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Abstract

Deteriorating roadway conditions have drawn attention to the need to develop an accu-

rate and practical system to control increasing excessive traffic volumes and traffic loads.

In practice, traffic volumes often exceed predicted volumes, and truck overloading occurs

frequently. Overloading pavements can result in premature deterioration, early or mistimed

maintenance activities and eventually higher life cycle costs. As a part of an Intelligent

Transportation Systems (ITS), especially in the area of Commercial Vehicle Operations

(CVO), Weigh-In-Motion (WIM) has been focused on using state-of-the-art sensing tech-

nology to continuously collect vehicle weights, speeds, vehicle classes, and various types of

traffic data as vehicles travel over a set of sensors (embedded or portable), without inter-

ruption of traffic flows. It is the process of measuring the dynamic tire forces of a moving

vehicle and estimating the corresponding tire loads of the static vehicles. WIM technology

is imperative for weight enforcement, road network design and management, as well as

road safety.

The overall purpose of this thesis is to examine the feasibility of using WIM in northern

environments such as Canada’s. In response, one contribution of the thesis is to develop an

economic model for WIM values that include costs due to premature pavement deteriora-

tion, benefits of weight enforcement and traffic data collection, benefits of WIM compared

to conventional static weigh stations, and benefit-cost ratios of WIM values from road

users and non-road users’ perspectives. Another contribution is to examine the techni-

cal performance (accuracy) of a particular WIM system. Results of field data collection

and analysis are presented in this examination. This thesis also compares the advantages

and disadvantages of different WIM systems, with respect to cost, accuracy, applicability,

reliability, and sensitivity. Future trends and research potential of WIM are also discussed.
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Chapter 1

Introduction

1.1 Background

Roads are essential for a nation’s social well being and economic strength. There has

been a rapid increase in road traffic volume in North America in recent years. In order

to stay efficient and competitive, transport companies have adopted trucks fleet that are

larger in terms of both loading and size. This is a concern because overloaded trucks can

cause damage to the road network, reduce pavement service life, and reduce the overall

service level of a pavement system. Moreover, overloaded trucks can result in more traffic

accidents [Wang and Wu 2004], disorder in transportation systems, and eventually more

cost to road users, road agencies, and the public. Furthermore, the current condition of

pavement infrastructure in North America is at a critical state because of over usage of the

infrastructure, poor maintenance, and limited budgets. According to the ASCE (American

Society of Civil Engineers) 2005 Report Card for America’s Infrastructure, the service level

of highways in America is at the level of C or D (C = Mediocre and D = Poor). This

urgent problem focuses attention on the need to develop an accurate and practical system

to meet the needs of traffic control.

Since the 1950s, WIM systems have been developed as an advanced technology to im-

prove the capacity and effectiveness of static weigh stations, not only for traffic monitoring

and weight enforcement, but also for the data requirement of up-to-date pavement design

protocols, pavement management, and transportation safety. The utmost advantage of a
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2

WIM system is that it does not require trucks to stop and allows heavy but not overweight

vehicles to bypass the scales, thus improving operating efficiency. WIM systems acquire

vehicle weights, axle loads, axle spacing, speed, and other vehicle information as vehicles

drive over sensors. WIM technology has been widely used in Europe, North America, Aus-

tralia and New Zealand. Besides pavements, the application of WIM has been extended

to railways and bridges.

A WIM system consists of weight sensors/scales, inductive loop detectors, and a data

acquisition system (DAS) in a roadside cabinet. Retrieving and analyzing data requires

software which comes with the data logger of the DAS. There are three basic types of WIM

sensors: piezoelectric sensors, bending plates, and load cells. The operational principle of

WIM sensors is that the dynamic tire force is proportional to the physical measurements

recorded by sensors, such as voltage, strain, and resistance. A WIM system is often used

with weigh stations to prescreen overweight trucks at a high processing rate. Weigh stations

are used to confirm the overload.

1.2 Research Motivation

WIM measures the dynamic tire force of a moving vehicle. It more accurately represents

what a pavement is subjected to than a static weight. However, converting the value of

dynamic force to static weight is still used in recording traffic information and evaluating

the accuracy of a WIM system. Since more factors are involved as a vehicle is moving

than in the case of a static vehicle, it is more difficult to quantify the accuracy of a

WIM system. Influence factors could include pavement roughness, vehicle suspension and

speed, interaction between a pavement and a vehicle at the location of the WIM sensor,

temperature, and the sensor itself. In practice, ASTM (American Society for Testing

and Materials) defines the accuracy of each type of WIM as a certain tolerance for a

95% confidence level. The Gross Vehicle Weight (GVW), for instance, measured by a

piezoelectric sensor shall fall within 15% of the true weight for 95% of the trucks measured.

Currently, there are no perfectly accurate WIM scales, and measurement methods for

accuracy are varied.

As new technologies are introduced, a critical concern is the economic value of the
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new technology and the cost-effectiveness compared to conventional options. The question

of benefits of a new technology in terms of society, economy and environment is also

important. With limited budgets, economic analysis helps to make the best decision. With

tight budget constraints, concerns need to be addressed and demonstrated quantitatively

and objectively: such as how an overload spectrum impacts on pavement life cycle cost;

how efficiently or cost effectively WIM systems work compared to static weigh stations;

what are these benefits to users, agencies, the public, and how much. Economic analysis

can help to assess the benefits and costs of applying WIM technology.

1.3 Research Scope and Objectives

The overall objective of this thesis is to examine the feasibility of using WIM technology for

effective pavement design and management and effective weight enforcement in a northern

environment such as Canada’s. The scope of the thesis is two fold: technical performance

of a particular WIM system and economic performance for general WIM values. Compar-

isons are made with conventional weigh stations when applicable. Field observations are

presented to quantify the performance of a particular WIM system. Figure 1.1 illustrates

the structure of the thesis. It involved the following tasks:

1. Literature review of the current practice of WIM and related pavement design and

management concepts

2. Problem identification of WIM systems

3. Field data collection

4. Data analysis of a particular WIM system performance

5. Discussion of benefits and costs of WIM systems, compared to traditional weigh

stations

6. Life cycle cost analysis of excess traffic load on pavement design and maintenance,

operations



4

7. Benefit-cost analysis of WIM based on the values of weight enforcement, delay re-

duction, and road safety

8. Development of an economic model for WIM value analysis

9. Validation of the model with a real WIM project

10. Discussion of future research and improvement of WIM systems

Review of WIM 

State of the Art

Quantification of 
Technical and 

Economic
Feasibility of WIM 

Review of 

Pavement Design 

& Management 

State of the Art

Traffic

data

Technical

Performance

Economic
Performance

Field Practices

& Data 

Collection

 (CPATT)

Benefit-Cost
Ratio Method

Impact
Factors

Life Cycle Cost 
Analysis

Economic data

WIM data

Figure 1.1: Thesis Framework

1.4 Methodology

For the purpose of investigating and understanding WIM accuracy, a piezoelectric WIM

system at the CPATT (Centre for Pavement and Transportation Technology) test track

was examined. The CPATT test track is located at the Regional Municipality of Waterloo’s

Waste Management facility, which is approximately 7 km driving from the University of



5

Waterloo. A static weigh station is also available at the site. This configuration is ideal to

compare WIM measurements with the actual truck weights that are readily available from

the static scales.

For the purpose of life cycle cost analysis for WIM values, the Mechanistic-Empirical

Pavement Design Guide (MEPDG) is used to run simulations of pavement design and

estimate pavement performance under excess traffic axle loads. International Roughness

Index (IRI), rutting index, and corresponding Performance Serviceability Index (PSI) are

used to demonstrate the impact of overload on pavement deterioration. In addition, current

economic analysis tools for ITS investments are applied to aid in evaluation of the benefit-

cost ratio for various WIM values, including delay reduction, weight enforcement, and

safety benefits.

1.5 Organization of the Thesis

The organization of this thesis is as follows:

In Chapter 2, different types of WIM sensors (piezoelectric sensor, bending plate, and

load cell) are described and compared, with respect to cost, accuracy, applicability, reliabil-

ity and sensitivity. Factors, including roughness and vehicle condition that affect accuracy

are discussed. Best practices for a WIM system are presented regarding site selection,

installation, and calibration.

This chapter also presents a literature review of current pavement design protocols

including the new MEPDG compared to the old AASHTO Design Guide, the significant

impact of traffic load on pavement damage and pavement management, and the importance

of WIM data for MEPDG inputs and performance predictions.

Chapter 3 describes the piezoelectric sensors and the data acquisition system at the

CPATT WIM site of the University of Waterloo. A model of the data acquisition process is

presented. Field data are collected to examine the accuracy of the WIM system. Statistical

analysis and results are presented. The lessons learned from field experience are discussed.

Chapter 4 discusses the various aspects of WIM benefits. First, the MEPDG and life

cycle cost analysis are applied to examine the impact of excess traffic load on pavement

design and management. Secondly, costs and benefits of WIM are assessed. Economic
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analysis tools for ITS are discussed. Particularly, SCRITS (SCReening for ITS) is applied

to develop an economic model of WIM with respect to delay reduction, weight enforcement,

and road safety. Finally, a benefit-cost ratio of WIM value analysis is accomplished.

Economic data from industry sources is presented in Chapter 5. The economic model is

to be validated in this chapter. Tradeoff of the economic feasibility of WIM are discussed.

New materials, new technologies, and other future research of WIM are discussed in

Chapter 6.

Chapter 7 provides conclusions and recommendations.



Chapter 2

Literature Review

2.1 Weigh-In-Motion Technology

A WIM system is comprised of a set of sensors and supporting instruments that are de-

signed to measure the presence of a moving vehicle and the related dynamic tire forces at

specified locations with respect to time; estimate tire loads, calculate speed, axle spacing,

vehicle class according to axle configuration, and other parameters of a vehicle; and pro-

cess, display, store, and transmit this information. This standard applies only to highway

vehicles [ASTM 2002]. Therefore, it is important to note that the accuracy of a WIM

system depends on not only the sensor itself and its physical environment, but also the

other supporting instruments and software that are to estimate the measurements.

A WIM system consists of weight sensors/scales, inductive loop detectors, and a com-

puter interface in a roadside cabinet. Depending on applications, optional peripheral de-

vices can include Automatic Vehicle Identification (AVI) interfaces, video cameras, and

modems. Weight sensors that weigh vehicles are the key hardware in the system. These

sensors can be portable or permanently installed depending on system requirements. There

are three basic types of WIM sensors:

• Piezoelectric sensors,

• Bending plates, and

7
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• Load cells

Inductive loop detectors are used to detect approaching vehicles and measure axle

spacing and vehicle speed. The computer interface is usually a data logger equipped with

a microprocessor. It monitors and stores the traffic flow data (including axle spacing,

gross vehicle weight, and vehicle speed) that can be either retrieved on site or transmitted

wirelessly from a remote location to a central office. ASTM classifies WIM systems as Type

I, II, III, or IV, as shown in Table 2.1 [ASTM 2002]. The classification is according to speed

ranges, data gathering capabilities, and intended applications. Table 2.2 [ASTM 2002]

shows functional performance requirement for WIM systems, from Type I to Type IV.

Table 2.1: ASTM WIM System Classification
CLASSIFICATION

TYPE I TYPE II TYPE III TYPE IV

Speed Range
16 - 113 km/h
(10 - 70 mph)

16 - 113 km/h
(10 - 70 mph)

24 - 80 km/h
(15 - 50 mph)

24 - 80 km/h
(15 - 50 mph)

Application
traffic data
collection

traffic data
collection

weight
enforcement

station

weight
enforcement

station
Number of Lanes up to four up to four up to two up to two
Bending Plate X X X X
Piezoelectric Sensor X X
Load Cell X X X X
Wheel Load X X X
Axle Load X X X X
Axle-Group Load X X X X
Gross Vehicle Weight X X X X
Speed X X X X
Center-to-Center Axle Spacing X X X X
Vehicle Class X X
Site Identification Code X X X X
Lane and Direction of Travel X X X
Date and Time of Passage X X X X
Sequential Vehicle Record Number X X X X
Wheelbase (front to rear axle) X X
Equivalent Single-Axle Load X X
Violation Code X X X X

A WIM system serves mainly two functions for highway preservation: traffic data

collection and weight enforcement. It is a major tool used to collect traffic data automat-

ically, including vehicle weight, volume, classification and speed. Traffic flow information

is critical for highway management, traffic operation and control, and structural design of

pavements and bridges. For example, Type I and Type II WIM systems can be used to
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Table 2.2: Functional Performance Requirement for WIM Systems

Function
Tolerance for 95% Probability of Conformity

Type I Type II Type III
Type IV

value ≥ kg (lb)∗ ± kg (lb)
Wheel Load ±25% n.a. ±20% 2,300 (5,000) 100 (250)
Axle Load ±20% ±30% ±15% 5,400 (12,000) 200 (500)
Axle-Group Load ±15% ±20% ±10% 11,300 (25,000) 500 (1,200)
Gross Vehicle Weight ±10% ±15% ±6% 27,200 (60,000) 1,100 (2,500)
Speed ±2 km/h (1mph)
Axle Spacing ±150 mm (0.5 ft)

∗Lower values are not normally a concern in enforcement

calculate Equivalent Single-Axle Loads (ESALs). It is a measure of pavement axle load

damage and an important input for pavement design. In addition, WIM systems can be

used to pre-weigh all trucks to detect suspected weight violators who are then directed to

static weigh stations, thus protecting pavements from accelerating deteriorations. Since

overloaded vehicles are more often involved in fatal accidents [Wang and Wu 2004], WIM

systems also contribute to road safety as a subordinate function. Compared to static weigh

stations, WIM systems provide a higher processing rate.

2.1.1 WIM Applications/Projects in North America and Europe

WIM was first introduced in Canada in Alberta in 1982. Since then, its usage has been

increasing steadily. In Manitoba, several WIM systems were installed in the 1990s. A

performance study [Zhi et al. 1999] showed that the historic performances of these WIM

systems are outside the conformity specified by ASTM E2-1802, due to a large number of

unreasonable data. In Ontario, the Ministry of Transportation Ontario (MTO) tried using

WIM as one of the tools to inspect commercial vehicles in an effort to preserve Ontario’s

roads. In the United States, WIM technology is more widely and successfully applied to

preserve the road network. For instance, in Texas, there are 21 permanent WIM sites to

collect traffic data to provide a vehicle loads database.

WIM sensing technologies have been widely used not only in North America, but also in

Europe. Established WIM vendors include Electronique Control Measure (ECM), Golden

River Traffic Ltd., International Road Dynamics (IRD), Kistler Instrument Corp., Mea-
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surement Specialties Inc., and Peek Traffic-Sarasota. During the 1990s, the Federal of.

European High Road Institute initiated the WAVE (Weigh-in-motion of Axles and Vehi-

cles for Europe) project and the COST 323 project [Jacob 2002a, Jacob 2002b]. WAVE

implemented field tests of various WIM systems in cold regions to rank the durability

and performance of WIM systems. The resulting ranking order is PAT, Kistler, Data-

instrument, and Oyomni. COST 323 implemented testing in Switzerland to compare the

capability and the stability of WIM systems. The resulting rank order is German PAT (a

combined system of Switzerland Kistler and PAT), Micros, ECM, Peek, and Golden River.

2.1.2 Advantages and Disadvantages of Different WIM Sensors

The following section describes the basic structure components and underlying functioning

principles of WIM sensor technologies. Comparison is made with respect to cost, appli-

cability, reliability, and sensitivity of these sensors. Among many issues, accuracy is the

main technical issue.

Piezoelectric Sensors

A piezoelectric WIM system consists of at least one sensor and two inductive loops (Figure

2.1), embedded in road cut or portable. The piezoelectric sensors usually are encapsulated

in an epoxy-filled metal channel, such as aluminum. It is placed in the travel lane perpen-

dicular to the direction of travel enabling the wheels of one axle to hit the sensor at the

same time. In the case of quartz piezoelectric sensors, one sensor is used for each of the

two wheel paths in a lane. The inductive loops are placed upstream and downstream of

the sensor. One inductive loop is placed upstream from the scale to detect an approaching

vehicle and triggers a sequence of events: WIM sensor signal detection, amplification, and

collection. The other loop is placed downstream to determine the vehicle speed and axle

spacing based on the time it takes the vehicle to traverse the distance between the loops.

The distance between the two loops can not be less than the required minimum distance.

Axle spacing, number of axles, vehicle length and weight enable the system to classify

vehicles.

When a mechanical force is applied to a piezoelectric sensor, it generates a voltage
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Traffic

Direction

Inductive

Loop

Inductive

LoopPiezo 1 Piezo 2

Figure 2.1: Example of Piezoelectric Sensor Layout

Figure 2.2: Piezoelectric Sensor

that is proportional to the force or weight of the vehicle. As a vehicle passes over the

piezoelectric sensor, the system records the electrical charge generated by the sensor and

calculates the dynamic load. Static load is estimated from the measured dynamic load

with appropriate calibration parameters. This system is classified as an ASTM Type I or

II system depending on the intended use of the device and the number of sensors placed

in the lane [CTRE 1997]. Figure 2.2 [ORNL 2000] is an example of a piezoelectric sensor,

a product of Measurement Specialties Inc. The sensor is 3.5 m in length, 1.5mm thick and

6.5 mm wide.
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Bending Plate

A common configuration of blending plate is shown as Figure 2.3. The blending plate scale

consists of two steel platforms for each wheel path of the traffic lane, installed with two

inductive loops. The loop’s inductance changes and produces a readable signal when a

vehicle passes over it. The scale is placed in the travel lane perpendicular to the travel

direction. The function of inductive loop is the same as that for the piezoelectric sensors.

Bending plate scales can be portable or installed permanently with excavation into the

road structure.

Traffic

Direction

Inductive

Loop

Inductive

Loop

Bending Plate 
Scale

Figure 2.3: Example of Bending Plate Layout

Figure 2.4: Bending Plate

A bending plate utilizes metal plates with strain gauges mounted underside of the metal
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plates [CTRE 1997], as shown in Figure 2.4 [ORNL 2000]. When a vehicle passes over the

bending plates, the strain gauge on each plate measures the amount of strain, and the

WIM system calculates the dynamic load that causes it. Static load is then estimated

by the measured dynamic load with appropriate calibration parameters. The calibration

parameters account for influences factors, such as vehicle speed, suspension dynamics and

speed [CTRE 1997]. Bending plate is classified as an ASTM Type I, II, III, or IV system

depending on the intended use of the device and the number of scales placed in the lane.

Load Cell

A typical load cell WIM system consists of a single load cell that has two in-line scales, at

least one inductive loop, and one axle sensor (Figure 2.5). Similar to bending plate, the

load cell is placed in the travel lane perpendicular to the travel direction. The purpose

of the inductive loop placed upstream of the load cell is to detect approaching vehicles

and alert the system. The axle sensor is placed downstream of the load cell to determine

axle spacing and vehicle speed [CTRE 1997]. It utilizes technology based on the change of

sensor resistance with pressure [Klein 2001].

Traffic Direction

Figure 2.5: Example of Load Cell Layout

Load cell WIM systems utilize a single load cell with two scales to detect and weigh the

right and left side of an axle simultaneously. A load cell is comprised of durable material

such as steel and a strain gauge attached to it. The strain gauge consists of a wire that

transmits electric current. As the cell is subjected to load, the wire under the strain gauge

is compressed slightly and altered. The change in the wire results in a resistance difference
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Figure 2.6: Load Cell

to the current. Then, the system measures the variance in the current and calculates

weight measured by each scale and then sums them to obtain the axle weight [IRD 2001].

Figure 2.6 [ORNL 2000] shows a simulation of a load cell subjected to load. A load cell is

classified as an ASTM Type I, II, III, or IV system depending on site design.

Comparison of the WIM Sensors

To compare these different sensing techniques, the following characteristics are considered:

• Cost - The purchase cost of equipment, installation, and annual operating and main-

tenance costs;

• Accuracy - Relative performance accuracy, tolerance for 95% confidence level [ASTM 2002];

• Sensitivity - The response of sensors to various factors including pavement roughness,

temperature, vehicle suspension, and vehicle speed.

• Reliability - The ability of the system to perform the required function in routine and

hostile circumstances; primarily depending on performance of the sensor itself over

the entire life cycle of a system, but may also include the data acquisition subsystem

of a WIM system.

• Applicability - The nature of sensor technologies for particular industrial application.
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Based on studies by [Bushman and Pratt 1998, White et al. 2006], and the functional

performance requirements for WIM systems defined by ASTM E2-1802, the three basic sen-

sor technologies (including quartz piezoelectric sensors) are compared with respect to the

aforementioned characteristics. The comparison is presented in Table 2.3. The table illus-

trates that the accuracy and expected service life of these sensors are crudely related to their

cost. In the order of load cell, bending plate, and piezoelectric, the accuracy and expected

service life decrease as the costs decrease. For instance, the accuracy of load-cell based

WIM is 2.5 times higher than piezoelectric, but the initial installation cost is more than

five times of that of piezoelectric according to Bushman’s study [Bushman and Pratt 1998].

The terms Low, Medium, and High in the table are relative due to the difficulty of reli-

able quantification and should be treated with some degree of skepticism given the pace of

change of these technologies. It is important to note that the piezoelectric system is ap-

plied more in traffic data collection than weight enforcement stations because of relatively

low accuracy. To overcome the sensitivity to the impacting factors, new materials have

been developed, such as quartz piezoelectric sensors. This type of sensor does not fatigue

as quickly and the impact of temperature is negligible [Klein 2001]. Quartz piezoelectric

sensors have been proved to meet or exceed the weight accuracy specified by ASTM for

Type I [White et al. 2006], and their cost is competitive with the load-cell based WIM

systems.

In summary, a bending plate is a strain-based scale with relatively inexpensive in-

stallation and intermediate performance; load-cell based WIM provides a very accurate

and easily maintainable system at a higher equipment and installation cost; conventional

piezoelectric sensors provide the lowest accuracy with relatively the lowest cost. The quartz

piezoelectric potentially offer high accuracy at a reasonable cost, but more data is required

to state this conclusively. These three types of WIM sensors employ different techniques

and have their advantages and disadvantages depending on the requirements of different

applications. To select an appropriate WIM sensor, it is important to consider various

criteria, including application, desired weighing accuracy, vehicle volume, the output data

required, the peripheral equipment desired, and the vehicle flow near the scales.
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Table 2.3: WIM Sensors Comparison

Piezoelectric
sensor Bending plate

Single Load
Cell

Quartz
Piezoelectric

sensor

Cost
(per
lane)

Initial
Installation
Cost (US$)

Low
(around
$9,000)

Medium
(around
$20,000)

High
(around
$50,000)

Medium
(around
$20,000)

Annual
Life Cycle
Cost (US$)

Low
(around
$5,000)

Medium
(around
$6,000)

High
(around
$8,000)

High

Accuracy
(GVW, 95%
Confidence)

±15% ±10% ±6%
±10%

(100% confidence)

Sensitivity High Medium Medium

Non sensitive
to temperature,
but highly to

roughness

Expected life 4 years 6 years 12 years
Expected
> 15 years

Reliability Low Medium High Medium

Applicability
Traffic data
collection1

Weight
enforcement,
Traffic data
collection

Weight
enforcement,
Traffic data
collection

Weight
enforcement,
Traffic data
collection

2.1.3 Site Selection, Installation, and Calibration

One of the purposes behind the development of WIM technologies is to achieve accurate

load data by measuring moving vehicles. However, there are many factors involved in WIM

performance requirements, including site selection (geometric design, pavement condition,

and site location), system installation, and system calibration.

Site Selection

The dynamic tire force results from complex interaction between vehicles and road surface.

The state of a vehicle driving over a sensor is hard to control and therefore selecting a site

1Traffic data includes axle load, axle-group load, Gross Vehicle Weight, speed, center-to-center axle
spacing, vehicle class, site identification code, lane and direction of travel, data and time of passage,
sequential vehicle record number, wheelbase (front to rear axle), ESAL, and violation code [ASTM 2002].
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with proper geometric design and pavement condition is critical for the accuracy of a WIM

system. Geometric design of pavement, including horizontal curvature, grade, cross slope

and lane width of pavements, can influence longitudinal and transverse offsets on vehicle

behaviors. The ASTM standard sets geometric design requirements for each type of WIM

system (Table 2.4), which provides a foundation for using dynamic load measurements to

accurately estimate static load [CTRE 1997].

Pavement conditions, especially surface smoothness (affected by cracking, potholes, and

rutting), affect the bouncing of a vehicle and change over time. Experience has indicated

that a Portland Cement Concrete (PCC) pavement structure retains its surface smoothness

over a longer period of time than an asphalt pavement structure under heavy traffic at a

WIM site [ASTM 2002]. In addition, vehicle speeds and changes in speeds also affect the

actual loads applied to a pavement. The ideal condition is achieved when loads are applied

to a smooth and flat road surface by perfectly round and dynamically balanced rolling

wheels at a constant speed [Lee 1988].

Besides the specific geometric design and pavement condition of a site, the general

characteristics of a potential site for WIM are very important to meet established WIM

system requirements. These characteristics of a site include availability of access to power

and phone, adequate drainage and traffic conditions. Traffic conditions require avoiding

stop-and-go traffic, slow-moving traffic, and lane changing [CTRE 1997].

Table 2.4: ASTM Standard (E 1318-94) Geometric Design Requirements
Characteristic Type I Type II Type III TypeIV

Horizontal
Curvature

radius ≥ 1740m
46m before/after

radius ≥ 1740m
46m before/after

radius ≥ 1740m
46m before/after

radius ≥ 1740m
46m before/after

Roadway Grade ≤ 2%
46m before/after

≤ 2%
46m before/after

≤ 2%
46m before/after

≤ 1%
91m before/after

Cross Slope
(lateral)

≤ 2%
46m before/after

≤ 2%
46m before/after

≤ 2%
46m before/after

≤ 1%
46m before/after

Lane Width 3 to 4.5m
46m before/after

3 to 4.5m
46m before/after

3 to 4.5m
46m before/after

3 to 4.5m
46m before/after
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System Installation

In addition to the site selection requirements, proper installation is a key factor to en-

sure that a WIM system will function within specifications throughout its site design life

[CTRE 1997]. A poor installation will cause serious problems, such as no signal detection

and high signal noise. Traditional installation requires high quality pavement materials to

minimize the dynamic effects of the vehicle-infrastructure interaction. The ASTM standard

suggests that the installation and maintenance of WIM equipment follow the recommenda-

tions of the system vendors. For a specific sensor installation, the equipment vendors shall

provide installation instructions to follow. For example, IRD has the designate installation

manual for its BL (Brass Linguini) Class 1 Piezo Installation.

In practice, the common goal of the installation requirements is to provide the expected

site design life. The quality of installation is strongly related to the life cycle cost of embed-

ded sensors. “States Successful Practices Weigh-in-Motion Handbook” from the Center for

Transportation Research and Education (CTRE) suggests general installation principles

and general steps. The handbook provides a methodology to (1) conduct initial tests for

assuring sensor functionality, (2) prepare the road such as saw cutting for in-pavement

components, (3) install sensors and other components, and (4) conduct final tests includ-

ing sensor performances by driving a truck over the sensors. Researchers recommended

identifying a “bad” sensor prior to installation in order to save time and money.

The other critical question is how many sensors are to be installed per km of a pavement,

where will a designer install or embed sensors in a pavement, and what is the appropriate

method to install a specific sensor. For example, rut-depth measurements of pavements

have been in an unsettled state, because there is little consensus on the number of points to

measure (how many sensors to install). Although AASHTO provisional standard requires

a minimum of five sensors, many agencies still use three. There is research [Simpson 2003]

promoting at least nine, whereas some vendors have moved to 30 or more. In research,

models may be applied to optimize sensor placement for different performance criteria.

System Calibration

Since weighed vehicles are moving, the dynamic tire force results from the interaction

among vehicle components, WIM-system sensors, the road surface surrounding the sen-
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sors, and other elements. A system calibration is conducted to offset the site-specific effects

including pavement temperature, vehicle speed and pavement condition, eventually, to en-

sure the estimation of weights is as close as to the corresponding static weights as possible.

However, as Figure 2.7 [IRD 2001] conceptually illustrates, a discrepancy normally exists

between the statically recorded weights (Ws) and dynamically recorded weights (Wd) of a

vehicle. For example, drifting (the output signal slowly changes independent of the mea-

sured property) of WIM weight distribution is experienced by many WIM systems, and is

an indicator of an overweight or underweight calibration problem. In addition, the drift

is different from site to site [Zhi et al. 1999]. Therefore, it is very important to carry out

periodic calibration in order to assure the accuracy of a WIM system.

Figure 2.7: Dynamic and Static Weighing

A system calibration must be applied immediately after the initial installation of a

WIM system at a site. Recalibration of a system should follow reinstallations, consid-

erable maintenance, significant changes of site conditions and WIM system components

(including software and software settings). Unusual data patterns can also indicate a need
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for recalibration [ASTM 2002]. ASTM E2-1802 recommended a general WIM calibration

procedure. It requires two loaded, pre-weighted and measured test vehicles, each making

multiple runs over the WIM-system sensors in each lane at specific speeds. Based on the

differences between the estimated values and the respective reference values (such as the

differences for vehicle speeds, axle loads, axle spacings, and GVWs), calibration factors

can be derived from these measurements.

2.1.4 Factors Impacting Accuracy

WIM sensors are normally embedded in roads at specific sites. They are subjected to

the surrounding environmental conditions and traffic conditions. For example, pavement

temperature, moisture, deflection, and vehicle dynamics can all impact how the sensors

reflect the actual measurements of vehicles, that is, the accuracy. To assure accuracy, it is

important to address the factors that WIM sensors are sensitive to.

Temperature

Like most sensors, current WIM sensors are temperature sensitive, their signal strength

for a given axle force is not uniform with temperature changes. It is due to the material

properties of the sensor itself and the pavement responses caused by temperature. Practices

have found that WIM sensors embedded in asphalt pavements perform less consistently

than those in concrete [ASTM 2002]. One reason is asphalt pavements softening in hot

weather. In addition, if a WIM sensor is used outside allowed temperature range, the

sensor outputs can not be guaranteed to meet certain specifications. Field experiences from

CPATT WIM site proved that there is small chance to successfully calibrate piezoelectric

sensors over a long period of time due to the impact of temperature variation over time.

Calibration of a WIM system has to involve compensating for the impact of temperature

changes.

In practice, temperature sensors are usually installed along pavement layers with WIM

sensors in order to examine temperature impact on the measurements. New materials

such as quartz sensors do not generally fatigue and the impact of temperature on the

sensor itself are negligible. Their performances and costs are competitive with the load



21

cells [Klein 2001]. It would be an enormous improvement if a WIM sensor’s performance

is consistent with temperature drifts, or its output is independent of temperature drifts.

Roughness

Since weighed vehicles are moving, road surface roughness plays a role that excites vehicle

dynamics: short wavelength roughness affects axle motion, and long wavelength roughness

affects vehicle body motion. The worse the roughness is, the larger the scale error is.

Roughness, also referred to as “smoothness”, is a measurement of the small-scale vari-

ations in the height of a physical surface. ASTM E867 defines pavement roughness as

“the deviation of a surface from a true planar surface with characteristic dimensions that

affect vehicle dynamics and ride quality”. Two ranges [Karamihas et al. 2004] of pavement

roughness are stated as influencing scale errors from the Long-Term Pavement Performance

(LTPP) program :

• “Short range” roughness, covering the range of a pavement that includes about 10

ft (3.05 m) preceding the scale, the scale itself, about 1 ft (0.31 m) beyond it; the

corresponding roughness is called Short Range Index (SRI);

• “Long range” roughness, covering the range of a pavement that includes about 80

ft (24.4 m) preceding the scale, the scale itself, about 10 ft (3.05 m) beyond it; the

corresponding roughness is called Long Range Index (LRI).

Originally, the suggested threshold value for LRI and SRI is 0.789 m/km. To minimize

dynamic motions and thus improve the accuracy of traffic data collected at WIM sites, the

LTPP program established an approach to set up the threshold values of pavement rough-

ness, prior to and immediately past the scale (Apparently, roughness near the scales is more

important). The purpose of this LTPP study is to find smoothness specifications/limits of

sites that could produce considerable research-quality data.

Vehicle

As a moving vehicle interacts with the pavement where sensors are embedded, many prop-

erties of the vehicle could impact the accuracy, for example:
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• The class of the vehicle used, including vehicle suspension system, tire types and

pressures, axle number, etc.

• The speed of the vehicle (local speed, highway speed, etc.)

• The loading schemes of the vehicle (unloaded, loaded, overloaded, etc.)

A study [Sun and Deng 1998] has proved that assuming constant vehicle speeds, the

variation of dynamic loads measured by a WIM system can be obtained as a function

approximately proportional to
√

Csp, the ratio depends on the dynamic properties of the

vehicle, where Csp is the roughness index.

2.2 Pavement Design and Management

Pavements are critical infrastructures for traffic access in order to sustain a nation’s econ-

omy and social well-being. As an important part of Pavement Management System (PMS),

traffic data aids in the design and maintenance of pavement structures to assure required

serviceability and reliability. Overestimation of design traffic results in conservative pave-

ment designs that are not cost effective, while underestimation of design traffic results in

premature failure and excessive maintenance and rehabilitation costs. Using traffic data to

support pavement design models and management, engineers need to consider the required

types of data, the sensitivity of a pavement performance prediction model to these data

input, and importantly, how to obtain the required traffic data.

2.2.1 Pavement Design

A pavement is built for the purposes of load support, along with pavement smoothness,

and drainage. It is very important that pavement design accounts for the expected life-

time traffic loads that are the main cause of pavement damage over time. For example,

the force on a pavement exerted by a delivery truck is much higher than that of a car, thus

the damage to the pavement. In practice, there are two ways to quantify loads: Equivalent

Single Axle Loads (ESALs) and load spectra. The concept of ESALs is used to predict

number of load repetitions, which equates the damage to a pavement structure from axles
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of all configuration and weights to the damage of a single-standard, 80kN (18 kips), dual-

tired axle. It is based on the empirical results of the AASHTO Road Test. Load spectra is

defined as the actual number of load passes by axle configuration and load interval over the

defined time increment [Bracher 2004]. Since it represents the actual loads on a pavement,

it is desirable input for high reliable pavement design. Without proper pavement design,

pavement construction and management could result in pavement malfunctions and high

cost.

Pavement design requires not only layer thickness design, but also proper mixture

design and drainage design. It counts many factors in the design process: mainly subgrade,

environment, load, and drainage. Pavement design methods have developed from empirical

design (AASHTO Design Guide) to mechanistic-empirical theory based design (MEPDG).

The AASHTO Design Guide is based on empirical performance equations from the 1950’s

AASHTO Road Test. It has many limitations, including the lack of consideration of

the climate factor on pavement performance, limited time span of only 2 years, limited

traffic volume of less than 1.5 million per year, and the design method is based on 1950’s

materials and construction and 1950’s vehicles. It can not accommodate current significant

traffic changes (traffic volume and vehicle size), new pavement materials and structures.

MEPDG is designed to overcome these limitations. However, currently MEPDG is not

intended for routine pavement design or for commercial purposes. Table 2.5 presents a

comparison of the AASHTO design guide and the MEPDG. Besides these national design

guides, there are municipal and local design methods, for instance, the MTO (Ministry of

Transportation Ontario) pavement design standard specification, the city of Edmonton’s

local design specification, and other local specifications.

2.2.2 Pavement Management

Pavements deteriorate over time. To slow the deterioration rate and improve pavement

condition, pavement management consists of a series of maintenance and rehabilitation

activities during the service life of a pavement. Maintenance involves different methods

and technologies to prolong the service life by slowing down the deterioration rate. Main-

tenance strategies can be non-structural overlay, patching and coat seal. Beyond a certain

point as routine maintenance is not effective for deficient pavements, rehabilitation is used
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Table 2.5: AASHTO Pavement Design Guide vs. MEPDG
1993 AASHTO Guide 2002 MEPDG

Traffic inputs

• ESL • Axle load spectra
• Constant growth rate • Traffic volume adjustment

factors (monthly, hourly
distribution, traffic growth)

• Axle load distribution factors

Methodology

• Based on design serviceability • Predict pavement
loss performance as a function of

• Empirically based procedures traffic, climate, material, and
founded on road test data structural

Software
• Several interfaces • MEPDG Design Guide 2002

• One interface

Advantages

• Simplified design method • Integrated effect
• More accurate performance

prediction
• Proven theory based
• One computer program with

same interface
• All documentation accessible

Disadvantages

• Can not represent current • Not intended for routine
pavement conditions pavement design

• No address of environmental • Not to be used for commercial
effect purposes

• Ignore the temporal variation
in damage accumulation

• No truck volume adjustment
based on monthly/hourly
truck volume distribution

• Less accurate, less reliable

to reverse the deterioration and recover pavements by replacing pavement materials. In

practice, overlay is a typical method to increase pavement structural capacities. Both

maintenance and rehabilitation are to assure the best service level, such as ride comfort

and public safety. Figure 2.8 [WAPA 2002] shows the intention of maintenance and re-

habilitation. The light curve illustrates that without maintenance and rehabilitation, a

pavement first deteriorates slowly then deteriorates at an increasing rate. While, under

regular maintenance and rehabilitation, the pavement deterioration follows the dark curve,

which shows better pavement conditions and longer service life.

Traffic loads account for most of pavement deteriorations such as rutting and fatigue

cracking. A study of Road Administration Department of USA verified the Fourth Power

Rule, stating that pavement damage caused by truck axle load is by nth power, n is between

4 and 5. As shown in Figure 2.9 [Santero et al. 2005], as the axle load exceeds a certain

weight limit, a sharp increase of pavement damage emerged. Therefore, it is very important
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Figure 2.8: The Function of Pavement Maintenance and Rehabilitation

to effectively and efficiently collect and analyze traffic data and successfully control traffic

loads for cost-effective pavement preservation.

2.2.3 Mechanistic Empirical Pavement Design Guide (MEPDG)

and WIM

MEPDG, a theory-based mechanistic-empirical method, is designed by using pavement

performance predicting models and the reliability concept. It has received widespread

attention under the National Cooperative Highway Research Program (NCHRP) 1-37A

project. The design begins with a trial design using initial estimates of layer thickness,

material characteristics and many other inputs. The trial section is analyzed using pave-

ment responses and a distress model, and the outputs are accumulated damage over time. If

the trial design does not meet the performance criteria under certain reliability, the design

is modified and analysis is rerun until a satisfactory result is obtained [NCHRP 2004]. The

method accounts not only for the actual traffic distribution, but also for site specific climate

data, material properties, and design features to predict pavement condition through per-

formance indicators, such as roughness, cracking, and rutting. It is not merely a thickness
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Figure 2.9: Road Damage and Excessive Axle Loads

design procedure, but also allows designers to better control pavement functional distress.

It is desirable to consider progressive deterioration over the pavement life-cycle in terms

of traffic loadings [Haas 1997]. In this design guide, traffic data utilize combination of axle

configurations and loading spectra as opposed to ESALs. Traffic data is categorized into

three traffic input levels in a hierarchical structure, from Level 1 (site specific detailed

traffic data) to Level 3 (national average poor traffic data).

To collect these traffic data, Weigh-In-Motion (WIM), Automated Vehicle Classifica-

tion (AVC), and Automated Traffic Recorders (ATR) are widely adopted, especially WIM.

Both permanent weight data collection and temporary short duration collection generally

accommodate WIM [Schultz et al. 2005]. For instance, axle load, axle spacing, and initial

two-way AADTT (Average Annual Daily Truck Traffic) are calculated from WIM measure-

ments. In practice, the Minnesota Department of Transportation is launching a project

called MnRoad, where there are 25 sites of WIM to collect various traffic data for many

projects and research purposes. WIM data are significant for collecting Level 1 data, and

presently WIM is the key tool to collect axle load spectrum.



Chapter 3

Data Collection and Analysis

3.1 CPATT WIM Site Description

The test site of CPATT is located at the Regional Municipality of Waterloo’s Waste Man-

agement facility, 925 Erb Street West, Waterloo. The test track is two-lane and identified

in Figure 3.1 [Tighe et al. 2003]. The site is close to the University of Waterloo. In addi-

tion, there are static scales of the Waste Management facility at the entrance of the test

track, such that accurate vehicle weights are readily available. These make the site an ideal

location for WIM research. Figure 3.2 shows a dump truck stopped to be weighed on the

static scale. A piezoelectric WIM system was instrumented on the two-lane Stone Mastic

Asphalt (SMA) section of the test track in September, 2003. The system mainly consists

of two piezoelectric sensors and two inductive loops on each lane, and a roadside cabinet

housing the WIM electronics. SMA offers a durable and smooth road surface for an ideal

WIM site. The SMA section shows little cracking or rutting with an overall acceptable

pavement condition. Figure 3.3 is a drawing of the layout of the piezoelectric WIM site.

The northbound (Lane 1) was installed with piezoelectric sensors 1 and 2 (direct to the

static scales), and southbound (Lane 2) was installed with piezoelectric sensors 3 and 4.

There is a clay deposit at the end of southbound section of the test track.

There are two main types of loads at the site. During clay hauling, empty vehicles

travel over piezoelectric sensors 3 and 4 to the clay deposit, and vehicles are loaded while

traveling back over piezoelectric sensors 1 and 2. Most of the vehicles are 3-axle heavy

27
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Figure 3.1: Regional Municipality of Waterloo’s Waste Management Facility

Figure 3.2: Static Scales Beside CPATT Test Site
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Figure 3.3: PIEZO Weigh-In-Motion Site Layout
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duty trucks, weight over 30 tons. The other type of vehicle is mainly passenger vehicles

with 2 axles. There are also small number of dump trucks in both directions. Starting in

2008, waste hauling vehicles will travel over the site.

3.2 Piezoelectric Sensors and Roadside Electronics

Figure 3.4 shows photoes of the WIM site with the piezoelectric sensors and the inductive

loops embedded, and the roadside WIM cabinet with solar charging panels, taken immedi-

ately after the installation. The model of the sensors is BL Class I Piezoeletric, a product

of Measurement Specialties, Inc. The sensor itself is comprised of a center core and outer

sheath made of brass, insulated with highly compressed piezoelectric copolymer polarized

ceramic. It is 3.5 m in length to cover the full lane width, and the active zone is 3.35 m.

It develops consistent signal along its entire length proportional to the weights applied.

To obtain accurate sensor measurements, the effort of driving on the center of the lane is

desired. Following the general installation process as mentioned previously, the installa-

tion process for this specific sensor takes approximately four hours per lane, including cure

time for the grout. Specifications for this type of sensors (Class I WIM) include output

uniformity of ±7%, operating temperature range from -40oC to 70oC, and signal to noise

ratio of 10:1. The sensors are designed to detect the presence of an axle and to measure

the axle’s weight [IRD 2001].

Figure 3.4: CPATT Piezoelectric Sensors and Roadside Cabinet
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The cabinet houses the data acquisition and storage unit (the TCC 540 Traffic Counter)

that processes and records the traffic data to date. The main part of the unit is a data logger

that records WIM data. It is equipped with a microprocessor, a modem, and a battery

charged by the solar panels. On site communication with TCC 540 Traffic Counter is

through the built in keypad, or through a serial port to an IBM compatible computer. In

addition to on site data collection, data can also be transmitted wirelessly by the modem

over a phone line.

3.3 Site Rehabilitation and Sensor Replacement

A detailed field survey in the spring of 2006 found that the sensors on the southbound

lane were damaged. It was also discovered that there was a longitudinal crack crossing

the sensors in the pavement surface (Figure 3.5). The crack extended for a length of

approximately 1.5 m, and was approximately 5 mm thick and 10 mm deep. In order

to return the site to being a functional WIM site, the road had to be rehabilited before

replacing the damaged sensors. A pavement hot asphalt mixture patching was conducted

to recover the pavement to a stable structure and to the ASTM standards in May 2006.

The damaged sensors were replaced in June 2006. Furthermore, excavations along the

pavement side bank were carefully backfilled to prevent further site deterioriation.

Figure 3.5: A Longitudinal Crack Crossing the Sensors
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3.4 Roughness Measurement

After the site rehabilitation, it is desired that the site condition satisfies the ASTM stan-

dards, particularly, the roughness measurement for the paved road. The common methods

to measure roughness include Dipstick profiler, profilographs, and laser equipments. The

principle of Dipstick is directly differentiating the measurements. To take the measure-

ments, an operator walks the dipstick along the two wheel paths on a lane and pivots the

instrument about each leg (Figure 3.6 [WSDOT 2000]). The Dipstick is limited for the

purpose of calibration of other complex instruments. It is mainly used to collect a relatively

small quantity of pavement profile measurements. Cold weather, wet base, and non stable

pavement conditions are not ideal for the measurements. Dipstick measurements were car-

ried out on the CPATT site. Raw data and analysis graphs were presented in Appendix

A. The linearity of the results renders then suspect, and another roughness analysis will

be conducted in the near future.

Figure 3.6: Dipstick 2000 and the Operation
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3.5 WIM Data Acquisition Process

WIM electronics capture the digital signal outputs from sensors and then interface with

the traffic counter where data are processed to a readable format by using Trafman 6.0

(software of IRD). The data acquisition process involves several steps, as shown in Figure

3.7. WIM data downloaded from the WIM electronics are converted from binary strings

to ASCII files using Trafman, and further be converted to Excel files. The Excel files

contain data of lane codes, recording time, vehicle speeds, axle numbers, vehicle lengths,

axle spacings, GVWs, and axle weights. The data still need to be filtered out nuisance

and be manipulated before any data analysis can be carried out. To view waveforms as

vehicles pass, an oscilloscope is required to hook up to the sensors.

3.6 Data Collection and Analysis

Data were downloaded from the data logger on site. The data population covers from

September 2006 (immediately after a recalibration) to January 2007. Static scale data

measured by the Waste Management facility are treated as the reference values of weights

and are compared with WIM data in order to evaluate accuracy. Appendix B presents an

example of raw data collected by the piezoeletric sensor system.

Since most vehicles crossing the WIM site are two axles currently, the sampling is

among vehicles with two axles. Since not all the vehicles recorded by the static scale travel

to the WIM site, the sampling process among these two databases (WIM database vs.

Static database) is to first match the presenting time of vehicles recorded, and then the

axle numbers. Weekdays are randomly selected from the survey period. 55 samples are

selected for each lane to represent the population. Appendix C shows an example of the

extracting and matching between the two database for GVWs, which are collected from the

northbound lane on November 2, 2006. These matched vehicles had the same axle number,

and the present time of a vehicle differs within three minutes from the static scales to the

WIM site, which is estimated based on the distance between the two locations. The data

indicate that most the installed WIM measurements are consistently less than the reference

values, as illustrated in Figure 3.8. Table 3.1 shows the statistical comparison between the
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Figure 3.7: WIM Data Acquisition Process at CPATT WIM Site
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weights recorded by the static scales and the WIM scales. The relative error on average

for Lane 1 is −23.5%, for Lane 2 is −26.7%. It is out of the specified accuracy for the

WIM of ±15%. Considering the additional uncertainty introduced by the data matching

process between the two databases, these results are essentially inconclusive. Additional

sources of error are described below.
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Figure 3.8: Static Scale vs. WIM GVWs

The out of performance could due to the following reasons. Firstly, since sampling

was conducted over five months that the weather changed from warm to cold, the tem-

perature impact is unavoidable and significant. Secondly, during the study period, the

traffic condition changed such that the initial calibration is set up for a large number of

FHWA (Federal Highway Administration) Class 9 vehicles, while the vehicle classes on the

site changed since then. It could lead to the initial calibration being inadequate for the

experienced traffic condition. Thirdly, there could be subjective error during the sampling

to have a comparative data set. Fourthly, imprecision of the static scale could cause the

measurement error of the reference values. Based on current condition of the WIM site

and the data result, following strategies are suggested to improve the performance:

1. Recalibrate and test
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Table 3.1: Gross Vehicle Weights Analysis Result for CPATT WIM
Lane 1 (North Bound) Lane 2 (South Bound)

Descriptive
Statistics

WIM
(a)

Static
Scale
(b)

Difference
(a − b)

Relative
Error

[(a − b)/b]

WIM
(a)

Static
Scale
(b)

Difference
(a − b)

Relative
Error

[(a − b)/b]
Mean 4.785455 5.9933 −1.207818 −0.235125 3.56 4.979091 −1.419091 −0.266566
Standard Error 0.520712 0.498369 0.2313449 0.035082 0.340069 0.466972 0.2090716 0.02902
Median 2.7 4.33 −1.41 −0.274406 2.4 3.76 −1.14 −0.276018
Mode 2.1 1.65 −0.35 −0.212121 2.1 2.21 −1.52 #N/A
Standard Deviation 3.861703 3.696005 1.7156995 0.260172 2.522022 3.463154 1.5505164 0.215217
Sample Variance 14.91275 13.66046 2.9436248 0.067689 6.360593 11.99343 2.404101 0.046318
Kurtosis 2.486566 −0.613751 3.3251752 2.588794 2.872231 4.994522 1.874662 0.683656
Skewness 1.561824 0.787889 0.7916743 1.322069 1.85166 2.228144 −0.942991 0.713501
Range 17 12.22 10.83 1.385788 10.3 15.92 8.61 1.001573
Minimum 1.1 1.65 −5.87 −0.724771 1.2 2.01 −6.73 −0.708738
Maximum 18.1 13.87 4.96 0.661017 11.5 17.93 1.88 0.292835
Sum 263.2 329.63 −66.43 −12.93186 195.8 273.85 −78.05 −14.66111
Count 55 55 55 55 55 55 55 55

Confidence Level
(95%)

1.043964 0.99917 0.4638185 0.070334 0.681798 0.936222 0.4191633 0.058181

Random traffic sample from September 2006 to January 2007

2. Update hardware (data logger) and software (data retrieving system) if budget allows

3. Streamline the data acquisition process (for example, change to wireless communica-

tion) to reduce human error and to be efficient

4. Invest in a digital field oscilloscope and view raw data/waveforms to avoid the “black

box” of the data logger

5. Install passing lane cameras at the WIM site to capture images and other information

of passing vehicles

6. Quantify pavement temperature impact on readings

7. Install a new WIM system, which promises higher accuracy and better stability, such

as a quartz piezoelectric sensor system

3.7 Lessons Learned

From the field experience of the CPATT piezoelectric sensor system, there are several

lessons learned regarding installation, calibration, and testing of a (piezoelectric) WIM
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system to assure accuracy.

3.7.1 Installation

An installation site should be carefully chosen. First, in general, the sites with slow-

moving traffic and low traffic volume should be avoided, and the pavement conditions

around the sensors should conform to certain standards. For example, roughness shall

meet the requirements of LTPP long range and short range roughness index. Second,

the width of each installation lane should be wide enough to accommodate the width of

wheel of a particular site vehicle. Third, the installation process should strictly follow the

installation procedure provided by the product vendors or manufacturers. Finally, before

opening the lane to the public after installation, any grout material used to fill slots that is

above the pavement surface should be ground down, since it could cause uneven pressure

distribution on the sensors and result in measurement errors.

3.7.2 Calibration

Appropriate calibration is critical to achieve required performance of a WIM system. To

obtain the best result for a given class of vehicle on a site, it is best to calibrate with either

that type of vehicle or one closely representative. For instance, it was ideal to use a dump

truck to carry out the calibration at the CPATT test track. For the best calibration, it is

also very important that the vehicle for calibration is well maintained (suspension system

and tire pressure); the driver must keep a consistent speed while passing over the sensors

(minimum 50 km/hour in the case of piezoelectric sensors); and the vehicle path to be

taken is lane centered as close as possible. When calibrating in Trafman, it is advised

to enable the “Dual” mode to monitor individual sensor readings. Rather than giving an

averaged axle weight, this mode breaks down the result to display the data measured by

each sensor. Since each sensor has it own calibration factor, it is very important to view

each data specific to each sensor and calibrate the sensors separately instead of calibrating

the lane as a whole. In addition, since WIM sensors are sensitive to temperature that could

result in false axle readings and inconsistent weights, it is imperative to calibrate within a

set period time of a day and record pavement temperatures during that time. Appendix
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D is the raw data of the first calibration conducted on August 22, 2006. It shows a large

variation and unpredictable patten of GVWs, due to varied factors including temperature.

ASTM E1308-02 recommended a WIM calibration process in six steps. First, adjust

all WIM system settings to the vendor’s recommendations or to the best estimation of

the proper setting based on previous experience. Second, have test vehicles for calibration

weighed at static scales at the site or a nearby facility to obtain static weight data. Third,

run test vehicles (ideally two vehicles) several times with two speeds as passing over the

sensors. The two speeds should differ by at least 30 km/h and are above and below

the average speed of vehicles operating at the site. Use a calibrated radar speed meter to

measure the speed of each test vehicle every time as it passes over the WIM sensors. Fourth,

calculate the difference percentage between the WIM system estimates and the reference

values for the speed, axle spacing, axle load and GVWs measurements; calculate the mean

value for the difference for each set of value. Fifth, obtain the new calibration factor

and enter into the WIM system. Adjust WIM settings such that the mean values of the

respective difference for each value equal zero approximately. Sixth, determine weather or

not the calibrated system can perform at the necessary tolerances as expected. Otherwise,

if a large number of differences in the data occurs and does not meet the tolerances level

required by ASTM for the specified system, then the system will most likely not perform

to a beneficial level [Katz and Rakha 2002].

3.7.3 Future Investigation Strategies

To fully study the accuracy, stability, durability, and other technical characteristics of dif-

ferent WIM sensor systems, it would be a valuable investment if different types of WIM

sensor systems, such as piezoelectric, quartz piezoelectric, bending plate, and load-cell

based, are instrumented parallel on a test track. With this site layout, it would provide

enormous advantages to collect large WIM database, compare diverse features among these

sensing systems, and make much information available for various research purposes. Cur-

rently, there is no vehicle classification information available. It would be ideal to configure

Automatic Vehicle Classification (AVC) systems or other available technologies to obtain

information of vehicle classes.



Chapter 4

Economic Model

The use of WIM is to help capture weight violating vehicles, decrease travel time for com-

mercial carriers, reduce congestion, reduce traffic crash risk, exchange traffic information,

and eventually help achieve the goal of preserving highway infrastructure at a network

level. The purpose of an economic analysis is to determine whether the investment of

an ITS component or subsystem is economically beneficial in order to achieve the goal,

and to rate the return on the investment compared to that of alternatives (WIM system

vs. static weigh station). It focuses on quantifying the specific monetary values of all

impacts on regional and national economies, the users, the agencies, and also the environ-

ment. An economic analysis attempts to reduce everything to a single benefit-cost ratio

[Zavergiu et al. 1996, Novak and McDonald 1998, Lee and Klein 1997, Lee 1999]. How-

ever, a comprehensive economic analysis could be very complicated because of several

issues: lack of information for a new technology; lack of data and proper assumptions; no

adequate evaluation approaches or methods; double counting and improper valuation of

benefits; complex interaction and uncertainty. However, if an economic analysis is used

to compare alternatives rather than to develop absolute values of benefits or costs, many

of the difficult assumptions tend to cancel out and the analysis can provide useful results

[Peng et al. 2000].

The purposes of developing an economic model for WIM values are to

• Quantify the benefits and costs of WIM technology ;

39
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• Understand the impacts of WIM on the economy, society, and the environment;

• Optimize the deployment of a WIM system.

Firstly, this chapter assesses and compares the economic impacts of loads on pavement

management, under four scenarios of excess axle loads that obey or violate FHWA legal

weight regulations. The scenarios are based on typical real life situations. MEPDG is

applied for the study and significant results are presented. Secondly, it discusses the

various benefits and costs of WIM systems. In addition, it describes a few of current

economic analysis tools for ITS applications. Finally, economic models for WIM values

with scenarios are developed with respect to the benefits and costs by using one of the

tools. Variables that alter the magnitudes of the benefits and costs are carefully chosen.

An sensitivity analysis and an break-even analysis are performed.

4.1 Economic Impact of Excess Axle Load on Pave-

ment Management

According to a study by the International Road Dynamics Inc. [Kishore and Klashinski 2000],

10 percent increase in weight can accelerate pavement damage by over 40 percent. There-

fore, if there are excess loads on a pavement, the economic consequence is an immense

concern, as well as the service life and the expected level of service of the pavement. For-

tunately, WIM data can provide specific and detailed axle load spectra, which can be used

to evaluate current loads, predict future loads, and predict pavement performance.

Traffic load, climate, structure, and material are the four primary inputs for the new

MEPDG. Axle Load Distribution is one of the key traffic input parameters. Monthly site

specific axle loads are divided into different axle load ranges according to vehicle classes.

This data can be calculated from WIM data. Figure 4.1 shows the default axle load

spectrum interface in the MEPDG. The axle loads are divided into different ranges for

each vehicle class in each month. Each axle factor is the percentage of total axle loads that

falls in one of the load ranges, and the total percentage is 100 in one month. For example,

in January, for vehicles in Class 4, 1.8% of axle loads falls in the range of less than 3, 000

lbs (1,360 kg), 0.96% fall in the range of 3,000-4,000 lbs (1,360-1,814 kg), etc.



41

Figure 4.1: Default Axle Load Distribution Inputs for MEPDG

The axle load distribution is modeled to follow a Log Normal distribution [Prozzi and Hong 2007],

as shown in Figure 4.2.

For the purpose of assessing load-pavement impact, a new Hot Mix Asphalt (HMA)

pavement project was designed using the MEPDG Version 0.900 [MEPDG 2006]. A bench-

mark pavement design is run with the following assumptions:

1. Design life is chosen to be 20 years for observing predicted performance variation in

an ample period;

2. Traffic Growth Factor is chosen to be a compound growth of 4% (growth rate) per

year. This will generate traffic load conditions representing the future of the HMA

pavement;

3. Climate data is taken from Toronto International Airport, Environment Canada,

from year 1990 to year 2006;
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Figure 4.2: A Representative of Single Axle Load Spectrum by Vehicle Class

4. Pavement layer thickness design is based on calculated Structure Number (SN) close

to the required Structure Number by using AASHTO design estimation, as shown

in Figure 4.3. The 18-kip ESAL are calculated from the original traffic data of the

project.

The design ESALs of 30,000,000 requires the SN to be 3.5, and the calculated SN is 3.7

based on the specified layer thickness [MFPDS 2001]. The design SN is close to and less

than the required SN. Thus, the specified layer thickness design is not very conservative

and the performance prediction will be apparent. According to [AASHTO 1993], the SN

of a flexible pavement is generally in the range of 1 to 6. Based on the data calculated in

this study, the SNs are in the range for a pavement with medium axle load traffic.

FHWA regulated that truck weight limits are 80,000 lbs (36,287 kg) for GVW, 20,000

lbs (9,071 kg) for Single Axle, and 34,000 lbs (15,422 kg) for Tandem Axle. To examine

the load-pavement impact, axle load distribution is designed to four scenarios and FHWA’s

20,000 lbs limitation of single axle load is used. Based on the default single axle load, the
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Figure 4.3: Designed Layer Thickness with Comparable Structure Numbers

weighted average method is applied to distribute axle loads in load ranges of greater than

20,000 lbs, such that the sum of percentage of normal load (≤ 20, 000 lbs) and excess load

(> 20, 000 lbs) is 100. For example, in the scenario of up to 10% overload, each row of

data in Figure 4.1 is adjusted, such that the sum of axle load factors within the range of

20,000 lbs is 90%, the sum of factors greater than 20,000 lbs is 10%. Table 4.1 describes

different scenarios (four pavements with the same characteristics except different axle load

distribution) examined in the study. According to [TRB 1990], these ranges of overload

percentage are typical.

The MEPDG was run for each scenario to predict pavement performance in terms of

rutting, International Roughness Index (IRI), and other distress indices. There are four

runs corresponding to the four scenarios. Each run has the same inputs except that the
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Table 4.1: Four Scenarios of Overload-Pavement Impact Study
Scenario Load Distribution Explanation

I
Overload is 0%

(Without overload)

Initially, all axle load factors set to
within 20,000 lbs (9071 kg), sum up to
100.

II
Overload is up to 10%

(10/90 set)

Initially, axle load factors set to
90% within 20,000lbs (9071 kg), 10% is
greater than 20,000 lbs (9071 kg).

III
Overload is up to 20%

(20/80 set)

Initially, axle load factors set to
80% within 20,000lbs (9071 kg), 20% is
greater than 20,000 lbs (9071 kg).

IV
Overload is up to 30%

(30/70 set)

Initially, axle load factors set to
70% within 20,000lbs (9071 kg), 30% is
greater than 20,000 lbs (9071 kg).

axle load distribution is adjusted to 0% (without overload), 10%, 20%, and 30% overload,

to compare overload-pavement performance impact and economic impact. From this study,

the role of WIM will be assessed.

Figure 4.4 shows that the total rutting increases over the pavement life and follows a

logarithmic function. Scenario I (without overload) has the lowest rutting deterioration

all the time. Comparatively, Scenario IV (up to 30% overload) exhibits the worst rutting:

rutting depth is 152% of that of Scenario I, correspondingly, Scenario III is 143%, and

Scenario II is 130%.

Figure 4.5 illustrates the IRI difference among the scenarios, which follows an exponen-

tial trend over time. Scenario I shows the best condition of IRI, while Scenario IV shows

the worst. The differences of IRI among the four scenarios are becoming larger over time.

The deterioration rates of overloading rapidly increase that result in early rehabilitation

and reconstruction. In order to mitigate the fast deterioration rates, it would be advised

to decrease the axle loads. For example, if the excess axle load distribution is reduced

from 30% to 10% at year 7.5, even with compound 4% traffic volume growth rate in the

following years, the IRI performance will be improved as noted by the dash line to the

solid line (Figure 4.5). From pavement management perspective, controlling overloads is

essential to protect highways from aggravated damages and thus eliminate costs.
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Figure 4.4: Predicted Accumulated Rutting Over 20 Years
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Figure 4.5: Predicted Accumulated IRI Over 20 Years
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Figure 4.6: Predicted Pavement Serviceability Index Over 20 Years

To compare the overall performance of the pavement under these four scenarios, Pave-

ment Serviceability Index (PSI = 5 × exp(−0.0041 × IRI)) is calculated and compared, as

presented in Figure 4.6. It can be seen that PSI of each scenario decreases over time. The

decreasing rates of PSI increase as overload percentage increases. As a pavement condi-

tion reaches the terminal serviceability over the pavement life, rehabilitation is required to

renew the surface (as illustrated in Figure 4.7). From a network life cycle cost perspective,

the following assumptions were made:

• PSI of 3.0 results in rehabilitation,

• Following rehabilitation, the pavement PSI is restored to 97% of the initial / new

condition.

Figure 4.8 can be used to estimate the time for rehabilitations as indicated by terminal

serviceability and the pavement performance indicators after rehabilitations, thus the next
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Figure 4.7: Pavement Rehabilitation Model

Figure 4.8: Predicted Pavement Rehabilitation Strategy Over 20 Years
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rehabilitation year. Figure 4.8 shows that the pavement exposed to 30% overload experi-

ences rehabilitation first, which happens at year 7.5 as the PSI reaches 3.0. Rehabilitation

is required at year 9 for the pavement subjected to 20% overload. For the pavement sub-

jected to an excess load of 10%, it happens at year 12. Similarly, the next rehabilitation is

estimated at year 15 for the 30% overload, and at year 18 for the 20% overload. After the

first rehabilitation, no rehabilitation is required for 10% overload during the pavement life.

Comparison of PSI and the resulting rehabilitation years demonstrates that the lower the

excess loads, the better pavement performance and the longer service life. The rehabilita-

tion frequencies diverge drastically among the four scenarios. This study demonstrates the

importance of weight enforcement of commercial vehicles and WIM systems for effective

and efficient site specific traffic load collection.

To evaluate the rehabilitation cost of the four pavements, rutting depth is used as the

performance indicator to estimate the cost, which is not for accurate calculations but for

comparison purposes.

Cr = Cp × As × Hr (4.1)

where,

Cr = Rehabilitation cost ($)

As = Section area (m2)

Hr = Rutting depth (m)

Cp = Unit cost for repaving to recover rutting per m3 (including lane closure cost)($/m3)

The section area (As) is assumed to be 10,000m2, unit cost (Cp) of $100 per m3,

and discount rate of 5%. The selected analysis period is 20 years. The initial section

construction cost is $100,000. Service life is defined as the time period from construction

to the first rehabilitation. Table 4.2 summarizes the comparison among these four scenarios,

with respect to rutting, IRI, PSI, rehabilitation year, present worth of cost, and service life.

There are more than six percent of the cost might be saved per kilometer of a typical road

by controlling overloads through WIM. More specific comparisons are listed with respect
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to:

Table 4.2: Present Worth Analysis for Alternative Axle Overloads
Per Kilometre of a Typical Two-lane Roadway

Year
Without
Overload
Rehabi.

10%
Overload
Rehabi.

20%
Overload
Rehabi.

30%
Overload
Rehabi.

0 $100,000 $100,000 $100,000 $100,000
7.5 $9,754
9 $9,982
12 $10,160
15 $12,776
18 $12,929
20 $9,398

Net
Present
Worth
Cost ($)

$103,537 $109,272 $112,927 $116,235

Relative
Difference
in Cost

0% 6% 9% 12%

First
Rehabi.

Year
≥ 20 12 9 7.5

Second
Rehabi.

Year
18 15

Service
Life

(years)
20 12 9 7.5

1. Rutting: at year 20, total rutting of 30/70, 20/80, 10/90 scenarios is respectively

150%, 140%, and 130% of that without overload

2. IRI: at year 20, IRI of 30/70, 20/80, 10/90 scenarios is respectively 195%, 170%, and

140% of that without overload



51

3. PSI: at year 20, the relative difference of 30/70, 20/80, 10/90 scenarios is respectively

37%, 29%, and 19% of that without overload

4. First rehabilitation time: 30/70, 20/80, 10/90 scenarios is respectively 12, 11, and

7.5 years earlier than that without overload

5. Present worth cost: for 20 years, 30/70, 20/80, 10/90 scenarios is respectively 12%,

9%, and 6% higher than that of without overload, as counting the relative difference

6. The service life is respectively to be 7.5, 9, 12, and 20 years from 30/70 scenario to

without overload

In the Table 4.2, the Net Present Worth Costs are calculated as follows:

NPWCWithout = $100, 000 + $9, 398 × (A/F, 5%, 20) × (P/A, 5%, 20)

NPWC10% = $100, 000 + $10, 160 × (P/F, 5%, 12)

+$16, 000 × (A/F, 5%, 12) × (P/A, 5%, 8) × (P/F, 5%, 12)

NPWC20% = $100, 000 + $9, 982 × (P/F, 5%, 9)

+$12, 929 × (P/F, 5%, 18)

+$16, 000 × (A/F, 5%, 9) × (P/A, 5%, 2) × (P/F, 5%, 18)

NPWC30% = $100, 000 + $9, 754 × (P/F, 5%, 8)

+$12, 776 × (P/F, 5%, 15)

+$16, 000 × (A/F, 5%, 8) × (P/A, 5%, 5) × (P/F, 5%, 15)
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where

NPWC = Net present worth cost

(A/F, i, n) = The annual value, given the future value at the

discount rate (i) and number of years (n)

(P/A, i, n) = The present value, given the annual value at the

discount rate (i) and number of years (n)

(P/F, i, n) = The present value, given the future value at the

discount rate (i) and number of years (n)

i = Discount rate

n = Number of years

According to Figure 4.4 and Figure 4.8, it is estimated that $16,000 of rehabilitation

cost would occur at year of 24, 27, and 23 for the Scenario 10% Overload to 30% Overload

accordingly. This rehabilitation cost is used to approximately estimate the present worth

costs occured between the last rehabilitation years and the year 20th for each scenario.

In summary, to illustrate the overload-pavement impact, four scenarios are modeled

with different overload percentages from 0% excess axle load to 30% excess axle load.

The MEPDG analysis was carried out for a typical new HMA road section. Significant

reductions in pavement performance due to overloads were assessed. The analysis results

emphasized the need to measure and properly control overloads and the potential value of

a WIM system deployment. Although this is a simple case, it does demonstrate the need to

control overloads. It is important to have WIM not only efficiently and effectively monitor

traffic load and volume, but also be used for weight enforcement in a cost-effective way.

4.2 Benefits and Costs of WIM Values

Current weigh station technology and resources can not accommodate the dramatic in-

creases of traffic volume on highway systems. WIM has a high processing rate to improve
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the operational efficiency of weigh stations and reduce congestion. A typical WIM system

can process over 15,000 trucks a day and collect at least 30 days of continuous raw data for

a four lane installation [CTRE 1997]. WIM provides critical traffic inputs for pavement de-

sign, management, maintenance and new construction. On the other hand, a WIM system

is comprised of not only expensive and delicate sensors and other supporting instruments,

but also expensive operating software. In brief, the WIM costs include initial equipment

cost, installation cost, maintenance cost and other hardware and software costs.

4.2.1 WIM Benefits

The benefits of a WIM system implementation include the followings:

1. Provide a traffic database and clarify the needs of a provincial or state’s weight

enforcement program,

2. Provide traffic data for research programs, such as the LTPP program,

3. Increase efficiency of prescreening overweight/illegal trucks and thus less travel time

and less delay cost,

4. Improve data for Pavement Management System,

5. Improve safety by efficiently reducing overweight trucks on highways.

Figure 4.9 shows the benefits of WIM for the various key stakeholders. The following

is a brief discussion of various benefits of WIM with respect to weight enforcement, delay

reduction, and safety.

Commercial Vehicle Weight Enforcement

Commercial trucks are a major source of road damage. In Canada, cold weather conditions

aggravate the damage. For example, the weight of a five-axle truck is about the same as

20 cars’ weight, but the caused road damage of 9600 cars is the same as that of the single

truck [Kansas 2004]. The purpose of weight enforcement is to effectively keep overweight

commercial trucks off the highway system and thus to protect the highway from premature
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Figure 4.9: A Benefit Tree of WIM on Stakeholders

deterioration. During peak travel time, weigh stations are often closed temporarily until

the waiting queues at stations diminish, in order to avoid traffic backups onto the highways.

Traffic backup can cause unsafe road conditions. Under this circumstance, many overweight

trucks are allowed to bypass stations without being weighed and inspected, resulting in

a large cost. It is no surprise that the recorded number of overweight trucks increases

dramatically just after WIM systems are used on a highway main lane. Without efficient

detection and further strict enforcement, such as penalties to deter violation, weight limit

laws are meaningless in a state or province. Enforcement intensity is a function of GVW

[Edward et al. 1995], which can be reliably estimated from WIM data. In addition, the

processing rate of WIM is quicker.

Depends on WIM data from 1984 to 1986, FHWA estimated that about 25 percent of

all combinations were overweight, and 10 to 20 percent of which were operating illegally

[TRB 1990]. Given traffic volume of over 5 millions trucks, it means that over 1.25 million

trucks would be overweight. In 1985, a study of FHWA identified that illegal overloaded

trucks cost taxpayers $160 - $670 million per year for pavement costs at the national

level [TRB 1990]. In terms of pavement costs resulting from pavement loading, the saving

resulting from tight enforcement is very attractive [Edward et al. 1995].
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Delay Reduction

WIM automatically take measurements as vehicles pass over the sensors, without interrupt-

ing the traffic flow. Only targeted potential violators are required for further inspections

at static weigh stations. Therefore, it entirely removes unnecessary delay incurred by a

static weigh station. Assuming five millions trucks on a highway system and average three

minutes delay time at a weigh station, then, weighing each truck once would require 15

million minutes, or 28 years. In addition, for an average of eight hours per day of travel,

each truck could be easily involved in at least 3 stops at weigh stations. For instance, in

Tennessee, about 500,000 trucks are checked four times each day on the state’s highways.

The cost to the consumers is estimated to be over $15 million daily due to these mandated

truck stops [ORNL 2000]. WIM is an economical strategy to minimize unnecessary delays

for commercial carriers and can also fulfill enforcement objectives. In addition, as delay is

reduced, traffic congestion, gas emission and fuel consumption are also reduced.

Safety Benefit

Commercial vehicle safety has been an important focus of commercial vehicle enforcement

agencies for some time[Davis 2003]. Truck handling and stability is affected by a truck’s

weight and configuration. Overload could cause the main part of a vehicle to be damaged

and malfunctioning. Furthermore, an overweight truck can be susceptible to roll overs

and is slow to accelerate or decelerate. Therefore, overweight trucks are more likely to

be involved in traffic accidents that tend to be fatal. WIM systems have high processing

rate, thus more trucks can be weighed over the same period of time, and more illegal

overweight trucks would be identified and pulled off the highway system. This would

result in a potential decreasing accident rate and considerable savings to the industry and

public [ITSOAM 2005].

Improving Traffic Data Collection for Pavement Management System

WIM makes actual load condition available for pavement design. With accurate and de-

tailed real time traffic information, pavement design is becoming more reliable and ad-

equate, which decreases the cost due to either underestimated or overestimated design
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capacities. In practice, pavement thickness was designed conservatively because of lack of

accurate and detailed traffic load information. The consequence of this type of design is

larger thickness than required accordingly.

WIM data can be used to predict future traffic volume for planning of maintenance

activities. Some pavement design software, such as the MEPDG, can be used to evaluate

pavement performance in terms of rutting, roughness, cracking, and other distress indices.

These indices are indictors of timing for certain maintenance before costly rehabilitation

or reconstruction. It ensures that maintenance is timed correctly, rather than after pave-

ment structure integrity has already been breached [Bergan et al. 1998], therefore, lower

maintenance cost.

4.2.2 WIM Cost

The costs of WIM are distributed into equipment cost, installation cost, maintenance cost,

and calibration and testing costs.

Equipment Cost (hardware and software)

The cost of WIM equipments varies according to their performance, service life, and other

technical advancement. The equipment cost includes not only the cost of sensors and

supplement devices, but also the cost of operating and communicating software. Detailed

costs are listed in Figure 4.10.

Installation Cost (excluding traffic control cost) and Maintenance Cost

The equipment installation requires cut of the pavements, placement of sensors and loops

in the cutting slots, and the setting of the WIM cabinets, where the sensors and loops

are connected to the data logger by electric wires. Necessary site selection, inspection,

and preparation are required prior to installation, that may involve pavement resurfacing

and rehabilitation costs. The maintenance/replacement cost for a WIM system could be

subdivided into three parts: WIM system itself, pavement and sensor frames, and the

associated data acquisition system.
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Figure 4.10: WIM Equipment Costs

Table 4.3: WIM Sensor Comparison
WIM Sensor Types Piezoelectric Bending Plate Single Load Cell

Accuracy (95% Confidence) ±15% ±10% ±6%
Expected Life 4 years 6 years 12 years

Initial Installation Cost $9,000 $21,500 $48,700
Annual Life Cycle Cost $4,750 $6,400 $8,300

Total cost $13,750 $27,900 $57,000

Installation cost is directly related to the life cycle cost of the WIM sensor. A life cycle

cost is the cost of a WIM system over its entire service life, including costs for installation,

maintenance, and salvage. Table 4.3 [Bushman and Pratt 1998] shows for each type of

WIM sensor, as the initial installation cost increases, so does the annual life cycle cost, and

the expected life and the accuracy. It provides transportation engineers with information

for selecting an appropriate WIM system to best fit their needs.

Calibration and Testing Cost

As a special maintenance activity, WIM calibration should be carried out immediately

following the initial installation and any considerable maintenance. The calibration costs

involve specific heavy trucks usage, road closure, road user delay cost, and workforce.
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ASTM E2-1802 recommended two loaded, pre-weighted and measured test vehicles for

WIM calibration, for example, Figure 4.11 [Obrien 2005] presents a specific instrumented

truck for the purpose of calibration. In general, calibration of a WIM system on two traffic

lanes takes about half a day.

Figure 4.11: Instrumented Calibration Truck

4.2.3 WIM Values vs. Static Scale Values

In practice, WIM systems and static weigh stations are used to complement each other,

because a citation for a weight violation to a trucking company can not be legally issued

unless the truck weight measurement is better than 99 percent accurate[ORNL 2000], which

is usually done by weight stations. High-speed scale systems of WIM are installed on

main road sections, where trucks are prescreened to be overweight or not, then those pre-

identified overweight trucks shall be pulled over to the weigh stations for precise weighing.

In order to accommodate the increasing traffic volume, rather than expanding the weigh

station facilities, adding new WIM systems to the existing systems is a more cost-effective

solution. WIM systems protect weigh stations from unnecessary wear. In addition, the

cost of a WIM station is generally less than the cost of a standard weigh station.

Although WIM systems and traditional static weigh stations are practically used to-

gether for enforcement management, in order to evaluate the benefits and costs of WIM

systems, static weigh stations and WIM systems are treated as a pair of significant alter-

natives. The economic analysis will weigh the differences between the two alternatives in
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the following situations:

• Increased percentage of trucks that can bypass weigh stations after deployment

• Increased percentage of overweight trucks detected after deployment of WIM

• Saved travel time after deployment

• Reduced overweight truck accidents after deployment

• Reduced load damage and pavement cost after deployment

4.3 Economic Analysis Tools for ITS

4.3.1 SCReening for ITS (SCRITS)

To quantify benefits and costs of ITS applications, several tools have been developed. The

major analysis tools include Screening for ITS (SCRITS) and ITS Deployment Analysis

System (IDAS) developed by FHWA.

SCRITS is an Excel based screening level tool to obtain an initial indication of benefits

of various ITS applications. There are 16 applications identified in a spreadsheet, including

WIM, traffic signal systems, and bus priority systems. It produces the estimates of user

benefits on a daily basis. To start the tool, users need to provide the baseline data including

travel statistics and other specific parameters used in a study. Currently, the primary

applications of SCRITS are the following: approximation of user benefits for evaluating

transportation alternatives, approximation of users benefits for ITS strategic planning,

and sensitivity analysis of the benefits to certain input assumptions [SAIC 1999]. Among

these applications, sensitivity analysis is one of the best applications since it can be used

to identify serial assumed variables that can have a significant influence on the benefits

and the overall structuring of an analysis. Sensitivity analysis provides “great flexibility

to allow decision-makers to formulate a range of possible results customized to a specific

set of conditions” [SAIC 1999].
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4.3.2 ITS Deployment Analysis System (IDAS)

The IDAS analysis tool is designed for detailed, comparative benefit-cost analysis for ITS

applications. It is used to analyze alternatives, not for optimization [Stockton et. al 2003].

The capacities of the IDAS include comparison and screening of ITS alternatives, esti-

mation of life cycle costs, sensitivity and risk analysis [IDAS 2000]. IDAS comprises five

modules including an Input/Output Interface Module (I/O), an Alternatives Generator

Module (AGM), a Benefit Module, a Cost Module, and an Alternatives Comparison Mod-

ule (ACM). It is capable of analyzing more than 60 types of ITS investments, such as

WIM systems, transit vehicle signal priority, and safety readiness. Required input data

include node coordinate information in a roadway network, information of facility type,

capacity, traffic volume, and traffic speed between nodes. In practice, this analysis tool is

complicated and expensive to perform.

4.4 Economic Model

To assess the benefit values of WIM systems compared to static weigh stations, it is nec-

essary to understand how WIM functions in highways. A typical WIM system is used

with other Commercial Vehicle Operation (CVO) technologies, such as Automatic Vehicle

Identification (AVI), visual cameras, and importantly the static weigh scales to confirm

overweight. WIM systems are usually located close to a static weigh station near the main

lanes of a highway. As a truck approaches a WIM system at the highway speed, the WIM

system measures the truck’s weight, axle load and configuration, as well as vehicle type if

capable. Data is processed by transportation management software, which compares the

measured data with the preset axle loads and GVWs to decide whether the truck is over-

weight or not. If a truck is detected to be possibly overweight, a message is displayed on

a roadside sign, directing the truck to a nearby static weigh station for further inspection.

Otherwise, no message will appear and the truck can continue without stopping. Image

information of a truck can also be monitored through a camera mounted at the road side.

Figure 4.12 is a diagram of how a WIM system works on a highway main lane.
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Figure 4.12: Operating Diagram of a WIM System at Highway System

4.4.1 Weight Enforcement - Delay Time Benefit Model

Enforcement of vehicle weight is measured by the number trucks weighed, the number of

violations, and the amount of fines. In real effect, it should be feasible to achieve improved

weight law compliance, extended pavement life and improved service level. WIM allows for

all trucks passing WIM to be weighed, and only possible overloaded vehicles are requested

to enter the static scales, and unnecessary delays at the scales are eliminated. It creates

increased time for enforcement by personnel. To evaluate the delay benefit, the tool of

SCRITS is used to develop the model in terms of saved delay time, Figure 4.13 is the

diagram to evaluate delay benefit-cost ratio after evaluating the costs and benefits, which

are estimated using LTPP online spreadsheet and SCRITS accordingly.

From a user’s perspective, the delay benefit comprises two components: the annual

“truck time cost” saving that results from reduced delay time after WIM deployment; the

other component is the annual “vehicle operating cost per stop” saving that results from

less travel distance for bypass vehicles. Critical components include:

• Truck time cost (V aTruckTime): a combined number that captures the wage and ben-

efits of drivers, time value for inventory, and vehicle depreciation cost per hour;

• Vehicle operating cost (CStop): a separate factor for truck costs, in addition to time

cost, including the cost of fuel, tire. It is expressed as the cost per vehicle mile

traveled.

The initial cost (costs of hardware, software, and installation) and annual operating and

maintenance costs are estimated from LTPP online resource, “LTPP WIM Cost Online”
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[LTPP 2007]. It works as a spreadsheet and allows users to estimate the cost of a new

WIM system. It is based on the inclusion of the following: the initial hardware cost, sensor

failure rate, calibration cost, and other parameters. The required basic inputs are the

number of WIM scales to be purchased and the type of WIM sensors. The spreadsheet

then calculates rough estimates of the cost to keep the site operating at the level expected

by LTPP. Therefore, it is important that the analyst shall make realistic assumptions

and update major inputs used in the cost estimation process to reflect specific conditions.

The total cost is expressed as the Equivalent Uniform Annualized Cost (EUAC), which is

obtained by multiplying the present value of cost by an annualization factor.

To determine the delay benefit model, the following variables are included. In addi-

tion, a break-even and a sensitivity analysis are conducted to study the impact of input

assumptions in the model.

WSN = Number of weigh stations (static scales) to be equipped with WIM

V ehN = Average Number of Vehicles through each WIM

TDelay = Average Delay Time per vehicle (minutes)

ByPa = Percentage of vehicles that will not have to pass through static scales,

i.e. BYPass static scales

CStop = Vehicle operating Cost of each stop ($)

CInitial = Cost of WIM installation ($)

CO&M = Cost of annual operating/maintenance of WIM ($)

V aTruckTime = Value of Truck Time per hour ($)

SL = Service Life of a WIM system (years)

TWorkday = work days per year

TDSaved = Amount of time saved per day (hours)

TYSaved = Amount of time saved per year (hours)

V aOper = Value of annual operating cost savings ($)

V aTimeSaved = Value of time saving annually ($)

BDelay = Total annual monetary delay benefit ($)

CAnnual = Total annualized cost ($)

f = Annualized factor
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TDSaved = TDelay × V ehN × ByPa × WSN/60

TYSaved = TDSaved × TWorkday

V aTimeSaved = V aTruckTime × TYSaved

= V aTruckTime × TDelay

60
× V ehN × ByPa × WSN × TWorkday

V aOper = CStop × V ehN × BaPa × TWorkday

BDelay = V aOper+V aTimeSaved (4.2)

CAnnual = CInitial × f + CO&M

B

C
=

BDelay

CAnnual

i.e.

B

C
=

CStop × V ehN × ByPa × TWorkday + V aTruckTime × TDelay
60 × V ehN × ByPa × WSN × TWorkday

CInitial × f + CO&M

To demonstrate the delay benefit model 4.1, Scenario I is designed as follows: a single

static weigh station is with 500 vehicles per day usage, and an average delay time is 5

minutes per vehicle. The initial cost of a two lane single load-cell based WIM system was

estimated to be $122,000 with a 10-year service life, and annual operating and maintenance

cost of $31,920. Appendix E lists the cost estimation procedure using “LTPP WIM Cost

Online” [LTPP 2007]. Vehicle operating cost at each stop was assumed to be 30 cents,

and the value per hour of truck time is $25 according to the America Highway Economic

Requirement Model and the study of Peng et al. [Peng et al. 2000].

The result shows that the annual benefit is $159,298 and the annual cost is $49,244.

The benefit/cost ratio (the equivalent uniform annual benefit to the equivalent uniform

annual cost) would be 4.2. It indicates a high benefit.

Break-even analysis

The purpose of break-even analysis is to examine the tradeoff between the potential benefits

of an ITS project and its costs, by estimating the minimum level of performance required

to have an equivalent cost and benefit. It can be used to identify and quantify critical

variables (performance measures) to achieve an acceptable benefit-cost ratio. The approach

of break-even analysis is first to set the benefit-cost ratio to be 1, that is, the annual benefits
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Table 4.4: Scenario I - Delay Benefit [FHWA 1999]
ANALYSIS OF WIM DELAY BENEFIT

User
Input

Calculated
Value

Date of analysis Feb/07/2007
Scenario I
Analyst Alanna
Description : A single load-cell WIM system at a typical highway main lane Less travel time
TRUCK TIME SAVINGS
Number of weigh stations to be equipped with WIM WSN 1
Avg. no. vehicles through each weigh station per weekday V ehN 500
Average delay time (min) saved per vehicle TDelay 5
Percent of vehicles that dot not have to report to static scales ByPa 70%
Workday per year TWorkday 250
Amount of time (hrs.) saved per day TDSaved 29
Amount of time (hrs.) saved per year, weekdays only TYSaved 7,292
COSTS AND BENEFITS
Value per hour of truck time V aTruckTime $25.00
Value of annual time savings V aTimeSave $182,292
Vehicle operating cost of each stop CStop $0.30
Value of annual operating cost savings V aOper $26,250
Total annual dollar benefit BAnnual $208,542
Initial cost (2 lanes) CInitial $122,000
Service life (years) SL 10
Annual operating/maintenance cost CO&M $31,920
Annualization factor f 0.142
Total annualized cost CAnnual $49,244
Annualized benefits (weekday only) minus annualized cost $159,298
Benefit-cost ratio weekday only B/C 4.235

equals to the annual costs. Then, the result solved from the benefit-cost equation shall

be in terms of performance measures, such as time saving and increased bypass rate. The

critical performance measures identified here can be further used in sensitivity analysis.

Apply Scenario I to demonstrate the break-even analysis: submit the values of WSN =

1, CStop = $0.30, V aTruckTime = $25.00, and other inputs from Table 4.4, along with the

initial cost and O&M cost from “LTPP WIM Cost Online”; change bypass rate from 10%

to 30%, static scale usage rate (traffic volume) from 100 to 2500 vehicles per weekday. The

required time saving to have an equivalent cost and benefit is presented as formula (4.3)

and as Figure 4.14.
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Let B/C = 1, i.e.,

CStop × V ehN × Bypa × TWorkday + V aTruckTime × TDelay

60
× V ehN × ByPa × WSN × TWorkday

CInitial × f + CO&M

= 1

then

CInitial × f + CO&M =

CStop × V ehN × Bypa × TWorkday + V aTruckTime × TDelay

60
× V ehN × ByPa × WSN × TWorkday

Hence,

TDelay =
(CInitial × f + CO&M − CStop × V ehN × ByPa × TWorkday) × 60

V aTruckTime × V ehN × ByPa × WSN × TWorkday

=
(CInitial × f + CO&M) × 60

V aTruckTime × V ehN × ByPa × TWorkday

− CStop × 60

V aTruckTime

(4.3)

Substitute values from Scenario I,

TDelay =
29230 × 60

25 × 250 × V ehN × ByPa
− 0.3 × 60

25

=
280.608

V ehN × ByPa
− 0.72

It shows that as the bypass percent (ByPa) increases, the required time saving (TDelay)

for break-even points decreases. The same trend shows between traffic volume and re-

quired time saving. In order to be beneficial, for example, 5 minutes time saving requires

about 250, 350, and 550 of traffic volume with respect to bypass rate of 30%, 20%, 10%

correspondingly. That is, larger traffic volume will require less time saving such that the

created benefits easily covers the annual costs for the WIM system. The curve indicates

the break-even points are relatively low number in all cases as the traffic volume is greater

than a certain amount. WIM deployment that eliminates unnecessary travel time is a

valuable investment in nearly all cases except when the traffic volume is very low.
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Figure 4.14: Break-Even Analysis of Delay Benefit

Sensitivity Analysis

Given the uncertainty of variables/assumptions in a model, a sensitivity analysis is the

process of varying the variables/assumptions over a reasonable range and observing the

relative changes in the model response, to demonstrate the impact of inputs on the model

output. In this study, the key variables and their varying ranges follow:

1. Traffic volume per weekday (100 -1000)

2. Percentage of vehicles bypassing static scales (10% - 90%): bypass rate after applying

WIM

3. Delay time saved per vehicle (2 -10 minutes)

4. Value of truck time ($10 - $30): capture drivers’ wage and benefit, time value of

inventory, and vehicle depreciation cost
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5. Vehicle operating cost (VOC) of each stop ($0.30 - $1.00): cost per vehicle mile

traveled

Figure 4.15: Sensitivity of Benefit-Cost Ratio to Delay Time

Model 4.1 indicates a linear positive trend between each of these variables and the

benefit-cost ratio. Certain relationships also exist among some of these inputs, such as

delay time at a weigh station could increases as traffic volume increases. Figure 4.15

present the sensitivity of B/C ratio to the delay time. The slope of each line (the change

rate of B/C) increases as the delay time increases. Figure 4.16 presents the sensitivity of

B/C ratio to traffic volume. It shows that the slope of each trend (the change rate of B/C)

increases as the traffic volume increases. There is a linear relationship between delay time

and B/C ratio. Similarly, the model response to other inputs follow the same trend.

In summary, the sensitivity analysis indicates that as the value of a key variable changes

in the range, the value of B/C adjusts in the same direction. Some variables affect the

behavior of the model to a larger extent than others. For example, improving percentage

of bypass is very attractive since with the 100 percent of bypass, there would be no need

for static scales. The break-even analysis indicated that WIM are beneficial except under

very low traffic volume and delay time conditions.
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Figure 4.16: Sensitivity of Benefit-Cost Ratio to Traffic Volume

4.4.2 Weight Enforcement - Capability Enhancement Benefit Model

There are two aspects of weight enforcement benefits: one is that the delay time reduced

for commercial travelers since fewer vehicles are required to report to scales after WIM

deployment, which has been assessed antecedently. The other benefit is that the number of

trucks with unauthorized bypass is decreased since weigh stations do not have to be closed

during peak hours to avoid congestion. The capability enhancement benefit is evaluated

in terms of the amount of fines.
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Define the variables and follow with Scenario II to demonstrate the benefit:

LE(w) = Increased Level of Enforcement: inspection rate, the number of trucks out

of compliance inspected as a percentage of all trucks using WIM,

a function of w

V ehN = Average Number of Vehicles through each WIM, ie. traffic volume per day

ESALow = ESAL-km, average ESAL traveled in total distance by overweight vehicles per day;

an indicator of the total load repetitions imposed, depending on the level

of enforcement[Edward et al. 1995]

TWorkday = Work days per year

Peow(w) = Penalty per ESAL-km, a function of w

w = GVW limit, in USA = 36.3 tons, in Canada = 39.5 tons [Edward et al. 1995]

Bce = Total annual monetary capacity enhancement benefit

Then

Bce = Peow(w) × (ESALow × LE(w) × V ehN) × TWorkday. (4.4)

The calculated benefit is $150,000 from enhanced capacity. The benefit-cost ratio is

3.046, lower than 4.235 of delay benefit in this case. It indicates the system is beneficial to

the enforcement agencies. The magnitude of the ratio depends on the level of enforcement,

traffic volume, ESAL-km, and the penalty intensity. The cost attached to ESAL-km counts

on various factors such as pavement type and truck type [Edward et al. 1995]. According

to Model (4.4), the sensitivity analysis results for this model would be similar to that of

delay benefit model. The break-even analysis of delay benefit model illustrates that WIM

benefits can easily cover the costs as long as the traffic volume is not very low; therefore,

it is not necessary to carry out the break-even analysis for this and the following model.

The annual cost is calculated using the LTPP WIM Cost Online.
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Table 4.5: Scenario II - Weight Enforcement-Capacity Enhancement Benefit
ANALYSIS OF WIM CAPACITY ENFORCEMENT BENEFIT

User
Input

Calculated
Value

Date of analysis Mar/03/2007
Scenario II
Analyst Alanna

Description: A single load cell WIM system at a typical highway mainlane
Higher level of
enforcement

WEIGHT ENFORCEMENT LEVEL ANALYSIS
Avg. no. vehicles through each weigh station per weekday V ehN 500
% Increased level of enforcement after deploying WIM LE(w) 20%
Weekdays per year TWorkday 250
Avg. no. overweight vehicles reduced per year due to higher level enforcement 25,000
Average ESAL-km of overload per day ESALow 100
COSTS AND BENEFITS
Penalty per ESAL-km Peow(w) $0.06
Annual pavement cost saving due to higher level of enforcement $150,000
Installation cost $122,000
Service life (years) 10
Annual operating/maintenance cost $31,920
Annualization factor 0.142
Total annualized cost $49,244
Annualized benefits minus annualized costs $100,756
Benefit-cost ratio 3.046

4.4.3 Safety Benefit Model

Overweight vehicles and safety concerns are closely related. Many studies ([Jacob 2002a,

Compbell et al. 1988, Fancher 1998]) have concluded that vehicle weight is an aggravating

factor in traffic accident rate. WIM can effectively and efficiently detect overweight trucks

and decrease traffic congestion. The safety benefit is evaluated in terms of reduced number

of accidents.
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Define the variables and follow with Scenario III to demonstrate the model:

OWRe = Percentage reduction of overweight trucks after deploying WIM

AcRow = Accident rate of overweight trucks in total number of trucks per year

CowAc = Accident-related costs per occurrence for overweight accidents

V ehN = Average number of vehicles through each WIM, traffic volume

TWorkday = Work days per year

Bsafety = Total annual monetary safety benefit

Then,

Bsafety = CowAc × AcRow × (V ehN × OWRe × TWorkday) (4.5)

Table 4.6: Scenario III - Safety Benefit
ANALYSIS OF WIM SAFETY BENEFIT

User
Input

Calculated
Value

Date of analysis Mar/03/2007
Scenario III
Analyst Alanna

Description: A single load cell WIM system at a typical highway mainlanes
Deduction of
accident rate

ACCIDENT ANALYSIS
Avg. no. vehicles through each weigh station per weekday V ehN 500
% reduction of overweight trucks after deploying WIM OWRe 20%
Weekdays per year TWorkday 250
Avg. no. overweight vehicles reduced per year 25,000
Accident rate of overweight trucks per year AcRow 0.002
Annual accident reduction of overweight trucks 50
COSTS AND BENEFITS
Accident-related costs per occurrence for overweight accidents CowAc $5,000
Value of annual savings in accident-related costs $250,000
Installation cost (2 lanes) $122,000
Service life (years) 10
Annual operating/maintenance cost $31,920
Annualization factor 0.142
Total annualized cost $49,244
Annualized benefits minus annualized costs $200,756
Benefit-cost ratio 5.077
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The estimated benefit value from less accidents is $250,000. The benefit-cost ratio is

5.077, which is significant high and shows that the system is beneficial to reduce congestion

and have the road safer. Assumptions shall be carefully re-examined in the table of Scenario

III, such as a reasonable value or range for percentage reduction of overweight trucks after

deploying WIM, accident rate of overweight trucks, and related cost of overweight accidents.

Model (4.5) indicates that the B/C ratio is sensitive to these variables, with the similar

relationship as that of the delay benefit model.

Weight enforcement, delay time, and road safety improvement are the main compo-

nents of WIM benefits as discussed formerly. To express the economic value of WIM as a

benefit-cost ratio, these components are integrated with Model (4.2), (4.4) and (4.5). Ta-

ble 4.7 combines the estimated benefits of the three scenarios. Figure 4.18 integrates the

benefit models of weight enforcement and traffic data collection. Since highway wear is not

immediately quantifiable, the benefit of traffic data collection was evaluated through the

study of overloaded pavement MEPDG simulation, instead of a quantified model. Figure

4.17 illustrates the cost model.

Table 4.7: Integrated Benefits of a Typical Single Load-Cell WIM System
Estimation of WIM values Annual Monetary value
Estimated annual delay benefit $208,542
Estimated annual enforcement capacity benefit $150,000
Estimated annual safety benefit $250,000
Total $608,542
Estimated annual cost $ 49,242
Benefit/cost (B/C) ratio $ 12.358

In summary, the economic benefits of WIM outweigh the costs. Commercial industry

experiences more efficient services in a new way, which leads to less delay time, less number

of stops, and reduced incidents. The enforcement staff experience better effectiveness and

efficiencies of weight enforcement by targeting suspected vehicles only. The transporta-

tion engineers have access to specific valuable traffic data for transport planning, highway

design, construction, and maintenance strategies. The taxpayers enjoy lower costs for

roads and transportation. Highway infrastructure benefits from less overloading damage,

longer service life, and better service level. WIM systems are economically feasible for road

networks in northern environments.
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Figure 4.17: Cost Model of WIM Value
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Figure 4.18: Benefits Diagram of WIM





Chapter 5

Economic Data and Tradeoff

Analysis: A Case Study

5.1 The Longs Creek WIM System in New Brunswick

To evaluate the effectiveness of WIM, a New Brunswick Department of Transportation

(NBDoT)’s WIM system near Longs Creek in New Brunswick was studied. The Longs

Creek weigh station had been experiencing congestion due to time-consuming weighing

procedures. Vehicles are either allowed to bypass the scales or selected to report to the

static scales during peak hours. This compromised the effective enforcement of overweight

commercial vehicles.

A WIM system (Figure 5.1 [Davis 2003] and Figure 5.2 [Nash 2006]) was designed

for the purpose of pre-screening vehicles and reducing the number of commercial vehicles

reporting to the scales. It was installed in the eastbound (two lanes) of Route 2 on the

Trans-Canada Highway, and opened on October 2002. The system is comprised of two

single load cells, two piezoelectric sensors, 11 inductive loops, two changeable message signs,

and two freeze-frame cameras [Davis 2003]. A fixed message sign, about 500m upstream

of the WIM scales, directs all trucks to travel on the right hand lane. As a truck enters the

system, it passes over an inductive loop (L1), single load cell scales, a piezoelectric sensor,

and another loop (L2), where all required data are collected. The license plate image of the

truck is also taken by Camera 1 at this point. The truck then continues over three more

77



78

inductive loops. The first loop (L5) checks the vehicle presence (here the WIM system has

determined whether the vehicle should report to the weigh stations or not). If the truck is

found to be possibly overweight, the first Changeable Message Sign (CMS 1) is activated.

The driver receives the message of “TRUCK MUST REPORT TO WEIGHT SCALE”.

L6 triggers Camera 2 to take the image of the truck. If applicable, the CMS 1 is turned

off and the CMS 2 is activated . L7 simply turns off the second sign as the truck passes

over, as well as signalling the system to transfer the vehicle image to the weight station.

Loops 8 and 9 (in the main lane) and 10 and 11 (in the ramp to weigh station) tell the

scale operators whether the truck obeyed the message signs and is reporting to the scales

(if overweight) or they ignored the message and continuing past the station. In the left

hand lane adjacent to the single load cells, there is a loop-piezoelectric-loop configuration

to detect any vehicles that did not follow the fixed message sign and traveled in the left

hand lane.

5.2 Data Collection Results

Accuracy of the system was evaluated by NBDoT during the first four months of operations

and April 2003. The accuracy results are within the specified accuracy by ASTM E2-1308.

To examine the operational benefits of the WIM system, a 24 hour traffic survey was

conducted between September 18, 2003 and September 30, 2003. These field data include

[Davis 2003]:

• Total truck volume, subdivided into Tractor Trailers, Trains, and Straight Trucks

• Number of trucks signalled to report to static scales in a 24 hour period

• The average time for trucks to exit from main lanes, to report to static scale, and

return to the main lanes

• The average distance traveled for trucks to exit from main lanes, report to static

scale, and to return to main lanes

• The average time for trucks to bypass the static scales
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Figure 5.1: Illustration of A Commercial Vehicle Passing Through WIM System in New
Brunswick

• The average distance traveled for trucks to bypass the static scales

Given traffic volume and delay time, the average operating costs for each class of truck

can be determined. “Operational Costs of Trucks in Canada - 2000” prepared by Trimac

Logistics Ltd. was used for the operating cost calculation. All costs and benefits were

adjusted for inflation to 2001 dollars with inflation rate of 1.7% (The Consumer Price

Index, 2002). The costs and benefits were compared over a five year period from 2002 to

2006, 5% discount rate was used for the analysis.
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Figure 5.2: Layout of the Longs Creek WIM System in New Brunswick
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5.2.1 Traffic Volume Data

The traffic volume data of commercial vehicles observed on the eastbound lanes of Route

2 during the 24 hour survey are included:

Observed total volume = 916 trucks/day, or 856 converted to AADTT = 916/1.07

(1.07 is the MAF (monthly adjustment factor))

Signaled to report = 215 trucks/day, or 201 converted with MAF = 215/1.07

Bypassing = 701 trucks/day, or 655 converted with MAF = 701/1.07

That is, an average of 655 trucks per day or 76.5% of the AADTT benefit from the

Longs Creek WIM system. Table 5.1 [Davis 2003] shows the bypassing rate and benefiting

number of trucks in terms of each truck class at the site. Trucks reporting to the station are

considered as overweight if one axle or axle group exceeds the specified limits [Davis 2003].

Table 5.1: Benefit Proportion of Tractor Trailers, Trains, and Straight Trucks
Truck Type % of AADTT % Bypassing Number of trucks benefiting from WIM
Tractor Trailer 84.7 76.8 557

Train 6.3 72.2 39
Straight Trucks 9.0 76.6 59

Total 100 N/A 655 (= 856-201)

5.2.2 Delay Time Data

During the survey period, the average time for a truck to bypass was calculated to be

32 seconds. The average delay time for commercial vehicles required to report to static

stations was computed by summing the ramp time and the time to report(4 minutes and

44 second), subtracting bypass time (32 seconds). The resulted average delay time (time

saved by WIM) was 4 minutes and 12 seconds for trucks report to static scale and return

to main lanes.
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5.2.3 Additional Travel Distance Data

A test car survey was conducted to measure the distances. For commercial vehicles that

are required to report, the total distance traveled is usually 2.35 km. For vehicles allowed

to bypass, the total distance traveled is 0.75 km. Therefore, the extra distance (in other

words, distance saved by WIM) incurred by trucks required to report is 2.35 - 0.75 = 1.60

km.

5.2.4 Average Cost to Report

To assess the benefits due to the deployment of the Longs Creek WIM system, an average

Cost to Report for the three classes of trucks are computed based on the above delay

time, extra distance data, and the “Operational Costs of Trucks in Canada - 2000”, which

consider varied factors including truck type, unit cost of driver, fuel, repairs, and tires.

The Cost to Report is a combination cost of the Truck Time Cost and Vehicle Operating

Cost, which were defined in Model 4.1 in the thesis. Table 5.2 [Davis 2003] indicates the

estimated average Cost to Report.

Table 5.2: Average Cost to Report at Long Creek Scale Station

Truck Type
Proportion
of AADTT

Average
Delay (min)

Extra
Distance (km) Cost to Report

Tractor Trailer 85% 4.20 1.6 $2.32
Train 6% 4.20 1.6 $2.55

Straight Trucks 9% 4.20 1.6 $2.09

5.3 Benefit-Cost Analysis

Approximately 655 commercial trucks per day or 76.5% AADTT benefit from the WIM

system. This value (655) was multiplied by the percentage of AADTT for each type of

trucks, to obtain the number of each truck types permitted to bypass per day, for example

of Table 5.1. Each of these number is multiplied by its Cost to Report (Table 5.2). These

savings then multiply by 365 days and summed to be the total estimated benefit for a

year. This computation was over five years, start from year 2002 until 2006. The benefit
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value varied for each year according to the amount of bypass vehicles. All the estimations

(benefits and costs) were discounted to 2001 dollar. The AADTT growth rate during the

five years was estimated to be 4.3% per annum. The proportion of each type of trucks is

assumed to be the same for the five year period.

Estimation of the WIM system cost is divided into [Davis 2003],[Nash 2006],

• System supply and installation including 1st year of system supply and service -

$443,800

• Changes made to fixed and changeable message signs - $29,900

• Annual maintance costs per site, including regular maintenance (twice a year), service

calls, software upgrades - $20,000

• Extra freeze frame camera - $15,600

• Extra options purchased by NBDoT, including left lane sensors- $6,500

The total estimated cost of the Longs Creek WIM system is $610,567 over the five

yeas, and the total estimate benefit is $2,253,598. Therefore, the benefit-cost (B/C) ratio

is 3.69 for the five year period. This illustrates that appropriate WIM deployment are very

beneficial to the commercial industry. In addition, the construction cost only of a static

weight station in NB is estimated to be more than $1,200,000.00, including the acceleration

lanes, the deceleration lanes, and the ramps [Nash 2006]. It is much more than the cost of

the WIM system.

Increased safety of traffic traveling are recognized from the WIM system, since only

23.5% AADTT are required to report which means less backup on the highway. It follows

that the enforcement efficiency are also improved by re-allocating resources. Data for

quantifying these benefits are not available at the moment. This study [Davis 2003] also

brought up that the beneficial result is site specific. There exists tradeoff to the attractive

benefits. Careful consideration of the site selection, the anticipated road usage, the required

accuracy, and the acceptable costs governs each site specific WIM values. Particularly,

proper maintenance and calibration are critical because the local seasonal and climatic

changes can seriously affect the system accuracy [Davis 2003].





Chapter 6

Future Study of WIM

6.1 New Materials and Technologies for WIM Sensors

WIM systems play a critical role in gathering traffic information and enhancing weight

enforcement. On the other hand, many traditional WIM sensors such as piezoelectric sen-

sors and load-cell based sensors have disadvantages. They are either inaccurate, expensive,

or unstable. Efforts have been directed to develop new sensors in order to reduce cost

and improve accuracy, to provide better WIM data used for pavement design and weight

enforcement. Examples are quartz piezoelectric sensors and optical fiber sensors. Quartz

piezoelectric sensors apply the same principle as piezoelectric based sensors, but the de-

sign and materials are different, as illustrated in Figure 6.1 [McDonell 1998]. This type of

sensor is made up of quartz sensing elements, positioned in an aluminum housing, and con-

structed with elastic material around it. Quartz piezoelectric sensors have proved to meet

or exceed the weight accuracy specified by ASTM for Type I [White et al. 2006], and the

cost is competitive with that of load cells. They do not fatigue as quickly and very impor-

tantly, the impact of temperature is negligible [Klein 2001], but they are highly sensitive

to pavement roughness. Optical fibers adopted as a WIM sensor technology offer accurate

measurement capabilities at a reasonable cost [Caussignac 1998, Caussignac et al. 1999].

They have high bandwidth and are lightweight. In addition, optical fiber WIM sensors

can be embedded up to 76 mm (three inches) below the surface such that there is highly

protective environment to lengthen their service lives [Kunzler et al. 2003].
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Figure 6.1: Quartz Piezoelectric Sensor

Multiple-Sensor WIM (MS-WIM) is considered as a way to accurately estimate static

axle loads at traffic speed. Figure 6.2 [Obrien 2005] is a picture of MS-WIM in the Nether-

lands, where the WIM sensor array is composed of multiple sensors. The accuracy of

estimated weights mainly depends on three aspects: sensors’ intrinsic accuracy, static

weight estimation algorithm, and array design optimization. There have been research

studies on methods to optimize MS-WIM array design with respect to number of sensors,

sensor spacings, and sensor locations [Labry et al. 2005]. New algorithms for processing

outputs from MS-WIM, such as functional network equations [Gonzalez and Obrien 2005]

and neural networks have been developed.

The other significant technology is the new “Integrated Matrix” WIM (IM WIM) sen-

sor concept based on strain gauge technology [Opitz and Kuhne 2005]. In contrast to a

conventional bending plate, the sensor strip consists of 16 individual shear deformation

elements (Figure 6.3). The new sensors are made of stainless steel material, which is good

for durability. A modular system is proposed to facilitate easy maintenance and replace-

ment. This system technology may allow future fully automatic enforcement systems for

truck overload.
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Figure 6.2: Multiple-sensor WIM in the Netherlands

Figure 6.3: IM WIM Module 32 cm Mechanical Design

6.2 New Applications

Besides pavements, WIM technologies have been used in bridges and railways. For example,

Bridge WIM (B-WIM) systems use strain sensors located underneath bridges to detect

axles. Figure 6.4 [Brozovic et al. 2005] shows a B-WIM site in Poland. In Slovenia, bridge

WIM systems use strain gauges to measure the deflection of structures and in combination

with speed and axle spacing to calculate axle loads and GVWs. This type of system has

high accuracy, is non intrusive to pavements and traffic, and can easily be installed and

moved. The measured WIM data is converted to ESALs, which are used for traffic planning
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and bridge assessment in Slovenia [Brozovic et al. 2005]. In practice, the number of types

of bridges that are suitable for B-WIM is increasing.

Compared to the WIM sensors’ performance used for weighing road vehicles, the perfor-

mance of WIM sensors used for railways is enhanced because dynamic effects are limited:

a rail locomotive always passes on the same and a qualitative track (no lateral variation of

vehicles). Problems may occur for railway WIM, such as the velocity difference of different

wagon of the same train can be large, thus the speed and acceleration of a train have to be

taken into account for axle load computation [Zag and Dolcemascolo 2005]. For instance,

in Sweden, a monitoring project [Karoumi et al. 2005] was carried out to increase the

knowledge of actual traffic loads and their effects on railway bridges. Figure 6.5 is a photo

of a train over a newly-installed WIM scale bridge in Alaska. This system is designed to

automatically sense train speeds, detect engines, and record railcar weights [ARRC 2007].

Another application is to use and integrate WIM with electronic toll collections on a

highway, especially, for toll stations (in Taiwan for example) where charging is based on

the types of vehicle instead of vehicle weights.

Figure 6.4: Strain Transducers on A Bridge in Poland

6.3 Virtual WIM

The enforcement through current WIM technologies is not always effective. It is unfeasible

to continuously target bypass routes and secondary roads that could be used by truckers

to avoid fixed weigh scales. A visual WIM station applies WIM sensors and video tech-
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Figure 6.5: A WIM Scale Bridge in Anchorage Rail Yard, Alaska

nology to captures images of passing trucks. Through the use of cameras, WIM data are

linked to truck license plates/registration numbers [Santero et al. 2005]. This information

is transferred through wireless technology to a central facility. Virtual WIM is a flexible

solution to catch violation of vehicles. It also helps traffic predictions be more accurate.

In practice, this technology has not been widely applied.

6.4 Calibration

As accuracy is critical for a WIM system to be effective, calibration is very important in

order to insure the accuracy. There are two methods to execute the calibration: manual

calibration and auto calibration. Manual calibration is time consuming. It is subjected

to human errors and can lead to personal roadway hazards. Auto calibration utilizes

software calculation and applies an adjustment to the raw estimated weights. It is based

on the comparison of the average of a number of measurements of some specific variables

(such as average vehicle weight) with the expected values. Although auto calibration

has considerable value, it is only useful while the conditions monitored at the study site

have been confirmed. In fact, FHWA LTPP (Federal Highway Administration Long-Term

Pavement Performance) has confirmed several cases in which auto calibration settings

forced scales to estimate biased calibration factors simply because the auto calibration

setting was incorrect for a particular site [Hallenbeck and Weinblatt 2004]. Establishing
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an effective and efficient calibration methodology is therefore important for insuring WIM

accuracy.

6.5 Data Acquisition System (DAS)

The accuracy of a WIM system depends not only on a sensor itself, but also its Data

Acquisition System (DAS). The DAS is an important component for proper functions of

the whole system. It is comprised of two parts: the communication link to collect data

and the software to review and format data.

Communication efficiency with a WIM site is a critical consideration for researchers

and vendors. Retrieving data on site is time consuming and costly. Expectedly, data shall

be transferred to a remote location in a rapid and efficient manner. Currently, wireless

networks are a convenient way. It can be used to transmit data between the on site DAS

and a remote host computer. A cellular modem that has a phone number is powered

and connected to the DAS. Dialing the number of the modem, the remote computer (also

equipped with a modem) can wirelessly retrieve data from the DAS. This direct dial-up

data connection can provide data transfer rates of up to 14.4 kbps (one thousand bits

per second) [IRD 2001]. The other way is to connect a data logger to a series of wireless

network devices (Nport, D-Link, and Antenna), which convert the serial signals to a local

area network (Ethernet), then by typing an IP address with the remote computer, real-

time data can be downloaded remotely. By wireless connection, researchers can collect raw

data flexibly and efficiently, and monitor the performance of a WIM system from a remote

location. It also eliminates complicated wiring.

A better, readable and manageable data format is always preferred. Portable WIM

system, such as IRD’S DAW 300PC, can be set up in a short time, and the operation

system of the portable WIM has user friendly interface that shows only the data wanted.

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is software that

can be used for data acquisition much faster and more efficiently. It can synthesize, analyze,

and display waveforms from sensors and develop a virtual interface with required data.

However, these technologies for WIM DAS have not been fully investigated and widely

applied in practice.



Chapter 7

Conclusions and Recommendations

Weigh-In-Motion has been adapted since the 1980s in Canada. The reasons it is becoming

a state-of-the-practice tool for highway preservation are its high processing rate without

interrupting traffic flow, and the capability of collecting site specific and real time traffic

data for highway system management.

This thesis is to answer the question whether this technology is economically and tech-

nically feasible in Northern America not only presently but also in the future. This thesis

investigated all significant potential benefits of a typical WIM system compared to con-

ventional static weigh stations, with respect to weight enforcement benefit and traffic data

collection benefit. Traffic characteristics, unit cost, and other critical variables were care-

fully chosen to evaluate these benefits, and models were constructed to compute these

benefits. The demonstrated scenario of a typical single load-cell WIM shows the advan-

tages of much less travel time and thus less delay cost to commercial carriers by allowing

weight compliant commercial vehicles bypass weight stations; improved enforcement level

due to high processing rate to increase inspect rate; decreased number and severity of

accidents by reducing congestion on highway and diminishing overweight vehicles. An

integrated benefit-cost ratio of this scenario could be 12, that means the benefit far out-

weighs the cost. The Longs Creek WIM system project in New Brunswick well quantified

the significant benefits of the WIM system in reducing travel time and improving enforce-

ment level. It also well illustrated the potential benefit of increased road safety. Only by

this single delay benefit,the benefit-cost ratio is 3.8, which is very attractive to commercial
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industry and a highway agency. This thesis also conducted an overload-pavement impact

study and illustrated the importance of WIM data in pavement design and management,

the importance of overload control in preserving highway system and cost saving.

On the other hand, this thesis also raised several issues related to accuracy. Accuracy

has been the main technical issue of a WIM system. The material and technology of the

sensors, the data acquisition system, the accuracy to cost ratio, the site selection and in-

stallation specification, the maintenance strategy and calibration technology all must be

carefully considered for a WIM system in the real world. The field experience of piezoelec-

tric WIM at CPATT, University of Waterloo further addressed this concern. Furthermore,

the sensor sensitivity to temperature, roughness, and vehicle dynamics add more challenges

for researchers and practitioners. However, as a whole, WIM’s benefits have been recog-

nized and will be further proved in the future. They are now used not only in pavements,

but also bridges, railways and other applications.

It would be recommended to develop new technologies and materials to enhance the

sensor stability, durability, and performance, develop mature software for data acquisition,

improve algorithms for signal processing and calibration, establish consistent accuracy

measurement methods, set up mature and consistent standards for system calibration and

acceptance testing, and many other aspects of WIM. With more designation of money,

engineers, and other resource, WIM would be more advanced technology and more cost-

effective tool to preserve highway systems.



Appendix A

Roughness Raw Data
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Data Listing Job Name: Dipstick Roughness Measurement  
(Page 1) Run Name: CPATT WIM SITE 
 Date:   November, 2006 
------------------------------------------------------------------------------------------------------------------ 
 Step Dist (meters) Reading Elevation (mm) 
  0   100.0 
  1 0.30 6.8 106.8 
  2 0.60 7.6 114.4 
  3 0.90 7.4 121.8 
  4 1.20 7.5 129.3 
  5 1.50 6.8 136.1 
  6 1.80 7.1 143.2 
  7 2.10 7.0 150.2 
  8 2.40 9.4 159.6 
  9 2.70 7.1 166.7 
  10 3.00 7.3 174.0 
  11 3.30 7.1 181.1 
  12 3.60 7.8 188.9 
  13 3.90 8.1 197.0 
  14 4.20 7.8 204.8 
  15 4.50 6.9 211.7 
  16 4.80 7.3 219.0 
  17 5.10 8.4 227.4 
  18 5.40 8.1 235.5 
  19 5.70 7.4 242.9 
  20 6.00 7.6 250.5 
  21 6.30 7.6 258.1 
  22 6.60 7.8 265.9 
  23 6.90 7.2 273.1 
  24 7.20 7.5 280.6 
  25 7.50 7.7 288.3 
  26 7.80 7.5 295.8 
  27 8.10 7.6 303.4 
  28 8.40 7.8 311.2 
  29 8.70 9.4 320.6 
  30 9.00 8.3 328.9 
  31 9.30 7.9 336.8 
  32 9.60 7.7 344.5 
  33 9.90 8.5 353.0 
  34 10.20 7.0 360.0 
  35 10.50 7.3 367.3 
  36 10.80 7.4 374.7 
  37 11.10 8.2 382.9 
  38 11.40 7.8 390.7 
  39 11.70 8.3 399.0 
  40 12.00 7.7 406.7 
  41 12.30 6.3 413.0 
  42 12.60 6.9 419.9 
  43 12.90 6.4 426.3 
  44 13.20 6.8 433.1 
  45 13.50 7.4 440.5 
  46 13.80 8.0 448.5 
  47 14.10 7.6 456.1 
  48 14.40 7.1 463.2 
  49 14.70 7.3 470.5 
  50 15.00 6.2 476.7 
  51 15.30 6.9 483.6 
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Data Listing Job Name: Dipstick Roughness Measurement  
(Page 2) Run Name: CPATT WIM SITE 
 Date:   November, 2006 
------------------------------------------------------------------------------------------------------------------ 
 Step Dist (meters) Reading Elevation (mm) 
  52 15.60 7.6 491.2 
  53 15.90 7.0 498.2 
  54 16.20 7.8 506.0 
  55 16.50 6.1 512.1 
  56 16.80 7.5 519.6 
  57 17.10 7.5 527.1 
  58 17.40 6.8 533.9 
  59 17.70 5.7 539.6 
  60 18.00 7.4 547.0 
  61 18.30 8.4 555.4 
  62 18.60 3.1 558.5 
  63 18.90 -7.6 550.9 
  64 19.20 -7.2 543.7 
  65 19.50 -6.2 537.5 
  66 19.80 -6.6 530.9 
  67 20.10 -6.5 524.4 
  68 20.40 -6.6 517.8 
  69 20.70 -6.9 510.9 
  70 21.00 -6.0 504.9 
  71 21.30 -6.5 498.4 
  72 21.60 -6.3 492.1 
  73 21.90 -7.2 484.9 
  74 22.20 -6.9 478.0 
  75 22.50 -5.6 472.4 
  76 22.80 -6.0 466.4 
  77 23.10 -6.5 459.9 
  78 23.40 -29.8 430.1 
  79 23.70 7.4 437.5 
  80 24.00 5.9 443.4 
  81 24.30 5.3 448.7 
  82 24.60 6.6 455.3 
  83 24.90 6.2 461.5 
  84 25.20 6.6 468.1 
  85 25.50 5.8 473.9 
  86 25.80 5.3 479.2 
  87 26.10 5.6 484.8 
  88 26.40 5.4 490.2 
  89 26.70 6.8 497.0 
  90 27.00 6.3 503.3 
  91 27.30 6.3 509.6 
  92 27.60 6.4 516.0 
  93 27.90 5.7 521.7 
  94 28.20 6.7 528.4 
  95 28.50 6.2 534.6 
  96 28.80 6.9 541.5 
  97 29.10 7.1 548.6 
  98 29.40 7.5 556.1 
  99 29.70 7.7 563.8 
  100 30.00 7.2 571.0 
  101 30.30 6.2 577.2 
  102 30.60 6.7 583.9 
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Data Listing Job Name: Dipstick Roughness Measurement  
(Page 3) Run Name: CPATT WIM SITE 
 Date:   November, 2006 
------------------------------------------------------------------------------------------------------------------ 
 Step Dist (meters) Reading Elevation (mm) 
  103 30.90 5.4 589.3 
  104 31.20 6.4 595.7 
  105 31.50 6.8 602.5 
  106 31.80 6.8 609.3 
  107 32.10 7.0 616.3 
  108 32.40 7.6 623.9 
  109 32.70 8.0 631.9 
  110 33.00 7.0 638.9 
  111 33.30 6.3 645.2 
  112 33.60 4.3 649.5 
  113 33.90 6.7 656.2 
  114 34.20 5.7 661.9 
  115 34.50 6.2 668.1 
  116 34.80 6.8 674.9 
  117 35.10 2.1 677.0 
  118 35.40 3.3 680.3 
  119 35.70 4.2 684.5 
  120 36.00 3.1 687.6 
  121 36.30 3.3 690.9 
  122 36.60 5.3 696.2 
  123 36.90 5.2 701.4 
  124 37.20 3.0 704.4 
  125 37.50 2.4 706.8 
  126 37.80 3.3 710.1 
  127 38.10 -3.2 706.9 
  128 38.40 6.2 713.1 
  129 38.70 6.8 719.9 
  130 39.00 5.1 725.0 
  131 39.30 6.0 731.0 
  132 39.60 6.1 737.1 
  133 39.90 6.2 743.3 
  134 40.20 6.2 749.5 
  135 40.50 5.6 755.1 
  136 40.80 5.4 760.5 
  137 41.10 5.8 766.3 
  138 41.40 5.1 771.4 
  139 41.70 6.7 778.1 
  140 42.00 6.0 784.1 
  141 42.30 5.5 789.6 
  142 42.60 6.3 795.9 
  143 42.90 6.4 802.3 
  144 43.20 6.1 808.4 
  145 43.50 5.9 814.3 
  146 43.80 5.9 820.2 
  147 44.10 6.2 826.4 
  148 44.40 6.1 832.5 
  149 44.70 6.9 839.4 
  150 45.00 6.1 845.5 
  151 45.30 7.2 852.7 
  152 45.60 6.3 859.0 
  153 45.90 6.6 865.6 
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Data Listing Job Name: Dipstick Roughness Measurement  
(Page 4) Run Name: CPATT WIM SITE 
 Date:   November, 2006 
------------------------------------------------------------------------------------------------------------------ 
 Step Dist (meters) Reading Elevation (mm) 
  154 46.20 7.0 872.6 
  155 46.50 5.8 878.4 
  156 46.80 6.0 884.4 
  157 47.10 6.2 890.6 
  158 47.40 6.1 896.7 
  159 47.70 5.8 902.5 
  160 48.00 6.2 908.7 
  161 48.30 5.0 913.7 
  162 48.60 7.7 921.4 
  163 48.90 5.2 926.6 
  164 49.20 6.0 932.6 
  165 49.50 6.3 938.9 
  166 49.80 5.8 944.7 
  167 50.10 6.5 951.2 
  168 50.40 5.8 957.0 
  169 50.70 6.4 963.4 
  170 51.00 -6.5 956.9 
  171 51.30 -6.1 950.8 
  172 51.60 -6.3 944.5 
  173 51.90 -7.9 936.6 
  174 52.20 -5.8 930.8 
  175 52.50 -6.7 924.1 
  176 52.80 -6.1 918.0 
  177 53.10 -6.5 911.5 
  178 53.40 -6.8 904.7 
  179 53.70 -7.8 896.9 
  180 54.00 -6.1 890.8 
  181 54.30 -7.1 883.7 
  182 54.60 -7.4 876.3 
  183 54.90 -7.4 868.9 
  184 55.20 -7.8 861.1 
  185 55.50 -7.3 853.8 
  186 55.80 -6.9 846.9 
  187 56.10 -7.4 839.5 
  188 56.40 -7.6 831.9 
  189 56.70 -6.8 825.1 
  190 57.00 -7.6 817.5 
  191 57.30 -6.8 810.7 
  192 57.60 -7.2 803.5 
  193 57.90 -6.7 796.8 
  194 58.20 -7.7 789.1 
  195 58.50 -7.4 781.7 
  196 58.80 -7.6 774.1 
  197 59.10 -6.6 767.5 
  198 59.40 -6.9 760.6 
  199 59.70 -7.3 753.3 
  200 60.00 7.5 760.8 
  201 60.30 7.6 768.4 
  202 60.60 7.8 776.2 
  203 60.90 7.9 784.1 
  204 61.20 7.2 791.3 
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Data Listing Job Name: Dipstick Roughness Measurement  
(Page 5) Run Name: CPATT WIM SITE 
 Date:   November, 2006 
------------------------------------------------------------------------------------------------------------------ 
 Step Dist (meters) Reading Elevation (mm) 
  205 61.50 8.3 799.6 
  206 61.80 7.6 807.2 
  207 62.10 8.0 815.2 
  208 62.40 7.8 823.0 
  209 62.70 8.2 831.2 
  210 63.00 8.2 839.4 
  211 63.30 8.1 847.5 
  212 63.60 7.1 854.6 
  213 63.90 8.2 862.8 
  214 64.20 6.9 869.7 
  215 64.50 8.6 878.3 
  216 64.80 8.4 886.7 
  217 65.10 7.5 894.2 
  218 65.40 7.7 901.9 
  219 65.70 8.0 909.9 
  220 66.00 8.0 917.9 
  221 66.30 7.3 925.2 
  222 66.60 9.2 934.4 
  223 66.90 8.4 942.8 
  224 67.20 7.9 950.7 
  225 67.50 7.8 958.5 
  226 67.80 9.1 967.6 
  227 68.10 7.7 975.3 
  228 68.40 8.1 983.4 
  229 68.70 7.7 991.1 
  230 69.00 7.2 998.3 
  231 69.30 8.4 1006.7 
  232 69.60 8.9 1015.6 
  233 69.90 8.2 1023.8 
  234 70.20 7.9 1031.7 
  235 70.50 8.1 1039.8 
  236 70.80 7.6 1047.4 
  237 71.10 8.3 1055.7 
  238 71.40 7.7 1063.4 
  239 71.70 8.5 1071.9 
  240 72.00 0.9 1072.8 
  241 72.30 1.6 1074.4 
  242 72.60 3.0 1077.4 
  243 72.90 4.9 1082.3 
  244 73.20 6.0 1088.3 
  245 73.50 5.1 1093.4 
  246 73.80 3.5 1096.9 
  247 74.10 4.0 1100.9 
  248 74.40 4.8 1105.7 
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Appendix B

WIM Data Collectd by the

Piezoelectric WIM System in a Day
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A Typical Matching Process of  WIM GVWs with Static Scale GVWs 

Date collected for November 2, 2006

TimeIn Static weight (kg) Matching

Northbound Vehicle 

Present Time

WIM weight 

(kg)

07:52:00 4400 06:29:05 2300

08:16:51 6700 06:42:15 1900

07:13:48 1500

07:32:17 1500

07:32:28 1500

07:34:33 6000

09:33:52 1700 07:40:56 2100

09:59:57 8300 07:47:58 1900

07:52:00 4400

07:54:20 1500

10:21:47 1900 08:00:07 3000

08:05:31 1200

08:16:51 6700

08:29:27 5700

08:50:19 1700

08:58:19 2500

09:03:12 1700

09:11:00 8100

09:12:03 1700

09:14:53 2200

09:22:12 1200

09:33:52 1700

11:39:24 18100 09:47:07 1600

09:49:04 15500

09:59:57 8300

10:06:37 1200

10:11:59 1200

10:13:23 1900

10:21:47 1900

10:53:20 7200

10:54:14 1200

11:01:20 2100

11:01:56 2100

12:13:33 8000 11:08:06 1200

11:10:33 1200

11:12:37 1200

11:31:53 1200

11:39:24 18100

11:40:11 2300

11:45:23 7000

11:50:52 1200

13:30:11 1200 11:51:22 16100

12:13:33 8000

12:13:36 1200

13:34:11 2100 12:15:02 1200

12:27:41 1800

13:00:18 11100

13:05:03 2200
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(Continue)

A Typical Matching Process of  WIM GVWs with Static Scale GVWs 

Date collected for November 2, 2006

TimeIn

Static

weight (kg)

Northbound

Vehicle

Present Time

WIM weight 

(kg)
13:06:40 1100

14:12:16 11300 13:19:48 1200

13:25:10 2000

14:21:39 1600 13:30:11 1200

13:31:28 6100

13:34:11 2100

13:40:00 6900

15:14:58 1200 13:44:13 1200

13:44:57 2700

13:45:54 1200

13:52:35 1800

15:36:10 1800 13:58:20 1200

14:12:16 11300

14:15:37 1200

14:18:09 1200

14:21:39 1600

14:28:18 2600

14:35:12 1200

14:43:24 1800

14:53:34 1200

14:58:31 7100

15:03:37 1200

15:13:31 1200

15:14:58 1200

15:32:51 2100

15:33:18 6900

15:36:10 1800

15:40:40 1200

15:51:35 2300

15:52:55 12700

15:59:26 1200

16:09:54 1600

16:15:17 7300

16:19:38 2100

16:22:55 1200

16:52:17 13200

Matching





Appendix D

A WIM Full Scale Calibration at

CPATT Test Track
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A tandem dumps truck (3 axles, static weight of 14.540 tons measured from the 

static scale) from the Region of Waterloo. Pavement temperature changed from 

21.0
0
C at 8:00am to 32.4

0
C at 11:30am during this process: 

Lane 1 (North Bound)            August 22, 2006 

RUN # Speed (kph) GAIN Calibration 

Factor

Measured

GVW (tons) 

Axle

Number

1 20 15 4 0.5  

2 50 15 6 0.6  

3 50 15 6 2.3  

4 50 15 9 65.3 4 

5 50 15 9 65.3 4 

6 50 15 5 54.2 4 

7 50 15 2 17.7 3 

8 50 15 1.8 n/a  

9 50 15 1.8 18.2 4 

10 50 15 1.8 3.7 5 

11 50 15 1.8 3.1 4 

12 50 15 2 65.3 3 

13 50 16 2 65.3  

14 50 15 2 2.7  

15 50 16 2 22.1 4 

16 50 16 2 1.7 4 

17 50 15 2 1.7 4 

18 50 15 2 44.2 4 

Lane 2 (South Bound) 

RUN # Speed (kph) GAIN Calibration 

Factor

Measured

GVW (tons) 

Axle

Number

1 20 12 4 26.2  

2 20 12 4 25.7  

3 20 8 4 45.5  

4 50 8 2 n/a  

5 50 8 2 1.3  

6 50 8 4 1.5 5 

7 50 15 4 1.5 5 

8 50 15 10 58.5 3 

9 50 15 8 56.1 3 

10 50 15 6 30.0 4 

11 50 15 5.5 31.3  

12 50 15 5.5 33.4 6 

13 50 15 5 31.8 4 

14 50 15 4.5 30.7 6 

15 50 15 4 30.2 5 

16 50 15 3 28.3  

17 50 15 3 23.0 4 

18 50 15 3 32.0  



Appendix E

LTPP WIM Cost Online

General Information

Estimate Title: Cost Estimate of a Typical Single Load Cell WIM System

Date: 2/07/2007 1:41:12 PM

Initial Inputs

Number of Sites: 1

Avg Number of Lanes per Site: 2

Number of Central PCs Required: 2

Central PC Software Required: Yes

Number of Sites with ACP Rehab.: 0

Number of Sites with PCC Rehab.: 0

Site Preparation Costs

ACP Rehabilitation Cost: $10000.00

PCC Rehabilitation Cost: $0.00

Hardware Costs
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Initial System Cost

Piezo Cable: $0.00

Bending Plate: $0.00

Other Technology: $50,000

Cost Reduction Factor: 70%

Assumed Sensor Failure Rate

Piezo Cable:

Bending Plate:

Other Technology: 15%

Sensor Replacement Cost/ Staff(Days)

Piezo Cable:

Bending Plate:

Other Technology: $10000.00 / 5

Number of Sensors per Lane

Piezo Cable: 0

Bending Plate: 0

Other Technology: 2

Central PC Cost: $10,000.00

Central PC Software Cost: $15,000.00

Operating Costs

Office Processing Staff

Cost per FTE: $50,000.00

Staff FTE per Site: 3

Operating Expenses per Month per Site

Power Costs: $25.00

Telecommunication Costs: $35.00
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Maintenance Expenses per Site

Costs: $5,000.00

Staff(FTE): 3

Calibration Efforts per Year: 3

Calibration Cost / Staff(Days) per Lane

Traffic Stream Weighing:

Two Loaded Test Trucks: $2,000.00 / 5

Other Techniques:

Calibration Cost Reduction for Extra Lanes: 70%

Type of Calibration Effort: Two Loaded Test Trucks

Other Potential Costs

Initial Maintenance Unit Cost: $5,000.00

Annual Rehabilitation Costs

Cost per Effort: $8,000.00

Percentage Needed Each Year: 15%

Results

Initial Costs: 122,000

Annual Costs: 31920

Annual FTEs Required: 3.30625
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