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Abstract 

Access control is a key function of enterprises that preserve and propagate massive data. Access 

control enforcement and administration are two major components of the system. On one hand, 

enterprises are responsible for data security; thus, consistent and reliable access control enforcement 

is necessary although the data may be distributed. On the other hand, data often belongs to several 

organizational units with various access control policies and many users; therefore, decentralized 

administration is needed to accommodate diverse access control needs and to avoid the central 

bottleneck. Yet, the required degree of decentralization varies within different organizations: some 

organizations may require a powerful administrator in the system; whereas, some others may prefer a 

self-governing setting in which no central administrator exists, but users fully manage their own data. 

Hence, a single system with adjustable decentralization will be useful for supporting various 

(de)centralized models within the spectrum of access control administration. 

Giving individual users the ability to delegate or grant privileges is a means of decentralizing 

access control administration. Revocation of arbitrary privileges is a means of retaining control over 

data. To provide flexible administration, the ability to delegate a specific privilege and the ability to 

revoke it should be held independently of each other and independently of the privilege itself. 

Moreover, supporting arbitrary user and data hierarchies, fine-grained access control, and protection 

of both data (end objects) and metadata (access control data) with a single uniform model will 

provide the most widely deployable access control system.  

Conflict resolution is a major aspect of access control administration in systems. Resolving access 

conflicts when deriving effective privileges from explicit ones is a challenging problem in the 

presence of both positive and negative privileges, sophisticated data hierarchies, and diversity of 

conflict resolution strategies.  

This thesis presents a uniform access control administration model with adjustable decentralization, 

to protect both data and metadata. There are several contributions in this work. First, we present a 

novel mechanism to constrain access control administration for each object type at object creation 

time, as a means of adjusting the degree of decentralization for the object when the system is 

configured. Second, by controlling the access control metadata with the same mechanism that 

controls the users’ data, privileges can be granted and revoked to the extent that these actions conform 

to the corporation’s access control policy. Thus, this model supports a whole spectrum of access 
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control administration, in which each model is characterized as a network of access control states, 

similar to a finite state automaton. The model depends on a hierarchy of access banks of 

authorizations which is supported by a formal semantics. Within this framework, we also introduce 

the self-governance property in the context of access control, and show how the model facilitates it. 

In particular, using this model, we introduce a conflict-free and decentralized access control 

administration model in which all users are able to retain complete control over their own data while 

they are also able to delegate any subset of their privileges to other users or user groups. We also 

introduce two measures to compare any two access control models in terms of the degrees of 

decentralization and interpretation. Finally, as the conflict resolution component of access control 

models, we incorporate a unified algorithm to resolve access conflicts by simultaneously supporting 

several combined strategies. 
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Chapter 1 

INTRODUCTION 

The fast development of web applications and information sharing, together with the complex base of 

sensitive data in many practical systems, poses new challenges for access control administration. 

Decentralization of access control administration is the problem of our interest in this thesis. The 

problem is particularly difficult because administration models vary in their degree of 

decentralization.  

In practice, there are certain applications, such as in the military, that require a central access 

control administration. Yet, there are various environments, such as file-sharing systems, in which a 

sole centralized administration is not practical. No single existing model supports this variety 

simultaneously. Most current models provide a centralized administration only. A few recent models 

support decentralized administration to a limited extent. However, from a system developer 

perspective, an access control system usually needs to be installed in various organizations with 

diverse levels of decentralization. Moreover, in a single application, some objects need to be 

administered centrally whereas other objects demand a decentralized control. Appropriate adjustment 

of the degree of decentralization has a strong influence on efficiency and self-governance.  

Efficiency. There are several factors that affect efficiency of access control administration: the 

volume of data (i.e., end objects) and metadata (e.g., access control data), and consequently the 

number of administrative requests (at each moment) are so large in such systems that the central 

administration overhead becomes a bottleneck and efficiency becomes problematic. Centralized 

administration also imposes longer routings on requests being launched from distributed clients. This 
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is more critical in urgent situations: sensitive objects should be secure all the time yet quickly 

possible to be accessible to authorized subjects; for example, authorized personal health records 

should simply be accessible to emergency centers when needed. Yet, administering the access control 

must be reasonably fast even in non-emergency cases. Furthermore, in applications where data are 

naturally distributed, centralized administration is often incompatible. For instance, a specialist may 

need to access several health objects of a visiting patient, possibly filed in different health centers. 

(Similarly, decentralized administration may become difficult in applications in which accountability 

is centralized.) On the other hand, access control must be provided for the access control specification 

(called metadata in this thesis) itself; e.g., patients may query who can access their health records. 

Often systems restrict updating this metadata to a small group of access control administrators (called 

security officers in some systems), and for systems relying on so-called “discretionary access 

control”, it is important to diversify the population who may update metadata. It is also important that 

access control models provide a single uniform mechanism for administering both data and metadata. 

Example I in Section 1.3 illustrates the efficiency problem of very large access control systems, in 

which typically hundreds of thousands of objects exist.  

Self-governance. Self-governance is an important requirement of many information sharing 

systems: users in such situations wish to share their data without appealing to administrators; in many 

environments they should be allowed all operations on particular data (e.g. on their own data or on 

data for which they are responsible), including delegating privileges to others and revoking them at 

will; for instance, in healthcare systems, patients often and temporarily have to reveal their personal 

data to particular appropriate parties, such as physicians, hospitals, and laboratories. Therefore, 

applications in which several parties need to share data will be simpler to manage if each party fully 

controls its own (or responsible) data, subject to conformance with the underlying administrative 

policy formulated by the enterprise. (Note: ownership has been interpreted differently in the literature; 

in this work, “data owner” is a subject who is responsible for the data.) Moreover, objects are usually 

managed in different contexts that need to be administered differently. Even if different parties use 

the same underlying technology, they may require different sections of a complex access control 

policy to be enforced, which would be an error-prone burden for a centralized administration. 

Example II in Section 1.3 illustrates the self-governance property of access control models.  
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In conclusion, sharing data, including selectively delegating and revoking administrative privileges 

on the associated metadata, may be supported more reliably and more efficiently by a flexible 

decentralized access control administration. The challenge is to ensure that the underlying 

administrative policies are enforced. 

1.1 Access Control Components 

Before proceeding further, it is important to distinguish major components of access control systems, 

requests, policy, enforcement, and administration, depicted in Figure 1. 

 

Figure 1. Access control framework. 

– The set of objects under access control includes the set of subjects and the access control data 

itself (the metadata). 

– There are two types of access control requests: lookup and update. A lookup request is an 

attempt to retrieve some information from the data or metadata such as whether a given 

subject (user, application, or group) has privilege to modify a given object (data, application, 

metadata, etc.). An update request (depicted by dashed lines) is an attempt to change 

metadata. (Note that we are distinguishing here between lookup and update of the metadata 

itself, not of the end objects for which access is being controlled.) The direction of arrows 

indicates that when a given subject requests a lookup or an update, the enforcer decides if the 
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request is valid based on the current state of the metadata, and enforces the request 

appropriately. 

– Access control policy is a set of rules that all users in the system must follow; it defines the 

space of valid metadata states.  

– Access control enforcement is the mechanism of securing the system against invalid requests, 

that is, those that are not consistent with access control policy. Because data is one of the 

critical resources owned by an enterprise, data management systems must enforce access 

control policies developed by the enterprise administrators. Thus, each operation on each 

piece of data must be vetted by the system to determine whether the subject attempting the 

operation has appropriate privileges with respect to that item of data.  

– Access control administration is the mechanism of handling requests for access control 

updates. Any subject that can update the metadata is called a controller in our model.    

Note that this thesis focuses on decentralizing access control administration. Access control has to 

be consistently enforced (although perhaps distributed access machines and organizational units), but 

the administration of access control can often be handled without referring to central administrators. 

Figure 1 depicts the centralization of access control enforcement and the decentralization of access 

control administration.  

1.2 General Terminology 

This section reviews some basic access control terminology that is used in this thesis. In particular, 

one should distinguish between subject vs. object, delegate vs. grant, decentralized vs. centralized 

administration, explicit vs. effective privileges, and schema-level vs. instance-level control. 

Subject vs. object: Throughout this work, there are two general terms, subject and object, 

generalizing the notions of users and data, respectively. Objects, with respect to access control 

systems, are what are operated on and thus for which particular access is sought. Examples of objects 

are data, resources, and applications. Subjects, which have sometimes been defined as active objects, 

are those that (implicitly) request access in order to execute an operation. Examples of subjects are 

users, applications, and groups. It is important to recognize that the stored information representing a 
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subject is, in fact, data, and we treat a subject as an object for some operations. For formal definitions 

of subject and object, see Section 3.1. 

Delegate vs. grant: Some researchers distinguish between two related terms: grant and delegate. The 

former often refers to giving a privilege to a subject permanently, while the latter usually means  

giving a privilege to a subject temporarily. Similarly, other systems support “revocable” grants by 

providing a separate revoke operation. It is obvious that a temporary delegation is equally expressive 

to a permanent grant together with revoke. Hence, throughout this thesis, both terms are used 

interchangeably to assign a privilege, and we include an explicit revoke operation to remove it. 

Decentralized vs. centralized administration: The question is to what extent decentralization can be 

realized? It is important to recognize the spectrum of access control administration. At one end, 

access control can be absolutely autocratic: a powerful administrator exists in the system dictating 

which subjects have access to which objects; at the other end, it can be completely self-governing, 

which means that no central administrator exists in the system, but users fully manage their own data. 

Chapter 7 specifies such a model.  

Whereas security-conscious enterprises often use central enforcement mechanisms to support their 

access control policies, closely held access control administration may or may not fit their security 

requirements. In conclusion, access control venders desire to sell their product to various 

organizations requiring a diverse amount of decentralization. There are applications in which different 

object types require to be treated differently, centralized or decentralized. Such issues are addressed 

within Chapters 4 to 6.  

Explicit vs. effective privileges: Not every subject-object pair has explicit privileges assigned. 

Instead, access to objects with no explicit privileges can often be deduced from the set of other 

explicit privileges. For instance, in a hierarchical structure, access privileges are typically derived 

from the parent-child relationship: members of a group inherit all the privileges of the group and sub-

objects inherit the privileges of the objects in which they are contained. If no privilege or several 

conflicting privileges can be derived for a given subject-object pair, the access control system should 

resolve a final privilege for that pair. The ultimate explicitly or implicitly assigned privilege will be 

called the effective privilege.  
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Access control data (called metadata) −which corresponds to relations of subjects, objects, and 

privileges− can be conceptually viewed as being represented by an access control matrix, where the 

rows represent subjects, the columns represent objects, and privileges are stored at the intersections 

[Lampson 1971]. The term effective matrix, is used to represent effective privileges as a three-

dimensional Boolean matrix EM, indexed by subject, object, and method. In such a matrix, no cell is 

null. The value of EM[s,m,o] is 1 if the corresponding subject s is privileged to execute method m on 

object o; otherwise EM[s,m,o] is 0. Correspondingly, an explicit matrix implements the idea of 

condensing the effective matrix by storing explicit privileges only. The explicit matrix can be 

expanded to the effective one by using propagation and conflict resolution strategies. Figure 2(a) 

depicts the transitions of access control policies to the explicit matrix and then to the effective matrix.  

Figure 2(b) illustrates, as an example, that the explicit matrix is represented by predicates permit and 

deny, and the effective matrix is represented by predicates allow and disallow in our access control 

administration model (called ACAD), which will be examined in further detail in Chapter 3. 

 

  

 

 

 

  

(a) Abstract model. (b) ACAD predicates. 

Figure 2. Constructing an effective access control matrix from policies. 

Schema-level vs. instance-level control: Although access control is inherently a concern at the 

instance level (i.e., individual objects are subject to control), policies are more generally defined at 

the schema level. This approach simplifies administration, since it provides a convenient means to 

specify consistent rules on large collections of homogeneous objects at once. 
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For the sake of generality, this thesis assumes an object-oriented data model, in which the type of 

an object dictates the set of applicable methods that can be applied to it. It is also assumed that 

privilege to execute each method is controlled independently: thus the ability to execute the read 

method requires read privilege, the ability to execute the write method requires write privilege, the 

ability to execute the append method requires append privilege, the ability to execute the delete 

method requires delete privilege, the ability to execute the “check into the hospital” method requires 

“check into the hospital” privilege, and so forth.  

1.3 Motivating Examples 

This section provides two motivating examples. One is a very large healthcare system that is used in 

order to highlight the efficiency importance of access control models. The other is an ad hoc scenario 

of document sharing environments that will help to highlight the self-governance property of such 

models.  

1.3.1 Healthcare Systems 

Example I. Assume a worldwide healthcare system in which there are hundreds of thousands of end 

objects (such as medical records, personal information, account balances, etc.) and users (such as 

patients, doctors, technicians, hospitals, etc.). There may be a huge number of access control requests 

at any moment. Some instances are: 

– Patients may wish to authorize other users, e.g. doctors and insurance agents, to read their 

personal information. 

– Some users, e.g., pharmacists, technicians, and patients as well as their family members, may 

request to see some or all parts of a medical record. 

– Some users, e.g. doctors and insurance agents, may request authorization for reading a 

particular patient’s medical history. 

– Patients may no longer wish their medical record to be seen by a particular family member. 

In such systems, a centralized administration may easily be overwhelmed with too many requests; 

on the other hand, information accessibility is often vital to such users so the requests should not be 

backlogged. As an improvement, a significant subset of requests can be handled by different users 
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without referring to administrators. In Chapter 7, we explain the User Managed Access Control 

(UMAC) specification in which the bottleneck of inefficiency is resolved by applying decentralized 

administration. Once the appropriate corporate policy is set up at configuration time, users can 

manage and share their data properly at run time. 

1.3.2 Document Servers 

Example II. Assume a web-based document server within which several users and groups (possibly 

competitors) share their documents. Each group may have some private documents that are accessible 

to its organization only, as well as other documents that may be shared with a subset of other users. 

Once the user’s corporate policy is in place, users are allowed to share their data with others so far as 

they wish and so long as they stay within the policy’s guidelines. Moreover, each user may stop 

sharing information at any point. There is no administrator in the system, and document accessibility 

is fully managed by users. As a simple instance of such a server, assume user A owns document P. 

Consider the following requests: 

– A authorizes B to delegate read privilege on P to other users. 

– B authorizes many others, including user C, to read P. 

– A decides to stop C, but not others, from reading P. 

Neither A nor B wishes to consult an administrator as long as their requests are within the corporate 

policy; instead, they wish to govern their own documents independently. Chapter 7 describes how 

users can manage their own data independently, in the absence of administrators of any kind, and 

without interfering with one another’s decisions with respect to their own data.  

Examples I and II, explained above,  emphasize the importance of efficiency and self-governance of 

access control administration. On one hand, a decentralized access control administration is required 

when several parties, usually without administrative control over one another, need to share their data. 

Such a model reduces the bottleneck of access administration in situations where data is distributed 

among various parties. On the other hand, the question is to what extent decentralization can be 

realized? The main contribution of this thesis is to provide an access control administration model in 
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which the degree of decentralization for the whole system, as well as for each object type, can be 

adjusted at the configuration time. 

1.4 The Thesis Scope 

This thesis addresses the problem of access control administration. Assumptions are that the user’s 

authentication is successfully verified, the corporate policy is appropriate, and access control is 

correctly enforced by a reference monitor; these aspects are not addressed in the thesis. 

 There are several contributions in this work. First, an access control administration model (called 

ACAD), in which the degree of decentralization is adjustable from a centralized level to a very 

decentralized extent, is proposed. The model includes a novel configuration mechanism to constrain 

access control administration for each object type at object creation time, as the means of adjusting 

the degree of decentralization when the system is being installed. ACAD introduces the spectrum of 

access control administration as well as representing the administration as a network of access control 

states, similar to a finite state automaton. Each state is a directed acyclic graph in which access banks 

of authorizations and authorization inheritance relations map into the nodes and edges, respectively. 

Furthermore, a User Managed Access Control (UMAC) system, which supports wide-ranging access 

control features, is designed as an ACAD application. UMAC is a decentralized, conflict-free, and 

administrator-free model by which all subjects are able to manage their objects by delegating any 

fine-grained subset of their responsibilities to others yet retaining control to revoke privileges as 

desired. Moreover, UMAC’s delegation and revocation mechanism is distinguished by the following 

features: the privilege to delegate a privilege can be held independently of holding the privilege itself, 

the privilege to revoke a privilege can be held independently of the privilege to delegate it, and any 

privilege can be revoked from any grantee along the delegation path without affecting other grantees. 

This introduces the concept of self-governance in the context of access control. The thesis also 

incorporates a widespread framework to resolve access conflicts of environments that require both 

positive and negative privileges. The thesis validates ACAD by providing guidelines of policy 

specification, to guarantee the termination of policy reasoning and the well-definedness of effective 

privileges. Finally, we introduce two measures to highlight ACAD with respect to other significant 

models .  
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The rest of this thesis is organized as follows. Chapter 2 reviews the literature of access control. 

Chapter 3 discusses hybrid models and provides a framework to resolve conflicts by supporting 48 

strategies simultaneously.  Chapter 4 establishes the ACAD specifications. Chapter 5 introduces 

creation time policies as a means of constraining access control administration. Chapter 6 describes 

the formal semantics of the model defined operationally by a relational model. Chapter 7 proposes 

user-managed access control.  Chapter 8 justifies features of ACAD in a comparison with several 

other noteworthy systems. Finally, Chapter 9 concludes the thesis and describes future work. 
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Chapter 2 

LITERATURE REVIEW 

Researchers have investigated a variety of issues concerning the access control. This chapter clusters 

these issues in six categories, namely access control model, access control administration, role-based 

access control, decentralized access control, access control granularity, and miscellaneous related 

topics. Other work that strongly influences parts of the thesis will be cited closer to the points where 

they are related. 

2.1 Access Control Model 

An access control model is conceptually viewed as maintaining an access control matrix [Lampson 

1971], which was first introduced for operating systems. However, since an access control matrix in 

practice is often very large and sparse, storage refinements are required. A major approach is to 

implement the access control matrix implicitly by rules. As examples of rule-based access control, 

Graham-Denning and Harrison-Ruzzo-Ullman are two similar enhanced models in which protection 

rules have been proposed [Graham and Denning 1972, Harrison et al. 1976]. Although the latter has a 

broad expressive power, both models have storage inefficiency. The Take-Grant model [Jones et al. 

1976] based on directed graphs is another improved version of the matrix model. This model provides 

a compact way of representing the access control data as well as supporting the transferring of rights. 
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2.2 Access Control Administration 

Access control administration is responsible for handling update requests on metadata (metadata 

refers to access control data). Mandatory Access Control (MAC) models are an example of fully 

centralized administration [Bell and Lapadula 1976], in which a subject may access classified objects 

in accordance with the subject’s clearance. The only form of delegation or revocation, then, is to 

reclassify a subject or an object. MAC has no flexibility, and it is not applicable when subjects or 

objects may not be classified within a limited number of groups. On the other hand, Discretionary 

Access Control (DAC) models are more flexible, and the administration model may be centralized or 

decentralized. For example, Role Based Access Control (RBAC) is a mechanism that typically 

provides central administration [Sandhu 1993] by defining roles. Although RBAC can be used to 

model arbitrary DAC systems, the decision of which subjects and objects are to be assigned to which 

roles is centrally controlled. The next section reviews RBAC models and several supporting 

extensions.  

2.3 Role-Based Access Control 

Role Based Access Control (RBAC) models [Ferraiolo et al. 2001] provide a mechanism in which 

roles usually reflect job titles. However, in traditional role-based models, roles form a hierarchical 

relationship for the sake of efficiency [Ferraiolo et al. 2001]. For example, a project manager has his 

special privileges as well as all privileges of the project developers reporting to him. Thus, privileges 

are propagated through the role hierarchy. Since the first publication of the RBAC model [Ferraiolo et 

al. 1992], many researchers have investigated various aspects of RBAC, such as exploring properties 

of the roles hierarchy [Al-Kahtani and Sandhu 2003; Ferraiolo et al. 2003; Jansen 1998] and 

separation of duties [Botha and Eloff 2001; Joshi et al. 2003; Kuhn 1997]. Wang and Osborn recently 

proposed to exploit the group hierarchy for user to user and role to role delegations to overcome the 

shortcomings of RBAC-based delegation models, which suffer from needing to modify the role 

hierarchy in a very complex structure [Wang and Osborn 2003; Wang and Osborn 2006]. Also, Joshi 

and Bertino assume the presence of more than one hierarchy among the subjects, and discuss the 

simplest delegation (with no further delegation) and revocation (no cascade)  mechanisms in their 

work [Joshi and Bertino 2006]. Furthermore, some enhancements have been proposed to the RBAC 

model for distributed environments [Park and Hwang 2003; Wedde and Lischka 2003].  
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There have been several restrictions on the use of RBAC in practice. First, it is not normally 

suggested for applications in which a natural role hierarchy does not exist. Second, delegation and 

revocation are not sufficiently discussed in the RBAC literature; moreover, the proposals are mostly 

impacted by the centralized role control of RBAC. Scalability to hundreds of thousands of subjects 

and millions of objects is also a problem due to the model’s central administration. The considerable 

work on administrative and temporal RBAC models is separately reviewed in the following 

subsections.  

2.3.1 Administrative RBAC 

There are several endeavours to decentralize the role administration of RBAC [Sandhu et al. 1999; 

Sandhu and Munawer 1999; Oh and Sandhu 2002; Kern et al. 2003; Oh et al. 2006]. Nevertheless, 

none of these models results in a pure decentralized administration.  The difficulty is that RBAC has 

been designed to simulate organizational authorizations, assuming that role hierarchies are essentially 

centralized and mostly static. This assumption is an innate impediment to developing a successful 

decentralized RBAC model. Therefore, all these works present similar concepts and rely on the 

organizational hierarchies exploited by RBAC. In particular, Kern et al. address several shortcomings 

of ARBAC97 [Sandhu et al. 1999], ARBAC99 [Sandhu and Munawer 1999], and ARBAC02 [Oh and 

Sandhu 2002; Oh et al. 2006], in which the notion of administrative roles, mobile and immobile role 

memberships, and the concept of independence of an organisational unit and role hierarchies, 

respectively, have been introduced. Kern et al. introduce the concept of scopes in their model 

(ERBAC) to describe the objects over which an administrator has authority. Scopes are principally 

similar to the concept of domains in ARBAC02; however, scopes are defined as an abstract concept 

and do not have to mirror an organizational structure. Yet, ERBAC does not address delegation and 

revocation. Delegation and revocation in ARBAC97, ARBAC99, and ARBAC02 are restricted to 

existing roles, which limits their flexibility. Moreover, there is no mechanism provided to expand (or 

decrease) the administrative scopes: scopes themselves are administered centrally. Crampton and 

Loizou formally define the scoped administration of role-based access control model (SARBAC) 

using a graph formalism. SARBAC overcomes several shortcomings of ARBAC models. Intuitively, 

the authors propose several types of updates for the role hierarchy; yet, their model does not address 

how the scopes can be updated [Crampton 2002; Crampton and Loizou 2003].  
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Using the logic introduced by Jajodia et al. [Jajodia et al. 2001], Wang et al. propose an attribute-

based access control in which they allow hierarchical structuring on any attribute [Wang et al. 2004]. 

The logic is technically suitable but has no industrial support.  

Rosenthal and Sciore propose a collaborative administration model in which they present policies 

as conjunctions of factors [Rosenthal and Sciore 2004]. Therefore, when a circumstance changes, 

only the relevant factor(s) need to be revised instead of the whole policy. 

2.3.2 Temporal RBAC 

Bertino et al. propose a temporal role-based model (TRBAC) to support temporal constraints for role 

enabling, which is important in time-sensitive applications [Bertino et al. 2001c]. The TRBAC model 

was generalized, forming GTRBAC, to provide several language constructs to support temporal 

constraints for role enabling, role activation, role assignments, etc. [Joshi et al. 2001; Joshi et al. 

2005]. The authors also address the problem of incompatibility between role hierarchies and temporal 

constraints [Joshi et al. 2002a, Joshi et al. 2002b]. Moreover, Bhatti et al. propose an XML-based 

specification of GTRBAC, so called X-GTRBAC [Bhatti et al. 2005a]. The original X-GTRBAC 

model has no administrative features. Hence, the authors subsequently define a nice administrative 

model [Bhatti et al. 2004, Bhatti et al. 2005b], which is decentralized in the sense that there is a 

partially ordered administrative domain hierarchy, and each domain is independently administered by 

its own team of administrators. The administrative domains map the functional units, and the highest 

role in each functional hierarchy is called the administrative role. They also propose a policy 

integration mechanism to resolve possible conflicts existing between domains. The X-GTRBAC 

administrative model suffers from lack of scalability due to the following reasons: first, since the 

model is based on the RBAC framework, modifying the role hierarchy is complex; also, modifying 

administrative domains has not been envisioned in X-GTRBAC; in fact, there is an assumption in the 

model that the enterprise includes predefined domains which may not change dynamically; 

furthermore, X-GTRBAC specification imposes capability-list implementation (for the distribution of 

the abstract access control matrix) and identity-based authentication which affect the applicability of 

the model in arbitrary large enterprises.  It is desirable to support unknown users (as opposed to 

capabilities and identity-based mechanisms) characterized by certain properties, such as a user’s 

location or role.    
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2.4 Decentralization 

The concept of delegation and revocation has been used as a means of decentralization of 

administration. Decentralized access control mechanisms were first proposed for System R to permit 

users to share and control their data in multi-user databases systems [Griffith and Wade 1976]. 

System R introduced its grant and revoke commands for decentralized administration. The System R 

model was later extended to support negative authorizations and more expressive revocation 

algorithms for relational data management systems [Bertino et al. 1999]. Moffet used the concept of 

domains to specify administrative domains in distributed systems [Moffett 1990]. Ravichandran and 

Yoon propose to use delegation to distribute the workload among several grouped peer-to-peer 

communities [Ravichandran and Yoon 2006]. They do not provide a revocation mechanism in their 

model. Further, similar mechanisms for RBAC models were proposed [Barka and Sandhu 2000a; 

Barka and Sandhu 2000b; L. Zhang et al. 2002; L. Zhang et al. 2003; X. Zhang et al. 2003]. Barka 

and Sandhu proposed RBDM (Role-Based Delegation Models) in which the unit of delegation is 

“role”. They also discussed temporary delegation as well as grant-dependent and grant-independent 

revocations in their work. However, RBDM has not been formalized. L. Zhang et al. proposed 

RDM2000 (Role-based Delegation Model), which extended RBDM by providing multilevel 

delegations and formal definitions of delegation features. Later, X. Zhang et al. extended RDM and 

RBDM models by adding finer-grained delegation to their model, so called PBDM (Permission Based 

Delegation Model). The PBDM series do not support constraints in delegation, neither do they 

support decentralized applications. Recently, Ahn et al. proposed an access control model based on 

RBAC for a collaborative environment [Ahn et al. 2003; Tolone et al. 2005]. Their model exploits the 

powerful rule-based mechanism of RDM2000 to define constraints. However, it still lacks the ability 

for further delegation.   

In all of these models, the delegation and revocation mechanism is centrally controlled. There is no 

way of expanding administrative features by individual users and a central security officer (or team) 

controls the permission flow. Hence, administration becomes a bottleneck in applications where 

potentially all users wish to administer their data.  
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2.5 Granularity 

Access control granularity, in the context of a hierarchically organized database, refers to the extent to 

which different levels of access can be defined on objects or parts of objects. Fine-grained access 

control manages access authorizations on small pieces of objects. Many proposed models [Graham 

and Denning 1972; Harrison et al. 1976; Jones et al. 1976; Lampson et al. 1976] assume access 

control at the object level only and ignore any internal structure within objects. However, if objects 

entail a hierarchy, the distinction between objects and sub-objects becomes meaningful. Jones 

examined an object-level access control model for client-server object databases [Jones 1997]. He 

provided a fine-grained access control model, which supports navigating the data structure by inter-

object references. Zhang et al. introduced access control vectors and slabs for fine-grained access 

control based on a code-based scheme to represent a more compact structure for control data [Zhang 

et al. 2005]. 

2.6 Miscellany 

This section reviews various access control topics, including access control properties, policy 

analysis, and comparison of access control models.. 

To evaluate whether an access control instance conforms to an access control policy, one may 

check the mechanism’s properties such as safety, invulnerability, no-information-flow, and non-

interference [Bell and Lapadula 1976; Biba 1977; Focardi and Gorrieri 1997; Goguen and Meseguer 

1983; Jaeger and Tidswell 2001]. There are also considerable research works on policy analysis 

[Jajodia et al. 1997; Li et al. 2003; Bertino et al. 2001a; Bertino et al. 2001b; Jajodia et al. 2001; 

Bertino et al. 2003]. Policies are often analyzed by exploiting logical languages and some ad hoc 

rules and/or rule properties. Notably Li et al. propose a formal specification and semantics for  policy 

analysis in distributed environments.  

Comparison of access control models has also interested researchers. Tripunitara and Li propose a 

comparison mechanism based on simulation to compare two given access control models [Tripunitara 

and Li 2004]. The simulation is based on transition networks of access control models, and if model 

A can simulate all states of model B, A is said to be at least as expressive as B. Using this 

mechanism, the authors conclude that ARBAC97 [Sandhu et al. 1999] is limited in its expressivity, 

and also a trust management language [Chander et al. 2001] is at least as expressive as ARBAC97. 
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Jaeger et al. introduce an access control space in which authorizations are divided into five 

permission sets, namely permissible, specified, obligated, prohibited, and unknown [Jaeger et al. 

2003].  The permissible set consists of authorizations that are known and can be assigned to a given 

subject S.  The specified set consists of those permissible authorizations that have been assigned to a 

given subject S. The obligated set consists of authorizations that are required (for example by the 

system) to be assigned to a given subject S. The prohibited set consists of those authorizations that 

must not be assigned to a given subject S. The unknown set includes those subspaces on which 

neither permissible rules nor prohibited rules are defined. The authors believe that understanding 

these subspaces and their intersections assist system administrators to better manage policies. 
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Chapter 3 

DEDUCING EFFECTIVE ACCESS CONTROL 

An explicit access control matrix is typically large and sparse since, in practice, authorizations are 

explicitly defined only for a small proportion of subjects and objects; the rest of the matrix is null. 

Yet, since the effective access control matrix is required to be well-defined, which means every cell 

must have an effective authorization (no null or conflicting value is allowed), explicit authorizations 

are propagated throughout the subject and object hierarchies to obtain the effective authorizations.  

Conflicts may occur when authorizations are propagated throughout the hierarchies since a 

particular node may be simultaneously authorized by one of its ancestors for some activity and denied 

by another ancestor for that same activity. A conflict is also said to occur when the set of ancestors 

provides neither permission nor denial for some activity. 

This chapter addresses propagation of authorizations and resolution of conflicts. In particular, 

Section 3.1 introduces subjects and objects as well as the hierarchies among them. Section 3.2 

describes how conflicts may happen on a given hierarchy. Section 3.3 reviews major conflict 

resolution policies. Section 3.4 combines the policies to obtain 48 strategy instances. Section 3.5 

provides a logical formalism for the combined strategies. Section 3.6 describes a unified parametric 

algorithm to support all the instances. Section 3.7 demonstrates the experimental results. Section 3.8 

describes the propagation of authorization on hierarchies. Finally, Section 3.9 reviews the literature of 

conflict resolution models. 
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3.1 Subjects and Object Hierarchies  

Definition 1 (Access Control Universe). The access control universe U is the collection of all objects 

of any type in the system. (Object types are introduced in Section 4.3.) We assume a simple set 

language to describe members of the universe. In Figure 1, in Chapter 1, the set All-objects 

represents the access control universe. Throughout this thesis, sets are depicted with capital letter 

labels, and those members which are objects are depicted with labels composed of lower-case letters. 

Definition 2 (Subjects). The set of subjects Public ⊆ U, are the collection of all active objects that are 

able to launch access requests. Figure 1, in Chapter 1, depicts the subset as Subjects to represent all 

active objects. Throughout this thesis, the subject members are depicted with labels that start with a 

capital letter.  

Definition 3. (Owner). A set of subjects S ⊆ Public, who are responsible for a given object O∈ U, is 

called O’s owner. Deciding who is the owner of an object can be expressed by access control policies, 

which are explained in Section 5.1. 

Definition 4 (Permission). A permission p is the right to execute a specific method on a given object 

o∈U. Note that permissions in ACAD are not limited to a fixed set of rights such as read or write.  

Access control can be defined as a mechanism to dictate the permissions that particular sets of 

subjects, i.e., users and applications, are given to access particular sets of objects, i.e., data. 

Definition 5 (Subject Constraint). A constraint C is an expression that defines the domain of 

applicable subjects who may (or may not) be granted a permission p. We assume a simple set 

language to denote the applicable subset of Public.  

Definition 6 (Access Authorization). An access authorization a is a quadruple <C, mode, p, O> 

permitting (or denying) permission p on a non-empty set of objects O ⊆ U to be assigned to any 

subset of Public who satisfy constraint C; an authorization mode is either permit or deny, as described 

in detail in Section 3.8.  

The set of subjects and the set of objects both form hierarchies that can be represented as directed 

acyclic graphs. Following convention, outgoing edges from a group in the subject hierarchy lead to all 

members of that group (either subgroups or individual users), and outgoing edges from an object in 
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the object hierarchy lead to all its subobjects. It is important that the hierarchies not be restricted to 

form trees.  

The subject hierarchy when viewed bottom-up maps group membership: if (S1, S2) is an edge in the 

hierarchy, every member of S2 is also a member of S1. Note that an individual subject in our model is 

represented as a group with no child vertex. For example, in Figure 3(a), subjects Dorothy and Claude 

are individuals, whereas subjects Surgeons-team1, Doctors, Consultants, and Lawyers are groups. 

Dorothy is a direct member of Surgeon-team1, Doctors, and Consultants; Claude and Mary are direct 

members of Consultants only. Since subject Consultants is a member of subject Lawyers, subjects 

Dorothy, Mary, and Claude are members of Lawyers too. In general, a group can have zero or more 

subgroups and zero or more individual nodes; and, a member of a group enjoys all authorizations of 

that group.  

On the other hand, the object hierarchy is a collection of distinct top-down ownership hierarchies 

that each maps a has-a relationship between objects. In general, an object can have zero or more 

subobjects; and its assigned authorizations are propagated to all of its subobjects. An ownership 

hierarchy is a sub-graph of all objects owned by the same subject. Ownership hierarchies may be 

connected to one another through cross-references. For example, in Figure 3(b), object encounter 

includes two nested objects hospitalization_info and diagnosis_info as well as cross-referring 

(depicted by the dotted arrow) object balance that is owned by another subject. Permissions from 

higher objects (source vertices) in the object hierarchy are propagated to nested objects (destination 

vertices) within the same ownership only. For example, in Figure 3(b), permissions on encounter are 

propagated down to hospitalization_info and diagnosis_info but not to balance. 

 

 

 

 

(a) Subject hierarchy maps  

the group membership. 

 

  (b) Object hierarchy maps  

nested objects. 

Figure 3. Example of subject and object hierarchies. 
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3.2 Conflicts on Hierarchies 

Figure 4 illustrates a subject inheritance hierarchy including nine subjects. The arrows represent 

group membership (e.g., subjects S4 and S5 are members of subject/group S3) and the sign labels 

represent explicit authorizations (+ indicates positive authorization and – represents denial). For 

simplicity of exposition, we assume that access to an object is either granted or denied (rather than 

separately controlling reading, writing, and other operators), and we illustrate only authorizations for 

a single object. The figure shows that subjects S2 and S4 are explicitly labelled to access the object, 

whereas subject S5 is explicitly denied from accessing it.  

Given the data in Figure 4, assume we are interested in knowing whether or not subject User is 

authorized to access the object. One may interpret the data to mean that the object is accessible to 

subject User since User is a descendant of S2 and thereby inherits S2’s authorizations. However, 

another may argue that the object should not be accessible to User since he is a member of S5 which is 

denied access. In fact, there is a conflict in the system. Conflict resolution policies are needed to 

answer such questions. 

 

 

Figure 4. Conflicts on hierarchies. 

There exist several conflict resolution policies, such as “denial takes precedence” and “the most 

specific takes precedence,” in the literature of access control models. Yet, adopting one simple policy, 

such as “the most specific authorization takes precedence,” is not sufficient in practice. For instance, 

such a policy is insufficient where the subject hierarchy is more complex than tree-based structures 
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the minimum distance of 1 from User. Furthermore, there are situations in which the highest authority 

(not the most specific one) should be the final arbiter. For instance, assume a student is authorized by 

the university athletic office to referee hockey games on campus (which requires more than 20 hours 

per week for several weeks); however, he is required by the department not to accept heavy non-

departmental tasks (in order to comply with his full-time registration status). In such a case, the 

university administration may override the department by deciding to let him referee. To visualize 

such a case, assume there is an edge from S1 to S2 in Figure 4 and S1 is labelled positively. 

Representing the student by User, the referees group by S2, the members of the department by S5, and 

the university members by S1, it is apparent that for this enterprise the most global authorization 

should take precedence in resolving the conflict. 

Some have proposed the “negative takes precedence” policy, but this too is not universally 

acceptable. For instance, conflicts often are resolved by the “majority takes precedence” rule in 

voting systems. Additionally, the open policy recommends a default positive authorization for 

subjects which are not explicitly permitted to access a particular object [Harrison et al. 1976; 

Lampson 1971]. Therefore, there are applications in which “positive takes precedence”.  

Even from these simple examples we see that, in many systems, it is required to combine various 

conflict resolution policies to obtain a comprehensive conflict resolution strategy. Moreover, each 

policy may encompass several variants, and consequently many strategy instances are possible. If an 

access control system is to be deployed in a wide range of enterprise settings, many complete 

strategies must be supported. What are all the legitimate strategy instances? Is there a unified 

algorithm to support all instances parametrically? 

3.3 Conflict Resolution Policies 

Definition 7 (Explicit Access Control Matrix). The initial access matrix EACM, which includes 

explicit authorizations only is called explicit access control matrix; EACM is represented as a set of 

quadruples <subject,object,permission,value>, in which subject∈Public, object∈U, 

permission∈Permissions (cf. Definitions 1-3), and value is either 1 or 0 representing an explicit 

permission or denial, respectively. 

Definition 8 (Effective Matrix). The effective matrix EM is a well-defined three-dimensional Boolean 

matrix indexed by Public, U, and Permissions (cf. Definitions 1,2, and 4). The value of EM[i,j,k]for 
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all i∈Public, j∈U, and k∈Permissions is either 1 or 0 representing an effective permission or denial, 

respectively. 

Given an explicit matrix, conflict resolution strategies and propagation modes are used to fill in all 

derived authorizations to determine the effective matrix. Because the explicit matrix is typically very 

sparse, practical systems will store the explicit matrix (perhaps as capability lists [Dennis and Van 

1966] or access control lists [Saltzer 1974]) and compute access control authorizations as needed by 

executing an authorization propagation and conflict resolution algorithm on an appropriately 

extracted subset of that matrix. Conflict resolution is required when propagating authorizations results 

in no decision for a particular <subject, object, operation> triple or when both positive and negative 

authorizations can be derived for that triple. Commonly used conflict resolution policies are outlined 

as follows:  

Preference Policy. Preferred authorization (with one of two modes: either positive or negative) is 

determined by the system installer at configuration time. This policy determines which authorization 

wins when both positive and negative authorizations (or neither negative nor positive authorization) 

can be derived for a particular triple. Negative authorization is preferred (known as closed policy) in 

more restricted systems such as the military; positive authorization may be preferred in more open 

applications such as public information systems. 

Locality Policy. The common mode of this distance-based policy states that the most specific 

authorization takes precedence. It applies to distributed organizations whose local branches may 

recognize an exception to a general rule. For instance, a department in a university may admit an 

outstanding applicant although the general admission requirement is not completely met. Thus, for a 

given subject, when both positive and negative authorizations can be derived from different ancestors, 

the one that is closer to the subject wins. Note that the distance between two nodes (subjects) in a 

directed acyclic graph is measured by computing the shortest directed path. The locality policy is not 

deterministic since no authorization wins when the distances are equal.  

As an alternative for the locality policy, some enterprises might choose “globalization,” where the 

most general authorization takes precedence. One application of this policy is in distributed 

organizations whose headquarters makes the final decision on a pre-approved task by a local office. 

Similarly, a supreme court may override an appealed decision. For a given subject, when both 
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positive and negative authorizations can be derived from different ancestors, the one that is farther 

from the subject wins. Similar to the usual locality policy, the distance between two nodes is 

measured by computing the shortest path, and again this mode of locality is not deterministic since no 

authorization may win.  

Majority Policy. This policy states that the conflict can be resolved based on votes, and the 

authorization that has the majority wins. The application of this policy is in situations where several 

parties have different opinions for giving or not giving the authorization to a particular member and 

the decision is made by votes. For instance, GATT’s current members vote to determine if a new 

applicant can get into the group. By applying this policy, the dominant authorization takes 

precedence. This policy is also non-deterministic since it can result in a tie. 

Default Policy. This policy is applied only to root subjects or objects for which no authorization 

has been defined. Closed systems, such as in the military, require negative authorization by default; 

however, open systems, such as public information applications, initially allow any subject to enjoy a 

positive authorization. There are applications in which the default policy is not appropriate; for 

instance, one may wish to give priority to the explicit authorization. This policy is deterministic and 

has three modes (default positive, default negative, or ignore), but applies to root subjects only.  

Note that for non-root nodes, only the preference policy is deterministic. 

3.4 Combined Strategies 

Figure 5 illustrates five conflict resolution strategies based on combining, in different orders, the 

popular conflict resolution policies summarized above [Chinaei and Zhang 2006]. They are given the 

mnemonics DLP, DLMP, DP, DMLP, and DMP, in which D, L, M, and P indicate Default, Locality, 

Majority, and Preference policies, respectively. Two properties are guaranteed: first, none of the 

policies are redundant, and second, there is no conflict after applying the last step. Note that in this 

framework the Preference policy is always the last applicable policy, and the other three policies, 

Default, Locality and Majority, are optional. Moreover, the Default policy, if applicable, is the first 

policy since otherwise it is meaningless. Note that no other combined strategy can be meaningfully 

composed from these basic conflict resolution policies. For example, the preference policy cannot be 

optional and must be considered last, since it is the only policy that is well-defined on every node. 



 

 25 

 

Figure 5. Combined conflict resolution strategies. 

Because the default policy can take three modes and the locality and preference policies can take 

two modes each, there are 48 different strategy instances in total that can be derived from Figure 5 

[Chinaei et al. 2007]. (Paths ending with a, b, and d generate twelve instances each, and paths ending 

with c and e generate six instances each.) Examples of strategy instances are D
+
LP

-
 (which means, 

first, apply the positive authorization as default, then apply the locality policy, and finally apply the 

negative takes precedence if some conflict still exist), D
-
GP

-
 (which means, first, apply the negative 

authorization as default, then apply the globalization mode of locality, and finally apply the negative 

takes precedence if some conflict still exist), LP
+
 (which means, first, apply the locality policy, and 

then apply the negative takes precedence), etc. Moreover, the propagation mode can be either pass 

through, block by, or override, in which propagating authorization may pass through the explicit 

authorization, be blocked by it, or override it, respectively. For instance, assume Figure 4 does not 

include the edge S2�User; therefore, to calculate permission for User, either S
+
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5, or  

S
-
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+
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+
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-
5. Note that block by and override prioritize 

permissions along a single path, whereas locality and globalization prioritize permissions even in 

different paths. 

3.5 Logical Formalism  

This section provides guidelines for logically implementing the strategy instances explained in the 

previous section. Like the Authorization Specification Language [Jajodia et al. 2001], policies in 

ACAD are represented by logic programming rules. The ACAD model introduces four reserved 
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predicates named allow, disallow, permit, and deny. Whereas predicates allow and disallow are used 

to define the effective access control matrix as defined in Section 1.2 (allow representing 

EM[s,m,o]=1 and disallow representing EM[s,m,o]=0), predicates permit and deny are used to define 

an explicit access control matrix and to constrain the propagation of permissions. 

Examples:  

(a) Explicit permission is given to doctor Dana to read Patricia’s encounter and its sub-elements: 

permit(Dana, methodRead, patricia_encounter) 

(b) Robert cannot change consent form x: 

deny (Robert, methodChange, x) 

 (c) Effective permission is granted to patient Patricia to read her personal information:  

allow(Patricia, methodRead, patricia_personal_info) 

(d) Effective permission is denied to patient Patricia to delete her medical record: 

disallow(Patricia, methodDelete, patricia_medical_record) 

3.5.1 Propagation Policies 

To determine the values of all cells in the effective matrix, authorizations should be propagated 

within both hierarchies of subjects and objects in order to transform the explicit access control matrix 

to the corresponding effective matrix. This section selects a few strategy instances, introduced in 

Section 3.4, and provides the corresponding logical rules to transform an explicit access control 

matrix to an effective one.  First, we propagate all authorizations from the explicit access control 

matrix to an intermediate matrix which consists of two predicates maybe() and maybeNot(), 

regardless of the conflict resolution strategy is. These predicates have five variables, namely, S, M, O, 

D, and P, which represent the subject, authorization, object, the corresponding distance (which is later 

used for the locality rule), and set of propagation paths, respectively. 

Assume the propagation mode is “pass through”. The following rule, 

maybe(S,M,O,0,P)  permit(S, M,O), P={S}.    (1) 
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means that if there is an explicit authorization in the explicit access control matrix stating that subject 

S is permitted to execute method M on object O, a corresponding tuple is inserted into the 

intermediate matrix stating that the corresponding distance for the authorization is 0. Set P represents 

the propagation paths, which is represented by string S in this case. Moreover, the following rule, 

maybe(S,M,O,D,P)  maybe(X, M,O, D’,P’), child(S,X),  

D=D’+1, P=P’ || X.    (2) 

means that if subject S is a member of group X that is granted access to O from distance D’ and set of 

paths P’, all possible permissions of X are propagated to S with distance D’+1 and path P. (We use the 

notation P’ || X to mean that string X is concatenated to all paths in set P’.) Similarly, the following 

rule 

maybe(S,M,O,D,P)  maybe(S, M,X, D’, P’), child(O,X),  

D=D’+1, P=P’ || X.    (3) 

means that if subject S is granted access to object X from distance D’ and set of paths P’, its 

permission is extended with distance D’+1 to all sub-elements of X and path P.  

If the propagation mode is “block by”, rules (2) and (3) are replaced by the following rules: 

maybe(S,M,O,D,P)  maybe(X, M,O, D’,P’), child(S,X), ¬ deny(S, M, O),  

D=D’+1, P=P’ || X.    (4) 

and 

maybe(S,M,O,D,P)  maybe(S, M,X, D’,P’), child(O,X), ¬ deny(S, M, O),  

D=D’+1, P=P’ || X.    (5) 

respectively. 

Similar to rules 1-3, when the propagation mode is pass through, the following three rules, 

maybeNot(S,M,O,0,P)  deny(S, M,O), P={S}.    (6) 

maybeNot(S,M,O,D,P)  maybeNot(X, M,O, D’,P’), child(S,X),  

D=D’+1, P=P’ || X.    (7) 
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maybeNot(S,M,O,D,P)  maybeNot(S, M,X, D’,P’), child(O,X),  

D=D’+1, P=P’ || X.    (8) 

propagate all negative authorizations within both hierarchies of subjects and objects and insert them 

into the intermediate matrix.  

Now, recall that the effective matrix is constructed using predicates allow and disallow. The 

following rules 

disallow(S, M,O)  maybeNot(S,M,O,_,_),  ¬ maybe(S,M,O,_,_). (9) 

allow(S,M,O)  ¬ disallow(S,M,O).     (10) 

corresponds to the P
+
 strategy instance, where _ indicates a don’t-care term..  

Now, consider the D
-
P

+
 strategy instance, which means the default and preferred authorizations are 

negative and positive, respectively. The following rules together with rules (1) to (3) and (6) to (7) 

represent this policy: 

allow(S, M, O)  maybe(S, M, O, _,_).     (11) 

disallow(S, M, O)  ¬ allow(S, M, O).     (12) 

These rules state that as long as there is a corresponding positive authorization in the intermediate 

matrix, S is effectively allowed to execute M on O; and, once all positive authorizations are 

propagated and transformed, all non-filled cells of the effective access matrix are treated as denial of 

permission. 

To state the locality policy, we define two temporary predicates negativeCloser() and 

positiveCloser(), each of which has four variables, namely, S, M, O, and D, which represent the 

subject, authorization, object, and the corresponding distance, respectively; furthermore, we define 

two similar predicates negativeFurther() and positiveFurther() to state the globality rule: 

negativeCloser(S,M,O,c)  maybeNot(S,M,O,j,_), j<c.   (13) 

positiveCloser(S,M,O,c)  maybe(S,M,O,j,_), j<c.   (14) 

negativeFurther(S,M,O,c)  maybeNot(S,M,O,j,_), j>c.   (15) 

positiveFurther(S,M,O,c)  maybe(S,M,O,j,_), j>c.   (16) 
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Now consider D
-
LP

- 
in which negative default, locality, and negative preference are indicated. If 

the propagation mode is again pass through, this can be represented by rules (1) to (3), (6) to (8), (12), 

(13), and the following rule, 

allow(S,M,O)  maybe(S,M,O,i,_), ¬ negativeCloser(S,M,O,i).  (17) 

To state the strategies in which the majority rule is in place, we define two other temporary 

predicates negativeBigger() and positiveBigger(). These predicates again have four variables, namely, 

S, M, O, and C, which represent the subject, authorization, object, and a counter, respectively: 

negativeBigger(S,M,O,c)  maybeNot(S,M,O,_,P), |P|>c.  (18) 

positiveBigger(S,M,O,c)  maybe(S,M,O,_,P), |P|>c.   (19) 

maybe(S,M,O,D,P)  maybe(S,M,O,D,P1),  

maybe(S,M,O,D’,P2), P = P1 U P2.   (20) 

maybeNot(S,M,O,D,P)  maybeNot(S,M,O,D,P1),  

maybeNot(S,M,O,D’,P2), P = P1 U P2.  (21) 

Each of rules (20) and (21) combines multiple paths into a single set, for positive and negative 

authorizations, respectively; the sets’ cardinality determine majority.  

For instance, to represent the D
-
MP

-
 strategy instance, rules (1) to (3), (6) to (8), (12), and (18) to 

(21), as well as the following rule are applied: 

allow(S,M,O)  positiveBigger(S,M,O,c), ¬ negativeBigger(S,M,O,c). (22) 

 Finally, to keep the priority among majority and locality rules, we define another temporary 

predicate willAllow() which has three variables namely, S, M, and O, which represent the subject, 

authorization, and object, respectively. To represent the sophisticated strategy instance of D
+
MLP

-
,  

one can apply rules (1) to (3), (6) to (8), (12), (14), and (18) to (21), as well as the following rules: 

disallow(S,M,O)  negativeBigger(S,M,O,i),  

¬ positiveBigger(S,M,O,i).    (23) 

willAllow(S,M,O)  positiveBigger(S,M,O,i),  

¬ negativeBigger(S,M,O,i).    (24) 
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disallow(S,M,O)  maybeNot(S,M,O,i,_),  

¬ positiveCloser(S,M,O,i), ¬ willAllow(S,M,O).  (25) 

whereas, to represent D
+
LMP

-
, rules (23) to (25) should be replaced by the following rules:  

disallow(S,M,O)  maybeNot(S,M,O,i,_), ¬ positiveCloser(S,M,O,i). (26) 

willAllow(S,M,O)  maybe(S,M,O,i,_), ¬ negativeCloser(S,M,O,i).  (27) 

disallow(S,M,O)  negativeBigger(S,M,O,i),  

¬ positiveBigger(S,M,O,i), ¬ willAllow(S,M,O).  (28) 

One can formalize other strategy instances similarly.  

3.5.2 Propagation Policies Alternatives 

Propagation policies explained in Section 3.5.1 can be substituted with alternatives if required by the 

enterprise. For example,  

(a) Assume an enterprise does not wish to propagate authorizations through the object hierarchy, 

therefore only rules (1), (2), (6), and (7) are applied. (Rules (3) and (8) do not apply here.) 

(b) If the enterprise also does not require the permission propagation through the subject 

hierarchy, rules (2) and (7) should be removed as well.  

(c) If the enterprise requires an open policy in which authorizations are allowed unless otherwise 

explicitly denied, the following rules are applied:  

allow(S,M,O) ¬ deny (S,M,O,_,_). 

disallow(S, M, O)  ¬ allow(S, M, O). 

3.5.3 Policy Soundness 

Sections 3.5.1 and 3.5.2 introduced the guidelines for logical implementation of conflict resolution 

strategies depicted in Figure 5. Notice that, rules (1) to (3) and (6) to (7) demonstrate the propagation 

phase when the mode is “pass through”, rules (4) and (5) illustrate how propagation rules can be 

enhanced to support other propagation modes, rules (10) and (12) guarantee the effective matrix is 

well-defined, and the rest of the rules provide guidelines for implementing various conflict resolution 

strategies introduced by Figure 5. In particular, rules (13) to (16) are applicable when the locality 
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policies are in place; for instance, as shown in Section 3.5.1, rule (13) is applicable to D
-
LP

-
. 

Similarly, rules (18) and (19) are applicable when the majority policy is in place. Finally, rules (24) 

and (27) demonstrate how to handle the priority when both majority and locality policies are in place.  

By design, these rules are stratified which means none of the intensional predicates are in a 

negative recursive definition [Garcia-Molina et al. 2002]. Figure 6 illustrates the graph of intensional 

predicates applicable to strategy instance D
+
LMP

-
, one of the most sophisticated possible instances. 

This instance requires rules (1) to (3), (6) to (8), (12), (13), (18) to (21), and (26) to (28). Since there 

is not a cycle with a negative labelled arc in the graph, the set of rules are safe. In fact, the only 

restriction in the formalism is that rules (10) and (12) cannot be applied simultaneously. Moreover, 

since the default and preference policies are deterministic, our policy reasoning is sound, which 

means first it will eventually terminate and also be effective: if at least one of the rules (10) and (12) 

(and not both) is used, the effective matrix is well-defined. 

 

 

 

 

 

 

 

 

 

Figure 6. Graph of intensional predicates in D
+
LMP

-
. 

 

Notice that these propagation and conflict resolution rules are independent of the rest of the access 

control model (in particular of the creation time policies specified in Chapter 5); these same rules 

define the corresponding effective matrix for any given explicit access control matrix following the 

particular conflict-resolution policy defined. Furthermore, if the effective matrix is not materialized 
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(that is, it is interpreted as a view over the explicit access control matrix), its content automatically 

reflects any changes made to the explicit access control matrix. 

3.6 Unified Algorithm 

This section describes an algorithm that propagates explicit authorizations through the subject  and 

object hierarchies, and resolves the possible conflicts based on any of the 48 strategy instances 

illustrated in Section 3.4. To determine whether a given object, oj, is effectively accessible to a given 

subject, Si, with respect to a given right, rk, the idea is to apply the following four-step procedure: 

Step 1: Consider the maximal sub-graph (called H1) of the subject hierarchy in which Si is the sole 

sink and all other nodes are its ancestors. Similarly, consider the maximal sub-graph (called H2) of the 

object hierarchy in which Oj is the sole sink and all other nodes are its ancestors. 

Step 2: Assign a letter “d” to all root subjects in H1 that are unlabeled with respect to right rk and 

ancestors of oj. Similarly, assign a letter “d” to all root objects in H2 that are unlabeled with respect to 

right rk and ancestors of Si. 

Figure 7 illustrates the result of Steps 1 and 2 for subject User, object obj, and right read, illustrated 

in Figure 4 as the example of conflicts on hierarchies. 

 

 

Figure 7. Sub-graph of subject User. 

Step 3: Propagate all authorization labels down every path to subject User and store the distance of 

each propagated authorization from its source node to its destination node (User). For instance, the 

distance of label - (on S5) to node User is 1; also, there are two distances for label “d” (on S6) to node 

User: one (with value 1) directly from S6 to User, and one (with value 2) via S5.  

S1 S2
+
 

S5
-
 

User 

S6
d
 

S3 
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Table 1 illustrates the result of authorization propagation in the “pass through” mode for subject 

User, object obj, and right read as represented by Figure 7. 

Step 4: Apply a particular conflict resolution strategy to resolve any conflicts and derive a final 

effective authorization for the triple <Si, oj, rk>.  

Table 2 illustrates the result of applying each of the 48 strategy instances (explained in Section 3.4) 

to Table 1.  

 

Table 1. All read authorizations of User on obj. 

subject  object  right  dis mode 

User obj  read 1 - 

User obj  read 1 d 

User obj  read 2 d 

User obj  read 1 + 

User obj  read 3 + 

User obj  read 3 d 

 

For example, D
+
LMP

+
 is the strategy instance in which first the default policy is applied and every 

root subject which is null is initialized to +; then, if there is a conflict, the Locality policy (“the most 

specific authorization takes precedence”) is applied; then if there is still a conflict, the Majority policy 

is applied; and finally, if the conflict is not resolved, the preference policy in which the positive (+) 

authorization takes precedence is applied. Let’s see what the result of this strategy instance is on 

Table 1: by applying the default policy D
+
,
 
all mode d’s are replaced by +; by applying the locality 

policy, the conflict is not resolved since there are conflicting modes + and - from the shortest distance 

1; however, by applying the majority rule, mode + wins over mode - since there are more + entries 

than - entries. Note that the preference policy is not applicable to this case since the conflict is 

resolved before this rule is triggered; however in other hierarchies the conflict may not yet have been 

resolved. 
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Table 2. Resolved authorization for each combined strategy. 

strategy mode strategy mode strategy mode strategy mode 

D+LMP+ + D+LP+ + LMP+ + D+MLP+ + 

D+LMP- + D+LP- - LMP- - D+MLP- + 

D-LMP+ - D-LP+ + GMP+ + D-MLP+ - 

D-LMP- - D-LP- - GMP- + D-MLP- - 

D+GMP+ + D+GP+ + MP+ + D+MGP+ + 

D+GMP- + D+GP- + MP- + D+MGP- + 

D-GMP+ + D-GP+ + LP+ + D-MGP+ - 

D-GMP- - D-GP- - LP- - D-MGP- - 

D+MP+ + D+P+ + GP+ + MLP+ + 

D+MP- + D+P- - GP- + MLP- + 

D-MP+ - D-P+ + P+ + MGP+ + 

D-MP- - D-P- - P- - MGP- + 

 

For each strategy instance in Table 2, we use a bold font to show which policy has determined the 

effective authorization when applied to our example. For example, in the last strategy instance, MGP
-
, 

by applying the first policy (Majority), the positive authorization wins since there are two +’s (rows 4 

and 5) as opposed to only one - (row 1) in Table 1. Therefore, the localization and preference policies 

of the MGP
-
 instance are not applicable to this case.  

3.6.1 Algorithm Resolve() 

This section defines our conflict resolution algorithm. Figure 8 illustrates Algorithm Resolve() which 

computes the derived authorization mode of a given subject with respect to a given object and right. 

The algorithm parameters are s, o, r, dRule, lRule, mRule, and pRule; and the result is either + or -. 

Parameters s, o, and r designate a particular subject, object, and right, respectively, on which the 

caller is interested to know whether or not the object is accessible to the subject with respect to the 

specified right. Parameters dRule, lRule, mRule, and pRule determine the conflict resolution strategy, 

based on which the final right of the subject on the object must be derived. In particular, parameter 

dRule represents the default authorization policy and takes either of the three values “+”, “-“, or “0”, 
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which respectively states that the unlabelled root ancestors of the subject and object are to be 

initialized to positive authorization, negative authorization, or remain null (no default authorization 

policy). Parameter lRule represents the locality policy; its value is either min(), max(), or identity(), 

which represent “the most specific authorization takes precedence, ” “the most general authorization 

takes precedence, ” or “no locality policy” modes, respectively. Parameter mRule takes three values 

before, after, or skip, which determines whether the majority policy is applied before the locality 

policy, after it, or not at all, respectively. Finally, parameter pRule represents the preference policy 

and determines whether positive or negative authorization is preferred in the case of remaining 

conflicts. (We assume that the subject and objects hierarchies (SDAG and ODAG) and the explicit 

access control matrix (EACM) are globally defined in the algorithm.) 

In Line 1, relation allRights is created by calling Function Propagate(). The details of this function 

are explained in the next section, but the effect is to apply the first three steps of the procedure 

described in the introduction to Section 3.6.  

Line 2 checks whether the caller is interested in applying the default policy (dRule = “+” or “-“) or 

not (dRule = “0”). In the latter case, only those rows of relation allRights are considered in which 

mode <> “d” (see Line 3). In the former case (Line 4), those rows of relation allRights in which 

mode=“d” are updated with the value of dRule (“+” if positive authorization is to be the default 

policy, “-” otherwise). 

In Line 5, if the majority policy should be applied before the locality policy, we count the number 

of positive authorizations (Line 6) and negative authorizations (Line 7) that exist in relation allRights; 

however, as stated in Line 8, if the majority policy should be applied after the locality policy, we first 

apply the locality on relation allRights, and then count the number of positive (Line 9) and negative 

authorizations (Line 10). In either of these cases (Line 11), the algorithm returns the authorization 

which is in majority (Lines 12 and 13). 

If neither positive nor negative labels is in the majority or the majority policy is not designated at 

all, we apply the locality policy to relation allRights to select its relevant rows (Line 14); if lRule = 

min(), only rows in which the value of column dis is equal to the minimum distance (the most specific 

authorizations) are selected; similarly, if lRule = max(), only rows in which the value of column dis is 

equal to the maximum distance (the most general authorizations) are selected; however, if 

lRule=identity(), all rows are selected (this is equivalent to no locality policy being designated). 
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Figure 8. Algorithm Resolve(). 

Algorithm I: Resolve(s, o, r, pMode, dRule, lRule, mRule, pRule) 

¤  To compute the effective accessibility of subject s on object o w.r.t. right r 

¤  Propagation mode pMode ∈ {“pass through”, “block by”, “override”} 

¤  Default rule dRule ∈ {“+”, “-”, “0”} 

¤  Locality rule lRule ∈ {max(), min(), identity()} 

¤  Majority rule mRule ∈ {“before”, “after”, “skip”} 

¤  Preferred rule pRule ∈ {“+”, “-”} 

¤ The subject and object hierarchies (SDAG and ODAG), and the explicit access control 

matrix (EACM) are globally defined. 

Output: either “+” or “-” 

1.  allRights ←  Propagate (s, o, r, pMode, SDAG, ODAG, EACM); 

2.  if dRule = “0” 

3. allRights ← allRights
mode "d"<>

σ  

4.  else update allRights set mode=dRule  

where mode=“d”; 

5.  if mRule = “before” 

6.  c1 ← 





Π

+=
allRights

modecount ""()
σ ; 

7.  c2 ← 





Π

−=
allRights

modecount ""()
σ ; 

8.  if mRule = “after” 

9. c1 ← 
















Π

=
+=

allRights

dislRuledis
modecount

)(
,""()

σ ; 

10.  c2 ← 
















Π

=
−=

allRights

dislRuledis
modecount

)(
,""()

σ ; 

11. if mRule <> “skip” 

12.  if c1 > c2 return “+”; 

13.  if c2  > c1 return “-”; 

14. Auth ← 







Π

=
allRights

dislRuledismode )(
σ ; 

15. if count(distinct Auth) = 1 

16.  return Auth; 

17. return pRule; 
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Next, the values of column mode of corresponding rows are projected to form a set called Auth, 

which may be empty or contain positive and negative authorizations. If only one type of authorization 

is present (Line 15), it is returned (Line 16); otherwise, the preferred authorization (pRule) is returned 

and the algorithm ends. 

Table 3. Trace of Resolve(). 

Strategy c1 c2 Auth mode Line 

D
+
LMP

+
 2 1 n/a + 6 

D
-
GMP

-
 1 1 +,- - 9 

D
-
MP

-
 2 4 n/a - 6 

D
-
LP

+
 n/a n/a -,+ + 9 

D
+
GP

-
 n/a n/a + + 8 

GMP
-
 1 0 n/a + 6 

P
-
 n/a n/a -,+ - 9 

MGP
-
 1 0 n/a + 6 

 

Table 3 illustrates the result of Algorithm Resolve() applied to our motivating example for several 

illustrative strategies. In particular, we trace the algorithm for eight strategy instances (selected from 

Table 2) namely D
+
LMP

+
, D

-
GMP

-
, D

-
MP

-
, D

-
LP

+
, D

+
GP

-
, GMP

-
, P

-
, and MGP

-
. Table 3 shows 

values of c1, c2, Auth, and the effective mode derived by the algorithm, as well as its corresponding 

return line number. In the table, n/a means that the algorithm does not use the corresponding variable 

for the conflict resolution. 

For instance, if one chooses the strategy instance D
-
GMP

-
, all default values of relation allRights 

are replaced with “-” (Line 3). Since the global mode of the locality policy is in place and there are 

one positive and one negative authorization from distance 3 in Table 1, both c1 and c2’s values are 

assigned the value 1 (Lines 5). Then, since neither positive nor negative is in majority, the algorithm 

continues to Line 7, and Auth is assigned the value {+,-}. Finally, since there is a conflict in Auth, 

Line 9 of the algorithm returns the value of preference policy, which is “-” (indicated by P
-
 in the 

strategy instance), as the final derived decision with respect to triple <User, obj, read>.  
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As another example, if one chooses strategy instance MGP
-
, in Line 2, only those rows of relation 

allRights in which the mode is not “d” are selected. Then, since the globalization policy is in place 

and there is one explicit positive authorization from distance 3 in relation allRights, the value of c1 is 

set to 1 and the value of c2 is set to 0 in Lines 4. Finally, the algorithm returns “+” from Line 6 as the 

final derived decision with respect to triple <User, obj, read>. 

3.6.2 Function Propagate() 

In this section, we explain the details of Function Propagate(), which returns all corresponding 

authorizations of a given subject, object, and authorization, shown as <s, o, r> when called from Line 

1 in Algorithm Resolve(). The idea is to extract the part of the subject hierarchy in which s is the only 

sink and the part of the object hierarchy in which o is the only sink. (Note that, to avoid possible 

ambiguities, propagation modes are applied to the subject hierarchy only, and in the object hierarchy 

pass through is always applied.) Then, using top-down breadth-first propagation, all authorizations 

from root nodes are propagated towards s. If a root node has no authorization assigned in the explicit 

matrix, a letter “d” is assigned to it to represent the default authorization. Moreover, the distance of 

each authorization to s is computed, so that it can be exploited by Algorithm Resolve() if the locality 

policy is applied. Note that authorizations are propagated from all paths starting from the source node 

and ending at the destination.  

Figure 9 illustrates Function Propagate(), which inputs parameters s, o, and r (representing the 

subject, object, and authorization on which the conflict should be resolved), as well as pMode 

(representing the propagation mode); also, the function inputs SDAG, ODAG, and EACM, which 

represent the subject and object hierarchies as well as the explicit access control matrix, respectively.  

In Line 1, we extract from SDAG the maximal connected sub-hierarchy SDAG’, in which s is the 

sole sink. Similarly, the maximal connected sub-hierarchy ODAG’, in which o is the sole sink, is 

extracted. 

In Line 2, we create a relation P, which consists of five columns namely, subject, object, right, dis, 

and mode. Values for columns subject, object, right, and mode are taken from the corresponding ones 

in relation EACM (as explained in Section 3.3). Column dis represents the distance of the explicit 

authorization from the subject. Thus, the dis value for explicit authorizations is 0, for an authorization 

inherited from a parent is 1, and for an authorization inherited from a grandparent is 2.  
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Figure 9. Function Propagate(). 

Function Propagate (s, o, r, pMode, SDAG, ODAG, EACM); 

¤  To obtain all authorizations, with respect to triple <s, o, r> by propagating explicit 

authorizations in EACM through subject and object hierarchies (SDAG and ODAG) 

¤  EACM has attributes <subject, object, right, mode> 

¤  SDAG has attributes <subject, child> ,  ODAG has attributes <object, child>  

¤  ancestors(s) = {s} ∪ {x|∃y <y,s>∈SDAG ∧ x∈ancestors(y)} 

¤  ancestors(o) = {o} ∪ {x|∃y <y,o>∈ODAG ∧ x∈ancestors(y)} 

Output: table allRights 

1.  SDAG′ ←

)(
),(

sancestorschild
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∈
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Π  ODAG′ -
child
Π  ODAG′ -

object
Π  P; 

5.  P ← P ∪ RootSubjects × {<o, r, 0, “d”>}; 

6.  P ← P ∪ 

modeoobjectdepthright
objectsubject

),,(,
,,

Π s × RootObjects × {< r, “d”>}; 

7.  P′ ← 
ssubject≠

σ  P; 

    repeat  

8. P′ ← 

modei
right

objectchild

,1
,

,,

+

Π  P′   SDAG′; 

9. P’’ ← P 
0P.iP'.mode,modePrightPrightP

objectPobjectPsubjectPsubjectP

=<>=

==

.,'..

'..,'..  P′; 

10.        If pMode= “block by” then P′ ← P’ - 

modePiP
rightPobjectPsubjectP

'.,'.
.,.,.

Π P’’; 

11.        If pMode= “override” then P ← P- 

modePiP
rightPobjectPsubjectP

.,.
.,.,.

Π  P’’; 

12.   P ← P ∪ P′ ; 

13. P′ ← 
ssubject≠

σ  P′; 

14. until P′ = ∅ ; 

15. return 
ssubject=

σ  P; 
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Before completing the Function Propagate(), relation P will record all relevant authorizations 

propagated from all subjects and objects in the sub-graphs to all other nodes.  

In Line 3, we store all unlabelled root subjects of SDAG’ into a relation called RootSubjects. For 

instance, RootSubjects contains {S1, S6} if applied to our motivating example. Similarly, in Line 4, we 

store all unlabelled root objects of ODAG’ into a relation called RootObjects. 

In Line 5, for each root subject with no explicit authorization with respect to r and ancestors of  o, 

we insert an additional row into relation P to assign it the default authorization with distance 0. 

Similarly, in Line 6, for each root object with no explicit authorization with respect to r and ancestors 

of s, we insert an additional row into relation P to assign s the default authorization with appropriate 

distance (which is the distance of the root object from the object). In Line 7, we select as P′ all 

identified authorizations other than those on the sink node s. 

In Lines 8 to 15, we iteratively propagate all of the newly identified authorizations to all of the 

children of the corresponding nodes, stopping when no more nodes exist in P′.  This involves copying 

the authorizations from each node to its children (with the increased distance) (Line 8), blocking or 

overriding the rows based on the propagation mode (Line 9 to 11), inserting the new authorizations 

into P (Line 12), and re-determining which authorizations still need to be propagated further (Line 

13). Finally, Line 15 selects and returns authorizations that correspond to subject s. 

3.6.3 Computational Analysis 

The performance of the Resolve() algorithm depends on the structure of the subject hierarchy, on the 

placement of the explicit authorizations in the explicit access control matrix, and on the choice of 

subject, object, and right. We will examine the performance in practice in the next section, but here 

we summarize its asymptotic behaviour in the worst case. 

Consider first the structure of the subject hierarchy as represented by SDAG. Let r be the number of 

roots of the graph and let n be the total number of subjects in the hierarchy. We assume that at most 

one authorization is explicitly given for every subject-object-right triple; duplicates are meaningless 

and contradicting authorizations can be assumed to be disallowed. Thus, when selected subjects from 

SDAG are matched with explicit authorizations for a given object and right (Line 2 of Function 

Propagate()), at most one explicit authorization is joined to each subject in the subject hierarchy. Let 
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p be the number of paths to the given subject of interest s from subjects assigned explicit 

authorizations for the given object-right pair. Finally, let d be the sum of the path lengths for all paths 

leading from a root or an explicitly authorized subject to s. 

Algorithm Resolve() first calls Function Propagate(). Lines 1 through 7 take time O(n) to select a 

subset of the subjects, attach the explicit authorizations, and set the defaults in the remaining roots. 

Each authorization (default or explicit) is then pushed down each path to the node representing the 

given subject. The loop from Lines 8 though 14 of Function Propagate() thus require O(d) time in 

total. Finally relation P contains all these propagated authorizations, but only those associated with 

the given subject s are returned; this returned relation includes exactly one tuple for each explicit 

authorization and at most one tuple for each root. In summary, Function Propagate() takes time 

O(n+d) and returns a structure of size O(p). 

The remainder of Algorithm Resolve() repeatedly examines subsets of the relation allRights, and 

thus each line requires time at most O(p). Thus the total time for executing Algorithm Resolve() is 

O(p+n+d). Unfortunately, since the number of paths in a directed acyclic graph can grow 

exponentially in the number of nodes in the graph, d is O(n2
n
) in the worst case ( p is O(2

n
)). We shall 

see that in practice, however, the algorithm is typically much better behaved, as the authorization rate 

is often significantly low and also data hierarchies seldom contain the repeated diamond patterns that 

cause the number of paths to explode. 

3.7 Experiments 

We tested our algorithm first on synthetic data. We constructed several random complete directed 

acyclic graphs. In particular, KDAG(n) includes n nodes, one of which is a root and one of which is a 

sink, and  




 n

2
 edges (i.e., an edge between every pair of nodes), directed in such a way as to prevent 

cycles. Thus such graphs contain many more edges and paths than would be expected in typical 

applications, and constitute good stress tests for our algorithm. 

We executed our algorithm on random KDAGs of three different sizes. For each graph, we 

assigned explicit authorizations to subjects at random, choosing subjects proportionally to the number 

of members. In particular, 0.5% to 10.0% of the graph’s edges were selected at random and their 

source nodes were assigned explicit authorizations. We ran our experiments on a Sun UltraSPARC-II 
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with a 450 MHz processor and 2048 Megabytes of RAM. The program is in C and SQL and was 

complied by  gcc  version 3.3.4 and DB2 version 7. We then measured the CPU time for computing 

the result of the Function Propagate() (that being the dominant part of the algorithm) for each of the 

resulting SDAG-EACM pairs, and averaged over 20 random repetitions with the same parameters. 

Our experiments show that for small authorization rates (which often occur in practical cases), the 

running time is linearly proportional to the authorization rates (see Figure 10). 

We also evaluated our algorithm on the subject hierarchy extracted from an installation of Livelink, 

Open Text’s enterprise content management system1. In Livelink, groups can be arbitrarily structured 

and nested to arbitrary depth. In the environment we tested, the subject hierarchy has over 8000 nodes 

and 22,000 edges. There are 1582 sinks (individual users), each of which represents a real-world 

sample for our experiments. The depths of the induced sub-graphs range from 1 to 11. 

We measured the time of our algorithm for each of the sinks in the Livelink subject hierarchy, 

using an authorization rate of 0.7% of the edges as above. The results are presented in Figure 11, 

plotting the CPU time as a function of d, the sum of the lengths of all paths from explicit and default 

authorizations to the selected sink. 

Figure 11 also compares the execution time of the Resolve() algorithm to that of the Dominance() 

algorithm, presented in Chinaei and Zhang’s work [2]. The latter algorithm was designed to evaluate 

the D
-
LP

- 
strategy as efficiently as possible under the assumption that there are relatively few explicit 

positive and negative authorizations (i.e., that the authorization rate is low). Thus the comparison 

sheds some light on the overhead imposed by adopting a unified conflict resolution algorithm. It is 

important to note that the propagation of  Dominance() algorithm is dependent on the placement of 

negative authorizations whereas the Resolve() algorithm is not. To account for this, we calculated the 

average of three trials for each data point for the Dominance() algorithm: one where 1% of the 

explicit authorizations are negative, one where half of them are negative, and one where all explicit 

authorizations are negative. 

The Dominance() algorithm is occasionally very fast due to visiting an early negative authorization 

in the hierarchy, but it is not as efficient as Resolve() for objects that have few negative 

authorizations. Figure 11 shows that the run time for the Dominance() algorithm can fall anywhere 

                                                      

1 http://www.opentext.com/ 
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below the time for the Resolve() algorithm, and occasionally it can be higher. On average, over all 

graph sizes and shapes in these experiments, Resolve() required 1260 ms to compute whether or not a 

leaf subject was authorized to access an object, whereas the Dominance() average is 920 ms. Thus the 

flexibility to compute the value for any strategy comes at a cost of 27% overhead.  
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Figure 10. Function Propagate() on synthetic data examples. 
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Figure 11. Algorithms Resolve() and Dominance() on Livelink data. 
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Figure 12. Total paths lengths vs. number of nodes in LiveLink data. 

Finally, Figure 12 restates the behaviour of Algorithm Resolve() against the number of nodes in the 

sub-graph rather than the total length of all paths in the sub-graph. The results show that graphs with 

very many subjects do not necessarily require much more time to resolve than do small graphs. From 

this data we conclude that it is unlikely that the asymptotic worst case performance will be 

problematic in practice.  

3.8 Propagation of Authorizations 

For the of the remainder of the thesis, we assume that ACAD uses a closed system, in which 

permissions are denied by default, and provides positive explicit authorizations only. We also use 

“stoppers” on arbitrary nodes to limit the propagation of positive authorizations: a positive 

authorization may not be propagated across a node that has a corresponding stopper. Thus, the 

propagation of explicit (positive) authorizations is controlled with “stoppers”: associating a stopper 

for authorization p with any subject in the subject hierarchy and any object in the object hierarchy 

prevents the propagation of p as an effective authorization to sub-levels in the subject hierarchy. 

Whereas some other researchers have argued that more general negative authorizations are often 

required in practice [Bertino et al. 1999], we maintain that controlling the propagation of positive 
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authorizations with “stoppers” can produce the same effect, without incurring the cognitive overhead 

inherent in conflict resolution [Rosenthal and Sciore 2001]. In fact, our use of stoppers corresponds 

exactly to the strategy instance D
-
LP

+
 with block by propagation, which intuitively means a given 

node is effectively labelled positive only if there is at least one path to the node from at least one of its 

ancestors that assigned an explicit permission with no corresponding negative authorization nodes 

along the path. Note, however, that negative authorizations are fundamentally required in the 

effective matrix, where each subject-object-method triple is explicitly granted or denied. 

3.8.1 Propagation and Stoppers 

Propagation of permissions may be stopped by a stopper authorization at any level in the subject 

hierarchy. Using wildcard “_” to indicate a “whatever” value, each permission p which is represented 

as <_, permit, p, _> has a corresponding stopper that is represented in ACAD as <_, deny, p, _>. For 

example, in Figure 13(a), a subject who is assigned to an access bank that includes stopper <_, deny, 

read, diagnosis_info> cannot read diagnosis_info or its descendants merely because he has read 

permission on encounter. (Access banks are a collection of access authorizations and are formally 

defined in Section 4.2.) That is, the propagation of the read permission is stopped at diagnosis_info. 

However, stoppers do not override an explicit permission. For example, in Figure 3(b), a subject who 

has both read permission and read stopper on encounter can still read this object.  

Stoppers are unlike traditional negative authorizations in models that include both positive and 

negative authorizations, such as proposed by Bertino et al. [Bertino et al. 1999]. A negative 

authorization typically represents a denial of access, whereas a stopper is a mechanism to stop the 

propagation of a positive authorization. In ACAD, if any authorization can be found connecting a 

subject to an object, the corresponding permissions are valid. Because there is no need to check 

whether an authorization is overridden elsewhere, the ACAD approach is easier to administer. We 

will therefore use this mechanism in the remainder of the thesis.  

3.8.2 Propagation Example with Stoppers 

This section provides an enhanced example of propagation in the context of motivating example I, 

explained in Section 1.3.1. Figure 13 illustrates the example, in which for simplicity only read 

operations are depicted. Bank bi includes authorizations <_, permit, read, balance>, <_, deny, read, 
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balance>, <_, permit, read, encounter>, and <_, deny, read, encounter>. Note that bi also includes the 

explicit authorizations on sub-objects of encounter, hospitalization-info and diagnosis_info, which are 

not depicted in the figure for simplicity. Bank bi+1 includes authorizations <_, permit, read, balance> 

and <_, deny, read, diagnosis_info>. Bank bi+2 includes authorizations <_, permit, read, 

diagnosis_info>, <_, permit, read, hospitalization_info>, and <_, deny,read,hospitalization_info>; 

and, bi+3 includes authorization <_,deny,read, hospitalization_info>. 

Now assume that subjects Mary, Consultants, Lawyers, and Claude are assigned to banks bi, bi+1, 

bi+2, and bi+3, respectively; and subject  Doctors  is assigned to banks bi+1,   bi+2, and bi+3.  Figure 13(a)  

illustrates  the bank hierarchy with these subjects assigned. Because Dorothy is a member of Doctors 

and Consultants, and hence Lawyers, her effective permissions include reading objects 

hospitalization_info, diagnosis_info, and balance. Even if Surgeons-team1 were stopped from 

inheriting a permission from Doctors, Dorothy would still be permitted that operation because of her 

direct membership in Doctors. Mary’s explicit permissions include reading objects encounter and 

balance, and because of the stopper for Consultants, she cannot inherit permission to read 

diagnosis_info from Lawyers, although she does inherit the ability to read hospitalization_info.  

 

 

(a) Example of the access bank hierarchy with assigned subjects. 

Mary 

Consultants, 

Doctors Lawyers, 

Doctors 

Claude, 

Doctors 

bi 

<_, permit, read, balance>, 

<_, deny, read, balance>, 

<_, permit, read, encounter>, 

<_, deny, read, encounter> 
bi+2 

<_, permit, read, diagnosis_info>, 

<_, permit, read, hospitalization_info>, 

<_, deny, read, hospitalization_info> 

bi+1 

<_, permit, read, balance>, 

<_, deny, read, diagnosis_info> 

bi+3 

<_, deny, read, hospitalization_info> 
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(b) Subject hierarchy and effective read authorizations to objects. 

 

(c) Object hierarchy and the subjects that effectively can read it.  

Figure 13. Example of propagation of authorizations. 

Finally, Claude’s effective permissions include reading object balance only: although he is a 

Lawyer, he is explicitly stopped from inheriting permission to read hospitalization_info.  

Figure 13(b) summarizes these and other effective permissions of subjects, using bold type to 

depict explicit permissions. For instance, subject Consultants is explicitly permitted to read object 

balance, and implicitly permitted to read object hospitalization_info. Similarly, Figure 13(c) 

summarizes effective permissions for objects. For instance, object balance is explicitly readable by 

subjects Doctors, Consultants, and Mary and implicitly readable by Surgeons-team1, Dorothy, and 

Claude. 
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3.9 Related Work 

Bertino et al. propose an authorization mechanism for relational models in which conflicts are mainly 

resolved based on “the negative authorization takes precedence” policy [Bertino et al. 1999]. They 

also introduce the concept of weak and strong authorizations, which is equivalent to using our 

combined strategy instance D
-
LP

-
 when the propagation mode is block by. 

Jajodia et al. use Datalog programs to model access controls of hybrid authorizations with a wide 

range of conflict prevention/resolving policies [Jajodia et al. 2001]. Their modeling stores the raw 

authorizations and computes the effective authorizations for a <subject, object> pair in time linear to 

the size of the Datalog program (rules and ground facts). However, their ground facts include the 

transitive closure of the subject hierarchy (which cannot be computed in linear time) plus all the raw 

authorizations. The potentially large number of ground facts implies that even a linear time solution 

may not be efficient in practice. To answer access control queries efficiently, they suggest 

materializing the entire effective access control. The accessibility check for a given <subject, object> 

pair is thus equivalent to checking the materialized effective access control table (constant time). 

However, considering the formidable size of the effective access controls, which is the product of the 

number of objects and the number of subjects, this approach is not practical for very large systems. 

Moreover, the materialized effective access controls are not self-maintainable with respect to 

updating the explicit authorizations, and even a slight update to the explicit authorizations could 

trigger a drastic modification to the effective ones, making the maintenance task very expensive.  

Propagation of authorizations has been addressed in many works [Ferraiolo et al. 1992; Bertino et 

al. 1999; Osborn and Guo 2000]. However, traditional role-based models often use only the role 

hierarchy for authorizations inheritance. Bertino et al. propose the propagation of authorizations 

within the subject hierarchy in their role-based proposal for relational access control; they assumpe 

that there is no hierarchy among the objects, which are mostly base tables. Osborn and Guo augment 

RBAC models by suggesting to support a group hierarchy independent from the role hierarchy as well 

as authorization inheritance within group members. ACAD is distinguished from other models due to 

propagating authorizations within the subject and object graphs simultaneously, and utilizing the bank 

hierarchy as a means of retaining control for object owners (see Chapter 4).  

Some existing solutions for computing effective authorizations assume that the explicit 

authorizations are propagated on tree-structured data [Damiani et al. 2002; Moses 2005; Yu et al 
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2002; Zhang et al. 2005]. This trivializes conflict resolution since there is only one path between any 

ancestor and a leaf. Moreover, the number of ancestors for a leaf is bounded by the depth of the tree, 

which is usually a small value in real world data [Mignet et al. 2003]. Unfortunately, real world 

subject hierarchies are mostly DAG-structured rather than trees: the UNIX file system allows a user 

to be member of several groups at the same time, and in role-based access control systems, a user can 

be assigned several roles and each role can be assigned to multiple parent roles [Ferraiolo and Kuhn 

1992]. When explicit authorizations are propagated on a DAG subject hierarchy, a leaf subject 

potentially has all subjects as its ancestors, and each ancestor may have several paths reaching to that 

leaf. Therefore, none of the approaches for tree-structured data are appropriate in this setting.  

Cuppens et al. propose a conflict resolution model for documents containing sensitive information 

[Cuppens et al. 1998]. They address the problem of downgrading the classification of these 

documents when their contents become obsolete. Their approach is to impose a strict order of 

preference between rules and does not include any hierarchy among subjects. 

Koch et al. provide a systematic graph-based conflict detection and resolution algorithm based on 

two properties namely, rule reduction and rule expansion [Koch et al. 2002]. Using these properties, 

they transform a conflicting graph into a conflict-free one. However, their approach is applicable only 

to the rules that are related to one another, whereas our approach addresses independent policies. 

Finally, our approach is also different from the combining algorithms in XACML [Moses 2005], in 

which the resolution model relies on the data hierarchy rather than the also considering subject 

hierarchy.  
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Chapter 4 

FLEXIBLE ADMINISTRATION OF ACCESS CONTROL 

The spectrum of access control administration was introduced in Chapter 1 to illustrate to what extent 

decentralization can be realized. This spectrum covers a wide range of systems from absolutely 

autocratic to completely self-governing. This chapter presents the access control administration 

(ACAD) model. The goal is to be a policy-neutral and uniform model in which various degrees of 

decentralization are supported. It is important to notice that whereas there must be a consistent 

enforcement mechanism to support the enterprises’ access control policies, closely held access control 

may or may not fit the security requirements of various organizations. Furthermore, no matter how 

decentralized the access control administration is, the system must remain secure: its policy must be 

enforced entirely regardless of how restrictive or open the policy is.  

ACAD consists of three layers; each is a directed acyclic graph corresponding to subjects, objects, 

and a layer of access banks. The subject and object were formally defined in Definitions 1 and 2, 

respectively. The access banks are defined in this chapter (Definition 9). Section 4.1 describes why a 

uniform access control mechanism is important. Section 4.2 formalizes authorizations of ACAD. 

Section 4.3 defines applicable authorizations for an object based on the object type. Section 4.4 

introduces omnibank as a means of empowering an object’s owner with all applicable authorizations. 

Section 4.5 illustrates how subjects can manage access control through various types of delegation 

and revocation features in light of customized access banks. Section 4.6 illustrates how omnibanks 

can include several customized omnibanks. Section 4.7 compares access banks to access roles 

introduced in RBAC models. Finally, Section 4.8 addresses some aspects of the related work. 
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4.1 Uniformity 

It is important as an overarching feature that access control systems be based on a single uniform 

model with respect to both data and metadata (access control data). The goal is to address the needs of 

software companies to provide Enterprise Content Management capabilities2 that fit a wide spectrum 

of security needs for their diverse customer base. Some data needs very tight control; other data can 

be managed by their creators or by the groups within which the creators work. To support 

collaboration, access privileges often have to be granted and revoked in unstructured ways. In 

particular, since the access privileges themselves are typically stored as data, operations to alter those 

privileges (called metadata), whether to update them or to assign privileges with respect to newly 

created subjects or objects, must also be subject to access control.  

Some existing models include separate implicit access control methods for controlling 

authorizations to update the metadata, and other models ignore such authorizations. Yet, the broad 

view of content in an ECM, as depicted in the access control framework of Figure 1, supports the idea 

that information about the subjects and information about access control can (and should) be treated 

just like any other data. Therefore it is important that there is one uniform mechanism to manage data 

whatever its form, and we take that as axiomatic. 

4.2 Access Banks 

Definition 9 (Access Banks). Access banks, which are themselves a subset of the data universe U, are 

collections of access authorizations. Henceforth, we always mean an access bank of authorizations 

when we use the term “bank” or “access bank”, and access banks are depicted by ovals with italic 

labels in all figures. Banks connect a set of subjects to the authorizations for each subject in the set. A 

given bank b ∈ U is a triple <bn, Subj, Auth> where  

— bn is a unique bank name,  

— Subj is a set of subjects,  

— Auth is a non-empty set of access authorizations, and 

                                                      

2 defined by the Association for Information and Image Management <http://www.aiim.org/about-ecm.asp> 
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— ∀ <C, mode, p, O> ∈ Auth, Subj ⊆ C. That is, all subjects associated with a bank must meet all the 

constraints specified in the bank. Through bank b = <bn, Subj, Auth>, any subject that is a member 

of Subj receives all authorizations of Auth. 

Definition 10 (Fertile Bank). A fertile bank is an access bank in which there exists at least one access 

authorization which permits the corresponding subjects to create new access banks.  

We assume that when an authorization is to be enforced, subjects in the system have already been 

authenticated, that is identified and associated with all banks in which the subject is in Subj. The 

method of authentication is outside the scope of this thesis; interested readers should consult 

alternative sources [Burrows et al. 1990; Ellison 1996;  Maughan et al. 1998]. Thus, whenever 

subjects request access to any piece of data (or metadata), the enforcement mechanism is activated to 

check if their access bank list includes a bank that contains the corresponding permission. 

4.2.1 Access Banks Hierarchy 

Banks of authorizations are organized as hierarchies in which source banks export authorizations to 

destination banks. Furthermore, the constraint of an authorization in a destination bank must be at 

least as restrictive as the constraint of the corresponding authorization in the source bank.  

Definition 11 (Bank Hierarchy). The bank hierarchy is a directed acyclic graph <V, E>, where V is 

the set of access banks, and E is a set of edges v1�v2 where ∀<v2, Subj2, Auth2>∈ V, ∀<C2, mode, p, 

o2> ∈ Auth2 (¬∃v (v�v2 ∈ E)  ∨ (∃ <v1, Subj1, Auth1>∈ V, ∃<C1, mode, p, o1> ∈ Auth1 (v1�v2  ∧ C2 

⊆ C1 ∧ o2 ⊆ o1)). 

Thus, for every non-root bank in the hierarchy, its authorizations must all be derived from those of 

its parents, possibly with tighter constraints or fewer objects. For example, in Figure 14, the licensing 

hierarchy between access banks (indicated by arrows) represents delegated privileges, which are 

imported from source banks. If bi+3 imports <C3, mode, p, O3> from <C2, mode, p, O2> in bi+2, then 

C3 and O3 must be subsets of C2 and O2, respectively. Note, however, that the restriction that all 

subjects assigned to a bank must satisfy all constraints in that bank does not imply that the subjects 

assigned to a bank must be a subset of the union of subjects assigned to its parents. 

Recall the ACAD model also includes two other layers: the subject hierarchy (SDAG) and the 

object hierarchy (ODAG) described in Section 3.1 and  depicted in Figure 3. A typical bank hierarchy 
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(BDAG) is depicted in Figure 15. For readability of Figure 15 an abbreviated language is used: for 

instance, M3(d2) corresponds to authorization <_,permit,M3,{d2}>; as another example, M1(d1, d2)+ 

corresponds to authorizations <_,permit, M1, {d1, d2}> and <_,permit, DelegateM1, {d1, d2}>.  

Therefore, in Figure 15, bank b3 contains a privilege to run method M1 on document d1 with grant 

option (+). BDAG is an intermediate layer between subjects and objects; on one hand, a set of 

subjects (either individual users or groups) from SDAG is assigned to each node of BDAG (indicated 

by dot-dashed lines). On the other hand, each access bank contains a set of authorizations on a set of 

objects of ODAG (indicated by dashed lines). We note that objects can be of any type (with arbitrary 

associated methods), including documents or document fragments, groups in the subject hierarchy, or 

even access banks (since an access bank is itself a special object containing a set of privileges on 

some set of objects). 

 

 

Figure 14. Hierarchy of access banks maps authorization inheritance. 

 

 

 

 

 

  

Figure 15. Access banks as an intermediate layer between SDAG and ODAG. 

bi 

authorizations 

bi+3 

bi+2 

bi+1 

authorizations 

authorizations 

authorizations 

M1(d1,d2)+, 

M2(d2), M3(d2) 

M1(d1)+ 

M3(d2) 

Subjects 

Hierarchy 

Objects 

Hierarchy 

 

b1 

b2 

b3 



 

 54 

4.2.2 Bank Operations 

We predefine six bank operations, namely read, assignTo, removeFrom, moreConstraints, import, 

and deleteBank. Operation read is the ACAD means of reading content of a given bank. Recall from 

Definition 9, a bank is represented as a triple <bn, Subj, Auth> ; therefore, reading a bank discloses its 

name, the set of subjects assigned to it, and its set of access authorizations. Operation assignTo is the 

method for assigning a subject to a given bank. In fact, assignTo adds one or more subjects to the 

Subj component of a bank. Similarly, removeFrom is an operation to remove a subject from a given 

bank, which means one or more subjects are removed from the Subj part. Operation moreConstraints 

is the method to add more constraints to the C part of any access authorization in the Auth component 

of a given bank. (Recall from Definition 6 that the C part of an access authorization constrains the set 

of subjects that may hold the authorization.) Operation import creates a new bank as a child vertex of 

one or more existing source banks. It takes as parameter pairs of a subset of authorizations and the 

source vertex from which the authorizations are imported to the destination vertex. For example, 

import(b3, {<<_, permit, M,{d1}>, b1 >, <<_, permit, M,{d2}>, b2 >}) creates bank b3 and edges 

b1�b3 and b2�b3 as depicted in Figure 16(c). Finally, operation deleteBank is the method to delete a 

bank from the bank hierarchy.  

4.2.3 Banks and the Explicit Matrix 

Access banks in ACAD are used to assign a set of subjects to a set of access authorizations. 

Furthermore, access authorizations associate access rights to a set of objects. In fact, an access bank 

can be briefly represented as <S, {<ri, Oi>}> in which S and Oi are given sets of subjects and objects, 

respectively, and ri is an access right. The following predicates can be used to formalize these 

concepts using Datalog: bank(b,s,a) associates subject s to authorization a in the bank with name b, 

and auth(a,c,m,p,o) associates constraint c, mode m, permission p, and object o in the authorization 

with name a. Although Definition 9 is defined in terms of sets of subjects and sets of authorizations, 

these predicates deal with individual elements to simplify the Datalog expressions. Hence, an access 

bank serves as several cells (predicates permit and deny) of an explicit access control matrix. The 

following rules demonstrate this service.  

permit(s, r, o)  bank(_, s, a),  auth(a, _,’permit’, r, o). 

deny(s, r, o)  bank(_, s, a),  auth(a, _,’deny’, r, o). 
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in which “_” means a “whatever” value. Note that this formalism assumes a unique authorization 

name for access authorizations; authorization names serve no purpose within the rest of the thesis. 

Moreover, note that predicates permit and deny are now considered to be intensional, built on top of 

extensional predicates bank and auth.   

4.2.4 Classes of Banks 

In practical environments, there are several characteristics that lead to useful refinements of the 

ACAD model, which are described here. 

ACAD assumes that every object belongs to an owner, and thus an owner access bank is always 

required for each object. The owner of an object is not necessarily the object’s creator, but it is 

initially determined at the time the object is created (see Chapter 5). As a result, as individual users 

create objects (e.g. personal documents), the number of access banks in a system may become quite 

large (e.g. if creators own the object they create), yet many of them are similar. This can be 

initialized parametrically. ACAD provides generic banks to provide such a parametric bank. As 

another characteristic, the model should also provide subjects with the feature of customizing access 

banks. ACAD provides customized banks to provide such features. Furthermore, banks may need to 

be combined to provide more sophisticated capabilities for the corresponding subjects. ACAD 

provides combined banks for this purpose. The generic, customized, and combined banks are depicted 

in Figure 16 and described in more detail as follows: 

Generic bank:  This facility allows the specification of a template for a set of possible access banks. 

To derive an effective access bank from such a template, a specific event acts as a trigger. For 

example, the owner bank (indicated by black ovals in figures) is a generic bank, which is instantiated 

as soon as the first object belonging to a subject is created; the owner id and object id are the 

parameters of the instantiation, and the concrete owner bank includes all authorizations on the object 

determined by a creation time policy (see Chapter 5). Similarly, omnibanks (introduced in Section 

4.4) are generic banks that include all related authorizations on specified objects. Consider an 

application in which every subject who creates an object is its owner; hence, every creator is assigned 

to a concrete owner bank. Figure 16(a) illustrates this example, where subjects S1 and S2 are assigned 

to the owner banks when they create objects d1 and d2, respectively.  



 

 56 

S1 S2 S3 

b1 

b2 M1(d1) 

M2(d2) 

d1 d2 

S1 
S2 

S3 

b1 
b2 

b3 

M(d2)+ 
M(d1)+ 

M(d1,d2) S4 

d2 d1 

S1 S2 

owner bank 1 
owner bank 2 

d2 d1 

Customized bank: Besides the generic bank, subjects who have at least one import privilege are able 

to create their own customized banks. Hence, every owner can choose an arbitrary subset of the 

authorizations in its owner bank to create a customized bank, and then assign arbitrary subjects to this 

bank. More generally, any subject assigned to a fertile bank may create a new sub-bank with a subset 

of the authorizations and assign other subjects to that new bank. Customized banks thus form the 

bank hierarchy, in which owner banks are the roots. For instance, in Example 1 in Chapter 1, any 

physician may customize the privileges assigned to the physicians group to create a particular bank 

for nurses. In Figure 16(b), owners S1 and S2 have created banks b1 and b2 to access objects d1 and 

d2, respectively. They both have assigned user S3 to these banks. Therefore, S3 has access to both d1 

and d2. S1 or S2 can remove S3’s access at any time, independently.  

 

 

(a) Owner bank as a Generic 

  

(c)  Customized bank (d) Combined bank 

Figure 16. Various access banks in ACAD. 

Combined bank: Lastly, subjects can create a combined bank if they have importable authorizations 

in more than one bank. In other words, a combined bank is a bank that has more than one immediate 

senior bank. For instance, in Example 1 in Chapter 1, an accountant may combine several banks to 

make several medical objects accessible to an insurance representative. In Figure 16(c), owners S1 
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and S2 have created fertile banks b1 and b2 to access objects d1 and d2, respectively; both S1 and S2 

are willing to export authorizations on their documents. They have also assigned subject S3 to their 

banks. Therefore, S3 can create b3 and inherit (import) access authorizations on both d1 and d2. 

Moreover, S3 can assign other subjects (e.g. S4) to b3. Both S1 and S2 can remove access privileges 

for S3 and its dependents (e.g. S4) from their objects by severing the inheritance chain without 

disrupting one another. For example, S1 (the owner of b1) can remove access for S3 and S4, from d1 

simply by removing both edges S3� b1 and b1� b3. Therefore, b3 no longer inherits anything from 

b1.  

4.3 Object Types and Authorizations 

Recall from Definition 4, authorizations in ACAD are not limited to a fixed set of rights such as read 

or write. Instead, various authorizations on objects are defined based on the object types that are 

present in the application. In addition, certain predefined object types and authorizations are required 

by the model.  

The predefined types include a basic type TData, which includes all objects, as well as two 

subtypes TBank and TSubject which represent access banks and subjects (individuals and groups), 

respectively. Authorizations on TData are applicable to all objects in U, while the subtype 

authorizations are applied to objects that are banks or subjects, respectively. We predefine two 

operations read and create applicable to type TData, which therefore define corresponding operations 

for every type through inheritance. Thus, permission to read (or create) an object is a permission to 

call a method read (or create) on an object of any type. (For readability, we give authorizations the 

same names as their corresponding methods.)  

We also define eight specific authorizations for objects of TBank and TSubject types: assignTo, 

removeFrom, import, addConstraint, and deleteBank are applicable to type TBank only; and 

subscribeTo, unsubscribeFrom¸ and deleteSubject are applicable to type TSubject only. The TBank 

authorizations correspond to the bank operations: For instance, a subject enjoying permission 

assignTo on bank b is permitted to assign subjects to the Subj component of b. For authorizations 

applicable to type TSubject, a subject enjoying permissions subscribeTo, unsubscribeTo, and 

deleteSubject on subject S is permitted to subscribe other subjects to (group) S, unsubscribe other 

subjects from S, and delete subject S, respectively. Hence, in contrast to most other models, any user 
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can potentially update the group hierarchy in our model, depending on the permissions assigned to 

that user. 

4.4 Object Creation and Omnibanks  

This section introduces the omnibank, which is the aggregation of all owner banks for a particular 

subject. Consequently, it is the collection of all authorizations for a subject (whether a user, a group, 

or an application) on its own objects. The omnibank also serves as the root of the bank hierarchy 

associated with the owner. In fact, the omnibank is the root of the owner’s whole object hierarchy.  

As stated in Section 4.2.4, an owner bank is a generic bank, which is instantiated when an object is 

created. This section specifies how various types of authorizations are combined in an omnibank for 

subject S when various types of objects are created, whether by S or by other subjects, and owned by 

S. For simplicity, we assume that an object’s owner is initially assigned all possible permissions on 

that object; this is relaxed in Chapter 5. Therefore,  

Axiom 1. Every subject who owns at least one object has an associated omnibank.  

Figure 17(a) illustrates that an omnibank initially includes twelve access authorizations: six 

permissions and six corresponding stoppers. Recall from Definition 6 that each access authorization 

consists of four components: a constraint (Cj
i
), a mode (permit/deny), a permission (pm), and a set of 

objects (on). Cj
i
 constrains the set of subjects Sj who may be explicitly permitted to hold (or stopped 

from holding) permission pm on the set of objects on. In the absence of stoppers, all members of the 

subject set Sj, assigned to the bank, implicitly enjoy the authorization on the set of objects on and all 

their descendants. Since subjects assigned to a bank are given all the authorizations within it, they 

must satisfy all constraints by being a subset of the intersection of all Cj
i
 for all i, i.e., i

j
i

jj CCS I=⊆ . 

Using this notation, authorization <C0
1
, permit, read, b0> in omnibank b0 means that subjects 

assigned to the bank are permitted to invoke method read on object b0 and its descendants. For 

example, assume an application in which initially the creator is assigned to such a bank; therefore, it 

means that creators can read all banks in their bank hierarchy. In applications where the creator is not 

necessarily the object owner, the creator is not automatically assigned to such bank and consequently 

the object owner retains control. 
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Similarly, the third and fifth authorizations mean that subjects assigned to the bank are permitted to 

invoke method assignTo (removeFrom) to add (remove) subjects to (from) the Subj component of 

bank b0, and of its descendants. Owners can thus delegate and revoke all their rights to other subjects, 

including the rights of delegation and revocation.  

Authorization <C0
7
, permit, import(Rights), b0>  in omnibank b0 means that subjects assigned to 

the bank are permitted to invoke method import to import authorizations from source bank b0. This 

authorization essentially means that the importer is able to create a child bank for the source bank. 

Hence, as soon as a subject invokes such a permission, a customized omnibank is created and 

assigned to the subject. Customized omnibanks, elaborated in Section 4.6, are sub-elements of the 

original omnibank. In order to control permissions on child banks, the exporting subject can limit 

authorizations of the customized omnibank by parameter Rights of the import permission. This 

feature is our means of enhanced delegation to retain control for the exporter (as explained in Section 

4.5). 
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Figure 17. Omnibanks and different types of objects. 
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Authorization <C0
9
, permit, addConstraint, b0> in omnibank b0 means that subjects assigned to 

the bank are permitted to invoke method addConstraint to add more constraints to any authorization 

of bank b0, and its descendants. In other words, object owners can update the C part of any 

authorization in their bank hierarchy. 

Finally, let children(bj) denotes all children of bank bj. Authorization <C0
11

, permit, deleteBank, 

children(b0)>  in omnibank b0 means that subjects assigned to the bank are permitted to invoke 

method deleteBank to delete any children of b0 (but not b0 itself). For simplicity, we assume that only 

leaf banks can be deleted. Therefore, with this initialization, another right that object owners initially 

enjoy is the right of deleting leaf banks from their bank hierarchy.  

Figure 17(a) also illustrates six initial stopper authorizations in omnibank b0 to stop the propagation 

of read, assignTo, removeFrom, import, addConstraint, and deletBank permissions for the subject 

assigned to bank b0. Although stoppers are not functioning in omnibanks due to coexistence of 

explicit permissions, their presence allows them to be exported to other banks in the hierarchy. In this 

way, we can maintain the property of the hierarchy that authorizations in descendent nodes always 

have corresponding authorizations in some ancestor node (cf. Definition 11). 

Figure 17(b) illustrates eight other predefined authorizations (including four stoppers) that are 

added to the omnibank as soon as a group or individual (i.e. an object of type TSubject) is created. For 

instance, when a subject S1 creates subject S2, corresponding authorizations, illustrated in Figure 

17(b), will be added to the owner’s omnibank (which is assumed to be b0 in this example). 

Authorization <C0
13

, permit, read, S2> in omnibank b0 means that S2’s owner is permitted to invoke 

method read in order to read the value of S2 and any of its descendants. Similarly, permission 

deleteSubject in omnibank means that the owner can delete S2 or any of its descendants. As is true for 

all objects, it is assumed again that only leaf subjects (individuals or empty groups) can be deleted. 

Moreover, Figure 17(b) illustrates that the owner enjoys permission subscribeTo (unsubscribeFrom), 

and therefore is permitted to add (remove) members to (from) S2. Note that a subject is represented as 

a member of S2 by linking it as a child vertex of S2. Moreover, Figure 17(b) includes four stopper 

authorizations in omnibank b0 to stop the propagation of read, subscribeTo, unsubscribeFrom, and 

deleteSubject permissions, respectively. As before, although stoppers are not functioning in 

omnibanks due to coexistence of explicit permissions, their presence is important so that owners can 

export them to other banks in the hierarchy when needed.  
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Finally, Figure 17(c) illustrates the case in which an object d1 (i.e. any other object of type TData) 

is created. Authorization <C0
21

, permit, read, d1> in omnibank b0 means that the owner is permitted 

to invoke method read in order to read the value of d1 and any of its descendants, and the read 

stopper in Figure 17(c) is for export purposes. Depending on the data type and on the policies in force 

(see Chapter 5), other authorizations will also be added to the omnibank when d1 is created.  

In summary, Figure 17 illustrates all initial authorizations for a particular subject, S1, who is 

considered to be the owner of an object of type TSubject, S2, and an object of type TData, d1. When 

an object is created, the omnibank of the owner is updated to include new authorizations for all 

methods of the new object if not already included. Based on these authorizations, S1 can extend his 

bank hierarchy by creating other banks and importing arbitrary authorizations from his omnibank, b0. 

In this way, he can share his data with other subjects.  

Figure 18 illustrates a system with m objects (o1 to om), n subjects (S1 to Sn), all of which own one 

or more objects, and therefore n omnibanks (omni1 to omnin). Recall that in all figures of this thesis, 

subject-bank assignments are depicted with dashed-dot lines, bank-object assignments are depicted 

with dashed lines, and omnibanks are depicted with black ovals; also, subject names start with a 

capital letter, and bank names are italic.  

 

 

Figure 18. Omnibanks in a system with n subjects. 

4.5 Access Control Administration 

In the last section, we explained that subjects are initially authorized for their own objects within 

omnibanks. Now we explain how users manage the access authorizations for their data. As the 

running example, we assume user Sx owns a newly created object d1 of type TData; and therefore, his 

omnibank omnix includes authorizations similar to those depicted in Figures 17(a) and 17(c).  
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For the rest of this section, we explain how Sx can utilize the corresponding bank hierarchy 

(depicted with triangles in Figures 19-22) to delegate its authorizations in any of three forms, namely 

simple delegation, delegation by agent, and enhanced delegation, and to retain control by revoking 

authorizations in two ways, namely weak and strong revocation. 

4.5.1 Simple Delegation 

In the simple delegation mechanism, subject Sx creates bank bi importing authorization <Ci, permit, p, 

d1> from his bank hierarchy  and delegates permission p to other subjects or group of subjects (such 

as Sa and Sb in Figure 19) by assigning them to bi. Ci constrains who is eligible to have authorization 

p. Thus, in order to be assigned to bi, Sa and Sb must be subsets of Ci, and once they are assigned, they 

are eligible to invoke method p on object d1 and its descendants.  

 

 

Figure 19. Simple delegation in ACAD. 

4.5.2 Delegation by Agent 

In the delegation by agent mechanism, subject Sx creates banks bi and bi+1 importing authorizations 

<Ci, permit, p, d1> and <Ci+1, permit, assignTo, bi>, respectively, from his bank hierarchy. 

Moreover, Sx assigns other subjects (such as Sc and Sd in Figure 20) to bi+1 as his agents so that they 

can delegate permission p on d1 to others (such as Se and Sf in Figure 20) by assigning them to bi as 

long as the latter subjects meet constraint Ci. Therefore, if Ci excludes Sd as an eligible subject for 

invoking method p on d1, Sd cannot be assigned to bi. In such a case, Sd can only assign other subjects 
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to bi on Sx’s behalf, but he has no other permission on d1 or on bi itself. In this form of delegation, Sc 

and Sd can delegate permission p on Sx’s behalf, however grantees have no right to delegate it further. 

 

 

 

 

 

 

 

 

 

Figure 20. Delegation by agent in ACAD. 

4.5.3 Enhanced Delegation 

In the enhanced delegation mechanism, subject Sx creates bank bi+2 importing permission import from 

his bank hierarchy, and assigns Sy to it so that Sy can create new children for bi+2 on Sx’s behalf. 

However, merely because Sy creates such banks, does not mean that he has full control over them; 

instead, Sx can adjust Sy’s authorizations on such banks through the rights argument of import. For 

instance, if Sx wants to prevent Sy from deleting such banks, he may include authorization <Public-

{Sy}, permit, deleteBank, bc> in the rights argument. Note that Public-{Sy} means every subject in the 

universe but Sy, and bc refers to the child bank being created. Also, in order for Sy to be able to invoke 

method p on d1 or delegate permission p to others, Sx must include authorization < m

iC 2+
, permit, p, d1> 

in the rights argument. Now, Sy has at least two options: one is to create a child for bi+2 containing 

permission p only; and the other is to create a bank, say bj,, including the import permission. Both are 

mechanisms to delegate the permission on Sx’s behalf. The former is without and the latter is with the 

option for further delegation. Of course, Sy is not obliged to use his delegation right. Figure 21 shows 
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the case that Sy has delegated the import permission to Sz through bj, and similarly Sz has delegated it 

to Sg through bk.  

 

 

 

Figure 21. Enhanced delegation in ACAD. 

It is important to notice that Sx has necessary controls on all banks bi+2, bj, and bk, while Sy has 

control on banks bj and bk, and Sz has control on bank bk only. For example, if Sy wants to prevent Sz 

from invoking method p on d1 or prevent him from delegating the import permission to Sh, he can 

adjust the rights argument of bj with authorizations <Public-{Sz}, permit, p, d1> or <Public-{Sh}, 

permit, import, _>, respectively. 

It is also important to notice that Sx does not have to be the owner of d1 in order to exploit the 

above delegation mechanisms. In general, once banks bi, bi+1 and bi+2 exist, any subject G which 

holds authorizations <{G}, permit, assignTo, bi>, <{G}, permit, assignTo, bi+1>, and <{G}, permit, 

assignTo, bi+2> can invoke simple delegation, delegation by agent, and enhanced delegation 

mechanisms, respectively, to delegate permission p on d1. 

Other than preventing grantees from doing particular operations in the future, there is often a need 

to undo or revoke some given permissions. For the rest of this section, we explain how subjects retain 

control over their own objects even though many authorizations have been delegated. We provide two 

levels of revocation, weak and strong.  
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4.5.4 Weak Revocation 

Assume bank bi with authorization <Ci, permit, p, d1>. Assigned subjects to a bank containing 

authorization <C, permit, removeFrom, bi> can revoke permission p on d1 for any subject enjoying it 

through bi by removing the subject from the set assigned to the bank. We call this mechanism a weak 

revocation since if the revoked subject is reassigned to bi or if the subject enjoys the permission 

through other banks, he still can invoke method p on d1.  

4.5.5 Strong Revocation 

Strong revocation is feasible by exploiting authorization constraints. Assume bank bi with 

authorization <Ci, permit, p, d1>. Any subject who is able to further constrain bi can strengthen 

constraint Ci so that specific subjects are revoked from bi and all its descendants, since constraints for 

a child bank must be subsets of constraints of its parents. No subject can reassign them to bi or its 

descendant since the assignment must be in accordance with the constraint. However, if a subject 

enjoys permission p through banks other than bi or its descendants, he still can invoke method p on d1. 

But a given subject Sx can strongly revoke a given subject Sh
 
from invoking method p on Sx’s 

documents by excluding Sh at a very top bank of the hierarchy, usually in  Sx’s omnibank. Note that if 

this is done, Sk cannot access any documents of Sx. 

Figure 21 illustrates a delegation chain from Sx to Sg   through banks bi+2, bj, and bk. Since these 

banks are in Sx’s bank hierarchy, Sx has full control on all of them. In general, through the delegation 

chain, grantors retain control over grantees. Therefore, owners have the most control since they 

initiate the chain. For instance, Sx can (weakly or strongly) revoke Sz from bank bj in order to prevent 

him from further importing permission p on d1. This is a selective revocation since it does not impact 

any other subject in the delegation chain, including Sg who was assigned to the chain by Sz. However, 

in a similar manner Sx can revoke Sg too from the chain if he wishes to cascade his previous revoke. 

Moreover, to completely cascade revocation, Sx does not need to know explicitly which grantees have 

received the import permission from Sz since he can revoke them all by setting Cj to empty.  
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4.6 Another Look at Omnibanks 

As explained in the last section, exporters retain control over their objects (including banks) by 

customizing a sub-element of the omnibank of importers. Figure 22 illustrates the omnibank of 

subject Sy that has been granted import permissions delegated by Sx and Sx’. 

Bank omniy includes two sub-elements omniy
x
 and omniy

x’
 that are customized by Sx and Sx’, 

respectively. Sy enjoys all authorizations included in omnibank omniy as well as customized 

omnibanks omniy
x
 and omniy

x’
. In this way, Sy can create combined banks importing from both omniy

x
 

and omniy
x’
, and provide simultaneous access to both Sx and Sx’ hierarchies. However, as illustrated in 

the figure, customized omnibanks import their authorizations from the bank hierarchy of the 

corresponding exporters not from the parent omnibank. Hence, Sx and Sx’ retain control over 

descendants of omniy
x
 and omniy

x’
, respectively.  

 

 

Figure 22. Omnibanks and customized omnibanks. 

4.7 Access Banks vs. Access Roles  

Access banks in ACAD are similar to access roles in Role Based Access Control (RBAC) [Ferraiolo 

et al. 2001] in which roles usually reflect job titles. Similar to roles in RBAC models, access banks in 

ACAD map a many-to-many relationship between subjects and objects. Therefore assigning either a 

new subject or object to a bank is one operation corresponding to multiple permissions being granted.  

However, in traditional role-based models, roles form a hierarchical relationship for the sake of 

efficiency [Ferraiolo et al. 2001]. For example, a project manager has his special permissions as well 

as all permissions of the project developers reporting to him. Thus, permissions are propagated 

through the role hierarchy. However in ACAD, propagation is through object and subject hierarchies, 
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and the bank hierarchy instead represents all delegation chains for authorizations. We exploit the bank 

hierarchy not for propagation of permissions, but instead as a means of retaining control for grantors. 

This feature allows us to decentralize access control administration. As discussed in Chapter 2, 

RBAC models have the major innate restriction of a central control over the role hierarchy which 

consequently impedes the model enhancement towards supporting scalable administrative 

expansions. If it is necessary to have a role hierarchy in an application, ACAD can simulate it as a 

part of the subject hierarchy (possibly combined with a group hierarchy) and access banks can remain 

to handle the decentralized delegation needs.  Chapter 7 shows an application of access banks for a 

system, called user-managed access control, in which both roles and groups exist.  

4.8 Related Work 

Sections 2.1-2.4 extensively addressed the related work of access control administration models. This 

section consists of a literature review on storage decentralization mechanisms as well as a comparison 

between  our delegation and revocation mechanisms and that of existing proposals.  

The access control matrix is typically large and sparse when subjects or objects can not be 

classified to a limited number of groups. Decentralization techniques such as access control lists and 

capabilities improve the storage efficiency. The former technique stores the information from the 

matrix column-wise while the latter is row-wise. The Compressed Accessibility Map (CAM) is an 

enhanced technique on capability lists [Zhang 2005]. The CAM algorithms exploit structural locality 

of subjects’ accessibility on a hierarchical data to construct a more efficient tree. Therefore, instead of 

keeping a list of all accessible nodes, they only keep some crucial nodes and place some additional 

information on them, so that we can check whether an arbitrary node can be accessed or not by 

simply looking at relevant crucial nodes. The CAM technique also addresses granularity explained in 

Section 2.4. 

Finally, the simple delegation and delegation by agent, in ACAD, are similar to delegation 

mechanisms in several models [Muffett 1990; Bertino et al. 1999; Barka and Sandhu 2000a; Barka 

and Sandh 2000b; Zhang L. et al. 2002; Zhang L. et al. 2003; Zhang X. et al. 2003; Joshi and Bertino 

2006; Ravichandran and Yoon 2006; Wang and Osborn 2006]. Furthermore, simple delegation and 

cascading revocation have been proposed as part of distributed network security models and trust 

management systems [Blaze et al. 1996; Rivest and Lampson 1996; Li et al. 2002] However, the 
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ACAD model is distinguished from other models by its enhanced delegation and revocation 

mechanisms explained in Sections 4.5.3 through 4.5.5. Weak and strong revocations in the work by 

Bertino et al. are basically based on explicit and implicit authorizations; whereas, ACAD exploits 

removal from access banks and constraints, respectively, for such purposes. In Section 7.3, ACAD 

formally proves its mechanism is valid to retain control for data owners in Section 7.3. 
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Chapter 5 

CONSTRAINING DECENTRALIZED 

ADMINISTRATION 

Chapter 4 specifies an access control administration model, called ACAD, to support the spectrum of 

autocratic to self-governing systems. This chapter specifies the means of constraining decentralized 

administration by which ACAD can be adjusted anywhere on the spectrum, in order to meet the needs 

of an enterprise. This means provides the flexibility of defining various levels of decentralization for 

different types of objects in the system. 

As new subjects and new objects are introduced into a running system, and as subjects delegate and 

revoke access control permissions, the access control state changes, as reflected in the metadata. 

Thus, depending on the current state of access control, several possible new states can be realized in 

response to subjects’ actions. The space of all possible access control states forms a network, with 

transitions similar to those in a finite state automaton. An access control policy is a set of rules under 

which access control states may evolve: in a properly designed system, all reachable states conform to 

the access control policy chosen by the enterprise.  

Recall from Chapter 1 that although access control policies and the generality of their enforcement 

must be kept in the hands of the enterprise (whether centrally managed or managed in a distributed 

fashion), there are several reasons to decentralize access control administration (the permission to 

update the access control metadata) either for the whole system or for a subset of object types in the 

system. Sharing data, including selectively delegating and revoking administrative permissions on the 
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associated metadata, may be supported more reliably and more efficiently by a flexible decentralized 

access control administration. Consequently, the spectrum of access control administrations raises an 

important question: to what extent can decentralization be realized? The challenge is to ensure that 

the enterprise’s policies are enforced.  

This chapter finds the answer by using creation time policies to define the network of permissible 

access control states: each time an object is created by a subject, an appropriate set of permissions on 

the object are given to various subjects. This specifies the initial state for each row (object) in the 

explicit access control matrix, which implies the space of reachable states for that row. At one 

extreme, if neither delegation nor revocation permissions are ever allowed, the permissions on that 

object will never change. However, in practice, policies are rather complex and the access control 

metadata continually evolves over time as the access control states change. This evolution of 

metadata is difficult for human administrators to manage state by state. By appropriately initializing 

permissions at object creation time, a set of administrative policies is established, and these constrain 

subsequent access control state transitions. As an analogy, creation time policies control objects in 

our system much like genetic codes control cells in biological systems.   

The contribution of this chapter is a flexible model for administration by which enterprises are able 

to adjust the amount of centralized control by defining precisely what permissions are initially to be 

held by whom at the time of each object’s creation. By appropriately configuring these creation time 

policies, organizations can adjust their access control systems to the desired points along the 

spectrum. 

Creation time policies dictate the states of the explicit access control matrix. So that the power of 

creation time policies can be presented in a concrete setting, we assume one mechanism for deriving 

the effective access control matrix. In particular, this chapter assumes a closed system, in which 

permissions are denied by default, and only positive explicit permissions are provided; the 

propagation of explicit positive permissions are controlled with “stoppers” (Section 3.8). Section 5.4 

argues that the power of creation time policies can be applied equally well to other settings for 

deriving an effective matrix from an explicit one. 

The rest of this chapter is organized as follows. In Section 5.1, the specification of the ACAD 

constraining mechanism is discussed. Section 5.2 justifies the model by showing how it could be used 

to control several existing systems. Section 5.3 describes how the current chapter is applied in 
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ACAD. Section 5.4 provides further discussion on power of creation time policies. Finally, Section 

5.5 reviews the literature of related access control models and frameworks.  

5.1 The Constraining Mechanism 

We first translate access control policies to sets of first order logic rules. Figure 23 depicts the BNF 

notation which is used for ACAD policy enforcement rules, following the syntax of Active-U-

Datalog language [Bertino et al. 1998]. This language can be used to express active rules that are fired 

when various events occur (e.g. updates). ACAD applies this mechanism to insert into the explicit 

access control matrix the authorizations that are defined according to creation time policies. Each 

policy rule consists of a head and a body. The head is one of the reserved predicates, such as permit, 

deny, subscribeTo, unsubscribeFrom, deleteSubject, assignTo, removeFrom, import, addConstraint, 

and deleteBank. While predicates permit and deny directly update the explicit access control matrix, 

other predicates cause an indirect change to access rights. The body consists of both reserved and 

application-based predicates. The application-based predicates are Boolean functions that typically 

define the hierarchical relationship within the objects involved in the rule. There may be three types 

of prefixes (so called sign) for each predicate: + indicates that the predicate is an insert, - indicates 

that the predicate is a delete, and ¬ represents a logical negation.  

 

 

Figure 23. BNF notation of policy enforcement rules. 

Moreover, ACAD groups together sets of rules that are triggered under a specific event, such as 

object creation. In this work, we define admin domains as sets of creation time policies that are 

invoked when an object is created.  

Policy_Enforcement_Rule ::=  Body | ε ���� ( + | - ) Head. 

Head ::= Reserved_Predicate 

Body ::= Body , Body | Predicate  

Predicate ::= Sign Reserved_Predicate | Sign Application_Predicate 

Reserved_Predicate ::=  permit | deny | bank | auth | juniorOf 

Application_Predicate ::= create | inherit … 

Sign ::= + | - | ¬ | ε  
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As explained in Section 1.2, the explicit matrix defines access constraints used to derive the 

effective permissions represented by the effective matrix. As in Section 3.5, in ACAD, the explicit 

access control matrix is transformed to the corresponding effective matrix by translating each 

predicate permit to one or more predicates allow. Each propagation strategy may produce a different 

effective matrix. If stoppers are in place, a given permission is propagated along the edges of both 

object and subject hierarchies until meeting a stopper or a sink node. Finally, every non-filled cell of 

the effective matrix will be represented by a corresponding predicate disallow.  

Section 5.1.1 describes, via the context of the healthcare example, how this model allows us to 

apply creation time policies to decentralize access control administration. 

5.1.1 Creation Time Policies 

Recalling Example I, introduced in Section 1.3 and illustrated in Figure 13, assume that St. Mary’s 

Hospital is the owner of the medical records. However, also assume that elements of the medical 

record are created by various subjects, such as the hospital staff or the patient, according to the 

following scenario: 

Receptionists create a blank medical record when a new patient arrives. 

Nurses create and append new encounters to an existing medical record. 

Doctors create the diagnosis information. They can also create and append therapy sections to an 

existing record. 

A patient’s family may create (and thereby “sign”) the consent section. 

Also assume the set of access control policies described in the XACML use cases [Kudo 2001; 

Damodaran and Adams 2001], restated as three sets of creation time policies:. Figure 24 presents 

these policies in the ACAD model.  In the remainder of this section, each set of policies is first stated 

informally and then the corresponding formal presentation is exaplined in detail. For simplicity, we 

assume that every subject (including St Mary’s here) has an associated omni bank, and when a new 

object x is created, all of the corresponding authorizations are automatically added to the omni bank 

of its owner, identified by the function omni(x). Moreover, in this scenario, all customized banks are 

created underneath the omni bank. 
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CTP1 is triggered when a medical_record is created, invoking the following rules: St. Mary’s 

hospital, the owner of the medical_record, enjoys all permissions. The patient can read patient_info. 

Doctors and nurses can read medical_record.  

The body of the rule of CTP1 in Figure 24 is a conjunction of five application-based predicates 

namely medical_record, patient_info, patient, doctors, and nurses, as well as functions omni and 

Skole,  that uniquely generates object ids using two input parameters (the first parameter represents an 

object, and the second parameter is used as an index). Predicate medical_record determines whether 

its input parameter is an object of type medical record. The prefix + indicates that the active rule 

applies when this medical record is just created and its information is being inserted into the system. 

Predicate patient_info determines if its first parameter is the patient information of the medical record 

determined by the second parameter. Predicate patient determines if its first parameter is the subject 

for this medical record. Similarly, predicate doctors (and nurses) determines if the parameter is a 

doctor (nurse). The head of CTP1 includes three reserved predicates namely auth, bank, and juniorOf. 

Predicates auth and bank were defined in Section 4.2.3. Predicate juniorOf represents the bank 

hierarchy; its first input denotes a child bank, and the other input is its parent.  

Therefore, CTP1 in Figure 24 creates two authorizations a1 and a2 to read patient_info and 

medical_record, respectively, as well as creating banks b1 and b2 (as child banks of omni) to hold 

those authorizations. Moreover, the patient is initially assigned to b1, and doctors and nurses are 

assigned to b2.  

CTP2 is triggered when an encounter is created, invoking the following rules: Doctors can create 

diagnosis_info. The patient’s family can sign the consent.  

Similarly, CTP2 in Figure 24 creates a new authorization a3 (as a permission to create a diagnosis) 

as well as a bank b3, which includes a3, and is a direct child of the appropriate omni bank. In addition, 

doctors are assigned to this bank. 

CTP3 is triggered when the consent is created, invoking the following rules: The patient’s family 

can read encounter. The patient’s family can also delegate read permission on diagnosis_info to 

others. Nobody, not even the owner of the whole medical record, can change consent. 
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Figure 24. Creation time policies for the medical record use case. 

CTP1: 

+medical_record(M),  patient_info(PI, M),  patient(S1,M) , doctors(S2), nurses(S3), 

omni(M)=b,  Skolem(M,1)=b1, Skolem(M,2)=b2, Skolem(M,-1) = a1, 

Skolem(M,-2)=a2  ����  

+auth(a1, ‘Public’, ‘permit’,’read’, PI), +bank(b1,S1,a1), +juniorOf(b1,b), 

+auth(a2, ‘Public’, ‘permit’,’read’, M), +bank(b2,S2,a2), +bank(b2,S3,a2), 

+juniorOf(b2,b). 

 

CTP2:  

+encounter(E, M), omni(M)=b, doctors(S1) , Skolem(M,3)= b3, Skolem(M,-3)= a3 ���� 

+auth(a3, ‘Public’, ‘permit’,’createDiagnosis’, E). 

 

+encounter(E, M), consent(C, E), family(F, P), patient(P,M) ,  omni(M)=b, 

Skolem(M,4)=b4, Skolem(M,-4)=a4 ����  

+auth(a4, ‘Public’, ‘permit’,’sign’, C), +bank(b4, F, a4), +juniorOf(b4,b). 

 

CTP3:  

+consent(C, E), encounter(E, M), create(F, C),  family(F, P), patient(P, M),  

 omni(M)=b, Skolem(M,5)=b5, Skolem(M,-5)=a5  ����   

+auth(a5, ‘Public’, ‘permit’,’read’, E), +bank(b5, F, a5), +juniorOf(b5,b). 

 

+consent(C, E), encounter(E, M), create(F,C),  family(F, P), patient(P,M) , 

diagnosis_info(DI,E), omni(M)=b, Skolem(M,6)=b6, Skolem(M,-6)=a6, 

Skolem(M,7)=b7, Skolem(M,-7)=a7 ����  

+auth(a6, ‘Public’, ‘permit’,’read’, DI), +bank(b6,  null, a6), +juniorOf(b6,b), 

+auth(a7, ‘Public’, ‘permit’,’assignTo’, b6), +bank(b7, F, a7), +juniorOf(b7,b). 

 

+consent(C,E), omni(M)=b, Skolem(M,8)=b8, Skolem(M,-8)=a8 ����  

+auth(a8, ‘Public’, ‘deny’,’change’, C),+bank(b8, ‘Public’, a8), +juniorOf(b8,b). 
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The rest of the rules in Figure 24 are similar. Predicate create in CTP3 has two parameters to 

indicate a subject and an object, respectively, and determines whether the subject has created the 

object. Note that it is assumed the system is defined such that encounter(x, y) can be true only if 

medical_record(y). The last rule of CTP3 defines a stopper. It specifies that nobody can inherit 

permission to execute method change on a consent part of any medical record. In particular, this rule 

stops the propagation of permission change, given to the owner of a medical record in the second rule 

of CTP1, to the element consent, even though it will be propagated to the element encounter. 

5.2 Expressivity of the Mechanism 

This section validates the constraining mechanism by investigating suitable object creation policies 

that could be used to achieve the goals of some existing systems, including the UNIX file system, the 

DB2 database system, and the LiveLink enterprise content management system. Note that throughout 

the rest of this chapter, we define creation time policies directly on the explicit access control matrix, 

and not via access banks, to simplify explanations. In UNIX, there are two types of objects, file and 

directory, for which two sets of creation time policies are defined in Section 5.2.1. In DB2, there is 

one object type, namely schema, which contains many sub-types such as base table, view, index, etc; 

Section 5.2.2 defines a set of creation time policies for the schema. In LiveLink, there exist many 

types of objects having disparate access control requirements; accordingly, several creation time 

policies are defined in Section 5.2.3 to handle administrative needs in such systems.  

5.2.1 Creation Time Policies for the UNIX File System 

In UNIX, access control administration is partially decentralized among the objects’ owners, but in a 

very restricted manner. In that system, there are three access permissions: read, write, and execute. 

When an object (file or directory) is created in UNIX, a predefined list of permissions for the object is 

automatically created. Then, the object owner can assign or change the permissions mode for three 

types of subjects: user, group, and other. UNIX does not support hierarchies among the subjects (that 

is, groups cannot be nested) nor among the objects (permissions cannot be granted on subfiles, and 

permissions are not inherited from directories to subdirectories or to contained files).  

For simplicity, assume a given set of default permissions are based on the following policy: Files 

are readable and writable by the owner, readable for groups, and not accessible to others (in Unix’s 
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notation, file permissions are initialized to 640). Directories are readable, writable, and executable by 

the owner, and also readable and executable to groups and others (corresponding to Unix’s 755). 

Moreover, subjects can read an object if they have execute permission on all directories in the path 

from the root to the parent of the object and read permission on the object itself; subjects can delete 

an object if they have execute permission on all directories in the path from the root to the parent of 

the object and write permission on that parent (they need no specific permissions on the file itself). 

System administrators (super-users) have all permissions on all files and directories. These default 

permissions can be simulated by applying creation time policies as follows, see Figure 25: 

 

 

Figure 25. Creation time policies for UNIX file permissions. 

U-CTP1 is triggered when a file is created, invoking the following rules: The owner enjoys 

permissions read and write on the file; execute permissions are not inherited. Group members enjoy 

permission read on the file.  Super-users have all permissions. 

U-CTP2 is triggered when a directory is created, invoking the following rules: The owner enjoys 

all permissions on the directory. Group members and others enjoy read and execution permissions on 

the directory. Again, super-users have all permissions. 

U-CTP1: 

+file(F), owner(S, F) ���� +permit(S, read, F). 

+file(F), owner(S, F) ���� +permit(S, write, F). 

+file(F), owner(S, F) ���� +deny(S, execute, F). 

+file(F), sameGroup(S,F) ���� +permit(S, read, F). 

+file(F), superUser(S) ���� +permit(S,*,F). 

U-CTP2:  

+directory(D), owner(S, D) ���� +permit(S, *, D). 

+directory(D) ���� +permit(*, read, D). 

+directory(D) ���� +permit(*, execute, D). 

+directory(D), sameGroup(S,D) ���� +deny(S, write, D). 

+ directory(D), superuser(S) ���� +permit(S, *, D). 
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The body of the first rule in U-CTP1 includes two application-based predicates, namely file and 

owner. Predicate +file determines whether a new file F (not a directory) has been created. Predicate 

owner has two input parameters: a subject and an object, respectively; and, determines whether the 

subject is the owner of the object. Therefore, the first rule in U-CTP1 states that if the file F has been 

created, and user S is its owner, S is permitted to execute method read on F. Similarly, the second rule 

in U-CTP1 states that if the file F has been created, and user S is its owner, S is permitted to execute 

method write on F. The third rule emphasizes that the owner cannot inherit permission execute from 

its group or others. The fourth rule states that users who are in the same group as the file are permitted 

to execute method read on the file, where predicate sameGroup determines whether S and F are in the 

same group. Finally, the fifth rule in U-CTP1 states that super-users have all permissions on files, 

where predicate superUser determines whether S is a super-user. U-CTP2 is similar to U-CTP1 and 

expresses policies that are applicable to directories, where predicate directory determines whether its 

input parameter is a directory (not a file). 

Note that Figure 23 illustrates creation time policies only, and it does not address other policies in 

UNIX. For example, in UNIX, users can create files and directories only if they have permissions 

execute and write on the current path. Such a policy can be expressed in ACAD as: permit(S, create, 

*) :-  permit(S, execute, currentDirectory()), permit(S, write, currentDirectory()). However, our focus 

here is on creation time policies, which are distinguished from other policies by having at least one 

inserting predicate (i.e. prefixed by +) in their body, and a +permit or +deny in their head.  This 

predicate acts as a trigger that enables various permissions to be defined. 

5.2.2 Creation Time Policies for the DB2 Database System 

This section considers controlling access to data in IBM’s DB2, and investigates how creation time 

policies can decentralize its administration. There are various objects and therefore various privileges 

in DB2. Hence, this section focuses on objects of one of the types schemas, tables, views, and 

routines only. However, interested readers can expand our explanation to other types of objects such 

as triggers, functions, table spaces, etc. 

Table 4 illustrates the major DB2 object types and related privileges. A schema is a logical 

classification of named objects such as tables, views, nicknames, triggers, functions, and packages.  

When a schema is created, its owner may be granted CREATIN, ALTERIN, and DROPIN privileges 
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to be allowed to create objects, alter objects, and drop objects within the schema, respectively. 

Moreover the owner is able to grant any of these privileges to other users.  D-CTP1 in Figure 26 

illustrates this.  For instance, the first predicate in D-CTP1 states that when schema S is created by 

any user, the owner of S is permitted to create objects within S. 

Table 4. Objects and privileges in DB2. 

Objects Privileges 

Schema CREATIN, ALTERIN, DROPIN 

Table CONTROL: DELETE, INSERT, SELECT, UPDATE, ALTER, 

INDEX, REFERENCE; as well as GRANT and REVOKE any 

of these 

View CONTROL: DELETE, INSERT, SELECT, UPDATE; as well 

as GRANT and REVOKE any of these 

Routine EXECUTE 

other objects Other privileges 

 

 

Table 4 also shows that DELETE, INSERT, SELECT, and UPDATE are applicable to both tables 

and views, allowing authorized users to delete, insert, select, and update rows of tables and views, 

respectively. ALTER, INDEX, and REFERENCE are applicable to tables only, and let the authorized 

user add more columns to an existing table, define indices on a table, and create or drop a foreign key 

that references a table, respectively. 

DB2 grants the control of such tables and views to the object creator initially. Users who are 

authorized to control such objects can grant and revoke such privileges to and from other users. D-

CTP2 in Figure 26 illustrates this.  For instance, the first predicate in D-CTP2 states that when user U 

creates table T, U is permitted to control T.  Table 4 and D-CTP3 in Figure 26 state that the privilege 

EXECUTE is initially granted to both PUBLIC and the creator of routines (procedure, function, 

method). 

Furthermore, SYSADM, and DBADM are two DB2 authorities that can execute any privilege at 

the schema and instance level, respectively. They also can grant and revoke all their privileges. 
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However, since such rules are defined independently of the creation of specific objects, they are 

excluded from creation time policies. 

 

 

Figure 26. Creation time policies for DB2. 

5.2.3 Creation Time Policies for the Livelink ECM System 

This section considers Livelink, a product of Open Text Corporation for enterprise content 

management. The system is built over a complex data repository, in which the data space is divided 

into one enterprise workspace and a collection of personal workspaces, one per user. Diverse forms 

of data objects, including documents, tasks, news items, etc., can be stored in the workspaces. Data 

objects may be kept in various kinds of container objects, including folders, discussions, channels, 

and projects.  Moreover, containers can include other containers, forming a complex network of data 

objects that is accessible to individual users and groups of users, depending on their permissions. 

Furthermore, users designated as Admin have all permissions on all objects (cf. Unix’s super-users, as 

explained in Section 5.2.1) and individual users have all permissions on all objects stored in their own 

personal workspaces. All other users may be assigned permissions as individuals or through their 

D-CTP1: 

+schema(S), owner(U) ���� +permit(U, createin, S). 

+schema(S), owner(U) ���� +permit(U, alterin, s). 

+schema(S), owner(U) ���� +permit(U, dropin, S). 

+schema(S), owner(U) ���� +permit(U, grantcreatein, S). 

+schema(S), owner(U) ���� +permit(U, grantalterin, S). 

+schema(S), owner(U) ���� +permit(U, grantdropin, S). 

D-CTP2:  

+table(T), create(U, T) ���� +permit(U, control, T). 

+view(V), create(U, V) ���� +permit(U, control, V). 

D-CTP3:  

+routine(R), create(U, R) ���� +permit(U, execute, R). 

+routine(R), public(PUBLIC) ���� +permit(PUBLIC, execute, R). 
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membership in a user group, where user groups are structured into an arbitrarily deep, directed acyclic 

graph. Being based on a hierarchical model, each object resides within some container. Like Unix, 

Livelink assumes a three-component structure to implement user permissions, including owner, 

owner group, and public group (which includes all subjects that have “public access” permissions to 

any object). Figure 27 illustrates how creation time policies model initial permissions of each 

component when an object is created. 

 

 

Figure 27. General creation time policies for Livelink’s permissions. 

In general, the creator of an item is the owner of that item, and that user is initially granted the 

permissions held on the container by its owner. The first rule in L-CTP1 illustrates this policy: the 

body of the rule is a conjunction of three application-based predicates, namely item, container, and 

owner; as well as a reserved predicate permit. Predicate item determines whether a new object has 

been created. Predicate container determines whether C is the container of O. Predicate owner has 

two parameters to indicate a subject and an object, respectively, and determines whether the subject is 

the owner of the object. Predicate permit, in the body of the rule, determines permissions of the 

container’s owner.  

Every item is also associated with an owner group, and those group permissions are also initialized 

to be identical to the owner group permissions on the container. This policy is captured by the second 

rule in L-CTP1, in which predicate ownerGroup determines if the first parameter is the owner group 

of the second parameter.  The other predicates function as in the first rule.  

Finally, the public group’s permissions are initialized to match its permissions for the container. 

This policy is captured by the third rule in which predicate publicGroup determines if its parameter is 

the public group.   

L-CTP1: 

+item(O), container(O, C), owner(U,C), permit(U, P,C) ���� +permit(S, P, O). 

+item(O), container(O, C), ownerGroup(G1,O), ownerGroup(G2,C),  

 permit(G2, P,C) ���� +permit(G1, P, O). 

+item(O), container(O, C), publicGroup(G), permit(G,P,C) ���� +permit(G, P, O). 
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In addition to the general creation time policies that are applicable to all object types in Livelink, 

there are several policies applicable to specific object types.  

The most common data items are documents, URLs, workflow maps, aliases, releases, generations, 

and versions. These can be hierarchically organized into folders and compound documents. The 

creator of any of these objects is initially assigned all permissions held by the owner of the container, 

as explained in L-CTP1 in Figure 27. All other users are initially assigned the permissions that they 

have on the container within which the object is created.  This policy is captured by L-CTP2, depicted 

in Figure 28, in which predicate +docs determines if the new created object is from one of the above 

data item types. Recall that L-CTP2 is not a propagation policy as described in Section 5.1: it is 

applicable only when an object is created, and thereafter permissions on either the object or its 

container can be updated without affecting permissions on the other.  

A second type of data item is a project, which can contain any types of data, including other 

projects. Projects, like all other items, have permissions assigned for the owner, owner group, and 

public access, as depicted in Figure 27. Unlike the items described above, however, the assigned 

access list for a project contains exactly three project-specific groups, namely coordinator, guest, and 

member, which act as roles; users and groups are assigned to these roles by making them members of 

these project-specific groups. Permissions are assigned to the three roles as follows: a coordinator has 

all permissions on the project, a guest has permission to see the project, and a member can also see, 

add, modify, or delete objects within the project. These policies are captured by L-CTP3, depicted in 

Figure 28, in which predicates coordinatorRole, guestRole, and memberRole indicate that the first 

parameter is the specific group associated with the object specified as the second parameter to 

represent coordinator, guest, and member roles, respectively. 

When a project is created, the creator is automatically assigned to the coordinator role, and 

coordinators may assign users and groups to any of the three roles or delete them from those roles. 

When a project is created as a sub-project of another one, the coordinator, member, and guest lists are 

copied from the project in which it resides, and the creator is added as an additional coordinator for 

the sub-project, (see L-CTP4).  
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Figure 28. Specific creation time policies for Livelink’s permissions. 

 

L-CTP2:  

+docs(O), container(O, C), permit(S,P,C) ���� +permit(S, P, O). 

L-CTP3:  

+project(O), coordinatorRole(R,O) ���� +permit(R,*, O). 

+project(O), guestRole(R,O) ���� +permit(R, see, O). 

+project(O), memberRole(R,O) ���� +permit(R, see, O). 

+project(O), memberRole(R,O) ���� +permit(R, addTo, O). 

+project(O), memberRole(R,O), container(X,O) ���� +permit(R, delete, X). 

+project(O), memberRole(R,O), container(X,O) ���� +permit(R, modify, X). 

L-CTP4: 

 +project(O), create(S, O), coordinatorRole(R,O) ���� +assignRole(S,R). 

+project(O1), container (O1,O2), project(O2), coordinatorRole(R2,O2), 

assignRole(S2,R2), coordinatorRole(R1,O1) ���� +assignRole(S2,R1). 

+project(O1), container (O1,O2), project(O2), memberRole(R2,O2), assignRole(S2,R2), 

memberRole(R1,O1) ���� +assignRole(S2,R1). 

+project(O1), container (O1,O2), project(O2), guestRole(R2,O2), assignRole(S2,R2), 

guestRole(R1,O1) ���� +assignRole(S2,R1). 

L-CTP5: 

+project(O1), container (O1, O2), folder(O2), permit(S2,allPermissions,O2),  

coordinatorRole(R1,O1) ���� +assignRole(S2,R1). 

+project(O1), container (O1, O2), folder(O2), permit(S2,read,O2),  guestRole(R1,O1) ���� 

+assignRole(S2,R1). 

+project(O1), container(O1,O2), folder(O2), permit(S2,addTo,O2), ¬(permit(S2, 

editAttributes, O2), permit(S2,modifyContents,O2)), memberRole(R1,O1) 

���� +assignRole(S2,R1). 

+project(O1), container (O1, O2), folder(O2),¬permit(S2,addTo,O2),  permit(S2, 

editAttributes, O2), permit(S2,modifyContents,O2), memberRole(R1,O1) 

���� +assignRole(S2,R1). 

         continue … 



 

 83 

 

Figure 28 (continued).  Specific creation time policies for Livelink’s permissions. 

In those rules the predicate assignRole indicates that the first parameter (which is a subject) is made 

a subgroup of the second parameter (which represents a role). Also as before, predicate create has 

two parameters to indicate a subject and an object, respectively, and determines whether the subject 

has created the object. 

Alternatively, if a project is created in a folder, subject-role associations are initialized based on the 

permissions that the subjects have on the folder: the project creator and those with all permissions on 

the folder are added to the coordinator list, those with read permission on the folder are added to the 

guest list for the project and those with either add items or both edit attributes and modify contents on 

the folder are added to the member list for the project.  As before, the project creator is assigned to 

the coordinator role by the first rule of L-CTP4. However, the rest of the assignments are captured by 

L-CTP6: 

+workItem(O), create(S, O) ���� +permit(S ,administer, O). 

+workItem(O), container(O,C), folder(C), permit(X,allPermissions, C) ���� +permit(X 

,administer, O). 

+workItem(O), container(O,C), folder(C),  

  permit(X,read,C) ���� +permit(X ,read, O). 

+workItem(O), container(O,C), folder(C), permit(X,addItems, C),  

  ¬ (permit(X, editAttributes, C),  

  permit(X,modifyContents, C)) ���� +permit(X ,write, O). 

+workItem(O), container(O,C), folder(C), permit(X,editAttributes, C),  

  permit(X, modifyContents, C),  

  ¬permit(X, addItems, C) ���� +permit(X ,write, O). 

+workItem(O), container(O,C), project(C),   

  coordinatorRole(R,C) ���� +permit(R, administer, O). 

+workItem(O), container(O,C), project(C),  

  guestRole(R,C) ���� +permit(R, read, O). 

+workItem(O), container(O,C), project(C),   

  memberRole(R,C) ���� +permit(R, write, O). 
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L-CTP5, depicted in Figure 28, in which predicate folder determines if an object is from the type 

folder, and keyword allPermissions is an abbreviated form of the conjunction of all permissions. 

The third class of data item, called work items, includes channels (sequences of news items), 

discussions (hierarchically nested sequences of topics and replies), and task lists (hierarchically 

nested sequences of tasks). For this class, the individual elements of the work item do not carry 

independent permissions, but instead are governed by the permissions assigned to each work item as a 

whole. For objects in this class, users and groups may be given read permission, write permission, or 

administer permission (which includes grant and revoke permissions as well as all other permissions).  

If a work item is created under a folder, the creator and those with all permissions on the folder are 

assigned administer permission, stated by the first and second rules of L-CTP6 in Figure 28. Those 

with read permission on the folder are assigned read permission on the work item; stated by the third 

rule of L-CTP6.  Finally, those with either add items or both edit attributes and modify contents on 

the folder are assigned write permission on the work item; stated by fourth and fifth rules of L-CTP6. 

Likewise, if an item of this class is created under a project, the coordinator group is given administer 

permission, the guest group is given read permission, and the member group is given write 

permission; stated by the last three rules of L-CTP6. 

5.3 ACAD and the Constraining Mechanism 

The constraining mechanism described in Section 5.1 is the means of initializing the access control 

states in ACAD as well as restricting the possible valid next states. In particular, this mechanism can  

exploit different classes of ACAD access banks (illustrated in Figure 16) to define creation time 

policies (e.g. in public banks, as illustrated in Figure 26). Moreover,  the initial content of omni banks 

(illustrated in Figure 17) is in fact determined by this same mechanism. It is creation time polices that 

define what the initial privileges of owner banks are, whether someone can customize or combine two 

existing banks, and  what privileges are allowed to be imported in such banks. 

5.4 Further Discussion 

This section describes the power of creation time policies to adjust the level of decentralization. As 

shown through Section 5.2, it is important to notice that the creation time policy in ACAD is a 

mechanism to initialize an explicit access control matrix anywhere on the spectrum of access control 
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administration. This section highlights the power of this mechanism towards adjusting the amount of 

decentralization anywhere from an autocratic setting to an anarchistic state, by manipulating the 

creation time policies of the motivating example illustrated in Figure 24. 

In particular, the second rule of CTP3 in Figure 24 states that only one set of subjects (who are the 

family member of the patient) can update rows in the explicit access control matrix that correspond to 

specific patients (but only by setting cells of the corresponding column of diagnosis information to 

permission read). We illustrate the following cases to demonstrate the effect of creation time policies.  

(a) If the second rule is removed from CTP3, no one can update the explicit access control matrix 

at all. Consequently, the existing cells of the access matrix will not evolve (only new rows or 

columns may be added to the matrix).   

(b) Now, while the second rule does not exist in CTP3, assume adding the following rule  

+medical_record(M) ^ secutiy_officer(S) ���� +permit(S, *, M). 

to Figure 24. This simulates a centralized (autocratic) administration model since only the 

security officer is able to update the explicit access control matrix (delegate or revoke rights).  

All other subjects have to channel their update requests through the security officer. 

(c) Alternatively, assume adding the following rule 

 create(S,M) ���� +permit(S, *, M). 

to Figure 24 (while the second rule does not exist in CTP3). This simulates a user managed 

access control model since whoever creates an object has all of the update rights on it. Unless 

the creaor chooses to grant delegation permissions to others, all other subjects have to 

channel their update requests through the creator. 

(d) Finally, assume adding the following non-safe rule  

+medical_record(M) ����  +permit(*, *, M). 

to Figure 24. This rule makes the administration model anarchistic since every subject in the 

system is able to update the rights on a medical record.  

5.5 Related Work 

Access control enforcements are traditionally divided into Discretionary Access Control and 

Mandatory Access Control. The former provides predefined (by users) discretionary rules and access 
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control based on users’ identities; the latter controls access based on subjects’ and objects’ 

classifications in a system. In mandatory access control environments, access control rules are 

decided by system policies independently of the owners of objects. Both discretionary and mandatory 

frameworks have been of interest to researchers, and they are supported by many subsequent models. 

Role based access control models also have well investigated in the literature as reviewed in Section 

2.2. This section reviews another work focused on object creation as follows.  

A more specific idea of enforcing security policies at object creation time is shown in the work by  

Zannone et al.. They propose a mechanism to control information flow with a focus on derived 

objects that are dynamically created at run time [Zannone et al. 2006]. Essentially, the authors 

improve the flexible authorization framework [Jajodia et al. 2001] by allowing users to create new 

objects but avoiding Trojan horses. The idea is that a derived object’s authorizations must be a subset 

of the intersection of its original object’s authorizations. The system administrator is warned if a user 

can access a new object o1 while he cannot access a subset of objects from which o1 is derived. It is, 

however, up to the system administrator to allow or disallow such information flows.  
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Chapter 6 

MODEL SEMANTICS 

This chapter represents a formal semantics, defined operationally by a relational model, for the 

ACAD model. Three data catalogues are defined in ACAD, namely SysObjHier, SysBankObj, and 

SysBankSubj, to represent the object hierarchies as well as the bank-object and bank-subject 

assignments, respectively. The assumption is that there are additional relations for all objects 

representing their various attributes, such as object type, creator, etc. To support these catalogues, 

three keywords NoPar, Public, and Sys are defined, where NoPar represents the virtual parent of all 

root objects, Public⊆U represents all subjects in the access control universe (cf. Definition 1), and Sys 

∈ Public is the system subject that is in charge of all automatic operations taken by the system at 

initialization time. 

Table 5(a) illustrates SysObjHier, which represents the information about the object hierarchies 

including the bank and subject hierarchies. This catalogue consists of four attributes, namely T#, 

Child, Parent, and By. In our illustrations, T# ij indicates that the current tuple results from the jth 

operation of the ith transaction. Child and Parent represent the child-parent relationship within the 

object hierarchy. Attribute By, which is from the Public domain, represents which subject has caused 

the tuple. Note that we assume each root vertex is its own parent; moreover, we do not illustrate 

cross-references in our catalogues since they have no influence on the algorithms.  

Table 5(b) illustrates SysBankSubj, the bank-subject assignments, which include four attributes, 

namely T#, Bank, Subject, and Grantor. Again, T# ij indicates that the current tuple is produced by the 

jth operation of the ith transaction. Subject and Bank represent the subjects which hold all permissions 
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designated by authorizations in the bank. Grantor represents who has assigned the subject to the 

bank. 

Table 5(c) illustrates SysBankObj, the bank-object assignments, which include six attributes, 

namely T#, Bank, Object, Operation, Mode and Constraint. T# is as in the other relations. Bank 

represents the bank name. Constraint, Operation, and Object, when Mode is set to “permit”, represent 

the domain of subjects who are eligible to execute the operation on the object within this bank. When 

Mode is set to “deny”, the tuple represents a negative authorization indicating that the permission 

cannot be granted to the object. The conflict resolution strategy determines which authorizations can 

be implicitly obtained by the assigned subjects. 

Table 5. ACAD system catalogues. 

(a) SysObjHier represents object hierarchies. 

T# Child Parent By
c
 

01 b00 b00 Sys 

    

 

(b) SysBankSubj represents bank-subject assignments. 

T# Bank
c
 Subject

c
 Grantor

c
 

03 b00 Creators Sys 

    

 

(c) SysBankObj represents bank-object assignments. 

T# Bank
c
 Object

c
 Operation Mode Constraint 

02 b00 NoPar createChild permit Public 

      

 

Underlined attributes and superscript letters represent primary and foreign keys of these catalogues, 

respectively. For instance, the primary key of SysBankSubj is the combination of Bank and Subject; 

also, attributes Bank, Subject, and Grantor are foreign keys referencing the key of an object table (not 

illustrated). Moreover, Table 5 depicts the initial state of the catalogues when a new system is 

initialized. T# 0i indicates that the tuple is produced by the initial transaction in the system. Table 5(a) 

illustrates that the system subject, Sys, initially creates bank b00. Tables 5(b) illustrates that Creators ⊆ 
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Public are subjects authorized to create objects, whereas Table 5(c) illustrates that any subset of 

Public can be potentially authorized to create objects. If Creators=Public, i.e. every subject has the 

right to create objects, then there is no constraint at initialization time to be assigned to bank b00; in 

fact, all subjects (Public) are then assigned to b00 and thus authorized to create root objects, children 

of NoPar. The rest of this section specifies the semantics of major access control lookup and update 

requests in our model. 

6.1 The Lookup Requests 

There are two major classes of lookup requests in ACAD, subjectCapabilities and objectAccessList. 

The former is a class of queries by which one can find the access rights for an arbitrary subject (user, 

group, application); and the result, called capabilities, is a list of pairs of objects with the 

corresponding operations for which the subject has permission. Similarly, the latter is a class of 

queries by which one can find the access rights to an arbitrary object (file, directory, group, etc.); and 

the resulting access list is in a list of pairs of subjects with the corresponding operations permitted on 

the object. 

In Chapter 3, we discussed an algorithm to propagate access authorization through hierarchies and 

resolve possible conflicts based on a variety of combined strategies. The algorithm, called Resolve(), 

exploited the explicit access control matrix (called EACM) as well as subject and object hierarchies 

(called SDAG and ODAG) as global variables. Here, in Figure 29, Algorithm 0 represents how such 

variables can be defined using data catalogues depicted in Table 5. In particular, Line 1, in Algorithm 

0, defines relation EACM to express all explicitly authorized (either permitted or stopped) subject-

object-operation triples, by joining catalogues SysBankObj and SysBankSubj where the joint attribute 

is bank. Lines 2 and 3 define relations SDAG and ODAG to represent subjects and objects 

hierarchies, respectively. (Note that only (active) objects that are members of Public are considered as 

subjects in ACAD.)  

Algorithm II in Figure 29 depicts subjectCapabilities. It takes a subject as an input parameter, and 

computes the union of all pairs <o, p> for all objects and all permissions if accessible to the subject. 

Each output pair indicates an operation that the subject is permitted to execute on the corresponding 

object. Algorithm Resolve(), presented in Chapter 3, determines whether or not a given subject can 
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access on object with some permission, based on the current conflict resolution strategy and 

propagation mode.  

Similarly, Algorithm III in Figure 29 depicts objectAccessList. It takes an object as an input 

parameter, and computes the union of all pairs <s, p> for all subjects and all permissions for which it 

is accessible. Each output pair indicates a subject that can execute the corresponding operation on the 

object. 

 

 

Figure 29. Lookup algorithms in ACAD. 

Note that our focus in this chapter is on the semantics of ACAD, and not on the computational 

complexities of the algorithms. However, it is obvious that the worst-case time complexity of 

Algorithm II (and III) is not worse than the one of Algorithm I since we can enhance Algorithm I to 

propagate all pairs of <object, permission> in the same manner as it currently propagates one pair, 
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Algorithm I: Resolve (s1 ∈ Public, o1 ∈ U, p1 ∈ Permissions, pMode ∈ {“pass through”, block by”, 

override”}, dRule ∈ {“+”, “-”, “0”}, lRule ∈ {max(), min(), identity()}, mRule ∈ {“before”, 

“after”, “skip”}, pRule ∈ {“+”, “-”}) 
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with the same worst-case complexity.  Furthermore, the conflict resolution algorithm (Resolve()) can 

be replaced with alternative algorithms that are optimized for a particular strategy or subset of 

strategies to be provided to a customer. 

6.2 The Update Requests 

Figure 30 illustrates eight update methods, namely assignTo, removeFrom, import, addConstraint, 

deleteBank, subscribeTo, unsubscribeTo, and deleteSubject as explained in Section 4.3. To be able to 

call any of these methods, the caller subject must have been granted the applicable permission within 

subjectCapabilites. For simplicity, we omit code to check that update operations are in accordance 

with primary and foreign keys constraints, such as ensuring that duplicates are not inserted into the 

access control tables and references to deleted values are not left dangling. 

Algorithm IV represents method assignTo, which assigns a given subject s∈Public to a given bank 

b∈Banks where views Public⊆U and Banks⊆U represents all subjects and banks in the access control 

universe, respectively. First, subject s must meet all constraints for authorizations in b. Then, a 

corresponding tuple <T(), s, b, caller()> is inserted into SysBankSubj, in which function T() generates 

a new transaction number and function caller() returns the subject who calls method assignTo.  

Algorithm V represents method removeFrom, which removes a given subject s∈Public from a 

given bank b∈Banks. The method removes the tuple corresponding to bank b and subject s from 

SysBankSubj. 

Algorithm VI represents method import, which allows the caller to import any subset of 

authorizations omniRights⊆Authorizations from a given bank source∈Banks to a new bank 

newBank∈Banks. Hence, newBank becomes a child of source in the bank hierarchy by inserting tuple 

<T(), newBank, source, caller()> into SysObjHier where function caller() determines the importer 

subject. Moreover, recall from Section 4.5, the exporter (owner of source) retains control over his 

bank hierarchy by specifying (using parameter omniRights) which authorizations are inserted into the 

customized omnibank of the importer.  

Algorithm VII represents method addConstraint, which excludes subjects from the existing 

constraint of a given permission p∈Permissions of a given bank b∈Banks on a given set of objects 

where view Permissions represents all permissions of the system and views Banks, U, and Public are  
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Figure 30. Update algorithms in ACAD. 

Algorithm IV: assignTo(s∈Public; b∈Banks) 

if s ∈ constraint(b) 

then insert <T(), s, b,  caller()> into SysBankSubj; 

Algorithm V: removeFrom (s∈Public; b∈Banks) 

delete from SysBankSubj where subject=s and bank=b; 

Algorithm VI: import(newBank∈Banks; source∈Banks; omniRights⊆Authorizations) 

insert <T(), newBank, source, caller()> into SysObjHier 

update omni(caller()) with omniRights; 

Algorithm VII: addConstraint (b∈Banks; o ∈ U; p ∈ Permissions; s ∈ Public) 

if )(

permit

,bconstraint SysBankObjs

mode
poperation

oobject
bank

=
=

=
=Π∈ σ   

then  

update SysBankObj set constraint=constraint-{s} and t# = T() 

where bank=b and object=o and operation=p and mode=permit; 

delete from SysBankSubj where subject = s and bank=b; 

addConstraint(children(b), o, p, s); 

Algorithm VIII: deleteBank (b∈Banks) 

Pre: l has no child 

delete from SysBankSubj where bank=b; 

delete from SysBankObj where bank=b or object=b; 

delete from SysObjHier  where child=b; 

Algorithm IX: subscribeTo (member∈Public; group∈Public) 

insert <T(), member, group, caller()> into SysObjHier; 

Algorithm X: unsubscribeFrom(member∈Public; group∈Public) 

delete from SysObjHier where child=member and parent=group; 

Algorithm XI: deleteSubject (s∈Public) 

Pre: s has no child 

delete from SysBankSubj where subject=s; 

delete from SysBankObj where object=s; 

delete from SysObjHier  where child=s; 
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as explained in Algorithm IV. First, if s does not intersect the existing constraint, the algorithm 

terminates; otherwise, the corresponding tuples <_, b, o, p, permit, Constraint> in SysBankObj are 

replaced by new ones <T(), b, o, p, permit, Constraint-{s}>, in which function T() generates a new 

transaction number. Calling this method may revoke bank b and its descendants from some subjects.  

Therefore, the corresponding tuples for subject s in s are removed from SysBankSubj. Finally, the 

algorithm is cascaded to the descendants in order that their constraints remain contained within the 

revised constraints in the ancestor (as required by Definition 11). Note that the method is applicable 

to permission authorizations only, not to stoppers. 

Algorithm VIII represents method deleteBank, which deletes a leaf bank b∈Banks from the bank 

hierarchy. Calling this method removes all corresponding bank-subject assignments from 

SysBankSubj, all corresponding bank-object assignments from SysBankObj, all tuples in which b is 

treated as an object from SysBankObj, and all incident edges for vertex b from SysObjHier.  

Algorithm IX represents method subscribeTo, which includes a given subject member∈Public in a 

given subject group∈Public. The corresponding tuple <T(), member, group, caller()> is inserted into 

SysObjHier in which functions T() and caller() are as in Algorithm IV. 

Algorithm X represents method unsubscribeFrom, which removes a given subject 

member∈Public from a given subject group∈Public. The method removes the tuple corresponding to 

member and group from SysObjHier. 

Algorithm XI represents method deleteSubject, which deletes a leaf subject s∈Public from the subject 

hierarchy. Calling this method removes all corresponding bank-subject assignments from 

SysBankSubj, all tuples in which s is treated as an object from SysBankObj, and all incident edges for 

vertex s from SysObjHier. 

6.3 Object Creation 

When a new object is created, one or more corresponding tuples are inserted into the catalogue 

SysObjHier to represent the object and its parent(s). (Recall, in ACAD,  each object is its own parent 

too.) Furthermore, zero or more update requests (depicted in Figure 30) are automatically triggered 

based on the creation time policies (discussed in Chapter 5). As depicted in Figure 23, any of the ten 



 

 94 

types of reserved predicates explained in Section 4.3 may be triggered in a creation time policy. The 

explanation of each case is as follows: 

Predicate permit (or deny) causes a root bank to be created by Sys; consequently, one tuple is 

inserted into catalogue SysObjHier and several tuples are inserted into catalogues SysBankObj and 

SysBankSubj (at least one each), to represent the bank, its authorization(s), as well as the 

corresponding object and subject assignments.  

Predicates subscribeTo and unsubscribeFrom cause an update to the subject hierarchy, which either 

insert tuples to (or delete from) catalogue SysObjHier, to represent the group subscription and 

unsubscription, respectively. Similarly, predicate deleteSubject causes one or more deletions from 

catalogue SysObjHier, to represent deletion of a leaf subject and removing corresponding edges from 

its parents.  

Predicates assignTo and removeFrom cause an update to the subject-bank assignments, which 

either insert or delete tuple(s) from catalogue SysBankSubj to represent the simple delegation and 

revocation, respectively. Note that assignTo must first ensure that the subject meets the constraint. 

Predicate import causes a child bank of an existing bank to be created by Sys; several tuples are 

inserted into catalogues SysObjHier, SysBankObj and SysBankSubj, to represent the bank, its 

parents, its authorization(s), as well as the corresponding object and subject assignments. Recall that  

import is the means of enhanced delegation in ACAD, explained in Section 4.5.3. 

Recall also that addConstraint is the means of strong revocation, explained in Section 4.5.5. 

Predicate addConstraint causes an update to Catalogue SysBankObj; the update is limited to further 

constrain the constraints attribute of an existing tuple. This may also cause several other updates for 

the tuples associated with the descendants of the constraining bank as well as deleting some tuples 

form SysBankSubj to remove subjects who no longer meet the new constraint. 

Finally, predicate deleteBank causes one or more deletion from catalogue SysObjHier, to represent 

deletion of a leaf bank and removing corresponding edges from its parents. 

6.4 Related Work 

The idea of defining the ACAD semantics operationally by a relational model has been inspired by 

the paper by Bertino et al. describing authorization model for relational databases [Bertino et al. 
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1999]. They have defined four relational catalogues to represent privilege-table (or view) 

assignments, subject-privilege assignments, subjects’ ancestors, and subjects’ parents relationships. It 

is clear that the ancestor relationship can be derived from the parent relationship; however the authors 

decided to materialize it for implementation efficiency. Note that they do not have to worry about the 

object hierarchy since DB2 tables are independent from each other (they use views mostly for 

content-dependent authorizations). However, in ACAD, relying on the fact that everything is 

essentially an object, all subject, object, and bank hierarchies are represented in one catalogue 

(SysObjHier). Moreover, the implementation choices of the ancestor relationship, which is computed 

by deriving reachable nodes for each hierarchy, remains intentionally open to users for flexibility in 

storage and time efficiencies. 
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Chapter 7 

USER MANAGED ACCESS CONTROL 

Chapters 3 through 5 describe the mechanism to specify access control administration, which is called 

ACAD. This chapter provides an illustrative example in which  ACAD is applied to define a User 

Managed Access Control (UMAC) system (through the motivating example of healthcare 

applications, introduced in Section 1.3). In particular, in UMAC, subjects fully manage the formation 

of groups, the structure of objects, and the expansion of  access banks as well as the assignment of 

authorizations, without interfering with one another and without requiring a centralized 

administration to update the access control structure. Section 7.1 introduces the UMAC specification. 

Section 7.2 illustrates UMAC by a use case of healthcare systems. Section 7.3 proves how users can 

retain control in UMAC. Finally, Section 7.4 reviews related literature. 

7.1 Specification 

Recall from Chapter 1, access control models form a spectrum of autocratic to self-governing 

administrations. UMAC fits at the latter end. There are various types of self-governing systems, such 

as systems in which every object creator is the object owner (for example, web-based file sharing 

systems), systems in which owners are defined at configuration time (for example, corporate 

applications), etc.  

UMAC is a self-governing system, in which some subjects who create objects are considered as 

owners whereas some other creators may act as agents or employees of the object owner. At creation 

time, some subject is designated as owner and initially receives all permissions on the created object. 
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Creation time policies may additionally grant initial permissions to other users as well. Propagation of 

permissions uses the stopper form of denial. Therefore, in UMAC, each subject may possess two 

faces: the administrator of its own objects, and at the same time, a user of others’ objects. With their 

administration face, subjects require full access control over their own objects, but as users they are 

typically licensed to more limited levels of access.  

User managed access control becomes complicated when the hierarchy of subjects is not consistent 

with the hierarchy of objects. In other words, subjects (e.g. technicians in the healthcare application) 

may have access to many small parts of objects (their patients’ relevant personal data). Moreover, 

accessible domains of various subjects form diverse structures that should be recognized for 

optimization purposes. For instance, a physician’s accessible data mainly consists of a collection of 

disconnected nodes each of which corresponds to a particular patient treated in various clinics; while, 

a technician’s accessible data is basically medical data of patients treated in a particular laboratory. 

Definition 12 (Principle of Non-interference). “One group of users, using a certain set of 

commands, is not interfering with another group of users if what the first group does with those 

commands has no effect on what the second group of users can see” [Goguen and Meseguer 1983]. 

Goguen and Meseguer defined the principle of non-interference by which subjects are prevented 

from certain interference activities that violate some security policies. Notice that this approach 

avoids a transitive-closure computation which generally exists in verifying security by determining 

which subjects potentially can interfere with others. 

ACAD’s features provide the flexibility of defining a UMAC model. For instance, the generic and 

customized banks (introduced in Section 4.2.) can be applied towards the self-governance property 

explained in Chapter 1. In particular, there is no administrative superiority in Figures 16 (a) or (b) 

since neither S1 nor S2 can disrupt the other’s actions, and there is no centralized control.  

7.2 Use Case: Healthcare Systems 

This section illustrates the UMAC model through a more concrete instance of Example I. This 

application has been initially inspired from the XACML use cases [Kudo 2001]; however, we have 

adapted it to reflect a more decentralized application environment [Chinaei and Tompa 2005]. Figure 

31 illustrates the schema of a typical medical record, which consists of one element of patient 



 

 98 

information and zero or more elements of encounter. An encounter consists of elements 

hospitalization information, diagnosis information, and possibly completed consent form. Each 

element of diagnosis information contains zero or more elements of therapy information. A medical 

record may be accessed by different subjects such as doctors, patients, receptionists, accounting 

system, etc. Each subject should be authorized to have only the minimal privileges it needs. Here, the 

functions of UMAC are briefly described based on the following scenario that focuses on both 

efficiency and self-governance. 

 

Figure 31. An  example of medical records schema. 

The scenario assumes an instance of the system is installed for St. Mary’s hospital. The hospital is 

the owner of medical records; however, various users of the system, such as patients or caregivers, 

may create elements of a medical record (such as personal data, hospitalization information, and 

diagnoses). Moreover, groups of users and their job functions may be defined when the system is 

initialized. For instance, assume group Patients is created and assigned to bank predefined1 which 

includes an import authorization that allows importers to create the element patient_info within 

medical records. Similarly, assume groups Receptionists and Doctors are created, and their members 

are able to create sub-elements hospitalization_info and diagnosis_info, respectively, by exploiting 

corresponding banks predefined2 and predefined3. Furthermore, all users are assigned to a predefined 

bank which includes authorization <C, permit, subscribeTo, Patients> by which they can subscribe 

themselves to group Patients when they need to see a doctor.  

This use case represents the application of different classes of access banks, explained in Section 

4.2.4. For readability of Figures 32 to 35, the subject hierarchy is omitted from the illustration.  
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Assume Patricia becomes a member of Patients. Therefore, through predefined1, she can create an 

element in the St. Mary’s hierarchy to contain her personal information. When she does so, as part of 

the hospital’s check-in procedure, she is directed to create banks b1 and b2, and to assign receptionists 

of St. Mary’s Hospital to b2. Figure 32, which combines aspects of Figures 20 and 22, illustrates this. 

Note the use of delegation by agents and enhanced delegation. Moreover, as a part of the check-in 

procedure, a family member of the patient is assigned to a generic bank genBank4, by which they are 

able to create the consent. 

 

 

Figure 32. A new patient arrives in a healthcare system. 

 

Figure 33. A doctor attends the patient. 

Then, assume Robert, who is a member of the Receptionists group, and thus inherits the 

permissions for Receptionists, exploits bank predefined2 to serve Patricia’s request by creating her 
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hospitalization information (such as room number and arrival date), and also uses the grant 

permission in b2 to assign the group Doctors to b1 (not diagrammed). Then, as illustrated in Figure 33, 

doctor Dorothy attends to Patricia, and creates her diagnosis information by exploiting bank 

predefined3. Dorothy also creates banks b3 and b4, and as the doctor in charge, assigns Doctors and 

Nurses to b4 so that they can delegate the permission to themselves or to others to read Patricia’s 

diagnosis information. However, she excludes Patricia using the constraint of b3 to prevent her from 

reading her own diagnosis information even if she is a doctor or nurse (unless she is granted 

permission through another route). 

 

Figure 34. The patient is permitted to see her diagnosis information. 

Figure 34 illustrates that St. Mary’s can create a new bank b5 that imports from omni1 and include a 

read authorization with grant option, and assign Fred, a member of Patricia’s family, to it upon 

creating the informed consent by him. Therefore, Fred can use the enhanced delegation mechanism to 

create bank b6 and assigns Patricia to it in order to permit her to read her diagnosis information. 

Figure 35 combines Figures 32 to 34 and depicts the complete medical record for Patricia. For 

readability, details of Figures 32 to 34 are not depicted in Figure 35; for instance, Figure 35 does not 

illustrate access banks’ constraints. Moreover, authorizations are shown by abbreviated symbols R, 

R+, and R*, which represent permission read, simple delegation of permission read, and enhanced 

delegation of permission read,  respectively. For instance, R+ in bank b2 means subjects assigned to 

b2 (e.g. receptionists) are allowed to assign other subjects (e.g. doctors) to bank b1, which permits 

them to read Patricia’s personal information. Dotted boundaries highlight the domains within which 

each subject creates and controls a part of the health record database. As explained in Section 5.1, the 
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creators’ capabilities are defined by creation time policies. For instance, if the policy states that 

doctors have all capabilities on the diagnosis information that they create, then Dorothy’s connections 

to banks b3 and b4 will be from her omni bank instead of from the customized omnibank.  

This example shows how corporate policy can allow various subjects such as patients, 

receptionists, doctors, and patient family to administer access control over different parts of a medical 

record. Every time an item of data is created, a corresponding owner bank with all methods is 

automatically created or updated. As an example of a combined role, Fred can create one combined 

bank on several diagnoses and assign Patricia to see them all. As an example of selective revocation, 

Dorothy prevents Patricia from seeing her own record by excluding her in the constraint component 

of bank b3. St Mary’s can prevent Fred and others assigned to role b5 or its descendents (b6) from 

reading the diagnosis information by removing the connection between the omnibank and b5; the read 

permission will no longer be inherited. 

 

Figure 35. All authorizations on the patient medical record. 

One may extend this example in many directions. For instance, since St. Mary’s has control over a 

sub-graph of Dorothy’s bank hierarchy rooted at the customized omnibank omni3
1
, the hospital 

authority can selectively revoke bank b4 from some or all nurses. In a worldwide application 
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including many hospitals in the system, a patient may create sub-elements and assign permissions for 

various hospitals and a doctor may cooperate with several clinics. Thus, Patricia (and Dorothy) may 

have several customized omnibanks, each controlled by a different hospital. However, St Mary’s has 

control over the corresponding subgraphs of Patricia’s (Dorothy’s) bank hierarchy rooted at omni2
1
 

(omni3
1
) only, and cannot interfere with the banks of other hospitals. With such an approach, 

hospitals, and their users, can share their information based on corporate policy agreements. 

7.3 Proof of Retaining Control 

Theorem. Assume subject S1 owns object d and delegates any subset of its authorizations with respect 

to d to any other subjects through a customized bank of its bank hierarchy G. S1 is able to strongly 

revoke any given authorization a operating on object d from any given subject S2 by removing S2 

from the corresponding constraint of omnibank b0.  

PROOF (by contradiction). Assume S1 is not able to revoke authorization a from S2. Because S1 owns 

object d, all authorizations for d are initially placed in S1’s omnibank or in banks in the hierarchy 

rooted at that omnibank and nowhere else. Any of those authorizations can appear in other banks only 

through the import operation, which always creates the new bank as a descendent of the exporting 

bank. Therefore, there is a customized bank b1 in G (rooted at S1’s omnibank) by which S2 enjoys 

authorization a. There are only two cases then: either b1 is not a descendent of b0 which contradicts 

the definition of an omnibank; or, b1 is a descendent of b0 but the constraint of authorization a in b1 is 

not a subset of the corresponding constraint in b0, which contradicts the definition of an access bank. 

Therefore, S1 is able to revoke any given authorization a from any given subject S2.        

Corollary 1. Any subject assigned to an omnibank o is able to strongly revoke any  authorization 

operating on any object associated with o from any given subject S by removing S from the 

corresponding constraint of o.  

Corollary 2. Any subject S1 who is authorized to add more constraints to a fertile bank f is able to 

revoke any authorization a delegated to S2 via any descendant of f by removing S2 from the 

corresponding constraint of f.  
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7.4 Related Work 

The user managed access control model explained in this chapter is distinguished from other 

proposals by its unique property of self-governance (no designated administrator in the system). In 

fact, from UMAC’s point of view all users are in a flat administrative level with no superiority over 

one another, whereas other proposals often assume a hierarchical administration in the system in 

which some subjects have administrative superiority with respect to other subjects [Moffett 1990; 

Firozabadi et al. 2001]. Moffett proposes the idea of administrative domains, each of which has an 

administrator to update the metadata. The whole system is considered as a major domain with a super 

administrator who controls other administrators. This idea has been exploited by other researchers to 

propose a variety of hierarchical administrations; see Sections 2.2 and 2.3. Firozabadi et al. improve 

the idea of administrative domain with two major contributions: adding constrained delegation and 

basing the model on the cryptography approaches rather than identity-based access control lists. The 

former enriched the model by controlling the domain of grantees. The latter modified the model to be 

based on public keys rather than identities. UMAC is very different from such models since it does 

not necessarily require domains. 

UMAC is also different from the proposals that enhance the RBAC model for non-centralized 

environments [Wedde and Lischka 2003; Park and Hwang 2003]. As opposed to UMAC, none of 

these propose a flat administration. In Cooperative Role-Based Administration  [Wedde and Lischka 

2003], the authors propose local Authorization Teams who exercise access control on a set of disjoint 

organizational units; called an Authorization Sphere. They adapt Petri Nets to implement quorum and 

veto features for granting rights from owners to users. Members of an Authorization Team may 

jointly modify the set of rules of their authorization sphere. An inheritance principle is applied based 

on hierarchical relationships between Authorization Spheres. Park and Hwang introduce a three level 

access policy for a peer-to-peer architecture [Park and Hwang 2003]. Each peer makes the access 

control decision based on the enterprise, the community, and the peer policies locally. Since different 

roles may have the same privileges, or conversely, roles with a common name but in different 

communities may define different privileges, the authors assume a function called Role Ontology, 

which determines similar roles in different communities. In this way, the authors propose a 

centralized administration for User-Role assignments, but support decentralized Permission-Role 

assignments in different communities and also within peers. 
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Chapter 8 

COMPARISON OF MODELS 

This chapter highlights our contributions by comparing ACAD to four other noteworthy models, so 

called AFS, FARDMS, FAF, and Ponder, all of which have been well cited in the literature of access 

control.  AFS is the security model for the Andrew File System proposed by Howard et al. [Howard 

et. 1988]. FARDMS, Flexible Authorization Model for Relational Databases Management Systems, 

proposed by Bertino et al. [Bertino et al. 1999] extends the System R model by supporting access 

control exceptions and strong enforcement. FAF  [Jajodia et al 2001] is a specification language to 

support various access control policies in a system. Ponder is a declarative policy specification 

language for management and security of distributed network systems proposed by Damianou et al. 

[Damianou et al. 2001]. Further information about each model is given in Sections 8.1 and 8.2.  

8.1 Desirable Features 

This section undertakes an overview of various access control features. These features have been 

partially inspired from existing models [Bertino et al. 1999; Tolone et al. 2005]. We also define 

several complementary features by studying new enterprises. In particular, we review the overarching 

feature (defined in Section 4.1) that dominates the entire model; and, we divide other features into 

four categories: functional, administration, security, and performance requirements, based on which 

ACAD is comparrd to AFS, FARDMS, FAF, and Ponder. The comparison is illustrated in Table 6. 
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8.1.1 Overarching Requirement 

ACAD is based on one single model in which subjects, banks and objects are treated uniformly, that 

is, data and metadata are treated with the same security model. However, none of AFS, FARDMS, 

FAF, or Ponder support the overarching requirement. AFS provides two hierarchies: one for users and 

groups and another for files and directories, which are controlled by different security models. 

FARDMS provides three hierarchies for subjects, roles, and objects, and each is controlled 

differently. Moreover, the models for administrative privileges and ordinary ones differ. For instance, 

FARDMS concept of strong or weak privileges does not apply to its administrative privileges. 

Therefore, FARDMS fails in providing a uniform model. FAF defines three, similar yet differently 

administered, hierarchies for users, objects, and sets of privileges (called roles in the current version). 

In particular, FAF defines several predicates to represent authorizations, but it does not specify how 

subjects or objects are represented in the authorization system. As an immediate shortcoming, the 

materialized views suggested to represent the authorizations, based on the assumption of more 

frequent access requests with respect to update requests, becomes inefficient in the case of frequent 

updates in users or objects hierarchies. Ponder does not address the data representation of its 

authorizations, subjects, or targets, because it focuses on the policy specification language.  

8.1.2 Functionality 

Functional features express operational expectations that are desired from access control models in 

practical applications. There are four functional features such as support for both closed and open 

policies, granularity, support for exceptions within hierarchies, and support for contextual 

information.  

— Support for both Closed and Open Policies: A closed access control system exploits the 

principle that subjects have no access to an object unless corresponding positive access 

authorizations exist. Similarly, an open access control system states that subjects have access to 

objects in the absence of negative access authorizations. Thus, closed systems minimize 

authorization while open systems maximize it. Access control models should be able to 

implement either assumption properly since both are common in practical applications.  

AFS implements a closed policy only, and FARDMS can simulate a restricted open policy 

that does not support exceptions, whereas FAF and Ponder can easily support an open policy 
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with exceptions by interpreting permissions negatively. Since the conflict resolution 

component is not hardwired to the rest of the model, applying various policies (including the 

open policy) is straightforward in ACAD. 

— Granularity: Data often form hierarchical structures, e.g. user groups and their members or 

relational tables and their tuples; hence, defining access controls on higher levels of hierarchies 

and propagating them down to other levels is a space-saving technique as well as providing 

convenience to users who can simply specify many related authorizations. In contrast, finer 

grained access control is an important functional characteristic even though it is space 

consuming. There are many applications in which access control rules are to be defined for a 

specific individual rather than for a group of users and/or on parts of objects rather than on the 

whole object. Access control models should support various levels of granularity based on the 

application needs. 

The granularity of AFS is very coarse. Access permissions are defined on a whole directory 

rather than a specific file in order to retain conceptual simplicity and storage efficiency. 

FARDMS provides a finer granularity, at the relation level, as well as supporting views. 

However, the view access level is restricted to positive privileges only. ACAD, similar to 

Ponder, provides a fine-grained access control at any level of objects. Both FARDMS and 

Ponder are restricted to coarse granularity with respect to administrative privileges that are 

inseparable. However, ACAD also unbundles authorizations, since no permission is dependent 

on another. For instance, a revocation right (such as removeFrom) does not require holding any 

delegation ability (such as assignTo). FAF is as fine-grained as ACAD. 

— Support for Exceptions within Hierarchies: This feature is important for applications in which 

not all access control policies are defined by general rules and exceptions are inevitable. 

Although often an authorization should be propagated down to the leaves in the hierarchy, there 

are situations in which propagation should be stopped somewhere before reaching the leaves. 

Access control models that do not support exceptions are both inconvenient and more space 

consuming since more fine-grained authorizations must be explicitly defined in such cases. 

All models include both negative and positive privileges in order to support exceptions. Yet, this is 

limited in AFS and FARDMS. AFS supports one level of exception only, in which a subdirectory 

may be accessible to some users as opposed to its inaccessible parent; however, it is impossible in 
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AFS to permit a subfolder to be accessible to any user when its parent is inaccessible to the same 

user. Similarly, in FARDMS, it is meaningless for a view to be inaccessible to a subject while its base 

table is accessible to the same subject. There are no such limitations in FAF, Ponder, or ACAD, 

where exceptions are possible anywhere in the hierarchies. 

8.1.3 Administration 

This section compares the models based on the features that pertain to administering access control. 

Enterprises require sophisticated administration features such as support for manipulating hierarchies, 

the effective timing of access control, delegation and revocation, and implementing various policies. 

Flexible administration features allow access control to be adjustable to various degrees of 

(de)centralization. In contrast, models that do not provide such features are only applicable to limited 

situations e.g. to mandatory access control policies or to applications that have a fixed body of 

administration (no delegation or revocation in the system). 

— Support for Updating Data Hierarchies: Access control models should provide update 

authorizations for manipulating hierarchies, e.g. defining new user groups or adding new 

attributes to XML elements. Models that do not support such update authorizations separate 

data administration from data usage; consequently, these models cover limited applications. 

AFS does not allow users to create their own groups. FARDMS only allows privileged 

subjects to update the subject or object hierarchy. Neither FAF nor Ponder discuss updates of 

the subject hierarchy.  In the FAF formalism, the authors explicitly state that the subjects, 

objects, and roles are disjoint sets. Moreover, no subject can be treated like an object in the 

formalism of FAF authorizations; the object component is from the object domain only. 

Therefore, manipulating the object hierarchy differs from manipulating the subject hierarchy. 

Ponder states that the target of an authorization can be network resources or service providers. 

Ponder allows the definition of role hierarchy and management structures at configuration 

time, however, it does not specify whether or not they are updatable. In general, these 

proposals assume that access requests are far more frequent than update requests, while ACAD 

does not rely on that assumption. ACAD allows subjects to update hierarchies. Moreover, 

updating hierarchies can be centralized or decentralized. Decentralized hierarchy update 

provided by ACAD has at least two advantages: simpler administration and self-governance. 
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— Active/Passive Mechanism: Users, objects, and authorizations change within the system 

lifetime. Changes can take effect either immediately or at a suitable breakpoint depending on 

the application. For instance, if a user subscribes to a group, all group access authorizations can 

be granted to him either immediately or at the next sign in time. The former is called active 

while the latter is passive. Access control models should be able to control the timing of these 

effects. 

Changes in AFS take effect immediately because they are hard wired to the state of the 

operating system. Similarly, changes in Ponder take effect immediately because Ponder is an 

event-driven language in which authorizations are triggered as soon as certain events happen. 

In contrast, FAF has to postpone changes to take effect at a suitable breakpoint since 

authorizations are represented by materialized views in which update is an expensive operation. 

FARDMS and ACAD can support both active and passive mechanisms since these models are 

not tied to the implementation. 

— Delegation and Revocation: Users often need to transfer or extend their responsibilities and 

authorizations to other users. In contrast, sometimes they need to revoke a specific authorization 

from other subjects. Models with no flexible delegation or selective revocation features are not 

suitable for most discretionary access control systems.  

AFS provides a limited level of delegation in which only owners can grant privileges to 

others. Similarly, Ponder supports one level of delegation, in which the network administrator 

can delegate actions to domain administrators. FAF also allows only a single central 

administrator to delegate or revoke privileges. Consequently, cascading revocation is not 

meaningful in the AFS, Ponder, or FAF systems. FARDMS provides a richer delegation 

mechanism by which further delegation is allowed; however, it requires that a subject must 

hold a permission in order to delegate it. Moreover, administrative privileges are an atomic 

package that the owner delegates either as a whole or not at all. Selectively revoking 

permissions from a grantee in the middle of a delegation path is not supported in FARDMS. On 

the other hand, the delegation and revocation mechanisms are at the core of ACAD: a single 

authorization can be delegated to others with or without further delegation option, revocation 

authorization is independent from delegation, and selective revocation is well supported. 
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— Policy Neutral: Access control models should not impose any particular access control policy; 

otherwise, their applicability is limited. For example, the Bell-LaPadula model imposes a 

mandatory access control policy, which is appropriate for specific applications. Other models 

might depend on the existence of “super-users”. Expressive models are policy neutral, leaving it 

to enterprise administrators to specify their own policy at configuration time.  

In AFS and FARDMS, the propagation and conflict resolution polices are hard wired to the 

rest of system, whereas in FAF, Ponder and ACAD, it can be replaced with any arbitrary 

policy.   

— Flexibility: The flexibility of access control models is the characteristic of supporting various 

degrees of restriction. The setup of an access control system could be different even in two 

instances of the same application. For instance, one healthcare system may authorize doctors to 

read patients medical histories by default and another system may not. Access control models 

that do not cover a wide variety of needs cannot be widely applicable.  

In contrast to all other models, ACAD is novel in support of various levels of administration 

to support systems from the autocratic end to self-governed (and even anarchistic) end of the 

spectrum of access control policies. This flexibility is elaborated in Section 8.2. 

8.1.4 Performance 

This section concludes the comparison based on scalability. 

— Scalability: Many access control applications deal with many objects. Furthermore, applications 

usually grow over time. Hence, the scalability of access control component of such applications 

is extremely important. 

AFS and Ponder target large distributed systems. Therefore, the systems chose to be 

restricted for the sake of efficiency. On the other hand, FARDMS is restricted with respect to 

scalability in practice due to providing different security models for different hierarchies as 

well as separating administrative privileges from ordinary ones. We believe FAF scalability is 

fairly limited due to a possible bottleneck for the single central administrator as well as not 

being tied to implementation of its authorization predicates by materialized view. These 



 

 110

limitations have been avoided in ACAD by meeting the overarching requirement, providing 

adjustable level of decentralization, and being independent from implementation choices. 

Table 6 summarizes the result of this comparison. In summary, ACAD is distinguished from all 

other four models in five features namely, support of overarching requirement, support for updating 

data hierarchies, expressive delegation mechanism, support for selective revocation, and 

administrative flexibilities.  

Table 6. Comparison of existing models w.r.t. major requirements 

 AFS FARDMS FAF Ponder ACAD 

Overarching 

Req. 
unsupported unsupported unsupported 

not 

addressed 
supported 

Closed/Open 

Policy 
only closed 

possible/ 

restricted 
possible possible possible 

Granularity very coarse coarse very fine fine very fine 

Exceptions limited limited no-limit no-limit no-limit 

Update 

Hierarchies 
centralized  centralized limited 

not 

addressed 

centralized  

or 

decentralized 

Active/Passive active both possible passive  active both possible 

Delegation very limited limited very limited very limited flexible 

Selective 

Revocation 
not 

applicable 
unsupported 

not 

applicable 

not 

applicable 
supported 

Cascade 

Revocation 
not 

applicable 
supported 

not 

applicable 

not 

applicable 
supported 

Policy Neutral no no yes yes yes 

Administrative 

Flexibility 
very limited limited very limited limited flexible 

Scalability good limited limited good good 

 

There are other features that can be considered for the evaluation of access control models, such as 

supporting contextual information, understandability, usability, complexity, and security properties. 

However,  we do not discuss such features here due to their lack of influence on the result of the 

comparison. In particular, all the above systems can be extended to support contextual information; 

also, discussion on understandability and usability imposes subjective opinions; and, theoretically 

provable criteria, such as complexity and security properties have not been extensively measured in 

any of the systems.  
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8.2 Access Control Space 

This section brings together creation time policies and conflict resolution policies (introduced in 

Chapters 5 and 3, respectively) to introduce the access control space. Creation time policies are our 

means of initializing the explicit access control matrix to support a comprehensive spectrum of 

administration models, from the autocratic end to the self-governed end.  Conflict resolution policies 

are essential to models that propagate authorizations within hierarchies or support both negative and 

positive authorizations. As an analogy, creation time policies represent the access control  

initializations for a network of access control states, similar to a finite state automaton, whereas 

conflict resolution policies provide different interpretations for each state. In ACAD, all reachable 

states as well as their interpretation conform to the access control policy chosen by the enterprise. 

Figure 36 represents such a space, in which one axis maps the creation time policies 

(Administration) and the other maps the conflict resolution policies (Interpretation).  For the sake of 

comparison, we partition the Administration axis to represent five classes of models with respect to 

the amount of administrative decentralization, namely no admin, single admin, group admin, 

hierarchical admin, and user admin. Systems in which there are no metadata updates and each 

component authority is fixed in the life cycle are from the no admin  class. The 4D1-IRIX operating 

system, in which only one user is allowed to update some data, is an example of the single admin 

class.  Similarly, UNIX, in which a group of users may take the role of super-user, is from the group 

admin class. Role-based access control models, in which roles often map the organizational hierarchy, 

are from the hierarchical admin class. Finally, user-managed access control models (introduced in 

Chapter 7), in which each user potentially can administer various parts of the system, are from the 

user admin class. For simplicity of discussion, we identify the administration classes with numbers 0, 

1, 2, 3, and 4, respectively. It is important to notice the higher the number is, the more flexible class it 

represents. Hence, models in class 0 (no admin) can be described by models in class 1 (single admin), 

and so on.  

Similarly, we partition the Interpretation axis to represent four levels of models with respect to the 

flexibility of the conflict resolution component, namely 0 rule, 1 rule, 2 rules, and 2+ rules. Level 0 

rule represents access control models in which conflicts are not possible or allowed; an error is raised 

in the latter case. Level 1 rule represents access control models in which conflicts are resolved by one 

rule only for instance negative-takes-precedence. Level 2 rules represents models in which conflicts 
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are resolved by two rules, for instance the-most-specific-takes-precedence and if there is still a 

conflict then positive-takes-precedence. Level 2+ rules represents models in which the conflict 

resolution component is not hard wired to the system and can be replaced by any conflict resolution 

strategy. Similar to the administration classes, we identify the interpretation levels with numbers 0, 1, 

2, and 3, respectively; and, the higher the level is, the more variety of interpretations it represents. 

Hence, models with rank 0 ( no conflict resolution) can be described by models with rank 1 (resolving 

conflicts by 1 rule), and so on. 
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Figure 36. Space of access control administration models. 

We suggest to represent the expressivity of each model by a pair of <class, level>, where the class 

identifies the model administrative capabilities and the level identifies its support of variety of 

conflict resolution strategies. Therefore, the space of access control administration models provides a 

visualized mechanism to compare existing models, and leads to a better understanding of their 

functionalities as well as highlighting their overlaps and  differences.    

Figure 37 illustrates the position of AFS, FARDMS, FAF, Ponder, and ACAD within the access 

control space. In terms of administrative capabilities, AFS and FAF are in the administrative Class 1 

since they allow only one user to be the security administrator. However, it is clear that both models 

can be extended to support a group of users, with equal capabilities, and therefore be in Class 2. 

FARDMS is in the administrative class 2 since it currently supports a group of privileged subjects to 

take administrative capabilities. Ponder, in Class 3, provides a more general administrative model, 

with respect to previous models, since it supports a hierarchical  administration, for instance 

appropriate for distribute computer networks. However, it is important to notice that hierarchical 
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administration models cannot express graph-based administration models such as the user managed 

access control model supported by ACAD in Chapter 7. Therefore, ACAD, in Class 4, is the most 

flexible model with respect to other existing models. In terms of interpretation variety, AFS is in level 

1 since it supports a single rule of negative-takes-precedence. FARDMS is richer than AFS since it 

supports the combination of two rules, the most-specific-takes-precedence and negative-takes-

precedence, and is in level 2 then. Moreover, the conflict resolution component in both AFS and 

FARDMS is hard wired to the rest of model, which cause support of different strategies difficult. 

However, FAF, Ponder, and ACAD are all in level 3, which reflects that they are independent from 

the conflict resolution component. FAF, and Ponder explicitly support any combination of three rules 

of the-most-specific-takes-precedence, negative-takes-precedence, and positive-takes-precedence, 

which is equivalent to two strategy instances. ACAD explicitly supports four rules of locality, 

majority, default and preferred authorizations, which covers 48 conflict resolution strategies 

including the one supported by other existing models (discussed in Chapter 3).  

  

 

 

 

 

 

Figure 37. Comparison of the models in access control space. 

 

In summary, the expressivity of AFS, FARDMS, FAF, Ponder, and ACAD can be represented by 

<1,1>, <2,2>, <1,3>, <3,3>, and <4,3>, respectively. Considering the fact that AFS and FAF are 

simply extensible to <2,1> and <2,3>, respectively, one can easily conclude that, in terms of 

administrative capabilities, these models obey the following rule  
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in which < means “can be captured by”. This is illustrated by Venn diagram in Figure 38. Moreover, 

ACAD is novel in providing mechanisms to set up the system with the desired level of 

decentralization for each object type and suitable conflict resolution strategy, at configuration time. 

 

Figure 38. Expressivity of the models in access control space. 

8.3 Related Work 

There are two recent papers addressing the requirements of access control models [Bertino et al. 

1999; Tolone et al. 2005]. Bertino et al., in their authorization proposal for relational databases 

systems, discuss several protection requirements among which the following influenced this thesis: 

support for exceptions and strong enforcement, possibility of delegation and retaining control, and 

support for grouping subjects. Tolone et al. summarize several access control requirements, addressed 

by different groups in earlier works [Edwards 1996; Jaeger and Prakash 1996; Ferraiolo and Barkley 

1997; Bullock 1998], in their proposal for collaboration systems, among which the followings 

influenced this thesis: scalability, access control granularity, and active/passive mechanism.  
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Chapter 9 

CONCLUSIONS AND FUTURE WORK 

This chapter first summarizes the contributions of ACAD in Section 9.1. Then, several related 

research directions are discussed in Section 9.2. 

9.1 Summary of Contributions 

The major contribution of this thesis is an access control administration model with adjustable 

decentralization (called ACAD), to protect both data and metadata. ACAD is uniform: all types of 

data and metadata are protected with the same mechanism. Moreover, ACAD is administratively 

flexible: it is adjustable to set any degree of decentralization of administration for each object, it 

allows users to update all hierarchies, and it provides very rich mechanisms for delegation and 

revocation. Hence, ACAD covers the spectrum of access control administration from the autocratic 

end to the self-governed end; its mechanism of updating hierarchies is the same as the one for 

updating access control data; and, it holds the right to delegate a specific authorization and the right to 

revoke it independently of each other and independently of the authorization itself. It is important to 

notice that ACAD is unique in terms of these characteristics with respect to other noteworthy models, 

discussed in Chapter 8. Details of our contributions are as follows. 

ACAD is policy-neutral, and therefore independent from the conflict resolution component. As a 

part of this thesis, we have implemented a unified algorithm to support several conflict resolution 

strategies simultaneously in the presence of sophisticated data hierarchies, which can be used  as the 

conflict resolution component of any system. ACAD is fine-grained, and therefore flexible to define 
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authorizations on any level of objects and to administer authorizations and the right to delegate them 

independently. It is controlled by flexible creation time policies that allow a single system to be 

deployed in a wide range of application environments.  

Furthermore, ACAD supports a wide-ranging set of access control features and is supported by a 

formal semantics defined operationally by a relational model. Within this framework, we also 

introduce the self-governance property in the context of access control, and show how the model 

facilitates it. We have shown how ACAD can set up a conflict-free and decentralized access control 

administration model, called UMAC, in which all users are able to retain complete control over their 

own data while they are also able to delegate any subset of their rights to other users or user groups. 

We have also characterized a novel mechanism to constrain access control administration for each 

object type at object creation time, as a means of adjusting the degree of decentralization when the 

system is configured.  

Finally, we have compared ACAD and several other significant models, namely AFS, FARDMS, 

FAF, and Ponder, to highlight its important features as well as its expressivity in the space of access 

control administration models.  

9.2 Future Work 

There are several directions to extend this work. The details are as follow: 

– Define a metric to measure the decentralization degree. There is no formal technique to verify 

decentralized access control administration models in terms of “the degree of decentralization.” 

Decentralization may increase anarchy, and centralization may cause an administration bottleneck. 

In other words, decentralization, e.g. in information sharing systems, is a special type of 

optimization problem in which the degree of decentralization needs to be maximized while keeping 

the anarchy below a specific amount. Similarly, centralization, e.g. in governments, is an 

optimization problem in which the degree of centralization needs to be maximized while keeping 

the administration load below a specific level. Nevertheless, each optimization problem requires a 

well defined metric. It is important to develop such metrics from which both system buyers and 

system developers can benefit. 
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– Define a metric to measure the restrictedness degree. Conflict resolution policies together with 

propagation policies raise an interesting question: how restricted is the combined system overall? 

Intuitively, this question addresses the ratio of positive and negative authorizations in the effective 

access control matrix. We believe that developing such a metric to measure the degree of 

restrictedness of a system will result in two immediate profits: first, understanding if a given 

system is closer to closed policy systems or to open policy ones, which consequently has several 

advantages, including choosing the right data structure for efficient representation; second, we 

believe such metrics can help in verifying the data availability and safety properties of access 

control models. 

– Develop a data structure that is flexibly adjustable by the system to match the specific 

configuration of banks, subjects, and objects of ACAD present in a given enterprise. Designing 

corresponding efficient access control algorithms will be the major contribution of this direction.  

– Develop a more flexible delegation mechanism for ACAD. In the current work, grantors delegate 

their access privileges at their wish. However, there are applications in which grantors may 

delegate an obligation or a responsibility only if the potential grantee agrees too. Moreover, in the 

current work, a privilege can be delegated as soon as a grantor delegate it (1-delegation) whereas 

there are applications in which the privilege is granted if a minimum number of grantors, delegate 

it (k-delegation).  

– Develop bag semantics for ACAD. There are applications in which the collection of authorizations 

for a given subject should semantically be a bag rather than a set; in this case, the revocation 

mechanism must keep track of the path of delegated rights in order to properly cascade the 

operation.  

This thesis provide an adjustable access control administration model, which is distinguished from 

other noteworthy existing model in terms of comprehensiveness and expressivity (as justified in Table 

6, as well as Figures 37 and 38); yet, the formal proofs of security properties (such as safety, 

accountability, and protection against attacks) as well as practical directions to measure performance 

criteria (such as complexity) remain open to follow as future work. 
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