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Abstract

The AdS/CFT correspondence and its extensions to more general gauge/gravity dual-

ities have provided a powerful framework for the study of strongly coupled gauge theories.

This thesis explores properties of a large class of thermal strongly coupled gauge theories

using the gravity dual. In order to bring the holographic framework closer to Quantum

Chromodynamics (QCD), we study theories with matter in the fundamental representa-

tion. In particular, we focus on the holographic dual of SU(Nc) supersymmetric Yang-Mills

theory coupled to Nf ≪ Nc flavours of fundamental matter at finite temperature, which

is realised as Nf Dq-brane probes in the near horizon (black hole) geometry of Nc black

Dp-branes.

We explore many aspects of these Dp/Dq brane systems, often focussing on the D3/D7

brane system which is dual to a four dimensional gauge theory. We study the thermody-

namics of the Dq-brane probes in the black hole geometry. At low temperature, the branes

sit outside the black hole and the meson spectrum is discrete and possesses a mass gap.

As the temperature increases, the branes approach a critical solution. Eventually, they fall

into the horizon and a phase transition occurs. At large Nc and large ’t Hooft coupling, we

show that this phase transition is always first order. We calculate the free energy, entropy

and energy densities, as well as the speed of sound in these systems. We compute the

meson spectrum for brane embeddings outside the horizon and find that tachyonic modes

appear where this phase is expected to be unstable from thermodynamic considerations.

We study the system at non-zero baryon density nb and find that there is a line of phase

transitions for small nb, terminating at a critical point with finite nb. We demonstrate that,

to leading order in Nf/Nc, the viscosity to entropy density ratio in these theories saturates

the conjectured universal bound η/S ≥ 1/4π. Finally, we compute spectral functions and

diffusion constants for fundamental matter in the high temperature phase of the D3/D7

theory.
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Chapter 1

Introduction

The last century has seen remarkable advances in our understanding of nature. Just over

a hundred years ago, Einstein’s special theory of relavity unified the separate notions of

space and time into the spacetime continuum, thereby recognising the arena in which phys-

ical processes occur. A short time later, quantum mechanics was discovered and quantum

theory was shown to be the correct framework for the description of microscopic phenom-

ena. These developments represented significant changes in paradigm which shaped the

subsequent evolution of physical theories, requiring that they be formulated in a relativistic

quantum framework.

With the recognition of four fundamental interactions in nature – gravitational, weak,

strong, and electromagnetic – physicists attempted to develop quantum theories describing

all interactions. To date, quantum field theories exist for the latter three while a full

quantum theory of gravity remains a challenge. Electroweak theory (describing weak and

electromagnetic interactions) together with Quantum Chromodynamics (QCD) (describing

the strong interaction) form the Standard Model of Particle Physics. Along with twelve

bosonic force carriers mediating interactions, the model contains two types of fundamental

particles, leptons and quarks, both fermionic. The Standard Model is the culmination of

decades of progress in physics and has proven to be very powerful in describing nature,

even though it does not include gravity.

Of the gauge theories which make up the Standard Model, QCD is the least well

understood. Despite being around for several decades, this theory describing the interaction

of quarks and gluons, usually within nucleons, remains mysterious. The reason is the

1



2 Holographic thermal gauge theories with flavour

running of the QCD effective coupling and the resulting property of asymptotic freedom

[1, 2]. At first sight, the Lagrangians for Quantum Electrodynamics (QED), the quantum

theory of the electromagnetic interaction, and QCD look very similar. While QED describes

interactions between electrically charged particles mediated by photons, QCD describes

interactions between colour-charged particles mediated by gluons. The great difference

between these theories occurs at the level of the effective coupling: In QED, the interaction

strength decreases with distance between particles or with energy. By contrast, the QCD

interaction strength increases as the interparticle distance increases (energy decreases) and

decreases as the interparticle distance decreases (energy increases). This property of QCD

is the basis of asymptotic freedom [1, 2] and is, of course, why in the world around us, at

everyday energy scales, we see hadrons rather than quarks and gluons.

Shortly after the discovery and acceptance of QCD, it was realised that at extremely

high energy densities there might be a new phase of matter [3,4]. With the QCD coupling

small at high energy density, quarks and gluons are weakly interacting and one might expect

to see a deconfined phase of quarks and gluons [5–8], called the quark gluon plasma (QGP)

[9–13]. Such a phase of quarks and gluons may have existed in the very early universe.

Accepted models of cosmology suggest that the universe underwent a violent beginning

with extreme energies, densities, and gravitational fields. In the first 10 − 20µs of the

universe, it is expected that the energy and particle densities would have been sufficiently

high for quarks and gluons to exist in a deconfined phase. As the universe expanded

and cooled, the primordial quark gluon plasma would have undergone a confining phase

transition in which the plasma constituents became confined in hadrons. Interestingly,

there may be signs of the transition from primordial quark gluon plasma to hadronic gas

imprinted on the universe (see, e.g., [14–17]).

Hoping to create a quark gluon plasma experimentally, the Relativistic Heavy Ion Col-

lider (RHIC) at Brookhaven National Laboratory in New York was constructed [18]. The

goal of RHIC was to study the properties of matter at high energy densities. Through

the collision of heavy ions, a QGP has been produced at RHIC, however, unlike the rela-

tively ‘simple’ phase in which the quarks and gluons are deconfined and weakly interacting,

the QGP at RHIC seems to be strongly coupled [19].1 One indication of strong coupling

is the small ratio between the shear viscosity η and the entropy density S [19] which is

1Recent accounts of the results from RHIC are summarised in [20]; for earlier accounts, see, e.g., [21–24].



Introduction 3

characteristic of a liquid, rather than a gas (for which the ratio η/S is large).

Of course, one would like to be able to ‘apply’ QCD, as the accepted theory of nu-

clear interactions, to the RHIC results to understand the state of matter formed when two

relativistic heavy ions are collided. The barrier to the simple application of QCD to the

RHIC results is part of the great challenge of theoretical studies of the physics of strongly

interacting systems. At strong coupling, perturbation theory is inapplicable. Lattice tech-

niques have been used with some success to understand strong coupling physics, however,

their application is generally limited to equilibrium (static) studies and modelling dynam-

ics remains a challenge. Hence new approaches for studying the physics of strongly coupled

gauge theories such as QCD are needed.

One might hope that string theory, as a leading candidate for a unified theory of all

interactions, would provide insights into such questions. String theory originates from

attempts to understand the strong interactions, prior to the discovery of quarks or advent

of QCD. In the 1960s, particle collider experiments produced a plethora of hadrons and

it was suggested that the hadrons and mesons might be regarded as different oscillation

modes of a string [25–27]. However, asymptotic freedom was discovered [1, 2] and with

experimental results suggesting that hadrons are made up of quarks [28–33], i.e., that

hadrons have point-like constituents, the quantum field theory of quarks, QCD, supplanted

string theory as a theory of the strong interactions.

String theory was later revisited as a possible theory of gravity. String theory contains

both open and closed strings, the latter of which have massless spin-two excitations. These

massless high-spin particles, which were an embarrassment for a theory of hadrons, are

natural candidates for the quanta of gravity, gravitons. The existence of these higher

spin particles led to the consideration of string theory as a candidate for a unified theory

of all interactions [34]. String theory unifies all forces and particles by postulating that

all particles in the Standard Model are actually different vibrational modes of a string.

At first, formulating string theory as a unified theory of all interactions proved to be a

challenge until the recognition of the importance of supersymmetry in the theory in the

early 1980s [35–38] (for a review, see [39]). String theory’s subsequent formulation in a

consistent and anomaly-free way marked the birth of superstring theory.

It was later realised that string theory is not just a theory of strings but also contains

extended objects called D-branes [40–42] (for reviews, see, e.g., [43–45]). Dirichlet p-

branes are hypersurfaces extended in p spatial directions on which open strings can end.
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The coordinates of strings attached to a Dp-brane satisfy Dirichlet boundary conditions in

the directions transverse to the brane and Neumann conditions in longitudinal directions.

Though D-branes were discovered in 1989 [40,41], they were largely ignored until the mid-

1990s when, following the work of Witten [46], Strominger [47], and Hull and Townsend [48],

Polchinski [42] identified Dp-branes with supergravity solitons carrying nonzero Ramond-

Ramond (RR) charge which had been known to exist for some time [49].

Polchinski’s discovery that Dp-branes carry an elementary unit of charge with respect

to the RR sector of type II superstring theory revolutionised string theory. As D-branes are

endowed with tension, bringing many D-branes together can result in the formation of an

event horizon. One breakthrough came with the reproduction of the Bekenstein-Hawking

entropy (computed in the strongly-coupled supergravity regime) via a calculation of the

statistical entropy of a weakly interacting system of D-branes [50]. Polchinski’s seminal

work [42] also led to the realisation that the five ten-dimensional superstring theories,

known to exist since the mid 1980s, and eleven-dimensional M-theory are all different

limits of a single unique theory [46,48,51]. Though this theory remains mysterious today,

it is promising that all known superstring theories are facets of a single theory.

A major development occurred in 1997 with Juan Maldacena’s now famous conjecture

concerning the equivalence of 10-dimensional superstring theory on anti-de Sitter (AdS)

spaces and supersymmetric Yang-Mills theories [52]. The AdS/CFT correspondence relates

type IIB string theory on AdS5 ×S5 (where the five-form flux through the S5 is an integer

Nc and the radii of AdS5 and S5 are both L) to a conformal field theory, SU(Nc) N = 4

super-Yang-Mills (SYM) theory in four dimensions. The parameters of both theories are

related via

g2
YM = 2πgs , L4 = 4πgsNcℓ

4
s , (1.1)

where gs and ℓs are the string coupling constant and length scale respectively, L is the AdS

radius, and gYM is the Yang-Mills coupling constant.

The strongest form of the equivalence holds for all values of Nc and g2
YM = 2πgs. Un-

fortunately, the quantization of string theory on arbitrary curved manifolds (including

AdS5 × S5) with Ramond-Ramond flux remains a challenge and thus use of the strongest

form of the duality is limited. There are limits, however, in which Maldacena’s duality is

tractable and non-trivial [52] (for reviews, see [53, 54]). The ’t Hooft limit [55] consists of

holding the ’t Hooft coupling λ = g2
YMNc fixed while taking Nc → ∞. In the Yang-Mills
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theory, at least in perturbation theory, this is a well-defined limit corresponding to the

topological expansion of the field theory’s Feynman diagrams. On the string theory side,

gs ∼ λ/Nc and thus the ’t Hooft limit corresponds to weak coupling. The conjecture re-

mains powerful, relating perturbative string theory to the strong coupling regime of large

Nc gauge theories. Futher, taking the limit of large ’t Hooft coupling (λ → ∞) renders

the radius L4 ∼ λℓ4s of the AdS space large in relation to the string length scale ℓs. In this

limit, massive string modes with energies ∼ 1/ℓs become very heavy and can be decou-

pled. With only massless string excitations remaining, string theory reduces to type IIB

supergravity in ten dimensions. Hence the large ‘t Hooft coupling, large-Nc limit of field

theory corresponds to gravity or string theory in the regime gs ≪ 1 and L≫ ℓs which can

be approximated as classical supergravity.

The equivalence is manifested by mappings of global symmetries, of fields φ in string

theory to operators O in the field theory, of correlation functions, and so on. An exact

statement of the correspondence is that the partition function of string theory on AdS5×S5

coincides with that of N = 4 super-Yang-Mills theory (on Minkowski space) [56,57]. This

can be written succinctly as

ZCFT = 〈e
R

φ0 Od4x〉CFT = ZAdS [φ|∂AdS = φ0] , (1.2)

where ZCFT, ZAdS are the theories’ partition functions. Note that the string partition

function on the right hand side is evaluated by specifying the fields on the boundary of

the AdS space. In the large-Nc, large-λ limit, the string theory partition function can be

approximated as e−IAdS where IAdS is the supergravity action evaluated on AdS. This results

in a recipe to compute ‘field theory’ correlation functions on the gravity side, originally

proposed in [56, 57] and subsequently developed in many different contexts (for reviews,

see [53,54]).

It should be emphasised that the correspondence is a conjecture and, to date, no rig-

orous proof has be found. Tests of the conjecture via comparisons of quantities on both

sides of the correspondence represent a challenge because the equivalence relates the strong

coupling regime of one theory to the weak coupling regime of the other. However, there

are properties of the theory which are independent of coupling and these can be compared.

These include the global symmetries, the spectrum of chiral primary operators, some cor-

relation functions, and so on – for a review, see [53]. Many tests of the correspondence

have been performed, all supporting the conjecture.



6 Holographic thermal gauge theories with flavour

The AdS/CFT correspondence has been extended to encompass a large number of more

general gauge/gravity dualities, relating string theory on various backgrounds to (possibly

non-conformal) field theories. The duality central to this thesis was proposed in [58].

Itzhaki et al [58] studied the general case of a stack of Nc coincident Dp-branes (p < 5) in

the limit in which the brane modes decouple from the bulk. They argued that the SYM

SU(Nc) gauge theory on the (p+ 1)-dimensional worldvolume of the Dp-branes is dual to

the closed string theory on the ‘near-horizon’ background induced by these branes.

These dualities follow from a straightforward extension of the usual decoupling limit

for D3-branes [53] now applied to Dp-branes [58]. For general p (6= 3), the gauge theory

is distinguished from the conformal case by the fact that the Yang-Mills coupling gYM

is dimensionful. Hence there is a power-law running of the effective coupling with the

energy scale U : g2
eff = g2

YMNcU
p−3 . The duality relates the energy scale and the radial

coordinate u transverse to the Dp-brane worldvolume in the usual way, U = u/ℓ2s . In the

dual background, the absence of conformal invariance in the general case is manifest in

the radial variation of both the string coupling (or dilaton) and the spacetime curvature

– see section 2.1 for details. As the supergravity background is only trustworthy for weak

string coupling and small curvatures, it provides a dual description of the theory which is

reliable for an intermediate regime of energies. In this regime, the dual gauge theory is

always strongly coupled.

In all the dualities above, the gauge theories are at zero temperature. Temperature may

be introduced into the correspondence by considering black Dp-branes [59]. Starting from

the general black Dp-brane solution (see, e.g., [45] and references therein) and taking the

decoupling limit [58], one obtains the gravity dual of thermal SU(Nc) SYM at temperature

T . This gravity dual contains a black hole and the temperature of the Hawking radiation

is identified with the temperature in the field theory. For the case p = 3, corresponding to

a four-dimensional thermal gauge theory, the background is AdS space with a black hole,

often referred to as the AdS-Schwarzschild geometry.

All matter in these gauge theories is in the adjoint representation of the gauge group.

Of course, to approach QCD with this holographic framework, matter in the fundamen-

tal representation must be included. Karch and Katz [60] demonstrated that probe D7-

branes can be used to introduce fundamental matter fields into the standard AdS/CFT

correspondence from D3-branes. Inserting Nf D7-branes into the AdS5 × S5 background

corresponds to coupling Nf flavours of ‘dynamical’ quarks, (i.e., Nf hypermultiplets in the
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fundamental representation) to the original four-dimensional SYM theory. Adding these

extra branes/fields also reduces the number of conserved supercharges from sixteen to

eight. The hypermultiplets arise from the lightest modes of strings stretching between the

D7- and D3-branes and their mass is set by the coordinate distance between the two sets

of branes. The resulting gauge theory containing quarks has a rich spectrum of quark-

antiquark bound states, which we henceforth refer to as ‘mesons’ [61]. In the decoupling

limit, the duals are open strings attached to the D7-branes and the calculation of the me-

son spectrum in the field theory becomes an exercise in studying the fluctuation of probe

branes. These ideas have been further developed in a number of directions towards the goal

of constructing gauge/gravity duals for QCD-like theories [62–90] with the meson spectrum

studied in a number of different contexts [61,91–100].

In general, one can consider the addition of Nf Dq-brane probes to the Dp-brane ge-

ometry. The dual gauge theory is thermal SU(Nc) SYM in p + 1 dimensions coupled to

a hypermultiplet in the fundamental representation. Depending on the choice of p and q

and orientation of branes, the fundamental fields may be confined to a lower-dimensional

defect in the full gauge theory. The discussion above for the D3/D7 brane system now

generalises to one for Dp/Dq brane systems: The quarks in these theories arise as the

lightest modes of the (q, p) and (p, q) strings stretching between the two sets of branes.

In the decoupling limit, the meson string duals are open strings with both ends on the

Dq-brane probes. At zero temperature, the spectrum of mesons in these theories has been

explored in detail [101,102].

The dualities between gauge and gravity theories are remarkable in that they relate

the physics of gravitational degrees of freedom to those of non-gravitational degrees of

freedom, all with spin ≤ 1. The gauge/gravity duality is a concrete realisation of the

idea of holography, with the physics in one region of space being represented in terms of a

theory living on the boundary of that region. Hence the word ‘holographic’ is frequently

used to describe the dual theories.

The power of the correspondence lies in its nature as a duality, relating the strong cou-

pling regime of one theory to the perturbative regime in the other. As noted above, string

theory in the weak coupling regime, where supergravity is often a suitable approximation,

can be used to study strongly coupled gauge theories. Conversely, gauge theories may

provide clues about quantum gravity. Computations which were previously thought to be

intractable may now be possible using the dual description. Hence the duality opens new
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avenues for tackling outstanding questions in theoretical physics.

The description of non-perturbative physics in gauge theories such as QCD is one such

issue. As mentioned above, the duality relates the large-Nc, strong ’t Hooft coupling limit

of gauge theories with classical supergravity. This makes the study of a large class of

theories sharing some features, for example, confinement (see, e.g., [59, 103–105]), chiral

symmetry breaking (see, e.g., [62, 93, 106–110]), and thermal phase transitions (see, e.g.,

[106, 111–116]), of QCD possible. Unfortunately, the asymptotic freedom of QCD means

that it is not in this class so that a full holographic study of QCD would require going

beyond the supergravity approximation. However, it is hoped that certain properties of

QCD may be studied in this approximation and that universal results may also apply to

QCD.

An encouraging recent example comes from the computation of transport coefficients in

the hydrodynamic regime of strongly-coupled finite-temperature field theories. Hydrody-

namics is an effective theory describing the long-wavelength, low energy relaxation of a sys-

tem to thermal equilibrium [117]. It is characterised by a number of ‘transport coefficients’

such as the shear and bulk viscosities, diffusion constants, conductivity, and the speed of

sound. As noted above, the gravity dual to a thermal field theory contains a black hole and

the equilibrium temperature in the field theory is the temperature of the Hawking radia-

tion [59]. Deviations from thermal equilibrium in the field theory, i.e., the existence of hy-

drodynamic modes, correspond to gravitational perturbations of the black hole background,

i.e., low-lying quasinormal modes of the black-brane metric [118]. Thus, the gauge/gravity

correspondence makes possible calculations of transport coefficients in thermal field theo-

ries, which are otherwise currently intractable, using the gravity dual [119–122] (for a re-

view, see [118]). The framework for these calculations comes from [123,124] where the real-

time (rather than Euclidean time), finite-temperature gauge/gravity correspondence was

developed. Calculations of diffusion constants of conserved charges (e.g., [119,121,125,126],

chapter 5), the speed of sound (e.g., [112,120,122,127–132], chapter 2) and the rate of en-

ergy loss of a quark in the fundamental representation moving in a finite temperature

plasma (e.g., [133–136]) have all appeared.

The most celebrated example of hydrodynamic calculations using gravity duals is the

computation of the shear viscosity. Calculations of the shear viscosity using the gravity

dual first appeared in [137]. Subsequent computations [138–140] suggest that the shear

viscosity to entropy density ratio is universal in a large class of large-Nc, large-λ field
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theories:2 η/S = 1/4π. This ratio has been shown to hold for all gauge theories with a

known gravity dual, including black Dp-branes [125], M-branes [121], Klebanov-Tseytlin

and Maldacena-Nunez backgrounds [138], N = 2∗ SYM theory [141], systems at nonzero

chemical potential [142–146], and systems containing fundamental matter [147] (see chapter

4). The ratio of η/S has been computed in N = 4 SYM to the next order in the inverse

‘t Hooft coupling expansion and the correction raises the ratio above η/S = 1/4π [148].

From all the holographic results, it has been argued that for all relativistic quantum field

theories, the ratio of the shear viscosity to entropy density satisfies [125,140]

η

S
≥ 1

4π
. (1.3)

Interestingly, the value of η/S inferred from experiments at RHIC suggest that for QCD

just above the deconfinement phase transition this bound is nearly saturated [149,150].

The universality of the shear viscosity to entropy density ratio and the success at

applying this result to the value of η/S inferred from RHIC experiments [149,150] suggest

that holographic studies of gauge theories may yield insights into QCD, despite the fact

that the holographic dual for QCD remains unknown. This thesis presents studies of the

physics of strongly coupled thermal gauge theories with flavour performed in the framework

of the gauge/gravity duality. In particular, we investigate properties of the class of thermal

field theories dual to Dp/Dq brane systems, namely SU(Nc) N = 4 SYM coupled to Nf

N = 2 fundamental hypermultiplets (in the language of four-dimensional supersymmetry)

in various dimensions.

We begin in chapter 2 by studying the thermodynamics of these systems [111,112]. We

review the throat geometries for black Dp-branes which are dual to (p + 1)-dimensional

SYM at finite-temperature. As mentioned above, at finite temperature this geometry

contains a black hole. Fundamental matter is introduced by inserting Nf Dq-brane probes

into the black hole background. At low temperatures the Dq-branes sit outside the black

hole and the meson spectrum is discrete and possesses a mass gap. As the temperature

increases the branes approach a critical solution. Eventually they fall into the horizon and a

phase transition occurs [111,112]. In the new phase the meson spectrum is continuous and

gapless. At large Nc and large ’t Hooft coupling, this phase transition is always first order,

and in confining theories with heavy quarks it occurs at a temperature higher than the

2Restoring ~, c and the Boltzmann constant kB, this ratio is η/S = ~/4πkB.
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deconfinement temperature for the glue. We compute the free energy, entropy and energy

densities in these theories, as well as the speed of sound. For the D3/D7 and D4/D6

brane systems, we compute the meson spectrum for brane embeddings outside the horizon

(corresponding to the low temperature phase of the dual gauge theory) and find that

tachyonic modes appear where this phase is expected to be unstable from thermodynamic

considerations.

Chapter 3 generalises the results of chapter 2 to the case of nonvanishing baryon density

[151]. We focus on the D3/D7 brane system for which the dual gauge theory is four-

dimensional, but our results apply in other dimensions as well [152]. A non-zero chemical

potential µb or baryon number density nb is introduced via a nonvanishing worldvolume

gauge field on the D7-branes. The first order phase transition described in chapter 2 [111,

112] extends to a line of phase transitions for small nb which terminates at a critical point at

finite nb [151]. Investigation of the D7-branes’ thermodynamics reveals that (∂µb/∂nb)T <

0 in a small region of the phase diagram, indicating an instability. We comment on a new

phase which may appear in this region.

In chapter 4 we compute the shear viscosity in theories with fundamental matter [147].

As mentioned above, the holographic dual of a finite-temperature SU(Nc) gauge theory

with a small number of flavours Nf ≪ Nc typically contains Dq-branes in a black hole

background. By considering the backreaction of the Dq-branes, we demonstrate that to

leading order inNf/Nc the viscosity to entropy ratio in these theories saturates the universal

bound η/S ≥ 1/4π [125, 140]. With the entropy density results from chapter 2, we find

that the contribution of fundamental matter ηfun is enhanced at strong ’t Hooft coupling λ;

for example, in four dimensions, ηfun ∼ λNcNfT
3 [112]. These results hold with or without

baryon number chemical potential.

In chapter 5 we compute the spectral functions and diffusion constants for fundamental

matter [126], focussing on the case of four dimensions for which the supergravity dual is

the D3/D7 brane system. We study the high temperature phase of the system in which

the D7-branes fall through the black hole horizon. We compute the spectral function

for vector, scalar, and pseudoscalar modes on the D7-brane probes. The scalar spectral

function reveals that tachyonic modes appear where thermodynamics indicate that this

phase should be unstable. We also compute the diffusion constant for flavour currents,

finding that at high temperatures the result matches the R-charge diffusion constant for

N = 4 SYM theory [125]. We extend the calculation of the diffusion constant to theories
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in various dimensions.

We conclude in chapter 6 with a summary of results and discussion of possible future

directions.

Appendix A contains a holographic dictionary for fundamental fields in the N = 2

four-dimensional gauge theory dual to the D3/D7 brane system.
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results, drafting papers, and editing manuscripts. In the following, the articles on which
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(fig. 2.9) is not included in either of the papers.

Chapter 3:

• S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers and R. M. Thomson, “Holo-

graphic phase transitions at finite baryon density,” JHEP 0702, 016 (2007) [arXiv:hep-

th/0611099].
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Chapter 4:

• D. Mateos, R. C. Myers and R. M. Thomson, “Holographic viscosity of fundamental

matter,” Phys. Rev. Lett. 98, 101601 (2007) [arXiv:hep-th/0610184].
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in discussions to argue why the universal result η/S = 1/4π should hold, and edited the

paper.

Chapter 5:

• R. C. Myers, A. O. Starinets and R. M. Thomson, “Holographic spectral functions

and diffusion constants for fundamental matter,” arXiv:0706.0162 [hep-th].

The author performed most of the calculations (spectral functions, effective potentials, and

diffusion constants, all for fundamental matter) and drafted and edited the paper. Details

from appendix A of this paper also appear in appendix A of this thesis.

The author’s (Ph.D.) research also appeared in the following publication:

• R. C. Myers and R. M. Thomson, “Holographic mesons in various dimensions,” JHEP

0609, 066 (2006) [arXiv:hep-th/0605017].

The author performed all calculations and drafted and edited the paper. While the material

in this paper does not explicitly appear in this thesis, it sets up the framework for the

calculations of meson spectra and spectral functions appearing in chapters 2 and 5.



Chapter 2

Thermodynamics of the brane

As discussed in the introduction, in a broad class of large-Nc, strongly coupled gauge theo-

ries with a holographic dual, a small number of flavours of fundamental matter, Nf ≪ Nc,

may be described by Nf probe Dq-branes in the gravitational background of Nc black Dp-

branes [60, 153]. At a sufficiently high temperature T , the background geometry contains

a black hole [59]. Working with Nf ≪ Nc flavours ensures that the matter branes only

make a small perturbation to this background. Then much of the physics can be stud-

ied in the probe approximation where the gravitational backreaction of these branes is

neglected.1 We will see in this chapter that these systems generally undergo a universal

first order phase transition characterised by a change in the behaviour of the fundamental

matter [111,112].2

From the viewpoint of the holographic description, the basic physics behind this tran-

sition is easily understood. Increasing the temperature increases both the radial position

and the energy density of the event horizon in the Dp-brane throat. For a sufficiently

small temperature or a sufficiently large separation for the Dq-branes, the probe branes

are gravitationally attracted towards the horizon but their tension is sufficient to balance

this attractive force. The probe branes then lie entirely outside of the black hole in what we

call a ‘Minkowski’ embedding (see fig. 2.1). However, above a critical temperature Tfun, the

1The backreaction cannot be ignored in calculating the effect of the fundamental matter on hydrody-

namic transport coefficients such as the shear viscosity [147] – see chapter 4.
2Specific examples of this transition were originally seen in [62,93,106] and aspects of these transitions

in the D3/D7 system were independently studied in [113–116]. Recently, similar holographic transitions

have also appeared in a slightly different framework [107–110].

13
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Figure 2.1: Various Dq-brane configurations in a black Dp-brane background with in-

creasing temperature from left to right. For low temperatures, the probe branes close off

smoothly above the horizon. For high temperatures, the branes fall through the event

horizon. In between, a critical solution exists in which the branes just ‘touch’ the horizon

at a point.

gravitational force overcomes the tension and the branes are pulled into the horizon. We

refer to such configurations where the branes fall through the horizon as ‘black hole’ em-

beddings. In between these two phases there exists a critical solution which just ‘touches’

the horizon. In section 2.2 [111], we show that in the vicinity of this critical solution the

embeddings show a self-similar behaviour. As a result, multiple solutions of the embed-

ding equations exist for given temperature in a regime close to Tfun. Using thermodynamic

considerations to select the true ground state then reveals a first order phase transition

at Tfun, where the probe branes jump discontinuously from a Minkowski to a black hole

embedding.

In the dual field theory,3 this phase transition is exemplified by discontinuities in, e.g.,

the quark condensate 〈ψ̄ψ〉 or the contribution of the fundamental matter to the energy

density. However, the most striking feature of this phase transition is found in the spectrum

of the mesons, i.e., the quark-antiquark bound states. As discussed in the introduction, the

latter correspond to excitations supported on the probe branes – see, e.g., [61,101,102,154].

In the low-temperature or Minkowski phase, the mesons are stable (to leading order within

3Recall for these supersymmetric field theories, the fundamental matter includes both fermions and

scalars, which we will refer to collectively as ‘quarks’.
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the approximations of large Nc and strong coupling) and the spectrum is discrete with a

finite mass gap. In the high-temperature or black hole phase, stable mesons cease to exist.

Rather one finds a continuous and gapless spectrum of excitations [126, 155]. Hence the

first order phase transition is characterised by the dissociation or ‘melting’ of the mesons.

This physics is particularly interesting in theories with a confinement/deconfinement

phase transition. The dual description of the confining, low-temperature phase involves a

horizon-free background. At a temperature Tdeconf the theory undergoes a phase transition

at which the gluons and the adjoint matter become deconfined, at which point the dual

background develops a black hole horizon [59]. However, if the mass of the fundamental

matter is large enough, the branes remain outside the horizon and therefore mesonic bound

states survive for temperatures Tdeconf < T < Tfun. At T = Tfun the branes finally fall into

the horizon, i.e., the mesons melt. This physics is in qualitative agreement with that

observed in QCD for heavy-quark mesonic bound states. For example, lattice calculations

suggest that charmonium states such as the J/ψ meson melt at temperatures between

1.65Tdeconf [156–158] and 2.1Tdeconf [159,160], while lattice results for the QCD deconfinement

temperature are in the range: Tdeconf ≃ 151 to 192 MeV [161–163]. Although the holographic

description may provide some useful geometric intuition for this phenomenon, there are

also some caveats that we will discuss in due course.

An overview of this chapter is as follows: In section 2.1 we review the throat geometries

for black Dp-branes which are dual to (p+1)-dimensional super-Yang-Mills (SYM) at finite

temperature [58]. Section 2.2 reviews and expands on the self-similar behaviour of the

embeddings near the critical solution for general Dp/Dq systems, as originally presented in

[111]. In the subsequent detailed discussion of the thermodynamics, we focus our attention

on the D3/D7 [93,106] and D4/D6 [62] cases for concreteness. In section 2.3, we compute

the free energy, entropy and energy densities, as well as the speed of sound for the D3/D7

system. We also study the meson spectrum on the Minkowski embeddings in this section.

This spectrum is related to the dynamical stability, or lack thereof, of this phase, as we

find that tachyonic modes appear where thermodynamic considerations indicate that these

embeddings are unstable. Section 2.4 repeats the salient calculations for the D4/D6 system.

A discussion of the results from this chapter appears in section 2.5. Finally, section 2.6

contains various technical details: Section 2.6.1 provides an analytic description of the

D7-brane embeddings at very high and very low temperatures. Then section 2.6.2 presents

some of the details of the calculation of the entropy density contributed by the D7-branes.
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Section 2.6.3 discusses the appearance of the ‘swallow tail’ form in the plots of the free

energy, e.g., fig. 2.5. Section 2.6.4 provides a calculation of the constituent quark mass in

the low temperature phase of the fundamental matter. Finally, section 2.6.5 discusses the

holographic renormalisation of the D4-brane background.

2.1 Black Dp-branes

In this section we briefly review the relevant aspects of the throat geometries and thermo-

dynamics of black Dp-branes. This will be of use in subsequent chapters and in subsequent

sections in this chapter, in particular, in sections 2.3 and 2.4, where we specialise to black

D3- and D4-brane backgrounds, respectively.

2.1.1 Supergravity Background

The supergravity solution corresponding to the decoupling limit of Nc coincident black

Dp-branes is, in the string frame (see, e.g., [45] and references therein),4

ds2 = H− 1
2

(
−fdt2 + dx2

p

)
+H

1
2

(
du2

f
+ u2dΩ2

8−p

)
,

eΦ = H
3−p

4 , C01...p = H−1 , (2.1)

where H(u) = (L/u)7−p and f(u) = 1− (u0/u)
7−p. The horizon lies at u = u0. The length

scale L is defined in terms of the string coupling constant gs and the string length ℓs:

L7−p = gsNc (4πℓ2s)
7−p

2 Γ( 7−p

2
) /4π . (2.2)

For the special case p = 3, L is the radius of curvature for the AdS5×S5 geometry appearing

in eq. (2.1).

According to the general gauge/gravity duality of [58], type II string theory in these

backgrounds is dual to the super-Yang-Mills SU(Nc) gauge theory on the (p+1)-dimensional

worldvolume of the Dp-branes. For general p (6= 3), the gauge theory is distinguished from

4The decoupling limit consists of holding g2
YM = 2πgs(2πℓs)

p−3 fixed while taking α′ = ℓ2s → 0. In this

limit, energy scales U = u/ℓ2s are also held constant as the limit α′ → 0 is taken [58].
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the conformal case (p = 3) by the fact that the Yang-Mills coupling gYM is dimensionful.

The holographic dictionary provides

g2
YM = 2πgs(2πℓs)

p−3 . (2.3)

Hence there is a power-law running of the dimensionless effective coupling with the energy

scale U :

g2
eff = g2

YMNc U
p−3 , (2.4)

where U = u/α′ by virtue of the usual energy/radius correspondence. The absence of

conformal invariance for the general case is manifested in the dual geometry by the ra-

dial variation of both the string coupling and the spacetime curvature. The supergravity

solution (2.1) is a trustworthy background provided that both the curvatures and string

coupling are small. Hence in these general dualities, the supergravity description is lim-

ited to an intermediate regime of energies in the field theory or of radial distances in the

background. This restriction is succinctly expressed in terms of the effective coupling (2.4)

as [58]:

1 ≪ geff ≪ N
4

7−p
c . (2.5)

Hence the field theory is always strongly coupled where the dual supergravity description

is valid.

With the event horizon at u = u0, Hawking radiation appears in the background with

a temperature fixed by the surface gravity T = κ/2π. This temperature is identified with

that of the dual (p+ 1)-dimensional gauge theory. In the geometry (2.1), the temperature

can also be determined by demanding regularity of the Euclidean section obtained through

the Wick rotation t→ itE. Then tE must be periodically identified with a period β where

1

β
= T =

7 − p

4πL

(u0

L

) 5−p

2
. (2.6)

In some cases, one periodically identifies some of the Poincaré directions xp in order

to render the theory effectively lower-dimensional at low energies; a prototypical example

is that of a D4-brane with one compact space direction – see, e.g., [59, 62]. Under these

circumstances a different background with no black hole may describe the low-temperature

physics, and a phase transition at T = Tdeconf may occur [59]. In the gauge theory this is

typically a confinement/deconfinement phase transition for the gluonic (or adjoint) de-

grees of freedom. Throughout this chapter we assume that T > Tdeconf, in which case the

appropriate gravitational background has an event horizon, as in eq. (2.1).
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2.1.2 Thermodynamics

As alluded to above, with the Wick rotation t → itE, the Euclidean path integral yields

a thermal partition function. Further the Euclidean black hole is interpreted as a saddle-

point in this path integral and so the gravity action evaluated for this classical solution

is interpreted as the leading contribution to the free energy, i.e., IE = βF – see, e.g.,

[164]. Hence to study the gauge theory thermodynamics holographically, one needs to

evaluate the supergravity action IE for the Euclidean version of the above backgrounds

(2.1). This suffers from IR (large radius) divergences, but these may be regulated by adding

appropriate boundary terms to the action. These boundary terms were originally found for

asymptotically AdS backgrounds, such as the black D3-brane, in [165–170]. As we discuss

in section 2.6.5, similar surface terms should exist in the general gauge/gravity dualities

to complete the holographic description. Here we simply comment that for the black D4-

brane, which is the relevant background in section 2.4, we are guided in the construction

of these counterterms by considering the M5-brane counterpart in M-theory. In any event,

after including the appropriate boundary terms, the Euclidean action is finite.5 Then

with F = TIE and standard thermodynamic relations, various thermal quantities can be

determined. For example, the entropy S and the energy E are computed as:

S = −∂F
∂T

, E = F + TS . (2.7)

For the black D3-brane background, the length scale (2.2) is given by L4 = 4πgsNcℓ
4
s,

and the free energy is

F = −π
6L8

16G
T 4 = −π

2

8
N2

c T
4 , (2.8)

where G is the ten-dimensional Newton’s constant. In terms of the string length and

coupling, the latter is given by:

16πG = (2π)7ℓ8s g
2
s . (2.9)

5For the above backgrounds (2.1) describing the gauge theory on flat p-dimensional space, the action

still contains an IR divergence, namely a factor of the spatial volume Ṽx =
∫
dpx. In the following,

we divide all extensive thermodynamic quantities by Ṽx so that we are really looking at densities, e.g.,

eq. (2.11) really gives the free energy per unit p-volume. When we refer to contributions from the brane

probes, the relevant volume factor is instead that of the defect on which the fundamental matter lives,

Vx =
∫
ddx.



Thermodynamics of the brane 19

For the black D4-brane geometry we have L3 = πgsNcℓ
3
s and

F = −210π7L9

37G
T 6 = −25π2

37
λN2

c T
6 , (2.10)

where as usual λ = g2
YMNc denotes the ’t Hooft coupling. (The reader is referred to section

2.6.5 for further discussion of this case.) In general, the free energy for a general black

Dp-brane geometry can be written as [58,171]

F ∼ N2
c T

p+1geff(T )
2(p−3)
5−p , (2.11)

where

g2
eff(T ) = λT p−3 = g2

YMNcT
p−3 (2.12)

is the effective coupling (2.4) evaluated at the temperature scale U = T . In eq. (2.11),

N2
c reflects the number of degrees of freedom in the SU(Nc) gauge theory while T p+1

is the expected temperature dependence for a (p + 1)-dimensional theory. However, the

dependence on geff is a prediction of the holographic framework for the strongly coupled

gauge theory. Note that for the conformal case (p = 3), but only for this case, this factor is

simply unity and so the thermodynamic results can compared to those calculated at weak

coupling [172].

Another quantity that is often studied in the context of the gauge/gravity duality is

the speed of sound, e.g., [120, 122, 127–132]. While this quantity can be inferred from the

pole structure of certain correlators [120,122,127], it can also be derived from the thermal

quantities discussed above, with

v2
s =

∂P

∂E
=
∂P

∂T

(
∂E

∂T

)−1

=
S

cV

. (2.13)

Here we have used the fact that for a system without a chemical potential, the pressure and

free energy density are identical up to a sign, i.e., P = −F . Hence ∂P/∂T = −∂F/∂T = S.

Also we use cV to denote the heat capacity (density), i.e., cV ≡ ∂E/∂T . From eqs. (2.11)

and (2.12), one finds the simple result that for the strongly coupled gauge theory in (p+1)

dimensions

v2
s =

5 − p

9 − p
=

{
1/3 for p = 3 ,

1/5 for p = 4 .
(2.14)

We see above that the conformal result v2
s = 1/p is only achieved for p = 3 [120,122,127], as

expected. We note, however, that the p = 1 and 4 backgrounds are related through a simple
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chain of dualities to the AdS4 and AdS7 throats of M2- and M5-branes, respectively. Hence

for these specific cases with v2
s = 1/2 and 1/5, the speed of sound reflects the conformal

nature of the holographic theories dual to these M-theory backgrounds [122].

2.2 Criticality, scaling, and phase transitions in Dp/Dq

systems

We now turn to the systems of interest in this thesis: Configurations of probe Dq-branes in

the background geometry induced by black Dp-branes. The addition of the probes in the

gravitational description is dual to the addition of matter in the fundamental representation

in the gauge theory [60,153]. In this section, we describe the embedding of the Dq-branes,

study the critical behaviour and analyse the nature of the phase transition for general p

and q. The latter involves extending the Euclidean techniques of the previous section to the

worldvolume action of the Dq-brane, to study the thermal properties of the fundamental

matter. This discussion naturally leads to sections 2.3 and 2.4, where we provide a detailed

analysis of the D3/D7 and D4/D6 brane systems.

2.2.1 Dp/Dq brane intersections

Consider a configuration of Nc coincident black Dp-branes intersecting Nf coincident Dq-

branes along d spacelike directions. In the limit Nf ≪ Nc the Dq-branes may be treated

as a probe in the Dp-brane geometry (2.1), wrapping an Sn inside the S8−p. We will

assume that the Dq-brane also extends along the radial direction, so that q = d + n + 1.

The corresponding gauge theory now contains fundamental matter propagating along a

(d+1)-dimensional defect. To ensure stability, we will consider Dp/Dq intersections which

are supersymmetric at zero temperature. Generally this means that we are interested in

q = p + 4, p + 2 or p, as studied in [101, 102, 154]. In this case, the Ramond-Ramond

field sourced by the Dp-branes does not couple to the Dq-brane. For the two cases of

special interest here, the D3/D7 and the D4/D6 systems, one has n = 3 and n = 2

respectively. If the appropriate direction along the D4-brane is compactified, then both

cases can effectively be thought of as describing the dynamics of a four-dimensional gauge

theory with fundamental matter.
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2.2.2 Critical behaviour

To uncover the critical behaviour of the Dp/Dq brane system, we study the behaviour of

the probe brane near the horizon, following [173] closely – see also [174, 175]. First it is

useful to adapt the S8−p metric in (2.1) to the probe brane embedding, and so we write

dΩ2
8−p = dθ2 + sin2 θ dΩ2

n + cos2 θ dΩ2
7−p−n . (2.15)

As described above, the Dq-brane wraps the internal Sn with radius sin θ in this line

element. Now we zoom in on the near horizon geometry with the coordinates

u = u0 + πTz2 , θ =
y

L

(
L

u0

) p−3
4

, x̃ =
(u0

L

) 7−p

4
x , (2.16)

with T the temperature defined in (2.6). With these coordinates, the event horizon is at

z = 0. Further y = 0 denotes the axis running orthogonally to the Dq-brane from the

Dp-branes. Expanding the metric (2.1) to lowest order in z and y gives Rindler space

together with some spectator directions:

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
n + dx̃2

d + · · · . (2.17)

The Dq-brane lies at constant values of the omitted coordinates, so these play no role in the

following. The Dq-brane embedding is specified by a curve (z(σ), y(σ)) in the (z, y)-plane.

Since the dilaton approaches a constant near the horizon, up to an overall constant the

Dq-brane (Euclidean) action is simply the volume of the brane, namely

Ibulk ∝
∫
dσ
√
ż2 + ẏ2 zyn , (2.18)

where the dot denotes differentiation with respect to σ and the reason for the subscript

‘bulk’ will become clear shortly. This is precisely the action considered in ref. [173]. In the

gauge z = σ the equation of motion takes the form

zyÿ + (yẏ − nz)(1 + ẏ2) = 0 , (2.19)

while the gauge choice y = σ yields

yzz̈ + (nzż − y)(1 + ż2) = 0 . (2.20)
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The two types of embeddings described in the introduction for the full background

extend to this near-horizon geometry (2.17). Hence the solutions again fall into two classes:

‘black hole’ and ‘Minkowski’ embeddings – see fig. 2.1. Black hole embeddings are those

for which the brane falls into the horizon, and may be characterised by y0, the size of the

Sn there, which is also the size of the induced horizon on the Dq-brane worldvolume. The

appropriate boundary condition is ẏ = 0, y = y0 at z = 0. Minkowski embeddings are

those for which the brane closes off smoothly above the horizon. These are characterised

by the distance of closest approach to the horizon, z0, and satisfy the boundary condition

ż = 0, z = z0 at y = 0. There is a simple limiting solution for the equations of motion

(2.19): y =
√
n z. This critical solution just touches the horizon at the point y = z = 0,

and so it lies between the above two classes. Note that this point is a singularity in the

induced metric of the Dq-brane.

The equation of motion (2.19) enjoys a scaling symmetry: If y = f(z) is a solution,

then so is y = f(µz)/µ for any real positive µ. This transformation rescales z0 → z0/µ for

Minkowski embeddings, or y0 → y0/µ for black hole embeddings, which implies that all

solutions of a given type can be generated from any other one by this scaling transformation.

Consider now a solution very close to the critical one, y(z) =
√
n z + ξ(z). Linearising

the equation of motion (2.19), one finds that for large z the solutions are of the form

ξ(z) = zν± , with

ν± = −n
2
±
√
n2 − 4(n+ 1)

2
. (2.21)

If n ≤ 4, these exponents have non-vanishing imaginary parts, which leads to oscillatory

behaviour. It appears that one can also get real exponents with n ≥ 5. However, we will

show below that no such systems are realised in superstring theory. Hence we will only

work with n ≤ 4 in the following. In this case it is convenient to write the general solution

as

y =
√
n z +

T−1

(Tz)
n
2

[
a sin(α log Tz) + b cos(α log Tz)

]
, (2.22)

where α =
√

4(n+ 1) − n2/2 and a, b are dimensionless constants determined by z0 or y0.

It is easy to show that under the rescaling discussed above, these constants transform as

(
a

b

)
→ 1

µ
n
2
+1

(
cos(α log µ) sin(α log µ)

− sin(α log µ) cos(α log µ)

)(
a

b

)
. (2.23)
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This result implies that the solutions exhibit discrete self-similarity and yields critical

exponents that characterise the near-critical behaviour. We refer the reader to [173–175]

for details but emphasise that this behaviour depends only on the dimension of the sphere.

Hence it is universal for all Dp/Dq systems (with n ≤ 4).

Each near-horizon solution gives rise to a global solution when extended over the full

spacetime (2.1). Each of these embeddings is characterised by two constants, which can

be read off from its asymptotic behaviour and which can be interpreted as the quark mass

Mq and (roughly) the quark condensate 〈ψ̄ψ〉 in the dual field theory – see below. Both of

these quantities are fixed by z0 or y0. As we will see, the values corresponding to the critical

solution, M∗
q and 〈ψ̄ψ〉∗, give a rough estimate of the point at which a phase transition

occurs.

Real scaling exponents?

From eq. (2.21), we see that the exponents will be real if the dimension of the internal sphere

wrapped by the Dq-brane is sufficiently large, i.e., if n ≥ 5. This would be interesting

because, whereas the oscillatory behaviour for n ≤ 4 leads to a first order phase transition,

as we show below, real exponents would seem to lead to a second order phase transition.

However, we will now argue that (under the same assumption to guarantee stability as

above) no such analysis can be applied for the Dp/Dq systems that actually arise in

superstring theory.

Choosing a value of n, the dimension of the internal sphere, places restrictions on the

allowed values of both p and q. The internal Sn is a subspace of the spherical part of the

geometry (2.1) and hence we must have p < 8− n. We have taken a strict inequality here,

i.e., we do not consider p = 8 − n, because the size of the n-sphere must vary to have

nontrivial embeddings and so it can not fill the entire internal (8−p)-sphere. Given that

p ≥ 0,6 we need only consider n = 5, 6, 7.

Next, we note that by T-dualising along the p directions common to both sets of branes,

the brane configuration is reduced to a D0/Dq′ intersection, where q′ = n + 1 + (p − d).

Given the previous restriction on n, we must have q′ ≥ 6. Now, if we require as above

that the intersection be supersymmetric at zero temperature (for stability), then we must

have q′ = 8. Hence the only brane configurations of interest are T-dual to the D0/D8

6No black brane geometry exists for a Euclidean D(–1)-brane.
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system. However, these configurations are those in which string creation arises through the

Hanany-Witten effect [176]. In particular, as discussed in [177], the background Ramond-

Ramond field of the Dp-branes will induce a nontrivial worldvolume gauge field on the

Dq-brane. While this does not rule out the possibility of interesting embeddings and a

possible (second order) phase transition, it certainly indicates that the present analysis

(with no worldvolume gauge fields) does not apply to these systems. For this reason, in

the remainder of this chapter we will concentrate on Dp/Dq systems with n ≤ 4.

2.2.3 Phase Transitions

In order to study the global solutions corresponding to the near horizon solutions of the pre-

vious subsection it is convenient to introduce an isotropic, dimensionless radial coordinate

ρ through

(u0ρ)
7−p

2 = u
7−p

2 +

√
u7−p − u7−p

0 . (2.24)

Note that the horizon is at ρ = 1. Following the discussion in the previous subsection,7 we

assume that the Dp/Dq system under consideration is T-dual to the D3/D7 one, in which

case (p − d) + (n + 1) = 4. Then the Euclidean Dq-brane action density of Nf coincident

Dq-branes in the black Dp-brane background is

Ibulk

N =

∫ ∞

ρmin

dρ

(
u

u0ρ

)d−3(
1 − 1

ρ2(7−p)

)
ρn(1 − χ2)

n−1
2
√

1 − χ2 + ρ2χ̇2 , (2.25)

where χ = cos θ, χ̇ = dχ/dρ and we have introduced the normalisation constant

N =
NfTDqu

n+1
0 Ωn

4T
. (2.26)

Here, TDq = 1/(2πℓs)
qgsℓs is the Dq-brane tension and Ωn is the volume of a unit n-sphere.

Up to a numerical constant of O(1), the normalisation factor is found to be

N ∼ NfNcT
dgeff(T )

2(d−1)
5−p , (2.27)

where geff(T ) is the effective coupling (2.12) and we have used the standard gauge/gravity

relations (2.2) and (2.3).

7Above, we pointed out that our present analysis does not apply to Dp/Dq systems T-dual to D0/D8-

branes. Systems T-dual to D0/D0 systems would be trivial for the present purposes as n = 0. Hence those

T-dual to the D0/D4 or D3/D7 system are the only other possibility with a supersymmetric limit.
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The equation of motion that follows from (2.25) leads to the large-ρ behaviour8

χ =
m

ρ
+

c

ρn
+ · · · . (2.28)

Holography relates the dimensionless constants m, c to the quark mass and condensate

by9,10

Mq =
u0m

2
9−p

7−pπℓ2s
∼ geff(T )

2
5−p T m , (2.29)

〈Om〉 = −2πℓ2s(n− 1)ΩnNfTDqu
n
0c

4
n

7−p

∼ −NfNc g
2(d−2)
5−p

eff T d c . (2.30)

Here Mq is the mass of the fields in the fundamental hypermultiplets, both the fermions

ψ and the scalars q. The operator Om is a supersymmetric version of the quark bilinear,

and it takes the schematic form

Om = ψ̄ψ + q†Φq +Mqq
†q , (2.31)

where Φ is one of the adjoint scalars. We will loosely refer to its expectation value as the

‘quark condensate’. A detailed discussion of this operator, including a precise definition,

can be found in appendix A [126,151].

Eq. (2.29) implies the relation m(5−p)/2 = M̄/T between the dimensionless quantity m,

the temperature T and the mass scale

M̄ =
7 − p

2
9−p

7−pπL

(
2πℓ2sMq

L

) 5−p

2

∼ Mq

geff(Mq)
. (2.32)

Up to numerical factors, this scale is the mass gap in the discrete meson spectrum at

temperatures well below the phase transition [61,62,101,102,154]. We shall see below that

it is also the scale of the temperature of the phase transition for the fundamental degrees

of freedom, Tfun ∼ M̄ , since the latter takes place at m ∼ 1.

The key observation [174, 175] is that the values (m, c) of a near-critical solution are

linearly related to the integration constants fixing the corresponding embedding in the near-

horizon region. Combining this with the transformation rule (2.23) for the near-horizon

8Here we assume n > 1. Otherwise the term multiplied by c is log ρ/ρ.
9Note that the factor of Nf in the second equation was missing in refs. [111,147].

10A derivation of these relations for the D3/D7 brane system appears in appendix A. The derivation

for Dp/Dq systems is analogous.
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constants (a, b) and eliminating µ, we deduce that (m − m∗)/z
n
2
+1

0 and (c − c∗)/z
n
2
+1

0

are periodic functions of (α/2π) log z0 with unit period for Minkowski embeddings, and

similarly with z0 replaced by y0 for black hole embeddings. This is confirmed by our

numerical results, which will be discussed in the next sections and are illustrated for the

D3/D7 brane system in figure 2.3.

The oscillatory behaviour of m and c as functions of z0 or y0 implies that for a fixed

value of m near the critical value, several consistent Dq-brane embeddings are possible

with different values of c. Alternatively, one finds the quark condensate is not a single-

valued function of the quark mass. Physically, the preferred solution will be the one that

minimises the free energy density of the Dq-branes, F = TIE. As with the bulk action,

the Dq-action (2.25) contains large-radius divergences, as can be seen by substituting

the asymptotic behaviour (2.28) in eq. (2.25). It therefore needs to be regularised and

renormalised. We can achieve the former by replacing the upper limit of integration by

a finite ultraviolet cut-off ρmax. Then in analogy to the holographic renormalisation of

the supergravity action [165–170], boundary ‘counter-terms’ Ibound are added to the brane

action Ibulk, such that the renormalised brane energy IE = Ibulk + Ibound is then finite as the

cut-off is removed, ρmax → ∞ [178]. The latter method applies directly to asymptotic AdS

geometries, but it can be easily extended to the D4/D6 system, as discussed below. We

expect that a similar procedure can be developed for any Dp/Dq system for which there is

a consistent gauge/gravity duality. (In any event, the brane action can also be regulated by

subtracting the free energy of a fiducial embedding.) The details for the D3/D7 and D4/D6

cases are discussed in the following sections and the results are presented in figures 2.5 and

2.13, respectively. In both cases, we see that as the temperature is increased, a first order

phase transition occurs by discontinuously jumping from a Minkowski embedding (point

A) to a black hole embedding (point B). We emphasise again that this first order transition

is a direct consequence of the multi-valued nature of the physical quantities brought on by

the critical behaviour described in the previous section. It may be possible to access this

self-similar region by supercooling the system (although most of the other solutions in this

region are dynamically unstable – see below).

It is interesting to ask if the strong coupling results obtained here could in principle

be compared with a weak coupling calculation. It follows from our analysis that the free

energy density takes the form F = NTf(m2), where the function f can only depend on

even powers of m because of the reflection symmetry χ → −χ. The limit m → 0 may
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be equivalently regarded as a zero quark mass limit or as a high-temperature limit. In

this limit the brane lies near the equatorial embedding χ = 0, which slices the horizon in

two equal parts. In general f(0) is a non-zero numerical constant; in the D3/D7 case, for

example, a straightforward calculation yields f(0) = −1/2. Given eq. (2.27), we have that

at strong coupling the free energy density scales as

F ∼ NfNc T
d+1 geff(T )

2(d−1)
5−p . (2.33)

The temperature dependence is that expected on dimensional grounds for a d-dimensional

defect, and the NfNc dependence follows from large-N counting rules. However, the depen-

dence on the effective ’t Hooft coupling indicates that this contribution comes as a strong

coupling effect, without direct comparison to any weak coupling result. The same is true for

other thermodynamic quantities such as, for example, the entropy density S = −∂F/∂T .

We remind the reader that the background geometry makes the leading contribution to the

free energy density (2.11), which corresponds to that coming from the gluons and adjoint

matter. Recall that only for p = 3 is the effective coupling factor absent in eq. (2.11).

Only in this case the string coupling result differs from that at weak coupling by a mere

numerical factor of 3/4 [172]. For the fundamental matter, a similar circumstance arises

for d = 1, as would be realised with the D1/D5, D2/D4 or D3/D3 systems. In these

special cases, the strong and weak coupling calculations for the fundamental matter could

in principle be compared. Hence the D3/D3 system is singled out since such a comparison

can be made for both the adjoint and fundamental sectors.

2.3 The D3/D7 system

Here we will specialise the above discussion to the D3/D7 system. This intersection is

summarised by the array

0 1 2 3 4 5 6 7 8 9

D3: × × × ×
D7: × × × × × × × ×

(2.34)

Of course, this is an interesting system because both the gluons and the fundamental fields

in the gauge theory propagate in 3 + 1 dimensions.
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2.3.1 D7-brane embeddings

In the D3/D7 brane system with the radial coordinate defined in (2.24),

(u0ρ)
2 = u2 +

√
u4 − u4

0 , (2.35)

the background metric (2.1) becomes

ds2 =
1

2

(u0ρ

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

ρ2

[
dρ2 + ρ2dΩ2

5

]
, (2.36)

where

f(ρ) = 1 − 1

ρ4
, f̃(ρ) = 1 +

1

ρ4
. (2.37)

The coordinates {t, xi} parametrise the intersection, while {ρ,Ω5} are spherical coordinates

on the 456789-directions transverse to the D3-branes. As in eq. (2.15), it is useful to adapt

the metric on the five-sphere to the D7-brane embedding. Since the D7-brane spans the

4567-directions, we introduce spherical coordinates {r,Ω3} in this space and {R, φ} in the

89-directions. Denoting by θ the angle between these two spaces we then have:

ρ2 = r2 +R2 , r = ρ sin θ , R = ρ cos θ , (2.38)

and

dρ2 + ρ2dΩ2
5 = dρ2 + ρ2

(
dθ2 + sin2 θ dΩ2

3 + cos2 θ dφ2
)

(2.39)

= dr2 + r2dΩ2
3 + dR2 +R2dφ2 . (2.40)

Describing the profile in terms of χ(ρ) = cos θ(ρ) simplifies the analysis – note that

χ = R/ρ. With this coordinate choice, the induced metric on the D7-brane becomes

ds2 =
1

2

(u0ρ

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+

(
L2

ρ2
+

L2χ̇2

1 − χ2

)
dρ2 + L2(1 − χ2) dΩ2

3 , (2.41)

where, as above, χ̇ = dχ/dρ. Since we are studying static embeddings of the probe brane,

the equation of motion for χ(ρ) can be derived equally well from the Lorentzian or Euclidean

action. Here we proceed directly to the latter because it is relevant for the thermodynamic

calculations in the following. The Euclidean D7-brane action density is

Ibulk

N =

∫
dρ

(
1 − 1

ρ8

)
ρ3(1 − χ2)

√
1 − χ2 + ρ2χ̇2 , (2.42)
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where

N =
2π2NfTD7u

4
0

4T
=
λNfNc

32
T 3 (2.43)

is the normalisation constant defined in (2.26). Recall from footnote 5 that Ibulk denotes

a density because we have divided out the volume Vx. The equation of motion for χ(ρ) is

then

∂ρ

[(
1 − 1

ρ8

)
ρ5(1 − χ2)χ̇√
1 − χ2 + ρ2χ̇2

]
+ ρ3

(
1 − 1

ρ8

)
3χ(1 − χ2) + 2ρ2χχ̇2

√
1 − χ2 + ρ2χ̇2

= 0 , (2.44)

which implies that the field χ asymptotically approaches zero as

χ =
m

ρ
+

c

ρ3
+ · · · . (2.45)

The holographic dictionary (see appendix A) relates the dimensionless constants m and c

to the quark mass and condensate through eqs. (2.29) and (2.30) with p = 3 and n = 3:

Mq =
u0m

23/2πℓ2s
=

1

2

√
λT m , (2.46)

〈Om〉 = −23/2π3ℓ2sNfTD7u
3
0 c = −1

8

√
λNfNc T

3 c . (2.47)

In this case m = M̄/T and eq. (2.32) takes the form

M̄ =

√
2(2πℓ2sMq)

πL2
=

2Mq√
λ

=
Mgap

2π
, (2.48)

where λ = g2
YMNc = 2πgsNc is the ’t Hooft coupling. In the last equality, we are relating

M̄ to the meson mass gap in the D3/D7 theory at zero temperature [61].

The equation of motion (2.44) can be recast in terms of the R and r coordinates, related

to the ρ and θ coordinates via (2.38):

∂r

[
r3

(
1 − 1

(r2 +R2)4

)
∂rR√

1 + (∂rR)2

]
= 8

r3R

(r2 +R2)5

√
1 + (∂rR)2 , (2.49)

where the embedding of the D7-brane is now specified by R = R(r). Asymptotically,

R(r) = m+
c

r2
+ · · · . (2.50)
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Figure 2.2: Profiles of various D7-brane embeddings in a D3-brane background in the

(R, r)-plane. The circle represents the horizon at ρ = 1.

In the limits of large and small m we were able to find approximate analytic solutions

for the embeddings – see discussion below and section 2.6.1. However, for arbitrary m

we were unable to find an analytic solution of eq. (2.44) or (2.49) and so we resorted to

solving these equations numerically. It was simplest to solve for Minkowski embeddings

using the (R, r) coordinates with equation of motion (2.49) while the (χ, ρ) coordinates

were best suited to the black hole embeddings. Our approach was to specify the boundary

conditions at a minimum radius and then numerically integrate outward. For the black

hole embeddings, the following boundary conditions were specified at the horizon ρmin = 1:

χ = χ0 and dχ/dρ = 0 for 0 ≤ χ0 < 1. For Minkowski embeddings, the following boundary

conditions were specified at rmin = 0 (i.e., at the axis χ = 1): R = R0 and ∂rR = 0 for

R0 > 1. In order to compute the constants m, c corresponding to each choice of boundary

conditions at the horizon, we fitted the solutions to the asymptotic form (2.45) for χ(ρ) or

(2.50) for R(r). A few characteristic profiles are shown in fig. 2.2.

Recall that, as elucidated in section 2.2.2, the black hole and Minkowski embeddings

are separated by a critical solution which just touches the horizon. This critical embed-

ding is characterised by certain critical values of the integration constants, m∗ and c∗. For

Minkowski embeddings near the critical solution, fig. 2.3 shows plots of (m−m∗)/(R0−1)5/2

and (c−c∗)/(R0−1)5/2 versus
√

7 log(R0−1)/4π. In this regime, we may relate the bound-

ary value to that in the near horizon analysis with R0 − 1 ≃ z0. Here our numerical results

confirm that, near the critical solution, (m−m∗)/z
5/2
0 and (c− c∗)/z

5/2
0 are both periodic
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functions of
√

7 log(z0)/4π with unit period, as discussed above in section 2.2.2. This os-

cillatory behaviour of m and c as functions of z0 (or y0) implies that the quark condensate

is not a single-valued function of the quark mass and this is clearly visible in our plots of

c versus T/M̄ = 1/m, displayed in figure 2.4. By increasing the resolution in these plots,

we are able to follow the two families of embeddings spiralling in on the critical solution,

the behaviour predicted by the near-horizon analysis. Thermodynamic considerations will

resolve the observed multi-valuedness by determining the physical solution as that which

minimises the free energy density of the D7-branes. As discussed in section 2.2.3, since

the physical parameters are multi-valued, we can anticipate that there will be a first or-

der phase transition when the physical embedding moves from the Minkowski branch to

the black hole branch. We will proceed to computing the free energy density in the next

subsection. The position of the resulting phase transition is indicated in the second plot

of fig. 2.4.
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Figure 2.3: Quark mass (a) and condensate (b) as a function of the distance to the horizon

R0−1 for D7-brane Minkowski embeddings in a D3-brane background. Note that near the

horizon R0 − 1 ∼ z0.

2.3.2 D7-brane thermodynamics

Having discussed the embeddings of the D7-brane in the black D3-brane geometry, we

proceed to compute the free energy, entropy and energy densities associated with the D7-

brane, or equivalently, the fundamental fields. We start with the Euclidean D7-brane
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Figure 2.4: Quark condensate c for a D7 in a D3 background versus T/M̄ . The blue dashed

(red continuous) curves correspond to the Minkowski (black hole) embeddings. The dotted

vertical line indicates the precise temperature of the phase transition.

action (2.42). Using the asymptotic behaviour (2.45), we see that the action contains a

UV divergence, since
Ibulk

N ≃
∫ ρmax

ρmin

dρ ρ3 ≃ 1

4
ρ4

max (2.51)

diverges as the regulator is removed, i.e., ρmax → ∞.

This kind of problem is well-known in the context of the AdS/CFT correspondence

and was first resolved for the gravity action by introducing boundary counter-terms, which

depend only on the intrinsic geometry of the boundary metric [165–170]. These ideas can

be generalised to other fields in an AdS background, such as a scalar [179] – for a re-

view, see [180]. The latter formed the basis for the renormalisation of probe brane actions

in [178], where the brane position or profile is treated as a scalar field in an asymptotically

AdS geometry. That is, one implicitly performs a Kaluza-Klein reduction of the D7 action
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to five dimensions so that it appears to be a complicated nonlinear action for a scalar

field χ propagating in a five-dimensional (asymptotically) AdS geometry. One then intro-

duces boundary counter-terms which are local functionals (polynomials) of the scalar field

(and boundary geometry) on an asymptotic regulator surface. These terms are designed

to remove the bulk action divergences that arise as the regulator surface is taken off to

infinity, as in eq. (2.51). The D3/D7 system is explicitly considered in ref. [178], which

also introduces a finite counterterm that ensures that the brane action vanishes for the

supersymmetric embedding of a D7-brane in an extremal D3-background, i.e., eq. (2.1)

with u0 = 0 and p = 3. In the calculation of [178] the D7-brane embedding is specified

as θ(ρ), but this is easily converted to a counter-term action for χ(ρ) using the obvious

coordinate/field redefinition: π
2
− θ = arcsinχ ≃ χ+ 1/6χ3 + · · · . The final result is

Ibound

N = −L
4T

u4
0

∫
dtEd

3x
√

det γ
(
1 − 2χ2 + χ4

)
, (2.52)

where this boundary action is evaluated on the asymptotic regulator surface ρ = ρmax

introduced above. The boundary metric γ at ρ = ρmax in the (effective) five-dimensional

geometry is given by

ds2(γ) =
1

2

(u0ρmax

L

)2
(
f(ρmax)

2

f̃(ρmax)
dt2E + f̃(ρmax)dx

2
3

)
(2.53)

and so
√
γ = u4

0ρ
4
maxf(ρmax)f̃(ρmax)/4L

4. Evaluating the counter-term action (2.52) with an

asymptotic profile as in eq. (2.28), one finds

Ibound

N = −1

4

[
(ρ2

max −m2)2 − 4mc
]
. (2.54)

Here we have divided out the volume factor Vx – see footnote 5. Comparing eqs. (2.51)

and (2.54), one sees that the leading divergence proportional to ρ4
max cancels in the sum of

IE = Ibulk + Ibound. As a further check, one can consider the supersymmetric limit u0 → 0,

in which one must work with a rescaled coordinate ̺ = u0ρ, since the change of variables

(2.35) is not well defined at u0 = 0. In this limit χ = u0m/̺ =
√

2 2πℓ2sMq/̺ is an exact

solution, and one can easily verify that for this configuration IE = Ibulk + Ibound = 0.

In order to produce a finite integral which is more easily evaluated numerically, it is

useful to incorporate the divergent terms in the boundary action (2.54) into the integral
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in eq. (2.42) using

ρ4
max =

∫ ρmax

ρmin

dρ 4ρ3 + ρmin
4 ,

ρ2
max =

∫ ρmax

ρmin

dρ 2ρ+ ρmin
2 . (2.55)

Then the total action may be written as

IE

N = G(m) − 1

4

[
(ρmin

2 −m2)2 − 4mc
]
, (2.56)

where G(m) is defined as

G(m) =

∫ ∞

ρmin

dρ

[
ρ3

(
1 − 1

ρ8

)(
1 − χ2

) (
1 − χ2 + ρ2 χ̇2

)1/2 − ρ3 +m2ρ

]
. (2.57)

Note that the upper bound for the range of integration has been set to infinity, since the

integral above is finite.

From these expressions, the free energy density is given by F = TIE. Now using our

numerical results, the free energy density is shown as a function of the temperature in the

first two plots in fig. 2.5. The second of these shows the classic ‘swallow tail’ form, typically

associated with a first order phase transition. To our best numerical accuracy, the phase

transition takes place at Tfun/M̄ = 0.7658 (or m = 1.306), where the free energy curves for

the Minkowski and black hole phases cross. The fact that the transition is first order is

illustrated by fig. 2.4, which shows that the quark condensate makes a finite jump at this

temperature between the points labelled A and B. Similar discontinuities also appear in

other physical quantities, like the entropy and energy density, as we now calculate.

Given the free energy density, a standard identity (2.7) yields the entropy density as

S = −∂F
∂T

= −πL2 ∂F

∂u0

, (2.58)

where we have used the expression u0 = πL2T from eq. (2.6). Evaluating this expression

requires a straightforward but somewhat lengthy calculation, which we have relegated to

section 2.6.2. The final result is

S

N = −4G(m) + (ρmin
2 −m2)2 − 6mc . (2.59)
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Comparing eqs. (2.56) and (2.59), we see that the entropy and free energy densities are

simply related as

S = −4F

T

(
1 +

2N mc

4F/T

)
. (2.60)

The first term above can be recognized as the behaviour expected for a conformal system,

i.e., a system for which F ∝ T 4. Hence the second term can be interpreted as summarising

the deviation from conformal behaviour. We note that, as illustrated in fig. 2.4, c vanishes

in both the limits T → 0 and T → ∞ and so the deviation from conformality is reduced

there. More precisely, using the results from section 2.6.1 we see that c ∼ m at high

temperature and c ∼ 1/m5 at low temperature. Together with (2.43) this implies that

the deviation from conformality scales as M̄2/T 2 at high temperature. Conformality is

also restored at low temperatures but only because both S and F/T approach zero more

quickly than T 3. That is, S ∼ T 7/M̄4 as T → 0.

Finally, the thermodynamic identity E = F + TS = T (IE + S) gives the contribution

of the D7-brane to the energy density:

E

NT
= −3G(m) +

3

4

[
(ρmin

2 −m2)2 − 20

3
mc

]
. (2.61)

We evaluated both the expressions (2.59) and (2.61) numerically and plotted S and E

in fig. 2.5. In both cases, the phase transition is characterised by a finite jump in these

quantities, as illustrated by the second plot in each case. However, these plots also show

that there is a large rise in, say, the entropy density in the vicinity of Tfun and that the jump

associated with the phase transition only accounts for roughly 3% of this total increase.

We close with a few observations about these results. First, recall from (2.43) that

N ∼ λNcNfT
3 so that the leading contribution of the D7-branes to all the various ther-

modynamic quantities will be order λNcNf, in comparison to N2
c for the usual bulk gravi-

tational contributions. As noted in [111, 147], the factor of λ represents a strong coupling

enhancement over the contribution over a simple free-field estimate for the NcNf funda-

mental degrees of freedom. We return to this point below in section 2.5.

Next, note that in order for the entropy S = −∂F/∂T to be positive, the free energy

F , or equivalently the action IE, must always be a decreasing function of the temperature.

This means that the apparent ‘kinks’ in the plot of these quantities versus the temperature

are true mathematical kinks and not just very rapid turn overs. An analytic proof of this

fact is given in section 2.6.3.
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Finally, from the plots of the energy density one can immediately read off the qualitative

behaviour of the specific heat cV = ∂E/∂T . In particular, note that this slope must become

negative as the curves spiral around near the critical solution. Hence the corresponding

embeddings are thermodynamically unstable. Examining the fluctuation spectrum of the

branes, we will show that a corresponding dynamical instability sets in at precisely the

same points. One may have thought that these phases near the critical point could be

accessed by ‘supercooling’ the system but this instability severely limits the embeddings

which can be reached with such a process.

Thermodynamic expressions for large T/M̄

With precisely m = 0, χ(ρ) = 0 is an exact solution. We denote this solution as the

equatorial embedding, since the D7-brane remains at the maximal S3 for all values of ρ.

This embedding describes the infinite-temperature limit for massive quarks (or massless

quarks for any temperature), i.e., T/M̄ → ∞. For T/M̄ ≫ 1 or m ≪ 1, approximate

analytic solutions for the D7-brane profile can be found by perturbing around the equatorial

embedding, as discussed in section 2.6.1. The final result is given in eq. (2.133). In the

notation of that section, the integral (2.57) can be expressed as

G(m) =

∫ ∞

1

dx

2

[
x

(
1 − 1

x4

)(
1 − 3

2
m2χ̃2 + 2x2 (∂xmχ̃)2

)
− x+m2

]

= −1

4
+m2G2

where we have introduced

G2 ≡
∫ ∞

1

dx

2

[
x

(
1 − 1

x4

)(
−3

2
χ̃2 + 2x2 (∂xχ̃)2

)
+ 1

]
≃ 0.413893 . (2.62)

We were only able to evaluate this integral numerically.

We are now in a position to evaluate the various thermal quantities given by eqs. (2.56),

(2.59) and (2.61) in this limit. We find

IE

N ≃ −1

2
+

(
G2 + c̃+

1

2

)(
M̄

T

)2

− 1

4

(
M̄

T

)4

+ · · · ,

S

N ≃ 2 + (−4G2 − 6c̃− 2)

(
M̄

T

)2

+

(
M̄

T

)4

+ · · · ,

E

NT
≃ 3

2
+

(
−3G2 − 5c̃− 3

2

)(
M̄

T

)2

+
3

4

(
M̄

T

)4

+ · · · ,
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using ρmin = 1 for black hole embeddings and c̃ ≃ −0.456947 from eq. (2.136). In this high

temperature limit, the quark mass is negligible and so the first term in these expressions

could be characterised as conformal behaviour. The remaining contributions are small

corrections indicating a deviation from this simple behaviour generated by the finite quark

mass. This is essentially the form expected in the high T limit in finite temperature field

theory – for example, see [181] and the references therein.

Thermodynamic expressions for small T/M̄

Turning to the opposite, low-temperature limit, i.e., T/M̄ ≪ 1, the D7-branes lie on flat

embeddings far from the event horizon, i.e., χ ≃ R0/ρ to leading order. One can calculate

perturbative improvements to this simple embedding – see section 2.6.1 – but it suffices to

determine the leading thermodynamic behaviour. We find that

G(m) =

∫ ∞

0

dr

[
r3

(
1 − 1

ρ8

)√
1 + (∂rR)2 + (r +R∂rR)(m2 − ρ2)

]
≃ 1

12

1

m4
. (2.63)

Then using R0 ≃ m and c ≃ −1/6m5, the thermal densities become

IE

N ≃ − 1

12

(
T

M̄

)4

,
S

N ≃ 2

3

(
T

M̄

)4

,
E

NT
≃ 7

12

(
T

M̄

)4

. (2.64)

Hence these contributions are going rapidly to zero. Note that they still contain the same

normalisation constant (2.43) and so these densities are still proportional to λNfNc. At low

temperature, one might have expected that the thermodynamics of the fundamental matter

is dominated by the low lying-mesons, i.e., the lowest energy excitations in the fundamental

sector, and so that the leading contributions are proportional to N2
f , reflecting the number

of mesonic degrees of freedom. Such contributions to the thermal densities will arise in the

gravity path integral in evaluating the fluctuation determinant on the D7-brane around the

classical saddle-point. As indicated by the Nc and λ factors, the leading low-temperature

contributions above come from the interaction of the (deconfined) adjoint fields and the

fundamental matter.

Speed of sound

As mentioned in section 2.1.2, the speed of sound is another interesting probe of the

deconfined phase of the strongly coupled gauge theories. In this section, we calculate the
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effect of fundamental matter on the speed of sound. From eq. (2.13), we must evaluate

the D7-branes contribution to the total entropy density and the specific heat. The first is

already given by eq. (2.59) and we denote this contribution as S7 in the following. From

eq. (2.61), the energy density can be written as E = −3F − 2NTmc. Then recalling

N ∝ T 3 from eq. (2.43), the D7-brane contribution to the specific heat can be written as

cV7 =
∂E

∂T
= 3S7 − α

∂

∂T
(T 4mc) , (2.65)

where we have introduced the dimensionless constant α ≡ λNfNc/16. From the black D3

background, the free energy of the adjoint fields is given in eq. (2.8). It follows then that

the adjoint contributions to the entropy and specific heat are:

S3 = −π
2

2
N2

c T
3 , cV3 = 3S3 . (2.66)

Combining all of these results, we can now calculate the speed of sound

v2
s =

S

cV

=
S3 + S7

cV3 + cV7

=
S3 + S7

3S3 + 3S7 − α ∂T (T 4mc)

≃ 1

3

[
1 +

α

3S3

∂T

(
T 4mc

)]
. (2.67)

Note all of our brane calculations are to first order in an expansion in Nf/Nc and hence we

have applied the Taylor expansion in the last line above, reflecting this perturbative frame-

work e.g., cV7/cV3 ≪ 1. Now using various expressions above, as well as m = 2Mq/
√
λT

and ε ≡ λ
2π

Nf

Nc
, we may write the final result as

δv2
s ≡ v2

s −
1

3
≃ ε

12π

(
mc+

1

3
mT

∂c

∂T

)
. (2.68)

This expression indicates that the D7-brane produces a small deviation away from the

conformal result, v2
s = 1

3
.

The result of numerically evaluating δv2
s as a function of the temperature is given

in fig. 2.6. We see that δv2
s is negative. That is, the fundamental matter reduces the

speed of sound. Following the discussion below eq. (2.60) one finds that δv2
s ∼ T 4/M̄4

at low temperature and δv2
s ∼ M̄2/T 2 at high temperature. Thus we see again that the
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deviation from conformal behaviour vanishes for large and small T . We also note that

δv2
s is largest near the phase transition, where it makes a discrete jump. Since we are

working in a perturbative framework, eq. (2.68) is only valid when this deviation is a small

perturbation. By assumption ε ∝ Nf/Nc ≪ 1 and so this is guaranteed provided the last

factor in (2.68) is not large. This is indeed satisfied for the thermodynamically favoured

embeddings, as illustrated in fig. 2.6. Similar deviations have been investigated in [129,130]

for other gauge/gravity dualities.

In fig. 2.6, we have also continued δv2
s on the disfavoured embeddings beyond the phase

transition and we see that it diverges (towards −∞) at precisely the points where, e.g.,

the energy density curve turns around – see fig. 2.5. That is, cV7 diverges at these points,

so that the perturbative derivation of eq. (2.68) breaks down. Hence our perturbative

framework does not allow us to investigate interesting effects, as seen in [131,132].
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Figure 2.6: The deviation of the speed of sound from the conformal value. (a) In the limits

T → 0 and T → ∞, δv2
s → 0. (b) The temperature of the phase transition is marked by

the dashed vertical line. Note there is a finite discontinuity in the speed of sound at the

phase transition. If we follow the black hole branch (red line) or the Minkowski branch

(dotted blue line) past the phase transition, we find that δv2
s diverges.

We see from eq. (2.68) that, for massive quarks, the deviation from the conformal

result is of proportional to Nf/Nc, as expected from large-Nc counting rules. However, if

Mq = 0 then the result above vanishes, and so δv2
s = O(N2

f /N
2
c ) at least. Presumably,

this additional suppression is due to the fact that for massive quarks conformal invariance
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is broken explicitly at the classical level, whereas if Mq = 0 it is broken only at the

quantum mechanical level by the non-vanishing beta function of the theory in the presence

of fundamental matter. This is proportional to Nf/Nc, leading to an additional suppression.

In the gravitational description this is most easily understood at zero temperature. In this

case the D3-brane background is exactly AdS5 × S5, and the isometries of the first factor

correspond to the conformal group in four dimensions. Adding D7-brane probes with non-

zero quark mass breaks the conformal isometries, and hence this effect is visible at order

Nf/Nc. Instead, if Mq = 0 then the branes’ worldvolume is AdS5 × S3, which preserves all

the AdS isometries. Hence in this case one must go beyond the probe approximation to

see the breaking of conformal invariance, i.e., beyond O(Nf/Nc).

2.3.3 Meson spectrum

As discussed earlier, introducing the D7-brane probes into the black D3-brane geometry

corresponds to adding dynamical quarks into the gauge theory. The resulting theory has

a rich spectrum of mesons, i.e., quark-antiquark bound states. Since the mesons are dual

to open strings with both ends on the D7-brane, the mesonic spectrum can be found

by computing the spectrum of D7-brane fluctuations. For temperatures below the phase

transition, T < Tfun, corresponding to Minkowski embeddings of the D7-branes, we expect

the spectrum to exhibit a mass gap and be discrete, as found at T = 0 [61, 101, 102,

154]. This is confirmed by our calculations below – similar calculations have also appeared

recently in [155]. For temperatures above the phase transition, corresponding to black hole

embeddings, the spectrum will be continuous and gapless. Excitations of the fundamental

fields in this phase are however characterised by a discrete spectrum of quasinormal modes,

in analogy with [182–184]. Investigations of the black hole phase appear in chapter 5 [126]

and in ref. [155].

Mesons on Minkowski embeddings

In this section we compute the spectrum of low-lying mesons corresponding to fluctuations

of the D7-brane in the black D3-brane geometry (2.36). The full meson spectrum would

include scalar, vector and spinor modes. For simplicity, we will focus on vector and scalar

mesons which correspond to small vector and scalar fluctuations of the probe D7-branes

about the embeddings determined in section 2.3.1. We will work with the (R, r) coordinates
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introduced in eq. (2.38), in which case the background embedding is given by R = Rv(r),

φ = 0, where the subscript v now indicates that this is the ‘vacuum’ solution.

We focus first on the scalar mesons which correspond to geometric fluctuations of the

probe branes. Explicitly, we consider small fluctuations δR, δφ about the background

embedding:

R = Rv(r) + δR , φ = 0 + δφ. (2.69)

The pullback of the bulk metric (2.36) to this embedding is

ds2 =
1

2

(u0ρ

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

ρ2

[
(1 + Ṙ2

v)dr
2 + r2dΩ2

3 + 2(∂aδR)Ṙvdx
adr
]

+
L2

ρ2

[
(∂aδR)(∂bδR)dxadxb + (Rv + δR)2(∂aδφ)(∂bδφ)dxadxb

]
,

where the indices a, b run over all D7 worldvolume directions and the dot denotes differ-

entiation with respect to r, i.e., Ṙv = ∂rRv. Using the DBI action,

IDBI = −Nf TD7

∫
d8σ
√

− det (P [G]ab + 2πℓ2sFab) , (2.70)

where, as usual, P denotes the pullback of a bulk field to the probe brane’s worldvolume

[185], we find that, to quadratic order in fluctuations, the Lagrangian density for the scalar

δφ, δR modes decouples from that for the gauge field modes:

L = L0 −Nf TD7

u4
0

4
r3
√
h

√
1 + Ṙ2

v

{
1

2

L2

ρ2
v

(
1 − 1

ρ8
v

)∑

a

gaa

(
(∂aδR)2

1 + Ṙ2
v

+R2
v(∂aδφ)2

)

+
4RvṘv∂r(δR)2

ρ10
v (1 + Ṙ2

v)
+

4(δR)2

ρ10
v

− 40R2
v(δR)2

ρ12
v

}
, (2.71)

where L0 is the Lagrangian density for the vacuum embedding:

L0 = −Nf TD7

u4
0

4
r3
√
h

√
1 + Ṙ2

v

(
1 − 1

ρ8
v

)
. (2.72)

Here ρ2
v = r2 + R2

v and h is the determinant of the metric on the S3 of unit radius.

The metric gab in the first line of (2.71) is the induced metric on the D7-brane with the

fluctuations set to zero:

ds2(g) =
1

2

(u0ρv

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

ρ2
v

[
(1 + Ṙ2

v)dr
2 + r2dΩ2

3

]
. (2.73)
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Note that integration by parts and the equation of motion for Rv allowed terms linear in

δR to be eliminated from the Lagrangian density. The linearised equation of motion is

∂a


 L

2r3ff̃
√
h

ρ2
v

√
1 + Ṙ2

v

gaa∂a(δR)


 = 8

√
h


 r

3

ρ10
v

√
1 + Ṙ2

v

(
1 − 10R2

v

ρ2
v

)
− ∂r


 r3RvṘv

ρ10
v

√
1 + Ṙ2

v




 δR

for δR and

∂a

[
r3ff̃

√
hR2

v

√
1 + Ṙ2

v

L2

ρ2
v

gaa∂a(δφ)

]
= 0 (2.74)

for δφ. Summation over the repeated index a is implied.

We proceed by separation of variables, taking

δφ = P(r)Yℓ(S3) e−iωt+iqx , δR = R(r)Yℓ(S3) e−iωt+iqx , (2.75)

where Yℓ(S3) are spherical harmonics on the S3,11 satisfying

∇2
[3]Yℓ = −ℓ(ℓ+ 2)Yℓ (2.76)

where ∇2
[3] is the Laplacian on the unit three-sphere. In (2.75) we’ve assumed that the

x1 = x axis is aligned with the spatial momentum, i.e., k = (−ω, q, 0, 0). The equation of

motion for the angular fluctuations becomes

∂r


 r3ff̃R2

v√
1 + Ṙ2

v

∂rP


+ r3fR2

v

√
1 + Ṙ2

v

[
2

ρ4
v

(
f̃ 2

f 2
ω̃2 − q̃2

)
− ℓ(ℓ+ 2)

r2
f̃

]
P = 0 , (2.77)

while for the radial fluctuations we have:

∂r

[
r3ff̃

(1 + Ṙ2
v)

3/2
∂rR

]
+

r3f√
1 + Ṙ2

v

[
2

ρ4
v

(
f̃ 2

f 2
ω̃2 − q̃2

)
− ℓ(ℓ+ 2)

r2
f̃

]
R

= 8


 r

3

ρ10
v

√
1 + Ṙ2

v

(
1 − 10R2

v

ρ2
v

)
− ∂r


 r3RvṘv

ρ10
v

√
1 + Ṙ2

v




R.

In these equations, ω̃ and q̃ are dimensionless and are related to their dimensionful coun-

terparts via

ω2 = ω̃2 u
2
0

L4
= ω̃2π2T 2 = ω̃2π

2M̄2

m2
, (2.78)

11Of course, the spherical harmonics for a given ℓ are also labeled by two further SU(2) quantum

numbers, but we drop these as they are irrelevant in the following.
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and analogously for q.

We solve these equations using the shooting method. For each choice of three-momentum

q̃, angular momentum ℓ, and embedding Rv(r) (corresponding to one value of quark mass

and chiral condensate) we solve these equations numerically, requiring that with rmin → 0,

P(rmin) = rℓ
min and ∂rP(rmin) = ℓrℓ−1

min for the δφ fluctuations and R(rmin) = rℓ
min and

∂rR(rmin) = ℓrℓ−1
min for δR. Then, as P(r) ∼ Arℓ + Br−ℓ−2 and R(r) ∼ Crℓ + Dr−ℓ−2 for

some constants A,B,C,D as r → ∞, we tune ω̃2 to find solutions which behave as r−ℓ−2

asymptotically.

At finite temperature, the system is no longer Lorentz invariant and so one must con-

sider the precise definition for the meson masses. We define the ‘rest mass’ of the mesons

as the energy ω with vanishing three-momentum q in the rest-frame of the plasma.12 Thus,

solving the equations of motion (2.77) and (2.78) with q̃ = 0 yields the dimensionless con-

stants ω̃2, which then give the rest masses through (2.78). Plots of the mass spectrum for

these modes are given in figs. 2.7 and 2.8.

We now turn to the vector mesons which correspond to fluctuations of the gauge fields

on the D7-branes. The full action for gauge fields on a D7-brane contains the DBI action

plus a Wess-Zumino term (see e.g., [45] and references therein),

ID7 = IDBI −Nf TD7

(2πℓ2s )
2

2

∫
P [C0123] ∧ F ∧ F , (2.79)

where the RR 4-form was given in (2.1). To quadratic order in the fluctuations of the

gauge fields, the equations of motion are

∂a

(√−gF ab
)
− u4

0

L4
ρ3

v ff̃ ǫ
bij∇[3]iAj = 0 (2.80)

where ǫbij is an antisymmetric tensor density on the three-sphere, taking values ±1 while

∇[3]i is the covariant derivative on the S3 of unit radius. The indices a, b run over all

worldvolume directions of the probe D7-branes and angular coordinate indices are denoted

by i, j, k. The first term comes from the Wess-Zumino portion of the action while the

second is from the Wess-Zumino term and is only present if b is an S3 index.

12Note that this definition differs from [93,106,113–115] which choose M2 = −q2 with ω = 0. The latter

might better be interpreted as the low-lying masses of a confining theory in 2+1 dimensions, in analogy

to, e.g., [59, 186,187].
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Figure 2.7: Mass spectrum M2 = ω2|q=0 for the δφ fluctuations for Minkowski embeddings

in the D3/D7 system.
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Figure 2.8: Mass spectrum M2 = ω2|q=0 for the δR fluctuations for Minkowski embeddings

in the D3/D7 system. Note that some of the modes are tachyonic.
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Eq. (2.80) can be solved by expanding the gauge fields in terms of Fourier modes and

spherical harmonics [101]. As we wish to determine the mass spectrum, we assume that

the three-momentum is zero: q = 0. In this case, the equations for Ax, Ay, Az are identical

and decouple from all others:

∂r

(√−ggrrgxx∂rAx

)
+ ∂i

(√−ggijgxx∂jAx

)
− ω2

√−ggxxgttAx = 0 . (2.81)

Hence, we focus on gauge field modes with Ax,y,z nonzero and At = Ar = AS3 = 0 which

correspond to vector mesons in the dual field theory.

Taking

Ax = A(r)Yℓ(S3) e−iωt , (2.82)

eq. (2.81) becomes

∂2
rA +

√
1 + Ṙ2

v

r3f
∂r


 r3f√

1 + Ṙ2
v


 ∂rA + (1 + Ṙ2

v)

[
2ω̃2f̃

ρ4
vf

2
− ℓ(ℓ+ 2)

r2

]
A = 0 . (2.83)

We solve this equation using the shooting method, as described above for the scalar modes,

imposing A(rmin) = rℓ
min and ∂rA(rmin) = ℓ rℓ−1

min as rmin → 0 and tuning ω̃2 to find solutions

behaving as r−ℓ−2 asymptotically. Plots of the vector meson spectrum for ℓ = 0 are given

in fig. 2.9.

Note that in the zero-temperature limit, the scalar δR, pseudoscalar δφ, and vector

spectra coincide with those previously calculated for the supersymmetric D3 background

[61, 101, 102, 154]. In particular, using (2.48), the lightest meson in all three spectra has

a mass squared matching M2
gap = 4π2M̄2 ≃ 39.5 M̄2. The degeneracy between the three

different modes arises because supersymmetry is restored at T = 0 and all three types

of fluctuations are part of the same supermultiplet [61, 101, 102, 154]. At finite T , this

degeneracy between δR, δφ, and vector modes is broken. For example, at the phase

transition, the mass of the lightest meson is roughly 25% and 50% of its zero-temperature

value in the δR and δφ spectra, respectively. The supersymmetric spectrum also showed an

unexpected degeneracy in that it only depended on the combination n+ ℓ, where n and ℓ

are the radial and angular quantum numbers characterising the individual excitations [61].

Fig. 2.8 illustrates that this degeneracy is broken at finite temperature, where the masses

are shown for all the modes with n + ℓ = 1 and 2. However, this breaking is not large

except near the phase transition.
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Figure 2.9: Mass spectrum M2 = ω2|q=0 for the vector field on Minkowski embeddings in

the D3/D7 system.
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All three figures show that in general the meson masses decrease as the temperature

increases. As noted above, the thermal shift of the meson rest mass may be of the order of

25 to 50 percent at the phase transition. This reduction must reflect in part the decrease in

the constituent quark mass, discussed in section 2.6.4. However, the lowering of the meson

masses is actually small relative to that seen for the constituent quark mass. As seen in

figure 2.17, at the phase transition, the latter has fallen to only 2% of its T = 0 value.

However, the thermal shift of the mesons becomes even more dramatic near the critical

solution. In particular, embeddings with R0 ∈ (1, 1.07) possess tachyonic δR fluctuations.

Note that R0 = 1 corresponds to the critical solutions and the phase transition occurs at

R0 ≃ 1.15, i.e., this is the minimum value of R0 for which the thermodynamically preferred

embedding is of Minkowski type. As discussed above, the embeddings are not unique in

the vicinity of the critical solution and so physical quantities spiral in on their critical

values. As observed at the end of section 2.3.2, the spiralling of the energy density leads to

a negative specific heat and indicates an instability. It is satisfying to note in the second

plot of fig. 2.8 that the lowest-lying δR-mode becomes tachyonic at precisely the point

where the first turn-around in the spiral occurs (with T ). Hence a dynamical instability

is appearing in the Minkowski embeddings, in precise agreement with the thermodynamic

considerations. In fact the second lowest-lying δR-mode becomes tachyonic at the second

turn-around and it seems to suggest that at the i’th turn of the spiral, the δR-mode with

n = i − 1, ℓ = 0 becomes tachyonic. We found no other evidence of instabilities in other

modes. In particular, neither the vector nor pseudoscalar δφmodes, which have very similar

spectra, exhibit an instability. It is not surprising that a dynamical instability manifests

itself in the δR-modes, since in the region near the critical solution, the nonuniqueness that

brings about the phase transition arises precisely because the branes have slightly different

radial profiles R(r).

While a dynamical instability set in for the Minkowski embeddings, in agreement with

the thermodynamic analysis, it is interesting that this point is away from the phase tran-

sition. In particular, the Minkowski embeddings with R0 ∈ [1.07, 1.15], namely those

between the point at which the phase transition takes place and the first turn-around, do

not exhibit any tachyonic modes. Thus these embeddings are presumably meta-stable and

might be reached through supercooling.

We have also made some preliminary investigations of the low-lying scalar mesons

moving through the thermal plasma and numerical results are shown in figure 2.10. For
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Figure 2.10: Dispersion relation ω(q) for Minkowski D7-brane embeddings with (a) R0 =

1.20 (m = 1.32) and (b) R0 = 2.00 (m = 2.00) in a D3-brane background. The solid

blue line corresponds to δφ fluctuations, whereas the red dashed line corresponds to δR

fluctuations.

non-relativistic motion (small three-momenta), we expect that the dispersion relation takes

the form

ω(q) ≃M0 +
q2

2Mkin

, (2.84)

where M0 = M0(T ) is the rest mass calculated above and Mkin = Mkin(T ) is the effective

kinetic mass for a moving meson. Although Mkin(T ) is not the same as M0(T ), for low

temperatures the difference between the two quantities is expected to be small. For ex-

ample, fitting the small-q̃ results for ω̃ for the lowest δR-mode at T/M̄ = 0.5 (or R0 = 2)

yields
ω

M̄
= 6.084 + 0.076

q2

M̄2
+ · · · . (2.85)

Hence in this case, we find M0/M̄ ≃ 6.084 and Mkin/M̄ ≃ 6.579. Recall that at T = 0,

we would have M0 = Mkin = Mgap = 2πM̄ ≃ 6.283M̄ and so both masses have shifted by

less than 5%. Note that while the rest mass has decreased, the kinetic mass has increased.

The latter is perhaps counter-intuitive as it indicates it is actually easier to set the meson

in motion through the plasma than in vacuum. From a gravity perspective, it is perhaps

less surprising as the Minkowski branes are bending towards the black hole horizon and so

these fluctuations experience a greater redshift than in the pure AdS5 × S5 background.
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Figure 2.11: The radial profile for δR with R0 = 2 with various spatial momentum. From

top to bottom, the profiles correspond to: k = 0, 4.96, 18.81, 31.4, 39.2, 62.7, 94.1.

Examining the regime of large three-momenta, we find that ω grows linearly with k.

Naively, one might expect that the constant of proportionality should be one, i.e., the

speed of light. However, one finds that

ω

M̄
= vm

q

M̄
+
M1

M̄
+O

(
M̄

q

)
, (2.86)

with vm < 1, as illustrated in fig. 2.10. There our numerical results show that for R0 = 1.2

(m = 1.32), vm ≃ 0.353 and M1/M̄ ≃ 4.14 for δR and vm ≃ 0.350 and M1/M̄ ≃ 4.71 for

δφ, while for R0 = 2 (m = 2) vm ≃ 0.884 and M1/M̄ ≃ 2.61 for either type of fluctuation.

Note that in fig. 2.10b the dispersion relations ω(k) for δR and δφ are nearly coincident

for all k because supersymmetry is being restored at low temperatures. Our results show

that the strongly coupled plasma has a significant effect on reducing the maximum velocity

of the mesons. This effect is easily understood from the perspective of the dual gravity

description. The mesonic states have a radial profile which is peaked near R0, the minimum

radius of the Minkowski embedding, as illustrated in fig. 2.11, and so we can roughly think

of them as excitations propagating along the bottom of the D7-brane. At large k, the
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speed of these signals will be set by the local speed of light

c =

√
− gtt

gzz

∣∣∣∣
r=R0

=
f(R0)

f̃(R0)
. (2.87)

The latter gives c ≃ 0.349 for R0 = 1.2 and c ≃ 0.882 for R0 = 2, both of which closely

match our results for vm given above. It is interesting that at finite temperature as k

increases, the radial profiles of the mesonic states seem to become more peaked towards

R0, as illustrated in fig. 2.11. Recall that at T = 0, these profiles are invariant under

boosts in the gauge theory directions. Finally we note that we did not discover any simple

relation between M1 in eq. (2.86) and M0 and Mkin in eq. (2.84).

Note that with the approximations made here, our analysis reveals no dragging forces

on these low-lying mesons from the thermal bath. We expect that these would only appear

through string-loop effects, which in particular would include the Hawking radiation of

the background black hole. This would parallel the similar findings for the drag force

experienced by large-J mesons composed of heavy quarks [188–194] and by heavy quarks

themselves [133–136, 195–197]. These large-J mesons also exhibited a maximum velocity

similar to the effect discussed above [188–194].

2.4 The D4/D6 system

We now turn to the D4/D6 system, described by the array

0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
D6 × × × × × × ×

(2.88)

In the decoupling limit, the resulting gauge theory is five-dimensional super-Yang-Mills

coupled to fundamental hypermultiplets confined to a four-dimensional defect.13 In order

to obtain a four-dimensional gauge theory at low energies, one may compactify x4, the D4-

brane direction orthogonal to the defect, on a circle. If periodic boundary conditions for the

adjoint fermions are imposed, then supersymmetry is preserved and the four-dimensional

13Technically, the theory is intrinsically five-dimensional and hence the perturbative theory is non-

renormalisable. Note however that the present study is in the strong coupling regime of the gauge theory

where the dual gravity description is appropriate – see section 2.1.1.
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theory thus obtained is non-confining. In this case the appropriate dual gravitational

background at any temperature is (2.1) with x4 periodically identified. Instead, if antiperi-

odic boundary conditions for the adjoint fermions are imposed, then supersymmetry is

broken and the four-dimensional theory exhibits confinement [59] and spontaneous chiral

symmetry breaking [62]. The holographic description at zero-temperature consists then

of D6-brane probes in a horizon-free background, whose precise form is not needed here.

At a temperature Tdeconf set by the radius of compactification, the theory undergoes a first

order phase transition at which the gluons and the adjoint matter become deconfined. In

the dual description the low-temperature background is replaced by (2.1). If Tdeconf < Tfun,

the D6-branes remain outside the horizon in a Minkowski embedding, and quark-antiquark

bound states survive [62]. As T is further increased up to Tfun a first order phase transition

for the fundamental matter occurs.

Below we study the thermodynamic and dynamical properties of the D6-branes in the

black D4 background appearing above the deconfinement phase transition. Along the way

we will have to introduce boundary terms to regulate the D6-brane brane action.

2.4.1 D6-brane embeddings

As in section 2.2.3, we begin by transforming to the coordinate system with radial coor-

dinate ρ defined in (2.24), which is better adapted to study the brane embeddings in the

background. For p = 4, the radial coordinate is then

(u0ρ)
3/2 = u3/2 +

√
u3 − u3

0 , (2.89)

and the black D4-brane metric is

ds2 =
1

2

(u0ρ

L

)3/2
[
−f

2

f̃
dt2 + f̃dx2

4

]
+

(
L

u0ρ

)3/2
u2

0f̃
1/3

21/3

[
dρ2 + ρ2dΩ2

4

]
, (2.90)

where we now have f(ρ) = 1− 1/ρ3 and f̃(ρ) = 1 + 1/ρ3. From eq. (2.6), the temperature

is given by

T =
3

4π

(u0

L3

)1/2

. (2.91)

We also have the holographic relations for the dual five-dimensional gauge theory

L3 = πgsNcℓ
3
s , g2

YM = 4π2gsℓs , (2.92)
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where we remind the reader that the Yang-Mills coupling gYM is now dimensionful.

The D4/D6 intersection is described by the array (2.88). In analogy to the D3/D7 case,

we introduce spherical coordinates {r,Ω2} in the 567-directions, and polar coordinates

{R, φ} on the 89-plane. Computing boundary terms is also facilitated by introducing an

angular coordinate between the r and R directions so that we have, as before,

ρ2 = r2 +R2 , r = ρ sin θ , R = ρ cos θ , (2.93)

and

dρ2 + ρ2dΩ2
4 = dρ2 + ρ2(dθ2 + sin2 θ dΩ2

2 + cos2 θ dφ2) (2.94)

= dr2 + r2dΩ2
2 + dR2 +R2dφ2 . (2.95)

Following our analysis for the D3/D7 system, we choose coordinates on the brane such

that asymptotically the metric naturally splits into a product of the form D4-throat×S2.

We describe the embedding of the D6-brane in terms of χ(ρ) = cos θ(ρ) – note then that

χ = R/ρ. Later, we will have to regulate the Euclidean D6-brane by adding local counter-

terms written in terms of this ‘field.’ The induced metric on the D6-brane is then

ds2 =
1

2

(u0ρ

L

)3/2
[
−f

2

f̃
dt2 + f̃dx2

3

]

+

(
L

u0ρ

)3/2
u2

0f̃
1/3

21/3

[(
1 +

ρ2χ̇2

1 − χ2

)
dρ2 + ρ2(1 − χ2)dΩ2

2

]
, (2.96)

where, as usual, χ̇ = dχ/dρ. The D6-brane action takes the form

Ibulk

N =

∫
dρ ρ2

(
1 − 1

ρ6

)√
(1 − χ2)(1 − χ2 + ρ2χ̇2) , (2.97)

where N is given by (2.26) with n = 2:

N =
π

T
NfTD6u

3
0 =

22

36
NfNc geff(T )4 T 3 , (2.98)

where geff(T )2 = g2
YMNcT . The resulting equation of motion is

∂ρ

[
ρ4

(
1 − 1

ρ6

) √
1 − χ2χ̇√

1 − χ2 + ρ2χ̇2

]

+ρ2

(
1 − 1

ρ6

)
χ

[√
1 − χ2 + ρ2χ̇2

1 − χ2
+

√
1 − χ2

1 − χ2 + ρ2χ̇2

]
= 0 , (2.99)
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and χ asymptotically approaches zero as

χ =
m

ρ
+

c

ρ2
+ · · · , (2.100)

with m and c related to the quark mass and condensate via eqs. (2.29) and (2.30) with

p = 4, n = 2:

Mq =
u0m

25/3πℓ2s
=

21/3

32
geff(T )2 T m , (2.101)

〈Om〉 = −25/3π2ℓ2sNfTD6u
2
0c = −25/3

34
NfNc geff(T )2T 3c . (2.102)

In this case, we may write m = M̄2/T 2 with

M̄2 =
9

21/3

(
Mq

geff(Mq)

)2

≃ 7.143

(
Mq

geff(Mq)

)2

. (2.103)

The scale M̄ is again related to the mass gap in the meson spectrum of the D4/D6 system

at zero temperature. For either background, the latter must be determined numerically.

In the case of the supersymmetric background, one finds [101,102,154]:

m2
gap = 8π2 (1.67)

(
Mq

geff(Mq)

)2

≃ 131.9

(
Mq

geff(Mq)

)2

−→ M̄

mgap

≃ 0.233 . (2.104)

One finds essentially the same result for the confining D4 background [62]. The similarity

of these results is probably a reflection of the underlying supersymmetric structure of the

five-dimensional gauge theory. In the confining theory, the lowest-lying meson is a pseudo-

Goldstone boson, whose mass is determined by the Gell-Mann–Oakes–Renner relation, and

the latter linear form extrapolates directly to the supersymmetric result at large Mq [62].

The equation of motion (2.99) can of course be recast in terms of the R, r coordinates

as

∂r


r2

(
1 − 1

ρ6

)
∂rR√

1 + (∂rR)2


 = 6

r2

ρ8
R

√
1 + (∂rR)2 , (2.105)

which is again suitable to study the Minkowski embeddings.

For arbitrary m we solved for the D6-brane embeddings numerically. Black hole embed-

dings are most simply described in the χ, ρ coordinates and we used boundary conditions

at the horizon: χ(ρ = 1) = χ0 and χ̇|ρ=1 = 0 for various 0 ≤ χ0 < 1. For Minkowski
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Figure 2.12: Quark condensate c versus temperature T/M̄ for a D6-brane in a D4-brane

background. The dotted vertical line indicates the precise temperature of the phase tran-

sition.

embeddings, we used the R, r coordinates and the boundary conditions at the axis were:

R(r = 0) = R0 and ∂rR|r=0 = 0 for R0 > 1. We computed m and c by fitting the numerical

solutions to the asymptotic forms of χ and R given above. In particular, we produced plots

of c versus T/M̄ , as shown in figure 2.12. Again by increasing the resolution, we are able to

follow the two families of embeddings spiralling in on the critical solution. However, ther-

modynamic considerations indicate that a phase transition occurs at the point indicated

in the second plot.

2.4.2 D6-brane thermodynamics

As with the D3/D7 system, we wish to compute the contribution of the fundamental matter

to the free energy, entropy and energy densities. That is, we will calculate the contribu-

tions of the D6-brane to the Euclidean path integral. This requires that we regularise

and renormalise the D6-brane action. We will do this by constructing the appropriate

counterterms.

Using the asymptotic behaviour (2.100) in (2.97) we find that the D6 action contains

a UV divergence, since
Ibulk

N ≃
∫ ρ

max

dρ ρ2 ≃ ρmax

3
(2.106)

diverges for ρmax → ∞. We expect the counter-terms that must be supplemented to have
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the form
∫
dtEd

3x
√

det γ (a+ bχ2 + cχ4). In the present case, we might expect to pick

additional factors of eχ and eΦ. In any event, we would choose the constants to eliminate

the divergence. Further for a supersymmetric embedding, we should be able to construct

the counter-term action so that the total brane action vanishes.

We take as our ansatz for the counter-terms:

Ibound = 4πL3TD6

∫
dtEd

3x
√

det γ e2σ+BΦF (χ)
∣∣∣
ρ=ρmax

, (2.107)

where B and F (χ) are a dimensionless constant and functional of χ, both to be determined.

We have also defined e2σ ≡ gθθ; this factor naturally appears in the measure as it is

proportional to the asymptotic volume of the internal S2. Now the boundary metric γij at

ρ = ρmax in the effective five-dimensional (brane) geometry is given by

ds2(γ) =
1

2

(u0ρmax

L

)3/2
(
f 2(ρmax)

f̃(ρmax)
dt2E + f̃(ρmax)dx

2
3

)
(2.108)

and so
√

det γ = 1
4

(
u0ρmax

L

)3
f(ρmax)f̃(ρmax). In this coordinate system we have

e2Φ =
1

2

(u0ρ

L

)3/2

f̃ = e6σ . (2.109)

Now evaluating the counterterm ansatz (2.107) with the supersymmetric background (u0 =

0) with the profile14 χ = mu0/̺, one finds that the leading divergences cancel if B = −2/3

and F (0) = −1/3. One also finds that a complete cancellation occurs if we choose

F (χ) = −1

3
(1 − χ2)3/2 . (2.110)

Thus, the complete counter-term action can be chosen as either of the following:

Ibound = −4π

3
L3TD6

∫
dtEd

3x
√

det γ e2σ−2Φ/3(1 − χ2)3/2
∣∣∣
ρ=ρmax

, (2.111)

I ′bound = −4π

3
L3TD6

∫
dtEd

3x
√

det γ e2σ−2Φ/3

(
1 − 3

2
χ2

) ∣∣∣
ρ=ρmax

. (2.112)

In the second expression, we have kept only the terms which contribute to the divergence

in the small χ expansion – the next term of O(χ4) vanishes as ρmax → ∞. Computationally,

this seems like the easier action with which to work; note however that the first form has

14See the discussion below (2.54).
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the nice property that, even with finite ρmax, it produces a precise cancellation for the

supersymmetric configuration, i.e., ID6 = Ibulk + Ibound = 0.

Proceeding with I ′bound and using (2.100), the boundary term evaluates to

I ′bound = −4πTD6

3T

(
ρ3

max −
3

2
m2ρmax − 3mc

)
, (2.113)

where we have divided out the spatial volume Vx – see footnote 5. The total action may

then be written as:

ID6

N = G(m) − 1

3

(
ρmin

3 − 3

2
m2ρmin − 3mc

)
, (2.114)

where the integral is defined as

G(m) =

∫ ∞

ρmin

dρ

[
ρ2

(
1 − 1

ρ6

)√
(1 − χ2)(1 − χ2 + ρ2χ̇2) − ρ2 +

m2

2

]
. (2.115)

Of course, the free energy follows from this as F = TID6 and then one can compute the

entropy S = −∂F/∂T and the energy E = F + TS. For the computation of the entropy,

one must split the free energy into bulk and boundary terms and evaluate the action of the

derivative on each of the terms, just as was done for the D3/D7 case. We do not present

all the details of the calculation here but simply give the final result:

S

N = −6G(m) + 2

(
ρmin

3 − 3

2
m2ρmin − 4mc

)
, (2.116)

where the integral G was defined in (2.115). The contribution of the D6-brane to the

energy then follows as

E

NT
= −5G(m) +

5

3

(
ρmin

3 − 3

2
m2ρmin −

21

5
mc

)
. (2.117)

Using our numerical results, these thermodynamic quantities are plotted in fig. 2.13.

Again the free energy density shows the classic ‘swallow tail’ form and, to our best numerical

accuracy, a first order phase transition takes place at Tfun/M̄ = 0.7933 (or m = 1.589),

where the free energy curves for the Minkowski and black hole phases cross. The fact that

the transition is first order is illustrated by the entropy and energy densities, which make

a finite jump at this temperature between the points labelled A and B.
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Figure 2.13: Free-energy, entropy and energy densities for a D6-brane in a D4-brane back-

ground. The blue dashed (red continuous) curves correspond to the Minkowski (black

hole) embeddings. The dotted vertical line indicates the precise temperature of the phase

transition.
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2.4.3 Meson spectrum for Minkowski embeddings

The meson spectrum corresponding to fluctuations of the D6-brane in the black D4-brane

geometry is computed in the same way as for D3/D7. We focus here on Minkowski em-

beddings for which the spectrum is discrete and stable and consider only scalar mesons

here. The excitations of the black hole embeddings will be described by a spectrum of

quasinormal modes, as discussed elsewhere [126,155].

We consider small fluctuations δR, δφ about the fiducial embedding, which we now

denote by Rv, so that the D6-brane embedding is specified by R = Rv(r) + δR(xa) and

φ = 0 + δφ(xa), where Rv(r) satisfies (2.105). The pull-back of the bulk metric (2.90) is

then

P [G]ab = gab+

(
L

u0ρ

)3/2
u2

0f̃
1/3

21/3

[
Ṙv [(∂aδR)δr

b + (∂bδR)δr
a] + (∂aδR)∂bδR +R2(∂aδφ)∂bδφ

]
,

(2.118)

where the metric g is given by

ds2(g) =
1

2

(u0ρ

L

) 3
2

[
−f

2

f̃
dt2 + f̃dx2

3

]
+

(
L

u0ρ

) 3
2 u2

0f̃
1
3

2
1
3

[
(1 + Ṙ2

v)dr
2 + r2dΩ2

2

]
(2.119)

and, as usual, ρ2 = r2 + R2. The DBI action yields the D6-brane Lagrangian density to

quadratic order in the fluctuations δR, δφ:

L = L0 − TD6

u3
0

4
r2
√
h

√
1 + Ṙ2

v

{
ff̃

(
L

u0ρv

)3/2
u2

0f̃
1/3

24/3

∑

a

gaa
v

[
(∂aδR)2

1 + Ṙ2
v

+R2(∂aδφ)2

]

+
3RvṘv∂r(δR)2

ρ8
v(1 + Ṙ2

v)
+

3(δR)2

ρ8
v

− 24R2
v(δR)2

ρ10
v

}
, (2.120)

where h is the determinant of the metric on the S2 of unit radius, ρ2
v = r2 +R2

v, and L0 is

the Lagrangian density for the vacuum embedding:

L0 = −TD6

u3
0

4
r2
√
h

√
1 + Ṙ2

v

(
1 − 1

ρ6
v

)
. (2.121)

Note that terms linear in δR were eliminated from the Lagrangian density L by integration

by parts and by using the equation of motion (2.105) for Rv. Since we are retaining terms

only to quadratic order in the fluctuations, the metric gv in (2.120) is (2.119) with R = Rv

and the functions f and f̃ in (2.120) and subsequent expressions are evaluated at ρv.
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The linearised equations of motion for the fluctuations are then

∂a

[
ff̃

(
L

u0ρv

)3/2
u2

0f̃
1/3

21/3
r2
√
hR2

v

√
1 + Ṙ2

v g
ab
v ∂bδφ

]
= 0 (2.122)

for δφ, and

∂a


ff̃

(
L

u0ρv

)3/2
u2

0f̃
1/3

21/3

r2
√
h√

1 + Ṙ2
v

gab
v ∂bδR




= 6
r2

ρ8
v

√
h

√
1 + Ṙ2

v

(
1 − 8R2

v

ρ2
v

)
δR− 6

√
h∂r


 r2

√
1 + Ṙ2

v

RvṘv

ρ8
v


 δR

for δR. Proceeding via separation of variables, we take

δφ = P(r)Yℓ2(S2) e−iωt+iqx, δR = R(r)Yℓ2(S2) e−iωt+iqx (2.123)

where Yℓ2(S2) are spherical harmonics on the S2 of unit radius satisfying ∇2
[2]Yℓ2 = −ℓ2(ℓ2+

1)Yℓ2 where ∇2
[2] is the Laplacian on the unit two-sphere. In (2.123) we’ve taken the x1 = x

axis to coincide with the direction of the spatial momentum, i.e., k = (−ω, q, 0, 0). We

obtain the radial differential equation

∂r


 r2ff̃R2

v√
1 + Ṙ2

v

∂rP


+ fR2

v

√
1 + Ṙ2

v

[
22/3 r

2

ρ3
v

f̃ 1/3

(
f̃ 2

f 2
ω̃2 − q̃2

)
− ℓ2(ℓ2 + 1)f̃

]
P = 0

(2.124)

for δφ and

∂r

[
r2ff̃

(1 + Ṙ2
v)

3
2

∂rR
]

+
f√

1 + Ṙ2
v

[
22/3 r

2

ρ3
v

f̃ 1/3

(
f̃ 2

f 2
ω̃2 − q̃2

)
− ℓ2(ℓ2 + 1)f̃

]
R

= 6


r

2

ρ8
v

√
1 + Ṙ2

v

(
1 − 8R2

v

ρ2
v

)
− ∂r


 r2RvṘv

ρ8
v

√
1 + Ṙ2

v




R

for δR. The dimensionless constant ω̃ is related to ω via

ω2 = ω̃2 u0

L3
= ω̃2

(
4π

3

)2

T 2 = ω̃2

(
4π

3

)2
M̄2

m
, (2.125)
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and analogously for q̃.

We solved (2.125) and (2.124) numerically and determined the eigenvalues ω̃ using a

shooting method, as was done in the D3/D7 case. The masses are given by M2 = ω2 in the

frame in which the three momentum vanishes: q = 0. The spectra M2/M̄2 versus T/M̄ for

the angular fluctuations δφ and the radial fluctuations δR are presented in figs. 2.14 and

2.15, respectively (both for ℓ2 = 0), and are qualitatively the same as those for the D3/D7

system: the δR and δφ modes become degenerate in the zero-temperature limit, reflect-

ing supersymmetry restoration; in general the meson masses decrease as the temperature

increases, especially near the critical solution; and the results for δR fluctuations suggest

that a new mode becomes tachyonic at each turn-around of the curves.

2.5 Discussion

We have shown that, in a large class of strongly coupled gauge theories with fundamental

fields, this fundamental matter undergoes a first order phase transition at some high tem-

perature Tfun ∼ M̄ , where M̄ is a scale characteristic of the meson physics. As well as giving

the mass gap in the meson spectrum [61], 1/M̄ is roughly the characteristic size of these

bound states [101, 198]. In our models, the gluons and other adjoint fields were already

in a deconfined phase at Tfun, so this new transition is not a confinement/deconfinement

transition. Neither is it a chiral symmetry-restoration phase transition, since the chiral

condensate 〈ψ̄ψ〉 ∝ c that breaks the axial U(1)A symmetry does not vanish above Tfun.
15

Rather, the most striking feature of the new phase transition is the change in the meson

spectrum and so we refer to it as a ‘dissociation’ or ‘melting’ transition.

In the low-temperature phase, below the transition, the mesons are deeply bound and

the spectrum is discrete and gapped. To leading order in the large-Nc expansion these

states are absolutely stable, but at higher orders they may decay into other mesons of lower

mass or glueballs. The leading channel is one-to-two meson decay and after examining the

interactions in the effective action [61], we find that parametrically the width of a typical

15The large-Nc theories under consideration enjoy an exact U(1)A symmetry, just like QCD at Nc = ∞.

However, unlike QCD, they do not possess a non-Abelian SU(Nf)L × SU(Nf)R chiral symmetry. Recall

also that lattice simulations indicate that, in Nc = 3 QCD with real-world quark masses, deconfinement

and chiral symmetry restoration do not occur with a phase transition but through a smooth cross-over

(see, e.g., [199] and references therein).
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Figure 2.14: Mass spectrum M2 = ω2|q=0 for the δφ fluctuations for Minkowski embeddings

in the D4/D6 system. The dashed vertical line marks the phase transition.
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state is given by Mq/(Nc λ
3/2) ≃ Mgap/(Nc

√
λ). Recall that this is not a confining phase

and so we can also introduce free quarks into the system. Of course, such a quark is

represented by a fundamental string stretching between the D7-branes and the horizon.

At a figurative level, in this phase, we might describe quarks in the adjoint plasma as a

‘suspension’. That is, when quarks are added to this phase, they retain their individual

identities.

Above the phase transition (i.e., at T > Tfun), the meson spectrum is continuous and

gapless. The excitations of the fundamental fields would be characterised by a discrete

spectrum of quasinormal modes on the black hole embeddings [126, 155]. Investigations

of the spectral functions in chapter 5 [126] show that some interesting structure remains

near the phase transition. Some of these excitations warrant an interpretation in terms of

quasiparticle excitations but in any event, there are only a few such states in contrast with

the (nominally) infinite spectrum of mesons found in the low temperature phase. An ap-

propriate figurative characterisation of the quarks in this high temperature phase would be

as a ‘solution’. If one attempts to inject a localised quark charge into the system, it quickly

spreads out across the entire plasma and its presence is reduced to diffuse disturbances of

the supergravity and worldvolume fields, which are soon damped out [126,155].

The physics above is potentially interesting in connection with QCD, since lattice simu-

lations indicate that heavy-quark mesons indeed remain bound in a range of temperatures

above Tdeconf. For example, for the lightest charmonium states, the melting temperature

may be conservatively estimated to be around 1.65Tdeconf ≃ 249 to 317 MeV [156–158],

depending on the precise value of Tdeconf [161–163]. Some other studies suggest that the

J/ψ(1S) state may persist to ∼ 2.1Tdeconf ≃ 317 to 403 MeV [159, 160]. In the D3/D7

model, we see from fig. 2.5 that quark-antiquark bound states melt at Tfun ≃ 0.766M̄ . The

scale M̄ is related to the mass M∗ = Mgap of the lightest meson in the theory at zero

temperature through eq. (2.48). Therefore we have Tfun(M
∗) ≃ 0.122M∗. For the charmo-

nium states above, taking M∗ ≃ 3000 MeV gives Tfun(cc̄) ≃ 366 MeV. Similarly, for the

D4/D6 system we have (2.104) which yields M̄ ≃ 0.233M∗. The transition temperature in

this case is then Tfun ≃ 0.793M̄ ≃ 0.186M∗, which gives Tfun(cc̄) ≃ 557 MeV. Hence it is

gratifying that these comparisons lead to a qualitative agreement with the lattice results.

Of course, these comparisons must be taken with some caution, since meson bound

states in Dp/Dq systems are deeply bound, i.e., M∗ ≪ 2Mq, whereas the binding energy

of charmonium states is a small fraction of the charm mass, i.e., Mcc̄ ≃ 2Mc. It might then
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be more appropriate to compare with lattice results for ss̄ bound states which are also seen

to survive the deconfinement transition. For the φ-meson, whose mass is Mφ ≃ 1020 MeV,

the formulas above yield Tfun(ss̄) ≃ 124 MeV (D3/D7) and Tfun(ss̄) ≃ 188 MeV (D4/D6).

Lattice simulations suggest that the melting temperature is around 1.4Tdeconf ≃ 211 to 269

MeV [158,200]. While again we have qualitative agreement, one must observe that at least

for the D3/D7 calculation, our result lies below even the lowest estimate for Tdeconf ≃ 151

MeV.

An additional caveat is that here we have identified the melting temperature with Tfun,

above which the discrete meson states disappear. However, the spectral function of some

two-point meson correlators in the holographic theory still exhibit some broad peaks in a

regime just above Tfun, which suggests that a few bound states persist just above the phase

transition [126]. This is quite analogous to the lattice approach where similar spectral

functions are used to examine the existence or otherwise of the bound states. Hence using

Tfun above should be seen as a (small) underestimate of the melting temperature.

Before leaving this discussion of comparisons with QCD, we reiterate that the present

holographic calculations are examining exotic gauge theories and so any agreements above

must be regarded with a skeptical eye. However, we would also like to point out one simple

physical parallel between all of these systems. The question of charmonium bound states

surviving in the quark-gluon plasma was first addressed by comparing the size of the bound

states to the screening length in the plasma [201]. While the original calculations have

seen many refinements (see, e.g., [202, 203]), the basic physical reasoning remains sound

and so we might consider applying the same argument to the holographic gauge theories.

Considering first the N = 2 SYM theory arising from the D3/D7 system, the size of the

mesons can be inferred from the structure functions in which the relevant length scale which

emerges is
√
λ/Mq [198]. Holographic studies of Wilson lines in a thermal bath [204, 205]

show that the relevant screening length of the SYM plasma is order 1/T . In fact, the same

result emerges from a field theoretic scheme of hard-thermal-loop resummation applied

to supersymmetric Yang-Mills theories [206]. In any event, combining these results, the

argument that the mesons should dissociate when the screening length is shorter than the

size of these bound states yields T ∼ Mq/
√
λ. Of course, the latter matches the results

of our detailed calculations in section 2.3. The same reasoning can be applied to the

D4/D6 system where the meson size is O(geff(Mq)/Mq) [101] and the screening length is

again O(1/T ) [103]. Hence this line of reasoning again leads to a dissociation temperature
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in agreement with the results of section 2.4. Therefore we see that the same physical

reasoning which was used so effectively for the J/ψ in the QCD plasma can also be used

to understand the dissociation of the mesons in the present holographic gauge theories.

One point worth emphasising is that there are two distinct processes that are occurring

at T ∼ M̄ . If we consider, e.g., the entropy density in fig. 2.5, we see that the phase

transition occurs in the midst of a cross-over signalled by a rise in S/T 3. We may write

the contribution of the fundamental matter to entropy density as

Sfun =
1

8
λNfNc T

3 H

(
T 2

M2
q /λ

)
(2.126)

where H(x) is the function plotted in fig. 2.5. H rises from 0 at x = 0 to 2 as x→ ∞ but

the most dramatic part of this rise occurs in the vicinity of x = 1. Hence it seems that new

degrees of freedom, i.e., the fundamental quarks, are becoming ‘thermally activated’ at

T ∼ M̄ . We might note that the phase transition produces a discontinuous jump in which

H only increases by about 0.07, i.e., the jump at the phase transition only accounts for

about 3.5% of the total entropy increase. Thus the phase transition seems to play a small

role in this cross-over and produces relatively small changes in the thermal properties of

the fundamental matter, such as the energy and entropy densities.

As M̄ sets the scale of the mass gap in the meson spectrum, it is tempting to associate

the cross-over above with the thermal excitation of mesonic degrees of freedom. However,

the pre-factor λNfNc in (2.126) indicates that this reasoning is incorrect. If mesons pro-

vided the relevant degrees of freedom,16 we should have Sfun ∝ N2
f . Instead the factor

of NfNc is naturally interpreted as counting the number of degrees of freedom associated

with free quarks, with the factor λ demonstrating that the contribution of the quarks

is enhanced at strong coupling. A complementary interpretation of (2.126) comes from

reorganising the pre-factor as:

λNfNc = (g2
YMNf)N

2
c . (2.127)

16In fact we will find a contribution proportional to N2
f for the mesons coming from the fluctuation

determinant around the classical D7-brane configuration. One can make an analogy here with the entropy

of the adjoint fields of N = 4 SYM on S3 below the deconfinement transition. In this case, the classical

gravity saddle-point yields zero entropy and one must look at the fluctuation determinant to see the entropy

contributed by the supergravity modes, i.e., by the gauge-singlet glueballs.
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The latter expression makes clear that the result corresponds to the first order correction

of the adjoint entropy due to loops of fundamental matter. As we will discuss in chapter 4

[147], we are working in a ‘not quite’ quenched approximation, in that thermal contributions

of the D7-branes represent the leading order contribution in an expansion in Nf/Nc, and

so fundamental loops are suppressed but not completely. In chapter 4 [147], we show

that the expansion for the classical gravitational back-reaction of D7-brane is controlled

by λNf/Nc = g2
YMNf. Hence this expansion corresponds to precisely the expansion in loops

of fundamental matter. However, naively the fundamental loops would be suppressed by

factors of T 2/M2
q coming from the quark propagators. So from this point of view, the strong

coupling enhancement corresponds to the fact that such factors only appear as λT 2/M2
q

in eq. (2.126).

Hence the strongly coupled theory brings together these two otherwise distinct pro-

cesses. That is, at strong coupling, the dissociation of the bound states and the thermal

activation of the fundamental matter happen at essentially the same temperature. While

our discussion above focussed on the D3/D7 system, the D4/D6 results exhibit the same

behaviour. Hence this seems to be a universal feature of the holographic gauge theories

described by Dp/Dq systems.

The preceding behaviour might be contrasted with that which is expected to occur at

weak coupling. In this regime, one expects that the melting of the mesons would also be a

cross-over rather than a (first order) phase transition. Moreover, the temperature at which

the mesons dissociate would be Tfun ∼ Ebind ∼ g4
effMq. On the other hand, the quarks would

not be thermally activated until we reach Tactiv ∼ 2Mq, at which point free quark-antiquark

pairs would be readily produced. Of course, the thermal activation would again correspond

to a cross-over rather than a phase transition. The key point, which we wish to emphasise,

is that these two temperatures are widely separated at weak coupling.

Fig. 2.16 is an ‘artistic’ representation of the simplest behaviour which would interpolate

between strong and weak coupling. One might expect that the melting point and the

thermal activation are very close for geff ≫ 1. The line of first order phase transitions

must end somewhere and so one might expect that it terminates at a critical point around

geff ∼ 1. Below this point, both processes would only represent cross-overs and their

respective temperatures would diverge from one another, approaching the weak coupling

behaviour described above.

There are two aspects to enhancement of the thermal densities discussed above. First,
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Figure 2.16: A qualitative representation of the simplest possibility interpolating between

the weak and the strong coupling regimes. The solid and the dotted lines correspond to

T = Tfun. At strong coupling this corresponds to a first order phase transition (solid line),

whereas at weak coupling it corresponds to a cross-over (dotted line). The dashed line

corresponds to T = Tactiv. At strong-coupling this takes place immediately after the phase

transition, whereas at weak coupling it is widely separated from Tfun.

at strong coupling the fundamental matter has a stronger effect on the nonabelian plasma

than might have been otherwise guessed and second the effect is a positive one. That is,

e.g., the energy and entropy densities are raised. Because we are working with Nf/Nc ≪ 1,

the enhancement we observe is a small correction to the overall properties of the plasma. In

fact, it can be added to a list of such correction terms, with others arising as finite-λ [207]

and finite-Nc effects. Both17 of these types of corrections are expected to raise the entropy

and energy densities of the plasma, as well.

As our calculations were also performed in the limit Nc, λ → ∞ (with Nf fixed), it

is natural to ask how the detailed results of this chapter depend on this approximation.

First of all, the fact that the phase transition is first order implies that it should be stable

under small perturbations and so its order and other qualitative details should hold within

a finite radius of the 1/Nc, 1/λ expansions. Of course, finite-Nc and finite-λ corrections

17At finite Nc, the classical black hole would be surrounded by a gas of Hawking radiation which would

increase both the entropy and energy.
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may eventually modify the behaviour uncovered here. For example, at large but finite

Nc the black hole will Hawking-radiate and each bit of the brane probe will experience a

thermal bath at a temperature determined by the local acceleration. This effect becomes

more and more important as the lower part of a Minkowski brane approaches the horizon,

and may potentially blur the self-similar, scaling behaviour found here. However, at the

phase transition, the minimum separation of brane embeddings and the horizon is not

parametrically small. For example, R0 = 1.1538 at the transition for D3/D7 system. Hence

while the Hawking radiation can be expected to interfere with the self-similar behaviour

near the critical embedding, it should not disturb the phase transition for large but finite

Nc.

Finite ’t Hooft coupling corrections correspond to higher-derivative corrections both

to the supergravity action and the D-brane action. These may also blur the details of

the structure discussed above. For example, higher-derivative corrections to the D-brane

equation of motion are likely to spoil the scaling symmetry of eq. (2.19), and hence the

self-similar behaviour. These corrections will again become important near the critical

solution, for both Minkowski and black hole embeddings, since the (intrinsic) curvature of

the brane becomes large there. However, the phase transition should remain robust for

large but finite λ because at this point, the separation of brane embeddings from the critical

solution is not parametrically small. We illustrated this for the Minkowski embedding at

the phase transition of D3/D7 above but here we can add the same is true for the black

hole embedding at this point, which has χ0 = 0.9427.

Another significant set of corrections come from the gravitational backreaction of the

D7-branes (or more generally the probe Dq-branes) on the background spacetime or from

fundamental loops in the gauge theory. As indicated above, these are dual descriptions of

the same expansion. Our results only represent the first contribution in an infinite series of

terms, whose magnitudes are controlled by the ratio Nf/Nc. Given that low energy QCD

has Nf/Nc = 1, it is of particular interest to study holographic theories in Veneziano’s

limit of gYM → 0, Nc → ∞ with both λ and Nf/Nc finite [208]. A variety of attempts

have been made to construct gravitational backgrounds describing gauge theories in this

limit [83,209–216].

The D2/D6 system provides one interesting background where this limit was studied
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at finite temperature [217].18 In particular, it was found that the energy density scales as

F ∼ N
1/2
f N3/2

c T 3, which obviously differs from (2.33) with p = 2, d = 2. This discrepancy

is not at all a contradiction and has the same origin as the discrepancy found for the meson

spectrum [101, 102, 154]. This is the fact that the calculation in [217] applies in the far

infrared of the gauge theory, whereas that presented here applies at high temperatures,

i.e., at T ≫ g2
YM.

We close this section with a few more observations. Ref. [219] argued for the existence

of plasma balls in a broad class of confining large-Nc theories, which undergo first order

deconfinement phase transitions. That is, in these theories, one could form metastable,

localised lumps of deconfined gluon plasma. Their dual description should consist of black

holes localised along some gauge theory directions. One may imagine an analogous con-

struction for the fundamental matter, based on the first order phase transition discussed

here. That is, near Tfun one should be able to construct inhomogenous brane configurations

in which only a localised region on the branes has fallen through the black hole horizon,

i.e., the induced brane metric would contain a localised black hole. The dual gauge theory

interpretation would be in terms of a localised bubble inside of which the fundamental

matter has melted. Such bubbles may be of interest for understanding how the melting

transition actually occurs in a dynamical context.

Finally, we comment on the ‘quark condensate’ at high temperatures. If one examines

fig. 2.4 for example, it is tempting to infer that, since c approaches zero as T → ∞, the

quark condensate vanishes in this limit. This vanishing would then be in agreement with the

intuition that at high temperatures the thermal fluctuations should destroy any coherent

condensate. However, vanishing c is not enough to ensure that 〈Om〉 also vanishes. In fact,

if we combine eqs. (2.47) and (2.137), we see that at high temperatures the condensate

actually grows as

〈Om〉 ∼ NcNfMqT
2 . (2.128)

At this point, it is important to recall the form of the full operator Om given in eq. (2.31).

The first two terms are dimension-three operators and so in the high temperature limit

we can expect the magnitude of typical fluctuations in these to be O(T 3). Further these

operators do not have a definite sign and so presumably their expectation value vanishes

when averaging over all fluctuations in the disordered high-temperature system. This, of

18The meson spectrum at T = 0 including the backreaction of the D6-branes has been studied in [218].
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course, is the basis of the intuition that 〈ψ̄ψ〉 → 0. Now the last term in eq. (2.31) is

only a dimension-two operator and so we expect thermal fluctuations to be of O(T 2).19

The key difference in this case is that the operator only takes positive real values and so

averaging over all fluctuations we expect 〈q†q〉 ∝ T 2. Hence our calculations make a precise

prediction for this expectation value in the high-temperature phase. Note though that this

is a thermal expectation value and not a coherent (zero-momentum) condensate, which we

expect that we are observing with 〈Om〉 6= 0 at low temperatures.

Hence it is interesting that the high temperature phase seems to display two distinct

regimes of behaviour. At very high temperatures, the physics is dominated by incoherent

thermal fluctuations of the fundamental fields, as expected. However, there is also a regime

just above the phase transition where the system can support a coherent condensate. This

regime would correspond to the region where |c|/T 3 is still growing in fig. 2.4. Of course,

there is a cross-over between these two regimes and so there is only a rough boundary. It

may be natural to define the latter as the point where c is extremized, i.e., T ≃ 1.2M̄ .

Again, this seems to be a universal property of the broad class of holographic theories

described by Dp/Dq systems. For example, fig. 2.12 indicates the same behaviour for

D6-branes in a D4 background.

The above seems to be one more facet of the rich phenomenology which these holo-

graphic theories display at finite temperature. However, this phenomenology presents

several puzzles, such as why Tfun ∼ M̄ rather than Mq is the scale at which the bound

states melt or at which the free quarks are thermally excited. For example, the former

seems counterintuitive in view of the fact that, in the regime of strong coupling considered

here, this temperature is much lower than the binding energy of the mesons:

Ebind ∼ 2Mq − M̄ ∼ 2Mq . (2.129)

However, this intuition relies on the expectation that the result of melting a meson is a

free quark-antiquark pair of mass 2Mq. The gravity description makes it clear that this

is not the case at strong coupling. In fact, the constituent quark mass vanishes when the

branes fall into the horizon – see section 2.6.4. Rather, in this regime the system is better

thought of as a strongly coupled liquid of both adjoint and fundamental fields.

19At zero temperature, the supersymmetric theory has a moduli space with many branches where the

scalars acquire non-vanishing vacuum expectation values [220,221]. We are not probing these branches in

this study.
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In any event, it is gratifying that the holographic description of these gauge theories

with fundamental matter provides once more an extremely simple, geometric interpretation

of some complicated, strong-coupling physics, such as the existence or otherwise of stable

quark-antiquark bound states above the deconfinement temperature. Other well known

examples include the geometric characterisations of confinement [59, 103–105] and chiral

symmetry breaking [62–64,93,106–110,222].

2.6 Supplementary material for Chapter 2

2.6.1 Embeddings for high and low temperatures for D3/D7

High temperatures (black hole embeddings)

Consider the limit T/M̄ ≫ 1. This corresponds to black hole embeddings with m =

M̄/T ≪ 1. As usual, we use the χ, ρ coordinates. Note that the equatorial D7-brane

embedding, χ = 0, is an exact solution of the equation of motion (2.44). To study nearby

solutions we expand the bulk portion of the D7-brane action (2.42) to quadratic order in

χ
Ibulk

N ≃
∫ ∞

1

dρ

(
1 − 1

ρ8

)
ρ3

(
1 − 3

2
χ2 +

1

2
χ̇2

)
, (2.130)

thus obtaining the linearised equation of motion:

∂ρ

[(
1 − 1

ρ8

)
ρ5χ̇

]
= −3

(
1 − 1

ρ8

)
ρ3χ . (2.131)

To solve this equation, it is useful to make the change of variables x = ρ2 so that it becomes:

x(x4 − 1)(4xχ′′ + 2χ′) + 2x(5x4 + 3)χ′ + 3(x4 − 1)χ = 0 (2.132)

where χ′ = dχ/dx. The solution of this equation satisfying the boundary condition χ′|x=1 =

0 is

χ̃ =
x1/2

16
F

(
1

4
,
1

2
;
3

4
;x4

)
− 1

4

[
Γ (3/4)

Γ (1/4)

]2

x3/2F

(
1

2
,
3

4
;
5

4
;x4

)
, (2.133)

where F (a, b; c; z) is the hypergeometric function satisfying

z(1 − z)F ′′ + [c− (a+ b+ 1)z]F ′ − abF = 0. (2.134)
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The overall normalisation of the solution is arbitrary since, we are solving a linear equation.

In the above, we have chosen the normalisation such that

χ̃ ≃ 1/x1/2 + c̃/x3/2 , x→ ∞ (2.135)

where

c̃ =
Γ
(−1

4

)
Γ
(

3
4

)2
√

2πΓ
(

1
4

) ≃ −0.456947. (2.136)

The tilde on the solution χ̃ and condensate c̃ indicate that these is the solution for unit

mass. The general solution for arbitrary small mass (or equivalently, high temperatures)

is simply χ = mχ̃ and the condensate is given by

c = mc̃ . (2.137)

Low temperatures (Minkowski embeddings)

Low-temperature solutions correspond to Minkowski embeddings in which the D7 probe is

very far from the horizon: R0 ≫ 1 or, equivalently, m = M̄/T ≫ 1. In this case, we expect

the brane profile to be nearly flat, i.e., R(r) is approximately constant. This motivates the

ansatz R(r) = R0 + δR(r), where R0 is a large constant. Substituting into eq. (2.49) and

expanding to linear order in δR(r) gives:

∂r

[
r3

(
1 − 1

(r2 +R2
0)

4

)
∂r(δR)

]
= 8

r3R0

(r2 +R2
0)

5
. (2.138)

Integrating (2.138) and requiring ∂r(δR)|r=0 = 0 we obtain

δR(r) ≃ −R0

3

∫ r

0

dx
1

x3

(
1 − 1

(x2 +R2
0)

4

)−1 [
R2

0 + 4x2

(R2
0 + x2)4

− 1

R6
0

]

= − 1

24R5
0

[
2(3R4

0 − 1) arctan

(
r2

1 +R2
0(R

2
0 + r2)

)

+(−1 − 2R2
0 − 3R4

0) log

(
1 +

r2

R2
0 − 1

)

+ (1 − 2R2
0 + 3R4

0) log

(
1 +

r2

R2
0 + 1

)
+ 2R2

0 log

(
1 + (r2 +R2

0)
2

1 +R4
0

)]
.
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Note that δR|r=0 = 0 while the limit r → ∞ yields:

δR|r→∞ ≃
(

1

12R5
0

− 1

4R0

)(π
2
− arctan(R2

0)
)

+
1

12R3
0

log

(
R4

0 + 1

R4
0 − 1

)

+
1

8

(
1

3R5
0

+
1

R0

)
log

(
R2

0 + 1

R2
0 − 1

)
− 1

6R5
0

1

r2
+ · · · (2.139)

Recall that for these embeddings R0 ≫ 1 so indeed δR ≪ R0. Note that R(r → ∞) ≃
m + c/r2 so that in the large R0, m limit one has m ≃ R0 + δR|r→∞ and c ≃ −(6R5

0)
−1.

For very large values of R0 we can expand (2.139) further to give m ≃ R0 + 1/2R7
0 as an

approximate expression for the quark mass. Inverting this relation yields

R0 ≃ m− 1

2m7
. (2.140)

We will apply this result in our discussion of the constituent quark mass in section 2.6.4.

2.6.2 Computation of the D7-brane entropy

In order to evaluate the expression for the D7-brane entropy density,

S = −∂F
∂T

= −πL2 ∂F

∂u0

, (2.141)

we split the free energy into a bulk and a boundary contribution. We also write pertinent

expressions in terms of the dimensionful variables

̺ = u0 ρ , c̃ = u3
0 c , m̃ = u0m, (2.142)

to explicitly show the dependences on u0, or, equivalently, the temperature T .

From eq. (2.54),

Fbound = T Ibound = −π
2

8
TD7

[
(̺2

max − m̃2)2 − 4m̃c̃
]

(2.143)

so that the boundary contribution to the entropy is

Sbound = −π
3

2
L2TD7m̃

∂c̃

∂u0

, (2.144)

as the quark condensate is the only factor in eq. (2.143) which depends on the position of

the horizon u0. Note that both of the divergent regulator contributions in eq. (2.143) have
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been eliminated by this differentiation. The bulk contribution to the free energy is given

by

Fbulk = T Ibulk =
π2

2
TD7u0

4

∫ ̺max/u0

̺min/u0

dρ ρ3

(
1 − 1

ρ8

)(
1 − χ2

) (
1 − χ2 + ρ2 χ̇2

)1/2
. (2.145)

When we differentiate this expression with respect to u0 following eq. (2.141), the derivative

will act in three places: i) the overall factor of u0
4; ii) the explicit (and implicit in ̺min)

appearance of u0 in the end-points of the integration; and iii) the field χ which is implicitly

a function of the background mass u0. We consider each of these contributions in turn.

First one has:

Si = −2π3L2TD7u0
3

∫ ̺max/u0

̺min/u0

dρ ρ3

(
1 − 1

ρ8

)(
1 − χ2

) (
1 − χ2 + ρ2 χ̇2

)1/2
. (2.146)

Note that this contribution by itself is divergent in the limit ̺max → ∞.

Next consider the contributions from the end-points. At the lower end-point, there

are two possibilities depending on whether the brane ends on the horizon or closes off

above the horizon. If the brane ends on the horizon, ̺min = u0 and hence this contribution

vanishes since ∂u0(̺min/u0) = 0. (The integrand also vanishes when evaluated at ρmin =

̺min/u0 = 1.) If the brane closes off above the horizon, ∂u0(̺min/u0) is nonvanishing but

this contribution vanishes because χ = 1 at the end-point. Hence only the upper end-point

at ̺max makes a contribution:

Sii = −1

2
π3L2TD7u0

4

[
ρ3

(
1 − 1

ρ8

)(
1 − χ2

) (
1 − χ2 + ρ2 χ̇2

)1/2
]

̺max/u0

×
(
−̺max

u0
2

)

=
1

2u0

π3L2TD7

(
̺4

max − m̃2̺2
max

)
. (2.147)

where we have substituted the asymptotic expansion (2.28) for χ in the second expression.

Finally, we consider the contributions from the dependence of χ on u0. In this case,

∂u0χ inside the integral can be considered as a variation δχ. Hence after an integration

by parts, this derivative yields the bulk equation of motion for χ inside the integral and

a boundary term coming from the integration by parts. Since χ solves the equation of

motion, only the boundary term contributes to the entropy with

Siii = −1

2
π3L2TD7u0

4

[
ρ5

(
1 − 1

ρ8

)
1 − χ2

(1 − χ2 + ρ2 χ̇2)1/2
χ̇∂u0χ

]̺max/u0

̺min/u0

. (2.148)
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Arguments similar to those above show that the contribution at the lower endpoint van-

ishes. If the brane ends on the horizon, the second factor inside the brackets vanishes and

also χ̇ vanishes at the horizon. If the brane closes off above the horizon, χ = 1 at the lower

end-point and so the numerator in the third factor vanishes and also ∂u0χ = 0. Hence

again, only the upper end-point contributes to the entropy. In order to correctly evaluate

this expression, we express the asymptotic expansion (2.45) in terms of m̃, c̃:

χ =
m̃/u0

ρ
+
c̃/u0

3

ρ3
+ · · · (2.149)

Then in eq. (2.148), we have

χ̇ = ∂ρχ = −m̃/u0

ρ2
− 3

c̃/u0
3

ρ4
+ · · ·

∂u0χ = −m̃/u0
2

ρ
− 3

c̃/u0
4

ρ3
+
∂u0 c̃/u0

3

ρ3
+ · · · (2.150)

Note that it would be incorrect to evaluate ∂u0χ ≃ ∂u0(m̃/ρ) = 0 because in the integral

we have assumed that ∂u0ρ = 0 and so ∂u0̺ 6= 0. Inserting these expansions in (2.148)

yields

Siii = − 1

2u0

π3L2TD7

[
m̃2̺2

max + 6m̃c̃− m̃4 − u0(∂u0 c̃)m̃
]
. (2.151)

Finally, gathering all the entropy contributions yields:

S = Si + Sii + Siii + Sbound

= − 1

2u0

π3L2TD7

[
4u0

4

∫ ρmax/u0

ρmin/u0

dρ ρ3

(
1 − 1

ρ8

)(
1 − χ2

) (
1 − χ2 + ̺2 χ̇2

)1/2

−ρ4
max + 2m̃2ρ2

max + 6m̃c̃− m̃4

]
. (2.152)

Note that the boundary terms have provided precisely the correct ρmax terms to regulate

the integral. Hence using (2.26), (2.55) and (2.57), we can express the final result for the

entropy as
S

N = −4G(m) + (ρmin
2 −m2)2 − 6mc . (2.153)
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2.6.3 Positivity of the entropy

Here we present an analytic proof that the plot of the Dq-brane probe Euclidean action

IE versus m must exhibit mathematical kinks and not just rapid turn overs.20 Recall that

this is necessary for the entropy S = −∂F/∂T to be positive. We focus here on the case of

black hole embeddings of the D7-brane in the D3-brane background for concreteness, but

the analogous arguments applies to Minkowski embeddings and to other Dp/Dq systems.

The argument proceeds by thinking of the plot IE(m) as a parametric plot (m(χ0), IE(χ0)),

where χ0, which plays the role of the parameter along the curve, is the value of χ at the

‘horizon’ ρ = 1. This is in fact the way we construct the plot: We choose χ0 as a boundary

condition at the horizon and we integrate the differential equation ‘outwards’, thus obtain-

ing a solution ψ(ρ;χ0), from whose asymptotic behaviour we read off m(χ0) and c(χ0).

Substituting the solution into the D7-brane action we then obtain IE(χ0).

Now the key observation is that if the tangent vector to the curve never vanishes, then

there can be no kinks. In order to have a kink there must be a point at which both

m′ ≡ ∂m/∂χ0 and I ′ ≡ ∂IE/∂χ0 vanish simultaneously. We know that there are certainly

an infinite number of points at which m′ = 0, because close to criticality the function

m(χ0) is an oscillatory function with both maxima and minima. We will now see that at

each of these points we also have I ′E = 0.

The renormalised D7-brane action is IE = Ibulk + Ibound, with

Ibulk =

∫ ρmax

ρmin

dρL(χ, χ̇) =

∫ ρmax

ρmin

dρ

(
1 − 1

ρ8

)
ρ3 (1 − χ2)

√
1 − χ2 + ρ2χ̇2 , (2.154)

and

Ibound = −1

4

(
ρ4

max − 2m2ρ2
max − 4mc+m4

)
, (2.155)

where we have set N = 1 for simplicity. Using the equation of motion, we see that the

derivative of IE is

I ′E =
∂IE

∂χ0

=

[
∂L
∂χ̇

∂χ

∂χ0

]ρmax

ρmin

=

[(
1 − 1

ρ8

)
ρ3 (1 − χ2)

ρ2χ̇√
1 − χ2 + ρ2χ̇2

∂χ

∂χ0

]ρmax

ρmin

. (2.156)

20For the sake of this discussion it is irrelevant whether we plot IE versus m or versus 1/m, as in the

main text.
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The contribution at ρ = ρmin clearly vanishes because ρmin = 1 and χ̇(1) = 0. Asymptoti-

cally we have

χ =
m

ρ
+

c

ρ3
+ O(ρ−4) , (2.157)

and therefore
∂χ

∂χ0

=
m′

ρ
+
c′

ρ3
+ O(ρ−4) . (2.158)

Substituting this into (2.156) we find

I ′E =
[
−mm′ρ2 +m3m′ − 3cm′ −mc′ + O(ρ−1)

]
ρ=ρmax

. (2.159)

The derivative of the boundary action is just

I ′bound = mm′ρ2
max +mc′ + cm′ −m3m′ , (2.160)

so adding everything together we arrive at a simple result in the limit in which the regulator

is removed:

IE
′ ≡ ∂IE

∂χ0

= −2cm′ . (2.161)

This formula is useful for a number of reasons. First, it shows that I ′E vanishes if and only

if m′ vanishes, as we wanted to see. Second, applying the chain rule we find

∂IE

∂m
= −2c . (2.162)

Physically we expect that c < 0 always, because the brane is attracted to the horizon, and

this is confirmed by our numerical results. It then follows that IE is an increasing function

of m, or equivalently a decreasing function of 1/m, and hence that the entropy is positive.

Third, it provides an alternative expression for IE, namely

IE(χ0) = −1

2
− 2

∫ χ0

0

dx c(x)m′(x) , (2.163)

where we have imposed the boundary condition IE(χ0 = 0) = −1/2, which follows from a

straightforward calculation of the action of the equatorial embedding. This expression can

be used to evaluating IE numerically. Moreover, close to criticality one knows the analytic

form of m(χ0) and c(χ0), which should allow one to compute IE(χ0) analytically.



80 Holographic thermal gauge theories with flavour

2.6.4 Constituent quark mass in the D3/D7 system

In this section we compute the constituent quark mass Mc for temperatures below and

near the critical temperature for the D3/D7 brane system. A similar analysis has already

been provided in [133].

Our holographic dictionary relates the quark mass Mq to the asymptotic constant m

with eq. (2.46). However this is the bare mass parameter appearing in the microscopic

Lagrangian of the gauge theory. We must expect the physical or constituent mass of a free

quark in the deconfined plasma to receive thermal corrections. Since a free quark corre-

sponds to a string in the D3-brane geometry hanging from a probe D7-brane (Minkowski

embedding) down to the horizon, the constituent quark mass corresponds to the energy of

this configuration.

In the notation of the metric (2.36), (2.40), the string worldsheet is extended in the

t, R directions, localized at r = 0, with induced metric:

ds2 = −1

2

(
u0R

L

)2
f 2

f̃
dt2 +

L2

R2
dR2. (2.164)

The Nambu-Goto string action then becomes

Istring = − u0

2πℓ2s

∫
dtdR f/

√
2f̃ , (2.165)

where, since r = 0, f = 1 − 1/R4 and f̃ = 1 + 1/R4. Identifying the constituent quark

mass with minus the action per unit time of this static configuration, we have

Mc =
u0

2πℓ2s
√

2

∫ R0

1

dR

(
1 − 1

R4

)(
1 +

1

R4

)−1/2

=
u0

2πℓ2s
√

2

[
R0

√
1 +

1

R4
0

−
√

2

]
,

(2.166)

where we recall that R0 = R(r = 0) is the minimal radius reached by the probe brane.

Given the definition (2.46) for the bare quark mass, we find that

Mc

Mq

=
1

m

[
R0

√
1 +

1

R4
0

−
√

2

]
. (2.167)

Plots of Mc/Mq versus T/M̄ are given in figure 2.17. In the vicinity of the critical solution,

there are again multiple embeddings for a fixed value of T/M̄ and so the plots of Mc show
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an oscillatory behaviour in this regime. From eq. (2.167), it is clear that as we approach

the critical solution, i.e., R0 → 1, the constituent quark mass goes to zero. Note however

that the phase transition occurs at T/M̄ ≃ 0.7658, which corresponds to R0 ≃ 1.15 –

which is marked with the vertical dotted line in fig. 2.17. Hence the exotic behaviour in

the vicinity of the critical solution will again not be manifest in the physical system.

As the temperature goes to zero, Mc/Mq → 1. This is expected, since for small tem-

peratures we have m ≫ 1 and we can use the approximate relation (2.140) in (2.167) to

find
Mc

Mq

≃ 1 −
√

2

m
+

1

2m4
− 5

8m8
+ · · · . (2.168)

Since m = 2Mq/
√
λT , this can be finally converted into

Mc

Mq

≃ 1 −
√
λT√
2Mq

+
1

2

(√
λT

2Mq

)4

− 5

8

(√
λT

2Mq

)8

+ · · · . (2.169)

The same expansion appears in [133] but here we have provided an analytic derivation

for the coefficient of the fourth term, which was obtained in [133] by a numerical fit.

Note that the two expansions precisely coincide, however, one must replace λ→ 2λ above

because [133] uses a different normalisation for the ’t Hooft coupling. This difference arises

from the implicit normalisation of the U(Nc) generators: Tr(Ta Tb) = d δab. The standard

field theory convention used in [133] is d = 1/2 while our choice is d = 1, as is prevalent

in the D-brane literature. For temperatures above the phase transition, the branes fall

into the horizon and so naively the constituent quark mass vanishes. Rather it is probably

inappropriate to speak in terms of free quarks in this strongly coupled phase.

2.6.5 Holographic Renormalisation of the D4-brane

The gauge/gravity duality was originally extended to non-AdS backgrounds in [58]. How-

ever, until recently the discussion of the boundary counter-terms needed for holographic

renormalisation [180] was largely limited to asymptotically AdS backgrounds. It was shown

that these techniques can also be applied in backgrounds describing cascading gauge the-

ory [223–227]. In principle, we believe it should be possible to extend these techniques to

general gauge/gravity dualities, in some sense by definition to complete the holographic

framework. Here we discuss the construction of surface terms which will regulate the Eu-

clidean action of a black Dp-brane throat geometry. Again, while formally this may be
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Figure 2.17: Constituent quark mass Mc/Mq as a function of temperature T/M̄ . The

vertical dotted line indicates the temperature of the phase transition while the horizontal

line indicates that the constituent quark mass is roughly Mc/Mq ≃ 0.0212 at the phase

transition. Some plots zooming in on the spiral behaviour for temperatures slightly above

the transition temperature are also shown.

problematic as generally the supergravity description is breaking down in the asymptotic

region, some such approach should be possible if we believe a gauge/gravity duality exists.

We begin a with discussion on the D4-brane background since this is an interesting place

given that it lifts to an (asymptotically) AdS7 × S4 background for which the counter-

terms are known. Hence in principle, all we have to do is dimensionally reduce the latter

to express them in terms of the D4-brane description. Given our results for the D4-brane,

we make some brief comments on the general Dp-brane backgrounds.
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Let us begin by introducing the Euclidean background for a black D4-brane:

ds2 =
( r
L

)3/2 (
f(r) dτ 2 + d~x 2

)
+

(
L

r

)3/2(
dr2

f(r)
+ r2dΩ2

4

)
(2.170)

C
(4)
τ1234 = −i

( r
L

)3

, e2Φ =
( r
L

)3/2

,

where

f(r) = 1 − u0
4

r4
(2.171)

and the metric above is in string frame. Recall that the temperature (2.91) and the

holographic relations (2.92) for the dual five-dimensional gauge theory are given in section

2.4.

The string-frame geometry lifts to eleven dimensions as usual:

ds2
11 = e−2Φ/3(ds2

10) + e4Φ/3dz2 , (2.172)

which for (2.170) yields

ds2 =
r

L

(
f(r) dτ 2 + d~x 2 + dz2

)
+

(
L

r

)2
dr2

f(r)
+ L2dΩ2

4

=

(
u

L̃

)2 (
f(u) dτ 2 + d~x 2 + dz2

)
+

(
L̃

u

)2
du2

f(u)
+ L2dΩ2

4 , (2.173)

with r/L = (u/L̃)2, f(u) = 1 − (ω̃/u)6, L̃ = 2L and ω̃2 = 4Lu0. For later discussion, it

will be convenient to express the throat geometry as

ds2
11 = e−2Φ/3

(
ds2

(p+2)−throat + e2σL2dΩ2
8−p

)
+ e4Φ/3dz2 . (2.174)

Here the geometry described by ds2
(p+2)−throat replaces the AdS space, while the (p + 2)-

dimensional field e2σ describes the running of the internal S8−p, and L is the scale which

we will use to replace the AdS scale.

Now in the standard holographic story for AdS/CFT one refers to the gravity action in

the same dimension as the AdS space. A similar reduction can be done for the Dp-brane

throats, i.e., integrate out the internal S8−p, however it seems more natural to think of

them as ten-dimensional geometries. Therefore we will consider the bulk action and the

Gibbons-Hawking surface term in terms of the full ten (or eleven) dimensions. Note that
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in the usual AdSn × Sm examples, these contributions to the action are identical in n and

n + m dimensions. In particular, note that the sphere factor is constant and so it does

not contribute to the extrinsic curvature in the Gibbons-Hawking term. So the relevant

bosonic terms in the Euclidean actions are:

Ibulk = − 1

16πG11

∫
d11x

√
G

(
R(G) − 1

2 · 4!
(F (4))2

)
(2.175)

= − 1

16πG10

∫
d10x

√
g

[
e−2Φ

(
R(g) + 4(∇Φ)2

)
− 1

2 · 4!
(F (4))2

]
, (2.176)

where we have only kept the terms needed to evaluate the action for the above solution.

Also we have 16πG11 = (2π)8ℓ9P and 16πG10 = (2π)7ℓ8s g
2
s = (2π)7ℓ9P/R11. One subtlety is

that these two bulk actions are only equal up to an integration by parts. As surface terms

play an important role in the following, we must keep track of this term. So in reducing

the M-theory action to the IIA action, one picks up an additional surface term:

− 1

8πG10

∮
d9x

√
h

14

3
e−2Φ n · ∇Φ , (2.177)

where hab denotes the boundary metric in string frame and n is a unit radial vector. Note

that the norm of the latter is fixed by the ten-dimensional string-frame metric. Now we

also need the Gibbons-Hawking surface term, which in eleven dimensions is:

IGH = − 1

8πG11

∮
d10x

√
HK11(G) (2.178)

= −2πR11

8πG11

∮
d9x

√
h e−2Φ

(
K10(g) −

8

3
n · ∇Φ

)
. (2.179)

Combining the two ten-dimensional surface terms yields

I ′GH = − 1

8πG10

∮
d9x

√
h e−2Φ (K10(g) + 2n · ∇Φ) . (2.180)

Note that for the D4 throat geometry, the internal S4 varies with the radial position, and

so the full ten-dimensional geometry contributes to K10(g). Hence part of the role of the

additional term proportional to the radial gradient of Φ is to cancel the sphere contribution,

as the four-sphere does not contribute in the M-theory calculation. One can check that

the ‘unexpected’ dilaton term in eq. (2.180) arises from transforming the standard gravity

action from Einstein to string frame.
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Now the construction of the remaining boundary counter-terms requires a Kaluza-Klein

reduction from ten dimensions [228]. For the case of the D4-brane, we can in principle sim-

ply dimensionally reduce the counter-terms for AdS7, which include a constant or volume

term, as well as terms proportional to R (the intrinsic curvature) and R2. However, we

only want to consider the D4-brane in Poincaré coordinates, i.e., we consider the dual

field theory in a flat background geometry. Hence the intrinsic curvature contributions will

vanish and we need only consider the volume term. Note that the prefactor for the AdS7

counter-terms involves (8πG7)
−1 and so we can think that this arose from dimensionally

reducing over the internal S4. Hence we write the counter-term as:

Ict =
1

8πG11

∫

S4

d4x
√
γ

∮

∂(AdS7)

d6x
√
H

5

L̃

=
1

8πG11

Ω4 L
4

∮

∂M

d5x
√
h 2πR11

5

2L

(
e2σ−2Φ/3

)4/2 (
e4Φ/3

)1/2 (
e−2Φ/3

)5/2

=
5

2

Ω4 L
3

8πG10

∮

∂M

d5x
√
h e4σ e−7Φ/3 . (2.181)

So now given the background (2.170), one calculates the Euclidean action IE as the

sum of the three terms above in eqs. (2.176), (2.180) and (2.181). As usual we divide out

by the spatial volume (see footnote 5), in which case all of the thermodynamic quantities

are actually densities. In this way we arrive at

IE = − Ω4L
4

16πG10

βu0
3

2L4
= − 210π7

37G10

L9

β5
= −25π2

37
λN2

c T
5 , (2.182)

which yields the free energy density given in eq. (2.10). One can also check that this result

matches that for a planar AdS7 black hole [169].

Now one can probably extend the counter-term above to general Dp-brane throats.

The prefactor for the (n− 1)-dimensional counter-terms in AdSn × Sm examples involves

(8πGnL̃)−1. Hence we have implicitly dimensionally reduced over the internal Sm and it

seems natural that, for the Dp-branes, the prefactor involve Ω8−pL
7−p/(8πG10) e

(8−p)σ =

(8πGp+2L)−1 e(8−p)σ. Then it seems the general rule should be that the counter-term takes

the form

Ict =
A

8πGp+2 L

∮

∂M

dp+1x
√
h e(8−p)σ eBΦ , (2.183)

where we have written the boundary metric in the string frame, as read off from the ten-

dimensional or (p + 2)-dimensional string-frame metric, i.e., ds2
(p+2)−throat in eq. (2.174).
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Then A and B are dimensionless constants which are chosen experimentally to cancel

the relevant divergence coming from the bulk and Gibbons-Hawking contributions to the

action.



Chapter 3

Holographic phase transitions at

finite baryon density

In the previous chapter we studied the thermodynamics of a large class of strongly coupled,

large-Nc gauge theories with Nf flavours of fundamental matter using the gravity dual of

Nf Dq-brane probes in the near horizon geometry induced by Nc black Dp-branes. It was

shown that a universal, first order phase transition occurs at some critical temperature

Tfun. At low temperatures, the Dq-branes sit outside the black hole in what was dubbed a

‘Minkowski’ embedding (see figure 2.1), and stable meson bound states exist. In this phase

the meson spectrum exhibits a mass gap and is discrete. Above some critical temperature

Tfun the branes fall through the horizon in what were dubbed ‘black hole’ embeddings. In

this phase the meson spectrum is gapless and continuous. This large-Nc, strong coupling

phase transition is therefore associated with the melting of the mesons. In theories that

undergo a confinement/deconfinement phase transition at some temperature Tdeconf < Tfun,

mesonic states thus remain bound in the deconfined phase for the range of temperatures

Tdeconf < T < Tfun.

As discussed in section 2.5, this physics is in qualitative agreement with that of QCD,

in which ss̄ and cc̄ states, for example, seem to survive the deconfinement phase transition

at Tdeconf ≃ 175 MeV [156–160]. It is thus interesting to ask how this physics is modified

at finite baryon density. In the presence of Nf flavours of equal mass, the gauge theory

possesses a global U(Nf) ≃ SU(Nf) × U(1)q symmetry. The U(1)q charge counts the net

number of quarks, i.e., the number of baryons times Nc – see appendix A for details. In

87
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the gravity description, this global symmetry corresponds to the U(Nf) gauge symmetry

on the worldvolume of the Nf D-brane probes. The conserved currents associated to the

U(Nf) symmetry of the gauge theory are dual to the gauge fields on the D-branes. Thus,

the introduction of a chemical potential µb or a non-zero density nb for the baryon number

in the gauge theory corresponds to turning on the diagonal U(1) ⊂ U(Nf) gauge field on

the D-branes.1,2

In this chapter we study the gauge theory at constant baryon number density nb [151].

We find that, for any finite value of the baryon number density, the Minkowski embed-

dings, i.e., embeddings where the probe branes close off above the horizon, are physically

inconsistent. Hence at finite nb, we focus our study on black hole embeddings. Despite

this difference with the nb = 0 case, the first order phase transition found there contin-

ues to exist here for sufficiently small baryon number density. In this case, however, the

transition is between two black hole embeddings. For a sufficiently large baryon number

density, there is no phase transition as a function of the temperature. The phase transi-

tion ceases to exist at a critical value n∗
b. These results are summarised in fig. 3.1. This

phase diagram also shows a shaded region where the black hole embeddings are found to

be thermodynamically unstable. While the boundary of this region shown in the diagram

is qualitative, we have found that the unstable region has a limited extent to the left of

the line of first order phase transitions. Hence the system must find a new stable phase,

at least, in this small region – see section 3.2.

We focus on four-dimensional N = 4 super-Yang-Mills theory coupled to fundamental

matter, whose dual description consists of Nf D7-branes in the background of Nc black

D3-branes, but our results hold in other dimensions. Investigations of other holographic

systems with a chemical potential have appeared previously in [220,233–235]. An overview

of the chapter is as follows: In section 3.1, we solve for the embedding of the D7-branes

in the black D3-brane geometry. Our discussion includes a brief review of the black hole

background, the equations of motion determining the embedding, and a careful analysis

of the required boundary conditions. In this section, we also discuss the effect of finite

1This should not be confused with the chemical potential for R-charge (as considered in, e.g., [229–232])

which is dual to internal angular momentum on the S5 in the gravity description.
2The theories studied here are supersymmetric and hence contain scalars. For these scalars, the chemical

potential effectively acts as a negative mass squared. While this leads to an instability for free massless

scalars, we expect that the interactions in the present study will stabilise this.
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TT*fun fun

n b

T

n*b

Figure 3.1: Phase diagram: Baryon number nb versus temperature T . The line of first

order phase transitions ends with a critical point at (T ∗
fun, n

∗
b). The phase which we study

is intrinsically unstable in the shaded (red) region. This plot shows only a small portion

of the full phase diagram near the critical point. The origin of the axes above corresponds

to (nb, T ) = (0, 0.986Tfun).

nb on the critical solution and self-similar scaling found at nb = 0 in chapter 2 [111, 112].

Finally, we present the results of numerically solving for the embeddings at various values

of the baryon number density. Section 3.2 examines the thermal properties of the D7-

branes, including their stability or lack thereof. Section 3.3 concludes this chapter with a

discussion of results.

3.1 Holographic framework

3.1.1 Black D3-branes

In this section we review relevant aspects of the throat geometries and thermodynamics of

black D3-branes, reviewing some formulae from sections 2.1 and 2.3.1 for p = 3 which will

be needed in this chapter.

As first proposed in [52], N = 4 super-Yang-Mills (SYM) with gauge group SU(Nc)
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is holographically dual to type IIB string theory on AdS5 × S5 with Nc units of RR five-

form flux. The dictionary relating the two sides of the duality equates gs = g2
YM/2π

and L4/ℓ4s = 2g2
YMNc ≡ 2λ, where L is the AdS curvature scale – for a review, see [53].

In the limit of large Nc and large λ, the string side of the duality reduces to (weakly

coupled) classical gravity. At a finite temperature, a black hole appears in the supergravity

background [59]. The black hole metric was given in (2.36) and with ̺ = u0ρ can be written

as

ds2 =
1

2

( ̺
L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

̺2

[
d̺2 + ̺2dΩ2

5

]
, (3.1)

where

f(̺) = 1 − u4
0

̺4
, f̃(̺) = 1 +

u4
0

̺4
. (3.2)

The gauge theory temperature is equivalent to the Hawking temperature of the black hole

horizon: T = u0/πL
2 – see section 2.1.

As discussed in section 2.1.2, this holographic framework allows the thermal behaviour

of the strongly coupled gauge theory to be further studied with standard semiclassical grav-

ity techniques [164]. In particular, the entropy density can be calculated as the geometric

Hawking-Bekenstein entropy of the horizon [59,172]3

S =
A

4GVx

=
π6

4G

L8

β3
=
π2

2
N2

c T
3 , (3.3)

where we have used 16πG = (2π)7ℓ8s g
2
s . The parametric dependence S ∝ N2

c reflects the

fact that the gauge theory is deconfined. Remarkably, this strong coupling result differs

from that calculated at weak coupling by merely a factor of 3/4 [172].

3.1.2 D7-brane embeddings

As discussed previously, all fields in the N = 4 SYM theory transform in the adjoint

representation of the SU(Nc) gauge group and fields transforming in the fundamental

representation can be included by introducing an additional set of D-branes on the string

theory side of the duality [60, 153]. As in section 2.3.1, we consider the decoupling limit

of the intersection of Nc D3-branes and Nf D7-branes described by the array (2.34). The

3We divide out by the (formally infinite) three-dimensional volume Vx of the Minkowski space in which

the gauge theory is formulated to yield the (finite) entropy density (3.3).
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resulting dual gauge theory is N = 4 super-Yang-Mills coupled to Nf N = 2 fundamental

hypermultiplets [60,153] at temperature T in 3 + 1 dimensions.

Assuming Nf ≪ Nc, the decoupling limit leads to Nf probe D7-branes in the background

(3.1), with the intersection parametrised by the coordinates {t, xi}. As in section 2.3.1, we

introduce spherical coordinates {r,Ω3} in 4567-directions and polar coordinates {R, φ} in

the 89-directions and use θ to denote the angle between these two spaces. Taking χ = cos θ

to describe the embedding of the D7-branes, translational symmetry in the 0123-space and

rotational symmetry in the 4567-directions motivate us to take χ = χ(̺). The induced

metric on the D7-branes is then:

ds2 =
1

2

( ̺
L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

̺2

[
1 − χ2 + ̺2(∂̺χ)2

1 − χ2

]
d̺2 + L2(1 − χ2)dΩ2

3 . (3.4)

We also introduce a U(1) gauge field on the worldvolume of the D7-branes. As discussed

in detail in appendix A, in order to study the gauge theory at finite chemical potential or

baryon number density, it suffices to turn on the time component of the gauge field, At.

Again, symmetry considerations lead us to take the ansatz At = At(̺). The action of the

D7-branes then becomes:

ID7 = −NfTD7

∫
d8σ

̺3

4
ff̃(1 − χ2)

√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πℓ2s )
2
f̃

f 2
(1 − χ2)F 2

̺t , (3.5)

where F̺t = ∂̺At is a radial electric field.

The equation of motion for At (Gauss’ law) gives

∂̺


̺

3

2

f̃ 2

f

(1 − χ2)2∂̺At√
1 − χ2 + ̺2(∂̺χ)2 − 2(2πℓ2s )

2 f̃
f2 (1 − χ2)(∂̺At)2


 = 0 . (3.6)

In the limit that ̺ → ∞, this equation reduces to ∂̺(̺
3∂̺At) ≃ 0 and so the asymptotic

solution approaches

At ≃ µ− a

̺2
+ · · · . (3.7)

The constants µ and a are (proportional to) the chemical potential for and the vacuum

expectation value of the baryon number density, respectively (see appendix A). The equa-

tion of motion (3.6) clearly indicates that there is a constant of motion, which we write
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as

d ≡ NfTD7(2πℓ
2
s )

2̺
3

2

f̃ 2

f

(1 − χ2)2∂̺At√
1 − χ2 + ̺2(∂̺χ)2 − 2(2πℓ2s )

2 f̃
f2 (1 − χ2)(∂̺At)2

. (3.8)

With this normalisation, this constant is precisely the electric displacement, d = δID7/δF̺t.

Taking the large-̺ limit of eq. (3.8) with the asymptotic form (3.7), we find:

d = NfTD7(2πℓ
2
s )

2 a. (3.9)

Now one could proceed to derive the equation of motion for the D7-brane profile χ(̺)

from the action (3.5) and then use eq. (3.8) to eliminate At in favor of the constant

d. Instead, we first construct the Legendre transform of eq. (3.5) with respect to d to

eliminate At directly at the level of the action. The result is:

ĨD7 = ID7 −
∫
d8 σF̺t

δI

δF̺t
(3.10)

= −NfTD7

∫
d8σ

̺3

4
ff̃(1 − χ2)

√
1 − χ2 + ̺2(∂̺χ)2

√
1 +

8 d2

(2πℓ2sNfTD7)2̺6f̃3(1 − χ2)3
.

The gauge field equations resulting from this Legendre transform are simply ∂̺d =

δĨD7/δAt and ∂̺At = −δĨD7/δd. The first of these reproduces the fact that d is a fixed

constant and we will return to the second one below.

Before deriving the equation of motion for the D7-brane profile χ(̺), it is convenient

to introduce dimensionless quantities:

ρ =
̺

u0

, d̃ =
d

2πℓ2su
3
0NfTD7

. (3.11)

The χ equation from eq. (3.10) can then be written as

∂ρ

[
ρ5ff̃(1 − χ2)χ̇√
1 − χ2 + ρ2χ̇2

√

1 +
8d̃2

ρ6f̃3(1 − χ2)3

]
(3.12)

= − ρ3ff̃χ√
1 − χ2 + ρ2χ̇2

√

1 +
8d̃2

ρ6f̃3(1 − χ2)3

[
3(1 − χ2) + 2ρ2χ̇2 − 24d̃2 1 − χ2 + ρ2χ̇2

ρ6f̃3(1 − χ2)3 + 8d̃2

]
,

where the dot denotes derivatives with respect to ρ, i.e., χ̇ = ∂ρχ. With ρ → ∞, this

equation becomes, at leading order, ∂ρ(ρ
5χ̇) ≃ −3ρ3 χ. Hence asymptotically the profile

behaves as

χ =
m

ρ
+

c

ρ3
+ · · · , (3.13)
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which is the same asymptotic behaviour found for nb = 0 – see section 2.3. As before, the

dimensionless constants m and c are proportional to the quark mass and condensate, with

the precise relations given in appendix A, eqs. (A.7) and (A.11), respectively [111,112].

Returning to the gauge field, we begin by introducing a convenient dimensionless po-

tential and chemical potential:

Ãt =
2πℓ2s
u0

At , µ̃ =
2πℓ2s
u0

µ . (3.14)

Then as described above, (3.10) yields the following equation

∂ρÃt = 2d̃
f
√

1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]

. (3.15)

Integrating yields the potential difference between two radii,

Ãt(ρ) − Ãt(ρmin) = 2d̃

∫ ρ

ρmin

dρ
f
√

1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]

. (3.16)

We will see below that all embeddings of interest extend down to the horizon at ρ = 1,

so ρmin = 1 provides a convenient reference point. Further we set Ãt(ρ = 1) = 0 by the

following argument: The event horizon of the background (3.1) can be characterised as

a Killing horizon, which implies that it contains the bifurcation surface where the Killing

vector ∂t vanishes [236]. If the potential Ã as a one-form is to be well defined, then Ãt must

vanish there. Hence we can use (3.16) to calculate the chemical potential, i.e., Ãt(∞), as

µ̃ = 2d̃

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

√
f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]

. (3.17)

3.1.3 Near-horizon embeddings

In chapter 2 an important role was played by the analysis of the probe brane embeddings

in the near-horizon region of the geometry (3.1) [111,112]. In this section we will see how

this analysis is affected by the presence of the electric field on the D7-branes. In fact, we

generalise the analysis to consider probe Dq-branes in a black Dp-brane background, along

the lines of section 2.2 [111]. These calculations will lead to two main conclusions: The
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first is that smooth Minkowski embeddings are unphysical for any non-zero baryon density.

The second is that we expect the first order phase transition found in chapter 2 [111,112]

to persist for small values of the baryon density, but to disappear for sufficiently large

densities.

In order to focus on the near-horizon region, we set

̺ = u0 +
L

u0

z , θ =
y

L
, (3.18)

and expand the metric (2.36) to lowest order in z, y. This yields Rindler space together

with some spectator directions which we omit since they play no role in the following:

ds2 = −(2πT )2z2dt2 + dz2 + dy2 + y2dΩ2
n + · · · . (3.19)

Recall that T = u0/πL
2. The integer n is equal to the dimension of the internal sphere

wrapped by the probe Dq-branes. For the D3/D7 system n = 3, but as stated above our

analysis in this section will apply to more general Dp/Dq systems, for which n may not

be 3; for example, n = 2 for the D4/D6 system studied in section 2.4. The horizon is of

course at z = 0. The coordinates z and y are the near-horizon analogues of the global

coordinates R and r in (2.40), respectively.

In order to describe the embedding of the Dq-branes, we choose the static gauge for all

their coordinates except the radial coordinate on the brane, which we denote as σ. The

Dq-brane embedding may then be described parametrically as: z = z(σ), y = y(σ). We

modify the analysis of section 2.2 by adding a radial electric field E ≡ ℓ2sȦt/T , where the

dot denotes differentiation with respect to σ. For simplicity, in this section we will ignore

the overall normalisation of the Dq-branes’ action and take ID7 ∝
∫
dσL, where

L = −yn
√
z2(ż2 + ẏ2) − E2 . (3.20)

This action is homogeneous of degree 2 + n under the rescaling

z → αz , y → αy , E → α2E , (3.21)

which means that the equations of motion will be invariant under such a transformation.

Recall that as first described in [173–175], this scaling symmetry was a key ingredient for

self-similarity of the brane embeddings in chapter 2 [111, 112]. However, in the present

case with E 6= 0, the symmetry does not act within the family of embedding solutions with
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a fixed electric field (or rather fixed d – see eq. (3.23) below). Hence we can not expect

to find exactly the same self-similar behaviour for branes supporting a fixed chemical

potential or baryon density. However, we argue below that the embeddings should behave

in approximately the same way at least where the gauge field is a small perturbation on

the Dq-brane.

As in the previous subsection, it is convenient to work with the electric displacement

d =
∂L
∂E

=
ynE√

z2(ż2 + ẏ2) − E2
, (3.22)

which is constant by virtue of Gauss’ law. This is the near-horizon analogue of the quantity

with the same name introduced in the previous subsection.4 Note that under the scaling

(3.21) d transforms as

d→ αnd . (3.23)

Inverting the relation (3.22) above, one finds

E2 =
d2z2(ż2 + ẏ2)

d2 + y2n
. (3.24)

It is also useful to note the relation

√
z2(ż2 + ẏ2) − E2 = ynz

[
ż2 + ẏ2

d2 + y2n

]1/2

. (3.25)

To eliminate E in favour of d and obtain a functional for y(σ) and z(σ), we perform a

Legendre transformation by defining

L̃ = L − Ed = −z
√
ż2 + ẏ2

√
d2 + y2n , (3.26)

in analogy with (3.10). It is easily verified that the equations of motion obtained from L̃
are the same as those obtained by first varying L and then using eq. (3.24) to eliminate E.

We can conclude from eq. (3.24) that Minkowski embeddings which close off smoothly

at the y-axis, such as those considered in chapter 2, are unphysical if d 6= 0 [111, 112].

These embeddings are most appropriately described in the gauge y = σ, and they are

characterised by the condition that the brane reaches y = 0 at some finite z = z0 > 0.

For the brane geometry to be smooth there, we must impose the boundary condition

4Note, however, that they differ in their normalisation.
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ż(0) = 0. Eq. (3.24) then yields E2 = z2
0 at y = 0. Now even though E remains finite,

the tensor field Edy ∧ dt is ill-defined at the origin and so one should conclude that these

configurations are singular. This singularity is made clearer by considering the electric

displacement d which also remains constant at the origin. However, one should note that

as defined in eq. (3.22) d is actually a tensor density and so the norm of the associated

tensor field is
∣∣∣ d√−g

∂
∂y

∂
∂t

∣∣∣
2

∼ d2/y2n, which clearly diverges at the origin. The physical

reason why Minkowski embeddings are inconsistent is, of course, that the radial electric

field lines have nowhere to end if the brane closes off above the horizon. This makes it

clear that, although we have obtained this result in the near-horizon approximation, the

same conclusion follows from an analysis in the full geometry (2.36).

For D-branes, an electric field on the worldvolume can also be associated with funda-

mental strings ‘dissolved’ in the D7-brane [237] – see also the discussion around eq. (A.13).

Hence the above statement that the electric field lines have nowhere to end can also be

viewed as the fact that the strings have nowhere to end if the brane closes off. However,

rather than simply viewing the Minkowski embeddings as unphysical, this point of view

lends itself to the interpretation that these embeddings by themselves are incomplete. That

is, one could imagine constructing a physical configuration by attaching a bundle of fun-

damental strings to the brane at y = 0 and letting these stretch down to the horizon. The

strings resolve the singularity in the electric field since they act as point charges which are

the source of this field. However, in such a configuration, the strings and the brane must

satisfy a force balance equation at the point where they are connected. It is clear that if

the brane closes off smoothly with ż(0) = 0, then they can not exert any vertical force in

the z direction to balance the tension of the strings and so this can not be an equilibrium

configuration. One might then consider ‘cuspy’ configurations which close off with a finite

ż(0) but still at some z = z0 > 0. In this case, the branes exert a vertical force and so one

must examine the configuration in more detail to determine if the two forces can precisely

balance. This analysis requires a more careful treatment of the normalisation of the brane

action and the fields than we have presented here. Hence we defer the detailed calculations

to the next subsection where we will examine the D7-branes in more detail. However, let

us state the conclusion here: no Minkowski embeddings can achieve an equilibrium for

any (finite) value of ż(0). Therefore we discard Minkowski embeddings for the rest of our

analysis.
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Hence we now turn to consider black hole embeddings which intersect the horizon.

Since these reach the horizon z = 0 at some y = y0 they are conveniently described in the

gauge z = σ. The appropriate boundary condition in this case is then ẏ(0) = 0, and the

equation that follows from L̃ is

(y2n + d2)
[
zyÿ + (1 + ẏ2)yẏ

]
− y2n(1 + ẏ2)nz = 0 . (3.27)

In view of this equation it is clear that we should expect two qualitatively different be-

haviours for solutions with yn
0 ≫ d and yn

0 ≪ d. In the first case, it is easy to see that

yn ≫ d all along the solution, and so we effectively recover the equations of motion for

d = 0 from chapter 2, namely eq. (2.19) [111, 112], and therefore oscillatory behaviour

around a critical solution for large y:

y ≃ √
n z + ξ , ξ =

T−1

(Tz)
n
2

[a sin(α log Tz) + b cos(α log Tz)] , (3.28)

where a, b are determined by y0. As shown in section 2.2 [111, 112], this oscillatory be-

haviour eventually leads to the property that the quark condensate is multi-valued as a

function of the quark mass, and hence to a first order phase transition (see figure 3.4 and

the discussion in the next subsection). We thus expect a similar transition if yn
0 ≫ d.

Incidentally, note that, unlike in the case d = 0, here the ‘critical solution’ y =
√
n z

is not an exact solution of eq. (2.19) but only an approximate solution for large y. In

particular, there is no exact solution of the form y ∝ z that just touches the horizon except

the y = 0 solution. Note also that for black hole embeddings eq. (3.24) gives E ∼ z as

z → 0, leading to a well defined tensor field at the horizon z = 0.

We now turn to the case yn
0 ≪ d, for which the equation of motion (3.27) reduces to

zÿ + (1 + ẏ2)ẏ ≃ 0 , (3.29)

whose exact solution is

ẏ =
z1√
z2 − z2

1

, (3.30)

y = y0 + z1 log

(
z +

√
z2 − z2

1

)
c , (3.31)

where y0 and z1 are integration constants. Recall that the boundary conditions should be

y(z = 0) = y0 and ẏ(z = 0) = 0. It is impossible to satisfy these conditions with the



98 Holographic thermal gauge theories with flavour

logarithm in eq. (3.31). It is also clearly seen in eq. (3.30) that the general solution is

problematic (at z = z1) unless z1 = 0. Hence the only physical solution in this regime is

precisely the constant solution: y = y0.

Further, we note that the embedding starts very near the horizon with y = y0 where

yn
0 ≪ d and so we ask how it makes a transition to some more interesting profile of the

full equation (3.27) far from the horizon. The point is that the term ny2nz will eventually

grow large and require y to deviate from a constant. Quantitatively, one finds that the

transition occurs for z ∼ y0 (d/yn
0 ) where the leading solution has the form

y = y0 +
n

4

(
yn

0

d

)2
z2

y0

+ · · · . (3.32)

Hence we see the O(z2) correction to the constant embedding is enormously suppressed in

this regime yn
0 ≪ d. Note that at z ∼ y0 (d/yn

0 ), the second term is comparable to the first

and so the Taylor series is breaking down. However, at this point, we still have yn ≪ d

and ẏ ≪ 1. In summary, the solution in this regime is a long spike that emanates from the

horizon almost vertically, resembling a bundle of strings.

The analysis above thus leads to the following physical picture. If d is small enough,

then there is a set of embeddings in the near-horizon region for which yn
0 ≫ d, whose

physics is similar to that of the d = 0 case, explored in chapter 2. In particular, we expect

a first order phase transition to occur as a function of the temperature. As d increases,

the region where the condition yn
0 ≫ d holds gets pushed outside the regime in which

the near-horizon analysis is applicable, suggesting that the phase transition as a function

of temperature should cease to exist for sufficiently large d. This is precisely what the

phase diagram in figure 3.1 confirms. In contrast, the condition yn
0 ≪ d can always be

met in the near-horizon region, indicating that solutions for which the part of the brane

near the horizon behaves as a narrow cylinder of almost constant size, resembling a bundle

of strings, exist for all values of d. This is also confirmed by our numerical analysis in

the full geometry (as illustrated in figure 3.2), since such type of embeddings can always

be realised, for any fixed d, by increasing the quark mass (or equivalently by decreasing

the temperature). In the next subsection we analyse some properties of these embeddings

more closely.
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3.1.4 Strings from branes

The near-horizon analysis above revealed the existence of solutions for which the brane

resembles a long narrow cylinder that emanates from the horizon. One’s intuition is that

this spike represents a bundle of strings stretching between the asymptotic brane and the

black hole. Examples in which fundamental strings attached to a D-brane are described

as an electrically charged spike solution of the DBI action are well known in flat space

[238, 239], in AdS space [240–244] and in other brane backgrounds [245]. Here we would

like to formalise this intuition by investigating the core region of our D7-brane embeddings

in more detail. This analysis allows us to investigate the boundary conditions for the

Minkowski-like embeddings in detail.

We begin by rewriting the Legendre-transformed action (3.10) as

ĨD7 = −TD7√
2

∫
d8σ

f

f̃ 1/2

√

1 +
̺2(∂̺χ)2

1 − χ2

[
d2

(2πℓ2sTD7)2
+
N2

f

8
̺6f̃ 3(1 − χ2)3

]1/2

. (3.33)

Now recall that χ = cos θ and consider the last factor in the integrand. If the embedding is

very near the axis, i.e., χ ≃ 1, then the second contribution in this factor can be neglected

and eq. (3.33) becomes

ĨD7 ≃ −nqVx
1

2πℓ2s

∫
dt d̺

f

(2f̃)1/2

√
1 + ̺2(∂̺θ)2

= −nqVx
1

2πℓ2s

∫
dt d̺

√
−gtt (g̺̺ + gθθ(∂̺θ)2) , (3.34)

where we have used the relation (A.14) between d and the density of strings nq. We

recognise the result above as the Nambu-Goto action for a bundle of fundamental strings

stretching in the ̺ direction but free to bend away from θ = 0 on the S5. It is interesting

to note that the term that was dropped provides precisely the measure factor associated

with the xi and S3 directions in the limit where the d term vanishes (or is small). In this

sense then, the D7-brane forgets about its extent in those directions.

Let us consider the boundary conditions for the configurations which reach the axis

θ = 0 at some finite ̺, i.e., for Minkowski-like embeddings. These embeddings would in

general have a cusp if ∂̺θ remains finite at θ = 0 (a smooth embedding would correspond

to ∂̺θ → ∞). As discussed in the previous subsection, to produce a potentially physical

configuration, we would attach a bundle of fundamental strings to the tip of the brane
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(with precisely the density nq). However, to produce a consistent static configuration,

there must be a balance between the forces exerted by these external strings and the brane

along the ̺-direction. The effective tension of the branes can be evaluated in many ways,

but here we consider the calculation:

T̺̺ =
2√−g

δĨD7

δg̺̺
≃ nqVx

1

2πℓ2s

g̺̺√
1 + g̺̺gθθ(∂̺θ)2

. (3.35)

Now if we wish to calculate the effective tension for a bundle of strings smeared out of the

xi-directions with density nq, the same calculation would apply since eq. (3.34) is precisely

the fundamental string action. However, these strings would lie vertically along the axis

and so we would evaluate eq. (3.35) with ∂̺θ = 0. Hence for a cusp with any non-zero

∂̺θ, the effective tension (3.35) is less than that of the vertical strings. Hence none of

these Minkowski-like embeddings can achieve an equilibrium with the attached strings for

any finite value of ∂̺θ.
5 We might consider these configurations as the initial data in a

dynamical context. Then, given the results above, we see that the strings will pull the

brane down the axis to the horizon – a similar discussion appears in a different context

in [246]. In any event, we will not consider any of these Minkowski-like embeddings in the

remainder of our analysis.

Now let us consider the black hole embeddings that arise from eq. (3.34). In fact,

the equations resulting from this action were studied as (a special case of) the string

configurations describing Wilson loops in the AdS/CFT correspondence [204, 247, 248].

In general these solutions are loops which begin and end at large ̺. Hence these are

inappropriate in the present context.6 In this context, at finite temperature, there is

another class of string configurations, namely strings that fall straight into the horizon,

which display the screening of the quark-antiquark potential. Using this experience, we

conclude that the only solutions for eq. (3.34) which reach the horizon will be the constant

configurations θ = θ0. Hence, as we saw in the near horizon analysis, the black hole

embeddings near the θ = 0 axis are long narrow cylinders of constant (angular) cross-

section.

One should ask how far out these constant profiles are valid as approximate solutions

of the full equations derived from eq. (3.33). The approximation that allowed us to derive

5The same conclusion applies for the general Dq/Dp-brane configurations discussed in subsection 3.1.3.
6If we use only a portion of these solutions, i.e., the configuration is cut-off before reaching the loop’s

minimum ̺, the profile describes the cuspy configurations discussed above.
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eq. (3.34) required d̃1/3 ≫ ρ sin θ, assuming ρ ≫ 1. Hence the constant solutions θ = θ0

should remain approximate solutions out to ρtransition ∼ d̃1/3/θ0 for small θ0 ≪ 1. Beyond

this radius we expect the profile should expand out and approach an asymptotically flat

brane. However, we can push this transition out to an arbitrarily large radius by taking

θ0 → 0. This again suggests that with d 6= 0, there are D7-brane embeddings which reach

the horizon no matter how far the (asymptotic) brane is from the black hole. We will verify

this result with numerical investigations of the full solutions for the action (3.33) in the

next subsection.

Our analysis of the static D7-brane profiles near χ ∼ 1 have confirmed the idea that the

embeddings develop a narrow spike that behaves like a bundle of strings stretching between

the asymptotic brane and the black hole. It is interesting to extend this idea further by

investigating the dynamical properties of these spikes. As a step in this direction, let

us consider our framework with the more general ansatz: χ(̺, t) and At(̺).
7 After a

straightforward calculation the Legendre-transformed action becomes

ĨD7 = −TD7

∫
d8σ

f

(2f̃)1/2

√

1 + ̺2(∂̺θ)2 − 2L4

̺2

f̃

f 2
(∂tθ)2

[
d2

(2πℓ2sTD7)2
+
N2

f

8
̺6f̃ 3 sin6 θ

]1/2

.

(3.36)

As above, we restrict our attention to the embeddings when they are very close to the

axis θ ≃ 0. In this regime, the second contribution in the last factor can be neglected and

eq. (3.36) becomes

ĨD7 ≃ −nqVx
1

2πℓ2s

∫
dt d̺

f

(2f̃)1/2

√

1 + ̺2(∂̺θ)2 − 2L4

̺2

f̃

f 2
(∂tθ)2 . (3.37)

Once again we recognise this result as the Nambu-Goto action for a bundle of fundamental

strings stretching in the ̺-direction with dynamical fluctuations in the θ-direction. Hence

we are beginning to see that not just the static properties of the spikes, such as the

tension, but also their dynamical spectrum of perturbations matches that of a collection

of strings; similar results have been seen for the dynamics of the BIon spikes on branes in

asymptotically flat spacetime [249]. In this sense we see that, although no fundamental

strings are initially manifest, the D7-brane spectrum still captures the presence of these

strings. This is a satisfying result since these strings stretching between the horizon and

7The symmetries of the problem ensure that this ansatz leads to a consistent solution.



102 Holographic thermal gauge theories with flavour

the asymptotic D7-branes are dual to the quarks in the field theory, for which we are

turning on the chemical potential µ. It would be interesting to investigate these issues in

more detail.

3.1.5 Numerical embeddings

We now return to the detailed analysis of the D7-brane embeddings in the black D3-brane

background. In general, it is not feasible to analytically solve eq. (3.12), which determines

the profile χ(ρ), so we resorted to numerics. We numerically integrated eq. (3.12), spec-

ifying boundary conditions on the horizon ρmin = 1: χ(1) = χ0 for various 0 ≤ χ0 < 1

and ∂ρχ|ρ=1 = 0. In order to compute the constants m, c corresponding to each choice of

boundary condition at the horizon, we fitted the solutions to the asymptotic form (3.13).

Several representative D7-brane profiles are depicted in figure 3.2. In particular, we see

explicitly here the formation of long narrow spikes reaching down to the horizon as χ0

approaches 1.
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Figure 3.2: Profiles of various D7-brane embeddings in the D3-brane background for d̃ =

10−4/4. The black circle represents the horizon.

We can make the appearance of these spikes quantitative here by examining how varying

the boundary condition χ0 changes the quark mass m – recall that the latter is proportional

to the distance which the branes reach along the vertical axis of figure 3.2. Figure 3.3 shows
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Figure 3.3: Quark mass m versus boundary condition χ0 on the horizon for (a) d̃ = 10−4/4

and (b) d̃ = 1/4.

plots of m versus χ0 for d̃ = 10−4/4 and 1/4. Note that in both cases, as χ0 → 1, the

quark mass is diverging. Hence with d̃ 6= 0, there are D7-brane embeddings which reach

the horizon no matter how large the (asymptotic) separation between the brane and the

black hole becomes. Since m ∝ Mq/T as shown in eq. (A.7), m → ∞ corresponds to

T → 0 for a fixed quark mass Mq. Hence the previous result is equivalent to saying that

the D7-branes intersect the horizon for all values of T when d 6= 0. Contrast this with the

d̃ = 0 case of section 2.3, where embeddings of the D7-branes which intersect the horizon

(i.e., black hole embeddings) only existed above some minimum temperature [111, 112].

At low temperatures the D7-branes were described by embeddings which smoothly closed

off above the horizon (i.e., Minkowski embeddings). For nonzero baryon density, there are

black hole embeddings corresponding to all temperatures in the gauge theory. For small

temperatures, or large quark mass, most of the brane is very far away from the horizon with

only a very thin long spike extending down to touch the horizon. Far from the black hole,

this embedding would look very much like a Minkowski embedding in the low temperature

phase of d̃ = 0. It differs only by the narrow spike going down to touch the horizon.

Figures 3.4, 3.5 and 3.6 illustrate the dependence of the quark condensate c on the

temperature T . Several such plots of c versus T with varying degrees of resolution are

given in figure 3.4 for small values of the baryon density: d̃ = 0, 10−6/4 and 10−4/4. In the

first two plots, the differences between the curves is virtually indiscernable. In particular
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then, they all begin to show the spiralling behaviour that was characteristic of the self-

similar scaling discovered for d̃ = 0 in chapter 2 [111,112]. Of course, section 3.1.3 argued

that these spirals should persist to a certain level at small d̃. Note that in the highest

resolution plot (the last one in fig. 3.4), one sees that for d̃ = 10−4/4 the small scale spirals

have been eliminated. In any event, the plots in figure 3.4 explicitly demonstrate that, for

small baryon density d̃, the black hole embeddings are mimicking the behaviour of both the

black hole and Minkowski branches of the theory at d̃ = 0. Hence certain features of the

physics will be continuous between the theories with vanishing and non-vanishing baryon

number density. In particular, the spiralling or rather the multi-valuedness of c indicates

there will be a first order phase transition and so the ‘melting’ transition found in chapter

2 [111,112] persists to small values of the baryon density.
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Figure 3.4: Quark condensate c versus temperature T/M̄ for d̃ = 0, 10−6/4 and 10−4/4 on

the black, red and blue curves, respectively. At low resolution, these curves are all nearly

identical and display a similar spiralling behaviour.



Phase transitions at finite baryon density 105

0.7624 0.7626 0.7628 0.763 0.7632
T�M�

-0.072

-0.07

-0.068

-0.066

-0.064

-0.062

c

Figure 3.5: Quark condensate c versus temperature T/M̄ near the critical point. The solid

black curve corresponds to the critical baryon density d̃∗ = 0.00315. The dashed curves

above (blue) and below (red) correspond to d̃ = 0.0031 and 0.0032, respectively.

As d̃ is increased, the self-similar, spiralling behaviour becomes less and less pronounced

and eventually c becomes a single-valued function of T/M̄ . To the best numerical accuracy

that we could achieve, the critical value at which the phase transition disappears is d̃∗ =

0.00315. Figure 3.5 shows c in the vicinity of the transition around this critical value. For

d̃ = 0.0031, the curve shows a slight S-shape and so a small first order phase transition

would still occur. For the critical value d̃∗ = 0.00315, the curve is monotonic but with

a singular slope near the centre. In this case, the phase transition would be reduced to

second order. Finally for d̃ = 0.0032, the curve is monotonic with a finite slope everywhere

and so the phase transition has disappeared.

For completeness, we also show the behaviour of the quark condensate at much larger

values of the baryon density in figure 3.6. Figure 3.6a corresponds to d̃ = 1/4 where some

interesting structure still persists around T/M̄ ∼ 1, which was where c shows a minimum

in figure 3.4 at smaller densities. Figure 3.6b corresponds to d̃ = 10, where c has become

a monotonically increasing (towards zero) function of T .

We integrated (3.17) numerically to solve for the chemical potential. Plots of µ̃ versus

temperature all show an apparent divergence as T/M̄ → 0, as illustrated in figure 3.7a.

However, this behaviour is misleading as we now explain. As discussed in the previous
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Figure 3.6: Quark condensate c versus temperature T/M̄ for (a) d̃ = 1/4 and (b) d̃ = 10.

subsections, a common feature of the D7-brane embeddings at small temperatures is the

long narrow spike close to the θ = 0 axis. This spike dominates eq. (3.17) for small T/M̄

and so the latter formula can be simplified to

µ ≃ 1√
22πℓ2s

∫ u0m

u0

d̺ f/f̃ 1/2 ≃Mq , (3.38)

where we have restored the dimensions of the chemical potential and the radial coordinate.

Hence in this limit, the chemical potential is essentially given by the quark mass, as one

might have expected. Hence the divergence in figure 3.7a arises simply because µ̃ ∝ µ/T ,

as shown in eq. (A.20). This spurious behaviour is eliminated by plotting µ/Mq =
√

2µ̃/m,

as shown in figure 3.7b. The latter plot exhibits the small temperature limit µ/Mq → 1

for T approaching zero, as is implied by eq. (3.38). Note that if one calculates µ in the

vicinity of the phase transition, it shows a multi-valuedness similar to that shown for the

quark condensate above.

3.2 D7-brane thermodynamics: Free energy, entropy

and stability

We now wish to study the thermal properties of the fundamental hypermultiplets at finite

baryon number. As in chapter 2, our holographic framework translates this question into
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Figure 3.7: Chemical potential for d̃ = 10 versus temperature displayed as: (a) µ̃ and (b)

µ/Mq.

one of investigating the thermal contributions of the D7-branes on the gravity side. As

usual, we use the standard technique [164] of Wick rotating the time direction. The

Euclidean time circle of the black D3-brane background then becomes the thermal circle

in a finite temperature path integral, and the leading contribution to the free energy is

determined by evaluating the Euclidean action. As we are interested in the contributions

of the fundamental matter, we only study the action of the D7-branes. As in section 2.3.2,

evaluating the bulk brane action leads to a formally divergent result and the AdS/CFT

correspondence provides a prescription to remove these divergences: One introduces a

finite-radius UV cut-off and a set of boundary counterterms to renormalise the action [178].

This approach for the branes is completely analogous to the same calculations which are

performed for the gravity background [165–169]. This holographic renormalisation of the

D7-brane action was discussed in more detail in section 2.3.2 [111, 112], which we follow

closely here.

We begin by writing the Euclidean action for the D7-branes in terms of dimensionless
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quantities, introduced in section 3.1.2, as8

Ibulk =

∫
d8σLE = N

∫
dρ ρ3ff̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2 − 2f̃

f 2
(1 − χ2) ˙̃A2

t , (3.39)

where N is the normalisation constant introduced in eq. (2.43) [111,112]:9

N =
2π2NfTD7u

4
0

4T
=
λNcNfT

3

32
.

The normalisation factor illustrates the fact that the leading contributions of the funda-

mental matter are proportional to NcNf, in accord with the large-Nc counting rules of the

gauge theory. Note then that these contributions are subleading to those of the adjoint

fields which scale as N2
c – see, for example, the entropy density in eq. (3.3).

As commented above, this bulk action (3.39) contains large-ρ, UV divergences. Fortu-

nately, however, these are the same as in the absence of the gauge field, and therefore no

new counterterms are required beyond those derived in section 2.3.2 [111,112], which take

the form
Ibound

N = −1

4

(
ρ4

max − 2m2ρ2
max +m4 − 4mc

)
, (3.40)

where ρmax is the UV cut-off. The regularised D7-brane action is then IE = Ibulk + Ibound. It

can most simply be written as:

IE

N = G(m) − 1

4

[
(ρmin

2 −m2)2 − 4mc
]
, (3.41)

where G(m) is the integral:

G(m) =

∫ ρmax

ρmin

dρ


ρ3ff̃(1 − χ2)

√

1 − χ2 + ρ2χ̇2 − 2f̃

f 2
(1 − χ2) ˙̃A2

t − ρ3 +m2ρ


 . (3.42)

The limit ρmax → ∞ may now be taken, since this integral converges.

8For simplicity, we have left At untouched here rather than introducing a Wick rotated potential

AtE = −i At. As is well-known, such a Euclidean potential would have to be treated as an imaginary field

in the present context because the chemical potential and particle density must remain real constants –

see, e.g., [229,230].
9Note that this constant does not include the three-volume Vx along the gauge theory directions.

Rather in this section we will divide out these factors everywhere and so all extensive quantities are

actually densities per unit volume; for example, (3.39) is the Euclidean action density.
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As usual, we wish to identify the action with a thermodynamic free energy. However,

in the present case, there are various possibilities depending on the ensemble under consid-

eration, i.e., the Gibbs free energy for the grand canonical ensemble with fixed µ and the

Helmholtz free energy for the canonical ensemble with fixed nb. Experience with similar

calculations for charged black holes, e.g., [229, 230], suggests that the Gibbs free energy

is given by the Euclidean action while the Helmholtz free energy is associated with the

Legendre transform of IE.

In the following, we confirm these expectations. Using the equations of motion, the

variation of the action reduces to a boundary term:

δIE =

[
∂LE

∂χ̇
δχ+

∂LE

∂ ˙̃At

δÃt

]ρmax

ρmin

. (3.43)

Combining this with the variation of the boundary action Ibound (3.40) yields

δIE = −2N c δm− nq

T
δµ (3.44)

where nq was defined in (A.14). Recalling that m = M̄/T we see that the natural thermo-

dynamic variables of the Euclidean action are the temperature T and the chemical potential

µ. Hence we must identify IE = βW , where W (T, µ) is the thermodynamic potential in

the grand canonical ensemble, namely the Gibbs free energy.

Since we wish to work at fixed charge density, i.e., in the canonical ensemble, we perform

a Legendre transformation by defining

ĨE = IE +
nq µ

T
, (3.45)

which of course is a function of the temperature and the charge density:

δĨE = −2N c δm+
µ

T
δnq . (3.46)

We thus identify ĨE = βF where F (T, nq) is the Helmholtz free energy.

The bulk part of ĨE is of course the Euclidean analogue of (3.10):

Ĩbulk

N =

∫
dρ ρ3 ff̃(1 − χ2)

√
1 − χ2 + ρ2χ̇2

[
1 +

8d̃2

ρ6f̃ 3(1 − χ2)3

]1/2

. (3.47)
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Since the divergences of this bulk action are the same as those of the d̃ = 0 case, the

analogous expression to eq. (3.41) is now

ĨE

N = G̃(m) − 1

4

[
(m2 − 1)2 − 4mc

]
, (3.48)

where G̃(m) is the integral:

G̃(m) =

∫ ∞

1

dρ

[
ρ3ff̃(1 − χ2)

√
1 − χ2 + ρ2χ̇2

√

1 +
8d̃2

ρ6f̃ 3(1 − χ2)3
− ρ3 +m2ρ

]
. (3.49)

In both of these expressions, we have replaced ρmin = 1 since all of the embeddings which

we consider terminate at the horizon.

We evaluated the free energy numerically for various d̃ and representative results are

given in figures 3.8 and 3.9. The behaviour of the action versus temperature in figure 3.8

for d̃ = 10−4/4 is nearly identical to that for d̃ = 0 – see fig. 2.5. The results for d̃ = 10−4/4

are typical for small values of d̃ with the classic ‘swallow tail’ shape. Of course, the crossing

point of the two branches coming in from small and large T marks the temperature of the

phase transition. By varying d̃, one can then map out the phase diagram shown above in

figure 3.1. A more detailed diagram is shown here in figure 3.10. We see here that the first

order phase transition occurs along a segment starting at Tfun/M̄ = .7658 at d̃ = 0 and

ending at the critical point at T ∗
fun/M̄ = .7629 and d̃∗ = 0.00315.
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Figure 3.8: Legendre transform of the action, ĨD7, versus temperature for d̃ = 10−4/4. The

phase transition temperature is denoted by the dotted vertical line in the second plot.
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Figure 3.9: Legendre transform of the action, ĨD7, versus temperature for (a) d̃ = 10−1/4

and (b) d̃ = 10. There is no phase transition for these values of d̃.
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Figure 3.10: Phase diagram: Baryon density d̃ versus temperature T/M̄ .
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For completeness, we show some representative plots for large values of d̃ in figure 3.9,

where there is no crossing and no phase transition. Note that these plots show an apparent

divergence as T → 0 but this is a spurious effect in analogy to the discussion of the plots

for the chemical potential. This artifact is actually present in all of the free energy plots

but the width becomes very narrow at small d̃.

We now turn to the entropy density. This can be obtained by differentiating the

Helmholtz free energy density F (T, d) = T ĨE with respect to T as

S = −∂F
∂T

= −πL2 ∂F

∂u0

, (3.50)

where we used the relation u0 = πL2T . Following the calculations described in section

2.6.2 [112], one must carefully consider all of the implicit u0 dependence in (3.48). The

only new contribution comes here from the appearance of d̃ in (3.49) since from (3.11), we

can see that
∂d̃

∂u0

= − 3

u0

d̃ . (3.51)

Gathering all the contributions, the entropy can be expressed as

S

N = −4G̃(m) + 24d̃2H(m) + (m2 − 1)2 − 6mc , (3.52)

where we have defined the integral

H(m) =

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

ρ3f̃ 2(1 − χ2)2

[
1 +

8d̃2

ρ6f̃ 3(1 − χ2)3

]−1/2

. (3.53)

Comparing this expression to eq. (3.17), we see that H = µ̃/2d̃. Hence we may write the

final result as
S

N = −4G̃(m) + 12 d̃µ̃+ (m2 − 1)2 − 6mc . (3.54)

We evaluated the entropy numerically for various d̃ and some typical results are given in

figs. 3.11 and 3.12. The behaviour of the entropy versus temperature in figure 3.11 for

d̃ = 10−4/4 is nearly identical to that for d̃ = 0 – see figure 2.5. In particular, near the

phase transition point, the curve is multi-valued because there are several embeddings with

the same values of d̃ and T/M̄ . Figure 3.12 shows the behaviour of the entropy for larger

values of d̃ beyond the critical point.
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Figure 3.11: The entropy S/N versus temperature T/M̄ for d̃ = 10−4/4. The position of

the phase transition is marked by the dotted vertical line in the second figure.
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Figure 3.12: The entropy S/N versus temperature T/M̄ for (a) d̃ = 10−1/4 and (b) d̃ = 10.
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The thermodynamic identity E = F + T S = T (ĨE + S) allows us to determine the

contribution of the D7-brane to the energy density:

E

NT
= −3G̃(m) + 12 d̃µ̃+

3

4

[
(m2 − 1)2 − 20

3
mc

]
. (3.55)

While we did calculate E for many values of d̃, we do not present any plots here as

qualitatively their behaviour is similar to that in the plots of the entropy.

Finally, we turn to the thermodynamic stability of the system. There are various

ways to write the requirements for the intrinsic stability of our fixed-charge ensemble. We

investigated stability here with the conditions:

∂S

∂T
> 0 ,

∂µ

∂n
> 0 . (3.56)

The first one requires that the system be stable against fluctuations in energy and seems to

be satisfied everywhere. The second constraint for electrical stability is more interesting,

as we found that it was not satisfied for all d̃ and T . Our investigations of the region of

instability remain preliminary, but figure 3.1 roughly illustrates the extent of the unstable

zone as the shaded (red) region. In particular, the line of the phase transition seems to be

part of the boundary of the unstable region between T ∗
fun and Tfun. This would indicate that

the black hole embeddings do not correctly describe the true ground state in this small

region and in particular, just below the phase transition. We hope to return to this matter

in the future. We comment more on the implications of the instability in the discussion

section below.

3.3 Discussion

In chapter 2 [111, 112] we identified a universal, first order thermal phase transition in

holographic Dp/Dq systems. This was characterised by a jump of the Dq-branes between

a Minkowski embedding and a black hole embedding in the background of the black Dp-

branes. In the gauge theory this transition is associated with the melting of the mesons.

In the present chapter we have shown that Minkowski embeddings become inconsistent

at any finite baryon (or equivalently, quark) number density. The physical reason is that

a non-zero density which is dual to a worldvolume electric field translates into a finite

number of strings being dissolved into the Dq-branes. Hence the brane is not allowed to
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close off smoothly as the strings cannot simply terminate. We considered the possibility

of Minkowski-like embeddings where the branes close off above the horizon and external

fundamental strings are attached at this point and extend down to the horizon. However,

examining the forces between the cusp in the brane embedding and the external strings,

one finds that no equilibrium configuration is possible. Rather the strings would pull the

tip of the brane down to meet the horizon. We note here though that this is not the

only possibility for a Minkowski-like embedding. One must simply attach a source for the

strings and one obvious alternative for such a source is the baryon vertex [240–244]. In a

Dp-brane background, the baryon vertex consists of a D(8–p)-brane wrapping the internal

S8−p. Hence it may be that there is a family of Minkowski-like embeddings, where a gas

of baryons absorbs the strings dissolved on the probe branes. It would be interesting to

investigate this possibility further.

On the other hand, we did find that with any non-zero baryon density nb, black hole

embeddings where the Dq-branes intersect the horizon exist for all values of the temper-

ature. In contrast, such embeddings do not exist below a certain temperature for nb = 0

and the system must be described by a Minkowski embedding beyond this point. In any

event, we focussed here on studying the behaviour of the black hole embeddings at finite

nb in the specific example of the D3/D7 system. Our results indicate that the physics is

essentially continuous around nb = 0. The reason is that black hole embeddings with very

small nb mimic the behaviour of both nb = 0 Minkowski embeddings and nb = 0 black hole

embeddings. Moreover, the near-horizon analysis strongly suggested that the universal

phase transition found in chapter 2 [111, 112] should persist for sufficiently small baryon

densities, but that it should cease to exist above some critical value nb = n∗
b. This was

confirmed by our detailed numerical analysis for the D3/D7 system. We emphasise though

that the transition at small baryon density occurs between two black hole embeddings.

At zero baryon number density, the spectrum on Minkowski embeddings consists of

a gapped, discrete set of stable mesons (in the large-Nc, strong coupling limit), together

with stable, massive, free constituent quarks – see chapter 2 [111, 112]. Instead, mesons

on black hole embeddings have melted and and the spectrum is continuous and gapless.

In fact, little evidence of the previously stable states remains in this continuous spectrum

– see chapter 5 [126]. In addition, constituent quarks are massless. In the presence of a

non-zero baryon density, all embeddings are of black hole type and hence no strictly stable

mesons exist. Note, however, that the decay width is very small if the quark mass is very
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large, or if the meson is very heavy. Indeed, the decay width of a meson is proportional

to the support of its wave function on the near-axis region where the spike attaches to the

branes. This region becomes small as the quark mass increases. Alternatively, the peak of

the meson wave function occurs further and further away from the axis as the meson mass

increases – which, for fixed quark mass, can be achieved by, for example, increasing the

meson radial quantum number. We plan to study these issues in more detail elsewhere.

Similarly, it may seem that the free constituent quarks represent a puzzle in this frame-

work. Recall that the dual gauge theory is deconfined and so free quarks should play a

role, in particular since we introduce a chemical potential. The analysis at nb = 0 suggests

that at least at low temperatures a constituent quark is dual to a string extending from

the horizon to the brane (at large radius). However, at finite nb, our embeddings are all

of the black hole type and so if we attach such a string to the brane, it will quickly slip

away behind the horizon. Hence the puzzle is: How do the D7-branes capture the physics

of a gas of constituent quarks at low temperatures when there are no stable excitations

corresponding to macroscopic strings?

Of course, the resolution of this puzzle is provided by the analysis in subsection 3.1.4.

The near-horizon analysis of the Dp/Dq system suggested that, for any value of the baryon

density, there should exist Dq-brane embeddings which closely resemble Minkowski em-

beddings everywhere except for a long thin spike stretching all the way down to the black

Dp-branes horizon. This was confirmed for the D3/D7 case by our numerical results, which

demonstrate that such embeddings correspond to large quark masses (or low temperatures).

Further, we showed that not only do these spikes match the tension of a bundle of funda-

mental strings, but also their dynamics. Hence these spikes provide a brane realisation of

the desired gas of constituent quarks. Since the fields describing the D7-branes are dual

to meson operators (i.e., operators with nq = 0) in the gauge theory, we may say that, in

a very precise sense, quarks are being built out of mesons here, in the limit of large quark

masses.

In considering the discussion above, one must remember that part of our phase diagram

3.1 corresponds to unstable embeddings. In particular, the line of the phase transition

seems to be part of the boundary of the unstable region. This would indicate that the black

hole embeddings do not correctly describe the true ground state of the phase immediately

below the phase transition. Hence while one should not doubt the existence of a phase

transition, the precise location of the transition can be called into question. Recall however,
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that for small d̃ 6= 0 the behaviour of the black hole embeddings matched everywhere the

known behaviour of the system with d̃ = 0 very closely, as illustrated in fig. 3.4. Hence

we expect that the true line of phase transitions must be very close to that indicated in

fig. 3.10 for small d̃ but it may deviate to the right at larger values of d̃. We also reiterate

that we are still refining our results on the boundary of the unstable region and that fig. 3.1

only gives a qualitative representation beyond T ∗
fun. It may also be that the region below

the phase transition line very close to Tfun is stable.

The instability arises in the region where

(
∂µ

∂nb

)

T

=

(
∂2F

∂n2
b

)

T

< 0 . (3.57)

It would be interesting to identify what the stable ground state is in this region. One

indication comes from the nature of the instability itself. In the region where (3.57) holds

the free energy F is a concave function of the baryon density, which means that the system

can lower its free energy by separating into two phases with densities n1
b < nb < n2

b such

that

γn1
b + (1 − γ)n2

b = nb , γF (n1
b) + (1 − γ)F (n2

b) < F (nb) . (3.58)

One way in which this would be realised in the gravity description would be that it becomes

thermodynamically favourable for the Nf D-brane probes to distribute the U(1)q charge

unequally among constituent branes, presumably through some mechanism involving the

non-Abelian nature of their dynamics. This would imply that the flavour symmetry is

spontaneously broken in the infrared. Alternatively, such a separation in different-nb phases

may be realised by going to a spatially inhomogeneous phase where nb varies from point

to point. The Minkowski-like embeddings carrying a gas of baryons may play a role in this

regime.

In this chapter we concentrated on the phase structure of gauge theories at constant

temperature and charge density, namely on their description in the canonical ensemble. It

will be interesting to consider the phase structure of these theories in the grand canonical

ensemble, i.e., as a function of the temperature and the chemical potential. This should

be particularly interesting in terms of a potential comparison with the phase structure

of QCD. However, it is important to keep in mind that much of the interesting physics

in QCD at finite density – see, e.g., [250, 251] – is associated with the fact that baryon

number in QCD is only carried by fermionic fields (quarks). This leads to the existence
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of a Fermi surface at finite chemical potential. In gauge theories dual to Dp/Dq systems

such as those considered here, baryon number is also carried by scalar fields, and so the

physics at finite chemical potential is likely to be very different. In particular, a chemical

potential for charged scalars acts effectively as a negative mass squared. In the case of free

massless scalars this leads to an instability. The theories considered here, however, contain

interaction, quartic terms in the fundamental scalars, and so the chemical potential will

presumably lead to condensation of the scalars if these are sufficiently light.

As the paper [151] on which this chapter is based was being prepared, we became aware

of [252] which overlaps considerably with this work. We thank Sang-Jin Sin for informing

us of their project before publication. Unfortunately, we find no evidence of two phase

transitions as reported in [252]. We believe their result is spurious, arising from including

unphysical Minkowski embeddings in their analysis.



Chapter 4

Holographic viscosity of fundamental

matter

A universal bound was recently proposed [125, 140] for the ratio of the shear viscosity to

the entropy density of any physical system as η/S ≥ 1/4π. In particular, this bound is

conjectured to hold for all relativistic quantum field theories at finite temperature that

exhibit hydrodynamic behaviour at long wavelengths. Perhaps surprisingly, experimental

results from the Relativistic Heavy Ion Collider (RHIC) suggest that, for QCD just above

the deconfinement phase transition, the value of η/S is close to saturating this bound

[149, 150]. This would indicate that the quark-gluon plasma formed at RHIC is almost a

perfect liquid.

Unfortunately, there are currently no theoretical tools with which to calculate trans-

port coefficients in QCD in this strong coupling regime, e.g., the viscosity. However, as

we’ve seen in earlier chapters, the gauge/gravity correspondence makes the strong coupling

regime of a large class of gauge theories accessible. In fact, the proposal [125,140] for a uni-

versal bound on η/S originated with calculations in this holographic context. Explicit cal-

culations [119,121,128,137,141,142,144,145,253] and general arguments [125,138–140,146]

have demonstrated that the bound is exactly saturated by a large class of holographic the-

ories in the limit cited above – for a review, see [118]. In order to approach real-world

QCD, it is clearly important to consider 1/λ and 1/Nc corrections. For four-dimensional

N = 4 super-Yang-Mills (SYM), the leading correction of the first type was shown to raise

the value of η/S above the bound [127, 148]. That is, at finite coupling the bound still

119
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holds but is no longer saturated.

A feature common to all of the gauge theories considered in these hydrodynamic studies

is that the matter degrees of freedom transform in the adjoint representation of the gauge

group.1 In this chapter, we study the effect of adding matter fields transforming in the

fundamental representation. In particular, we focus on four-dimensional SU(Nc) SYM

coupled to Nf fundamental hypermultiplets with Nf ≪ Nc. Large-Nc counting rules imply

that, in the deconfined phase, the contribution of the gluons and adjoint matter to physical

quantities is of order N2
c . Further, the first correction in the absence of fundamental matter

is of order 1, i.e., it is suppressed by 1/N2
c . Instead, the relative contribution of fundamental

matter is only suppressed by Nf/Nc, and therefore it constitutes the leading correction in

the large-Nc limit. This is particularly important in theories for which the bound is exactly

saturated at Nc = ∞, since in these cases whether or not the bound is violated at large

but finite Nc is completely determined by the leading 1/Nc correction.

As seen in earlier chapters, the dual gravity description of a four-dimensional gauge

theory containing fundamental matter is given by Nf D7-brane probes [60, 153] in the

background geometry ofNc D3-branes. At finite temperature the geometry contains a black

hole [59]. Determining modifications of the shear viscosity requires that we go beyond the

usual probe approximation and begin to account for the backreaction of the D7-branes.

However, to leading order in Nf/Nc, the calculation of the η/S ratio can be effectively

reduced to one in five-dimensional Einstein gravity coupled to a scalar field. General

results [125,138–140] then guarantee that η/S = 1/4π. Since the D7-brane contribution to

the entropy density is known to be of order Sfun ∼ λNcNfT
3 – see section 2.3.2 [111, 112]–

this implies that the contribution of the fundamental matter to the shear viscosity at strong

’t Hooft coupling is enhanced with respect to that dictated solely by large-Nc counting rules.

In section 4.3 we will argue that an analogous enhancement takes place for other trans-

port coefficients. We will also explain how our results extend straightforwardly to other

holographic gauge theories described by Dp/Dq systems, studied in chapter 2 [62,111,112],

or Dp/Dq/Dq̄ systems [63,64,107–110,222,234,254–256], as well as to systems with a non-

zero baryon number chemical potential, such as those studied in chapter 3.

1An exception is ref. [212], where fundamental matter was considered. However, the construction

involves D5-branes and so the temperature is not a free parameter.
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4.1 Holographic Framework

The shear viscosity of the gauge theory in a two-plane labelled by xi, xj may be extracted

from the retarded correlator of two stress energy tensors via Kubo’s formula (see, for

example, [118] and references therein)

η = lim
ω→0

1

2ω

∫
dt d3x eiωt 〈[Tij(x), Tij(0)]〉 , (4.1)

where no summation over i, j is implied. The stress energy tensor is dual on the string side

to a metric perturbation Hij polarised along the same two-plane. The two-point function

above may be calculated by taking two functional derivatives of the on-shell string effective

action with respect to this perturbation [123, 124]. In the large-Nc, large-λ limit, this

effective action reduces to the type IIB supergravity action coupled to the worldvolume

action of the D7-branes, I = IIIB + ID7. Schematically, we have:

I =
1

16πG

∫
d10x

√−gR−NfTD7

∫
d8x

√−gind + · · · , (4.2)

where gind is the induced metric on the D7-branes. In terms of the string length and

coupling:

16πG = (2π)7ℓ8sg
2
s , TD7 = 2π/(2πℓs)

8gs . (4.3)

The ratio between the normalisations of the two terms above is

ε = 16πGNfTD7 =
λ

2π

Nf

Nc

, (4.4)

where λ = g2
YMNc = 2πgsNc is the ’t Hooft coupling. This ratio controls the relative

magnitude of the D7-branes’ contribution to physical quantities, e.g., the entropy density–

see section 2.3.2 [111, 112]. We will assume that ε ≪ 1 and hence that the D7-branes can

be treated as a small perturbation; for fixed λ this is achieved by taking Nf ≪ Nc. We will

begin by examining contributions of order ε in the next section. In the last section, we will

comment on effects of order ε2 and higher.

As seen in section 2.3, in the absence of D7-branes the supergravity background dual

to four-dimensional N = 4 SYM at temperature T is

ds2 = ds2
5 + L2dΩ2

5 , (4.5)

ds2
5 =

(πLTρ)2

2

[
−f

2

f̃
dt2 + f̃dx2

i

]
+
L2

ρ2
dρ2 , (4.6)
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where f(ρ) = 1 − 1/ρ4 , f̃(ρ) = 1 + 1/ρ4, and L = (4πgsNc)
1/4ℓs is the asymptotic AdS

radius. There are also Nc units of Ramond-Ramond flux through the five-sphere while

the remaining supergravity fields vanish. The metric (4.5,4.6) possesses an event horizon

at ρ = 1. The entropy density of the gauge theory is then the geometric entropy of the

horizon [172]:

S =
π3

4G5

L3T 3 =
π2

2
N2

c T
3 , (4.7)

where G5 = G/π3L5 is the five-dimensional Newton’s constant obtained by dimensional

reduction on the five-sphere.

As in previous chapters, we introduce D7-branes oriented such that five worldvolume

directions match those of the five-dimensional black hole (4.6), y ≡ {t, xi, ρ}, and the

remainder wrap an S3 (with a possibly varying radius) inside the S5 of (4.5) – see array

(2.34). We adapt coordinates in this internal space such that

dΩ2
5 = dθ2 + sin2 θdΩ2

3 + cos2 θdφ2 (4.8)

and, as before, describe the D7-branes embedding by χ, with χ = cos θ. To order ε0, this

is determined by extremising the D7-brane action in the background (4.5,4.6) – see section

2.3.1.

4.2 Viscous Branes

As alluded to above, the calculation of the shear viscosity proceeds as follows. First,

one solves the (linearised) equation of motion for a metric perturbation H around the

appropriate background. Next, one evaluates the appropriate action for the perturbed

background to quadratic order in H. A second derivative of the on-shell action then yields

the desired two-point function [123,124] with which the Kubo formula (4.1) is evaluated.

In the absence of D7-branes the appropriate action is IIIB and the background is given

by (4.5). In the presence of the D7-branes the relevant action is supplemented by ID7. To

first order in the ε-expansion, this affects the calculation of the viscosity in three ways.

First, the branes will produce O(ε) corrections to the metric (4.5), as well as to the dilaton

and the RR axion, since they act as new sources in the field equations arising from the

combined action. These background corrections then lead to modifications of the field

equation satisfied by H. Second, the branes will also modify the H field equation directly
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through extra source terms originating from the variation of ID7 with respect to H. Third,

the second-derivative of the on-shell action, which yields the correlator in Kubo’s formula,

may acquire contributions from ID7.

Further effects would enter a full calculation of η at higher orders in ε. For example, the

background corrections modify the brane embedding, but this only begins to contribute

to the on-shell action at O(ε2). In fact, we will now show that only the first two types

of possible modifications contribute at O(ε). Moreover, the only relevant background

correction is the zero-mode (on the five-sphere) of the five-dimensional black hole metric

(4.6).

We begin by considering the third set of possible contributions listed above. Expanding

the brane action around the O(ε0) background, one finds that, because H enters the action

non-derivatively, the H2 terms do not have a form which will contribute in the Kubo

formula [123, 124]. However, turning on H also induces a correction δχ = O(H2) in the

embedding of the branes. This leads to a surface term in the variation of the D7-brane

action,

δID7 ∼
∂LD7

∂(∂ρχ)
δχ

∣∣∣∣
ρmax

, (4.9)

of the right form to contribute to the two-point correlator. However, arguments similar to

those in section 2.6.3 imply that any variation of the action is proportional to δm [111,112]:

δID7 = −2cδm . (4.10)

Hence this contribution must vanish as the variation of the action with respect to H must

be taken while keeping the quark mass fixed.

Consider now corrections to the background (4.5). While there are O(ε) corrections to

the dilaton and RR axion, these only produce O(ε2) contributions to the H field equation

because they enter the supergravity action quadratically (in the Einstein frame). We are

thus left to consider the contributions of corrections to the spacetime metric. To order ε,

the background metric is

g = g0 + εg
(0)
1 + ε

∑

ℓ6=0

g
(ℓ)
1 , (4.11)

where the corrections g
(ℓ)
1 are organised by their properties under the SO(6) rotations on

S5, with ℓ = 0 denoting invariant contributions.2 Since the D7-branes only fill an S3 in

2As the metric is a tensor, invariant means g
(0)
1 has vanishing Lie derivatives under the SO(6) Killing
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the internal space, they also source the g
(ℓ)
1 corrections with ℓ 6= 0. For the following, an

important point is that the functions g
(0)
1 and g

(ℓ)
1 respect the symmetries of the background

geometry (4.5) and the brane embedding, i.e., translations in {t, xi} and SO(3) rotations

in xi, as well as SO(4) rotations in the internal S3 (wrapped by the D7-brane). The

perturbation H has a similar decomposition:

H = H0 + εH
(0)
1 + ε

∑

ℓ6=0

H
(ℓ)
1 . (4.12)

Implicitly, H0 is an SO(6) singlet and in the absence of D7-branes it is consistent to restrict

the perturbation in this sector [119, 137]. However, in the presence of the D7-branes,

nontrivial H
(ℓ)
1 are sourced when H0 is turned on.3 Indeed, after integration over the

S5, the supergravity action produces couplings of the schematic form ε2
∫
d5y H0H

(ℓ)
1 g

(ℓ)
1 .

Similarly, the D7-branes action produces couplings like ε2
∫
d5y H0H

(ℓ)
1 , for modes that

are constant on the S3 wrapped by the D7-branes. However, as indicated, both types of

terms are of order ε2 and so we may neglect their contribution here since we only wish to

determine the correlator (4.1) up to order ε.

We therefore conclude that, to order ε, we need only consider the zero-modes g
(0)
1 (y) and

H
(0)
1 (y), and may drop all modes with non-trivial dependence on the S5 directions. Hence

in working to order ε, evaluation of the viscosity actually reduces to a five-dimensional

calculation. We can make the latter concrete by dimensionally reducing the action (4.2)

to five dimensions ignoring all the Kaluza-Klein modes on the five-sphere, as well as the

other supergravity fields. By the previous arguments, the resulting action still captures all

of the relevant fields for the calculation of the viscosity to this order. The five-dimensional

action can be written as

I5 =
1

16πG5

∫
d5y

√−g
[
R +

12

L2
− 2 ε

πL2
(1 − χ2)

√
1 − χ2 + L2gρρ(∂ρχ)2

]
, (4.13)

where g denotes the five-dimensional metric. The first two terms originate from the reduc-

tion of IIIB, whereas the last one comes from the reduction of ID7 – see eq. (2.42). Note

symmetries of the background (4.5). Hence as well as perturbations of the AdS black hole (4.5), g
(0)
1

includes perturbations in the size of the five sphere. However, this scalar is removed from the O(ε)

calculation by going to the Einstein frame in the reduced action (4.13). This fixes the five dimensional

Newton’s constant as G5 = G/π3L5.
3With D7-branes, H0 also sources other supergravity fields at O(εH2

0 ). However, these perturbations

do not contribute to the shear viscosity at O(ε).
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that, in the action (4.13), we have only allowed scalar field configurations depending on the

radial coordinate, since this suffices for our purposes. This system is just five-dimensional

Einstein gravity coupled to a cosmological constant and a(n unusual) scalar field χ. In

an ε-expansion, the black hole solutions generated by this auxiliary theory will match the

asymptotically AdS part of the original ten-dimensional solution to order ε, i.e., the brane

profile χ(ρ) and the background metric (4.6) plus the order-ε correction g
(0)
1 (ρ).

The viscosity may now be obtained by calculating the perturbation Hij around the

five-dimensional solution and taking the second functional derivative of the action (4.13)

evaluated on-shell. However, the black hole solutions of our auxiliary five-dimensional

system satisfy the symmetries required in [125, 140], namely translational and rotational

invariance in the xi directions, and hence the result is guaranteed to satisfy η/S = 1/4π.

We thus conclude that this universal bound is still saturated in the full ten-dimensional

string theory when working to first order in ε. An immediate consequence is that the

contributions of the fundamental matter to the viscosity and the entropy density are related

(within our approximations) as ηfun = Sfun/4π. With the known results for Sfun from section

2.3.2 [111,112], we have

ηfun =
π

8
N2

c T
3

[
1 +

λ

8π2

Nf

Nc

h

(
λT

Mq

)
+ · · ·

]
, (4.14)

where the function h(x) satisfies h(0) = 0, h(∞) = 1, and makes a cross-over between both

values around x ∼ 1. Note that this cross-over includes a small discontinuity arising from

a first-order phase transition of the fundamental matter – see chapter 2 [111, 112]. We

therefore conclude that both Sfun and ηfun are enhanced at strong ’t Hooft coupling with

respect to the O(NcNf)-value dictated solely by large-Nc counting rules.

The calculation of Sfun in chapter 2 [111,112] was performed by identifying the Euclidean

action of the D7-branes with Ffun/T , where Ffun is the free energy contribution of the

fundamental matter. The entropy is then determined as Sfun = −∂Ffun/∂T . This entropy

should, of course, coincide with the change in the horizon area induced by the presence of

the D7-branes. The latter can be checked explicitly for the case of massless quarks, for

which χ = 0 and, from section 2.3.2, Sfun = λNfNcT
3/16. From (4.13) we see that the

net effect of these ‘equatorial’ branes is to shift the effective cosmological constant. The

corresponding black hole solution is still given by (4.6) with the replacement L2 → L2/(1−
ε/6π). The same replacement in (4.7) shifts the entropy to order ε by δS = λNfNcT

3/16,

in precise agreement with the result from section 2.3.2.
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4.3 Discussion

We have seen that the calculation of the contribution of fundamental matter to the shear

viscosity may be effectively reduced to a calculation in five dimensions. An analogous sim-

plification takes place for other transport coefficients that can be extracted from correlators

involving local operators with vanishing R-charge, since these are dual to modes that carry

no angular momentum on the S5. Examples involving components of the stress-energy

tensor include the speed of sound vs and the bulk viscosity ξ. Other transport coefficients

that involve R-charged operators, such as the R-charge diffusion constant [119], or extended

strings, such as the jet quenching parameter q̂ [133–135], may require a ten-dimensional

calculation. Generically, however, we expect the relative contribution of the fundamental

matter to be of order ε ∼ λNf/Nc, since this controls the backreaction of the branes.

Above, our discussion focussed on the D3/D7 system, but the arguments are easily

extended to a more general Dp/Dq system intersecting over d common directions. These

constructions are dual to a finite-temperature SYM theory in p+ 1 dimensions coupled to

fundamental matter confined to a (d + 1)-dimensional defect. One new feature in these

generalised configurations is that the defect breaks translational invariance along the p−d

orthogonal directions. In order to calculate the shear viscosity4 along the translationally

invariant directions parallel to the defect, the simplest approach is to compactify these

extra directions.5 The arguments in the previous section go through essentially unchanged

except for the fact that the index ℓ now labels momentum modes both along the S8−p

transverse to the Dp-branes and along the p − d directions orthogonal to the defect. In

this case the problem of calculating the leading contribution of the fundamental matter to

the viscosity/entropy ratio can be reduced to a calculation in (d+ 2)-dimensional Einstein

gravity coupled to a set of scalar fields. In addition to the scalar χ above, this set now

includes the dilaton and the metric components governing the size of the internal S8−p of

the background geometry and the size of the (p− d)-dimensional space orthogonal to the

4The framework for the calculation of correlators is less well developed for such backgrounds, which

are not asymptotically AdS. Cascading gauge theories are an interesting case where these techniques are

being developed [129,223–227].
5Compactifying is also required to make the (d+ 2)-dimensional Newton’s constant finite. Since New-

ton’s constant cancels in the ratio η/S, there is no obstruction to taking the infinite volume limit at the

end.
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defect.6 This lower dimensional theory again captures all of the relevant fields to calculate

the viscosity to leading order in Nf/Nc. Further, the form of the (d+2)-dimensional gravity

theory and the background guarantees that η/S = 1/4π. The leading result for the entropy

density was determined in chapter 2 [111,112] and hence we have

ηfun ∼ NcNf T
d geff(T )

2(d−1)
5−p , (4.15)

where g2
eff(T ) = λT p−3 is the dimensionless effective ’t Hooft coupling for a (p + 1)-

dimensional theory at temperature T [58]. Here the gauge/gravity duality is only valid

in the strongly coupled regime [58] and hence we again see an enhancement beyond the

large-Nc counting. The same line of argument can also be implemented for the Dp/Dq/Dq̄

systems which have also been studied recently [63,64,107–110,222,234,254–256].

The U(Nf) ≃ SU(Nf) × U(1)B gauge symmetry on the Dq-branes is a global, flavour

symmetry of the dual gauge theory. The results above also hold when a baryon number

chemical potential for the U(1)B charge is introduced. As we saw in chapter 3, this is dual to

turning on the time component of the gauge potential on the Dq-branes, At(ρ) [151,234].7

The arguments of the previous section again go through essentially unchanged, except for

the fact that an additional vector Aµ is added to the reduced (d+ 2)-dimensional Einstein

gravity theory. Thus the saturation of the bound is not affected by the introduction of a

chemical potential.

Above we have worked to the lowest order in the parameter ε ∼ λNf/Nc that controls

the backreaction of the D7-branes on the D3-brane geometry. We have argued that to this

order one may ignore all effects of this backreaction except for those on the non-compact

part of the metric. We regard the agreement between the entropy density as calculated in

section 2.3 [111,112] and as obtained in the previous section from the change in the horizon

area as a quantitative consistency check of this approach. In calculating beyond order ε, the

internal modes, e.g., g
(ℓ)
1 (y), and other supergravity fields, will all play a role. Further, at

6One might similarly worry about the RR field sourced by the Dq-branes. This will be of order ε and

so naturally contributes to the stress tensor at order ε2. However, there may also be order-ε cross-terms if

this RR field already appears as part of the background generated by the Dp-brane. For supersymmetric

cases [101, 102, 257], this only happens for the D3/D3, D2/D4 and D1/D5 systems. In all of these, the

defect is (1+1)-dimensional and so the shear viscosity is not defined.
7This baryon number chemical potential should not be confused with the R-charge chemical potential

considered in e.g. [142,144–146,253], which is dual in the string description to angular momentum on the

sphere.
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O(ε2) quantum effects will have to be considered.8 Closed string loop corrections naturally

appear in an expansion in g2
s ∼ λ2/N2

c . Thus if as above Nf is fixed, the loop corrections

may be of the same magnitude as the higher order D7-brane contributions, i.e., g2
s ∼ ε2 if

Nf = O(1).

The holographic field theories with fundamental matter are naturally organised accord-

ing to three expansions in 1/λ, 1/Nc, and Nf/Nc. To suppress string loop corrections with

respect to the backreaction of the D7-branes (or more generally the Dq-branes), one must

keep Nf/Nc fixed while taking Nc → ∞. The resulting classical solution would resum

the effects of the fundamental matter in the Nf/Nc expansion, keeping the leading order

contributions in 1/λ and 1/Nc. A fully backreacted solution is singular for the D3/D7

system [214,215], since the dual gauge theory possesses a Landau pole at some finite high-

energy scale ΛUV. This of course should not affect the hydrodynamic behaviour as long

as the other scales in the problem, the temperature and the quark mass, are much lower

than ΛUV (just like the transport properties of an electromagnetic plasma are not affected

by the Landau pole in QED). Similarly, in the case of a general Dp-brane background

(with p 6= 3), one finds strong coupling or curvature divergences in the far UV, which

are irrelevant for the long-wavelength hydrodynamics. In these cases, the classical back-

reacted solution would effectively resum the effects of the fundamental matter to leading

order in the 1/λ, 1/Nc expansions. It may be possible to prove that the viscosity bound

is still saturated by these solutions by extending the arguments of [138, 139, 146]. The

finite-temperature backgrounds of [212,217] represent a step towards this goal.

8We expect Hawking radiation contributes at order N2
f /N

2
c . In the presence of Nf D7-branes, there are

(at least) O(N2
f ) species or degrees of freedom into which the black hole can Hawking radiate. However,

this is still suppressed by 1/λ2 relative to ε2 at strong ’t Hooft coupling.



Chapter 5

Holographic spectral functions and

diffusion constants for fundamental

matter

From the previous chapter it is clear that the dynamics of strongly coupled plasmas may

be studied using gravity models. The study of these dynamics continues in this chapter

through calculations of spectral functions and diffusion constants for fundamental matter

in the N = 2 four-dimensional theory dual to the D3/D7 brane system.

As shown in chapter 2, fundamental matter in the D3/D7 system undergoes a first order

phase transition characterised by a discontinuous jump of the D7-branes from Minkowski

embeddings, which close off above the black hole, to black hole embeddings, which intersect

the black hole (fig. 2.1). In the dual field theory this phase transition is exemplified by

discontinuities in various physical quantities, e.g., the quark condensate. The most striking

feature of the phase transition is found in the meson spectrum. In the low-temperature

or Minkowski phase, the mesons are stable (to leading order in the large-Nc and large ‘t

Hooft coupling limit) and the spectrum is discrete with a finite mass gap. In the high-

temperature or black hole phase, mesons are destabilised and the spectrum of excitations

is continuous and gapless. Hence the first order phase transition may be characterised by

the dissociation or ‘melting’ of mesons.

The phases of the theory may be studied via spectral functions for mesons. In the

low temperature phase of the theory, T < Tfun, where mesons are stable, the spectral

129
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function consists of a series of delta-function-like peaks,1,2 i.e., resonances centred on mass

eigenvalues – see fig. 5.1a. These masses were calculated in section 2.3.3 and the spectra

appear in figures 2.7, 2.8, and 2.9 for pseudoscalar, scalar, and vector mesons, respectively.

In the high temperature phase, T > Tfun, the spectral function is essentially featureless,3 –

see fig. 5.1b. More interesting behaviour is observed when the system evolves from the high-

temperature phase into the low-temperature phase through the metastable ‘supercooled’

phase. In this case, the serene landscape of fig. 5.1b is distorted by peaks corresponding to

quasiparticle excitations, and these excitations are eventually transformed into the stable

resonances shown in fig. 5.1a.
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Figure 5.1: Sketch of typical spectral functions in the (a) low-temperature (Minkowski)

and (b) high-temperature (black hole) phases.

These features of the spectral functions are controlled by the analytic structure of

the corresponding retarded correlators in the complex frequency plane. In the high-

temperature phase, the poles of the retarded correlators (with the exception of the poles

corresponding to hydrodynamic excitations) are located at a finite distance from the real

axis, thus making the spectral function featureless. As the temperature is lowered relative

to the quark mass, the poles move closer to the real axis and the spectral functions exhibit

1The decay width of these particles and the continuum contribution of multi-particle states are both

suppressed by factors of 1/Nc.
2A derivation of the scalar meson spectral function at T = 0 appears in section 5.6.1.
3The temperature-dependent part of the spectral functions exhibits damped oscillations with the period

proportional to a Matsubara frequency, see section 5.1.3 for details.
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distinct peaks. Holographically, the poles of the retarded correlators correspond to quasi-

normal modes of the gravitational background [123, 258]. The numerical investigation of

the full quasinormal spectrum of the D3/D7 system faces certain technical difficulties. In

this chapter we focus on computing the spectral functions for which the numerical methods

are reliable.

In addition to characterising quasiparticle excitations of a thermal system, spectral

functions also carry information about the medium’s transport properties. Adapting tech-

niques from [119, 125, 259], we compute the quark diffusion constant as a function of the

parameter Mq/T in the high-temperature phase, and attempt to give a qualitative descrip-

tion of its dependence on the coupling for the full range of temperatures.

The thermal dissociation of mesons and the transport properties of the quark-gluon

plasma can be studied in lattice QCD with the help of indirect methods, e.g., the maximal

entropy method [156, 157, 260–266]. These studies suggest, in particular, that mesons

survive as relatively well-defined resonances at temperatures well above Tc (2−3Tc). While

the uncertainties of these lattice methods remain large, the holographic approach used in

this chapter serves as a source of quantitative and often analytically exact results for

qualitatively similar finite-temperature models.

An overview of this chapter is as follows: In section 5.1 we review properties of thermal

spectral functions in field theory and outline methods of computing spectral functions from

the dual gravity theory. These methods are illustrated by a simple example of computing

the spectral function and diffusion constant for R currents in N = 4 SYM. For vanishing

spatial momentum, the correlator, quasinormal spectrum, and the spectral function can be

computed analytically. In section 5.2 we revisit the D3/D7-brane framework, previously

introduced in section 2.3, reviewing the D7-brane embeddings and pertinent aspects of

the thermodynamics [111, 112]. In section 5.3, we turn to the calculation of the spectral

function for various mesonic operators in the high temperature phase of the N = 2 gauge

theory. We consider a vector operator in section 5.3.1. In the special case of vanishing

quark mass, we determine the spectral function analytically. In general, for arbitrary quark

mass, the vector spectral function is computed numerically. In section 5.3.2, we turn to

spectral functions for scalar and pseudoscalar operators, which are again bilinear in the

fundamental fields. Section 5.4 presents three independent computations of the diffusion

constant for ‘light’ quarks, using the membrane paradigm method [125], the Green-Kubo

formula, and by calculating the lowest quasinormal frequency for the vector field on the
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D7-branes. Section 5.5 contains some observations and a discussion of our results. Some

details of our analysis are relegated to section 5.6: Section 5.6.1 contains a derivation

of the scalar spectral function at T = 0; section 5.6.2 provides a derivation of the high

frequency asymptotics for the spectral functions; section 5.6.3 provides a partial analysis

of the quasinormal modes for the pseudoscalar and scalar excitations; and, finally, section

5.6.4 extends the computation of the quark diffusion constant, described in section 5.4.1,

to the holographic framework described by a Dq-brane probe in a near-extremal Dp-brane

throat.

5.1 Prelude: spectral functions and holography

In general, finite-temperature correlation functions of conserved charge densities carry

information about a medium’s transport properties and quasiparticle excitations. This

information is given, roughly, by the poles and the corresponding residues of the correlators,

or, equivalently, by their spectral functions. Recently, the study of these objects has been

used to great effect in a holographic framework to study the thermal properties of various

strongly coupled field theories [118]. In a holographic setting, the spectral functions are

often easier to compute than the full correlators on the gravity side. According to the

holographic dictionary, the poles are determined by the quasinormal spectrum of a dual

bulk field fluctuation, whereas the spectral function is given by the imaginary part of the

retarded correlator which is independent of the radial coordinate [123,184]. In this section,

we combine the necessary tools for computing the spectral functions from dual gravity and

analysing their properties, and then illustrate this technique using the simple example of

strongly coupled N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory at large Nc. In

this case, the R-current spectral function has been analysed elsewhere [184, 267, 268] but

we present a new analytic result (for vanishing spatial momentum).
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5.1.1 Field theory picture

A thermal spectral function of an operator O is defined as4R(ω,q) =

∫
d4x e−iωt+iqx〈[O(t,x),O(0)]〉 , (5.1)

where the correlator is computed in thermal equilibrium at a temperature T . The spectral

function is proportional to the imaginary part of the retarded correlator,R(ω,q) = −2 ImGR(ω,q) , (5.2)

where

GR(ω,q) = −i
∫
d4x e−iωt+iqx θ(x0)〈[O(t,x),O(0)]〉 . (5.3)

If O is an operator of a density of a conserved charge in a rotation invariant theory, the

retarded thermal two-point function is determined by two independent scalar functions.

In Fourier space, the correlator can be decomposed into the transverse and longitudinal

parts [184]

GR
µν(ω, q) = P T

µν ΠT (ω, q) + PL
µν ΠL(ω, q) , (5.4)

where the index structure is absorbed into two mutually orthogonal projectors P T
µν and

PL
µν . Without loss of generality we can take the spatial momentum oriented along the x

direction, so that kµ = (−ω, q, 0, 0), with k2 = −ω2 + q2. Then one has [184]

GR
yy(k) = GR

zz(k) = ΠT (ω, q) . (5.5)

Other components of the current-current correlator are

GR
tt(k) = − q2

q2 − ω2
ΠL(ω, q) , (5.6)

GR
tx(k) = − ωq

q2 − ω2
ΠL(ω, q) , (5.7)

GR
xx(k) = − ω2

q2 − ω2
ΠL(ω, q) . (5.8)

4Our metric convention, here, as with everywhere else in the thesis, is (−,+,+,+). We assume trans-

lation invariance to be an unbroken symmetry of the theory.
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In the long-time, long-wavelength limit (i.e., for ω/T ≪ 1, q/T ≪ 1) the functions ΠT (ω, q)

and ΠL(ω, q) have a universal behaviour dictated by hydrodynamics: ΠT (ω, q) is nonsin-

gular as a function of the frequency, while ΠL(ω, q) has a simple pole at

ω = −iDq2 , (5.9)

where D is the charge diffusion constant.

The rotation invariance implies that in the limit of vanishing spatial momentum at fixed

ω > 0 the two scalar functions coincide: ΠT (ω, 0) = ΠL(ω, 0) = Π(ω). Correspondingly, at

q = 0 one can define R(ω) ≡ Rxx(ω, 0) = Ryy(ω, 0) = Rzz(ω, 0) . (5.10)

The Green-Kubo formula relates the diffusion constant to the zero-frequency limit of the

spectral function R(ω):

DΞ = lim
ω→0

1

2ω
R(ω) . (5.11)

Here Ξ is the charge susceptibility. The susceptibility is determined by the thermodynamics

of the system in a grand canonical ensemble,

Ξ =
∂n(µ)

∂µ

∣∣∣∣∣
µ=0

, (5.12)

where n(µ) is the charge density, µ is the corresponding chemical potential.

In addition to hydrodynamic poles, the retarded correlators may have other singularities

located in the lower half-plane of complex frequency. Assuming one of these singularities

is a simple pole,

GR ∼ 1

ω − Ω(q, α) + iΓ(q, α)
,

where α represents a set of parameters relevant for a particular theory, for the spectral

function one has R(ω) ∼ Γ

(ω − Ω)2 + Γ2
.

Thus in the vicinity of ω = Ω, the spectral function has a peak characterised by a width

∼ Γ and a height (‘lifetime’) ∼ 1/Γ. The peak has a quasiparticle interpretation if Γ ≪ Ω.
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The spectral function R(ω) also has a characteristic form in the high frequency limit.

This behaviour is determined by the leading short-distance singularity

lim
(t2−x2)→0

〈O(t,x)O(0)〉 =
A

|t2 − x2|∆ + · · · , (5.13)

where ∆ denotes the dimension of the operator O and A is a dimensionless constant. A

Fourier transform then leads to the following contribution to the spectral functionR(ω) ∼ Aω2∆−4 . (5.14)

5.1.2 Gravity picture

In the dual gravity picture, the conserved current Jµ couples to a boundary value of the

gauge field fluctuation Aµ propagating in a specific gravitational background. One can

form two gauge-invariant combinations of the fluctuation whose equations of motion (sup-

plemented with appropriate boundary conditions) contain (in the limit where the gravity

description is valid) full information about the functions ΠT (ω, q) and ΠL(ω, q) introduced

in section 5.1.1. These gauge invariant combinations are the transverse and longitudinal

(with respect to a chosen direction of the spatial momentum) components ET , EL of the

electric field in curved space [184]. Quasinormal spectra of the fluctuations ET and EL

determine the position of the poles of ΠT (ω, q) and ΠL(ω, q) in the complex ω plane.

5.1.3 A simple example: spectral function of R currents in N = 4

SYM

Correlators of R-currents in strongly coupled N = 4 SU(Nc) supersymetric Yang-Mills

(SYM) theory at large Nc were previously studied by means of the AdS/CFT correspon-

dence both at zero [269,270] and finite temperature [119,183,184,267,268].

In thermal N = 4 SYM, the retarded two-point correlators of the SU(4)R R-symmetry

currents Ja
µ are determined by two independent scalar functions5, ΠT (ω, q) and ΠL(ω, q).

The holographic dual of thermal N = 4 SYM in flat space is well known. The su-

pergravity background describing the decoupling limit of Nc black D3-branes was given in

5In an equilibrium state without chemical potentials for the R-charges, the correlation function of R

currents ja
µ has the form Cab

µν = δabCµν(x). In all expressions, the factor δab is omitted.
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section 2.1 as (see, e.g., [53])

ds2 =
u2

L2

(
−f(u)dt2 + dx2

3

)
+
L2

u2

(
du2

f(u)
+ u2dΩ2

5

)
, C0123 = −u4

L4
, (5.15)

where f(u) = 1 − u4
0/u

4 and the dilaton is constant. The horizon lies at u = u0 and

the radius of curvature L is defined in terms of the string coupling constant gs and the

string length scale ℓs as L4 = 4π gsNc ℓ
4
s . According to the duality, originally proposed

by Maldacena [52], type IIB string theory on this background is dual to four-dimensional

N = 4 super-Yang-Mills SU(Nc) gauge theory. The holographic dictionary between the

theories relates the Yang-Mills and string coupling constants g2
YM = 2πgs. The temperature

of the gauge theory is equivalent to the Hawking temperature of the black hole horizon,

related to u0 via eq. (2.6), i.e., T = u0/πL
2.

In the supergravity approximation (corresponding to the limit Nc → ∞, λ = g2
YMNc →

∞ in the field theory), full information about functions ΠT (ω, q) and ΠL(ω, q) can be

obtained by solving the linearised Maxwell equations for the bulk electric field components

ET , EL [184]

E ′′
T +

f ′

f
E ′

T +
w2 − q2f

(1 − x̄)f 2
ET = 0 , (5.16)

E ′′
L +

w2f ′

f(w2 − q2f)
E ′

L +
w2 − q2f

(1 − x̄)f 2
EL = 0 , (5.17)

where ′ indicates a derivative with respect to x̄ ≡ 1 − u2
0/u

2. We have also introduced the

dimensionless quantities w =
ω

2πT
, q =

q

2πT
. (5.18)

An analysis of eqs. (5.16) and (5.17), including the perturbative solution for small w, q,
can be found in [184]. Here we focus on the particular case of vanishing spatial momentum

which admits an analytic solution for arbitrary frequency.

For q = 0, the components ET = EL ≡ E obey the same equation

E ′′ +
f ′

f
E ′ +

w2

(1 − x̄)f 2
E = 0 . (5.19)

Writing

E(x̄) = x̄−iw/2 (2 − x̄)−w/2 F (x̄) , (5.20)
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where F (x̄) is by construction regular at the horizon x̄ = 0, we obtain the equation

F ′′+
2iw+ 2(x̄− 1) − (1 + i)wx̄

(x̄− 2)x̄
F ′+

w((1 + i)(1 − x̄) − iw((1 + 2i) − x̄))

2x̄(2 − 3x̄− x̄2)
F = 0 . (5.21)

Two linearly independent solutions of eq. (5.21) are written in terms of the Gauss hyper-

geometric function

F1(x̄) = (1 − x̄)
(1+i)w

2 2F1

(
1 − (1 + i)w

2
,−(1 + i)w

2
; 1 − iw;

x̄

2(x̄− 1)

)
, (5.22)

F2(x̄) = x̄iw (1 − x̄)
(1−i)w

2 2F1

(
1 − (1 − i)w

2
,−(1 − i)w

2
; 1 + iw;

x̄

2(x̄− 1)

)
. (5.23)

To compute the retarded correlators, we need a solution obeying the incoming wave bound-

ary condition at x̄ = 0 [123]. The correct solution is thus given by eq. (5.22).

The retarded correlation functions can be computed from the boundary supergravity

action using the Lorentzian AdS/CFT prescription [123]. For vanishing spatial momentum,

the result reads [184,268]

Π(ω) =
N2

c T
2

8
lim
x̄→1

E ′(x̄)

E(x̄)
. (5.24)

Substituting the solution (5.22) into eq. (5.24) we obtain

Π(ω) =
N2

c T
2

8

{
iw+ w2

[
ψ

(
(1 − i)w

2

)
+ ψ

(
−(1 + i)w

2

)]}
, (5.25)

where ψ(z) is the logarithmic derivative of the gamma-function. The spectral function is

given byR(ω) = −N
2
c T

2

4
Im

{
iw+ w2

[
ψ

(
(1 − i)w

2

)
+ ψ

(
−(1 + i)w

2

)]}
. (5.26)

Using the property of the digamma function ψ(z)−ψ(−z) = −π cot πz− 1/z, the spectral

function (5.26) can be written in a more compact formR(ω) =
N2

c T
2

4

πw2 sinh πw
cosh πw− cosπw . (5.27)

These analytic results for the retarded Green’s function (5.25) and the spectral function

(5.26), (5.27) are new and allow their various features to be easily examined. The asymp-

totics of the spectral function for large and small frequency can be computed:R(ω) =
πN2

c T
2w2

4

(
1 + 2e−πw cos πw+ · · ·

)
, w→ ∞ , (5.28)R(ω) =

N2
c T

2w
4

(
1 +

π2w2

6
+ · · ·

)
, w→ 0 . (5.29)
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As expected, the high frequency asymptotic coincides with the zero-temperature result for

the spectral function [123] RT=0(ω) =
N2

c ω
2

16π
. (5.30)

The retarded correlator (5.25) is a meromorphic function of w with poles located at6w = ±n− i n , n = 1, 2, ... . (5.31)

The position of the poles coincides with the quasinormal spectrum of the fluctuations E(x̄)

determined by the Dirichlet condition E(1) = 0. For each pole, the imaginary part has

the same magnitude as the real one, and thus none of the singularities can be given a

‘quasiparticle’ interpretation. Indeed, as shown in fig. 5.2a, the spectral function is quite

featureless, although not monotonic: its finite-temperature part, R(ω)−RT=0(ω), exhibits

damped oscillations reflecting the diminishing influence of the sequence of poles receding

farther and farther away from the real axis in the complex frequency plane (fig. 5.2b). The

oscillatory behaviour of the finite-temperature part of the spectral function is evident from

eq. (5.28).
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Figure 5.2: The N = 4 SYM R-current spectral function at zero spatial momentum R(ω)

(a) and its finite temperature part R(ω)−N2
c ω

2/16π (b) in units of N2
c T

2/2 as a function

of w = ω/2πT .

Using the Green-Kubo formula (5.11) and the low frequency limit (5.29) of the spectral

function at zero spatial momentum one finds the product of the R-charge diffusion constant

6The exact location of the poles was previously found in [183] using the continued fraction method.
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and the charge susceptibility

DΞ =
N2

c T

16π
. (5.32)

The susceptibility is determined from thermodynamics according to eq. (5.12). The de-

pendence of the charge density on the chemical potential was found in [142]. For small µ,

one has

n(µ) =
N2

c T
2

8
µ+ · · · , (5.33)

and thus from eq. (5.12), Ξ = N2
c T

2/8. We conclude that the R charge diffusion constant

is given by D = 1/2πT , in agreement with the result of an earlier calculation [119], where

the value of D was determined from the hydrodynamic pole of the longitudinal part of the

correlator at small but nonvanishing spatial momentum.

5.2 Adding flavour: D7-brane embedding and ther-

modynamics

We saw in section 2.3 that fields transforming in the fundamental representation of the

gauge group can be introduced to the near horizon geometry of Nc black D3-branes via the

introduction of Nf D7-branes [60, 153]. As before, we consider the decoupling limit of the

D3- and D7-branes, described by the array (2.34). Of course, the dual field theory is now

an N = 2 gauge theory consisting of the original SYM theory coupled to Nf fundamental

hypermultiplets. Taking the decoupling limit with Nf ≪ Nc, the D7-branes may be treated

as probes in the black D3-brane geometry (5.15).

As in section 2.3.1, we work with radial coordinate ρ and describe the D7-branes’

profile by χ(ρ) = cos θ(ρ). The induced metric on the D7-branes was given in eq. (2.41)

and equation of motion for χ appears in eq. (2.44). The field asymptotically approaches

zero as described by eq. (2.45), i.e., χ = m/ρ + c/ρ3. The operator dual to χ is the

supersymmetric extension of the quark mass term, defined in (A.2). Holography then

relates the dimensionless constants m and c to the quark mass and condensate via (A.7)

and (A.11). Eq. (A.7) implies the relationship m = M̄/T between the dimensionless

quantity m, the temperature T and the mass scale M̄ defined in eq. (2.48).

In the limits of large and small m it is possible to find approximate analytic solutions

for the embeddings – see section 2.6.1 [112]. However, for arbitrary m we numerically
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integrated (2.44) – see section 2.3.1 [111, 112]. In the present case, we are studying the

high temperature phase and so we are interested in the black hole embeddings, which are

found by imposing the following boundary conditions at the event horizon ρmin = 1: χ = χ0

and dχ/dρ = 0 for 0 ≤ χ0 < 1. In order to compute the constants m, c corresponding to

each value of χ0, we fitted the numerical solutions to the asymptotic form (2.45).

5.2.1 Thermodynamics of the brane

As studied in detail in chapter 2, at finite temperature there are two classes of embeddings

for the D7-branes and a first-order phase transition going between these classes. For

temperatures below the phase transition T < Tfun, the D7-branes close off above the black

hole horizon (Minkowski embeddings), while above the transition (T > Tfun), the D7-branes

extend through the horizon (black hole embeddings). The thermodynamics of the D3/D7

brane system were studied in detail in section 2.3.2 and we review a few salient facts here.

Plots of the free energy versus temperature appeared in fig. 2.5. A zoom in view of the

area near the phase transition is given in fig. 5.3 and this shows the ‘swallow tail’ which

is typical of first order phase transitions. Starting from low temperatures, we follow the

blue dotted line depicting Minkowski embeddings to the point where this line intersects the

solid red line for black hole embeddings. The phase transition occurs at this point, and the

physical embedding jumps from a Minkowski embedding, a finite distance from the black

hole horizon, to the black hole embedding with χ0 ≃ 0.94. At this temperature, the quark

condensate, entropy, and energy density each exhibit a finite discontinuity, indicating that

the phase transition is first order.

It is interesting to ask whether the D7-brane embeddings beyond the phase transition,

e.g., between A1 and A2 on the black hole branch, still represent metastable configura-

tions. If so, the corresponding states of the gauge theory might be accessed by a process

analogous to ‘supercooling’ the system. Examining the specific heat cV = ∂E/∂T reveals

that cV becomes negative as the curves (e.g., of the condensate, entropy or energy density

as a function of T ) spiral around the critical solution, indicating that the system should be

unstable for these embeddings (see the discussion in section 2.3.2). In particular, the spe-

cific heat first becomes negative at A2 on the black hole branch and A3 on the Minkowski

branch. Examining the scalar fluctuation spectrum of the D7-brane Minkowski embed-

dings (corresponding to the meson spectrum in the low temperature phase of the dual
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Figure 5.3: The free energy F/NT versus temperature T/M̄ for a D7-brane in the black D3-

brane geometry where N = λNfNcT
3/32 – see eq. (2.43). The blue dashed (red continuous)

curves correspond to the Minkowski (black hole) embeddings. The values of χ0 for certain

black hole D7-brane embeddings are noted for future reference. The phase transition is

indicated by the vertical dashed line labelled χ0 = 0.94.

gauge theory) –see section 2.3.3 – reveals that a dynamical instability appears precisely at

A3: At the first kink in the free energy, the lowest-lying scalar mode on the D7-branes be-

comes tachyonic. In fact, at the second kink, the second lowest-lying scalar mode becomes

tachyonic and new tachyonic modes seem to appear at each such kink [112].

Hence the behaviour on the Minkowski branch is clear: Continuing along the Minkowski

branch past the phase transition, the system exhibits a dynamical instability, which matches

the thermodynamic prediction, at the point A3 in fig. 5.3, which is the first kink in the free

energy on the Minkowski branch and corresponds to the first turn-around in the spiral.

Hence while these configurations remain metastable between A1 and A3, all of the embed-

dings beyond A3 are simply unstable. In fact, more and more instabilities appear as the
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embeddings approach the critical solution, as described above.

On the black hole branch we expect similar phenomena. At point A2 in fig. 5.3, the

specific heat becomes negative, indicating a thermodynamic instability. Though the full

calculation of the quasinormal spectrum remains to be performed – preliminary results

appear in [155] – we will see in section 5.3.2 that the scalar spectral function provides

evidence that new tachyonic modes again appear at each turn in the spiral along the black

hole branch. Section 5.6.3 presents a complementary analysis which also supports the

appearance of tachyons in the quasinormal spectrum of the scalar fluctuations. Hence we

expect that only the configurations between A1 and A2 on the black hole branch represent

metastable states of the gauge theory.

5.3 Spectral functions for excitations of fundamental

fields

In this section, we compute spectral functions for excitations of fundamental fields in the

high temperature phase of the theory, T > Tfun, by studying vector and scalar fluctuations

of the D7-brane probes. The spectrum of these fluctuations in the Minkowski phase of the

theory was found in section 2.3.3. The details of the holographic dictionary relating the

fluctuations of the probe branes to the hypermultiplet operators of the gauge theory are

described in appendix A. For each of the vector, pseudoscalar, and scalar mesons we begin

by considering modes constant on the internal S3 and then extend the analysis to include

modes with nonzero angular momentum on this space. The latter modes are dual to higher

dimension operators which are charged under the global SO(4) symmetry, as outlined in

appendix A.4.

5.3.1 Vector

In the gravity dual, the vector is one of several possible excitations of the worldvolume

gauge field on the D7-branes [101]. The holographic dictionary outlined in appendix A re-

veals that the vector is dual to the current Jµ
q which is the conserved current corresponding

to the diagonal U(1)q of the global flavour symmetry.

We begin by considering modes constant on the internal S3. In this case, vector modes
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are characterised by having only At,x,y,z nonzero with Aρ = AS3 = 0 [101]. The full action

(2.79) for the gauge fields on a D7-brane contains the Dirac-Born-Infeld (DBI) action

plus a Wess-Zumino term, as discussed in section 2.3.3. However, for gauge fields with

Aρ = AS3 = 0 only the DBI portion of the action is relevant. Further, since we only

study linearised fluctuations about the background, the gauge field action is only needed

to quadratic order and it is simply

I = −(2πℓ2s )
2

4
TD7Nf

∫
d8σ

√−g gcdgefFfcFde , (5.34)

where the Latin indices run over the D7 worldvolume directions and gab is the induced

metric on the D7-brane given in (2.36).

Assuming that the gauge field is independent of the coordinates on the S3, we can

easily reduce (5.34) to an effective action in five-dimensions. The induced metric in these

directions is

ds2(g̃) =
1

2

(u0ρ

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

ρ2

(
1 − χ2 + ρ2χ̇2

1 − χ2

)
dρ2 , (5.35)

and so the determinant of the full induced metric (2.36) can be written as

√−g =

√−g̃
g̃2

eff (ρ)

√
h ,

1

g̃2
eff (ρ)

≡ L3(1 − χ2)
3
2 . (5.36)

Here h is the determinant of the metric on the S3 of unit radius and g̃eff is a radially-

dependent ‘effective coupling’. Integrating over the three-sphere, the action (5.34) reduces

to

I = −(2πℓ2s )
2

4
Ω3TD7Nf

∫
dtd3xdρ

√
−g̃ F

αβFαβ

g̃2
eff (ρ)

, (5.37)

where α, β = t, x, y, z, ρ. Of course, Maxwell’s equations follow as

∂α

(√−g̃
g̃2

eff

Fαβ

)
= 0. (5.38)

Using the equation of motion (5.38), the action (5.37) can be written as

I = −(2πℓ2s )
2

2
TD7Ω3Nf

∫
dx4dρ ∂α

[√−g̃
g̃2

eff

AβF
αβ

]
. (5.39)
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Retaining only the terms at the ρ-boundaries and using the metric (5.35), this becomes

I = −(2πℓ2s )
2

2
TD7Ω3

u0
2

2
Nf

∫
d4x

[
fρ3(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

(
Ai∂ρAi −

f̃ 2

f 2
At∂ρAt

)]ρ→∞

ρ→1

,

where i is summed over x, y, z. Following [184], we take the Fourier transform of the gauge

field and with kµ = (−ω, q, 0, 0),

Aµ =

∫
dω dq

(2π)2
e−iωt+iqxAµ(k, ρ) , (5.40)

(with Aρ = 0, as discussed earlier), and the boundary action can be written as

I = −NfNcT
2

24

∫
dωdq

(2π)2

[
fρ3(1 − χ2)2√
1 − χ2 + ρ2χ̇2

(
Ai(ρ,−k)∂ρAi(ρ, k) −

f̃2

f2
At(ρ,−k)∂ρAt(ρ, k)

)]ρ→∞

ρ→1

.

We construct gauge-invariant components of the electric field: Ex ≡ qAt + ωAx and

Ey,z ≡ ωAy,z. Note that in the language of section 5.1, Ex corresponds to the longitudinal

electric field EL while Ey,z correspond to the transverse electric field ET . With these

gauge-invariant fields, the action can be rewritten as (using eq. (5.47) below)

I = −NfNcT
2

24

∫
dωdq

(2π)2

[
fρ3(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

(
Ex(ρ,−k)∂ρEx(ρ, k)

ω2 − q2f 2/f̃ 2
(5.41)

− 1

ω2
(Ey(ρ,−k)∂ρEy(ρ, k) + Ez(ρ,−k)∂ρEz(ρ, k))

)]ρ→∞

ρ→1

.

Focussing on the longitudinal electric field, we write

Ex(k, ρ) = E0(k)
Ek(ρ)

Ek(ρmax)
, (5.42)

where it is understood that eventually the limit ρmax → ∞ will be taken. We can then

define the flux factor for Ex as [123]:

F = −NfNcT
2

24

[
fρ3(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

E−k(ρ)∂ρEk(ρ)

(ω2 − q2f 2/f̃ 2)E−k(ρmax)Ek(ρmax)

]
. (5.43)

The usual AdS/CFT prescription tells us to evaluate it at the boundary ρ → ∞ to find

the retarded Green’s function for Ex [123]:

G = −2F =
NfNcT

2

23

[
fρ3(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

E−k(ρ)∂ρEk(ρ)

(ω2 − q2f 2/f̃ 2)E−k(ρmax)Ek(ρmax)

]

ρ→∞

. (5.44)
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The retarded Green’s function for Ax is the above expression times ω2, which for q = 0

gives

Gxx =
NfNcT

2

8

[
ρ3∂ρEk(ρ)

Ek(ρ)

]

ρ→∞
, (5.45)

upon using the asymptotic expansion (2.45) for χ. Of course, this is the analogue of the

expression in eq. (5.24) for the example discussed in section 5.1.3. The spectral function

for q = 0 is thenRxx(ω, 0) = −2ImGxx(ω, 0) = −NfNcT
2

4
Im

[
ρ3∂ρEk(ρ)

Ek(ρ)

]

ρ→∞
. (5.46)

In order to evaluate the spectral function, we must solve the equations of motion (5.38).

For Aρ = AS3 = 0 and Aµ an s-wave on the S3, the equations for At and Ax are

g̃ttωȦt − g̃xxqȦx = 0 , (5.47)

∂ρ

(√−g̃
g̃2

eff

g̃ttg̃ρρȦt

)
−

√−g̃
g̃2

eff

g̃ttg̃xx
(
ωqAx + q2At

)
= 0 , (5.48)

∂ρ

(√−g̃
g̃2

eff

g̃ρρg̃xxȦx

)
−

√−g̃
g̃2

eff

g̃ttg̃xx
(
ωqAt + ω2Ax

)
= 0 . (5.49)

Given the longitudinal field Ex = qAt + ωAx, the system of equations (5.47)-(5.49) yields

Ëx +

[
4ω2f̃ ḟ

f(ω2f̃ 2 − q2f 2)
+ ∂ρ ln

(√−g̃
g̃2

eff

g̃ttg̃ρρ

)]
Ėx +

g̃xx

g̃ρρ

(
f̃ 2

f 2
ω2 − q2

)
Ex = 0. (5.50)

Substituting for the induced metric in (5.50), the equation of motion for Ex is:

Ëx +

[
4w2f̃ ḟ

f(w2f̃ 2 − q2f 2)
+

f

f̃ 2

√
1 − χ2 + ρ2χ̇2

ρ3(1 − χ2)2
∂ρ

(
f̃ 2ρ3(1 − χ2)2

f
√

1 − χ2 + ρ2χ̇2

)]
Ėx

+8
1 − χ2 + ρ2χ̇2

ρ4f̃(1 − χ2)

(
f̃ 2

f 2
w2 − q2

)
Ex = 0 , (5.51)

where the dimensionless frequency w and momentum q were defined in eq. (5.18).

Returning to the transverse electric field ET = Ey,z, the equation of motion is

∂ρ

[√−g̃
g̃2

eff

gρρgyy∂ρET

]
−

√−g̃
g̃2

eff

gyy
(
ω2gtt + q2gxx

)
ET = 0 . (5.52)
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For vanishing spatial momentum q = 0, this equation and that for Ex (eq. (5.51)) coincide.

Thus, as discussed in section 5.1, for q = 0, the spectral functions are identical i.e.,Rxx(ω, 0) = Ryy(ω, 0) = Rzz(ω, 0) and we denote these by R(ω) henceforth.

We proceed to compute the spectral function R(ω) by solving the equation of motion

(5.51) with q = 0. First we note that the case of massless quarks corresponds to the

equatorial embedding of the D7-branes for which χ(ρ) = 0. Hence g2
eff in eq. (5.37) is

constant and the induced metric (5.35) matches precisely that of the AdS5 black hole.

Hence except for an overall normalisation, the calculation of R(ω) is identical to that in

the example discussed in section 5.1.3 and so in this case, it is possible to solve (5.51)

exactly. We leave this exercise for the following subsection as it is a special case of the

general analysis of charged vector operators, for which the case Mq = 0 is also exactly

soluble.

For massive quarks (m 6= 0), the embedding equation (2.44) must be solved numerically

and hence it was necessary to numerically integrate (5.51) to solve for Ex. Near the horizon

(ρ → 1), eq. (5.51) implies that Ex ∼ (ρ − 1)±iw. Choosing the negative sign enforces

incoming wave boundary conditions at the horizon. Thus, for each choice of quark mass,

we solved (5.51) numerically, taking Ex(ρ) = (ρ− 1)−iwF (ρ) and where F (ρ) is regular at

the horizon with F (1) = 1 and ∂ρF (1) = iw/2 for real w.

The spectral function was evaluated using the numerical solutions for Ex and eq. (5.46).

In the high frequency limit, the spectral function asymptotes to NfNcω
2/4π – see section

5.6.2. Figure 5.4 provides plots of the finite-temperature part of the spectral function,7R(ω) − NfNcω
2/4π, for various D7-brane embeddings, specified by χ0 = χ(ρ = 1) (or

equivalently by m). The upper plot shows the finite temperature part of the spectral

function for temperatures above the phase transition: χ0 = 0 (m = 0), χ0 = 0.1 (m =

0.1667), χ0 = 0.5 (m = 0.8080), χ0 = 0.8 (m = 1.2026), χ0 = 0.94 (m = 1.3059) – the last

of these corresponds to T/Mq for the phase transition. Note that the χ = 0 and χ0 = 0.1

lines are virtually coincident. The lower plot shows the finite temperature part of the

spectral function for values of χ0 corresponding to black hole embeddings after the phase

transition, i.e., along the lines A1 to A2 and A2 to A3 on the black hole branch in fig. 5.3.

Note that as χ0 approaches 1, the finite temperature part of the spectral function displays

7In using the wording ‘finite temperature part of the spectral function,’ we are adopting the language

used previously for N = SYM in section 5.1.3 and ref. [184]. In the present case, this refers to the spectral

function minus its high frequency asymptotics.
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Figure 5.4: The finite temperature part of the vector spectral function, i.e., R−NfNcω
2/4π,

in units of NfNcT
2/4, versus w = ω/2πT for various values of χ0 corresponding to different

values of m = M̄/T . The upper plot shows values of χ0 corresponding to temperatures

above the phase transition while the lower plot is for values of χ0 past the transition. The

vertical dotted lines represent the mass of the lowest and first excited vector mesons in the

low temperature (Minkowski) phase for a near-critical Minkowski embedding.
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high peaks. Further, as χ0 → 1, the peaks in the spectral function grow sharper, become

more closely spaced, and move towards lower frequencies. For example, the peaks in the

χ0 = 0.9999 line are much more closely spaced than those in the χ0 = 0.99 line.

It is interesting to compare the positions of these peaks to the masses of the lowest

vector mesons in the Minkowski phase, computed in section 2.3.3. The vertical dotted line

at w ≃ 0.776 represents the mass of the lowest vector meson for a Minkowski embedding

very close to the critical embedding. It seems that the position of the first peak of the

spectral function is converging to a very similar value as χ0 → 1 – certainly for χ0 = 0.9999,

the first peak is very close to w ≃ 0.776. The second vertical dotted line at w ≃ 0.857

represents the mass of the first excited vector meson (n = 1, ℓ = 0) as the Minkowski

embedding approaches the critical solution. In this case, it is likely that the second peak

in the spectral function is approaching this value, but certainly it is not converging on

this position as rapidly as the first peak. Note that in the Minkowski phase, w ≃ 0.98

corresponds to the mass of the lowest vector meson just at the phase transition. This

is significantly above both masses quoted above near the critical solution – recall from

section 2.3.3 that in general the meson masses decreased as the critical embedding was

approached [112]. Further then, this mass does not seem to be correlated with the positions

of the spectral peaks for the black hole embedding at the phase transition, beyond being

in the same general range.

The high peaks in the spectral function for χ0 → 1 may be interpreted in terms of

quasiparticle states because their width Γ is much less than their frequency Ω: Γ ≪ Ω.

Section 5.6.3 presents a complementary discussion which reaches the same conclusion. Only

the pseudoscalar modes are explicitly discussed in section 5.6.3, however, the results for

the vector are almost identical. In particular, the effective potential shown in section 5.6.3

develops a finite barrier at intermediate values of the radius as χ0 → 1. This suggests

the existence of metastable states in the corresponding Schroedinger problem which, as

discussed in section 5.6.3, should correspond to quasinormal frequencies with Γ ≪ Ω in

this regime.

Charged vectors

The N = 2 gauge theory under study here has an internal SO(4) = SU(2)×SU(2) global

symmetry, which is dual to rotations on the D7-branes’ internal S3. The vector modes
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which are considered above are all singlets under this symmetry. However, these operators

only correspond to the lowest dimension operators in an infinite family of vector operators

transforming in the (ℓ/2, ℓ/2) representation of the internal symmetry [61]. As outlined in

appendix A.4, these operators are built up by combining the adjoint hypermultiplet fields

(scalars) with the fundamental fields appearing in the singlet operators.

Evaluating the spectral function for these vectors with ℓ 6= 0 follows closely the analysis

in the previous subsection and so only salient steps are presented here. Of course, the first

step is to consider an expansion of the world-volume vector in terms of spherical harmonics

on the S3,

Aµ =
∑

ℓ

Yℓ(S3)Aℓ
µ(ρ, xµ) , (5.53)

where the spherical harmonics on the unit three-sphere satisfy (2.76).8 Examining the

eight-dimensional Maxwell equations arising from eq. (5.34), one finds that with ℓ 6= 0

(and T 6= 0) Aℓ
ρ cannot be set to zero in general. Hence the general analysis becomes

somewhat more elaborate. However, if we focus on spatially independent fluctuations, i.e.,

the q → 0 limit taken above, then both Aℓ
ρ,t decouple and the calculations are greatly

simplified. In this case then, the analogue of eq. (5.41) becomes

Iℓ = −NfNcT
2

26π2

∫
dω

ω2

[
fρ3(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

Eℓ
i (ρ,−k)∂ρE

ℓ
i (ρ, k)

]ρ→∞

ρ→1

, (5.54)

where i is summed over x, y, z and Eℓ
i ≡ ωAℓ

i . Recall that with vanishing spatial momenta,

there is no distinction between longitudinal and transverse electric fields (in the language

of section 5.1).

Examining the asymptotic behaviour of any of the electric field components, we write

Eℓ
i (ω, ρ) = Eℓ

0(ω)
(πT )ℓ

2ℓ/2
ρℓ

max

Eℓ,ω(ρ)

Eℓ,ω(ρmax)
, (5.55)

where it is understood that eventually the limit ρmax → ∞ will be taken. Note the factor

of ρℓ
max required to obtain the correct asymptotic behaviour – see appendix A.4. As above,

8Of course, the spherical harmonics for a given ℓ are also labeled by two further SU(2) quantum

numbers, but we drop these as they are irrelevant in the following. Implicitly, our normalisation is such

that Yℓ=0
m=0,n=0(S

3) = 1 and so
∫
d3Ω

√
hY∗ℓ′

m′n′Yℓ
mn = 2π2 δℓℓ′ δmm′ δnn′ .
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taking variations of Eℓ
0(k) then yields the flux factor Fℓ for Eℓ

i . This then leads to the

following expression for the spectral function for Ai:Rℓ
ii(ω) ≡ −2ImGℓ

ii(ω) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2Im

[
ρ2ℓ+3∂ρEℓ,ω(ρ)

Eℓ,ω(ρ)

]

ρ→∞
. (5.56)

with no sum on i. Instead, for any value of i = x, y, z, the spectral functions are identical,

i.e., Rℓ
xx(ω) = Rℓ

yy(ω) = Rℓ
zz(ω), because we are limiting our analysis here to the case of

vanishing spatial momentum. Hence in the following we denote these spectral functions

by Rℓ(ω).

In order to evaluate the spectral functions, we must solve the Maxwell equations arising

from the eight-dimensional action (5.34). Expressed in terms of the electric field compo-

nents, the relevant equation of motion is

Ëℓ,ω +

[
4ḟ

f̃ f
+

f

f̃ 2

√
1 − χ2 + ρ2χ̇2

ρ3(1 − χ2)2
∂ρ

(
f̃ 2ρ3(1 − χ2)2

f
√

1 − χ2 + ρ2χ̇2

)]
Ėℓ,ω

+
1 − χ2 + ρ2χ̇2

ρ2(1 − χ2)2

[
8(1 − χ2)f̃

ρ2f 2
w2 − ℓ(ℓ+ 2)

]
Eℓ,ω = 0 . (5.57)

We now proceed to compute the spectral function Rℓ(ω), first for massless quarks (m = 0)

and then for quarks with a finite mass.

Recall that the case of massless quarks corresponds to the equatorial embedding of the

D7-branes for which χ(ρ) = 0. In the previous section, we noted that for the ℓ = 0 vector,

the calculation of R(ω) then becomes the same as that in our example of section 5.1.3. In

particular, an analytic solution can be found for q = 0 because it is possible to solve (5.51)

exactly when χ = 0. Here we show that in fact the general equation (5.57) for any ℓ has

an analytic solution in this case of massless quarks.

Setting χ = 0 and making the change of variables x̄ = 1 − 2/ρ2f̃ = 1 − 2ρ2/(1 + ρ4),

the equation for the fluctuation Eℓ,ω(x̄) is

E ′′
ℓ,ω +

f ′

f
E ′

ℓ,ω +

[ w2

(1 − x̄)f 2
− ℓ(ℓ+ 2)

4(1 − x̄)2f

]
Eℓ,ω = 0 , (5.58)

where the prime denotes a derivative with respect to x̄. As in eq. (5.20), the solution is

given by9

Eℓ,ω(x̄) = x̄−iw/2 (2 − x̄)−w/2 F (x̄) , (5.59)

9Note that near the horizon x̄ ≃ 2(ρ − 1)2 and so the small x̄ behaviour here is consistent with the

boundary condition at the horizon discussed for the numerical solution.
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where the regular function F (x̄) is a straightforward generalisation of the result (5.22):

F (x̄) = (1 − x̄)
(1+i)w

2 2F1

(
1 +

ℓ

2
− (1 + i)w

2
,− ℓ

2
− (1 + i)w

2
; 1 − iw;

x̄

2(x̄− 1)

)
. (5.60)

The spectral function is then given byRℓ(ω) = − lim
ǫ→0

π2ℓ

2ℓ
NfNcT

2ℓ+2 Imf(x̄)

(
1 +

√
f

1 − x̄

)ℓ
E(x̄,−w)

E(1 − ǫ,−w)

E ′(x̄,w)

E(1 − ǫ,w)
. (5.61)

The right hand side of eq. (5.61) is independent of the radial coordinate [123] and thus can

be computed at any value of x̄, e.g., at x̄ = 0. We obtainRℓ(ω) =
2ℓπ2ℓ−1

(ℓ!)2
NfNcT

2ℓ+2 sinh πw ∣∣∣∣∣Γ(1 +
ℓ

2
− w

2
− iw

2

)
Γ

(
1 +

ℓ

2
+
w
2
− iw

2

)∣∣∣∣∣

2

,

(5.62)

which shows that the poles of the retarded correlator corresponding to Rℓ(ω) are located

at w = ±
(
n+ 1 +

ℓ

2

)
(1 ∓ i) , n = 0, 1, ... . (5.63)

Note that there is an interesting degeneracy in the positions of these quasinormal modes

in that their position only depends on n + ℓ/2. This is reminiscent of the unexpected

degeneracy found in [61], where the meson masses only depended on the combination n+ ℓ

(at T = 0). For ℓ = 0, eq. (5.62) reduces (up to the normalisation) to the result (5.27).

For odd and even ℓ > 0, respectively, eq. (5.62) can be written in the formRℓ=2n−1(ω) =
π2ℓ

2ℓ
NfNcT

2ℓ+2 24nΓ4(n+ 1/2)

2π[(2n− 1)!]2
sinh πw

cosh πw+ cos πw n∏

k=1

(
1 +

4w4

(2k − 1)4

)
,Rℓ=2n(ω) =

π2ℓ

2ℓ
NfNcT

2ℓ+2 24n(n!)4

[(2n)!]2
πw2 sinh πw

cosh πw− cos πw n∏

k=1

(
1 +

w4

4k4

)
,

where n = 1, 2, .... The asymptotics of the spectral function for large and small frequency

are Rℓ(ω) =
π2ℓ+1

(ℓ!)2
NfNcT

2ℓ+2w2ℓ+2
(
1 + (−1)ℓ2e−πw cos πw) (1 +O(1/w4)

)
, (5.64)w→ ∞ ,Rℓ(ω) =

2ℓπ2ℓ

(ℓ!)2
NfNcT

2ℓ+2Γ4(1 +
ℓ

2
)w , w→ 0 . (5.65)
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In particular, we have the ℓ = 1 spectral function:R1(ω) =
π3

4
NfNcT

4 (1 + 4w4) sinh πw
cosh πw+ cos πw . (5.66)

The large frequency asymptotics of R1(ω) isR1(ω) → R̄1(ω) =
π2

2
NfNcT

4
[
2πw4

(
1 − 2e−πw cos πw)+

π

2

]
, (5.67)

where we have dropped O(e−πw) terms. Thus for sufficiently large values of w the finite

temperature part of the spectral function, R1(ω) − π3NfNcT
4w4, exhibits damped oscilla-

tions around π3NfNcT
4/4 – see fig. 5.5. Note that for ℓ ≥ 2 the finite temperature part of

the spectral function asymptotes to w2ℓ+2 for large w and thus the oscillatory behaviour

again becomes a subdominant effect.

1 2 3 4 5

2

4

6

8

Figure 5.5: The finite temperature parts of the Mq = 0 (χ0 = 0), q = 0, ℓ = 1 vector

spectral function (R1 − NfNcω
4/16π) and of its high frequency asymptotics (5.67) (R̄1 −

NfNcω
4/16π) (dashed blue line), in units of π2NfNcT

4/8, versus w = ω/2πT . Note the

figure also demonstrates the precise agreement between the numerical results (red dots)

and the exact result (solid black line, which is essentially invisible above).
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As in the previous section, for massive quarks (χ0 6= 0), both the embedding equation

(2.44) and the vector equation of motion (5.57) must be solved numerically. Solving for

Eℓ,ω requires special attention to the boundary conditions near the horizon (ρ→ 1). As for

the ℓ = 0 case, the appropriate incoming wave conditions are imposed by taking Eℓ,ω(ρ) =

(ρ− 1)−iwF (ρ) with F (1) = 1 and ∂ρF (1) = iw/2.

The vector spectral function for ℓ = 1 is shown for various values of χ0 in fig. 5.6. For

all values of χ0, the ℓ = 1 spectral functions approach NfNcω
4/16π at large ω – see section

5.6.2. While this common behaviour is not clear in fig. 5.6, it can be seen by going to

larger w. Note that the spectral functions in the upper plot, which correspond to values of

the T/Mq above the phase transition, seem to be essentially featureless. In contrast, the

lower plot shows that as the critical embedding is approached (with χ0 → 1) some peaks

are appearing in the spectral function. The masses of the lowest two ℓ = 1 vector mesons

in the low temperature phase for a near-critical Minkowski embedding have been included

in this plot as well. While these lines lie close to the first peak for the χ0 = 0.9999 spectral

function, the peaks do not seem to be converging to these positions nearly as rapidly as

was seen for ℓ = 0.

The peaks in the spectral function for χ0 → 1 may again be interpreted in terms of

quasiparticle states when their width Γ and is much less than their frequency Ω: Γ ≪ Ω.

Hence, as discussed for ℓ = 0, it appears that the quasinormal frequencies are approaching

the real axis in this regime. However, we stress that this approach is occurring much

more slowly for the ℓ > 0 modes. In particular, the spectral function remains essentially

structureless for χ0 = 0.94, which corresponds to the phase transition between the black

hole and Minkowski embeddings. Therefore the mesonic states corresponding to the higher-

ℓ vector operators dissociate immediately at the phase transition.

Note the complementary discussion in section 5.6.3 would lead to similar conclusions.

In particular, a barrier in the effective potential develops as in the ℓ = 0 analysis but

only for values of χ0 much closer to one when ℓ > 0. Hence metastable states in the

corresponding Schroedinger problem would only appear in this regime for χ0 very close to

one.



154 Holographic thermal gauge theories with flavour

0 0.5 1 1.5 2
0

50

100

150

200

250

300

Χ0=0

Χ0=0.1

Χ0=0.5

Χ0=0.8 Χ0=0.94

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

20

40

60

80

100

120

Χ0=0.94

Χ0=0.9621

Χ0=0.99

Χ0=0.9999

Figure 5.6: The vector spectral function for ℓ = 1 in units of π2NfNcT
4/8 versus w. The

upper plot shows values of χ0 corresponding to temperatures above the phase transition

while the lower plot is for values of χ0 past the phase transition. In the lower plot we

focus on values of w for which the spectral function shows structure. The vertical dotted

lines represent the mass of the lowest and first excited vector mesons for ℓ = 1 in the low

temperature (Minkowski) phase for a near-critical embedding.
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5.3.2 Scalars

We now turn to scalar and pseudoscalar excitations of the fundamental fields. In the dual

gravity picture, these correspond to scalar fluctuations of the D7-brane probes in the black

D3 geometry (2.36) about the fiducial embedding given by θv(ρ):

θ(σa) = θv(ρ) + δθ(σa) , φ = 0 + δφ(σa) , (5.68)

where σa denotes the D7-branes’ worldvolume coordinates. Appendix A describes the

holographic dictionary relating the scalar δθ and the pseudoscalar δφ to the corresponding

gauge theory operators.

The pull-back of the bulk metric (2.36) to the D7 worldvolume is:

ds2 = ds2(g) − 2L2χ̇√
1 − χ2

∂a(δθ)dx
adρ+ L2

[
∂a(δθ)∂b(δθ) + χ2∂a(δφ)∂b(δφ)

]
dxadxb

where

ds2(g) =
1

2

(u0ρ

L

)2
[
−f

2

f̃
dt2 + f̃dx2

3

]
+
L2

ρ2

[(
1 +

ρ2χ̇2

1 − χ2

)
dρ2 + ρ2 sin2(θv + δθ)dΩ2

3

]
.

(5.69)

As before, we’ve put χ(ρ) = cos θv(ρ). Using the DBI action and retaining terms only to

quadratic order in the fluctuations, the Lagrangian density is

L = L0 + −NfTD7u0
4

4

√
h ∂ρ

[
−ρ

5ff̃(1 − χ2)3/2χ̇√
1 − χ2 + ρ2χ̇2

δθ − 3

2

ρ5ff̃(1 − χ2)χχ̇√
1 − χ2 + ρ2χ̇2

(δθ)2

]

−NfTD7u0
4

4

√
h ρ3ff̃

√
1 − χ2 + ρ2χ̇2

[
−3

2

1 − χ2

1 − χ2 + ρ2χ̇2
(δθ)2

+
L2

2
(1 − χ2)gab

v

(
(1 − χ2)∂a(δθ)∂b(δθ)

1 − χ2 + ρ2χ̇2
+ χ2∂a(δφ)∂b(δφ)

)]
, (5.70)

where gab
v is the metric (5.69) with δθ = 0 and L0 is the Lagrangian density for the fiducial

embedding χ (given in (2.42)). We eliminated terms linear in δθ by integrating by parts

and using the equation of motion (2.44) for χ.

The equations of motion for the fluctuations follow from (5.70) as

∂a

[√
h ρ3ff̃(1 − χ2)χ2

√
1 − χ2 + ρ2χ̇2 gab

v ∂b(δφ)
]

= 0 (5.71)
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for δφ and

L2∂a

[√
h ρ3ff̃(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

gab
v ∂b(δθ)

]
+ 3

√
h ρ3ff̃(1 − χ2)√
1 − χ2 + ρ2χ̇2

δθ = 0 (5.72)

for δθ.

Pseudoscalar δφ

The relevant portion of the action (5.70) for the pseudoscalar δφ is

Iδφ = −TD7Nfu0
4L2

8

∫
d8σ ∂a

[√
h ρ3ff̃(1 − χ2)χ2

√
1 − χ2 + ρ2χ̇2 gab

v δφ ∂bδφ
]
, (5.73)

where we’ve integrated by parts and used the equation of motion (5.71). To evaluate

the spectral function we only need the complex part of (5.73) and hence in the following

we retain only the term involving the ρ derivative. Exanding the fluctuation in terms of

spherical harmonics on the S3 of unit radius,

δφ =
∑

ℓ

Yℓ(S3)δφℓ(ρ, x
µ) , (5.74)

the term needed to evaluate the spectral function for the ℓth mode is

Iδφℓ
= −TD7Nfu0

4Ω3

8

∫
d4x

[
ρ5ff̃(1 − χ2)2χ2

√
1 − χ2 + ρ2χ̇2

δφℓ ∂ρδφℓ

]

ρ→∞

. (5.75)

We take the Fourier transform of δφℓ with k = (−ω, q, 0, 0),

δφℓ(ρ, x
µ) =

∫
dωdq

(2π)2
e−iωt+iqxδφℓ(ρ, k) , (5.76)

and write

δφℓ(ρ, k) = δφ0
ℓ(k)

(πT )ℓ

2ℓ/2
ρℓ

max

Pℓ,k(ρ)

Pℓ,k(ρmax)
, (5.77)

where the limit ρmax → ∞ will eventually be taken. Note the factor of ρℓ
max required to

obtain the correct asymptotic behaviour δφℓ(ρmax, k) = δφ0
ℓ(k)ρ

ℓ
max – see appendix A. We

can then define the flux factor for the ℓth mode as

Fφℓ
= − π2ℓ

2ℓ+6
λNfNcT

2ℓ+4

[
ρ5ff̃(1 − χ2)2χ2

√
1 − χ2 + ρ2χ̇2

ρ2ℓ
max Pℓ,−k(ρ) ∂ρPℓ,k(ρ)

Pℓ,−k(ρmax)Pℓ,k(ρmax)

]

ρ→∞

. (5.78)
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The retarded Green’s function is then G = −2F [123] from which we obtain the spectral

function R = −2Im G for q = 0 asRφℓ
(ω, 0) = − π2ℓ

2ℓ+4
λNfNcT

2ℓ+4m2 lim
ρ→∞

Im

[
ρ3+2ℓ ∂ρPℓ,k(ρ)

Pℓ,k(ρ)

]
, (5.79)

where we simplified using eq. (2.45).

For the ℓ = 0 mode, the holographic dictionary in appendix A describes how the

variation δφ0(k) introduced an insertion of the operator Mq Oφ. Hence to get the spectral

function for the dimension-three operator Oφ, we should normalise the spectral function

by an extra factor 1/M2
q . We expect that this should also hold for ℓ > 0, in which case the

operator Oφℓ
has dimension ℓ+ 3. Recalling that m2 = 4M2

q /λT
2, we arrive at:R̃φℓ

(ω) =
1

M2
q

Rφℓ
(ω, 0) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2 lim
ρ→∞

Im

[
ρ3+2ℓ ∂ρPk(ρ)

Pk(ρ)

]
. (5.80)

Using (5.76) and (5.77), the equation of motion (5.71) becomes

∂ρ

[
ρ5ff̃(1 − χ2)2χ2

√
1 − χ2 + ρ2χ̇2

∂ρPℓ,k

]

= −ρ3ff̃χ2
√

1 − χ2 + ρ2χ̇2

[
8(1 − χ2)

ρ2f̃

(
f̃ 2

f 2
w2 − q2

)
− ℓ(ℓ+ 2)

]
Pℓ,k . (5.81)

Near the horizon (ρ→ 1) we impose incoming wave boundary conditions so that taking

Pℓ,k(ρ) ≃ (ρ− 1)−iw [1 +
iw
2

(ρ− 1) + O(ρ− 1)2

]
for ρ→ 1 , (5.82)

we were able to solve (5.81) numerically to evaluate the spectral function (5.80). The high

frequency asymptotics of the spectral function are described in section 5.6.2.

Figure 5.7 provides plots of the finite temperature part of the spectral function, R̃φ −
NfNcω

2/4π, for the pseudoscalar δφ, ℓ = 0, for various values of χ0. Qualitatively the results

are the same as for the vector spectal function shown in figure 5.4.10 The quasiparticle

peaks in spectral function quickly dissipate above the phase transition, i.e., for χ0 < 0.94.

High sharp peaks develop as χ0 → 1. As before, the position of these peaks may be

compared with the masses of the lowest pseudoscalar mesons on the Minkowski branch.

10The ℓ = 1 spectral function for the pseudoscalar closely resembles that for the vector, shown in fig. 5.6.
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Figure 5.7: The finite temperature part of the δφ, ℓ = 0, spectral function, R̃φ−NfNcω
2/4π,

in units of NfNcT
2/4 versus w = ω/2πT for various values of χ0.The upper plot shows the

spectral function for values of χ0 corresponding to temperatures above the phase transition

while the lower plot is for values of χ0 past the transition. The vertical dotted lines represent

the masses of the lowest two pseudoscalar mesons for a near-critical Minkowski embedding.
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The vertical dotted lines mark the masses (w ≃ 0.770 and 0.849) of the lowest two δφ

mesons (with ℓ = 0) for a near-critical Minkowski embedding. Note that the first peak

in the χ0 = 0.9999 line is nearly centred on the first value of w. The second peak of this

spectral function also seems to be converging towards the mass of the next meson.

As before, the sharp peaks which develop in the spectral function as χ0 approaches 1

may be interpreted in terms of quasiparticle states. Section 5.6.3 presents a complementary

discussion of the quasinormal spectrum which reaches the same conclusion.

Scalar δθ

The derivation of the spectral function for the scalar δθ is entirely analogous to that for

the pseudoscalar. The portion of the action for the δθ fluctuations is, from (5.70),

Iδθ = −NfTD7u0
4

4

∫
d8σ

{
√
h∂ρ

[
−ρ

5ff̃(1 − χ2)3/2χ̇√
1 − χ2 + ρ2χ̇2

δθ − 3

2

ρ5ff̃(1 − χ2)χ̇χ√
1 − χ2 + ρ2χ̇2

(δθ)2

]

+
L2

2
∂a

[√
hρ3ff̃(1 − χ2)2

√
1 − χ2 + ρ2χ̇2

gab
v δθ∂bδθ

]}
,

where we’ve integrated by parts and used the equation of motion (5.72). As discussed

above, to evaluate the spectral function we only need the imaginary part of the Green’s

function and hence of this action. Thus, only the ρ derivative term from the second line

is needed. We expand the scalar in terms of spherical harmonics on the S3 (as in (5.74)),

take the Fourier transform (as in (5.76)), and express the ℓth mode as

δθℓ(ρ, k) = δθ0
ℓ (k)

(πT )ℓ

2ℓ/2
ρℓ−1

max

Rℓ,k(ρ)

Rℓ,k(ρmax)
, (5.83)

where we will eventually take the limit ρmax → ∞. Note that the factor of ρℓ−1
max is inserted

to obtain the correct asymptotic behaviour – see appendix A.

Following the same procedure as with the pseudoscalars, we identify

Fθℓ
= − π2ℓ

2ℓ+6
λNfNcT

2ℓ+4

[
ρ5ff̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2

ρ2ℓ−2
max Rℓ,−k(ρ)∂ρRℓ,k(ρ)

Rℓ,−k(ρmax)Rℓ,k(ρmax)

]

ρ→∞

. (5.84)

The spectral function then follows asRθℓ
(ω, 0) = − π2ℓ

2ℓ+4
λNfNcT

2ℓ+4 lim
ρ→∞

Im

[
ρ3+2ℓ∂ρRℓ,k(ρ)

Rℓ,k(ρ)

]
, (5.85)
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where we’ve used (2.45) to simplify.

Now recall χ = cos θ and asymptotically χ ≃ m/ρ where m is determined by gauge

theory quantities in eq. (A.7). Note that asymptotically we can relate a variation in θ with

a variation in χ: δχ = −δθ. Hence, a variation of the coefficient of the operator Om in the

gauge theory action (i.e., figuratively we might say δMq(k)) corresponds to (
√
λT/2)δθ0(k)

in eq. (5.83). In the correlator (5.85) two factors of δθ0 have been stripped off, so in order

to normalise the correlator so that only the variations of the gauge theory coefficient are

removed, we should multiply by a factor of 4/λT 2:R̃θℓ
(ω) =

4

λT 2
Rθℓ

(ω, 0) = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2 lim
ρ→∞

Im

[
ρ3+2ℓ∂ρRk(ρ)

Rk(ρ)

]
. (5.86)

With the Fourier transform of δθ and using the notation (5.83), the equation of motion

(5.72) for δθ becomes

∂ρ

[
ρ5ff̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2
∂ρRℓ,k

]

= − ρ3ff̃(1 − χ2)√
1 − χ2 + ρ2χ̇2

[
8(1 − χ2)

ρ2f̃

(
f̃ 2

f 2
w2 − q2

)
− (ℓ+ 3)(ℓ− 1)

]
Rℓ,k . (5.87)

As with the vector and pseudoscalar, we set q = 0 and impose incoming wave boundary

conditions at the horizon, requiring that the field behave as

Rℓ,k(ρ) ≃ (ρ− 1)−iw [1 +
iw
2

(ρ− 1) + O(ρ− 1)2

]
(5.88)

near ρ = 1.

We solved (5.87) numerically and evaluated the spectral function using (5.86). The high

frequency asymptotics of the spectral function appear in section 5.6.2. Plots of the finite

temperature part of the s-wave spectral function, R̃θ −NfNcω
2/4π, are provided in fig. 5.8

for D7-brane embeddings corresponding to temperatures above the phase transition. The

spectral function shows no high peaks and little structure at temperatures above the phase

transition.

Figure 5.9 provides plots of the spectral function for values of 0.94 < χ0 < 1, corre-

sponding to black hole embeddings past the phase transition, i.e., continuing along the

black hole branch in fig. 5.3 past point A1. For 0.94 < χ0 < 0.96, prior to the first kink in
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Figure 5.8: The finite temperature part of the s-wave (ℓ = 0) scalar (δθ) spectral function,R̃θ −NfNcω
2/4π, in units of NfNcT

2/4 for χ0 ≤ 0.94, corresponding to temperatures above

the phase transition.

the free energy (between A1 and A2 in fig. 5.3), no striking peaks appear in the spectral

function. However, for χ0 = 0.9621, point A2 in fig. 5.3, a very high peak appears in the

spectral function, centred on ω = 0. Taking a value of χ0 slightly larger (smaller), say

χ0 = 0.964 (χ0 = 0.96), fig. 5.9 shows that the peak is diminishing and is centred on a

small but nonzero value of ω. A bit further away from the first kink, e.g., χ0 = 0.97 , 0.98

no peak is evident. Following the D7-brane embeddings to the second kink, which occurs

for χ0 = 0.99973885, the same behaviour is evident: Near this value of χ0 a small peak

starts to appear in the spectral function and at χ0 = 0.99973885 a high peak, centred on

ω = 0 appears. As we will discuss in section 5.5, this behaviour is a result of quasinormal

eigenfrequencies crossing the real axis from the lower to upper half of the complex ω-plane.

As a result, these black hole embeddings become unstable beyond χ0 = 0.9621, in precise

agreement with the thermodynamic discussion of section 5.2.1.
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Figure 5.9: The finite temperature part of the scalar (δθ) spectral function for ℓ = 0 in

units of NfNcT
2/4 for values of χ0 past the phase transition. The lower plot focusses on

the region near w = 0 where a peak appears in the spectral for χ0 = 0.9621, corresponding

to the first kink in the plot of the free energy versus temperature.
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Fig. 5.10 provides a plot of the scalar spectral function for the ℓ = 1 mode. The

spectral function does not show any structure for any values of χ0, or, equivalently, m. In

particular, we see no evidence for ℓ = 1 of quasinormal eigenfrequencies crossing the real

axis from the lower to upper half of the complex ω-plane. This is expected from section

2.3.3 where, in the low temperature (Minkowski) phase, we saw no evidence of tachyonic

modes appearing for ℓ > 0 [112].

We close this section with one final observation. While the pseudoscalar equation of

motion (5.81) is singular in the massless limit, the spectral function should have a well

defined limit. Further, if we compare the χ → 0 limits in the pseudoscalar and scalar

channels in figures 5.7 and 5.8, it seems that they converge on the same spectral function.

The fact that the spectral functions coincide in this limit should be a reflection of the

restoration of an additional U(1) global symmetry, corresponding to rotations in the 89-

plane in the array (2.34), in the limit of vanishing quark mass. In the massless limit, this

symmetry relates the two scalar operators.

5.4 Diffusion constant for ‘light’ quarks

The worldvolume gauge field Aµ is dual to a conserved current Jµ
q in the dual gauge theory

– see appendix A. One then expects to see the diffusion of the conserved charge, i.e.,

quark charge, according to Fick’s law, ~Jq = −D~∇J t
q, with a certain diffusion constant.

This expectation can be confirmed in a holographic context [119, 125] and in fact, the

computation of the diffusion constant can be performed in a number of different ways.

In the present D3/D7 brane system, we have explicitly computed the diffusion constant

in three different ways: (a) using the membrane paradigm [125]; (b) the Green-Kubo

formula; and (c) the lowest quasinormal frequency in the diffusion channel. In this section,

we describe these different computations and our results confirm the internal consistency

of the holographic framework, in that we show these different methods all give the same

result.

5.4.1 Membrane paradigm method

The computation of the diffusion constant via the membrane paradigm was discussed

in [125] where explicit formulae for various transport coefficients in terms of metric compo-
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Figure 5.10: The scalar spectral function for ℓ = 1 in units of π2NfNcT
4/8 versus w. The

upper plot is for values of χ0 corresponding to temperatures above the phase transition

while the lower plot is for χ0 past the phase transition. Note in the lower plot that the

lines for χ0 = 0.9621, 0.99, 0.9999 roughly coincide with that for χ0 = 0.94 and that there

is no structure suggesting the existence of quasiparticle states.
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nents for a wide class of metrics were derived. There, the authors considered perturbations

of a black brane background and a formula for the diffusion constant (eq. (2.27) in [125],

also quoted here in eq. (5.135)) resulted from a derivation of Fick’s law. An analogous

computation can be performed for the D7-branes’ vector field for black hole embeddings

and it gives11

D =

√−g√
h

1

gxx
√−gttgρρ

∣∣∣∣
ρ=1

∫
dρ (−gtt) gρρ

√
h√−g

=
2(1 − χ0)

3/2

πT

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

f̃ 2ρ3(1 − χ2)2
, (5.89)

where, in the first expression, the metric g is the induced metric on the D7-branes (2.41)

and h is the determinant of the metric on the S3 of unit radius.

Using the numerical solutions for the embedding χ, we numerically integrated (5.89)

to find DT . The results are plotted in figs. 5.11 and 5.12. Fig. 5.11 clearly shows that at

high temperatures, DT approaches 1/2π. This coincides with the result for the diffusion

constant of R-charges in N = 4 SYM [119]. At a pragmatic level, this coincidence arises

because both results are constructed from correlators of a Maxwell field in an AdS5 black

hole background. As the quark mass is increased, the induced geometry on the D7-branes

deviates from that of the background geometry. Hence one finds a departure of DT away

from 1/2π as the ratio T/M̄ decreases. Close to the phase transition, there is a rapid

decrease and DT = 0.036 ≃ 0.226/2π at the phase transition. If we continue following the

black hole branch beyond the phase transition, DT continues to fall and it also becomes a

multi-valued function of temperature, as shown in fig. 5.12. The latter simply reflects the

fact that multiple embeddings can be found for a single temperature in the vicinity of the

critical solution.

5.4.2 Green-Kubo formula

As discussed in section 5.1.1, the diffusion constant may also be computed using the

Green-Kubo formula (5.11) which relates the product of the diffusion constant D and

11Note that the same method can be applied to compute the diffusion constant for the gauge theory

corresponding to the supergravity configuration of a Dq-brane probe in the near-horizon black Dp-brane

geometry – see section 5.6.4.
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Figure 5.11: The diffusion constant D times the temperature T versus temperature T/M̄

for D7-brane probes in the black D3-brane geometry. The dotted vertical line marks the

temperature of the phase transition.

the susceptibility Ξ to the slope of the vector spectral function (ℓ = 0) for ω → 0:

DΞ = limω→0R(ω)/2ω. The susceptibility is Ξ = ∂nq/∂µ|µ=0 where nq is the charge

density and µ is the chemical potential, both for fundamental matter (quarks or their su-

persymmetric generalisation). In order to compute the susceptibility, one must consider

the D3/D7 brane system at finite baryon number and chemical potential, as in chapter

3 [151]. The susceptibility can be computed directly from eq. (3.17) which applies for any

black hole embeddings. From appendix A, µ and nq are related to dimensionless counter-

parts µ̃ and d̃ via eqs. (A.20) and (A.21), respectively. Combining these definitions, we

have
∂d̃

∂µ̃
=

4

NfNcT 2

∂nq

∂µ
, (5.90)

which, interestingly, is independent of the ’t Hooft coupling λ.

Note from eq. (3.17) that µ̃ = 0 is equivalent to d̃ = 0 which means that we can

calculate ∂µ̃/∂d̃|d̃=0 from this equation and take the inverse for the desired derivative.
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Figure 5.12: Plots of the diffusion constant D times the temperature T versus tempera-

ture T/M̄ for D7-brane probes in the black D3-brane geometry, zooming in on the spiral

behaviour for temperatures near the phase transition.

Hence a straightforward calculation yields

∂µ̃

∂d̃
= 2

∫ ∞

1

dρ
ρ6ff̃ 4(1 − χ2)4

√
1 − χ2 + ρ2χ̇2

(
f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]

)3/2
, (5.91)

and evaluating at d̃ = 0 gives

∂µ̃

∂d̃

∣∣∣∣
d̃=0

= 2

∫ ∞

1

dρ
f
√

1 − χ2 + ρ2χ̇2

f̃ 2ρ3(1 − χ2)2
. (5.92)

Combining eqs. (5.90) and (5.92), our final result is

Ξ ≡ ∂nq

∂µ

∣∣∣∣
µ=0

=
NfNc

4
T 2

{
∂µ̃

∂d̃

∣∣∣∣
d̃=0

}−1

. (5.93)

Note that in limit of massless quarks (i.e., χ = 0), these expressions have a simple form

∂µ̃

∂d̃

∣∣∣∣
d̃=0

=
1

2
, Ξ =

NfNc

2
T 2 . (5.94)

Numerically evaluating the low frequency limit of the spectral function R and the

susceptibility (using (5.93) and (5.92)), we computed the diffusion constant using (5.11),

and the results confirm those displayed in figure 5.11.
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Further, if we combine (5.93) and (5.89), we are led to write

DΞ =
(1 − χ2

0)
3/2

4π
NfNc T , (5.95)

which, in view of (5.11), provides a simple analytic expression for the low frequency (ω → 0)

limit of the vector spectral function:R(ω) =
(1 − χ2

0)
3/2

2π
NfNcTω + · · · . (5.96)

5.4.3 Lowest quasinormal frequency (in the diffusion channel)

The final computation of the diffusion constant comes from examining the hydrodynamic

dispersion relation, corresponding to the lowest quasinormal frequency. At small three-

momentum q, the diffusion constant can be extracted from: ω = −iDq2 + O(q4) [125].

In principle, the calculation of the quasinormal mode spectrum from eq. (5.51) proceeds

as follows: For ρ → ∞, eq. (5.51) implies that Ex ≃ A + Bρ−2 for some constants A,B.

Normalizable modes will be those with A = 0. Hence one method to determine the

quasinormal frequencies is to use a two-dimensional shooting method, i.e., solving (5.51)

numerically with incoming wave boundary conditions at the horizon and then tuning the

(complex) frequency to find a solution behaving as ρ−2 asymptotically. For small q we

solved (5.51) for various m to determine the lowest quasinormal frequency and our results

for the diffusion constant are identical to those plotted in fig. 5.11.

5.5 Discussion

In this chapter, we used holography to investigate various aspects of the high temperature

phase of an N = 2 super-Yang-Mills theory with fundamental matter. The holographic

description consists of probe D7-branes in the near-horizon background of D3-branes (in

the limit of large-Nc and large-λ with fixed Nf). In the high temperature phase, the

D7-branes extend through the event horizon of the AdS5 black hole, which describes the

theory at finite temperature. In chapter 2 [111, 112], this phase was denoted as the black

hole branch since the metric induced on the worldvolume of the D7-branes is itself a

black hole. Even though the latter geometry no longer obeys Einstein’s equations, the

analysis of the hydrodynamic physics found previously for bulk fields, e.g., [118], is readily
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transferred to the worldvolume fields on the D7-branes. Hence we were able to examine the

spectral function for various mesonic operators in section 5.3, following [259, 267], and we

calculated the diffusion constant for the quark charge in section 5.4, adapting techniques

from [119,125].

As discussed in section 2.3.1, the induced geometry on the D7-branes is determined

by solving for the embedding profile from eq. (2.44). Given the complexity of eq. (2.44),

these geometries are only known in general from numerical integration. However, there is

one particularly simple case, namely that of zero quark mass. In this case, the embedding

is trivial, i.e., χ = 0 everywhere, and the induced geometry (2.41) is precisely that of

(the direct product of) an AdS5 black hole (with a constant S3). Hence our analysis in

sections 5.3.1 and 5.4 reduces to studying a Maxwell field in an AdS5 black hole geometry

and the results precisely match those found previously for bulk gauge fields. For example,

the quark diffusion constant (with Mq = 0) matches precisely with the R-charge diffusion

constant calculated in [119,125].

As the quark mass is increased (or T/Mq decreases), the induced black hole geometry

on the D7-brane begins to deviate from that of the background. In particular, the main

differences arise near the event horizon where χ is largest. For example, eq. (2.41) shows

that the size of the S3 and hence the induced horizon area shrinks as χ0 grows. Hence the

physical properties of the fundamental fields were seen to depart (dramatically, in some

cases) from the standard results with the growth of the quark mass. Recall that some of the

most interesting behaviour appeared as χ0 → 1, i.e., approaching the critical solution for

which the effective horizon area vanishes. Hence this behaviour can be seen as a precursor

of the phase transition to the low temperature phase or the Minkowski branch, in which

the D7-brane smoothly closes off above the event horizon.

In the low temperature phase, the spectrum of mesons is characterised by a discrete

set of stable states (see section 2.3.3) [61, 112] and the spectral function is a series of

delta-function-like peaks, as illustrated in fig.5.1a. A derivation of the spectral function

for the scalar meson at T = 0 appears in section 5.6.1. These mesonic states correspond

to open string excitations which are essentially living at the minimum radius of the D7-

branes. Since in the high temperature phase the D7-branes extend through the event

horizon, these states are destabilised. In this phase, the spectrum can be characterised by

a discrete set of quasinormal modes in the effective black hole metric induced on the D7-

branes [155]. The spectral functions calculated in section 5.3 reveal interesting information
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about this quasinormal spectrum. We focussed on three particular operators, which are

bilinears of the fundamental fields – the details appear in appendix A – corresponding

vector, pseudoscalar and scalar channels.

The behaviours of the vector and pseudoscalar spectral functions are very similar, as can

be seen in figures 5.4 and 5.7. The following physical picture emerges from these plots: At

very high temperatures, the spectral function closely resembles that for a vector in N = 4

SYM. (Of course, as discussed above, the bulk and worldvolume vector results are identical

for T/Mq → ∞.) In this regime, the spectral function shows essentially no structure and

the eigenfrequencies of quasinormal modes must all be deep in the (lower) complex plane.

As the temperature decreases (with fixed quark mass), both the real and imaginary parts of

a given quasinormal frequency decrease but the formation of peaks in the spectral function

suggests that the imaginary part decreases more rapidly. At temperatures just above the

phase transition, there are vector and pseudoscalar quasiparticles. Continuing along the

black hole branch to even lower temperatures beyond the phase transition (i.e., following

the black hole line through A1 in fig. 5.3), peaks grow very sharp and even more prominent

indicating that the quasinormal modes have Re(ω) ≫ Im(ω) in this regime.

Section 5.6.3 presents a complementary discussion which reaches the same conclusion.

Plots of the effective potential for the pseudoscalar (and vector) excitations in section

5.6.3 show a finite potential barrier developing at intermediate values of the radius as

χ0 → 1. This suggests the existence of metastable states in the corresponding Schroedinger

problem which, as discussed in section 5.6.3, would correspond to a quasinormal frequency

with Γ ≪ Ω i.e., the eigenfrequency approaches the real axis in this regime. Of course,

while this intuitive picture developed from the effective potential matches the behaviour

of the spectral functions discussed above, it only gives a very schematic picture of the

quasinormal spectrum. Hence it would be interesting to develop a more detailed picture

with a full calculation of the quasinormal modes [155].

If we examine the positions of the peaks in the spectral functions more closely as

the black hole embedding approaches the critical solution, it appears that the real parts

of the quasinormal frequencies roughly match with the spectrum of the lowest (vector

and pseudoscalar) mesons on a near-critical Minkowski embedding. Hence one notable

feature of the spectral functions is that as χ0 → 1, the peaks are becoming sharper but

also more closely spaced and moving towards lower frequencies. For example, in figure

5.7, the peaks in the χ0 = 0.9999 line are much more closely spaced than those in the



Spectral functions and diffusion constants 171

χ0 = 0.99 line. This behaviour is similar to what is seen for the δφ spectrum for near-

critical Minkowski embeddings: For these near-critical embeddings, the tower of masses

appears to be collapsing to the mass of the lowest meson – see figs. 2.7, 2.8, and 2.9. As

the phase transition occurs well away from the critical solution (i.e., χ0 = 0.94 versus 1),

the positions of the spectral peaks are not closely matched with the corresponding meson

spectrum for the Minkowski embedding at the phase transition. Of course, both spectra

are still characterised by the same general mass scale, as given in eq. (2.48).

We also examined the spectral functions for ℓ > 0 in vector and pseudoscalar channels.

These modes of the worldvolume fields correspond to higher dimension operators in the

field theory, which are charged under the internal symmetry group SO(4) = SU(2)×SU(2)

– see the discussion in appendix A. For these modes, the results are qualitatively similar

to those for ℓ = 0 as one approaches the critical embedding. However, the rate at which

the quasinormal frequencies approach the real axis is much slower – that is, the spectral

functions only develop pronounced peaks very close to χ0 = 1. In fact, these peaks are

already washed out at the phase transition, i.e., χ0 = 0.94. Hence the corresponding

mesons with ℓ > 0 do not survive as quasiparticles through the phase transition. An

analogous observation applies to the excited mesons with ℓ = 0 and n ≥ 1. Examining the

spectral functions in figs. 5.4 and 5.7, one finds that only the first peak remains pronounced

at χ0 = 0.94. Hence it seems that only the ground state mesons (with n = 0 = ℓ) can

be said to survive the phase transition as quasiparticles. However, even these resonances

have disappeared in the quark-gluon plasma by χ0 ≃ 0.8 or T ≃ 1.1Tfun, where Tfun is the

temperature of the phase transition.

As shown in figures 5.8 and 5.9, the behaviour of the scalar spectral function is qualita-

tively different from that found in the vector and pseudoscalar channels, shown in figs. 5.4

and 5.7. As before, at high temperatures, the spectral function shows no distinguished

structure, indicating that the quasinormal eigenfrequencies are all deep in the (lower)

complex plane. As the temperature decreases, a small peak develops near the origin al-

though it is still not very prominent at the phase transition. However, continuing to the

D7-brane embeddings on the black hole branch for temperatures below the phase transi-

tion, this single peak grows and becomes extremely sharp and centred at ω = 0, precisely

at the first kink in the free energy, i.e., χ0 = 0.9621. Beyond this point, the peak decays

and moves away from ω = 0. Our interpretation of this behaviour is that the lowest (pair)

of the quasinormal frequencies approaches the origin and actually crosses the real axis at
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the point A2 in fig. 5.3. Continuing beyond this point, this eigenfrequency moves into the

upper half plane, where it actually corresponds to an unstable mode.

This interpretation of the behaviour of the scalar spectral function is confirmed by the

qualitative analysis of the corresponding quasinormal modes in section 5.6.3. Examining

the effective potential for the scalar excitations shows that a negative potential well devel-

ops and grows as χ0 → 1. As discussed in the section 5.6.3, when this well is large enough,

it can support long-lived ‘bound’ states for which (the real part of) the effective energy is

negative. These modes are distinguished since Γ2 > Ω2 and further Γ < 0, so that these

bound states correspond to instabilities of the D7-brane. The spike (or pole) at ω = 0 in

the scalar spectral function discussed above results from the formation of the first bound

state where the eigenfrequency crosses the real axis. Of course, it would be interesting to

develop a detailed picture with a full calculation of the quasinormal modes [155].

Recall that the thermodynamic discussion of sections 2.3.2 and 5.2.1 predicted that

the system should become unstable at the point A2 in fig. 5.3 because the specific heat

of the black hole branch becomes negative there. Hence our analysis above is in precise

agreement with this result and it shows that the instability corresponds to a pair of unstable

‘quasinormal’ modes appearing on the D7-branes.

In fact, we found the scalar spectral function also displays a spike at ω = 0 at the

second kink in the free energy, i.e., χ0 = 0.99973885. Hence it appears that the second

lowest quasinormal modes become unstable at this point. It is natural to conjecture then

that each time the free energy turns, two new ‘tachyonic’ modes appears in the scalar

spectrum. In fact, the spectrum of scalar mesons on the Minkowski branch was found to

display precisely this behaviour (see section 2.3.3) [112].

The spectral functions of mesonic operators which we calculated exhibited interesting

features which can be interpreted in terms of the spectrum of quasinormal modes. It

would, of course, be interesting to confirm these behaviours by a direct investigation of the

quasinormal modes [155]. In the present chapter, the spectral functions were only calcu-

lated for zero spatial momentum for computational simplicity. Another natural extension

of this work is to consider the behaviour at nonvanishing spatial momentum. In particular,

the spectral functions for general time-like and light-like four-momentum can be used to

calculate photon and dilepton production rates, respectively [268]. An analysis of these

results for the present N = 2 gauge theory will appear shortly [271].

The other main result of this chapter was the calculation of the diffusion constant for
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the quark charge. We used a number of techniques developed for bulk black holes in the

calculation of the R-charge diffusion constant: the membrane paradigm method [125], the

Green-Kubo formula [119] (which relied on the studies of this system at finite quark density

from chapter 3, [151]), and the lowest quasinormal frequency [125]. It is gratifying that,

as demanded by the internal consistency of the holographic framework, all three of these

independent calculations yield the same results, shown in figure 5.11.

At very high temperatures (i.e., T/M̄ ≫ 1), the diffusion constant approaches 2πD T =

1, which, as discussed above, matches the R-charge diffusion constant for the N = 4 super-

Yang-Mills theory [125]. As T/M̄ decreases, the product DT decreases. Intuitively, we

might understand this result as the rate of diffusion decreasing at a fixed temperature

when the quark mass is increased. In fact, the decrease is remarkably small at first, e.g.,

2πD T = 0.9 at T/M̄ ≃ 1.5. However, figure 5.11 then shows a dramatic decline as

we approach the phase transition at T/M̄ = 0.7658. At the phase transition, 2πD T ≃
0.226, but if we continue following the black hole branch it appears that DT continues to

decrease and would vanish at the critical embedding. The membrane paradigm approach

to calculating D, as described in section 5.4.1, provides a straightforward understanding

of this vanishing from the bulk perspective. Examining the expression in eq. (5.89), we

see that in the critical limit, the integral remains finite but the prefactor vanishes because√−g → 0. Hence the dominant effect which causes D to decrease is the reduction of the

effective horizon area of the brane geometry (2.41) as we approach the critical embedding.

That is, (1 − χ2
0) → 0 in advancing toward the critical embedding. Further, this area

vanishes precisely at the critical embedding, confirming that D should vanish there.

We have considered the N = 2 gauge theory to have Nf flavours of quarks. Hence it is

worth noting that the results for the quark diffusion constant in the present holographic

framework are independent of both Nf and Nc. Of course, the same independence of Nc

was seen with the R-charge [125]. This must certainly arise because we are working in the

limit of large Nc and large λ.

There has also been a great deal of interest in the diffusion of ‘heavy quarks’ in holo-

graphic theories recently [133–136] – see also [192, 195, 272] and the references therein.

In the present context, this simply refers to the quark diffusion constant in the low tem-

perature phase where the D7-branes are some finite distance away from the black hole

horizon. In the low temperature or Minkowski embedding phase, a quark is represented by

a fundamental string stretching between the D7-brane and the horizon. As such, a heavy
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quark is holographically represented by a macroscopic object (on a similar footing with the

probe D7-branes) and classically this object will remain at rest (i.e., it does not ‘diffuse’).

It is only when semiclassical effects are taken into account that the heavy quarks diffuse

through the appearance of Hawking radiation from the effective black hole metric induced

on the string worldsheet [135]. This process should be contrasted with the diffusion process

in the high temperature phase which we have been considering here. As stressed above,

in this phase the induced metric on the D7-brane is a black hole metric and so if quark

number is injected into the system, the holographic description of diffusion is simply the

classical process of the corresponding worldvolume excitations falling towards the event

horizon. Given these two disparate descriptions, it is not surprising that the diffusion con-

stant takes a qualitatively and quantitatively different form in the two phases. In the low

temperature phase, the diffusion constant is governed by the heavy quark result [133,135]12

2πD T =
√

8/λ . (5.97)

On the other hand, after the phase transition to the high temperature phase, we found

above that 2πD T = O(1). Note that the holographic analysis applies for strong ’t Hooft

coupling (i.e., λ≫ 1) and so these results show the expected suppression of quark diffusion

in the low temperature phase.

We comment on a possible puzzle with the above description of the diffusion of heavy

quarks as due to semiclassical Hawking radiation. As such, the diffusion constant would

be expected to vanish in the limit ~ → 0 for the bulk theory. Now the standard AdS/CFT

dictionary would associate Planck’s constant ~ in the bulk supergravity with 1/Nc in the

dual gauge theory [53]. However, above, we see the result (5.97) is seen to be independent

of Nc and D certainly does not vanish in the limit Nc → ∞. The resolution of this puzzle

is that we have misidentified the correct ‘semiclassical’ nature of the diffusion process

here. Above we observed that the heavy quarks diffuse because of the appearance of

Hawking radiation in the effective field theory on the string worldsheet dual to such a heavy

quark. That is, the ‘fields’ on the worldsheet are the transverse coordinates describing the

embedding of the string and so fluctuations in these fields (arising from Hawking radiation)

12Note we present this result with the same normalisation for the ’t Hooft coupling used throughout

this chapter and thesis. Ref. [133] uses a convention such that λ̃ = 2λ. This difference arises from the

implicit normalisation of the U(Nc) generators: Tr(Ta Tb) = d δab. The standard field theory convention

used in [133] is d = 1/2 while our choice is d = 1, which is prevalent in the D-brane literature.
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corresponds to fluctuations in the position of the quark (i.e., diffusion of the quark). As

usual, ~ for the worldsheet theory is identified with the inverse string tension, α′ = ℓ2s . More

correctly, the dimensionless ~ in the nonlinear sigma model on the worldsheet is identified

with the ratio of α′ and the background curvature scale, i.e., ~ws ≃ ℓ2s /L
2 ≃ 1/

√
λ. Now

we see this physical picture matches precisely with the calculated result (5.97) and the

limit λ→ ∞ is the semiclassical limit on the string worldsheet.

Figure 5.13: Sketch of 2πD T versus λ for a canonical N = 2 gauge theory with Mq/T =

200. The perturbative regime [273] is to the far left and it crosses over to the ‘heavy’ quark

behaviour (5.97). Above the transition to the black hole phase (λ ≃ 9.4 × 104), the curve

reflects the light quark behaviour of fig. 5.12. The light quark curves are also shown for

Mq/T = 2, 6, and 20. The horizontal dotted line marks the value of 2πD T for the ‘light’

quarks at the phase transition.

The results for the diffusion constant in both the high and low temperature phases are

combined in figure 5.13, where the diffusion constant is shown as a function of λ (for fixed

Mq/T ). The thick black curve shows a canonical result for the N = 2 gauge theory, which

we are displaying for Mq/T = 200. The diffusion constant starts at very large values on the

left in nearly perturbative results. The dashed ‘perturbative’ line is the extrapolation of
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the perturbative calculation of [273] for N = 4 super-Yang-Mills at large Nc. As the curve

shows, we expect DT to make a transition to the λ−1/2 behaviour of heavy quarks in the

low temperature phase. For infinite quark mass, this behaviour would extend out to infinite

’t Hooft coupling. However, for a finite mass, increasing λ eventually takes the system to

the high temperature phase. It would be interesting to understand the corrections to the

heavy quark result (5.97), as we approach the phase transition. For Mq/T = 200, the

latter occurs at λ ≃ 9.4× 104 [111,112]. At this first order phase transition, 2πD T jumps

discontinuously up to the ‘light quark’ curve where 2πD T = 0.226 and it quickly reaches

the asymptotic value of 1 as λ continues to increase.

Much of the recent interest in holographic calculations of the diffusion constant was

generated by the possibility to compare these strong coupling results with experimental

results for the QCD quark-gluon plasma measured at RHIC [274]. It is interesting then to

place the RHIC results in the context of the phenomenology of the N = 2 gauge theory

studied here. In fig. 5.13, the bar labeled RHIC corresponds to αstrong = 0.5 (or λ = 3π)

and the range 2πD T = 3 ∼ 12, for which the simultaneous fit of the nuclear modification

factor and elliptic flow amplitude for heavy (charm) quarks is acceptable – see [274] for

details. This value of the ’t Hooft coupling is well away from the light quark behaviour

of our canonical theory but also lies in an intermediate regime between the heavy quark

and perturbative regimes. Hence a direct comparison of either approach for the N = 2

theory to the experimental data for QCD is difficult [273,275]. We emphasise that in this

intermediate region our canonical curve is simply an ‘artistic’ impression of the cross-over

between these two regimes.

For the canonical theory, we chose Mq/T = 200 so that the phase transition between

the low and high temperature regimes took place for a value of λ that we could confidently

characterise as strong coupling. We can extend the discussion of RHIC results by noting

that the charm quark has a mass of roughly 1500 MeV while the temperatures achieved

in the RHIC collisions are in the regime 250 MeV. Hence in these experiments, we are

considering Mq/T ≃ 6. As illustrated in figure 5.13, the effect of reducing this ratio is to

slide the light quark curve to the left. That is, the phase transition occurs at smaller and

smaller values of λ, e.g., , λc ≃ 85 for Mq/T ≃ 6. However, it seems that this critical

value is still well away from the value of the coupling relevant for RHIC. Further it seems

that the same will still be true for charm quarks even at the higher temperatures that

might be achieved in the future at the LHC. Thus it is unlikely that a dramatic jump in
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the diffusion constant, such as that seen for our canonical theory, can ever be expected

to appear in these experiments. It is noteworthy that in any event, the experimentally

favoured values of the heavy quark diffusion constant are in fact above those calculated in

the high temperature phase. Hence it would seem that a QCD phase transition would be

characterised by a sudden decrease rather than a sudden increase in the diffusion constant.

While our results for the diffusion constant do not seem relevant for ‘heavy quarks’, they

might be considered as that for ‘light quarks’ in QCD. Note that our holographic model

gave 2πD T ≤ 1 where the effect of a finite quark mass was to give a slight (less than order

one) reduction below the asymptotic value of 1. Section 5.6.4 extends the computation of

the diffusion constant described in section 5.4.1 to more general holographic theories. In

particular, figure 5.17 shows the results for the D4/D6-brane system, which is the basis

for the construction of one holographic model which mimics QCD at large Nc [62]. The

results are similar to those above with 2πD T ≤ 3/2 with finite mass effects giving a

small reduction from the asymptotic value. Another interesting holographic model of a

QCD-like theory comes from introducing D8 and anti-D8 probe branes in a D4-brane

background [63,64]. The resulting diffusion constant is simply 2πD T = 1. In this model,

the current quark mass vanishes and so no finite mass effects appear. We might also recall

the results for the R-charge diffusion constants 2πD T = 1 and 3/4, for the near-extremal

D3- and D4-brane backgrounds [125]. Hence in all these cases then, we find that the

calculations yield 2πD T = O(1). This might suggest that in QCD the diffusion constant

associated with the light quarks falls dramatically at strong coupling, as compared to the

perturbative results [276], but that they should saturate around this level. One might note

then that these diffusion constants would be smaller than for heavy quarks at presently

accessible energies but not much smaller. However, we must recall that these calculations

are all performed at large λ and large Nc (with Nf/Nc ≪ 1) and so it would be interesting

to understand the corrections to these results at finite λ and finite Nc.

In the present study, we focussed on calculating the diffusion constant for the overall

quark charge. Of course, with Nf flavours of quark with identical masses, the N = 2 gauge

theory has a global U(Nf) flavour symmetry and in the dual gravity description, the world-

volume theory of the D7-brane contains a nonabelian U(Nf) gauge field. Our calculations

have only considered the diagonal U(1) component of this gauge field. However, as noted

in appendix A, one can easily examine the nonabelian SU(Nf) flavour currents with the

corresponding components of the worldvolume gauge field – see, e.g., eq. (A.6). In princi-
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ple, we would describe the diffusion of the full set of flavour currents with a diffusion matrix

Dab, rather than a single constant. However, our calculations of the diffusion constant in

section 5.4 only relied on knowing the quadratic action for the dual gauge field and hence

the nonabelian character of the gauge fields would play no role. Hence the diffusion matrix

is, in fact, diagonal: Dab = D δab where D is precisely the constant determined for the

U(1) charge. On general grounds, this is of course the expected result for the N = 2 gauge

theory in the absence of any chemical potentials. With a nonvanishing chemical potential,

the diffusion matrix will not take this simple form [277]. Similar comments to those above

also apply for extending our calculations of the spectral function to operators that are no

longer SU(Nf) singlets.

5.6 Supplementary material for chapter 5

5.6.1 Spectral function for scalar meson at T = 0

In the low temperature phase of the D3/D7 brane theory, we expect the scalar spectral

function to be a series of delta-function resonances centred on mass eigenvalues. In this

appendix we compute the scalar spectral function for the theory at zero temperature. The

spectrum of mesons in this theory was studied in detail in ref. [61].

The background geometry corresponding to the field theory at T = 0 is that of (5.15)

with u0 = 0 so that f(u) = 1, i.e., the background no longer contains a black hole.

We embed Nf D7-branes in this geometry as described by the array (2.34), at a distance

m0 = 2πℓ2sMq from the D3-branes. The resulting theory is supersymmetric with eight

supercharges preserved. Using spherical polar coordinates in the 4567-space with radial

coordinate ¯̺ = m0̺, the induced metric on the D7-branes is

ds2 =
m2

0

L2
(1 + ̺2)

(
−dt2 + dx2

3

)
+

L2

1 + ̺2

(
d̺2 + ̺2dΩ2

3

)
. (5.98)

Following the same procedure as described in section 5.3.2, we consider small scalar

fluctuations δR of the D7-branes about this fiducial embedding, i.e., taking polar coor-

dinates φ and R̄ = m0R in the 89-directions, we consider φ = 0 and R̄ = m0(1 + δR).

Expanding the DBI action to quadratic order in δR, we find

I = −L
2

2
TD7

∫
d8σ

√−g
1 + ̺2

gab ∂aδR ∂bδR . (5.99)



Spectral functions and diffusion constants 179

The corresponding equation of motion is

∂a

[ √−g
1 + ̺2

gab ∂bδR

]
= 0 , (5.100)

where g is the metric (5.98).

We take the fluctuations to be s-waves on the internal S3. Then, integrating over the

S3 and integrating by parts, the action (5.99) becomes:

I = −π2m4
0TD7

∫
d4x

[
̺3δR ∂̺δR

]
̺→∞ . (5.101)

Expanding the fluctuation in terms of Fourier modes, we take

δR(k, ̺) = δR0(k)
Rk(̺)

Rk(̺max)

as the solution of eq. (5.100) regular at ̺ = 0 and normalised to δR0(k) at ̺ = ̺max. The

correlation function is given by13

G = 2π2m4
0TD7Nf

[
̺3 R−k(̺) ∂̺Rk(̺)

R−k(̺max)Rk(̺max)

]

̺→∞
= 2π2m4

0TD7Nf

[
̺3∂̺Rk(̺)

Rk(̺)

]

̺→∞
. (5.102)

Changing the radial coordinate from ̺ to z̄ = ̺2/(1 + ̺2), the equation of motion (5.100)

for a fluctuation with vanishing spatial momentum can be written as

∂2
z̄Rk(z̄) +

2

z̄
∂z̄Rk(z̄) +

ω̄2

4z̄(1 − z̄)
Rk(z̄) = 0 , (5.103)

where ω̄2 = ω2L4/m2
0. The solution regular at z̄ = 0 is given by a hypergeometric function

Rk(z̄) = 2F1

(
1

2
+

1

2

√
1 + ω̄2,

1

2
− 1

2

√
1 + ω̄2; 2; z̄

)
. (5.104)

The correlator (5.102) becomes14

G =
2π2m4

0 TD7Nf

M2
q

ω̄2

[
ψ

(
1

2
+

1

2

√
1 + ω̄2

)
− π

2
tan

π
√

1 + ω̄2

2

]
, (5.105)

13Note that in the low-temperature phase the spectrum is discrete and the correlator as a function of

frequency is expected to have poles on the real axis. The difference between various types of correlators

(retarded, advanced, Feynman etc) then comes from the usual choice of an integration contour in the

complex frequency plane.
14In order to obtain the appropriate normalisation we must multiply G by 1/M2

q (see section 5.3.2).
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where we dropped contact terms. The correlator (5.105) has poles at ω2
k = 4k(k+1)m2

0/L
4,

k = 1, 2, ..., corresponding to the meson mass spectrum found in [61]. Using the expansion

π

4a
tan

πa

2
=

∞∑

k=0

1

(2k + 1)2 − a2

and Sokhotsky’s formula

lim
ǫ→0

1

x± iǫ
= ∓iπδ(x) + P

(
1

x

)
,

we find R = −2 Im G =
NfNc

π

∞∑

k=1

ω2
k

√
1 + ω̄2

k δ
(
ω̄2 − ω̄2

k

)
. (5.106)

This expression confirms our expectations for the spectral function in the low temperature

phase of the theory, illustrated in fig. 5.1a: the spectral function is a sum of delta-function

peaks centred on meson mass eigenvalues. Note that with

δ
(
ω̄2 − ω̄2

k

)
=
δ (ω̄ − ω̄k) + δ (ω̄ + ω̄k)

2ω̄k

, (5.107)

and assuming ω ≥ 0, the spectral function can also be expressed asR =
NfNc

2π

∞∑

k=1

ω2
k

√
1 +

1

ω̄2
k

δ (ω̄ − ω̄k) . (5.108)

For large frequencies ωk, corresponding to large k, eq. (5.108) can be written asR ∼ NfNcω
2

4π

∑

k

∆ω̄k δ (ω̄ − ω̄k) , (5.109)

where ∆ω̄k = ω̄k+1 − ω̄k ≃ 2 is the spacing between delta functions for large k. Note

that the prefactor NfNcω
2/4π is in agreement with the high frequency asymptotics – see

eq. (5.116).

5.6.2 Spectral function high frequency asymptotics

In this section we find expressions for the vector, pseudoscalar and scalar spectral functions

in the high frequency limit, i.e., ω much larger than all scales: ω ≫ T,Mq. Note that in a

sense this limit is equivalent to taking the limit of zero temperature and quark mass.
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The spectral functions, R̃θℓ
(ω), R̃φℓ

(ω), Rℓ(ω), are collectively denoted by Rℓ
s(ω) here

and are defined as Rℓ
s = − π2ℓ

2ℓ+2
NfNcT

2ℓ+2Im

[
ρ3+2ℓ∂ρΦℓ

Φℓ

]

ρ→∞
, (5.110)

where Φℓ = ρRℓ,k,Pℓ,k, Eℓ,k for the scalar, pseudoscalar, and vector fluctuations, respec-

tively. The desired limit is achieved by considering both ρ → ∞ and w2 − q2 → +∞. In

this limit, the embedding function is χ ∼ m/ρ, and the three equations of motion, (5.57)

for Eℓ,k, (5.81) for Pℓ,k, and (5.87) for Rℓ,k, reduce to

∂2
ρΦℓ +

3

ρ
∂ρΦℓ −

[
ℓ(ℓ+ 2)

ρ2
− 8(w2 − q2)

ρ4

]
Φℓ = 0. (5.111)

Changing variables first from ρ to the ‘standard’ radial coordinate u using (2.35) (which

becomes u = ρu0/
√

2 asymptotically) and then to z = L2/u, we obtain

Φ′′
ℓ (z) −

1

z
Φ′

ℓ(z) −
(
ℓ(ℓ+ 2)

z2
+ k2

)
Φℓ = 0 , (5.112)

where k2 = −ω2 + q2. For timelike momenta, the solution satisfying the incoming wave

boundary condition at z = ∞ (the horizon in the zero temperature limit) can be written

in terms of the Hankel function of the first kind,

Φ = zH
(1)
ℓ+1(|k|z) , (5.113)

assuming ω > 0 [123]. The spectral function then becomesRs =
NfNc

2π2
Im

[
lim
ǫ→0

Φ′(ǫ)

ǫ2ℓ+1Φ(ǫ)

]
. (5.114)

For ℓ = 0, this is Rs =
NfNc

4π
(ω2 − q2)θ(ω2 − q2) sgnω (5.115)

which for vanishing three-momentum q = 0 reduces toRs =
NfNcω

2

4π
(5.116)

which coincides with the high frequency asymptotics which we found for all three ℓ = 0

spectral functions in section 5.3. Of course, this asymptotic behaviour precisely matches
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that of the analytic solution (5.64) with ℓ = 0 found for the vector modes in the massless

quark limit.

For ℓ = 1 and vanishing three-momentum q, the spectral function isRℓ=1
s =

NfNcω
4

16π
. (5.117)

Again, this matches the asymptotic behaviour of the analytic vector solution (5.64) for

Mq = 0 with ℓ = 1. In fact, given that these asymptotics are independent of Mq and that

we have found a common expression for all three channels, we can use eq. (5.64) to write

the general asymptotic behaviour with q = 0 asRℓ
s(ω, q = 0) =

NfNc

22ℓ+2π(ℓ!)2
ω2ℓ+2 . (5.118)

Hence we have produced the expected asymptotic behaviour (5.14) for an operator of

scaling dimension ∆ = ℓ + 3. Of course, the behaviour for general q is in principle given

by combining the expressions (5.113) and (5.114).

5.6.3 Effective potentials and quasinormal modes

In this section, we rewrite the equations of motion for the pseudoscalar and scalar fluctu-

ations of the D7-brane in the form of the Schroedinger equation. This can be considered

a first step towards calculating the spectrum of quasinormal modes for these fields – see,

e.g., [155]. The effective potential in each of these effective Schroedinger problems allows us

to infer certain aspects of the quasinormal spectra. In particular, we argue that tachyonic

modes appear in the scalar spectrum sufficiently close to the critical solution. The same

analysis for the vector modes gives results that are essentially identical to those found for

the pseudoscalar.

Pseudoscalar

Considering fluctuations of the pseudoscalar, we take the general ansatz

δφ ∼ eikx P(ρ)Yℓ(S3) , (5.119)

where Yℓ(S
3) are spherical harmonics on the S3 and kµ = (−ω, q, 0, 0). Then the pseu-

doscalar’s wave equation (5.71) can be written as

− H0

H1

∂ρ

[
H1 ∂ρP

]
+
[q2H2 + L2H3

]
P = w2 P , (5.120)
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with:

H0 ≡ ρ4f2

8f̃

(1−χ2)
1−χ2+ρ2χ̇2 , H1 ≡ ρ5ff̃χ2(1−χ2)2√

1−χ2+ρ2χ̇2
,

H2 ≡ f2

f̃2 , H3 ≡ ρ2f2

8f̃(1−χ2)
, L2 ≡ ℓ(ℓ+ 2) .

(5.121)

With the substitution P = hψ, eq. (5.120) becomes

−H0 ψ̈ −H0

(
2
ḣ

h
+
Ḣ1

H1

)
ψ̇ +

[q2H2 + L2H3 −H0

(
ḧ

h
+
Ḣ1

H1

ḣ

h

)]
ψ = w2 ψ , (5.122)

where, as usual, the dot denotes a derivative with respect to ρ. The first term above can

be rewritten as

−H0 ψ̈ = −
√
H0∂ρ

(√
H0∂ρψ

)
+

1

2
Ḣ0ψ̇ = −∂2

R∗ψ +
1

2
Ḣ0 ψ̇ , (5.123)

where

R∗ =

∫ ∞

ρ

dρ̃√
H0(ρ̃)

. (5.124)

In terms of this new radial coordinate, the second derivative term takes the simple form

found in a one-dimensional Schroedinger equation. Combining eqs. (5.122) and (5.123), all

of the terms involving ψ̇ are eliminated if we choose h as

h =
H

1/4
0

H
1/2
1

. (5.125)

Hence the radial equation reduces to

− ∂2
R∗ψ + Veff ψ = E ψ , (5.126)

where the effective energy and potential are given by

E = w2 , Veff = q2H2 + L2H3 −H0

[
ḧ

h
+
Ḣ1

H1

ḣ

h

]
. (5.127)

Let us comment on the new radial coordinate. In some sense, this coordinate is like

the ‘tortoise’ radial coordinate introduced in the analysis of physics in the Schwarzschild

geometry [278]. Approaching the event horizon, i.e., as ρ → 1, H0 ≃ (ρ − 1)2 and so
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Figure 5.14: The effective potential (for δφ fluctuations) versus ρ for various χ0 with ℓ = 0

and q = 0.

R∗ ∝ − log(ρ − 1) → +∞. For large ρ, H0 ≃ ρ4 and so R∗ ≃ 1/ρ → 0. Note that given

the definition in eq. (5.121), H0 is positive everywhere on the range ρ ∈ (1,∞). Hence we

are assured that R∗ is a monotonic function of ρ.

Although R∗ is the appropriate coordinate to analyse the effective Schroedinger equa-

tion (5.126), we can still gain some intuition for the problem by plotting the effective

potential (5.127) as a function of ρ for various different D7-brane embeddings. A summary

of results (with q, ℓ = 0) is given in fig. 5.14. Note that for all embeddings, the effective po-

tential exhibits a large barrier in the asymptotic region, as expected for an asymptotically

AdS geometry. Further, in all cases, the effective potential vanishes at the horizon. For

small χ0, the potential is monotonically increasing with ρ. For larger χ0, a small potential

barrier develops at intermediate values of the radius. Intuitively, the latter might give rise

to metastable states in the effective Schroedinger problem.

For ℓ > 0 nonzero and q 6= 0 the results are qualitatively similar to those depicted

in fig. 5.14: The effective potential vanishes at the horizon and grows as ρ → ∞. The

potential barrier grows most quickly for ℓ 6= 0, due to the term proportional to L2 in

(5.127) which is roughly ℓ(ℓ+ 2)ρ2/8 for large ρ. For values of χ0 near 1, a small potential

barrier develops for intermediate values of the radius. Note that while a small potential

barrier is already evident for χ0 = 0.9 (with ℓ = 0 and q = 0) in fig. 5.14, the potential

barrier only develops for larger values of χ0, e.g., χ0 > 0.99 for ℓ > 0 and/or q 6= 0.

The quasinormal modes of the pseudoscalar can be found by solving the Schroedinger
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problem constructed above, with the appropriate boundary conditions. One of the bound-

ary conditions is that the pseudoscalar should have only an incoming wave component at

the horizon, i.e., ρ→ 1 or R∗ → ∞. Given the ansatz (5.119), we are thus looking for solu-

tions with15 ψ ∝ exp(iwR∗). For large ρ or small R∗ where the effective potential diverges,

we demand that the wavefunction vanish. Generically, these boundary conditions lead to

complex eigenvalues for the effective energy E , which is in accord with our expectation

that the quasinormal frequencies have the form [182,279–283]w = ±Ω − iΓ , (5.128)

with Ω,Γ > 0. Note that Γ > 0 ensures that the quasinormal excitations decay in time, as

can be seen from the ansatz (5.119). However, given that

E = w2 = (Ω2 − Γ2) ∓ 2iΩ Γ , (5.129)

some translation is required to use our intuition for the Schroedinger problem to infer

general characteristics of the quasinormal spectrum. Note that as the sign of Im(E) is

not fixed, we are implicitly admitting energy eigenvalues which would correspond to both

decaying and growing wavefunctions in the effective Schroedinger problem. However, this

Schroedinger problem is purely an auxiliary tool and so one should not ascribe any physical

significance to this observation.

Above, we observed that for small χ0, the effective potential rises monotonically from

zero as we move away from the horizon towards larger ρ. Hence we would infer that

Re(E) > 0 or Ω > Γ. Further we should not expect any suppression of Im(E), i.e.,

Im(E) ∼ Re(E), which means that we should still expect to be Ω and Γ to be the same

order of magnitude in this regime. This intuition would then suggest the absence of any

interesting structure in the corresponding spectral functions, as the quasinormal frequencies

should be far from the real axis. However, as noted above, a small potential barrier appears

at intermediate values of R∗ (or ρ) as χ0 approaches one. Intuitively, one might expect

to find long-lived states with Re(E) ≫ Im(E) and Re(E) ∼ Veff (well), i.e., Re(E) would

be roughly given by the height of the potential in this intermediate potential well. From

eq. (5.129), this requires Ω ≫ Γ with Ω finite and so would correspond to quasinormal

15Note that taking the limit ρ → 1 in eq. (5.125) yields a simple constant for h and so we have P ∝ ψ

as we approach the horizon.
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frequencies approaching the real axis. Hence we would expect the formation of peaks in the

spectral function in this regime, as discussed in section 5.1. Of course, this intuitive picture

developed from the effective potential matches the behaviour of the spectral functions found

in section 5.3.2. We emphasise, however, that this intuition only gives a very rough picture

of the quasinormal spectrum and it would be interesting to develop a more detailed picture

with a full calculation.

As mentioned above, the results for the effective potential for the vector fluctuations are

essentially the same as for the pseudoscalar and hence the quasinormal spectrum should

also be similar. We saw in section 5.3.1 that the behaviour of the vector spectral functions

is very similar to those for the pseudoscalar.

Scalar

With the ansatz δθ ∼ eikx R(ρ)Yℓ(S3), the scalar wave equation (5.72) can be written as

− H0

H1

∂ρ

[
H1 ∂ρR

]
+
[q2H2 + (ℓ+ 3)(ℓ− 1)H3

]
R = w2 R , (5.130)

where H0, H2 and H3 are the same as defined in eq. (5.121), while we must redefine the

following:

H1 ≡
ρ5ff̃(1 − χ2)3

(1 − χ2 + ρ2χ̇2)3/2
, L2 ≡ (ℓ+ 3)(ℓ− 1) . (5.131)

Since eq. (5.130) has the same form as eq. (5.120), we can use precisely the same steps

as above to cast this equation for the scalar fluctuations in the form of a Schroedinger

equation. That is, taking R = hψ with h = H
1/4
0 /H

1/2
1 and defining the radial coordinate

(5.124), eq. (5.130) takes the form of the Schroedinger equation (5.126) with the effective

energy and potential given by (5.127). Examining the effective potential to gain some

intuition for the physics, we find: For all embeddings, there is a large potential barrier in

the asymptotic region and the effective potential vanishes at the horizon. For embeddings

of the D7-branes with 0 ≤ χ0 < 0.7, fig. 5.15 shows that the effective potential is a

monotonically increasing function of ρ. For ℓ = 0 and q = 0, once χ0 & 0.7, the potential

develops a negative well near the horizon. As χ0 increases towards 1, this well near ρ ≃ 1

becomes deeper and wider. Note that χ0 ≃ 0.9621 and χ0 ≃ 0.99973885 correspond to

the first and second kinks, respectively, in a plot of the free energy versus temperature

– see fig. 5.3. For any modes with ℓ > 0, one finds that there is never a region where
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Figure 5.15: The effective potential for the scalar field (δθ) versus ρ for various χ0 with

ℓ = 0 and k = 0.

the effective potential becomes negative, however, for χ0 near 1 the potential develops a

small barrier near the horizon. For nonvanishing spatial momentum (q 6= 0), the effective

potential exhibits a negative well near the horizon for values of χ0 near 1. However, the

well is neither as deep nor as wide as that for q = 0.

Certainly, the most interesting feature of the effective potential for the scalar is the

negative potential well which develops and grows as χ0 → 1. One would expect that if this

negative well grows large enough, it will be able to support a ‘bound’ state with E < 0.

Actually, since such a state would still see a finite potential barrier between the centre of

the well and the horizon, it would still be a long-lived state. Using a WKB approximation,

we can estimate that a (zero-energy) bound state will appear for [187,187,284,284,285,285]
(
n− 1

2

)
π =

∫ ∞

R0

dR∗
√
−Veff (R∗) (5.132)

=

∫ ρ0

1

dρ√
H0

√
−Veff (ρ) ≡ n̄ (5.133)

where n is a positive integer and the integration is over the values of ρ for which the

potential is negative. A plot of n̄/π + 1/2 is given in figure 5.16 (for ℓ, q = 0). This

quantity reaches 1 for χ0 ≃ 0.98297 and 2 for χ0 ≃ 0.99986, and so we expect that the

first two bound states form at roughly these values of χ0. Below we will argue that the

appearance of these bound states can be associated with the dramatic spikes observed in

the scalar spectral functions in section 5.3.2. Note then that our results here do not (quite)

match the values of χ0 corresponding to the first two kinks (on the black hole branch) of the
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free energy – recall that the latter correspond to χ0 = 0.9621 and 0.99973885, respectively.

However, we expect this discrepancy is likely due to the approximations inherent in the

WKB calculation.
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Figure 5.16: Plot of n̄/π + 1/2 versus χ0 for ℓ, q = 0.

As the effective potential is positive and monotonically increasing in the small χ0 regime,

we expect the eigenfrequencies (5.128) in quasinormal spectrum will again have Ω and Γ

with the same order of magnitude. Of course, the regime with large χ0 is more interesting

because of the appearance of bound states. These modes with Re(E) < 0 are distinguished

since Γ2 > Ω2, as seen in eq. (5.129). Further, as alluded to above, the corresponding

wavefunctions are below a potential barrier as R∗ → ∞ and so must have the form ψ ∼
exp(−|Γ|R∗) to avoid a divergence at the horizon. Given the boundary condition there,

i.e., ψ ∝ exp(iwR∗), this requires that Γ < 0 for these modes. Further then, it follows

that these exceptional modes grow rather than decay in time and so these bound states

really represent an instability of the system.

The above discussion indicates that these bound states appear when a quasinormal

frequency crosses the real axis and so their appearance should be signalled by a pole

appearing in the scalar spectral function calculated in section 5.3.2. Further, however,

we argued that as the eigenfrequency crosses the real axis, it moves from a regime where

Ω2 > Γ2 for Γ > 0 to Ω2 < Γ2 for Γ < 0. Hence at the point that Γ = 0, we must also
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have Ω = 0.16 Hence we see that the quasinormal frequencies must cross the real axis by

passing through the origin. This is, of course, precisely what was observed in section 5.3.2,

where the poles in the spectral function appeared at precisely ω = 0. Further, the lack

of much structure in the spectral function aside from these poles would indicate that the

quasinormal frequencies approach the origin uniformly so that we never find eigenfreqencies

with Ω ≫ Γ. We reiterate that this discussion only gives a schematic picture of the

quasinormal spectrum and it would be interesting to develop a more detailed picture with

a full calculation [155].

5.6.4 Diffusion constants for Dp/Dq systems

This section extends the computation of the diffusion constant using the membrane paradigm

[125] described in section 5.4.1 to that for the gauge theory dual to the supergravity con-

figuration of a Dq-brane probe in the near-horizon black Dp-brane geometry.

The background geometry (5.15) is generalised to the near-horizon black Dp-brane

metric (in the string-frame) [58] given in eq. (2.1) with the Hawking temperature related

to the horizon position via eq. (2.6). As discussed in section 2.1, the gauge/gravity cor-

respondence states that string theory on this background is dual to a supersymmetric

(p+ 1)-dimensional gauge theory at temperature T .

In analogy with section 2.2, we consider placing a probe Dq-brane in the above geometry

such that the probe has d spatial directions parallel and n+1 transverse to the background

Dp-branes, so that q = d + n + 2 and such that it intersects the horizon at u = u0. We

introduce the coordinate ρ, defined in eq. (2.24), so that the horizon is at ρ = 1. Implicitly,

we will assume in the following that the Dp/Dq system under consideration is T-dual to the

D3/D7 one described by the array (2.34). This choice ensures that the brane configuration

is supersymmetric at zero temperature and the probe brane embeddings should be stable

in the finite temperature background (2.1) [112].

16Essentially we are just saying that Re(E) = 0 just as the bound states form.
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With the coordinate (2.24), the metric and the dilaton may be written as:

ds2 =
1

2

(u0ρ

L

)(7−p)/2
[
−f

2

f̃
dt2 + f̃dx2

p

]

+h̃(ρ)
[
dρ2 + ρ2

(
dθ2 + sin2 θdΩn + cos2 θdΩ7−p−n

)]

eφ =

(
f̃

2

)(p−3)/2 (u0ρ

L

)(7−p)(p−3)/4

,

where

f(ρ) = 1 − 1/ρ7−p, f̃(ρ) = 1/ρ7−p, h̃(ρ) = u2
0 (L/u0ρ)

(7−p)/2
(
f̃/2
)(p−3)/(7−p)

.

Describing the probe brane profile using χ(ρ) = cos θ(ρ), the induced metric on the

Dq-brane may be written as ds2(g) = ds2(g̃) + Z(ρ)dΩ2
n, where

ds2(g̃) =
1

2

(u0ρ

L

)(7−p)/2
[
−f

2

f̃
dt2 + f̃dx2

d

]
+ h̃(ρ)

1 − χ2 + ρ2χ̇2

1 − χ2
dρ2 ,

Z(ρ) = h̃(ρ) ρ2(1 − χ2) .

We assume that the gauge fields are s-waves on the S3 and take At,x,y,z to be nonvanishing

while Aρ = AS3 = 0. Using the DBI action and expanding the gauge fields to quadratic

order, the relevant portion of the action for the gauge fields is

Iq,F = −Tq(πℓ
2
s )

2Ωn

∫
dt ddx dρ

√−g̃
g2

eff

F 2, g2
eff = eφZ−n/2 . (5.134)

We are now in a position to evaluate the diffusion constant using eq. (2.27) from [125]:

D =

√−g̃
g̃xx g2

eff

√
−g̃tt g̃ρρ

∣∣∣∣∣
ρ=1

∫ ∞

1

dρ
−g̃tt g̃ρρ g

2
eff√−g̃ (5.135)

=
(7 − p)

2πT
2α(1 − χ2

0)
n/2

∫ ∞

1

dρ
f ρβ

f̃γ

√
1 − χ2 + ρ2χ̇2

(1 − χ2)(n+1)/2
, (5.136)

where

α =
d− p

2
+

(n− 1)(p− 3)

2(7 − p)
,

β =
(7 − p)(p+ n− 3 − d)

4
− n ,

γ =
(n− 1)(p− 3)

2(7 − p)
+
d+ 4 − p

2
.
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One may check that for p = 3 = n = d this result reduces to that for the D3/D7 case given

in eq. (5.89).

We also evaluated DT numerically for the D4/D6 case (p = 4, n = 2, d = 3) and

the results are plotted in figure 5.17. The horizontal axis is labelled by the ratio of the

temperature to the natural mass scale of the problem, M̄ , defined in eq. (2.103). Asymp-

totically, DT approaches 3/4π for large temperatures. As the temperature is reduced,

DT decreases dramatically near the phase transition. The value at the phase transition

is DT = 0.125 ≃ 0.785/2π. If we continue following the black hole embeddings beyond

the phase transition, DT continues to fall and it also becomes a multi-valued function of

temperature, as was seen in fig. 5.12 for the D3/D7 system. Again, this simply reflects the

fact that multiple embeddings can be found for a single temperature in the vicinity of the

critical solution.
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Figure 5.17: The diffusion constant D times the temperature T versus temperature T/M̄

for a D6-brane probe in the black D4-brane geometry. For large T we have DT ≃ 3/4π.

Note that the asymptotic value for DT does not match that for the R-charge diffusion

constant calculated for a near-extremal D4-brane result: 3/8π [125]. However, there is no

reason that these two quantities should be equal since the D6-brane does not fill the entire

D4-brane throat, i.e., one of the D4-brane worldvolume directions is transverse to the D6

probe.
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The D4/D6-brane system considered above is the basis for the construction of one

holographic model which mimics QCD at large Nc [62]. Another interesting holographic

model of a QCD-like theory comes from introducing D8 and anti-D8 probe branes in a

D4-brane background [63,64]. This system displays an interesting phase transition related

to chiral symmetry breaking [107, 108].17 One can again calculate the diffusion constant

for the quark charge in the high temperature phase along the lines described above. In

this case, the D8-brane wraps the entire S4 of the D4 background but otherwise fills the

same directions as the D6-branes above. After the phase transition the embeddings are

much simpler since there is no non-trivial radial profile to be considered and, further, the

embedding is temperature independent. The diffusion constant may be determined from

eq. (5.136) setting χ = 0 = χ0, p = 4 = n and d = 3. The result for the calculation is

DT = 1/2π.

17These models generalise to a broad family of models displaying a similar pattern of chiral symmetry

breaking [110,222,254].
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Conclusion

The gauge/gravity duality has provided new approaches for studying the physics of strongly

coupled systems. Through this duality, it is possible to explore a large class of strongly cou-

pled gauge theories, obtaining intuitive geometric (gravity) pictures and alternate tangible

descriptions of phenomena. From a theoretical perspective, the duality provides a valuable

calculational tool and access to otherwise elusive regimes of physics. Though QCD is not

yet in the class of gauge theories with a known gravity dual, it is hoped that some insights

into QCD may be achieved through holographic studies.

This thesis presents studies of the properties of a class of thermal gauge theories dual

to systems of Nf Dq-branes in the black Dp-brane geometry, namely SU(Nc) SYM coupled

to Nf ≪ Nc flavours of fundamental matter. These holographic studies were performed

in the limit of large ‘t Hooft coupling and large-Nc, in which case the dual gravity theory

reduces to a classical theory. The focus was often on the D3/D7 brane system, for which

the holographic dual is a four-dimensional field theory.

We studied the thermodynamics of these Dp/Dq brane systems, focussing on the ther-

mal properties of the fundamental matter (chapter 2, [111, 112]). As depicted in fig. 2.1,

there are two types of embeddings of Dq-branes in the near horizon geometry of black Dp-

branes: The low temperature phase is characterised by ‘Minkowski’ embeddings, in which

the branes close off above the horizon, and for which the meson spectrum is discrete and

possesses a mass gap. In the high temperature phase, the Dq-branes intersect the horizon

(‘black hole’ embeddings), and the meson spectrum is continuous and there is no mass gap.

In between the two different types of embeddings, there is a limiting, critical solution
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in which the Dq-branes just ‘touch’ the horizon at a point. We showed that the phase

diagram in the vicinity of this solution exhibits a self-similar structure, e.g., the quark

condensate is not a single-valued function of m (see, e.g., figs. 2.4, 2.12), the dimensionless

constant related to the temperature T and mass scale M̄ (see eq. (2.32)) throughm(5−p)/2 =

M̄/T . Hence, several different brane embeddings were possible for a given value of m, or

equivalently, for a given temperature T in the dual field theory. Of course, the physically

preferred configuration is the one which minimises the free energy density of the Dq-branes.

Computing the free energy, one finds that as the temperature is increased, a first order

phase transition occurs by discontinuously jumping from a Minkowski embedding to a

black hole embedding – see, e.g., figs. 2.5, 2.13. This first order phase transition is a

direct consequence of the multi-valued nature of physical quantities, such as the quark

condensate, and is universal in the Dp/Dq brane systems.

Though it may be possible to access the self-similar region through supercooling, some

of the solutions in this region are dynamically unstable. The qualitative behaviour of the

specific heat cV = ∂E/∂T may be seen from figs. 2.5 and 2.13. As the free energy spirals

about the critical solution, the slope and hence cV become negative, indicating that these

embeddings are thermodynamically unstable. Interestingly, the scalar meson spectrum

in the Minkowski phase (section 2.3.3) becomes tachyonic at precisely the point where

the first turn-around occurs in the spiral (with T ). The scalar spectral function (section

5.3.2) also suggests the existence of a tachyonic mode at the analogous point for black

hole embeddings. Hence, dynamical instabilities are manifested in tachyonic modes for

near-critical embeddings in both phases.

In these Dp/Dq brane models, the gluons and other adjoint fields were already in a

deconfined phase at Tfun, so the phase transition is not a confinement/deconfinement phase

transition. In theories with a confining phase and sufficiently heavy quarks, two distinct

phase transitions occur: At Tdeconf the gluons and adjoint matter become deconfined and

the dual gravitational background develops a black hole [59]. For sufficiently heavy quarks,

the Dq-branes remain outside the horizon until temperature Tfun when the first order phase

transition for fundamental matter occurs. This physics is in qualitative agreement with

that observed in QCD for heavy-quark mesonic bound states.

The first order phase transition persists for small baryon number density nb, which

may be introduced into the theory via a nonvanishing background gauge (electric) field on

the Dq-branes (chapter 3, [151]). However, unlike the nb = 0 case, the phase transition
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occurs between two black hole embeddings. Minkowski emebeddings are unphysical for

nb 6= 0 because the radial electric field lines have nowhere to end if the probe branes close

off above the horizon. Focussing on the D3/D7 system, the phase diagram (fig. 3.1) shows

that a line of first order phase transitions ends with a critical point at (T ∗
fun, n

∗
b). To the

left of the line there is a small region which is electrically unstable, indicating that black

hole embeddings are not the true ground state there.

The gravity duals of gauge theories containing fundamental matter may also be used to

study the hydrodynamics of strongly coupled plasmas. To compute the shear viscosity to

leading order in Nf/Nc, one must begin to account for the backreaction of the D-branes on

the black hole geometry. Focussing on the D3/D7 system, in chapter 4 we demonstrated

that the ratio of shear viscosity to entropy density saturates the conjectured universal

bound η/S ≥ 1/4π. The contribution of the fundamental matter is therefore enhanced at

strong ‘t Hooft coupling λ with ηfun ∼ λNfNcT
3. The D3/D7 results extend straightfor-

wardly to Dp/Dq and Dp/Dq/Dq̄ systems, as well as to systems with a non-zero baryon

number chemical potential, with the ratio of shear viscosity to entropy density saturating

the bound.

In chapter 5 we computed mesonic spectral functions in the high temperature phase of

the theory dual to the D3/D7 system, corresponding to black hole embeddings of the D7-

branes. We calculated spectral functions for three operators, all bilinears of fundamental

fields, corresponding to vector, pseudoscalar, and scalar channels. The vector (figs. 5.4, 5.6)

and pseudoscalar (fig. 5.7) spectral functions are very similar: At high temperature, these

show little structure and closely resemble the spectral function for a vector in N = 4 SYM.

As the temperature decreases, peaks form in the spectral function, and, at temperatures

just above the phase transition, there are vector and pseudoscalar quasiparticles. The scalar

spectral function also shows no distinguished structure at high temperatures (fig. 5.8).

However, as the temperature decreases, a small peak develops near the origin (fig. 5.9).

This peak is not well-developed at the phase transition, but continuing along the black

hole branch past the phase transition, it grows, becoming sharply peaked and centred at

ω = 0 at precisely the first kink in the free energy. Beyond this point, the peak decays and

moves away from ω = 0. We interpret this behaviour as the lowest pair of quasinormal

modes approaching the origin and crossing the real axis to the upper complex plane. Once

in the upper half plane, these modes have a negative effective energy, indicating that they

correspond to instabilities of the D7-branes, in accord with the tachyons found in the meson
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spectrum on the Minkowski branch.

We computed the diffusion constant for the quark charge in section 5.4 via the mem-

brane paradigm, the Green-Kubo formula, and the lowest quasinormal frequency, thereby

demonstrating the internal consistency of the holographic framework – see fig. 5.12. At

high temperatures, the diffusion constant approached D = 1/(2πT ), matching the result

for N = 4 SYM [125]. As T/M̄ decreases, DT decreases, which can be understood as the

rate of diffusion decreasing at a fixed temperature as the quark mass is increased. The

calculation of the diffusion constant for the high temperature phase of other Dp/Dq brane

systems appeared in section 5.6.4.

These studies illustrate the power of the gauge/gravity duality: Holographic studies

can provide simple, intuitive pictures of strong coupling physics. For example, the meson

meltdown phase transition is simply realised in the gravity theory as a discontinuous jump

between different brane embeddings. Further, the duality provides a means of perform-

ing otherwise intractable calculations. There are currently no other reliable calculational

methods to compute dynamical quantities such as transport coefficients e.g., η, D. The

success at applying the value of η/S computed in gravity duals to RHIC results suggests

that insights into QCD may be gleaned from holographic studies. Though nature only pro-

vides one example of a strongly coupled gauge theory, QCD, a large class of gauge theories

are theoretically accessible through holographic studies. Through studying many models,

it may be possible to determine which properties are universal and which are unique to

a particular theory. These have experimental application in the dynamics of the quark

gluon plasma (e.g., at RHIC or, in the future, at the Large Hadron Collider (LHC)), which

cannot be studied reliably (at present) via lattice techniques.

There are many possible directions suggested by the work in this thesis. One might

investigate the dynamics of the melting transition, uncovered in chapter 2, by constructing

localised brane configurations in which only part of the probe branes has fallen through

the horizon. The localised bubbles of melted fundamental matter would be analogous to

the plasma balls uncovered in [219] corresonding to localised lumps of deconfined gluon

plasma.

The discussion of brane systems with nonvanishing chemical potential µb or baryon

number density nb in chapter 3 was formulated in terms of the canonical ensemble, with

the phase diagram presented in the (T, nb) plane. Rephrasing the discussion in terms

of the grand canonical ensemble would allow a direct comparison of the (T, µb) phase
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diagram with that for QCD. The true ground state in the region of instability in the

phase diagram 3.1 remains unknown, suggesting that the possibility of Minkowski-type

embeddings carrying a gas of baryons should be explored. Spectral functions for bilinears

of fundamental operators could be computed in this theory.

In analogy with calculations of the shear viscosity, spectral functions, and diffusion

constants of chapters 4 and 5, one might further explore the dynamics of strongly coupled

plasmas. The idea of emulating the quark gluon plasma through gravity models appeared

in [286–289]. Studies of the drag on a quark moving through the plasma [133–136,290,291]

and the rate of photon emission from the QGP [268, 271] are all relevant for current and

future experimental studies. All the calculations of transport coefficients described above

apply to theories in a deconfined phase. It would be interesting to compute transport

coefficients using the holographic dual of a confining theory.

Holographic models might also be improved in a number of ways. With fully back-

reacted geometries one would no longer need to depend on the probe approximation and

would be able to study models with Nf/Nc finite [83,209–218]. Incorporating more features

of QCD into a single gravity dual would allow for better comparisons with QCD. Work

along these lines has occured in relation to the Dp/Dq/Dq̄ [63,64,107–110,222,234,254–256]

system which has a confining phase as well as a geometric realisation of chiral symmetry

breaking and restoration. Recently, an attempt was made to allow for nonzero quark mass

in the D4/D8/D8̄ model [292].

Though a holographic dual to QCD is not yet on the horizon, perhaps these and future

holographic studies will yield new insights into the physics of strongly coupled plasmas and

QCD. It would certainly be exciting if these might help understand future experimental

results, such as those from the LHC.



Appendix A

Holographic dictionary for

fundamental fields in an N = 2

four-dimensional gauge theory

Throughout this thesis we focus on three probe brane worldvolume fields: the gauge field

Aµ and the embedding coordinates χ and φ. We made use of the fact that the asymptotic

behaviour of these probe brane fields has a direct translation in terms of hypermultiplet

operators in the gauge theory. In this appendix we elucidate this holographic dictionary

in more detail for the holographic dual of the D3/D7 brane system, i.e., four-dimensional

U(Nc) N = 4 super-Yang-Mills coupled to Nf N = 2 fundamental hypermultiplets.

Let us remind the reader that a hypermultiplet consists of two Weyl fermions ψ, ψ̃ and

two complex scalars q, q̃. Of these, ψ and q transform in the fundamental of the SU(Nc)

gauge group, while ψ̃ and q̃ transform in the antifundamental. Further, with Nf flavours

(of equal mass), the hypermultiplets transform under a global U(Nf) ≃ SU(Nf) × U(1)q

symmetry. The charges of the fields under the diagonal U(1)q are +1 for ψ and q and –1

for ψ̃ and q̃. Hence the U(1)q charge naturally counts the net number of quarks in a given

state. Here and below, we follow the notation of [293].

The operators dual to Aµ, χ and φ can be determined by considering the interactions

of the open strings on the D3/D7 array (2.34) before the decoupling limit [44], in analogy
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with the closed strings. Such an exercise leads to the following operators:

Aµ ↔ Jµ
q = ψ̄σ̄µψ + ψ̃σµψ̃† − i

(
q†Dµq − (Dµq)†q

)
− i
(
q̃ (Dµq̃)† −Dµq̃ q̃†

)
, (A.1)

χ ↔ Om = iψ̃ψ + q̃(Mq +
√

2Φ1)q̃† + q†(Mq +
√

2Φ1)q + h.c. , (A.2)

φ ↔ Oφ = ψ̃ψ + i
√

2 q̃Φ1 q̃† + i
√

2 q† Φ1 q + h.c. , (A.3)

where Dµ denote covariant derivatives in the SU(Nc) gauge theory. Note that Φ1, a

complex scalar in the N = 4 supermultiplet, as well as Mq, appear in the scalar terms

after solving for the auxiliary field constraints within the full coupled theory. Note that all

three operators have conformal dimension1 ∆ = 3, which matches the standard prescription

for the powers of ρ appearing in the asymptotic behaviour of the fields – see below.

The operator Om is the variation of the mass term in the microscopic Lagrangian, i.e.,

Om = −∂MqL.

Let us comment on the derivation of Oφ. The mass term for the hypermultiplet fields

originates from the following superpotential term

i
√

2

∫
d2θ

(
Q̃Φ7,7Q− h.c.

)
(A.4)

where Q̃ and Q are chiral superfields containing (q̃, ψ̃) and (q, ψ), respectively. These

hypermultiplet fields appear as ground states of the 3-7 and 7-3 strings while, as the

subscript indicates, the superfield Φ7,7 describes a particular set of massless modes in the

7-7 string sector. In particular, the lowest component of Φ7,7 is a complex scalar describing

the transverse fluctuations of the D7-brane position, i.e.,

Φ7,7 =
1√
2

(
X8 + iX9

2πℓ2s

)
+ · · · , (A.5)

for the orientation in array (2.34). After the decoupling limit, this is no longer a dynamical

field in the gauge theory but its expectation value sets the mass of the hypermultiplets,

i.e., 〈Φ7,7〉 = Mq/
√

2. One sees from eq. (A.5) that the geometric angle φ appearing in

our construction of the D7-brane embeddings in section 2.3.1 corresponds precisely to the

phase of the complex field Φ7,7. Hence in deriving Oφ, we consider a phase rotation with

the given expectation value for Φ7,7 in the Lagrangian (A.4). The resulting variation yields

1This dimension applies in the UV where the effects of quark mass are negligible and the theory becomes

conformal.
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δL = δφMq Oφ and so we have divided by the factor of Mq in defining the operator given

in eq. (A.3).

Recall that the full flavour symmetry is U(Nf), which of course matches the worldvolume

gauge symmetry of the D7-branes. The current Jµ
q is the conserved current corresponding

to the diagonal U(1)q of this global symmetry, i.e., J t
q is the quark charge density. Our

discussion can easily extended to the SU(Nf) symmetry by considering the nonAbelian

gauge fields on the D7-brane. The corresponding flavour currents would be

Aa
µ ↔ (Ja)µ = (T a)i

j
[
ψ̄iσ̄µψj + ψ̃iσµψ̃†

j − i
(
q†iDµqj − (Dµq)†iqj

)
(A.6)

−i
(
q̃ i (Dµq̃)†j −Dµq̃ i q̃†j

)]
,

where T a are (Hermitian) generators of SU(Nf) and we have restored explicit flavour indices

on the fields. With the operators Om and Oφ, we have also focussed on the SU(Nf) neutral

terms but it would be straightforward to extend these to a more general discussion. For

example, in general Φ7,7 transforms in the adjoint of U(Nf) and so one can easily chose a

more elaborate mass matrix rather than one proportional to the identity as above.

A.1 Scalar

We can make the dictionary between the asymptotic coefficients and the dual gauge theory

parameters precise by realising that the hypermultiplet states are the ground states of the

3-7 and 7-3 strings. Hence in the decoupling limit, these become precisely strings stretching

between the D7-branes and the horizon of the D3-branes. For example, the quark mass

is trivially derived for the brane array (2.34) in asymptotically flat space. As this brane

configuration is supersymmetric at T = 0, this mass persists in the decoupling limit, where

it is again the energy of a string stretching between the D3- and D7-branes. This gives a

relation between Mq and the parameter m appearing in the asymptotic expansions (2.45)

and (3.13):

Mq =
u0

23/2πℓ2s
m =

1

2

√
λT m . (A.7)

Further, this relation is inherited by the theory at finite temperature, since setting T 6= 0

does not alter the asymptotic properties that determine the gauge theory parameters.2

2Note that here we are referring to the bare or current quark mass. The constituent quark mass is

certainly modified by thermal effects, as calculated in section 2.6.4 [112,133].
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Using this result, following [62] we can formulate a variational argument to relate the

second coefficient in the asymptotic expansion of χ to the field theory condensate 〈Om〉.
The Hamiltonian density of the gauge theory can be written (parametrically) as

H = H0 +Mq

∫
d2θQ̃Q , (A.8)

where H0 is independent of the quark mass Mq and Q̃, Q are the hypermultiplet superfields

in N = 1 language. With E = 〈H〉, the condensate is

∂E
∂Mq

= 〈
∫
d2θQ̃Q 〉 = 〈Om〉 . (A.9)

As discussed above, in the string description the quark mass is given by the asymptotic

position of the D7-branes. Hence, in order to compute the condensate, we need to find

the change in energy associated with a change in boundary condition m, recalling that

asymptotically the D7-branes’ position is given in (2.50) as Rv(r) = m + c/r2. With the

Lorentzian D7-brane action SD7 =
∫
d8σL0 where the Lagrangian density L0 is given in

eq. (2.72), we have

δE = −
∫
drdΩ3δL0 = −2π2

[
δRv

∂

∂Ṙv

L0√
h

]r=∞

r=0

= −π2TD7 u
4
0 c δm , (A.10)

where h is the determinant of the metric on the S3 of unit radius. Then, in view of (A.7),

the condensate is

〈Om〉 = −23/2π3ℓ2sNfTD7u
3
0 c = −1

8

√
λNfNcT

3 c . (A.11)

As presented here, this dictionary was established for a constant coefficient (i.e., the

mass) and uniform expectation value of the operator Om. However, the same relationships

also apply in considering correlators where Mq is shifted with a general space- and time-

dependent coefficient or source µ(x). In section 5.3.2, we express the relevant correlators

in terms of variations δθ(x, ρ) (or its Fourier transform along the xµ directions). Given

that χ ≡ cos θ, we have δθ ≃ −δχ asymptotically where χ approaches zero. Hence, as

confirmed from eq. (5.72), δθ has the following the asymptotic behaviour:

δθ(x, ρ) =
δθ0(x)

ρ
+

Θ(x)

ρ3
+ · · · . (A.12)

The source term is related to the first coefficient above as in eq. (A.7) (up to a sign):

µ(x) = −1
2

√
λT δθ0(x). Similarly the induced expectation value and Θ(x) are related as

in eq. (A.11), again up to an overall sign.
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A.2 Vector

In chapter 3 [151], we considered the gauge theory dual to the D3/D7 brane system at

finite baryon density and chemical potential. The baryon density or chemical potential

was introduced by allowing for a nonzero time component of the gauge field on the probe

D7-branes. As noted above, the holographic dictionary relates At to the quark charge

density J t
q = Oq. The asymptotic value of the potential At(∞) is proportional to the

coefficient with which the charge density Oq enters the microscopic Lagrangian. This

operator is normalised so that acting on a particular state it yields exactly the net quark

density, and therefore the corresponding coefficient is precisely the chemical potential µ for

the quarks. Similarly the relevant expectation value is the quark density nq = 〈Oq〉.
We can provide a precise definition of the particle density on the string side of the

duality. First, recall that the electric field on the worldvolume can be thought of as

arising from fundamental strings ‘dissolved’ into the D7-brane [237]. The density of these

strings can be determined from the local charge density for the two-form B-field. The

standard convention is that the fundamental string couples to the NS two-form through

the worldsheet interaction Tf

∫
d2σ B. Hence a string pointing along the xi-axis sources

Bti with the charge being just the string tension Tf = 1/(2πℓ2s ). Further, the one-form

gauge invariance of B requires that the D7-brane action only involves the combination

B + 2πℓ2s F . Hence we have
δID7

δBti

=
1

2πℓ2s

δID7

δFti

. (A.13)

Combining these observations, we first conclude that since the D7-brane carries an elec-

tric field in the ̺ direction, the worldvolume effectively contains strings stretching along

the radial direction with a density precisely determined by the electric displacement d =

−δID7/δFt̺. The minus sign in the last expression means that for positive d the strings are

oriented to be inward pointing towards the horizon at ̺ = 1. Since the number of strings

corresponds precisely to the number of quarks in the field theory, the density of quarks is

given by integrating the string density on the D7-branes over the internal three-sphere:

nq =

∫
dΩ3 d = 2π2 d . (A.14)

While d is not precisely the coefficient of the normalisable mode in eq. (3.7), the two satisfy

the simple relation given in eq. (3.9).
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As noted above, the non-normalisable mode At(∞) indicates that the charge density

operator Oq enters the microscopic Lagrangian. As we wish to relate this bulk mode to

the chemical potential µ for the quarks in the microscopic theory, it is natural to frame the

discussion in terms of the grand canonical ensemble. There the chemical potential enters

the partition function as

exp

[
−β
∫
d3xW (β, µ)

]
≡
∑

exp

[
−β
∫
d3x (H− µOq)

]
, (A.15)

where a sum over all states is denoted on the right hand side. Of course, W (β, µ) and H are

the Gibbs free energy and Hamiltonian densities, respectively. We know that µ ∝ At(∞)

but we would like to determine the exact constant of proportionality. Towards this end,

we note that, as can be seen from eq. (A.15),

δW

δµ
= −〈Oq 〉 = −nq . (A.16)

To compare to the string description, we turn to the semiclassical analysis of the Euclidean

supergravity path integral, as described in section 3.2. The grand canonical ensemble is

represented by the usual path integral with fixed At(∞) and the on-shell action gives

the leading contribution to the Gibbs free energy, i.e., IE = β W . Hence to compare to

eq. (A.16), we need to evaluate the change of the on-shell D7-brane action induced by a

change of the boundary value At(∞). Given the worldvolume action (3.5), the desired

variation is

δW =

∫
d̺ dΩ3 δLE = 2π2

∫ ∞

1

d̺
δLE

δ∂̺At

∂̺δAt , (A.17)

where LE is the D7-brane Lagrangian density. In eq. (A.17), we have only integrated over

the internal three-sphere and the radial direction to produce the free energy density in

the gauge theory directions. Once again we recognise the first factor as d = δL/δ∂̺At =

−δLE/δ∂̺At (in the current notation – note that we need to distinguish between the

‘Lagrangian’ densities appearing in the Minkowski (3.5) and Euclidean (3.39) actions),

which is a constant on-shell. Hence eq. (A.17) reduces to

δW = −2π2 d (δAt(∞) − δAt(1)) = −nq δAt(∞) , (A.18)

where we used (A.14) and the fact that At always vanishes on the horizon so that we must

have δAt(1) = 0. Finally, comparing eqs. (A.16) and (A.18), we find

At(∞) = µ , (A.19)
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and so, as anticipated in the main text, the constant part of the asymptotic gauge potential

is precisely the chemical potential for the quarks. If we wish to express results in terms of

a baryon chemical potential, we would convert µb = Nc µ.

Let us also recall the formulae for the dimensionless quantities defined in eqs. (3.11)

and (3.14) and which appear in our calculations:

µ̃ =
2πℓ2sµ

u0

=

√
2

λ

µ

T
, (A.20)

d̃ =
d

2πℓ2su
3
0NfTD7

=
25/2

NfNcλ1/2

nq

T 3
=

25/2

Nfλ1/2

nb

T 3
. (A.21)

Hence as with the previous definitions, the temperature T provides the scale to make these

quantities dimensionless but implicitly we have also introduced interesting factors of the

’t Hooft coupling, as well as of Nf and Nc. In particular, we see that d̃ is naturally related

to the expectation value of the baryon number nb in (A.21).

The relationships (A.20) and (A.21) were established for constant chemical potential

and uniform quark density, however, they still apply for more general configurations. In

particular, for the correlators of section 5.3.1, we consider more general gauge field config-

urations with asymptotic behaviour

Aµ = Σµ(x) +
σµ(x)

ρ
+ · · · . (A.22)

In this case, Σµ corresponds to the (space- and time-dependent) coefficient of the current

operator Jµ
q and the induced expectation values are given by

〈Jµ
q (x)〉 =

1

4
NfNc T

2 σµ(x) . (A.23)

Note that here the index on σµ is raised with ηµν , the inverse metric in the field theory.3

A.3 Pseudoscalar

Now we would like to turn to the holographic dictionary for the δφ modes. From the

equation of motion (5.71) and the asymptotic behaviour of χ given in eq. (2.45), we can

3Note that while the calculation of the spectral function in section 5.3.1 is presented in terms of the

gauge-invariant field strengths Fµν , this was simply choice of convenience and the final spectral function

corresponds to that for current in eq. (A.1).



Holographic dictionary for fundamental fields 205

determine that δφ has the following asymptotic behaviour

δφ(x, ρ) = δφ0(x) +
Φ(x)

ρ2
+ · · · . (A.24)

From eq. (A.5), we saw that the geometric angle φ appearing in the D7-brane embeddings

corresponds precisely to the phase of the complex field Φ7,7. Hence δφ0 corresponds to

a fluctuation in the phase of the hypermultiplet mass term. As usual, the dimensionless

constant Φ is proportional to the induced expectation value of Oφ but we would still need

establish the precise constant of proportionality.

To establish the latter relationship, it is natural to frame the discussion in terms of the

thermal partition function – see [151], for example.4 The source potential δφ0 enters the

partition function as

exp [−β F (β, δφ0)] ≡
∑

exp

[
−β
∫
d3x (H− δφ0Mq Oφ)

]
, (A.25)

where a sum over all states is denoted on the right hand side and β denotes the inverse

temperature. Of course, F (β, δφ0) and H are the free energy and Hamiltonian densities,

respectively. To begin, we note that, as can be seen from eq. (A.25),

δF

δ(δφ0)
= −Mq 〈Oφ 〉 . (A.26)

To compare to the string description, we turn to the semiclassical analysis of the Euclidean

supergravity path integral – see [112,151], for example. Here the on-shell action gives the

leading contribution to the free energy, i.e., IE = β F . Hence to compare to eq. (A.26), we

need to evaluate the change of the on-shell D7-brane action induced by a variation δφ0.

The background solution for this field is simply φ = 0 and so to linear order the action is

invariant. Hence we can focus on the appropriate Euclidean version of the quadratic action

(5.73) and the variation yields a boundary term, as in eq. (5.75),

δF =
π2

4
NfT7u0

4

∫
d3x δφ0

[
ρ5ff̃(1 − χ2)2χ2

√
1 − χ2 + ρ2χ̇2

∂ρδφ

]

ρ→∞

= −π
2

2
NfT7u0

4m2

∫
d3xΦ(x) δφ0 , (A.27)

4In principle then this discussion only concerns space- but not time-dependent sources. However, the

following results apply for the general case including time dependence.
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where the last expression uses the asymptotic behaviour of both χ and δφ from eqs. (2.45)

and (A.24), respectively. Comparing eqs. (A.26) and (A.27), we find

〈Oφ 〉 =
π2

2Mq

NfT7u0
4m2 Φ(x) =

1

8
NfNcMqT

2 Φ(x) , (A.28)

which completes the holographic dictionary for the δφ modes.

A.4 Operators with ℓ > 0

In the above, we’ve identified the ℓ = 0 modes of the worldvolume fields with operators in

the dual field theory. A similar dictionary relates the higher-ℓ modes to dimension ℓ + 3

operators Oℓ in the gauge theory. Qualitatively, we may say that the latter are constructed

out of products of ℓ adjoint scalar fields ‘sandwiched’ between two fundamental operators

– see e.g., [61, 294]. For example, the expression (A.4) for Oφ would be generalised to

Oℓ
φ ∼

∫
d2θ Q̃ Φ7,7 (Φ3,3)

ℓ Q (A.29)

where (Φ3,3)
ℓ represents a traceless combination of scalar superfields in the adjoint hyper-

multiplet.5 As is often the case in the AdS/CFT correspondence and its generalisations,

determining the precise matchings between normalisations in the field theory and string

theory is difficult, mainly due to the fact that one would need the full D3/D7 brane action

before taking the decoupling limit to find the couplings of the bulk fields to field theory

operators.

To study the spectral functions, overall numerical constants need not concern us. We

simply choose a normalisation which is consistent with holography and ensure that the

spectral function has the proper scaling dimension (5.14). The three equations of motion,

(5.51) for the vector, (5.81) for the pseudoscalar, and (5.87) for the scalar, imply the

asymptotic behaviour

Ψℓ = Aℓ ρ
ℓ +Bℓ ρ

−ℓ−2 , (A.30)

for some constants Aℓ, Bℓ where Ψℓ = Eℓ
x, δφℓ, ρδθℓ. In order to obtain the correct scaling

of the spectral function, we change to the standard dimensionful coordinates z = L2/u

5Hence in this expression (A.29), the fundamental fields have an implicit sum of over the global U(Nf)

indices with Φ7,7 and the gauge U(Nc) indices with (Φ3,3)
ℓ
.
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(asymptotically, z =
√

2/πTρ) used in the usual AdS/CFT prescriptions for computing

correlation functions (see, e.g., [53]). In these coordinates, (A.30) becomes

δΨℓ = Ãℓ z
−ℓ + B̃ℓ z

ℓ+2 . (A.31)

Hence, for z → 0 (the boundary), we expect the leading behaviour Ψ ∼ z−ℓ. Taking a

cutoff at small z = ǫ, this implies that we should take

Ψℓ = Ψ0
ℓ(k)ǫ

−ℓ Φℓ(z)

Φℓ(ǫ)
= Ψ0

ℓ(k)
(πT )ℓ

2ℓ/2
ρℓ

max

Φℓ(ρ)

Φℓ(ρmax)
, (A.32)

where Φℓ represents Eℓ,k for the vector, Pℓ,k for the pseudoscalar, and ρRℓ,k for the scalar.

As seen in section 5.6.2, using (A.32) the spectral functions have the correct scaling (5.14)

for an operator of dimension ∆ = ℓ+ 3.
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