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Abstract

This thesis investigates the effects of the earth’s rotation on internal waves from two perspectives
of nonlinear internal wave theory: near-resonant triads and weakly nonlinear models.

We apply perturbation theory (multiple scale analysis) to the governing equations of internal
waves and develop a near-resonant internal wave triad theory. This theory explains a resonant-
like phenomenon in the numerical results obtained from simulating internal waves generated
by tide topography interaction. Furthermore, we find that the inclusion of the earth’s rotation
(nonzero f ) in the numerical runs leads to a very special type of resonance: parametric subhar-
monic instability.

Through using perturbation expansion to solve separable solutions to the governing equations
of internal waves, we derive a new rotation modified KdV equation (RMKdV). Of particular in-
terest, the dispersion relation of the new equation obeys the exact dispersion relation for internal
waves for both small and moderate wavenumbers (k). Thus this new RMKdV is able to model
wea kly nonlinear internal waves with various wavenumbers (k), better than the Ostrovsky equa-
tion which fails at describing waves of small k.
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CHAPTER 1

THEORETICAL BACKGROUND

1.1 Internal Waves Studies

Research on internal waves has undergone a great revolution over the years. Since the 1960’s, the
interplay of wave theory and experimental observations has greatly advanced our understanding
of nonlinear internal waves. Recent advances in satellite technology for remote sensing and im-
age processing have brought experimental research on internal waves into a new era. Currently
available computer resources allow even small groups to do high resolution numerical simula-
tions of internal waves. The combination of these powerful tools stimulated theoretical studies.
This trend will open a new page for the understanding of internal waves.

Internal waves studies contribute to the intellectual exploration of oceanic energy, biological
processes, ocean circulation and environmental enhancement, whose theoretical results are vital
to aid human activities. A glimpse of the history of internal waves studies is provided in several
review papers [Garrett and Munk, 1979; Staquet and Sommeria, 2002; Helfrich and Melville,
2006; Garrett and Kunze, 2007].

Garrett and Munk [1979] gave a very interesting broad review article on internal waves,
where four major aspects: observational techniques, interpretations, theory and future work were
briefly discussed. This paper was intended to give non-experts some idea of the basic structure
of internal waves research.

Helfrich and Melville [2006] focused on nonlinear internal wave models, where equations of
the Korteweg-de Vries (KdV) type are the most frequently used weakly nonlinear models and
the Euler equations as well as the MCC equation (named after Miyata, Choi and Camassa) are

1
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typically used as fully nonlinear models. They also discussed the fact that properties such as
instability and breaking can not be obtained from the weakly nonlinear models and that observed
results can be more accurately explained with fully nonlinear models.

A paper concentrating on the process of instability to turbulence of internal waves is Staquet
and Sommeria [2002]. This paper at first studied the mechanism of wave steepening and breaking
and then discussed the process of wave breaking into small-scale turbulence. In this paper many
laboratory and numerical experiment results were presented. By comparing different models
and different results, the paper pointed out the difficulty in matching models of widely different
ranges of temporal and spatial scales.

Garrett and Kunze [2007] reviewed internal tides in the ocean. After analysing the setting
and parameter space of a typical tide topography interaction model, they moved on to theoretical
linear theory with assumptions of appropriate small parameters. Then, they discussed numerical
models of some ideal nonlinear situations as well as some applications for real topographies,
for example the Mid-Atlantic Ridge. They also talked about some layer models investigating
internal tides generation as well as oceanic observation results.

In the hope of understanding the influence of the earth’s rotation on internal waves, this thesis
has covered two aspects: near-resonant wave triad interaction and weakly nonlinear models. In
working on these two topics, we pay particular attention to including the earth’s rotation and to
comparing the results obtained with those obtained in the absence of rotation.

1.2 Objectives

This thesis is divided into two different topics, both of which take the earth’s rotation, or more
specifically, the Coriolis force into account. As mentioned in the last section, many studies
have been carried out on linear and nonlinear internal waves. In order to simplify the algebra
and the model itself, a large portion of the research has ignored the earth’s rotation. Setting
the Coriolis force to be zero works well in cases when the Rossby number (see section 1.5) is
larger than one, especially when it is very large. However, when the Rossby number is small,
the Coriolis force is very important and cannot be neglected. For the first topic which is covered
in chapter 2 and 3, we aim to give a complete theoretical explanation and the numerical results
of rotational effects for near resonant internal wave triads. On the second topic, we come up
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with a weakly nonlinear model which accounts for rotational effects and keep the exact linear
dispersion relation of internal waves.

1.3 Equations of Motion

The equations of motion for an incompressible, inviscid, stratified fluid, under the Boussinesq
approximation, observed on the earth rotating at an angular velocity Ω ([Kundu and Cohen,
2004], Chapter 10) are

∇ · u = 0, (1.1a)
D

Dt
u + 2Ω× u = − 1

ρ0

∇p− gρ

ρ0

k, (1.1b)

Dρ

Dt
= 0, (1.1c)

where u = (u, v, w), p is the pressure and the fluid density ρd(x, z, t) can be written as

ρd(x, z, t) = ρ0 + ρ(x, z, t), (1.2)

with ρ0 being the reference density and ρ as the difference of the fluid density from the reference
density.

1.4 f -plane and β-plane

In the equations of motion we have the Coriolis force 2Ω × u. The components of angular
velocity of the earth in the local Cartesian system (figure 1.1) are

Ωx = 0, (1.3a)

Ωy = Ω cos θ, (1.3b)

Ωz = Ω sin θ, (1.3c)

where θ is the latitude.
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Figure 1.1: The local Catersian coordinate. Ω points upward and passes through the north pole. The
coordinate center is the intersection point of the y and z axis. x axis is not shown in this figure but is
indicated as a line starting from the coordinate center and pointing into the plane where y and z axis are
lying on. The label Np and Sp stand for north pole and south pole respectively.

As in ([Kundu and Cohen, 2004], Chapter 12), we make the traditional approximation whereby
only the component perpendicular to the surface is retained, in which case the Coriolis force be-
comes

2Ω× u = (−fv, fu, 0), (1.4)

where
f = 2Ω sin θ. (1.5)
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The momentum equations in component form then become

Du

Dt
− fv = − 1

ρ0

∂p

∂x
, (1.6a)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
, (1.6b)

Dw

Dt
= − 1

ρ0

∂p

∂z
− gρ

ρ0

. (1.6c)

As an indicator of the Coriolis force, f in equation (1.5) is called the Coriolis parameter.
Varying with latitude, it is positive in the northern hemisphere and negative in the southern
hemisphere. This variation is very important when the wave motion has very long time scales
or very long length scales; however, for a relatively localized wave motion, the variation is
negligible and we can treat f as a constant, say, f0 = 2Ω sin θ0, where θ0 is a characteristic
latitude of the region under study. The approximation of using a constant f0 is called f -plane
approximation. A model using this approximation is often called an f -plane model. Of course,
we can approximate f to a higher order. The aforementioned constant approximation is from
truncating the taylor expansion of f(y) at O(1). If we include the term of O(y), we will have

f = f0 + βy, (1.7)

where, according to taylor expansion,

β =

(
df

dy

)
θ0

=

(
df

dθ

dθ

dy

)
θ0

=
2Ω cos θ0

R
. (1.8)

Note that dθ/dy = 1/R. The radius of the earth, R is nearly 6371 km. This approximation is
called the β-plane approximation. A model employing β-plane approximation is called a β-plane
model.

1.5 The Rossby Number

The momentum equation (1.1b) shows that the pressure and the gravitational force must be bal-
anced by the sum of the nonlinear advection and the Coriolis force. To inspect the relative
importance of these two forces, we try to write down and compare the order of each.
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The order of the nonlinear force is estimated as

ρ0u · ∇u = O

(
ρ0
U2

L

)
, (1.9)

while the Coriolis force has the order

ρ0Ω× u = O (ρ0ΩU) = O (ρ0fU) . (1.10)

The ratio of the order of the nonlinear force to that of the Coriolis force is written as

Ro =
ρ0

U2

L

ρ0fU
=

U

fL
, (1.11)

which is called the Rossby number, used as an important parameter in many models. If Ro� 1,
the Coriolis force is very important and we cannot ignore the earth’s rotation; however, when
Ro � 1, the nonlinear acceleration overly dominates the Coriolis force and the earth’s rotation
becomes negligible.

1.6 Governing Equations of Internal Waves

1.6.1 Dimensional Governing Equations of Internal Waves

Throughout this thesis, we will assume the fluid to be inviscid and incompressible and that the
wave motion is homogenous in the y direction, i.e. ∂

∂y
= 0. What we need to emphasize here is

that with rotation, motion in the y direction will occur; however, ∂v
∂y

= 0.
From the equations of motion, we can derive the 2-dimensional (2D) governing equations of

internal waves with rotation as follows.
We can further split the density ρ in (1.2) as

ρ = ρ̄(z) + ρ′(x, z, t), (1.12)

where ρ̄ is the mean of the density whearas ρ′ is a small density perturbation. We also define a
very important density related function called the buoyancy frequency given by

N2 = − g

ρ0

dρ̄

dz
. (1.13)



CHAPTER 1. THEORETICAL BACKGROUND 7

Since the flow is incompressible (1.1a), we can introduce a streamfunction ψ, such that
(u,w) = (ψz,−ψx). By taking the curl of the horizontal and vertical momentum equations
(1.6a and 1.6c) we obtain the vorticity equation

∂

∂t
∇2ψ + J(∇2ψ, ψ)− fvz − bx = 0, (1.14)

where∇2 = ∂2

∂x2 + ∂2

∂z2
, the Jacobian J is defined by J(A,B) = AxBz −AzBx and b is a density

related function, defined as

b = g
ρ′

ρ0

. (1.15)

With the streamfunction ψ and the Jacobian, (1.6b) turns into

vt + J(v, ψ) + fψz = 0. (1.16)

With (1.15), the density equations (1.1c) reads

bt +N2ψx + J(b, ψ) = 0. (1.17)

To sum up, the governing equations for internal waves are

∂

∂t
∇2ψ + J(∇2ψ, ψ)− fvz − bx = 0, (1.18)

vt + J(v, ψ) + fψz = 0, (1.19)

bt +N2ψx + J(b, ψ) = 0. (1.20)

1.6.2 Non-dimensionalization of the Governing Equations

We have already obtained the dimensional governing equations for internal waves as in (1.18)
– (1.20). The physical variables in SI (Système International d’unités) units governed by di-
mensional governing equations intrinsically hinder the understanding of the physical systems in
a parametric way, and hence inevitably bring obstacles in applying the theories and ideas de-
rived in one problem to another. Fortunately, non-dimensionalization, or what we called scaling
has been developed in order to compare the relative sizes of the various terms.1 Small non-
dimensional parameters are essential to the application of perturbation theory to the physical
problems, particularly the nonlinear ones.

1More details about scaling will be discussed in Chapter 2.
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To carry out non-dimensionalization, we need different standard length scales and time scales
in order to measure the physical variables. We choose L, H and U to be the horizontal length
scale, vertical length scale and velocity scale respectively. We also assume that u and w are small
perturbations of the velocity field, so that

u,w � U, (1.21)

and hence we can set
u = εUũ, (1.22)

where ũ is the non-dimensional horizontal velocity and ε is a small parameter to represent the
smallness of the perturbation. Since (u,w) = (ψz,−ψx), ψ can be expressed as

ψ = εHUψ̃, (1.23)

where ψ̃ is the non-dimensional streamfunction.
The dimensions of the other variables can be obtained from the dominant balances in the

governing equations. Let

(x, z, t) =

(
Lx̃,Hz̃,

L

U
t̃

)
(1.24)

(ψ, b, v) = ε

(
UHψ̃,

U2

H
b̃, fLṽ

)
(1.25)

N2 =
U2

H2
Ñ2. (1.26)

The variables with tilde are dimensionless counterparts of those without tildes.
Note that the scale of N2 guarantees that bx is of the same order as ∂

∂t
ψzz, or we say that the

dominant balance is between these two terms. Using the above scales to non-dimensionalize the
governing equations, we obtain the non-dimensional equations

∂

∂t
ψzz − bx = δvz + εJ(ψ, ψzz)− µ

∂

∂t
ψxx + εµJ(ψ, ψxx) (1.27a)

vt + ψz = εJ(ψ, v) (1.27b)

bt +N2ψx = εJ(ψ, b), (1.27c)

where

µ =
H2

L2
, δ =

f 2L2

U2
. (1.28)
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In fact, ε is a measure of the smallness of the amplitude, µ evaluates the hydrostaticity, and
δ equals to the square of the reciprocal of the Rossby number [Kundu and Cohen, 2004]: Ro,
which indicates the importance of the earth’s rotation.

1.7 Internal Wave Normal Modes

Internal waves are always associated with density stratification. The simplest case is the internal
waves in a two-layer fluid, where waves can be either of elevation or of depression and only
mode-1 waves exist. In a three-layer fluid, internal waves are formed by coupled displacement of
top interface and the bottom interface, which can be in-phase or out-of-phase. We call the former
case mode-1 wave and the latter one mode-2 wave.

(a) (b) (c)

Figure 1.2: This figure gives a demonstration of the simple normal modes. (a) shows a two-layer fluid
where only mode-1 wave exists and (b), (c) depict a mode-1 and mode-2 wave respectively.

Internal wave normal mode is a term we use to distinguish the properties of waves in the
vertical direction. In figure 1.2, (a) and (b) demonstrate examples of mode - 1 wave, and (c)
gives the mode - 2 wave of a three-layer fluid.

The normal mode of internal waves is often used to capture the vertical property of internal
wave motion. Inspired by the method of separable solution in solving different equations, we
characterize the wave motion in the horizontal plane and the vertical direction. To do so, fluid
motion can be conveniently expressed by the multiplication of a function of x,y and t, the hori-
zontal variables and z, the vertical variable. For instance, the horizontal velocity is often written



CHAPTER 1. THEORETICAL BACKGROUND 10

as

u(x, y, z, t) =
∞∑
n=0

ηn(x, y, t)hn(z), (1.29)

where u(x, y, z, t), in fact, has been separated into different vertical functions2 hn(z) (n ∈ N)
weighted by horizontal functions ηn(x) (n ∈ N). Normal modes have originated from this idea
of separation.

Different textbooks have their own ways of introducing the concept of normal modes of
internal waves. By assuming small amplitude and hydrostaticity of the fluid motion3 together
with bringing in N , the buoyancy frequency and the Boussinesq approximation, Kundu and
Cohen [2004] linearized (1.1a), (1.1c) and (1.6a) – (1.6c) into

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.30)

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
, (1.31)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
, (1.32)

∂p

∂z
= −gρ, (1.33)

∂ρ

∂t
− ρ0N

2w

g
= 0, (1.34)

where N has already defined in (1.13) as

N2 = − g

ρ0

dρ̄

dz
.

Taking the solution for the density to be

ρ(z) =
∞∑
n=0

ρn
dψn
dz

, (1.35)

2For simplification, we call functions of vertical variables vertical functions while naming the functions of hor-
izontal variables horizontal functions. Horizontal variables are usually donoted by x and y and vertical variable is
conventionally z.

3A fluid being hydrostatic is represented as in how we express the pressure in (1.33).
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and substituting it into (1.34) and taking that every component of the infinite series is independent
of each other due to linearity, Kundu and Cohen [2004] hence obtained the Sturm-Liouville
boundary value problem [Boyce and Diprima, 1997]

d

dz

(
1

N2

dψn
dz

)
+

1

c2
n

ψn = 0, (1.36)

where cn is the constant from solving (1.34) and (1.35) by the method of separation of variables.
In order to construct a complete Sturm-Liouville problem from (1.36), we need two boundary

conditions, which can be obtained from the rigid lid at the top and the bottom of the fluid.
Gill [1982], however, explained the normal modes of internal waves by acquiring two equa-

tions relating w and p from the linearized equations which can be given by setting f = 0 in (1.30)
– (1.34)

∂2w

∂z∂t
=

1

ρ0

(
∂2

∂x2
+

∂2

∂y2

)
p, (1.37)

N2w = − 1

ρ0

∂2p

∂z∂t
, (1.38)

then, by solving these two equations with separable solutions, he obtained an equation of the
Sturm-Liouville form similar to (1.36).

In fact, we can also try to understand the normal modes by manipulating the governing equa-
tions (1.27a) – (1.27c). As has been done in the textbooks, we also assume that the wave motion
is of infinitesimal amplitude4. However, we do not make the hydrostaticity assumption but take
µ = 1, then the 2D governing equations read

∂

∂t
∇2ψ − bx = δvz, (1.39a)

vt + ψz = 0, (1.39b)

bt +N(z)2ψx = 0. (1.39c)

It is easy to simplify (1.39a) – (1.39c) into one single equation

∂2

∂t2
∇2ψ +N(z)2ψxx + δψzz = 0. (1.40)

4Leblond and Mysak [1978] has made a good point in justifying the linearization of equations. They suggested
to use a/c to measure if the wave can be assumed to be linear, where a is the amplitude of wave amplitude and c is
the typical phase speed of the wave.
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In the ocean, the displacement at the surface is much smaller than that in the fluid column, hence
we can make the rigid lid approximation, which says that the vertical velocity w is approximately
zero at the surface z = 0. While at the bottom, we apply the no normal flow boundary condition,
so that we obtain w = 0 at z = −H . These rigid lids are described by figure 1.3.

0

z = -H

H

Figure 1.3: Rigid lid approximation means that the vertical velocity is nearly zero at the surface. This
figure also demonstrates a flat bottom where there is no normal flow. At the bottom, w is also zero.

The property of streamfunction ψx = −w and the two boundary conditions for w yield

ψ(x, 0) = 0, (1.41)

ψ(x,−H) = 0, (1.42)

if Substituting ψ = ei(kx−ωt)φ(z) into (1.40) gives

d2

dz2
φ−

(
ω2 −N2

ω2 − δ

)
k2φ(z) = 0, (1.43)

φ(0) = φ(−H) = 0. (1.44)

The DE (1.43) together with boundary conditions (1.44) form a boundary value problem5, whose
solutions usually require numerical computation. However, to simply the problem, we can as-
sume N(z) is a constant and f < ω < N , hence we obtain its theoretical solution

ψ(x, z) = A cos(mz) +B sin(mz), (1.45)
5In a more mathematical context, a boundary value problem is referred as a Sturm-Liouville problem.
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where m2 = k2N2−ω2

ω2−δ > 0. To meet the boundary conditions (1.44), we need A = 0 and

mn =
nπ

H
. n = 0, 1, 2 · · · , (1.46)

which is the equation expressing the normal modes of internal waves. This expression of mn is
consistent with the result derived by Kundu and Cohen [2004] and Gill [1982].

1.8 Tidal Frequency

The tides, referring to the cyclic rise and fall of ocean levels (especially the coastal sea water
levels), result from the gravitational force and centrifugal force from the earth-moon system and
the earth-sun system. Mellor [1996] has explained the underlying mathematics and physics of
tides. He also showed that the moon plays a more important role than the sun in the generation
of tides.

There are many different types of tides all over the world. Even though some people tend to
classify the tides into many small categories [Doodson, 1921], in fact, it is more convenient to
think of these two fundamental types of tides: the diurnal tides (K1 tides) and the semi-diurnal
tides (M2 tides ). In some areas of the gulf of Mexico and Southeast Asia, we can see tides
having one high and one low per day. These tides are usually called diurnal tides, or K1 tides.
However, what is more common along the Atlantic and Arctic coast are the semidiurnal tides,
called M2 tides. The other types of tides are usually classified as the mixed tides of K1 and M2

tides, where we see higher high water, lower high water, higher low water as well as lower low
water in the tides.

The M2 tide is the dominant tide throughout the world since its tidal potential is the largest;
therefore, a very large portion of tides research and studies have been focused on this specific
type of tide.

Consequently, the tidal frequency is conventionally taken to be the M2 tide, which is

ωM2 =
2π

TM2

= 1.4075× 10−4 s−1, (1.47)

with M2 tidal period: TM2 = 12.42 hr. We refer to Mellor [1996] for details of the derivation of
TM2 and ωM2 .



CHAPTER 2

NEAR-RESONANT INTERNAL WAVE

TRIADS

2.1 Resonance and Perturbation Theory

Resonance is an interesting phenomenon in oscillatory problems, such as the motion of a mass-
spring system, the R-L-C circuit and so on. Jeffrey [1999] introduces resonance using the second-
order ordinary differential equation (ODE) given by

d2y

dt
+ 2ζ

dy

dt
+ Ω2y = A cos(ωt). (2.1)

It can be shown that the amplitude of the steady state solution of this ODE is

P (ω) =
A(

(Ω2 − ω2)2 + 4ζ2ω2
)1/2

. (2.2)

P (ω) obtains its maximum when

ω2 = ω2
c = Ω2 − 2ζ2, (2.3)

in which case
Pmax =

A

2ζ (Ω2 − ζ2)1/2
. (2.4)

14
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The system is said to experience resonance at ωc, when the external forcing frequency1 is the
same as the inertial frequency2. The most extreme effect of resonance occurs when there is no
damping (ζ = 0), in which case the amplitude is unbounded. To be more specific, on setting
ζ = 0 in (2.1) and solving for y(t) subject to (2.3), we obtain

y(t) = t sin(Ωt). (2.5)

However, this extreme example is unphysical, since any physical system will invariably experi-
ence dissipation and damping. Nonlinearity will also modify the behaviour of the system.

In dealing with nonlinearity, among the most effective techniques are perturbation methods,
the idea of which was originated in 17th century celestial mechanics and thereafter had been
introduced in order to solve many differential equations from various branches of mechanics.
The premise of perturbation theory is to find an approximate solution in the form of a power
series form in a small parameter. First, we need to solve the lowest order problem and then use
its result to obtain a sequence of higher order solutions. For instance, in a wave-wave interaction
problem ([Leblond and Mysak, 1978],[Craik, 1985]), we have the nonlinear term in the material
derivative term

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
, (2.6)

in the momentum equation, which appears in (1.6a) back into chapter 1.
The nonlinear terms make it hard to find exact solutions of u in (1.6a) given appropriate

conditions. Perturbation theory suggests us to assume the solution u as the form of a power
series as

u = εu0 + ε2u1 + ε3u2 + O(ε4). (2.7)

If the amplitude of u is very small, we can define a small parameter ε and claim that u is the
same order of ε, the small parameter 3, while the nonlinear terms, say, u∂u

∂x
is at the order of ε2

and we can claim that u∂u
∂x
� u. Therefore, in solving u0, we can ignore higher order terms,

1External forcing are the terms on the right hand side that makes the ODE in-homogeneous. In (2.1), A cos(ωt)
is the external forcing term and ω is the forcing frequency.

2Inertial frequency is defined as the oscillation frequency of the corresponding homogenous equation, which is
d2y
dt + 2ζ dydt + Ω2y = 0 for (2.1).

3Mathematically, we call a(x) is in the same order of b(x) if we have lim
x→x0

a(x)
b(x)

= c, where c is a nonzero and

bounded constant.
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and at the next step, when solving u1, we can use the already computed value of u0. At the end,
if the power series in (2.7) actually converges, it can be taken as a valid asymptotic solution for

the problem. However, if the series diverges, for example, lim
x→x0

u(x) =
1

ε
, we call this a secular

term and the perturbation series is not able to provide a valid solution. The regular perturbation
method [Lamb, 2005; Bender and Orszag, 1999; Nayfeh, 1973] fails at this point and we need to
try a singular perturbation method [Lamb, 2005; Bender and Orszag, 1999; Nayfeh, 1973].

Figure 2.1 shows the infinitely growing amplitude of function y(t) = t sin(t) as in (2.5).
This amplitude characterizes resonant phenomena and the term is a secular term4 in perturbation
theory. This term is unphysical since it would allow a system to possess an unbounded amount
of energy. According to perturbation theory, secular terms are not allowed in the perturbation
power series since a divergent series does not give a valid approximation to the actual solution.
However, the singular perturbation method provides us the method of multiple scales [Bender
and Orszag, 1999] to deal with cases where secular terms appear. Later in this thesis, we will
apply this method to deal with resonant and near-resonant behaviours in internal wave triads.

Figure 2.1: The infinitely growing amplitude of the secular term: t sin(t).

4Secular terms are also known as resonant terms.



CHAPTER 2. NEAR-RESONANT INTERNAL WAVE TRIADS 17

2.2 On Near-resonant Water Waves

2.2.1 Water Wave Resonance and its Development

Resonance in water waves is a typical example of “weak wave-wave interaction” [Leblond and
Mysak, 1978], the theory of which is the outgrowth of the application of perturbation theory in
water waves. Following Craik [1985], we introduce resonance by investigating the interaction of
several waves with dominant wave modes under resonant conditions. Resonance usually occurs
among a group of waves. If there are only three waves in this group, we get a resonant triad,
which is the most basic resonant wave. In order to obtain the resonant condition, we take the
conventional wave form5 as

Re{aj(x)e−i(
~k·~x−Re{ωjt})}, (j = 1, 2, 3), (2.8)

with amplitude aj being small. Interaction of any of the two waves, say, the first and second
wave6 in terms of the nonlinear terms yields a term like

e−i{(
~k1+~k2)·~x+Re(ω1+ω2)t}, (2.9)

which comes from taking the sum product into account. When (2.9) acts as a forcing term,
resonance would occur if we have

~k1 + ~k2 = ~k3, (2.10a)

Re{ω1}+Re{ω2} = Re{ω3}, (2.10b)

which drives (2.9) into the family of the third wave7. Note that (~kj, ωj)(j = 1, 2, 3) satisfy the
given dispersion relation of the physical problem under study. Similar to the forcing term on
the right hand side of the ODE given by (2.1), here, (2.9) can be viewed as an external forcing
characterized by wave-vector ~k1 + ~k2 and frequency Re{ω1}+Re{ω2}, and the wave-vector and
inertial frequency of the physical system is given by ~k3 and Re{ω3}. If (2.10a) and (2.10b) are

5For generality, Craik [1985] used complex ωj (j = 1, 2, 3). Most of the time in this thesis, we are working with
real ωj (j = 1, 2, 3).

6We use subindices to denote the nth wave.
7If wave a has same frequency and wavenumber of wave b, we say they are in the same wave family.
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satisfied, external forcing resonate with wave 3; (2.10a) – (2.10b) are called the resonant triad
condition.

The resonant triad condition can be also found in Pedlosky [1987] and is summarized as

~k1 + ~k2 + ~k3 = 0, (2.11a)

ω1 + ω2 + ω3 = 0, (2.11b)

where kj (j = 1, 2, 3) and ωj(j = 1, 2, 3) are the wavenumber vector and frequency of the
resonant triad. Notice that (2.11a) – (2.11b) can be viewed as the same as (2.10a) – (2.10b), if
we allow kj and ωj to have ± signs.

Phillips [1960] and Hasselmann [1962] are the pioneers on the studies of resonant water
waves. They independently worked out that resonant triads for inviscid surface gravity waves
do not exist. Three waves must interact to produce a fourth wave and they satisfied the resonant
quartets condition

~k1 + ~k2 + ~k3 + ~k4 = 0, (2.12a)

ω1 + ω2 + ω3 + ω4 = 0. (2.12b)

Following their work, McGoldrick [1965, 1970, 1972] showed that even though there is no res-
onant triads for inviscid surface gravity waves, the interaction of the capillary-gravity waves is
able to embrace resonant triads.

For internal gravity waves, Thorpe [1966] claimed that resonant triads are possible for any
stable stratification and McComas and Bretherton [1977] discussed them in detail. Martin et al.
[1972] carried an experiment on linearly stratified internal wave triads and presented its theoreti-
cal explanation. The possibility of a resonant triad formed by a pair of surface gravity waves and
an internal gravity wave was shown by Thorpe [1966].

2.2.2 From Resonance to Near-resonance

In the last section, we glanced at the development on resonant water wave theory. We also need
to mention that for waves in other fields, for example, optics, electronics. there is also a series
of literature devoted on resonance studies [Armstrong et al., 1962]. Nayfeth [1971]; Armstrong
et al. [1962] are among the earliest scientists to use the concept of near-resonance and try to
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link and compare between exact resonance and near-resonance. Two recent pieces of work on
near-resonance can be found in [Smith and Lee, 2005; Lamb, 2007b].

Resonance exists when (2.11a) – (2.11b) or (2.12a) – (2.12b) are satisfied perfectly; however,
when there is a small detuning of frequency and wavenumber, near-resonance occurs. Craik
[1985] defined a frequency mismatch in resonant triads as

ω1 + ω2 + ω3 = ∆ω, (2.13)

and named this case as near-resonance when ∆ω is very small. Also, Armstrong et al. [1962]
named the resonant like physical phenomenon near-resonance when there is a small mismatch
for the horizontal wavenumber

k1 + k2 + k3 = ∆k. (2.14)

To sum up, if three waves satisfy the following relations

− ~k3 + ∆~k = ~k1 + ~k2, (2.15)

−ω3 + ∆ω = ω1 + ω2, (2.16)

ωj = ω(kj), j = 1, 2, 3 (2.17)

and when ∆~k and ∆ω are relatively small, they form a near-resonant triad.

2.2.3 Near-resonant Triads in Internal Waves

The general theory of near-resonance can be applied to internal waves, where the dispersion re-
lation is specified by the theory of internal waves. For internal waves, there are two important
stages: the generation and the propagation of internal waves. Internal waves are usually gen-
erated by the combined effects of the earth’s rotation and the stratification of the medium. A
typical example is internal waves generated by the interaction of barotropic tides and topogra-
phy. In this case, most of the energy in the internal wave field resides in waves of tidal frequency,
which is called internal tides. The significance of the earth’s rotation on inertial tides can be
found in [Gerkema and Zimmerman, 1994] and [Gerkema, 1996]. During the propagation of
internal waves, if the frequency is small, the earth’s rotation is important as well. However, for
some other problems, for example, the propagation of internal solitary waves, the earth’s rotation
can be treated as not important and hence neglected except for over long time scales, the case
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when the tiny influence of the earth’s rotation can accumulate to an important factor over a long
period. Therefore, the earth’s rotation has to be taken into account in many circumstances; how-
ever, when it is indeed too small to be considered, making the approximation of f = 0 brings
many conveniences and also enhances the efficiency of scientific endeavours. This thesis will
analyze near-resonance with and without the earth’s rotation distinctly.

Throughout this thesis, we will be studying a near-resonant triad formed by harmonic 2 –
mode 2, harmonic 1 – mode 3 and harmonic 1 – mode 1 waves8. The frequencies and the
wavenumbers of them are

frequency: ω1 = −2ωM2 , ω2 = ωM2 , ω3 = ωM2 , (2.18a)

vertical wavenumber: m1 =
2π

H
, m2 = −3π

H
, m3 =

π

H
, (2.18b)

where ωM2 is theM2 tidal frequency given by (1.47), and horizontal wavenumbers of the internal
waves can be computed by using the dispersion relation for internal waves, which is, in the
general rotating case,

ω2 =
N2k2 + δm2

k2 +m2
. (2.19)

Notice that only waves which meet and interact are able to form resonant triads, so we need to
require that all three waves have positive phase speeds.

2.2.4 Near-resonance Internal Wave Triads with the Earth’s Rotation

For a model with Ro ≤ 1 [Kundu and Cohen, 2004]9, it is necessary to include the earth’s
rotation. Furthermore, we want to take the full nonhydrostaticity into account and include the
small amplitude of wave motion to enable a weakly-nonlinear analysis, thus obtaining resonant
triad theory. In summary, the three parameters satisfy

ε� 1, µ = 1, Ro ≤ 1. (2.20)
8Harmonic number is defined as the wave frequency divided by tidal frequency ωM2 , for instance, harmonic 2

wave is the wave with frequency of twice of the tidal frequency.
9Ro = U2

f2L2 . Recall δ = f2L2

U2 , so δ = 1
Ro .



CHAPTER 2. NEAR-RESONANT INTERNAL WAVE TRIADS 21

Eliminating b in (1.27a) and (1.27c) on the left hand side leads us to

∂2

∂t2
∇2ψ +N2ψxx = δvzt + ε

∂

∂t
J
(
ψ,∇2ψ

)
+ ε

∂

∂x
J (ψ, b) (2.21a)

vzt + ψzz = ε
∂

∂z
J (ψ, v) , (2.21b)

which can be combined as

∂2

∂t2
∇2ψ +N2ψxx + δψzz = ε

∂

∂t
J
(
ψ,∇2ψ

)
+ ε

∂

∂x
J (ψ, b) + εδ

∂

∂z
J (ψ, v) , (2.22)

where∇2 = ∂2

∂x2 + ∂2

∂z2
. Note that because of nonlinearity, it is hard to eliminate v and b to obtain

a closed system involving only ψ, hence we have the Jacobian terms of v and b.
On linearizing (2.22) and seeking solutions of the form ψ ∝ e−i(kx+mz−ωt), we obtain the

dispersion relation

ω2 =
N2k2 + δm2

k2 +m2
(2.23)

with linear solutions

ψ(0)(x, z, t) =
1

2

3∑
n=1

{
an
mn

eiθn + c·c·

}
sin(mnz), (2.24)

v(0)(x, z, t) = − i
2

3∑
n=1

{
an
ωn
eiθn − c·c·

}
cos(mnz), (2.25)

b(0)(x, z, t) =
N2

2

3∑
n=1

{
kn

mnωn
ane

iθn + c·c·

}
sin(mnz), (2.26)

where
θn = knx− ωnt+ φn, (2.27)

and c·c· stands for complex conjugate.
Rearranging (2.23) gives

k = ±m
(
ω2 − δ
N2 − ω2

) 1
2

, (2.28)
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f ( s−1) k1( m−1) k2( m−1) k3 ( m−1) ∆k ( m−1) Ro

0.2× 10−4 −0.00184 0.00133 4.42× 10−4 −7.0× 10−5 0.9

0.4× 10−4 −0.00182 0.00128 4.28× 10−4 −1.12× 10−4 0.45

0.5× 10−4 −0.00181 0.00125 4.18× 10−4 −1.4× 10−4 0.36

0.6× 10−4 −0.00180 0.00121 4.04× 10−4 −1.85× 10−4 0.3

0.8× 10−4 −0.00177 0.00110 3.67× 10−4 −2.97× 10−4 0.225

1.0× 10−4 −0.00172 9.4× 10−4 3.14× 10−4 −4.65× 10−4 0.18

Table 2.1: The wavenumbers for harmonic 2 – mode 2, harmonic 1 – mode 3, and harmonic 1 – mode 1
waves given different choices of f and constant N = 1.0 × 10−3s−1. Here, ∆k = k1 + k2 + k3 is the
detuning of the frequency. R0 = U

fL is the Rossby number.

from which we obtain the horizontal wavenumbers of the aforementioned resonant triad de-
scribed by (2.18a) – (2.18b)

k1 = −2m0

(
4ω2

M2
− δ

N2 − 4ω2
M2

) 1
2

, (2.29)

k2 = 3m0

(
ω2
M2
− δ

N2 − ω2
M2

) 1
2

, (2.30)

k3 = m0

(
ω2
M2
− δ

N2 − ω2
M2

) 1
2

, (2.31)

the sign’s being chosen so all waves in the triad have positive phase speed.
Note that this set of wavenumbers leads to

k1 + k2 + k3 = −∆k 6= 0, (2.32)

which is the essence of near-resonant triads. We require ∆k to be small compared with the kj
(j = 1, 2, 3) in near-resonant theory and the given resonant triad indeed satisfies this requirement
(details can be found in appendix A).

Some example values of ∆k in its dimensional form can be found in table 2.1, whereN(z) =

1.0× 10−3 s−1. The non-dimensional counterparts are given by table 2.2.
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δ k̃1 k̃2 k̃3 ∆k̃

0.0039 −1.8386 1.3263 0.4421 −0.0702

0.0158 −1.8246 1.2847 0.4282 −0.1117

0.0247 −1.8140 1.2525 0.4175 −0.1440

0.0355 −1.8009 1.2121 0.4040 −0.1849

0.0632 −1.7673 1.1024 0.3675 −0.2947

0.0987 −1.7231 0.9429 0.3143 −0.4658

Table 2.2: The non-dimensional wavenumbers for harmonic 2 – mode 2, harmonic 1 – mode 3, and
harmonic 1 – mode 1 waves given different choices of f and constant N = 1.0 × 10−3s−1. Here,
∆k = k1 + k2 + k3. The rotation parameter δ and other variables with tilde are non-dimensionalized by
δ = f2π2

N2 and k̃i = Hki. Details of the non-dimensionalization will be given in section 3.1.4.

The choice of choosing the vertical profile of ψ to be a sinusoid is made due to the rigid lid
boundary conditions, say ψ(x, 0, t) = ψ(x,−1, t) = 0, if z = 0 and z = −1 are the top and
bottom boundaries, respectively. Here, ω and k are given. Without loss of generality and for
convenience we let

φ1 + φ2 + φ3 =
π

2
, (2.33)

thus
θ1 + θ2 + θ3 =

π

2
−∆kx. (2.34)

If we keep the algebra without any modification, we will get unbounded amplitude functions.
In fact, in the physical world, due to nonlinear interaction, none of the waves will grow un-
boundedly. Many previous works [Craik, 1985; Pedlosky, 1987] suggest to adjust the amplitude
equations to eliminate this problem. According to multiple scale analysis [Bender and Orszag,
1999], we introduce two slowly varying variables

ξ = εx, τ = εt. (2.35)

Recall that ∆k defined in (2.32) is small as well and if we use this small parameter ε to express
∆k, we will have

∆k = εk̃, (2.36)



CHAPTER 2. NEAR-RESONANT INTERNAL WAVE TRIADS 24

and naturally get
∆kx = εk̃x = k̃ξ, (2.37)

and
θ1 + θ2 + θ3 =

π

2
− k̃ξ. (2.38)

Also, the linearized stream-function ψ(0) becomes a function of x, ξ, t and τ

ψ(0) =
1

2

3∑
1

{
an(ξ, τ)

mn

eiθn + c·c·

}
sin(mnz). (2.39)

Consequently, the linearized v(0) and b(0) are functions of x, t, ξ and τ as well. As a result, (2.22)
can be written as

∂2

∂t2
∇2ψ +N2ψxx + δψzz = ε

(
−2∇2ψtτ − 2ψxξtt − 2N2ψxξ

)
+ ε

∂

∂t
J
(
ψ,∇2ψ

)
+ ε

∂

∂x
J (ψ, b) + εδ

∂

∂z
J (ψ, v) +O

(
ε2
)
, (2.40)

where

∇2 =
∂2

∂x2
+

∂2

∂z2
. (2.41)

Looking for asymptotic solution, we expand ψ, b and v as

ψ = ψ(0) + εψ(1) +O
(
ε2
)
, (2.42)

b = b(0) + εb(1) +O
(
ε2
)
, (2.43)

v = v(0) + εv(1) +O
(
ε2
)
. (2.44)

The solutions of the O(1) problem are the linearized solutions, which are the same as equa-
tions (2.24) – (2.26), except that the amplitudes are now functions of ξ and τ . At O(ε), we
have

∂2

∂t2
∇2ψ(1) +N2ψ(1)

xx + δψ(1)
zz = −2∇2ψ

(0)
tτ − 2ψ

(0)
xξtt − 2N2ψ

(0)
xξ +

∂

∂t
J
(
ψ(0),∇2ψ(0)

)
+

∂

∂x
J
(
ψ(0), b(0)

)
+ δ

∂

∂z
J
(
ψ(0), v(0)

)
. (2.45)
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Using the leading-order solutions (2.24) – (2.26)10, we compute the three Jacobian terms.

J
(
ψ(0),∇2ψ(0)

)
=

i

8

3∑
n=1

3∑
j=1

kn
mn

(κ2
n − κ2

j)(anaje
i(θn+θj)

+ ana
∗
je
i(θn−θj) − c·c·)(sin((mn +mj)z) + sin((mn −mj)z)),(2.46)

where κ2
n = k2

n +m2
n and κ2

j = k2
j +m2

j . To screen out the difference terms of phases (θn− θj) ,
we have

J
(
ψ(0),∇2ψ(0)

)
≈ F123 + F231 + F321, (2.47)

where

Fpqr =
1

8

(
kq
mq

− kr
mr

)(
κ2
q − κ2

r

) (
aqare

−iθp−ik̃ξ + c·c·
)

sin(mpz). (2.48)

As a matter of fact, p, q, r can be chosen as

{p, q, r} ∈ {{1, 2, 3}, {2, 3, 1}, {3, 2, 1}} . (2.49)

In (2.47), we use the approximation symbol11 to denote the resonant terms composed by the
three waves from the triads. To get these resonant terms, we keep the sum terms, for example,
θn + θj , mn +mj and leave out the difference terms such as θn− θj and mn−mj . This notation
has been used in [Lamb, 2007b] and is enormously effective and successful in conveying the
idea. Without this notation, the algebra gets tedious, as Phillips [1981] has commented about.

Similarly, we have an expression for the Jacobian of b given by

J
(
ψ(0), b(0)

)
=

iN2

8

3∑
n=1

3∑
j=1

kj
mj

(
kj
mj

− kn
mn

)(
ajane

i(θn+θj) (2.50)

+ aja
∗
ne
i(θn−θj) − c·c·

)
(sin((mn +mj)z) + sin((mn −mj)z)) (2.51)

and consequently we obtain

J
(
ψ(0), b(0)

)
≈ G123 +G231 +G321, (2.52)

where

Gpqr = −N
2

8

(
kq
mq

− kr
mr

)(
kq
ωr
− kr
ωr

)(
aqare

−iθp−ik̃ξ + c·c·
)

sin(mrz) (2.53)

10Here, an( n = 1, 2, 3) are functions of ξ and τ .
11These symbols are also used in (2.52) and (2.55) for the same purpose.
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The third Jacobian is

J
(
ψ(0), v(0)

)
=

1

8

3∑
n=1

3∑
j=1

(
knmj

mnωj
− kj
ωj

)(
anaje

i(θi+θj) + c·c·
)

(cos((mn+mj)z)−cos((mn−mj)z)),

(2.54)
and so

δ
∂

∂z
J
(
ψ(0), v(0)

)
≈ H123 +H231 +H321, (2.55)

where

Hpqr =
δmp

8

(
kqmr

mrωr
− kr
ωq

+
krmq

mrωq
− kq
ωq

)(
aqare

−iθp−ik̃x̃ + c·c·
)

sin(mpz). (2.56)

The three Jacobian terms then add up as

∂

∂t
J
(
ψ(0),∇2ψ(0)

)
+

∂

∂x
J
(
ψ(0), b(0)

)
+ δ

∂

∂z
J
(
ψ(0), v(0)

)
≈ iα123

(
a2a3e

−ik̃ξe−iθ1 − c·c·
)

sin(m1z)

+ iα231

(
a3a1e

−ik̃ξe−iθ2 − c·c·
)

sin(m2z)

+ iα321

(
a1a2e

−ik̃ξe−iθ3 − c·c·
)

sin(m3z), (2.57)

where

αpqr =
1

8
N2

(
kq
mq

− kr
mr

)(
ωp
N2

(
κ2
q − κ2

r

)
+ kp

(
kq
ωq
− kr
ωr

))
(2.58)

+
δmp

8

(
kq
mq

− kr
mr

)(
mr

ωr
− mq

ωq

)
. (2.59)

The sum of the first three terms on the RHS of (2.45) is

−2∇2ψtτ−2ψxξtt−2N2ψxξ = −
3∑
j=1

{
κ2
j

iωj
mj

(
∂aj
∂τ

+ Cgj
∂aj
∂ξ

)
eiθj + c·c·

}
sin(mjz), (2.60)

where

Cgj =
kj
(
N2 − ω2

j

)
κ2
jωj

, (2.61)

and Cgj is the group velocity of the jth linear long internal wave.
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To eliminate the secular terms and close the system, we set

∂ap
∂τ

+ Cgp
∂ap
∂ξ

= −γpqra∗qa∗reik̃ξ, (2.62)

where

γpqr =
αpqr
κ2
p
ωp

mp

=
1

8

mpN
2

κ2
p

(
kq
mq

− kr
mr

)((
kq
ωq
− kr
ωr

)(
k1

ω1

+
k2

ω2

+
k3

ω3

)
+ δ

(
mq

ωq
− mr

ωr

)(
m1

ω1

+
m2

ω2

+
m3

ω3

))
, (2.63)

for {p, q, r} = {1, 2, 3}, {2, 3, 1} or {3, 2, 1}.
To work on the complex amplitude function in a convenient way, we separate a complex

function into its real and complex part. Here, we write ap = cp − isp and hence obtain

ψ(0)(x, z, t) =
3∑

n=1

{
cn
mn

cos θn +
sn
mn

sin θn

}
sin (mnz) (2.64a)

b(0)(x, z, t) = N2

3∑
n=1

{
cn

kn
mnωn

cos θn + sn
kn

mnωn
sin θn

}
sin(mnz) (2.64b)

v(0)(x, z, t) = −
3∑

n=1

{
sn
ωn

cos θn −
cn
ωn

sin θn

}
sin(mnz). (2.64c)

Then (2.62) becomes

∂cp
∂τ

+ Cgp
∂cp
∂ξ

= −γpqr
(

(cqcr − sqsr) cos(k̃ξ)− (sqcr + cqsr) sin(k̃ξ)
)
, (2.65a)

∂sp
∂τ

+ Cgp
∂sp
∂ξ

= γpqr

(
(cqcr − sqsr) sin(k̃ξ) + (sqcr + cqsr) cos(k̃ξ)

)
. (2.65b)

2.2.5 Near-resonant Internal Wave Triads without the Earth’s Rotation

If we have negligible rotational effects and keep the other assumptions in the model, we set the
parameters as

ε� 1, µ = 1, R0 � 1. (2.66)
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N(s−1) k1(m−1) k2(m−1) k3(m−1) ∆k(m−1)

0.0006 −0.0033 0.0023 7.6× 10−4 −3.1× 10−4

0.0008 −0.0024 0.0017 5.6× 10−4 −1.2× 10−4

0.001 −0.0018 0.0013 4.5× 10−4 −5.7× 10−5

0.0015 −0.0012 8.9× 10−4 3.0× 10−4 −1.6× 10−5

0.002 −8.9× 10−4 6.6× 10−4 2.2× 10−4 −6.7× 10−6

0.0025 −7.1× 10−4 5.3× 10−4 1.8× 10−4 −3.4× 10−6

Table 2.3: The dimensional wavenumbers for harmonic 2 – mode 2, harmonic 1 – mode 3, and harmonic
1-mode 1 waves given different choices of N when no earth’s rotation is considered. Here, ∆k = k1 +
k2 + k3.

The assumption R0 � 1 amounts to setting δ = 0. The three waves discussed earlier (2.18a)
– (2.18b) also form a near-resonant triad. Now, the dispersion relation (2.23) for internal waves
becomes

ω2 =
N2k2

k2 +m2
. (2.67)

With the same choice of waves as in (2.18a) – (2.18b), we now obtain a different set of
horizontal wavenumbers

k1 = − 4m0ωM2√
N2 − 4ω2

M2

, (2.68a)

k2 =
3m0ωM2√
N2 − ω2

M2

, (2.68b)

k3 =
m0ωM2√
N2 − ω2

M2

, (2.68c)

with the requirement of positive phase speed.
With the same definition of ∆k as in (2.32), we still have the property that ∆k is very small.

The detail of the proof can be found in section 3.1.5. An example of the dimensional counterparts
of these ∆k and k can be found in table 2.3.
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When δ = 0 the governing equation (2.22) simplifies to

∂2

∂t2
∇2ψ +N2ψxx = ε

∂

∂t
J
(
ψ,∇2ψ

)
+ ε

∂

∂x
J (ψ, b) , (2.69)

with the perturbation series ψ and b given by

ψ = ψ(0) + εψ(1) +O(ε2) (2.70a)

b = b(0) + εb(1) +O(ε2). (2.70b)

This governing equation is different than (2.22) and the amplitude equations are obtained
from setting δ = 0 in (2.65a)-(2.65b), which are

∂cp
∂τ

+ Cgp
∂cp
∂ξ

= −γpqr
(

(cqcr − sqsr) cos(k̃ξ)− (sqcr + cqsr) sin(k̃ξ)
)

(2.71a)

∂sp
∂τ

+ Cgp
∂sp
∂ξ

= γpqr

(
(cqcr − sqsr) sin(k̃ξ) + (sqcr + cqsr) cos(k̃ξ)

)
, (2.71b)

where

γpqr =
αpqr
κ2
p
ωp

mp

=
1

8

mpN
2

κ2
p

(
kq
mq

− kr
mr

)(
kq
ωq
− kr
ωr

)(
k1

ω1

+
k2

ω2

+
k3

ω3

)
, (2.72)

for {p, q, r} = {1, 2, 3}, {2, 3, 1} or {3, 2, 1}.
The amplitude equations of near-resonant internal waves without the earth’s rotation is given

by (2.71a) and (2.71b), which differ from their counterparts with rotational effect in how γpqr

and k̃ are computed.

2.2.6 Resonant Internal Wave Triads

Near-resonance without the earth’s rotation is obtained on taking δ = 0 in the model (2.22), de-
scribing near-resonant internal waves. If we further assume the model to be hydrostatic (µ = 0),
where the vertical length scale is much smaller than the horizontal length scale, then we can
make the approximation

κ2 = k2 +m2 ≈ m2. (2.73)

This approximation turns the dispersion relation (2.67) into

ω2 =
N2k2

m2
, (2.74)
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where we can also write
k = ±ωm

N
. (2.75)

For the internal wave triad whose frequencies and vertical wavenumbers are depicted by (2.18a)
– (2.18b), we now have another set of horizontal wavenumbers

k1 = −4m0ωM2

N
, (2.76a)

k2 =
3m0ωM2

N
, (2.76b)

k3 =
m0ωM2

N
. (2.76c)

Here,
∆k = k1 + k2 + k3 = 0, (2.77)

together with (2.18a) – (2.18b), gives an exact resonant internal wave triad.
In order to get the amplitude equations, we only need to substitute (2.73) in to (2.71a)–(2.71b)

and hence get

∂cp
∂τ

+ Cgp
∂cp
∂ξ

= −γpqr(cqcr − sqsr) (2.78a)

∂sp
∂τ

+ Cgp
∂sp
∂ξ

= γpqr(sqcr + cqsr), (2.78b)

where γpqr is the same as that given by (2.63). Here, with the fluid being hydrostatic, we have
κ2
p = m2

p, and hence

γpqr =
1

8

N2

mp

(
kq
mq

− kr
mr

)(
kq
ωq
− kr
ωr

)(
k1

ω1

+
k2

ω2

+
k3

ω3

)
, (2.79)

for {p, q, r} = {1, 2, 3}, {2, 3, 1} or {3, 2, 1}.
In fact, (2.78a) – (2.78b) can be reduced to a much simpler canonical form for characterizing

resonant triads [Craik, 1985; Martin et al., 1972]

∂c̃p
∂τ

+ Cgp
∂c̃p
∂ξ

= −γ̃pqrc̃q c̃r, (2.80)

where c̃p (p = 1, 2, 3) are all real functions.
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To understand the relationship between cp and c̃p, recall the first appearance of the amplitude
ap in (2.24) – (2.26), where we chose ap to be complex and slowly varying with space and time.
Actually, if we write

ap = cp − isp =
√
c2
p + s2

p

(
cos θp + i sin θp

)
= ãpe

iθp , (2.81)

where θp = − arctan sn

cn
and ãp = |ap| are real, then we will have the expression for ψ from

(2.24) as

ψ(0)(x, z, t) =
1

2

3∑
n=1

{
ãn
mn

ei(θn+θn) + c·c·

}
sin (mnz) . (2.82)

If we carry out the algebra as we did in section 2.2.4 and choose an appropriate value for
φ1 +φ2 +φ3 similar to (2.33)12 , we will get the governing amplitude equation for resonant triads
in the form (2.80). This canonical form facilitates the stability analysis of resonance.

Craik [1985] has even suggested a heuristic shortcut to obtain an amplitude equation of the
form (2.78a) – (2.78b). If the linear dispersion relation is represented by

D
(
ω,~k

)
= 0, (2.83)

then the Taylor expansion of slow modulation denoted by the small parameter ε of each complex
amplitude aj is given by

D

(
ωp + ε

∂

∂t
,~kp − ε~∇

)
ap = ε

(
∂D

∂ωp

∂

∂t
− ∂D

∂kp
· ~∇
)
ap + O

(
ε2
)
. (2.84)

Energy transformation between resonant triads indicates that the slow modulation of each ampli-
tude is from the nonlinear interaction, so we claim

D

(
ωp +

∂

∂t
,~kp − ~∇

)
ap = γpa

∗
qa
∗
r + higher order interactions. (2.85)

Therefore, we have (
∂D

∂ωp

∂

∂t
− ∂D

∂ ~kp
· ~∇

)
ap = γpa

∗
qa
∗
r. (2.86)

12We will have to assume φj (j = 1, 2, 3) to be slowly varying since the θ-relation will involve the sum of θj
(j = 1, 2, 3), which are indicated as slowly varying functions by its definition.
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To leading order, a small perturbation δk and δω of wavenumber and frequency satisfy

δω(
∂D

∂ω
) + δ~k · (∂D

∂~k
) = 0, (2.87)

and hence
∂D

∂~kp

∂D
∂ωp

= −∂ωp
∂~kp

= − ~Cgp. (2.88)

Using (2.88), (2.86) turns into

(
∂

∂t
+ ~Cgp · ~∇)ap =

γp
∂D
∂ωp

a∗qa
∗
r, (2.89)

which is in the same form of (2.78a) – (2.78b).

2.2.7 Temporal and Spatial Near-resonance

The results from the analysis of previous sections are first-order PDEs: (2.65a) – (2.65b), (2.71a)
–(2.71b) and (2.78a) – (2.78b). In fact, (2.71a) –(2.71b) and (2.78a) – (2.78b) are special cases
of (2.65a) – (2.65b), since on setting δ = 0 in (2.65a) – (2.65b), we have (2.71a) – (2.71b) and
by further setting κ2 ≈ m2 and k̃ = 0, we have (2.78a) – (2.78b). If, on one hand, the spatial
derivatives are negligible, we obtain from (2.65a) – (2.65b) the governing equation for wave
amplitude of temporal near-resonance, namely

∂cp
∂τ

= −γpqr
(

(cqcr − sqsr) cos(k̃ξ)− (sqcr + cqsr) sin(k̃ξ)
)
, (2.90a)

∂sp
∂τ

= γpqr

(
(cqcr − sqsr) sin(k̃ξ) + (sqcr + cqsr) cos(k̃ξ)

)
. (2.90b)

On the other hand, if the amplitudes actually do not change with time, we obtain spatial near-
resonance and its governing equations

∂cp
∂ξ

= −γpqr
Cgp

(
(cqcr − sqsr) cos(k̃ξ)− (sqcr + cqsr) sin(k̃ξ)

)
, (2.91a)

∂sp
∂ξ

=
γpqr
Cgp

(
(cqcr − sqsr) sin(k̃ξ) + (sqcr + cqsr) cos(k̃ξ)

)
. (2.91b)

Since it is not likely that we can solve (2.65a) – (2.65b) analytically, we will solve these equations
numerically. The merit of dividing up the temporal and spatial near-resonance is that if we
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know the type of near-resonance, we can turn the system of PDEs (2.65a) – (2.65b) into a set of
ODEs (2.90a) – (2.90b) or (2.91a) – (2.91b), which are much easier to solve numerically [Neef,
2004; Press et al., 1992]. Certainly, in many cases, the temporal and spatial variations are both
important and we have to solve the system of PDEs (2.65a) – (2.65b).

2.3 Stability Analysis of the Resonant Amplitude Equations

This section focuses on the stability of temporal resonance13, which gives us a glimpse of the
stability of this model. If we choose appropriate θj (j = 1, 2, 3) similar to (2.34), the real
amplitude equations14 depicting a temporally resonant internal wave triad will adopt the form
(2.80) and hence be described by

∂ap
∂τ

= −γpqraqar, (2.92)

where

γpqr =
αpqr
κ2
p
ωp

mp

=
1

8

N2

mp

(
kq
mq

− kr
mr

)(
kq
ωq
− kr
ωr

)(
k1

ω1

+
k2

ω2

+
k3

ω3

)
, (2.93)

and ap ({p, q, r} ∈ {{1, 2, 3}, {2, 3, 1}, {3, 2, 1}}) is the amplitude of different waves in the
internal wave triad.

From (2.93), for the resonant wave triads defined by (2.18a) – (2.18b), we have

γ123 =
N2

8m1

(
k1

m1

+
k2

m2

+
k3

m3

)(
k2

m2

− k1 + k2

m1 +m2

)(
k2

ω2

− k1 + k2

ω1 + ω2

)
(2.94)

=
N2

8mp

(
k1

m1

+
k2

m2

+
k3

m3

)
(k2m1 − k1m2)

m2(−m3)

(k2ω1 − k1ω2)

ω2(−ω3)
, (2.95)

where we used the resonant triad condition (2.11a) – (2.11b) to express k3, m3 and ω3.
Given ω1 = −2ωM2 and ω3 = ωM2 , we obtain

γ123γ231 = −N
4

64

(
k1

m1

+
k2

m2

+
k3

m3

)2
(k1m2 − k2m1)2

m2
1m

2
2m

2
3

(k1ω2 − k2ω1)2

ω1ω2
2ω3

> 0. (2.96)

By using the same technique, we get γ123γ312 < 0.

13 ∂ap

∂ξ = 0, for p = 1, 2, 3
14More on getting the real amplitude equation should be referred back to (2.2.6).
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Since

γ123γ321 > 0, (2.97a)

γ123γ231 < 0, (2.97b)

then if an are functions of ξ only, an appropriate choice of Ãi allows us to rescale the ai as

a1 = Ã1A1, (2.98)

a2 = Ã2A2, (2.99)

a3 = Ã3A3, (2.100)

and hence we can transform (2.92) into the simplified form [Lamb, 2007a]

∂

∂τ̂
A1 = A2A3, (2.101a)

∂

∂τ̂
A2 = −2A3A1, (2.101b)

∂

∂τ̂
A3 = A1A2. (2.101c)

We note that (2.101a) – (2.101c) can be combined15 to give

∂

∂τ̂

(
A2

1 + A2
2 + A2

3

)
= 0, (2.102)

which allows us to define
E = A2

1 + A2
2 + A2

3 = constant, (2.103)

from which, we roughly see conservation of energy since energy is proportional to the square of
the amplitude. Craik [1985], in fact, had described the energy conservation of resonant triads in
a more exact way with his energy expressed by Cairns as

E = 1
4
ω

(
∂D

∂ω

)
|A|2, (2.104)

where A is the amplitude of the fluid particles and the 2-D dispersion relationship is given by
D(ω, k) = 0 with ω being the frequency and k being the wavenumber. Martin et al. [1972] also
briefly discussed energy conservation of internal wave triads in appendix B of their 1971 paper.

15We take (2.101a)×A1 +(2.101b) ×A2 + (2.101c) ×A3.
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Also, (2.101a) and (2.101c) can be combined to give

∂

∂τ
(A2

1 − A2
3) = 0, (2.105)

and hence
F = A2

1 − A2
3 = constant. (2.106)

We now use the constants E and F to analyze the stability of âp (p = 1, 2, 3)[Lamb, 2007a].
In a three dimensional coordinate system given by A1, A2 and A3, (2.103) represents a family of
spheres and (2.106) a family of hyperbolae. This result is shown in figure 2.2, where a sphere
and a hyperbolae surface are drawn together in the Cartesian coordinates (A1, A2, A3).

A3

A1

A2

E = constant

F = constant

F = constant

Figure 2.2: The plot of a sphere given by (2.103) and a hyperbole in accord with (2.106). The solution of
the system (A1, A2, A3) will travel along the trajectory given by the hyperbole on the sphere surface.

To understand how the solution of (2.101a) – (2.101c) travels subject to the constraints
(2.103) and (2.106), we choose initial conditions (±E 1

2 , 0, 0), (0,±E 1
2 , 0) and (0, 0,±E 1

2 ) on
the sphere. If the variables start off at those points, according to (2.101a) - (2.101c), the RHS of
the ODE system will all be zero and hence those points are the equilibrium points of the system.
If the solution is initially at those points, it will remain at those points over time.
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When the solution is initially near these equilibrium points, for example, (E
1
2 , 0, 0), we can

assume it to be A0 = (E
1
2 + ε1, ε2, ε3), where εj (j = 1, 2, 3) satisfy the equation(

E
1
2 + ε1

)2

+ ε22 + ε23 = E, (2.107)

which guarantees A0 to be on the sphere surface. We also know that εj (j = 1, 2, 3) have to be
small, so that F defined in (2.106) is close to−E and the hyperbole given by (2.106) is very close
to the plane given by A3 = 0. The trajectory given by this hyperbole enables the variables to stay
near the fixed points of the system (E

1
2 , 0, 0). The same idea can be applied near (−E 1

2 , 0, 0)

and (0, 0,±E 1
2 ) to show that it stays near this fixed point.

However, for the other equilibrium point (0, E
1
2 , 0), if we choose a nearby point P0 =

(ε1, E
1
2 + ε2, ε3) with small εj (j = 1,2,3) and enforce the condition that this point is on the

sphere surface, we then will have a very small value of F given by (2.106), leading to (2.106)
representing a hyperbola close to (0, 0, E

1
2 ). As a consequence, we know that an orbit that passes

near P0 will travel a long distance along the surface of the sphere.
Therefore, we claim that the equilibrium points along axis A2 will be unstable whereas that

along axis A1 and A3 will be stable. Hence we conclude that the wave mode whose coefficient is
different from the other two is unstable and the other two modes are stable. This result can also
be shown in figure 3.9, where we will witness that the amplitudes of harmonic 1 – mode 1 wave
and harmonic 1 – mode 3 wave vary in a small range, while that of harmonic 2 – mode 2 waves
fluctuates much more and passes through the horizontal axis periodically.

2.4 Other Sets of Resonant Internal Wave Triad

This thesis has so far been focused on the specific wave triad given by (2.18a) – (2.18b) to
demonstrate the near-resonant and resonant theory. In fact, resonance is not confined to these
three waves of the specific wave triad but occurs to a series of other three waves. The general
mathematical expression of the possible resonant triad components can be sought by combining
the resonance condition (2.11a) – (2.11b) as well as the dispersion relation of internal waves
(2.74) in the hydrostatic limit.
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For a triad with first harmonic, second harmonic and first harmonic waves16, we have

ω1 = ωM2 , (2.108a)

ω2 = −2ωM2 , (2.108b)

ω3 = ωM2 , (2.108c)

with associated wavenumbers ~k1, ~k2, and ~k3 respectively, where ~ki = {ki,mi}. On using (2.18b)
and (2.74), we have

k1 = ∓ωM2(m2 +m3)

N
, (2.109a)

k2 = ∓2ωM2m2

N
, (2.109b)

k3 = ±ωM2m3

N
. (2.109c)

Substituting (2.109a) – (2.109c) into (2.11a) then gives

∓ ωM2(m2 +m3)

N
∓ 2ωM2m2

N
± ωM2m3

N
= 0, (2.110)

which can be expanded as four independent expressions, namely

ωM2(m2 +m3)

N
+

2ωM2m2

N
+
ωM2m3

N
= 0, (2.111a)

ωM2(m2 +m3)

N
+

2ωM2m2

N
− ωM2m3

N
= 0, (2.111b)

ωM2(m2 +m3)

N
− 2ωM2m2

N
+
ωM2m3

N
= 0, (2.111c)

ωM2(m2 +m3)

N
− 2ωM2m2

N
− ωM2m3

N
= 0, (2.111d)

The above four equations (2.111a) – (2.111d) can be solved as

3m2 + 2m3 = 0, (2.112a)

m2 = 0, (2.112b)

m3 = 0, (2.112c)

0 = 0. (2.112d)
16The subindex labels different waves.
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Only (2.112a) is a physically meaningful expression and when combined with (2.18b), it gives

m1 = −1

3
m3, (2.113a)

m2 = −2

3
m3, (2.113b)

m3 = m3. (2.113c)

Therefore, given harmonics as in (2.108a) – (2.108c), the possible modes for internal wave
triads are mode n, mode 2n and mode 3n correspondingly, where n ∈ N. In this thesis, we
choose to study the simplest case, i.e. when n = 1.

2.5 Parametric Subharmonic Instability

As a consequence of studies on resonant triads, parametric subharmonic instability (PSI), as a
branch and a special case of resonant triad interaction, emerged in the 1970s. With its potential
of explaining the energy evolvement, PSI has drawn many researchers’ attention [McEwan and
Robinson, 1975; Koudella and Staquet, 2005; Williams et al., 2007], especially in explaining
breaking and the energy cascade of internal gravity waves. We now briefly introduce PSI.

In the resonant triad condition (2.11a) – (2.11b), if we have∣∣∣∣ω2

ω1

∣∣∣∣ = β,

∣∣∣∣ω3

ω1

∣∣∣∣ = 1− β, (2.114)

where β < 1, then, this triad resonance is PSI. In fact, we can write (2.114) as

|ω1| = |ω2|+ |ω3|, (2.115)

We define the wave with the largest frequency ω1 is the parent wave, while the other two are
child waves. The interaction of the parent wave and the child waves is called parametric subhar-
monic instability. Notice that we have defined PSI in the context of frequency. Actually, similar
definitions of PSI can be applied in terms of wavenumbers.



CHAPTER 3

NUMERICAL SIMULATION

3.1 Development of the Numerical Strategies

Our resonance-like phenomenon was first discovered in a fully nonlinear numerical simulation
of tidal flow over a shelf step. We have taken the essential elements of this phenomenon and have
duplicated it in a simpler boundary forced problem, which produces the same result.

To explain the result, we have developed an exact resonant internal wave triad theory in
section 2.2.6 concordant with the theory used by Martin et al. [1972] to explain their experimental
results. However, this theory leads to a discrepancy in the wave form of the horizontal velocity
when applied to explain the numerical results; consequently, we developed the near-resonant
internal wave triad theory and obtained excellent agreement. These numerical simulations were
originally run under the assumption of f = 0 and later, we included the earth’s rotation and take
various f values into account.

3.1.1 IGW: a Fully Nonlinear Numerical Model

IGW, short for internal gravity waves, is a numerical code developed by Kevin Lamb [Lamb,
1994]. The original code was used to simulate flow over topography and has been polished over
time and used for various projects [Lamb and Yan, 1996; Lamb, 2002, 2007b].

This code uses a finite volume method combined with a second order projection technique
[Bell and Marcus, 1989] to solve the Navier Stokes equation or Euler equations [Kundu and

39
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Cohen, 2004] under the assumption of an incompressible Boussinesq1 fluid.
In this thesis, we use IGW code to solve the inviscid, non-diffusive Euler equations to simu-

late internal waves generated by tide topography interaction as well as boundary forced internal
waves.

3.1.2 Internal Wave Generation by Tide-topography Interaction

As shown in figure 3.1, the barotropic current interacts with the topography and generates internal
waves over the slope region. Waves of different harmonics and different modes are generated at
the same time. The data we obtain from the numerical output are the result of the composition
of different waves. To study the properties of different elements, we run the model for a long
enough time2 and collect the horizontal velocity u(ξ̃, z, t)3. To simplify this problem, we choose
to work on the horizontal velocity at the surface (z = 0 km) and decompose u(ξ̃, 0, t) into its
various Fourier components. The easiest and most convenient way to decompose one wave is to
approximate u(ξ̃, z, t) by its Fourier series

u(ξ̃, z, t) =
∑
n

{
an(ξ̃, z) cos(nωM2t) + bn(ξ̃, z) sin(nωM2t)

}
, (3.1)

with the Fourier coefficients4 given by

an(ξ̃, z) =
1

T0

∫ 24T0

22T0

u(ξ̃, z, τ) cos(nωM2τ)dτ, (3.2)

bn(ξ̃, z) =
1

T0

∫ 24T0

22T0

u(ξ̃, z, τ) sin(nωM2τ)dτ. (3.3)

After the harmonic decomposition of the horizontal velocity according to (3.1), we are also
interested in the modal components of different harmonics, and thus we separate an and bn into

1A Boussinesq fluid is a fluid to which the Boussinesq approximation has been applied.
2In this thesis, we typically run the model for 24 tidal periods.
3We choose a reference frame which is moving with the barotropic tide, where ξ̃ is the horizontal coordinate and

z is the vertical coordinate. Note that this ξ̃ is not related to the ξ defined by εx in chapter 2.
4T0 is the tidal period.
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vertical modes via

an(ξ̃, z) =
∑
j

anj(ξ̃) cos(
jπz

H
), (3.4)

bn(ξ̃, z) =
∑
j

bnj(ξ̃) cos(
jπz

H
). (3.5)

Note that because of the use of a rigid lid and constantN , the streamfunction satisfiesψ ∝ sin(nπ
H

)

and hence u can be expanded in a cosine series in the vertical coordinate.
Figure 3.2 displays the first ten modes of the horizontal velocity u of the first harmonic inter-

nal waves generated by tidal topography interaction, while figure 3.3 shows their counterparts of
the second harmonic internal waves. In these figures, for most of the cases, the higher the mode,
the weaker the amplitudes of the decomposed waves. However, in figure 3.3 - (b), we witness an
exception where the amplitude of mode 2 wave is greater than that of mode 1 wave and basically
is the dominant wave amplitude among all the ten modes. What else stands out the most in these
two figures, and can be seen in figure 3.5 is that (a), (c) in figure 3.2 and (b) in figure 3.3 form
a resonant-triad-like physical phenomenon, with the amplitude shapes very similar to that of the
resonant Rossby wave triad in Pedlosky [1987]. Before investigating the mathematical theory
behind this phenomenon, we introduce boundary forced internal waves, where the mechanism
with regard to wave interaction is the same as tide topography generated internal waves.
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Figure 3.1: Density and vertical velocity fields after 20 tidal periods. (a) Density. (b) Vertical velocity in
cm/s. Deep water region, from z = 0 km to z = −5 km is not fully displayed.
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Figure 3.2: The decomposition of horizontal velocity at the surface z = 0 km in different modes for
harmonic 1 wave. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f) Mode 6. (g) Mode 7.
(h) Mode 8. (i) Mode 9. (j) Mode 10.
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Figure 3.3: The decomposition of horizontal velocity at the surface z = 0 km in different modes for
harmonic 2 wave. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f) Mode 6. (g) Mode 7.
(h) Mode 8. (i) Mode 9. (j) Mode 10.
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Figure 3.4: Plot of group velocity for different harmonics when f = 0. The diamond symbols represent
the group velocity of the time-harmonics from harmonic 1 wave to harmonic 7 wave. The uppermost and
lowermost curves correspond to mode 1 and mode 10 wave respectively. Lines of mode n (2 ≤ n ≤ 9) are
subsequently placed in-between, leading us to the conclusion that group velocity is inversely proportional
to mode number.

3.1.3 Internal Waves Generation by Boundary Forcing

After the generation of internal waves by tide topography interaction, waves propagate rightward
with different velocities. Among all the time-harmonics5, the harmonic 1 – mode 1 wave is the
one that travels the fastest, as can be seen in figure 3.4. For the harmonic 1 – mode 3 wave, we
plug ω = ωM2 and m = 3m0 into (2.61) and find its group velocity 0.1030 m/s. Similarly, we
find that the group velocity of harmonic 2 – mode 2 wave is 0.1406 m/s.

Therefore, the harmonic 2 – mode 2 wave can travel faster than the harmonic 1 – mode 3

wave; however, in figure 3.5, we see that the harmonic 2 – mode 2 wave has spread no farther

5Time-harmonic was firstly used in Tabei et al. [2004] to denote the harmonic n waves, where n = 2, 3, 4, · · · .
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Figure 3.5: The resonant-like phenomenon in the tidal shoaling model after Fourier decomposition. (a)
Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

than the harmonic 1 – mode 3 wave and the envelopes/amplitudes of these two waves are just
out of phase. This wave envelope placement shows energy transfer between these two waves.
Among the harmonic 1 waves shown in figure 3.2, the amplitude of mode 1, mode 2 and mode
3 waves are the largest; while for harmonic 2 waves demonstrated by figure 3.3, the amplitude
of mode 2 waves are most prominent. With the fact that harmonic 2 – mode 2 is not among the
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forced waves, we would guess this new prominent wave is the product of wave interaction. The
equal propagating distance of harmonic 2 – mode 2 and harmonic 1 – mode 3 wave and their
energy transfer demonstrated by their envelope phases further drives us to wonder if it is just the
interaction of harmonic 1– mode 1 and harmonic 1 – mode 3 that transfers energy to this strong
wave: harmonic 2 – mode 2 wave. Bearing this thought in mind, as demonstrated in figure 3.6,
we tried out a simpler model, where harmonic 1 – mode 1 and harmonic 1 – mode 3 waves are
forced at the left boundary and the fluid depth is a constant. The mathematical equation for this
forcing mechanism is

ut = F1 cos(ωt) cos(
π

H
z) + F2 cos(ωt) cos(

3π

H
z) (3.6)

at the left boundary.
Two internal waves are generated at the boundary and interact in the same fashion as the

internal waves generated by tide topography interaction. In understanding the resonant-like phe-
nomenon, one generation mechanism is as good as the other. However, since the tide topography
interaction is numerically much more expensive than the boundary forcing, we will study near-
resonant triads for different parameter values using the boundary forcing method.

Later on, instead of using harmonic 1 – mode 1 and harmonic 1 – mode 3 as the forced wave,
we force harmonic 1 – mode 1 and harmonic 2 – mode 2 and as expected, get the resonant-like
phenomenon demonstrated in figure 3.7. Notice that in figure 3.7, when the harmonic 2 – mode
2 wave is the forced wave, its initial amplitude is nonzero, whereas in figure 3.5, as the forced
wave, harmonic 1 – mode 3 wave has a nonzero initial amplitude. The mathematical equation
for this forcing is

ut = F ′1 cos(ωt) cos(
π

H
z) + 2F ′2 cos(2ωt) cos(

2π

H
z). (3.7)

In fact, in order to inspect the sensitivity of our near-resonant theory to the nonlinearity of
the models, we will also need to change the forcing amplitudes (F1 and F2) in order to adjust the
nonlinearity. The related analysis will be presented later.

3.1.4 The Scaling Details that Link Theories and Numerics

Numerical models tend to present vivid and sensible results, particularly in the way of figures. In
many numerical models, we tend to solve dimensional equations and plot figures in their physical
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Figure 3.6: Forcing of harmonic 1 – mode 1, harmonic 1 – mode 3 waves on the left boundary at x = 0
km. The water depth is 1 km and the length of the domain is sufficiently large (we take 450 km here), so
that the waves will not reflect off the right boundary and return to the region of interest.

scales. This idea is different from that of theoretical analysis, where non-dimensional equations
and dimensionless variables give us a clear grasp and understanding of the physical problems.

In the two numerical models discussed in section 3.1.2 and section 3.1.3, we deal with all the
variables in their original dimensional form and results are presented correspondingly. However,
in the theoretical part investigating the amplitude equations of resonance and near-resonance,
we analyze the governing equations in non-dimensional form. To allow the comparability of the
theoretical and numerical results, we need some work devoted on quantifying the scales involved
in non-dimensionalization of the governing equations of internal waves from section 1.6.2.

Certainly, we find the theoretical scales (1.24) – (1.26) without actual values not particu-
larly useful in the numerical calculation and hence they must be quantified. In this section, we
present the scales of the system in terms of standard quantities. The basic units in SI (Système
International d’unités) are given in table 3.1.
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Figure 3.7: resonant-like phenomenon when harmonic 1 – mode 1, harmonic 2 – mode 2 waves are forced
at the boundary. (a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

In the near-resonant internal wave triads problem, we require basic dimensions. Since here
we have no variables related to mass, temporal and spatial scales are sufficient.

For the nonhydrostatic case, from (1.28) we have µ = 1, leading to

L = H, (3.8)

so we use H as the horizontal and vertical length scale. Looking at (1.24) – (1.26), we find one
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Variable Description Unit (short form)
M Mass Kilograms (kg)
L/H Length/Height Meters (m)
T Time Seconds (s)

Table 3.1: The basic dimensions.

of the time related variables is N , which yields the buoyancy period

T1 =
2π

N
. (3.9)

Another way to obtain the temporal dimension is to use velocity scale U as the intermediate
variable as in

T2 =
L

U
. (3.10)

From (3.8), L has the same length scale as H . To get U , we choose it to be the velocity c1 of the
mode 1 waves. From the eigenvalue problem6 with a constantN under a non-rotating hydrostatic
assumption

φ′′ +
N2

c2
φ = 0, (3.11)

φ(0) = φ(−H) = 0, (3.12)

where (3.12) is from the rigid lid boundary condition and z = 0, z = −H are the top and bottom
boundary respectively, we have the solution for a mode n wave

φ = sin(
nπ

H
z), n = 1, 2, 3, · · · . (3.13)

From (3.11), we have a general expression for the phase speed of a non-rotating (f = 0)
hydrostatic wave of mode n, namely

cn =
NH

nπ
, (3.14)

6See the next chapter for the detailed derivation and explanation of this equation.
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so that for a mode 1 wave7,

c1 =
NH

π
, (3.15)

and hence
T2 =

H

c
=

H
NH
π

=
π

N
. (3.16)

Since we can choose either T1 or T2 for this problem, without loss of generality we choose the
time scale to be T2.

We refer back to (1.28) so as to write δ as

δ =
f 2L2

U2
=

f 2H2

(H
T

)2
(3.17)

= f 2 π
2

N2
, (3.18)

where (3.17) follows from (3.8) and (3.18) follows from (3.9).
With the obtained dimensions here, we go back to quantify (1.24) - (1.26) as

(x, z, t) =
(
Hx̃,Hz̃,

π

N
t̃
)

(3.19)

(ψ, b, v) = ε

(
NH2

π
ψ̃,
N2H

π
b̃, fHṽ

)
(3.20)

N2 =
N2

π2
Ñ2 ⇒ Ñ = π. (3.21)

3.1.5 A Note on Investigating a Numerical Model by Scaling

In the boundary forced model, we have the following fundamental variables

time related : ω,N and f, (3.22)

length related : H, (3.23)

others : Fa, (3.24)

where Fa is a typical forcing amplitude with dimension

U

T
=

L

T 2
. (3.25)

7(3.14) indicates that phase speed is inversely proportional to mode number. Recall that a similar conclusion was
drawn in figure 3.4
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The three temporal variables supply two non-dimensional variables: f
ω

and ω
N

. Fa can then be
combined with time and length variables to form the other non-dimensional variables via Fa

HωN
.

The ratio f
ω

indicates the significance of the earth’s rotation. The full dispersion relation for
internal gravity waves is (2.23), whose dimensional counterpart is

ω2 =
k2N2 +m2f 2

k2 +m2
. (3.26)

Solving (3.26) for f2

ω2 yields
f 2

ω2
=
k2 +m2

m2
− k2N2

m2ω2
. (3.27)

If f2

ω2 � 1, then (3.27) can be approximated by

0 =
k2 +m2

m2
− k2N2

m2ω2
, (3.28)

which can be rearranged to read

ω2 =
k2N2

k2 +m2
and

ω2

N2
=

k2

k2 +m2
. (3.29)

Then (3.29) is the dimensional dispersion relation with negligible rotational effects8.
When ω2

N2 itself is also small, then in (3.29), we have m2 � k2 and hence

ω2

N2
=

k2

m2
. (3.30)

It follows that the dispersion relation is

ω2 =
k2N2

m2
, (3.31)

which is the dispersion relation of hydrostatic internal waves without the earth’s rotation.
Similar to (3.6), the equation of a typical forcing mechanism is presented as

ut = Fa cos(ωt). (3.32)

As we see from (3.32), u, the horizontal velocity of the current is proportional to Fa

ω
. The re-

quirement for the validity of linearization in Leblond and Mysak [1978] is given by the condition
8We note that (3.29) can also be directly obtained by setting f = 0 in (3.26).
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f
ω

Importance of the Coriolis force
ω
N

Hydrostaticity
Fa

HωN
Nonlinearity

Table 3.2: Property of the three nondimensional variables.

that the ratio of the fluid velocity (U ) to phase speed (C) is much small than 1. This conclusion
provides us a way to evaluate the nonlinear parameter in this model. The phase speed under
constant N , the non-rotating assumption and the hydrostatic assumption is given by (3.15), so
the nonlinearity parameter is

U

C
=

Fa

ω
NH
π

. (3.33)

Ignoring the factor of π, we claim that Fa

HωN
describes the nonlinearity of the model.

A summary of the parameters is given by table 3.2. These three non-dimensional variables
depict the gist of the model and become the indicators of a variety of aspects of the numerical
model. In the numerical simulation, based on the three non-dimensional parameters, we choose
different parameters for the model set-up. And the numerical results can be classified into three
categories divided according to the three non-dimensional parameters given by table 3.2.

We now can also refer to appendix A where we have given a full account of the smallness of
∆k defined by (2.32) based on these three nondimensional parameters governing the boundary
forced model.

3.2 Results

In this section, we present the results of solving the amplitude equations (2.91a) – (2.91b) nu-
merically and compare the theoretical solution with the numerical output. First, we verify the
equality of internal waves generated by tidal topography interaction and by boundary forcing9 in
terms of the resonant interaction mechanism; then, we try to use resonant theory to explain the
model output but find disagreement; at last, we find the near-resonant theory helps understand

9At this step, based on the obtained result, we claim this resonance to be purely spatially.
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the resonant-like phenomenon and gives satisfactory match to the numerical output.

3.2.1 Equality of the Two Numerical Runs

As we have explained in sections 3.1.2 and 3.1.3, these two methods of internal waves generation
have the same mechanism with regard to what we are interested in – near-resonant wave-wave
interaction. This can be demonstrated by figure 3.8, where the result of the decomposition of
these three waves matches well. The phases of these three waves from these two models agree
well, while the amplitudes are the same up to a negligible numerical error. We might have noticed
that at the wave front, we do not see the exact same wave form of the two set of waves. This
difference is from the fact that the time domain has a minor disagreement due to the mechanics
of our Fourier decomposition. The amplitudes of harmonic 1 – mode 1 wave in the two cases
oscillate equally mildly compared to the other two waves from the triad, and so is stable. We
further witness that the amplitudes of harmonic 2 – mode 2 wave of the two simulation are both
unstable.

3.2.2 Near-resonance or Resonance

Since figure 3.5 is resonant-like, we certainly could try to use the resonant theory to explain it.
To apply resonant theory on internal waves, we assume that the fluid is hydrostatic (µ = 0), so
that the dispersion relation is (2.74) and we will get exact resonant triad with the given three
waves. We can then carry on to derive the amplitude equation (2.78a) – (2.78b). Martin et al.
[1972] has worked this theory out and used it to explain an experimental result.

In running the model with different time ranges, we find the resonant-like phenomenon is
not time sensitive, and so we take it as being spatial resonance. In solving (2.91a) – (2.91b), we
compare the results in figure 3.9, where the solid red line represents the result of model output,
while the red dotted line depicts the theoretical result. Notice that the model output captures the
motion of the wave, so we can see from the figure that the harmonic 1 – mode 1 wave travels
the fastest. The model does not take wave propagation into account and thus we can see the red
dotted wave in front of harmonic 2 – mode 2 wave and harmonic 1 – mode 3 wave in (b) and (c)
respectively10. Comparison of these two lines indicates that the wave amplitude is well predicted

10In most of the following figures, we all see the red dotted line surpass the blue solid line. This surpass is from
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Figure 3.8: Plot of u(x, 0, t) at 24 tidal period of the two numerical models. f = 0, N = 0.001 s−1,
H = 1 km. Blue solid: internal waves from forced boundary. Red dotted: internal waves generated by
tide topography interaction. (a) Harmonic 1 – mode 1 wave. (b) Harmonic 2 – mode 2. (c) Harmonic 1 –
mode 3 wave.

by the resonant internal wave triads theory. This comparison also leads to the discrepancy: in (b),
the half-wavelength of the wave envelope in of the model output is 40 km, however, the resonant

the fact that we have not captured the propagating motion of the waves and treat them as static.
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Figure 3.9: f = 0, N = 0.001 s−1, H = 1 km. Blue solid: amplitude DE solution for resonant theory.
Red dotted: tidal shoaling model output. (a) Harmonic 1 – mode 1 wave. (b) Harmonic 2 – mode 2. (c)
Harmonic 1 – mode 3 wave.

theory predicts the half-wavelength to be 50 km. This discrepancy represents a 25% error, so
we could start to wonder if there is a better theory which explains the resonant-like phenomenon
with less error.

Remember that to apply the exact resonant theory to explain the numerical result, we as-
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sumed that the three waves are hydrostatic. In fact, we can use µ = ( k
m

)2 to evaluate the non-
hydrostaticity and get

µ1 = 0.0752, µ2 = 0.01, µ3 = 0.01, (3.34)

where µ1, µ2 and µ3 are the nonhydrostatic parameters of harmonic 2 – mode 2, harmonic 1 –
mode 3 and harmonic 1 – mode 1 wave respectively. We notice that the values of the nonhydro-
static parameter might not be small enough for us to assume the waves to be hydrostatic.

3.2.3 Near-resonance without the Earth’s Rotation

Since the resonant theory does not well predict the observed resonant-like phenomenon, we tried
to modify the assumptions such as non-hydrostaticity and negligible earth’s rotation (f = 0), so
as to come up with near-resonant theory in section 2.2.5. Figure 3.10 displays the result of the
amplitude equations and the model output, showing that the near-resonant theory is significantly
more accurate in explaining the numerical model result. Also, unlike in figure 3.10, when N =

0.001 s−1, figure 3.11 demonstrates the merits of the near-resonant theory when N = 0.002 s−1.
Note that the x limits of the two figures are different. In these two cases (N = 0.001 s−1 and
N = 0.002 s−1), ∆k is comparatively small (see table (2.3)). In these two runs of different N ,
we have kept the nonlinearity to be the same by increase the forcing amplitude as we choose a
larger N . We can see that in figure 3.10, the amplitude of harmonic 1 – mode 1 wave is 0.018 m,
whereas it is 0.036 m in figure 3.11.

Setting different N in the numerical models, we find that in the range of N producing the
resonant-like phenomenon, the greater N is, the larger the wavelengths of the waves are. To be
more specific, for (3.10) - (a), we see that there are 7 wave crests in the domain of [0, 100] km,
whereas in (3.11) - (b), we find only 3 wave crests in the same domain. This fact can be explained
by its dispersion relation (2.67), which is also

k2 =
m2ω2

N2 − ω2
. (3.35)

In (3.35), as N increases, k decreases, and since the wavelength follows λ = 2π
k

, λ grows with
N .
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Figure 3.10: f = 0, N = 0.001 s−1, H = 1 km. Blue solid: output of boundary forced model at 24 T0 .
Red dotted: amplitude DE solution for near-resonant theory. (a) Harmonic 1 – mode 1. (b) Harmonic 2 –
mode 2. (c) Harmonic 1 – mode 3.

3.2.4 Near-resonance with the Earth’s Rotation

In dealing with the earth’s rotation, we have a switch in the numerical code. If we set it to be
0, the earth’s rotation will not be taken into account. This set-up is what we choose in section
3.2.3. Alternatively, if the switch is 1, the earth’s rotation can be included and specified by further
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Figure 3.11: f = 0, N = 0.002 s−1, H = 1 km. Blue solid: output of boundary forced model at 24 T0.
Red dotted: amplitude DE solution for near-resonance theory without the earth’s rotation. (a) Harmonic 1
– mode 1 wave. (b) Harmonic 2 – mode 2 wave. (c) Harmonic 1 – mode 3 wave.

setting the value of f . Results for non-zero f are shown in figure 3.12 – 3.15. Comparing the
theoretical result and numerical output in these listed figures, these results agree very well in
a certain range of f . In this range, as f increases, the wavelengths decline. This trend can be
seen by comparing subplots (a) of figure 3.12 and figure 3.14, where in (3.12), the wavelength
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of harmonic 1 – mode 1 is smaller than that in (3.14). To explore the theoretical explanation, we
refer to the dimensional dispersion relation corresponding to (2.23),

ω2 =
N2k2 + f 2m2

k2 +m2
,

which leads to

k2 = m2 ω
2 − f 2

N2 − ω2
. (3.36)

When ω, N and m do not change but f increases, k decreases11, and hence the wavelength
increases.

In figure 3.15 where f = 1.0× 10−2 s−1, near-resonant theory still does a pretty good job at
predicting the trend of the three waves, however it slightly underestimates the amplitude of the
horizontal velocity of the harmonic 2 – mode 2 wave. Because

∆k = −4.65× 10−4, (3.37)

the relative detuning to that of each wavenumber. for the three wavs is

∆k

k1

= 0.2703, (3.38)

∆k

k2

= −0.4940, (3.39)

∆k

k3

= −1.4821, (3.40)

whose maximum |∆k
k3
| is obviously too large for us to assume ∆k is small and hence apply the

near-resonant theory. The failure of near resonant theory can be demonstrated in figure 3.16,
where the theoretical result of the harmonic 2 – mode 2 wave under-predict the wave amplitude
of the numerical output. However, as we can see from figure 3.15 this theory still predict the
shapes and the wavelengths very well.

3.2.5 Near-Resonance with Different Nonlinearity

Figures 3.5, 3.10, and 3.15 – 3.16 describe near-resonant internal wave triads resulting from
models with the same value of the nonlinear parameter Fa

HωM2
N

(see table 3.2). From these figures,

11According to the choice of parameters of the numerical models, f < ω < N .
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Figure 3.12: f = 0.2 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of boundary forced
model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the earth’s rotation.
(a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

we are not able to analyse if our theory is still valid when the model becomes very nonlinear.
This section is intended to investigate two other runs with different nonlinearity parameters. The
result will be able to inform us how important weakly nonlinearity is when apply near-resonant
theory to explain model result.
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Figure 3.13: f = 0.4 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of boundary forced
model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the earth’s rotation.
(a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

Figure 3.17 shows the result of the run with a forcing amplitude which is half of what have
been used in the previous runs. The forcing mechanism is described by this mathematical equa-
tion

ut = 0.009ωM2 cos(ωt) cos(
π

H
z) + 0.0065ωM2 cos(ωt) cos(

3π

H
z). (3.41)
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Figure 3.14: f = 0.6 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of boundary forced
model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the earth’s rotation.
(a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

In this figure, we can see the incredible overlap between the dotted line and the sold line. For
example, in (b), which shows the harmonic 2 – mode 2 wave generated by near-resonant in-
teraction, the numerical result represented by the solid line can be very well predicted by the
theoretical result depicted by the dotted line.
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Figure 3.15: f = 1.0 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of boundary forced
model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the earth’s rotation.
(a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

Figure 3.18 presents the result with a forcing by this equation

ut = 0.036ωM2 cos(ωt) cos(
π

H
z) + 0.026ωM2 cos(ωt) cos(

3π

H
z). (3.42)

Unlike figure 3.17, the overlap between the two lines is not as good. As we can see that in
the plot of harmonic 1 – mode 1 wave shown in (a), the two types of lines match very well for
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Figure 3.16: A closer look at (b) in fig(3.15). f = 1.0 × 10−4 s−1, N = 0.001 s−1,H = 1 km. Blue
solid: model output. Red dotted: amplitude DE solution.

the first six wave lengths; however, we find the theoretical result deviates to the left starting from
the seventh wavelength. The same disagreement happens to the other two plots: (b) and (c).

The comparison of these two figures indicates that as the model becomes more nonlinear,
the near-resonant theory provides less agreement with the nonlinear numerical simulation. In
addition, we set up a few less nonlinear models with a smaller value of Fa

HωM2
N

and find when
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Figure 3.17: Plot of result of runs with the forcing amplitude half of the previous runs whose result is
shown in figure 3.12. Here, f = 0.2 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of
boundary forced model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the
earth’s rotation. (a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

the model becomes very linear, the near-resonant phenomenon disappears. Certainly, on the
contrary, when the model becomes very nonlinear, the near-resonant theory also fails.
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Figure 3.18: Plot of result of runs with the forcing amplitude twice of the previous runs whose result is
shown in figure 3.12. Here, f = 0.2 × 10−4 s−1, N = 0.001 s−1, H = 1 km. Blue solid: output of
boundary forced model at 24 T0. Red dotted: amplitude DE solution for near-resonance theory with the
earth’s rotation. (a) Harmonic 1 – mode 1. (b) Harmonic 2 – mode 2. (c) Harmonic 1 – mode 3.

3.3 A Summary of the Figures

The results have been demonstrated in figures 3.5, 3.7 – 3.16, which are presented along the
assumptions (hydrostaticity and negligible earth’s roation) of the dispersion relation of internal
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Figure N (s−1) Fa ( L
T2 ) f (s−1) f

ωM2

ωM2

N
Fa

HωM2
N

3.5, 3.7–3.10 0.001 0.018ωM2 0 0 0.14075 0.018

3.11 0.002 0.036ωM2 0 0 0.070375 0.018

3.12 0.001 0.018ωM2 0.2× 10−4 0.1421 0.14075 0.018

3.13 0.001 0.018ωM2 0.4× 10−4 0.2842 0.14075 0.018

3.14 0.001 0.018ωM2 0.6× 10−4 0.4263 0.14075 0.018

3.15, 3.16 0.001 0.018ωM2 1.0× 10−4 0.7105 0.14075 0.018

3.17 0.001 0.009ωM2 0.2× 10−4 0.1421 0.14075 0.0009

3.18 0.001 0.036ωM2 0.2× 10−4 0.1421 0.14075 0.036

Table 3.3: A summary of the critical parameters of the numerical runs and the nondimensional parameters
given by table 3.2. Fa is a typical amplitude of forced waves. In the numerical runs, we actually force
two waves: the harmonic 1 – mode 1 wave and harmonic 1 – mode 3 wave on the left boundary. Here we
choose the amplitude of the harmonic 1 – mode 1 wave as the typical amplitude (Fa). ωM2 is the M2 tidal
frequency, which is 1.4075× 10−4 s−1.

waves. Here, we provide a table showing the different model parameters used in the different
model runs as a convenience for comparing the different figures. The table also lists the values
of non-dimensional parameters provided in table 3.2.
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3.4 Parametric Subharmonic Instability

3.4.1 Appearance of PSI

In simulations of internal waves generated by boundary forcing, in order to cut down the running
time and computer space, we save the velocity data after every tidal period T0 = 44640 s.
This save-time interval does not allow us to decompose the velocity into different harmonics,
so, unlike the decomposition for the tide topography interaction runs, we only performed the
modal decomposition, which provides the separation results of different modes. We did not
do the harmonic decomposition and so different harmonics were kept together and not divided.
Although in figure 3.12, 3.13, 3.14, and 3.15, we claim the three subplots of each figure are the
plot of the three waves of distinct harmonics and modes in the near-resonant triad, the plot of the
model output actually depicts the modes of all the harmonics, since we have not performed the
harmonic decomposition. This trick works fine to demonstrate the near-resonant triads because
the waves from the near-resonant triad capture the leading harmonics of mode 1, mode 2 and
mode 3. Other harmonics of these modes serve as small amplitude because they have much
smaller amplitudes than the leading ones. However, in these figures, in the region approximately
between 150 km to 350 km where a harmonic 2 – mode 2 wave from near-resonance has not yet
been obtained, a wave with small amplitude but long wavelength becomes the dominant wave.
Curiosity and interest drive us to find out the physics behind the appearance of the front long
wave.

Since the harmonic 1 – mode 3 wave does not appear to be related to this phenomenon, we
modify and simplify the run by reducing the boundary forcing to only a harmonic 1 – mode 1

wave, such as one given the the mathematical expression

ut = 0.018ωM2 cos(ωM2t) cos(
π

H
). (3.43)

By saving the output data after every tidal period and decomposing it into mode 1 through mode
10, we obtain the same front waves as in (3.12). If we plot the mode 2 wave from this run
together with its counterpart from the run of two forced waves at the left boundary, we can find
impressive agreement in the given region. This match drives us to suspect that the front long
wave is a consequence of PSI of the harmonic 1 – mode 1 wave. To verify this hypothesis, we
need to indentify that this front long wave is a progressive wave as well as identify the parent



CHAPTER 3. NUMERICAL SIMULATION 70

wave and child waves.
The definition of a progressive wave is associated with that of a forced wave. Progressive

waves are the waves that satisfy a dispersion relation and so can propagate freely with the group
velocity determined by the dispersion relation; however, forced waves are those whose wavenum-
bers and frequency do not solve the dispersion relation, hence cannot propagate freely in the
medium. More on the definition of progressive and forced waves can be found in Phillips [1967]
and Leblond and Mysak [1978].

If we assume this front long wave is progressive wave, we can calculate the frequency of
the wave by extracting information from the plot. To do so, we need to measure the wavelength
(λ) from the plot and hence calculate the wavenumber (k = 2π

λ
). With this parameter and the

given f and mode number in hand, we can obtain the frequency from the dispersion relation. To
verify the assumption, one way is to run the numerical model again with decreasing the save-time
interval (save interval). A smaller save interval will allow us to decompose the saved data into
different harmonics.

We choose to calculate the frequency in the cases corresponding to figures 3.12, 3.13, and 3.14
and give the result in table (3.4). Then, we decompose the velocity data into different subhar-
monics so we can plot waves such as harmonic 0.16 – mode 2 wave if f = 0.2× 10−4 s−1. Con-
sequently, we compare this wave with other mode 2 waves of different harmonics and find it has
the largest amplitude in terms of the long front wave. The same result can be obtained for dif-
ferent other f values we worked on. This result is encouraging and satisfactory in informing us
that the front long wave is a progressive wave and is likely to be generated from PSI. To further
validate this hypothesis, we still need to find the parent wave and the child waves.

3.4.2 Which wave is the Parent Wave?

The boundary forced runs generate waves by mimicking the mechanism of internal waves gener-
ation by tide-topography interaction. Far away from the generation site, the first harmonic wave
is the dominant wave. This can be demonstrated by a plot of the group velocity as in figure 3.19,
where we see that harmonic 1, mode 1 has the second largest group velocity, which is slightly
smaller (0.12%) as compared to the largest group velocity of the harmonic 1.1 – mode 1 wave.
If now return to (b) in figure 3.12, 3.13, and 3.14, we see that the front long wave of mode 2 has
gone almost as far as that of harmonic 1 – mode 1 wave. For example, when f = 0.2×10−4 s−1,
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f λ k ω
ωM2

0.2× 10−4 s−1 80 km 7.85× 10−5 0.1676
0.4× 10−4 s−1 38 km 1.65× 10−4 0.3401
0.6× 10−4 s−1 18.2 km 3.45× 10−4 0.5772

Table 3.4: The wavelength (λ) of the long front wave under different f is measured directly from the plot.
The wavenumbers k is calculated by k = 2π

λ . The frequency is calculated from the dispersion relation
ω2 = N2k2+f2m2

k2+m2 given m = 2π
H (mode-2 wave), where the fluid depth is H = 1 km. Note that the

mode-2 front long wave of the case f = 0.6 × 10−4 does not a constant wavelength. We use the newest
two three crests to calculate the wavelength.

shown by figure 3.12, the front long wave propagates to around 320 km. Since the group velocity
for harmonic 1 – mode 1 is 0.2966 m/s, the distance this wave can travel after 24 tidal periods is
317.8 km. We might think that other waves with harmonic number close to 1 can also travel that
far; however, the amplitude of the other waves are too small for us to take them as parent waves.
Therefore, we claim that the harmonic 1 – mode 1 wave is the parent wave.

3.4.3 Which are the Child Waves?

We have determined that the parent wave for this PSI is the harmonic 1 – mode 1 wave and
one of the child waves is a mode 2 wave by inspecting figure 3.12,3.13 and 3.14. If we use
~k0 = (k0,m0), ~k′ = (k′,m′), ~k′′ = (k′′,m′′) and ω0, ω′, ω′′ to denote the wavenumber vector
and the frequency of the parents wave and two child waves respectively, then m0 = ± π

H
and

m′ = ±2π
H

. According to (2.11a), we have

k0 = k′ + k′′, (3.44)

m0 = m′ +m′′, (3.45)

we have m′′ = ±m0 or m′′ = 3m0. From the (c) subplot of figure 3.12, 3.13, 3.14, we find that
mode 3 is not involved in this PSI, so m′′ = ±m0. We then need to employ (3.44) and the last
resonant triad condition (2.11b) in order to find the two unknowns: ω′ and ω′′. In looking for the
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Figure 3.19: Plot of the group velocities of waves with frequencies of 0.3 times tidal frequency (harmonic
0.3) to that of 7 times tidal frequency ωM2 (harmonic 7) with an interval of 0.1 times tidal frequency along
the horizontal axis. These group velocities have been calculated with f = 0.2 × 10−4 s−1 (stars) and
f = 0.4 × 10−4 s−1 (circles). Mode is depicted vertically, spanning from mode 1 (uppermost) to mode
10 (lowermost), leading us to conlcude that group velocity is inversely proportional to mode number.

unknowns, we also need to use the dimensional dispersion relationship

k = ±m
(
ω2 − f 2

N2 − ω2

) 1
2

. (3.46)

Solving (2.11b), (3.44) manually is not an easy job, but gladly we have Maple to help us out.
It turns out that the child waves vary with f and the ratios of their frequency to that of the

parent waves are listed in table (3.5). This result agrees with table (3.4), which is obtained from
the numerical model output. What is worth mentioning is that when f = 0, Maple shows that we
do not have solution for (3.44) – (3.45), leading us to the conclusion that the PSI phenomenon
does not occur if we do not consider the rotational effects. This conclusion can be verified by the
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f (s −1) f
ω0

Re{ ω′

ω0
} Re{ω′′

ω0
}

0.2× 10−4 s−1 0.1421 0.1662 0.8338

0.4× 10−4 s−1 0.2842 0.3386 0.6614

0.6× 10−4 s−1 0.4263 0.5711 0.4289

Table 3.5: The ratio of the frequency of the child waves to that of the parent wave given different f
values. Re(x) is to take the real part of a complex value x. In fact, when f = 0.6×10−4, the result shows
complex ω′ and ω′′.

result of runs under f = 0, as we see in figure 3.10, 3.11 that no front wave appears.



CHAPTER 4

WEAKLY NONLINEAR INTERNAL WAVE

MODELS

4.1 Internal Wave Models

A mathematical model is usually one or a set of equations describing the behaviour of a phys-
ical system. Mathematical models can be classified into two categories: linear and nonlinear
models, depending on the nonlinearity of the equations. Internal wave models are associated
with the Navier-Stokes equations [Kundu and Cohen, 2004; Leblond and Mysak, 1978] and the
Euler equations [Lamb, 1994], whose adapted form and appropriate assumptions are described
by (1.27a) – (1.27c) in chapter 1.

The earliest work on internal wave models dates back to several centuries ago was “under the
umbrella of linear approximation” [Johnson, 1997]. The linear approximation applied in (1.27a)
– (1.27c) is under the assumption that the perturbation fields have an infinitesimal amplitude
so that we can ignore the nonlinear terms and hence obtain a set of linear equations. If we
further assume linear stratification (constant buoyancy frequency N ), then by substituting the
conventional wave form ei(kx+mz−ωt) into the linearized equations, we will obtain the dispersion
relation, the phase speed, the group velocity and many other results in linear wave theory. For
more description of linear internal wave models, we refer to [Kundu and Cohen, 2004; Gill,
1982; Craik, 1985].

Nonlinear internal wave models can be divided into weakly nonlinear and fully nonlinear
models. Weakly nonlinear theory follows from the application of perturbation theory to nonlin-

74
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ear problems, where we usually solve the linear (first-order) problem first and use the resulting
solution to solve the higher-order problems where nonlinearity is initially addressed. Fully non-
linear models require solving the complete set of nonlinear governing equations.

An internal wave model described by (1.27a) – (1.27c) is actually fully nonlinear and cannot
be solved analytically; however, thanks to numerical computation theory and fast computers
nowadays, we can solve these equations numerically. In fact, IGW, the numerical code written
by Kevin Lamb [Lamb, 1994] solves Euler equation to simulate internal waves generation by tide
topography interaction at a time length of 24 tidal period. Another fully nonlinear model of two-
layer fluid described by the MCC equation has been derived in Choi and Camassa [1999]. This
equation has been modified to model multilayer fluid in Choi [2000] and been further studied
in Jo and Choi [2002]. Helfrich [2007] has recently modified the MCC equation to include
rotational effects without assuming a small rotational parameter.

4.2 Weakly Nonlinear Internal Wave Models

One of the earliest works devoted to weakly nonlinear internal wave models can be found in
Benny [1966], where a KdV-type equation was derived in the context of long internal waves
after the success of KdV-family equations used to describe shallow water surface waves. This
KdV equation, which describes internal waves has since been under intensive studies. Many
different terms have been added into this KdV equation to capture more details of the evolution
of long internal waves. Much work has also been done to expand the coefficients of KdV-type
equations to model wave motion in a fluid with slowly varying topography. Helfrich and Melville
[2006]; Xiao [2006] both gave a short review of the various modified KdV equations such as
Benjamin-Ono equation, Gardner equation and so on.

This chapter focuses on weakly nonlinear internal wave models which include the effect of
the earth’s rotation. In fact, in the review paper by Helfrich and Melville [2006], a section has
been devoted to summarize previous works on this subject.
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4.3 The Ostrovsky Equation: A Model with Small Rotational
Effects

When Ostrovsky [1978] published his concise paper, he became the first to add a term incorpo-
rating the Coriolis force (the earth’s rotation) into the KdV equation. This equation was hence
named the Ostrovsky equation1 to his credit and drew great attention from many researchers
[Galkin and Stepanyants, 1991; Boyd, 2005]. Grimshaw et al. [2006] has used a generalized
version of Ostrovsky equation to model internal waves on the Australian North West Shelf.

However, with its success and contribution on the one hand, the Ostrovsky equation is also
notorious for its dispersion relation and its required rigid initial condition, which together make
numerical simulation difficult without any artificial modification.

The Ostrovsky equation is used to model uni-directional wave motion with a small rotational
effect. To derive this equation, Ostrovsky [1978] also kept the assumption of the KdV equation:
waves are long compared to the length scale of stratification but short compared with length scale
(Rossby radius) on which rotation is important. This assumption confines the KdV equation
as well as this Ostrovsky equation to be only valid for waves with an intermediate range of
wavenumber. The equation is usually written as

(At + cAx − µr01Axxx − 2εr10AAx)x =
δ

2c
A, (4.1)

where A(x, t) describes the horizontal evolution of the wave, c is the linear, non-rotating, long-
wave propagation speed, ε, µ and δ are small parameters representing the nonlinear, the dispersive
and the rotational effects respectively, r01 and r10 are constants related to the background density.
The expressions of r01 and r10 are given by Lamb and Yan [1996].

The dispersion relation of the linearized Ostrovsky equation is

ω =
δ
2c

+ ck2 + µr01k
4

k
, (4.2)

from which, we can calculate the phase speed (cp) and group velocity (Cg)

cp =
δ
2c

+ ck2 + µr01k
4

k2
, (4.3a)

Cg =
ck2 + 3µr01k

4 − δ
2c

k2
. (4.3b)

1Sometimes, the Ostrovsky equation is called rotation modified KdV (RMKdV) equation.
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From (4.2) and (4.3a) – (4.3b), we can see that as k → 0, ω → ∞, cp → ∞ and Cg → ∞,
while as k → ∞, ω → ∞, cp → ∞ and Cg → ∞. These limits of ω, cp and Cg are in fact
unphysical and are not consistent with that of the exact dispersion relation2. This disagreement
makes Ostrovsky equation an ineffective model for describing the evolution of internal waves,
which usually includes internal tides with very small k and internal solitary waves with moderate
k values.

To simulate (4.1) numerically, we can integrate it to obtain

At + cAx − µr01Axxx − 2εr10AAx =
δ

2c

∫ x

−∞
A(s, t)ds. (4.4)

One often considers localized waves with the far field condition A → 0 as x → ±∞. If the
waves have this property initially, then it will be kept at all later time since the group velocities
are always assumed to be finite. This condition is expressed as∫ ∞

−∞
A(x, t)dx = 0 ∀ t. (4.5)

If we attempt to simulate evolution of an internal solitary wave, with the initial condition
given by

A(x, 0) =
η0

b+ (1− b) cosh2(x)
, (4.6)

where η0 and b can be any constant, then (4.5) will not hold. Numerical simulation then results
in a wave amplitude that grows over time. In fact, when simulating a solitary wave, in the far
field we have Ax → 0. Then the finite difference discretization of the first time step reads

A1 − A0 = ∆t
δ

2c

∫ ∞
−∞

A(x, 0)dx 6= 0, (4.7)

where A0 and A1 are the amplitude of initial time and first time step (∆t) respectively. Clearly,
the amplitude will increase everywhere in the far field. A similar discretization after many
(constant) time steps will lead to an unbounded A(x, t). In many simulations (for example, in
[Grimshaw et al., 2006]) of solitary waves by the Ostrovsky equation, an artificial step function
is usually set in the far field in order to meet the initial condition (4.5).

2The complete analysis of the exact dispersion relation will be presented in section 4.4.
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In the Ostrovsky equation, δ, the parameter characterizing the earth’s rotation has been as-
sumed to be small. However, under many circumstances (for example, the evolution of internal
tides as studied in Gerkema and Zimmerman [1994]), it cannot be taken to be small. Hence,
we need a new mathematical model which can account for the full rotational effects. New and
Pingree [2000] have developed a new KdV-type theory to model the formation of internal soli-
tary wave from internal tides in the Bay of Biscay. They compared the observed results with
the numerical results of the new KdV-type theory and obtained goood agreement between the
two. In their model derivation, they claim the horizontal wave form at the zeroth order to be
A = A0 cos θ and consequently obtained the dispersion relation

ω2 = c2
0 +

f 2

k2
, (4.8)

where c0 is the phase speed of M2 tide and f is the Coriolis parameter. Then, they can use
∂
∂t

= −c ∂
∂x

where c2 = c2
0 + f2

k2 later in their derivation. This idea might work at a very early
time of evolution of internal tides; however, when internal tides break into and interact with in-
ternal solitary waves, it is invalid to assume the leading order horizontal wave form is sinusoidal.
Helfrich [2007] add full rotational effects in the MCC equation and witnessed several periods
of decay and return of internal solitary waves until a localized new packet emerges. However,
this model is confined to two-layer fluids with a constant depth. The MCC equation is a fully
nonlinear model designed for large amplitude internal waves.

4.4 Analysis of the Exact Dispersion Relation

To obtain the exact dispersion relation, we return to the fundamental governing equations of
internal waves. This section has been divided into two parts with the first part presenting the
derivation of the actual linear dispersion relation and the second part investigating different Tay-
lor expansions to approximate the exact dispersion relation.

4.4.1 The Exact Dispersion Relation

The Ostrovksy equation is useful for modelling waves of intermediate k, yet fails when k takes
on very small and very large values. This property is largely due to its flawed dispersion relation.



CHAPTER 4. WEAKLY NONLINEAR INTERNAL WAVE MODELS 79

In this section, we will inspect the fully nonlinear model, from which the Ostrovsky equation
was derived under an appropriate approximation, and find the actual linear dispersion relation.
Therefore, we can discuss the possible approximation to the linear dispersion relation.

Recall the non-dimensional governing equations (1.27a) – (1.27c) of internal waves

∂

∂t
ψzz − bx = δvz + εJ(ψ, ψzz)− µ

∂

∂t
ψxx + εµJ(ψ, ψxx) (4.9a)

vt + ψz = εJ(ψ, v) (4.9b)

bt +N2ψx = εJ(ψ, b). (4.9c)

If we assume the fluid to be hydrostatic, the governing equations are linearized to be

∂

∂t
ψzz − bx = δvz (4.10a)

vt + ψz = 0 (4.10b)

bt +N2ψx = 0, (4.10c)

which can be simplified to read

∂2

∂t2
ψzz +N2ψxx + δψzz = 0. (4.11)

Solving (4.11) by substituting a separable solution ψ(x, z, t) = B(x, t)φ(z) yields the linear
Klein-Gordon equation

Btt − c2Bxx + δB = 0, (4.12)

with the dispersion relation
ω2 = c2k2 + δ, (4.13)

and if ω > 0,
ω = (c2k2 + δ)

1
2 . (4.14)

Here the dispersion relation satisfies ω → δ
1
2 as k → 0 and ω →∞ as k →∞. A plot of the

(4.13) with selected value of c and δ is displayed in figure 4.1. Two other lines are given in order
to present the asymptotic behaviour of (4.13).

From (4.13), we calculate the phase speed cp and group velocity Cg

cp =
(c2k2 + δ)

1
2

k
, Cg =

c2k

(c2k2 + δ)
1
2

, (4.15)
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with limits

lim
k→0

cp =∞, lim
k→0

Cg = 0, (4.16)

lim
k→∞

cp = c, lim
k→∞

Cg = c. (4.17)

Comparing (4.16) and (4.17) to the limit of (4.2), (4.3a)-(4.3b), we find the limits of the dis-
persion relation for the Ostrovsky equation are inappropriate, as concluded in section 4.3. The
disagreement is largely due to the assumption of δ being small when deriving Ostrovsky equa-
tion. Notice that in obtaining (4.13), we did not treat δ as a small parameter.

4.4.2 Approximation to the Exact Dispersion Relation

We would like to factor the operator equation

∂2

∂t2
− c2 ∂

2

∂x2
+ δ = 0 (4.18)

into two first order differential operators, so as to obtain a uni-directional leading-order equa-
tion[Lee and Beardsley, 1974; Lamb, 2005]; however, it can be shown that this operator is irre-
ducible. Instead, we turn to Taylor expansions of the dispersion relation corresponding to (4.18)
to find approximation to the dispersion relation. In accordance with the approximation, we can
find a differential equation.

Recall the dispersion relation characterizing waves propagating in one direction is (4.13) and
can be written as

ω =
(
c2k2 + δ

) 1
2 = δ

1
2

(
1 +

c2k2

δ

) 1
2

, (4.19)

= ck

(
1 +

δ

c2k2

) 1
2

. (4.20)

The purpose of writing ω as (4.19) and (4.20) is because the Taylor expansion of (1 + x)
1
2

has restriction |x| < 1. Under a different choice of δ, we need to choose either (4.19) or (4.20)
to Taylor expand ω. In fact, for | c2k2

δ
| < 1, we need (4.19) to give

ω ≈ δ
1
2 +

c2k2

2δ
1
2

; (4.21)
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Figure 4.1: The blue line represents the plot of (4.14) with c = 1 and δ = 1. The red line is the
plot of dispersion of long wave equation: ω = ck and the dotted black line is that of inertial waves,
sometimes called gyroscopic waves (Leblond and Mysak [1978], Chapter 2): ω =

√
δ, where the existence

of the waves owes purely to the coriolis force. When k is very small, the dotted black line is a good
approximation while when k is very large, the red line is a good approximation.

whereas for | δ
c2k2 | < 1, we use (4.20) to obtain

ω ≈ ck +
δ

2ck
. (4.22)
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Note that when | c2k2

δ
| < 1 for regular solitary waves, δ usually cannot be assumed to be small,

however when | δ
c2k2 | < 1, it is appropriate to consider δ as a small parameter.

It has already been discussed that a dispersion relation is obtained by substituting the wave
form ei(

~k·~x−ωt) into a linear differential equation. We can reverse this process to get a linear
differential equation from a dispersion relation. Therefore, we find (4.21) corresponds to

ηt = −iδ
1
2η + i

c2

2δ
1
2

ηxx, (4.23)

and (4.22) gives

ηxt = −cηxx +
δ

2c
η, (4.24)

or equivalently,

ηt = −cηx +
δ

2c

∫ x

−∞
η(x′, t)dx′, (4.25)

which is the linearized version of Ostrovsky equation without consideration of the dispersive
term ηxxx.

The aforementioned analysis explains why currently, in studies of the evolution of internal
waves by using weakly nonlinear internal wave models, researchers tend to focus on either the
generation of internal waves from internal tides, or simply the propagation of internal waves,
especially that of internal solitary waves. The main reason is that in the life of internal waves,
the importance of rotational effects changes, leading to big differences at times. However, the
most widely used weakly nonlinear internal wave model is the Ostrovsky equation under the
assumption that rotational effects are weak.

The idea of using two different mathematical equations during different stages of internal
waves might work. However, the boundary of the different regimes is hard to define. The simplest
example is that when internal tides break into solitary waves, internal tides actually interact with
the internal solitary waves. Thus choosing the right equation is very difficult. Even if the stages
are clearly separated, we still lack a model that matches all the different stages. All in all, it
is desirable nowadays to have a weakly nonlinear model which is able to describe the life of
internal wave.

We wonder if there is any other Taylor expansion that can merge two different cases together.
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The dispersion relation in (4.19) can be also be written as

ω = (c2k2 + δ)
1
2 (4.26)

=
(

(ck + δ
1
2 )2 − 2ckδ

1
2

) 1
2

(4.27)

= (ck + δ
1
2 )

(
1− 2ckδ

1
2

(ck + δ
1
2 )2

) 1
2

(4.28)

Since 2ckδ
1
2 < (ck + δ

1
2 )2 (c, k, δ > 0), we get the Taylor expansion

ω ≈ (ck + δ
1
2 )

(
1− ckδ

1
2

(ck + δ
1
2 )2

)
(4.29)

= (ck + δ
1
2 )− ckδ

1
2

ck + δ
1
2

. (4.30)

It can be easily verified that as k → 0, ω → δ
1
2 and as k →∞, ω → ck. We also calculate cp

and Cg from (4.30) to be

cp =
ck + δ

1
2

k
− cδ

1
2

ck + δ
1
2

, (4.31)

Cg = c− cδ

(ck + δ
1
2 )2

, (4.32)

with cp → ∞, Cg → 0 as k → 0, and cp → c, Cg → c as k → ∞. If we compare these limits
with those of the actual linear dispersion given by (4.16)– (4.17) , we find that (4.30) is a very
good approximation to (4.13)

The DE counterpart of this dispersion relation is

cηtx + iδ
1
2ηt = −c2ηxx + δη − icδ

1
2ηx. (4.33)

Notably, when k → 0, ω can be approximated by just the first term in equation (4.30), so the
DE counterpart is

ηt = −cηx − iδ
1
2η. (4.34)

This DE is very interesting since it is the combination of equation (4.23) and (4.25). Also,
(4.33) has imaginary coefficients for some terms as does the Nonlinear Schrödinger equation.
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If we want to use (4.33) as the linearized equation of KdV-type equation, we might need to be
innovative enough to explore KdV-type equation in a complex domain.

Overall, the exact dispersion relation (4.13) solves the linear Klein-Gordon equation (4.12)
with the usual wave form ei(kx−ωt). Both the dispersion relation and the linear Klein-Gordon
equation are irreducible, leading to the difficulty of obtaining a first order DE to describe uni-
directional wave propagation. However, the method of Taylor expansion provides us with differ-
ent approximations of the exact dispersion relation, with which, we can find the approximate DE
to the linear Klein Gordon equation. The dispersion relation of the Ostrovsky equation is a valid
approximation when rotational effects are small. And a new proposed approximation given by
(4.30) is effective in predicting the limits of the exact dispersion relation, thus potentially being a
better approximation than that of the Ostrovsky equation. However, we need to bring KdV-type
equations into the the world of complex functions and values to make use of this new dispersion
relation.

4.5 A New RMKdV Equation

This section presents the derivation details of a new RMKdV equation, aiming to correct the
flawed dispersion relation of the Ostrovsky equation. After the derivation, section 4.5.2 gives an
analysis of this new RMKdV equation, the dispersion relation of which has been compared with
most of the aforementioned dispersion relations. This comparison informs us of the advantages
of the new RMKdV. In section 4.5.3 and 4.5.4, we talk about the shoaling effect as well as adding
the shoaling effect to this new RMKdV equation to model wave motion in an inhomogenous
fluid.

4.5.1 Derivation of the New RMKdV Equation

Again, the system of governing equations given by (1.27a) - (1.27c) is

∂

∂t
ψzz − bx = δvz + εJ (ψ, ψzz)− µ

∂

∂t
ψxx + εµJ (ψ, ψxx) , (4.35)

vt + ψz = εJ(ψ, v), (4.36)

bt +N2ψx = εJ(ψ, b), (4.37)
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with its asymptotic solution in perturbed form

ψ = ψ(0,0,0) + δψ(1,0,0) + εψ(0,1,0) + µψ(0,0,1) + ε2ψ(0,2,0) + O(ε3, δ2, µ2), (4.38)

v = v(0,0,0) + δv(1,0,0) + εv(0,1,0) + µv(0,0,1) + ε2v(0,2,0) + O(ε3, δ2, µ2), (4.39)

b = b(0,0,0) + δb(1,0,0) + εb(0,1,0) + µb(0,0,1) + ε2b(0,2,0) + O(ε3, δ2, µ2). (4.40)

The leading-order system of equations is

∂

∂t
ψ(0,0,0)
zz − b(0,0,0)

x = 0, (4.41)

v
(0,0,0)
t + ψ(0,0,0)

z = 0, (4.42)

b
(0,0,0)
t +N2ψ(0,0,0)

x = 0, (4.43)

with (4.41) and (4.43) leading to

∂2

∂t2
ψ(0,0,0)
zz +N2ψ(0,0,0)

xx = 0. (4.44)

Looking for separable solution of ψ(0,0,0) = B(x, t)φ(z), we have

Btt − c2Bxx = 0, (4.45)

and the eigenvalue problem

φzz +
N2(z)

c2
φ = 0,

φ(−1) = φ(0) = 0. (4.46)

At O(δ), if we perturb (4.45) as

Btt − c2Bxx = δP (x, t), (4.47)

and put the effect of ε and µ aside, we can simplify the governing equation (4.35) – (4.37) to read

∂

∂t
ψzz − bx = δvz, (4.48)

vt + ψz = 0, (4.49)

bt +N2ψx = 0, (4.50)
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which can be combined into

∂2

∂t2
ψzz +N2(z)ψxx = −δψzz. (4.51)

Taking the perturbation expressed by (4.47) into account, we obtain

∂2

∂t2
ψ(1,0,0)
zz +N2(z)ψ(1,0,0)

xx = −ψ(0,0,0)
zz −

[
∂2

∂t2
ψ(0,0,0)
zz +N2(z)ψ(0,0,0)

xx

]
δ coefficient

(4.52)

= −Bφ′′ − P (x, t)φ′′, (4.53)

where we use [A]δ coefficient to describe the coefficient of the mathematical expression A. Later
in this section, we will use this symbol to extract out the coefficient of ε, ε2 and µ. To get a
separable solution for this equation, we assume

P (x, t) = γB(x, t) (4.54)

and that
ψ(1,0,0) = B(1,0,0)(x, t)φ(1,0,0), (4.55)

hence turning (4.53) into

B
(1,0,0)
tt φ(1,0,0)

zz +N2(z)B(1,0,0)
xx φ(1,0,0) = −(1 + γ)Bφ′′. (4.56)

Since
B

(1,0,0)
tt = c2B(1,0,0)

xx , (4.57)

to leading-order, (4.53) can be approximated by

B(1,0,0)
xx (φ(1,0,0)

zz +
N2(z)

c2
φ(1,0,0)) = −1 + γ

c2
Bφ′′. (4.58)

Choosing B(1,0,0)
xx = B leaves

φ(1,0,0)
zz +

N2

c2
φ(1,0,0) = −1 + γ

c2
φ′′. (4.59)

In order to solve for the two unknownsB(1,0,0) and φ(1,0,0) in (4.58), we need to satisfy a solvabil-
ity condition. Note that in the solution of the different higher-order problems, we will repeatedly
use this solvability condition. We define the linear operator ` by

` =
∂2

∂z2
+
N(z)2

c2
. (4.60)
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It can be shown that ` is a self-adjoint operator as follows∫ 0

−1

(φ(1,0,0)
zz +

N2

c2
φ(1,0,0))φdz =

∫ 0

−1

φ(1,0,0)
zz φdz +

∫ 0

−1

N2

c2
φ(1,0,0)φdz (4.61)

=

∫ 0

−1

(φ′′ +
N2

c2
φ)φ(1,0,0)dz, (4.62)

which is obtained by integrating by parts while applying the boundary condition that φ =

φ(1,0,0) = 0 at z = 0 and z = −1. Then with the leading-order eigenvalue equation (4.46),
we have∫ 0

−1

`(f(z))φdz = 0, ∀ f(x) ∈ C2[−1, 0] and f(−1) = f(0) = 0. (4.63)

Equation (4.63) is called the solvability condition for the eigenvalue problem (4.59).
The application of this solvability condition to (4.59) gives∫ 0

−1

1 + γ

c2
φ′′φdz = 0, (4.64)

and hence
γ = −1, (4.65)

because ∫ 0

−1

φφ′′dz = −
∫ 0

−1

φ′2dz 6= 0. (4.66)

Thus (4.47) becomes
Btt − c2Bxx = −δB. (4.67)

The constants ε and µ are important for small perturbations too, taking the nonlinearity (ε)
and non-hydrostaticity (µ) into account, we expand (4.47) into

Btt − c2Bxx = −δB + εR(x, t) + µQ(x, t) + ε2S(x, t). (4.68)

Notice here, (4.36) does not affect the governing equation at O(ε, ε2, µ), so we do not need to list
(4.36) and its derived form at O(ε, ε2, µ).
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At O(ε), the governing equation is then

∂

∂t
ψ(0,1,0)
zz − b(0,1,0)

x = J
(
ψ(0,0,0), ψ(0,0,0)

zz

)
−
[
∂

∂t
ψ(0,0,0)
zz − b(0,0,0)

x

]
ε coefficient

, (4.69)

b
(0,1,0)
t +N2ψ(0,1,0)

x = J
(
ψ0,0,0, b(0,0,0)

)
−
[
b

(0,0,0)
t +N2ψ(0,0,0)

x

]
ε coefficient

, (4.70)

leading to

∂2

∂t2
ψ(0,1,0)
zz + N2(z)ψ(0,1,0)

xx =
∂

∂t
J
(
ψ(0,0,0), ψ(0,0,0)

zz

)
+

∂

∂x
J
(
ψ(0,0,0), b(0,0,0)

)
(4.71)

−
[
∂2

∂t2
ψ(0,0,0)
zz +N2(z)ψ(0,0,0)

xx

]
ε coefficient

. (4.72)

In order to carry out the algebra from the asymptotic analysis, we need an explicit form for
b(0,0,0). In (4.43), ψ has a separable form, which drives us to assume

b(0,0,0) = H(x, t)N2(z)φ. (4.73)

Substituting this form of b(0,0,0) into (4.43), we obtain Ht = −Bx. We want to find a relation
between Bt and Bx to express H in terms of B.

Recall that (4.45) gives Bt = −cBx if we only consider waves propagating rightward3, so

Ht = −Bx =
1

c
Bt. (4.74)

Given appropriate initial conditions, we get

H(x, t) =
B(x, t)

c
. (4.75)

Substituting H back into b(0,0,0) leads to

b(0,0,0) =
B(x, t)N2(z)φ

c
= −cB(x, t)φ′′. (4.76)

With the explicit form of b(0,0,0), (4.72) becomes

∂2

∂t2
ψ(0,1,0)
zz +N2(z)ψ(0,1,0)

xx =

(
∂

∂t
(BBx)− c

∂

∂x
(BBx)

)
(φφ′′′ − φ′φ′′)−R(x, t)φ′′

= −2c
∂

∂x
(BBx)(φφ

′′′ − φ′φ′′)−R(x, t)φ′′. (4.77)

3Note we can also separately consider waves propagating leftward, but the result will not be affected dramatically.
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Looking for a separable solutions for ψ(0,1,0), we let

R(x, t) = α(BBx)x, (4.78)

and
ψ(0,1,0) = B(0,1,0)(x, t)φ(0,1,0). (4.79)

If we assume that
B

(0,1,0)
tt = c2B(0,1,0)

xx , (4.80)

and

B(0,1,0)
xx =

∂

∂x
BBx =

1

2

∂2

∂x2
B2, (4.81)

so
B(0,1,0) =

1

2
B2, (4.82)

we then obtain

2c2

(
φ(0,1,0)
zz +

N2

c2
φ(0,1,0)

)
= −2c(φφ′′′ − φ′φ′′)− αφ′′. (4.83)

This eigenvalue problem contains the self-adjoint operator `. By applying the solvability
condition as we have done in the algebra of O(δ), we obtain

α =
3c
∫ 0

−1
φ′3dz∫ 0

−1
φ′2dz

. (4.84)

At O(µ), we can find the expression of Q(x, t) as well. The governing equations at this order
are

∂

∂t
ψ(0,0,1)
zz − b(0,0,1)

x = − ∂

∂t
ψ(0,0,0)
xx −

[
∂

∂t
ψ(0,0,0)
zz − b(0,0,0)

x

]
µ coefficient

(4.85)

b
(0,0,1)
t +N2ψ(0,0,1)

x = −
[
b

(0,0,0)
t +N2ψ(0,0,0)

x

]
µ coefficient

, (4.86)

which can be reduced to

∂2

∂t2
ψ(0,0,1)
zz +N2(z)ψ(0,0,1)

xx = − ∂2

∂t2
ψ(0,0,0)
xx −

[
∂2

∂t2
ψ(0,0,0)
zz +N2(z)ψ(0,0,0)

xx

]
µ coefficient

= −Bttxxφ−Q(x, t)φ′′. (4.87)
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As we have done for previous orders, to find separable solutions, we set

Q(x, t) = βBttxx (4.88)

and
ψ(0,0,1) = B(0,0,1)φ(0,0,1), (4.89)

with
B(0,0,1) = c2Bxx, (4.90)

then, (4.87) produces the equation

c2(φ(0,0,1)
zz +N2(z)φ(0,0,1)) = −(φ− βφ′′). (4.91)

The solvability condition of this type of eigenvalue problem leads to

β = −
∫ 0

−1
φ2dz∫ 0

−1
φ′2dz

. (4.92)

There are many cases when the nonlinear term vanishes and we need the cubic nonlinear term
[Grimshaw et al., 2004; Holloway, 2002]. So, the following work is to present the steps that we
follow in order to derive the cubic terms.

We now have

ψ = Bφ+ εB2φ(0,1,0) + ε2ψ(0,2,0) + · · · , (4.93)

b = −cBφ′′ + εB2D(0,1,0) + ε2b(0,2,0) + · · · . (4.94)

At O(ε2), the system of governing equations is then

(Btφ
′′ + cBxφ

′′) + ε(2BBtφ
(0,1,0)
zz − 2BBxD

(0,1,0)) + ε2
(
∂

∂t
ψ(0,2,0)
zz − b(0,2,0)

x

)
= εJ(Bφ,Bφ′′) + ε2J(Bφ,B2φ(0,1,0)

zz ) + ε2J(B2φ(0,1,0), Bφ′′)

(−cBtφ
′′ + N2Bxφ) + ε(2BBtD

(0,1,0) + 2BBxN
2φ(0,1,0)) + ε2(b

(0,2,0)
t +N2ψ(0,2,0)

x )

= εJ(Bφ,−cBφ′′) + ε2J(B2φ(0,1,0),−cBφ′′) + ε2J(Bφ,B2D(0,1,0))
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which can be simplified as

∂2

∂t2
ψ(0,2,0)
zz +N2(z)ψ(0,2,0)

xx = ℵ+
∂

∂t
J(Bφ,B2φ(0,1,0)) +

∂

∂t
J(B2φ(0,1,0), Bφ′′)

+
∂

∂x
J(B2φ(0,1,0),−cBφ′′) +

∂

∂x
J(Bφ,B2D(0,1,0)),

where

ℵ = [−(Bttφ
′′ +N2Bxxφ)︸ ︷︷ ︸

À

−ε(2(BBt)tφ
(0,1,0)
zz + 2(BBx)xN

2φ(01,0))︸ ︷︷ ︸
Á

+ ε
∂

∂t
J(Bφ,Bφ′′) + ε

∂

∂x
J(Bφ,−cBφ′′)︸ ︷︷ ︸

Â

]ε2 coefficient. (4.95)

Before obtaining a closed-form expression of ℵ, recall the eigenvalue problem (4.83) from O(ε)

2c2(φ(0,1,0)
zz +

N2

c2
φ(01,0)) = −2c(φφ′′′ − φ′φ′′)− αφ′′, (4.96)

and the governing equation for B is

Btt − c2Bxx = −δB + εR(x, t) + µQ(x, t) + ε2S(x, t), (4.97)

where R(x, t) and Q(x, t) and S(x, t) are higher order corrections. To simplify the problem, we
restrict our consideration to the rightward propogating wave. The unidirectional KdV equation
is then from Lamb and Yan [1996] and given by

Bt = −cBx + ε2r10cBBx. (4.98)

Because the O(ε) result contributes to a higher order O(ε2), we need to include the nonlinear term
in (4.98).

In (4.95), the equation has been divided into three parts (refer to appendix B for details on
the derivation of Á and Â)

À = −ε [α(BBx)x + εS(x, t)]φ′′

Á = −ε
[
(2c2(BBx)x − 4c2εr10(B2Bx)t + 4εr10c(B

2Bx)t)φ
(0,1,0)
zz + 2(BBx)xN

2φ(0,1,0)
]

= −ε
[
2c2(BBx)x

(
φ(0,1,0)
zz +

N2

c2
φ(0,1,0)

)
+ ε(−4c2r10(B2Bx)x + 4r10c(B

2Bx)t)φ
(0,1,0)
zz

]
Â = ε [((BBx)t − c(BBx)x(φφ

′′′ − φ′φ′′)]
= ε

[
(−2c(BBx))x − 2εr10c(B

2Bx)x)(φφ
′′′ − φ′φ′′)

]
,
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so

ℵ = [ε((BBx)x

(
−2c2(φ(0,1,0)

zz +
N2

c2
φ(01,0)
zz

)
− 2c(φφ′′′ − φ′φ′′)− αφ′′))

+ ε2(−S(x, t)φ′′ − (−4c2r10(B2Bx)x + 4r10c(B
2Bx)t)φ

(0,1,0)
zz

− 2r10c(B
2Bx)x(φφ

′′′ − φ′φ′′))]ε2 coefficient

= −S(x, t)φ′′ + 4r10c
2(B2Bx)x − 4r10c(B

2Bx)t − 2r10c(B
2Bx)x(φφ

′′′ − φ′φ′′))

Note that we still have not yet got an expression for D(0,1,0). In order to find it, we refer back to
(4.72) to relate ψ(0,1,0) and b(0,1,0). From the O(ε) derivation, we have

ψ(0,1,0) = B(0,1,0)φ(0,1,0) = B2φ(0,1,0), (4.99)

where φ(0,1,0) is the solution of

φ(0,1,0)
zz +

N2

c2
φ(0,1,0) = −1

c
(φφ′′′ − φ′φ′′)− α

2c2
φ′′. (4.100)

To calculate b(0,1,0), we refer back to (4.69)

∂

∂t
ψ(0,1,0)
zz − b(0,1,0)

x = J(ψ(0,0,0), ψ(0,0,0)
zz )−

[
∂

∂t
ψ(0,0,0)
zz − b(0,0,0)

x

]
ε coefficient

, (4.101)

where

b(0,1,0)
x = 2BBtφ

(0,1,0)
zz −BBx(φφ

′′′ − φ′φ′′) +

[
∂

∂t
ψ(0,0,0)
zz − b(0,0,0)

x

]
ε coefficient

= −2cBBxφ
(0,1,0)
zz −BBx(φφ

′′′ − φ′φ′′) + 2r10cBBxφ
′′ (4.102)

= BBx[−2cφ(0,1,0) − (φφ′′′ − φ′φ′′) + 2r10cφ
′′]. (4.103)

Here we have used (4.98). Assuming b(0,1,0) = B2D(0,1,0), we have

D(0,1,0) =
1

2
[−2cφ(0,1,0)

zz − (φφ′′′ − φ′φ′′) + 2r10cφ
′′]. (4.104)
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Now, (4.95) becomes

∂2

∂t2
ψ(0,2,0)
zz +N2(z)ψ(0,2,0)

xx = (B2Bx)t(φφ
(0,1,0)
zzz − 2φ′φ(0,1,0)

zz )

+ (B2Bx)t(2φ
(0,1,0)φ′′′ − φ(0,1,0)

z φ′′)

+ c(B2Bx)x(φ
(0,1,0)
z φ′′ − 2φ(0,1,0)φ′′′)

+ (B2Bx)x(φD
(0,1,0)
z − 2φ′D(0,1,0))

− S(x, t)φ′′ + (4r10c
2(B2Bx)x − 4r10c(B

2Bx)t)φ
(0,1,0)
zz

− 2r10c(B
2Bx)x(φφ

′′′ − φ′φ′′). (4.105)

Since to the leading order (B2Bx)t = −c(B2Bx)x, we let

S(x, t) = λ(B2Bx)x, and ψ(0,2,0) = B3φ(0,2,0), (4.106)

then (4.105) becomes

φ(0,2,0)
zz +

N2

c2
φ(0,2,0) = − 1

3c
(φφ(0,1,0)

zzz − 2φ′φ(0,1,0)
zz )− 1

3c
(2φ(0,1,0)φ′′′ − φ(0,1,0)

z φ′′)

+
1

3c
(φ(0,1,0)

z φ′′ − 2φ(0,1,0)φ′′′) +
1

3c2
(φD(0,1,0)

z − 2φ′D(0,1,0))

− λφ′′ +
8

3
r10φ

(0,1,0)
zz − 2

3c
r10(φφ′′′ − φ′φ′′). (4.107)

We can then use the solvability condition of (4.107) to obtain the expression of λ.
To sum up, the equation for B with the higher order corrections is

Btt − c2Bxx = −δB + αε(BBx)x + βµBttxx + ε2λ(B2Bx)x, (4.108a)

subject to α =
3c
∫ 0

−1
φ′3dz∫ 0

−1
φ′2dz

, and β = −
∫ 0

−1
φ2dz∫ 0

−1
φ′2dz

. (4.108b)

4.5.2 Analysis of the New RMKdV Equation

The new rotation modified KdV equation given by (4.108a) – (4.108b) has advantages over the
Ostrovsky equation in that we have not violated the asymptotic properties of the exact dispersion
relation for a very small k for the new equation. If we use the leading-order governing equation
Bt = −cBx to approximate the RHS in (4.108a), the linearized evolution equation is

Btt − c2Bxx = −δB + βµBttxx, (4.109)
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with dispersion relation

ω2 =
c2k2 + δ

βµk2 + 1
. (4.110)

In the limit as k → 0, we have ω → δ
1
2 . The phase speed (cp) and group velocity (Cg) are then

cp =

(
c2k2 + δ

k2(βµk2 + 1)

) 1
2

, (4.111a)

Cg =
c2k − βµδk

(c2k2 + δ)
1
2 (βµk2 + 1)

3
2

, (4.111b)

with cp → ∞, Cg → 0 as k → 0. The asymptotic behaviour of ω, cp and Cg as k → 0 agrees
well with that predicted by the exact dispersion relation; yet upon analysing, we will find that the
limits as k → ∞ are not as desired. However, this new RMKdV equation would work well to
model internal wave ranging with large wavelength to moderate wavelength, which is common
in an oceanic environment.

Numerical simulations of (4.108a) – (4.108b) do not have as rigid a restriction on the initial
condition as the Ostrovsky equation explained in section 4.3. However, in the derivation of this
equation, we have assumed wave is propagating rightward and so we need to choose appropriate
initial conditions to satisfy this assumption. Note that since the DE (4.108a) is second order, we
need two initial conditions for the numerical simulation.

4.5.3 On Shoaling Effects

In deriving the modified KdV equation, it is necessary to assume the homogeneity of the fluid.
If the waves experience shoaling, we usually assume the fluid depth is slowly varying. Shoaling
waves are waves that propagate from deep water to shallow water. This phenomenon is essential
in many coastal areas such as the Massachusetts Bay and the Bay of Biscay. Research with
regard to shoaling can be found in Djordjevic and Redekopp [1978]; Small [2001]; Small and
Hornby [2004].

In Small [2001] and Pelinovsky et al. [1994], an energy flux conservation law along ray tubes
was used to derive the shoaling term.The energy flux along a ray tube is

F = ∆

∫ 0

−H(x)

pudz, (4.112)
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where ∆ is the wave front length, p is the pressure, u is the horizontal velocity and the water
depth H(x) is a slowly varying function of x.

Since the change in the background environment is assumed to be slow compared to the
typical wave length scale, we can use the linear pressure and velocity

p = ρBc2∂φ

∂z
, u = cB

∂φ

∂z
, (4.113)

and hence

F = ∆

∫ 0

−H(x)

ρc3B2

(
∂φ

∂z

)2

dz. (4.114)

Energy flux is conserved along the ray tubes, so ∂F
∂x

= 0. In fact,

∂F

∂x
= ∆xB

2

∫ 0

H

ρc3

(
∂φ

∂z

)2

dz + 2∆BBx

∫ 0

−H
ρc3

(
∂φ

∂z

)2

dz + ∆B2∂M

∂x
,(4.115a)

where

M =

∫ 0

−H
ρc3

(
∂φ

∂z

)2

dz, (4.116)

and
∂M

∂x
=

∫ 0

−H

∂

∂x

(
ρc3

(
∂φ

∂z

)2
)
dz +Hx

(
∆ρc3

(
∂φ

∂x

))
|z=H(z). (4.117)

By equating (4.115a) to 0, we obtain

Bx = −1

2

(
∆x

∆
B

)
− 1

2

(
Mx

M
B

)
. (4.118)

This equation does not reveal any information about B, but as in the KdV family equations, we
are interested in knowing Bt, or sometimes Btt. Therefore, we need to dig out the equation by
making some approximations

Bx =
∂B

∂t

δt

δx
=
Bt

δx
δt

. (4.119)

To the leading order, δx
δt

= c, so

Bt = − c
2

(
∆x

∆
B

)
− c

2

(
Mx

M
B

)
, (4.120)

and

Btt = −c
2

2

(
∆x

∆
Bx

)
− c2

2

(
Mx

M
Bx

)
(4.121)

is the leading order equation that describes the shoaling effect.
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4.5.4 Variable Coefficient RMKdV Equation

By coupling the result of the RMKdV equation with the shoaling effect, we will have the Ve-
RMKdV equation

Btt = c2Bxx − δB + εα(BBx)x + µβBttxx + ε2λ(B2Bx)x −
c2

2

(
Mx

M
Bx

)
. (4.122)

Note here, we only use one of the two terms in (4.121) since the model we are trying to build up
is 2D, hence ∆x is zero. In (4.122), the coefficients are slowly varying functions of x instead of
constants.



CHAPTER 5

CONCLUSION

5.1 Summary

The effects of the earth’s rotation on internal waves has been discussed in this thesis with re-
spect to two topics of nonlinear internal wave theory: near-resonant triads and weakly nonlinear
models.

The near-resonant internal wave triad phenomenon in this thesis was firstly observed among
three waves in two plots (figure 3.2 and 3.3) of the decomposition of horizontal velocity of
internal waves generated by tide-topography interaction. The same phenomenon was obtained
from a simpler numerical run where internal waves were generated by forcing waves directly
at the left boundary. The three waves: the harmonic 1 – mode 1, the harmonic 2 – mode 2

and the harmonic 1 – mode 3 wave formed an internal wave triad and were found to satisfy
the near-resonance condition when either the detuning of the frequency or the wavenumber are
sufficiently small. The main results of the near-resonant theory were demonstrated by a system
of six PDEs, which, with hydrostatic (µ = 0) and non-rotating (f = 0) assumptions, can be
converted into the canonical wave amplitude equations of exact resonant triads.

Numerical runs with different parameters (buoyancy frequency N , the Coriolis force f and
the forcing amplitude Fa) have been done and their results have been summarized in table 3.3.
When the model is not sufficiently nonlinear, the near-resonant phenomenon disappears, since
resonance and near-resonance are from nonlinear wave interaction. On the other hand, when the
nonlinearity parameter of the model is very large, the derived near-resonant internal wave triad
theory does not apply since resonant and near-resonant theories are weakly-nonlinear theories
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based on the assumption that the wave amplitude is not too large. When the model can be treated
as weakly-nonlinear, near-resonant theory is very effective in predicting the wave form of the
internal wave triad.

Furthermore, when the rotational effect is included (f is nonzero), we find that the mode-2
waves have a low-frequency front. By analysing the mechanism and applying parametric subhar-
monic instability (PSI) theory, we find that the front long wave is the product of an exact resonant
triad.

The rotational effects of weakly-nonlinear models were first studied by Ostrovsky. The re-
sulting equation he developed became the first KdV-type equation taking the earth’s rotation into
account. This equation is used for a uni-directional wave model and is most successful when
the wavenumber is moderate. However, the Ostrovsky equation fails to model waves with small
wavenumber due to its imperfect dispersion relation. This thesis, in its second part, gives an
analysis of the exact dispersion relation for fully nonlinear internal wave governing equations
and provides a derivation of a new rotational modified equation whose dispersion relation has
some nice properties and obeys the exact dispersion relation for waves with both small and mod-
erate wavenumbers.

5.2 Conclusion

The near-resonant internal wave triad theory is mainly embodied in the amplitude equations of
six PDEs. This system of equations are effective in predicting the wave amplitude (envelope)
when the internal waves are weakly nonlinear. In the figures presented in chapter 3, we can see
the incredible overlap between the numerical and theoretical result. However, this effectiveness
also varies with the nonlinearity of internal waves. For the specific forced wave runs or the tide
topography interaction run, nonlinearity is represented by the ratio shown in table 3.2. Compar-
ing figures 3.17 and 3.18, which depict waves of different nonlinearity, we can see that when
the waves are sufficiently nonlinear and near-resonance occurs, the effectiveness of our theory is
very satisfactory; however, when the the nonlinearity parameter is too big, even if we still obtain
near-resonance, our theory becomes less effective, but is still capable of predicting the wave form
of the first few tidal periods.

In this thesis, the earth’s rotation is described by a f - plane. As we change the value of f
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in the numerical runs, we find that when f 6= 0, a front long wave appears in the plot of mode
2 wave. The envelope and wavenumber of this front long wave varies with f . Work has been
done to show that the new front long wave originates from PSI of the harmonic 1 – mode 1 wave.
PSI is a type of exact resonance, so, even with the limited information of parent wave and child
wave, we are still able to predict the frequency and hence wavenumber of the child waves by the
resonant triad condition. This technique predicts that no similar PSI occurs when f = 0.

Another branch of studies of nonlinear internal wave theory is weakly nonlinear models char-
acterized by KdV-type equations. The pioneer of the rotation modified equation is the Ostrovsky
equation, but it is largely used in describing propagation of internal solitary waves. Aiming to
use one sole equation to model two processes of internal wave evolution: generation and prop-
agation of internal waves, we derived a new RMKdV equation, whose dispersion relation has
been shown to possess better properties than that of the Ostrovsky equation. The new RMKdV
equation is second-order but its wave solution should be rightward propagating in accord with
the assumptions used for the derivation. Numerical simulations of this RMKdV equation should
be easier without the rigid initial condition from the Ostrovsky equation (refer to the section 4.3
for the rigid initial condition). Modification of this new RMKdV equation to model shoaling
internal waves has also been suggested in this thesis.

5.3 Future Work

Several extensions to the work of this thesis are possible:

• We have focused on wave-wave interactions among three waves. It would be interesting to
look at near-resonant interaction of four or more waves.

• We have pointed out that the developed near-resonant theory is effective when the model is
weakly nonlinear. As the model becomes too nonlinear, the near-resonant theory becomes
invalid. More work is needed in finding the range of the nonlinearity parameter so we will
be able to test if our theory is applicable to any new model result.

• We have already verified that the low-frequency long waves at the mode-2 wave front
occurring for the cases when f 6= 0 results from the PSI of the harmonic 1 – mode 1 wave.
We have also found the parent wave and child waves for different f by using the resonant
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triad condition. But no result has been obtained to predict the envelopes of the three waves
in this PSI. Future work can be done to find and solve the amplitude equations as what
have been done for the near-resonant triad.

• We have derived the KdV-type equation to model internal waves with the consideration of
the earth’s rotation. We have not performed numerical simulation of this RMKdV equa-
tion. Future work should be done to apply this equation to model internal solitary wave
generation and shoaling.

• Our RMKdV equation has been derived under the assumption that the earth’ rotation is
small. In appendix C, we have explained that the same technique used in this derivation
fails if the Coriolis effect is not small. New methods are needed to derive an effective
model without the assumption of small rotation. Or, possibly, numerical simulation are
needed to show that this RMKdV equation is valid even when the earth’s rotation is not
small.



APPENDIX A

A NOTE ON THE DETUNING ∆k

The dimensional k is given by

k = ±m
(
ω2 − f 2

N2 − ω2

) 1
2

, (A.1)

which can be written as

k = ±m ω

N
(1− f 2

ω2
)

1
2 (1− ω2

N2
)−

1
2 . (A.2)

According to this Taylor expansion

(1 + x)a = 1 + ax+
a(a− 1)

2!
x2 + · · ·+ a(a− 1)(a− 2) · · · (a− n+ 1)

n!
xn + · · · , (A.3)

where |x| < 1, we have

k = ±m ω

N

{[
1− 1

2

f 2

ω2
+ O((

f 2

ω2
)2)

] [
1 +

1

2

ω2

N2
+ O((

ω2

N2
)2)

]}
, (A.4)

which can be also written

k = ±m
{
ω

N
+

1

2

ω3

N3
− 1

2

f 2

Nω
+ O(

ω

N
(
f 2

ω2
)2, (

ω2

N2
)3)

}
(A.5)

For the wave triad given by (2.11a) – (2.11b), we use k1, k2 and k3 to denote harmonic 2 – mode
2, harmonic 1 – mode 3 and harmonic 2 – mode 2 wave and we use the kj (j = 1, 2, 3) to make
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sure that three three waves have same positive phase speed. Then we will have

k1 = −2m0

{
2ωM2

N
+ 4

ω3
M2

N3
− 1

4

f 2

NωM2

+ · · ·
}
, (A.6a)

k2 = 3m0

{
ωM2

N
+

1

2

ω3
M2

N3
− 1

2

f 2

NωM2

+ · · ·
}
, (A.6b)

k3 = m0

{
ωM2

N
+

1

2

ω3
M2

N3
− 1

2

f 2

NωM2

+ · · ·
}
, (A.6c)

where we use ellipsis · · · to represent the higher order terms.
∆k is calculated by summing up (A.6a) – (A.6c)

∆k = m0

{
−4

ω3
M2

N3
− 3

2

f 2

NωM2

+ O((
f 2

ω2
M2

)2, (
ω2
M2

N2
)2)

}
. (A.7)

In the numerical model, we chose

f = 0.2× 10−4 s−1, (A.8a)

ωM2 = 1.4075× 10−4 s−1, (A.8b)

m0 = 6.283× 10−3 m−1, (A.8c)

N = 1.0× 10−3 s−1, (A.8d)

In fact, (A.8a) gives a typical value for f , which has also been selected to be 0.4 × 10−4 s−1,
0.6× 10−4 s−1 and etc.

By using (A.8a) – (A.8d) in (A.7), we can see that ∆k is at the order of 10−4 m−1. If we keep
(A.8b) – (A.8d) and let f take on the value 1.0 × 10−4 s−1, we still get ∆k to be O(10−3 m−1).
This explains why we still get good agreement with the result in figure 3.15.



APPENDIX B

DERIVATION DETAILS OF THE CUBIC

NONLINEAR TERM IN THE RMKDV
EQUATION

In this appendix, we provide the derivation details of ℵ in (4.95).

(BBt)t = (B(−cBx + 2εr10cBBx))t = (−cBBx + 2εr10cB
2Bx)t

= −c(BBx)t + 2εr10c(B
2Bx)t = −c(BtBx +BBxt) + 2εr10c(B

2Bx)t

= −c((−cBx + 2εr10cBBx)Bx +B(−cBxx+ 2εr10c(BBx)x)) + 2εr10c(B
2Bx)t

= c2(B2
x +BBxx)− c(2εr10cBB

2
x + 2εr10cB(BBx)x) + ε2r10c(B

2Bx)t

= c2(BBx)x − 2c2εr10(B2Bx)x + 2εr10c(B
2Bx)t (B.1)

We extract this following equation from the above equation

(BBx)t = −c(BBx)x + 2c2εr10(B2Bx)x. (B.2)
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APPENDIX C

AN ATTEMPT TO INCLUDE FULL

ROTATIONAL EFFECTS

The success of the derivation of a new RMKdV in section 4.5 is largely owing to the fact that we
have kept the assumption of a small δ. In this appendix, we will present the difficulty brought by
not making this assumption.

If the rotation term δ is small, according to the governing equations given by (1.27a) – (1.27c),
we have the leading order equations

∂

∂t
ψ(0,0)
zz − b(0,0)

x − δv(0,0)
z = 0, (C.1a)

v
(0,0)
t + ψ(0,0)

z = 0, (C.1b)

b
(0,0)
t +N2ψ(0,0)

x = 0, (C.1c)

which can be reduced to
∂2

∂t2
ψ(0,0)
zz +N2ψ(0,0)

xx + δψ(0,0)
zz = 0. (C.2)

Looking for separable solutions for ψ = Bφ, we have

Btt − c2Bxx + δB = 0, (C.3)

and the eigenvalue problem,

φzz +
N2(z)

c2
φ = 0

φ(−1) = φ(0) = 0. (C.4a)
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We assume
v(0,0) = G(x, t)φ′ and b(0,0) = H(x, t)N2(z)φ, (C.5)

then Gt = −B, andHt = −Bx. Going back to equation(C.1a), we obtain the leading order
equation for B,G and H ,

Btφ
′′ −HxN

2φ = δGφ′′. (C.6)

Plugging N(z)φ = −c2φ′′ into (C.6) then gives

Bt + c2Hx = δG(x, t), (C.7a)

Gt = B(x, t), (C.7b)

Ht = −Bx(x, t), (C.7c)

which governs B at the leading order. To derive the equation at higher order, we assume

Bt + c2Hx = δG+ εR(x, t) + µQ(x, t), (C.8a)

Gt = B(x, t) (C.8b)

Ht = −Bx(x, t), (C.8c)

Notice that G and H still solve (C.7b) and (C.7c), except that now B is the solution of (C.8a).
At O(ε), the governing equations become

∂

∂t
ψ(1,0)
zz − b(1,0)

x − δv(1,0)
z = J(ψ(0,0), ψ(0,0)

zz )− [
∂

∂t
ψ(0,0)
zz − b(0,0)

x − δv(0,0)
z ]ε term (C.9a)

∂

∂t
v(1,0) + ψ(1,0)

z = J(ψ(0,0), v(0,0))− [v
(0,0)
t + ψ(0,0)

z ]ε term (C.9b)

∂

∂t
b(1,0) +N2ψ(1,0)

x = J(ψ(0,0), b(0,0))− [b
(0,0)
t +N2ψ(0,0)

x ]ε term (C.9c)

Since (C.8a) is to modify Bt to a higher order, the ε term in (C.9a) is R(x, t)φ′′; however, ε terms
in (C.9b) and (C.9c) do not exist according to (C.8b) and (C.8c).

J(ψ(0,0), ψ(0,0)
zz ) = BBx(φφ

′′′ − φ′φ′′) (C.10a)

J(ψ(0,0), v(0,0)) = BxGφφ
′′ −BGxφ

′2 (C.10b)

J(ψ(0,0), b(0,0)) = Bx(−Hc2)φφ′′′ −B(−Hxc
2)φ′φ′′ (C.10c)
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The governing equation can be simplified from (C.9a) – (C.9c) to one differential equation

∂2

∂t2
ψ(1,0)
zz +N2ψ(1,0)

xx + δψ(1,0)
zz =

∂

∂t
(BBx) (φφ′′′ − φ′φ′′)− ∂

∂t
R(x, t)φ′′

+
∂

∂x

(
−BxHc

2
)
φφ′′′ +

∂

∂x
(BHxc

2)φ′φ′′

+ δ
∂

∂z
(BxGφφ

′′ −BGxφ
′2). (C.11)

Notice that (C.11) has the same form of (C.2) except it is inhomogenous in that the RHS is likely
not zero. A comparison of this situation with that of section 4.5 leads us to find a solvability
condition, so that we will be able to solve for R(x, t) and ψ(1,0)(x, t) in one sole equation (C.11).
Similarly, we need the self-adjoint operator ` that allows us to use the zero boundary conditions
(C.4a). Suppose that on the LHS of (C.11), we can factor out the self-adjoint operator ` =
∂2

∂z2
+ N(z)2

c2
which was also defined in (4.60), then we need to find an appropriateR(x, t) to allow

integration of the RHS is zero. In fact, we find∫ 0

−1

φ(φφ′′′)dz =

∫ 0

−1

φ′3dz, (C.12a)∫ 0

−1

φ(φ′φ′′)dz = −1

2

∫ 0

−1

φ′3dz, (C.12b)∫ 0

−1

φφ′′dz = −
∫ 0

−1

φ′2dz. (C.12c)

We need

∂

∂t

(
BBx)(

3

2

∫ 0

−1

φ′3dz

)
+

∂

∂t
R(x, t)

(∫ 0

−1

φ′2dz

)
+ δBxG

(
1

2

∫ 0

−1

φ′3dz

)
(C.13)

+δBGx

(∫ 0

−1

φ′3dz

)
− ∂

∂x

(
BxHc

2
) ∫ 0

−1

φ′3dz − ∂

∂x

(
BHxc

2
)(1

2

∫ 0

−1

φ′3dz

)
= 0

Therefore,

∂

∂t
R(x, t) = −α(

3

2

∂

∂t
(BBx) +

1

2
δBxG+ δBGx −

∂

∂x
(BxHc

2)− 1

2

∂

∂x
(BHxc

2)), (C.14)

where

α =

∫ 0

−1
φ′3dz∫ 0

−1
φ′2dz

. (C.15)
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We have assumed that LHS of (C.11) has to factor as the self-adjoint operator `. In order to meet
this condition, let

ψ(1,0) = B(1,0)φ(1,0), (C.16)

then

∂2

∂t2
ψ(1,0)
zz + δψ(1,0)

zz +N2ψ(1,0)
xx = (

∂2

∂t2
B(1,0) + δB(1,0))φ(1,0)

zz +N(z)2B(1,0)
xx φ(1,0), (C.17)

we so should have
∂2

∂t2
B(1,0) + δB(1,0) = c2B(1,0)

xx (C.18)

The aforementioned result was obtained under a few assumptions, the most important assumption
being that the operator ∂4

∂t2∂z2
+ δ ∂2

∂z2
+ N2 ∂2

∂x2 on the LHS has ` as a factor. To verify this
assumption, we need to show that the RHS of (C.11) is separable, so that the self-ajoint operator
exists.

Unfortunately, we have not been able to verify that the RHS of (C.11) is separable.
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