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ABSTRACT 

It was estimated that more than one hundred open reading frames in Pyrococcus furiosus and 

Thermotoga maritima could encode flavoproteins based on the results of motif search and 

comparison of genomic annotation to the experimentally characterized flavoproteins. However, only a 

few flavoproteins have been characterized from those anaerobic hyperthermophiles. It was found T. 

maritima and Thermotoga hypogea were able to grow in the presence of micromolar level of oxygen. 

As part of an oxygen removal system, the presence of NADH oxidase was detected in both 

microorganisms. In T. hypogea, NADH oxidase activity was constant regardless of the presence of 

oxygen, while in T. maritima it was increased in the presence of oxygen. The purified T. hypogea 

NADH oxidase was a flavin adenine dinucleotide (FAD)-containing homodimer with subunit 

molecular mass of 50 kDa. In addition to NADH oxidase activity, it also demonstrated activity of 

dihydrolipoamide dehydrogenase (DLDH), which is probably involved in glycine decarboxylation. 

The purified NADH oxidase from T. maritima was a heterodimeric protein of two subunits with 

molecular weight of 54 and 46 kDa, which were identified to be encoded by TM1432 and TM1433, 

respectively. Each subunit bore one FAD and the large subunit had one bacterioferritin-associated 

ferredoxin (BFD)-like [2Fe-2S]-center. Although the T. maritima NADH oxidase had very unusual 

oxygen sensitivity, the oxygen inactivated enzyme could be fully recovered by incubating with 

reducing reagents anaerobically. The NADH oxidases from both T. hypogea and T. maritima 

catalyzed the reduction of oxygen only to hydrogen peroxide. NADH-dependent peroxidase activities 

were detected in both T. maritima and T. hypogea, suggesting the presence of a multi-component 

oxygen detoxification system in Thermotoga species. In addition to its NADH oxidase activity, the 

enzyme from T. maritima exhibited FAD-linked glycerol-3-phosphate dehydrogenase (FAD-GPDH) 

activity. Along with the glycerol kinase, the FAD-GPDH took part in glycerol utilization in T. 

maritima. Ferredoxin NAD+ oxidoreductase (FNOR) activity was detected in T. maritima using an 

NADH:benzyl viologen oxidoreductase (BVOR) assay. The purified enzyme was a homodimeric 

FAD-containing protein with subunit molecular mass of 37 kDa. The purified enzyme was very 

active in catalyzing the reduction of BV and methyl viologen (MV) using either NADH or NADPH 

as electron donor and could indeed catalyze the reduction of NAD+ with the reduced ferredoxin from 

T. maritima. The purified enzyme was further identified to be encoded by TM0869 and annotated as 

thioredoxin reductase (TrxR). T. maritima TrxR could not use commercially available thioredoxin 

(Trx) from Spirulina, but the Trx purified from T. maritima. T. maritima Trx was identified to be 
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encoded by TM0868 and annotated as glutaredoxin (Grx)-like protein, which showed both 

thioredoxin (Trx) and Grx activity. The purified T. maritima TrxR could catalyze the Trx-dependent 

reduction of both insulin and DTNB using NAD(P)H as electron donor. The identified Trx-TrxR 

system in T. maritima is the first one characterized in hyperthermophilic bacteria. T. hypogea has 

great potential in microbial hydrogen production. The key enzyme involved in this process, 

hydrogenase, has not been studied yet. The growth-dependent hydrogenase activity was detected in T. 

hypogea, from which a homotetrameric hydrogenase was purified. The purified T. hypogea 

hydrogenase did not contain any flavin prosthetic group as speculated, but [Fe-S]-centers. The 

hydrogenase could catalyze both BV and MV-dependent hydrogen oxidation and MV-dependent 

hydrogen evolution. Neither NAD(P)H nor NAD(P) could be used as electron carrier for this enzyme. 

T. hypogea hydrogenase could utilize ferredoxin as electron carrier for both production and oxidation 

of hydrogen, which suggests that the purified hydrogenase plays an important role in hydrogen 

metabolism of T. hypogea. It was concluded that flavoproteins can be involved at least in several very 

important cellular processes such as detoxification of oxygen, utilization of glycerol, redox 

regulation, and hydrogen metabolism in hyperthermophiles. 
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The overarching goal of this thesis is to explore the presence of flavoproteins and their roles in the 

metabolism of hyperthermophiles. Though many different types of flavoproteins have been 

extensively studied in mesophiles, little is known about their counterparts or new ones in 

hyperthermophiles, a group of microorganisms with distinct metabolism features. This section of the 

thesis gives an overview of knowledge about flavoproteins and their diverse functions, and features of 

the metabolism of hyperthermophiles. The importance of flavoproteins in the metabolism of 

hyperthermophiles is discussed and the study of flavoproteins in representative microorganisms 

Pyrococcus furiosus and Thermotoga maritima is reviewed.  The specific goals are described in the 

last part of this section. 

 

1.1 HYPERTHERMOPHILES 

1.1.1 Discovery and diversity of hyperthermophiles 

A milestone in microbiology was the isolation of organisms from sulfur-rich, shallow marine volcanic 

vents, which grow at and even above the boiling point of water (Stetter 1982). Hyperthermophiles are 

defined as organisms that grow optimally at 80°C and above or capable of growing at 90°C and above 

(Adams 1994; Baross and Holden 1996; Stetter 1982). In contrast to thermophiles, hyperthermophiles 

are normally unable to grow below 60oC (Stetter 1996). The majority of them are classified as 

members of the domains of archaea consisting of four branches: the Nanoarchaeota, a group of 

recently discovered tiny symbiotic cocci (Huber et al. 2002); the Crenarchaeota that were isolated 

from geothermal sites; the Euryarchaeota that mainly include methane-producing archaea and 

halophiles; and the Korarchaeota that was discovered recently by DNA sequence analysis and has not 

yet been fully identified (Barns et al. 1996; Vieille and Zeikus 2001). As the only two branches of 

bacteria among the hyperthermophiles known, Thermotogales and Aquificales are deepest in the 

bacteria genealogy and represent an obvious interest in evolutionary studies (Achenbach-Richter et al. 

1987). An archaeal strain, Pyrolobus aerophilum, has been recently isolated from hydrothermal vent, 

which grows at the autoclave temperature and survives up to 130oC (Kashefi and Lovley 2003). 

Hyperthermophiles have been isolated from the environments with temperatures in the range of 80 to 

115oC including continental solfataras, deep geothermally heated oil-producing stratifications, 

shallow marine and deep-sea hot sediments, hydrothermal vents located up to 4,000 m below the sea 

level, and hot industrial environments (Vieille and Zeikus 2001). Deep-sea hyperthermophiles live in 



 

  3

the environments with hydrostatic pressures ranging from 200 to 360 atm. Some of these organisms 

are barotolerant (Reysenbach and Deming 1991) or even barophilic (Erauso et al. 1993; Marteinsson 

et al. 1999; Nelson et al. 1992). Studies of environmental 16S rRNA sequences and environmental 

lipid analysis in samples originating from a single continental hot spring (Obsidian pool at 

Yellowstone National park) suggest that the known hyperthermophiles represent only a fraction of all 

the hyperthermophiles (Barns et al. 1994; Barns et al. 1996; Hedrick et al. 1992). All 

hyperthermophiles are found to be located in the extremely short and deep branching-off lineages of 

the universal phylogenetic tree, indicating a slow rate of evolution (Figure 1-1, Stetter 2006). The tree 

shows that the archaea and eukarya have a common ancestor that is not shared by bacteria.  

 

1.1.2 Metabolic diversity of hyperthermophiles  

Metabolic diversity is one of the approaches microorganisms use for adapting to extreme 

environments. Although the metabolic pathways used by hyperthermophiles still remain largely 

unresolved, several dominant characteristics of energy-yielding redox reactions are apparent. The 

majority of hyperthermophiles in culture take advantage of electron transfer among species of the 

sulfur redox system. Anaerobes commonly reduce sulfate, sulfite, thiosulfate, or elemental sulfur, 

while aerobes oxidize sulfide or elemental sulfur to sulfate (Amend and Shock 2001).  

 

1.1.2.1 Chemolithoautotrophic hyperthermophiles 

Among all the hyperthermophiles described, some of them are able to utilize inorganic electron 

donors and acceptors in their energy-yielding reactions. For example, bacterium Aquifex pyrophilus 

can use H2, S0, and S2O3
2- as electron donors, and archaeon Acidianus infernus can use S0 as electron 

acceptor and donors (Huber et al. 1992; Segerer et al. 1986; Stetter 1996). Autotrophic metabolism is 

coupled with ATP synthesis via the mechanisms of oxidative phosphorylation (Schönheit and Schäfer 

1995). In hyperthermophiles, autotrophic energy metabolism is mostly anaerobic or microaerophilic 

and based on the oxidation of H2 or sulfur coupled with the reduction of S0, SO4
2-, CO2 and NO3

-, but 

rarely O2 (Stetter 2006). Carbon dioxide is the only carbon source required for building up organic 

cell material.  
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Figure 1-1 Small subunit 16s rRNA based universal phylogenetic tree. 

The red bulky lineages represent hyperthermophiles (modified from Stetter 2006) that contain the 

branches of both bacteria and archaea. 
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1.1.2.2 Heterotrophic hyperthermophiles 

The majority of known hyperthermophiles are obligately heterotrophs that reduce elemental sulfur to 

hydrogen sulfide, preferentially using complex mixtures of polypeptides and/or carbohydrates as 

energy and carbon sources in laboratory growth environments (Adams 1994). Among heterotrophic 

hyperthermophiles, the most extensively studied species from biochemical perspectives are the 

archaeon, Pyrococcus furiosus, and the bacterium, Thermotoga maritima. Their facultative 

dependence on sulfur makes these organisms attractive sources for native versions of 

hyperthermophilic enzymes (Adams et al. 1995; Adams and Kelly 1998; Bauer et al. 1996; Sunna et 

al. 1997), as well as good model systems for physiological studies (Kengen et al. 1994; Rinker and 

Kelly 1996; Schicho et al. 1993).  

 

P. furiosus belongs to the genus of Pyrococcus, which includes P. abyssi (Erauso et al. 1993), P. 

furiosus (Fiala and Stetter 1986), P. horikoshii (Gonzälez et al. 1998) and P. woesei (Zillig et al. 

1987). P. furiosus is a strictly anaerobic, heterotrophic, hyperthermophilic archaeon isolated from 

geothermally heated marine sediments Vulcano, Italy (Fiala and Stetter 1986). It grows optimally at 

100oC and is able to utilize a broad range of sugars as primary carbon source (Bauer et al. 1996; 

Driskill et al. 1999; Koning et al. 2001, 2002). These include cellobiose, lamimarin, chitin, maltose, 

barley glucan and starch. It can also grow on pyruvate through gluconeogenesis (Schäfer and 

Schönheit 1993). Maltose is fermented to pyruvate via a modified Embden-Meyerhof pathway 

involving novel ADP-dependent kinases (Figure 1-2; Sakuraba et al. 2004; Selig et al. 1997; Tuininga 

et al. 1999). The pyruvate produced is converted to acetate, alanine, CO2 and H2. Ferredoxin serves as 

primary electron carrier for oxidoreductase instead of NAD+ or NADP+ in the fermentation. T. 

maritima was originally isolated from Volcano Island, Italy (Huber et al. 1986). It belongs to the 

genus of Thermotoga comprising a group of extremely thermophilic, rod shaped, nonsporeforming 

bacteria with an outer sheath-like envelope also known as ‘toga’. They demonstrate heterotrophic 

growth, with acetic acid, L-lactate, CO2 and H2 as the main products from fermentation (Huber et al. 

1986; Van Ooteghem et al. 2002, 2004). H2S is produced when elemental sulfur or sodium thiosulfate 

is added, the presence of which decreases the production of H2. In addition to T. maritima, eight 

species in the genus have been isolated, T. neapolitana (Jannasch et al. 1988), T. elfii (Ravot et al. 

1995), T. subterranae (Jeanthon et al. 1995), T. hypogea (Fardeau et al. 1997); T. petrophila and T. 

naphthophila (Takahata et al. 2001), T. lettingae (Balk et al. 2002), and T. thermarum (Windberger et 
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Figure 1-2 Proposed pathway of maltose metabolism in P. furiosus 

Novel enzymes such as ADP-dependent glucokinase, ADP-dependent phosphofructokinase, and 

glyceraldehyde-3-phosphate ferreoxin oxidoreductase are invloved in the pathway (Modified from 

Sakuraba et al. 2004). 
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al. 1989). T. maritima has great potential to use a wide range of simple and complex carbohydrates  

confirmed by the inventory of glycoside hydrolases encoded in its genome (Nelson et al. 1999) and 

experimental results (Chhabra et al. 2002). It is known to metabolize both polysaccharides and simple 

sugars, including carboxymethylcellulose, barley glucan, starch, galactomannan, xylan, pectin, 

mannose, xylose, and glucose (Bronnenmeier et al. 1995; de Vos et al. 1998). Complex sugars are 

processed by a series of glycoside hydrolases and then transported by ATP-binding protein cassette 

(ABC) transporters but not phosphoenolpyruvate phosphotransferase system (Chhabra et al. 2003; 

Galperin et al. 1996; Nelson et al. 1999; Nguyen et al. 2004). Glucose is fermented through the 

conventional Embden-Meyerhof (EM 85%) and Entner-Doudoroff (ED 15%) pathways (Selig et al. 

1997). It has been reported that genes encoding enzymes catalyzing NADH oxidation are up-regulated 

by both lactose and maltose (Nguyen et al. 2004). The mechanisms involved in such regulation 

remain unclear. Although the picture of the metabolism in hyperthermophiles is far from clear, a 

group of enzymes, flavoenzymes, are known to be involved in many important cellular processes. 

 

1.2 OVERVIEW OF FLAVOPROTEINS 

1.2.1 Discovery of flavin and flavoprotein 

Riboflavin (vitamin B2), a bright yellow pigment, was first isolated from cow’s milk whey by 

English chemist, A. Wynter Blyth more than 100 years ago as lactochrome (Blyth 1879). In 

subsequent years, yellow pigments extracted from various biological sources called ovoflavin, 

lactoflavin, heptoflavin, or verdoflavin, depending on either the source of isolation or physical 

appearance, were described. It was recognized that the yellow compound was a constituent of vitamin 

B, the structure of which was determined via chemical synthesis by two important groups (Karrer et 

al. 1935; Kuhn et al. 1934) and the name of riboflavin was given to the compound (Müller 1991). 

Flavin is a generic term for a group of compounds that have the heterocylic isoalloxazine 

chromophore in common. Riboflavin consists of the tricyclic isoalloxazine moiety connected to a 

ribityl side-chain at N-10 (Figure 1-3).  

 

Flavoproteins are ubiquitous proteins using flavins as prosthetic groups and mostly catalyzing redox 

reactions. They occur in all organisms and are known to be involved in various processes essential for  
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Figure 1-3 The structures of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide 

(FAD) and the numbering system for isoalloxazine ring (Adapted from Massey 2000). 
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sustaining the living conditions for each organism (Miura 2001). The first flavoprotein was 

discovered in yeast and named as yellow enzyme by the German biochemist Otto Heinrich Warburg, 

a pioneer in research on mechanism of biological respiration process (Warburg and Christian 1933). 

Since their pioneering work, hundreds of flavoenzymes have been known till 1989 (Ghisla and 

Massey 1989) and new features of some flavoproteins have been continuously presented every year.  

 

1.2.2 Commonly used flavin cofactors 

The common flavin cofactors in flavoproteins are present mainly in the form of flavin adenine 

dinucleotide (FAD) and in less amount flavin mononucleotide (FMN) (Palfey and Massey 1996). 

They are synthesized from riboflavin by riboflavin kinase and FAD synthetase (Karthikeyan et al. 

2003; Spencer et al. 1976). FMN is produced from the phosphorylation of riboflavin at the ribityl 5-

OH and FAD is the combination of FMN with AMP (Figure 1-3). In bacteria, the functions of FAD 

synthetase and riboflavin kinase are carried out by one bifunctional flavoprotein (Mack et al. 1998; 

Manstein and Pai 1986). 

 

Although most flavoenzymes utilize FAD and FMN as prosthetic groups, there are some exceptional 

cases in which the modification on isoalloxazine ring or ribityl side-chain occurs. A derivative of 

riboflavin called coenzyme F420 (7, 8-dimethyl-8-hydroxy-5-deazariboflavin) because of its strong 

absorbance at 420 nm is widely used by some redox enzymes including hydrogenase, formate 

dehydrogenase, and methyltetrahydrofolate dehydrogenase (Lin and White 1986; Tzeng et al. 1975 a, 

b). These enzymes have been isolated from methanogenic archaea involved in methane formation 

(Weiss and Thauer 1993; Wolfe 1991), Streptomyces involved in the synthesis of antibiotic 

lincomycin (Coats et al. 1989; Kuo et al. 1989; Piepersberg 1994) and tetracycline (McCormick and 

Morton 1982), and Mycobacterium involved in the oxidation of glucose-6-phosphate (Klein et al. 

1996; Purwantini and Daniels 1996).  

 

The known crystal structures of flavoproteins reveal that the majority of the flavin-protein 

interactions are with the N-10 ribityl side chain of FMN and FAD (Massey 2000). A recent study 

based on the sequence-structure relationship in 32 families of FAD-containing proteins shows that the 

pyrophosphate moiety binds to the most strongly conserved sequence motif in every case, suggesting 
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that pyrophosphate binding is a significant component of molecular recognition in flavoproteins 

(Dym and Eisenberg 2001). 

 

In most cases the flavin prosthetic group is tightly but not covalently bound to the enzyme and does 

not dissociate during catalysis. However, in a subset of flavoproteins, the flavin is covalently bound 

to the polypeptide chain, at either the 8-α (methyl) or 6-positions of the isoalloxazine ring (Mewies et 

al. 1998). The typical enzymatic residues attaching to the isoalloxazine ring are histidines at either of 

the imidazole nitrogens, cysteines at the sulfur and tyrosines at the phenolic oxygen. 

 

1.2.3 Oxidation-reduction properties of flavin 

The most prominent feature of flavin is its capability to undergo redox reactions and there is no other 

coenzyme known in nature showing the same great variety of reactions (Müller 1991). Flavoproteins 

have been recognized by their ability of participating in both one- and two-electron transfer processes, 

which means that flavin can exist in three different redox states: oxidized (flavoquinone), one-

electron reduced (flavosemiquinone), and two-electron reduced states (flavohydroquinone) (Figure 1-

4; Miura 2001). Each of the redox state has three ionic states: neutral, cationic, and anionic state, 

because of its amphotericity. On binding to a specific protein, this equilibrium can change 

dramatically. 

 

In addition to chemical attractions, flavin has aesthetic benefits as well. The fully oxidized flavin is 

bright yellow. Different ionic states of flavin or reaction intermediates show different colors, such as 

red flavosemiquinone, blue flavosemiquinone, purple intermediates, green complex, etc.  The 

property of being highly colored at different states makes optical spectrometry very useful to study 

the redox changes of flavin and flavoprotein (Stanley 2001). Figure 1-5 shows absorption spectra in 

the visible region of flavin in different redox, ionic, and charge-transfer states, which are origins of 

the different colors of flavins and flavoproteins, and serve as monitoring probes for studying the 

functions of flavoproteins (Miura 2001). 

 

The redox potential for two electron reduction of both free FAD and FMN is around -210 mV at pH 

7.0 (Müller 1991). However, this redox potential can vary greatly among the flavoproteins, spanning 

a range from approximately -400 mV to +60 mV (Fraaije et al. 1999; Ghisla and Massey 1989).  
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Figure 1-4 Redox and ionic states of flavin (Modified from Miura 2001). 
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Figure 1-5 Absorption spectra of D-amino-acid oxidase at different states of flavin (Adapted 

from Miura 2001). 
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Redox properties of flavoproteins depend not only upon the features of the prosthetic group they 

contain, but also are affected by the metal ions (in the metal flavoprotein) as well as by the protein 

environment (Ksenzhek and Petrova 1983). In general, the proximity of a positive charge is thought 

to increase the redox potential, whereas that of a negative charge or a hydrophobic environment is 

expected to lower it (Fraaije and Mattevi 2000; Massey 1995). A change of redox potential may be 

made by the environment provided by the apoprotein and the specific interaction between the 

apoprotein and the prosthetic group.  

 

The ability to participate in redox reactions as either one- or two-electron mediator makes 

flavoproteins very versatile in terms of substrate and type of reactions catalyzed, which enables 

flavoproteins to play a pivotal role in coupling the two-electron oxidation of most organic substrates 

to the one-electron transfers of the respiratory chain. This property and the capability of catalyzing a 

variety of biochemical reactions make flavoproteins to be at crossroads of cellular redoxchemistry 

(Ghisla and Massey 1989; Palfey and Massey 1996). The majority of flavoprotein-reducing substrates 

are dehydrogenated in a two-electron reduction step. The resulting reduced flavin is then re-oxidized 

by its oxidizing substrate, either in a two-electron step (Figure 1-6) or in a single one electron-step, in 

which the flavosemiquinone would be observed as an intermediate by the spectral study (Figure 1-5). 

For the convenience to describe the catalytic process, the reaction catalyzed by flavoprotein normally 

is split to two parts: reductive half-reaction and oxidative half-reaction. 

 

 

Figure 1-6 Reductive and oxidative half-reaction of flavoproteins (Adapted from Massey 2000). 
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1.2.4 Catalytic versatility of flavoproteins 

Flavoproteins catalyze a large variety of different reaction types. According to the composition of 

flavoproteins, they are divided into two big groups, simple flavoproteins that only use flavins as 

prosthetic group and complex flavoproteins, the latter contain one or more prosthetic groups involved 

in the overall catalytic cycle in addition to flavin (Palfey and Massey 1996). 

1.2.4.1 Simple flavoproteins 

Simple flavoproteins can be classified on the basis of their reactivity towards a number of reagents, 

their ability to stabilize the flavin semiquinone, the reaction they catalyze, substrate subjected to 

catalysis, and their properties upon substitution with artificial flavins (Palfey and Massey 1996). Each 

of these characteristics is affected by the protein residues of the active sites that are optimized to 

promote certain type of reaction. Members of a particular group share common mechanistic 

properties, and some have evolved to catalyze reactions in addition to those common to the group 

(Massey 1994; Palfey and Massey 1996). According to those criteria, simple flavoproteins are further 

classified into five families: oxidases, flavoprotein disulfide oxidoreductases, electron transferases, 

monooxygenases, and flavoproteins that do not catalyze any net redox reduction. 

 

1.2.4.1.1 Oxidases  

Oxidases catalyze the oxidation of a substrate single bond to a double bond, followed by the 

oxidation of the flavin by oxygen. This group includes D-amino-acid oxidase (EC 1.4.3.3; Konno and 

Yasumura 1992), L-amino acid oxidase (EC 1.4.3.2; Ponnudurai et al. 1994), α-hydroxy acid 

oxidases with subgroups of glycolate oxidase (EC 1.1.3.15), L-lactate monooxygenase (EC 

1.13.12.4), flavocytochrome b2 (EC 1.1.2.3), and L-lactate oxidase (EC 1.1.3.2; Diêp Lê and Lederer 

1991), and glucose oxidase (EC 1.1.3.4; Kelley and Reddy 1986). These enzymes dehydrogenate at 

the α-carbon atom of the substrates, yielding the 2-oxo (α-keto) acid or α-imino acid as the primary 

products, respectively (Massey 2000). The reduced enzyme reacts with oxygen very rapidly and 

hydrogen peroxide is produced (Massey 1994). The reaction is essentially irreversible because of the 

high redox potential of the couple O2/H2O2 (Em= +270 mV) versus that of oxidized/reduced flavin (Em 

= -209 mV). Among this group of enzymes, D-amino-acid oxidases have been so extensively studied 

that they are regarded as model flavooxidase catalysts. D-Amino-acid oxidases are found in numerous 

eukaryotic organisms, including fungi, insects, amphibians, reptiles, birds and mammals (Friedman 
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1999). The presence of D-amino-acid oxidases in microorganisms is related to the well established 

ability to use D-amino acid for growth (LaRue and Spencer 1967). However, the significance of D-

amino-acid oxidase in higher organisms remains unclear. The enzymes in this group have some 

common catalytic properties including reacting rapidly with oxygen in reduced form, stabilizing the 

red anionic flavin radical via one electron reduction (Pilone 2000). 

 

1.2.4.1.2 Flavoprotein disulfide oxidoreductases (FDR) 

Flavoprotein disulfide oxidoreductases catalyze the pyridine-dinucleotide-dependent reduction of a 

variety of substrates, including disulfide-bonded substrates (lipoamide dehydrogenase (EC 1.8.1.4), 

glutathione reductase (EC 1.8.1.7) and functional homologues, thioredoxin reductase (EC 1.8.1.9), 

and coenzyme A disulfide reductase (EC 1.8.1.14), alkylhydroperoxide reductase, mercuric ion 

(mercuric ion reductase; EC 1.16.11), hydrogen peroxide (NADH peroxidase; EC 1.11.1.1), 

molecular oxygen (NADH oxidase), and the reductive cleavage of a carbonyl-activated carbon-sulfur 

bond followed by carboxylation (2-ketopropyl-coenzyme-M carboxylase/oxidoreductase) (Argyrou 

and Blanchard 2004; Williams 1992). Normally, pyridine nucleotide reduces the flavin and the 

reduced flavin reduces an active-site disulfide, followed by the reduced enzymes containing thiols 

undergo thiol-disulfide interchange with a disulfide substrate. All the members in this group use at 

least one redox center in addition to flavin to transfer electrons from reduced pyridine nucleotide to 

their substrates through FAD (Argyrou and Blanchard 2004). Three types of nonflavin redox center 

adjacent to the flavin have been identified: catalytic disulfide, catalytic cysteine sulfenic acid (NADH 

peroxidase and NADH oxidase), and mixed Cys-S-S-CoA disulfide (coenzyme A disulfide 

reductase).  

 

Flavoprotein disulfide oxidoreductases have high sequence and structural homology. Homology in 

the FAD-binding region and in the pyridine nucleotide binding region is a common feature in all 

members of this family (Carothers et al. 1989). Lipoamide dehydrogenase, glutathione reductase, 

mercuric ion reductase and trypanothione reductase have a high degree of homology in amino acid 

sequence which expands to all domains (Brown et al. 1983; Greer and Perham 1986; Shames et al. 

1988; Williams et al. 1982). The level of sequence identity between the four enzymes varies between 

24 and 40%. The region of the active site disulfide in thioredoxin reductase (TrxR) was different from 

the other four enzymes mentioned above (Russel and Model 1988). Enzymes in flavoprotein disulfide 
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oxidoreductase family are normally involved in cellular energy metabolism and protection from 

damage by molecular oxygen and other toxic agents.  Since most work of this thesis is focused on the 

enzymes from this family, the representative enzymes, such as lipoamide dehydrogenase, NADH 

oxidase, and TrxR will be introduced in later chapters.  

 

1.2.4.1.3 Monooxygenases 

The flavoprotein monooxygenases (flavin-dependent aromatic hydroxylase) are a group of enzymes 

that catalyze the addition of a single oxygen atom from molecular oxygen into the substrate and the 

reduction of the second oxygen atom in the substrate to form water. Those enzymes are involved in a 

wide range of biological process including drug detoxification, biodegradation of aromatic 

compounds in the environment, biosynthesis of antibiotics and siderophores (Ballou et al. 2005). 

They activate molecular oxygen through the formation of a reactive flavin hydroperoxide which can 

attack the substrate by an electrophilic or nucleophilic process depending on the protonation state of 

the flavin hydroperoxide and the nature of the protonation state of the substrate (Leahy et al. 2003; 

Moonen et al. 2002). The mammalian microsomal flavin-containing monooxygenase (FMO; EC 

1.14.13.8) catalyzes the monooxygenation of nitrogen-, sulfur, phosphorus, selenium, or iodine-

containing compounds at the expense of NADPH and O2 and is considered to have evolved as 

xenobiotic detoxification catalyst to protect mammals from liponucleophilic plant chemicals in the 

early environments (Cashman 2005; Ziegler 1990, 1991). These enzymes are of deep interest for the 

bio-catalytic production of fine chemicals and food ingredients and play important roles in soil 

detoxification process via the hydroxylation of many aromatic compounds due to their high 

regioselectivity and stereoselectivity (Massey 1994, 2000; Moonen et al. 2002).  

 

Cyclohexanone monooxygenase (EC 1.14.13.22) catalyzes the reaction of hydrocarbon, cyclohexane 

to form the cyclic ester ε-caprolactone with NADPH and O2 to enable the microorganisms containing 

the enzyme to grow on cyclohexane as sole carbon and energy source (Donoghue et al. 1976; Trower 

et al. 1989). Bacterial luciferase (EC 1.14.14.3) catalyzes the oxidation of a long chain aldehyde with 

oxygen and reduced FMN to cause bioluminescence in bacteria (Fisher et al. 1995). Other aromatic 

compounds such as p-hydroxyphenylacetate (p-hydroxyphenylacetate 3-hydroxylase; Arunachalam et 

al. 1992), salicylate (salicylate hydroxylate; You et al. 1991), anthranilate (anthrannilate hydroxylase; 

Powlowski et al. 1987), and 2-methyl-3-hydroxypyridine-5-carboxylic acid (2-methyl-3-
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hydroxypyridine-5-carboxylic acid oxygenase; Sparrow et al. 1969) can also be oxidized by the 

enzymes in this group.  

 

1.2.4.1.4 Electron transferases, reductases, and dehydrogenases 

There are a lot of flavoproteins involved solely in the oxidation and reduction of inorganic, organic, 

and protein substrates and form the bridge between the catabolism of small molecules and respiratory 

chains, or photosynthesis and soluble cellular reductants (Massey 2000). The flavin semiquinone, the 

catalytically competent intermediate, is always stable and observable in the reaction catalyzed by 

enzyme in this group because they are often reduced by hydride-donating substrate and pass the 

electrons to redox proteins one at a time. Pyridine nucleotides and alkenes conjugated to carbonyls 

are the frequent small-molecule substrates (or products) (Palfey and Massey 1996). This group 

includes many enzymes with representatives of cytochrome P450 reductase (EC1.6.2.4) that catalyzes 

hydroxylation reactions of primary importance in the metabolism of lipids, drugs, and other foreign 

compounds working together with other microsomal mixed function oxidase system (Kurzban et al. 

1990; Vermilion et al 1981). Acyl-CoA dehydrogenases that are involved in fatty acids metabolism 

(Thorpe and Kim 1995), NAD(P)H:quinone oxidoreductase (EC 1.6.99.20) that is in involved in 

chemo- and bio-detoxification (Ross et al. 2000), ferredoxin:NAD+ oxidoreductase (FNOR; EC 

1.18.1.2) that serves as switch between one- and two-electron carrier (Carrillo and Ceccarelli 2003), 

old yellow enzyme (EC 1.6.99.1) that can catalyze many reactions but without physiological substrate 

identified yet (Massey 2000; Stott et al. 1993) and UDP-N-acetylenolpyruvylglucosamine reductase 

(EC 1.1.1.15B) that is important for cell wall biosynthesis (Sylvester et al. 2001) are members of this 

group of enzyme. Interestingly, cytochrome P450 reductases contain both FAD and FMN and both 

flavins have distinct roles and distinct reactive properties (Kurzban et al. 1990; Vermilion et al. 

1981). They reductively activate molecular oxygen and oxidize a variety of compounds for 

biosynthetic and detoxification purpose (Porter and Kasper 1986).   

 

1.2.4.1.5 Flavoproteins not catalyzing a net redox reaction 

Some flavoproteins may only have structural role and do not catalyze a redox transformation of 

substrates to products (Palfey and Massey 1996). This group consists of DNA photolyase (EC 

4.1.99.3; Sancar 1994), N-methylglutamte synthase (EC 2.1.1.21; Pollock and Hersh 1973), 



 

  18

hydroxyacyl-CoA dehydratase (Scherf and Buckel 1993), chorismate synthase (EC 4.6.1.4; 

Bornemann et al. 1995), acetolactate synthase (EC 4.1.3.18; Joo and Kim 2001), glycoxalate 

carboligase (EC 4.1.1.47; Cromartie and Walsh 1976), and oxynitrilase (EC 4.1.2.10; Petrounia et al. 

1994). 

 

1.2.4.2 Complex flavoproteins  

In addition to flavin, some flavoproteins may contain one or more prosthetic groups involved in the 

catalysis. Frequently, the additional prosthetic groups are iron-sulfur centers, heme, pterins, thiamine 

pyrophosphate, pyridoxal, etc. (Palfey and Massey 1996). These enzymes have been studied as 

soluble model of respiratory chains because their redox-active cofactors often function as self-

contained electron transport chains. The role of flavins in these complex redox systems is a bridge 

between components that are obligate one-electron reactants, such as iron-sulfur centers, and two-

electron reactants, such as pyridine nucleotides. The well studied enzymes in this group include 

xanthine oxidase (EC 1.1.3.22) and xanthine dehydrogenase (EC 1.1.1.204) which contain FAD, iron-

sulfur center, and molybdenum involved in the metabolism of purines and pyrimidines in various 

organisms (Hille and Nishino 1995), glutamate synthase (EC 1.4.1.13) that contains iron-sulfur 

center, FAD, and FMN and is involved in ammonium ion assimilation in many organisms (Suzuki 

and Knaff 2005), phthalate dioxygenase reductase (EC 1.14.12.7) that contains FMN and iron-sulfur 

center and is involved in breaking down of unactivated aromatic compounds in soil bacteria (Gassner 

et al. 1995), and 2-aminobenzoyl-CoA monooxygenase/reductase (EC 1.14.13.40) containing two 

identical polypeptides and two active centers (FAD) which differ substantially in their catalytic 

properties (Langkau et al. 1995). One center belongs to monooxygenase, the other one to the 

dehydrogenase.  

 

1.3 CURRENT STUDY OF FLAVOPROTEINS IN HYPERTHERMOPHILES 

Some flavoproteins involved in energy metabolisms in hyperthermophilic lithotrophs have been 

studied, which include succinate dehydrogenase (respiratoty complex II) in S0 or O2 reducing 

organisms Acidianus amibivalens, Acidianus infernus, Sulfolobus solfataricus, Sulfolobus metalicus, 

Sulfolobus acidocaldarius, and Sulfolobus strain 7 (Gomes et al. 1999); adenylysulphate (APS) 

reductase in sulphate reducer Archaeoglobus species (Fritz et al. 2002; Schönheit and Schäfer 1995; 
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Speich et al. 1994); F420H2 dehydrogenase, a redox-driven proton pump closely related to 

NADH:ubiquinone oxidoreductase in methanogenic archaea, involved in converting CO2 to CH4 with 

H2 as electron donor (Bäumer et al. 2000).  

 

Several flavoproteins have been purified and characterized from P. furiosus, including NADH 

oxidase (Ward et al. 2001) and rubredoxin oxidoreductase involved in oxygen defensive system (Ma 

and Adams 1999), sulfide dehydrogenase (Ma and Adams 1994) and hydrogenase I and II involved in 

hydrogen and hydrogen sulfide production (Ma et al. 1993; Ma et al. 2000), and thymidylate synthase 

catalyzing the conversion of dUMP and 5,10-methlenetetrahydrofolate to dTMP and dihydrofolate 

(Kanai et al. 2006). Though P. furiosus is an obligate anaerobe, studies of hydrothermal vent systems 

have shown that it can be exposed to significant levels of oxygen at low temperatures when hot, 

anaerobic vent fluids mix with cold, oxygen-saturated seawater (Huber et al. 1990). An NADPH-

dependent superoxide reduction pathway including rubredoxin oxidoreductase has been constructed 

in vitro for P. furiosus (Grunden et al. 2005). Hydrogenases are essential in energy metabolism and 

fermentation for anaerobic thermophilic heterotrophs catalyzing the reversible oxidation of hydrogen 

gas (Adams 1990b). Three flavoproteins related to H2 and H2S metabolism were purified from P. 

furiosus, two soluble FAD-containing Ni-Fe hydrogenases which also possess sulfur reductase 

activity, and one FAD-containing sulfide dehydrogenase which also functions as FNOR (Ma and 

Adams 1994; Ma et al. 1993; Ma et al. 2000). A pathway of electron transfer in P. furiosus has been 

proposed: reduced ferredoxin as major electron carrier is used to reduce NADP+ by FNOR, and 

NADPH formed can be used by the soluble hydrogenases to produce H2 and H2S respectively (Ma 

and Adams 1994). Based on the characterization of a membrane bound hydrogenase, it is thought that 

the membrane bound hydrogenase may be responsible for H2 formation. However, this hydrogenase 

could not reduce sulfur in vitro and neither NAD(P)H nor ferredoxin serves as electron donor as the 

cytoplasmic hydrogenases do (Sapra et al. 2000; Silva et al. 2000). One ORF encoding a putative 

flavoprotein is up-regulated by the presence of sulfur in the medium and seems to be involved in the 

metabolism of sulfur in P. furiosus (Schut et al. 2001). All these studies suggest that flavoproteins 

play very important roles in the life sustaining hydrogen and hydrogen sulfide metabolism of P. 

furiosus. However, the precise mechanisms of H2 formation and S0 reduction are still not clear, 

including the electron transfers during these processes.  
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It has been proposed that the excess reductant produced during fermentation in the form of NADH 

and reduced ferredoxin is disposed ultimately by hydrogenase in Thermotoga (Schröder et al. 1994; 

Verhagen et al. 1999). Hydrogenase has been extensively studied in T. maritima (Juszczak et al. 

1991; Smith and Adams 1994; Verhagen et al. 1999, 2001). The purified T. maritima hydrogenase 

does not use NADH or reduced ferredoxin as electron donor for H2 formation in vitro (Verhagen et al. 

1999). The electron transfer process in hydrogen production in Thermotoga is not clear yet. 

Flavoprotein, FNOR is thought to play a vital role in the bridge of shuttling between one and two-

electron carriers (Carrillo and Ceccarelli 2003). Although not purified yet, FNOR activity was found 

in T. maritima (assayed by BVOR activity; Schröder et al. 1994) and T. neapolitana (assayed by 

NADH:methyl viologen oxidoreductase activity; Käslin et al. 1998). It is plausible to reason that 

there should be some flavoproteins that serve as a switch between one electron carrier (reduced 

ferredoxin) and two-electron carrier (NAD/P) in the H2 and H2S metabolism of these heterotrophic 

anaerobic hyperthermophiles. 

 

Despite the large number, crucial roles in metabolism and vast diversity of flavoproteins studied, 

there is no report regarding the global expression of flavoproteins in any particular organism. The 

short consensus sequence consisting of a pattern of amino acid sequence that characterizes a domain 

or a protein family is called motif (Bork and Gibson 1996). The sequences of homologous 

hyperthermophilic and mesophilic proteins are typically as high as 40 to 85% similar (Davies et al. 

1993; Vieille et al. 1995; Vieille and Zeikus 2001). The conserved motifs in FAD-binding proteins 

from mesophilic organisms can be used to search the genome of hyperthermophilic microorganims to 

quantify the FAD-containing proteins.  It was preliminarily predicted in our laboratory that there was 

4.89%, 5.97% and 8.02% of the ORFs potentially encoding flavoprotein in P. furiosus (104/2125), T. 

maritima (111/1858) and Escherichia coli (340/4237) based on motif matching method, respectively 

(Chiu 2006). A list of experimentally determined flavoproteins was generated by searching the 

primary articles published in journals in biological science database including Web of Science and 

Canada Institute for Scientific and Technical Information (CISTI) and flavoprotein encyclopaedia 

(Müller 1991). Based on name search, there was 2.21%, 1.88% and 3.63% of the ORFs annotated as 

the enzymes that are flavoproteins in P. furiosus, T. maritima, and E. coli, respectively.  
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1.4 AIMS OF STUDY 

The central goal of this thesis was to study the flavoproteins involved in the metabolism of anaerobic 

hyperthermophiles. The work was mainly focused on the following specific goals. 

 

Although hyperthermophlic anaerobes live in oxygen-free environment, it has been showed that they 

can be exposed to significant levels of oxygen when hot, anaerobic vent fluids mix with cold, oxygen-

saturated seawater (Huber et al. 1990). How they deal with such substantial amount of oxygen and 

what mechanisms are involved in the detoxification process attracted our attention. The first goal of 

this research was to investigate the effect of oxygen on the growth of Thermotoga species, namely T. 

maritima and T. hypogea and the enzymes involved in their oxygen detoxification systems. As an 

enzyme catalyzing the reduction of oxygen using NADH as electron donor, the presence of NADH 

oxidase in these anaerobic hyperthermophilic bacteria had to be proven, and its catalytic properties 

would be studied. An important aspect of NADH oxidase study was to determine what the product of 

oxygen reduction was since it may catalyze the formation of either water or hydrogen peroxide. To 

know the product was critical to evaluate the function of this enzyme and to predict the type of 

oxygen detoxification system present in such anaerobes. It was known that the NADH remained in 

the NADH oxidase reaction system could significantly interfere with the H2O2 determination. For 

mesophilic NADH oxidase, the reaction time may be extended in order to consume NADH 

completely. There was no good approach to consume the NADH completely by hyperthermophilic 

NADH oxidase because NADH self-decomposes at high temperatures which makes the 

stoichiometric calculation not accurate. Efforts had to be made to develop a proper way to detect 

H2O2 generated by hyperthermophilic NADH oxidase.  

 

In hyperthermophiles, pyruvate dehydrogenase is replaced by pyruvate:ferredoxin oxidoreductase. 

However, it was found that the gene encoding E3 component of pyruvate dehydrogenase, 

dihydrolipoamide dehydrogenase (DLDH), was present in the genome of Thermotoga species. There 

had been no report of the presence of activity of this flavoenzyme in any hyperthermophiles yet. It 

would be interesting to detect the presence of the activity, investigate the properties, and predict the 

function of DLDH in hyperthermophiles. Therefore, the second goal of this research was to study 

DLDH which might be involved in energy conservation process in the cells.  
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Microbial hydrogen production is of great interest as an alternative fuel. To study the hydrogen 

metabolism in which flavin may play an important role will provide new information to help enhance 

the efficiency of hydrogen production. For the heterotrophic and hyperthermophilic anaerobes 

themselves, hydrogen production serving as electron sink is a very important life sustaining process. 

Intrigued by the two complex FAD-containing hydrogenases characterized from P. furiosus and the 

unsolved puzzles regarding the presence of flavin in the hydrogenase from T. maritima, the third goal 

of this research was to investigate the properties and functions of hydrogenase in T. hypogea. 

 

Thermostable ferredoxin is widely used as electron carrier during fermentation in hyperthermophiles. 

However, many enzymes require NAD(P)H for their functions in other cellular processes such as 

hydrogen production or biosynthesis. So, the bridge enzyme, the flavin-containing FNOR catalyzing 

the electron transfer between the reduced one electron carrier, ferredoxin and two electron carrier, 

NAD(P) is essential. However, there has been no study of this enzyme in hyperthermophilic bacteria 

yet. The fourth goal of this research was to detect the presence of FNOR in hyperthermophilic 

bacterium, T. maritima, and characterize its catalytic properties.  

 

The main approaches used to achieve the goals were first to detect the specific activities and then 

purify the target enzymes from the anaerobic hyperthermophilic microorganisms. After the target 

enzymes were purified, biophysical and biochemical properties of these purified enzymes and their 

physiological functions in their anaerobic hosts were examined. 
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Chapter 2  Determination of Hydrogen Peroxide 

Generated by NADH Oxidase 

 

 
The work described in this chapter was published in Analytical Biochemistry. 

 

Yang X. and K. Ma. 2005. Determination of hydrogen peroxide generated by reduced nicotinamide 

adenine dinucleotide oxidase. Anal. Biochem. 344:130-134. 
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2.1 ABSTRACT 

Hydrogen peroxide can be conveniently determined using horseradish peroxidase (HRP) and 2,2’-

azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). However, interference occurs among assay 

components in the presence of reduced nicotinamide adenine dinucleotide (NADH) that is also a 

substrate of NADH oxidase. So, depletion of NADH is required before using the HRP method. A 

simple and rapid procedure to accurately determine hydrogen peroxide generated by NADH oxidase 

was developed. All procedures developed were based on the extreme acid lability of NADH and the 

stability of hydrogen peroxide, because NADH was decomposed at pH 2.0 or 3.0 for 10 min, while 

hydrogen peroxide was stable at pH 2.0 or 3.0 for at least 60 min. Acidification and neutralization 

were carried out by adjusting sample containing NADH up to 30 μM to pH 2.0 for 10 min before 

neutralizing it back to pH 7.0. Then, hydrogen peroxide in the sample was measured using the HRP 

method and its determination limit was found to be about 0.3 μM. Alternatively, hydrogen peroxide 

in samples containing NADH up to 100 μM could be quantitated using a modified HRP method that 

required an acidification step only, which was found to have a determination limit of about 3 μM 

hydrogen peroxide in original samples.  
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2.2 INTRODUCTION 

Hydrogen peroxide (H2O2), a reactive oxygen species, can produce hydroxyl radicals and cause injury 

of cells in the presence of redox-active metal ions such as Fe3+ (Rosen et al. 1995). H2O2 can be 

quantitated using several methods including spectrophotometry, enzymatic electrodes, and flow 

injection (Alexandre et al. 1992; Voraberger 2004). However, detection limits are found to be 

0.5 μM, 50 nM, and 5 nM, respectively, for these three types of methods, among which a 

spectrophotometry method that is based on the reaction of hydrogen peroxide and a certain dye 

catalyzed by horseradish peroxidase (HRP) is the most convenient and less expensive (Alexandre et 

al. 1992). For accurate and sensitive determination of H2O2 using this HRP method, there must be 

absolutely no interference between the dye used and any component in the assay mixture. NAD(P)H 

oxidases can catalyze either a two-electron or a four-electron transfer reaction to oxygen (O2) to form 

H2O2 or H2O, respectively (Kawasaki et al. 2004; Toomey and Mayhew 1998). Therefore, it is 

necessary to determine how much H2O2 is produced using NAD(P)H as electron donor. The 

determination is often done using the HRP method. Because NAD(P)H in the H2O2 sample interferes 

with the dye assay for horseradish peroxidase used, such as 2,2’-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) (ABTS), any remaining NAD(P)H in the sample must be depleted before the HRP 

assay (Kengen et al. 2003). The depletion of NAD(P)H is normally achieved by extending the oxidase 

reaction time which may take up to 4 h as tested in our laboratory. For oxidases from 

hyperthermophilic sources, it is very difficult to deplete NAD(P)H completely within a reasonable 

period of time due to lower solubility of O2 at high temperatures (≥80 °C). In this case, thermal 

decomposition of NAD(P)H becomes very significant during an extended reaction period, which adds 

to the difficulty in obtaining an accurate ratio of NAD(P)H utilized by oxidase to H2O2 produced. 

Therefore, any remaining NAD(P)H has to be removed as quickly as possible for an accurate HRP 

assay for H2O2. NAD(P)H can also be removed by adding respiratory membranes or limiting the 

amount of NAD(P)H added to NAD(P)H oxidase reaction mixture (Kengen et al. 2003; Messner and 

Imlay 1999). Apparently, it is not practical for most laboratories to do so, and very low 

concentrations of NAD(P)H often cause greater errors. Here, a simple method based on the acid 

lability of NAD(P)H and extremely acid stability of H2O2 to accurately determine H2O2 produced by a 

hyperthermophilic NADH oxidase. It is also demonstrated that this assay method can be used reliably 

for determining H2O2 in samples containing high concentrations of NADH. 
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2.3 MATERIALS AND METHODS 

2.3.1 Materials  

Horseradish peroxidase, ABTS, and NADH were purchased from Sigma (Ontario, Canada); 30% 

peroxide (H2O2) was obtained from EM Science (Germany). All other chemicals were from 

commercially available sources. NADH oxidase was purified from Thermotoga maritima using a 

fast-performance liquid chromatography system in our laboratory as described in Chapter 4 this thesis 

(4.3.4 Enzyme purification).  

 

2.3.2 Determination of hydrogen peroxide 

Hydrogen peroxide was determined by monitoring the oxidation of ABTS in the presence of 

horseradish peroxidase at 725 nm (Ward et al. 2001). One milliliter assay mixture contained 100 mM 

phosphate (pH 7.0) and 150 μl ABTS (0.2 mg/ml). The reaction was started by adding 25 μl 

horseradish peroxidase (100 U/ml). After incubating the mixture at room temperature for 5 min, 

absorbance change at 725 nm was monitored to avoid any possible interference observed at around 

405 nm previously (Pinkernell et al. 2000) despite higher molar absorbance coefficient of ABTS at 

the shorter wavelength (Childs and Bardsley 1975). A molar absorbance coefficient of 

ε725 = 14,200 ± 200 M−1 cm−1 for the oxidized ABTS was obtained from a standard curve. Reduction 

of one mole of hydrogen peroxide requires two moles of ABTS.  

 

2.3.3 NADH oxidase reaction  

Phosphate buffer (100 mM, pH 7.0) is generally used for NADH oxidase reaction, and it is suitable 

for H2O2 measurement using the HRP method (Alexandre et al. 1992; Mäkinen and Tenovuo 1982; 

Nishiyama et al. 2001). After incubation of 1 or 2 ml phosphate buffer (100 mM, pH 7.0) saturated 

with air at 80 °C for 4 min, 100 μM NADH was added and absorbance at 340 nm was recorded before 

adding T. maritima NADH oxidase to start the reaction. Absorbance at 340 nm was recorded after 

running the reaction for about 1–2 min and the reaction was stopped immediately by adding 2 N HCl 

to reach a pH of 2.0. The mixture was then ready for H2O2 determination using the HRP assay. A 

control without addition of T. maritima NADH oxidase was done the same way to determine the 

amount of NADH decomposed at the same temperature.  
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2.4 RESULTS AND DISCUSSION 

Prior to measurement of H2O2 produced by NADH oxidase, all conditions and procedures for a 

simple and rapid determination of H2O2 were tested using known amounts of H2O2 that were prepared 

using 30% H2O2.  

 

2.4.1 Standard curve for determination of H2O2  

To obtain a standard curve, various concentrations of H2O2 from 0 to 16.5 μM in 0.725 ml of 100 mM 

sodium phosphate (pH 7.0) were prepared from a consecutive dilution of 30% H2O2. To each sample, 

150 μl solution of ABTS and 25 μl horseradish peroxidase were added. After incubating the mixtures 

at room temperature for 5 min, absorbance changes at 725 nm were monitored. Values of the 

absorbance at 725 nm were plotted against known concentrations of H2O2 to draw the standard curve. 

A molar extinction coefficient of 14,200 ± 200 M−1 cm−1 for the oxidized ABTS was obtained under 

this condition (Figure 2-1), which was very similar to that reported previously (Duetz and Witholt 

2004). This estimated coefficient was used for all calculations for the H2O2 determination using the 

same HRP assay.  

 

2.4.2 Interference of NADH on the determination of H2O2 using the HRP assay 

Tests were conducted to determine how NADH interfered with H2O2 determination using the HRP 

assay. One milliliter of 100 mM sodium phosphate (pH 7.0) contained 2.2 and 8.8 μM H2O2, 

respectively. Various amounts of NADH were added to reach final concentrations of 0 to 200 μM, 

respectively. For those with 8.8 μM H2O2 in the presence of 0, 10, 30, 50, 100, and 200 μM NADH, 

the determined H2O2 concentrations were 8.68 ± 0.032 μM (100%), 7.81 ± 0.028 μM (90%), 

6.22 ± 0.025 μM (72%), 4.72 ± 0.024 μM (54%), 0.14 ± 0.013 μM (16%), and 0.0 μM (0%), 

respectively. For those with 2.2 μM H2O2 in the presence of 0, 10, 30, 50, 100, and 200 μM NADH, 

the determined H2O2 concentrations were 2.29 ± 0.022 μM (100%), 1.67 ± 0.023 μM (73%), 

0.36 ± 0.012 μM (16%), 0.0 μM (0%), 0.0 μM (0%), and 0.0 μM (0%), respectively. These results 

showed clearly that NADH did interfere with H2O2 determination; in particular, the lower the H2O2 

concentration in the sample, the bigger was the interference. To accurately measure H2O2 

concentration, NADH present in the sample must be removed using a simple and reliable procedure.  
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Figure 2-1 Standard curve for H2O2 determination 

Various concentrations of H2O2 from 0 to 16.5 μM were prepared from a consecutive dilution of 30% 

H2O2. To each sample, 150 μl ABTS and 25 μl horseradish peroxidase solutions were added. The 

absorbance changes at 725 nm were monitored after the mixtures were incubated at room temperature 

for 5 min. 
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2.4.3 Lability of NADH at low pH values 

It is well known that NADH is not stable under acidic conditions (Hentall et al. 2001), but it is not 

clear how quickly it can be decomposed at lower pH values. At first, pH changes of 50 ml of 100 mM 

sodium phosphate (pH 7.0) were made by adding 2 N HCl, and their pH values were monitored using 

a pH meter (AB15, Fisher, Canada). Amounts of 2 N HCl required for adjusting pH to 7.0, 6.0, 5.0, 

4.0, 3.0, and 2.0 were recorded, and they were scaled down for 1 ml or another required volume to 

each pH value accordingly. The corresponding amounts of 2 N HCl were then used for adjusting 

acidities of 1-ml solutions of 100 mM sodium phosphate (pH 7.0) that contained 50 μM NADH to pH 

7.0, 6.0, 5.0, 4.0, 3.0, and 2.0, respectively. Solutions (1 ml) with different pH values were incubated 

at room temperature. The decomposition of NADH at different pH values was monitored by the 

decrease of absorbance at 340 nm (Table 2-1). The results showed that the absorbance of NADH at 

pH 2.0 and 3.0 decreased by more than 96% (below 0.01) within 10 min. After neutralization using 

2 N NaOH, there was no increase in absorbance at 340 nm of the same sample that was adjusted to 

pH 2.0 for 10 min. In contrast, NADH was relatively stable at other tested pHs≥4.0 within the same 

period of time. Therefore, both pH 2.0 and 3.0 were suitable for destroying any remaining NADH 

present in H2O2 samples within a very short period of time.  

 

2.4.4 Stability of H2O2 at low pH values 

It was also necessary to determine whether H2O2 was stable under strong acidic conditions compared 

to that at pH 7.0; 8.8 μM H2O2 was added to 100 mM sodium phosphate with pH values of 2.0, 3.0, 

and 7.0. Concentrations of H2O2 in the mixtures at pH 2.0, 3.0, and 7.0 after their incubation at room 

temperature for 0, 20, 30, and 60 min were determined to be 8.62 ± 0.21, 8.62 ± 0.22, and 

8.68 ± 0.16 μM, respectively. The results showed that H2O2 was stable at pH 2.0 and 3.0 for at least 

60 min, which is consistent with its extreme stability under acidic conditions reported previously 

(Schumb 1949).  

 

2.4.5 Acidification–neutralization procedures 

The stability of H2O2 and lability of NADH at pH 2.0 should make it possible to determine H2O2 

simply and reliably in any sample containing NADH. Mixtures (0.84 ml) with known concentration 
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 Table 2-1 Stability of NADH at various pH values 

 

 

Absorbance change (340 nm) at pH-values adjusted 

 

 

Incubation 

time 

(min) pH 2.0 pH 3.0 pH 4.0 pH 5.0 pH 6.0 pH 7.0 

0 0.276 0.273 0.275 0.277 0.272 0.278 

1 0.043 0.115 0.216 0.214 0.219 0.278 

5 0.003 0.007 0.215 0.214 0.219 0.281 

10 0.005 0.004 0.213 0.212 0.218 0.280 

60 0.005 0.004 0.204 0.200 0.212 0.280 

120 0.005 0.004 0.180 0.179 0.197 0.277 

300 0.003 0.001 0.131 0.133 0.161 0.258 

>1,000 0.003 0.004 0.044 0.045 0.072 0.204 
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of H2O2 (9.7 μM) containing various concentrations of NADH (0, 10, 20, 50, and 100 μM) were 

acidified to pH 2.0 using 2 N HCl (80 μl) and incubated at room temperature for 10 min. Each 

mixture was then neutralized with the same amount of 2 N NaOH corresponding to that of 2 N HCl to 

bring the pH back to 7.0. H2O2 was measured using the HRP assay by adding 150 μl ABTS and 25 μl 

horseradish peroxidase solution prepared to the entire mixture immediately after neutralization. The 

results showed that accurate determination of H2O2 was obtained only when the concentration of 

NADH in the H2O2 assay mixture before acidification was between 0 and 30 μM (Figure 2-2). In 

contrast, H2O2 could not be determined accurately in the presence of NADH without acidification and 

neutralization (Figure 2-2).  

 

Detection limit of H2O2 using this procedure was also determined. A series of H2O2 solutions from 

0.0 to 8.8 μM in 100 mM sodium phosphate (pH 7.0) containing 10 μM NADH was prepared. Both 

steps of acidification and neutralization were carried out exactly as described above. Then 150 μl 

ABTS and 25 μl horseradish peroxidase were added to each of the mixtures and H2O2 was measured. 

The results showed that the accuracy was very good and the limit of H2O2 determination was about 

0.3 μM when an initial NADH concentration was 10 μM by using this method of acidification and 

neutralization to eliminate NADH present in the original samples (Figure 2-3).  

 

2.4.6 Acidification-only procedures 

An alternative way to determine H2O2 in the presence of NADH with an initial concentration up to 

200 μM was also developed using the same principle of the HRP assay (Figure 2-4). After 

acidification (pH 2.0) for 10 min, 10% of the mixture (1 ml) was used for determining the H2O2 in all 

samples. After a 100 μl sample was added to 725 μl of 100 mM phosphate buffer (pH 7.0), additions 

of 150 μl ABTS and 25 μl horseradish peroxidase were carried out. Absorbance at 725 nm was 

monitored after incubation of the assay mixture for 5 min. It showed that H2O2 was accurately 

determined in the presence of NADH up to 100 μM (Figure 2-4). In contrast, H2O2 could not be 

determined accurately in the presence of NADH without acidification.  

 

To test the determination limit of this alternative procedure, solutions of H2O2 (0.92 ml) with 

concentrations from 0.0 to 88 μM in 100 mM sodium phosphate (pH 7.0) containing 100 μM NADH 

were prepared. Each solution was acidified to pH 2.0 using 2 N HCl (80 μl) as described above. After  
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Figure 2-2 Determination of H2O2 in the presence of NADH using acidification–neutralization 

procedures.   

One set of 0.84 ml of 9.7 μM H2O2 in 100 mM phosphate, pH 7.0, containing 0, 10, 30, 50, 100, and 

200 μM NADH, respectively, was prepared. The pH in one set with 9.7 μM H2O2 was adjusted to 2.0 

using 2 N HCl (80 μl) for 10 min followed by adding 2 N NaOH (80 μl) for neutralization to pH 7.0. 

Another set of 1 ml of 8.8 μM H2O2 in 100 mM phosphate, pH 7.0, containing 0, 10, 30, 50, and 

100 μM NADH, respectively, was prepared. Then 150 μl ABTS and 25 μl horseradish peroxidase 

were added to each set for determining H2O2 using the HRP assay. Filled circle, with acidification and 

neutralization; open circle, without acidification.  
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Figure 2-3 Sensitivity of H2O2 determination in the presence of NADH using acidification–

neutralization procedures.  

Mixtures with known concentrations of H2O2 in 0.84 ml of 100 mM phosphate (pH 7.0) containing 

10 μM NADH were adjusted to pH 2.0 using 2 N HCl (80 μl) for 10 min followed by adding 2 N 

NaOH (80 μl) for neutralization to pH 7.0. Then 150 μl ABTS and 25 μl horseradish peroxidase were 

added to each set for determining H2O2 using the HRP assay.  
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Figure 2-4 Determination of H2O2 in the presence of NADH using the acidification-only 

procedures.  

Two sets of 0.92 ml of 22 μM H2O2 in 100 mM phosphate, pH 7.0, containing 0, 10, 30, 50, 100, and 

200 μM NADH, respectively, were prepared. The pH in one set was adjusted to 2.0 using 2 N HCl 

(80 μl) for 10 min. Then 100 μl of each of mixture (1 ml) was taken out for determining H2O2 using 

the HRP assay. Filled circle, with acidification; open circle, without acidification.  



 

  35

incubation at room temperature for 10 min, a portion (100 μl) from each of the solutions (1 ml) was 

taken out for H2O2 assay as described above. The H2O2 determined was also nearly the same as that 

added to the mixtures (Figure 2-5). It showed that the accuracy of H2O2 determination was about the 

same when the acidified solutions without neutralization were used directly for the HRP assay, and 

the detection limit of H2O2 was about 3 μM in the sample under this condition, which was comparable 

in principle with that (0.3 μM) obtained using acidification and neutralization procedures described 

above. 

 

2.4.7 Determination of H2O2 generated by T. maritima NADH oxidase 

In general, 100 mM phosphate (pH 7.0) was used to measure NADH oxidase activity in the presence 

of about 100 μM NADH (Reed et al. 2001). Therefore, H2O2 produced by a T. maritima NADH 

oxidase was measured using the procedures described above. The oxidase reaction was carried out 

aerobically in 2 ml of 100 mM phosphate (pH 7.0) containing 100 μM NADH at 80 °C. Consumption 

of NADH was monitored by the decrease of absorbance at 340 nm. Thermal decomposition of NADH 

was monitored the same way under the same condition without the NADH oxidase added. With the 

acidification-only method, 118 ± 4 nmol H2O2 was determined while 129 ± 5 nmol NADH was 

consumed excluding thermally decomposed NADH during the same period of time, indicating that 

more than 90% of NADH used by the oxidase was converted to H2O2 when an initial NADH 

concentration in the sample was 100 μM. Using the acidification–neutralization method, the NADH 

oxidase reaction was carried out aerobically in 2 ml of 100 mM phosphate (pH 7.0) containing 20 μM 

NADH at 80 °C. Similarly, consumption of NADH was monitored by the decrease of absorbance at 

340 nm. Thermal decomposition of NADH was monitored the same way under the same condition 

without the added NADH oxidase. After acidification at pH 2.0 for 10 min, the mixture was 

neutralized using the same amount of 2 N NaOH to pH 7.0. H2O2 was measured using the HRP assay 

by adding 300 μl ABTS and 50 μl horseradish peroxidase to the entire mixture immediately after 

neutralization. It was found that 22.3 ± 1.2 nmol H2O2 was determined while 23.6 ± 1.4 nmol NADH 

was consumed excluding thermally decomposed NADH during the same period of time, indicating 

that more than 94% of NADH used by the oxidase was converted to H2O2 when an initial NADH 

concentration in the sample was 20 μM.  
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Figure 2-5 Sensitivity of H2O2 determination in the presence of NADH using the acidification-

only procedures.  

Mixtures with known concentrations of H2O2 in 0.92 ml of 100 mM phosphate (pH 7.0) containing 

100 μM NADH were adjusted to pH 2.0 using 2 N HCl (80 μl) for 10 min. Then 100 μl from each of 

the mixtures was used for measuring H2O2 using the HRP assay.  
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NADH remaining in any sample could be eliminated by adjusting pH to 2.0 or 3.0 for about 10 min at 

room temperature. H2O2 in any sample containing NADH from 10 to 100 μM could be determined 

accurately with a detection limit from 0.3 to 3 μM depending on the initial concentration of NADH 

present in the sample. Acidification was a required step for this method described; however, 

neutralization was not necessary if just a portion (~10%) of the acidified sample was used for the 

H2O2 determination using the HRP assay, which is simple, sensitive, and reliable. 



 

  38

 

 

Chapter 3  Purification and Characterization of an NADH 

Oxidase from Extremely Thermophilic Anaerobic 

Bacterium Thermotoga hypogea 

 
 

 

The work described in this chapter was published in Archives of Microbiology. 

 

Yang X. and K. Ma. 2005. Purification and characterization of an NADH oxidase from extremely 

thermophilic anaerobic bacterium Thermotoga hypogea. Arch. Microbiol. 183: 331-337. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  39

3.1 ABSTRACT 

Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C.  

It was found to be able to grow in the presence of micro-molar level of molecular oxygen.  Activity 

of NADH oxidase was detected in the soluble fraction of the cell-free extract of T. hypogea, from 

which an NADH oxidase was purified to homogeneity using a Fast Performance Liquid 

Chromatography (FPLC) system.  The purified enzyme was a homodimeric flavoprotein with a 

subunit of 50 kDa revealed by Sodium dodecyl sulfate-polyacylamide gel electrophoresis (SDS-

PAGE).  It catalyzed the reduction of oxygen to hydrogen peroxide specifically using NADH as 

electron donor.  Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 

37 µmol NADH oxidized min-1. mg-1 protein.  Apparent Km values for NADH and molecular oxygen 

were determined to be 7.5 µM and 85 µM, respectively.  The enzyme exhibited a pH optimum of 7.0 

and temperature optimum above 85°C.  NADH-dependent peroxidase activity was also present in the 

cell-free extract, which could reduce hydrogen peroxide produced by the NADH oxidase into water.  

Although it seems possible that oxygen can be reduced into water by both oxidase and peroxidase, 

further investigation is required to firmly conclude if the purified NADH oxidase is part of an 

enzyme system that protects anaerobic T. hypogea from accidental exposure to molecular oxygen. 
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3.2 INTRODUCTION 

NAD(P)H oxidases (EC1.6.3.1) catalyze the oxidation of NAD(P)H by simultaneously reducing 

molecular oxygen (O2) to form either H2O2 in a two-electron transfer process or H2O in a four-

electron transfer process (Kawasaki et al. 2004; Toomey and Mayhew 1998). In aerobic 

microorganisms, NAD(P)H oxidase activities are generally resulted from a side reaction of 

membrane-bound enzymes catalyzing electrons transfer from NAD(P)H through quinones and 

cytochromes to oxygen.  Since oxygen is toxic to obligate anaerobic microorganisms, their oxygen-

consuming enzymes such as NAD(P)H oxidases were previously found not to be obviously involved 

in their metabolism (Dolin 1959; Maeda et al. 1992).  However, more enzymes catalyzing NADH-

dependent reduction of oxygen are found to be present in many anaerobic microorganisms and these 

enzymes may have important physiological functions (Herles et al. 2002; Kengen et al. 2003; Ward et 

al. 2001).  It is demonstrated that NADH oxidases can be involved in regulation of NAD/NADH ratio 

in anaerobic bacteria (Niimura et al. 2000).  NADH-dependent consumption of O2 is also considered 

as a defense mechanism for anaerobes to reduce toxicity from accidental exposure to oxygen in the 

environment (Kengen et al. 2003; Ward et al. 2001). 

 

T. hypogea is a strictly anaerobic microbe belonging to the order of Thermotogales (Fardeau et al. 

1997). It produces hydrogen, carbon dioxide, and acetate as fermentation products. Recently, it has 

been reported that many strictly anaerobic microorganisms including several members in 

Thermotogales can grow in the presence of oxygen, but how oxygen is involved in their metabolism 

is not known (Van Ooteghem et al. 2001, 2004). The hydrogen production is even stimulated by the 

presence of oxygen in the growth media of T. neapolitana.  It was intriguing to elucidate the 

mechanism of oxygen tolerance by anaerobic Thermotoga species, of which T. hypogea, T. 

neapolitana and T. maritima were found to have O2-dependent NADH-oxidation activities.  The 

activity detected in their cell-free extracts showed the presence of NADH oxidases in all three 

obligate anaerobes. In this study, it was found that T. hypogea grew in the presence of low-level of 

oxygen. One NADH oxidase was purified from T. hypogea.  The present chapter reports the 

properties and proposed physiological functions of the purified enzyme. 
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3.3 MATERIALS AND METHODS 

3.3.1 Organism and chemicals 

T. hypogea (DSM 11164) was obtained from the Deutsche Sammlung von Mikroorganismen and 

Zellkulturen GmbH, D-38124 Braunschweig, Germany.  All chemicals were from commercially 

available products unless specified. 

 

3.3.2 Growth of T. hypogea 

T. hypogea was cultured in a medium modified from Fardeau at 70°C (Fardeau et al. 1997). The 

medium contains (per liter): 1 g of NH4Cl, 0.3 g of K2HPO4, 0.3 g of KH2PO4, 0.2 g of MgCl2·6H2O, 

0.1 g of CaCl2·2H2O, 0.1 g of KCl, 2.0 g of yeast extract, 2.0 g of trypticase, 10 ml of trace mineral 

element solution (Balch et al. 1979), 0.05 mg of resazurin, and 1 liter of de-ionized H2O.  The pH 

was adjusted to 7.3 at room temperature.  It was grown routinely using 50 ml medium in a sealed 

serum bottle with N2 as gas phase (160 ml, Wheaton, Millville NJ). Different amount of oxygen was 

added to the gas phase of the bottle to test the growth in the presence of oxygen. The final dissolved 

oxygen concentration was calculated based on oxygen partial pressure (Kengen et al. 2003).  The 

growth was monitored by direct cell count using a Petroff-Hausser counting chamber (1/400 SQ 

MM, 0.0200 MM deep) and a Nikon Eclipse E600 phase-contrast light microscope.   

 

3.3.3 Enzyme assay and protein determination 

NADH oxidase was determined in a glass cuvette by monitoring oxygen-dependent oxidation of 

NADH spectrophotometrically at 340 nm (ε340 = 6.22 mM-1cm-1) at 80 oC. The assay mixture (2 ml) 

contained 100 µM NADH and 100 mM sodium phosphate buffer, pH 7.0 (Ward et al. 2001). One 

unit of enzyme activity was defined as 1 µmol NADH oxidized per minute.  NADH-dependent 

peroxidase activity was determined anaerobically using the same type of cuvette by monitoring 

H2O2-dependent oxidation of NADH at 340 nm at 80 °C.  The assay mixture (2 ml) contained 200 

µM NADH, 200 µM H2O2 and 100 mM sodium phosphate buffer, pH 7.0.  One unit of peroxidase 

activity was defined as 1 µmol NADH oxidized per minute.  Protein concentration was determined 

using Bradford method with bovine serum albumin as standard protein (Bradford 1976). 
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3.3.4 H2O2 determination 

H2O2 was determined using the method described previously (Ward et al. 2001).  To obtain a 

standard curve for assaying H2O2, a series of concentrations of H2O2 from 0-8.8 µM in 1.0 ml of 100 

mM phosphate buffer pH 7.0 was prepared.  One ml of 30% H2O2 (8.8 M) was diluted 100-fold 

using 99 ml de-ionized water.  Then, one ml of the resulted 8.8 x 10-2 M H2O2 was diluted 100-fold 

using another 99 ml de-ionized water.  Finally, one ml of the resulted 8.8 x 10-4 M H2O2 was diluted 

8-fold using 7 ml de-ionized water to prepare 1.1 x 10-4 M H2O2.  Different concentrations of 0, 0.55, 

2.2, 4.4 and 8.8 µM of H2O2 were prepared by adding 0, 5 and 20 µl of 1.1 x 10-4 M H2O2, 5 and 10 

µl of 8.8 x 10-4 M H2O2 respectively into separated cuvettes containing one ml of 100 mM phosphate 

buffer pH 7.0.  Each concentration was prepared in duplicate.  150 µl of a solution containing ABTS 

(0.2 mg. ml-1) and horseradish peroxidase (100 U. ml-1, from Sigma) were added.  The assay mixture 

(1.15 ml) in the cuvette was then incubated 30 min at 37 °C.  Absorbance change at 725 nm was 

monitored.  A standard curve was obtained by plotting the absorbance at 725 nm against the 

corresponding H2O2 concentration.  Please note that two moles of ABTS are required to reduce one 

mole of H2O2.  H2O2 produced in an assay mixture catalyzed by the purified NADH oxidase at 80°C 

was measured using the same procedure.  However, NADH present in the assay mixture had to be 

depleted first, which was carried out by either flushing with pure oxygen for 10 min, and left the 

mixture at room temperature for up to 4 hours with periodic shaking to accelerate the oxidation of 

NADH.  The depletion of NADH was monitored using absorbance value at 340 nm.  When the 

absorbance value reached below 0.010, 100 µl of the reaction mixture was taken out and added into 

900 µl of 100 mM phosphate buffer pH 7.0 in the cuvette.  After adding 150 µl of the solution 

containing ABTS and horseradish peroxidase, absorbance at 725 nm was measured and the H2O2 

concentration in the reaction mixture was calculated based on the standard curve.  Since NADH was 

thermally degraded at a slow rate, a control without adding the NADH oxidase was performed.  

 

3.3.5 Preparation of cell-free extracts 

To obtain sufficient amount of biomass for enzyme study, T. hypogea grew in the medium described 

above with addition of 0.5 g/l cysteine-HCl and 5 g/l sodium thiosulfate in a 20-liter glass carboy 

(Corning, NY). Cells growing at late exponential phase were harvested anaerobically by 

centrifugation at 13,000xg (Sharples super centrifuge). Cells were frozen with liquid nitrogen and 

stored at -80oC.  Frozen cells (50 grams) were suspended in 250 ml of anaerobic buffer that 
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contained 50 mM tris(hydroxymethyl)aminomethane-HCl (Tris-HCl) pH 7.8, 1 mM dithiothreitol 

(DTT), l mM sodium dithionite (SDT) and 0.1 mg/ml lysozyme.  DNase I (5 µg/ml) was added to the 

mixture after the cells were completely thawed. The mixture was incubated at 37oC for 2 hours with 

constant stirring and centrifuged at 20,000 x g for 30 min (Sorvall RC-5B centrifuge, SS-34 Rotor). 

The resulting supernatant was cell-free extract used for the purification of NADH oxidase of T. 

hypogea.  An aliquot of the cell-free extract was used for ultracentrifugation at 115,000xg for 1 hour 

at 4 oC.  NADH oxidase activities present in both supernatant and pellet were measured. 

 

3.3.6 Enzyme purification 

Cell-free extract was prepared anaerobically and applied to a pre-equilibrated DEAE-Sepharose Fast 

Flow (5 x 5 cm, Amersham Biotech, Quebec, Canada) using buffer A (50 mM Tris-HCl pH 7.8, 5% 

[vol/vol] glycerol, 1 mM SDT, and 1 mM DTT). The column was eluted with a linear gradient of 0-

0.5 M NaCl in buffer A at a flow rate of 2 ml/min.  NADH oxidase started to elute as 0.05 M NaCl 

applied to the column. All activity-containing fractions were pooled together and applied to a 

hydroxyapatite (HAP, Amersham Biotech, Quebec, Canada) column (2.6 x 10 cm) equilibrated with 

buffer A. The column was eluted with a linear gradient (0-0.25 M) of potassium phosphate in buffer 

A at a flow rate of 2 ml/min.  NADH oxidase started to elute as 0.065 M potassium phosphate 

applied to the column. Activity-containing fractions were pooled and applied to a Phenyl-Sepharose 

Fast Flow column (2.6 x 8 cm, Amersham Biotech, Quebec, Canada) equilibrated with 0.8 M 

(NH4)2SO4 in buffer A. The column was eluted with a (NH4)2SO4 gradient (0.8 -0 M) at a flow rate 

of 2 ml/min.  The majority of NADH oxidase was eluted as 0.38 M (NH4)2SO4 applied to the 

column. Fractions containing high NADH oxidase activity were combined and concentrated by 

ultrafiltration (Amicon Ultrafilter, PM 30 membrane).  The concentrated fraction (1.0 ml) was 

applied to a Superdex 200 column (2.6 x 60 cm, Amersham Biotech, Quebec, Canada) equilibrated 

with buffer A containing 100 mM KCl.  The flow rate of the elution was 2 ml/min.  Fractions 

containing pure NADH oxidase were combined and stored at –20°C, at which it was stable for a few 

months.  

3.3.7 Electrophoresis and molecular weight determination 

SDS-PAGE was carried out according to the method of Laemmli (Laemmli 1970). The purity of 

fractions from various purification steps was examined using SDS-PAGE. The gel was stained with 
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Coomassie Brilliant Blue R250 after electrophoresis. The subunit molecular mass was estimated 

using phosphorylase b (97 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), carbonic 

anhydrase (30 kDa), trypsin inhibitor (20 kDa), and ß-lactalbumin (14.4 kDa) as standard proteins.  

 

Native polyacylamide gel electrophoresis was performed the same way as the SDS-PAGE with the 

absence of SDS and without denaturing of protein samples. Un-denatured protein samples were run 

on 7.5% native gels and stained for NADH oxidase by being immersed in standard NADH oxidase 

assay mixture containing 500µg/ml Neo Blue Tetrazolium. The purple NBT formazan was visualized 

after the gels were incubated at 80oC for 20 min (López-Huertas et al. 1999). Molecular weight of 

native NADH oxidase was determined by gel filtration using Superdex 200 column with ferritin (440 

kDa), catalase (232 kDa), aldolase (158 kDa), and bovine serum albumin (66 kDa) as protein 

standard.  

 

3.3.8 Flavin cofactor analysis 

Flavin present in the purified NADH oxidase was extracted using previously reported method 

(Stanton and Jensen 1993). The amount of flavin was estimated using absorbance value at 450 nm 

(ε450 = 11.3 x 103 M-1.cm-1).  The sample was then concentrated using water pump before it was 

spotted on a thin-layer silica gel plate (5 x 1 0 cm, 200 micron, Selecto Scientific, USA).  Other pure 

flavin compounds, riboflavin, FMN and FAD were applied on the same silica gel as standards.  

Samples ascended in the dark on the silica gel plate with n-butanol-acetic acid-H2O (12:3:5) as 

solvent.  After drying the silica plate in the air, samples on the plate were visualized using a UV 

lamp (365 nm). 

 

3.3.9 Determination of free thiol-group of the purified NADH oxidase 

Free thiol-group (–SH) present in the purified enzyme was determined using 5,5’-dithio-bis-(2-

nitrobenzoic acid) (DTNB) based on the method described previously (Ellman 1959). 7.9 mg of 

DTNB was dissolved in 10 ml in sodium phosphate buffer (pH 7.0, 50 mM). The purified T. hypogea 

NADH oxidase in buffer A was concentrated with Microcon (PM 30) by centrifugation 10,000xg for 

10 min and washed five times with de-ionized water. 46 µg of the washed enzyme in 100 µl de-

ionized water was mixed with 850 µl of Tis-HCl buffer (100 mM, pH 8.0) and 50 µl DTNB solution. 
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In the control, the enzyme sample was replaced by 100 µl of the last pass through during previous 

wash step. The mixture was incubated at room temperature for 30 min and the absorbance at 412 nm 

was read for both sample and control. A molar coefficient of ε412=13,600 M-1 cm-1 was used for the 

calculation of free thiols present in the purified T. hypogea NADH oxidase.  
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3.4 RESULTS 

3.4.1 Growth of T. hypogea in the presence of oxygen 

T. hypogea was isolated and reported as an obligate anaerobic bacterium (Fardeau et al. 1997).  We 

found that this organism grew well in a culture bottle that was accidentally contaminated with trace 

amount of oxygen from the air. The growth in the presence of small amount of oxygen was 

confirmed by further experiments when various oxygen concentrations (0-13.8 µM) were introduced 

into the growth media.  T. hypogea in a static culture could tolerate up to 6.9 µM dissolved oxygen in 

the growth media.  However, the tolerated level of dissolved oxygen was reduced to 4.1 µM when T. 

hypogea grew in a sealed bottle with constant shaking (Figure 3-1&Figure 3-2).  The decrease in 

oxygen tolerance level indicated that T. hypogea had a limited ability to remove dissolved oxygen 

that diffused into the liquid phase from the gasphase much quicker under shaking conditions.  

Therefore, it was plausible to assume there must be an oxygen-removing system in T. hypogea. 

 

3.4.2 Activities of NADH oxidase and peroxidase 

To determine if an oxygen-scavenging activity was present in this obligate anaerobic bacterium, 

NADH oxidase activity was measured.  Cell-free extracts from T. hypogea growing under different 

conditions were prepared.  Only NADH-specific oxidase activity was detected.  The NADH oxidase 

from cells that were grown either in the presence or absence of oxygen had a higher activity 

(0.13±0.02 U/mg) in the late log phase than that in the stationary phase (0.05±0.01 U/mg).  These 

results showed the NADH oxidase activity was not induced by the presence of oxygen in the growth 

media.  

 

Interestingly, an NADH-specific peroxidase activity was also detected in the cell-free extract of T. 

hypogea (0.031±0.002 U/mg).  An apparent Km-value for H2O2 was determined to be 98±11 µM and 

apparent Vmax to be 0.045±0.005 U/mg protein in the cell-free extract of T. hypogea. 

 

In principle, O2 would be reduced to water by both oxidase and peroxidase in the cell-free extract.  

However, a complete reduction of O2 to water happened only if the O2 in the gasphase was removed 

5 min after the start of the reaction and the reaction time was extended for one hour (Table 3-1). 
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Figure 3-1 Growth of T. hypogea in the presence of oxygen in the static culture.  

The growth experiments were carried out in sealed serum bottles without shaking at 70°C with 

various dissolved oxygen concentrations. Open triangles, without oxygen; open diamonds, 0.14 µM; 

open squares, 0.70 µM; closed circles, 6.9 µM; open circles, 13.8 µM.  

 

 

 

 



 

  48

 

106

107

108

109

0 10 20 30 40 50

C
el

l d
en

si
ty

 (c
el

ls
/m

l)

Time (h)
 

 

Figure 3-2 Growth of T. hypogea in the presence of oxygen under shaking conditions.  

The growth experiments were carried out in sealed serum bottles with shaking (180 rpm) at 70°C with 

different dissolved oxygen concentrations. Filled diamonds, without oxygen; filled squares, 2.7 µM; 

filled triangles, 4.1 µM; open circles, 6.9 µM. 
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Table 3-1 H2O2 production catalyzed by the cell-free extract of T. hypogea 

 

O2-concentration 

(%, v/v) 

NADH consumed 

(nmoles) 

H2O2 produced 

(nmoles) 

H2O2 produced/ 

NADH consumed 

(%) 

20a 122±7 32±3 26 

20b 310±11 0 0 

100a 204±4 82±5 40 

 

 
a,  The assay was performed in a mixture (2 ml) containing 100 mM phosphate buffer pH 7.0, 100 

µM NADH and cell-free extract of T. hypogea (260 µg) 5 min at 80°C. 
b, The assay was performed in a mixture (2 ml) containing 100 mM phosphate buffer pH 7.0, 400 

µM NADH and cell-free extract of T. hypogea (260 µg) 5 min at 80°C, however, the gasphase of the 

assay mixture was exchanged with 100% N2 5 min after the reaction started.  So, the H2O2 produced 

by the NADH oxidase was then reduced to water by the peroxidase present in the cell-free extract of 

T. hypogea. 
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Otherwise, an amount of H2O2 that was equal to 26% of the consumed NADH molar equivalents was 

detected.  The production of H2O2 increased to 40% of the consumed NADH molar equivalents when 

100% of O2 was used (Table 3-1).  Apparently, only part of the O2 was reduced into water in the 

latter conditions.  These results indicate that the cell-free extract of T. hypogea could only convert 

lower concentration of O2 to water, which may well serve the purpose of scavenging micromolar 

level of O2 that was observed by our growth experiments. 

 

3.4.3 Purification of NADH oxidase 

Although the cell-free extract could reduce O2 to water completely, it was not clear if the detected 

NADH oxidase alone can catalyze the reduction of O2 to water.  It is required to obtain a pure 

NADH oxidase for determining its catalytic properties.   

 

NADH oxidase activity was located in the cytoplasm of the strictly anaerobic bacterium T. hypogea, 

since more than 90% of the activity was present in the supernatant fraction after ultracentrifugation 

(115,000 x g, 1 h) of the cell-free extract.  This also contained 90% of the cellular glutamate 

dehydrogenase activity, a known cytoplasmic enzyme (Ma and Adams 1994; Robb et al. 2001).  

Several chromatographic columns were used for purifying NADH oxidase from T. hypogea (Table 3-

2). During the purification, NADH oxidase activity was eluted out as a predominant single peak in 

all purification steps except Phenyl-Sepharose HP, from which near 80% of NADH oxidase activities 

were eluted out when 0.38 M (NH4)2SO4 applied and about 20% of NADH oxidase activities were 

eluted out when 0.0 M (NH4)2SO4 applied.  Therefore, there might be two different NADH oxidases 

present in T. hypogea. The major peak eluted from the column when 0.38 M (NH4)2SO4 was applied 

was further purified using Superdex 200 gel filtration column, and the native NADH oxidase was 

estimated to have a molecular weight of 100 kDa.  The enzyme was purified to homogeneity and had 

a single subunit with a molecular weight of 50 kDa revealed by SDS-PAGE (Figure 3-3).  These 

results suggested that the NADH oxidase purified from T. hypogea was a homodimer.  

 

3.4.4 Cofactor of the purified NADH oxidase 

The solution that contained the purified NADH oxidase was yellowish, which was an indication of 

presence of flavin.  A yellowish cofactor was released after the enzyme mixed with methanol was  
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Table 3-2 Purification of the NADH oxidase from T. hypogea 

 

 

Steps 

Total 

protein  

(mg) 

Total 

activity 

(U) 

Sp act 

(U/mg) 

Purification 

fold 

Recovery 

(%) 

Cell-free extract 1694 227 0.13 1 100 

DEAE-Sepharose 320 154 0.48 3.6 68 

HAP 93 128 1.37 10 56 

Phenyl-Sepharose 15.8 55 3.48 27 24 

Superdex 200 0.7 21 30 230 9 
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Figure 3-3 SDS-PAGE of the purified NADH oxidase from T. hypogea.  

The purified NADH oxidase (lane 2, 1.2 µg) and low molecular weight standards (lane 1) are 

indicated along with their corresponding molecular masses. 
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boiled for 10 min in the dark.  The absorbance spectrum of the oxidized cofactor released in solution 

had a characteristic peak of flavin at 450 nm that was lost upon addition of a reducing reagent SDT.  

This flavin cofactor was further identified as FAD using thin-layer chromatography (Figure 3-4).  

The NADH oxidase contained 1.8±0.1 mol of FAD per mol native enzyme based on the absorbance 

value at 450 nm and protein amount from which the FAD was extracted.  Since the enzyme was a 

homodimer, each subunit contained approximately one non-covalently bound FAD moiety, which is 

a common feature of NADH oxidases. 

 

3.4.5 Presence of sulfhydryl group in the NADH oxidase 

The purified NADH oxidase in solution was incubated with various metal ions (1 mM) at room 

temperature for 1 hour and NADH oxidase activities were determined before and after the incubation. 

The remaining activities were found to be 6%, 56%, 69%, 71%, 85% and 93% after the incubation 

with HgCl2, FeSO4, ZnSO4, NiCl2, CuSO4, MgCl2, respectively.  It appeared that sulfhydryl group 

susceptible to heavy metal ions was involved in catalysis of the enzyme.  Incubation of the purified 

enzyme with DTNB (1 mM) for 7 min resulted in a 50% loss of activity, which further suggested that 

the sulfhydryl group of the enzyme was part of the catalytic site of the enzyme.  The number of active 

free thiols of the enzyme was determined to be 1.8±0.1 per subunit of 50 kDa, which means there are 

four free –SH groups per dimer. 

 

3.4.6 Product of oxygen reduction 

Since NADH oxidases can catalyze both bivalent and tetravalent reduction of oxygen to H2O and 

H2O2 respectively, production of H2O2 by the purified NADH oxidase from T. hypogea was 

determined.  At first, a standard curve was made for the quantification of H2O2 produced.  An 

apparent molar coefficient of the oxidized ABTS at 725 nm was determined to be 11,000 M-1.cm-1.  

NADH oxidation catalyzed by the enzyme in a sealed glass cuvette containing 158 nmol of NADH 

was allowed to go to completion (OD340 < 0.010).  100 µl of the assay mixture (equal to 7 nmol 

NADH consumed) was taken for assaying H2O2 using horseradish peroxidase and ABTS as electron 

donor.  The results from assays in triplicate showed that near 90% of NADH consumed (7±0.2 nmol) 

in the assay mixture was used for reducing O2 to H2O2 (6.2±0.3 nmol).  While there was a slow      
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                                                              1        2        3        4 

 

Figure 3-4 Thin layer chromatography of FAD cofactor extracted from the purified T. hypogea 

NADH oxidase.  

The sample extracted from purified T. hypogea NADH oxidase was co-migrated with commercially 

available flavins: lane 1, riboflavin; lane 2, FMN; lane 3, FAD; lane 4, flavin extracted from the 

purified T. hypogea NADH oxidase. The Rf values for riboflavin, FMN, and FAD were determined to 

be 0.75, 0.46, and 0.33, respectively. The Rf value for the extracted flavin was 0.32.  
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thermal degradation of NADH at high temperatures (0.5±0.1 nmol), it was concluded that the NADH 

oxidase from T. hypogea exclusively catalyzed the reduction of oxygen to H2O2 using NADH as 

electron donor. 

 

3.4.7 Catalytic properties of the purified NADH oxidase 

The pH dependence of the NADH oxidase activity was determined using different buffers (100 mM 

phosphate pH 6.0-8.0; 100 mM glycylglycine pH 8.0-9.0).  Maximum activity was found to be at pH 

7.0 while the enzyme was very active at a pH range from 6.5 to 8.5, which might indicate NADH 

oxidase functions optimally under physiological conditions of T. hypogea (Figure 3-5).  This is also 

true for NADH oxidases from acidophilic archaea Acidianus ambivalens and Sulfolobus solfataricus, 

which have much lower pH optima between 3 and 5 (Gomes and Teixeira 1998; Masullo et al. 

1996). The activity of the NADH oxidase from T. hypogea increased along with the elevation of 

temperatures and the highest catalytic activity could be reached at temperatures above 85°C  (Figure 

3-6). However, no enzyme assay was performed at higher temperatures because of the thermal 

lability of NADH.  The enzyme was very stable at 70°C, which is the optimal growth temperature of 

T. hypogea. There was no apparent activity loss after the enzyme was incubated for 8 hours at 70°C, 

while 50% of total activity was lost when incubated during a period of about 100 min at 90°C 

(Figure 3-7). The lost of NADH oxidase activities at 70oC and 90oC did not follow first order 

kinetics. 

 

The purified oxidase could not use NADPH as electron donor for the reduction of oxygen.  Its 

activity was dependent on concentrations of both NADH and oxygen.  The catalysis followed 

Michaelis-Menten kinetics. Apparent Km-value for NADH and apparent Vmax–value were determined 

to be 7.5 µM and 37 µmol min-1.mg-1, respectively.  Apparent Km-value for oxygen was 85 µM, 

which is similar to that of NoxA-1 (NADH oxidase A-1, 60 µM) and much lower than that of NoxB-

1 (NADH oxidase B-1, 2.9 mM) from Archaeoglobus fulgidus (Kengen et al. 2003). The relative 

high affinity towards O2 suggested that this NADH oxidase might have physiological roles in the 

anaerobic T. hypogea. 
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Figure 3-5 pH dependency of the purified NADH oxidase from T. hypogea.  

Optimal pH for NADH oxidase was determnined at 80oC. Buffers used: 100 mM phosphate (pH 6.0 – 

8.0), 100 mM Glycine-NaOH (pH 8.0-9.0).  
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Figure 3-6 Temperature dependency of the purified NADH oxidase from T. hypogea.  

The standard assay conditions were used as described in the Materials and Methods section with the 

assay temperature varied from 20 to 95oC.  
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Figure 3-7 Thermostability of the purified NADH oxidase from T. hypogea.  

The purified NADH oxidase (0.04 mg.ml-1) in buffer A containing 0.1 M KCl was incubated at 70oC 

(filled diamonds) and 90oC (filled squares) respectively. The residual activities were assayed under 

standard conditions. 100% = 30 U/mg.  
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3.5 DISSCUSSION 

It was demonstrated that T. hypogea could grow in the presence of limited amount of oxygen.  The 

oxygen tolerance level of 6.9 µM in static culture might be an overestimated value because the level 

was decreased to 4.1 µM in culture with constant shaking that accelerated the diffusion rate of 

oxygen into the liquid medium. Therefore, T. hypogea is still considered as one of the strict 

anaerobes, which in general can not grow when the dissolved oxygen is higher than 5 µM (Engelkirk 

et al. 1992).  Other species including T. neapolitana and T. elfii have also been found to grow in the 

presence of oxygen in the gas phase (Van Ooteghem et al. 2001).   However, the ability of oxygen 

tolerance of strictly anaerobic microorganisms is not unique for Thermotoga species.  An obligate 

anaerobic bacterium Clostridium aminovalericum (Kawasaki et al. 2004) and another strict anaerobe 

Bacteroides fragilis can grow in the presence of trace amount of oxygen (Baughn and Malamy 

2004).  More data have been obtained to show that various oxygen-consuming systems are present in 

strict anaerobes.  For example, cytochrome bd oxidase is essential for oxygen consumption in B. 

fragilis (Baughn and Malamy 2004).  NADH oxidase has been assumed to be responsible for the 

oxygen detoxification for anaerobes, and it has been found to be an oxygen-responsive enzyme in C. 

aminovalericum (Kawasaki et al. 2004).  Its cellular NADH oxidase activity (41.6 mU/mg) was 

doubled after 10 min, and increased five-fold after 30 min of flushing with 3% O2/97% N2.  NADH 

oxidase activity in T. hypogea was not inducible by the presence of oxygen, indicating it is a 

constitutive enzyme.  

 

Several NADH oxidases have been characterized from thermophilic anaerobes (Table 3-3).  Unlike 

most of the mesophilic enzymes that produce H2O (Kawasaki et al. 2004), virtually all of the 

thermophilic enzymes contain an FAD cofactor and catalyze the reduction of oxygen to H2O2, and 

they have apparent Km values for NADH and oxygen from 4 to 130 µM and 60 to 2,900 µM, 

respectively.  NADH oxidase from T. hypogea had all the common features of this type of enzymes 

known and showed a much higher apparent Vmax value (37 U mg-1.min-1) with a relatively low 

apparent Km-value for O2 (85 µM).  The enzyme is also constitutive and stable at optimal growth 

temperature of 70°C, indicating it is essential in T. hypogea.  All these features support at least one 

possible role of the NADH oxidase in tolerating oxygen by the anaerobic bacterium T. hypogea.  

However, a puzzle remains, which is that all types of NADH oxidases from obligate anaerobic  
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Table 3-3 Properties of NADH oxidases from extremely thermophilic anaerobic 

microorganisms 

 

 

 

 

 

 

 

 

 

 

 

 

Apparent Km 

(μM) Organisms  
Subunit 

(kDa) 
Cofactor 

Product of 

O2-reduction 
NADH O2 

Apparent Vmax 

(U.mg-1.min-1) 
Ref. 

A. 

fulgidus 

NoxA-1 

48 

α2 

FAD 

 

H2O2 

 

130 

 

60 

 

8.7 

 

Kengen 

et al. 

2003 

A. 

fulgidus 

NoxB-1 

69 

α 
FAD H2O2 11 2900 4.1 

Kengen 

et al. 

2003 

P.  

furiosus 

50 

α2 
FAD 

H2O2/ 

     H2O 
<4 >110 13.3 

Ward 

et al. 

2001 

T. 

hypogea 

50 

α2 
FAD H2O2 7.5 85 37 

Yang 

and Ma 

2005a 
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microorganisms produce H2O2 (Herles et al. 2002; Kengen et al. 2003; Maeda et al. 1992; Ward et al. 

2001), a more harmful species than O2. It seems inconsistent with the possible role of the enzyme in 

detoxification of oxygen. Therefore, it would only make sense if the H2O2 generated could be further 

reduced to H2O by other enzyme(s), such as peroxidase (Niimura et al. 2000; Toomey and Mayhew 

1998).  It was reported that rubrerythrin from Pyrococcus furiosus functioned as a peroxidase using 

electrons indirectly from the oxidation of NAD(P)H (Weinberg et al. 2004).  T. hypogea may also 

have such an enzyme since rubrerythrin is present in other Thermotoga sp.  In fact, the activity of 

peroxidase was detected in cell-free extract of T. hypogea, though it was lower compared to its 

oxidase activity.  It is plausible to assume that accidentally encountered O2 can be reduced by both 

oxidase and peroxidase to water using NADH as electron donor.  Since both activities appeared not 

to be high and O2 was reduced to water only when the O2-level was low (Table 3-1), it seems to be 

consistent with its lower capacity of scavenging the O2 encountered (< 5 µM).  However, more 

studies are required to further determine and confirm physiological roles of the NADH oxidase in 

this strictly anaerobic microorganism. 

 

Since the purified NADH oxidase was extremely stable and catalyzed the formation of H2O2 

exclusively at a very high rate, it may have application as a biosensor acting as a mediator between a 

dehydrogenase and an electrode (Liu et al. 1999). A kcat/Km-value for the T. hypogea enzyme is 

calculated as 4.1 x 106 M-1.s-1, which is higher than the value reported for the NADH oxidase of 

Thermus thermophilus (kcat/Km = 2.3 x 106 M-1.s-1) (Park et al. 1992).  Potential applications of this 

enzyme are worthy of further exploration. 

 

NADH-oxygen reaction by NADH oxidases in vitro may occur due to the lack of protection of flavin 

portion of flavoprotein.  It was proposed that NADH oxidase from a thermophile, 

Thermoanaerobium brokii could play other roles under physiological conditions (Maeda et al. 1992).  

This type of NADH-utilizing flavoproteins may transfer electrons to acceptors other than oxygen.  

Therefore, it is also reasonable to speculate that the NADH oxidase in T. hypogea may play other 

roles in vivo. It was found that T. hypogea NADH oxidase indeed was able to use other electron 

acceptor other than oxygen, dihydrolipoamide. The dihydrolipoamide dehydrogenase activity of T. 

hypogea NADH oxidase was investigated and its properties are reported in Chapter 5 of this thesis. 
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Chapter 4  A Highly Active NADH Oxidase from 

Anaerobic Hyperthermophilic Bacterium Thermotoga 

maritima 

 

 

 

Part of the work described in this chapter was published in Journal of Bacteriology. 

Yang X. and K. Ma. 2007. Characterization of an exceedingly active NADH oxidase from the 

anaerobic hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 189:3312-3317.  
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4.1 ABSTRACT 

Thermotoga maritima is an anaerobic bacterium capable of growing at 90°C. It was found that T. 

maritima could grow in the presence of oxygen (up to 5.5 µM) and had a high activity of NADH 

oxidase. The NADH oxidase was purified from T. maritima cells using a FPLC system. The purified 

enzyme was a heterodimeric flavoprotein with molecular weights of 54 kDa and 46 kDa respectively, 

which were revealed by SDS-PAGE.  The enzyme catalyzed the reduction of oxygen to hydrogen 

peroxide exclusively using NADH specifically as electron donor. It exhibited an optimal pH between 

7.0 and 7.5 and an optimal temperature of 80oC. The catalytic properties of T. maritima NADH 

oxidase showed characteristics of Michaelis-Menten kinetics with Km values for NADH and oxygen 

of 46.1 and 37.4 µM respectively, and Vmax value of 213 U/mg calculated with SigmaPlot10.  The 

NADH oxidase activity was the highest compared to all other known NADH oxidases from 

hyperthermophilic anaerobes, indicating that this enzyme may play an important role in scavenging 

accidentally exposed oxygen.  The purified NADH oxidase could not catalyze the reduction of 

hydrogen peroxide, but T. maritima cell-free extract did so with a specific activity of 0.1 U/mg using 

NADH as electron donor. It can be concluded that the purified NADH oxidase is part of an oxygen-

detoxification system present in the T. maritima cell.  The NADH oxidase was oxygen sensitive, 

however, the inactivated enzyme was fully recovered in the presence of reducing reagent under 

anaerobic conditions. This reversibility of enzyme activity can be considered to have regulatory 

function in vivo. 
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4.2 INTRODUCTION 

Thermotoga maritima is a hyperthermophilic anaerobic bacterium capable of growing at 90oC.  It 

utilizes carbohydrates and cell extracts such as yeast extract as energy and carbon sources, and 

produces H2, CO2, acetate, and lactate (Huber et al. 1986).  H2S is also produced in the presence of 

sulfur or sodium thiosulfate.  Amino acids cannot be used as carbon, energy, and nitrogen sources for 

the growth of T. maritima (Rinker and Kelly 2000). Although oxygen is toxic and sparse in the 

natural habitat for anaerobes, it has been reported that some strictly anaerobic microbes including a 

few Thermotogales species could grow in the presence of micro-molar level of oxygen (Van 

Ooteghem et al. 2002, 2004).  However, it is not clear which system is present in the cell to enable 

this oxygen tolerance.  In addition to enzymes such as superoxide dismutase, superoxide reductase, 

catalase and peroxidase, NADH oxidase is considered to be an important enzyme involved in oxygen 

scavenging systems because of its potential to reduce transiently encountered oxygen by anaerobes 

(Herles et al. 2002; Kawasaki et al. 2004; Kengen et al. 2003).   

 

NADH oxidases are flavoproteins, which react with oxygen to produce either water in a four-electron 

transfer process or hydrogen peroxide in a two-electron transfer process (Sakamoto et al. 1996).  A 

H2O2-forming NADH oxidase from T. hypogea has been purified and characterized, and its catalytic 

properties are similar to other anaerobic hyperthermophilic NADH oxidases (Yang and Ma 2005a). 

The T. hypogea enzyme is a typical NADH oxidase that has a structure of homodimer of 50 kDa and 

contains one FAD per subunit.  To our surprise, NADH oxidase activity in T. maritma cell-free 

extract was about six times higher than that in T. hypogea, indicating that a much more active NADH 

oxidase in T. maritima may have a better ability to remove accidentally encountered oxygen. The 

present chapter reports that a highly active NADH oxidase from T. maritima was purified and 

characterized, and physiological function of the purified enzyme is proposed to be part of an oxygen–

scavenging system in the T. maritima cell.  
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4.3  MATERIALS AND METHODS 

4.3.1 Organism and chemicals 

T. maritima (DSM3109) was obtained from the Deutsche Sammlung von Mikroorganismen and 

Zellkulturen, Braunschweig, Germany. All chemicals were from commercially available products 

except dihydrolipoamide was prepared by reduction of dl-lipoamide with sodium borohydride (Patel 

et al. 1995; Reed et al. 1958). A suspension of 200 mg dl-lipoamide in 4 ml methanol and 1 ml de-

ionized H2O was cooled down by sitting on ice for 10 min and then flushed with nitrogen for 5 min. 

A solution of 200 mg sodium borohydride in 1 ml de-ionized H2O was cooled down by sitting on ice 

for 10 min. The cooled sodium borohydride solution was added to dl-lipoamide suspension with 1 ml 

gas tight syringe. The mixture was flushed with nitrogen for 5 min and then stirred on ice until it 

became clear (approximately 3 hours). The solution was acidified with 1 N HCl to pH 1-2 and then 

extracted with chloroform for three times. The chloroform extract was combined, evaporated and 

dried with water pump overnight. The white powder, ~100 mg, was collected and stored in -20oC till 

use.  

 

4.3.2 Growth of T. maritima 

T. maritima was cultured in a medium modified from that of Huber at 80°C (Huber at al. 1986). The 

medium contains (per liter) 20 g of NaCl, 1.14 g of (NH4)2CO3, 2.0 g of KCl, 1.72 g of MgSO4·6H2O, 

1.42 g of MgCl2·6H2O, 0.05 g of CaCl2·2H2O, 2.5 g of yeast extract, 4.0 g of glucose, 0.5 g of 

KH2PO4, 0.05 mg of Resazurin, 10 ml of trace mineral element solution (Balch et al. 1979). The pH 

was adjusted to pH 6.8.  Cultures were grown routinely using 50 ml medium in a sealed 160 ml-

serum bottle (Wheaton, Millville, N.J., USA). For determining the maximum level of oxygen 

tolerance, various amounts of pure oxygen were added to the gasphase of the bottles before 

inoculation. The culture bottles were incubated in a shaking water bath that was set at 160 rpm at 

80oC.  The growth was monitored by direct cell count using a Petroff-Hausser counting chamber 

(1/400mm2, 0.02 mm deep) and a Nikon Eclipse E600 phase contrast light microscope. For observing 

the effects of oxygen on the expression of NADH oxidase, T. maritima was grown anaerobically till 

late exponential phase, and various amounts of pure oxygen gas was added to separated bottles in 

duplicate to bring final oxygen concentrations in the gas phase to be 0, 2.5, 5.0% (v/v) respectively. 

All bottles were then incubated at the same temperature for another 30 min before the cells were 
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harvested.  To test whether the increase of NADH oxidase activity in the presence of oxygen was 

caused by stimulating of enzyme activity or increasing enzyme expression amount, chloramphenicol 

was applied (Huber et al. 1986; Jiang et al. 2006). T. maritima was grown routinely till late log phase. 

Pure oxygen was added to the gas phase of the culture bottle to make 5% (v/v) final concentration. In 

the mean while, Chloramphenicol solution was added to bring the concentration to 100 mg/L. Control 

bottles were either with no chloramphenicol or oxygen added. Then all the bottles were incubated for 

another 30 min under the same temperature. The cells were harvested and used to prepared cell-free 

extract routinely. To obtain sufficient T. maritima cell mass for the purification of NADH oxidase, 

large-scale culture (15-liter) was grown routinely at 80°C.  

 

4.3.3 Enzyme assay and protein determination 

NADH oxidase was determined in a glass cuvette by monitoring O2-dependent oxidation of NADH 

spectrophotometrically at 340 nm ( ε 340 = 6.22 mM-1 cm-1) at 80 °C. The assay mixture (2 ml) 

contained 200 µM NADH and 100 mM air-saturated sodium phosphate buffer, pH 7.0 (Ward et al. 

2001). One unit of NADH oxidase activity was defined as 1 µmol NADH oxidized per minute.  When 

other electron acceptors were tested, different wavelengths and extinction coefficients were used to 

monitor the reaction and calculate the specific activities: potassium ferricyanide (ε 420 = 1.00 mM-1 

cm-1), 2,6-dichlorophenolindophenol (DCPIP) (ε 600 = 20 mM-1 cm-1), DTNB (ε 412 = 13.6 mM-1cm-

1), benzyl viologen (BV; ε 578 = 8.6 mM-1 cm-1), cytochrome c (ε 550 = 21.1 mM-1 cm-1) (Kengen et al. 

2003); methyl viologen (MV; ε 578 = 9.7 mM-1 cm-1) (Ma and Adams 2001); riboflavin (ε 450 = 12.2 

mM-1 cm-1), FAD (ε 450 = 11.3 mM-1 cm-1), and FMN (ε 450 = 12.2 mM-1 cm-1) (Whitby 1953). 

 

Other enzymes including DLDH, glutamate synthase, glutathione reductase, hydrogenase, NADH 

peroxidase, nitrate reductase, and sulfite reductase were measured using NADH or NAD as electron 

carrier depending on the direction of enzymatic reactions at 80°C. Decreasing of absorbance of 

NADH at 340 nm was monitored for glutamate synthase (Sodek and Silva 1977), glutathione 

reductase (Patel et al. 1998), NADH peroxidase (Diaz et al. 2002), nitrate reductase (Moorhead et al. 

2003), and sulfite reductase (Siegel et al. 1974) under anaerobic conditions. For hydrogenase assay, 

both SDT-reduced MV and NADH were used as electron donors (Ma et al. 1994b). The hydrogen 

evolved was quantitatively determined using a gas chromatograph (Model 910, Buck Scientific, East 

Norwalk, CT). Hydrogen oxidation activity was tested spectrophotometrically by monitoring the H2-



 

  67

dependent reduction of BV at 578 nm or NAD+ at 340 nm (Ma and Adams 2001). One unit of 

hydrogenase activity was defined as 1 µmol H2 oxidized or produced per minute. Sarcosine 

dehydrogenase activity was measured by reduction of nitro blue tetrazolium (NBT) with phenazine 

methosulfate (PMS) being used as prior electron acceptor anaerobically (Kato et al. 2003). Sarcosine 

oxidase activity was measured aerobically by monitoring sarcosine-dependent production of H2O2, 

and the H2O2 produced was measured using the ABTS method described previously (Yang and Ma 

2005b). One unit activity was defined as 1 µmol sarcosine oxidized or 1 µmol H2O2 produced per 

minute. 

 

Peroxidase activity was determined under anaerobic conditions at 80°C using a modified method 

described previously (Diaz et al. 2002).  Two ml assay mixture contained 100 mM phosphate buffer 

(pH 7.0), 0.1 mM NADH and 0.25 mM hydrogen peroxide.  The hydrogen peroxide dependent 

oxidation of NADH was monitored at 340 nm.  One unit activity was defined as 1 µmol NADH 

oxidized per minute. For the determination of apparent Km of hydrogen peroxide, 0.2 mM NADH and 

0-0.36 mM hydrogen peroxide were used. For the determination of apparent Km of NADH, 0.5 mM 

hydrogen peroxide and 0-0.2 mM NADH were used. FNOR was determined with a modified method 

described previously (Ma and Adams 2001). The assay mixture contained 25 µg T. maritima 

ferredoxin, 4 µg T. maritima pyruvate: ferredoxin oxidoreductase (POR), 0.5 mM NAD+, 0.4 mM 

CoA, 10 mM pyruvate, 2 mM MgCl2, and varied amount of purified T. maritima NADH oxidase or 

Cell-free extract in pH 8.4, 100 mM EPPS buffer. The increase of absorbance at 340 nm was 

monitored at 80oC. 

 

Protein concentration was determined using Bradford method with bovine serum albumin as the 

standard protein (Bradford 1976). 

 

4.3.4 Enzyme purification 

T. maritima cell-free extracts were prepared anaerobically using similar procedures described 

previously (Yang and Ma 2005a).  The cell–free extract was applied at a flow rate of 4 ml/min to a 

DEAE-Sepharose Fast Flow column (5 x 10 cm; Amersham Biotech, Quebec, Canada) that was pre-

equilibrated using buffer A [50 mM Tris-HCl, pH 7.8, 5% (v/v) glycerol, 1 mM SDT, and 1 mM 

DTT]. The column was eluted with a linear gradient of 0-0.3 M NaCl in buffer A at a flow rate of 4 
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ml/min. The NADH oxidase activity started to elute out as 0.10 M NaCl was applied to the column. 

The fractions with increased NADH oxidase specific activity (>4-fold of purification) were pooled 

together and applied to a HAP (Bio-Rad) column (2.6 x 10 cm) equilibrated with buffer A. The 

column was eluted with a linear KH2PO4 (0-0.15 M) in buffer A at a flow rate of 2 ml/min. The 

NADH oxidase started to elute out as 0.065 M KH2PO4 applied to the column. NADH oxidase 

activity-containing fractions were pooled together and applied to a Phenyl-Sepharose HP column (2.6 

x 8 cm, Amersham Biotech, Quebec, Canada) equilibrated with 0.8 M (NH4)2SO4 in buffer A. The 

column was eluted with a (NH4)2SO4 gradient (0.8-0 M) at a flow rate of 2 ml/min. The NADH 

oxidase was eluted as 0.52 M (NH4)2SO4 was applied to the column. Fractions contained high NADH 

oxidase activity were pooled together and concentrated by ultra filtration (Amicon Ultra filter, PM 30 

membrane). The concentrated fraction (3.0 ml) was applied to a Superdex 200 column (2.6 x 60 cm, 

Amersham Biotech, Quebec, Canada) equilibrated with buffer A containing 100 mM KCl. The flow 

rate of the elution was 2 ml/min. Fractions containing high NADH oxidase activity were combined 

and applied to a Q-Sepharose HP column (1 x 10 cm, Amersham Biotech, Quebec, Canada) 

equilibrated with buffer A. The column was eluted with a linear gradient of NaCl (0-0.5 M) at a flow 

rate of 1.0 ml/min. NADH oxidase was eluted out as 0.25 M NaCl applied to the column. Fractions 

containing pure NADH oxidase as revealed by SDS-PAGE (Laemmli 1970) were stored at -20°C till 

use. T. maritime POR and ferredoxin were purified with the methods reported previously (Blamey 

and Adams 1994; Blamey et al. 1994). 
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4.4 RESULTS 

4.4.1 Growth and NADH oxidase activities in the presence of oxygen 

It was found that T. maritima could grow well in a culture bottle that was contaminated with air.  

Further tests confirmed that it grew in the presence of oxygen in the gas phase up to 1% (v/v) 

corresponding to a dissolved oxygen concentration of 5.5 µM in the medium and that no growth 

occurred when the oxygen concentration increased to 1.5% (v/v) corresponding to a dissolved oxygen 

concentration of 7.7 µM in the medium (Figure 4-1).  NADH oxidase activities from cells being 

exposed to oxygen concentrations of 0, 2.5 and 5% (v/v) for 30 min at 80°C when the cells grew at 

their late log phase were determined to be 1.0, 1.4, 1.5 U/mg, respectively.  When chloramphenicol 

was added, there was no increase of the NADH oxidase activity if exposed to oxygen (5%, v/v), and 

there was no change in the NADH oxidase activity if there was no exposure to oxygen. Therefore, the 

slight increase of the NADH oxidase activities were likely resulted from the enzyme production in 

response to oxygen in the growth media. The increase of the NADH oxidase activities resulted from 

the presence of oxygen in the growth media might be an inducible response of an oxygen detoxifying 

system in T. maritima.  On the other hand, there was a fairly constant NADH oxidase activity of 

1.0±0.1 U/mg from T. maritima cells grown in the absence of oxygen, and even with addition of 

cysteine HCl (0.4 g/l) and sodium thiosulfate (3.2 g/l) to the growth medium, which was used later to 

grow large-scale culture for obtaining sufficient cell mass for purification of the NADH oxidase. 

 

4.4.2 Purification of T. maritima NADH oxidase 

Cell-free extract was prepared routinely from 50 g of T. maritima cells, and it was loaded to a DEAE-

Sepharose column, the first of five columns that were used for the purification. NADH oxidase 

activity was eluted out as a predominant single peak after each column, and the enzyme was purified 

approximately 130-fold, which indicates that this enzyme is present in the cell in a quantity slightly 

less than 1% (Table 4-1).  It’s plausible to conclude that the purified NADH oxidase was the major 

NADH oxidase activity present in T. maritima cell-free extract.  The purity of the enzyme after the 

final column was confirmed using SDS-PAGE that revealed two types of subunits with a molecular 

weight of 54 and 46 kDa respectively (Figure 4-2).  The native molecular weight of the purified 

enzyme was estimated to be 90±10 kDa using a Superdex-200 gel filtration column that was  
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Figure 4-1 Growth of T. maritima in the presence of oxygen.  

The experiments were carried out in sealed serum bottles with shaking (160 rpm) at 80°C with 

various dissolved oxygen concentrations. Open circles, without oxygen; open squares, 1.1 µM; open 

diamonds, 3.3 µM; open triangles, 5.5 µM; crosses, 7.7 µM. 
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Table 4-1 Purification of NADH oxidase from T. maritima 

 

Steps  Total protein 

(mg) 

Total activity 

(U) 

Sp act 

(U/mg) 

Purification 

fold 

Recovery 

(%)  

Cell-free 

extract 

1,689 1,858 1.1 1 100 

DEAE-

Sepharose 

401 1,502 3.8 3.5 80 

HAP 138 1,003 7.2 6.5 54 

Phenyl-

Sepharose 

13.8 678 49 45 37 

Superdex 200 1.9 212 112 102 11 

Q-Sepharose 0.75 108 144 131 6 
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Figure 4-2 SDS-PAGE of the purified NADH oxidase from T. maritima.  

The purified NADH oxidase (lane 2 and 3, 1.7 µg) and low molecular weight standards (lane 1 and 

lane 4) are indicated along with their corresponding molecular weights. 
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calibrated using proteins with known molecular weights. These results suggested that the purified 

NADH oxidase was a heterodimer, which is different from typical NADH oxidases previously 

characterized (Ward et al. 2001).  

 

4.4.3 Flavin cofactor 

The solution that contained the purified NADH oxidase was yellowish, which was an indication of 

the presence of flavin. The oxidized enzyme solution (0.25 mg in 1 ml pH 7.8, 50 mM Tris-HCl 

buffer) in a quartz cuvette was scanned to obtain an absorption spectrum from 190 nm to 600 nm 

(Varian Bio 50 UV-visible spectrophotometer). Absorbance peaks at 274, 366, and 445 nm were 

observed as characteristic of oxidized flavoprotein (Figure 4-3). The flavin cofactor was extracted 

with hot methanol and a yellowish compound was released after the enzyme mixed with methanol 

was boiled for 10 min in the dark (Yang and Ma 2005a).  The released flavin was further identified to 

be FAD using thin layer chromatography by co-migrating with commercially available FAD, FMN, 

and riboflavin as standards (Figure 4-4). The NADH oxidase contained 1.9±0.1 mol of FAD per mol 

native enzyme based on the absorbance value at 450 nm and protein amount from which the FAD was 

extracted.  

 

4.4.4 Catalytic properties of the purified NADH oxidase 

All NADH oxidases can be classified into two categories: H2O-forming or H2O2-forming NADH 

oxidases. The product of oxygen reduction is an important factor to evaluate the physiological 

function of NADH oxidase. Production of H2O2 by the purified T. maritima NADH oxidase was 

determined using the ABTS method described previously (Yang and Ma2005b).It was found that 

more than 94±3% of NADH oxidized was used to produce stoichiometrical H2O2.  Therefore, it was 

concluded that the purified NADH oxidase from T. maritima catalyzed the reduction of O2 to H2O2 

exclusively using NADH as electron donor.  

 

The pH dependence of the NADH oxidase activity was determined using different buffers at various 

pH ranges. Maximum activity was found to be between pH 7.0 and 7.5 with phosphate buffer (Figure 

4-5), which is similar to the enzyme from T. hypogea reported (Yang and Ma 2005a). The activity of 

NADH oxidase from T. maritima increased along with the elevation of temperatures (Figure 4-6).  
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Figure 4-3 Spectrum scanning of T. maritima NADH oxidase.   

The oxidized enzyme solution (0.25 mg in 1 ml pH 7.8, 50 mM Tris-HCl buffer) in a quartz cuvette 

was scanned to obtain an absorption spectrum from 190 nm to 600 nm using Varian Bio 50 UV-

visible spectrophotometer. 
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                                                         1            2              3              4 

 

Figure 4-4 Identification of flavin cofactor of T. maritima NADH oxidase by thin layer 

chromatography.  

The extracted sample from T. maritima NADH oxidase was ascended on thin-layer plate in dark 

together with commercial standards. Lane 1, riboflavin; lane 2, FMN; lane 3, FAD; lane 4, flavin 

extracted from the purified enzyme. 
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Figure 4-5 pH dependency of the purified NADH oxidase from T. maritima.  

The enzyme activity was assayed at 80oC. Squares, 100 mM sodium phosphate buffer, pH 6.0-8.0; 

Circles, 100 mM glycylglycine-NaOH buffer (pH 8.0-9.0); Triangles, 100 mM glycine-NaOH buffer 

(9.0-10.0). 
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Figure 4-6 Temperature dependency of the purified NADH oxidase from T. maritima.  

The assay was carried out same as standard assay conditions as described in section 4.2.3 with the 

temperature range from 30 to 90oC.  
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The highest activity was found to be at 80 oC, which is the optimal growth temperature for T. 

maritima. Tests for the thermostability of the enzyme were carried out at 80oC and the lost of activity 

did not follow first order kinetics (Figure 4-7). The estimated time for the loss of 50% activity (t1/2) 

was about 100 min. Kinetic parameters of NADH oxidase were determined by using specific assay 

systems.  Km value for NADH was determined by measuring the initial rate (within 10-20 seconds) at 

different concentrations of NADH (0, 0.025, 0.05, 0.1, 0.2 mM) and oxygen (0, 7.8, 16, 24, 38, 55, 

103 µM) in 100 mM phosphate buffer (pH 7.0) at 80°C. The buffer used for determining Km for 

oxygen was prepared by adding different amount of oxygen to stoppered glass cuvettes containing 

anoxic 100 mM phosphate buffer (pH 7.0) followed by vigorous shaking the cuvettes. The dissolved 

oxygen concentration in 100 mM phosphate buffer was estimated to be 0.086 mM at 80oC when the 

partial pressure of oxygen was 0.2x105 Pa as reported previously (Kengen et al. 2003) and this value 

was used for other calculations when partial pressure of oxygen varied. NADH oxidase activity was 

dependent on concentrations of both NADH and O2, and the catalysis fitted Michaelis-Menten 

kinetics using SigmaPlot10 (Figure 4-8&Figure 4-9). Both Lineweaver-Burk plots of the NADH-

dependent oxidase activities at different oxygen concentrations (7.8, 16, 24, 38, 55, 103 µM) and 

oxygen-dependent oxidase activities at different concentrations of NADH (0.025, 0.05, 0.1, 0.2 mM) 

showed parallel lines, indicating a ping-pong catalytic mechanism (Figure 4-10&Figure 4-11).The Km 

values for NADH, O2, and Vmax value were calculated to be 46.1, 37.4 µM and 213 µmol min-1 mg-1, 

respectively using SigmaPlot10 (Table 4-2).  The Km value for O2 (37.4 µM) is the lowest among all 

known NADH oxidases from hyperthermophilic anaerobes (Kengen et al. 2003; Ward et al. 2001; 

Yang and Ma 2005a). Its low Km value for O2 and high specificity constant (Kcat/Km) of 569,000 min-1 

mM-1 may suggest that the purified NADH oxidase is very efficient at removing transiently 

encountered oxygen by T. maritima. 

 

4.4.5 Alternative electron acceptors and donors 

The purified NADH oxidase could not use NADPH as electron donor for the reduction of oxygen. It 

could transfer electrons from NADH to other electron acceptors under anaerobic conditions (Table 4-

3). This enzyme exhibited the highest activity using O2 as electron acceptor (140 U/mg, 100%) 

compared to lower activities for BV (20%) and DTNB (7%) while no activity was observed when 

FAD or FMN or riboflavin was used as electron acceptor.  Its incapability to catalyze the reduction of 

external flavins is similar to that of a water-forming  
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Figure 4-7 Thermostability of the purified NADH oxidase from T. maritima.  

The purified NADH oxidase in 50 mM Tris-HCl buffer (pH 7.8) containing 5% glycerol was 

incubated at 80oC. 100% of activity was 140 U/mg. 
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Figure 4-8 Dependency of T. maritima NADH activity on the concentration of NADH.  

The dependency of NADH oxidase activity on the concentration of NADH was fitted to Michaelis-

Menten kenetics using SigmaPlot10. O2 was varied from 7.8 µM to 103 µM while NADH 

concentration was varied from 25 µM to 200 µM. 
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Figure 4-9 Dependency of T. maritima NADH activity on the concentration of O2. 

The dependency of NADH oxidase activity on the concentration of O2 was fitted to Michaelis-

Menten kenetics using SigmaPlot10. NADH concentration was varied from 25 µM to 200 µM while 

O2 was varied from 7.8 µM to 103 µM. 
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Figure 4-10 Lineweaver-Burk plots of steady kinetic analysis of T. maritima NADH oxidase (A). 

The data in Figure 4-9 were fitted to Lineweaver-Burk kinetics using SigmaPlot10 to analyze the 

catalysis mechanism of T. maritima NADH oxidase when the concentration of O2 was varied. 
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Figure 4-11 Lineweaver-Burk plots of steady kinetic analysis of T. maritima NADH oxidase (B). 

The data in Figure 4-8 were fitted to Lineweaver-Burk kinetics using SigmaPlot10 to analyze the 

catalysis mechanism of T. maritima NADH oxidase when the concentration of NADH was varied. 
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Table 4-2 Kinetics parameters of the purified T. maritima NADH oxidase 

 

Substrate (mMa) Co-substrate 

(mM) 

Km (mM) kcat (min-1)b kcat / Km 

(min-1 mM-1) 

O2 (0-0.1) NADH (0.2) 0.037 21,300 569,500 

NADH (0-0.2) O2 (0-0.10) 0.046 21,300 463,000 

BV (0-0.8) NADH (0.2) 0.18 2,900 16,000 

DCPIP (0-0.086) NADH (0.2) 0.26 20,000 77,000 

 
a Concentration range used to determine the kinetic constants. 
b A molecular weight of 100,000 Da was used for the calculation of apparent kcat values. 
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Table 4-3 Substrate specificity of the purified T. maritima NADH oxidase 

 

Substrate (mM) Redox potential (mV)a Activity (%)b 

O2 (0.1) +830 100 

Ferricyanide (0.5) +360 98 

Cytochrome c (0.05) +250 5c 

DCPIP (0.1) 220 94 

DTNB (0.1) -40d 7 

FMN (0.12) -190 0 

FAD (0.15) -220 0 

Riboflavin (0.05) -222e 0 

BV (1.0) -350 20 

Ferredoxin (1.8x10-3)f -338g 3 

MV (1.0) -440 10 

 
a Value at 25°C from reference (Ma and Adams 1994) unless specified. 
b 100% activity is 140 µmol of NADH oxidized per min.  All assays but O2 were carried out 

under anaerobic conditions (in the absence of O2). 
c Assay was performed at 50°C. 
d Data from (Casero et al. 1999).  
e Data from (Malinauskas et al. 1999). 
f The ferredoxin purified from T. maritima was used in the assay for FNOR. 
g Data from (Smith et al. 1995) 
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NADH oxidase from Lactococcus lactis (Lopez de Felipe and Hugenholtz 2001).  Although DCPIP 

had a comparable activity with O2 (94%), the apparent Km value was five times higher (0.26 mM) and 

apparent kcat /apparent Km value was six times lower (Table 4-2).  It can be concluded that O2 is the 

best substrate among all tested. Although the activity was low (3% of the NADH oxidase activity), 

the purified T. maritima NADH oxidase could catalyze the reduction of NAD+ with the POR reduced 

ferredoxin as electron donor. 

 

To determine if the purified NADH oxidase from T. maritima had functions other than NADH 

oxidation with oxygen as electron acceptor, various enzyme activities were tested. The purified 

enzyme could not reduce H2O2 (NADH peroxidase), α-ketoglutaric acid plus glutamine (glutamate 

synthase), oxidized glutathione (glutathione reductase), H+ (hydrogenase), sodium nitrate (nitrate 

reductase), and sulfite (sulfite reductase) when NADH was used as electron donor.  Neither would 

this enzyme oxidize H2 (hydrogenase), dihydrolipoamide (DLDH) when NAD+ was used as electron 

acceptor. No activities of MV dependent hydrogenase, sarcosine dehydrogenase and sarcosine 

oxidase were observed.  Therefore, oxygen was the only possible physiological electron acceptor 

identified for the purified T. maritima NADH oxidase. 

 

4.4.6 Inhibition of the purified NADH oxidase 

The following chemicals were tested for their effects on the activity of NADH oxidase: HgCl2, CuCl2, 

quinine, quinacrine, hydrocortisone, and NaCN.  After the enzyme was pre-incubated anaerobically 

with the chemicals (3 mM) on ice for 1 hour, NADH oxidase activity assay was performed. The 

enzyme sample without addition of any of the compounds served as a control (100%).  The residual 

activities of T. maritima NADH oxidase were 1.7%, 40%, 54%, 77%, 95%, and 100% when it was 

incubated with HgCl2, CuCl2, quinacrine, quinine, hydrocortisone, and NaCN, respectively. 

 

4.4.7 Oxygen sensitivity 

T. maritima NADH oxidase was purified under strictly anaerobic conditions. However, during the 

purification, it was found that enzyme samples exposed to air exhibited a decrease of enzyme activity. 

Therefore, oxygen sensitivity of the NADH oxidase was further determined for both cell-free extract  
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Figure 4-12 Oxygen sensitivity of NADH oxidase activities of the cell-free extract and the 

purified enzyme.  

Filled circles, cell-free extract (CFE) exposed to 1% (v/v) of O2; open circles, CFE exposed to 20% 

(v/v) of O2; filled triangles, the purified NADH oxidase (PE) exposed to 1% (v/v) of O2; open 

triangles, PE exposed to 20% (v/v) of O2.  The NADH oxidase activity assay was carried out under 

standard conditions. 100% of activity for cell-free extract (CFE) and the purified enzyme (PE) were 

0.9 U/mg and 140 U/mg, respectively. 
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and the purified enzyme (Figure 4-12). The results showed that the inactivation rate of NADH 

oxidase activity was dependent on oxygen concentrations.  The time required for the loss of 50% of 

the enzyme activity from the purified enzyme was about 20 min and 40 min for oxygen concentration 

of 20% (v/v) and 1% (v/v), respectively.  However, the time required for the loss of 50% of the 

enzyme activity from the cell-free extract was about 60 min and 360 min for oxygen concentration of 

20% (v/v) and 1% (v/v), respectively.  Apparently, the enzyme in the cell-free extract was more 

resistant to oxygen-inactivation than the purified enzyme.  There might be unknown factors present in 

the cell-free extract, which protected the NADH oxidase from inactivation by exposure to oxygen.  

These results together with the observation that there was only one predominant peak of NADH 

activity after each column during the purification steps, lead to a conclusion that the NADH oxidase 

accounting for the major activity in T. maritima was oxygen-sensitive, which was unexpected.  

 

It has been showed that some inactivated oxygen-sensitive enzymes can be recovered by incubating 

with reducing reagents (Pan and Imlay 2001). Therefore, recoverability of the inactivated T. maritima 

NADH oxidase was achieved using reducing reagents SDT and DTT under anaerobic conditions.  

Either SDT (2 mM) or DTT (2 mM) could achieve only partial recovery of the inactivated enzyme 

(~54%).  A full re-activation (100%) of the enzyme activity was achieved only in the presence of both 

SDT (2 mM) and DTT (2 mM). Interestingly, the recoverability for NADH oxidase activity from both 

purified enzyme and cell-free extract was dependent on exposure time to oxygen (Figure 4-13).  

There was a quick recovery of approximately 80% of the activity in the cell-free extract within 10 

min incubation with SDT and DTT, and a 100% recovery of the activity required a longer incubation 

time (>10 hours).  For the purified enzyme, it seemed that there was only a quick recovery process 

(within half hour) and no significant reactivation was observed after further incubation (>10 hours).  

However, the full activity recovery in the cell-free extract and of the purified NADH oxidase was 

achieved only if the exposure time to air were less than 2 hours and 0.3 hour respectively.  

Apparently, a longer exposure time to oxygen resulted in less recoverability (Figure 4-13).   It is 

concluded that the purified enzyme is much more subject to oxygen damage compared to the cell-free 

extract, and it is not clear yet regarding mechanisms involved in both inactivation and reactivation 

processes. 
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Figure 4-13 Recoverability of inactivated NADH oxidase from T. maritima.  

Filled circles, recovered activity from cell-free extract (CFE) exposed to air with an incubation time 

of about 20 min in the presence of SDT and DTT; open circles, recovered activity from CFE exposed 

to air with an incubation time of about 20 hours in the presence of SDT and DTT. Open triangles, 

recovered activity from purified NADH oxidase exposed to air with an incubation time of 20 min in 

the presence of SDT and DTT; filled triangles, recovered activity from purified NADH oxidase 

exposed to air with an incubation time of about 20 hours in the presence of SDT and DTT; 100% re-

activation represents a full recovery of the lost NADH oxidase activity. 

 

 



 

  90

4.4.8 NADH-dependent peroxidase activity in T. maritima cell-free extract 

The purified enzyme did not have either NADH- or NADPH-dependent peroxidase activity. 

However, it was found that NADH-dependent peroxidase activity was present in cell-free extract of 

T. maritima. The peroxidase activity was dependent on concentrations of both NADH (0-0.2 mM) 

and H2O2 (0-0.36 mM). The catalysis followed Michaelis-Menten kinetics. Apparent Km values for 

NADH and H2O2 were determined to be 6.5 µM and 0.25 mM, respectively.  Apparent Vmax was 

determined to be 0.1 U/mg, which is much lower than that of NADH oxidase activity (1 U/mg) in the 

cell-free extract. There was no H2O2 produced with a consumption of NADH up to 130±10 µmol in 

the presence of oxygen up to 5% (v/v) in the gas phase and 186 µg T. maritima cell-free extract 

within 5 min at 80oC. However, the value of H2O2 produced over NADH consumed increased from 

0.2±0.1% to 8.3±0.6% when oxygen concentration increased from 8 to 20% (v/v) with a consumption 

of NADH from 186±12 to 286±18 µmol respectively under the same assay conditions. These results 

showed that T. maritima was in principle capable of reducing oxygen completely to H2O with no 

accumulation of H2O2 when the concentration of exposed oxygen was low. 
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4.5 DISCUSSION 

T. maritima, an obligate anaerobe, exhibited a very high NADH oxidase activity in the cell-free 

extract to be 1.0 U/mg compared to 0.13 U/mg in T. hypogea (Yang and Ma 2005a), 0.55 U/mg in 

Thermotoga neapolitana (Yang and Ma, unpublished data), 0.29 U/mg in Thermococcus 

guaymasensis (Yang and Ma, unpublished data), 0.042 U/mg in Clostridium aminovalercum 

(Kawasaki et al. 2004), and 0.073 U/mg in Amphibacillus xylanus (Niimura et al. 1993). The specific 

activity of the purified T. maritima NADH oxidase is also the highest among all known 

hyperthermophilic enzymes (Yang and Ma 2005a).  This property is consistent with the relatively 

higher tolerance to exposed oxygen level up to 5.5 µM for the growth of T. maritima.  

 

T. maritima NADH oxidase is a flavoprotein containing non-covalently bound FAD as prosthetic 

group, which is a common feature of NADH oxidases.  Its sensitivity to several inhibitors such as 

quinacrine and quinine is also similar to that of other NADH oxidases (Sakamoto et al. 1996). 

However, unlike typical NADH oxidases, which are homodimers, T. maritima enzyme is a 

heterodimeric protein containing two subunits with molecular weights of 46 and 54 kDa respectively, 

which is similar to a small number of NADH oxidases with different subunits (Reinards et al. 1981), 

and the first of this type of NADH oxidase found in hyperthermophiles. 

 

In contrast to most of the mesophilic enzymes that catalyze the formation of H2O (Kawasaki et al. 

2004), the purified NADH oxidase from T. maritima catalyzed the electron transfer from NADH to 

molecular oxygen and produce hydrogen peroxide exclusively, which is a distinctive property of 

NADH oxidases from hyperthermophilic microorganisms (Yang and Ma 2005a).  No H2O-forming 

NADH oxidase from this group of microbes has been reported, but a recombinant NADH oxidase 

from Pyrococcus furiosus could produce both hydrogen peroxide (77%) and water (23%) (Ward et al. 

2001). The production of hydrogen peroxide remains a puzzle for all NADH oxidases from 

hyperthermophilic microorganisms because hydrogen peroxide, a reactive oxygen species, is 

obviously more toxic than molecular oxygen.  If the accumulated hydrogen peroxide cannot be 

removed fast enough, it will produce hydroxyl radicals and cause injury of cells in the presence of 

redox-active metal ions such as Fe3+ (Rosen et al. 1995).  In the case of T. maritima, an NADH-

dependent peroxidase activity was detected in its cell free-extract. Therefore, T. maritima showed 

capability to reduce oxygen completely to H2O. The significantly high affinity of NADH-dependent 
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peroxidase towards NADH (apparent Km 6.5 µM) suggests that the hydrogen peroxide produced can 

be removed very efficiently.  However, the low affinity towards hydrogen peroxide (apparent Km = 

0.25 mM) may result in low efficiency of this NADH-dependent peroxidase activity when hydrogen 

peroxide concentration becomes higher.  This may provide an explanation to why T. maritima can 

only tolerate low oxygen concentration and it is still considered as an anaerobe. 

 

Surprisingly, there is no NADH peroxidase homologue present in the genome sequence of T. 

maritima (Nelson et al. 1999).  Although a possibility that new type of NADH peroxidase may not 

show homology to any known ones cannot be excluded, the reduction of peroxide to H2O can be 

carried out alternatively by an NADH-independent peroxidase, such as rubrerythrin (Weinberg et al. 

2004).  In fact, there are two such peroxidase homologues, TM0657 (rubrerythrin) that may function 

as peroxidase similar to that in Desulfovibrio vulgaris (Coulter et al. 1999) and P. furiosus (Weinberg 

et al. 2004), and TM 0807 (alkyl hydroperoxide reductase Ahpc) that can be the catalytic subunit for 

reducing alkyl hydroperoxide or hydrogen peroxide to H2O when other components (NADH and 

AhpF) are supplemented (Bryk et al. 2000).  So, the oxygen removing system present in T. maritima 

may work in two steps: first, converting O2 to hydrogen peroxide by the NADH oxidase, and 

secondly, reducing the hydrogen peroxide to water by rubrerythrin or akyl hydroperoxide reductase 

(Figure 4-14A).  NADH may not be used directly as electron donor in the peroxidase reaction in this 

proposed system due to the failure to identify NADH peroxidase genes from the genome sequence 

(Nelson et al. 1999; Weinberg et al. 2004). 

 

NADH oxidases from thermophilic anaerobes have apparent Km values for NADH and O2 from 4 - 

130 µM and 60 - 2,900 µM, respectively (Yang and Ma 2005a).  Km values of T. maritima NADH 

oxidase for NADH is 46 µM that is in the middle of the range, and for O2 is 37 µM that is lower than 

that of all known hyperthermophilic NADH oxidases (Yang and Ma 2005a).  The extremely high 

apparent Vmax value (213 U/mg) and low apparent Km value for O2 (37 µM) suggest that this enzyme 

can be very efficient to remove oxygen encountered by T. maritima.  

 

The NADH oxidase activity in T. maritima cell-free extract lost 70-80% of activity upon incubating 

in the air at ambient temperature for 3 hours so did the purified enzyme with an accelerated rate 

(Figure 4-12). This is the first oxygen-sensitive NADH oxidase ever reported. The unexpected  
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Figure 4-14 Proposed physiological function and regulatory model of the purified NADH 

oxidase from T. maritima.  

A. The NADH oxidase as part of an oxygen-detoxification system in T. maritima. Rred, reduced 

electron carrier other than NADH; Rox, oxidized electron carrier other than NAD+. B. Tentative model 

of regulation of NADH oxidase activity depending on oxygen level and redox potential in the cell. 

Eactive, active T. maritima NADH oxidase; Einactive, inactivated T. maritima NADH oxidase; high or 

low, high or low concentration; more or less, arbitrary levels or amounts. 
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oxygen sensitivity of this enzyme seems to be contrary to the presumed function of detoxifying 

oxygen.  However, the anaerobe T. maritima might benefit from the oxygen sensitivity of the NADH 

oxidase. As described previously, this enzyme has very high specific activity and present in the cell at 

high quantity. Once the cells are exposed to oxygen, the oxygen would be reduced rapidly to 

hydrogen peroxide, which is then reduced to water.  If the hydrogen peroxide cannot be removed in a 

reasonable rate, it becomes more toxic than molecular oxygen (Rosen at el. 1995). Since the 

peroxidase activity (0.1 U/mg) is much lower than the NADH oxidase (1 U/mg), hydrogen peroxide 

produced could be accumulated at a level which would damage the cells. By inactivating a certain 

amount of the NADH oxidase only when oxygen concentration is too high, T. maritima may regulate 

the concentration of hydrogen peroxide at a low level to minimize oxidative damage caused by high 

concentration of hydrogen peroxide accumulated. The growth of T. maritima had a long lag-phase 

(near 45 hours, Figure 4-1) in the presence of 5.5 µM dissolved oxygen in the medium, however, 

there was no growth when dissolved oxygen concentration increased to 7.7 µM. Apparently, T. 

maritima can only tolerate a lower level of oxygen. As reported previously by Fucci, substrate 

concentration of glutamine synthetase in Escherichia coli plays important role in the regulation of 

enzyme inactivation and consequently in the enzyme turnover (Fucci et al. 1983).  It is important to 

point out that the inactivated T. maritima NADH oxidase can be fully activated upon incubation with 

SDT and DTT (Figure 4-13), therefore, it is reasonable to speculate that such inactivated enzyme 

would be fully activated when low redox potential in the cells returns or the concentrations of oxygen 

and hydrogen peroxide become low (Figure 4-14B).  If the oxygen level is too high, the proposed 

oxygen-scavenging system fails and no growth occurs. To obtain more detailed information about 

how the redox potential and concentrations of oxygen and hydrogen peroxide affect the NADH 

oxidase activity in vivo, further investigation is required. On the other hands, it was proposed that 

NADH oxidase from Thermoanaerobium brokii may play other roles under physiological conditions 

(Maeda et al. 1992).  These NADH-utilizing flavoproteins may transfer electrons to acceptors other 

than molecular oxygen.  Therefore, it is probably reasonable to speculate that the purified NADH 

oxidase in T. maritima might play other roles in vivo. Electron acceptor for T. maritima NADH 

oxidase was extensively studied. It was found that this enzyme was able to use sn-glycerol-3-

phosphate as subsrate and therefore exhibited glycerol-3-phosphate dehydrogenase activity, which is 

reported in Chapter 6 of this thesis. 

 

 



 

  95

 

 

 

 

 

 

Chapter 5  Dihydrolipoamide Dehydrogenase of 

Thermotoga hypogea 

 

 

 

A manuscript has been prepared for submission based on the work presented in this chapter. 
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5.1 ABSTRACT 

Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90oC. 

It was found that dihydrolipoamide dehydrogenase (DLDH) activity was overlapped and proportional 

to NADH oxidase activity during all steps of purification. The purified enzyme revealed as a single 

band on SDS-PAGE exhibited both DLDH and NADH oxidase activities. The NADH oxidase 

activity of this enzyme was previously desribed in Chapter 3 of the thesis. The purified enzyme 

exhibited a specific DLDH activity of 180 U/mg in dihydrolipoamide oxidation. It used NAD(H) as 

electron carrier exclusively. When DLDH catalyzed the forward reaction, the oxidation of 

dihydrolipoamide, the catalysis that was analyzed with SigmaPlot10 followed Michealis-Menten 

kinetics. The apparent Km values for NAD+ and dihydrolipoamide were determined to be 0.30 mM 

and 0.80 mM, respectively. In the reduction of lipoamide by NADH, it showed apparent inhibition by 

higher concentration of NADH, which is one of the typical properties of DLDH. The inhibition of 

NADH was fitted to Hanes-Woolf plot using SigmaPlot10. The Ki value for NADH was estimated to 

be 57.6 µM, which was lower than Km value of NADH, 79.8 µM. In addition to use lipoic acid, 

lipoamide, and dihydrolipoamide as substrate, T. hypogea DLDH could catalyze the reduction of 

various artificial electron acceptors using NADH as electron donor. The purified DLDH was partially 

sequenced by mass spectrometry. The peptide sequences significantly matched other DLDH 

sequences, especially within Thermotogales order in the BLAST search. The partial sequence of T. 

hypogea DLDH was found to be closely related to the other three sequences of DLDHs from 

Thermotogales whose genome sequences are known. T. hypogea DLDH is the first one that has been 

characterized from anaerobic hyperthermophilic sources. Further sequence analysis showed that all 

species with genome sequences known in Thermotogales contained genes encoding all components of 

glycine decarboxylase complex, but not pyruvate dehydrogenase. However, both T. hypogea and T. 

maritima had not been found to be able to use glycine as sole carbon source. It is speculated that the 

function of glycine decarboxylase complex may be involved only in contribution to one-carbon pool 

instead of energy metabolism.  
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5.2 INTRODUCTION 

Thermotoga hypogea, a rod shape and strict anaerobe, was first isolated from African oil-producing 

well (Fardeau et al. 1997). It can tolerate up to 6.9 µM of oxygen dissolved in the growth media under 

static conditions and an NADH oxidase has been proposed to be functioning in the oxygen defensive 

system (Yang and Ma 2005a). The NADH oxidase is a homodimeric flavoprotein with subunit 

molecular mass of 50 kDa. During purification, it was found that dihydrolipoamide DLDH activity 

always stayed together with the NADH oxidase.  

 

DLDH (EC1.8.1.4) was first isolated from pig heart (Straub 1939). It catalyzes the reversible 

conversion between lipoamide and dihydrolipoamide (equation 1). 

 

          NAD+ + dihydrolipoamide ↔ lipoamide + NADH + H+                              (1) 

 

Since then DLDHs have been purified from various sources including mitochondria of eukaryotes, 

aerobic mesophilic prokaryotes (Williams 1992) and also from halophilic archaeon, Haloferax 

volcanii (Vettakkorumakankav and Stevenson 1992). All the DLDHs studied are in the cytoplasm 

except the one from Trypanosoma brucei, which has been found in the purified plasma membrane 

(Danson et al. 1987). The DLDH from different sources is a homodimer with one FAD and one 

redox-active disulfide on each subunit with molecular weight of about 50 kDa (Williams 1992). The 

catalysis of DLDH follows ping-pong mechanism and it has been studied in significant details in 

mesophiles (Argyrou et al. 2003; Williams 1992). Crystal structures of DLDH from eukaryotes and 

bacteria have been determined (Mattevi et al. 1992; Toyoda et al. 1998a, b).  

 

DLDH is well known as E3 component of 2-oxo acid dehydrogenase, which is a large multienzyme 

complex consisting of three catalytic components: 2-oxo acid dehydrogenase (E1), dihydrolipoamide 

acyltransferase (E2), and DLDH (E3) (de Kok et al. 1998; Neveling et al. 1998; Patel and Korotchkina 

2003). Four 2-oxo acid dehydrogenase complexes are known, which are the complexes of pyruvate 

dehydrogenase, 2-oxoglutarate dehydrogenase, branched-chain dehydrogenase, and acetoin 

dehydrogenase. In most prokaryotes, these complexes share some common structural features, and E3 

is shared by different complexes (Berg and de Kok 1997; Reed 1974; Reed and Hackert 1990). 2-oxo 

acid dehydrogenase in all aerobic organisms splits a carbon-carbon bond of the 2-oxo acid with the 
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reduction of NAD+, and acetyl-coenzyme A, CO2 and NADH are generated, which couples the 

oxidative decarboxylation to energy conservation (Berg and de Kok 1997; Perham 2000). Unlike the 

universal distribution of 2-oxo acid dehydrogenases in mesophiles, they are replaced by POR, which 

do not contain DLDH component among hyperthermophilic bacteria and all archaea tested (Schönheit 

and Schäfer 1995). Homologues of 2-oxo acid multienzyme are present in the genome sequences of 

halophilic archaeon Haloferax volcanii but no enzymatic activity is detectable (Jolley et al. 2000; 

Wanner and Soppa, 2002). 

 

DLDH is involved in another mitochondrial multienzyme complex, glycine decarboxylase 

multienzyme (GDC), also named as glycine-cleavage system in prokaryotes and eukaryotes 

(Dietrichs et al. 1990; Freudenberg et al. 1989b; Ichinohe et al. 2004). DLDH is shared by GDC and 

2-oxo acid dehydrogenase (Bourguignon et al. 1996). GDC catalyzes the decarboxylation of glycine 

(equation 2) and consists of four proteins, P-, H-, L-, and T-proteins. P-protein is a pyridoxal 

phosphate dependent enzyme and catalyzes the decarboxylation of glycine in concert with H-protein. 

The aminomethyl group attached on H-protein is cleavaged by T-protein to form ammonia and 

formaldehyde or methylene-tetrahydrofolate. The reaction cycle is completed by reoxidation of H-

protein and formation of NAD(P)H by L-protein, DLDH (Walker and Oliver 1986).  

 

Glycine + H4folate +NAD+ ↔methylene-H4folate + NH3 + CO2 + NADH +H+      (2) 

 

It has been showed that some obligately anaerobic bacteria including Eubacterium acidaminophilum 

(Zindel et al. 1988) and Clostridium species (Barker 1981) contain GDC and can use glycine as sole 

fermentation substrate. The reducing equivalents generated from oxidation of glycine to CO2 are 

channeled to the selenoprotein, PA, a component of glycine reductase complex for energy 

conservation (Freudenberg et al. 1989b). Both enzymes, GDC and glycine reductase are essential for 

utilizing glycine as sole carbon source (Freudenberg et al. 1989b; Zindel et al. 1988). In addition to 

the involvement in glycine utilization, GDC is also very important for generating one- carbon 

moieties, which are essential for the biosynthesis of purine and pyrimidine nucleotide (Arinze 2005). 

GDC, together with serine hydroxymethltransferase (SHMT), is responsible for the inter-conversion 

of glycine and serine and contributes to one-carbon pool through tetrahydrofolate (Douce et al. 2001). 

In Eshcherichia coli, 15% of all carbon atoms assimilated from glucose is estimated to pass through 

the glycine-serine pathway (Wilson et al. 1993).  
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Unlike the universal distribution and extensive study of mesophilic DLDH, there has been no report 

about the DLDH in hyperthermophiles yet. Here, the DLDH activity of NADH oxidase and its 

possible physiological role in the metabolism of Thermotogales species are presented. 
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5.3 MATERIALS AND METHODS 

5.3.1 Organism and chemicals 

T. hypogea (DSM 11164) was obtained from the Deutsche Sammlung von Mikroorganismen and 

Zellkulturen GmbH, D-38124 Braunschweig, Germany.  All chemicals were commercial except 

dihydrolipoamide which was prepared by reduction of dl-lipoamide with sodium borohydride (Patel 

et al. 1995; Reed et al. 1958). The details were described in section 4.3.1 Organism and chemicals. 

 

5.3.2 Growth of T. hypogea and T. maritima with glycine 

The ability to use glycine as sole carbon and energy source of T. maritima and T. hypogea was tested. 

T. hypogea was grown at 70oC anaerobically in the medium modified from that of Fardeau (Fardeau 

et al. 1997). The composition of the media was described in Chapter 3 (3.3.2 Growth of T. hypogea). 

T. maritima was grown at 80oC anaerobically in the medium modified from that of Huber (Huber et 

al. 1986). The composition of the media was described in Chapter 4 (4.3.2 Growth of T. maritima). In 

both media yeast extract was lowered to 1.0 g/L from 2.5 g/L and glucose was omitted (basal 

medium). The seed culture was prepared in the basal medium, i.e. without any carbohydrate added. 

Three conditions of growth were tested, basal medium, basal medium with 1.25 g/L of glucose added, 

and basal medium with 1.25 g/l of glycine added. The growth was monitored by direct cell count as 

described in Chapter 3 (3.3.2 Growth of T. hypogea). 

 

5.3.3 Cell-free extract preparation and enzyme purification 

Details were described in Chapter 3 (3.3.6 Enzyme purification). 

 

5.3.4 Localization of DLDH in T. hypogea 

Fractionation of cell-free extract of T. hypogea was carried out by ultracentrifugation. After each 

centrifugation, the supernatant and pellet were collected anaerobically and the pellet was re-

suspended to its original volume (6 ml). The crude extract of T. hypogea (6.0 ml) was centrifuged at 

20,000xg for 30 min. The resulting supernatant was centrifuged further at 30,000xg (1 hour, 10oC). 

The supernatant obtained was centrifuged at 115,000xg (1 hour, 10oC). DLDH activity was detected 
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with the samples including, cell free extract, 30,000xg supernatant, re-suspended 30,000xg pellet, 

115,000xg supernatant and re-suspended 115,000xg pellet, to locate the enzyme. 

 

5.3.5 Enzyme assays and protein determination 

DLDH was determined spectrophotometrically at 80oC by monitoring the substrate-dependent 

absorbance change of NAD(H) at 340 nm (ε340 =6.22 mM-1cm-1; Tsai 1980). The assay mixture 

contained 1.2 mM NAD+ and 1.8 mM dihydrolipoamide that was dissolved in 100% acetone for 

forward reaction (oxidation of dihydrolipoamide) or 200 μM NADH and 1 mM lipoamide that was 

prepared in 100% methanol or acetone for the reverse reaction (reduction of lipoamide) in 2 ml pH 

7.0, 100 mM potassium phosphate buffer. One unit of enzyme was defined as the oxidation of 1 μmol 

NADH or reduction of 1 μmol NAD+ per min.  NADH oxidase assay was carried out with 100 µM 

NADH in the same buffer by monitoring the decrease of absorbance at 340 nm (Yang and Ma 2005a). 

The diaphorase activities with artificial electron acceptors were monitored anaerobically at different 

wavelengths and the specific activities were calculated with the extinction coefficients of BV (ε 578 = 

8.8 mM-1 cm-1) (Kengen et al. 2003) and MV (ε 578 = 9.7 mM-1 cm-1) (Ma and Adams 2001). Protein 

concentration was determined using the Bradford method with bovine serum albumin as the standard 

protein (Bradford 1976). 

 

5.3.6 Calculation of t1/2 

The thermostability of DLDH was characterized by t1/2, the time to 50% of initial activity upon 

heating at 70 and 95oC. Kinetics was modeled as first order decay rates of percent initial activity. t1/2 

was calculated from relative activity over time using equation: y=e-kt; where y=percent of residual 

activity, k=(ln2)/ t1/2 and t=incubation time (Tessier et al. 1996). 

5.3.7 Partial sequence of DLDH 

The purified DLDH was partially sequenced using mass spectrometry. SDS-PAGE was run with the 

procedures described in Chapter 3 (3.3.7 Electrophoresis and molecular weight determination) except 

that the Coomassie Brilliant Blue R-250 staining solution was replaced by Gel-code Blue. The protein 

band was cut with scalpel in flowhood and mapped by Biological Mass Spectrometry Laboratory at 

University of Western Ontario using MS/MS method (Lange et al. 1994).  
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5.4  RESULTS 

5.4.1 DLDH activity 

Similar DLDH activities were detected in the cell-free extract of T. hypogea grown with either xylose 

(0.79±0.10 U/ mg) or glucose (0.77±0.014 U/mg) as carbon source. The activity was higher at middle 

(0.66±0.03 U/mg) and late log-phase (0.79±0.10 U/mg) than that at stationary phase (0.54±0.026 

U/mg). DLDH activity was located in the cytoplasm of the anaerobic bacterium T. hypogea, since 

more than 97% of the activity was present in the supernatant fraction after ultracentrifugation 

(115,000xg, 1 h) (Table 5-1). This supernatant fraction also contained 90% of the glutamate 

dehydrogenase activity, a known cytoplasmic enzyme (Ma and Adams 1994; Robb et al. 1992). 

 

5.4.2 Purification and properties of T. hypogea DLDH 

DLDH activity was eluted as a single peak overlapped with NADH oxidase activity after each 

chromatographic column and proportional to NADH oxidase activity in all active fractions (Table 5-

2). The enzyme was purified 264-fold after four columns. The purified enzyme revealed as a single 

band of 50 kDa by SDS-PAGE showed both NADH oxidase activity and DLDH activity. It has been 

reported that the DLDH from Mycobacterium smegmatis and porcine heart also demonstrate NADH 

oxidase activity (Grinblat et al. 1991; Igamberdiev et al. 2004; Marcinkeviciene and Blanchard 1997). 

T. hypogea DLDH, like other bacterial and mammalian DLDHs, is specific for NAD(H) and no 

reaction could be detected with NADP or NADPH. In addition to lipoamide (54.3±1.0 U/mg), the 

purified T. hypogea DLDH could also reduce lipoic acid (10.3±0.8 U/mg), oxygen (33.8±2.4 U/mg), 

BV (17.5±0.2 U/mg), and MV (2.4±0.0 U/mg) when 50 µM of NADH was used as electron donor. 

 

The optimal pH for dihydrolipoamide oxidation and lipoamide reduction was determined to be 7.0 

(Figure 5-1). It was showed that the dihydrolipoamide oxidation activity was about ten times higher 

than that of lipoamide reduction at pH 7.0, indicating this enzyme is more efficient in catalyzing the 

NADH formation in the cell. Thermoactivity and thermostability of T. hypogea were determined by 

monitoring the temperature-dependent change of dihydrolipoamide oxidation activity. The activity of 

the purified DLDH increased along with the elevation of temperature up to 90oC  (Figure 5-2).  

Thermostability of DLDH was carried out at 90oC and 70oC (Figure 5-3). The lost of activity over  
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Table 5-1 Cellular localization of DLDH 

 
115Kxg S 115,Kxg P Enzymes 20Kxg Sa 

U/ml 

20Kxg Pb 

U/ml 

30Kxg S 

U/ml 

30Kxg P 

U/ml U/ml           % U/ml          % 

DLDH 2.26±0.11 0.87±0.07 2.33±0.15 0.07±0.01 2.4±0.12 97 0.07±0.0

1 

3 

GDHc 0.41±0.03 0.36±0.03 0.44±0.32 0.03±0.01 0.41±0.0

3 

90 0.05±0.0

1 

10 

Protein 

(mg/ml) 

4.79±0.19 4.29±0.21 4.45±0.17 0.17±0.01 4.27±0.2

5 

 0.38±0.0

2 

 

 

Note:  
a S stands for the resulting supernatant from ultracentrifugation.  
bP stands for the pellet resulted from ultracentrifugation. 
cGDH stands for glutamate dehydrogenase. 
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Table 5-2 Co-purification of DLDH and NADH oxidase 

 

Purification  

steps 

Total 

protein 

(mg) 

DLDH 

activity 

(U) 

DLDH  

sp act 

(U/mg) 

NADH 

oxidase 

actvity (U) 

NADH 

oxidase sp act 

(U/mg) 

Ratios* 

Cell-free extract 1750 1156 0.68 227 0.13 5.2 

DEAE-Sepharose 320 676 2.1 154 0.48 4.4 

HAP 89 458 5.15 123 1.38 3.7 

Phenyl-

Sepharose 

15.8 233 14.7 55 3.48 4.2 

Superdex 200 0.7 126 180 23.5 33.6 5.3 

 

* Ratios stand for the ratios between the total activity of DLDH and NADH oxidase in the cell-free 

extract and the overlapped active fractions during purification steps. 
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Figure 5-1 pH dependency of T. hypogea DLDH.  

Filled circles, oxidation of dihydrolipoamide; open circles, reduction of lipoamide. All the assays 

were carried out using the method described in section 5.3.5. 
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Figure 5-2 Thermoactivity of T. hypogea DLDH.  

DLDH activity was determined by the oxidation of dihydrolipoamide by using the method described 

in section 5.3.5.  
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Figure 5-3 Thermostability of T. hypogea DLDH.  

The enzyme sample (0.011 mg/ml) in a mixture containing 50 mM Tris-HCl buffer pH 7.8, 5% 

glycerol, 100 mM KCl, 1 mM SDT and DTT was incubated at 70oC (open circles) and 90oC (filled 

circles). DLDH activity was determined by the oxidation of dihydrolipoamide at different time 

intervals. 
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Figure 5-4 Linear plot of DLDH thermostability.  

The conditions were described in the legend of Figure 5-3. Filled cirles, 90oC; open circles, 70oC. 
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time followed first order kinetics (Figure 5-4). The time required for a loss of 50% activity (t1/2) was 

29.5 and 16.4 hours at 70 and 90oC, respectively, indicating T. hypogea DLDH is very thermostable. 

The dependency of DLDH activity on the concentrations of substrates was determined and the data 

were fitted to Michaelis-Menten kinetics using SigmaPlot10. Dihydrolipoamide oxidation activity of 

the purified T. hypogea DLDH was dependent on concentrations of both NAD+ and dihydrolipoamide. 

The catalysis followed Mechaelis-Menten kinetics (Figure 5-5&Figure 5-6). Apparent Km value for 

NAD+ and apparent Vmax value were determined to be 0.3 mM and 226.3 U/mg, respectively. 

Apparent Km value for dihydrolipoamide and apparent Vmax value were determined to be 0.80 mM and 

249.4 U/mg, respectively. The lipoamide reduction activity of the purified T. hypogea DLDH was 

dependent on the concentration of lipoamide and the catalysis followed the Michaelis-Menten 

kinetics (Figure 5-7). The apparent Km value and Vmax value were determined to be 2.2 mM and 166.7 

U/mg. The lipoamide reduction activity of the purified T. hypogea DLDH was increased along with 

the increase of NADH concentration when the NADH concentration was below 100 µM, and the 

higher NADH concentration resulted in the decrease of its activity (Figure 5-8), which is a common 

feature for DLDH. It has been reported that this property is important for the regulation of the overall 

enzyme activity in the cell as a mechanism of feedback control (Bunik 2003; Snoep et al. 1993). The 

data of NADH inhibition were fiited to Hanes-Woolf kinetics (Figure 5-9).  The apparent Km and Ki 

values for NADH were determined to be 79.8 µM and 57.6 µM, respectively.  

 

5.4.3 Partial sequence of T. hypogea DLDH 

The partial amino acid sequence of the purified T. hypogea DLDH was obtained by mass 

spectrometry. The peptide-sequences were queried using blast over the entire NCBI database and they 

matched DLDH from different sources. The sequences showed high similarity to the gene encoding 

DLDH in Thermotoga netrophila (http://img.jgi.doe.gov/cgi-

bin/pub/main.cgi?section=TaxonDetail&page=proteinCodingGenes&taxon_oid=639857041), T. 

maritima (Nelson et al. 1999), and Thermosipho melanesiensis 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=genome&dopt=Protein+Table&li

st_uids=5600). The short peptide sequences were aligned with DLDH from other Thermotoga species 

(Figure 5-10). In T. hypogea DLDH sequence, there is a FAD-binding motif, GXGXGG, at the N-  
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Figure 5-5 Dependency of DLDH activity on the concentration of dihydrolipoamide.  

The assay was carried out at 80oC with the standard assay for oxidation of dihydrolipoamide by 

varying the concentration of dihydrolipoamide (0-2.5 mM). The data were fitted to Michaelis-Menten 

kinetics by using SigmaPlot10.  
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Figure 5-6 Dependency of DLDH activity on the concentration of NAD+.  

The assay was carried out at 80oC with the standard assay for oxidation of dihydrolipoamide with 

NAD by varying the concentration of NAD+ (0-1.5 mM). The data were fitted to Michaelis-Menten 

kinetics by using SigmaPlot10.  
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Figure 5-7 Dependency of DLDH activity on the concentration of lipoamide.  

The assay was carried out at 80oC with the standard assay for reduction of lipoamide with NADH by 

varying the concentration of lipoamide (0-3 mM). The data were fitted to Michaelis-Menten kinetics 

by using SigmaPlot10.  
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Figure 5-8 Dependency of DLDH activity on the concentration of NADH. 

The dependency of DLDH activity on the concentration of NADH was determined with the method 

described in Materials and Methods (5.3.3). The assays were carried out at 80oC with the standard 

assay for reduction of lipoamide with NADH by varying the concentration of NADH (0-300 µM). 
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Figure 5-9 Inhibition of NADH on DLDH activity.  

The data in Figure 5-8 were fitted to Hanes-Woolf inhibition kinetics by using SigmaPlot10. The Km 

value was estimated to be 79.8 µM and Ki  value was estimated to be 57.6 µM. 
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                                     10         20         30         40         50             
Thermotoga hypogea          MYDALLLGAG PGGYVAALKA LLTSAHLATL ALVEKSFVGG TCTNWGCLPT  
Thermotoga maritima         MYDAVIIGGG PGGYVCAIKL AQLG---KKV ALVEKDALGG TCTNRGCIPT  
Thermotoga petrophila       MYDAVIIGGG PGGYVCAIKL VQLG---KKV ALVEKDALGG TCTNRGCIPT  
Thermosipho melanesiensis   MYDVVVIGGG PGGYIASIRL SQLG---KKV AIIEKEELGG TCTNKGCIPT  
Fervidobacterium nodosum    MFDAVIIGGG PGGYVCAIKL AHLG---KNV ALVEKENLGG TCTNWGCIPT  
Clustal Consensus           *:*.:::*.* ****:.:::     .    .: *::**. :** **** **:**  
 
  
                                     60         70         80         90        100             
Thermotoga hypogea          KKRG--AELY ESSKE----- ---------- ---------- ----------  
Thermotoga maritima         KAMLTVSHLM DEMKEKASKY GLKVSGVEYD VAAIMKHVQK SVMMSRKGIE  
Thermotoga petrophila       KAMLTVSHLM DEMKEKASKY GLKVSGVEYD VDTIMKHVQK SVMMSRKGIE  
Thermosipho melanesiensis   KALLTSAHLY RDIKEKASKF GIKVDSVDFE LSGIMKHMQK AVTMSRKGIE  
Fervidobacterium nodosum    KALLTATHLI DEIREKADKY GVKATFEGYD ISKVMAHAQK SVTLSRKGIE  
Clustal Consensus           *     :.*   . :*                                        
 
 
                                    110        120        130        140        150         
Thermotoga hypogea          -----NGVEL LNGEALVESN PSVRKELG-- -------VLA ENVS------  
Thermotoga maritima         YLLKKNGVEV FKGTAVVENK NTVVVQETGE KLEAKNLVLA HGSVPSVFSP  
Thermotoga petrophila       YLLNKNGVEV FKGTAVVENK NTVVVQETGE KLEAKNLVLA HGSVPSVFSP  
Thermosipho melanesiensis   FLMKKNKIDV FKDKGIIKDN ETVLLENEGK EIKGRYLILA QGSIPSVFPP  
Fervidobacterium nodosum    FLMKKNNVTL IKGTAEVVNK NQVKIKESGE IFEGKNLVLA HGSVPVVFPP  
Clustal Consensus                * : : ::. . : .:   *  :            :** ..          
 
  
                                    160        170        180        190        200         
Thermotoga hypogea          ---------- ------FDFS KSLVIVGGGV LGVELATFFS SLNVKLVVVE  
Thermotoga maritima         FDIDG-VWTS DDVFNLKEFP KSLVIVGGGV IGVEFATFFG SFGVDVTIVE  
Thermotoga petrophila       FDIDG-VWTS DDVFNLKEFP KSLVIIGGGV IGVEFATFFG SFGVDVTIVE  
Thermosipho melanesiensis   FDKLEGIWTS DDVFKIKEFP KSLLIIGGGV IGVEFATFFS SFGVDVTIVE  
Fervidobacterium_nodosum    FDSIEGIWTS NDVFKLQSVP QSLLIIGGGV IGVEFATFFS SLGTKVRIVE  
Clustal Consensus                             ... :**:*:**** :***:****. *:...: :**  
 
  
                                    210        220        230        240        250         
Thermotoga hypogea          LLDHLLPNED ADAAKLVAKK PK-------- ------LSDD LKSLGLALER  
Thermotoga maritima         IAEHILPYED SDVAEEVKKA LKRKGVKILE KTKISSLSKV DDGFEVALEN  
Thermotoga petrophila       IAEHILPYED SDVAEEVKKA LKRKGVKILE KTKVSSLSKV DDGFEVALEN  
Thermosipho melanesiensis   LADHILPNED KDVAEEIKKE LKKKKVNVLE GKKVEEIKKE LN--YIAIVD  
Fervidobacterium nodosum    LAEHILPTED SDVAEEVKKA MIRKGVEIQE KSKVTNIEKL EKSYRVTIKD  
Clustal Consensus           : :*:** **  *.*: : *                   :..   .   :::    
 
 
                                    260        270        280        290        300         
Thermotoga hypogea          GLK------- TDVLVAVGRK P--------- --------KT DETMTLNLPN  
Thermotoga maritima         GE----TLKA EKVLLAAGRK PNIPEDVKAL GVKIEKGVVT DSRMRTNVEN  
Thermotoga petrophila       GE----TLKA EKVLLAAGRK PNIPEDVKAL GVKIEKGVVT DSRMRTNVEN  
Thermosipho melanesiensis   GE----TIEA EKVLLAVGRR PNITDDIKEL GVKIDRGVIT DKKMKTNIDN  
Fervidobacterium nodosum    NNEKENVVEV ERILLAVGRR PNIPEDVRAL DVEIERGIKT NRKMQTNIEG  
Clustal Consensus           .            :*:*.**: *                   * :  *  *: .  
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                                    310        320        330        340        350         
Thermotoga hypogea          LYAVGDVR-- QGIMVAMYE GLVAAENLCG KPTKMDYSAV PSVLFSEPEV  
Thermotoga maritima         VYAIGDIRSG IMLAHVAMYE GIVAAKNIAG EEEEMDYSAV PSIIFSSPEV  
Thermotoga petrophila       VYAIGDIRSG IMLAHVAMYE GIVAAKNIAG EEEEMDYSAV PSIIFSSPEV  
Thermosipho melanesiensis   IYAIGDIRGQ IMLAHVAMYE GIIAAHNIAG KEIEMDYSAV PAIIFSTPEI  
Fervidobacterium nodosum    VYAIGDIRGH IMLAHVASYE GITAALNIAG IEAEMDYSAV PSIIFSNPEV  
Clustal Consensus           :**:**:*        ** ** *: ** *:.*    :****** *:::** **:  
 
 
                                    360        370        380        390        400         
Thermotoga hypogea          ASVRK-EKDM D--------- ---------- LTVNLGTVRM GG--------  
Thermotoga maritima         ASVGVREKDV NPEEVVISKF PVSANGRART MLENIGFAKV IADKKDGTVL  
Thermotoga petrophila       ASVGVREKDV NPEEVVISKF PVSANGRART MLENIGFAKV IADKKDRTVL  
Thermosipho melanesiensis   ASVGLREKDI EADKINVWKF PVSANGRART MEERAGFAKV IEDKKTGKVL  
Fervidobacterium nodosum    ASVGLREKDI DHEKVKISKF PLSANGRART MLENIGFAKV IADKETGTVL  
Clustal Consensus           ***   ***: :                     :  . * .::             
 
 
                                    410        420        430        440        450         
Thermotoga hypogea          ---------- ---------- ---------- ---------- ----------  
Thermotoga maritima         GMSIVSPSAT DMIMEGVIAV KFRMKAEDLE KAIHPHPTLT ETILGALEGV  
Thermotoga petrophila       GMSIVSPSAT DMIMEGVIAV KFRMKAEDLE KAIHPHPTLT ETILGALEGV  
Thermosipho melanesiensis   GVTVVSPSAT DMIMEGVLAV KYGMTSHQVS EAIHPHPTLT ETLLGAFEGK  
Fervidobacterium nodosum    GMSIVSPVAT ELIMEGVVAV KNKLTAHQLE ESIHPHPTLS ETLLGALEGI  
Clustal Consensus                                                                   
 
 
                                   
Thermotoga hypogea          ------- 
Thermotoga maritima         SGKPIHL 
Thermotoga petrophila       SGKPIHL 
Thermosipho melanesiensis   WAIHI-- 
Fervidobacterium nodosum    TDKPLHL 
Clustal Consensus                   

 

Figure 5-10 Amino acid sequences alignment of partial sequence of T. hypogea DLDH and 

annotated DLDH sequences of Thermotogales.  

The sequences were aligned using CLUSTAL W method (Higgins and Sharp 1988). The alignment 

was plotted with reference to a standard sequence, i.e. the partial sequence of T. hypogea DLDH at 

the top. Any residues in a column which are identical to the standard at that point are shown as stars 

(*) and similar to the standard at that point are shown as dot (·). Black - stands for gap. Red - stands 

for the unknown sequence of T. hypogea DLDH. Green letters: FAD-binding motif. Red letters: 

redox active disulfide. Blue letters: NAD-binding motif. 
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terminal, and an NAD-binding motif, GXGXXG, in the middle of the sequence. The catalytic 

mechanism of DLDH entails the participation of a redox active disulfide formed by two cysteines 

separated by four amino acid residues (Carothers et al. 1989). Such sequence is also present in T. 

hypogea DLDH (CTNWGC).  Both T. maritima and T. netrophila have the genes encoding all the 

components of GDC in their genome (Nelson et al. 1999; http://img.jgi.doe.gov/cgi-

bin/pub/main.cgi?section=TaxonDetail&page=proteinCodingGenes&taxon_oid=639857041). The 

genome of T. maritima contains the gene TM0380 encoding DLDH, TM0212 encoding H-protein, 

TM0213 and TM0214 encoding P-protein, and TM0211 encoding T-protein. The gene encoding 

methylene-tetrahydrofolate dehydrogenase/cyclohydrolase that converts methylene-tetrahydrofolate 

to formyl-tetrahydrofolate is present in the genome of T. maritima as well. However, there was no 

GDC activity detectable in the cell-free extract of T. maritima and T. hypogea grown on glucose and 

they could not grow with glycine as sole carbon and energy source. Growth was actually inhibited by 

the presence of glycine (Figure 5-11&Figure 5-12), which has not been reported previously and the 

possible reason will be discussed.  
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 Figure 5-11 Growth of T. hypogea with glycine.  

T. hypogea was grown anaerobically at 70oC in different media. Diamonds, the culture without extra 

carbohydrate added to the basal media; circles, the culture containing glycine; triangles, the culture 

containing glucose. 
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Figure 5-12 Growth of T. maritima with glycine.  

T. maritima was grown anaerobically at 80oC in different media. Diamonds, the culture without extra 

carbohydrate added to the basal media; circles, the culture containing glycine; triangles, the culture 

containing glucose. 

 

 



 

  120

5.5 DISCUSSION 

This is the first report of the presence of DLDH and its purification from hyperthermophiles. Both 

DLDH and NADH oxidase activities were detected in the cell-free extract of T. hypogea. They were 

all located in the cytoplasm (Table 5-1, Yang and Ma 2005a). Efforts were made to purify both 

enzymes from T. hypogea. However, both activities were always overlapped and the ratios of the 

NADH oxidase activity to DLDH activity were constant in the fractions during all purification steps 

(Table 5-2). Finally, the purified enzyme exhibiting both NADH oxidase and DLDH activities 

showed a single band on SDS-PAGE. Its NADH oxidase properties were reported previously (Yang 

and Ma 2005a) and in chapter 3 of this thesis. Its DLDH properties were determined and reported in 

this chapter. DLDH activity was similar in the cell-free extract of xylose grown cells (0.79±0.1 U/mg) 

and glucose grown cells (0.77±0.014 U/mg), while the DLDH gene in T. maritima was slightly 

differentially expressed in the cells grown on different sugars based on whole genome expression 

profile (Chhabra et al. 2003; Nguyen et al. 2004). 

 

The NADH-specific T. hypogea DLDH is a homodimeric FAD-containing protein with a molecular 

mass of about 100 kDa, which is similar to most of DLDHs isolated from different sources since this 

enzyme is conserved during evolution (Williams 1992). In contrast to the majority of DLDHs, a new 

type of DLDH isolated from some anaerobic glycine-utilizing bacteria diverges from classical 

enzyme in the aspects of molecular mass and nicotinamide-nucleotide specificity (Dietrichs and 

Andreesen 1990; Dietrichs et al. 1990; Freudenberg et al. 1989a). A homodimer with subunit 

molecular mass of 34.5 kDa has been isolated from E. acidaminophilum and this enzyme can use both 

NADPH and NADH with preference for NADPH in the reduction of lipoamide (Freudenberg et al. 

1989a). Like most DLDHs, it was demonstrated that the enzyme from T. hypogea catalyzed the 

reduction of lipoamide and the oxidation of dihydrolipoamide with neutral pH optima and exhibited 

high thermostability. The purified DLDH exhibited versatile catalytic capability including diaphorase 

activity by catalyzing the reduction of BV and MV with NADH as electron donor, oxidase activity by 

catalyzing the reduction of molecular oxygen with NADH as electron donor, and DLDH activity by 

reducing lipoamide and oxidizing dihydrolipoamide.  

 

The activity of the purified enzyme from T. hypogea increased along with the increase of NADH 

concentration up to 100 µM and the activity decreased dramatically when the NADH concentrations 
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were higher than 100 µM (Figure 5-8). The regulation of NADH on its activity is a feature of DLDH 

and is a widely observed phenomenon (Massey and Veeger 1961; Wilkinson and Williams 1981). 

Inhibition of DLDH by NADH is a feedback control for the regulation of enzyme complexes GDC 

and pyruvate dehydrogenase complex in vivo (Douce et al. 2001; Harmych et al. 2002; Kisaki et al. 

1971; Snoep et al. 1993). In addition to the regulation effect of NADH inhibition on GDC and 

pyruvate dehydrogenase complex activity, it has been reported that the NADH/NAD ratio is 

intimately related to the cellular level of reactive oxygen species (ROS) because pyridine nucleotides 

participate in both ROS formation via NAD(P)H oxidases and degradation via thiol oxidation using 

NADPH and thioredoxin and glutaredoxin-dependent peroxidases (Bunik 2003). 

 

Although genomes of Thermotogales species contain the genes encoding all the components of GDC, 

T. hypogea and T. maritima were unable to grow with glycine as sole carbon and energy source 

(Figure 5-11&Figure 5-12 ) and there are also no GDC activity detectable in the cell-free extract from 

glucose grown cells. The lack of such activity might result from the dissociation of components of the 

complex. In addition to GDC, glycine reductase is also required for utilizing glycine in enegy 

conservation because it produces acetyl phosphate, a substrate for ATP synthesis (Andreesen 1994; 

Barnard and Akhtar 1979). There was no glycine reductase homologues present in Thermotogales 

species, which may be one reason why T. maritima and T. hypogea were unable to use glycine as sole 

carbon and energy source. The growth with glycine was lower than the negative control that had same 

media composition except with glycine omitted. The possible role of GDC in T. hypogea is involved 

in the process of contribution to one carbon-pool in which the production of N5N10 -methylene-

5,6,7,8-tetrahydrofolate is needed. However, the presence of large amount of glycine might have 

consumed up all the tetrahydrofolate and made other reactions with tetrahydrofolate as cofactor 

unable to carry on, which may cause the inhibition effect of the glycine on growth. It is reasonable to 

conclude that the DLDH in T. hypogea has typical physical and catalytic properties of DLDHs and it 

is not involved in the glycine utilization process as glycine fermenting bacteria that can use glycine as 

sole carbon and energy source and not involved in pyruvate dehydrogenase complex in T. hypopgea. 

DLDH has also been found in halophilic archaeon, H. colcanii (Jolley at al. 2000). The pyruvate 

dehydrogenase and GDC activities were not detected in this organism and there was no difference 

found between the growth of wild type and DLDH-minus mutant with various substrates including 

glycine (Jolley et al. 1996). Further study is required to further understand the function of DLDHs in 

those non-glycine-fermenting and POR containing archaea and hyperthermophilic bacteria.  
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Chapter 6  FAD-linked sn-Glycerol-3-Phosphate 

Dehydrogenase of Thermotoga maritima 

 

 

 

A manuscript has been prepared for submission based on the work presented in this chapter. 
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6.1 ABSTRACT 

Thermotoga maritima is an anaerobic hyperthermophilic bacterium growing optimally at 80°C. It was 

found that glycerol could be used as sole carbon and energy source. The activity of FAD-linked 

glycerol-3-phosphate dehydrogenase (FAD-GPDH), a key enzyme involved in glycerol dissimilation, 

was detected in the cell-free extract. The enzyme was then purified using FPLC. The purified enzyme 

was reported as NADH oxidase previously in Chapter 4. The two subunits of the protein were 

identified to be encoded by TM1432 annotated as hypothetical protein with high similarity to 

glycerol-3-phosphate dehydrogenase (GPDH) and TM1433 annotated as hypothetical protein showed 

high similarity to NADH oxidase, respectively. Further analysis showed that TM1432 and TM1433 

were adjacent genes, which is similar to the gene organization of glpAB in Escherichia coli that 

encodes anaerobic FAD-GPDH, although the latter was not reported to have NADH oxidase activity. 

It was found that FAD-GPDH from T. maritima indeed could catalyze the sn-glycerol-3-phosphate 

(G-3-P)-dependent reduction of neo blue tetrazolium (NBT), a typical reaction catalyzed by FAD-

GPDH. This catalysis showed characteristics of Michaelis-Menten kinetics with an apparent Km value 

of 0.98 mM for sn-G-3-P and an apparent Vmax value of 14.7 U/mg at 50°C. It exhibited an optimal 

pH of 7.5. There was no activity of NAD-dependent GPDH, but glycerol kinase (2 mU/mg), found to 

be present in the cell-free extract of T. maritima. It is plausible to speculate that T. maritima possesses 

a functional glycerol dissimilation pathway involving the glycerol kinase and the FAD-GPDH whose 

end product, dihydroxyacetone phosphate, produced can enter the Embden-Meyerhof pathway. It was 

concluded that the heterodimeric NADH oxidase purified from T. maritima described in Chapter 4 

was a bi-functional flavoenzyme with FAD-GPDH activity, which is the first one characterized in 

hyperthermophiles. 
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6.2 INTRODUCTION 

Growth on glycerol as sole carbon and energy source has been reported from many types of yeast and 

some bacteria (Barnett et al. 1983; Lin 1976). It has been demonstrated that glycerol is utilized via a 

glycerol kinase (EC 2.7.1.30) converting glycerol to G-3-P, which is subsequently oxidized to 

dihydroxyacetone phosphate by an FAD-linked glycerol-3phosphate dehydrogenase (FAD-GPDH ) 

(EC 1.1.99.5). In some organisms, another type of glycerol-3-phosphate dehydrogenase (GPDH), 

NAD+-GPDH (EC 1.1.1.8) may also be present and catalyzes the reduction of dihydroxyacetone 

phosphate to glycerol-3-phosphate (G-3-P) with NADH as reducing equivalent (Daiyasu et al. 2002). 

FAD-GPDHs are mainly isolated and characterized from mitochondria of eukaryotes (Cole at al. 

1978; Larsson et al. 1998; Shen et al. 2003). From bacteria sources, the enzyme has only been 

purified and characterized from Escherichia coli (Schryvers et al. 1978; Schryvers and Weiner 1981). 

The gene encoding FAD-GPDHs have been identified in E. coli (Cole et al. 1988), Bacillus subtilis 

(Lindgren and Rutberg 1974; Wiame et al. 1954) and Pseudomonas aeruginosa (Schweizer and Po 

1994). E. coli contains two different FAD-GPDHs. One enzyme is expressed during aerobic growth 

called aerobic FAD-GPDH that is a membrane-bound homodimeric flavoprotein (Schryers et al. 

1978). The other FAD-GPDH is not membrane-bound and expressed under anaerobic growth 

conditions composed of two types of subunits, 62 and 43 kDa (anaerobic FAD-GPDH; Schryvers and 

Weiner 1981). Both FAD-GPDHs carry out the same reaction in the cell, the oxidation of sn-G-3-P to 

dihydroxyacetone phosphate. 

 

Thermotoga maritima is an anaerobic bacterium with an optimum growth temperature at 80oC (Huber 

et al. 1986). T. maritima employs fermentative metabolism converting carbohydrates to pyruvate via 

Embden-Meyerhof (85%) and Enter-Doudoroff (15%) glycolytic pathways (Selig et al. 1997). It was 

found that T. maritima can tolerate trace amounts of oxygen and its cell-free extract had an NADH 

oxidase activity of 1.0 U/mg (Yang and Ma 2007). The NADH oxidase has been purified to 

homogeneity, which was a heterodimeric flavoprotein with two subunits with molecular mass of 54 

and 46 kDa. In this chapter, we report that the sequence analysis of the purified T. maritima NADH 

oxidase and characterization of its FAD-GPDH activity, which is the first one studied from 

hyper/thermophiles and strict anaerobes. 
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6.3 MATERIALS AND METHODS 

6.3.1 Growth of T. maritima 

T. maritima was cultured routinely as described in chapter 4 (4.3.2 Growth of T. maritima). For 

determining the effect of oxygen in the growth media on the activity of both FAD-GPDH and NADH 

oxidase, T. maritima was grown anaerobically in the media without cysteine (500 ml liquid medium, 

650 ml gas phase). At late log-phase, 0, 12, 30, 65, or 130 ml pure oxygen was added to each bottle 

after the pressure in the bottle was released to bring oxygen concentration to 0, 1.8, 4.6, 10, or 20%. 

One bottle was flushed with pure oxygen. The bottles were continued to be incubated at 80oC for 

another 2 hours. After the bottles were cooled down, the cells were harvested and used for preparing 

cell-free extract to determine activities of FAD-GPDH and NADH oxidase. 

 

6.3.2 Enzyme assays 

NAD+-dependent GPDH activity was measured anaerobically at 80oC by monitoring the G-3-P or 

dihydroxyacetone phosphate-dependent absorbance change of NADH at 340 nm (Kito and Pizer 

1969; van Eys et al. 1959).  The oxidation of G-3-P was carried out with the assay mixture (2 ml) 

containing varied amount of T. maritima cell-free extract or purified enzyme,  1.2 mM NAD+ and 3.0 

mM α-glycerol phosphate or sn-G-3-P in pH 7.5, 100 mM sodium phosphate or pH 9.5, 100 mM 

glycine-NaOH buffer. The reduction of dihydroxyacetone phosphate was carried out in the assay 

mixture (2 ml) containing varied amount of T. maritima cell-free extract or purified enzyme, 0.25 

mM NADH, 1 mM dihydroxyacetone phosphate in 100 mM sodium phosphate buffer (pH 7.0) . One 

unit of GPDH activity was defined as 1 µmol NADH formed or oxidized per min. FAD-GPDH assay 

was carried out at 50oC by monitoring the increase of absorbance at 570 nm of neo blue tetrazolium 

(NBT) diformazan (ε570nm=26 mM-1cm-1, Kern et al. 1999; Kistler and Lin 1972). Since four electrons 

are required to reduce NBT to NBT diformazan, the formation of one mol NBT diformazan will need 

two mols of G-3-P. The assay mixture contained 0.6 mM NBT, 0.4 mM phenazine methosulfate 

(PMS), and 3 mM G-3-P in 2 ml pH 7.0, 100 mM sodium phosphate buffer. One unit of FAD-GPDH 

activity was defined as 1 µmol G-3-P oxidized per min. The oxidase activity of FAD-GPDH was 

detected in aerobic pH 7.0, 100 mM sodium phosphate buffer containing 3 mM sn-G-3-P and cell-

free extracts or purified enzyme at 50oC. After the reaction mixture cooled down, H2O2 was measured 

with ABTS method (Yang and Ma 2005) and dihydroxyacetone phosphate was measured with 
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commercial rabbit muscle NAD+-GPDH assay (Kito and Pizer 1969). Glycerol kinase was 

determined via FAD-GPDH (the activity present in T. maritima cell-free extract) by measuring the 

formation of H2O2 (method A) or dihydroxyacetone phosphate (method B). In method A, the reaction 

mixture containing 1 mM ATP, 3 mM glycerol, 0.7 mg T. maritima cell-free extract, 1 mM MgCl2 in 

pH 7.5, 100 mM sodium phosphate buffer was incubated at 80oC for 10 min anaerobically to let G-3-

P accumulate. Then the stopper was open and the anaerobic cuvett was shaken vigoursly to let the 

solution become aerobic. The mixtures were incubated for 5 min after 0.7 mg cell-free extract was 

added. After the mixtures cooled down, hydrogen peroxide was detected. The negative control was 

without glycerol added in the first incubation step and followed all the other procedures. In method B, 

the same condition was used as in method A except that after the reaction cooled down, rabbit muscle 

NAD+-GPDH and NADH were added to half of the assay mixture to detect the presence of 

dihydroxyacetone phosphate. The decrease of the absorbance at 340 nm was monitored at 30oC. The 

control with only NADH added to the other half of the reaction mixture was performed in the same 

way.  

 

6.3.3 Purification of FAD-GPDH 

The enzyme was purified as described in Chapter 4 (4.3.4 Enzyme purification). 

 

6.3.4 Iron and acid labile sulfur determination 

The enzyme sample in Buffer A was concentrated and washed with freshly prepared anaerobic Tris-

HCl buffer (pH 7.8, 10 mM) containing 2 mM DTT in the anaerobic chamber and ambient air using 

Microcon YM-10 (Millipore, MA, USA) to remove SDT that would interfere with metal 

determination. The oxygen level in the anaerobic chamber was about 1.4 ppm when the experiment 

was carried out. 100 µg of the resulting samples (both aerobic and anaerobic) were used for metal 

analysis using Inductively Coupled Plasma–Mass Spectrometer (VG Elemental PlasmQuad 3 ICP-

MS at the Chemical Analysis Laboratory, University of Georgia, USA). The same set of protein 

samples was used for acid labile sulfur determination using methylene blue formation method 

described previously (Beinert 1983). Subsequently, 300 µl freshly prepared 1% zinc acetate and 15 µl 

12% NaOH were added to 100 µl enzyme sample. 75 µl freshly prepared 0.1% N, N-dimethyl-p-

phenylenediamine (DMPD) monohydrochloride in 5.5 N HCl and 30 µl 47 mM FeCl3 in 1.2 N HCl 
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were added to the mixture. After incubation at room temperature for 30 min, the samples were 

centrifuged for 15 min at 10,000xg to remove protein. The absorbance at 670 nm of the resulting 

supernatant was measured. The molar absorbance of 34.5 mM-1 cm-1 was used to calculate the amount 

of methylene blue formed which is equal to the amount of H2S present in the sample (Beinert 1983). 

 

6.3.5 Gene identification and sequence analysis 

Each of the two bands on SDS-PAGE was cut and digested in-gel with the method modified from 

Schevchenko (Shevchenko et al. 1996). Protein samples from each of the two subunits on SDS-PAGE 

were excised with scalpel and cut into small cubes in flowhood. The gel pieces were destained with 

50 mM NH4HCO3/50% acetonitrile (ACN) (2x10 min) after they were washed three times with 

HPLC grade water by vortexing. The gels were dehydrated with 100 µl 100% ACN (2x5min). 

Subsequently, proteins were reduced by incubation with 100 µl of 10 mM DTT in 100 mM NH4HCO3 

at 50oC for 30 min, dehydrated with 100 µl 100% ACN and alkylated by incubating with 100 µl 55 

mM iodoacetamide (IAA) in 100 mM NH4HCO3 for 30 min in dark.  Then, the gels particles were 

washed with 100 µl 100% ACN and air-dried. For the digestion of the proteins with trypsin, the gel 

particles were rehydrated for 10 min in a trypsin solution to bring a ratio to approximately 1:100 to 

1:1000 (W/W) of trypsin: protein. Then 50 µl of 50 mM NH4HCO3 was added to the gel pieces and 

the proteins were digested at 37oC for 16-18 hours. The mixture was bath-sonicated for 10 min after 

50 µl of ultra-pure water was added. The supernatant was removed to a collecting tube, which 

contained 5 µl of 50% formic acid (FA) in 50% ACN. The gels were washed once with 75 µl of 5% 

FA in 50% ACN. The supernatant was combined. The volume in the collecting tube was reduced to 

10-15 µl in a Speedvac. The resulting samples were cleaned using the C-18 ZipTip system 

(Millipore). 2 µl of 1% FA was added to the cleaned sample to protonate the peptides and the 

resulting samples were applied for mass spectrometry analyses (Mass Spectrometry Facility at the 

University of Waterloo on a Waters Micromass Q-TOF Ultima using nano-spray injection as the 

sample delivery method). PEAK software (BSI, Waterloo, ON) was used for MS/MS profiling. 
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6.4 RESULTS 

6.4.1 Growth and FAD-GPDH activity 

It was found that there was FAD-GPDH activity (0.15 U/mg) in the cell-free extract of T. maritima. 

In addition to FAD-GPDH that converts G-3-P to dihydroxyacetone phosphate, glycerol kinase can 

also be required for any organism that dissimilates glycerol (Kistler and Lin 1972). Glycerol kinase 

was detected to be 2 mU/mg in the cell-free extract of T. maritima by determining the formation of 

both H2O2 and dihydroxyacetone phosphate when the assay mixture contained only glycerol and cell-

free extract, while there was neither of the two products detectable in the control omitting glycerol 

supplied. Therefore, T. maritima has the potential to grow with glycerol as sole carbon and energy 

source, which was verified (Ronholm and Ma 2006). Since NADH oxidase activity in T. maritima 

exhibited oxygen induction and oxygen sensitivity as described in Chapter 4 (4.4.7 Oxygen 

sensitivity), FAD-GPDH was examined for these properties as well.  FAD-GPDH and NADH 

oxidase activities from cells being exposed to certain oxygen concentration for 2 hours showed the 

same pattern of increase and decrease when the cells grew at their late log-phase (Figure 6-1). Both 

enzyme activities were increased along with the increase of oxygen concentration up to 5% in the gas 

phase, and started to decrease when the oxygen concentration was higher than 5%.  

 

6.4.2 Purification of FAD-GPDH 

FAD-GPDH was purified by monitoring NADH oxidase activity (Table 4-1). It was a heterodimeric 

protein with two subunits of 54 and 46 kDa as described in Chapter 4 (Figure 4-2).  

 

6.4.3 Properties of T. maritima FAD-GPDH 

Acid labile sulfur and iron contents were measured using methylene blue formation (Beinert 1983) 

and ICP-MS, respectively. The purified enzyme contained 2.0 g-atoms of acid labile sulfur and 2.2 g-

atoms of iron per mol, which confirmed the presence of a [2Fe-2S]-cluster as predicted based on the 

sequence analysis described later in this chapter (6.4.4 Gene identification and sequence analysis). 

This type of [2Fe-2S]-cluster can have low redox potential of -254 mV (Quail et al. 1996), which may 

be subject to damage by exposure to oxygen. 
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Figure 6-1 Activities of FAD-GPDH and NADH oxidase in the cell-free extract of T. maritima 

exposed to oxygen in the growth media.  

Oxygen was added to the late log-phase T. maritima to bring oxygen concentration in the gas phase 

from 0 to 100% and incubated for another two hours. FAD-GPDH and NADH oxidase assays were 

performed for the cell-free extracts resulted from cells exposed to different level of oxygen. Filled 

bars, FAD-GPDH; open bars, NADH oxidase. 
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The iron content of T. maritima FAD-GPDH is similar to that of anaerobic FAD-GPDH in E. coli 

(Schryvers and Weiner 1981). 

 

The purified T. maritma FAD-GPDH exhibited a specific activity of 11.9 U/mg when it catalyzed the 

PMS mediated reduction of NBT with sn-G-3-P as substrate at 50oC, which was 28% of its NADH 

oxidase activity (42.4 U/mg) at the same assay temperature. The optimal pH for T. maritima FAD-

GPDH was determined to be 7.5 (Figure 6-2), which is a common feature for all the FAD-GPDH 

(Kistler and Lin 1972; Ringler 1961; Shen et al. 2003). Since PMS and NBT are not stable at alkaline 

condition, all later assays were carried out at pH 7.0, which is the close activity to 7.5. The activity of 

FAD-GPDH was dependent on sn-G-3-P concentrations. The data were fitted to Michaelis-Menten 

kinetics using SigmaPlot10. The catalysis followed Michealis-Menten kinetics. The apparent Km and 

Vmax values were determined to be 0.98 mM and 14.7 µmol mg-1 min-1 (Figure 6-3). In addition to 

dehydrogenase activity, T. maritima FAD-GPDH could also oxidize sn-G-3-P with molecular oxygen 

and the products of this reaction were identified to be hydrogen peroxide and dihydroxyacetone 

phosphate using ABTS method and rabbit muscle NAD+-GPDH, respectively.  

 

The oxygen sensitivity of the purified FAD-GPDH was also examined. It was found that the 

dehydrogenase activity of FAD-GPDH was more resistant to oxygen inactivation compared to that of 

sn-G-3-P oxidase and NADH oxidase activities (Figure 6-4). There was a quick loss of activity (30%) 

when the enzyme sample was exposed to air in the first hour, then the residual activity remained at 

60% for at least 24 hours. It was speculated that substrates may provide protection against oxygen 

damage, so the stabilization effect of sn-G-3-P on FAD-GPDH was tested. However, the presence of 

such substrate would interfere with the assay, therefore, NADH oxidase activity was measured as an 

indicator of the residual activity. Results showed that sn-G-3-P did not have protective effect on the 

oxygen sensitivity of T. maritima FAD-GPDH (Figure 6-5). The enzyme lost its NADH oxidase 

activity at the same rate as that of no sn-G-3-P present. 

 

6.4.4 Gene identification and sequence analysis 

Protein samples from each of the two subunits T. maritima FAD-GPDH on SDS-PAGE were treated 

and analyzed with mass spectrometry (Table 6-1).  The results revealed that the large subunit (54 kDa) 
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Figure 6-2 pH dependency of T. maritima FAD-GPDH activity.  

The assay was carried out at 50oC as described in section 6.3.2 with different buffers. Buffers used: 

100 mM sodium phosphate, pH 6.0-8.0; 100 mM glycine-NaOH, pH 8.8-10.0. 
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Figure 6-3 Dependency of FAD-GPDH activity on sn-G-3-P concentration.  

The reactions were carried out at 50oC with standard assay system by varying the concentration of sn-

G-3-P from 0-7.5 mM. The data were fitted to Michaelis-Menten kinetics using SigmaPlot 10.  
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Figure 6-4 Oxygen sensitivity of T. maritima FAD-GPDH and NADH oxidase.  

FAD-GPDH (diamnods), oxidase activity of GPDH (GPO; squares), and NADH oxidase activity 

(circles) activities were tested for the purified T. maritima NADH oxidase sample exposed to air at 

different time intervals. 
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Figure 6-5 Effect of sn-G-3-P on the oxygen sensitivity of the T. maritima FAD-GPDH.  

Enzyme sample in 1 mM sn-G-3-P in Tris-HCl buffer (pH 7.8, 50 mM, 5% glycerol; diamonds), 1 

mM sn-G-3-P and 2 mM SDT and DTT in Tris-HCl buffer (circles), or only in Tris-HCl buffer 

(squares) was exposed to air. NADH oxidase activity was measured at different time intervals. 
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Table 6-1 Gene identification 

 

Peptide 

sequences 

LPYAGGLLR 

VDEQFRPIPR 

GVGVSNIGQTSR 

AKEEGAEVLLVERDER 

EFEDLVPSEMLR 

SPGLTAAPAVAK 

YVVEELIQEK 

IGSFVVAFNDEELKELER 

Sequence 

coverage 

(%) 

17.37 8.35 

Score (%) 97.95 71.71 

Accession 

number 

TM1433 TM1432 

Annotated 

name 

Conserved hypothetical 

protein 

 

Hypothetical protein 

Apparent 

Mr (kDa) 

46 54 

Calculated 

Mr
 (Da) 

44861 53628 
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and small subunit (46 kDa) were the products of T. maritima genes TM1432 and TM1433, 

respectively (Nelson et al. 1999). A conserved flavin-binding site (-GXGX2GX3A-) was present at the 

N-terminus of each protein encoded by the genes, which is consistent with the experimental value of 

~2 FAD moieties per native enzyme (4.4.3 Flavin cofactor). A conserved NAD(P) binding site 

(GXGX2GX3A) was present in the middle of TM1433. In addition, a bacterioferritin-associated 

ferredoxin (BFD)-like binding region (-CXCX32CX4C-) was found to be present near the C-terminus 

of the large subunit (TM1432), which presumably binds a [2Fe-2S] cluster. BLAST search was 

performed for both subunits and the results showed that they had 41-94% protein sequence identity 

and 59-96% protein sequence similarity to genes (locus tag numbers) present in anaerobes (Table 6-

2&Table 6-3), which are, TpetDRAFT_0258 and TpetDRAFT_0257 in Thermotoga petrophila 

(http://img.jgi.doe.gov/cgi-

bin/pub/main.cgi?section=TaxonDetail&page=proteinCodingGenes&taxon_oid=639857041), 

FnodDRAFT_1202 and FnodDRAFT_1201 in Fervidobacterium nodosum 

(http://genome.ornl.gov/microbial/fnod/),  TmelDRAFT_1688 and TmelDRAFT_1689 in 

Thermosipho melanesiensis 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=genome&dopt=Protein+Table&li

st_uids=5600), TK1393 and TK1392 in Thermococcus kodakaraensis (Fukui et al. 2005), PF2005 

and PF 2006 in Pyrococcus furiosus (Robb et al. 2001a), PAB0183 and PAB0184 in Pyrococcus 

abyssi (Cohen et al. 2003), TTE2001 and TTE2000 in Thermoanaerobacter tengcongensis (Bao et al. 

2002), Teth39DRAFT_0751 and Teth39DRAFT_0752 in Thermoanaerobacter ethanolicus 

(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AAKQ00000000), CsacDRAFT_2355 and 

CsacDRAFT_2356 in Caldicellulosiruptor saccharolyticus 

(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AALW00000000), CA_C1322 and CA_C1323 

in Clostridium acetobutylicum (Nölling et al. 2001), CbeiDRAFT_3784 and  

CbeiDRAFT_3783 in Clostridium beijerinckii  

(http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AALO00000000), CPE2551 and CPE2550 in 

Clostridium perfringens (Shimizu et al. 2002), CTC_02436 and CTC_02435 in Clostridium tetani 

(Brüggemann et al. 2003). These pairs of genes were found to be organized as adjacent open reading 

frames within a putative operon in the genome, and the big subunit was generally annotated as either 

hypothetical protein or GPDH and the small subunit was annotated as FAD-dependent oxidoreductase 

or NADH oxidase. However, none of them has been characterized.  
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Table 6-2 Comparison of the sequence of TM1432 (big subunit) with homologues in the 

genomes of other anaerobes 

 

Microorganisms Locus tag Annotated 

name 

Length 

(aa) 

Identity 

(%) 

Similarity 

(%) 

Optimal 

growth 

(oC) 

T.  maritima TM1432 Hypothetical 

protein 

479 100 100 80 

Thermotoga 

petrophila 

TpetDRAFT_0258 FAD OR a 479 94 96 80 

Fervidobacterium 

nodosum 

FnodDRAFT_1202 FAD OR 480 63 75 65-70 

Thermosipho 

melanesiensis 

TmelDRAFT_1688 FAD OR 478 57 72 70 

Pyrococcus furiosus PF2005 GPDH 496 46 63 100 

Thermococcus  

kodakaraensis 

TK1393 GPDH 496 46 62 85 

Pyrococcus abyssi PAB0183 GPDH 497 44 62 100 

Thermoanaerobacter  

tengcongensis 

TTE2001 Predicted 

DH b 

498 43 61 75 

Thermoanaerobacter  

ethanolicus 

Teth39DRAFT 

_0751 

FAD 

dependent 

OR 

502 43 61 65 

Clostridium  

perfringens 

CPE2551 Probable GP 

DH 

476 42 61 43-47 

 
a FAD OR stands for probable FAD-dependent oxidoreductase. 
b DH stands for dehydrogenase. 
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Table 6-3 Comparison of the sequence of TM1433 (small subunit) with homologues in the 

genomes of other anaerobes 

 

Microorganisms  Locus tag Annotated name Length 

(aa) 

Identity 

(%) 

Similarity 

(%) 

Optimal 

growth 

(oC) 

T.  maritima TM1433 OR a 403 100 100 80 

T. petrophila TpetDRAFT_0257 FAD PDOR b 403 89 90 80 

F. nodosum FnodDRAFT_1201 FAD PDOR 412 52 72 65-70 

T. melanesiensis TmelDRAFT_1689 FAD PDOR 406 46 61 70 

C.  perfringens CPE2550 Probable OR 417 44 63 43-47 

P. abyssi PYRAB02700 NADH oxidase 407 42 60 100 

T.  kodakarensis TK1392 NADH oxidase 413 42 61 85 

T.  ethanolicus Teth39DRAFT 

_0752 

FAD-OR 419 42 59 65 

T.  tengcongensis TTE2000 (HcaD2) NAD(FAD)- 

DH c 

419 42 59 75 

P. furiosus PF2006 NADH oxidase 413 41 60 100 

 
a OR stands for oxidoreductase. 
b FAD PDR stands for FAD-dependent pyridine nucleotide disulfide oxidoreductase. 
c DH stands for dehydrogenase. 
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No NADH-dependent dihydroxyacetone phosphate reduction or NAD+-dependent sn-G-3-P oxidation 

activity was detected using both of the purified enzyme and T. maritima cell-free extract at pH 7.0 or 

9.5. Further sequence analysis and literature search were performed to see if there was any clue to 

indicate any activity for the purified T. maritima FAD-GPDH. It was found that the gene organization 

was also similar to the genes encoding anaerobic FAD-GPDH in E. coli (Blattner et al. 1997), i.e. a 

big flavin- and iron-containing subunit (glpA), a medium flavin-containing subunit, and a third iron-

sulfur binding domain-containing subunit that did not appear in the purified enzyme (Cole at al. 1988; 

Nelson et al. 1999). The big subunit (TM1432) showed 42% similarity and 22% identity to the 

sequence of the big subunit of of E. coli FAD-GPDH encoded by glpA. Sequence comparison showed 

that T. maritima NADH oxidase and E. coli FAD-GPDH belonged to different subgroups of the 

FAD-GPDHs, i.e. the T. maritima enzyme was in the group of enzymes from hyper/thermophilic 

anearobes (Figure 6-6&Figure 6-7). Therefore, based on activity verification, i.e. the reduction of 

NBT mediated by PMS with sn-G-3-P as substrate, and gene sequence analysis, it is reasonable to 

conclude that the purified FAD-GPDH was bifunctional. It had activities of both NADH oxidase and 

FAD-GPDH. 
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0.1

Haloarcula marismortui A
Propionibacterium acnes A
Lawsonia intracellularis A

T. maritima TM1432
Pyroccocus abyssi A
Pyrococcus furiosus A
Thermococcus kodakaraensis A
Clostridium perfringens A
Clostridium beijerincki A
Clostridium acetobutylicum A

Alcanivorax borkumensis D
Burkholderia mallei D
Erwinia carotovora D
Escherichia coli D
Salmonella enterica D
Pseudomonas aeruginosa D

Acinetobacter sp D
Bartonella henselae D
Brucella suis D
Lactobacillus plantarum D

Staphlococcus aureus D
Bacillus subtilis D
Bacillus cereus D

Desulfovibrio vulgaris A
Photobacterium Profundum A
Haemophilus ducreyi A
Erwinia carotovora A
Escherichia coli A
Salmonella enterica A
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Figure 6-6 Sequence comparison of the big subunit of T. maritima NADH oxidase TM1432 with 

the big subunit of the anaerobic FAD-GPDH (A) and aerobic FAD-GPDH (D).  

The sequences were aligned using the CLUSTAL W method and a phylogenetic tree was constructed 

(Higgins and Sharp 1988). The tree was viewed and edited with Tree View (Page 1996). 
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0.1

L. intracellularis glpB

P. profundum glpB

H. ducreyi glpB

E. carotovora glpB

E. coli glpB

S. enterica glpB

P. furiosus PF2006

T. maritima TM1433

C. perfringens CPE2550

C. beijerincki CeiDRAFT 3783

C. acetobutylicum CAC1323

P. abyssi PAB0184

T. kodakaraensis TK1392

A. fulgidus NOX4

T. Kodakaraensis NOX

P. furiosus NOX

P. abyssi NoxA-2

P. horikoshii NOX

C. hydrogenoformans glpB

H. marismotui glpB

P. acnes glpB

D. vulgaris glpB
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Figure 6-7 Sequence comparison of the small subunit of T. maritima NADH oxidase (TM1433) 

with the small subunit of anaerobic FAD-GPDH (glpB), NADH oxidases (NOX), and their 

homologues (named with locus tags).  

The sequences were aligned using the CLUSTAL W method and a phylogenetic tree was constructed 

(Higgins and Sharp 1988). The tree was viewed and edited with Tree View (Page 1996). 
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6.5 DISCUSSION 

The organization of the two genes encoding the two subunits of T. maritima NADH oxidase showed 

very similar pattern to some putative GPDH/oxidoreductase in hyper/thermophilic anaerobes (Table 

6-2&Table 6-3). None of these predicted enzymes has been characterized yet. Further sequence 

analysis showed that this is a subgroup of anaerobic FAD-GPDH (Figure 6-6&Figure 6-7). The only 

anaerobic FAD-GPDH characterized is that from E. coli (Schryvers and Weiner 1981). TM1432 

showed 22% identity and 42% similarity to E. coli glpA, which encodes the big subunit of anaerobic 

FAD-GPDH, while TM1433 did not show any significant similarity to the E. coli glpB. E. coli glpA 

showed similarity not only to TM1432, but also 22-23% identity and 39-42% similarity  to PF2005 in 

P. furiosus, TK1393 in T. kodakaraensis and glpA in P. abyssi, which are annotated as encoding gene 

of the big subunit of anaerobic FAD-GPDH. glpB of E. coli did not show significant similarity to any 

gene in hyperthermophiles. Unlike TM1433 and its hyperthermophilic homologues, glpB of E. coli 

does not have a conserved NAD(P) binding domain in the middle of its amino acid sequence. The 

FAD-GPDH homologues in hyperthermophiles carries NAD(P) binding site in their small subunit and 

represents a new type of FAD-GPDH, represented by the purified one from T. maritima. They may 

have NADH oxidase activity besides their FAD-GPDH activity, like the enzyme from T. maritima 

and are likely to be multifunctional enzymes.  

 

The first step of glycerol utilization is the phosphorylation of glycerol to G-3-P. Subsequently, G-3-P 

could be converted to dihydroxyacetone phosphate, which would be converted to pyruvate then 

further oxidized to acetate and coupled to energy conservation. There would be two net ATPs, one 

NADH, and two reduced ferredoxins produced from one glycerol to acetate in T. maritima (Schröder 

et al. 1994). The growth of T. maritima using glycerol as sole carbon source was observed in our 

laboratory (Ronholm and Ma 2006). It was reported that Thermotoga neapolitana could use both DL-

α-glycerol phosphate and glycerol as carbon source (Van Ooteghem et al. 2004), but there were no 

report about the enzymes involved. T. maritima FAD-GPDH exhibited an optimal pH of 7.5, which is 

a characteristic feature of FAD-GPDHs studied to date when tetrazolium dye is used as the electron 

acceptor (Kistler and Lin 1972; Ringler 1961). In contrast, the NAD+-GPDH requires a higher pH at 

9.5 for maximal activity (Kito and Pizer 1969; Shen et al. 2003).  
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The growth of E. coli with glycerol under anaerobic conditions requires fumarate added (Kistler and 

Lin 1972). Anaerobic FAD-GPDH and fumarate dehydrogenase in E. coli form a complex that can 

catalyze the dehydrogenation of G-3-P without any added cofactor (Lin 1976; Miki and Lin 1973).  

Whether exogenous electron acceptor that may serve as the electron acceptor for FAD-GPDH and 

hence stimulates the growth of T. maritima on glycerol requires further study. FAD-GPDH is 

essential for the catabolism of glycerol.  It was reported that E. coli mutant lacking glpD encoding 

aerobic FAD-GPDH or glpA encoding anaerobic FAD-GPDH could not grow with glycerol as sole 

carbon source like the wild type (Lin 1976). The glpD deficient B. subtilis could not grow on glycerol 

either (Lindgren and Rutberg 1974). Therefore, besides its role in oxygen defensive system (Yang 

and Ma 2007), T. maritima FAD-GPDH may also play an important role in the glycerol dissimilation 

in T. maritima cells. 
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Chapter 7  Purification and Characterization of 

Thioredoxin Reductase and Thioredoxin from 

Hyperthermophilic Bacterium Thermotoga maritima 

 

 

 

A manuscript has been prepared for submission based on the work presented in this chapter. 
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7.1 ABSTRACT 

The cell-free extract of Thermotoga maritima was found to have a high BVOR activity, which is a 

normal catalytic property of FNOR. An enzyme was purified to homogeneity from T. maritima cell-

free extract using FPLC system by following BVOR activity.  The purified enzyme was a 

homodimeric flavoprotein with a subunit of 37 kDa revealed by SDS-PAGE. Based on peptides mass 

fingerprints, this protein was identified to be NP_228678 (TrxB), which was annotated as thioredoxin 

reductase (TrxR) in T. maritima. The protein sequence showed high identities and similarities to 

typical bacterial TrxRs with molecular weight around 35 kDa. The purified enzyme catalyzed the 

reduction of BV preferably with either NADH or NADPH as electron donor. Its catalytic properties 

showed characteristics of Michaelis-Menten kinetics with an apparent Vmax value of 1111 µmol 

NADH oxidized min-1 mg-1. The apparent Km values were determined to be 89 and 73 µM for BV and 

NADH, respectively.  When NADH was used as electron donor it exhibited high activity within a 

broad pH range and maximum activity with 100 mM, glycine buffer at pH 9.5. When NADPH used 

as electron donor, the optimal pH was found to be 6.5 and the Km and Vmax values were determined to 

be 0.78 mM and 115 U/mg, respectively. The BVOR activity elevated along with the increasing of 

temperature up to 95°C. This enzyme exhibited very high thermostability, similar to other TrxRs. 

More than 60% of the activity remained after incubation for 28 hours at 80oC, which is the optimal 

growth temperature of T. maritima. Thioredoxin (Trx) was also purified to homogeneity following 

the DTT-dependent reduction of insulin. The purified Trx was a monomer with molecular weight of 

31 kDa revealed by SDS-PAGE. The single band on SDS-PAGE was identified to be glutaredoxin 

(Grx)-like protein by mass spectrometry. Trx exhibited both insulin reduction and thiotransferase 

activity. It was found that the purified T. maritima TrxR and Trx could act as NAD(P)H-dependent 

protein disulfide reductase system for the reduction of insulin and DTNB. This is the first Trx-TrxR 

system described in hyperthermophilic bacteria. 
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7.2 INTRODUCTION 

Thermotoga maritima is a hyperthermophilic anaerobic bacterium capable of growing at 90°C. It 

utilizes carbohydrates and cell extract as energy and carbon sources, and produces H2, CO2 and 

acetate (Huber et al. 1986). During fermentation, reduced ferredoxin and NADH are produced as the 

major reducing equivalent and eventually used by hydrogenase to produce hydrogen in order to get 

fermentation going (Schröder et al. 1994). FNOR, a bridge enzyme to shuttle between one electron 

and two electron carrier, was detected in T. maritima and T. neapolitana by following BVOR activity 

assay (Käslin et al. 1998; Schröder et al. 1994). There is no FNOR reported from hyperthermophilic 

bacteria yet.  

 

In contrast to the oxidized environment in the cell surface, the inside of the cell is kept reduced and 

proteins contain many free sulfhydryl groups and disulfides are rare (Arnér and Holmgren 2000; 

Gilbert 1990). Disulfide bonds in protein are very important either as structural features to stabilize 

protein or part of catalytic cycles (Ritz and Beckwith 2001). The major ubiquitous disulfide reductase 

responsible for maintaining proteins in their reduced state is Thioredoxin (Trx), which is reduced by 

thioredoxin reductase (TrxR) using NADH or NADPH as electron donor in archaea, bacteria, and 

eukaryotes (Bindoli and Rigobello 2002; Hirt et al. 2002; Holmgren 1985). TrxRs are enzymes 

belonging to the flavoprotein family of pyridine nucleotide-disulfide oxidoreductase including 

lipoamide dehydrogenase, mercuric reductase, glutathione reductase, and NADH oxidase (Williams 

1992). TrxRs can reduce oxidized Trxs, a group of small (10-12 kDa) peptides that can supply 

reducing equivalents to ribonucleotide reductase, thioredoxin peroxidase and certain transcription 

factors through thiol-disulfide exchange (Figure 7-1; Baker et al. 1997; Chae et al. 1994; Laurent et 

al. 1964). The study of Trx-TrxR system in hyperthermophilic microorganisms is not as extensive as 

that in the mesophiles and some distinct properties have shown up. The Trx from Aeropyrum pernix 

is 37 kDa, several times bigger than the conventional Trx and the TrxR has different substrate 

spectrum to other TrxR characterized from microbial sources (Jeon and Ishikawa 2002). Based on the 

sizes, TrxRs can be classified in to two types: one type with high molecular weight (~55 kDa, 

designated H-TrxR) and containing selenocysteine characterized from animals and protozoan malaria 

parasite (Gladyshev et al. 1996; Tamura and Stadtman 1996); the other type with low molecular 

weight (~35 kDa, designated L-TrxR) characterized from archaea, bacteria, and lower eukarya (Hirt  
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Figure 7-1 General reactions and functions of TrxR in the cell (Modified from Mustacich and 

Powis 2000).  

TrxR utilizes NADPH to reduce oxidized (ox.) Trx or ascorbate into reduced (red.) Trx and ascorbate, 

respectively. Reduced Trx then provides reducing equivalents to (i) Trx peroxidase, which breaks 

down H2O2 to water, (ii) ribonucleotide reductase, which reduces ribonucleotides to 

deoxyribonucleotides for DNA synthesis, and (iii) transcription factors, which leads to their increased 

binding to DNA and altered gene transcription. In addition to the above functions, Trx increases cell 

growth and inhibits apoptosis. 
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et al. 2002). These two groups have distinct amino acid sequences and catalytic mechanisms. H-

TrxRs are related to glutathione reductase, tryptophane reductase, mercuric reductase, and lipoamide 

dehydrogenase, while the L-TrxRs are related to the alkyl hydroperoxide reductase F52A (AphF) 

(Poole et al. 2000). TrxR has been characterized from hyperthermophilic archaea, Pyrococcus 

horikoshi (Jeon and Ishikawa 2002), Aeropyrum pernix (Kashima and Ishikawa 2003), and Sulfolobus 

solfataricus (Ruocco et al. 2004). The study indicates that TrxRs are involved in redox regulation and 

oxidative stress defence systems. There is no Trx-TrxR system known in hyperthermophilic bacteria 

yet. Here we report the purification and characterization of TrxR and Trx from T. maritima. 
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7.3 MATERIALS AND METHODS 

7.3.1 Organism and chemicals 

T. maritima (DSM3109) was obtained from the Deutsche Sammlung von Mikroorganismen and 

Zellkulturen, Braunschweig, Germany. All chemicals were from commercially available products 

except dihydrolipoamide was prepared by reduction of dl-lipoamide with sodium borohydride (Reed 

et al. 1958). Details were described in Chapter 4 (4.3.1 Organism and chemicals). 

 

7.3.2 Growth of T. maritima 

T. maritima was cultured at 80°C in a 15 L carboy in a medium modified from that of Huber (Huber 

et al. 1986). The detailed composition of the media was described in Chapter 4 (4.3.2 Growth of T. 

maritima). The cells were harvested by centrifugation at 13,000xg and the cell pellet obtained was 

frozen at -80oC until use. 

 

7.3.3 Enzyme assays and protein determination 

BVOR activity was determined in an anaerobic glass cuvette by monitoring the NADH-dependent 

BV reduction spectrophotometrically at 580 nm (ε580=8.8 mM-1cm-1) at 80oC (Ma and Adams 1994). 

The assay mixture (2 ml) contained 1 mM BV and 0.2 mM NADH in pH 9.5, 100 mM glycine-NaOH 

buffer. One unit of enzyme activity was defined as 2 μmol BV reduced per min. The NADH oxidase 

activity was determined in a glass cuvette by monitoring O2-dependent oxidation of NADH 

spectrophotometrically at 340 nm (ε340=6.22 mM–1 cm–1) at 80°C (Yang and Ma 2005a). Lipoamide 

dehydrogenase and glutathione reductase activity were monitored by following the substrate-

dependent absorbance change of NADH at 340 nm (Patel et al. 1998; Tsai 1980). Trx activity was 

monitored by following the insulin reductase activity according to Holmgren (1979). The standard 

assay mixture contained 100 mM sodium phosphate buffer pH 7.0, 0.13 mM bovine insulin, 1 mM 

DTT, aliquot of fractions from purification steps or purified T. maritima Trx. The increase of 

absorbance at 650 nm was monitored at 30oC.  Grx activity was tested with thiotransferase assay (Gan 

and Wells 1986).  The assay mixture contained varied amount of T. maritima Trx, 0.35 mM NADPH, 

and 0.5 mM reduced glutathione, 1 U glutathione reductase from yeast (Sigma), 2.5 mM 2-

hydroxyethyl disulfide or 2.5 mM L-cystine, 1 mM EDTA in pH 8.0, 100 mM sodium phosphate 
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buffer. The absorbance change at 340 nm was monitored at 30oC. The control without T. maritima 

Trx added was subtracted. 

 

TrxR activity was evaluated with two methods at 30oC.  In the insulin  reduction method (Arner et al. 

1999), the purified T. maritima TrxR (50 nM) was added to the assay mixture (0.5 ml) containing 0.2 

mM NAD(P)H, 0.13 mM insulin, and 0-1.4 µM T. maritima Trx, 1 mM EDTA, in pH 7.0, 100 mM 

sodium phosphate buffer. The increase of absorbance at 650 nm was monitored. In the  DTNB 

reduction method (Kashima and Ishikawa 2003), purified T. maritima TrxR (50 nM) was added to the 

assay mixture (0.5 ml) containing 0.2 mM NAD(P)H, 0.1 mM DTNB, and 0-1.4 µM T. maritima Trx, 

1 mM EDTA, in pH 7.0, 100 mM sodium phosphate buffer. The activity was calculated from the 

increase of absorbance at 412 nm (ε412=13.6 mM–1 cm–1) and the reduction of DTNB by 1 mole 

NAD(P)H forms 2 moles of 2-nitro-5-thiobenzoate. Protein concentration was determined using 

Bradford method with bovine serum albumin as the standard protein (Bradford 1976).  

 

7.3.4 Enzyme purification 

T. maritima cell-free extracts were prepared anaerobically by using similar procedures described 

previously (Yang and Ma 2005a).  Though Trx and TrxR are not oxygen sensitive, the purification 

was carried out along with other anaerobic enzymes, so all the purification steps were carried out 

anaerobically. 100 mM sodium phosphate buffer pH 7.0, instead of glycine-NaOH, was used for 

BVOR assay during TrxR purification. The cell–free extract was applied at a flow rate of 3 ml/min to 

a DEAE-Sepharose Fast Flow column (5 x 10 cm; Amersham Biotech, Quebec, Canada) that was pre-

equilibrated using buffer A [50 mM Tris-HCl, pH 7.8, 5% (v/v) glycerol, 2 mM SDT, and 2 mM 

DTT]. The column was eluted with a linear gradient of 0-0.3 M NaCl in buffer A at a flow rate of 3 

ml/min. The TrxR and Trx started to elute out as 0.08 M and 0.17 M NaCl was applied to the column, 

respectively. The fractions with high activities were pooled and applied to a HAP (Bio-Rad) column 

(2.6 x 10 cm) equilibrated with buffer A. The column was eluted with a linear KH2PO4 (0-0.15 M) in 

buffer A at a flow rate of 2 ml/min. The TrxR and Trx started to elute out as 0.05 M and 0.08 M 

KH2PO4 applied to the column. Activity-containing fractions were pooled together and applied to a 

Phenyl-Sepharose HP column (2.6 x 8 cm, Amersham Biotech, Quebec, Canada) equilibrated with 

0.8 M (NH4)2SO4 in buffer A (for Trx, SDT and DTT were omitted in all buffers for Phenyl-

Sepharose and columns applied later on). The column was eluted with a (NH4)2SO4 gradient (0.8-0 
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M) at a flow rate of 2 ml/min. TrxR was eluted as 0.8 M (NH4)2SO4 was applied to the column. While 

Trx was eluted as 100% buffer A was applied to the column. Fractions containing high activities were 

pooled and concentrated by ultra filtration separately (Amicon Ultra filter, YM 10 membrane). The 

concentrated fraction (3.0 ml) was applied to a Superdex 200 column (2.6 x 60 cm, Amersham 

Biotech, Quebec, Canada) equilibrated with buffer A containing 100 mM KCl. The flow rate was 2 

ml/min. Fractions containing high enzyme activities were combined and applied to a Q-Sepharose HP 

column (1 x 10 cm, Amersham Biotech, Quebec, Canada) equilibrated with buffer A. The column 

was eluted with a linear gradient of NaCl (0-0.5 M) at a flow rate of 1.0 ml/min. TrxR and Trx started 

to elute out as 0.13 M and 0.1 M NaCl was applied to the column, respectively. Fractions containing 

pure TrxR and Trx as revealed by SDS-PAGE (Laemmli 1970) were stored at -20°C till use. 

 

7.3.5 Determination of molecular mass and protein identification 

The native molecular mass of both T. maritima TrxR and Trx were estimated by gel filtration on 

Superdex 200 column (2.6 x 60 cm). The column was calibrated with commercial protein standard 

(Pharmacia, NJ, USA) that contained blue dextran (2000,000 Da), thyroglobulin (669,000 Da), 

ferritin (440,000 Da), catalase (232,000 Da), aldolase (158,000 Da), bovine serum albumin (67,000 

Da), ovalbumin (43,000 Da), chymotrypsinogen A (25,000 Da), and ribonuclease A (13,700).  The 

subunits molecular weights were determined by SDS-PAGE (Laemmli 1970) and a standard curve 

obtained using the low molecular weight standard from Bio-Rad (Bio-Rad Laboratories, ON, 

Canada). The single band of TrxR and Trx on SDS-PAGE were cut separately in flow hood and 

digested in-gel with trypsin. The resulting peptides were extracted and cleaned with the procedures 

described previously (Shevchenko et al. 1996). The cleaned peptides samples were used for protein 

identification using mass spectrometry. The details were described in Chapter 6 (6.3.5 Gene 

identification and sequence analysis). 

 

7.3.6 Analysis of flavin cofactor  

The oxidized and NADH-reduced enzyme samples were scanned with Carry 50 UV-visible 

spectrophotometer from 190-600 nm. FAD was released from TrxR by boiling in methanol (1:9) for 

10 min (Stanton and Jensen 1993). The amount of FAD was estimated using the absorbance value at 

450 nm (ε450=11.3 mM-1cm-1, Whitby 1953). The sample was concentrated by flushing with nitrogen 
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before it was spotted on a thin layer silica gel plate (5x10 cm, 200 μm; Selecto Scientific, USA) 

together with commercially available flavin standards, riboflavin, FMN, FAD. Samples were 

ascended in the dark with n-butanol-acetic acid-H2O (12:3:5) as solvent. Samples on the plate were 

visualized using FluorChem (FluorChem 8000 Chemiluminescence and Visible Imaginng System, 

Alpha Innotech Corporation, CA, USA) under UV light after drying the silica plate with a hair dryer. 
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7.4 RESULTS 

7.4.1 Purification of T. maritima TrxR and Trx 

Cell-free extract from 50 g of T. maritima was prepared anaerobically and loaded to a DEAE-Sepharose 

column. After the first of five columns that were used for the purification, BVOR activity appeared in two 

peaks. The major one (70% of the total activity) started to elute out when 0.08 M NaCl was applied to the 

column. The second peak (30%), corresponding to a highly active NADH oxidase (Yang and Ma 2007), 

started to elute out when 0.1 M NaCl was applied to the column. The active fractions in the first peak were 

pooled together and applied to HAP column for further TrxR purification. BVOR activity was eluted out 

as predominant single peak for all the columns thereafter. The enzyme was purified 378-fold after five 

columns (Table 7-1). The purity of the enzyme after the last column was confirmed using SDS-PAGE that 

showed a single band with molecular weight of 37 kDa (Figure 7-2). The native molecular weight of the 

purified enzyme was estimated to be 67 kDa using a Superdex-200 gel filtration column that was 

calibrated using standard proteins. Therefore, it is reasonable to conclude that the purified enzyme was a 

homodimer, which is similar to L-TrxR. Trx activity was eluted out as single peak after all the five 

columns. Trx bound to Phenyl-Sepharose column tightly. It could not be eluted out with buffer A, but with 

water alone, which may indicate T. maritima Trx is more hydrophobic than most soluble proteins. After Q-

Sepharose column, the enzyme was purified which was revealed by a single band with a molecular weight 

of 31 kDa showing on SDS-PAGE (Figure 7-3). The native molecular weight of T. maritima Trx was 

estimated to be 23 kDa by Superdex 200 gel filtration column calibrated with standard proteins. Therefore, 

the purified T. maritima Trx is very likely to be a monomer. 

 

7.4.2 Mass spectrometry identification and sequence analysis 

Since the genome of T. maritima is available (Nelson et al. 1999), the purified two enzymes were 

identified by mass spectrometry. Based on peptides mass fingerprints, the purified TrxR was 

identified to be NP_228678 (TM0869), which was annotated as TrxR. The amino acid sequence of T. 

maritima TrxR was aligned with other (hyper) thermophilic TrxR sequences, P. horikoshii TrxR 

(PhTrxR), A.  pernix K1 TrxR  (AeTrxR), S. solfataricus TrxR (SsTrxR) and Thermus aquatics 

NADH: peroxiredoxin oxidoreductase (TaDpor), and E. coli TrxR (EcTrxR) (Figure 7-4). Similar to 

other L-TrxRs, T. maritima TrxR has two active cysteines (CXXC), two FAD-binding regions, one 

NAD(P)-binding region, and one conserved region of pyridine 
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Table 7-1 Purification table of T. maritima TrxR 

 

Steps Total protein 

(mg) 

Total unit 

(U) 

Sp act 

(U/mg) 

Purification 

fold 

Recovery 

(%) 

Cell-free 

extract 

2004 1680 0.7 1 100 

DEAE-

Sepharose 

570 995 1.74 2.5 59 

HAP 176 779 4.42 6.3 46 

Phenyl-

Sepharose 

25.2 529 21 30 31 

Gel filtration 4.16 458 110 157 27 

Q-Sepharose 0.78 206 265 378 12 
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 Figure 7-2 12.5% SDS-PAGE of the purified TrxR from T. maritima.  

The purified T. maritima TrxR (lane 1, 1μg) and low molecular weight standards (lane 2) are 

indicated along with their corresponding molecular masses. 
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                                                           1          2         3                kDa 

 

 

Figure 7-3 12.5% SDS-PAGE of the purified Trx from T. maritima.  

The purified T. maritima Trx (lane 1 and 2, 0.4 and 0.6 ug), low molecular weight standard as 

indicated along the bands (lane 3). 
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                      10         20         30         40         50            
TmTrxR       -------MVF FDTGSLKKKE IKDKYDIVVV GGGPAGLTSA IYARRAGLSV  
PhTrxR       -MEVKEMFSL GGGLGRSKVD ESKVWDVIII GAGPAGYTAA IYAARFGLDT  
AeTrxR       MIRCVIMPLR LSAVRAPKIP RGEEYDTVIV GAGPAGLSAA IYTTRFLMST  
SsTrxR       ---------M SLLPRTTSVK PGEKFDVIIV GLGPAAYGAA LYSARYMLKT  
EcTrxR       ---------- --------MG TTKHSKLLIL GSGPAGYTAA VYAARANLQP  
Clustal Co                           .  . ::: * ***.  :* :*: *  :.   
 
                       60         70         80         90        
100             
TmTrxR       LVVEKAIEGG YVNLTHLVEN YPGFPA-ISG EELASKFKEH AEKFGADIYN  
PhTrxR       IIITKDLGG- NMAITDLIEN YPGFPEGISG SELSKKMYDQ VKKYGVEVII  
AeTrxR       LIVSMDVGG- QLNLTNWIDD YPGMGG-LEA SKLVESFKSH AEMFGAKIVT  
SsTrxR       LVIGETPGG- QLTEAGIVDD YLGLIE-IQA SDMIKVFNKH IEKYEVPVLL  
EcTrxR       VLITGMEKGG QLTTTTEVEN WPGDPNDLTG PLLMERMHEH ATKFETEIIF  
Clustal Co   :::     *   :  :  ::: : *    : .   : . : .:    : . :    
 
        
                     110        120        130        140        150         
TmTrxR       AEVVKLEVQG DKK------- VVELDDGKRI EAPVVIVATG ANPKKLNVPG  
PhTrxR       DEVIRIDPAE CAYYEGPCNF VVKTANGKEY KAKTIIIAVG AEPRKLNVPG  
AeTrxR       GVQVKTVDRL DDGW-----F LVRGSRGLEV KARTVILAVG SRRRKLGVPG  
SsTrxR       DIVEKIENRG DE-------F VVKTKRKGEF KADSVILGIG VKRRKLGVPG  
EcTrxR       DHINKVDLQN RPFR------ --LNGDNGEY TCDALIIATG ASARYLGLPS  
Clustal Co       :                         .   .  :*:. *    : *.:*.  
 
 
                     160        170        180        190        200         
TmTrxR       EKEFFGKGVS YCATCDGYLF AGK-DVIVVG GGDSACDESI FLSNIVNKIT  
PhTrxR       EKEFTGRGVS YCATCDGPLF VGK-EVIVVG GGNTALQEAL YLHSIGVKVT  
AeTrxR       EAELAGRGVS YCSVCDAPLF KGKDAVVVVG GGDSALEGAL LLSGYVGKVY  
SsTrxR       EQEFAGRGIS YCSVCDAPLF KNR-VVAVIG GGDSALEGAE ILSSYSTKVY  
EcTrxR       EEAFKGRGVS ACATCDGFFY RNQ-KVAVIG GGNTAVEEAL YLSNIASEVH  
Clustal Co   *  : *:*:*  *:.**. ::  .:  * *:* **::* : :   * .   ::   
 
 
                     210        220        230        240        250         
TmTrxR       MIQLLETLTA AKVLQERVL- --NNPKIEVI YNSTVREIRG KDK-VEEVVI  
PhTrxR       LVHRRDKFRA DKILQDRFK- --QAG-IPAI LNTVVTEIKG TNK-VESVVL  
AeTrxR       LVHRRQGFRA KPFYVEEAR- --KKPNIEFI LDSIVTEIRG RDR-VESVVV  
SsTrxR       LIHRRDTFKA QPIYVETVK- --KKPNVEFV LNSVVKEIKG DKV-VKQVVV  
EcTrxR       LIHRRDGFRA EKILIKRLMD KVENGNIILH TNRTLEEVTG DQMGVTGVRL  
Clustal Co   :::  : : *   .  .       :   :     :  : *: *  .  *  * :  
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                   260        270        280        290        300         
TmTrxR       ENVKTGETKV -LKADGVFIF IGLDPNSKLL EG-LVELDPY GYVITDEN--  
PhTrxR       KNVKTGETVE -KKVDGVFIF IGYEPKTDFV KH-LGITDEY GYIPVDMY--  
AeTrxR       KNKVTGEEKE -LRVDGIFIE IGSEPPKELF EAIGLETDSM GNVVVDEW--  
SsTrxR       ENLKTGEIKE -LNVNGVFIE IGFDPPTDFA KSNGIETDTN GYIKVDEW--  
EcTrxR       RDTQNSDNIE SLDVAGLFVA IGHSPNTAIF EGQLELENGY IKVQSGIHGN  
Clustal Co   .:  ..:       . *:*:  ** .* . :  :      :     :  .      
 
 
                     310        320        330        340        350         
TmTrxR       -METSVKGIY AVGDVRKK-- NLRQIVTAVA DGAIAVEHAA KHYF------  
PhTrxR       -MRTKVPGIF AAGDITN--- VFKQIAVAVG QGAIAANSAK EFIESWNGKT  
AeTrxR       -MRTSIPGIF AAGDCTSMWP GFRQVVTAAA MGAVAAYSAY TYLQEKGLYK  
SsTrxR       -MRTSVPGVF AAGDCTSAWL GFRQVITAVA QGAVAATSAY RYVTEKKGKK  
EcTrxR       ATQTSIPGVF AAGDVMDH-- IYRQAITSAG TGCMAALDAE RYLDGLADAK  
Clustal Co     .*.: *:: *.**  .      :*  .:..  *.:*.  *   .          
 
 
             ....|... 
                    
TmTrxR       -------- 
PhTrxR       IE------ 
AeTrxR       PKPLTGLK 
SsTrxR       -------- 
EcTrxR       -------- 
Clustal Co            
 

Figure 7-4 Alignment of amino acid sequences of T. maritima TrxR and its homologues.  

The sequences were aligned using CLUSTAL W method (Higgins and Sharp 1988). The alignment 

was plotted with reference to a standard sequence, i.e. the partial sequence of T. maritima TrxR at the 

top. Any residues in a column which are identical to the standard at that point are shown as stars (*) 

and similar to the standard at that point are shown as dot (·).  The gap is shown as dash (-). TmTrxR: 

T. maritima TrxR; PhTrxR: P. horikoshii TrxR; AeTrxR: A. pernix K1 TrxR; SsTrxR: S. solfataricus 

TrxR; EcTrxR: E. coli TrxR. Green letters: FAD-binding motifs; blue letters: NAD(P)-binding motif; 

red letters: redox active center; underlined letters: pyridine nucleotide-disulfide oxidoreductase 

conserved region. 
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nucleotide-disulfide oxidoreductase. The purified T. maritima Trx was annotated to be Grx-related 

protein (encoded by TM0868), which is adjacent to TrxR gene, with predicted mass of 25158Da. The 

protein sequence showed both Grx and Trx folds (Nelson et al. 1999). It has two redox active sites, 

CQYC at N-terminus and CPYC at C-terminus (Figure 7-5). The BLAST (Altschul et al. 1997) 

search results showed T. maritima Trx had very high similarity (66-67%) to alkyl hydroperoxide 

reductase subunit F related protein of Thermoplasma acidophilum (Ruepp et al. 2000) and Grx-

related protein in P. furiosus (Robb et al. 2001). 

 

7.4.3 Identification of flavin cofactor of T. maritima TrxR 

The purified TrxR was yellow, which was an indication of the presence of flavin. The oxidized 

enzyme solution showed characteristic flavin absorbance maxima: 380 nm and 450 nm. The peaks 

disappeared upon adding 0.1 mM NADH into the enzyme solution after 5 min (Figure 7-6). A 

yellowish cofactor was released after the enzyme was mixed with methanol and boiled for 10 min in 

the dark. This flavin cofactor was further identified as FAD using thin layer chromatography (Figure 

7-7). The T. maritima TrxR contained 1.88 mol of FAD per mol native enzyme based on the 

absorbance value at 450 nm and protein amount from which the FAD was extracted. Since T. 

maritima TrxR was a homodimer, each subunit contained approximately one non-covalently bound 

FAD moiety. 

 

7.4.4 Catalytic properties of the purified TrxR and Trx from T. maritima 

The purified T. maritima TrxR was first characterized with BVOR assay when NADH was used as 

electron donor. The TrxR exhibited highest activity when pH 9.5, 100 mM glycine-NaOH was used 

as the assay buffer though it was very active over a broad pH range 8.5-11.0 (Figure 7-8). The 

enzyme activity was increased along with the elevation of the temperature up to 95oC (Figure 7-9). 

The TrxR was very thermostable. It retained >60% of the BVOR activity after incubation at 80oC for 

28 hours and lost 50% of activity after incubation at 95oC for 9 hours (Figure 7-10). The lost of 

activity upon heat at 80 and 95oC did not follow first order kinetics. Its activity was dependent on 

concentrations of both NADH and BV. The catalysis followed Michaelis–Menten kinetics. Apparent 

Km value for NADH and apparent Vmax value were determined to be 73 μM and 1111 U/mg,  
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                      10         20         30         40         50            

TmTrx        -MGILSDKDI AYLKDLFGKE LKRKVKIVFF KTEDKTRCQY CEITEQVLEE  
TaAHF        MANLIRKEDR EYLKGEFEKY LKNDVDLVVF TSNDEN-CRY CKETVQLATE  
AaGrx        --MLLNLDVR MQLKELAQKE FKEPVSIKLF S--QAIGCES CQTAEELLKE  
PhGrx        -MGLISEEDK RIIKEEFFSK MVNPVKLIVF IG--KEHCQY CDQLKQLVQE  
PfGrx        -MGLISDADK KVIKEEFFSK MVNPVKLIVF VR--KDHCQY CDQLKQLVQE  
Clustal Co      ::        :*    .  : . *.: .*        *.  *.   ::  *  
 
  
                      60         70         80         90        100            
TmTrx        LVSVD----- -PKLELEIHD FDSD--KEAV EKYQVEMVPA TILLPEDGKD  
TaAHF        VSEIN----- -PKIHLKVYN FDED--KEMV KKYGVEKYPA TIVSKAGVED  
AaGrx        TVEVIGEAVG QDKIKLDIYS PFTH--KEET EKYGVDRVPT IVIE--GDKD  
PhGrx        LSELT----- -DKLSYEIVD FDTPEGKELA EKYRIDRAPA TTITQ-DGKD  
PfGrx        LSELT----- -DKLSYEIVD FDTPEGKELA KRYRIDRAPA TTITQ-DGKD  
Clustal Co     .:         *:  .: .       ** . ::* ::  *:   :   . :*  
 
  
                     110        120        130        140        150         
TmTrx        YGIRFYGVPS GHEFGTLIQD IITVSEGKPQ LSEESIQKLQ SLEEPIRISV  
TaAHF        GRIVYYGLPS GYEFGSLIED LKNVSMGEAD VSSKAAELIS KIDKPITIKV  
AaGrx        YGIRYIGLPA GLEFTTLING IFHVSQRKPQ LSEKTLELLQ VVDIPIEIWV  
PhGrx        FGVRYFGIPA GHEFAAFLED IVDVSKGDTD LMQDSKEEVS KIDKDVRILI  
PfGrx        FGVRYFGLPA GHEFAAFLED IVDVSREETN LMDETKQAIR NIDQDVRILV  
Clustal Co     : : *:*: * ** ::::. :  **  ..: : ..: : :   ::  : * :  
 
  
                     160        170        180        190        200         
TmTrx        FVTPTCPYCP RAVLMAHNMA MAS-----DK IIGEMIEANE YWELSEKFGV  
TaAHF        YVTPTCPYCP RAVGTAHKFA LLN-----PN IKGEMIEALE FENEAEEVGV  
AaGrx        FVTTSCGYCP SAAVMAWDFA LAN-----DY ITSKVIDASE NQDLAEQFQV  
PhGrx        FVTPTCPYCP LAVRMAHKFA IENTKAGKGK ILGDMVEAIE YPEWADQYNV  
PfGrx        FVTPTCPYCP LAVRMAHKFA IENTKAGKGK ILGDMVEAIE YPEWADQYNV  
Clustal Co   :**.:* ***  *.  * .:* : .        * ..:::* *   : :::  *  
 
                     210        220        230        240               
TmTrx        SSVPHIVVNR DPSK--FFVG AYPEKEFINE VLRLAKG--- ----- 
TaAHF        SSVPHIVINN DVT----FIG AYPDDQFAEY VMEAYDHQ-- ----- 
AaGrx        VGVPKIVINK GVA---EFVG AQPENAFLGY IMAVYEKLKR EKEQA 
PhGrx        MAVPKIVIQV NGEDKVQFEG AYPEKMFLEK LLSALS---- ----- 
PfGrx        MAVPKIVIQV NGEDRVEFEG AYPEKMFLEK LLSALS---- ----- 
Clustal Co    .**:**::  .      * * * *:. *    ::   .           
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Figure 7-5 Alignment of amino acid sequences of T. maritima Trx and its homologues.  

The alignment was plotted with reference to a standard sequence, i.e. the partial sequence of T. 

maritima Trx at the top. Any residues in a column which are identical to the standard at that point are 

shown as stars (*) and similar to the standard at that point are shown as dot (·). The gap is shown as 

dash (-). TmTrx: T. maritima Trx; TaAHF, Thermoplasma acidophilum Alkyl hydroperoxide 

reductase subunit F related protein; PfGrx, P. furiosus Grx-related protein; AaGrx, A. aeolicus Grx-

like protein; PhGrx, P. horikoshii Grx-like protein. 
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Figure 7-6 Spectrum of T. maritima TrxR.   

The oxidized enzyme solution (0.11 mg in 1 ml pH 7.8, 50 mM Tris-HCl buffer) in a quartz cuvette 

was scanned to obtain an absorption spectrum from 190 nm to 600 nm using Varian Bio 50 UV-

visible spectrophotometer.  
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Figure 7-7 Flavin cofactor analysis of T. maritima TrxR.  

The extracted sample from T. maritima TrxR was ascended on thin-layer plate in dark together with 

commercial standards.Lane 1, extracted sample from T. maritima TrxR; lane 2, FAD; lane 3, FMN; 

lane 4, riboflavin. 
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Figure 7-8 pH dependency of the purified TrxR from T. maritima using NADH as electron 

donor.  

The activity was assayed at 80oC with NADH-dependent BV reduction. Open circles, 100 mM 

sodium phosphate buffer, pH 6.0-8.0; filled circles, 100 mM glycylglycine-NaOH buffer pH 8.0-9.0; 

filled triangles, 100 mM glycine-NaOH buffer pH 8.5-10.0; open triangles, 100 mM CAPS buffer pH 

10.0-11.0; open diamonds, 100 mM sodium phosphate buffer pH 11.0-12.0. 

 

 

 



 

  167

 

 

0

200

400

600

800

1000

20 30 40 50 60 70 80 90 100

B
V

O
R

 a
ct

iv
ity

 (U
/m

g)

Temperture (oC)
 

 

Figure 7-9 Temperature dependency of the purified TrxR from T. maritima.   

The activity was determined using standard BVOR assay with temperature varying from 30 to 95oC. 
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Figure 7-10 Thermostability of the purified TrxR from T. maritima.  

The purified TrxR (0.06 mg ml–1) in buffer A containing 0.1 M NaCl was incubated at 80°C (open 

circles) and 95°C (filled circles), respectively. The residual activities were assayed under standard 

BVOR assay conditions. 100% of activity was 690 U/mg. 
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respectively. Apparent Km value for BV was determined to be 89 μM. TrxR showed preference of 

NADH over NADPH in BV reduction. The activity with NADPH was only 11% (pH 7.0, 100 mM 

sodium phosphate buffer) and 1.4% (pH 9.5, 100 mM glycine-NaOH) of that with NADH. The 

optimal pH of BVOR was determined to be 6.5 when NADPH was used as electron donor (Figure 7-

11). The apparent Km for NADPH and Vmax were determined to be 0.78 mM and 115 U/mg, 

respectively, which was ten times lower than that of NADH. The substrate specificity of T. maritima 

TrxR were also surveyed with T. maritima Trx (7.4.6 Trx-TrxR system), oxidized glutathione 

(GSSG), lipoic acid, lipoamide, Na2SeO3, DTNB, and molecular oxygen. Neither lipoamide, lipoic 

acid, GSSG nor Na2SeO3 could be used as substrate for T. maritima TrxR. At pH 7.0, when NADH 

and NADPH were used as electron donors the BVOR activities were 139 and 9.9 U/mg, respectively. 

Besides BVOR activity, T. maritima TrxR also exhibited NAD(P)H oxidase activity. When molecular 

oxygen was used as electron acceptor, the specific activity was 22.3 U/mg, which is 16% of BVOR 

activity (139 U/mg) at 50oC. Interestingly, T. maritima TrxR could also catalyze the reduction of 

DTNB directly with NAD(P)H, which is unusual for a low molecular weight TrxR. T. maritima TrxR 

showed preference of NADH over NADPH with all the substrates tested.  

 

7.4.5 Properties of T. maritima Trx 

Trxs are known to have disulfide reductase activity using insulin as substrate. The reduced ß-chain of 

insulin precipitates out and causes the increase of turbidity monitored at 650 nm. The assay for 

reduction of insulin by DTT was performed at 30oC and pH 7.0. The insulin reduction was dependent 

on the amount of Trx in the assay system (Figure 7-12). Since T. maritima Trx has both Trx and Grx 

fold based on amino acid sequence information, Grx activity was tested with thiotransferase assay. 

Grx activity was observed with both L-cysteine (4.9 U/mg) and 2-hydroxyethyl disulfide (4.5 U/mg) 

as substrates. 

 

7.4.6 The Trx-TrxR system 

Trx mediated reduction of DTNB and insulin were carried out to see if the purified Trx and TrxR 

could form a Trx-TrxR system. The results showed that the insulin disulfide bonds were reduced in 

the presence of T. maritima TrxR and Trx when either NADH or NADPH was used as electron donor  
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Figure 7-11 pH dependency of the purified TrxR from T. maritima using NADPH as electron 

donor.  

The activity was assayed at 80oC with NADPH dependent BV reduction. Open circles, 100 mM 

sodium phosphate buffer, pH 6.0-8.0; filled circles, 100 mM glycylglycine-NaOH buffer pH 8.0-9.0; 

filled triangles, 100 mM glycine-NaOH buffer pH 8.5-10.0. 
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Figure 7-12  Reduction of insulin by T. maritima Trx.  

The assay mixture contained 1 mM DTT and 1 mg/ml insulin in 100 mM, pH 7.0 sodium phosphate 

buffer. The reaction was carried out at 30°С by monitoring the increase of absorbance at 650 nm in 

the absence (open circles), and presence of T. maritima Trx (0.15 µM, filled circle; 0.29 µM, filled 

triangles; 0.58 µM, open triangles). 
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(Figure 7-13&Figure 7-14). The rate of insulin disulfide bonds reduction was faster when NADH was 

used as electron donor. The TrxR activity of T. maritima TrxR to reduce T. maritima Trx was 

examined using the DTNB coupled assay as well (Figure 7-15). T. maritima TrxR apparently formed 

Trx-TrxR system with T. maritima Trx, and the reduction activity of TrxR was dependent on the 

concentration of Trx (Figure 7-15, column 2-4). There was a very low activity of DTNB reduction in 

the absence of Trx. These results clearly indicate that T. maritima Trx, which has a high homology 

with P. furiosus Grx-like protein, had Trx-like activity and formed a redox system with TrxR in T. 

maritima cell. The system formed by T. maritima TrxR and Trx was capable of rapidly reducing both 

small-molecule (DTNB) and protein (bovine insulin) disulfide-containing substrates in the presence 

of NADPH or NADH. 
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Figure 7-13 Reduction of insulin by Trx-TrxR system with NADH as electron donor.  

The assay mixture contained 50 nM Tm TrxR, 0.2 mM NADH, 0.13 mM insulin, and varied amount 

of T. maritima Trx (opened circles, 0 µM; crosses, 0.36 µM; diamonds, 0.72 µM; triangles, 1.44 µM), 

1 mM EDTA, in pH 7.0, 100 mM sodium phosphate buffer. The increase of absorbance at 650 nm 

was monitored at 30oC. 
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Figure 7-14 Reduction of insulin by Trx-TrxR system with NADPH as electron donor.  

The assay mixture contained 50 nM Tm TrxR, 0.2 mM NADPH, 0.13 mM insulin, and varied amount 

of T. maritima Trx (opened circles, 0 µM; crosses, 0.36 µM; diamonds, 0.72 µM; triangles, 1.44 µM), 

1 mM EDTA, in pH7.0, 100 mM sodium phosphate buffer. The increase of absorbance at 650 nm 

was monitored at 30oC. 
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Figure 7-15 Reduction of DTNB by Trx-TrxR system.  

The assay mixture contained 50 nM T. maritima TrxR, 0.2 mM NAD(P)H (open columns, NADPH; 

filled columns, NADH), 0.1 mM DTNB, and 0-1.4 µM T. maritima Trx (column 1, 0µM; column 2, 

0.36 µM; column 3, 0.72 µM; column 4, 1.44 µM), 1 mM EDTA, in pH7.0, 100 mM sodium 

phosphate buffer. The increase of absorbance at 412 nm was monitored at 30oC. 
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7.5  DISCUSSION  

Trx and TrxR system plays several key roles in maintaining the redox environment of the cell and 

responding to oxidative stress in all three domains of life (Hirt et al. 2002; Williams et al. 2000). 

TrxR and Trx were purified and characterized from hyperthermophilic bacterium T. maritima. The T. 

maritima TrxR is phylogenetically closer to L-TrxR than H-TrxR. The deduced amino acid sequence 

is homologous mostly to TrxR from Carboxydothermus hydrogenoformans (50% identity and 71% 

similarity) and shows relatively high homology to E. coli TrxR (33% identity and 57% similarity). 

Similar to other TrxRs (Figure 7-4), this protein has two FAD-binding motifs near the N-terminus 

(GXGXXA) and C-terminus (GXXAAGD) and one NAD(P)H-binding motif near the middle of the 

protein (GGGXXA). T. maritima TrxR also contains active redox center (CXXC) common in all 

enzymes showing TrxR activity (Hirt et al. 2002). This active redox center is in a class II pyridine 

nucleotide-disulfide oxidoreductase active site CATCDGYLFAGKDVIVVGGGD 

(http://us.expasy.org/cgi-bin/prosite/ScanView.cgi? scanfile=41218312816.scan.gz), which is similar 

to the conserved motif reported in the Swiss-Prot Prosite Database at the accession number PS00573 

(C-x(2)-C-D-[GAS]-x(2,4)-[FYA]-x(4)-[LIVMAT]-x(0,1)-[LIVM](2)-[GI]-[GDS]-[GRD]-[DN]) 

(http://us.expasy.org/cgi-bin/nicedoc.pl?PS00573). This motif in T. maritima TrxR overlaps with 

NAD(P)H-binding region in the primary structure. The proximity of NAD(P)H-binding region and 

pyridine nucleotide-disulfide active site is a feature present in L-TrxRs, while in H-TrxRs they are 

spatially separated (Ruocco et al. 2004). Trx of T. maritima has a high sequence homology with the 

Grx-like protein of P. furiosus and alkyl hydroperoxide reductase subunit F related protein of T. 

acidophilum. Furthermore, T. maritima Trx has redox-active sequence motif CPYC and CQYC, 

which suggests that it belongs to the protein-disulfide oxidoreductase family (Guagliardi et al. 1995). 

T. maritima Trx had an insulin reduction and thiotransferase activities, which are similar to Grx-like 

protein from P. furiosus (Guagliard et al. 1995). T. maritima Trx showed Trx-like activity that could 

reduce both insulin and DTNB in the presence of T. maritima TrxR and NAD(P)H. Unlike classical 

Trxs that are smaller (~12 kDa) and have only one CXXC redox-active motif, there is no classical Trx 

homology gene present in T. maritima (Nelson et al. 1999). All Trxs from hyperthermophiles, such as 

P. horikoshii (Kashima and Ishikawa 2003), A. pernix (Jeon and Ishikawa 2002), P. furiosus 

(Guagliardi et al. 1995), Aquifex aeolicus (Pedone et al. 2006), and Methanococcus jannaschii (Lee et 

al. 2000), S. solfataricus (Guagliardi et al. 1994), are around 25 kDa (the one from A. pernix is around 

37 kDa) and have two redox active motifs (CXXC and CXXC). So far, one Trx from 
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hyperthermophile, M. jannaschii, has similar size to classical Trxs, but contains a Grx-like fold (Lee 

et al. 2000). This may indicate that hyperthermophiles use Trx containing Grx fold instead of 

conventional Trx. 

 

The substrate specificity of T. maritima TrxR was carried out. It did not show any lipoamide 

dehydrogenase and glutathione reductase activity, unlike the enzyme from mammals that can catalyze 

the reduction of lipoic acid efficiently (Arnér et al. 1996). It could catalyze the reduction of T. 

maritima Trx with NADH and NADPH as electron donor which was shown by the reduction of 

DTNB and insulin, respectively. Interestingly, the purified T. maritima TrxR could also catalyze the 

direct reduction of DTNB with both NADH and NADPH, which is a common feature for H-TrxR 

(Hirt et al. 2002), not normally found in the L-TrxR. Recently, it has been reported that the L-TrxRs 

from hyperthermophilic archaea S. solfataricus, which was characterized as NADH oxidase 

previously (Masullo et al. 1996; Ruoco et al. 2004) and A. pernix K1 (Jeon and Ishikawa 2002) 

showed the capability of catalyzing the reduction of DTNB directly. However, there has been no 

bacterial TrxR showing this property. This indicates that T. mariitma TrxR resembles catalytic 

properties closer to some archaeal and eukaryotic types of TrxRs. The broader substrate spectrum of 

H-TrxR results from the presence of selenocysteine at the C-terminus (Gly-Cys-Sec-Gly) (Gasdaska 

et al. 1995; Gladyshev et al. 1996; Tamura and Stadtman 1996). There is no selenocysteine present in 

T. maritima TrxR based on the deduced amino acid sequence (Nelson et al. 1999), S. solfataricus 

TrxR, and A. pernix TrxR. The reason for the direct use of DTNB as electron acceptor for those 

enzymes remains unclear. 

 

This is the first report of Grx-like protein that directly mediates the electron transfer from a TrxR to 

protein disulfide in hyperthermophilic bacteria. It has been reported that in mesophilic anaerobic 

bacterium, C. pasteurianum, TrxR and Grx homologues are involved in oxidative response (Reynolds 

et al. 2002). It has been reported that T. maritima could tolerate micro molar level of oxygen in the 

growth media and possesses a highly active H2O2-forming NADH oxidase (Yang and Ma 2007). An 

NADH-dependent peroxidase activity in cell-free extract of T. maritima has been demonstrated. 

Similar to Trx-TrxR system in other organisms, T. maritima Trx-TrxR may also provide electrons to 

thioredoxin peroxidase (TM0807) which would catalyze the reduction of hydrogen peroxide to water, 

therefore form a complete oxygen defensive pathway.  
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Chapter 8  Hydrogen Metabolism and Hydrogenases of 

Pyrococcus furiosus and Thermotoga hypogea 

 

 

 

A manuscript has been prepared for submission based on parts the work described in this chapter. 
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8.1 ABSTRACT 

The hydrogen metabolism in hyperthermophilic archeaon, Pyrococcus fusiosus, has attracted very 

intensive study. The inhibitory effect of hydrogen on the growth of P. furiosus was verified. The 

hydrogenase activity in the cell-free extract resulted from the culture containing external hydrogen in 

the gas phase was lower than that from the culture without external hydrogen added. The production 

of ethanol was increased about ten times in the culture containing 100% hydrogen in the gas phase. 

Two complex flavoproteins functioning as hydrogenase have been purified and characterized 

previously in P. furiosus, which promoted further study of hydrogenase in extremely thermophilic 

bacterium, Thermotoga hypogea. T. hypogea is a thermophilic fermentative bacterium able to dispose 

of the reducing equivalents generated during fermentation by reducing proton to H2. Activity of 

hydrogenase was detected in the cell-free extract of T. hypogea, from which a hydrogenase was 

purified to homogeneity by following hydrogen oxidation with BV as electron acceptor using a FPLC 

system. The purified enzyme was a homotetrameric protein with a subunit of 65 kDa revealed by 

SDS-PAGE and gel filtration. The purified T. hypogea hydrogenase did not contain any flavin as 

cofactor, but it contained 16 atoms of Fe and 11.6 atoms of acid labile sulfur per mole subunit. It 

showed both hydrogen uptake and evolution activity. The purified enzyme was very oxygen sensitive 

and lost 50% of its activity within 3 min exposure to air. Its catalytic properties showed that the 

hydrogenase had apparent Vmax values of 1142.0 and 606.9 µmol H2 oxidized min-1 mg-1 protein when 

BV and MV were used as electron acceptors, respectively. Apparent Km values for MV and BV in H2 

uptake were determined to be 0.17 and 0.24 mM, respectively.  The apparent Km value for MV and 

apparent Vmax value in hydrogen evolution were determined to be 1.1 mM and 192.4 µmol min-1 mg-1, 

respectively. The enzyme exhibited pH optima of 10.0 and 8.0 for hydrogen uptake and evolution, 

respectively, and the optimum temperature for catalytic activity was around 85oC determined by 

hydrogen oxidation activity. A ferredoxin isolated from T. hypogea was identified as the 

physiological electron carrier for this enzyme assayed by the metronidazole coupled reaction.  
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8.2 INTRODUCTION 

Hydrogenases catalyze the reversible oxidation of hydrogen into two electrons and two protons. 

Many bacteria and archaea, as well as some unicellular eukaryotes, contain hydrogenases (Adams et 

al. 1981). Transfer of electrons to hydrogenase with hydrogen production is related to energy 

conservation in different microorganisms (Nandi and Sengupta 1998). The first hydrogenase purified 

and characterized was the H2-evolving enzyme from the anaerobic N2-fixing bacterium Clostridium 

pasteurianum using ferredoxin as electron donor (Chen and Mortenson 1974). Although 

hydrogenases from different sources may differ in the aspect of molecular composition, specific 

activity in catalyzing the hydrogen oxidation and evolution, electron carrier specificity, cofactor 

content and sensitivity to inactivation by oxygen, they are all iron sulfur proteins except the one from 

methanogens (Adams 1990a,b; Lyon et al. 2004). Based on metal contents, hydrogenase can be 

classified into three types: Ni-Fe hydrogenase, Fe-hydrogenase, and iron-sulfur cluster free 

hydrogenase (Das at el. 2006, Lyon et al. 2004). Majority of known hydrogenases are Ni-Fe 

hydrogenases, which normally are less active than Fe-hydrogenase and at least have a small subunit 

(~30 kDa) harbouring Fe-S clusters, a large subunit (~65 kDa) holding the active site, Ni-Fe cluster 

(Volbeda et al. 1995) and subunits interacting with electron carriers (NAD+, F420, cytochrome b) may 

be present as well (Albracht 1994). Compared to Ni-Fe hydrogenases, the distribution of Fe-

hydrogenases are very limited. So far, they have only been found in anaerobic bacteria, such as T. 

maritima (Verhagen et al. 1999) and C.  pasteurianum (Peters et al. 1998), and anaerobic eukaryotes, 

such as protozoan Trichomonas vaginalis (Payne et al. 1993). In addition to uptake and evolution of 

hydrogen, it has been reported that some hydrogenases are also involved in other biological 

processes, such as transformation of 2, 4, 6-trinitrotoluene in Clostridium acetobutylicum (Kutty and 

Bennett 2006) and against oxidative stress in Desulfovibrio vulgaris (Fournier et al. 2004). 

 

P. furiosus is a hyperthermophilic archaeon originally isolated from geothermally heated marine 

sediments (Fiala and Stetter 1986). It has two soluble FAD-containing Ni-Fe hydrogenases (Bryant 

and Adams 1989; Ma et al. 1993, 2000). It was assumed that the hydrogen produced during 

fermentation inhibited the growth, which would be relieved by adding elemental sulfur (Fiala and 

Stetter 1986; Malik et al. 1989). However, there has been no report about what concentration of 

hydrogen would have the inhibition effect and how the added hydrogen would affect the activity of 

NADPH-utilizing enzymes yet. T. hypogea belongs to the order of Thermotogales, several species of 
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which are found to produce hydrogen with variety of substrates while tolerating certain level of 

oxygen (Van Ooteghem et al. 2002, 2004). The potential use of microorganisms for biological 

hydrogen production makes hydrogen metabolism a promising research area. It has been found that T. 

hypogea can grow on agricultural residues to produce hydrogen, which may have great potential 

application in biological hydrogen production with renewable materials (Dhanjoon 2005). However, 

the properties of hydrogenase responsible for the hydrogen production in T. hypogea are not known 

yet. The hydrogenase from Thermotoga maritima has been characterized and it is an iron-only 

hydrogenase composing of three different subunits with molecular weight of 73, 68, and 19 kDa 

(Verhagen et al. 1999). Although the enzyme has been extensively studied, puzzles still remain.  

Sequence analysis shows that the T. maritima enzyme is a Fe-S-cluster-containing flavoprotein which 

uses NADH as an electron donor. However, the purified enzyme does not have any flavin and can not 

use either NAD(P)H or T. maritima ferredoxin as electron donor. This chapter describes the effect of 

external hydrogen on the growth of P. furiosus and the purification and characterization of 

hydrogenase from T. hypogea, which may shed further light on understanding of hydrogen 

metabolism in both hyperthermophilic bacteria and archaea. 
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8.3 MATERIALS AND METHODS 

8.3.1 Growth of P. furiosus and T. hypogea 

P. furiosus (DSM3638) was grown in the media described previously with modification (Raven et al. 

1992). The media contained (per liter) 2.5 g of peptone, 2.5 g of yeast extract, 13.8 g of NaCl, 5.0 g of 

maltose, 5.2 g of N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 10 ml of 

magnesium salt solution, 1 ml of solution A, 1 ml of solution B, 1 ml of solution C, and 1 mg of 

resazurin. The pH was adjusted to 7.0. Magnesium salt solution contained (per liter) 180 g of 

MgSO4·7H2O and 160 g of MgCl2·6H2O. Solution A contained (per liter) 4 g of tri-sodium citrate, 9 g 

of MnSO4·4H2O, 2.5 g of ZnSO4·7H2O, 2.5 g of NiCl2·6H2O, 0.13 g of AlK(SO4)2·12H2O, 0.3 g 

CoCl2·6H2O, and 0.15 g of CuSO4·5H2O. Solution B contained (per liter) 56 g of CaCl2·2H2O, 25 g of 

NaBr, 16 g of KCl, 10 g of KI, and 4 g of SrCl2·6H2O. Solution C contained (per liter) 50 g of 

K2HPO4, 7.5 g of H3BO3, 3 g of Na2WO4·2H2O, 0.15 g of Na2MoO4·2H2O, and 0.005 g of Na2SeO3. 

Different amount of pure H2 was added to the anoxic media sealed in serum bottles to bring the H2 

concentration to 50, 60 70, 80, 90 and 100% in the gas phase (H2/N2+H2; Vol/Vol). The media were 

incubated at 95oC after reduced by adding 42 mM of TiCl3 in nitrilotriacetic acid solution prior to 

inoculation. The growth was monitored by measuring cell density with Genesys 10 Vis 

spectrophotometer at 600 nm. In order to test the effect of added hydrogen in the growth media on 

NADPH-dependent enzyme activities, P. furiosus was grown in four conditions, 100% H2 in the gas 

phase with or without sulfur and 100% N2 in the gas phase with or without sulfur. The resulting cells 

from those four conditions were used to prepare cell-free extract with the method reported previously 

(Ma et al. 2000). Ethanol production in the growth culture was measured with Shimadzu Gas 

Chromatography after centrifugation at 10,000xg for 10 min.  

 

T. hypogea was grown in 125 ml serum bottle containing 50 ml media as described in chapter 3 (3.3.2 

Growth of T. hypogea). The cultures with either xylose or glucose as carbon source were harvested at 

mid- and late-exponential phase to determine the growth phase-dependent T. hypogea hydrogenase 

activities in the presence and absence of sodium thiosulphate as electron acceptor. To obtain 

sufficient T. hypogea cell mass for the purification of hydrogenase and ferredoxin, large-scale culture 

(15 L) was grown routinely at 70oC in the medium described previously (Yang and Ma 2005a).  
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8.3.2 Enzyme assay and protein determination 

Hydrogenase was measured by either hydrogen oxidation or evolution. Oxidation of hydrogen was 

measured with the method described previously (Ma and Adams 2001). The assay was run in 

hydrogen flushed anaerobic glass cuvette containing 1.6 mM BV or 1 mM MV in anaerobic 50 mM, 

pH 8.4 N-(2-hydroxyethyl)-piperazine-N’-3-propanesulfonic acid (EPPS)/NaOH buffer.  The increase 

of absorbance at 580 nm was monitored routinely at 80oC during purification. One unit was defined 

as the enzyme catalyzing the oxidation of 1 µmol hydrogen per minute. NADP+, NAD+, MV, BV, and 

T. hypogea ferredoxin were tested for substrates spectrum of the purified T. hypogea hydrogenase. 

When NAD(P) was used, the absorbance increase of assay mixture containing 0.5 mM NAD(P), 

purified hydrogenase, and hydrogen gas in pH 8.4 EPPS buffer at 340 nm was monitored at 80oC 

(Schneider and Schlegel 1976). The utilization of T. hypogea ferredoxin as electron acceptor was 

tested using a metronidazole coupled assay (Chen and Blanchard 1979). The assay mixture contained 

2.4 µg T. hypogea ferredoxin, 0.25 mM metronidazole, and 2.75 µg T. hypogea hydrogenase in pH 

8.4, 50 mM EPPS buffer. The decrease of absorbance at 320 nm (ε320nm=9.3 mM-1cm-1) was 

monitored at 80oC. Glutamate dehydrogenase (GDH) activity was determined in anaerobic glass 

cuvette by monitoring glutamate dependent reduction of NADP+ spectrometrically at 340 nm and 

80oC for P. furiosus cell-free extract under different growth conditions (Ma et al. 1994a). 

 

Hydrogen evolution was measured with the method described previously (Ma et al. 1994b) at 80oC by 

the production of hydrogen gas with Buck GC using SDT-reduced MV as electron donor. The assay 

mixture in 8 ml vial contained 10 mM SDT, 1 mM MV, and 2.3 µg purified enzyme in 2 ml pH 8.4, 

50 mM EPPS buffer. The amount of hydrogen (µmol) produced was calculated based on a standard 

curve obtained under the same condition. One unit of hydrogenase was defined as the enzyme 

catalyzing the production of 1 µmol hydrogen per minute. In addition to MV, NADH, NADPH, and 

POR reduced ferredoxin were also tested as a substrate for hydrogen evolution. Sulfur reductase was 

measured with the method described previously (Ma et al. 1993). 0.1 g sublimed sulfur was added to 

8 ml vial containing 2 ml 50 mM EPPS buffer pH 8.4. The vials were degassed routinely to make 

them anaerobic. SDT and enzyme were added to the preheated vial to make final concentration of 0.8 

mM of SDT and 0, 2, 4 or 10 µg purified T. hypogea hydrogenase. The mixtures were incubated at 

70oC. At different intervals, aliquots of the assay mixture were removed and assayed for hydrogen 

sulfide by methylene blue formation (Chen and Mortenson 1977). The purity of ferredoxin was 

monitored by measuring the absorbance ratio at 390 and 280 nm during purification (Blamey et al. 
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1994). Protein concentration was determined using Bradford method with bovine serum albumin as 

standard protein (Bradford 1976). 

 

8.3.3 Purification of hydrogenase and ferredoxin from T. hypogea 

All the purification procedures were carried out anaerobically. Cell-free extract was prepared from 50 

g frozen cells and applied to a pre-equilibrated DEAE-Sepharose Fast Flow (5 x 10 cm, Amersham 

Biotech, Quebec, Canada) using buffer A (50 mM Tris-HCl pH 7.8, 5% [vol/vol] glycerol, 2 mM 

SDT, and 2 mM DTT). The column was eluted using a gradient of NaCl (0-0.5 M, 500ml) at flow 

rate of 3 ml/min. Hydrogenase started to elute out as 0.15 M NaCl was applied to the column. Active 

hydrogenase-containing fractions were pooled and loaded onto a HAP  column (Bio-Rad, 2.6 x 10 

cm) equilibrated with buffer A. Hydrogenase started to elute out as 0.05 M potassium phosphate was 

applied to the column. The active fractions were pooled and loaded to Phenyl-Sepharose HP column 

(2.6 x 8 cm, Amersham Biotech, Quebec, Canada). The column was eluted with a continuous gradient 

of (NH4)2SO4 (0.8-0 M) at a flow rate of 2 ml/min. Hydrogenase activity started to elute out as 0.0 M 

ammonium sulphate was applied the column. Part of the activity-containing fractions was 

concentrated with ultra filtration (Amicon Ultra filter, PM 30 membrane) to 3 ml and applied to 

Superdex 200 column (2.6 x 60 cm, Amersham Biotech, Quebec, Canada) equilibrated with buffer A 

containing 100 mM KCl.  The column was eluted with the same buffer at a flowrate of 3 ml/min. 

Fractions containing high hydrogenase activity were combined, desalted with ultra filtration, and 

applied to Q-Sepharose HP column (1 x 10 cm, Amersham Biotech). The column was eluted with 

linear gradient of NaCl (0-0.5 M) at a flowrate of 1 ml/min. Hydrogenase was eluted out when 0.2 M 

NaCl was applied to the column. Fractions containing pure hydrogenase as revealed by SDS-PAGE 

(Laemmli 1970) were concentrated using ultra filtration (Amicon Ultra filter, YM 10 membrane) and 

stored in liquid nitrogen till use. The purification procedures of ferredoxin were the same as for the 

purification of hydrogenase, up to the HAP column. Ferredoxin did not bind to HAP column very 

well. It started to elute out when the potassium phosphate salt was just applied. The ferredoxin-

containg fractions were pooled and concentrated using ultra filtration (Amicon Ultra filter, YM 3 

membrane) to 10 ml and loaded to Superdex 200 column. The ferredoxin-containing fractions were 

pooled and loaded to Q-Sepharose column. Ferredoxin was eluted out as 0.3 M of NaCl was applied 

to the column.  The fractions containing purified ferredoxin revealed by SDS-PAGE were 
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concentrated with ultra filtration (Amicon Ultra filter, YM 3 membrane) and stored at -20oC untill 

use. 

8.3.4 Flavin cofactor analysis 

The purified hydrogenase was scanned to check the characteristic peaks of flavin in quartz cuvette 

from 190 nm to 600 nm (Varian Bio 50 UV-visible spectrophotometer). Then the enzyme used for 

scanning was extracted for flavin and identified by thin layer chromatography using the method 

reported previously (Yang and Ma 2005a). Details were described in Chapter 3 (3.3.8 Flavin cofactor 

analysis). 

 

8.3.5 Metal and sulfur determination 

The enzyme sample in Buffer A was concentrated and washed with freshly prepared anaerobic Tris-

HCl buffer (pH 7.8, 10 mM) containing 2 mM DTT in the anaerobic chamber using Microcon YM-10 

(Millipore, MA, USA) to remove SDT that interferes with metal determination. The oxygen level in 

the chamber was 1.4 ppm when the experiment was carried out. The presence of Fe and Ni was 

determined using ICP-MS (Chemical Analysis Laboratory, University of Georgia, USA). Acid labile 

sulfur was determined using methylene blue formation method described previously (Beinert 1983). 

The details were described in the materials and methods of Chapter 6 (6.3.4 Iron and acid labile sulfur 

determination). 

 

8.3.6 Molecular mass determination 

The native molecular mass of T. hypogea hydrogenase was estimated by gel filtration on Superdex 

200 column (2.6 x 60 cm). The details were described in Chapter 7 (7.3.5 Determination of molecular 

mass and mass spectrometry) 
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8.4 RESULTS 

8.4.1 Effect of hydrogen on P. furiosus 

P. furiosus was grown in the presence of various amount of hydrogen added in the gas phase before 

inoculation. There was almost no difference between the culture without added hydrogen and those 

with 50% (V/V) of hydrogen added. Normally P. furiosus produces approximately 30% of hydrogen 

in the gas phase of a sealed culture bottle. Therefore, the production of hydrogen should not be a 

factor to inhibit growth under normal growth conditions. The severe inhibition appeared when the 

hydrogen concentration went up to as high as 80%. However, even with 100% of hydrogen added to 

the gas phase, P. furiosus was still able to grow. In order to understand how the high concentration of 

hydrogen may shift the electron flow in P. furiosus, activities of three enzymes related to the 

utilization of NADPH, hydrogenase, GDH, and alcohol dehydrogenase, were measured. Ethanol 

production was used as an indicator for the presence of alcohol dehydrogenase since the enzymatic 

activity was below the limit of assay method. The results were presented in Table 8-1. Hydrogenase 

was lower in the cells grown in the presence of hydrogen, while there was no significant difference 

among GDH activities under all growth conditions tested.  The production of ethanol was greatly 

enhanced by the addition of hydrogen especially when there was no sulfur present.  

 

8.4.2 Purification of T. hypogea hydrogenase and ferredoxin 

Hydrogen oxidation activity was found to be present in the cell-free extract of T. hypogea grown in 

the presence of sodium thiosulfate or NaCl (Figure 8-1). The hydrogenase activity was higher at mid-

log phase than that at later log phase in both cells grown on glucose and xylose. Cell-free extract 

prepared from 50 g frozen cells grown on glucose was applied to DEAE column.  T. hypogea 

hydrogenase activity was eluted as a single peak after DEAE, HAP and Phenyl-Sepharose column. 

The enzyme was eluted completely after more than 13 column volume (520 ml) buffer A was applied 

to Phenyl-Sepharose column after the (NH4)2SO4 gradient, which indicates that the enzyme had a 

strong interaction with the column. Since the protein composition of the fractions on SDS-PAGE was 

quite different, the fractions were split and concentrated with ultra filtration individually. The 

resulting concentrates were loaded to Superdex 200 individually. The concentrate from the fractions 

that were eluted out first on Phenyl-Sepharose resulted in two activity peaks corresponding to the 

molecular weight of 250 kDa and 125 kDa, respectively, and that from the fractions that were eluted 
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Table 8-1 Effect of added hydrogen in the gas phase on enzyme activities and ethanol 

production in P. furiosus 

 

Growth conditions Enzymes measured 

+So, +H2
b +So, +N2

c -So, +H2 -So, +N2 

Hydrogenase(U/mg) 1.601±0.11 8.7±0.52 3.09±0.12 5.48±0.21 

GDHa(U/mg) 4.77±0.25 5.58±0.30 3.49±0.22 3.43±0.18 

Ethanol 

(μmol/108cells) 

4.06±0.27 3.93±0.12 37.39±1.72 ND 

 
a GDH stands for glutamate dehydrogenase. 
b So stands for elemental sulfur in the media and H2 stands for 100% H2 in the gas phase. 
cN2 stands for 100% of N2 in the gas phase. 

ND stands for not detectable. 

+ stands for added. 

- stands for ommited 
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Figure 8-1 Hydrogenase activities in the cells of T. hypogea from different growth conditions. 

The cell-free extract was made from the culture incubated for 18 and 24 hours from glucose grown 

cells in the presence of sodium thiosulfate (White), from xylose grown cells in the presence of sodium 

thiosulfate (Red lines) and glucose grown cells in the presence of NaCl (Red lines). 
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out later from Phenyl-Sepharose column resulted in only one peak (250 kDa) on Superdex 200 

column. The active fractions of the 250 kDa peak were used for further purification and loaded onto 

Q-Sepharose column. The hydrogenase was purified after Q-Sepharose column revealed by a single 

band with molecular mass of 65 kDa on SDS-PAGE (Figure 8-2). The enzyme was purified 126-fold 

after 5 chromatography columns, indicating this enzyme is present in the cell in a quantity slightly 

less than 1% (Table 8-2). Amino-terminal sequence analysis of the purified hydrogenase gave rise to 

a single sequence (AGVTVEINGK) that shows no similarity to the two hydrogenases purified from 

P. furiosus (Ma et al. 2000). It shows significant similarity to the sequence near the N-terminus of Fe-

hydrogenase in Clostridium thermocellum (11 GIPVEING 18; 

http://genome.ornl.gov/microbial/cthe/) and putative NADP reducing hydrogenase subunit D which 

would result in a single subunit in T. maritima (28 ADVTVVING 36; Nelson et al. 1999). However, 

none of them has been characterized yet. Ferredoxin was purified after Q-Sepharose column revealed 

by a single band around 10 kDa on 20% SDS-PAGE, which is similar to the ferredoxin from T. 

maritima.  The purified T. hypogea ferredoxin with A390/290 ratio between 0.85 and 0.87 was used in 

later electron carrier assay for hydrogenase. 

 

8.4.3 Physical properties of T. hypogea hydrogenase 

The oxidized form of purified hydrogenase was scanned with Varian spectrophotometer from 190-

600 nm. There was no characteristic flavin absorbance peak around 375 and 450 nm. The solution 

contained the purified hydrogenase was very brownish. After the sample was boiled with hot 

methanol in the dark for 10 min, the brownish color disappeared and it did not show significant 

absorbance at 450 nm. The concentrated supernatant was applied on thin layer chromatography to 

further identify the presence of flavin cofactor. There was no flavin found in the extract (Figure 8-3). 

Therefore, the purified T. hypogea hydrogenase does not contain any flavin cofactor. Since the 

brownish color of the purified enzyme may have been an indication of the presence of iron-sulfur 

center, metal content and labile-sulfur were determined. Although the sample was treated in anaerobic 

chamber (1.4 ppm O2), the hydrogenase lost its activity completely after the filtration and washing 

steps, indicating the purified enzyme was extremely oxygen-sensitive. There was 16 g-atoms of iron 

per subunit, no nickel detected from T. hypogea hydrogenase using   ICP-MS.  The results from 

methylene blue formation showed that the enzyme contained 11 g-atoms of acid labile sulfur per 

subunit. Therefore, the purified T. hypogea hydrogenase was a Fe-hydrogenase. 
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Figure 8-2 SDS-PAGE of T. hypogea hydrogenase.  

Lane 1 and 3, low molecular standards with molecular weight indicated; lane 2 and 4, purified T. 

hypogea hydrogenase 0.7 and 1.2 µg, respectively; lane 5, 2.8 µg partially purified T. hypogea 

hydrogenase (fractions from gel filtration column). 
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Table 8-2 Purification of hydrogenase from T. hypogea 

 

Purification  

steps 

 

Total 

protein 

(mg) 

Total 

units 

(U) 

Sp act 

(U/mg) 

Purification 

fold 

Recovery 

(%) 

Cell-free extract 1643 13332 8.11 1 100 

DEAE-Sepharose 246 6786 27.6 3.4 51 

HAP 88 13900 158 19.5 104 

Phenyl-Sepharose 22.7 8093 357 44 61 

Gel filtration 3.3 3255 986 122 24 

Q-Sepharose 1.01 1031 1021 126 8 
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Figure 8-3 Thin layer chromatography of T. hypogea hydrogenase extract.  

The extracted sample from T. hypogea hydrogenase was ascended on thin layer plate in dark together 

with commercial standards. Lane 1, riboflavin; lane 2, FMN; lane 3, FAD; lane 4, extract of T. 

hypogea hydrogenase. 
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Thermostability of T. hypogea hydrogenase was determined by monitoring its temperature-dependent 

change of hydrogen oxidation activity with MV.   The activity of the purified hydrogenase increased 

along with the elevation of assay temperature up to 85oC (Figure 8-4). The activity decreased rapidly 

when the temperature rose to 90oC, which could be caused either by the instability of the enzyme or 

the low solubility of hydrogen gas at high temperature. Therefore, all other assays performed at 80oC. 

The time required for a loss of 50% of activity of hydrogenase was approximately 40 and 15 min at 

70oC and 85oC, respectively (Figure 8-5) and which did not follow first order kinetics. During 

purification, it was found that T. hypogea hydrogenase activity decreased very quickly whenever the 

enzyme was exposed to oxygen, even a trace amount. When the enzyme was centrifuged in the 

anaerobic chamber, where the oxygen level was 1.4 ppm, to prepare sample for metal and sulfur 

analysis, it lost its activity completely during 2 hours exposure. The enzyme lost its 50% activity 

around 3 min while it was exposed to ambient air directly (Figure 8-6). Therefore, the purified T. 

hypogea hydrogenase was extremely oxygen sensitive, which is a common feature for iron 

hydrogenase. The enzyme from T. maritima lost 50% of its activity within 10 s exposure to air 

(Juszczak et al. 1991). 

 

8.4.4 Catalytic properties of T. hypogea hydrogenase 

The optimal pH for hydrogen oxidation with MV as electron acceptor was determined to be 10.0, 

while that of the evolution of hydrogen was around 8.0 (Figure 8-7), which is very similar to the 

reported pH optima of T. maritima hydrogenase (Juszczak et al. 1991).  The ratio of hydrogen 

evolution activity to hydrogen oxidation activity at pH 8.0 was found to be 0.4. The activities of 

hydrogen oxidation by T. hypogea hydrogenase under various conditions are shown in Table 8-3. T. 

hypogea hydrogenase could reduce both MV and BV with a preference of BV over MV. Neither 

NAD+ nor NADP+ could be reduced under the same assay conditions. Unlike the enzyme from T. 

maritima, T. hypogea hydrogenase could reduce ferredoxin with a specific activity of 3.3 U/mg when 

0.17 µM ferredoxin was used in the metronidazole coupled assay. For the hydrogen evolution assay, 

SDT-reduced MV was used as electron donor. NAD(P)H could not be used as substrate either for the 

purified enzyme or for the cell-free extract to produce hydrogen, while reduced T. hypogea ferredoxin 

could serve as electron donor for the purified hydrogenase to produce H2 (Figure 8-8). It appears that 

the purified hydrogenase could also use electrons directly from POR, but ferredoxin stimulated the 

hydrogenase activity. 
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Figure 8-4 Thermoactivity of purified T. hypogea hydrogenase.  

The oxidation of hydrogen with MV as electron acceptor for T. hypogea hydrogenase was carried out 

with the method described in Material and Methods (8.3.2) with the temperature varying from 30 to 

90oC. 
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Figure 8-5 Thermostability of purified T. hypogea hydrogenase.  

Purified T. hypogea hydrogenase 0.015 mg/ml in buffer A containg 100 mM KCl was incubated in a 

sealed small vial anaerobically at 70oC (circles) and 85oC (squares). The residual activity of hydrogen 

oxidation with BV as electron acceptor was carried out at different time intervals with standard 

assays. 100% of activity was 1000 U/mg when BV was used as electron acceptor. 
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Figure 8-6 Oxygen sensitivity of purified T. hypogea hydrogenase.  

Purified hydrogenase in buffer A was exposed to ambient air and the residual activity of hydrogen 

oxidation with BV as electron donor was carried out at different time intervals at 80oC. 100% of 

activity was 1000 U/mg when BV was used as electron acceptor. 
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Figure 8-7 Optimal pH determination of purified T. hypogea hydrogenase.  

The optimal pHs for hydrogen evolution (filled) and oxidation (open) of hydrogenase were 

determined with 100 mM sodium phosphate pH 6.0-8.0, 100 mM EPPS pH 7.5-8.5, 100 mM glycine-

NaOH pH 8.5-10.0, and 100 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) pH 10.0-11.0 

as described in section 8.3.2. 
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Table 8-3 Utilization of different electron acceptors in H2 oxidation 

 

Electron 

acceptors 

Concentration 

(mM) 

Specific activity 

(U/mg) 

Ferredoxin 1.7x10-4 3.3±0.09 

NADP 0.5 0 

NAD 0.5 0 

MV 1 301±7.5 

BV 1 1000±19.6 
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Figure 8-8 Hydrogen evolution with reduced ferredoxin as substrate catalyzed by purified T. 

hypogea hydrogenase.  

Hydrogen production using ferredoxin reduced by POR as electron donor was measured with Buck 

Gas Chromatography. Details were described section 8.3.2. Circles, without both hydrogenase and 

ferredoxin added; squares, with hydrogenase and without ferredoxin added; diamonds, with both 

hydrogenase and ferredoxin added. 
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It has been reported that cytoplamic hydrogenases from some hyperthermophiles, such as P. furiosus 

can function as both hydrogenase and sulfur reductase (Ma et al. 1993, 2000). T. hypogea can reduce 

elemental sulfur to produce hydrogen sulfide (Fardeau et al. 1997). The sulfur reductase assay, 

therefore, was carried out.  However, there was no sulfur reductase activity detectable for purified T. 

hypogea hydrogenase.  

 

The hydrogen uptake activity of T. hypogea hydrogenase was dependent on both hydrogen and MV 

(BV) concentrations (Figure 8-9, Figure 8-10&Figure 8-11). The data were fitted to Michaelis-

Menten kinetics using SigmaPlot10. Apparent Km value for hydrogen and Vmax value were determined 

to be   0.43 mM and 662.8 µmol min-1 mg-1, respectively. Apparent Km values for MV and BV and 

apparent Vmax values were determined to be 0.17 and 0.24 mM; and 606.9 and 1142 µmol min-1 mg-1, 

respectively. The hydrogen evolution activity was dependent on the concentration of MV. The 

catalysis followed Michaelis-Menten kinetics (Figure 8-12). The apparent Km value and apparent Vmax 

value were determined to be 1.1 mM and 192.4 µmol min-1 mg-1, respectively. The Km value for MV 

in hydrogen evolution is very close to that (1.25 mM) of hydrogenase II from P. furiosus (Ma et al. 

2000), and two times lower than that of hydrogenase from T. maritima (Juszczak et al. 1991). 
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Figure 8-9 MV dependency of purified T. hypogea hydrogenase for hydrogen uptake.  

The uptake activity of hydrogenase was measured at 80oC with MV concentration varied from 0 to 4 

mM. The results were fitted to Michaelis-Menten kinetics using SigmaPlot10. 
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Figure 8-10 BV dependency of purified T. hypogea hydrogenase for hydrogen uptake.  

The uptake activity of hydrogenase was measured at 80oC with BV concentration varied from 0 to 4 

mM. The results were fitted to Michaelis-Menten kinetics using SigmaPlot10. 
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Figure 8-11 H2 dependency of purified T. hypogea hydrogenase for hydrogen uptake.  

The uptake activity of hydrogenase was measured at 80oC with H2 concentration varied from 0 to 1 

mM. The results were fitted to Michaelis-Menten kinetics using SigmaPlot10.
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Figure 8-12 MV dependency of purified T. hypogea hydrogenase for hydrogen evolution. 

Hydrogen evolution was measured at 80oC by the production of hydrogen gas with Buck GC using 

SDT-reduced MV as electron donor. The results were fitted to Michaelis-Menten kinetics using 

SigmaPlot10. 
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8.5 DISCUSSION 

It was found that the growth of P. furiosus was not inhibited by H2 in the gas phase up to 50% (v/v). 

Its growth in the hydrogen atmosphere (100% hydrogen) could still achieve half of the growth in the 

absence of any added hydrogen in the culture containing both maltose and peptides. Previous study 

has shown that P. furiosus cannot grow in the hydrogen atmosphere without sulfur added in the media 

and without carbohydrate added (Malik et al. 1989). Our results showed that P. furiosus could grow 

in the 100% of hydrogen in the gas phase in a complex media containing peptone and maltose in the 

presence or absence of sulfur. It indicates that the inhibition of the growth by hydrogen may be 

related more to the metabolism of peptides. The cells grown in the hydrogen environment showed 

lower hydrogenase activity (Table 8-1). Since there is no inhibition of the purified hydrogenase 

activity by hydrogen (Ma et al. 1994, 2000), the lower hydrogenase activity may result from the 

lower level expression of hydrogenase. The ethanol production was greatly increased when there was 

hydrogen present in the gas phase. However, it was not the case if sulfur was present in the growth 

media, indicating elemental sulfur is a preferred electron acceptor compared to aldehyde or proton.  

 

Hydrogenases in P. furiosus, the most studied model organism of hyperthermophilic archaea, have 

been extensively studied (Bryant and Adams 1989; Ma et al. 1993, 2000; Sapra et al. 2000; Silva et 

al. 2000). However, the study of hydrogenase in thermophilic bacteria is scarce. T. hypogea is a 

strictly anaerobic, fermentative bacterium that grows optimally at 70oC and maximally up to 90oC by 

fermenting carbohydrates and peptides to produce acetate, CO2, and H2 (Fardeau et al. 1997). It has 

great potential as a candidate for microbial hydrogen production since T. hypogea can utilize various 

substrates including the renewable agricultural residues. Hydrogenase activity was detected in the 

anaerobically prepared cell-free extract. It was higher in the xylose grown cell than that from glucose 

grown cells in the same growth phase. The activity at mid-log phase was higher than that at later log-

phase, indicating hydrogenase is a growth related enzyme. The hydrogen oxidation activity of 8.1 

U/mg in T. hypogea, is comparable to 5.4 U/mg in P. furiosus (Ma et al. 2000), 1.4 U/mg in T. 

maritima (Juszczak et al. 1990), 14 U/mg in Clostridium pasteurianum (Adams and Mortenson 

1984), much lower than 72.5 U/mg in Thermoanaerobacter tengcongensis (Soboh et al. 2004) and 

104 U/mg in Desulfovibrio vulgaris cytoplasmic fraction (van der Western et al. 1978). 
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The enzyme was purified 126-fold after 5 chromatographic columns and was slightly less than 1% in 

the cell (Table 8-2). The amount of hydrogenase present in T. hypogea cell-free extract is three times 

lower than that in T. maritima (Juszczak et al. 1991), while the purified enzyme (550 U/mg) is ten 

times more active than that of T. maritima hydrogenase (56 U/mg). The hydrogenase from T. 

maritima was first identified as a homotetramer with subunit weight of 68 kDa, and later on corrected 

to be a heterotrimeric protein (Juszczak et al. 1991; Verhagen et al. 1999). Hydrogenase from T. 

hypogea showed different behaviour on chromatography columns compared to that from T. maritima. 

The enzyme exhibited very strong interaction with Phenyl-Sepharose column indicating that T. 

hypogea hydrogenase was more hydrophobic.  T. maritima hydrogenase showed three peaks on gel 

filtration column with apparent Mr values of 120,000, 280,000 and 60,000 Da, while the purified T. 

hypogea hydrogenase only had one peak with apparent Mr value of 250 kDa. The SDS-PAGE (Figure 

8-2) of the gel filtration fraction did have two bands close to 67 kDa, similar to the pure enzyme of T. 

maritma. However, the second band disappeared after Q-Sepharose column, and resulting enzyme 

had higher specific activity (Table 8-2). The hydrogenase from T. hypogea is therefore different from 

that of T. maritma in the aspect of molecular composition since it is a true homotetramer. Although 

the distribution of Fe-hydrogenase among microorganisms is very limited compared to that of Ni-Fe 

hydrogenases, a few characterized Fe-hydrogenase are very diverse with respect to subunit 

composition, iron sulfur content and enzymatic activity (Table 8-4).  Like most Fe-hydrogenases, 

there was no flavin cofactor identified in the purified T. hypogea hydrogenase. The only known Fe-

hydrogenase containing flavin is the NADH-dependent enzyme from T. tengcongensis, which is a 

heterotetramer containing an NAD(P)H dehydrogenase homologue (Soboh et al. 2004).  

 

T. hypogea hydrogenase was very oxygen sensitive. It lost 50% of activity within 3 minutes when 

exposed to air, which is a common feature for Fe-hydrogenases. The t1/2 of inactivation of the Fe-

hydrogenase from T. maritima is only 10 s (Juszczak et al. 1991) and the extreme oxygen sensitivity 

caused a lot of unsuccessful purifications before the strictly anaerobic techniques were applied in the 

early 1970’s (Adams 1990a). Study shows that the extreme oxygen sensitivity is caused by the direct 

binding of oxygen to one of the iron species located in the catalytic center (Hall et al. 1995).  The 

purified T. hypogea hydrogenase could use the oxidized MV, BV, and T. hypogea ferredoxin for 

hydrogen oxidation, and reduced MV and T. hypogea ferredoxin for hydrogen evolution. The 

hydrogen evolution activity of T. hypogea hydrogenase with SDT-reduced MV is one fifth of the 

hydrogen oxidation activity, only one tenth when BV was used for hydrogen oxidation, indicating this  
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Table 8-4 Properties of Fe-hydrogenases 

 

C.  pasteurianum  

I II 

Megasphaera  

elsdenii 

D.  vulgaris T. maritima T. hypogea T. 

tengcongensis 

Oxygen 

sensitivity 

t1/2 

Yes  

 

5 min 

Yes 

 

30 min 

Yes 

 

NA 

No 

 

- 

Yes 

 

10 sec 

Yes 

 

3 min 

Yes 

 

NA 

Molecular 

weight 

(kDa) 

Monomer 

62 

Monomer 

55 

Monomer 

58 

Dimmer 

46+10 

Trimer 

73 /68/19 

Tetramer 

65 k 

Tetramer 

65/64/20/14 

Vmax, H2 

uptake 

(U/mg) 

24000 34000 9000 50,000 69 588/ MV 

1100/BV 

1700 

Vmax,  H2 

evolution 

(U/mg) 

5500 10 7000 4600 164 185 1700 

Substrates 

for H2 

evolution 

MV 

Ferredoxin 

MV 

Ferredoxin 

MV 

Ferredoxin 

MV 

cytochrome 

c3 

MV MV 

Ferredoxin 

 

MV 

NADH 

 

g atoms 

Fe/mol 

20.1±0.7 13.8±0.4 15.6±2.7 9-15 32 16 NA 

g atoms 

S2-/mol 

17.8±1.2 11.4±0.2 15.5±2.4 ≈13 28.2±0.5 11.7 NA 

Flavin No No No No No No FMN 

Ref. Adams 1990a; Chen and Blanchard 1978 Juszczak et 

al. 1991 

This work Soboh et al. 

2004 
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enzyme might be involved in hydrogen uptake. The hydrogenase from T. maritima shows similar 

ratio in hydrogen uptake and evolution (Juszczak et al. 1991; Verhagen et al. 1999). T. hypogea 

hydrogenase could use ferredoxin as electron carrier in hydrogen uptake and hydrogen evolution, 

which is similar to C. pasteurianum and M. elsdenii (Adams 1990b). It suggests that the purified Fe-

hydrogenase of T. hypogea may be involved in hydrogen production in the cell with reduced 

ferredoxin generated during fermentation as substrate. 
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Chapter 9  General Conclusions 
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Flavoproteins are ubiquitous enzymes catalyzing oxidoreduction reactions. They are well studied in 

mesophiles and are known for being involved in various essential processes such as energy 

metabolism, DNA biosynthesis, against oxidative stress, redox regulation etc (Müller 1991). Their 

involvement in the metabolism of hyperthermophiles was studied and presented in this report. It was 

estimated that 4.89%, 5.97% and 8.02% of the ORFs based on motif search and 2.21%, 1.88% and 

3.63% of the ORFs based on the match of annotated sequences to experimentally characterized 

flavoproteins could potentially encode flavoproteins in P. furiosus, T. maritima and E. coli, 

respectively. 

 

9.1 Flavoproteins involved in oxygen defensive system of Thermotoga species 

As reported in this thesis, it was found that T. maritima and T. hypogea could tolerate up to 5.5 and 

4.1 µM of dissolved oxygen in the media under continuous shaking conditions, which was 

unexpected for the obligate anaerobes. An NADH oxidase that can reduce molecular oxygen to 

hydrogen peroxide or water was detected in Thermotoga species. This enzyme was purified and 

characterized from T. hypogea and T. maritima. Both enzymes were FAD-containing proteins with 

native molecular mass around 100 kDa and catalyzed the production of hydrogen peroxide 

exclusively by reducing oxygen. In the cell-free extract of T. hypogea and T. maritima, NADH-

dependent peroxidase activities had been detected, indicating that both NADH oxidase and NADH 

peroxidase may act as a system that has the ability to reduce accidentally encountered oxygen to 

water. The T. maritima NADH oxidase was a heterodimer and contained one [2Fe-2S]-center in the 

large subunit, which was a new type of NADH oxidase identified in hyperthermophiles. The NADH 

oxidase from T. maritima was highly active and oxygen sensitive, indicating it may play some 

regulatory role to adjust the amount of NADH oxidase expressed in the cell. An accurate and easy 

way to measure hydrogen peroxide in the NADH oxidase mixture was formulated based on the 

principle of lability of NADH and stability of hydrogen peroxide under acidic conditions.  

 

9.2 Flavoproteins involved in redox regulation system 

As reported in this thesis, a Trx-TrxR system, which is responsible for thiol regulation and oxidative 

stress protection in cells, was found in T. maritima. In contrast to the oxidized environment in the cell 

surface, the inside of the cell is kept reduced and proteins contain many free sulfhydryl groups (Arnér 

and Holmgren 2000; Gilbert 1990). As the major ubiquitous disulfide reductase, Trx is very important 

for maintaining proteins in their reduced state. Disulfide bonds in protein are very important either as 
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structural features to stabilize protein or part of catalytic cycles (Ritz and Beckwith 2001). Trx and 

TrxR from T. maritima were purified and characterized. TrxR from T. maritima was a 67 kDa 

homodimeric FAD-containing enzyme and showed typically physical properties of bacterial TrxR, 

but had distinct biochemical properties with respect to catalyzing the direct reduction of DTNB. The 

purified Trx from T. maritima was a monomer with a molecular weight of 23 kDa estimated by gel 

filtration and 31 kDa estimated by SDS-PAGE, which is bigger than conventional Trx from 

mesophiles and close to a group of disulfide reductase in hyperthermophiles. T. maritima Trx- TrxR 

system could reduce both insulin and DTNB using either NADH or NADPH as electron donor, which 

is the first one described in hyperthermophilic bacteria.  

 

9.3 Multi functionality of flavoproteins in hyperthermophiles 

As reported in this thesis, the flavoproteins investigated showed multi functionality. In addition to its 

ability to reduce oxygen with NADH, the NADH oxidase from T. hypogea exhibited DLDH activity, 

which is one component of the glycine decarboxylase system. However, the physiological 

significance of this activity in T. hypogea is not clear since T. hypogea could not grow with glycine as 

sole carbon and energy source and there was no GDC activity detectable. Apart from the high activity 

towards reduction of oxygen, the NADH oxidase from T. maritima demonstrated FAD-GPDH 

activity, which is a key component in the glycerol catabolism. It could also oxidize sn-G-3-P with 

molecular oxygen to produce hydrogen peroxide and dihydroxyacetone phosphate. It was verified that 

T. maritima could grow with glycerol as sole carbon and energy source. The TrxR from T. maritima 

shows the capability to catalyze the reduction of molecular oxygen with either NADH or NADPH as 

electron donor. Both TrxR and NADH oxidase from T. maritima showed FNOR activity, which is 

crucial for fermentative hyperthermophiles to convert the reducing equivalent, reduced ferredoxin, 

generated during fermentation to NAD(P)H. This enzyme is important for recycling ferredoxin and 

generating NAD(P)H for biosynthesis. The FNOR in P. furiosus is bifunctional as well (Ma and 

Adams 1994). Besides its FNOR activity, the enzyme also functions as a sulfide dehydrogenase. This 

property of FNOR in hyperthermophiles may represent a new feature of this enzyme from this group 

of microorganisms. The multi functionality of flavoproteins in hyperthermophiles may compensate 

for the less overall quantity of flavoproteins compared to that in mesophiles based on the predictions.  

 

9.4 Hydrogen metabolism in hyperthermophiles 
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Hydrogen metabolism is crucial for hyperthermophilic and heterotrophic anaerobes especially in the 

absence of electron acceptors such as elemental sulfur or sodium thiosulphate.  It was demonstrated 

that P. furiosus could grow well in the presence of 50% of hydrogen in the gas phase, which was the 

same as that of the growth in the absence of hydrogen. The growth in the hydrogen atmosphere could 

reach more than 50% of that in the absence of hydrogen, indicating P. furiosus is not sensitive to 

hydrogen inhibition. Some NADPH-utilizing enzymes such as hydrogenase and alcohol 

dehydrogenase were affected by the presence of 100% added hydrogen to the gas phase of the growth 

media. Since the hydrogenases in P. furiosus are FAD-containing complex proteins (Bryant and 

Adams 1989; Ma et al. 2000), effort was made to study the hydrogenase in hyperthermophilic 

bacterium, T. hypogea, which is promising bacterium for microbial hydrogen production. The growth 

related hydrogenase activity was detected in T. hypogea and it showed higher activity from xylose 

grown cells than glucose grown cells. The hydrogenase was purified following hydrogen oxidation 

activity using BV as electron acceptor. Unlike the enzymes from archeaon, P. furiosus, this 

hydrogenase was not a flavin-containing protein. The purified hydrogenase was a Fe-hydrogenase and 

able to utilize ferredoxin as electron carrier for hydrogen evolution and uptake, indicating it is a very 

important enzyme in hydrogen metabolism in T. hypogea.  

 

Flavoproteins have been extensively studied in mesophiles. However, little is known about their full 

functions in hyperthermophiles. Clearly, this study has demonstrated biochemical properties of 

flavoproteins including NADH oxidase, DLDH, FAD-GPDH, and TrxR, and their functions in 

hyperthermophilic bacteria Thermotoga species. It suggested that the results not only shed light on 

the involvement of flavoproteins in important biological process such as oxygen detoxification and 

energy conservation in hyperthermophiles, but also to provide the comparison of the studied 

flavoprotein to their mesophilic counterparts and to understand those enzyme from the perspective of 

evolution. 
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