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Abstract

This thesis is about techniques for quantum computing. A common theme throughout

this work is the examination of how quantum algorithms and protocols might be imple-

mented in practice. I explore this question at the level of algorithmic details and computer

architecture, and not at the level of specific physical systems for performing quantum

computation.

The first problem I consider is the generation of quantum states. Many results in quantum

information theory require the generation of specific quantum states, such as Bell states.

Some states can be efficiently created using standard quantum computational primitives

such as preparing a qubit in the state |0〉 and applying a sequence of quantum gates (from

a finite set). For example, a Bell state can be prepared from the state |0〉|0〉 using a

Hadamard gate and a controlled-not gate. However, many states cannot be efficiently

created. Chapter 1 of this thesis focusses on the generation of quantum states.

In Chapter 2, I explore implementations of Shor’s quantum algorithm for computing dis-

crete logarithms. This algorithm is particularly significant because it threatens to un-

dermine the security of widely used elliptic curve cryptosystems. I give a strategy for

implementing Shor’s algorithm for finding discrete logarithms in groups of points on ellip-

tic curves over fields of characteristic 2.

Chapter 3 is about globally controlled arrays, which is a paradigm for implementing quan-

tum computers that may prove to be more feasible in practice than the quantum circuit

model. I explore strategies for implementing error correction in such global control models,

so that they might be implemented more robustly. I also cast the various global control

schemes that have appeared in the literature into a unified framework so that their prop-

erties can be studied somewhat independently of the differences in low-level details. Using

this framework, I consider the main challenges and obstacles to implementing quantum

computing fault tolerantly using globally controlled arrays.

Finally, in Chapter 4, I consider algorithmic cooling—a technique that is potentially impor-

tant for making quantum computation using nuclear magnetic resonance (NMR) feasible.

Given the constraints imposed by the NMR approach to quantum computing, the most

likely cooling algorithms to be practicable are those based on simple reversible polarization
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(RPC) operations acting locally on small numbers of bits. Algorithms using 2- and 3-bit

RPC operations have appeared in the literature, and these are the algorithms I consider

in Chapter 4. Specifically, I show that the RPC operation used in all these algorithms is

essentially a majority-vote of 3 bits, and prove the optimality of the best such algorithm (in

a restricted setting). I go on to derive some theoretical bounds on the performance of these

algorithms under some specific assumptions about errors. These bounds are independent

of implementation details and low-level algorithmic details.
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Preface

Quantum computing as a discipline is still largely confined to theoretical activities in

computer science aimed at finding new algorithms and protocols, and to experimental

work seeking to identify and learn about the physical systems that might be plausible

candidates for implementation of large-scale quantum computers. Not as much attention

has been paid to the low-level design and optimization of algorithm implementations and

quantum computer architecture. It is in these areas that I have directed my efforts.

There are a few general threads of research directed at low-level algorithmic implementa-

tion of quantum computing. One is the design and optimization of detailed sequences of

quantum gates for implementing algorithms and protocols in the quantum circuit model.

Quantum algorithms and protocols are often expressed in the circuit model at a high level,

using black boxes to represent circuits for performing subroutines (e.g. arithmetic or group

operations), using particular initial states that may have to be prepared ahead of time by

an algorithmic technique, or using particular measurements that may require implement-

ing some basis change. Physical implementation of an algorithm or protocol in a quantum

computer will require a more complete specification of a sequence of quantum gates drawn

from a (universal) finite set. Another thread of research is the design and study of the

computational models we use to discover and articulate algorithms and protocols. An

important goal is to develop models that are more likely to map naturally to a winning

technology for implementing quantum computing machines. A third area of research is the

design of detailed strategies for implementing techniques of quantum error correction and

fault tolerance, so that the computing models can be made more robust against errors.

This thesis contains elements of all three of the above activities.
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2

I (with my co-author) gave the first detailed scheme for implementing quantum circuits

for generating arbitrary quantum states, supposing we are provided a reasonably compact

(classical) description of the desired states [KM02]. We show in detail how an important

class of states (the symmetric states) can be created by our method. This work is the

subject of Chapter 1.

Shor’s algorithm is particularly interesting because of its ability to compromise real-world

cryptographic systems. The computational bottleneck in an implementation of Shor’s al-

gorithm is the exponentiation step (either modular exponentiation, or exponentiation of

some other group operation). An understanding of the exact complexity of implementing

these operations is required for cryptographers to prepare for the post-quantum era, so

that existing cryptosystems can be strengthened or replaced. Detailed circuits for modu-

lar exponentiation (needed for compromising the RSA and Diffie-Hellman protocols) are

known, as is an implementation of the group operation for elliptic curves over prime fields

(needed for compromising elliptic curve cryptosystems based on these fields). However,

many real-world cryptosystems are based on elliptic curves over binary fields. I gave the

first detailed reversible implementation of the group operation for these curves [Kaye05].

Such an implementation would be required for a quantum computer running Shor’s al-

gorithm to compromise the real-world cryptosystems based on elliptic curves over binary

fields. This work is presented in Chapter 2.

The difficulties associated with realizing the quantum circuit model in a physical system

have motivated the search for alternative quantum computing paradigms. One such ap-

proach has removed the requirement for the system to provide full local control over the

qubits on which we are computing. Proposals for “globally controlled arrays” of qubits

hold the potential to be more easily implemented (for example by nuclear magnetic reso-

nance) than the circuit model. The proposals for globally controlled arrays differ in their

details, but above a certain level of abstraction are organized in essentially the same way.

In Chapter 3, I present a unified framework for studying these schemes. Globally controlled

arrays are known to support universal quantum computation, but the question of whether

they can support fault-tolerant quantum computation has not been adequately resolved.

I discuss the main obstacles to fault tolerance for globally controlled arrays, suggest some

approaches, and point out some of the shortcomings of existing proposals.



3

One of the challenges of quantum computing with NMR is the difficulty in obtaining a

pure initial state. One approach to resolving this problem has been the development of

techniques for algorithmic cooling. Because algorithmic cooling is likely to be useful for con-

strained systems like globally controlled arrays, it is important to find cooling algorithms

that can be realistically implemented on these architectures. The cooling algorithms that

have been proposed as practical candidates for quantum computation have been based on

a reversible polarization compression (RPC) step involving either two or three qubits. In

Chapter 4, I show that the RPC operation used in all these algorithms is essentially a

majority-vote of 3 bits, and prove the optimality of the best such algorithm (where “best”

is defined in terms of a specific characterization of the performance of cooling algorithms)

in a restricted setting. I go on to derive some theoretical bounds on the performance of

these algorithms under some specific assumptions about errors. These bounds are inde-

pendent of implementation details and low-level algorithmic details. At the time of writing

this thesis, this work on algorithmic cooling has been selected for publication [Kaye07].



Chapter 1

Quantum circuits for generating

quantum states

1.1 Background

Many results in quantum information theory require the generation of specific quantum

states, such as Bell states, or the implementation of specific quantum measurements, such

as a von Neumann measurement in a Fourier-transformed basis. Some states and measure-

ments can be efficiently implemented using standard quantum computational primitives

such as preparing a qubit in the state |0〉 and applying a sequence of quantum gates (from

a finite set). A Bell state can be prepared from the state |0〉|0〉 using a Hadamard gate

and a controlled-not gate. A von Neumann measurement in the Fourier basis can be ef-

ficiently realized by applying an inverse quantum Fourier transform and performing a von

Neumann measurement in the standard computational basis. However, many states and

basis changes cannot be efficiently realized, and for those that can, it is not always clear

how. For example, in [HMP+98] an improved frequency standard experiment is presented

that requires the preparation of specific symmetric states. In this chapter I describe a

general algorithm for preparing quantum states for which we have a reasonably compact

(classical) description. One example for which this algorithm is efficient is the preparation

of the symmetric states required by [HMP+98].

4



1.2. GENERATING THE PHASE FACTORS 5

Suppose we want to generate |Ψ〉 =
∑

x∈{0,1}n αxe
2πiγx |x〉, where αx are nonnegative reals

and γx are real numbers in [0, 1). If we can first generate |Ψ̂〉 =
∑

x αx|x〉, then using

methods described in Section 1.2 we can introduce phase factors to estimate |Ψ〉 arbitrarily

well. I begin in Section 1.2 by showing how to generate the phase factors, as we will also

need this technique in Section 1.3 where I show how to generate a state that is a good

approximation of |Ψ̂〉 =
∑

x αx|x〉. In Section 1.4 I will give an example implementation

of the state-generation algorithm, and in Section 1.5 I will examine the issues associated

with finite precision.

1.2 Generating the phase factors

Let us begin by reviewing the procedure of [CEMM98] for generating arbitrary interference

patterns. If we have first created the state |Ψ̂〉 =
∑

x∈{0,1}n αx|x〉, this procedure will enable

us to generate the state |Ψ〉 =
∑

x αx∈{0,1}ne2πiγx |x〉.
The goal is to implement a circuit that performs

|x〉 7→ e2πiγx |x〉 (1.1)

for each basis state |x〉, where γx are real numbers in [0, 1). Here we will assume that each

γx = γ̂x

2m for some m-bit integer γ̂x.

We suppose the phases are encoded in an operator ADDγ̂ that has the following effect

ADDγ̂ : |x〉|y〉 7→ |x〉|y + γ̂x mod 2m〉. (1.2)

We assume that we are provided with a compact description of the phases γx, and that this

allows us to construct an efficient circuit for ADDγ̂ that will add the appropriate values of

γ̂x to the second register, controlled on the state |x〉 in the first register. The addition can

be performed using standard reversible arithmetic circuits (e.g. [VBE95]).

We will make use of an m-bit auxiliary register, initially in the state |1〉. We then apply

the inverse quantum Fourier transform, QFT−1
2m , to obtain the state

1√
2m

2m−1∑
y=0

e
−2πi
2m y|y〉. (1.3)
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Claim 1.2.1 For each basis state |x〉, 0 ≤ x ≤ 2n − 1, the state |x〉QFT−1
2m|1〉 is an

eigenstate of ADDγ̂ with eigenvalue e2πiγx.

Proof:

ADDγ̂

(|x〉QFT−1
2m|1〉

)
= ADDγ̂|x〉

(
1√
2m

2m−1∑
y=0

e
−2πi
2m y|y〉

)
(1.4)

=
1√
2m

2m−1∑
y=0

ADDγ̂|x〉e−2πi
2m y|y〉 (1.5)

=
1√
2m

2m−1∑
y=0

|x〉e−2πi
2m y|y + γ̂x mod 2m〉 (1.6)

=
(
e
−2πi
2m γ̂x

) (
1√
2m

) 2m−1∑
y=0

|x〉e−2πi
2m y|y mod 2m〉 (1.7)

= e−2πiγx |x〉QFT−1
2m|1〉. ¤ (1.8)

So applying ADDγ̂ to |x〉 (QFT−1
2m|1〉

)
and associating the eigenvalue (which is a global

phase factor in this case) with the first register results in the state

e2πiγx |x〉 (QFT−1
2m|1〉

)
. (1.9)

By applying ADDγ̂ to |Ψ̂〉 =
∑

x αx|x〉
(
QFT−1

2m|1〉
)

we therefore get
∑

x

αxe
2πiγx |x〉 (QFT−1

2m|1〉
)

(1.10)

=|Ψ〉 (QFT−1
2m |1〉

)
(1.11)

and, tracing out the first register, we have generated |Ψ〉.
In Section 1.3 we will need to use an operator

Sω : |ω〉|x〉 7→ |ω〉e2πi(−1)xω|x〉 (1.12)

where the second register is a single qubit. This operator Sω can be implemented using

the procedure described above, by taking γx = (−1)xω and implementing ADDγ̂ so that it

is conditioned on the state |ω〉 as well as on the state |x〉.



1.3. GENERATING THE STATE WITH REAL NONNEGATIVE AMPLITUDES 7

1.3 Generating the state with real nonnegative am-

plitudes

Ignoring for now the issues associated with precision, I present the basic technique for

generating the state |Ψ̂〉 =
∑

x∈{0,1}n αx|x〉. The approach will be to implement a series

of n controlled-rotations, with the state of the kth rotation controlled by the state of the

previous k − 1 qubits for k > 0.

1.3.1 The algorithm

We begin by extending the definition of αx to x ∈ {0, 1}j for 1 ≤ j < n. Suppose we

had a copy of |Ψ〉 and we measured the leftmost j qubits in the computational basis. Let

αx1x2...xj
be the nonnegative real number so that α2

x1x2...xj
equals the probability that the

measurement result is x1x2 . . . xj. Then
(
αx1x2...xj−1xj

/αx1x2...xj−1

)2
gives the conditional

probability that a measurement of the first j qubits would yield xj in the jth qubit, given

that it yielded x1x2 . . . xj−1 in the first j − 1 qubits. For 2 ≤ j ≤ n, define a controlled

rotation Uj by

|x1〉|x2〉 . . . |xj−1〉|0〉 7
UΨ

j−−→ |x1〉|x2〉 . . . |xj−1〉
(

αx1x2...xj−10

αx1x2...xj−1

|0〉+
αx1x2...xj−11

αx1x2...xj−1

|1〉
)

. (1.13)

Define UΨ
1 to be the single-qubit (uncontrolled) rotation that performs

|0〉 7 U
Ψ
1−−→ (α0|0〉+ α1|1〉) . (1.14)

The algorithm for generating the n-qubit state |Ψ̂〉 is a sequence of n such rotations, as

shown in Figure 1.1.

The following claim shows that the circuit of Figure 1.1 generates |ψ〉.

Claim 1.3.1 After the operation Uψ
j in Figure 1.1, the state of the first j qubits is

∑

x1x2...xj∈{0,1}j

αx1x2...xj
|x1x2 . . . xj〉. (1.15)
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Figure 1.1: A circuit to generate |Ψ̂〉.

Proof: The proof is by induction on k. The claim is clearly true for the first

rotation by definition of UΨ
1 . Suppose we have generated the state

∑

x1x2...xj∈{0,1}j

αx1x2...xj
|x1x2 . . . xj〉

and we apply UΨ
j+1 as in Figure 1.1. Then we have

UΨ
j+1


 ∑

x1x2...xj∈{0,1}j

αx1x2...xj
|x1x2 . . . xj〉|0〉


 (1.16)

=
∑

x1x2...xj∈{0,1}j

αx1x2...xj

(
UΨ

j+1|x1x2 . . . xj〉|0〉
)

(1.17)

=
∑

x1x2...xj∈{0,1}j

αx1x2...xj
|x1x2 . . . xj〉

(
αx1x2...xj0

αx1x2...xj

|0〉+
αx1x2...xj1

αx1x2...xj

|1〉
)

(1.18)

=
∑

x1x2...xj∈{0,1}j

(
αx1x2...xj0|x1x2 . . . xj〉|0〉+ αx1x2...xj1|x1x2 . . . xj〉|1〉

)
(1.19)

=
∑

x1x2...xj∈{0,1}j+1

αx1x2...xjxj+1
|x1x2 . . . xjxj+1〉. ¤ (1.20)

Putting the circuit to generate |Ψ̂〉 together with the phase generation procedure described

in Section 1.2, the circuit in Figure 1.2 generates the desired state |Ψ〉.
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Figure 1.2: A circuit to generate |Ψ〉.

1.3.2 Implementing the UΨ
j

In this section I show how to implement the Uψ
j rotations. Assume that we have access to a

quantum register |Ψ̄〉 that encodes some “classical” description of the state |Ψ〉. The state

|Ψ̄〉 must contain enough information to allow the probabilities α2
x (or a related quantity,

such as the ωj defined below) to be efficiently computed. We also use an ancillary register

initialized to the state |0〉. For each 1 ≤ j ≤ n, assume we can efficiently implement the

operators V Ψ
j defined as follows:

|Ψ̄〉|0〉|x1〉 . . . |xj−1〉 7
V Ψ

j−−→ |Ψ̄〉|ωj〉|x1〉 . . . |xj−1〉, (1.21)

where ωj satisfies

cos2(2πωj) =

(
αx1...xj−10

αx1...xj−1

)2

. (1.22)

Using the method described in Section 1.2 we can implement the operator

Sω : |ω〉|x〉 7→ |ω〉e2πi(−1)xω|x〉. (1.23)

Assume we also have access to the 1-qubit gate

W =

[
1 0

0−i

]
. (1.24)
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With these components, a circuit implementing UΨ
j is shown in Figure 1.3

Figure 1.3: A circuit implementing UΨ
j .

We can verify that the above circuit has the desired effect by following the state through

each step of the circuit:

|Ψ̄〉|0〉 (|x1 . . . xj−1〉|0〉) (1.25)

7 V
Ψ
j−−→|Ψ̄〉|ωj〉 (|x1 . . . xj−1〉|0〉) (1.26)

7 H−→|Ψ̄〉|ωj〉
(
|x1 . . . xj−1〉 1√

2
(|0〉+ |1〉)

)
(1.27)

7 c−Sω−−−→|Ψ̄〉|ωj〉
(
|x1 . . . xj−1〉 1√

2

(
e2πiωj |0〉+ e−2πiωj |1〉)

)
(1.28)

7 H−→|Ψ̄〉|ωj〉
(
|x1 . . . xj−1〉1

2

((
e2πiωj + e−2πiωj

) |0〉+
(
e2πiωj − e−2πiωj

) |1〉)
)

(1.29)

7 W−→|Ψ̄〉|ωj〉
(
|x1 . . . xj−1〉1

2

((
e2πiωj + e−2πiωj

) |0〉 − i
(
e2πiωj − e−2πiωj

) |1〉)
)

(1.30)

=|Ψ̄〉|ωj〉 (|x1 . . . xj−1〉 (cos(2πωj)|0〉+ sin(2πωj)|1〉)) (1.31)

7 (V Ψ
j )

−1

−−−−→|Ψ̄〉|0〉 (|x1 . . . xj−1〉 (cos(2πωj)|0〉+ sin(2πωj)|1〉)) (1.32)

=|Ψ̄〉|0〉UΨ
j (|x1 . . . xj−1〉|0〉) . (1.33)

The above algorithm works for a general family of states with classical descriptions |Ψ̄〉.
If we are only interested in producing a specific state |Ψ〉, the circuit can be simplified by
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removing the register containing |Ψ̄〉 and simplifying each V Ψ
j to work only for that specific

|Ψ〉.
Note that the overall efficiency of our algorithm depends on how efficiently we can imple-

ment the V Ψ
j ; in other words, how efficiently we can compute the conditional probabilities(

αx1...xj−10/αx1...xj−1

)2
. In the next section I give an example for which this is easy: the

symmetric states.

1.4 An example: symmetric states

In this section I describe an example of a family of states for which we can efficiently im-

plement the state generation algorithm described above. These are the symmetric states.

The symmetric state |Sr〉 is defined to be an equally-weighted superposition of the compu-

tational basis states |x〉 that have Hamming weight H(x) = r (H(x) is the number of bits

of x that equal 1). That is,

|Sr〉 =
1√(

n
r

)
∑

H(x)=r

|x〉. (1.34)

The conditional probability
(

αx1...xj−11

αx1...xj−1

)2

is

r − H(x1x2 . . . xj−1)

n− j + 1
(1.35)

for 1 ≤ j ≤ n. These values can be computed using standard reversible circuits for

arithmetic operations (e.g. [VBE95]) and using a circuit for computing the Hamming

weight H(x1x2 . . . xj−1). A circuit for the Hamming weight was given in [KM01] and is

reproduced in Figure 1.4.

We will see a detailed implementation of the controlled-increment (+1) gates in Section

2.7.1.

We have (
αx1...xj−10

αx1...xj−1

)2

= 1−
(

αx1...xj−11

αx1...xj−1

)2

(1.36)



12 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

Figure 1.4: A circuit for computing the Hamming weight H(x1x2 . . . xj−1).

and using standard methods for arithmetic operations we can efficiently compute the ωj

satisfying

cos2(2πωj) =

(
αx1...xj−10

αx1...xj−1

)2

. (1.37)

Another example for which we can efficiently implement the V Ψ
j is for more general sym-

metric pure states
n∑

j=0

βj|Sj〉 (1.38)

where we are given the βj values (as required in [HMP+98]).

1.5 Precision

1.5.1 Precision in the generation of |Ψ̂〉
We want to implement the algorithm described in Section 1.3 to generate a state |Ψ̃〉
that is a good approximation of the state |Ψ̂〉. One measure of the quality of such an

approximation is the fidelity between the states.
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The classical fidelity between two probability distributions {px} and {qx} is defined by

F (px, qx) ≡
∑

x

√
pxqx. (1.39)

The classical fidelity is the inner product between vectors on the unit sphere with com-

ponents
√

px and
√

qx. The classical fidelity between identical probability distributions is

1.

The quantum fidelity between two general quantum states ρ and σ is defined to be

F (ρ, σ) = Tr

√
ρ

1
2 σρ

1
2 . (1.40)

The fidelity is a nonnegative number that equals 1 when ρ = σ. So we want to estimate

|Ψ̂〉 with fidelity close to 1. For |Ψ̂〉 =
∑

x αx|x〉 and |Ψ̃〉 =
∑

x α̃x|x〉, which are pure states

having nonnegative real amplitudes, the fidelity is

F (|Ψ̂〉, |Ψ̃〉) = Tr

√√√√
(∑

x

α2
x|x〉〈x|

) 1
2
(∑

x

α̃2
x|x〉〈x|

)(∑
x

α2
x|x〉〈x|

) 1
2

(1.41)

= Tr

√∑
x

α2
xα̃

2
x|x〉〈x| (1.42)

=
∑

x

αxα̃x (1.43)

= 〈Ψ̂|Ψ̃〉 (1.44)

(1.45)

which equals the classical fidelity between the probability distributions that would result

from measurements of the states in the {|x〉}-basis.

Suppose we can estimate the state |Ψ̂〉 by a state |Ψ̃〉 satisfying

|α̃x − αx| ≤ ε√
2n

(1.46)
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for each x and for some ε > 0. Then we have

∑
x

|α̃x − αx| ≤
∑

x

ε√
2n

(1.47)

∑
x

(α̃x − αx) ≤
∑

x

ε√
2n

(1.48)

∑
x

α̃2
x −

∑
x

αxα̃x ≤
∑

x

α̃x
ε√
2n

(1.49)

〈Ψ̂|Ψ̃〉 > 1−
∑

x

α̃x
ε√
2n

(1.50)

≥ 1− ε (1.51)

where the last inequality follows from the Cauchy-Schwartz inequality which says

(∑
x

αx√
2n

)2

≤
(∑

x

α2
x

)(∑
x

1

2n

)
= 1. (1.52)

So (1.46) is sufficient to estimate |Ψ̂〉 with fidelity at least 1− ε. Suppose we compute the

α̃x with k bits of precision so that |α̃x − αx| ≤ 2−k for each x. Then (1.46) is satisfied if

we choose k so that

2−k ≤ ε√
2n

(1.53)

⇒ −k ≤ log2

(
ε√
2n

)
(1.54)

⇒ k ≥ log2

(√
2n

ε

)
. (1.55)

We can reformulate the precision requirement in terms of the conditional probability ampli-

tudes
(
αx1x2...xj−1xj

/αx1x2...xj−1

)
that are computed by the V Ψ

j . This will tell us how many

qubits we must use for the register into which |ωj〉 is computed (as described in Section

1.3.2).

For 2 ≤ j ≤ n let Pj =
(
αx1x2...xj

/αx1x2...xj−1

)
, and let P1 = αx1 . Then each coefficient αx

for x ∈ {0, 1}n is

αx = Πj=1...nPj. (1.56)
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If the V Ψ
j produces estimates P̃j of the conditional probability amplitudes Pj, then the

state generation algorithm produces a state with amplitudes

α̃x = Πj=1...nP̃j (1.57)

(this follows from the proof of Claim 1.3.1).

We can rewrite (1.46) in terms of the Pj and P̃j, as follows:

ΠjP̃j ≥ ΠjPj − ε√
2n

. (1.58)

We want to know how precisely we should compute each P̃j in order that (1.58) is satisfied.

Suppose j = 2 and our estimates of Pj satisfy

P1 − P̃1 < δ (1.59)

P2 − P̃2 < δ. (1.60)

Then

P1P2 ≤ P̃1P̃2 + δ
(
P̃1 + P̃2

)
+ δ2 (1.61)

≤ P̃1P̃2 + 2δ + δ2 (1.62)

≤ P̃1P̃2 + 3δ (1.63)

since a < 1. So if we form the product by recursively taking the Pj (and P̃j) in pairs, then

we get

3log2 nδ ≤ ε√
2n

(1.64)

=⇒ δ ≤ ε√
2nnlog2 3

. (1.65)

Suppose we use m bits to compute the Pj (i.e. suppose we use m qubits for |ωj〉) so that

δ ≤ 2−m. Then taking

m ≥ log2

(√
2nnlog2 3

ε

)
(1.66)

will be sufficient.



16 CHAPTER 1. QUANTUM CIRCUITS FOR GENERATING QUANTUM STATES

1.5.2 Precision in the generation of phases

Recall in Section 1.2 we used an m-qubit ancillary register to introduce phases of the form
γ̂

2m . In this section we investigate how large m should be if we want to generate the phases

with some desired fidelity 1−ε. Suppose we have generated the state |Ψ̂〉 =
∑

x αx|x〉 with

perfect fidelity. The goal is to generate the phases to create the state |Ψ〉 =
∑

x αxe
2πiγx |x〉.

We use the procedure in Section 1.2 to generate the state |Ψ̃〉 =
∑

x αxe
2πiγ̃x |x〉 where

γ̃x = γ̂x

2m . We desire the fidelity between the states to be greater than 1 − ε. That is, we

want

F (|Ψ〉, |Ψ̃〉) =
∣∣∣〈Ψ|Ψ̃〉

∣∣∣ > 1− ε. (1.67)

We have |γ̃x − γx| < 1
2m for all x, and

∑
x α2

x = 1. Then

∣∣∣〈Ψ|Ψ̃〉
∣∣∣ =

∣∣∣∣∣
∑

x

α2
xe
−2πiγxe2πiγ̃x

∣∣∣∣∣ (1.68)

≥ Re

(∑
x

α2
xe

2πi(γ̃x−γx)

)
(1.69)

=
∑

x

α2
xRe

(
e2πi(γ̃x−γx)

)
(1.70)

=
∑

x

α2
x cos (2π (γ̃x − γx)) (1.71)

=
∑

x

α2
x cos (2π |γ̃x − γx|) (1.72)

>
∑

x

α2
x cos

(
2π

2m

)
(1.73)

= cos

(
2π

2m

)
. (1.74)

So to estimate |Ψ〉 with a fidelity at least 1−ε, when generating the phases we should take

m ≥
⌈
log2

(
2π

cos−1(1− ε)

)⌉
. (1.75)
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1.6 Conclusions

In this chapter I have described a general algorithm that will efficiently generate any

desired quantum state |Ψ〉 for which we have a compact description; that is, for which

we can efficiently implement the V Ψ
j . I have analyzed the precision requirements for the

algorithm to generate the state with a desired fidelity. For the specific example of the

symmetric states I have given efficient circuits for implementing the V Ψ
j .



Chapter 2

Discrete logarithms for elliptic curve

groups

2.1 Background

2.1.1 Shor’s algorithm

A very significant potential application of quantum computers lies in their ability to ef-

ficiently solve the problems of finding orders of elements in finite Abelian groups and

of finding discrete logarithms over these groups. It is this ability that makes quantum

computers capable, in principle, of undermining the security of public-key cryptographic

systems that are widely used by industry and government to protect sensitive information.

There are no known classical algorithms for solving the order-finding or discrete-logarithm

problems in polynomial time. In 1994, Peter Shor [Sho94] described a quantum algorithm

that solves both problems in polynomial time.

A key ingredient in the quantum algorithms for finding orders and discrete logarithms is

a circuit for exponentiation. For example, the order-finding algorithm works by applying

an inverse quantum Fourier transform to the state
∑

x |x〉|ax〉 where a is a fixed group

element. This state is typically created by first using a quantum Fourier transform to

create a superposition
∑

x |x〉 in the first register. Then the desired state is created by

18
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applying a controlled exponentiation circuit c-Ux
a that computes ax into the second register

conditioned on the value x in the first register.

For factoring and discrete logarithms of integers, this exponentiation is done for the inte-

gers modulo a prime. For discrete logarithms over groups of points on elliptic curves, this

exponentiation is done relative to the elliptic curve group operation. There has been sig-

nificant interest in designing efficient quantum circuits to perform these operations. There

has also been interest in finding optimized versions of these circuits, since the construction

of medium- or large-scale quantum computers is an enormous technological challenge.

In the next section, I will review prior work on quantum circuits for modular arithmetic.

In the following section, I will review a method for implementing the group operation for

elliptic curve groups over fields of prime characteristic. The remainder of the chapter will

describe my own work extending this to curves over fields of characteristic 2.

2.1.2 Circuits for modular arithmetic

To implement Shor’s factoring algorithm we must first generate the state
∑

x |x〉|ax〉 where

a is a fixed (known in advance) element of Z∗N (that is, the multiplicative group of integers

modulo N) and then apply the inverse quantum Fourier transform to this state. For the

integer-discrete-logarithm algorithm we want to generate the state
∑

x,y |x〉|y〉|bxay〉. These

states can be created if we have quantum circuits for doing modular arithmetic. Reversible

circuits for one-parameter modular integer multiplication (i.e. multiplication of a variable

parameter by a fixed constant) appeared in [VBE95]. The first circuit discussed in that

paper is a “plain adder” (also called a “ripple-carry adder”) that implements |a〉|b〉 7→
|a〉|a + b〉 (we might refer to this as two-parameter in-place addition). An adder mod N

is implemented by first adding a and b using the plain adder, and then checking whether

a + b is bigger than N . If it is, N is subtracted from the result, achieving the modular

reduction. This approach to modular addition requires about n ancillary bits (where n

is the number of bits of the modulus) to keep track of the carries, and a flag to indicate

whether modular reduction is required. The modular adder is used as a building block for

a controlled modular multiplication circuit in [VBE95], that computes |x〉|0〉 7→ |x〉|ax〉
conditioned on the state of some control qubit being |1〉 (these expressions are understood
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to be mod N). Note that this implements modular integer multiplication by a fixed factor

a, which is effectively hard-wired into the multiplication circuit. I will refer to this type

of multiplication as one-parameter out-of-place multiplication. Note that given the out-of-

place multiplication circuit M ′
a we can construct an in-place version Ma, so long as we can

classically precompute the inverse of the fixed value a. The in-place version makes use of

a reusable ancillary qubit in the state |0〉, as follows:

|x〉|0〉 7 M
′
a−−→ |x〉|ax〉 7 swap−−−−→ |ax〉|x〉 7 (M ′

a−1)
−1

−−−−−−→ |ax〉|0〉. (2.1)

The controlled modular multiplication circuit is used as a building block for a one-parameter

modular exponentiation circuit that performs |x〉|0〉 7→ |x〉|ax mod N〉. A number of op-

timizations and improvements can be made to the circuits presented in [VBE95], some of

which are mentioned in that paper and some of which appeared later (e.g. [ME99], [PP05],

[Dra00]). The optimizations are summarized in [Bea03].

2.1.3 The elliptic curve group operation

The security of elliptic curve cryptography is based on the difficulty of solving the discrete-

logarithm problem for groups of points on elliptic curves. Shor’s algorithm can be employed

to solve this problem efficiently, but it requires an efficient implementation of the elliptic

curve group operation (so that the group exponentiation can be implemented).

Prior to [PZ03], none of the work on reversible implementations of arithmetic for quantum

computers explicitly addressed the problem of reversibly performing two-parameter in-place

multiplication

|x〉|y〉 7→ |x〉|xy〉 (2.2)

(without generating additional junk). Indeed, for Shor’s algorithms for finding orders

and discrete logarithms for integers, there is no need for such an implementation (the one-

parameter versions described above are sufficient). To implement Shor’s discrete-logarithm

algorithm for elliptic curve groups, we need to be able to compute the group operation, and

again a one-parameter implementation of this suffices. The problem is that to compute the

elliptic curve group operation itself requires performing multiplications of the underlying
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field elements (integers mod p for curves over GF(p), or binary polynomials for curves

over GF(2m)), and we have to be able to do this for two variable parameters without

generating additional junk. So to implement the elliptic curve group operation requires an

implementation of the two-parameter in-place multiplication. This can be done if we have

a reversible method for computing inverses, since we can then use a two-parameter out-of-

place multiplication circuit1 to multiply by the inverse of one of the operands to uncompute

it. Proos and Zalka described how to reversibly compute the inverses of integers mod p

using the extended Euclidean algorithm [PZ03]. This allows the implementation of the

discrete-logarithm algorithm for elliptic curves over the fields GF(p). In this Chapter, I

extend the work of [PZ03] to implement the group operation for elliptic curves over GF(2m).

2.2 Elliptic curves over GF(2m)

Many real-world elliptic curve cryptosystems are based on elliptic curves over the binary

fields GF(2m) [FIPS]. It is therefore important to examine implementations of the discrete-

logarithm algorithm for elliptic curve groups over these binary fields. In this direction, I

will first show how to decompose the group operation into a series of smaller, individually

reversible, steps. Some of these steps will involve divisions of elements in the binary field

GF(2m). To solve this problem, I will give an efficient implementation of the extended

Euclidean algorithm for polynomials.

An elliptic curve over a field F is the set of points (x, y) ∈ F 2 satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a5, (2.3)

subject to some additional conditions on the constants a1, . . . , a5 ∈ F , together with a

‘point at infinity’, denoted O. For the particular case of curves over the finite fields

GF(2m), the defining equation and additional conditions simplify as follows.

Case 1: a1 6= 0 (non-supersingular curves)

Using the change of variables (x, y) →
(
a2

1x + a3

a1
, a3

1y +
a2
1a4+a2

3

a3
1

)
, and the fact that

1The circuit in [VBE95] for |x〉|0〉 7→ |x〉|ax〉 can be adapted to give a circuit for |x〉|y〉|0〉 7→ |x〉|y〉|xy〉.
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the field has characteristic 2, the defining formula simplifies to

y2 + xy = x3 + ax2 + b , b 6= 0. (2.4)

Case 2: a1 = 0 (supersingular curves)

Using the change of variables (x, y) → (x + a2, y), and the fact that the field has

characteristic 2, the defining formula simplifies to

y2 + cy = x3 + ax + b , c 6= 0. (2.5)

An elliptic curve over GF(2m) is the set of points (x, y) ∈ GF(2m) × GF(2m) that satisfy

one of the above two formulae, together with the point at infinity O. A particular curve

of one of the above types is specified by giving values to the constants a, b (and c in the

case of a supersingular curve). The set of points on a given elliptic curve forms a group

with identity element O, under the following operation of addition. Let P = (x, y) and

R = (α, β), where P 6= R, be two distinct points on a curve over GF(2m). The point

P + R = (x′, y′) is defined as follows (my choice of labels for the curve points here is made

to be consistent with the context in which I use them later).

Case 1: non-supersingular curves

P + R =




O if (α, β) = (x, x + y)

(x′, y′) otherwise,
(2.6)

where x′ = λ2 + λ + x + α + a , y′ = λ(x + x′) + x′ + y (2.7)

λ =
y + β

x + α
. (2.8)

Case 2: supersingular curves

P + R =




O if (α, β) = (x, y + c)

(x′, y′) otherwise,
(2.9)

where x′ = λ2 + x + α , y′ = λ(x + x′) + y + c (2.10)

λ =
y + β

x + α
. (2.11)
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Note that the parameter λ is guaranteed to exist, since GF(2m) has characteristic 2 and

α = −x = x is handled separately in the first case (for both supersingular and non-

supersingular curves).

A more detailed treatment of elliptic curves and all of the above formulae can be found in

Chapter 3 of [HMV03].

2.3 Representations of the group elements

A representation of the points on an elliptic curve must begin with a representation of the

underlying field elements. The elements in a finite field of order 2m can be represented

by polynomials with binary coefficients (that is, polynomials in Z2[x]). We need a notion

of congruence between polynomials. Suppose g(x) and f(x) are two polynomials, and the

degree of f is m. Then dividing g(x) by f(x) (by the usual long division of polynomials)

yields a unique quotient q(x) and remainder r(x) satisfying

g(x) = q(x)f(x) + r(x) (2.12)

where the degree of r(x) is strictly less than m. The remainder polynomial r(x) is referred

to as “g(x) reduced modulo f(x)”, sometimes written g mod f .

We also need a notion analogous to primality for integers. This is given by the following

definition.

Definition 2.3.1 A polynomial f(x) ∈ Z2[x] is said to be irreducible if there do not exist

polynomials f1(x), f2(x) ∈ Z2[x] such that

f(x) = f1(x)f2(x) (2.13)

where deg(f1) > 0 and deg(f2) > 0.

The field GF(2m) can be represented by the set of binary polynomials of degree at most

m − 1, with addition and multiplication defined as the usual operations on polynomials,

followed by reduction modulo an irreducible binary polynomial of degree m.
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In a computer (or quantum computer) register, the polynomials of degree at most m−1 can

be represented by binary strings of length m, with each element in the string representing

the value of one of the coefficients of the polynomial.

The points on an elliptic curve over GF(2m) can be represented by the corresponding or-

dered pairs (x, y) of elements over GF(2m). We also need a representation of the point

at infinity O. One possibility is to use an ordered pair (x, y) that is not on the curve.

An implementation of the group operation would have to be tailored accordingly. For

implementing the discrete-logarithm algorithm, however, we can simplify the group op-

eration by ignoring the cases P = R, P = O and R = O. The target register for the

controlled-exponentiation operations in Shor’s algorithms is usually specified as starting

in the state |1〉 (the group identity). For discrete logarithms over elliptic curve groups,

this translates to the point at infinity |O〉. However, the algorithm will also work if we

initialize this register to a random group element 2. The control registers will contain

superpositions of all 2m group elements. So each time the controlled group operation is

performed in the discrete-logarithm algorithm, about 2/2m elements in superposition will

be of the unsupported type (i.e. addition of inverses of points, and point doubling will both

be implemented incorrectly). Since we only perform m controlled group exponentiations,

only an exponentially small number of elements in the superposition will be corrupted, and

so the fidelity loss will be exponentially small.

2.4 The discrete-logarithm problem

Let G be a cyclic group, and let a be a generator for G. The discrete-logarithm problem

with respect to the base a is the following. Given a group element b ∈ G, find the unique

integer d ∈ [0, |G| − 1] such that b = ad. The first step in Shor’s quantum algorithm for

solving the discrete-logarithm problem is to create the state

|x〉|y〉|axby〉. (2.14)

2This is most easily seen by analyzing the second register in terms of the eigenbasis of the operator
performing the group operation (see [CEMM98]).
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One way to create this state is to implement a circuit that performs

∑
x,y

|x〉|y〉|0〉 7→ |x〉|y〉|axby〉 (2.15)

where x and y are integers in the range [0, . . . , |G| − 1], and a, b are fixed elements in the

group G. A circuit for performing this operation can be built from circuits for performing

the group operation3 as

|s〉 7→ |sa〉 (2.16)

and

|s〉 7→ |sb〉. (2.17)

Consider an elliptic curve E and let P be a point on E. Consider the cyclic subgroup

of the elliptic curve group generated by P . We are interested in solving the discrete-

logarithm problem for this subgroup. The group operation is written additively, so the

discrete-logarithm problem is the following. Given a point Q in the subgroup generated

by P , find the unique integer d ∈ [0, . . . , order(P ) − 1] such that Q = dP . Then, for the

discrete-logarithm algorithm it suffices to be able to implement

|S〉 → |S + A〉 S,A ∈ E and A is fixed and classically known. (2.18)

Writing S = (x, y) and A = (α, β), we want to implement the elliptic curve group operation

|(x, y)〉 7→ |(x, y) + (α, β)〉. (2.19)

2.5 Decomposing the group operation

I will now show how to decompose the group operation for curves over GF(2m) into a

sequence of individually reversible steps. I use the notation x 7→ y to refer to a (not

necessarily invertible) map transforming the value x to the value y. This map represents a

(not necessarily reversible) computation. I will write x ↔ y to refer to an invertible map

3Circuits for the group operation can be extended to perform exponentiation in the same way that
modular multiplication circuits are extended to give modular exponentiation circuits.
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transforming x to y (i.e. such that there exists an inverse mapping from y to x). This

invertible map represents a computation that is reversible.

For a fixed elliptic curve point (α, β), define (x′, y′) ≡ (x, y)+(α, β). We want to decompose

the operation

|(x, y)〉 7→ |(x′, y′)〉. (2.20)

For simplicity, in the following I will write the expressions without the Dirac ket symbols.

We will need to use the following identities, both of which are easily verified using the

fact that the parameters are all in a field of characteristic 2, so that +1 = −1 (note the

following identities do not hold in general, but do hold for the binary fields GF(2m)).

Identity 2.5.1

λ =
y + β

x + α
=

x′ + y′

x′ + α
. (2.21)

Identity 2.5.2

λ =
y + β

x + α
=

y′ + c + β

x′ + α
. (2.22)

Case 1: non-supersingular curves

The group operation is decomposed as

x, y ↔ x + α, y + β ↔ x + α, λ = y+β
x+α

↔ x′ + α, λ = x′+y′
x′+α

↔ x′ + α, x′ + y′ ↔ x′, x′ + y′ ↔ x′, y′. (2.23)

The second step in the above decomposition is a division of the form A,B ↔ A,B/A,

and the fourth step is a multiplication of the form A,B ↔ A,BA. Both of these are

field operations performed on two parameters, in-place (that is, one of the operands is

effectively uncomputed in the process). In the third step we use the group operation

formula x′ = λ2 + λ + x + α + a, and simplify using the fact that the field has

characteristic 2. This third step requires the squaring of λ. In the third step I also

rewrite the expression for λ using Identity 2.5.1. The only other operations we require

are additions.
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Case 2: supersingular curves

The group operation is decomposed as

x, y ↔ x + α, y + β ↔ x + α, λ = y+β
x+α

↔ x′ + α, λ = y′+c+β
x′+α

↔ x′ + α, y′ + c + β ↔ x′, y′. (2.24)

As in the non-supersingular case, the second step in the above decomposition is a

division, and the fourth step is a multiplication, where both are of the two-parameter,

in-place type. The other steps involve only additions, and one squaring. In the third

step I have used Identity 2.5.2.

In both the supersingular and non-supersingular case, computing the group operation

requires a method for reversibly performing in-place multiplication (division) of two para-

meters (that is, one of the operands is uncomputed so that no additional junk is generated).

Consider the division operation. It can be decomposed into the following four reversible

steps:

x, y
E←→ 1/x, y

m←→ 1/x, y, y/x
E←→ x, y, y/x

m−1←→ x, 0, y/x. (2.25)

The letters over the arrows are m for standard out-of-place polynomial multiplication, and

E for “Euclid’s algorithm” to compute inverses of field elements (polynomials in GF(2m)).

We know how to implement the out-of-place multiplication in GF(2m) (using 2m qubits)

by [BBF03]. It remains to show how to implement the extended Euclidean algorithm for

polynomials to compute inverses in GF(2m).

2.6 The extended Euclidean algorithm for polynomi-

als

Suppose A(z) and B(z) are two binary polynomials in the variable z, of degrees less

than m (i.e. A,B ∈ GF(2m)). Suppose A and B are not both 0, and are such that

deg(A) ≤ deg(B). The greatest common divisor of A and B, denoted gcd(A,B), is the

binary polynomial of highest degree that divides both A and B. The classical Euclidean

algorithm for finding gcd(A,B) is based on the fact that gcd(A,B) = gcd(B−CA, A), for all
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binary polynomials C. If we divide B by A (by standard long division of polynomials), we

obtain a quotient polynomial q(z) and a remainder polynomial r(z) satisfying B = qA+ r,

and deg(r) < deg(A). By the fact observed above, we have gcd(A,B) = gcd(r, A). The

classical Euclidean algorithm for polynomials makes this replacement repeatedly until one

of the arguments is 0. If we set r0 = A and r1 = B, the Euclidean algorithm performs the

following sequence of divisions:

r0 = q1r1 + r2, 0 < deg(r2) < deg(r1)

r1 = q2r2 + r3, 0 < deg(r3) < deg(r2)

...
...

rm−2 = qm−1rm−1 + rm, 0 < deg(rm) < deg(rm−1)

rm−1 = qmrm + 0. (2.26)

We then have the sequence of equalities:

gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(rm−1, rm) = gcd(rm, 0). (2.27)

At this point we have the result, since gcd(rm, 0) = rm. The algorithm is guaranteed

to terminate, since the degree of one of the arguments strictly decreases in each step.

Moreover, the algorithm is efficient because the number of iterations is bounded by the

degree of A (which is at most m).

Recall that the gcd of two integers a, b can always be written as a linear combination of a

and b having integral coefficients. The same is true for the gcd of two polynomials A,B.

That is, there exist polynomials k, k′ in GF(2m) such that

gcd(A,B) = kA + k′B. (2.28)

The extended Euclidean algorithm for polynomials (EEA) is the same as the Euclidean

algorithm for polynomials except that it also keeps track of the ‘coefficient’ polynomials

k, k′ above. It does so through the following recurrences.

kj =





1 if j = 0

0 if j = 1

kj−2 − qj−1kj−1 if j ≥ 2

(2.29)
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and

k′j =





0 if j = 0

1 if j = 1

k′j−2 − qj−1k
′
j−1 if j ≥ 2.

(2.30)

Claim 2.6.1 For 0 ≤ j ≤ m we have rj = kjr0 + k′jr1, where the rj’s are defined as in

the Euclidean algorithm for polynomials, and the kj and the k′j are defined by the above

recurrences.

Proof: The proof is by induction on j. The claim is clearly true for j = 0

and j = 1. Now consider j ≥ 2 and suppose the claim is true for all smaller

values of j. Then we have

rj = rj−2 − qj−1rj−1 (2.31)

=
(
kj−2r0 + k′j−2r1

)− qj−1

(
kj−1r0 + k′j−1r1

)
(2.32)

= (kj−2 − qj−1kj−1) r0 +
(
k′j−2 − qj−1k

′
j−1

)
r1 (2.33)

= kjr0 + k′jr1. ¤ (2.34)

Since r0 = A and r1 = B, and since rm = gcd(A, B), the values km and k′m generated by

the above recurrence are the coefficients in (2.28).

For reference, I write the extended Euclidean algorithm for polynomials in pseudo-code

below. The notation x ← y is intended to mean that we assign the value of y to the

variable named x.
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EXTENDED EUCLIDEAN ALGORITHM FOR POLYNOMIALS

A0 ← A

B0 ← B

k0 ← 1

k ← 0

k′0 ← 0

k′ ← 1

q ←
⌊

A0
B0

⌋

r ← A0 − qB0

while r > 0 do

temp← k′0 − qk′

k′0 ← k′

k′ ←temp

temp← k0 − qk

k0 ← k

k ← temp

A0 ← B0

B0 ← r

q ←
⌊

A0
B0

⌋

r ← A0 − qB0

return(r, k, k′)

Inverses in GF(2m) can be computed using the extended Euclidean algorithm for polyno-

mials, as follows. Suppose f(z) is an irreducible polynomial of degree m, and let C(z) be a

binary polynomial of degree at most m− 1. Then gcd(C, f) = 1, and the extended Euclid-

ean algorithm for polynomials finds binary polynomials k and k′ such that kC + k′f = 1.

But this means that kC ≡ 1(mod f), and so k ≡ C−1(mod f). The coefficient k′ of f is

not needed for the inversion of C, and so we only need to record the coefficient k of C

throughout the algorithm.
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2.7 Naive implementation of the extended EEA

Let us now turn our attention to reversible implementations of the extended Euclidean

algorithm for polynomials for computing the inverse of an element C. The implementations

will maintain two ordered pairs (a,A) and (b, B), where A and B record the sequence of

remainders in the EEA, and a and b record the updated coefficient of C for each of the past

two iterations of the algorithm. We call these ordered pairs Euclidean pairs. The algorithm

begins with (a,A) = (1, C), and (b, B) = (0, f) (where f is an irreducible polynomial of

degree m). Note that deg(C) ≤ m− 1 < m = deg(f). We will always store the Euclidean

pair with the smaller-degree polynomial in the second coordinate first. That is, we store

the Euclidean pairs in the order

(a,A), (b, B) (2.35)

where deg(A) < deg(B). We then want to perform long division of B by A, obtaining

a quotient polynomial q and a remainder polynomial r satisfying B = qA − r = qA + r

(the second equality follows since the field is binary), where q is the quotient polynomial

of B/A, which we denote as q = bB/Ac. We will then replace B by r = B + qA, and b

by b + qa. Since deg(r) < deg(A), after the above replacement we will have to interchange

the Euclidean pairs to maintain the ordering so that the pair with the smaller-degree

polynomial in the second coordinate appears first. So one iteration of the algorithm can

be written as

(a,A), (b, B), 0 → (b + qa,B + qA), (a,A), q where q = bB/Ac . (2.36)

At the beginning of the Euclidean algorithm, we start with a = 1, b = 0, A = C,B = f ,

and so deg(A) < deg(B) and deg(a) > deg(b). It is easy to see that this condition is

preserved in every iteration of the algorithm. This implies that we will have
⌊

b
a

⌋
= 0. So

we can write

q =

⌊
b + qa

a

⌋
. (2.37)

So, while q is computed from the second coordinates of the Euclidean pairs (a,A), (b, B), it

can be uncomputed from the first coordinates of the modified Euclidean pairs (b + qa, B +

qA), (a,A). Thus each iteration of the Euclidean algorithm is individually reversible, and
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can be written as

(a,A), (b, B) ↔ (b + qa,B + qA), (a,A) where q = bB/Ac . (2.38)

This is decomposed into the following three individually reversible steps:

A,B, 0 ↔ A,B + qA, q

a, b, q ↔ a + qb, b, 0

swap

where “swap” refers to the operation of switching the two Euclidean pairs. Since deg(b) <

deg(a + qb), the second operation above is simply the reverse of the first operation.

To perform the division A,B, 0 ↔ A,B + qA, q we can use long division of the binary

polynomial B by A. To implement this long division, the basic idea is to shift A all the

way to the left (i.e. we shift A left by m−deg(A)−1 bits). Then we start shifting A to the

right one bit at a time, each time conditionally doing a subtraction. For the binary field

GF(2m) this is simplified by virtue of the fact that subtraction is the same as addition, and

is achieved by a bitwise xor operation. This bitwise xor can be implemented quantumly

using cnot gates, and no ancillary qubits. (Furthermore, these cnot gates could in

principle be performed in parallel, allowing us to do addition in a single step.) Note that

in our long divisions we are doing more work than necessary. Often the degree of B will

be less than m− 1, and so it would not be necessary to shift A all the way to the left (we

could just shift it so the most significant bits of A and B line up). For simplicity, in the

naive implementation we do not take advantage of this fact, but will do so when we look

at an optimized implementation.

2.7.1 Implementing some tools

The long division will require some subroutines, which I will show how to implement in

this section. I will show how to implement some basic operations that I will then need

to apply conditioned on the value(s) of some other qubit(s). We need to consider the

overhead required in making the controlled versions of these operations. Fortunately, by

[BBC+95], given a circuit implementing a unitary operation U , we can construct a circuit
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for performing a controlled -U (that is, U conditioned on a control qubit being in state |1〉)
with no additional ancillary qubits, and a small overhead in running time. Further, we can

implement U conditioned on any desired pattern of states of several control qubits (e.g.

U may be applied only when a three-qubit control register is in the state |101〉) with no

additional ancillary qubits, and a small overhead in running time.

For the long division, we will need to compute the degree of A. The circuit shown in Figure

2.1 accomplishes this. The (−1) gate decrements the integer value encoded (in binary) in

the register. Each of the hollow circles in the figure denotes a 0-control (that is, the (−1)

operation is applied if all those control qubits are |0〉). To uncompute the degree, we can

simply run the circuit shown in Figure 2.1 backwards.

Figure 2.1: A circuit to compute the degree of A ∈ GF (2m).

The circuit in Figure 2.1 uses a sequence of m decrementing (-1) gates, each of which is

controlled by the values of some of the qubits of |A〉. These decrementing gates update

the value of deg(A), being computed into a dlog2(m− 1)e-qubit register. In Figure 2.2,

we show how to implement an incrementing (+1) gate using only one additional ancillary

qubit.

The ancillary qubit becomes the most-significant bit of the result. If we only apply the

incrementing circuit to integers in the range [0, . . . , m − 2], we know that the ancillary

qubit will always be |0〉 at the output. Decrementing is accomplished by running this

circuit backwards, with the ancillary qubit initially set to |0〉. As long as we apply the

decrementing circuit to integers in the range [1 . . . m−1], we know that the ancillary qubit

will always be |1〉 at the output. So we can reset the ancillary qubit to |0〉 with a not gate
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Figure 2.2: A circuit to compute |k〉 ↔ |k + 1〉.

after each decrement gate, and reuse that ancillary qubit for the next decrement gate. The

degree of A ∈ GF (2m) can be computed using dlog2(m− 1)e+ 1 qubits (a dlog2(m− 1)e-
qubit register into which the result is computed and stored, and 1 ancillary qubit shared

by the decrementing gates)
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Aside: an addition circuit

The incrementing circuit (Figure 2.2) can be used to implement a reversible addition circuit
that uses fewer ancillary bits than the circuits reviewed in Section 2.1.2. First the incrementing
circuit is modified so that the ancillary qubit is reset to |1〉 at the end, as shown below.

Then an addition circuit makes use of controlled-incrementing circuits. The controlled incre-
menting circuit performs the incrementing operation conditioned on a control qubit being in
the state 1. The addition circuit is shown below.

By carefully counting the depth of each of the general controlled-not operations in the
controlled-inck circuit, we find

|c-inck| =





1 if k = 0

10 if k = 2

2k2 + k − 5 if k ≥ 3.

Note that in the above calculation, I assumed that the controlled-inck operations will be in the
context of a circuit having at leats 2k bits in total, so the requirement of the implementation
in [BBC+95] is satisfied. This is true for the addition circuit. For n ≥ 3, the total depth of
the addition circuit is

n∑

k=1

|c-inck| = 2
3
n3 +

3
2
n2 − 25

6
n + 8.
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We also need to implement shifts of our quantum registers. For our purpose it will suffice

to implement a cyclic shift. We will make use of the quantum swap gate, which can be

implemented using 3 cnot gates and no ancillary qubits, as shown in Figure 2.3.

Figure 2.3: The quantum swap gate.

A left cyclic shift gate which shifts the state of an n-qubit register to the left cyclically by

one qubit is implemented using n − 1 swap gates, and no ancillary qubits, as shown in

Figure 2.4.

Figure 2.4: A cyclic left shift gate. (The upper qubits in the circuit correspond to those on the
left side of the register.)

A left shift of s qubits can be implemented by concatenating s single-qubit left shifts

together. Note that right shifts can be performed in an analogous manner. We will also

need to implement a shift conditioned on the value contained in a quantum register. That

is, a quantum implementation of the operation

|θ〉|s〉 ↔ |θ ¿ s〉|s〉. (2.39)

The controlled shift operation above is implemented by the circuit shown in Figure 2.5,

where k denotes the number of bits in the binary representation of s.
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Figure 2.5: A circuit for |θ〉|s〉 ↔ |θ ¿ s〉|s〉. Here k = log2 s, and ¿ 2k is implemented by a
sequence of 2k (¿ 1) gates (shown previously).

2.7.2 Long division

Now that we can compute the degrees of polynomials in GF(2m), and perform shifts of

quantum registers, we can state an algorithm to reversibly compute the long division

A,B, 0 ↔ A,B + qA, q (2.40)

(note the algorithm requires deg(A) ≤ deg(B)).

Long Division (B divided by A)

(0) Initialize q = 0.

(1) Compute deg(A).

(2) Compute i = m− deg(A)− 1.

(3) Shift A left by m− deg(A)− 1 positions.

(4) While i ≥ 0 do

(4.1) If Bi+deg(A) = 1, then set qi = 1 and replace B with

B ⊕ A.

(4.2) Shift A to the right one bit.

(4.3) i ← i− 1.

(5) Uncompute deg(A).
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At the end of the long division, the register originally containing B will contain r = qA+B.

Also, the auxiliary counter i will be zeroed, and so can be reused. The conditional setting

of qi = 1 in step (4.1) can be accomplished by a cnot gate, with |Bi+deg(A)〉 as the control

qubit and |qi〉 as the target qubit. The operation |A,B〉 ↔ |A,A⊕B〉 can be accomplished

by cnot gates between the corresponding qubits of A and B. This operation is applied

conditioned on qi = 1, and is implemented by using Toffoli gates in place of the cnot

gates, with |qi〉 as the additional control qubit.

2.8 The problem of synchronization

Classically, if properly implemented, the extended Euclidean algorithm takes time O(m2)

[MvOV97]. To achieve this, one has to take advantage of the fact that the quotient in

the O(m) divisions is usually small, thus we have to use a division algorithm that takes

time proportional to the number of subtractions that are needed. In such an efficient

implementation, the time each division step takes depends on the input to the algorithm,

and so also the time at which we reach the ith step will depend on the input. We want to

apply the Euclidean algorithm to a superposition of different inputs and thus we have to

“desynchronize” these parallel calculations so that different inputs in superposition can be

executing different iterations of the algorithm at any given time4.

This synchronization problem can be dealt with by applying a general technique of de-

synchronization [PZ03]. I explain desynchronization by way of an example. Suppose a

computation C consists of some sequence of three simple reversible operations o1, o2 and

o3 (and no other operations). The time taken to perform each of the operations o1, o2, o3 is

independent of the input. This means that on a superposition of inputs, the time required

to perform the operation o1 (for example) is the same for all elements in the superposition.

The quantum computation C is some sequence of the operations o1, o2 and o3, in any

order, possibly with repetitions. For example, C applied to the input basis state |x〉 might

consist of o1 applied 4 times, followed by o2 applied 1 time, followed by o3 applied 2 times,

4To see this, one needs not think in quantum terms; it is enough to think about reversible computation.
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followed by o1 applied 1 time, followed by o2 applied 3 times. That is,

C|x〉 = o2o2o2 o1 o3o3 o2 o1o1o1o1|x〉. (2.41)

The synchronization problem is that for another input basis state |x′〉 (in a superposition

of inputs), the sequence of operations might be different. For example, on |x′〉 the same

computation C might consist of o1 applied 1 time, followed by o2 applied 4 times, followed

by o3 applied 1 time, followed by o1 applied 3 times. That is,

C|x′〉 = o1o1o1 o3 o2o2o2o2 o1|x′〉. (2.42)

The idea of desynchronization is to have all the computation paths in the superposition

cycle through the 3 operations repeatedly, each time allowing the computation to either

apply the operation once, or not apply it (wait for the next operation). The cycle is

repeated enough times that sufficiently many of the computations in superposition have

finished. For the computation C above applied to the two input basis states |x〉 and |x′〉,
this is illustrated in Figure 2.6. In the figure, the operation being applied at each step is

indicated by an × in the corresponding box.

Figure 2.6: Desynchronization example.

I now describe more explicitly how to implement desynchronization. There must be a way

for the computation to tell when a series of oi’s is finished and the next one should begin.

We want to do this reversibly, so there must be a way to tell both when an oi is the first

in a series, and when it is last in a series. In each oi we can include a sequence of gates

that flips a flag qubit f if oi is the first in a sequence, and another mechanism that flips f

if oi is the last in a sequence. We also make use of a small “counter” register c to control

which operation is scheduled to be applied at the current step. Thus we have a triple x, f, c

where x stands for the actual data. We initialize both f and c to 1 to signify that the



40 CHAPTER 2. DISCRETE LOGARITHMS FOR ELLIPTIC CURVE GROUPS

first operation will be the first in a sequence of o1 operations. The physical quantum gate

sequence that we apply is

. . . ac o′1 ac o′3 ac o′2 ac o′1 ac o′3 ac o′2 ac o′1 |x〉 (2.43)

where the o′i are the oi conditioned on i = c and ac stands for “advance counter”. These

operations act as follows on the triple:

o′i : if i = c, x, f, c ↔ oi(x), f ⊕ first⊕ last, c

ac : x, f, c ↔ x, f, (c + f) mod 3

where o′i does nothing if i 6= c, the symbol “⊕” means xor, and (c + f) mod 3 is taken

from {1, 2, 3}. In the middle of a sequence of o′i operations, the flag f is 0, and so the

counter doesn’t advance. The last in a sequence of o′i operations will set f = 1 and the

counter will advance in the next ac step. The first operation of the next series resets f to

0, so that this series can progress.

Although desynchronization can be applied to the individual steps in each iteration of

the algorithm, the computations in the superposition will in general finish the extended

Euclidean algorithm after different numbers of iterations. For those that finish earlier than

others, we cannot simply have them halt and wait for the others to finish (this would

result in an implementation that is not reversible). To ensure reversibility, those elements

in superposition that finish earlier can increment a small counter at each time step until the

other elements in superposition finish. I will call this small counter the “halting counter”.

I do not describe in detail how to apply desynchronization to the naive implementation,

but instead proceed with a better optimized implementation that will make use of desyn-

chronization.

2.9 An optimized implementation

2.9.1 The implementation

The starting point for an optimized implementation is the observation that the degrees of

the polynomials being divided decrease steadily during the extended Euclidean algorithm
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for polynomials. In the naive implementation, by shifting A all the way to the left for all the

long divisions, we were doing more work than necessary. The optimized implementation

will make use of “adaptive” long divisions, whose behaviour is conditioned on the sizes of

the arguments.

The other main observation underlying the optimized implementation is that in the naive

implementation we were using much more space than necessary to store the Euclidean pairs.

In the naive implementation we used a separate m-qubit register for each of A,B, a, b. It

turns out that this is twice as much space as is necessary.

Claim 2.9.1 At every stage of the extended Euclidean algorithm for polynomials we have

deg(aB) = m.

Proof: Initially we have aB = f and so deg(aB) = m, so the claim is true at

the first iteration. Each iteration transforms

a → a′ = b + qa

B → B′ = A.

So we have

deg(a′B′) = deg((b + qa)A)

= deg(qaA) (since deg(qa) ≥ deg(a) > deg(b))

= deg(q) + deg(a) + deg(A)

= deg(B)− deg(A) + deg(a) + deg(A)

= deg(aB)

= m

and so the claim is true after each iteration. ¤

We have the following corollary.

Corollary 2.9.1 At every stage of the extended Euclidean algorithm for polynomials we

have

deg(a) + deg(A) ≤ m and deg(b) + deg(B) ≤ m. (2.44)
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Proof: Since deg(A) < deg(B) we have

deg(a) + deg(A) = deg(aA) ≤ deg(aB) = m. (2.45)

Similarly, since deg(a) > deg(b) we have

deg(b) + deg(B) = deg(bB) ≤ deg(aB) = m. ¤ (2.46)

By the corollary, we see that a single m-qubit register will be sufficient to store both a

and A, and a second m-qubit register is sufficient to store both b and B. Thus A and

a can share a single m-qubit register, and b and B can share a second m-qubit register.

This reduces the total space to store A,B, a, b from 4m to 2m. The problem with this

approach is that the relative sizes of a and A change from one iteration to the next, and

thus so does the boundary between A and a within the single m-qubit register (similarly

for b and B). Further, at any iteration, this boundary may be different between elements

in superposition. So we need a way to calculate the position of this boundary for each

iteration.

First, observe that the boundary between A and a can be at the same position as the

boundary between B and b, in any iteration (since deg(A) < deg(B)). Second, notice that

the boundary can be easily determined if we know the degrees of A,B, a, b. It will turn

out to be convenient to store A and a in a single register in opposing directions. That is,

the most significant bit of A is at one end of the register, and the most significant bit of a

is at the extreme other end of the register. Between A and a the register will be padded

with zeros. Similarly for B and b. The situation for register sharing is illustrated in Figure

2.7.

From Figure 2.7 it can be seen that the boundary for register-sharing can be determined

from deg(a) or from deg(B). Our strategy will be to store the degree of each of A,B, a, b

at each step, and use either deg(a) or deg(B) (depending on what operation we are per-

forming) to determine the boundary. For convenience, we will keep track of the degrees of

all of A,B, a and b, requiring 4 separate dlog2 me-qubit registers.

As before, we focus on implementing the long division

A,B, 0 ↔ A,B + qA, q. (2.47)
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Figure 2.7: The positions of A,B, a, b for register sharing.

The long division algorithm is modified slightly as a result of the new strategy for storing

A and B. Note that we do not need to initially shift A all the way towards the high-

order end, since the most significant bits of A and B are already in the same position.

Instead of shifting A one bit at a time towards the low-order end at each step, we shift

B one bit at a time towards the high-order end. At each stage, a new bit of q is first

read-out from the high-order bit of B. Then, controlled on the new bit of q (equivalently

the high-order bit of B), B is xored with A (this is the conditional subtraction). Then B

is shifted towards the high-order end by 1 bit, and the value of deg(B) is decremented by

1. Note that no significant bits of B are lost in the shift, because after the conditional xor

operation, we know the high-order bit of B will be 0. After the long division is complete,

the remaining operation is to shift off any leading (high-order) zeros in the final value of B,

and decrement the value of deg(B) accordingly. This is done so that the most significant

bits of A and B are in corresponding positions for the next iteration. The operations o1

and o2 for implementing the long division are as follows:

o1: (a) The high-order bit of B becomes the next bit of q (starting at the high-order

bit of q and working down).

(b) Conditioned on the new bit of q, B is replaced with B ⊕ A.

(c) B is shifted towards the high-order end by 1 bit, and deg(B) is decremented by

1.

o2: B is shifted towards the high-order end by 1 bit, and deg(B) is decremented by 1.

The first in a sequence of o1 operations is recognized by the condition q = 0. The last

in a sequence of o1 operations is recognized by deg(A) = deg(B). When performing the
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last in a sequence of o1 operations, only part (a) is performed (so parts (b) and (c) can be

conditioned on the flag qubit). The first in a sequence of o2 operations is recognized by

deg(A) = deg(B). The last in a sequence of o2 operations is recognized when the bit in

the high-order “slot” of the register containing B is |1〉.
The long division algorithm is illustrated by an example. Suppose we have the following:

A = z2 + 1 (A = 101)

B= z4 + z2 + 1 (B = 10101).

The long division B/A as would be performed by hand is shown in Figure 2.8.

1 0 1 0 11 0 1

1 0 1 0 0

0 0 0 0 1

0 1 0 1 0

1 0 0

0 0 0 0 1
0 0 1 0 1

0 0 0 0 1

Figure 2.8: Example of long division by hand.

The long division as performed by the algorithm is shown in Figure 2.9. One feature of the

algorithm suggested by the example is that the qubits can be spatially arranged so that

operations are performed on neighbouring qubits, which might be advantageous for some

physical implementations. Note that in the implementation of the shifts (Figure 2.4), the

cnot gates are between adjacent qubits as well.

I have omitted the details of how to condition the steps of the long division on the value

that determines the boundary for register sharing. For example, in the implementation

of A,B, 0 ↔ A,B + qA, q, the operations on A,B, q will be conditioned on the value in

the register containing deg(a) (from which the boundary position for register sharing can

be determined). These details are very complicated, but the techniques for implementing

controlled gates in [BBC+95] indicate that it can be done with no ancillary qubits, and a

polynomial increase in time.
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Figure 2.9: Example of optimized implementation of long division. Blank cells implicitly contain
the value 0.
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2.9.2 Space complexity

We saw in Section 2.5 that the number of qubits required to implement the elliptic curve

group operation is determined by the number of qubits required to implement the extended

Euclidean algorithm for polynomials. Now we will count the number of qubits required by

the optimized implementation.

By using register sharing, the values of A, B, a, b can be stored using 2m qubits, and the

value of q can be computed into a third m-bit register. The values of deg(A), deg(B),

deg(a) and deg(b) must be initially computed and stored, requiring 4 dlog2 me + 4 qubits

(as seen in Section 2.7.1). For the desynchronization, we need a flag qubit f , and a 2-

qubit counter register c (to index the 4 operations o1(a), o1(b), o1(c), and o2 used in the

desynchronization). Recall that we also need a halting counter, as the computations in the

superposition will finish the extended Euclidean algorithm for polynomials after different

numbers of iterations. The exact size of this halting counter depends on the exact time

complexity of the algorithm. However, as our implementation is clearly polynomial in m,

we know that the size of the halting counter will be at most logarithmic in m. We will

write H for the number of qubits required for the halting counter, where it is understood

that H is O(log2 m).

So the space complexity for our implementation of the extended Euclidean algorithm for

polynomials, and thus of the elliptic curve group operation for curves over GF(2m), is

3m︸︷︷︸
A,B,a,b,q

+ 4 dlog2 me+ 4︸ ︷︷ ︸
deg A,deg B,deg a,deg b

+ 1 + 2︸ ︷︷ ︸
f,c

+ H (2.48)

= 3m + 4 dlog2 me+ 7 + H. (2.49)

The discrete logarithm algorithm requires only one register for elliptic curve points, plus

an additional control qubit5. An elliptic curve point can be represented by two m-bit field

elements, and so the space requirement for the discrete logarithm algorithm is 2 m-bit

registers plus a register on which to carry out the EEA. The total is

5m + 4 dlog2 me+ 8 + H. (2.50)

5This is due to a semiclassical implementation due to [GN96].
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2.10 Conclusions and future work

I have given a reversible implementation of the extended Euclidean algorithm for polyno-

mials for finding inverses of elements in GF(2m). This is a requirement for implementing

Shor’s algorithm for finding discrete logarithms in elliptic curve groups for curves over bi-

nary fields (which are used extensively in classical cryptosystems). The ability to compute

inverses also solves the problem of reversibly performing multiplication of two variable pa-

rameters in GF(2m) without generating additional junk (or equivalently for uncomputing

the junk bits left over by existing methods for multiplying two parameters).

It should be possible to combine in some way the techniques described here and in [PZ03]

to give a method of reversibly computing inverses in the more general Galois fields GF(pk),

but the details of such a strategy have yet to be explored.



Chapter 3

Globally controlled quantum arrays

3.1 Background

3.1.1 Quantum cellular automata and globally controlled arrays

Quantum cellular automata (qca) is an idea that dates back at least to 1983, where

it is presented in Richard Feynman’s famous paper in which he proposed the idea of a

quantum computer. “qca” is perhaps a misleading choice of terminology, because many

of the schemes that are referred to by that name are not actually autonomous. The term

“classically controlled quantum cellular automata” (ccqca) has been used to distinguish

these systems from truly autonomous schemes, but that term is perhaps somewhat of an

oxymoron. Instead, I will refer to the schemes we consider in this chapter as “globally

controlled arrays”, and abbreviate this with the acronym “gca”.

Several proposals for implementing globally controlled arrays of qubits using spacially-

symmetric lattices of qubits have appeared over the years. In 1993, Lloyd proposed an

architecture based on a 1-dimensional lattice of weakly coupled qubits of 3 distinguishable

species [Llo93]. The state of the qubits in the lattice is influenced by global “pulses”.

These pulses affect all qubits in the lattice in uniform manner. For example, a given global

pulse may apply a certain unitary operator to every qubit in the lattice whose left and

right neighbours are in some specified basis states. Local control is achieved by encoding

48
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the information in the lattice in a clever manner, so that the global pulses have a desired

effect only on specific local patterns of states within the lattice. Computation is achieved

by applying a suitable sequence of global pulses, controlled by a classical program.

This basic model has been adapted and modified over the years. Benjamin devised an

architecture with only 2 distinguishable species, where the couplings do not allow the

states of the left and right neighbours to be distinguished (isotropic) [Ben00]. Related

architectures have been proposed by Benjamin, Kay and others (e.g. [BBK04]). The

various architectures differ in the number of distinguishable species, the manner in which

information is encoded in the lattice, the structure of the underlying lattice itself, and the

nature of the control pulses that can be applied. There is a common structure exhibited by

all these architectures, however, in the way the information and fundamental operations

are organized to implement the basic steps of a computation. In practice, the selection of

a gca architecture for a particular application will be an engineering consideration, and

the choices may be constrained by the technologies that become available for implementing

them.

A gca is programmed by selecting a sequence of global control pulses. Different gca

architectures will support different kinds of control pulses. The set of control pulses ap-

plicable to a particular gca architecture can be thought of as the machine language for

that architecture.

Programs for gca are usually specified to simulate the behaviour of a given quantum

circuit. This is practical, because the known quantum algorithms are most commonly

expressed and understood with respect to the quantum circuit model. Because of the

differences in the machine instructions between gca architectures, the program to simulate

any given quantum circuit may vary greatly between them. This is unfortunate, because

the various gca architectures are organized quite similarly, at a slightly higher level of

abstraction. A program for a gca to simulate a quantum circuit is most often designed and

understood by organizing sequences of control pulses into sequences of more sophisticated

operations at this higher level of abstraction.

It is desirable to have a unified framework for studying gca programs, protocols, and com-

plexity results in a manner that is independent of implementation details. This framework
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can take the form of an assembly language for gca. Such a langauge will consist of a set of

basic instructions, at a level of abstraction higher than that of the pulse sequences specific

to individual architectures. An algorithm or simulation of a given quantum circuit can be

expressed in terms of these basic instructions and will then be applicable to an entire class

of gca architectures. It may also provide a convenient framework for theoretical investi-

gations into the behaviour of gca architectures in general. Given a candidate architecture

for a gca, it will suffice to show how to implement the basic instructions using the machine

language of that architecture. So the gca assembly language also provides a requirements

specification for designing physical systems to implement gca.

In the following sections, I will define such a language for gca, and give examples illustrat-

ing how the basic instructions can be implemented for specific gca architectures. I will

then consider error correction and fault tolerance for gca in the context of this framework.

I will consider two kinds of approaches, and discuss the advantages and disadvantages of

each. The fault-tolerance requirement will motivate the definition of a more powerful gca

allowing for more parallelism, and we will see techniques that can be used to implement

this.

3.1.2 Between quantum circuits and simple spin chains

Studies into global control systems have been motivated by the goal of showing that we can

do quantum computation using systems for which achieving local control over individual

qubits can be very difficult (e.g. quantum computing using nuclear magnetic resonance).

For this reason, many of the proposed schemes have used very simple spin chains, consisting

of one, two or three distinct species of qubits. We might consider the quantum circuit model

to be the science-fiction end of a spectrum of (real and imagined) quantum computing

technology, where we have total local control and can address any desired qubit in the

circuit. By contrast, we might consider the simple spin-chain models as representing the

other end of the spectrum, where we have extremely limited local control. While we know

that we can do universal quantum computing at both ends of this spectrum, it is not clear

how well we can do fault-tolerant quantum computing in the case of extremely limited

local control.
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Later in this chapter, when I consider implementing error correction schemes for global

control models, I will be exploring the territory between these two extreme ends of the

spectrum. That is, I will consider models with various amounts of local control. While

implementing some of my schemes is beyond current technology, it should be remembered

that implementing quantum circuits is also beyond current technology. Since it is not yet

clear what the winning technology for implementing quantum computers will be, it is worth

investigating the potential for reliable quantum computing for systems offering different

amounts of local control.

3.2 The basic gca model

Conceptually, the behaviour of the simplest gca schemes can be organized in terms of

a structure that resembles a Turing machine (we will see later how we can extend this

structure to achieve certain kinds of parallelism). This can be described in terms of a finite

1-dimensional array of data qubits, along with some mechanism to act as a pointer to address

specific data qubits in the array. For some of the schemes described in the literature, the

data array is assumed to be infinite. For practical implementations, however, the data

array would consist of a finite number of data qubits, say d1, . . . dN . The data qubit di−1

is referred to as the left neighbour of di, and di+1 is the right neighbour of di. This basic

structure is illustrated below.

d1 d2 · · · di−1 di di+1 · · · dN

↑
pointer

(3.1)

It should be emphasized that the data qubits will not in general correspond directly to

the physical qubits in a lattice implementing a gca. Each data qubit may be encoded by

several physical qubits in the lattice. Some of the lattice qubits may be used to encode the

position of the pointer rather than states of the data qubits. The set of physical lattice

qubits used to encode the state of a given data qubit may even change during the course of

a computation. We use the term “array” to distinguish the list of logical data qubits from

the underlying physical “lattice” that may be used to encode this array (and the pointer).
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3.2.1 The language SPA

In this section, I will define a langauge of basic instructions that describes the behaviour

of a variety of simple gca architectures. I will refer to this language by the acronym SPA,

for “Single Pointer Array”.

The position of the pointer in a gca model is a classical parameter (we do not allow the

pointer to be in multiple positions in quantum superposition), and so SPA refers to the

machine’s state as follows.

State for SPA(
ρ, i

) (3.2)

In the above expression, ρ is the density operator for the N -qubit state of the array of data

qubits, and i is an integer between 1 and N representing the position of the pointer.

A gca must have a mechanism for moving the pointer to the left or right along the data

array so that different data qubits can be addressed. This is provided by the following

basic instructions of SPA.

PL :
(
ρ, i

) 7→ (ρ, i− 1) , 2 ≤ i ≤ N

PR :
(
ρ, i

) 7→ (
ρ, i + 1

)
, 1 ≤ i ≤ N − 1

(3.3)

Having positioned the pointer over a specific data qubit, we want to have a means of

applying a single-qubit unitary gate U to that qubit. So we provide the following basic

instruction.

GU :
(
ρ, i

) 7→ (
U (i)ρ U (i)†, i

)
, 1 ≤ i ≤ N (3.4)

In the above expression, U (i) is defined (in the computational basis of the data qubits) as

U (i) ≡ (
I⊗i−1

)⊗ U ⊗ (
I⊗N−i

)
. (3.5)
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For the gca to be capable of universal quantum computing, it will suffice to implement

GU for a set of unitary gates U that is universal for 1-qubit gates.1

We also need a means of performing a nontrivial (entangling) 2-qubit gate to the data

qubits. I will use the controlled-Z gate, where

Z =

[
1 0

0 −1

]
.

For SPA, we will specify a controlled-Z operation between the qubit currently addressed

by the pointer, and the qubit immediately to its right. The controlled-Z and single-qubit

gates together are universal for quantum computing. Some of the schemes presented in the

literature give implementations of controlled-not gates, but the controlled-Z may be more

appropriate because it has the property that it is symmetric with respect to assignment

of the target and control qubits, which is convenient for systems exhibiting translational

invariance (like gca). We have the following basic instruction.

CZ :
(
ρ, i

) 7→ (
cZ(i,i+1)ρ cZ(i,i+1)†, i

)
, 1 ≤ i ≤ N − 1 (3.6)

The operator cZ(i,i+1) is defined as

cZ(i,i+1) ≡ (
I⊗i−1

)⊗
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
⊗ (

I⊗N−i−1
)
. (3.7)

Given a gca architecture with implementations of the basic instructions {PL, PR, CZ, {GU}}
for a set {U} that is universal for 1-qubit gates, the system can efficiently simulate any

quantum circuit. In this sense, SPA is a specification for a universal gca.

In practice, we will also need a way to load the input and to measure the output. I will

not build this into the framework, but assume that a given architecture provides some

mechanisms for these operations. For example, one approach may be to exploit the unique

geography of the cells at the ends of a finite lattice to successively load and unload bits

1That is, so that any 1-qubit gate can be efficiently approximated by a sequence of gates from that set.
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from those cells and shift the information along the lattice. However this is accomplished,

my focus will be on performing quantum computation on data that is already on the array.

The basic instructions of SPA are summarized below.

Basic instructions of SPA

PL :
(
ρ, i

) 7→ (ρ, i− 1) , 2 ≤ i ≤ N

PR :
(
ρ, i

) 7→ (
ρ, i + 1

)
, 1 ≤ i ≤ N − 1

GU :
(
ρ, i

) 7→ (
U (i)ρ U (i)†, i

)
1 ≤ i ≤ N

CZ :
(
ρ, i

) 7→ (
CZ(i,i+1)ρ CZ(i,i+1)†, i

)
, 1 ≤ i ≤ N − 1

(3.8)

The controlled-not gate is a very convenient tool for describing algorithms, and so it will

be convenient to define “subroutines” of basic instructions that implement the quantum

cnot gate with the data qubit di playing the role of the control qubit, and either di+1 or

di−1 playing the role of the target qubit. We will give these subroutines the labels CNOTR

and CNOTL respectively, and these labels should be understood to simply be convenient

shorthand expressions for the sequences of basic instructions they represent (i.e. CNOTR

and CNOTL are not strictly part of the SPA language).

CNOTR ≡ PR , GH , PL , CZ , PR , GH , PL

CNOTL ≡ PL , GH , CZ , GH , PR
(3.9)

The instructions in the above expression are read from left to right, so that CNOTR is

executed first, then PR, etc. This is different than the algebraic convention in which products

of unitary operators are temporally ordered from right to left, but it is a more natural

convention for a programming language to read from left to right.
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The swap operation (|xi〉|xi+1〉 7→ |xi+1〉|xi〉) on the data qubits is so commonly used

in gca programs, that it is worth giving it a label as a shorthand for the sequence of

instructions that implements it. It can be implemented using CNOTR and CNOTL as follows.

SWAP ≡ CNOTR , PR , CNOTL , PL , CNOTR. (3.10)

Again, SWAP is not a basic instruction, but a shorthand for the sequence of basic instructions

that implements it.

When the pointer is at data qubit di, the basic instruction SWAP has the effect of the

quantum swap operation on data qubits di and di+1, and the pointer remains in position

i. After a SWAP sequence, the labels di and di+1 are interchanged (so that the label di can

be taken to refer to the state of the data qubit at position i within the array at all times).

The SWAP sequence maps states as follows.

SWAP :
(
ρ, i

) 7→ (
swap(i,i+1)ρ swap(i,i+1)†, i

)
(3.11)

The swap(i,i+1) operator referred to above is defined as

swap(i,i+1) =
(
I⊗i−1

) (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

) (
I⊗N−i−1

)
. (3.12)

3.2.2 Implementations of SPA for some example architectures

I will now illustrate how the basic instructions of SPA can be implemented using the low-

level hardware pulses of two specific gca architectures.

3.2.2.1 1-D lattice with 3 species, anisotropic nearest-neighbour coupling

Lloyd’s gca architecture [Llo99] is based on a polymer A,B, C,A, B, C, . . . forming a

repeating chain (1-dimensional lattice) of atoms of three distinct species. The following is

a modified version of the scheme originally proposed by Lloyd.
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Each atom in the polymer possesses an electron having a well defined transition frequency

between the ground and first excited states. This frequency is ωA, ωB and ωC for all atoms

of species A, B and C respectively. The ground and first excited states of each atom

represent the |0〉 and |1〉 states of a single qubit. I will refer to these underlying lattice

qubits as being of types A, B and C, respectively (sometimes I will write “A-qubit” to refer

to a lattice qubit of type A).

Adjacent lattice qubits are coupled by local interactions. The effect of the interactions is

to shift the energy level, and thus the transition frequency, for each qubit as a function of

the energy levels of its immediate neighbours. The transition frequency ωB of a B-qubit

then becomes ωB
01 when the A-qubit on its left is in the ground state |0〉 and the C-qubit

on its right is in the excited state |1〉. The transition frequencies are assumed to be distinct

for each combination of qubit-type, and basis states of the left and right neighbours. This

means that it is possible to use an electromagnetic pulse to collectively target all (and only)

lattice qubits of a given type having left and right neighbours in specified basis states. The

effect of such pulses will extend linearly to quantum superpositions of states of the lattice

qubits (and their neighbours). For a 1-qubit gate U , we define a lattice operation TU
lr ,

where T ∈ {A,B,C} and l, r ∈ {0, 1}. This operation has the effect of applying the gate U

to every lattice qubit of type T that has left neighbour in the basis state |l〉 and the right

neighbour in the basis state |r〉. For example, AX
01 has the effect of applying the X gate to

every qubit of type A whose left neighbour is in the state |0〉 and whose right neighbour

is in state |1〉. We will assume that the hardware allows us to directly implement pulses

that implement T Vi
lr for a set {Vi} of 1-qubit gates that is universal for 1-qubit gates. Then

for any 1-qubit gate U , TU
lr can be implemented by an appropriate sequence of pulses from

{T Vi
lr }. We will therefore sometimes speak loosely and refer to any TU

lr as a pulse.

For brevity, we will allow l or r to take a blank symbol “∗”, which means that U will be

applied regardless of the state of the corresponding neighbour. This could be achieved by

applying two pulses, one for each of the two possible states of the neighbour. For example,

AX
1∗ ≡ AX

10, A
X
11. (3.13)

Alternatively, a single pulse might be applied that covers both of the required transition

frequencies.
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In practice, the lattice will have finite length, and we would ultimately have to account for

how to treat the qubits at each end of the lattice. For the present discussion, I will ignore

this issue. I will suppose that the data is encoded in the interior of some sufficiently long

lattice so that we can analyze the effect of the control pulses as though the lattice were

infinite in extent. In [Llo99] it is proposed that the unique geography of the qubits at the

end of the lattice could be exploited to provide a way to load and measure qubits onto and

from the lattice. Another way in which unique behaviour at the ends of a lattice might be

exploited is discussed in Section 3.2.3.

The data qubits are encoded in the lattice qubits of type A, and the position of the pointer

is encoded in the lattice qubits of types B and C. For the data array in a computational

basis state ρ = |x1x2 . . . xN〉〈x1x2 . . . xN |, and the pointer at position i, this situation is

encoded as follows (when illustrating a basis state of a lattice in a diagram, I will omit the

ket symbols for brevity).

0 0 0 x1 δ1,i δ1,i x2 δ2,i δ2,i · · · xN δN,i δN,i 0 0 0

A B C A B C A B C · · · A B C A B C

(3.14)

In the above expression, the Dirac delta function δi,j equals 1 if i = j, and equals 0

otherwise. So each position of the data array occupies three adjacent qubits of types

A,B, C in the lattice, with the data qubits encoded in the A qubits. All the B, C pairs

of qubits are in the state |0〉|0〉, except for the B, C pair to the right of the A qubit

containing the data qubit di (the location of the pointer), which is |1〉|1〉. For example,

when the pointer is at position i = 1 in the data array, the lattice state is illustrated below.

0 0 0 x1 1 1 x2 0 0 · · · xN 0 0 0 0 0

A B C A B C A B C · · · A B C A B C

(3.15)

The pulse sequence BX
1∗, A

X
∗1, B

X
1∗ has the effect (in the computational basis) of exchanging
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the state of every A-qubit with its neighbouring B-qubit. Applying this sequence to the

lattice state (3.15) above has the following effect.

0 0 0 1 x1 1 0 x2 0 · · · 0 xN 0 0 0 0

A B C A B C A B C · · · A B C A B C

I will write exchAB as a shorthand for this pulse sequence2. That is,

exchAB ≡ BX
1∗, A

X
∗1, B

X
1∗. (3.16)

2Here I use exch as short for “exchange”, to avoid confusion with a logical swap operation on the data
qubits, that we will implement later.
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Verifying correctness of pulse sequences

In some of the literature on gca schemes, pulse sequences are claimed to have a
particular effect, with no formal verification. It is desirable to have a systematic
method for verifying the correctness of pulse sequences for implementing the basic
instructions of SPA (if SPA is taken as a requirements specification for gca, then it
is desirable to have a systematic way to verify that a proposed scheme meets the
requirements).
Most of the nontrivial pulse sequences we consider will be composed entirely of con-
ditional X and Z pulses. First consider sequences consisting only of X pulses. Such
sequences never generate nontrivial quantum superpositions, and have no effect on
the relative phase for states already in superposition. In these cases we can restrict
our analysis to computational basis states of the lattice, which can be represented
as tuples of binary variables (one variable representing the basis state of each qubit
in the lattice).

Now suppose we wish to analyze a pulse sequence that consists of both X and Z

pulses. These sequences still have the property that they don’t generate quantum
superpositions, but the Z pulses may affect the phases of lattice qubits. As before,
suppose the lattice is in a computational basis state which we represent by a tuple
of binary variables. Say we apply a Z pulse to the lattice qubit corresponding to
the binary variable ai. The effect is a phase of (−1)ai on the state of the lattice
(assuming, as we are, that the lattice is in a basis state). To keep track of the phase
implied by the Z-pulses in the sequence, we use a binary variable φ, where the global
phase will be (−1)φ. For example, if we apply some sequence of X-pulses, as well
as a Z-pulse on ai, and a controlled-Z pulse between aj and aj+1, then we have
φ = ai + ajaj+1.

Typically a pulse sequence will be intended to have a net effect only on the states

of the lattice qubits in the vicinity of the pointer. Because of the translational

symmetry of the lattices under consideration, the effect of the pulse sequences is

typically uniform across identically encoded segments. We can therefore usually

restrict our analysis to a small section of the lattice, and make general conclusions

by induction.
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Proof of correctness for exchAB:
The correctness of exchAB is trivial to demonstrate, but I give a formal proof here
to illustrate the technique. Let ai, bi, ci be the binary values associated with the basis
states for three adjacent lattice qubits in an (A,B, C)-triple. We want to show that
exchAB maps (ai , bi , ci) to (bi , ai , ci) for all i. We can analyze the effect of each
pulse on the state (ai , bi , ci) algebraically. For example, (1+ai) denotes the negation
(bit flip) of ai and (1 + ai)ci denotes the conjunction of (1 + ai) and ci (arithmetic
is modulo 2). Thus, for example, the pulse BX

01 transforms the state (ai , bi , ci) to
(ai , bi + (1 + ai)ci , ci). For the pulse sequence exchAB we have the following.

(ai , bi , ci)
BX

1∗−−→ (ai , bi + ai , ci)

7 A
X
∗1−−→ (bi +©©2ai , bi + ai , ci)

7 B
X
1∗−−→ (bi , ai +½½2bi , ci)

This shows that on each (A,B, C)-triple, the sequence exchAB has the desired effect.

This implies the correctness of exchAB on the entire lattice. ¤

Similarly the pulse sequence

exchBC ≡ CX
1∗, B

X
∗1, C

X
1∗ (3.17)

has the effect of exchanging every B-qubit with its neighbouring C-qubit, and

exchCA ≡ AX
1∗, C

X
∗1, A

X
1∗ (3.18)

exchanges the state of every C-qubit with its neighbouring A-qubit.

We can also derive a sequence of pulses that shifts each data qubit from the A-type lattice

qubit to the B-type lattice qubit immediately to the right, and also moves the “11” encoding

the position of the pointer from the BC-pair to the CA-pair immediately to the right.

Specifically,

rightA ≡ BX
10, B

X
01, A

X
01, A

X
10 (3.19)

has his effect, transforming (3.15) into the following state.
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0 0 0 0 x1 1 1 x2 0 0 · · · xN 0 0 0 0

A B C A B C A B C A · · · B C A B C

Proof of correctness for rightA:
As a slightly less trivial example illustrating the proof technique, we verify the cor-
rectness of rightA. Let xi be the binary value associated with a basis state for the
data qubit di. Let yi be the binary value associated with the ith B and C-type lattice
qubits (these will both be 1 if the pointer is at position i, and will both be 0 otherwise).
Consider seven adjacent lattice qubits of types (C, A,B, C, A,B, C). We want to show
that rightA maps (yi−1 , xi , yi , yi , xi+1 , yi+1 , yi+1) to (yi−1 , yi−1 , xi , yi , yi , xi+1 , yi+1).

(yi−1 , xi , yi , yi , xi+1 , yi+1 , yi+1)
C A B C A B C

7 B
X
10−−→ (yi−1 , xi , yi + xi(1 + yi) , yi , xi+1 , yi+1 + xi+1(1 + yi+1) , yi+1)

C A B C A B C

= (yi−1 , xi , yi + xi + xiyi , yi , xi+1 , yi+1 + xi+1 + xi+1yi+1 , yi+1)
C A B C A B C

7 B
X
01−−→ (yi−1 , xi , yi + xi + xiyi + (1 + xi)yi , yi , xi+1 , yi+1 + xi+1 + xi+1yi+1 + (1 + xi+1)yi+1 , yi+1)

C A B C A B C

= (yi−1 , xi ,½½yi + xi +»»»xiyi +½½yi +»»»xiyi , yi , xi+1 ,»»»yi+1 + xi+1 +(((((xi+1yi+1 +»»»yi+1 +(((((xi+1yi+1 , yi+1)
C A B C A B C

7 A
X
01−−→ (yi−1 , xi + (1 + yi−1)xi , xi , yi , xi+1 + (1 + yi)xi+1 , xi+1 , yi+1)

C A B C A B C

= (yi−1 ,½½xi +½½xi + yi−1xi , xi , yi ,»»»xi+1 +»»»xi+1 + yixi+1 , xi+1 , yi+1)
C A B C A B C

7 A
X
10−−→ (yi−1 , yi−1xi + yi−1(1 + xi) , xi , yi , yixi+1 + yi(1 + xi+1) , xi+1 , yi+1)

C A B C A B C

= (yi−1 ,»»»»yi−1xi + yi−1 +»»»»yi−1xi , xi , yi ,»»»»yixi+1 + yi +»»»»yixi+1 , xi+1 , yi+1)
C A B C A B C

¤

Similarly the pulse sequence

leftA ≡ CX
10, C

X
01, A

X
01, A

X
10 (3.20)
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shifts the data qubits from the B-type lattice qubits to the A-type lattice qubits immedi-

ately to the left. We have analogous pulse sequences for shifting the data qubits between

the B- and C-type lattice qubits:

rightB ≡ CX
10, C

X
01, B

X
01, B

X
10, (3.21)

leftB ≡ AX
10, A

X
01, B

X
01, B

X
10, (3.22)

rightC ≡ AX
10, A

X
01, C

X
01, C

X
10, (3.23)

leftC ≡ BX
10, B

X
01, C

X
01, C

X
10. (3.24)

Notice that the exch, right, and left sequences are not part the language SPA, but are

merely convenient shorthand expressions for useful pulse sequences. We can implement

SPA using these sequences as follows:

PL = exchAB , exchBC , leftC , leftB, (3.25)

PR = exchCA , exchBC , rightB , rightC , (3.26)

GU = AU
01, (3.27)

CZ = BX
01 , exchBC , AZ

1∗ , exchBCBX
01. (3.28)

We give the proof of correctness for CZ below. Because it is very simple, it provides a good

example illustrating the proof technique for pulse sequences that include Z operations.

Proof of correctness for CZ

Consider the segment of the lattice in the vicinity of the pointer, consisting of 6
lattice qubits of types (A,B, C,A, B, C). Suppose the basis state of the segment is
initially represented by (ai, 1, 1, ai+1, 0, 0). We want to show that the pulse sequence
for CZ maps

(ai, 1, 1, ai+1, 0, 0) , φ = 0 7 CZ−−→ (ai, 1, 1, ai+1, 0, 0) , φ = aiai+1.

That is, we want to show that the pulse sequence leaves the basis state unchanged,
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and reverses the phase when ai+1 = ai = 1. The analysis proceeds as follows:

(ai ,1 ,1 , ai+1 ,0 ,0) , φ = 0
A B C A B C

7 B
X
01−−→ (ai , ai ,1 , ai+1 ,0 ,0) , φ = 0

A B C A B C

7 exchBC−−−−−−→ (ai ,1 , ai , ai+1 ,0 ,0) , φ = 0
A B C A B C

7 A
Z
1∗−−→ (ai ,1 , ai , ai+1 ,0 ,0) , φ = aiai+1

A B C A B C

7 exchBC−−−−−−→ (ai , ai ,1 , ai+1 ,0 ,0) , φ = aiai+1

A B C A B C

7 B
X
01−−→ (ai ,1 ,1 , ai+1 ,0 ,0) , φ = aiai+1

A B C A B C

¤

It is worth taking a moment to consider how the physical system described in this section

could be simulated by SPA (i.e. the opposite of what was done above), in order to show

that the two schemes are equivalent. Suppose we have access to an array of data qubits

and can perform the basic instructions of SPA. To simulate the anisotropic ABC-chain, we

begin by assigning labels A,B, C, A, B, C, . . . to the data qubits. Each data qubit simulates

one lattice qubit. Then suppose we want to simulate the global control pulse TU
lr (where

T ∈ {A, B, C}, l, r ∈ {0, 1} and U a 1-qubit unitary gate). First note that with the SPA

instructions CZ and GU we can simulate any controlled-U gate between data qubits, and also

any controlled-controlled-U operation between data qubits using a standard construction

(see [BBC+95]). Each such simulation requires a constant number of SPA operations.

So to simulate TU
lr we just have to move the pointer along the data array, applying the

appropriate controlled-controlled-U operation to every data qubit labeled T , conditioned on

the states of its left and right neighbours. Since the pointer has to do this for each T -qubit

sequentially, the overhead in time is linear in n, the size of the ABC-chain being simulated.

So by simulating the ABC-chain with SPA, we only lose no fundamental computational

power and only a small amount of computational efficiency.

Fact 3.2.1 A lattice of qubits configured as an ABC-chain with anisotropic nearest-neighbour
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couplings and controlled by the global pulses described above is equivalent in power to the

language SPA up to at most a linear overhead in time and space.

Other physical global control systems can be similarly shown to be roughly equivalent

to SPA. Note that the linear overhead may be very significant when we consider fault-

tolerance, and that is why we are motivated to define a more powerful model (called MPA)

in Section 3.5.1.

3.2.2.2 1-D lattice with 2 species, isotropic coupling

Lloyd’s architecture was adapted by Benjamin [Ben00], who showed that it suffices to re-

strict the hardware to a polymer with only two distinguishable species A and B. Moreover,

the couplings can be such that a qubit in the lattice only feels the net effect of the states

of its neighbours, and cannot distinguish the states of the left and right neighbours. The

“field” of a given qubit in the lattice is defined as the number of immediate neighbours

(to the left or right) in the state |1〉 minus the number in the state |0〉. Therefore, for

computational basis states of the lattice, there are three possible values of the field for any

given lattice qubit, 0,-2, and 2 (again ignoring the different behaviour of qubits at the ends

of a finite lattice). The pulses that are allowed in this architecture are of the form

TU
f (3.29)

where T ∈ {A,B} and f ∈ {−2, 0, 2}. For example, the pulse AX
2 applies the unitary X

to all qubits of type A that have both neighbours in the state |1〉 (giving a field of 2). The

pulse BH
0 applies the Hadamard gate to all qubits of type B in the lattice that have one

neighbour in each of the basis states |0〉 and |1〉.
In Benjamin’s architecture, the encoding of the data qubits is more complicated than that

described in the previous section. Each data qubit is now encoded by four adjacent lattice

qubits. Furthermore, each data qubit will not occupy the same 4 lattice qubits during

the course of a computation. The lattice will be significantly longer than the data array.

Between any pair of data qubits (each taking 4 physical qubits in the lattice) there are

4 physical qubits of padding in the state |0〉⊗4. The lattice contains a sufficient number
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(O(N)) of padding qubits in the state |0〉 to the left and right of the data array. The entire

data array will move (as a single unit) back and forth along this long lattice during a com-

putation. For the data array in a computational basis state ρ = |x1x2 . . . xN〉〈x1x2 . . . xN |
(no pointer location shown), this will be implemented in the lattice as follows.

· · · 0 x̄1 x̄1 x1 x1 0 0 0 0 x̄2 x̄2 x2 x2 0 0 0 0 · · · 0 0 0 0 x̄N x̄N xN xN 0 · · ·
· · · B A B A B A B A B A B A B A B A B A B · · · A B A B A B A · · ·
where x̄i ≡ 1 + xi (“+” denotes addition modulo 2). The basis state |xi〉 of a data qubit

is encoded in the lattice by the pattern |x̄i〉|x̄i〉|xi〉|xi〉. Specifically, the data qubit |0〉 is

encoded by the pattern |1〉|1〉|0〉|0〉 and |1〉 is encoded by |0〉|0〉|1〉|1〉.
The pointer is represented in the same lattice by the 6-qubit basis state |1〉|1〉|0〉|0〉|1〉|1〉
(which Benjamin calls the “control unit”, CU), that will only be present at one place in the

lattice at any given time. When the data qubits are positioned over 4-tuples ABAB in the

lattice, the CU is positioned on a 6-tuple BABABA. When the data qubits are positioned

as BABA the CU is positioned as ABABAB. This relative positioning allows pulses

to shuttle the CU along the lattice in a contrary direction to the data qubits, allowing

movement of the pointer relative to the data. When positioned over a data qubit, the

CU pattern behaves as an xor-mask that changes the basis states of the lattice qubits

encoding that data qubit. The scenario in which the pointer is at position i in the data

array is represented as follows.

| ←− CU −→ |
1 1 0 0 1 1

· · · 0 0 x̄i xi x̄i xi 0 1 1 0 x̄i+1 x̄i+1 xi+1 xi+1 0 0 · · ·
· · · A B A B A B A B A B A B A B A B · · ·
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The instructions of SPA are implemented in this architecture as follows.

PL = AX
0 , BX

0 , AX
0 , BX

0 (3.30)

PR = BX
0 , AX

0 , BX
0 , AX

0 (3.31)

GU = BX
2 , AX

2 , AX
0 , BX

2 AX
0 , BU

2 , AX
0 , BX

2 , AX
0 , AX

2 , BX
2 (3.32)

CZ = PR, B
X
0 , AX

0 , AX
2 , BX

2 , AX
2 , AX

0 , BX
0 , BX

2 , AX
0 , BX

0 , BX
2 , AX

2 , AX
0 , BX

0 , AX
2 , AX

0 , BZ
2 ,

AX
0 , AX

2 , BX
0 , AX

0 , AX
2 , BX

2 , BX
0 , AX

0 , BX
2 , BX

0 , AX
0 , AX

2 , BX
2 , AX

2 , AX
0 , BX

0 , PL (3.33)

In Appendix A, I give proofs of correctness for two of the pulse sequences. The others can

be similarly verified.

3.2.3 Implementation on lattices with a distinguished site

In this section we explore what can be done with regular lattices having the added feature

of a distinguished site. A distinguished site is a lattice qubit, or local grouping of lattice

qubits, that responds differently to control pulses than all the other lattice qubits. Such a

lattice can be used to implement a global control scheme with the added feature of local

control only at the distinguished site. In practice, the distinguished site might be located

at the end of a finite lattice, where the unique geography gives the terminal qubit unique

properties. Alternatively, a distinguished site might be implemented by coupling a specific

lattice qubit with some external qubit of another species.

To implement SPA on such a system, the pointer could be located at the fixed position of

the distinguished site, and the data qubits moved back and forth under the fixed pointer.

For example, to implement a PL operation, the data qubits could all be moved to the right

along the lattice. These systems have the advantage that the pointer position does not

have to be logically encoded, and so the data qubits can be packed more tightly along

the lattice. In the example system we describe below, the data qubits are encoded in

one-to-one correspondence with the lattice qubits.

As an example, consider an anisotropic ABC-chain configured as a closed loop. Assume

that the loop consists of an odd number of ABC-triples. Suppose an atom of a fourth type,

D, is positioned adjacent to some ABC-triple selected (arbitrarily) to be the distinguished
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triple. Suppose that we can apply pulses that affect all the ABC-triples uniformly. Also

assume that we have pulses that can target only the distinguished ABC-triple, by making

use of the effect of the proximity of the D atom.

For the present discussion, I will refer to the physical qubits of species A,B,C as “cells”

of “types” A,B, C. When I talk about “moving a qubit to a cell”, I am referring to a

sequence of logical operations (usually nearest-neighbour swap operations) that permute

the logical states of the physical qubits on the chain. We will need the following claim.

Claim 3.2.1 For any pair of qubits initially occupying adjacent cells, there exists a se-

quence of pulses that has the effect of bringing those qubits into adjacent positions in the

distinguished triple.

Proof: The pulse sequence exchAB ≡ BX
1∗, A

X
∗1, B

X
1∗ exchanges the states of

the qubits on the A-cells with those on the neighbouring B-cells. The sequence

(exchAC ,exchAB,exchBC ,exchAB) has the effect of moving every qubit ini-

tially in an A-cell to the A-cell of the next ABC-triple to the left (counterclock-

wise). It also moves every qubit initially in a C-cell to the C-cell of the next

ABC-triple to the right (clockwise). It leaves the qubits on the B-cells fixed.

By permuting the labels of the species we have similar sequences for moving

the qubits in the A- and B-cells, while keeping the qubits in the C-cells fixed.

Suppose we have a pair of qubits (bi, ci) in adjacent B- and C-cells, that we

wish to move into adjacent positions in the distinguished triple. First we apply

the sequence that moves the qubits in the A- and B-cells (keeping the qubits

in the C-cells fixed) until bi is in the B-cell of the distinguished triple. Then

we apply the sequence that moves the qubits in the A- and C-cells (keeping

the qubits in the B-cells fixed), until ci is in the C-cell of the distinguished

triple (beside bi). Similar procedures will bring any pairs of adjacent qubits

into adjacent positions in the distinguished triple. ¤

From the claim, it follows that we can implement a nearest-neighbour swap operation

between any pair of adjacent qubits on the lattice. First we move the pair to the distin-

guished triple, and apply a sequence of pulses to implement the swap operation only on
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those qubits in the distinguished triple. Then move all the qubits back to their correspond-

ing original positions (respecting the swapped pair). Now it follows that we can implement

an arbitrary permutation of the states of the individual qubits on the lattice (by a suitable

sequence of nearest-neighbour transpositions). In particular, this allows us to implement

a cyclic rotation of the lattice, so that we can implement the PL and PR operations of SPA.

The other operations can be implemented directly, by applying pulses that target only the

distinguished triple.

3.2.4 SPA programs to simulate quantum circuits

The utility of the language SPA is that we can use it to write programs for simulating quan-

tum circuits with a gca, independent of the details of the implementation of a particular

gca system. For any specific physical architecture implementing SPA, these programs can

be “compiled” to give the specific pulse sequence to run the circuit simulation.

When presented with a quantum circuit diagram, the circuit can be first be rewritten

to make translation into an SPA program straightforward. This rewriting results in an

equivalent, sequential, nearest-neighbour circuit that uses only single-qubit, controlled-

not, controlled-Z and swap gates (we can allow controlled-not and swap because in

Section 3.2.1 we have already seen subroutines for implementing these operations using the

basic instructions of SPA). The first step in rewriting is to replace any multi-qubit gates

other than controlled-Z, controlled-not and swap with an equivalent subcircuit consisting

of single-qubit, controlled-Z, controlled-not and swap gates. Consider a controlled-U gate

for any one-qubit gate U . Since we can write any such U as U = eiαAXBXC for single-

qubit gates A,B, C satisfying ABC = I, this gives a method for writing the controlled-U

in terms of single qubit gates and controlled-not gates. For circuits containing gates

controlled by multiple qubits, we can use techniques described in [BBC+95] to rewrite

these.

The second step in rewriting is to take the circuit resulting from the first rewriting step,

and serialize it. That is, whenever multiple gates in the circuit are applied in parallel,

separate them into discrete time-steps. The final step is to write an equivalent nearest-

neighbour circuit. This is done as follows. Wherever a two-qubit gate appears between two
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nonadjacent qubits, we use a sequence of swap gates to bring the control and target qubits

into adjacent positions. Then apply the required two-qubit gate, and finally perform the

reverse sequence of swap operations to move the qubits back to their original positions.

After the rewriting, the programmer could optionally look for ways to optimize the resulting

circuit (without violating the serial or nearest-neighbour constraints).

The rewriting sequence will be illustrated for the circuit fragment shown in Figure 3.1.

Figure 3.1: A fragment of a circuit to be simulated by SPA.

In the circuit of Figure 3.1, −iY denotes the Pauli Y operation multiplied by the scalar

−i. In the first step of rewriting, the circuit is replaced with an equivalent one consisting

only of single-qubit, controlled-not and controlled-Z gates (note that −iY = XZ). The

resulting circuit is shown in Figure 3.2.

Figure 3.2: A circuit equivalent to Figure 3.1, using only single-qubit, controlled-not and
controlled-Z gates. Above, A = cos(π/8)|0〉〈0|+ sin(π/8)|0〉〈1|+ cos(π/8)|1〉〈0| − sin(π/8)|1〉〈1|.

Next, the circuit in Figure 3.2 is serialized, by temporally separating any gates being

applied in parallel. The result is shown in Figure 3.3. Then a nearest-neighbour version of

the circuit is constructed, resulting in the circuit shown in Figure 3.4.

Finally, we can perform some optimizations on the circuit of Figure 3.4. The first obser-

vation is that in two places we have used the straightforward recipe using swap gates to

perform a distance-2 controlled-not gate (a controlled-not where the control qubit is two
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Figure 3.3: The circuit in Figure 3.2 rewritten with no gates acting in parallel.

Figure 3.4: A nearest-neighbour version of the circuit shown in Figure 3.3.

qubits away from the target; that is, the control and target have one qubit in between

them). The swap gate can be represented by 3 nearest-neighbour controlled-not gates,

and this is analogous to how we have implemented the SWAP instruction in SPA (see Section

3.2.1). So the distance-2 controlled-not constructions use a total of 7 nearest-neighbour

controlled-not gates. In general, a distance-k controlled-not gate implemented by this

approach requires 6(k − 1) + 1 nearest-neighbour controlled-not gates. There is a more

efficient construction that implements a distance-k controlled-not gate using 4(k − 1)

nearest-neighbour controlled-not gates. This construction is illustrated in Figure 3.5 for

k = 4.

Figure 3.5: A construction for implementing a distance-4 cnot gate using 12 nearest-neighbour
cnot gates. This construction generalizes naturally for distance-k cnot gates.

Suppose we want to implement a distance-k cnot gate on a gca, with di as the control
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qubit and di+k as the target qubit (that is, the target qubit is k positions to the right of

the control qubit). Assuming the pointer is initially at data qubit di, the following SPA

program accomplishes this.

SPA program to implement a distance-k cnot to the right

1. CNOTR

2. do {PR , CNOTR} k − 1 times

3. do {PL , CNOTR} k − 1 times

4. do {PR , CNOTR} k − 1 times

5. do {PL , CNOTR} k − 2 times

6. PL.

We can write CNOTR(k) as a shorthand for the above subroutine in SPA programs. We

have a similar program for doing distance-k controlled-not gates to the left (which we can

denote by the shorthand CNOTL(k)).

SPA program to implement a distance-k cnot to the left

1. CNOTL

2. do {PL , CNOTL} k − 1 times

3. do {PR , CNOTL} k − 1 times

4. do {PL , CNOTL} k − 1 times

5. do {PR , CNOTL} k − 2 times

6. PR.

After replacing the distance-2 controlled-not implementations, the resulting circuit ap-

pears as in Figure 3.6.
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Figure 3.6: Some optimizations applied to the circuit constructed in Figure 3.4.

Now we can write a program in SPA that directly simulates the circuit of Figure 3.6 as

follows. We assume the active pointer is initially addressing data qubit d1. At the end of

the following program the pointer will be positioned at data qubit d3.

SPA program to simulate circuit in Figure 3.6

GH , PR , GH , PL , CNOTR(2) , PR , PR , PR , GA , PL , CNOTR , PR , GA , PL , PL ,

CNOTR(2) , PR , PR , GA† , PL , CNOTR , PR , GA† , PL , PL , GH , CZ , CNOTR.

Using the rewriting rules described above, it should be straightforward to create a naive

compiler for generating SPA programs to simulate quantum circuits (given some description

of the circuits). I described the optimization of the distance-k CNOT implementations as an

example to illustrate that creating a good compiler may be harder. Such a compiler should

ideally be capable of applying optimization techniques to generate reasonably efficient SPA

programs.

3.2.5 gca, qca, and error correction

I have chosen terminology to distinguish gca from other models of quantum cellular au-

tomata, and so we should take a moment to discuss the relationship between these models.

Often the term qca is used to refer collectively to all such models (including gca), but

there is an important distinction. In a true qca model there is no external control (global

or local); that is, the machines are “autonomous”. They are typically organized as regular

chains or lattices of qubits linked by local couplings as in gca, but for qca there is a fixed
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transition rule that specifies the next state for a lattice qubit, based on the current states

of its neighbours.

Given a gca and a program (that is, a fixed sequence of control pulses), the behaviour

of the system can be simulated by a qca. The basic approach is to encode the program

in some of the lattice qubits. A transition rule is defined that has the effect of simulating

the sequence of global pulses (the program) on the data. In practice, this could be quite

complicated. The qca would have to keep some kind of clock to keep track of the current

time-step, and the transition function will have to effectively check the clock, and apply

the correct operation at each time-step.

We can simulate the behaviour of any given (1-dimensional) qca with an SPA program by

simply moving the pointer back and forth across the array, visiting every data qubit. For

each data qubit, we use the (fixed) sequence of basic instructions that will simulate the

effect of the qca transition function on that data qubit. To simulate the behaviour of a

higher dimensional qca model will be more involved, but is only matter of working out

the details, as we know SPA is capable of universal quantum computation.

It is useful to view gca as a qca with additional power. Whereas a qca has a spacially

and temporally uniform transition function, the global control pulses of a gca are spacially

(but not temporally) uniform transition functions. That is, a gca is like a qca with a set

of possible transition functions, and at each step we get to choose which transition function

to apply. Viewing things in this way, it seems that performing reliable computation with

a qca should be at least as hard as performing reliable computation with a gca.

Given a method for doing reliable computation with a gca, suppose we want to simulate

this with a qca. As we mentioned above, the basic approach is to encode the program and

some mechanism to act as a clock in the state of the qca. Now, however, we have to account

for the fact that the noise can affect the state of the clock. For a gca we would typically

assume that the noise only affects the states of the data qubits in the array, and that the

choices we make about which pulses to apply at each time-step (and the ordering of the

time-steps) are immune to errors (or at least can be implemented reliably in the classical

computer controlling the pulse application). When we simulate these mechanisms by error-

prone qca states, the reliability may be lost. To reliably implement a qca performing
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a simulation like this, we would need to have some means of protecting the state of the

clock. Furthermore, this would have to be accomplished using the spacially and temporally

symmetric transition function of the qca.

Gács has given techniques for performing fault-tolerant (classical) computation with clas-

sical cellular automata [Gac86]. For reliable qca models, we might look to expand or

modify the techniques in [Gac86]. These techniques are very sophisticated and make use

of cellular automata in which each cell has a very large number of states. It seems likely

that one should be able to exploit global control and devise simpler solutions for gca.

3.3 Two approaches to error correction for gca

As with any computing model, if one wishes to implement a gca in hardware, the pos-

sibility of errors must be considered. A rich theory of quantum error correction has been

developed, and quantum error correcting codes for quantum circuits have been designed.

Using these codes, arbitrarily long computations in the quantum circuit model can in the-

ory be performed reliably under physically realistic error models. It is not clear how these

quantum error correcting codes can be applied to gca, however. Errors affecting the states

of the physical qubits in the underlying lattice may not map to errors in the encoded data

qubits in a natural way. Physical errors may also affect the integrity of the pointer in a

way that is difficult to control.

Various techniques have been proposed for performing error correction for different gca

models. In terms of the framework described in Section 3.2.1, it is convenient to divide

error correction techniques for gca into two distinct categories.

The first category consists of techniques for implementation-level error correction that make

the gca more robust. In terms of the language described in Section 3.2.1, these techniques

are implemented at the lowest level, to implement the basic instructions more robustly in

the presence of errors that may occur on individual lattice qubits. A shortcoming of these

techniques is that scaling the codes generally requires redesigning hardware, as we will see

later.

A second category of error correction techniques for gca is data-level error correction,
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which protect against errors at the level of the data qubits encoded on the lattice. These

techniques are implemented by programs that run on the fixed gca hardware. The lan-

guage SPA provides a convenient tool for describing such techniques. Existing quantum

error correcting codes for quantum circuits provide candidates for data-level error correc-

tion in gca. These codes have the advantages that they are well studied and are inherently

scalable (e.g. through concatenation). This approach has the shortcoming that it will only

operate at the level of abstraction of the data qubits and the pointer. If errors at the

implementation-level corrupt the encoding, leading to a physical lattice state that is not a

valid encoding of a data array and pointer state, then data-level error correction will not

function properly. We examine data-level error correction in Section 3.6.

Recall our discussion of lattices with a distinguished site, from Section 3.2.3. Implementation-

level error correction for these systems has the advantage that we don’t have to worry about

error correcting the pointer, since it is realized by physical means, and not a logical en-

coding. A drawback of these schemes is that a single distinguished site will not provide an

opportunity for parallelism. As I will discuss further in Section 3.5, parallelism is vital if

we want to achieve fault-tolerance. Parallelism could be achieved by using multiple distin-

guished sites, but the main motivation for studying globally controlled arrays is precisely

the difficulty of implementing physical systems with many distinguished sites where local

control is available.

It is unclear how fully fault-tolerant gca computing can be achieved in practice. By

the observations in the preceding paragraphs, it seems that a mixture of implementation-

level and data-level error correction techniques will be necessary. Some work (e.g [Kay05],

[Kay07]) has been done on hybrid techniques for specific gca architectures (e.g. by using

implementation-level approaches to correct the pointer state, and data-level approaches for

the data qubits), but it is not clear that these techniques will satisfy the two requirements

of (1) being fully scalable, and (2) not being restricted to an artificial error model (i.e. can

deal with the low-level physical qubit errors in the underlying lattice).

In Section 3.4 I will explore some techniques for implementation-level error correction and

in Section 3.6 I will consider data-level error correction for gca.
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3.4 Implementation-level error correction

3.4.1 Dissipative pulses—removing unwanted entropy

Errors add entropy to a quantum system. Correction of these errors requires some mech-

anism for removing this entropy. In the circuit model this can be achieved by performing

carefully designed “syndrome measurements”, or by providing ancillary qubits that can be

initialized to a fixed state (usually |0〉) when required. For gca, the second approach is

preferable (the ability to perform localized measurements of lattice qubits may not be pro-

vided by a global control scheme). To allow a gca to perform error correction, we assume

the hardware provides a “dissipative pulse” that performs the reset operation |x〉 7→ |0〉.
Previous schemes ([Llo99], [BBK04]) have made use of a pulse that forces all lattice qubits

of a given species to the ground state |0〉, conditioned on the states of their neighbours. I

will show that, for a particular class of implementation-level approaches, it suffices to use

an unconditional dissipative pulse that forces all lattice qubits of a given species to |0〉,
regardless of the states of their neighbours (i.e. the reset operation). It may be that the

unconditional dissipative pulse is easier to implement in practice, for some schemes.

For implementations using a polymer and electromagnetic pulses as described in Section

3.2.2, the following is a standard approach to implementing a reset operation. The idea

is for each lattice qubit to have a second excited state |2〉 that rapidly decays to the ground

state |0〉. Then applying a pulse of a suitable frequency to excite qubits of a given species

to the state |2〉 will have the effect of setting these qubits to |0〉. The problem of resetting

qubits to the state |0〉 by algorithmic techniques is the subject of Chapter 4.

One has to take great care when applying the reset operation in gca schemes. By

conservation laws in physics, when energy (or entropy) is dissipated from a lattice qubit,

it will be absorbed by the environment. The reset operation acts on the qubit and the

environment as follows:

|0〉|E〉 7 reset−−−−−→ |0〉|E0〉 (3.34)

|1〉|E〉 7 reset−−−−−→ |0〉|E1〉. (3.35)

In other words, the final state of the environment depends on whether the state was reset
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from |1〉 or left unchanged in |0〉. Suppose we have some multiple-qubit state

|x〉 = α|0〉|x0〉+ β|1〉|x1〉.

Ideally, we might hope that if we applied a reset to the first qubit of |x〉, the result would

be

α|0〉|x0〉+ β|0〉|x1〉 = |0〉 (α|x0〉+ β|x1〉) .

Unfortunately, because of the interaction with the environment, the result will actually be

|x〉|E〉 7 reset−−−−−→ α|0〉|x0〉|E0〉+ β|0〉|x1〉|E1〉
=|0〉 (α|x0〉|E0〉+ β|x1〉|E1〉)

and the state of the remaining part of |x〉 becomes coupled with the environment.

When we apply the reset operation during error correction, we can avoid the above pitfall

by taking care only to reset states containing the error syndrome, and not resetting any

state containing information about the logical state of the qubits we are trying to protect

from errors. Suppose we use an error correcting code, and encode the logical state |0〉 by

the codeword |C0〉 and the state |1〉 by the codeword |C1〉. Suppose some error ε transforms

|C0〉 to |C ′
0〉 and transforms |C1〉 to |C ′

1〉. A syndrome computation performs

|C ′
i〉|0〉 7→ |C ′

i〉|S〉,

where the syndrome S contains enough information to identify the error ε. Note that S is

independent of i; that is, the syndrome does not contain any information about the original

codeword. After the syndrome computation, an error correction operation is controlled by

|S〉 to reverse the effect of ε.

Suppose we initially have some encoded state α|C0〉+ β|C1〉 and some error occurs, trans-

forming the state to α|C ′
0〉+ β|C ′

1〉. The syndrome computation maps

(α|C ′
0〉+ β|C ′

1〉) |0〉 7→ (α|C ′
0〉+ β|C ′

1〉) |S〉.

Then the error correction step is performed, mapping

(α|C ′
0〉+ β|C ′

1〉) |S〉 7→ (α|C0〉+ β|C1〉) |S〉.
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Finally, we reset the syndrome, so that the ancillary register can be used again for a

syndrome computation the next time we do error correction. Accounting for the interaction

with the environment, the reset operation performs

(α|C0〉+ β|C1〉) |S〉|E〉 7 reset−−−−−→ (α|C0〉+ β|C1〉) |0〉|E ′〉.

The environment is modified by the erasure of the syndrome3, but the codeword is not

coupled with the environment, and the quantum information remains intact.

I will denote a reset pulse targeting all lattice qubits of type T by T reset.

3.4.2 A bit-flip code for a gca memory

When we begin to study error correction for gca models, it is convenient to initially

consider a gca that does nothing; that is, a “gca memory”, having no pointer. A gca

memory can be made more reliable by using an error correcting code and some sequence of

control pulses to perform error correction. Later, in Section 3.4.6 we will discuss methods

for reintroducing the pointer, to turn a reliable gca memory into a reliable implementation

of SPA.

In this section, we consider the error model in which each lattice qubit independently

suffers a “bit flip” with some fixed probability p. A bit flip is equivalent to a not gate

on the lattice qubit. A simple code that can help protect qubits against bit-flip errors is

a three-qubit code, for which the logical qubit state |di〉 = α|0〉 + β|1〉 is encoded as the

three-qubit state |d̂i〉 = α|000〉+ β|111〉.
Consider Lloyd’s gca implementation [Llo99], described in Section 3.2.2.1 (1-D lattice,

three species, anisotropic coupling). The three-qubit code can be implemented on this

lattice by encoding each data qubit redundantly in an (A,B, C)-triple. A data qubit in

the basis state |xi〉, xi ∈ {0, 1}, is encoded in the lattice as follows.

· · · xi xi xi · · ·
· · · A B C · · ·

3In Section 4.4.3 I discuss this problem in the context of algorithmic cooling using a heat bath.
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The encoded basis states could be loaded onto the lattice directly or, assuming the un-

encoded data qubits are loaded onto the A-qubits, we could perform the encoding with

pulses. A nearest-neighbour quantum circuit that performs the encoding for the three-qubit

code is shown in Figure 3.7 below.

Figure 3.7: A nearest-neighbour quantum circuit implementing the encoding for the three-qubit
code.

The circuit in Figure 3.7 is equivalent to the following sequence of pulses:

BX
1∗, C

X
1∗.

Decoding is performed by running the circuit of Figure 3.7 backwards, which is equivalent

to the following sequence of pulses:

CX
1∗, B

X
1∗.

Error correction is accomplished by a sequence of pulses that performs a majority-vote in

the computational basis across each (A,B,C)-triple. The majority-vote is accomplished

in two stages: first the value of the majority (0 or 1) is computed into the B-qubit. At the

same time, the parities of the bits originally in the pairs (A,B) and (B, C) are encoded

into the A and C qubits. These parities form the error syndrome. A remarkable property

of the 3-bit code is that the error syndrome can be computed “in-place”, without the

need for ancillary bits. Next the A and C qubits (containing the syndrome) are zeroed

with dissipative pulses, and the majority value is encoded back into these qubits from the

B-qubit. The pulse sequence is

AX
∗1 , CX

1∗ , BX
11 , Areset , Creset , AX

∗1 , CX
1∗. (3.36)

The above pulse sequence performs the error correction on all (A,B,C)-triples in parallel,

and so performs the error correction for all the data qubits in the array simultaneously.



80 CHAPTER 3. GLOBALLY CONTROLLED QUANTUM ARRAYS

Proof of correctness for majority-vote sequence:
The majority value of three bits ai, bi, ci can be expressed as Mi = aibi + bici + aici.
For an (A,B, C)-section of the lattice in the state (ai, bi, ci), then, we want to show
that the majority-vote sequence transforms this state to (Mi,Mi,Mi).

(ai , bi , ci) 7 A
X
∗1−−→ (ai + bi, bi, ci)

7 C
X
1∗−−→ (ai + bi, bi, ci + bi)

7 B
X
11−−→ (ai + bi, bi + (ai + bi)(ci + bi), ci + bi)

= (ai + bi,Mi, ci + bi)

7 Areset−−−−→ (0,Mi, ci + bi)

7 Creset−−−−→ (0,Mi, 0)

7 A
X
∗1−−→ (Mi, Mi, 0)

7 C
X
∗1−−→ (Mi,Mi, Mi) ¤

Note that in the reset steps, the values reset were ai+bi and ci+bi. These parity bits form

the error syndrome, and together they determine the location of a bit-flip error. These

parities are the same whether the bit-flip error occurred on the codeword |000〉 or on the

codeword |111〉, and so they carry no information about the identity of the codeword, and

can be safely reset.

The above scheme will only correct a single bit-flip error within each block of three lattice

qubits. This reduces the effective probability of bit-flip errors from O(p) to O(p2) (but

only between operations, as discussed above). This error rate could be further reduced

by expanding the hardware. For example, an error rate of O(p4) could be achieved by

a scheme analogous to that above using a lattice having 9 distinct species. Scaling the

code in this way to achieve an effective bit-flip error-rate of ε would require increasing the

number of distinguishable species polylogarithmically in 1
ε
.

In the following section, we expand the scheme described here to protect against bit-flip

and phase-flip errors (which implies protection against arbitrary single-qubit errors).
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3.4.3 A 9-qubit code for a gca memory

In 1995 Peter Shor invented a 9-qubit code for quantum circuits by concatenating a 3-qubit

code for correcting bit flips with a 3-qubit code for correcting phase-flip errors [Sho95]. A

bit flip corresponds to a quantum X gate, and a phase flip corresponds to a Z gate. Because

any single-qubit operation can be written as a linear combination of {I,X, Z,XZ}, Shor’s

9-qubit code can correct an arbitrary single-qubit error within each codeword. Here we

show how this code can be implemented in hardware for a gca.

The 3-qubit phase-flip code is identical to the bit-flip code, except that data qubits are

encoded in the Hadamard basis so that α|0〉+β|1〉 is encoded as α|+++〉+β|−−−〉, where

|+〉 = 1√
2

(|0〉+ |1〉) (3.37)

|−〉 = 1√
2

(|0〉 − |1〉). (3.38)

In the Hadamard basis, phase flips resemble bit flips (Z|+〉 = |−〉). So the phase-flip code

can be implemented just as the bit-flip code, except with respect to the Hadamard basis.

Consider protecting a quantum memory (i.e. with no accommodation for a pointer) from

phase-flip errors, using the ABC-chain described in Section 3.2.2.1. We encode the data

qubits as

· · · yi yi yi · · ·
· · · A B C · · ·

where |yi〉 = H|xi〉. Then correction of phase-flip errors is accomplished by first applying

a sequence of pulses that implements the Hadamard gate on every qubit in the lattice, and

then performing majority-voting within the triplets as in the previous section. Finally we

return to the Hadamard basis with more Hadamard pulses. The error correction sequence

is

AH
∗∗, B

H
∗∗, C

H
∗∗, A

X
∗1 , CX

1∗ , BX
11 , Areset , Creset , AX

∗1 , CX
1∗, A

H
∗∗, B

H
∗∗, C

H
∗∗. (3.39)

For the 9-qubit code, we first encode every qubit using the phase-flip code, and then encode

each of the three qubits in that code using the bit-flip code. The result is the following
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encoding.

|0〉 ≡ 1
2
√

2

(
|0
q1

0
q2

0
q3

〉+ |1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉+ |1
q4

1
q5

1
q6

〉
) (

|0
q7

0
q8

0
q9

〉+ |1
q7

1
q8

1
q9

〉
)

(3.40)

|1〉 ≡ 1
2
√

2

(
|0
q1

0
q2

0
q3

〉 − |1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉 − |1
q4

1
q5

1
q6

〉
)(

|0
q7

0
q8

0
q9

〉 − |1
q7

1
q8

1
q9

〉
)

(3.41)

In the above expressions I have labeled the physical qubits with {q1, q2, . . . , q9}. A gca

hardware scheme convenient for implementing this code for a quantum memory consists of

a 2-D lattice of 9 distinct species, arranged as follows.

A B C A B C A B C · · · A B C

D E F D E F D E F · · · D E F

G H J G H J G H J · · · G H J

(3.42)

The qubits in the above lattice are coupled in rows and columns. That is, each A-qubit is

coupled to the C to its left, the B to its right, and the D below. Pulses of the form Al,r,b

are used for the A-qubits. Similarly, each D-qubit is coupled to the F -qubit to its left, the

E to its right, the A above, and the G below. Pulses of the form Dl,r,a,b are used for the

D-qubits. Pulses for the lattice qubits of the other types are defined accordingly.

We arrange each 9-qubit codeword on a 3× 3 section of the lattice as follows.

q1A
q2B

q3C

q4D
q5E

q6F

q7G
q8H

q9 J

(3.43)

If we assume that the hardware only allows us to directly load computational basis states

onto the lattice, it will be necessary to perform the encoding for the 9-qubit code using

an appropriate sequence of pulses. Assume the logical data qubits have been loaded onto

the A-qubits of the lattice. A quantum circuit that performs encoding for the Shor code

is shown in Figure 3.8.

The circuit in Figure 3.8 is equivalent to the following pulse sequence:

DX
∗∗1∗ , GX

∗∗1∗ , AH
∗∗∗ , DH

∗∗∗∗ , GH
∗∗∗ , BX

1∗∗ , CX
1∗∗ , EX

1∗∗∗ , FX
1∗∗∗ , HX

1∗∗∗ , JX
1∗∗∗. (3.44)
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Figure 3.8: A quantum circuit performing encoding for the Shor code.

To decode, we use the reverse pulse sequence:

JX
1∗∗∗ , HX

1∗∗∗ , FX
1∗∗∗ , EX

1∗∗∗ , CX
1∗∗ , BX

1∗∗ , GH
∗∗∗ , DH

∗∗∗∗ , AH
∗∗∗ , GX

∗∗1∗ , DX
∗∗1∗. (3.45)

We can correct a single bit-flip error, phase-flip error or both a bit-flip and a phase-flip

error, as follows. First we perform the correction procedure for bit-flip errors within each

of the three blocks of three qubits of the codeword. This is done using the majority-vote

scheme discussed in section 3.4.2, across each row. The pulse sequence is

AX
∗1∗ , CX

1∗∗ , BX
11∗ , Areset , Creset , AX

∗1∗ , CX
1∗∗ ,

DX
∗1∗∗ , FX

1∗∗∗ , EX
11∗∗ , Dreset , F reset , DX

∗1∗∗ , FX
1∗∗∗ ,

GX
∗1∗ , JX

1∗∗ , HX
11∗ , Greset , Jreset , GX

∗1∗ , JX
1∗∗. (3.46)

After this procedure, providing at most one bit-flip error had occurred in the codeword,

we are left with a 9-qubit state of the form

1
2
√

2

(
|0
q1

0
q2

0
q3

〉 ± |1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉 ± |1
q4

1
q5

1
q6

〉
) (

|0
q7

0
q8

0
q9

〉 ± |1
q7

1
q8

1
q9

〉
)

. (3.47)

To correct a phase-flip error, we must implement a procedure for performing a majority-

vote on the ± signs within the three blocks. This is accomplished by first implementing

an appropriate transformation (similar to the Hadamard for the 3-qubit phase-flip code as
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discussed above) and then doing the standard majority-vote procedure across the qubits

in the resulting blocks of three bits. The transformation we need to implement is one that

maps each block of three qubits in (3.47) according to

1√
2
(|000〉+ |111〉) 7→ |000〉

1√
2
(|000〉 − |111〉) 7→ |111〉. (3.48)

That is, we want to implement the transformation

1
2
√

2

(
|0
q1

0
q2

0
q3

〉+ (−1)φ1|1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉+ (−1)φ2|1
q4

1
q5

1
q6

〉
) (

|0
q7

0
q8

0
q9

〉+ (−1)φ3|1
q7

1
q8

1
q9

〉
)

7→ |φ1
q1

φ1
q2

φ1
q3

〉|φ2
q4

φ2
q5

φ2
q6

〉|φ3
q7

φ3
q8

φ3
q9

〉.
(3.49)

For example, suppose after performing the majority-vote to correct a bit-flip error, the

9-qubit state is

1
2
√

2

(
|0
q1

0
q2

0
q3

〉+ |1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉 − |1
q4

1
q5

1
q6

〉
)(

|0
q7

0
q8

0
q9

〉+ |1
q7

1
q8

1
q9

〉
)

(3.50)

(which would be the result if a phase-flip error had occurred on any of qubits 4,5 or 6).

Then after applying the transformation (3.49), the resulting state is
(
|0
q1

0
q2

0
q3

〉
)(

|1
q4

1
q5

1
q6

〉
)(

|0
q7

0
q8

0
q9

〉
)

. (3.51)

To correct the phase-flip error, we now do a majority-vote between the corresponding bits

of each of the three blocks; that is, between bits 1,4,7, between bits 2,5,8, and between bits

3,6,9.4 Since these triplets are lined up in columns in our lattice, this majority-vote can be

accomplished using the following pulse sequence (compare with sequence (3.36) discussed

earlier):

AX
∗∗1 , GX

∗∗1 , DX
∗∗11 , Areset , Greset , AX

∗∗1 , GX
∗∗1

BX
∗∗1 , HX

∗∗1 , EX
∗∗11 , Breset , Hreset , BX

∗∗1 , HX
∗∗1

CX
∗∗1 , JX

∗∗1 , FX
∗∗11 , Creset , Jreset , CX

∗∗1 , JX
∗∗1. (3.52)

4Alternatively, we could just do the majority-vote across one of these triplets (say the first), and then
copy the resulting value to the other qubits.
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After applying this pulse sequence to the state (3.51), the result is the state

(
|0
q1

0
q2

0
q3

〉
)(

|0
q4

0
q5

0
q6

〉
)(

|0
q7

0
q8

0
q9

〉
)

. (3.53)

Then we apply the inverse of the transformation (3.49) to get the corrected codeword

1
2
√

2

(
|0
q1

0
q2

0
q3

〉+ |1
q1

1
q2

1
q3

〉
)(

|0
q4

0
q5

0
q6

〉+ |1
q4

1
q5

1
q6

〉
)(

|0
q7

0
q8

0
q9
〉+ |1

q7

1
q8

1
q9

〉
)

. (3.54)

It remains to show how to implement the transformation (3.49) on the lattice. The following

pulse sequence accomplishes this.

CX
1∗∗ , BX

1∗∗ , AH
∗∗∗ , BX

1∗∗ , CX
1∗∗ ,

FX
1∗∗∗ , EX

1∗∗∗ , DH
∗∗∗∗ , EX

1∗∗∗ , FX
1∗∗∗ ,

JX
1∗∗ , HX

1∗∗ , GH
∗∗∗ , HX

1∗∗ , JX
1∗∗. (3.55)

Proof of correctness for pulse sequence implementing (3.49):
Consider the first block of three qubits, q1, q2, q3 (of types A, B,C respectively) in
(3.49). We show that the pulse sequence CX

1∗∗ , BX
1∗∗ , AH∗∗∗ , BX

1∗∗ , CX
1∗∗ has the

effect of transforming this block as

1
2
√

2

(
|0
q1

0
q2

0
q3

〉+ (−1)φ1 |1
q1

1
q2

1
q3

〉
)
7→ |φ1

q1

φ1
q2

φ1
q3

〉.

The rest of the sequence implements the required transformations on the remaining
two blocks analogously.

1√
2

(|000〉+ (−1)φ1 |111〉) 7 C
X
1∗∗−−−→ 1√

2

(|000〉+ (−1)φ1 |110〉)

7 B
X
1∗∗−−−→ 1

2
√

2

(|000〉+ (−1)φ1 |100〉)

= 1√
2

(|0〉+ (−1)φ1 |1〉) |0〉|0〉

7 A
H∗∗∗−−−→ |φ1〉|0〉|0〉

7 B
X
1∗∗−−−→ |φ1〉|φ1〉|0〉

7 C
X
1∗∗−−−→ |φ1〉|φ1〉|φ1〉 ¤
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3.4.4 A 1-dimensional implementation of the 9-qubit code

In the previous section, we arranged the 9 qubits into a 2-dimensional lattice. This spacial

arrangement is convenient, given the structure of the 9-qubit code. The same scheme could

be implemented on a 1-dimensional lattice structured as follows.

A B C D E F G H J A B C D E F G H J · · · (3.56)

The error correction operations can be implemented exactly as described in the previous

section, except that now we will have to add suitable exch pulse sequences to permute the

lattice qubits so that those that we previously had in columns move into adjacent positions

when we want to correct phase-flip errors.

An important consideration is that because a 1-dimensional implementation requires many

more exch pulses during the error correction operations, there will be a greater opportunity

for errors to occur during the execution of these operations. However, the above scheme is

not a fault-tolerant error correction procedure and so we have already implicitly assumed

that the error correction operations (pulses) are not themselves prone to errors.

3.4.5 Scaling the 9-qubit code

To achieve better error rates in the quantum circuit model, codes can be concatenated

at multiple levels by recursively encoding each of the qubits within a codeword. To con-

catenate an n-qubit codeword to k levels requires nk qubits. Concatenation may not be

a suitable approach for implementation-level error correction in a gca, however. If we

wanted a k-level concatenation of the 9-qubit code as implemented in the gca described in

the previous section, we would need a much larger lattice having 9k distinguishable species.

This may very quickly exceed the capabilities of available hardware.

In this section I propose an alternative method of scaling the 9-qubit code in finer gra-

dations than can be achieved through concatenation. Specifically, I show how it could be

generalized to a (2n + 1)2-qubit code for any n ≥ 1, requiring a lattice with (2n + 1)2

distinguishable species. This code will be able to correct up to n single-qubit errors.
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Letting N = (2n + 1), the basic idea is to encode the logical basis states in N2-qubit

codewords according to

|0〉 ≡ 1

2
N
2

(
| 0
q1,1

0
q1,2

. . . 0
q1,N

〉+ | 1
q1,1

1
q1,2

. . . 1
q1,N

〉
)(

| 0
q2,1

0
q2,2

. . . 0
q2,N

〉+ | 1
q2,1

1
q2,2,

. . . 1
q2,N

〉
)

. . .

. . .

(
| 0
qN,1

0
qN,2

. . . 0
qN,N

〉+ | 1
qN,1

1
qn,2

. . . 1
qN,N

〉
)

(3.57)

|1〉 ≡ 1

2
n
2

(
| 0
q1,1

0
q1,2

. . . 0
q1,N

〉 − | 1
q1,1

1
q1,2

. . . 1
q1,N

〉
)(

| 0
q2,1

0
q2,2

. . . 0
q2,N

〉 − | 1
q2,1

1
q2,2,

. . . 1
q2,N

〉
)

. . .

. . .

(
| 0
qN,1

0
qN,2

. . . 0
qN,N

〉 − | 1
qN,1

1
qN,2

. . . 1
qN,N

〉
)

.

(3.58)

We arrange the N2-qubits into a 2-D lattice with the same number of distinguishable

species as follows.

q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

. . .
...

qN,1 qN,2 · · · qN,N

(3.59)

The encoding can be performed by a circuit analogous to that in Figure 3.8, which can

be simulated by a suitable pulse sequence. Decoding can be achieved by the reverse pulse

sequence.

To perform error correction, the first step is to implement the majority-vote across each

row (qi,1, . . . , qi,N) (for 1 ≤ i ≤ N) to correct bit-flip errors. Then we implement a trans-

formation that maps each row of N qubits according to

1√
2

(|00 . . . 0〉+ |11 . . . 1〉) 7→ |00 . . . 0〉
1√
2

(|00 . . . 0〉 − |11 . . . 1〉) 7→ |11 . . . 1〉. (3.60)

Following this transformation, we perform the majority-vote across qubits (q1,j, . . . , qN,j)

(for 1 ≤ j ≤ N) to correct phase-flip errors. Finally, the inverse of the transformation

(3.60) is applied.
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The transformation (3.60) can be implemented in a manner directly analogous to that

used in the previous section for the 9-qubit code. The majority-vote requires more careful

consideration. We will discuss the procedure in terms of a 1-dimensional lattice, consisting

of N distinct species (T1), . . . , (TN) (the procedure can easily be adapted to apply to any

row or column of the lattice (3.59)). Pulses of the form (Ti)
U
lr are used to apply U to the

qubit of type (Ti) whenever the left and right neighbours are in the basis states |l〉 and |r〉
respectively. Assume the lattice is in some basis state |y1〉|y2〉 . . . |yN〉, as shown below.

y1 y2 y3 y4 · · · yN

(T1) (T2) (T3) (T4) · · · (TN )

Consider y1, y2, . . . yN to be logical bits that we wish to perform the majority-vote on

(transforming the n lattice qubits to the basis state |00 . . . 0〉 or |11 . . . 1〉 depending on

whether the majority of {y1, y2, . . . yN} is 0 or 1).

One approach is to select a triple {yi, yj, yk} for i, j, k selected randomly from {1, 2, . . . , n},
and then perform the majority-vote on this triple. The (classical) control program chooses

the random i, j, k, and then generates the required exch pulses to bring yi, yj, yk into

adjacent positions on the lattice. The majority-vote is then implemented for this triple

by a pulse sequence analogous to (3.36). Repeating this procedure a sufficient number of

times gives a probabilistic method for the majority-vote. After the last majority-vote on a

triple, the resulting value is taken to be the majority of all n bits. The remaining bits are

then zeroed with the reset operation, and the majority is copied into them by a suitable

sequence of exch and (Tm)X
lr pulses.

I will now show that it may be possible to implement the majority-vote step for the above

code deterministically, without resorting to the random selection of triples, and without

requiring any additional ancillary qubits. Recall that this must be done in a manner so

that our applications of the reset operation do not cause any unwanted coupling with

the environment. Consider computing the majority value M of N = 2n + 1 bits, as well

as a syndrome S indicating those positions where the value of the bit does not agree with

the majority. The majority M can be stored in a single bit. As long as at most n bit-flip
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errors occurred, the number of possible syndromes is

n∑
i=0

(
2n + 1

i

)
= 22n.

So the syndrome can be stored in 2n bits. This means that the majority value and the

syndrome can together be stored in N = 2n + 1 bits. Given an N -bit codeword that has

been subjected to at most n bit-flip errors resulting in the state |x〉, the map

P : |x〉 ↔ |M, S〉

is a permutation of the N bit strings. If we can implement this permutation, then we

can safely reset the syndrome |S〉 (which is independent of M), and then re-encode the

majority value M to obtain the original (corrected) codeword.

Each N -tuple is encoded on a lattice segment containing N distinct species. The lattice

segment can be thought of as an N -qubit quantum computer on which we have local control.

So if we can show that there exists a quantum circuit that will implement the permutation

P without using any ancillary qubits, then we can implement the error correction step on

the lattice.

By methods in [BBC+95] (see Cor. 7.6 of that paper) we can implement any controlled-

not gate with an arbitrary pattern of (N − 1) control qubits, on an N -qubit circuit with

O(N2) cnot and single-qubit gates. Each such gate implements a permutation of the

N -bit strings that exchanges two strings differing in one bit, and leaves the remaining

strings alone. By a simple inductive argument, we can then implement any permutation

that exchanges any desired pair of strings, and thus that we can implement any desired

permutation of the N -bit strings on an N -qubit circuit. In general the circuits produced

by this approach will have exponential depth, but it may be that for suitable encodings of

the syndromes S, an efficient circuit can be found for the required permutation P .

Following the strategy outlined in Section 3.4.4 we can implement the scaled codes on

a 1-dimensional lattice, although appropriate exch operations are needed to shuttle the

lattice qubits into the positions required for error correction (and this will effect the error

threshold as mentioned in Section 3.4.4). This observation leads us to the following.
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Fact 3.4.1 Given a 1-D lattice configured as a repeating chain of (2n+1)2 distinguishable

qubit species sharing anisotropic nearest-neighbour couplings, we can implement an error

correcting code for a gca memory that protects against n single-qubit errors within each

block of (2n + 1)2 lattice qubits.

3.4.6 From a robust gca memory to a robust implementation of

SPA

3.4.6.1 For the 3-bit code

In the previous sections we considered reliable implementations of gca memory; we en-

coded the data qubits but gave no provision for implementing a pointer. In this section

we consider ways to extend our implementations of gca memory to provide reliable im-

plementations of SPA.

Consider the 3-bit code we saw in Section 3.4.2. One possibility for introducing the pointer

is to form a 2-dimensional lattice by adding a second 1-dimensional chain coupled to the

first. The second chain could be another ABC-chain, or it could have a simpler structure.

It could consist of just a single species D, each coupled to the A-, B- or C-qubit beside it.

The D-qubits do not have to be coupled to each other. The pointer is represented on the

D qubits, as illustrated below (where the pointer is shown to be addressing the ith data

qubit).

A B C A B C · · · A B C A B C · · · A B C A B C

0 0 0 x1 x1 x1 · · · xi−1 xi−1 xi−1 xi xi xi · · · xN xN xN 0 0 0

0 0 0 0 0 0 · · · 0 0 0 1 1 1 · · · 0 0 0 0 0 0

D D D D D D · · · D D D D D D · · · D D D D D D

pointer

We suppose the hardware now provides pulses of the form TU
lrc, where T ∈ {A,B,C},

l, r, c ∈ {0, 1, ∗} and U is a 1-qubit unitary. This pulse has the effect of applying U to

all qubits of type T whose left and right neighbours are in states l and r respectively,

and whose D-type neighbour in the parallel chain is in the state c. We also allow the
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(unconditional) reset pulse T reset targeting qubits of type T . For the D qubits in the

lower chain, the hardware provides pulses DU
c . Here, c ∈ {0, 1, ∗} represents the state of

the A,B or C neighbour in the parallel chain.

Error correction for the data array can be performed exactly as before with the sequence

AX
∗1∗ , CX

1∗∗ , BX
11∗ , Areset , Creset , AX

∗1∗ , CX
1∗∗, (3.61)

which is directly analogous to Sequence (3.36). To correct the state of the pointer, we

simply exchange the D-chain with the ABC-chain by the following pulse sequence.

DX
1 , AX

∗∗1 , BX
∗∗1 , CX

∗∗1 , DX
1 . (3.62)

Since the pointer is encoded in the manner of the bit-flip code (triplet repetition), we can

use the same pulse sequence as above to correct errors on the pointer state, which now

occupies the ABC-chain.

To move the pointer left and right along the D-chain, we use the same trick, and swap

the state of the D-chain with the state of the ABC-chain, and move the pointer along the

ABC-chain before swapping it back down to the D-chain.

We can implement SPA by this scheme as follows.

PL = DX
1 , AX

∗∗1 , BX
∗∗1 , CX

∗∗1 , DX
1 , CX

10∗ , CX
01∗ , BX

10∗ , BX
01∗ , AX

10∗ , AX
01∗ , (3.63)

DX
1 , AX

∗∗1 , BX
∗∗1 , CX

∗∗1 , DX
1 (3.64)

PR = DX
1 , AX

∗∗1 , BX
∗∗1 , CX

∗∗1 , DX
1 , AX

01∗ , AX
10∗ , BX

01∗ , BX
10∗ , CX

01∗ , CX
10∗ , (3.65)

DX
1 , AX

∗∗1 , BX
∗∗1 , CX

∗∗1 , DX
1 (3.66)

GU = CX
1∗1 , BX

1∗1 , AU
∗∗1 , BX

1∗1 , CX
1∗1 (3.67)

CZ = DX
1 , BX

∗∗1 , DX
1 , CZ

11∗ , BX
∗∗1 , DX

1 (3.68)

To implement the CZ operation, I used the fact that for the 3-bit code it suffices to imple-

ment a controlled-Z gate between any pair of qubits, one qubit from the first codeword,

and one qubit from the second codeword. We swapped the B-qubits with the D-qubits

below, and then controlled the Z operation on the C-qubits, conditioned on the A-qubit

to its right and the B-qubit to its left (which now contains the pointer bit).
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After every SPA instruction, error correction can be applied as described above (for both

the data and the pointer). Notice that the data array and pointer are only protected from

bit-flip errors between instructions of SPA. During the execution of a sequence of pulses

for a basic instruction, the encoding is not maintained and the system is unprotected from

errors (as before, this is not a fault-tolerant construction).

3.4.6.2 For the 9-qubit code and scaled versions

In Section 3.4.3 we saw how to implement the 9-qubit code for protecting a quantum

memory in a 2-dimensional lattice against arbitrary single-qubit errors. It is a natural

extension of the 3-bit code implementation discussed in Section 3.4.2. This scheme can be

extended to implement a pointer, in a manner analogous to what was done for the 3-bit

code above. We could add a chain of qubits of a tenth species, K, and couple this chain

to the (G,H, J)-row of the 9-qubit code implementation. As before, the K qubits do not

have to be coupled to each other. This setup is illustrated below.

A B C A B C A B C · · · A B C

D E F D E F D E F · · · D E F

G H J G H J G H J · · · G H J

K K K K K K K K K · · · K K K

(3.69)

By the observation in Section 3.4.4, we could alternatively arrange the system as follows.

A B C D E F G H J A B C D E F G H J · · ·
K K K K K K K K K K K K K K K K K K · · · (3.70)

The description of the implementation of SPA is somewhat more compact for the arrange-

ment (3.69), so we will examine that one in detail. We redefine the pulses for the (G,H, J)

qubits to account for the state of the K-qubits coupled to them, for example Gl,r,a,b. Pulses

for the K-qubits are of the form Ka since they are only coupled to the qubits in the row

above them.

The data qubits are encoded on the (A,B, . . . J)-qubits using the Shor code, as described

in Section 3.4.3. The pointer is encoded on the K-qubits. The pointer can be shuttled
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around in a manner analogous to what we did in Section 3.4.6.1, by swapping the row of

K-qubits with the (G,H, J)-row above it, and shuttling along that row before swapping

back down to the K-row. Since the pointer is encoded using a 3-bit repetition code, we

can correct bit-flip errors on the pointer just as we did in Section 3.4.6.1, by swapping to

the (G,H, J)-row and doing the majority-vote there.

Using the above scheme, we can implement SPA as follows.

PL = KX
1 , GX

∗∗∗1 , HX
∗∗∗1 , JX

∗∗∗1 , KX
1 , JX

10∗∗ , JX
01∗∗ , HX

10∗∗ , HX
01∗∗ , GX

10∗∗ , GX
01∗∗ ,

KX
1 , GX

∗∗∗1 , HX
∗∗∗1 , JX

∗∗∗1 , KX
1

PR = KX
1 , GX

∗∗∗1 , HX
∗∗∗1 , JX

∗∗∗1 , KX
1 , GX

01∗∗ , GX
10∗∗ , HX

01∗∗ , HX
10∗∗ , JX

01∗∗ , JX
10∗∗ ,

KX
1 , GX

∗∗∗1 , HX
∗∗∗1 , JX

∗∗∗1 , KX
1

GU = AX
∗1∗ , BX

∗1∗ , DX
∗1∗∗ , EX

∗1∗∗ , GX
∗1∗∗ , HX

∗1∗∗ ,

CH
∗∗∗ , FH

∗∗∗∗ , JH
∗∗∗∗ , CX

∗∗1 , FX
∗∗∗1 , AU

∗∗∗∗ ,

FX
∗∗∗1 , CX

∗∗1 , JH
∗∗∗∗ , FH

∗∗∗∗ , CH
∗∗∗ , HX

∗1∗∗ ,

GX
∗1∗∗ , EX

∗1∗∗ , DX
∗1∗∗ , BX

∗1∗ , AX
∗1∗

CZ = GX
∗∗∗1 , HX

∗∗∗1 , JX
∗∗∗1 , exchDG , exchEH , exchFJGX

∗∗∗1 , HX
∗∗∗1 , JX

∗∗∗1 ,

exchAD , exchBE , exchCF , exchDG , exchEH , exchFJ ,

GX
∗∗∗1 , HX

∗∗∗1 , JX
∗∗∗1 , exchDG , exchEH , exchFJ ,

exchAD , exchBE , exchCF , exchDG , exchEH , exchFJ

To implement the GU operation we decoded the codeword into the J-qubit, and then

controlled the U operation on the K-qubit below it, and then re-encoded. To implement

the CZ instruction we used the fact that for the Shor code the Z operation is implemented

by applying the X gate to each of the 9 qubits in the codeword. Conditioned on the pointer

in the K-qubits, first X is applied to the qubits in the (G, H, J) row. Then the rows are

permuted by exch pulse sequences and the process is repeated until each qubit in the

codeword has had X applied, conditioned on the pointer.

The above strategy generalizes in a straightforward manner to give an implementation of

SPA protected by the scaled code described in Section 3.4.5. When implemented in the
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1-D manner described in Section 3.4.4, this scheme demonstrates the following (which is

an extension of Fact 3.4.1).

Fact 3.4.2 Given a 1-D lattice configured as a repeating chain of (2n+1)2 distinguishable

qubit species sharing anisotropic nearest-neighbour couplings, where each lattice qubit is

additionally coupled to a separate qubit of a ((2n + 1)2 + 1)th distinguishable species, we

can implement SPA with an error correcting code that protects against n single-qubit errors

within each block of (2n + 1)2 lattice qubits.

3.4.7 A general construction for implementation-level codes on

lattices

An implementation-level error correction scheme for a gca system can be designed based on

any quantum error correcting code. Consider a code having m-qubit codewords. Suppose

the error correction operation requires a ancillary qubits. A quantum memory can be

implemented on a lattice having k = (m+a) distinguishable species of lattice qubits. Each

k-tuple of lattice qubits can be treated as a small quantum computer which can perform

the error correction operation for a single codeword.

Given a reliable implementation of a quantum memory in a gca system using a suitable

error correcting code, a scheme for implementing SPA can be designed in the following way.

Suppose the gca memory is implemented on a lattice having k distinguishable species, say

A1, . . . , Ak. A pointer can be implemented by adding a (k + 1)st distinguishable species

Ak+1, and coupling an Ak+1-qubit to each and every lattice qubit of species A1 through

Ak. The PL and PR operations can be implemented by swapping the A1-qubits with their

neighbouring A1 . . . Ak qubits, shuttling the pointer state down to the next A1 qubit (left

or right), and then swapping the pointer states back to the Ak+1-qubits. For specific

architectures, there may certainly be more efficient schemes than this.
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3.5 gca models with parallelism

Suppose we have implemented SPA, perhaps using a scheme like the ones described in

the previous sections. A natural question is whether we can achieve fault tolerance by

implementing scalable error correcting codes directly using the basic instructions of SPA

(this is the data-level error correction that was mentioned earlier, and will be explored

at greater length in Section 3.6). We can immediately see that fault-tolerant programs

can not be expressed using SPA, because that scheme does not provide enough parallelism

(SPA provides no parallelism at all). It has been shown [ABO97] that for fault tolerance

we require better than a logarithmic degree of parallelism (that is, at must be possible

to perform gates on at least a logarithmic number of qubits simultaneously). The basic

problem is that without parallelism, errors may occur faster than they can be corrected.

In the next subsection I will define a class of gca models with higher degrees of parallelism.

The basic idea is to allow the gca to use multiple pointers simultaneously, and allow subsets

of these pointers to be activated and deactivated at specific times during a computation.

Suppose we want to implement the well known 5-qubit code to protect the data qubits in

a gca. Parallelism is required when we want to do an error correction step. An identical

error correction operation would be applied to each 5-qubit codeword simultaneously. In

a gca this can be achieved by activating a uniformly spaced set of pointers, one for each

encoded data qubit. Then global pulses will affect each of these pointers in the same

way, so that an identical error correction circuit is simulated on each codeword. After the

error correction operation, all the pointers except for one are deactivated, and the single

remaining active pointer is used to direct the next stage of the computation. To achieve

fault tolerance using this approach, we will need to be able to simulate circuits that use

concatenated versions of the error correcting code, and we will explore this problem later.

3.5.1 The language MPA(k)

Our first parallel gca model will be described by a language that I will call MPA(k). The

parameter k is an integer specifying the degree of parallelism, which in practice might be

dictated by size of an error correcting code that we wish to use. The state of such a gca
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at any time is given as follows.

State for MPA(k)

(ρ,m, b, o)

(3.71)

As before, ρ is the global state of the data array. For simplicity we will assume that the

number N of data qubits is a multiple of k (this is natural if we are proposing to divide the

N data qubits into blocks (codewords) of k data qubits each). The parameter m gives the

mode of operation: m = 0 for single-pointer mode (in which there is only a single active

pointer), and m = 1 for multi-pointer mode (in which there is an active pointer in every

block of k data qubits). For single-pointer mode, the parameter b ∈ {0, . . . , N/k − 1}
indicates the block in which the active pointer currently resides (blocks are numbered from

0), and the parameter o ∈ {1, . . . , k − 1} is the offset within this block (offsets numbered

from 1). That is, the single active pointer is at data qubit kb + o. For multi-pointer mode,

b indicates the block in which the single pointer resided just prior to the change to multi-

pointer mode (that is, the last block occupied by a single active pointer), and o indicates

the offset of each of the N/k active pointers. That is, in multi-pointer mode there are

active pointers at data qubits o, o + k, o + 2k, . . . , o + (N − 1)k.

For activating and deactivating the pointers, we have the following basic instruction in

MPA(k).

PNTR : (ρ,m, b, 1) 7→ (ρ,m⊕ 1, b, 1) (3.72)

If the instruction PNTR is called from a state (ρ,m, b, o) with o 6= 1, the first step could be to

execute a sequence of PL instructions to move the pointer(s) to the offset o = 1. Then PNTR

will map (ρ, 0, b, 1) to (ρ, 1, b, 1) and conversely. The idea is that the pointers are moved

to positions 1, k + 1, 2k + 1, . . . (in the case of a single pointer it is moved to position 1),
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and then PNTR toggles between the single and multiple pointer modes. When toggling to

multi-pointer mode, the state records the block in which the single pointer resided before

the switch (this is important so that the single data pointer does not have to travel too far

to resume its previous location after we switch back to single pointer mode following an

error correction cycle).

The basic instructions PL and PR now have the effect of moving every active pointer one

place to the left or right respectively.

PL :
(
ρ,m, b, o

) 7→ (
ρ,m, b− δo,1, o− 1 + (k − 1)δo,1)

PR :
(
ρ,m, b, o

) 7→ (
ρ,m, b + δo,k−1, o + 1− (k − 1)δo,k−1)

(3.73)

The basic instruction GU has the effect of applying the 1-qubit gate U to every data qubit

currently addressed by an active pointer.

GU :
(
ρ,m, b, o

) 7→ (
U (m,b,o)ρ U (m,b,o)†,m, b, o

)
(3.74)

The operator U (m,b,o) appearing above is defined as follows.

U (m,b,o) ≡





(I⊗kb+o−1)⊗ U ⊗ (I⊗N−kb−o) if m = 0,

(I⊗o−1)⊗ U ⊗ (I⊗k−1)⊗ U ⊗ · · · ⊗ (I⊗k−1)⊗ U ⊗ (I⊗N−o) if m = 1.

(3.75)

We will also allow pulses of the form Greset, by taking U to be the (non-unitary) reset-to-0

operation. Note that this basic instruction might be implemented similarly to GU using

the dissipative pulses described in Section 3.4.1. These basic operations will be required

for implementing data-level error correction.

The CZ instruction also behaves as before, except now with respect to the data qubits at
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every position indexed by an active pointer. Additionally, there is a constraint that k > 1,

otherwise pointers at adjacent locations would conflict.

CZ :
(
ρ, m, b, o

) 7→ (
cZ(m,b,o,o+1)ρ cZ(m,b,o,o+1)†,m, b, o

)
(3.76)

The operator cZ(m,b,o,o+1) is defined as follows.

cZ(m,b,o,o+1) ≡





(
I⊗kb+o−1

)⊗
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
⊗ (

I⊗N−kb−o−1
)

if m = 0

(I⊗o−1)⊗
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
⊗ (

I⊗k−2
)⊗

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
⊗ (

I⊗k−2
)⊗ . . .

. . .⊗ (
I⊗k−2

)⊗
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
⊗ (

I⊗N−o−1
)

if m = 1.

(3.77)

We summarize the basic instructions for MPA(k) below.

Basic instructions of MPA(k)

PNTR : (ρ,m, b, 1) 7→ (ρ,m⊕ 1, b, 1)

PL :
(
ρ,m, b, o

) 7→ (
ρ,m, b− δo,1, o− 1 + (k − 1)δo,1)

PR :
(
ρ,m, b, o

) 7→ (
ρ,m, b + δo,k−1, o + 1− (k − 1)δo,k−1)

GU :
(
ρ,m, b, o

) 7→ (
U (m,b,o)ρ U (m,b,o)†,m, b, o

)

CZ :
(
ρ,m, b, o

) 7→ (
cZ(m,b,o,o+1)ρ cZ(m,b,o,o+1)†,m, b, o

)

(3.78)



3.5. GCA MODELS WITH PARALLELISM 99

3.5.2 An approach to implementing MPA(k)

In this section I describe an approach for implementing MPA(k) with the ABC-chain de-

scribed in Section 3.2.2.1. The main idea is one that appeared in [BBK04], and that is to

use locations in the lattice called “switching stations” to selectively activate and deactivate

the pointers.

The lattice is organized into sections. Some of the sections contain the encoding of a data

qubit ρi (encoded by an appropriate state on that section of the lattice) and the pres-

ence/absense of an active pointer addressing that data qubit. Other sections contain the

encoding of switching stations (SS), and still other sections are “dummy switching sta-

tions” (SS). The dummy switching stations are the same length as the switching stations,

but contain all |0〉 qubits and so do not behave like switching stations. Their purpose is

to ensure that the data qubits are evenly spaced, which is a convenience (more compli-

cated schemes could be devised that do not require dummy switching stations). There is

a switching station immediately to the left of each of the data qubits d1, dk+1, . . . , dN−k+1.

There is a dummy switching station immediately to the left of all other di sections.

For k = 3, the arrangement of these lattice sections is illustrated below. Each section

depicted here is composed of a fixed number of lattice qubits.

SS d1 SS d2 SS d3 SS d4 SS d5 SS d6 SS . . . SS dN−2 SS dN−1 SS dN

(3.79)

Suppose the machine is in the single-pointer mode, the pointer is at data qubit kb+ o, and

we now wish to enter multi-pointer mode for an error correction cycle (that is, we want to

implement the PNTR basic instruction). The procedure is to move the single pointer into

the nearest SS and then to “mark” that SS (so that we can later reactivate the single

pointer in this location). Then a suitable pulse sequence spawns active pointers inside all

of the SS (but not the SS) and these pointers move out of the SS to address the data

qubits d1, dk+1, . . . , dN−k+1. Now we are in multi-pointer mode, and the active pointers can

move within their blocks to direct error correction operations on each block in parallel.
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After the error correction cycle, every pointer is moved back into the SS from which it

came. Then a sequence of pulses will have the effect of deactivating the pointer in every SS

except the one that was previously marked as the last single-pointer position. This leaves

only one active pointer in the marked SS, which can then be moved back to its original

position within that block (in a constant number of steps). Using the above scheme, we can

always do a round of error correction after a constant number of single-pointer operations.

I now describe a way to implement the various lattice sections on the ABC-chain described

in Section 3.2.2.1. A section of the lattice containing a data qubit in a basis state di = |xi〉
is formatted as follows.

di = xi 0 0 0 0 0

A B C A B C
(3.80)

In the case that di is currently being addressed by an active pointer, we use the same

encoding that was used in Section 3.2.2.1, putting the B- and C-qubits to the right of xi

in the basis state |1〉.

di

↑
= xi 1 1 0 0 0

A B C A B C
(3.81)

The switching stations and dummy switching stations are formatted as follows.

SS = 1 0 0 1 0 0 0 0 0

A B C A B C A B C
(3.82)

SS = 0 0 0 0 0 0 0 0 0

A B C A B C A B C
(3.83)

When the pointer is “parked” in a switching station, the encoding is as follows.
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SS

↑
= 1 1 1 1 0 0 0 0 0

A B C A B C A B C
(3.84)

Notice that, with respect to each (A,B,C)-triple, the encoding given above is consistent

with that described in Section 3.2.2.1. That is, in the computational basis, each triple

contains a |0〉 or a |1〉 in the A-qubit, followed by either |00〉 or |11〉 in the B, C-qubits.

This means that we can use some of the pulse sequences already derived in Section 3.2.2.1

as primitives for implementing basic operations in this scheme.

Consider moving the pointer(s) to the left or right. In Section 3.2.2.1 we saw a pulse

sequence for moving the pointer left or right one (A,B,C)-triple. To move the pointer

between two adjacent data qubits (which are separated by a SS or SS), we use this sequence

repeatedly to move to the left or right by 5 (A,B, C)-triples. Single-qubit operations GU are

implemented exactly as in Section 3.2.2.1. For CZ instructions between non-neighbouring

data qubits, we first move the pair of data qubits into adjacent positions by a sequence

of SWAP instructions, which can be implemented using GU and CZ instructions between

neighbouring data qubits.

To implement the PNTR operations, first suppose there is a single active pointer, and we

wish to enter multi-pointer mode. The first step is to move the active pointer to the nearest

SS, so that the SS-section of the lattice is configured as in (3.84).

The next step is to mark that switching station. This is accomplished by moving the

pointer to the next BC pair to the right, and then using an AX
01 pulse. This transforms

that SS-section of the lattice into the following configuration.

1 0 0 1 1 1 1 0 0

A B C A B C A B C
(3.85)

At this point the (A,B,C,A)-sequence composing the first 4 lattice qubits of every SS

contains the pattern 1, 0, 0, 1. The (A, B, C, A)-sequence in the middle of every SS contains

the pattern 1, 0, 0, 0, except for the marked SS, in which these middle qubits contain the

pattern 1, 1, 1, 1. The SS’s are the only locations in the lattice containing an (A,B,C,A)-
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sequence configured with a 1 on both of the A qubits. We exploit this fact to implement a

sequence that will deactivate the pointer currently residing in the middle (B, C)-pair of the

marked switching station, and will activate new pointers in the leftmost (B,C)-pairs of all

switching stations (including the marked one). To achieve this, we want to implement the

following transformation on all (A,B,C, A)-sequences in the lattice (where ai, bi, ci, ai+1

are the binary values describing basis states of the 4 adjacent qubits of types A,B,C,A,

and the addition and multiplication are performed mod 2).

(ai , bi , ci , ai+1) 7→ (ai , bi + aiai+1 , ci + aiai+1 , ai+1) (3.86)

Notice that the above transformation has the desired effect on the lattice states within the

SS’s, and has no effect at any other position in the lattice (including the SS’s). It can be

implemented with a pulse sequence as follows.

(ai , bi , ci , ai+1) 7 C
X
∗1−−→ (ai , bi , ci + ai+1 , ai+1) (3.87)

7 B
X
11−−→ (ai , bi + ai(ci + ai+1) , ci + ai+1 , ai+1) (3.88)

7 C
X
∗1−−→ (ai , bi + ai(ci + ai+1) , ci , ai+1) (3.89)

7 B
X
11−−→ (ai , bi + ai(ci + ai+1) + ciai , ci , ai+1) (3.90)

7 B
X
11−−→ (ai , bi + ai(ci + ai+1) + ciai , ci , ai+1) (3.91)

= (ai , bi + aiai+1 , ci , ai+1) (3.92)

7 B
X
1∗−−→ (ai , bi + aiai+1 + ai , ci , ai+1) (3.93)

7 C
X
11−−→ (ai , bi + aiai+1 + ai , ci + (bi + aiai+1 + ai)ai+1 , ai+1) (3.94)

7 B
X
1∗−−→ (ai , bi + aiai+1 , ci + (bi + aiai+1 + ai)ai+1 , ai+1) (3.95)

7 C
X
11−−→ (ai , bi + aiai+1 , (3.96)

ci + (bi + aiai+1 + ai)ai+1 + (bi + aiai+1)ai+1 , ai+1) (3.97)

= (ai , bi + aiai+1 , c + aiai+1 , ai+1) (3.98)
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Noting that (BX
11, B

X
1∗) = BX

10, the above pulse sequence can be abbreviated to:

CX
∗1 , BX

11 , CX
∗1 , BX

10 , CX
11 , BX

1∗ , CX
11. (3.99)

After using the above sequence to enter multiple-pointer mode, each SS will have a pointer

encoded in its leftmost (B, C)-pair. These pointers can now be moved around and can

direct operations on the data blocks (codewords) in parallel. When we wish to return to

the single-pointer mode, the pointers are returned to the leftmost (B, C)-pair in each SS.

Then applying the above sequence again will deactivate all the pointers in these positions,

and at the same time reactivate the single pointer in the middle (B, C)-pair of the marked

SS. Before moving off, the single pointer can be used to “unmark” the SS.

In Appendix B, I describe the strategy proposed by Benjamin for implementing switching

stations for the architecture described in [Ben00].

3.6 Data-level error correction

3.6.1 The general approach

Data-level error correction using MPA(k) can be accomplished by simulating a quantum

circuit that uses one of the standard quantum error correcting codes (e.g. Steane’s 7-qubit

code). During an error correction step in such a circuit, all of the codewords are corrected

in parallel, each by an identical procedure. Since the codewords are formed by regular

groupings of qubits, the regularly spaced pointers of MPA(k) can be employed.

A circuit using m-qubit codewords at one level of concatenation could be simulated by

MPA(k) in the following manner. First we rearrange the circuit so that parallelism is only

exploited during an error correction cycle. So, except for error correction cycles, the circuit

can be simulated with only a single active pointer (exactly as in SPA). For error correction

cycles, the circuit will perform identical correction operations on each codeword. Suppose

an error correction operation for each m-qubit codeword uses a ancillary qubits, and let

k = m + a. Then we can simulate the error correction cycle by a program in MPA(k)

as follows. First use a PNTR instruction to activate one pointer for each block of k data
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qubits (each block contains a codeword, plus a ancillary data qubits for the error correction

operation). Then we use Greset instructions to reset the ancillary data qubits to |0〉, and

then use the appropriate instructions to simulate the error correcting circuit operations

(this happens for each codeword in parallel). After the error correction cycle, we use a

PNTR instruction to deactivate all but a single pointer, in preparation to simulate the next

part of the circuit.

3.6.2 Example: the Steane code

Suppose we wish to simulate a quantum circuit that uses the 7-qubit Steane code [Ste96].

We will divide the data qubits into blocks, each block containing 7 qubits for a codeword,

and an additional 3 ancillary qubits for performing the error correction operation. Note

that at the beginning of every error correction cycle these three qubits will have to be reset

to |0〉. Figure 3.9 shows a quantum circuit for performing the encoding operation for the

Steane code, and Figure 3.10 shows a quantum circuit for performing error correction.

Figure 3.9: A circuit for performing encoding for the Steane code.

Suppose the data array has been initially loaded so that the data qubits (not yet in Steane

codewords) are located at positions 10b+1, for each block b of 10 data qubits (and suppose

all other data qubits are set to |0〉). If we put the gca into multi-pointer mode (m = 1)

and the pointer within each block b is located at position 10b + 1, then the following

MPA(10) program implements the encoding operation, computing the Steane codeword for

each logical qubit into data qubits 10b + 1, 10b + 2, . . . , 10b + 7 for each block b.



3.6. DATA-LEVEL ERROR CORRECTION 105

Figure 3.10: A circuit for performing error correction for the Steane code.

MPA(10) program for encoding for the Steane code

CNOTR(2) , PR , CNOTR , PR , PR , PR , GH , PR , GH , PR , GH , CNOTL(3) , CNOTL(5) ,

CNOTL(6) , PL, CNOTL(2) , CNOTL(3) , CNOTL(5) , PL , CNOTL , CNOTL(2) , CNOTL(3) , PL
, PL , PL , PL.

In the above program, CNOTR(k) and CNOTL(k) are shorthand expressions for routines to

implement distance-k cnot gates as described in Section 3.2.4.

To find a program to simulate the error correction circuit (Figure 3.10), we can proceed

with the method described in Section 3.2.4. The first part of the program would consist

of a sequence of seven GH and PR instructions, followed by three Greset and PR instructions.

Then a suitable sequence of pointer-movement and CNOTR(k) routines will be used for

the second stage of the circuit. The trickiest part of the rewriting procedure will be the

triple-controlled not gates in the last stage the circuit. Methods from [BBC+95] can be

employed for these. The resulting MPA (10) program will be quite lengthy.

Although MPA (10) programs for simulating even modest circuits can become quite long,

they have the nice property of expressing gca programs in a manner that is abstracted

from the underlying architecture used to implement them.
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3.6.3 Code-concatenation requires more sophisticated parallelism

A fault-tolerant quantum circuit may use an m-qubit code concatenated to some number

of levels, say l. A codeword at level i (for any 1 ≤ i ≤ l) consists of m codewords at level

i − 1. Suppose that the error correction operation for the basic code requires a ancillary

qubits. In a fault-tolerant scheme using concatenated codes, the error correction operation

at level i would typically use a ancillary codewords from level (i− 1).

Let k = m + a. Implementing the error correction operation for each level-i codeword in

parallel will require an active pointer for every ki data qubits in the array. For example, at

the second level of concatenation, each block consists of k2 data qubits. To correct errors

at the second level we must have an active qubit for each such block of data qubits. To

implement a fault-tolerant scheme for data-level error correction by simulating a circuit

using concatenated codes will therefore require a gca architecture that can support the

activation and deactivation of pointers for every ki data qubits, for each i in the range

1 ≤ i ≤ l. In principle, such a system might be implemented by techniques such as those

suggested in [BBK04], employing some complicated scheme of “labeled switching stations”.

To my knowledge, no detailed scheme has been described for doing this on a particular

architecture, and it does not seem clear that a workable scheme exists.

3.7 Unresolved problems

A weakness of data-level error correction in gca is particularly evident for schemes like

that of [Ben00], for which each data qubit is encoded by several lattice qubits. Suppose

we use data-level error correction to simulate a fault-tolerant circuit that protects against

arbitrary single-qubit errors. For architectures like that of [Ben00], these correspond to

errors on the states of the data qubits in the array, which are themselves encoded by

several physical qubits in the underlying lattice. Suppose each data qubit is represented

by k physical qubits in the underlying lattice. The state spaceHp for the block of k physical

qubits has dimension 2k. A gca scheme is designed so that the state of the k physical

qubits will be constrained to a 2-dimensional subspace Hc, the computation subspace. For

example, in [Ben00], each data qubit is represented on k = 4 adjacent lattice qubits. The
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computation subspace of the 24-dimensional physical state space is span{|1100〉, |0011〉}.
When we simulate an error correcting circuit that is designed to correct arbitrary errors

on single qubits, in the gca model these correspond to errors on the state in Hc. That

is, they are errors that transform a data qubit state ρi to a new data qubit state ρ′i. For

the error correction circuit being simulated, the assumption is that ρi and ρ′i both describe

states in the computation space Hc. But for the gca, ρi and ρ′i actually describe the states

of k physical qubits which live in the larger space Hp. A more realistic error model would

account for the possibility of individual errors on one or more of the k physical qubits.

The problem is that such errors may not leave the state of the k qubits in the computation

space Hc. If the corrupted state ρ′ is in Hp \ Hc, the error correction circuit simulation

will not be effective.

For other architectures, like that of [Llo99] or architectures using a distinguished site,

each data qubit is encoded by a single lattice qubit. This approach resolves the problem

described above. However, other problems remain. For such architectures, the data qubits

are typically separated on the lattice by some number of qubits of padding in the state

|0〉. Also, for fault tolerance we will need to encode several pointers as well as some

mechanism like labeled switching stations for activating and deactivating these pointers

(as discussed in Section 3.6.3). Data-level error correction assumes the stability of these

pointers, switching stations and padding, and cannot itself be used to achieve stability

for them. One approach that has been proposed ([Kay07]) for stabilizing these begins

with the observation that they are implicitly classical states. For pointers and switching

stations, most of the time (that is, except during operations for moving a pointer, or

applying 2-qubit gates) they can be assumed to reside on qubits of species distinct from

those containing the data (e.g. the B- and C-qubits in [Llo99]). So we could periodically

apply pulses to implement measurements of these in the computational basis. This is

itself an implementation-level approach to error correction for the pointers and switching

stations. The problem is that there will still be a fixed minimum time between successive

applications of these measurements (dictated by the time required to move the pointer past

a data qubit, or to perform a 2-bit gate). During this fixed time, there will be some fixed

probability that a bit within a pointer, a (labeled) switching station or a bit of padding will

become flipped. The implementation-level technique will not reduce this fixed probability.
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One solution that has been proposed for the pointers [Kay07] is to encode them with some

classical redundancy. However, doing so will make the pointers larger thus increasing the

fixed time mentioned above during which errors may occur. No such scheme has been

completely specified, and it is not clear whether one could be designed in a way that allows

us to arbitrarily reduce the probability of an unrecoverable error on any pointer, switching

station, or padding qubit (all of which would be required for full fault tolerance).

3.8 Conclusions and future work

I have described two kinds of approaches that can be taken for implementing error correc-

tion in quantum global control schemes. One approach implements codes at the physical

level, giving a more robust realization of the gca model. These techniques are always

specific to a particular gca architecture, and scaling them to achieve reduced error rates

generally requires redesigning the architecture. They are effective for protecting lattice

states against errors on physical qubits, but the difficulty in scaling these techniques poses

a problem for fault tolerance.

The second approach that I described was to simulate fault-tolerant quantum circuits by a

gca program. I proposed a language for programming such simulations in a manner that

is abstracted from the details of how the gca scheme is implemented in hardware. These

approaches have the strength that they are naturally scalable and are independent of the

underlying physical architecture, but the weakness that they are not effective in general at

protecting against errors on the physical lattice qubits.

To achieve fault tolerance under a realistic error model for gca seems to require some new

technique, or some novel way of combining the techniques described in this chapter. This

is an important direction for future work. Other directions are to consider ways of making

more robust implementations of MPA(k), perhaps using an approach similar to the one

described in Section 3.4.6.2. Also, complete and detailed implementations of some variant

of MPA(k) for supporting logical code-concatenation would be nice, including optimized

schemes for implementing the labeled switching station concept.

Another direction for future work is to develop more systematic techniques for optimizing
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gca programs for simulating given quantum circuits.



Chapter 4

Cooling algorithms based on the

3-bit majority

4.1 Background

Consider a probabilistic bit that equals 0 with probability p. Define the bias of the bit to

be

B = p− (1− p) = 2p− 1,

which is the difference between the probability that the bit equals 0 and the probability

that the bit equals 1. (The symbol “ε” is usually used to denote the bias in the literature

on algorithmic cooling; I prefer to reserve this symbol for error rates.) For quantum

bits represented by nuclear spins (such as in quantum computing with nuclear magnetic

resonance), the bias corresponds to the spin “polarization”. The problem addressed by

algorithmic cooling is the following. Given some number of bits initially having a common

bias Bi > 0, distill out some smaller number of bits having greater bias. This should be

accomplished without the need for any pure ancillary bits initialized to 0, since preparing

such initialized bits is the problem to be solved. Also, we should assume that we cannot

perform projective measurements.

Algorithmic cooling has significant relevance to quantum computing, because for physical

110
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systems like nuclear spins controlled using nuclear magnetic resonance (NMR), obtaining a

pure initial state can be very challenging. It is this fact that has motivated recent research

on the implementation of algorithmic cooling in NMR quantum computers, as well as

theoretical investigations of the efficiency and performance of cooling algorithms.

Algorithmic cooling in the context of NMR quantum computation first appeared in [SV99].

The authors presented a method for implementing reversible polarization compression

(RPC). The idea of RPC is to use reversible logic to implement a permutation on the

(classical) states of n bits, so that the bias of some of the bits is increased, while the bias

of others is decreased. Unfortunately RPC is theoretically limited by Shannon’s Bound,

which says that the entropy of a closed system cannot decrease 1. According to Shannon’s

bound, an RPC operation on 3 bits with initial bias Bi cannot yield a bit with bias higher

than 1.5Bi [RMBL07].

An alternative algorithm was proposed in [BMR+02] to enable cooling below the Shannon

bound. The idea is to use a second register of bits that quickly relax to the initial bias Bi.

These are called the relaxation bits, and the bits on which we perform the RPC operation

are referred to as the compression bits. First, RPC is used to increase the bias of some of

the compression bits, while decreasing the bias of the other compression bits. Then the

hotter compression bits (i.e. those having decreased bias) are swapped with the relaxation

bits, where they will quickly relax back to the initial bias Bi. Repeating this procedure

effectively pumps heat out of the some of the compression bits, cooling them to a bias much

higher than Bi. This system is analogous to a kitchen refrigerator, where the relaxation bits

1The bias can be viewed as a measure of how random the state of a bit is. For more general random
variables, the notion of randomness is captured by the Shannon entropy. Consider a binary string X of
n probabilistic bits, each identically distributed with a probability p of being in the state 0. The entropy
of of the string is defined to be H(X) = −∑

σ∈{0,1}n p(σ) log2 p(σ), where p(σ) is the probability of the
state of the string being σ. Roughly speaking, the basic goal of data compression is to transform the
bitstring X into a new bitstring Y1Y2, where Y1 is some k-bit substring having entropy H(X), and Y2 is
an (2n − k)-bit substring having entropy 0. Since all the entropy is in the string Y1, Y2 is the substring
that will be “cooled” by the data compression (these are the bits we are interested in for polarization
compression). So we want to make k as small as possible, to yield the greatest number of cooled bits. A
famous theorem in information theory, due to Shannon [Sha49], implies that k must be larger than the
entropy, H(X).
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behave like the radiator on the back of the refrigerator, dumping the heat taken from the

refrigerator compartment out into the surrounding environment. This approach is often

referred to as “heat-bath algorithmic cooling”, and the relaxation bits are often referred

to as the “heat bath”.

Another approach to heat-bath algorithmic cooling was introduced in [FLMR04]. Their

algorithm has a simpler analysis than the algorithm in [BMR+02], and gives a better bound

on the size of molecule required to cool a single bit.

In [SMW05], the physical limits of heat-bath cooling are explored. In their analysis, the

assumption is that the basic operations can be implemented perfectly, without errors.

Even given this assumption, the authors show that if the heat bath temperature is above

a certain threshold, no cooling procedure can initialize the system sufficiently for quan-

tum computation.2 A heat-bath cooling algorithm called the “partner pairing algorithm”

(PPA) is introduced to derive bounds on the best possible performance of algorithmic cool-

ing with a heat bath. The PPA performs better than the previous algorithms, but it is

unclear whether implementing the required permutations will be realistic in practice. In

this chapter, I will focus on cooling algorithms based on repeated application of simple 2-

or 3-bit RPC steps. Note that when restricted to 2 or 3 bits, the PPA actually performs

the same operation as RPC.

4.2 Architecture

To be useful for NMR quantum computing, we should implement cooling algorithms on

a register of quantum bits all having some initial bias Bi, without access to any clean

ancillary bits. Further, we should be careful about how much local control we assume is

directly provided by the system. In [SV98], four primitive computational operations are

proposed as being supported by NMR quantum computers. For implementing the cooling

algorithm, the first two of these suffice:

o1) Cyclically shift the n bits left or right one position.

2Specifically, if B < 2k, then starting with k bits we cannot get a sufficiently-cooled single bit.
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o2) Apply an arbitrary two-bit operation to the first two bits (i.e. to the bits under a

fixed “tape-head”).

To implement the two operations, [SV98] suggest using a repeating polymer like the ABC-

chains used for global control schemes (e.g. [Llo93]). The chain could be configured as a

closed loop. To mark the position of the “first two bits” of the chain (for operation o2), an

atom of a fourth type, D, is positioned adjacent to the chain, in the desired location.

Notice that a system supporting operations o1 and o2 above can be rephrased in terms of a

fixed tape containing the bit-string, and a moving head that can be positioned over any pair

of adjacent tape cells. In [SV99] an architecture is proposed that uses a repeating polymer

with 8 species to implement a system having four such tapes. A rather complicated scheme

for implementing the cooling algorithm is described for this four-tape machine.

The cooling algorithms use (classical reversible) 3-bit operations: generalized Toffoli gates

(from which controlled-swap operations can be implemented).3 Without access to ancil-

lary bits, the Toffoli cannot be implemented by classical 2-bit gates (cnot and not gates)4

This can be seen by noting that cnot and not gates on a 3-bit register generate the group

of even permutations of the states, whereas the Toffoli implements an odd permutation.

The Toffoli can be implemented without ancilla if we also have access to arbitrary single-

qubit quantum gates [BBC+95]. So to implement the cooling algorithms using operations

o1 and o2 would require that some of these be inherently quantum operations. An er-

ror analysis of the cooling algorithms is greatly simplified if we assume it has a classical

implementation, however. Fortunately, ABC-chains naturally support generalized Toffoli

operations directly, since the transition frequency of one species will be affected by the

states of the neighbouring bits of two other species.

It is worth revisiting the idea put forth in [SV98], to use an ABC-chain. I propose an

alternative set of operations that should be supported (these are sufficient for cooling,

although obviously not for universal quantum computing):

3By “generalized Toffoli” I mean any 3-bit gate that applies a not operation to one of the bits condi-
tioned on a specific pattern of the basis states of the other two bits.

4By “classical”, I mean gates that do not generate nontrivial superpositions given basis states as inputs,
and that do not affect the phase.
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o′1) Move any three bits into adjacent positions under a fixed “tape head” (which covers

three bits).

o′2) Apply any generalized Toffoli or cnot operation to the bits under the tape head.

Using the scheme described in Section 3.2.3, o′1 and o′2 can be implemented on an ABC-

chain which is configured as a closed loop.5 An atom of a fourth type, D is positioned

adjacent to some ABC-triple selected (arbitrarily) to be the position of the tape head.

The cooling algorithms work by moving some bits under the tape head and applying a

basic (2-bit or 3-bit) RPC step. The resulting cooler bits are then moved to one side of the

array (tape), while the hotter bits are moved to the other side. The RPC step is repeated

to cool several bits, and then recursively applied to these cooled bits.

4.3 The reversible polarization compression step

Assume that the initial configuration is some string of bits, each of which is (independently)

in state 0 with some probability p > 0. Equivalently, the bits all have an identical bias

B > 0 before applying the polarization compression step. The assumption of independence

(i.e. a binomial distribution on the strings) is required for the analysis.6 Algorithmic

cooling only amplifies an existing bias and hence the initial bias B must be positive.

The basic idea behind RPC is to implement a permutation that maps strings with low

Hamming weight (i.e. having many 0’s) to strings having a long prefix of 0’s. Because it

will be useful to implement cooling algorithms on systems for which we don’t have arbitrary

local control, we will construct RPC permutations based on basic “RPC steps”. An RPC

step will be a permutation on the states of a small number of bits (2 or 3 in the examples

I consider). The overall system will be cooled by recursively applying the basic RPC step

5We could alternatively use a linear configuration, but would then have to be careful about the behaviour
at the ends of the chain. One approach would be to have the chain be long enough so that the bits of interest
are sufficiently far into the interior of the chain that the behaviour the ends is irrelevant. Alternatively,
the bit at one end of the chain could serve as the position of the tape-head.

6In [SV99] it is suggested that by performing an initial permutation of the bits we can limit our reliance
on the assumption of independence.
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to all the bits. If we apply the RPC step to disjoint pairs or triples of bits at each stage,

the assumption of independence will hold throughout.

In the following sections, I will examine candidates for the RPC step and discuss how they

may be implemented.

4.3.1 The 2-bit RPC step

The algorithms described in [SV99] and [BMR+02] both use a very simple 2-bit operation

for the basic RPC step. The operation begins with a cnot gate. Suppose the cnot is

applied to two bits initially having some positive bias B. After the cnot, the target bit is

0 if both bits were originally equal, and is 1 if both bits were originally different. In the

case that they were both the same, the control bit has an amplified bias after the cnot.

So, conditioned on the outcome of the target bit, the control bit is either accepted as a

new bit with higher bias and is subsequently moved to the colder side of the array by a

sequence of controlled-swap operations, or it is rejected and subsequently moved to the

warmer side of the array. For specificity, I will refer to this 2-bit RPC step as “2BC”.

Suppose the values of the control and target bits before the cnot are bc and bt respectively.

Then, after the cnot, the value of the target bit is bc + bt. The control bit is accepted if

and only if this value equals 0. The probability that bc = 0, given that bc + bt = 0, is

P (bc = 0 ∧ bt = 0)

P (bc + bt = 0)
(4.1)

=
1

2
+

B
1 + B2

(4.2)

and so in this case the bias of the control bit is

B′ = 2B
1 + B2

. (4.3)

The probability that the control bit is accepted equals the probability that bc + bt = 0,

which is
1 + B2

2
. (4.4)

If the control bit is rejected, it has bias 0. To achieve the polarization compression, the

cnot must be followed by an operation that selects the accepted bits to be retained. This
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is accomplished for the 2BC step by controlled-swap operations that move the bit to the

left or right according to whether it was accepted or rejected.

A cooling algorithm can work by recursive application of the 2BC step across many bits

having an initial bias Bi. First some of the bits will be cooled by one application of 2BC,

while others are warmed. The cooled bits will be moved away from the warmed bits, and

then cooled further by another application of 2BC, and so on. The total number of starting

bits required is determined by the depth of recursion required to obtain a single bit cooled

to the desired target bias.

4.3.2 The 3-bit RPC step

The algorithm described in [FLMR04] uses a 3-bit reversible polarization compression step

(3BC). This RPC step is implemented by a permutation of the basis states of a 3-bit

register, and has the effect of increasing the bias of the one of the bits, while decreasing

the bias of the other two. Experimental demonstration of the 3-bit RPC step has been

conducted using NMR [BMR+05]. The implementation of the 3BC operation given in

[FLMR04] uses a cnot gate followed by a controlled-swap gate. Recall from our discussion

in Section 4.2 that we are assuming that the bits have already been moved onto an ABC-

triple under the “tape head”, and that we can implement any reversible 3-bit (classical)

operation on them. The quantum circuit model is a convenient paradigm for describing

the operations7. Note that the controlled-swap can be implemented by generalized Toffoli

operations, as shown in Figure 4.1. (Approaches for implementing such generalized Toffoli

gates on ABC-chains are described for example in [Llo93] and [Ben00].)

The permutation implemented by the circuit in Figure 4.1 results in the majority value

of the three bits (before the operation) being computed into bit A. Since we are only

interested in the final bias of bit A, we can use any permutation that has this effect. In

fact, the following claim says that such a permutation is the best choice for a 3-bit RPC

7Current NMR experiments in algorithmic cooling [BMR+05] do not implement the 3-bit permutation
through a decomposition into a sequence of gates such as we consider here, but rather use a more direct
method. This direct method is not scalable in the number of bits over which the majority is being
computed.
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Figure 4.1: A circuit for the 3BC step using cnot gates and generalized Toffoli gates. The small
solid black circles refer to a 1-control (i.e. the gate is conditioned on that bit being in the state
1), and the solid white circles refer to a 0-control.

step.

Claim 4.3.1 Suppose we have a register of n bits independently having identical bias B >

0, where n is odd. Suppose we want to implement a permutation that has the effect of

increasing the bias of the first bit as much as possible. Then the best choice is a permutation

that computes the majority value of the n bits into the first bit.

Proof: Since each bit has bias B > 0, each bit is independently 0 with prob-

ability p > 1
2
. An optimal permutation for increasing the bias of the first bit

will be one that maps the 2n

2
most likely strings to strings having a 0 in the

first bit. The 2n

2
most likely strings are precisely those having at least

⌈
n
2

⌉
bits

in the state 0. ¤

The circuit is shown in Figure 4.2 is an alternative implementation of the 3-bit majority,

which is simpler in terms of Toffoli and cnot operations. I will henceforth refer to the op-

eration implemented by this circuit as 3BC. Note that the circuit of Figure 4.2 implements

a different permutation than that implemented by the circuit of Figure 4.1, but the effect

on bit A (i.e. after tracing-out bits B and C) is the same for both circuits (assuming the

input bits are independently distributed).

Since the Toffoli and cnot operations are classical, we can analyze the behaviour of the

3BC circuit entirely in the computational basis. In the following, I will restrict the analysis

in terms of classical bits.

Consider the effect on the bias of bit A after applying the circuit of Figure 4.2. The

majority value is computed into bit A. Suppose initially the bias of each of the three
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Figure 4.2: An alternative circuit for computing the majority of three bits that can be used for
the 3BC operation.

bits is B. So the probability for each bit equaling 0 is initially (1 + B)/2. After the 3BC

operation, the probability that bit A (which now equals the majority of the initial values

of A,B, C) equals 0 is

p(A) =

(
1 + B

2

)3

+ 3

(
1 + B

2

)2 (
1− B

2

)
(4.5)

=
1

4
(2 + 3B − B3). (4.6)

So the bias of bit A after the 3BC operation is

B′ = 2p(A) − 1 (4.7)

=
3

2
B − 1

2
B3. (4.8)

4.3.3 Equivalence between the 2BC and 3BC operations

Recall that 2BC is a cnot followed by controlled-swap operations that move the control

bit (of the cnot) to the left or right, conditioned on the state of the target bit. The cnot

itself has no effect on the bias of the control bit. It is the value of the target bit after the

cnot that provides some information about the state of the control bit. In the case that

the target bit equals 0, the control bit is more likely to be 0, and hence has a greater bias.

So the 2BC step is really a method for gaining some information about which bits are more

likely to be 0, and moving these off to one side. After a single application of 2BC on two

bits having equal bias, we may or may not be left with a bit having increased bias.

The 3BC step, on the other hand, deterministically increases the bias of the third bit at the

expense of decreasing the bias of the other two. Every time we apply the 3BC step to three
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bits having equal bias, we are certain to be left with a bit whose bias has been increased.

This property makes the analysis of algorithms based on 3BC somewhat simpler than those

based on 2BC. The analysis of the 2BC-based heat-bath algorithm in [BMR+02] relies on

the law of large numbers, and gives a worse bound than does the analysis of the 3BC-based

algorithm of [FLMR04].

In the algorithms of [SV99] and [BMR+02], the cnot of the 2BC step is always followed

by a controlled-swap operation. An important observation is that the cnot followed by a

controlled-swap actually computes the 3-bit majority (indeed this is the way the 3BC step

was implemented in [FLMR04]). Specifically, suppose we first apply a cnot between bits

in states b1 and b2 (with b1 as the control bit), and then apply a controlled-swap between

b1 and a third bit in state c, controlled on the target bit of the cnot being 0. The final

state of c is

b1c + b2c + b1b2 (4.9)

which is the majority of b1, b2, c. So if we explicitly account for the extra target bit of the

controlled-swap operation, the 2BC step is equivalent to the 3BC step.

This suggests an equivalence between the early algorithms described in terms of a 2BC

operation and algorithms phrased in terms of a 3-bit majority-vote (3BC). For this reason,

in the following I will restrict attention to algorithms based on the 3BC operation.

4.4 Efficiency

4.4.1 The simple recursive algorithm

We will analyze the efficiency of a simple algorithm that recursively partitions the string

of bits into triplets and applies 3BC to these triplets. After each 3BC step (say on bits

A,B, C), the B and C bits which become heated are discarded. Thus at each level of

recursion the total number of bits is reduced by a factor of 3, and the remaining bits’ bias

is increased from B to a new value

B′ = 3

2
B − 1

2
B3. (4.10)



120 CHAPTER 4. COOLING ALGORITHMS BASED ON THE 3-BIT MAJORITY

To simplify the analysis we will approximate B′ by

B′ ≈ 3

2
B. (4.11)

After k levels of recursion the bias is increased to

Bk ≈
(

3

2

)k

B. (4.12)

This gives us an estimate on the number of levels of recursion k required to achieve some

target bias Bt < 1 on a single bit.

k ≈ log3/2

(Bt

B
)

. (4.13)

Therefore the total number of bits starting at bias B required to obtain one bit with a

target bias of Bt is 3k, which is polynomial in Bt. For example, suppose we start with a

bias of B = 10−5 (see [M05]). Then the number of bits required to yield a single bit with

bias 0.1 is about 6.9 × 1010, and the number required to yield a bit with bias 0.9999 is

about 3.5× 1013.

This has only been an analysis of the space complexity. To obtain a good estimate of the

time complexity, we would have to specify the computational model more precisely, and

account for the time required to shuttle the states around as required by the architecture

and the algorithm.

4.4.2 Algorithms using a heat bath

There are many ways in which the recursive algorithm might be modified to take advantage

of a heat bath, which is a mechanism by which a heated bit can be exchanged for a fresh

bit having initial bias Bi (taken from the environment). For a rough analysis, I ignore the

details of how the heat-bath contact will be implemented, and assume we can apply an

operation that resets a bit’s bias to Bi on-demand (this may be an unrealistically optimistic

assumption, since it is likely that the heat-bath exists on specific physical qubits, and that

states will have to be shuttled to this location before they can be reset).
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One approach to using the heat bath in a 3BC algorithm is the following. First apply the

3BC step as in the simple recursive algorithm. At this point we have bn/3c bits cooled to

B′. Now, instead of discarding the b2n/3c bits that were heated in this process, send them

to the heat bath to return them to bias Bi. Then partition these b2n/3c bits into triples,

and apply the 3BC step to them. This yields another b2n/9c bits of bias B′. Repeat this

process until there are fewer than 3 bits left having bias less than B′ (there will always be

exactly 2 bits left over). Now we have n − 2 bits cooled to bias B′ and we can proceed

to the next level of recursion. As before, the number of levels of recursion k required to

achieve a bit having some target bias Bt < 1 is

k ≈ log3/2

(Bt

Bi

)
. (4.14)

This time, however, a logarithmic amount additional work is done for each level of recursion.

By taking this extra time, we save on the total number of bits required. After each level

of recursion an additional 2 bits are discarded. So the total number of bits required to

obtain one bit cooled to Bt by this method is 2k, which is polylogarithmic in Bt. As before,

suppose we start with a bias of Bi = 10−5. Now the number of bits required to yield a

single bit with bias 0.1 is about 46, and the number required to yield a bit with bias 0.9999

is about 57.

Another approach to using the heat bath is described in [SMW07]. Their algorithm re-

peatedly applies the 3BC step to three bits having bias values Bj−2,Bj−1 and Bj. This

requires a more careful analysis. Consider applying 3BC to three bits bj−2, bj−1, bj having

initial bias values Bj−2,Bj−1 and Bj respectively, where the majority is computed into the

third bit bj. The resulting bias of the third bit is

B′j =
Bj−2 + Bj−1 + Bj − Bj−2Bj−1Bj

2
. (4.15)

Now suppose the first two bits are sent to the heat bath, and then run back through the

cooling procedure to regain bias values of Bj−2 and Bj−1. Then 3BC is applied again (on

the same three bits, except this time the third bit starts with bias B′j). If this process is

repeated several times, the bias of the third bit reaches a steady-state value of

Bj−2 + Bj−1

1 + Bj−2Bj−1

. (4.16)
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The algorithm described by [SMW07] is based on this process. Suppose the algorithm has

built up an array of k > 3 cooled bits b1, b2 . . . , bk having bias values B1,B2, . . . ,Bk in that

order, where Bj =
Bj−2+Bj−1

1+Bj−2Bj−1
for each 3 < j < k. Then, in the next stage of the algorithm,

a new bit bk+1 is introduced having the heat-bath bias B0. The 3BC procedure is applied

to the three bits bk−1, bk, bk+1 repeatedly, where between each application the algorithm is

recursively repeated to re-establish the bias values Bk−1,Bk on bits bk−1, bk. Repeating this

process several times the bias of bit bk+1 will reach the steady state value Bk+1 = Bk−1+Bk

1+Bk−1Bk
.

Starting with n bits of bias Bi, the algorithm of [SMW07] starts at the left side of the

register (k = 2), and repeatedly performs the above operation for increasing values of k.

The algorithm achieves one bit of bias approximately Bn = BiF (n), where F (n) is the

nth Fibonacci number. This is even better than the simple recursive heat-bath method

described previously. Starting with a bias of Bi = 10−5, the number of bits required for

this method to yield a single bit with bias 0.1 is about 20, and the number required to

yield a bit with bias 0.9999 is about 28. There is a polynomial cost in time incurred by

the recursive re-cooling of bits from the point of heat-bath contact at the left end of the

chain.

For the heat-bath algorithms I have described, after a 3BC operation the two bits that

have become heated by this operation are both sent to the heat bath. In the early stages

of an algorithm, this would be sensible, because the 3BC operation will have warmed those

two bits to bias values less than the initial bias Bi. Towards the end of the algorithm,

however, 3BC will be applied to triples of bits that are all very cold, and the bits that

become heated may still have bias considerably higher than Bi. In this case, sending these

bits to the heat bath would not be the right thing to do. To analyze the performance of

the algorithms, however, it is extremely convenient to assume we always do so. If we do

not send the two heated bits back to the heat bath after a 3BC application, the bits’ values

are no longer described by independent probability distributions, and bias values are no

longer well-defined. It is convenient to model the process of a 3BC application followed by

sending the two heated bits to the heat bath as a single operation, as follows.

Definition 4.4.1 Consider three bits b1, b2, b3 having bias values B1 ≤ B2 ≤ B3 respec-

tively. Define 3BChb as the 3-bit majority on b1, b2, b3 (where the majority is computed
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into b3) followed by sending b1 and b2 to the heat bath. The bias values of the three bits

after this operation are Bi,Bi,
B1+B2+B3−B1B2B3

2
respectively.

The heat-bath algorithms described above can both be expressed as a sequence of op-

erations (3BChb, P1, 3BChb, P2, 3BChb, P3, . . .) where each 3BChb is applied to three bits

in some specific positions (e.g. under a tape head), and each Pi is some permutation of

the positions of the bits in the string. The following claim shows that the algorithm of

[SMW07] is the best such algorithm (this is not claimed in [SMW07]).

Claim 4.4.1 Consider a string of bits each having initial bias value Bi. Let A be any

cooling algorithm described by a sequence of operations

3BChb, P1, 3BChb, P2, 3BChb, P3, . . .

where each 3BChb is applied to three bits in some specific positions (e.g. under a “tape

head”), and each Pi is some permutation of the positions of the bits in the string. At any

stage of the algorithm, suppose we arrange the bits in a nondecreasing order of their bias

values B1, . . .BN . Then we have Bj ≤ BiFj for all 1 ≤ j ≤ N , where Fj is the jth Fibonacci

number.

Proof: The proof is by induction. The claim is initially true (before starting

the algorithm) by assumption. Since the only operation allowed in A that

changes the bias values is the 3BChb operation, it suffices to show that after

an arbitrary 3BChb operation the claim is still true. Suppose the ordered bias

values before the 3BC operation are

B1,B2, . . . ,BN .

Then suppose the 3BChb operation is applied to any three bits, suppose those

having bias values Bk,Bl and Bm, where k < l < m. We assume that after the

3BC operation the value of Bm is not decreased. This is a safe assumption,

because otherwise algorithm A would have done just as well not to apply that

3BC operation.
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After the 3BChb operation, the new bias of the bit originally indexed by m is

B′r =
Bk + Bl + Bm − BkBlBm

2
,

where r is an index not less than m. By assumption, we have Bm ≤ BiFm,

Bl ≤ BiFm−1 and Bk ≤ BiFm−2. Since Fm = Fm−1 + Fm−2 by definition, we

have

B′r ≤ BiFm. (4.17)

Suppose the reordered bias values are B′j, for 1 ≤ j ≤ N . Consider the following

ranges for the index j.

1 ≤ j ≤ 2 : B′j = Bi ≤ BiFj. (4.18)

3 ≤ j ≤ k + 1 : B′j = Bj−2 ≤ Bj ≤ BiFj. (4.19)

k + 2 ≤ j ≤ l : B′j = Bj−1 ≤ Bj ≤ BiFj. (4.20)

l + 1 ≤ j ≤ m− 1 : B′j = Bj ≤ BiFj. (4.21)

m ≤ j ≤ r : B′j ≤ B′r ≤ BiFm ≤ BiFj. (4.22)

r + 1 ≤ j ≤ N : B′j = Bj ≤ BiFj. (4.23)

(4.24)

This completes the proof. ¤

4.4.3 Accounting for the heat bath as a computational resource

The heat bath is typically modeled by a process whereby a hot bit is magically replaced

by a fresh bit having the initial bias Bi. Usually we would make some assumption about

where the heat-bath contact occurs, for example requiring that only the bit on the end of

a chain can be replaced with a fresh bit.

From a complexity theory point of view, the heat bath is a resource that should be ac-

counted for. For modeling the physics of the situation it might be very convenient to

draw a conceptual boundary between the system we are trying to cool and the heat bath,

which for all practical purposes might be extremely large. Continuing our previous analogy
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between heat-bath cooling and a kitchen refrigerator, if we put the refrigerator in a large

enough room, we won’t have to account for the fact that the room itself is gradually heated

by the radiator on the back of the fridge. While heat-bath techniques appear to drastically

reduce the number of bits required to achieve a target bias, it should be recognized that

this hasn’t come for free. The extra bits ultimately come from the heat bath. In practice,

it may be very reasonable to assume we get these bits for free, since we don’t have to

exercise control over the heat bath the way we do with the bits directly involved in the

algorithm.

4.5 Accounting for errors in an analysis of cooling

In the following sections I investigate the performance of cooling algorithms when errors

can occur in the RPC step. The bounds I will derive will apply to cooling algorithms

that are based on recursive application of the 3BC step, where the step is always applied

to 3 bits that have been previously cooled to equal bias values. In Section 4.8 I discuss

how the same approach can be applied to analyze more general algorithms based on the

3BC step. I do not account for errors that might occur between applications of the RPC

steps, such as when bits are being shuttled around, or placed in an external heat bath. For

this reason the bounds apply quite generally, independent of implementation details and

low-level algorithmic details.

The most general way to analyze the effect of errors on a quantum circuit is to examine

the effect of the errors on the density matrix of the state as it evolves through the circuit.

As we observed above, the 3BC step can be implemented by classical operations, and can

be analyzed entirely in the computational basis. I therefore perform the error analysis in

a classical setting.

Suppose we implement the RPC operation in a system subject to errors described by a set

of error patterns {Sj}. The error pattern is a record of what errors actually occurred. For

each error pattern Sj we can analyze the effect by considering a new circuit containing the

original RPC circuit as well as the error operations that occurred. We can then find the

probability pj that the cooled bit would be in state 0 after applying this new circuit. The
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probability that the cooled bit equals 0 for the overall process is

p =
∑

j

pj Pr(Sj) (4.25)

where Pr(Sj) is the probability that error pattern Sj occurs. The new bias of the cooled

bit after the process is then

B′ = 2p− 1. (4.26)

Equivalently, we could compute the new bias B′j of the cooled bit resulting from application

of the RPC step for each error pattern Sj, and take a weighted sum of these bias values

(weighted by the probabilities Pr(Sj)):

B′ =
∑

j

B′j Pr(Sj). (4.27)

After obtaining the new bias B′ of the cooled bit for the overall process, we can obtain

theoretical limits on the performance of the cooling algorithm by analyzing the condition

B′ > B (4.28)

where B is the bias before the RPC and error channel were applied (this simply says that

the bias should be greater after application of the 3BC step). In practice, to analyze the

inequality

B′ − B > 0 (4.29)

we study the expression B′−B, which for the error models we consider will be a quadratic

or cubic polynomial in B (and also a function of the error rates). By studying the roots of

this polynomial we can find ranges of values for the error rates for which inequality (4.29)

has solutions B > 0, and also obtain the maximum value of B which is a solution (this

maximum value will be the maximum bias achievable by the RPC step for the given error

rates).

4.6 The symmetric bit-flip channel

The first error model we will consider is the symmetric bit-flip model, under which a

bit’s value is flipped with probability ε < 1
2

(“symmetric” in this context means that the

probability of a bit-flip error is independent of the initial state of the bit).
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If the bit-flip channel is applied to a bit initially having bias B, the result is a bit with bias

−B.

4.6.1 3BC followed by a symmetric bit-flip error

Now consider the case in which a bit-flip error can occur after the 3BC step has been

performed (and errors do not occur between application of the gates in Figure 4.2).

There are two error patterns. Pattern S1 represents the case where a bit flip does not

occur. In this case, the final bias of bit A is

B′1 =
3

2
B − 1

2
B3 (4.30)

as we found in Section 4.3.2 (equation (4.8)). The error pattern S2 represents the case

where the bit flip occurs on the newly biased bit. In this case, the bias is negated, and so

the new bias is

B′2 = −3

2
B +

1

2
B3 (4.31)

So the new bias of A for the overall process is

B′ = (1− ε)B′1 + εB′2 (4.32)

=

(
3

2
B − 1

2
B3

)
(1− 2ε). (4.33)

Then the condition that B′ > B gives

− (1− 2ε)B2 − 6ε + 1 > 0 (4.34)

which leads to

ε <
1

2
− 1

3− B2
(4.35)

<
1

6
. (4.36)

So for this simple error model εth = 1/6 is an error threshold beyond which the 3BC

procedure can have no positive effect on the bias (regardless of how low the initial bias
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is). For a fixed error rate ε < εth a bound on the maximum bias that will be achievable is

obtained by solving for B in (4.34)):

B <

√
1− 6ε

1− 2ε
= Blim. (4.37)

Approximating the expression to second order gives

Blim ≈ 1− 2ε− 6ε2. (4.38)

Once the bias exceeds Blim, the 3BC procedure will no longer be effective in increasing the

bias, and the algorithm will yield no further improvement. So Blim represents the limit

of the bias that can be achieved by any cooling algorithm that is based on the 3BC step,

under this error model.

For error rates ε below 1%, the approximate value in (4.38) is within 0.01% of the value

in (4.37).

4.6.2 Symmetric bit-flip errors during application of 3BC

I will now do a more careful analysis, accounting for the possibility of errors occurring

during the application of the 3BC step. Consider independent bit-flip errors on each bit

with probability ε, where the errors can occur at each time step; that is, immediately after

the application of any gate in the circuit of Figure 4.2 (equivalently after the application of

each o′2 operation). This is only one possible decomposition of the majority-vote operation

into a sequence of basic operations, but it serves to illustrate the technique for analysis. A

similar analysis can easily be conducted given an alternative decomposition of the majority-

vote into a sequence of basic operations.

There are 9 possible sites for bit-flip errors in Figure 4.2, but two of these can be ignored

(errors on the B or C bits after the final Toffoli have no effect on the final bias of the A

bit). Figure 4.3 illustrates the circuit including the possible error operations. The binary

variables ei shown on the circuit are taken to be “1” if a bit-flip error occurs in that

location, and “0” otherwise.
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Figure 4.3: The majority circuit with relevant error positions shown. The binary variables ei are
taken to have the value 1 if a bit-flip error occurred in the relevant location (otherwise ei = 0).

Suppose the value of the (A,B,C) register is initially (a, b, c), where a, b, and c are the

binary values of the three bits. Analyzing the circuit in Figure 4.3, the final value of the

A bit is found to be

a + e1 + e4 + e7 + (a + b + e2 + e5)(a + c + e1 + e3 + e6) mod 2. (4.39)

Since the errors occur independently with probability ε at each position, the probability

associated with each error pattern Si = (e1, e2, . . . , e7) (where i =
∑6

k=0 ek2
k indexes the

possible patterns) can be evaluated as

Pr(Si) = εe1+e2+e3+e4+e5+e6+e7(1− ε)ē1+ē2+ē3+ē4+ē5+ē6+ē7 (4.40)

where x̄ ≡ 1+x mod 2. Initially, the probability that each bit a, b or c equals 0 is p = B+1
2

.

So the tuple (a, b, c, e1, . . . , e7) describes the situation where the register was initially in the

state (a, b, c) and the error described by (e1, e2, . . . , e7) occurred, and this happens with

probability

Pr(a, b, c, e1, . . . , e7) ≡ (1− p)a+b+cpā+b̄+c̄εe1+e2+e3+e4+e5+e6+e7(1− ε)ē1+ē2+ē3+ē4+ē5+ē6+ē7 .

(4.41)

Let p(A) be the probability that the final value of A for the overall process equals 0. The

value of p(A) is obtained by adding the probabilities Pr(a, b, c, e1, . . . , e7) over all those

tuples (a, b, c, e1, . . . , e7) for which the value of (4.39) equals 0. The new bias of A is then

determined as

B′ = 2p(A) − 1. (4.42)

This value is

B′ = (2ε− 1)3
[
1 + 4ε2(ε− 1)− 4pε(6ε2 − 8ε + 3)− 2p2(2p− 3)(2ε− 1)3

]
(4.43)
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which can be expressed in terms of the original bias by substituting p = B+1
2

:

B′ = 1

2
B(1− 2ε)3

(
3− 6ε + 4ε2 − B2(1− 2ε)3

)
. (4.44)

Now the condition B′ > B leads to

− 2 + (1− 2ε)3
(
3− 6ε + 4ε2 − B2(1− 2ε)3

)
> 0. (4.45)

The expression on the left side of (4.45) represents the improvement in the bias. It decreases

monotonically as B increases from 0, and so an upper bound can be obtained by setting

B = 0. Then, by studying the real roots of the resulting polynomial in ε, we can determine

the range of values for which the improvement is positive. By numerical computation, the

threshold is found to be

ε < 0.048592 ≡ εth. (4.46)

For a fixed ε < εth, inequality (4.45) also gives a bound on the maximum bias achievable

by the 3BC step under the given error model:

B <

√
1− 24ε + 76ε2 − 120ε3 + 96ε4 − 32ε5

(1− 2ε)3
≡ Blim. (4.47)

For small values of ε, we can approximate (4.47) to second order:

Blim ≈ 1− 6ε− 82ε2. (4.48)

For error rates ε below 1%, the approximate value in (4.48) is within 0.1% of the value in

(4.47).

4.7 Debiasing errors

Now consider a more general error model for a classical bit. Under this error model, called

the asymmetric bit-flip channel, a bit transforms from 0 to 1 with some probability ε0, and

transforms from 1 to 0 with some probability ε1.
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A fixed-point probability distribution for the asymmetric bit-flip channel is

p[0] =
ε1

ε0 + ε1

(4.49)

p[1] =
ε0

ε0 + ε1

. (4.50)

If left to evolve for under the asymmetric channel, a bit will eventually settle to a bias

value of

Bsteady =
ε1 − ε0

ε0 + ε1

. (4.51)

The rate at which the bias approaches this fixed point is related to (ε0 + ε1).

It will be convenient to make a couple of assumptions about the error rates. First, we will

assume that errors cause the system to tend back to the initial bias Bi (which would likely

be the same as, or close to, the bias of the heat bath for cooling algorithms that use this

device). That is,

Bsteady = Bi. (4.52)

In other words, errors cause a partial debiasing of the cooled bits (ideally, this will happen

very slowly, and so the value for the sum of the error rates, (ε0 + ε1), will be small). In

the following, I will refer to this type of asymmetric bit-flip error as a debiasing error.

Since Bi > 0, we have

ε1 − ε0 > 0. (4.53)

We will also assume that the error rates ε0 and ε1 are both less than 1
2
. In this case we

have

ε1 − ε0 < Bi. (4.54)

Since we assumed that the bias of the bit being cooled starts at Bi and is thereafter

nondecreasing, we can say that at any stage of the algorithm we have

ε1 − ε0 < B (4.55)

where B is the current bias of the bits that the RPC step is being applied to.
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Consider what happens to a bit initially having some bias B when we apply the asymmetric

bit-flip channel once. A simple calculation shows the resulting bias to be

B′ = B(1− (ε0 + ε1)) + (ε1 − ε0). (4.56)

In the following analysis, it will be convenient to make a change of variables, letting

s ≡ ε0 + ε1 , and (4.57)

d ≡ ε1 − ε0. (4.58)

Then our assumptions are s < 1, and 0 < d < B, and equation (4.56) becomes

B′ = B(1− s) + d. (4.59)

Notice that d < s is also an obvious condition.

Consider the special case of the symmetric bit-flip channel. In this case Bsteady = 0, and

so Bsteady < Bi. This is why we obtained positive threshold error rates for the RPC step

to increase the bias. Now, under our assumption Bsteady = Bi, we will not obtain such a

threshold. Even with high error rates (fast debiasing) the RPC step will increase the bias

above Bi by some positive amount.

It is still important to analyze the effect of these errors on the RPC step, because they will

imply a limiting value on the highest bias achievable. The RPC step tends to increase the

bias away from the value Bi = d/s, while the errors tend to force the bias back towards

Bi. The maximum achievable value of B will be determined by d and s, or equivalently, by

Bi and s. The parameter s can be seen as a measure of the rate at which the errors force

the bias towards the initial value Bi. Thus the maximum achievable bias is limited by the

initial bias, and by the rate at which errors cause the system to tend back to the initial

bias.

4.7.1 3BC followed by a debiasing error

Consider the scenario in which a debiasing error may occur immediately after the 3BC

operation. The bound obtained here will apply regardless of how the 3BC step is imple-

mented. Assuming all three bits initially start with bias B, the bias of bit A after the
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process (the 3BC circuit followed by a debiasing error) is

B′ =
(

3

2
B − 1

2
B3

)
(1− s) + d. (4.60)

The condition that B′ > B leads to

B3(s− 1) + B(1− 3s) + 2d > 0. (4.61)

For values of s < 1/3 (recall the threshold condition ε < 1/6 we obtained in Section 4.6.1)

and for d < s, the cubic polynomial on the left-hand side of (4.61) has one positive real

root (and the value of this root will be less than 1). A positive value of B will satisfy

inequality (4.61) only if it is less than the value of this root. That is,

B <

i
(
−3(

√
3− i)(s− 1)(3s− 1) + (

√
3 + i)(−27d(s− 1)2 +

√
729d2(s− 1)4 + (−3 + 12s− 9s2)3)

2
3

)

6(s− 1)
(
−27d(s− 1)2 +

√
729d2(s− 1)4 + (−3 + 12s− 9s2)3

) 1
3

.

(4.62)

The appearance of nonreal numbers in (4.62) is unavoidable8. To second order in d and

s, (4.62) gives

Blim ≈ 1− s + d− 3

2
s2 − 3

2
d2 + 3ds. (4.63)

In the symmetric case, the bound (4.63) agrees with the bound (4.38) which we found in

Section 4.6.1.

In terms of s and Bi, (4.63) is

Blim ≈ 1− s− 3

2
s2 + Bis + 3Bis

2 − 3

2
B2

i s
2. (4.64)

For error rates less than 1%, the approximate value (4.64) agrees with the actual value to

within 10−5.

8This is Casus Irreducibilis: in certain cases, any expression for the roots of a cubic polynomial in terms
of radicals must involve nonreal expressions, even if all the roots are real.
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4.7.2 Debiasing errors during application of 3BC

We will now consider the error model in which debiasing errors can occur at each time step

(i.e. immediately after the application of any gate in the circuit of Figure 4.2, or equiva-

lently after each o′2 operation). The analysis is performed similarly to what we did in Section

4.6.2, by considering the probability associated with each binary tuple (a, b, c, e1, . . . , e7)

for which the resulting value of bit A equals 0. For the asymmetric model, by tracing

through the circuit of Figure 4.2, we find that equation (4.41) generalizes to

Pr(a, b, c, e1, . . . , e7)

≡ (1− p)a+b+cpā+b̄+c̄
(
ε
P7

i=1 φ̄iei

0

)(
(1− ε0)

P7
i=1 φ̄iēi

)(
ε
P7

i=1 φiei

1

)(
(1− ε1)

P7
i=1 φiēi

)

(4.65)

where x̄ ≡ (1 + x mod 2) and

φ1 = a (4.66)

φ2 = a + b mod 2 (4.67)

φ3 = c (4.68)

φ4 = φ1 + e1 mod 2 (4.69)

φ5 = φ2 + e2 mod 2 (4.70)

φ6 = φ3 + e3 + φ4 mod 2 (4.71)

φ7 = φ4 + e4 + (φ5 + e5)(φ6 + e6) mod 2. (4.72)

Again we can sum the probabilities Pr(a, b, c, e1, . . . , e7) over those tuples for which the

final value of bit A (given by equation (4.39)) equals 0, and compute the new bias. The

new bias, approximated to second order in s and d, is

B′ ≈ 1

2

(
(5d + 4d2 − 6sd) + (3− 12s + 19s2 − d2 + 4ds)B + dB2 + (−1 + 6s− 15s2)B3

)
.

(4.73)

Then the condition B′ > B gives

(5d + 4d2 − 6sd) + (1− 12s + 19s2 − d2 + 4ds)B + dB2 + (−1 + 6s− 15s2)B3 > 0. (4.74)

For values of s . 0.04 (recall the threshold condition we obtained in Section 4.6.2) and for

d < s, the cubic polynomial on the left-hand side of (4.74) has one positive real root. A
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positive value of B will satisfy inequality (4.74) only if it is not greater than the value of

this root, which is (to second order in s and d)

Blim ≈ 1− 3s + 3d− 9d2 − 41

2
s2 + 32ds. (4.75)

In the symmetric case, the bound (4.75) agrees with the bound (4.48) that we obtained in

Section 4.6.2. In terms of s and Bi we have,

Blim ≈ 1− 3s− 41

2
s2 + 3Bis + 32Bis

2 − 9B2
i s

2. (4.76)

For error rates less than 1%, the approximate value (4.64) agrees with the actual value

(4.62) to within 10−4.

4.8 More general algorithms based on 3BC

In all of the above error analysis, we have assumed that the 3BC step is applied to three

bits having identical bias at each stage of the algorithm. Recall in Section 4.4 it was

mentioned that an algorithm proposed in [SMW07] is structured somewhat differently,

and applies the 3BC step to three bits having different bias values Bj−2, Bj−1 and Bj.

We can still learn something by performing the previous analysis assuming all three bits

have bias max(Bj−2,Bj−1,Bj), but it is worth briefly considering how we could analyze this

more general scenario directly. Consider applying the debiasing error channel with error

parameters ε0 and ε1 immediately after the 3BC step is applied. In this case, the bias of

the third bit after the process is

Bj−2 + Bj−1 + Bj − Bj−2Bj−1Bj

2
(1− s) + d (4.77)

(recall s = ε0 +ε1 and d = ε1−ε0). As in Section 4.7, we assume that the error parameters

satisfy s < 1, d > 0 and d is less than each of Bj−2, Bj−1 and Bj. We also assume that
d
s

is less than each of Bj−2, Bj−1 and Bj so that the errors are indeed pushing the system

towards a lower bias.

Suppose we proceed as in [SMW07] and send the first two bits back to the heat bath,

re-cool them up to bias values Bj−2 and Bj−1, and again apply 3BC. Without errors, we
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mentioned previously that by repeating this process several times the third bit reaches a

steady-state bias value of
Bj−2 + Bj−1

1 + Bj−2Bj−1

. (4.78)

With the debiasing error channel being applied after every application of 3BC, this steady-

state bias value is reduced to

(Bj−2 + Bj−1)(1− s) + 2d

1 + Bj−2Bj−1(1− s) + s
. (4.79)

Equations (4.77) and (4.79) can be used to analyze more general algorithms based on

repeated application of 3BC, including the algorithm proposed in [SMW07], under the effect

of debiasing errors that may occur after each application. We could similarly decompose

the 3BC step into a suitable sequence of discrete operations, and proceed as we have done

above to analyze the effect of errors that may occur after each discrete step.

4.9 Conclusions and other considerations

I have studied the performance of cooling algorithms that use the 3-bit majority as the

compression step (e.g. [FLMR04], [SMW07]) and argued that previously discovered algo-

rithms (e.g. [SV99], [BMR+02]) can be recast in this way. I have proven the optimality of

the best such algorithm (operating in a restricted setting) for obtaining one cold bit with

the fewest possible number of initially mixed bits. An error analysis of these algorithms

has been conducted, first under a simple error model (symmetric bit-flip errors), and then

under a more realistic model of debiasing. Since the implementations of the RPC steps

are inherently classical (states do not leave the computational basis), it is reasonable to

restrict attention to these classical error models. In each case, I first derived some bounds

assuming that errors may occur immediately after the RPC step. Since this may be taken

as a best-case scenario, these bounds apply regardless of the implementation. I also derived

bounds assuming that the 3BC cooling step is implemented by a sequence of physical oper-

ations that simulate a sequence of cnot and Toffoli gates (i.e. a sequence of o′2 operations).

Specifically, I considered the simplest such arrangement for implementing the 3BC step,

shown in Figure 4.2. The results are summarized below (approximated to second order).
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Error Model Threshold Maximum achievable bias

Symmetric bit-flip after 3BC ε < 1
6

1− 2ε− 6ε2

Symmetric bit-flip during 3BC ε . 0.048592 1− 6ε− 82ε2

debiasing error after 3BC N/A 1− s− 3
2
s2 + Bis + 3Bis

2 − 3
2
B2

i s
2

debiasing error during 3BC N/A 1− 3s− 41
2
s2 + 3Bis + 32Bis

2 − 9B2
i s

2

Given a specific low-level implementation of a cooling algorithm, specified as a sequence of

pulses applied to an ABC-chain or some other suitable hardware, a detailed error analysis

could be conducted in a manner similar to the approach I have taken here. For specific

cooling algorithms it will also be interesting to analyze the effects of errors occurring

between applications of the RPC step (for example, while the bits are being permuted

to move the required bits into position for the next application of the cooling step). By

studying the time-complexity of a specific algorithm implemented on a specific architecture,

we can determine the balance between the rate at which the algorithm increases the bias,

and the rate at which debiasing errors are causing the bias to decrease.

Cooling algorithms can be built from basic steps other than the 3-bit majority. For those

that have “classical” implementations (that is, can be built from some sequence of general-

ized Toffoli gates), the approach I have taken here could be employed to conduct a similar

error analysis. For basic RPC steps operating on more than 3 bits, this analysis would

require examining higher-order polynomials, and may have to be done numerically.

For RPC steps that are implemented “quantumly” (i.e. using gates that force states to leave

the computational basis), more general quantum error models will have to be considered,

and a different approach to the error analysis will be required.
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Proofs of correctness for sequences in

Section 3.2.2.2

Proof of correctness for PR:
Consider a section of the lattice consisting of 18 lattice qubits encoding the data
qubits di and di+1, with the pointer positioned at data qubit di. Let xi be the binary
value associated with a basis state of the data qubit di. Then we have

(0 ,0 ,0 ,0 ,1 + xi , xi ,1 + xi , xi ,0 ,1 ,1 ,0 ,1 + xi+1 ,1 + xi+1 , xi+1 , xi+1 ,0 ,0).
A B A B A B A B A B A B A B A B A B

Note that evaluation of the state after each pulse requires evaluation of the states of
the cells to the left and right of the segment. Because the lattice is encoded according
to a known repeating structure, we can deduce these states as required. The effect

138
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of the pulse sequence PR is as follows.

(0 ,0 ,0 ,0 ,1 + xi , xi ,1 + xi , xi ,0 ,1 ,1 ,0 ,1 + xi+1 ,1 + xi+1 , xi+1 , xi+1 ,0 ,0)
A B A B A B A B A B A B A B A B A B

7 B
X
0−−→ (0 ,0 ,0 ,1 + xi ,1 + xi , xi ,1 + xi ,1 ,0 ,0 ,1 , xi+1 ,1 + xi+1 , xi+1 , xi+1 ,0 ,0 ,0)

A B A B A B A B A B A B A B A B A B

7 A
X
0−−→ (0 ,0 ,1 + xi ,1 + xi , xi , xi ,0 ,1 ,1 ,0 ,1 + xi+1 , xi+1 ,1 + xi+1 , xi+1 ,0 ,0 ,0 ,0)

A B A B A B A B A B A B A B A B A B

7 B
X
0−−→ (0 ,1 + xi ,1 + xi , xi , xi ,0 ,0 ,0 ,1 , xi+1 ,1 + xi+1 , xi+1 ,1 + xi+1 ,1 ,0 ,0 ,

A B A B A B A B A B A B A B A B

0 ,1 + xi+2)
A B

7 A
X
0−−→ (1 + xi ,1 + xi , xi , xi ,0 ,0 ,0 ,0 ,1 + xi+1 , xi+1 ,1 + xi+1 , xi+1 ,0 ,1 ,1 ,0 , ,

A B A B A B A B A B A B A B A B

1 + xi+2 ,1 + xi+2)
A B

and so the resulting state of the lattice segment encodes the pointer positioned at

data qubit xi+1. (Notice that the entire data array has moved to the left along the

lattice in the process). ¤

Proof of correctness for CZ:
Consider a section of the lattice consisting of 16 lattice qubits encoding the data
qubits di−1 and di, with the pointer initially at data qubit di. Let xi be the binary
value associated with a basis state of the data qubit di. Initially, the state is as
follows:

(1 + xi ,1 + xi , xi , xi ,0 ,0 ,0 ,0 ,1 + xi+1 , xi+1 , 1+xi+1 , xi+1 ,0 ,1 ,1 ,0)
A B A B A B A B A B A B A B A B

Let the phase associated with a basis state be (−1)φ, and suppose initially we have
φ = 0. The goal is to show that CZ Leaves a basis state unaffected, but introduces
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the phase φ = xixi+1. The effect of the pulse sequence CZ is as follows.

(1 + xi , xi , 1 + xi , xi , 0 , 1 , 1 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , 0 , 0 , 0 , 0) , φ = 0
A B A B A B A B A B A B A B A B

7 PR−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , xi+1 , 1+xi+1 , xi+1 , 0 , 1 , 1 , 0) , φ = 0
A B A B A B A B A B A B A B A B

7 B
X
0−−−→ (1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 1 + xi+1 , 1 , 0 , 0 , 1 , xi+2) , φ = 0

A B A B A B A B A B A B A B A B

7 A
X
0−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , 0 , 1 , 1 , 0 , 1 + xi+2 , xi+2) , φ = 0

A B A B A B A B A B A B A B A B

7 A
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , xi+1 , 1 , 1 , 0 , 1 + xi+2 , xi+2) , φ = 0

A B A B A B A B A B A B A B A B

7 B
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , 1 , 1 + xi+2 , 1 + xi+2 , 1) , φ = 0

A B A B A B A B A B A B A B A B

7 A
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , xi+1 + xi+2 + xi+1xi+2 , 1 + xi+2 ,

A B A B A B A B A B A B A B

0 , 1) , φ = 0
A B

7 A
X
0−−−→ (1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 , 0 , 1 , 1 + xi+1 , xi+1xi+2 , 1 + xi+2 , xi+2 , 1) , φ = 0

A B A B A B A B A B A B A B A B

7 B
X
0−−−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , xi+1 , 1 , 0 , 1 , xi+1 + xi+1xi+2 , xi+1xi+2 , 1 + xi+1xi+2 ,

A B A B A B A B A B A B A B

xi+2 , 1 + xi+2) , φ = 0
A B

7 B
X
2−−−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , xi+1 , 1 , 1 , 1 , xi+1 , xi+1xi+2 , 1 , xi+2 , 1 + xi+2) ,

A B A B A B A B A B A B A B A B

φ = 0

7 A
X
0−−−→ (0 , 1 + xi , 1 + xi , xi , xi , 0 , xi+1 , xi+1 , xi+1 , 1 , xi+1 , xi+1 , 1 + xi+1 + xi+1xi+2 , 1 , 0 , 1 + xi+2),

A B A B A B A B A B A B A B A B

φ = 0

7 B
X
0−−−→ (0 , 0 , 1 + xi , 1 + xi , xi , xi + xi+1 , xi+1 , xi+1 , xi+1 , 1 , xi+1 , 1 + xi+1 + xi+1xi+2 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = 0
A B A B

7 B
X
2−−−→ (0 , 0 , 1 + xi , 1 + xi , xi , xi + xi+1 + xixi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , xi+1 , 1 + xi+1 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = 0
A B A B

7 A
X
2−−−→ (0 , 0 , 1 + xi , 1 + xi , xi + xi+1 + xixi+1 , xi + xi+1 + xixi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , 1 , 1 + xi+1 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = 0
A B A B
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7 A
X
0−−−→ (0 , 0 , 0 , 1 + xi , 1 + xi , xi + xi+1 + xixi+1 , xi + xixi+1 , 0 , 1 , 1 + xi+1 , 1 , 1 + xi+1 ,

A B A B A B A B A B A B

xi+1 , xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0) , φ = 0
A B A B

7 B
X
0−−−→ (0 , 0 , 0 , 0 , 1 + xi , 1 + xi + xi+1 , xi + xixi+1 , 1 + xi + xixi+1 , 1 , 1 + xi+1 , 1 , 0 ,

A B A B A B A B A B A B

xi+1 , xi+1 , xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2) , φ = 0
A B A B

7 A
X
2−−−→ (0 , 0 , 0 , 0 , 1 + xi , 1 + xi + xi+1 , 1 + xi+1 + xixi+1 , 1 + xi + xixi+1 , xi + xi+1 + xixi+1 , 1 + xi+1 ,

A B A B A B A B A B

1 , 0 , , xi+1 , xi+1 , 0 , xi+1 + xi+1xi+2) , φ = 0
A B A B A B

7 A
X
0−−−→ (xi−1 , 0 , 0 , 0 , xi+1 , 1 + xi + xi+1 , 1 , 1 + xi + xixi+1 , 0 , 1 + xi+1 , xi+1 , 0 , 0 , xi+1 ,

A B A B A B A B A B A B A B

xi+1 , xi+1xi+2 , xi+1 + xi+1xi+2) , φ = 0
A B

7 B
Z
2−−→ (xi−1 , 0 , 0 , 0 , xi+1 , 1 + xi + xi+1 , 1 , 1 + xi + xixi+1 , 0 , 1 + xi+1 , xi+1 , 0 , 0 , xi+1 ,

A B A B A B A B A B A B A B

xi+1 , xi+1xi+2 , xi+1 + xi+1xi+2) , φ = xixi+1

A B

7 A
X
0−−−→ (0 , 0 , 0 , 0 , 1 + xi , 1 + xi + xi+1 , 1 + xi+1 + xixi+1 , 1 + xi + xixi+1 , xi + xi+1 + xixi+1 , 1 + xi+1 ,

A B A B A B A B A B

1 , 0 , xi+1 , xi+1 , 0 , xi+1 + xi+1xi+2) , φ = xixi+1

A B A B A B

7 A
X
2−−−→ (0 , 0 , 0 , 0 , 1 + xi , 1 + xi + xi+1 , xi + xixi+1 , 1 + xi + xixi+1 , 1 , 1 + xi+1 , 1 , 0 ,

A B A B A B A B A B A B

xi+1 , xi+1 , xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2) , φ = xixi+1

A B A B

7 B
X
0−−−→ (0 , 0 , 0 , 1 + xi , 1 + xi , xi + xi+1 + xixi+1 , xi + xixi+1 , 0 , 1 , 1 + xi+1 , 1 , 1 + xi+1 ,

A B A B A B A B A B A B

xi+1 , xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0) , φ = xixi+1

A B A B

7 A
X
0−−−→ (0 , 0 , 1 + xi , 1 + xi , xi + xi+1 + xixi+1 , xi + xi+1 + xixi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , 1 , 1 + xi+1 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = xixi+1

A B A B

7 A
X
2−−−→ (0 , 0 , 1 + xi , 1 + xi , xi , xi + xi+1 + xixi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , xi+1 , 1 + xi+1 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = xixi+1

A B A B
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7 B
X
2−−−→ (0 , 0 , 1 + xi , 1 + xi , xi , xi + xi+1 , xi+1 , xi+1 , xi+1 , 1 , xi+1 , 1 + xi+1 + xi+1xi+2 ,

A B A B A B A B A B A B

1 + xi+1 + xi+1xi+2 , xi+1 + xi+1xi+2 , 0 , 0) , φ = xixi+1

A B A B

7 B
X
0−−−→ (0 , 1 + xi , 1 + xi , xi , xi , 0 , xi+1 , xi+1 , xi+1 , 1 , xi+1 , xi+1 , 1 + xi+1 + xi+1xi+2 , 1 , 0 , 1 + xi+2) ,

A B A B A B A B A B A B A B A B

φ = xixi+1

7 A
X
0−−−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , xi+1 , 1 , 1 , 1 , xi+1 , xi+1xi+2 , 1 , xi+2 , 1 + xi+2) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 B
X
2−−−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , xi+1 , 1 , 0 , 1 , xi+1 + xi+1xi+2 , xi+1xi+2 , 1 + xi+1xi+2 ,

A B A B A B A B A B A B A B

xi+2 , 1 + xi+2) , φ = xixi+1

A B

7 B
X
0−−−→ (1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 , 0 , 1 , 1 + xi+1 , xi+1xi+2 , 1 + xi+2 , xi+2 , 1) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 A
X
0−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , xi+1 + xi+2 + xi+1xi+2 , 1 + xi+2 ,

A B A B A B A B A B A B A B

0 , 1) , φ = xixi+1

A B

7 A
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 0 , xi+1 , 1 + xi+1 , 1 , 1 + xi+2 ,

A B A B A B A B A B A B A B

1 + xi+2 , 1) , φ = xixi+1

A B

7 B
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , xi+1 , 1 , 1 , 0 , 1 + xi+2 , xi+2) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 A
X
2−−−→ (xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , 0 , 1 , 1 , 0 , 1 + xi+2 , xi+2) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 A
X
0−−−→ (1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , 1 + xi+1 , 1 , 0 , 0 , 1 , xi+2) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 B
X
0−−−→ (1 + xi , 1 + xi , xi , xi , 0 , 0 , 0 , 0 , 1 + xi+1 , xi+1 , 1+xi+1 , xi+1 , 0 , 1 , 1 , 0) , φ = xixi+1

A B A B A B A B A B A B A B A B

7 PL−→ (1 + xi , xi , 1 + xi , xi , 0 , 1 , 1 , 0 , 1 + xi+1 , 1 + xi+1 , xi+1 , xi+1 , 0 , 0 , 0 , 0) , φ = xixi+1

A B A B A B A B A B A B A B A B

It can similarly be verified that there is no net effect on qubits encoded in other parts

of the data array. ¤.
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Implementing switching stations for

the architecture of Section 3.2.2.2

I briefly describe the approach proposed in [BBK04] to implementing switching stations

for the gca architecture that was outlined in Section 3.2.2.2. Recall from Section 3.2.2.2

that the pointer is implemented by a “control unit” which is the specific pattern of states

|1〉|1〉|0〉|0〉|1〉|1〉 within the lattice. A switching station for this scheme could be encoded

by another pattern of states, illustrated below.

| ←− switching station −→ | | ←− CU −→ |
· · · 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 · · ·
· · · A B A B A B A B A B A B A B A B A B A B A B A · · ·

(B.1)

The switching station is canonically positioned starting on the A qubits, as are the data

qubits. This means that the switching station will move along the lattice in parallel with

the data qubits, and so maintain its relative position. The control unit moves contrary to

the data qubits and switching station. The control unit can be made to move transparently

through the switching station (just as it moves transparently through data qubits). For the

lattice segment (B.1), to move the control unit into the switching station and deactivate
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the control unit, the following pulse sequence can be applied.

AX
0 , BX

0 , BX
2 , AX

0 , BX
0 , AX

0 , AX
2 , BX

0 , AX
0 , BX

0 , AX
2 , AX

0 , BX
0 . (B.2)

After this sequence the lattice segment (B.1) is transformed to the following.

· · · 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 · · ·
· · · A B A B A B A B A B A B A B A B A B A B A B A · · ·

(B.3)

The control unit has been “absorbed” into the switching station, forming the pattern

|1〉|1〉|1〉|1〉, which is positioned starting on the A qubits. It will then move in parallel

with the encoded data qubits, and so always be in the same relative position. Therefore

its ability to act as a control unit is disabled. To re-activate the control unit, the reverse

pulse sequence of (B.2) is used.

A method for “marking” these switching stations, as in Section 3.5.2 is not given in

[BBK04]. They propose the idea that the switching stations could be “labeled” by distinct

patterns of states, but no specific labeling strategies are proposed (it is unclear how they

could be implemented).
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