
Managing Cache Consistency to Scale Dynamic

Web Systems

by

Chris Wasik

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Chris Wasik 2007

AUTHORS DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Data caching is a technique that can be used by web servers to speed up the

response time of client requests. Dynamic websites are becoming more popular,

but they pose a problem - it is difficult to cache dynamic content, as each user

may receive a different version of a webpage. Caching fragments of content in a

distributed way solves this problem, but poses a maintainability challenge: cached

fragments may depend on other cached fragments, or on underlying information in

a database. When the underlying information is updated, care must be taken to

ensure cached information is also invalidated. If new code is added that updates the

database, the cache can very easily become inconsistent with the underlying data.

The deploy-time dependency analysis method solves this maintainability problem

by analyzing web application source code at deploy-time, and statically writing

cache dependency information into the deployed application. This allows for the

significant performance gains distributed object caching can allow, without any of

the maintainability problems that such caching creates.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Ajit Singh. Without him, this

thesis would not be possible. I would also like to thank the members of my review

committee, Prof. Naik and Dr. Bill Bishop, for the assistance they provided.

Lastly, thank you to my family for their proofreading help.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 The Problem . 3

1.3 Contributions . 3

1.4 Overview . 4

2 Background 6

2.1 Introduction to Web Systems . 6

2.2 Scaling Web Systems . 8

2.2.1 Database Replication and Clustering 11

2.2.2 Database Partitioning . 12

2.2.3 Data Caching . 13

2.2.4 Generic Object Caching . 16

2.3 Producer/Consumer Model of Information Flow 17

2.4 Caching for Temporary Storage . 19

2.5 Summary . 21

3 Existing Scalability Solutions & Related... 22

3.1 Existing Implementations of Memcached 22

3.1.1 Slashdot.org . 23

v

3.1.2 Wikipedia.org . 25

3.1.3 LiveJournal.com . 26

3.2 Motivation . 27

3.3 Related Work . 28

3.3.1 Database Caches . 29

3.3.2 Web Caches . 30

3.3.3 Dynamically Generating Static .html Files 31

3.3.4 Hybrid Strategies . 33

3.4 Summary . 33

4 Cache Consistency 35

4.1 Problems with Existing Models . 36

4.1.1 Log Monitoring Systems . 36

4.1.2 A Cache Manager . 37

4.1.3 Distributing the Dependency Graph 39

4.2 Deploy-Time Dependency Analysis Model 41

4.2.1 Method Overview . 41

4.2.2 Limiting the Size of the Dependency Graph 43

4.2.3 Invalidating Complex Cached Elements 48

4.2.4 Implementation Details . 48

4.2.5 Implementation with Database Triggers 52

4.2.6 Deploy-Time Method Versus a Cache Manager 53

4.2.7 Method Summary . 54

4.3 Maintainability of the Deploy-Time Method 54

4.3.1 RUBBoS Task 1: Cache Post Comments 55

4.3.2 RUBBoS Task 2: Allow Users to Edit their Post Comments 56

4.3.3 RUBiS Task 1: Cache the “About Me” Page 56

vi

4.3.4 RUBiS Task 2: Allow Users to Edit Feedback 57

4.3.5 iFinance Task 1: Caching Course Structure Elements 58

4.3.6 Summary . 59

5 Run-Time Performance 61

5.1 RUBBoS . 63

5.1.1 RUBBoS Load Generating Tool 63

5.1.2 Results - Overview . 64

5.1.3 Results - Detailed Analysis 66

5.1.4 Cache Analysis . 69

5.2 RUBiS . 72

5.2.1 Results - Overview . 72

5.2.2 Results - Detailed Analysis 73

5.2.3 Cache Analysis . 79

5.3 Real World Results . 80

5.4 Summary . 82

6 Conclusions 84

6.1 The Problem . 84

6.2 Problems with Existing Solutions 85

6.3 Contributions of the Deploy-Time Method 85

6.4 Limitations and Future Work . 86

Bibliography 88

Glossary 93

A Wikipedia.org: A portion of memcached.txt 95

vii

B Run-time Cache Statistics 98

B.1 Cache Size and Contents . 98

B.2 Cache Operations . 101

viii

List of Tables

4.1 Bulletin board site example: posts table 44

4.2 Bulletin board site example: threads table 44

4.3 Bulletin board site example: users table 45

4.4 Maintainability Summary . 60

5.1 RUBBoS Cache Statistics . 71

5.2 RUBiS Cache Statistics . 80

5.3 Real-world run-time performance results 82

ix

List of Figures

2.1 A client request to a web server . 7

2.2 A client request to a dynamic website 7

2.3 A web system with a separate database server 9

2.4 A web system with multiple web nodes 10

2.5 A web system with multiple database nodes 12

2.6 Producer/Consumer Model of Information Flow 18

4.1 Multiple independent cache managers do not work 40

4.2 Deploy-time method of maintaining cache consistency 42

4.3 The difference between simple and placeholder dependency graphs . 47

4.4 A more complicated dependency graph 47

5.1 RUBBoS - Number of Clients vs. Number of Completed Requests . 65

5.2 RUBBoS - Number of Clients vs. Response Time 65

5.3 RUBBoS - Server CPU Utilization 67

5.4 RUBBoS - Server Memory Utilization 70

5.5 RUBiS - Number of Clients vs. Number of Completed Requests . . 74

5.6 RUBiS - Number of Clients vs. Response Time 74

5.7 RUBiS - Server CPU Utilization . 75

5.8 RUBiS - Server Memory Utilization 78

x

B.1 RUBBoS - Cache Size vs. Test Time (50 and 500 Clients) 99

B.2 RUBiS - Cache Size vs. Test Time (50 and 500 Clients) 99

B.3 RUBBoS - Number of Cached Elements vs. Test Time (50 and 500

Clients) . 100

B.4 RUBiS - Number of Cached Elements vs. Test Time (50 and 500

Clients) . 100

B.5 RUBBoS - Cache Operations vs. Test Time (50 Clients) 101

B.6 RUBBoS - Cache Operations vs. Test Time (500 Clients) 102

B.7 RUBiS - Cache Operations vs. Test Time (50 Clients) 102

B.8 RUBiS - Cache Operations vs. Test Time (500 Clients) 103

xi

List of Code Listings

3.1 Slashdot.org: Removing a story from the cache 24

3.2 LiveJournal.com: Deleting elements from the cache 27

4.1 Sample API of a cache manager . 39

4.2 Example HTML fragment from the cached element post75 45

4.3 A simple dependency specification 49

4.4 A more complex dependency specification 49

4.5 A sample array passed to an invalidation function 51

4.6 Dependency statement for the thread cache element 51

xii

Chapter 1

Introduction

As the internet matures, it continues to become more fundamental to the way our

society functions. People are increasingly demanding more personalized content

from websites. Personalized and dynamic content creates a problem for web ap-

plication developers - it is difficult to cache data, as by definition, it is dynamic

and personalized. This results either in slower response time, or the requirement

of more expensive hardware.

1.1 Background

Dynamic web applications typically rely on a “3–layer” approach. Client requests

are first received by a web server, and then passed to an application that generates

the dynamic content. The web application often interacts with a database for

the purpose of maintaining session state, or interacting with application-specific

information.

As a website becomes more popular, the load that clients place on the system

1

CHAPTER 1. INTRODUCTION 2

becomes too great for a single machine to handle. To scale incrementally (which is a

desirable objective), multiple web nodes or database nodes are added. Replication

and clustering techniques are used to allow multiple machines to act as a single

database. Since no state is stored on the web servers, clients do not have a preference

as to which web server handles their request. Thus, web nodes can scale simply by

adding more machines.

Caching is beneficial as it allows less hardware to handle the same amount of

load. Less demanding hardware requirements often results in a combination of

financial savings, and reduced request response time [KD02].

With each client receiving a personalized, unique page on a dynamic site, it is no

longer possible to cache pages in the same way as the static content. This makes

it more difficult to scale web applications using traditional caching approaches.

The easiest solution is to simply throw more hardware at the problem. However,

for reasons of both efficiency and economics, this is often not the best solution.

Performance benefits can still be gained from caching, but a different approach is

needed.

One existing caching solution is to cache full dynamically-generated HTML

pages. However, such a solution would not allow for different users to receive

different content (based, for example, on information such as their permission level,

or the contents of their shopping cart). Other solutions attempt to push caching

back to the database layer, in an effort to reduce the amount of time it takes to

process a database query.

Benefits can be gained by caching data objects, such as post-processed database

result sets. An example of this would be HTML fragments that represent posts on

a bulletin board. Some websites have recognized and implemented this need, but

CHAPTER 1. INTRODUCTION 3

they rely on a single cache manager or log monitoring process, which is a single

point of failure, and does not scale past one machine [CLL+01, CDI98, CDI+04].

1.2 The Problem

Currently, the most common way to make use of a distributed cache is to do it

manually, in an unstructured way. Items are cached manually, and application

designers need to be aware of all occurrences where the underlying data is updated,

so that the cache can be kept in a consistent state. This unstructured approach

creates a huge maintainability problem - whenever changes to the code are made,

designers need to be completely aware of everything that is cached, so they can

invalidate elements appropriately, and be assured the cache is never placed in a

state inconsistent with the underlying data.

1.3 Contributions

In this thesis, a new approach called deploy-time analysis is introduced. Ac-

cording to this method, a distributed object cache is used to cache objects across

web nodes. No single process or cache manager is used to ensure the cache is kept

consistent with the underlying data. Rather, at deploy time, the code is analyzed

for dependencies, and this information is statically written into the application.

Each time the underlying data changes, the application automatically invalidates

the corresponding cached elements.

The deploy-time method results in considerable maintainability benefits. When

changes need to be made, the deploy-time method allows for far fewer lines of code

CHAPTER 1. INTRODUCTION 4

to be modified when compared to the unstructured approach. This is especially

visible in larger applications that maintain more complex webs of dependencies.

When modifications to a system were performed, it was found that the deploy-

time method decreased the number of line modifications by at least 10% in small

systems, and by as much as 95% in a larger system.

Run-time performance tests of two different websites show that distributed ob-

ject caching offers significant benefits over solutions that do not implement caching,

and solutions that implement only database caching as shown in Chapter 5. These

benefits are recognized in the form of both reduced response time, and the ability of

the hardware to handle greater numbers of clients. Most of all, the deploy-time anal-

ysis method solves the significant maintainability penalties that are introduced by

the unstructured uses of distributed object caches. Using the deploy-time method,

application designers do not need to worry about placing the cache in an inconsis-

tent state - all invalidations are automatically generated at the appropriate times.

Furthermore, there are nearly no performance differences between the unstructured

(i.e., manually handcrafted and tuned) approach of using a distributed cache and

the deploy-time method. This demonstrates that the deploy-time method intro-

duces little or no performance overhead.

1.4 Overview

Chapter 2 gives some background to this problem, and discusses how web applica-

tions typically scale. Chapter 3 discusses existing uses of distributed object caches,

and how they attempt to deal with the problem of cache consistency. Chapter 4

presents the deploy-time method, and demonstrates the improved maintainability

it provides. Chapter 5 provides a run-time performance comparison with existing

CHAPTER 1. INTRODUCTION 5

methods. Some final conclusions are presented in Chapter 6, along with a discussion

of current limitations, and areas for future work.

Chapter 2

Background

2.1 Introduction to Web Systems

Before trying to explain why caching is necessary, it’s important to have some

preliminary understanding of how web systems typically scale. This provides a

basis of knowledge from which distributed caching can be investigated.

When someone “goes to a web page”, he or she is really using his or her computer

to issue a request to another computer. He or she is a client requesting data (the

page) from a server. To interpret and process the request, the server machine must

be running a software application called a web server. In the simplest case, the

web server accepts the request, finds the page that was requested by the client, and

sends it back to the client. This type of interaction is used for static data - web

pages, media, and other files that do not often change. An example of this type of

request is shown in Figure 2.1.

For more complex websites, the data returned to the client is not always static.

For example, on a shopping website, the information returned to the client is a

6

CHAPTER 2. BACKGROUND 7

Figure 2.1: A client request to a web server

Figure 2.2: A client request to a dynamic website

function of things they have viewed before, and things they have added to their

shopping cart. To determine what should be displayed to the client, the web server

takes the user request and passes it off to another application. This application is

responsible for generating the content to return to the client. In many cases, the

application makes use of a database to keep track of system state (for example, the

items in a user’s shopping cart). An example of this type of request is shown in

Figure 2.2.

CHAPTER 2. BACKGROUND 8

This system involves three types of servers - a web server, an application server,

and a database server. If the system is not in high demand, a single machine will

likely have no problems dealing with all the requests. As the website becomes more

popular, the processing power of the machine may become a bottleneck, and it may

be unable to cope with the load clients are placing on it.

2.2 Scaling Web Systems

The first step towards better scaling of a web system is to “remove” the application

server. When a web process passes incoming requests to an application, there is a

considerable amount of overhead involved in launching the application. This over-

head can be eliminated by embedding the application inside the web server. This

is enabled through technologies such as mod perl, PHP, and ASPs. Although this

reduces the overhead for each request, system scaling is still a significant problem

as load increases [CDI+04, LR00a].

The next step to scale a web system is to add another machine. This can be

done simply by moving the database server to a separate machine. In this way,

when a request arrives, the load is spread out over two machines. The application

server does its work, but makes requests to the database server for any database

accesses. An example of this system can be seen in Figure 2.3.

Although moving the database is fairly easy, it is not a perfect solution. Now

that the system is using two machines, it has two points of failure. The system

will cease to function if either of the two machines fails. Additionally, assuming

the website continues to grow, eventually the capacity of one of the machines will

be reached, and the site will need to grow again.

CHAPTER 2. BACKGROUND 9

Figure 2.3: A web system with a separate database server

Depending on whether the web server machine or the database machine reaches

capacity first, different solutions can be employed. The two components can be

scaled independently.

One way to grow is to purchase a bigger, more expensive machine. This has a

number of limitations. A machine still represents a single point of failure, although

more money can buy more reliability to some extent. The largest problem is that

when the capacity of the new larger machine is reached, the only option is to

purchase another even bigger and even more expensive machine. Ideally, the system

would be able to scale incrementally by simply adding additional computing power

as needed. Incremental scalability is a key concept to web system scalability, and

has fueled the growth strategies of many companies providing web services, such as

Google [BDH03, Bre01, FGC+97, OMG+05]

To scale the web servers incrementally, a number of tricks can be used to make a

group of machines appear as one. Software load balancers, hardware load balancers,

CHAPTER 2. BACKGROUND 10

Figure 2.4: A web system with multiple web nodes

or techniques such as DNS load balancing can be used to spread the load out over

multiple machines and allow the system to scale one machine at a time. The exact

technique used to scale is not important, as for the purpose of this thesis, they

all have the same result - all techniques allow multiple web servers to be used to

service the requests of clients. An example of a system with multiple web nodes

(physical web server machines) can be seen in Figure 2.4.

It is of some importance that the web server machines do not store any state.

Regardless of the method of load balancing used, it is possible that the same client

will have its requests serviced by two different web server machines on two sequential

requests. It is therefore imperative that the machine that services the first request

not store any data that is not accessible to the second machine.

It has already been discussed that state is fundamental to many dynamic sites

such as a shopping cart. The requirement of not storing any state on the web

servers simply means that the state must be stored elsewhere - either on the client

CHAPTER 2. BACKGROUND 11

machine itself (likely in the form of cookies), or more commonly, in some sort of

shared storage, like the database server.

2.2.1 Database Replication and Clustering

With multiple web server nodes handling requests from more clients, it becomes

increasingly likely that the database server will reach its capacity. Fortunately,

database replication and clustering are well understood and deployed technologies.

A replicated database consists of one (or more) master servers, with multiple

slave servers. All writes must occur at a master database. The master database

sends updates to the slave databases with varying degrees of consistency guarantees

as required by the application. Replication allows the use of many slave databases

that the web nodes can issue read queries against. An example of a system em-

ploying this technique is shown in Figure 2.5.

This buys more scalability and redundancy. More slave database nodes can be

added to respond to read requests from clients. However, with additional clients

using the system, it is likely that more write requests will also be issued against

the master database. The master must mirror these write requests to all the slaves

to keep them updated. Eventually, the slaves reach a point when their processing

time is occupied by these write requests, instead of responding to read requests.

Database clustering is a similar technique that accomplishes roughly the same

goal. Whereas replication is typically an asynchronous process, relying on the ap-

plication (or other supporting utilities) to provide failover, database clustering pro-

vides synchronous communication between database copies, and more automated

administration [Joo06].

CHAPTER 2. BACKGROUND 12

Figure 2.5: A web system with multiple database nodes

2.2.2 Database Partitioning

Even if clustering or replication techniques are employed, as a system grows, it

would be beneficial to reduce the number of database accesses. Fewer accesses

would result in less hardware to support, a system with more room to grow, or a

combination of the two.

One solution to reduce the number of queries against any one server is to par-

tition the data. This does not reduce overall hardware requirements, but rather

spreads the load around. This technique is often employed automatically in clus-

tering technologies [Joo06]. For example, there may be little need for user data,

accounting data, and authentication data to be stored in the same database, as

they may never be accessed at the same time. Splitting them up allows the load

on the database to be split into multiple groups, reducing the percentage of write

CHAPTER 2. BACKGROUND 13

requests that each slave needs to perform.

2.2.3 Data Caching

Database partitioning does nothing to reduce total hardware requirements. Addi-

tionally, each type of partitioning has its limits. Data can only be partitioned so far

using vertical partitioning, while horizontal partitioning limits the types of queries

that can be performed in a timely manner. Eventually, one must find an alternative

solution to reduce database load. This alternative solution often comes in the form

of data caching. If database results can be stored somewhere, then the web nodes

will not need to query the database as frequently. This assumes that more clients

are reading the data than writing it, which, although dependent on the specific

application, is very common in web applications [CDI+04, AKR01, ACC+02].

Some Key Caching Concepts

At this time, it is useful to reiterate and explicitly state some concepts that were

previously alluded to. Dynamic web environments involve state. All the data

composing a system can be thought of as the “state” of that system. Certain

types of state, such as a session identifier, can often be stored on client machines.

Other types of data, such as a customer list, product list, employee list, or an order

history, are often stored on the server for reasons of security and practicality. This

type of information could be stored simply as long-living variables in some sort of

shared memory, text files on a shared hard disk, or in a database. This data is most

frequently stored in a relational database due to a number of advantages offered by

modern relational database, including:

• Easy accessibility from multiple machines

CHAPTER 2. BACKGROUND 14

• Incremental scalability through clustering or replication

• Referential integrity

• Transactional integrity

• Standard method of inserting/retrieving data (SQL)

When a web server starts caching data for performance reasons, there become

two copies of the data: One copy in the database, and another copy in the cache. In

a complete system, there may be many levels of caching, but the level of interest for

this discussion is the caching implemented by the web application itself (as opposed

to proxy caches, data cached by the database in memory before writing it to disk,

processor caches, or caches implemented by internet service providers, although

database caches are examined later on from a run-time performance perspective).

The data in the database will be referred to as the “physical” copy of the data,

while the data in the cache will be referred to as the “cached” copy.

Shared storage could be implemented through means other than a database.

However, due to the relative ubiquity of databases in web environments, and the

advantages stated above, the use of the term “database” will be applied to describe

any type of shared storage.

Generating Static .html Files From Dynamic Data

One method of reducing database queries is to generate static .html files each time

the database changes. This allows database queries to be eliminated, as only static

pages are being requested. Additionally, fewer web nodes are needed, as static

content can be served much faster than dynamic content since no application is

CHAPTER 2. BACKGROUND 15

invoked. However, this method has a number of drawbacks. Dynamic features such

as authentication cannot be enforced. The largest drawback is that many sites

(such as shopping carts) generate content based on state (such as “items in the

shopping cart” or “user permission level”), and static content cannot be used in

this case.

Materialized Views

Materialized views are a caching technique that occurs at the database level. Ma-

terialized views generate “virtual tables” from other data in the database. The

materialized view is the result of a SQL query that is cached. Materialized views

can be updated at specific time intervals, or whenever the data they depend on

changes. While they can be useful, materialized views only operate at the database

level, and the only benefit they provide is to reduce the execution time of com-

plicated queries. Materialized views do not help out with caching post-processed

data, as in the previous method, and thus the scope of their applicability is limited.

Query Caches

Query caches are another database caching technique that can also be used to help

an application scale. A query cache is typically a middleware layer that stores the

results of one query so that the query does not need to be processed again in the

future. Unfortunately, these are difficult to keep updated [ASC05]. Additionally,

they also may have a storage capacity limit, as they are typically 32-bit processes

running on machines with 4GB of memory. This limit may be acceptable for

smaller websites, but larger systems utilize and cache significantly more than 4GB

of data. While any query cache is usually better than nothing, a query cache can

CHAPTER 2. BACKGROUND 16

actually hurt performance due to the overhead of maintaining it when a particular

site experiences a high number of updates [Fit06].

2.2.4 Generic Object Caching

Previous methods have looked at caching either HTML pages or database queries.

To avoid the discussed drawbacks of these methods, it is desirable to be able to cache

any type of data. A desirable solution would be somewhat of a hybrid approach.

Caching just HTML is too broad a technique, as it does not allow websites to still

be dynamic. However, caching at the database level is too narrow. Often times,

the application is responsible for processing query results after they are returned.

It would be convenient to be able to perform this processing in the application,

then cache the result.

Allowing application designers to cache any type of data adds flexibility. It

allows the system to cache the raw result sets of database queries, to cache processed

versions of query results, to cache full HTML pages, partial HTML pages, variables,

or any object between these extremes. This flexibility can be used to reduce not

only database load, but application processing time as well.

To be able to cache any type of data, other caching techniques must be exam-

ined. The most obvious way to cache generic data is inside web server processes. It

is relatively easy to create a system where each instance of the application caches

data, so subsequent requests do not need to issue database queries or perform com-

plex processing. This would be implemented through the use of long-living variables

inside the application.

Although easy to implement, this results in each web application process having

its own cache. Web server nodes typically run multiple instances of web application

CHAPTER 2. BACKGROUND 17

processes per machine, so each machine has multiple copies of a cache.

Multiple copies of a cache on the same machine results in wasted memory, and

a higher percentage of cache misses, as each request can only interact with one

cache. The obvious next step is to share caches amongst the processes, so that each

machine only has one cache.

This approach still results in multiple duplicate caches. In a large system, there

are likely many web nodes. Each of these web nodes would have its own cache,

and the system again has duplicated caches with low hit rates. The next step is to

move to a distributed cache, where every process on all of the machines can share

the same cache.

Memcached is a distributed object cache [Fit04]. Running Memcached involves

starting a process on one (or more) machines with a specific amount of memory

allocated to that process. Applications are made aware of the machines where

Memcached is running, and can interact with Memcached through an API provided

in many languages (Perl, PHP, Python, Ruby, Java, C#, C, or via an open protocol)

[Fit06, Fit04]. Objects are stored and retrieved from the cache with a “key” (an

identifying string). The key is hashed to a particular server (as Memcached can run

on multiple servers), where actions on that key are performed. Memcached is used

on a number of popular websites, such as Slashdot.org, LiveJournal, Digg.com, and

Wikipedia.org.

2.3 Producer/Consumer Model of Information Flow

Before continuing this discussion with an examination of existing implementations

of Memcached, it is useful to think about the situations in which Memcached could

CHAPTER 2. BACKGROUND 18

Figure 2.6: Producer/consumer model of information flow

be beneficial. Section 2.2.4 stated that not being able to cache any type of object

(variables, full HTML pages, partial HTML snippets, database result sets, etc.)

was one of the major drawbacks of other caching implementations. However, upon

closer examination, it can be seen that it is not beneficial to be able to cache any

type of object - only objects that interact with a database at some level.

In a web application environment, data flows between two entities: clients,

and the database. In any given request, one of these entities is the producer of

data, and the other is the consumer. For example, when users make posts on a

bulletin board, they “produce” the content, and it is “consumed”, or stored, by the

database. When a customer looks at a shopping cart, the database produces the

contents of the shopping cart, and it is presented to the user. Any state maintained

by the system must be maintained by the database, as discussed in Section 2.2. An

example of this interaction is shown in Figure 2.6.

It should be noted that during any single request, both parties can act as both

the producer and consumer. However, these cases are typically two-step processes.

For example, when a user adds an item to their shopping cart, this information is

CHAPTER 2. BACKGROUND 19

be written to the database (part 1), and then read from the database (as part of

the same HTTP request) to display the user’s current shopping cart.

Sitting between the producer and consumer is the web application. The web

application is responsible for adjusting, processing, or formatting the data. By

looking at a web application in this way, it can be seen that any information that

the system would want to cache must, in some way, be involved in a database

interaction. Data is likely processed before or after it is written to/read from the

database, but any data that the application needs to access must either originate

from, or terminate at, the database. This is important, as it provides an intuitive

view of what Memcached does, and how it is able improve performance.

2.4 Caching for Temporary Storage

One additional way a distributed object cache can be used is to help eliminate

database writes. This is quite appealing from a performance and scalability point

of view, as writes require database locks, which may result in contention, caus-

ing decreased performance. This section discusses the use of Memcached in this

manner. The purpose for this discussion will be seen later in Section 4.1.3, but

it is useful at this point to explain the issues involved with using Memcached for

temporary storage.

There are a number of situations where a database is simply used as a “scratch-

pad” for temporary data. The most common use of this is sessions. Sessions

are used to track individual client state. Clients are provided with some unique

identifying string that is long enough to ensure it is unlikely to be guessed. The

client then must provide this string to the server on each request. This often occurs

through the use of cookies.

CHAPTER 2. BACKGROUND 20

Rather than keeping track of session information (such as “last visited page”,

“number of requests”, or “permission level”) through a database as is usually done,

a distributed object cache can be used. Individual sessions are not accessed by

multiple users, and thus concurrency to the same session data is not a concern.

The ACID semantics provided by databases require overhead to implement, and

are not necessary for session tracking.

Writing session information to Memcached would save a significant number of

database accesses. One problem with this concerns ejecting session data from the

cache as part of a cache replacement policy. If the cache were to run out of room,

session data could be ejected from the cache while it is still in use. Fortunately,

Memcached can be configured such that data is never ejected from the cache unless

explicitly deleted. This is not a problem assuming the cache is large enough to hold

all the session data (which is not an unreasonable assumption).

A greater drawback to this method is that machines storing session information

can crash. Previous discussions involved the use of Memcached as a cache - a “fast

duplicate” copy of data. By using Memcached as a session store, it would be the

only place this information would be stored. If the Memcached server were to

crash, session information would be lost. There are a number of tricks that could

be employed, such as duplicating the cache, but Memcached was never designed to

be a completely reliable data store - just a fast cache. It does not provide reliability

guarantees or any fail-over mechanisms.

That being said, Memcached can be, and is, used as a session store on a number

of high-profile sites such as Digg.com, which receives over 400 million hits each day

[Tim, Das]. System designers simply need to be aware that if a Memcached server

crashes, all sessions stored on that server will be lost. If a crash were to occur,

these users would be required to log in again. In the case of Digg, this is not a huge

CHAPTER 2. BACKGROUND 21

problem, as all pages can still be read without logging in - it is only for moderating

duties that an account is needed. Depending on the application in question, it may

be feasible to use Memcached as a store for temporary data, further eliminating

both database reads and writes.

2.5 Summary

This chapter provided an overview of how a single website can scale across multiple

server machines to deal with increasing client load. Although one could always

purchase more machines to help a website continue to scale, it is often significantly

cheaper to implement caching techniques to reduce the load on existing hardware

(and thus allow that hardware to serve a greater number of client requests). In

larger environments where multiple web server machines are needed, it is advanta-

geous to share a single cache amongst all the machines. Memcached is an example

of this technique, which is known as Distributed Object Caching. The following

chapter examines how Memcached is used.

Chapter 3

Existing Scalability Solutions &

Related Work

Chapter 2 discussed how scalability was important in web systems, and how Mem-

cached, a distributed object cache, was able to improve scalability through caching.

This chapter serves two purposes. First, it examines existing implementations of

Memcached in Section 3.1. During this examination, the problem of cache consis-

tency is discovered. The second purpose of this chapter is to introduce some related

areas that could help solve this problem of cache consistency.

3.1 Existing Implementations of Memcached

This section provides an examination of the code from a number of popular websites

that make use of Memcached. The purpose of this examination was to identify how

existing large websites deal with Memcached, in the hopes that a useful architecture

for distributed object caches could be identified.

22

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 23

3.1.1 Slashdot.org

Slashdot.org is a popular technology news website. It is programmed in Perl, and

creates a database wrapper object to interact with its database. This database

wrapper abstracts the differences between different databases (theoretically; at

the current time, only MySQL is supported). It also allows for activities such

as application-level database query logging.

Most (but not all) of the Memcached references in the slashdot code are con-

tained in the MySQL wrapper, located in Slash/DB/MySQL/MySQL.pm. There is

one global Memcached object defined in this file. This file also contains a function

getMCD() that is used to return a reference to the global Memcached object. In

this way, Memcached can be enabled or disabled all in one location, simply by mod-

ifying the getMCD() function. References to the Memcached object are interleaved

throughout the code.

Usage of the Memcached object happens at various places throughout the code.

For example, the function setStory_delete_memcached_by_stoid() is responsible

for deleting a story from the cache, given a story ID. This piece of code can be seen

in Code Listing 3.1.

Of particular interest here is the fact that there are multiple keys that need to

be cleared for each story. The three keys to delete from the cache are:

• $self->{_mcd_keyprefix}:st:$stoid

• $self->{_mcd_keyprefix}:stc:$stoid

• $self->{_mcd_keyprefix}:str:$stoid

These three keys represent the story data, the chosen topics, and rendered topics

for a particular story. Whenever any aspect of the story changes, these three keys

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 24

Code Listing 3.1: Slashdot.org: Removing a story from the cache

my @mcdkeys = (

"$self ->{ _mcd_keyprefix }:st:",

"$self ->{ _mcd_keyprefix }:stc:",

"$self ->{ _mcd_keyprefix }:str:",

);

for my $stoid (@$stoid_list) {

for my $mcdkey (@mcdkeys) {

The "3" means "don ’t accept new writes

to this key for 3 seconds ."

$mcd ->delete (" $mcdkey$stoid", 3);

if ($mcddebug > 1) {

print STDERR scalar(gmtime) .

"$$ setS_deletemcd deleted ’$mcdkey$stoid ’\n";

}

}

}

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 25

need to be cleared from the cache. The setStory_delete_memcached_by_stoid

function is called nine times in the Slash/DB/MySQL/MySQL.pm file, indicating

that there are multiple locations in the code where aspects of a story can change. If

any new features were added that changed story information, the person adding the

feature would need to be aware this function existed, and call it at the appropriate

time to guarantee the cached data was not inconsistent with the underlying story

data.

This method of explicitly clearing individual cache keys is common practice

throughout Slashdot’s code. Whenever underlying data is changed in the database,

programmers must explicitly invalidate the appropriate cache keys.

3.1.2 Wikipedia.org

Wikipedia.org is a website that strives to create a community-driven, collabora-

tive encyclopedia. Similar to Slashdot, Wikipedia uses a wrapper class (includes/-

Database.php) around a MySQL database. Unlike slashdot, this database object

does not contain any references to Memcached.

Wikipedia provides an easy mechanism to enable or disable Memcached through

the use of the LocalSettings.php file. In this file, the variable $wgUseMemCached = true;

may be enabled or disabled. Unfortunately, this variable must then be manually

checked at each instance where Memcached is used.

In contrast to Slashdot, where the keys used in Memcached are selected and not

maintained anywhere, Wikipedia has chosen to keep track of the keys that are used

in a file called Memcached.txt. A portion of this file is shown in Appendix A. Of

particular interest is the fact that the file keeps track not only of where each key is

set, but also the functions in which that key is cleared.

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 26

The only structure imposed on the use of Memcached is through the text file

in Wikipedia’s code base. The text file is used to help designers be aware of all

the cached elements, so they will be less likely to place the cache in an inconsistent

state.

3.1.3 LiveJournal.com

LiveJournal.com is a website where people can write about their lives, or other

items of interest. It is especially interesting, as the creators of LiveJournal.com

were also the creators of Memcached. They realized that a distributed cache could

improve the scalability of their site, and so they created one [Fit04].

LiveJournal’s database use is slightly different than Wikipedia and Slashdot.

LiveJournal partitions their database into multiple independent “clusters”, where

each cluster uses replication. The livejournal/cgi-bin/ljdb.pl file is called when ac-

cess to a database is necessary. It has functions such as get_cluster_master() and

get_cluster_reader() that are responsible for returning the appropriate references.

LiveJournal uses a wrapper object (livejournal/cgi-bin/LJ/MemCache.pm) around

Memcached. This wrapper allows for the easy configuration and enabling/disabling

of Memcached.

With the exception of the wrapper object, LiveJournal’s use of Memcached is

similar in style to Wikipedia. It lacks the robustness of a mature, well-developed

architecture. Memcached does not appear to fit into the system architecture in any

way, only that numerous references to Memcached appear throughout the code.

LiveJournal also suffers from the problem of having to delete multiple cached objects

at the same time. Numerous examples of this can be found throughout the code,

with one example shown in Code Listing 3.2. This example was taken from the

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 27

Code Listing 3.2: LiveJournal.com: Deleting elements from the cache

memcache clearing

LJ:: MemCache :: delete ([$csid , "sasi:$csid"]);

LJ:: MemCache :: delete ([$_ , "saui:$_"]) foreach @$uids;

merge_schools() function in livejournal/cgi-bin/schoollib.pl:

LiveJournal again matches the organization of Wikipedia by also using a text

file to keep track of the used keys. The text file used by LiveJournal is called

livejournal/doc/raw/memcache-keys.txt. In addition to the name of the key, this

text file provides a short description of what each key contains. Again, the only

structure imposed on Memcached in the LiveJournal code base is the use of a text

file to maintain a list of what cache keys are used.

3.2 Motivation

As was observed by looking at existing implementations of Memcached, it is typ-

ically implemented as somewhat of a “hack”. Its use is completely unstructured.

References to Memcached appear scattered throughout the code, with no formal

method used to keep track of when cache elements are set or deleted. The exam-

ined implementations would all be easily “broken” (the state of the cache would be

inconsistent with respect to the underlying physical data) if the system were to be

extended without full understanding of the dependencies between the physical and

cached data.

For example, on a bulletin board website, assume one particular cache element

stores a list of posts to display on the bulletin board. Now, suppose functionality

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 28

was added to the system to allow editing of a post’s content. The programmer

adding this functionality would need to be aware of the cache, so when the new

content is saved, the cache element storing the list of posts can be invalidated, as

the underlying content had changed. If the programmer was not aware of this, the

cached element would not be invalidated, and the bulletin board would still display

the old data even after the content of the post had changed. To further complicate

matters, other cached pages could also rely on this data. For example, a “list of

recent posts” page may also be cached, and thus would also need to be invalidated.

Although the use of a text file to maintain a list of keys may be beneficial, it

also introduces an additional level of complexity around a project. Each developer

must be aware of the list, and aware of all the relationships between the cached

objects and their physical data representations. Any failure to clear the cache

after performing an update to physical data can cause the cache to enter a state

inconsistent with the physical data.

In general, there are no formal solutions that solve the consistency problems

that are encountered when using a distributed cache. This makes it very difficult

to use Memcached in large systems. A quick review of some existing technologies

may suggest useful solutions to this problem.

3.3 Related Work

Distributed object caching for web applications is a relatively new area, and thus

there is no work directly associated with it. Fortunately, it overlaps with a number

of existing areas where extensive study has been conducted. Many of these areas

provide invaluable research concepts that can be extended and enhanced to function

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 29

with a distributed object cache in a web environment. These related areas, and

contributions they provide, are mentioned in this section.

3.3.1 Database Caches

When a web application is viewed as a set of independent components as discussed

in Section 2.1, it can be seen that there are three main components: the database,

the web server, and the application. Each of these components contributes towards

the total time needed to generate the webpage. This section discusses methods

that focus on speeding up the database part of the web system, independent of the

application or web server.

Query Caches

A query cache is an addition to a database that is transparent to the application,

or any other client. Its purpose is to cache the results of database queries so future

execution of those queries are faster when run by the application. Query caches

can appear either as a middleware layer between the application and the database

[LKM+02], or embedded in the database itself [ASC05, MyS06b].

Similar to a distributed object cache, query caches must deal with invalidating

cached data when updates occur. Since the underlying data is the same both in a

query cache and in a distributed object cache, the methods used to identify what

cached elements need to be invalidated are somewhat similar. One popular method

is to clear the entire query cache for a complete table any time that table changes

[MyS06b]. Clearly this approach often results in invalidating a significant amount of

data that is not invalid, which is why finer-grained approaches are more appealing

[ASC05].

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 30

Materialized Views

Materialized Views are similar to a query cache, in that they cache database result

sets. However, a materialized view acts as a standard database view, and not a

transparent database cache. A view is a “computed table” - it displays the result

of a pre-determined query. A materialized view can be thought of as a cache for

a view. Depending on the application, a materialized view can be updated at set

intervals, or any time the underlying data changes.

One interesting study implemented materialized views on the application side of

a web system, rather than on the “database” side. This improved performance, as

it prevented the application from having to connect to the database server [LR00b].

Cache tables are a similar method of database caching, where table data can be

stored in multiple caches closer to where the data is needed (for example, directly

on the webserver) [ABK+03]. Materialized views and cache tables utilize the same

invalidation techniques as query caches, and thus provide the same value to dis-

tributed object caching as query caches.

3.3.2 Web Caches

Web caches consist of one or multiple caches sitting in front of the webserver,

closer to the client requests. If the web cache contains the full HTML page the

client is looking for, then there is no reason for the request to arrive at the web

server [YBS99, FCAB00, Wan99]. There are often multiple web caches in a web

system. Many times, web caches are operated by ISPs (internet service providers)

in an attempt to reduce the amount of network traffic they send outside of their

network. If an ISP can cache popular files, they can significantly reduce the number

of requests they must make to webservers.

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 31

Web caches are most applicable to static content. However, a number of at-

tempts have been made to use web caches for dynamic data, and these are discussed

in Section 3.3.3.

3.3.3 Dynamically Generating Static .html Files

The web caches and web caching algorithms discussed in Section 3.3.2 are only

useful for webpages that rarely change, since every time a page changes, all the

caches need to be updated, or else they are providing outdated information. For

this reason, web caches are usually only used for static .html pages or media files,

and not dynamic pages. Dynamic pages are usually marked as non-cacheable by the

sites that generate them, as they often change very frequently (possibly generating

unique data for every request).

A number of websites, such as Wikipedia, make use of their own caching servers

[Wik06]. These cache servers are specifically designed to work with dynamic data,

and only cache the web pages for as long as the underlying data remains constant.

Generating static content and allowing it to be cached is an extension of the work

done with standard web caches.

One method that was proved with the website for the 1998 Winter Olympic

Games is called DUP (Data Update Propagation) [CDI98, CDI+04]. This method

makes use of an ODG (Object Dependency Graph) that relates physical data el-

ements to the cached objects that depend on them. A series of linked lists and

hash tables inside of a cache manager (a long-running daemon process) are used

to maintain this mapping. Cached objects are registered with the cache man-

ager, and the application informs the cache manager of every update via API calls

[CDI98, CDI+04].

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 32

Another method of dynamically generating static files from dynamic content is

discussed in [CLL+01]. This method is more a passive method that can be used

to enhance an existing application. This method consists of a “sniffer” and an

“invalidator”. The sniffer collects information about the database reads caused

by each page, and uses this information to build a “request-to-query” map. The

invalidator is another application that monitors the database update logs. When

the invalidator recognizes database updates that invalidate existing cached pages,

the invalidator is responsible for invalidating those pages.

Both of these methods provide a number of excellent ideas on maintaining cache

consistency. However, they both fall short on several key aspects. The major prob-

lem with both methods is that static content is being generated and cached. There

are a number of applications where generating fully static content is appropriate.

One example where this method is appropriate is with the Olympics website. For

this site, each person that views the website receives the same content (medal

counts, event results, etc).

In more dynamic environments, each user could receive a slightly separate vari-

ation of the pages depending on parameters like their permission level, previous

spending history, what other users with similar tastes have recommended, or other

application-specific parameters. The key difference is that the page is still dynamic.

There may be elements of the page that are the same as other requests, but the

complete page itself is unique.

Another major issue with existing methods concerns their scalability. Both

methods involve some sort of process, such as sniffer/invalidator processes, or a

cache manager process. As a site scales to multiple machines, duplicated processes

and multiple log files would require significant changes to be made to these archi-

tectures. In fact, the method proposed in [CLL+01] specifically states that their

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 33

configuration only has one DBMS. Despite these limitations, the ideas presented

through these methods provide excellent foundations on which to build a cache

consistency model for distributed object caches.

3.3.4 Hybrid Strategies

Rather than trying to generate static .html files from dynamic content, or only re-

lying on database caching techniques, there are a number of existing methods that

aim to improve performance through both strategies [YFIV00, SKRP01]. Although

combining both caching methods appears to be an attractive approach, it appears

that these methods often feature overly complex methods of specifying dependen-

cies, and do not easily scale to environments with multiple servers. Furthermore,

it is unclear whether the performance benefits that can be obtained from a hybrid

strategy are significantly greater than one of the other approaches. The reason

for this is likely due to the overhead that is associated with trying to find which

combination of caching strategies provides an optimal solution.

3.4 Summary

This chapter examined how Memcached is used in a number of existing websites.

The unstructured nature of these implementations poses a significnat maintainabil-

ity challenge, as application developers need to be aware of what underlying data

each cached element depends on to ensure the cache remains consistent with the

underlying data. Existing systems that dynamically generate static .html files pro-

vide a number of interesting algorithms for dealing with this consistency problem.

In the following chapter, these existing algorithms are examined, and a new method

CHAPTER 3. EXISTING SCALABILITY SOLUTIONS & RELATED... 34

to deal with cache consistency is presented.

Chapter 4

Cache Consistency

The major problem when using a distributed object cache involves invalidating the

data in the cache (either deleting it, or marking it as expired). Once an object

is cached, that object typically stays in the cache until it is removed. Objects

that are cached can depend on one or more physical data elements (typically a

row or column in a database). When one of these physical data elements changes,

all the cached elements that depend on that data element must be invalidated.

Additionally, if any other cached elements depend on the expired element, they

must also be invalidated. Determining what elements in the cache to invalidate is

a difficult problem.

A number of existing web caching models were discussed in Section 3.3. Each

of these models have an associated consistency protocol [Kaw04]. The models

with the most useful consistency protocols were presented in Section 3.3.3. These

models were used to generate static .html files. They are the most useful models

for use with a distributed object cache because they were also designed to work in

a web environment with dynamic webpages. Although generating static .html files

35

CHAPTER 4. CACHE CONSISTENCY 36

is not sufficient for use in applications making use of Memcached, similar cache

consistency concepts can be applied.

This chapter discusses the shortfalls of different aspects of existing models, and

presents a new model, the “deploy-time” dependency analysis method, that solves

these problems.

4.1 Problems with Existing Models

There are a number of different models that are used to maintain cache consis-

tency in a web environment. The shortfalls of these models lead naturally into the

development of the deploy-time method, which is introduced in Section 4.2.

4.1.1 Log Monitoring Systems

One approach to creating an invalidation protocol involves examining database

query logs, such as in [CLL+01]. When the application issues a query to the

database causing data to be updated, that query shows up in a log that is main-

tained by the database. This model was originally built under the assumption that

caching would reduce the load against the database to a level so low that it could

be handled by one database server. Under larger application workloads, this is not

possible. Additionally, having only one database node results in a single point of

failure, and if possible, such a situation should be avoided for reliability purposes.

The ideal type of system setup is shown in Figure 2.5.

With the system shown in Figure 2.5, the master database is the database

responsible for performing all “update” requests. As shown, this setup does not

appear to cause a problem to the “update log monitoring” technique of invalidation.

CHAPTER 4. CACHE CONSISTENCY 37

However, under a failover scenario, one of the slave machines becomes the master,

and all write requests are then be performed on that machine. The log monitoring

technique does not implicitly have any notion of “failover recovery”. Although it is

possible to develop a log monitoring application that supports a failover technique,

there is significant difficulty in doing so.

One additional problem in this situation is caused by the possibility of cache

delays. Update queries performed by the database would likely be performed before

the log entry for that update query is written. As such, there is the possibility that

read requests performed very shortly after a write request may return stale data.

Although such a delay would be very small, there may be some applications where

it would be unacceptable.

4.1.2 A Cache Manager

The next approach that aims to provide a functional invalidation protocol utilizes a

cache manager [CDI98, CDI+04]. Rather than using a process that simply monitors

query logs, this method requires a process to act as a “Cache Manager”. The

cache manager stores a dependency graph, linking the cached data elements to the

physical data they depend on.

A small example program that uses a cache manager is shown in Code List-

ing 4.1. With this example, a cache element of “thisKey” is set to a value of

“thisValue”. The cache manager is informed that the cache element depends on

two database values (table.col and table2.col4). Some time later, the cache man-

ager is informed of an invalidation to table.col (either through code, or through a

database trigger), and a database query is issued that modifies table.col. The cache

manager is responsible for removing “thisKey” from the cache.

CHAPTER 4. CACHE CONSISTENCY 38

This solves the problem in the previous method where a cached element is still

present in the cache after the physical data has been updated. Here, the data in

the database is not updated until the cached element is removed. Additionally, this

is an intuitively attractive system. One may even imagine the case where the cache

and cache manager are combined, resulting in a “dependency-aware cache”.

Unfortunately, this method has its own problems. If the cache manager is

a single process running on a single machine as in [CDI98, CDI+04], reliability

becomes the key problem. If the machine running the cache manager process fails,

then all the dependency data will be lost. As such, nothing in the cache will ever

get invalidated, causing the website to stop displaying updates. The cache manager

is now the single point of failure.

If, on the other hand, a new system is developed where a highly available cache

manager is designed (which is a challenge with its own set of problems), performance

may become an issue. With a highly available cache manager, one could imagine a

cache manager process running on multiple machines. Each time a new dependency

is set, the cache manager must write that dependency to all nodes. If it does not,

and a single node fails, dependency information would be lost, and the cache could

be placed in an inconsistent state (since updates would not cause the necessary

invalidations). Although such a system could work, the problems outlined and the

unnecessary complexity of the system make it a poor choice. As will be seen in

Section 4.2.6, the deploy-time method offers a more attractive alternative while still

maintaining the benefits of this method.

CHAPTER 4. CACHE CONSISTENCY 39

Code Listing 4.1: Sample API of a cache manager

$cacheManager ->setDependencies (" thisKey", "table.col ,

table2.col4 ");

$cache ->set(" thisKey", "thisValue ");

#... other application code here..

#This query causes an invalidation of thisKey ,

#since thisKey depends on table.col

$cacheManager ->update (" table.col")

$db ->execute (" update table set col =5");

4.1.3 Distributing the Dependency Graph

To combat the problem of the system’s dependency graph being a single point of

failure, it is necessary to distribute it. Rather than building a highly available cache

manager, one could simply run multiple copies of the cache manager application on

different web nodes. If each web node had its own cache manager, then each web

node would be able to issue cache invalidations at the appropriate times.

Unfortunately, the fact that web servers must be stateless comes into play. An

example of this can be seen in Figure 4.1. In this figure, the client makes a request

to server X and sets a cache dependency “thisKey”. “thisKey” is stored in the

cache, and the data it depends on is noted in the cache manager on server X. Later

on, that same client makes a request to server Y that should cause an invalidation.

However, since the dependency was set on server X and is stored in server X’s

cache manager, server Y is unaware of the dependency, and thus would not clear

CHAPTER 4. CACHE CONSISTENCY 40

Figure 4.1: Multiple independent cache managers do not work

the cache.

Storing the Graph in Memcached

From this discussion, it can be seen that not only are multiple copies of the cache

manager needed, but they each need to be synchronized and they need to store the

same information. This sounds similar to the function performed by Memcached.

Memcached runs on multiple nodes, and allows for stored data to be accessed by all

web nodes. Unfortunately, the data is not stored reliably - if one of the Memcached

nodes fails, then all the data stored in that node is lost. The data would be lost

because data stored in Memcached is not written to disk, and it is not mirrored

across multiple nodes. This lack of redundancy is not a problem if the data stored

in the cache is simply a copy that can be fetched quickly, but it is a problem if we

are using the cache as a primary data store (similar to Section 2.4).

CHAPTER 4. CACHE CONSISTENCY 41

Storing the Graph in a Database

What is really needed is a reliable distributed area that could be used to store

dependencies. For all other requests, a database is used to serve this purpose.

However, as one primary purpose of the cache is to reduce database queries, it is

counterproductive to use the database to store metadata for information that is

stored in the cache.

4.2 Deploy-Time Dependency Analysis Model

A working dependency graph is necessary for proper operation of the cache. There

must be multiple copies of the graph to eliminate a single point of failure, and

each copy must be complete at all times so that updates to any node cause the

proper invalidations. To accomplish these goals, the fact that application source-

code is relatively static can be exploited. Additionally, whereas a cache manager

builds up its dependency database gradually on a per-request basis at run-time, the

deploy-time method has a full dependency graph before the application is started.

4.2.1 Method Overview

This method works on the principle that all possible dependencies can be identified

before an application is published to the live web servers. Before the application

code is deployed, the code can be analyzed, and the dependencies identified. These

dependencies can then be statically written into the source code of each web node.

In this way, each web node can be aware of all the dependencies involved by every

update, and thus can issue cache invalidations as appropriate. The concept of a

“cache manager” still exists, but it is no longer a process - just an object residing

CHAPTER 4. CACHE CONSISTENCY 42

Figure 4.2: Deploy-time method of maintaining cache consistency

on each web node that is aware of all dependencies that are caused by any possible

update.

An example of this method is shown in Figure 4.2. This figure shows a single

instance of the application with its “cache manager”. Assume all database requests

are issued through a database wrapper. If the request is a write request, the cache

manager is alerted, and is aware if any invalidations are necessary. If they are, the

necessary invalidations are performed, and then the writes to the database occur.

If the database wrapper receives a read request, it checks Memcached to see if the

object is present, and if not, retrieves and processes the appropriate data from the

database (then storing it in Memcached).

CHAPTER 4. CACHE CONSISTENCY 43

4.2.2 Limiting the Size of the Dependency Graph

The number of possible cached objects is potentially enormous in a large applica-

tion. The number of stored objects is usually dependent on the amount of data

managed by the system. For example, in a bulletin board environment, there may

be one cached object for each thread (a list of posts), in addition to one cached

object for each post.

The potential size of the dependency graph presents two problems. First, it

is not realistic to expect the cache manager to keep track of all dependencies for

all individual objects. This exponential relationship would quickly cause the size

of the cache manager to grow to a very significant size and dwarf the rest of the

application.

The second problem relates to storing new information in the graph. Each

copy of the graph (one copy per web node) contains information on all possible

dependencies that can occur in a system. When new data is inserted into the

database, such as a new post on a bulletin board, it too has dependencies. The

system cannot inform all web nodes that a new dependency has been added, as this

would require updating the statically-written dependency information.

The solution to both these problems is to specify the dependency information

generically enough so that it can be used to dynamically calculate all possible

combinations of cached data. This is best demonstrated with an example. Assume

a bulletin board website has a database table “posts” with the information shown

in Table 4.1.

The posts table contains five columns: postID, threadID, postedByUserID, con-

tent, and date. The postID column is used to uniquely identify each row. The

postedByUserID and threadID columns are “foreign keys” - a database term to

CHAPTER 4. CACHE CONSISTENCY 44

postID threadID postedByUserID content date

...

75 12 126 This is a post 2006-10-20 16:20:00

...

Table 4.1: Bulletin board site example: posts table

threadID subject

... ...

12 This example thread probably contains posts

... ...

Table 4.2: Bulletin board site example: threads table

denote that entries in this column depend on entries in another table. In the case

of postedByUserID, assume the column is linked to the unique userID field from

the “users” table. The last columns, content and date, contain the actual content

that the post contains, and the date it was made on.

Also assume that there is a “threads” table that groups together a number

of bulletin board posts into a single logical thread. The threads table contains

the information shown in Table 4.2. Lastly, assume that a users table exists and

contains the information shown in Table 4.3.

A pre-compiled HTML version of the post could be stored in a cache element

with a key “post75”. A sample version of the value for this key is shown in Code

Listing 4.2

The cache element post75 depends on the row in the posts table with ID 75.

Whenever that row is modified, possibly due to the user editing the post content, or

CHAPTER 4. CACHE CONSISTENCY 45

userID name registrationDate

...

126 John Smith 2006-09-26 12:00:00

...

Table 4.3: Bulletin board site example: users table

Code Listing 4.2: Example HTML fragment from the cached element post75

<div class=" postHeader">Posted By: John Smith

Posted at: 4:20pm on October 20, 2006

</div >

<div class=" postContent">

This is an example post

</div >

CHAPTER 4. CACHE CONSISTENCY 46

an administrator deleting the row, then the cached element should be invalidated.

Rather than storing the exact dependencies, we must store dependencies in such

a way that the ID value of “75” can be dynamically assigned. For example, the

dependency “post[postID]” can be used to denote any cache element of the form

“post[postID]”, where [postID] is a placeholder for the actual postID. In this way,

the cache keys are generic enough to deal with new posts being added at any time,

and they do not need to store information for each individual post.

This method requires that extra information is known at the time of invalida-

tion. In the simple example shown in Code Listing 4.1, it was only necessary to

know the table/column combination to trigger an update. By allowing the depen-

dency graph to contain variable placeholders, it becomes necessary to fill in these

placeholders with actual values at the time of invalidation. This is shown graphi-

cally in Figure 4.3. In Figure 4.3(a), a dependency is created directly from the posts

table with postID 75 to the cached element with the name post75. In Figure 4.3(b),

all post[postID] cache elements are dependent on their corresponding entries in the

posts table.

To further complicate this example, an additional cache element can be created.

Assume that the cache element thread[threadID] is added. This cache element will

contain the pre-compiled HTML for an entire page of posts. This cache element

will depend on all of the posts that belong to that particular thread. It will be seen

in Section 4.2.3 how this relationship is maintained, but for now, it is simply used

as an example to demonstrate that a cache element may depend on other cached

elements. This relationship can be seen graphically in Figure 4.4.

CHAPTER 4. CACHE CONSISTENCY 47

(a) A simple dependency

graph

(b) A dependency graph with

placeholder variables

Figure 4.3: The difference between simple and placeholder dependency graphs

Figure 4.4: A more complicated dependency graph

CHAPTER 4. CACHE CONSISTENCY 48

4.2.3 Invalidating Complex Cached Elements

The more generic a cached element is, the more underlying data it depends on. In

some cases, the relationship between an underlying data element and a cache entry

is not immediately obvious. This can be demonstrated using the same example as

above, and the same HTML code snippet shown in Code Listing 4.2.

In this example, the name of the person posting is cached along with the post

content. Not only does the cached element depend on the content, but also the

name of the poster. If the poster changes their name, then all cache elements that

contain that name must be invalidated.

This relationship needs to be supplied to the invalidation mechanism so that

only the necessary cache elements can be invalidated. This relationship takes the

form of a SQL query, as will be seen in Section 4.2.4.

4.2.4 Implementation Details

The main requirement for this system is that the code must specify the depen-

dencies that cached elements have on the underlying data. For more complicated

dependencies, such as discussed in Section 4.2.3, a SQL query is also necessary

to define the relationship between the underlying data and the key of the cached

element.

These dependencies are specified using comments in the code. This allows the

code to still be executed in a development environment before the distributed cache

is used. A simple dependency specification can be seen in Code Listing 4.3. This

line would appear when the cache element post[postID] is set.

Code Listing 4.4 shows another line that would appear when the post[postID]

CHAPTER 4. CACHE CONSISTENCY 49

Code Listing 4.3: A simple dependency specification

//post[postID] depends on posts.content |

Code Listing 4.4: A more complex dependency specification

//post[postID] depends on users.name |

select postID from posts where posts.postedByUserID =[userID]

cache element is set. This is a more complicated dependency specification, as can be

seen by the SQL query after the pipe. This dependency says that the post[postID]

cache element depends on the name of the user who made that post. The SQL query

is used to describe the relationship between the cache element and the specific posts

made by the user.

After the dependencies for the necessary cache elements have been specified,

the code can be analyzed using the analyzer application. This application is a two-

pass Perl script that uses the Perl “Graph” module [Hie04]. In the first pass, each

source file is analyzed for dependency specifications. The dependencies are stored

in a directed graph, with the underlying data as source nodes. The source nodes

point to any number of cache element nodes, which can also point to other cache

element nodes.

Before the application performs a second pass, it creates a function for each

intermediate node and sink node in the graph. These are all nodes that correspond

to cache elements. This function performs two actions:

1. Invalidates the elements this node is responsible for in the cache

2. Calls invalidation functions for all nodes that depend on this node

CHAPTER 4. CACHE CONSISTENCY 50

Each function is named according to the cache element it invalidates. For ex-

ample, the function to invalidate the cache element “rubbos:storiesOfTheDay” is

named “invalidaterubbosstoriesOfTheDay”. This is simply the name of the cache

element (with all punctuation removed), with a prefix of “invalidate”. (This does

create the possibility of name collisions, which currently results in an error, but

could easily be fixed by adding a counter or ID number to the function name).

This set of functions, one for each node (representing one for each type of cache

element), is written to an output file. This output file is included by all the project

files that perform database updates, so that they will be able to call the functions

in this file.

Invalidating the Appropriate Cached Elements

The first action performed by the generated function for each node is to invalidate

the cache elements represented by that node. As previously discussed, not all cache

elements will be invalidated - only the cache elements whose underlying data has

changed.

To determine exactly what elements to invalidate, each function accepts an

array of hashes as a parameter. Each element in the array specifies the parameters

for a cache element to invalidate. The hash is used to specify the parameters. For

example, the array could contain the information in Code Listing 4.5.

This array contains two elements, which identifies two cache elements to invali-

date. One has a ‘postID’ parameter with a value of 4, and the other has a ‘postID’

parameter with a value of 12. This array could be passed into the function gener-

ated for the post[postID] cache element. It would cause the cache elements post4

and post12 to be invalidated.

CHAPTER 4. CACHE CONSISTENCY 51

Code Listing 4.5: A sample array passed to an invalidation function

[{postID => 4},

{postID => 12}

]

Code Listing 4.6: Dependency statement for the thread cache element

threads[threadID] depends on post[postID] |

select threadID from posts where postID =[postID]

Calling Other Invalidation Functions for Dependent Nodes

The second purpose of the generated function is to call the generated functions for

nodes that are dependent on the current node. The example displayed graphically

in Figure 4.4 shows that the thread[threadID] element depends on the post[postID]

element. The dependency statement would be written as shown in Code Listing 4.6.

In this example, the function that invalidates the post[postID] elements would

also be responsible for calling the function to invalidate the appropriate thread[threadID]

element. It would need to build an array of hashes to pass into the function by

using the SQL query shown in Code Listing 4.6. It would substitute the value of

the current postID it is invalidating for [postID], and execute the SQL query. The

query would return a threadID value that would be passed into the function to

invalidate the thread[threadID] cache element.

CHAPTER 4. CACHE CONSISTENCY 52

The Second Pass

After the invalidation functions have been generated, it is time for the application to

make its second pass through all the source files. It looks for all update/insert/delete

SQL queries. For each query it discovers, it identifies the table and columns that

are being affected, and looks at the dependency graph to see if those columns are

source nodes in the graph. If they are not in the graph, then the query is ignored

(as there is no cached data that depends on it). If the node is in the graph, then an

array of hashes is generated, and passed into the appropriate function to perform

the necessary invalidations.

4.2.5 Implementation with Database Triggers

Rather than analyzing the application source code to find database changes, it is

also possible to identify these changes using database triggers. This has the added

advantage of reducing the complexity of the analysis application. However, there

are a number of drawbacks that make such a design unattractive.

Although the complexity of the analysis application is reduced, much additional

complexity is added to the database. To implement this solution, triggers would

need to be created for every database column and table, for each type of action

(insert/update/delete). These triggers would then need to call application code that

would perform the necessary cache invalidations. The creation of all the triggers

would require significant extra work.

Additionally, the system would not scale as easily. If a new cached element was

added that depended on a new underlying data column, then a new set of triggers

would need to be added to the database for that column. With the proposed

CHAPTER 4. CACHE CONSISTENCY 53

version of the deploy-time method, no additional steps are needed - the dependency

would be automatically identified by the analyzer application. New logic would be

written into the application, but this would happen at deploy-time, and would be

transparent to all parties involved.

Another limitation of database triggers is that they require the use of a database

that allows triggers to call outside code. This limitation may be acceptable for

some applications, but certainly not all. Methods to avoid this, such as having an

“invalidation process” that monitors the database for updates, is not an effective

solution for the reasons discussed in Section 4.1.1.

4.2.6 Deploy-Time Method Versus a Cache Manager

It is beneficial to pause for a moment and reflect again on the cache manager

method discussed in Section 4.1.2. The main difference between using a cache

manager and using the deploy-time method is that with the cache manager, there

is a separate process that invalidates the cache, and with the deploy-time method,

the application performs the invalidations directly. Both methods require code in

the application to set dependencies, and both methods require the application to

perform some event when the underlying data is updated (either to inform the

cache manager, or perform the necessary invalidations directly). The deploy-time

method eliminates the need for building a highly available application (the cache

manager) by leveraging the distributed nature of the application source code. The

deploy-time method also eliminates the need for the developer to write code to

inform the cache manager of updates, since this code will be written automatically

at deploy-time.

CHAPTER 4. CACHE CONSISTENCY 54

4.2.7 Method Summary

The use of the deploy-time method frees developers from needing to manually track

cache dependencies. Rather, the dependencies are identified at deploy-time, and

invalidation code is statically written into the application in the appropriate places.

Although the process of identifying dependencies and adding invalidation code is

not free, its cost is only experienced once during deploy time. It eliminates the risk

that application designers will make code additions or modifications that will place

the cache in an inconsistent state. The existing implementations of Memcached

discussed in Section 3.1 required invalidation statements to be manually added

to various places throughout the code. The deploy-time method automatically

identifies dependencies and performs the necessary invalidations.

4.3 Maintainability of the Deploy-Time Method

To measure the maintainability of the deploy-time method, a number of trials were

conducted. These trials each consisted of a specific modification that was to be

made to a particular web system. The modifications were made to both the system

that made use of the deploy-time method, and the system that used the standard,

unstructured approach. In Chapter 5, two web applications are used to measure

the run-time performance of the deploy-time method. These two web applications

are called RUBBoS and RUBiS. These two web applications, and a third web appli-

cation, iFinance, are used to measure the maintainability of the various methods.

More details about the web applications are available in Chapter 5. Summary

statistics showing the results from the maintainability trials are provided following

the discussion in Table 4.4.

CHAPTER 4. CACHE CONSISTENCY 55

A mix of two general types of tasks were performed, and statistics were recorded

on the number of lines of code changed, and in how many different sections modi-

fications or additions were needed. The two basic types of tasks were:

1. Caching a new element - This type of task involves adding a new element to

the cache, and all the appropriate supporting code to ensure that the new

cached element is never inconsistent with the underlying data.

2. Modifying the application - This type of task involves modifying the appli-

cation in some way. For example, a new feature could be added, or new

functionality could be exposed to the end users. Care must be taken to en-

sure that information in the database is not updated without invalidating the

appropriate cache elements.

4.3.1 RUBBoS Task 1: Cache Post Comments

Currently with RUBBoS, post comments are not cached. A comment consists of the

name of the person who made the comment, the comment date, a score (assigned by

moderators), and the actual comment content. Similar to slashdot, once a comment

has been posted, it cannot be edited or deleted.

With both methods, the cache elements were added in two locations - when

viewing the main story, and when viewing comments in detail. (These files, View-

Story.php and ViewComment.php, correspond to Slashdot’s article.pl and com-

ments.pl files).

The next step was to identify all the places in the code where the underlying

data changes. In these places, code needed to be added to invalidate the appropriate

CHAPTER 4. CACHE CONSISTENCY 56

cache elements. The only time the cached data can change is when it is moder-

ated (StoreModeratorLog.php). With the deploy-time method, this dependency is

automatically recognized, and invalidation code is added accordingly.

4.3.2 RUBBoS Task 2: Allow Users to Edit their Post Com-

ments

Digg.com is another website that uses Memcached. In many ways, it is seen as

a competitor to Slashdot. One of Digg’s features is the ability to edit comments

(with Digg, this feature is limited to a short time period after posting). Currently,

Slashdot and RUBBoS lack this ability.

To add this feature, StoreComment.php was edited to allow for the updating of

comments, and ViewComment.php was updated to provide an interface to do so.

Once this functionality was added, care was used to ensure that editing a com-

ment did not place any cached elements that use that comment in an inconsistent

state. In this case, the element of concern was the cache element set in Section 4.3.1.

This step is handled automatically by the deploy-time method, but needs manual

coding for the unstructured method.

4.3.3 RUBiS Task 1: Cache the “About Me” Page

The RUBiS “About Me” page is very similar to the “My eBay” page provided by

eBay. It contains information about the recent items the user has bid on, any re-

cent items won, any recent items sold, in addition to any feedback left or received.

Caching this page would result in a significant amount of savings, as it takes a

CHAPTER 4. CACHE CONSISTENCY 57

significant amount of time to generate all the information for that page. Unfor-

tunately, keeping the cache element up-to-date is more difficult than the previous

examples, as the cache element relies on a larger amount of underlying data.

Adding the cache element was easy enough, and only required minor modi-

fications to the AboutMe.php file. However, invalidating this cache element re-

quired hunting around for all the locations where the underlying data is modified.

This involved adding code to the StoreBid.php, StoreBuyNow.php, and StoreCom-

ment.php files. Using the deploy-time method, this step was not necessary.

4.3.4 RUBiS Task 2: Allow Users to Edit Feedback

Currently with eBay, if you leave feedback for a user, you can later adjust that

feedback. For example, if you left a terse message after being frustrated with a

seller, you could later adjust that feedback once the issue was resolved. Currently,

this is not possible with RUBiS. Once feedback has been left, it cannot be edited.

To better mirror eBay, RUBiS could be adjusted to allow the editing of feedback.

After adding the code for the interface, and the code to update the database

table, all the cache elements must be checked to see if they depend on the updated

information. This step is not necessary for the deploy-time method, as it is handled

automatically. There are a few cache elements that depend on the updated comment

- the “View User Information” comments page, and the “About Me” page. Both

the poster and postee need to have their cache elements invalidated.

CHAPTER 4. CACHE CONSISTENCY 58

4.3.5 iFinance Task 1: Caching Course Structure Elements

The deploy-time system was used in a real-world environment with the “iFinance”

product offered by Wilfrid Laurier University and Tempic Inc [Tem06]. This

is a fully online textbook with an integrated algorithmically-generated question

database for self-test quizzes, and a bulletin board for TA support.

In the iFinance product, course structure elements are the “fundamental build-

ing blocks” of a course. The overall course structure is composed of chapters, sec-

tions, and subsections. Each page of a textbook belongs to one of these elements,

as does every practice problem, every quiz question, and every bulletin board post.

Course structure elements are used in many places, and certain pieces of them

are already cached in various places (For example, the textbook chapters are already

cached, as are categories for quiz questions). Adding the course structure cache el-

ement was fairly straightforward, as many methods already called an existing func-

tion to get course structure information directly from the database. However, dif-

ferent pieces of this cached information were being changed in many different places

throughout the code. For example, making bulletin board categories visible/hidden

was an action that occurred through the bulletin board, while enabling/disabling

sets of questions for self-test quizzes was an action performed through the self-test

quiz module. Identifying all these locations resulted in a huge amount of work

in the unstructured case, while none of this effort was necessary when using the

deploy-time method.

In the unstructured case, the amount of work was so unreasonable that the only

way it could reasonably be performed was by first using the deploy-time method,

and then using the “diff” utility to identify all the places in the code that had

been modified. Much effort was then spent on updating all the identified sections

CHAPTER 4. CACHE CONSISTENCY 59

of the application to invalidate the necessary elements in the cache. Even though

all the necessary locations were identified by the deploy-time method, it was still a

very time consuming and manual process to write the proper invalidation code in

all appropriate locations. Without using this approach, it is unlikely that all the

appropriate places in the code could be identified and updated accordingly.

4.3.6 Summary

Table 4.4 shows a summary of the work that was performed to measure the main-

tainability of these projects. The number of lines of code added or modified was

measured, as was the number of locations in the project that were affected. A

“location” was a group of lines that were added or modified together. Many times,

multiple lines of code were needed in one place to accomplish a task. When those

lines were together in one file or area in a file, they were treated as a single location.

For small projects, the benefits of the deploy-time method are noticeable, but

not great. When looking at iFinance, the real benefits of the deploy-time method

can be seen. As projects grow larger, each change has the ability to impact a

greater number of facets in the system. Thus, larger applications stand more to

gain by using a structured method (like the deploy-time method) to manage the

cache dependencies. The benefits of the deploy-time method are most clearly seen

with large projects, as the deploy-time method frees the developer from needing to

be aware of all the data interdependencies.

With the unstructured method, the number of locations modified depends on

the number of places in the code that touch data that any cached elements depend

on (either directly or indirectly). Each of these locations will need to be modified

to ensure the appropriate cached elements are invalidated. With the deploy-time

CHAPTER 4. CACHE CONSISTENCY 60

Trial Lines Added/Modified Locations Modified

Unstructured Deploy-Time Unstructured Deploy-Time

RUBBoS - Task 1 13 10 3 2

RUBBoS - Task 2 31 28 3 2

RUBiS - Task 1 22 4 5 1

RUBiS - Task 2 42 22 6 2

iFinance - Task 1 237 14 28 2

Table 4.4: Maintainability summary

method, these locations are identified automatically, and the invalidation code is

added at deploy-time. This frees the developer from needing to be aware of these

dependencies, and it can greatly reduce the number of modifications to the code

that are required.

This chapter discussed the deploy-time method and its implementation details.

The chapter concluded with an examination of the maintainability improvements

offered by the deploy-time method. The following chapter discusses run-time perfor-

mance tests that were conducted to measure how the deploy-time method performed

at run-time.

Chapter 5

Run-Time Performance

In Section 4.3, it was seen that the deploy-time method was far more maintainable

than the unstructured method, especially for large systems. This chapter discusses

run-time performance characteristics for the deploy-time method. Additional main-

tainability is no boon if it comes at too high a run-time performance penalty (in

the form of increased response time for users, or a system that can handle a fewer

number of users). In this section, the deploy-time method is compared to the un-

structured Memcached method, systems that do not use a distributed cache, and

systems that use a database cache.

Two websites were used in a simulated environment to produce detailed results

for analysis. The two websites were first used in [ACC+02] to study the effect

of load on dynamic websites. Both websites and testing frameworks are available

online under the GNU Lesser GPL license [CM02b, CM02a]. The two websites are

named “RUBBoS” (Rice University Bulletin Board System) and “RUBiS” (Rice

University Bidding System). RUBBoS is a slashdot-like bulletin board, and RUBiS

is an eBay-like auction website.

61

CHAPTER 5. RUN-TIME PERFORMANCE 62

From a code perspective, RUBiS is more complicated than RUBBoS. RUBiS

has more complicated pages, which require more processing on the web server. For

example, the “View Item” page contains information about the item in question,

in addition to the bid history for that item. RUBiS also contains an “About Me”

page that requires significant processing, as it contains a list of the items a user has

sold, all items that user has bid on, and all the feedback left by/to the user.

The RUBiS database employs transactions to guarantee ACID semantics, which

are necessary for a website that deals with money. Conversely, RUBBoS does not

need or use any transactions. Although transactions are necessary to ensure that

multiple users do not interfere with each other when bidding, ACID semantics do

not come for free. This cost will likely be observed through high database CPU

usage.

Each test environment consisted of one web server node, one database node,

and multiple client machines to generate load. All machines were running Linux

(kernel 2.6.15-27-386). The web server and database server were 3.2GHz Pentium 4

machines with 3GB of RAM. All machines were connected via a 1Gbps full duplex

switch on an isolated network.

Additional “real world” test results are also reported in Section 5.3. These

results were obtained from a web system that was used for a high-demand online

learning finance website [Tem06]. The following sections provide more detail about

the tests and the results.

CHAPTER 5. RUN-TIME PERFORMANCE 63

5.1 RUBBoS

RUBBoS is a bulletin board system very similar to slashdot. The server application

is programmed in PHP and makes use of a MySQL database. For the test, stories

and comments are generated using a dictionary. Their length varies between 1KB

and 8KB. A zipf-like distribution is used to determine the exact length, as short

stories/comments are more common than long ones. A total of 500,000 users are

simulated, of which 50,000 (10%) have moderator access [CM02b]. Each day has

an average of 15-25 stories, and each story has between 20-50 comments [Mal01].

More information about the benchmark is available in [ACC+02].

5.1.1 RUBBoS Load Generating Tool

The RUBBoS system is packaged with a load generator tool. This tool assumes

some sort of shared storage (for example, using the “sshfs” filesystem) that is used

by all the client machines to read configuration information, and write test results.

The application is started on one client machine, which then uses “rsh” to launch

copies of itself on all the remote clients. Each client machine generates a set number

of client threads, which generate load by making queries to the web server. Each

client thread operates on a “session” principle. A request is made, and the client

waits for a reply. After a response is received, and after a think time (average of

7 seconds [WDS00]), the client thread determines with pre-determined probability

what type of follow-up request to make, or whether to end its session.

CHAPTER 5. RUN-TIME PERFORMANCE 64

5.1.2 Results - Overview

The load generator application ran tests with the number of clients ranging from 25

to 1000. The number of completed requests for each test with a different number

of clients is shown in Figure 5.1. Shown in the figure is the base case (labeled “No

Memcached”). This is a standard setup without any types of additional caching.

Next, a trial with the database query cache enabled was performed. In general, the

database query cache did not improve performance in any noticeable manner. This

is likely due to the overhead of maintaining the cache, and the fact that the query

cache for each table is cleared whenever any row in that table is changed [MyS06a].

Both of these methods responded to the maximum number of requests when 400

clients were used to generate load. More than 400 clients resulted in a decrease in

the number of successfully completed requests, due to the servers being excessively

loaded.

The other two trials were performed with Memcached enabled. The first method

used Memcached in the “standard” unstructured way, and the second trial used

Memcached with the deploy-time method previously discussed. There is very little

difference in performance between these two methods. The maximum number of

responses was reached with 500 clients generating load, and the throughput de-

creased as more clients were used to generate load. As more clients were added, the

Memcached trials were still able to process more requests than the trials without

Memcached.

Figure 5.2 shows the average response time (as measured by the clients) of

the different methods. In general, when Memcached is used, the response time is

faster. Again, there is very little difference between the manual method of using

Memcached and the deploy-time method.

CHAPTER 5. RUN-TIME PERFORMANCE 65

Figure 5.1: RUBBoS - number of clients vs. number of completed requests

Figure 5.2: RUBBoS - number of clients vs. response time

CHAPTER 5. RUN-TIME PERFORMANCE 66

5.1.3 Results - Detailed Analysis

Section 5.1.2 showed that using Memcached (either manually, or with the deploy-

time method) can result in faster response time, and more clients being able to use

the web application. However, the use of Memcached also has additional benefits

and consequences that can only be seen when looking at the memory and CPU

utilization of the server machines. This section identifies those differences.

CPU Utilization

Figure 5.3(a) shows the CPU utilization of the web server under the different trials,

and Figure 5.3(b) shows the CPU utilization of the database server. The first

observation that is immediately apparent is that the limiting factor switches from

the database server’s CPU when Memcached is not used to the web server’s CPU

when Memcached is used. The benefits of this may not be immediately apparent,

but this is a huge boon to system designers. The use of Memcached reduced the

burden on the database server, and shifted much of the load to the web servers.

Database servers are often more costly (both in terms of hardware, and maintenance

due to replication) than web servers. Web servers are simply stateless nodes that

can be very easily replicated. As a web application grows, Memcached allows fewer

database nodes to be used.

It can also be seen that without Memcached, the database server reaches sat-

uration with approximately 300 clients generating load. With Memcached, the

web server (which is now the point of contention) reaches saturation with between

600-700 client nodes.

Another observation that can be made is that there is very little difference in

CPU utilization whether the database query cache is used or not. There is also no

CHAPTER 5. RUN-TIME PERFORMANCE 67

(a) Web server CPU utilization

(b) Database server CPU utilization

Figure 5.3: RUBBoS - server CPU utilization

CHAPTER 5. RUN-TIME PERFORMANCE 68

difference in CPU utilization depending on what Memcached method is used.

Memory Utilization

Figure 5.4(a) shows the memory utilization of the web server under the different

trials, and Figure 5.4(b) shows the memory utilization of the database server. It

can be seen that memory was never a limiting factor in these trials, as both the web

server and database server were equipped with 3GB of RAM. Looking at the web

server memory utilization in Figure 5.4(a), we can see that Memcached causes an

additional 100MB of memory to be used, regardless of the number of clients. This is

due to the way Memcached operates. When the Memcached process is initialized, it

immediately reserves a fixed amount of memory. The maximum amount of memory

it can use is configurable, but in these trials, it did not use more than the initially

allocated amount.

Memcached usually resides on web nodes. Although the extra memory usage

could be seen as a disadvantage, web nodes are typically CPU hungry and memory

light, meaning they often have extra memory to spare for Memcached processes.

This figure simply shows that Memcached does consume some memory.

A number of interesting observations can be seen by looking at the database

memory utilization shown in Figure 5.4(b). Firstly, it can be seen that enabling

the database query cache causes the database server to consume significantly more

memory than all other trials.

When compared to the “base case” (where no caching is used), it can be seen

that using Memcached causes a reduction in the amount of memory used by the

database server. This is due to the fact that the database server is being queried

far less frequently, and thus does not have as many open connections at any given

CHAPTER 5. RUN-TIME PERFORMANCE 69

time (as compared to the base case).

5.1.4 Cache Analysis

By analyzing the contents of the cache during runtime, a picture of what the cache

was actually doing could be obtained. For this reason, modifications were made to

introduce a logging layer between the application and Memcached. Four types of

operations were logged: Cache hits, cache misses, cache writes (when a new object

is added to the cache), and deletes (invalidations).

It should be noted that the method used to perform this logging serialized

all operations through the file system, by writing all results to a log file. This

decreased the performance of each run by approximately 10%. For this reason, the

obtained results are not representative of the test trials presented earlier. However,

the results shown here still provide an excellent window into the operation of the

cache.

Table 5.1 shows the number of each type of operation that was recorded during

the 30-minute duration of this test, with both 50 and 500 clients. Of particular

interest with this website is the very low number of cache deletes (invalidations).

This is due to the simplicity of the workload, and the type of information that was

cached. For this test, the only types of cached elements that could be invalidated

were cached user names, and the main “Stories of the Day” page. It is very rare

for a member to change their user name, and the “Stories of the Day” page is only

updated when a site administrator approves a new story for the front page (in a

similar manner to Slashdot). For this reason, the number of cache invalidations is

very low. This allows for a very high number of cache hits compared to the number

of invalidations.

CHAPTER 5. RUN-TIME PERFORMANCE 70

(a) Web Server Memory Utilization

(b) Database Server Memory Utilization

Figure 5.4: RUBBoS - server memory utilization

CHAPTER 5. RUN-TIME PERFORMANCE 71

50 Clients 500 Clients

Cache Hits 38187 1309324

Cache Misses 11223 112993

Cache Writes 11223 112993

Deletes 62 588

Table 5.1: RUBBoS cache statistics

One consequence of this is the impact Memcached has on the system: it is quite

large. As observed, Memcached eliminates the database as the bottleneck in the

system. As will be seen in Section 5.2, under different websites and workloads, the

effects of Memcached are different.

A more detailed view of these operations can be seen in Appendix B. Figure B.5

and Figure B.6 show these operations, and how they vary with time. In general,

the number of cache hits outnumbers the number of writes and cache misses, while

the number of invalidations remains minimal.

Figure B.1 and Figure B.3 show the size of the cache, and the number of elements

in it at any given time. When 50 clients are used to generate load, the maximum

cache size only reaches about 100 kB (meaning only 100 kB of data is cached at

any given time). New data is being added to the cache very slowly, as a limited

number of clients are making requests for new data. With 500 clients, the cache

grows to store approximately 120,000 cache elements, consuming 2MB. From these

numbers, it can be calculated that the average size of a cached object is 16.7 bytes.

CHAPTER 5. RUN-TIME PERFORMANCE 72

5.2 RUBiS

RUBiS is a bidding website, similar to eBay in style and function. Members can

post items for sale, as well as bid on items that other members have posted for sale.

Each auction lasts a specific period of time (typically one week). During this time,

members can browse for and view items, placing bids on an item if it is something

they are interested in. After the close of an auction, members can leave feedback

for other members, and rate how the sale proceeded. Sample data was obtained

by observing statistics on eBay’s website. The database contains approximately

33,000 items in eBay’s 20 categories and 62 regions, and 1,000,000 members to bid

on these items. Each item had an average of 10 bids, and it was assumed 95%

of users left feedback for transactions they were involved in. The database was

approximately 1.4GB.

The same load generator tool that was used to test RUBBoS was also used to

test RUBiS. The tool worked in the same way - independent clients initiated request

sessions with the server, following links according to pre-determined probabilities

to mimic a typical user [ACC+02].

5.2.1 Results - Overview

Similar to RUBBoS, the load generator application ran tests with the number of

clients varying from 25 to 1000. The number of completed requests for each test

with a different number of clients is shown in Figure 5.5. Shown in the figure is

the base case (labeled “No Memcached”). This is a standard setup without any

types of additional caching. Next, a trial with the database query cache enabled

was performed.

CHAPTER 5. RUN-TIME PERFORMANCE 73

For this website, the database query cache slightly reduced performance. The

base case reached its peak number of responses when 300 clients were used, while the

trial using the database query cache reached its peak number of responses when 200

clients were used to generate load. By looking at the response time experienced by

the users in Figure 5.6, it can be seen that the response time was longer for almost

all numbers of clients when the database query cache was enabled. This reduction in

performance by the database query cache is due to this site’s particularly intensive

database workload. The use of transactions increases the amount of work necessary

for each query. Coupled with the overhead needed to maintain the database’s query

cache, this resulted in the reduction in performance.

The other two trials shown in the figures were performed with Memcached

enabled. The first method used Memcached in the standard unstructured way,

while the second trial used Memcached with the deploy-time method. Both methods

provide very similar improvements in both performance and response time. The

number of clients that results in the maximum number of responses is 500 for both

methods. It can also be seen that as more clients are added, the response rate and

response time are more desirable when Memcached is used, compared to the cases

where Memcached is not used.

5.2.2 Results - Detailed Analysis

CPU Utilization

Figure 5.7(a) shows the CPU utilization of the web server under the different tri-

als, and Figure 5.7(b) shows the CPU utilization of the database server. For all

trials, the database server was the bottleneck. Unlike RUBBoS, the bottleneck was

not shifted from the database server to the web server. This demonstrates how

CHAPTER 5. RUN-TIME PERFORMANCE 74

Figure 5.5: RUBiS - number of clients vs. number of completed requests

Figure 5.6: RUBiS - number of clients vs. response time

CHAPTER 5. RUN-TIME PERFORMANCE 75

(a) Web server CPU utilization

(b) Database server CPU utilization

Figure 5.7: RUBiS - server CPU utilization

CHAPTER 5. RUN-TIME PERFORMANCE 76

database-intensive the workload for this website was.

Memcached reduced the CPU utilization on the database server between 10-

25%, depending on the trial. Without Memcached, the database server reaches

saturation when between 600 clients are used to generate load. This compares to

700 users with Memcached enabled. There is no great difference in CPU usage on

the database for either method of using Memcached. It does seem that enabling

the query cache on the database server causes a slight increase in CPU utilization

compared to the base case of no query cache, but this increase is not dramatic.

By looking at the CPU utilization of the web server, it can be seen that the

web server was hardly utilized regardless of the number of clients. The maximum

utilization of the web server approached 18%. Similar to the RUBBoS trials, using

Memcached increased the CPU utilization. However, in this case, the increase in

utilization was not nearly as great as with RUBBoS. Although Memcached increases

the CPU utilization, in this case, that cost is offset by some of the savings achieved.

RUBBoS cached mainly very simple things (such as the username associated with an

account). Conversely, RUBiS caches more complex objects (such as a “bid history”

table for an item). Items like the bid history table take time and processing power

(on the web server) to generate. By caching these more complex objects, processing

time on the web server is saved. It is this difference that accounts for the small

(less than 5%) increase in CPU utilization.

Also of interest is the fact that the the deploy-time method utilized slightly

more of the CPU than the manual method. This slight penalty is a result of

extra “invalidation queries” that the deploy-time method executes that the manual

method does not. For example, when a comment is inserted into the database, both

the fromUserId and toUserId values (who the comment was from/to) are known. In

the manual case, these values are used to invalidate the appropriate cache elements.

CHAPTER 5. RUN-TIME PERFORMANCE 77

However, the deploy-time method is not smart enough to utilize these existing

variables. It notices that a row is inserted into the comments database, and then

issues another query to obtain the fromUserId and toUserId. This extra step is the

cause of the increased CPU utilization.

Memory Utilization

Figure 5.8(a) shows the memory utilization of the web server under the different tri-

als, and Figure 5.8(b) shows the memory utilization of the database server. Similar

to RUBBoS, memory was never a limiting factor in these trials.

The web server memory utilization in Figure 5.8(a) shows that using Memcached

causes an extra 50MB to 100MB of memory to be used. This is due to the memory

consumed by the Memcached process.

By looking at the database memory utilization shown in Figure 5.8(b), it can be

seen that enabling the database query cache causes the database server to consume

significantly more memory than all other trials. Of particular interest on this graph

is the increase in memory consumed when Memcached is running on the web server.

Rather than reducing the memory requirements of the database server, the use of

Memcached increased the memory use on the database server. Examination reveals

that the data set used in this test is large enough to not be completely accessed (by

the clients, and thus the database), and stored in memory. Memcached allows more

clients to be serviced, which results in additional queries being generated, which

leads to more data being accessed. It is this phenomenon that leads to the increase

of memory on the database server.

CHAPTER 5. RUN-TIME PERFORMANCE 78

(a) Web server memory utilization

(b) Database server memory utilization

Figure 5.8: RUBiS - server memory utilization

CHAPTER 5. RUN-TIME PERFORMANCE 79

5.2.3 Cache Analysis

The same method to monitor cache operations described in Section 5.2.3 was em-

ployed to monitor cache operations with the RUBiS test. Table 5.2 shows the

number of each type of operation that was recorded during the 30-minute dura-

tion of the test, with both 50 and 500 clients. It can be seen that this test had

significantly less cache activity than the previous test, with the exception of in-

validations. The RUBiS test had fewer cache hits, writes, and misses, but many

more invalidations. This, of course, has to do with the nature of the information

that was cached. Whereas the RUBBoS test cached small pieces of information like

usernames, the RUBiS test cached larger pieces of information that took longer to

generate, such as an items “bid history” table.

This limited amount of caching is a result of the application. It is more difficult

to cache information on an eBay-like website, as more information is constantly

changing. The bulletin board represented a more “read only” website, with user

comments being restricted to replies to a particular story, and only administrators

being able to post new stories to the main page. RUBiS requires not only more user

writing, but also time-sensitive data, such as auction expiry times. The increased

complexity of the site meant that more cache invalidations were necessary to cache

content. The smaller amount of content that was cached, in combination with the

use of transactions, caused the performance improvements not to be as great as in

the RUBBoS trials.

A more detailed view of the operations in Table 5.2 can be seen in Appendix B.

Figure B.7 and Figure B.8 show the frequency of these operations, and how they

vary with time. Similar to the RUBBoS case, the number of cache hits outnumbers

the number of writes and misses. However, with RUBiS, there is a noticeable

CHAPTER 5. RUN-TIME PERFORMANCE 80

50 Clients 500 Clients

Cache Hits 29230 115615

Cache Misses 17530 33333

Cache Writes 17525 33313

Deletes 3206 10940

Table 5.2: RUBiS cache statistics

number of deletes that take place. It can also be seen that as the system starts

up, there are a greater number of cache writes. As time progresses, the number of

writes decreases. As the test is run, more elements become cached, so the chances

of having a cache hit become greater.

Figure B.2 and Figure B.4 show the size of the cache, and the number of elements

in it at any given time. When 50 clients are used to generate load, the maximum

cache size reaches approximately 5MB, with 15000 elements cached. It also seems

that this is near a “peak”. At the 30-minute mark, the size of the cache seems to

be leveling off. With 500 clients, the cache grows to store approximately 22,500

cache elements, consuming 10.5MB. From these numbers, it can be calculated that

the average size of a cached object is 467 bytes - almost 30 times larger than in the

RUBBoS trials.

5.3 Real World Results

iFinance is a fully online textbook where the deploy-time method made its real-

world debut. During the second year offering of iFinance at Wilfrid Laurier Uni-

versity’s “Financial Management” course, load problems were experienced during

CHAPTER 5. RUN-TIME PERFORMANCE 81

the few days leading up to the midterms and final exam. Additional servers were

needed to handle the load. For the offering in the following year, Memcached was

employed to reduce hardware demands.

Since this was a live, real-world environment, detailed analysis statistics are not

available. For example, the number of simultaneous clients accessing the system

varied at any given time from 0 to over 700. Additionally, the year two enrollment

was higher than the year three enrollment by approximately 150 students. Since

students were actively using the site as a study tool, each student likely had slightly

different usage characteristics and refresh delays. However, the hardware require-

ments from year two to year three decreased quite dramatically. The time needed

by the server to generate each page also decreased significantly when Memcached

was deployed. These results are presented here for a number of different actions.

These are aggregate results based on an average of over 3 million page requests,

obtained from the web server and database logs. The results are shown in Table 5.3.

The “Time” value takes into account the time to generate the page. This

accounts for both the time the web server spends generating the HTML, and the

time the database spends executing queries.

As can be seen from Table 5.3, the textbook and quiz status pages each issued

a very large number of database queries. Many of these queries were from simple

scripted queries (often in loops) that relied on the course structure information

(textbook chapters and settings). Memcached was able to cache these very effec-

tively, greatly reducing the average number of queries for those pages. Although

the time to generate each page decreased in every case, the decrease was not as

dramatic as one might have suspected given the dramatic decrease in the number

of database queries. Although the database server had far fewer queries to deal

with, the end user response time was not greatly improved. This suggests that

CHAPTER 5. RUN-TIME PERFORMANCE 82

Year 2 Year 3

Page Time (ms) DB Queries Time (ms) DB Queries

List of Categories 360.4 617 114.5 42

View a textbook page 559.1 1718 380.0 29

View a question page 361.8 44 302.1 29

Quiz status page 398.4 924 274.4 28

View a quiz page 380.9 51 332.7 28

Table 5.3: Real-world run-time performance results

there are other time consuming steps in the process of generating a webpage, such

as formatting and writing the HTML output.

5.4 Summary

In all cases, performance was improved when Memcached was used. The amount

of the improvement (in response time, or ability to handle load), and the cost (in

CPU or memory consumption) was very dependent on the nature of the website,

and the types of information Memcached was used to cache. Memcached resulted in

increased memory and CPU utilization on the web server, although in some cases,

this increase was offset by Memcached’s ability to cache full HTML page fragments.

In all cases, the use of Memcached reduced the CPU utilization of the database

server. This effect was most noticeable when the number of clients stressed the

non-Memcached trials, but the trials with Memcached were still able to perform

well. Memcached also reduced the memory usage of the database server in the first

test. In the second test, when the available set of data was larger than the working

CHAPTER 5. RUN-TIME PERFORMANCE 83

set for any given trial, Memcached allowed the web server to handle queries from

more clients, increasing the working set of the test, and thus also increasing the

memory consumed by the database server.

No major differences were observed between the deploy-time method and the

unstructured method of using Memcached, although in certain cases the deploy-

time method did incur a slight increase in CPU utilization on the web server. Both

methods allow the same performance benefits to be recognized.

This study is significant because it is the first formal study of its kind that

examines methods of maintaining cache consistency in a distributed cache environ-

ment. It shows that Memcached can be used to increase the scalability of a system

without hurting performance or maintainability.

Chapter 6

Conclusions

6.1 The Problem

As a website grows larger, caching becomes an increasingly more desirable way

to reduce client load. In such high-demand environments, multiple machines are

used to run the web server. Memcached, a distributed object cache, allows the

application to share one single cache among all web servers. Memcached is most

frequently used in a very unstructured way. Application developers cache elements

at various places throughout the code, and then manually search through the code

to identify all places this cache element is invalidated. This approach results in

making the application more difficult to maintain. Many popular websites that

use Memcached resort to keeping a separate text file to describe the keys that are

cached, and what their dependencies are.

84

CHAPTER 6. CONCLUSIONS 85

6.2 Problems with Existing Solutions

A number of existing methods attempt to solve this problem by generating static

.html files from the dynamic data, or using some sort of cache manager or log

analysis application to identify updates. Generating static .html files is only an

acceptable method for particular websites where all clients receive the same page.

It is not an apropriate solution for sites that need to provide dynamic data to clients

based on a variety of parameters, such as permission level, previous actions, or the

contents of their shopping cart.

Cache manager and log analysis systems do not easily scale past one machine.

Existing solutions implement the cache manager as a single long-running process

that is responsible for invalidating the appropriate cache elements. This process

acts as a single point of failure. Log analysis applications rely on reading database

query logs, and using those logs to perform invalidations. This is also a single point

of failure, and depends on only a single machine generating query update logs.

6.3 Contributions of the Deploy-Time Method

The deploy-time method solves the aforementioned problems by recognizing the

dependencies between the cache elements and the underlying data at deploy-time.

The application source code can then be analyzed to identify all locations where

data updates occur. At these locations, cache invalidation routines are statically

written into the source code of the web application to perform the necessary up-

dates.

Using this method, developers no longer need to be concerned about manually

invalidating cache elements to ensure the cache is consistent with the underlying

CHAPTER 6. CONCLUSIONS 86

data. Tests demonstrate that using the deploy-time method decreases the number

of lines of code that need to be modified when making a change by at least 10% in

small applications, and up to 95% in a large application. Larger applications show

greater maintainability improvements as they often maintain larger, more complex

webs of dependencies.

Run-time performance tests prove that using a distributed cache can offer signif-

icant performance benefits. Tests also prove that using the deploy-time method in-

curs very little or no performance penalty (compared to the unstructured method),

and provides all the added benefits of having a more maintainable application. This

was the first formal study of its kind.

6.4 Limitations and Future Work

As presented, this method is sufficient for many applications. However, there are

some specific cases where additional work would be beneficial. There is a small

delay between when Memcached receives an invalidation statement, and when it

will accept a new object for the invalidated key. During this short time period, any

requests that arrive (that are looking for the recently invalidated key) will need

to be served without obtaining that element from the cache. This is similar to

a problem discussed in [CDI+04], and would have an identical solution. Rather

than performing simple invalidations, new updated data could be generated and

immediately placed in the cache.

Another limitation is due to the fact that invalidation functions are written

directly into the application. Although this method provides numerous benefits,

it also limits the usability of any implementation of this method, as it is language

CHAPTER 6. CONCLUSIONS 87

dependent. Additional code generating routines would need to be supplied for each

target language.

Currently, the analysis program does not identify the appropriate updates in

all SQL syntax. Currently, only queries that reference a table’s primary key fields

will be automatically identified as dependencies. If other columns are needed, two

queries can be used instead of one. (The first query could return the primary keys,

and the second query could use the primary keys to perform the necessary up-

dates). While this is a possible workaround, there are likely particular applications

that perform updates on rows using columns other than the primary key. These

applications would benefit from full SQL parsing support.

Lastly, this work can be viewed as a starting point for a further, more thorough

investigation into the role of caches. Traditional web caches do not apply to dynamic

data, since each person receives a different copy of that data. However, it may be

beneficial to augment traditional caches (which are often geographically distributed)

using the methods discussed here. Such a system could reduce response time, thus

improving the overall user experience by making use of geographically distributed

“smart” web caches. Such a system could also reduce bandwidth requirements

across the network, and may become increasingly beneficial as the general populous

begins to demand more dynamic content on resource-constrained handheld devices.

Bibliography

[ABK+03] Mehmet Altinel, Christof Bornhovd, Sailesh Krishnamurthy, C. Mohan,

and Hamid Pirahesh. Cache tables: Paving the way for an adaptive

database cache. In Proceedings from the Twenty-Ninth International

Conference on Very Large Data Bases, September 2003.

[ACC+02] C. Amza, E. Cecchet, A. Chanda, Alan L. Cox, S. Elnikety, R. Gil,

J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specification and

Implementation of Dynamic Web Site Benchmarks. In 5th Workshop

on Workload Characterization, 2002.

[AKR01] Martin Arlitt, Diwakar Krishnamurthy, and Jerry Rolia. Characterizing

the scalability of a large web-based shopping system. ACM Trans. Inter.

Tech., 1(1):44–69, 2001.

[ASC05] Cristiana Amza, Gokul Soundararajan, and Emmanuel Cecchet. Trans-

parent caching with strong consistency in dynamic content web sites.

In ICS ’05: Proceedings of the 19th annual international conference

on Supercomputing, pages 264–273, New York, NY, USA, 2005. ACM

Press.

[BDH03] Luiz Andre; Barroso, Jeffrey Dean, and Urs Holzle. Web search for

a planet: The google cluster architecture. IEEE Micro, 23(2):22–28,

2003.

[Bre01] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Com-

88

BIBLIOGRAPHY 89

puting, 5(4):46–55, 2001.

[CDI98] Jim Challenger, Paul Dantzig, and Arun Iyengar. A scalable and highly

available system for serving dynamic data at frequently accessed web

sites. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE con-

ference on Supercomputing (CDROM), pages 1–30, Washington, DC,

USA, 1998. IEEE Computer Society.

[CDI+04] James R. Challenger, Paul Dantzig, Arun Iyengar, Mark S. Squillante,

and Li Zhang. Efficiently serving dynamic data at highly accessed web

sites. IEEE/ACM Trans. Netw., 12(2):233–246, 2004.

[CLL+01] K. S. Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Di-

vyakant Agrawal. Enabling dynamic content caching for database-

driven web sites. In SIGMOD ’01: Proceedings of the 2001 ACM SIG-

MOD international conference on Management of data, pages 532–543,

New York, NY, USA, 2001. ACM Press.

[CM02a] E. Cecchet and J. Marguerite. Rice university bidding system ”ru-

bis”. http://rubis.objectweb.org/, 2002. [Online; accessed 27-

November-2006].

[CM02b] E. Cecchet and J. Marguerite. Rubbos: Bulletin board benchmark.

http://jmob.objectweb.org/rubbos.html, 2002. [Online; accessed

27-November-2006].

[Das] Anil Dash. memcached. http://www.lifewiki.net/sixapart/

memcached. [Online; accessed 11-October-2006].

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary

cache: a scalable wide-area web cache sharing protocol. IEEE/ACM

Trans. Netw., 8(3):281–293, 2000.

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer,

and Paul Gauthier. Cluster-based scalable network services. In SOSP

BIBLIOGRAPHY 90

’97: Proceedings of the sixteenth ACM symposium on Operating systems

principles, pages 78–91, New York, NY, USA, 1997. ACM Press.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,

2004(124):5, 2004.

[Fit06] Brad Fitzpatrick. Memcached. http://www.danga.com/memcached/,

2006. [Online; accessed 10-October-2006].

[Hie04] Jarkko Hietaniemi. Graph. http://cpan.org/modules/by-module/

Graph/Graph-0.80.readme, 2004. [Online; accessed 24-November-

2006].

[Joo06] Vinjay Joosery. High-availability clustering: How mysql supports

99.999% availability, Sep 2006. Webcast.

[Kaw04] Jalal Kawash. Consistency models for internet caching. In WISICT ’04:

Proceedings of the winter international synposium on Information and

communication technologies, pages 1–6. Trinity College Dublin, 2004.

[KD02] Madhukar R. Korupolu and Michael Dahlin. Coordinated placement

and replacement for large-scale distributed caches. IEEE Transactions

on Knowledge and Data Engineering, 14(6):585–600, 2002.

[LKM+02] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh,

Honguk Woo, Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-

tier database caching for e-business. In SIGMOD ’02: Proceedings of

the 2002 ACM SIGMOD international conference on Management of

data, pages 600–611, New York, NY, USA, 2002. ACM Press.

[LR00a] Alexandros Labrinidis and Nick Roussopoulos. Generating dynamic

content at database-backed web servers: cgi-bin vs. mod perl. SIGMOD

Rec., 29(1):26–31, 2000.

[LR00b] Alexandros Labrinidis and Nick Roussopoulos. Webview materializa-

tion. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD inter-

BIBLIOGRAPHY 91

national conference on Management of data, pages 367–378, New York,

NY, USA, 2000. ACM Press.

[Mal01] Rob Malda. Handling the loads. http://slashdot.org/article.

pl?sid=01/09/13/154222&mode=thread&tid=124, 2001. [Online; ac-

cessed 27-October-2006].

[MyS06a] MySQL. How the query cache operates. http://dev.mysql.com/doc/

refman/5.0/en/query-cache-how.html, 2006. [Online; accessed 20-

December-2006].

[MyS06b] MySQL. Mysql. http://www.mysql.com, 2006. [Online; accessed 14-

October-2006].

[OMG+05] Christopher Olston, Amit Manjhi, Charles Garrod, Anastassia Aila-

maki, Bruce M. Maggs, and Todd C. Mowry. A scalability service for

dynamic web applications. In Proc. Second Biennial Conference on

Innovative Data Systems Research (CIDR’05), pages 56–69, January

2005.

[SKRP01] M. Schrefl, E. Kapsammer, W. Retschitzegger, and B. Pröll. Self-

maintaining web pages: an overview. In ADC ’01: Proceedings of the

12th Australasian database conference, pages 83–90, Washington, DC,

USA, 2001. IEEE Computer Society.

[Tem06] Tempic. Tempic’s online courseware used by wilfrid laurier univer-

sity. http://www.tempic.com/iFinance-2006.html, 2006. [Online;

accessed 10-July-2007].

[Tim] Timeless. Memcached as a session store. http://lists.danga.com/

pipermail/memcached/2006-June/002384.html. [Online; accessed

11-October-2006].

[Wan99] Jia Wang. A survey of web caching schemes for the internet. SIGCOMM

Comput. Commun. Rev., 29(5):36–46, 1999.

BIBLIOGRAPHY 92

[WDS00] Intel Corporation Wayne D. Smith. Tpc-w: Benchmarking an ecom-

merce solution, 2000.

[Wik06] Wikimedia. Wikimedia servers. http://meta.wikimedia.org/wiki/

Wikimedia_servers, 2006. [Online; accessed 16-October-2006].

[YBS99] Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web cache con-

sistency architecture. In SIGCOMM ’99: Proceedings of the conference

on Applications, technologies, architectures, and protocols for computer

communication, pages 163–174, New York, NY, USA, 1999. ACM Press.

[YFIV00] Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Val-

duriez. Caching strategies for data-intensive web sites. In The VLDB

Journal, pages 188–199, 2000.

Glossary

ACID Atomicity, Consistency, Isolation and Durability

ASP Active Server Page

Data node A “data node” is a physical machine that a database server is running

on

DUP Data Update Propagation

HTML HyperText Markup Language

ISP Internet Service Provider

kB Kilobyte

MB Megabyte

ODG Object Dependency Graph

PHP PHP: Hypertext Preprocessor

RDBMS Relational Database Management System

RUBBoS Rice University Bulletin Board System

RUBiS Rice University Bidding System

SQL Structured Query Language

TA Teaching Assistant

93

GLOSSARY 94

Web node A “web node” is a physical machine that a web server is running on

Appendix A

Wikipedia.org: A portion of

memcached.txt

== Keys used ==

User:

key: $wgDBname:user:id:$sId

ex: wikidb:user:id:51

stores: instance of class User

set in: User::loadFromSession()

cleared by: User::saveSettings(), UserTalkUpdate::doUpdate()

Newtalk:

key: $wgDBname:newtalk:ip:$ip

ex: wikidb:newtalk:ip:123.45.67.89

stores: integer, 0 or 1

95

APPENDIX A. WIKIPEDIA.ORG: A PORTION OF MEMCACHED.TXT 96

set in: User::loadFromDatabase()

cleared by: User::saveSettings() # ?

expiry set to 30 minutes

LinkCache:

key: $wgDBname:lc:title:$title

ex: wikidb:lc:title:Wikipedia:Welcome,_Newcomers!

stores: cur_id of page, or 0 if page does not exist

set in: LinkCache::addLink()

cleared by: LinkCache::clearBadLink()

should be cleared on page deletion and rename

MediaWiki namespace:

key: $wgDBname:messages

ex: wikidb:messages

stores: an array where the keys are DB keys and the values

are messages

set in: wfMsg(), Article::editUpdates() both call

wfLoadAllMessages()

cleared by: nothing

Watchlist:

key: $wgDBname:watchlist:id:$userID

ex: wikidb:watchlist:id:4635

stores: HTML string

cleared by: nothing, expiry time $wgWLCacheTimeout (1 hour)

note: emergency optimisation only

APPENDIX A. WIKIPEDIA.ORG: A PORTION OF MEMCACHED.TXT 97

IP blocks:

key: $wgDBname:ipblocks

ex: wikidb:ipblocks

stores: array of arrays, for the BlockCache class

cleared by: BlockCache:clear()

Appendix B

Run-time Cache Statistics

This section contains various graphs that were obtained by analyzing cache oper-

ations during test run-time. More information and discussion is available in Sec-

tion 5.1.4 and Section 5.2.3. Tests were run with both 50 and 500 clients. The 50

client test was chosen to analyze as it is a relatively small number of clients, and

would allow more detail to be seen in a low-load environment. The 500 client test

was chosen for analysis as it is a heavier test. It allows observation of the cache in

a high-load environment.

B.1 Cache Size and Contents

Figure B.1 and Figure B.3 show the RUBBoS test with both 50 and 500 clients.

The figures show the size of the cache, and the number of elements in the cache

respectively. Figure B.2 and Figure B.4 show the same information with the RUBiS

test suite.

98

APPENDIX B. RUN-TIME CACHE STATISTICS 99

Figure B.1: RUBBoS - cache size vs. test time (50 and 500 clients)

Figure B.2: RUBiS - cache size vs. test time (50 and 500 clients)

APPENDIX B. RUN-TIME CACHE STATISTICS 100

Figure B.3: RUBBoS - number of cached elements vs. test time (50 and 500 clients)

Figure B.4: RUBiS - number of cached elements vs. test time (50 and 500 clients)

APPENDIX B. RUN-TIME CACHE STATISTICS 101

Figure B.5: RUBBoS - cache operations vs. test time (50 clients)

B.2 Cache Operations

This section graphically displays the types of operations that were executed against

the cache, and how those types of operations vary with time. Four types of op-

erations were tracked: Cache misses, cache hits, cache writes (where an object is

stored in the cache), and cache deletes (where a stored object is invalidated).

These operations are tracked for both 50 and 500 clients, for each of the RUBBoS

and RUBiS tests. Figure B.5 displays the results of the RUBBoS test with 50

clients, while Figure B.6 displays the results for the RUBBoS test with 500 clients.

Figure B.7 displays the results of the RUBiS test with 50 clients, while Figure B.8

displays the results for the RUBiS test with 500 clients.

APPENDIX B. RUN-TIME CACHE STATISTICS 102

Figure B.6: RUBBoS - cache operations vs. test time (500 clients)

Figure B.7: RUBiS - cache operations vs. test time (50 clients)

APPENDIX B. RUN-TIME CACHE STATISTICS 103

Figure B.8: RUBiS - cache operations vs. test time (500 clients)

