

last in a sequence of 0; operations, only part (a) is performed (so parts (b) and (c) can be
conditioned on the flag qubit). The first in a sequence of 0y operations is recognized by
deg(A) = deg(B). The last in a sequence of oy operations is recognized when the bit in

the high-order “slot” of the register containing B is |1).

The long division algorithm is illustrated by an example. Suppose we have the following:

A =241 (A =101)
B=z'+22+1 (B=10101).

The long division B/A as would be performed by hand is shown in Figure 2.8.

— |t
o o 1O
o — O

101)10
10

oo oco
[} (ele) P )
—t [t (D

00
01
00
00
00
Figure 2.8: Example of long division by hand.

The long division as performed by the algorithm is shown in Figure 2.9. One feature of the
algorithm suggested by the example is that the qubits can be spatially arranged so that
operations are performed on neighbouring qubits, which might be advantageous for some
physical implementations. Note that in the implementation of the shifts (Figure 2.4), the

CNOT gates are between adjacent qubits as well.

I have omitted the details of how to condition the steps of the long division on the value
that determines the boundary for register sharing. For example, in the implementation
of A,B,0 «—~ A, B + gA,q, the operations on A, B, g will be conditioned on the value in
the register containing deg(a) (from which the boundary position for register sharing can
be determined). These details are very complicated, but the techniques for implementing
controlled gates in [BBC+95] indicate that it can be done with no ancillary qubits, and a

polynomial increase in time.



2.9. AN OPTIMIZED IMPLEMENTATION 45

- a A
«
b B
q
[ ]MSB 7=0
A 1ot [ =
Bi1]o|1]0]1 — first o,
| |LSB
[1]
o01(a) 1]o1 .7
T o010 ]
(1]
01(b) 1ot
>0 010 —
(1]
01(c) 1[ol1]
o1 o000
(1]
o01(a) 1]o]1]|
o rttololo PV
1]
o01(b) 1 L]
o1 ol o0l0
o1(c) [of1] o deg(B) = deg(A)
olol1]o]oO ] last o;
o1(a) 1ToT1 % deg(B) = deg(A)
0/0]1 0 il first 0y
(1]
&» 11011 n
00010
10]
1] This bit is 1
0 1[ol1] [ .
— > ojololol1] Y last o
0
A | I

Figure 2.9: Example of optimized implementation of long division. Blank cells implicitly contain

the value 0.



46 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

2.9.2 Space complexity

We saw in Section 2.5 that the number of qubits required to implement the elliptic curve
group operation is determined by the number of qubits required to implement the extended
Euclidean algorithm for polynomials. Now we will count the number of qubits required by

the optimized implementation.

By using register sharing, the values of A, B,a,b can be stored using 2m qubits, and the
value of ¢ can be computed into a third m-bit register. The values of deg(A), deg(B),
deg(a) and deg(b) must be initially computed and stored, requiring 4 [log, m| + 4 qubits
(as seen in Section 2.7.1). For the desynchronization, we need a flag qubit f, and a 2-
qubit counter register ¢ (to index the 4 operations o1(a),01(b),01(c), and og used in the
desynchronization). Recall that we also need a halting counter, as the computations in the
superposition will finish the extended Euclidean algorithm for polynomials after different
numbers of iterations. The exact size of this halting counter depends on the exact time
complexity of the algorithm. However, as our implementation is clearly polynomial in m,
we know that the size of the halting counter will be at most logarithmic in m. We will
write H for the number of qubits required for the halting counter, where it is understood
that H is O(log, m).

So the space complexity for our implementation of the extended Euclidean algorithm for

polynomials, and thus of the elliptic curve group operation for curves over GF(2™), is

3m, + 4[logom|+4 +1+2+H (2.48)
A,B,a;byq deg A,deg B,deg a,deg b fe
=3m+4[logym]+7+ H. (2.49)

The discrete logarithm algorithm requires only one register for elliptic curve points, plus
an additional control qubit®. An elliptic curve point can be represented by two m-bit field
elements, and so the space requirement for the discrete logarithm algorithm is 2 m-bit

registers plus a register on which to carry out the EEA. The total is

5m + 4 [logy m| + 8 + H. (2.50)

5This is due to a semiclassical implementation due to [GN96].



2.10. CONCLUSIONS AND FUTURE WORK 47

2.10 Conclusions and future work

I have given a reversible implementation of the extended Euclidean algorithm for polyno-
mials for finding inverses of elements in GF(2™). This is a requirement for implementing
Shor’s algorithm for finding discrete logarithms in elliptic curve groups for curves over bi-
nary fields (which are used extensively in classical cryptosystems). The ability to compute
inverses also solves the problem of reversibly performing multiplication of two variable pa-
rameters in GF(2™) without generating additional junk (or equivalently for uncomputing

the junk bits left over by existing methods for multiplying two parameters).

It should be possible to combine in some way the techniques described here and in [PZ03]
to give a method of reversibly computing inverses in the more general Galois fields GF(p*),

but the details of such a strategy have yet to be explored.



Chapter 3

Globally controlled quantum arrays

3.1 Background

3.1.1 Quantum cellular automata and globally controlled arrays

Quantum cellular automata (QCA) is an idea that dates back at least to 1983, where
it is presented in Richard Feynman’s famous paper in which he proposed the idea of a
quantum computer. “QCA” is perhaps a misleading choice of terminology, because many
of the schemes that are referred to by that name are not actually autonomous. The term
“classically controlled quantum cellular automata” (ccQCA) has been used to distinguish
these systems from truly autonomous schemes, but that term is perhaps somewhat of an
oxymoron. Instead, I will refer to the schemes we consider in this chapter as “globally

controlled arrays”, and abbreviate this with the acronym “GCA”.

Several proposals for implementing globally controlled arrays of qubits using spacially-
symmetric lattices of qubits have appeared over the years. In 1993, Lloyd proposed an
architecture based on a 1-dimensional lattice of weakly coupled qubits of 3 distinguishable
species [L1093]. The state of the qubits in the lattice is influenced by global “pulses”.
These pulses affect all qubits in the lattice in uniform manner. For example, a given global
pulse may apply a certain unitary operator to every qubit in the lattice whose left and

right neighbours are in some specified basis states. Local control is achieved by encoding

48



3.1. BACKGROUND 49

the information in the lattice in a clever manner, so that the global pulses have a desired
effect only on specific local patterns of states within the lattice. Computation is achieved

by applying a suitable sequence of global pulses, controlled by a classical program.

This basic model has been adapted and modified over the years. Benjamin devised an
architecture with only 2 distinguishable species, where the couplings do not allow the
states of the left and right neighbours to be distinguished (isotropic) [Ben00]. Related
architectures have been proposed by Benjamin, Kay and others (e.g. [BBKO04]). The
various architectures differ in the number of distinguishable species, the manner in which
information is encoded in the lattice, the structure of the underlying lattice itself, and the
nature of the control pulses that can be applied. There is a common structure exhibited by
all these architectures, however, in the way the information and fundamental operations
are organized to implement the basic steps of a computation. In practice, the selection of
a GCA architecture for a particular application will be an engineering consideration, and
the choices may be constrained by the technologies that become available for implementing
them.

A Gca is programmed by selecting a sequence of global control pulses. Different GCA
architectures will support different kinds of control pulses. The set of control pulses ap-
plicable to a particular GCA architecture can be thought of as the machine language for

that architecture.

Programs for GCA are usually specified to simulate the behaviour of a given quantum
circuit. This is practical, because the known quantum algorithms are most commonly
expressed and understood with respect to the quantum circuit model. Because of the
differences in the machine instructions between GCA architectures, the program to simulate
any given quantum circuit may vary greatly between them. This is unfortunate, because
the various GCA architectures are organized quite similarly, at a slightly higher level of
abstraction. A program for a GCA to simulate a quantum circuit is most often designed and
understood by organizing sequences of control pulses into sequences of more sophisticated

operations at this higher level of abstraction.

It is desirable to have a unified framework for studying GCA programs, protocols, and com-

plexity results in a manner that is independent of implementation details. This framework



50 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

can take the form of an assembly language for GCA. Such a langauge will consist of a set of
basic instructions, at a level of abstraction higher than that of the pulse sequences specific
to individual architectures. An algorithm or simulation of a given quantum circuit can be
expressed in terms of these basic instructions and will then be applicable to an entire class
of cCA architectures. It may also provide a convenient framework for theoretical investi-
gations into the behaviour of GCA architectures in general. Given a candidate architecture
for a GcA, it will suffice to show how to implement the basic instructions using the machine
language of that architecture. So the GCA assembly language also provides a requirements

specification for designing physical systems to implement GCA.

In the following sections, I will define such a language for GCA, and give examples illustrat-
ing how the basic instructions can be implemented for specific GCA architectures. I will
then consider error correction and fault tolerance for GCA in the context of this framework.
I will consider two kinds of approaches, and discuss the advantages and disadvantages of
each. The fault-tolerance requirement will motivate the definition of a more powerful GCA
allowing for more parallelism, and we will see techniques that can be used to implement
this.

3.1.2 Between quantum circuits and simple spin chains

Studies into global control systems have been motivated by the goal of showing that we can
do quantum computation using systems for which achieving local control over individual
qubits can be very difficult (e.g. quantum computing using nuclear magnetic resonance).
For this reason, many of the proposed schemes have used very simple spin chains, consisting
of one, two or three distinct species of qubits. We might consider the quantum circuit model
to be the science-fiction end of a spectrum of (real and imagined) quantum computing
technology, where we have total local control and can address any desired qubit in the
circuit. By contrast, we might consider the simple spin-chain models as representing the
other end of the spectrum, where we have extremely limited local control. While we know
that we can do universal quantum computing at both ends of this spectrum, it is not clear
how well we can do fault-tolerant quantum computing in the case of extremely limited

local control.



3.2. THE BASIC GCA MODEL 51

Later in this chapter, when I consider implementing error correction schemes for global
control models, I will be exploring the territory between these two extreme ends of the
spectrum. That is, I will consider models with various amounts of local control. While
implementing some of my schemes is beyond current technology, it should be remembered
that implementing quantum circuits is also beyond current technology. Since it is not yet
clear what the winning technology for implementing quantum computers will be, it is worth
investigating the potential for reliable quantum computing for systems offering different

amounts of local control.

3.2 The basic GCA model

Conceptually, the behaviour of the simplest GCA schemes can be organized in terms of
a structure that resembles a Turing machine (we will see later how we can extend this
structure to achieve certain kinds of parallelism). This can be described in terms of a finite
1-dimensional array of data qubits, along with some mechanism to act as a pointerto address
specific data qubits in the array. For some of the schemes described in the literature, the
data array is assumed to be infinite. For practical implementations, however, the data
array would consist of a finite number of data qubits, say di,...dy. The data qubit d;_;
is referred to as the left neighbour of d;, and d;,, is the right neighbour of d;. This basic

structure is illustrated below.

dy | do |-+ |diz1| di |dig1| - | dn
T

pointer

(3.1)

It should be emphasized that the data qubits will not in general correspond directly to
the physical qubits in a lattice implementing a GCA. Each data qubit may be encoded by
several physical qubits in the lattice. Some of the lattice qubits may be used to encode the
position of the pointer rather than states of the data qubits. The set of physical lattice
qubits used to encode the state of a given data qubit may even change during the course of
a computation. We use the term “array” to distinguish the list of logical data qubits from

the underlying physical “lattice” that may be used to encode this array (and the pointer).



52 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

3.2.1 The language SPA

In this section, I will define a langauge of basic instructions that describes the behaviour
of a variety of simple GCA architectures. I will refer to this language by the acronym SPA,

for “Single Pointer Array”.

The position of the pointer in a GCA model is a classical parameter (we do not allow the
pointer to be in multiple positions in quantum superposition), and so SPA refers to the

machine’s state as follows.

State for SPA

(o, 1)

(3.2)

In the above expression, p is the density operator for the N-qubit state of the array of data

qubits, and 7 is an integer between 1 and N representing the position of the pointer.

A GcA must have a mechanism for mowving the pointer to the left or right along the data
array so that different data qubits can be addressed. This is provided by the following

basic instructions of SPA.

Pr:(pi)—(pi—1) , 2<i<N
(3.3)
Pa: (pi) — (pi+l) , 1<i<N-1

Having positioned the pointer over a specific data qubit, we want to have a means of
applying a single-qubit unitary gate U to that qubit. So we provide the following basic

mstruction.

Vs (pyi) = (UDpUD ) | 1<i<N (3.4)

In the above expression, U is defined (in the computational basis of the data qubits) as

U9 = (1N eUe (I8N, (3.5)



3.2. THE BASIC GCA MODEL 23

For the GCA to be capable of universal quantum computing, it will suffice to implement

GY for a set of unitary gates U that is universal for 1-qubit gates.!

We also need a means of performing a nontrivial (entangling) 2-qubit gate to the data

qubits. I will use the controlled-Z gate, where

S

For SPA, we will specify a controlled-Z operation between the qubit currently addressed
by the pointer, and the qubit immediately to its right. The controlled-Z and single-qubit
gates together are universal for quantum computing. Some of the schemes presented in the
literature give implementations of controlled-NOT gates, but the controlled-Z may be more
appropriate because it has the property that it is symmetric with respect to assignment
of the target and control qubits, which is convenient for systems exhibiting translational

invariance (like GCA). We have the following basic instruction.

CZ: (p,i) — (cZGHVp ezt )y 1<i<N—1 (3.6)

The operator ¢Z®**Y is defined as

Cz(i,i+1) = (I®i—1) ® (

oo O

0
0
0

) ® (1N . (3.7)

Qoo+
OO

1

Given a GCA architecture with implementations of the basic instructions {P., Pg, CZ, {GY }}
for a set {U} that is universal for 1-qubit gates, the system can efficiently simulate any

quantum circuit. In this sense, SPA is a specification for a universal GCA.

In practice, we will also need a way to load the input and to measure the output. I will
not build this into the framework, but assume that a given architecture provides some
mechanisms for these operations. For example, one approach may be to exploit the unique

geography of the cells at the ends of a finite lattice to successively load and unload bits

!That is, so that any 1-qubit gate can be efficiently approximated by a sequence of gates from that set.



54 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

from those cells and shift the information along the lattice. However this is accomplished,

my focus will be on performing quantum computation on data that is already on the array.

The basic instructions of SPA are summarized below.

Basic instructions of SPA

Po:(pi)—(pi—1) , 2<i<N
Pr:(p,i) — (pi+1) , 1<i<N-—1 (3.8)
GU:(p,i)H(U(i)pU(i)T,i) 1<i1<N

CZ: (p,i) — (CZ0HDpCzGDT §)  1<i<N -1

The controlled-NOT gate is a very convenient tool for describing algorithms, and so it will
be convenient to define “subroutines” of basic instructions that implement the quantum
CNOT gate with the data qubit d; playing the role of the control qubit, and either d; | or
d;—1 playing the role of the target qubit. We will give these subroutines the labels CNOTy
and CNOT; respectively, and these labels should be understood to simply be convenient
shorthand expressions for the sequences of basic instructions they represent (i.e. CNOTy
and CNOT, are not strictly part of the SPA language).

CNOTy = Py, GH P, CZ, Py, GH | P,

3.9
CNOT, = P, GH , CzZ,GH | Py (3:9)

The instructions in the above expression are read from left to right, so that CNOTy is
executed first, then Py, etc. This is different than the algebraic convention in which products
of unitary operators are temporally ordered from right to left, but it is a more natural

convention for a programming language to read from left to right.



3.2. THE BASIC GCA MODEL 5}

The SWAP operation (|x;)|x;11) — |%ir1)|x;)) on the data qubits is so commonly used
in GCA programs, that it is worth giving it a label as a shorthand for the sequence of

instructions that implements it. It can be implemented using CNOTy and CNOT;, as follows.

SWAP = CNOTg , Pg , CNOT; , P. , CNOT. (3.10)

Again, SWAP is not a basic instruction, but a shorthand for the sequence of basic instructions

that implements it.

When the pointer is at data qubit d;, the basic instruction SWAP has the effect of the
quantum SWAP operation on data qubits d; and d;,1, and the pointer remains in position
i. After a SWAP sequence, the labels d; and d;;; are interchanged (so that the label d; can
be taken to refer to the state of the data qubit at position i within the array at all times).

The SWAP sequence maps states as follows.

SWAP : (p, i) > (swap(iD)p swapithl ;) (3.11)

The swap®*1) operator referred to above is defined as

- , 1000 ,
swapteet) = (101) () (v, 512
0001

3.2.2 Implementations of SPA for some example architectures

I will now illustrate how the basic instructions of SPA can be implemented using the low-

level hardware pulses of two specific GCA architectures.

3.2.2.1 1-D lattice with 3 species, anisotropic nearest-neighbour coupling

Lloyd’s GCA architecture [L1099] is based on a polymer A, B,C, A, B,C,... forming a
repeating chain (1-dimensional lattice) of atoms of three distinct species. The following is

a modified version of the scheme originally proposed by Lloyd.



56 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

Each atom in the polymer possesses an electron having a well defined transition frequency
between the ground and first excited states. This frequency is w?, w? and w® for all atoms
of species A, B and C' respectively. The ground and first excited states of each atom
represent the |0) and |1) states of a single qubit. I will refer to these underlying lattice
qubits as being of types A, B and C, respectively (sometimes I will write “A-qubit” to refer

to a lattice qubit of type A).

Adjacent lattice qubits are coupled by local interactions. The effect of the interactions is
to shift the energy level, and thus the transition frequency, for each qubit as a function of
the energy levels of its immediate neighbours. The transition frequency w? of a B-qubit
then becomes w when the A-qubit on its left is in the ground state |0) and the C-qubit
on its right is in the excited state |1). The transition frequencies are assumed to be distinct
for each combination of qubit-type, and basis states of the left and right neighbours. This
means that it is possible to use an electromagnetic pulse to collectively target all (and only)
lattice qubits of a given type having left and right neighbours in specified basis states. The
effect of such pulses will extend linearly to quantum superpositions of states of the lattice
qubits (and their neighbours). For a 1-qubit gate U, we define a lattice operation T}V,
where T' € {A, B,C} and I,r € {0,1}. This operation has the effect of applying the gate U
to every lattice qubit of type T that has left neighbour in the basis state |I) and the right
neighbour in the basis state |r). For example, A3, has the effect of applying the X gate to
every qubit of type A whose left neighbour is in the state |0) and whose right neighbour
is in state |1). We will assume that the hardware allows us to directly implement pulses
that implement 7}/ for a set {V;} of 1-qubit gates that is universal for 1-qubit gates. Then
for any 1-qubit gate U, T can be implemented by an appropriate sequence of pulses from

{Tl‘f} We will therefore sometimes speak loosely and refer to any T as a pulse.

For brevity, we will allow [ or r to take a blank symbol “x”, which means that U will be
applied regardless of the state of the corresponding neighbour. This could be achieved by

applying two pulses, one for each of the two possible states of the neighbour. For example,
AY =AY AL (3.13)

Alternatively, a single pulse might be applied that covers both of the required transition

frequencies.



3.2. THE BASIC GCA MODEL o7

In practice, the lattice will have finite length, and we would ultimately have to account for
how to treat the qubits at each end of the lattice. For the present discussion, I will ignore
this issue. I will suppose that the data is encoded in the interior of some sufficiently long
lattice so that we can analyze the effect of the control pulses as though the lattice were
infinite in extent. In [L1099] it is proposed that the unique geography of the qubits at the
end of the lattice could be exploited to provide a way to load and measure qubits onto and
from the lattice. Another way in which unique behaviour at the ends of a lattice might be

exploited is discussed in Section 3.2.3.

The data qubits are encoded in the lattice qubits of type A, and the position of the pointer
is encoded in the lattice qubits of types B and C. For the data array in a computational
basis state p = |z125...xN){T122 ... zx|, and the pointer at position 7, this situation is
encoded as follows (when illustrating a basis state of a lattice in a diagram, I will omit the

ket symbols for brevity).

O [ 0 | 0 | a1 [015 01| @2 | 025|025 | - | 2N |ONg|ONgi| O | O | O

) ) )

A B ¢ A B ¢ A B ¢ --- A B C A B C
(3.14)

In the above expression, the Dirac delta function 9, ; equals 1 if i = j, and equals 0
otherwise. So each position of the data array occupies three adjacent qubits of types
A, B, C in the lattice, with the data qubits encoded in the A qubits. All the B, C pairs
of qubits are in the state |0)|0), except for the B,C' pair to the right of the A qubit
containing the data qubit d; (the location of the pointer), which is |1)|1). For example,

when the pointer is at position ¢ = 1 in the data array, the lattice state is illustrated below.

0 0 0 |z | 1 1 | 22| O O |- |znv | O 0 0 0 0

A B ¢C A B C A B C - A B C A B C
(3.15)

The pulse sequence Bit, AX, Bt has the effect (in the computational basis) of exchanging



58 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

the state of every A-qubit with its neighbouring B-qubit. Applying this sequence to the
lattice state (3.15) above has the following effect.

0 0 0 1 |z | 1 O |z2] O |---] 0O |2zny| O 0 0 0
A B C A B C A B ¢ --- A B C A B (C

I will write EXCH4p as a shorthand for this pulse sequence?. That is,

EXCHp = Bi., AY, B;.. (3.16)

2Here I use EXCH as short for “exchange”, to avoid confusion with a logical SWAP operation on the data

qubits, that we will implement later.



3.2. THE BASIC GCA MODEL

Verifying correctness of pulse sequences

In some of the literature on GCA schemes, pulse sequences are claimed to have a
particular effect, with no formal verification. It is desirable to have a systematic
method for verifying the correctness of pulse sequences for implementing the basic
instructions of SPA (if SPA is taken as a requirements specification for GCA, then it
is desirable to have a systematic way to verify that a proposed scheme meets the
requirements).

Most of the nontrivial pulse sequences we consider will be composed entirely of con-
ditional X and Z pulses. First consider sequences consisting only of X pulses. Such
sequences never generate nontrivial quantum superpositions, and have no effect on
the relative phase for states already in superposition. In these cases we can restrict
our analysis to computational basis states of the lattice, which can be represented
as tuples of binary variables (one variable representing the basis state of each qubit
in the lattice).

Now suppose we wish to analyze a pulse sequence that consists of both X and Z
pulses. These sequences still have the property that they don’t generate quantum
superpositions, but the Z pulses may affect the phases of lattice qubits. As before,
suppose the lattice is in a computational basis state which we represent by a tuple
of binary variables. Say we apply a Z pulse to the lattice qubit corresponding to
the binary variable a;. The effect is a phase of (—1)% on the state of the lattice
(assuming, as we are, that the lattice is in a basis state). To keep track of the phase
implied by the Z-pulses in the sequence, we use a binary variable ¢, where the global
phase will be (—1)¢. For example, if we apply some sequence of X-pulses, as well
as a Z-pulse on a;, and a controlled-Z pulse between a; and ajy1, then we have
¢ =a; +aja;jii.

Typically a pulse sequence will be intended to have a net effect only on the states
of the lattice qubits in the vicinity of the pointer. Because of the translational
symmetry of the lattices under consideration, the effect of the pulse sequences is
typically uniform across identically encoded segments. We can therefore usually
restrict our analysis to a small section of the lattice, and make general conclusions

by induction.

29



60 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

Proof of correctness for EXCH 4p:

The correctness of EXCH4p is trivial to demonstrate, but I give a formal proof here
to illustrate the technique. Let a;, b;, ¢; be the binary values associated with the basis
states for three adjacent lattice qubits in an (A, B, C')-triple. We want to show that
EXCHp maps (a;, b, ¢;) to (b;, a;, ¢;) for all i. We can analyze the effect of each
pulse on the state (a;, b;, ¢;) algebraically. For example, (1+4a;) denotes the negation
(bit flip) of a; and (1 4 a;)¢; denotes the conjunction of (1 + a;) and ¢; (arithmetic
is modulo 2). Thus, for example, the pulse ng transforms the state (a;, b;, ¢;) to

(a;i, bi + (1 + a;)c;, ¢;). For the pulse sequence EXCHp we have the following.

B
(@i, bi, ¢;) —= (a;, b + a;, ¢;)

A%

'—>(bi+2€cf, bi—l-ai,ci)
B

'—)(bi,ai+%, Ci)

This shows that on each (A, B, C)-triple, the sequence EXCH4p has the desired effect.

This implies the correctness of EXCH4p on the entire lattice. [

Similarly the pulse sequence
EXCHpc = C5v, B, C;* (3.17)

has the effect of exchanging every B-qubit with its neighbouring C-qubit, and

EXCHoy = A, CX, AX (3.18)

IEY

exchanges the state of every C-qubit with its neighbouring A-qubit.

We can also derive a sequence of pulses that shifts each data qubit from the A-type lattice
qubit to the B-type lattice qubit immediately to the right, and also moves the “11” encoding
the position of the pointer from the BC-pair to the CA-pair immediately to the right.
Specifically,

RIGHT 4 = B}, By, Ay, A (3.19)

has his effect, transforming (3.15) into the following state.



3.2.

THE BASIC GCA MODEL 61

0 0 0 0 | x| 1 1 | z2| O O |- ]an | O 0 0 0

A B C A B C A B C A --- B C A B C(C

Proof of correctness for RIGHT 4:

As a slightly less trivial example illustrating the proof technique, we verify the cor-
rectness of RIGHT 4. Let x; be the binary value associated with a basis state for the
data qubit d;. Let y; be the binary value associated with the i** B and C-type lattice
qubits (these will both be 1 if the pointer is at position i, and will both be 0 otherwise).
Consider seven adjacent lattice qubits of types (C, A, B,C, A, B, C'). We want to show

that RIGHT 4 maps (Yi—1, Ti, Yis Yi, Titl, Yit1s Yit1) 10 (Yim1 s Yio1, Tis Vi Yi» Tit1, Yit1)-

(yi—l yLi s Yi s Yiy Ti+1,Yi+1 7yi+1>

C A B C A B C
B
— (Yi—1,zi, v + (L + i), Y, Tiv1, Vi1 + Tig1 (L + Yigt1) s Yit1)
C A B C A B C
= (Yi—1,%i,Yi + Ti + Y , Yi , Tit1, Yir1 + Tit1 + Tig1Yit1, Yig1)
C A B C A B C
Bg§
— (Yie1, @i,y + @i + iy + (L4 20)¥i, Yi s Tis 1, Yit1 + Tie1 + Tip1Yier + (L + Zig1) Vi1, Vi)
C A B C A B C
= (Yi1,Ti Y0 + Ti + Ty + Yo+ T, Vi Ti 1 Yk T+ Tie 1 + iy T+ Yir T + T %7 T, Vit 1)
C A B C A B C
AR
— (Yi—1, % + (1 +yim)xi, 25, Yi s Tig1 + (14 ¥i)Tit 1 Ti1  Yir1)
C A B C A B C
= (Y1, 80+ 27+ Vi1 T s T, Vi ZigeT + TiseT + YiTit 1, Tit 15 Vit 1)
C A B C A B C
A
— (Yim1,Yi—1%i + Yim1 (L +23) %, i, YiTig1 + ¥i(1 + Tig1) , Tig1, Yig1)
C A B C A B C
= (yifl s MitZT] + Yio1 + Yid®T, T, Yi s Yo T + Yi + YilirT, Titl ,’yi+1) 0
C A B C A B C

Similarly the pulse sequence

LEFT4 = O}, CoY, Agy, A (3.20)



62 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

shifts the data qubits from the B-type lattice qubits to the A-type lattice qubits immedi-
ately to the left. We have analogous pulse sequences for shifting the data qubits between
the B- and C-type lattice qubits:

RIGHT 5 = Cy, Cyy, Boy, Bib, (3.21)
LEFTp = Ajy, Ay, By, Bivs (3.22)
RIGHT: = A7y, Ady, Cots Cios (3.23)
LEFT¢ = Byy, Boy, Cov, Civ,- (3.24)

Notice that the EXCH, RIGHT, and LEFT sequences are not part the language SPA, but are
merely convenient shorthand expressions for useful pulse sequences. We can implement

SPA using these sequences as follows:

P, = EXCHyp , EXCHpc , LEFT¢ , LEFTpR, (3.25)

Pr = EXCHcy4 , EXCHpe , RIGHT g , RIGHT ¢, (3.26)

GV = Al (3.27)
_ pX Z X

CZ = By, , EXCHpc , A7, , EXCHpcBg;. (3.28)

We give the proof of correctness for CZ below. Because it is very simple, it provides a good

example illustrating the proof technique for pulse sequences that include Z operations.

Proof of correctness for CZ

Consider the segment of the lattice in the vicinity of the pointer, consisting of 6
lattice qubits of types (A, B,C, A, B,C'). Suppose the basis state of the segment is
initially represented by (a;, 1,1, a;+1,0,0). We want to show that the pulse sequence
for CZ maps

Cz
(ai7 17 17ai+17070) ) ¢ =0 — (aiv 17 17ai+17070) ) ¢ = A;Q541-

That is, we want to show that the pulse sequence leaves the basis state unchanged,



3.2. THE BASIC GCA MODEL 63

and reverses the phase when a;11 = a; = 1. The analysis proceeds as follows:

(aialalaai+170,0) ) QS:O
A B C A B C

Byl

— (aivai717a‘i+17070> ) (b:O
A B C A B C

EXCHpc
— (aialvai7ai+17070) ) QSZO
A B C A B C
AZ

— (ai,1,a;,ai11,0,0) , ¢ = a;ai11

A B C A B C

EXCHpc
— (a;i,ai,1,ai+1,0,0) , ¢ = a;a;41
A B C A B C
B

(ai71717ai+17070) ) Qs:aiai-i-l O

A B C A B C

It is worth taking a moment to consider how the physical system described in this section
could be simulated by SPA (i.e. the opposite of what was done above), in order to show
that the two schemes are equivalent. Suppose we have access to an array of data qubits
and can perform the basic instructions of SPA. To simulate the anisotropic ABC-chain, we
begin by assigning labels A, B,C, A, B, C, ... to the data qubits. Each data qubit simulates
one lattice qubit. Then suppose we want to simulate the global control pulse T (where
T € {A,B,C}, l,r € {0,1} and U a 1-qubit unitary gate). First note that with the SPA
instructions CZ and G we can simulate any controlled-U gate between data qubits, and also
any controlled-controlled-U operation between data qubits using a standard construction
(see [BBC+95]). Each such simulation requires a constant number of SPA operations.
So to simulate TY we just have to move the pointer along the data array, applying the
appropriate controlled-controlled-U operation to every data qubit labeled 7', conditioned on
the states of its left and right neighbours. Since the pointer has to do this for each T-qubit
sequentially, the overhead in time is linear in n, the size of the ABC-chain being simulated.
So by simulating the ABC-chain with SPA, we only lose no fundamental computational

power and only a small amount of computational efficiency.

Fact 3.2.1 A lattice of qubits configured as an ABC-chain with anisotropic nearest-neighbour



64 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

couplings and controlled by the global pulses described above is equivalent in power to the

language SPA up to at most a linear overhead in time and space.

Other physical global control systems can be similarly shown to be roughly equivalent
to SPA. Note that the linear overhead may be very significant when we consider fault-
tolerance, and that is why we are motivated to define a more powerful model (called MPA)
in Section 3.5.1.

3.2.2.2 1-D lattice with 2 species, isotropic coupling

Lloyd’s architecture was adapted by Benjamin [Ben00], who showed that it suffices to re-
strict the hardware to a polymer with only two distinguishable species A and B. Moreover,
the couplings can be such that a qubit in the lattice only feels the net effect of the states
of its neighbours, and cannot distinguish the states of the left and right neighbours. The
“field” of a given qubit in the lattice is defined as the number of immediate neighbours
(to the left or right) in the state |1) minus the number in the state |0). Therefore, for
computational basis states of the lattice, there are three possible values of the field for any
given lattice qubit, 0,-2, and 2 (again ignoring the different behaviour of qubits at the ends

of a finite lattice). The pulses that are allowed in this architecture are of the form
Ty (3.29)

where T' € {A, B} and f € {—2,0,2}. For example, the pulse A2’ applies the unitary X
to all qubits of type A that have both neighbours in the state |1) (giving a field of 2). The
pulse BY applies the Hadamard gate to all qubits of type B in the lattice that have one
neighbour in each of the basis states |0) and |1).

In Benjamin’s architecture, the encoding of the data qubits is more complicated than that
described in the previous section. Each data qubit is now encoded by four adjacent lattice
qubits. Furthermore, each data qubit will not occupy the same 4 lattice qubits during
the course of a computation. The lattice will be significantly longer than the data array.
Between any pair of data qubits (each taking 4 physical qubits in the lattice) there are
4 physical qubits of padding in the state [0)®*. The lattice contains a sufficient number



3.2. THE BASIC GCA MODEL 65

(O(N)) of padding qubits in the state |0) to the left and right of the data array. The entire
data array will move (as a single unit) back and forth along this long lattice during a com-
putation. For the data array in a computational basis state p = [z122 ... Ty ){T12o ... TN

(no pointer location shown), this will be implemented in the lattice as follows.

A0 Z1|Z1|x1|21] 0000 |Z2|Z2|x2|x2[O]0[0[O0}--]0]0]0|0 znyENnlzNnlEzN] O]---
- B ABABABABABABADBADBADB---ABADBABA.---
where 7; = 1+ x; (“+” denotes addition modulo 2). The basis state |z;) of a data qubit
is encoded in the lattice by the pattern |z;)|z;)|x;)|z;). Specifically, the data qubit |0) is
encoded by the pattern |1)[1)]|0)|0) and |1) is encoded by |0)]0)|1)|1).

The pointer is represented in the same lattice by the 6-qubit basis state |1)[1)|0)|0)|1)|1)

(which Benjamin calls the “control unit”, CU), that will only be present at one place in the

lattice at any given time. When the data qubits are positioned over 4-tuples ABAB in the
lattice, the CU is positioned on a 6-tuple BABABA. When the data qubits are positioned
as BABA the CU is positioned as ABABAB. This relative positioning allows pulses
to shuttle the CU along the lattice in a contrary direction to the data qubits, allowing
movement of the pointer relative to the data. When positioned over a data qubit, the
CU pattern behaves as an XOR-mask that changes the basis states of the lattice qubits
encoding that data qubit. The scenario in which the pointer is at position ¢ in the data

array is represented as follows.




66 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

The instructions of SPA are implemented in this architecture as follows.

P. = Ay, By, Ay, By (3.30)
Pr = B, Ay, By, A (3.31)
GV = By, Ay, A, B AY, BY  AY, By L AL Ay By (3.32)
CZ =Py, By, AY, Ay, By, Ay AY, By, By, Ay, By, By, Ay A, BeY, A, AY, B,

A AY By, AY LAY By By, AY L By, By AL AY L By A AX, By P (3.33)

In Appendix A, I give proofs of correctness for two of the pulse sequences. The others can

be similarly verified.

3.2.3 Implementation on lattices with a distinguished site

In this section we explore what can be done with regular lattices having the added feature
of a distinguished site. A distinguished site is a lattice qubit, or local grouping of lattice
qubits, that responds differently to control pulses than all the other lattice qubits. Such a
lattice can be used to implement a global control scheme with the added feature of local
control only at the distinguished site. In practice, the distinguished site might be located
at the end of a finite lattice, where the unique geography gives the terminal qubit unique
properties. Alternatively, a distinguished site might be implemented by coupling a specific

lattice qubit with some external qubit of another species.

To implement SPA on such a system, the pointer could be located at the fixed position of
the distinguished site, and the data qubits moved back and forth under the fixed pointer.
For example, to implement a P; operation, the data qubits could all be moved to the right
along the lattice. These systems have the advantage that the pointer position does not
have to be logically encoded, and so the data qubits can be packed more tightly along
the lattice. In the example system we describe below, the data qubits are encoded in

one-to-one correspondence with the lattice qubits.

As an example, consider an anisotropic ABC-chain configured as a closed loop. Assume
that the loop consists of an odd number of ABC-triples. Suppose an atom of a fourth type,
D, is positioned adjacent to some ABC-triple selected (arbitrarily) to be the distinguished



3.2. THE BASIC GCA MODEL 67

triple. Suppose that we can apply pulses that affect all the ABC-triples uniformly. Also
assume that we have pulses that can target only the distinguished ABC-triple, by making
use of the effect of the proximity of the D atom.

For the present discussion, I will refer to the physical qubits of species A, B, C' as “cells”
of “types” A, B,C. When I talk about “moving a qubit to a cell”, I am referring to a
sequence of logical operations (usually nearest-neighbour SWAP operations) that permute

the logical states of the physical qubits on the chain. We will need the following claim.

Claim 3.2.1 For any pair of qubits initially occupying adjacent cells, there exists a se-
quence of pulses that has the effect of bringing those qubits into adjacent positions in the

distinguished triple.

Proof: The pulse sequence EXCHap = Bit, A%, BX exchanges the states of

the qubits on the A-cells with those on the neighbouring B-cells. The sequence
(EXCHac, EXCHAp, EXCHpo, EXCH4p) has the effect of moving every qubit ini-
tially in an A-cell to the A-cell of the next ABC-triple to the left (counterclock-
wise). It also moves every qubit initially in a C-cell to the C-cell of the next
ABC-triple to the right (clockwise). It leaves the qubits on the B-cells fixed.
By permuting the labels of the species we have similar sequences for moving
the qubits in the A- and B-cells, while keeping the qubits in the C-cells fixed.
Suppose we have a pair of qubits (b;,¢;) in adjacent B- and C-cells, that we
wish to move into adjacent positions in the distinguished triple. First we apply
the sequence that moves the qubits in the A- and B-cells (keeping the qubits
in the C-cells fixed) until b; is in the B-cell of the distinguished triple. Then
we apply the sequence that moves the qubits in the A- and C-cells (keeping
the qubits in the B-cells fixed), until ¢; is in the C-cell of the distinguished
triple (beside b;). Similar procedures will bring any pairs of adjacent qubits

into adjacent positions in the distinguished triple. [J

From the claim, it follows that we can implement a nearest-neighbour SWAP operation
between any pair of adjacent qubits on the lattice. First we move the pair to the distin-

guished triple, and apply a sequence of pulses to implement the SWAP operation only on



68 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

those qubits in the distinguished triple. Then move all the qubits back to their correspond-
ing original positions (respecting the swapped pair). Now it follows that we can implement
an arbitrary permutation of the states of the individual qubits on the lattice (by a suitable
sequence of nearest-neighbour transpositions). In particular, this allows us to implement
a cyclic rotation of the lattice, so that we can implement the Py and Py operations of SPA.
The other operations can be implemented directly, by applying pulses that target only the
distinguished triple.

3.2.4 SPA programs to simulate quantum circuits

The utility of the language SPA is that we can use it to write programs for simulating quan-
tum circuits with a GCA, independent of the details of the implementation of a particular
GCA system. For any specific physical architecture implementing SPA, these programs can

be “compiled” to give the specific pulse sequence to run the circuit simulation.

When presented with a quantum circuit diagram, the circuit can be first be rewritten
to make translation into an SPA program straightforward. This rewriting results in an
equivalent, sequential, nearest-neighbour circuit that uses only single-qubit, controlled-
NOT, controlled-Z and SWAP gates (we can allow controlled-NOT and SWAP because in
Section 3.2.1 we have already seen subroutines for implementing these operations using the
basic instructions of SPA). The first step in rewriting is to replace any multi-qubit gates
other than controlled-Z, controlled-NOT and SWAP with an equivalent subcircuit consisting
of single-qubit, controlled-Z, controlled-NOT and SWAP gates. Consider a controlled-U gate
for any one-qubit gate U. Since we can write any such U as U = ¢ “AX BXC for single-
qubit gates A, B, C satisfying ABC = I, this gives a method for writing the controlled-U
in terms of single qubit gates and controlled-NOT gates. For circuits containing gates
controlled by multiple qubits, we can use techniques described in [BBC+95] to rewrite
these.

The second step in rewriting is to take the circuit resulting from the first rewriting step,
and serialize it. That is, whenever multiple gates in the circuit are applied in parallel,
separate them into discrete time-steps. The final step is to write an equivalent nearest-

neighbour circuit. This is done as follows. Wherever a two-qubit gate appears between two



3.2. THE BASIC GCA MODEL 69

nonadjacent qubits, we use a sequence of SWAP gates to bring the control and target qubits
into adjacent positions. Then apply the required two-qubit gate, and finally perform the
reverse sequence of SWAP operations to move the qubits back to their original positions.
After the rewriting, the programmer could optionally look for ways to optimize the resulting

circuit (without violating the serial or nearest-neighbour constraints).
The rewriting sequence will be illustrated for the circuit fragment shown in Figure 3.1.

i
4@ @ .

Figure 3.1: A fragment of a circuit to be simulated by SPA.

In the circuit of Figure 3.1, —Y denotes the Pauli Y operation multiplied by the scalar
—1. In the first step of rewriting, the circuit is replaced with an equivalent one consisting
only of single-qubit, controlled-NOT and controlled-Z gates (note that —iY = X Z). The

resulting circuit is shown in Figure 3.2.

.y
7]
—H] @@

— memEemen

Figure 3.2: A circuit equivalent to Figure 3.1, using only single-qubit, controlled-NOT and
controlled-Z gates. Above, A = cos(7/8)|0)(0| + sin(7/8)|0)(1] + cos(m/8)|1)(0| — sin(mw/8)[1)(1].

Next, the circuit in Figure 3.2 is serialized, by temporally separating any gates being
applied in parallel. The result is shown in Figure 3.3. Then a nearest-neighbour version of

the circuit is constructed, resulting in the circuit shown in Figure 3.4.

Finally, we can perform some optimizations on the circuit of Figure 3.4. The first obser-
vation is that in two places we have used the straightforward recipe using SWAP gates to

perform a distance-2 controlled-NOT gate (a controlled-NOT where the control qubit is two



70 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

—H

A SEL G E T

Figure 3.3: The circuit in Figure 3.2 rewritten with no gates acting in parallel.

H H
i [l
2]

B o
2] ) II -\_1@

Ao ] AT

Figure 3.4: A nearest-neighbour version of the circuit shown in Figure 3.3.

qubits away from the target; that is, the control and target have one qubit in between
them). The SWAP gate can be represented by 3 nearest-neighbour controlled-NOT gates,
and this is analogous to how we have implemented the SWAP instruction in SPA (see Section
3.2.1). So the distance-2 controlled-NOT constructions use a total of 7 nearest-neighbour
controlled-NOT gates. In general, a distance-k controlled-NOT gate implemented by this
approach requires 6(k — 1) + 1 nearest-neighbour controlled-NOT gates. There is a more
efficient construction that implements a distance-k controlled-NOT gate using 4(k — 1)
nearest-neighbour controlled-NOT gates. This construction is illustrated in Figure 3.5 for
k= 4.

1 & &

L & b b
1 b1 b
—o— & b

Figure 3.5: A construction for implementing a distance-4 CNOT gate using 12 nearest-neighbour

CNOT gates. This construction generalizes naturally for distance-k CNOT gates.

Suppose we want to implement a distance-k CNOT gate on a GCA, with d; as the control



3.2. THE BASIC GCA MODEL 71

qubit and d;, as the target qubit (that is, the target qubit is k positions to the right of
the control qubit). Assuming the pointer is initially at data qubit d;, the following SPA

program accomplishes this.

SPA program to implement a distance-k CNOT to the right

1. CNOT,

2. do {Pg, CNOTR} k — 1 times
3. do {P., CNOTR} k — 1 times
4. do {Pg, CNOTR} k — 1 times
5. do {P., CNOTR} k — 2 times

6. Pr.

We can write CNOTg(k) as a shorthand for the above subroutine in SPA programs. We
have a similar program for doing distance-k controlled-NOT gates to the left (which we can
denote by the shorthand CNOT(k)).

SPA program to implement a distance-k CNOT to the left

1. CNOT,

2. do {P., CNOT.} k£ — 1 times
3. do {Pg, CNOT.} k — 1 times
4. do {P., CNOT.} k — 1 times

5. do {Pg, CNOT.} k — 2 times

6. Pg.

After replacing the distance-2 controlled-NOT implementations, the resulting circuit ap-

pears as in Figure 3.6.



72 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

=]

H
‘ ‘ ]
Ao AT bl

distance-2 distance-2
CNOT CNOT

Figure 3.6: Some optimizations applied to the circuit constructed in Figure 3.4.

Now we can write a program in SPA that directly simulates the circuit of Figure 3.6 as
follows. We assume the active pointer is initially addressing data qubit d;. At the end of
the following program the pointer will be positioned at data qubit ds.

SPA program to simulate circuit in Figure 3.6

GY , Pp,GY P, CNOTR(2) ,Pr,Pp,Pr,Ga, P, CNOTR ,Pr,G* P, Py,
CNOTx(2) , Pr , Pp , G*' | P_, CNOTs , Py, GA' , P, , P, G , CZ, CNOT;.

Using the rewriting rules described above, it should be straightforward to create a naive
compiler for generating SPA programs to simulate quantum circuits (given some description
of the circuits). I described the optimization of the distance-k CNOT implementations as an
example to illustrate that creating a good compiler may be harder. Such a compiler should
ideally be capable of applying optimization techniques to generate reasonably efficient SPA

programs.

3.2.5 GCA, QCA, and error correction

I have chosen terminology to distinguish GCA from other models of quantum cellular au-
tomata, and so we should take a moment to discuss the relationship between these models.
Often the term QCA is used to refer collectively to all such models (including GCA), but
there is an important distinction. In a true QCA model there is no external control (global
or local); that is, the machines are “autonomous”. They are typically organized as regular

chains or lattices of qubits linked by local couplings as in GCA, but for QCA there is a fixed



3.2. THE BASIC GCA MODEL 73

transition rule that specifies the next state for a lattice qubit, based on the current states

of its neighbours.

Given a GCA and a program (that is, a fixed sequence of control pulses), the behaviour
of the system can be simulated by a QCA. The basic approach is to encode the program
in some of the lattice qubits. A transition rule is defined that has the effect of simulating
the sequence of global pulses (the program) on the data. In practice, this could be quite
complicated. The QCcA would have to keep some kind of clock to keep track of the current
time-step, and the transition function will have to effectively check the clock, and apply

the correct operation at each time-step.

We can simulate the behaviour of any given (1-dimensional) QCA with an SPA program by
simply moving the pointer back and forth across the array, visiting every data qubit. For
each data qubit, we use the (fixed) sequence of basic instructions that will simulate the
effect of the QCA transition function on that data qubit. To simulate the behaviour of a
higher dimensional QCA model will be more involved, but is only matter of working out

the details, as we know SPA is capable of universal quantum computation.

It is useful to view GCA as a QCA with additional power. Whereas a QCA has a spacially
and temporally uniform transition function, the global control pulses of a GCA are spacially
(but not temporally) uniform transition functions. That is, a GCA is like a QCA with a set
of possible transition functions, and at each step we get to choose which transition function
to apply. Viewing things in this way, it seems that performing reliable computation with

a QCA should be at least as hard as performing reliable computation with a GCA.

Given a method for doing reliable computation with a GCA, suppose we want to simulate
this with a QCA. As we mentioned above, the basic approach is to encode the program and
some mechanism to act as a clock in the state of the QCA. Now, however, we have to account
for the fact that the noise can affect the state of the clock. For a c¢CA we would typically
assume that the noise only affects the states of the data qubits in the array, and that the
choices we make about which pulses to apply at each time-step (and the ordering of the
time-steps) are immune to errors (or at least can be implemented reliably in the classical
computer controlling the pulse application). When we simulate these mechanisms by error-

prone QCA states, the reliability may be lost. To reliably implement a QCA performing



74 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

a simulation like this, we would need to have some means of protecting the state of the
clock. Furthermore, this would have to be accomplished using the spacially and temporally

symmetric transition function of the QCA.

Gécs has given techniques for performing fault-tolerant (classical) computation with clas-
sical cellular automata [Gac86]. For reliable QCA models, we might look to expand or
modify the techniques in [Gac86]. These techniques are very sophisticated and make use
of cellular automata in which each cell has a very large number of states. It seems likely

that one should be able to exploit global control and devise simpler solutions for GCA.

3.3 Two approaches to error correction for GCA

As with any computing model, if one wishes to implement a GCA in hardware, the pos-
sibility of errors must be considered. A rich theory of quantum error correction has been
developed, and quantum error correcting codes for quantum circuits have been designed.
Using these codes, arbitrarily long computations in the quantum circuit model can in the-
ory be performed reliably under physically realistic error models. It is not clear how these
quantum error correcting codes can be applied to GCA, however. Errors affecting the states
of the physical qubits in the underlying lattice may not map to errors in the encoded data
qubits in a natural way. Physical errors may also affect the integrity of the pointer in a

way that is difficult to control.

Various techniques have been proposed for performing error correction for different Gca
models. In terms of the framework described in Section 3.2.1, it is convenient to divide

error correction techniques for GCA into two distinct categories.

The first category consists of techniques for implementation-level error correction that make
the GCA more robust. In terms of the language described in Section 3.2.1, these techniques
are implemented at the lowest level, to implement the basic instructions more robustly in
the presence of errors that may occur on individual lattice qubits. A shortcoming of these
techniques is that scaling the codes generally requires redesigning hardware, as we will see

later.

A second category of error correction techniques for GCA is data-level error correction,



3.3. TWO APPROACHES TO ERROR CORRECTION FOR GCA 75

which protect against errors at the level of the data qubits encoded on the lattice. These
techniques are implemented by programs that run on the fixed GCA hardware. The lan-
guage SPA provides a convenient tool for describing such techniques. Existing quantum
error correcting codes for quantum circuits provide candidates for data-level error correc-
tion in GCA. These codes have the advantages that they are well studied and are inherently
scalable (e.g. through concatenation). This approach has the shortcoming that it will only
operate at the level of abstraction of the data qubits and the pointer. If errors at the
implementation-level corrupt the encoding, leading to a physical lattice state that is not a
valid encoding of a data array and pointer state, then data-level error correction will not

function properly. We examine data-level error correction in Section 3.6.

Recall our discussion of lattices with a distinguished site, from Section 3.2.3. Implementation-
level error correction for these systems has the advantage that we don’t have to worry about
error correcting the pointer, since it is realized by physical means, and not a logical en-
coding. A drawback of these schemes is that a single distinguished site will not provide an
opportunity for parallelism. As I will discuss further in Section 3.5, parallelism is vital if
we want to achieve fault-tolerance. Parallelism could be achieved by using multiple distin-
guished sites, but the main motivation for studying globally controlled arrays is precisely
the difficulty of implementing physical systems with many distinguished sites where local
control is available.

It is unclear how fully fault-tolerant GCA computing can be achieved in practice. By
the observations in the preceding paragraphs, it seems that a mixture of implementation-
level and data-level error correction techniques will be necessary. Some work (e.g [Kay05],
[Kay07]) has been done on hybrid techniques for specific GCA architectures (e.g. by using
implementation-level approaches to correct the pointer state, and data-level approaches for
the data qubits), but it is not clear that these techniques will satisfy the two requirements
of (1) being fully scalable, and (2) not being restricted to an artificial error model (i.e. can

deal with the low-level physical qubit errors in the underlying lattice).

In Section 3.4 T will explore some techniques for implementation-level error correction and

in Section 3.6 I will consider data-level error correction for GCA.



76 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS
3.4 Implementation-level error correction

3.4.1 Dissipative pulses—removing unwanted entropy

Errors add entropy to a quantum system. Correction of these errors requires some mech-
anism for removing this entropy. In the circuit model this can be achieved by performing
carefully designed “syndrome measurements”, or by providing ancillary qubits that can be
initialized to a fixed state (usually |0)) when required. For GcCA, the second approach is
preferable (the ability to perform localized measurements of lattice qubits may not be pro-
vided by a global control scheme). To allow a GCA to perform error correction, we assume
the hardware provides a “dissipative pulse” that performs the RESET operation |z) +— |0).
Previous schemes ([L1099], [BBK04]) have made use of a pulse that forces all lattice qubits
of a given species to the ground state |0), conditioned on the states of their neighbours. I
will show that, for a particular class of implementation-level approaches, it suffices to use
an unconditional dissipative pulse that forces all lattice qubits of a given species to |0),
regardless of the states of their neighbours (i.e. the RESET operation). It may be that the

unconditional dissipative pulse is easier to implement in practice, for some schemes.

For implementations using a polymer and electromagnetic pulses as described in Section
3.2.2, the following is a standard approach to implementing a RESET operation. The idea
is for each lattice qubit to have a second excited state |2) that rapidly decays to the ground
state |0). Then applying a pulse of a suitable frequency to excite qubits of a given species
to the state |2) will have the effect of setting these qubits to |0). The problem of resetting
qubits to the state |0) by algorithmic techniques is the subject of Chapter 4.

One has to take great care when applying the RESET operation in GCA schemes. By
conservation laws in physics, when energy (or entropy) is dissipated from a lattice qubit,
it will be absorbed by the environment. The RESET operation acts on the qubit and the

environment as follows:

10)|E) ~E2EL 10y Ey) (3.34)
1)|E) 2L 0y By, (3.35)

In other words, the final state of the environment depends on whether the state was reset



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 7

from |1) or left unchanged in |0). Suppose we have some multiple-qubit state
) = a|0)|zo) + BI1)|z1).

Ideally, we might hope that if we applied a RESET to the first qubit of |z}, the result would
be

al0)|zo) + B|0)|x1) = [0) (azo) + Blz1)) -
Unfortunately, because of the interaction with the environment, the result will actually be

RESET
 —

7)) al|0)|zo) | Eo) + B|0)|x1)| Er)

=10) (@z0)| Eo) + Bla1)| Er))

and the state of the remaining part of |z) becomes coupled with the environment.

When we apply the RESET operation during error correction, we can avoid the above pitfall
by taking care only to reset states containing the error syndrome, and not resetting any
state containing information about the logical state of the qubits we are trying to protect
from errors. Suppose we use an error correcting code, and encode the logical state |0) by
the codeword |Cj) and the state |1) by the codeword |C}). Suppose some error € transforms

|Co) to |Cf) and transforms |Cy) to |C]). A syndrome computation performs
C10) — [CDIS),

where the syndrome S contains enough information to identify the error €. Note that S is
independent of 7; that is, the syndrome does not contain any information about the original
codeword. After the syndrome computation, an error correction operation is controlled by

|S) to reverse the effect of e.

Suppose we initially have some encoded state a|Cp) + §|Cy) and some error occurs, trans-

forming the state to a|C{) + 5|C1). The syndrome computation maps
(@|Co) + B1C1)) [0) = (alCp) + BICT)) |5)-
Then the error correction step is performed, mapping

(@|Co) + BIC) |S) = (alCo) + BIC1)) |S).



78 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

Finally, we reset the syndrome, so that the ancillary register can be used again for a
syndrome computation the next time we do error correction. Accounting for the interaction

with the environment, the RESET operation performs

RESET
—

(@|Co) + B|C1)) [S)|E) (@|Co) + BIC1)) 0} E").

The environment is modified by the erasure of the syndrome?®, but the codeword is not

coupled with the environment, and the quantum information remains intact.

I will denote a reset pulse targeting all lattice qubits of type T" by TH¥FT,

3.4.2 A bit-flip code for a GCA memory

When we begin to study error correction for GCA models, it is convenient to initially
consider a GCA that does nothing; that is, a “GCA memory”, having no pointer. A GCA
memory can be made more reliable by using an error correcting code and some sequence of
control pulses to perform error correction. Later, in Section 3.4.6 we will discuss methods
for reintroducing the pointer, to turn a reliable GCA memory into a reliable implementation
of SPA.

In this section, we consider the error model in which each lattice qubit independently
suffers a “bit flip” with some fixed probability p. A bit flip is equivalent to a NOT gate
on the lattice qubit. A simple code that can help protect qubits against bit-flip errors is
a three-qubit code, for which the logical qubit state |d;) = «|0) + |1) is encoded as the
three-qubit state |d;) = ]000) + §|111).

Consider Lloyd’s ¢cA implementation [L1099], described in Section 3.2.2.1 (1-D lattice,
three species, anisotropic coupling). The three-qubit code can be implemented on this

lattice by encoding each data qubit redundantly in an (A, B, C)-triple. A data qubit in
the basis state |z;), z; € {0,1}, is encoded in the lattice as follows.

T

... ABC -

Ti | X4

3In Section 4.4.3 I discuss this problem in the context of algorithmic cooling using a heat bath.



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 79

The encoded basis states could be loaded onto the lattice directly or, assuming the un-
encoded data qubits are loaded onto the A-qubits, we could perform the encoding with
pulses. A nearest-neighbour quantum circuit that performs the encoding for the three-qubit

code is shown in Figure 3.7 below.

|di) = |0) + B|1) A
10) ., A |d;) = «|000) + B|111)
0) .,

Figure 3.7: A nearest-neighbour quantum circuit implementing the encoding for the three-qubit

code.

The circuit in Figure 3.7 is equivalent to the following sequence of pulses:
B, CL.

Decoding is performed by running the circuit of Figure 3.7 backwards, which is equivalent

to the following sequence of pulses:
CY, Bk,

Error correction is accomplished by a sequence of pulses that performs a majority-vote in
the computational basis across each (A, B, C)-triple. The majority-vote is accomplished
in two stages: first the value of the majority (0 or 1) is computed into the B-qubit. At the
same time, the parities of the bits originally in the pairs (A, B) and (B, (') are encoded
into the A and C' qubits. These parities form the error syndrome. A remarkable property
of the 3-bit code is that the error syndrome can be computed “in-place”, without the
need for ancillary bits. Next the A and C' qubits (containing the syndrome) are zeroed
with dissipative pulses, and the majority value is encoded back into these qubits from the

B-qubit. The pulse sequence is

AYX ., O, By, AYSPT O AN O (3.36)

The above pulse sequence performs the error correction on all (A, B, C')-triples in parallel,

and so performs the error correction for all the data qubits in the array simultaneously.



80 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

Proof of correctness for majority-vote sequence:
The majority value of three bits a;, b;, ¢; can be expressed as M; = a;b; + b;c; + a;c;.
For an (A, B, C)-section of the lattice in the state (a;, b;, ¢;), then, we want to show

that the majority-vote sequence transforms this state to (M;, M;, M;).

A%
(ai7 bia C’i) | — (ai + biab’iaci)

X
1%

c
—= (a; + b;, b, c; + b;)

X
Bll

— (ai + b;, b; + (ai + bi)(ci -+ bi), c; + bz‘)
= (aj + b;, M;, c; + b;)

AR ESET

— (0, M;,c; + b;)

CRESET

I (07 Miv 0)
AX
'A) (MZJ Mi7 0)
X

Note that in the RESET steps, the values reset were a;+b; and c;+0b;. These parity bits form
the error syndrome, and together they determine the location of a bit-flip error. These
parities are the same whether the bit-flip error occurred on the codeword |000) or on the
codeword |111), and so they carry no information about the identity of the codeword, and

can be safely reset.

The above scheme will only correct a single bit-flip error within each block of three lattice
qubits. This reduces the effective probability of bit-flip errors from O(p) to O(p*) (but
only between operations, as discussed above). This error rate could be further reduced
by expanding the hardware. For example, an error rate of O(p*) could be achieved by
a scheme analogous to that above using a lattice having 9 distinct species. Scaling the

code in this way to achieve an effective bit-flip error-rate of ¢ would require increasing the

1

number of distinguishable species polylogarithmically in <.

In the following section, we expand the scheme described here to protect against bit-flip

and phase-flip errors (which implies protection against arbitrary single-qubit errors).



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 81

3.4.3 A 9-qubit code for a GCA memory

In 1995 Peter Shor invented a 9-qubit code for quantum circuits by concatenating a 3-qubit
code for correcting bit flips with a 3-qubit code for correcting phase-flip errors [Sho95]. A
bit flip corresponds to a quantum X gate, and a phase flip corresponds to a Z gate. Because
any single-qubit operation can be written as a linear combination of {I, X, Z, X Z}, Shor’s
9-qubit code can correct an arbitrary single-qubit error within each codeword. Here we

show how this code can be implemented in hardware for a GCA.

The 3-qubit phase-flip code is identical to the bit-flip code, except that data qubits are

encoded in the Hadamard basis so that a|0) +/3|1) is encoded as a|+++) + 3| ———), where
+) =25 (10) + 1)) (3.37)
=)= 5(10) = 1)). (3.38)

In the Hadamard basis, phase flips resemble bit flips (Z|+) = |—)). So the phase-flip code

can be implemented just as the bit-flip code, except with respect to the Hadamard basis.

Consider protecting a quantum memory (i.e. with no accommodation for a pointer) from
phase-flip errors, using the ABC-chain described in Section 3.2.2.1. We encode the data
qubits as

where |y;) = H|z;). Then correction of phase-flip errors is accomplished by first applying
a sequence of pulses that implements the Hadamard gate on every qubit in the lattice, and
then performing majority-voting within the triplets as in the previous section. Finally we
return to the Hadamard basis with more Hadamard pulses. The error correction sequence
is

AR pBH o AX

k%9 ok T xkr L1

ClX*7 Bfg, ARESET’ CRESET’ AX CX AH BH CH (339)

*1 T “ sk Hxxr “xx

For the 9-qubit code, we first encode every qubit using the phase-flip code, and then encode
each of the three qubits in that code using the bit-flip code. The result is the following



82 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

encoding.

0) = ;1= <|000>+|111>) (|000>+|111>) (|000>+|111)) (3.40)

414243 419293 449546 444546 q74899 q749899
1) = 2 (|000> |11 1>) (|000> — |11 1>> <|000> — |11 1)) (3.41)
4149243 4149293 449596 4449596 47498499 q7498499

In the above expressions I have labeled the physical qubits with {q1,q2,...,q}. A GCA
hardware scheme convenient for implementing this code for a quantum memory consists of

a 2-D lattice of 9 distinct species, arranged as follows.

A|B|C|A|B|C|A|B|C| -~ |A|B|C
D\ E|\F|D|E|F|D|E|F| .- |D|E|F (3.42)
G\H|J|G|H|J|G\H|J| - |G|H|J

The qubits in the above lattice are coupled in rows and columns. That is, each A-qubit is
coupled to the C to its left, the B to its right, and the D below. Pulses of the form A;,,
are used for the A-qubits. Similarly, each D-qubit is coupled to the F-qubit to its left, the
E to its right, the A above, and the G below. Pulses of the form D, ,; are used for the
D-qubits. Pulses for the lattice qubits of the other types are defined accordingly.

We arrange each 9-qubit codeword on a 3 x 3 section of the lattice as follows.

1, 425 93¢

474 984 99 ;4

If we assume that the hardware only allows us to directly load computational basis states
onto the lattice, it will be necessary to perform the encoding for the 9-qubit code using
an appropriate sequence of pulses. Assume the logical data qubits have been loaded onto
the A-qubits of the lattice. A quantum circuit that performs encoding for the Shor code

is shown in Figure 3.8.

The circuit in Figure 3.8 is equivalent to the following pulse sequence:

X H H X X X X
**1* ) G**l* ) A*** ) **** ) G*** ) 1** ) Cl** ) 1*** ) Fl*** ) Hl*** ) Jl***

(3.44)



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 83

)
)
)
)
) g d)
)
)
)
)

Figure 3.8: A quantum circuit performing encoding for the Shor code.

To decode, we use the reverse pulse sequence:

X X X
Jl*** ) Hl*** ) Fl*** )

X X X H H H X X
El*** I Cl** ) Bl** ’ G*** ’ D**** ) A*** ) G**l* ) D**l*‘ (345>

We can correct a single bit-flip error, phase-flip error or both a bit-flip and a phase-flip
error, as follows. First we perform the correction procedure for bit-flip errors within each
of the three blocks of three qubits of the codeword. This is done using the majority-vote

scheme discussed in section 3.4.2, across each row. The pulse sequence is

X X X RESET RESET X X
A*l*a Cl**7 B11*7 A ) C ) A*1*7 CI**a
X X X RESET RESET X X
D*l** ’ Fl*** ) Ell** ) D I F ) D*l** ) Fl*** )
X X X RESET RESET X X
G*l* ) Jl** ) Hll* ) G ) ‘] ) G*l* ) ‘]1**' <346)

After this procedure, providing at most one bit-flip error had occurred in the codeword,
we are left with a 9-qubit state of the form

L (]000)£]111) [000) £|111) 000) £]111) ). (3.47)
2\/5 4149293 4149293 4449546 4449546 q749899 q749899

To correct a phase-flip error, we must implement a procedure for performing a majority-

vote on the + signs within the three blocks. This is accomplished by first implementing

an appropriate transformation (similar to the Hadamard for the 3-qubit phase-flip code as



84 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

discussed above) and then doing the standard majority-vote procedure across the qubits
in the resulting blocks of three bits. The transformation we need to implement is one that

maps each block of three qubits in (3.47) according to

75 (1000) + |111)) +— [000)
2(|000) — [111)) — [111). (3.48)

That is, we want to implement the transformation

o (]000> + (—1)¢1y111>) (yooo) + (—1)¢2|111>) (IOOO} + (—1)¢’3\111>>

9149293 919243 4949596 949596 q79899 q798499

= | 10101) | P2d202) | P3d303).

q1 92 43 q4 45 g6 q7 48 49

(3.49)
For example, suppose after performing the majority-vote to correct a bit-flip error, the
9-qubit state is

L (|ooo>+\111>> (\000> - |111)) (yooo>+|111>) (3.50)

919293 q149293 q49596 949596 q74899 q79899

(which would be the result if a phase-flip error had occurred on any of qubits 4,5 or 6).
Then after applying the transformation (3.49), the resulting state is

(1909) (1220)) (1009))- a5

To correct the phase-flip error, we now do a majority-vote between the corresponding bits
of each of the three blocks; that is, between bits 1,4,7, between bits 2,5,8, and between bits
3,6,9.% Since these triplets are lined up in columns in our lattice, this majority-vote can be

accomplished using the following pulse sequence (compare with sequence (3.36) discussed

earlier):
X X X RESET RESET X X
A**l ) G**l ’ D**ll ) A ) G ) A**l ) G**l
X X X RESET RESET X X
B**l? H**l: E**117 B ) H ) B**l? H**l
X X X RESET RESET X X
C**l ) ‘]**1 ) F**ll ) C ) ‘] ) C**l ) J**l' (352)

4 Alternatively, we could just do the majority-vote across one of these triplets (say the first), and then

copy the resulting value to the other qubits.



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 85

After applying this pulse sequence to the state (3.51), the result is the state

(1909)) (tmow) (m20y). -

Then we apply the inverse of the transformation (3.49) to get the corrected codeword

ﬁ <|000)+|111>) (|000>+|111>> <|OOO>+|111>). (3.54)

919243 4919293 949596 949546 q749899 q749899

It remains to show how to implement the transformation (3.49) on the lattice. The following

pulse sequence accomplishes this.

X X H X X
Cl** ) Bl** ) A*** ) Bl** ) Cl** )
X X H X X
Fl*** ) El*** ) D**** ) El*** ) Fl*** )
X X H X X
Jl** ’ Hl** ) G*** ) Hl** ) Jl**‘ (355>

Proof of correctness for pulse sequence implementing (3.49):
Consider the first block of three qubits, g1, ¢2, g3 (of types A, B, C respectively) in
(3.49). We show that the pulse sequence C7\, , B:X,, AL B, 6 C{, has the

effect of transforming this block as

2 <|0 00) + (—1)¢1|q11q12q13>> = [¢101¢1).

719293 q1 g2 g3

The rest of the sequence implements the required transformations on the remaining

two blocks analogously.

L (]000) + (—1)%*[111)) &

2 5 (1000) + (=1)?[110))

S

B ﬁ (]000) + (—1)?1]100))
= 25 (10) + (=1)?[1)) [0)[0)

A 16 [0)10)

B,

= |¢1)¢1)]0)

G g nle) O



86 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

3.4.4 A 1-dimensional implementation of the 9-qubit code

In the previous section, we arranged the 9 qubits into a 2-dimensional lattice. This spacial
arrangement is convenient, given the structure of the 9-qubit code. The same scheme could

be implemented on a 1-dimensional lattice structured as follows.

A|lB|c|p|E|F|c|H|J|A|B|C|D|E|F|G|H][J] - ] (3.56)

The error correction operations can be implemented exactly as described in the previous
section, except that now we will have to add suitable EXCH pulse sequences to permute the
lattice qubits so that those that we previously had in columns move into adjacent positions

when we want to correct phase-flip errors.

An important consideration is that because a 1-dimensional implementation requires many
more EXCH pulses during the error correction operations, there will be a greater opportunity
for errors to occur during the execution of these operations. However, the above scheme is
not a fault-tolerant error correction procedure and so we have already implicitly assumed

that the error correction operations (pulses) are not themselves prone to errors.

3.4.5 Scaling the 9-qubit code

To achieve better error rates in the quantum circuit model, codes can be concatenated
at multiple levels by recursively encoding each of the qubits within a codeword. To con-
catenate an n-qubit codeword to k levels requires n* qubits. Concatenation may not be
a suitable approach for implementation-level error correction in a GCA, however. If we
wanted a k-level concatenation of the 9-qubit code as implemented in the GCA described in
the previous section, we would need a much larger lattice having 9% distinguishable species.

This may very quickly exceed the capabilities of available hardware.

In this section I propose an alternative method of scaling the 9-qubit code in finer gra-
dations than can be achieved through concatenation. Specifically, I show how it could be
generalized to a (2n + 1)%-qubit code for any n > 1, requiring a lattice with (2n + 1)?

distinguishable species. This code will be able to correct up to n single-qubit errors.



3.4. IMPLEMENTATION-LEVEL ERROR CORRECTION 87

Letting N = (2n + 1), the basic idea is to encode the logical basis states in N2-qubit

codewords according to

|0>EL<\0 0...0)+|11... 1))(]0 0...0)+|1 1... 1))...

N
272 q1,191,2