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Abstract

This thesis involves the design of an early warnsogirce water monitoring station for a
riverine source of drinking water. These statipmgvide downstream water utilities with
advanced notification of contamination events seythave time in which to implement a

response, such as closing their intakes.

Many threats facing riverine water supplies, sushaecidental spills, are uncertain in nature.
Therefore, designing a monitoring station for thetedtion of these events requires a
probabilistic modelling approach. Sources of uraiety considered in this research include
the location, mass and duration of a spill evenival as the flow at the time of the spill and
the water quality model parameters. Probabilistributions for each of these uncertainties
were defined and a Monte Carlo experiment was cctedu

The design objectives include maximizing the praliigbof detection and maximizing the
probability of having a threshold amount of warniiige. These objectives are in conflict
with each other because the probability of detedtimproves as the station moves closer to the
intake and the amount of warning time increasethasstation is located further upstream.
Values for the competing objectives were calculdmda number of potential monitoring

station locations at multiple sample intervals #meltradeoff solutions were analyzed.

This methodology was applied to the Hidden Valleyake which services the Regional
Municipality of Waterloo’s Mannheim Water Treatmd?lant. The Hidden Valley Intake is
located in Kitchener, Ontario and withdraws up oML of water per day from the Grand

River.

Based on an analysis of the Monte Carlo simulatesults for the case study application, it
was found that locating the monitoring station i@ Victoria Street Bridge, approximately
11 km upstream of the intake, represents the ke aff in the design objectives. Sampling at

least once per hour is recommended to increasantioeint of warning time.



The impact of various sources of uncertainty was akplored in this thesis. It was found that
the flow at the time of a spill and the spill lacat are the only sources of uncertainty that

significantly impact the probability distributiond relevant model results.
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1 Introduction

1.1 Background

In 1854, London, England was hit by its third epmde of cholera in 25 years. Physician John
Snow’s hypothesis that the disease was being sprgdle city’s drinking water supply and

his subsequent recommendation to shut down a camaged well saved thousands of lives. In
addition to beginning the science of epidemiolo§pow’s discovery represents one of the

modern world’s first recognitions of the importarafesource water protection.

Today, the ability of water to carry disease is igpdted. The use of disinfection has
significantly reduced health risks associated wwiibrobial pathogens (Davies and Mazumder,
2003). As a result, cholera and many other watesdhdiseases no longer pose a significant
threat in developed countries such as Canada. iSmalted drinking water treatment
technologies, such as membrane filtration and wtifat disinfection, are becoming
increasingly effective at removing some of the mpstsistent chemical and microbial
contaminants in a water supply. In addition, stimgregulations governing drinking water
guality now exist in most developed parts of theldio As a result of these advances, drinking
water quality has improved substantially since 18Béwever, most of these efforts have been
focused on treating source water rather than piiatged@. Not until 150 years after Snow’s
breakthrough was source water protection officiallgfined by Ontario’s Ministry of the
Environment as “protecting current and future sesrof drinking water from potential

contamination and depletion” (Technical Experts @Gottee, 2004).

The fear of a depleted water supply is far fromrthieds of most Canadians because Canada is
bestowed with nearly 7% of the world’s renewableshwater supply (Environment Canada,
2004). As a result, Canadians are fortunate t@ ltla@ second most inexpensive water supply
in the world (National Utility Service, 2006). Hewer, Canada’s abundant and inexpensive
freshwater supply is grossly overused. In a 2Q0vey of water consumption rates amongst

32 nations, Canada ranked a disappointing \8ith an annual per capita water consumption



rate of more than double the average of all othatigpating nations (Organisation for

Economic Co-operation and Development, 2007).

In addition to taking for granted that there wiNvays be enough water, Canadians also take
for granted that their water supply will always ssfe. Gord Miller, Ontario’s Environmental
Commissioner, has described the myth of detachasesbciety’s belief that we are not part of
the ecosystem and are therefore subject to differdes. However, societal impacts such as
wastewater discharges, industrial effluents, affucal runoff, and negligence continue to
pollute the ecosystem. This was clearly evidenneday 2000 when seven people died and
over 2000 became ill in the Town of Walkerton, Qita Their drinking water had been
contaminated witlE.coli 0157:H7and campylobactepriginating from a nearby farm. This
event highlighted that Canadians are not immursgt@rse drinking water quality.

In response to the tragic events in Walkerton,Qnéario government mandated an inquiry led
by Commissioner Dennis O’'Connor. Commissioner @@ released a report in 2002 in
which he identified the need for watershed-basenlcgoprotection planning. As a result, The
Clean Water Act (Ontario Ministry of the EnvironnieB006b) was created for the purpose of
“protecting existing and future sources of drinkingater”.  According to Ontario’s

Environment Minister, Laurel Broten, this new ldgign is an integral part of the Province’s
multi-barrier approach for protecting drinking wafeom source to tap (Ontario Ministry of

the Environment, 2006c). The legislation requitleat every watershed in the province
develop a local, science-driven source protectitam phat identifies and mitigates risks to

drinking water quality and quantity.

Investing in source water protection results inoavdr risk of acute and chronic health
problems as a result of adverse water qualitydotiteon to decreased treatment requirements,
and fewer treatment residuals and by-products {302000; Davies and Mazumder, 2003).
For these reasons, source water protection is@eptunanagement decision not only from an
environmental and public health perspective bub d®m a financial one (Davies and

Mazumder, 2003). With alarming rates of water comgtion and a growing number of threats



to drinking water quality, source water protectisressential if Canadians want to ensure an

adequate supply of safe drinking water for futueaayations.

1.2 Scope of Research

Source water protection involves issues relatintheoquantity and quality of drinking water
supplies. The scope of this thesis is limitedudace water quality, and more specifically to
riverine sources of drinking water. Most water Igyahreats facing riverine water supplies
are due to unintentional spills or discharges sashwastewater bypasses, transportation
accidents, and agricultural runoff. All of thebedats can cause an immediate deterioration in
water quality and may arrive at downstream wateatiment plant intakes within minutes or

hours.

Although the purpose of source water protectioto iglentify and mitigate potential threats to
prevent them from ever entering a source water Iguyagcidental spills cannot be entirely
avoided. Early warning source water monitoringistes can provide an additional barrier in
the multi-barrier approach for producing clean kirg water. The positioning of such a
station upstream of a drinking water intake canvig® downstream water utilities with

advanced notice of contamination events, allowihgnt sufficient time to implement a

response. Even though contamination cannot alvi@yprevented from entering a source
water body, it can be prevented from entering akilng water treatment plant with the use of

an early warning source water monitoring station.

The purpose of this research is to design a soweter monitoring station upstream of a
riverine drinking water treatment plant intaken& spills are inherently uncertain in nature, a
large part of this research involved probabiligiodelling of spill scenarios using Monte
Carlo simulations. The results of these simuletiovere analyzed at a number of potential
monitoring station locations and sampling intervalsThis research also involved an
examination of the sources of uncertainty impactimg design of a source water monitoring

station. The resulting methodology was applied tase study example.



1.1 Organization of Thesis

This thesis is organized into the following chapter

Chapter 1: This chapter introduces background médion about source water protection and

describes the scope of this research.

Chapter 2: This chapter provides a review ofditere relevant to this research.

Chapter 3: This chapter presents an overview ofriathodology developed for designing an

early warning source water monitoring station.

Chapter 4: This chapter discusses background irdeom about the Case Study application,
the Hidden Valley Intake, which is located in theaf River Watershed and services the

Mannheim Water Treatment Plant in Kitchener, Ootari

Chapter 5: This chapter presents and analyzes dbkelts for locating a source water
monitoring station upstream of the Hidden Valletake. Graphs and discussion of the results
at potential monitoring stations are presenteddisgussion of the most significant sources of

uncertainty affecting the decision making procesalso included.

Chapter 6: This chapter provides general conahssiand recommendations regarding the
importance of source water monitoring and protectioSpecific conclusions and

recommendations related to the case study exampkdso presented.



2 Literature Review

The literature relevant to this thesis is organiza&d the following five topics, which are
discussed in Sections 2.1 to 2.5:

» Water quality monitoring;

* Hydrodynamic modelling;

* Water quality modelling;

* Uncertainty; and

* Multi-objective optimization.

2.1 Water Quality Monitoring

In the following section, various objectives of emtjuality monitoring are discussed. Early
warning source water monitoring is described inther detail along with a description of

general and probabilistic design considerations.

2.1.1 Purposes of Water Quality Monitoring

Prior to designing a water quality monitoring pra, its purposes must be clearly identified
(Palmer and MacKenzie, 1985; Harmancioglu and Ajgsl992; Dixon and Chiswell, 1996).
Since water quality monitoring can be expensive &nmte consuming, failing to clearly
identify the goals of a monitoring program can fesuthe collection of sub-optimal data that
are of little use for decision making. This regm®s a waste of money and resources that
could be better allocated in order to achieve nooimty objectives (Palmer and MacKenzie,
1985).

The United States Environmental Protection Ager2807) identified the following purposes
of water quality monitoring:
1. Characterization of waters and identification o&iepes or trends in water quality over
time;
2. lIdentification of existing or emerging water quglgroblems;

3. Collection of information to design pollution prexten or remediation programs;

5



4. Determination of whether program goals, such as ptiamce with pollution
regulations, are being met; and

5. Response to emergencies, such as spills and floods.

The purpose of an early warning source water mangostation is similar to Objective 5
listed above. Early warning stations serve toaetadden changes in water quality due to low
probability but high impact events, such as spilsayman et al., 2001). This type of
monitoring is described further in the followingcien.

2.1.2 Early Warning Source Water Monitoring

Grayman and Males (2002) define an early warningitodng system as “a mechanism for
detecting, characterizing and providing notificatiof a source water contamination event.”
These systems typically consist of one or more toong stations upstream of a drinking
water treatment plant intake and provide advancachiwg of contamination caused by events
such as industrial spills, wastewater bypasses tramdportation accidents (International Life
Sciences Institute, 1999). Benefits of early wagnmonitoring stations include improved
decision making, reduced risks of adverse drinkuager quality, increased public confidence
in a water supply, and increased motivation forchizggers to follow reporting regulations
(International Life Sciences Institute, 1999; Gaklet al., 2003; Mikol et al., 2007).

2.1.2.1 Monitoring Technologies

A wide range of monitoring technologies can be uakeeéarly warning monitoring stations.
Basic online monitors usually operate continuouwsig measure common parameters such as
temperature, conductivity, pH, dissolved oxygend aarbidity (Grayman et al.,, 2001).
However, basic monitors are unable to detect mgpest of spill events (Grayman et al.,
2001). Advanced analytical methods, such as gasratography/mass spectrometry (GCMS)
and liquid chromatography/mass spectrometry (LCMS&i be used to detect a wide array of
contaminants such as organics, fluorescence fa, @hd immunoassays for herbicides
(International Life Sciences Institute, 1999). \bdsurveillance at road and railway crossings
can also be used for early warning monitoring stestion large rivers (International Life

Sciences Institute, 1999).



Biomonitors are another option for source waterigueonitoring. A biomonitor consists of

a population of bivalves, fish, zooplankton, orasgthat are exposed to the source water.
Their behaviours, such as swimming patterns, \adidih rates, and avoidance patterns, can be
continuously monitored to provide notification afverse source water quality (Grayman et
al., 2001; Mikol et al., 2007). Biomonitors arentmonly used in European and Asian nations
but their use in North America is more limited @mational Life Sciences Institute, 1999;
Grayman et al., 2001). Biomonitors are sensitiveatwide array of organic and inorganic
chemicals; however, they are unable to identify gpecific type of contamination (Mikol et
al., 2007). Biomonitors may also react to substartbat are not harmful to humans. Another
drawback is that biomonitors may not identify saypes of contamination events fast enough,
particularly for chemicals with low acute toxici{ivikol et al., 2007). Other considerations
related to biomonitors include cost, care, andifege{iGrayman et al., 2001).

2.1.2.2 Existing Early Warning Systems

Grayman et al. (2001) provide an excellent revidwexisting early warning monitoring
stations around the world that use a diversity exfhhologies. For example, monitoring
stations on the Danube River in Europe use conwealtianalyzers (e.g., pH, turbidity) and
stations on the Mississippi and Ohio Rivers utiliaedvanced methods such as gas
chromatographs. Both the Moselle River in Franue #he River Han in Korea make use of
biomonitors (Grayman et al., 2001; Gullick et aD03). Some monitoring systems are multi-
jurisdictional and have many monitoring stationg(ethe Danube River) and others involve a
single station upstream of a specific intake (¢twe,River Trent in the United Kingdom). All

of these applications and others are describedeiat gletail by Grayman et al. (2001).

2.1.3 Water Quality Monitoring Design Considerations

Sanders et al. (1983) presented a general methpddby the design of a water quality
monitoring system from the identification of itsrpase through to its operating and reporting
procedures. This methodology is illustrated inufeg2-1.



1. Evaluate Information Expectations
= ldentify water quality concerns

= [dentify monitoring objectives

Z. Establish Statistical Design Criteria
* Develop hypotheses

= Select statistical methods

3. Design Monitoring Station(s)
» Decide where to sample
* Decide how freguently to sample

» Decide what parameters to sample

4. Develop Operating Plans and Procedures
» Sampling procedures
*» Laboratory procedures
* Cluality control

» Data storage and retrieval

5. Develop Reporting Procedures
» Types of reports

= Distribution of inform ation

Figure2-1. The Design of a Water Quality Monitoring System
(Adapted from Sanders et al., 1983)

The first, second, and third steps of the metha$qmted by Sanders et al. are addressed as
part of this thesis. The first step involves ekshing expectations and objectives; in the case
of the current research, the objective is to creat@onitoring station or network of stations to
provide notice of contamination events upstream dfinking water intake. The second step
involves establishing statistical design criteriehe focus of this thesis is the third step which
involves determining how many monitoring statiortsoldd be implemented, where the
station(s) should be located, the frequency of tooimig, and the parameters for which the
station(s) will monitor. Literature relating toethe decisions is presented in the following

sections.



2.1.3.1 Location

Selection of a location is the most important deaisn the design of a monitoring station. If
samples are collected from a non-representativatitot all other design decisions, such as

sample frequency, are irrelevant (Sanders et @831

In the past, monitoring locations were selectecetagpon personal experience, intuition, and
expert judgment of the local conditions (Reinelakf 1988; Dixon and Chiswell, 1996; Ning

and Chang, 2004; Ning and Chang, 2005). Thesse g#aerally coincided with streamflow

gauges and were frequently located near known tridusand wastewater discharges

(Harmancioglu and Alpaslan, 1994). Convenience alss a consideration and locations with
easy access to required facilities, such as latweat were often selected (Harmancioglu and
Alpaslan, 1994).

Most recent literature on monitoring network desigivolves the use of statistical and
optimization methods (MacKenzie et al., 1987; Riiee al., 1988; Ning and Chang, 2004).
Examples include the use of fuzzy set theory (Nargl Chang, 2004), gradient search
algorithms (Palmer and MacKenzie, 1985), and théropy principle of information
(Harmancioglu and Alpaslan, 1992). Design obyediusually involve maximizing some
measure of the amount of information (e.g., cajgbiio detect changes, capability to
sufficiently represent a given area, statisticalvpo of the network, capability to meet
regulatory requirements) (Palmer and MacKenzie 513hd minimizing costs or applying a
budget constraint (Ning and Chang, 2004).

For the purpose of locating an early warning mamtp station, Gullick et al. (2003)
recommend consideration of the following factors:

» The location of contaminant sources;

» The time of travel from these sources to the intake

* The amount of mixing and dilution that occur;

* The response time of the monitoring instrument;

* The type of treatment process and its capabilityaiodle various contaminants;

e Security to protect the monitoring station; and
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» Access to electricity and potentially telephoneén

The first two considerations are an important pérthis thesis. The location of contaminant
sources must be considered in an attempt to mieirthe risk of failing to detect events
originating between the station and a downstreatemteeatment plant intake (International
Life Sciences Institute, 1999). However, travelds are also an important consideration so
that sufficient warning is provided in which to ilament a response at the water treatment

plant (International Life Sciences Institute, 1999)

In addition to determining the monitoring statiofosation along the river’s length, its vertical
and lateral positioning should also be considef@dllick et al., 2003). For small or well
mixed rivers, one station located at the river'atee or at one of the banks may be adequate.
In some applications, however, multiple intakesasrthe river’'s width may be necessary to
sufficiently characterize the river's water qualifullick et al., 2003). The vertical
positioning of a monitor may depend upon the typaralysis it performs. For example, a
station monitoring for substances with surfacekslicsuch as oil, will be sensitive to depth
(Gullick et al., 2003).

Access to electrical lines is also a considerdiorselecting potential station locations because
most monitoring technologies require electricitipepending on the type of communication
between the station and the response team, telephdres may also be required.
Furthermore, the station must be accessible tocle=hi As a result, early warning monitoring
stations are usually located in close proximitytoridge (International Life Sciences Institute,
1999).

2.1.3.2 Sample Frequency

Selection of the frequency at which a monitoringtieh will sample is another important
design decision. The chosen sample frequencyigaifisantly impact both operating costs as
well as the usefulness of the data collected (Sareteal., 1983).
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In the past, sample frequencies were often seleawdg professional judgment with
consideration for cost constraints (Sanders et1883; Harmancioglu and Alpaslan, 1994).
Although this is often still the case, the literataliscusses the use of statistical methods for the
optimal selection of monitoring frequency. Sometludése statistical methods are discussed
further in Sanders et al. (1983) and Harmancioghli Alpaslan (1994); however, most of these
methods are relevant for long-term monitoring aneddd detection networks. Therefore, these
methods will not be discussed further as they ateas relevant for the current research which

focuses on the detection of events that cause sutketerioration in water quality.

In the case of an early warning source water mangostation, defining a sample frequency
should involve consideration of the duration ofitgb contamination events and their travel
time to the intake. Less frequent sampling leadddcreased response time and could also
result in the failure to detect events of shortation (Grayman et al.,, 2001). As cited by
Grayman et al. (2001), Waldon et al. (1989) foumat & daily frequency was not appropriate
for an early warning monitoring station as it fdil® detect many spill events. Continuous or
near-continuous monitoring is often preferred, ipaltarly for rivers with high velocities,
rivers with low dispersion, or for cases where thenitoring station is located at the water

treatment plant intake (International Life Scienbreditute, 1999; Grayman et al., 2001).

2.1.3.3 Parametersto Sample

Early warning source water monitoring stations Uguaonitor for chemical and radioactive
threats in a riverine water supply. Microbioloditlareats are not usually monitored because
their analysis requires hours or days (Gullicklet2003). Selecting parameters for which to
monitor is a challenging task because a vast afayontaminant events are possible. This
decision should be largely driven by a threats\ariderability assessment of the water supply
(Grayman et al., 2001).

Similar to other design decisions, the selectioparfameters must also give consideration to
the monitoring purpose. For example, if the mamiigp program exists for the detection of
pesticide transport in a water supply, then sarmgadissolved oxygen and turbidity may not be

sufficient (International Life Sciences Institui€99).
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The selection of parameters for which to monitoofien based upon budget and technology
constraints. Many parameters are quite costhatopde, and indicator variables may be more
appropriate. Sanders (1983) suggests investigathationships between water quality

parameters to see if there are correlations whih Ise used to reduce the number of
constituents to be monitored. Another option is tlse of biomonitors which can be very

effective at identifying adverse water quality asated with a wide range of contaminants

(Grayman et al., 2001; Mikol et al., 2007).

2.1.4 Probabilistic Design of Early Warning Monitoring Stations

This section discusses the use of probabilisticetiog) in order to assess various monitoring
station designs. The use of probabilistic modglimthe design of a source water monitoring
station was demonstrated by Waldon et al. (1989)c{@d by Grayman et al. (2001)), who

suggested that future research could involve camtyidMonte Carlo simulations.

The American Water Works Association Research Fatioid (AWWARF) published a report
discussing early warning monitoring in detail (Qregn et al., 2001). This report includes a
description of a probabilistic model that uses Moftarlo simulations to analyze various
monitoring station designs. The model is calledll Spisk and it includes uncertainties
associated with the fact that spills are randontinte, location, duration, and quantity. The
model also includes uncertainties associated whkether or not the spill is reported by the

public or spill generator.

Spill Risk is a one-dimensional advection-dispersiwodel with the following assumptions:

* Only a single reach is being modelled with constlw throughout the reach and no
tributaries;

* A one-dimensional model is appropriate as concBotra are vertically and laterally
averaged,;

* The system can be represented with a simple adwvedispersion model;

* Flows are seasonal (up to 12 seasons per year);

* The flow during a spill simulation is constant;

» Each spill is of a single constituent;

12



» Spills are not seasonal; and

* There is no interaction between spills (Graymaal e2001).

Spill events modelled in Spill Risk are defined twe location of the spill generator, the
contaminant spilled, the probability of occurrerfeqy., a 500-year event has a probability of
1/500), as well as a distribution for the spill magde, duration, and probability of public or
agency report. The spill magnitude is assumedate la triangular distribution defined by the
minimum, maximum, and most likely spill amount, atieé spill duration is defined as a

uniform distribution ranging from minimum to maximuexpected durations.

Spill Risk defines the flow at the time of the §piirough the use of a shifted log-normal
distribution for each season. Within a seasorfltiveis probabilistic but it is constant within a

reach at a given time (Grayman et al., 2001).

Potential monitoring designs tested in the SpilkkRmodel are defined by their location,
contaminants they measure, frequency of sampling,raethod detection limit (MDL). The
monitors initiate a detection when the concentratwd the contaminant is above the MDL.
The minimum frequency that can be tested with tledleh is one sample every hour, to

simulate near-continuous monitoring (Grayman ante§|&2002).

Once the response is determined by the model,ethdting treated water concentrations are
calculated based on user defined treatment effi@snfor the various contaminants (under
both normal and enhanced treatment conditionsketfof spill simulations are performed and
the output statistics are accumulated. Using ladl accumulated results from a set of
simulations, the impact of a given monitoring statdesign is calculated as a function of the
duration a contaminant was present in the treasdnvabove the maximum contaminant level
(MCL) and the population that was exposed. Areaiveness index is used to compare
different monitoring station designs, which is cééted as the impact reduction divided by the

impacts associated with taking no action (Grayntaal.e2001).
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The design of a station for the purpose of earlymmg source water monitoring is a relatively
new area of research. No further literature netagpecifically to the probabilistic design of

such stations is currently available.

2.1.4.1 Similaritieswith Distribution System Monitoring

Early warning monitoring in distribution systemssh@bvious parallels to the current research
as both involve locating monitoring stations foe thurpose of detecting highly uncertain
events. Similar probabilistic approaches have lzggglied in the literature for the purpose of

monitoring for intentional contamination eventsaidistribution system.

Cozzolino et al. (2006) presented a Monte Carletasethod for locating monitoring stations
within a distribution network. Their model consisleuncertainties associated with user
demand on the system, as well as the uncertairdgceged with the node at which the
contamination enters the system. Equally probaiohe-varying hydraulic situations are

generated and modelled in order to determine amapmonitoring location.

Ostfeld and Salomons (2005) discuss a similarcgabr for the design of an early warning
distribution system monitoring program. Their nogthincludes uncertainties associated with
the volume and location of a deliberate injectitve, demand on the system, as well as possible
delays in response and the sensitivity of the nooimigg equipment.  This methodology is
further described by Ostfeld and Salomons (2004d)ianolves the use of a genetic algorithm
to optimize station locations in order to identdgliberate terrorist acts in the distribution
system. The tradeoff between the number of statard the probability of detection is also

explored in their work.

2.2 Hydrodynamic Modelling

Information about the pathway, volume, and velooityvater is essential in order to determine
how contaminants move and behave in it (Martin sleCutcheon, 1999). Therefore, the use

of a hydrodynamic model is required for the curmesearch.
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2.2.1 Fundamental Equations

Continuity and momentum equations are used in ldydramic models to describe variations
in flow. The equation of continuity represents thct that the change in stora@ gver time

is equal to the difference between inflow$ &nd outflows Q) (Martin and McCutcheon,
1999). Mathematically this can be expressed as:

—>=1-0 2-1
dt

If river depths and velocities change over tima given location, as they do for most natural
open channels, the flow is classified as unstedgy. unsteady, gradually varied flow in open

channels, the momentum equation can be expresgéthas and McCutcheon, 1999):

U, U __ oh_ g

e S LN * LU 2.2
a " ax Jox R”

where U represents the average longitudinal velocity,
t represents time,
X represents longitudinal distance,
g represents acceleration due to gravity,
n represents Manning’s roughness coefficient,
O represents a unit conversion (1 for Sl units ad@ for English units),
h represents the water surface elevation aboveemglatum, and

R represents the hydraulic radius.

Equations 2-1 and 2-2 are called the Saint-Vengnatons and are used by all models that
simulate dynamic water movement in rivers (Chap®®7). Unfortunately, there is no closed

form solution for these equations so they mustdieesl numerically.

2.2.2 Solution Techniques

The Saint-Venant equations are commonly solvedgufimte difference methods. Finite
difference methods involve the use of finite quidedito approximate derivatives that cannot
be solved analytically. For example, a river candivided into finite segments over space
(Ax) and time At).
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Finite difference methods can be classified asiexpbr implicit. Explicit methods only
involve one unknown (the value of a given segmenie next time step) because they do not
consider adjacent segments at the next time stejghwwill have an impact on the solution
(Chapra, 1997). Implicit solution methods do navé this limitation; however, they are more
computationally expensive because the spatial atvis for the next time step for all points
along the x-axis must be solved simultaneously p€nal997; Martin and McCutcheon,
1999).

The weighted four-point implicit method is one dietmost commonly used and efficient
solution techniques for solving the Saint-Venantatpns (Martin and Wool, 2002). It is
considered the standard solution method used inynose-dimensional hydraulic models
including the U.S. Army Corps of Engineers CE-QURLY1 and the National Weather
Service models DWOPER, DAMBRK and FLDWAYV (MartindaMcCutcheon, 1999).

To solve for a value at point Z, as shown in Fig2+2, the values at all four corners of the

surrounding box are required.

Lx tat) Jberax tal)
- 1 (1-8)af]
; e »{e ¥ >
£ At X7 AR |
= BAt
h FY h F'
i(x t) (x+ix t)
§ — ,

v

Longitudinal Distance, x

Figure 2-2. Schematic of the Weighted Four Point Implicit Finite Difference Scheme
(Adapted from Martin and McCutcheon, 1999)
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A weighting factor,0, is used to determine the position between twe tateps t(and t+At)
and its choice is important for the stability oktbolution. If6 is set to zero, the method
becomes explicit as no values at the future tirep are used. In this case, the time step will
be restricted by the Courant number which represtrg ratio between the distance moved
during one time stepAt) and the segment lengtiAX). The Courant numbery( can be
calculated using the following equation (Chapr&7)9

_UAt

—_— 2-3
AX

To ensure stability, the Courant number must be lean one so the water cannot move more

than one segment length at a given veloditywithin one time step.

The solution is stable for 0.9x<1, though stability increases @spproaches values of 1. 0If

is set to 1, the solution becomes fully impliddlartin and McCutcheon (1999) recommeng@ a
value of 0.6 to improve accuracy while avoiding bk instabilities associated with values
closer to 0.5.

The Newton Raphson algorithm is commonly used twessimultaneous non-linear flow
equations, such as those produced using the fant-Hpaplicit method. The Newton Raphson
method is an optimization technique that can bel isdind roots, minimums and maximums
of real-valued functions. Martin and McCutcheon 93P provide an excellent discussion
regarding the application of the four-point implischeme and use of the Newton-Raphson

method to solve the resulting equations.

2.3 Water Quality Modelling

The Law of Conservation of mass states that massedher be created nor destroyed, only
transferred or transformed. This law is a fundasaldoasis for most mechanistic water quality

models, which are commonly called mass balance lm@¢@oapra, 1997) and can be expressed
as (Martin and Wool, 2002):

2
99,y %9 - p% %, 9 g)-K.a+SINKS
ot 0X X A 2.4
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where a represents the water quality constituent of irgigre
U represents the average longitudinal velocity,
g represents lateral inflow rate,
Arepresents cross-sectional area,
y represents the concentration of runoff input ®o¢hannel by distributed flog;

Ks represents biochemical decay and growth rates, and

SINKSrepresents biochemical sources or sinks.

Equation 2-4 is known as the one-dimensional atwedispersion equation and is used
in many water quality modelling applications (Kafgheur and Falconer, 2002). The first term
in equation  2-4 represents the change in coestitaoncentration over time, the second
term represents advection, the third term represdiffusion, the fourth lateral inflows or
withdrawals, the fifth reactions, and the sixthrees or sinks (Martin and Wool, 2002).

2.3.1 One-Dimensional Models

One-dimensional water quality models assume thdobcites and concentrations are
reasonably represented by cross sectional ave(igesn and McCutcheon, 1999). Although
complete cross sectional mixing rarely occurssibften a good engineering approximation
(Martin and McCutcheon, 1999; Grayman et al., 2001)

Prior to selecting a one-dimensional model, itsitibons must be understood. One-
dimensional models assume that a contaminant ipledely and instantaneously mixed across
a given cross section. However, pseudo-compl@tescsectional mixing does not occur until
some distance downstream from a release. Thendesttb complete mixing is called the

mixing length (Martin and McCutcheon, 1999). Coetplmixing is attained when the ratio of
minimum to maximum concentration at a given crasgisn is close to 1; values of 0.95 or
0.98 are commonly used (Rutherford, 1994). Fati® of 0.98, the mixing length for a mid-

channel injection is calculated as:

L,=0.134>*— 2-5
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For releases on either bank, the mixing lengttaisutated as (Rutherford, 1994):

2
L = 0.536\/6—b 2.6

y
where v, represents the average velocity (m/s),

b represents the channel width (m), and

D, is the longitudinal dispersion coefficient {s).

In general, for a mid-channel release, vertical ingxis complete at a distance of
approximately 50 river depths downstream and lateraing is complete a distance of 100 to
300 river widths downstream (Rutherford, 1994).r Bankside releases, the mixing lengths

are four times as long (Rutherford, 1994).

The dominant processes affecting a soluble, coatieevspill as it moves downstream are

illustrated in Figure 2-3.

Conservative
Spill

Vertical and

lateral mixing Lateral mixing and
and longitudinal longitudinal Longitudinal

dispersion dispersion dispersion
| ] 1l \Y \%
Very short Short Optimum Long Extended

distance Distance Distance Distance Distance

Figure 2-3. Stages of River Mixing
(Adapted from Kilpatrick, 1993)

Prior to reaching section | on Figure 2-3, mixingses in all three dimensions. At section |,

vertical mixing is complete and lateral mixing dones. At some optimum distance (section
ll), the response curves at various points threaughhe section all have equal areas. At this
point, dispersion is almost all in one dimensidiowever, the peak concentration in the center
of the river may still be considerably larger thithat at the banks. At far distances (section

IV), the areas of the response curves are the sathéhe peak concentration in the center is
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similar to that at the banks. At this point thepdirsion is almost entirely in the longitudinal
direction, which continues indefinitely downstreamm the absence of any boundaries
(Kilpatrick, 1993). Downstream of section lll, i usually reasonable to assume one-
dimensional mixing because longitudinal disperssothe dominant process (Jobson, 1997).

In the case of the current research, the implinatibusing a one-dimensional model is that
more detections will be simulated than would odaurality. For example, spills that are less
than one mixing length upstream of a monitoringictawill be detected by the model, but in

reality may pass by the monitoring station on dde sr the other and go undetected.

2.3.2 Longitudinal Dispersion

Longitudinal dispersion includes the effects of emnllar diffusion, turbulent mixing, and
mixing due to shear in both the transverse andcatrtlirection (Singh and Beck, 2003). It
represents a measurement of the degree of polloteaiig in a natural stream and is one of
the most important parameters in one-dimensionar nivater quality modelling (Iwasa and
Aya, 1991; Deng et al., 2002). Longitudinal dispen coefficients can be estimated through
the use of tracer experiments, in which a knownntjtyaof a conservative, soluble dye is
injected into a river to simulate the movement ofuble contaminants (Kilpatrick, 1993).
Concentration profiles of the dye must be measwedwvo locations downstream of the
injection, at a distance far enough such that thescsectional concentration is approximately
uniform (Jobson, 1996; Singh and Beck, 2003). tlmep words, the concentration profiles
should be measured at least as far downstreanc&smsBl (Figure 2-3).

Using measured tracer concentration profiles at downstream locations¢( and x), the
travel time (') and temporal variances{) can be calculated to determine the mean velocity

(V) using the following equations amdmeasured concentrations (Chapra, 1997):

=

n-

Z(C'It + 9+1t+1)(t+1_ I)

=41 2-7

n-

(Cl + c}+1)(t+1 - t)
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The longitudinal dispersion coefficierid) can then be calculated as:

_U(s-9) 10
2(, 1)

If tracer testing data are not available, dispersioefficients can be estimated using a variety
of empirical equations. These equations are ofedied upon as many projects lack the
resources to conduct the field work necessary tleatotracer concentration profiles (Wallis
and Manson, 2004). Most empirical equations treatehbeen developed rely on hydraulic
properties of the river such as the cross sectiamatage longitudinal velocityJj, the cross-
sectional average shear velocity*{, the top width of the riverW)), and the hydraulic depth
(H). These equations are simpler to apply tharectitig tracer testing data, although they
may be insufficient for capturing the complex mixibehaviour that occurs in some rivers
(Wallis and Manson, 2004).

The first empirical equation for predicting longitnal dispersion in natural streams was
proposed by Fischer in 1975 and has been extepsiggld since that time (Seo and Baek,
2005). Many researches have continued with Fiselvrk and a host of empirical equations
have been developed and shown excellent performfmmcearious case study applications.
Some common empirical equations available in therdiure are shown in Table 2-1.
Corresponding references are also shown and tlleréadirected to the original sources for
more information on the development of these equati Wallis and Manson (2004) provide a

good discussion and comparison of the equationsrsho
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Table2-1. Empirical Equationsfor Estimating Longitudinal Dispersion in Rivers

Equation Reference Equation
Number
2 2 (Fischer, 1975) 2-11

D U w ’
——=0.011—| | —

ooy ()

D U w2 (Liu, 1977) 2-12
—=0.18 — —

HU B(Uj (Hj

D WL (lwasa and Aya, 1991) 2-13
HU, ~ (ﬁj

D U 1428 1\ £ \ 2620 (Seo and Cheong, 1998) 2-14
——=5.91 —

o=l ) (W)

D _015U Z(st/s (Deng et al., 2002) 2-15
HU. 8k (U. H

1.38
wherek, =0.145+ L uw
3520/\ U, )\ H

D U 2 (Kashefipour and Falconer, 2002) 2-16

——=10.61
{U*j

2.4 Uncertainty

As presented in Section 2.1.4, the design of aly @arning source water monitoring station
involves a number of uncertainties that should desered using methods such as Monte
Carlo simulations. The following section deals egpecifically with the role of uncertainty

in risk analysis.

2.4.1 The Role of Uncertainty in Risk Analyses

The Random House Dictionary defines risk as an dsxpe to thehance of injury or loss.” A
common engineering definition is the probabilityasf accident multiplied by the losses per
accident. In the case of water resources engimgdosses can be defined on a public health
perspective (e.g., how many people will become il§ince risk by definition involves the

aspect of chance, consideration of uncertaintymiperative when conducting risk analyses
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(Morgan and Henrion, 1990). Uncertainty analydesvadecision makers the opportunity to
consider the reliability of model predictions arallect more data if necessary in order to make
more defensible decisions (Morgan and Henrion, 19%8ckhow, 1994). For these reasons,
uncertainty analyses are an essential part ofidaecand policy making.

2.4.2 Water Quality Model Uncertainty

The use of water quality models has become inarghsimportant in water resources decision
making. Deterministic water quality models prodacset of output values for a given set of
model inputs that are assumed to be perfectly kno{iortielje et al., 2000; Boano et al.,
2006). However, it has been found that many detastic models fail to produce reasonable
results for many basic biological constituents (Mgte et al., 2003b). Although most water
guality model applications involve some degree alibcation, models are still simplified
representations of complex and dynamic environnhgmiacesses and will always have a
degree of uncertainty associated with their regMisintyre and Wheater, 2004).

In the case of the current research, uncertaietést regarding the nature of spill events, as
described in Section 2.1.4. When using a watelitguanodel, the following sources of
uncertainty may also be significant:

* Model input uncertainty (i.e., due to errors inlgheal methods);

» Parameter uncertainty; and

* Model structure uncertainty (Lindenschmidt et 2005; Zheng and Keller, 2006).

Investigating model structural uncertainty requirggnificant human and computational
resources, so it is often assumed to be adequatpiesented as parameter uncertainty
(Mclintyre et al., 2003b). For the current reseatblerefore, the probabilistic nature of spill
events is considered in addition to the uncertaim$gociated with water quality model

parameters.

2.4.3 Methods to Quantify Uncertainty

Monte Carlo simulations are commonly used to prapaguncertainty in water quality

modelling studies. This involves defining a proiibdistribution for all uncertain inputs or
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model parameters and then sampling a random vatume €ach of these distributions. The
sampled values are then used in the model to campuworresponding output value. This
process is repeateoh times to generaten output values, which can be used to form a
probability distribution of the model output (Morgand Henrion, 1990).

Before such a procedure can be undertaken, pratyadigtributions of the model parameters
and inputs must be defined. Typical ranges fortm@der quality model parameters are well
documented in the literature (Perera and Ng, 200drtin and Wool, 2002; Mcintyre et al.,
2003a; Cox and Whitehead, 2005; Lindenschmidt, 2@3%dele et al., 2006). However, the
use of overly conservative parameter distributioas result in unnecessarily high levels of
model prediction uncertainty. Parameter unceryagstimates can be refined by using Monte
Carlo based methods such as Generalized Likelitbrozbrtainty Estimation (GLUE) (Beven
and Binley, 1992), Regional Sensitivity AnalysisS@® (Spear and Hornberger, 1980),
Markov Chain Monte Carlo (MCMC) (Brooks, 1998), dniform Covering by Probabilistic
Rejection (UCPR) (Klepper and Hendrix, 1994). éilthese methods involve conditioning
the parameters using a set of calibration datadffioning experiments are computationally
expensive as they require conducting an entirefsgimulations before the model can be used
for prediction. In addition, a set of good califiwa data is required with which to assess the

performance of each parameter set.

2.5 Multi-objective Optimization

Many environmental management problems involve igialtcompeting objectives (Singh et
al., 2003; Muleta and Nicklow, 2005). For exampieound water problems may involve
minimizing the risk of contamination while maximigj pumping rates to meet a specified
demand. Similarly, water distribution network apptions may involve minimizing costs
while ensuring water pressure is maximized and watsources problems could entalil
maximizing agricultural profit while minimizing sadent yield (Muleta and Nicklow, 2005).
In each of these examples, the objectives arenflicbbecause improving one generally leads

to a decline in the other.
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Two of the major considerations for locating a noriing station identified in Section 2.1.3.1
include the amount of threats coverage and wartimg provided. These considerations are
in competition because improving performance widspect to one results in worse

performance with respect to the other (this isuised further in Section 3.1).

There are many different methods with which to eatwilti-objective optimization problems.
Multiple objectives can be converted to a singlgedive by applying a weighting factor to
each objective. For example, if one wants to minentwo objectivesk; andF,, the following
single objective functiork s, may be used:

Minimize E= wEk+ w F
wherew; andw, are weightings assigned to objectives 1 and 2 ecdsely. The use of this
method allows the user to convert a multi-objecpveblem to a single objective problem and
then apply traditional optimization methods such lagear, dynamic, or non-linear
programming (Reddy and Kumar, 2007).

An alternative method is to convert all but ondhad multiple objectives to constraints. For a
two objective problem, the second objecti¥@) (may be converted to a constraint as shown
below.
Minimize R
Subjectto i < t.
Once again, this allows the use of traditional Erabjective solution methods.

If the problem is solved using a single objectigeme solutions that represent a tradeoff
between the original objectives may fail to be tifeed (Reddy and Kumar, 2007). As a
result, the full information value is not capturetien one or more objectives are limited to
subjectively defined weightings or constraints (Eenet al., 2007). To overcome this
limitation and explore a range of tradeoff soluspthe concept of Pareto optimality can be

applied.

A Pareto optimal front is defined by all solutidios a given problem that are not dominated by

another solution. A solutior5() dominates another solutiofy] if it is better in at least one
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objective and not worse th& in any other objective. The Pareto optimal sesafitions is
defined as all of the solutions that are not doteiddy any other feasible solution. For a two
objective problem, these solutions can be plottedaacurve in objective space, called the
Pareto front.

A Pareto front is shown in Figure 2-4, with eachisarepresenting an objective to be
minimized (i.e., solutions towards the origin arefprred). It can be seen from this figure that
solution C is dominated because solutions A andr® @eferable with respect to both
objectives. Neither A nor B are dominated by atheosolutions, and it can be seen that they

are two solutions contained on the Pareto front.

Y

Min f,

|

.
L

«— Minf,

Figure 2-4. Pareto Optimal Curve

Presenting a complete or approximate representatiothe Pareto front enables decision
makers to consider an array of feasible solutioithout pre-defining preferences between

objectives or restricting objectives to be représéms constraints.

The main limitation of analyzing multiple objectsraising a Pareto optimal curve is that
solutions that perform poorly for one or more objexs may be identified as feasible options.
For example, solutions that would be identifie@daich objective is optimized individually lie

on the Pareto curve even though they may have eptatde performance with respect to the

other objectives. However, this limitation is edsyovercome as decision makers need not
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consider these solutions if they do not represpptapriate or desired tradeoffs. The benefit
of constructing a Pareto curve is to provide decishakers with a range of tradeoff solutions

for consideration.

2.6 Summary of Relevant Literature

In the preceding discussion it was found that é@bdistic approach for designing an early
warning monitoring station is required in ordercpture the uncertainties associated with the
nature of spill events. The research describethis thesis builds on that of Grayman et al.
(2001) by considering multiple objectives in loogtithe stations and using a different method

for incorporating uncertain flows. This methodolag described in further detail in Chapter 3.

To conduct a probabilistic design of an early wagnmonitoring station, the use of both a
hydrodynamic model and water quality model is reggii One-dimensional models have been
used for similar applications and are widely acedpas good engineering approximations.
Monte Carlo simulations are commonly used to pragagncertainty which, in the case of the
current research, is associated with both the sp#inarios modelled as well as the water
quality model parameters. Common Monte Carlo basedhods for the inclusion of

parameter uncertainty were also identified.

Two important considerations for locating a sous@ter monitoring station were identified to
be the amount of coverage and the amount of watmmg provided by the station. Instead of
calculating a population exposure as the metrit wihich to compare station designs, this
thesis involves the use of a multi-objective desigoblem so that tradeoff solutions can be

analyzed by decision makers.
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3 Methodology

The methodology developed to design an early wgrrsiaurce water monitoring station

involved the following tasks:

Specification of design objectives;

Identification and prioritization of potential tlats;
Identification of potential monitoring station Idns;
Modelling of probable spill scenarios; and

Analysis of model results to determine an optimahitoring station design.

Each of the above steps is described in SectidnghBough 3.6 and a specific application of

the methodology is discussed in Chapter 4.

3.1 Specification of Design Objectives

The following decisions are required for the desigihan early warning source water

monitoring system:

Number of monitoring stations;
Location of monitoring station(s);
Sampling frequency;
Parameters to monitor;
Monitoring technology;
Communication linkages; and

Response protocol.

The purpose of this research is to design a sieglly warning monitoring station upstream of

a specific drinking water treatment plant intakBecisions with regards to communication

linkages, monitoring technology, and response patoare left to the local decision makers.
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Therefore, the scope of this methodology is limiteddetermining the optimal location and

sample frequency of an early warning source wataritaring station.

In Grayman et al. (2001), various monitoring statidesigns were assessed based on an
effectiveness index (see Section 2.1.4). The naetlogy applied in this research involves a

multi-objective approach for assessing potentiaigies, as described below.

The monitoring station should be located wherepfrabability of detecting a contamination
event is maximized. However, it must also provstddficient warning to allow downstream
water treatment plants time to implement a respomké response could include initiating
further sampling to characterize the event, condgcpredictive modelling, implementing
advanced treatment, or shutting down the plankef@nternational Life Sciences Institute,
1999). Therefore, in addition to maximizing thelpability of detection, the station should be

located where the probability of achieving a theddlramount of warning time is maximized.

These two objectives cannot be optimized simultaslgo Warning time is maximized when
the station is as far as possible upstream angriblgability of detection is maximized when
the station is as close as possible to the intakeder to provide greater coverage of potential
threats. Therefore, locating the monitoring statrequired consideration of the tradeoffs
between these competing objectives.

More frequent sampling increases the probabilitdetecting a spill event. However, cost was
also a consideration so determining the tradeoffiwéen increased sampling and the
improvement in the objective values was investigat€or example, if sampling every hour
achieves only a minor improvement in the objectraéues over sampling every two hours,

then it may not be worth the added expense of sagipwice as often.
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3.2 Threats Inventory

The probabilistic modelling that was undertakerpad of this research was based on threats
located within the study area. These threats vadenetified and prioritized using the procedure

described below.

3.2.1 Identification

In the province of Ontario, any person who causepesmits a spill to be released to the
natural environment, or any public sector employ® has knowledge of such a release, is
required by law to report to the Ontario Ministrytbe Environment’s Spills Action Centre
(SAC) (Ontario Ministry of the Environment, 1990)The SAC maintains records of all
reported spills including the medium to which thellsoccurred (e.qg., air, land or water) as
well as the type and amount of substance relebkeown. Each spill is classified as oil (e.g.
crude, gasoline, petroleum), waste (e.g. industriezardous liquids, sewage), gas or

particulate, chemical (e.g. acids, bases, pesscgtdvents), or other.

Historical spill data were obtained from the SACh&lp identify threats within the case study
area. However, due to the low probability of mgstl events, these data were very limited so
province-wide data were reviewed. In 2006, 454ilsspvere reported in Ontario and are

classified in Table 3-1 (Ontario Spills Action Cent2006b).

Table 3-1. SpillsReported in Ontario in 2006

Type Number Per centage of Total
Oils 2516 55.4%
Wastes 778 17.1%
Gases and particulates 593 13.1%
Chemicals 459 10.1%
Other 195 4.3%

From Table 3-1, it can be seen that oils and waatesthe most abundant type of spill in
Ontario. The SAC also reported that the most comsmll source was transportation-related
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spills, which represented 22% of all spills repdrie 2006 (Ontario Spills Action Centre,
2006b). Therefore, identifying sources of oil amdste spills and the nature of potential

transportation-related spills provided a good stgrpoint for conducting the threats inventory.

In addition to considering previous spill data, thenistry of the Environment’s Draft
Guidance Modules for Source Water Protection Plammiere also reviewed. These modules

list a number of drinking water threats of proval@oncern, which are shown in Table 3-2.

Table 3-2. Drinking Water Threats of Provincial Concern
(Ontario Ministry of the Environment, 2006a)

Direct Introduction Landscape Activities Storage of Potential
Contaminants
» Water treatment plant| « Road salt application  Fuels/hydrocarbons
waste water discharge . De-icing activities  DNAPLs
* Sewage treatment * Snow storage  Organic Solvents
plant effluent  Stormwater management systems Pesticides
* Landfills * Manure

* Industrial effluents . . e
* Organic soil-conditioning

Septage application

» Hazardous waste disposal

* Liquid Industrial waste

* Mine tailings

* Biosolids application

* Manure application

* Fertilizer application

* Pesticide/herbicide application

» Historical activities —
contaminated lands

The information presented was used as a starting pwm direct the identification of threats
within the study area. The results of this inveptor the case study application are discussed
in Section 4.2.2.
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3.2.2 Prioritization

After the threats were identified, they had to bengized according to their level of risk for
the purpose of defining probability distributionsrh which to sample during the Monte Carlo
simulations (see Section 3.5.1.3). Risk estimategquire detailed knowledge and
understanding of potential threats in order to reefiheir probabilities of occurrence and the
magnitude of their effects. This is a subjectixereise often conducted by a panel of experts
based on professional experience, and may invaitee vssits and discussions with local

stakeholders.

Due to limitations related to the case study apgilbm, a comprehensive prioritization of
threats could not be completed. However, in theviRoe of Ontario, the Clean Water Act
requires source protection committees to identiipking water threats and perform a semi-
guantitative risk assessment in the near futurgg@mMinistry of the Environment, 2006b).
For the purposes of this research, best estimdtesative risk levels have been used. The
results can be easily updated when a more compseteensk assessment has been completed

for the case study area.

3.3 Identification of Potential Monitoring Locations

As described in Section 2.1.3.1, early warning naimng stations are commonly located near
bridges for access to electricity (Internationdel$ciences Institute, 1999). Multiple locations
that coincided with bridges and were well spaceduphout the case study area were selected
as described in Section 4.2.3. These locationseesept a set of discrete solutions for this

optimization problem.

3.4 Modelling

Once the threats and potential station locationsevigentified, probabilistic modelling was

undertaken to generate results upon which to basigm decisions. Setting up the model to
perform these simulations represented a signifieamponent of the methodology. The
following sections describe this procedure in naetail.
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3.4.1 Model Selection

As reviewed in Section 2.2, water quality modelguiee information about the pathway,
volume, and velocity of the water to determine hmmtaminants move and behave (Martin
and McCutcheon, 1999). Therefore, both a hydroayoanodel and a water quality model
were required for this research.

For many modelling applications, rivers are assuntethave adequate lateral and vertical
mixing so that homogeneous cross sectional coratémis and average cross sectional
velocities can be used (Martin and McCutcheon, 1998Ithough complete mixing never
occurs, it is often assumed to be a good engingeqproximation (Martin and McCutcheon,
1999). The complete mixing assumption has been wsesimilar modelling studies (e.g.

Grayman and Males (2002)), and was selected assanable choice for the current research.

Brief descriptions of the one-dimensional modelssigered for this research are listed in
Table 3-3. This is not an exhaustive list andrteaer is referred to Grayman et al. (2001) for

more comprehensive descriptions of these and atbeels.

All of the models listed in Table 3-3 are well dowented and widely accepted for modelling
one-dimensional rivers (Jobson, 1996; Grayman .e2@801). Furthermore, all of the water
guality models are based on the conservation osragsation, so their differences are thought
to be less important than the quality of input daité which they are provided (Jobson, 1996).

Since all the models considered are technically@pyate for the current research, the criteria

for selecting a hydrodynamic and water quality magguded:

* The water quality model must be able to run fromBOS prompt or have the capacity
to run repeatedly without user intervention (sot thionte Carlo simulations can be

performed);
* The hydrodynamic and water quality models mustiy&sk together;
* The models must have well documented User Manaats;

* The models must be easily obtainable and inexpensiv
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Table 3-3. List of One-Dimensional Hydrodynamic and/or Water Quality Models

Model Type Description

RIVMODH Hydraulic RIVMODH is a hydraulic model used for

(Dames and Moore, rivers, estuaries and other one-dimensional

1994) water bodies with unsteady flow. It can be
linked with a water quality model such as
WASP.

BRANCH Flow BRANCH can simulate steady and

(Schaffranek, 1987) unsteady flows in a single river branch of
network of branches

DYNHYD Hydrodynamic | DYNHYD is a hydrodynamic model that

(Ambrose et al., 1993) can be linked with WASP. It is used for
well mixed rivers and estuaries.

CE-QUAL-RIV1 Hydrodynamic | CE-QUAL-RIV1 has both hydrodynamic

(U.S. Army Corps of and Water and water quality modules. It can be used

Engineers-WES, 1990) | Quality for highly unsteady as well as steady
conditions.

WASP Water Quality | WASP has been extensively used duts tp

(Ambrose et al., 1993) effectiveness in modelling a wide variety|of
pollutants. It can be used in one, two, or
three dimensions. WASP is commonly
linked with CE-QUAL-RIV1H or
DYNHYD. However, WASP may be
prone to numerical dispersion problems
(Grayman et al., 2001).

BLTM Water Quality BLTM is a one-dimensional water qtyali

(Jobson and model that has been widely applied on

Schoellhamer, 1987) small streams to large rivers. It can be
easily linked with DAFLOW.

With the considerations listed above in mind, thedei EPD-RIV1 was selected. EPD-RIV1
is a one dimensional hydrodynamic and water quailibglel that is based upon the U.S. Army
Corps of Engineers Waterways Experiment StationEs@JAL-RIV1 model (Martin and
Wool, 2002). In 1993, the Georgia Environmentait€ction Division (EPD) identified CE-
QUAL-RIV1 as the most appropriate model to use d&targe modelling project for the
Chattahoochee River. However, some limitationseweoted which resulted in extensive
updates to improve the model’s performance and eéfasse. The updated model is referred to
as EPD-RIV1 (Martin and Wool, 2002).
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EPD-RIV1 can be downloaded free of charge fromitibernet and can be run from both the
Windows interface and DOS prompt. EPD-RIV1 comssist two modules, RIV1H and
RIV1Q, which simulate hydrodynamics and water dyatespectively. RIV1H can be used
for both steady and highly unsteady flow conditi@ml uses the four-point implicit finite
difference numerical scheme to estimate flows, cigks and water surface elevations. As
discussed in Section 2.2.2, the four-point implisiite difference scheme is one of the most
accurate methods for solving the Saint-Venant egust(Martin and McCutcheon, 1999;
Martin and Wool, 2002). RIV1H writes a hydrodynaninkage file upon completion to
provide transport information to RIV1Q. The watgrality model can simulate a number of
constituents including organic nitrogen, ammonidrogien, nitrate nitrogen, organic
phosphorus, orthophosphate, biochemical oxygen démdissolved oxygen, algae, iron,
manganese, coliforms, temperature, as well as thitrary constituents (Martin and Wool,
2002).

3.4.1.1 Model Limitations

Although EPD-RIV1 was identified as the preferreddal for this research, there are some

limitations that should be noted.

By definition, concentrations in a one-dimensiomaldel are vertically and laterally averaged.
This means that the model will provide no resultswhich to base decisions regarding the
lateral and vertical positioning of a monitoringtsdn. As a result, unless there is compelling
evidence to do otherwise (e.g. a vast majorityhoddts are along the same bank as the intake),

the station should be located near the centereofitier.

Another limitation of a one-dimensional model istttdischarges located a short distance
upstream of potential monitoring locations may l@tedted by the model more than they
would be in reality. For example, the model widtelct any discharge located upstream (of
sufficient quantity to reach the monitoring stajigince it assumes complete and instantaneous
mixing. However, prior to theoretically achievimpmplete mixing the contaminant must
travel at least one mixing length. This means Huahe discharges may pass the monitoring

station without being detected.
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Another limitation of the model is the fact it canly simulate soluble constituents that can be
approximated with first-order decay. Although sgills were identified as one of the most
common spill sources, all of the models considdogdhis study are unable to simulate oil
spills. These models are not designed to handiesaf the transport and fate processes of
sparingly soluble, buoyant substances, such asspheading of the surface slick and the
interaction of the slick with shorelines (Hibbs a@dlliver, 1999; Grayman et al., 2001).
Although oil spills are not modelled as part ofsthesearch, decision makers may still select a
monitoring technology that can detect hydrocarbomsvolatile organic carbons. This
methodology could also be adopted for use with dehthat can simulate riverine oil spills.

Yapa and Shen (1994) provide an excellent reviesoaie models available for this purpose.

3.4.2 Model Setup and Preprocessing

Prior to conducting simulations, a significant ambof data collection and processing was
required to setup the model. These efforts aserdeed in more detail below.

3.4.2.1 Model Extent and Spatial Grid

The first step in setting up the model was to diflalits spatial extent. The upstream model
boundary was located at a flow gauging station esifiow or stage measurements were
required. A gauging station was selected that sudfsciently far upstream so that most major
threats could be included in the model. The domash extent of the model was selected as
the closest gauging station below the drinking wateatment plant intake. Tributaries and
abstractions that impact the river flow within thteidy area were identified so that necessary

input data could be collected.

Once the model extent was established it was digetkinto nodes, or cross sections. The
placement of nodes was limited to those areas dlmngver that had surveyed cross sectional

geometry available.

The surveyed cross sectional geometries requirate gwocessing before being entered into
the model. The model requires geometries to berettas X, ) pairs, wherex represents

lateral position in the cross section andepresents depth, both in units of feet. Theiwrig
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must be at the top of the left stream bank, whbeeleft bank is defined for an observer
looking downstream. Conversion of the cross seatigurvey data from elevations to depths
was required. This was accomplished by subtradghegbed elevation from the elevation of
the origin (left bank), as illustrated in Figurel 3-

Station (ft)

Depth (ft)

Depth = Left Bank Elev. — Bed Elev.

Left Bank Bed
Elevation Elevation

Datum

Figure 3-1. Cross Sectional Geometry Depth Calculation

3.4.2.2 Hydrodynamic Input File
The hydrodynamic input file required the followimgormation for each node:
* Node name;
» Distance to downstream node;
* Slope between node and downstream node;
* Manning’s roughness coefficient;
» Initial water surface elevation;
* Initial flow; and

* Invert elevation (elevation of lowest point of tr®ss section).

Distances, slopes, and invert elevations were yeaaiculable from the cross sectional data
that were collected. Manning’s values used in joey modelling studies by the local
conservation authority were applied and initial @vasurface elevations and flows were
approximated for various starting conditions. 8intvers tend to “wash-out” the initial

conditions quickly, their exact specification isualy not necessary (Martin and McCutcheon,
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1999). However, reasonable values were estimateldadjusted by trial and error, where

necessary, to ensure that stability problems wet@mcountered on startup of the model.

The hydrodynamic input file also required the speaiion of some hydraulic parameters. A
tolerance parameter was required to determine wiemodel converges. This parameter was
set to 0.05, which was large enough to decreasgut@tion time but small enough that the
model's performance was not impacted (Martin andolya002). A theta value of 0.6 was
adopted to improve the model’s accuracy while amgidnstabilities, as recommended by
Martin and McCutcheon (1999) (see Section 2.2.afdescription of theta).

Prior to running RIV1H, the computational time stdpo required specification. The selection

of the time step was limited by the Courant Numberwhich represents the ratio between the

distance moved during one time stefh) (and the segment lengtilX). It can be calculated
using equation 2-3 as shown in Section 2.2.2. Msuee stability, the Courant number must be
less than one so the water cannot move more thars@gment length at a given velocity) (
within one time step. A computational time stef0fseconds was used to satisfy the Courant

condition

3.4.2.3 Water Quality Input File

RIV1Q uses the same model discretization as RIV1kichv simplified the initial setup
process. Initial concentrations for all water gyatonstituents being simulated were required.
Dispersion coefficients for each cross section atspired specification, as did water quality
parameters, such as decay rates of the variouditc@més. Since these parameters were
adjusted as part of the Monte Carlo simulationgjrtepecification is further described in
Section 3.5.1.1.

The water quality model output time step neededbdorelatively frequent to ensure peak
concentrations were recorded. A set of initial \ations using time steps of three and six
minutes were conducted. For each simulation, tiak gencentration recorded with the larger

time step was less than one percent different thahrecorded with the smaller time step.
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Therefore, an output time step of six minutes wascted to minimize the size of output files

while maintaining enough information to producewaate concentration profiles.

3.4.2.4 Boundary Conditions

At the upstream boundary, a time series of hydradyn data (flow or stage) was required.
Hourly flow data from a gauging station were avalafor this purpose. The downstream

boundary condition was defined by a rating curvetafe versus discharge.

3.4.25 Inflowsand Withdrawals

Input files to define inflows and withdrawals teethver were also required. Separate lateral
inflow files were used for RIV1H and RIV1Q as tHew data were at a different frequency
than the quality data. However, within each inplat values had to be entered at the same
frequency. As a result, the flows from the wastewé#eatment plant had to be converted to
an hourly frequency, using linear interpolationctmncide with the hourly flow data available
for the tributaries.

Withdrawal rates for the water treatment plant arermitted abstraction were available at a

daily time step and were entered into a withdraiel

3.4.3 Hydrodynamic Calibration

Once the hydrodynamic model was set up, it wadiekd to ensure that it modelled the
system accurately. The only parameter usuallybid in RIV1H is Manning’s roughness

value. Default Manning’s values used in previousdeiling studies were entered as a starting
point for each cross section. However, calibratdata (stage measurements) were only
available at the downstream boundary and one ggngging station within the modelled reach.

As a result, the river was divided into two segreeand the Manning’s values within each

segment were calibrated together (i.e. all werasadf by the same factor). The Nash Sutcliffe
coefficient was used as the metric with which tanpare the observed and modelled
elevations and was calculated using equation 3-doefficient value of one indicates a perfect
match.
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2@ -

E=1-£¢ =
2@ -Q)°

where E = Nash Sutcliffe coefficient,
Qo
Qm

Q, = average of all observed values.

observed value (stage in this case),

modelled value (stage in this case), and

Adjustments were made manually until the modelléevations matched the measured
elevations within a desired level of accuracy. Tésults of the hydrodynamic calibration for

the case study are presented in Section 4.3.

3.4.4 Water Quality Calibration

RIV1Q was not calibrated for reasons discusseceuoii@ 3.5.1.1.

3.5 Monte Carlo Simulations

As discussed in Section 2.4.3, Monte Carlo simoeti are commonly used to quantify
uncertainty in water quality modelling studies. eTprocedure used to conduct the Monte

Carlo Simulations as part of this research is dlesdrin Section 3.5.1 to Section 3.5.3.

3.5.1 Sources of Uncertainty

The design of an early warning source water maomigostation involves many sources of
uncertainty. These sources include the model patens) timing of the spill, and nature of the

spill, as illustrated in Figure 3-2 and describedhie following sections.

‘ Sources of Uncertainty

Modei Parameters
(Section 3.6.1.1)

Timing of the Spill
(Section 3.5.1.2)

Nature of the Spiii
(Section 3.6.1.3)

Farameter values, such
as decay and dispersion
are uncertain

The spill can happen at
any time during any
flow condition

The contaminant,
location, amount, and
duration of the spill are
uncertain

Figure 3-2. Sources of Uncertainty

40



3.5.1.1 Model Parameter Uncertainty

As discussed in Section 2.4.2, consideration of timeertainty associated with model
parameters is essential in order to establish ¢hability of model predictions. Before an
uncertainty analysis could be undertaken, prolgdistributions of the model parameters and
uncertain inputs were required. Typical rangegested by the literature were used to define
uniform probability distributions for each parameferera and Ng, 2001; Martin and Wool,
2002; Mclintyre et al., 2003a; Cox and Whitehead)=®2Qindenschmidt, 2006; Osidele et al.,
2006), as shown in Appendix A. This meant thapallameter values had an equal likelihood
of being sampled so the model could be tested @avede range of parameter values (Cox and
Whitehead, 2005).

The probability distributions used for dispersiaefficients were determined differently than

those used for the other parameters because thedependent on the hydraulics of the river,
not the constituents being modelled. When trde¢a are not available to calibrate dispersion
coefficients, empirical equations based on top kgdielocities, and hydraulic depths can be
used (Jobson, 1997). For this methodology six eogbiequations were selected to provide a
range of possible dispersion values at each cexgon. Equations 2-11 to 2-16, contained in

Table 2-1, were used for this purpose and are ithestim detail by Wallis and Manson (2004).

The six resulting dispersion coefficients for eaxrhss section were utilized to establish a
triangular probability distribution. A trianguladistribution is defined by a parameter’s
minimum value §), maximum valuelf), and most frequently occurring valu®.( In this case

a represents the minimum calculated dispersion woefit, b represents the maximum
calculated dispersion coefficient andvas set as the average of the six calculated digpe
coefficients.

The cumulative triangular distribution function dae defined using the following equation:

ﬂ fora<s x<c
F(x|ab,0)= (b_a)(c_az 32
—& forc<x<b
(b-a)(b-¢
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A random samplex(_tesj from the cumulative triangular distribution fuitst was determined

using the following equation:

a+.Ju(b- 3(c 3 for w22
X_test= b-a 3-3
b-JA-u)(b-a(b- 9 for w%

whereu represents a uniform random number between 0 and 1

Since dispersion at all cross sections is relateddt a given time, dispersion would not be at
its maximum value at one cross section and itsmum value immediately downstream), the
same uniform random number was used to sample &aah triangular distribution. This
allowed dispersion to vary from one cross sectmrihie next based on differing hydraulic
properties, but the percentile of the sampled dwefft values was the same for each cross

section.

The parameter distributions identified from theergture and those calculated for the
dispersion coefficients were overly conservativd had the potential to result in unnecessarily
high levels of model prediction uncertainty. Fbrstreason, conditioning experiments are
traditionally conducted to refine parameter rangessng a method such as Generalized
Likelihood Uncertainty Estimation (GLUE), as dissad in Section 2.4.3. Methods such as
GLUE require a set of good calibration data withickhto assess the performance of each

parameter set.

At this point it is important to recognize a magbfference between typical modelling studies
and the modelling conducted as part of this researtypically, models are used predictively;
for example, a model may be used to predict the timarrival of a contaminant during a real-
time spill scenario. Suitable model parameter eangill have been pre-defined as part of a
conditioning experiment so that model parameterectamty can be propagated through the
model to describe prediction uncertainty. Otharrses of uncertaintynay be included in the
assessment of this arbitrary example, such asntioeiiat spilled (e.g. about 100 to 150 kg), the
duration of the spill (e.g. 1 to 1.5 hours), theaflat the time of the spill (e.g. measured as 100

cms +2%), and the location of the spill relativettie intake (e.g. 1 to 1.25 km upstream). In

42



situations such as this, the uncertainty associattddwater quality parameters often leads to
significant model prediction uncertainty. This itidry example is labeled as “Predictive

Modelling of a Specific Situation” in Figure 3-3.

In the case of the current research, a specifi@asdn is not being modelled, but rather a series
of probabilistic situations. In addition to modearameter uncertainty, great amounts of
uncertainty exist due to the timing and naturehef $pill. Depending on the time of the spill,
the river flow could range from a trickle to a ftb@ondition. Similarly, the duration, mass,
and location of the spill also have large rangegyure 3-3 compares the relative magnitudes

of the different uncertainties in each of theseteaty scenarios.

Probabilistic Modelling of Predictive Modelling
Possible Situations of a Specific Situation
FLOW Scms > 500 cms 98 cms <> 102 cms
DURATION Sminutes - » 24 hours Thour <» 1.5 hours
MASS 2kg » 1000 kg 100 kg <> 150 kg
LOCATION UPSTREAM 01km = > 10 km Thkm <> 1.25km
‘- -+
WMODEL PARAMETERS : :
. .

Figure 3-3. Comparison of Different Sources of Uncertainty

Note: Ranges are arbitrary and are shown as linarsimplicity. Not all sources of uncertainty araiformly
sampled from within their ranges. The distributmfreach source of uncertainty is described below.

It was hypothesized that model parameter unceytairgy not be significant compared with
the uncertain nature of the spills being modellegart of this research. Therefore, prior to
investing in computationally expensive and dat@nsive procedures to estimate parameter
uncertainty, its significance on the decision mgkprocess was tested. A set of scenarios
were executed with all sources of uncertainty amotlzer set with only the flow as uncertain
(with the parameters set to the midpoint of thamges). For this preliminary analysis, the

mass and duration were held constant. If the agleresults produced using the conservative
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parameter ranges are similar to the results pratwten only flow is uncertain, no calibration
is required. However, if the uncertainty assodatéh the parameters is shown to impact the
results, then calibration using a method such a®JElis required. The results of this
experiment are described further in Section 5.1.1.

Note that the method described above was only faetthe water quality model parameters.
The only parameters in the hydrodynamic model eeManning’s coefficients. Manning’s
equation can be represented as

v=1lgrge 3-4
n

where V represents the cross sectional average velocifg)(m
N represents Manning’s coefficient;
R represents the hydraulic radius (m); and
Srepresents the energy gradient.

Therefore, changing Manning’s coefficient also aesthe average velocity. However, as
described further in Section 3.5.1.2, the flowristtion used for the Monte Carlo simulations
ranged multiple orders of magnitude. Depending tba type of channel, Manning’'s
coefficients typically do not range by more tharfaator of 1.5 (Martin and McCutcheon,
1999). Therefore, the impact of the Manning’s @ioefnt on the resulting water velocities is

minimal compared with the impact of the uncertdowfat the time of a spill.

3.5.1.2 Time of Spill

The uncertain nature of spills means that they @ecur at any time into any river flow.

Uncertain flows include the upstream boundary fltagutary inflows, wastewater treatment
plant effluent flows, and any withdrawal flows. previous work, Grayman et al. (2001)
assumed the flow at the time of a spill is constant that no tributaries exist. However, for
many case study applications major tributaries rhayencountered that can significantly
impact the river’'s flow. Therefore, an alternatethod was developed so that flows could

vary throughout a spill simulation and tributarypatts could be included.
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Generating a time series of synthetic flows andgméng the correlations between each of the
flow inputs is a complex task. Therefore, insteddlefining a distribution to synthetically
generate a time series of flows, uniform random@erg was conducted to select a historical
point in time. The time series of flows recordédhat time for all flow inputs were then used
in the model. Using this method meant that raaliBow relationships (between the main

channel and its tributaries) were automaticallyspreed.

Since this method limits the flows to past condisipit was important to use a long record of
data. Fifteen years of hourly flow data for thestupam boundary condition and all tributary
inflows were collected for this purpose. Sinceavatnd wastewater treatment plant flows are
not correlated with river flows, they were not sd@adpin the same way. Treatment plant flows
recorded many years ago are no longer representasiva result of a growing population, so

average flow values for recent years were usekdamtodel.

3.5.1.3 Nature of the Spill

For the purpose of this research, the nature pfllvgas defined to include:
* The substance spilled;
* Location of the spill;
* Quantity spilled; and

* Duration of the spill.

A spill scenario is defined as a combination ofoeation and contaminant. Based on the
threats inventory that was completed, a numbeikefyl spill scenarios were identified. Since
a comprehensive threats inventory could not be ¢eteqb, arbitrary contaminants were used
for all scenarios except for one which involved astewater spill. The decay rate for the
arbitrary spills was set to a range of 0 to*1ta simulate a range of potential contaminants.

Instead of pre-defining a spill scenario distributia set of Monte Carlo simulations were run

for each identified spill scenario and weightingtéas, representing best estimates of each
scenario’s relative level of risk, were appliedeafthe simulations were complete. Although
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the weighting factors applied for this research may be ideal, they can easily be updated
once the complete threats inventory and risk ass&®s are completed as required by the
Clean Water Act (Ontario Ministry of the EnvironntieR006a). The sensitivity of the chosen
weightings was explored and is discussed withélsalts in Section 5.4.2.

3.5.1.4 Uncertainties Not Consider ed

The probability that a spill event is reported hg spill generator or a member of the public
was not considered. It was assumed that only theitoring station can alert a downstream
water treatment plant of a contamination event. isTlwas a conservative, simplifying

assumption because in many cases spills may betedpbefore the contamination even

reaches the monitoring station.

It was also assumed that the monitor performs pyfe The probability that the monitor fails

due to power interruptions, technical problemanoomplete river mixing was not considered.

3.5.2 Number of Simulations Required for Each Spill Scenario

A sufficient number of Monte Carlo simulations shibbe conducted such that the average and
standard deviation of the accumulated model outmtédilize. 2000 simulations were
executed and the cumulative average and standatidtidae of the following outputs were

calculated for each potential monitoring station:
» Duration the contaminant was detected;
* Travel time to the intake; and
» Peak concentration.

The results of this analysis are described in 8edil.2.

3.5.3 Monte Carlo Procedure

Once the above steps were completed, the requirstber of Monte Carlo simulations)(
were performed for each of the spill scenariostified. Code was written in MatLab in order
to sample all uncertain parameters and updateeilegant model input files. The procedure

used to perform these simulations is describedwalad shown graphically in Figure 3-4.
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Run RIV1H
in 3 rmanth segments far entire recard of flow

Hesult:
-One HY D file for each time segment

Randomly sample a date and time of spill (Spill_date) and establish
which HY D file corresponds to this date

Set start and end times of simulation as:

Start = Spill_date — 24 hours

Sample mass and duration of spill fram uniform distributions

1

1

1

1

1

1

1

I

I

1 End = Spill_date + 72 hours i Uncertainty
I

I

1

1

1

1

: Update WO _LAT file with date, mass, and duration af spill
1

Read hydraulic properties from HINP and use to calculate
dispersion with ernpirical equations

Sample dispersion coefficients from triangular distributions

Sample water gquality parameters from uniform distributions

Update GIMP file with sampled parameter and dispersion coefficient values

Parameter
Uncertainty

Repeat n
times for
each spill

SCEnario l

Run R0

Result:
-One text file with outputs far each monitoring station

[}

Fost-process and analyze results at potential monitoring lacations

Figure 3-4. Monte Carlo Flow Chart
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To reduce the computation time and simplify thecpture, it was decided not to run RIV1H
for every simulation. This decision meant thaydrbdynamic linkage file was required for all
15 years of flow data prior to conducting the Mo@&lo simulations. A single hydrodynamic
linkage file for 15 years of flow would require apgimately 10.8 GB and would need to be
opened and searched for each simulation. Ins@falinkage files were created at three month
intervals, which reduced the file size to approxehal80 MB each and increased the speed at
which RIV1Q could execute.

Inherent in the decision not to run RIV1H for eatmulation was the assumption that the
spills would not have a significant flow contriboarti. Of the spills reported in Ontario in 2006,
less than 3% were of volumes greater than 10,0(0nitario Spills Action Centre, 2006b). A
spill of 10,000 L released over one minute resulta flow rate of only 0.17 ffs. The lowest
hourly flow recorded for the case study river in0OBOwas 7.1 rils. Therefore, it was

reasonable to assume that the spills do not camérigignificantly to the river’s flow.

The simulated spills required some volume of flemwihich to enter the river, so a negligible
amount of flow was modelled at each spill locatiofks a result of the low flows conveying
each spill, some of the spill concentrations wererly high. However, the model assumes

complete and instantaneous mixing, so the resuttast loading is all that is important.

Once all 60 linkage files were created, a seridglafte Carlo simulations were conducted for
each of the spill scenarios. The first step ohesimulation was to sample a uniform random
date and time from the 15 years of hourly flow dataode was written to establish which
hydrodynamic linkage file (HYD) corresponded to Hampled date. The start and end time of
the simulation were then written to the input fil€he start time was set as 24 hours prior to
the spill time and the end time was set as 72 haites the spill time, which was a sufficient

amount of time for all spills to arrive at the ik¢a
In addition to the time of the spill, the mass ahdation of the spill scenario were also
uncertain. These inputs were both randomly samfstad uniform distributions. The mass

and the duration were then written to the watetityulateral inflow file (WQ_LAT).
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The model parameters were sampled next. As diedussx empirical equations were used to
calculate dispersion and define its distributionn order to perform these calculations,
hydraulic data were read from the appropriate hygnamic linkage file (HYD). Once the
calculations were complete, a value for each dsspercoefficient was sampled from the
corresponding triangular distribution as descriledection 3.5.1.1. The remaining water
quality parameters were then randomly sampled fribiir uniform distributions. All

dispersion coefficients and parameters were thétewrto the water quality input file (QINP).

After sampling of the spill conditions and paramete/as complete, RIV1Q was executed.
Each simulation took approximately 15 seconds taplete. The outputs for each monitoring
station were written to a text file after each dimtion and accumulated for subsequent
analyses. This procedure was repeateines for each of the identified spill scenarioall

spill events were assumed to be independent arydooel event occurred for each simulation.

3.6 Post Processing and Analysis of Results

In order to assess the performance of potentialitoramy stations, the values of the design
objectives required calculation, as is describedeattion 3.6.1. Once the objective values
were calculated, they were used to create plotbctive space to determine if any solutions
were dominated and provide a visual representatibrthe tradeoffs between different

solutions. Empirical cumulative distribution fuiets (CDFs) and concentration profiles were
also created to provide more information to thesien makers, as described in Sections 3.6.3
to 3.6.4. Section 3.6.5 discusses the analysspiti that had background concentrations in

the river, such as wastewater constituents.

3.6.1 Calculation of Objective Function Values
As identified previously, the design objectives tlois thesis included
» Maximizing the probability of detecting a contantina event; and

* Maximizing the probability that a minimum amountwérning time is achievedjven

that a detection has occurred.
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In order to analyze the results, the values of l#sign objectives had to be calculated for
each potential station location, at each sampkrvat considered. Specification of a method
detection limit (MDL) was required prior to calctifeg the objective values. An MDL of 0.01
mg/L was selected because many common analyzees dawIDL of 0.01 mg/L or lower
(Grayman et al., 2001). The impact of the chos®1i.Mn the final results is described further
in Section 5.4.3. Prior to calculating objectivalues, the sample interval also required

specification. For this thesis, sample intervdl8.a, 1, 2, 6, and 12 hours were considered.

3.6.1.1 Probability of Detection

To calculate the probability of detection, the tithat a detection occurs was conservatively
calculated to be the sum of the time that the cotnagon first exceeds the MDL at a given
location and the sample interval. This calculatiesults in worst case scenario performance
for all simulations because it assumes that a teteoccurs at the last possible instant.
Although the performance of a monitoring statioril Wwe better in reality, this assumption
ensured that no station could randomly performedttan it should relative to another. The

calculation of detection time is illustrated in &g 3-5.

Concentration

Sample
Interval
—

+ ¥

Time of Arrival Time of Time
at WMDL Detection

Figure 3-5. Useof MDL and Sample Interval to Calculate Time of Detection
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A successful detection occurs at a monitoring @taifi concentrations above the MDL exist at
the station for a duration greater than the sanmmkrval. For example, in Figure 3-6 the
monitoring station fails to detect the spill evésicause the sample frequency is greater than
the duration the contaminant is present above tid .M Once again, this is due to the
conservative way in which the time of detectiorcaédculated; in reality, short events such as

this will be detected with some probability.

Concentration

MDL
L
I
i
|
I
i
v
Time of Arrival at MO Time
Station Detection
L. J

I" sampLe INTERVAL |

Figure 3-6. Example of aFailureto Detect in Time

MatLab code was written to cycle through all thepou files for each monitoring station to
determine the number of detections. The probgbiftdetection was then calculated as the
number of simulations that had a successful detectivided by the total number of

simulations.
Therefore, the calculation of the probability otelgion for a given spill scenario is a function

of the specified MDL and sample interval, as wslltlae simulation results for the arrival time

at the MDL and the duration a contaminant is altbeeMDL at a given station.
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The probabilities of detection for each set of Ispdenarios were combined to determine a
single value for each potential monitoring stati@ a given sample interval) using the

following equation:

n
Pt = le wPR 35
where Pyt represents the probability of detection at a givemitoring station;
Pi represents the probability of detection at a giwesnitoring station for thé" spill
scenario;
Wi represents a weighting factor describing the negatisk level associated with tfif&
spill scenario; and

n represents the number of identified spill scergario

For small sample intervals (i.e., when the sampkerval is shorter than the duration a
contaminant is above the MDL at a given locatioing, probability of detection at a monitoring

location can be simplified to:

n

P =2 W 36

i=1

3.6.1.2 Probability of Minimum Warning Time Given a Detection

In order to determine the probability that a minfmamount of warning time is achieved, the
minimum amount of warning time required for theecatudy had to be specified. The Ontario
Ministry of the Environment suggests a minimum élavme of two hours for defining intake
protection zones (Ontario Ministry of the Envirommhe2006a). This travel time represents the
minimum amount of time required for water treatmglaint operators to respond to an adverse
event. Therefore, a minimum amount of warning timhéwo hours was also adopted for this

research.

Post processing code was written to calculate theuat of warning time as the time of the
detection subtracted from the time of arrival & thtake, as illustrated in Figure 3-7. For the
purpose of this research, the time of arrival & thtake was calculated as the time the

concentration reaches the MDL. This method otwation assumes that concentrations
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below the MDL are not of interest; if they are,extnology with a lower MDL should be
selected. In reality the concentration of interaisthe intake may be even higher than the

MDL, but this conservative approach was adoptedHisrresearch.

Monitoring Location
—-—- Intake

Zoncentration

Time of Arrival at Time of Time of Arrival Time
Station Detection at Intake
L Wl )
U sawpie 1 WARNING TIWE |

INTERVAL

Figure 3-7. Warning Time Calculation

The probability that there are at least two hodinsarninggiven that a detection occurredas
then calculated as the number of simulations wittvaaining time greater than two hours

divided by the number of simulatiotizat had a successful detection.

Therefore, the probability of having at least twouts of warning at a given monitoring
location for a specific spill scenario is a functiof the specified MDL and sample frequency,
as well as the arrival time at a given monitoritgfien, the duration a contaminant is present
above the MDL, and the arrival time above the MDlha intake.

The probabilities of having at least two hours @irming time given a detection occurs for each
set of spill scenarios were combined to determisengle value for each potential monitoring
station (at a given sample interval) using theofelhg equation:

=2 Wh 37

n
i=1
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where P, represents the probability of having two hoursvaining time (given a detection
occurs) at a given monitoring station;
P, represents the probability of having two hours @frmng time (given a detection
occurs) at a given monitoring station for tfepill scenario;
Wi represents a weighting factor describing the negatisk level associated with tfif&
spill scenario; and

n represents the number of identified spill scergario

3.6.2 Pareto Optimal Curves

As discussed in Section 2.5, Pareto optimal cuoass be used to analyze multi-objective
problems. Therefore, the calculated objective fioncvalues were plotted in objective space
for each potential station, with each axis of thapt representing one of the objectives. The
non-dominated points form the Pareto optimal cuame represent the best set of feasible
monitoring station locations. Deciding between titagleoffs of the two objectives is further

discussed in Chapter 5.

3.6.3 Empirical Cumulative Probability Distributions

Code was also written to calculate empirical curningaprobability distributions for the arrival
time of a contaminant above the MDL and the duraiccontaminant is above the MDL at a
given monitoring station. The CDFs provided fertinformation about the distribution of
results used to calculate the objective values.

To create a CDF, the relevant outputs (i.e., domatir arrival time), were sorted in ascending
order. The probability of each value was thendated using the Weibull plotting position

formula:

Rank

Probability = 3-8
n+

where n represents the total number of simulations (McCd888).
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3.6.4 Concentration Profiles

Although the monitoring station design is basedim performance of each potential station
with respect to both design objectives, the creatibconcentration profiles was of interest to
provide more information to the decision makersxd€was written to calculate average™95
percentile, and "5 percentile concentration profiles for a given noring station. The code
cycles through the results of each simulation amtsshe concentration values at each time
step. The average, 9%nd &' percentiles are then calculated for each time. sfapexample

plot created for one of the monitoring stationshewn in Figure 3-8.

5 | N EEE T 95th Percentile
' K — — — 5th Percentile
Average

Concentration (mg/L)
w

0 6 12 18 24 30 36
Time after Spill (hours)

Figure 3-8. Example of 95th Percentile, 5th Percentile, and Average Concentration Profiles

3.6.5 Contaminants with Background Concentrations

Defining when a detection occurs was more compbexdnstituents that already existed in the
water, such as nitrogen and phosphourus. Befemll occurs, these constituents are already

at concentrations above the MDL, so an alternatg Was required in order to generate a

55



detection. Two options were considered, both ofctvirequire a comprehensive set of

historical data.

The first option was to examine a long record aftdrical data and determine the maximum
recorded concentration or some percentile valuéiis Value could then be used as the

threshold above which a detection occurs.

The second option was to initiate detection if thie of change of the concentration is greater
than some threshold value. This requires analysisistorical data recorded at a frequent
interval to determine typical rates of change. Thireshold rate of change can then be set to
some value near the recorded maximum. This metsioolld also have a maximum

concentration specified to ensure that slow ratecleinge cannot mask dangerously high

concentrations.

Although both methods require a long record of wgteality data, the rate of change method
requires more frequent data so that maximum raasbe accurately calculated. Since water
guality data in the study area were very limitdte tate of change method was not feasible.
Therefore, the maximum concentration recorded e glrevious five years was used as the
threshold above which a detection is initiated.nc8i water quality data were collected so
infrequently, it was assumed that none of the nreasents occurred during a previous spill

event.
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4 Case Study Application

4.1 Background

The 6,800 krh Grand River Watershed is home to southern Ongarfiagest inland river

system and is illustrated in Figure 4-1. The GrRiker begins in the Village of Dundalk and

empties 300 km downstream into Lake
Authority, 2006a).
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(Grand River Conservation Authority, 2006a)
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Approximately 29% of Grand River Watershed residestitain their drinking water from the
Grand River, many of whom are serviced by the MamhWater Treatment Plant (WTP)
located in Kitchener, Ontario. The Mannheim WTRperated by the Regional Municipality
of Waterloo and receives Grand River water viaigden Valley Intake. Up to 72 ML of
water are withdrawn daily and stored in the Hid¥atiey Reservoir prior to being pumped 10
km to the Mannheim WTP (Walton, 2006). The reservepresents an additional level of
source protection as it has multiple cells that banisolated and diverted in the event of
contamination (Stantec Consulting Ltd., 2006). Tbeation of the Hidden Valley Intake
within the Grand River Watershed is shown in Figth2

The Ministry of the Environment’s Spills Action Gesa (SAC) notifies operations staff at the
Mannheim WTP when a spill occurs upstream of theden Valley Intake. Although
mandatory spill reporting exists in Ontario, someidents go unreported if spill generators are
unaware they have caused a spill or try to circurhike law. Unreported spills may be
detected by analyzers at the intake, which contislyo monitor for dissolved oxygen,
temperature, conductivity, ammonia, turbidity, gitd. However, most conventional online
monitors are unable to detect many types of spéhés (Grayman et al., 2001). Although the
plant is capable of treating many spills through tise of ozonation, chlorine disinfection, and
granulated activated carbon, the conservative respof shutting down the intake is typically
chosen in the interest of public perception (Wal@006).

Real-time water quality monitoring stations exissame locations throughout the Grand River
Watershed. However, within the study area thereonf/ one real-time station located
approximately 17 km upstream of the Hidden Valleyake. This station samples for
temperature, pH, conductivity, and dissolved oxygémditional sampling sites that are part
of the Provincial Water Quality Monitoring Netwogke also within the study area, but these

sites are only sampled eight or nine times per.year
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Figure4-2. Location of the Hidden Valley I ntake Within the Grand River Water shed
(Produced using data under license with the GransgtRConservation Authority, 2007)
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Hazards associated with land use, spills, and wasés treatment plant (WWTP) bypasses
have been identified as significant threats to lthéden Valley Intake because they cause
suddendeterioration of water quality and can impair threnking water treatment process
(Cooke, 2006). The implementation of an early wagrsource water monitoring station could
detect spill events that routine monitors fail tentify. In addition, positioning an early
warning monitoring station upstream of the intakauld provide more response time in which
to close the intake and prevent contaminated wedar entering the reservoir, eliminating the
need to isolate and divert it after the fact. Hwgse reasons, the need for an early warning
monitoring station was identified to complement tRegional Municipality of Waterloo’s

source water protection planning.

4.2 Study Site

The probabilistic modelling procedure describedCimapter 3 was applied to design an early
warning monitoring station for the Hidden Valleytdke. The spatial extent of the model,
threats identified within the study area, and ptémmonitoring locations considered are

illustrated in Figure 4-3.

4.2.1 Spatial Extent

As discussed in Section 3.4.2.1, the upstream amchstream boundary conditions were set at
flow gauging stations. The West Montrose gaugirajiat was selected as an appropriate
boundary as it is located 38 km upstream of thakit allowing coverage of a number of
threats. It was assumed that there is minimalfiteneextending the model upstream of West

Montrose so it was not worth the added computatioost.

A weir located immediately downstream of the intakeved as an ideal downstream boundary
condition. A rating curve was used to define thlatronship between water surface elevation
and flow at the downstream boundary and is illisttain Figure 4-4 (Grand River
Conservation Authority, 2006Db).
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Figure4-3. Study Site
(Produced using data under license with the GranéRConservation Authority, 2007)
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Figure4-4. Hidden Valley Weir Rating Curve

Three major tributaries exist within the model bdsnincluding Canagagigue Creek,
Conestogo River, and Laurel Creek. Smaller tribesa such as Cox Creek and Hopewell
Creek, were not included in the model since they rai represent significant flow

contributions.

Fifteen years of hourly flow data recorded at thestVMontrose gauging station and stations
on each of the three modelled tributaries wereinbthfrom the Grand River Conservation
Authority (Grand River Conservation Authority, 2@)6 These data were subject to the
following qualifications:

« The flow data are not corrected for backwater duée, debris or for the effects of
aquatic vegetation, which may cause the flow esémao be larger than the actual
river flows.

- Sediment accumulation can cause the intakes taegartially plugged. Best efforts

were made to identify plugged intakes and remoigedéata from the record.
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- Best efforts were made to identify periods whemtfl@pes malfunctioned and remove
this data from the record.

« The data provided by the GRCA is provisional ansulgject to change.

The Waterloo Wastewater Treatment Plant (WWTP) alisacharges its effluent within the
study area. Two years of daily flow data for thaté&/loo WWTP, as well as withdrawals
from the Mannheim WTP, were provided by staff a& Begional Municipality of Waterloo
(2006).

Water quality data were required for the upstreasanidary and for all tributary inflows.
These data were available from the Ministry of Brevironment as part of their Provincial
Water Quality Monitoring Network. As mentionedetivater quality data were very sparse as
only eight or nine data samples were taken per y@atario Ministry of the Environment,
2006d). As a result, seasonal average values weterngined for each water quality input.
Water quality data for the Waterloo WWTP were d@ifft to obtain, but typical values were
provided for both treated effluent and raw wastewguality (Andrews, 2007).

The study site was discretized into 51 cross sestwith surveyed geometry provided by the
GRCA (2006d). The cross sectional geometries wereeyed in 1975 and were resurveyed at
a few locations near the intake in 2006 by Stafiensulting. A comparison of the cross
sections that were surveyed in both years was ateduo determine if the 1975 data are
representative of current conditions. Two exampliethis comparison are shown in Figures
4-5 and 4-6 at locations 2.3 km and 3.0 km upstrehthe Hidden Valley Intake, respectively.
The geometry appears to have changed only mininaaltile stations compared and no major
floods have occurred in the study area since 18@3he available survey data were assumed

to be a reasonable representation of the curresit condition.
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Figure4-6. 1975 and 2006 Surveyed Cross Sections (3.0 km upstream of intake)
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4.2.2 Threats Upstream of the Hidden Valley Intake

To begin the threats identification process, thyears of historical spill data were obtained
from Ontario’'s Spills Action Centre (SAC). Withithis time period only 14 spills were
reported in the study area. Their sources ardifaehin Figure 4-7.

Qil / Fuel

Raw Sewage Other

Frequency
w

Chlorinated Water

Primary Chlorinated
Sewage

Type of Spill

Figure4-7. SpillsReported in Study Area, 2003-2005
(Ontario Spills Action Centre, 2006a)

Examination of the limited historical data and frevince-wide data provided in Section 3.2.1
led to the identification of some threats withire tetudy area. As previously discussed, a

complete threats inventory could not be completed tb data access limitations associated

with the case study.

Oil and fuel spills were identified as a definiterdat within the study area and have been
spilled in the past. For example, an estimated04@010000 L of gasoline were spilled
adjacent to the Grand River in Cambridge in July2604 (Ontario Spills Action Centre,
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2006a). However, for reasons described in Se@idri.1, oil spills were not included as part

of this research.

Cooke (2006) identified wastewater bypasses agrafisant threat to drinking water treatment
plants along the Grand River. The Waterloo WWTRS$s than 17 km upstream of the Hidden
Valley Intake and has the potential to releaseigibrttreated wastewater in the event of a

bypass or raw sewage in the unlikely event of atdilure.

Approximately 80% of the Grand River watershed gsiaultural, some of which is located
within the study extent. Although urban areas aotdor only 5% of the watershed area,
much of the urban land is concentrated in the €itgé Kitchener and Waterloo which are
located just upstream of the Hidden Valley Intakedke, 2006). Therefore, threats associated

with both urban and agricultural land uses exishimithe study area.

Transportation-related spills were the most comsiti source in Ontario in 2006 according
to the SAC (Ontario Spills Action Centre, 2006/9even bridges cross the Grand River within
the study area. Highway 8 has the highest traffiacme of all the bridges and is located less
than 1 km upstream of the intake, representingyaifstant threat. The next highest volume
bridges are King Street and Victoria Street, whaoh located 1.5 km and 11.1 km upstream of
the intake, respectively. Rail bridges also eatsboth King and Victoria Streets. Four other

bridges within the study site are located furthestteam and have much lower traffic volumes.

Based on the threats inventory that was perforrseden probabilistic spill scenarios were
identified and modelled as part of this researdtformation about each of these scenarios,
including their location, associated contaminaats] approximate distance upstream of the
Hidden Valley Intake, is listed in Table 4-1. Tloeations of each of the spill scenarios is

shown on Figure 4-3.
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Table4-1. Spill ScenariosModelled

Spill L ocation Contaminant(s) Approximate
Scenario M odelled Distance U/S of
# Intake (km)
1 Agricultural Area Near | Arbitrary contaminant 37.1
Canagagigue Creek
2 Peel Street Bridge Arbitrary contaminant 33.7
3 Urban/residential Area in| Arbitrary contaminant 17.1
Waterloo
4 Waterloo WWTP Nitrogen and phosphorus 16.8
species
5 Victoria Street Bridge Arbitrary contaminant 111
6 King Street Bridge Arbitrary contaminant 15
7 Highway 8 Bridge Arbitrary contaminant 0.8

The first scenario was chosen to represent an wdynial spill occurring near the upstream
extent of the model. The Peel Street Bridge wadsctsl as the second spill scenario to
represent a transportation-related spill. Spiltsated this far upstream are out of the public eye
and may go unreported. The third spill scenaris s&lected at a location where the land use
begins to change from agricultural to urban. Towrth spill scenario was identified as a spill
of raw sewage from the Waterloo WWTP and three majmiges were identified as the fifth
through seventh spill scenarios.

As shown in Table 4-1, six of the seven spills waredelled as arbitrary contaminants.
Arbitrary contaminants were simulated using decalyes uniformly sampled between 0 and 1
d™ to represent a broad range of potential contantgnaiThe other spill scenario represented a
spill of raw wastewater. Raw wastewater involvesumber of constituents (e.g., nitrogen
species, phosphorous species, dissolved oxygenh)ordy one was required for subsequent
analyses. Total Kjehldahl nitrogen (TKN), whictpresents the sum of organic nitrogen and
ammonia-nitrogen, was used for this purpose. Adatn of a wastewater spill was generated
using the method described in Section 3.6.5. Aerewf historical TKN data revealed that the
maximum recorded concentration in the previous fpears was 1.62 mg/L. Therefore, a
threshold value of 1.62 mg/L was used in ordemibate a detection for the raw wastewater

spill scenario.
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A uniform distribution for the mass and durationezfch spill was used to simulate a large
range of possible scenarios with equal likelihodde spill duration was uniformly sampled
between 1 and 12 hours for each of the seven sgatharios. One hour was selected as the
lower end to simulate near instantaneous releabeglve hours was chosen as the upper limit
to represent spills that may be discharged forrmgef time before corrective action is taken.
The uniform mass distribution was selected to raingen 0.1 to 35 tonnes, which represent

typical spill masses that have been reported irp#s¢ (Environment Canada, 2005).

4.2.3 Potential Monitoring Station Locations

Five potential monitoring station locations wereentlfied within the study area. These
stations are spaced throughout the study site aedal located at or near a bridge.
Information about each of these stations is coethim Table 4-2 and their corresponding

locations are indicated on Figure 4-3.

Table 4-2. Information about Potential M onitoring L ocations

Station | Distance Bridge Access Point Major Threats
Upstream of Upstream
Intake (km)
A 29.8 Sawmill Road| Dr. George Priddle | Canagagigue Creek
Park Conestogo River
Agricultural land use
B 16.9 Bridge Street| Economical Laurel Creek
Insurance Trailway | Agricultural land use
C 16.5 Downstream | Economical Bridge Street Bridge
of Bridge Insurance Trailway | Laurel Creek
Street Waterloo WWTP
D 11.0 Victoria Peter Hallman Family Hopewell Creek
Street Trailway Urban land use
E 0.8 Highway 8 Schneider Park King Street Bridge
Urban land use

Since Station A provides adequate warning timenduthe highest flow events, there was no
need to assess any additional upstream monitooogtibns (which would unnecessarily
sacrifice threats coverage). Although it progidainimal warning time, Station E was
selected as the most downstream location to praxagderage of the high traffic volume King
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Street and Highway 8 bridges. The attractivendésStation E as a monitoring location will
depend upon the consideration given to the retertiime provided by the Hidden Valley
Reservoir. As can be seen in Table 4-2, Statiomsd@C are very close together. Station C
would normally not be considered as it is not ledaat a bridge; however, it was desired to

include a station immediately downstream of the é&lab WWTP in the analysis.

4.3 Hydrodynamic Calibration

Prior to conducting the hydrodynamic calibratianwas of interest to compare modelled and
observed flows to determine the accuracy of the fhalance. This comparison was conducted
using one year of flows from both the Bridgeportl afidden Valley gauging stations. The

results of this comparison at the Bridgeport statice illustrated in Figure 4-8.
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Figure4-8. Flow Balance at Bridgeport

With the exception of the period highlighted with @row on Figure 4-8, the flow balance was
excellent. The period where the discrepancy ocsuduring the winter and may be due to
backwater effects as a result of ice, as the obsdetata were not corrected for this. If the flow
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inputs from the tributaries were artificially higtlue to backwater effects, the resulting

modelled flow would also be higher than what wasenbed.

Once the flow balance was determined to be sat@faahe Manning’s roughness coefficients
were calibrated. One year of observed and modeligigr surface elevations at a six hour
frequency for both the Bridgeport and Hidden Vallgguging stations were used for this
purpose. The resulting Nash Sutcliffe coefficieatshe two calibration locations were 0.96
and 0.97. The excellent match between predictellra@asured elevations is illustrated in
Figure 4-9 and Figure 4-10, at both the Bridgepod Hidden Valley locations, respectively.

The resulting Manning’s coefficients ranged fror@3to 0.06.
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Figure 4-9. Elevation Calibration at Bridgeport
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5 Results and Analysis

This chapter presents the results obtained focélse study application. The performance of
potential monitoring station locations and variossmple frequencies are analyzed. A
discussion of the effect of the spill scenario éiiggs and the method detection limit (MDL)

is also presented. The chapter concludes withnatysis of the sources of uncertainty that

impact the design of a source water monitoringatat

5.1 Results of Initial Experiments

Prior to conducting all of the simulations, sométiah computational experiments were
performed to determine the effect of parameter uacgy, the number of simulations
required, and the sample frequencies to considesubsequent analysis. These results are

presented in Sections 5.1.1 to 5.1.3, respectively.

5.1.1 Parameter Uncertainty

As discussed in Chapter 3, it was hypothesizedrti@del parameter uncertainty may not be
significant compared with the uncertain nature e spills being modelled as part of this
research. Therefore, prior to investing in compatelly expensive and data intensive
procedures to estimate parameter uncertaintyjgtsfeance on the decision making process
was tested. A set of simulations of an arbitrgsil svere executed with both flow and the
parameters set as uncertain, and another set wighflow as uncertain (with the parameters
set to average values). For this preliminary asialgnass and duration were held constant.

Empirical cumulative distribution functions (CDFsyere generated for the duration a
contaminant is above the MDL and the time of afriaathe MDL at a given monitoring
station for each set of simulations. The resulgraph for Station C is presented in Figure 5-1.

As can be seen in Figure 5-1, the pair of distidm# for both the detection duration and
arrival time are very similar. Since these aredhly model outputs affecting the calculation
of objective function values (see Figure 5-1), tlmslicates that parameter uncertainty
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contributes minimally to the overall model predicti uncertainty. Similar results were

obtained for all other monitoring stations.
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Figure5-1. Cumulative Distribution Functionsfor Arrival Time and Detection Duration

The only noticeable impact of parameter uncertaotgurred for detection duration values
greater than approximately 27 hours (for the speekample shown in Figure 5-1), which

corresponded with low flow conditions. This minonpact, which was observed at each
potential monitoring location, was attributed t@ tihcreased importance of dispersion during
low flows when there is more time for contaminahtnpes to spread. This slight impact on
results was not a concern because design decisienesnot based on low flow conditions. For
example, a sample interval of 30 hours at thisastas not justifiable because this would result

in a failure to detect a spill event more than 88Bthe time, as shown by the dashed line in
Figure 5-1.
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Based on the preceding results, it was concludatighrameter uncertainty is not significant
for the decision making process. As a result, aoddioning experiments were required to
refine the a priori parameter ranges. Since itditsignificantly impact the results one way or
the other, the parameters were considered uncerasubsequent simulations rather than

setting them to arbitrarily chosen discrete values.

It is important to note that as a result of notihg\calibrated the water quality parameters, the
model is not optimally configured for use as a -teéak water quality prediction tool in its

current state.

5.1.2 Number of Simulations Required

In order to determine the number of simulationsuneg, a preliminary experiment involving
2000 simulations was conducted. The average amdiatd deviation of the following outputs

were calculated for each potential monitoring etati
* Duration the contaminant was detected,;
* Warning time; and

* Peak concentration.

Figures 5-2 and 5-3 illustrate the results at ohthe monitoring stations for the cumulative
average of the output values and cumulative standiewviation of the output values. Based on
these results, it was concluded that 1000 simulatigere sufficient for subsequent model runs
because the average and standard deviation vateed.@00 simulations were within 1.5% of

their values after 2000 simulations.
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5.1.3 Sample Frequencies to Analyze

As discussed in Chapter 3, the time of detectios wanservatively calculated as the sum of
the time a contaminant arrives at a given statimova the MDL and the sample interval (see
Figure 5-4). As the sample interval increases, dmount of warning time decreases. |If
samples are collected too infrequently, a monitprgtation may fail to detect an event
altogether. Therefore, more frequent sampling lean to improved values for both of the
design objectives. In some cases, however, mmpravements in objective values may not

justify the cost of increased sampling.

Monitoring Location
—-—- Intake

Concentration

Time of Arrival Time of Time of Arrival Time
at Station Detection at Intake
L Ll |
I sampre T WARNING TIME |
INTERVAL

Figure5-4. Samplelnterval and Warning Time

At the outset of this research, it was desiredotwser sample intervals of 0.1, 1, 2, 6, 12, and
24 hours. A preliminary analysis was performediébermine if these frequencies produced
reasonable values for both of the design objectivé®Fs for the duration a contaminant is
present above the MDL at the furthest upstreantimcgStation A) and the closest station to
the intake (Station E) are presented in Figuresaéb5-6. The results from each of the seven

spill scenarios were equally weighted to createQbés for this preliminary analysis.
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From Figure 5-6 it can be seen that at the mostndtr@am station, where the concentration
profile is at its widest, there is a 50% probapithhat contaminant concentrations will be above
the MDL less than 24 hours. As a result, thisiatawvill fail to detect approximately 50% of

events based on the conservative calculation @fctiet time used for this research. At the
most upstream station where the concentration Ipsofire narrower, over 80% of the events
will fail to be detected at a sample interval oft®urs. This suggests that a monitoring station

would be of limited value at any location usingaangle interval of 24 hours.

CDFs for the difference in arrival time betweenteatonitoring station and the intake were
also plotted. The difference in arrival times @ggiwalent to the sum of the sample interval and
warning time (see Figure 5-4). The resulting CEs$he furthest upstream location (Station
A) and the closest station to the intake (Statignake presented in Figures 5-7 and 5-8,
respectively (note the differing horizontal scaleShese plots were created assuming the
results from all seven spill scenarios are of equeagjht. The step-wise nature of these figures

is due to the fact that the model outputs at a 8tep of 0.1 hours.
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Figure5-7. CDF of Arrival Time Difference at Station A (Furthest Upstream)
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In Figure 5-7 it can be seen that there is a niajgigprobability of having more than 16 hours
between the contaminant’s arrival at Station A #sdrrival at the intake. Since a minimum
of two hours of warning time are desired, sampterirals of more than 14 hours will almost
never provide sufficient warning time at StatioroAany others downstream. The few events
that can be detected at sample intervals of grehtar 14 hours will likely fail to provide
sufficient warning time. Therefore, a 24 hour séemppterval was removed from further

analyses as it fails to achieve reasonable refultsoth design objectives.

5.2 Spill Scenario Weightings

As discussed in Chapter 4, a comprehensive thpgetstization could not be conducted due
to limitations associated with the case study. aAssult, defining probability distributions to
represent the risk associated with different sm#narios was difficult. Instead of limiting the
analysis by attempting to define these distribigjoseven discrete spill scenarios were

identified and seven sets of Monte Carlo simulaiomre performed (as identified in Table 4-
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1). This was less restricting than pre-defininglistribution because it allowed different

weighting sets to be tested after the Monte Caiaukation results were collected. The

weighting sets represent relative levels of riskiol are based upon both the estimated
probability of occurrence and magnitude of the @fflor each spill scenario (see Section
2.4.1).

Two weighting schemes were identified for the casaly; one assumed all spill scenarios
were of equal risk levels and the other involvedtlastimates of each scenario’s relative risk
level using the information available. Both weightschemes are listed in Table 5-1 and their

impact on the results is discussed in Section 5.4.2

Table5-1. Relative Risk Weightings Applied to Each Spill Scenario

Spill Scenario Approximate Weighting Weighting

DistanceU/Sof | Scheme#1 Scheme #2
Intake (km) (Equal)

#1 - Agricultural Area Near 37.1 0.142 0.1

Canagagigue Creek

#2 - Peel Street Bridge 33.7 0.142 0.05

#3 - Urban/residential Area in 17.1 0.142 0.05

Waterloo

#4 - Waterloo WWTP 16.8 0.142 0.25

#5 - Victoria Street Bridge 11.1 0.142 0.1

#6 - King Street Bridge 15 0.142 0.2

#7 - Highway 8 Bridge 0.8 0.142 0.25

As can be seen in Table 5-1, the best estimatehtvegs (weighting scheme 2) ranged from
0.05 to 0.25 to represent different levels of ressociated with different spill scenarios.
Scenarios 2 and 3 were given weightings of 0.0fhey are expected to have a low probability
of occurrence. For example, the Peel Street Braimps not have a high traffic volume so the
probability of an accident is lower than it would bn King Street. Furthermore, both of these
threats are relatively far upstream so their eff@atl be less than spills that occur immediately
upstream of the intake and arrive at higher comagah levels. Scenario 1 was given a

weighting of 0.1 to subjectively account for spitlsat may occur upstream of the model
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bounds. Most spills located that far upstream bellat low concentrations when they arrive at
the intake. However, it is possible that a largédl £ould occur upstream of the model
boundary so Scenario 1 was weighted higher to axtciou this possibility. Scenario 5 was
also assigned a weighting of 0.1 because VictoniaeEis closer to the intake and has more
traffic than the bridges located further upstreaihe King Street Bridge also has a higher
traffic volume and is only 1.5 km upstream of theake. It was therefore given a weighting of
0.2. The two most significant threats to the ietakere identified as the Waterloo Wastewater
Treatment Plant (WWTP) and the Highway 8 BridgeotiBof these threats were assigned
weightings of 0.25.

5.3 Results

Five sample intervals and five monitoring statioedtions were considered, resulting in 25
discrete combinations. For each combination, tiodability of detection and probability of at

least two hours of warning time (given a detectiovgre calculated using both sets of
weightings. The procedure used for these calaulatis described in Section 3.6.1, and the

results are contained in Tables 5-2 through 5-@fations A through E, respectively.

Table5-2. Station A Results

Sample Interval
0.1 hours 1 hour 2 hours 6 hours 12 hours

Weighting #1
Probability of Detection|  ,g¢ 0.286 0.286 0.283 0.244
Probability of> 2 hrs 1.000 1.000 0.995 0.666 0.003
Warning Time

Weighting #2
Probability of Detection| ) , o) 0.150 0.150 0.149 0.130
Probability of> 2 hrs 1.000 1.000 0.995 0.675 0.004
Warning Time
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Table5-3. Station B Results

Sample I nterval
0.1hours | lhour | 2hours | 6hours | 12hours
Weighting #1
Probability of Detection| , 45 0.429 0.428 0.417 0.350
Probability of> 2 hrs 0.994 0.928 0.774 0.067 0.000
Warning Time
Weighting #2
Probability of Detection| ) ) 0.200 0.200 0.196 0171
Probability of> 2 hrs 0.995 0.944 0.806 0.081 0.000
Warning Time
Table5-4. Station C Results
Sample I nterval
0.1hours | lhour | 2hours | 6hours | 12hours
Weighting #1
Probability of Detection| o) 0.571 0.571 0.560 0.454
Probability of> 2 hrs 0.992 0.937 0.814 0.288 0.044
Warning Time
Weighting #2
Probability of Detection| —, 45, 0.450 0.450 0.445 0.345
Probability of> 2 hrs 0.997 0.970 0.905 0.581 0.097
Warning Time
Table5-5. Station D Results
Sample Interval
0.1hours | 1hour | 2 hours \ 6hours | 12hours
Weighting #1
Probability of Detection| ) ) , 0.714 0.714 0.701 0.585
Probability of> 2 hrs 0.912 0.703 0.516 0.153 0.005
Warning Time
Weighting #2
Probability of Detection| oo 0.550 0.550 0.541 0.425
Probability of> 2 hrs 0.930 0.771 0.662 0.347 0.011
Warning Time




Table5-6. Station E Results

Sample Interval
0.1 hours 1 hour 2 hours 6 hours 12 hours

Weighting #1
Probability of Detection| , 1.000 1.000 0.979 0.874
Probability of> 2 hrs 0.017 0.001 0.000 0.000 0.000
Warning Time

Weighting #2
Probability of Detection| . 1.000 0.999 0.965 0.811
Probability of> 2 hrs 0.030 0.001 0.000 0.000 0.000
Warning Time

Plots of objective space, with the probability @tettion as the x-axis and the probability of
having at least two hours of warning time (givedegection has occurred) as the y-axis, were
created for each sample interval under each weiglstheme. Each plot contains five points
representing the objective values for each of theergial monitoring stations. The resulting
plots for a sample interval of one hour are showrFigures 5-9 and 5-10, for weighting

schemes 1 and 2, respectively. Similar plots éongle intervals of 0.1, 2, 6, and 12 hours are

contained in Appendix B.
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5.4 Discussion and Analysis of Results

5.4.1 Inferiority of Station B

As can be seen in Figures 5-9 and 5-10, Statios Bominated by Station C because it is
inferior in both objectives. This result was ngpected because Station B is further upstream
than Station C and should result in a higher praibabf having at least two hours of warning

time.

Upon examining the results, the inferiority of 8iatB was attributed to the fact that the
wastewater spill occurs between Stations B andA€ explained in Chapter 3, the wastewater
spill results had to be analyzed differently beeabackground concentrations of wastewater
constituents already exist in the river. The com@ion that triggered a detection (1.62 mg/L
of TKN as identified in Section 4.2.2) was muchhggthan the MDL used for the other six

spill scenarios and resulted in greater amountwashing time. A lower MDL results in an

earlier time of detection as expected. Howeve@Gesihe concentration of interest at the intake
is assumed to be equal to the MDL, the time ofvalrat the intake is also earlier. Since

concentration profiles tend to spread and decreasteepness as a spill disperses (Chapra,
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1997), the arrival time at the intake is even earthan the arrival time at the monitoring
station, resulting in less warning time. Concerdgraprofiles at Station A, Station C, and the

intake are shown in Figure 5-11 for an arbitram spnulation to illustrate this effect.
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Figure5-11. Changein Concentration Profiles M oving Downstream

Average concentration profiles based on all 1008tewaater spill simulations are plotted for
Station C and the Hidden Valley Intake in Figuré2to further illustrate how warning time

increases when the concentration at which a deteditriggered increases.
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Figure5-12. Average Concentration Profiles after a Wastewater Spill

As can be seen in Figure 5-12, the effect of irm@dawarning time is even more amplified

because Station C’s concentration profile peaky vapidly since it is located immediately
downstream of the WWTP.

When the results of all seven spill scenarios wemabined, the probability of having two
hours of warning time at the stations located ddweasn of the WWTP improved relative to
Stations A and B. This resulted in Station B badogninated by Station C. Strictly speaking,
Station B should be removed from further analysdewever, Station B was left as an option
because Station C is not located at a bridge. hénelvent that Station C is not technically

feasible, Station B is still a viable alternative.

5.4.2 Effect of Different Risk Weightings

The probability of detection is largely based ugbe cumulative weightings of the spills

located upstream of a given station. Recall thatwteightings represent the relative risk levels
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of each spill scenario. These cumulative weiglgtiage shown in Table 5-7 for both weighting

schemes.
Table5-7. Cumulative Weightings Upstream of Each Monitoring Station
A B C D E
Weighting 0.284 0.426 0.568 0.71 1
Scheme #1
Weighting 0.15 0.2 0.45 0.55 1
Scheme #2

The cumulative weightings upstream of Stations fodlgh D are lower for the second
weighting scheme, which resulted in decreased ibties of detection at these stations. For
example, when all spills are assumed to be of eqaklthere is a 28.4% probability of
detection at Station A for sample intervals of @5 hours, because the threats upstream have
a total weighing of 0.284 (and all upstream evamnésdetected at low sample intervals). Using
the second set of weightings, there is a 15% piibtyabf detecting events at Station A for the
same sample intervals, once again because theéshgstream have a total weighting of 15%.
Therefore, the risk weightings directly impact prebability of detection.

The different weighting schemes also lead to diifkramounts of warning time. The second
weighting set improves the probability of havingotwours of warning time for all of the

stations at most sample intervals. This improvan@most obvious for Stations C and D,
once again due to the increased weighting applethé wastewater spill scenario results

which provide greater amounts of warning time (asuksed in Section 5.4.1).

Since weighting scheme 1 tends to improve the nidhaof detection at most stations and
weighting scheme 2 tends to improve the probabdftyraving at least two hours of warning
time at most stations, accurately defining the tiedalevels of risk associated with each
scenario is essential prior to making a final deain station location. If more emphasis is
given to upstream threats, for example, Statioramd B will become more attractive because
their probabilities of detection will increase whiaintaining large warning times. When a

full risk assessment has been completed as patheoflegislated source water protection

87



planning, the weightings can be updated, if neecgssand the objective function values

recalculated for each station.

5.4.3 Effect of Selected MDL

In order to determine if the chosen MDL impacts thesign decisions, the results were
reanalyzed using an MDL of 0.1 mg/L (for all buetivastewater scenario). A comparison of
results for both MDLs using weighting scheme 2 iiespnted in Figure 5-13 for a sample

interval of 1 hour.

0.9 A

0.8 ~

2 hours

0.7 A

0.6 A

0.5

0.4

0.3 A

Probability Warning Time >

0.2

0.1

—&— MDL =0.01 mg/L

. --® - MDL = 0.1 mg/L

0 0.2 04 0.6 0.8 1
Probability of Detection

Figure5-13. Comparison of Different MDL s at a Sample Interval of 1 hour

As can be seen in Figure 5-13, the MDL does havengact on the probability of having at
least two hours warning time, particularly at Stas B, C, and D. For reasons described in

Section 5.4.1, as the MDL increases the amountaphivg time also increases.
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Since a higher MDL results in a contaminant beiatedtable for a shorter duration, the MDL
can also impact the probability of detection if #ample interval is greater than the duration a
contaminant is detectable. This is only the casdairge sample intervals, such as 12 hours or

more.

Since MDLs of 0.01 mg/L and lower are used by maaspnmon analyzers (Grayman et al.,

2001), the analysis continued with the original MDL

5.4.4 Monitoring Station Location and Sample Interval

For the purpose of this thesis, the following asstioms were made:

» Weighting scheme 2, which represents best estintdteslative risks associated with
the seven identified spill scenarios, is appropriat

* Itis desired to prevent contaminated water fronemng the Hidden Valley Reservoir
and a minimum of two hours of warning time are res)

* Maximizing the probability of detection is also iorpant;

 An MDL of 0.01 mg/L is appropriate and no contanmtsaare at levels of concern less
than this MDL; and

» The concentration of interest at the intake is etjuthe MDL.

Using these assumptions, a preferred monitoringostdocation and sample interval were

identified as described in the following sections.

5.4.4.1 Monitoring Station L ocation

The results for each monitoring station and eachpsa interval are presented together in
Figure 5-14. Each line represents the Pareto ford different sample interval, with a point
representing each potential monitoring stationmbated points are shown but are not part of

the Pareto front.
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Figure5-14. Results Using Different Sample I ntervals (Weighting Scheme 2)

For most sample frequencies and both sets of regghings, Stations C and D appear to be a
good compromise in objectives. This was expectethese stations are located downstream of
many of the major identified threats, but are ledasufficiently far upstream of the intake to

provide more warning time than Station E.

If one of the two objectives is deemed to be of mgeater importance, then stations at either
extreme may be preferable. For example, if decisivakers want to maximize threats
coverage and are comfortable with contaminated mettering the Hidden Valley Reservaoir,
Station E may be preferred. A late detection fr&bation E is still of value because
contaminated water can be diverted from the Hiddaley Reservoir and prevented from
entering the Mannheim Water Treatment Plant. Algioit provides almost no warning time,

Station E may be selected by decision makers depgm the tradeoff they choose between
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the two objectives. Alternatively, if operationgf§twant as much warning time as possible,

Station A may be selected even though it provides toverage of all possible threats.

In some cases there is a large difference betwé&sio®s D and Station E with respect to the
probability of achieving at least two hours of wamtime. This was expected as there is a
10 km gap between these stations. A station |ddagééveen them may be a good compromise
in the objectives; however, no bridges are localedg this stretch of the river. If a suitable

location between D and E can be found, this magrbattractive option to decision makers.

Given the assumptions stated above, Stations AEamdere not selected as they do not
represent a compromise in objectives. Station B mat selected because it is dominated, so
the choice was narrowed down to Station C or Dati@t D is recommended as the preferred
location because it was assumed that a slightlipdnigisk of having less than two hours of
warning time was worth the increased probabilitydetection provided by Station D. As a
result of the conservative approach used for calmg the time of detection (see Section
3.6.1.2), the actual amount of warning time prodidé Station D is expected to be even better

than the conservative results presented here.

5.4.4.2 Sample Frequency

Since the monitoring station location is fixed, ahd sample interval can easily be adjusted, it
was decided that the required sample interval wbeldelected after the location was chosen.
As discussed, more frequent sampling results inromgd objective values. This is shown in

Figure 5-14 for weighting scheme 2.
For Station A, it can also be seen that therensat no difference in either objective between
sampling every 6 minutes and every 2 hours. Thggssts that if Station A were to be

selected, there is minimal benefit in sampling maften than every 2 hours.

Further downstream, the tradeoff between sampluggye6 minutes to improve the warning
time and sampling less often with shorter warninges needs to be evaluated. It may not be
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worth sampling ten or twenty times as often if slnfrequencies of every hour or two

produce acceptable probabilities of detection arificgent warning time.

The probability of having two hours of warning tingecreases substantially at a sample
interval of 12 hours, particularly at Stations Adihgh D. It can also be seen that a sample
interval of 12 hours never results in a probabitifyjnaving two hours of warning time of more
than 10%. The probability of detection also desesafor most stations at a sample interval of
12 hours. This is due to the fact that not allaaariration profiles exist above the MDL for
more than 12 hours and some events will pass byntbeitoring station without being

detected. Therefore, a sample interval of 12 hsun®t appropriate at any location.

Sampling every 6 minutes at Station D results prabability of having two hours of warning

time of 93%. Sampling every hour results in a pholity of 77%, and sampling every two
hours results in a probability of only 66%. Theref sampling at least every hour, if not
continuously, is recommended in order to ensurégh probability of having two hours of

warning time at Station D.

5.5 Sources of Uncertainty Impacting Results

As identified in Chapter 3, each simulation invaltee following sources of uncertainty:
* Time of the spill (flow);
* Mass of the spill;
* Duration of the spill; and

* Water quality parameters associated with the spill.

As discussed in Section 5.1.1, the uncertainty@atad with the water quality parameters had
minimal impact on the distribution of the relevaesults. It was further hypothesized that
neither the spill mass nor the spill duration cimiies significantly to the distribution of the

results.

In order to determine the sources of uncertaintgaating the results, a second set of 1000

Monte Carlo simulations were performed for SpileBario 1 with the flow at the time of the
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spill as the only uncertainty. Scenario 1 was ehd®r this analysis because it is the furthest

spill upstream so results at both a near and faritaiing station could be assessed. The mass
of the spill was set to 1500 kg for each of thewdations and the spill duration was set to one
hour. The resulting average concentration profdesStation C and the intake are shown in

Figure 5-15. This figure also shows the correspandoncentration profiles for the original

results that considered mass and duration as @irtert
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Figure5-15. Average Concentration Profiles With and Without Uncertain I nputs

As can be seen in Figure 5-15, the shape of theetaration profile for each set of simulations
is quite different. For the case when all inputs ancertain, the peak concentration is much
higher, the time to peak later, and the profileevid This was expected due to the wide range
of spill masses and durations that were modellednger durations result in later peaks and
wider concentration profiles. Despite these ddferes, one similarity is that the time of arrival
of both profiles is very similar at Station C ame tintake. At an MDL of 0.01 mg/L, the time
of arrival at Station C for both average profileskactly the same (2.7 hours) and the times of

arrival at the intake are within 1.5% of each other
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Since warning time is a function of the time afiaal at the monitoring station, time of arrival
at the intake, and the sample frequency, the bigian of warning time for both sets of
simulations should also be similar. This is clgahown in Figure 5-16 and Figure 5-17,
which illustrate CDFs of warning time for the cdbkat considered all inputs uncertain and the
case that considered only flow uncertain. Bothleere created using a sample frequency of
0.1 hours and were based on the results from Spédhario 1. Stations A and E were chosen
as examples to represent the distributions attestanmediately downstream of the spill and

a station some distance downstream, respectively.
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Figure5-16. CDF of Warning Time at Station A (Sample Interval = 0.1 hours)

As can be seen in Figures 5-16 and 5-17, almoslifference in warning time exists between
each set of simulations. Therefore, the only seuwrfcuncertainty significantly affecting the
probability of having two hours of warning tinier a given spill scenaries the flow at the
time of the spill. Advection controls the time afival, which is ultimately controlled by the
flow at the time of the spill.
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Figure5-17. CDF of Warning at Station E (Sample Interval = 0.1 hours)

The probability of detection is also a functionasfival time at a given station as well as the
duration a contaminant is above the MDL. The deiedauration is clearly longer when the
spill duration is uncertain (see Figure 5-15); heere this does not significantly impact the
results because this is only an issue for cases e sample interval is greater than the
detection duration. Since near-constant sampliag been recommended, the effect of
uncertain spill durations on the distribution o tthuration contaminants are detected at a given

station does not impact the final decision.

In addition to flow, the distribution of spill lotans also impacted the distribution of the
results because different spill scenario weightingsre shown to produce different
probabilities of detection and warning time. Ttiere, the flow at the time of the spill and the
spill location are the most important sources ofautainty affecting the design of an early

warning source water monitoring station.
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6 Conclusions and Recommendations

6.1 Conclusions

The value of using a probabilistic approach forigleag an early warning source water
monitoring station was demonstrated in this redea® new approach for sampling the flow
at the time of the spill was developed so that comstant flows and tributary effects could be
simulated. The use of multi-objective optimizati@chniques was shown to be a useful way

in which to assess the probabilistic modelling lssu

The impact of various sources of uncertainty waan@red in this thesis. Although the spill
mass, spill duration, and model parameters impatttedoeak and duration of the resulting
concentration profiles, the relevant model outpweye only impacted by the uncertainty
associated with the river flow at the time of tipdlsand the location of the spill.

Since model parameter uncertainty did not havengwact on the design of a source water
monitoring station, there was no need to devoteuregs towards a more refined description
of model parameter uncertainty as it had no impadhe decision making process. As a result
of not refining the parameter ranges through calibn or conditioning experiments, the

model in its current state should not be usedraslatime predictive tool.

Results showed that the risk weightings appliedht® modelled spill scenarios impact the
results, particularly with respect to the probapilof detection. Therefore, if the risk
weightings are modified the recommended statiorigdemay also change, particularly if

scenarios further upstream are determined to begbgr risk.
The choice of method detection limit (MDL) also iagps the results. Higher MDLs were

shown to produce larger amounts of warning timsyasng that the concentration of interest
at the intake is equal to the MDL).
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For the case study application, Station A, locdtethest upstream from the Hidden Valley
Intake, almost always provides at least two hodrsvarning time at the expense of a low
probability of detection. Station E, located clts® the intake, provides excellent threats
coverage but almost no chance of having two hotinwasning time for any events at any

sample interval. Since both objectives were assutoebe of importance, a location that
represents a better tradeoff in the objectiveseauired. Station D, located at the Victoria
Street Bridge, has a much higher probability ofihguwo hours of warning time than Station

E and a 55% probability of detection at low samptervals. Providing less than two hours of
warning time was assumed to be preferable to dsiogahe probability of detection any

further. Therefore, it was concluded that a momup station near the Victoria Street Bridge

represents the best tradeoff solution, assumingdkeveightings applied are accurate.

The selection of sample frequency was found to epeddent upon the location of the
monitoring station. At Station A, a sample intdrghtwo hours or more is most appropriate
because there is minimal benefit in sampling mdteno However, at stations closer to the
intake more frequent sampling is required to aahisufficient warning time. At Station D,

near constant sampling is required in order to enauhigh probability of having at least two

hours of warning time.

6.2 General Recommendations

The probabilistic method presented in this theBmukl be used for future monitoring station
designs. The use of multi-objective methods foseasing potential station designs, as
presented in this thesis, is recommended in owassess the tradeoff between warning time

and threats coverage.

Future early warning monitoring station designs usthofocus upon defining accurate
probability distributions for flow and spill locaim as these were the only sources of
uncertainty impacting the relevant results for ttase study. Since this result may be different
for other applications, initial experiments areamenended to confirm the findings of this
thesis. For example, if flow is relatively condtahe uncertainty associated with water quality

model parameters may become more significant.
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Future research could include the probability @omplete mixing to account for the fact that
not all spills located upstream of a station arnected. The use of a two or three dimensional

model could also be considered.

6.3 Recommendations Specific to the Case Study

Prior to implementing an early warning source watesnitoring station upstream of the
Hidden Valley Intake, it is recommended that thiéofeing points be confirmed:

* The risk weightings that should be applied to eathhe spill scenarios modelled
(which should be based upon the results of theassessment that will be completed
as part of source water protection planning efjorts

* The importance of having at least two hours of wagime;

* The comfort level operations staff have with contaated water entering the Hidden
Valley Reservoir;

» The concentration of interest at the intake;

* The tradeoff between maximizing threats coveragk raaximizing the probability of
having sufficient warning time;

* The types of monitoring technologies that may belemented and their respective
MDLs; and

* The feasibility of implementing a station where biwdge exists (e.g. Station C or

somewhere between Stations D and E).

Once these issues have been resolved, the objedlives should be recalculated, if necessary,

in order to generate final results upon which teeba decision.

If the assumptions made as part of this thesifarned to be acceptable, it is recommended
that the Regional Municipality of Waterloo proceeith constructing an early warning source
water monitoring station near the Victoria StreeidBe. It is further recommended that the
station should sample at least every hour to irseres likelihood of providing two hours of
warning time. The parameters for which the statudhmonitor and the technology it will use

98



should be determined based on the contaminantsifiddras part of the risk assessment and

any technological or cost constraints.

It is also recommended that the Regional Municipadf Waterloo considers undertaking a
study to determine the optimal lateral positionaighe monitoring station. Upon completing
the risk assessment, the positioning of variousatisr may indicate that the station should be
located closer to one bank or another, though lit iikiely be most ideally situated on the

river's center line.

Since the recommended monitoring station will faildetect spills from both King Street and
Highway 8, the implementation of a second monigstation immediately downstream of the
Highway 8 Bridge should be considered. Althoughk #tation will likely not provide enough

warning time to prevent contaminated water fronegng the Hidden Valley Reservoir, it can

provide notification of events that the conventidnéake analyzers may fail to detect.

It is also recommended that the Regional Municipadif Waterloo consider developing a
predictive model for use in the event of a spilhis can be used in conjunction with the early
warning monitoring station to predict the time ofiaal and duration of real-time spill events.
The model used for this thesis may be adapted $er as a real-time prediction tool if
additional data are collected and calibration arditioning experiments are conducted.

Early warning source water monitoring stationsascain additional barrier in the production of
safe drinking water and are an important part efre® water protection. It is recommended
that the implementation of such a station shouldnmement traditional source water
protection efforts, not replace them. Identifyiagd mitigating risks to water quality and

guantity should remain the focus of source watetgution.
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Appendix A: Water Quality Model Parameter Ranges

Note: Parameter ranges listed below are based on éParel Ng, 2001; Martin and Wool,
2002; Mclintyre et al., 2003a; Cox and Whitehead)®2@Qindenschmidt, 2006; Osidele

et al., 2006).

Parameter Description Units Min M ax
TH_K1 Theta for CBODul Decay -- 1.024 1.15
TH_KDN Theta for Denitrification for CBODul -- 1.a2 1.15
TH_KIN Theta for Organic Nitrogen to NH -- 1.024 1.15
TH_KNH3 [Theta for Ammonia to NQTransformation -- 1.024 1.15
TH_KDNOZ2 |Theta for Sediment Denitrification -- 1402 1.15
TH_BENP | Theta for Benthic Ortho Phosphate Releage R -- 1.024 1.15
TH_BENN |Theta for Benthic Ammonia Release Rate -- .024 1.15
TH_SOD Theta for Sediment Oxygen Demand -- 1.024 151.
TH_ARB1 |[Theta for Arbitrary 1 decay -- 0 1
TH_AGRO |Theta for Phytoplankton/Algae Growth -- 240 1.15
TH_ADIE Theta for Phytoplankton/Algae Death -- 1402 1.15
TH_MGRO |Theta for Macrophyte Growth -- 1.024 1.15
TH_MDIE  [Theta for Macrophyte Death -- 1.024 1.15
TH_SORP | Theta for Ortho Phosphate Loss/Adsorption - - 1.024 1.15
APCONT Phytoplankton Phosphorus Content mg P/mg B .009D 0.011
ANCONT Phytoplankton Nitrogen Content mg N/mg|B 0.0 0.1
MPCONT Macrophyte Phosphorus Content mg P/mg B 0 0
MNCONT  |Macrophyte Nitrogen Content mg N/mgB 0.02 40.
ONEQUI Oxygen/Nitrogen Ratio for Denitrification n@/mg N 0.34 0.36
ONITRI Oxygen/Nitrogen Ratio for Nitrification mgA0ng N 4.5 4.64
OPDECY Oxygen Consumption by Plant Decay mQ B 1 2
ADN CBODul Denitrification Rate 1/day at 20C 0 1
AKN Ammonia to NQ Transform Rate 1/day at 20C 0.025 2
ATB Bottom Heat Exchange Rate 1/day at 20C 0 0
ATS DO Concentration at which Algal death is hatborate Watts/nf/C 0 0
APO4 Ortho Phosphate Loss Rate 1/day at 20C 0.62 76 0.
KALGDK Phytoplankton Decay Rate 1/day at 20C 0.003 2
KNCBDN NO; Concentration at which Denitrification is 1/2 Rate mg/L 0 1

DO Concentratiorat which CBODul Decay is 1/2 M
KOCB1 Rate mg/L 0 1
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Parameter Description Units Min Max
NH; and NQ Concentratiorat which Algal growth rat

KNPOOL is 1/2 max mg/L 0.01 0.3
Total phosphorus Concentration at which Algal giot

KP04X rate is 1/2 max mg/L 0 0.1

KDNO2 Sediment Denitrification Rate 1/day at 20C 0 0.1

ACK Organic Nitrogen decay to NHransform Rate 1/day at 20C 0.02 0.4

LAMBDAO |Non-algal Light Extinction Coefficient 1/m 0.1 0.3

(a/m)/
LAMBDA1 |inear Algal Self Shading Coefficient (ug Chl-a/L) 0 0.01
(2/m)/

LAMBDA2 |Non-linear Algal Self Shading Coefficient (ug Chl-a/Lj?® 0.04 0.06

ALPHAO Algae to Chlorophyll Conversion Factor ugl@limg B 10 100

XONS Organic Nitrogen Settling Rate m/day 0.001 0.1

CBODSR CBODul Settling Rate m/day -0.36 0.5
Fraction of Algal/Macrophyte Death which goes to

FCBOD CBODul fraction 0 1
Organic Phosphorus to Ortho Phosphate Transform

KPDK Rate 1/day at 20C 0.01 0.7

KPSET Organic Phosphorus Settling Rate m/day 0.00 0.1

AKARB1 Arbitrary Contaminant Decay Rate 1/day a€2D 0 1

SOD Sediment Oxygen Demand 0 4.4

AK1 CBODul Decay Rate 1/day at 2QC 0.004 4
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Appendix B: Complete Results with an MDL of 0.01 mg/L

Equal Weightings - MDL=0.01 mg/L, Sample Interal=0.1 hr
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FigureB - 1. Results Using Weighting Scheme 1 and Sample Interval of 0.1 hours
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FigureB - 2. Results Using Weighting Scheme 2 and Sample Interval of 0.1 hours
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Equal Weightings - MOL=0.01 mg/L, Sample Interqal=2 hr
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FigureB - 3. Results Using Weighting Scheme 1 and Sample Interval of 2 hours
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FigureB - 4. Results Using Weighting Scheme 2 and Sample Interval of 2 hours
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Equal Weightings - MOL=0.01 mg/L, Sample Interqal=5 hr
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FigureB - 5. Results Using Weighting Scheme 1 and Sample Interval of 6 hours

Mon-Equal Weightings - MDL=0.01 mg/L, Sample Interval=5 hr
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FigureB - 6. Results Using Weighting Scheme 2 and Sample Interval of 6 hours
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Equal Weightings - MDL=0.01 mg/L, Sample Interal=12 hr
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FigureB - 7. Results Using Weighting Scheme 1 and Sample Interval of 12 hours

Mon-Equal YWeightings - MDL=0.01 mg/L, Sample Interval=12 hr
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FigureB - 8. Results Using Weighting Scheme 2 and Sample Interval of 12 hours
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