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Abstract 

This thesis involves the design of an early warning source water monitoring station for a 

riverine source of drinking water.  These stations provide downstream water utilities with 

advanced notification of contamination events so they have time in which to implement a 

response, such as closing their intakes.   

 

Many threats facing riverine water supplies, such as accidental spills, are uncertain in nature.  

Therefore, designing a monitoring station for the detection of these events requires a 

probabilistic modelling approach. Sources of uncertainty considered in this research include 

the location, mass and duration of a spill event as well as the flow at the time of the spill and 

the water quality model parameters.  Probability distributions for each of these uncertainties 

were defined and a Monte Carlo experiment was conducted. 

 

The design objectives include maximizing the probability of detection and maximizing the 

probability of having a threshold amount of warning time.  These objectives are in conflict 

with each other because the probability of detection improves as the station moves closer to the 

intake and the amount of warning time increases as the station is located further upstream.  

Values for the competing objectives were calculated for a number of potential monitoring 

station locations at multiple sample intervals and the tradeoff solutions were analyzed.   

 

This methodology was applied to the Hidden Valley Intake which services the Regional 

Municipality of Waterloo’s Mannheim Water Treatment Plant.  The Hidden Valley Intake is 

located in Kitchener, Ontario and withdraws up to 72 ML of water per day from the Grand 

River.   

 

Based on an analysis of the Monte Carlo simulation results for the case study application, it 

was found that locating the monitoring station near the Victoria Street Bridge, approximately 

11 km upstream of the intake, represents the best tradeoff in the design objectives.  Sampling at 

least once per hour is recommended to increase the amount of warning time.   
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The impact of various sources of uncertainty was also explored in this thesis.  It was found that 

the flow at the time of a spill and the spill location are the only sources of uncertainty that 

significantly impact the probability distributions of relevant model results.   
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1 Introduction 

1.1 Background 

In 1854, London, England was hit by its third epidemic of cholera in 25 years.  Physician John 

Snow’s hypothesis that the disease was being spread by the city’s drinking water supply and 

his subsequent recommendation to shut down a contaminated well saved thousands of lives.  In 

addition to beginning the science of epidemiology, Snow’s discovery represents one of the 

modern world’s first recognitions of the importance of source water protection.   

 

Today, the ability of water to carry disease is undisputed.  The use of disinfection has 

significantly reduced health risks associated with microbial pathogens (Davies and Mazumder, 

2003).  As a result, cholera and many other waterborne diseases no longer pose a significant 

threat in developed countries such as Canada.  Sophisticated drinking water treatment 

technologies, such as membrane filtration and ultraviolet disinfection, are becoming 

increasingly effective at removing some of the most persistent chemical and microbial 

contaminants in a water supply. In addition, stringent regulations governing drinking water 

quality now exist in most developed parts of the world.  As a result of these advances, drinking 

water quality has improved substantially since 1854.  However, most of these efforts have been 

focused on treating source water rather than protecting it.  Not until 150 years after Snow’s 

breakthrough was source water protection officially defined by Ontario’s Ministry of the 

Environment as “protecting current and future sources of drinking water from potential 

contamination and depletion” (Technical Experts Committee, 2004).   

 

The fear of a depleted water supply is far from the minds of most Canadians because Canada is 

bestowed with nearly 7% of the world’s renewable freshwater supply (Environment Canada, 

2004).  As a result, Canadians are fortunate to have the second most inexpensive water supply 

in the world (National Utility Service, 2006).  However, Canada’s abundant and inexpensive 

freshwater supply is grossly overused.  In a 2007 survey of water consumption rates amongst 

32 nations, Canada ranked a disappointing 31st with an annual per capita water consumption 
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rate of more than double the average of all other participating nations (Organisation for 

Economic Co-operation and Development, 2007).   

 

In addition to taking for granted that there will always be enough water, Canadians also take 

for granted that their water supply will always be safe. Gord Miller, Ontario’s Environmental 

Commissioner, has described the myth of detachment as society’s belief that we are not part of 

the ecosystem and are therefore subject to different rules.  However, societal impacts such as 

wastewater discharges, industrial effluents, agricultural runoff, and negligence continue to 

pollute the ecosystem.  This was clearly evidenced in May 2000 when seven people died and 

over 2000 became ill in the Town of Walkerton, Ontario.  Their drinking water had been 

contaminated with E.coli 0157:H7 and campylobacter originating from a nearby farm.  This 

event highlighted that Canadians are not immune to adverse drinking water quality.      

 

In response to the tragic events in Walkerton, the Ontario government mandated an inquiry led 

by Commissioner Dennis O’Connor.  Commissioner O’Connor released a report in 2002 in 

which he identified the need for watershed-based source protection planning.  As a result, The 

Clean Water Act (Ontario Ministry of the Environment, 2006b) was created for the purpose of  

“protecting existing and future sources of drinking water”.  According to Ontario’s 

Environment Minister, Laurel Broten, this new legislation is an integral part of the Province’s 

multi-barrier approach for protecting drinking water from source to tap (Ontario Ministry of 

the Environment, 2006c).   The legislation requires that every watershed in the province 

develop a local, science-driven source protection plan that identifies and mitigates risks to 

drinking water quality and quantity. 

 

Investing in source water protection results in a lower risk of acute and chronic health 

problems as a result of adverse water quality, in addition to decreased treatment requirements, 

and fewer treatment residuals and by-products (Gostin, 2000; Davies and Mazumder, 2003).  

For these reasons, source water protection is a prudent management decision not only from an 

environmental and public health perspective but also from a financial one (Davies and 

Mazumder, 2003).  With alarming rates of water consumption and a growing number of threats 
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to drinking water quality, source water protection is essential if Canadians want to ensure an 

adequate supply of safe drinking water for future generations.   

1.2 Scope of Research 

Source water protection involves issues relating to the quantity and quality of drinking water 

supplies.  The scope of this thesis is limited to surface water quality, and more specifically to 

riverine sources of drinking water.  Most water quality threats facing riverine water supplies 

are due to unintentional spills or discharges such as wastewater bypasses, transportation 

accidents, and agricultural runoff.  All of these threats can cause an immediate deterioration in 

water quality and may arrive at downstream water treatment plant intakes within minutes or 

hours.   

 

Although the purpose of source water protection is to identify and mitigate potential threats to 

prevent them from ever entering a source water supply, accidental spills cannot be entirely 

avoided.  Early warning source water monitoring stations can provide an additional barrier in 

the multi-barrier approach for producing clean drinking water.  The positioning of such a 

station upstream of a drinking water intake can provide downstream water utilities with 

advanced notice of contamination events, allowing them sufficient time to implement a 

response.  Even though contamination cannot always be prevented from entering a source 

water body, it can be prevented from entering a drinking water treatment plant with the use of 

an early warning source water monitoring station. 

 

The purpose of this research is to design a source water monitoring station upstream of a 

riverine drinking water treatment plant intake.  Since spills are inherently uncertain in nature, a 

large part of this research involved probabilistic modelling of spill scenarios using Monte 

Carlo simulations.   The results of these simulations were analyzed at a number of potential 

monitoring station locations and sampling intervals.  This research also involved an 

examination of the sources of uncertainty impacting the design of a source water monitoring 

station.  The resulting methodology was applied to a case study example.  
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1.1 Organization of Thesis 

This thesis is organized into the following chapters: 

 

Chapter 1: This chapter introduces background information about source water protection and 

describes the scope of this research. 

 

Chapter 2:  This chapter provides a review of literature relevant to this research. 

 

Chapter 3: This chapter presents an overview of the methodology developed for designing an 

early warning source water monitoring station.   

 

Chapter 4: This chapter discusses background information about the Case Study application, 

the Hidden Valley Intake, which is located in the Grand River Watershed and services the 

Mannheim Water Treatment Plant in Kitchener, Ontario.   

 

Chapter 5: This chapter presents and analyzes the results for locating a source water 

monitoring station upstream of the Hidden Valley Intake.  Graphs and discussion of the results 

at potential monitoring stations are presented.  A discussion of the most significant sources of 

uncertainty affecting the decision making process is also included. 

 

Chapter 6:  This chapter provides general conclusions and recommendations regarding the 

importance of source water monitoring and protection. Specific conclusions and 

recommendations related to the case study example are also presented. 
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2 Literature Review 

The literature relevant to this thesis is organized into the following five topics, which are 

discussed in Sections 2.1 to 2.5: 

• Water quality monitoring; 

• Hydrodynamic modelling; 

• Water quality modelling; 

• Uncertainty; and 

• Multi-objective optimization. 

2.1 Water Quality Monitoring 

In the following section, various objectives of water quality monitoring are discussed. Early 

warning source water monitoring is described in further detail along with a description of 

general and probabilistic design considerations. 

2.1.1 Purposes of Water Quality Monitoring 

Prior to designing a water quality monitoring program, its purposes must be clearly identified 

(Palmer and MacKenzie, 1985; Harmancioglu and Alpaslan, 1992; Dixon and Chiswell, 1996).  

Since water quality monitoring can be expensive and time consuming, failing to clearly 

identify the goals of a monitoring program can result in the collection of sub-optimal data that 

are of little use for decision making.  This represents a waste of money and resources that 

could be better allocated in order to achieve monitoring objectives (Palmer and MacKenzie, 

1985).   

 

The United States Environmental Protection Agency (2007) identified the following purposes 

of water quality monitoring: 

1. Characterization of waters and identification of changes or trends in water quality over 

time; 

2. Identification of existing or emerging water quality problems; 

3. Collection of information to design pollution prevention or remediation programs; 
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4. Determination of whether program goals, such as compliance with pollution 

regulations, are being met; and 

5. Response to emergencies, such as spills and floods.  

 

The purpose of an early warning source water monitoring station is similar to Objective 5 

listed above.  Early warning stations serve to detect sudden changes in water quality due to low 

probability but high impact events, such as spills (Grayman et al., 2001).    This type of 

monitoring is described further in the following section.   

2.1.2 Early Warning Source Water Monitoring 

Grayman and Males (2002) define an early warning monitoring system as “a mechanism for 

detecting, characterizing and providing notification of a source water contamination event.”  

These systems typically consist of one or more monitoring stations upstream of a drinking 

water treatment plant intake and provide advanced warning of contamination caused by events 

such as industrial spills, wastewater bypasses, and transportation accidents (International Life 

Sciences Institute, 1999).  Benefits of early warning monitoring stations include improved 

decision making, reduced risks of adverse drinking water quality, increased public confidence 

in a water supply, and increased motivation for dischargers to follow reporting regulations 

(International Life Sciences Institute, 1999; Gullick et al., 2003; Mikol et al., 2007).   

2.1.2.1 Monitoring Technologies 

A wide range of monitoring technologies can be used at early warning monitoring stations.  

Basic online monitors usually operate continuously and measure common parameters such as 

temperature, conductivity, pH, dissolved oxygen, and turbidity (Grayman et al., 2001).  

However, basic monitors are unable to detect many types of spill events (Grayman et al., 

2001).  Advanced analytical methods, such as gas chromatography/mass spectrometry (GCMS) 

and liquid chromatography/mass spectrometry (LCMS), can be used to detect a wide array of 

contaminants such as organics, fluorescence for oils, and immunoassays for herbicides 

(International Life Sciences Institute, 1999). Video surveillance at road and railway crossings 

can also be used for early warning monitoring stations on large rivers (International Life 

Sciences Institute, 1999). 
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Biomonitors are another option for source water quality monitoring.  A biomonitor consists of 

a population of bivalves, fish, zooplankton, or algae that are exposed to the source water.  

Their behaviours, such as swimming patterns, ventilation rates, and avoidance patterns, can be 

continuously monitored to provide notification of adverse source water quality  (Grayman et 

al., 2001; Mikol et al., 2007).  Biomonitors are commonly used in European and Asian nations 

but their use in North America is more limited (International Life Sciences Institute, 1999; 

Grayman et al., 2001). Biomonitors are sensitive to a wide array of organic and inorganic 

chemicals; however, they are unable to identify the specific type of contamination (Mikol et 

al., 2007).  Biomonitors may also react to substances that are not harmful to humans.  Another 

drawback is that biomonitors may not identify some types of contamination events fast enough, 

particularly for chemicals with low acute toxicity (Mikol et al., 2007).  Other considerations 

related to biomonitors include cost, care, and feeding (Grayman et al., 2001). 

2.1.2.2 Existing Early Warning Systems 

Grayman et al. (2001) provide an excellent review of existing early warning monitoring 

stations around the world that use a diversity of technologies.  For example, monitoring 

stations on the Danube River in Europe use conventional analyzers (e.g., pH, turbidity) and 

stations on the Mississippi and Ohio Rivers utilize advanced methods such as gas 

chromatographs.  Both the Moselle River in France and the River Han in Korea make use of 

biomonitors (Grayman et al., 2001; Gullick et al., 2003).  Some monitoring systems are multi-

jurisdictional and have many monitoring stations (e.g., the Danube River) and others involve a 

single station upstream of a specific intake (e.g., the River Trent in the United Kingdom).  All 

of these applications and others are described in great detail by Grayman et al. (2001). 

2.1.3 Water Quality Monitoring Design Considerations 

Sanders et al. (1983) presented a general methodology for the design of a water quality 

monitoring system from the identification of its purpose through to its operating and reporting 

procedures.  This methodology is illustrated in Figure 2-1.   
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Figure 2-1.  The Design of a Water Quality Monitoring System  
(Adapted from Sanders et al., 1983) 

 

The first, second, and third steps of the method presented by Sanders et al. are addressed as 

part of this thesis.  The first step involves establishing expectations and objectives; in the case 

of the current research, the objective is to create a monitoring station or network of stations to 

provide notice of contamination events upstream of a drinking water intake.  The second step 

involves establishing statistical design criteria.  The focus of this thesis is the third step which 

involves determining how many monitoring stations should be implemented, where the 

station(s) should be located, the frequency of monitoring, and the parameters for which the 

station(s) will monitor.  Literature relating to these decisions is presented in the following 

sections. 
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2.1.3.1 Location 

Selection of a location is the most important decision in the design of a monitoring station.  If 

samples are collected from a non-representative location all other design decisions, such as 

sample frequency, are irrelevant (Sanders et al., 1983).   

 

In the past, monitoring locations were selected based upon personal experience, intuition, and 

expert judgment of the local conditions (Reinelt et al., 1988; Dixon and Chiswell, 1996; Ning 

and Chang, 2004; Ning and Chang, 2005).  These sites generally coincided with streamflow 

gauges and were frequently located near known industrial and wastewater discharges 

(Harmancioglu and Alpaslan, 1994).  Convenience was also a consideration and locations with 

easy access to required facilities, such as laboratories, were often selected (Harmancioglu and 

Alpaslan, 1994). 

 

Most recent literature on monitoring network design involves the use of statistical and 

optimization methods (MacKenzie et al., 1987; Reinelt et al., 1988; Ning and Chang, 2004).  

Examples include the use of fuzzy set theory (Ning and Chang, 2004), gradient search 

algorithms (Palmer and MacKenzie, 1985), and the entropy principle of information 

(Harmancioglu and Alpaslan, 1992).   Design objectives usually involve maximizing some 

measure of the amount of information (e.g., capability to detect changes, capability to 

sufficiently represent a given area, statistical power of the network, capability to meet 

regulatory requirements) (Palmer and MacKenzie, 1985) and minimizing costs or applying a 

budget constraint (Ning and Chang, 2004).   

 

For the purpose of locating an early warning monitoring station, Gullick et al. (2003) 

recommend consideration of the following factors: 

• The location of contaminant sources; 

• The time of travel from these sources to the intake; 

• The amount of mixing and dilution that occur; 

• The response time of the monitoring instrument; 

• The type of treatment process and its capability to handle various contaminants; 

• Security to protect the monitoring station; and 
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• Access to electricity and potentially telephone lines. 

 

The first two considerations are an important part of this thesis.  The location of contaminant 

sources must be considered in an attempt to minimize the risk of failing to detect events 

originating between the station and a downstream water treatment plant intake (International 

Life Sciences Institute, 1999).  However, travel times are also an important consideration so 

that sufficient warning is provided in which to implement a response at the water treatment 

plant (International Life Sciences Institute, 1999).  

 

In addition to determining the monitoring station’s location along the river’s length, its vertical 

and lateral positioning should also be considered (Gullick et al., 2003).  For small or well 

mixed rivers, one station located at the river’s center or at one of the banks may be adequate.  

In some applications, however, multiple intakes across the river’s width may be necessary to 

sufficiently characterize the river’s water quality (Gullick et al., 2003).  The vertical 

positioning of a monitor may depend upon the type of analysis it performs.  For example, a 

station monitoring for substances with surface slicks, such as oil, will be sensitive to depth 

(Gullick et al., 2003). 

 

Access to electrical lines is also a consideration for selecting potential station locations because 

most monitoring technologies require electricity.  Depending on the type of communication 

between the station and the response team, telephone wires may also be required.  

Furthermore, the station must be accessible to vehicles.  As a result, early warning monitoring 

stations are usually located in close proximity to a bridge (International Life Sciences Institute, 

1999).   

2.1.3.2 Sample Frequency 

Selection of the frequency at which a monitoring station will sample is another important 

design decision.  The chosen sample frequency can significantly impact both operating costs as 

well as the usefulness of the data collected (Sanders et al., 1983).   
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In the past, sample frequencies were often selected using professional judgment with 

consideration for cost constraints (Sanders et al., 1983; Harmancioglu and Alpaslan, 1994).  

Although this is often still the case, the literature discusses the use of statistical methods for the 

optimal selection of monitoring frequency.  Some of these statistical methods are discussed 

further in Sanders et al. (1983) and Harmancioglu and Alpaslan (1994); however, most of these 

methods are relevant for long-term monitoring and trend detection networks.  Therefore, these 

methods will not be discussed further as they are not as relevant for the current research which 

focuses on the detection of events that cause sudden deterioration in water quality.   

 

In the case of an early warning source water monitoring station, defining a sample frequency 

should involve consideration of the duration of typical contamination events and their travel 

time to the intake.  Less frequent sampling leads to decreased response time and could also 

result in the failure to detect events of short duration (Grayman et al., 2001).  As cited by 

Grayman et al. (2001), Waldon et al. (1989) found that a daily frequency was not appropriate 

for an early warning monitoring station as it failed to detect many spill events.  Continuous or 

near-continuous monitoring is often preferred, particularly for rivers with high velocities, 

rivers with low dispersion, or for cases where the monitoring station is located at the water 

treatment plant intake (International Life Sciences Institute, 1999; Grayman et al., 2001).   

2.1.3.3 Parameters to Sample 

Early warning source water monitoring stations usually monitor for chemical and radioactive 

threats in a riverine water supply.  Microbiological threats are not usually monitored because 

their analysis requires hours or days (Gullick et al., 2003).  Selecting parameters for which to 

monitor is a challenging task because a vast array of contaminant events are possible.  This 

decision should be largely driven by a threats and vulnerability assessment of the water supply 

(Grayman et al., 2001).   

 

Similar to other design decisions, the selection of parameters must also give consideration to 

the monitoring purpose.  For example, if the monitoring program exists for the detection of 

pesticide transport in a water supply, then sampling dissolved oxygen and turbidity may not be 

sufficient (International Life Sciences Institute, 1999).  
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The selection of parameters for which to monitor is often based upon budget and technology 

constraints.  Many parameters are quite costly to sample, and indicator variables may be more 

appropriate.  Sanders (1983) suggests investigating relationships between water quality 

parameters to see if there are correlations which can be used to reduce the number of 

constituents to be monitored.  Another option is the use of biomonitors which can be very 

effective at identifying adverse water quality associated with a wide range of contaminants 

(Grayman et al., 2001; Mikol et al., 2007).   

2.1.4 Probabilistic Design of Early Warning Monitoring Stations 

This section discusses the use of probabilistic modelling in order to assess various monitoring 

station designs.  The use of probabilistic modelling in the design of a source water monitoring 

station was demonstrated by Waldon et al. (1989) (as cited by Grayman et al. (2001)), who 

suggested that future research could involve conducting  Monte Carlo simulations. 

 

The American Water Works Association Research Foundation (AwwARF) published a report 

discussing early warning monitoring in detail (Grayman et al., 2001).  This report includes a 

description of a probabilistic model that uses Monte Carlo simulations to analyze various 

monitoring station designs.  The model is called Spill Risk and it includes uncertainties 

associated with the fact that spills are random in time, location, duration, and quantity.  The 

model also includes uncertainties associated with whether or not the spill is reported by the 

public or spill generator. 

 

Spill Risk is a one-dimensional advection-dispersion model with the following assumptions: 

• Only a single reach is being modelled with constant flow throughout the reach and no 

tributaries; 

• A one-dimensional model is appropriate as concentrations are vertically and laterally 

averaged; 

• The system can be represented with a simple advection-dispersion model; 

• Flows are seasonal (up to 12 seasons per year); 

• The flow during a spill simulation is constant; 

• Each spill is of a single constituent; 
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• Spills are not seasonal; and 

• There is no interaction between spills (Grayman et al., 2001). 

 

Spill events modelled in Spill Risk are defined by the location of the spill generator, the 

contaminant spilled, the probability of occurrence (e.g., a 500-year event has a probability of 

1/500), as well as a distribution for the spill magnitude, duration, and probability of public or 

agency report.  The spill magnitude is assumed to have a triangular distribution defined by the 

minimum, maximum, and most likely spill amount, and the spill duration is defined as a 

uniform distribution ranging from minimum to maximum expected durations. 

 

Spill Risk defines the flow at the time of the spill through the use of a shifted log-normal 

distribution for each season.  Within a season the flow is probabilistic but it is constant within a 

reach at a given time (Grayman et al., 2001). 

 

Potential monitoring designs tested in the Spill Risk model are defined by their location, 

contaminants they measure, frequency of sampling, and method detection limit (MDL).  The 

monitors initiate a detection when the concentration of the contaminant is above the MDL.  

The minimum frequency that can be tested with the model is one sample every hour, to 

simulate near-continuous monitoring (Grayman and Males, 2002). 

 

Once the response is determined by the model, the resulting treated water concentrations are 

calculated based on user defined treatment efficiencies for the various contaminants (under 

both normal and enhanced treatment conditions).  A set of spill simulations are performed and 

the output statistics are accumulated.  Using all the accumulated results from a set of 

simulations, the impact of a given monitoring station design is calculated as a function of the 

duration a contaminant was present in the treated water above the maximum contaminant level 

(MCL) and the population that was exposed.   An effectiveness index is used to compare 

different monitoring station designs, which is calculated as the impact reduction divided by the 

impacts associated with taking no action (Grayman et al., 2001).  
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The design of a station for the purpose of early warning source water monitoring is a relatively 

new area of research.  No further literature relating specifically to the probabilistic design of 

such stations is currently available. 

2.1.4.1 Similarities with Distribution System Monitoring 

Early warning monitoring in distribution systems has obvious parallels to the current research 

as both involve locating monitoring stations for the purpose of detecting highly uncertain 

events.  Similar probabilistic approaches have been applied in the literature for the purpose of 

monitoring for intentional contamination events in a distribution system.   

 

Cozzolino et al. (2006) presented a Monte Carlo-based method for locating monitoring stations 

within a distribution network.  Their model considers uncertainties associated with user 

demand on the system, as well as the uncertainty associated with the node at which the 

contamination enters the system.  Equally probable time-varying hydraulic situations are 

generated and modelled in order to determine an optimal monitoring location.   

 

Ostfeld and Salomons  (2005) discuss a similar approach for the design of an early warning 

distribution system monitoring program.  Their method includes uncertainties associated with 

the volume and location of a deliberate injection, the demand on the system, as well as possible 

delays in response and the sensitivity of the monitoring equipment.    This methodology is 

further described by Ostfeld and Salomons (2004) and involves the use of a genetic algorithm 

to optimize station locations in order to identify deliberate terrorist acts in the distribution 

system.  The tradeoff between the number of stations and the probability of detection is also 

explored in their work.   

2.2 Hydrodynamic Modelling 

Information about the pathway, volume, and velocity of water is essential in order to determine 

how contaminants move and behave in it (Martin and McCutcheon, 1999).  Therefore, the use 

of a hydrodynamic model is required for the current research.   
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2.2.1 Fundamental Equations 

Continuity and momentum equations are used in hydrodynamic models to describe variations 

in flow.   The equation of continuity represents the fact that the change in storage (S) over time 

is equal to the difference between inflows (I) and outflows (O) (Martin and McCutcheon, 

1999).  Mathematically this can be expressed as: 

dS
I O

dt
= −      2-1 

 

If river depths and velocities change over time at a given location, as they do for most natural 

open channels, the flow is classified as unsteady.  For unsteady, gradually varied flow in open 

channels, the momentum equation can be expressed as (Martin and McCutcheon, 1999): 

2
2

2 4/3

U U h gn
U g U

t x x Rδ
∂ ∂ ∂+ = − −
∂ ∂ ∂

    2-2

  
where  U represents the average longitudinal velocity,  

t represents time,  

x represents longitudinal distance,  

g represents acceleration due to gravity,  

n represents Manning’s roughness coefficient,  

δ  represents a unit conversion (1 for SI units and 1.49 for English units), 

h represents the water surface elevation above a given datum, and  

R represents the hydraulic radius. 

 

Equations 2-1 and 2-2 are called the Saint-Venant equations and are used by all models that 

simulate dynamic water movement in rivers (Chapra, 1997).  Unfortunately, there is no closed 

form solution for these equations so they must be solved numerically.   

2.2.2 Solution Techniques 

The Saint-Venant equations are commonly solved using finite difference methods.  Finite 

difference methods involve the use of finite quantities to approximate derivatives that cannot 

be solved analytically.  For example, a river can be divided into finite segments over space 

(∆x) and time (∆t).    
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Finite difference methods can be classified as explicit or implicit.  Explicit methods only 

involve one unknown (the value of a given segment at the next time step) because they do not 

consider adjacent segments at the next time step, which will have an impact on the solution 

(Chapra, 1997).  Implicit solution methods do not have this limitation; however, they are more 

computationally expensive because the spatial derivatives for the next time step for all points 

along the x-axis must be solved simultaneously (Chapra, 1997; Martin and McCutcheon, 

1999).     

 

The weighted four-point implicit method is one of the most commonly used and efficient 

solution techniques for solving the Saint-Venant equations (Martin and Wool, 2002).  It is 

considered the standard solution method used in many one-dimensional hydraulic models 

including the U.S. Army Corps of Engineers CE-QUAL-RIV1 and the National Weather 

Service models DWOPER, DAMBRK and FLDWAV (Martin and McCutcheon, 1999).   

 

To solve for a value at point Z, as shown in Figure 2-2, the values at all four corners of the 

surrounding box are required. 

 

 

Figure 2-2.  Schematic of the Weighted Four Point Implicit Finite Difference Scheme  
(Adapted from Martin and McCutcheon, 1999) 
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A weighting factor, θ, is used to determine the position between two time steps (t and t+∆t) 

and its choice is important for the stability of the solution.  If θ is set to zero, the method 

becomes explicit as no values at the future time step are used.  In this case, the time step will 

be restricted by the Courant number which represents the ratio between the distance moved 

during one time step (t∆ ) and the segment length (x∆ ).  The Courant number (γ ) can be 

calculated using the following equation (Chapra, 1997): 

U t

x
γ ∆=

∆
     2-3

  
To ensure stability, the Courant number must be less than one so the water cannot move more 

than one segment length at a given velocity (U) within one time step.   

 

The solution is stable for 0.5< θ <1, though stability increases as θ approaches values of 1.  If θ 

is set to 1, the solution becomes fully implicit.  Martin and McCutcheon (1999) recommend a θ 

value of 0.6 to improve accuracy while avoiding possible instabilities associated with values 

closer to 0.5.   

 

The Newton Raphson algorithm is commonly used to solve simultaneous non-linear flow 

equations, such as those produced using the four-point implicit method.  The Newton Raphson 

method is an optimization technique that can be used to find roots, minimums and maximums 

of real-valued functions. Martin and McCutcheon (1999) provide an excellent discussion 

regarding the application of the four-point implicit scheme and use of the Newton-Raphson 

method to solve the resulting equations. 

2.3 Water Quality Modelling 

The Law of Conservation of mass states that mass can neither be created nor destroyed, only 

transferred or transformed.  This law is a fundamental basis for most mechanistic water quality 

models, which are commonly called mass balance models (Chapra, 1997) and can be expressed 

as (Martin and Wool, 2002): 

2

2
( ) s

q
U D K SINKS

t x x A

α α α γ α α∂ ∂ ∂+ = + − − +
∂ ∂ ∂    2-4 
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where  α  represents the water quality constituent of interest,  

U represents the average longitudinal velocity,  

q represents lateral inflow rate,  

A represents cross-sectional area,  

γ  represents the concentration of runoff input to the channel by distributed flow q,  

Ks represents biochemical decay and growth rates, and  

SINKS represents biochemical sources or sinks.   

 

Equation  2-4 is known as the one-dimensional advection-dispersion equation and is used 

in many water quality modelling applications (Kashefipour and Falconer, 2002).  The first term 

in equation  2-4 represents  the change in constituent concentration over time, the second 

term represents advection, the third term represents diffusion, the fourth lateral inflows or 

withdrawals, the fifth reactions, and the sixth sources or sinks (Martin and Wool, 2002). 

2.3.1 One-Dimensional Models 

One-dimensional water quality models assume that velocities and concentrations are 

reasonably represented by cross sectional averages (Martin and McCutcheon, 1999).  Although 

complete cross sectional mixing rarely occurs, it is often a good engineering approximation 

(Martin and McCutcheon, 1999; Grayman et al., 2001). 

 

Prior to selecting a one-dimensional model, its limitations must be understood.  One-

dimensional models assume that a contaminant is completely and instantaneously mixed across 

a given cross section.  However, pseudo-complete cross sectional mixing does not occur until 

some distance downstream from a release.  The distance to complete mixing is called the 

mixing length (Martin and McCutcheon, 1999).  Complete mixing is attained when the ratio of 

minimum to maximum concentration at a given cross section is close to 1; values of 0.95 or 

0.98 are commonly used (Rutherford, 1994).  For a ratio of 0.98, the mixing length for a mid-

channel injection is calculated as: 

2

0.134 x
m

y

v b
L

D
=      2-5 
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For releases on either bank, the mixing length is calculated as (Rutherford, 1994): 

2

0.536 x
m

y

v b
L

D
=      2-6 

where  xv represents the average velocity (m/s),  

b represents the channel width (m), and  

yD  is the longitudinal dispersion coefficient (m2/s). 

 

In general, for a mid-channel release, vertical mixing is complete at a distance of 

approximately 50 river depths downstream and lateral mixing is complete a distance of 100 to 

300 river widths downstream (Rutherford, 1994).  For bankside releases, the mixing lengths 

are four times as long (Rutherford, 1994).   

 

The dominant processes affecting a soluble, conservative spill as it moves downstream are 

illustrated in Figure 2-3.   

 

Conservative 
Spill

I

Very short 
distance

II 

Short 
Distance

III

Optimum 
Distance

IV 

Long 
Distance

V

Extended 
Distance

Vertical and 
lateral mixing 

and longitudinal 
dispersion

Lateral mixing and 
longitudinal 
dispersion

Longitudinal 
dispersion

 

 
Figure 2-3.  Stages of River Mixing  

(Adapted from Kilpatrick, 1993) 

 

Prior to reaching section I on Figure 2-3, mixing exists in all three dimensions.  At section I, 

vertical mixing is complete and lateral mixing continues.  At some optimum distance (section 

III), the response curves at various points throughout the section all have equal areas.  At this 

point, dispersion is almost all in one dimension.  However, the peak concentration in the center 

of the river may still be considerably larger than that at the banks.  At far distances (section 

IV), the areas of the response curves are the same and the peak concentration in the center is 
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similar to that at the banks.  At this point the dispersion is almost entirely in the longitudinal 

direction, which continues indefinitely downstream in the absence of any boundaries 

(Kilpatrick, 1993).  Downstream of section III, it is usually reasonable to assume one-

dimensional mixing because longitudinal dispersion is the dominant process (Jobson, 1997).   

 

In the case of the current research, the implication of using a one-dimensional model is that 

more detections will be simulated than would occur in reality.  For example, spills that are less 

than one mixing length upstream of a monitoring station will be detected by the model, but in 

reality may pass by the monitoring station on one side or the other and go undetected.   

2.3.2 Longitudinal Dispersion 

Longitudinal dispersion includes the effects of molecular diffusion, turbulent mixing, and 

mixing due to shear in both the transverse and vertical direction (Singh and Beck, 2003).  It 

represents a measurement of the degree of pollutant mixing in a natural stream and is one of 

the most important parameters in one-dimensional river water quality modelling (Iwasa and 

Aya, 1991; Deng et al., 2002).  Longitudinal dispersion coefficients can be estimated through 

the use of tracer experiments, in which a known quantity of a conservative, soluble dye is 

injected into a river to simulate the movement of soluble contaminants (Kilpatrick, 1993).  

Concentration profiles of the dye must be measured at two locations downstream of the 

injection, at a distance far enough such that the cross sectional concentration is approximately 

uniform (Jobson, 1996; Singh and Beck, 2003).  In other words, the concentration profiles 

should be measured at least as far downstream as section III (Figure 2-3).   

 

Using measured tracer concentration profiles at two downstream locations (x1 and x2), the 

travel time (t ) and temporal variance (2ts ) can be calculated to determine the mean velocity 

(U) using the following equations and n measured concentrations (Chapra, 1997): 

1
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The longitudinal dispersion coefficient (D) can then be calculated as: 

2 2 2
2 1

2 1

( )

2( )
t tU s s

D
t t

−=
−

     2-10 

 

If tracer testing data are not available, dispersion coefficients can be estimated using a variety 

of empirical equations.  These equations are often relied upon as many projects lack the 

resources to conduct the field work necessary to collect tracer concentration profiles (Wallis 

and Manson, 2004).  Most empirical equations that have been developed rely on hydraulic 

properties of the river such as the cross sectional average longitudinal velocity (U), the cross-

sectional average shear velocity (U* ), the top width of the river (W), and the hydraulic depth 

(H).   These equations are simpler to apply than collecting tracer testing data, although they 

may be insufficient for capturing the complex mixing behaviour that occurs in some rivers 

(Wallis and Manson, 2004). 

 

The first empirical equation for predicting longitudinal dispersion in natural streams was 

proposed by Fischer in 1975 and has been extensively used since that time (Seo and Baek, 

2005).  Many researches have continued with Fischer’s work and a host of empirical equations 

have been developed and shown excellent performance for various case study applications.  

Some common empirical equations available in the literature are shown in Table 2-1.  

Corresponding references are also shown and the reader is directed to the original sources for 

more information on the development of these equations.  Wallis and Manson (2004) provide a 

good discussion and comparison of the equations shown. 
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Table 2-1.  Empirical Equations for Estimating Longitudinal Dispersion in Rivers 

Equation  Reference Equation 
Number 

2 2

* *

0.011
D U W

HU U H

   =    
  

 
(Fischer, 1975)  2-11 

0.5 2

* *

0.18
D U W

HU U H

   =    
  

 
(Liu, 1977) 2-12 

1.5

*

2
D W

HU H
 =  
 

 
(Iwasa and Aya, 1991) 2-13 

1.428 0.620

* *

5.915
D U W

HU U H

   =    
  

 
(Seo and Cheong, 1998) 2-14 

2 5/3

* 1 *

0.15

8

D U W

HU k U H

   =    
  

 

where 
1.38

1
*

1
0.145

3520

U W
k

U H

    = +     
    

 

(Deng et al., 2002) 2-15 

2

* *

10.612
D U

HU U

 
=  

 
 

(Kashefipour and Falconer, 2002) 2-16 

2.4 Uncertainty  

As presented in Section 2.1.4, the design of an early warning source water monitoring station 

involves a number of uncertainties that should be considered using methods such as Monte 

Carlo simulations.  The following section deals more specifically with the role of uncertainty 

in risk analysis. 

2.4.1 The Role of Uncertainty in Risk Analyses 

The Random House Dictionary defines risk as an “exposure to the chance of injury or loss.”  A 

common engineering definition is the probability of an accident multiplied by the losses per 

accident.  In the case of water resources engineering losses can be defined on a public health 

perspective (e.g., how many people will become ill).  Since risk by definition involves the 

aspect of chance, consideration of uncertainty is imperative when conducting risk analyses 
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(Morgan and Henrion, 1990).  Uncertainty analyses allow decision makers the opportunity to 

consider the reliability of model predictions and collect more data if necessary in order to make 

more defensible decisions (Morgan and Henrion, 1990; Reckhow, 1994). For these reasons, 

uncertainty analyses are an essential part of decision and policy making. 

2.4.2 Water Quality Model Uncertainty 

The use of water quality models has become increasingly important in water resources decision 

making.  Deterministic water quality models produce a set of output values for a given set of 

model inputs that are assumed to be perfectly known  (Portielje et al., 2000; Boano et al., 

2006). However, it has been found that many deterministic models fail to produce reasonable 

results for many basic biological constituents (McIntyre et al., 2003b). Although most water 

quality model applications involve some degree of calibration, models are still simplified 

representations of complex and dynamic environmental processes and will always have a 

degree of uncertainty associated with their results (McIntyre and Wheater, 2004).   

 

In the case of the current research, uncertainties exist regarding the nature of spill events, as 

described in Section 2.1.4.  When using a water quality model, the following sources of 

uncertainty may also be significant: 

• Model input uncertainty (i.e., due to errors in analytical methods); 

• Parameter uncertainty; and 

• Model structure uncertainty (Lindenschmidt et al., 2005; Zheng and Keller, 2006). 

 

Investigating model structural uncertainty requires significant human and computational 

resources, so it is often assumed to be adequately represented as parameter uncertainty 

(McIntyre et al., 2003b).  For the current research, therefore, the probabilistic nature of spill 

events is considered in addition to the uncertainty associated with water quality model 

parameters.   

2.4.3 Methods to Quantify Uncertainty 

Monte Carlo simulations are commonly used to propagate uncertainty in water quality 

modelling studies.  This involves defining a probability distribution for all uncertain inputs or 
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model parameters and then sampling a random value from each of these distributions.  The 

sampled values are then used in the model to compute a corresponding output value.  This 

process is repeated m times to generate m output values, which can be used to form a 

probability distribution of the model output (Morgan and Henrion, 1990).   

 

Before such a procedure can be undertaken, probability distributions of the model parameters 

and inputs must be defined.  Typical ranges for most water quality model parameters are well 

documented in the literature (Perera and Ng, 2001; Martin and Wool, 2002; McIntyre et al., 

2003a; Cox and Whitehead, 2005; Lindenschmidt, 2006; Osidele et al., 2006).  However, the 

use of overly conservative parameter distributions can result in unnecessarily high levels of 

model prediction uncertainty.  Parameter uncertainty estimates can be refined by using Monte 

Carlo based methods such as Generalized Likelihood Uncertainty Estimation (GLUE) (Beven 

and Binley, 1992), Regional Sensitivity Analysis (RSA) (Spear and Hornberger, 1980), 

Markov Chain Monte Carlo (MCMC) (Brooks, 1998), or Uniform Covering by Probabilistic 

Rejection (UCPR) (Klepper and Hendrix, 1994).  All of these methods involve conditioning 

the parameters using a set of calibration data. Conditioning experiments are computationally 

expensive as they require conducting an entire set of simulations before the model can be used 

for prediction.  In addition, a set of good calibration data is required with which to assess the 

performance of each parameter set.   

2.5 Multi-objective Optimization 

Many environmental management problems involve multiple competing objectives (Singh et 

al., 2003; Muleta and Nicklow, 2005). For example, ground water problems may involve 

minimizing the risk of contamination while maximizing pumping rates to meet a specified 

demand. Similarly, water distribution network applications may involve minimizing costs 

while ensuring water pressure is maximized and water resources problems could entail 

maximizing agricultural profit while minimizing sediment yield (Muleta and Nicklow, 2005).  

In each of these examples, the objectives are in conflict because improving one generally leads 

to a decline in the other.   
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Two of the major considerations for locating a monitoring station identified in Section 2.1.3.1 

include the amount of threats coverage and warning time provided.  These considerations are 

in competition because improving performance with respect to one results in worse 

performance with respect to the other (this is discussed further in Section 3.1).   

 

There are many different methods with which to solve multi-objective optimization problems.  

Multiple objectives can be converted to a single objective by applying a weighting factor to 

each objective.  For example, if one wants to minimize two objectives, F1 and F2, the following 

single objective function, F3, may be used: 

3 1 1 2 2 Minimize F w F w F= +  

where w1 and w2 are weightings assigned to objectives 1 and 2, respectively.  The use of this 

method allows the user to convert a multi-objective problem to a single objective problem and 

then apply traditional optimization methods such as linear, dynamic, or non-linear 

programming (Reddy and Kumar, 2007). 

 

An alternative method is to convert all but one of the multiple objectives to constraints.  For a 

two objective problem, the second objective (F2) may be converted to a constraint as shown 

below. 

Minimize F1 

Subject to F2  ≤  t. 

Once again, this allows the use of traditional single objective solution methods.   

 

If the problem is solved using a single objective, some solutions that represent a tradeoff 

between the original objectives may fail to be identified (Reddy and Kumar, 2007).  As a 

result, the full information value is not captured when one or more objectives are limited to 

subjectively defined weightings or constraints (Fenicia et al., 2007).  To overcome this 

limitation and explore a range of tradeoff solutions, the concept of Pareto optimality can be 

applied.   

 

A Pareto optimal front is defined by all solutions for a given problem that are not dominated by 

another solution.  A solution (S1) dominates another solution (S2) if it is better in at least one 
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objective and not worse than S2 in any other objective.  The Pareto optimal set of solutions is 

defined as all of the solutions that are not dominated by any other feasible solution.  For a two 

objective problem, these solutions can be plotted as a curve in objective space, called the 

Pareto front. 

 

A Pareto front is shown in Figure 2-4, with each axis representing an objective to be 

minimized (i.e., solutions towards the origin are preferred).  It can be seen from this figure that 

solution C is dominated because solutions A and B are preferable with respect to both 

objectives.  Neither A nor B are dominated by any other solutions, and it can be seen that they 

are two solutions contained on the Pareto front. 

 

Figure 2-4.  Pareto Optimal Curve  
 

Presenting a complete or approximate representation of the Pareto front enables decision 

makers to consider an array of feasible solutions without pre-defining preferences between 

objectives or restricting objectives to be represented as constraints.   

 

The main limitation of analyzing multiple objectives using a Pareto optimal curve is that 

solutions that perform poorly for one or more objectives may be identified as feasible options.  

For example, solutions that would be identified if each objective is optimized individually lie 

on the Pareto curve even though they may have unacceptable performance with respect to the 

other objectives.  However, this limitation is easy to overcome as decision makers need not 



27 

consider these solutions if they do not represent appropriate or desired tradeoffs.  The benefit 

of constructing a Pareto curve is to provide decision makers with a range of tradeoff solutions 

for consideration. 

2.6 Summary of Relevant Literature   

In the preceding discussion it was found that a probabilistic approach for designing an early 

warning monitoring station is required in order to capture the uncertainties associated with the 

nature of spill events.    The research described in this thesis builds on that of Grayman et al. 

(2001) by considering multiple objectives in locating the stations and using a different method 

for incorporating uncertain flows.  This methodology is described in further detail in Chapter 3.   

 

To conduct a probabilistic design of an early warning monitoring station, the use of both a 

hydrodynamic model and water quality model is required.  One-dimensional models have been 

used for similar applications and are widely accepted as good engineering approximations.  

Monte Carlo simulations are commonly used to propagate uncertainty which, in the case of the 

current research, is associated with both the spill scenarios modelled as well as the water 

quality model parameters.  Common Monte Carlo based methods for the inclusion of 

parameter uncertainty were also identified.   

 

Two important considerations for locating a source water monitoring station were identified to 

be the amount of coverage and the amount of warning time provided by the station.  Instead of 

calculating a population exposure as the metric with which to compare station designs, this 

thesis involves the use of a multi-objective design problem so that tradeoff solutions can be 

analyzed by decision makers.   
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3 Methodology  

The methodology developed to design an early warning source water monitoring station 

involved the following tasks: 

• Specification of design objectives; 

• Identification and prioritization of potential threats; 

• Identification of potential monitoring station locations; 

• Modelling of probable spill scenarios; and 

• Analysis of model results to determine an optimal monitoring station design. 

 

Each of the above steps is described in Sections 3.1 through 3.6 and a specific application of 

the methodology is discussed in Chapter 4. 

3.1 Specification of Design Objectives 

The following decisions are required for the design of an early warning source water 

monitoring system: 

• Number of monitoring stations; 

• Location of monitoring station(s); 

• Sampling frequency; 

• Parameters to monitor; 

• Monitoring technology; 

• Communication linkages; and 

• Response protocol. 

 

The purpose of this research is to design a single early warning monitoring station upstream of 

a specific drinking water treatment plant intake.  Decisions with regards to communication 

linkages, monitoring technology, and response protocols are left to the local decision makers.  
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Therefore, the scope of this methodology is limited to determining the optimal location and 

sample frequency of an early warning source water monitoring station.   

 

In Grayman et al. (2001), various monitoring station designs were assessed based on an 

effectiveness index (see Section 2.1.4).  The methodology applied in this research involves a 

multi-objective approach for assessing potential designs, as described below. 

 

The monitoring station should be located where the probability of detecting a contamination 

event is maximized.  However, it must also provide sufficient warning to allow downstream 

water treatment plants time to implement a response. This response could include initiating 

further sampling to characterize the event, conducting predictive modelling, implementing 

advanced treatment, or shutting down the plant intake (International Life Sciences Institute, 

1999).  Therefore, in addition to maximizing the probability of detection, the station should be 

located where the probability of achieving a threshold amount of warning time is maximized.   

 

These two objectives cannot be optimized simultaneously.  Warning time is maximized when 

the station is as far as possible upstream and the probability of detection is maximized when 

the station is as close as possible to the intake in order to provide greater coverage of potential 

threats.  Therefore, locating the monitoring station required consideration of the tradeoffs 

between these competing objectives. 

 

More frequent sampling increases the probability of detecting a spill event.  However, cost was 

also a consideration so determining the tradeoff between increased sampling and the 

improvement in the objective values was investigated.  For example, if sampling every hour 

achieves only a minor improvement in the objective values over sampling every two hours, 

then it may not be worth the added expense of sampling twice as often. 
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3.2 Threats Inventory  

The probabilistic modelling that was undertaken as part of this research was based on threats 

located within the study area.  These threats were identified and prioritized using the procedure 

described below. 

3.2.1 Identification 

In the province of Ontario, any person who causes or permits a spill to be released to the 

natural environment, or any public sector employee who has knowledge of such a release, is 

required by law to report to the Ontario Ministry of the Environment’s Spills Action Centre 

(SAC) (Ontario Ministry of the Environment, 1990).  The SAC maintains records of all 

reported spills including the medium to which the spill occurred (e.g., air, land or water) as 

well as the type and amount of substance release, if known.  Each spill is classified as oil (e.g. 

crude, gasoline, petroleum), waste (e.g. industrial, hazardous liquids, sewage), gas or 

particulate, chemical (e.g. acids, bases, pesticides, solvents), or other.   

 

Historical spill data were obtained from the SAC to help identify threats within the case study 

area.  However, due to the low probability of most spill events, these data were very limited so 

province-wide data were reviewed.  In 2006, 4541 spills were reported in Ontario and are 

classified in Table 3-1 (Ontario Spills Action Centre, 2006b). 

 
Table 3-1.  Spills Reported in Ontario in 2006 

Type Number Percentage of Total 

Oils 2516 55.4% 

Wastes 778 17.1% 

Gases and particulates 593 13.1% 

Chemicals 459 10.1% 

Other 195 4.3% 

 

From Table 3-1, it can be seen that oils and wastes are the most abundant type of spill in 

Ontario.  The SAC also reported that the most common spill source was transportation-related 
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spills, which represented 22% of all spills reported in 2006  (Ontario Spills Action Centre, 

2006b).  Therefore, identifying sources of oil and waste spills and the nature of potential 

transportation-related spills provided a good starting point for conducting the threats inventory. 

 

In addition to considering previous spill data, the Ministry of the Environment’s Draft 

Guidance Modules for Source Water Protection Planning were also reviewed.  These modules 

list a number of drinking water threats of provincial concern, which are shown in Table 3-2. 

 
Table 3-2.  Drinking Water Threats of Provincial Concern                                                     

(Ontario Ministry of the Environment, 2006a) 

Direct Introduction Landscape Activities Storage of Potential 
Contaminants 

• Water treatment plant 
waste water discharge 

• Sewage treatment 
plant effluent 

• Sewage treatment 
plant bypasses 

• Industrial effluents 
 

• Road salt application 
• De-icing activities 
• Snow storage 
• Stormwater management systems 
• Cemeteries 
• Landfills 
• Organic soil-conditioning 
• Septage application 
• Hazardous waste disposal 
• Liquid Industrial waste 
• Mine tailings 
• Biosolids application 
• Manure application 
• Fertilizer application 
• Pesticide/herbicide application 

• Historical activities – 
contaminated lands 

• Fuels/hydrocarbons 
• DNAPLs 
• Organic Solvents 
• Pesticides 
• Fertilizers 
• Manure 
 

 

The information presented was used as a starting point to direct the identification of threats 

within the study area.  The results of this inventory for the case study application are discussed 

in Section 4.2.2.   
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3.2.2 Prioritization 

After the threats were identified, they had to be prioritized according to their level of risk for 

the purpose of defining probability distributions from which to sample during the Monte Carlo 

simulations (see Section 3.5.1.3).  Risk estimates require detailed knowledge and 

understanding of potential threats in order to define their probabilities of occurrence and the 

magnitude of their effects.  This is a subjective exercise often conducted by a panel of experts 

based on professional experience, and may involve site visits and discussions with local 

stakeholders.   

 

Due to limitations related to the case study application, a comprehensive prioritization of 

threats could not be completed. However, in the Province of Ontario, the Clean Water Act 

requires source protection committees to identify drinking water threats and perform a semi-

quantitative risk assessment in the near future (Ontario Ministry of the Environment, 2006b).  

For the purposes of this research, best estimates of relative risk levels have been used.  The 

results can be easily updated when a more comprehensive risk assessment has been completed 

for the case study area. 

3.3 Identification of Potential Monitoring Locations 

As described in Section 2.1.3.1, early warning monitoring stations are commonly located near 

bridges for access to electricity (International Life Sciences Institute, 1999).  Multiple locations 

that coincided with bridges and were well spaced throughout the case study area were selected 

as described in Section 4.2.3.  These locations represent a set of discrete solutions for this 

optimization problem. 

3.4 Modelling 

Once the threats and potential station locations were identified, probabilistic modelling was 

undertaken to generate results upon which to base design decisions.  Setting up the model to 

perform these simulations represented a significant component of the methodology.  The 

following sections describe this procedure in more detail. 
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3.4.1 Model Selection 

As reviewed in Section 2.2, water quality models require information about the pathway, 

volume, and velocity of the water to determine how contaminants move and behave (Martin 

and McCutcheon, 1999).  Therefore, both a hydrodynamic model and a water quality model 

were required for this research.   

 

For many modelling applications, rivers are assumed to have adequate lateral and vertical 

mixing so that homogeneous cross sectional concentrations and average cross sectional 

velocities can be used (Martin and McCutcheon, 1999).  Although complete mixing never 

occurs, it is often assumed to be a good engineering approximation (Martin and McCutcheon, 

1999).  The complete mixing assumption has been used in similar modelling studies (e.g. 

Grayman and Males (2002)), and was selected as a reasonable choice for the current research.   

 

Brief descriptions of the one-dimensional models considered for this research are listed in 

Table 3-3.  This is not an exhaustive list and the reader is referred to Grayman et al. (2001) for 

more comprehensive descriptions of these and other models.   

 

All of the models listed in Table 3-3 are well documented and widely accepted for modelling 

one-dimensional rivers (Jobson, 1996; Grayman et al., 2001).  Furthermore, all of the water 

quality models are based on the conservation of mass equation, so their differences are thought 

to be less important than the quality of input data with which they are provided (Jobson, 1996).   

 

Since all the models considered are technically appropriate for the current research, the criteria 

for selecting a hydrodynamic and water quality model included: 

• The water quality model must be able to run from the DOS prompt or have the capacity 

to run repeatedly without user intervention (so that Monte Carlo simulations can be 

performed); 

• The hydrodynamic and water quality models must easily link together; 

• The models must have well documented User Manuals; and 

• The models must be easily obtainable and inexpensive. 
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Table 3-3.  List of One-Dimensional Hydrodynamic and/or Water Quality Models 

Model Type Description 

RIVMODH 
(Dames and Moore, 
1994) 

Hydraulic RIVMODH is a hydraulic model used for 
rivers, estuaries and other one-dimensional 
water bodies with unsteady flow.  It can be 
linked with a water quality model such as 
WASP. 

BRANCH 
(Schaffranek, 1987) 

Flow BRANCH can simulate steady and 
unsteady flows in a single river branch or 
network of branches 

DYNHYD 
(Ambrose et al., 1993) 

Hydrodynamic DYNHYD is a hydrodynamic model that 
can be linked with WASP.  It is used for 
well mixed rivers and estuaries. 

CE-QUAL-RIV1  
(U.S. Army Corps of 
Engineers-WES, 1990) 

Hydrodynamic 
and Water 
Quality 

CE-QUAL-RIV1 has both hydrodynamic 
and water quality modules.  It can be used 
for highly unsteady as well as steady 
conditions.   

WASP  
(Ambrose et al., 1993) 

Water Quality WASP has been extensively used due to its 
effectiveness in modelling a wide variety of 
pollutants.  It can be used in one, two, or 
three dimensions.  WASP is commonly 
linked with CE-QUAL-RIV1H or 
DYNHYD.  However, WASP may be 
prone to numerical dispersion problems 
(Grayman et al., 2001). 

BLTM 
(Jobson and 
Schoellhamer, 1987) 

Water Quality BLTM is a one-dimensional water quality 
model that has been widely applied on 
small streams to large rivers.  It can be 
easily linked with DAFLOW. 

 

 

With the considerations listed above in mind, the model EPD-RIV1 was selected.  EPD-RIV1  

is a one dimensional hydrodynamic and water quality model that is based upon the U.S. Army 

Corps of Engineers Waterways Experiment Station’s CE-QUAL-RIV1 model (Martin and 

Wool, 2002).  In 1993, the Georgia Environmental Protection Division (EPD) identified CE-

QUAL-RIV1 as the most appropriate model to use for a large modelling project for the 

Chattahoochee River.  However, some limitations were noted which resulted in extensive 

updates to improve the model’s performance and ease of use.  The updated model is referred to 

as EPD-RIV1 (Martin and Wool, 2002).   
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EPD-RIV1 can be downloaded free of charge from the internet and can be run from both the 

Windows interface and DOS prompt.  EPD-RIV1 consists of two modules, RIV1H and 

RIV1Q, which simulate hydrodynamics and water quality, respectively.    RIV1H can be used 

for both steady and highly unsteady flow conditions and uses the four-point implicit finite 

difference numerical scheme to estimate flows, velocities and water surface elevations.  As 

discussed in Section 2.2.2, the four-point implicit finite difference scheme is one of the most 

accurate methods for solving the Saint-Venant equations (Martin and McCutcheon, 1999; 

Martin and Wool, 2002).  RIV1H writes a hydrodynamic linkage file upon completion to 

provide transport information to RIV1Q.  The water quality model can simulate a number of 

constituents including organic nitrogen, ammonia nitrogen, nitrate nitrogen, organic 

phosphorus, orthophosphate, biochemical oxygen demand, dissolved oxygen, algae, iron, 

manganese, coliforms, temperature, as well as two arbitrary constituents (Martin and Wool, 

2002).   

3.4.1.1 Model Limitations 

Although EPD-RIV1 was identified as the preferred model for this research, there are some 

limitations that should be noted.   

 

By definition, concentrations in a one-dimensional model are vertically and laterally averaged. 

This means that the model will provide no results on which to base decisions regarding the 

lateral and vertical positioning of a monitoring station.  As a result, unless there is compelling 

evidence to do otherwise (e.g. a vast majority of threats are along the same bank as the intake), 

the station should be located near the center of the river.   

 

Another limitation of a one-dimensional model is that discharges located a short distance 

upstream of potential monitoring locations may be detected by the model more than they 

would be in reality.  For example, the model will detect any discharge located upstream (of 

sufficient quantity to reach the monitoring station) since it assumes complete and instantaneous 

mixing.  However, prior to theoretically achieving complete mixing the contaminant must 

travel at least one mixing length.  This means that some discharges may pass the monitoring 

station without being detected.   
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Another limitation of the model is the fact it can only simulate soluble constituents that can be 

approximated with first-order decay.  Although oil spills were identified as one of the most 

common spill sources, all of the models considered for this study are unable to simulate oil 

spills.  These models are not designed to handle some of the transport and fate processes of 

sparingly soluble, buoyant substances, such as the spreading of the surface slick and the 

interaction of the slick with shorelines (Hibbs and Gulliver, 1999; Grayman et al., 2001).   

Although oil spills are not modelled as part of this research, decision makers may still select a 

monitoring technology that can detect hydrocarbons or volatile organic carbons.  This 

methodology could also be adopted for use with a model that can simulate riverine oil spills.  

Yapa and Shen (1994) provide an excellent review of some models available for this purpose. 

3.4.2 Model Setup and Preprocessing 

Prior to conducting simulations, a significant amount of data collection and processing was 

required to setup the model.   These efforts are described in more detail below. 

3.4.2.1 Model Extent and Spatial Grid 

The first step in setting up the model was to establish its spatial extent.  The upstream model 

boundary was located at a flow gauging station since flow or stage measurements were 

required.  A gauging station was selected that was sufficiently far upstream so that most major 

threats could be included in the model.  The downstream extent of the model was selected as 

the closest gauging station below the drinking water treatment plant intake.  Tributaries and 

abstractions that impact the river flow within the study area were identified so that necessary 

input data could be collected.   

 

Once the model extent was established it was discretized into nodes, or cross sections.  The 

placement of nodes was limited to those areas along the river that had surveyed cross sectional 

geometry available.  

 

The surveyed cross sectional geometries required some processing before being entered into 

the model.  The model requires geometries to be entered as (x, y) pairs, where x represents 

lateral position in the cross section and y represents depth, both in units of feet.  The origin 
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must be at the top of the left stream bank, where the left bank is defined for an observer 

looking downstream.  Conversion of the cross sectional survey data from elevations to depths 

was required.  This was accomplished by subtracting the bed elevation from the elevation of 

the origin (left bank), as illustrated in Figure 3-1.   

 

Figure 3-1.  Cross Sectional Geometry Depth Calculation 

3.4.2.2 Hydrodynamic Input File 

The hydrodynamic input file required the following information for each node: 

• Node name; 

• Distance to downstream node; 

• Slope between node and downstream node; 

• Manning’s roughness coefficient; 

• Initial water surface elevation; 

• Initial flow; and 

• Invert elevation (elevation of lowest point of the cross section). 

 

Distances, slopes, and invert elevations were easily calculable from the cross sectional data 

that were collected.  Manning’s values used in previous modelling studies by the local 

conservation authority were applied and initial water surface elevations and flows were 

approximated for various starting conditions.  Since rivers tend to “wash-out” the initial 

conditions quickly, their exact specification is usually not necessary (Martin and McCutcheon, 
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1999).  However, reasonable values were estimated and adjusted by trial and error, where 

necessary, to ensure that stability problems were not encountered on startup of the model.   

 

The hydrodynamic input file also required the specification of some hydraulic parameters. A 

tolerance parameter was required to determine when the model converges.  This parameter was 

set to 0.05, which was large enough to decrease computation time but small enough that the 

model’s performance was not impacted (Martin and Wool, 2002).  A theta value of 0.6 was 

adopted to improve the model’s accuracy while avoiding instabilities, as recommended by 

Martin and McCutcheon (1999) (see Section 2.2.2 for a description of theta).   

 

Prior to running RIV1H, the computational time step also required specification.  The selection 

of the time step was limited by the Courant Number, γ , which represents the ratio between the 

distance moved during one time step (∆t) and the segment length (∆x).  It can be calculated 

using equation 2-3 as shown in Section 2.2.2.  To ensure stability, the Courant number must be 

less than one so the water cannot move more than one segment length at a given velocity (U) 

within one time step.  A computational time step of 60 seconds was used to satisfy the Courant 

condition 

3.4.2.3 Water Quality Input File 

RIV1Q uses the same model discretization as RIV1H which simplified the initial setup 

process.  Initial concentrations for all water quality constituents being simulated were required.  

Dispersion coefficients for each cross section also required specification, as did water quality 

parameters, such as decay rates of the various constituents.  Since these parameters were 

adjusted as part of the Monte Carlo simulations, their specification is further described in 

Section 3.5.1.1.   

 

The water quality model output time step needed to be relatively frequent to ensure peak 

concentrations were recorded.  A set of initial simulations using time steps of three and six 

minutes were conducted. For each simulation, the peak concentration recorded with the larger 

time step was less than one percent different than that recorded with the smaller time step.  
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Therefore, an output time step of six minutes was selected to minimize the size of output files 

while maintaining enough information to produce accurate concentration profiles. 

3.4.2.4 Boundary Conditions  

At the upstream boundary, a time series of hydrodynamic data (flow or stage) was required.  

Hourly flow data from a gauging station were available for this purpose.  The downstream 

boundary condition was defined by a rating curve of stage versus discharge.  

3.4.2.5 Inflows and Withdrawals 

Input files to define inflows and withdrawals to the river were also required.  Separate lateral 

inflow files were used for RIV1H and RIV1Q as the flow data were at a different frequency 

than the quality data.  However, within each input file values had to be entered at the same 

frequency.  As a result, the flows from the wastewater treatment plant had to be converted to 

an hourly frequency, using linear interpolation, to coincide with the hourly flow data available 

for the tributaries. 

 

Withdrawal rates for the water treatment plant and a permitted abstraction were available at a 

daily time step and were entered into a withdrawal file. 

3.4.3 Hydrodynamic Calibration 

Once the hydrodynamic model was set up, it was calibrated to ensure that it modelled the 

system accurately.  The only parameter usually calibrated in RIV1H is Manning’s roughness 

value.  Default Manning’s values used in previous modelling studies were entered as a starting 

point for each cross section.  However, calibration data (stage measurements) were only 

available at the downstream boundary and one other gauging station within the modelled reach.  

As a result, the river was divided into two segments and the Manning’s values within each 

segment were calibrated together (i.e. all were adjusted by the same factor). The Nash Sutcliffe 

coefficient was used as the metric with which to compare the observed and modelled 

elevations and was calculated using equation 3-1. A coefficient value of one indicates a perfect 

match. 
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where E = Nash Sutcliffe coefficient, 

 Qo = observed value (stage in this case), 

 Qm = modelled value (stage in this case), and 

 oQ = average of all observed values. 

 

Adjustments were made manually until the modelled elevations matched the measured 

elevations within a desired level of accuracy. The results of the hydrodynamic calibration for 

the case study are presented in Section 4.3.   

3.4.4 Water Quality Calibration 

RIV1Q was not calibrated for reasons discussed in Section 3.5.1.1.   

3.5 Monte Carlo Simulations 

As discussed in Section 2.4.3, Monte Carlo simulations are commonly used to quantify 

uncertainty in water quality modelling studies.  The procedure used to conduct the Monte 

Carlo Simulations as part of this research is described in Section 3.5.1 to Section 3.5.3. 

3.5.1 Sources of Uncertainty 

The design of an early warning source water monitoring station involves many sources of 

uncertainty.  These sources include the model parameters, timing of the spill, and nature of the 

spill, as illustrated in Figure 3-2 and described in the following sections. 

 

 

Figure 3-2.  Sources of Uncertainty 
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3.5.1.1 Model Parameter Uncertainty 

As discussed in Section 2.4.2, consideration of the uncertainty associated with model 

parameters is essential in order to establish the reliability of model predictions.  Before an 

uncertainty analysis could be undertaken, probability distributions of the model parameters and 

uncertain inputs were required.  Typical ranges suggested by the literature were used to define 

uniform probability distributions for each parameter (Perera and Ng, 2001; Martin and Wool, 

2002; McIntyre et al., 2003a; Cox and Whitehead, 2005; Lindenschmidt, 2006; Osidele et al., 

2006), as shown in Appendix A. This meant that all parameter values had an equal likelihood 

of being sampled so the model could be tested over a wide range of parameter values (Cox and 

Whitehead, 2005). 

 

The probability distributions used for dispersion coefficients were determined differently than 

those used for the other parameters because they are dependent on the hydraulics of the river, 

not the constituents being modelled.   When tracer data are not available to calibrate dispersion 

coefficients, empirical equations based on top widths, velocities, and hydraulic depths can be 

used (Jobson, 1997).  For this methodology six empirical equations were selected to provide a 

range of possible dispersion values at each cross section.  Equations 2-11 to 2-16, contained in 

Table 2-1, were used for this purpose and are described in detail by Wallis and Manson (2004).   

 

The six resulting dispersion coefficients for each cross section were utilized to establish a 

triangular probability distribution.  A triangular distribution is defined by a parameter’s 

minimum value (a), maximum value (b), and most frequently occurring value (c).  In this case 

a represents the minimum calculated dispersion coefficient, b represents the maximum 

calculated dispersion coefficient and c was set as the average of the six calculated dispersion 

coefficients. 

 

The cumulative triangular distribution function can be defined using the following equation: 
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A random sample (x_test) from the cumulative triangular distribution function was determined 

using the following equation: 

( )( )              for  
_
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a u b a c a u

b ax test
c a

b u b a b c u
b a
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 −

  3-3 

where u represents a uniform random number between 0 and 1. 

 

Since dispersion at all cross sections is related (i.e. at a given time, dispersion would not be at 

its maximum value at one cross section and its minimum value immediately downstream), the 

same uniform random number was used to sample from each triangular distribution. This 

allowed dispersion to vary from one cross section to the next based on differing hydraulic 

properties, but the percentile of the sampled coefficient values was the same for each cross 

section.  

 

The parameter distributions identified from the literature and those calculated for the 

dispersion coefficients were overly conservative and had the potential to result in unnecessarily 

high levels of model prediction uncertainty.  For this reason, conditioning experiments are 

traditionally conducted to refine parameter ranges using a method such as Generalized 

Likelihood Uncertainty Estimation (GLUE), as discussed in Section 2.4.3.  Methods such as 

GLUE require a set of good calibration data with which to assess the performance of each 

parameter set.   

 

At this point it is important to recognize a major difference between typical modelling studies 

and the modelling conducted as part of this research.   Typically, models are used predictively; 

for example, a model may be used to predict the time of arrival of a contaminant during a real-

time spill scenario.  Suitable model parameter ranges will have been pre-defined as part of a 

conditioning experiment so that model parameter uncertainty can be propagated through the 

model to describe prediction uncertainty.  Other sources of uncertainty may be included in the 

assessment of this arbitrary example, such as the amount spilled (e.g. about 100 to 150 kg), the 

duration of the spill (e.g. 1 to 1.5 hours), the flow at the time of the spill (e.g. measured as 100 

cms ±2%), and the location of the spill relative to the intake (e.g. 1 to 1.25 km upstream).  In 
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situations such as this, the uncertainty associated with water quality parameters often leads to 

significant model prediction uncertainty.  This arbitrary example is labeled as “Predictive 

Modelling of a Specific Situation” in Figure 3-3.   

 

In the case of the current research, a specific situation is not being modelled, but rather a series 

of probabilistic situations.  In addition to model parameter uncertainty, great amounts of 

uncertainty exist due to the timing and nature of the spill.  Depending on the time of the spill, 

the river flow could range from a trickle to a flood condition.  Similarly, the duration, mass, 

and location of the spill also have large ranges.  Figure 3-3 compares the relative magnitudes 

of the different uncertainties in each of these arbitrary scenarios.   

 

Figure 3-3.  Comparison of Different Sources of Uncertainty 

Note: Ranges are arbitrary and are shown as linear for simplicity.  Not all sources of uncertainty are uniformly 
sampled from within their ranges. The distribution of each source of uncertainty is described below. 

 

It was hypothesized that model parameter uncertainty may not be significant compared with 

the uncertain nature of the spills being modelled as part of this research.  Therefore, prior to 

investing in computationally expensive and data intensive procedures to estimate parameter 

uncertainty, its significance on the decision making process was tested.  A set of scenarios 

were executed with all sources of uncertainty and another set with only the flow as uncertain 

(with the parameters set to the midpoint of their ranges).   For this preliminary analysis, the 

mass and duration were held constant.  If the relevant results produced using the conservative 
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parameter ranges are similar to the results produced when only flow is uncertain, no calibration 

is required.  However, if the uncertainty associated with the parameters is shown to impact the 

results, then calibration using a method such as GLUE is required.  The results of this 

experiment are described further in Section 5.1.1.   

 

Note that the method described above was only used for the water quality model parameters.  

The only parameters in the hydrodynamic model are the Manning’s coefficients.  Manning’s 

equation can be represented as  

2/3 1/ 21
V R S

n
=        3-4 

 

where  V represents the cross sectional average velocity (m/s); 

 N represents Manning’s coefficient; 

 R represents the hydraulic radius (m); and 

 S represents the energy gradient. 

 

Therefore, changing Manning’s coefficient also changes the average velocity.  However, as 

described further in Section 3.5.1.2, the flow distribution used for the Monte Carlo simulations 

ranged multiple orders of magnitude.  Depending on the type of channel, Manning’s 

coefficients typically do not range by more than a factor of 1.5 (Martin and McCutcheon, 

1999).  Therefore, the impact of the Manning’s coefficient on the resulting water velocities is 

minimal compared with the impact of the uncertain flow at the time of a spill. 

3.5.1.2 Time of Spill 

The uncertain nature of spills means that they can occur at any time into any river flow.    

Uncertain flows include the upstream boundary flow, tributary inflows, wastewater treatment 

plant effluent flows, and any withdrawal flows.  In previous work, Grayman et al. (2001) 

assumed the flow at the time of a spill is constant and that no tributaries exist.  However, for 

many case study applications major tributaries may be encountered that can significantly 

impact the river’s flow.  Therefore, an alternate method was developed so that flows could 

vary throughout a spill simulation and tributary impacts could be included.   
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Generating a time series of synthetic flows and preserving the correlations between each of the 

flow inputs is a complex task.  Therefore, instead of defining a distribution to synthetically 

generate a time series of flows, uniform random sampling was conducted to select a historical 

point in time.  The time series of flows recorded at that time for all flow inputs were then used 

in the model.  Using this method meant that realistic flow relationships (between the main 

channel and its tributaries) were automatically preserved.   

 

Since this method limits the flows to past conditions, it was important to use a long record of 

data.  Fifteen years of hourly flow data for the upstream boundary condition and all tributary 

inflows were collected for this purpose.  Since water and wastewater treatment plant flows are 

not correlated with river flows, they were not sampled in the same way.  Treatment plant flows 

recorded many years ago are no longer representative as a result of a growing population, so 

average flow values for recent years were used in the model.  

3.5.1.3 Nature of the Spill 

For the purpose of this research, the nature of a spill was defined to include: 

• The substance spilled; 

• Location of the spill; 

• Quantity spilled; and  

• Duration of the spill.   

 

A spill scenario is defined as a combination of a location and contaminant.  Based on the 

threats inventory that was completed, a number of likely spill scenarios were identified.  Since 

a comprehensive threats inventory could not be completed, arbitrary contaminants were used 

for all scenarios except for one which involved a wastewater spill.  The decay rate for the 

arbitrary spills was set to a range of 0 to 1 d-1 to simulate a range of potential contaminants.   

 

Instead of pre-defining a spill scenario distribution, a set of Monte Carlo simulations were run 

for each identified spill scenario and weighting factors, representing best estimates of each 

scenario’s relative level of risk, were applied after the simulations were complete.  Although 
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the weighting factors applied for this research may not be ideal, they can easily be updated 

once the complete threats inventory and risk assessments are completed as required by the 

Clean Water Act (Ontario Ministry of the Environment, 2006a).  The sensitivity of the chosen 

weightings was explored and is discussed with the results in Section 5.4.2.   

3.5.1.4 Uncertainties Not Considered 

The probability that a spill event is reported by the spill generator or a member of the public 

was not considered.  It was assumed that only the monitoring station can alert a downstream 

water treatment plant of a contamination event.  This was a conservative, simplifying 

assumption because in many cases spills may be reported before the contamination even 

reaches the monitoring station.   

 

It was also assumed that the monitor performs perfectly.  The probability that the monitor fails 

due to power interruptions, technical problems, or incomplete river mixing was not considered.   

3.5.2  Number of Simulations Required for Each Spill Scenario 

A sufficient number of Monte Carlo simulations should be conducted such that the average and 

standard deviation of the accumulated model outputs stabilize.  2000 simulations were 

executed and the cumulative average and standard deviation of the following outputs were 

calculated for each potential monitoring station: 

• Duration the contaminant was detected; 

• Travel time to the intake; and  

• Peak concentration.   

The results of this analysis are described in Section 5.1.2. 

3.5.3 Monte Carlo Procedure 

Once the above steps were completed, the required number of Monte Carlo simulations (n) 

were performed for each of the spill scenarios identified.  Code was written in MatLab in order 

to sample all uncertain parameters and update the relevant model input files.  The procedure 

used to perform these simulations is described below and shown graphically in Figure 3-4. 
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Figure 3-4.  Monte Carlo Flow Chart 
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To reduce the computation time and simplify the procedure, it was decided not to run RIV1H 

for every simulation.  This decision meant that a hydrodynamic linkage file was required for all 

15 years of flow data prior to conducting the Monte Carlo simulations.  A single hydrodynamic 

linkage file for 15 years of flow would require approximately 10.8 GB and would need to be 

opened and searched for each simulation.  Instead, 60 linkage files were created at three month 

intervals, which reduced the file size to approximately 180 MB each and increased the speed at 

which RIV1Q could execute.   

 

Inherent in the decision not to run RIV1H for each simulation was the assumption that the 

spills would not have a significant flow contribution.  Of the spills reported in Ontario in 2006, 

less than 3% were of volumes greater than 10,000 L (Ontario Spills Action Centre, 2006b).  A 

spill of 10,000 L released over one minute results in a flow rate of only 0.17 m3/s.  The lowest 

hourly flow recorded for the case study river in 2006 was 7.1 m3/s.  Therefore, it was 

reasonable to assume that the spills do not contribute significantly to the river’s flow.  

 

The simulated spills required some volume of flow in which to enter the river, so a negligible 

amount of flow was modelled at each spill location.  As a result of the low flows conveying 

each spill, some of the spill concentrations were overly high.  However, the model assumes 

complete and instantaneous mixing, so the resultant mass loading is all that is important. 

 

Once all 60 linkage files were created, a series of Monte Carlo simulations were conducted for 

each of the spill scenarios.  The first step of each simulation was to sample a uniform random 

date and time from the 15 years of hourly flow data.  Code was written to establish which 

hydrodynamic linkage file (HYD) corresponded to the sampled date.  The start and end time of 

the simulation were then written to the input file.  The start time was set as 24 hours prior to 

the spill time and the end time was set as 72 hours after the spill time, which was a sufficient 

amount of time for all spills to arrive at the intake. 

 

In addition to the time of the spill, the mass and duration of the spill scenario were also 

uncertain.  These inputs were both randomly sampled from uniform distributions.  The mass 

and the duration were then written to the water quality lateral inflow file (WQ_LAT).   
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The model parameters were sampled next.  As discussed, six empirical equations were used to 

calculate dispersion and define its distribution.  In order to perform these calculations, 

hydraulic data were read from the appropriate hydrodynamic linkage file (HYD).  Once the 

calculations were complete, a value for each dispersion coefficient was sampled from the 

corresponding triangular distribution as described in Section 3.5.1.1.  The remaining water 

quality parameters were then randomly sampled from their uniform distributions.  All 

dispersion coefficients and parameters were then written to the water quality input file (QINP). 

 

After sampling of the spill conditions and parameters was complete, RIV1Q was executed.  

Each simulation took approximately 15 seconds to complete.  The outputs for each monitoring 

station were written to a text file after each simulation and accumulated for subsequent 

analyses.  This procedure was repeated n times for each of the identified spill scenarios.  All 

spill events were assumed to be independent and only one event occurred for each simulation. 

3.6 Post Processing and Analysis of Results 

In order to assess the performance of potential monitoring stations, the values of the design 

objectives required calculation, as is described in Section 3.6.1.  Once the objective values 

were calculated, they were used to create plots of objective space to determine if any solutions 

were dominated and provide a visual representation of the tradeoffs between different 

solutions.  Empirical cumulative distribution functions (CDFs) and concentration profiles were 

also created to provide more information to the decision makers, as described in Sections 3.6.3 

to 3.6.4.  Section 3.6.5 discusses the analysis of spills that had background concentrations in 

the river, such as wastewater constituents.    

3.6.1 Calculation of Objective Function Values 

As identified previously, the design objectives for this thesis included  

• Maximizing the probability of detecting a contamination event; and 

• Maximizing the probability that a minimum amount of warning time is achieved, given 

that a detection has occurred. 
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In order to analyze the results, the values of both design objectives had to be calculated for 

each potential station location, at each sample interval considered.  Specification of a method 

detection limit (MDL) was required prior to calculating the objective values.  An MDL of 0.01 

mg/L was selected because many common analyzers have an MDL of 0.01 mg/L or lower 

(Grayman et al., 2001).  The impact of the chosen MDL on the final results is described further 

in Section 5.4.3.  Prior to calculating objective values, the sample interval also required 

specification.  For this thesis, sample intervals of 0.1, 1, 2, 6, and 12 hours were considered.   

3.6.1.1 Probability of Detection 

To calculate the probability of detection, the time that a detection occurs was conservatively 

calculated to be the sum of the time that the concentration first exceeds the MDL at a given 

location and the sample interval.  This calculation results in worst case scenario performance 

for all simulations because it assumes that a detection occurs at the last possible instant.  

Although the performance of a monitoring station will be better in reality, this assumption 

ensured that no station could randomly perform better than it should relative to another.  The 

calculation of detection time is illustrated in Figure 3-5. 

 
 

 

Figure 3-5.  Use of MDL and Sample Interval to Calculate Time of Detection 
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A successful detection occurs at a monitoring station if concentrations above the MDL exist at 

the station for a duration greater than the sample interval.  For example, in Figure 3-6 the 

monitoring station fails to detect the spill event because the sample frequency is greater than 

the duration the contaminant is present above the MDL.  Once again, this is due to the 

conservative way in which the time of detection is calculated; in reality, short events such as 

this will be detected with some probability. 

 

 

Figure 3-6.  Example of a Failure to Detect in Time 
 

MatLab code was written to cycle through all the output files for each monitoring station to 

determine the number of detections.  The probability of detection was then calculated as the 

number of simulations that had a successful detection divided by the total number of 

simulations.   

 

Therefore, the calculation of the probability of detection for a given spill scenario is a function 

of the specified MDL and sample interval, as well as the simulation results for the arrival time 

at the MDL and the duration a contaminant is above the MDL at a given station. 
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The probabilities of detection for each set of spill scenarios were combined to determine a 

single value for each potential monitoring station (at a given sample interval) using the 

following equation: 

det
1

n

i i
i

P w P
=

=∑       3-5 

where Pdet represents the probability of detection at a given monitoring station; 

 Pi represents the probability of detection at a given monitoring station for the i th spill 

scenario;  

wi represents a weighting factor describing the relative risk level associated with the ith 

spill scenario; and 

 n represents the number of identified spill scenarios. 

 

For small sample intervals (i.e., when the sample interval is shorter than the duration a 

contaminant is above the MDL at a given location), the probability of detection at a monitoring 

location can be simplified to: 
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3.6.1.2 Probability of Minimum Warning Time Given a Detection 

In order to determine the probability that a minimum amount of warning time is achieved, the 

minimum amount of warning time required for the case study had to be specified.  The Ontario 

Ministry of the Environment suggests a minimum travel time of two hours for defining intake 

protection zones (Ontario Ministry of the Environment, 2006a).  This travel time represents the 

minimum amount of time required for water treatment plant operators to respond to an adverse 

event.  Therefore, a minimum amount of warning time of two hours was also adopted for this 

research.       

 

Post processing code was written to calculate the amount of warning time as the time of the 

detection subtracted from the time of arrival at the intake, as illustrated in Figure 3-7.  For the 

purpose of this research, the time of arrival at the intake was calculated as the time the 

concentration reaches the MDL.   This method of calculation assumes that concentrations 
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below the MDL are not of interest; if they are, a technology with a lower MDL should be 

selected.  In reality the concentration of interest at the intake may be even higher than the 

MDL, but this conservative approach was adopted for this research. 

 

 

Figure 3-7.  Warning Time Calculation 
 

The probability that there are at least two hours of warning given that a detection occurred was 

then calculated as the number of simulations with a warning time greater than two hours 

divided by the number of simulations that had a successful detection.   

 

Therefore, the probability of having at least two hours of warning at a given monitoring 

location  for a specific spill scenario is a function of the specified MDL and sample frequency, 

as well as the arrival time at a given monitoring station, the duration a contaminant is present 

above the MDL, and the arrival time above the MDL at the intake. 

 

The probabilities of having at least two hours of warning time given a detection occurs for each 

set of spill scenarios were combined to determine a single value for each potential monitoring 

station (at a given sample interval) using the following equation: 

  2 2
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where P2  represents the probability of having two hours of warning time (given a detection 

occurs) at a given monitoring station; 

 P2i represents the probability of having two hours of warning time (given a detection 

occurs) at a given monitoring station for the i th spill scenario;  

wi represents a weighting factor describing the relative risk level associated with the ith 

spill scenario; and 

 n represents the number of identified spill scenarios. 

3.6.2 Pareto Optimal Curves 

As discussed in Section 2.5, Pareto optimal curves can be used to analyze multi-objective 

problems.  Therefore, the calculated objective function values were plotted in objective space 

for each potential station, with each axis of the graph representing one of the objectives.  The 

non-dominated points form the Pareto optimal curve and represent the best set of feasible 

monitoring station locations.  Deciding between the tradeoffs of the two objectives is further 

discussed in Chapter 5. 

3.6.3 Empirical Cumulative Probability Distributions  

Code was also written to calculate empirical cumulative probability distributions for the arrival 

time of a contaminant above the MDL and the duration a contaminant is above the MDL at a 

given monitoring station.   The CDFs provided further information about the distribution of 

results used to calculate the objective values.   

 

To create a CDF, the relevant outputs (i.e., duration or arrival time), were sorted in ascending 

order.  The probability of each value was then calculated using the Weibull plotting position 

formula: 

1

Rank
Probability

n
=

+
     3-8 

 

where n represents the total number of simulations (McCuen, 1998). 
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3.6.4 Concentration Profiles 

Although the monitoring station design is based on the performance of each potential station 

with respect to both design objectives, the creation of concentration profiles was of interest to 

provide more information to the decision makers.  Code was written to calculate average, 95th 

percentile, and 5th percentile concentration profiles for a given monitoring station.  The code 

cycles through the results of each simulation and sorts the concentration values at each time 

step.  The average, 95th and 5th percentiles are then calculated for each time step.  An example 

plot created for one of the monitoring stations is shown in Figure 3-8. 
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Figure 3-8.  Example of 95th Percentile, 5th Percentile, and Average Concentration Profiles 
 

3.6.5 Contaminants with Background Concentrations 

Defining when a detection occurs was more complex for constituents that already existed in the 

water, such as nitrogen and phosphourus.    Before a spill occurs, these constituents are already 

at concentrations above the MDL, so an alternate flag was required in order to generate a 
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detection.  Two options were considered, both of which require a comprehensive set of 

historical data. 

 

The first option was to examine a long record of historical data and determine the maximum 

recorded concentration or some percentile value.  This value could then be used as the 

threshold above which a detection occurs.   

 

The second option was to initiate detection if the rate of change of the concentration is greater 

than some threshold value.  This requires analysis of historical data recorded at a frequent 

interval to determine typical rates of change.  The threshold rate of change can then be set to 

some value near the recorded maximum.  This method should also have a maximum 

concentration specified to ensure that slow rate of change cannot mask dangerously high 

concentrations. 

 

Although both methods require a long record of water quality data, the rate of change method 

requires more frequent data so that maximum rates can be accurately calculated.  Since water 

quality data in the study area were very limited, the rate of change method was not feasible.  

Therefore, the maximum concentration recorded in the previous five years was used as the 

threshold above which a detection is initiated.  Since water quality data were collected so 

infrequently, it was assumed that none of the measurements occurred during a previous spill 

event. 

 



57 

4 Case Study Application 

4.1 Background  

The 6,800 km2 Grand River Watershed is home to southern Ontario’s largest inland river 

system and is illustrated in Figure 4-1.  The Grand River begins in the Village of Dundalk and 

empties 300 km downstream into Lake Erie at Port Maitland (Grand River Conservation 

Authority, 2006a).   
 

 

Figure 4-1.  The Grand River Watershed  
(Grand River Conservation Authority, 2006a) 
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Approximately 29% of Grand River Watershed residents obtain their drinking water from the 

Grand River, many of whom are serviced by the Mannheim Water Treatment Plant (WTP) 

located in Kitchener, Ontario.  The Mannheim WTP is operated by the Regional Municipality 

of Waterloo and receives Grand River water via the Hidden Valley Intake.  Up to 72 ML of 

water are withdrawn daily and stored in the Hidden Valley Reservoir prior to being pumped 10 

km to the Mannheim WTP (Walton, 2006).   The reservoir represents an additional level of 

source protection as it has multiple cells that can be isolated and diverted in the event of 

contamination (Stantec Consulting Ltd., 2006).  The location of the Hidden Valley Intake 

within the Grand River Watershed is shown in Figure 4-2. 

 

The Ministry of the Environment’s Spills Action Centre (SAC) notifies operations staff at the 

Mannheim WTP when a spill occurs upstream of the Hidden Valley Intake.  Although 

mandatory spill reporting exists in Ontario, some incidents go unreported if spill generators are 

unaware they have caused a spill or try to circumvent the law.  Unreported spills may be 

detected by analyzers at the intake, which continuously monitor for dissolved oxygen, 

temperature, conductivity, ammonia, turbidity, and pH.  However, most conventional online 

monitors are unable to detect many types of spill events (Grayman et al., 2001).  Although the 

plant is capable of treating many spills through the use of ozonation, chlorine disinfection, and 

granulated activated carbon, the conservative response of shutting down the intake is typically 

chosen in the interest of public perception (Walton, 2006).   

 

Real-time water quality monitoring stations exist at some locations throughout the Grand River 

Watershed.  However, within the study area there is only one real-time station located 

approximately 17 km upstream of the Hidden Valley Intake.  This station samples for 

temperature, pH, conductivity, and dissolved oxygen.  Additional sampling sites that are part 

of the Provincial Water Quality Monitoring Network are also within the study area, but these 

sites are only sampled eight or nine times per year. 
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Figure 4-2.  Location of the Hidden Valley Intake Within the Grand River Watershed 
(Produced using data under license with the Grand River Conservation Authority, 2007) 
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Hazards associated with land use, spills, and wastewater treatment plant (WWTP) bypasses 

have been identified as significant threats to the Hidden Valley Intake because they cause 

sudden deterioration of water quality and can impair the drinking water treatment process 

(Cooke, 2006).  The implementation of an early warning source water monitoring station could 

detect spill events that routine monitors fail to identify.  In addition, positioning an early 

warning monitoring station upstream of the intake would provide more response time in which 

to close the intake and prevent contaminated water from entering the reservoir, eliminating the 

need to isolate and divert it after the fact.  For these reasons, the need for an early warning 

monitoring station was identified to complement the Regional Municipality of Waterloo’s 

source water protection planning.   

4.2 Study Site 

The probabilistic modelling procedure described in Chapter 3 was applied to design an early 

warning monitoring station for the Hidden Valley Intake.  The spatial extent of the model, 

threats identified within the study area, and potential monitoring locations considered are 

illustrated in Figure 4-3. 

4.2.1 Spatial Extent  

As discussed in Section 3.4.2.1, the upstream and downstream boundary conditions were set at 

flow gauging stations. The West Montrose gauging station was selected as an appropriate 

boundary as it is located 38 km upstream of the intake, allowing coverage of a number of 

threats.  It was assumed that there is minimal benefit in extending the model upstream of West 

Montrose so it was not worth the added computational cost. 

 

A weir located immediately downstream of the intake served as an ideal downstream boundary 

condition.  A rating curve was used to define the relationship between water surface elevation 

and flow at the downstream boundary and is illustrated in Figure 4-4 (Grand River 

Conservation Authority, 2006b).   
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Figure 4-3.  Study Site 
(Produced using data under license with the Grand River Conservation Authority, 2007) 
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Figure 4-4.  Hidden Valley Weir Rating Curve 
 

Three major tributaries exist within the model bounds including Canagagigue Creek, 

Conestogo River, and Laurel Creek.  Smaller tributaries, such as Cox Creek and Hopewell 

Creek, were not included in the model since they do not represent significant flow 

contributions.   

 

Fifteen years of hourly flow data recorded at the West Montrose gauging station and stations 

on each of the three modelled tributaries were obtained from the Grand River Conservation 

Authority (Grand River Conservation Authority, 2006c).  These data were subject to the 

following qualifications: 

• The flow data are not corrected for backwater due to ice, debris or for the effects of 

aquatic vegetation, which may cause the flow estimates to be larger than the actual 

river flows. 

• Sediment accumulation can cause the intakes to become partially plugged.  Best efforts 

were made to identify plugged intakes and remove this data from the record. 
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• Best efforts were made to identify periods when float tapes malfunctioned and remove 

this data from the record. 

• The data provided by the GRCA is provisional and is subject to change.  

 

The Waterloo Wastewater Treatment Plant (WWTP) also discharges its effluent within the 

study area.  Two years of daily flow data for the Waterloo WWTP, as well as withdrawals 

from the Mannheim WTP, were provided by staff at the Regional Municipality of Waterloo 

(2006). 

 

Water quality data were required for the upstream boundary and for all tributary inflows.  

These data were available from the Ministry of the Environment as part of their Provincial 

Water Quality Monitoring Network.  As mentioned, the water quality data were very sparse as 

only eight or nine data samples were taken per year (Ontario Ministry of the Environment, 

2006d). As a result, seasonal average values were determined for each water quality input.  

Water quality data for the Waterloo WWTP were difficult to obtain, but typical values were 

provided for both treated effluent and raw wastewater quality (Andrews, 2007).   

 

The study site was discretized into 51 cross sections with surveyed geometry provided by the 

GRCA (2006d).  The cross sectional geometries were surveyed in 1975 and were resurveyed at 

a few locations near the intake in 2006 by Stantec Consulting.   A comparison of the cross 

sections that were surveyed in both years was conducted to determine if the 1975 data are 

representative of current conditions.  Two examples of this comparison are shown in Figures 

4-5 and 4-6 at locations 2.3 km and 3.0 km upstream of the Hidden Valley Intake, respectively.  

The geometry appears to have changed only minimally at the stations compared and no major 

floods have occurred in the study area since 1975, so the available survey data were assumed 

to be a reasonable representation of the current river condition.   
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Figure 4-5.  1975 and 2006 Surveyed Cross Sections (2.3 km upstream of intake) 
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Figure 4-6.  1975 and 2006 Surveyed Cross Sections (3.0 km upstream of intake) 
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4.2.2 Threats Upstream of the Hidden Valley Intake 

To begin the threats identification process, three years of historical spill data were obtained 

from Ontario’s Spills Action Centre (SAC).  Within this time period only 14 spills were 

reported in the study area.  Their sources are identified in Figure 4-7.   
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Figure 4-7.  Spills Reported in Study Area, 2003-2005 
(Ontario Spills Action Centre, 2006a) 

 

Examination of the limited historical data and the province-wide data provided in Section 3.2.1 

led to the identification of some threats within the study area.  As previously discussed, a 

complete threats inventory could not be completed due to data access limitations associated 

with the case study. 

 

Oil and fuel spills were identified as a definite threat within the study area and have been 

spilled in the past.  For example, an estimated 4000 to 10000 L of gasoline were spilled 

adjacent to the Grand River in Cambridge in July of 2004 (Ontario Spills Action Centre, 



66 

2006a).  However, for reasons described in Section 3.4.1.1, oil spills were not included as part 

of this research. 

 

Cooke (2006) identified wastewater bypasses as a significant threat to drinking water treatment 

plants along the Grand River.  The Waterloo WWTP is less than 17 km upstream of the Hidden 

Valley Intake and has the potential to release partially treated wastewater in the event of a 

bypass or raw sewage in the unlikely event of a plant failure.   

 

Approximately 80% of the Grand River watershed is agricultural, some of which is located 

within the study extent.  Although urban areas account for only 5% of the watershed area, 

much of the urban land is concentrated in the Cities of Kitchener and Waterloo which are 

located just upstream of the Hidden Valley Intake (Cooke, 2006).  Therefore, threats associated 

with both urban and agricultural land uses exist within the study area.   

 

Transportation-related spills were the most common spill source in Ontario in 2006 according 

to the SAC (Ontario Spills Action Centre, 2006b).  Seven bridges cross the Grand River within 

the study area.  Highway 8 has the highest traffic volume of all the bridges and is located less 

than 1 km upstream of the intake, representing a significant threat.  The next highest volume 

bridges are King Street and Victoria Street, which are located 1.5 km and 11.1 km upstream of 

the intake, respectively.  Rail bridges also exist at both King and Victoria Streets.  Four other 

bridges within the study site are located further upstream and have much lower traffic volumes.   

 

Based on the threats inventory that was performed, seven probabilistic spill scenarios were 

identified and modelled as part of this research.  Information about each of these scenarios, 

including their location, associated contaminants, and approximate distance upstream of the 

Hidden Valley Intake, is listed in Table 4-1.  The locations of each of the spill scenarios is 

shown on Figure 4-3. 
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Table 4-1.  Spill Scenarios Modelled 

Spill 
Scenario 

# 

Location Contaminant(s) 
Modelled 

Approximate 
Distance U/S of 
Intake (km) 

1 Agricultural Area Near 
Canagagigue Creek 

Arbitrary contaminant 37.1 

2 Peel Street Bridge Arbitrary contaminant 33.7 

3 Urban/residential Area in 
Waterloo 

Arbitrary contaminant 17.1 

4 Waterloo WWTP Nitrogen and phosphorus 
species 

16.8 

5 Victoria Street Bridge Arbitrary contaminant 11.1 

6 King Street Bridge Arbitrary contaminant 1.5 

7 Highway 8 Bridge Arbitrary contaminant 0.8 
 

The first scenario was chosen to represent an agricultural spill occurring near the upstream 

extent of the model.  The Peel Street Bridge was selected as the second spill scenario to 

represent a transportation-related spill. Spills located this far upstream are out of the public eye 

and may go unreported.  The third spill scenario was selected at a location where the land use 

begins to change from agricultural to urban.  The fourth spill scenario was identified as a spill 

of raw sewage from the Waterloo WWTP and three major bridges were identified as the fifth 

through seventh spill scenarios. 

 

As shown in Table 4-1, six of the seven spills were modelled as arbitrary contaminants.  

Arbitrary contaminants were simulated using decay values uniformly sampled between 0 and 1 

d-1 to represent a broad range of potential contaminants.   The other spill scenario represented a 

spill of raw wastewater.  Raw wastewater involves a number of constituents (e.g., nitrogen 

species, phosphorous species, dissolved oxygen), but only one was required for subsequent 

analyses.  Total Kjehldahl nitrogen (TKN), which represents the sum of organic nitrogen and 

ammonia-nitrogen, was used for this purpose.  A detection of a wastewater spill was generated 

using the method described in Section 3.6.5.  A review of historical TKN data revealed that the 

maximum recorded concentration in the previous five years was 1.62 mg/L.  Therefore, a 

threshold value of 1.62 mg/L was used in order to initiate a detection for the raw wastewater 

spill scenario. 
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A uniform distribution for the mass and duration of each spill was used to simulate a large 

range of possible scenarios with equal likelihood.  The spill duration was uniformly sampled 

between 1 and 12 hours for each of the seven spill scenarios.  One hour was selected as the 

lower end to simulate near instantaneous releases.  Twelve hours was chosen as the upper limit 

to represent spills that may be discharged for a period of time before corrective action is taken.  

The uniform mass distribution was selected to range from 0.1 to 35 tonnes, which represent 

typical spill masses that have been reported in the past (Environment Canada, 2005). 

4.2.3 Potential Monitoring Station Locations 

Five potential monitoring station locations were identified within the study area.  These 

stations are spaced throughout the study site and are all located at or near a bridge.  

Information about each of these stations is contained in Table 4-2 and their corresponding 

locations are indicated on Figure 4-3.  

 
Table 4-2.  Information about Potential Monitoring Locations 

Station Distance 
Upstream of 
Intake (km) 

Bridge Access Point Major Threats 
Upstream 

A 29.8 Sawmill Road  Dr. George Priddle 
Park 
 

Canagagigue Creek 
Conestogo River 
Agricultural land use 

B 16.9 Bridge Street  Economical 
Insurance Trailway 

Laurel Creek 
Agricultural land use 

C 16.5 Downstream 
of Bridge 
Street 

Economical 
Insurance Trailway 

Bridge Street Bridge 
Laurel Creek 
Waterloo WWTP 

D 11.0 Victoria 
Street  

Peter Hallman Family 
Trailway 

Hopewell Creek 
Urban land use 

E 0.8 Highway 8  Schneider Park King Street Bridge 
Urban land use 

 

Since Station A provides adequate warning time during the highest flow events, there was no 

need to assess any additional upstream monitoring locations (which would unnecessarily 

sacrifice threats coverage).    Although it provides minimal warning time, Station E was 

selected as the most downstream location to provide coverage of the high traffic volume King 
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Street and Highway 8 bridges.  The attractiveness of Station E as a monitoring location will 

depend upon the consideration given to the retention time provided by the Hidden Valley 

Reservoir.  As can be seen in Table 4-2, Stations B and C are very close together.  Station C 

would normally not be considered as it is not located at a bridge; however, it was desired to 

include a station immediately downstream of the Waterloo WWTP in the analysis.  

4.3 Hydrodynamic Calibration 

Prior to conducting the hydrodynamic calibration, it was of interest to compare modelled and 

observed flows to determine the accuracy of the flow balance.  This comparison was conducted 

using one year of flows from both the Bridgeport and Hidden Valley gauging stations.  The 

results of this comparison at the Bridgeport station are illustrated in Figure 4-8. 
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Figure 4-8.  Flow Balance at Bridgeport 
 

With the exception of the period highlighted with an arrow on Figure 4-8, the flow balance was 

excellent.  The period where the discrepancy occurs is during the winter and may be due to 

backwater effects as a result of ice, as the observed data were not corrected for this.  If the flow 
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inputs from the tributaries were artificially high due to backwater effects, the resulting 

modelled flow would also be higher than what was observed.   

 

Once the flow balance was determined to be satisfactory, the Manning’s roughness coefficients 

were calibrated.  One year of observed and modelled water surface elevations at a six hour 

frequency for both the Bridgeport and Hidden Valley gauging stations were used for this 

purpose.  The resulting Nash Sutcliffe coefficients at the two calibration locations were 0.96 

and 0.97.  The excellent match between predicted and measured elevations is illustrated in 

Figure 4-9 and Figure 4-10, at both the Bridgeport and Hidden Valley locations, respectively.  

The resulting Manning’s coefficients ranged from 0.03 to 0.06. 
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Figure 4-9.  Elevation Calibration at Bridgeport 
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Figure 4-10.  Elevation Calibration at Hidden Valley 
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5 Results and Analysis 

This chapter presents the results obtained for the case study application.    The performance of 

potential monitoring station locations and various sample frequencies are analyzed.  A 

discussion of the effect of the spill scenario weightings and the method detection limit (MDL) 

is also presented.  The chapter concludes with an analysis of the sources of uncertainty that 

impact the design of a source water monitoring station.  

5.1 Results of Initial Experiments 

Prior to conducting all of the simulations, some initial computational experiments were 

performed to determine the effect of parameter uncertainty, the number of simulations 

required, and the sample frequencies to consider in subsequent analysis.  These results are 

presented in Sections 5.1.1 to 5.1.3, respectively. 

5.1.1 Parameter Uncertainty 

As discussed in Chapter 3, it was hypothesized that model parameter uncertainty may not be 

significant compared with the uncertain nature of the spills being modelled as part of this 

research.  Therefore, prior to investing in computationally expensive and data intensive 

procedures to estimate parameter uncertainty, its significance on the decision making process 

was tested.  A set of simulations of an arbitrary spill were executed with both flow and the 

parameters set as uncertain, and another set with only flow as uncertain (with the parameters 

set to average values).  For this preliminary analysis mass and duration were held constant. 

 

Empirical cumulative distribution functions (CDFs) were generated for the duration a 

contaminant is above the MDL and the time of arrival at the MDL at a given monitoring 

station for each set of simulations.  The resulting graph for Station C is presented in Figure 5-1. 

 

As can be seen in Figure 5-1, the pair of distributions for both the detection duration and 

arrival time are very similar.  Since these are the only model outputs affecting the calculation 

of objective function values (see Figure 5-1), this indicates that parameter uncertainty 
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contributes minimally to the overall model prediction uncertainty.  Similar results were 

obtained for all other monitoring stations.  
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Figure 5-1.  Cumulative Distribution Functions for Arrival Time and Detection Duration 
 

The only noticeable impact of parameter uncertainty occurred for detection duration values 

greater than approximately 27 hours (for the specific example shown in Figure 5-1), which 

corresponded with low flow conditions.  This minor impact, which was observed at each 

potential monitoring location, was attributed to the increased importance of dispersion during 

low flows when there is more time for contaminant plumes to spread.  This slight impact on 

results was not a concern because design decisions were not based on low flow conditions.  For 

example, a sample interval of 30 hours at this station is not justifiable because this would result 

in a failure to detect a spill event more than 80% of the time, as shown by the dashed line in 

Figure 5-1. 
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Based on the preceding results, it was concluded that parameter uncertainty is not significant 

for the decision making process.  As a result, no conditioning experiments were required to 

refine the a priori parameter ranges.  Since it did not significantly impact the results one way or 

the other, the parameters were considered uncertain in subsequent simulations rather than 

setting them to arbitrarily chosen discrete values.  

 

It is important to note that as a result of not having calibrated the water quality parameters, the 

model is not optimally configured for use as a real-time water quality prediction tool in its 

current state.   

5.1.2 Number of Simulations Required 

In order to determine the number of simulations required, a preliminary experiment involving 

2000 simulations was conducted.  The average and standard deviation of the following outputs 

were calculated for each potential monitoring station: 

• Duration the contaminant was detected; 

• Warning time; and  

• Peak concentration.   

 

Figures 5-2 and 5-3 illustrate the results at one of the monitoring stations for the cumulative 

average of the output values and cumulative standard deviation of the output values.  Based on 

these results, it was concluded that 1000 simulations were sufficient for subsequent model runs 

because the average and standard deviation values after 1000 simulations were within 1.5% of 

their values after 2000 simulations. 
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Figure 5-2.  Cumulative Average of Output Values 
 

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Simulations

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Detection Duration Standard Deviation

Warning Time Standard Deviation

Peak Concentration Standard Deviation

 

Figure 5-3.  Cumulative Standard Deviation of Output Values 
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5.1.3 Sample Frequencies to Analyze 

As discussed in Chapter 3, the time of detection was conservatively calculated as the sum of 

the time a contaminant arrives at a given station above the MDL and the sample interval (see 

Figure 5-4).   As the sample interval increases, the amount of warning time decreases.  If 

samples are collected too infrequently, a monitoring station may fail to detect an event 

altogether.  Therefore, more frequent sampling can lead to improved values for both of the 

design objectives.  In some cases, however, minor improvements in objective values may not 

justify the cost of increased sampling.   

 

 

Figure 5-4.  Sample Interval and Warning Time 
 

At the outset of this research, it was desired to consider sample intervals of 0.1, 1, 2, 6, 12, and 

24 hours.  A preliminary analysis was performed to determine if these frequencies produced 

reasonable values for both of the design objectives.  CDFs for the duration a contaminant is 

present above the MDL at the furthest upstream location (Station A) and the closest station to 

the intake (Station E) are presented in Figures 5-5 and 5-6. The results from each of the seven 

spill scenarios were equally weighted to create the CDFs for this preliminary analysis.   
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Figure 5-5.  CDF of Duration Above MDL at Station A (Furthest Upstream) 
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Figure 5-6.  CDF of Duration Above MDL at Station E (Closest to Intake) 



78 

From Figure 5-6 it can be seen that at the most downstream station, where the concentration 

profile is at its widest, there is a 50% probability that contaminant concentrations will be above 

the MDL less than 24 hours.  As a result, this station will fail to detect approximately 50% of 

events based on the conservative calculation of detection time used for this research.  At the 

most upstream station where the concentration profiles are narrower, over 80% of the events 

will fail to be detected at a sample interval of 24 hours.  This suggests that a monitoring station 

would be of limited value at any location using a sample interval of 24 hours. 

 

CDFs for the difference in arrival time between each monitoring station and the intake were 

also plotted.  The difference in arrival times is equivalent to the sum of the sample interval and 

warning time (see Figure 5-4).  The resulting CDFs at the furthest upstream location (Station 

A) and the closest station to the intake (Station E) are presented in Figures 5-7 and 5-8, 

respectively (note the differing horizontal scales). These plots were created assuming the 

results from all seven spill scenarios are of equal weight.  The step-wise nature of these figures 

is due to the fact that the model outputs at a time step of 0.1 hours.   
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Figure 5-7.  CDF of Arrival Time Difference at Station A (Furthest Upstream) 
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Figure 5-8.  CDF of Arrival Time Difference at Station E (Closest to Intake) 
 

In Figure 5-7 it can be seen that there is a negligible probability of having more than 16 hours 

between the contaminant’s arrival at Station A and its arrival at the intake.  Since a minimum 

of two hours of warning time are desired, sample intervals of more than 14 hours will almost 

never provide sufficient warning time at Station A or any others downstream.  The few events 

that can be detected at sample intervals of greater than 14 hours will likely fail to provide 

sufficient warning time.  Therefore, a 24 hour sample interval was removed from further 

analyses as it fails to achieve reasonable results for both design objectives. 

5.2 Spill Scenario Weightings 

As discussed in Chapter 4, a comprehensive threats prioritization could not be conducted due 

to limitations associated with the case study.  As a result, defining probability distributions to 

represent the risk associated with different spill scenarios was difficult.  Instead of limiting the 

analysis by attempting to define these distributions, seven discrete spill scenarios were 

identified and seven sets of Monte Carlo simulations were performed (as identified in Table 4-
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1).  This was less restricting than pre-defining a distribution because it allowed different 

weighting sets to be tested after the Monte Carlo simulation results were collected.  The 

weighting sets represent relative levels of risk, which are based upon both the estimated 

probability of occurrence and magnitude of the effect for each spill scenario (see Section 

2.4.1). 

 

Two weighting schemes were identified for the case study; one assumed all spill scenarios 

were of equal risk levels and the other involved best estimates of each scenario’s relative risk 

level using the information available.  Both weighting schemes are listed in Table 5-1 and their 

impact on the results is discussed in Section 5.4.2.    

 

Table 5-1.  Relative Risk Weightings Applied to Each Spill Scenario 

Spill Scenario Approximate 
Distance U/S of 

Intake (km) 

Weighting 
Scheme #1 

(Equal) 

Weighting 
Scheme #2 

#1 - Agricultural Area Near      
Canagagigue Creek 

37.1 0.142 0.1 

#2 - Peel Street Bridge 33.7 0.142 0.05 

#3 - Urban/residential Area in 
Waterloo 

17.1 0.142 0.05 

#4 - Waterloo WWTP 16.8 0.142 0.25 

#5 - Victoria Street Bridge 11.1 0.142 0.1 

#6 - King Street Bridge 1.5 0.142 0.2 

#7 - Highway 8 Bridge 0.8 0.142 0.25 

 

As can be seen in Table 5-1, the best estimate weightings (weighting scheme 2) ranged from 

0.05 to 0.25 to represent different levels of risk associated with different spill scenarios.  

Scenarios 2 and 3 were given weightings of 0.05 as they are expected to have a low probability 

of occurrence.  For example, the Peel Street Bridge does not have a high traffic volume so the 

probability of an accident is lower than it would be on King Street.  Furthermore, both of these 

threats are relatively far upstream so their effects will be less than spills that occur immediately 

upstream of the intake and arrive at higher concentration levels.  Scenario 1 was given a 

weighting of 0.1 to subjectively account for spills that may occur upstream of the model 
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bounds.  Most spills located that far upstream will be at low concentrations when they arrive at 

the intake.  However, it is possible that a large spill could occur upstream of the model 

boundary so Scenario 1 was weighted higher to account for this possibility.  Scenario 5 was 

also assigned a weighting of 0.1 because Victoria Street is closer to the intake and has more 

traffic than the bridges located further upstream.  The King Street Bridge also has a higher 

traffic volume and is only 1.5 km upstream of the intake.  It was therefore given a weighting of 

0.2.  The two most significant threats to the intake were identified as the Waterloo Wastewater 

Treatment Plant (WWTP) and the Highway 8 Bridge.  Both of these threats were assigned 

weightings of 0.25. 

5.3 Results 

Five sample intervals and five monitoring station locations were considered, resulting in 25 

discrete combinations.  For each combination, the probability of detection and probability of at 

least two hours of warning time (given a detection) were calculated using both sets of 

weightings.  The procedure used for these calculations is described in Section 3.6.1, and the 

results are contained in Tables 5-2 through 5-6 for Stations A through E, respectively.   

 

 

Table 5-2.  Station A Results 

Sample Interval  
0.1 hours 1 hour 2 hours 6 hours 12 hours 

Weighting #1 
Probability of Detection  
 

0.286 0.286 0.286 0.283 0.244 

Probability of ≥  2 hrs  
Warning Time 

1.000 1.000 0.995 0.666 0.003 

Weighting #2 
Probability of Detection  
 

0.150 0.150 0.150 0.149 0.130 

Probability of ≥  2 hrs  
Warning Time 

1.000 1.000 0.995 0.675 0.004 
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Table 5-3.  Station B Results 

Sample Interval  
0.1 hours 1 hour 2 hours 6 hours 12 hours 

Weighting #1 
Probability of Detection  
 

0.429 0.429 0.428 0.417 0.350 

Probability of ≥ 2 hrs  
Warning Time 

0.994 0.928 0.774 0.067 0.000 

Weighting #2 
Probability of Detection  
 

0.200 0.200 0.200 0.196 0.171 

Probability of ≥ 2 hrs  
Warning Time 

0.995 0.944 0.806 0.081 0.000 

 

Table 5-4.  Station C Results 

Sample Interval  
0.1 hours 1 hour 2 hours 6 hours 12 hours 

Weighting #1 
Probability of Detection  
 

0.571 0.571 0.571 0.560 0.454 

Probability of ≥ 2 hrs  
Warning Time 

0.992 0.937 0.814 0.288 0.044 

Weighting #2 
Probability of Detection  
 

0.450 0.450 0.450 0.445 0.345 

Probability of ≥ 2 hrs  
Warning Time 

0.997 0.970 0.905 0.581 0.097 

 

Table 5-5.  Station D Results 

Sample Interval  
0.1 hours 1 hour 2 hours 6 hours 12 hours 

Weighting #1 
Probability of Detection  
 

0.714 0.714 0.714 0.701 0.585 

Probability of ≥ 2 hrs  
Warning Time 

0.912 0.703 0.516 0.153 0.005 

Weighting #2 
Probability of Detection  
 

0.550 0.550 0.550 0.541 0.425 

Probability of ≥ 2 hrs  
Warning Time 

0.930 0.771 0.662 0.347 0.011 
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Table 5-6.  Station E Results 

Sample Interval  
0.1 hours 1 hour 2 hours 6 hours 12 hours 

Weighting #1 
Probability of Detection  
 

1.000 1.000 1.000 0.979 0.874 

Probability of ≥ 2 hrs  
Warning Time 

0.017 0.001 0.000 0.000 0.000 

Weighting #2 
Probability of Detection 

 
1.000 1.000 0.999 0.965 0.811 

Probability of ≥ 2 hrs  
Warning Time 

0.030 0.001 0.000 0.000 0.000 

 

Plots of objective space, with the probability of detection as the x-axis and the probability of 

having at least two hours of warning time (given a detection has occurred) as the y-axis, were 

created for each sample interval under each weighting scheme.  Each plot contains five points 

representing the objective values for each of the potential monitoring stations.  The resulting 

plots for a sample interval of one hour are shown in Figures 5-9 and 5-10, for weighting 

schemes 1 and 2, respectively.  Similar plots for sample intervals of 0.1, 2, 6, and 12 hours are 

contained in Appendix B.  
 

 

Figure 5-9.  Results for 1 hour Sample Interval Using Weighting Scheme 1 
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Figure 5-10.  Results for 1 hour Sample Interval Using Weighting Scheme  2 

5.4 Discussion and Analysis of Results 

5.4.1 Inferiority of Station B 

As can be seen in Figures 5-9 and 5-10, Station B is dominated by Station C because it is 

inferior in both objectives.  This result was not expected because Station B is further upstream 

than Station C and should result in a higher probability of having at least two hours of warning 

time.   

 

Upon examining the results, the inferiority of Station B was attributed to the fact that the 

wastewater spill occurs between Stations B and C.  As explained in Chapter 3, the wastewater 

spill results had to be analyzed differently because background concentrations of wastewater 

constituents already exist in the river.  The concentration that triggered a detection (1.62 mg/L 

of TKN as identified in Section 4.2.2) was much higher than the MDL used for the other six 

spill scenarios and resulted in greater amounts of warning time.  A lower MDL results in an 

earlier time of detection as expected.  However, since the concentration of interest at the intake 

is assumed to be equal to the MDL, the time of arrival at the intake is also earlier.  Since 

concentration profiles tend to spread and decrease in steepness as a spill disperses (Chapra, 
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1997), the arrival time at the intake is even earlier than the arrival time at the monitoring 

station, resulting in less warning time.  Concentration profiles at Station A, Station C, and the 

intake are shown in Figure 5-11 for an arbitrary spill simulation to illustrate this effect.   
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Figure 5-11.  Change in Concentration Profiles Moving Downstream 
 

Average concentration profiles based on all 1000 wastewater spill simulations are plotted for 

Station C and the Hidden Valley Intake in Figure 5-12 to further illustrate how warning time 

increases when the concentration at which a detection is triggered increases. 
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Figure 5-12.  Average Concentration Profiles after a Wastewater Spill 
 

As can be seen in Figure 5-12, the effect of increased warning time is even more amplified 

because Station C’s concentration profile peaks very rapidly since it is located immediately 

downstream of the WWTP.   

 

When the results of all seven spill scenarios were combined, the probability of having two 

hours of warning time at the stations located downstream of the WWTP improved relative to 

Stations A and B.  This resulted in Station B being dominated by Station C.  Strictly speaking, 

Station B should be removed from further analyses.  However, Station B was left as an option 

because Station C is not located at a bridge.  In the event that Station C is not technically 

feasible, Station B is still a viable alternative. 

5.4.2 Effect of Different Risk Weightings 

The probability of detection is largely based upon the cumulative weightings of the spills 

located upstream of a given station.  Recall that the weightings represent the relative risk levels 

Detection Trigger = 1.62 mg/L 
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of each spill scenario.  These cumulative weightings are shown in Table 5-7 for both weighting 

schemes.   

 
Table 5-7.  Cumulative Weightings Upstream of Each Monitoring Station 

 A B C D E 

Weighting 
Scheme #1 

0.284 0.426 0.568 0.71 1 

Weighting 
Scheme #2 

0.15 0.2 0.45 0.55 1 

 

The cumulative weightings upstream of Stations A through D are lower for the second 

weighting scheme, which resulted in decreased probabilities of detection at these stations.  For 

example, when all spills are assumed to be of equal risk there is a 28.4% probability of 

detection at Station A for sample intervals of 0.1 to 6 hours, because the threats upstream have 

a total weighing of 0.284 (and all upstream events are detected at low sample intervals).  Using 

the second set of weightings, there is a 15% probability of detecting events at Station A for the 

same sample intervals, once again because the threats upstream have a total weighting of 15%.  

Therefore, the risk weightings directly impact the probability of detection.  

 

The different weighting schemes also lead to different amounts of warning time.  The second 

weighting set improves the probability of having two hours of warning time for all of the 

stations at most sample intervals.  This improvement is most obvious for Stations C and D, 

once again due to the increased weighting applied to the wastewater spill scenario results 

which provide greater amounts of warning time (as discussed in Section 5.4.1). 

 

Since weighting scheme 1 tends to improve the probability of detection at most stations and 

weighting scheme 2 tends to improve the probability of having at least two hours of warning 

time at most stations, accurately defining the relative levels of risk associated with each 

scenario is essential prior to making a final decision on station location.  If more emphasis is 

given to upstream threats, for example, Stations A and B will become more attractive because 

their probabilities of detection will increase while maintaining large warning times.  When a 

full risk assessment has been completed as part of the legislated source water protection 
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planning, the weightings can be updated, if necessary, and the objective function values 

recalculated for each station.   

5.4.3 Effect of Selected MDL 

In order to determine if the chosen MDL impacts the design decisions, the results were 

reanalyzed using an MDL of 0.1 mg/L (for all but the wastewater scenario).  A comparison of 

results for both MDLs using weighting scheme 2 is presented in Figure 5-13 for a sample 

interval of 1 hour.   
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Figure 5-13.  Comparison of Different MDLs at a Sample Interval of 1 hour 
 

As can be seen in Figure 5-13, the MDL does have an impact on the probability of having at 

least two hours warning time, particularly at Stations B, C, and D.  For reasons described in 

Section 5.4.1, as the MDL increases the amount of warning time also increases.   
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Since a higher MDL results in a contaminant being detectable for a shorter duration, the MDL 

can also impact the probability of detection if the sample interval is greater than the duration a 

contaminant is detectable.  This is only the case for large sample intervals, such as 12 hours or 

more.      

 

Since MDLs of 0.01 mg/L and lower are used by many common analyzers (Grayman et al., 

2001), the analysis continued with the original MDL.   

5.4.4 Monitoring Station Location and Sample Interval 

For the purpose of this thesis, the following assumptions were made: 

• Weighting scheme 2, which represents best estimates of relative risks associated with 

the seven identified spill scenarios, is appropriate; 

• It is desired to prevent contaminated water from entering the Hidden Valley Reservoir 

and a minimum of two hours of warning time are required; 

• Maximizing the probability of detection is also important;  

• An MDL of 0.01 mg/L is appropriate and no contaminants are at levels of concern less 

than this MDL; and 

• The concentration of interest at the intake is equal to the MDL. 

 

Using these assumptions, a preferred monitoring station location and sample interval were 

identified as described in the following sections. 

5.4.4.1 Monitoring Station Location 

The results for each monitoring station and each sample interval are presented together in 

Figure 5-14.  Each line represents the Pareto front for a different sample interval, with a point 

representing each potential monitoring station.  Dominated points are shown but are not part of 

the Pareto front. 
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Figure 5-14.  Results Using Different Sample Intervals (Weighting Scheme 2) 
 

For most sample frequencies and both sets of risk weightings, Stations C and D appear to be a 

good compromise in objectives.  This was expected as these stations are located downstream of 

many of the major identified threats, but are located sufficiently far upstream of the intake to 

provide more warning time than Station E.  

 

If one of the two objectives is deemed to be of much greater importance, then stations at either 

extreme may be preferable.  For example, if decision makers want to maximize threats 

coverage and are comfortable with contaminated water entering the Hidden Valley Reservoir, 

Station E may be preferred.  A late detection from Station E is still of value because 

contaminated water can be diverted from the Hidden Valley Reservoir and prevented from 

entering the Mannheim Water Treatment Plant.  Although it provides almost no warning time, 

Station E may be selected by decision makers depending on the tradeoff they choose between 
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the two objectives. Alternatively, if operations staff want as much warning time as possible, 

Station A may be selected even though it provides less coverage of all possible threats.   

 

In some cases there is a large difference between Station D and Station E with respect to the 

probability of achieving at least two hours of warning time.  This was expected as there is a   

10 km gap between these stations.  A station located between them may be a good compromise 

in the objectives; however, no bridges are located along this stretch of the river.    If a suitable 

location between D and E can be found, this may be an attractive option to decision makers.  

 

Given the assumptions stated above, Stations A and E were not selected as they do not 

represent a compromise in objectives.  Station B was not selected because it is dominated, so 

the choice was narrowed down to Station C or D.  Station D is recommended as the preferred 

location because it was assumed that a slightly higher risk of having less than two hours of 

warning time was worth the increased probability of detection provided by Station D.  As a 

result of the conservative approach used for calculating the time of detection (see Section 

3.6.1.2), the actual amount of warning time provided at Station D is expected to be even better 

than the conservative results presented here. 

5.4.4.2 Sample Frequency 

Since the monitoring station location is fixed, and the sample interval can easily be adjusted, it 

was decided that the required sample interval would be selected after the location was chosen.  

As discussed, more frequent sampling results in improved objective values.  This is shown in 

Figure 5-14 for weighting scheme 2.   

 

For Station A, it can also be seen that there is almost no difference in either objective between 

sampling every 6 minutes and every 2 hours.  This suggests that if Station A were to be 

selected, there is minimal benefit in sampling more often than every 2 hours.   

 

Further downstream, the tradeoff between sampling every 6 minutes to improve the warning 

time and sampling less often with shorter warning times needs to be evaluated.  It may not be 



92 

worth sampling ten or twenty times as often if sample frequencies of every hour or two 

produce acceptable probabilities of detection and sufficient warning time.    

 

The probability of having two hours of warning time decreases substantially at a sample 

interval of 12 hours, particularly at Stations A through D.  It can also be seen that a sample 

interval of 12 hours never results in a probability of having two hours of warning time of more 

than 10%.  The probability of detection also decreases for most stations at a sample interval of 

12 hours.  This is due to the fact that not all concentration profiles exist above the MDL for 

more than 12 hours and some events will pass by the monitoring station without being 

detected.  Therefore, a sample interval of 12 hours is not appropriate at any location. 

 

Sampling every 6 minutes at Station D results in a probability of having two hours of warning 

time of 93%.  Sampling every hour results in a probability of 77%, and sampling every two 

hours results in a probability of only 66%.  Therefore, sampling at least every hour, if not 

continuously, is recommended in order to ensure a high probability of having two hours of 

warning time at Station D. 

5.5 Sources of Uncertainty Impacting Results 

As identified in Chapter 3, each simulation involved the following sources of uncertainty: 

• Time of the spill (flow); 

• Mass of the spill; 

• Duration of the spill; and 

• Water quality parameters associated with the spill. 

 

As discussed in Section 5.1.1, the uncertainty associated with the water quality parameters had 

minimal impact on the distribution of the relevant results.  It was further hypothesized that 

neither the spill mass nor the spill duration contributes significantly to the distribution of the 

results. 

 

In order to determine the sources of uncertainty impacting the results, a second set of 1000 

Monte Carlo simulations were performed for Spill Scenario 1 with the flow at the time of the 
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spill as the only uncertainty.  Scenario 1 was chosen for this analysis because it is the furthest 

spill upstream so results at both a near and far monitoring station could be assessed.  The mass 

of the spill was set to 1500 kg for each of the simulations and the spill duration was set to one 

hour.  The resulting average concentration profiles at Station C and the intake are shown in 

Figure 5-15.  This figure also shows the corresponding concentration profiles for the original 

results that considered mass and duration as uncertain. 
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Figure 5-15.  Average Concentration Profiles With and Without Uncertain Inputs 
 

As can be seen in Figure 5-15, the shape of the concentration profile for each set of simulations 

is quite different.  For the case when all inputs are uncertain, the peak concentration is much 

higher, the time to peak later, and the profile wider.  This was expected due to the wide range 

of spill masses and durations that were modelled.  Longer durations result in later peaks and 

wider concentration profiles.  Despite these differences, one similarity is that the time of arrival 

of both profiles is very similar at Station C and the intake.  At an MDL of 0.01 mg/L, the time 

of arrival at Station C for both average profiles is exactly the same (2.7 hours) and the times of 

arrival at the intake are within 1.5% of each other.    
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 Since warning time is a function of the time of arrival at the monitoring station, time of arrival 

at the intake, and the sample frequency, the distribution of warning time for both sets of 

simulations should also be similar.  This is clearly shown in Figure 5-16 and Figure 5-17, 

which illustrate CDFs of warning time for the case that considered all inputs uncertain and the 

case that considered only flow uncertain.  Both plots were created using a sample frequency of 

0.1 hours and were based on the results from Spill Scenario 1.  Stations A and E were chosen 

as examples to represent the distributions at a station immediately downstream of the spill and 

a station some distance downstream, respectively. 
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Figure 5-16.  CDF of Warning Time at Station A (Sample Interval = 0.1 hours) 
 

As can be seen in Figures 5-16 and 5-17, almost no difference in warning time exists between 

each set of simulations.  Therefore, the only source of uncertainty significantly affecting the 

probability of having two hours of warning time for a given spill scenario is the flow at the 

time of the spill.  Advection controls the time of arrival, which is ultimately controlled by the 

flow at the time of the spill.    
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Figure 5-17.  CDF of Warning at Station E (Sample Interval = 0.1 hours) 
 

 

The probability of detection is also a function of arrival time at a given station as well as the 

duration a contaminant is above the MDL.  The detection duration is clearly longer when the 

spill duration is uncertain (see Figure 5-15); however, this does not significantly impact the 

results because this is only an issue for cases when the sample interval is greater than the 

detection duration.  Since near-constant sampling has been recommended, the effect of 

uncertain spill durations on the distribution of the duration contaminants are detected at a given 

station does not impact the final decision.   

 

In addition to flow, the distribution of spill locations also impacted the distribution of the 

results because different spill scenario weightings were shown to produce different 

probabilities of detection and warning time.  Therefore, the flow at the time of the spill and the 

spill location are the most important sources of uncertainty affecting the design of an early 

warning source water monitoring station.    
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6  Conclusions and Recommendations 

6.1 Conclusions 

The value of using a probabilistic approach for designing an early warning source water 

monitoring station was demonstrated in this research.  A new approach for sampling the flow 

at the time of the spill was developed so that non-constant flows and tributary effects could be 

simulated.  The use of multi-objective optimization techniques was shown to be a useful way 

in which to assess the probabilistic modelling results.   

 

The impact of various sources of uncertainty was examined in this thesis.  Although the spill 

mass, spill duration, and model parameters impacted the peak and duration of the resulting 

concentration profiles, the relevant model outputs were only impacted by the uncertainty 

associated with the river flow at the time of the spill and the location of the spill.   

 

Since model parameter uncertainty did not have an impact on the design of a source water 

monitoring station, there was no need to devote resources towards a more refined description 

of model parameter uncertainty as it had no impact on the decision making process.  As a result 

of not refining the parameter ranges through calibration or conditioning experiments, the 

model in its current state should not be used as a real-time predictive tool. 

 

Results showed that the risk weightings applied to the modelled spill scenarios impact the 

results, particularly with respect to the probability of detection.  Therefore, if the risk 

weightings are modified the recommended station design may also change, particularly if 

scenarios further upstream are determined to be of higher risk.   

 

The choice of method detection limit (MDL) also impacts the results.  Higher MDLs were 

shown to produce larger amounts of warning time (assuming that the concentration of interest 

at the intake is equal to the MDL). 
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For the case study application, Station A, located furthest upstream from the Hidden Valley 

Intake, almost always provides at least two hours of warning time at the expense of a low 

probability of detection.  Station E, located closest to the intake, provides excellent threats 

coverage but almost no chance of having two hours of warning time for any events at any 

sample interval.  Since both objectives were assumed to be of importance, a location that 

represents a better tradeoff in the objectives is required.  Station D, located at the Victoria 

Street Bridge, has a much higher probability of having two hours of warning time than Station 

E and a 55% probability of detection at low sample intervals.  Providing less than two hours of 

warning time was assumed to be preferable to decreasing the probability of detection any 

further.  Therefore, it was concluded that a monitoring station near the Victoria Street Bridge 

represents the best tradeoff solution, assuming the risk weightings applied are accurate. 

 

The selection of sample frequency was found to be dependent upon the location of the 

monitoring station.  At Station A, a sample interval of two hours or more is most appropriate 

because there is minimal benefit in sampling more often.  However, at stations closer to the 

intake more frequent sampling is required to achieve sufficient warning time.  At Station D, 

near constant sampling is required in order to ensure a high probability of having at least two 

hours of warning time. 

6.2 General Recommendations 

The probabilistic method presented in this thesis should be used for future monitoring station 

designs.  The use of multi-objective methods for assessing potential station designs, as 

presented in this thesis, is recommended in order to assess the tradeoff between warning time 

and threats coverage. 

 

Future early warning monitoring station designs should focus upon defining accurate 

probability distributions for flow and spill location as these were the only sources of 

uncertainty impacting the relevant results for this case study.  Since this result may be different 

for other applications, initial experiments are recommended to confirm the findings of this 

thesis.  For example, if flow is relatively constant, the uncertainty associated with water quality 

model parameters may become more significant. 
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Future research could include the probability of incomplete mixing to account for the fact that 

not all spills located upstream of a station are detected.  The use of a two or three dimensional 

model could also be considered.    

6.3 Recommendations Specific to the Case Study  

Prior to implementing an early warning source water monitoring station upstream of the 

Hidden Valley Intake, it is recommended that the following points be confirmed: 

• The risk weightings that should be applied to each of the spill scenarios modelled 

(which should be based upon the results of the risk assessment that will be completed 

as part of source water protection planning efforts); 

• The importance of having at least two hours of warning time; 

• The comfort level operations staff have with contaminated water entering the Hidden 

Valley Reservoir; 

• The concentration of interest at the intake; 

• The tradeoff between maximizing threats coverage and maximizing the probability of 

having sufficient warning time; 

• The types of monitoring technologies that may be implemented and their respective 

MDLs; and 

• The feasibility of implementing a station where no bridge exists (e.g. Station C or 

somewhere between Stations D and E). 

 

Once these issues have been resolved, the objective values should be recalculated, if necessary, 

in order to generate final results upon which to base a decision.   

 

If the assumptions made as part of this thesis are found to be acceptable, it is recommended 

that the Regional Municipality of Waterloo proceed with constructing an early warning source 

water monitoring station near the Victoria Street Bridge.  It is further recommended that the 

station should sample at least every hour to increase its likelihood of providing two hours of 

warning time.  The parameters for which the station will monitor and the technology it will use 
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should be determined based on the contaminants identified as part of the risk assessment and 

any technological or cost constraints. 

 

It is also recommended that the Regional Municipality of Waterloo considers undertaking a 

study to determine the optimal lateral positioning of the monitoring station.  Upon completing 

the risk assessment, the positioning of various threats may indicate that the station should be 

located closer to one bank or another, though it will likely be most ideally situated on the 

river’s center line. 

 

Since the recommended monitoring station will fail to detect spills from both King Street and 

Highway 8, the implementation of a second monitoring station immediately downstream of the 

Highway 8 Bridge should be considered.  Although this station will likely not provide enough 

warning time to prevent contaminated water from entering the Hidden Valley Reservoir, it can 

provide notification of events that the conventional intake analyzers may fail to detect. 

 

It is also recommended that the Regional Municipality of Waterloo consider developing a 

predictive model for use in the event of a spill.  This can be used in conjunction with the early 

warning monitoring station to predict the time of arrival and duration of real-time spill events. 

The model used for this thesis may be adapted for use as a real-time prediction tool if 

additional data are collected and calibration or conditioning experiments are conducted. 

 

Early warning source water monitoring stations act as an additional barrier in the production of 

safe drinking water and are an important part of source water protection.  It is recommended 

that the implementation of such a station should complement traditional source water 

protection efforts, not replace them.  Identifying and mitigating risks to water quality and 

quantity should remain the focus of source water protection. 
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Appendix A:  Water Quality Model Parameter Ranges 

Note:  Parameter ranges listed below are based on (Perera and Ng, 2001; Martin and Wool, 
2002; McIntyre et al., 2003a; Cox and Whitehead, 2005; Lindenschmidt, 2006; Osidele 
et al., 2006). 

 
 

Parameter Description Units Min Max 
TH_K1 Theta for CBODu1 Decay -- 1.024 1.15 

TH_KDN Theta for Denitrification for CBODu1 -- 1.024 1.15 

TH_K1N Theta for Organic Nitrogen to NH3 -- 1.024 1.15 

TH_KNH3 Theta for Ammonia to NO3 Transformation -- 1.024 1.15 

TH_KDNO2 Theta for Sediment Denitrification -- 1.024 1.15 

TH_BENP Theta for Benthic Ortho Phosphate Release Rate -- 1.024 1.15 

TH_BENN Theta for Benthic Ammonia Release Rate -- 1.024 1.15 

TH_SOD Theta for Sediment Oxygen Demand -- 1.024 1.15 

TH_ARB1 Theta for Arbitrary 1 decay -- 0 1 

TH_AGRO Theta for Phytoplankton/Algae Growth -- 1.024 1.15 

TH_ADIE Theta for Phytoplankton/Algae Death -- 1.024 1.15 

TH_MGRO Theta for Macrophyte Growth -- 1.024 1.15 

TH_MDIE Theta for Macrophyte Death -- 1.024 1.15 

TH_SORP Theta for Ortho Phosphate Loss/Adsorption -- 1.024 1.15 

APCONT Phytoplankton Phosphorus Content mg P/mg B 0.009 0.011 

ANCONT Phytoplankton Nitrogen Content mg N/mg B 0.07 0.1 

MPCONT Macrophyte Phosphorus Content mg P/mg B 0 0 

MNCONT Macrophyte Nitrogen Content mg N/mgB 0.02 0.4 

ONEQUI Oxygen/Nitrogen Ratio for Denitrification mg O2/mg N 0.34 0.36 

ONITRI Oxygen/Nitrogen Ratio for Nitrification mg O2/mg N 4.5 4.64 

OPDECY Oxygen Consumption by Plant Decay mg O2/mg B 1 2 

ADN CBODu1 Denitrification Rate 1/day at 20C 0 1 

AKN Ammonia to NO3 Transform Rate  1/day at 20C 0.025 2 

ATB Bottom Heat Exchange Rate 1/day at 20C 0 0 

ATS DO Concentration at which Algal death is half max rate Watts/m2/C 0 0 

APO4 Ortho Phosphate Loss Rate 1/day at 20C 0.62 0.76 

KALGDK Phytoplankton Decay Rate 1/day at 20C 0.003 2 

KNCBDN NO3 Concentration at which Denitrification is 1/2 Rate mg/L 0 1 

KOCB1 
DO Concentration at which CBODu1 Decay is 1/2 Max 
Rate mg/L 0 1 
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Parameter Description Units Min Max 

KNPOOL 
NH3 and NO3 Concentration at which Algal growth rate 
is 1/2 max mg/L 0.01 0.3 

KP04X 
Total phosphorus Concentration at which Algal growth 
rate is 1/2 max mg/L 0 0.1 

KDNO2 Sediment Denitrification Rate 1/day at 20C 0 0.1 

ACK Organic Nitrogen decay to NH3 Transform Rate 1/day at 20C 0.02 0.4 

LAMBDA0 Non-algal Light Extinction Coefficient 1/m 0.1 0.3 

LAMBDA1 Linear Algal Self Shading Coefficient 
(1/m)/          

(ug Chl-a/L) 0 0.01 

LAMBDA2 Non-linear Algal Self Shading Coefficient 
(1/m)/          

(ug Chl-a/L)(2/3) 0.04 0.06 

ALPHAO Algae to Chlorophyll Conversion Factor ug Chl-a/mg B 10 100 

XONS Organic Nitrogen Settling Rate m/day 0.001 0.1 

CBODSR CBODu1 Settling Rate m/day -0.36 0.5 

FCBOD 
Fraction of Algal/Macrophyte Death which goes to 
CBODu1 fraction 0 1 

KPDK 
Organic Phosphorus to Ortho Phosphate Transform 
Rate 1/day at 20C 0.01 0.7 

KPSET Organic Phosphorus Settling Rate m/day 0.001 0.1 

AKARB1 Arbitrary Contaminant Decay Rate 1/day at 20C 0 1 

SOD Sediment Oxygen Demand  0 4.4 

AK1 CBODu1 Decay Rate 1/day at 20C 0.004 4 
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Appendix B:  Complete Results with an MDL of 0.01 mg/L 

 

Figure B - 1. Results Using Weighting Scheme 1 and Sample Interval of 0.1 hours 

 

 

Figure B - 2. Results Using Weighting Scheme 2 and Sample Interval of 0.1 hours 
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Figure B - 3. Results Using Weighting Scheme 1 and Sample Interval of 2 hours 

 

 

 

 

Figure B - 4. Results Using Weighting Scheme 2 and Sample Interval of 2 hours 
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Figure B - 5. Results Using Weighting Scheme 1 and Sample Interval of 6 hours 

 

 

 

 

Figure B - 6. Results Using Weighting Scheme 2 and Sample Interval of 6 hours 
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Figure B - 7. Results Using Weighting Scheme 1 and Sample Interval of 12 hours 

 

 

 

 

Figure B - 8. Results Using Weighting Scheme 2 and Sample Interval of 12 hours 


