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Abstract

Hybrid Make-To-Stock (MTS)-Make-To-Order (MTO) manufacturing is a well

known policy that captures the benefits of both MTS and MTO policies. This man-

ufacturing policy is adopted by many manufacturing firms because it allows for pro-

duction based on customer specifications while keeping short response times. We

study a hybrid MTS-MTO manufacturing system which consists of two processing

stages and an intermediate buffer between these two stages. We propose two sep-

arate scenarios for ordering and replenishment of components from the first stage

which will give more realistic guidance for practitioners. The first scenario is batch-

ing customer orders before being released to the first stage. The second scenario

is batch replenishment of common components from the first stage. Most exist-

ing MTS-MTO models focus on one-for-one ordering and replenishment strategies.

We enhance these models by introducing a batch ordering policy to account for

economies of scale in ordering when there is an ordering cost associated with each

order placed for common components. We use queueing theory to model the system

behavior and use the matrix-geometric method to evaluate system performance un-

der the new ordering policy. Afterwards, we develop an optimization model with

the objective to minimize the system overall costs. The purpose of our optimization

model is to find the optimal intermediate buffer size and the optimal order quantity

for the system. In the second scenario, we introduce the batch replenishment policy

from stage 1. This policy is suitable when stage 1 and stage 2 are physically distant

and there is a shipping cost incurred when components are transferred from stage

1 to stage 2. The decision variables in this model are the intermediate buffer size

and the shipping quantity.

We show that the base stock policy is sub-optimal when there is an ordering cost
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incurred for ordering components. The savings from adopting the batch ordering

policy are high and the response time for most customer orders is not affected.

When there are shipping costs and shipping time between the two stages, we show

that the right selection of the system decision variables can have a large impact on

the total cost incurred by the system.

iv



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor Eliza-

beth Jewkes, for her guidance, encouragement, constructive critiques, enthusiasm

and patience throughout this research. I would like to thank her for her financial

support. She has been a great mentor and guide to me. This thesis would not have

been possible without her.

I would also like to thank my readers, Professor Miguel Anjos and Professor

Rangaraja Sundarraj, for their valuable comments, insights and feedback.

Above all, I wish to thank my husband Saleh for his enormous support, encour-

agement and love throughout this work. This thesis would not have been possible

without his encouragement, patience and guidance. Also, my sincere thanks to my

wonderful daughter Noor for her patience when I was busy in my research.

Lastly and most importantly, I am indebeted to my parents, my siters Reema

and Maryam, my brothers Ayman, Ashraf, Mohammad, and Atiah for their love

and support throughout this thesis. For them I dedicate this thesis.

v



Contents

1 Introduction 1

1.1 Hybrid MTS-MTO Manufacturing Systems . . . . . . . . . . . . . . 2

1.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Multi-stage Production/Inventory systems . . . . . . . . . . . . . . 8

2.2 Delayed product Differentiation . . . . . . . . . . . . . . . . . . . . 14

3 The MTS-MTO Model with Batch Ordering 18

3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The Matrix-geometric Approach . . . . . . . . . . . . . . . . . . . . 24

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Basic Performance Measures . . . . . . . . . . . . . . . . . . . . . . 34

vi



3.6 Basic Performance Measure Analysis . . . . . . . . . . . . . . . . . 36

3.7 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The MTS-MTO Model with Batch Replenishment 50

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Basic Performance Measures . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Basic Performance Measure Analysis . . . . . . . . . . . . . . . . . 63

4.6 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusions and Future Research 75

A Matlab Code for Batch Ordering Policy 84

B Matlab Code for Batch Replenishment Policy 93

vii



List of Tables

3.1 Model 1 state transitions . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Model results for B=1 compared to Lee and Zipkin’s Approximate

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Performance evaluation with various batch sizes . . . . . . . . . . . 38

3.4 Performance evaluation with various buffer sizes . . . . . . . . . . . 40

3.5 Performance evaluation with various arrival rates . . . . . . . . . . 40

3.6 Optimal policies for different utilization settings . . . . . . . . . . . 45

3.7 Comparison between the batching policy and a base stock policy . . 47

4.1 Model 2 state transitions . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Performance evaluation with various arrival rates . . . . . . . . . . 64

4.3 Performance evaluation with various shipping lot sizes . . . . . . . . 66

4.4 Performance evaluation with various intermediate buffer sizes . . . . 66

4.5 Optimal policies for slow delivery . . . . . . . . . . . . . . . . . . . 71

4.6 Optimal policies for fast delivery . . . . . . . . . . . . . . . . . . . 73

viii



List of Figures

1.1 A Typical Hybrid Manufacturing System . . . . . . . . . . . . . . . 3

2.1 A schematic representation of a multi-stage P/I system . . . . . . . 9

2.2 A schematic representation of a DD system . . . . . . . . . . . . . . 15

3.1 The MTS-MTO system with batch ordering policy . . . . . . . . . 20

3.2 Performance evaluation with various batch sizes . . . . . . . . . . . 39

3.3 Performance evaluation with various buffer sizes . . . . . . . . . . . 41

3.4 Performance evaluation with various arrival rates . . . . . . . . . . 42

3.5 Total cost for (0.1, 5.0, 10.0) cost parameters and 75% utilization . 44

4.1 Hybrid MTS-MTO system with batch replenishment policy . . . . . 52

4.2 Performance evaluation with various arrival rates . . . . . . . . . . 65

4.3 Performance evaluation with various shipping lot sizes . . . . . . . . 67

4.4 Performance evaluation with various buffer sizes . . . . . . . . . . . 68

ix



Chapter 1

Introduction

Due to globalization, competition is increasing amongst companies where flexibility,

quality, cost, and response time play a major role. The major challenge in today’s

industry is how to increase product variety and at the same time decrease cost

and lead time. Manufacturing systems are usually categorized into Make-To-Stock

(MTS) systems and Make-To-Order (MTO) systems. In a MTS system, the facility

produces according to a forecast of customer demand, and completed jobs enter

a finished goods inventory, which in turn serves customer demand. In a MTO

system, the facility produces according to customer requests and no finished goods

inventory is kept (Wein, 1992). The main advantage of MTS over the MTO system

is that it allows for immediate satisfaction of customer demand. The main drawback

for MTS system is the high inventory costs incurred for holding finished goods

inventory, especially when there is a high variety of products offered to customers.

Thus, MTS systems are usually suitable for high volume and low variety products.

Whereas MTO systems are suitable for low volume and high variety products. The

advantage of the MTO policy is that there is no need to carry inventory of finished
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products, and hence, no inventory cost is incurred. The main disadvantage of this

policy is that the response times may become quite long if the load is high (Adan

and Wal, 1998).

Today’s competition is urging companies to provide a high variety of products

and to keep the response time as low as possible. One of the proposed solutions for

winning in this competitive environment is to adopt a hybrid MTS-MTO policy,

which helps in reducing inventory holding cost and decreases response time for

orders by balancing the advantages of the MTS and the MTO policies. The ability

to quickly assemble and deliver custom products is a winning competitive strategy;

customers get what they want and the manufacturer avoids the costs of shortages

and overages (Serwer, 2002). A well-known and successful example of a company

that adopted this strategy is Dell Computer Corporation. The customer gets the

exact machine he/she wants, at a lower cost and more quickly than competitors

(Serwer, 2002).

1.1 Hybrid MTS-MTO Manufacturing Systems

Besides the above mentioned extreme policies, Youssef, Delft, and Dallery (2004)

suggest a combined policy that can be used in the following manner: The upstream

manufacturing system is controlled according to a MTS policy, and the downstream

part of the manufactuing system is controlled by a MTO policy, which is called the

hybrid policy, as shown in Figure 1.1. This kind of a hybrid policy combines the

advantages of both the MTO and MTS policies. It reduces the order fulfillment

delay relative to MTO. It also lowers inventory cost since inventory is held only

for components which is lower due to order pooling (Gupta and Benjafaar, 2004).
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The inventory cost is also less under this policy because demand information is

better forecasted for components when it is closer to customers due to risk pooling.

This policy is suitable for manufacturing systems that provide a wide variety of

products and still the response time is a great advantage. The hybrid MTS-MTO

policy is widely used in the electronics industry and other similar markets where

many product configurations can be produced from common components (Gupta

and Weerawat, 2006). Donk (2001) also presents a hybrid policy which is used in

the food processing industries which must deliver a wide variety of products and

keep costs as low as possible.

µ1 µ2 S

Demand 
arrival  

MTS MTO 
Intermediate 

Buffer

Demand 
departure 

Figure 1.1: A Typical Hybrid Manufacturing System

Most research in hybrid MTS-MTO systems assume a base stock policy for the

control of inventory in the intermediate buffer. The base stock policy works as

follows: whenever there is a demand arrival for the end product, the inventory

level decreases by one, and an instantaneous replenishment order is released to

the upstream stage to make up for the used unit. Demand is assumed to occur

one at a time. This policy is widely adopted in the literature because of the ease

of modeling, although such a policy is not necessarily optimal when there is an
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ordering cost associated with each replenishment order released. Veinott (1965)

shows that a batch ordering policy is optimal when there is an ordering cost in

the system. It is costly to pay an ordering cost each time an order is placed for

one component. On the other hand, the base stock policy is costly when there is a

shipping cost associated with each replenishment shipment to the inventory buffer.

In real manufacturing systems, a base stock policy may not be optimal when there

are ordering or shipping costs incurred in the replenishment process.

Most of the research in hybrid systems also assume that the replenished orders

arrive instantaneously to the intermediate buffer, and that there is no shipping

cost between stage 1 and the intermediate buffer. These assumptions could lead to

misleading decisions if the two stages are physically distinct. The consideration of

the shipping time and shipping cost may lead to different operating policies.

1.2 Contributions of this Work

The primary contribution of this thesis is the introduction of a batch ordering

policy to the typical hybrid MTS-MTO system. Most of the literature adopts a

base stock policy for convenience, but as a result, the analysis with this policy

cannot incorporate the impact of ordering and shipping costs. This policy is not

always optimal when there is a fixed ordering cost associated with each order.

The base stock policy is easy to implement but is not realistic and may lead to

wrong conclusions when there is a cost associated with each order placed in the

system. Our batch ordering policy is a generalization of the base stock policy and

represents a more realistic modeling of a common manufacturing problem faced by

decision makers. Adopting the batch ordering policy may benefit the manufacturer

by saving costs. It may affect the response time in the system but in our work we
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show that batching orders will affect only a small percentage of orders when the

there is no upper limit for the customer delay. We also show that the base stock

policy produces sub-optimal solutions in some settings.

Another contribution of this thesis is the introduction of a transportation time

and/or a shipping cost to the typical hybrid MTS-MTO system. We introduce this

policy when there is a shipping cost incurred for the replenished components. Our

proposed policy is a generalization of the instantaneous replenishment assumption

in most hybrid systems models developed in the literature. This model is more

realistic and can help decision makers select their optimal decision variables when

there is a shipping cost and a shipping time associated with the replenishment

process of orders.

1.3 Outline of the Report

The remainder of this report is organized as follows: In Chapter 2, we review the lit-

erature on hybrid MTS-MTO systems, which follows two main streams of research:

Multi-stage Production/Inventory systems, and Delayed Product Differentiation.

In each research stream we review the main models developed and discuss the lim-

itations of these models. In Chapter 3, we introduce the batch ordering policy.

Then we evaluate the system performance under the new proposed policy using

the matrix-geometric method developed by Neuts in 1981, and finally we build an

optimization model to find the optimal buffer size and the optimal batch size and

compare the results with the base stock policy. In Chapter 4, we present a model

for batching replenishment orders. We solve for the system performance measures,

and we develop an optimization model to find the optimal buffer size and the op-

timal shipping lot size, then we compare the results for different shipping speeds.
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Finally, conclusions and future research directions are discussed in Chapter 5.
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Chapter 2

Literature Review

This thesis focuses on the design of a MTS-MTO manufacturing system when

ordering and replenishment costs are considered. We identify the optimal buffer

size and the optimal batch size for ordering or replenishment, when there is an

ordering cost incurred in the case of batch ordering, or when there is a shipping

cost incurred in the case of a batch replenishment policy.

Hybrid MTS-MTO systems have been studied in the literature from several

different perspectives. We focus on two streams of research that are helpful in

understanding the MTS-MTO systems, and provide a base for our proposed re-

search. MTS-MTO manufacturing systems are related to the research stream in

multi-stage Production/Inventory systems (PI). These models generally consist of

multiple production stages separated by inventory buffers. Whereas the general

case for a multi-stage PI system is to have a buffer for finished goods inventory

at the end stage which allows for the immediate satisfaction of customer demand,

MTS-MTO systems have no finished goods inventory. Most of the works in multi-

stage PI systems adopt the base stock policy for the replenishment of items through
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the system. They assume no ordering cost is incurred when an order is placed.

Another stream of research that is closely related to the simple hybrid MTS-

MTO system is in the Delayed product Differentiation (DD) area. DD is a hybrid

system, in which a common product platform is built to stock and then differenti-

ated by assigning a customer specified features after the demand is realized (Gupta

and Benjafaar, 2004). Most of the analytical models developed for DD systems

focus on the optimal intermediate buffer size between stages as well as on the opti-

mal point of differentiation for products. They also look at the costs of redesigning

product processes. The later two research questions are not addressed in our work.

2.1 Multi-stage Production/Inventory systems

The closest work to our model was developed by Lee and Zipkin in 1992. They study

a multi-stage production system in tandem, as depicted in Figure 2.1. They assume

that final customer demand follows a Poisson process and each unit production time

is exponentially distributed. The system is controlled via a base stock policy. The

customer demand at the end stage triggers a demand at its predecessor stage and a

unit of material to stage 1, where units move from an output buffer to the next one

only in response to a demand arrival. If the finished goods buffer, or any other buffer

in the system is empty, the order is backlogged. They develop an approximation

scheme for the system expected number of backorders, and the expected number

of semi-finished goods inventory at each buffer. Their approximation scheme has

been used by many authors since. However, in their work they assume no setup

costs or setup times, and, consequently, no batching of units into lots. They also

assume no shipping cost from one stage to the next. Their model is not a hybrid
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system since they assume the existence of finished goods inventory buffer at the

downstream stage. If we set the capacity of the downstream buffer equal to zero

and the number of stages equal to 2, then this will be similar to the hybrid system

we are studying.

In the next chapter we use Lee and Zipkin’s approximation results for the per-

formance measures to validate our model when SJ = 0 for a two stage tandem

system.

 

S1 µJ 

Stage 1  Stage 2  

µ1 µ2
S2

Stage J  

SJ 

Finished 
goods buffer 

External 
demand 
for 
products 

Unit release trigger 

Figure 2.1: A schematic representation of a multi-stage P/I system

Gupta and Selvaraja (2006) extended Lee and Zipkin’s model by providing a

near-exact solution for the system performance measures for a capacitated serial

supply system. They show that Lee and Zipkin’s approximation for the system

performance measures overestimates the congestion in a series system with multiple

stages. They use the matrix-geometric method to find the optimal base-stock policy

that minimizes the inventory and backordering costs. They also do not consider

shipping costs nor ordering costs in their model.

Gupta and Weerawat (2006) studied the special case of no inventory buffer after

the last process for a two stage inventory system. They investigate the coordina-

tion effects between a manufacturer and a supplier. They developed an optimization
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model to compare the revenue results when the two parties coordinate their deci-

sions, versus acting separately. When there is coordination, the manufacturer offers

the supplier a share of the revenues. They assume that the revenue is a function of

the delivery delay.

Liu, Liu, and Yao (2004) present a decomposition approach to find the optimal

inventory bufffer sizes for a multi-stage inventory system while maintaining a cer-

tain service level for customer orders. The decomposition is performed by treating

the queue length at each stage as an independent sum of regular orders and back-

orders. The system performance measures are the fill rate, and the expected Work

In Process (WIP) at each stage. Afterwards, they use these measures in an opti-

mization model to minimize the overall inventory at each stage, while maintaing

an overall prespecified service level.

While the previous mentioned works assume constant replenishment lead time,

Levi and Zhao (2005) considered a stochastic replenishment lead time for a multi-

stage supply chain network, which has a tree shape. Boute, Lambrecht, and Houdt

(2007) assumed load dependent lead times for their production inventory system,

i.e., as the load increases, the replenishment lead time increases.

Most of the studies in the literaure focus on a base-stock policy for controlling

serial supply systems. Bonvik, Couch, and Gershwin (1997) compared the serial

supply system control policies: Minimum base-stock policy, base-stock policy, Con-

stant Work In Process (CONWIP), kanban, and a hybrid policy that includes a base

stock policy and a kanban policy. They show that the CONWIP and the hybrid

policies give significantly better response to changes in the demand rate. Veatch

and Wein (1994) perform a comparison between these policies, using dynamic pro-

gramming, for a two station tandem production/inventory system. They show that
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base stock policies are never optimal for such a system because they accumulate

large quantities of WIP which may remain for long periods of time. They showed

that a base stock policy is close to optimal at some parameter settings and that

the optimal policy to be a hybrid policy. Duenyas and Pantana-anake (1998) ex-

tended Veatch and Wein’s work using a Markov Decision Process that relaxes the

exponential processing time in the Veatch and Wein’s model to a general stationary

distribution.

All of the above work assumes no setup time or setup cost incurred in the

system when an order is placed. This assumption was relaxed in Li and Liu’s (2006)

work, where they used an (s, S) policy in a two-stage production system, for which

they assume that station 1 produces semi-finished product to stock, and station 2

produces finished product to order from WIP. These two stations are in tandem,

and there is a significant setup time at the upstream station. The production times

at both stations are exponentially distributed random variables. The capacity of

station 1 is high, so that when there are sufficient supplies for station 2, it can be

switched off. There is a setup time at station 1 each time it restarts the operation,

so that batch production at station 1 is necessary for efficient capacity utilization.

A batch production control rule is used at the upstream station, with the objective

of minimizing the WIP level while maintaining a required busy probability at the

downstream station. To characterize the system performance under this rule, Li

and Liu construct a discrete time Markov model for the status of station 1. This

Markov model is used to find the analytical performance measures to be included

in the optimization model. The objective of the optimization model is to find

the batch production rule for station 1 that minimizes the WIP between the two

stations while keeping high utilization of station 2. Li and Liu’s model is similar

to our model in considering set up costs for station 1 which made it reasonable to

11



adopt the batch ordering policy. Their decision variables (s, S) are similar to our

decision variables (B, S) but the optimization problem is different since they do

not consider customer delays. Instead, they focus on the utilization of station 2.

Moreover, they assume the existence of finished goods inventory after station 2.

The base stock policy has been extensively used in the modeling of multi-stage

production/inventory systems because of the ease of implementation with this pol-

icy. This policy is optimal when there is no ordering or setup cost, and both holding

and shortage costs are proportional to the volume of on-hand inventory or shortage

(Boute, Lambrecht and Houdt, 2007). It also provides a benchmark on how much

inventory is needed to provide a certain service level. Veinott (1965) considered

a batch ordering policy for a single location inventory system with constant lead

time. He shows that when the system incurs unit ordering costs, holding costs, and

penalty costs, then a batch ordering policy is optimal. This optimality does not

hold when a fixed charge for placing an order is considered. There is some work on

batch ordering policies where the flow of material is in batches, but this stream of

research assumes that units are processed in batches, not in single units as our re-

search. Chen (2000) extended Veinott’s model to a multi-echelon inventory system

in which material flow is in batches. Moinsade and Lee (1986) studied the batch size

problem for a repair system where a depot fills the orders from multiple location

service centers in batches. Axsater (1993) studied the same problem and provided

exact evaluation for such a policy. He and Jewkes (1997) explored the relationship

between the batch size and flow time in a single server queue, where Poisson de-

mand arrivals are batched before being processed. They derive the Laplace-Stieltjes

Transform for three types of flow times considered in the system. Thereafter, they

derive the optimal batch size that minimizes the expected flow time or its variance.

The batch ordering policy they adopt is similar to our work but they apply it for a
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single stage system.

There is some work in the literature that compares the performance of a pure

MTO versus a pure MTS policies in which a base stock policy was also adopted.

They do not combine the MTS and MTO policies as in our research. One of the first

models for combined MTS and MTO systems is due to Williams (1984). Williams

assumes that the MTS items are produced in batches of fixed size, requests for

which are triggered by a (Q, r) policy. Orders for products are of random size

with geometric interarrival times. There are priority items and regular items in his

model and priority is given to the batch with the largest waiting time. First, he

derives an approximation for the items’ lead time and optimal reorder level (r) for

a given batch size (Q) in which he assumes a Poisson arrival for each product class.

Then, he approximates the results to a nonlinear cost function of batch size (Q).

Rajagopalan (2002) develops a nonlinear integer programming model for a company

that incurs a setup time, has a limited capacity, and experiences congestion. The

model selects which items are to be processed via a MTS and which items are to

be processed via a MTO policy, based on demand, setup time, processing time,

and unit holding costs. Federgruen and Katalan (1999) look at the performance

measures for both policies in terms of inventory level and waiting time distribution.

Arreola-Risa and Decroix (1998) derive optimality conditions for MTO versus MTS

based on demand and capacity utilization.

Youssef, Delft, and Dallery (2004) compare a First In First Out (FIFO) and a

priority rule for a hybrid MTS-MTO system under stochastic assumptions. They

consider two products; one has high volume demand and the other has low volume

demand. The inventory is managed by a base stock policy. They found that under

the priority rule, the total cost is much lower for achieving the same service level

constraint.
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2.2 Delayed product Differentiation

The other stream of research that is directly related to the hybrid MTS-MTO sys-

tem is in Delayed product Differentiation (DD). This concept was first introduced

by Alderson in 1950. DD models consist of a number of common stages for all prod-

uct platforms, and a customization stage/stages for platform-specific demands, as

shown in Figure 2.2. The common stages are analogous to the MTS stage in the

hybrid MTS-MTO system, while the customization stages are similar to the MTO

stage. Hence, a DD system can be used to model a hybrid MTS-MTO system when

there is no inventory held for the end product. Conceptually, DD tries to exploit

the commonalities between products, and delay the point of diffferentiation to be

as close as possible to the point demand requirements are realized. The work done

recently by Gupta and Benjaafar (2004) is related to the hybrid MTS-MTO sys-

tems. They model a two-stage production system in which both the characteristics

of MTS-MTO and delayed differentiation are considered. They assume no setup

costs and unsatisfied demand is fully backorderd. The lead time is load dependent

and demand for each product occurs according to a Poisson process. They also

assume that inventory for semi-finished and finished products is controlled via a

base-stock policy. They use Lee and Zipkin’s 1992 approximation scheme to de-

velop performance measures for the system and optimal intermediate buffer size,

to compare optimal costs under pure MTS, pure MTO, and DD systems. They

observe that if the first stage utilization is very high, then a DD system is preferred

to a MTS system. They also examine the point of differentiation for a serial pro-

duction/inventory system. Again, this model is suitable for industries that do not

incur ordering costs or shipping costs during the replenishment of items through

the system. Otherwise, a base stock assumption for the control of intermdiate in-
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ventory in the system could lead to incorrect results. The performance measures

used in this model are the expected inventory and backorders in the system. In

addition to these performance measures, we use the expected delay in the system.

 

Undifferentiated 
inventory buffer 

 

Stage 1:  
Common operations 

 

External 
demand for 
products 

Stage 2:  
Differentiated operations 

Figure 2.2: A schematic representation of a DD system

Lee and Tang (1997) develop a simple strategic planning model that captures

the costs and benefits associated with the redesign of products and processes, to de-

termine the point at which products are differentiated. The paper focuses on three

approaches for delayed product differentiation: standardization, modular design,

and process restructuring. Standardization refers to using common components or

processes. Modular design refers to decomposing the complete product into sub

modules that can be easily assembled together. Process restructuring refers to re-

sequencing process steps in making a product. They develop a discrete time model

where the demand for the end product is normally distributed. They consider a

manufacturer that produces two end products. These two products share k com-

mon operations, and then are customized in N-k operations. For the control of

inventory, they use order-up-to policy to keep the model simple. They also apply

their model to special cases in which the lead time and the inventory costs will not

be affected when the point of differentiation is delayed. The costs they consider
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are the design cost, processing cost, and the inventory cost at intermediate stages.

They assume constant lead time at each stage. They show that delaying the point

of differentiation lowers the inventory and improves the service level in the system

due to risk pooling.

Swaminathan and Tayur (1999) consider a manufacturer whose product line

consists of several products each defined by a subset of components. The goal is to

simultaneously design an efficient assembly sequence for the product, and determine

the type and target inventory levels of semi-finished inventory that enable delayed

differentiation. The objective function measures the cost that needs to be incurred

while designing the components, in order to enable such an assembly sequence.

Another model that assumes constant lead time was developed by Aviv and

Federgruen (2001). They model a multi-item inventory system which consists of

two stages; the first stage is used to produce common intermediate items, and the

second stage is the differentiation stage for those items. Each stage has its own lead

time and stage 1 has a limited capacity. They examine the benefits of differentiation

when demands are seasonally fluctuating, and possibly correlated.

Our work focuses on a two stage production/inventory system where the first

stage is MTS and the second stage is MTO. There is an intermediate buffer for

common components between the two stages. We propose a batch ordering policy in

which orders are accumulated until a prespecified limit is reached at which time an

order for common components is issued to the first stage. We also propose a batch

replenishment policy in which orders are accumulated in a shipping buffer before

being shipped to the intermediate buffer at stage 2. This thesis extends existing

MTS-MTO models by considering the impact of ordering and replenishment costs

on operating decisions. Most of the queueing based work we presented earlier

adopted the base stock policy for the control of inventory in the system, mainly
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because of the ease of its analytical implementation. However, the base stock policy

has proved to be sub-optimal when there is an ordering cost incurred whenever an

order is placed. Other models which adopted a batch ordering policy did not

consider the queuing and thus, the congestion in the system. Our work is unique in

the sense that it combines the queuing analysis along with the batch ordering and

replenishment policies. We also model the randomness in the replenishment lead

time and consider the cost of shipping which was not addressed by the previous

models. Some of the previous work developed an approximation scheme for the

system performance, in our work we utilize a Markov chain model to derive the

exact performance measures in the system.

In Chapter 3 we use a batch ordering policy to account for economies of scale in

setup and ordering costs. We use matrix-geometric methods to calculate the system

performance metrics. These measures are analyzed and used in an optimization

model to find the optimal batch size and the optimal intermediate buffer size for

different system settings. In Chapter 4, we present a batch replenishment policy

model which is suitable for systems that incur shipping costs and time between the

two stages.
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Chapter 3

The MTS-MTO Model with

Batch Ordering

In this chapter, we consider a two stage MTS-MTO system in which stage 1 pro-

duces components or items to stock, and stage 2 is a customization stage for these

components based on customer requirements. The decision variable in these models

is the intermediate buffer size. Most hybrid MTS-MTO systems introduced in the

literature assume a base stock policy with an order release each time a demand

arrival occurs for the end product. This policy could be non-optimal when there is

an ordering cost associated with each order placed.

We consider the batching of orders to explore the possibility of optimizing the

total costs. We use the matrix-geometric method developed by Neuts in 1981 to

evaluate the system performace. Then we compare our model performance results

with Lee and Zipkin’s (1992) approximation for the special case when the replen-

ishment policy is a base stock policy or the batch size equals 1. Afterwards, we

find the optimal combination of the buffer size and the batch size that minimizes
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the system overall costs. This model is suitable for companies that incur ordering

cost each time an order is placed. It is also suitable for companies that incur setup

cost before production in stage 1.

3.1 Model Description

We consider a two stage production/inventory system where the manufacturing

process consists of two major stages: stage 1 is the manufacturing stage of common

components from raw material. Stage 2 is the customization step/s for the com-

mon components based on the demand requirements, Figure 3.1. Customization is

triggered for common components whenever there is a demand arrival. i.e., upon

the arrival of a demand for the end product, a common component is released from

the intermediate buffer and then queued for the customization process at stage 2.

We assume that each demand requires just one unit of the final product and the

customization processing time for these common components is not a function of

the product type, which is quite realistic for a lot of electronic industry companies.

When an order arrives and finds the intermediate buffer empty of common compo-

nents, then the order is backordered. Backorders are filled whenever the common

components arrive to the intermediate buffer. The manufacturing stage has a finite

capacity; however, we assume that it is large enough that it can handle all the

demand requirements.

Ordering the common components is managed by a batch ordering policy; orders

are accumulated until a batch size of B orders is reached, then an order is released to

the stage 1 queue, to replenish the buffer of common components. The accumulation

of orders is carried out because of the ordering or the setup costs incurred at stage 1.
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Figure 3.1: The MTS-MTO system with batch ordering policy

Each stage is capacitated and has one server that processes the orders sequentially

on a First Come First Serve (FCFS) priority rule.

The system reaction upon the arrival of a demand for the end product can be

summarized in the following steps:

• If the common components buffer is not empty and a demand for the end

product arrives, then one common component is released from the buffer and

is sent to join the queue of stage 2, which serves the demands on a FCFS basis.

This demand arrival will also trigger the orders accumulated to increase by

one and the common components buffer contents to decrease by one.

• If the buffer is empty, then the order is backlogged. The demand arrival

triggers the orders accumulated to increase by one.

• When the orders accumulated reach the pre-specified limit B, an order with

a quantity of B will be released and sent to the queue of stage 1, where the

orders are processed one at a time also on a FCFS basis.
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• When a common component finishes processing at stage 1, it is transferred

immediately to the common components buffer.

The model assumptions can be summarized in the following points:

• The common components buffer size is S.

• We assume Poisson arrival of customer demand with rate λ.

• We assume that customer orders consist of 1 item and all orders carry the

same priority.

• We assume an exponential processing time at stage 1 and stage 2, with rates

μ1 and μ2 respectively.

• We consider backordering of unsatisfied demand when the buffer is empty

with a limit M (supplier capacity).

• An order for common components is released in batches of size B, and the

maximum batch size allowed is S. This is because the intermediate buffer

capacity should not be exceeded upon the arrival of a replenishment order.

• We assume that customers are served on a FCFS priority rule.

• The stage 2 queue has unlimited capacity.

The research question this model addresses is to find the optimal buffer size, S,

and the optimal ordering batch size, B that minimize the total costs incurred by the

whole system. A variety of objective functions can be used to find the optimal buffer

size and the optimal batch size. In our work, the objective function is composed

of the ordering cost and the inventory holding costs for common components and

a delay penalty for orders.
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3.2 The Markov Chain

The model described above can be represented by a continuous-time Markov chain

with a generator matrix (Q). To describe the system precisely at time t we need to

define three state variables as follows:

1. N2(t) : The queue occupancy before stage 2 at time t, including the one in

process. We define the level of the Markov chain as the subset of all states

that have the same N2(t). {N2(t) : N2(t) = 0, 1, ...}

2. N1(t) : The queue occupancy before stage 1 at time t, including the one

in process. This state variable also is used to define the number of common

components in the intermediate buffer. i.e., ifN1(t) = i, then the intermediate

buffer contains S − i components if S − i ≥ 0, or there are S − i backorders

if S − i < 0. We define the first sub-level of the Markov chain as the subset

of all states that have the same N1(t). {N1(t) : N1(t) = 0, 1, ...,M} .

3. J(t) : The number of orders for common components accumulated to form a

batch at time t. We define thesecond sub-level of the Markov chain as the

subset of all states that have the same J(t). {J(t) : J(t) = 0, 1, ..., B − 1}

The system state changes upon an arrival of a customer order or when there is a

service completion at either stage. These possible transitions from the current state

(N2(t), N1(t), J(t)) into other states are summarized in Table 3.1. The notation

(t) has been suppressed for notation simplicity.

The infinitesimal generator matrix (Q) of the system continuous Markov chain

has a unique block tridiagonal structure as follows:
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Event ConditionSystem next stateRate Explanation
J < B − 1
N1 < S

(N2 + 1, N1, J + 1) λ
No batch is formed and there

is inventory in the buffer

Customer

Arrival

J < B − 1
N1 ≥ S

(N2, N1, J + 1) λ
No batch is formed and there

is no inventory in the buffer

J = B − 1
N1 < S

(N2 + 1, N1 +B, 0) λ
A batch is formed and there

is inventory in the buffer

J = B − 1
N1 ≥ S

(N2, N1 +B, 0) λ
A batch is formed and there

is no inventory in the buffer

Service N1 ≤ S (N2, N1 − 1, J) μ1 Service completion at stage 1

completion N1 > S (N2 + 1, N1 − 1, J) μ1 Service completion at stage 1

N2 > 0 (N2 − 1, N1, J) μ2 Service completion at stage 2

Table 3.1: Model 1 state transitions

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
B0 A0 0 0 0

A2 A1 A0 0
. . .

0 A2 A1 A0
. . .

0 0
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠
where A0 represents the rate matrix at which the system moves up one level,

A2 is the rate matrix at which the system moves back one level, A1 is the rate

matrix at which the system returns to the same level, and B0 is the rate matrix

at which the system returns to the boundary level (level 0). As we can see, the

process can move only to an adjacent level upon an arrival or a departure from

stage 2 queue. We denote the level of the Markov chain by the subset of all states

that have the same number of units at stage 2. The first sub-level in the generator

matrix Q is the subset of all states that have the same number of units at stage 1,

while the second sub-level is the subset of all states that have the same number of

accumulated orders in the orders buffer.
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We denote the steady state probability distribution of the number of units in

the system by π, this matrix is the unique solution for the set of equations:

πQ = 0 (3.1)

πe = 1

π ≥ 0 (3.2)

where e is a column vector of ones of appropriate size. The first sets of equations

are the balance equations for the Markov Chain, and the second sets are the nor-

malization conditions which are used to find a unique solution for the system of

equations. The steady state probability distribution matrix π can be calculated in

different ways. Our approach is based on Neuts observation in 1981 for the repet-

itive structure of the generator matrix Q. We describe Neuts’ matrix-geometric

method in the next section.

3.3 The Matrix-geometric Approach

In this section we describe a computational procedure, based on theMatrix-geometric

approach that was developed by Neuts in 1981. It can be used to find exact per-

formance measures of any system with defined set of states, and its infinitesimal

generator matrix has a tridiagonal structure. We treat the queue at stage 1 as a fi-

nite queue, but one of sufficiently large size that the desired performance measures

are quite accurate. The stage 2 queue will be treated as an infinite queue; and

the queue of accumulated orders will be treated as a finite capacity queue. From

this method we calculate the steady state probability distribution for the expected
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number of units at each stage and in the orders buffer. The key idea is that the

queue occupancy in stage 2 can be modeled as a Quasi-Birth-Death (QBD) process.

A Markov chain is called a QBD if one step transitions from a state are restricted

to states in the same level or in the two adjacent levels (Latouche and Ramaswami,

1999). This property allows us to develop a matrix-geometric solution for its steady

state probability distribution.

The essential problem in determining the steady state probability distribution

of a Markov process is solving a set of linear, flow balance, equations, where there

is an equation associated with each state of the system. For systems with a large

or possibly infinite number of states, exact solutions can only be obtained if one

can exploit structural properties of these balance equations. Neuts developed a

body of results that allows one to exploit repetitive structure. If the states of

the Markov process can be grouped into vectors which possess a certain repetitive

structure, then a recursive procedure can be used to determine the stationary state

probabilities of any vector in terms of the probabilities for the previous vector

(Nelson, 1991).

The generator matrix (Q) has two portions; the boundary portion and the

repeating portion. The general form for the balance equations in the repeating

portion is as follows:

πj−1A0 + πjA1 + πj+1A2 = 0, j ≥ 2 (3.3)

The steady state probability distribution for the boundary states (π0) is obtained

by the relation:

π0(B0 +RA2) = 0 (3.4)
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subject to the normalization condition π0(I − R) = 1, where R is the minimal

non-negative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = 0 (3.5)

R can be calculated by different ways; we use Latouche and Ramaswami’s (1999)

method which calculates R from the following recursive relation:

Ri = −(A0 +R2i−1A2)A
−1
1 (3.6)

until |Ri −Ri−1| ≤ ε, where ε is a very small number and represents the accuracy

of the matrix R, and R0 = 0. Then recursively we find the steady state probability

distribution of the repeating portion from the following relationship:

πi+1 = πiR, i ≥ 0 (3.7)

where i represents the level in the generator matrix.

For the hybrid system described above, we can notice that the arrival process

to the first stage follows the Erlang distribution with parameters (B, λ), and the

service time is exponentially distributed with rate μ1, so the queue to this stage

is a PH/M/1 queue. Due to the buffer existence between the MTS stage and the

MTO stage, the arrival process for the second stage is not exponential anymore,

which is the reason that such a system is difficult to solve for its exact performance

measures and therefore, approximation schemes were developed in the literature for

its performance measures. This system can be modeled as a Markov chain which

has the generator matrix Q described earlier. The building blocks of the generator

matrix which are: B0, A0, A1, and A2, square matrices of order (M + 1) ∗B. The
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A0 matrix which represents the rate at which the number of units in stage 2, N2(t),

increases by 1 has the following general form:

A0=

0 · · · B · · · S − 1 S S + 1 · · · M −B + 1 · · · M

0
...

B
...

S − 1
S

S + 1
...

M − B + 1
...

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 A01
. . .

. . .

. . .
. . .

. . .
. . .

A00
. . .

0
. . .

μ1I
. . . A01
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where each level in A0 represents the possible states for the number of units at

stage 1, N1(t), and each entry in A0 is a matrix of size B. A01 is the rate at which

N1(t) increases by B units and N2(t) increases by 1 upon the arrival of a customer

order when the buffer is not empty and the number of orders in the orders buffer

is B − 1. A01 is defined as:

A01 =

⎛⎝ 0 0

λ 0

⎞⎠ ,

where 0 is a square matrix of zeros of size B − 1.

A00 : is a square matrix of size B and it represents the rate at which N1(t)

returns to the same state while N2(t) increases by 1 upon the arrival of an order

and the orders buffer has less than B − 1 units. It has the following general form:

A00 =

⎛⎝ 0 λI0

0 0

⎞⎠ ,
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where I0 is an identity matrix of size B − 1.

The rate at which N1(t) decreases by 1 while N2(t) increases by 1 is μ1I. This

represents the case of service completion at stage 1 and there is a backorder placed.

The unit released from the stage 1 will directly enter the queue for stage 2 to be

processed.

A2 matrix represents the rate at which the number of units at stage 2, N2(t),

decreases by 1 upon a service completion at stage 2. It has the following general

form:

A2 =

0

1
...

M

0 1 · · · M⎛⎜⎜⎜⎜⎜⎜⎝
μ2I

. . .
. . .

μ2I

⎞⎟⎟⎟⎟⎟⎟⎠
where I is an identity matrix of size B. μ2I represents the rate at which N1(t)

returns to the same state while N2(t) decreases by 1 whenever there is a service

completion at stage 2.

A1 represents the rate at which N2(t) returns to the same level in the repeating

portion. Since the infinitesimal generator matrix Q columns must sum to 0, it

follows that:

A1 = −(A0 +A2), A0 = −B0

which results in the following formula for A1 :

A1 = B0 − μ2 ∗ I2
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where:

I2 : is an identity matrix of size (M + 1) ∗B.

In other words, the rate at which N2(t) returns to the same level is 1− the rate

at which the system either moves one level up or one level down.

The boundary matrix B0 is the rate at which N2(t) returns to level 0. This

matrix has the following general form:

Bo=

0 1 · · · S − 1 S · · · S +B · · · M − 1 M

0

1
...

S − 1
S
...

S +B
...

M − 1
M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λI
μ1I B00

. . .
. . .

μ1I B00

B00 +B01 B03
. . .

. . .

. . .
. . .

. . .
. . .

B00 +B01 +B02
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where:

I: is an identity matrix of size B.

The diagonal entries of Bo (B00, B01, and B02) are square matrices of size B

and are calculated such that the sum of the rows for the generator matrix Q equals

0.

B00 =

⎛⎝ −(λ+ μ1) 0

0 −(λ+ μ1)

⎞⎠ ,

B01 =

⎛⎝ 0 λI0

0 0

⎞⎠ ,
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where I0 is an identity matrix of size B − 1,

B02 =

⎛⎝ 0 0

0 λI0

⎞⎠ ,

B03 is a square matrix of size B. It represents the rate at which N1(t) increases

by B steps while N2(t) returns to the same level upon the arrival of a customer

demand when there are no backorders and the orders buffer contains B− 1 orders.

It has the following general form:

B03 =

⎛⎝ 0 0

λ 0

⎞⎠ ,

where 0 is a square matrix of zeros of size B − 1.

The rate at which N1(t) decreases by 1 and N2(t) returns to the same level is

μ1I. This represents the case when there is a service completion at stage 1 and no

backorders in the system.

3.4 Implementation

Using the matrix-geometric method described earlier, we use Matlab 7.0 to solve

for the stationary probability distribution (π) of the system, see Appendix A for

Matlab codes. For computational purposes we set the maximum queue length of

stage 2 large enough so that the impact of truncating the state space is minimal

and the probability that the queue length is beyond this limit is close to zero. After

some testing for this limit, we set it to 100. Also we set the maximum capacity for

stage 1 (M) large enough such that the probability an order is lost is very small

and consequently, the computed steady state probability distribution is accurate.

After some testing with M, we set it to 50.
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The utilization of stage i (ρi) is defined by ρi =
λ

μi
where i = 1, 2.

For most of the remainder of this work our focus is on balanced capacity MTS-

MTO systems, i.e., we set μ1 = μ2, and for different utilization rates we vary λ

only.

The steady state probability distribution we computed has the following general

form:

π =

⎛⎜⎜⎜⎜⎜⎜⎝
π0,0 π0,1 · · · π0,B(M+1)

π1,0 · · · · · · ...
... · · · · · · ...

π100,0 · · · · · · π100,B(M+1)

⎞⎟⎟⎟⎟⎟⎟⎠
The columns represent the steady state probability distribution for the levels

in the generator matrix, which is stage 2 steady state probability distribution in

this case. The rows have 2 levels; stage 1 steady state probability distribution,

and orders accumulation steady state probability distribution. This matrix can be

reduced to π∗, which is the matrix of the steady state probability distribution for

the number of units in the system, regardless of the batching quantity, as follows:

π∗ =

⎛⎜⎜⎜⎜⎜⎝
B−1P
i=0

π0,i · · ·
B(M+1)P
i=BM

π0,i

... · · · ...
B−1P
i=0

π100,i · · ·
B(M+1)P
i=BM

π100,i

⎞⎟⎟⎟⎟⎟⎠

To find the distribution of the steady state number of units at stage 1 (π1), we

sum over the rows of the π matrix which yields a (1, B(M+1)) vector ( π1∗). Then

we sum over the batch size, as follows :
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π1∗ =

∙
100P
i=0

πi,0, · · · ,
100P
i=0

πi,B(M+1)

¸

π1 =

"
B−1P
i=0

π1∗i · · ·
B(M+1)P
i=BM+1

π1∗i

#
=
h
π10, · · · , π1M

i

The steady state distribution of the steady state number of items at stage 2 (π2)

is calculated by summing over the columns of the previous matrix which yields:

π2 =
B(M+1)P
j=0

πi,j =

⎡⎢⎢⎢⎣
π20
...

π2100

⎤⎥⎥⎥⎦
We have computed all the necessary steady state probability distributions that

are necessary to calculate the system steady state performance measures under

different settings. Still we need to make sure that the system is operating under

normal conditions and is stable. Therefore, we derive the stability conditions which

are important to check before any runs are conducted.

Stability Conditions:

In order to have a stable system, the Markov chain should be positive recurrent

(Neuts, 1981). This condition is represented by the following relationship:

πA2 · 1 > πA0 · 1

In other words, the rate of moving down one level in the Markov chain must

exceed the rate of moving up one level, in order to have a stable system. This

condition can be explicitly defined for our model as:
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⎡⎢⎢⎢⎢⎢⎢⎣
π0,0 · · · π0,B(M+1)

π1,0 · · · · · ·
... · · · · · ·

π100,0 · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

μ2
...
...

μ2

⎤⎥⎥⎥⎥⎥⎥⎦ >

⎡⎢⎢⎢⎢⎢⎢⎣
π0,0 · · · π0,B(M+1)

π1,0 · · · · · ·
... · · · · · ·

π100,0 · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

λ
...

μ1
...

⎤⎥⎥⎥⎥⎥⎥⎦

Which reduces to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2 ·
B(M+1)P

i=0

π0,i

...

...

μ2 ·
B(M+1)P

i=0

π100,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ ·
BSP
i=0

π0,i + μ1 ·
B(M+1)P
i=BS+1

π0,i

...

...

λ ·
BSP
i=0

π100,i + μ1 ·
B(M+1)P
i=BS+1

π100,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now let :

α1(j) =
B(M+1)P

i=0

πj,i, α2(j) =
BSP
i=0

πj,i, α3(j) =
B(M+1)P
i=BS+1

πj,i,

then the stability conditions reduces to the following series of conditions:

λα2(j) + μ1α3(j)

μ2α1(j)
< 1, j = 1, .., B(M + 1)

These stability conditions show that for each level in the system, the total prob-

ability that the system moves up one level (upon an arrival or a service completion)

should be less than the total probability the system moves down one level. In other

words, the total drift up should be less than the total drift down for the system to

be stable.
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3.5 Basic Performance Measures

The measures we use to evaluate the system performance under various parameter

settings for (B, S, and ρi) are: the expected number of units at stage 1, E(N1), the

expected number of units at stage 2, E(N2), the expected number of backorders,

E(O), order fulfillment delay, E(D), and the expected number of semi finished

inventory, E(I). These performance measures are obtained from the steady state

probability distribution of the number of units in the system (π). The expected

number of units at stage 1, E(N1), is calculated from the steady state stationary

distribution of the number of units at stage 1 from the following relationship:

E(N1) =
MP
i=0

π1i.i

The expected number of units at stage 2, E(N2), is calculated from the station-

ary distribution of the number of units at stage 2 by the relation:

E(N2) =
100P
j=1

π2j.j

The expected number of backorders, E(O), is calculated from the stationary

distribution of the number of units at stage 1 when the queue length is greater

than the buffer size as follows:

E(O) = E(N1 | N1 > S) =
MP

i=S+1

π1i.(i− S)

The expected number of semi finished inventory, E(I), is the sum of the common

components buffer contents, E(I1), and the units waiting for processing in front of

stage 2, E(N2). It is calculated as follows:
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E(I1) =
MP
i=0

π1i.max(0, (S − i))

E(I) = E(N2) +E(I1)

The delay of an order is defined as the time from an arrival of customer order

until it is fulfilled. The expected order fulfillment delay is computed as a weighted

average of the expected delay in the system for customers who find the intermediate

buffer empty, E(D1), and the customers who find the intermediate buffer non-

empty, E(D2), as follows:

E(D) = p1 ∗E(D1) + p2 ∗E(D2)

p1 = p(N1 > S) =
MP

i=S+1

π1i

p2 = p(N1 ≤ S) = 1− p1

where p1 is the probability that an order upon arrival is backordered, and p2 is

the probability that an order upon arrival is fulfilled from the intermediate buffer.

By Little’s Law (Ross, 2006), the expected delay is the ratio of the expected number

of units in a queue over the arrival rate, for our model this reduces to:

E(D1) =
E(N2) +E(O)

λ

E(D2) =
E(N2)

λ

First, to validate our model results we compare the special case of our model,

when the batch size equal 1, with Lee and Zipkin’s (1992) approximation results

for the performance measures. In their paper they study a multi-stage production

system in tandem. They assume demand follows a Poisson process and unit produc-

tion times are exponentially distributed. The system is controlled by a base stock
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policy. The customer demand at the end stage triggers a demand at its predecessor

stage and a unit of material to stage 1. They solve for a system of two stages and

find the expected number of backorders and the expected number of semi finished

goods inventory. We compare their approximation results with our exact results

from the matrix-geometric method when the batch size equals 1, and for different

values of S, μ1, and μ2. The results are summarized in Table 3.2. The % Deviation

for the expected inventory and the expected backorders is calculated as follows:

%Deviation =
Approximation−Exact

Approximation
∗ 100%

As Gupta and Selvaraja (2006) showed in their work, the approximation de-

veloped by Lee and Zipkin provides an upper bound on the actual performance

measures, and hence overestimates the congestion in the system. This is because in

their approximation scheme, Lee and Zipkin assume that each stage of the system

operates as an M/M/1 queue. We also notice that as the intermediate buffer size

(S) increases, the percent error between the exact method and Lee and Zipkin’s

approximation decreases. This means that increasing the buffer size up to a certain

limit will make the assumption of having two separate M/M/1 queues valid. Since

the deviations provided by the Matrix-geometric method are small, this validates

our method. We continue to compare the system performance under the batch

ordering policy we introduced earlier in this chapter.

3.6 Basic Performance Measure Analysis

To study the system behavior under the batch ordering policy, we vary separately

the batch size, the intermediate buffer size, and the system utilization.
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Approximation Exact % Deviation
μ1 μ2 S

expected
inventory

expected
backorders

expected
inventory

expected
backorders

expected
inventory

expected
backorders

1 4.200 7.200 4.121 7.120 -1.885 -1.108
3 5.048 6.048 4.865 5.865 -3.616 -3.028

1.25 1.25 5 6.311 5.311 6.114 5.114 -3.122 -3.712
7 7.839 4.839 7.670 4.669 -2.159 -3.510
9 9.537 4.537 9.405 4.405 -1.383 -2.920
1 2.200 5.200 2.146 5.146 -2.443 -1.045
3 3.048 4.048 2.944 3.943 -3.418 -2.588

1.25 1.5 5 4.311 3.311 4.210 3.210 -2.340 -3.064
7 5.839 2.839 5.758 2.758 -1.379 -2.856
9 7.537 2.537 7.478 2.477 -0.786 -2.358
1 1.200 4.200 1.169 4.169 -2.560 -0.745
3 2.048 3.048 2.001 3.000 -2.316 -1.575

1.25 2.0 5 3.311 2.311 3.271 2.270 -1.210 -1.759
7 4.839 1.839 4.810 1.809 -0.599 -1.607
9 6.537 1.537 6.517 1.517 -0.303 -1.328
1 4.333 5.333 4.229 5.229 -2.409 -1.957
3 5.593 4.593 5.440 4.440 -2.736 -3.332

1.5 1.25 5 7.263 4.263 7.158 4.158 -1.445 -2.462
7 9.117 4.117 9.058 4.058 -0.650 -1.439
9 11.052 4.052 11.021 4.021 -0.276 -0.754
1 2.333 3.333 2.258 3.258 -3.206 -2.244
3 3.593 2.593 3.493 2.493 -2.782 -3.854

1.5 1.5 5 5.263 2.263 5.197 2.197 -1.252 -2.912
7 7.117 2.117 7.080 2.080 -0.516 -1.735
9 9.052 2.052 9.033 2.033 -0.208 -0.919
1 1.333 2.333 1.288 2.288 -3.348 -1.913
3 2.593 1.593 2.542 1.542 -1.950 -3.174

1.5 2.0 5 4.263 1.263 4.233 1.233 -0.703 -2.372
7 6.117 1.117 6.101 1.101 -0.257 -1.407
9 8.052 1.052 8.044 1.044 -0.095 -0.730
1 4.500 4.500 4.400 4.400 -2.228 -2.228
3 6.125 4.125 6.059 4.059 -1.083 -1.607

2.0 1.25 5 8.031 4.031 8.009 4.009 -0.275 -0.547
7 10.008 4.008 10.001 4.001 -0.066 -0.164
9 12.002 4.002 12.000 4.000 -0.015 -0.044
1 2.500 2.500 2.422 2.422 -3.132 -3.132
3 4.125 2.125 4.073 2.073 -1.255 -2.436

2.0 1.5 5 6.031 2.031 6.013 2.013 -0.292 -0.868
7 8.008 2.008 8.003 2.003 -0.068 -0.272
9 10.002 2.002 10.000 2.000 -0.015 -0.075
1 1.500 1.500 1.449 1.449 -3.433 -3.433
3 3.125 1.125 3.093 1.093 -1.027 -2.853

2.0 2.0 5 5.031 1.031 5.020 1.020 -0.214 -1.043
7 7.008 1.008 7.005 1.005 -0.049 -0.342
9 9.002 1.002 9.001 1.001 -0.011 -0.095

Table 3.2: Model results for B=1 compared to Lee and Zipkin’s Approximate results
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B 2 3 4 5 6 7 8 9 10

E(N1) 2.741 3.136 3.540 3.938 4.338 4.725 5.096 5.452 5.810

E(N2) 2.620 2.663 2.695 2.722 2.740 2.778 2.833 2.900 2.565

E(D) 1.748 1.780 1.806 1.829 1.850 1.886 1.935 1.995 1.787

E(O) 0.274 0.386 0.496 0.598 0.703 0.803 0.893 0.976 1.066

E(I1) 7.533 7.249 6.956 6.660 6.365 6.078 5.797 5.524 5.256

E(I) 10.153 9.913 9.651 9.381 9.106 8.855 8.630 8.424 7.821

p1 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.11

Table 3.3: Performance evaluation with various batch sizes

1. The effect of Batch size: We run the model for different batch sizes when

S = 10, μ1 = μ2 = 2, and λ = 1.5. The results are summarized in Table 3.3.

As we can see from Figure 3.2, the stage 1 queue is affected by the batching

policy while stage 2 does not see that effect. This is because units are processed one

at a time at stage 1 and then released, either to the buffer, or directly to stage 2 (if

the order was backordered). Due to the larger queue length at stage 1, the expected

delay in the system will increase as the batch size increases. This is because orders

are not released directly, they will wait until the batch size limit is reached, and

then orders are released in bulk. Hence, there will be usually either a queue at stage

1 or no units at all. The expected number of backorders increases as the batch size

increases because the probability an order arrives and finds the buffer empty (p1)

increases as the batch size increases. The expected intermediate inventory decreased

from 10.2 to 7.8 units in the previous table (24% decrease in intermediate inventory

when batch size increased from 2 to 10 in the previous example). The reason for

this decrease is that, when orders are accepted and batched, components will spend

less time in the intermediate buffer, while they will wait more before the orders are

processed.
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Figure 3.2: Performance evaluation with various batch sizes

2. The effect of Intermediate buffer size: We set B = 2, μ1 = μ2 = 2, and λ = 1.

We vary the intermediate buffer size, the results are summarized in Table 3.4.

As we can see from Figure 3.3, the expected queue length in front of stage 1, and

the expected number of backorders decreases sharply as the buffer size increases.

This is because the increase in the buffer size means that the system can handle

more orders without the need of backlogging. The intermediate inventory increases

substantially as the buffer size increases because we are holding more inventory in

the buffer. Some of these units will spend a longer time in the buffer before being

processed. On the other hand, the expected queue length in front of stage 2 is not
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S 2 3 4 5 6 7 8 9 10 11 12

E(N1) 5.817 2.593 1.965 1.458 1.290 1.200 1.165 1.149 1.143 1.140 1.140

E(N2) 0.723 0.900 0.911 0.956 0.972 0.985 0.991 0.995 0.997 0.999 0.999

E(D) 1.419 1.008 0.942 0.963 0.974 0.985 0.991 0.995 0.997 0.999 0.999

E(O) 5.061 1.714 0.987 0.423 0.217 0.101 0.050 0.024 0.012 0.006 0.003

E(I1) 1.244 2.121 3.022 3.966 4.927 5.902 6.886 7.875 8.869 9.865 10.863

E(I) 1.967 3.021 3.933 4.922 5.899 6.887 7.877 8.871 9.866 10.864 11.862

Table 3.4: Performance evaluation with various buffer sizes

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E(N1) 0.076 0.162 0.276 0.436 0.653 0.932 1.273 1.670 2.113 2.593

E(N2) 0.053 0.113 0.181 0.259 0.346 0.442 0.547 0.659 0.777 0.900

E(D) 0.528 0.563 0.604 0.649 0.697 0.750 0.808 0.870 0.937 1.008

E(O) 0.001 0.009 0.041 0.113 0.239 0.424 0.670 0.972 1.323 1.714

E(I1) 2.925 2.847 2.765 2.678 2.586 2.492 2.397 2.302 2.210 2.121

E(I) 2.977 2.959 2.946 2.936 2.932 2.935 2.944 2.962 2.987 3.021

Table 3.5: Performance evaluation with various arrival rates

affected by the increase in the buffer size, due to the fact that units are queued in

front of stage 2 whenever there is a demand and the system is not starving. Also,

the expected delay in the system is not affected by the increase in the buffer size

when there are no backorders.

3. Effect of changing the system utilization: we vary the arrival rate (λ) for

when μ1 = μ2 = 2, we fix S = 3, and B = 2. The results are summarized in

Table 3.4.

As we can see from Figure 3.4, the queue length in front of stage 1, and the

queue length in front of stage 2 increases as the arrival rate increases. The expected

time each order needs to spend in the system increases as the arrival rate increases
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Figure 3.3: Performance evaluation with various buffer sizes

because there will be more congestion in the system. The expected common com-

ponents inventory in the buffer decreases as the arrival rate increases, which is quite

expected because units in the buffer spend less time in the system. While the total

common components inventory is not affected by the changes in the arrival rate,

the expected number of backorders increases as the arrival rate increases which is

quite intuitive.
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Figure 3.4: Performance evaluation with various arrival rates

3.7 Optimization Model

The problem we are trying to solve using our optimization model is to find the

optimal batch size (B) and the optimal buffer size (S) which leads to a minimum

expected operating total cost. The costs incurred are the holding costs of common

components, an ordering cost for components, and the expected penalty cost of

customer order fulfillment delay. The optimization problem we are looking at is:

min
B,S

½
TC(B,S) = Ch ∗E(I) + CO ∗

λ

B
+ CD ∗E(D)

¾
S.t. 0 < B ≤ S
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B, S integers

where:

Ch: cost of holding inventory for common components between the two stages

($/unit/unit time).

CO: cost of ordering common components ($/order).

CD: penalty cost for customer order fulfillment delay ($/unit/unit time).

3.8 Computational Results

To illustrate the methodology we solve an example to find the optimal (B,S) by

calculating the total cost for different combinations of (B,S). We use Matlab 7.0

for find the optimal combinations. We vary the system utilization by changing the

arrival rate and fixing the processing rates at each stage. We set μ1 = μ2 = 2. The

arrival rates we considered are 1.0, 1.5 and 1.8 corresponding to 50%, 75% and 90%

utilization rates respectively. We also set the capacity of stage 1 to be large enough

so that there are no lost customers. We vary S and B, while keeping the validity

of the condition S ≥ B. We then use the derived performance measures from the

previous section along with some cost parameters to find the optimal combination of

(B,S) that minimizes the total cost for the system. The cost parameters considered

correspond to low, medium, and high penalties. The ordering cost parameters

considered are: 1.0, 5.0, and 10.0. The holding inventory cost parameters considered

are: 0.1, 0.25, and 2.0, and the cost parameters considered for the penalty of order

delay are: 0.5, 2.0, 5.0 and 10.0. For each set of cost parameters we calculate the
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optimal (B,S) as shown in Figure 3.5. The optimal solutions for different utilization

rates are summarized in Table 3.6.
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Figure 3.5: Total cost for (0.1, 5.0, 10.0) cost parameters and 75% utilization

From results shown in Table 3.6 we can make the following observations:

• For items that have high inventory cost with respect to ordering cost and

when the utilization of the system is low, it is optimal to use the simple base

stock policy, otherwise batching orders is optimal.

• For items that have high inventory cost but medium ordering cost, it is op-

timal to order in batches of 2-3, unless customers are too sensitive to wait
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Cost parameter 50% utilization 75% utilization 90% utilization
Ch CO CD (S,B) Total cost (S,B) Total cost (S,B) Total cost

0.5 (4, 4) 1.069 (5, 5) 1.588 (3, 2) 1.991
1.0 2.0 (5, 5) 2.446 (4, 2) 3.735 (4, 2) 4.222

5.0 (5, 5) 5.173 (4, 2) 7.587 (4, 2) 8.554
10.0 (5, 5) 9.718 (4, 2) 14.007 (4, 2) 15.774
0.5 (8, 8) 1.738 (10, 10) 2.426 (8, 8) 3.299

0.1 5.0 2.0 (8, 8) 3.106 (8, 8) 5.080 (5, 3) 7.240
5.0 (7, 7) 5.840 (7, 7) 10.269 (4, 2) 12.154
10.0 (7, 7) 10.385 (4, 2) 17.007 (4, 2) 19.374
0.5 (11, 11) 2.256 (15, 15) 3.030 (12, 12) 4.200

10.0 2.0 (11, 11) 3.641 (13, 13) 5.7938 (7, 7) 8.813
5.0 (10, 10) 6.410 (10, 10) 11.217 (5, 3) 15.802
10.0 (9, 9) 11.005 (7, 7) 19.956 (4, 2) 23.874
0.5 (3, 3) 1.544 (3, 3) 2.103 (3, 3) 2.453

1.0 2.0 (4, 4) 3.001 (3, 2) 4.277 (3, 2) 4.757
5.0 (4, 4) 5.809 (4, 2) 8.213 (4, 2) 9.204
10.0 (5, 5) 10.360 (4, 2) 14.633 (4, 2) 16.424
0.5 (5, 5) 2.524 (6, 6) 3.386 (6, 6) 4.186

0.25 5.0 2.0 (5, 5) 3.888 (6, 6) 5.939 (4, 4) 7.910
5.0 (5, 5) 6.615 (6, 6) 11.045 (4, 2) 12.804
10.0 (6, 6) 11.154 (4, 2) 17.633 (4, 2) 20.024
0.5 (7, 7) 3.335 (9, 9) 4.342 (9, 9) 5.465

10.0 2.0 (7, 7) 4.698 (9, 9) 6.993 (6, 6) 9.668
5.0 (7, 7) 7.425 (8, 8) 12.215 (5, 3) 16.601
10.0 (7, 7) 11.970 (6, 6) 20.805 (4, 2) 24.524
0.5 (1, 1) 4.434 (2, 2) 5.795 (2, 2) 6.117

1.0 2.0 (1, 1) 6.045 (2, 2) 8.640 (2, 2) 9.262
5.0 (1, 1) 9.267 (3, 2) 14.050 (3, 2) 15.201
10.0 (1, 1) 14.637 (3, 2) 20.830 (3, 2) 22.726
0.5 (2, 2) 7.144 (2, 2) 8.795 (2, 2) 9.717

2.0 5.0 2.0 (3, 3) 9.255 (2, 2) 11.640 (2, 2) 12.862
5.0 (3, 3) 12.399 (3, 2) 17.050 (3, 2) 18.801
10.0 (3, 3) 17.638 (3, 2) 23.830 (3, 2) 26.326
0.5 (3, 3) 9.349 (3, 3) 11.645 (3, 3) 13.042

10.0 2.0 (3, 3) 10.921 (3, 3) 14.292 (3, 3) 16.376
5.0 (3, 3) 14.065 (3, 3) 19.587 (3, 3) 23.045
10.0 (4, 4) 18.888 (3, 2) 27.580 (3, 2) 30.826

Table 3.6: Optimal policies for different utilization settings
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where orders should be issued one at a time.

• When ordering cost is high with respect to holding inventory cost, then ir-

respective of the customer sensitivity to wait, it is optimal to order in large

batches.

• The batching policy outperforms the simple base stock policy unless the in-

ventory holding cost is higher than the ordering cost.

• When the system utilization is low, it is optimal to have the batch size equal

to the buffer size irrespective of the holding cost or ordering cost, and as the

utilization is increasing or the cost of delay is very high, then the buffer size

should be larger than the batch size.

• For the same cost combinations and when the results for the optimal S and

B are the same for all utilizations of the system, then the cost is increasing

as the utilization of the system is increasing. This is because the delay is

increasing and consequently it costs more.

To compare the optimal system results under our proposed policy with the base

stock policy that was used extensively in the literature, we run our model when

B = 1, and find the optimal buffer size (S) for the 75% utilization rate. The results

are summarized in Table 3.7.

As we can see from Table 3.7, 17% of the cases solved had the buffer size equal

to that in the base stock policy and the batching policy, otherwise the results are

different. We can notice also that the total cost for the base stock policy is always

higher than the total cost incurred in the batching policy, and the savings from
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Cost parameter Batching policy Base stock policy
Ch CO CD (S,B) Total cost (S) Total cost

0.5 (5, 5) 1.588 3 2.995
1.0 2.0 (4, 2) 3.735 5 6.046

5.0 (4, 2) 7.587 6 11.987
10.0 (4, 2) 14.007 6 21.832
0.5 (10, 10) 2.426 3 8.995

0.1 5.0 2.0 (8, 8) 5.080 5 12.046
5.0 (7, 7) 10.269 6 17.987
10.0 (4, 2) 17.007 6 27.832
0.5 (15, 15) 3.030 3 16.495

10.0 2.0 (13, 13) 5.7938 5 19.546
5.0 (10, 10) 11.217 6 25.487
10.0 (7, 7) 19.956 6 35.332
0.5 (3, 3) 2.103 2 3.583

1.0 2.0 (3, 2) 4.277 4 6.802
5.0 (4, 2) 8.213 5 12.864
10.0 (4, 2) 14.633 6 22.794
0.5 (6, 6) 3.386 2 9.583

0.25 5.0 2.0 (6, 6) 5.939 4 12.802
5.0 (6, 6) 11.045 4 18.864
10.0 (4, 2) 17.633 6 28.794
0.5 (9, 9) 4.342 2 17.083

10.0 2.0 (9, 9) 6.993 4 20.302
5.0 (8, 8) 12.215 5 26.364
10.0 (6, 6) 20.805 6 36.294
0.5 (2, 2) 5.795 1 9.235

1.0 2.0 (2, 2) 8.640 2 13.386
5.0 (3, 2) 14.050 2 20.547
10.0 (3, 2) 20.830 3 31.400
0.5 (2, 2) 8.795 1 15.235

2.0 5.0 2.0 (2, 2) 11.640 2 19.386
5.0 (3, 2) 17.050 2 26.547
10.0 (3, 2) 23.830 3 37.400
0.5 (3, 3) 11.645 1 22.735

10.0 2.0 (3,3) 14.292 2 26.886
5.0 (3, 3) 19.587 2 34.047
10.0 (3, 2) 27.580 3 44.900

Table 3.7: Comparison between the batching policy and a base stock policy
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using this policy range from 32% to 82% which supports the conclusion that the

batching policy outperforms the base stock policy.

Some Managerial Insights

• The batch ordering policy increases the congestion in front of the MTS stage,

but it does not much affect the queue length in front of the MTO stage.

• The batch ordering policy does not increase the response time in the system

for the customers whose orders are filled directly from the intermediate buffer.

On the other hand, only customers whose orders are backlogged will have

longer response time due to the batching policy.

• Initially there is an unexpected advantage for the batching of orders which is

the decrease in the inventory holding cost with this policy. But since batching

delays the orders from being transformed into WIP or in other words, batch-

ing orders delays the physical arrival of replenishment orders this advantage

becomes quite expected.

• The base stock policy outperforms the batch ordering policy only when the

system utilization is low and the inventory holding cost is very high with

respect to the ordering cost. As the system utilization increases, the base

stock policy advantage decreases.

• When the inventory costs are high and the system utilization is high, the use

of the batching policy is recommended because it will decrease the inventory

costs.

In this chapter, we have introduced the first variation of the pure MTS-MTO

system by batching orders before a replenishment order is released when there is
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a fixed ordering cost associated with each order. In the next chapter we introduce

another variation for the pure MTS-MTO system by batching the replenished orders

when shipping cost and time are considered.
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Chapter 4

The MTS-MTO Model with

Batch Replenishment

In the previous chapter, we introduced a batch ordering policy. This policy is suit-

able for systems that incur an ordering cost whenever an order is placed for common

components. In this chapter, we present an extension to the original MTS-MTO

model introduced earlier. This model is suitable for situations when the two stages

are physically distinct and there is a shipping cost and time to send common compo-

nents between the two stages. In this model, stage 1 represents a manufacturer who

produces common components and accumulates these components, then he ships

them to an assembly center whose job is to customize these components based on

customer demand. To take advantage of economies of scale in replenishment, we

assume that replenishment occurs in batches of size C. The system is modeled as a

continuous time Markov chain and then solved using the matrix-geometric method.

We then find the optimal combination of the shipping quantity (C) and the inter-

mediate buffer size (S) that minimizes the overall costs of the system. The costs
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considered are the shipping cost of common components between the two stages,

holding costs for inventory, and a penalty cost for customer fulfillment delay.

4.1 Model Description

In this chapter we develop a model that is suitable for a manufacturing systemwhich

consists of two stages: stage 1 is the manufacturing stage of common components

from raw material (MTS). Stage 2 is the customization step/s for the common com-

ponents based on the demand requirements (MTO), as shown in Figure 4.1. This

model is suitable for companies which have assembly centers in multiple locations

where they do the manufacturing of products in a central location (MTS stage) and

then ship these components to assembly or distribution centers (MTO stage) who

perform a customization process for the common components based on customer

requirements. It is not realistic to assume that the components are replenished after

being processed at stage 1 one by one, especially if the inventory for components

is located far from the manufacturer. Instead, after being processed at stage 1, the

common components are accumulated and then shipped together to the distribution

center where each is customized based on customer requirements. Customization is

triggered for components whenever there is a demand arrival. i.e., upon the arrival

of a demand for the end product, a common component is released from the in-

termediate buffer (common components buffer) and then sent immediately for the

customization process at stage 2. We assume that each demand requires just one

unit of the final product. If the intermediate buffer is empty of common components

upon the arrival of a customer order, then the customer order is backordered. After

the production process from raw material at stage 1, the manufacturer accumulates
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Figure 4.1: Hybrid MTS-MTO system with batch replenishment policy

the components and ships them in bulk to the intermediate buffer in order to take

advantage of economies of scale in replenishment.

The system reaction upon the arrival of a demand for the end product can be

summarized in the following steps:

• If the intermediate buffer is not empty and a demand arrives for the end

product, then one common component is released from the intermediate buffer

and is sent immediately for processing at stage 2. Demands are served on a

FCFS basis in this stage. This demand arrival will also trigger an order for

common components of size one to be released to stage 1.

• If the buffer is empty, then the order is backordered, and it will also trigger

an order for common components of size one to be released to stage 1.

• After finishing the processing at stage 1, common components are accumu-

lated until a pre-specified limit (C) of common components is reached. Then

these components are shipped to the intermediate buffer with an exponential

time. This will increase the intermediate buffer contents by C units.
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The model assumptions can be summarized in the following points:

We assume:

• The common components buffer size is S.

• Poisson arrival of customer demand with rate λ.

• Orders consist of one product and all orders carry the same priority.

• Exponential processing times at stage 1 and stage 2 with rates μ1 and μ2

respectively.

• Exponential shipping time from stage 1 to the intermediate buffer with rate

μ3.

• The maximum shipping quantity (C) allowed is S. This is because the inter-

mediate buffer capacity should not be exceeded upon the arrival of a replen-

ishment shipment.

• Customers are served on a FCFS basis.

• Stage 2 queue has unlimited capacity.

The research question this model addresses is to find the optimal buffer size (S)

and the optimal shipping quantity (C) that minimizes the total costs incurred by

the whole system. The costs considered in this model are the inventory holding

costs for common components, the shipping cost between the two stages, and a

penalty cost for customer order fulfillment delay.
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4.2 The Markov Chain

The model described above can be represented by a continuous-time Markov chain

with a generator matrix (Q). This Markov chain can be described by three state

variables:

1. N2(t) : The number of units queued at stage 2 including the one in process.

{N2(t) : N2(t) = 0, 1, ...}

2. N1(t) : The number of units queued at stage 1 including the one in process.

{N1(t) : N1(t) = 0, 1, ...,M}

3. K(t) : The number of accumulated common components waiting for shipping

in the shipping buffer. {K(t) : K(t) = 0, 1, ..., C}

The system state may change only when there is an arrival of an order, arrival

of a shipment, or service completion at either stage. The possible changes of the

system state variables (N2(t), N1(t),K(t)) to other states are summarized in Table

4.1. The notation (t) has been suppressed for notation simplicity.

The number of items in the system forms a Markov chain. The infinitesimal

generator matrix (Q) of the continuous Markov chain has a unique block diagonal

structure as follows:

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
B0 A0 0 0 0

A2 A1 A0 0
. . .

0 A2 A1 A0
. . .

0 0
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠
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Event ConditionSystem next stateRate Explanation

Customer
N1 < S (N2 + 1, N1 + 1, K) λ

Demand arrival and there

is inventory in the buffer

arrival N1 ≥ S (N2, N1 + 1,K) λ
Demand arrival and there is

no inventory in the buffer

Service N1 > 0 (N2, N1 − 1, K + 1) μ1 Service completion at stage 1

completion N2 > 0 (N2 − 1, N1, K) μ2 Service completion at stage 2

Shipping of

K = C

N1 < S
(N2, N1, 0) μ3

Shipping and there are

no backorders

components
K = C

N1 ≥ S
(N2 + 1, N1, 0) μ3

Shipping and there are

backorders

Table 4.1: Model 2 state transitions

where B0, A0, A1, and A2 are square matrices of order (M + 1) ∗ (C + 1). A0
matrix represents the rate matrix at which the system moves up one level, A2 is

the rate matrix at which the system moves down one level, A1 is the rate matrix at

which the system returns to the same level, and B0 is the rate matrix at which the

system returns to the boundary level (level 0). We denote the level of the Markov

chain by the subset of all states that have the same number of units at stage 2.

As we can see, the process can move only to an adjacent level upon an arrival or a

departure from stage 2 queue. The first sub-level in the generator matrix Q is the

subset of all states that have the same number of units at stage 1, while the second

sub-level is the subset of all states that have the same number of accumulated

common components in the shipping buffer. A0 matrix has the following general

form:
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A0 =

0 1 · · · S − 1 S · · · M

0

1
...

S − 1

S
...

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λI
. . .

. . .

λI

A01
. . .

A01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where each level in A0 represents the possible states for the number of units at

stage 1, N1(t), and each entry in A0 is a matrix of size C + 1. A01 is the rate at

which N1(t) returns to the same state while N2(t) increases by 1 when there is a

shipping incurred between stages and there is a backorder placed. Each entry in

A01 represents the rate at which the shipping buffer state changes. A01 is defined

as:

A01 = μ3.

⎛⎝ 0 0

1 0

⎞⎠ ,

where 0 is a square matrix of zeros of size C.

λI represents the rate at which N1(t) increases by 1 and N2(t) increases by one

level upon an arrival for a customer order when there are common components

available in the intermediate buffer, where I is an identity matrix of size C + 1.

A2 is the rate matrix at which N2(t) decreases one level. Each entry in A2 is a

square matrix of size C + 1 and represents the rate at which N1(t) returns to the

same state while N2(t) decreases by one level. This represents the case when there

is a service completion at stage 2. It has the following general form:
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A2 =

⎛⎜⎜⎜⎝
μ2I

. . .

μ2I

⎞⎟⎟⎟⎠
A1 represents the rate at which N2(t) returns to the same level in the repeating

portion. Since the columns of the infinitesimal generator matrix Q must sum to 0,

it follows that:

A1 = −(A0 +A2), A0 = −B0

which results in the following formula for A1 :

A1 = B0 − μ2 ∗ I2

where:

I2 : is an identity matrix of size (M + 1) ∗ (C + 1).

In other words, the rate at which N2(t) returns to the same level is 1− the rate

at which the system either moves one level up or one level down.

The boundary matrix B0 is the rate at which N2(t) returns to level 0. This

matrix has the following general form:

Bo=

0 1 · · · S S + 1 · · · M − 1 M

0

1

...

S

S + 1

...

M − 1
M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λI +B03 +B02

B00 −λI +B03 +B01 +B02

. . .
. . .

. . . −λI +B03 +B01 λI

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . λI

B00 B03 +B01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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B00 represents the rate at which N1(t) decreases by one state upon a service

completion on stage 1 whileN2(t) returns to the boundary level. It has the following

form:

B00 = μ1.

⎛⎝ 0 I0

0 0

⎞⎠ ,

where I0 is an identity matrix of size C.

B01, B02, andB03 are square matrices of size C+1. These matrices are calculated

utilizing the fact that the sum of the rows of the generator matrix is equal to 0.

These matrices have the following general forms:

B01 = −μ1.

⎛⎝ I0 0

0 0

⎞⎠ ,

B02 = μ3.

⎛⎝ 0 0

1 0

⎞⎠ ,

B03 = −μ3.

⎛⎝ 0 0

0 1

⎞⎠ ,

where 0 is a square matrix of zeros of size C.

λI represents the rate at which N1(t) increases by 1 and N2(t) returns to the

boundary level when there is a customer demand arrival and the common compo-

nents buffer is empty, where I is an identity matrix of size C + 1.

4.3 Implementation

We notice that the queue occupancy at stage 2 can be modeled as a Quasi-Birth-

Death process which allows us to develop a matrix geometric solution for its steady
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state probability distribution. Using the matrix-geometric method described earlier,

we solve for the steady state probability distribution (π) of the system. We use

Matlab 7.0 to perform these computations. See Appendix B for Matlab codes. For

computational purposes we set the maximum stage 2 queue length large enough

so that the impact of truncating the state space is minimal and the probability

that it is beyond this limit is close to zero. After some testing for this limit we set

it to 100. We also set the maximum capacity for stage 1 (M) large enough such

that there are no lost orders and consequently, the computed stationary probability

distribution is accurate. After some testing with M we set it to 50.

The utilization of stage i (ρi) is defined by ρi =
λ

μi
.

In the remainder of our work we focus on balanced capacity MTS-MTO systems,

i.e, we set μ1 = μ2, and for different utilization rates we vary λ only.

The steady state probability distribution we computed has the following general

form:

π =

⎛⎜⎜⎜⎜⎜⎜⎝
π0,0,0 · · · π0,0,C · · · π0,M,C

π1,0,0 · · · ... · · · ...
... · · · ... · · · ...

π100,0,0 · · · ... · · · π100,M,C

⎞⎟⎟⎟⎟⎟⎟⎠
where πi,j,k represents the probability of having i units at stage 2, j units at

stage 1, and k units in the shipping buffer. We can find the steady state probability

distribution for the number of units in stage 2 (π2) from π. π2 is a (100, 1) vector

and is calculated by the following relationship:

π2 =
j=M,k=CP
j=0,k=0

πi,j,k
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and the steady state probability distribution for the number of units at stage 1

(π1) is a (1,M + 1) vector and is calculated as follows :

π1 =
i=100,k=CP
i=0,k=0

πi,j,k

while the steady state probability distribution for the number of units in the

shipping buffer (π3) is a (1, C + 1) vector and is calculated from the following

relationship:

π3 =
i=100,j=MP
i=0,j=0

πi,j,k

We have computed all the necessary steady state probability distributions that

are necessary to calculate the system steady state performance measures under

different settings. Still we need to make sure that the system is operating under

normal conditions and is stable. Therefore, we derive the stability conditions which

are important to check before any runs are conducted.

Stability Condition:

In order to have a stable system, the Markov chain should be positive recurrent

(Neuts,1981). This conditions is represented by the following relationship:

πA2 · 1 > πA0 · 1

Since it is difficult to get an explicit form for the stability conditions due to

the generator matrix form, we check the stability of the system using the previous

relationship in each run.
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4.4 Basic Performance Measures

The measures we use to evaluate the system performance are: the expected number

of units at stage 1 E(N1), the expected number of units at stage 2 E(N2), the

expected number of units in the shipping buffer E(C), the expected number of

backorders E(B), order fulfillment delay E(D), the expected number of units in

the intermediate buffer E(I1), and the expected number of semi finished inventory

in the system E(I). These performance measures are calculated from the stationary

probability distribution of the number of units in the system (π).

The expected number of units at stage 1, E(N1), is calculated from the station-

ary probability for the number of units at stage 1 using the following equation:

E(N1) =
MP
i=0

π1i.i

where the subscript i represents the ith element in π1 vector.

The expected number of units at stage 2, E(N2), is calculated from the station-

ary probability distribution of the number of units at stage 2 using the following

equation:

E(N2) =
100P
j=0

π2j.j

where the subscript j represents the jth element in π2 vector.

The expected number of common components in the shipping buffer, E(C), is

calculated from the stationary probability distribution of the number of units in

the shipping buffer from the following relationship:
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E(C) =
CP
k=0

π3k.k

where the subscript k represents the kth element in π3 vector.

The expected number of backorders, E(B), in the system is calculated from

the stationary probability distribution of the number of units in the system, the

number of backorders when N1 = i and C = k is max(0, i+ k−S). It is calculated

from the following relationship:

E(B) = E(N1 | N1 + C > S) =
i=M,k=CP
i=0,k=0

πi,k.max(0, i+ k − S)

The expected number of common components in the intermediate buffer, E(I1),

is calculated from the following relationship, where ri,k is the number of com-

mon components in the intermediate buffer when N1 = i and C = k and equals

max(0, S − i− k):

E(I1) =
i=M,k=CP
i=0,k=0

πi,k.ri,k.

The expected number of common components in the system, E(I), is the sum

of the common components in the intermediate buffer, E(I1), the shipping buffer,

E(C), shipped quantity in transit,
C

μ3
, and common components at stage 2, E(N2).

It is calculated from the following relationship:

E(I) = E(N2) +E(I1) +
C

μ3
+E(C)

The order fulfillment delay, E(D), is the expected time from the arrival of a

customer order until it is fulfilled. It is calculated as the weighted average of the

expected delay when an order arrives and finds the buffer empty, E(D1), with the

expected delay when an order arrives and finds the intermediate buffer non-empty,

E(D2). It is calculated in the following way:

62



E(D) = p1 ∗E(D1) + p2 ∗E(D2)

p1 = p(N1 | N1 + C > S) =
i=M,k=CP
i=0,k=0

πi,k.min(1,max(0, i+ k − S))

p2 = p(N1 | N1 + C ≤ S) = 1− p1

where p1 is the probability that an order upon arrival finds the intermediate

buffer empty, and p2 is the probability that an order upon arrival is fulfilled from

the intermediate buffer. By Little’s Law [35], the expected delay is the ratio of

the expected number of units in a queue over the arrival rate, for our model this

reduces to:

E(D1) =
E(N2) +E(B)

λ

E(D2) =
E(N2)

λ

4.5 Basic Performance Measure Analysis

To study the system behavior under the batch replenishment policy we introduced

earlier, we vary separately the arrival rate (λ), the shipping quantity size (C), and

the intermediate buffer size (S).

1. Performance evaluation with various arrival rates: we fix the processing rates

at stage 1 and stage 2 to 2. We set the shipping rate to 1, S = 3, C = 2 and

vary the arrival rate from 0.1 to 1.0. The results are summarized in Table 4.2

for the various system performance measures.

As we can see from Figure 4.2, the queue length in front of stage 1, the expected

number of backorders, and the expected delay in the system increase rapidly as the
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λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
E(N1) 0.061 0.147 0.270 0.446 0.705 1.111 1.810 3.238 7.471 24.767

E(N2) 0.053 0.111 0.177 0.249 0.324 0.395 0.449 0.467 0.423 0.313

E(D) 0.527 0.558 0.593 0.633 0.687 0.784 1.027 1.799 5.125 22.008

E(B) 0.001 0.008 0.029 0.080 0.190 0.417 0.906 2.090 6.043 23.076

E(I1) 2.346 2.181 1.999 1.798 1.574 1.324 1.045 0.734 0.387 0.070

E(C) 0.594 0.680 0.760 0.837 0.910 0.982 1.051 1.119 1.185 1.239

E(I) 4.993 4.972 4.936 4.884 4.809 4.701 4.546 4.320 3.995 3.622

Table 4.2: Performance evaluation with various arrival rates

arrival rate increases from 0.1 to 1.0. On the other hand, the expected queue length

in front of stage 2 increases only slightly. The total expected intermediate inventory

in the system decreased because with increased arrival rate, common components

spend less time in the intermediate buffer. The system behavior under the increased

arrival rate can be explained as follows: When the arrival rate increases up to a

certain limit (0.8 in this case), the system cannot handle the orders arriving after

this limit because the intermediate buffer is starving and hence, the expected queue

length in front of stage 1 and the expected delay increases rapidly.

2. Performance evaluation with various shipping lot sizes: we vary the shipping

lot size from 1 to 10 to observe the system behavior under different shipping

quantities. We set λ = 1, μ1 = 2, μ2 = 2, μ3 = 1, and S = 10. The results

are summarized in Table 4.3.

As we can see from Figure 4.3, the queue length in front of stage 1, the expected

number of backorders, and the expected delay in the system decrease drastically as

the shipping lot size increases from 1 to 3, then this decrease is slight afterwards.
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Figure 4.2: Performance evaluation with various arrival rates

This is because when the shipping quantity C is less than 3, the system is congested

and the shipping process delays the orders from being filled because the shipping

rate is slow with respect to processing rates (shipping is the bottleneck process).

When we increase C beyond a certain limit (3 in this case), then the shortages are

not incurred as much. This explanation holds for the behavior of the total expected

intermediate inventory in the system, because when C is less than 3 the expected

number of units in the intermediate buffer E(I1) is close to 0 and then increases

as the shipping lot size increases. The expected queue length in front of stage 2

increases slightly as we increase the shipping lot size.

65



C 1 2 3 4 5 6 7 8 9 10
E(N1) 48.391 24.767 4.391 2.684 2.124 1.847 1.681 1.571 1.493 1.434

E(N2) 0.427 0.410 0.867 0.943 0.965 0.975 0.980 0.984 0.986 0.987

E(D) 40.151 14.986 1.277 1.125 1.124 1.154 1.215 1.319 1.492 1.771

E(B) 39.057 16.905 0.887 0.285 0.181 0.159 0.169 0.204 0.266 0.366

E(I1) 0.000 0.899 4.800 5.417 5.371 5.119 4.784 4.418 4.048 3.696

E(C) 0.667 1.239 1.697 2.184 2.686 3.194 3.703 4.214 4.725 5.236

E(I) 2.094 4.548 10.363 12.544 14.022 15.287 16.468 17.616 18.759 19.919

Table 4.3: Performance evaluation with various shipping lot sizes

S 10 11 12 13 14 15 16 17 18 19 20
E(N1) 2.124 2.124 2.124 2.124 2.124 2.124 2.124 2.124 2.124 2.124 2.124

E(N2) 0.965 0.976 0.983 0.988 0.992 0.994 0.996 0.997 0.998 0.999 0.999

E(D) 1.124 1.084 1.057 1.039 1.027 1.018 1.013 1.009 1.006 1.004 1.003

E(B) 0.181 0.126 0.087 0.060 0.042 0.029 0.020 0.014 0.010 0.007 0.005

E(I1) 2.686 2.686 2.686 2.686 2.686 2.686 2.686 2.686 2.686 2.686 2.686

E(C) 5.371 6.315 7.277 8.250 9.232 10.219 11.210 12.204 13.200 14.197 15.194

E(I) 14.022 14.977 15.946 16.924 17.909 18.899 19.892 20.887 21.884 22.881 23.880

Table 4.4: Performance evaluation with various intermediate buffer sizes

3. Performance evaluation with various intermediate buffer sizes: We vary S

from 10 to 20 to observe the system behavior under various buffer sizes. We

set C = 10, μ1 = μ2 = 2, λ = 1, and μ3 = 0.2. The results are summarized in

Table 4.4.

As we can see from Figure 4.4, the expected delay and consequently, the ex-

pected number of backorders decreases as the intermediate buffer size increases,

which is quite intuitive. The expected queue length in front of stage 1 does not

change because changing the buffer size won’t affect the arrival process. The ex-

pected queue length in front of stage 2 also does not change much as we increase the
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Figure 4.3: Performance evaluation with various shipping lot sizes

buffer size. The total intermediate inventory in the system increases because the

expected units in the shipping buffer E(C) increases while the expected inventory

in the intermediate buffer E(I1) is not affected.

4.6 Optimization Model

The problem we are trying to solve using our model is to find the optimal shipping

lot size (C), and the optimal intermediate buffer size (S), which will lead to the

minimum total cost. The costs incurred are holding inventory cost of semi finished
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Figure 4.4: Performance evaluation with various buffer sizes

units in the system, shipping cost of semi finished units, and a penalty cost for

customer order fulfillment delay. The optimization problem we are looking at is:

min
C,S

½
TC(C,S) = Ch ∗E(I) + CS ∗

λ

C
+ CD ∗E(D)

¾
S.t. 0 < C ≤ S

C, S integers

where:

Ch: the cost of holding inventory for semi finished units between the two stages

per unit per unit time.
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Cs: the cost of shipping for the semi finished units per shipment.

CD: a penalty cost for customer order fulfillment delay per order per unit time.

The cost of shipping is calculated by multiplying the number of shipments (
λ

C
)

by a fixed cost of shipping for each shipment.

4.7 Computational Results

We solve an example to find the optimal combination of (C,S) for the previous

optimization problem by calculating the total cost for different combinations of

(C,S). We vary the system utilization rate, where applicable, to analyze how the

optimal solution changes under various utilization rates. We set the capacity of

stage 1 to be large enough so that there are no lost customers. For the shipment

rate (μ3) we consider two options; the first one is fast shipment (μ3 = 1), and the

second one is slow shipment (μ3 = 0.2). We set μ1 = μ2 = 2. We vary S and C

keeping the condition S ≥ C in these variations. We set the cost parameters to

represent low, medium, and high charges for each type. We assume the following

values for the cost parameters:

Ch = 0.1, 0.25, and 2.0

CS = 1.0, 5.0, and 10.0

CD = 0.5, 2.0, and 5.0.

1. Slow delivery case: The results for the different combinations of cost parame-

ters for the slow delivery case are summarized Table 4.5. Where ρ1 = ρ2 =

50%. From these results we can draw the following observations:
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• The system is not stable at utilization rates higher than 50%. This is because

when the shipping takes a long time, then the intermediate buffer will be

empty most of the time and waiting for the shipments to come. At higher

utilization rates than 50%, the system is starving and as a result unstable.

For this system with the previous defined parameters to be stable at higher

utilization rates, then stage 1 should be very fast to be able to replenish

orders, the rate should be greater or equal 8.

• As the penalty cost for customer delay increases, the optimal intermediate

buffer size increases because holding more inventory in the intermediate buffer

will decrease the probability an order is backlogged and hence, has to wait

more time to be replenished. The optimal shipping quantity increases slightly

as the penalty cost for customer delay increases for the same reason, but since

the shipping takes a long time the major increase will be on the intermediate

buffer size. On the other hand, as the holding inventory cost increases, the

optimal intermediate buffer size decreases which is quite obvious.

• When the penalty cost for customer delay is very low, then most of the time,

it is optimal to set the shipping lot size equal the intermediate buffer size.

This can be explained as follows: having high penalty for customer delay will

push C to be as large as possible, and the maximum allowed C by definition

is S. Hence, S = C in this case unless the cost of shipping is very high.

2. Fast delivery case: The results for the different combinations of cost para-

meters for the fast delivery case are summarized Table 4.6. Where ρ1 = ρ2 =

50%, 75%. From these results we can draw the following observations:
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Cost parameters 50% utilization

Ch Cs CD (S,C) Total cost

0.1 (8, 6) 1.4586

1.0 2.0 (18, 7) 4.4561

5.0 (21 ,8) 7.8402

0.1 (9, 9) 2.7245

0.1 10.0 2.0 (18, 10) 5.5131

5.0 (21, 10) 8.8302

0.1 (12, 12) 3.6959

20.0 2.0 (21, 13) 6.4085

5.0 (24, 13) 9.6845

0.1 (6, 6) 4.2502

1.0 2.0 (14, 8) 8.2440

5.0 (18, 8) 12.1120

0.1 (6, 6) 4.2502

0.25 10.0 2.0 (14, 8) 8.2440

5.0 (18, 8) 12.1120

0.1 (8, 8) 5.7073

20.0 2.0 (15, 9) 9.4672

5.0 (18, 9) 13.2650

0.1 (20, 1) 7.1784

1.0 2.0 (8, 6) 26.0047

5.0 (11, 6) 34.5287

0.1 (4, 4) 14.9802

2.0 10.0 2.0 (8, 6) 27.5047

5.0 (11, 6) 36.0287

0.1 (4, 4) 17.4802

20.0 2.0 (8, 6) 29.1713

5.0 (11, 6) 37.6953

Table 4.5: Optimal policies for slow delivery
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• When the shipping time is fast compared to the processing times at both

stages, then the optimal intermediate buffer size and the optimal shipping lot

size are always less than the sizes when the shipping is slow. This is because

in fast shipping the intermediate buffer is filled faster and as a result, there

will be less shortages for the same cost parameters compared to slow delivery

case.

• As the holding inventory cost is increasing, the intermediate buffer size and

the shipping lot size gets closer together. This is more noticed when the

shipping time is small compared to processing times. This is because as we

increase the holding inventory cost, the optimal buffer size is decreasing. But

since we have the constraint S ≥ C, then the smallest buffer size allowed is

C, this will drive S = C when holding inventory cost is high.

• As the utilization increases for the system, the (S,C) combination gets larger

to handle the increase in demand arrivals.

Some Managerial Insights

• If the demand arrival is high, the batch replenishment policy could be costly

because orders are waiting to be shipped for long times.

• The settings of the decision variables (S,C) affects the behavior of the system.

The shipping lot size C should be set large enough so that there is no starving

in the system, and as the shipping time increases, this quantity should be

increased so that the system can handle the orders without the increase in

response time.
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Cost parameters 50% utilization 75% utilization

Ch Cs CD (S, C) Total cost (S, C) Total cost

0.1 (3, 3) 0.9008 (4, 4) 1.1857

1.0 2.0 (3, 2) 2.8830 (8, 4) 4.9468

5.0 (4, 2) 5.8173 (9, 4) 10.4173

0.1 (8, 8) 2.5892 (11, 11) 2.8479

0.1 10.0 2.0 (10, 8) 4.8062 (16, 11) 7.3356

5.0 (12, 8) 7.9481 (10, 5) 13.5105

0.1 (12, 12) 3.6045 (11, 11) 3.7570

20.0 2.0 (14, 12) 5.8283 (16, 11) 8.2447

5.0 (16, 12) 8.9672 (19, 11) 14.5537

0.1 (2, 1) 1.3704 (3, 3) 1.8087

1.0 2.0 (2, 2) 3.4575 (8, 3) 6.1385

5.0 (2, 2) 6.4575 (9, 3) 11.7393

0.1 (5, 5) 4.0198 (6, 6) 4.9226

0.25 10.0 2.0 (6, 5) 6.3645 (7, 5) 9.2490

5.0 (7, 5) 9.6555 (9, 5) 15.0955

0.1 (7, 7) 5.6334 (11, 11) 6.2527

20.0 2.0 (8, 7) 8.0356 (13, 11) 11.1894

5.0 (9, 7) 11.3556 (16, 11) 17.8844

0.1 (1, 1) 5.2126 (2, 2) 6.5463

1.0 2.0 (2, 2) 8.8200 (3, 3) 14.9040

5.0 (2, 2) 12.2130 (5, 3) 22.7360

0.1 (2, 2) 11.1711 (3, 3) 13.1739

2.0 10.0 2.0 (2, 2) 13.3200 (3, 3) 19.4040

5.0 (2, 2) 16.7130 (5, 3) 27.2360

0.1 (3, 3) 15.8393 (3, 3) 18.1739

20.0 2.0 (3, 3) 18.0167 (4, 4) 23.7140

5.0 (3, 3) 21.4547 (5, 4) 31.2110

Table 4.6: Optimal policies for fast delivery
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• The shipping time is a critical issue in the design of MTS-MTO systems

decision variables.

In this chapter, we have introduced the second variation of the pure MTS-MTO

system by batching replenishment orders for common components after processing

at stage 1. This model is suitable when the two stages are physically distinct. In the

next chapter we conclude our work and set some future directions for our research.
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Chapter 5

Conclusions and Future Research

Manufacturing systems, in general, can be categorized into MTS or MTO systems.

The main advantage of a MTS system is that it allows for the immediate satisfaction

of customer orders due to the existence of finished goods inventory in the system.

The disadvantage of a MTS is that it incurs high costs to the company to keep the

finished goods inventory. The main advantage of a MTO system is that there are

no inventory costs incurred since there is no finished goods inventory kept in the

system. The disadvantage of a MTO is the high response time associated with each

order. The combined MTS-MTO manufacturing policy combines the advantages of

a MTS and a MTO. It allows for production based on customer requirements with

less inventory costs and less response times. Most of the models developed in the

literature for these systems assume a base stock policy for the control of inventory in

the intermediate buffer. Little of the literature has explored order consolidation or

batching which may be beneficial if the manufacturer incurs setup/ordering costs

or shipping costs. This thesis explored two possible ways in which MTS-MTO

systems could be adapted to take advantage of economies of scale in either ordering
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or replenishing common components. The primary contribution of this work is to

show the potential benefit of such batching and to demonstrate that there can be

substantial savings to the manufacturer, but little cost to the consumer.

The first scenario we considered was the batching of orders, we developed a

model for a MTS-MTO manufacturing system when there is an ordering cost in-

curred whenever an order is placed for common components. This model is a

generalization for the base stock policy. We modeled the behavior of the system as

a continuous Markov chain. Then we implemented the matrix-geometric method

to compute the exact performance measures for the new proposed system. Then

we developed an optimization model with the objective of minimizing the system

overall costs. This model was used to find the optimal buffer size and the optimal

batch size under the new batch ordering policy. We showed that the base stock

policy is not always optimal under the new settings and compared the savings when

a batch ordering policy is adopted.

The second scenario we considered was the batching of replenishment orders for

common components. We developed a model for the MTS-MTO manufacturing

systems that is more realistic when there is a shipping cost and/or a shipping

time incurred during the replenishment process of orders and the two stages are

physically distinct. We modeled the behavior of the system as a continuous Markov

chain. Then we implemented the matrix-geometric method to compute the exact

performance measures for the new proposed system. We developed an optimization

model with the objective of minimizing the system overall costs. This model was

used to find the optimal buffer size and the optimal shipping lot size under the new

batch replenishment policy.

Future research should investigate more scenarios for the previous proposed

models. In particular, we may consider the following deviations:
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• The focus of this work was mainly on the system overall costs where the two

stages are assumed to work cooperatively and the decision making process

was centralized. Future work includes exploiting the difference when each

of the two players is trying to minimize his own overall costs or maximize

his own profit. In this case, we will deal with two objective functions that

are contradicting. This is because the common components supplier, who

experiences setup or shipping costs, will try to increase the batch size as much

as possible. While the manufacturer who performs the customization will

wish to decrease the batch size as low as possible to save on inventory costs.

Multiple scenarios for such a multi-objective optimization problemmay result,

which in turn will affect the final decision variables and consequently, the total

costs paid by each party. We also may investigate the difference between the

saving margins for each party when the batching policy is adopted.

• In future research we may consider state dependent arrivals where the arrival

rate decreases as the congestion increases in the system. In this case, there

will be lost customers and the rate of losing customers will increase as the

congestion increases in the system. The optimization problemwill be modified

to account for the lost customers. This may be added to the objective function

as a penalty cost whenever there is a lost customer. We may investigate the

effect of this variation on the final decision variables and the total cost incurred

by the system.

• Since introducing the new batching policy has decreased the system overall

costs but increased the response time (delay), in future research we may

consider adding a service level constraint for the customer delay. The service

level constraint will limit each order delay from exceeding a certain limit
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instead of limiting the total average delay in the system as we assumed. This

variation may affect the optimal decision variables we obtained earlier.

• In our work we considered one class of priority for orders, in future research

we may consider different classes of customers. We may consider high priority

customers who are willing to pay more for having their orders delivered in a

guaranteed time frame and low priority customers who are not sensitive to the

order fulfillment delay. The high priority customers orders will be processed

in the MTO stage first and then the low priority customers. In order to

model this case, we need to include the unit price and the extra charge for

high priority customers in our optimization model. This is a realistic problem

that a lot of computer assembly companies adopt to serve different types

of customers. We may consider a profit maximization problem to find the

optimal decision variable in the system.

All this work will lead to a better understanding of such complex MTS-MTO

systems.

78



Bibliography

[1] Adan, I. and J. Wal, (1998). Combining make to order and make to stock. OR

Spectrum. 20(2) 73-81.

[2] Arreola-Risa, A. and G. Decroix, (1998). Make-to-order versus make-to-stock

in a production/inventory system with general production times. IIE Trans-

actions 30 705-713.

[3] Aviv, W. and A. Federgruen, (2001). Capacitated Multi-Item Inventory Sys-

tems with Random and Seasonally Fluctuating Demands: Implications for

Postponement Strategies. Management Science. 47(4) 512-531

[4] Axstar, S., (1993). Exact and Approximate Evaluation of Batch-Ordering Poli-

cies for Two-Level Inventory Systems.Operations Research. 41(4) 777-785.

[5] Benjafaar, S. and D. Gupta, (1999). Workload allocation in multi-product,

multi-facility production systems with setup times. IIE Transactions. 31 339-

352.

[6] Bonvik A., C. Couch and S. Gershwin, (1997). A comparison of production-

line control mechanisms. International Journal of Production Research. 35(3)

789-804.

79



[7] Boute, R., M. Lambrecht and B. Houdt, (2007). Performance Evaluation of

a Production/Inventory System with Periodic Review and Endogenous Lead

Times. Naval Research Logistics. 54 462-473.

[8] Breuer, L. and D. Baum, (2005). An Introduction to Queuing Theory and

Matrix-Analytic Methods. Springer.

[9] Buzacott, J., (1989). Queueing models of Kanban and MRP controlled pro-

duction systems. Engineering Costs and Production Economist. 17 3-20.

[10] Buzacott, J. and J. Shanthikumer, (1993). Stochastic Models of Manufacturing

Systems. Prentice Hall Inc.

[11] Carr, S. and I. Duenyas, (2000). Optimal Admission Control and Sequencing

in a Make-To-Stock/Make-To-Order Production System. Operations Research.

48(5) 709-720.

[12] Chakravarthy, S. and A. Alfa, (1997). Matrix-Analytic Methods in Stochastic

Models. Marcel Dekker Inc. USA. Volume 183.

[13] Chen, F., (2000). Optimls Policies for Multi-echelon Inventory Problems with

Batch Ordering.Operations Research 48(3) 376—389.

[14] Donk, D. (2001). Make to stock or make to order: The decoupling point in

the food processing industries. International Journal of Production Economics.

69(3) 297-306.

[15] Dobson, G. and C. Yano, (2002). Product offering, pricing, and make-to-

stock/make-to-order decisions with shared capacity. Production and Operations

Management. 11(2) 293-312.

80



[16] Duenyas, I. and P. Pantana-anake, (1998). Base-stock control for single-

product tandem make-to-stock systems. IIE Transactions. 30 31-39.

[17] Federgruen, A. and Z. Katalan, (1999). The Impact of Adding a Make-to-Order

Item to a Make-to-Stock Production System.Management Science. 45(7) 980-

994.

[18] Grassmann, W. (2000). Computational Probability.

[19] Gupta, D. and S. Benjafaar, (2004). Make-to-order, Make-to-sock, or delay

product differentiation? A common framework for modeling and analysis. IIE

Transactions. 36 529-546.

[20] Gupta, D. and N. Selvaraju, (2006). Performance Evaluation and Stock Allo-

cation in Capacitated Serial Supply Systems. Manufacturing & Service Oper-

ations Management 8(2) 169—191.

[21] Gupta, D. and W. Weerawat, (2006). Supplier—manufacturer coordination in

capacitated two-stage supply chains. European Journal of Operational Re-

search. 175 67-89.

[22] He, M. and E. Jewkes, (1997). Flow time distributions in queues with customer

batching and setup times. INOFR. 35(1) 76-91.

[23] Hoekstra, S. and J. Romme, (1992). Integral Logistic Structures: Developing

Customer-oriented Goods Flow, McGraw-Hill, London,

[24] Latouche, G. and V. Ramaswami, (1999). Introduction to Matrix Analytic

Methods in Stochastic Modeling. ASA-SIAM, Alexandria, Virginia.

[25] Lee, H. and C. Tang, (1997). Modeling the costs and benefits of Delayed Prod-

uct Differentiation. Management Science. 43 40-53.

81



[26] Lee, Y. and P. Zipkin, (1992). Tandem queues with planned inventories. Op-

erations Research. 40(5) 936-946.

[27] Levi, D. and Y. Zhao, (2005). Safety Stock Positioning in Supply Chains with

Stochastic Lead Times. Manufacturing & Service Operations Management.

7(4) 295—318.

[28] Li, H. and L. Liu, (2006). Production control in a two-stage system. European

Journal of Operational Research. 174(2) 887-904.

[29] Liu, L., X. Liu and D. Yao, (2004). Analysis and Optimization of a Multistage

Inventory-Queue System. Management Science. 50 365—380.

[30] Moinzade, K. and H. Lee, (1986). Batch Size and Stocking Levels in Multi-

Echelon Repairable Systems. Management Science. 32(12) 1567-1581.

[31] Nelson, R., (1991). Matrix Geometric Solutions in Markov Models; A Mathe-

matical Tutorial. IBM Research Division. T.J. Watson Research Center.

[32] Neuts, M.F. (1981). Matrix-geometric Solutions in Stochastic Models: An Al-

gorithmic Approach, Johns Hopkins University Press, Baltimore.

[33] Papadopoulos H.T. and C. Heavey, (1996). Queueing theory in manufacturing

systems analysis and design: A classification of models for production and

transfer lines. European Journal of Operational Research. 92 1-27.

[34] Rajagopalan, S., (2002). Make to Order or Make to Stock: Model and Appli-

cation. Management Science. 48(2) 241—256.

[35] Ross, S., (2006). Introduction to Probability Models. ELSEVIER, 8thed.

[36] Serwer, A., (2002). Dell does domination. Fortune Magazine. 145(2) 70—75.

82



[37] Swaminathan, J. and S. Tayur, (1999). Managing design of assembly sequences

for product lines that delay product differentiation. IIE Transactions. 31 1015-

1025.

[38] Veatch M. and L.Wein, (1994). Optimal Control of a Two-Station Tandem

Production/Inventory System. Operations Research. 42(2) 337-350.

[39] Veinott, A., (1965). The Optimal Inventory Policy for Batch Ordering. Oper-

ations Research. 13(3) 424-432.

[40] Wein, L., (1992). Dynamic Scheduling of a Multiclass Make to Stock Queue.

Operations Research. 40(4) 724-735.

[41] Williams, T.M., (1984). Special products and uncertainty in produc-

tion/inventory systems. European Journal of Operational Research. 15 46-54.

[42] Youssef, K., C. Delft and Y. Dellery, (2004). Efficient Scheduling Rules in a

Combined Make-to-Stock and Make-to-Order Manufacturing System. Annals

of Operations Research. 126 103—134.

83



Appendix A

Matlab Code for Batch Ordering

Policy

The Matrix-Geometric method was implemented using Matlab 7.0. The code for

calculating the steady state probability distribution and the performance measures

is as follows:

%%%%%example on the simple case of batch ordering

%%%%%Input Parameters

clc

clear

B=2; % batch size

lmdas=.1:.1:1.0; % demand arrival rate

mu1=2; % service rate at stage 1

mu2=2; % service rate at stage 2

S=3; % buffer size
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M=50; % stage 1 capacity

%%%% Definition of Matrices

for w=1:10;

lmda=lmdas(w);

I=eye(B);

%%%%B0 Matrix:

Bo=zeros((M+1)*B,(M+1)*B);

Bo(1:B,1:B)=-lmda*I;

count=1;

for i=1:S

Bo(B+count:B-1+count+B,count:B+count-1)=mu1*I;

count=count+B;

end

count=1;

for i=1:M

Bo(B+count:2*B-1+count,B+count:2*B+count-1)=-(lmda+mu1)*I;

count=count+B;

end

I0=eye(B-1);

C0=zeros(B,1);

R0=zeros(1,B-1);

B00=horzcat(C0,vertcat(lmda*I0,R0));

B01=horzcat(C0,vertcat(R0,lmda*I0));
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Z0=zeros(B-1,B-1);

B02=horzcat(vertcat(R0’,lmda),vertcat(Z0,R0));

count=1;

for i=1:M-S+1

Bo(S*B+count:S*B+count+B-1,S*B+count:S*B+count+B-1)=

Bo(S*B+count:S*B+count+B-1,S*B+count:S*B+count+B-1)+B00;

count=count+B;

end

count=1;

for i=1:2

Bo((M-1)*B+count:(M-1)*B+count+B-1,(M-1)*B+count:(M-1)*B+count+B-1)

=Bo((M-1)*B+count:(M-1)*B+count+B-1,(M-1)*B+count:(M-1)*B+count+B-1)+B01;

count=count+B;

end

count=1;

for i=1:1;

Bo(S*B+count:S*B+count+B-1,M*B+count:M*B+count+B-1)=B02;

end

Bo;

%%%% Ao Matrix:

Ao=zeros((M+1)*B,(M+1)*B);

Aoo=zeros(B,B);

for i=1:B-1

Aoo(i,i+1)=lmda;

end
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Aoo;

count=1;

for i=1:S

Ao(count:count+B-1,count:count+B-1)=Aoo;

count=count+B;

end

count=1;

for i=1:M-S

Ao((S+1)*B+count:(S+1)*B+count+B-1,S*B+count:S*B+count+B-1)=mu1*I;

count=count+B;

end

A01=horzcat(vertcat(R0’,lmda),vertcat(Z0,R0));

count=1;

for i=1:S

Ao(count:count+B-1,B*B+count:B*B+count+B-1)=A01;

count=count+B;

end;

Ao;

%%%% A1 Matrix:

A1=zeros((M+1)*B,(M+1)*B);

IR=eye((M+1)*B);

A1=Bo - mu2*IR;

A1;

%%%% A2 Matrix:

87



I1=eye((M+1)*B,(M+1)*B);

A2=I1*mu2;

A2;

%%%% finding R matrix:

eps=0.000000001;

R0=zeros((M+1)*B,(M+1)*B);

eps1=1.0;

while eps1>eps

R1=-(Ao+(R0*R0*A2))*inv(A1);

eps1=max(max(abs(R0-R1)));

R0=R1;

end;

R=R0;

%%%%% calculatiog pi0 from normalization and boundary:

I2=eye((M+1)*B);

v=zeros(1,(M+1)*B);

one=ones((M+1)*B,1);

pi0=zeros(1,(M+1)*B);

new=Bo+(R*A2);

nor=inv(I2-R)*one;

new(:,1)=nor;

v(1)=1;

pi0=v*inv(new);
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%%%%% calculating pi by recursive relation with pi0:

pi=zeros (100,(M+1)*B);

pi(1,:)=pi0;

for i=2:100;

pi1=pi0*R;

for j=1:(M+1)*B;

pi(i,j)=pi1(j);

end;

pi0=pi1;

end;

pi;

s=sum (sum(pi)); % sum of S.S probabilty matrix should equal 1

%%%% Stability Condition:

a1=zeros(B*(M+1),1);

a2=zeros(B*(M+1),1);

a3=zeros(B*(M+1),1);

for i=1:100;

a1(i)=sum(pi(i,:));

a2(i)=sum(pi(i,1:(B*S)+1));

a3(i)=sum(pi(i,(B*S)+2 : B*(M+1)));

RHS(i)=(lmda*a2(i)+ mu1*a3(i))/(mu2*a1(i));

% the RHS should be less than 1 to have a stable system

end;
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%%%%% Perforemance Measures:

%%%% Steady State probabilities for each state

pii2=zeros(100,1);

pii1=zeros(1,B*(M+1));

pii2=sum(pi’);

pii2=pii2’; %stage 2 steady state probabilties

pii1=sum(pi);

pa=zeros(1,M+1); %stage 1 steady state probabilties

count = 1;

for i=1:M+1;

for j=1:B;

pa(1,i)=pii1(1,j+count-1)+pa(1,i);

end;

count=count+B;

end;

EN2(w)=0;

for i=1:100; % expexted number of units at stage 2

EN2(w)=pii2(i,1)*(i-1)+EN2(w);

end;

EN2(w);

EN1(w)=0;

for i=1:M+1; % expextwd number of units at stage 1

EN1(w)=pa(1,i)*(i-1)+EN1(w);
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end;

EN1(w);

%%% To calculate the expected number of units in system:

p=zeros(100,M+1); % probability for the number of units

for l=1:100;

count=1;

for i=1:M+1;

for j=1:B;

p(l,i)=pi(l,j+count-1)+p(l,i);

end;

count = count+B;

end;

end;

%%%%% expected number of Backorders

EB2(w)=0;

for i=S:M+1;

EB2(w)=pa(1,i)*max(0,(i-S-1))+EB2(w);

end;

EB2(w);

EB(w)=EB2(w)+EN2(w);

%%%%%%%%%expected delay for the customers

P2=0;

for i=1:S+1;

P2=pa(1,i)+P2;
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end;

P1=1-P2;

ED1(w)=EB(w)/lmda;

ED2(w)=EN2(w)/lmda;

ED(w)=P1*ED1(w)+P2*ED2(w)

%%%%% expected number of semi finished inventory

EI1(w)=0;

for i=1:M+1;

EI1(w)=pa(1,i)*max(0,(S-i+1))+EI1(w);

end;

EI1(w);

EI(w)=EI1(w)+EN2(w);

EN2; % expextwd number of units at stage 1

EN1; % expextwd number of units at stage 2

ED; % expected delay in the system

EB2; % expextwd number of Backorders

plot(lmdas,EN1,lmdas,EN2,lmdas,ED,lmdas,EB,lmdas,EI)

xlabel(’Arrival rate’);

ylabel(’Perforemance measure value’);

%title(’Plot of several perforemance measures’,’FontSize’,12);

legend(’E(N1)’,’E(N2) ’,’E(D)’,’E(B)’,’E(I)’);

per=[EN1;EN2;ED;EB2;EI1;EI]
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Appendix B

Matlab Code for Batch

Replenishment Policy

The Matrix-Geometric method was implemented using Matlab 7.0. The code for

calculating the steady state probability distribution and the performance measures

is as follows:

%%%%%example on the simple case of batch replenishment policy

%%%%%Input Parameters

clc

clear

C=10; % batch size

lmda=1;

mu1=2; % service rate at stage 1

mu2=2; % service rate at stage 2

mu3=.2; % shipping to DC

SS=10:1:10; % buffer size
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M=50; % stage 1 capacity

%%%% Definition of Matrices

for w=1:1;

S=SS(w);

I=eye(C+1);

I1=eye(C);

Z=zeros(C,C);

%%%%B0 Matrix:

Bo=zeros((M+1)*(C+1),(M+1)*(C+1));

B03=zeros((C+1),(C+1));

B03((C+1),(C+1))=-mu3;

B02=zeros((C+1),(C+1));

B02((C+1),1)=mu3;

B00=zeros((C+1),(C+1));

C0=zeros(C+1,1);

R0=zeros(1,C);

B00=horzcat(C0,vertcat(mu1*I1,R0));

B01=zeros((C+1),(C+1));

B01=horzcat(vertcat(-mu1*I1,R0),C0);

Bo(1:C+1,1:C+1)=-lmda*I+B03+B02;

Bo(M*(C+1)+1:M*(C+1)+C+1,M*(C+1)+1:M*(C+1)+C+1)=B01+B03;

count=1;

for i=1:M-S+1;

Bo(C+count+1:2*(C+1)+count-1,C+count+1:2*(C+1)+count-1)=

-lmda*I+B01+B02+B03;

count=count+C+1;
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end

count=1;

for i=1:M-S;

Bo(S*(C+1)+count:S*(C+1)+count+C,S*(C+1)+count:S*(C+1)+count+C)=

-lmda*I+B01+B03;

count=count+C+1;

end

count=1;

for i=1:M

Bo(C+1+count:C+count+C+1,count:C+count)=B00;

count=count+C+1;

end

count=1;

for i=1:M-S

Bo(S*(C+1)+count:S*(C+1)+count+C,(S+1)*(C+1)+count:

(S+1)*(C+1)+count+C)=lmda*I;

count=count+C+1;

end

Bo;

%%%% Ao Matrix:

Ao=zeros((M+1)*(C+1),(M+1)*(C+1));

A01=zeros((C+1),(C+1));

A01((C+1),1)=mu3;

count=1;

for i=1:S;
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Ao(count:C+count,C+count+1:2*(C+1)+count-1)=lmda*I;

count=count+C+1;

end

count=1;

for i=1:M-S+1;

Ao(S*(C+1)+count:S*(C+1)+count+C,S*(C+1)+count:S*(C+1)+count+C)=A01;

count=count+C+1;

end

Ao;

%%%% A1 Matrix:

A1=zeros((M+1)*(C+1),(M+1)*(C+1));

IR=eye((M+1)*(C+1));

A1=Bo - mu2*IR;

A1;

%%%% A2 Matrix:

I1=eye((M+1)*(C+1),(M+1)*(C+1));

A2=I1*mu2;

A2;

%%%% finding R matrix:

eps=0.000000001;

R0=zeros((M+1)*(C+1),(M+1)*(C+1));

eps1=1.0;

while eps1>eps
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R1=-(Ao+(R0*R0*A2))*inv(A1);

eps1=max(max(abs(R0-R1)));

R0=R1;

end;

R=R0;

R;

% %%%%% calculatiog pi0 from normalization and boundary:

I2=eye((M+1)*(C+1));

v=zeros(1,(M+1)*(C+1));

one=ones((M+1)*(C+1),1);

pi0=zeros(1,(M+1)*(C+1));

new=Bo+(R*A2);

nor=inv(I2-R)*one;

new(:,1)=nor;

v(1)=1;

pi0=v*inv(new)

%%%%% calculating pi by recursive relation with pi0:

pi=zeros (100,(M+1)*(C+1));

pi(1,:)=pi0;

for i=2:100;

pi1=pi0*R;

for j=1:(M+1)*(C+1);

pi(i,j)=pi1(j);

end;
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pi0=pi1;

end;

pi;

s=sum (sum(pi)) % sum of S.S probabilty matrix should equal 1

%Stability condition

onee=ones((C+1)*(M+1),1);

aa=A2*onee;

ab=pi*aa;

ac=Ao*onee;

ad=pi*ac;

for i=1:100;

RHS(i)=ad(i)/ab(i); % should be less than one

end;

%%%%% Perforemance Measures:

%%%% Steady State probabilities for each state

pii2=zeros(100,1);

pii1=zeros(1,(C+1)*(M+1));

pii2=sum(pi’);

pii2=pii2’; %stage 2 steady state probabilties

pii1=sum(pi);

pa=zeros(1,M+1); %stage 1 steady state probabilties

pc=zeros(1,C+1); %shipping buffer steady state probabilities

count = 1;

for i=1:M+1;

98



for j=1:(C+1);

pa(1,i)=pii1(1,j+count-1)+pa(1,i);

end;

count=count+(C+1);

end;

EN2(w)=0;

for i=1:100; % expexted number of units at stage 2

EN2(w)=pii2(i,1)*(i-1)+EN2(w);

end;

EN2(w);

EN1(w)=0;

for i=1:M+1; % expextwd number of units at stage 1

EN1(w)=pa(1,i)*(i-1)+EN1(w);

end;

EN1(w);

for i=1:C+1;

count = 1;

for j=1:(M+1);

pc(1,i)=pii1(1,count+i-1)+pc(1,i);

count=count+(C+1);

end;

end;
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EC(w)=0;

for i=1:C+1; % expextwd number of units at shipping buffer

EC(w)=pc(1,i)*(i-1)+EC(w);

end;

EC(w);

%%% To calculate the expected number of units in system:

p=zeros(100,M+1);

for l=1:100;

count=1;

for i=1:M+1;

for j=1:(C+1);

p(l,i)=pi(l,j+count-1)+p(l,i);

end;

count = count+(C+1);

end;

end;

E2 = zeros(100,1);

for j=1:100;

for i=1:(M+1);

E2(j,1)= p(j,i)*(i-1)+E2(j,1);

end;

end;

E2;

E(w)=0;

for i=1:100;
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E(w)=E2(i,1)*(i-1)+E(w);

end;

E(w); %%%total expected customers in the system

% D(w)=E(w)/lmda; % expected delay in the system

%%%%% expected number of Backorders

count=1;

EB2(w)=0;

for i=1:(M+1);

for j=1:C+1

EB2(w)=pii1(1,count)*max(0,(i+j-S-2))+EB2(w);

count=count+1;

end;

end;

EB2(w);

EB(w)=EB2(w);

%%%%%%%%%expected delay for the customers

count=1;

P1(w)=0;

for i=1:(M+1);

for j=1:C+1

P1(w)=pii1(1,count)*min(1,max(0,(i+j-S-2)))+P1(w);

count=count+1;

end;

end;

P2(w)=1-P1(w);
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ED1(w)=(EB2(w)+EN2(w)+EC(w))/lmda

ED2(w)=EN2(w)/lmda

ED(w)=P1(w)*ED1(w)+P2(w)*ED2(w)

%%%%% expected number of semi finished inventory

EI1(w)=0; % intermediate inventory at the buffer

count=1;

for i=1:M+1;

for j=1:C+1;

EI1(w)=pii1(1,count)*max(0,(S-i-j+2))+EI1(w);

count=count+1;

end

end;

EI2(w)=0; % intermediate inventory at the shipping buffer

for i=1:C+1;

EI2(w)=pc(1,i)*(i-1)+EI2(w);

end;

EI(w)=EI1(w)+EN2(w)+ C/mu3 + EC(w);

end;

plot(SS,EN1,SS,EN2,SS,ED,SS,EB,SS,EI)

xlabel(’Intermediate buffer size’);

ylabel(’value of perforemance measure’);

%title(’Plot of several perforemance measures’,’FontSize’,12);

legend(’E(N1)’,’E(N2) ’,’E(D)’,’E(B)’,’E(I)’);

per=[ EN1;EN2; ED; EB;EC;EI1; EI]

per1=[EI;ED]
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