
Automatically Tuning Database
Server Multiprogramming Level

by

Mohammed Abouzour

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2007

c© Mohammed Abouzour 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Optimizing database systems to achieve the maximum attainable throughput
of the underlying hardware is one of the many difficult tasks that face Database
Administrators. With the increased use of database systems in many environments,
this task has even become more difficult. One of the parameters that needs to
be configured is the number of worker tasks that the database server uses (the
multiprogramming level). This thesis will focus on how to automatically adjust
the number of database server worker tasks to achieve maximum throughput under
varying workload characteristics. The underlying intuition is that every workload
has an optimal multiprogramming level that can achieve the best throughput given
the workload characteristic.

iii

Acknowledgements

This thesis would not have been possible without the help of God, and second
without the continuous support and encouragement of my family who gave me the
strength and will to succeed. A special thank to my wife for her continued support,
patience, and sacrifices for me.

I have to thank my supervisor, Kenneth Salem, for his support, advice, and
guidance during my thesis work. His continues guidance helped me complete my
work successfully. I would also like to thank my thesis readers Peter Bumbulis and
Ashraf Aboulnaga.

Finally, I am grateful to my colleagues at iAnywhere Solutions: Glenn Paulley,
Mark Culp, John Smirnios, Ian McHardy, Bruce Hay, and Ivan Bowman who an-
swered my questions about experimental results or internal SQL Anywhere database
server issues.

iv

Contents

1 Introduction and Motivation 1

1.1 Thesis Statement . 1

1.2 Motivation . 1

1.3 Thesis Organization . 2

1.4 Major Thesis Contributions . 2

2 Background and Related Work 3

2.1 Background . 3

2.2 Related Work . 6

3 Design and Implementation 8

3.1 Controller Architecture . 8

3.2 Auto-tuning Algorithms . 9

3.2.1 Hill Climbing . 11

3.2.2 Global Parabola Approximation 12

3.2.3 Local Parabola Approximation 14

4 Workloads and Test Methodology 16

4.1 Database Server Software . 16

4.2 Hardware Configuration . 16

4.3 Workloads . 17

4.3.1 TPC-C . 17

4.3.2 DS2 . 19

4.3.3 Summary . 20

4.4 Methodology . 20

v

5 Workload Characterization 22

5.1 TPCC1-BIGMEM . 22

5.2 TPCC1-SMALLMEM . 24

5.3 TPCC2-BIGMEM . 26

5.4 DS2 . 27

6 Algorithm Parameter Sensitivity and Tuning Experiments 30

6.1 Hill Climbing . 30

6.1.1 Varying C . 30

6.1.2 Varying ∆ . 31

6.2 Global Parabola Approximation . 33

6.3 Local Parabola Approximation . 35

7 Evaluation and Results 37

7.1 Auto-tuning Experiments . 37

7.1.1 TPCC1-BIGMEM . 37

7.1.2 TPCC1-SMALLMEM . 39

7.1.3 TPCC2-BIGMEM . 40

7.1.4 DS2 . 41

7.2 Changing Workload Experiments 43

7.2.1 TPCC1-BIGMEM to TPCC1-SMALLMEM 43

7.2.2 TPCC1-SMALLMEM to TPCC1-BIGMEM 45

7.2.3 TPCC1-BIGMEM to TPCC2-BIGMEM 47

7.2.4 TPCC2-BIGMEM to TPCC1-BIGMEM 49

7.3 Summary . 50

7.3.1 Hill Climbing . 51

7.3.2 Global Parabola Approximation 51

8 Conclusion and Future Work 53

vi

List of Tables

3.1 Standard notation used by the different algorithms 10

3.2 Summary of parameters for tuning algorithms 15

4.1 Standard Transaction mix of the TPC-C workload 17

4.2 TPCC2 workload Transaction mix 19

4.3 Workloads configurations . 20

5.1 Characteristics of the TPCC1-BIGMEM workload 24

5.2 Characteristics of the TPCC1-SMALLMEM workload 26

5.3 Characteristics of the TPCC2-BIGMEM workload 27

5.4 Characteristics of the DS2 workload 29

6.1 Various throughput levels with fixed ∆ of 10 31

6.2 Various throughput levels with fixed C value of 0.300 32

6.3 Various throughput levels with fixed C value of 0.5 33

6.4 Effect of Γ value on the throughput and number of threads for the
Global Parabola Approximation . 34

6.5 Number of times branches of the Global Parabola are taken for var-
ious Γ values . 34

6.6 Effect of Γ value on the throughput and number of threads for the
Local Parabola Approximation . 35

6.7 Number of times branches of the Local Parabola are taken for various
Γ values . 36

vii

List of Figures

2.1 Worker-per-connection architecture 4

2.2 Worker-per-request architecture . 4

3.1 Multi-Input Single-Output Controller Architecture 9

3.2 Control Interval Timeline . 10

3.3 Various shapes of throughput curves 11

3.4 A concave up and a concave down parabola 13

4.1 TPC-C Client application . 18

5.1 Throughput curve of TPCC1-BIGMEM 23

5.2 Client side response time of TPCC1-BIGMEM 23

5.3 CPU and Disk characteristics of TPCC1-BIGMEM 24

5.4 Throughput curve of TPCC1-SMALLMEM measured 25

5.5 CPU and Disk characteristics of TPCC1-SMALLMEM 25

5.6 Throughput curve of TPCC2-BIGMEM 26

5.7 Client side response Time vs. Number of Threads for TPCC2-
BIGMEM . 26

5.8 CPU and Disk characteristics of TPCC2-BIGMEM 27

5.9 Throughput of the DS2 workload 28

5.10 Client side response Time vs. Number of threads for DS2 28

5.11 CPU and Disk characteristics of DS2 29

6.1 Throughput and Number of threads vs. C 32

7.1 Performance of the Hill-Climbing algorithm with the TPCC1-BIGMEM
workload . 38

7.2 Performance of the Global Parabola Approximation algorithm with
the TPCC1-BIGMEM workload . 38

viii

7.3 Performance of the Hill Climbing algorithm with the TPCC1-SMALLMEM
workload . 39

7.4 Performance of the Global Parabola Approximation algorithm with
the TPCC1-SMALLMEM workload 39

7.5 Performance of the Hill Climbing algorithm with the TPCC2-BIGMEM
workload . 40

7.6 Performance of the Global Parabola Approximation algorithm with
the TPCC2-BIGMEM workload . 41

7.7 Performance of the Hill Climbing algorithm with the DS2 workload 42

7.8 Performance of the Global Parabola Approximation algorithm with
the DS2 workload . 42

7.9 Performance of the Hill Climbing algorithm while switching work-
loads from TPCC1-BIGMEM to TPCC1-SMALMEM 44

7.10 Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC1-BIGMEM to TPCC1-SMALMEM 44

7.11 Performance of the Hill Climbing algorithm while switching work-
loads from TPCC1-SMALLMEM to TPCC1-BIGMEM 46

7.12 Performance of the Parabola Approximation algorithm while switch-
ing workloads from TPCC1-SMALLMEM to TPCC1-BIGMEM . . 46

7.13 Performance of the Hill Climbing algorithm while switching work-
loads from TPCC1-BIGMEM to TPCC2-BIGMEM 48

7.14 Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC1-BIGMEM to TPCC2-BIGMEM . 48

7.15 Performance of the Hill Climbing algorithm while switching work-
loads from TPCC2-BIGMEM to TPCC1-BIGMEM 49

7.16 Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC2-BIGMEM to TPCC1-BIGMEM . 50

ix

Chapter 1

Introduction and Motivation

1.1 Thesis Statement

In this thesis we seek to explore the effect of changing the database server worker
thread pool size on the performance of the server. We will also attempt to develop
an online controller that can adjust the number of worker threads based on current
throughput level of the server to achieve and maintain better server performance
under varying workload conditions.

1.2 Motivation

More and more database servers are becoming an integral part of many software
systems. With the revolution of the Internet, the need for database systems that
can perform and sustain load has become a necessity rather than a luxury. Be-
cause database systems can be used in different environments, they are expected
to perform well under varying workloads. For this reasons, database vendors have
provided system administrators with different parameters or knobs that can be used
to tweak the performance of the server. These parameters or knobs help system
administrators utilize the potential capacity of the underlying hardware.

In this thesis we studied the effect of changing the number of worker threads (i.e.,
the multiprogramming level of the database server) on the throughput level of the
server. By studying this effect, we have a better understand how to automatically
adjust this parameter to match the changing workload characteristics or operating
environment. We developed a controller that can automatically react to changing
workload conditions.

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides background in-
formation on the multiprogramming level parameter and its effects on the database
server. We will also describe some of the previous research on this topic. Chapter 3
describes our controller design and the algorithms used by the controller to control
the number of worker threads. Chapter 4 describes the workloads that we used and
our test methodology and Chapter 5 describes the characteristics of these work-
loads. Chapter 6 discusses the sensitivity experiments that we performed to set the
different algorithm parameters. Chapter 7 evaluates our controller algorithms using
the test framework that we developed in Chapter 4. Finally, Chapter 8 summarizes
our conclusions.

1.4 Major Thesis Contributions

This thesis studies the effect of changing the number of database server worker
threads on the throughput level of the database server. We will use the industry
standard TPC-C workload as our main benchmark tool to demonstrate how this
parameter can impact the database server throughput levels.

We examine the effect of changing this parameter, and propose a controller
that can dynamically alter this parameter. We are hoping to achieve the following
objectives:

1. Allow a database server to better utilize the software and hardware resources
of the underlying system,

2. Allow a database server to adapt to changing workload conditions, and

3. Allow a database server to achieve 1 and 2 without external intervention using
autonomic control of the server multiprogramming level.

Chapter 2

Background and Related Work

2.1 Background

Database servers are used in many software systems, including accounting sys-
tems, inventory control systems, content management systems, human resources
databases, online stores, and many others. The widespread use of database sys-
tems in many business areas has created varying performance expectations. In order
to stay highly competitive in the database server market, database server vendors
have provided customers with many tweaking parameters or knobs that can be used
to adjust many of the server’s internal algorithms to operate at a rate that achieves
maximum throughput. Having one or two parameters to tweak might be an easy
task, but current commercial database servers have over hundred parameters that
can alter the server’s behaviour [4]. A very skilled Database Administrator (DBA)
would not only need to have internal knowledge of the working of the database
server, but would also need to be very familiar with the access patterns and charac-
teristics of the application workload. These two requirements make finding skilful
DBAs a difficult and expensive task.

In recent years, researchers have started looking at ways to help reduce the total
cost of ownership of maintaining and operating a database system. A new area of
research has emerged that aims to create what are called self-tuning database sys-
tems [10, 28, 27]. Database servers with self-tuning algorithms respond to changing
workload characteristics or operating system conditions with minimal or virtually
no DBA intervention. Two areas in which self-tuning algorithms have been success-
fully used are automatic cache management [16, 24] and self-tuning histograms [7].

When it comes to servicing database server requests, there are two main archi-
tectures that can be identified:

1. Worker-per-connection architecture: In this architecture there is a one-
to-one mapping between database server connections and database server
workers. A worker is created once a connection is established and is respon-
sible for servicing all requests from that connection. When that connection

3

CHAPTER 2. BACKGROUND AND RELATED WORK 4

Figure 2.1: Worker-per-connection architecture

Figure 2.2: Worker-per-request architecture

closes, its associated worker is either terminated or added to an idle workers
queue. Figure 2.1 illustrates this architecture.

2. Worker-per-request architecture: In this architecture there is one queue
that is used to queue all database server requests from all connections. A
worker dequeues a request from the request queue, processes the request and
then goes back to process the next available request in the queue or block
on an idle queue. In this configuration, there are no guarantees that a single
connection will be serviced by the same worker. Figure 2.2 illustrates this

CHAPTER 2. BACKGROUND AND RELATED WORK 5

architecture.

In our work we will be looking at the latter architecture as it has proved to be
more effective and to have less overhead (if configured properly) compared to the
first architecture [22]. In addition, many of the widely used commercial database
servers (e.g., MS SQLServer [3], Oracle, and SQLAnywhere [15]) employ this ar-
chitecture. The only difficult issue with this architecture is how to set the size of
the worker pool to achieve good throughput levels [13]. This parameter effectively
controls the multiprogramming level of the server. DBAs have two choices when
setting the value of this parameter:

1. Large number of worker threads: Using a large value for the number of workers
can allow the server to process a large number of requests simultaneously.
However, the drawback is that there is a substantial risk that a large number of
workers can put the server into a thrashing state due to hardware or software
resource contention or to excessive context switching between threads [21, 11].
Another issue with a large number of workers is that each thread has its own
stack. Having many threads can consume a substantial part of a process’s
address space. This can negatively affect the size of the database server buffer
pool that is available to cache database pages. This issue is more critical for
32-bit database servers.

2. Small number of worker threads: The immediate benefit of this approach
is that the server has more memory to be used for caching. However, the
drawback is that the multiprogramming level of the server is reduced and the
hardware resources maybe under-utilized.

In order to better decide on the best value to use for the number of worker
threads, DBAs would run load tests as part of their capacity planning process
to find a value that can achieve the minimum required response time needed by
the database application. Bowei et al. describe a smart hill-climbing approach to
configuring application servers [29]. A similar algorithm can be applied to database
servers. Although the experimental approach can be very effective in configuring the
database server multiprogramming level parameter, it suffers from some drawbacks.
One of the drawbacks is that this parameter setting is only good under the tested
conditions and might not handle different or changing workload characteristics.
In addition, this discovered value is very specific to the hardware on which the
experiments were performed. If a hardware upgrade is performed, the selected
value might be too conservative for the new hardware.

In this thesis we are proposing an online controller that can be used to au-
tomatically adjust the multiprogramming level of the database server to achieve
maximum throughput. We now describe related work in this area.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.2 Related Work

One of the earliest papers that exposed the problem of adaptive load control in
database system was by Heiss and Wagner [14]. In that paper, the authors outlined
different sources of contention and suggested a possible feedback control mechanism
that limits the concurrency level of the server. Two different algorithms were pro-
posed: an Incremental Steps (IS) approach and a Parabola Approximation (PA)
approach. In the IS approach, the controller monitors the throughput level of the
server and the current concurrency level. The controller would then increase the
concurrency level and monitor its affect on the throughput of the server. If the
throughput increases, the controller keeps on increasing the concurrency level; con-
versely, if the throughput decreases, the controller would reduce the concurrency
level up to the point that throughput level would start to suffer. In the PA approach,
the performance of the server is approximated using a parabolic function. We have
based our algorithms on those two algorithms, but we have extended them. Heiss
and Wagner used simulation to validate their findings. In our approach we used a
real commercial database server and the industry standard TPC-C workload [25]
for validation.

Mönkeberg and Weikum attempted to solve the problem of data contention
thrashing in database systems [20]. They proposed an adaptive load control method
that is based on one performance metric: conflict ratio. The conflict ratio is the
ratio of the number of locks that are held in the system divided by the number of
locks held by active (non-blocked) transactions in the system. If the conflict ratio
exceeds 1.3 (derived through empirical studies) then data contention (DC) thrash-
ing is detected. Load control is accomplished by two methods: admission control
and transaction cancellation. The adaptive load control is performed before the
beginning of a transaction (BOT) or after the end of a transaction (EOT). In ad-
dition, Mönkeberg and Weikum also suggest using information about transactions
to decide what admission policies to use. In Mönkeberg and Weikum’s work, the
multiprogramming level is adjusted by increasing the number of transactions that
enter the system. Their approach assumes that database servers are the only oper-
ating process on the server machine. Our approach is more general in that it takes
into account contention on hardware resources or changing operating conditions of
the server.

Brown et al. attempted to automate performance tuning by adjusting different
knobs: the multiprogramming level and the amount of memory used by trans-
actions [9]. The proposed tuning algorithm relies on classifying transactions by
expected response time goals. Our approach is different in that we will have no
prior knowledge of the cost of transactions or any classification of transactions. In
addition, Brown et al. used a simulated environment to evaluate their technique
while we used a real commercial database system.

Recent research by Bianca Schroeder and colleagues has considered adjusting the
multiprogramming level by adjusting the number of threads in the server worker

CHAPTER 2. BACKGROUND AND RELATED WORK 7

pool [22]. This work includes an experimental study on how the multiprogram-
ming level affects throughput and mean response time. She proposed an external
scheduling controller that adjusts the multiprogramming level based on periods of
observations and reactions. The controller used a simple feedback control loop.
Our work builds on this work. We go further into looking at different algorithms
for the control loop and we also study how those algorithms react to changes in
workload conditions. In addition, our controller design is implemented within the
database server.

In similar research, Xue et al. looked at optimizing online response time of
the Apache [12] web server [19]. They focused on online tuning the MaxClients
parameter of the Apache web server which controls the multiprogramming level of
the server. They looked at different controller algorithms including hill climbing and
a heuristic based one. In their work they found that such online tuning technique
help reduce response time by a factor of 10 or more. One of their future work
items was to implement these techniques in more complicated server applications
such as a database server or an application server. Our work implements a similar
tuning algorithm in a database server. The complications in a database server come
from the fact that database server workloads usually result in contention for other
software resources such as data structures and internal database server algorithms.

In summary, most previous research on adjusting the multiprogramming level
was evaluated in simulated environments. Our work attempts to look adjusting the
multiprogramming level for improving the performance of the database server. We
are using a commercial database system with one of the industry standard online
transaction processing (OLTP) workloads.

The next chapter will describe our controller architecture and the algorithms
that the controller uses to automatically tune the database server multiprogram-
ming level.

Chapter 3

Design and Implementation

In this chapter we will describe the architecture of our controller and the three
different algorithms that we have developed for controlling the multiprogramming
level.

3.1 Controller Architecture

Any controller design involves a set of inputs and a set of outputs. We will be
using a multi-input single-output (MISO) controller. Figure 3.1 illustrates the
architecture of the controller. For inputs, our controller will monitor the throughput
level of the server. This is measured by the number of server-side requests (not
transactions) completed per minute. A single client transaction can involve one or
more server requests. For example, a simple insert transaction could involve the
following operations:

• Prepare the SQL statement

• Bind the input parameters and send the data

• Execute the statement

• Retrieve the result

Every one of those operations could translate into a server side request.

Another input parameter that the controller uses is the total number of requests
that are outstanding at the server. We will call this number the workload concur-
rency level and it is the sum of the number of requests that are waiting in the
request queue and the number of requests that are being serviced by the worker
pool. For example, if the worker pool size is 10 and all of the 10 workers are busy
servicing requests and there are 5 requests waiting in the request queue, then the
workload concurrency level of the server is 15.

8

CHAPTER 3. DESIGN AND IMPLEMENTATION 9

Another input to the controller is the control interval. If the interval is too
small, then there will be large oscillations and the server will not be stable. On the
other hand, if the interval is too big, it will take the controller a long time to adapt
to changing workload conditions. In our implementation we will fix the interval to
one minute and will not change it throughout our experiments. This length should
give the server enough time to stabilize at the next multiprogramming level.

The controller’s output is the multiprogramming level that the server will use
during the next control interval.

Figure 3.1: Multi-Input Single-Output Controller Architecture

3.2 Auto-tuning Algorithms

In this section we will describe the three algorithms that we will be studying.
Table 3.1 introduces some standard notation that we will be using to describe the
three algorithms.

To help understand our notation, Figure 3.2 shows a timeline and how the
different values relate to each other according to time. The parameter n∗(ti) is the
current number of threads during the control interval ti−1 < t ≤ ti. The n∗(ti) value
is fixed during a control interval and does not change. P (ti) is the total number
of requests that completed during the control interval ti−1 < t ≤ ti. The workload
concurrency level n(ti) is measured only once at ti and is not averaged.

Another concept that we need to introduce is the throughput curve. A through-
put curve is a function that describes the relationship between the multiprogram-
ming level and the throughput of the server. The x-axis is the multiprogramming
level and is measured by the number of threads. The y-axis is the throughput level.

CHAPTER 3. DESIGN AND IMPLEMENTATION 10

Notation Description

ti End of the current control interval and start of the next control
interval ti+1.

n∗(ti) The number of worker threads the server has available during the
control interval (ti−1, ti]. This is the control variable.

n(ti) The workload concurrency level at time ti.
P (ti) The actual measured throughput level of the server at time ti.

The throughput is the number of requests that completed during the
previous measurement interval.

Table 3.1: Standard notation used by the different algorithms

Figure 3.2: Control Interval Timeline

Different workloads have different throughput curves. Figure 3.3 shows some ex-
amples of throughput curves. Figure 3.3a shows a hill-shaped curve. Web servers
usually follow this throughput curve shape [8]. Figure 3.3b shows a throughput
curve that does not depend on multiprogramming level until it is high, at which
point it starts to decline. Figure 3.3c shows a throughput curves that starts as a
hill-shaped curve but then flattens out (possibly because of some resource becoming
fully utilized.) The shape of a throughput curve depend on many factors including
the workload, the dependencies between requests, and the contention for hardware
or software resources.

Our primary goal is to maximize server throughput. Our secondary goal is to
minimize the multiprogramming level. The secondary goal is included because in
some workloads it is possible that the throughput is not affected by the multipro-
gramming level. Having a large number of threads will not only increase contention
within the server, but will also make the server susceptible to load spikes. Load
spikes can happen if there is a burst of transactions at the server that use up all the
available workers. Those load spikes can put the server into a thrashing state that

CHAPTER 3. DESIGN AND IMPLEMENTATION 11

(a) (b) (c)

Figure 3.3: Various shapes of throughput curves

the server can not recover from. In addition, having extra threads wastes resources
such as memory and CPU. Such resources can be better utilized for other purposes
especially in a database server.

In all of the algorithms described in the following section, if the concurrency
level n(ti) is less than the current number of threads n∗(ti), then the server reduces
the number of worker threads to match the measured concurrency level. In other
words,

n∗(ti+1) = n(ti) if n∗(ti) > n(ti)

Given this rule, the algorithm discussions below will assume that the concurrency
level n(ti) is greater than or equal the number of server threads n∗(ti). This is be-
cause threads above and beyond the number needed to accommodate the workload
concurrency level will be idle and will not provide any benefit.

3.2.1 Hill Climbing

The goal of this algorithm is to keep following the throughput curve as long as the
percentage of change in throughput is at least C times the percentage change in the
number of threads. On the other hand, if decreasing the number of threads increases
performance, then we keep doing so until the performance starts to degrade. This
difference between the upward direction and downward direction is due to the fact
that this algorithm has bias towards the downward direction. This bias is included
to accomplish our second goal of keeping the number of threads as low as possible
as well as preventing the controller from going astray in cases where the throughput
curve flattens out such as in Figure 3.3c. If the algorithm does not see any gains
in throughput in either the forward or backward direction, it will backtrack to the
previous multiprogramming setting.

The second parameter that this algorithm depends on is the step size ∆. The
step size controls how fast the algorithm converges.

CHAPTER 3. DESIGN AND IMPLEMENTATION 12

The algorithm can be described by the following formula:

n∗(ti+1) :=

n∗(ti) + ∆ if n∗(ti) ≥ n∗(ti−1) and P (ti)−P (ti−1)

P (ti−1)
≥ C n∗(ti)−n∗(ti−1)

n∗(ti−1)

n∗(ti)−∆ if n∗(ti) < n∗(ti−1) and P (ti) > P (ti−1)
n∗(ti−1) otherwise

where the parameter C takes values from 0 to 1.

This algorithms basically tries to build on the fact that each additional thread
added to the worker pool is going to have a smaller benefit (i.e. requests completed)
compared to the previous thread. This happens because every additional thread
added is going to consume additional memory (for stack and other thread local
storage data) and additional CPU overhead (context switching time and CPU cache
pressure).

3.2.2 Global Parabola Approximation

This algorithm attempts to model the throughput curve as a parabolic function.
We choose a parabola as a model for several reasons. First, a parabola can have a
concave downward shape similar to the throughput function found in many servers.
Second, the parabola is easy to use and easy to compute. Third, although the
real throughput function might have a tail that flattens out, the first part of the
throughput function can be modeled well after a parabola and we do not need to
model the tail part where the server can have degraded performance levels.

In order to approximate a parabola, we need three data points. Two of the data
points will be based on two observations of throughput at some multiprogramming
level. For the third point we will use the origin, hence, the global aspect of the
parabola approximation. The equation of the throughput curve as a parabolic
function is:

P (ti) = a(n∗(ti))
2 + b(n∗(ti)) + c

The two points that we will be using are (n∗(ti),P (ti)) and (n∗(ti−1),P (ti−1)). Using
the following equations, we can solve for a, b, and c:

a =
P (ti)n

∗(ti−1)− P (ti−1)n
∗(ti)

n∗(ti)n∗(ti−1)(n∗(ti)− n∗(ti−1))

b =
P (ti−1)− a(n∗(ti−1))

2

n∗(ti−1)

c = 0

Once we have the values of a, b, and c, the algorithm tries to move to the n∗ that
maximizes throughput. This would be the point where the slope is 0.

n∗(ti+1) =
−b
2a

CHAPTER 3. DESIGN AND IMPLEMENTATION 13

Because of possible noise in the measurements, it is possible that a could be pos-
itive. A positive a coefficient models a parabola that is concave up and, hence,
does not model a realistic throughput curve. Figure 3.4 illustrates how noise at
multiprogramming level 180 generated a concave up parabola. In this example, the
controller would suggest moving to point 45. This is clearly a bad step from 180.

Figure 3.4: A concave up and a concave down parabola

If the computed parabolic function is upward opening then we ignore the col-
lected data and just move forward (or backward) by a random number of steps
between 0 and ∆. We keep on alternating between moving forward or backward
every time we hit this condition until we start getting more appropriate parabolic
functions with positive a coefficient. We alternate forward and backward because
the data we collected does not give us a proper direction so we go in either direction
to introduce randomness.

On the other hand, noise in the measurement data can also cause the controller
to suggest a new value that is too large. In this case, we use a parameter Γ to
cap the step size. The Γ value is basically a percentage of the current number of
threads. For example, a Γ value of 0.3 would cap the steps size to 30% of the
current number of threads. Chapter 6 will go into detail on how we choose the
values of this parameter and its affect on the performance of the algorithm.

The algorithm actions can be summarized by the following function:

n∗(ti+1) :=

{
min(−b

2a
, (Γ + 1)n∗(ti)) if a < 0 and −b

2a
6= n∗(ti)

n∗(ti)± rand(0,∆) otherwise

CHAPTER 3. DESIGN AND IMPLEMENTATION 14

3.2.3 Local Parabola Approximation

This algorithm is similar to the previous algorithm, the only difference is that it
uses the last three observations to solve for the parabolic function. It does not
assume that the parabola passes through the origin as in the previous algorithm,
hence, the local aspect of the algorithm. By taking the last three data points we
are hoping to get a better local approximation of the throughput curve in order to
estimate the apex of the curve. The local parabola will give us a local maximum,
unlike the global parabola algorithm which gives us a global maximum.

The a, b, and c parameters of the parabola can be computed as follows:

a =
(P (ti−2)− P (ti))− (n∗(ti−2)−n∗(ti))(P (ti−1)−P (ti))

(n∗(ti−1)−n∗(ti))

(n∗(ti−2)− n∗(ti))(n∗(ti−2)− n∗(ti−1))

b =
(P (ti−1)− P (ti))− a(n∗(ti−1)

2 − n∗(ti−1)
2)

(n∗(ti−1)− n∗(ti))

c = P (ti)− an∗(ti)2 − bn∗(ti)

Once we have the equation of the parabola, the algorithm reacts as follows:

n∗(ti+1) :=

{
min(−b

2a
, (Γ + 1)n∗(ti)) if a < 0 and −b

2a
6= n∗(ti)

n∗(ti)± rand(0,∆) otherwise

Because of noise in the data, it is possible that two or more of the observations
have identical n∗ values but different P values. If this happens, then we alternate
moving forward or backward by a random number of steps between 0 to ∆. This
algorithm also uses a Γ parameter to limit the change in number of threads to a
percentage Γ of the current multiprogramming level.

Summary

In this chapter we have introduced the three auto-tuning algorithms that we have
developed. Table 3.2 summarizes the three algorithms and their parameters. Chap-
ter 6 will go into details on what values we decided to use for those parameters.

CHAPTER 3. DESIGN AND IMPLEMENTATION 15

Algorithm Parameters Parameter Description

Hill Climbing ∆ step size
C performance gain ratio threshold

Global Parabola Approximation ∆ maximum wiggle step size
Γ maximum percentage change in n∗

Local Parabola Approximation ∆ maximum wiggle step size
Γ maximum percentage change in n∗

Table 3.2: Summary of parameters for tuning algorithms

Chapter 4

Workloads and Test Methodology

In order to further motivate our problem and see how the auto-tuning algorithms
react with different workloads, we will describe in this chapter the benchmarks we
used and our test methodology. Section 4.1 describes the database server software.
Section 4.2 describes hardware configurations. Section 4.3 describes the workloads
that we used, and Section 4.4 discusses our test methodology and the experiments
that we performed.

4.1 Database Server Software

For our experiments we used SQL Anywhere [17] as our database server. SQL Any-
where is a full-fledged commercial database server that can serve many concurrent
users simultaneously and has row level locking. SQL Anywhere is a multi-platform
database server. It can run on a wide range of operating systems and on many of
the popular handheld platforms. We have chosen SQL Anywhere because we have
access to the source code and because its internal architecture is well known to us.
We used a database page size of 4KB in all of our databases.

4.2 Hardware Configuration

The database server machine consists of a 32-bit dual 1.80GHz Intel Xeon (Presto-
nia) processor machine running Windows 2003 Enterprise Server. The machine has
8KB of L1 cache, 512KB of L2 cache, and 2GB of RAM. The disk system consists
of a 48 spindle disk array configured as RAID 0 with a stripe size of 64KB.

For the DS2 workload explained in Section 4.3.2, we used separate client machine
to run the driver application. The client machine is a 64-bit 4-way 2.40GHz AMD
Opteron processor machine running Windows 2003 Enterprise server. The machine
has 64KB of L1 cache, 1024KB of L2 cache, and 16GB of RAM.

16

CHAPTER 4. WORKLOADS AND TEST METHODOLOGY 17

4.3 Workloads

For our experiments, we derived four workloads from two different benchmarks.
The first three workloads are based on the TPC-C benchmark and are described in
Section 4.3.1. The fourth workload is based on the DS2 benchmark and is described
in Section 4.3.2

4.3.1 TPC-C

We used the industry standard TPC-C workload [25]. The TPC-C workload simu-
lates the activities of a complex online transaction processing (OLTP) application
environment. The TPC-C benchmark simulates a number of warehouses. Each
warehouse serves 10 districts. Each of the districts has a terminal in which trans-
actions are entered. There are five types of transactions in the TPC-C workload:
New Order, Payment, Order-status, Delivery, and Stock-level. Table 4.1 shows the
transaction mix of the TPC-C workload.

Transaction type Percentage in mix

New Order 45%
Payment 43%

Order-status 4%
Delivery 4%

Stock-level 4%

Table 4.1: Standard Transaction mix of the TPC-C workload

The performance metric of the TPC-C standard is the number of New Order
transactions that complete within the 90th percentile of target transaction response
times. For our purposes, we will be basing our metric on the server side measured
throughput. This will include all TPC-C transaction types and not the New Order
transaction only.

We have chosen the TPC-C workload because it is an OLTP workload. Other
benchmarks such as TPC-H [26] would not be a good benchmark for us as it mea-
sures the speed of the server computation algorithm. The TPC-C workload has the
following attractive characteristics:

• Simultaneous execution of multiple transaction types that span a breadth of
complexity,

• Multiple on-line terminal sessions: this feature allow us to have many con-
nections open simultaneously to the server,

• Moderate system and application execution time,

CHAPTER 4. WORKLOADS AND TEST METHODOLOGY 18

• Significant disk I/O,

• Non-uniform distribution of data access through primary and secondary keys

• Databases consisting of many tables with a wide variety of sizes, attributes,
and relations

• Contention on data access and update

The client application that we used emulates the TPC-C terminals. Using
command line options, the client application can be configured to generate different
load characteristics by specifying the number of warehouses. A pool of threads in
the client is created to emulate the warehouses’ terminals. Figure 4.1 illustrates
the TPC-C client application testing environment. The client application runs on
the same machine as the database server. Communication with the database server
is done through shared memory. We have not observed a need to have the client
run on a separate machine since the processing done by the client is very minimal
and only takes a few percentages of the server’s CPU utilization. The logic for all
transactions is implemented in stored procedures on the server side. All that the
client application does is call the stored procedures with different parameters.

Figure 4.1: TPC-C Client application

For our purposes, we used two transaction mixes of the TPC-C workload. We
will call them TPCC1 and TPCC2. TPCC1 uses the same transaction mix as the
standard TPC-C workload but differs in that there is no think time or keying time.
In other words, transaction are issued as fast as the server can handle them. Setting
the think time and keying time to zero allow us to generate a reasonable load on
the database server using a smaller database.

CHAPTER 4. WORKLOADS AND TEST METHODOLOGY 19

Transaction type Percentage in mix

New Order 25%
Payment 63%

Order-status 4%
Delivery 4%

Stock-level 4%

Table 4.2: TPCC2 workload Transaction mix

TPCC2 uses a slightly modified transaction mix than TPCC1. Table 4.2 shows
the transaction mix of the TPCC2 workload.

Like TPCC1, TPCC2 also sends transactions to the server as fast as the server
can process them. The TPCC2 workload has fewer I/O requirements (compared to
TPCC1) as it processes fewer New Order transactions.

In addition to varying the transaction mix, we varied the database server buffer
pool size. We used two buffer pool configurations: SMALLMEM and BIGMEM. In
the SMALLMEM configuration, we configured the server buffer pool size to 500MB.
In the BIGMEM, it was configured to 1GB.

The TPC-C database that we used in our workloads was a 150 warehouse
database. Its size is 13.8GB.

With different transaction mixes and different buffer pool configurations, we
now have three different workload configurations based on the TPC-C benchmark:

• TPCC1-BIGMEM

• TPCC1-SMALLMEM

• TPCC2-BIGMEM

4.3.2 DS2

The DS2 [1] benchmark simulates an online e-commerce DVD store. It supports
multiple back-end databases including one for Microsoft SQL Server [2], Oracle [6],
and MySQL [5]. For our benchmark purposes, we implemented the SQL Anywhere
back-end driver. The benchmark can be configured in one of three different scales:
small, medium, and large. The database size of the small scale is 10MB, the
size of the medium scale is 1GB, and the size of the large scale is 100GB. In our
experiments we used the medium scale configuration. The DS2 benchmark is also
an OLTP workload but it has different transaction costs and requirements than the
TPC-C.

Every thread performs a predefined sequence of operations:

CHAPTER 4. WORKLOADS AND TEST METHODOLOGY 20

1. Login with an existing web site user id or create a new one. By default
percentage of new web site users is 20%,

2. Perform some browse operations on the database to lookup DVD authors or
titles,

3. Place an online purchase order of 1 or more items, and

4. Perform some think time and then go to step 1. The default think time is set
to 0 seconds.

The benchmark driver allows us to control many parameters, of which the fol-
lowing are of interest to us:

• Number of threads (i.e. database connections),

• Duration of the warm-up period,

• Duration of the test period,

• Duration of the think time.

4.3.3 Summary

Our four workload configurations are summarized in table 4.3.

Configuration Transaction Mix Buffer Pool Size DB Size

TPCC1-BIGMEM TPCC1 1.0GB 13.8GB
TPCC1-SMALLMEM TPCC1 500MB 13.8GB
TPCC2-BIGMEM TPCC2 1.0GB 13.8GB
DS2 DS2 250MB 1.0GB

Table 4.3: Workloads configurations

4.4 Methodology

All of our experiments were done in a closed system [23]. In this setup, requests
arrive at the server at the same rate that the server can complete them. Little’s
law [18] states that N = λT , where N is the number of concurrent requests, λ is the
arrival rate, and T is the response time. Since the arrival rate equals the departure
rate (throughput), and since N is constant, throughput will be inversely related to
response time T .

CHAPTER 4. WORKLOADS AND TEST METHODOLOGY 21

In order to understand how each workload is affected by the server multipro-
gramming level, we perform a set of workload characterization experiments for each
of the four workloads. In every characterization experiment, we configure and start
the database server with a fixed number of threads. We then run the workload and
record the overall throughput level as seen from the point of view of the server.
This experiment is then repeated for a new fixed number of threads until we have
covered the range from zero to the maximum number of client connections. We also
collect various OS statistics such as CPU and disk utilization. The purpose of these
experiments is to allow us to draw the throughput curve for each of these workloads
and also reveal the range of multiprogramming values that achieve optimal server
throughput.

Although we are using SQL Anywhere as our database server, the same pro-
cedure can be used with any other database server. The shape of the throughput
curve that we generate depends on many factors including the database server soft-
ware, the workload, and the hardware configuration. Different database servers
might produce different throughput curves. The characterization experiments will
help us understand how the throughput curve look like for the given software and
hardware configuration that we have.

Before being able to judge how well the algorithms react to different workloads,
we need to select a set of parameters to be used throughout our experiments. To do
so, we have to have a good understanding of how each algorithm’s parameter affects
its behaviour and we have to be able to choose good values for these parameters. We
perform a set of parameter sensitivity experiments in which we study how each of
the parameters affect the way the algorithms behave. These sensitivity experiments
will help us in choosing values for these parameters. Chapter 6 documents the
results of these experiments.

After completing the sensitivity experiments, we try our workloads with each
of the auto-tuning algorithms that we have discussed in Chapter 3. These experi-
ments will allow us to study how well each of the algorithms was able to reach the
range of good multiprogramming values that we have discovered in the workload
characterization experiments.

Finally, we study how well the algorithms react to changing workload conditions.
In the real-world, a workload condition can change if either the resources on the
server machine become limited or if the transaction mix of the workload changes.
We will be testing for both of those change conditions by starting an experiment
with one of the workload and then half way throughout the run we switch to a
different workload. These experiments would simulate close to real-world scenarios
of how workloads can change either in resource requirements or in transaction mix.
We will study how well each of the algorithms react to these external changes.

Chapter 5

Workload Characterization

The purpose of this chapter is to illustrate how each of the workloads behave when
the number of database server threads is altered. For each of the workloads that
that we introduced in Section 4.3, we ran the benchmark with a fixed number of
threads then the same experiment was repeated for a different number of threads.
We repeated these experiments from 20 to the maximum number of clients of 500.
Using the data collected from these experiments we deduce the throughput curve
shape for each workload. The throughput curve will help us identify a range of
multiprogramming values that can achieve high throughput. In all of the workload
characterization experiments, the response time was measured on the client side
only.

5.1 TPCC1-BIGMEM

Figure 5.1 shows the throughput curve for the TPCC1-BIGMEM workload mea-
sured at the server side and at the client side. We can see from the two curves that
the throughput curve of the client closely resembles that of the server even though
the throughput on the server is measured in requests per minute while on the client
it is measured in transactions per second. A client side transaction can translate
into one or more server side requests. Since our tuning algorithms are implemented
in the server, we will henceforth focus on server side throughput.

The TPCC1-BIGMEM throughput curve starts as hill-shaped curve but then
it flattens out. The throughput climbs quickly from 10 threads to 100 threads.
The throughput level with 410 threads matches the throughput level at 50 threads
and not that at 10 threads. Between 110 and 230 threads, the throughput level is
almost constant. Such a flat curve between 110 and 230, would make it difficult
for an auto-tuning algorithm to easily detect that we have reached the peak of the
hill. Instead, the algorithm may stray in the flat part of the curve.

Figure 5.2 shows the response time measured on the client side. If we com-
pare this curve to client side throughput curve in Figure 5.1b, we can see that the

22

CHAPTER 5. WORKLOAD CHARACTERIZATION 23

(a) Server side (b) Client side

Figure 5.1: Throughput curve of TPCC1-BIGMEM

Figure 5.2: Client side response time of TPCC1-BIGMEM

throughput is inversely related to response time. Our experiments are run in a
closed system, hence, the N value in Little’s law (N = λT) is fixed. Since N (num-
ber of clients) is fixed, the response time will be inversely related to throughput.

Figure 5.3a shows the CPU characteristics of the TPCC1-BIGMEM workload.
The CPU utilization averages 80% once the number of threads exceeds 100 threads.
The fact that beyond 100 threads the CPU utilization stays constant indicates that
some resource has been fully utilized.

In terms of disk usage, we can see from Figure 5.3b that disk transfers increase
until it levels off at around 50 threads. It then starts to drop when the number of
threads exceed 200. This drop in disk transfers indicates that either there is high
contention for disk access or that the server is not issuing enough I/O. Contention

CHAPTER 5. WORKLOAD CHARACTERIZATION 24

for server data structures could cause the server to issue fewer I/Os.

Table 5.1 summarizes the characteristics of the TPCC1-BIGMEM workload. For
TPCC1-BIGMEM, a good setting for the multiprogramming level is between 67 and
278 threads. This range achieves 90% of the maximum throughput observed with
this workload. This range is shown by vertical and horizontal lines in Figure 5.1a.

(a) Average CPU utilization (b) Disk I/O transfers

Figure 5.3: CPU and Disk characteristics of TPCC1-BIGMEM

Characteristic Value

Optimal number of threads 67 - 278
Optimal throughput 13898 - 15347 requests/minute

Table 5.1: Characteristics of the TPCC1-BIGMEM workload

5.2 TPCC1-SMALLMEM

Figure 5.4 shows the throughput measured at the server side and at the client
side. The throughput curve for TPCC1-SMALLMEM shows that the more threads
that are added, the more the throughput will increase. This is due to the fact
that the TPCC1-SMALLMEM workload has half the buffer pool size of TPCC1-
BIGMEM. With TPCC1-SMALLMEM, there is more contention for disk resources.
If we compare the disk transfers of TPCC1-BIGMEM in Figure 5.3b to the disk
transfers of TPCC1-SMALL in Figure 5.5b, we can see that TPCC1-SMALLMEM
has higher disk transfers.

The average CPU utilization increases steadily with throughput as shown in
Figure 5.5a. The more threads are added, the more there will be overlap between

CHAPTER 5. WORKLOAD CHARACTERIZATION 25

(a) Server side (b) Client side

Figure 5.4: Throughput curve of TPCC1-SMALLMEM measured

(a) Average CPU utilization (b) Disk I/O transfers

Figure 5.5: CPU and Disk characteristics of TPCC1-SMALLMEM

I/O and CPU and throughput increases. This indicates that more disk throughput
can be utilized by increasing the multiprogramming level.

The throughput curve here does not resemble a hill-shaped curve; hence, a
tuning algorithm that is looking at throughput only as a metric will likely tend to
keep on increasing the number of worker threads as it will observe that throughput
is improving.

Table 5.2 summarizes the characteristics of the TPCC1-SMALLMEM workload.
In this workload we have observed that a multiprogramming level between 195 and
500 can achieve 90% of maximum throughput. Since this is a large range of values,
a good tuning algorithm will attempt to stay on the lower side of this range.

CHAPTER 5. WORKLOAD CHARACTERIZATION 26

Characteristic Value

Optimal number of threads 195 - 500
Optimal throughput 5627.89 - 6253.22 requests/minute

Table 5.2: Characteristics of the TPCC1-SMALLMEM workload

5.3 TPCC2-BIGMEM

(a) Server side (b) Client side

Figure 5.6: Throughput curve of TPCC2-BIGMEM

Figure 5.7: Client side response Time vs. Number of Threads for TPCC2-BIGMEM

TPCC2-BIGMEM has a different transaction mix compared to TPCC1-BIGMEM
but it uses the same buffer pool size of 1GB. Figure 5.6 shows the throughput at
both the server and at the client side. We can see from the server side curve that to

CHAPTER 5. WORKLOAD CHARACTERIZATION 27

(a) Average CPU utilization (b) Disk I/O transfers

Figure 5.8: CPU and Disk characteristics of TPCC2-BIGMEM

achieve at least 90% of maximum throughput, the multiprogramming level needs
to be between 106 and 417. This is a slightly larger range than that of TPCC1-
BIGMEM which was between 67 and 278.

The response time curve (shown in Figure 5.7) also shows how the throughput is
inversely related to response time. Figure 5.8 shows the CPU and disk characteris-
tics of the TPCC2-BIGMEM workload. Disk transfers of TPCC2-BIGMEM (shown
in Figure 5.8b) are fewer than those of TPCC1-BIGMEM (shown in Figure 5.3b).
Table 5.3 summarizes the characteristics of the TPCC2-BIGMEM workload.

Characteristic Value

Optimal number of threads 106 - 417
Optimal throughput 15753 - 17503 requests/minute

Table 5.3: Characteristics of the TPCC2-BIGMEM workload

5.4 DS2

For the DS2 workload, Figure 5.9 shows the throughput level both at the client
and at the server. One thing that is different about this workload is that at high
multiprogramming levels, the server throughput looks like it is increasing while the
client side throughput level is actually decreasing. Further investigation into the
reason for the difference revealed that in the DS2 workload a failed new customer
transaction is not counted as a transaction and the client retries until a new cus-
tomer id is generated. With large numbers of server threads, more new customer
transactions fail because of deadlock errors. Because of this, the server has counted

CHAPTER 5. WORKLOAD CHARACTERIZATION 28

(a) Server side (b) Client side

Figure 5.9: Throughput of the DS2 workload

Figure 5.10: Client side response Time vs. Number of threads for DS2

failing transactions that the client has not counted. We will ignore the section of the
throughput curve for multiprogramming levels beyond 350 as the rate of deadlock
error was high and that would change the transaction mix at the server.

One other characteristic of this workload is that the throughput level stays
steady from 20 to 350 threads. Taking 90% of optimal throughput would include
a narrower range (150 to 290 threads). The variations at 170 and 270 threads look
like noise. Therefore, we will consider any multiprogramming level between 0 and
350 as an optimal setting.

In terms of response time (shown in Figure 5.10), we can see that it is inversely
related to throughput. Figure 5.11 shows the disk and CPU characteristics of the
DS2 workload. We can see that the DS2 benchmark is CPU bound. This is different

CHAPTER 5. WORKLOAD CHARACTERIZATION 29

from all of the previous workloads. In terms of disk usage, the disk transfers of
DS2 is in the 350 to 400 transfers per second range compared to the previous
workloads, which were in the 2,500 disk transfers range. Table 5.4 summarizes the
DS2 workload characteristics.

(a) Average CPU utilization (b) Disk I/O transfers

Figure 5.11: CPU and Disk characteristics of DS2

Characteristic Value

Optimal number of threads 0 - 350
Optimal throughput 69254.11 - 91277.64 requests/minute

Table 5.4: Characteristics of the DS2 workload

Chapter 6

Algorithm Parameter Sensitivity
and Tuning Experiments

This chapter presents the results of the experiments that were conducted to mea-
sure the sensitivity of each of the auto-tuning algorithms to their parameters. The
TPCC1-BIGMEM workload was chosen as the benchmark for the sensitivity exper-
iments as it is the closest workload to the industry standard TPC-C benchmark.
In these sensitivity experiments we fix one of the parameters and vary the other.
As was mentioned earlier, the control interval duration is set to 1 minute and will
not be varied.

6.1 Hill Climbing

The hill climbing algorithm depends on the following parameters: C and ∆. The
C parameter governs how much change in throughput from the last added thread
is enough to trigger a change in the number of threads. In other words, if the
last thread added to the pool achieves at least C percentage change in throughput
compared to the previous thread then we continue adding threads in ∆ step size
increments.

Section 6.1.1 shows the results of experiments in which we fixed the ∆ value
and varied C. Section 6.1.2 shows the experiments in which we fixed the C value
and varied ∆.

6.1.1 Varying C

Our goal in this section is to characterize the effect of the C parameter on the
performance of the Hill Climbing algorithm. In these experiments, we fixed the ∆
value and varied C. For each C value we ran the experiments with the TPCC1-
BIGMEM workloads. We measured the throughput achieved and the number of

30

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 31

threads used when the algorithm reached steady state. Based on the measured
results, we studied how C affects the ability of the Hill Climbing algorithm to
maximize performance.

Table 6.1 shows the results of these experiments. The first column shows the
C value setting. The second and third columns show the average and standard
deviation of the throughput level measured in requests/minute. The fourth and
fifth columns show the average and standard deviations respectively of the number
of threads. Figure 6.1 shows graphs of the throughput and the average number of
threads as functions of C.

Throughput (requests/minute) Number of threads
C Average StdDev Average StdDev StdDev/Avg

0.1 14652.61 2796.28 223.30 64.34 0.207454
0.2 14663.29 1815.51 126.10 26.16 0.246894
0.3 13968.71 1960.75 148.12 36.57 0.259636
0.4 14337.62 1813.12 115.97 30.11 0.136209
0.5 13084.16 1541.68 79.29 10.80 0.188181
0.6 12257.41 1704.94 63.29 11.91 0.258363
0.7 11278.64 1729.59 52.91 13.67 0.258363
0.8 8479.94 1449.35 30.10 9.14 0.303654
0.9 8975.50 1306.24 32.83 6.50 0.19799

Table 6.1: Various throughput levels with fixed ∆ of 10

The results show that our implementation of the hill climbing algorithm behaves
as expected. A low C value makes the controller more aggressive in adding threads
while high C value makes it more conservative. At 0.1, the average number of
threads is 223 while at 0.9 the algorithm is very conservative and keeps the number
of threads on average at 32 threads.

Since our primary goal is to increase throughput, a value of C greater than 0.5
is going to work against our goal. For our secondary goal, we aim at lowering the
number of threads without hurting throughput. In order to achieve both of those
goals, we will need to set C to a value that is less than 0.5 but not less than 0.2.
Any C value between 0.3 and 0.5 will suffice. We will set C to 0.4 in our auto-tuning
experiments.

6.1.2 Varying ∆

The purpose of these experiments is to fix the value of C and vary ∆. The goal is to
study the effect of ∆ on the performance of the Hill Climbing algorithm. For each
∆ value, we ran the TPCC1-BIGMEM workload and allowed the Hill Climbing
algorithm to perform its work. We recorded throughput and average number of

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 32

(a) Throughput vs. C value (b) Average number of threads vs. C value

Figure 6.1: Throughput and Number of threads vs. C

threads for every settings of ∆ after the algorithm has reached steady state. We
then studied how ∆ affected the performance of the Hill Climbing algorithm.

We have done two sets of experiments, in the first, we fixed C to 0.3 and varied
∆. In the second, we fixed C to 0.5 and varied ∆. We choose to try 0.3 and 0.5
of C to cover the range of good values of C that we determined from the previous
section’s experiment.

Table 6.2 show the results of the experiments were we fixed C to 0.3 and varied
∆. The first column is the ∆ value. The second and third columns show the average
and standard deviation of the throughput level. The fourth and fifth columns show
the average and standard deviation of the number of threads used.

∆ Throughput Number of threads
value Average StdDev Average StdDev

10 13968.71 1960.75 148.12 36.57
20 14088.97 2083.33 155.65 35.48
40 14285.74 1988.28 112.08 35.49

Table 6.2: Various throughput levels with fixed C value of 0.300

The results show that there is not a major effect of the step size on the through-
put levels. Therefore, we will choose a small value for ∆. A smaller value for ∆
is desirable as it lowers abrupt fluctuations in throughput. In addition, it allows
the algorithm to take finer steps in order to reach a number of threads setting
that is closer to the optimal values. Conversely, smaller step size ∆ will make the
algorithm react slowly, which might not be desirable.

In the second set of experiments, the C value was set at 0.5 and ∆ was varied
between 10 and 60. Table 6.3 shows the results. With the higher C value, the con-

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 33

troller is now more conservative in taking steps to increase the number of threads.
This is evident from the fact that the average number of threads is lower compared
to the settings were C was set to 0.3. With respect to the ∆, a lower value for
∆ also minimizes the variations in throughput and helps achieve higher through-
put. This is true because with a smaller ∆ and a more conservative C value, the
controller takes more cautious finer grained steps.

∆ Throughput Number of threads
value Average StdDev Average StdDev

10 13084.16 1541.68 79.29 10.80
20 14167.03 1198.10 58.86 12.88
40 13106.03 2214.60 76.50 23.55
50 10570.95 3297.31 54.80 31.28
60 11150.19 3457.77 60.80 37.28

Table 6.3: Various throughput levels with fixed C value of 0.5

Based on the results of the above two sets of experiments, we will fix the value
∆ to 10.

6.2 Global Parabola Approximation

The Global Parabola Algorithm has two parameters: Γ, and ∆. The Γ parameter
limits the move from the current number of threads to the next number of threads.
The ∆ parameter is only used when the parabola approximation generates a curve
that is concave up. Such a curve reflects noise in the data and hence the data points
are not useful. The ∆ parameter is used in this case to just wiggle the control
variable in either the positive or negative direction. Because the ∆ parameter
should be used only when noisy data is detected, our sensitivity experiments will
concentrate on studying the effect of the Γ parameter. Noise in the data can
arise from many reasons including smaller control intervals, a transient change of
transaction mix, or a change in resource utilization on the hardware machine due
to other applications sharing disk and memory resources of the server.

For the sensitivity experiments, we fixed the ∆ parameter to 5 and varied the
Γ parameter from 0.1 to 0.9.

Table 6.4 shows the effect of changing the Γ value while keeping the ∆ fixed.
The first column shows the Γ value used. The second and third columns show
the measured throughput level. The fourth and fifth columns show the number of
threads.

In order to better understand this data, we have also collected information about
the number of times each rule of the Global Parabola Approximation algorithm was
applied. The data is shown in Table 6.5.

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 34

Γ Throughput (requests/minute) Number of threads
Average StdDev Average StdDev

0.1 13442.12 2828.79 56.07 10.03
0.2 15939.70 1972.75 91.41 16.41
0.3 16054.75 1888.48 121.17 32.27
0.4 16156.59 869.51 111.54 36.46
0.5 15959.93 1715.21 156.82 61.28
0.6 15992.43 1709.76 137.28 50.00
0.7 15807.90 1695.17 219.43 54.94
0.8 15759.24 1704.44 220.20 77.27
0.9 16104.90 1800.46 125.67 43.42

Table 6.4: Effect of Γ value on the throughput and number of threads for the Global
Parabola Approximation

Γ Num control intervals a < 0 Γ used a > 0 Duplicate n∗ values

0.1 100 87 62 7 6
0.2 99 91 29 3 5
0.3 99 91 15 6 2
0.4 98 86 5 7 5
0.5 97 93 8 1 3
0.6 100 92 3 7 1
0.7 100 93 4 5 2
0.8 101 97 4 3 1
0.9 99 89 1 5 3

Table 6.5: Number of times branches of the Global Parabola are taken for various
Γ values

The first column of Table 6.5 is the Γ value. The second column is the number
of control intervals. As was mentioned previously, each interval is 1 minute in
length. The third column is the number of times the parabola approximation gave
a valid a coefficient that is less than 0. The fourth column is the number of times
in which there was a valid a coefficient but the control value was so large that the
Γ limit was applied. The fifth column is the number of times the a coefficient was
positive. In this case, the parabola is concave up and hence can not be used for
choosing the next control variable value. When a > 0, the ∆ value will be used to
wiggle the control variable so that noise can be avoided. The last and final column
is the number of times the new control value and previous value were equal. Since
duplicate values would not help define the parabolic function, the ∆ rule is used to
wiggle the control variable.

We can see from Table 6.5 that as the Γ value increases, the Γ rule is less

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 35

frequently used to limit the step size of the control variable. In addition, for almost
all values of Γ, the percentage of times the throughput curve is approximated
correctly by the parabola (i.e. coefficient is positive) was high compared to the
total number of samples. This indicates that the controller relied on the parabolic
function to generate the next control value rather than randomly wiggling the
control variable by ∆ steps.

Based on the sensitivity experiments above, we can see that if Γ is higher than
0.5 it has little effect. The Γ value helps control the aggressiveness of the algorithm.
There are cases when the algorithm will try large jumps in the control variable
and the Γ value helps dampen those jumps. We will use a value of 0.333 in our
experiments.

6.3 Local Parabola Approximation

The Local Parabola algorithm has the same parameters as the Global Parabola
algorithm. In the same manner, we have conducted experiments were we varied the
Γ value from 0.1 to 0.9 while keeping ∆ fixed at 5. Tables 6.6 and 6.7 summarize
the results.

Γ Throughput Number of threads
Average StdDev Average StdDev

0.1 12512.24 1658.83 40.54 8.64
0.2 12246.56 2441.62 48.62 16.27
0.3 12907.50 3076.28 45.28 14.56
0.4 13862.48 2313.27 49.27 12.38
0.5 13638.60 2133.30 50.82 11.52
0.6 14346.95 1950.68 57.53 15.66
0.7 14876.37 1911.11 70.93 11.73
0.8 14885.00 3275.64 79.90 26.48
0.9 12100.96 2156.23 42.45 15.75

Table 6.6: Effect of Γ value on the throughput and number of threads for the Local
Parabola Approximation

The results shown in Table 6.7 show that in more than 50% of the time wiggling
the control variable was used to make control decisions. Wiggling the control vari-
able using ∆ is done when the a coefficient is positive or if the algorithm produces
duplicate points that do not help define a parabolic function. The fact that the
∆ rule was used indicates that the algorithm is affected by normal measurement
variations (noise). This means that in most control intervals the algorithm is mak-
ing small random moves. Because of noise sensitivity, we will not by studying this
algorithm any more.

CHAPTER 6. ALGORITHM PARAMETER SENSITIVITY AND TUNING
EXPERIMENTS 36

Γ Num control intervals a < 0 Γ used a > 0 Duplicate n∗ values

0.1 106 40 17 36 30
0.2 102 39 6 36 27
0.3 107 39 1 29 39
0.4 103 38 0 35 27
0.5 103 35 0 31 34
0.6 102 43 1 25 34
0.7 100 38 0 32 30
0.8 100 38 2 33 29
0.9 106 42 1 41 23

Table 6.7: Number of times branches of the Local Parabola are taken for various Γ
values

Chapter 7

Evaluation and Results

This chapter presents experimental results along with an analysis of these results.
Section 7.1 will show how each of the auto-tuning algorithms performed with stable
workloads. Section 7.2 will show how the algorithms reacted to changing workloads.

7.1 Auto-tuning Experiments

In this section we will show the results of how each of the auto-tuning algorithms
introduced in Section 3.2 behaved with our workloads. We will compare these
results to the throughput curves that we have deduced in Chapter 5.

7.1.1 TPCC1-BIGMEM

Figure 7.1 shows the different multiprogramming levels that the controller has cho-
sen using the Hill Climbing algorithm as well as the throughput levels of the server.
The left graph shows the throughput levels of the server and the right graph shows
the current threads count. We can see from the graph that the Hill Climbing al-
gorithm was able to stay within the region of optimal number of threads for the
TPCC1-BIGMEM workload. On thing to note is that the algorithm was on the
lower side of the range. This is a good behaviour as it helps achieve our second
goal of minimizing the number of threads. Throughput was also within its expected
region.

Figure 7.2 shows that Global Parabola Approximation algorithm was also able
to reach the region of optimal values for the number of threads setting. The values
chosen by this algorithm were on the mid to high end of the range. In terms of
throughput, this algorithm was able to match and exceed the values of the optimal
region that we have found previously.

To compare the two algorithms’ performance, we can see that although the
two algorithms were able to find the region of optimal values, the Hill Climbing

37

CHAPTER 7. EVALUATION AND RESULTS 38

(a) Throughput (b) Number of threads

Figure 7.1: Performance of the Hill-Climbing algorithm with the TPCC1-BIGMEM
workload

(a) Throughput (b) Number of threads

Figure 7.2: Performance of the Global Parabola Approximation algorithm with the
TPCC1-BIGMEM workload

CHAPTER 7. EVALUATION AND RESULTS 39

algorithm was taking smaller n∗ values. Another observation is that the Global
Parabola Approximation algorithm shows more variability in its choice of the n∗

values.

7.1.2 TPCC1-SMALLMEM

(a) Throughput (b) Number of threads

Figure 7.3: Performance of the Hill Climbing algorithm with the TPCC1-
SMALLMEM workload

(a) Throughput (b) Number of threads

Figure 7.4: Performance of the Global Parabola Approximation algorithm with the
TPCC1-SMALLMEM workload

CHAPTER 7. EVALUATION AND RESULTS 40

Figure 7.3 shows how the Hill Climbing algorithm performed with the TPCC1-
SMALMEM workload. We can see that algorithm kept the number of threads at
around 28 threads on average. Clearly the algorithm sees that the amount of gain in
throughput is not enough to increase the number of threads. The standard deviation
for the number of threads is 6.71 which means that the algorithm did not attempt to
make wild changes. Compared to the characterization experiments of the TPCC1-
SMALLMEM, the Hill Climbing decisions were very conservative. As a result, the
average throughput with auto-tuning was around 3,676 requests/minutes which is
almost half of that at the peak of 6017 requests/minute that we found previously.
These results indicate that the Hill Climbing algorithm failed in reaching the region
of optimal values and was very conservative.

On the other hand, Figure 7.4 shows how the Global Parabola approximation
algorithm performed with TPCC1-SMALLMEM. The Global Parabola approxima-
tion algorithm had an average throughput of 5013 requests/minute which is slightly
below the optimal region. However, the average number of threads of 307 is within
the optimal region. We can see that although the algorithm was able to maintain
an average number of threads within the optimal region, it was doing large swings
in the control variable n∗. The fact that the throughput level did not achieve that
in the optimal region might be due to the large variability of n∗.

Comparing the performance of the two algorithms, we can see that the Hill
Climbing algorithm failed in reaching our region of optimal value but the Global
Parabola Approximation did not.

7.1.3 TPCC2-BIGMEM

(a) Throughput (b) Number of threads

Figure 7.5: Performance of the Hill Climbing algorithm with the TPCC2-BIGMEM
workload

CHAPTER 7. EVALUATION AND RESULTS 41

(a) Throughput (b) Number of threads

Figure 7.6: Performance of the Global Parabola Approximation algorithm with the
TPCC2-BIGMEM workload

Figure 7.5 shows the performance of the Hill Climbing algorithm. The Hill
Climbing algorithm was able to reach the region of optimal values with an average
number of threads of 102. Again, this value is on the lower end of the range of
optimal values. The optimal throughput region was achieved. These results show
how the algorithm succeeded in reaching good control values for n∗.

Figure 7.6 shows the performance of the Global Parabola Approximation algo-
rithm. As usual, the Global Parabola Approximation algorithm is more aggressive
in changing the number of threads. The average number of threads of 202 was well
within the optimal region values. In terms of throughput, the algorithm was able
to achieve better throughput than our optimal settings. This might have been a
consequence of the large variability in the number of threads.

One noticeable difference between the two algorithms is that the Global Parabola
Approximation algorithm was able to reach the optimal region in 961 seconds (16
minutes) while the Hill Climbing algorithm took 2,343 seconds (39 minutes). An-
other difference is that there is more variability with Global Parabola Approxima-
tion algorithm.

7.1.4 DS2

Figure 7.7 shows the results for the Hill Climbing algorithm. The graph shows that
the algorithm was able to reach the optimal region setting and was able to achieve
the corresponding throughput. The algorithm was varying the number of threads
between 11 and 21. Optimal throughput was also achieved.

The Global Parabola Approximation algorithm (shown in Figure 7.8) was also

CHAPTER 7. EVALUATION AND RESULTS 42

(a) Throughput (b) Number of threads

Figure 7.7: Performance of the Hill Climbing algorithm with the DS2 workload

(a) Throughput (b) Number of threads

Figure 7.8: Performance of the Global Parabola Approximation algorithm with the
DS2 workload

able to achieve the optimal number of threads settings. This algorithm was changing
the number of threads between 12 and 25. It was very interesting how this algorithm
was making very fine adjustments at this low number of threads values. In terms of
throughput, the algorithm was also able to achieve the required throughput levels.

In this experiment one interesting finding is that both algorithms attempted a
number of threads setting that is lower than 20 and was able to achieve the target
throughput levels. In our characterization experiments we only attempted numbers

CHAPTER 7. EVALUATION AND RESULTS 43

from 20 to 500. These algorithms were able to find an optimal value that we did
not attempt.

7.2 Changing Workload Experiments

In this section we show the results of the Changing Workload experiments. In these
experiments we started the server with one workload and configured it to use one
of the auto-tuning algorithms. Half way through the experiment we switched to a
different workload without restarting the server. We repeated the same experiment
for the second algorithm. The purpose of these experiments is to see how well
the auto-tuning algorithms respond to changing workload conditions. Workload
switching was done by either configuring the client to change the transaction mix,
or by configuring the server to change its buffer pool size, depending on which work-
loads we are switching between. We will compare the results of these experiments
to those reported in the characterization experiments in Chapter 5 to validate how
well the algorithms were able to stabilize after the workload switch happened.

7.2.1 TPCC1-BIGMEM to TPCC1-SMALLMEM

In this experiment we switched the workload from TPCC1-BIGMEM to TPCC1-
SMALLMEM. The two workloads have the same transaction mix. The TPCC1-
SMALLMEM workload, has a smaller buffer pool size. In the workload character-
ization experiments we found that the throughput levels of the TPCC1-BIGMEM
is higher than those for TPCC1-SMALLMEM. When we change from the first
workload to the second, we expect that there will be a period of fluctuation in n∗

followed by a stabilization period. When the algorithms stabilize on a new multi-
programming level, we want to see how well this value compares to the values we
found in the workload characterization experiments.

Figure 7.9 shows how the Hill Climbing algorithm reacted when we switched
from TPCC1-BIGMEM to TPCC1-SMALMEM 16,935 seconds into the run. When
we switched the workloads, the number of threads value started to drop from the
time the switch happened until 20,000 seconds into the run. This indicates that the
algorithm has noticed there is a drop in throughput and it reacted by reducing the
number of threads until it reached 100 threads. When the Hill Climbing algorithm
starts to go in the downward direction, it continues to do so until it notices a drop
in performance. After 20,000 seconds into the run, the algorithm started to go
in the positive direction and increased the multiprogramming level steadily from
20,000 seconds to 35,000 seconds. Because the Hill Climbing algorithm is slow in
making changes, it took some time to reach the new optimal multiprogramming
level of the second workload. These results show that the Hill Climbing algorithm
was effective in handling the workload switch and was able to react appropriately.

CHAPTER 7. EVALUATION AND RESULTS 44

(a) Throughput (b) Number of threads

Figure 7.9: Performance of the Hill Climbing algorithm while switching workloads
from TPCC1-BIGMEM to TPCC1-SMALMEM

(a) Throughput (b) Number of threads

Figure 7.10: Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC1-BIGMEM to TPCC1-SMALMEM

CHAPTER 7. EVALUATION AND RESULTS 45

If we observe how the Hill Climbing algorithm did in the second phase (TPCC1-
SMALLMEM), we can see that it was able to reach the optimal number of threads
settings. When we ran the auto-tuning algorithm for the TPCC1-SMALLMEM
workload alone with Hill Climbing in Section 7.1.2, the algorithm was not able
to reach the optimal number of threads region. The difference between the two
experiments is the initial value of the multiprogramming level. In the workload
switch experiment, the algorithm started at a higher multiprogramming level than
in the auto-tuning experiment. This shows that the starting value can influence
the performance of the Hill Climbing algorithm.

Figure 7.10 shows how the Parabola Approximation algorithm reacted when we
switched from TPCC1-BIGTMEM to TPCC1-SMALLMEM 20,000 seconds into
the run. When the workload switch happened, the algorithm reacted by changing
the number of threads appropriately into the new optimal multiprogramming region
of the second workload. Because the Global Parabola approximation algorithm has
a higher variability in the number of threads, we can see that it was able to recover
more quickly from the workload switch. Optimal throughput was also achieved
for both workloads. These results show that the algorithm was able to handle the
workload switch successfully.

In comparing how both algorithms performed, the Global Parabola Approxi-
mation algorithm is more aggressive in making changes to the multiprogramming
level. Because its step size is governed by the parabolic function, it was able to
recover more quickly than the Hill Climbing algorithm and was not affected by
the starting value of the control variable n∗. In terms of throughput, the Global
Parabola Approximation algorithm achieved higher throughput levels in each of the
workload switch phases than Hill climbing did.

7.2.2 TPCC1-SMALLMEM to TPCC1-BIGMEM

In this section, we performed a workload switch that is the reverse of the switch from
the previous section. Here, we switched from a workload that prefers a high number
of threads (TPCC1-SMALLMEM) to a workload that prefers a lower number of
threads. We expect that initially the algorithm will stabilize on high number of
threads suitable for the TPCC1-SMALLMEM workload and then move to lower
number of threads suitable to the TPCC1-BIGMEM workload.

Figure 7.11 show how the Hill Climbing algorithm handled the workload switch.
In the first phase of the experiment, the Hill Climbing algorithm stabilized on a
lower multiprogramming level than the optimal region for this workload. This is
of no surprise to us as this is consistent with how it performed in the auto-tuning
experiment with a stable workload in Section 7.1.2. When the workload switch
happened at 18,254 seconds into the run, the algorithm noticed the increase in
throughput. It started to adjust the multiprogramming level appropriately until
it reached the optimal region of the second workload. In terms of throughput,
the algorithm was able to achieve the required throughput for the second phase.

CHAPTER 7. EVALUATION AND RESULTS 46

(a) Throughput (b) Number of threads

Figure 7.11: Performance of the Hill Climbing algorithm while switching workloads
from TPCC1-SMALLMEM to TPCC1-BIGMEM

(a) Throughput (b) Number of threads

Figure 7.12: Performance of the Parabola Approximation algorithm while switching
workloads from TPCC1-SMALLMEM to TPCC1-BIGMEM

CHAPTER 7. EVALUATION AND RESULTS 47

These results show that the algorithm was able to handle the workload switch
appropriately; however, it did not meet our expectation for the first phase of the
run.

Figure 7.12 shows how the Global Parabola Approximation algorithm handled
the workload switch. In the first workload phase, the algorithm stabilized on a
high number of threads that is in the high region of the optimal values. After the
workload switch was performed at 18,075 seconds into the run, the algorithm ad-
justed the number of threads appropriately to match the new workload conditions.
The algorithm was able to stabilize on the optimal region for TPCC1-BIGMEM.
The corresponding throughput level for both workloads was also achieved. These
results show that the Global Parabola Approximation algorithm was able to handle
the switch in the reverse direction effectively.

To compare the performance of the algorithms, the Global Parabola Approxi-
mation algorithm was more aggressive in changing the multiprogramming level. It
had more variability than the Hill Climbing algorithm. Nonetheless, it was able to
perform as expected in both phases of the run. The Hill Climbing algorithm failed
to reach the optimal multiprogramming region for the first workload but was able to
handle the workload switch appropriately and stabilize on a new multiprogramming
for the second workload.

7.2.3 TPCC1-BIGMEM to TPCC2-BIGMEM

In this section we switched from TPCC1-BIGMEM to TPCC2-BIGMEM. The two
workloads are similar in terms of the size of the server buffer pool size but are dif-
ferent in the transaction mix. The region of optimal throughput levels for TPCC1-
BIGMEM is slightly lower than that of TPCC2-BIGMEM; however, the optimal
number of threads levels are almost the same. We expect that when we switch from
the first workload to the second, that the controller will keep the number of threads
almost at the same level as the optimal number of threads regions are very similar.
The challenge is that the throughput levels for the two workloads is different, so we
are trying to see if the two algorithms will continued to keep the number of threads
almost at the same level even though the throughput level has changed.

Figure 7.13 shows how the Hill Climbing algorithm handled the workload switch.
We can see that the algorithm was able to reach the optimal region for the first
workload. When the workload switch happened at 14,833 seconds into the run, the
algorithm continue to keep the number of threads at the same level of around 116
threads. Although the throughput level increased from 15,000 requests/minute to
18,700 requests/minute, the algorithm kept the number of threads setting at the
same level for the new workload.

Figure 7.14 shows how the Global Parabola Approximation algorithm handle
the workload switch. In the first phase of the experiment, the algorithm settled on
an average number of threads of 175. When the workload switch happened at 14,832
seconds into the run, the algorithm settled on a new average of 226 threads. This

CHAPTER 7. EVALUATION AND RESULTS 48

(a) Throughput (b) Number of threads

Figure 7.13: Performance of the Hill Climbing algorithm while switching workloads
from TPCC1-BIGMEM to TPCC2-BIGMEM

(a) Throughput (b) Number of threads

Figure 7.14: Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC1-BIGMEM to TPCC2-BIGMEM

CHAPTER 7. EVALUATION AND RESULTS 49

number is slightly higher but still within the allowable values for the second work-
load. The throughput in the first phase of the run averaged 16,186 requests/minute.
In the second phase, the throughput averaged 19,822 requests/minute. We can see
that the throughput has changed and that the algorithm was able to adjust the
number of threads appropriately.

The results above show that both algorithms continued to use the same number
of threads even when the throughput levels has changed between the two workloads.
The Global Parabola algorithm increased the number of threads slightly were the
Hill Climbing kept the number of threads almost constant. The Global Parabola
Approximation algorithm continues to show variability in its moves compared to
the Hill Climbing algorithm.

7.2.4 TPCC2-BIGMEM to TPCC1-BIGMEM

(a) Throughput (b) Number of threads

Figure 7.15: Performance of the Hill Climbing algorithm while switching workloads
from TPCC2-BIGMEM to TPCC1-BIGMEM

In this experiment we repeated the same experiment as in the previous sec-
tion but now going from the TPCC2-BIGMEM workload to the TPCC1-BIGMEM
workload. In this scenario, we are going from a workload with an expected higher
throughput level to a workload with an expected lower throughput level. The re-
gions of optimal number of threads between the two workloads overlap. Since the
region of optimal values are very close, we expect the controller to stay within the
same number of threads range. The challenge is that when the workload switch hap-
pens, the throughput will drop and the algorithm have to handle the drop properly
but kept the number of threads at about the same level.

Figure 7.15 shows how the Hill Climbing handled the workload switch. In the
first phase of the experiment, the algorithm took 7,387 seconds to reach the region

CHAPTER 7. EVALUATION AND RESULTS 50

(a) Throughput (b) Number of threads

Figure 7.16: Performance of the Global Parabola Approximation algorithm while
switching workloads from TPCC2-BIGMEM to TPCC1-BIGMEM

of optimal settings for the first workload. When the workload switch happened at
12,371 seconds into the run, we can see that the algorithm started to reduce the
number of threads until about 17,500 seconds in which it started to recover back
from the workload switch. It then started to increase the number of threads and
settled on 117 threads. The affect of the drop in number of threads can also been
seen from the throughput curve.

Figure 7.16 shows how the Global Parabola Approximation algorithm handled
the workload switch. In the first phase of the run, the algorithm was able to reach
the optimal number of threads region for the TPCC2-BIGMEM workload. When
the workload switch happened 11,889 seconds into the run, the algorithm continued
to keep the number of threads almost at the same level. This number of threads is
considered on the high region of the TPCC1-BIGMEM workload.

The results above show the two algorithms were able to handle the workload
switch properly but the Global Parabola Approximation algorithm had high vari-
ability in its choice for the number of threads. The Hill Climbing had smoother
transitions between the two workloads.

7.3 Summary

In this chapter we have showed the results of two main sets of experiments. In
the first set of experiments, we studied how each of the algorithm performed with
stable workloads

In the second set of experiments in Section 7.2, we studied how well each of the

CHAPTER 7. EVALUATION AND RESULTS 51

algorithms handled a change in workload conditions. We tried to move from one
workload to another and also in the reverse direction to see if there will be any
problems in the algorithms adjusting to the change.

Based on all the experiments above, we have found that both of the algorithms
have certain pluses and certain minuses. We now summarize our findings about the
algorithms separately.

7.3.1 Hill Climbing

We have identified the following advantages for the Hill Climbing algorithm:

1. This algorithm consistently shows that it has less variations in its step taking
action. We do not see large swings in the control variable. As a result,
both the throughput and number of threads had small fluctuations. This
feature might be appealing to system administrator as the algorithm can
handle changes more gradually.

2. The degree of aggressiveness can be controlled by adjusting the algorithm
variables.

We have identified the following drawbacks for the Hill Climbing algorithm:

1. The algorithm can take a long time to reach the workload optimal values.
This is mainly dependent on the step size. If the step size is set small then
the algorithm can make finer grained adjustments at the expense of longer
convergence times. In contrast, large step sizes allow the algorithm to con-
verge faster.

2. In workloads that have a throughput curve that moderately climbs, the al-
gorithm might choose a value that is too conservative. For example, with
TPCC1-SMALLMEM, the algorithm settled at 27 threads with throughput
of 3,676.19 requests/minute where the target value was at 250 threads with
a throughput of 6,017.90 requests/minute.

3. The starting value for the control variable greatly affects the algorithm’s abil-
ity to make better control decisions.

7.3.2 Global Parabola Approximation

We have identified the following pluses for the Global Parabola Approximation
algorithm:

1. Faster convergence times.

CHAPTER 7. EVALUATION AND RESULTS 52

2. The initial starting point of the control variable does not seem to affect the
decisions of algorithm.

3. The algorithm can handle workload shifts and does not have problems with
changing workload conditions.

We have identified the following drawbacks for the Global Parabola Approximation
algorithm:

1. This algorithm was more aggressive in taking large steps in both the positive
and negative directions. This caused very large swings in the control variable.
In some cases the swings were as large as 143 as in TPCC1-SMALLMEM.

2. This algorithm tends to settle on a larger number of threads compared to
the hill climbing algorithm. Using larger number of threads might make the
server susceptible to load spikes. This behaviour of the algorithm might make
the server less attractive to system administrators who prefer to see a more
gradual load transitions.

Chapter 8

Conclusion and Future Work

In this thesis we studied how the multiprogramming level of the database server can
affect its throughput. In particular, we looked at four different workload configu-
rations and we studied the shape of the throughput curve for these workloads. We
have found in our study that not all workloads exhibit a hill-shaped curve. There
are many factors that can influence the shape of the throughput curve. Some of
those factors are related to hardware resources, others are related to software re-
sources. Hardware resources include CPU, disk I/O, or network capacity. Software
resources include contention on data structures, memory accesses, or the database
server software itself. Every workload has an optimal multiprogramming setting
that can achieve maximum throughput.

The optimal multiprogramming level setting for each workload is difficult to
predict. In this thesis, we developed an online controller that attempts to auto-
matically adjust the multiprogramming level of the database server. Our primary
goal is to improve the throughput level of the server and our secondary goal is to
choose the minimum number of threads that can maximize throughput.

As part of our controller design, we have developed and studied three different
algorithms that the controller can use. These algorithms were: Hill Climbing,
Global Parabola Approximation, and Local Parabola Approximation. Some of
these algorithms were already suggested by previous research.

For the first algorithm, we have built into it a mechanism to make it biased
towards minimizing the number of threads while trying to maximize throughput.
This mechanism allow the Hill Climbing algorithm to handle throughput curves
that are flat or that do not resemble a hill-shaped curve.

The second algorithm tries to model the throughput curve using a parabolic
function that passes through the origin. Because the parabolic function is used to
model only the first half of a hill-shaped throughput curve, it will automatically
be biased towards the first part of the hill and will try to minimize the number of
threads.

The third algorithm also uses a parabolic function but does not assume that

53

CHAPTER 8. CONCLUSION AND FUTURE WORK 54

it passes through the origin. In a similar manner, the parabolic function approxi-
mation will try to minimize the number of threads in order to handle throughput
curves that do not resemble a hill-shaped one. We have found that this algorithm is
affected greatly by measurement noise and hence we decided to stop from studying
it any further.

Both the Hill Climbing and the Global Parabola approximation algorithms did
well at adjusting the multiprogramming level. The Hill Climbing algorithm excelled
in that it was taking more gradual steps in adjusting the multiprogramming level.
There were less fluctuations and variations in both the throughput and the number
of threads. The shortcoming of this algorithm is that it is more conservative in
terms of steps. This made the algorithm take more time to reach the target values.
One issue with this algorithm is that it seems to get affected by the starting value
of the control variable.

The Global Parabola algorithm was more aggressive in changing the number of
threads. There were more fluctuations in both throughput and number of threads.
This algorithm on most cases settled on a larger multiprogramming level compared
to the Hill Climbing algorithm.

Although each algorithm has its advantages and disadvantages, we found the
Hill Climbing to be more desirable in a production system as it exhibits more
stability and less fluctuations. The only issue that needs to be addressed is the
convergence time of this algorithm and the starting value issue.

The results presented in this thesis show that it is feasible to design an automatic
tuning algorithm to improve server throughput especially in situations were the
workload can change. In our implementation, we relied on throughput alone as a
guide to the auto-tuning controller. We have observed that such metric was very
effective in that the auto-tuning algorithms were able to reach our target values.

In the future, we plan to investigate ways to improve on the convergence time
of the Hill Climbing algorithm. There is always room to develop other controller
algorithms that depend on other metrics or combination of metrics.

Lastly, we plan to investigate other workloads to see how well these and other
algorithms can perform. There is a chance that other workloads might show other
shortcomings or opportunities of these algorithms.

Bibliography

[1] Dell DVD Store 2 application. Available online at http://linux.dell.com/

dvdstore.

[2] Microsoft SQL Server. Available online at http://www.microsoft.com/sql.

[3] Microsoft SQL Server: How to determine proper SQL Server configuration
settings. Available online at http://support.microsoft.com/kb/319942.

[4] Microsoft SQL Server: Tips for Performance Tuning SQL Server’s Configu-
ration Settings. Available online at http://www.sql-server-performance.

com/sql_server_configuration_settings.asp.

[5] MySQL. Available online at http://www.MySQL.com.

[6] Oracle. Available online at http://www.oracle.com.

[7] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: building
histograms without looking at data. In SIGMOD ’99: Proceedings of the 1999
ACM SIGMOD international conference on Management of data, pages 181–
192, New York, NY, USA, 1999. ACM Press.

[8] T. Brecht, D. Pariage, and L. Gammo. accept()able strategies for improving
web server performance. In Proceedings of the 2004 USENIX Annual Technical
Conference, June 2004.

[9] Kurt P. Brown, Manish Mehta, Michael J. Carey, and Miron Livny. Towards
automated performance tuning for complex workloads. In Proceedings of the
Twentieth International Conference on Very Large Databases, pages 72–84,
Santiago, Chile, 1994.

[10] Surajit Chaudhuri and Gerhard Weikum. Rethinking database system ar-
chitecture: Towards a self-tuning risc-style database system. In VLDB ’00:
Proceedings of the 26th International Conference on Very Large Data Bases,
pages 1–10, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[11] Shiping Chen and Ian Gorton. A predictive performance model to evaluate
the contention cost in application servers. In APSEC ’02: Proceedings of the
Ninth Asia-Pacific Software Engineering Conference, page 435, Washington,
DC, USA, 2002. IEEE Computer Society.

55

http://linux.dell.com/dvdstore
http://linux.dell.com/dvdstore
http://www.microsoft.com/sql
http://support.microsoft.com/kb/319942
http://www.sql-server-performance.com/sql_server_configuration_settings.asp
http://www.sql-server-performance.com/sql_server_configuration_settings.asp
http://www.MySQL.com
http://www.oracle.com

BIBLIOGRAPHY 56

[12] Apache Software Foundation. Available online at http://www.apache.org.

[13] Stavros Harizopoulos. Staged Database Systems. PhD thesis, Carnegie Mellon
University, 2005.

[14] Hans-Ulrich Heiss and Roger Wagner. Adaptive load control in transaction
processing systems. In VLDB ’91: Proceedings of the 17th International Con-
ference on Very Large Data Bases, pages 47–54, San Francisco, CA, USA,
1991. Morgan Kaufmann Publishers Inc.

[15] iAnywhere Solutions. SQL Anywhere Server Database Administration: Setting
the database server’s multiprogramming level.

[16] iAnywhere Solutions. SQL Anywhere Server User’s Guide: Using the cache to
improve performance - Dynamic cache sizing.

[17] iAnywhere Solutions: SQL Anywhere Server. Available online at http://www.
ianywhere.com/sqlanywhere.

[18] J.D.C. Little. A proof of the queuing formula l = λw. In Operations Research,
pages 383–387, 1961.

[19] Xue Liu, Lui Sha, Yixin Diao, Steve Froehlich, Joseph L. Hellerstein, and
Sujay S. Parekh. Online Response Time Optimization of Apache Web Server.
In Proceedings of the 11th International Workshop on Quality of Service, pages
461–478, 2003.

[20] Axel Mönkeberg and Gerhard Weikum. Performance evaluation of an adaptive
and robust load control method for the avoidance of data-contention thrashing.
In VLDB ’92: Proceedings of the 18th International Conference on Very Large
Data Bases, pages 432–443, San Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

[21] J. Ousterhout. Why threads are a bad idea (for most purposes). Presentation
given at the 1996 Usenix Annual Technical Conference, January, 1996.

[22] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and
Adam Wierman. How to determine a good multi-programming level for exter-
nal scheduling. In Proceedings of the 22nd International Conference on Data
Engineering, page 60, Washington, DC, USA, 2006. IEEE Computer Society.

[23] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus
closed: a cautionary tale. In NSDI’06: Proceedings of the 3rd conference on
3rd Symposium on Networked Systems Design & Implementation, pages 18–18,
Berkeley, CA, USA, 2006. USENIX Association.

[24] J. Teng. Goal-oriented dynamic buffer pool management for data base sys-
tems. In ICECCS ’95: Proceedings of the 1st International Conference on
Engineering of Complex Computer Systems, page 191, Washington, DC, USA,
1995. IEEE Computer Society.

http://www.apache.org
http://www.ianywhere.com/sqlanywhere
http://www.ianywhere.com/sqlanywhere

BIBLIOGRAPHY 57

[25] Transaction Processing Performance Council. TPC Benchmark C, Standard
Specification. Available online at http://www.tpc.org/tpcc.

[26] Transaction Processing Performance Council. TPC Benchmark H, Standard
Specification. Available online at http://www.tpc.org/tpch.

[27] Gerhard Weikum, Christof Hasse, Axel Mönkeberg, and Peter Zabback. The
COMFORT automatic tuning project. Information Systems, 19(5):381–432,
1994.

[28] Gerhard Weikum, Axel Mönkeberg, Christof Hasse, and Peter Zabback. Self-
tuning database technology and information services: from wishful thinking
to viable engineering. In VLDB 2002, Proceedings of 28th International Con-
ference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China,
pages 20–31, 2002.

[29] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. A
smart hill-climbing algorithm for application server configuration. In WWW
’04: Proceedings of the 13th international conference on World Wide Web,
pages 287–296, New York, NY, USA, 2004. ACM Press.

http://www.tpc.org/tpcc
http://www.tpc.org/tpch

	Introduction and Motivation
	Thesis Statement
	Motivation
	Thesis Organization
	Major Thesis Contributions

	Background and Related Work
	Background
	Related Work

	Design and Implementation
	Controller Architecture
	Auto-tuning Algorithms
	Hill Climbing
	Global Parabola Approximation
	Local Parabola Approximation

	Workloads and Test Methodology
	Database Server Software
	Hardware Configuration
	Workloads
	TPC-C
	DS2
	Summary

	Methodology

	Workload Characterization
	TPCC1-BIGMEM
	TPCC1-SMALLMEM
	TPCC2-BIGMEM
	DS2

	Algorithm Parameter Sensitivity and Tuning Experiments
	Hill Climbing
	Varying C
	Varying

	Global Parabola Approximation
	Local Parabola Approximation

	Evaluation and Results
	Auto-tuning Experiments
	TPCC1-BIGMEM
	TPCC1-SMALLMEM
	TPCC2-BIGMEM
	DS2

	Changing Workload Experiments
	TPCC1-BIGMEM to TPCC1-SMALLMEM
	TPCC1-SMALLMEM to TPCC1-BIGMEM
	TPCC1-BIGMEM to TPCC2-BIGMEM
	TPCC2-BIGMEM to TPCC1-BIGMEM

	Summary
	Hill Climbing
	Global Parabola Approximation

	Conclusion and Future Work

