
Access Control Administration

with

Adjustable Decentralization

by

Amir H. Chinaei

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2007

©Amir H. Chinaei, 2007

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

Access control is a key function of enterprises that preserve and propagate massive data. Access

control enforcement and administration are two major components of the system. On one hand,

enterprises are responsible for data security; thus, consistent and reliable access control enforcement

is necessary although the data may be distributed. On the other hand, data often belongs to several

organizational units with various access control policies and many users; therefore, decentralized

administration is needed to accommodate diverse access control needs and to avoid the central

bottleneck. Yet, the required degree of decentralization varies within different organizations: some

organizations may require a powerful administrator in the system; whereas, some others may prefer a

self-governing setting in which no central administrator exists, but users fully manage their own data.

Hence, a single system with adjustable decentralization will be useful for supporting various

(de)centralized models within the spectrum of access control administration.

Giving individual users the ability to delegate or grant privileges is a means of decentralizing

access control administration. Revocation of arbitrary privileges is a means of retaining control over

data. To provide flexible administration, the ability to delegate a specific privilege and the ability to

revoke it should be held independently of each other and independently of the privilege itself.

Moreover, supporting arbitrary user and data hierarchies, fine-grained access control, and protection

of both data (end objects) and metadata (access control data) with a single uniform model will

provide the most widely deployable access control system.

Conflict resolution is a major aspect of access control administration in systems. Resolving access

conflicts when deriving effective privileges from explicit ones is a challenging problem in the

presence of both positive and negative privileges, sophisticated data hierarchies, and diversity of

conflict resolution strategies.

This thesis presents a uniform access control administration model with adjustable decentralization,

to protect both data and metadata. There are several contributions in this work. First, we present a

novel mechanism to constrain access control administration for each object type at object creation

time, as a means of adjusting the degree of decentralization for the object when the system is

configured. Second, by controlling the access control metadata with the same mechanism that

controls the users’ data, privileges can be granted and revoked to the extent that these actions conform

to the corporation’s access control policy. Thus, this model supports a whole spectrum of access

 iv

control administration, in which each model is characterized as a network of access control states,

similar to a finite state automaton. The model depends on a hierarchy of access banks of

authorizations which is supported by a formal semantics. Within this framework, we also introduce

the self-governance property in the context of access control, and show how the model facilitates it.

In particular, using this model, we introduce a conflict-free and decentralized access control

administration model in which all users are able to retain complete control over their own data while

they are also able to delegate any subset of their privileges to other users or user groups. We also

introduce two measures to compare any two access control models in terms of the degrees of

decentralization and interpretation. Finally, as the conflict resolution component of access control

models, we incorporate a unified algorithm to resolve access conflicts by simultaneously supporting

several combined strategies.

 v

Acknowledgements

I would like to warmly thank Frank Wm. Tompa for his outstanding supervision of this course of

study: for his valuable guidance, for his everlasting patience, for his continuous support with all

means, and for his deep friendship in difficulties. Thank you, Frank, from the bottom of my heart for

being far more than just a supervisor!

I would also like to thank Ji-Won Byun, Khuzaima Daudjee, Urs Hengartner, Ninghui Li,

Mohammadreza Meybodi, Sylvia Osborn, Mohammadreza Razzazi, Arnie Rosenthal, Hossein

Saiedian, Ken Salem, David Toman, Huaxin Zhang, and Grant Weddell, with whom discussions and

feedback enhanced my research ideas and skills.

Furthermore, I gratefully acknowledge the Natural Sciences and Engineering Research Council of

Canada, Communications and Information Technology Ontario, Open Text Corporation, the

Mathematics of Information Technology and Complex Systems, and the University of Waterloo for

their financial support.

Last but not least, I would like to thank all friends (let’s call them all, “friends”) who played

important roles in other aspects of my studies, in particular, my parents, my siblings, my wife, as well

as Jeremy Barbay, Mohammdreza Khalil-Moghaddam, Zarrin Langari, Hamid Mahvari, Kiarash

Narimani, Jesse McCrosky, and Mehran Rad.

 vi

To my mother and in memory of my father

 vii

Table of Contents

Abstract ...iii

Acknowledgements .. v

Table of Contents ...vii

List of Figures .. x

List of Tables..xii

Chapter 1 INTRODUCTION ... 1

1.1 Access Control Components .. 3

1.2 General Terminology.. 4

1.3 Motivating Examples.. 7

1.3.1 Healthcare Systems ... 7

1.3.2 Document Servers ... 8

1.4 The Thesis Scope.. 9

Chapter 2 LITERATURE REVIEW .. 11

2.1 Access Control Model .. 11

2.2 Access Control Administration .. 12

2.3 Role-Based Access Control .. 12

2.3.1 Administrative RBAC ... 13

2.3.2 Temporal RBAC.. 14

2.4 Decentralization.. 15

2.5 Granularity.. 16

2.6 Miscellany .. 16

Chapter 3 DEDUCING EFFECTIVE ACCESS CONTROL... 18

3.1 Subjects and Object Hierarchies... 19

3.2 Conflicts on Hierarchies ... 21

3.3 Conflict Resolution Policies ... 22

3.4 Combined Strategies... 24

3.5 Logical Formalism ... 25

3.5.1 Propagation Policies .. 26

3.5.2 Propagation Policies Alternatives.. 30

3.5.3 Policy Soundness... 30

3.6 Unified Algorithm .. 32

 viii

3.6.1 Algorithm Resolve() .. 34

3.6.2 Function Propagate() .. 38

3.6.3 Computational Analysis.. 40

3.7 Experiments ... 41

3.8 Propagation of Authorizations ... 44

3.8.1 Propagation and Stoppers.. 45

3.8.2 Propagation Example with Stoppers ... 45

3.9 Related Work ... 48

Chapter 4 FLEXIBLE ADMINISTRATION OF ACCESS CONTROL .. 50

4.1 Uniformity.. 51

4.2 Access Banks ... 51

4.2.1 Access Banks Hierarchy ... 52

4.2.2 Bank Operations.. 54

4.2.3 Banks and the Explicit Matrix .. 54

4.2.4 Classes of Banks ... 55

4.3 Object Types and Authorizations... 57

4.4 Object Creation and Omnibanks .. 58

4.5 Access Control Administration.. 61

4.5.1 Simple Delegation... 62

4.5.2 Delegation by Agent ... 62

4.5.3 Enhanced Delegation .. 63

4.5.4 Weak Revocation .. 65

4.5.5 Strong Revocation... 65

4.6 Another Look at Omnibanks.. 66

4.7 Access Banks vs. Access Roles ... 66

4.8 Related Work ... 67

Chapter 5 CONSTRAINING DECENTRALIZED ADMINISTRATION.. 69

5.1 The Constraining Mechanism.. 71

5.1.1 Creation Time Policies.. 72

5.2 Expressivity of the Mechanism.. 75

5.2.1 Creation Time Policies for the UNIX File System ... 75

5.2.2 Creation Time Policies for the DB2 Database System ... 77

 ix

5.2.3 Creation Time Policies for the Livelink ECM System.. 79

5.3 ACAD and the Constraining Mechanism... 83

5.4 Further Discussion.. 84

5.5 Related Work.. 85

Chapter 6 MODEL SEMANTICS.. 87

6.1 The Lookup Requests ... 89

6.2 The Update Requests.. 91

6.3 Object Creation... 93

6.4 Related Work.. 94

Chapter 7 USER MANAGED ACCESS CONTROL.. 96

7.1 Specification... 96

7.2 Use Case: Healthcare Systems ... 97

7.3 Proof of Retaining Control ... 102

7.4 Related Work.. 103

Chapter 8 COMPARISON OF MODELS.. 104

8.1 Desirable Features .. 104

8.1.1 Overarching Requirement ... 105

8.1.2 Functionality.. 105

8.1.3 Administration... 107

8.1.4 Performance... 109

8.2 Access Control Space... 111

8.3 Related Work.. 114

Chapter 9 CONCLUSIONS AND FUTURE WORK .. 115

9.1 Summary of Contributions ... 115

9.2 Future Work ... 116

Bibliography... 118

 x

List of Figures

Figure 1. Access control framework. ... 3

Figure 2. Constructing an effective access control matrix from policies... 6

Figure 3. Example of subject and object hierarchies. .. 20

Figure 4. Conflicts on hierarchies. ... 21

Figure 5. Combined conflict resolution strategies. .. 25

Figure 6. Graph of intensional predicates in D
+
LMP

-
. .. 31

Figure 7. Sub-graph of subject User. ... 32

Figure 8. Algorithm Resolve(). .. 36

Figure 9. Function Propagate(). .. 39

Figure 10. Function Propagate() on synthetic data examples. .. 43

Figure 11. Algorithms Resolve() and Dominance() on Livelink data... 43

Figure 12. Total paths lengths vs. number of nodes in LiveLink data.. 44

Figure 13. Example of propagation of authorizations.. 47

Figure 14. Hierarchy of access banks maps authorization inheritance. ... 53

Figure 15. Access banks as an intermediate layer between SDAG and ODAG. 53

Figure 16. Various access banks in ACAD.. 56

Figure 17. Omnibanks and different types of objects. ... 59

Figure 18. Omnibanks in a system with n subjects.. 61

Figure 19. Simple delegation in ACAD... 62

Figure 20. Delegation by agent in ACAD.. 63

Figure 21. Enhanced delegation in ACAD. ... 64

Figure 22. Omnibanks and customized omnibanks. .. 66

Figure 23. BNF notation of policy enforcement rules. .. 71

Figure 24. Creation time policies for the medical record use case. ... 74

Figure 25. Creation time policies for UNIX file permissions.. 76

Figure 26. Creation time policies for DB2... 79

Figure 27. General creation time policies for Livelink’s permissions. .. 80

Figure 28. Specific creation time policies for Livelink’s permissions... 82

Figure 29. Lookup algorithms in ACAD. .. 90

Figure 30. Update algorithms in ACAD. ... 92

Figure 31. An example of medical records schema. ... 98

 xi

Figure 32. A new patient arrives in a healthcare system. ... 99

Figure 33. A doctor attends the patient. ... 99

Figure 34. The patient is permitted to see her diagnosis information. ... 100

Figure 35. All authorizations on the patient medical record. ... 101

Figure 36. Space of access control administration models... 112

Figure 37. Comparison of the models in access control space. .. 113

Figure 38. Expressivity of the models in access control space... 114

 xii

List of Tables

Table 1. All read authorizations of User on obj... 33

Table 2. Resolved authorization for each combined strategy. ... 34

Table 3. Trace of Resolve(). ... 37

Table 4. Objects and privileges in DB2. .. 78

Table 5. ACAD system catalogues. ... 88

Table 6. Comparison of existing models w.r.t. major requirements .. 110

 1

Chapter 1

INTRODUCTION

The fast development of web applications and information sharing, together with the complex base of

sensitive data in many practical systems, poses new challenges for access control administration.

Decentralization of access control administration is the problem of our interest in this thesis. The

problem is particularly difficult because administration models vary in their degree of

decentralization.

In practice, there are certain applications, such as in the military, that require a central access

control administration. Yet, there are various environments, such as file-sharing systems, in which a

sole centralized administration is not practical. No single existing model supports this variety

simultaneously. Most current models provide a centralized administration only. A few recent models

support decentralized administration to a limited extent. However, from a system developer

perspective, an access control system usually needs to be installed in various organizations with

diverse levels of decentralization. Moreover, in a single application, some objects need to be

administered centrally whereas other objects demand a decentralized control. Appropriate adjustment

of the degree of decentralization has a strong influence on efficiency and self-governance.

Efficiency. There are several factors that affect efficiency of access control administration: the

volume of data (i.e., end objects) and metadata (e.g., access control data), and consequently the

number of administrative requests (at each moment) are so large in such systems that the central

administration overhead becomes a bottleneck and efficiency becomes problematic. Centralized

administration also imposes longer routings on requests being launched from distributed clients. This

 2

is more critical in urgent situations: sensitive objects should be secure all the time yet quickly

possible to be accessible to authorized subjects; for example, authorized personal health records

should simply be accessible to emergency centers when needed. Yet, administering the access control

must be reasonably fast even in non-emergency cases. Furthermore, in applications where data are

naturally distributed, centralized administration is often incompatible. For instance, a specialist may

need to access several health objects of a visiting patient, possibly filed in different health centers.

(Similarly, decentralized administration may become difficult in applications in which accountability

is centralized.) On the other hand, access control must be provided for the access control specification

(called metadata in this thesis) itself; e.g., patients may query who can access their health records.

Often systems restrict updating this metadata to a small group of access control administrators (called

security officers in some systems), and for systems relying on so-called “discretionary access

control”, it is important to diversify the population who may update metadata. It is also important that

access control models provide a single uniform mechanism for administering both data and metadata.

Example I in Section 1.3 illustrates the efficiency problem of very large access control systems, in

which typically hundreds of thousands of objects exist.

Self-governance. Self-governance is an important requirement of many information sharing

systems: users in such situations wish to share their data without appealing to administrators; in many

environments they should be allowed all operations on particular data (e.g. on their own data or on

data for which they are responsible), including delegating privileges to others and revoking them at

will; for instance, in healthcare systems, patients often and temporarily have to reveal their personal

data to particular appropriate parties, such as physicians, hospitals, and laboratories. Therefore,

applications in which several parties need to share data will be simpler to manage if each party fully

controls its own (or responsible) data, subject to conformance with the underlying administrative

policy formulated by the enterprise. (Note: ownership has been interpreted differently in the literature;

in this work, “data owner” is a subject who is responsible for the data.) Moreover, objects are usually

managed in different contexts that need to be administered differently. Even if different parties use

the same underlying technology, they may require different sections of a complex access control

policy to be enforced, which would be an error-prone burden for a centralized administration.

Example II in Section 1.3 illustrates the self-governance property of access control models.

 3

In conclusion, sharing data, including selectively delegating and revoking administrative privileges

on the associated metadata, may be supported more reliably and more efficiently by a flexible

decentralized access control administration. The challenge is to ensure that the underlying

administrative policies are enforced.

1.1 Access Control Components

Before proceeding further, it is important to distinguish major components of access control systems,

requests, policy, enforcement, and administration, depicted in Figure 1.

Figure 1. Access control framework.

– The set of objects under access control includes the set of subjects and the access control data

itself (the metadata).

– There are two types of access control requests: lookup and update. A lookup request is an

attempt to retrieve some information from the data or metadata such as whether a given

subject (user, application, or group) has privilege to modify a given object (data, application,

metadata, etc.). An update request (depicted by dashed lines) is an attempt to change

metadata. (Note that we are distinguishing here between lookup and update of the metadata

itself, not of the end objects for which access is being controlled.) The direction of arrows

indicates that when a given subject requests a lookup or an update, the enforcer decides if the

All objects

Access Control Enforcer (Reference Monitor)

Subjects

lo
o

ku
p

m
o

d
if

ie
d

re
q

u
es

ts

Controllers

other data

u
p

d
a

te

requests

Access

control

data

(metadata)

 4

request is valid based on the current state of the metadata, and enforces the request

appropriately.

– Access control policy is a set of rules that all users in the system must follow; it defines the

space of valid metadata states.

– Access control enforcement is the mechanism of securing the system against invalid requests,

that is, those that are not consistent with access control policy. Because data is one of the

critical resources owned by an enterprise, data management systems must enforce access

control policies developed by the enterprise administrators. Thus, each operation on each

piece of data must be vetted by the system to determine whether the subject attempting the

operation has appropriate privileges with respect to that item of data.

– Access control administration is the mechanism of handling requests for access control

updates. Any subject that can update the metadata is called a controller in our model.

Note that this thesis focuses on decentralizing access control administration. Access control has to

be consistently enforced (although perhaps distributed access machines and organizational units), but

the administration of access control can often be handled without referring to central administrators.

Figure 1 depicts the centralization of access control enforcement and the decentralization of access

control administration.

1.2 General Terminology

This section reviews some basic access control terminology that is used in this thesis. In particular,

one should distinguish between subject vs. object, delegate vs. grant, decentralized vs. centralized

administration, explicit vs. effective privileges, and schema-level vs. instance-level control.

Subject vs. object: Throughout this work, there are two general terms, subject and object,

generalizing the notions of users and data, respectively. Objects, with respect to access control

systems, are what are operated on and thus for which particular access is sought. Examples of objects

are data, resources, and applications. Subjects, which have sometimes been defined as active objects,

are those that (implicitly) request access in order to execute an operation. Examples of subjects are

users, applications, and groups. It is important to recognize that the stored information representing a

 5

subject is, in fact, data, and we treat a subject as an object for some operations. For formal definitions

of subject and object, see Section 3.1.

Delegate vs. grant: Some researchers distinguish between two related terms: grant and delegate. The

former often refers to giving a privilege to a subject permanently, while the latter usually means

giving a privilege to a subject temporarily. Similarly, other systems support “revocable” grants by

providing a separate revoke operation. It is obvious that a temporary delegation is equally expressive

to a permanent grant together with revoke. Hence, throughout this thesis, both terms are used

interchangeably to assign a privilege, and we include an explicit revoke operation to remove it.

Decentralized vs. centralized administration: The question is to what extent decentralization can be

realized? It is important to recognize the spectrum of access control administration. At one end,

access control can be absolutely autocratic: a powerful administrator exists in the system dictating

which subjects have access to which objects; at the other end, it can be completely self-governing,

which means that no central administrator exists in the system, but users fully manage their own data.

Chapter 7 specifies such a model.

Whereas security-conscious enterprises often use central enforcement mechanisms to support their

access control policies, closely held access control administration may or may not fit their security

requirements. In conclusion, access control venders desire to sell their product to various

organizations requiring a diverse amount of decentralization. There are applications in which different

object types require to be treated differently, centralized or decentralized. Such issues are addressed

within Chapters 4 to 6.

Explicit vs. effective privileges: Not every subject-object pair has explicit privileges assigned.

Instead, access to objects with no explicit privileges can often be deduced from the set of other

explicit privileges. For instance, in a hierarchical structure, access privileges are typically derived

from the parent-child relationship: members of a group inherit all the privileges of the group and sub-

objects inherit the privileges of the objects in which they are contained. If no privilege or several

conflicting privileges can be derived for a given subject-object pair, the access control system should

resolve a final privilege for that pair. The ultimate explicitly or implicitly assigned privilege will be

called the effective privilege.

 6

Explicit Matrix

Effective Matrix

Access Control

Policies

allow …

disallow …

permit …

deny …

policies

Access control data (called metadata) −which corresponds to relations of subjects, objects, and

privileges− can be conceptually viewed as being represented by an access control matrix, where the

rows represent subjects, the columns represent objects, and privileges are stored at the intersections

[Lampson 1971]. The term effective matrix, is used to represent effective privileges as a three-

dimensional Boolean matrix EM, indexed by subject, object, and method. In such a matrix, no cell is

null. The value of EM[s,m,o] is 1 if the corresponding subject s is privileged to execute method m on

object o; otherwise EM[s,m,o] is 0. Correspondingly, an explicit matrix implements the idea of

condensing the effective matrix by storing explicit privileges only. The explicit matrix can be

expanded to the effective one by using propagation and conflict resolution strategies. Figure 2(a)

depicts the transitions of access control policies to the explicit matrix and then to the effective matrix.

Figure 2(b) illustrates, as an example, that the explicit matrix is represented by predicates permit and

deny, and the effective matrix is represented by predicates allow and disallow in our access control

administration model (called ACAD), which will be examined in further detail in Chapter 3.

(a) Abstract model. (b) ACAD predicates.

Figure 2. Constructing an effective access control matrix from policies.

Schema-level vs. instance-level control: Although access control is inherently a concern at the

instance level (i.e., individual objects are subject to control), policies are more generally defined at

the schema level. This approach simplifies administration, since it provides a convenient means to

specify consistent rules on large collections of homogeneous objects at once.

 7

For the sake of generality, this thesis assumes an object-oriented data model, in which the type of

an object dictates the set of applicable methods that can be applied to it. It is also assumed that

privilege to execute each method is controlled independently: thus the ability to execute the read

method requires read privilege, the ability to execute the write method requires write privilege, the

ability to execute the append method requires append privilege, the ability to execute the delete

method requires delete privilege, the ability to execute the “check into the hospital” method requires

“check into the hospital” privilege, and so forth.

1.3 Motivating Examples

This section provides two motivating examples. One is a very large healthcare system that is used in

order to highlight the efficiency importance of access control models. The other is an ad hoc scenario

of document sharing environments that will help to highlight the self-governance property of such

models.

1.3.1 Healthcare Systems

Example I. Assume a worldwide healthcare system in which there are hundreds of thousands of end

objects (such as medical records, personal information, account balances, etc.) and users (such as

patients, doctors, technicians, hospitals, etc.). There may be a huge number of access control requests

at any moment. Some instances are:

– Patients may wish to authorize other users, e.g. doctors and insurance agents, to read their

personal information.

– Some users, e.g., pharmacists, technicians, and patients as well as their family members, may

request to see some or all parts of a medical record.

– Some users, e.g. doctors and insurance agents, may request authorization for reading a

particular patient’s medical history.

– Patients may no longer wish their medical record to be seen by a particular family member.

In such systems, a centralized administration may easily be overwhelmed with too many requests;

on the other hand, information accessibility is often vital to such users so the requests should not be

backlogged. As an improvement, a significant subset of requests can be handled by different users

 8

without referring to administrators. In Chapter 7, we explain the User Managed Access Control

(UMAC) specification in which the bottleneck of inefficiency is resolved by applying decentralized

administration. Once the appropriate corporate policy is set up at configuration time, users can

manage and share their data properly at run time.

1.3.2 Document Servers

Example II. Assume a web-based document server within which several users and groups (possibly

competitors) share their documents. Each group may have some private documents that are accessible

to its organization only, as well as other documents that may be shared with a subset of other users.

Once the user’s corporate policy is in place, users are allowed to share their data with others so far as

they wish and so long as they stay within the policy’s guidelines. Moreover, each user may stop

sharing information at any point. There is no administrator in the system, and document accessibility

is fully managed by users. As a simple instance of such a server, assume user A owns document P.

Consider the following requests:

– A authorizes B to delegate read privilege on P to other users.

– B authorizes many others, including user C, to read P.

– A decides to stop C, but not others, from reading P.

Neither A nor B wishes to consult an administrator as long as their requests are within the corporate

policy; instead, they wish to govern their own documents independently. Chapter 7 describes how

users can manage their own data independently, in the absence of administrators of any kind, and

without interfering with one another’s decisions with respect to their own data.

Examples I and II, explained above, emphasize the importance of efficiency and self-governance of

access control administration. On one hand, a decentralized access control administration is required

when several parties, usually without administrative control over one another, need to share their data.

Such a model reduces the bottleneck of access administration in situations where data is distributed

among various parties. On the other hand, the question is to what extent decentralization can be

realized? The main contribution of this thesis is to provide an access control administration model in

 9

which the degree of decentralization for the whole system, as well as for each object type, can be

adjusted at the configuration time.

1.4 The Thesis Scope

This thesis addresses the problem of access control administration. Assumptions are that the user’s

authentication is successfully verified, the corporate policy is appropriate, and access control is

correctly enforced by a reference monitor; these aspects are not addressed in the thesis.

 There are several contributions in this work. First, an access control administration model (called

ACAD), in which the degree of decentralization is adjustable from a centralized level to a very

decentralized extent, is proposed. The model includes a novel configuration mechanism to constrain

access control administration for each object type at object creation time, as the means of adjusting

the degree of decentralization when the system is being installed. ACAD introduces the spectrum of

access control administration as well as representing the administration as a network of access control

states, similar to a finite state automaton. Each state is a directed acyclic graph in which access banks

of authorizations and authorization inheritance relations map into the nodes and edges, respectively.

Furthermore, a User Managed Access Control (UMAC) system, which supports wide-ranging access

control features, is designed as an ACAD application. UMAC is a decentralized, conflict-free, and

administrator-free model by which all subjects are able to manage their objects by delegating any

fine-grained subset of their responsibilities to others yet retaining control to revoke privileges as

desired. Moreover, UMAC’s delegation and revocation mechanism is distinguished by the following

features: the privilege to delegate a privilege can be held independently of holding the privilege itself,

the privilege to revoke a privilege can be held independently of the privilege to delegate it, and any

privilege can be revoked from any grantee along the delegation path without affecting other grantees.

This introduces the concept of self-governance in the context of access control. The thesis also

incorporates a widespread framework to resolve access conflicts of environments that require both

positive and negative privileges. The thesis validates ACAD by providing guidelines of policy

specification, to guarantee the termination of policy reasoning and the well-definedness of effective

privileges. Finally, we introduce two measures to highlight ACAD with respect to other significant

models .

 10

The rest of this thesis is organized as follows. Chapter 2 reviews the literature of access control.

Chapter 3 discusses hybrid models and provides a framework to resolve conflicts by supporting 48

strategies simultaneously. Chapter 4 establishes the ACAD specifications. Chapter 5 introduces

creation time policies as a means of constraining access control administration. Chapter 6 describes

the formal semantics of the model defined operationally by a relational model. Chapter 7 proposes

user-managed access control. Chapter 8 justifies features of ACAD in a comparison with several

other noteworthy systems. Finally, Chapter 9 concludes the thesis and describes future work.

 11

Chapter 2

LITERATURE REVIEW

Researchers have investigated a variety of issues concerning the access control. This chapter clusters

these issues in six categories, namely access control model, access control administration, role-based

access control, decentralized access control, access control granularity, and miscellaneous related

topics. Other work that strongly influences parts of the thesis will be cited closer to the points where

they are related.

2.1 Access Control Model

An access control model is conceptually viewed as maintaining an access control matrix [Lampson

1971], which was first introduced for operating systems. However, since an access control matrix in

practice is often very large and sparse, storage refinements are required. A major approach is to

implement the access control matrix implicitly by rules. As examples of rule-based access control,

Graham-Denning and Harrison-Ruzzo-Ullman are two similar enhanced models in which protection

rules have been proposed [Graham and Denning 1972, Harrison et al. 1976]. Although the latter has a

broad expressive power, both models have storage inefficiency. The Take-Grant model [Jones et al.

1976] based on directed graphs is another improved version of the matrix model. This model provides

a compact way of representing the access control data as well as supporting the transferring of rights.

 12

2.2 Access Control Administration

Access control administration is responsible for handling update requests on metadata (metadata

refers to access control data). Mandatory Access Control (MAC) models are an example of fully

centralized administration [Bell and Lapadula 1976], in which a subject may access classified objects

in accordance with the subject’s clearance. The only form of delegation or revocation, then, is to

reclassify a subject or an object. MAC has no flexibility, and it is not applicable when subjects or

objects may not be classified within a limited number of groups. On the other hand, Discretionary

Access Control (DAC) models are more flexible, and the administration model may be centralized or

decentralized. For example, Role Based Access Control (RBAC) is a mechanism that typically

provides central administration [Sandhu 1993] by defining roles. Although RBAC can be used to

model arbitrary DAC systems, the decision of which subjects and objects are to be assigned to which

roles is centrally controlled. The next section reviews RBAC models and several supporting

extensions.

2.3 Role-Based Access Control

Role Based Access Control (RBAC) models [Ferraiolo et al. 2001] provide a mechanism in which

roles usually reflect job titles. However, in traditional role-based models, roles form a hierarchical

relationship for the sake of efficiency [Ferraiolo et al. 2001]. For example, a project manager has his

special privileges as well as all privileges of the project developers reporting to him. Thus, privileges

are propagated through the role hierarchy. Since the first publication of the RBAC model [Ferraiolo et

al. 1992], many researchers have investigated various aspects of RBAC, such as exploring properties

of the roles hierarchy [Al-Kahtani and Sandhu 2003; Ferraiolo et al. 2003; Jansen 1998] and

separation of duties [Botha and Eloff 2001; Joshi et al. 2003; Kuhn 1997]. Wang and Osborn recently

proposed to exploit the group hierarchy for user to user and role to role delegations to overcome the

shortcomings of RBAC-based delegation models, which suffer from needing to modify the role

hierarchy in a very complex structure [Wang and Osborn 2003; Wang and Osborn 2006]. Also, Joshi

and Bertino assume the presence of more than one hierarchy among the subjects, and discuss the

simplest delegation (with no further delegation) and revocation (no cascade) mechanisms in their

work [Joshi and Bertino 2006]. Furthermore, some enhancements have been proposed to the RBAC

model for distributed environments [Park and Hwang 2003; Wedde and Lischka 2003].

 13

There have been several restrictions on the use of RBAC in practice. First, it is not normally

suggested for applications in which a natural role hierarchy does not exist. Second, delegation and

revocation are not sufficiently discussed in the RBAC literature; moreover, the proposals are mostly

impacted by the centralized role control of RBAC. Scalability to hundreds of thousands of subjects

and millions of objects is also a problem due to the model’s central administration. The considerable

work on administrative and temporal RBAC models is separately reviewed in the following

subsections.

2.3.1 Administrative RBAC

There are several endeavours to decentralize the role administration of RBAC [Sandhu et al. 1999;

Sandhu and Munawer 1999; Oh and Sandhu 2002; Kern et al. 2003; Oh et al. 2006]. Nevertheless,

none of these models results in a pure decentralized administration. The difficulty is that RBAC has

been designed to simulate organizational authorizations, assuming that role hierarchies are essentially

centralized and mostly static. This assumption is an innate impediment to developing a successful

decentralized RBAC model. Therefore, all these works present similar concepts and rely on the

organizational hierarchies exploited by RBAC. In particular, Kern et al. address several shortcomings

of ARBAC97 [Sandhu et al. 1999], ARBAC99 [Sandhu and Munawer 1999], and ARBAC02 [Oh and

Sandhu 2002; Oh et al. 2006], in which the notion of administrative roles, mobile and immobile role

memberships, and the concept of independence of an organisational unit and role hierarchies,

respectively, have been introduced. Kern et al. introduce the concept of scopes in their model

(ERBAC) to describe the objects over which an administrator has authority. Scopes are principally

similar to the concept of domains in ARBAC02; however, scopes are defined as an abstract concept

and do not have to mirror an organizational structure. Yet, ERBAC does not address delegation and

revocation. Delegation and revocation in ARBAC97, ARBAC99, and ARBAC02 are restricted to

existing roles, which limits their flexibility. Moreover, there is no mechanism provided to expand (or

decrease) the administrative scopes: scopes themselves are administered centrally. Crampton and

Loizou formally define the scoped administration of role-based access control model (SARBAC)

using a graph formalism. SARBAC overcomes several shortcomings of ARBAC models. Intuitively,

the authors propose several types of updates for the role hierarchy; yet, their model does not address

how the scopes can be updated [Crampton 2002; Crampton and Loizou 2003].

 14

Using the logic introduced by Jajodia et al. [Jajodia et al. 2001], Wang et al. propose an attribute-

based access control in which they allow hierarchical structuring on any attribute [Wang et al. 2004].

The logic is technically suitable but has no industrial support.

Rosenthal and Sciore propose a collaborative administration model in which they present policies

as conjunctions of factors [Rosenthal and Sciore 2004]. Therefore, when a circumstance changes,

only the relevant factor(s) need to be revised instead of the whole policy.

2.3.2 Temporal RBAC

Bertino et al. propose a temporal role-based model (TRBAC) to support temporal constraints for role

enabling, which is important in time-sensitive applications [Bertino et al. 2001c]. The TRBAC model

was generalized, forming GTRBAC, to provide several language constructs to support temporal

constraints for role enabling, role activation, role assignments, etc. [Joshi et al. 2001; Joshi et al.

2005]. The authors also address the problem of incompatibility between role hierarchies and temporal

constraints [Joshi et al. 2002a, Joshi et al. 2002b]. Moreover, Bhatti et al. propose an XML-based

specification of GTRBAC, so called X-GTRBAC [Bhatti et al. 2005a]. The original X-GTRBAC

model has no administrative features. Hence, the authors subsequently define a nice administrative

model [Bhatti et al. 2004, Bhatti et al. 2005b], which is decentralized in the sense that there is a

partially ordered administrative domain hierarchy, and each domain is independently administered by

its own team of administrators. The administrative domains map the functional units, and the highest

role in each functional hierarchy is called the administrative role. They also propose a policy

integration mechanism to resolve possible conflicts existing between domains. The X-GTRBAC

administrative model suffers from lack of scalability due to the following reasons: first, since the

model is based on the RBAC framework, modifying the role hierarchy is complex; also, modifying

administrative domains has not been envisioned in X-GTRBAC; in fact, there is an assumption in the

model that the enterprise includes predefined domains which may not change dynamically;

furthermore, X-GTRBAC specification imposes capability-list implementation (for the distribution of

the abstract access control matrix) and identity-based authentication which affect the applicability of

the model in arbitrary large enterprises. It is desirable to support unknown users (as opposed to

capabilities and identity-based mechanisms) characterized by certain properties, such as a user’s

location or role.

 15

2.4 Decentralization

The concept of delegation and revocation has been used as a means of decentralization of

administration. Decentralized access control mechanisms were first proposed for System R to permit

users to share and control their data in multi-user databases systems [Griffith and Wade 1976].

System R introduced its grant and revoke commands for decentralized administration. The System R

model was later extended to support negative authorizations and more expressive revocation

algorithms for relational data management systems [Bertino et al. 1999]. Moffet used the concept of

domains to specify administrative domains in distributed systems [Moffett 1990]. Ravichandran and

Yoon propose to use delegation to distribute the workload among several grouped peer-to-peer

communities [Ravichandran and Yoon 2006]. They do not provide a revocation mechanism in their

model. Further, similar mechanisms for RBAC models were proposed [Barka and Sandhu 2000a;

Barka and Sandhu 2000b; L. Zhang et al. 2002; L. Zhang et al. 2003; X. Zhang et al. 2003]. Barka

and Sandhu proposed RBDM (Role-Based Delegation Models) in which the unit of delegation is

“role”. They also discussed temporary delegation as well as grant-dependent and grant-independent

revocations in their work. However, RBDM has not been formalized. L. Zhang et al. proposed

RDM2000 (Role-based Delegation Model), which extended RBDM by providing multilevel

delegations and formal definitions of delegation features. Later, X. Zhang et al. extended RDM and

RBDM models by adding finer-grained delegation to their model, so called PBDM (Permission Based

Delegation Model). The PBDM series do not support constraints in delegation, neither do they

support decentralized applications. Recently, Ahn et al. proposed an access control model based on

RBAC for a collaborative environment [Ahn et al. 2003; Tolone et al. 2005]. Their model exploits the

powerful rule-based mechanism of RDM2000 to define constraints. However, it still lacks the ability

for further delegation.

In all of these models, the delegation and revocation mechanism is centrally controlled. There is no

way of expanding administrative features by individual users and a central security officer (or team)

controls the permission flow. Hence, administration becomes a bottleneck in applications where

potentially all users wish to administer their data.

 16

2.5 Granularity

Access control granularity, in the context of a hierarchically organized database, refers to the extent to

which different levels of access can be defined on objects or parts of objects. Fine-grained access

control manages access authorizations on small pieces of objects. Many proposed models [Graham

and Denning 1972; Harrison et al. 1976; Jones et al. 1976; Lampson et al. 1976] assume access

control at the object level only and ignore any internal structure within objects. However, if objects

entail a hierarchy, the distinction between objects and sub-objects becomes meaningful. Jones

examined an object-level access control model for client-server object databases [Jones 1997]. He

provided a fine-grained access control model, which supports navigating the data structure by inter-

object references. Zhang et al. introduced access control vectors and slabs for fine-grained access

control based on a code-based scheme to represent a more compact structure for control data [Zhang

et al. 2005].

2.6 Miscellany

This section reviews various access control topics, including access control properties, policy

analysis, and comparison of access control models..

To evaluate whether an access control instance conforms to an access control policy, one may

check the mechanism’s properties such as safety, invulnerability, no-information-flow, and non-

interference [Bell and Lapadula 1976; Biba 1977; Focardi and Gorrieri 1997; Goguen and Meseguer

1983; Jaeger and Tidswell 2001]. There are also considerable research works on policy analysis

[Jajodia et al. 1997; Li et al. 2003; Bertino et al. 2001a; Bertino et al. 2001b; Jajodia et al. 2001;

Bertino et al. 2003]. Policies are often analyzed by exploiting logical languages and some ad hoc

rules and/or rule properties. Notably Li et al. propose a formal specification and semantics for policy

analysis in distributed environments.

Comparison of access control models has also interested researchers. Tripunitara and Li propose a

comparison mechanism based on simulation to compare two given access control models [Tripunitara

and Li 2004]. The simulation is based on transition networks of access control models, and if model

A can simulate all states of model B, A is said to be at least as expressive as B. Using this

mechanism, the authors conclude that ARBAC97 [Sandhu et al. 1999] is limited in its expressivity,

and also a trust management language [Chander et al. 2001] is at least as expressive as ARBAC97.

 17

Jaeger et al. introduce an access control space in which authorizations are divided into five

permission sets, namely permissible, specified, obligated, prohibited, and unknown [Jaeger et al.

2003]. The permissible set consists of authorizations that are known and can be assigned to a given

subject S. The specified set consists of those permissible authorizations that have been assigned to a

given subject S. The obligated set consists of authorizations that are required (for example by the

system) to be assigned to a given subject S. The prohibited set consists of those authorizations that

must not be assigned to a given subject S. The unknown set includes those subspaces on which

neither permissible rules nor prohibited rules are defined. The authors believe that understanding

these subspaces and their intersections assist system administrators to better manage policies.

 18

Chapter 3

DEDUCING EFFECTIVE ACCESS CONTROL

An explicit access control matrix is typically large and sparse since, in practice, authorizations are

explicitly defined only for a small proportion of subjects and objects; the rest of the matrix is null.

Yet, since the effective access control matrix is required to be well-defined, which means every cell

must have an effective authorization (no null or conflicting value is allowed), explicit authorizations

are propagated throughout the subject and object hierarchies to obtain the effective authorizations.

Conflicts may occur when authorizations are propagated throughout the hierarchies since a

particular node may be simultaneously authorized by one of its ancestors for some activity and denied

by another ancestor for that same activity. A conflict is also said to occur when the set of ancestors

provides neither permission nor denial for some activity.

This chapter addresses propagation of authorizations and resolution of conflicts. In particular,

Section 3.1 introduces subjects and objects as well as the hierarchies among them. Section 3.2

describes how conflicts may happen on a given hierarchy. Section 3.3 reviews major conflict

resolution policies. Section 3.4 combines the policies to obtain 48 strategy instances. Section 3.5

provides a logical formalism for the combined strategies. Section 3.6 describes a unified parametric

algorithm to support all the instances. Section 3.7 demonstrates the experimental results. Section 3.8

describes the propagation of authorization on hierarchies. Finally, Section 3.9 reviews the literature of

conflict resolution models.

 19

3.1 Subjects and Object Hierarchies

Definition 1 (Access Control Universe). The access control universe U is the collection of all objects

of any type in the system. (Object types are introduced in Section 4.3.) We assume a simple set

language to describe members of the universe. In Figure 1, in Chapter 1, the set All-objects

represents the access control universe. Throughout this thesis, sets are depicted with capital letter

labels, and those members which are objects are depicted with labels composed of lower-case letters.

Definition 2 (Subjects). The set of subjects Public ⊆ U, are the collection of all active objects that are

able to launch access requests. Figure 1, in Chapter 1, depicts the subset as Subjects to represent all

active objects. Throughout this thesis, the subject members are depicted with labels that start with a

capital letter.

Definition 3. (Owner). A set of subjects S ⊆ Public, who are responsible for a given object O∈ U, is

called O’s owner. Deciding who is the owner of an object can be expressed by access control policies,

which are explained in Section 5.1.

Definition 4 (Permission). A permission p is the right to execute a specific method on a given object

o∈U. Note that permissions in ACAD are not limited to a fixed set of rights such as read or write.

Access control can be defined as a mechanism to dictate the permissions that particular sets of

subjects, i.e., users and applications, are given to access particular sets of objects, i.e., data.

Definition 5 (Subject Constraint). A constraint C is an expression that defines the domain of

applicable subjects who may (or may not) be granted a permission p. We assume a simple set

language to denote the applicable subset of Public.

Definition 6 (Access Authorization). An access authorization a is a quadruple <C, mode, p, O>

permitting (or denying) permission p on a non-empty set of objects O ⊆ U to be assigned to any

subset of Public who satisfy constraint C; an authorization mode is either permit or deny, as described

in detail in Section 3.8.

The set of subjects and the set of objects both form hierarchies that can be represented as directed

acyclic graphs. Following convention, outgoing edges from a group in the subject hierarchy lead to all

members of that group (either subgroups or individual users), and outgoing edges from an object in

 20

the object hierarchy lead to all its subobjects. It is important that the hierarchies not be restricted to

form trees.

The subject hierarchy when viewed bottom-up maps group membership: if (S1, S2) is an edge in the

hierarchy, every member of S2 is also a member of S1. Note that an individual subject in our model is

represented as a group with no child vertex. For example, in Figure 3(a), subjects Dorothy and Claude

are individuals, whereas subjects Surgeons-team1, Doctors, Consultants, and Lawyers are groups.

Dorothy is a direct member of Surgeon-team1, Doctors, and Consultants; Claude and Mary are direct

members of Consultants only. Since subject Consultants is a member of subject Lawyers, subjects

Dorothy, Mary, and Claude are members of Lawyers too. In general, a group can have zero or more

subgroups and zero or more individual nodes; and, a member of a group enjoys all authorizations of

that group.

On the other hand, the object hierarchy is a collection of distinct top-down ownership hierarchies

that each maps a has-a relationship between objects. In general, an object can have zero or more

subobjects; and its assigned authorizations are propagated to all of its subobjects. An ownership

hierarchy is a sub-graph of all objects owned by the same subject. Ownership hierarchies may be

connected to one another through cross-references. For example, in Figure 3(b), object encounter

includes two nested objects hospitalization_info and diagnosis_info as well as cross-referring

(depicted by the dotted arrow) object balance that is owned by another subject. Permissions from

higher objects (source vertices) in the object hierarchy are propagated to nested objects (destination

vertices) within the same ownership only. For example, in Figure 3(b), permissions on encounter are

propagated down to hospitalization_info and diagnosis_info but not to balance.

(a) Subject hierarchy maps

the group membership.

 (b) Object hierarchy maps

nested objects.

Figure 3. Example of subject and object hierarchies.

Dorothy

Doctors

Consultants
Surgeons-team1

Lawyers

Claude

Mary

hospitaliza

tion_info

encounter

diagnosis_info

balance

 21

3.2 Conflicts on Hierarchies

Figure 4 illustrates a subject inheritance hierarchy including nine subjects. The arrows represent

group membership (e.g., subjects S4 and S5 are members of subject/group S3) and the sign labels

represent explicit authorizations (+ indicates positive authorization and – represents denial). For

simplicity of exposition, we assume that access to an object is either granted or denied (rather than

separately controlling reading, writing, and other operators), and we illustrate only authorizations for

a single object. The figure shows that subjects S2 and S4 are explicitly labelled to access the object,

whereas subject S5 is explicitly denied from accessing it.

Given the data in Figure 4, assume we are interested in knowing whether or not subject User is

authorized to access the object. One may interpret the data to mean that the object is accessible to

subject User since User is a descendant of S2 and thereby inherits S2’s authorizations. However,

another may argue that the object should not be accessible to User since he is a member of S5 which is

denied access. In fact, there is a conflict in the system. Conflict resolution policies are needed to

answer such questions.

Figure 4. Conflicts on hierarchies.

There exist several conflict resolution policies, such as “denial takes precedence” and “the most

specific takes precedence,” in the literature of access control models. Yet, adopting one simple policy,

such as “the most specific authorization takes precedence,” is not sufficient in practice. For instance,

such a policy is insufficient where the subject hierarchy is more complex than tree-based structures

and therefore, a subject may have more than one “most specific” authorization. For example, in

Figure 4, neither S2 nor S5 is more specific to User, with respect to the other, since both of them are at

S1 S2
+

S3

S4
+

S5
-

S6

User

S7

S8

 22

the minimum distance of 1 from User. Furthermore, there are situations in which the highest authority

(not the most specific one) should be the final arbiter. For instance, assume a student is authorized by

the university athletic office to referee hockey games on campus (which requires more than 20 hours

per week for several weeks); however, he is required by the department not to accept heavy non-

departmental tasks (in order to comply with his full-time registration status). In such a case, the

university administration may override the department by deciding to let him referee. To visualize

such a case, assume there is an edge from S1 to S2 in Figure 4 and S1 is labelled positively.

Representing the student by User, the referees group by S2, the members of the department by S5, and

the university members by S1, it is apparent that for this enterprise the most global authorization

should take precedence in resolving the conflict.

Some have proposed the “negative takes precedence” policy, but this too is not universally

acceptable. For instance, conflicts often are resolved by the “majority takes precedence” rule in

voting systems. Additionally, the open policy recommends a default positive authorization for

subjects which are not explicitly permitted to access a particular object [Harrison et al. 1976;

Lampson 1971]. Therefore, there are applications in which “positive takes precedence”.

Even from these simple examples we see that, in many systems, it is required to combine various

conflict resolution policies to obtain a comprehensive conflict resolution strategy. Moreover, each

policy may encompass several variants, and consequently many strategy instances are possible. If an

access control system is to be deployed in a wide range of enterprise settings, many complete

strategies must be supported. What are all the legitimate strategy instances? Is there a unified

algorithm to support all instances parametrically?

3.3 Conflict Resolution Policies

Definition 7 (Explicit Access Control Matrix). The initial access matrix EACM, which includes

explicit authorizations only is called explicit access control matrix; EACM is represented as a set of

quadruples <subject,object,permission,value>, in which subject∈Public, object∈U,

permission∈Permissions (cf. Definitions 1-3), and value is either 1 or 0 representing an explicit

permission or denial, respectively.

Definition 8 (Effective Matrix). The effective matrix EM is a well-defined three-dimensional Boolean

matrix indexed by Public, U, and Permissions (cf. Definitions 1,2, and 4). The value of EM[i,j,k]for

 23

all i∈Public, j∈U, and k∈Permissions is either 1 or 0 representing an effective permission or denial,

respectively.

Given an explicit matrix, conflict resolution strategies and propagation modes are used to fill in all

derived authorizations to determine the effective matrix. Because the explicit matrix is typically very

sparse, practical systems will store the explicit matrix (perhaps as capability lists [Dennis and Van

1966] or access control lists [Saltzer 1974]) and compute access control authorizations as needed by

executing an authorization propagation and conflict resolution algorithm on an appropriately

extracted subset of that matrix. Conflict resolution is required when propagating authorizations results

in no decision for a particular <subject, object, operation> triple or when both positive and negative

authorizations can be derived for that triple. Commonly used conflict resolution policies are outlined

as follows:

Preference Policy. Preferred authorization (with one of two modes: either positive or negative) is

determined by the system installer at configuration time. This policy determines which authorization

wins when both positive and negative authorizations (or neither negative nor positive authorization)

can be derived for a particular triple. Negative authorization is preferred (known as closed policy) in

more restricted systems such as the military; positive authorization may be preferred in more open

applications such as public information systems.

Locality Policy. The common mode of this distance-based policy states that the most specific

authorization takes precedence. It applies to distributed organizations whose local branches may

recognize an exception to a general rule. For instance, a department in a university may admit an

outstanding applicant although the general admission requirement is not completely met. Thus, for a

given subject, when both positive and negative authorizations can be derived from different ancestors,

the one that is closer to the subject wins. Note that the distance between two nodes (subjects) in a

directed acyclic graph is measured by computing the shortest directed path. The locality policy is not

deterministic since no authorization wins when the distances are equal.

As an alternative for the locality policy, some enterprises might choose “globalization,” where the

most general authorization takes precedence. One application of this policy is in distributed

organizations whose headquarters makes the final decision on a pre-approved task by a local office.

Similarly, a supreme court may override an appealed decision. For a given subject, when both

 24

positive and negative authorizations can be derived from different ancestors, the one that is farther

from the subject wins. Similar to the usual locality policy, the distance between two nodes is

measured by computing the shortest path, and again this mode of locality is not deterministic since no

authorization may win.

Majority Policy. This policy states that the conflict can be resolved based on votes, and the

authorization that has the majority wins. The application of this policy is in situations where several

parties have different opinions for giving or not giving the authorization to a particular member and

the decision is made by votes. For instance, GATT’s current members vote to determine if a new

applicant can get into the group. By applying this policy, the dominant authorization takes

precedence. This policy is also non-deterministic since it can result in a tie.

Default Policy. This policy is applied only to root subjects or objects for which no authorization

has been defined. Closed systems, such as in the military, require negative authorization by default;

however, open systems, such as public information applications, initially allow any subject to enjoy a

positive authorization. There are applications in which the default policy is not appropriate; for

instance, one may wish to give priority to the explicit authorization. This policy is deterministic and

has three modes (default positive, default negative, or ignore), but applies to root subjects only.

Note that for non-root nodes, only the preference policy is deterministic.

3.4 Combined Strategies

Figure 5 illustrates five conflict resolution strategies based on combining, in different orders, the

popular conflict resolution policies summarized above [Chinaei and Zhang 2006]. They are given the

mnemonics DLP, DLMP, DP, DMLP, and DMP, in which D, L, M, and P indicate Default, Locality,

Majority, and Preference policies, respectively. Two properties are guaranteed: first, none of the

policies are redundant, and second, there is no conflict after applying the last step. Note that in this

framework the Preference policy is always the last applicable policy, and the other three policies,

Default, Locality and Majority, are optional. Moreover, the Default policy, if applicable, is the first

policy since otherwise it is meaningless. Note that no other combined strategy can be meaningfully

composed from these basic conflict resolution policies. For example, the preference policy cannot be

optional and must be considered last, since it is the only policy that is well-defined on every node.

 25

Figure 5. Combined conflict resolution strategies.

Because the default policy can take three modes and the locality and preference policies can take

two modes each, there are 48 different strategy instances in total that can be derived from Figure 5

[Chinaei et al. 2007]. (Paths ending with a, b, and d generate twelve instances each, and paths ending

with c and e generate six instances each.) Examples of strategy instances are D
+
LP

-
 (which means,

first, apply the positive authorization as default, then apply the locality policy, and finally apply the

negative takes precedence if some conflict still exist), D
-
GP

-
 (which means, first, apply the negative

authorization as default, then apply the globalization mode of locality, and finally apply the negative

takes precedence if some conflict still exist), LP
+
 (which means, first, apply the locality policy, and

then apply the negative takes precedence), etc. Moreover, the propagation mode can be either pass

through, block by, or override, in which propagating authorization may pass through the explicit

authorization, be blocked by it, or override it, respectively. For instance, assume Figure 4 does not

include the edge S2�User; therefore, to calculate permission for User, either S
+

2 can override S
-
5, or

S
-
5 can block S

+
2, or S

+
2 can pass through (but not override) S

-
5. Note that block by and override prioritize

permissions along a single path, whereas locality and globalization prioritize permissions even in

different paths.

3.5 Logical Formalism

This section provides guidelines for logically implementing the strategy instances explained in the

previous section. Like the Authorization Specification Language [Jajodia et al. 2001], policies in

ACAD are represented by logic programming rules. The ACAD model introduces four reserved

Propagation mode: {pass through, block by, override}

Default

Locality

Majority

Preference

Majority a
b

c

d

e Locality

 26

predicates named allow, disallow, permit, and deny. Whereas predicates allow and disallow are used

to define the effective access control matrix as defined in Section 1.2 (allow representing

EM[s,m,o]=1 and disallow representing EM[s,m,o]=0), predicates permit and deny are used to define

an explicit access control matrix and to constrain the propagation of permissions.

Examples:

(a) Explicit permission is given to doctor Dana to read Patricia’s encounter and its sub-elements:

permit(Dana, methodRead, patricia_encounter)

(b) Robert cannot change consent form x:

deny (Robert, methodChange, x)

 (c) Effective permission is granted to patient Patricia to read her personal information:

allow(Patricia, methodRead, patricia_personal_info)

(d) Effective permission is denied to patient Patricia to delete her medical record:

disallow(Patricia, methodDelete, patricia_medical_record)

3.5.1 Propagation Policies

To determine the values of all cells in the effective matrix, authorizations should be propagated

within both hierarchies of subjects and objects in order to transform the explicit access control matrix

to the corresponding effective matrix. This section selects a few strategy instances, introduced in

Section 3.4, and provides the corresponding logical rules to transform an explicit access control

matrix to an effective one. First, we propagate all authorizations from the explicit access control

matrix to an intermediate matrix which consists of two predicates maybe() and maybeNot(),

regardless of the conflict resolution strategy is. These predicates have five variables, namely, S, M, O,

D, and P, which represent the subject, authorization, object, the corresponding distance (which is later

used for the locality rule), and set of propagation paths, respectively.

Assume the propagation mode is “pass through”. The following rule,

maybe(S,M,O,0,P)  permit(S, M,O), P={S}. (1)

 27

means that if there is an explicit authorization in the explicit access control matrix stating that subject

S is permitted to execute method M on object O, a corresponding tuple is inserted into the

intermediate matrix stating that the corresponding distance for the authorization is 0. Set P represents

the propagation paths, which is represented by string S in this case. Moreover, the following rule,

maybe(S,M,O,D,P)  maybe(X, M,O, D’,P’), child(S,X),

D=D’+1, P=P’ || X. (2)

means that if subject S is a member of group X that is granted access to O from distance D’ and set of

paths P’, all possible permissions of X are propagated to S with distance D’+1 and path P. (We use the

notation P’ || X to mean that string X is concatenated to all paths in set P’.) Similarly, the following

rule

maybe(S,M,O,D,P)  maybe(S, M,X, D’, P’), child(O,X),

D=D’+1, P=P’ || X. (3)

means that if subject S is granted access to object X from distance D’ and set of paths P’, its

permission is extended with distance D’+1 to all sub-elements of X and path P.

If the propagation mode is “block by”, rules (2) and (3) are replaced by the following rules:

maybe(S,M,O,D,P)  maybe(X, M,O, D’,P’), child(S,X), ¬ deny(S, M, O),

D=D’+1, P=P’ || X. (4)

and

maybe(S,M,O,D,P)  maybe(S, M,X, D’,P’), child(O,X), ¬ deny(S, M, O),

D=D’+1, P=P’ || X. (5)

respectively.

Similar to rules 1-3, when the propagation mode is pass through, the following three rules,

maybeNot(S,M,O,0,P)  deny(S, M,O), P={S}. (6)

maybeNot(S,M,O,D,P)  maybeNot(X, M,O, D’,P’), child(S,X),

D=D’+1, P=P’ || X. (7)

 28

maybeNot(S,M,O,D,P)  maybeNot(S, M,X, D’,P’), child(O,X),

D=D’+1, P=P’ || X. (8)

propagate all negative authorizations within both hierarchies of subjects and objects and insert them

into the intermediate matrix.

Now, recall that the effective matrix is constructed using predicates allow and disallow. The

following rules

disallow(S, M,O)  maybeNot(S,M,O,_,_), ¬ maybe(S,M,O,_,_). (9)

allow(S,M,O)  ¬ disallow(S,M,O). (10)

corresponds to the P
+
 strategy instance, where _ indicates a don’t-care term..

Now, consider the D
-
P

+
 strategy instance, which means the default and preferred authorizations are

negative and positive, respectively. The following rules together with rules (1) to (3) and (6) to (7)

represent this policy:

allow(S, M, O)  maybe(S, M, O, _,_). (11)

disallow(S, M, O)  ¬ allow(S, M, O). (12)

These rules state that as long as there is a corresponding positive authorization in the intermediate

matrix, S is effectively allowed to execute M on O; and, once all positive authorizations are

propagated and transformed, all non-filled cells of the effective access matrix are treated as denial of

permission.

To state the locality policy, we define two temporary predicates negativeCloser() and

positiveCloser(), each of which has four variables, namely, S, M, O, and D, which represent the

subject, authorization, object, and the corresponding distance, respectively; furthermore, we define

two similar predicates negativeFurther() and positiveFurther() to state the globality rule:

negativeCloser(S,M,O,c)  maybeNot(S,M,O,j,_), j<c. (13)

positiveCloser(S,M,O,c)  maybe(S,M,O,j,_), j<c. (14)

negativeFurther(S,M,O,c)  maybeNot(S,M,O,j,_), j>c. (15)

positiveFurther(S,M,O,c)  maybe(S,M,O,j,_), j>c. (16)

 29

Now consider D
-
LP

-
in which negative default, locality, and negative preference are indicated. If

the propagation mode is again pass through, this can be represented by rules (1) to (3), (6) to (8), (12),

(13), and the following rule,

allow(S,M,O)  maybe(S,M,O,i,_), ¬ negativeCloser(S,M,O,i). (17)

To state the strategies in which the majority rule is in place, we define two other temporary

predicates negativeBigger() and positiveBigger(). These predicates again have four variables, namely,

S, M, O, and C, which represent the subject, authorization, object, and a counter, respectively:

negativeBigger(S,M,O,c)  maybeNot(S,M,O,_,P), |P|>c. (18)

positiveBigger(S,M,O,c)  maybe(S,M,O,_,P), |P|>c. (19)

maybe(S,M,O,D,P)  maybe(S,M,O,D,P1),

maybe(S,M,O,D’,P2), P = P1 U P2. (20)

maybeNot(S,M,O,D,P)  maybeNot(S,M,O,D,P1),

maybeNot(S,M,O,D’,P2), P = P1 U P2. (21)

Each of rules (20) and (21) combines multiple paths into a single set, for positive and negative

authorizations, respectively; the sets’ cardinality determine majority.

For instance, to represent the D
-
MP

-
 strategy instance, rules (1) to (3), (6) to (8), (12), and (18) to

(21), as well as the following rule are applied:

allow(S,M,O)  positiveBigger(S,M,O,c), ¬ negativeBigger(S,M,O,c). (22)

 Finally, to keep the priority among majority and locality rules, we define another temporary

predicate willAllow() which has three variables namely, S, M, and O, which represent the subject,

authorization, and object, respectively. To represent the sophisticated strategy instance of D
+
MLP

-
,

one can apply rules (1) to (3), (6) to (8), (12), (14), and (18) to (21), as well as the following rules:

disallow(S,M,O)  negativeBigger(S,M,O,i),

¬ positiveBigger(S,M,O,i). (23)

willAllow(S,M,O)  positiveBigger(S,M,O,i),

¬ negativeBigger(S,M,O,i). (24)

 30

disallow(S,M,O)  maybeNot(S,M,O,i,_),

¬ positiveCloser(S,M,O,i), ¬ willAllow(S,M,O). (25)

whereas, to represent D
+
LMP

-
, rules (23) to (25) should be replaced by the following rules:

disallow(S,M,O)  maybeNot(S,M,O,i,_), ¬ positiveCloser(S,M,O,i). (26)

willAllow(S,M,O)  maybe(S,M,O,i,_), ¬ negativeCloser(S,M,O,i). (27)

disallow(S,M,O)  negativeBigger(S,M,O,i),

¬ positiveBigger(S,M,O,i), ¬ willAllow(S,M,O). (28)

One can formalize other strategy instances similarly.

3.5.2 Propagation Policies Alternatives

Propagation policies explained in Section 3.5.1 can be substituted with alternatives if required by the

enterprise. For example,

(a) Assume an enterprise does not wish to propagate authorizations through the object hierarchy,

therefore only rules (1), (2), (6), and (7) are applied. (Rules (3) and (8) do not apply here.)

(b) If the enterprise also does not require the permission propagation through the subject

hierarchy, rules (2) and (7) should be removed as well.

(c) If the enterprise requires an open policy in which authorizations are allowed unless otherwise

explicitly denied, the following rules are applied:

allow(S,M,O) ¬ deny (S,M,O,_,_).

disallow(S, M, O)  ¬ allow(S, M, O).

3.5.3 Policy Soundness

Sections 3.5.1 and 3.5.2 introduced the guidelines for logical implementation of conflict resolution

strategies depicted in Figure 5. Notice that, rules (1) to (3) and (6) to (7) demonstrate the propagation

phase when the mode is “pass through”, rules (4) and (5) illustrate how propagation rules can be

enhanced to support other propagation modes, rules (10) and (12) guarantee the effective matrix is

well-defined, and the rest of the rules provide guidelines for implementing various conflict resolution

strategies introduced by Figure 5. In particular, rules (13) to (16) are applicable when the locality

 31

policies are in place; for instance, as shown in Section 3.5.1, rule (13) is applicable to D
-
LP

-
.

Similarly, rules (18) and (19) are applicable when the majority policy is in place. Finally, rules (24)

and (27) demonstrate how to handle the priority when both majority and locality policies are in place.

By design, these rules are stratified which means none of the intensional predicates are in a

negative recursive definition [Garcia-Molina et al. 2002]. Figure 6 illustrates the graph of intensional

predicates applicable to strategy instance D
+
LMP

-
, one of the most sophisticated possible instances.

This instance requires rules (1) to (3), (6) to (8), (12), (13), (18) to (21), and (26) to (28). Since there

is not a cycle with a negative labelled arc in the graph, the set of rules are safe. In fact, the only

restriction in the formalism is that rules (10) and (12) cannot be applied simultaneously. Moreover,

since the default and preference policies are deterministic, our policy reasoning is sound, which

means first it will eventually terminate and also be effective: if at least one of the rules (10) and (12)

(and not both) is used, the effective matrix is well-defined.

Figure 6. Graph of intensional predicates in D
+
LMP

-
.

Notice that these propagation and conflict resolution rules are independent of the rest of the access

control model (in particular of the creation time policies specified in Chapter 5); these same rules

define the corresponding effective matrix for any given explicit access control matrix following the

particular conflict-resolution policy defined. Furthermore, if the effective matrix is not materialized

maybeNot maybe

negBigger posBigger posCloser

willAllow

disallow allow -

-
-

-

12

14 18 19

28 28

26

26

28

negCloser

-

27

27

13

2,3, 21 7,8, 20

 32

(that is, it is interpreted as a view over the explicit access control matrix), its content automatically

reflects any changes made to the explicit access control matrix.

3.6 Unified Algorithm

This section describes an algorithm that propagates explicit authorizations through the subject and

object hierarchies, and resolves the possible conflicts based on any of the 48 strategy instances

illustrated in Section 3.4. To determine whether a given object, oj, is effectively accessible to a given

subject, Si, with respect to a given right, rk, the idea is to apply the following four-step procedure:

Step 1: Consider the maximal sub-graph (called H1) of the subject hierarchy in which Si is the sole

sink and all other nodes are its ancestors. Similarly, consider the maximal sub-graph (called H2) of the

object hierarchy in which Oj is the sole sink and all other nodes are its ancestors.

Step 2: Assign a letter “d” to all root subjects in H1 that are unlabeled with respect to right rk and

ancestors of oj. Similarly, assign a letter “d” to all root objects in H2 that are unlabeled with respect to

right rk and ancestors of Si.

Figure 7 illustrates the result of Steps 1 and 2 for subject User, object obj, and right read, illustrated

in Figure 4 as the example of conflicts on hierarchies.

Figure 7. Sub-graph of subject User.

Step 3: Propagate all authorization labels down every path to subject User and store the distance of

each propagated authorization from its source node to its destination node (User). For instance, the

distance of label - (on S5) to node User is 1; also, there are two distances for label “d” (on S6) to node

User: one (with value 1) directly from S6 to User, and one (with value 2) via S5.

S1 S2
+

S5
-

User

S6
d

S3

 33

Table 1 illustrates the result of authorization propagation in the “pass through” mode for subject

User, object obj, and right read as represented by Figure 7.

Step 4: Apply a particular conflict resolution strategy to resolve any conflicts and derive a final

effective authorization for the triple <Si, oj, rk>.

Table 2 illustrates the result of applying each of the 48 strategy instances (explained in Section 3.4)

to Table 1.

Table 1. All read authorizations of User on obj.

subject object right dis mode

User obj read 1 -

User obj read 1 d

User obj read 2 d

User obj read 1 +

User obj read 3 +

User obj read 3 d

For example, D
+
LMP

+
 is the strategy instance in which first the default policy is applied and every

root subject which is null is initialized to +; then, if there is a conflict, the Locality policy (“the most

specific authorization takes precedence”) is applied; then if there is still a conflict, the Majority policy

is applied; and finally, if the conflict is not resolved, the preference policy in which the positive (+)

authorization takes precedence is applied. Let’s see what the result of this strategy instance is on

Table 1: by applying the default policy D
+
,

all mode d’s are replaced by +; by applying the locality

policy, the conflict is not resolved since there are conflicting modes + and - from the shortest distance

1; however, by applying the majority rule, mode + wins over mode - since there are more + entries

than - entries. Note that the preference policy is not applicable to this case since the conflict is

resolved before this rule is triggered; however in other hierarchies the conflict may not yet have been

resolved.

 34

Table 2. Resolved authorization for each combined strategy.

strategy mode strategy mode strategy mode strategy mode

D+LMP+ + D+LP+ + LMP+ + D+MLP+ +

D+LMP- + D+LP- - LMP- - D+MLP- +

D-LMP+ - D-LP+ + GMP+ + D-MLP+ -

D-LMP- - D-LP- - GMP- + D-MLP- -

D+GMP+ + D+GP+ + MP+ + D+MGP+ +

D+GMP- + D+GP- + MP- + D+MGP- +

D-GMP+ + D-GP+ + LP+ + D-MGP+ -

D-GMP- - D-GP- - LP- - D-MGP- -

D+MP+ + D+P+ + GP+ + MLP+ +

D+MP- + D+P- - GP- + MLP- +

D-MP+ - D-P+ + P+ + MGP+ +

D-MP- - D-P- - P- - MGP- +

For each strategy instance in Table 2, we use a bold font to show which policy has determined the

effective authorization when applied to our example. For example, in the last strategy instance, MGP
-
,

by applying the first policy (Majority), the positive authorization wins since there are two +’s (rows 4

and 5) as opposed to only one - (row 1) in Table 1. Therefore, the localization and preference policies

of the MGP
-
 instance are not applicable to this case.

3.6.1 Algorithm Resolve()

This section defines our conflict resolution algorithm. Figure 8 illustrates Algorithm Resolve() which

computes the derived authorization mode of a given subject with respect to a given object and right.

The algorithm parameters are s, o, r, dRule, lRule, mRule, and pRule; and the result is either + or -.

Parameters s, o, and r designate a particular subject, object, and right, respectively, on which the

caller is interested to know whether or not the object is accessible to the subject with respect to the

specified right. Parameters dRule, lRule, mRule, and pRule determine the conflict resolution strategy,

based on which the final right of the subject on the object must be derived. In particular, parameter

dRule represents the default authorization policy and takes either of the three values “+”, “-“, or “0”,

 35

which respectively states that the unlabelled root ancestors of the subject and object are to be

initialized to positive authorization, negative authorization, or remain null (no default authorization

policy). Parameter lRule represents the locality policy; its value is either min(), max(), or identity(),

which represent “the most specific authorization takes precedence, ” “the most general authorization

takes precedence, ” or “no locality policy” modes, respectively. Parameter mRule takes three values

before, after, or skip, which determines whether the majority policy is applied before the locality

policy, after it, or not at all, respectively. Finally, parameter pRule represents the preference policy

and determines whether positive or negative authorization is preferred in the case of remaining

conflicts. (We assume that the subject and objects hierarchies (SDAG and ODAG) and the explicit

access control matrix (EACM) are globally defined in the algorithm.)

In Line 1, relation allRights is created by calling Function Propagate(). The details of this function

are explained in the next section, but the effect is to apply the first three steps of the procedure

described in the introduction to Section 3.6.

Line 2 checks whether the caller is interested in applying the default policy (dRule = “+” or “-“) or

not (dRule = “0”). In the latter case, only those rows of relation allRights are considered in which

mode <> “d” (see Line 3). In the former case (Line 4), those rows of relation allRights in which

mode=“d” are updated with the value of dRule (“+” if positive authorization is to be the default

policy, “-” otherwise).

In Line 5, if the majority policy should be applied before the locality policy, we count the number

of positive authorizations (Line 6) and negative authorizations (Line 7) that exist in relation allRights;

however, as stated in Line 8, if the majority policy should be applied after the locality policy, we first

apply the locality on relation allRights, and then count the number of positive (Line 9) and negative

authorizations (Line 10). In either of these cases (Line 11), the algorithm returns the authorization

which is in majority (Lines 12 and 13).

If neither positive nor negative labels is in the majority or the majority policy is not designated at

all, we apply the locality policy to relation allRights to select its relevant rows (Line 14); if lRule =

min(), only rows in which the value of column dis is equal to the minimum distance (the most specific

authorizations) are selected; similarly, if lRule = max(), only rows in which the value of column dis is

equal to the maximum distance (the most general authorizations) are selected; however, if

lRule=identity(), all rows are selected (this is equivalent to no locality policy being designated).

 36

Figure 8. Algorithm Resolve().

Algorithm I: Resolve(s, o, r, pMode, dRule, lRule, mRule, pRule)

¤ To compute the effective accessibility of subject s on object o w.r.t. right r

¤ Propagation mode pMode ∈ {“pass through”, “block by”, “override”}

¤ Default rule dRule ∈ {“+”, “-”, “0”}

¤ Locality rule lRule ∈ {max(), min(), identity()}

¤ Majority rule mRule ∈ {“before”, “after”, “skip”}

¤ Preferred rule pRule ∈ {“+”, “-”}

¤ The subject and object hierarchies (SDAG and ODAG), and the explicit access control

matrix (EACM) are globally defined.

Output: either “+” or “-”

1. allRights ← Propagate (s, o, r, pMode, SDAG, ODAG, EACM);

2. if dRule = “0”

3. allRights ← allRights
mode "d"<>

σ

4. else update allRights set mode=dRule

where mode=“d”;

5. if mRule = “before”

6. c1 ← 





Π

+=
allRights

modecount ""()
σ ;

7. c2 ← 





Π

−=
allRights

modecount ""()
σ ;

8. if mRule = “after”

9. c1 ←
















Π

=
+=

allRights

dislRuledis
modecount

)(
,""()

σ ;

10. c2 ←
















Π

=
−=

allRights

dislRuledis
modecount

)(
,""()

σ ;

11. if mRule <> “skip”

12. if c1 > c2 return “+”;

13. if c2 > c1 return “-”;

14. Auth ← 







Π

=
allRights

dislRuledismode)(
σ ;

15. if count(distinct Auth) = 1

16. return Auth;

17. return pRule;

 37

Next, the values of column mode of corresponding rows are projected to form a set called Auth,

which may be empty or contain positive and negative authorizations. If only one type of authorization

is present (Line 15), it is returned (Line 16); otherwise, the preferred authorization (pRule) is returned

and the algorithm ends.

Table 3. Trace of Resolve().

Strategy c1 c2 Auth mode Line

D
+
LMP

+
 2 1 n/a + 6

D
-
GMP

-
 1 1 +,- - 9

D
-
MP

-
 2 4 n/a - 6

D
-
LP

+
 n/a n/a -,+ + 9

D
+
GP

-
 n/a n/a + + 8

GMP
-
 1 0 n/a + 6

P
-
 n/a n/a -,+ - 9

MGP
-
 1 0 n/a + 6

Table 3 illustrates the result of Algorithm Resolve() applied to our motivating example for several

illustrative strategies. In particular, we trace the algorithm for eight strategy instances (selected from

Table 2) namely D
+
LMP

+
, D

-
GMP

-
, D

-
MP

-
, D

-
LP

+
, D

+
GP

-
, GMP

-
, P

-
, and MGP

-
. Table 3 shows

values of c1, c2, Auth, and the effective mode derived by the algorithm, as well as its corresponding

return line number. In the table, n/a means that the algorithm does not use the corresponding variable

for the conflict resolution.

For instance, if one chooses the strategy instance D
-
GMP

-
, all default values of relation allRights

are replaced with “-” (Line 3). Since the global mode of the locality policy is in place and there are

one positive and one negative authorization from distance 3 in Table 1, both c1 and c2’s values are

assigned the value 1 (Lines 5). Then, since neither positive nor negative is in majority, the algorithm

continues to Line 7, and Auth is assigned the value {+,-}. Finally, since there is a conflict in Auth,

Line 9 of the algorithm returns the value of preference policy, which is “-” (indicated by P
-
 in the

strategy instance), as the final derived decision with respect to triple <User, obj, read>.

 38

As another example, if one chooses strategy instance MGP
-
, in Line 2, only those rows of relation

allRights in which the mode is not “d” are selected. Then, since the globalization policy is in place

and there is one explicit positive authorization from distance 3 in relation allRights, the value of c1 is

set to 1 and the value of c2 is set to 0 in Lines 4. Finally, the algorithm returns “+” from Line 6 as the

final derived decision with respect to triple <User, obj, read>.

3.6.2 Function Propagate()

In this section, we explain the details of Function Propagate(), which returns all corresponding

authorizations of a given subject, object, and authorization, shown as <s, o, r> when called from Line

1 in Algorithm Resolve(). The idea is to extract the part of the subject hierarchy in which s is the only

sink and the part of the object hierarchy in which o is the only sink. (Note that, to avoid possible

ambiguities, propagation modes are applied to the subject hierarchy only, and in the object hierarchy

pass through is always applied.) Then, using top-down breadth-first propagation, all authorizations

from root nodes are propagated towards s. If a root node has no authorization assigned in the explicit

matrix, a letter “d” is assigned to it to represent the default authorization. Moreover, the distance of

each authorization to s is computed, so that it can be exploited by Algorithm Resolve() if the locality

policy is applied. Note that authorizations are propagated from all paths starting from the source node

and ending at the destination.

Figure 9 illustrates Function Propagate(), which inputs parameters s, o, and r (representing the

subject, object, and authorization on which the conflict should be resolved), as well as pMode

(representing the propagation mode); also, the function inputs SDAG, ODAG, and EACM, which

represent the subject and object hierarchies as well as the explicit access control matrix, respectively.

In Line 1, we extract from SDAG the maximal connected sub-hierarchy SDAG’, in which s is the

sole sink. Similarly, the maximal connected sub-hierarchy ODAG’, in which o is the sole sink, is

extracted.

In Line 2, we create a relation P, which consists of five columns namely, subject, object, right, dis,

and mode. Values for columns subject, object, right, and mode are taken from the corresponding ones

in relation EACM (as explained in Section 3.3). Column dis represents the distance of the explicit

authorization from the subject. Thus, the dis value for explicit authorizations is 0, for an authorization

inherited from a parent is 1, and for an authorization inherited from a grandparent is 2.

 39

Figure 9. Function Propagate().

Function Propagate (s, o, r, pMode, SDAG, ODAG, EACM);

¤ To obtain all authorizations, with respect to triple <s, o, r> by propagating explicit

authorizations in EACM through subject and object hierarchies (SDAG and ODAG)

¤ EACM has attributes <subject, object, right, mode>

¤ SDAG has attributes <subject, child> , ODAG has attributes <object, child>

¤ ancestors(s) = {s} ∪ {x|∃y <y,s>∈SDAG ∧ x∈ancestors(y)}

¤ ancestors(o) = {o} ∪ {x|∃y <y,o>∈ODAG ∧ x∈ancestors(y)}

Output: table allRights

1. SDAG′ ←

)(
),(

sancestorschild
sancestorssubject

∈
∈

σ SDAG; ODAG′ ←

)(
),(

oancestorschild
oancestorsobject

∈
∈

σ ODAG;

2. P ←

,modeoobjecthright,dept
subject,o

),(
,

Π (SDAG′

)(
,

oancestorobject
rright

∈
=

σ EACM);

3. RootSubjects ←
subject

Π SDAG′ -
child
Π SDAG′ -

subject
Π P;

4. RootObjects ←
object

Π ODAG′ -
child
Π ODAG′ -

object
Π P;

5. P ← P ∪ RootSubjects × {<o, r, 0, “d”>};

6. P ← P ∪

modeoobjectdepthright
objectsubject

),,(,
,,

Π s × RootObjects × {< r, “d”>};

7. P′ ←
ssubject≠

σ P;

 repeat

8. P′ ←

modei
right

objectchild

,1
,

,,

+

Π P′ SDAG′;

9. P’’ ← P
0P.iP'.mode,modePrightPrightP

objectPobjectPsubjectPsubjectP

=<>=

==

.,'..

'..,'.. P′;

10. If pMode= “block by” then P′ ← P’ -

modePiP
rightPobjectPsubjectP

'.,'.
.,.,.

Π P’’;

11. If pMode= “override” then P ← P-

modePiP
rightPobjectPsubjectP

.,.
.,.,.

Π P’’;

12. P ← P ∪ P′ ;

13. P′ ←
ssubject≠

σ P′;

14. until P′ = ∅ ;

15. return
ssubject=

σ P;

 40

Before completing the Function Propagate(), relation P will record all relevant authorizations

propagated from all subjects and objects in the sub-graphs to all other nodes.

In Line 3, we store all unlabelled root subjects of SDAG’ into a relation called RootSubjects. For

instance, RootSubjects contains {S1, S6} if applied to our motivating example. Similarly, in Line 4, we

store all unlabelled root objects of ODAG’ into a relation called RootObjects.

In Line 5, for each root subject with no explicit authorization with respect to r and ancestors of o,

we insert an additional row into relation P to assign it the default authorization with distance 0.

Similarly, in Line 6, for each root object with no explicit authorization with respect to r and ancestors

of s, we insert an additional row into relation P to assign s the default authorization with appropriate

distance (which is the distance of the root object from the object). In Line 7, we select as P′ all

identified authorizations other than those on the sink node s.

In Lines 8 to 15, we iteratively propagate all of the newly identified authorizations to all of the

children of the corresponding nodes, stopping when no more nodes exist in P′. This involves copying

the authorizations from each node to its children (with the increased distance) (Line 8), blocking or

overriding the rows based on the propagation mode (Line 9 to 11), inserting the new authorizations

into P (Line 12), and re-determining which authorizations still need to be propagated further (Line

13). Finally, Line 15 selects and returns authorizations that correspond to subject s.

3.6.3 Computational Analysis

The performance of the Resolve() algorithm depends on the structure of the subject hierarchy, on the

placement of the explicit authorizations in the explicit access control matrix, and on the choice of

subject, object, and right. We will examine the performance in practice in the next section, but here

we summarize its asymptotic behaviour in the worst case.

Consider first the structure of the subject hierarchy as represented by SDAG. Let r be the number of

roots of the graph and let n be the total number of subjects in the hierarchy. We assume that at most

one authorization is explicitly given for every subject-object-right triple; duplicates are meaningless

and contradicting authorizations can be assumed to be disallowed. Thus, when selected subjects from

SDAG are matched with explicit authorizations for a given object and right (Line 2 of Function

Propagate()), at most one explicit authorization is joined to each subject in the subject hierarchy. Let

 41

p be the number of paths to the given subject of interest s from subjects assigned explicit

authorizations for the given object-right pair. Finally, let d be the sum of the path lengths for all paths

leading from a root or an explicitly authorized subject to s.

Algorithm Resolve() first calls Function Propagate(). Lines 1 through 7 take time O(n) to select a

subset of the subjects, attach the explicit authorizations, and set the defaults in the remaining roots.

Each authorization (default or explicit) is then pushed down each path to the node representing the

given subject. The loop from Lines 8 though 14 of Function Propagate() thus require O(d) time in

total. Finally relation P contains all these propagated authorizations, but only those associated with

the given subject s are returned; this returned relation includes exactly one tuple for each explicit

authorization and at most one tuple for each root. In summary, Function Propagate() takes time

O(n+d) and returns a structure of size O(p).

The remainder of Algorithm Resolve() repeatedly examines subsets of the relation allRights, and

thus each line requires time at most O(p). Thus the total time for executing Algorithm Resolve() is

O(p+n+d). Unfortunately, since the number of paths in a directed acyclic graph can grow

exponentially in the number of nodes in the graph, d is O(n2
n
) in the worst case (p is O(2

n
)). We shall

see that in practice, however, the algorithm is typically much better behaved, as the authorization rate

is often significantly low and also data hierarchies seldom contain the repeated diamond patterns that

cause the number of paths to explode.

3.7 Experiments

We tested our algorithm first on synthetic data. We constructed several random complete directed

acyclic graphs. In particular, KDAG(n) includes n nodes, one of which is a root and one of which is a

sink, and 




 n

2
 edges (i.e., an edge between every pair of nodes), directed in such a way as to prevent

cycles. Thus such graphs contain many more edges and paths than would be expected in typical

applications, and constitute good stress tests for our algorithm.

We executed our algorithm on random KDAGs of three different sizes. For each graph, we

assigned explicit authorizations to subjects at random, choosing subjects proportionally to the number

of members. In particular, 0.5% to 10.0% of the graph’s edges were selected at random and their

source nodes were assigned explicit authorizations. We ran our experiments on a Sun UltraSPARC-II

 42

with a 450 MHz processor and 2048 Megabytes of RAM. The program is in C and SQL and was

complied by gcc version 3.3.4 and DB2 version 7. We then measured the CPU time for computing

the result of the Function Propagate() (that being the dominant part of the algorithm) for each of the

resulting SDAG-EACM pairs, and averaged over 20 random repetitions with the same parameters.

Our experiments show that for small authorization rates (which often occur in practical cases), the

running time is linearly proportional to the authorization rates (see Figure 10).

We also evaluated our algorithm on the subject hierarchy extracted from an installation of Livelink,

Open Text’s enterprise content management system1. In Livelink, groups can be arbitrarily structured

and nested to arbitrary depth. In the environment we tested, the subject hierarchy has over 8000 nodes

and 22,000 edges. There are 1582 sinks (individual users), each of which represents a real-world

sample for our experiments. The depths of the induced sub-graphs range from 1 to 11.

We measured the time of our algorithm for each of the sinks in the Livelink subject hierarchy,

using an authorization rate of 0.7% of the edges as above. The results are presented in Figure 11,

plotting the CPU time as a function of d, the sum of the lengths of all paths from explicit and default

authorizations to the selected sink.

Figure 11 also compares the execution time of the Resolve() algorithm to that of the Dominance()

algorithm, presented in Chinaei and Zhang’s work [2]. The latter algorithm was designed to evaluate

the D
-
LP

-
strategy as efficiently as possible under the assumption that there are relatively few explicit

positive and negative authorizations (i.e., that the authorization rate is low). Thus the comparison

sheds some light on the overhead imposed by adopting a unified conflict resolution algorithm. It is

important to note that the propagation of Dominance() algorithm is dependent on the placement of

negative authorizations whereas the Resolve() algorithm is not. To account for this, we calculated the

average of three trials for each data point for the Dominance() algorithm: one where 1% of the

explicit authorizations are negative, one where half of them are negative, and one where all explicit

authorizations are negative.

The Dominance() algorithm is occasionally very fast due to visiting an early negative authorization

in the hierarchy, but it is not as efficient as Resolve() for objects that have few negative

authorizations. Figure 11 shows that the run time for the Dominance() algorithm can fall anywhere

1 http://www.opentext.com/

 43

below the time for the Resolve() algorithm, and occasionally it can be higher. On average, over all

graph sizes and shapes in these experiments, Resolve() required 1260 ms to compute whether or not a

leaf subject was authorized to access an object, whereas the Dominance() average is 920 ms. Thus the

flexibility to compute the value for any strategy comes at a cost of 27% overhead.

0

100

200

300

400

500

600

700

0.5% 1.5% 2.5% 3.5% 4.5% 5.5% 6.5% 7.5% 8.5% 9.5%

authorization rate

tim e (m s)

KDAG(15)

KDAG(10

)

KDAG(20)

Figure 10. Function Propagate() on synthetic data examples.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50 3650 7250 10850 14450 18050 21650 25250

total paths length

tim e (m s)

Dominance for DLP

Resolve Algorithm

Figure 11. Algorithms Resolve() and Dominance() on Livelink data.

 44

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

num ber of nodes

tim e (m s)

Figure 12. Total paths lengths vs. number of nodes in LiveLink data.

Finally, Figure 12 restates the behaviour of Algorithm Resolve() against the number of nodes in the

sub-graph rather than the total length of all paths in the sub-graph. The results show that graphs with

very many subjects do not necessarily require much more time to resolve than do small graphs. From

this data we conclude that it is unlikely that the asymptotic worst case performance will be

problematic in practice.

3.8 Propagation of Authorizations

For the of the remainder of the thesis, we assume that ACAD uses a closed system, in which

permissions are denied by default, and provides positive explicit authorizations only. We also use

“stoppers” on arbitrary nodes to limit the propagation of positive authorizations: a positive

authorization may not be propagated across a node that has a corresponding stopper. Thus, the

propagation of explicit (positive) authorizations is controlled with “stoppers”: associating a stopper

for authorization p with any subject in the subject hierarchy and any object in the object hierarchy

prevents the propagation of p as an effective authorization to sub-levels in the subject hierarchy.

Whereas some other researchers have argued that more general negative authorizations are often

required in practice [Bertino et al. 1999], we maintain that controlling the propagation of positive

 45

authorizations with “stoppers” can produce the same effect, without incurring the cognitive overhead

inherent in conflict resolution [Rosenthal and Sciore 2001]. In fact, our use of stoppers corresponds

exactly to the strategy instance D
-
LP

+
 with block by propagation, which intuitively means a given

node is effectively labelled positive only if there is at least one path to the node from at least one of its

ancestors that assigned an explicit permission with no corresponding negative authorization nodes

along the path. Note, however, that negative authorizations are fundamentally required in the

effective matrix, where each subject-object-method triple is explicitly granted or denied.

3.8.1 Propagation and Stoppers

Propagation of permissions may be stopped by a stopper authorization at any level in the subject

hierarchy. Using wildcard “_” to indicate a “whatever” value, each permission p which is represented

as <_, permit, p, _> has a corresponding stopper that is represented in ACAD as <_, deny, p, _>. For

example, in Figure 13(a), a subject who is assigned to an access bank that includes stopper <_, deny,

read, diagnosis_info> cannot read diagnosis_info or its descendants merely because he has read

permission on encounter. (Access banks are a collection of access authorizations and are formally

defined in Section 4.2.) That is, the propagation of the read permission is stopped at diagnosis_info.

However, stoppers do not override an explicit permission. For example, in Figure 3(b), a subject who

has both read permission and read stopper on encounter can still read this object.

Stoppers are unlike traditional negative authorizations in models that include both positive and

negative authorizations, such as proposed by Bertino et al. [Bertino et al. 1999]. A negative

authorization typically represents a denial of access, whereas a stopper is a mechanism to stop the

propagation of a positive authorization. In ACAD, if any authorization can be found connecting a

subject to an object, the corresponding permissions are valid. Because there is no need to check

whether an authorization is overridden elsewhere, the ACAD approach is easier to administer. We

will therefore use this mechanism in the remainder of the thesis.

3.8.2 Propagation Example with Stoppers

This section provides an enhanced example of propagation in the context of motivating example I,

explained in Section 1.3.1. Figure 13 illustrates the example, in which for simplicity only read

operations are depicted. Bank bi includes authorizations <_, permit, read, balance>, <_, deny, read,

 46

balance>, <_, permit, read, encounter>, and <_, deny, read, encounter>. Note that bi also includes the

explicit authorizations on sub-objects of encounter, hospitalization-info and diagnosis_info, which are

not depicted in the figure for simplicity. Bank bi+1 includes authorizations <_, permit, read, balance>

and <_, deny, read, diagnosis_info>. Bank bi+2 includes authorizations <_, permit, read,

diagnosis_info>, <_, permit, read, hospitalization_info>, and <_, deny,read,hospitalization_info>;

and, bi+3 includes authorization <_,deny,read, hospitalization_info>.

Now assume that subjects Mary, Consultants, Lawyers, and Claude are assigned to banks bi, bi+1,

bi+2, and bi+3, respectively; and subject Doctors is assigned to banks bi+1, bi+2, and bi+3. Figure 13(a)

illustrates the bank hierarchy with these subjects assigned. Because Dorothy is a member of Doctors

and Consultants, and hence Lawyers, her effective permissions include reading objects

hospitalization_info, diagnosis_info, and balance. Even if Surgeons-team1 were stopped from

inheriting a permission from Doctors, Dorothy would still be permitted that operation because of her

direct membership in Doctors. Mary’s explicit permissions include reading objects encounter and

balance, and because of the stopper for Consultants, she cannot inherit permission to read

diagnosis_info from Lawyers, although she does inherit the ability to read hospitalization_info.

(a) Example of the access bank hierarchy with assigned subjects.

Mary

Consultants,

Doctors Lawyers,

Doctors

Claude,

Doctors

bi

<_, permit, read, balance>,

<_, deny, read, balance>,

<_, permit, read, encounter>,

<_, deny, read, encounter>
bi+2

<_, permit, read, diagnosis_info>,

<_, permit, read, hospitalization_info>,

<_, deny, read, hospitalization_info>

bi+1

<_, permit, read, balance>,

<_, deny, read, diagnosis_info>

bi+3

<_, deny, read, hospitalization_info>

 47

(b) Subject hierarchy and effective read authorizations to objects.

(c) Object hierarchy and the subjects that effectively can read it.

Figure 13. Example of propagation of authorizations.

Finally, Claude’s effective permissions include reading object balance only: although he is a

Lawyer, he is explicitly stopped from inheriting permission to read hospitalization_info.

Figure 13(b) summarizes these and other effective permissions of subjects, using bold type to

depict explicit permissions. For instance, subject Consultants is explicitly permitted to read object

balance, and implicitly permitted to read object hospitalization_info. Similarly, Figure 13(c)

summarizes effective permissions for objects. For instance, object balance is explicitly readable by

subjects Doctors, Consultants, and Mary and implicitly readable by Surgeons-team1, Dorothy, and

Claude.

encounter
{Mary}

{Doctors, Consultants,

 Mary, SurgeonsTeam1,

 Dorothy, Claude}

balance

diagnosis_info

{Doctors, Lawyers,

 SurgeonsTeam1,

 Dorothy} hospitaliz-
ation_info

{Doctors, Lawyers,

 SurgeonsTeam1,

 Dorothy, Mary,

 Consultants}

Surgeons-team1

{hospitalization_info,

 diagnosis_info, balance}

Doctors

{hospitalization_info,

 diagnosis_info, balance}

Dorothy

{hospitalization_info,

 diagnosis_info, balance}

Lawyers

{hospitalization_info,

 diagnosis_info}

Consultants

{balance,

 hospitalization_info}

Mary

{encounter,

 balance, hospitalization_info}

Claude
{balance}

 48

3.9 Related Work

Bertino et al. propose an authorization mechanism for relational models in which conflicts are mainly

resolved based on “the negative authorization takes precedence” policy [Bertino et al. 1999]. They

also introduce the concept of weak and strong authorizations, which is equivalent to using our

combined strategy instance D
-
LP

-
 when the propagation mode is block by.

Jajodia et al. use Datalog programs to model access controls of hybrid authorizations with a wide

range of conflict prevention/resolving policies [Jajodia et al. 2001]. Their modeling stores the raw

authorizations and computes the effective authorizations for a <subject, object> pair in time linear to

the size of the Datalog program (rules and ground facts). However, their ground facts include the

transitive closure of the subject hierarchy (which cannot be computed in linear time) plus all the raw

authorizations. The potentially large number of ground facts implies that even a linear time solution

may not be efficient in practice. To answer access control queries efficiently, they suggest

materializing the entire effective access control. The accessibility check for a given <subject, object>

pair is thus equivalent to checking the materialized effective access control table (constant time).

However, considering the formidable size of the effective access controls, which is the product of the

number of objects and the number of subjects, this approach is not practical for very large systems.

Moreover, the materialized effective access controls are not self-maintainable with respect to

updating the explicit authorizations, and even a slight update to the explicit authorizations could

trigger a drastic modification to the effective ones, making the maintenance task very expensive.

Propagation of authorizations has been addressed in many works [Ferraiolo et al. 1992; Bertino et

al. 1999; Osborn and Guo 2000]. However, traditional role-based models often use only the role

hierarchy for authorizations inheritance. Bertino et al. propose the propagation of authorizations

within the subject hierarchy in their role-based proposal for relational access control; they assumpe

that there is no hierarchy among the objects, which are mostly base tables. Osborn and Guo augment

RBAC models by suggesting to support a group hierarchy independent from the role hierarchy as well

as authorization inheritance within group members. ACAD is distinguished from other models due to

propagating authorizations within the subject and object graphs simultaneously, and utilizing the bank

hierarchy as a means of retaining control for object owners (see Chapter 4).

Some existing solutions for computing effective authorizations assume that the explicit

authorizations are propagated on tree-structured data [Damiani et al. 2002; Moses 2005; Yu et al

 49

2002; Zhang et al. 2005]. This trivializes conflict resolution since there is only one path between any

ancestor and a leaf. Moreover, the number of ancestors for a leaf is bounded by the depth of the tree,

which is usually a small value in real world data [Mignet et al. 2003]. Unfortunately, real world

subject hierarchies are mostly DAG-structured rather than trees: the UNIX file system allows a user

to be member of several groups at the same time, and in role-based access control systems, a user can

be assigned several roles and each role can be assigned to multiple parent roles [Ferraiolo and Kuhn

1992]. When explicit authorizations are propagated on a DAG subject hierarchy, a leaf subject

potentially has all subjects as its ancestors, and each ancestor may have several paths reaching to that

leaf. Therefore, none of the approaches for tree-structured data are appropriate in this setting.

Cuppens et al. propose a conflict resolution model for documents containing sensitive information

[Cuppens et al. 1998]. They address the problem of downgrading the classification of these

documents when their contents become obsolete. Their approach is to impose a strict order of

preference between rules and does not include any hierarchy among subjects.

Koch et al. provide a systematic graph-based conflict detection and resolution algorithm based on

two properties namely, rule reduction and rule expansion [Koch et al. 2002]. Using these properties,

they transform a conflicting graph into a conflict-free one. However, their approach is applicable only

to the rules that are related to one another, whereas our approach addresses independent policies.

Finally, our approach is also different from the combining algorithms in XACML [Moses 2005], in

which the resolution model relies on the data hierarchy rather than the also considering subject

hierarchy.

 50

Chapter 4

FLEXIBLE ADMINISTRATION OF ACCESS CONTROL

The spectrum of access control administration was introduced in Chapter 1 to illustrate to what extent

decentralization can be realized. This spectrum covers a wide range of systems from absolutely

autocratic to completely self-governing. This chapter presents the access control administration

(ACAD) model. The goal is to be a policy-neutral and uniform model in which various degrees of

decentralization are supported. It is important to notice that whereas there must be a consistent

enforcement mechanism to support the enterprises’ access control policies, closely held access control

may or may not fit the security requirements of various organizations. Furthermore, no matter how

decentralized the access control administration is, the system must remain secure: its policy must be

enforced entirely regardless of how restrictive or open the policy is.

ACAD consists of three layers; each is a directed acyclic graph corresponding to subjects, objects,

and a layer of access banks. The subject and object were formally defined in Definitions 1 and 2,

respectively. The access banks are defined in this chapter (Definition 9). Section 4.1 describes why a

uniform access control mechanism is important. Section 4.2 formalizes authorizations of ACAD.

Section 4.3 defines applicable authorizations for an object based on the object type. Section 4.4

introduces omnibank as a means of empowering an object’s owner with all applicable authorizations.

Section 4.5 illustrates how subjects can manage access control through various types of delegation

and revocation features in light of customized access banks. Section 4.6 illustrates how omnibanks

can include several customized omnibanks. Section 4.7 compares access banks to access roles

introduced in RBAC models. Finally, Section 4.8 addresses some aspects of the related work.

 51

4.1 Uniformity

It is important as an overarching feature that access control systems be based on a single uniform

model with respect to both data and metadata (access control data). The goal is to address the needs of

software companies to provide Enterprise Content Management capabilities2 that fit a wide spectrum

of security needs for their diverse customer base. Some data needs very tight control; other data can

be managed by their creators or by the groups within which the creators work. To support

collaboration, access privileges often have to be granted and revoked in unstructured ways. In

particular, since the access privileges themselves are typically stored as data, operations to alter those

privileges (called metadata), whether to update them or to assign privileges with respect to newly

created subjects or objects, must also be subject to access control.

Some existing models include separate implicit access control methods for controlling

authorizations to update the metadata, and other models ignore such authorizations. Yet, the broad

view of content in an ECM, as depicted in the access control framework of Figure 1, supports the idea

that information about the subjects and information about access control can (and should) be treated

just like any other data. Therefore it is important that there is one uniform mechanism to manage data

whatever its form, and we take that as axiomatic.

4.2 Access Banks

Definition 9 (Access Banks). Access banks, which are themselves a subset of the data universe U, are

collections of access authorizations. Henceforth, we always mean an access bank of authorizations

when we use the term “bank” or “access bank”, and access banks are depicted by ovals with italic

labels in all figures. Banks connect a set of subjects to the authorizations for each subject in the set. A

given bank b ∈ U is a triple <bn, Subj, Auth> where

— bn is a unique bank name,

— Subj is a set of subjects,

— Auth is a non-empty set of access authorizations, and

2 defined by the Association for Information and Image Management <http://www.aiim.org/about-ecm.asp>

 52

— ∀ <C, mode, p, O> ∈ Auth, Subj ⊆ C. That is, all subjects associated with a bank must meet all the

constraints specified in the bank. Through bank b = <bn, Subj, Auth>, any subject that is a member

of Subj receives all authorizations of Auth.

Definition 10 (Fertile Bank). A fertile bank is an access bank in which there exists at least one access

authorization which permits the corresponding subjects to create new access banks.

We assume that when an authorization is to be enforced, subjects in the system have already been

authenticated, that is identified and associated with all banks in which the subject is in Subj. The

method of authentication is outside the scope of this thesis; interested readers should consult

alternative sources [Burrows et al. 1990; Ellison 1996; Maughan et al. 1998]. Thus, whenever

subjects request access to any piece of data (or metadata), the enforcement mechanism is activated to

check if their access bank list includes a bank that contains the corresponding permission.

4.2.1 Access Banks Hierarchy

Banks of authorizations are organized as hierarchies in which source banks export authorizations to

destination banks. Furthermore, the constraint of an authorization in a destination bank must be at

least as restrictive as the constraint of the corresponding authorization in the source bank.

Definition 11 (Bank Hierarchy). The bank hierarchy is a directed acyclic graph <V, E>, where V is

the set of access banks, and E is a set of edges v1�v2 where ∀<v2, Subj2, Auth2>∈ V, ∀<C2, mode, p,

o2> ∈ Auth2 (¬∃v (v�v2 ∈ E) ∨ (∃ <v1, Subj1, Auth1>∈ V, ∃<C1, mode, p, o1> ∈ Auth1 (v1�v2 ∧ C2

⊆ C1 ∧ o2 ⊆ o1)).

Thus, for every non-root bank in the hierarchy, its authorizations must all be derived from those of

its parents, possibly with tighter constraints or fewer objects. For example, in Figure 14, the licensing

hierarchy between access banks (indicated by arrows) represents delegated privileges, which are

imported from source banks. If bi+3 imports <C3, mode, p, O3> from <C2, mode, p, O2> in bi+2, then

C3 and O3 must be subsets of C2 and O2, respectively. Note, however, that the restriction that all

subjects assigned to a bank must satisfy all constraints in that bank does not imply that the subjects

assigned to a bank must be a subset of the union of subjects assigned to its parents.

Recall the ACAD model also includes two other layers: the subject hierarchy (SDAG) and the

object hierarchy (ODAG) described in Section 3.1 and depicted in Figure 3. A typical bank hierarchy

 53

(BDAG) is depicted in Figure 15. For readability of Figure 15 an abbreviated language is used: for

instance, M3(d2) corresponds to authorization <_,permit,M3,{d2}>; as another example, M1(d1, d2)+

corresponds to authorizations <_,permit, M1, {d1, d2}> and <_,permit, DelegateM1, {d1, d2}>.

Therefore, in Figure 15, bank b3 contains a privilege to run method M1 on document d1 with grant

option (+). BDAG is an intermediate layer between subjects and objects; on one hand, a set of

subjects (either individual users or groups) from SDAG is assigned to each node of BDAG (indicated

by dot-dashed lines). On the other hand, each access bank contains a set of authorizations on a set of

objects of ODAG (indicated by dashed lines). We note that objects can be of any type (with arbitrary

associated methods), including documents or document fragments, groups in the subject hierarchy, or

even access banks (since an access bank is itself a special object containing a set of privileges on

some set of objects).

Figure 14. Hierarchy of access banks maps authorization inheritance.

Figure 15. Access banks as an intermediate layer between SDAG and ODAG.

bi

authorizations

bi+3

bi+2

bi+1

authorizations

authorizations

authorizations

M1(d1,d2)+,

M2(d2), M3(d2)

M1(d1)+

M3(d2)

Subjects

Hierarchy

Objects

Hierarchy

b1

b2

b3

 54

4.2.2 Bank Operations

We predefine six bank operations, namely read, assignTo, removeFrom, moreConstraints, import,

and deleteBank. Operation read is the ACAD means of reading content of a given bank. Recall from

Definition 9, a bank is represented as a triple <bn, Subj, Auth> ; therefore, reading a bank discloses its

name, the set of subjects assigned to it, and its set of access authorizations. Operation assignTo is the

method for assigning a subject to a given bank. In fact, assignTo adds one or more subjects to the

Subj component of a bank. Similarly, removeFrom is an operation to remove a subject from a given

bank, which means one or more subjects are removed from the Subj part. Operation moreConstraints

is the method to add more constraints to the C part of any access authorization in the Auth component

of a given bank. (Recall from Definition 6 that the C part of an access authorization constrains the set

of subjects that may hold the authorization.) Operation import creates a new bank as a child vertex of

one or more existing source banks. It takes as parameter pairs of a subset of authorizations and the

source vertex from which the authorizations are imported to the destination vertex. For example,

import(b3, {<<_, permit, M,{d1}>, b1 >, <<_, permit, M,{d2}>, b2 >}) creates bank b3 and edges

b1�b3 and b2�b3 as depicted in Figure 16(c). Finally, operation deleteBank is the method to delete a

bank from the bank hierarchy.

4.2.3 Banks and the Explicit Matrix

Access banks in ACAD are used to assign a set of subjects to a set of access authorizations.

Furthermore, access authorizations associate access rights to a set of objects. In fact, an access bank

can be briefly represented as <S, {<ri, Oi>}> in which S and Oi are given sets of subjects and objects,

respectively, and ri is an access right. The following predicates can be used to formalize these

concepts using Datalog: bank(b,s,a) associates subject s to authorization a in the bank with name b,

and auth(a,c,m,p,o) associates constraint c, mode m, permission p, and object o in the authorization

with name a. Although Definition 9 is defined in terms of sets of subjects and sets of authorizations,

these predicates deal with individual elements to simplify the Datalog expressions. Hence, an access

bank serves as several cells (predicates permit and deny) of an explicit access control matrix. The

following rules demonstrate this service.

permit(s, r, o)  bank(_, s, a), auth(a, _,’permit’, r, o).

deny(s, r, o)  bank(_, s, a), auth(a, _,’deny’, r, o).

 55

in which “_” means a “whatever” value. Note that this formalism assumes a unique authorization

name for access authorizations; authorization names serve no purpose within the rest of the thesis.

Moreover, note that predicates permit and deny are now considered to be intensional, built on top of

extensional predicates bank and auth.

4.2.4 Classes of Banks

In practical environments, there are several characteristics that lead to useful refinements of the

ACAD model, which are described here.

ACAD assumes that every object belongs to an owner, and thus an owner access bank is always

required for each object. The owner of an object is not necessarily the object’s creator, but it is

initially determined at the time the object is created (see Chapter 5). As a result, as individual users

create objects (e.g. personal documents), the number of access banks in a system may become quite

large (e.g. if creators own the object they create), yet many of them are similar. This can be

initialized parametrically. ACAD provides generic banks to provide such a parametric bank. As

another characteristic, the model should also provide subjects with the feature of customizing access

banks. ACAD provides customized banks to provide such features. Furthermore, banks may need to

be combined to provide more sophisticated capabilities for the corresponding subjects. ACAD

provides combined banks for this purpose. The generic, customized, and combined banks are depicted

in Figure 16 and described in more detail as follows:

Generic bank: This facility allows the specification of a template for a set of possible access banks.

To derive an effective access bank from such a template, a specific event acts as a trigger. For

example, the owner bank (indicated by black ovals in figures) is a generic bank, which is instantiated

as soon as the first object belonging to a subject is created; the owner id and object id are the

parameters of the instantiation, and the concrete owner bank includes all authorizations on the object

determined by a creation time policy (see Chapter 5). Similarly, omnibanks (introduced in Section

4.4) are generic banks that include all related authorizations on specified objects. Consider an

application in which every subject who creates an object is its owner; hence, every creator is assigned

to a concrete owner bank. Figure 16(a) illustrates this example, where subjects S1 and S2 are assigned

to the owner banks when they create objects d1 and d2, respectively.

 56

S1 S2 S3

b1

b2 M1(d1)

M2(d2)

d1 d2

S1
S2

S3

b1
b2

b3

M(d2)+
M(d1)+

M(d1,d2) S4

d2 d1

S1 S2

owner bank 1
owner bank 2

d2 d1

Customized bank: Besides the generic bank, subjects who have at least one import privilege are able

to create their own customized banks. Hence, every owner can choose an arbitrary subset of the

authorizations in its owner bank to create a customized bank, and then assign arbitrary subjects to this

bank. More generally, any subject assigned to a fertile bank may create a new sub-bank with a subset

of the authorizations and assign other subjects to that new bank. Customized banks thus form the

bank hierarchy, in which owner banks are the roots. For instance, in Example 1 in Chapter 1, any

physician may customize the privileges assigned to the physicians group to create a particular bank

for nurses. In Figure 16(b), owners S1 and S2 have created banks b1 and b2 to access objects d1 and

d2, respectively. They both have assigned user S3 to these banks. Therefore, S3 has access to both d1

and d2. S1 or S2 can remove S3’s access at any time, independently.

(a) Owner bank as a Generic

(c) Customized bank (d) Combined bank

Figure 16. Various access banks in ACAD.

Combined bank: Lastly, subjects can create a combined bank if they have importable authorizations

in more than one bank. In other words, a combined bank is a bank that has more than one immediate

senior bank. For instance, in Example 1 in Chapter 1, an accountant may combine several banks to

make several medical objects accessible to an insurance representative. In Figure 16(c), owners S1

 57

and S2 have created fertile banks b1 and b2 to access objects d1 and d2, respectively; both S1 and S2

are willing to export authorizations on their documents. They have also assigned subject S3 to their

banks. Therefore, S3 can create b3 and inherit (import) access authorizations on both d1 and d2.

Moreover, S3 can assign other subjects (e.g. S4) to b3. Both S1 and S2 can remove access privileges

for S3 and its dependents (e.g. S4) from their objects by severing the inheritance chain without

disrupting one another. For example, S1 (the owner of b1) can remove access for S3 and S4, from d1

simply by removing both edges S3� b1 and b1� b3. Therefore, b3 no longer inherits anything from

b1.

4.3 Object Types and Authorizations

Recall from Definition 4, authorizations in ACAD are not limited to a fixed set of rights such as read

or write. Instead, various authorizations on objects are defined based on the object types that are

present in the application. In addition, certain predefined object types and authorizations are required

by the model.

The predefined types include a basic type TData, which includes all objects, as well as two

subtypes TBank and TSubject which represent access banks and subjects (individuals and groups),

respectively. Authorizations on TData are applicable to all objects in U, while the subtype

authorizations are applied to objects that are banks or subjects, respectively. We predefine two

operations read and create applicable to type TData, which therefore define corresponding operations

for every type through inheritance. Thus, permission to read (or create) an object is a permission to

call a method read (or create) on an object of any type. (For readability, we give authorizations the

same names as their corresponding methods.)

We also define eight specific authorizations for objects of TBank and TSubject types: assignTo,

removeFrom, import, addConstraint, and deleteBank are applicable to type TBank only; and

subscribeTo, unsubscribeFrom¸ and deleteSubject are applicable to type TSubject only. The TBank

authorizations correspond to the bank operations: For instance, a subject enjoying permission

assignTo on bank b is permitted to assign subjects to the Subj component of b. For authorizations

applicable to type TSubject, a subject enjoying permissions subscribeTo, unsubscribeTo, and

deleteSubject on subject S is permitted to subscribe other subjects to (group) S, unsubscribe other

subjects from S, and delete subject S, respectively. Hence, in contrast to most other models, any user

 58

can potentially update the group hierarchy in our model, depending on the permissions assigned to

that user.

4.4 Object Creation and Omnibanks

This section introduces the omnibank, which is the aggregation of all owner banks for a particular

subject. Consequently, it is the collection of all authorizations for a subject (whether a user, a group,

or an application) on its own objects. The omnibank also serves as the root of the bank hierarchy

associated with the owner. In fact, the omnibank is the root of the owner’s whole object hierarchy.

As stated in Section 4.2.4, an owner bank is a generic bank, which is instantiated when an object is

created. This section specifies how various types of authorizations are combined in an omnibank for

subject S when various types of objects are created, whether by S or by other subjects, and owned by

S. For simplicity, we assume that an object’s owner is initially assigned all possible permissions on

that object; this is relaxed in Chapter 5. Therefore,

Axiom 1. Every subject who owns at least one object has an associated omnibank.

Figure 17(a) illustrates that an omnibank initially includes twelve access authorizations: six

permissions and six corresponding stoppers. Recall from Definition 6 that each access authorization

consists of four components: a constraint (Cj
i
), a mode (permit/deny), a permission (pm), and a set of

objects (on). Cj
i
 constrains the set of subjects Sj who may be explicitly permitted to hold (or stopped

from holding) permission pm on the set of objects on. In the absence of stoppers, all members of the

subject set Sj, assigned to the bank, implicitly enjoy the authorization on the set of objects on and all

their descendants. Since subjects assigned to a bank are given all the authorizations within it, they

must satisfy all constraints by being a subset of the intersection of all Cj
i
 for all i, i.e., i

j
i

jj CCS I=⊆ .

Using this notation, authorization <C0
1
, permit, read, b0> in omnibank b0 means that subjects

assigned to the bank are permitted to invoke method read on object b0 and its descendants. For

example, assume an application in which initially the creator is assigned to such a bank; therefore, it

means that creators can read all banks in their bank hierarchy. In applications where the creator is not

necessarily the object owner, the creator is not automatically assigned to such bank and consequently

the object owner retains control.

 59

Similarly, the third and fifth authorizations mean that subjects assigned to the bank are permitted to

invoke method assignTo (removeFrom) to add (remove) subjects to (from) the Subj component of

bank b0, and of its descendants. Owners can thus delegate and revoke all their rights to other subjects,

including the rights of delegation and revocation.

Authorization <C0
7
, permit, import(Rights), b0> in omnibank b0 means that subjects assigned to

the bank are permitted to invoke method import to import authorizations from source bank b0. This

authorization essentially means that the importer is able to create a child bank for the source bank.

Hence, as soon as a subject invokes such a permission, a customized omnibank is created and

assigned to the subject. Customized omnibanks, elaborated in Section 4.6, are sub-elements of the

original omnibank. In order to control permissions on child banks, the exporting subject can limit

authorizations of the customized omnibank by parameter Rights of the import permission. This

feature is our means of enhanced delegation to retain control for the exporter (as explained in Section

4.5).

<C0

13
, permit, read, S2>,

<C0
14

, deny, read, S2>,

<C0
15

, permit, subscribeTo, S2>,

<C0
16

, deny, subscribeTo, S2>,

<C0
17

, permit, unsubscribeFrom, S2>,

<C0
18

, deny, unsubscribeFrom, S2>,

<C0
19

, permit, deleteSubject, S2>,

<C0
20

, deny, deleteSubject, S2>,

(b) Additional predefined authorizations

when subject S2 is created

<C0
21

, permit, read, d1>,

<C0
22

, deny, read, d1>,

<C0
1
, permit, read, b0>,

<C0
2
, deny, read, b0>,

<C0
3
, permit, assignTo, b0>,

<C0
4
, deny, assignTo, b0>,

<C0
5
, permit, removeFrom, b0>,

<C0
6
, deny, removeFrom, b0>,

<C0
7
, permit, import(omniRights), b0>,

<C0
8
, deny, import, b0>,

<C0
9
, permit, addConstraint, b0>,

<C0
10

, deny, addConstraint, b0>,

<C0
11

, permit, deleteBank, children(b0)>,

<C0
12

, deny, deleteBank, children(b0)>,

(a) Initial predefined authorizations in

omnibank b0
(c) Additional predefined authorizations

when object d1 is created

Figure 17. Omnibanks and different types of objects.

 60

Authorization <C0
9
, permit, addConstraint, b0> in omnibank b0 means that subjects assigned to

the bank are permitted to invoke method addConstraint to add more constraints to any authorization

of bank b0, and its descendants. In other words, object owners can update the C part of any

authorization in their bank hierarchy.

Finally, let children(bj) denotes all children of bank bj. Authorization <C0
11

, permit, deleteBank,

children(b0)> in omnibank b0 means that subjects assigned to the bank are permitted to invoke

method deleteBank to delete any children of b0 (but not b0 itself). For simplicity, we assume that only

leaf banks can be deleted. Therefore, with this initialization, another right that object owners initially

enjoy is the right of deleting leaf banks from their bank hierarchy.

Figure 17(a) also illustrates six initial stopper authorizations in omnibank b0 to stop the propagation

of read, assignTo, removeFrom, import, addConstraint, and deletBank permissions for the subject

assigned to bank b0. Although stoppers are not functioning in omnibanks due to coexistence of

explicit permissions, their presence allows them to be exported to other banks in the hierarchy. In this

way, we can maintain the property of the hierarchy that authorizations in descendent nodes always

have corresponding authorizations in some ancestor node (cf. Definition 11).

Figure 17(b) illustrates eight other predefined authorizations (including four stoppers) that are

added to the omnibank as soon as a group or individual (i.e. an object of type TSubject) is created. For

instance, when a subject S1 creates subject S2, corresponding authorizations, illustrated in Figure

17(b), will be added to the owner’s omnibank (which is assumed to be b0 in this example).

Authorization <C0
13

, permit, read, S2> in omnibank b0 means that S2’s owner is permitted to invoke

method read in order to read the value of S2 and any of its descendants. Similarly, permission

deleteSubject in omnibank means that the owner can delete S2 or any of its descendants. As is true for

all objects, it is assumed again that only leaf subjects (individuals or empty groups) can be deleted.

Moreover, Figure 17(b) illustrates that the owner enjoys permission subscribeTo (unsubscribeFrom),

and therefore is permitted to add (remove) members to (from) S2. Note that a subject is represented as

a member of S2 by linking it as a child vertex of S2. Moreover, Figure 17(b) includes four stopper

authorizations in omnibank b0 to stop the propagation of read, subscribeTo, unsubscribeFrom, and

deleteSubject permissions, respectively. As before, although stoppers are not functioning in

omnibanks due to coexistence of explicit permissions, their presence is important so that owners can

export them to other banks in the hierarchy when needed.

 61

Finally, Figure 17(c) illustrates the case in which an object d1 (i.e. any other object of type TData)

is created. Authorization <C0
21

, permit, read, d1> in omnibank b0 means that the owner is permitted

to invoke method read in order to read the value of d1 and any of its descendants, and the read

stopper in Figure 17(c) is for export purposes. Depending on the data type and on the policies in force

(see Chapter 5), other authorizations will also be added to the omnibank when d1 is created.

In summary, Figure 17 illustrates all initial authorizations for a particular subject, S1, who is

considered to be the owner of an object of type TSubject, S2, and an object of type TData, d1. When

an object is created, the omnibank of the owner is updated to include new authorizations for all

methods of the new object if not already included. Based on these authorizations, S1 can extend his

bank hierarchy by creating other banks and importing arbitrary authorizations from his omnibank, b0.

In this way, he can share his data with other subjects.

Figure 18 illustrates a system with m objects (o1 to om), n subjects (S1 to Sn), all of which own one

or more objects, and therefore n omnibanks (omni1 to omnin). Recall that in all figures of this thesis,

subject-bank assignments are depicted with dashed-dot lines, bank-object assignments are depicted

with dashed lines, and omnibanks are depicted with black ovals; also, subject names start with a

capital letter, and bank names are italic.

Figure 18. Omnibanks in a system with n subjects.

4.5 Access Control Administration

In the last section, we explained that subjects are initially authorized for their own objects within

omnibanks. Now we explain how users manage the access authorizations for their data. As the

running example, we assume user Sx owns a newly created object d1 of type TData; and therefore, his

omnibank omnix includes authorizations similar to those depicted in Figures 17(a) and 17(c).

omni1

Sn

omnin

S1

o1 om oi ok

 62

For the rest of this section, we explain how Sx can utilize the corresponding bank hierarchy

(depicted with triangles in Figures 19-22) to delegate its authorizations in any of three forms, namely

simple delegation, delegation by agent, and enhanced delegation, and to retain control by revoking

authorizations in two ways, namely weak and strong revocation.

4.5.1 Simple Delegation

In the simple delegation mechanism, subject Sx creates bank bi importing authorization <Ci, permit, p,

d1> from his bank hierarchy and delegates permission p to other subjects or group of subjects (such

as Sa and Sb in Figure 19) by assigning them to bi. Ci constrains who is eligible to have authorization

p. Thus, in order to be assigned to bi, Sa and Sb must be subsets of Ci, and once they are assigned, they

are eligible to invoke method p on object d1 and its descendants.

Figure 19. Simple delegation in ACAD.

4.5.2 Delegation by Agent

In the delegation by agent mechanism, subject Sx creates banks bi and bi+1 importing authorizations

<Ci, permit, p, d1> and <Ci+1, permit, assignTo, bi>, respectively, from his bank hierarchy.

Moreover, Sx assigns other subjects (such as Sc and Sd in Figure 20) to bi+1 as his agents so that they

can delegate permission p on d1 to others (such as Se and Sf in Figure 20) by assigning them to bi as

long as the latter subjects meet constraint Ci. Therefore, if Ci excludes Sd as an eligible subject for

invoking method p on d1, Sd cannot be assigned to bi. In such a case, Sd can only assign other subjects

<Ci, permit, p, d1>

d1

Sx

omnix

bi

Sa

Sb

 63

to bi on Sx’s behalf, but he has no other permission on d1 or on bi itself. In this form of delegation, Sc

and Sd can delegate permission p on Sx’s behalf, however grantees have no right to delegate it further.

Figure 20. Delegation by agent in ACAD.

4.5.3 Enhanced Delegation

In the enhanced delegation mechanism, subject Sx creates bank bi+2 importing permission import from

his bank hierarchy, and assigns Sy to it so that Sy can create new children for bi+2 on Sx’s behalf.

However, merely because Sy creates such banks, does not mean that he has full control over them;

instead, Sx can adjust Sy’s authorizations on such banks through the rights argument of import. For

instance, if Sx wants to prevent Sy from deleting such banks, he may include authorization <Public-

{Sy}, permit, deleteBank, bc> in the rights argument. Note that Public-{Sy} means every subject in the

universe but Sy, and bc refers to the child bank being created. Also, in order for Sy to be able to invoke

method p on d1 or delegate permission p to others, Sx must include authorization < m

iC 2+
, permit, p, d1>

in the rights argument. Now, Sy has at least two options: one is to create a child for bi+2 containing

permission p only; and the other is to create a bank, say bj,, including the import permission. Both are

mechanisms to delegate the permission on Sx’s behalf. The former is without and the latter is with the

option for further delegation. Of course, Sy is not obliged to use his delegation right. Figure 21 shows

Sx

omnix

<Ci, permit, p, d1>

bi

d1

<Ci+1, permit, assignTo, bi>

bi+1

Sc

Sd

Sf
Se

 64

the case that Sy has delegated the import permission to Sz through bj, and similarly Sz has delegated it

to Sg through bk.

Figure 21. Enhanced delegation in ACAD.

It is important to notice that Sx has necessary controls on all banks bi+2, bj, and bk, while Sy has

control on banks bj and bk, and Sz has control on bank bk only. For example, if Sy wants to prevent Sz

from invoking method p on d1 or prevent him from delegating the import permission to Sh, he can

adjust the rights argument of bj with authorizations <Public-{Sz}, permit, p, d1> or <Public-{Sh},

permit, import, _>, respectively.

It is also important to notice that Sx does not have to be the owner of d1 in order to exploit the

above delegation mechanisms. In general, once banks bi, bi+1 and bi+2 exist, any subject G which

holds authorizations <{G}, permit, assignTo, bi>, <{G}, permit, assignTo, bi+1>, and <{G}, permit,

assignTo, bi+2> can invoke simple delegation, delegation by agent, and enhanced delegation

mechanisms, respectively, to delegate permission p on d1.

Other than preventing grantees from doing particular operations in the future, there is often a need

to undo or revoke some given permissions. For the rest of this section, we explain how subjects retain

control over their own objects even though many authorizations have been delegated. We provide two

levels of revocation, weak and strong.

bk

<Ci+2, permit, import(rights),bi+2>

Sx

bi+2

Sy

bj

Sz

<Ck, permit, import(rights),bk>

d1

omnix

omniy
x

omniz
y

<Cj, permit, import(rights),bj>

Sg

 65

4.5.4 Weak Revocation

Assume bank bi with authorization <Ci, permit, p, d1>. Assigned subjects to a bank containing

authorization <C, permit, removeFrom, bi> can revoke permission p on d1 for any subject enjoying it

through bi by removing the subject from the set assigned to the bank. We call this mechanism a weak

revocation since if the revoked subject is reassigned to bi or if the subject enjoys the permission

through other banks, he still can invoke method p on d1.

4.5.5 Strong Revocation

Strong revocation is feasible by exploiting authorization constraints. Assume bank bi with

authorization <Ci, permit, p, d1>. Any subject who is able to further constrain bi can strengthen

constraint Ci so that specific subjects are revoked from bi and all its descendants, since constraints for

a child bank must be subsets of constraints of its parents. No subject can reassign them to bi or its

descendant since the assignment must be in accordance with the constraint. However, if a subject

enjoys permission p through banks other than bi or its descendants, he still can invoke method p on d1.

But a given subject Sx can strongly revoke a given subject Sh

from invoking method p on Sx’s

documents by excluding Sh at a very top bank of the hierarchy, usually in Sx’s omnibank. Note that if

this is done, Sk cannot access any documents of Sx.

Figure 21 illustrates a delegation chain from Sx to Sg through banks bi+2, bj, and bk. Since these

banks are in Sx’s bank hierarchy, Sx has full control on all of them. In general, through the delegation

chain, grantors retain control over grantees. Therefore, owners have the most control since they

initiate the chain. For instance, Sx can (weakly or strongly) revoke Sz from bank bj in order to prevent

him from further importing permission p on d1. This is a selective revocation since it does not impact

any other subject in the delegation chain, including Sg who was assigned to the chain by Sz. However,

in a similar manner Sx can revoke Sg too from the chain if he wishes to cascade his previous revoke.

Moreover, to completely cascade revocation, Sx does not need to know explicitly which grantees have

received the import permission from Sz since he can revoke them all by setting Cj to empty.

 66

4.6 Another Look at Omnibanks

As explained in the last section, exporters retain control over their objects (including banks) by

customizing a sub-element of the omnibank of importers. Figure 22 illustrates the omnibank of

subject Sy that has been granted import permissions delegated by Sx and Sx’.

Bank omniy includes two sub-elements omniy
x
 and omniy

x’
 that are customized by Sx and Sx’,

respectively. Sy enjoys all authorizations included in omnibank omniy as well as customized

omnibanks omniy
x
 and omniy

x’
. In this way, Sy can create combined banks importing from both omniy

x

and omniy
x’
, and provide simultaneous access to both Sx and Sx’ hierarchies. However, as illustrated in

the figure, customized omnibanks import their authorizations from the bank hierarchy of the

corresponding exporters not from the parent omnibank. Hence, Sx and Sx’ retain control over

descendants of omniy
x
 and omniy

x’
, respectively.

Figure 22. Omnibanks and customized omnibanks.

4.7 Access Banks vs. Access Roles

Access banks in ACAD are similar to access roles in Role Based Access Control (RBAC) [Ferraiolo

et al. 2001] in which roles usually reflect job titles. Similar to roles in RBAC models, access banks in

ACAD map a many-to-many relationship between subjects and objects. Therefore assigning either a

new subject or object to a bank is one operation corresponding to multiple permissions being granted.

However, in traditional role-based models, roles form a hierarchical relationship for the sake of

efficiency [Ferraiolo et al. 2001]. For example, a project manager has his special permissions as well

as all permissions of the project developers reporting to him. Thus, permissions are propagated

through the role hierarchy. However in ACAD, propagation is through object and subject hierarchies,

Sy

omniy

Sx Sx’

omnix omnix’

omniy
x
 omniy

x’

 67

and the bank hierarchy instead represents all delegation chains for authorizations. We exploit the bank

hierarchy not for propagation of permissions, but instead as a means of retaining control for grantors.

This feature allows us to decentralize access control administration. As discussed in Chapter 2,

RBAC models have the major innate restriction of a central control over the role hierarchy which

consequently impedes the model enhancement towards supporting scalable administrative

expansions. If it is necessary to have a role hierarchy in an application, ACAD can simulate it as a

part of the subject hierarchy (possibly combined with a group hierarchy) and access banks can remain

to handle the decentralized delegation needs. Chapter 7 shows an application of access banks for a

system, called user-managed access control, in which both roles and groups exist.

4.8 Related Work

Sections 2.1-2.4 extensively addressed the related work of access control administration models. This

section consists of a literature review on storage decentralization mechanisms as well as a comparison

between our delegation and revocation mechanisms and that of existing proposals.

The access control matrix is typically large and sparse when subjects or objects can not be

classified to a limited number of groups. Decentralization techniques such as access control lists and

capabilities improve the storage efficiency. The former technique stores the information from the

matrix column-wise while the latter is row-wise. The Compressed Accessibility Map (CAM) is an

enhanced technique on capability lists [Zhang 2005]. The CAM algorithms exploit structural locality

of subjects’ accessibility on a hierarchical data to construct a more efficient tree. Therefore, instead of

keeping a list of all accessible nodes, they only keep some crucial nodes and place some additional

information on them, so that we can check whether an arbitrary node can be accessed or not by

simply looking at relevant crucial nodes. The CAM technique also addresses granularity explained in

Section 2.4.

Finally, the simple delegation and delegation by agent, in ACAD, are similar to delegation

mechanisms in several models [Muffett 1990; Bertino et al. 1999; Barka and Sandhu 2000a; Barka

and Sandh 2000b; Zhang L. et al. 2002; Zhang L. et al. 2003; Zhang X. et al. 2003; Joshi and Bertino

2006; Ravichandran and Yoon 2006; Wang and Osborn 2006]. Furthermore, simple delegation and

cascading revocation have been proposed as part of distributed network security models and trust

management systems [Blaze et al. 1996; Rivest and Lampson 1996; Li et al. 2002] However, the

 68

ACAD model is distinguished from other models by its enhanced delegation and revocation

mechanisms explained in Sections 4.5.3 through 4.5.5. Weak and strong revocations in the work by

Bertino et al. are basically based on explicit and implicit authorizations; whereas, ACAD exploits

removal from access banks and constraints, respectively, for such purposes. In Section 7.3, ACAD

formally proves its mechanism is valid to retain control for data owners in Section 7.3.

 69

Chapter 5

CONSTRAINING DECENTRALIZED

ADMINISTRATION

Chapter 4 specifies an access control administration model, called ACAD, to support the spectrum of

autocratic to self-governing systems. This chapter specifies the means of constraining decentralized

administration by which ACAD can be adjusted anywhere on the spectrum, in order to meet the needs

of an enterprise. This means provides the flexibility of defining various levels of decentralization for

different types of objects in the system.

As new subjects and new objects are introduced into a running system, and as subjects delegate and

revoke access control permissions, the access control state changes, as reflected in the metadata.

Thus, depending on the current state of access control, several possible new states can be realized in

response to subjects’ actions. The space of all possible access control states forms a network, with

transitions similar to those in a finite state automaton. An access control policy is a set of rules under

which access control states may evolve: in a properly designed system, all reachable states conform to

the access control policy chosen by the enterprise.

Recall from Chapter 1 that although access control policies and the generality of their enforcement

must be kept in the hands of the enterprise (whether centrally managed or managed in a distributed

fashion), there are several reasons to decentralize access control administration (the permission to

update the access control metadata) either for the whole system or for a subset of object types in the

system. Sharing data, including selectively delegating and revoking administrative permissions on the

 70

associated metadata, may be supported more reliably and more efficiently by a flexible decentralized

access control administration. Consequently, the spectrum of access control administrations raises an

important question: to what extent can decentralization be realized? The challenge is to ensure that

the enterprise’s policies are enforced.

This chapter finds the answer by using creation time policies to define the network of permissible

access control states: each time an object is created by a subject, an appropriate set of permissions on

the object are given to various subjects. This specifies the initial state for each row (object) in the

explicit access control matrix, which implies the space of reachable states for that row. At one

extreme, if neither delegation nor revocation permissions are ever allowed, the permissions on that

object will never change. However, in practice, policies are rather complex and the access control

metadata continually evolves over time as the access control states change. This evolution of

metadata is difficult for human administrators to manage state by state. By appropriately initializing

permissions at object creation time, a set of administrative policies is established, and these constrain

subsequent access control state transitions. As an analogy, creation time policies control objects in

our system much like genetic codes control cells in biological systems.

The contribution of this chapter is a flexible model for administration by which enterprises are able

to adjust the amount of centralized control by defining precisely what permissions are initially to be

held by whom at the time of each object’s creation. By appropriately configuring these creation time

policies, organizations can adjust their access control systems to the desired points along the

spectrum.

Creation time policies dictate the states of the explicit access control matrix. So that the power of

creation time policies can be presented in a concrete setting, we assume one mechanism for deriving

the effective access control matrix. In particular, this chapter assumes a closed system, in which

permissions are denied by default, and only positive explicit permissions are provided; the

propagation of explicit positive permissions are controlled with “stoppers” (Section 3.8). Section 5.4

argues that the power of creation time policies can be applied equally well to other settings for

deriving an effective matrix from an explicit one.

The rest of this chapter is organized as follows. In Section 5.1, the specification of the ACAD

constraining mechanism is discussed. Section 5.2 justifies the model by showing how it could be used

to control several existing systems. Section 5.3 describes how the current chapter is applied in

 71

ACAD. Section 5.4 provides further discussion on power of creation time policies. Finally, Section

5.5 reviews the literature of related access control models and frameworks.

5.1 The Constraining Mechanism

We first translate access control policies to sets of first order logic rules. Figure 23 depicts the BNF

notation which is used for ACAD policy enforcement rules, following the syntax of Active-U-

Datalog language [Bertino et al. 1998]. This language can be used to express active rules that are fired

when various events occur (e.g. updates). ACAD applies this mechanism to insert into the explicit

access control matrix the authorizations that are defined according to creation time policies. Each

policy rule consists of a head and a body. The head is one of the reserved predicates, such as permit,

deny, subscribeTo, unsubscribeFrom, deleteSubject, assignTo, removeFrom, import, addConstraint,

and deleteBank. While predicates permit and deny directly update the explicit access control matrix,

other predicates cause an indirect change to access rights. The body consists of both reserved and

application-based predicates. The application-based predicates are Boolean functions that typically

define the hierarchical relationship within the objects involved in the rule. There may be three types

of prefixes (so called sign) for each predicate: + indicates that the predicate is an insert, - indicates

that the predicate is a delete, and ¬ represents a logical negation.

Figure 23. BNF notation of policy enforcement rules.

Moreover, ACAD groups together sets of rules that are triggered under a specific event, such as

object creation. In this work, we define admin domains as sets of creation time policies that are

invoked when an object is created.

Policy_Enforcement_Rule ::= Body | ε ���� (+ | -) Head.

Head ::= Reserved_Predicate

Body ::= Body , Body | Predicate

Predicate ::= Sign Reserved_Predicate | Sign Application_Predicate

Reserved_Predicate ::= permit | deny | bank | auth | juniorOf

Application_Predicate ::= create | inherit …

Sign ::= + | - | ¬ | ε

 72

As explained in Section 1.2, the explicit matrix defines access constraints used to derive the

effective permissions represented by the effective matrix. As in Section 3.5, in ACAD, the explicit

access control matrix is transformed to the corresponding effective matrix by translating each

predicate permit to one or more predicates allow. Each propagation strategy may produce a different

effective matrix. If stoppers are in place, a given permission is propagated along the edges of both

object and subject hierarchies until meeting a stopper or a sink node. Finally, every non-filled cell of

the effective matrix will be represented by a corresponding predicate disallow.

Section 5.1.1 describes, via the context of the healthcare example, how this model allows us to

apply creation time policies to decentralize access control administration.

5.1.1 Creation Time Policies

Recalling Example I, introduced in Section 1.3 and illustrated in Figure 13, assume that St. Mary’s

Hospital is the owner of the medical records. However, also assume that elements of the medical

record are created by various subjects, such as the hospital staff or the patient, according to the

following scenario:

Receptionists create a blank medical record when a new patient arrives.

Nurses create and append new encounters to an existing medical record.

Doctors create the diagnosis information. They can also create and append therapy sections to an

existing record.

A patient’s family may create (and thereby “sign”) the consent section.

Also assume the set of access control policies described in the XACML use cases [Kudo 2001;

Damodaran and Adams 2001], restated as three sets of creation time policies:. Figure 24 presents

these policies in the ACAD model. In the remainder of this section, each set of policies is first stated

informally and then the corresponding formal presentation is exaplined in detail. For simplicity, we

assume that every subject (including St Mary’s here) has an associated omni bank, and when a new

object x is created, all of the corresponding authorizations are automatically added to the omni bank

of its owner, identified by the function omni(x). Moreover, in this scenario, all customized banks are

created underneath the omni bank.

 73

CTP1 is triggered when a medical_record is created, invoking the following rules: St. Mary’s

hospital, the owner of the medical_record, enjoys all permissions. The patient can read patient_info.

Doctors and nurses can read medical_record.

The body of the rule of CTP1 in Figure 24 is a conjunction of five application-based predicates

namely medical_record, patient_info, patient, doctors, and nurses, as well as functions omni and

Skole, that uniquely generates object ids using two input parameters (the first parameter represents an

object, and the second parameter is used as an index). Predicate medical_record determines whether

its input parameter is an object of type medical record. The prefix + indicates that the active rule

applies when this medical record is just created and its information is being inserted into the system.

Predicate patient_info determines if its first parameter is the patient information of the medical record

determined by the second parameter. Predicate patient determines if its first parameter is the subject

for this medical record. Similarly, predicate doctors (and nurses) determines if the parameter is a

doctor (nurse). The head of CTP1 includes three reserved predicates namely auth, bank, and juniorOf.

Predicates auth and bank were defined in Section 4.2.3. Predicate juniorOf represents the bank

hierarchy; its first input denotes a child bank, and the other input is its parent.

Therefore, CTP1 in Figure 24 creates two authorizations a1 and a2 to read patient_info and

medical_record, respectively, as well as creating banks b1 and b2 (as child banks of omni) to hold

those authorizations. Moreover, the patient is initially assigned to b1, and doctors and nurses are

assigned to b2.

CTP2 is triggered when an encounter is created, invoking the following rules: Doctors can create

diagnosis_info. The patient’s family can sign the consent.

Similarly, CTP2 in Figure 24 creates a new authorization a3 (as a permission to create a diagnosis)

as well as a bank b3, which includes a3, and is a direct child of the appropriate omni bank. In addition,

doctors are assigned to this bank.

CTP3 is triggered when the consent is created, invoking the following rules: The patient’s family

can read encounter. The patient’s family can also delegate read permission on diagnosis_info to

others. Nobody, not even the owner of the whole medical record, can change consent.

 74

Figure 24. Creation time policies for the medical record use case.

CTP1:

+medical_record(M), patient_info(PI, M), patient(S1,M) , doctors(S2), nurses(S3),

omni(M)=b, Skolem(M,1)=b1, Skolem(M,2)=b2, Skolem(M,-1) = a1,

Skolem(M,-2)=a2 ����

+auth(a1, ‘Public’, ‘permit’,’read’, PI), +bank(b1,S1,a1), +juniorOf(b1,b),

+auth(a2, ‘Public’, ‘permit’,’read’, M), +bank(b2,S2,a2), +bank(b2,S3,a2),

+juniorOf(b2,b).

CTP2:

+encounter(E, M), omni(M)=b, doctors(S1) , Skolem(M,3)= b3, Skolem(M,-3)= a3 ����

+auth(a3, ‘Public’, ‘permit’,’createDiagnosis’, E).

+encounter(E, M), consent(C, E), family(F, P), patient(P,M) , omni(M)=b,

Skolem(M,4)=b4, Skolem(M,-4)=a4 ����

+auth(a4, ‘Public’, ‘permit’,’sign’, C), +bank(b4, F, a4), +juniorOf(b4,b).

CTP3:

+consent(C, E), encounter(E, M), create(F, C), family(F, P), patient(P, M),

 omni(M)=b, Skolem(M,5)=b5, Skolem(M,-5)=a5 ����

+auth(a5, ‘Public’, ‘permit’,’read’, E), +bank(b5, F, a5), +juniorOf(b5,b).

+consent(C, E), encounter(E, M), create(F,C), family(F, P), patient(P,M) ,

diagnosis_info(DI,E), omni(M)=b, Skolem(M,6)=b6, Skolem(M,-6)=a6,

Skolem(M,7)=b7, Skolem(M,-7)=a7 ����

+auth(a6, ‘Public’, ‘permit’,’read’, DI), +bank(b6, null, a6), +juniorOf(b6,b),

+auth(a7, ‘Public’, ‘permit’,’assignTo’, b6), +bank(b7, F, a7), +juniorOf(b7,b).

+consent(C,E), omni(M)=b, Skolem(M,8)=b8, Skolem(M,-8)=a8 ����

+auth(a8, ‘Public’, ‘deny’,’change’, C),+bank(b8, ‘Public’, a8), +juniorOf(b8,b).

 75

The rest of the rules in Figure 24 are similar. Predicate create in CTP3 has two parameters to

indicate a subject and an object, respectively, and determines whether the subject has created the

object. Note that it is assumed the system is defined such that encounter(x, y) can be true only if

medical_record(y). The last rule of CTP3 defines a stopper. It specifies that nobody can inherit

permission to execute method change on a consent part of any medical record. In particular, this rule

stops the propagation of permission change, given to the owner of a medical record in the second rule

of CTP1, to the element consent, even though it will be propagated to the element encounter.

5.2 Expressivity of the Mechanism

This section validates the constraining mechanism by investigating suitable object creation policies

that could be used to achieve the goals of some existing systems, including the UNIX file system, the

DB2 database system, and the LiveLink enterprise content management system. Note that throughout

the rest of this chapter, we define creation time policies directly on the explicit access control matrix,

and not via access banks, to simplify explanations. In UNIX, there are two types of objects, file and

directory, for which two sets of creation time policies are defined in Section 5.2.1. In DB2, there is

one object type, namely schema, which contains many sub-types such as base table, view, index, etc;

Section 5.2.2 defines a set of creation time policies for the schema. In LiveLink, there exist many

types of objects having disparate access control requirements; accordingly, several creation time

policies are defined in Section 5.2.3 to handle administrative needs in such systems.

5.2.1 Creation Time Policies for the UNIX File System

In UNIX, access control administration is partially decentralized among the objects’ owners, but in a

very restricted manner. In that system, there are three access permissions: read, write, and execute.

When an object (file or directory) is created in UNIX, a predefined list of permissions for the object is

automatically created. Then, the object owner can assign or change the permissions mode for three

types of subjects: user, group, and other. UNIX does not support hierarchies among the subjects (that

is, groups cannot be nested) nor among the objects (permissions cannot be granted on subfiles, and

permissions are not inherited from directories to subdirectories or to contained files).

For simplicity, assume a given set of default permissions are based on the following policy: Files

are readable and writable by the owner, readable for groups, and not accessible to others (in Unix’s

 76

notation, file permissions are initialized to 640). Directories are readable, writable, and executable by

the owner, and also readable and executable to groups and others (corresponding to Unix’s 755).

Moreover, subjects can read an object if they have execute permission on all directories in the path

from the root to the parent of the object and read permission on the object itself; subjects can delete

an object if they have execute permission on all directories in the path from the root to the parent of

the object and write permission on that parent (they need no specific permissions on the file itself).

System administrators (super-users) have all permissions on all files and directories. These default

permissions can be simulated by applying creation time policies as follows, see Figure 25:

Figure 25. Creation time policies for UNIX file permissions.

U-CTP1 is triggered when a file is created, invoking the following rules: The owner enjoys

permissions read and write on the file; execute permissions are not inherited. Group members enjoy

permission read on the file. Super-users have all permissions.

U-CTP2 is triggered when a directory is created, invoking the following rules: The owner enjoys

all permissions on the directory. Group members and others enjoy read and execution permissions on

the directory. Again, super-users have all permissions.

U-CTP1:

+file(F), owner(S, F) ���� +permit(S, read, F).

+file(F), owner(S, F) ���� +permit(S, write, F).

+file(F), owner(S, F) ���� +deny(S, execute, F).

+file(F), sameGroup(S,F) ���� +permit(S, read, F).

+file(F), superUser(S) ���� +permit(S,*,F).

U-CTP2:

+directory(D), owner(S, D) ���� +permit(S, *, D).

+directory(D) ���� +permit(*, read, D).

+directory(D) ���� +permit(*, execute, D).

+directory(D), sameGroup(S,D) ���� +deny(S, write, D).

+ directory(D), superuser(S) ���� +permit(S, *, D).

 77

The body of the first rule in U-CTP1 includes two application-based predicates, namely file and

owner. Predicate +file determines whether a new file F (not a directory) has been created. Predicate

owner has two input parameters: a subject and an object, respectively; and, determines whether the

subject is the owner of the object. Therefore, the first rule in U-CTP1 states that if the file F has been

created, and user S is its owner, S is permitted to execute method read on F. Similarly, the second rule

in U-CTP1 states that if the file F has been created, and user S is its owner, S is permitted to execute

method write on F. The third rule emphasizes that the owner cannot inherit permission execute from

its group or others. The fourth rule states that users who are in the same group as the file are permitted

to execute method read on the file, where predicate sameGroup determines whether S and F are in the

same group. Finally, the fifth rule in U-CTP1 states that super-users have all permissions on files,

where predicate superUser determines whether S is a super-user. U-CTP2 is similar to U-CTP1 and

expresses policies that are applicable to directories, where predicate directory determines whether its

input parameter is a directory (not a file).

Note that Figure 23 illustrates creation time policies only, and it does not address other policies in

UNIX. For example, in UNIX, users can create files and directories only if they have permissions

execute and write on the current path. Such a policy can be expressed in ACAD as: permit(S, create,

*) :- permit(S, execute, currentDirectory()), permit(S, write, currentDirectory()). However, our focus

here is on creation time policies, which are distinguished from other policies by having at least one

inserting predicate (i.e. prefixed by +) in their body, and a +permit or +deny in their head. This

predicate acts as a trigger that enables various permissions to be defined.

5.2.2 Creation Time Policies for the DB2 Database System

This section considers controlling access to data in IBM’s DB2, and investigates how creation time

policies can decentralize its administration. There are various objects and therefore various privileges

in DB2. Hence, this section focuses on objects of one of the types schemas, tables, views, and

routines only. However, interested readers can expand our explanation to other types of objects such

as triggers, functions, table spaces, etc.

Table 4 illustrates the major DB2 object types and related privileges. A schema is a logical

classification of named objects such as tables, views, nicknames, triggers, functions, and packages.

When a schema is created, its owner may be granted CREATIN, ALTERIN, and DROPIN privileges

 78

to be allowed to create objects, alter objects, and drop objects within the schema, respectively.

Moreover the owner is able to grant any of these privileges to other users. D-CTP1 in Figure 26

illustrates this. For instance, the first predicate in D-CTP1 states that when schema S is created by

any user, the owner of S is permitted to create objects within S.

Table 4. Objects and privileges in DB2.

Objects Privileges

Schema CREATIN, ALTERIN, DROPIN

Table CONTROL: DELETE, INSERT, SELECT, UPDATE, ALTER,

INDEX, REFERENCE; as well as GRANT and REVOKE any

of these

View CONTROL: DELETE, INSERT, SELECT, UPDATE; as well

as GRANT and REVOKE any of these

Routine EXECUTE

other objects Other privileges

Table 4 also shows that DELETE, INSERT, SELECT, and UPDATE are applicable to both tables

and views, allowing authorized users to delete, insert, select, and update rows of tables and views,

respectively. ALTER, INDEX, and REFERENCE are applicable to tables only, and let the authorized

user add more columns to an existing table, define indices on a table, and create or drop a foreign key

that references a table, respectively.

DB2 grants the control of such tables and views to the object creator initially. Users who are

authorized to control such objects can grant and revoke such privileges to and from other users. D-

CTP2 in Figure 26 illustrates this. For instance, the first predicate in D-CTP2 states that when user U

creates table T, U is permitted to control T. Table 4 and D-CTP3 in Figure 26 state that the privilege

EXECUTE is initially granted to both PUBLIC and the creator of routines (procedure, function,

method).

Furthermore, SYSADM, and DBADM are two DB2 authorities that can execute any privilege at

the schema and instance level, respectively. They also can grant and revoke all their privileges.

 79

However, since such rules are defined independently of the creation of specific objects, they are

excluded from creation time policies.

Figure 26. Creation time policies for DB2.

5.2.3 Creation Time Policies for the Livelink ECM System

This section considers Livelink, a product of Open Text Corporation for enterprise content

management. The system is built over a complex data repository, in which the data space is divided

into one enterprise workspace and a collection of personal workspaces, one per user. Diverse forms

of data objects, including documents, tasks, news items, etc., can be stored in the workspaces. Data

objects may be kept in various kinds of container objects, including folders, discussions, channels,

and projects. Moreover, containers can include other containers, forming a complex network of data

objects that is accessible to individual users and groups of users, depending on their permissions.

Furthermore, users designated as Admin have all permissions on all objects (cf. Unix’s super-users, as

explained in Section 5.2.1) and individual users have all permissions on all objects stored in their own

personal workspaces. All other users may be assigned permissions as individuals or through their

D-CTP1:

+schema(S), owner(U) ���� +permit(U, createin, S).

+schema(S), owner(U) ���� +permit(U, alterin, s).

+schema(S), owner(U) ���� +permit(U, dropin, S).

+schema(S), owner(U) ���� +permit(U, grantcreatein, S).

+schema(S), owner(U) ���� +permit(U, grantalterin, S).

+schema(S), owner(U) ���� +permit(U, grantdropin, S).

D-CTP2:

+table(T), create(U, T) ���� +permit(U, control, T).

+view(V), create(U, V) ���� +permit(U, control, V).

D-CTP3:

+routine(R), create(U, R) ���� +permit(U, execute, R).

+routine(R), public(PUBLIC) ���� +permit(PUBLIC, execute, R).

 80

membership in a user group, where user groups are structured into an arbitrarily deep, directed acyclic

graph. Being based on a hierarchical model, each object resides within some container. Like Unix,

Livelink assumes a three-component structure to implement user permissions, including owner,

owner group, and public group (which includes all subjects that have “public access” permissions to

any object). Figure 27 illustrates how creation time policies model initial permissions of each

component when an object is created.

Figure 27. General creation time policies for Livelink’s permissions.

In general, the creator of an item is the owner of that item, and that user is initially granted the

permissions held on the container by its owner. The first rule in L-CTP1 illustrates this policy: the

body of the rule is a conjunction of three application-based predicates, namely item, container, and

owner; as well as a reserved predicate permit. Predicate item determines whether a new object has

been created. Predicate container determines whether C is the container of O. Predicate owner has

two parameters to indicate a subject and an object, respectively, and determines whether the subject is

the owner of the object. Predicate permit, in the body of the rule, determines permissions of the

container’s owner.

Every item is also associated with an owner group, and those group permissions are also initialized

to be identical to the owner group permissions on the container. This policy is captured by the second

rule in L-CTP1, in which predicate ownerGroup determines if the first parameter is the owner group

of the second parameter. The other predicates function as in the first rule.

Finally, the public group’s permissions are initialized to match its permissions for the container.

This policy is captured by the third rule in which predicate publicGroup determines if its parameter is

the public group.

L-CTP1:

+item(O), container(O, C), owner(U,C), permit(U, P,C) ���� +permit(S, P, O).

+item(O), container(O, C), ownerGroup(G1,O), ownerGroup(G2,C),

 permit(G2, P,C) ���� +permit(G1, P, O).

+item(O), container(O, C), publicGroup(G), permit(G,P,C) ���� +permit(G, P, O).

 81

In addition to the general creation time policies that are applicable to all object types in Livelink,

there are several policies applicable to specific object types.

The most common data items are documents, URLs, workflow maps, aliases, releases, generations,

and versions. These can be hierarchically organized into folders and compound documents. The

creator of any of these objects is initially assigned all permissions held by the owner of the container,

as explained in L-CTP1 in Figure 27. All other users are initially assigned the permissions that they

have on the container within which the object is created. This policy is captured by L-CTP2, depicted

in Figure 28, in which predicate +docs determines if the new created object is from one of the above

data item types. Recall that L-CTP2 is not a propagation policy as described in Section 5.1: it is

applicable only when an object is created, and thereafter permissions on either the object or its

container can be updated without affecting permissions on the other.

A second type of data item is a project, which can contain any types of data, including other

projects. Projects, like all other items, have permissions assigned for the owner, owner group, and

public access, as depicted in Figure 27. Unlike the items described above, however, the assigned

access list for a project contains exactly three project-specific groups, namely coordinator, guest, and

member, which act as roles; users and groups are assigned to these roles by making them members of

these project-specific groups. Permissions are assigned to the three roles as follows: a coordinator has

all permissions on the project, a guest has permission to see the project, and a member can also see,

add, modify, or delete objects within the project. These policies are captured by L-CTP3, depicted in

Figure 28, in which predicates coordinatorRole, guestRole, and memberRole indicate that the first

parameter is the specific group associated with the object specified as the second parameter to

represent coordinator, guest, and member roles, respectively.

When a project is created, the creator is automatically assigned to the coordinator role, and

coordinators may assign users and groups to any of the three roles or delete them from those roles.

When a project is created as a sub-project of another one, the coordinator, member, and guest lists are

copied from the project in which it resides, and the creator is added as an additional coordinator for

the sub-project, (see L-CTP4).

 82

Figure 28. Specific creation time policies for Livelink’s permissions.

L-CTP2:

+docs(O), container(O, C), permit(S,P,C) ���� +permit(S, P, O).

L-CTP3:

+project(O), coordinatorRole(R,O) ���� +permit(R,*, O).

+project(O), guestRole(R,O) ���� +permit(R, see, O).

+project(O), memberRole(R,O) ���� +permit(R, see, O).

+project(O), memberRole(R,O) ���� +permit(R, addTo, O).

+project(O), memberRole(R,O), container(X,O) ���� +permit(R, delete, X).

+project(O), memberRole(R,O), container(X,O) ���� +permit(R, modify, X).

L-CTP4:

 +project(O), create(S, O), coordinatorRole(R,O) ���� +assignRole(S,R).

+project(O1), container (O1,O2), project(O2), coordinatorRole(R2,O2),

assignRole(S2,R2), coordinatorRole(R1,O1) ���� +assignRole(S2,R1).

+project(O1), container (O1,O2), project(O2), memberRole(R2,O2), assignRole(S2,R2),

memberRole(R1,O1) ���� +assignRole(S2,R1).

+project(O1), container (O1,O2), project(O2), guestRole(R2,O2), assignRole(S2,R2),

guestRole(R1,O1) ���� +assignRole(S2,R1).

L-CTP5:

+project(O1), container (O1, O2), folder(O2), permit(S2,allPermissions,O2),

coordinatorRole(R1,O1) ���� +assignRole(S2,R1).

+project(O1), container (O1, O2), folder(O2), permit(S2,read,O2), guestRole(R1,O1) ����

+assignRole(S2,R1).

+project(O1), container(O1,O2), folder(O2), permit(S2,addTo,O2), ¬(permit(S2,

editAttributes, O2), permit(S2,modifyContents,O2)), memberRole(R1,O1)

���� +assignRole(S2,R1).

+project(O1), container (O1, O2), folder(O2),¬permit(S2,addTo,O2), permit(S2,

editAttributes, O2), permit(S2,modifyContents,O2), memberRole(R1,O1)

���� +assignRole(S2,R1).

 continue …

 83

Figure 28 (continued). Specific creation time policies for Livelink’s permissions.

In those rules the predicate assignRole indicates that the first parameter (which is a subject) is made

a subgroup of the second parameter (which represents a role). Also as before, predicate create has

two parameters to indicate a subject and an object, respectively, and determines whether the subject

has created the object.

Alternatively, if a project is created in a folder, subject-role associations are initialized based on the

permissions that the subjects have on the folder: the project creator and those with all permissions on

the folder are added to the coordinator list, those with read permission on the folder are added to the

guest list for the project and those with either add items or both edit attributes and modify contents on

the folder are added to the member list for the project. As before, the project creator is assigned to

the coordinator role by the first rule of L-CTP4. However, the rest of the assignments are captured by

L-CTP6:

+workItem(O), create(S, O) ���� +permit(S ,administer, O).

+workItem(O), container(O,C), folder(C), permit(X,allPermissions, C) ���� +permit(X

,administer, O).

+workItem(O), container(O,C), folder(C),

 permit(X,read,C) ���� +permit(X ,read, O).

+workItem(O), container(O,C), folder(C), permit(X,addItems, C),

 ¬ (permit(X, editAttributes, C),

 permit(X,modifyContents, C)) ���� +permit(X ,write, O).

+workItem(O), container(O,C), folder(C), permit(X,editAttributes, C),

 permit(X, modifyContents, C),

 ¬permit(X, addItems, C) ���� +permit(X ,write, O).

+workItem(O), container(O,C), project(C),

 coordinatorRole(R,C) ���� +permit(R, administer, O).

+workItem(O), container(O,C), project(C),

 guestRole(R,C) ���� +permit(R, read, O).

+workItem(O), container(O,C), project(C),

 memberRole(R,C) ���� +permit(R, write, O).

 84

L-CTP5, depicted in Figure 28, in which predicate folder determines if an object is from the type

folder, and keyword allPermissions is an abbreviated form of the conjunction of all permissions.

The third class of data item, called work items, includes channels (sequences of news items),

discussions (hierarchically nested sequences of topics and replies), and task lists (hierarchically

nested sequences of tasks). For this class, the individual elements of the work item do not carry

independent permissions, but instead are governed by the permissions assigned to each work item as a

whole. For objects in this class, users and groups may be given read permission, write permission, or

administer permission (which includes grant and revoke permissions as well as all other permissions).

If a work item is created under a folder, the creator and those with all permissions on the folder are

assigned administer permission, stated by the first and second rules of L-CTP6 in Figure 28. Those

with read permission on the folder are assigned read permission on the work item; stated by the third

rule of L-CTP6. Finally, those with either add items or both edit attributes and modify contents on

the folder are assigned write permission on the work item; stated by fourth and fifth rules of L-CTP6.

Likewise, if an item of this class is created under a project, the coordinator group is given administer

permission, the guest group is given read permission, and the member group is given write

permission; stated by the last three rules of L-CTP6.

5.3 ACAD and the Constraining Mechanism

The constraining mechanism described in Section 5.1 is the means of initializing the access control

states in ACAD as well as restricting the possible valid next states. In particular, this mechanism can

exploit different classes of ACAD access banks (illustrated in Figure 16) to define creation time

policies (e.g. in public banks, as illustrated in Figure 26). Moreover, the initial content of omni banks

(illustrated in Figure 17) is in fact determined by this same mechanism. It is creation time polices that

define what the initial privileges of owner banks are, whether someone can customize or combine two

existing banks, and what privileges are allowed to be imported in such banks.

5.4 Further Discussion

This section describes the power of creation time policies to adjust the level of decentralization. As

shown through Section 5.2, it is important to notice that the creation time policy in ACAD is a

mechanism to initialize an explicit access control matrix anywhere on the spectrum of access control

 85

administration. This section highlights the power of this mechanism towards adjusting the amount of

decentralization anywhere from an autocratic setting to an anarchistic state, by manipulating the

creation time policies of the motivating example illustrated in Figure 24.

In particular, the second rule of CTP3 in Figure 24 states that only one set of subjects (who are the

family member of the patient) can update rows in the explicit access control matrix that correspond to

specific patients (but only by setting cells of the corresponding column of diagnosis information to

permission read). We illustrate the following cases to demonstrate the effect of creation time policies.

(a) If the second rule is removed from CTP3, no one can update the explicit access control matrix

at all. Consequently, the existing cells of the access matrix will not evolve (only new rows or

columns may be added to the matrix).

(b) Now, while the second rule does not exist in CTP3, assume adding the following rule

+medical_record(M) ^ secutiy_officer(S) ���� +permit(S, *, M).

to Figure 24. This simulates a centralized (autocratic) administration model since only the

security officer is able to update the explicit access control matrix (delegate or revoke rights).

All other subjects have to channel their update requests through the security officer.

(c) Alternatively, assume adding the following rule

 create(S,M) ���� +permit(S, *, M).

to Figure 24 (while the second rule does not exist in CTP3). This simulates a user managed

access control model since whoever creates an object has all of the update rights on it. Unless

the creaor chooses to grant delegation permissions to others, all other subjects have to

channel their update requests through the creator.

(d) Finally, assume adding the following non-safe rule

+medical_record(M) ���� +permit(*, *, M).

to Figure 24. This rule makes the administration model anarchistic since every subject in the

system is able to update the rights on a medical record.

5.5 Related Work

Access control enforcements are traditionally divided into Discretionary Access Control and

Mandatory Access Control. The former provides predefined (by users) discretionary rules and access

 86

control based on users’ identities; the latter controls access based on subjects’ and objects’

classifications in a system. In mandatory access control environments, access control rules are

decided by system policies independently of the owners of objects. Both discretionary and mandatory

frameworks have been of interest to researchers, and they are supported by many subsequent models.

Role based access control models also have well investigated in the literature as reviewed in Section

2.2. This section reviews another work focused on object creation as follows.

A more specific idea of enforcing security policies at object creation time is shown in the work by

Zannone et al.. They propose a mechanism to control information flow with a focus on derived

objects that are dynamically created at run time [Zannone et al. 2006]. Essentially, the authors

improve the flexible authorization framework [Jajodia et al. 2001] by allowing users to create new

objects but avoiding Trojan horses. The idea is that a derived object’s authorizations must be a subset

of the intersection of its original object’s authorizations. The system administrator is warned if a user

can access a new object o1 while he cannot access a subset of objects from which o1 is derived. It is,

however, up to the system administrator to allow or disallow such information flows.

 87

Chapter 6

MODEL SEMANTICS

This chapter represents a formal semantics, defined operationally by a relational model, for the

ACAD model. Three data catalogues are defined in ACAD, namely SysObjHier, SysBankObj, and

SysBankSubj, to represent the object hierarchies as well as the bank-object and bank-subject

assignments, respectively. The assumption is that there are additional relations for all objects

representing their various attributes, such as object type, creator, etc. To support these catalogues,

three keywords NoPar, Public, and Sys are defined, where NoPar represents the virtual parent of all

root objects, Public⊆U represents all subjects in the access control universe (cf. Definition 1), and Sys

∈ Public is the system subject that is in charge of all automatic operations taken by the system at

initialization time.

Table 5(a) illustrates SysObjHier, which represents the information about the object hierarchies

including the bank and subject hierarchies. This catalogue consists of four attributes, namely T#,

Child, Parent, and By. In our illustrations, T# ij indicates that the current tuple results from the jth

operation of the ith transaction. Child and Parent represent the child-parent relationship within the

object hierarchy. Attribute By, which is from the Public domain, represents which subject has caused

the tuple. Note that we assume each root vertex is its own parent; moreover, we do not illustrate

cross-references in our catalogues since they have no influence on the algorithms.

Table 5(b) illustrates SysBankSubj, the bank-subject assignments, which include four attributes,

namely T#, Bank, Subject, and Grantor. Again, T# ij indicates that the current tuple is produced by the

jth operation of the ith transaction. Subject and Bank represent the subjects which hold all permissions

 88

designated by authorizations in the bank. Grantor represents who has assigned the subject to the

bank.

Table 5(c) illustrates SysBankObj, the bank-object assignments, which include six attributes,

namely T#, Bank, Object, Operation, Mode and Constraint. T# is as in the other relations. Bank

represents the bank name. Constraint, Operation, and Object, when Mode is set to “permit”, represent

the domain of subjects who are eligible to execute the operation on the object within this bank. When

Mode is set to “deny”, the tuple represents a negative authorization indicating that the permission

cannot be granted to the object. The conflict resolution strategy determines which authorizations can

be implicitly obtained by the assigned subjects.

Table 5. ACAD system catalogues.

(a) SysObjHier represents object hierarchies.

T# Child Parent By
c

01 b00 b00 Sys

(b) SysBankSubj represents bank-subject assignments.

T# Bank
c
 Subject

c
 Grantor

c

03 b00 Creators Sys

(c) SysBankObj represents bank-object assignments.

T# Bank
c
 Object

c
 Operation Mode Constraint

02 b00 NoPar createChild permit Public

Underlined attributes and superscript letters represent primary and foreign keys of these catalogues,

respectively. For instance, the primary key of SysBankSubj is the combination of Bank and Subject;

also, attributes Bank, Subject, and Grantor are foreign keys referencing the key of an object table (not

illustrated). Moreover, Table 5 depicts the initial state of the catalogues when a new system is

initialized. T# 0i indicates that the tuple is produced by the initial transaction in the system. Table 5(a)

illustrates that the system subject, Sys, initially creates bank b00. Tables 5(b) illustrates that Creators ⊆

 89

Public are subjects authorized to create objects, whereas Table 5(c) illustrates that any subset of

Public can be potentially authorized to create objects. If Creators=Public, i.e. every subject has the

right to create objects, then there is no constraint at initialization time to be assigned to bank b00; in

fact, all subjects (Public) are then assigned to b00 and thus authorized to create root objects, children

of NoPar. The rest of this section specifies the semantics of major access control lookup and update

requests in our model.

6.1 The Lookup Requests

There are two major classes of lookup requests in ACAD, subjectCapabilities and objectAccessList.

The former is a class of queries by which one can find the access rights for an arbitrary subject (user,

group, application); and the result, called capabilities, is a list of pairs of objects with the

corresponding operations for which the subject has permission. Similarly, the latter is a class of

queries by which one can find the access rights to an arbitrary object (file, directory, group, etc.); and

the resulting access list is in a list of pairs of subjects with the corresponding operations permitted on

the object.

In Chapter 3, we discussed an algorithm to propagate access authorization through hierarchies and

resolve possible conflicts based on a variety of combined strategies. The algorithm, called Resolve(),

exploited the explicit access control matrix (called EACM) as well as subject and object hierarchies

(called SDAG and ODAG) as global variables. Here, in Figure 29, Algorithm 0 represents how such

variables can be defined using data catalogues depicted in Table 5. In particular, Line 1, in Algorithm

0, defines relation EACM to express all explicitly authorized (either permitted or stopped) subject-

object-operation triples, by joining catalogues SysBankObj and SysBankSubj where the joint attribute

is bank. Lines 2 and 3 define relations SDAG and ODAG to represent subjects and objects

hierarchies, respectively. (Note that only (active) objects that are members of Public are considered as

subjects in ACAD.)

Algorithm II in Figure 29 depicts subjectCapabilities. It takes a subject as an input parameter, and

computes the union of all pairs <o, p> for all objects and all permissions if accessible to the subject.

Each output pair indicates an operation that the subject is permitted to execute on the corresponding

object. Algorithm Resolve(), presented in Chapter 3, determines whether or not a given subject can

 90

access on object with some permission, based on the current conflict resolution strategy and

propagation mode.

Similarly, Algorithm III in Figure 29 depicts objectAccessList. It takes an object as an input

parameter, and computes the union of all pairs <s, p> for all subjects and all permissions for which it

is accessible. Each output pair indicates a subject that can execute the corresponding operation on the

object.

Figure 29. Lookup algorithms in ACAD.

Note that our focus in this chapter is on the semantics of ACAD, and not on the computational

complexities of the algorithms. However, it is obvious that the worst-case time complexity of

Algorithm II (and III) is not worse than the one of Algorithm I since we can enhance Algorithm I to

propagate all pairs of <object, permission> in the same manner as it currently propagates one pair,

Algorithm 0: PreliminarySteps()

1.)(
,,,

SysBankObjjSysBankSubEACM
bankmodeoperationobjectsubject

×Π=

2.)(
,

SysObjHierSDAG
Publicchildparentchild

∈

Π= σ

3. SysObjHierODAG
parentchild ,

Π=

Algorithm I: Resolve (s1 ∈ Public, o1 ∈ U, p1 ∈ Permissions, pMode ∈ {“pass through”, block by”,

override”}, dRule ∈ {“+”, “-”, “0”}, lRule ∈ {max(), min(), identity()}, mRule ∈ {“before”,

“after”, “skip”}, pRule ∈ {“+”, “-”})

¤ Cf. Chapter 3, Figure 8

Algorithm II: SubjectCapabilities (s1 ∈ Public)

1. '', +=><=

∈
∈

)(if ulee,mRule,pRdRule,lRul,pMode,p,osresolve,poR 11111

sPermissionp
U,o

1

1

U

2. Return R

Algorithm III: ObjectAccessList (o1 ∈ U)

1. ''pRulemRulelRuledRule,pMode,p,osresolve,psR 11111

sPermissionp
Public,s

1

1

+=><=

∈
∈

)(if ,,,,U

 91

with the same worst-case complexity. Furthermore, the conflict resolution algorithm (Resolve()) can

be replaced with alternative algorithms that are optimized for a particular strategy or subset of

strategies to be provided to a customer.

6.2 The Update Requests

Figure 30 illustrates eight update methods, namely assignTo, removeFrom, import, addConstraint,

deleteBank, subscribeTo, unsubscribeTo, and deleteSubject as explained in Section 4.3. To be able to

call any of these methods, the caller subject must have been granted the applicable permission within

subjectCapabilites. For simplicity, we omit code to check that update operations are in accordance

with primary and foreign keys constraints, such as ensuring that duplicates are not inserted into the

access control tables and references to deleted values are not left dangling.

Algorithm IV represents method assignTo, which assigns a given subject s∈Public to a given bank

b∈Banks where views Public⊆U and Banks⊆U represents all subjects and banks in the access control

universe, respectively. First, subject s must meet all constraints for authorizations in b. Then, a

corresponding tuple <T(), s, b, caller()> is inserted into SysBankSubj, in which function T() generates

a new transaction number and function caller() returns the subject who calls method assignTo.

Algorithm V represents method removeFrom, which removes a given subject s∈Public from a

given bank b∈Banks. The method removes the tuple corresponding to bank b and subject s from

SysBankSubj.

Algorithm VI represents method import, which allows the caller to import any subset of

authorizations omniRights⊆Authorizations from a given bank source∈Banks to a new bank

newBank∈Banks. Hence, newBank becomes a child of source in the bank hierarchy by inserting tuple

<T(), newBank, source, caller()> into SysObjHier where function caller() determines the importer

subject. Moreover, recall from Section 4.5, the exporter (owner of source) retains control over his

bank hierarchy by specifying (using parameter omniRights) which authorizations are inserted into the

customized omnibank of the importer.

Algorithm VII represents method addConstraint, which excludes subjects from the existing

constraint of a given permission p∈Permissions of a given bank b∈Banks on a given set of objects

where view Permissions represents all permissions of the system and views Banks, U, and Public are

 92

Figure 30. Update algorithms in ACAD.

Algorithm IV: assignTo(s∈Public; b∈Banks)

if s ∈ constraint(b)

then insert <T(), s, b, caller()> into SysBankSubj;

Algorithm V: removeFrom (s∈Public; b∈Banks)

delete from SysBankSubj where subject=s and bank=b;

Algorithm VI: import(newBank∈Banks; source∈Banks; omniRights⊆Authorizations)

insert <T(), newBank, source, caller()> into SysObjHier

update omni(caller()) with omniRights;

Algorithm VII: addConstraint (b∈Banks; o ∈ U; p ∈ Permissions; s ∈ Public)

if)(

permit

,bconstraint SysBankObjs

mode
poperation

oobject
bank

=
=

=
=Π∈ σ

then

update SysBankObj set constraint=constraint-{s} and t# = T()

where bank=b and object=o and operation=p and mode=permit;

delete from SysBankSubj where subject = s and bank=b;

addConstraint(children(b), o, p, s);

Algorithm VIII: deleteBank (b∈Banks)

Pre: l has no child

delete from SysBankSubj where bank=b;

delete from SysBankObj where bank=b or object=b;

delete from SysObjHier where child=b;

Algorithm IX: subscribeTo (member∈Public; group∈Public)

insert <T(), member, group, caller()> into SysObjHier;

Algorithm X: unsubscribeFrom(member∈Public; group∈Public)

delete from SysObjHier where child=member and parent=group;

Algorithm XI: deleteSubject (s∈Public)

Pre: s has no child

delete from SysBankSubj where subject=s;

delete from SysBankObj where object=s;

delete from SysObjHier where child=s;

 93

as explained in Algorithm IV. First, if s does not intersect the existing constraint, the algorithm

terminates; otherwise, the corresponding tuples <_, b, o, p, permit, Constraint> in SysBankObj are

replaced by new ones <T(), b, o, p, permit, Constraint-{s}>, in which function T() generates a new

transaction number. Calling this method may revoke bank b and its descendants from some subjects.

Therefore, the corresponding tuples for subject s in s are removed from SysBankSubj. Finally, the

algorithm is cascaded to the descendants in order that their constraints remain contained within the

revised constraints in the ancestor (as required by Definition 11). Note that the method is applicable

to permission authorizations only, not to stoppers.

Algorithm VIII represents method deleteBank, which deletes a leaf bank b∈Banks from the bank

hierarchy. Calling this method removes all corresponding bank-subject assignments from

SysBankSubj, all corresponding bank-object assignments from SysBankObj, all tuples in which b is

treated as an object from SysBankObj, and all incident edges for vertex b from SysObjHier.

Algorithm IX represents method subscribeTo, which includes a given subject member∈Public in a

given subject group∈Public. The corresponding tuple <T(), member, group, caller()> is inserted into

SysObjHier in which functions T() and caller() are as in Algorithm IV.

Algorithm X represents method unsubscribeFrom, which removes a given subject

member∈Public from a given subject group∈Public. The method removes the tuple corresponding to

member and group from SysObjHier.

Algorithm XI represents method deleteSubject, which deletes a leaf subject s∈Public from the subject

hierarchy. Calling this method removes all corresponding bank-subject assignments from

SysBankSubj, all tuples in which s is treated as an object from SysBankObj, and all incident edges for

vertex s from SysObjHier.

6.3 Object Creation

When a new object is created, one or more corresponding tuples are inserted into the catalogue

SysObjHier to represent the object and its parent(s). (Recall, in ACAD, each object is its own parent

too.) Furthermore, zero or more update requests (depicted in Figure 30) are automatically triggered

based on the creation time policies (discussed in Chapter 5). As depicted in Figure 23, any of the ten

 94

types of reserved predicates explained in Section 4.3 may be triggered in a creation time policy. The

explanation of each case is as follows:

Predicate permit (or deny) causes a root bank to be created by Sys; consequently, one tuple is

inserted into catalogue SysObjHier and several tuples are inserted into catalogues SysBankObj and

SysBankSubj (at least one each), to represent the bank, its authorization(s), as well as the

corresponding object and subject assignments.

Predicates subscribeTo and unsubscribeFrom cause an update to the subject hierarchy, which either

insert tuples to (or delete from) catalogue SysObjHier, to represent the group subscription and

unsubscription, respectively. Similarly, predicate deleteSubject causes one or more deletions from

catalogue SysObjHier, to represent deletion of a leaf subject and removing corresponding edges from

its parents.

Predicates assignTo and removeFrom cause an update to the subject-bank assignments, which

either insert or delete tuple(s) from catalogue SysBankSubj to represent the simple delegation and

revocation, respectively. Note that assignTo must first ensure that the subject meets the constraint.

Predicate import causes a child bank of an existing bank to be created by Sys; several tuples are

inserted into catalogues SysObjHier, SysBankObj and SysBankSubj, to represent the bank, its

parents, its authorization(s), as well as the corresponding object and subject assignments. Recall that

import is the means of enhanced delegation in ACAD, explained in Section 4.5.3.

Recall also that addConstraint is the means of strong revocation, explained in Section 4.5.5.

Predicate addConstraint causes an update to Catalogue SysBankObj; the update is limited to further

constrain the constraints attribute of an existing tuple. This may also cause several other updates for

the tuples associated with the descendants of the constraining bank as well as deleting some tuples

form SysBankSubj to remove subjects who no longer meet the new constraint.

Finally, predicate deleteBank causes one or more deletion from catalogue SysObjHier, to represent

deletion of a leaf bank and removing corresponding edges from its parents.

6.4 Related Work

The idea of defining the ACAD semantics operationally by a relational model has been inspired by

the paper by Bertino et al. describing authorization model for relational databases [Bertino et al.

 95

1999]. They have defined four relational catalogues to represent privilege-table (or view)

assignments, subject-privilege assignments, subjects’ ancestors, and subjects’ parents relationships. It

is clear that the ancestor relationship can be derived from the parent relationship; however the authors

decided to materialize it for implementation efficiency. Note that they do not have to worry about the

object hierarchy since DB2 tables are independent from each other (they use views mostly for

content-dependent authorizations). However, in ACAD, relying on the fact that everything is

essentially an object, all subject, object, and bank hierarchies are represented in one catalogue

(SysObjHier). Moreover, the implementation choices of the ancestor relationship, which is computed

by deriving reachable nodes for each hierarchy, remains intentionally open to users for flexibility in

storage and time efficiencies.

 96

Chapter 7

USER MANAGED ACCESS CONTROL

Chapters 3 through 5 describe the mechanism to specify access control administration, which is called

ACAD. This chapter provides an illustrative example in which ACAD is applied to define a User

Managed Access Control (UMAC) system (through the motivating example of healthcare

applications, introduced in Section 1.3). In particular, in UMAC, subjects fully manage the formation

of groups, the structure of objects, and the expansion of access banks as well as the assignment of

authorizations, without interfering with one another and without requiring a centralized

administration to update the access control structure. Section 7.1 introduces the UMAC specification.

Section 7.2 illustrates UMAC by a use case of healthcare systems. Section 7.3 proves how users can

retain control in UMAC. Finally, Section 7.4 reviews related literature.

7.1 Specification

Recall from Chapter 1, access control models form a spectrum of autocratic to self-governing

administrations. UMAC fits at the latter end. There are various types of self-governing systems, such

as systems in which every object creator is the object owner (for example, web-based file sharing

systems), systems in which owners are defined at configuration time (for example, corporate

applications), etc.

UMAC is a self-governing system, in which some subjects who create objects are considered as

owners whereas some other creators may act as agents or employees of the object owner. At creation

time, some subject is designated as owner and initially receives all permissions on the created object.

 97

Creation time policies may additionally grant initial permissions to other users as well. Propagation of

permissions uses the stopper form of denial. Therefore, in UMAC, each subject may possess two

faces: the administrator of its own objects, and at the same time, a user of others’ objects. With their

administration face, subjects require full access control over their own objects, but as users they are

typically licensed to more limited levels of access.

User managed access control becomes complicated when the hierarchy of subjects is not consistent

with the hierarchy of objects. In other words, subjects (e.g. technicians in the healthcare application)

may have access to many small parts of objects (their patients’ relevant personal data). Moreover,

accessible domains of various subjects form diverse structures that should be recognized for

optimization purposes. For instance, a physician’s accessible data mainly consists of a collection of

disconnected nodes each of which corresponds to a particular patient treated in various clinics; while,

a technician’s accessible data is basically medical data of patients treated in a particular laboratory.

Definition 12 (Principle of Non-interference). “One group of users, using a certain set of

commands, is not interfering with another group of users if what the first group does with those

commands has no effect on what the second group of users can see” [Goguen and Meseguer 1983].

Goguen and Meseguer defined the principle of non-interference by which subjects are prevented

from certain interference activities that violate some security policies. Notice that this approach

avoids a transitive-closure computation which generally exists in verifying security by determining

which subjects potentially can interfere with others.

ACAD’s features provide the flexibility of defining a UMAC model. For instance, the generic and

customized banks (introduced in Section 4.2.) can be applied towards the self-governance property

explained in Chapter 1. In particular, there is no administrative superiority in Figures 16 (a) or (b)

since neither S1 nor S2 can disrupt the other’s actions, and there is no centralized control.

7.2 Use Case: Healthcare Systems

This section illustrates the UMAC model through a more concrete instance of Example I. This

application has been initially inspired from the XACML use cases [Kudo 2001]; however, we have

adapted it to reflect a more decentralized application environment [Chinaei and Tompa 2005]. Figure

31 illustrates the schema of a typical medical record, which consists of one element of patient

 98

information and zero or more elements of encounter. An encounter consists of elements

hospitalization information, diagnosis information, and possibly completed consent form. Each

element of diagnosis information contains zero or more elements of therapy information. A medical

record may be accessed by different subjects such as doctors, patients, receptionists, accounting

system, etc. Each subject should be authorized to have only the minimal privileges it needs. Here, the

functions of UMAC are briefly described based on the following scenario that focuses on both

efficiency and self-governance.

Figure 31. An example of medical records schema.

The scenario assumes an instance of the system is installed for St. Mary’s hospital. The hospital is

the owner of medical records; however, various users of the system, such as patients or caregivers,

may create elements of a medical record (such as personal data, hospitalization information, and

diagnoses). Moreover, groups of users and their job functions may be defined when the system is

initialized. For instance, assume group Patients is created and assigned to bank predefined1 which

includes an import authorization that allows importers to create the element patient_info within

medical records. Similarly, assume groups Receptionists and Doctors are created, and their members

are able to create sub-elements hospitalization_info and diagnosis_info, respectively, by exploiting

corresponding banks predefined2 and predefined3. Furthermore, all users are assigned to a predefined

bank which includes authorization <C, permit, subscribeTo, Patients> by which they can subscribe

themselves to group Patients when they need to see a doctor.

This use case represents the application of different classes of access banks, explained in Section

4.2.4. For readability of Figures 32 to 35, the subject hierarchy is omitted from the illustration.

patient_info

family

insurance#
hospitaliza

tion_info

encounter

therapy_info

diagnosis_info consent

medical_record

*

*

?

 99

Patricia

<C1
1
, permit, append, patient_info>,

<C1
2
, permit, examine, patient_info>

b1

patient_info

<C2, permit, assignTo, b1>

b2

Receptionists

St Mary’s

omni1

medical_record

omni2

omni2
1

Assume Patricia becomes a member of Patients. Therefore, through predefined1, she can create an

element in the St. Mary’s hierarchy to contain her personal information. When she does so, as part of

the hospital’s check-in procedure, she is directed to create banks b1 and b2, and to assign receptionists

of St. Mary’s Hospital to b2. Figure 32, which combines aspects of Figures 20 and 22, illustrates this.

Note the use of delegation by agents and enhanced delegation. Moreover, as a part of the check-in

procedure, a family member of the patient is assigned to a generic bank genBank4, by which they are

able to create the consent.

Figure 32. A new patient arrives in a healthcare system.

Figure 33. A doctor attends the patient.

Then, assume Robert, who is a member of the Receptionists group, and thus inherits the

permissions for Receptionists, exploits bank predefined2 to serve Patricia’s request by creating her

St Mary’s

omni1

medical_record

diagnosis_info <C3-Patricia, permit, read, diagnosis_info>

<C4, permit, assignTo, b3>

Dorothy

omni3

omni3
1

b4

Doctors Nurses

encounter

b3

 100

hospitalization information (such as room number and arrival date), and also uses the grant

permission in b2 to assign the group Doctors to b1 (not diagrammed). Then, as illustrated in Figure 33,

doctor Dorothy attends to Patricia, and creates her diagnosis information by exploiting bank

predefined3. Dorothy also creates banks b3 and b4, and as the doctor in charge, assigns Doctors and

Nurses to b4 so that they can delegate the permission to themselves or to others to read Patricia’s

diagnosis information. However, she excludes Patricia using the constraint of b3 to prevent her from

reading her own diagnosis information even if she is a doctor or nurse (unless she is granted

permission through another route).

Figure 34. The patient is permitted to see her diagnosis information.

Figure 34 illustrates that St. Mary’s can create a new bank b5 that imports from omni1 and include a

read authorization with grant option, and assign Fred, a member of Patricia’s family, to it upon

creating the informed consent by him. Therefore, Fred can use the enhanced delegation mechanism to

create bank b6 and assigns Patricia to it in order to permit her to read her diagnosis information.

Figure 35 combines Figures 32 to 34 and depicts the complete medical record for Patricia. For

readability, details of Figures 32 to 34 are not depicted in Figure 35; for instance, Figure 35 does not

illustrate access banks’ constraints. Moreover, authorizations are shown by abbreviated symbols R,

R+, and R*, which represent permission read, simple delegation of permission read, and enhanced

delegation of permission read, respectively. For instance, R+ in bank b2 means subjects assigned to

b2 (e.g. receptionists) are allowed to assign other subjects (e.g. doctors) to bank b1, which permits

them to read Patricia’s personal information. Dotted boundaries highlight the domains within which

each subject creates and controls a part of the health record database. As explained in Section 5.1, the

medical_record
<C5

1
, permit, import(read, assignTo),b5>,

<C5
2
, permit,read, diagnosis_info>

b5

b6

<C6, permit,read, diagnosis_info>

St Mary’s

omni1
Fred

omni4

omni4
1

diagnosis_info

encounter

Patricia

 101

therapy_info

Dorothy
medical_record

patient_info

family

insurance#

St. Mary’s

Patricia

public bank

consent

b3
Doctors

Nurses

b4

Fred

b5

Doctors

b1

hospitaliza
tion_info

encounter

Robert

R+

Receptionist

b2

diagnos
is_info

R

R+

R

R*

R

C1

C3

predefined4

predefined1

predefined2

C2

C4

predefined3

R

Patricia

b6

creators’ capabilities are defined by creation time policies. For instance, if the policy states that

doctors have all capabilities on the diagnosis information that they create, then Dorothy’s connections

to banks b3 and b4 will be from her omni bank instead of from the customized omnibank.

This example shows how corporate policy can allow various subjects such as patients,

receptionists, doctors, and patient family to administer access control over different parts of a medical

record. Every time an item of data is created, a corresponding owner bank with all methods is

automatically created or updated. As an example of a combined role, Fred can create one combined

bank on several diagnoses and assign Patricia to see them all. As an example of selective revocation,

Dorothy prevents Patricia from seeing her own record by excluding her in the constraint component

of bank b3. St Mary’s can prevent Fred and others assigned to role b5 or its descendents (b6) from

reading the diagnosis information by removing the connection between the omnibank and b5; the read

permission will no longer be inherited.

Figure 35. All authorizations on the patient medical record.

One may extend this example in many directions. For instance, since St. Mary’s has control over a

sub-graph of Dorothy’s bank hierarchy rooted at the customized omnibank omni3
1
, the hospital

authority can selectively revoke bank b4 from some or all nurses. In a worldwide application

 102

including many hospitals in the system, a patient may create sub-elements and assign permissions for

various hospitals and a doctor may cooperate with several clinics. Thus, Patricia (and Dorothy) may

have several customized omnibanks, each controlled by a different hospital. However, St Mary’s has

control over the corresponding subgraphs of Patricia’s (Dorothy’s) bank hierarchy rooted at omni2
1

(omni3
1
) only, and cannot interfere with the banks of other hospitals. With such an approach,

hospitals, and their users, can share their information based on corporate policy agreements.

7.3 Proof of Retaining Control

Theorem. Assume subject S1 owns object d and delegates any subset of its authorizations with respect

to d to any other subjects through a customized bank of its bank hierarchy G. S1 is able to strongly

revoke any given authorization a operating on object d from any given subject S2 by removing S2

from the corresponding constraint of omnibank b0.

PROOF (by contradiction). Assume S1 is not able to revoke authorization a from S2. Because S1 owns

object d, all authorizations for d are initially placed in S1’s omnibank or in banks in the hierarchy

rooted at that omnibank and nowhere else. Any of those authorizations can appear in other banks only

through the import operation, which always creates the new bank as a descendent of the exporting

bank. Therefore, there is a customized bank b1 in G (rooted at S1’s omnibank) by which S2 enjoys

authorization a. There are only two cases then: either b1 is not a descendent of b0 which contradicts

the definition of an omnibank; or, b1 is a descendent of b0 but the constraint of authorization a in b1 is

not a subset of the corresponding constraint in b0, which contradicts the definition of an access bank.

Therefore, S1 is able to revoke any given authorization a from any given subject S2. 

Corollary 1. Any subject assigned to an omnibank o is able to strongly revoke any authorization

operating on any object associated with o from any given subject S by removing S from the

corresponding constraint of o.

Corollary 2. Any subject S1 who is authorized to add more constraints to a fertile bank f is able to

revoke any authorization a delegated to S2 via any descendant of f by removing S2 from the

corresponding constraint of f.

 103

7.4 Related Work

The user managed access control model explained in this chapter is distinguished from other

proposals by its unique property of self-governance (no designated administrator in the system). In

fact, from UMAC’s point of view all users are in a flat administrative level with no superiority over

one another, whereas other proposals often assume a hierarchical administration in the system in

which some subjects have administrative superiority with respect to other subjects [Moffett 1990;

Firozabadi et al. 2001]. Moffett proposes the idea of administrative domains, each of which has an

administrator to update the metadata. The whole system is considered as a major domain with a super

administrator who controls other administrators. This idea has been exploited by other researchers to

propose a variety of hierarchical administrations; see Sections 2.2 and 2.3. Firozabadi et al. improve

the idea of administrative domain with two major contributions: adding constrained delegation and

basing the model on the cryptography approaches rather than identity-based access control lists. The

former enriched the model by controlling the domain of grantees. The latter modified the model to be

based on public keys rather than identities. UMAC is very different from such models since it does

not necessarily require domains.

UMAC is also different from the proposals that enhance the RBAC model for non-centralized

environments [Wedde and Lischka 2003; Park and Hwang 2003]. As opposed to UMAC, none of

these propose a flat administration. In Cooperative Role-Based Administration [Wedde and Lischka

2003], the authors propose local Authorization Teams who exercise access control on a set of disjoint

organizational units; called an Authorization Sphere. They adapt Petri Nets to implement quorum and

veto features for granting rights from owners to users. Members of an Authorization Team may

jointly modify the set of rules of their authorization sphere. An inheritance principle is applied based

on hierarchical relationships between Authorization Spheres. Park and Hwang introduce a three level

access policy for a peer-to-peer architecture [Park and Hwang 2003]. Each peer makes the access

control decision based on the enterprise, the community, and the peer policies locally. Since different

roles may have the same privileges, or conversely, roles with a common name but in different

communities may define different privileges, the authors assume a function called Role Ontology,

which determines similar roles in different communities. In this way, the authors propose a

centralized administration for User-Role assignments, but support decentralized Permission-Role

assignments in different communities and also within peers.

 104

Chapter 8

COMPARISON OF MODELS

This chapter highlights our contributions by comparing ACAD to four other noteworthy models, so

called AFS, FARDMS, FAF, and Ponder, all of which have been well cited in the literature of access

control. AFS is the security model for the Andrew File System proposed by Howard et al. [Howard

et. 1988]. FARDMS, Flexible Authorization Model for Relational Databases Management Systems,

proposed by Bertino et al. [Bertino et al. 1999] extends the System R model by supporting access

control exceptions and strong enforcement. FAF [Jajodia et al 2001] is a specification language to

support various access control policies in a system. Ponder is a declarative policy specification

language for management and security of distributed network systems proposed by Damianou et al.

[Damianou et al. 2001]. Further information about each model is given in Sections 8.1 and 8.2.

8.1 Desirable Features

This section undertakes an overview of various access control features. These features have been

partially inspired from existing models [Bertino et al. 1999; Tolone et al. 2005]. We also define

several complementary features by studying new enterprises. In particular, we review the overarching

feature (defined in Section 4.1) that dominates the entire model; and, we divide other features into

four categories: functional, administration, security, and performance requirements, based on which

ACAD is comparrd to AFS, FARDMS, FAF, and Ponder. The comparison is illustrated in Table 6.

 105

8.1.1 Overarching Requirement

ACAD is based on one single model in which subjects, banks and objects are treated uniformly, that

is, data and metadata are treated with the same security model. However, none of AFS, FARDMS,

FAF, or Ponder support the overarching requirement. AFS provides two hierarchies: one for users and

groups and another for files and directories, which are controlled by different security models.

FARDMS provides three hierarchies for subjects, roles, and objects, and each is controlled

differently. Moreover, the models for administrative privileges and ordinary ones differ. For instance,

FARDMS concept of strong or weak privileges does not apply to its administrative privileges.

Therefore, FARDMS fails in providing a uniform model. FAF defines three, similar yet differently

administered, hierarchies for users, objects, and sets of privileges (called roles in the current version).

In particular, FAF defines several predicates to represent authorizations, but it does not specify how

subjects or objects are represented in the authorization system. As an immediate shortcoming, the

materialized views suggested to represent the authorizations, based on the assumption of more

frequent access requests with respect to update requests, becomes inefficient in the case of frequent

updates in users or objects hierarchies. Ponder does not address the data representation of its

authorizations, subjects, or targets, because it focuses on the policy specification language.

8.1.2 Functionality

Functional features express operational expectations that are desired from access control models in

practical applications. There are four functional features such as support for both closed and open

policies, granularity, support for exceptions within hierarchies, and support for contextual

information.

— Support for both Closed and Open Policies: A closed access control system exploits the

principle that subjects have no access to an object unless corresponding positive access

authorizations exist. Similarly, an open access control system states that subjects have access to

objects in the absence of negative access authorizations. Thus, closed systems minimize

authorization while open systems maximize it. Access control models should be able to

implement either assumption properly since both are common in practical applications.

AFS implements a closed policy only, and FARDMS can simulate a restricted open policy

that does not support exceptions, whereas FAF and Ponder can easily support an open policy

 106

with exceptions by interpreting permissions negatively. Since the conflict resolution

component is not hardwired to the rest of the model, applying various policies (including the

open policy) is straightforward in ACAD.

— Granularity: Data often form hierarchical structures, e.g. user groups and their members or

relational tables and their tuples; hence, defining access controls on higher levels of hierarchies

and propagating them down to other levels is a space-saving technique as well as providing

convenience to users who can simply specify many related authorizations. In contrast, finer

grained access control is an important functional characteristic even though it is space

consuming. There are many applications in which access control rules are to be defined for a

specific individual rather than for a group of users and/or on parts of objects rather than on the

whole object. Access control models should support various levels of granularity based on the

application needs.

The granularity of AFS is very coarse. Access permissions are defined on a whole directory

rather than a specific file in order to retain conceptual simplicity and storage efficiency.

FARDMS provides a finer granularity, at the relation level, as well as supporting views.

However, the view access level is restricted to positive privileges only. ACAD, similar to

Ponder, provides a fine-grained access control at any level of objects. Both FARDMS and

Ponder are restricted to coarse granularity with respect to administrative privileges that are

inseparable. However, ACAD also unbundles authorizations, since no permission is dependent

on another. For instance, a revocation right (such as removeFrom) does not require holding any

delegation ability (such as assignTo). FAF is as fine-grained as ACAD.

— Support for Exceptions within Hierarchies: This feature is important for applications in which

not all access control policies are defined by general rules and exceptions are inevitable.

Although often an authorization should be propagated down to the leaves in the hierarchy, there

are situations in which propagation should be stopped somewhere before reaching the leaves.

Access control models that do not support exceptions are both inconvenient and more space

consuming since more fine-grained authorizations must be explicitly defined in such cases.

All models include both negative and positive privileges in order to support exceptions. Yet, this is

limited in AFS and FARDMS. AFS supports one level of exception only, in which a subdirectory

may be accessible to some users as opposed to its inaccessible parent; however, it is impossible in

 107

AFS to permit a subfolder to be accessible to any user when its parent is inaccessible to the same

user. Similarly, in FARDMS, it is meaningless for a view to be inaccessible to a subject while its base

table is accessible to the same subject. There are no such limitations in FAF, Ponder, or ACAD,

where exceptions are possible anywhere in the hierarchies.

8.1.3 Administration

This section compares the models based on the features that pertain to administering access control.

Enterprises require sophisticated administration features such as support for manipulating hierarchies,

the effective timing of access control, delegation and revocation, and implementing various policies.

Flexible administration features allow access control to be adjustable to various degrees of

(de)centralization. In contrast, models that do not provide such features are only applicable to limited

situations e.g. to mandatory access control policies or to applications that have a fixed body of

administration (no delegation or revocation in the system).

— Support for Updating Data Hierarchies: Access control models should provide update

authorizations for manipulating hierarchies, e.g. defining new user groups or adding new

attributes to XML elements. Models that do not support such update authorizations separate

data administration from data usage; consequently, these models cover limited applications.

AFS does not allow users to create their own groups. FARDMS only allows privileged

subjects to update the subject or object hierarchy. Neither FAF nor Ponder discuss updates of

the subject hierarchy. In the FAF formalism, the authors explicitly state that the subjects,

objects, and roles are disjoint sets. Moreover, no subject can be treated like an object in the

formalism of FAF authorizations; the object component is from the object domain only.

Therefore, manipulating the object hierarchy differs from manipulating the subject hierarchy.

Ponder states that the target of an authorization can be network resources or service providers.

Ponder allows the definition of role hierarchy and management structures at configuration

time, however, it does not specify whether or not they are updatable. In general, these

proposals assume that access requests are far more frequent than update requests, while ACAD

does not rely on that assumption. ACAD allows subjects to update hierarchies. Moreover,

updating hierarchies can be centralized or decentralized. Decentralized hierarchy update

provided by ACAD has at least two advantages: simpler administration and self-governance.

 108

— Active/Passive Mechanism: Users, objects, and authorizations change within the system

lifetime. Changes can take effect either immediately or at a suitable breakpoint depending on

the application. For instance, if a user subscribes to a group, all group access authorizations can

be granted to him either immediately or at the next sign in time. The former is called active

while the latter is passive. Access control models should be able to control the timing of these

effects.

Changes in AFS take effect immediately because they are hard wired to the state of the

operating system. Similarly, changes in Ponder take effect immediately because Ponder is an

event-driven language in which authorizations are triggered as soon as certain events happen.

In contrast, FAF has to postpone changes to take effect at a suitable breakpoint since

authorizations are represented by materialized views in which update is an expensive operation.

FARDMS and ACAD can support both active and passive mechanisms since these models are

not tied to the implementation.

— Delegation and Revocation: Users often need to transfer or extend their responsibilities and

authorizations to other users. In contrast, sometimes they need to revoke a specific authorization

from other subjects. Models with no flexible delegation or selective revocation features are not

suitable for most discretionary access control systems.

AFS provides a limited level of delegation in which only owners can grant privileges to

others. Similarly, Ponder supports one level of delegation, in which the network administrator

can delegate actions to domain administrators. FAF also allows only a single central

administrator to delegate or revoke privileges. Consequently, cascading revocation is not

meaningful in the AFS, Ponder, or FAF systems. FARDMS provides a richer delegation

mechanism by which further delegation is allowed; however, it requires that a subject must

hold a permission in order to delegate it. Moreover, administrative privileges are an atomic

package that the owner delegates either as a whole or not at all. Selectively revoking

permissions from a grantee in the middle of a delegation path is not supported in FARDMS. On

the other hand, the delegation and revocation mechanisms are at the core of ACAD: a single

authorization can be delegated to others with or without further delegation option, revocation

authorization is independent from delegation, and selective revocation is well supported.

 109

— Policy Neutral: Access control models should not impose any particular access control policy;

otherwise, their applicability is limited. For example, the Bell-LaPadula model imposes a

mandatory access control policy, which is appropriate for specific applications. Other models

might depend on the existence of “super-users”. Expressive models are policy neutral, leaving it

to enterprise administrators to specify their own policy at configuration time.

In AFS and FARDMS, the propagation and conflict resolution polices are hard wired to the

rest of system, whereas in FAF, Ponder and ACAD, it can be replaced with any arbitrary

policy.

— Flexibility: The flexibility of access control models is the characteristic of supporting various

degrees of restriction. The setup of an access control system could be different even in two

instances of the same application. For instance, one healthcare system may authorize doctors to

read patients medical histories by default and another system may not. Access control models

that do not cover a wide variety of needs cannot be widely applicable.

In contrast to all other models, ACAD is novel in support of various levels of administration

to support systems from the autocratic end to self-governed (and even anarchistic) end of the

spectrum of access control policies. This flexibility is elaborated in Section 8.2.

8.1.4 Performance

This section concludes the comparison based on scalability.

— Scalability: Many access control applications deal with many objects. Furthermore, applications

usually grow over time. Hence, the scalability of access control component of such applications

is extremely important.

AFS and Ponder target large distributed systems. Therefore, the systems chose to be

restricted for the sake of efficiency. On the other hand, FARDMS is restricted with respect to

scalability in practice due to providing different security models for different hierarchies as

well as separating administrative privileges from ordinary ones. We believe FAF scalability is

fairly limited due to a possible bottleneck for the single central administrator as well as not

being tied to implementation of its authorization predicates by materialized view. These

 110

limitations have been avoided in ACAD by meeting the overarching requirement, providing

adjustable level of decentralization, and being independent from implementation choices.

Table 6 summarizes the result of this comparison. In summary, ACAD is distinguished from all

other four models in five features namely, support of overarching requirement, support for updating

data hierarchies, expressive delegation mechanism, support for selective revocation, and

administrative flexibilities.

Table 6. Comparison of existing models w.r.t. major requirements

 AFS FARDMS FAF Ponder ACAD

Overarching

Req.
unsupported unsupported unsupported

not

addressed
supported

Closed/Open

Policy
only closed

possible/

restricted
possible possible possible

Granularity very coarse coarse very fine fine very fine

Exceptions limited limited no-limit no-limit no-limit

Update

Hierarchies
centralized centralized limited

not

addressed

centralized

or

decentralized

Active/Passive active both possible passive active both possible

Delegation very limited limited very limited very limited flexible

Selective

Revocation
not

applicable
unsupported

not

applicable

not

applicable
supported

Cascade

Revocation
not

applicable
supported

not

applicable

not

applicable
supported

Policy Neutral no no yes yes yes

Administrative

Flexibility
very limited limited very limited limited flexible

Scalability good limited limited good good

There are other features that can be considered for the evaluation of access control models, such as

supporting contextual information, understandability, usability, complexity, and security properties.

However, we do not discuss such features here due to their lack of influence on the result of the

comparison. In particular, all the above systems can be extended to support contextual information;

also, discussion on understandability and usability imposes subjective opinions; and, theoretically

provable criteria, such as complexity and security properties have not been extensively measured in

any of the systems.

 111

8.2 Access Control Space

This section brings together creation time policies and conflict resolution policies (introduced in

Chapters 5 and 3, respectively) to introduce the access control space. Creation time policies are our

means of initializing the explicit access control matrix to support a comprehensive spectrum of

administration models, from the autocratic end to the self-governed end. Conflict resolution policies

are essential to models that propagate authorizations within hierarchies or support both negative and

positive authorizations. As an analogy, creation time policies represent the access control

initializations for a network of access control states, similar to a finite state automaton, whereas

conflict resolution policies provide different interpretations for each state. In ACAD, all reachable

states as well as their interpretation conform to the access control policy chosen by the enterprise.

Figure 36 represents such a space, in which one axis maps the creation time policies

(Administration) and the other maps the conflict resolution policies (Interpretation). For the sake of

comparison, we partition the Administration axis to represent five classes of models with respect to

the amount of administrative decentralization, namely no admin, single admin, group admin,

hierarchical admin, and user admin. Systems in which there are no metadata updates and each

component authority is fixed in the life cycle are from the no admin class. The 4D1-IRIX operating

system, in which only one user is allowed to update some data, is an example of the single admin

class. Similarly, UNIX, in which a group of users may take the role of super-user, is from the group

admin class. Role-based access control models, in which roles often map the organizational hierarchy,

are from the hierarchical admin class. Finally, user-managed access control models (introduced in

Chapter 7), in which each user potentially can administer various parts of the system, are from the

user admin class. For simplicity of discussion, we identify the administration classes with numbers 0,

1, 2, 3, and 4, respectively. It is important to notice the higher the number is, the more flexible class it

represents. Hence, models in class 0 (no admin) can be described by models in class 1 (single admin),

and so on.

Similarly, we partition the Interpretation axis to represent four levels of models with respect to the

flexibility of the conflict resolution component, namely 0 rule, 1 rule, 2 rules, and 2+ rules. Level 0

rule represents access control models in which conflicts are not possible or allowed; an error is raised

in the latter case. Level 1 rule represents access control models in which conflicts are resolved by one

rule only for instance negative-takes-precedence. Level 2 rules represents models in which conflicts

 112

are resolved by two rules, for instance the-most-specific-takes-precedence and if there is still a

conflict then positive-takes-precedence. Level 2+ rules represents models in which the conflict

resolution component is not hard wired to the system and can be replaced by any conflict resolution

strategy. Similar to the administration classes, we identify the interpretation levels with numbers 0, 1,

2, and 3, respectively; and, the higher the level is, the more variety of interpretations it represents.

Hence, models with rank 0 (no conflict resolution) can be described by models with rank 1 (resolving

conflicts by 1 rule), and so on.

2+ Rules

2 Rules

1 Rule

0 Rule

 No

Admin

Single

Admin

Group

Admin

Hrchy

Admin

User

Admin

Figure 36. Space of access control administration models.

We suggest to represent the expressivity of each model by a pair of <class, level>, where the class

identifies the model administrative capabilities and the level identifies its support of variety of

conflict resolution strategies. Therefore, the space of access control administration models provides a

visualized mechanism to compare existing models, and leads to a better understanding of their

functionalities as well as highlighting their overlaps and differences.

Figure 37 illustrates the position of AFS, FARDMS, FAF, Ponder, and ACAD within the access

control space. In terms of administrative capabilities, AFS and FAF are in the administrative Class 1

since they allow only one user to be the security administrator. However, it is clear that both models

can be extended to support a group of users, with equal capabilities, and therefore be in Class 2.

FARDMS is in the administrative class 2 since it currently supports a group of privileged subjects to

take administrative capabilities. Ponder, in Class 3, provides a more general administrative model,

with respect to previous models, since it supports a hierarchical administration, for instance

appropriate for distribute computer networks. However, it is important to notice that hierarchical

Administration

Interpretation

 113

administration models cannot express graph-based administration models such as the user managed

access control model supported by ACAD in Chapter 7. Therefore, ACAD, in Class 4, is the most

flexible model with respect to other existing models. In terms of interpretation variety, AFS is in level

1 since it supports a single rule of negative-takes-precedence. FARDMS is richer than AFS since it

supports the combination of two rules, the most-specific-takes-precedence and negative-takes-

precedence, and is in level 2 then. Moreover, the conflict resolution component in both AFS and

FARDMS is hard wired to the rest of model, which cause support of different strategies difficult.

However, FAF, Ponder, and ACAD are all in level 3, which reflects that they are independent from

the conflict resolution component. FAF, and Ponder explicitly support any combination of three rules

of the-most-specific-takes-precedence, negative-takes-precedence, and positive-takes-precedence,

which is equivalent to two strategy instances. ACAD explicitly supports four rules of locality,

majority, default and preferred authorizations, which covers 48 conflict resolution strategies

including the one supported by other existing models (discussed in Chapter 3).

Figure 37. Comparison of the models in access control space.

In summary, the expressivity of AFS, FARDMS, FAF, Ponder, and ACAD can be represented by

<1,1>, <2,2>, <1,3>, <3,3>, and <4,3>, respectively. Considering the fact that AFS and FAF are

simply extensible to <2,1> and <2,3>, respectively, one can easily conclude that, in terms of

administrative capabilities, these models obey the following rule

 AFS < FARDM <FAF < Ponder < ACAD

Administration

Interpretation

AFS

FARDMS

FAF
Ponder ACAD

0 1 2 3 4

1

2

3

 114

in which < means “can be captured by”. This is illustrated by Venn diagram in Figure 38. Moreover,

ACAD is novel in providing mechanisms to set up the system with the desired level of

decentralization for each object type and suitable conflict resolution strategy, at configuration time.

Figure 38. Expressivity of the models in access control space.

8.3 Related Work

There are two recent papers addressing the requirements of access control models [Bertino et al.

1999; Tolone et al. 2005]. Bertino et al., in their authorization proposal for relational databases

systems, discuss several protection requirements among which the following influenced this thesis:

support for exceptions and strong enforcement, possibility of delegation and retaining control, and

support for grouping subjects. Tolone et al. summarize several access control requirements, addressed

by different groups in earlier works [Edwards 1996; Jaeger and Prakash 1996; Ferraiolo and Barkley

1997; Bullock 1998], in their proposal for collaboration systems, among which the followings

influenced this thesis: scalability, access control granularity, and active/passive mechanism.

Administration

Interpretation

AFS

FARDMS

FAF Ponder ACAD

0 1 2 3 4

1

2

3

 115

Chapter 9

CONCLUSIONS AND FUTURE WORK

This chapter first summarizes the contributions of ACAD in Section 9.1. Then, several related

research directions are discussed in Section 9.2.

9.1 Summary of Contributions

The major contribution of this thesis is an access control administration model with adjustable

decentralization (called ACAD), to protect both data and metadata. ACAD is uniform: all types of

data and metadata are protected with the same mechanism. Moreover, ACAD is administratively

flexible: it is adjustable to set any degree of decentralization of administration for each object, it

allows users to update all hierarchies, and it provides very rich mechanisms for delegation and

revocation. Hence, ACAD covers the spectrum of access control administration from the autocratic

end to the self-governed end; its mechanism of updating hierarchies is the same as the one for

updating access control data; and, it holds the right to delegate a specific authorization and the right to

revoke it independently of each other and independently of the authorization itself. It is important to

notice that ACAD is unique in terms of these characteristics with respect to other noteworthy models,

discussed in Chapter 8. Details of our contributions are as follows.

ACAD is policy-neutral, and therefore independent from the conflict resolution component. As a

part of this thesis, we have implemented a unified algorithm to support several conflict resolution

strategies simultaneously in the presence of sophisticated data hierarchies, which can be used as the

conflict resolution component of any system. ACAD is fine-grained, and therefore flexible to define

 116

authorizations on any level of objects and to administer authorizations and the right to delegate them

independently. It is controlled by flexible creation time policies that allow a single system to be

deployed in a wide range of application environments.

Furthermore, ACAD supports a wide-ranging set of access control features and is supported by a

formal semantics defined operationally by a relational model. Within this framework, we also

introduce the self-governance property in the context of access control, and show how the model

facilitates it. We have shown how ACAD can set up a conflict-free and decentralized access control

administration model, called UMAC, in which all users are able to retain complete control over their

own data while they are also able to delegate any subset of their rights to other users or user groups.

We have also characterized a novel mechanism to constrain access control administration for each

object type at object creation time, as a means of adjusting the degree of decentralization when the

system is configured.

Finally, we have compared ACAD and several other significant models, namely AFS, FARDMS,

FAF, and Ponder, to highlight its important features as well as its expressivity in the space of access

control administration models.

9.2 Future Work

There are several directions to extend this work. The details are as follow:

– Define a metric to measure the decentralization degree. There is no formal technique to verify

decentralized access control administration models in terms of “the degree of decentralization.”

Decentralization may increase anarchy, and centralization may cause an administration bottleneck.

In other words, decentralization, e.g. in information sharing systems, is a special type of

optimization problem in which the degree of decentralization needs to be maximized while keeping

the anarchy below a specific amount. Similarly, centralization, e.g. in governments, is an

optimization problem in which the degree of centralization needs to be maximized while keeping

the administration load below a specific level. Nevertheless, each optimization problem requires a

well defined metric. It is important to develop such metrics from which both system buyers and

system developers can benefit.

 117

– Define a metric to measure the restrictedness degree. Conflict resolution policies together with

propagation policies raise an interesting question: how restricted is the combined system overall?

Intuitively, this question addresses the ratio of positive and negative authorizations in the effective

access control matrix. We believe that developing such a metric to measure the degree of

restrictedness of a system will result in two immediate profits: first, understanding if a given

system is closer to closed policy systems or to open policy ones, which consequently has several

advantages, including choosing the right data structure for efficient representation; second, we

believe such metrics can help in verifying the data availability and safety properties of access

control models.

– Develop a data structure that is flexibly adjustable by the system to match the specific

configuration of banks, subjects, and objects of ACAD present in a given enterprise. Designing

corresponding efficient access control algorithms will be the major contribution of this direction.

– Develop a more flexible delegation mechanism for ACAD. In the current work, grantors delegate

their access privileges at their wish. However, there are applications in which grantors may

delegate an obligation or a responsibility only if the potential grantee agrees too. Moreover, in the

current work, a privilege can be delegated as soon as a grantor delegate it (1-delegation) whereas

there are applications in which the privilege is granted if a minimum number of grantors, delegate

it (k-delegation).

– Develop bag semantics for ACAD. There are applications in which the collection of authorizations

for a given subject should semantically be a bag rather than a set; in this case, the revocation

mechanism must keep track of the path of delegated rights in order to properly cascade the

operation.

This thesis provide an adjustable access control administration model, which is distinguished from

other noteworthy existing model in terms of comprehensiveness and expressivity (as justified in Table

6, as well as Figures 37 and 38); yet, the formal proofs of security properties (such as safety,

accountability, and protection against attacks) as well as practical directions to measure performance

criteria (such as complexity) remain open to follow as future work.

 118

Bibliography

AHN, G.J., ZHANG, L., SHIN, D., AND CHU, B. 2003. Authorization management for role-based

collaboration. In Proceedings of the 2003 IEEE International Conference on Systems, Man, and

Cybernetics, Washington, D.C, USA, October, 2003. 5, (October), 4128-4134.

AL-KAHTANI, M.A., AND SANDHU, R. 2003. Induced role hierarchies with attribute-based

RBAC. In Proceedings of the 8th ACM Symposium on Access Control Models and Technologies

(SACMAT 2003), Como, Italy, June 2003. ACM Press, New York, NY, 142-148.

BARKA, E., AND SANDHU, R. 2000a. Framework for role-based delegation model. In Proceedings

of the 23rd National Information Systems Security Conference, Baltimore, October 2000, 101–

114.

BARKA, E., AND SANDHU, R. 2000b. A role-based delegation model and some extensions. In

Proceedings of the 16th Annual Computer Security Application Conference, New Orleans,

Louisiana, December 2000. 168-176.

BELL, D., AND LAPADULA, L. 1976. Secure computer system: unified exposition and Multics

interpretation. Tech. Rep., ESD-TR-75-306, The MITRE Corp, March 1976.

BERTINO, E., CATANIA, B., GERVASI, V., RAFFAETA, A. 1998. Active-U-Datalog: Integrating

active rules in a logical update language. Transactions and Change in Logic Databases. H. Decker,

B. Freitag, M. Kifer, A. Voronkov, Eds. Lecture Notes in Computer Science, No.1472, Springer-

Verlag, 107-133.

 119

BERTINO, E., JAJODIA, S., AND SAMARATI, P. 1999. A flexible authorization mechanism for

relational data management systems. ACM Transactions on Information Systems, 17, 2 (April),

101-140.

BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. 2001a. A logical framework for

reasoning about access control models. ACM Transactions on Information and System Security

(TISSEC), 6, 1 (February), 71-127.

BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. 2001b. A logical framework for

reasoning about access control models. In Proceedings of the 6th ACM Symposium on Access

Control Models and Technologies (SACMAT 2001), Chantilly, Virginia, USA, May 2001. ACM

Press, New York, NY, 41-52.

BERTINO, E., BONATTI, P.A., AND FERRARI, E. 2001c. TRBAC: A temporal role-based access

control model. ACM Transactions on Information and System Security (TISSEC), 4, 3 (August),

191-223.

BHATTI, R., JOSHI, J.B.D., BERTINO, E., GHAFOOR, A. 2004. X-GTRBAC admin: a

decentralized administration model for enterprise wide access control. In Proceedings of the 9th

ACM Symposium on Access Control Models and Technologies (SACMAT 2004), Yorktown

Heights, New York, USA, June 2004. ACM Press, New York, USA, 78-86.

BHATTI, R., GHAFOOR, A., BERTINO, E., JOSHI, J.B.D. 2005a. X-GTRBAC: an XML-based

policy specification framework and architecture for enterprise-wide access control. ACM

Transactions on Information and System Security (TISSEC), 8, 2 (May), 187-227.

BHATTI, R., SHAFIQ, B., BERTINO, E., GHAFOOR, A., JOSHI, J.B.D. 2005b. X-GTRBAC

admin: A decentralized administration model for enterprise-wide access control . ACM

Transactions on Information and System Security (TISSEC), 8, 4 (Nov), 388-423.

BIBA, K.J. 1977. Integrity considerations for secure computer systems. Technical Report, ESD-TR-

76-372, USAF Electronic Systems Division, April 1977.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In

Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California, USA, May

1996, 164-173.

 120

BOTHA, R.A., AND ELOFF, J.H.P. 2001. Separation of duties for access control enforcement in

workflow environments. IBM Systems Journal, 40, 3, 666-682.

BULLOCK, A. 1998. SPACE: Spatial access control for collaborative virtual environments. PhD.

Thesis, University of Nottingham.

BURROWS, M., ABADI, M., AND NEEDHAM, R. 1990. A logic of authentication. ACM

Transactions on Computer Systems, 8,1 (Feb), 18-36.

CHANDER, A., DEAN, D., AND MITCHELL J.C. 2001. A state-transition model of trust

management and access control. In Proceedings of the 14th IEEE Computer Security Foundations

Workshop, June 2001. IEEE Computer Society Press, pages 27–43.

CHINAEI, A.H., AND TOMPA, F.Wm. 2005. User-managed access control for health care systems.

In Proceedings of the 2nd VLDB Workshop on Secure Data Management, Trondheim, Norway,

September 2005. W. JONKER AND M. PETKOVIC, Eds. Springer-Verlag Berlin Heidelberg,

63-72.

CHINAEI, A.H., AND ZHANG, H. 2006. Hybrid authorizations and conflict resolution. In

Proceedings of the 2nd VLDB Workshop on Secure Data Management, Seoul, Korea, September

2006. W. JONKER AND M. PETKOVIC, Eds. Springer-Verlag Berlin Heidelberg, 131-145.

CHINAEI, A.H., CHINAEI, H.R., AND TOMPA, F. Wm. 2007. A unified conflict resolution

algorithm. In Proceedings of the 2nd VLDB Workshop on Secure Data Management, Seoul,

Korea, September 2007. W. JONKER AND M. PETKOVIC, Eds. Springer-Verlag Berlin

Heidelberg, 1-17.

CRAMPTON, J. 2002. Administrative scope and role hierarchy operations. In Proceedings of the 7th

ACM Symposium on Access Control Models and Technologies (SACMAT 2002), Monterey,

California, USA, June 2002. ACM Press, New York, USA, 145-154

CRAMPTON, J., LOIZOU, G. 2003. Administrative scope: A foundation for role-based

administrative models. ACM Transactions on Information and System Security (TISSEC), 6,

2(May), 201-231.

 121

CUPPENS, F., CHOLVY, L., SAUREL, C., and CARRERE, J. 1998. Merging security policies:

analysis of a practical example. In Proceedings of the 11th Computer Security Foundations

Workshop, 1998. 123–136.

DAMIANI, E., VIMERCATI, S.D.C.D., PARABOSCHI, S., and SAMARATI, P. 2002. A

fine-grained access control system for XML documents. ACM Transaction on Information

and System Security (TISSEC), 5, 2 (May), 169–202.

DAMIANOU, N., DULAY, N., LUPU, E., AND SLOMAN, M. 2001. The Ponder policy

specification language. In Proceedings of the Policy Workshop on Distributed Systems and

Networks. Bristol, UK, January 2001. Springer-Verlag LNCS 1995, 18-39.

DAMODARAN, S., AND ADAMS, C. 2001. XACML − Summary of use cases. www.oasis-

open.org/committees/xacml/repository/draft-xacml-requirements-01.doc.

DENNIS, J., and, VAN, H. 1966. Programming semantics for multiprogrammed computations.

Communications of ACM, 9, 3 (March), 143-155.

EDWARDS, W.K. 1996. Policies and roles in collaborative applications. In Proceedings of the 10
th

ACM Conference on Computer-Supported Cooperative Work. Boston, MA, November 1996. 11-

20.

ELLISON, C. 1996. Establishing identity without certification authorities. In Proceedings of the 6
th

USENIX Security Symposium, San Jose, CA, July 1996. 67-76.

FERRAIOLO, D.F., AND KUHN, D.R. 1992. Role based access control. In Proceedings of the 15th

NIST-NCST National Computer Security Conference, Baltimore, MD, October 1992. 554-563.

FERRAIOLO, D.F., BARKLEY, J.F., AND KUHN, D.R. 1999. A role based access control model

and reference implementation within a corporate intranet. ACM Transactions on Information and

System Security (TISSEC), 2, 1 (February), 34-64.

FERRAIOLO, D.F., SANDHU, R., GAVRILA, S.I., KUHN, D.R., AND CHANDRAMOULI, R.

2001. Proposed NIST standard for role-based access control. ACM Transactions on Information

and System Security (TISSEC). 4, 224-274.

 122

FERRAIOLO, D.F., AHN, G.J., CHANDRAMOULI, R., AND GAVRILA, S.I. 2003. The role

control center: features and case studies. In Proceedings of the 8th ACM Symposium on Access

Control Models and Technologies (SACMAT 2003), Como, Italy, June 2003. ACM Press, New

York, USA, 12-20.

FIROZABADI, B.S., SERGOT M., AND BANDMANN, O. 2001. Using authority certificates to

create management structures. In Proceeding of the 9
th
 International Workshop on Security

Protocols, Cambridge, UK, April 2001. Springer-Verlag Berlin Heidelberg. 134-145.

FOCARDI, R., AND GORRIERI, R. 1997. Non interference: past, present and future. In Proceedings

of DARPA Workshop on Foundations for Secure Mobile Code, California, USA, March 1997.

GARCIA-MOLINA, H., ULLMAN, J.D., WIDOM, J. 2002. Database systems, the complete book.

Prentice Hall, Chapter 10.

GOGUEN, J., AND MESEGUER, J. 1983. Security policy and security models. In Proceedings of the

1982 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 1982, IEEE

Computer Society Press, 11-20.

GRAHAM, G.S., AND DENNING, P.J. 1972. Protection - principles and practice. In Proceedings of

the AFIPS Spring Joint Computer Conference, Montvale, New Jersey, 1972, AFIPS Press, 40,

417-429.

GRIFFITH, P.P., AND WADE, B.W. 1976. An authorization mechanism for a relational database

system, ACM Transactions on Database Systems, 1, 3, 242-255, 1976.

HARRISON, M.A., RUZZO, W.L., AND ULLMAN, J.D. 1976. Protection in operating systems.

Communications of ACM, 19, 8 (August), 461-471.

HOWARD, J.H., KAZAR, M.L., MENESS, S.G., NICHOLAS, D.A., SATYANARAYANAN, M.,

SIDEBOTHAM, R.N., AND WEST, M.J. 1988. Scale and performance in a distributed file

system. ACM Transactions on Computer Systems, 6,1 (February), 51–81.

JAEGER, T., AND PRAKASH, A. 1996. Requirements of role-based access control for collaborative

systems. In Proceedings of the 1
st
 ACM Workshop on Role-based Access Control. Gaithersburg,

MD. November 1995. 53–64.

 123

JAEGER, T., AND TIDSWELL, J.E. 2001. Practical safety in flexible access control models. ACM

Transactions of Information and System Security (TISSEC), 4, 2 (May), 158 – 190.

JAEGER, T., ZHANG, X., AND CACHEDA, F. 2003. Policy management using access control

spaces. ACM Transactions of Information and System Security (TISSEC), 6, 3 (August), 327-364.

JAJODIA, S., SAMARATI, P., SUBRAHMANIAN, V.S., AND BERTINO, E. 1997. A unified

framework for enforcing multiple access control policies. In Proceedings of ACM SIGMOD

International Conference on Management of Data, Tucson, Arizona, USA, June 1997, 474-485.

JAJODIA, S., SAMARATI, P., SAPINO, M.L., AND SUBRAHMANIAN, V.S. 2001. Flexible

support for multiple access control policies. ACM Transactions on Database Systems (TODS), 26,

2 (June), 214 – 260.

JANSEN, W.A. 1998. Inheritance properties of role hierarchies. In Proceedings of the 21st NIST-

NCSC National Information Systems Security Conference, Arlington, Virginia, USA, October

1998, 476-485.

JONES, A.K., LIPTON, R.J., AND SNYDER, L. 1976. A linear time algorithm for deciding security.

In Proceedings of the 17th IEEE Symposium on Foundations of Computer Science, Houston,

Texas, October 1976. IEEE Computer Society Press, 128, 33-41.

JONES, V.E. 1997. Access Control for Client Server Object Databases. Ph.D. Thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign.

JOSHI, J.B.D., BERTINO, E., LATIF, U., AND GHAFOOR, A. 2001. Generalized Temporal Role

Based Access Control Model (GTRBAC) (Part I)– Specification and Modeling. CERIAS TR

2001-47, Purdue University, USA.

JOSHI, J.B.D., BERTINO, E., AND GHAFOOR, A. 2002a. Temporal hierarchies and inheritance

semantics for GTRBAC. In Proceedings of the 7th ACM Symposium on Access Control Models

and Technologies (SACMAT 2002), Monterey, California, USA, June 2002. ACM Press, New

York, NY, 74-83.

JOSHI, J.B.D., BERTINO, E., AND GHAFOOR, A. 2002b. Hybrid role hierarchy for generalized

temporal role based access control model. In Proceedings of the 26th International Computer

 124

Software and Applications Conference (COMPSAC 2002), Oxford, England, August 2002. IEEE

Computer Society, 951-956.

JOSHI, J.B.D., BERTINO E., SHAFIGH, B., AND GHAFOOR, A. 2003. Dependencies and

separation of duty constraints in GTRBAC. In Proceedings of the 8th ACM Symposium on Access

Control Models and Technologies (SACMAT 2003), Como, Italy, June 2003. ACM Press, New

York, NY, 51-64.

JOSHI, J.B.D., BERTINO, E., LATIF, U., GHAFOOR, A. 2005. A generalized temporal role-based

access control model. IEEE Transactions on Knowledge and Data Engineering, 17, 1 (January), 4-

23.

JOSHI, J.B.D., AND BERTINO E., 2006. Fine-grained role-based delegation in presence of the

hybrid role hierarchy. In Proceedings of the 11th ACM Symposium on Access Control Models

and Technologies (SACMAT 2006), Tahoe, California, USA , June 2006. ACM Press, New York,

NY, 81-90.

KERN, A., SCHAAD, A., AND MOFFETT, J. 2003. An administration concept for the enterprise

role-based access control model. In Proceedings of the 8th ACM Symposium on Access Control

Models and Technologies (SACMAT 2003), Como, Italy, June 2003. ACM Press, New York, NY,

3-11.

KOCH, M., MANCINI, L.V., and PARISI-PRESICCE, F. 2002. Conflict detection and resolution in

access control specifications. In Proceedings of the 5th International Conference on Foundations

of Software Science and Computation Structures, Grenoble, France, April 2002. 223–237.

KUDO, M. 2001. Use cases for access control on XML resources. http://www.oasis-

open.org/committees/xacml/docs /UseCase.doc.

KUHN, D.R. 1997. Mutual exclusion of roles as a means of implementing separation of duty in role-

based access control systems. In proceedings of the 2nd ACM Workshop on Role-Based Access

Control, New York, USA, November 1997. ACM Press, 6, 7, 23-30.

LAMPSON, B.W. 1971. Protection. In Proceedings of the 5th Annual Princeton Conference on

Information Sciences and Systems, Princeton, New Jersey, USA, March 1971, 437-443.

 125

LI, N., MITCHELL, J.C., AND WINSBOROUGH, W.H. 2002. Design of a role-based trust-

management framework. In Proceedings of the 2002 IEEE Symposium on Security and

Privacy.Washington, DC, USA.IEEE Computer Society, 114-130.

LI, N., GROSOF, B.N., AND FEIGENBAUM, J. 2003. Delegation logic: A logic-based Approach to

Distributed Authorization. New York University. ACM Transactions of Information and System

Security (TISSEC), 6, 1 (February), 128-171.

MAUGHAN, D., SCHERTLER, M., SCHNEIDER, M., AND TURNER, J. 1998. Internet security

association and key management protocol (ISAKMP), RFC 2408, November 1998.

MOFFETT, J.D. 1990. Delegation of authority using domain based access rules. PhD Thesis,

Department of Computing, Imperial College, University of London.

MIGNET, L., BARBOSA, D., and VELTRI, P. 2003. The XML web: a first study. In Proceedings of

the International World Wide Web Conference. Budapest, Hungary, May 2003. 500–510.

MOSES, T., eXtensible Access Control Markup Language Version 2.0, Technical Report, OASIS,

February 2005.

OH, S., AND SANDHU, R. 2002. A model for role administration using organization structure. In

Proceedings of the 7th ACM Symposium on Access Control Models and Technologies, Monterey,

California, USA, June 2002. ACM Press, New York, NY, 155-168.

OH, S., SANDHU, R., AND ZHANG, X. 2006. An effective role administration model using

organization structure. ACM Transactions of Information and System Security (TISSEC), 9,

2(May), 113-137.

OSBORN, S., AND GUO, Y. 2000. Modeling users in role-based access control. In Proceedings of

the 5th ACM Workshop on Role-Based Access Control, 2000.

PARK, J.S., AND HWANG, J. 2003. Role-based access control for collaborative enterprise in peer-

to-peer computing environments. In Proceedings of the 8th ACM Symposium on Access Control

Models and Technologies (SACMAT 2003), Como, Italy, June 2003. ACM Press, New York, NY,

93-99.

RAVICHANDRAN, A., AND YOON, J. 2006. Trust management with delegation in grouped peer-

to-peer communities. In Proceedings of the 11th ACM Symposium on Access Control Models

 126

and Technologies (SACMAT 2006), Lake Tahoe, California, USA , June 2006. ACM Press, New

York, NY, 71-80.

RIVEST, R.L., AND LAMPSON, B. 1996. A simple distributed security infrastructure. Presented at

CRYPTO’96 Rumpsession.

ROSENTHAL, A., AND SCIORE, E. 2001. Administering permissions for distributed data: factoring

and automated inference. In Proceedings of IFIP 11.3 Working Conference on Data and

Application Security, Niagara on the Lake, Ontario, Canada, August 2001. B. Thuraisingham, R.

van de Riet, K. Dittrich and Z. Tari, Eds. 215 Kluwer 2002, 91-104.

ROSENTHAL, A., AND SCIORE, E. 2004. Enabling collaborative administration and safety fences:

factored privileges in SQL databases. IEEE Data Engineering Bulletin, 27, 1 (March), 42-47.

SALTZER, J. 1974. Protection and the control of information sharing in Multics. Communications of

ACM, 17, 7 (July), 388-402.

SANDHU, R. 1993. Lattice-based access control models. IEEE Computer. 26, 11 (November) , 9-19.

SANDHU, R., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-

based administration of roles. ACM Transactions of Information and System Security (TISSEC),

2,1(February), 105-135.

SANDHU, R., AND MUNAWER, Q. 1999. The ARBAC99 model for role-based administration of

roles. In Proceedings of the 18th Annual Computer Security Applications Conference, Phoenix,

Arizona, USA, December 1999. 229-238.

TOLONE, W., AHN, G.J., PAI, T., AND HONG, S.P. 2005. Access control in collaborative systems.

ACM Computing Surveys, 37, 1 (March), 29-41.

TRIPUNITARA, M.V., AND LI. N. 2004. Comparing the expressive power of access control

models. In Proceedings of the 9th ACM Symposium on Access Control Models and Technologies

(SACMAT 2004), Yorktown Heights, New York, USA, June 2004. ACM Press, New York, USA,

62-71.

WANG, H., AND OSBORN, S. 2003. An administrative model for role graphs. In Proceedings of the

17
th
 Annual IFIP WG11.3 Working Conference on Database and Applications Security, Estes

Park, Colorado, USA. August 2003. 302-315.

 127

WANG, H., AND OSBORN, S. 2006. Delegation in the role graph model. In Proceedings of the 11th

ACM Symposium on Access Control Models and Technologies (SACMAT 2006), Lake Tahoe,

California, USA , June 2006. ACM Press, New York, NY, 91-100.

WANG, L., WIJESEKERA, D., AND JAJODIA, S. 2004. A logic-based framework for attribute

based access control. In Proceedings of the 2004 ACM Workshop on Formal Methods in Security

Engineering, Washington DC, USA, October 2004. 45-55.

WEDDE, H.F., AND LISCHKA, M. 2003. Cooperative role-based administration. In Proceedings of

the 8th ACM Symposium on Access Control Models and Technologies (SACMAT 2003), Como,

Italy, June 2003. ACM Press, New York, NY, 21-32.

YU, T., SRIVASTAVA, D., LAKSHMANAN, L.V.S., and JAGADISH, H.V. 2002. Compressed

accessibility map: efficient access control for XML. In Proceeding of the 28th International

Conference on Very Large Data Bases (VLDB ’02), Hong Kong, China, August 2002. 478–489.

ZANNONE, N., JAJODIA, S., AND WIJESEKERA, D. 2006. Creating objects in the flexible

authorization framework. In Proceedings of the 20th Annual IFIP WG 11.3 Working Conference

on Data and Applications Security (DBSec 2006), Sophia Antipolis, France, July 2006. LNCS

4127, Springer-Verlag GmbH, 1-14.

ZHANG, H., ZHANG, N., SALEM, K., AND ZHUO, D. 2005. Compact access control labeling for

efficient secure XML query evaluation. In Proceedings of the 2nd International Workshop on

XML Schema and Data Management. Tokyo, Japan, April 2005.

ZHANG, L., AHN, G., AND CHU, B. 2002. A role-based delegation framework for healthcare

information systems. In Proceedings of the 7
th
 ACM Symposium on Access Control Models and

Technologies (SACMAT 2002). Monterey, California, USA, June 2002, 125–134.

ZHANG, L., AHN, G., AND CHU, B. 2003. A rule-based framework for role-based delegation and

revocation. ACM Transactions of Information and System Security (TISSEC), 6,3(August), 404-

441.

ZHANG, X., OH, S., AND SANDHU, R. 2003. PBDM: A flexible delegation model in RBAC. In

Proceedings of the 8th ACM Symposium on Access Control Models and Technologies (SACMAT

2003), Como, Italy, June 2003. ACM Press, New York, NY, 149-158.

