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Abstract

A wireless multicast network with a stringent decoding delay constraint and a minimum

coverage requirement is characterized when the fading channel state information is avail-

able only at the receiver side. In the first part, the optimal expected rate achievable by

a random user in the network is derived in a single antenna system in terms of the mini-

mum multicast requirement in two scenarios: hard coverage constraint and soft coverage

constraint. In the first case, the minimum multicast requirement is expressed by multicast

outage capacity while in the second case, the expected multicast rate should satisfy the

minimum requirements. Also, the optimum power allocation in an infinite layer superpo-

sition code, achieving the highest expected typical rate, is derived. For the MISO case, a

suboptimal coding scheme is proposed, which is shown to be asymptotically optimal, when

the number of transmit antennas grows at least logarithmically with the number of users

in the network. In the second part, a joint source-channel coding scheme is motivated,

where a multi-resolution Gaussian source code is mapped to a multi-level channel code. In

this part, the hard and soft coverage constraints are defined as maximum outage multicast

distortion and maximum expected multicast distortion, respectively. In each scenario, the

minimum expected distortion of a typical user is derived in terms of the corresponding cov-

erage constraint. The minimization is first performed for the finite state fading channels

and then is extended to the continuous fading channels.
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Chapter 1

Introduction

1.1 Multicast Networks with Coverage Constraint

Wireless networks have recently received a considerable attention. The widespread appli-

cations of these networks, along with the specific circumstances of wireless communication,

have motivated efficient transmission strategies for each application. One of these applica-

tions is data multicasting. In a wireless multicast system, a common source is transmitted

to N users, through a fading channel. In such a network, the transmitter should ideally

provide coverage to all the users. However, this will decrease the average quality of service

received per user since the coverage is highly correlated to the user with the worst channel

condition. Therefore, two issues can be studied as a measure of performance: network

coverage and quality of service. In the first case, the objective is to cover all the nodes in

the network at least with a basic service, regardless of their channel qualities. From this

point of view, all the users have basically the same opportunity to receive data. However,

in the second case, the average quality of service is the main objective. Therefore, users

with better channel status should receive higher data rates and consequently, better quality

of services. A good example for such networks is a TV broadcasting system [16]. In this

system, all the subscribers are supposed to receive a basic video signal, while users with

higher channel qualities might get additional services like high definition TV signal. The

coverage issue in such systems is generally addressed as multicast minimum requirement.

Multicast applications (e.g. video multicasting) usually have a decoding delay con-
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2 Information Theoretic Aspects of Wireless Networks with Coverage Constraint

straint. Hence, the transmission time is smaller than the length of fading block and each

user experiences a single realization of the channel during the transmission time. Assuming

no Channel State Information at the Transmitter (no CSIT), the stringent decoding delay

constraint leads to non-ergodicity of the fading channels.

1.2 Maximum Achievable Rates in a Multicast Net-

work

Multicasting has been recently studied as a special scenario in broadcasting, where all the

users are listening to a common source. In [2], the system challenges in lossy broadcasting

of a common source are studied from information theoretical point of view. For an analog

Gaussian source with a bandwidth equal to the channel bandwidth, analog transmission

achieves the minimum average end-to-end distortion. The scenario in which the source has

a larger bandwidth is studied in [3], where different methods of digital transmission are

investigated. In [4], a different approach to source broadcasting, called static broadcasting,

is proposed. It is assumed that all the users receive the same amount of data from a

common source but with different number of channel uses, according to their channel

qualities. However, the actual transmission time in this definition depends on the user

with the lowest channel gain, and hence, the transmission rate might be very low for large

number of users.

Since the performance of a multicast network is strongly affected by the user with the

worst channel condition, we are motivated to define a more fair approach. We consider

a wireless multicast network in a slowly fading Gaussian environment. The objective is

to maximize the average performance while a multicast constraint is satisfied. Average

performance is defined as the service received by a randomly chosen user (typical user) in

the network, while the multicast requirement is the service received by all the users. These

two requirements in a multicast network define a tradeoff, since the first one deals with

a typical user of the network while the second depends on the worst channel state in the

system. We assume the transmission block is large enough to yield a reliable communica-

tion. However, averaging over time is not possible because of the delay constraint. In other

words, all the symbols within a transmission block experience the same channel gain. The
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channel state information (CSI) of each user is assumed to be known only at the receiver

end. In this case, the ergodic capacity is not defined since the channel dose not have an

ergodic behavior. The outage capacity [1] is defined for such channels as the maximum

rate of single layered data, decodable with a high probability. In [10], a broadcast approach

for a single user channel with these assumptions is proposed which optimizes the expected

decodable rate. We will apply both “outage capacity” and “expected rate” definitions

to characterize our network. Outage capacity is exploited when we have a hard coverage

constraint on multicast data. In this case, we want to assure that a specific amount of

data is conveyed within one transmission block to all the users, with a high probability.

We relax the coverage constraint by stating it in terms of expected delivered rate to all the

users within one block. In both cases we maximize the expected typical rate.

This minimum-service based approach has been studied in [6] for a single user fading

channel, assuming CSI is known at the transmitter. In that work, given a service outage

constraint for a real time application, the average rate is maximized for a non real time

application sent on top of it. An adaptive variable rate code is proposed and shown to

be optimum in that scenario. Similarly, a minimum rate constrained capacity measure is

defined for broadcast channels in [5]. It is shown that the minimum rate capacity region is

the ergodic capacity region of a broadcast channel, with an effective noise determined by

the minimum rate requirements.

We will investigate the proposed multicast system in both SISO and MISO case. The

MISO multicast asymptotical capacity limits are examined in [8], when the CSI is available

at the transmitter. It is shown that the adverse effect of large number of users could be

compensated by increasing the number of transmitter antennas. We will study similar

scenario in our network and explore the effect of using multiple antennas.

1.3 Layered Joint Source-Channel Code for a Multi-

cast Network

When we have an analog source, the quality of service can be measured in terms of end-

to-end distortion of the reconstructed source at the receiver. In a SISO ergodic channel,

the source-channel separation theorem [20], implies that minimum end-to-end distortion
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is achieved when the source is compressed at the rate equal to the channel capacity and

sent over the channel with asymptotically zero probability of error. In our network, we

assume a stringent decoding delay constraint with no CSIT. Therefore, the channels are

non-ergodic and source-channel separation is not necessarily optimal. However, assuming

the separation of source and channel code, one can reduce the end-to-end distortion by

optimizing the mapping of source code to the channel code based on the source and channel

characteristics. It is shown in [21], that a superposition code maximizes the expected

typical rate in terms of multicast requirement in such networks. In this work, we consider

a multi-resolution Gaussian source code mapped to such a multi-level channel code and

optimize the expected typical distortion given the multicast coverage constraint. Each

layer of the multi-resolution source code successively refines the description in its previous

layer. The transmitter allocates any layer of source code an appropriate power level and

superimposes them as a multilevel channel code. This multi-level code is sent to all the

users in the network. Each receiver decodes the layers of code supported by its channel

condition. The power allocation of the transmitter should minimize the expected distortion

of a typical user while satisfying the coverage constraint.

As in [21], we define two different coverage constraint scenarios. In the first scenario,

we have a hard coverage constraint where all the users should reconstruct the source with a

distortion less than a specific level, with a high probability. In fact, the multicast require-

ment is expressed in terms of multicast outage distortion. In the second case, we relax the

constraint to the expected distortion received by all the users. We first assume the channels

have finite number of states and explore the optimal power allocation for this case. We

then extend our results for the finite state channels to the continuous fading channels.

For a continuous fading channel with a stringent decoding delay constraint, an infinite

layer superposition coding (layered broadcasting) scheme was first proposed in [10], where

the optimal power allocation was derived for a SISO system. However, reference [10] dose

not consider the end-to-end distortion but the channel expected rate. It is shown in [22]

that in the transmission of a Gaussian source over a Gaussian channel, when the source

bandwidth is equal to the channel bandwidth, uncoded transmission is optimal [23]. For

other bandwidth ratios, hybrid digital-analog joint source-channel codes are designed in [24]

to be optimal for a specific target SNR threshold below which the performance of the codes
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degrades drastically. Using the similar broadcast strategy as in [10], a linear-time power

allocation algorithm is proposed in [25] to minimize the expected distortion of a Gaussian

source over a fading channel. In [26], a delay-limited system is characterized in terms of

minimum expected distortion when layered broadcasting is used with successive refinement

of the source. We consider a system similar to [26] but with multiple number of users each

with an independent fading channel when all are receiving a common message.

1.4 Thesis Outline

The rest of this thesis is organized in two parts. The first part (Chapter 2) considers

the problem of maximum achievable expected rates in a wireless multicast network with

a coverage constraint. In the second part (Chapter 3), we propose a layered joint source-

channel coding scheme for transmission of a Gaussian source to N users in a multicast

network with a coverage constraint.

Chapter 2 is organized as follows: in section 2.1, the system model is elaborated. Section

2.2 focuses on the Virtual Broadcast model for an unknown fading channel when the

network is delay limited. Sections 2.3 and 2.4 are specified to characterization of multicast

network when we have a single antenna at the transmitter and at each receiver. In section

2.3, we evaluate the optimal performance of the network in terms of the achievable expected

typical rate and the multicast outage capacity. In other words, this section describes the

hard multicast coverage constraint scenario. Section 2.4 corresponds to a soft multicast

coverage constraint, where the expected multicast rate decoded in a block should satisfy

the minimum requirement. In this scenario, we will explore the achievable expected typical

rate. Section 2.5, investigates the MISO case, where we derive the asymptotical capacity

limits for the multicast network. In section 2.6, we extend the our results to the case where

multiple sources transmit data each to a group of users through a shared wireless channel.

Chapter 3 is is organized as follows: the system model is presented in Section 3.1.

This section also focuses on virtual broadcast approach for channel coding used for the

transmission of a source with successive refinement. Section 3.2 is specified to the charac-

terization of the networks with finite state channels. In this section, we first preview the

unconstrained problem [26] and then propose the optimal power allocation with two sce-
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narios of multicast coverage constraint, namely hard coverage constraint and soft coverage

constraint. We extend our results for discrete state channel to a continuous fading channel

in section 3.3.

In Chapter 4 we conclude the thesis and propose the future work related to this subject.



Chapter 2

Maximum Achievable Rates in a

Multicast Network

2.1 System Model

In this chapter, we consider a common message broadcasting network, where a single-

antenna transmitter sends a common data to N single-antenna receivers. The received

signal at the jth receiver, denoted by yj can be written as

yj = sjx + nj , (2.1)

where {x} is the transmitted signal with the total average power constraint E[x2] ≤ P,

{nj} ∼ CN (0, 1) is the Additive White Gaussian Noise (AWGN) at this receiver, and

sj ∼ CN (0, 1) is the channel coefficient from the transmitter to the jth receiver. Therefore,

the channel gain hj = |sj|2 has the following CDF:

Fj(h) = 1 − e−h,

and is assumed to be constant during the transmission block. The typical (average) channel

of the multicast network is defined as the channel of a randomly selected user. Since all the

channels are i.i.d., the typical channel gain distribution is identical to that of each channel,

i.e.,

Ftyp(h) = Fj(h) = F (h). (2.2)

7
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Since all the N channels are Gaussian and they receive a common signal, the multicast

channel is equivalent to the worst channel in the network. Due to statistical independence

of the channels, the gain of that user has the following distribution:

Pr
{

min
i

(hi) > h
}

= (Pr {hi > h})N = e−Nh.

As a result, we have:

Fmul(h) = Fmini(hi)(h) = 1 − e−Nh.

In this part, we are dealing with three measures defined in our network, as follows:

• the multicast outage rate, Rǫ, the rate decodable at the multicast channel with

probability (1 − ǫ),

• the expected multicast rate, Rmul = Ehmul
[R(h)], where hmul = mini(hi), and R(h)

is the decodable data rate for the channel state h,

• the expected typical rate, Rave = Ehtyp
[R(h)].

2.2 Broadcast Model for an Unknown Fading Channel

In [10], it is shown that the expected rate for a receiver with a block fading channel, un-

known at the transmitter, and a stringent delay constraint, is equivalent to a weighted sum

rate of a degraded broadcast channel with infinite number of receivers, each corresponding

to a realization of the channel. In this chapter, we exploit the same model in a more general

fashion. Regarding the frequent use of this model in our network characterization, we will

study it in detail.

The ergodic capacity of a block fading Gaussian channel when the CSI is known at

receiver is

Cergodic = Eh[
1

2
log(1 + hP)]

The capacity is achieved by a single Gaussian codebook with power P. The codebook

should be long enough to let the channel experience almost all its possible states. In fact,
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the assumption of ergodicity makes averaging over fading blocks possible. However, in our

scenario the fading block is infinitely large. In other words, each receiver is experiencing a

single fading level during the whole period of transmission. Hence, for any coding scheme we

have a function R(h) which determines the data rate decoded in channel state h. Regarding

the degraded nature of the Gaussian channels, this function is increasing. Therefore

R(h) − R(h − dh) = dRh ≥ 0

Consider an infinite number of differently indexed virtual receivers, such that receiver rh

is experiencing a fading level between h and h+dh. With these settings, rh is receiving all

the data received by rh−dh, in addition to dRh. The virtual receivers introduce a degraded

broadcast network in which the rate associated with user rh is dRh. The actual user selects

receiver rh with probability f(h)dh, where f(h) is the channel gain distribution function

and uses that receiver for the whole transmission.

With this interpretation, for a given coding scheme, the distinction between different

channels introduced in the previous section is their different probability distribution of

virtual receiver selection. Given the fact that both multicast and typical channels deal

with the same signalling, all the measures defined in the previous section could be written

as follows:

Rave =
∫∞
0

R(h)f(h)dh =
∫∞
0

(1 − F (h))dRh,

Rmul =
∫∞
0

(1 − Fmul(h))dRh,

Rǫ = R(hǫ) =
∫ hǫ

0
dRh, (2.3)

where hǫ = F−1
mul(ǫ). The first two derivations are statistical rate averaging over different

selected receivers. In the case of multicast channel, the selected receiver has a channel

gain lower than hǫ with probability ǫ and hence, the highest decodable rate is R(hǫ),

with probability 1 − ǫ. As seen above, the performance measures in our network are

three different positive weighted sum rate of the virtual broadcast network which forms

a performance vector. More precisely, in the hard coverage constraint scenario (section

IV), the performance vector is defined by the couple [Rǫ, Rave], and in the soft coverage

constraint scenario (section V), by [Rmul, Rave]. In the following, we will propose a search

space for the virtual broadcast rate vector which results in the optimal performance vector.

Before that, we should give a definition for the optimality of a performance vector.
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Deffinition 1 The boundary set B1 of a closed convex region R1 ⊂ R+n
, is defined as

B1 = {x ∈ R1| 6 ∃x′ ∈ R++n
, x′ 6= 0, x + x′ ∈ R1}

where R+ and R++ are the set of nonnegative and strictly positive real numbers, respectively.

With the above definition, a performance vector is optimal if it is in the boundary set

of all possible performance vectors. In the following theorem, we show that the optimal

performance vector for each case is achieved by super-position coding in which the rate of

the virtual receiver rh is given by

dRh = log

(
1 +

hρ(h)dh

1 + h
∫∞

h
ρ(u)du

)
,

where ρ(h) is the power allocation function.

Theorem 1 The boundary set of [Rw1, ..., Rwk
], where Rwi

=
∫∞
0

wi(h)drh , are positive

weighted sum rate of the underlying virtual broadcast channel, is achievable by a super-

position coding scheme.

Proof: In order to prove the theorem, we first state and prove the following lemma:

Lemma 1 Consider a mapping function g(.) from a closed region R1 ⊂ R+n
to R2 ⊂ R+k

,

such that g(x) = Mx, where M ∈ R+k × R+n
. Denote B1 and B2 the boundary sets of

regions R1 and R2, respectively. We have

B2 ⊂ g(B1)

Proof: Assume this is not true. Hence there must exist x2 ∈ B2 such that x2 6∈ g(B1)

and x1 ∈ R1, such that x2 = g(x1). Since x1 6∈ B1, there exists x′
1 ∈ B1 such that

x′
1 − x1 ∈ Rn++. Defining x′

2 = g(x′
1) ∈ R2,

x′
2 − x2 = M(x′

1 − x1) ⊂ Rk+ (2.4)

which contradicts the fact that x2 is in the boundary set of R2 and the lemma is proved.
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In conclusion of Lemma 1, if we let n tend to infinity, the Matrix transform will tend to k

weighted sums of an infinite dimension vector x(h) as follows:

Mx →
[∫ ∞

0

w1(h)x(h)dh, · · · ,

∫ ∞

0

wk(h)x(h)dh

]
.

Setting x(h) = dRh, we can conclude that the boundary region of [Rw1 , · · · , Rwk
] is a subset

of the transformation of the boundary set of rate vector [dRh], which is achieved, as shown

in [16], by the superposition coding. In other words, for any vector v in the boundary set

of [Rw1 , · · · , Rwk
], there exists a scalar positive function ρv(h) such that

dRv
h = log

(
1 +

hρv(h)dh

1 + h
∫∞

h
ρv(u)du

)
,

in which dRv
h satisfies v = [

∫
w1(h)dRv

h , · · · ,
∫

wk(h)dRv
h ], and

∫∞
0

ρv(u)du = P. This

completes the proof of Theorem 1.

Using the above theorem, it easily follows that the optimal performance vectors [Rǫ, Rave]

and [Rmul, Rave], defined for the sections IV and V, respectively, are achieved by superpo-

sition coding.

2.3 Hard Coverage Constraint

In this section, we consider a scenario where the multicast data has a high priority. Hence,

it should be delivered to all the users in the network with a high probability (1− ǫ), where

ǫ is the outage probability of the system. In this case, any loss of the multicast data by

any user is defined as a coverage outage. Given this constraint, we want to maximize

the average rate received by a randomly chosen user in the network. This average rate

includes the expected rate of all data received by a typical user, even if the user is in

outage. However, we will show that for a small enough outage probability, the users in the

outage do not contribute to the expected average rate (it is optimum not to allocate them

any power). In this scenario, we deal with two channels: (i) a multicast channel for which

we want to guarantee an outage rate Rǫ, and (ii) an average channel for which the highest

expected rate Rave is desired.
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Setting w1(h) = 1{h≤hǫ} and w2(h) = 1 − F (h), Theorem 1 states that the boundary

set of [Rǫ, Rave] is achieved by superposition coding, in which

dRh = log
(
1 + hρ(h)dh

1+hI(h)

)
=
∫ I(h)+ρ(h)dh

I(h)
hdp

1+hp
, (2.5)

and I(h) =
∫∞

h
ρ(u)du. Note that dRh is not necessarily very small since our power

allocation function might have some impulses in the general case. As stated before, we want

to jointly optimize the weighted sum of these rates according to the weighting functions

w1(h) and w2(h). The optimization is on the function I(h) and ρ(h). However, we can

simplify our optimization problem to a point optimization. Let us define s(p) as

s(p) = max {h| I(h) ≥ p} .

In fact the above function is the inverse of the interference function in in terms of the

channel level and could be called channel gain-interference function. It is evident that it

is a decreasing function of p. According to (2.5), we can write the expected rate as

R
s(.)
ave =

∫∞
0

(1 − F (h))dRh =
∫

P

0
g(p, s(p))dp, (2.6)

where g(x, y) = (1 − F (y)) y
1+xy

. Differentiating this function with respect to y, we get

∂

∂y
g(x, y) =

1 − F (y) − yf(y)(1 + xy)

(1 + xy)2
. (2.7)

Since g(x, y) is a concave function of x,

arg max(g(x, y)|x=p) = I−1
0 (p), (2.8)

where I0(h) = (1−F (h))−hf(h)
h2f(h)

. Moreover, g(x, y)|x=p is increasing for y < I−1
0 (p), and

decreasing elsewhere.

Let us define P
s(.)
ǫ for the function s(.) as

P s(.)
ǫ = min {p|s(p) ≤ hǫ} .

For simplicity, we assume hǫ ≤ 1.With the above definitions, our problem is translated to

find

max s(.) R
s(.)
ave = maxs(.)

∫
P

0
g(p, s(p))dp, (2.9)
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subject to

Rs(.)
ǫ =

∫
P

P
s(.)
ǫ

m(p, s(p))dp ≥ Rǫ,

where m(x, y) = y
1+xy

and s(.) is a decreasing positive function. For any chosen x, m(x, y)

is an increasing function of y. Hence, we can write

Rǫ ≤
∫

P

P
s(.)
ǫ

m(p, hǫ)dp = log
(

1+hǫP

1+hǫP
s(.)
ǫ

)
= C(P

s(.)
ǫ ).

Since C(p) is a decreasing function of p,

P s(.)
ǫ ≤ C−1(Rǫ). (2.10)

Lemma 2 Denoting the optimizer of the problem (2.9) as s∗(.), we have P
s∗(.)
ǫ ≤ I0(hǫ).

Proof: Assume P
s∗(.)
ǫ > I0(hǫ). Define s∗∗(p) as

s∗∗(p) =






I−1
0 (p) p < I0(hǫ)

hǫ I0(hǫ) ≤ p ≤ P
s∗(.)
ǫ

s∗(p) p > P
s∗(.)
ǫ

.

We can write

Rs∗∗(.)
ǫ =

∫ P
s∗(.)
ǫ

I0(hǫ)

m(p, s∗∗(p))dp +

∫ P

P
s∗(.)
ǫ

m(p, s∗(p))dp

≥ Rs∗(.)
ǫ .

Moreover, we have

Rs∗(.)
ave =

∫ I0(hǫ)

0

g(p, s∗(p))dp +

∫ P
s∗(.)
ǫ

I0(hǫ)

g(p, s∗(p))dp

+

∫
P

P
s∗(.)
ǫ

g(p, s∗∗(p))dp ≤
∫ I0(hǫ)

0

g(p, I−1
0 (p))dp

+

∫ P
s∗(.)
ǫ

I0(hǫ)

g(p, hǫ)dp +

∫
P

P
s∗(.)
ǫ

g(p, s∗∗(p))dp

= Rs∗∗(.)
ave ,
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where the inequality is concluded from (2.7), (2.8), and the fact that s∗(p) > hǫ, for

p ≤ P
s∗(.)
ǫ . Therefore, our assumption of s∗(.) being optimal is not valid and the lemma is

proved.

The above lemma states the fact that, applying the multicast outage constraint, more

power will be allocated to the channel gains lower than the outage threshold, compared

to the unconstrained scenario [10], where I0(.) is the interference term which leads to the

optimal expected rate.

Lemma 3 Given P
s(.)
ǫ = α, the optimizer of (2.9) is given by

s∗α(p) = η(λ, p) =






I−1
0 (p) p < α

hǫ α ≤ p ≤ Iλ(hǫ)

I−1
λ (p) p > Iλ(hǫ)

, (2.11)

where Iλ(h) = (λ+1−F (h))−hf(h)
h2f(h)

, and

λ =

{
0,
∫

P

α m(p, η(0, p))dp > Rǫ

arg (
∫

P

α m(p, η(λ, p))dp = Rǫ), otherwise
.

Proof: It can be concluded directly from (2.8) that,

∫ α

0

g(p, s∗α(p))dp ≤
∫ α

0

g(p, I−1
0 (p))dp. (2.12)

Moreover, regarding the outage constraint of our problem,

∫
P

α

g(p, s∗α(p))dp = Rmax(Rǫ, α),

where Rmax(Rǫ, α) = maxs(p)≤hǫ,p≥α

∫
P

α
g(p, s(p))dp, subject to

∫
P

α
m(p, s(p))dp ≥ Rǫ.

Writing K.K.T. condition, we have

Rmax(Rǫ, α) = max
s(p)≤hǫ,p≥α

∫
P

α

Tλ(p, s(p))dp, (2.13)
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where, Tλ(x, y) = (g(x, y) + λm(x, y)). λ is 0, if the outage constraint is not limiting;

otherwise, it could be obtained through the outage constraint
∫

P

α
m(p, s(p))dp = Rǫ. Dif-

ferentiating the function Tλ(x, y) with respect to y, we get

∂

∂y
Tλ(x, y) =

λ + 1 − F (y) − yf(y)(1 + xy)

(1 + xy)2
. (2.14)

Since Tλ(x, y) is a concave function of y,

arg max(Tλ(x, y)|x=p) = I−1
λ (p). (2.15)

Moreover, Tλ(x, y)|x=p is increasing for y < I−1
λ (p), and decreasing elsewhere. Hence, for

any function s(p) such that s(p) < hǫ for P > α, we can write
∫

P

α

Tλ(p, s(p))dp ≤
∫

P

α

Tλ(p, s(λ, p))dp. (2.16)

Therefore,

Rs∗α(.)
ave =

∫
P

0

g(p, s∗α(p))dp ≤
∫

P

0

g(p, s(λ, p))dp, (2.17)

and the proof of lemma is complete.

Theorem 2 The solution to the optimization problem (2.9) can be written as

max
s(.)

Rs(.)
ave|Rǫ = max

0≤α≤min(C−1(Rǫ),I0(hǫ))

∫
P

0

g(p, s∗α(p))dp.

Proof: The proof is directly concluded from Lemma 2, Lemma 3, and inequality (2.10).

Corollary 1 The capacity region of a Rayleigh fading multicast network (Rǫ, Rave), is

bounded by (Cǫ, Cave), such that

Cǫ = log

(
1 +

hǫβP

1 + hǫ(1 − β)P

)
,

where β changes from 0 to 1 and

Cave = 2(Ei(θ(β)) − Ei(1)) − (e−θ(β) − e−1) + e−hǫCǫ,

where θ(β) = 2

1+
√

1+4(1−β)P
, and Ei(x) =

∫∞
x

e−t

t
dt, for any ǫ > 0 such that hǫ ≤ I−1

0 (P).
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Proof: Since hǫ ≤ I−1
0 (P), Iλ(hǫ) > P, for any λ ≥ 0. Therefore, (2.11) leads to the

optimum power distribution function

ρ(h) = (P − α)δ(h − hǫ) + A(h),

where

A(h) =

{
2
h3 − 1

h2 I−1
0 (α) < h < 1

0 else
.

This power distribution results in the proposed capacity region.

An interesting conclusion of Corollary 1 is that, the expected typical rate is maximized

when the multicast rate is provided in a single layer code. In the case we have no multicast

constraint, it is shown in [10] that a multilevel coding with a small rate in each level is

optimal in terms of maximizing the expected rate. However, when we are constrained to

distribute a fraction of power to a set of low channel gains [0, hǫ] (coverage constraint), it

is optimum to allocate all the power to the highest gain (hǫ).

Note that the assumption hǫ ≤ I−1
0 (P) is not hard to satisfy, since the outage proba-

bility ǫ is usually small. Moreover, the value of hǫ decreases significantly with the number

of users, such that it could be approximated by ǫ
N

. For example, for N = 5 and P = 100,

the outage probability ǫ could be as high as 0.38 in order to have hǫ ≤ I−1
0 (P). In figure

(2.1) we can see the capacity region of this network when ǫ = 0.01. It is evident that due

to hard coverage constraint for all the users, the achievable outage rates are very small in

comparison with the expected rate values.

2.4 Soft Coverage Constraint

In the previous section, we observed that a strict coverage constraint for multicasting

results in very small values of multicast rate. We can relax the coverage requirement by

considering the average service received by all the users in one channel block. In fact, we

can replace the outage requirement by the expected multicast rate. In this case, all the

users should receive a minimum rate in average and given that, we want a typical user
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Figure 2.1: Multicast outage capacity vs. expected typical rate for P = 100 and N = 5

to receive the highest expected rate. Therefore, the measures we are dealing with in this

section are Rmul and Rave.

According to (1) the optimality of superposition coding scheme is concluded for the

performance vector [Rmul, Rave]. In fact, we can state that the multicast constraint dose

not affect the optimality of superposition coding to achieve the highest expected rate.

As in [10], the transmitter can view an unknown channel as a continuum of receivers,

experiencing different fading levels. However, in our scenario we have two of such channels.

The objective is to design a continuum of code layers to provide the required expected rate

in the multicast channel and maximize the expected rate in the typical channel.

Theorem 3 The capacity region of a Rayleigh fading multicast network (Rmul, Rave), is

bounded by (Cmul,Cave), such that:

Cave =
∫∞
0

e−u uργ(u)du
1+uIγ(u)

, (2.18)

Cmul =
∫∞
0

e−Nu uργ(u)du
1+uIγ(u)

, (2.19)

where

Iγ(h) =






P if h < h0

e−h(1−h)+γe−Nh(1−Nh)
h2(e−h+γNe−Nh)

h0 < h < h1

0 h > h1

,
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ργ(h) = −∂Iγ(h)
∂h

, and h0 and h1 are real numbers, such that

e−h0 (1−h0)+γe−Nh0 (1−Nh0)

h2
0(e−h0+γNe−Nh0 )

= P,

e−h1 (1−h1)+γe−Nh1 (1−Nh1)

h2
1(e−h1+γNe−Nh1 )

= 0,

for different positive values of γ.

Proof: If we set w1(h) = 1 − Fave(h) and w2h = 1 − Fmul(h), Corollary 1 states that,

in order to find the boundary set of our performance vector, we should search between

different infinite layer superposition codes. Assuming ρ(h)dh as the power allocated to the

layer associated to the channel gain h, the rate of that layer is

dRh = log

(
1 +

hρ(h)dh

1 + hI(h)

)
=

hρ(h)dh

1 + hI(h)
, (2.20)

where

I(h) =

∫ ∞

h

duρ(u),

and

I(0) = P.

Using the above equation, the rate received at the receiver at the fading level h is

R(h) =

∫ h

0

uρ(u)du

1 + uI(u)
.

Regarding to our definitions of multicast channel and average channel, the average rate in

each of them can be written as follows:

Rmul =

∫ ∞

0

(1 − Fmul(u))dR(u) =

∫ ∞

0

e−Nu uρ(u)du

1 + uI(u)
, (2.21)

Rave =

∫ ∞

0

(1 − Fave(u))dR(u) =

∫ ∞

0

e−u uρ(u)du

1 + uI(u)
. (2.22)

Now, the problem is given Rmul = r, what is the maximum achievable Rave. In other word,

Rave = max
I(u)

∫ ∞

0

e−u uρ(u)du

1 + uI(u)
, (2.23)
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subject to:

∫ ∞

0

e−Nu uρ(u)du

1 + uI(u)
= r, (2.24)

I(0) = P,

and

I(∞) = 0.

In order to solve this optimization problem we define S(x, I(x), I ′(x), γ) as follows:

S(x, I(x), I ′(x), γ) = e−x xρ(x)

1 + xI(x)
− γe−Nx xρ(x)

1 + xI(x)
, (2.25)

where

I ′(x) = −ρ(x).

The necessary condition for I(x) to maximize (2.23) with the constraint (2.24) is the zero

functional variation [13] of S(x, I(x), I ′(x), γ),

∂

∂I
S − d

dx

∂

∂I ′S = 0, (2.26)

where

∂
∂I

S = (e−x − γe−Nx) x2I′(x)
(1+xI(x))2

,

∂
∂I′

S = (e−x − γe−Nx) −x
1+xI(x)

,

d
dx

∂
∂I′

S = x(e−x−γNe−Nx)
1+xI(x)

+ (e−x − γe−Nx) x2I′(x)−1
(1+xI(x))2

.

Therefore, (2.26) simplifies to a linear equation which leads to the optimum interference

function given in (2.20).

Figure (2.2) shows the achievable rate region for N = 5 and P = 100. It can be

observed that the maximum average rate is achieved for multicast requirement, Rmul ≤
1.05. It is shown in [12], that a good fraction of the highest expected rate with infinite
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Figure 2.2: Expected multicast rate vs. expected typical rate for P = 100 and N = 5

layers of code is achieved by two layers. Figure (2.2) shows that this is true for our multicast

network as well. Furthermore, we can observe that the two-layer code region, gets closer

to the capacity region at high multicast rate area. This can be justified by relative good

performance of finite level codes for the channels with low variance power gain.

If we didn’t have the muticast constraint and our objective was only to maximize the

average rate, it is shown in [11] that the power distribution function would be,

ρaverage(h) =

{
2
h3 − 1

h2 s0 < h < 1

0 else
,

where

s0 =
2

1 +
√

1 + 4(P − P1)
.

This function is depicted in figure (2.3), and is compared with the case we have a multicast

requirement Rmul = 1.4. As shown in the figure, the coverage requirement for all the users

has shifted the power to lower channel gains, in order to provide service for the user with

the worst channel quality in the network.
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Figure 2.3: Power distribution function for no multicast requirement and for Rmul = 1.4

2.5 Extension to MISO

In the case we have multiple (M) antennas at the transmitter, we can adopt the broadcast

approach proposed in [10]. In this approach, the receiver with unknown quasi-static fading

MIMO channel is modeled as a continuum of receivers each associated with a channel

realization. These receivers are ordered in a degraded fashion. However, since MIMO-

BC is inherently non-degraded, this approach dose not necessarily lead to the optimum

performance.

Assuming single antenna at each receiver side, the ordering of the modeled receivers in

this approach is based on their normalized channel norm, ||HH†||
M

. Hence, the rate of the

receiver is

R( ||HH†||
M

) = log(1 +
PS

||HH†||
M

1+PI
||HH†||

M

) = C( ||HH†||
M

, PI , PS),

where PS and PI are the decodable and undecodable signal power levels, respectively.

Now, assume N users in this model, all receiving a common source through an infinite-

layer code. We want to design this code to maximize the average rate received by a typical

user, while providing a given rate for all the users. For this purpose, we should provide

this rate for the worst user in our degraded broadcast model. This user has the lowest

channel vector norm. The normalized channel norm of user i, denoted by 1
M
||HiH

†
i ||, is a
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scaled χ2 random variable with 2M degrees of freedom, whose CDF can be obtained as

Fave(h) = F 1
M

||HiH
†
i ||

(h) = 1 − Γ(M, Mh)

Γ(M)
, (2.27)

where Γ(α) is a gamma function, and Γ(α, β) is an upper incomplete gamma function.

Since, the users’ channels are statistically independent, the distribution of the norm of the

weakest channel can be obtained as following:

Pr

{
min

i

||HiH
†
i ||

M
> h

}
=

(
Pr{||HiH

†
i ||

M
> h}

)N

=

(
Γ(M, Mh)

Γ(M)

)N

.

Hence, the cumulative distribution function for the weakest user’s channel norm is

Fmul(h) = 1 −
(

Γ(M, Mh)

Γ(M)

)N

. (2.28)

Following the same approach as in section IV, the average rate and multicast rate could

be written as

Rmul =
∫∞
0

(1 − Fmul(u))dR(u) =
∫∞
0

(Γ(M,Mu)
Γ(M)

)N uρ(u)du
1+uI(u)

,

Rave =
∫∞
0

(1 − Fave(u))dR(u) =
∫∞
0

Γ(M,Mu)
Γ(M)

uρ(u)du
1+uI(u)

,

where ρ(u) and I(u) are the corresponding power allocation and interference power func-

tions. Defining S(x, I(x), I ′(x), λ) as

S(x, I(x), I ′(x), λ) =
Γ(M, Mx)

Γ(M)

xI ′(x)

1 + xI(x)

− λ

(
Γ(M, Mx)

Γ(M)

)N
xI ′(x)

1 + xI(x)
,

and setting its functional variation equal to zero to maximize the average rate, similar to

(2.26), we obtain the optimizer I(x) as

I(h) =






P if h < h0

Γ(M,Mh)−λΓ(M,Mh)N

Γ(M)N−1

MhM+1e−Mh(1−λN
Γ(M,Mh)

Γ(M)

N−1
)
− 1

h
h0 < h < h1

0 h > h1

,
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Figure 2.4: MISO expected multicast vs. typical rate for M = 2 and P = 100

where h0, h1 and λ are obtained through the following equations, respectively:

I(h0) =
Γ(M,Mh0)−λ

Γ(M,Mh0)N

Γ(M)N−1

MhM+1
0 e−Mh0

“
1−λN(

Γ(M,Mh0)
Γ(M)

)N−1
” − 1

h0
= P,

I(h1) =
Γ(M,Mh1)−λ

Γ(M,Mh1)N

Γ(M)N−1

MhM+1
1 e−Mh1

“
1−λN(

Γ(M,Mh1)
Γ(M)

)N−1
” − 1

h1
= 0,

Rmulticast =
∫∞
0

(
Γ(M,Mu)

Γ(M)

)N
uρ(λ,u)du
1+uI(λ,u)

= r.

The achievable rate region is shown in figure (2.4) for different values of N , when

M = 2. As mentioned in [10], the idea of modeling the unknown fading channel by a

degraded broadcast channel with infinite number of receivers is not optimal when we have

multiple antennas. This is mainly because a MIMO broadcast channel is not degraded.

One may claim that the same model with a general MIMO broadcast channel and the

capacity region proposed in [17] might outperform our model. However, since we have a

common message broadcasting, all the data decoded at a transmitter is important for us,

even the part treated as the interference in the Broadcast Channel. In other words, we are

utilizing the degraded characteristic of the channel as we are assuming it receives whatever

a weaker receiver decodes, plus its corresponding data. As a result, there would be some

limitation for applying a general MIMO Broadcast model.



24 Information Theoretic Aspects of Wireless Networks with Coverage Constraint

In figure (2.4), we can see that as the number of users decreases, the proposed achiev-

able rate region expands more. It is also evident by comparing the region of MISO and

SISO (figure(2.2)) channels with N = 5 users, that using multiple antennas improves the

achievable rates. However, its effect on the achievable rates for the multicast channel is

more considerable than for the average channel. This prominent gain for multicast chan-

nel is sensible, since we are using multiple independent paths to convey the data, so the

probability of having very low channel gains for all paths (which mainly corresponds to

multicast channel) significantly decreases. In fact, we will show that we can compensate

the adverse effect of number of users by increasing the number of transmit antennas. More

specifically, if both N and M tend to infinity and M grows highly enough with respect

to N , we will show that the multicast rate could reach the average rate and our scheme

gives the optimal solution, although it is not for small number of transmit antennas. The

following theorem states this fact.

Theorem 4 For large values of M and N , the proposed infinite layer superposition coding

will provide Rmul, such that

Rmul ≥ Ropt − σ, (2.29)

if

M >
P2 log(N) + ω(1)

(1 + P)2σ2
, (2.30)

where Ropt is the highest achievable average rate for a randomly selected user in the network

and σ is an arbitrarily small positive number.

Proof: First of all, we propose an upper bound for the achievable average rate for

a randomly selected user, by assuming no stringent delay constraint, meaning that the

transmission block can be chosen as long as the fading block. In this case, the channel has

an ergodic behavior, so that ergodic capacity is defined and is shown to be:

Cerg = E

[
log

(
1 +

||HH†||
M

P

)]
. (2.31)
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As a result,

Ropt ≤ Cerg. (2.32)

Regarding the central limit theorem [19], the distribution of ||HH†||
M

, where

1

M
||HH†|| =

h1
2 + h2

2 + ... + hM
2

M
(2.33)

and hi’s are independent rayleigh distributions with unit variance and unit mean, ap-

proaches to a Gaussian distribution with the CDF:

F ||HH†||
M

(h) = Q

(
h − 1

1√
M

)
, (2.34)

and consequently the CDF of multicast channel will be

Fmul(h) = 1 − Q

(
h − 1

1√
M

)N

. (2.35)

Using the concavity of log function, and having the fact that E
[
||HH†||

M

]
= 1, we have

Cerg ≤ log(1 + P). (2.36)

We will show that our scheme provides a multicast rate arbitrarily close to this upper

bound, if we use enough number of transmit antennas. Since this upper bound is larger

than the average rate the theorem will be proved. For this purpose, we use a single-layer

coding. We know that our scheme outperforms this scheme, as the single-layer coding is a

special case of superposition coding. Using a single-layer code with power P and rate Rσ,

where

Rσ = log(1 + P(1 − σ′)), (2.37)

and

σ′ =
(1 + P)σ

P
,
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the average multicast rate in our network will be

Rmul = Pr

{ ||HH†||mul

M
> 1 − ǫ′

}
Rσ, (2.38)

where ||HH†||mul = mini ||HiH
†
i ||. Regarding (2.35), the above equation can be written as

Rmul = Q(−
√

Mǫ′)NRσ =
[
1 − Q(

√
Mσ′)

]N
Rσ. (2.39)

Assuming M large enough to have
√

Mσ′ >> 1, and consequently Q(
√

Nσ′) << 1, we can

rewrite the above equation as

Rmul = e−NQ(
√

Mσ′)Rσ. (2.40)

Now, using the approximation

Q(x) ≈
1√
2πx

e−
x2

2 (2.41)

for large values of x, we can write

Q(
√

Mσ′) ≤ e−Mσ′2

. (2.42)

Therefore, having

M ∼ log(N) + ω(1)

σ′2 , (2.43)

incurs

NQ(
√

Mσ′) ∼ o(1), (2.44)

and as a result,

lim
N→∞

Rmul − Rσ = 0. (2.45)

Moreover, assuming σ ≪ 1, (2.37) can be written as,

Rσ ⋍ log(1 + P) − Pσ′

1 + P

≥ Cerg − σ, (2.46)

where the second line results from (2.36). Combining (2.32), (2.45), and (2.46), the result

of Theorem 6 easily follows.
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2.6 Multiple Sources

So far we have assumed a common source and multiple receivers. However, in many

applications of common message broadcasting, we have more than one sources each having

a group of interested users. For example in TV broadcasting we have several TV channels

and each channel has its own group of viewers. In this section we extend our results to

such cases. However, regarding the nature of these networks which are usually large, we

have to make a slight change in our performance measures.

For a network with large number of users (e.g. TV broadcasting), the data rate delivered

to all the users is very small. Therefore, we should be less ambitious about the multicasting.

Hence, the coverage constraint is usually expressed in terms of the data rate decoded for

a high percentage of the users. In this case, the definition of outage rate (Rǫ) changes to

the rate decoded by 100(1− ǫ) percent of the total users. Since the users fading levels are

i.i.d., this rate is equal to the outage rate of the typical user in the network. Hence the

new outage rate is the same as what is defined in (2.3), except that

hǫ = F−1
typ(ǫ).

The objective is to maximize the typical expected rate while providing a basic outage rate.

In the case of multiple sources, the latter interpretation of coverage constraint is more

meaningful. Assume k sources and N users in the network. In the general case user i

selects the jth channel with probability pi,j . For the sake of simplicity, we assume all the

probabilities equal: pi,j = 1
k
. Data from source i must be delivered to most of its users

with rate Ri
ǫ. The expected rate decoded by a typical user of source i is denoted by Ri

typ.

In the following we will consider the case with two sources and state the achievable rate

couple (R1
typ, R

2
typ), given the above coverage constraint.

Theorem 5 Denote the optimizer of problem (2.9) for Rǫ = R1
ǫ + R2

ǫ by s∗(.). Define

Pi, for i = 1, 2, such that
∫

P

Pi
m(p, s∗(p))dp = Ri

ǫ. Also, define Rmin
i =

∫ P

Pi
g(p, s∗(p))dp

and Rmax
i =

∫ Pj,j 6=i

0
g(p, s∗(p))dp. The boundary set of the rate couple (R1

typ, R
2
typ) ∈ R+2

,

subject to the coverage constraint couple (R1
ǫ , R

2
ǫ ), is given by,

C1,2 = {(R1, R2)|Ri = αRmax
i + (1 − α)Rmin

i , 0 ≤ α ≤ 1}
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Proof: First, we show that this set of rate couples are achievable when the multicast

coverage constraint couple is (R1
ǫ , R

2
ǫ ). Let us define Ci, for i = 1, 2, as an infinite layer

superposition code with the total power P and the power distribution s∗(.), where the

code layers associated to the interference levels higher than Pi. In fact Ci is the code

which maximizes the sum expected rate of received from both sources while it holds the

multicast data rate constraint and among all such codes it leads to the minimum expected

rate received from the source i. It is evident from the definitions that the rate couples

produced by the codes C1 and C2 are (Rmin
1 , Rmax

2 ) and (Rmax
1 , Rmin

2 ), respectively. Since

both codes achieve provide the multicast minimum requirement, a time sharing between

them also satisfies the coverage constraint. The different time sharing factors 0 ≤ α ≤ 1,

will give rise to the rate couple set C1,2.

In order to prove the optimality of C1,2, we assume that this set is not the boundary set

of all achievable rate couples. According to this assumption, there should exist a couple

rate (C1, C2) ∈ C1,2 and a coding scheme C ′ which satisfies the multicast constraint and

leads to the expected rate couple (C ′
1, C

′
2) such that C ′

1 C1 and C ′
2 > C2. Therefore we have

C ′
1 + C ′

2 > C1 + C2 = Rmin
1 , Rmax

2 .

However this contradicts the optimality of the codes C1 and C2 in terms of producing the

maximum sum rate of both sources while satisfying the multicast constraint. Hence, there

is no such coding scheme and the proof is complete.

In fact, the above theorem states that the capacity region for multiple sources could be

achieved by time sharing between the schemes prioritizing one source over another one

while satisfying the minimum multicast rate for both of them.



Chapter 3

Layered Joint Source-Channel Code

for a Multicast Network

3.1 System Model

In this chapter, we consider a common source broadcasting network, where a single-antenna

transmitter wishes to send a Gaussian source over a wireless channel to N single-antenna

receivers. Let the source be denoted by s, which is a sequence of independent identically

distributed (iid) zero-mean circularly symmetric complex Gaussian (ZMCSCG) random

variables with unit variance: s ∈ C ∼ CN (0, 1). The received signal at the jth receiver,

denoted by yj can be written as

yj = tjx + nj , (3.1)

where x ∈ C is the transmitted signal, {nj} ∈ C ∼ CN (0, 1) is the Additive White

Gaussian Noise (AWGN) at this receiver, and tj ∈ C ∼ CN (0, 1) is the channel coefficient

from the transmitter to the jth receiver.

Suppose the distribution of the channel power gain for user j is described by the proba-

bility density function (pdf) f(hj), where hj , |tj|2. We first consider fading distributions

with a finite number of discrete fading states; subsequently we generalize to continuous

fading distributions. The receiver has perfect CSI but the transmitter has only channel

distribution information (CDI), i.e., the transmitter knows the pdf f(hj), j = 1, · · · , N ,

29
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but not their instantaneous realizations. The channels are modeled by a quasi-static block

fading process: tj is realized iid at the onset of each fading block and remains unchanged

over the block duration. We assume decoding at the receiver is delay-limited ; namely, delay

constraints preclude coding across fading blocks but dictate that the receiver decodes at

the end of each block. Hence, the channel is non-ergodic. Suppose each fading block spans

n channel uses, over which the transmitter describes k of the source symbols. We define the

bandwidth ratio as b = n/k, which relates the number of channel uses per source symbol.

At the transmitter, there is a power constraint on the transmit signal E[|x|2] ≤ P, where

the expectation is taken over each fading block. We assume a short-term power constraint

and do not consider power allocation across fading blocks. We assume k is large enough

to consider the source as ergodic, and n is large enough to design codes that achieve the

instantaneous channel capacity of a given fading state with negligible probability of error.

At the receivers, the channel output yj is used to reconstruct an estimate of the source

denoted by ŝj . The distortion Dj is measured by the mean squared error E[|s − ŝj |2].
The instantaneous distortion of the reconstruction depends on the fading realization of the

channel.

The typical (average) channel of the multicast network is defined as the channel of a

randomly selected user. Since all the channels are i.i.d., we have

Ftyp(h) = Fj(h) = F (h). (3.2)

Since all the N channels are Gaussian and they receive a common signal, the multicast

channel is equivalent to the worst channel in the network. Due to statistical independence

of the channels, the gain of that user has the following distribution:

Pr

{
min

j
(hj) > h

}
= (Pr {hj > h})N .

As a result, we have

Fmul(h) = Fminj(hj)(h)

In this chapter, we consider three measures of performance for our network, as follows:

• the multicast outage distortion, Dǫ, the minimum distortion of the multicast channel

with probability (1 − ǫ),
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• the expected multicast distortion, Dmul = Ehmul
[D(h)], where hmul = minj(hj), and

D(h) is the distortion for the channel state h,

• the expected typical distortion, Dave = Ehtyp
[D(h)].

In this chapter, we consider two cases associated with two different performance vectors

for the network: i) [Dǫ, Dave], ii) [Dmul, Dave]. In the first case, we want to jointly optimize

expected distortion for a typical user in the network, while providing a distortion less than

a given threshold for all the users with a high probability (1 − ǫ). In the second case,

we relax the coverage constraint to a given expected distortion for all the users. For this

purpose, we first review the unconstrained problem studied in [26], in which the optimal

expected distortion (Dave) is derived.

3.1.1 Virtual Broadcast Approach with Successive Refinement

Virtual broadcast approach was first proposed in [10] to model a block slowly fading channel

with stringent decoding delay constraint with no CSIT. In this approach, any channel

state of the unknown fading channel is associated with a virtual receiver. The original

receiver’s rate at a realization is equal to the rate received by the virtual receiver associated

with that realization. The average rate when the averaging time tends to infinity will

become the expectation of the virtual receivers’ rate according to the channel probability

distribution. Regarding the degrading nature, the virtual receivers could be ordered based

on their decodable rates. This will introduce a degraded broadcast (BC) network. The

expected rate of the original receiver is the weighted sum rate of this BC network. It is

shown in [21] that any positive weighted sum of such a virtual broadcast channel will be

maximized, using superposition coding and successive decoding. For any virtual receiver

the transmitter designates a layer and superimposes this layer above the layers associated

with lower virtual receivers. Any virtual receiver decodes its assigned code layer in addition

to all the layers below it. It was shown in [21] that this broadcast approach leads to the

optimal performance for a multicast network in terms of achievable expected rate for a

typical user of the network given the coverage constraint.

According to [9] and [27], a Gaussian source is successively refinable. Successive re-

finability implies that the distortion incurred using a description of a source at rate R1
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first, and subsequently refining it at rate R2 is equal to the distortion when the source is

described at rate R1 + R2 in the first place. We can utilize the successive refinability of a

Gaussian source to transmit it using a broadcast approach. In this method, the source is

described in multiple layers where each layer of refinement is carried by a level of channel

code in the broadcast approach. Hence, the layer associated with a virtual receiver refines

the information received by the receivers with lower channel gains.

Cascading a multi-resolution source code to a superposition channel code is proposed

in [14] and [28] and shown to be optimal in terms of distortion exponent in high SNRs.

We will apply the virtual broadcast approach with successive refinement as a joint source-

channel coding scheme and optimize its performance according to the source and channel

characteristics.

3.2 Discrete States

3.2.1 Preview

In this scenario, the fading realization has M states denoted by {hi}M
i=1 with probabilities

{ηi}M
i=1. In other words, the channel power gain realization is hi with probability ηi, for

i = 1, · · · , M . According to the virtual broadcast model in [3] and [4], there are M

virtual receivers and the transmitter sends the sum of M layers of codewords. Let layer i

denote the layer of the codeword intended for virtual receiver i, and we order the layers as

hM > hM−1 > · · · > h1. We refer to layer M as the highest layer and layer 1 as the lowest

layer. Each layer successively refines the description of the source s from the layer below

it, and the codewords in different layers are independent. Let Pi be the transmit power

allocated to layer i, then the transmit symbol x can be written as

x =
√

P1x1 +
√

P2x2 + · · ·+
√

PMxM , (3.3)

where x1, · · · , xM are iid ZMCSCG random variables with unit variance.

With successive decoding, each virtual receiver first decodes and cancels the lower layers

before decoding its own layer; the undecodable higher layers are treated as noise. Thus,
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the rate Ri intended for virtual receiver i is

Ri = log

(
1 +

Pihi

1 + hi

∑M
j=i+1 Pj

)
, (3.4)

where the term hi

∑M
j=i+1 Pj represents the interference power from the higher layers.

Suppose hk is the realized channel power gain, then the original receiver can decode layer

k and all the layers below it. Hence the realized rate Rrlz(k) at the original receiver is

R1 + · · · + Rk. Using the rate distortion function of a complex Gaussian source [16], the

mean squared distortion is 2−bR when the source is described at a rate of bR per symbol.

Thus, the realized distortion Drlz(k) of the reconstructed source ŝ is

Drlz(k) = 2−bRrlz(k) = 2−b(R1+···+Rk), (3.5)

where the last equality follows from successive refinability. The expected distortion Eh[D]

is obtained by averaging over the fading distribution pmf:

Eh[D] =
M∑

i=1

ηiDrlz(i) =
M∑

i=1

ηi2
−b

Pi
j=1 Rj . (3.6)

In [26], the optimal power allocation P
∗
1 , · · · , P∗

M among the layers is derived to find

the minimum expected distortion Eh[D]∗. To this end, they first considered a two-state

channel and showed that under optimal power allocation, with respect to the minimum

expected distortion, the two layers can be represented by a single aggregate layer. They

used this idea to solve the optimization problem in the general M-state case in a reccursive

fashion. For this purpose, the expected distortion is written as

Eh[D] =
M∑

i=1

ηi

(
i∏

j=1

1 + hjTj

1 + hjTj+1

)−b

, (3.7)

where Tj ,
∑M

l=j Pl. Hence, the expected distrotion can be written as a set of recurrence

relations:

DM = (1 + hMPM)−bηM (3.8)

Di =

(
1 + hiTi

1 + hiTi+1

)−b

(ηi + Di+1) , (3.9)



34 Information Theoretic Aspects of Wireless Networks with Coverage Constraint

with D1 = Eh[D]. Note that Di depends on only two adjacent power allocation variables

Ti and Ti+1; therefore, in each recurrence step i, we solve for the optimal T ∗
i+1 in terms of

Ti:

D∗
M , DM , (3.10)

D∗
i =

(
1 + hiTi

1 + hiTi+1

)−b (
ηi + D∗

i+1

)
. (3.11)

The minimum expected distortion is given by Eh[D]∗ = D∗
1, which is computed at the last

step of recurrence equation (i = 1). In the first recurrence step, (i = M − 1), the power

allocation between the topmost two layers is considered. The minimal distortion D∗
M is

found by obtaining the optimum value of T ∗
M in terms of TM−1 in the following optimization

problem:

D∗
M−1 = min

0≤TM≤TM−1

(
1 + γM−1TM−1

1 + γM−1TM

)−b (
uM−1 + (1 + βM−1TM)−b wM−1

)
, (3.12)

with the parameters:

wM−1 = ηM , βM−1 = hM ,

uM−1 = ηM−1, γM−1 = hM−1,
(3.13)

where the subscripts on the layer parameters w, u, β, γ designate the recurrence step. In

general, in recurrence step i, the power allocation between layer i and layer i + 1 can be

found by the optimization:

D∗
i = min

0≤Ti+1≤Ti

(
1 + γiTi

1 + γiTi+1

)−b (
ui + (1 + βiTi+1)

−b wi

)
, (3.14)

the solution to which is given by

D∗
i =

{
(1 + γiTi)

−bWi Ui+1 ≤ Ti

ui + (1 + βiTi)
−bwi else

, (3.15)

where Wi , (1 + γiUi+1)
b
[
ui + (1 + βiUi+1)

−bwi

]
and

Ui+1 ,






0 βi/γi ≤ 1 + ui/wi

1
βi

([
wi

ui

(
βi

γi
− 1
)] 1

1+b − 1

)
else

. (3.16)
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There are two cases to the solution of D∗
i . In the first case, the power allocation is not

constrained by the available power Ti, and the minimum distortion in the recurrence step

i − 1 is obtained as:

D∗
i−1 = min

0≤Ti≤Ti−1

(
1 + hi−1Ti−1

1 + hi−1Ti

)−b (
ηi−1 + (1 + γiTi)

−b Wi

)
. (3.17)

Hence, the minimization in (3.17) has the same form as the one in (3.14), but with the

following parameters:

wi−1 = Wi, βi−1 = γi,

ui−1 = ηi−1, γi−1 = hi−1.
(3.18)

Hence the minimization can be solved the same way as in the last recurrence step. In the

second case, the power allocation is constrained by the available power Ti, and we have

D∗
i−1 = min

0≤Ti≤Ti−1

(
1 + hi−1Ti−1

1 + hi−1Ti

)−b (
ηi−1 + ui + (1 + βiTi)

−b wi

)
, (3.19)

which again has the same form as in (3.14), with the following parameters:

wi−1 = Wi, βi−1 = βi,

ui−1 = ηi−1 + ui, γi−1 = hi−1.
(3.20)

Therefore, in each recurrence step, the two-layer optimization procedure can be used to

find the minimum distortion and the optimal power allocation between the current layer

and the aggregate higher layer.

3.2.2 Hard Coverage Constraint

In this section, we consider the following optimization problem:

min
P

0≤Pi≤P

Ehtyp
[D]

subject to Dmax ≤ Dǫ with probability (1 − ǫ), (3.21)

where P , [P1, · · · , PM ], and Dmax , max1≤n≤N Dn. Dmax is a random variable which

takes M values {2−b
Pi

j=1 Ri}M
i=1 with the corresponding probabilities {φi}M

i=1, where

Ri = log

(
1 +

hiPi

1 + hi

∑M
j=i+1 Pj

)
, (3.22)
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and φi’s are obtained as follows:

φi = Pr{hmin = hi}
= Pr{hmin > hi−1} − Pr{hmin > hi}
= (Pr{hmin > hi−1})N − (Pr{hmin > hi})N

=

(
M∑

j=i

ηj

)N

−
(

M∑

j=i+1

ηj

)N

. (3.23)

In order to simplify the derivations, we consider two cases based on the value of ǫ, as

follows:

1. ǫ < mini φi

2. ∃k,
∑k

i=1 φi ≤ ǫ <
∑k+1

i=1 φi
1

For each of the above cases, we find the solution of (3.21).

Case 1

In this case, in order to satisfy the condition Dmax ≤ Dǫ with probability 1 − ǫ, we must

have

2−bR1 ≤ Dǫ =⇒ R1 ≥ Rǫ ,
log Dǫ

b
. (3.24)

Therefore, (3.21) can be written as

min
P

0≤Pi≤P

Ehtyp
[D],

subject to R1 ≥ Rǫ. (3.25)

Let us define Runconst.
1 as the value of R1 in the solution of the unconstrainted problem.

Two situations may occur here:

• Runconst.
1 ≥ Rǫ; in this case, the solution of the unconstrainted problem already

satisfies the constraint R1 ≥ Rǫ. In this situation, the solution of (3.25) is exactly

the solution of the unconstrained problem obtained in the previous section.

1Note that k ≤ M − 1.
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• Runconst.
1 < Rǫ; in this situation, we have

R1 = log

(
1 +

P1h1

1 + h1(P − P1)

)
≥ Rǫ

=⇒ P1 ≥ (1 + h1P)(1 − 2−Rǫ)

h1
. (3.26)

In the case that (1+h1P)(1−2−Rǫ )
h1

> P, or equivalently, Rǫ > log(1+Ph1), (3.25) does

not have any solution. In fact, it is not possible to satsify the coverage constraint

even if all the available power is allocated to the lowermost layer. In the case that

Rǫ ≤ log(1 + Ph1), it is easy to show that it is optimal to have P1 = P∗
1 ,

(1+h1P)(1−2−Rǫ )
h1

. Having this, the expected typical distortion can be written as

Ehtyp
[D] = 2−bRǫη1 + 2−bRǫ

M∑

i=2

ηi2
−b

Pi
j=2 Rj

= 2−bRǫ(η1 +

M∑

i=2

ηi2
−b

Pi
j=2 Rj )

= Dǫ × Ebhtyp
[D], (3.27)

where ĥtyp is the modified fading process which takes the values {0, h2, · · · , hM} with

the probabilities {η1, η2, · · · , ηM}, correspondingly. The above equation implies that

by defining the modified fading process ĥtyp, the original constrainted problem is

converted to solving the unconstrainted problem for ĥtyp, when the total power is

constrainted to P̂ = P − P∗
1 . Denoting the minimum distortion of the uncon-

strainted problem with the total power P and the fading process characterized by

(h, η), where η , (η1, · · · , ηM), and h , (h1, · · · , hM), as d∗(P, η,h), the solution

to (3.25) can be expressed as Dǫd
∗(P̂, η, ĥ), where ĥ , (0, h2, · · · , hM).

Case 2

In this case, the constraint Dmax ≤ Dǫ, with probability 1 − ǫ is translated to

2−b
Pk+1

i=1 Ri ≤ Dǫ, (3.28)
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or equivalently,

k+1∑

i=1

Ri ≥ Rǫ. (3.29)

Similar to the previous case, we can consider two situations:

• ∑k+1
i=1 Runconst.

i ≥ Rǫ; in this case, the solution to the unconstrainted problem already

satisfies the constraint
∑k+1

i=1 Ri ≥ Rǫ. In this situation, the solution to (3.25) is

exactly the solution of the unconstrained problem, obtained in the previous section.

• ∑k+1
i=1 Runconst.

i < Rǫ; in this case, we have the following optimization problem:

min f(R)

subject to RIk+1 ≥ Rǫ, and
M∑

i=1

Pi ≤ P, (3.30)

where R , (R1, · · · , RM), Ik+1 ,
∑k+1

i=1 ei, in which ei is an M × 1 vector whose ith

element is 1 and the rest are zero, and f(.) is the function of the average distortion in

terms of the rate vector R. Using Karush-Kuhn-Tucker theorem, if R∗ is the solution

of the above problem, there exists some λ ≥ 0 and µ ≥ 0 such that

∇f(R∗) + λ∇ (R∗Ik+1) + µ∇h(R∗) = 0, (3.31)

λ (R∗Ik+1 − Rǫ) = 0, (3.32)

µ (h(R∗) − P) = 0, (3.33)

where h(.) is the function of sum-power (
∑M

i=1 Pi) in terms of R. From the sec-

ond condition (complementary slackness), it follows that either R∗ is the solution

to the unconstrainted problem or we have R∗Ik+1 = Rǫ. Hence, in the case that∑k+1
i=1 Runconst.

i < Rǫ, the optimization problem is equivalent to

min Ehtyp
[D],

Subject to
k+1∑

i=1

Ri = Rǫ. (3.34)
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To solve the above problem, we write Ehtyp
[D] as follows:

Ehtyp
[D] =

k∑

i=1

ηi2
−b

Pi
j=1 Rj + 2−bRǫEg[D], (3.35)

where g is a fading process which takes the values (0, hk+2, · · · , hM) with probabilities

(ηk+1, · · · , ηM) 2, which results in Eg[D] = ηk+1 +
∑M

i=k+2 ηi2
−b

PM
j=k+2 Rj 3. Suppose

that α portion of the available power is allocated to the first k levels. In this case,

the expected distortion can be expressed as a function of α, denoted by d(α), which

can be written from (3.35) as

Ehtyp
[D] = d(α)

= d1(α) + e−bRǫd2(α), (3.36)

where d1(α) ,
∑k

i=1 ηi2
−b

Pi
j=1 Rj and d2(α) , Eg[D]. Note that in the above equa-

tion, the minimization of d(α) can be performed by minimizing d1(α) and d2(α)

separately. This is because the only dependency between the distortion of the lower

layers (indexed from 1 to k) and the distortion of the upper layers (indexed from

k + 1 to M) is through the portion of the power allocated to each layer (and not

exact values of allocated power levels) and also the sum of the rates of the lower

layers (the former is set to α and the later is equal to Rǫ). Minimization of d2(α)

is the unconstrained minimization of Eg[D], when the total power equals (1 − α)P,

and its solution can be expressed as d∗((1−α)P, ηg, g), where ηg , (ηk+1, · · · , ηM),

and g , (0, hk+2, · · · , hM). Minimization of d1(α) is equivalent to minimization of

Ew[D], where w is a fading process taking the values {hi}k
i=1 with the probabilities

{ηi}k
i=1, with the constraint that

∑k
i=1 Ri ≤ Rǫ. This constraint is because of the

fact that
∑k+1

i=1 Ri = Rǫ. Hence, the minimum expected distortion can be found by

2Here, we assumed that k ≤ M − 2. In the case of k = M − 1, g = 0 and therefore, Eg[D] = ηk+1.
3Note that here the probabilities {ηi}M

i=k+2
do not add to one. However, this does not affect the validity

of the results.
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minimizing d(α) over α. More precisely,

Ehtyp
[D]∗ = min

α




min
Pi,i=1,··· ,kPk

i=1 Pi=αPPk
i=1 Ri≤Rǫ

d1(α) + Dǫ min
Pi,i=k+2,··· ,MPM

i=k+2 Pi=(1−α−αǫ)P

d2(α)




, (3.37)

where αǫ is the portion of power allocated to the layer k + 1 (Pk+1 = αǫ) and is

determined by the constraint
∑k+1

i=1 Ri = Rǫ. The following lemma shows that the

constraint
∑k

i=1 Ri ≤ Rǫ in the minimization of d1(α) is not required:

Lemma 4 The minimization given by (3.37) is equivalent to

Ehtyp
[D]∗ = min

α


 min

Pi,i=1,··· ,kPk
i=1 Pi=αP

d1(α) + Dǫ min
Pi,i=k+2,··· ,MPM

i=k+2 Pi=(1−α−αǫ)P

d2(α)


 . (3.38)

Proof - In order to prove the lemma, it suffices to show that there does not exist

a power allocation {Pi}k
i=1 achieving the minimum distortion in (3.38), while hav-

ing
∑k

i=1 Ri > Rǫ. Assume that there exists such a power allocation. Hence, the

minimum total achievable distortion using this power allocation, denoted by D∗, is

lower-bounded by

D∗ (a)
> D∗∗

, min
α


 min

Pi,i=1,··· ,kPk
i=1 Pi=αP

d1(α) + 2−b
Pk

j=1 Rj min
Pi,i=k+1,··· ,MPM
i=k+1 Pi=(1−α)P

d2(α)




= min
Pi,i=1,··· ,MP

Pi=PPk
i=1 Ri>Rǫ

M∑

i=1

ηi2
−b

Pi
j=1 Rj . (3.39)

where (a) results from the facts that 2−b
Pk

j=1 Rj < Dǫ. From the complementary

slackness condition expressed in (3.31), it follows that D∗∗ > Ehtyp
[D]∗. Combining

this fact with the above equation, we have D∗ > Ehtyp
[D]∗, which completes the proof
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of Lemma 1.

�

Note that in (3.38), the constrained optimization of Ehtyp
[D] is decomposed into two

unconstrained optimization problems, for which we know the solutions. The solution

for the minimization of d2(α), as expressed earlier, is equal to d∗((1−α−αǫ)P, ηg, g).

However, the minimization of d1(α) is slightly different from the considered earlier

unconstrainted minimization problem considered in [26]. The reason is that in the

minimization of d1(α), we should consider the fact that the lower layers experience

an interference of at least (1−α)P from the upper layers. In other words, in the rec-

cursive algorithm explained in the previous section, the cumulative power variables

Ti =
∑M

j=i Pj, i = 1, · · · , k are constrained to be larger than (1 − α)P. Therefore,

in each recurrence step, when solving the two-layer optimization problem, three sit-

uations may occur:

1) Ui+1 < (1 − α)P; in this case, T ∗
i+1 = (1 − α)P. The optimal distortion of the

ith layer can be obtained as

D∗
i = (1 + γiTi)

−bWi, (3.40)

where Wi = (1 + γi (1 − α)P)b
[
ui + (1 + βi(1 − α)P)−b wi

]
. Also, for the i − 1th

layer, we have

wi−1 = Wi, βi−1 = βi,

ui−1 = ηi−1 + ui, γi−1 = hi−1.
(3.41)

2) (1 − α)P ≤ Ui+1 ≤ Ti; in this case, T ∗
i+1 = Ui+1.

3) Ui+1 > Ti; in this case, T ∗
i+1 = Ti.

For the second and third situations, the optimal distortion and and the reccursive

equations relating (wi−1, ui−1, βi−1, γi−1) to (wi, ui, βi, γi) are exactly the same as the

unconstrained problem. Denoting the minimum value of d1(α), in terms of the stan-

dard unconstrainted problem, as d∗(αP, (1 − α)P, ηgC ,hgC ), where ηgC , {ηi}k
i=1

and hgC , {hi}k
i=1, and d∗(P, I, p,h) denotes the general solution of the uncon-

strained problem when the total available power is P, the intereference from the

upper levels is I, and the fading levels and their corresponding probabilities are h
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and p. Finally, the solution of (3.21) can be written as the following point optimiza-

tion problem:

Ehtyp
[D]∗ = min

0≤α≤1

[
d∗(αP, (1 − α)P, ηgC ,hgC )) + Dǫd

∗((1 − α)P, ηg,hg)
]
.(3.42)

3.2.3 Soft Coverage Constraint

In this section, we consider a soft coverage constraint, meaning that the expected distortion

of the worst user in the network must be upper-bounded by a given threshold level, Dmul.

Having this constraint, we would like to minimize the expected distortion of a typical

user in the network. In other words, the solution of the following optimization problem is

desired

min
PPM

i=1 Pi≤P

Ehtyp
[D], (3.43)

Subject to Ehmul
[D] ≤ Dmul. (3.44)

The above problem is equivalent to

min
PPM

i=1 Pi≤P

η.D, (3.45)

Subject to φ.D ≤ Dmul, (3.46)

where η = (η1, · · · , ηM), φ = (φ1, · · · , φM), and D is the distortion vector defined as

D ,

(
2−bR1, · · · , 2−b

Pi
j=1 Rj , · · · , 2−b

PM
i=1 Ri

)T

.

Two situations can occur here:

• The solution of the unconstrained problem minP η.D, denoted by D∗, already satis-

fies φ.D∗ ≤ Dmul. In this case, the solution to (3.45) is exactly equal to the solution

to the unconstrained problem, i.e., D∗.

• In the case of φ.D∗ > Dmul, we know from KKT conditions that the solution of

(3.45) is equal to the solution of the following problem:

min
PPM

i=1 Pi≤P

η.D − λφ.D, (3.47)
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for some λ > 0, with the constraint φ.D∗
λ = Dmul, in which D∗

λ denotes the solution

of the above problem. Defining ηλ , η − λφ, the above optimization problem can

be expressed as the following unconstrained problem:

min
PPM

i=1 Pi≤P

ηλ∗ .D, (3.48)

where λ∗ is the solution of

φ.D∗
λ∗ = Dmul. (3.49)

Hence, the solution of (3.43) can be expressed as d∗(P, ηλ∗ ,h), where λ∗ satisfies

the above equation.

3.3 Continuous Fading Distribution

3.3.1 Preview

As stated before, the typical channel can be treated as a single point-to-point channel with

the distribution identical to any of the channels in the network. The minimum expected

distortion for this case is derived in [26]. In fact, we can generalize the results for channels

with discrete states to the continuous fading channels. For this purpose, we should assume

infinite number of channel levels with even spacing ∆h and derive the results when ∆h tends

to zero. In this setting, the channel level h − ∆h is realized with the probability f(h)∆h,

where f(h) is the pdf of the continuous fading channel. Using a continuous indexing for the

same values defined in the discrete case and following (3.15), we can rewrite the cumulative

distortion from layers h and above as

Dunconst.(h) = (1 + hT unconst.(h))−bW (h) (3.50)

where T unconst.(h) is the total available power for layers h and above and W (h) is interpreted

as an equivalent probability weight summarizing the aggregate effect of the layers h and

above. Following (3.15) and (3.16), we can find the optimal power allocation as

T unconst.∗(h) =

{
Uunconst.(h) if Uunconst.(h) ≤ T unconst.∗h − ∆h)

T unconst.∗(h − ∆h) else
, (3.51)
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where

U(h) ,






0 h ≥ W (h)/f(h) + ∆h

1
h

([
W (h)

f(h)(h−∆h)
− 1
] 1

1+b − 1

)
else.

. (3.52)

In the region where T (h) is given by the unconstrained minimizer UT unconst.(h), W (h) is

derived from the following recurrence equation

W (h − ∆h) = (1 + (h − ∆h)Uunconst.(h))b.
[
f(h)∆h + (1 + (h)Uunconst.(h))−bW (h)

]
(3.53)

As ∆h tends to zero, the above recurrence equations give rise to a set of linear first

order differential equations. Those differential equations are solved in [26] and the power

allocation for a Rayleigh Fading channel with expected channel gain h̄ is shown to be as

follows:

T unconst.∗(h) =






0 h > h0

Uunconst.(h) hP ≤ h ≤ h0)

P h < hP

, (3.54)

where,

Uunconst.(h) =

∫ h

h̄

(
1
h̄
− 2

s

)
[s1−be−

s
h̄ ]

1
b+1 ds

(1 + b)[h2e−h/h̄]
1

b+1

, (3.55)

and h0 and hP are obtained applying the continuity conditions of T ∗(h). Also, in the region

hP ≤ h ≤ h0, the cumulative distortion function D(h), for a Rayleigh Fading channel is

shown to be

Dunconst.(h) =
− 1

h

∫ h

h̄
e−s/h̄[( s

h̄
)2e−(s−h̄)/h̄]−

b
b+1 ds + e−1

[(h
h̄
)2e−(h−h̄)/h̄]−

b
b+1

. (3.56)

As seen above, no power is allocated to the layers h ≤ hP . Therefore, the minimum

expected distortion of a point to point Rayleigh Fading channel is given as

Eh[D] = Dunconst.(0) = F (hP) + Dunconst.(hP), (3.57)

where F (h) is the CDF of the fading channel.
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3.3.2 Hard Coverage Constraint

According to the definitions in the system model, the multicast outage distortion is the

distortion seen by a multicast user with channel level hǫ, where hǫ = F−1
multicast(ǫ). Using

the notation of the continuous case, the minimum expected typical rate with hard coverage

constraint is as follows

min
T (.)

Ehtyp
[D],

subject to Dmax ≤ Dǫ with probability (1 − ǫ), (3.58)

where T (h) is the available power for the layers h and above and Dmax =, max1≤n≤N Dn

is the instantaneous multicast distortion. Since Dmax(.) is a decreasing function of the

channel gain, the constraint is satisfied if and only if Dmax(hǫ) ≤ Dǫ. We can translate

this distortion constraint to a rate constraint:

Dmax(hǫ) = e−b
R hǫ
0 dRh ≤ Dǫ =⇒

∫ hǫ

0

dRh ≥ − log Dǫ

b
= Rǫ. (3.59)

Similar to the second case for the discrete channel case, we can classify the constraint

rate (Rǫ) to two regions. Denoting the rate set given by the unconstrained optimization

by {dRunconst.
h }, the solution to the constrained case when Rǫ ≤

∫ hǫ

0
dRunconst.

h is exactly

the same as the unconstrained solution. In fact, in this case the multicast distortion

requirement is not limiting in terms of the expected distortion.

On the other hand, for
∫ hǫ

0
dRunconst.

h ≤ Rǫ, it is shown as aresult of the K.K.T. condi-

tions that our optimization problem is simplified to

min
T (.)

Ehtyp
[D],

subject to

∫ hǫ

0

dRh = Rǫ. (3.60)

We can rewrite the expected distortion as follows

Ehtyp
[D] =

∫ ∞

0

f(h)e−b
R h
0

dRudh =

∫ hǫ

0

f(h)e−b
R h
0

dRudh + Dǫ

∫ ∞

hǫ

f(h)e
−b

R h

h
+
ǫ

dRu
dh.(3.61)

Similar to the unconstrained case, we can approach this optimization problem as a prob-

lem with a discrete channel with infinite number of states with even spacing ∆h between
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adjacent channel gains. For such a channel, we can use the result of Lemma 4 which im-

plies that, given the total power allocated to the layers lower than hǫ is αP, the power

allocation for these layers is independent of the power allocation to the layers higher than

hǫ and vice versa when we want to minimize the expected distortion with multicast con-

straint. Denoting the interference seen by level h as T (h), the minimization problem will

be simplified to

Ehtyp
[D]∗ = (3.62)

minα

(
min T (h),0≤h<hǫ

T (hǫ)=(1−α)P,T (0)=P

d1(α) + f(hǫ)∆hDǫ + Dǫ min T (h),hǫ<h
T (hǫ+∆h)=(1−α−αǫ)P,T (∞)=P

d2(α)

)

where αǫ is the power allocated to the layer hǫ to fulfil the condition of sum rate of the

layers not above hǫ being equal to Rǫ, d1(α) is the weighted distortion of the layers lower

than hǫ according to the weighting function f(h), when all of them see at least (1 − αP)

interference power and d2(α) is the same weighted sum for the layers higher than hǫ when

their total power is at most (1 − α − αǫ)P. In fact, in the above derivation, we have

divided the layers to three groups:

1. Layers lower than hǫ for which we optimize its contribution to the expected distortion

with the total power αP. It is justified in the previous section that we can remove

the constraint
∫ hǫ

0
dRh < Rǫ.

2. Layer h = hǫ. The output of the first optimization is the set of rates {dRh}hǫ−∆h
0 .

In order to fulfill the the outage multicast constraint, the rate of this layer should be

Rǫ −
∫ hǫ−∆h

0
dRh. This requires a power level equal to

αǫP = (1 − α)P −
(

1 + hǫ(1 − α)P

eRǫ−
R hǫ−∆h
0 dRh

− 1

)
/hǫ. (3.63)

3. Layers higher than hǫ which are allocated the total power (1 − α − αǫ)P and their

contribution to the total expected distortion is optimized. As mentioned before, the

optimal power distribution is independent of power allocation for the lower levels.

Denoting the optimal interference function for our problem by T ∗(.), according to [26],

for h > hǫ + ∆h, we have

T ∗(h) =

{
T unconst.∗(h) if T unconst.∗(h) < (1 − α − αǫ)P

(1 − α − αǫ)P otherwise
. (3.64)
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Therefore, the power level associated with the layer hǫ + ∆h is given by

Pα(hǫ + ∆h) = [(1 − α − αǫ)P − T unconst.∗(h)]+ (3.65)

As ∆h → 0, this power level merges to the layer hǫ, while the layer hǫ is already decoding Rǫ

from the layers lower or equal to hǫ. Therefore, in the limit of ∆h → 0, if Pα(hǫ +∆h) > 0,

then
∫ hǫ

0
dRh > Rǫ, which contradicts the equality in (3.60). Hence, denoting the optimizer

of (3.62) by α∗, we conclude that

T unconst.∗(hǫ) > (1 − α − α∗
ǫ )P. (3.66)

Consequently, we can rewrite the second minimization term in (3.62) as follows

min
T (h),hǫ<h

T (hǫ+∆h)=(1−α−αǫ)P,T (∞)=0

d2(α) = Dunconst.(h(1−α−αǫ)P) + F (h(1−α−αǫ)P) − F (hǫ),(3.67)

where T unconst.∗(h(1−α−αǫ)P) = (1 − α − αǫ)P.

Denoting the optimal cumulative distortion function with (1 − α)P of interference

power by D∗
(1−α)P , as in the discrete case, we can write

D∗
(1−α)P(h) = (1 + hT ∗(h))−bW (h), (3.68)

where W (h) is the probability weight capturing the aggregate effect of the layers h and

above. We can adopt the results of the discrete channel case to optimize d1(α) and conclude

that for h < hǫ

T ∗(h) =

{
U(h) if U(h) ≤ T ∗(h − ∆h)

T ∗(h − ∆h) else
, (3.69)

where

U(h) ,






(1 − α)P if 1
h

([
W (h)

f(h)(h−∆h)

] 1
1+b − 1

)
< (1 − α)P

1
h

([
W (h)

f(h)(h−∆h)

] 1
1+b − 1

)
else.

. (3.70)

The cumulative distortion function in the region which unconstrained minimizer applies,

can be written as following

D∗
(1−α)P(h − ∆h) =

(
1 + (h − ∆h)T ∗(h − ∆h)

1 + (h − ∆h)U(h)

)
.
[
f(h)∆h + (1 + hU(h))−bW (h)

]
,(3.71)
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where W (h) is derived through a recurrence equation

W (h − ∆h) = (1 + (h − ∆h)U(h))b.[f(h)∆h + (1 + hU(h))−bW (h)]. (3.72)

As ∆h → 0, we can rewrite (3.69) as follows

T ∗(h) =






(1 − α)P h0 ≤ h ≤ hǫ

U(h) hP ≤ h ≤ h0

P h < hP

, (3.73)

where h0 is the solution of 1
h

([
W (h)
f(h)h

] 1
1+b − 1

)
= (1 − α)P and hP is the solution of

1
h

([
W (h)
f(h)h

] 1
1+b − 1

)
= P. As seen above, no power is allocated to the region h0 ≤ h ≤ hǫ.

Hence, in this region W (h) = F (hǫ)−F (h). Substituting W (h) in the boundary condition

for h0, we conclude

1

h0

([
F (hǫ) − F (h0)

f(h0)h0

] 1
1+b

− 1

)
= (1 − α)P. (3.74)

Also, when the spacing ∆h approaches zero, it is shown in [26] that (3.72) will give rise to

the following first order linear differential equation

U ′(h) = −
(

2/h + f ′(h)/f(h)

1 + b

)
[U(h) +

1

h
]. (3.75)

With the initial condition U(h0) = (1 − α)P, the solution will be

U(h) =
−
∫ h

h0

1
s

(
2
s

+ f ′(s)
f(s)

)
[s2f(s)]

1
b+1 ds + (1 − α)P(1 + b)[h0

2f(h0)]
1

b+1

(1 + b)[h2f(h)]
1

b+1

, (3.76)

and hP is obtained solving U(hP) = P. In the limit of ∆h → 0, equation (3.71) also

leads to a differential equation

D∗′
(1−α)P(h) = − bhU ′(h)

1 + hU(h)
D∗

(1−α)P (h) − f(h) (3.77)

=

[
b

1 + b
(
2

h
+

f ′(h)

f(h)
)

]
D∗

(1−α)P(h) − f(h). (3.78)
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The solution of the above equation with the initial condition D∗
(1−α)P(h0) = W (h0) =

F (hǫ) − F (h0) will be

D∗
(1−α)P(h) =

−
∫ h

h0
f(s)[s2f(s)]

−b
b+1 ds + (F (hǫ) − F (h0)).[h

2
0f(h0)]

−b
b+1

[h2f(h)]
−b
b+1

. (3.79)

For a Rayleigh Fading channel with the unit mean, (3.76) and (3.79) are simplified to

U(h) =

∫ hǫ

h0
(1 − 2

s
)[s1−be−h]

1
b+1 + (1 − α)P(b + 1)[h2

0e
−h0 ]

1
b+1

(b + 1)[h2e−h]
1

b+1

, (3.80)

D∗
(1−α)P(h) =

−
∫ h

h0
e−s[s2e−s]

−b
b+1 ds + (eh0 − ehǫ).[h2

0e
−h0]

−b
b+1

[h2e−h]
−b
b+1

, (3.81)

and h0 is the solution of h(h(1 − α)P + 1)b+1 + eh−hǫ − 1 = 0. For h < hP , there is no

power allocated to the layers and W (h) = F (hP) − F (h), therefore

min
T (h),0≤h<hǫ

T (hǫ)=(1−α)P,T (0)=P

d1(α) = D∗
(1−α)P (0) = F (hP) + D∗

(1−α)P(hP) (3.82)

Equations (3.62), (3.67) and (3.82) lead to

Ehtyp
[D]∗ = min

α

(
F (hP) + D∗

(1−α)P(hP) + Dǫ[D
unconst.(h(1−α−αǫ)P) + F (h(1−α−αǫ)P) − F (hǫ)]

)
(3.83)

3.3.3 Soft Coverage Constraint

Similar to the discrete case, we can consider the expected multicast distortion as a coverage

measure. In this case, the optimization problem is equivalent to

min
T (0)=P,T (.) is decreasing

Ehtyp
[D] (3.84)

Subject to Ehmul
[D] ≤ Dmul. (3.85)

As in the discrete channel scenario, there are two cases:

1. The solution to the unconstrained problem already satisfies the multicast require-

ment. In this case, the unconstrained solution is optimal.
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2. The solution to the unconstrained problem dose not satisfy the multicast requirement.

In this case, we know that according to the KKT conditions, the optimization problem

is equivalent to

min
T (0)=P,T (.) is decreasing

Ehtyp
[D] + λEhmul

[D] = (3.86)

min
T (0)=P,T (.) is decreasing

∫ ∞

0

(f(h) − λfmul(h))e−b
R h

0
dRudh, (3.87)

which is equivalent to the unconstrained problem for a channel with pdf fλ(h) =

f(h) − λfmul(h). Therefore, the corresponding interference function is as follows

T ∗(h) =






0 h0 ≤ h

U(h) hP ≤ h ≤ h0

P h < hP

, (3.88)

where

U(h) =
−
∫ h

h0

1
s

(
2
s

+
f ′

λ
(s)

fλ(s)

)
[s2fλ(s)]

1
b+1 ds

(1 + b)[h2fλ(h)]
1

b+1

, (3.89)

h0 and hP are obtained by continuity conditions. In this case, the cumulative typical

distortion in the region hP ≤ h ≤ h0 is

Dtyp(h) =
−
∫ h

h0
fλ(s)[s

2fλ(s)]
−b
b+1 ds + (1 − F (h0)).[h

2
0fλ(h0)]

−b
b+1

[h2fλ(h)]
−b
b+1

, (3.90)

and the cumulative multicast distortion in the same region, is given by

Dmul(h) =
−
∫ h

h0
fλ(s)[s

2fλ(s)]
−b
b+1 ds + (1 − Fmul(h0)).[h

2
0fλ(h0)]

−b
b+1

[h2fλ(h)]
−b
b+1

, (3.91)

where λ is computed through the following equation

Ehmul
= Dmul(0) = Fmul(hP) + Dmul(hP) = Dmul. (3.92)

Having obtained λ, we can write the expected typical distortion as

Ehtyp
= Dtyp(0) = F (hP) + Dtyp(hP). (3.93)



Chapter 4

Conclusion and Future Work

We have considered a multicast network, where a common data is transmitted from a

sender to several users. It is assumed that a minimum service must be provided for all

the users. For this setup, we have optimized the average service received by a typical

user in the network. Two scenarios are considered for the coverage constraint. In the

case of hard coverage constraint, the minimum multicast requirement is stated in terms of

an outage rate received by all the users in a single transmission block. For small enough

outage probabilities, it is shown that the optimal rate region is achieved by providing

the required multicast rate in a single layer code, and designing an infinite-layer code as

in [10], on top of it. In the case of soft coverage constraint, the multicast requirement is

expressed in terms of the expected multicast rate received by all the users. An infinite

layer superposition coding is shown to achieve the capacity region (Cmul, Cave). We have

also proposed a suboptimal coding scheme for the MISO multicast channel. This scheme

is shown to be asymptotically optimal, when the number of transmit antennas grows at

least logarithmically with the number of users. Finally we have extended our results to

the case where multiple sources are sharing the same channel each to transmit to a group

of users.

For the proposed constrained multicast network, we have also considered the problem

of minimum expected typical distortion for the transmission of a Gaussian source. We have

proposed a multi-resolution source code mapped to a multi-level channel code as a joint

source-channel coding scheme and optimized it based on the characteristics of channel and

51



52 Information Theoretic Aspects of Wireless Networks with Coverage Constraint

source. We first solved the problem for a finite state fading channel for each user and then

extended it to the case of continuous fading channels. The output of the optimization

problem is the power allocation for different channel code layers each carrying a refinement

of the source.

Since the joint source-channel coding scheme proposed in our work is not globally

optimal, there is a motivation to find the optimal code to minimize the expected distortion

in a constrained multicast network. Schemes like analog coding could be designed and

optimized for such a network.

We can also generalize the proposed setup in this work to the multi-relay networks

when all the relays are listening to a common source.
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