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Abstract 

The purpose of this study is to analyze reinforced concrete frames subjected to abnormal loads.  

Structures are rarely subjected to abnormal loads, however, when they are subjected to them, it can 

lead to a progressive collapse.  The World Trade Centers in New York City and the Alfred P. Murrah 

building in Oklahoma City are examples of structures being deliberately subjected to abnormal loads.  

Structures can also experience unintentional abnormal loading.  Examples include the Ronan Point 

apartment building in Canning Town, England and Husky Stadium at the University of Washington.  

Consequently, many analysis and design standards now explicitly account for abnormal loads and try 

to mitigate their effects. 

This study presents the development of a nonlinear computer analysis program for reinforced 

concrete frames.  The method of analysis involves discretizing a two dimensional reinforced concrete 

frame into a series of beam-column elements.  The element is linear-elastic, however, its end-sections 

model nonlinear behaviour of a total member by a series of springs.  The springs represent the post-

elastic stiffness of the end-sections.  The post-elastic stiffness of a member-section is obtained from a 

post-elastic force-deformation response, which is first obtained by performing sectional analysis on a 

reinforced concrete section using a public domain computer program.  The post-elastic force-

deformation responses are modeled as either bilinear or trilinear.  So-called stiffness degradation 

factors, which are  defined as the ratio of elastic to elastic plus post-elastic deformation of a member-

section, are used in modifying the elastic stiffness coefficients in the element stiffness matrix to 

account for the nonlinear behaviour.   

Once a reinforced concrete frame enters the post-elastic range of response the analysis procedure 

becomes incremental.  The stiffness degradation factors are calculated at each load increment and the 

degree of post-elastic stiffness degradation is progressively tracked throughout the load history.  The 

program also has the capability of performing a progressive collapse analysis whereby debris loads 

caused by falling members are calculated and applied to the structure. 

A series of example problems are presented to demonstrate the computer analysis program.  The 

first analysis example is for a simple portal frame used to illustrate the program outputs.  The second 

analysis example is for a 2 bay-2 storey more redundant frame.  The third analysis example is for the 

same 2 bay-2 storey frame but with some initial damage caused by an abnormal load.  This example 

is used to illustrate the program's capabilities in performing a progressive collapse analysis.  
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Chapter 1 

Introduction 

The purpose of this study is to analyze reinforced concrete frames subjected to abnormal loads which 

can potentially lead to progressive collapse.  This is accomplished by developing a nonlinear 

computer analysis program.  The analysis and design for progressive collapse is explicitly accounted 

for in many standards including Unified Facilities Criteria 4-023-03 "Design of Buildings to Resist 

Progressive Collapse" (DoD, 2005) and the United States General Services Administration 

"Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major 

Modernization Projects" (GSA, 2003).  England was one of the first nations to account for 

progressive collapse in the design of structures after the Ronan Point apartment building in Canning 

Town, England suffered a progressive collapse in 1968.  A gas explosion blew out two exterior walls 

of a corner apartment at an upper floor triggering the progressive collapse (Figure 1.1) (CAC, 1995).  

The building was constructed with precast walls and floors.  

The Cement Association of Canada (CAC) defines progressive collapse as when a localized 

damage or failure of a structural member, which may be initiated by an abnormal loading event, leads 

to collapse of a disproportionately large part of the structure.  The type of abnormal load can range 

from impact loads, explosions or construction errors during erection of a building.  There are many 

examples of structures that have been subjected to abnormal loads.  In 1987 a new grandstand was 

being erected at Husky Stadium at the University of Washington.  A series of guylines temporarily 

supporting the structure during construction were removed too early resulting in complete collapse of 

the grandstand (Figure 1.2).  Another example of a structure subjected to abnormal load is the Alfred 

P. Murrah building in Oklahoma City.  In 1995 a deliberately set explosion destroyed one third of the 

building and killed 168 people, of which, 160 were in the building at the time (Figure 1.3).  Arguably 

the most famous incident of a structure being subjected to abnormal load is the World Trade Centers 

of New York City.  In 2001 they were subject to impact loads and extreme fires as a consequence of 

airplanes being deliberately flown into them.   

Similar to the GSA (2003) standard, however, this study uses a threat independent approach 

whereby the abnormal loading event is not explicitly known or quantified.  This is because abnormal 

loads vary greatly in type and intensity.  In the analysis program presented in this study, the intact 

structures are instead loaded beyond the normal range of applied loads, i.e., when the reinforcement 

yields, to show that they are subjected to some abnormal loading event.  Alternatively, a critical 
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member of the structure is removed and the modified structure is analyzed by the program.  The 

critical member is assumed to have been damaged by an abnormal loading event. 

Progressive collapse is rare because it requires both an abnormal load to create a localized damage 

and also a structure that lacks sufficient redundancy to resist the progression of damage (DoD, 2005).  

However, abnormal loads and progressive collapse do exist and thus efforts should be made to 

minimize their impact on structures.  In order to do that, however, a structure's response to an 

abnormal load must be understood.  Such is the focus of this study. 

1.1 Scope of Study 

This study presents a computer analysis technique for reinforced concrete frames subjected to 

abnormal loads.  The method of analysis involves discretizing a two-dimensional frame into a series 

of beam-column elements, whose end-sections model the nonlinear behaviour of the element.  The 

degree of post-elastic stiffness degradation is tracked through the use of stiffness degradation factors.  

The load is incrementally applied to the structure until the full design load is reached, or a failure state 

occurs before that point. 

Chapter 2 presents the analysis concepts and includes: 

• The analysis model and member properties used to analyze a reinforced concrete frame. 

• The concept of the post-elastic range of response. 

• The public domain program used to obtain force-strain and moment-curvature data for 

any type of reinforced concrete section. 

• The method for modifying the public domain program's force-strain and moment-

curvature data into the required force-deformation and moment-rotation data. 

• The definition of the post-elastic stiffness of a member-section and the force-

deformation responses modeled in this study. 

• The definition and derivation of the stiffness degradation factors and how they apply to 

this study. 

• The derivation of the element stiffness matrix. 
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Chapter 3 presents the four stages of the analysis program and includes: 

• Stage zero elastic analysis which is performed on the structure up to the point that the 

structure no longer exhibits linear-elastic behaviour. 

• Stage one inelastic incremental analysis where the degree of post-elastic behaviour is 

tracked. 

• Stage two elastic-unloading analysis which is performed only after a member-section 

exceeds its ultimate load resistance and fails. 

• Stage three reloading inelastic analysis which also tracks the degree of post-elastic 

behaviour of the structure, but also applies amplified debris loads on the structure caused 

by falling members that have disengaged from the main structure. 

Chapter 4 presents a series of example problems used to illustrate the computer analysis program 

and includes: 

• A simple portal frame used to illustrate the features of the analysis procedure and various 

outputs from the program. 

• A 2 bay-2 storey more redundant frame. 

• The same 2 bay-2 storey frame, but with some initial damage caused by some abnormal 

loading event.  This example serves to illustrate the program's capability to conduct a 

progressive collapse analysis. 

Chapter 5 presents  a summary of the work discussed in this study, some specific conclusions 

regarding the analysis of reinforced concrete frames and finally, areas of future work. 

1.2 Assumptions and Idealizations 

The following assumptions and idealizations are made in this study: 

• Plane sections remain plane such that the strain distribution across a member-section is 

linear. 

• There are no out-of-plane actions, i.e., the structure is laterally braced. 

• A member is in the elastic range when the modulus of elasticity is constant and its force-

deformation response is linear. 
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• Beyond the elastic range, the member is assumed to be fully or partially plastic. 

• A member's nonlinear behaviour is modeled by a series of springs and is confined to the 

end-sections of the member. 

• The unloading phenomenon whereby a member-section experiences increasing 

deformation through decreasing load after the member-section reaches its ultimate load 

resistance is ignored.  This study assumes that once a member-section reaches its ultimate 

load resistance it has also reached the end of its load history. 

• The post-elastic force-deformation or moment-rotation response of a member-section is 

modeled as either trilinear or bilinear, depending on the case being studied.  

• When determining the degree of post-elastic stiffness degradation, only single stress states 

are looked at, i.e., moment-shear or moment-axial force interaction is ignored. 

 

 

Figure 1.1:  Ronan Point Apartment Building 1968 (© Daily Telegraph, 1968) 
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Figure 1.2:  Husky Stadium 1987 (© John Stamets, 1987) 

 

 

Figure 1.3:  Alfred P. Murrah Building, Oklahoma 1995 (Hinman, 1997) 

 

 

 

 



 

 6 

Chapter 2 

Analysis Concept 

 

The following presents the concepts and theory behind the analysis procedure.  Section 2.1 presents 

the analysis model and member properties used to analyze a reinforced concrete frame.  Section 2.2 

explains the concept of the post-elastic range of response of a member-section.  Section 2.3 explores a 

public domain program used to obtain information about the sectional behaviour of reinforced 

concrete considered in this study.  It also refers to the theory on which the public domain program is 

based.  Section 2.4 shows how member-section deformations and rotations are approximated from 

given strains and curvatures.  Section 2.5 defines the post-elastic stiffness of a member-end section 

and presents the force-deformation responses modeled in this study.  Section 2.6 derives the stiffness 

degradation factors and explains their purpose in the analysis and how initial values are selected.  

Finally, Section 2.7 presents the member stiffness matrix and how it is derived.   

2.1 Beam-Column Model for Analysis 

The method of analysis in this study involves discretizing a two dimensional reinforced concrete 

frame into an assemblage of the beam-column elements shown in Figure 2.1 .  The element has length 

L, modulus of elasticity E, moment of inertia I, cross-sectional area A and shear modulus G.  All 

properties are constant.  In the presented study they are all based on the gross concrete section.  The 

element has six local member-end forces fi (i = 1 to 6) consisting of axial forces, shear forces and 

bending moments.  The element also has six local member-end deformations di (i = 1 to 6) consisting 

of axial deformations, shear deformations and rotations.  The element without springs is linear-elastic; 

however, its end-sections model nonlinear behaviour of a total member by a series of springs, which 

represent the post-elastic stiffness of the end-sections.  The springs in the horizontal direction, 

designated by Ni (i = 1 to 2), represent post-elastic axial stiffness; the springs in the vertical direction, 

designated by Ti (i = 1 to 2), represent post-elastic shear stiffness, while the rotational springs, 

designated by Ri (i = 1 to 2), represent post-elastic bending stiffness.  Furthermore, the bending, 

shearing and axial stiffness degradation factors, ri, ti, ni (i = 1 to 2), respectively, are included in the 

model.  They modify the elastic stiffness coefficients of the element stiffness matrix to account for the 

post-elastic behaviour of the end-sections of the member. 
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There are three issues then that should be discussed further to fully develop the analysis model: 1) 

the post-elastic range of response must be defined; 2) the calculation of the post-elastic sectional 

stiffness, modeled here by the end springs, must be given; 3) the purpose and derivation of the 

stiffness degradation factors must be illustrated. 

2.2 Post-Elastic Range of Response 

Reinforced concrete members show a strong material nonlinearity when subjected to loads.  This is 

due to the nonlinear response in both tension and compression due to cracking, yielding of 

reinforcement and nonlinear concrete compressive behaviour.  When a member exhibits a tension 

type of response (through flexure, shear or axial loads) it is assumed that the response is linear until 

cracking.  After that, if the load is increased, the response becomes nonlinear.  When a member 

exhibits a compression type of response, it is assumed that the linear elastic range is up to 40% of the 

maximum load (0.4f'c is the limit of elasticity).  A reinforced concrete member's nonlinear response to 

loads, when applied to structural analysis, is one of the problems addressed in this study. 

It is assumed that a reinforced concrete member is in the elastic range when the modulus of 

elasticity is constant and the force-deformation response is linear.  Beyond that, the member is 

assumed to be fully or partially plastic and in the post-elastic range.  Figure 2.2 shows a typical 

moment-rotation response for an under-reinforced concrete section. Mcr represents the moment at 

which initial flexural cracking in the tension zone of the member occurs.  My represents the moment 

at which the tensile reinforcement begins to yield, while Mult represents the full moment capacity of 

the member and the point at which the concrete crushes in the compression zone.  The elastic domain 

of the response is small due to the member's low cracking moment resistance.  Up until the point of 

flexural cracking, denoted by Mcr, the moment-rotation response is elastic.  At this point the concrete 

begins to crack and there is a change in the sectional properties of the member, indicated in the figure 

by the change in slope of the moment-rotation response at Mcr.  Beyond this point and for the 

remainder of the load history the member section is in the post-elastic range.   

For members in compression, it is typically said that linear-elastic behaviour ends and nonlinear 

behaviour begins when the member is subjected to a compressive stress of approximately 0.4f'c 

(Pillai, Kirk & Erki, 1999).  A constant value of Young's modulus for concrete in compression is 

obtained by the secant method, whereby a line is drawn through the origin of the stress-strain curve 

and a point that is 40 percent of the compressive strength.  The slope of this line represents the 



 

 8 

average value of the modulus throughout the normal range of applied loads (Pillai, Kirk & Erki, 

1999).  When a member is subjected to loads beyond this range, the effective modulus continuously 

changes making the response nonlinear.  Figure 2.3 shows a typical force-deformation response for a 

member section subjected to axial compression.  The member-section is in the elastic range up until 

40% of the ultimate compressive force is reached.  Beyond this point nonlinear behaviour begins and 

for the remainder of the load history the section is said to be in the post-elastic range. 

2.3 Sectional Analysis of Reinforced Concrete Members 

The post-elastic sectional stiffness of the member-sections is modeled by a series of end springs.  The 

bending, shearing and axial elastic member stiffness is defined as the force required to produce a unit 

deformation (Timoshenko & Gere, 1972).  Elastic axial member stiffness for example, has a value of 

AE/L, which is obtained by calculating the slope of the force-deformation response of a member in 

the elastic range.  Similarly, the post-elastic bending, shearing or axial stiffness of a member-section 

is obtained by calculating the slope of the post-elastic force-deformation response.  The post-elastic 

force-deformation response of a member-section then, is first needed in order to calculate the post-

elastic stiffness.  In order to obtain the post-elastic force-deformation response of a member-section, 

the post-elastic force-strain response is first obtained through sectional analysis. 

For this study, the sectional behaviour of reinforced concrete members is obtained from a public 

domain analysis program titled Response-2000 Version 1.0.5, hereafter referred to as Response.  

Response is based on the Modified Compression Field Theory (MCFT).  It was created by Evan C. 

Bentz of the University of Toronto as part of his PhD thesis work (Bentz, 2000), under the 

supervision of Professor M.P. Collins.  The program is available free of charge from the World Wide 

Web at:  http://www.ecf.utoronto.ca/~bentz/r2k.htm.  The program can be used to determine the 

sectional force-strain relationship of a variety of reinforced concrete members subjected to moment, 

shear force, axial force, or a combination thereof.  The user may analyze any type of cross section by 

inputting parameters such as concrete compressive strength, type of reinforcement, type of 

prestressing steel and section geometry.  The user may also select predefined AASHTO, CPCI, PCI 

or WSDOT standard sections.  Pertinent section information is then summarized for the user as 

shown in Figure 2.4, and includes such data as cross sectional area and moment of inertia. 

As mentioned, the program is based on the MCFT to analyze sections subjected to load using 

average stresses and average strains in the calculations (Collins & Mitchell, 1991).  Due to the fact 
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that average stresses are used, things such as dowel action force, shear stresses on cracks, etc., need 

not be explicitly calculated, thus simplifying the procedure (Bentz, 2000).  The program uses an 

incremental layered approach whereby the sectional forces are solved for by assuming a global strain 

state (comprised of the longitudinal strain, the curvature, and the average shear strain) for the cross 

section (Bentz, 2000). Response was tested and compared to a database of 534 beams, to find an 

average experimental-over-predicted shear strength ratio equal to 1.05 with a coefficient of variation 

of 12.0% (Bentz, 2000).  The reader is referred to Bentz (2000) for more detailed information 

regarding the theoretical models used in Response, the internal workings of the program and the 

experimental data the program is compared to.  What follows now is an example of the sectional 

force-strain behaviour given by Response that is used in this study.   

2.3.1 Sectional Analysis in Bending 

In order for Response to obtain a moment-curvature plot for a reinforced concrete section subjected to 

bending moment only, the ratio of bending moment to shear force to axial force is set to 1:0:0 in the 

program.  Using the reinforced concrete section in Figure 2.4 as an example, the sectional analysis is 

run and the results are output as shown in Figure 2.5. 

 Two control plots are shown along the left-hand side of the figure to aid the user in determining 

specific information about the cross-section at any particular load level.  The moment-curvature plot 

(bottommost plot on the left-hand side) is of most importance to this study.  The moment-curvature 

plot is used to obtain the moment-rotation plot that is then used to obtain the post-elastic bending 

stiffness of a member-section at a particular load level (discussed in detail in Section 2.5). 

When the user selects a moment level on the control plot, nine additional pieces of information for 

that cross section at that moment level are shown in the plots on the right.  Information such as 

approximate crack width, longitudinal concrete stress, and longitudinal reinforcement stress are 

shown.  Of particular importance to this study (which will become evident in Section 2.5) is the 

moment and curvature magnitudes at which flexural cracking initiates in the section, the 

reinforcement yields, and the section reaches its ultimate capacity. 

The moment-curvature control plot produced by Response is shown by itself in Figure 2.6, in 

which the maximum moment and curvature are shown to have values of 231.1 kN-m and 207.3 

rad/km, respectively.   By moving the cross-hairs along the control plot, one can obtain information 

about the cross section at the load level indicated, from the nine graphs of Figure 2.5.  The moment 
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and curvature magnitude at which initial flexural cracking occurs in the section is now determined as 

an example.   

For this particular cross section, the concrete tensile strength has a value of 1.87 MPa.  If the cross-

hairs, starting at the origin, move along the control plot, the longitudinal concrete stress - shown in 

one of the nine graphs of Figure 2.5- changes for each load level of the control plot.  At a moment 

level of 16 kN-m the longitudinal concrete stress at the bottom fibers of the section has a value of 1.8 

MPa, while at a moment level of 20.3 kN-m the longitudinal concrete stress has a value of 1.9 MPa , 

which exceeds the tensile strength of the concrete.  Furthermore, at 16 kN-m the crack diagram shows 

a completely uncracked section, while at 20.3 kN-m the crack diagram shows that a small flexural 

crack has developed.  From this information, one may infer that at a moment level of 16 kN-m the 

section is on the verge of cracking.  The curvature at the 16 kN-m moment level may then be obtained 

from the moment-curvature control plot. The point of initial cracking due to shear or axial force is 

found in a similar way.   

2.3.2 Sectional Analysis in Shear 

In order for Response to obtain a force-strain plot for a reinforced concrete section subjected to shear 

only, it is first noted that shear cannot exist alone without some degree of bending moment and, as 

such, the ratio of shear force to bending moment to axial force is set to 1:0.01:0 in the program. 

Using the same reinforced concrete section as in Figure 2.4, the analysis is run and the results are 

output as shown in Figure 2.7.  The two control plots at the left hand side are shear force-shear strain 

(top plot) and shear force-axial strain (bottom plot).  The shear force-shear strain plot is of most 

importance to this study.  This plot is used to obtain the post-elastic force-deformation response of the 

member-section which is then used to obtain the post-elastic shear stiffness of the cross-section at a 

particular load level (discussed in detail in Section 2.5). 

When the user selects a shear level on the control plot, nine additional pieces of information for the 

cross section at that shear level are shown on the plots to the right. Information such as longitudinal 

reinforcement stress, transverse strain, and stirrup stress are shown.  The magnitude of the shear force 

and corresponding shear strain at the point of stirrup yielding is required for this study (which will 

become evident in Section 2.5) and is now presented as an example. 

The shear force-shear strain control plot produced by Response is shown by itself in Figure 2.8.  

The maximum shear resistance and shear strain are indicated to have magnitudes of 265.3 kN and 
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18.0 mm/m, respectively.  Again, by moving the cross-hairs along the control plot, one can obtain 

information about the cross section at any load level from the nine graphs of Figure 2.7.  The 

reinforcement properties for this cross section are consistent with CSA G30.12 steel with a yield 

strength of 400 MPa.  To determine the point at which the reinforcement yields, the cross hairs are 

moved along the control plot of Figure 2.8 and the values in the nine plots of Figure 2.7 are observed, 

particularly the stirrup stress level.  Once the stirrup stress level reaches 400 MPa the reinforcement 

has yielded.  This is also indicated on the dynamic cross section diagram whereby the stirrups change 

colour at their middle to indicate that initial yielding is occurring.  One may then note the shear force 

from the control plot as well as the corresponding shear strain.  In this case, the shear force and shear 

strain have magnitudes of 223 kN and 2.13 mm/m, respectively.  The point at which the longitudinal 

reinforcement yields in flexure or due to tensile axial load is found in an analogous way.   

2.3.3 Sectional Analysis in Compression 

In order for Response to obtain a force-strain plot for a reinforced concrete section subjected to 

compression only, the ratio of axial force to bending moment to shear force is set to -1:0:0 in the 

program (the negative sign indicates a compressive force).  Using the same reinforced concrete cross 

section as in Figure 2.4, the analysis is run and the results output as shown in Figure 2.9.  There is 

only 1 control plot in this case (albeit repeated) along the left side of the figure which shows 

compressive force-axial strain data.  This data is used to obtain the post-elastic force-deformation 

response of the member section in order to obtain the post-elastic axial stiffness of the section at some 

load level.  Longitudinal strain, longitudinal reinforcement stress, longitudinal concrete stress, and 

other data are shown in the nine additional plots to the right, which change depending on the load 

level selected in the control plot.  A final piece of data important in this study is the force and 

deformation at which the section reaches its ultimate capacity.  This is now presented as an example. 

The compressive force-axial strain control plot produced by Response is shown by itself in Figure 

2.10.  The maximum compressive force and axial strain are indicated to have values of 5780.3 kN and 

10.9 mm/m, respectively.  The nine plots in Figure 2.9 show information about the cross section at 

the load level selected from the control plot.  The compressive stress of the concrete is 35 MPa.  As 

the cross hairs move along the control plot and the load level increases, the longitudinal concrete 

stress also increases.  Once it reaches a stress level of 35 MPa, the section has reached its ultimate 

capacity and fails due to crushing of concrete.  Furthermore, the crack diagram changes colour once 

crushing occurs.  The compressive force and corresponding axial strain at the ultimate capacity can be 
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recorded.  In this case they have magnitudes of 5780.3 kN and  1.96 mm/m, respectively.  In the case 

of a section in compression, it is not necessary to check the concrete stress level or the crack diagram 

to determine the section's ultimate capacity.  One can simply record the force and deformation 

magnitudes at the peak point of the graph shown in the control plot.  In the other loading cases 

however, the ultimate capacity is determined by observing the information presented in the nine plots 

and comparing those values to the material properties of the section.  Figure 2.10 also shows a 

distinctive unloading, whereby the compressive force decreases with an increase in strain.  In this 

study, the unloading portion of the curve is ignored such that there is no further increase in strain 

beyond the ultimate compressive load. 

2.4 Approximating Member-End Deformations from Strains 

Flexure 

The output data from Response for sectional analysis in bending includes a moment-curvature graph; 

however, a moment-rotation graph is needed to calculate the post-elastic bending stiffness.  The 

curvature values from Response are the maximum curvatures for the end-section of a beam.  The 

curvature, however, changes along the length of a member.  Curvature is defined as the change in 

slope per unit length along the member.   Integrating the curvature φ over a length a produces a 

rotation θ, i.e.,  

∫=
a

dxx
0

)(φθ   (2.1) 

It remains to determine a suitable integration length  a, as discussed in the following. 

It is assumed that for a beam member under a uniformly distributed load that the curvature changes in 

the same manner as the moment (Figure 2.11).  The maximum curvature φmax exists at the end of the 

beam and there exists a point of zero curvature at 0.21L.  Furthermore, we derive the average 

curvature for the parabolic distribution from the end of the beam to 0.21L as, 

 max

21.0

0 46.0
21.0

)(

φ
φ

φ ==
∫

L

dxx

L

avg   (2.2) 

and where from Eqs. (2.1) and (2.2) we derive the approximate rotation for the member-end section 

as, 
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maxmax

21.0

0

09.021.046.0)( φφφθ LLdxx

L

=×== ∫  (2.3) 

We thus obtain length 0.09L, which we can use to multiply the maximum curvatures (φmax) for the 

member-end section provided by Response, in order to obtain an approximate rotation for the beam 

member-end section. 

Shear 

The output data from Response for sectional analysis in shear includes a shear force-shear strain 

graph; however, a shear force-shear deformation graph is needed in order to calculate the post-elastic 

shear stiffness.  Similar to the preceding method, the shear strain γs may be integrated over some 

length a in order to obtain the shear deformation,   

∫=
a

sd dxx
0

)(γγ   (2.4) 

It remains to determine a suitable integration length  a, as discussed in the following. 

It is assumed that for a beam member under a uniformly distributed load that the shear strain 

changes in the same manner as the shear force (Figure 2.12).  The maximum shear strain γs,max exists 

at the end of the beam and there exists a point of zero shear strain at 0.5L.  Furthermore, we derive 

the average shear strain for the linear distribution from the end of the beam to 0.5L as, 

max,

5.0

0
, 5.0

5.0

)(

s

L

s

avgs
L

dxx

γ
γ

γ ==
∫

  (2.5) 

and where from Eqs. (2.4) and (2.5) we derive the approximate shear deformation for the member-

end sections as, 

max,max,

5.0

0

25.05.05.0)( ss

L

sd LLdxx γγγγ =×== ∫  (2.6) 

We thus obtain length 0.25L, which we can use to multiply the maximum shear strains (γs,max) for 

the member-end section provided by Response, in order to obtain an approximate shear deformation 

for a beam member-end section.  
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Columns have a constant shear force over their length (assuming no lateral loads), and thus, their 

entire length may be used as the integration length a. 

Axial Loads 

The output data from Response for sectional analysis under axial load includes an axial force-axial 

strain graph; however, an axial force-axial deformation graph is needed in order to calculate the post-

elastic axial stiffness.  Since in most cases the axial force is constant for the entire member length, the 

axial strain is simply multiplied by the member length in order to obtain the axial deformation. 

With the force-strain and moment-curvature data from Response and an approximation of the 

deformations and rotations associated with those strains and curvatures calculated, the force-

deformation response of a member section subjected to bending moment, shear force or axial force 

can be obtained.  To attain the post-elastic force-deformation response of a member section, the 

elastic deformations are simply subtracted from the total deformations.   

2.5 Post-Elastic Stiffness and Force-Deformation Response 

Now that the sectional analysis and procedure for obtaining the post-elastic force-deformation 

response has been illustrated, the post-elastic sectional stiffness can be determined.  As previously 

mentioned, the post-elastic stiffness is obtained by calculating the slope of the post-elastic force-

deformation response at any particular point.  The post-elastic stiffness is needed in order to calculate 

the stiffness degradation factors (Section 2.6) used later in the analysis procedure.   

2.5.1 General Force-Deformation Response 

There are six possible force-deformation responses for reinforced concrete member-sections and they 

are dependent on the mode of loading applied and the reinforcement.  The six different responses are:  

1) under-reinforced for flexure 2) over-reinforced for flexure 3) shear with transverse reinforcement 

4) shear without transverse reinforcement 5) tension axial force and 6) compression axial force.  In 

this study all of these are approximated as either tri or bi-linear force-deformation responses as 

discussed in the following.  Furthermore, it is assumed that a reinforced concrete member has an 

elastic response until cracking for members in tension, flexure and shear, and that for members in 

compression, it is assumed that the force-deformation response is elastic until 40% of the ultimate 

force is reached. 
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There exists a tri-linear general form of the total and post-elastic force-deformation response for 

bending of an under-reinforced section, shear for a section with transverse reinforcement and a 

section subjected to axial tension.  All of these cases involve members experiencing cracking. 

Figure 2.13 shows a general form of the tri-linear post-elastic force-deformation response. Fcr = 

Mcr, Vcr, or Pcr is the bending, shearing, or axial tensile force at the point of cracking of concrete; i.e., 

flexural cracking in bending, diagonal cracking in shear and transverse cracking in tension.  Fy = My, 

Vy, or Py is the bending, shearing or axial tensile force at the point of yielding of the reinforcement;  

i.e., longitudinal reinforcement for bending and axial tension and transverse reinforcement for shear.    

Fult = Mult and Vult is the bending and shearing force at the point of crushing of concrete, while Fult = 

Pult is the point at which the longitudinal reinforcement ruptures under axial tension.  

Correspondingly, Dy = θy, γy, δy and Dult = θult, γult, δult are the values of bending, shearing and axial 

tension post-elastic deformation at yielding of reinforcement and crushing of concrete (or rupture of 

longitudinal steel), respectively.  The post-elastic stiffness is given by the slope of particular portions 

of the response, i.e.,  dF/dD = R, T, or Nt for bending, shearing, and axial tension, respectively.  

There exists two different values of post-elastic stiffness that remain constant through a particular 

range of loading.  The values of the post-elastic stiffness for lines AB and BC are given by,   

R, T or Nt (AB) = 
y

cry

D

FF −
   (2.7) 

R, T or Nt (BC) = 
yult

yult

DD

FF

−

−
  (2.8) 

Notice that at zero post-elastic deformation the graph is vertical up to the point Fcr, meaning that 

the post-elastic stiffness is infinite and the member-section is fully elastic.  Just beyond this point, the 

member section begins to crack and there is a reduction in post-elastic stiffness and the member 

section is now partially plastic.  The magnitude of the post-elastic stiffness is now a finite value 

between infinity (fully elastic) and zero.  As the load increases, the post-elastic stiffness remains 

constant as the post-elastic deformation approaches Dy.  At Dy, the reinforcement begins to yield and 

there is another reduction in post-elastic stiffness.  The magnitude of the post-elastic stiffness 

decreases while the magnitude of the post-elastic degradation of the member-end increases.  As the 

load increases, the post-elastic stiffness remains constant as the post-elastic deformation approaches 

Dult.  At Dult, when the member-end has reached its ultimate capacity, its post-elastic stiffness 
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decreases to zero and the post-elastic stiffness is said to be fully degraded thereby initializing a 

section failure. Once a reinforced concrete section reaches its ultimate capacity due to the rupturing of 

reinforcement or crushing of concrete, the member section is damaged to the point that it can no 

longer carry load.   

Figure 2.14 shows the Response data for an under-reinforced beam that has a 500x350mm cross 

section with a compressive strength and reinforcement ratio of 35 MPa and 1.31%, respectively.  The 

data have been modified so that only plastic curvature is included.  A polynomial curve was initially 

fit to the data to obtain a continuous function that could be used to obtain the slope of the graph by 

taking its 1st derivative; however, a polynomial curve did not fit well to the point at which the 

reinforcement begins to yield (shown by an arrow on the graph).  Consequently, linear functions as 

just discussed were selected to represent the data: one from the beginning of the load history to the 

point at which post-elastic behaviour begin; one for the range of loading from initial cracking to 

initial yielding of the reinforcement; and another for the range of loading from initial yielding to the 

ultimate capacity of the member-section.  

There also exists a bi-linear general form of the post-elastic force-deformation response for over-

reinforced sections in flexure and sections subjected to axial compression (Figure 2.15).  As 

previously mentioned, for sections subjected to axial compression, elastic behaviour governs until 

40% of the ultimate compressive force has been reached at which point the section enters the post-

elastic range.  The post-elastic stiffness for line AB is given by,   

ult

ultult

c
D

FF
N

4.0−
=     (2.9) 

where Fult is the ultimate compressive force of the concrete, 0.4Fult is the force at which post-elastic 

behaviour begins, and Dult is the ultimate deformation at failure.  At zero post-elastic deformation the 

slope of the graph is vertical and the member-section is fully elastic.  At 0.4Fult, however, there is a 

reduction in stiffness and the member is then in the post-elastic range with a  stiffness value between 

infinity and zero.  The post-elastic stiffness remains constant until failure of the section. 
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2.5.2 Examples of Post-Elastic Force-Deformation Response and Post-Elastic   

Stiffness 

The post-elastic force-deformation response for the six cases discussed earlier that can be represented 

by a tri-linear or bi-linear model are now shown.  The post-elastic responses were obtained by 

converting the load-strain and moment-curvature data from Response to load-deformation and 

moment-rotation data and then subtracting the elastic deformations from the total deformations. 

The following presents the six different post-elastic force-deformation responses possible.  A 7500 

mm long member with a 500x350 mm cross section and a compressive strength of 35 MPa is used for 

flexure and shear.  For the under-reinforced case in flexure, the section has a reinforcement ratio of 

1.04% whereas for the over-reinforced case the section has a reinforcement ratio of 3.06%.  For shear, 

the under-reinforced section is used and has 10M closed stirrups spaced at 300 mm on centre for the 

case with transverse reinforcement.  The same section is used albeit with the transverse reinforcement 

removed for the case of shear without transverse reinforcement.  For axial compression and axial 

tension, a 3600 mm long column member having a 350x350 mm section with a compressive strength 

of 35 MPa is used.  The section has a 2.1% reinforcement ratio.  Note that for all cases the 

reinforcement properties are those for CSA G30.12 400 MPa reinforcing steel.   

2.5.2.1 Post-Elastic Bending Stiffness 

Figure 2.16 shows the post-elastic moment-rotation response for the under-reinforced cross section.  

The lines representing the tri-linear model are also shown.    The section is subjected to bending 

moment only.  Notice that there is no plastic deformation until the cracking moment Mcr is reached.  

Only after Mcr is reached does the section enter the post-elastic range.  It is at this point that there is a 

reduction in post-elastic bending stiffness; i.e., from an infinite value when the section is fully elastic 

to the value given by Eq. (2.7), i.e.,   

mkN
rad

mkNmkNMM
R

yld

cryld

A ⋅=
⋅−⋅

=
−

= 56735
0049.0

30308

θ
  

which is constant throughout the range of loading from Mcr to Myld.  Once the moment level reaches 

the yield moment Myld = 308 kN-m, there is another reduction in post-elastic stiffness to the value 

given by Eq. (2.8), i.e., 
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mkN
radrad

mkNmkNMM
R

yldult

yldult

B ⋅=
−

⋅−⋅
=

−

−
= 1494

0049.00310.0

308347

θθ
  

which is constant throughout the range of loading from Myld to Mult.  The effect of the reinforcement 

yielding is apparent in the fact that the post-yielding stiffness RB is only 2.6% of the post-cracking 

stiffness RA.  Once the moment level goes beyond Mult = 347 kN-m, the stiffness is said to be fully 

degraded and the section then has zero post-elastic bending stiffness. 

Figure 2.17 shows the post-elastic moment-rotation response for the over-reinforced section.  The 

lines representing the bi-linear model of the response are also shown.  The section is subjected to 

bending moment only.  Post-elastic behaviour begins once the bending moment reaches 40% of the 

ultimate moment resistance Mult = 640 kN-m.  Once the section enters the post-elastic range the post-

elastic bending stiffness is given by Eq. (2.9), i.e., 

mkN
rad

mkNmkNMM
R

ult

ultult

A ⋅=
⋅−⋅

=
−

= 65084
0059.0

)640(4.06404.0

θ
 

which is constant throughout the range of loading from 0.4Mult to Mult. 

2.5.2.2 Post-Elastic Shearing Stiffness 

Figure 2.18 shows the post-elastic shear-shear deformation response of the cross section with 

transverse reinforcement.  The lines representing the tri-linear model are also shown.  The section is 

subjected to shear force only.  The section does not enter the post-elastic range until the magnitude of 

the shear force has reached the cracking shear resistance Vcr = 174 kN.  The cracking discussed here 

is diagonal shear cracking.  When the magnitude of the applied shear force is just beyond the cracking 

shear resistance, the section enters the post-elastic range and there is a reduction in post-elastic shear 

stiffness to the value given by Eq. (2.7), i.e., 

mmkN
mm

kNkNVV
T

yld

cryld

A /2.10
41.4

174219
=

−
=

−
=

γ
 

which is constant throughout the range of loading from Vcr to Vyld.  Once the magnitude of the shear 

force reaches the yield shear force Vyld = 219 kN there is another reduction in post-elastic shear 

stiffness to the value given by Eq. (2.8), i.e., 
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−
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which is constant throughout the range of loading from Vyld to Vult.  Like in the case of bending 

moment, the effect of the transverse shear reinforcement yielding causes a large reduction in post-

elastic shear stiffness whereby the post-yielding stiffness TB is only 39% of the post-cracking 

stiffness TA. 

Figure 2.19 shows the post-elastic shear force-shear deformation response of the cross section without 

transverse reinforcement.  The lines representing the bi-linear model are also shown.  The section is 

subjected to shear force only.  The section does not enter the post-elastic range until the magnitude of 

the shear force has reached the cracking shear resistance Vcr = 209 kN.  Once this occurs, the post-

elastic shear stiffness reduces to zero.  This is shown in the figure by the fact that the response is now 

represented by a flat line. 

2.5.2.3 Post-Elastic Axial Tension Stiffness 

Figure 2.20 shows the post-elastic axial force-axial deformation response for the cross section.  The 

lines representing the tri-linear model are also shown.  The section is subjected to axial tension only.  

The tri-linear model shown here is of the same form as under-reinforced sections in flexure and  shear 

force for sections with transverse reinforcement.  The section does not enter the post-elastic range 

until the concrete cracks due to an applied tensile force of Pcr = 277 kN.  Once this occurs there is a 

reduction in post-elastic axial stiffness to the value given by Eq. (2.7), i.e., 

mmkN
mm

kNkNPP
N
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cryld
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=

−
=

−
=

δ
 

which is constant throughout the range of loading from Pcr to Pyld.  Once the magnitude of the axial 

force reaches Pyld = 1680 kN, there is another reduction in post-elastic axial tension stiffness to the 

value given by Eq. (2.8), i.e., 
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which is constant throughout the range of loading from Pyld to Pult.  Again, yielding of the 

reinforcement causes a reduction in the post-yielding stiffness NBt to a value that is 1.5% of the post-

cracking stiffness NAt. 

2.5.2.4 Post-Elastic Axial Compressive Stiffness 

Figure 2.21 shows the post-elastic axial force-axial deformation response for the cross section.  The 

lines representing the bi-linear model of the response are also shown.  The section is subjected to 

axial compression only.  The section enters the post-elastic range at 40% of the ultimate compressive 

force.  Once this occurs there is a reduction in post-elastic axial stiffness to the value given by Eq. 

(2.9), i.e., 

mmkN
mm

kNkNPP
N

ult

ultult

c /656
29.5

)5780(4.057804.0
=

−
=

−
=

δ
 

which is constant throughout the range of loading from 0.4Pult to Pult. 

Having fully developed the post-elastic force-deformation responses and the post-elastic sectional 

stiffness, the stiffness degradation factors can now be calculated as presented in the next section.  

2.6 Stiffness Degradation Factors 

Flexural stiffness degradation factors, are defined as the ratio of the rotation of a member-end to the 

combined rotation of the member-end and the connection due to a unit end-moment (Xu, 1994).  In 

this study, stiffness degradation factors are taken as the ratio of elastic deformation to elastic plus 

plastic deformation (Xu et al, 2005), and are an indication of the extent of post-elastic behaviour of 

the member-end (Liu, 2007).  Furthermore, the stiffness degradation factors are used to modify the 

elastic stiffness coefficients of the element stiffness matrix to account for post-elastic behaviour.  

Stiffness degradation factors r, t, and n for bending, shearing, and axial force, respectively, range in 

value between unity and zero.  What follows is the derivation of the stiffness degradation factors as 

given by Xu et al (2005) and Liu (2007). 

2.6.1 Bending Stiffness Degradation Factor 

Figure 2.22 shows the model used to derive the bending stiffness degradation factor.  The member of 

length L, and flexural rigidity EI is pinned at its right end and able to rotate freely at its left end under 
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moment M, but unable to undergo shear or axial deformation.  The elastic rotational deformation is 

θe = ML/3EI and the post-elastic rotational deformation is θp = M/R.  The bending stiffness 

degradation factor is the ratio of elastic to elastic plus plastic deformation, i.e., 

RL

EI

R

M

EI

ML
EI

ML

r
pe

e

3
1

1

3

3

+
=

+
=

+
=

θθ
θ

  (2.10) 

When the post-elastic bending stiffness R =  ∞, meaning that the member section is in the fully elastic 

range, r = 1, indicating that there is no post-elastic bending stiffness degradation.  When the post-

elastic bending stiffness R = 0, then the bending stiffness degradation factor r = 0, indicating that 

there is complete post-elastic bending stiffness degradation.  For other values of post-elastic bending 

stiffness, r will vary between 1 and 0 to indicate varying degrees of post-elastic bending stiffness 

degradation. 

Now that the bending stiffness degradation factor has been defined, another method is presented to 

give further credence in selecting 9% of the span length in Section 2.4 to use as an equivalent length 

for multiplying the maximum curvatures provided by Response.   

A series of integration lengths represented as a percentage of the span length are used to calculate 

the rotation θ of a reinforced concrete section according to Eq. (2.1).  Using the rotations, the post-

elastic bending stiffness is calculated as in Section 2.5, and, in turn, the bending stiffness degradation 

factors are found from Eq. (2.10).  Table 2.1 shows the bending stiffness degradation factors (for the 

first constant stiffness region) and the percentage of the beam span length used to calculate the 

curvature for the beam of Figure 2.23.  To determine what percentage of length to select in order to 

yield a value of degradation factor for the analysis, the ratio of post-cracking flexural stiffness to 

elastic flexural stiffness µ, which is given by,  

L

EI
L

EI

gross

eff

3

3

=µ     (2.11) 

is compared to the r values in Table 2.1.   
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Since the degradation factor is a measure of the amount of post-elastic stiffness reduction, and for a 

section in bending it enters the post-elastic range once concrete cracks, this seems to provide a 

reasonable method for choosing an initial value for analysis.  The post-cracking flexural stiffness is 

calculated by first calculating an effective moment of inertia Ieff (ACI 435R-04).  The effective 

moment of inertia is dependent upon the moment level and is therefore calculated using the average 

moment between the cracking moment and yield moment as given by Response for the beam section 

of Figure 2.14.  

The effective moment of inertia is given by, 

cr
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cr

crgeff I
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M
III +
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
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
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3

)(   (2.12) 

where Ig is the moment of inertia for the gross section, Mcr is the cracking moment resistance given by 

Response, Ma is the average of the cracking moment and yield moment and Icr is the fully cracked 

moment of inertia given by, 
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1
dkdAnkdnAkdbI sscr −−+−+=  (2.13) 

where d is the depth from the top of the section to the tension reinforcement, d' is the depth to the 

compression reinforcement, As is the area of tension reinforcement, A's is the area of compression 

reinforcement and where, 
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B and r in Eq. (2.14) are given by, 
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b
B =   (2.15) 

and 
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respectively, where b is the width of the section and n is the ratio of Young's modulus of steel to 

Young's modulus of concrete. 

Equation (2.11) reduces to the ratio of the moments of inertia for the cracked (Ieff) and uncracked 

(Igross) member.  For the beam of Figure 2.23, Ieff = 1677x10
6
 mm

4
 and Igross = 3646x10

6
 mm

4
, yielding 

a ratio µ = 0.46.  Interpolating this value from Table 2.1 indicates that 9% of the span length is indeed 

a suitable length to integrate the curvature over to obtain a rotation value θ from Eq. (2.1).  Appendix 

A shows similar calculations for other under-reinforced beams.  It also shows that using 14% of the 

span length for columns with equal amounts of end-reinforcement as the integration length for 

curvature yields degradation factors approximately equal to the value of Eq. (2.11).   

The bending stiffness degradation factors for the column member shown in Figure 2.4 are now 

calculated.  The column member has a modulus of elasticity of 26540 MPa, a moment of inertia of 

1251x10
6
 mm

4
, and a length of 3600mm.  The bending stiffness degradation factor for the first 

constant stiffness region (the range of loading from Mcr to Myld) is given by Eq. (2.10) and has a value 

of, 
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where RA = 31897000 kN-mm is the post-elastic bending stiffness of the member for the first constant 

stiffness region. Similarly, the bending stiffness degradation factor for the second constant stiffness 

region (the range of loading from Myld to Mult) is, 
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where RB = 374000 kN-mm is the post-elastic bending stiffness of the member for the second 

constant stiffness region.  It thus shows that cracking of concrete in bending causes a (1-rA x 100) = 

46% reduction in post-elastic bending stiffness while yielding of the tensile reinforcement causes a 

(1-rB x 100) = 98% reduction in post-elastic bending stiffness.  
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2.6.2 Shear Stiffness Degradation Factor 

Figure 2.24 shows the model used to derive the shear stiffness degradation factor.  The member is 

pinned at its right end and able to deform transversely only (no bending or axial deformation) at its 

left end.  The elastic shear deformation due to shear force V at its left end is γe = VL
3
/3EI and the 

post-elastic shear deformation is γp = V/T.  The shear stiffness degradation factor is, 
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  (2.17) 

When the post-elastic shearing stiffness T =  ∞, meaning that the member-end is in the fully elastic 

range, t = 1, indicating that there is no post-elastic shear stiffness degradation.  When the post-elastic 

stiffness T = 0, then the shear stiffness degradation factor t = 0, indicating that there is complete post-

elastic shear stiffness degradation.  For other values of post-elastic shearing stiffness, t will vary 

between 1 and 0 to indicate varying degrees of post-elastic shearing stiffness degradation. 

The shearing stiffness degradation factors for the column member shown in Figure 2.4 are now 

calculated.  Again, the column member has a modulus of elasticity of 26540 MPa, a moment of 

inertia of 1251x10
6
 mm

4
, and a length of 3600mm.  The shearing stiffness degradation factor for the 

first constant stiffness region (the range of loading from Vcr to Vyld) is given by Eq. (2.17) and has a 

value of, 
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where TA = 13.9 kN/mm is the post-elastic shearing stiffness of the member-section for the first 

constant stiffness region.  Similarly, the shearing stiffness degradation factor for the second constant 

stiffness region (the range of loading from Vyld to Vult) is,  
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where TB = 1.6 kN/mm is the post-elastic shearing stiffness of the member-section for the second 

constant stiffness region.  It thus shows that diagonal cracking causes a (1-tA x 100) = 13% reduction 
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in post-elastic shearing stiffness while yielding of the transverse reinforcement causes a (1-tB x 100) = 

57% reduction in post-elastic shearing stiffness.  The effect of the reinforcement yielding is not as 

severe as in the case of flexural degradation (57% reduction compared to 98% reduction).  This could 

be attributed to the fact that in shear there are other mechanisms of shear transfer such as aggregate 

interlock and dowel action, whereas in flexure the reinforcement alone is relied upon to form the 

moment resisting internal couple. 

2.6.3 Axial Stiffness Degradation Factor  

Figure 2.25 shows the model used to derive the axial stiffness degradation factor.  The member is 

pinned at its right end and free to deform only axially (no bending or shear deformation) at its left 

end.  The elastic axial deformation due to axial load P at its left end is δe = PL/AE and the post-elastic 

axial deformation is δp = P/N.  The axial stiffness degradation factor is, 
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  (2.18) 

When the post-elastic axial stiffness N =  ∞, meaning that the member-end is in the fully elastic 

range, n = 1, indicating that there is no post-elastic axial stiffness degradation.  When the post-elastic 

axial stiffness N = 0, then the axial stiffness degradation factor n = 0, indicating that there is complete 

post-elastic axial stiffness degradation.  For other values of post-elastic axial stiffness, n will vary 

between 1 and 0 to indicate varying degrees of post-elastic axial stiffness degradation. 

The axial stiffness degradation factors for both tension and compression of the column member 

shown in Figure 2.4 are now calculated.  The column member has a modulus of elasticity of 26540 

MPa, a cross sectional area of 122500mm
2
 and a length of 3600mm.  The axial stiffness degradation 

factor for the first constant stiffness region (the range of loading from Pcr to Pyld) for axial tension is 

given by Eq. (2.18) and has a value, 
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where NAt = 206 kN/mm is the post-elastic axial stiffness of the member for the first constant stiffness 

region.  Similarly, the axial stiffness degradation factor for the second constant stiffness region (the 

range of loading from Pyld to Pult) for axial tension is, 

003.0
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where NBt = 3 kN/mm is the post-elastic axial stiffness of the member for the second constant stiffness 

region.  Intuitively these results are reasonable.  Once the concrete cracks the tensile force is carried 

by the longitudinal reinforcement only, and hence the reason there is a large reduction (1-nAt x 100 = 

82%) in post-elastic axial tension stiffness.  Once this longitudinal reinforcement yields the section is 

for all intents and purposes fully plastic and that is why the axial stiffness degradation factor is 

effectively zero.   

The axial stiffness degradation factor for axial compression is also given by Eq. (2.10) and has a 

value of, 
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where Nc = 656 kN/mm is the post-elastic axial stiffness of the member-section.   

 

2.7 Member Stiffness Matrix 

The analysis program is based on the displacement method of analysis whereby member-end forces 

are related to member-end deformations by an element stiffness matrix.  This relation is defined by,  

kdf =   (2.19) 

where for the 6 local degrees of freedom (Figure 2.1), f = [f1….f6]
T
 is the vector of member-end 

forces, d = [d1….d6]
T
 is the vector of member-end displacements and k is the element stiffness matrix 

given by, 
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The stiffness coefficients in Eq. (2.20) were first derived to account for geometric nonlinearity and 

shear deformation, and then extended to account for bending stiffness degradation based on the 

moment-rotation compatibility conditions accounting for axial force and shear deformation using a 

modified moment distribution method.  The stiffness coefficients were then further extended to 

account for the combined effects of degraded bending and degraded shear stiffness, as well as the 

effects of degraded axial stiffness (Liu, 2007).  With the exception of Eq. (2.22), whose derivation for 

this study is found in Appendix B, the following stiffness coefficients are taken directly from (Xu et 

al., 2005) while detailed derivations are given in (Liu, 2007), i.e., 

41144401111 kkkkk a −=−=== χ     (2.21a) 

52255512222 kkkkk r −=−=== χ   (2.21b) 

53353212323 kkkkk r −=−=== χ   (2.21c) 

65566212626 kkkkk r −=−=== χ   (2.21d) 

23333 χrkk =   (2.21e) 

6333636 kkk r == χ   (2.21f) 

46666 χrkk =   (2.21g) 

In Eq. (2.21a), 
ak11  = AE/L is the elastic axial stiffness, and the factor, 

2121

21
0

nnnn

nn

−+
=χ   (2.22) 

accounts for post-elastic axial stiffness degradation by incorporating the axial stiffness degradation 

factors ni (i=1,2).  In Eqs. 2.21(b)-(g), the stiffness coefficients, 
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account for elastic bending stiffness and for post-elastic bending stiffness degradation by 

incorporating bending stiffness degradation factors ri (i=1,2), and the factors, 
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account for post-elastic shear stiffness degradation by incorporating shear stiffness degradation 

factors ti (i=1,2). 
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The parameter P = axial force in  Eq. (2.23), while in Eqs. (2.23) - (2.28) and Eqs. (2.30) - (2.32), 

the parameters, 
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are geometrical stiffness coefficients used in both stability and geometrical nonlinear analysis, and the 

factors 
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account for the influence of shear deformation on elastic bending stiffness. 

Lastly, in Eqs. (2.23) - (2.28) and Eqs. (2.30) - (2.32), the parameter 
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while in Eqs. (2.29) - (2.32), the parameter 
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In the original derivation of the stiffness coefficients, the term A in Eqs. (2.35), (2.36), and (2.38) is 

given as As (the equivalent shear area).  In this study, however, the shear force is assumed to act over 

the entire gross cross-sectional area when in the elastic range. 

With an element stiffness matrix that accounts for geometric nonlinearity, shear deformation, and 

degraded post-elastic bending, shearing and axial stiffness of reinforced concrete, what is left to be 

done is to formulate an analysis procedure. 

 

 

 

Figure 2.1:  Beam-column analysis model (Xu et al, 2005) 
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Figure 2.2:  Typical moment-rotation response for an under-reinforced concrete section 

 

 

Figure 2.3:  Typical force-deformation response for axial compression 
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Figure 2.4:  Summary of a reinforced concrete column section (Response-2000) 

 

 

 

Figure 2.5:  Sectional analysis in bending - output results (Response-2000) 
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Figure 2.6:  Moment-curvature control plot (Response-2000) 

 

 

Figure 2.7:  Sectional analysis in shear - output results (Response-2000) 
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Control : V-Gxy
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Figure 2.8:  Shear force-shear strain control plot (Response-2000) 

 

 

Figure 2.9:  Sectional analysis in compression - output results (Response-2000) 
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Figure 2.10:  Compressive force-axial strain control plot (Response-2000) 

 

 

Figure 2.11:  Curvature along a beam 

 

 

Figure 2.12:  Shear strain along a beam 
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Figure 2.13: General post-elastic force-deformation response 
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Figure 2.14: Post-elastic moment-curvature for a 500x350 mm section, 35 MPa, ρ ρ ρ ρ = 1.31% 
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Figure 2.15:  General post-elastic force-deformation response 
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Figure 2.16:  Post-elastic moment-rotation response for an under-reinforced section 
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Figure 2.17:  Post-elastic moment-rotation response for an over-reinforced section 
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Figure 2.18:  Post-elastic shear force-shear deformation response for a section with transverse 

reinforcement 
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Figure 2.19:  Post-elastic shear force-shear deformation response for a section without 

transverse reinforcement 
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Figure 2.20:  Post-elastic axial tension-axial deformation 
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Figure 2.21:  Post-elastic axial compression-axial deformation 

 

 

 

Figure 2.22:  Model for bending stiffness degradation factor (Xu et al, 2005) 
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Table 2.1:  Degradation factors and curvature integration length 

% of Length r 

1 0.868 

10 0.396 

20 0.247 

30 0.180 

40 0.141 

50 0.116 

60 0.099 

70 0.086 

80 0.076 

90 0.068 

100 0.062 

 

 

 

Figure 2.23:  Beam cross section 
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Figure 2.24:  Model for shear stiffness degradation factor (Xu et al, 2005) 

 

 

 

 

Figure 2.25:  Model for axial stiffness degradation factor (Xu et al, 2005) 
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Chapter 3 

Analysis Procedure 

The analysis procedure for a reinforced concrete frame involves four distinct stages as outlined in 

Figure 3.1.  Section 3.1 describes stage-zero elastic analysis which is performed on the structure up to 

the point that the structure no longer exhibits linear-elastic behaviour, i.e., when the first member-

section enters the post-elastic range due to cracking of concrete.  Section 3.2 presents stage-one 

inelastic incremental analysis, where, depending on the load level, the stiffness degradation factors 

are calculated and the degree of post-elastic stiffness degradation is tracked.  Section 3.3 presents 

stage-two elastic-unloading analysis which is performed only after a member-section exceeds its 

ultimate load resistance and fails.  Finally, Section 3.4 presents stage-three reloading inelastic 

analysis, which is similar to stage-two analysis in the sense that the stiffness degradation factors are 

calculated and the degree of post-elastic stiffness degradation is tracked.  Stage-three reloading 

inelastic analysis, however, involves applying amplified debris loads on the structure due to members 

disengaging from the main structure and falling onto members below. 

3.1  Stage Zero Elastic Analysis 

As discussed in Chapter 2,  a structure's response to loads is linear-elastic until the first member-

section cracks, i.e., flexural cracking due to bending moment or diagonal cracking due to shear force 

etc.  The linear-elastic analysis procedure adopted by this study is based on the matrix displacement 

method of analysis in which the force-displacement relationship, e.g., (Sennett, 1994), 

FKu =   (3.1) 

is solved for the vector of nodal displacements u, where K is the structural stiffness matrix and F is 

the vector of nodal loads. 

The first step in the overall analysis procedure, which is also the first step in stage-zero elastic 

analysis, is to input all the necessary data required for a complete matrix displacement analysis.  This  

is no different than any analysis conducted using a conventional software package.  There is, 

however, additional force-deformation information that must be input into the program that is later 

used in the inelastic analysis and the formulation of the stiffness degradation factors. 
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The program first requires general information pertaining to the structure as a whole such as the 

number of members, nodes, supports and groups.  A group consists of a number of members with 

common properties such as moment of inertia and modulus of elasticity.  Specific node, group and 

member names are also required for identification purposes later on in the input process, as well as to 

be able to discern the output information. 

Element (or member) connectivity is identified next whereby the start and end nodes for each 

member are input.  The member-end restraints are also assigned here.  Individual members can have a 

variety of end-restraints ranging from fully fixed to partially fixed to pin-ended or a combination 

thereof.  For a partially fixed member-end an end-fixity factor r is input to define the degree of partial 

fixity,  where the range of values is such that  r = 1 defines full end-fixity while r = 0 applies for a 

pinned member-end. 

Specific group information is input next and includes Young's modulus of elasticity, shear 

modulus, cross-sectional area and moment of inertia.  These properties are based on the gross 

concrete section.  As used in Response (Bentz, 2000), Young's modulus of elasticity (for normal 

density concrete) is herein calculated as (Collins & Mitchell, 1991), 

MpacfE 6900'3320 +=    (3.2) 

where f'c is the concrete compressive strength.  The shear modulus is given by (Hibbeler, 1994), 

)1(2 ν+
=

E
G    (3.3) 

where E is Young's modulus of elasticity and Poisson's ratio is taken as ν = 0.20, the value commonly 

used in the design of concrete structures (Pillai, Kirk & Erki, 1999).  

Nodal coordinates are input next, in addition to nodal support conditions which can be either fixed, 

free, pinned or on a roller support.  Finally, the loads input for the structure can be any combination 

of nodal loads, member loads, temperature loads or support settlements. 

As previously mentioned, in order to facilitate the inelastic analysis and the calculation of the 

stiffness degradation factors, force-deformation data is required.  Using the force-strain or moment-

curvature data from Response and approximating the deformations and rotations as discussed in 

Section 2.4, the required force-deformation data is obtained.  As discussed in Section 2.5, depending 

on the force-deformation case being modeled, two or three sets of data points are sufficient to fully 
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represent the bilinear or trilinear force-deformation relationship of a member-section.  That is, for the 

cases represented by a trilinear model, i.e. under-reinforced sections in flexure, reinforced sections in 

shear, and axially loaded sections in tension, data points that define the force and deformation at 

which initial cracking occurs, the reinforcement yields, and when the ultimate capacity of the section 

is exceeded are the only ones needed to develop the trilinear model. 

For the cases represented by a bilinear model, i.e., over-reinforced sections in flexure, unreinforced 

(no stirrups) sections in shear and axially loaded sections in compression, data points that define the 

force and deformation at which post-elastic behaviour begins and when the ultimate capacity of the 

section is exceeded are the only ones needed to develop the bilinear model. 

After all the pertinent input data is entered, the elastic analysis proceeds.  The full design load 

acting on the structure is applied and Eq. (3.1) is solved for the nodal displacements, from which the 

member-end forces are obtained.  The member-end forces from the elastic analysis are then scaled 

back such that one or more member-sections is at the point of entering the post-elastic range, i.e., due 

to cracking of concrete.  The force magnitudes at which member-sections enter the post-elastic range 

are known from the previously entered Response data.  The ratio by which the member-end forces are 

scaled back is retained as the total load factor level, λJ-1, thus far in the analysis.  The member-end 

forces at which the first member-section(s) enters the post-elastic range form the starting basis from 

which to commence an inelastic incremental analysis. 

3.2 Stage One Inelastic Incremental Analysis 

Once the first member-section(s) of the structure cracks, the response of the structure is no longer 

linear-elastic, and hence, a stage-one inelastic incremental analysis is required.  The inelastic 

incremental analysis procedure begins at total load factor level, 

∗
− ∆+= λλλ 1JJ   (3.4) 

where λJ-1 is the total load factor level at which the response of the structure ceases to be linear-elastic 

and where ∆λ* < 1 is an incremental load factor selected by the user.  The total load factor level for 

subsequent load increments is, 

iJ λλλ Σ∆+= −1   (3.5) 

where Σ∆λi is the sum of the incremental load factor levels up to increment i. 
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If, for example, an initial incremental load factor ∆λ* = 0.05 is selected and the incremental 

analysis procedure begins at total load factor level λ = 0.3, then the total load factor level for 

increments 1, 2 and 3 is λ = 0.35, 0.40, and 0.45, respectively, where 5% of the total load acting on 

the structure is applied at a time.  The incremental analysis proceeds until either the target load level 

is reached, i.e. λ = 1 (the full magnitude of the design loads) or a member-section failure occurs 

before that point. 

  The analysis procedure is incremental to facilitate determining precisely when the post-elastic 

stiffness of a member-section changes and thus Eq. (3.1) takes the new form, 

FuK iii λ∆=∆   (3.6) 

such that, now, the vector of incremental nodal displacements ∆ui is found for each load increment 

∆λiF, where Ki is the structural stiffness matrix and ∆λi is the incremental scale factor for load 

increment i. Equation (3.6) is solved successively for ∆ui for each load increment and, then, the 

corresponding incremental local member-end forces ∆fi are given by, 

[ ]( )[ ] ii

G

iei FEFTukf ][+∆=∆   (3.7) 

where [ke]
G
i
 
is the element stiffness matrix for load increment i in global coordinates, [T] is a matrix 

that transforms the member-end forces from the global to local coordinate system, and [FEF]i is the 

vector of fixed-end forces due to any member loads (if applicable).   

Once the incremental nodal displacements and member-end forces are solved for, these values are 

then summed, respectively, for all load increments, 

iuu Σ∆=   (3.8) 

iff Σ∆=   (3.9) 

to obtain the accumulated nodal displacements u and member-end forces f. 

If the analysis is either stage-one or stage-three inelastic analysis, the bending, shearing and axial 

stiffness degradation factors, r, t, and n, respectively, are calculated.   

Figure 3.2 shows the general form of the trilinear post-elastic force-deformation response used in 

this study.  It represents the post-elastic force-deformation response for an under-reinforced section 

subject to flexure, a transversely reinforced section subject to shear or an axially loaded section in 
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tension.  As discussed in Section 2.5, the other force-deformation cases are represented by a bilinear 

response.  The degradation factors are calculated based on the magnitude of the member-end forces 

with respect to the graph.  If the total member-end force f  at load increment i is less than the cracking 

force fcr, then the member-section is still in the elastic range and the degradation factor has a value of 

unity.  If f at load increment i is between the cracking force fcr and yielding force fyld as shown in the 

figure, then the member-section is in the post-elastic range and the degradation factor for the first 

linear portion of the graph is calculated (a value between one and zero).  If, on the other hand, f at 

load increment i is between the yielding force fyld and the ultimate force fult, then the degradation 

factor for the second linear portion of the graph is calculated (a value between one and zero, but less 

than the previous value).  As mentioned in Section 3.1, the cracking, yielding and ultimate member-

section capacities are obtained from Response and included in the input file of the program developed 

by this study. 

As discussed in Chapter 2, the element stiffness matrix is calculated for each member accounting 

for geometric nonlinearity and shear deformation.  The stiffness degradation factors are used to 

modify the elastic stiffness coefficients in the element stiffness matrix to account for post-elastic 

behaviour.  During stage-zero and stage-two elastic analysis, all degradation factors r, t or n have a 

value of unity.  In stage-one or stage-three inelastic analysis, however, the degradation factors may 

have values between one and zero which, from Section 2.7, are used to modify the stiffness 

coefficients.   

Once a reinforced concrete member-section undergoes complete post-elastic stiffness degradation 

(f > fult and r, t, or n = 0), it is assumed that it loses all capacity to resist load (e.g., total flexural failure 

due to crushing of concrete in the compression zone and rupture of the steel in the tension zone) and 

the member is considered disengaged from the remaining structure.  Once the degradation factors are 

calculated, a check is performed to determine whether any member-sections are completely degraded 

(r, t, or n = 0).  If no member-section is yet fully degraded, the incremental analysis continues and the 

stiffness degradation factors are retained for later use in modifying the elastic stiffness coefficients in 

the element stiffness matrix. If a member-section does become fully degraded, the member is 

assumed to disengage from the structure at that section, the inelastic incremental analysis is 

terminated, and an elastic-unloading analysis is conducted as discussed in Section 3.3.  
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 The program tracks the deterioration of post-elastic stiffness and determines when a material 

failure occurs. It also determines if a stability failure occurs by way of an Euler buckling check.  The 

Euler buckling load is given by, 

2

2

L

EI
PE

π
=   (3.10) 

while the critical buckling load, which takes into account the rotational end restraints of the member, 

is given by, 

2

2

)(kL

EI
PC

π
=   (3.11) 

where EI is the flexural stiffness of the column and k is an effective length factor.  The value of EI in 

Eq. (3.11) must take into account the effects of cracking, creep and the non-linearity of the stress-

strain curve at the time of failure (MacGregor & Bartlett, 2000).  CSA Standard A23.3-94 

approximates the flexural stiffness as, 

d
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  (3.12) 

where Ec is Young's modulus of elasticity of the concrete, Ig is the moment of inertia of the gross 

concrete section, Es is Young's modulus of elasticity of the reinforcing steel and Ist is the moment of 

inertia of the reinforcing steel about the centroidal axis of the cross section.  The denominator term, in 

which βd is the ratio of the maximum factored axial dead load to the total factored axial load,  

represents the effect of creep due to sustained loads (MacGregor & Bartlett, 2000). 

The advantage of using Eq. (3.12) is that it explicitly takes into account the contribution of the 

reinforcement to the flexural stiffness of the cross section; however, it is more time consuming to 

calculate.  CSA A23.3-94 also gives a simpler method of approximating the flexural stiffness as, 

gc IEEI 25.0=   (3.13) 

Both equations represent lower bound values obtained from experiments; however, Eq. (3.12) is 

less conservative than Eq. (3.13) (Pillai, Kirk & Erki, 1999).  It is felt that using Eq. (3.13) is 

warranted for this study due to the fact that only gross section properties are needed to calculate it 
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(thus making it easy to implement in an incremental analysis program) and because it is more 

conservative.     

 

3.3 Stage Two Elastic-Unloading Analysis 

After a member-section is subject to complete post-elastic stiffness degradation due to exceeding its 

ultimate load resistance and thus disengages from the structure, it is required to determine whether the 

associated member disengagement creates a local or global instability.  A global instability means that 

part or all of the structure has collapsed to ground level, at which point the analysis fully terminates.  

A local instability means that part of the structure has disengaged from the main structure but not so 

as to cause collapse to ground level (e.g. a beam detaching from a joint at one end).  If a local 

instability occurs, the analysis is continued by first conducting an elastic-unloading analysis. 

A stage-two elastic-unloading analysis is required to determine the effects of the local instability on 

the remaining modified structure.  As an example, a portal frame is shown in Figure 3.3 that has 

undergone a local instability, i.e. the right end of the beam has disengaged from the structure due to 

complete post-elastic stiffness degradation.  The disengagement has not caused any portion of the 

structure to collapse to ground level, i.e. the columns remain erect and the beam now forms a 

cantilever.  The member-end forces that exist at the end of the beam at the time of the disengagement 

immediately reduce to zero and thus the remaining structure experiences an abrupt change to its state 

of equilibrium.   Stage-two elastic-unloading analysis models this. 

The elastic-unloading analysis models this abrupt change by applying the member-end forces that 

existed at the beam-end at the time of the disengagement, to the beam-end, but in an opposite sense so 

that the net forces acting at the beam-end are zero.  Figure 3.4 shows an axial force, shear force and 

bending moment at the beam-end at the instant before the disengagement.   For the one-step elastic-

unloading analysis the vector of nodal loads used for solving Eq. (3.1) consists of the axial force, 

shear force and bending moment acting at the beam-end but in an opposite sense.   Figure 3.5 shows 

the nodal loads used in the elastic-unloading analysis.  Notice that they are in the opposite sense to the 

member-end forces at the instant before the disengagement (Figure 3.4).  Once the elastic-unloading 

analysis is complete, the before unloading member-end forces are added to the unloading member-

end forces to obtain the after unloading member-end forces.  The result is that the member-end forces 

at the free end of the beam are zero while the remaining structure is in a new state of equilibrium due 
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to the member-section failure.  Although the member-sections of a structure may be at various 

degrees of post-elastic stiffness degradation at the time of a member-section failure, the unloading 

analysis is elastic, i.e., the stiffness degradation factors all have a value of unity, so as to simply 

obtain an approximate reaction to the member-section failure.  The after unloading member-end 

forces and nodal displacements form the starting basis from which to continue with the inelastic 

analysis on the modified structure.   

3.4 Stage Three Reloading Inelastic Analysis 

Once an elastic-unloading analysis is complete, the incremental inelastic analysis resumes.  The 

incremental analysis resumes at total load factor level λJ+1, which is the total load factor level at 

which the member-section failure occurred to initiate the elastic-unloading analysis.  The total load 

factor level for subsequent load increments is given by, 

iJJ )1(1 ++ Σ∆+= λλλ   (3.14) 

where, again, λJ+1 is the total load factor level at which a member-section failure occurred to initiate 

an elastic-unloading analysis, and Σ∆λ(J+1)i is the sum of the incremental load factor levels from after 

the elastic-unloading analysis to increment i. 

The concept of debris loads and how they are applied in the program is now discussed.  As stated in 

Section 3.2, a member-section subject to complete post-elastic bending, shearing, or axial stiffness 

degradation, is considered disengaged from the structure due to its inability to resist load.  As 

discussed further in Section 3.3, a beam-member with one end subject to complete post-elastic 

stiffness degradation creates a local instability if the member-section failure does not cause collapse 

of the structure to ground level.  A beam-member where both ends are subject to complete post-

elastic stiffness degradation can also create a local instability if it falls onto the members below it 

without causing collapse to ground level. 

Figure 3.6 shows a single bay, two storey structure.  The ends of beam-member 1 have undergone 

complete post-elastic stiffness degradation such that they are no longer able to resist load and 

disengage from the structure.  Beam-member 1 now falls down onto beam-member 2 below as an 

amplified debris load.  Debris loads are assumed to act as uniformly distributed loads on the members 

below.  Debris loads are comprised of the gravity load of the displaced member multiplied by a 

dynamic load amplification factor, 
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where α* is a dynamic load impact factor and the denominator term ensures that the full magnitude of 

the displaced gravity load is accounted for in the succeeding stages of the analysis (Liu, 2007).  The 

dynamic load impact factor accounts for the fact that the load is no longer static.  A large value of the 

dynamic load impact factor is indicative of a small amount of dynamic damping in the structure 

whereas a small value of the dynamic load impact factor is indicative of a large amount of dynamic 

damping.  The debris load then, due to falling beam-member 1, is αw1, where w1 is the gravity load 

acting on beam-member 1.  The load on beam member 2 below, which is the load that is applied to 

commence the reloading inelastic analysis, is equal to the full magnitude of the gravity load acting on 

member 2, plus the amplified debris load from falling member 1.  Debris loads are discussed further 

in Chapter 4.  

The load is incrementally applied and the stiffness degradation factors are calculated and the degree 

of post-elastic stiffness degradation is tracked.  The analysis continues until either the full target load 

level is reached, i.e. λ = 1, or a progressive collapse to ground level occurs before that point.  The 

incremental analysis stops and the results output once the target load level reaches unity during a 

stage-one or stage-three analysis.  Output results are discussed in Chapter 4.  Further aspects of the 

analysis procedure (Figure 3.7) are illustrated in the examples of Chapter 4.    
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Figure 3.1:  Four-stage analysis procedure 

 

 

Figure 3.2:  General trilinear post-elastic force-deformation response 
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Figure 3.3:  Local instability 

 

 

Figure 3.4:  Member-end forces at time of disengagement 

 

 

Figure 3.5:  Elastic-unloading nodal loads 
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Figure 3.6:  Falling debris load 
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Figure 3.7:  Analysis procedure 
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Chapter 4 

Example Problems 

The computer program developed by this study for the nonlinear analysis of reinforced concrete 

frames subject to normal and abnormal loads is demonstrated in this chapter through a series of 

example problems.  The first is a simple portal frame used to illustrate the features of the analysis 

procedure and the various outputs from the program.  The second example is a 2 bay-2 storey frame, 

used to illustrate the analysis procedure for a common building frame.  The final example concerns 

the same 2 bay-2 storey frame with, however, some initial damage assumed to be caused by some 

abnormal loading event, and serves to illustrate the program's capability to conduct a progressive 

collapse analysis.  To begin, the principles underlying the design of the reinforced concrete frames are 

explained. Then,  the output data provided by the analysis computer program is described. 

4.1 Reinforced Concrete Frame Design 

The loads acting on the reinforced concrete frames are established in accordance with Part 4 of the 

1995 National Building Code of Canada (NRCC, 1995).  The use and occupancy of the frames is 

assumed to be an office area above the first storey and, thus, has a minimum specified live load of 2.4 

kPa.  Climatic information is taken from the region of Waterloo, Ontario, which has a ground snow 

and rain load of 1.8 and 0.4 kPa, respectively.  The 1/100 hourly wind pressure is 0.42 kPa.  Seismic 

loads are not accounted for. 

The reinforced concrete frames are designed according to CSA A23.3-94 - Design of Concrete 

Structures (CSA, 1994).  Limit States Design is used and all resistances and loads are appropriately 

factored.  The slab thickness of the frames is 250 mm and the frame dimensions are based on typical 

dimensions from examples in the Concrete Design Handbook (CAC, 1995).  An elastic analysis was 

performed on the frames with the aforementioned factored loads in order to determine the design 

forces for member-sections.  Refer to Appendix C for the detailed designs of the frames presented in 

this chapter.   

Note that although the initial frame designs account for both factored wind and gravity loads acting 

on the structure, their subsequent post-elastic incremental analysis accounts only for factored gravity 

loads due to the unlikely scenario that full gravity and full wind load will simultaneously act on the 

structure when it is subjected to some abnormal loading event. 
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4.2 Analysis Program Outputs   

The developed program can output a wide variety of information; however, there is specific 

information that is significant to this study.  The output information is presented in the following and 

includes stiffness degradation factors, member-section failure warnings, percent degradation, 

member-end forces, nodal displacements, and member-end post-elastic deformation. 

As the incremental analysis progresses, different member-sections enter the post-elastic range.  It is 

therefore desirable to know the magnitude of post-elastic stiffness degradation at any particular point 

in the load history, and not just at the end of the analysis.  The program records the load factor level 

and magnitude of the respective stiffness degradation factor for each member-section.  One may then 

determine the load factor level at which post-elastic behaviour begins or when reinforcement starts to 

yield, etc., for any member-section. 

The program also records the load at which a member-section attains complete post-elastic stiffness 

degradation and fails, and is assumed disengaged from the structure. The program stops the 

incremental analysis and records the load factor level at which the member-section failure occurs. At 

this point, as described in Chapter 3, an elastic-unloading analysis is conducted.  After the elastic-

unloading analysis, the incremental analysis continues until either the full load level has been applied 

to the structure, or progressive collapse failure has occurred at a lower loading level.  At the end of 

the analysis procedure, the program outputs the member-end forces, nodal displacements and 

member-end post-elastic deformations in a single output file.  

To better understand the forthcoming analysis examples, a series of symbols are employed to 

designate various degrees of post-elastic behaviour.  Figure 4.1 shows the generalized trilinear post-

elastic force-deformation response, as used in this study, along with the symbols.  Bending, shearing 

and axial stiffness degradation due to cracking of concrete is represented by a circle, inverted triangle 

or square, respectively (�,�,�).  These symbols are shown at the point on the response at which 

cracking occurs (Fcr).  Bending, shearing and axial stiffness degradation due to yielding of 

reinforcement is represented by a hatched circle, inverted triangle or square, respectively ( , , ).  

These symbols are shown on the graph at the point at which yielding of the reinforcement occurs 

(Fyld).  If a section has fully degraded post-elastic stiffness, the same symbols are used with cross-

hatching to indicate that the member-section has failed; i.e., bending, shearing, or axial stiffness 
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degradation is then represented by  , , or , respectively.  These symbols are shown on the graph 

at the end of the loading history. 

If there is only partial stiffness degradation, the magnitude of the degradation is inscribed in the 

symbol and is given by, 

Percent Degradation = (1 - r, t, or n)100   (4.1) 

If, for example, a member-section has a bending stiffness degradation factor value of r = 0.24, then 

that member-section is considered to be (1.0 – 0.24)100 = 76% degraded.  The following examples 

show how these symbols are used in representing the inelastic behaviour of members of a reinforced 

concrete structure. 

4.3 Portal Frame 

Figure 4.2 shows the geometry and loading of a simple portal frame while Figure 4.3 shows the node 

and member numbering used for reference.  The frame's centre-to-centre height and width are 3600 

mm and 7500 mm, respectively.  The loading consists of an 83.6 N/mm uniformly distributed load.  

The column cross sections (Figure 4.4) are 450x450 mm and have a reinforcement ratio of 2.02% 

with 10M closed stirrups spaced at 250 mm on centre.  The beam cross sections (Figure 4.5) are 

500x450 mm and have a tension reinforcement ratio of 1.07%, a compression reinforcement ratio of 

0.2% and 10M closed stirrups spaced at 150 mm on centre.  For positive moment regions along the 

beam, the reinforcement is as shown in Figure 4.5 whereas for negative moment regions along the 

beam, the reinforcement is as shown in Figure 4.5 but rotated 180 degrees so that the tension 

reinforcement (3-30M bars) is at the top of the section.  The concrete compressive strength is 35MPa.  

The tributary width of the frame is 7500 mm, where the concrete slab is assumed to act as a one-way 

slab.  The portal frame has fixed supports at its base.  This simple portal frame example serves well to 

demonstrate the features of the analysis procedure.  More redundant frames are dealt with in the other 

examples.  

4.3.1 Post-Elastic Bending Stiffness Degradation 

The frame is analyzed to account for degraded post-elastic bending stiffness only.  The load is 

incrementally increased and the program determines when a member-section reaches the post-elastic 

range.  For this example, the load increment factor is set to 0.2% of the total load.  Such a small 

increment factor enables the deterioration of post-elastic stiffness to be precisely tracked. 
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Figure 4.6 and Figure 4.7 show the post-elastic moment-rotation responses of the beam and column 

sections, respectively.  These figures enable visualization of the response of each section relative to 

the stage of the analysis.  The points at which the sectional stiffness changes are indicated along with 

the corresponding moment magnitudes.  The beam has a cracking moment resistance of 37 kN-m, a 

yield moment resistance of 324 kN-m and an ultimate moment resistance of 367 kN-m.  The column 

has a cracking moment resistance of 36 kN-m, a yield moment resistance of 462 kN-m and an 

ultimate moment resistance of 569 kN-m.  With regard to the beam's post-elastic moment-rotation 

response (Figure 4.6), the post-elastic stiffness is infinite up to the point of initial cracking of concrete 

at moment Mcr = 37 kN-m, as indicated by the vertical line at θ = 0.  At this point there is a reduction 

in post-elastic stiffness to some lesser value, as indicated by the reduced slope of the response.  This 

stiffness then remains constant until yielding of the reinforcement occurs at moment Myld = 324 kN-

m.  At this point there is another reduction in post-elastic stiffness, as indicated by a second reduction 

in the slope of the response.  This stiffness then remains constant until the ultimate moment capacity 

of the section is reached due to crushing of concrete in the compression zone of the cross section at 

moment Mult = 367 kN-m.  The column behaves in an analogous way.  

Figure 4.8 to Figure 4.18 show the degradation of post-elastic bending stiffness throughout the load 

history up to the target load level (load factor level λ = 1.0).  All moment diagrams are plotted on the 

tension side.  At load factor level λ = 0.124, two member-sections enter the post-elastic range due to 

cracking of concrete in the tension zone of the cross-section, indicated by the circles in Figure 4.8.  

The amount of partial post-elastic stiffness degradation is inscribed in the circles: column member-

sections 1-3 (member 1, node 3) and 2-5 are each 42% degraded (i.e., from Eq. (4.1), their bending 

stiffness degradation factor r = 0.58).  The bending moment diagram at the load factor level λ = 0.124 

is shown in Figure 4.9.  Notice that the magnitude of the bending moment for the columns at the 

location they join the beams is 36.3 kN-m.  This moment just surpasses the magnitude of the column's 

cracking moment resistance (36.0 kN-m) and hence why the columns at these two points enter the 

post-elastic range.  On the column's moment-rotation response (Figure 4.7), the column-section is at 

the point marked Mcr.  Prior to this point, the entire moment-rotation response was elastic (following 

the vertical line at post-elastic rotation θ = 0 on the response).  Now that the moment in the column-

section has reached Mcr, there is a reduction in post-elastic bending stiffness and the column-section 

follows the response of the reduced slope between Mcr (θ = 0) and Myld (θ = 0.005).   
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On the other hand, the beam's cracking moment resistance is slightly larger (37.0 kN-m), which is 

why the beam is not yet in the post-elastic range.  At the very next load step, however, the beam 

moments surpass the beam's cracking moment resistance, thereby entering the post-elastic range.  

Figure 4.10 shows that at load factor level λ = 0.126, the midspan section of the beam enters the post-

elastic range due to cracking of concrete.  Beam-members 3-4 and 4-4 are each 58% degraded (i.e., r 

= 0.42).  Figure 4.11 shows the bending moment diagram at load factor level λ = 0.126.  Notice that 

the moment at midspan is 37.1 kN-m.  This moment just surpasses the cracking moment resistance of 

the beam (37.0 kN-m) and hence why the beam-section has entered the post-elastic range.  On the 

beam's post-elastic moment-rotation response (Figure 4.6) the beam-section moment = Mcr.  Prior to 

this point, the entire moment-rotation response was elastic (following the vertical line at post-elastic  

rotation θ = 0 on the response).   Now that the moment in the beam-section has reached Mcr, there is a 

reduction in post-elastic stiffness and the beam-section follows the response of the reduced slope 

between Mcr (θ = 0) and Myld (θ = 0.005). 

Figure 4.12 and Figure 4.13 show the frame response at  load factor level λ = 0.128.  The end-

sections 3-3 and 4-5 of the beam enter the post-elastic range at this point.  The moment magnitude at 

the ends of the beam is 37.6 kN-m, which just surpasses the cracking moment resistance of the beam.  

The beam end-sections are 58% degraded ( r = 0.42).   

As shown in Figure 4.14,  at load factor level λ = 0.266, the base of the columns enter the post-

elastic range and attain 42% degradation ( r = 0.58). From Figure 4.15, the moment at the base of the 

columns is 36.2 kN-m which just surpasses the cracking moment resistance of the column (36 kN-m).  

Also notice that the midspan beam moment (83.2 kN-m) is larger than the end moments (73.1 kN-m).   

As both the beam and columns follow the same constant slope portion of their respective post-

elastic moment-rotation response, there is no change to the structure's degree of post-elastic bending 

stiffness until load factor level λ = 0.984 is reached.  Yielding of the tension reinforcement at the 

midspan of the beam occurs at this point, which causes further reduction in post-elastic bending 

stiffness there.  Figure 4.16 shows that once yielding occurs (indicated by the hatched circle), the 

midspan section of the beam becomes 99% degraded ( r = 0.01).  Figure 4.17 shows the bending 

moment diagram at load factor level λ = 0.984.  The magnitude of the midspan moment is 324 kN-m,  

the yield moment resistance of the beam as shown in the beam post-elastic moment-rotation response 

(Figure 4.6).  On this response, the beam-section moment at midspan = Myld.  Once this moment is 

reached, there is a reduction in post-elastic bending stiffness as is evident from the reduced slope of 
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the response in Figure 4.6.  The beam-section now follows the response of the reduced slope between 

Myld (θ = 0.005) and Mult (θ = 0.041). 

Between the load factor level λ = 0.984 and the target load level λ = 1.0 (the full factored design 

load), there is little change in the forces for the frame members, as can be seen by comparing Figure 

4.17 and Figure 4.18, and no change in the degree of post-elastic bending stiffness degradation.  At 

the target load level then, the frame remains intact with some degree of post-elastic bending stiffness 

degradation at each member-section and with the reinforcement yielding at the beam midspan, as 

shown in Figure 4.16.  The column-sections are each 42% degraded (r = 0.58) while the beam end-

sections are each 58% degraded ( r = 0.42).  The midspan of the beam is 99% degraded (r = 0.01).  

The user may increase the load on the structure beyond the target load level (λ = 1.0) until a failure 

state is reached.  Continuing the analysis shows that at load factor level λ = 1.12 the beam end-

sections become 99% degraded (r = 0.01) as shown in Figure 4.19  The accompanying bending 

moment diagram (Figure 4.20) shows that the moments at the ends of the beam have a magnitude of 

324 kN-m, which is equal to the yield moment resistance of the beam.  At 12% beyond the target load 

level, the end moments increase in magnitude by a value of 62 kN-m while the midspan moment 

increases by only 3 kN-m (the bending moments are distributed more to the ends of the beam because 

the midspan of the beam is yielding and the stiffness there is vastly reduced).  In fact, as can be seen 

from the beam's post-elastic moment-rotation response in Figure 4.6, there is very little increase in 

midspan bending moment for a large increase in rotation.   

With the tension reinforcement now yielding in the beam in both the positive and negative moment 

regions, the loading level is further increased.  At  load factor level λ = 1.25 the midspan and ends of 

the beam simultaneously reach their ultimate moment resistance and fail due to crushing of concrete 

in the compression zone (designated by the cross-hatch symbol in Figure 4.21).  This is associated 

with a bending stiffness degradation factor of r = 0, indicating that there is no post-elastic bending 

stiffness and complete degradation has occurred.  The bending moments in the beam (Figure 4.22) 

have a magnitude of 367 kN-m, which is equal to the ultimate bending moment resistance of the 

beam as shown in Figure 4.6.  The larger of the end moments in the two columns have a magnitude of  

367 kN-m; however, the column-sections still remain within the first constant stiffness region of their 

post-elastic moment-rotation response as shown in Figure 4.7 (between Mcr (θ = 0.005) and Myld (θ = 

0.061)).  
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Once the beam member-sections fail due to crushing of concrete in the compression zone, they are 

also assumed to be unable to resist shear and axial forces and the member-section is for all intents and 

purposes disengaged from the structure.  The entire beam at this point is therefore unable to carry 

load and the frame has effectively failed.  Thus, the analysis shows that as the load further increases 

and the frame's post-elastic bending stiffness continues to deteriorate, the frame may be loaded up to 

1.25 times it's factored design load level before structural failure occurs due to crushing of concrete in 

the compression zone of the cross-sections at the ends and midspan of the beam.   

4.3.2 Post-Elastic Shear Stiffness Degradation  

The frame is analyzed to account for degraded post-elastic shear stiffness only.  The load is 

incrementally increased and the program determines when a member-section reaches the post-elastic 

range.  Figure 4.23 and Figure 4.24 show the post-elastic shear force-shear deformation response of 

the beam and column sections, respectively.  The points at which the sectional stiffness changes are 

indicated along with the corresponding shear force magnitudes.  The beam has a cracking shear 

resistance of 224 kN, a yield shear resistance of 346 kN and an ultimate shear resistance of 391 kN.  

The column has a cracking shear resistance of 202 kN, a yield shear resistance of 307 kN and an 

ultimate shear resistance of 377 kN. 

Similar to the moment-rotation response discussed in Section 4.3.1, there exists an infinite amount 

of post-elastic shear stiffness (indicated by the vertical slope of the response at τ = 0) up to the point 

of initial cracking of concrete of the beam at shear force Vcr = 224 kN (Figure 4.23).  The cracking 

discussed here, however, is not flexural cracking due to bending, but is instead diagonal cracking due 

to shear.  Once the cracking shear resistance is reached, there is a reduction in post-elastic shear 

stiffness to some lesser value, as indicated by the reduced slope of the response.  The stiffness then 

remains constant until the transverse reinforcement yields at shear force Vyld = 346 kN.  At this point 

there is another reduction in post-elastic stiffness as indicated by a second reduction in the slope of 

the response.  This stiffness then remains constant until the ultimate shear capacity of the section is 

reached due to crushing of concrete in the principal compressive direction at shear force Vult = 391 

kN.  The column behaves in an analogous way.  

Figure 4.25 to Figure 4.31 show the degradation of post-elastic shear stiffness throughout the load 

history up to the target load level (load factor level λ = 1.0).  At load factor level λ = 0.716, the ends 

of the beam (member-sections 3-3 and 4-5) enter the post-elastic range due to diagonal shear 
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cracking, indicated by the inverted triangles in Figure 4.25.  The amount of partial post-elastic 

stiffness degradation is inscribed in the triangles: beam member-sections 3-3 and 4-5 are each 24% 

degraded (i.e., from Eq. (4.1), their shear stiffness degradation factor t = 0.76).  The shear force 

diagram at load factor level λ = 0.716 is shown in Figure 4.26.  The shear force at the ends of the 

beam is 224 kN which is equal to the cracking shear resistance of the beam and hence why the beam 

end-sections enter the post-elastic range.  On the beam post-elastic force-deformation response 

(Figure 4.23) the beam end-sections are at the point marked Vcr.  Prior to this point, the force-

deformation response has been entirely elastic and has followed the vertical line at γd = 0.  Now that 

the shear force in the beam-sections has reached Vcr, there is a reduction in post-elastic shear stiffness 

and the beam-sections follow the response of the reduced slope between Vcr (γd = 0) and Vyld (γd = 5.3 

mm).  The shear force in the columns is a constant 87.5 kN which is not close to the 202 kN cracking 

shear resistance of the column and is why it remains in the elastic range. 

As the beam follows the constant slope portion of its post-elastic force-deformation response, there 

is no change to the structure's degree of post-elastic shear stiffness between the load factor level λ = 

0.716 and the target load level (λ = 1.0).  The magnitude of the shear forces increase however, as can 

be seen by comparing Figure 4.26 and Figure 4.27.  The beam-end shear force is 314 kN while the 

columns have a constant shear force of 122 kN.  At the target load level then, the frame remains intact 

while only beam member-sections 3-3 and 4-5 exhibit any post-elastic shear stiffness degradation.  

All other member-sections remain in the elastic range.   

As in the case of degraded bending stiffness from the previous example, the user may increase the 

load on the structure beyond the target load level (λ = 1.0) until a failure state is reached.  Continuing 

the analysis shows that at load factor level λ = 1.10 the transverse reinforcement at the ends of the 

beam yields, indicated in Figure 4.28 by the hatched inverted triangles.  The beam end-sections are 

45% degraded (t = 0.55).  The accompanying shear force diagram (Figure 4.29) indicates that the 

shear force at the ends of the beam is 346 kN which is equal to the yield shear resistance of the beam.  

With regard to the beam's post-elastic force-deformation response (Figure 4.23), the beam end-

sections are at the point marked Vyld.  There is another reduction in post-elastic shear stiffness and the 

beam end-sections follow the response of the reduced slope between Vyld (γd = 5.3 mm) and Vult (γd = 

10.4 mm).  The shear force in the columns is 135 kN which is still below the cracking shear resistance 

of the columns (202 kN) and is why they remain in the elastic range. 
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With the transverse reinforcement at the ends of the beam yielding, the loading level is further 

increased.  At load factor level λ = 1.25 the ends of the beam reach their ultimate shear resistance and 

fail due to crushing of concrete in the diagonal compression struts (designated by the cross-hatched 

symbol in Figure 4.30).  This is associated with a shear stiffness degradation factor of t = 0, indicating 

that there is no post-elastic shear stiffness and complete degradation has occurred.  The shear force in 

the ends of the beam has a magnitude of 391 kN (Figure 4.31) which is equal to the ultimate shear 

resistance of the beam as shown in Figure 4.23.  The column shear force is equal to 153 kN, which is 

below the column's cracking shear resistance and therefore remains in the elastic range of response. 

Once the beam member-sections fail due to crushing of concrete in the diagonal compression 

struts, they are also assumed to be unable to resist bending moment and axial force and the member-

sections are further assumed to disengage from the structure.  The beam at this point is unable to carry 

any more additional load and the frame has effectively failed.  Thus, the analysis shows that as the 

load further increases and the frame's post-elastic shear stiffness continues to deteriorate, the frame 

may be loaded up to 1.25 times it's factored design load level before structural failure occurs due to 

crushing of concrete in the compression struts at the ends of the beam.  Note that the beam fails in 

shear at the same load factor (λ = 1.25) as the beam fails in bending, when each type of degradation is 

applied separately.   

4.3.3 Post-Elastic Axial Stiffness Degradation  

The frame is analyzed to account for degraded post-elastic axial stiffness only.  The load is 

incrementally increased and the program determines when a member-section reaches the post-elastic 

range.  For this analysis, only post-elastic axial degradation of columns is accounted for.  This is due 

to the fact that beams will develop small axial forces (relative to the columns) and not experience any 

post-elastic axial stiffness degradation.  The axial forces in the beams are, however, accounted for 

through the use of stability functions in the bending and shearing elastic stiffness coefficients of the 

element stiffness matrix as discussed in Section 2.7.  It should also be noted that buckling is explicitly 

checked for in the analysis; however, the critical buckling load for the column of this example is quite 

high (Pc = 17,265 kN).  Buckling does not, therefore, preclude material failure of the column as will 

be shown. 

Figure 4.32 shows the post-elastic axial compressive force-axial deformation response of the 

column-section.  Figure 4.32 shows that there exists an infinite amount of post-elastic axial stiffness 
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(indicated by the vertical slope of the response at δ = 0) up to the point at which elastic behaviour 

ceases (40% of the ultimate compressive force as discussed in Section 2.5.1).  Once the compressive 

force reaches 40% of the ultimate compressive resistance of the column does the column-section 

enter the post-elastic range.  This occurs at a compressive force of 3830 kN as indicated in Figure 

4.32.  Once the compressive force reaches 3830 kN, there is a reduction in post-elastic axial stiffness 

as indicated by the reduced slope of the response.  The post-elastic axial stiffness then remains 

constant as the column-section follows the response of the reduced slope between 0.4Pult (δ = 0) and 

Pult (δ = 4.93 mm). 

Figure 4.33 shows the frame at load factor level λ = 1.0.  The compressive force in the columns is 

345 kN which is only a fraction of the 3830 kN compressive force needed in order for the column-

sections to enter the post-elastic range.  Since at load factor level λ = 1.0 the structure is fully in the 

elastic range, the analysis continues beyond the target load level.  Figure 4.34 shows the frame at load 

factor level λ = 12.35.  The compressive force in the columns is 3830 kN and the column-sections 

enter the post-elastic range, indicated in Figure 4.34 by the squares at the column ends.  The amount 

of partial post-elastic axial stiffness degradation is inscribed in the squares:  column-sections are each 

56% degraded (i.e., from Eq. (4.1), their axial stiffness degradation factor n = 0.44).  If the load factor 

level is increased further, the column-sections become fully degraded and reach their ultimate 

compressive resistance at load factor level λ = 30.6, indicated in Figure 4.35 by the cross-hatched 

squares.  The compressive force in the columns is 9575 kN which is equal to the ultimate 

compressive resistance of the column as shown in Figure 4.32.  Once the column-sections fail due to 

crushing of concrete, they are also assumed to be unable to resist bending moment and shear force 

and the column-sections are for all intents and purposes disengaged from the structure.  The columns 

at this point are unable to carry any more additional load and the frame has therefore failed. 

Although the analysis shows that the frame may be loaded up to 30.6 times it's factored design load 

level before structural failure occurs due to crushing of concrete, it must be understood that this 

analysis strictly involves degraded post-elastic axial stiffness only.  That is to say, if post-elastic 

bending or shearing stiffness degradation was accounted for, the frame would have failed at a much 

lower load level as shown in Figure 4.21 and Figure 4.30.  The bending moment at the midspan of the 

beam at load factor level  λ = 30.6, for example, is 8990 kN-m, which greatly exceeds the beam's 

ultimate moment resistance of 367 kN-m as discussed in Section 4.3.1.  This example does illustrate, 
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however, that post-elastic axial stiffness degradation for reinforced concrete columns is not a major 

contributor to the eventual failure of the frame at an abnormal load level. 

The preceding example of Section 4.3 was used to illustrate the analysis procedure and output 

results on a simple frame.  The analysis procedure is now presented on a larger system, with more 

structural redundancy. 

4.4 2 Bay - 2 Storey Frame 

Figure 4.36 shows the geometry and loading of a 2 bay-2 storey reinforced concrete frame while 

Figure 4.37 shows the node and member numbering used for reference.  The frame's centre-to-centre 

width is 3750 mm in the shorter bay and 7500 mm in the larger bay.  All columns are 3600 mm high.  

The loading consists of a 60.6 N/mm and 56.4 N/mm uniformly distributed load on the first and 

second storey, respectively.  The beam cross sections (Figure 4.38) are 500x350 mm with a tension 

reinforcement ratio of 1.04%, a compression reinforcement ratio of 0.26% and 10M closed stirrups 

spaced at 250 mm on centre.  For positive moment regions along the beam, the reinforcement is as 

shown in Figure 4.38 whereas for negative moment regions along the beam, the reinforcement is as 

shown in Figure 4.38 but rotated 180 degrees so that the tension reinforcement (4-25M) is at the top 

of the section.  The column cross sections (Figure 4.39) are 350x350 mm with a reinforcement ratio 

of 2.1% and 10M closed stirrups spaced at 200mm on centre.  There are fourteen total members (six 

column members and eight beam members).  The tributary width of the frame is 5000 mm where the 

concrete slab transferring load to the frame is assumed to act as a one-way slab.  The frame has fixed 

supports at its base. 

4.4.1 Post-Elastic Bending Stiffness Degradation  

The frame is analyzed to account for degraded post-elastic bending stiffness only.  The load 

increment is set to 1% of the total design load.  The load is incrementally increased and the program 

determines when a member-section reaches the post-elastic range.  The post-elastic force-deformation 

response of the frame member-sections is not given here, as it is similar to the response of the 

member-sections used in Section 4.3, but may be found in Appendix D.  The beam cracking moment 

resistance is 30 kN-m, the yield moment resistance 308 kN-m (θyld = 0.0044 rad) and the ultimate 

moment resistance 331 kN-m (θult = 0.0228 rad).  The column cracking moment resistance is 16 kN-
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m, the yield moment resistance 201 kN-m (θyld = 0.0064 rad) and the ultimate moment resistance 231 

kN-m (θult = 0.0861 rad). 

Figure 4.40 shows the results of the analysis at the target load factor level λ = 1.0.  The circles at 

the ends of the members are consistent with the symbols developed in Section 4.2 for degraded post-

elastic bending stiffness due to cracking of concrete.  The amount of partial post-elastic stiffness 

degradation is inscribed in the circles.  Almost all member-sections experience some degree of post-

elastic bending stiffness degradation by the time the target load level is reached, except for column 1 

member-sections and member-sections 7-5, 8-5, 11-9, 11-10 and 12-10.  All beam sections that 

experience post-elastic bending stiffness degradation are each 55% degraded (r = 0.45), while all 

column sections that experience post-elastic bending stiffness degradation are each 46% degraded (r 

= 0.54).  Figure 4.40 also shows the load factor levels at which the member-sections first enter the 

post-elastic range.  Several members (6-8, 6-13, 9-6, 13-11), for example, are first to enter the post-

elastic range simultaneously at load factor level λ = 0.15.  As the load factor level increases, other 

member-sections at some point along the load history enter the post-elastic range.  Member 7-4 is the 

last member-section to enter the post-elastic range (at load factor level λ = 0.65) before the target load 

level is reached.  Between λ = 0.65 and λ = 1.0 there is no change in the degree of post-elastic 

bending stiffness degradation for any of the member-sections, albeit the bending moments certainly 

increase. 

These results show that initial flexural cracking has a significant effect on the flexural bending 

stiffness of the member-sections.  Once initial flexural cracking occurs (when the member-end 

moment reaches the cracking moment resistance) there is an immediate reduction in post-elastic 

bending stiffness.  The new reduced level of post-elastic bending stiffness remains constant until 

yielding of the reinforcement occurs.  For several column and beam members, an average of 50% 

reduction of post-elastic bending stiffness exists at only 15% of the target load level.  Figure 4.40 

shows that members 6-8 and 6-13 have bending stiffness degradation factors of r = 0.54 (46% 

degraded).  When these degradation factor values are used in modifying the k33 term in the element 

stiffness matrix of Eq. (2.20) for example, it translates into a 56% reduction in the elastic stiffness 

coefficient.  That is to say, if we compare the k33 term given by Eq. (2.21e) for the cracked (r1 = r2 = 

0.54) and uncracked (r1 = r2 = 1.0) fully elastic state, we find that there is a 56% reduction in its value.  

Again, this occurs at just 15% of the target load level.   
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 The bending moment diagram plotted on the tension side of the frame is shown in Figure 4.41 at 

load factor level λ = 1.0.  Any member-section for which post-elastic bending stiffness degradation is 

indicated will have a moment magnitude which exceeds its cracking moment resistance (30 kN-m for 

beams, 16 kN-m for columns).  Column 1 shows no post-elastic bending stiffness degradation in 

Figure 4.40.  Accordingly, the bending moment diagram indicates that its end moments are 15 kN-m.  

Beam members 7-5, 8-5, 11-10, and 12-10 also show no post-elastic bending stiffness degradation.  

Their bending moments are 14, 14, 2, and 2 kN-m, respectively, which is below the cracking 

threshold for beams.  The largest bending moments at the target load level exist in the lower and 

upper beams of the larger bay at the interior column (members 9-6 and 13-11) and have magnitude 

253 kN-m and 239 kN-m, respectively. 

At the target load level then, the frame remains intact with some degree of post-elastic bending 

stiffness degradation at most member-sections.  The user may increase the load on the structure 

beyond the target load level (λ = 1.0) until a failure state is reached.  Continuing the analysis shows 

that at load factor level λ = 1.51 member-section 13-11 becomes 100% degraded (r = 0.0) as shown in 

Figure 4.42.  The load factor levels shown beside the degradation symbols indicate when a member-

section's post-elastic bending stiffness changes between the target load level λ = 1.0 and λ = 1.51.  

That is to say, the load factor level is shown if at the target load level a member-section was fully 

elastic or cracked, and now, beyond the target load level a member-section is cracked or yielding.  

Several members that at the target load level were still fully in the elastic range, now experience post-

elastic bending stiffness degradation.  Member-sections 1-1, 11-9, 1-4, 7-5, and 8-5 enter the post-

elastic range due to flexural cracking at load factor levels 1.03, 1.03, 1.06, 1.39, and 1.39, 

respectively.  Column member-sections 1-1 and 1-4 have bending stiffness degradation factors r = 

0.54 while the other beam member-sections have degradation factors r = 0.45. 

Several other member-sections that previously entered the post-elastic range due to flexural 

cracking, now undergo further bending stiffness degradation due to yielding of their tension 

reinforcement.  Beam member-sections 9-6, 13-11, 9-7, 10-7, 13-12, 14-12, and 10-8 yield at load 

factor levels 1.23, 1.30, 1.36, 1.36, 1.36, 1.36, and 1.49, respectively.  These member-sections are 

now each 98% degraded (r = 0.02).  Column member-section 6-13 yields at load factor level 1.46 and 

is 99% degraded (r = 0.01). 

The frame exhibits considerable ductility.  Several member-sections continue to resist bending 

moment and deform after their reinforcement yields.  Member-section 9-6, which is the first to yield 
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at load factor level 1.23 and M = 308 kN-m, remains intact at load factor level 1.51.  This shows that 

the load on the structure may be increased by 100(1.51-1.23) = 28% beyond the point of initial 

yielding of the member-section, while maintaining its ability to resist moment.  Its member-end post-

elastic deformation at load factor level 1.23 is θ = 0.0044 rad.  The post-elastic deformation increases 

to θ = 0.0183 rad for an increase in load of only 28%.  The post-elastic deformation from yielding to 

the end of the analysis (an increase in load of 28%) is 3.1 times larger than the post-elastic 

deformation from cracking (λ = 0.15) up to yielding (λ = 1.23) (an increase in load of 108%).  

Member-sections 9-7, 10-7, 13-12 and 14-12 that yield at load factor level 1.36, continue to resist 

bending moment and deform for at least an increase of 100(1.51-1.36) = 15% of load.  They could 

perhaps deform more, but are unable to because another member-section reaches its ultimate capacity, 

thereby ending the inelastic analysis.  Member-section 13-11, which yields at load factor level 1.30, 

can resist moment and deform for an additional increase of 100(1.51-1.30) = 21% of the load before it 

reaches its ultimate capacity (at load factor level λ = 1.51) and effectively disengages from the 

structure.  Its member-end post-elastic deformation at load factor level 1.30 is θ = 0.0044 rad.  At  

load factor level 1.51 its post-elastic deformation is θ = 0.0228 rad, which is 4.2 times larger than the 

post-elastic deformation from the time post-elastic behaviour began (λ = 0.15) up to yielding (λ = 

1.30). 

The bending moment diagram for the frame at load factor level λ = 1.51 is shown in Figure 4.43.  

The beam's ultimate moment resistance is 331 kN-m and the figure shows that member-section 13-11 

is the first member-section to reach this point.  Member-section 13-11 exceeds its ultimate moment 

resistance and fails due to crushing of concrete in the compression zone of the cross section.  The 

member-section at this point is 100% degraded (r = 0.0).  At the target load level, the largest end-

moment in the frame was located at member 9-6 (Figure 4.41).  This was also the first member-

section to yield.  As a consequence of this member-section yielding first, the moment distribution in 

the frame was altered due to the vastly reduced bending stiffness at this particular section.  Member-

section 13-11 was the second section to yield in the frame.  This too caused the bending moments in 

subsequent loading increments to redistribute due to the reduced bending stiffness.  As more members 

began to yield and cause the moments to redistribute, member-section 13-11 was consequently the 

first to reach its ultimate moment resistance.   

A concrete section is unable to maintain its ultimate moment capacity once it is subject to complete 

post-elastic bending stiffness degradation.  There is some further deformation, however, but this 
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occurs through a decreasing load.  This study ignores the unloading phenomenon and considers the 

point at which the section reaches its ultimate moment resistance the end of its post-elastic force-

deformation response.   

As previously stated, member-section 13-11 reaches the end of its post-elastic force-deformation 

response at load factor level λ = 1.51 and effectively disengages from the structure.  At this point the 

structure experiences an unloading phenomenon whereby the restraint provided by the member-end 

forces at 13-11 and joint 11 is lost.  The member-end forces at 13-11 consist of a 331 kN-m counter-

clockwise moment, a 336 kN upward shear force and a 104 kN compressive force.  The member-end 

forces acting on joint 11 from member 13-11 are equal in magnitude but opposite in sense.  To 

account for this loss of restraint at joint 11, an elastic-unloading analysis is performed.  This is done 

in the program by applying the opposite sense of the forces that exist at 13-11 to 13-11 and applying 

the opposite sense of the forces that exist at joint 11 to joint 11 (Figure 4.44).  This effectively negates 

the contributions of these forces to the overall equilibrium of the structure.  For the elastic-unloading 

analysis then, member 13-11 would have a 331 kN-m clockwise moment, a 336 kN downward shear 

force, and a 104 kN tensile force applied to it.  The forces applied to joint 11 would be opposite in 

sense. 

The elastic-unloading analysis assumes elastic behaviour and uses  the gross section properties of 

the members.  The elastic-unloading analysis provides a measure of the response of the structure due 

to the loss of restraint at some member-end(s).  The results of the elastic-unloading analysis are 

shown in the bending moment diagram of Figure 4.45. 

Notice first that the bending moment at 13-11 is -331 kN-m, which is equal to the concentrated 

moment applied there as part of the load vector for the elastic-unloading analysis.  Referring back to 

Figure 4.43 shows that the bending moment prior to unloading was +331 kN-m such that the net 

result after unloading is that there is zero member-end moment at 13-11.  Such is the case for shear 

force and axial force also.  The net effect produces zero member-end forces at the detached member-

section as is expected for what is now the free end of a cantilever.  The resulting unloading (or loss of 

restraint of 13-11) has relatively little effect on the smaller bay when compared to that for the larger 

bay.  The larger bay (whose top-most member is now a cantilever) has large bending moments in the 

columns and beams, the largest of which is 2579 kN-m.  To determine what effect the unloading has 

on the overall structure and its post-elastic bending stiffness, the before unloading member-end 
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moments are added to the elastic-unloading member-end moments to obtain the after unloading 

member-end moments.  The results are shown in Figure 4.46. 

Figure 4.46 shows that losing the restraint of member-section 13-11 at load factor level λ = 1.51 

results in the complete destruction of the larger bay.  The cross-hatched circles, shown in Figure 4.46 

are indicative of complete post-elastic bending stiffness degradation as discussed in Section 4.2  The 

smaller bay is only partially destroyed, yet enough to cause collapse to ground level.  Figure 4.46 

shows member-section 13-11 detached from the structure to symbolize that no forces exist there and 

that it provides no restraint to the gravity loads acting on the member.  Comparing Figure 4.42 to 

Figure 4.46 shows the increase in post-elastic bending stiffness degradation due to the loss of 

member-section 13-11.  All member-sections in the larger bay, which at load factor level 1.51 were 

either in a cracked state or yielding, are now completely degraded.  Furthermore, while at load factor 

level 1.51 there were several member-sections yet to enter the post-elastic range, all member-sections 

for the entire structure now experience some degree of post-elastic bending stiffness degradation. 

Figure 4.47 shows the bending moment diagram for the frame after the elastic-unloading.  All 

bending moments in the larger bay associated with a cross-hatched circle exceed that member-

section's ultimate moment resistance.  This is also true for columns 1 and 2.  In the case of the beams, 

the ultimate moment resistance is 331 kN-m and in the case of the columns it is 231 kN-m. 

The bending moments for column member-sections 4-9 and 5-11 and for beam member-sections 

11-9 and 12-11 are below those member-section's respective cracking moment resistance (16 kN-m 

for columns and 30 kN-m for beams), yet Figure 4.46 shows that they are all in the post-elastic range.  

This occurs because a member-section cannot regain post-elastic stiffness.  That is to say, beam 

member-section 11-9 for example, entered the post-elastic range at load factor level 1.03.  This was 

because the moment reached the cracking moment resistance and caused the concrete to crack in the 

tension zone of the cross section.  The subsequent unloading caused the magnitude of the bending 

moment at 11-9 to reduce to 2 kN-m as shown in Figure 4.47, which is below the cracking moment 

resistance.  Once a member-section cracks, however, and reduces its post-elastic bending stiffness, it 

cannot "uncrack" and regain that stiffness, even if the moment magnitude falls to a value in the elastic 

range. 

If no global instability (total or partial collapse to ground level) had occurred, then the inelastic 

analysis would continue by further increasing the load level.   This is shown in Section 4.5.  In this 

particular case, because a global instability has occurred, the analysis ends.  Thus, the analysis shows 
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that as the load further increases and the frame's post-elastic bending stiffness continues to 

deteriorate, the frame may be loaded up to 1.51 times its gravity load level before a member-section 

failure causes complete collapse of the frame to ground level.   

4.4.2 Post-Elastic Shear Stiffness Degradation  

The frame is analyzed to account for degraded post-elastic shear stiffness only.  The load increment is 

set to 1% of the total design load.  The load is incrementally increased and the program determines 

when a member-section reaches the post-elastic range.  The post-elastic force-deformation response 

of the frame member-sections for shear can be found in Appendix D.  The beam has a cracking shear 

resistance of 174 kN, a yield shear resistance of 239 kN (τyld,short = 2.42 mm, τyld,long = 4.84 mm), and 

an ultimate shear resistance of 263 kN (τult,short = 5.04 mm, τult,long = 10.09 mm).  The column has a 

cracking shear resistance of 122 kN, a yield shear resistance of 223 kN (τyld = 7.29 mm) and an 

ultimate shear resistance of 265 kN (τult = 33.40 mm). 

Figure 4.48 shows the results of the analysis at the target load level λ = 1.0.  The inverted triangles 

are consistent with the symbols developed in Section 4.2 for degraded post-elastic shear stiffness due 

to cracking of concrete.  Inscribed in the triangles is the percent degradation of the member-sections.  

At the target load level, only four member-sections have entered the post-elastic range.  Beam 

member-sections 9-6, 13-11, 10-8 and 14-13 first enter the post-elastic range at load factor levels λ = 

0.73, 0.76, 0.81 and 0.89, respectively.  All of these beam sections are each 29% degraded (t = 0.71).  

Between load factor level 0.89 and 1.0 there is no change in the degree of post-elastic shear stiffness 

degradation for any of the member-sections. 

Contrary to post-elastic bending stiffness degradation, where member-sections entered the post-

elastic range at low load levels, post-elastic shear stiffness degradation does not occur until a high 

load level is reached.  In this case, the first instance does not occur until 73% of the target load level 

is reached.  This is attributed to the high cracking shear resistance of the beams (174 kN).  Once 

cracking does occur, however, there is an immediate reduction in post-elastic shear stiffness.  The 

new reduced level of post-elastic shear stiffness is assumed to remain constant until yielding of the 

transverse reinforcement occurs.  Cracking causes the beam sections to experience a 29% reduction in 

post-elastic shear stiffness (t = 0.71).  When this degradation factor value is used in modifying the k22 

term in the element stiffness matrix of Eq. (2.20) for example, where one end of the beam has t = 1.0, 

it translates into a 62% reduction in the elastic stiffness coefficient.  That is to say, if we compare the 
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k22 term given by Eq. (2.21b) for the cracked (t = 0.71) and uncracked (t = 1.0) fully elastic state, we 

find that there is a 62% reduction in its value.  This shows that diagonal shear cracking has a 

significant effect on the stiffness of the member.   

The shear force diagram of the frame is shown in Figure 4.49 at load factor level λ = 1.0.  Any 

member-section for which post-elastic shear stiffness degradation is indicated will have a shear 

magnitude that exceeds the member-section's shear cracking resistance.  The shear forces in members 

9-6, 13-11, 10-8, and 14-13 are 238, 227, 216 and 196 kN, respectively, which are greater than the 

174 kN cracking shear resistance of the beam.  No other beam-section has a shear force greater than 

this and is why no other beam-sections enter the post-elastic range.  No shear forces have exceeded 

the column's cracking shear resistance of 122 kN. 

At the target load level then, the frame remains intact with some degree of post-elastic shearing 

stiffness degradation at a few member-sections.  The user may increase the load on the structure 

beyond the target load level (λ = 1.0) until a failure state is reached.  Continuing the analysis shows 

that at load factor level λ = 1.12 member-section 9-6 becomes 100% degraded (t = 0.0) as shown in 

Figure 4.50.  Two new degradation symbols are now used: the hatched triangle represents a member-

section in which the transverse reinforcement is yielding, while the cross-hatched triangle represents a 

member-section that has surpassed its ultimate shear resistance and is fully degraded.  The load factor 

levels shown beside the degradation symbols indicate when a member-section's post-elastic shearing 

stiffness changes between the target load level λ = 1.0 and λ = 1.12.  That is to say, the load factor 

level is shown if at the target load level a member-section was fully elastic or cracked, and now, 

beyond the target load level, a member-section is cracked or yielding. 

Increasing the load factor level to 1.12 does not cause any new member-sections to enter the post-

elastic range.  However, several of the member-sections which previously entered the post-elastic 

range now undergo further post-elastic shear stiffness degradation.  Beam member-sections 9-6, 13-

11 and 10-8 have their transverse reinforcement yield at load factor levels λ = 1.01, 1.06, and 1.10, 

respectively.  These member-sections are now each 55% degraded (t = 0.45). 

When accounting for post-elastic shear stiffness degradation only, the frame does exhibit some 

ductility, but not as much as when accounting for degraded post-elastic bending stiffness only.  

Several member-sections continue to resist shear force and deform after their transverse 

reinforcement yields.  Member-section 9-6 is the first to yield at load factor level 1.01 and V = 239 
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kN and remains intact until failing at λ = 1.12.  This shows that the load on the structure may be 

increased by 100(1.12-1.01) = 11% beyond the point of initial yielding of the member-section, while 

maintaining its ability to resist shear.  Its member-end post-elastic deformation at load factor level 

1.01 is τ = 4.8 mm.  The post-elastic deformation increases to τ = 10.1 mm for an increase in load of 

only 11%.  The post-elastic deformation from yielding to failure (an increase in load of 11%) is 1.1 

times the post-elastic deformation from cracking (λ = 0.73) to yielding (λ = 1.01) (an increase in load 

of 28%). This ductility is associated with an increase in shear resistance of 24 kN, which is 10% of 

the yield shear resistance.   Members 13-11 and 10-8 also yield; however, a local instability occurs 

elsewhere before they experience any significant post-elastic deformation. 

The shear force diagram at load factor level λ = 1.12 is shown in Figure 4.51.  The beam's ultimate 

shear resistance is 263 kN and Figure 4.51 shows that member-section 9-6 is the first member-section 

to reach this point.  Member-section 9-6 reaches its ultimate shear resistance and fails due to crushing 

of concrete along the compression diagonals (principal compressive stress exceeds the maximum 

compressive stress of the concrete).  The member-section at this point is 100% degraded (t = 0.0)  

Unlike with post-elastic bending stiffness degradation, yielding of the shear reinforcement at the ends 

of the beams does not cause any redistribution of shear force.  Maximum shear is located at the ends 

of the beams while the minimum shear is located near the midspan. 

The structure now experiences an unloading phenomenon whereby the restraint provided by the 

member-end forces at 9-6 and joint 6 is lost.  This occurs because it is assumed that the member 

disengages from the structure once it reaches the end of its post-elastic force-deformation response.  

The member-end forces at 9-6 at the time of failure consist of a 302 kN-m counter-clockwise 

moment, a 264 kN upward shear force and a 49 kN tensile force.  The member-end forces acting on 

joint 6 from member 9-6 are equal in magnitude but opposite in sense.  To account for the loss of 

restraint at joint 6, an elastic-unloading analysis is performed.  Similar to the unloading analysis in 

Section 4.4.1, to simulate the loss of restraint at 9-6 and joint 6, the forces that exist there are applied 

there but in the opposite sense (Figure 4.52).  This negates the contribution of these forces to the 

overall equilibrium of the structure.  For the elastic-unloading analysis then, member 9-6 would have 

a 302 kN-m clockwise moment, a 264 kN downward shear force and a 49 kN compressive force 

applied to it.  The forces applied to joint 6 would be opposite in sense. 

Notice at the time of failure in shear for member-section 9-6 that the bending moment is still below 

the beam's ultimate moment resistance (Mf = 302 < Mult = 331 kNm).  This shows that when only 
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post-elastic shear stiffness degradation is taken into account, the beam's shear resistance governs the 

amount of overloading the structure can withstand.  When only post-elastic bending stiffness 

degradation is accounted for (Section 4.4.1), the load on the structure can be increased to 151% of its 

design load before a member-section failure occurs, resulting in the complete collapse of the frame.  

When only post-elastic shear stiffness degradation is accounted for, the load on the structure can be 

increased to only 112% of its design load before a member-section failure occurs.  Whether this 

causes complete collapse of the structure is forthcoming; however, up to now it is clear that post-

elastic shear stiffness degradation governs the structure's first member-section failure. 

The results of the elastic unloading analysis are shown in the shear force diagram of Figure 4.53.  

Comparing the magnitude of the shear force at member-section 9-6 in Figure 4.51 and Figure 4.53 

shows that the net shear force at the now free end of the beam is zero.  The net moment and axial 

force are also zero.  If the figures are compared further still, it is clear that the elastic-unloading 

creates large shear forces in the columns.  Columns 3 and 6, for example, have shear forces of 299 

and 250 kN, respectively.  To determine what effect the unloading has on the overall structure and its 

post-elastic shear stiffness, the before unloading member-end shear forces are added to the elastic 

unloading member-end shear forces to obtain the after unloading member-end shear forces.  The 

results are shown in Figure 4.54. 

Figure 4.54 shows that losing the restraint of member-section 9-6 at load factor level λ = 1.12 

results in significant, albeit not complete destruction of the frame.  Both ends of columns 3 and 6 are 

completely degraded, as is member 10-8.  This causes members 3, 6, 9, and 10 to collapse to ground 

level leaving the smaller bay standing and the top-most members of the larger bay cantilevering from 

the smaller bay.  Comparing Figure 4.50 and Figure 4.54 shows the increase in post-elastic shear 

stiffness degradation due to the loss of member-section 9-6.  Where previously no member-sections in 

the smaller bay had entered the post-elastic range, several member-sections now exhibit some degree 

of degradation.  Both ends of columns 1, 2, 3, and 5 are each 13% degraded (t = 0.87).  Additionally, 

member 11-9 is 62% degraded (t = 0.38). 

Figure 4.55 shows the shear force diagram for the frame after the elastic-unloading.  All shear 

forces in the frame associated with a cross-hatched triangle exceed that member-section's ultimate 

shear resistance (263 kN for beams, 265 kN for columns).  Columns 1, 2, 4, and 5, which are each 

13% degraded, have shear force magnitudes that surpass their cracking shear resistance of 122 kN.  
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The shear force at member-section 9-6 (now a cantilever due to its disengagement) is zero, as 

discussed earlier. 

Since the frame partially collapses to ground level, a global instability occurs, and the analysis 

ends.  The analysis thus shows that when considering only degraded post-elastic shear stiffness, the 

frame may be loaded up to 1.12 times its gravity load level before a member-section failure causes 

partial collapse of the frame to ground level.  In addition, it can now be conclusively stated that shear 

governs the frame's ability to resist load beyond the target load level.  The frame fails at load factor 

level 1.12 when considering only degraded post-elastic shear stiffness (whereby the moment level at 

λ = 1.12 at the critical section is still below the ultimate moment resistance of the beam) whereas the 

frame fails at load factor level 1.51 when considering only degraded post-elastic bending stiffness.   

4.4.3 Post-Elastic Axial Stiffness Degradation  

The frame is analyzed to account for degraded post-elastic axial stiffness only.  The load increment is 

set to 1% of the total design load.  The load is incrementally increased and the program determines 

when a member-section reaches the post-elastic range.  The post-elastic force-deformation response 

for axial tension can be found in Appendix D.  Similar to Section 4.3.3, only axial degradation for 

columns is accounted for here.  The column has a cracking compressive resistance of 2312 kN and an 

ultimate compressive resistance of 5780 kN (δult = 4.93 mm).  Buckling is explicitly checked for in 

the analysis; however, the critical buckling load for the columns of this example is quite high (Pc = 

6,316 kN), and buckling does not preclude material failure as will be shown. 

Figure 4.56 shows the axial load for each column (a negative sign indicating compression) at the 

target load factor level λ = 1.0.  The highest axial force is in column 2 and has a magnitude of 755 

kN.  Since this is well below the cracking compressive resistance of the column, column 2 and the 

other columns remain in the elastic range.   

At the target load factor level the frame remains intact and no member-sections are subject to post-

elastic axial stiffness degradation; therefore, the load factor level increases until a failure state is 

reached.  The first member-section failure occurs at load factor level λ = 7.92 (Figure 4.57).  As 

discussed in Section 4.2, the open square represents a member-section entering the post-elastic range 

due to microcracking in the concrete.  The cross-hatched square represents a member-section that has 

surpassed its ultimate compressive resistance and is fully degraded.  The load factor level at which a 

member-section enters the post-elastic range is beside the square. 
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The first member-sections to enter the post-elastic range are 2-2 and 2-6 and do so simultaneously 

(since the axial force throughout the length of a column is the same) at load factor level λ = 3.07.  

These member-sections become 56% degraded (n = 0.44).  As discussed in Section 2.2, the reduction 

in post-elastic axial stiffness is due to microcracking in the concrete whereby the force-deformation 

response becomes nonlinear at approximately 40% of the ultimate compressive force.  When these 

stiffness degradation factor values are used in modifying the k11 term in the element stiffness matrix 

of Eq. (2.20) (where n1 = n2 = 0.44) for example, it translates into a 72% reduction in the elastic 

stiffness coefficient.  That is to say, if we compare the k11 term given by Eq. (2.21a) for the cracked 

(n1 = n2 = 0.44) and uncracked (n1 = n2 = 1.0) fully elastic state, we find that there is a 72% reduction 

in its value.  This shows that microcracking in compression has a significant effect on the member-

section's axial stiffness. 

The analysis continues, since at load factor level λ = 3.07 the frame is still intact, and column 

member-sections 3-3, 3-8, 5-6 and 5-11 enter the post elastic range at load factor levels λ = 5.6, 5.6, 

6.35 and 6.35, respectively.  These sections are each 56% degraded (n = 0.44).  

At load factor level λ = 7.92 column member-sections 2-2 and 2-6 reach their ultimate compressive 

resistance (5780 kN) and become fully degraded (n = 0.0).  The member-sections of column 2 fail 

due to crushing of concrete.  At this point the member-sections are assumed to be no longer able to 

resist load.  The structure experiences an unloading phenomenon, similar to when member-section 

failures occurred for degraded post-elastic bending and shear stiffness.   The restraint provided by the 

member-end forces at 2-6 and joint 6 is lost and consequently an elastic-unloading analysis is 

performed to model this loss of restraint.   

The results of the elastic-unloading analysis show that the member-sections of column 1 fail due to 

reaching their ultimate compressive resistance (Figure 4.58).  Column 3, however, remains erect and 

theoretically able to carry the compressive loads transferred from columns 1 and 2 which now have 

no load carrying capacity.  This is theoretically possible because the analysis accounts for degraded 

post-elastic axial stiffness only, such that the bending and shear stiffness of the column-sections is 

fully elastic.  Since no global instability occurs, a second elastic-unloading analysis is performed.   

The results show that the member-sections of column 3 also fail due to reaching their ultimate 

compressive resistance (Figure 4.59).  Although the analysis is presented in a step-wise fashion, the 

actual physical failure of the lower three columns is immediate, once column 2 fails at load factor 

level λ = 7.92. 
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Since the frame collapses to ground level, a global instability occurs and the analysis ends.  Thus, 

the analysis shows that when considering degraded post-elastic axial stiffness only, the frame may be 

theoretically loaded up to 7.92 times its gravity load level before a member-section failure causes 

complete collapse of the frame to ground level.  These results are quite unrealistic, however, due to 

the fact that the moment and shear forces at many member-sections at load factor level λ = 7.92 are 

extremely high.  The bending moment and shear force in member-section 9-6 at the time of axial 

failure, for example, (which is the same member-section that caused failure of the frame due to 

degraded shear stiffness) are 2157 kN-m and 1871 kN, respectively.  These force magnitudes are 

many times larger than the actual moment and shear resistance of member-section 9-6.  A failure in 

member-section 9-6 would have occurred (if bending or shear degradation was accounted for) well 

before load factor level λ = 7.92 was ever reached. 

Even at load factor level λ = 3.07, which is the load factor level that column 2 enters the post-

elastic range, the moments and shears in many member-sections are quite large.  The moment and 

shear force in 9-6 at this load factor level are 885 kN-m and 735 kN, respectively.  These values are 

still large enough that a member-section failure would have occurred at an earlier load increment if 

bending or shear degradation was accounted for.  This shows that post-elastic axial stiffness 

degradation has little effect on the analysis of the structure because a large enough axial force cannot 

realistically occur for post-elastic axial stiffness degradation to occur. 

The critical buckling load for the columns of this frame is obtained from Eq. (3.11) and has a value 

of 6,316 kN, which is larger than the ultimate compressive resistance and hence why buckling is not a 

concern for this example.  The value given here is an underestimate of the actual buckling load 

because a  k value of 1 is used in Eq. (3.11).  For perfectly stiff end restraints a k value of 0.67 is 

given in Fig. N10.15.2 of CSA A23.3-94, which would lead to a critical buckling load of 14,070 kN.  

In actuality there is some degree of partial end restraint at the ends of the column, giving rise to a 

higher k value than 0.67, in which the critical buckling load would fall between the two values given 

here.  These values then, present a lower and upper bound, respectively.  In fact, if an analysis is run 

with degraded bending stiffness (not done in this case) then the bending stiffness degradation factors 

at the ends of the columns could be used to account for the degree of end restraint.  In either case, 

since the ultimate compressive resistance of the column is below the lower bound of the critical 

buckling load, the frame is subject to a material failure and not a stability failure.  
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4.5 2 Bay-2 Storey Frame with Initial Damage 

The same frame as in Section 4.4 is now analyzed assuming it has been subjected to some abnormal 

loading event such that upper exterior column 6 is damaged.  The damaged column is assumed to 

break away from the structure so as not to create a debris load on the remaining structure below 

(Figure 4.60). The frame is analyzed to account for degraded post-elastic bending stiffness only.  The 

load increment is set to 1% of the total load.  The load is incrementally increased and the program 

determines when a member-section enters the post-elastic range. 

The post-elastic force-deformation response of the columns is the same as in Section 4.4; however, 

an additional post-elastic force-deformation response must be accounted for in the beams.  For the 

undamaged two-bay two-storey frame subjected to uniformly distributed loads across all bays, 

negative moment regions (tension on top) in the beams are expected at their ends and positive 

moment regions are expected at their midspan.  This is how the frame was originally designed, i.e., 

for normal bending.  In the negative moment regions the tension reinforcement is placed at the top of 

the cross section and in positive moment regions the tension reinforcement is placed at the bottom of 

the cross section.  As the following example will show, however, the removal of a main supporting 

member can cause load reversals in the beams such that the tension reinforcement acts as 

compression reinforcement and the compression reinforcement acts as tension reinforcement.  This 

load reversal causes a completely different post-elastic force-deformation response of the cross 

section .  The columns, on the other hand, have symmetric amounts of reinforcement in their cross 

section and therefore do not have a different post-elastic force-deformation response under reverse 

bending. 

Figure 4.38 shows the cross section of the beams in the frame.  The beams are designed for normal 

bending where, for positive moment regions (tension on the bottom), the beam cross sections in the 

program are oriented as shown in Figure 4.38.  For negative moment regions, the same beam cross 

section is used in the program, except it is rotated 180° so that the tension reinforcement (4-25M bars) 

is located at the top of the cross section.  If this cross section is subjected to reverse bending, what 

was originally intended to be the compression reinforcement (added for the sole purpose of anchoring 

the stirrups) will act as tension reinforcement.  That is to say, the 2-15M bars would be in tension and 

the 4-25M bars would be in compression.  The post-elastic moment-rotation response for the cross 

section under normal and reverse bending is shown in Figure 4.61. 
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Under normal bending the cross section's cracking moment resistance, yield moment resistance and 

ultimate moment resistance are 30, 308 and 331 kN-m, respectively.  Under reverse bending, 

however, the cross section's cracking moment resistance, yield moment resistance and ultimate 

moment resistance are 30, 66, and 96 kN-m, respectively.  The cracking moment resistance is the 

same regardless of the type of bending because it depends on the concrete's tensile resistance and not 

the reinforcement.  The yield moment resistance in reverse bending is substantially less than in 

normal bending.  This is because with the 2-15M bars acting as tension reinforcement there is only a 

0.26% reinforcement ratio compared to a 1.31% reinforcement ratio when the 4-25M bars act as 

tension reinforcement.  The ultimate moment capacity is also substantially less.  This is due to the fact 

that the tension force in the 2-15M bars cannot balance the compressive force in the concrete and 4-

25M bars.  The section fails due to the 2-15M bars rupturing.  Plotted on the same scale, Figure 4.61 

shows that the section is many times more ductile in reverse bending.  A trilinear representation of the 

reverse bending post-elastic moment-rotation response is used to calculate the post-elastic bending 

stiffness and degradation factors used in the analysis.  The analysis is adapted so that the appropriate 

value of post-elastic bending stiffness is used in calculating the degradation factors depending on the 

type of bending that the beam cross section experiences. 

As the load factor level increases, various member-sections enter the post-elastic range.  At load 

factor level λ = 0.22 member 13-11 reaches its ultimate moment capacity (Figure 4.62).  Member 13-

11 (which acts as the fixed end of a cantilever) is subjected to a negative moment such that tension is 

experienced at the top of the section.  This member-section was designed for a negative moment and 

hence it undergoes normal bending for which its ultimate moment resistance is 331kN-m.  Figure 

4.63 shows the bending moment diagram (plotted on the tension side) at load factor level λ = 0.22.  

The moment diagram shows member-section 13-11 having a 331 kN-m moment with tension at the 

top of its cross section.  

Notice in Figure 4.62 that member-sections 13-12 and 14-12 are yielding and are each 99% 

degraded (r = 0.01).  These member-sections were designed for normal bending where tension is at 

the bottom of the cross section and the moment distribution along the beam looks similar to that of 

Figure 4.41.  As a consequence of column 6 breaking away due to an abnormal loading event, 

member-sections 13-12 and 14-12 experience a tension force along their entire top side, i.e., as for a 

cantilever beam.  Member-sections 13-12 and 14-12 thereby experience reverse bending and their 

reverse bending post-elastic moment-rotation response governs.  The yield moment resistance is no 
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longer 308 kN-m but is instead only 66 kN-m.  The moment diagram in Figure 4.63 shows that 

member-sections 13-12 and 14-12 are subjected to a moment of 83 kN-m which is beyond the yield 

moment resistance of the beam in reverse bending.  Member-sections 11-10 and 12-10 are also 

subjected to reverse bending.  Their end-moments are 71 kN-m which also exceeds the beam's yield 

moment resistance in reverse bending and is why they are shown as yielding and 99% degraded. 

Member-section 11-9 which is 89% degraded (r = 0.11) was designed for a negative moment where 

tension should be at the top of the section.  The moment diagram shows that member-section 11-9 is 

subjected to a 60 kN-m moment with tension on the bottom of the cross section.  Member-section 11-

9 is therefore subjected to reverse bending and its reverse bending post-elastic moment-rotation 

response governs.  Member-section 11-9 exceeds its cracking moment resistance of 30 kN-m and 

enters the post-elastic range at load factor level λ = 0.13.  Member-section 7-4 is also subjected to 

reverse bending, however, its member-end moment is below the cracking moment resistance and that 

is why it remains in the elastic range.  All other member-sections that have entered the post-elastic 

range have done so under normal bending and their percent degradation and the load factor at which 

they entered the post-elastic range are shown in Figure 4.62. 

The foregoing demonstrates that at a very low load level (22% of the target load) several members 

in the structure will yield if reverse bending is caused due to the loss of a critical member. 

Since member-section 13-11 reaches its ultimate moment resistance it is assumed to be no longer 

able to carry load and members 13 and 14 are assumed to disengage from the structure.  An elastic-

unloading analysis is performed whereby the member-end forces that existed at section 13-11 are 

applied to the remaining structure, but in an opposite sense (Figure 4.64) so as to model the loss of 

restraint due to members 13 and 14 disengaging from the structure.  The results of the elastic-

unloading analysis are shown in Figure 4.65. 

The elastic-unloading results are added to the before unloading results to obtain the after elastic 

unloading results (Figure 4.66 and Figure 4.67).  Only member-section 2-6, that previously was in the 

elastic range, now enters the post-elastic range as a result of the elastic-unloading.  Figure 4.66 shows 

some member-sections in the post-elastic range even though their moment magnitudes after elastic-

unloading are below their respective cracking moment resistance.  This is attributed to the fact that 

members cannot regain post-elastic stiffness.   
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Beam members 13 and 14 now fall onto beam members 9 and 10 as debris loading.  The debris load 

is assumed to be uniformly distributed on the members below.  The magnitude of the debris load is 

the full intensity of the load on members 13 and 14 multiplied by a load amplification factor given by 

Eq. (3.15). 

For a specified dynamic load impact factor of α*
 = 2 and the load factor level at which the debris 

loading occurs at (λ = 0.22), the load amplification factor α = 2/(1-0.22) = 2.56.  The debris load is 

then 2.56(w13,14) = 2.56(56.4 N/mm) = 144.4 N/mm.  The debris load is added to the gravity load 

already acting on members 9 and 10 such that the full intensity of load acting on members 9 and 10 is 

144.4 N/mm + w9,10 = 144.4 N/mm + 60.6 N/mm = 205.2 N/mm (Figure 4.68).  The after unloading 

member-end forces are the starting basis from which to apply the loads in Figure 4.68 for the 

reloading stage of the analysis (stage three).  The inelastic incremental analysis now continues from 

load factor level λ = 0.22. 

The next member-section failure occurs at load factor level λ = 0.55 (Figure 4.69).  Several 

member-sections who previously were yet to enter the post-elastic range now do so.  The load factor 

levels at which this occurs are indicated in Figure 4.69.  Member-sections 9-7 and 10-7 reach their 

ultimate moment capacity in normal bending and fail due to crushing of concrete in the compression 

zone of their cross section.  The bending moment diagram at load factor level λ = 0.55 is shown in 

Figure 4.70.  Figure 4.70 shows member-sections 9-7 and 10-7 having moment magnitudes of 331 

kN-m which is equal to the ultimate moment resistance of the section.  Member-sections 7-5 and 8-5 

at the time of the first member-section failure were not in the post-elastic range, but now enter the 

post-elastic range at load factor level λ = 0.46.  As the moment diagram shows, however, these 

member-sections are in reverse bending (tension at the top of the cross section) and exceed their 

cracking moment resistance.  Hence, they are each 89% degraded (r = 0.11). 

With member-sections 9-7 and 10-7 failed, an elastic-unloading analysis is performed.  The 

member-end forces that existed at 9-7 and 10-7 are applied there but in an opposite sense so as to 

model the loss of restraint on the structure (Figure 4.71).  These forces consist of a 49 kN tensile 

force, a 24 kN shear force and a 331 kN-m bending moment.   Because member-sections 9-7 and 10-7 

failed and are assumed to be no longer able to carry load (essentially breaking apart) there are now 

two separate structures as shown in Figure 4.71.  The before elastic-unloading forces (Figure 4.70) 

are added to the elastic-unloading forces (Figure 4.72) and the results are shown in Figure 4.73.  

Figure 4.73 shows that member-sections 7-4, 8-6, 9-6, 10-8, 3-3, and 3-8 exceed their ultimate 
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moment capacity as a result of the unloading.  The bending moment diagram for after elastic-

unloading (Figure 4.74) shows that every member-section that failed, except for member 7-4, did so 

by reaching its ultimate moment capacity in normal bending.  Member-section 7-4, however, which 

has moment magnitude 106 kN-m, exceeds its ultimate moment capacity (96 kN-m) in reverse 

bending (with tension at the bottom of the cross section).  Member-sections 7-5 and 8-5 have moment 

magnitude 89 kN-m are yielding and are each 99% degraded.  They have exceeded their yield 

moment capacity (66 kN-m) in reverse bending also.   

As a result of column 6 being destroyed by an abnormal loading event the entire right bay and the 

first floor of the left bay collapse to ground level (Figure 4.75).  This occurs at load factor level λ = 

0.55 which is slightly over half of the full design load intensity.  This indicates that the structure does 

not have enough residual load carrying capacity to prevent a progressive collapse if, as considered 

here, column 6 is destroyed.   

It is interesting to note that the load reversals in members 7 and 8 were responsible for these two 

members collapsing to ground level.  Removal of column 6 causes the collapse of the entire right bay 

of the structure.  Each member-section failure in the right bay, however, was due to that section 

exceeding its ultimate moment capacity in normal bending.  If member-section 7-4 were designed for 

the effects of reverse bending and had even slightly more moment resistance, then the first floor in the 

left bay (members 7 and 8) would remain standing, albeit as a cantilever. 

A final point about the dynamic load impact factor must be made.  It is difficult to select a value for 

the dynamic load impact factor as it reflects the amount of dynamic damping in the structure.  That is 

to say, a small value of the dynamic load impact factor indicates a large amount of dynamic damping 

while a large value of the dynamic load impact factor indicates a small amount of dynamic damping.  

A factor of 2 was used in this example because it was known previously to cause a progressive 

collapse of the structure (at load factor level λ = 0.55) before the target load level is reached.  Using 

different values of the dynamic load impact factor such as 1.25, 1.5, 4 or 8, for example, causes a 

progressive collapse to occur at load factor levels λ = 0.70, 0.67, 0.43 and 0.34, respectively.  In fact, 

if the dynamic load impact factor had a value of unity, a progressive collapse would occur at load 

factor level λ = 0.79.  If the dynamic load impact factor has a value of unity, however, that would 

indicate that the debris loads do not have any velocity and are statically applied.  Thus, it is not 

necessary to select a value of the dynamic load impact factor that accurately reflects the amount of 

dynamic damping in a structure because it is sufficient to show, as has been done here, that 
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progressive collapse occurs regardless of the amount of dynamic damping.  This is because the two-

bay two-storey structure has little structural redundancy.   

 

 

Figure 4.1:  Symbol legend 

  

 

 

Figure 4.2:  Portal frame geometry and loading 
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Figure 4.3:  Portal frame analysis model 

 

 

 

Figure 4.4:  Column cross section 

 

 

 

Figure 4.5:  Beam cross section 
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Figure 4.6:  Beam post-elastic moment-rotation graph 

 

θyld = 0.005 

θult = 0.041 
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Figure 4.7: Column post-elastic moment-rotation graph 

 

Figure 4.8:  Load factor λλλλ = 0.124 

θyld = 0.005 

θult = 0.061 
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Figure 4.9:  Bending moment diagram (kN-m) λλλλ = 0.124 

 

 

Figure 4.10:  Load factor λλλλ = 0.126 

 

 

Figure 4.11:  Bending moment diagram (kN-m) λλλλ = 0.126 
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Figure 4.12:  Load factor λλλλ = 0.128 

 

 

Figure 4.13:  Bending moment diagram (kN-m) λλλλ = 0.128 

 

 

Figure 4.14:  Load factor λλλλ = 0.266 
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Figure 4.15:  Bending moment diagram (kN-m) λλλλ = 0.266 

 

 

Figure 4.16:  Load factor λλλλ = 0.984 

 

 

Figure 4.17:  Bending moment diagram (kN-m) λλλλ = 0.984 
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Figure 4.18:  Bending moment diagram (kN-m) λλλλ = 1.00 

 

 

Figure 4.19:  Load factor λλλλ = 1.12 

 

 

Figure 4.20:  Bending moment diagram (kN-m) λλλλ = 1.12 
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Figure 4.21:  Load factor λλλλ = 1.25 

 

 

Figure 4.22:  Bending moment diagram (kN-m) λλλλ = 1.25 
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Figure 4.23:  Beam post-elastic shear force-shear deformation response 
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Figure 4.24:  Column post-elastic shear force-shear deformation response 

 

 

Figure 4.25:  Load factor λλλλ = 0.716 
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Figure 4.26:  Shear diagram λλλλ = 0.716 

 

 

Figure 4.27:  Shear diagram λλλλ = 1.0 

 

 

Figure 4.28:  Load factor λλλλ = 1.10 

 

 



 

 96 

 

 

Figure 4.29:  Shear diagram λλλλ = 1.10 

 

 

Figure 4.30:  Load factor λλλλ = 1.25 

 

 

Figure 4.31:  Shear diagram λλλλ = 1.25 
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Figure 4.32:  Column post-elastic compression-axial deformation graph 

 

 

Figure 4.33:  Load factor λλλλ = 1.0 

 

 

Figure 4.34:  Load factor λλλλ = 12.35 

δ = 4.93 mm 
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Figure 4.35:  Load factor λλλλ = 30.6 

 

 

Figure 4.36:  Frame geometry and loading 
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Figure 4.37:  Node and member numbering 

 

 

Figure 4.38:  Beam cross-section 

 

 

Figure 4.39:  Column cross-section 
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Figure 4.40:  Load factor λλλλ = 1.0 

 

 

Figure 4.41:  Bending moment diagram (kN-m) λλλλ = 1.0  
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Figure 4.42:  Load factor λλλλ = 1.51 

 

 

Figure 4.43:  Bending moment diagram (kN-m) λλλλ = 1.51 

 



 

 102 

 

Figure 4.44:  First member-end failure λλλλ = 1.51 

 

 

Figure 4.45:  Bending moment diagram from elastic unloading (kN-m) 
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Figure 4.46:  After elastic unloading 

 

 

Figure 4.47:  Bending moment diagram from after elastic unloading (kN-m) 
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Figure 4.48:  Load factor λλλλ = 1.0 

 

 

Figure 4.49:  Shear diagram (kN) λλλλ = 1.0 
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Figure 4.50:  Load factor λλλλ = 1.12 

 

 

Figure 4.51:  Shear diagram (kN) λλλλ = 1.12 
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Figure 4.52:  First member-end failure 

 

 

Figure 4.53:  Shear diagram from elastic unloading (kN) 
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Figure 4.54:  After elastic unloading 

 

 

Figure 4.55:  Shear diagram after elastic unloading (kN) 
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Figure 4.56:  Load factor λλλλ = 1.0 (kN) 

 

 

Figure 4.57:  Load factor λλλλ = 7.92 (kN) 
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Figure 4.58:  After first elastic unloading 

 

 

Figure 4.59:  After second elastic unloading 
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Figure 4.60:  Geometry and loading with initial damage 
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Figure 4.61:  Normal and reverse bending post-elastic moment-rotation response 

 

 

Figure 4.62:  Load factor λλλλ = 0.22 
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Figure 4.63:  Bending moment diagram(kN-m) λλλλ = 0.22  

 

 

Figure 4.64:  First unloading nodal loads 
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Figure 4.65:  Bending moment diagram from first unloading (kN-m) 

 

 

Figure 4.66:  After first unloading 
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Figure 4.67:  Bending moment diagram for after first unloading (kN-m) 

 

 

Figure 4.68:  Reloading loads 
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Figure 4.69:  Load factor λλλλ = 0.55 

 

 

Figure 4.70:  Bending moment diagram (kN-m) λλλλ = 0.55  
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Figure 4.71:  Second unloading nodal loads 

 

 

Figure 4.72:  Bending moment diagram for second unloading (kN-m) 
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Figure 4.73:  After second elastic-unloading 

 

 

Figure 4.74:  Bending moment diagram for after second unloading (kN-m) 
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Figure 4.75:  Remaining structure 
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Chapter 5 

Conclusions 

This thesis presents the theory and methodology for analyzing reinforced concrete frames subjected to 

both normal and abnormal loads.  A beam-column element model was developed to account for 

nonlinear behaviour and was employed in an incremental computer analysis program.  The computer 

program was used to analyze examples of typical reinforced concrete frames.  The following provides 

a summary of the work completed for this study, specific conclusions regarding nonlinear analysis of 

reinforced concrete frames and future work to be considered. 

5.1 Summary 

Chapter 1 briefly reviewed some of the analysis and design standards currently in practice, which aim 

to mitigate the effects of abnormal loads on structures, which can potentially lead to progressive 

collapse.  Examples of structures that have been subjected to abnormal loads were given.  The scope 

of work for this study was presented along with the assumptions and idealizations used throughout 

this study. 

Chapter 2 presented the analysis concepts and theory used to develop the computer analysis 

program.  The beam-column element used to discretize a reinforced concrete frame was developed.  

The nonlinear behaviour of the element was modeled using a series of end-springs which represent 

the post-elastic stiffness of a member-section.  The post-elastic stiffness of a member-section was 

obtained from a post-elastic force-deformation response, which was first obtained by performing 

sectional analysis on a reinforced concrete section using a public domain computer program.  The 

force-deformation responses were modeled as either bilinear or trilinear.  Stiffness degradation factors 

were derived, based on the post-elastic force-deformation responses, which were used in modifying 

the elastic stiffness coefficients in the element stiffness matrix to account for the nonlinear behaviour. 

Chapter 3 presented the computer analysis program which was comprised of four distinct stages.  

Stage zero performed an elastic analysis on the structure until the first member-section entered the 

post-elastic range.  Stage one performed an inelastic incremental analysis on the structure which 

progressively tracked the deterioration of post-elastic stiffness.  Stage two performed an elastic-

unloading analysis on the structure which only occurred if a member-section failed.  Finally, stage 

three performed an inelastic reloading analysis, which involved applying amplified debris loads on 
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the structure as a direct result of members disengaging from the main structure and falling onto the 

remaining structure below. 

Chapter 4 presented analysis examples for reinforced concrete frames.  The frame designs and 

analysis outputs were first explained.  Each frame was analyzed for degraded post-elastic bending, 

shearing and axial stiffness separately.  The first analysis example was for a simple portal frame used 

to illustrate the program outputs.  The second analysis example was for a 2 bay-2 storey more 

redundant frame.  The third analysis example was for the same 2 bay-2 storey frame but with some 

initial damage caused by an abnormal load.  This example was used to illustrate the program's 

capabilities for performing a progressive collapse analysis. 

5.2 Conclusions 

There are several specific conclusions regarding the nonlinear analysis of the reinforced concrete 

frames presented in this study: 

• The analysis results of the 2 bay-2 storey frame for degraded bending stiffness and 

degraded shear stiffness as presented in Sections 4.4.1 and 4.4.2 show that the frame 

exhibits considerable ductility.  Several member-sections continue to resist load and 

deform after their reinforcement has yielded.   

• Cracking of a member-section (flexural, diagonal or transverse) causes a large reduction in 

post-elastic stiffness.  This is evident by the values of the degradation factors given in the 

analysis examples.   

• Even one member-section failure can greatly affect the remaining structure.  Section 4.4.2 

demonstrates this whereby after the elastic-unloading analysis is performed due to a 

member-section failing, several member-sections who previously had not yet experienced 

any post-elastic stiffness degradation now experienced either partial or complete 

degradation. 

• For the 2 bay-2 storey frame, the amount of additional load beyond the target load level 

that the structure can resist is governed by the structure's shear resistance. 

• Post-elastic axial stiffness degradation in compression has little effect on the structure's 

strength and stability.  Section's 4.3.3 and 4.4.3 show that post-elastic axial stiffness 

degradation in compression only occurs at high load factor levels. The load factor levels 
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are high enough, that, if post-elastic bending or shearing stiffness degradation were also 

accounted for, failure of the frame would occur due to degraded bending or shearing 

stiffness before any degradation in axial stiffness. 

• For the frames analyzed in this study, buckling does not preclude material failure. 

5.3 Future Work 

There are several areas of future work that should be investigated in regards to this study: 

• The effects of combined stress states should be incorporated into the computer analysis 

program.  Currently, the program tracks the deterioration of post-elastic bending, shearing 

or axial stiffness separately and ignores moment-shear or moment-axial force interaction.  

Undoubtedly, accounting for force interaction would yield more realistic results. 

• The degree of end-fixity should be accounted for when determining the column critical 

buckling load.  Currently a k value of unity is used.  The degree of end-fixity might be 

derived from the value of the column's bending stiffness degradation factors as they 

represent the amount of post-elastic stiffness degradation at an end-section. 
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Appendix A 

Examples of Calculating µµµµ 

600x250mm Beam 

ρ = 1.09% 

f'c = 35 MPa 

E = 26540 MPa 

L = 7500 mm 

Ig = 4500 x 10
6 
mm

4 

Ie = 2027 x 10
6
 mm

4 

 

% of Length r 

01 0.869 

10 0.399 

20 0.249 

30 0.181 

40 0.142 

50 0.117 

60 0.100 

70 0.087 

80 0.077 

90 0.069 

100 0.062 

 

µ = 0.451 � 9% of length 

 

500x400mm Beam 

ρ = 1.57% 

ρ' = 0.22% 

f'c = 35 MPa 
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E = 26540 MPa 

L = 7500 mm 

Ig = 4167 x 10
6 
mm

4 

Ie = 2295 x 10
6
 mm

4 

 

% of Length r 

01 0.892 

10 0.453 

20 0.292 

30 0.216 

40 0.171 

50 0.142 

60 0.121 

70 0.106 

80 0.094 

90 0.084 

100 0.076 

 

µ = 0.551 � 7% of length 

 

300x300mm Column 

ρ = 2.02% 

ρ' = 2.02% 

f'c = 35 MPa 

E = 26540 MPa 

L = 3600 mm 

Ig = 675 x 10
6 
mm

4 

Ie = 366 x 10
6
 mm

4 
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% of Length r 

01 0.941 

10 0.617 

20 0.446 

30 0.349 

40 0.287 

50 0.243 

60 0.211 

70 0.187 

80 0.167 

90 0.152 

100 0.139 

 

µ = 0.542 � 14% of length 

 

450x450mm Column 

ρ = 1.57% 

ρ' = 1.57% 

f'c = 35 MPa 

E = 26540 MPa 

L = 3600 mm 

Ig = 3417 x 10
6 
mm

4 

Ie = 1922 x 10
6
 mm

4 
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% of Length r 

01 0.947 

10 0.640 

20 0.471 

30 0.372 

40 0.308 

50 0.262 

60 0.229 

70 0.203 

80 0.182 

90 0.165 

100 0.151 

 

µ = 0.562 � 14% of length 
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Appendix B 

Axial Stiffness Reduction Coefficient 

The derivation of the axial stiffness reduction coefficient of Eq. (2.22) follows that found in Liu 

(2007) with a correction given here.  In order to find the end reaction when end 1 displaces a unit 

distance as shown in Figure B.1, the force method of analysis is used, whereby from the primary 

structure, the displacement of end 1 due to imposed unit force F is given by, 

21
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f ++=   (B.1) 

 

where we solve for N1 and N2 from Eq. (2.18) of Chapter 2 where, 
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Then, from Eq. (B.1), 
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Then, as given in Eq. (2.21a), stiffness coefficient 0
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where the axial stiffness reduction coefficient is, 

 
2121

21
0

nnnn

nn

−+
=χ   (B.11) 

 



 

 128 

 

Figure B.1:  Member model and primary structure (Liu, 2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 129 

Appendix C 

Frame Design 

The following presents the analysis and design of the reinforced concrete frames of Chapter 4.  

Although the analysis and design may be rather crude by a practicing engineer's standards, the 

intention of the designs is to help illustrate the analysis capabilities of the program. 

Portal Frame 

The following criteria were used in analyzing the portal frame of Figure 4.2 in accordance with the 

National Building Code of Canada 1995: 

Unfactored Snow = 1.84 kPa 

Unfactored Wind = 1.0 kPa 

Concrete Dead = 23.6 kN/m
3
 

250 mm thick one-way concrete slab with 7500 mm tributary width 

Beams: 500 x 450 mm, Ag = 225000 mm
2
, Ig = 4688 x 10

6
 mm

4
 

Columns: 450 x 450 mm, Ag = 202500 mm
2
, Ig = 3417 x 10

6
 mm

4
 

All concrete 35 MPa. 

The design forces were obtained from an elastic analysis using section properties as per Clause 

10.14.1 of CSA Standard A23.3-94. 

Governing Design Forces 

Beams: Mf = 277 kN-m, Vf = 308 kN 

Columns: Mf = 311 kN-m, Vf = 150 kN, Pf = 308 kN 

 

Beam Reinforcement 

Select ρ = 1.07%, ρ' = 0.2%, ∴ Kr = 2.7, K'r = 0.6 

Then, M'r = 0.6(450mm)(435mm)
2
 x 10

-6
 = 51 kN-m 

          Mr = 2.7(450mm)(435mm)
2
 x 10

-6
 = 230 kN-m 
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Then, Mr = 51 kN-m + 230 kN-m = 281 kN-m 

98.0
281

277
=

⋅
⋅

=
mkN

mkN

M

M

r

f
 

 

Select 10M stirrups at 150mm o.c. 

Then, Vs = (0.85)(200mm
2
)(400MPa)(435mm)/150mm = 197 kN 

       Vc = 0.2(0.6)( MPa35 )(450mm)(435mm) = 139 kN 

Then, Vr = Vc + Vs = 139 kN + 197 kN = 336 kN 

92.0
336

308
==

kN

kN

V

V

r

f
 

 

Column Reinforcement 

Select ρ = 2.02%,  ∴ Kr = 5.45 

Then, Mr = 5.45(450mm)(385mm)
2
 x 10

-6
 = 363 kN-m 

86.0
363

311
=

⋅
⋅

=
mkN

mkN

M

M

r

f
 

 

Select 10M stirrups at 250mm o.c. 

Then, Vs = (0.85)(200mm
2
)(400MPa)(385mm)/250mm = 105 kN 

       Vc = 0.2(0.6)( MPa35 )(450mm)(385mm) = 123 kN 

Then, Vr = Vc + Vs = 123 kN + 105 kN = 228 kN 

66.0
228

150
==

kN

kN

V

V

r

f
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2 Bay-2 Storey Frame 

The following criteria were used in analyzing the 2 bay-2 storey frame of Figure 4.36 in accordance 

with the National Building Code of Canada 1995: 

Unfactored Snow = 1.84 kPa 

Unfactored Wind = 1.0 kPa 

Unfactored Live = 2.4 kPa 

Concrete Dead = 23.6 kN/m
3
 

250 mm thick one-way concrete slab with 5000 mm tributary width 

Beams: 500 x 350 mm, Ag = 175000 mm
2
, Ig = 3646 x 10

6
 mm

4
 

Columns: 350 x 350 mm, Ag = 122500 mm
2
, Ig = 1250 x 10

6
 mm

4
 

All concrete 35 MPa. 

The design forces were obtained from an elastic analysis using section properties as per Clause 

10.14.1 of CSA Standard A23.3-94. 

Governing Design Forces 

Beams: Mf = 237 kN-m, Vf = 220 kN 

Columns: Mf = 159 kN-m, Vf = 90 kN, Pf = 220 kN 

 

Beam Reinforcement 

Select ρ = 1.04%, ρ' = 0.26%, ∴ Kr = 3.18, K'r = 0.76 

Then, M'r = 0.76(350mm)(438mm)
2
 x 10

-6
 = 51 kN-m 

          Mr = 3.18(350mm)(438mm)
2
 x 10

-6
 = 213 kN-m 

Then, Mr = 51 kN-m + 213 kN-m = 264 kN-m 

90.0
264

237
=

⋅
⋅

=
mkN

mkN

M

M

r

f
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Select 10M stirrups at 150mm o.c. 

Then, Vs = (0.85)(200mm
2
)(400MPa)(438mm)/250mm = 119 kN 

       Vc = 0.2(0.6)( MPa35 )(350mm)(438mm) = 109 kN 

Then, Vr = Vc + Vs = 109 kN + 119 kN = 228 kN 

96.0
228

220
==

kN

kN

V

V

r
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Column Reinforcement 

Select ρ = 2.10%,  ∴ Kr = 5.51 

Then, Mr = 5.51(350mm)(285mm)
2
 x 10

-6
 = 157 kN-m 
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Select 10M stirrups at 200mm o.c. 

Then, Vs = (0.85)(200mm
2
)(400MPa)(285mm)/200mm = 97 kN 

       Vc = 0.2(0.6)( MPa35 )(350mm)(285mm) = 70 kN 

Then, Vr = Vc + Vs = 70 kN + 97 kN = 167 kN 
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Appendix D 

2 Bay - 2 Storey Frame Members Post-Elastic Force-Deformation 

Response 
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Figure D.1:  Beam post-elastic moment - rotation response 
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Figure D.2:  Column post-elastic moment - rotation response 
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Figure D.3:  Smaller bay beam post-elastic shear force - shear deformation response 
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Figure D.4:  Larger bay beam post-elastic shear force - shear deformation response 
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Figure D.5:  Column post-elastic shear force - shear deformation response 
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Figure D.6:  Column post-elastic axial compression - axial deformation response 
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